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Neural Representation of Anticipation Involved in Decision Making

by Yumi SHIKAUCHI

In 1971, O’Keefe and Dostrovsky reported that responses of cells in the dorsal

hippocampus of rats to restraining tactile stimuli represent information involved

in place identification. Neuroscientists have been studying the hippocampal place

systems in rodents, primates and human until today. One of the most curious finding

therein is that the hippocampal place system is just like a car navigation system:

it represents not only a current position, but also possible future paths. However,

how animals and humans detect/expect special information has not been well

elucidated. We have no bird’s-eye view indubitably, and have to connect external,

partially observable visual cues to the map maintained in the brain for knowing the

topography around us. Resolution of uncertainty due to the partial observability

is an unexplained function of the brain. Moreover, sensory inputs (e.g., a view of

scenery in vision) are often quite different from the map-like representation with a

well-organized coordinate system. Thus, position detection should require unknown

intermediate representation between the map-like topographic system and each

scene view.

In this thesis, I describe the neural encoding mechanism that translates an upcom-

ing scene view into its anticipating brain activity. To examine how to cope with the

uncertainty resolution, I performed statistical modeling of human behaviors when

performing a partially observable maze navigation task; in particular, I developed

a hidden Markov model (HMM), which incorporates inference of a hidden vari-

able in the environment and switching between exploration and exploitation based

on the inference. The HMM-based model well reproduced the human behaviors,

suggesting the human subjects actually performed exploration and exploitation to

HTTP://WWW.KYOTO-U.AC.JP
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effectively adapt to this uncertain environment. To determine how the brain per-

forms view expectation during spatial navigation, I next applied a multiple parallel

decoding technique to functional magnetic resonance imaging (fMRI) when human

participants performed scene choice tasks in learned maze navigation environments.

I could decode participants’ view expectation from fMRI signals in parietal and

medial prefrontal cortices, whereas activity patterns in occipital cortex represented

various types of external cues. The decoder’s output reflected participants’ expecta-

tions even when they were wrong, corresponding to subjective beliefs which were

opposed to objective reality. Next, I explored appropriate encoding models that well

reproduce anticipating fMRI activities in a data-driven manner during maze naviga-

tion. The identified encoding models were noise-tolerant, because they incorporated

the characteristics of the task environment. I also found that the encoding models

could predict fMRI activities in the inferior parietal gyrus and precuneus, and that

details of anticipated scenes were locally represented in the superior prefrontal gyrus.

Furthermore, a decoder associated with the data-driven encoding models accurately

predicted future scene views in both passive and active navigational environments.

In summary, my experimental studies indicated that humans anticipate a forth-

coming scene during navigation, so that the neural representations of scene antic-

ipation are robustly and effectively encoded in the parietal and medial prefrontal

regions. In the decoding study, I demonstrated decoding of the participants’ in-

accurate prior belief of future observation. Additionally, my data-driven analysis

showed that brain-activity-driven encoders represent scene views in a noise-tolerant

manner and that the complementary decoder accurately predicts the future scene

views. My findings through this experimental and analytical studies would be able

to contribute to the future development of a new type of tool that allows people to

communicate with non-linguistic modality.
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Chapter 1

Motivation for studying anticipation

We can recall vividly what happened in the past, possibly as images, even without

external stimuli. Similar to or freer than reliving, we can envision what will happen

in the future. In this chapter, I define the notion of future anticipation with some

scenarios in our daily life, and describe how the processing of anticipation remains

as a mystery of the brain function.

1.1 Anticipation: focus of interest

You can imagine the scene behind the door before opening it. You know what are

in your drawer even when it is closed. Like these we often have knowledge about

the outside of our sight. In other words, many things that we have in mind are not

observed directly due to occlusion, remoteness or having not yet happened. Here, I

classify our observations, which are received through our sensory modalities (sight,

hearing, smell, taste, and touch), into three categories based on the difference on the

time axis: past observations, current observations, and future observations (Fig. 1.1).

When we predict the future observations, they are called anticipation.

1.2 Anticipation and intelligence

We predict future observations by integrating the observations available in the past

and at present. For example, if you hear the sound of water falling on the roof then

you think it is raining outside. If you placed your scissors in the drawer yesterday,

then you are sure that you find it there. We instinctively believe that there will be

tomorrow that is similar to but slightly different from today. It is natural that we
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Present

Past Future

Out of the view field Observable field

Forthcoming observation

Bygone observation

Time
S

p
a

c
e

FIGURE 1.1: Observations and time/space. The visual field is limited
in terms of both of time and space. Anticipation is defined as mental
image of forthcoming observations (green area) throughout this thesis.

believe that the real world is subject to the laws of physics, such as to be governed

by continuity because of the law of inertia.

Our prediction of future events is based on the continuity from the past to

the present. The continuity of the world is implicitly recognized by ourselves.

Our anticipation, which is performed in our everyday life with no difficulty, is a

typical intellectual activity; a wide range of knowledge is necessary for performing

anticipation. Laughter provides some evidence on intellectual aspects of anticipation.

As it is said that only human can laugh, laughter is one expression of intelligence.

We observe that incongruity between anticipation and actual observation is one

important factor for causing laughter (Gervais and Wilson, 2005). Although the

major elicitor of laughter is non-serious social incongruity, incongruity in serious

contexts can induce an opposite emotion, for example, crying by human infants.

Accordingly, anticipation of future observations is one of the higher-order mental

activities that arise in our daily life.

1.3 Anticipation and decision making

In the previous section, I described the emotional reactions associated with anticipa-

tion, such as laughing and crying. Besides, anticipation plays an important role in

behavioral reactions, that is, decision making. This section explains links to decision

making based on behavioral experiments and computational interpretations.



1.3. Anticipation and decision making 3

When a specific action is accompanied by positive outcome, then an animal

comes to perform that action repeatedly. For example, Skinner (1938) examined the

behaviors of rats placed in a small box with a lever, which is known as the Skinner’s

box. A naive rat seldom pressed the lever. However, after the rat was fed after it

happened to press the lever several times, the frequency of the lever press gradually

increased. This result suggests that the rat learned the lever press that was associated

with the preferable outcome, i.e., food. To establish this association, the rat needs to

predict upcoming food reward (result) depending on its preceding action (cause).

After many assiduous efforts, it has been convincingly argued that such behavioral

changes induced by the outcome, instrumental conditioning, occur in a consistent

manner over many species of animals (Skinner, 1938).

The theory of conditioning, classical and instrumental, has been confirmed by

huge number of psychological experiments, then impacted not only on ethology

but also other fields, like economics and artificial intelligence. Barto, Sutton, and

Anderson (1983) presented an idea of reinforcement learning, which was primarily

an extension of the Rescorla-Wagner model (Rescorla and Wagner, 1972) for classical

conditioning. Robots mimic the process of animal learning to make them adapt to

its surrounding environment flexibly. Reinforcement leaning is widely accepted as

a comprehensive theoretical framework that covers classical conditioning, instru-

mental conditioning and their time-series extensions (Fig. 1.2). In reinforcement

learning, an animal/robot (agent) selects an action (a) based on observation (o) from

the environment. Then, the environment provides the agent with a reward (r), which

is an assessment of the agent’s action. The goal of the agent is to seek such an optimal

policy that maximizes the temporal accumulation of the reward r. The expectation

of the accumulated reward is called the value, and when we intend to show its

dependence on the current state, it is called the value function. The agent thus

acquires the optimal policy by trial and error, based on the identification of the value

function. When there are multiple candidates of action, a fairly good policy can be

given such to more frequently select an action with a larger value. The so-called

soft-max policy is used as such an instance:

p(a) =
exp(βma)∑Na

a′=1 exp(βma′)
. (1.1)
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Action

Observation

Reward

Agent

Environment

FIGURE 1.2: Reinforcement learning.

Here, ma and Na are the action value and the number of action candidates, respec-

tively. Note that
∑Na

a′=1 p(a
′) = 1. The parameter β sometimes called as an inverse

temperature, controls the steepness of the soft-max function, and determines the

variability of the agent’s action. The action value ma is adjusted by a stochastic

approximation of the dynamic programming (Sutton, 1988), as follows:

ma → ma + ε(ra −ma). (1.2)

Here, ε is a parameter known as the learning rate, which determines to what extent

the newly acquired reward following action a (ra) overrides the old action value.

Note that this implementation is one example of reinforcement learning.

1.4 Anticipation and internal world

We, humans sometimes have to anticipate forthcoming situations in order to make

appropriate decision, such as in a complicated environment that may include various

kinds of uncertainty. A typical example can be seen when we navigate through a

familiar city based on observations of scenes around us. I mentioned above the

notion of instrumental conditioning in which the reward anticipation can be directly
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associated with the current action. However, we sometimes face more intricate

situations; for example, we may receive a reward after sequence of actions, rather

than a specific single action, or get a reward with non-negligible time delay, such

as salary paid monthly. Here, I show a computational framework to deal with such

more complicated cases.

The formula (1.2) showed the relationship between action a and reward r at the

current observation o. Here, I introduce another variable, state s, which may be a

function of a, r, and/or observation o. This representation can describe some context-

dependency, such as whether or not a specific event has been finished. The state

includes every information necessary for making appropriate decision, including an

initial state, the history of action, reward, and/or observation. Then, the goal of a

reinforcement learning agent is to seek such an optimal policy that maximizes the

total reward, given a current state. When a reinforcement learning agent is able to

identify explicitly a model of state transition, which is called an internal model, it

is said as performing model-based reinforcement learning. Although it is in many

realistic cases difficult to identify the internal model in an efficient manner, the total

reward acquired by the reinforcement learning agent can almost be the maximum

after the agent identifies the internal model of the current environment.

When you are in your familiar city, you can go anywhere you like without any

paper map, based on the environmental model in your mind, which is an instance

of the internal model, and in this particular case, called a cognitive map. We can

construct the cognitive map based on our empirical knowledge, and then know

the current position in the city and available route from the current position to

the destination. If we do not have such an internal model, it is impossible to plan

possible route toward the destination.





7

Chapter 2

Existing study of anticipation in the

brain

Neural correlates of future events have been studied in two major contexts: reward

expectation is ubiquitous in the brain during value-guided decision making (Doll

et al., 2015); and, during spatial navigation, hippocampal place cells depict potential

future paths (Pfeiffer and Foster, 2013; Johnson and Redish, 2007). In this chapter, I

review existing studies on these two lines and clarify my research motivations in

relations with them.

2.1 Reward expectation

I here describe theoretical frameworks of model-free (Section 1.3) and model-based

(Section 1.4) decision making. The brain is considered to contain these two different

modalities of decision making in parallel.

2.1.1 Model-free system in dorsolateral striatum

Dopamine neurons originally attracted neuroscientists’ attention due to possible

involvement in Parkinson’s disease. In 1986, Schultz (1986) found that monkeys’

midbrain dopamine neurons responded when food reward was delivered to the

mouth. Subsequently, he and his colleagues found that dopaminergic neurons in

primates are activated by the reward-predicting stimulus after stimulus-reward

conditioning (Schultz, Apicella, and Ljungberg, 1993). In 1997, they linked these

neural representation and a theoretical concept, reward prediction error (Schultz,
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Dayan, and Montague, 1997):

δt = rt + γVt+1 − Vt. (2.1)

Here, rt is the reward at time t and V· denotes the expectation of the sum of future

rewards up to the end of the trial. When summing, each reward r· is discounted

depend on the temporal distance; rewards that arrive sooner are more important

than rewards that arrive later. 0 ≤ γ ≤ 1 is the discount factor. This δt is called

the temporal difference (TD) error. The firing rate of dopamine neurons reflects the

magnitude of reward prediction error and/or probability of error occurrence of all-

or-none reward (Tobler, Fiorillo, and Schultz, 2005; Fiorillo et al., 2003), which could

be responsible for prediction-based learning (Rescorla and Wagner, 1972; Pearce and

Hall, 1980) and TD learning (Sutton, 1988). These studies suggested that dopamine

neurons are closely involved in expectation of reward.

2.1.2 Model-based system in prefrontal cortex

In complicated environments, e.g., situations of sequential behaviors to realize

future goals, appropriate decision making has to include planning based on an

internal model. When utilizing or even constructing the internal model of current

environment, the necessary information is often partially accessible, i.e., there is

uncertainty. Then, gathering information to resolve the uncertainty is one of the

essentials of applicable planning, as well as approaching rewards. Early lesion

studies suggested a relationship between impairments in planning and damage in

the frontal lobe (for a review, see Owen (1997)).

For examining exploratory decision, Daw et al. (2006) showed human behaviors

and fMRI brain activities in an uncertain environment. Each human subject was

requested to get as much as rewards (payments) by iteratively choosing one slot

machine from four options at each time. Each slot machine had a time-variant

payoff, whose time-series was unknown by the subjects. For maximizing the total

amount of rewards, the subjects tried to know the best option based on trials and

errors (exploratory behaviors). After they got to believe that a specific option is the

best, they repeatedly chose it (exploitative behaviors). Bilateral frontopolar regions

showed significantly increased activation accompanied by exploratory behaviors in

comparison to exploitative behaviors. This study implied that decision making with
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FIGURE 2.1: A conceptual scheme of the navigation environment. The
environmental information consists of already seen and unseen squares.
There are two types of squares: white paths and black walls. (a) An ex-
ample of the maze environment and scene view. A green box indicates
a field of view for this participant. (b) After moving forward, here from
the bottom-center square to the middle-center square in the green box,
this participant observes the wall statuses of top-left, top-center and
top-right squares. L, left; C, center; R, right.

uncertainty involves switching between exploratory and exploitative behavioral

modes.

Around the same time, Yoshida and Ishii (2006) reported neural processes in-

volved in navigation in an uncertain environment. The subjects were requested

to sequentially select appropriate actions for goal achievement in a virtual three

dimensional (3D) maze (Figure 2.1a). In this navigation task, they were not informed

of the initial position. Soon after the start of a navigation block, the subjects tried to

identify the current position using available observation (3D scene views), which

is a partial information of the current position, and the knowledge of maze; they

were familiar with the maze structure due to pre-training sessions outside the MRI

scanner. Namely, they reduced the number of position candidates (i.e., uncertainty

of the position) based on their exploratory behaviors. This study concluded that the

uncertainty is represented and resolved in the anterior prefrontal cortex.

2.1.3 Integrative decision making process

The brain makes decisions using these dual action choice systems; the model-free

midbrain system and model-based prefrontal system. One of normative questions is

then how the brain utilizes in an integrative fashion the multiple control systems

for selecting appropriate actions. The model-free controller is directly motivated by
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rewards, whereas the model-based controller needs to incorporate also the uncer-

tainty of the environment. These two controllers may disagree in some cases because

of the trade-off between, for example, certain small rewards and less certain but

large rewards. This trade-off is known as ‘exploration-exploitation dilemma’. Daw,

Niv, and Dayan (2005) showed a model of uncertainty-based controller competition,

whose computer simulation well reproduced a rat’s reinforcement learning task.

According to the model, when a rat confronted high uncertainty (i.e., soon after the

initial trial), the model-based system dominated. After many trials, the model-free

system prevailed, which was similar to habituation (Dickinson, 1985). This trade-off

would be represented in human brain; when the model-based controller was domi-

nant, the putamen blood-oxygen level dependent (BOLD) response being correlated

with model-free prediction error decreased, but was increased when the model-free

was dominant (Doll et al., 2015).

2.2 Hippocampal place system

2.2.1 Mechanism of place coding

In 1971, O’keefe and Dostrovsky reported that responses of cells in the dorsal

hippocampus of rats to restraining tactile stimuli behave as a function of spatial

orientation (O’Keefe and Dostrovsky, 1971). The hippocampal place system is now

believed to be a well-established system for representing spatial information in the

brain (Buzsáki and Moser, 2013). The hippocampal cortex and the parahippocampal

cortex belong to this system. The place cells in the hippocampal cortex receive

multiple grid cells’ input (Hafting et al., 2005; Fyhn et al., 2008, for a review, see

Penner and Mizumori (2012)). The parahippocampal cortex consists of grid cells,

which show firing specific to location. The grid cells are of diverse scales and

directions. Thus, a place cell encodes a specific position by overlaying multiple

outputs of the grid cells.

2.2.2 Replay

The place cells have long been known to be involved in spatial decision making such

as navigation. Foster and Wilson (2006) provided a novel insight into the learning

process of spatial information. They reported a specific activity in the awake rest;
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the hippocampal place cells behave sequential replay, in which recent episodes of

spatial experience are repeated as reverse reproduction. In the rat’s brain, the reverse

replay is more frequently observed in a new environment than in a familiar one.

This study suggested that the reverse replay has a critical role in support of leaning

and memory consolidation during hippocampus-dependent tasks. Following this

study, several neuroscientists have reported replay in the brain during not only the

awake rest but also the sleep (Eschenko et al., 2008; Epstein, 2008; Girardeau et al.,

2009). These studies suggested that the hippocampal place system realizes memory

representation dependent on the order but rather independent of the period: the

latter is called time-invariance below.

