
 

 

 
 

 

 
 
 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

  

APPROVED: 
 
Yan Huang, Major Professor 
Eduardo Blanco, Committee Member 
Wei Jin, Committee Member 
Rodney D. Nielsen, Committee Member  
Barrett R. Bryant, Chair of the 

Department of Computer Science 
and Engineering 

Costas Tsatsoulis, Dean of the College of 
Engineering 

Victor Prybutok, Dean of the Toulouse 
Graduate School 

LOCATION ESTIMATION AND GEO-CORRELATED INFORMATION TRENDS 

Zhi Liu 

Dissertation Prepared for the Degree of 

DOCTOR OF PHILOSOPHY 

UNIVERSITY OF NORTH TEXAS 

December 2017 



 

Liu, Zhi. Location Estimation and Geo-Correlated Information Trends. Doctor of 

Philosophy (Computer Science and Engineering), December 2017, 129 pp., 15 tables, 101 

numbered references.    

A tremendous amount of information is being shared every day on social media 

sites such as Facebook, Twitter or Google+. However, only a small portion of users 

provide their location information, which can be helpful in targeted advertising and 

many other services. Current methods in location estimation using social relationships 

consider social friendship as a simple binary relationship. However, social closeness 

between users and structure of friends have strong implications on geographic distances. 

In the first task, we introduce new measures to evaluate the social closeness between 

users and structure of friends. Then we propose models that use them for location 

estimation. Compared with the models which take the friend relation as a binary 

feature, social closeness can help identify which friend of a user is more important and 

friend structure can help to determine significance level of locations, thus improving the 

accuracy of the location estimation models. A confidence iteration method is further 

introduced to improve estimation accuracy and overcome the problem of scarce location 

information. We evaluate our methods on two different datasets, Twitter and Gowalla. 

The results show that our model can improve the estimation accuracy by 5% - 20% 

compared with state-of-the-art friend-based models. 

 



Copyright 2017

by

Zhi Liu

ii



ACKNOWLEDGMENTS

First I would like to express my special appreciation and thanks to my advisor Prof.

Yan Huang. During the last five years, Prof. Huang continuously supported me on the study,

research, and my work. Her knowledge and methodology greatly helped me in selecting

research topics, solving problems, and publishing papers. She provides lots of suggestions

in every step of a research topic, how to define a problem, how to explain it clearly, how to

find out the key point, and how to finish the work efficiently.

Besides my advisor, I also would like to thank my committee members: Prof. Nielsen,

Prof. Jin, and Prof. Blanco, for their insightful comments and suggestions. Prof. Nielsen

gave me many suggestions on my projects and research topics. He helped me have a better

understanding of different related research topics. I also want to express my appreciation to

Prof. Jin and Prof. Blanco for both of them would like to join my committee in the last

step and spend time to help in my dissertation.

iii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iii

LIST OF TABLES vii

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 RELATED WORK 8

2.1. Community Detection 8

2.2. Location Estimation 10

2.3. Event Detection 12

2.4. Document Summarization 14

2.5. Mining Uncertainty Co-locations 14

2.6. Mining Topic Relationship 15

CHAPTER 3 LOCATION ESTIMATION 18

3.1. Community Detection on Social Network 18

3.1.1. Network Locality 20

3.1.2. Connection Locality 22

3.1.3. Node Similarity 24

3.1.4. The Algorithm 26

3.1.5. Experimental Results 28

3.2. Location Estimation 34

3.2.1. Social Closeness and Geographic Distance 34

3.2.2. Friend Distribution of Connected Pairs 36

3.2.3. Structure of an Individual’s Friends in a City 39

3.2.4. Social Closeness and Social Structure-Based Model (SoSS) 41

3.2.5. Iteration with Confidence-Based Improvement 41

3.2.6. The Dataset 43

iv



3.2.7. Tweets Geotagging: Estimating Real-Time User Locations 43

3.3. Experimental Results 47

3.3.1. Experimental Results of Home Location Prediction 49

3.3.2. Real-Time User Location Estimation 53

3.4. Demo System for Home Location Prediction 56

3.4.1. Demonstration Scenario 57

CHAPTER 4 EVENT DETECTION ON SOCIAL MEDIA 60

4.1. The Event Detection Algorithm 60

4.1.1. Detecting Index Terms 60

4.1.2. Tweets Clustering 63

4.1.3. Cluster Filtering 67

4.1.4. Event Extraction 68

4.2. Experiment 69

4.2.1. Experimental Settings 70

4.2.2. Experimental Results 71

4.2.3. Event Type 75

4.2.4. More Details of the Detected Events 77

CHAPTER 5 SPATIOTEMPORAL TOPIC ASSOCIATION DETECTION ON

TWEETS 79

5.1. Mining Uncertainty Co-location 79

5.1.1. Problem Definition 80

5.1.2. Instance Centric Counting 83

5.1.3. Mining Co-location from Uncertain Data 87

5.1.4. Calculating the Participation Index 92

5.1.5. Experimental Results 93

5.2. Spatiotemporal Topic Association Detection on Tweets 97

5.2.1. Problem Definition 99

v



5.2.2. Calculating Participation Index 100

5.2.3. Definitions of Queries 101

5.2.4. Mining Topic Association 103

5.2.5. The Algorithms of Queries 106

5.2.6. Optimization of Querying Results 108

5.2.7. Experimental Results 112

CHAPTER 6 CONCLUSION 119

REFERENCES 121

vi



LIST OF TABLES

Page

Table 3.1. The accuracy of different community detection methods 29

Table 3.2. Effect of percentage of unknown locations 50

Table 3.3. Mean error distance (km), median error distance (km), and accuracy(%)

of the geotag estimation results. 55

Table 4.1. Notations and parameters 61

Table 4.2. Selected local events in Los Angeles. 72

Table 4.3. Selected detected news (NLEN) in Los Angeles. 75

Table 5.1. Parameters used in generating synthetic data 93

Table 5.2. Examples of real data co-location 98

Table 5.3. Notations and parameters 100

Table 5.4. Apply participation index in topic combination 110

Table 5.5. Parameters used in queries 112

Table 5.6. Vertical query 115

Table 5.7. Horizontal query 115

Table 5.8. Super topic association query 116

Table 5.9. Topic filtering 117

vii



CHAPTER 1

INTRODUCTION

A tremendous amount of information is being shared every day on social media plat-

forms such as Facebook, Twitter, and Google+. For example, there are 310 million average

monthly active users on Twitter1 have published 300 million tweets worldwide, and this num-

ber continues to increase at a rate of 5,700 tweets per second [81]. Oftentimes these messages

include geo-information that is valuable to others, such as activities (e.g., art fairs, jazz fes-

tivals, and social gatherings), natural disaster occurrences (e.g., tornadoes, earthquakes), or

other incidents (e.g., traffic jams). Twitter’s popularity carries it beyond a communication

platform. With its users widely distributed, people are not only tweeting about their daily

activities but can also report events happening anywhere and spread through the network.

The analytics on social media content can provide most recent topic trends, real-life events,

and public sentiments. Compared with traditional information source, social media are in-

formal but can provide the most up-to-date information on location information, current

events including earthquakes, sports matches, and a variety of kinds of events and news.

The goal of the first task is developing effective algorithms to estimate user location.

The results will help to extract more useful information from social media which in turn

can assist the assimilation of social media information of interest for application domains

such as smart transportation, disaster relief and recovery, and national security. However,

in the home location estimation, we face the following challenges: 1) People can share their

location information more easily nowadays. Paradoxically, the problem of lacking location

information still exists. Only 30% of users provide their location information to at least

one social media account and 46% of teen app users have turned off the location tracking

feature on their cell phone.2; 2) User behavior varies greatly among different social networking

services. In the datasets used in this work, 27% of friend pairs on Gowalla locate within

1https://investor.twitterinc.com/results.cfm

2http://www.pewinternet.org/2013/09/12/location-based-services/

1

https://investor.twitterinc.com/results.cfm


100km of each other. In Twitter, however, this ratio is only 12%. This because Twitter

is not mainly a location-based social networking service and users tend to follow various

media sources that are far away, and 3) Social media information is noisy and mixed with

meaningless information. For example, 40% tweets are not associated with a particular

subject [76]. Additionally, some users are global travelers and have many friends from many

cities around the world.

Previous methods use the social network, user location, and the content information

for location estimation. However, the content information is not always available on different

social media tools. In this work, we focus on the analysis of social network and how the

user locations affect the social connections. Our study shows that features such as friend

structure of a user are important in improving the accuracy of the location estimation.

This work makes the following contributions: 1) We study the geographic features of social

networks. We propose measures of social closeness between friends and the tightness of the

friend structure of a user. We study the relationship between the closeness/tightness and the

geographic distance. Existing algorithms consider friend relation as a binary relationship.

However, finer level features such as friend co-location can help determine the social closeness

of two friends. Friend co-location is an index measuring how overlapped two users’ friend

distributions are. Statistics show that the friend co-location has a significant influence on

the probability of two friends located close to each other. A user typically has a tight

social structure among his friends in his home location. Local social coefficient measures the

tightness of a user’s friends in an area and can be a good indicator to measure if the user is

located in that area. 2) We propose three user location estimation models which take social

closeness and tightness of friend structure into consideration. 3) To deal with the challenge

of location sparsity, we propose a confidence-based iteration model in location estimation

which significantly improved the estimation accuracy. 4) We evaluate our models using two

real-world datasets. Extensive experimental results show that our methods improve the

estimation accuracy by 5%- 20% compared with the state-of-the-art algorithm.

Then we focus on local event detection on social media platforms. Social media has

2



rapidly become one of the most important platforms where people can share their thoughts,

opinions, interests, and whereabouts. A typical example is Twitter, an online social net-

working service that enables users to send and read short 140-character messages. Twitter’s

popularity carries it beyond a communication platform. In this task, we try to detect lo-

cal events from geotagged tweets. Monitoring local events is conducive to many real-world

applications such as crime mapping, traffic monitoring, and emergency management. With

location, time, and content analysis, one can explore a more comprehensive description of

the events from different points of view and have a better understanding of the influence of

an event. More specifically, we not only focus on detecting large events such as shows or

sports matches but also try to find small-scale events. In fact, many local events in the real

world are “small” events. They are not reported by news media and only a relatively small

number of local people discuss the events. However, these events are important and learning

such events can help in location-based services, public security, and smart transportation.

Finding a system to detect these more difficult events is the focus of this work.

For detecting local events, we have the following challenges: 1) There is no standard

format for Twitter users to describe an event. People discuss events on social media from

different perspectives with some expressing their opinions and others stating facts in a very

informal way, and most of the users will not list a clear time and location information of an

event; 2) Collecting the tweets related to an event is challenging. Around 6,000 tweets are

published every second 3, but only a very small percentage of them are related to an event.

40.55% tweets are pointless babbles4. Based on our analysis of the real dataset, only less

than 5% geotagged tweets are related to an event. Users typically have different linguistic

expression preference, making it difficult to filter tweets related to an event; 3) For many

local events, there may be only a few users publishing a small number of related tweets.

Existing methods based on outbreak detection of tweets or terms can only find large events

such as sports games, shows, or disasters, which may be already on news and attract lots of

3http://www.internetlivestats.com/twitter-statistics/

4http://pearanalytics.com/wp-content/uploads/2009/08/Twitter-Study-August-2009.pdf

3

http://www.internetlivestats.com/twitter-statistics/
http://pearanalytics.com/wp-content/uploads/2009/08/Twitter-Study-August-2009.pdf


attention. For events such as a small meeting, party, minor show, or local festivals in a small

town, users discuss these locally and typically will not lead to an outbreak of the number of

tweets.

To address these challenges, we propose the LEDS framework to detect local events.

The goal is to be sensitive to all kinds of local events no matter if they are large or small.

Many existing algorithms focus on larger events and detect events in limited categories, i.e.

sports, shows, and disasters. Such methods use spikes of tweets or located users to detect

events [53, 23, 74, 50]. However, they tend to ignore many small-scale events since most

medium- or small-scale events cannot lead an obvious changing of the number of tweets in

an area. For example, in Figure 1(a), we show the number of tweets we collected from Los

Angeles in June 2015. The total number of tweets of each day is fairly stable and it will be

difficult to detect an outbreak to extract events. In Figure 1(b), we show the number of tweets

we collected from Los Angeles which contain the term of “E3” (Electronic Entertainment

Expo) for the same time period. The total number of tweets from Los Angeles does not

spike during E3, making it difficult to detect events from spikes of tweets. There are many

events of this nature as shown in our experiments later.

Terms are more sensitive to events than tweets. During an event, people are likely

to use special terms which are not commonly used in daily lives. Thus we propose an

anomaly-term-driven framework. The key idea is to compare term frequencies with overall

distribution. The comparison needs to be done based on spatial and time scales instead of

globally. Our method can detect the abnormal distribution effectively and is not affected

by factors such as the flux of online users. In this way, our proposed system can detect

much broader event categories which include many local events such as parties, and personal

meetings.

The goal of the third task is to detect the associations between hashtags (topics)

by analyzing the time and location distributions of tweets which contain these hashtags.

The analysis of Twitter data can help to predict or explain phenomena in many real-world

applications [2, 8]. Topics on Twitter may potentially be associated with space and time.

4



0 10 20 30

June

0

2

4

6
N

um
be

r 
of

 T
w

ee
ts

# 104

(a) Number of tweets in June

15 16 17 18 19

June

0

500

1000

1500

N
um

be
r 

of
 T

w
ee

ts

(b) Number of tweets of E3

Figure 1.1. Detailed features of detected events.