2.2.3 Action planning

This time-invariance could be attained for future, too. The place cells represent

spatial locations along an absolute coordinate in terms of a spatial map and moreover,

are known to depict potential future paths. When the rats are running on a T-

shape maze, the hippocampal place cells represent current position as mentioned

Subsection 2.2.1. Johnson and Redish (2007) found that the spatial activity is ready

to estimate the rat’s current position. The rat’s hippocampus performs in terms

of its sequential activity encoding trajectories in a start position on an open-field

(Pfeiffer and Foster, 2013). These activities implied the rat’s future trajectory for

approaching an reward position. This future-trajectory-dependent firing in the

hippocampal cortex is represented by a wide circuit including structures involved

in the evaluation and selection of actions: the source of this activity is the medial

prefrontal cortex projected via the midline thalamic nucleus reuniens (Ito et al., 2015).

2.3 Research direction

2.3.1 Research question

Under the existing studies above, in this thesis, I target future anticipation in human

decision making. In the scheme of model-based decision making, how the human

brain encodes anticipation? To answer this question, I measured human brain

activity during spatial navigation games, and analyzed the measured brain activity

and behaviors.
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2.3.2 Measuring methods

Psychological experiment

To examine human cognitive states, I recorded subjects’ decisions using a button

pressing during the subjects were performing spatial navigation games. Each button

pressing provides two kinds of information: an internal state/action and a reaction

time (RT). When we are interested in the internal state, each subject was requested to

report his/her cognitive state using the button, so that the button-press leads to the

evaluation of subjective perception and/or cognition. The RT represents the latency

from a stimulus onset to a subject’s response. Since the subjects were requested to

press a button as soon as possible, RT could be seen as the measure of cognitive load:

a higher load needs a longer RT.

Human brain activity

For measuring brain activities of healthy human, a non-invasive method is the sole

choice. There are three major modalities for measuring human brain activity with-

out any surgical operations or radiation exposure, which have been widely used

in neuroscience studies: electroencephalography (EEG), magnetoencephalograhy

(MEG) and functional magnetic resonance imaging (fMRI). EEG is a modality for

monitoring electrical activity of the brain. When measuring human brain activity,

multiple electrodes are placed on the scalp. Each electrode detects voltage fluctua-

tions resulting from ionic current within multiple neurons over the cerebrospinal

fluid, skull and scalp. Similar to EEG, MEG detects brain activity based on elec-

tric currents in neurites. MEG measure changes in magnetic fields by means of

high-sensitivity SQUID coils, caused by electrical activity of the brain. These two

functional neuroimaging modalities provide fine temporal resolution. However,

EEG and MEG serve poor spatial resolution because the brain signals measured at

each sensor position are mixtures of original signals produced by different brain

regions. The decomposition of measured signals into original signals constitute a dif-

ficult inverse problem. On the other hand, fMRI provides fine spatial resolution with

an active sensing technique. In fMRI, a particular brain slice is excited by a magnetic

field gradient and radio frequency pulse (selective irradiation). Magnetization of

oxygen-rich blood is different from that of oxygen-poor blood (blood-oxygen-level
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FIGURE 2.2: Graphical model of cognitive state. H , a and o denote a
hidden state, action and observation (e.g., stimulus or reward),
respectively. Subscripts indicate a time variable.

dependent (BOLD) contrast) (Huettel, Song, and McCarthy, 2008). Thus, fMRI de-

tects the BOLD signal which is caused by local increase in the blood flow, which is in

turn caused by the neurons’ consumption of oxygen during their activation. Among

these different modalities, fMRI has the highest spatial resolution so as to obtain the

most accurate activity-related signals, being unaffected by noises coming from, for

example, the outside of cortical regions. In this study, I measured functional brain

activity as time series of three-dimensional images taken by fMRI.

2.3.3 Analysis methods

Hidden Markov model

An action (e.g., a selected button type and reaction time in psychological experi-

ments) is one of indications of the subject’s cognitive state. A stimulus (e.g., a visual

image) modified the subject’s cognitive state. An experimenter inferred an unob-

servable cognitive state of the subject from these observable information. Namely, I

hypothesize that the subject decides his/her action based on his/her belief, which is

dependent on the present stimulus (Fig. 2.2). The belief may change over time with

a Markov property. This restriction of the temporal change of belief is appropriate

for describing human cognitive states. To model the cognitive state from the time

sequence of actions and stimuli, I used a hidden Markov model (HMM).



14 Chapter 2. Existing study of anticipation in the brain

Multi-voxel pattern analysis

The traditional analyses for fMRI brain activity were often based on a subtraction

method, which usually focuses on individual brain voxels. The main question in

the subtraction method is whether each voxel activity is increased or unchanged

while a subject performs a target cognition, like in cognitive tasks, compared to

a base line condition. This approach has been tremendously productive, but has

several limitations due to short of information about spatial patterns (Norman et al.,

2006). By applying multivariate methods to fMRI data, it is possible to characterize

functional relationships between different brain regions or sub-region voxels. This

approach is known as multi-voxel pattern analysis (MVPA) (Fig. 2.3). The main

benefits of the MVPA approach are as follows;

• By avoiding the signal-loss issues, the MVPA approach extracts the signal that

is responded in the pattern in high sensitivity.

• The subtraction analysis is a condition (a few minutes)-based approach, while

the MVPA approach detects the presence/absence of cognitive states based on

individual trials (a few seconds).

• The MVPA approach may reveal the brain’s way to combine multiple cognitive

states into activity patterns with a very large capacity.

These benefits would lead to a solution to the most fundamental question in cognitive

neuroscience, how to represent the external world by means of internal neural space,

i.e., encoding. The MVPA approach have developed through visual sensory areas

(Haxby et al., 2001; Kamitani and Tong, 2005; Kay et al., 2008). Several studies

applied this method to auditory areas (Formisano et al., 2008; Meyer et al., 2010).

However, it remains a challenge to decode brain activities in higher brain areas.

Encoding and decoding

Several MVPA studies have focused on decoding properties of the subject’s cog-

nitive state. fMRI-based decoding studies have recently provided new insights

into the encoding schemes of the human cortex (Miyawaki et al., 2008; Stansbury,

Naselaris, and Gallant, 2013; Nishimoto et al., 2011; Horikawa et al., 2013). For the

brain, encoding is the process of translating perceived stimuli into nervous activ-

ity, while decoding is its complement, to reproduce environmental stimuli based
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FIGURE 2.3: Illustration of multi-voxel pattern analysis. (a) An example
of fMRI experiment setting and fMRI brain activities. The experiment
consists of N trials with two types of task condition; 0 or 1. Each trial,
which consists of several time points, belongs to either of two types
of task condition. fMRI gives an experimenter a time series of brain
activity pattern. Each element is called a voxel (colored circle), which
represents a BOLD signal in a particular region. (b) MVPA consists
of two phases; training phase and test phase. In the training phase, a
classifier function is trained to map between brain patterns and task
conditions (left). In the test phase, the classifier is applied to a novel
pattern to predict the corresponding task condition.
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on the measured brain activity, being comparable to the processing of the system

downstream of central nervous system. Due to the indeterminacy in the general

neural coding, the mimicking this decoding (termed simply decoding, hereafter),

even with the help of full utilization of machine learning techniques, would show

limited performance without knowledge of the complementary encoding scheme.

This means, on the other hand, that decoding performance is a barometer of the

reliability of our knowledge of the paired encoding scheme (Naselaris et al., 2011).

Thus, in the study, shown in Chapter 4, I demonstrated neural decoding from fMRI

brain activity pattern. Moreover, shown in Chapter 5, I selected an encoding model

in a data-driven manner, and evaluated this model by a decoding accuracy.

Support vector machine

When analyzing fMRI multi-voxel pattern in chapter 5, I used a support vector

machine (SVM). An SVM classifier finds the best hyperplane that separates training

data points x of one class t = −1 from those of the other class t = 1, using linear

models of the form

ySVM(x) = wTφ(x) + b (2.2)

where φ(x) and b denote a fixed (and may be underlying) hyperplane transformation

function and a bias parameter. The sign of ySVM(xn) corresponds to the class

prediction of a new test point xn; i.e., ySVM(xn) < 0 indicates the SVM predicts as

tn = −1 and ySVM(xn) > 0 indicates its opposite prediction tn = 1. The decision

boundary is chosen to be the one for which the margin, perpendicular distance

between the closest data points to the boundary, is maximized under the constraint

as follows:

arg min
w,b

1

2
‖w‖2. (2.3)

The training of the SVM was performed so as to minimize the cost function:

L(w, b,a) =
1

2
‖w‖2 −

N∑
n=1

an{tn(wTφ(xn) + b)} (2.4)
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where an ≥ 0 is the Lagrange multiplier. If the set of training data points are

linear separable, the trained SVM will give perfect separation; however, such naive

classifier can be poor in generalization. Moreover, in many cases, the data space

itself may not be linear separable. Thus, we need to modify the SVM so as to allow

some of the training points to be misclassified. To do this, the original cost function,

equation 2.3, is replaced with

arg min
w,b

C

N∑
n=1

ξn +
1

2
‖w‖2 (2.5)

where C > 0 is a regularization parameter, which controls how much the slack

variable ξ· is allowed to take a large positive value. The corresponding Lagrangian

is given by

L(w, b,a) =
1

2
‖w‖2 − C

N∑
n=1

ξ −
N∑
n=1

antny
SVM(xn)− 1 + ξn −

N∑
n=1

µξn (2.6)

where an ≥ 0 and µ ≥ 0 are Lagrange multipliers.

Sparse logistic regression

In chapter 4, I applied another sparse estimation method, called sparse logistic

regression (SLR), which is a logistic regression with a prior called an automatic

relevance determination (Yamashita et al., 2008). SLR assumes a Gaussian prior

distribution with a zero mean vector and a spherical covariance matrix instead of L2

regularization (Eq. 2.4):

ySLR(xn) =
1

1− exp(−(wTxn + b))
(2.7)

P (w, b|α) = N(0, α−1ID). (2.8)

Here, ID is the identity matrix of size D ×D. D is the number of voxels.

To find the parameter vector w and the bias b, the following log-likelihood

function is maximized.

L(w, b) =
N∑
n=1

[tn log y
SLR(xn) + (1− tn) log(1− ySLR(xn)]. (2.9)
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This maximization can be done by the Newton method, because the gradient and

Hessian matrix of L(w, b) can be obtained in the closed forms.

The parameter vectorw is sparsely estimated by means of the automatic relevance

determination (Eq. 2.8). Moreover, in SLR, voxels are selected based on contribution

of cross validation (CV) accuracy inner-training data by a selection counting value

SC(d):

SC(d) =
K∑

k:p(k)>pchance

I(ŵd(k) 6= 0)× p(k) d = 1, . . . , D. (2.10)

Here, pchance is a chance level with classification performance. ŵ(k) and p(k) denote

the estimated parameter vector and classification accuracy resulting from the kth

CV. Note that the selection counting values are calculated using the training data set,

then an additional data set, like a test data set, is not required.
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Chapter 3

View anticipation during spatial

navigation

In this chapter, I report behaviors in decision making and their modeling in partially

observable environment. Several studies reported switching behaviors of humans

between exploration and exploitation; however, computational details underlying

it have been unexplored. To examine this issue, I used a 3D navigation game to

which I applied a computational behavioral analysis based on hidden Markov model

(HMM).

3.1 Experimental setting

3.1.1 Participants

Eight healthy participants (2 females, 6 males; aged 22–26 years, right-handed and

with normal or corrected-to-normal vision) took part in this experiment. Each

participant gave written informed consent, and all experiments were approved

by the Ethics Committee of the Advanced Telecommunications Research Institute

International, Japan. All methods were carried out in accordance to the approved

guidelines. They practiced the free exploration task on the day before they performed

the navigation task, in order to memorize the structure of the partially observable

environment.

3.1.2 Behavioral task

In the experiment, human participants took part in a partially-observable maze

navigation task, whose scheme is shown in Fig. 3.1. The participants were informed
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of a goal position on the 2D maze, map at the beginning of a single block, and then

tried to reach the instructed goal after as few trials as possible, based on partial 3D

observations which gave clues to identify the current position on the maze. Notice

that the participants were requested to reach an instructed goal from an uninstructed

start position and orientation. Thus, the participants have to identify the current

position before planning to achieve the goal.

Each participant performed three sessions each of which consisted of 150 trials of

the navigation task. When a participant achieved a goal, it was the end of a single

block, then another block started. The participants shared the same settings of the

task; in the corresponding block, the start and goal positions were the same over the

participants.

On the day before performing the maze navigation task, the participant had

joined a free exploration task to well identify the maze structure and the correspon-

dence between locations on the 2D maze map and 3D views which can be seen at

those locations. The maze used in the free exploration task was common with the

one in the navigation task done in the subsequent day, and I confirmed that they

had sufficiently memorized the maze structure and also attained the mapping from

2D locations to 3D views through the free exploration task.

The maze I used (Fig. 3.1) consists of 11× 11 squares: 58 vacant squares constitut-

ing paths and 63 wall squares. There is no dead-end, cross road, or wider (1×2, 2×1,

etc.) square area. The observation (view) is 3D and partial; at each square on the

maze, the participant may take either of four orientations, north-faced, east-faced,

south-faced or west-faced. A single view presents the status, wall or vacant, of six

squares (forward, forward-left, forward-right, left, right and the current position).

There are in total seventeen possible views and all of them actually exist in the

used maze. Each location on the maze shares the same view with some others, at

least other five different locations on the maze; this maze design did not allow the

participant to identify his/her position only from a single 3D view, which made the

environment uncertain.

In a single trial in a block, after presenting a 3D view, the participant selected

one of three possible actions, forward move, left turn and right turn, by a button

press. This action selection should be completed within 2 seconds, which defines the

maximum reaction time. If the forward move was selected, the location was changed

by one square to the forward direction, but the other two actions only changed the
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…Time

FIGURE 3.1: A single block in the maze navigation game. An 11× 11
grid field was used. A blue circle on the map indicates a goal position.
Each participant was requested to reach the goal from an uninstructed
initial state based on sequentially observed 3D scene views. Each block
continued until she/he achieved the goal arrival, which was informed
by a white circle.

orientation with letting the participant stay at the same square. The participant

reported his/her actions by her/his left hand; forward move by a middle finger,

right turn by an index finger and left turn by a ring finger.

By using another hand, the participants were requested to report whether the

actual observation was the same as what they had predicted; I assumed that the

participant could predict the next view before it was presented. The participant was

requested to first press the right-hand button to confirm their prediction and then

the left-hand button to select their actions, in each trial. The report by the right hand

was optional, but if the participant could not press the action button by the left hand

within an allotted time (2 sec.), it caused a miss trial and he/she stayed at the same

location with the same orientation.

3.2 Analysis methods

3.2.1 Behavioral analysis

All behavioral data analyses were performed with MATLAB (MathWorks) with

the usage of the Statistics and Machine Learning toolbox. When searching for the

shortest route in each block, I used Dijkstra’s algorithm implemented as a custom

program in MATLAB.
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3.2.2 Computer agents

In order to evaluate human behaviors in this navigation task, I designed three

computer agents; a full-observation agent, a stroll agent, and an optimal agent

(Table 3.1). I simulated navigation processes of these computer agents in the same

settings as those done by human participants (Subsection 3.1.2). Comparisons

of the behaviors between the computer agents and human participants allowed

me to quantitatively evaluate human decision making in this partially observable

environment.

TABLE 3.1: Three computer agents and a model of human participants.

Full-observation Optimal Human Stroll

Memory X X ? ×
Initial state X × × ×

Full-observation agent

I first modeled a ‘Full-observation’ agent; this agent knows the perfect map topogra-

phy and where it is on the map, and moreover, memorizes all the past observations.

This agent takes the ideal, shortest route in all the trials in each block, so that the

action selection probability is given by

p(at|st) =


1

N shortest
t

if at is exploitative

0 otherwise

(3.1)

where, st is the location (in the case of the full-observation agent, this location is the

real one) and N shortest
t is the number of actions that constituted the shortest route, at

the t-th trial.

Stroll agent

Second, I modeled an opposite of the full-observation agent, a ‘stroll’ agent. The

stroll agent has no memory, but knows the effective action in this maze navigation

environment; e.g., when a forward square is a wall, the forward movement to the



3.2. Analysis methods 23

wall square is ineffective and a turn to left or right is effective. Based on such

knowledge, I defined a model of action preference of the stroll agent as follows.

1. If effective, the agent prefers forward movement.

2. If there is a wall in the forward direction but no wall on both of left-hand side

and right-hand side, the agent takes either of turn-to-left or turn-to-right with

equal probability to see a vacant square in the new forward direction.

3. If the agent is on an L-shape corner, it takes the sole effective turn action.

Namely, this agent’s action depends only on the current observation (denoted as o∗t ),

not on the estimated location (denoted as st) or the real location (denoted as s∗t ). The

action selection probability of this agent is given as follows.

p(at|o∗t ) =



kprefer

kpreferN
prefer
t + (N eff

t −Nprefer
t )

if at is the preferred action

1

kpreferN
prefer
t + (N eff

t −Nprefer
t )

otherwise

(3.2)

where, N eff
t and Nprefer

t denote the numbers of effective actions and preferred

actions, respectively, at the t-th trial. The parameter kprefer defines the tendency

to select the preferred action and was fixed to 0.90 (this agent almost selected the

preferred action).

Optimal agent

Third, I modeled an ‘optimal’ agent; this agent memorizes all the past observations

and takes an ‘info-max’ action which most reduces the possibilities of the agent’s

location on the maze if there is any position ambiguity, whereas a ‘greedy’ action to

follow the shortest route to the goal if there is no ambiguity. Moreover, this agent is

assumed to completely know the map topography. Then this agent selects actions

similar to the stroll agent in the early part of each block, because the preferred action

of the stroll agent is same as the ‘info-max’ action. When there is ambiguity, on the

other hand, the action by the optimal agent was given by Equation 3.2 with kprefer

was fixed to 1. When there is no ambiguity, this agent selected an action according

to Equation 3.1, similar to the full-observation agent.
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FIGURE 3.2: Histogram of additional steps needed by human par-
ticipants, in comparison to the full-observation agent. The human
participants took more steps to reach the goal (colored bars) than the
optimal agent (gray bars).

3.2.3 Assumptions on human model

The basic assumption here is that the human participants would like to behave like

as the optimal agent, but indeed behaved sub-optimally due to the limited reaction

time and restriction in the memory resource. A preliminary analysis revealed that

the participant’s behaviors were actually different from those by the optimal agent

(Fig. 3.2). Although this partially-observable maze was designed so that participants

can identify their locations after at most four (meaningful) actions starting from any

location on the maze, they often took non-optimal actions even after fifth trials. Then,

I modeled the sub-optimal decision making by the participants, such to include the

uncertain (probabilistic) character of the information processing, by means of a

statistical model.

To get to the goal after as few trials as possible, identification of the present

location is the key. Therefore, the participants, being familiar with the maze structure,

were assumed to employ two different strategies depending on their situation; one

is an exploration strategy (to try to know the present location), and the other is an

exploitation strategy (to follow the shortest route to the goal). Although the same

strategies have also been implemented in the optimal agent, the exploration and
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exploitation by human participants are supposed to be sub-optimal, even though

the available information is common with that for the optimal agent.

It would be plausible to assume that each participant keeps and maintains a

belief state, sufficient statistics of unknowns, which comprises two factors: where

the participant thinks he/she is (present location estimated by the participant) on

the maze and whether the participant is confident of her/his estimation or not

(confidence for estimation). Like the optimal agent, the participant was assumed to

take an ‘info-max’ behavior if he/she is not convinced of his/her position, c = 0, or

an optimal behavior if he/she is convinced, c = 1, even if those behaviors could be

sub-optimal; this is the model of decision making by the participant. After getting

the new observation, the participant would check if his/her previous guess was

correct or not, which would make the confidence to change. Then I formulated these

processes in terms of hidden Markov model (HMM).

• Internal state Ht = (st, ct)

• Present location estimated by the participant: st, real location: s∗t

• Confidence for estimation: ct

• Actual action taken by the participant: at

• Actual observation: o∗t

• Transition probability of the internal state: p(Ht|Ht−1, at − 1, o∗t )

• Action selection probability: p(at|Ht)

• Initial belief p(H1|o∗1)

Figure 3.3 shows the graphical model of the HMM, which expresses the dynamics

of the subjective internal states and objective states of the participants in the maze

environment.

Action selection probability

Exploration strategy. ct = 0 denotes that the participant is not certain about the

current position on the maze. The optimal strategy in such a case is to take the ‘info-

max’ (or exploratory) behavior; that is, to reduce the number of possible locations on
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FIGURE 3.3: An HMM for human information processing during nav-
igation behaviors. The participant’s action a· is generated from the
hidden internal state H·. s∗· denotes the real states, which involves the
participant’s location and orientation.

the maze. In typical situations to explore the maze, the subject is able to observe the

status of three new squares by taking a forward movement, or that of two squares

by taking a turn movement. Then, the exploratory behavior is assumed as follows.

1. If possible, the participant takes the forward movement, to get much new

information.

2. If there is a wall in the forward direction but no wall on both of left-hand side

and right-hand side, the participant takes either of turn-to-left or turn-to-right.

3. If the participant is on the L-shape corner, he/she takes the single effective

turn action.

To represent the sub-optimality of the exploration by the participants, kexp, which is

the preference ratio of exploratory action to non-exploratory one, is introduced so

that the action selection probability is given by

p(at|st, ct = 0) =



kexp

kexpN
exp
t + (N eff

t −N exp
t )

if at is explaratory

1

kexpN
exp
t + (N eff

t −N exp
t )

otherwise

(3.3)
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Here, Neff and Nexp denote the numbers of all effective actions and exploratory

actions defined above, respectively, at st.

Exploitation strategy. ct = 1 denotes that the participant is convinced of her/his

current location on the maze. In this case, the optimal behavior is to follow the

shortest route to the goal. Due to the sub-optimality of the participant’s exploitation,

however, he/she may take some random actions with a probability εopt.

p(at|st, ct = 1) =


(1− εopt)
N opt
t

if at is exploitative

εopt otherwise

(3.4)

Here, Nopt denotes the number of optimal actions at the t-th trial. Notice that it

is difficult to discriminate between the participant’s exploratory and exploitative

strategies only from single actions, because some exploratory actions may also be

exploitative and vice versa.

Transition probability. The participants were assumed to predict the observation

obtained in the next trial. Here, ŝt and ôt denote the predicted position due to mental

simulation (deterministic) based on the previous position estimate st−1 and the

actually taken action at−1, and the predicted observation at the predicted position,

respectively, at the t-th trial. Due to the limited reaction time, the participant would

perform mental simulation before getting a new observation at the t-th trial.

I assumed that the participant reexamined his/her position estimate based on the

newly available observation; that is, if the new observation was what he/she had

expected, he/she became more confident, while if the new observation was found to

be different from what he/she had expected, he/she retried the estimation based on

the new observation but with low confidence.

More concretely, if the participant was convinced at the (t− 1)-th trial, Ht−1 =

(st−1, ct−1 = 1), and there was no discrepancy between the predicted observation and

the actual observation, ôt = o∗t , the estimated location changed to ŝt with probability

1; that is, the internal state changed to Ĥt = (ŝt, ct = 1). But if not convinced at

the (t − 1)-th trial, Ht−1 = (st−1, ct−1 = 0) and ôt = ô∗t , he/she remained uncertain

with probability 1 − εH or became convinced with εH ; that is, Ht−1 changed to

x̂t = (ŝt, ct = 0) with probability 1 − εH or (ŝt, ct = 1) with εH ; the latter process

represents the change of belief into a confident one.
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On the other hand, if there was discrepancy between the prediction and actual,

ôt 6= o∗t , the new position estimate was uniformly taken from possible positions on

the maze whose view was identical to o∗t with low confidence; that is, Ht−1 changed

to Ĥt = (s′t, ct = 0). Here, s′t denotes any possible location whose view is identical to

o∗t .

Initial belief

At the start point, the participants were assumed to be unconvinced of their position,

so p(c1 = 0) = 1. Then p(s1) was a uniform distribution over the positions on the

maze whose observation was identical to the initial observation o∗1.

Estimation and prediction

Estimation for the belief state. The incremental Bayesian estimation provides a way

to estimate the belief state along the series or trials (Kitagawa and Sato, 2001). Here,

a belief state is the filtered estimation of the participant’s internal state at the t-th

trial, based on the sequences of actions and observations available for the participant

before that trial. The action probability p(at|Ht) was given in Section 3.2.3, and the

state transition p(Ht|Ht−1, at−1, o
∗
t ) was described in Section 3.2.3.

p(Ht|a1:t, o∗1:t) =
p(at|Ht)

∑
Ht−1

p(Ht|Ht−1, at−1, o
∗
t )p(Ht−1|a1:t−1, o∗1:t−1)

p(at|a1:t−1)
(3.5)

On the other hand, by using the whole sequence of actions and observations of the

participant until the end of that block, I, as an experimenter, can obtain the smoothed

estimate of the belief state, which would be more reliable than the filtered estimate

as follows. Here, T denotes the trial length in the block.

p(Ht|a1:T , o∗1:T ) = p(Ht|a1:t, o∗1:t)
∑
Ht+1

p(Ht|Ht, at, o
∗
t+1)p(Ht|a1:T , o∗1:T )

p(Ht+1|a1:t, o∗1:T )
(3.6)

Prediction of action. The incremental Bayesian formulation also provides the way

to predict the next action based on the past data as follows. The prediction accuracy

is not only the measure of model’s predictability (the larger, the better), but also the
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quantity signifying subjective predictability of human participants.

ât = argmax
at

p(at|a1:t−1) (3.7)

The concordance rate ρ between the predicted actions ât and the real actions at was

calculated as ρ = Nρ/(T − 1). Nρ is the number of trials whose actions were well

predicted, ât = at, in the block t = 1 : T − 1. When there were multiple probable

actions (given by Equation (3.7)) as ât, I regarded ât = at when at corresponded

to any of those probable actions. In order to evaluate the HMM-based behavioral

model, its prediction ability was compared with that by the optimal agent. I could

evaluate the concordance rate of the optimal agent, ρopt, in a similar fashion to that

of the HMM-based model.

Parameter estimation. According to the incremental Bayesian estimation, the marginal

likelihood was automatically calculated, which could in turn be used for the max-

imum likelihood (ML) estimation of the parameter ε ≡ (kexp, εopt, εH). Here, the

parameter estimation was crucial because the parameter would represent the char-

acter of each participant. Given a set (N sequences) of actions and observations of

the participant for the parameter estimation, bk(k = 1, · · · , N), the total marginal

likelihood is given by

L(ε) =
N∏
k=1

p(bk|ε), (3.8)

where the marginal likelihood of a single sequence (block) p(b|ε) was simply given

as a normalization constant of the filtered posterior of the internal state at the end of

the block:

p(b|ε) = p(a1|ε)
N∏
t=2

p(at|a1:t−1|ε) (3.9)

The ML estimate of the parameter is given by maximizing the total marginal like-

lihood. Although I can analytically obtain the ML estimate in this case of HMM,

I simply applied the grid search heuristics: I discretized each of the parameters,

kexp, from 2 to 97.44 by a geometric order (common ratio 1.54, from the first to ninth

terms), εopt, from 0.45 to 0.00 by −0.05 and εH , from 0.1 to 1 by 0.1, evaluated the

total marginal likelihood on each of the 10 × 10 × 10 grid points, and selected the

best point that maximizes the total likelihood.
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TABLE 3.2: Results of parameter estimation for the HMM (mean ± std
across leave-one-block-out CV in each participant.).

kexp εopt εH
Participant (range 2.00-97.44) (range 0.45-0.00) (range 0.10-1.00)

1 17.58± 0.00 0.05± 0.00 0.10± 0.00
2 100.00± 0.00 0.47± 0.01 0.10± 0.00
3 82.37± 18.41 0.00± 0.00 0.10± 0.00
4 55.97± 11.56 0.00± 0.00 0.10± 0.00
5 40.28± 4.93 0.10± 0.02 0.10± 0.00
6 70.62± 13.72 0.00± 0.00 0.10± 0.00
7 100.00± 0.00 0.00± 0.00 0.10± 0.00
8 52.30± 11.92 0.00± 0.00 0.10± 0.00

3.3 Results

3.3.1 Parameter Estimation

I performed the parameter estimation for each participant; the ML estimate of the

parameter was obtained by using the data in the three sessions. The ML estimate

was ε = (kexp, εopt, εH) = (17.58− 100.00, 0.00− 0.47, 0.10) (Table 3.2).

3.3.2 Action prediction

Figure 3.4a shows an example of the real trajectory of a participant during a single

block, starting from the red arrow (hidden start state) and ending at the double

circle (instructed goal position). When the computer agents, the full-observation

and optimal agent, navigated this environment, the total steps were fewer than

that of the participant (Fig. 3.4b, c). The stroll agent walked around and around,

and took more steps these by the human participant. I calculated the concordance

rate of all actions for each participant. The result is shown in Table 3.3, where the

concordance rate ρ by the HMM was better than that by the optimal agent (ρopt)

and the stroll agent (ρstroll) for almost all the participants. When there were two or

three meaningful actions (decision trial, i.e., a T-junction), the action prediction was

more essential than that in a straight road or a L-shape corner. Thus, I additionally

calculated the concordance rate in the decision trial (Table 3.4). These results show

that the HMM-based behavioral model well reproduced the participant’s behaviors.

When calculating the concordance rate, the parameter was estimated by using the
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TABLE 3.3: Action concordance rate by the HMM (ρ), that by the opti-
mal agent (ρopt) and the stroll agent (ρstroll).

Participant ρ(%) ρopt(%) ρstroll(%)

1 82.4 67.2 78.5
2 87.1 81.2 81.4
3 91.0 76.8 89.9
4 88.3 75.8 86.1
5 89.3 71.5 86.2
6 86.3 76.2 78.7
7 90.5 82.2 86.4
8 90.8 76.6 86.1

TABLE 3.4: Action concordance rate in the decision trial.

Participant ρ(%) ρopt(%) ρstroll(%)

1 77.1 59.2 68.2
2 80.2 77.6 69.4
3 85.5 67.5 82.2
4 82.6 68.7 77.7
5 87.9 68.0 81.5
6 79.4 72.2 66.3
7 85.4 76.8 77.2
8 87.3 72.5 78.8

data during M − 1 blocks out of M blocks (M is the total number of blocks, training

data), and tested by using the remaining one block (test data), for each participant;

i.e., the prediction performance is a cross-validated one.

3.3.3 Belief state estimation

In the early part of the block in Fig. 3.4a, the HMM estimated that the participant

might have recognized his/her position but with low confidence (ct = 0). As the

trials proceeded, the HMM estimated that she/he was confident of his/her position

(ct = 1, cyan open circle) , which shows good agreement with the participant’s

report (green circle in Fig. 3.4a). This example typically shows that the HMM well

reproduced the participant’s internal processing of resolving uncertainty (his/her

position on the maze) in the environment, only from the participant’s behaviors.

In order to evaluate further the HMM-based behavioral model, I next calculated
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FIGURE 3.4: Navigation behaviors of a human participant (a), the full-
observation agent (b), the optimal agent (c), and the stroll agent (d).
Yellow circles indicate confidence of the current state. Because the
full-observation agent knows the current state from the initial trial, the
agent has the confidence in all trials. The optimal agent detects the
current state after several steps of exploration. On the other hand, the
stroll agent can not estimate the current state and has no confidence.
Thus, a trajectory of the stroll agent looks like wondering along the
map. Cyan open circles show trials with confidence simulated by the
HMM.
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TABLE 3.5: The true positive rate of the participants’ confidence (ρcon)
by the HMM.

Participant ρcon(%)

1 71.1
2 61.6
3 78.4
4 80.4
5 72.3
6 58.5
7 62.6
8 73.5

the concordance rate of confidence prediction ρcon, which is the rate of the trials at

which the participants reported their successful prediction to the trials at which the

model evaluated that the participants were confident; i.e., true positive rate. Here,

I defined the criterion of the confidence level; if the probability maxst p(st, ct = 1)

was bigger than
∑

st
p(st, ct = 0) , I regarded the participant as being confident

of his/her estimation, otherwise as uncertain. The result in Table 3.5 shows that

whether he/she was confident or not was well predicted by the HMM-based model.

3.4 Discussion

In this chapter, I presented an HMM-based behavioral model of human behaviors

during performing a partially observable maze navigation task, which directly im-

plemented switching between exploration and exploitation. The high prediction

ability of the participant’s actions and sufficient reproducibility of the participants’

confidence suggested the plausibility of the behavioral model; that is, the partici-

pants actually performed exploration and exploitation to appropriately adapt to this

uncertain environment.

I used the HMM with three parameters; kexp, εopt and εH . I estimated these model

parameter by the ML. Table 3.2 shows that these parameters were close between

participants. This result implied a reliability of the parameter estimation.

Yoshida and Ishii (2006) demonstrated the brain imaging analysis based on

a Bayesian HMM. My HMM described the participants’ internal confidence as

P (ct = 1) and P (ct = 0). One possible future study would be a model-dependent
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analysis of brain activity when human participants are performing goal-directed

navigation behaviors in this kind of partially observable environment.
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Chapter 4

Decoding View Anticipation

Human behaviors involved in navigation are composed of two typical behavioral

patterns: an exploratory action and an exploitative action (Chapter 3). When select-

ing an exploitative action, humans should be confident of their states in the current

environment. If we call the reliable estimate of the current state of the environment

as ‘belief’, they should have belief. In this chapter, I demonstrated decoding of belief

from human fMRI activity patterns.

4.1 Experimental setting

4.1.1 Participants

Eight healthy participants (1 female author, 7 male; aged 21–28 years) took part in this

experiment. Each participant gave written informed consent, and all experiments

were approved by the Ethics Committee of the Advanced Telecommunications

Research Institute International, Japan. All methods were carried out in accordance

to the approved guidelines. I verified that the main decoding results remained

unchanged even if the author was removed from the participant set by a post-hoc

analysis.