For example, the hashtags related to the Independence Day #july4th are closely related

to the hashtags #firework and #beer in the beginning of July, which directly reveals how

people celebrate the Independence Day. The detection of such topic associations can help to

improve online services such as news recommendation and explain the relationship among

real-world events.

In this work, we define the topic set of each tweet as the hashtags it contains. So

each topic can appear in a number of tweets and each tweet can contain several topics. For

example, the right side of Figure 1.2 shows two tweets. The first tweet is related to the

topic/hashtag #Amazon and the second one contains two topics #Job and #Houston. The

left side of Figure 1.2 shows three groups of hashtags represented by three colors. Using

these relationships, when a user talks about certain topics, such as #job, we can recommend

the tweets from other related topics based on the topic associations (e.g. {#job,#hiring,

#tweetmyjobs}) so that the users can get more comprehensive information about what

they want. Such close correlated topic associations can also reflect the relations among real-

world events. For example, the mining process reveals a topic association of {#nbafinals,

#cle,#gsw}. As a matter of fact, hashtags #cle and #gsw are the two teams in the NBA

finals 2015. The mining process reveals these three topics appearing in space and time

proximity.

5



#gsw

#nbafinals

#nba#cle #amazon
#amazoncart

#ebay#deal

#nbafinals2015
#job

#hiring#jobs

#tweetmyjobs

#amazonwishlist

0.21

0.50

0.23

0.54

0.53

0.74

0.75

0.94

0.75

0.90

0.94

0.87

0.88

0.98

<0.01

0.02

0.06

0.08

0.02 0.01

"I think I've gone overboard.. oh the joy of next 

day delivery! Love #Amazon"      September 24

#Job #Houston Director of Digital Marketing 

(B2C) - TX - Houston: Position: Director of 

Digital Marketing                                October 6

(t1, l1, {#Amazon})

(t1, l1, {#Job, #Houston})

Figure 1.2. Closeness of topics and topic related tweets

We define the closeness among topics by examining the co-occurrence of tweets con-

taining these topics. Closely related topics may tend to be talked about the similar time

and region. Based on this idea, we define the participation index of topic associations. If

the tweets of a set of topics tend to be found at the same time and region, they will have a

higher participation index. We evaluate this concept in our experiments by comparing the

measuring results of participation index with the human judgment. Based on the concept of

participation index, we propose three different types of queries to help users to extract topic

associations with different semantics in different time-region frames.

One of the challenges is that the number of tweets can be very large as well as the

topics and their combinations. For example, in the sample we collected, there are 364,333

geo-tagged tweets that contain the hashtag #job in the U.S. in July 2015. So, how to develop

an efficient algorithm to help to calculate the participation index of a set of topics will be

the most important step. Here we propose a multi-layer geographic index and a time index

to help us to filter the topic sets under the threshold quickly to calculate the participation

index.

Another challenge in our work is the number of topics. Our dataset contains 492,492

hashtags. Any subset of these hashtags can be a potential topic association. To deal with

the exponential nature of the hashtag associations, we propose two methods to optimize

the mining algorithm: topic filtering and topic combination. In the topic filtering, we will

remove some topics which are not affected by other topics or real-world events. These topics

participate in a large number of associations and the results are meaningless. Furthermore,

6



we propose an algorithm to combine similar topics to further reduce the complexity.

In this dissertation, we will introduce the related work in chapter 2. The three tasks

will be discussed in chapters from 3 to 5. For each task, the algorithms used to solve it

and the experimental results will be discussed in detail. Finally, we summarize our work in

chapter 6.

7



CHAPTER 2

RELATED WORK

In this section, we introduce the related work and provide a brief comparison between

our work and the related research.

2.1. Community Detection

In the past decade, many algorithms have been developed to detect communities in

a network. For a complete discussion of various algorithms, please refer to [32]. Aaron et al.

provide a hierarchical clustering approach to detect communities using internal density in

[26]. The internal density is the number of edges inside a community in a network. The basic

idea is to increase the ratio of the edges in communities during the hierarchical clustering

process using Equation 2.1:

(2.1) Q =
1

2m

∑
vw

[Avw −
kvkw
2m

]δ(cv, cw)

where Avw is the adjacency matrix of the network and kv is the degree of node v. cv

represents the community of node v and δ(cv, cw) is 1 if cv = cw. m is the number of edges in

the whole network G. So the value Q will be large when more edges are inside a community,

which represents a good division of the work. To avoid the problem that the largest Q value

1 will only happen when all nodes belong to the same community, the authors introduce the

component kvkw/2m in the modularity of Q. kvkw/2m is the probability of an edge existing

between nodes v and w if edges were randomly placed. So Q will be close to zero when the

network is randomly generated without community structure. Some other work is also based

on modularity optimization such as [13], [70], and [52].

Another popular algorithm [63] is based on iteratively removing “unimportant” edges.

The basic assumption of this method is that communities are weakly connected by a few

edges. The importance of an edge, called betweenness score, is the number of shortest

paths that go through that edge. The paths between different communities must go through

8



an edge across communities so the edges across communities will get a higher betweenness

score. The edge with the highest score will be removed from the network iteratively. In [41],

the authors define the similarity between nodes using their degrees and the number of the

common neighborhood. The sum of the similarities of edges inside or outside a community

was defined as internal or external similarity of a community.

In the last few years, some researchers have studied the geographic constraints on

real-world networks. In [64], the authors build a network based on the cell phone commu-

nication records. Then they study the relationship between distance and the call/text tie

probability. By dividing the network into communities[67, 32, 62, 35], the authors show

that the geographic span of real-world community is much smaller than the null commu-

nity especially when the community has less than 30 people. In [77], the authors define the

concepts of node locality and geographic clustering coefficient. Then they show the value

distribution of these two coefficients with respect to the degree of nodes. The node locality

is slowly decreasing with node degree increases. Their study shows that people tend to build

connections with other nearby users. Some users have social connections only with others

within a close geographic distance.

The most relevant work to ours is proposed in [86]. Yves et. al. propose a geosocial

communities detection method. The authors assign each edge with a similarity score using

social relationship and the Euclidean distance between their average stop locations and then

run the spectral clustering algorithm.

However, the authors only built their model on a small scale application and didn’t

provide evidence on how the social relation is influenced by the geographic location, which

is important for using geographic information in community detection in location-tagged

networks. In addition, the efficiency of the spectral clustering algorithm may be the main

bottleneck when dealing with a large dataset. In this dissertation, we push the location

information of nodes in networks into the community detecting algorithm and design an

efficient algorithm that can scale to large networks.

9



2.2. Location Estimation

Recent research on location estimation in social networks follows two directions based

on the data used: content-based and social-network-based. Content-based prediction models

extract location information, like venue signals, from content provided by users. Cheng et al.

[24] proposed and evaluated a city-level location estimation model of Twitter users purely by

taking the location related words in tweet content as features and applying a classification

method. Chandra et al. [22] improved the content based method by using user interactions

and exploiting the relationship between different tweet message types. They also provided

the estimation of the top-K probable cities for a user. Another similar method is proposed

in [29]. When a user declares a place, it will be checked in gazetteer to see if it corresponds

to a city name. Location information will then be applied to infer the user location by

the Twitter network. Content-based methods have also been studied to solve the web page

geotagging problem [6]. The authors extract the toponyms from the web page to predict its

location.

Our work is closely related to the work by Backstrom et al. [9]. By modeling the

relation between distance and probability of being a friend, the authors proposed a general

formula to calculate the probability of a user located at a specific place. Places with the

maximal probability will be estimated as the location of the user. Both [73] and [25] aimed

to build a user mobility model by using the location of their friends. Cho et al. [25] used

several factors in their probability model, including check-in records, social network, friends’

location, and time. Sadilek et al. [73] applied a machine learning method with similar

information. Li et al. [56] proposed the UDI (unified discriminative influence) framework

to combine content and friends’ location analysis in a unique model to profile users’ home

location. In [59], the authors extract features from users’ tweets content, social relation,

and other behaviors like geotag to infer the home location on different level. Based on the

geotagged information, they also built a classifier to predict whether a user is traveling. In

[46], the author applied the geometric median between users, Oja’s Simplex Median, and the

transitivity of the social network in the method. The goal of the algorithm is to select the

10



nearest neighbor as the estimation result. In [27], the authors use the number of @mentions

to indicate the social ties and take it as the weight ωij between users ui and uj. For all

the connected users, they define the total variation as
∑

ij ωijdij where dij is the geographic

distance between them. When estimating the users’ locations, they seek the solution that

makes the sum as small as possible. However, all of those models take the friend relation

as a binary feature, i.e. being friends or not. This premise does not allow those models

to take advantage of all the information from the social network. In our model, we take

the social relation as a continuous feature by introducing the concept of social closeness.

Network structure and locations are taken into consideration compared with our previous

work [49] to help to achieve better results. By studying and using the relation between

social closeness and geographic distance, our model: 1) significantly improves the estimation

accuracy, especially when people have a small number of friends, 2) overcomes the problem

that only a small number of users provide their location information.

The availability of user geotagged tweets allows one to profile the geographic distri-

bution of a term in a tweet and this distribution has been used in several existing works

for geotagging. The bayesian-based method generates a language model for a location and

calculates the probability of a tweet belonging to different locations based on the Bayesian

model [48]. Given the local language model θL, the probability of a tweet T belonging to a

location L can be calculated as: P (L|T ) =
P (T |θL)P (L)

P (T )
and P (T |θL) =

∏
i P (ti|θL). The

location with the maximal probability is assigned to a tweet as its geotag. Kullback-Leibler

(KL) divergence based method measures the difference between a tweet and the local lan-

guage model [48, 72]. The location with minimal KL value is assigned to the tweet. Gaussian

model or Gaussian Mixture Model (GMM) fits geotags of n-grams in tweets into Gaussian

distributions. The center of the Gaussian distribution [31] or a weighted sum of GMMs [68]

is assigned as the geotag of tweets.

Another line of work uses location relevant words from contents as an important clue.

In [14], local geo-parsing is considered to suggest locations . Geotagging is done through

classification. Location indicative words (LIWs) in the content are detected mainly by three

11



measurements: term frequency, inverse city frequency, and information gain. These LIWs

are used as features to classify tweets into cities. All of the above approaches rely solely

on social media content for geotagging. However, pure content-based methods leave out the

movement patterns of a user. The sequence of geotags of tweets published by a user is aligned

with the location sequence of the same user. The movement of a user is affected by various

factors such as home location, travel distance, recent activities, and the characteristics of

cities. Using user movement patterns can potentially help improve the geotagging accuracy.

2.3. Event Detection

Event detection on social media has attracted much attention in recent years. The

approaches used can be broadly classified into two categories: geographic-anomaly-detection-

driven methods and content-feature-driven methods.

The basic idea of the methods in the first category is to detect events by monitoring

abnormal occurrences of tweets or terms. Weng et al. [93] build signal models for individual

words by applying wavelet analysis to the frequency-based raw signals of the words and

capture the bursts in the words’ appearance. The authors then detect events by grouping a

set of words with similar patterns of burst using a community detection algorithm. Krumm

et al. [50] use regression to estimate the number of tweets of an area. The features used

include time of the day, the day of the week, and tweets counts from neighbors. If the actual

number of tweets exceeds the threshold, a text summarization algorithm will be used on the

tweets in the region to extract tweets to describe the event.

In [53], the authors detect events by monitoring the moving crowd. Both increasing

of tweets and Twitter users are considered in event detection. To monitoring moving crowd,

the number of users in a region, incoming users, and outgoing users are recorded. These

abnormal cases will be investigated and used in event detection. Cheng et al. [23] propose a

space-time scan statistics-based approach in event detection. The idea is to detect clusters

on both space and time dimensions assuming people will tweet more than expected during

the event. In [7], the authors propose a user-driven method to perform a geo-temporal

analysis of information detect events. The DBSCAN clustering algorithm is used to identify

12



geo-temporal clusters of messages. In [21], the authors present a visual analytics approach

to provide users with scalable and interactive social media data analysis and visualization.

An analyst can extract topics from a set of messages and find unusual peaks and outliers

within topic time series.

In a content-feature-driven method, text, time, location, and other information are

used as features in learning algorithms or other methods. In [74], the authors detect earth-

quakes location from related tweets. The authors build a classifier to detect tweets which are

related to the target event. A probabilistic spatiotemporal model is then built to locate the

center of the event. In [99], the authors propose a graphical model to capture the content,

time, and location of social messages. Each message is represented as a probability distribu-

tion over a set of topics. The event is detected by conducting efficient similarity joins over

social media streams.

In [71], the authors extract four features to represent an event: name entity, event

phrase, calendar date, and event type. The named entity is extracted by NLP tools and

the event phrase and event types are obtained by a learning method. The calendar date

is obtained from a rule-based system. Li et al. [55] propose their twitter based event

detection and analysis system to detect crime and disaster Events (CDE). Related tweets

are crawled by keywords and then classified by Twitter-specific features and CDE features.

The location of tweets is predicted by its authors’ social network. Becker et al. propose

a learning method in [10] to identify whether a tweet is related to an event. The features

include temporal features, social features, topical features, and Twitter-centric features.

In [91], the authors propose a local event detection system. For the collected docu-

ments, the system identifies its theme and determine whether it is related to an event. For

each detected event, the system extracts the key terms to describe the details of the event.