4.1.2 fMRI Data acquisition

A 3.0-Tesla Siemens MAGNETOM Trio A Tim scanner was used to acquire inter-

leaved T2∗-weighted echo-planar images (EPI) (TR = 2 s, TE = 30 ms, flip angle =

80◦, matrix 64×64, field of view 192×192, voxel 3×3×4 mm, number of slices 30). A

high-resolution T1 image of the whole head was also acquired (TR = 2250 ms, TE =

3.06 ms, flip angle = 90◦, field of view 256× 256, voxel 1× 1× 1mm).
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4.1.3 Behavioral task

I used a passive navigation game which is modified from the partially observable

navigation game (Chapter 3). The experimental task (Fig. 4.1) consisted of 320 trials,

spread out over five sessions (64 per session). The sessions were separated by breaks

of a few minutes each. Each trial consisted of four periods. In the first period (map

period), participants were presented with an initial position and orientation on one

of three 2D maps (2 s). The maps had 7× 7 squares of white paths and black walls

with no dead ends, cross roads, white patches (2×2 squares consisting only of paths),

black patches or checker patterns (Fig. 4.1). The borders of the three maps were all

walls. The topographies of the three maps were symmetrical and simple so that it

was easy for the participants to memorize the topographies but still hard to identify

their position from only a single 3D scene. A 3D scene in wire-frame form of the wall

status (path/wall) of the left, right, forward-left, forward-center and forward-right

squares of the current state was presented (i.e., was partially observable). During

the second period (move period), each participant’s state was moved automatically

by three steps (1 s/move). For each movement, after being presented with a white

arrow on the current scene view giving a preview of the next move, a new 3D

scene with a new preview was presented. The first and second movements were

one of three movement types (move forward or turn left/right), while the third

movement was fixed to be forward. Before the third movement but after presenting

a preview of the third move, there was a delay period (5 s, 60 trials/session. The

delay period was either 1s, 3s or 5s in each trial, to introduce ’jitter’ to the raise

in the brain activity; the order of this jitter time was pseudo-randomized across

trials. In the following analyses, I only used the trials, 60 trials/session, whose delay

time was 5s). After the delay period, the participants were then requested to choose

as soon as possible between two options, a correct scene to be seen after the third

movement and a distracter scene, both represented by 3D wire-frame scenes, using

an MRI compatible button box (choice period, < 1.8 s). The new 3D scene after the

third forward movement contained three newly observed view parts (forward-left,

forward-center and forward-right), which had never been seen in the preceding

move period or in the delay period. A distracter scene was one of the upcoming

three view parts flipped without producing a new dead end, cross road, white/black

patch or checker pattern, where flipping was balanced between the upcoming three
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view parts, so the participants could not predict the scene choice task. After the

participants made a choice (or if they failed to answer within 1.8 s), the options were

replaced immediately by blank and the next trial started. After each session, the rate

of correct answers in the session was presented to the participants. I prepared sets

of 2D maps, initial states, three movements and distracters, based on diversity, so

that every movement was effective (e.g., there was no wall in the forward direction

after the second movement) and there was no common tendency to the participants’

state after the three movements; the rate of wall/path in the scene choice task (mean

± SD) was approximately 50% for all three view parts: forward-left 0.49 ± 0.01,

forward-center 0.50 ± 0,01 and forward-right 0.50 ± 0.02. The SD was over five

sessions. According to these criteria, 167 sets were prepared and used across the

experiments. These sets were common for all the participants, but their order was

randomized within a session such to be counterbalanced across participants. Here, I

prioritized the unpredictability of the scene choice task, while the scene occurrence

was not uniform, reflecting the map topography; some sets were presented more

than once (max 5, mean 1.95).

On the day before scanning, participants were given verbal and written explanations

of the aim and procedures of the experiment, and practiced two types of training

sessions outside the MRI scanner. In the first training session, the participants

performed a free navigation task in another map with larger 9× 9 squares, in which

they selected their movements by their own, so as to learn the relationship between

2D topography and 3D scenes. Participants were presented with both the current

state on a 2D map and the 3D scene of the current state. After the participants

reported that they were familiar with the 2D-3D association, in the second type of

training they performed sessions of a scene choice task, which was the same as the

main experimental task that they would take part in the subsequent day. This second

type of training was ended after the participants could choose the true upcoming

scene with more than 80% accuracy.



38 Chapter 4. Decoding View Anticipation

Map
2 s

Move
1 s/move, 3 moves

Delay
< 5 s

Choice
< 1.8 s

U
n

o
b

s
e

rv
a

b
le

re
a

l 
s
ta

te
 

Distracter
scene 

Correct
scene

D
is

p
la

y
e

d
in

fo
rm

a
ti
o

n
Time

FIGURE 4.1: An example scene choice trial. The bottom display series
show an example of presented stimuli during a single scene choice
trial. In the first display, one of the three 2D maps (see Subsection 4.1.3)
and a triangle indicating the initial state, position and body orientation,
of the participant on the 2D map were presented (map period). The
participants’ state was then moved automatically by three steps; each
movement was shown by an arrow placed at the center of a 3D scene of
the current state (move period). Each 3D scene showed the path/wall
status of left, right, forward-left, forward-center and forward right
squares of the current state (a triangle in the top ‘real state’ display).
An up arrow made the participant to move forward with the same
orientation, while a left (right) arrow made the participant’s orientation
to turn toward the left (right) on the same square. The second display
showed the 3D scene of the initial state and first movement of the
participant; in this case, the participant was moved forward to the
east. The participants’ orientation was changed to the north (turn
left, second movement) in the third display, while the participant was
moved forward (third movement) in the fourth display. The right
display series show the real states of the participant, although they
were hidden for the participant. Before the third movement but after
presenting a preview of the third move, there was a delay period during
which only a fixation point was presented (the left fifth display), then
the participant was requested to choose the upcoming scene from two
options: a correct scene to be seen after the movement and a distracter
scene (the sixth display) (choice period). Because the third movement
was fixed to be forward (the fourth display), the prediction of the
upcoming scene after the third movement always constituted three new
view parts, whose direct information was not seen during the move
period. The distracter scene was one of the three view parts flipped (the
forward-left view was turned from a path to a wall in this example).
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4.2 Analysis methods

4.2.1 Preprocessing for fMRI data

The first six scans of each run were discarded so as not to be affected by initial field

inhomogeneity. The acquired fMRI data underwent 3D motion correction using

SPM8 (http://www.fil.ion.ucl.ac.uk/spm). The data were coregistered to

the whole-head high-resolution anatomical image, and then spatially smoothed

with a Gaussian kernel filter (FWHM, 8 mm). In a post-hoc analysis, I confirmed

that a smaller (3 mm) setting of the spatial smoothing did not change any of my

conclusions.

4.2.2 Regions of interest

During spatial navigation of rats, firing patterns of hippocampal system were re-

ported to represent spatial status (Hafting et al., 2005; Harris et al., 2003). Neurons

in medial prefrontal cortex (mPFC) and posterior parietal regions showed choice-

and proceeding- specific firing patterns (Fujisawa et al., 2008; Harvey, Coen, and

Tank, 2012). Early visual areas in the occipital cortex (OC) retain specific infor-

mation about contents of visual working memory when no physical visual cue is

present (Tong et al., 2012). Moreover, spatial working memory is thought to be

represented in dPFC (Courtney et al., 1998). Based on these previous studies re-

lated to the view expectation, I examined six bilateral regions of interest (ROIs)

in the decoding analysis: the mPFC, dPFC, precuneus, superior parietal cortex

(sPC), hippocampal-parahippocampal cortex (HC-paraHC) and OC (Table 4.1). I

integrated the HC and paraHC into a single region, making the size of the com-

bined region (HC-paraHC) comparable to those of the other ROIs. Using ITK-SNAP

(http://www.itksnap.org) (Yushkevich et al., 2006), the six anatomical ROIs

were identified on the high-resolution T1 image of each participant in reference to

the Automated Anatomical Labeling (Tzourio-Mazoyer et al., 2002), whose mean

voxel numbers and their variances over the eight participants are summarized in

Table 4.1. The fMRI signals from these ROIs then underwent quadratic polynomial

trend removal and noise reduction by means of singular value decomposition (K =

3), and were then normalized within each session.

http://www.fil.ion.ucl.ac.uk/spm
http://www.itksnap.org
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TABLE 4.1: Datasets were created by fMRI voxels from six brain regions
defined anatomically and segmented manually. Mean number of voxels
is over eight participants, and SD is the standard deviation of the voxel
numbers over the participants

Region Mean number of voxels SD

mPFC 577.1 133.2
dPFC 470.6 127.2
Precuneus 644.8 40.6
sPC 671.4 179.8
HC and paraHC 366.5 113.1
OC 858.3 117.6

4.2.3 Labeling of fMRI data

Trial-based fMRI signals taken in the scene choice task were labeled as positive or

negative depending on four types of status in the scene choice task: an upcoming

scene view, an observed scene view in the third move, a position in the third move,

and a map. The label for the upcoming scene view was set based on the status,

path (positive, or 1) or wall (negative, or 0), associated with the three view parts

of the scene choice task; i.e., forward-left, forward-center and forward-right (Fig.

4.2). Although the participants were assumed to predict the next scene but could

not predict the distracter, the delay period fMRI signals involved activity related

to the prediction of the upcoming three view parts. To incorporate the view part

dependency obtained by the behavioral analysis (Fig. 4.3) and to avoid overly

complicated procedures in the scanning experiment, the distracters were set as one-

view-part flipped ones; this setting was appropriate for the construction of binary

classifiers (decoders). Similarly, the label for the observed scene views consisted of

two codes; whether the left and right sides at the state after the third movement were

path (positive, or 1) or wall (negative, or 0), which are observable as the forward-left

and forward-right view parts before the third movement. For the position, the

label consisted of four binary codes, as follows: whether the position after the third

movement was located in the upper side (positive, or 1) or not (negative, or 0), in the

lower side or not, in the left side or not, and in the right side or not. Because each

of the three maps had 7× 7 squares, the codes could be positive both for the upper

(left) side and lower (right) side when the position was at the middle row (column)
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of the map. The map label consisted of three binary codes, each of which signified

each of the three maps 1, 2 and 3; e.g., (1, 0, 0) indicates map 1.

4.2.4 Decoding analysis overview

Multiple parallel decoding analysis was performed on single trials based on the

fMRI signals of the voxels belonging to the six ROIs above. Each binary decoder

was trained in a supervised fashion to associate the normalized voxel signals (input

variables) with the above-mentioned labels (output variables) in the scene choice task.

For each binary classifier, I used a linear classifier, sparse logistic regression (SLR)

(Yamashita et al., 2008). Although the number of inputs was as large as 200–1000

(Table 4.1), hierarchical Bayesian setting called automatic relevance determination

and its variational Bayesian approximation can ignore input variables irrelevant to

the classification; such sparseness would be effective in increasing the generalization

capability. In my implementation, default values in the SLR toolbox were used for

all parameters of the classifiers.

Comparison between status-specific decoders

For each participant, 12 binary SLR classifiers (three decoders for the upcoming

scene view, two for the observed scene view, four for the position and three for the

map), termed status-specific decoders in the multiple parallel decoding, were trained

individually (Fig. 4.2). 12 binary status-specific decoders were trained for each scan

and for each of the six ROIs over the single trials, and the total 72 (12× 6) decoders

were evaluated. When evaluating the trained status-specific decoders, I used a leave-

one-session-out (LOSO) cross-validation (CV). In the LOSO procedure, each decoder

was trained using the training data set from which one session was removed, and

the removed session was used to validate the trained decoder. By changing the

removed session one by one, I could evaluate the CV performance of the decoders.

When reporting the overall decoding accuracy of each status-specific decoder (Fig.

4.4a), the mean accuracy averaged over the constituent code-dependent decoders

(e.g., forward-left, forward-center and forward-right, for the upcoming-scene-view-

dependent decoders) was used.
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Upcoming

Observed

L C R Up side

otherwise

Scene view decoders Potsition decoders Map decoders

Left side

otherwise

Right side

otherwise

Down side

otherwise

otherwise

Map1

Map3

otherwise

Map2

otherwise

FIGURE 4.2: Analysis overview. Four types of navigation-related de-
coder were applied to the brain activity during the scene choice task.
The scene view decoders were of three binary classifiers in terms of
upcoming square: forward-left, forward-center and forward-right, and
two binary classifiers in terms of observed square: left and right. The
position and map decoders were for the rough position and the map,
respectively, where the participant stayed in the current trial. In this
example’s case, the up-side, right-side and map 1 classifiers’ output
should be positive because the current location was upper right on map
1.

For each decoder, samples with the positive and negative labels in the original

training data set were unbalanced (The ratio (and the SD over eight participants) of

positively-labeled samples in the set of correct trials was as follows: the upcoming

scene view, forward-left 0.28 (0.01), forward-center 0.67 (0.02) and forward-right

0.28 (0.01); the observed scene view, left 0.35 (0.02) and right 0.36 (0.01); the position,

upper side 0.81 (0.03), lower side 0.68 (0.01), left side 0.59 (0.01) and right side 0.63

(0.01); and the map, map1 0.28 (0.01), map2 0.31 (0.02) and map3 0.41 (0.03)). Because

simple use of such an unbalanced data set to train binary decoders may introduce

a bias to the decoders, positive/negative samples in each training data set were

resampled to remove the unbalance. Let Npos and Nneg be the numbers of positive

and negative samples in the original training data set, respectively. If Nneg > Npos,

then Npos negative samples were randomly subsampled, otherwise Nneg positive

samples were subsampled, so that the numbers of positive and negative samples

became equal. An output from each SLR decoder was an analogue value, ranging

between 0 and 1, implying the probability of the label being one (positive). When

evaluating the decoder’s accuracy, I binarized the analogue value by applying a

threshold value of 0.
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Evaluation of the decoders for the upcoming scene view

When evaluating each of the three decoders for the upcoming scene view, the fMRI

data samples for each participant were divided into three groups in terms of the

flipped view parts in the scene choice task. For each participant and for each of the six

ROIs, three binary SLR classifiers were trained individually. The set of voxel signals

averaged over two scans (2× TR = 4 s) just before presenting the choice options

(the choice period) was used as a sample for the decoders. The three decoders were

then constructed based on the three corresponding separated data samples. Thus,

the label unbalance in the training data set was minimal (prior chance levels of

the decoder after removing miss trials, forward-left: 51.9 ± 2.2%, forward-center:

50.9± 0.5%, forward-right: 51.4± 1.3%). When evaluating the three upcoming scene

decoders, I used a simple leave-one-trial-out (LOTO) procedure, in which each

decoder was trained by the training data set from which one trial was removed, and

the removed trial was used for validation (Fig. 4.4b, 4.4c).

4.2.5 Reconstruction methods

When visualizing the maps, I used an alternative validation method termed the

leave-one-map-out (LOMO) procedure. Each decoder for a single view part (either

of forward-left, forward-center or forward-right) was trained using the data set

in the scene choice task of the corresponding view part, but the training trials

were restricted to those using two of the three maps. The trials employing the

remaining map were kept for validation. The objective of the LOMO procedure was

to examine the generalization capability of the decoder’s neural basis by removing

the dependency on specific maps. In the visualization, I calculated the square-wise

value (corresponding to the probability of path of that square), PX,Y,M , as the mean
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of the decoders’ analogue outputs Ĉ with the sigmoidal rule:

Cf?,i =
exp(βĈ?,i)

exp(βĈ?,i) + exp(β(1− Ĉ?,i))

PX,Y,M =

N∑
i=1

δfL,iCfL,i +
N∑
i=1

δfC,iCfC,i +
N∑
i=1

δfR,iCfR,i

N∑
i=1

δfL,i +
N∑
i=1

δfC,i +
N∑
i=1

δfR,i

δf?,i =

 1 xf?,i = X, yf?,i = Y,mf?,i =M

0 otherwise

where β is an inverse-temperature parameter (β = 5), xf?,i and yf?,i represent the

horizontal and vertical coordinates, respectively, of the target square of the decoder

either of forward-left, forward-center or forward-right in the i-th trial and mi is

the map index of the trial i. N is the number of trials in which the map M was

used by the participant. The averaged numbers of the superposition (
∑N

i=1 δfL,i +∑N
i=1 δfC,i +

∑N
i=1 δfR,i) were 6.1 ± 6.8 for the squares on map 1, 6.5 ± 5.9 for those

on map 2 and 8.7 ± 4.0 for those on map 3 (the SD is over squares). I applied a

map-dependent threshold (see legend of Fig. 4.5b) to the analogue value above to

make the visualized map a binary one.