In [30], the authors propose a real-time method to detect accident and disaster events. The

messages are classified by content-based features, linguistic features, and event features.

Based on the content, the system also estimates the street-level location of the event. An

analysis of several state-of-the-art event detection techniques is provided in [92].

13



2.4. Document Summarization

He et al. [38] propose a framework named Document Summarization. The framework

is based on Data Reconstruction which generates a summary of documents. To model the

relationship among sentences, the authors introduce linear reconstruction and nonnegative

linear reconstruction.

In [45], the authors propose a summarization method for a set of tweets. Each term in

a tweet is assigned a weight and the weight of the tweet will be the average weight of terms.

There are also some other methods based on weight, frequency, or speech analysis of terms

and sentences like [61] and [87]. In [98], the authors propose a PageRank-based method

to summarize the keywords on Twitter. A probabilistic scoring function is introduced to

considers both relevance and interestingness of key phrases for the ranking.

In this work, an event is detected by monitoring the abnormal distribution of terms.

Different from previous work, our method does not rely on outbreaks of the number of

tweets or content features since many local events may attract only a little attention and

without enough number of tweets related to them. Methods based on detecting outbreaks

or extracting event-related features can hardly detect such events. Thus we analyze the

abnormal distribution of terms in both time and space, which can help to detect more small

local events.

2.5. Mining Uncertainty Co-locations

Co-location patterns [43, 97, 60] and efficient algorithms have been studied by various

researchers. An initial summary of results on general spatial co-location mining was pro-

posed in [80]. The authors proposed the notion of user-specified neighborhoods in place of

transactions to specify group of spatial items. By doing so, they can adopt traditional asso-

ciation rule mining algorithms, i.e., Apriori [4] to find spatial co-location rules. An extended

version of their approaches was presented in [43]. Fast mining algorithms are proposed in

[97]. The algorithms combine the discovery of spatial neighborhoods with the mining pro-

cess. The algorithms work on a given pattern, star, clique, or generic, and calculate the

participation index using an extension of a spatial join algorithm. Others have considered

14



complex co-location patterns including negative co-locations [60] and zonal co-locations [20]

with dynamic parameters, i.e., repeated specification of zone and interest measure values

according to user preferences. The problem of mining co-location patterns with rare spatial

features has been studied in [42]. The authors applied a new measure which considers the

maximum participation ratio of the co-location patterns.

In [3], the authors study the problem of frequent pattern mining with uncertain data.

They extend the Apriori-based, hyper-structure based, and pattern growth approaches and

conclude that experimental behavior of different classes of algorithms is very different in the

uncertain case as compared to the deterministic case. In [88], the authors studied on the

probabilistic spatially co-locations and proposed a dynamic programming algorithm which

is suitable for parallel computation. They proposed the uncertainty model by introducing

the concept of existential probability of an instance. The probability of a possible world can

be calculated as the product of the probabilities of presence or absence of all uncertainty

instances. By multiplying the probability of possible worlds and the participation index

under certain case together, they can get the final participation index. This model only

considers the probability of existence while our model considers the possible locations of all

instances.

The lexicographic tree (enumeration tree) has been used in mining maximal or long

pattern association rules. The counting [95] and pruning [18, 101, 37] methods in the search

tree to generate association rules are not applicable to our problem. In [95], the authors

presented the maximal clique generation method. They modified the Bierstone’s algorithm

[34] and used the concept of α-related to weaken the clique generation process to avoid the

edge density is too high.

2.6. Mining Topic Relationship

In the recent years, many researchers have shown interest in topic, trend, events

and their correlation on social media. Different methods have been used to analyze tweet

content including machine learning algorithms, language model, feature-based algorithms,

information retrieval and much more with help from spatiotemporal data mining. Petrovic

15



et al. [65] employ a locality-sensitive hashing (LSH) to detect the first story from a stream

of tweets. The proposed approach uses the hash table to organize new similar tweets in an

existing story or labels. Although LSH has been used in nearest neighbor search applications,

Protrovic’s work makes event detection possible on large-scale tweets dataset. This approach

does not differentiate the nature of events and content such as local event, disaster or news.

Sakaki et al. [74, 75] classify tweets based on features such as keywords or word number

and use a probabilistic spatiotemporal model to detect earthquakes from tweet content. The

event location is estimated using Kalman filtering and particle filtering. The assumption of

Sakaki’s approach is that only one event takes place in one region at a time and users know

the event to set up keyword queries in advance.

Budak et al. [17] proposed a location-topic pair index using both tweet location and

user location to detect geo-trends or trends in different geographic locations in a sliding

window. Kamath et al [47] did a thorough study of a tweet’s hashtags as a representation of

its topic. They did an analysis of the global footprint of hashtags and an exploration of the

spatial constraints on hashtag adoption. They measure the hashtag’s spatial propagation

properties: focus, entropy, and spread. Lee et al. [54] tried to detect events such as traffic

jams by using geographical coordinates of geotagged tweets and monitoring the geographical

pattern of tweets. Sugitani et al. [82] use a different approach to detect events by using

spatiotemporal clustering techniques. Schulz et al. [79] are the first in using a multi-indicator

approach to get an accurate geographic location of tweets and Twitter users.

Analysis of the time, location and hashtags of tweets can help to extract more mean-

ingful information from real-world events, trends, and roles in social networks. In [16], the

authors detect trends which related to locations. Hashtags are also defined as topics of tweets

here as well as [83] and three different thresholds are introduced to define the correlation

between topics and locations. In [84], the authors propose a linear regression based approach

to predict the spread of an idea in a given time frame. The hashtags are taken as the idea

of tweets. Yang et al. [94] propose measurements to analyze the main factors of how users

select hashtags and a machine learning model is used to help to predict the future adoption

16



of hashtags of users. Kywe et al. [51] study the time distribution of hashtags, and then the

authors propose a hashtag recommendation method based on collaborative filtering. In [58],

the authors propose a geovisual analytics approach to leveraging Twitter in support of crisis

management. The hashtags which are related to locations are used to extract more location

information of tweets. By studying the tweets related to 2011 London riots, Glasgow et al.

[36] analyze emergent social networks directly relating to response to crisis. Their study

shows that the hashtag lifespan may relate to social behaviors and social networks coupled

to crisis response. Carter et al. [19] propose a method for translating hashtags, which builds

on methods from information retrieval.

17



CHAPTER 3

LOCATION ESTIMATION

In this section, we first analyze the relationship between social closeness and geo-

graphic distance and introduce the community detection algorithm. Then we propose the

home location estimation and real-time location estimation algorithm. Finally, we will briefly

demonstrate an online location estimation system.

3.1. Community Detection on Social Network

Many real-world systems or web services can be represented as a network such as

social networks, transportation networks, the World Wide Web, and biological networks.

Detecting communities from those networks has received considerable attention and is the

main focus of many research efforts in the past decade [26, 63, 32, 28]. Generally, the goal of

community detection is to find the subgraphs with tight internal connection based on node

connections, labels of nodes, and the weights derived from data or network structure. Nodes

in the same community are closer to each other. Therefore, in the real world, a community

represents a group of nodes sharing some similar common friends or features.

However, the formation of many real-world networks is greatly influenced by the

geographic locations of the nodes which have not been fully investigated by the current

literature. For example, in a social network, people have a high probability to build a con-

nection with his/her colleague or schoolmate because they know each other or in most cases,

they became friends because they are geographically close. Furthermore, some network ap-

plications, such as FourSquare, are mostly location-based social networks. The geographic

location will play even more important in the social network structure on these platforms.

There are preliminary studies on the relationship between social network structure and geo-

graphic distance [77] and [64]. However, those studies do not push location information into

community detection.

We observe that the nodes in a tightly connected community tend to be more close to

each other in space as well. Location can have a different impact on social networks and the

18



impact can be quantified and used in community detection. Introducing locations of nodes

to community detection can improve the performance of detection on real-world networks.

In this dissertation, we propose community detection methods that take the locations of the

nodes into consideration with the main goal of improving the quality of the detection results

in terms of average internal degree, accuracy, and geographic span of detected communities.

Our research is based on the following two premises: (1) Location is an important factor

and can greatly influence the connection establishment in many location-tagged networks;

(2) For many applications, detecting communities with constrained geographic distribution

is important. For example, finding local communities will be useful for arranging meetups of

communities with similar interests. Knowing geographically constrained communities with

potential interests in certain concert or talk shows can help arranging and scheduling the

tours.

Figure 3.1. Two different divisions of a small location-tagged network. The

left division is only based on the network structure and the right one takes the

locations of the nodes into account.

We focus on finding communities with nodes distributing in a small range of area and

at the same time, keeping the connection tightness of the nodes in the community. Figure

3.1 gives an example of how the geographic location of nodes can influence the detecting

results. In this case, we set the number of communities to two. If we only consider the

19



network structure, the left one is a good result. There are only two edges coming across

communities. After we introduce the location of the nodes, we will have two communities

as in the right side. There are still only two connections across communities however the

geographic spans of the two communities are much smaller than the left one. Unfortunately,

in some networks, we may need to make a tradeoff on the structure tightness for keeping the

nodes in the same community close. This dissertation presents a way to measure the locality

and node similarity and gives a guidance on if a given network has locality in communities.

We denote the network asG = (N,E,L), whereN is the set of nodes, E is the edge set,

and L is the location set of the nodes. To determine whether the locations of nodes will help

in community detection, we will analyze the locality of the network first. Then we propose

our locality-based method. We follow the hierarchical clustering framework combined with

the location information. A good division of the network produces communities with a higher

ratio of internal edges and smaller geographical scope.

3.1.1. Network Locality

As we discussed before, the formation of connections in many real-world networks are

influenced by the location of nodes in the network. However, some networks are more loca-

tion influenced than others. So before we provide the location-based community detection

algorithm, we need to analyze the influence of the location on networks to see the degree

of influence. This will be helpful in determining if location-based community detection is a

suitable method. Here, we use network locality defined below to measure the relationship

between location and connection in a network.

Definition[Network Locality] In a network G, we use two indexes to measure its

locality: Total Variation Difference (TVD) and the Inflection Distance. Let F (dis) be the

cumulative distribution function (CDF) of distance between any two nodes in G and Fc(dis)

be the CDF of the distance between connected nodes in G, the total variation distance is

defined as:

(3.1) TV D(F, Fc) = max(Fc(dis)− F (dis))

20



and the Inflection distance is defined as the distance where Fc(dis) − F (dis) achieves the

maximum value.

From the definition, we can see that a higher value of the total variation distance

indicates the network is more geographically close because connected nodes in nearby lo-

cations have higher percentages. When the total variation difference is close to zero, the

connection has little relationship with the locations of nodes. When the TV D is less than

zero, the connection has a negative correlation with location. It is obvious that a small value

of inflection distance represents a more geographic close network.

We analyze the network locality of two real datasets: Gowalla and Twitter. Gowalla

is a location-based social network and users are able to check in at “spots” in their local

vicinity. The Gowalla dataset [25] is a 196,591 users’ friendship network. The check-in data

were collected from February 2009 to October 2010 and each user has 32.8 check-in records

on average. We use 99,563 of those users who have check-in records in our analysis. Since

there is no user profile, we take the center of the 25km× 25km area with the most number

of check-ins as the user home location [78]. We also collected user profiles from Twitter, an

online social networking and micro-blogging service which allows users to follow each other;

post and read “tweets”. The data are collected from April 14 to April 28, 2013. The social

network comes from [90]. There are 660,000 distinct user IDs in total together with their

social relations. We obtained locations of 148,860 users through their profiles. We define the

friend relation in the same way as [44], i.e. users i and j has friend relation if they follow

each other.

In Figure 3.2, we plot the cumulative distribution function of the distance between

every user pairs and friend pairs. In the Twitter dataset, the total variation distance is 0.315

and the inflection distance is 4, 180km. That means that the percentage of connected edges

with the distance less than 4, 180km in all the connected edges is higher than that percentage

of random user pairs by 0.315. Compared with Twitter, the Gowalla network is more close

geographically since it has a higher TV D, 0.533, and a smaller inflection distance 580km.

This phenomenon illustrates that users in Gowalla tend to build friend relations with others

21



0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

C
D

F

DistanceR(km)

TotalRvariationRdistanceR=R0.315

RandomRSelection
ConnectedREdges

(a) Twitter: the total variation distance

is 0.315 and the inflection distance is

4180km

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

C
D

F

Distance3(km)

Total3variation3difference3=30.533
Random3Selection
Connected3Edges

(b) Gowalla: the total variation dis-

tance is 0.533 and the inflection distance

is 580km

Figure 3.2. The cumulative distribution function of distance between every

user pair/friend pair on Twitter and Gowalla.

who are geographically close to them compared with Twitter. In other words, the locations

of nodes have a greater influence on the network structure in Gowalla. Our experiment later

also show that our method can perform better on Gowalla than the Twitter network for this

reason.

In practice, the total variation difference is more helpful to measure how the network

structure is influenced by location. We suggest applying our method on the networks with

the total variation difference larger than 0.25.

3.1.2. Connection Locality

To take location into account in community detection, first we define the concept of

connection locality to qualify the graphic closeness between nodes.