4.3 Results

4.3.1 Behavioral results

Eight participants performed the scene choice task that was a modified version of the

pre-learned maze navigation game presented previously (Yoshida and Ishii, 2006);

the participants were requested to choose as soon as possible between two options

represented by 3D wire-frame scenes, a correct upcoming scene and a distracter

scene (Fig. 4.1). The options appeared after the participants’ state was moved

automatically in one of three two-dimensional (2D) pre-learned mazes by three steps

and before seeing the scene after the third movement. The scene choice task required

the participants to identify small differences between the two options with only one

of three view parts, forward-left (L), forward-center (C) or forward-right (R) flipped

(Figs. 4.1 and 3, subsection 4.1.3). Although an allotted time was limited (choice

period, 1.8 s) and any information about the scene choice task was not presented until
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the choice period, the participants showed satisfactorily high performance (mean ±
SD): 93.4 ± 2.6% correct, 5.6 ± 2.3% incorrect and 1.0 ± 1.0% missed. Missed trials,

in which the participants could not press an answering button in the allotted time,

were excluded from the following analyses. To answer correctly and rapidly, the

participants were required to predict the upcoming scene, and the behavioral result

above showed that participants predicted the upcoming scene well. A Friedman

test for participants’ task accuracy and reaction time (RT) demonstrated significant

differences between flipped view parts (Fig. 4.3a; task accuracy, χ2 (2, N = 40) =

33.7, p < 0.05; RT, χ2(2, N = 40) = 9.2, p < 0.05); in the forward-center flipped trials,

the participants had a tendency toward higher accuracy and shorter RT than in

other trials. By contrast, there were no apparently significant differences in the task

accuracy and RT between the three maps (Fig. 4b; task accuracy χ2(2,N = 40) = 5.9,

p = 0.05, χ2(2,N = 40) = 0.1, p = 0.95). Additionally, the task accuracy did not show

significant differences between the rough position on the maze (Fig. 4.3c; Wilcoxon

signed rank test, up-side vs. otherwise: p = 0.74; down-side vs. otherwise: p = 0.95;

left-side vs. otherwise: p = 0.08; right-side vs. otherwise: p = 0.25), between the

statuses (wall/path) of the current observable scene (Fig. 4d; Wilcoxon signed rank

test, left: p = 0.74, right: p = 0.38) or between the positions (up/down, see Fig. 4.2)

of the target option (correct scene) (Fig. 4.3e; Wilcoxon signed rank test, up-side vs.

down-side: p = 0.30). In addition, there was no significant difference in the RT’s

distribution between correct trials and incorrect trials (Fig. 4.3f; Wilcoxon rank sum

test, p = 0.45); although the RT would reflect the difference in cognitive processes

between view parts, it has no information about which option was chosen by the

participants in each trial.

4.3.2 Decoding performance

Time-course decoding analysis

To determine when and in what region the neural bases were recruited in the scene

choice trials, I performed voxel-wise fMRI analysis along the whole task. I con-

structed four sets of binary decoders (Fig. 4.2, Subsection 4.2.4): three upcoming

scene view decoders, two decoders for observed scene view in the third move, four

decoders of position in the third move, and three map decoders. Each decoder

associated voxel-wise activity patterns in each of six anatomical regions of interests
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FIGURE 4.3: Behavioral results. They are shown in terms of task accu-
racy (how accurately the participants performed the scene choice task)
and reaction time (RT), both averaged over sessions. Error bars indicate
SEM across sessions (n = 5). (a) In the forward-center (C) trials, the task
accuracy was higher and the RT was shorter than in the forward-left (L)
and forward-right (R) trials (Friedman-test, p < 0.05). (B) No significant
difference in the task accuracy or RT was found between three maps
(Friedman-test). (c) The position of the participants after the third move-
ment did not significantly affect the task accuracy (Wilcoxon signed
rank test). (d) The task accuracy did not show significant difference
between the statuses (wall/path) of both of the left and right sides of
the observed scene view (Wilcoxon signed rank test). (e) The position,
up or down, showing the correct scene in the choice period did not
significantly affect the task accuracy (Wilcoxon signed rank test). (f)
Histograms of RTs in correct trials (top panel) and in incorrect trials
(bottom panel). Each RT was converted to z score per session.
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(ROIs): mPFC, dPFC, precuneus, superior parietal cortex (sPC), HC-paraHC and OC

(Table 4.1, Subsection 4.2.2). FMRI data preprocessing included trend removal, noise

reduction and temporal normalization (see subsection 4.2.1). Here, any hemody-

namic response function was not convolved to avoid confounding any prospective

activation related to the behaviors (option choices) induced by visual presentation in

the subsequent choice period. When I used trials in which the participants answered

correctly in the scene choice task (correct trials) for both of decoders’ training and

their evaluation, I found that decoding of the upcoming scene view was possible

from the single-scan (2 s) activities in the mPFC, precuneus, sPC and OC (Fig. 4.4a).

Interestingly, the decoding accuracy from those regions was high especially in the

delay period, and was even better in the choice period. Activities in the sPC allowed

me to decode the observed scene view in addition to the upcoming scene view:

for the fourth scan (move period), 53.2%, p < 0.05 (with Bonferroni correction for

comparing multiple time points and decoders); for the fifth scan (early delay pe-

riod), 53.7%, p < 0.05 (Bonferroni-corrected). Most notably, activities in OC allowed

us to decode the position in addition to the upcoming scene view: for the second

scan (map period), 56.2%, p < 0.05 (Bonferroni-corrected); for the third scan (move

period) 58.2%, p < 0.05 (Bonferroni-corrected); for the fourth scan (move period),

54.3%, p < 0.05 (Bonferroni-corrected); for the eighth scan (choice period), 52.7%,

p < 0.05 (Bonferroni-corrected). However, there were no significantly decodable

scan timings when using dPFC or HC-paraHC activities. These decoding results

remained unchanged even if I used the activities in HC or paraHC alone.

Upcoming scene view decoding from delay-period brain activity

To study responses of brain activities to the view expectation in terms of view parts,

I evaluated the three upcoming-view-part-dependent decoders with correct trials.

In each trial of the scene choice task, the participant’s choice from two options

allowed me to know what had been the participant’s expected scene for a single

view part (corresponding to the flipped view part in the distracter). To construct

effective decoders that exploited this character, I divided the fMRI data samples into

three groups in terms of the flipped view parts, so that three view-part-dependent

decoders (forward-left, forward-center and forward-right) were individually trained

based on the three groups. Their performance was examined by the leave-one-trial-

out (LOTO) procedure (Subsection 4.2.4), with Bonferroni correction to deal with
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multiple anatomical ROIs. Based on the time course analysis above, I used the fifth

scan (early delay period) and the sixth scan (just before the choice period); i.e., when

the participants were preparing to see the options to be chosen (Fig. 4.1).
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FIGURE 4.4: Decoding results. Error bars indicate SEM across par-
ticipants (n = 8). (a) Time-course decoding analysis along the scene
choice task. Each panel shows the decoding accuracy from one of the
six ROIs, which was evaluated by the leave-one-session-out (LOSO)
procedure. At each event timing, fMRI signals during a single scan (2 s)
just after that timing in the time-course were used for decoding. Open
circle indicates significantly higher accuracy than the chance level. (b)
The decoding accuracy was evaluated when the trials were separated
into three categories (forward-left, forward-center and forward-right),
depending on the target (the pair of the correct view and the distracter
view) in the scene choice task; the decoding accuracy was evaluated by
the LOTO procedure. (c) The decoding accuracy in correct (left) and
incorrect (right) trials was evaluated by the decoders that were trained
with incorrect trials. I used two methods: one involved decoding the
distracter’s view as right as the participants actually chose it, while the
other involved decoding the true view as right as it should be ideally
chosen. The decoding accuracy was evaluated by the LOTO procedure.
Double daggers indicate significant difference in the accuracy between
these labeling methods (p values evaluated by the Wilcoxon rank sum
test).

4.3.3 Map reconstruction

To remove the decoder’s dependency on map topography, I performed another

kind of CV, leave-one-map-out (LOMO), in which each upcoming-view-part-based

decoder did not use the trials when the participants were on a specific map when

training, but was evaluated by those trials. Thus, each decoder could not use the

topographic information of the map. This LOMO CV also allowed me to visualize

the map by simply arranging the scene view predicted by the upcoming-view-part-

based decoders based on the participants’ fMRI signals just before seeing that view

part, as a 2D representation of the prediction of the map (Fig. 4.5b, 2D arrangement of

decoded wall-status). Because most squares in the visualized map show the average

of outputs from multiple view-part-based decoders and multiple trials, the square-

wise decoding accuracy (map visualization accuracy) of the whole map (mean map

visualization accuracy: map 1: 72.7 ± 9.2%; map 2: 72.8 ± 7.3%; map 3: 70.0 ±
5.7%; SD is over eight participants) was higher than those of view-part-dependent

decoders (Fig. 4.4b).
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4.3.4 Reconstruction and human behavior

The most far-reaching question I posed was whether this decoded view expectation

would correlate with the participants’ choice behavior. As shown in Fig. 4.5c, I found

that the square-wise decoding accuracy was significantly correlated with individuals’

performance of the scene choice task.

4.4 Discussion

4.4.1 Status-specific decoding analyses

My decoding analyses found that the parietal regions (precuneus and sPC) repre-

sented the prediction of upcoming scene view in the scene choice task (Fig. 4.4),

implying that they are involved in navigation in partially observable navigation

environments. I found that various kinds of navigation-related information (i.e.,

the observed scene view, the map and the position), as well as the upcoming scene

view, were decoded from the OC in the delay period, suggesting that the visual

system in the OC is used for prediction accompanied by collecting information

from observations. These results are consistent with previous decoding studies

on visual working memory, mental rotation and perceptual speed (Albers et al.,

2013; Ester, Serences, and Awh, 2009; Harrison and Tong, 2009; Vintch and Gardner,

2014). Although decoding performance was poor from the hippocampal system

(HC-paraHC) and dorsal part of PFC (dPFC) throughout the task, the mPFC and

precuneus showed good decoding performance only for the upcoming scene view.

Notably, the sPC showed the highest decoding accuracy for the upcoming scene view

(Fig. 4.4a); when I decomposed the scene view to be predicted into three view parts

(forward-left, forward-center and forward-right), decoding from the sPC showed

significantly high accuracy. These results are consistent with the findings that sPC

contributes to the manipulation of egocentric spatial information (Vallar et al., 1999;

Galati et al., 2000).

The time-course decoding analysis (Fig. 4.4a) provided information on the pro-

cesses during the scene choice task; in the move period, prior to precuneus and

sPC, the upcoming scene view was represented in the mPFC. According to (Yoshida

and Ishii, 2006), in the mPFC, multiple proposals for the current position are main-

tained and resolved as the information from the observations increases. Thus, brain
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FIGURE 4.5: Real maps and visualized maps based on decoding of view
expectation from fMRI activity patterns. (a) Three 7 × 7 maps used
in the experiment. (b) Each square of the visualized map denotes the
average of the outputs from the three upcoming-scene-view-dependent
decoders (forward-left, forward-center and forward-right) as white
(black) if the averaged value was larger (smaller) than a threshold,
although the number of samples in which the corresponding square
was the target of prediction varied depending on the squares. When
visualizing a specific map, fMRI data and the true labels (path/wall
status) in the trials where the map was used in the scene choice task
were never used (the LOMO procedure), and an output from each
decoder was an analogue value ranging between 0 and 1, showing
the path probability (0, less path-like; 1, more path-like). Because this
subjective probability can be biased because of the number unbalance
between paths and walls, the threshold to binarize was set to select
the same number of paths as in the real map. Gray squares were
excluded from the evaluation. At the top of each visualized map, the
visualization accuracy for the squares in the map is displayed. (c)
Scatter plot depicts a significant relationship between the behavioral
task accuracy of individual participants and their map visualization
accuracy. For each participant, there are three points corresponding to
the three maps.
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activity in the mPFC may have contributed to retention and updating of multiple

proposals, which should be preceded to the prediction of the new scene. Besides,

the mPFC is considered the key nodes of the default mode network (Fox et al., 2005).

The information of the upcoming scene view expectation, which was involved in

mPFC activities, may thus be used for manipulating multiple proposals within the

dynamics embedded in spontaneous brain activities. The position decoders showed

the highest accuracy when decoded from the OC activity in the early period of the

scene choice task. Because the position identification was crucial to perform well in

the scene choice task on these rather symmetrical maps, a large cognitive resource

might have been allotted to position identification, especially in the move period.

Because there is little known regarding the neural bases of prediction, I intro-

duced a decomposed decoding technique, producing three binary decoders (forward-

left, forward-center and forward-right), rather than a single eight (= 23)-class de-

coder, for the upcoming scene view. A similar method used to read out complex

viewed stimuli from primary visual fields was previously reported (Miyawaki et al.,

2008). Such parallel decoding methodology shows conceptual correspondence to the

encoding process by the brain, which is implemented within massively parallelized

machinery.

Previous decoding studies often used localization tasks to define the functional

ROIs of individual participants (Harrison and Tong, 2009; Kamitani and Tong, 2005;

Naselaris et al., 2009). For higher-order cognitive functions such as view expectation,

however, functional ROIs are too dependent on the localization task itself, and may

not be very suitable; as higher-order cognitive functions may involve multiple sub-

processes, and as fMRI signals from higher-order cortices are relatively weak, it can

be difficult for the localization task to identify responsible regions that are recruited

only in some but essential parts of the whole task. As such, I preferred anatomical

ROIs that were parcellated based only on individuals’ anatomical information, rather

than functional ROIs. For this purpose, I used a sophisticated software for anatomical

parcellation, which was also used in a study of memory decoding from the HC and

paraHC (Bonnici et al., 2012).

In the present study, I used structured maps rather than unstructured counter-

parts. The use of structured maps is advantageous in that they are more natural

than unstructured maps, so they have a straight link toward natural navigation in
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real environments that should be highly structured. Note here that my view-part-

dependent decoders did not use any allocentric structure information (Comparison

between status-specific decoders), although the structures in the maps could provide

important clues for the participants to perform not only localization but also predic-

tion. My time-course decoding analysis (Fig. 4.4a) actually showed the participants’

orchestrated processing between the view expectation in the mPFC, precuneus and

sPC, and the manipulation of visual and hence structural cues in the OC.

4.4.2 Decoding of expectation in decision making

Especially for decision-making in complicated environments, as for navigation

in partially observable environments, the estimation of the current state and the

prediction of the next state are essential sub-processes. Indeed, combining state

estimation in terms of the ‘belief state’ (i.e., the posterior distribution of the current

state) by means of optimal Bayesian observer and value evaluation in the space

of belief states is known to produce optimal decision-making, even in partially

observable environments (Kaelbling, Littman, and Cassandra, 1998). Although I

focused on the prediction of the upcoming scene rather than value evaluation, the

next step would be to examine the crosstalk between the scene prediction and the

prediction-based decision-making. Consistent with recent findings that functional

connectivity within a fronto-parietal network is correlated with the performance

of primary category cueing (Bollinger et al., 2010), I found that contents in view

expectation were decoded from and hence represented by fMRI activities in the

mPFC, precuneus and sPC.

There are several previous reports of fMRI-voxel-based decoding in 3D naviga-

tion environments. (Hassabis et al., 2009) decoded the position of the participants

from fMRI activities in the HC and paraHC when they navigated to one of four

corners in one of two 3D environments by identifying their positions based on the

cues placed on the wall. Related to this study, Rodriguez demonstrated the decoding

of working memory of goal direction when participants navigated to a goal position

(E, W or N) based on cues placed at a specific position (S) (Rodriguez, 2010); fairly

high decoding performance was obtained by using voxels in the medial prefrontal

gyrus (51.4%), hippocampus (47.7%) and inferior parietal cortex (49.2%). More re-

cently, it has been reported that the location and direction during navigation are
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encoded to activities in medial parietal regions (Marchette et al., 2014; Vass and

Epstein, 2013). In this study, on the other hand, I found no evidence to suggest that

position/map information is represented in neither of the HC-paraHC, sole HC, or

sole paraHC. Because the computational cost to manipulate multiple proposals and

predict a plausible next scene while resolving the proposals (these are speculated

to be performed in the fronto-parietal network) was high in my task, the HC and

paraHC could have shown relatively low decodable activities.

Here, I mainly focused on the fronto-parietal network, which has been considered

as the source of anticipation; therefore, I excluded other brain regions that could be

involved in spatial information processing: the response of dorsal premotor cortex

is related to spatial attention and memory (Simon et al., 2002); the nucleus reuniens

is at a passing point for spatial anticipation from the mPFC to the hippocampal

system (Ito et al., 2015). Functional dissociation of view expectation from other

spatial information processing remains as one key issue to be clarified. Actually,

my decoders presented sustained decodability from the delay period activity of the

precuneus and sPC but not from that of the dPFC (Fig. 4.4a). This is in contrast

to the previous work in which, the dPFC showed sustained activity during spatial

information processing involved in working memory (Courtney et al., 1998).
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Chapter 5

Encoding View Anticipation

In the previous chapter, I described neural decoding of scene view anticipation.

My proposed decoding model characterized neural representation for scene view

anticipation, which allowed us to detect subjective errors of the participants. Here, I

tried to unravel neural encoding in decision making in similar partially observable

navigation environments, using a novel data-driven encoder modeling.

5.1 Experimental setting

5.1.1 Participants

Eight healthy participants (1 female author, 7 males; aged 21-28 years) took part in

this experiment. Each participant gave written informed consent, and all experi-

ments were approved by the Ethics Committee of the Advanced Telecommunications

Research Institute International, Japan. All methods were carried out in accordance

with the approved guidelines.