Definition[Connection Locality] Let disvw be the geographic distance between nodes

v and w. Let σ be the average distance between all user pairs. The connection locality can

be defined as:

(3.2) Lvw = exp(−disvw/σ)

So connection locality will achieve a high value when the two nodes are close. Since

22



our goal is to detect communities with both geographic closeness and network tightness,

we measure the geographic and network closeness of the communities using the following

equation:

(3.3) CG =
1∑

vw AvwLvw

∑
vw

AvwLvwδ(cv, cw)

We can see that this method is equivalent to assign each edge in network G with the

locality as weight. Inspired by the method in [26], we introduce the expected value of CG to

avoid the situation that the largest value of CG will be achieved when all the nodes belong

to the same community.

Figure 3.3. In this example, each dashed circle represents a community. The

solid lines are connections between nodes.

The expected value of CG is obtained from a random connection network. For a given

network G, the location of the nodes and their degrees are fixed. In a random connection

network, the probability of an edge existing between a node pair is kvkw/2m. Since we

already know the locations of the nodes, the community locality lvw between a node pair v

and w is also known. So the expect value for each edge is lvwkvkw/2m and the expect value

of CG is the sum of the expect value of all the edges:

23



(3.4) PG =
1∑

vw AvwLvw

∑
vw

kvkw
2m

Lvwδ(cv, cw)

In Figure 3.3, there are three communities denoted by the dashed circles. The solid

lines are the edges in the network. We use dashed lines to complement each community as

a complete graph. Given the locations of all nodes, the community localities can be easily

calculated. The probability of an edge existing between the bottom two nodes in the left

community is 2×2
13

.

Let ω =
∑

vw AvwLvw, we define the modularity Q as:

(3.5) Q =
1

ω

∑
vw

[AvwLvw −
kvkw
2m

Lvw]δ(cv, cw)

The community locality between each node pair is fixed. If the network is not built

based on locations, community locality will have no influence on Q and the value of the

modularity Q will be close to zero. When the network has good divisions, which means the

communities are close on both geographic distance and network structure, the modularity

Q will achieve a higher value.

3.1.3. Node Similarity

In this section, we will discuss how to enhance the influence of network structure in

the detection process. Here we define the node similarity between nodes pair by the common

neighbors and their degrees:

Definition[Node Similarity] Let Γv be the set of neighbors of vertex v. The similarity

of two nodes is calculated by their common neighbors and their degrees as:

(3.6) Svw =
|Γv ∩ Γw|√
|Γv||Γw|

First, we study the relationship between node similarity and the geographic distance

between node pairs in real-world networks. From Figure 4(a) we can see that with the

increasing of the value of node similarity, the average geographic distance has a significant

decrease. Then we extend the investigation of node similarity to all 1- and 2-degree friend

24



0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

A
ve

ra
ge

yG
eo
−

D
is

ta
nc

ey
[k

m
]

NodeySimilarity

Gowalla
Twitter

(a) 1-degree node pairs

0 0.2 0.4 0.6

200

400

600

800

1000

1200

1400

A
ve

ra
ge

wG
eo
−

D
is

ta
nc

ew
[k

m
]

NodewSimilarity

Gowalla
Twitter

(b) 1- and 2-degree node pairs

Figure 3.4. The average geographic distance under different values of node

similarity.

pairs. From Figure 4(b) we can see a similar tendency between node similarity and average

geographic distance as that on 1-degree friends. But the average distances are much longer

than the 1-degree friends, especially on the Gowalla data set.

To apply the node similarity in our modularity, we also need to calculate the expect

value under random connection network. In the random case, when we calculate the expect

value of Svw, we need to know the probability of an edge existing between node v or w and

any other node i. Assuming node i has ki neighbors, the probability of node i is connected

to v (w) is kvki/2m (kwki/2m). Since the probability of connection is independent, so the

probability of node i connected to both v and w is kvki
2m

kwki
2m

. The expected value of Svw is

the sum of the probabilities of both v and w connected to any other node i:

Svw =
|Γv ∩ Γw|√
|Γv||Γw|

=
∑

i 6=v&i 6=w

(kvki/2m)(kwki/2m)/
√
kvkw

=
√
kvkw

∑
i 6=v&i 6=w

k2
i /4m

2

(3.7)

In practice, we use τ =
∑

i k
2
i /4m

2 instead of
∑

i 6=v&i 6=w k
2
i /4m

2 because they have

25



similar value on larger networks.

We then revise ω as
∑

vw AvwSvwLvw, and the new modularity Qs is defined as:

(3.8) Qs =
1

2ω

∑
vw

[AvwSvwLvw − L(v, w)
kvkw
2m

τ
√
kvkw]δ(cv, cw)

In this work, we only consider the node similarity between connected nodes for the

following reasons: (1) Relation of 2-degree neighbors (the node pairs which are connected

but share at least one common neighbors) introduce many new connections. The number

of 2-degree neighbors is much more than directly connected neighbors and will significantly

increase the computation complexity. (2) The influence of 2-degree neighbors is much smaller

than directly connected ones. Based on our investigation, the average distance between 2-

degree neighbors is three times longer than directly connected neighbors even when they

have the same node similarity.

3.1.4. The Algorithm

In this section, we will discuss how to implement the algorithm efficiently with opti-

mization and indexing. The algorithm is based on the hierarchical clustering method with

greedy strategy. At first, each node is a community. In each step, two communities whose

combination increases the value of the modularity Q most are combined. In [26], the authors

provide an efficient method to implement their model. They maintain and update a matrix

∆Qij which records the change of Q after combing the communities i and j. When Equation

3.5 is used as Q value, we can implement the model in a similar way. When Equation 3.8 is

used as the modularity, we discuss the optimization here.

Q =
1

2ω

∑
vw

AvwSvwLvwδ(cv, cw)

− 1

2ω

∑
vw

L(v, w)
kvkw
2m

τ
√
kvkwδ(cv, cw)

(3.9)

We can rewrite the modularity in Equation 3.8 into Equation 3.9. By analyzing the

modularity, we can see that after we combine two communities i and j, the change of Qs

26



includes two parts: 1) the connections between these two communities will increase the value

of Qs (the first part in Equation 3.9), the value equals to:

(3.10) ∆Q1 =
1

2ω

∑
vw

AvwSvwLvwδ(cv, i)δ(cw, j)

and 2) the value generated by node pairs from communities i and j and this value

equals to:

(3.11) ∆Q2 = − 1

2ω

∑
vw

L(v, w)
kvkw
2m

τ
√
kvkwδ(cv, i)δ(cw, j)

So the ∆Qij equals to ∆Q1 + ∆Q2. Since we will combine two communities with the

largest ∆Qij, we only need to keep values in Equations 3.10 and 3.11. Now we only need to

solve two problems, how to initialize the ∆Qij and how to update it after we combine two

communities.

The combination of two disconnected communities will not increase the value of Q,

so we only keep the ∆Qij if there is at least one edge between them. At first, every node is

a community and the ∆Q between each connected node pair is:

(3.12) Lij[
Sij
2ω
− τ(kikj)

1.5

4ωm
]

After we combine communities i and j, we need to update all the communities k

which are connected to i or j. We use (ij) to denote the community generated by combining

i and j and use ∆Qk,(ij) to denote the new ∆Q value between k and (ij). If the community

k is connected to both i and j, we can get the new ∆Qk,(ij) by ∆Qik + ∆Qjk. If k is only

connected to one of them, e.g. i, we do not have Qjk since they are disconnected. So we

need to calculate it. We have already known that ∆Q is the sum of Equation 3.10 and 3.11.

The ∆Q1 will be zero since there is no edge between j and k. So we can have the ∆Qjk as:

27



(3.13) ∆Qjk = − 1

2ω

∑
vw

τL(v, w)
(kvkw)1.5

2m
δ(cv, j)δ(cw, k)

And then we can update the ∆Qk,(ij) by:

(3.14) ∆Qk,(ij) = ∆Qik + ∆Qjk

Algorithm 1: Detecting communities from location-tagged network

1: Input: Network G = (N,E, l)

2: Output: Communities in G

3: Assign each node a community label from 1 to n

4: Initialize the ∆Qij as Eq.3.12

5: Find the maximum ∆Qij , max∆Q

6: while max∆Q ¿ 0 do

7: Update ∆Qk,(ij) of all the communities k connect to i or j by Eq.3.13 and Eq.3.14

8: Update the community label in community i as j

9: end while

10: Return node list with the community label

The Algorithm 1 describes the framework of all the process. We will stop the hierar-

chical clustering process when the modularity Q achieve its maximum value, which means

that the largest ∆Qij is less than zero.

We store each row of the ∆Qij and the node list in different communities in a balanced

binary tree. When we update a ∆Qk,(ij), the worst case is that we need to calculate the ∆Qjk

by Equation 3.13 and the complexity is O(|j||k|logn), where |j| represents the number of

nodes in community j. For each combination of two communities, the worst case is that

all the nodes connected to all the communities. Assume that the depth of the hierarchical

clustering is d and the number of nodes in a community is cn, the complexity is O(mdc2
nlogn).

3.1.5. Experimental Results

In this section, we test our method on synthetic networks and two real world social

network datasets described before: Twitter and Gowalla. We use three different measure-

ments to evaluate the results:

28



Definition[Geographic Span] The geographic span of a community c is defined as the

average distance of the nodes in c to the centroid (x̄, ȳ) of all the nodes in the community:

(3.15) S(c) =
1

|c|
∑
v

√
(xv − x̄)2 + (yv − ȳ)2δ(cv, c)

Definition[Average Internal Degree] The internal degree of a node v is the number

of its neighbors in the same community. The average internal degree of a community c is

the average value of the internal degrees of all the nodes in c and it can be represented as:

(3.16) A(c) =
1

|c|
∑
vw

δ(cv, c)δ(cw, c)

The last measurement is the detection accuracy. Since we do not have a class label of

the real world datasets, we only apply this on the synthetic networks. We implemented four

community detection methods in our experiments: 1) Randomly select nodes as community

(Random). 2) The method proposed in [26] (Clauset’s Method). 3) The method discussed in

section 4.1 using Equation 3.5 as the modularity Q (Connection Locality). 4) The method

discussed in section 4.1 with Equation 3.8 as the modularity (Node Similarity).

Ω Clauset’s Method Connection Locality Node Similarity

1 16.24 16.63 18.38

3 16.48 22.82 24.63

5 17.72 22.40 28.77

10 22.16 25.14 26.60

30 32.84 19.76 24.42

+∞ 36.04 19.20 19.76

Table 3.1. The accuracy of different community detection methods

First we test the methods on the generated networks because a synthetic datasets

allow for better parameter control. We analyze the results using the three measurements

29



0 5 10 15 20 25
0

5

10

15

20

25
G

eo
gr

ap
hi

c 
S

pa
n

Community Size

Connection Locality
Node Similarity
Clauset Method

(a) Ω = 3

0 5 10 15 20 25
0

5

10

15

20

25

G
eo

gr
ap

hi
c 

S
pa

n

Community Size

Connection Locality
Node Similarity
Clauset Method

(b) Ω = 10

0 5 10 15 20 25
5

10

15

20

25

30

G
eo

gr
ap

hi
c 

S
pa

n

Community Size

Connection Locality
Node Similarity
Clauset Method

(c) Ω = +∞

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

sIn
te

rn
al

sD
eg

re
e

CommunitysSize

ConnectionsLocality
NodesSimilarity
ClausetsMethod

(d) Ω = 3

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4
A

ve
ra

ge
sIn

te
rn

al
sD

eg
re

e

CommunitysSize

ConnectionsLocality
NodesSimilarity
ClausetsMethod

(e) Ω = 10

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

A
ve

ra
ge

sIn
te

rn
al

sD
eg

re
e

CommunitysSize

ConnectionsLocality
NodesSimilarity
ClausetsMethod

(f) Ω = +∞

Figure 3.5. The geographic span and average internal degree of the synthetic

network under different values of Ω.

discussed above. When generating the dataset, we control the influence of geographic dis-

tance on building connection between two nodes in order to see the how the geographic

feature affect the detection methods.

We generate the networks on a 50 × 50 grid. There are 2,500 nodes in total in the

network. For each node, we randomly assign a community label to it. There are 10 different

community labels in the network. We generate the probability of an edge existing between

node v and w as:

(3.17) pe = αpce
−disvw/Ω

The value of pc depends on whether the node v and w have the same community label.

If their community labels are the same, ps is set to 0.5 and if not, pc is set to 0.1. So the edges

30



have a higher probability of occurrence between the nodes with the same community label.

The component e−disvw/Ω is used to control the influence of the locations of nodes. When

we set a large enough value to Ω, the value of e−disvw/Ω is close to 1 and the probability is

almost not influenced by disvw. So the network structure is not influenced by the locations

of nodes. On the contrary, if the value of Ω is small, the value of e−disvw/Ω will be greatly

influenced by the distance between v and w. In that case, only the nearby neighbors with

the same community label will have a high probability of connecting. The parameter of α

is used to control the average degrees of nodes in the network. In the following experiment,

we make the number of average degree around 15 by adjusting the value of α.

Table 3.1 shows the accuracy of different algorithms on different generated networks.

Since the largest distance in the network is only 70, when we set the Ω larger than 10, the

probability of connecting is not very sensitive to the distance. We can see that when the Ω is

less than 10, which means the building of connections is greatly influenced by the location of

nodes, our two methods can achieve a similar or higher accuracy than the Clauset’s method.

With the increasing of the value of Ω, when the location has little or no influence on the

network structure, the accuracy of Clauset’s method performances better than our methods.

So we recommend to evaluate the influence of geographic information first as described in

section 3.1.1 before applying our methods on a network.

Figure 3.5 shows how the three methods perform on different synthetic networks.

From Figure 5(a) to 5(c) we can see for all levels of influence (Ω) that the geographic

location on network structure, the connection locality have the smallest geographic span.

The geographic span of the node similarity method is smaller than the Clauset’s method.

Figure 5(d) to 5(f) show the average internal degree of the three methods. When Ω is 3,

where the location of nodes will have the greatest influence on the network structure, the

connection locality method has a higher value of internal degree. This illustrates that this

method is suitable to deal with the highly geographically influenced networks. When the

value of Ω increases to 10, the average internal degree of these three methods is similar. But

when we set the Ω as infinity, the connection locality and node similarity method perform

31



worse than Clauset’s method.

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

G
eo

gr
ap

hi
cz

S
pa

nz
[k

m
]

CommunityzSize

ConnectionzLocality
NodezSimilarity
ClausetzMethod
RandomzCase

(a) The geographic span of different size of

communities detected by different methods

0 20 40 60 80 100
2

3

4

5

6

7

8

9

10

A
ve

ra
ge

LIn
te

rn
al

LD
eg

re
e

CommunityLSize

ConnectionLLocality
NodeLSimilarity
ClausetLMethod

(b) The average internal degree of differ-

ent size of communities detected by different

methods

Figure 3.6. Analyzing the community detection results of different methods

on the Twitter Network.

In the real world, the factors which can influence the network structure can be very

complex. We now test the algorithms on the networks generated by some real-world appli-

cations. The first example is the Twitter network. We have introduced the details of this

network in Section 3.1.1. Since we do not have a community label for the real world dataset,

we only apply the geographic span and the average internal degree of the communities to

evaluate the detection results.

In Figure 6(a), we demonstrate the geographic span of different sizes (number of nodes

in the community) of communities. From this figure, we can see that under the random case,

the geographic span is much larger and increases quickly to 800 kilometers. The communities

detected by Clauset’s method has a smaller geographic span. It begins with 280 kilometers

when the community size is 2 but increases quickly when the community size becomes larger.

Finally, the geographic span fluctuates between 500 to 600 kilometers. The two methods

proposed in this dissertation have the best performance on controlling the geographic span

on communities. Although the geographic span increases quickly when the community size

32



becomes larger, these two methods can keep the span much smaller than Clauset’s method

and the random case, especially for the method with the Equation 3.5 as the modularity.

The geographic spans in different sizes of communities are only half of Clauset’s method.

The Figure 6(b) shows the average internal degrees of different sizes of communities.

This measurement evaluates the detection result by the network structure only. From the

definition, we know that if a community has a higher internal degree, that means the con-

nections inside the community is tighter. From the figure, we can see that with the increase

of the community size, the average internal degree also becomes larger, which means nodes

have more neighbors in the same community with them. The Clauset’s method and one of

our method, which uses Qs as the modularity, have a similar performance. The connection

locality method has a smaller average internal degree when the community size is larger than

40. The results are encouraging and showing that our methods can detect communities with

a similar internal degree and a smaller community in the geographic span.

The second real-world network is Gowalla. From the analysis in section 3.1.1, we

know that compared to the Twitter network, the geographic information in Gowalla has a

greater influence on the network structure. So the Gowalla network is more suitable to use

our community detection methods. From Figure 7(a), we can see that our methods have a

strong effect on limiting the geographic span of communities. Both the two methods can

keep the span around or less than 200 kilometers. Especially for the connection locality

method, even when the community size is very large, it can still keep the geographic span

in a small range.

Another important observation is that in the highly geographically influenced net-

works, our method can also improve the network tightness in the communities. Figure 7(b)

shows the results of the average internal degree. The performances of these algorithms are

similar to the case on the Twitter network. The difference is that in the Twitter network,

the connection locality method performs worse than the other two methods. But on the

Gowalla network, it performs much better. This phenomenon illustrates that on the high

geographically influenced networks, our method can improve the quality of the detection

33



results on both geographic span and the tightness inside communities.

0 20 40 60 80 100
0

200

400

600

800

1000

1200
G

eo
gr

ap
hi

cd
S

pa
nd

[k
m

]

CommunitydSize

ConnectiondLocality
NodedSimilarity
ClausetdMethod
RandomdCase

(a) The geographic span of different size of

communities detected by different methods

0 20 40 60 80 100
0

5

10

15

20

25

30

A
ve

ra
ge

dIn
te

rn
al

dD
eg

re
e

CommunitydSize

ConnectiondLocality
NodedSimilarity
ClausetdMethod

(b) The average internal degree of differ-

ent size of communities detected by different

methods

Figure 3.7. Analyzing the community detection results of different methods

on the Gowalla Network.

3.2. Location Estimation

In this section, we introduce our home location algorithm. First, we introduce the

analysis about the relationship between social closeness and geographic distance. Then we

propose our estimation model with the comfidence-based iteration method.

3.2.1. Social Closeness and Geographic Distance

We collected our data from two different social media platforms, Gowalla and Twitter.

Gowalla is a location-based social network, and users are able to check in at “spots” in their

local vicinity. The Gowalla dataset [25] was collected from February 2009 to October 2010,

which contains 196,591 users’ friendship network and 6,442,890 check-in records. We use

99,563 of those users who have at least one check-in records in our experiment. Since

there is no user profile, we use the same method as that in [25] and take the center of

the 25km × 25km area with the most number of check-ins as the home location. We then

collected user profiles from Twitter, an online social networking and microblogging service

34



which allows users to follow each other; as well as post and read “tweets”. The user IDs

and social network come from [90]. There are 660,000 distinct user IDs in total together

with their social relations. We collected the profiles of these users using Twitter API 1. We

obtained locations of 148,860 users by converting the address in their profiles into geographic

coordinates by the Google Maps Geocoding API 2. The data was collected from April 14 to

April 28, 2013. We define the friend relation in the same way as [44], i.e. users ui and uj

have friend relation if they follow each other.

0

5

10

15

20

25

30

35

<10 10−20 20−30 30−40 40−50 50−60 60−70 70−80 80−90 90−100 >100
Number of Friends

N
um

be
r 

of
 C

iti
es

(a) Twitter

0

5

10

15

20

25

30

<10 10−20 20−30 30−40 40−50 50−60 60−70 70−80 80−90 90−100 >100
Number of Friends

N
um

be
r 

of
 C

iti
es

(b) Gowalla

0 50 100 150 200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

A
ve

ra
ge

NP
ro

po
rt

io
n

No
fNF

rie
nd

sN
in

Nth
eN

S
am

eN
C

ity

NumberNofNFriends

Twitter
Gowalla

(c) Proportion of Friends Lo-

cated in the same city

Figure 3.8. The distribution of number of cities a user has friends located

at and the average proportion of friends located in the same city.

Figure 8(a) and 8(b) show the city distribution of friends on Twitter and Gowalla

social networks. For most users with less than 70 located friends, their friends will be

located in no more than 10 cities. When a user has more than 100 located friends, his/her

friends may be located in 10 to 20 cities. The rapidity and ease of modem transportation

and communication present a great opportunity of meeting new friends in different places,

leading to a wide distribution of friends, which challenges social network based location

estimation. Figure 8(c) shows the average proportion of friends in the same city of a user

with respect to the number of friends of a user. The result shows that with the increase in

the number of friends, the probability of friends located in the same city decreases quickly.

1https://dev.twitter.com/rest/public

2https://developers.google.com/maps/documentation/geocoding/intro

35



Friend locality is the average distance to the friends of the user ui:

(3.18) Fui =
1

|Γ′i|
∑
uj∈Γ′i

dij

Here we use Γ′i to denote the located friends of user ui. In Figure 3.9, it not surprising

that friend locality increases with respect to the number of friends of a user. On one hand,

not having enough friends will make location estimation difficult and on the other hand,

having too many friends is not helping as well.

3.2.2. Friend Distribution of Connected Pairs

Friend-based methods were widely used in research literature [9, 29, 73]. By analyzing

the distribution of friends’ location or mobility, probability models can be built to predict

locations of users. In these works, friend relation was taken as a binary feature: being a

friend or not. However, in the real world, depending on the social relation and other user

behaviors, friends of a user can be very different. In this section, we propose the friend

co-location index (FCoI ) to measure the “closeness” of friends on the social network.

0 100 200 300 400 500
200

300

400

500

600

700

800

900

A
ve

ra
ge

NF
rie

nd
NL

oc
al

ity
N[k

m
]

NumberNofNFriends

Twitter
Gowalla

Figure 3.9. The rela-

tionship between average

distance and number of

friends.

u1

u2 u3

u6

u7

u8

u5

A1

A2

A3

u9

u10

u4

Figure 3.10. Estimating loca-

tion of user u1. Here u2, u3, . . . , u8

are located friends, and u1, u9,

and u10’s locations are unknown

36



We represent the social network as an undirected graph G = (U,E), where U rep-

resents the user set, and edges in E exist between two users if they have a friend relation.

There are two kinds of nodes in U . U ′ is the set of located user and U− represents the

others, so U = U ′ ∪ U−. Before performing the location estimation, we first cluster a user

ui’s friends Γi by their location. Friends in the same city will be put in the same set and we

represent those sets as A = {A1, A2...}. The city is selected because of its natural definition

of activity concentration by human geography. An example is shown in Figure 3.10, users

u1 has 7 located friends. These friends distribute in three different cities and form three sets

of friends A1, A2 and A3.

To measure the closeness of two users on the social network, we propose the Friend Co-

location Index (FCoI ) that takes both the social connection and the location into account.

The key idea is to measure the correlation of the friends’ geographic distribution of two users.

For a pair of friends ui and uj, we firstly generate two vectors for each of them to describe

the friend distributions as:

(3.19) vik = |Aik|/|Γ′i|

The |Γ′i| is the total number of located friends of user ui and |Aik| is the number of

friends of user ui located in city Ak. For example, in Figure 3.10, u3 has 4 located friends

where three of them are in city A1, one is in A2, and none in city A3. So the vector v3 is

[0.75 0.25 0]. Similarly, v1 = [0.57 0.29 0.14]. After getting the distribution vectors, we can

define the friend co-location index between user ui and uj as:

(3.20) FCoI(ui, uj) =

∑m
k=1 min{vik, v

j
k}∑m

k=1 max{vik, v
j
k}

Here m is the total number of the cities. When the friends of two users have the

same distribution, the distribution vectors of them will be also the same and the result of

FCoI is 1. On the other hand, if the distributions are completely different, e.g. all the

friends of ui are located in city A1 and friends of uj are located in A2, the result will be

37



0. For example, in Figure 3.10, the friend co-location index between u1 and u3 will be:

(0.57 + 0.25 + 0)/(0.75 + 0.29 + 0.14) = 0.69. The reason we choose the index as the sum of

min over the sum over max is to give more priority to a few cities where both users have a

large number of friends over many cities where both users have a small number of friends.

From the observation of the dataset, we can see that many users tend to have a small number

of friends in many cities but only friends located in the same city tend to have a large number

of friends in a few cities.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

P
ro

po
rt

io
n

Friend Co−location Index

Twitter
Gowalla

(a) Distribution of friend pairs un-

der different value of friend co-

location index

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400
A

ve
ra

ge
TD

is
ta

nc
eT

[k
m

]

FriendTCo−locationTIndex

Twitter
Gowalla

(b) The average distance between

friends

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

ili
ty

wo
fwb

ei
n

gw
in

wS
am

ew
C

ity

FriendwCo-locationwIndex

Twitter
Gowalla

(c) The probability of being in the

same city

Figure 3.11. Statistics on friend co-location index

Then we study whether the friend co-location index can reflect the geographic distance

between two users effectively. We carry out these investigations on the Twitter and Gowalla

users located in the North America to avoid the effect of oceans. Firstly, we calculate the

proportion of friend pairs under different values of FCoI in figure 11(a). The distributions

of the two datasets are significantly different. More friend pairs in Gowalla have friend co-

location index under 0.4, but the peak of the distribution of Twitter dataset is between 0.4

and 0.6. Another observation is that only a few friend pairs have the FCoI more than 0.8

on both Twitter and Gowalla, which tells us that people have friends far away nowadays,

and the social connections of each individual are quite different.

In Figure 11(b), we show the relationship between the average geographic distance

and different value of friend co-location index between friend pairs. Obviously, when friends

38



have higher FCoI, they tend to be geographic close. The results of Twitter and Gowalla

data sets are very similar to each other. Figure 11(c) shows the relationship between FCoI

and the probability of the friend pairs located in the same city. When friend pairs have

friend co-location index higher than 0.9, the probability of they located in the same city can

be higher than 85%. The probability increases with the increase of the value of FCoI. From

the investigations above, we can see that FCoI can be a good index to reflect the geographic

relationship between friends.

We first propose the Friend Co-location Model based on the investigations above.

We firstly calculate the probability P (FCoI(ui, uj)). It denotes the probability of users ui

and uj located at the same city when the value of friend co-location index between them

is FCoI(ui, uj). We can get the value of P (FCoI(ui, uj)) based on the statistics shown in

Figure 11(c). So for a user ui in U−, we can calculate the probability of ui located at a city

Ak as:

(3.21) P (ui, A
i
k) = 1−

∏
uj∈Aik,(ui,uj)∈E

(1− P (FCoI(ui, uj)))

The city Ak with the maximum value of the probability will be chosen as the estimated

location of user ui.