5.1.2 fMRI Data acquisition

A 3.0-Tesla Siemens MAGNETOM Trio A Tim scanner was used to acquire inter-

leaved T2∗-weighted echo-planar images (EPI) (TR = 2 s, TE = 30 ms, flip angle =

80◦, matrix 64×64, field of view 192×192, voxel 3×3×4 mm, number of slices 30). A

high-resolution T1 image of the whole head was also acquired (TR = 2250 ms, TE =

3.06 ms, flip angle = 90◦, field of view 256× 256, voxel 1× 1× 1mm).
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5.1.3 Behavioral task

The participants performed two types of three-dimensional (3D) spatial navigation

task on the same day, one of which, the scene choice (SC) task, has been described

previously (Chapter 4) and the other, the motion decision (MD) task, is new to this

study.

Pretraining

On the day before scanning, the participants performed practice tasks to memorize

the map topography and to become familiar with the relationship between the

two-dimensional (2D) maps and the 3D views of the maps (Fig. 5.1a), according

to the procedure described previously (Section 4.1). In the first practice task, the

participants performed a free navigation task in a map with 9× 9 squares of white

paths and black walls, which was the same map as would be used in the MD task

on the subsequent day. After observing the current state on the 2D map and the

3D wire-frame view seen at the current state simultaneously, they indicated their

chosen movement using one of three keys on a computer keyboard, for ‘go forward’,

‘turn left’, or ‘turn right’. This practice task continued until the participants reported

that they were familiar with the 2D-3D association. Then participants performed

a practice SC task with three 7× 7 maps, which were the same maps as would be

used in the SC task on the subsequent day. This second type of practice continued

until the participants could choose the correct upcoming scene with more than 80%

accuracy.

Scene choice (SC) task

The following day, participants performed the experimental tasks in the scanner (Fig.

5.1b). The SC task consisted of 320 trials, spread out over five sessions (64 trials per

session). The sessions were separated by breaks of a few min each. Between the

third and fourth sessions, another experimental task, the MD task, was performed

(Fig. 5.1c). An SC trial consisted of four periods: a map period (2 s), a move period

(three moves, 1 s/move), a delay period (5 s) and a choice period (1.8 s). In the map

period, participants were presented with an initial position and orientation on one

of three 2D maps (Fig. 5.1b). During the move period, the participant’s state was

moved three steps by the computer. Hence, they passively viewed a sequence of
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Scene choice (SC): 
passive navigation

Motion decision (MD): 
active navigation

SC SC SCMD SC SC SC MD SC SC

MRI scanner

Button press , < 1.8 s

Button press, < 1.8 s

b

c

Shortest route

Actual trajectoryd

a

Button press, < 1.8 s

Variable delay, 0-6 s

Variable delay, 5 s

2 s2 s 2 s

1 s / move
2 s

e f
Anticipation area

Identification
area

Anticipation area

Identification
area

channel

Positive
Negative

FIGURE 5.1: Experimental procedure and encoding scheme. (a) A
schematic drawing of a single trial in my spatial navigation task. An
orange oval indicates the visual field seen by a participant at the state
indicated by the red arrow (state = location + orientation); seen are
two walls (the forward-left and forward-right view parts) and one
path (forward-center view part) (bottom). After moving forward, the
participant sees three new view parts (green oval). (b) Participants took
part in scene choice (SC) and motion decision (MD) navigation tasks.
In SC (left panel), participants predicted the next scene view consisting
of three unseen view parts (forward-left, forward-center, and forward-
right) consisting of either wall (black square on the top display) or
path (white square) elements. For each trial, they chose the next scene
view from between the correct next scene and an incorrect one. In MD
(right panel), participants were requested to navigate from an initial
state (red arrow on the top display) to a goal square (blue circle). (c)
Before the experiment, participants were trained in relating the 2D and
3D views in MD. (d) Sample behaviors in MD. Shown are the actual
trajectory taken by the participant (green line) and the shortest route
(black dashed line). This participant took the second-shortest route
to the goal square. Route length was calculated as number of moves
including pure rotations. (e) I assumed a perceptron architecture, in
which multiple, different encoding channels cooperatively represent the
next scene view. There were 8 possible scene views, so a naïve encoder
design would have eight corresponding channels; when predicting a
specific scene view, one channel is activated (red circle), while the others
are inactivated (blue circles). (f) A more sophisticated encoder. The top
and bottom channels (activated) each vote as expecting one of the four
possibilities in each red oval, and the middle channel (inactivated) votes
as expecting the remaining possibilities in the blue oval. No channel
can predict the scene view by itself, but the majority of votes can (here,
a predicted wall in the forward-center view).



58 Chapter 5. Encoding View Anticipation

3D scene views, each accompanied by a pre-indication of the next move direction.

Visual feedback indicating the next direction was presented as a white arrow on

the center of the screen. ‘Up arrow’ indicated forward movement, and ‘left arrow’

or ‘right arrow’ indicated left or right turns, respectively, while staying at the same

square.

The first and second movements could be any of the three movement types

(move forward or turn left/right), while the third movement was constrained to be

forward. Before the third movement but after a pre-indication of the third move was

presented, a delay period was introduced.

In the following choice period, participants were requested to choose as soon

as possible, using an MRI-compatible button box, between two options, a correct

scene, and a distractor scene, both represented in 3D wire-frame format. By their

choice, participants were to indicate which scene they expected to see after the third

movement. The new 3D scene after the third and forward movement contained

three newly observed view parts (forward-left, forward-center, and forward-right),

which had never been seen in that trial in the preceding move period or in the delay

period.

Motion decision (MD) task

In the MD task, the participants navigated the same 9× 9 map as was used in the

previous practice task (Fig. 5.1d). A single block started with presentation on the

map of the initial state and the goal position and ended with goal achievement. At

the onset of a block, the initial state (position and body orientation) and the goal

position were presented on a screen for 4 s. At each trial, a 3D wire-frame scene

view at the current state was displayed and the participant was requested to make a

decision as to how best to reach the goal, by pressing one of three action buttons,

‘go forward’, ‘turn left’, or ‘turn right’, of a three-key MRI-compatible button box,

within a fixed decision period of 1.8 s, but as soon as possible. After the participant

made a decision, visual feedback indicating the selected direction was presented as a

white arrow on the center of the screen (feedback period, > 0.2 s). After a fixed time

consisting of the decision period and the feedback period (2 s in total), a variable

delay time of 0-6 s was imposed, then a new trial was started by displaying the next

scene view.
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After goal achievement, the next block was immediately started. While the

combinations of initial states and goal positions were different between blocks and

their orders were further different between participants, they were extracted from a

predefined pool that was common over the participants. The MD session comprised

a fixed number of 300 MR scans and admitted termination even in the middle of a

block; only the data for completed blocks were used for analyses.

Since one of the eight participants did not complete both the SC and MD tasks,

further analyses were performed only on the remaining seven participants.

5.2 Anaysis methods

5.2.1 Behavioral analysis

All behavioral data analyses were performed with MATLAB (MathWorks) with

the help of the Statistics and Machine Learning toolbox. When searching for the

shortest route in each MD block, I used Dijkstra’s algorithm implemented as a

custom program in MATLAB. Reaction time (RT) analysis was performed after

conversion of the RT data to within-subject Z-scores.

5.2.2 fMRI data preprocessing

The first six scans of each run were discarded so as not to be affected by initial field

inhomogeneity. The acquired fMRI data underwent 3D motion correction using

SPM12 (http://www.fil.ion.ucl.ac.uk/spm). The data were coregistered to

the whole-head high-resolution anatomical image, and then spatially normalized to

the MNI space (Montreal Neurological Institute, Canada). I then identified the 37,262

voxels of the cerebral cortex. The fMRI signals then underwent quadratic polynomial

trend removal and noise reduction by means of singular-value decomposition (K =

3), and were temporally normalized within each session.

http://www.fil.ion.ucl.ac.uk/spm
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5.2.3 Encoding models

Whole-scene encoding model.

In my experimental setting, each scene view to be predicted could be represented by

the path/wall status of three view parts, forward-left, forward-center, and forward-

right, and thus represents one of eight possibilities (23 = 8). In any binary encoding

scheme, each scene view out of the eight possibilities is represented as a code word,

a string of binary codes (‘0’ or ‘1’) of which each corresponds to a single channel

(Fig. 5.1e). The simplest way to distinguish eight classes is to use an eight-bit

representation, each bit designating one scene view (sometimes called one-versus-

the-rest encoding; 1R); the code matrix Z1R becomes the 8× 8 identity matrix. The

1R encoding model X1R ([N × 8], N = number of samples) is defined as x1Rn = z1Rcn ;

the left-hand-side is the n-th row vector of X1R and the right-hand-side is the cn-th

row vector (code word) of the code matrix Z1R, where cn is the index of the known

scene view to be predicted.

View-part encoding model.

The view-part encoding model is the same as the original three-bit representation of

the scene view. Then, the code matrix of the bit-wise encoding Zbit is an 8× 3 matrix.

Every column has four ‘1’s and four ‘0’s (Fig. 5.1f). The view-part encoding model

Xbit is an N × 3 matrix, whose row vector is the bit-encoding code word of the scene

view to be predicted for the corresponding data point.

Full encoding model.

Since each encoding channel assigns ‘1’ to one or more scene views out of eight

candidates and ‘0’ to the others, there are in total 254 (28 − 2) possible meaningful

channels, excluding all ‘0’s or all ‘1’s (i.e., all or none). For each scene view, a 254-

dimensional vector consisting of the binary assignment over these 254 channels

becomes its code word in the full encoding model. The code matrix of full encoding,

Zfull, is then an 8× 254 matrix. The full encoding model Xfull is then represented as

an N × 254 matrix, whose row vector is the full-encoding code word of the scene

view to be predicted for the corresponding data point. Full encoding includes all the

encoding channels in the whole-scene model.
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5.2.4 General linear model analysis

To perform data-driven analyses, which will be explained below, I estimated general

linear models (GLMs) for the full encoding model, using as input the delay-period

fMRI activities in sessions 1, 3, and 5 of the SC task. The GLM optimized the beta

weights for those 254 channels to make them fit to the fMRI data over all the training

trials, according to the multi-variate regression analysis. The code in each code word

is either 0 or 1; if the code is 1, that channel is included in the regression of the

fMRI activities, but if it is 0, the channel is not included. Although the number of

explanatory beta values is fairly large, 254×V (V = number of fMRI voxels), it could

be optimized because of the even larger number of fMRI activities. The regression

parameters were determined by the L2-regularized least squares method, in which

the regularization hyperparameter was tuned by applying a 10-fold cross-validation

procedure to the training dataset, searching from 2 to 220 with a logarithmically scaled

interval. Six nuisance parameters that remove motion artifacts due to realignment

were added to the GLMs. To avoid confounding any activation related to the visual

presentation with button-press–related activity, no hemodynamic response function

was convolved onto the fMRI signals.

When examining brain regions involved in prediction of upcoming scene views,

I used another GLM whose design matrix corresponded to the whole-scene model

(Fig. 5.7a; see below).

5.2.5 Data-driven analysis

Data-driven analyses on the different encoding models were performed by using

the estimated GLM weight values. To examine the plausibility of different encoding

models, I introduced two measures: the predictability of the fMRI BOLD signals

based on the GLM weights, and the amount of error-correction ability attributable to

the code matrix. GLM weights were further used to investigate the cortical correlates

of scene prediction.

Predictability of encoding models

I examined the voxel-wise Pearson’s correlation coefficient between measured fMRI

signals and fMRI signals reconstructed by the GLM whose design matrix was defined

as corresponding to the full encoding model (see Subsection 5.3.2). When displaying
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the prediction accuracy (Fig. 5.7a), I used the 10th and 90th percentiles and median,

rather than the mean, of voxel-wise correlation coefficients over the cortical voxels

in each ROI, to reflect the intracortical localization of cerebral functions.

Figures 5.7a and 5.3 show the prediction accuracy for each fold in the 10-fold

cross-validation (CV) when the GLM used a code matrix with different numbers of

channels taken from the channel list of the full encoding model.

Appearance frequency matrix of scene view

I examined how robustly the set of code words in each encoding model were repre-

sented by reflecting the maze topography (see Subsection 5.3.2). When navigating a

maze, information regarding scene anticipation should be transmitted more robustly

for views that are more frequently seen in the maze versus those less frequently

seen. I first constructed an appearance frequency matrix of scene view, i.e., an 8× 8

matrix a, whose element a(c,c′) was the minimum of appearance frequency values

of scene views c and c′. Here, the appearance frequency value was a normalized

element value of the view histogram in Fig. 5.7b, left. This appearance frequency

matrix does not depend on any encoding model. To measure the robustness of an

encoding model, I calculated the Pearson’s correlation between the off-diagonal

part of the encoder’s distance matrix (Fig. 5.7b, upper right) and the corresponding

part of the appearance frequency matrix. A higher correlation implies the encoder’s

higher robustness against bit-inversion errors which reflects the map topography;

if a particular scene is frequently seen in the maze, the corresponding code word

should be isolated (then, error-tolerant), associated with larger element values in the

distance matrix, while another scene that is less frequently seen can be associated

with smaller element values in the distance matrix (less error-tolerant, but errors

barely occur).

When examining the similarity between the appearance frequency matrix and the

distance matrices of random encoding models, I prepared 1,000 random encoding

models, each with 83 channels randomly taken from the full encoding channel list;

the number of channels therein was fixed at the median number of the optimal

encoding models over participants.
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Robustness of encoding models

Consider an encoding process in which each encoding channel tries to transmit

either of two symbols, ‘0’ or ‘1’. Due to the presence of noise, or more precisely,

bit-inversion error, a transmitted ‘0’ may sometimes be received as ‘1’, or vice versa.

If there is no prior information available about these transmission channels, the

most reasonable way to decode from multiple noisy channels is Hamming decoding,

which selects the class whose correct code word is of minimum Hamming distance

(Hamming distance = the number of bits different between the two binary code

words) from the ‘predicted’ code word. In this study, the latter is defined as the

vector aligning the outputs from binary classifiers, each corresponding to a single

encoding channel (see Subsection 5.3.2). The results of this analysis are presented in

Figures 5.2b, 5.4b and 5.5b.

Another criterion for the robustness of each encoding model is the capability of

error correction. To quantify this, I applied every possible bit-inversion error to each

of the eight code words and evaluated how well the Hamming decoding worked.

When the Hamming decoding could lead to the right class, because the code word

suffering from the bit inversion still fell at or below the minimum Hamming distance

from the correct code word of the right class, the trial outcome was classified as

‘accurate identification’. If decoding led to a wrong class, the outcome was classified

as ‘misidentification’. The remaining possibility, where the bit inversion made the

noisy code word equidistant from correct code words of two or more classes, was

called ‘unidentifiable’. I can define these three categories even when each code word

is disturbed by simultaneous inversions of two or three bits. If the proportion of the

first category ‘accurate identification’ is large, the corresponding encoding model

is said to have the characteristic of error correction. The results of this analysis are

presented in Figs. 5.2c, 5.4c and 5.5c.

Characterizing information gains

To examine cortical localization of scene view information, I introduced an informa-

tion gain index (IGI) based on an information gain (Quinlan, 1986). The information

gain is the change in the information entropy, an average achieved by getting infor-

mation through a single encoding channel (see Subsection 5.3.3). The information
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gain gain(q) of channel q was defined as

gain(q) = 1− Iq

Iq =
mq

8
log2

8

mq

+
8−mq

8
log2

8

8−mq

Iq quantifies the information (in bits) that would be obtained by observing a single

channel q, if the observation is noiseless, and mq is the number of code ‘1’s in this

channel q. If there is no information regarding a single view part, the information

entropy is 1 (= log2 2), because there are two equal possibilities (path/wall). The

information gain represents how much this initial entropy is reduced, so it falls

within [0, 1]: 1 indicates that the channel provides certain information (without

ambiguity) of the status of the view part; 0 indicates that the channel provides no

information.

For the three view parts, forward-left (L), forward-center (C), and forward-right

(R), I calculated the information gain gain(q), represented as gain(q)L, gain(q)C , and

gain(q)R, respectively. To comprehensively represent the information gain over all

possible channels, I computed an information gain index (IGI) that quantifies the

overall contribution of a specific cortical voxel to the prediction of each view part:

IGIi =

[
254∑
q=1

wfullq,i gain(q)L,
254∑
q=1

wfullq,i gain(q)C ,
254∑
q=1

wfullq,i gain(q)R

]

where wfull is the absolute weight of the GLM constructed from the full encoding

model and i is the voxel index.

When mapping onto the cortical surface, I applied voxel-wise t-tests. The null

hypothesis was that the IGI comes from a normal distribution with a mean of 0.13

(mean of the above-defined gain over channels) times a baseline activity (mean

activity of all scans), and with unknown variance. Figure 5.7c shows the significant

voxels in terms of the IGI (p < 0.1).
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5.2.6 Decoding analysis method

Training of scene anticipation classifiers

For each channel of an encoding model, a binary classifier called a linear support

vector machine (SVM) was trained, using the SC sessions 1, 2, 3, and 5 over the whole

cortex. Based on the fMRI voxel-wise signals and the set of code words defined by the

encoding model, a set of SVM classifiers (whose number is the same as the number of

encoding channels) was trained, to be ready for decoding. Given input voxel values

y = [y1, · · · yv] (V is the number of voxels), SVM provided a discriminant value for

classifying between scene view classes assigned a label ‘1’ and those assigned a

label ‘0’, based on the code matrix of the encoding model. Considering the relatively

small number of samples available for training and testing, I did not tune the ‘C’

constant in the SVM (C = Inf.), as previously described (Reddy, Tsuchiya, and Serre,

2010). It should be noted that each SVM classifier was invariant in its function over

exchange of the labels ‘0’ and ‘1’, and that the Hamming decoding was invariant

over permutation of channel order. Thus, in the decoding analysis, I redefined the

full encoding model to remove unnecessary channels; when selecting one channel

from the set of equivalent ones, I selected the earlier one on the channel list aligned

with respect to GLM weights (see subsection 5.3.2). Additionally, I introduced a

subsampling scheme for removing imbalances in the number of training samples

assigned ‘1’ (positive) and ‘0’ (negative); simple use of an unbalanced dataset to

train binary classifiers may introduce a bias into the classifiers. Let Npos and Nneg

be the numbers of positive and negative samples in the original training dataset,

respectively. If Nneg > Npos, then Npos negative samples were randomly subsampled,

otherwise Nneg positive samples were subsampled, so that the numbers of positive

and negative samples in the training dataset became equal.