3.2.3. Structure of an Individual’s Friends in a City

Friend co-location index can help to identify more important friends in location es-

timation. However, when user pairs which contain at least one user who has more than

50 friends, the value of friend co-location index will be in a small range (0 to 0.2) and the

influence of friend co-location index on location distribution is not distinct. In this case,

the effectiveness of friend co-location index in finding important friends is weakened. We

introduce the concept of the local social coefficient to deal with this problem.

The new measurement, local social coefficient, is similar to modularity used in com-

munity detection [26], but incorporates location information. The local social coefficient of

a user ui in city Ak is defined as:

39



(3.22) LSoC(Aik) =
∑

up,uq∈Ak∧(ui,up)∈E∧(ui,uq)∈E

[apq −
|Γp||Γq|

2|E|
]

Here |E| is the total number of edges in the social network G and apq = 1 if (up, uq) ∈

E and otherwise apq = 0. Intuitively, local social coefficient measures how tight the friends

of ui in the city Ak are compared with expected number of friend connections from a random

friendship formation as measured by
|Γp||Γq|

2|E|
. One can choose the city with the highest value

of the local social coefficient as the estimated location. The method may work well when a

user has many friends and his/her friends can form structures in one or more cities. However,

when a user has a small number of friends and his/her friends do not form structures in any

cities, this method does not work well. Fortunately, this method performs better when the

friend co-location based method fails (when a user has too many friends). In this work, we

propose a method to leverage the advantages of these two approaches and achieve overall

much better performance than the state-of-the-art.

Then we propose a Local Social Coefficient Model. There are nearly 28 percent of

users on Twitter and 8 percent of users in Gowalla who have only less than 10 percent of

friends located within 100km with them, and many of them have more friends in another

city. The friend co-location based method can be very helpful when the estimated users

don’t have enough friends, but when the number of friends becomes larger, the effect of

friend co-location index will be weakened. The local social coefficient becomes more helpful

when users have more than 30 friends. In our investigation on Twitter and Gowalla data

sets, the probabilities of two friends u1 and u2 located within 100km are 0.2 (Twitter) and

0.27 (Gowalla). However, if there exists another user u3 who can form a size-3 clique with

u1 and u2 in the social network, the probability of u1 u2 located together can increase to

0.32 (Twitter) and 0.37 (Gowalla). Moreover, if u1 and u2 are located within 100km, the

probability of u3 located close to them is 0.69 (Twitter) and 0.58 (Gowalla). In this method,

we will calculate the local social coefficient of the groups of friends in each city as formula

3.22 and use the city which has the largest value of LSoC as the estimation result.

40



3.2.4. Social Closeness and Social Structure-Based Model (SoSS)

We have introduced a friend co-location based model, in which we want to find more

important friends in location estimation, and the local coefficient based model, which has

better results when a user have many friends. Scale-free network theory[89] states that in a

social network, a large portion of users has a small number of friends and the locations of these

users are difficult to estimate by the location of their friends. So we propose a confidence-

based iteration method to overcome the problem of the sparsity of location information. In

the Social Closeness and Social Structure-Based Model (SoSS), we combine these two models

(friend co-location based and local social coefficient based models) together to overcome the

disadvantages of them. After getting the two results from the two models above, we combine

these two models by following the logistic regression based method in [40] as in formula 3.23.

The parameters α, β1, β2, and β3 can be trained by methods based on maximum likelihood.

Since the number of friends has a great impact on the location estimation models, |Γi| is

chosen as a feature.

g(ui, Ak) =
exp(α + β1LSoC(Ak) + β2P (ui, Ak) + β3|Γi|)

1 + exp(α + β1LSoC(Ak) + β2P (ui, Ak) + β3|Γi|)
(3.23)

3.2.5. Iteration with Confidence-Based Improvement

In location estimation, one of the main problems is the sparseness of location informa-

tion. By the investigation of [9], only 6% users provide their home address in their Facebook

profiles. Our experiment shows that there are two main challenges in the location estimation:

1) some users only have a few number of friends. For these users, the accuracy can be very

low since we cannot get enough location information from their friends, and 2) most of the

users do not provide their location information in profiles. So we try to apply an iteration

method to use the estimated locations. In the iteration steps, the estimated location will be

taken as a friend’s real location. However, there is a problem that the incorrect estimation

results may lead to the decreasing of accuracy. So we propose a confidence-based iteration

method.

41



Confidence-based method means that when we use the estimated location, we will

judge the result with a confidence value and only use the results with high reliability of being

correct in the iteration. Our investigation shows that the most helpful information is the

aggregation of location distribution of friends. So we use an entropy-like method to measure

the friends aggregate:

(3.24) Cui = −
∑ |Aik|
|Γi|

log
|Aik|
|Γi|

Here, |Aik| is the number of friends of user ui in city Ak. So each time after we finish

estimating of a user, we will calculate this entropy of him/her. In our model, we only use

66% estimated locations on Twitter dataset and 74% on Gowalla dataset with lower Cui in

the iteration process. We get this ratio by analyzing the estimating accuracy on the training

data and with this ratio, the iteration method can achieve the best accuracy. Over filtering

will decrease the estimation accuracy since it may delete many useful correct estimating

locations.

Assume there are totally n users in the social network and each user has m friends

on average. In the friend co-location based model, for each user ui, we need to calculate

the value of FCoI(ui, uj) and 1 − P (FCoI(ui, uj)) for every friend uj. So the cost of this

step is O(m2) and the complexity of the model is O(nm2). For the local social coefficient

based model, we need to calculate the local social coefficient of each user at each city where

he/she has friends located at. The worst case is that all the friends located at the same city

and the complexity is O(m2). In the second step, we only need to choose the city with the

highest value of the local social coefficient as the estimated result, so the complexity of this

model is O(nm2). To combine the two models together, we need to repeat the calculation

above at first and the complexity is O(nm2). The cost of the combination step depends on

the number of cities and the cost will be less than or equal to O(m). So the complexity of

the SoSS model is O(nm2).

42



3.2.6. The Dataset

We collected tweets published from May 21 to July 6, 2015 using Twitter Streaming

API3 with the spatial bounding box [24◦3′N , 127◦7′W , 48◦8′N , 65◦5′W ], which covers U.S.

mainland. The dataset consists of over 60 million geotagged tweets from 2,200,402 Twitter

users. This dataset will be used in the experiment for real-time location estimation, event

detection, and mining topic associations.

3.2.7. Tweets Geotagging: Estimating Real-Time User Locations

Geotagged tweets allow one to extract geo-information-trend [16], search local events

[93], and identify natural disasters [74]. However, geotags are not consistently available due

to privacy concerns and other reasons. In fact, only less than 1% of tweets contain a geotag [1]

and nearly 90% of Twitter users do not have geo-location enabled4. Geotagging is the process

of assigning a location to a tweet indicating where it is published. Accurate geotagging,

the focus of this work, will provide added values to social media contents for applications

such as emergency response, event search, trend detection, and smart transportation. The

availability of user geotagged tweets allows one to profile the geographic distributions of terms

in tweets and these distributions have been used in several existing works for geotagging.

The bayesian-based method generates a language model for a location and calculates the

probability of a tweet belonging to different locations based on the Bayesian model [48].

Given the local language model θL, the probability of a tweet T belonging to a location L

can be calculated as: P (L|T ) =
P (T |θL)P (L)

P (T )
and P (T |θL) =

∏
i P (ti|θL). The location

with the maximal probability is assigned to a tweet as its geotag. In [24], the authors also

propose a similar method to estimate the locations of tweets based on the distributions of

words. Kullback-Leibler (KL) divergence based method measures the difference between a

tweet and the local language model [48, 72]. The location with minimal KL value is assigned

to the tweet. Gaussian model or Gaussian Mixture Model (GMM) fits geotags of n-grams in

3https://dev.twitter.com/streaming/overview

4http://www.beevolve.com/twitter-statistics/

43



tweets into Gaussian distributions. The center of the Gaussian distribution [31] or a weighted

sum of GMMs [68] is assigned as the geotag of tweets.

Knowing a user’s home helps to understand user movement patterns. Users are bound

by travel distance from his home and the types of outbound cities from home affect visiting

possibility. However, only 16% users register their city level locations [56] and collecting the

home location from user profile is strictly limited by the rules of Twitter API. Previous work

has provided different methods for estimating the home locations of users [69, 49]. In this

work, we assign home location following the method used in [78, 25]. A set of tweets of each

Twitter user is selected to estimate the home location (this set will not be used for building

and testing geotagging models). These tweets are assigned into different cities according

to their geotags. We use city boundaries from the United States Census Bureau5 to decide

which city a geotagged tweet belongs to. Then we assign the city with the most number of

tweets as a user’s home. In [78], the authors show that the home location obtained in this

way has an 85 percent accuracy.

We select all cities with more than 5,000 users. There are 40 cities C in our dataset.

We only keep the tweets: (1) twittered by users in C; (2) published in C. Figure 3.13

shows the number of users and the number of geotagged tweets in these 40 cities. The top

three cities with the most number of users and tweets are Los Angeles (46,508 users;1,183,634

tweets), Chicago(30,689 users; 634,665 tweets ), and New York(30,689 users; 419,130 tweets).

The problem of geotagging tweets is equivalent to estimating the locations of users

where they publish the tweets. Locations of users are not only revealed by tweet content

but also by a user’s previous and next locations because traveling preferences have a great

influence on the next locations of users. In this section, we propose a Hidden-Markov-based

model to integrate user movement and tweet content in geotagging. The model also considers

the home location of a user to better represent the transition probability for users of different

home cities.

In our model, the states of the Hidden Markov Model are the city level locations

5http://www.census.gov/en.html

44



of users and the state observations are tweets. The state (city) is not directly visible but

the observation (tweet) is visible. Therefore, the sequence of tweets generated gives some

information about the sequence of cities. Each tweet corresponds to a state which represents

the city where the user publishes the tweet. The transition probabilities of the HMM are

observed from a large number of user movement records.

City 1 City 2 City 3 City 4

Tweet_a Tweet_b Tweet_c Tweet_d

User Movements

Tweets Published

Observation
Terms in

Tweet
Terms in

Tweet
Terms in

Tweet
Terms in

Tweet

Figure 3.12. Estimating geotags of tweets by Hidden Markov Model

More specifically, as it is shown in Figure 3.12, for each user with N published tweets,

he/she will have N corresponding states. Each state represents the location of the user where

he/she publishes the tweet. The discrete states of the HMM are the set of all the cities. The

goal is to predict a series of states (cities) from a series of observations (tweets) of the user.

(a) The distribution of number of users in 40 se-

lected U.S. cities.

(b) The distribution of number of tweets in 40

selected U.S. cities.

Figure 3.13. The distributions of users and tweets in the dataset.

45



Transition Probabilities: Transition probabilities are observed from a large number

of user traveling records. For each user u with a list of published tweets T u = 〈T u1 , T u2 , . . . 〉,

we obtain the list of cities where he has visited through the geotags of his tweets: Cu =

〈Cu1 , Cu2 , Cu3 . . . 〉. Given a city Ci, the transition probability from Ci to city Cj, P (Cj|Ci), is

defined as:

(3.25) P (Cj|Ci) =

∑
u Cui → Cuj∑
u Cui → Cu

where Cui → Cuj denotes a pair of consecutive cities in the sequence Cu. So
∑

u Cui → Cuj
is the total frequency of users traveling from city Ci to Cj, and

∑
u Cui → Cu is the frequency

of users traveling from city Ci to any other city. So this probability can be explained as: for

the users who publish a tweet in the city Ci, they have a chance of P (Cj|Ci) to publish next

tweet in the city Cj, which is also the transition probability in our model.

The home location of a user has a great influence on the transition probability. For

two users u1 and u2 in the same city C where u1’s home location is in C and u2 is a visitor,

the probability of u1 to stay in C is much higher than u2 and the probability of u2 to return

to his home city is very high as well. So, the home city greatly influences the transition

probability between two cities.

To address this issue, we train transition probabilities separately based on home cities

of users. We use U to denote all users in the dataset and UCi is the users with home city Ci.

For a user u with home city Ci: 1) When u moves between city Ci and Cj (includes j = i),

P (Cj|Ci) are observed from all the users in UCi ; 2) When u moves from city Cj to city Ck,

i 6= j & i 6= k, the training data are from users in {U − UCj}. For the second case, we

combine all the users whose home city is not Cj together due to the lack of enough training

data for users in every city.

Observation Probabilities: The observation probability gives the likelihood of an ob-

46



servation from a given state. For geotagging, given a tweet T , there is an observation

probability P (T |C) for each city C. From the geotagged tweets, we build the language model

θC for each city. The probability of term t from a tweet which published in city C can be

estimated as: p(t|θC) = tf(t,C)/dlC, where tf(t,C) is the frequency of term t in city C and dlC is

the total frequencies of all terms in city C[66]. Then given the state of city C, the observation

probability P (T |C) is defined as:

(3.26) P (T |C) =
∏
ti∈T

P (ti|θC)

In this work, we smooth the probability of P (ti|θC) by using the Dirichlet smoothing

[96]. The stop words6 are removed before calculating the observation probabilities.

The probability of the initial state, P (S0 = Cj), is given by the transition probability

of P (Cj|Ci), where Ci is the home city of the user. This is based on the observation that

a user is likely to travel to any city from his home city and the first tweet observation is

not necessarily from his home city. Then based on the Viterbi algorithm, we find the city

sequence which can maximize the product of the observation probabilities and transition

probabilities as the geotags of tweets. Assuming the total number of tweets of a user is

N , the number of cities is |C|, and each tweet contains |T | terms, the time complexity of

estimating the location of these N tweets is O(N × |C|2 +N × |C| × |T |).