When decoding the next scene view from the set of SVM binary classifiers, I used

a Hamming decoder. According to Hamming decoding, the output is the one class

out of the eight possibilities whose code word (which depends on the encoding

method) has the smallest Hamming distance from the predicted code word, the latter

being the set of binary outputs from the SVM classifiers. It should be noted I did not

use any prior information such as map topography to supplement the participant’s

brain activities.
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Scene reconstruction

When visualizing the predicted scene view during active navigation (see Subsection

5.3.4), I first calculated the wall probability vector in the scan i, P (vi), based on a

vote of the outputs from the SVM classifiers.

P (vi) =
8∑
c=1

P (vi = c)× vc

vc = [δL(xc), δ
C(xc), δ

R(xc)]

δ·(x) =

 0, x = path

1, x = wall

p(vi = c) =

∑Q
q=1 x̂i,q ≡ zc

Q

where Q is the number of encoding channels (same as the code length). Then each

element P (vi) had an analogue value, ranging between 0 and 1. To regulate the

inhomogeneity of basal brain activities, I binarized each element of P (vi) to obtain

the predicted scene view (path/wall) by applying a block-dependent threshold set

to the within-block median of P (vi). Figure 5.11 shows the results.

Time-shift Hamming distance

To investigate the decodability of two or more steps of anticipation (see Subsection

5.3.4), I defined the time-shift Hamming distance (TSHD)D as the Hamming distance

between the predicted code word x̂, which is the alignment of the SVM’s outputs

based on current brain activity, and the code word x for a correct, possibly future,

scene view with a lag time j:

Dxx̂



∑
N − jn = 1dh(xn+j, x̂n)

N − j
, j ≥ 0

∑
Nn = 1− jdh(xn+j, x̂n)

N + j
, j < 0

where dh(x,y) is the Hamming distance between x and y. Although I was mostly

interested in decoding future scene views, I also examined the decodability of past
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scene views; in the past case, the lag time j was just a negative integer. The results

are shown in Figure 5.11 and Fig. 5.12.

5.3 Results

5.3.1 Behavioral results for passive and active navigation

Seven participants completed both the SC task and the MD task in an fMRI scanner,

during which the participants saw 3D wire-frame views presenting egocentric scenes

constructed of open paths and walls (Figs. 5.1a–c).

In SC, trained participants were requested to choose from two options which

scene would appear after a move selected by the computer: the correct upcoming

scene or a distractor scene (Fig. 5.1b, left). I found that participants were able

to choose the future scene accurately. Quantitatively, the results were: 93.4% ±
2.6% correct, 5.6% ± 2.3% incorrect, and 1.0% ± 1.0% missed (mean ± SEM across

participants; chance accuracy = 50%). See Chapter 4 for further details. Incorrect

trials were excluded from subsequent analysis, as were missed trials, in which

participants did not press the answer button in the allotted time (1.8 s).

In MD, the participants steered to an instructed goal from an initial state over

a series of trials, each trial requiring a choice of one of three decision options:

move forward, turn left, or turn right (Fig. 5.1b, right). Experimental blocks were

separated by arrival at instructed goal positions. The number of completed blocks

was 11.43± 0.98 (mean ± SEM across participants), while the uncompleted blocks

(final block in each session) were excluded from subsequent analysis. I found that

participants could accurately trace the shortest or the second-shortest route (i.e. one

or two moves longer than the shortest route, Fig. 5.1d) in the majority of blocks; the

shortest route was traced in 83.7%±24.5% of blocks (mean± SD across participants),

and the second-shortest route in 9.6%±18.3% of blocks. Reflecting the topography of

the MD map, many of the participants’ decisions were forward moves (75.9%±9.5%);

left and right turns accounted for 12.7%± 10.0% and 11.5%± 9.0% of the decisions,

respectively. RT did not differ among these decision types (Friedman test, p = 0.07).
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5.3.2 Comparison between encoding models

Next, I sought the encoding model that best encodes the participants’ prediction of

the upcoming scene view into their voxel-wise fMRI activity, which was represented

by the delay-period activity in the SC task. There were eight prediction possibilities,

since each of the three view parts, forward-left, forward-center, and forward-right,

could show only two options (path or wall). Each encoding channel might thus

assign ‘1’ (positive) to one or more out of the eight possibilities, and ‘0’ (negative)

to the others (Figs. 5.1e, f); hence, there could be 254 (= 28 − 2, all and none

were excluded) channels in total, which constitutes the full encoding model (see

Subsection 5.2.3). When these channels were aligned (sorted in descending order)

according to their GLM weight value, I found that the multivariate prediction

accuracy saturated after incrementally incorporating about 75 aligned channels (Fig.

5.2a and Fig. 5.3, see Subsection 5.2.4). This implies that the fMRI signals were

expressible by using a smaller number of features, which would be less costly than

the full (most expensive) representation.
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FIGURE 5.2: Characteristics of encoding models. (a) Voxel-wise pre-
diction accuracy (in terms of Pearson’s correlation coefficient between
measured and predicted brain activity. See Subsection 5.2.5.) became
saturated with 40–70 encoding channels, and did not increase further
with larger numbers of channels. A single line corresponds to the pre-
diction accuracy for one validation set from ten folds in the 10-fold
CV procedure from a typical individual (participant 5, bilateral IPG).
The results of other individuals and ROIs are presented in Fig. 5.3. (b)
Distance matrix in terms of the Hamming distance between pairs of
code words of the eight view classes (depicted in the left-most inset;
white, path; black, wall), under full encoding (‘Full model’), data-driven
optimal encoding (‘Optimal model’), data-driven minimum encoding
(‘Minimum model’), naïve eight-class encoding (‘Whole-scene model’),
and view-part–wise encoding (‘View-part model’). Top panels indicate
the Hamming distance normalized by code length and bottom panels
are for the original Hamming distance. The histogram beside the full en-
coding model shows the normalized frequency of the eight scene views
in the SC task. Error bars indicate SD over three different maps. My
data-driven models reflected the scene view frequency, a characteristic
of map topography, such that more frequently seen views were more
frequently predicted. (c) Full encoding and optimal encoding are robust
against errors introduced when observing the channels, such that a
one bit-inversion error on every encoding channel can be corrected
(first row, first and second columns). On the other hand, any single bit-
inversion causes unidentifiable codes in whole-scene encoding (fourth
column), and leads to misidentification in view-part encoding (fifth
column). The second and third rows show the situation when two and
three bit-inversion errors occur, respectively. For the detailed method
used to calculate these pie charts, see Subsection 5.2.5, (b, c). For the
other participants’ data, see Figs. 5.4 and 5.5.

My finding that the fMRI signals in SC were well predicted using a small number

of encoding channels led to the idea of a minimum encoding model. By incrementally

incorporating single channels from the aligned channel list sufficient for distinguish-

ing the eight possibilities, I defined the minimum encoding model (see Figs. 5.4a

and 5.5a). As described in the above paragraph, each channel separates the eight

scene views into positive and negative groups. As the number of channels increases,

the number of identifiable scene views would also increase, as expected. I included

channels one at a time, according to the aligned channel list, and stopped adding

channels when the number of identifiable views reached eight; this procedure cre-

ated the minimum encoding model. When using a randomly permuted channel list,

the number of channels constituting the minimum encoding model was 6.14± 1.68

(the SD was calculated over 5,000 random permutations). However, using my in-

cremental addition paradigm, the smallest number (11.43 ± 2.76; mean± SD over
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FIGURE 5.4: (a) Minimum encoding model, participants 2-6. The data-
driven analysis obtained the minimum and optimal encoding models
for each of participants 2-4, respectively. Left black-white matrix rep-
resents the eight types of scene view (white, path; black, wall). Right
red-blue matrix represents the code matrix (red, activation, [1]; blue,
control, [0]). Each row, i.e., a code word, in the code matrix corresponds
to the scene view on the left. (b) A distance matrix consisting of the
Hamming distances between eight scene view classes (top: minimum
encoding model, bottom: optimal encoding model). In the left panel,
the distance is scaled by the code length, but not in the right panel.
(c) A pie chart showing how bit-inversion error will affect Hamming
decoding. Light gray, dark gray, and black indicate, respectively, the fre-
quencies with which bit-inversion errors will lead to correct decoding
(‘accurate identification’), incorrect decoding (‘misidentification’), and
ambiguous cases in which more than two classes become decoding can-
didates (‘unidentifiable’). Left panels show the case of one bit-inversion
error, middle panels the case of two simultaneous bit-inversion errors,
and right panels the case of three simultaneous bit-inversion errors.
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FIGURE 5.5: (a) Minimum encoding model, participant 5-7.
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participants; range 7-15) was larger than when the channels were selected from the

randomly permuted channel list.

Any encoding model would assign a binary code word to each of the eight

possible views to be predicted; this code is expected to constitute the outputs of the

encoding channels. Examining the Hamming distance (number of different bits)

between each code word pair of the minimum encoding model in the form of a

distance matrix (Fig. 5.2b, middle), I found that many code words of my minimum

encoding model were represented in an idiosyncratic manner. For example, the

third class [wall, path, path] is distant from its nearest neighbor (the fifth class [path,

wall, path]), with a Hamming distance of four. Such an isolated class can enjoy

error correction in decoding; indeed, even if one or two channel(s) are disturbed

by bit-inversion error, the class isolation allows the Hamming decoder to decode

this view class accurately. On the other hand, the fifth class [path, wall, path] has

the first class [path, path, path] as its nearest neighbor with a Hamming distance of

one. Although one bit-inversion could thus lead to misclassification in this case,

such misclassification occurred only infrequently during navigation, because of

the infrequent occurrence of the wall status in the forward view [∗, wall, ∗] in the

environment, which in this case was the maze topography in SC (Fig. 5.2b), my

minimum encoder realized robustness in its decoding in a data-driven manner. On

the contrary, the whole-scene encoding (grandmother cell-like) model, which is the

simplest decomposition of a multi-class classification problem into multiple binary

classification problems, includes error detection among its characteristics, but cannot

correct bit-inversion errors (Figs. 5.2c, 5.4 and 5.5). It spaces every code word in an

equidistant manner, without reflecting any information from the task environment.

The most naïve encoding model, the view-part model, provides the most efficient

representation of the scene views, but has neither error detection nor error correction

ability (Fig. 5.6); a single bit-inversion error always leads to misclassification.

Although the minimal encoding model had the minimal number of channels, its

error correction ability was not sufficient. When I increased the number of channels,

I found not only that the prediction ability of the fMRI signals became stable (Fig.

5.2a), but also that the decoding ability of the Hamming decoder increased (Fig. 5.9a).

I called this expanded encoding model the optimal encoding model (see Subsection

5.2.6). My data-driven encoding models reflected the map topography-dependent

frequency of the eight scene views (histogram in Fig. 5.2b, see Subsection 5.2.5)
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FIGURE 5.6: Effects of bit-inversion errors in the data-unrelated mini-
mum encoding model. Each value was calculated over 1,000 random
permutations of the full channel list.

better than data-unrelated, randomly assigned encoding models (optimal encoding

model, Pearson’s correlation coefficient = median across participants 0.21, range

0.05-0.56; data-unrelated random encoding model, median -0.01, range −0.61-0.61.

The Wilcoxon rank sum one-sided test, p < 0.05×10−1).

5.3.3 Scene anticipation in frontal and parietal cortices

To identify the cortical regions involved in scene anticipation, I examined voxel-

wise weight values in another GLM that reproduced the fMRI BOLD activities with

the whole-scene model. I found substantially large voxel-wise absolute weights

consistently across participants in five bilateral brain regions: rolandic operculum,

superior prefrontal gyrus (SFG), inferior parietal gyrus (IPG) and precuneus (PC)

and temporal pole (TP)(Fig. 5.7a). Although the whole-scene model was used here

because the encoding channels in this model were mutually orthogonal, I verified

that the above results remained unchanged with use of the full encoding model.

Previous neurophysiological studies have suggested that widespread brain re-

gions, including higher-order fronto-parietal areas, are involved in prediction (Doll,

Simon, and Daw, 2012). When I examined the prediction-relevant voxels, defined

as those which exhibited high correlations between measured and predicted brain

activity consistently over participants, they were mainly found in the IPG and the

PC (Fig. 5.7b). Figure 5.7c and 5.8 show the information gain index (IGI, see Sub-

section 5.2.5) mapped onto the cortical surface, in which a voxel is colored when it

shows a significant weight value selectively for one of three view parts (forward-left,

forward-center, or forward-right). The SFG and the TP were found to include a large

proportion of voxels that showed high information gain irrespective of view part.

This result suggested a functional difference in scene prediction between the parietal



76 Chapter 5. Encoding View Anticipation

a

−2

0

2

4

P
o
s
it
iv
e
 w
e
ig
h
t 
v
a
lu
e
 (
Z
-s
c
o
re
)

Brain region

Central
region

Frontal lobe Temporal
lobe

Parietal lobe Occipital lobe Limbic lobe Subcortical 
grey nuclei

R
ig
ht
 R
O

Le
ft 
R
O

R
ig
ht
 S
FG

Le
ft 
S
FG

R
ig
ht
 P
C

Le
ft 
P
C

R
ig
ht
 IP
G

Le
ft 
IP
G

* * * * *

Individual

Median (not significant) Median (p <   0.05/90 , unc., unilateral)

7 6 5 4

b
99%

1%

98%

5%

95%

2%5%

94%

Whole brain
RO SFG

IPG PC

Consistent overlap

in n of 7 participants

2%

98%
c

Centre

Left Right
RO SFGWhole brain

IPG PC

* p < 0.005, unc., bilateral

Le
ft 
TP

R
Ig
ht
 T
P

99%

TP

Front view Back view

3%

93%

3%

95%

4%

92%

2%

95%

2%

97%

5%

91%

TP
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encoding (whole-scene model, see Fig. 5.1e). The weight value was
normalized across regions of interest (ROIs) within each participant
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abscissa indicates brain ROIs according to a list identified by automated
anatomical labeling (Tzourio-Mazoyer et al., 2002). Each small, gray
dot corresponds to a single participant, and each black, large one to
the median of all participants. (b) Predictable-voxel maps showing
overlap of the voxels consistently involved in the whole-scene model,
plotted on the inflated brain surface. Bright parts consist of voxels
involved in scene prediction in the full encoding model in at least 4
out of 7 participants; a statistical significance threshold of p < 0.05
(unc.) (r > 0.21), was required in each participant. The pie charts
show the rates of bright-colored voxels in the respective brain ROIs.
(c) Spatial distributions of the voxels contributing to decoding scene
predictions. Colored voxels show those of substantial information
gain index (IGI, for definition, see Subsection 5.2.5) at least 3 out of
7 participants and hence those that would be incorporated into the
scene prediction process; the top 20% of voxels in terms of the IGI are
plotted, whose colors correspond, respectively, to view parts (forward-
left: ‘Left’, forward-center: ‘Center’ and forward-right: ‘Right’). The
pie charts show the rates of colored voxels in respective brain ROIs.
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regions and the SFG and TP; the IPG and PC were involved in scene anticipation

itself, while the SFG and TP were specialized for the prediction of specific view parts.

5.3.4 Decoding results

For each channel constituting any encoding model, I trained a linear support vector

machine (SVM) to output positive (‘1’) or negative (‘0’) based on the delay-period

brain activities in SC. As the number of encoding channels increased, the accuracy

of the Hamming decoder (see Subsection 5.2.6) was likely increased (Figs. 5.9a and

5.10), in accordance with the Condorcet jury theorem (Boland, 1989). However,

the full encoding model employing all 127 channels (= 254/2, considering the

symmetric nature of SVMs) did not show the highest decoding accuracy. The

minimum encoding model did not show sufficient decoding accuracy either, due

possibly to a lack of the necessary features (encoding channels). As a moderate choice,

I defined an optimal encoding model that showed the highest decoding accuracy

in SC, which was in turn evaluated using the MD task (cross-task validation). The

decoding accuracy of this optimal encoding model was comparable to or even better

than that of the full encoding model in MD (paired Wilcoxon signed ranks test,

p = 0.88) (Fig. 5.9b). I also found that the decoding performances of the whole-

scene model (eight channels) and the view-part model (three channels) were almost

zero and at chance level, respectively. The decoding accuracy in MD of the optimal

encoding model was significantly higher than chance and that of the view-part model

(Wilcoxon signed ranks test, p < 0.05). Accordingly, the whole-scene model and the

view-part model showed no cross-task decodability for scene view prediction, while

my optimal encoding model allowed me to decode the upcoming scene views based

on fMRI brain activities. The model was able to fully utilize the brain signatures of

scene prediction during navigation, found to be represented by multiple channels in

a distributed manner.