3.3. Experimental Results

In this section, we evaluate our user location estimation models in comparison with

existing state-of-the-art methods on two data sets, i.e. the Gowalla and the Twitter datasets

introduced before. We first show the estimation accuracy of the Friend Co-location Model

and Local Social Coefficient Model with respect to the number of friends which illustrates

why we combine these two models into our Social Closeness and Social Structure-Based

Model. Then We test the effect of different parameters including the percentage of users

6http://xpo6.com/list-of-english-stop-words/

47

http://xpo6.com/list-of-english-stop-words/


who provide their locations, the number of friends, and the number of iterations, and the

error distance.

We first define the error distance of the estimation of user ui as Err(ui), which

represents the distance between the estimated location and the actual location of the user

ui. We consider the estimated locations with error distance less than 100 km as correct

estimations. So the estimation accuracy can be represented as |ui|ui∈U∧Err(ui)≤100km|
|U | .

The models we tested in the experiment are shown as follows:

• Friend-based method (FB) We take the friend-based method (FB) provided in [9] as

the baseline method. In [9], the authors estimated a user location by his friend loca-

tions based on the relationship between distance and the probability of being friends.

They proposed their estimation model as:
∏

(ui,uj)∈E P (|li−lj|)
∏

(ui,uj)/∈E(1−P (|li−

lj|)). Here P (|li − lj|) represents the probability of user ui and uj located with the

distance of |li − lj| and E is the set of friend relation. Then they optimize the

formula as:
∏

(ui,uj)∈E
P (|li−lj |)

1−P (|li−lj |) .

• Social relation based model (SR) This method is proposed in [46]. The authors apply

three important methods to select the nearest friend: 1) the geometric median; 2)

the minimum area formed by users and two of his friends (Oja’s Simplex Median);

and 3) there exists friend relationship between three users which is referred as the

Triangle Heuristic.

• Friend Co-location Based Model: Our method.

• Local Social Coefficient Based Model: Our method.

• Social Closeness and Social Structure Based Model (SoSS): Our method.

We also test the FB, SR, and SoSS methods combined with our confidence-based

iteration model, which are noted as FBI , SRI , and SoSSI . The default value for the

percentage of location withheld is 25% for all experiments when not specified. At each time,

the parameters used in our algorithms, like the probabilities P (FCoI(ui, uj)) in the Friend

Co-location Model, will be retrained on the other 75% users. All accuracies reported is based

on 3-time average on random sampling.

48



3.3.1. Experimental Results of Home Location Prediction

We firstly compare the Friend Co-location Model with the Local Coefficient Model.

We will show the performance of friend co-location model and local coefficient model sepa-

rately and explain why we combine them together. Figure 14(a) and 14(b) show the estima-

tion accuracy of these two models on Twitter and Gowalla networks. From the figure, we

can see that when users have less than 20 friends, the friend co-location based model can

be much more useful than the local social coefficient model. It can help us to find out more

important friends by the analysis of the relevance of friends distribution. The local social

coefficient model performs worse because when a user has less than 20 friends, it is likely

that there is no friend relation between his/her friends. With the increasing of the number

of friends, the local social coefficient based model will perform better. The accuracy can be

more than 60 percent on Twitter and 80 on Gowalla, which indicates that the analysis of the

local tightness can be helpful. Since these two models perform quite differently, we combine

them together to make sure that our model can work in different cases.

We then test those models under different settings of the two datasets. We randomly

withhold 0%, 25%, 50%, and 75% users’ location information of the two datasets and compare

the performances of different models. Table 3.2 shows the results of each method.

From these results, we can see that our models can improve the estimation accuracy

by 5 to 20 percent compared with the baseline methods. The SoSS model combined with the

confidence-based iteration achieves the best performance among them. This phenomenon

demonstrates that the friend co-location and the local social coefficient can help us to detect

the more important friend or group of friends effectively in the estimation.

Another observation is that the confidence-based iteration process contributes greatly

in the estimation accuracy, especially in the cases when only a small portion of users have

their location information known in the dataset. From the estimation results, the iteration

process can improve the accuracy by 1 to 3 percent when we withhold 25% users’ location

information. This ratio increases to 5 to 22 percent when 75% of users’ location is unknown.

When more users’ location information is unknown (from 25% to 75%), the estimation

49



% locations withheld, by platform FB FBI SR SRI SoSS SoSSI

Twitter 75% 35.7 43.5 35.9 43.7 40.9 48.6

Twitter 50% 41.8 46.5 43.1 48.0 47.3 52.5

Twitter 25% 48.0 48.5 48.3 50.2 54.6 55.2

Twitter 0% 48.3 – 51.8 – 55.6 –

Gowalla 75% 47.1 62.7 44.9 60.8 50.1 70.8

Gowalla 50% 64.7 69.3 61.5 69.0 68.7 77.5

Gowalla 25% 73.0 73.5 71.2 73.1 79.6 80.3

Gowalla 0% 74.2 – 72.9 – 80.6 –

Table 3.2. Effect of percentage of unknown locations

accuracy of those models without iteration process (FB, SR, and SoSS) will decrease by

more than 15 percent on both Twitter and Gowalla datasets. However, at the same time,

the decreasing of the accuracy of the models with iteration process is just about 7 percent

on the Twitter dataset and 10 percentage on Gowalla dataset. This phenomenon tells that

the confidence-based iteration model can help us to overcome the problem of the sparsity of

user location.

The models work better on Gowalla dataset. We can explain this phenomenon by

analyzing the difference of user behavior on Gowalla and Twitter. Users who use Gowalla

tend to add friends who live close to their locations (27% within 100 km), and Twitter users

will add many users which may live far away from them and only 12% friend pairs are located

within 100 km.

Then we investigate how the iteration process improves the estimation accuracy and

explain why we introduce the confidence-based method. Here we withhold 75% user loca-

tion information and estimate their locations. Figure 14(c) and 14(d) show the estimation

accuracy of the iteration method without the confidence based selection. When the iteration

number is 0, it is the accuracy of the basic models. The iteration process can improve the

estimation accuracy by nearly 20 percent on the Gowalla dataset and 10 percent on the Twit-

50



1~5 6~10 11~20 21~50 51~100 >100
0

10

20

30

40

50

60

70

E
st

im
at

io
nF

A
cc

ur
ac

y(
%

)

NumberFofFFriends

FriendFCo−location
LocalFCoefficient

(a) Twitter

1~5 6~10 11~20 21~50 51~100 >100
0

20

40

60

80

100

E
st

im
at

io
nd

A
cc

ur
ac

y(
%

)

NumberdofdFriends

FrienddCo−location
LocaldCoefficient

(b) Gowalla

0 2 4 6
40

50

60

70

E
st

im
at

io
n 

A
cc

ur
ac

y(
%

)

Iteration Number

FB
SR
SoSS

(c) Without confidence-based

model (Gowalla)

0 2 4 6
30

35

40

45

50

E
st

im
at

io
n 

A
cc

ur
ac

y(
%

)

Iteration Number

FB
SR
SoSS

(d) Without confidence-based

model (Twitter)

0 2 4 6
40

50

60

70
E

st
im

at
io

n 
A

cc
ur

ac
y(

%
)

Iteration Number

FB
SR
SoSS

(e) With confidence-based model

(Gowalla)

0 2 4 6
30

35

40

45

50

55

E
st

im
at

io
n 

A
cc

ur
ac

y(
%

)

Iteration Number

FB
SR
SoSS

(f) With confidence-based model

(Twitter)

Figure 3.14. The difference between the friend co-location method and the

local social coefficient method and the influence of confidence-based iteration

process.

ter dataset. However, as the iteration process continues, the estimation accuracy begins to

decrease. Prominently, the accuracy will decrease by nearly 10 percent in the experiment on

the Twitter dataset after the sixth iteration. So we introduce the confidence-based iteration

method as shown in Figure 14(e) and 14(f). The confidence-based method can prevent the

estimation accuracy from decreasing and keep it to stable and higher values of accuracy. In

most cases, this process can achieve the best accuracy in three times iteration.

Then we investigate the influence of the number of friends. Figure 3.15 gives the

summary of the estimation accuracy of groups of users with a different number of friends.

The estimation accuracies of all the models without the iteration step are very low when

51



10
1

10
2

10

15

20

25

30

35

40

45

50

55

60

E
st

im
at

io
nS

A
cc

ur
ac

y(
%

)

NumberSofSfriends

FB
SR
SoSS
SoSS+I

(a) Twitter

10
1

10
2

10

20

30

40

50

60

70

80

E
st

im
at

io
nF

A
cc

ur
ac

y(
I

)

NumberFofFfriends

FB
SR
SoSS
SoSS+I

(b) Gowalla

Figure 3.15. Influence of number of friends.

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
st

im
at

io
nF

A
cc

ur
ac

y(
%

)

ErrorFDistanceF(km)

FB
SR
SoSS

(a) Twitter

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
st

im
at

io
nF

A
cc

ur
ac

y(
%

)

ErrorFDistanceF(km)

FB
SR
SoSS

(b) Gowalla

Figure 3.16. The estimation accuracy under different error distances.

the users have few number of friends. That is because: 1) if a user only has a few friends,

none of his/her friends may have their location information known. So we cannot perform

the estimation by their friends’ location. 2) It is difficult to decide which friend may locate

closer to the user if his/her friends do not cluster. The performances of SoSS model are

better than the FB and SR models on both the datasets. This is because our SoSS model

distinguishes friends based on friend co-location and local coefficient indexes. Choosing

socially close friends for location estimation improves the results.

On the other hand, the confidence-based iteration method can help to improve the

estimation accuracy by more than 20 percent for the users who have few number of friends.

With the iteration process, more users who don’t have location information in the social

52



network will be given an estimated location, and those estimated locations can be used in

estimating others’ location to help to overcome the first problem above. So after we combine

those models with the confidence based iteration model, many of the users who have a few

friends can also be estimated correctly. When the users have more than 30 friends, the

confidence based iteration model cannot help much on the accuracy.

We test the estimation accuracy on different values of error distance and show the

results in Figure 3.16. The accuracy of each method will be close to 1 when the error distance

is more than 3,000km. Our method performs better when we set a smaller error distance.

When the error distance is larger than 200km, the accuracy of different models will get close.

3.3.2. Real-Time User Location Estimation

Knowing a user’s home helps to understand user movement patterns. Users are

bound by travel distance from his home and the types of outbound cities from home affect

visiting possibility. However, only 16% users register their city-level home locations [56] and

collecting the home location from user profile is strictly limited by the rules of Twitter API.

Previous work has provided different methods for estimating the home locations of

users [57, 79, 24] based on analyzing content information or geographic distribution of friends.

In this work, we assign home location following the method used in [78, 25]. A set of tweets

of each Twitter user is selected to estimate the home location (this set will not be used

for building and testing geotagging models). These tweets are assigned into different cities

according to their geotags. We use city boundaries from the United States Census Bureau7

to decide which city a geotagged tweet belongs to. Then we assign the city with the most

number of tweets as a user’s home. In [78], the authors show that the home location obtained

in this way has an 85 percent accuracy.

We then select all cities with more than 5,000 users. There are 40 cities C in our

dataset. We only keep the tweets: (1) tweeted by users in C; (2) published in C. Figure 3.13

shows the number of users and the number of geotagged tweets in these 40 cities. The top

7http://www.census.gov/en.html

53



three cities with the most number of users and tweets are Los Angeles (46,508 users;1,183,634

tweets), Chicago(30,689 users; 634,665 tweets ), and New York(30,689 users; 419,130 tweets).

We implement four algorithms and compare their performances with different cases.

To reduce the impact of spammers and robots, we only keep users with a number of geo-

tagged tweets between 5 and 500 in our dataset [72]. The first quarter of tweets (sorted

by published time) of users are used to estimate home cities. We then run a 10 fold cross

validation on the rest of the dataset where we first divide users into 10 equal parts and then

assign the tweets into 10 corresponding folds depending on where their authors belong to.

So all of the tweets from the same user will be assigned to the same folder.

We use the random selection method as the baseline method and select two methods

proposed by the related works to compare with our algorithm.

• Random selection (Random): Select a city as the geotag location of tweet randomly.

• Bayesian: The Bayesian-based method described in introduction [48].

• Kullback-Leibler divergence (KL divergence): The KL divergence between tweet T

and city C is calculated as equation 3.27 and the geotag is based on the ranking of

the KL divergence [48, 72].

(3.27) KL(θT |θC) =
∑
t

p(t|θT )log
p(t|θT )

p(t|θC)

• HMM-based: The method proposed in this dissertation.

A tweet is assigned to a city as its geotag. We then assign the coordinate of the city

center as the predicted location of the tweet. The city center we used is listed in Wikipedia

8. We use three measures:

• Accuracy (Acc). The percent of tweets which are predicted in the same city where

they are published.

• Mean Error Distance (km): The average error distance between the predicted loca-

tion and actual location.

8https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population

54

https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population


• Median Error Distance (km): The median error distance between the predicted

location and actual location.

In this dissertation, we define the distance as the geographic distance.

Overall Non-Home City Home City

Methods Mean Med. Acc. Mean Med. Acc. Mean Med. Acc.

Random 2847 2450 3.86 2252 2334 4.9 2845 2439 3.8

Bayesian 1402 1022 36.7 1245 765 31.8 1375 994 36.8

KL divergence 1318 954 38.8 1191 741 32.8 1301 944 38.9

HMM-based 52.6 1.82 95.1 997 181 34.6 52.4 1.82 96.3

Table 3.3. Mean error distance (km), median error distance (km), and ac-

curacy(%) of the geotag estimation results.