Next, I divided all the MD scans into those in which participants pressed a button

(decision scans) and all others (delay scans). Examining the relationship between

decoding outcomes based on fMRI activities during decision scans and the RTs in

the trials covering the decision scans, I found that participants showed shorter RTs

when the decoding outcome for the scene prediction was more successful than those

of all MD trials (Fig. 5.9c). Moreover, this reduction in RT was most prominent
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decoding accuracy validated in the SC sessions (sessions 1, 2, 3, 5, for
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coding accuracies with the whole-scene model and the view-part model,
respectively. (b) Different encoding schemes lead to different decoding
performances in the SC task (left), where each decoding accuracy was
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also observed in the MD task (right). Black asterisks indicate signifi-
cance (Wilcoxon signed rank test, p < 0.05). (a, b) Horizontal, black
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Hamming decoder was successful in decoding the scene prediction,
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when employing the optimal encoding model. On the other hand, there was no

significant difference in the decoding accuracy between the decision scans and the

delay scans, regardless of the employed encoding models (Wilcoxon matched-pair

signed ranks test: minimum model, p = 0.81; optimal model, p = 0.58; full model,

p = 0.94). Accordingly, there was a tendency for the decoding to be successful when

the decision RT was relatively short.

Although the participants had been requested to choose the correct next scene,

making prediction of the next scene was crucial to the SC task, this was not nec-

essarily the case in the MD task, because the MD participants were requested to

reach their destinations with as small a number of trials as possible. Actually, the

participants showed good planning performance in MD (see Subsection 5.3.1). Thus,

anticipation was not limited to one-step prediction. To investigate the decodability

of two or more steps of anticipation, I examined a time-shifted Hamming distance

(TSHD), which measures the distance between the predicted code word based on

current brain activity and the correct code word for a future or past scene view with

some lag time. Interestingly, the TSHD did not show a minimum value with a lag

time of 0 (one-step prediction), that is, smaller was not always better (see Figs. 5.11

and 5.12). In particular, when the participant’s behavior was very successful, the

TSHD showed minimum values for future scene views that were close to the goal

(Figs. 5.11c). On the other hand, the blocks with a detour trajectory (defined as a

trial where the number of steps exceeded the shortest route by 10 or more steps) had

a larger TSHD between decoded code words in early steps, and those of real scene

views around the goal (Fig. 5.11d).

5.4 Discussion

In my encoding/decoding analyses of fMRI activities during the performance of two

types of 3D navigation games, I made two major observations. (i) Although my data-

driven minimum and optimal encoding models were defined so as to exclusively and

accurately reproduce the participants’ brain activities, they also identified encoding

channels that were effective in robustly transmitting scene anticipation. These

encoding models allowed the simple Hamming decoder to work well even when

the channels suffered from noise, because they reflected the characteristics of the

navigation environment. They also allowed me to examine specific brain regions that
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FIGURE 5.11: Sequential decoding in two MD blocks. (a, b) Scene
reconstruction from single-scan fMRI activity (2 s) over a single MD
block, but before this participant (participant 1) saw the actual scene.
The left panel indicates the trajectory that was taken by the participant,
starting from an initial state (red arrow) to a goal (blue circle). A digit on
the map shows the scan index corresponding to the horizontal axis in
the middle panel. The middle panels indicate the series of correct scene
views (upper) and predicted scene views (lower). The hemodynamic
response delay was not compensated for in this decoding analysis.
L, forward-left; C, forward-center; R, forward-right. (c) TSHD, which
signify the discrepancy between a real scene (not necessarily the present
one) and the predicted one decoded from current brain activity. The
top and bottom panels correspond to the MD blocks in (a) and (b),
respectively. (d) Distance between the code words predicted for the
scenes around the goal position based on the initial three scans and the
code words of the corresponding true scenes. The optimal encoding
model was used. In the blocks with detour trajectories, the distance
was longer than the median of the other trajectories (white line). The
bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. A point located beyond 1.5 times the box height was
defined as an outlier.
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and bottom panels are for participant 7 and participant 3, respectively.
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can be involved in those encoding models. (ii) By using such data-driven encoding

models, I realized not only better decoding ability than the naïve encoding models,

but also reasonably good cross-task decodability. Actually, my encoder/decoder pair

was obtained only from data recorded during passive navigation (i.e., the SC task),

but showed significant decoding ability even when applied to the data recorded

during active navigation (i.e., the MD task).

The encoding strategy of the brain, especially for its high-dimensional cognitive

states, is comparable to the problem of feature representation in the field of machine

learning. Error-correcting output coding (ECOC) provides a general framework for

representing high-dimensional features in a robust manner (Dietterich and Bakiri,

1995; Yukinawa et al., 2009; Takenouchi and Ishii, 2009). According to ECOC, an

original multi-class classification problem is decomposed into multiple binary classi-

fication problems; each of these then acts as a transmission channel, transmitting

the message of the original classes, even if it may be noisy. When using a larger

number of transmission channels than the number of original multiple classes, a

receiver can detect an original message based on received codes that have passed

through noisy transmission channels. Thus, the ECOC provides a powerful encoding

scheme to allow robust information transmission through multiple but unreliable

channels. In this study, I presented data-driven encoding models based on ECOC.

There are three major reasons for the plausibility of ECOC-based encoding mod-

els in the brain. First, neural information pathways (e.g., axons) are probabilistic

rather than deterministic, due to the stochastic nature of neuronal spikes and the

instability of axonal transmssion (Bakkum et al., 2013). Thus, the neural decoding

system inevitably needs robustness against the probabilistic factors (noise) involved

in its transmission system. Second, since each neural element (neuron) can carry

binary information (spike or non-spike), the network state at a single moment is

of a binary vector. One natural scenario to solve a multi-class problem by using

such a binary system is to decompose the multi-class problem into multiple binary

problems, i.e., ECOC. Third, the brain has massively parallel processing machinery

(Pashler, 1994; Sigman and Dehaene, 2008), leading to the idea that its encoder could

consist of massively parallel, but noisy, channels. On the other hand, in ECOC, there

is a trade-off between communication cost and ability to correct errors; an increase

in the number of channels is good for robustness against noise, but comes at the

high cost required to both prepare the physically necessary channels, but also to
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biochemically activate those channels for transmission. My minimum and optimal

encoding models significantly reduce this trade-off problem, by selecting channels

essential for the current environment in a data-driven manner, as described below.

During navigation, individuals perform path planning, in which the question

of where to move is more important than whether or not they can move. Thus,

learning the locations of paths is more crucial than the locations of walls, to allow

the participants to identify available directions. The minimum and optimal encod-

ing models, representing participants’ fMRI activities, had a tendency to assign

active representation (i.e., ‘1’) to scene views including paths (see Figs. 5.4 and 5.5).

Moreover, the minimum and optimal encoding models allocated their code words

so as to make the four scene views whose center square was a path more robust

against bit inversion than the other four views whose center square was a wall (Figs.

5.2b, 5.4b and 5.5b). These results suggest that my minimum and optimal encoding

models acquired a feature representation suitable for a subsequent decoding process

by means of noisy information transmission; a similar encoding scheme could be

implemented in the brain to produce stable decision making by decoding noisy

information provided by its upstream channels. I also found that my data-driven

minimum encoding model needed more channels than did a data-unrelated random

encoding model that incorporated channels in a random order. This probably oc-

curred because the GLM assigned larger beta weights to more important features.

Such features, represented as encoding channels, would be placed with a high rank-

ing according to my method. The more important features were likely correlated

with each other, increasing redundancy in the list relative to that of the randomly

ordered list. On the other hand, such redundancy in my data-driven encoders led to

higher decoding performance versus that of the data-unrelated random encoders.

This analysis suggests that my data-driven encoding models could detect important

features, by paying for redundancy, and were effective for robust decoding against

bit-inversion errors that can occur when decoding from noisy brain activities (Figs.

5.2c, 5.4c and 5.5c).

The frontal and/or parietal regions have been thought to be possible sources

of anticipation in two contexts, reward prediction and future path planning (Ito

et al., 2015; Chau et al., 2014; Noonan et al., 2010; Hunt et al., 2012). In the present

study, I found that the GLM weights with the whole-scene model exhibited large

values in five bilateral brain regions (Fig. 5.7a): rolandic operculum, SFG, IPG, and
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precuneus, and TP. Moreover, the voxels showing a higher IGI were localized to

the SFG and TP, and those showing higher prediction accuracy were localized to

the IPG and precuneus (see Figs. 5.7b, 5.7c and 5.8). These results suggest that the

fronto-parietal regions are involved in general aspects of scene anticipation, not just

in reward prediction or path planning. Although the rolandic operculum was also

identified in the GLM weight-based analysis, I found no further evidence that this

region is related to encoding scene anticipation.

Although I did not directly investigate brain activities involved in path planning,

scene anticipation should accompany path planning, especially in active navigation

tasks such as MD. Actually, the decoding performance slightly increased over the

progress of active navigation in MD (Fig. 5.9b), and scene anticipation was more

accurate when a participant’s performance was better. Moreover, when the par-

ticipants followed a longer route than the optimal/suboptimal one, the predicted

code words for scene views in the present route were similar to the correct code

words of the scene views that they had experienced in the past (Figs. 5.11c and

5.12). These results imply that participants sometimes got lost, and could no longer

predict upcoming scene views as far into the future. Furthermore, the observation

that the future scene views could be predicted from the current brain activities

(Fig. 5.11a, upper), especially when the participants were performing well in MD,

may indicate that the participants’ brain activities comprised prediction factors over

multiple future steps. Such factors related to path planning might have lowered

the decodability of one-step future scene views during active navigation in MD in

comparison with passive navigation in SC (Fig. 5.9b).

Existing fMRI decoding studies presented encoding models embodied in higher

visual areas (Stansbury, Naselaris, and Gallant, 2013; Nishimoto et al., 2011; Horikawa

et al., 2013; Huth et al., 2012; Çukur et al., 2013). My present study focused on scene

anticipation, which could be related to visual processing but is hypothetically a

downstream visual process, and revealed that encoding can be localized in frontal

and parietal areas that are known to be involved in decision making. We know very

little of how information is represented for decision making, especially in higher

brain regions. This lack of knowledge has motivated me to develop my data-driven

ECOC encoders, the minimum and optimal encoding models, as particular imple-

mentations of a general error-tolerant encoding scheme. My analysis of robustness

suggested that my data-driven encoding models could have detected important
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features, thanks to their higher redundancy relative to the random channel list-

based encoding models or the model with absolutely minimum number of channels

(view-part model).

Previous studies have suggested that the human brain adopts parallel processing

in the perceptual and behavioral stages, but serial processing in the decision stage

(Bakkum et al., 2013; Pashler, 1994). The phenomenon of anticipation occurs midway

between the perceptual stage and the step of behavior selection, and hence is consid-

ered to be in the early decision stage. The finding here that my optimal encoding

model was more plausible than its deterministic counterparts, the whole-scene and

view-part models, might suggest that scene anticipation is also processed in parallel

so as to be error-tolerant. Notice, however, that fMRI has limited temporal resolution

due to hemodynamic delay, so there remains the possibility that anticipation actually

depends on serial processing. Meanwhile, the Bayesian brain hypothesis has been

widely discussed in a number of studies (Knill and Pouget, 2004; Doya et al., 2006;

Körding and Wolpert, 2006). This hypothesis assumes that the brain manipulates

multiple possibilities by maintaining a probabilistic distribution (prior) of them. My

current study is theoretically compatible with these studies.

My encoding models combined multiple binary channels linearly for represent-

ing fMRI activities. These constraints, linear combination and binarization, allowed

me to describe my encoding models by ECOC. However, there may be more so-

phisticated encoding models in non-linear and/or non-binary domains. Seeking

and describing such advanced encoding models would facilitate our understanding

of the encoding mechanism of scene anticipation. Furthermore, scene anticipation

in unfamiliar situations remains to be understood. The hippocampal place system

contributes to the encoding of not only familiar situations, but also to a related novel

experience occurring in the future (Dragoi and Tonegawa, 2011). Are such ‘preplay-

like’ activities involved in scene anticipation mediated by the cerebral cortex? If yes,

my decoding method may be able to detect individual expectations depending on

his/her prior knowledge or character. Additionally, Although all my analyses in

this study were all performed offline, the decoding analysis in the MD task can be

extended to the online mode with the help of online fMRI measurement techniques;

my encoder and decoder were solely determined by data from the SC task, which

could be completed in advance of the MD task. Such online decoding technology

may lead to the development of new brain-based devices to assist human navigation
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and decision-making, for example, a secure guidance system that warns users of

upcoming dangerous behaviors by notifying them of an incongruous belief that does

not match reality.
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Chapter 6

Conclusion and Future Directions

I used a non-invasive measurement modality, fMRI, and some multi-variate statisti-

cal analysis methods to deal with fMRI data. I here sum up this study by describing

my contributions and remaining future directions toward further understanding of

human anticipation. Main points of my study are as follows:

1. My computational model of navigational behaviors successfully described

human decision making in an uncertain environment.

2. I successfully implemented the decoding of human anticipation even when the

subjective belief is different from the objective reality.

3. Using the novel data-driven analysis, I suggested that the neural representation

of anticipation is robustly and effectively encoded in the mPFC and parietal

regions.

My methods have a potential to be widely applied to unveiling other higher-level

cognitive functions in the brain.

6.1 Functional network for anticipation

Based on the findings of this study, I illustrate a possible functional network of antic-

ipation (Fig. 6.1). Visual inputs (i.e., a current scene view) come from the OC. They

are processed by well-known two major pathways; the dorsal stream and the ventral

stream (Goodale and Milner, 1992). The spatial anticipation is mainly involved in the

former stream, which is consistent with a widely accepted hypothesis that the dorsal

stream would cause visually guided behaviors. The functional network is considered

as consisting of two interactive connections. The mPFC includes both connections:

the prefrontal-parietal network and the prefrontal-thalamo-hippocampal circuit.
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FIGURE 6.1: Diagram of anticipation network. The hippocampal place
system represents a current position in the environment. This location
information leads to a belief of upcoming observation in the mPFC.
Based on the belief, the posterior parietal cortex constructs view antici-
pation as a visual image, and compares with a real scene view received
through the OC.

Strong anatomical connections exist between the mPFC and the parietal regions. An

interactive system of anticipation, belief construction and update, is implemented

within this connectivity with cross-check of scene views. On the other hand, Ito et al.,

2015 suggested that indirect projections from the mPFC are crucial for representation

of the future path planning in rats’ hippocampal place system. The mPFC sends

information, via the nucleus reuniens, to the hippocampus. Thus, there could be an

interactive network for performing a cross-check between the belief and the current

observation.

6.2 Neural representation for anticipation

I proposed a new view of fMRI brain activities, in terms of noise-tolerant encod-

ing. Using fMRI-data-driven analysis, I found reasonable encoding models that

are biased towards environmental settings such as map topography. The brain

encodes frequently-experience scene view with robust schemes. In contrast, indis-

tinguishable representation is assigned to the scene views that are infrequent. This

representation provides the noise-tolerant property, which allowed me to decode

future scene views with higher decoding accuracies. This finding would suggest

that our knowledge about information communication, such as the coding theory,
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is useful for understanding brain functions that can be measured by non-invasive

measurement modalities.

6.3 Challenges for the future

My contribution to anticipation raises as many questions as it has answered. I here

list several remaining issues.

1. One of the most challenging remaining issues is causality of belief. In Chapter

4, I showed that the medial frontal and parietal regions reflect individual belief

rather than objective reality. The next normative question is, then, how the

hippocampal place system treats this incorrectness: where this inaccurate belief

is generated.

2. In Chapter 5, I suggested that accurate behaviors could be associated with a

long view toward the future. In our daily life, how we integrate various piece

of information such as long-term prediction toward the future to produce best

performance. Does an expert in the spatial navigation, like a taxi driver, has a

longer-term prediction than an amateur, like a non-driver?

3. Toward applications, an on-line decoding system would be required. For

many practical brain decoding systems, we need to apply a feedback to the

brain in a closed-loop manner, such as, any real-world applications of brain-

machine interface. On the other hand, the brain activities may change due not

only to the feedback, but also to the feedback training. How the anticipation-

related activities are modified through the closed-loop feedback is an important

remaining issue.

4. A relationship between non-linearity is another challenging direction. I used

an ECOC based encoding model, which implicitly assumed a linear encoding

process consisting of multiple encoding pathways in the brain, to reproduce

human fMRI activities. This is of course a simplification of the encoding

process, but what would happen if we extend the encoding model into more

general networks. Although the usage of such non-linear techniques is beyond

the scope of my current study, due to the relatively short of human brain



92 Chapter 6. Conclusion and Future Directions

activity data, I am also interested in the relationship human encoders and such

non-linear machine learners.
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