Table 3.3 shows that our HMM-based methods can significantly improve the perfor-

mance of geotagging compared with related works. The overall accuracy is improved by

more than 50%; and the mean error distance and median error distance of our method are

orders of magnitude better.

We are interested in learning if the improvement is mainly due to the reason that more

than 90% of tweets are published in home cities which tend to be easier to estimate. We

separate the performance for home cities and non-home cities. Since more than 90% tweets

are published in home cities of users, all of these algorithms achieve similar performances

in the home cities with the overall case. For the difficult case of non-home cities, the two

algorithms from related work, the Bayesian-based method and the KL divergence method,

perform better than they do in home cities. This illustrates that when users travel to

non-home cities, they may tend to use terms with local characteristics. By contrast and

when users stay in home cities, their words are more commonly used with less regional

information. However, for the tweets published in these non-home cities, our HMM-based

model still outperforms other two methods by nearly 2% in accuracy and the error distances

55



are significantly smaller at the same time. Compared with related works, the improvement

on error distances demonstrates that even for the incorrectly estimated cases, our model can

locate the tweet with a closer city from the real location of the tweet due to the benefits from

the usage of patterns of user movements. In general, the results demonstrate that integrating

home city and movement will benefit geotagging in both home and non-home cities.

3.4. Demo System for Home Location Prediction

SPOT System

Output: 
Accuracy,Examples

User
Interface

Settings: Module, Data 
set, Examples...

Estimation Models:
Friend-based

 Social closeness-based   + 
Energy & local social coefficient

Confidence-based 
Iteration

Data Collection

Social 
Network &
User Profile

Figure 3.17. Architecture of the demo System: The main components in-

cludes the data collection and preprocessing module, the estimation algo-

rithms, and the user interface.

In this demo, we show estimation models performing on large scale social media

datasets. The demo system allows users to test different estimating models and view a de-

tailed location estimation process. By selecting different estimating models, testing data

sets and other settings, users can test and compare the accuracy of those algorithms un-

der different environments. To get more information about the running process, we also

provide a map view of the testing examples. The estimation cases (users on those social

media platform) can be chosen from the user interface and then shown on the map. One

56



can check their real location, estimation locations, and the locations of their friends so

that the estimation process can be visually observed. The demo website is available from

http://hpproliant.cse.unt.edu/locationdemobeta.

3.4.1. Demonstration Scenario

Figure 3.18. User interface: there are three important panels in this demo.

1) Setting Panel: The setting panel is in the left of the demo page. Users

can select a dataset, algorithm, the unknown location ratio, and the number

of samples to show etc. 2) Statistics Panel: We show different statistics of

the estimation results in the right column of the demo page. Those statis-

tics include the estimation accuracy, average error distance, and the average

number of friends. 3) Visualization Panel: We use a map to show selected

samples. Users can see real location, estimated location, and the locations of

their friends.

57



Our data sets come from two different social network applications, Gowalla and Twit-

ter, and both of them are publically available. Gowalla is a location-based social network

and users are able to check in at ”spots” in their local vicinity. The Gowalla dataset [25]

contains 196,591 users9. We use 99,563 of those users who have check-in records in our demo

and each of them has 4.8 friends on average. Since there is no user profile, we take the center

of the 25km × 25km area with the most number of check-ins as the user home location.

We also collected user profiles from Twitter, an on-line social networking and microblogging

service which enables users to follow each other and read ”tweets”. There are totally 660,000

users10 and their social relation in the Twitter dataset and we collected 148,860 users’ loca-

tions through Twitter API. We define the friend relationship the same way as that in [44].

Users A and B have friend relation if they follow each other. Each user has 29.4 friends on

average in the Twitter dataset.

The screenshot of our demo system is shown in Figure 3.18. To begin the demon-

stration, users need to choose several settings include: (1) data sets selection: users can

run the models on either the Twitter data set or the Gowalla data set; (2) model selection:

include the friend-based model, the social tightness based model, and the energy and local

social coefficient model; (3) location mask: users can hide certain percent of user location

information (from 20% to 80%). In the estimation process, those users’ location will not

be used. In this way, we can test the tolerance of the models on the sparsity of location

information; (4) estimation sample selection: users can select estimation samples by their

friends number and the estimation results(correct or incorrect) and only the samples which

meet the requirements will be visualized on the map.

By click the “Set” button, the demonstration will run the first time estimation. The

output includes statistics of the estimation results and selected samples. The statistics

results include estimation accuracy, the average distance between the estimated location

and real location, and the average number of friends used in the estimation. Users can

9http://snap.stanford.edu/data/loc-gowalla.html

10http://dmml.asu.edu/users/xufei/datasets.html

58



click the iteration button to enter the iteration process. The system will use the estimation

results in next time estimation process. The figures of those statistics will be generated and

dynamically updated after each iteration. Selected estimation samples will be visualized on

the map showing both their real and estimated locations. By clicking a sample, the sample’s

friends’ estimated/real location will also be shown on the map. A user has the choice of

visualizing all samples, the corrected estimated samples, or the incorrectly estimated samples

as well. In this demo system, we define an estimation result as correct when the distance

between the estimated location and real location is less than 100 miles. All the models can

be combined with the iteration method.

59



CHAPTER 4

EVENT DETECTION ON SOCIAL MEDIA

In this section, we propose the event detection algorithm and the experimental results

on the Twitter dataset.

4.1. The Event Detection Algorithm

We first give a brief description of the event detection algorithm. The event detection

algorithm has three main steps: detecting index terms, tweets clustering, and event extrac-

tion. In the first step, detecting index terms, we try to detect terms which may be related to

an event. The method is based on anomaly detection. For each term, we record the frequency

of a term in tweets published every day as the term distribution. The total frequency of all

terms in each day is recorded as overall distribution. Hashtags and @ mentions in tweets are

also considered as terms in this work. By analyzing the correlation between term frequency

and overall frequency, we can obtain a list of terms which distributed differently from overall

distribution. These terms that occur abnormally will be taken as index terms.

In the second step, we will assign tweets into clusters. For each index term, the tweets

which contain it are clustered by their locations and published time using a density-based

clustering method. A tweet containing multiple index term may be assigned to multiple

clusters. Then clusters for all terms are further clustered since an event may be related to

several different index terms. To remove “noise” clusters which may be not related to an

event, we propose a filtering method. About 70 percent of clusters will be removed in this

step. Finally, for each cluster, a document summarization algorithm will be used to obtain

a description of the event. We further extract the time and location information from the

tweets to help estimate when and where the event happened.

4.1.1. Detecting Index Terms

Detecting outbreaks of tweets and terms is one of the most important existing methods

to detect events. However, only global events attract a huge amount of interests. Local and

60



t, tl Tweet, published location

e, E A term from tweets/set of all the terms

C Cluster of tweets

Table 4.1. Notations and parameters

small events may only involve a few users on Twitter and these events cannot raise an

outbreak of the number of tweets. So in this work, instead of looking at the outbreak of

the number of tweets, we focus on detecting the abnormal distribution of terms. Term level

distribution is more sensitive to events since when people discuss an event, some terms are

more likely to be rare in daily conversations. As the result, even there are only a small

number of people discussing a local event, we can still detect the abnormal occurrence of

some terms. In this work, we define terms that distribute abnormally as index terms and in

the following step, these index terms will be used to help detect tweets which may be related

to an event.

The first challenge is how to detect index terms. Because the number of active users

keeps changing in the different time of a day, the frequency of terms is greatly affected by

time. The peak number of terms may happen just because of more users online at that

time. So our idea is measuring the correlation between the term distribution and overall

distribution. If a term is related to an event, it typically just appears during the event and

is not affected by the total number of active users. As a result, the correlation between the

distributions of this term and all terms will be lower.

Another challenge is how to detect index terms effectively. When we combine tweets

from everywhere together, an event, e.g. traffic jam, may keep happening in different areas

and the related terms are likely to have a high correlation coefficient with the total number

of tweets. So in this work, we divide the tweets into groups based on their location. Since

users are not distributed equally, we use k -d tree [11] to divide the tweets geographically.

A k -d tree is a space-partitioning data structure for organizing points in a k-dimensional

space. Every non-leaf node is divided into two parts that separate tweets into two equal

61



Algorithm 2: Event detection on Twitter

Data: Geotagged tweets

Result: Location, time, descriptions and kewords for detected event

Begin:

Divide tweets based on their locations by k -d tree;

for Each node of the k-d tree do

for Each term do

Calculate the correlation between term and total distribution;

if(Correlation ¡ 0.4);

Add term e to index terms EI ;

end

end

for e ∈ EI do

Cluster the tweets which contain e by DENCLUE algorithm ;

end

Merge clusters by their time, location distribution;

Filter clusters which may not be related to a local event;

for Each cluster do

Extract time, location, keywords, and descriptions;

end

return Time, location, keywords, and descriptions of events

groups through the median of one axis. Firstly, all the tweets will be put in the root node

of the k -d tree. In each step, the node will be divided into two parts by finding a line which

can equally separate the tweets in the node. This process will be stopped when the number

of average daily tweets in the node is less than 10 thousand.

Then for each leaf node of the k -d tree, we detect the index terms using correlation

coefficient. Here we use t to represent a tweet and for each tweet, it contains a set of terms

62



{e1, e2, . . . }. We use tp and tl to denote the time and location when and where the tweet is

published. We use E as the set of all the terms. For a term e, we count the frequency of

term e in each day: ~e =< fre1(e), fre2(e) · · · >, and the overall distribution is denoted as

~E =< fre1(E), fre2(E) · · · >. We then use the Spearman correlation coefficient to measure

the correlation between the two distributions as:

(4.1) r < ~e, ~E >=
cov(~e, ~E)

σ~eσ ~E

Here cov(~e, ~E) is the covariance of the two distributions. σ~e and σ ~E are the standard

deviations of the distributions.

4.1.2. Tweets Clustering

After detecting index terms, we try to use these terms to help to find the tweets

related to an event. For each index term, we first collect all the tweets which contain the

term. The tweets published in the k-d tree nodes where the term is not considered as

index term will be removed. Then these tweets will be clustered by their time and location.

Considering that during an event, there may be a quick increase of tweets related to the

event and in most time, there may be only a few tweets discussing the event, we use a

density-based approach to cluster the tweets [39]. The basic idea of this approach is that

the influence of each data point can be modeled by an influence function and this function

can be seen as a description of the impact of data points within its neighborhood. We use

this method because it works well in dealing with outliers and noises and flexible for clusters

with different sizes and shapes.

Definition[Influence Function] The influence function between tweets are defined as:

(4.2) fti(t) = e−
d(tl,tli)

2

2σ2

Here d(t, ti) is the geographic distance between tweets t and ti.

63



Definition[Density Function] With the influence function, the density function of

tweet t is defined as the sum of total influence of other tweets:

(4.3) I(t) =
N∑
i

fti(t)

In the algorithm, we only count the tweets published within the distance of 4σ [39] and in

the past or following ψ hours.

Definition[Gradient] The gradient of I(t) is defined as:

(4.4) OI(t) =
N∑
i

(~ti − ~t)fti(t)

Here ~ti and ~t mean a data point represented by the location (latitude, longitude) and time

of the tweet in a three dimensions space.

Definition[Density-Attractor & Density-Attracted] A tweet t is a density-attractor

iff I(t) is a local maximum of the density function. A tweet ti is a density-attracted tweet

for t when there exist a path to t that the gradient is continuously positive:

(4.5) ~t0 = ~t, ~tk = ~tk−1 + δ · OI(tk−1)

||OI(tk−1)||

Different event has different types of locations. For example, for sports matches,

the location can be considered as a point. For the tornado, the location can be an area.

Constrained by geographic boundaries, population distribution, and some other factors, the

influence area of an event may have an arbitrary shape. So we use an arbitrary-shape

clustering method here. As shown in algorithm 3, the density attractors can be merged if

there is a path between them with the density function continuously exceeding ξ.

The quality of the clustering results depends on the choice of the parameters for

most clustering algorithms. We choose the value of the parameters of σ, ψ, and ξ with the

method provided in [39]. However, because of the particularity of the dataset, we need to

take some special situations into consideration when deciding the value of σ and ψ. These

two parameters can determine the influence of each point. They are considered separately

because they have different influence models in their dimensions. For the parameter of ψ,

which controls the influence of points on the dimension of time, we test different values.

64



Algorithm 3: DENCLUE algorithm on geotagged tweets

Data: Geotagged tweets

Result: Clustering results

Begin:

Uses hypercubes of with edge length 2σ and only populated cubes are saved;

Calculate the density function for each tweet;

Using hill climbing to detect density attractors;

Adding density attracted points to the cluster of density attractors;

Merge the clusters if a path exists between two density attractors with the density

function continuously exceeds ξ;

return Clusters of tweets

Then for the clusters obtained from algorithm 3, we will future merge the clusters by

their time, locations because an event may be related to several index terms. For each cluster

C, we use normal distributions Ctime ∼ N (µCt, σ
2
Ct) to fit the distribution of published time

of tweets of the cluster and the location distribution Clocation ∼ N (µCl, σ
2
Cl). If two clusters

come from the same event, we can consider them as two different sampling of tweets from all

the tweets related to the event. So our goal is to test the relationship between two clusters.

Here we assume that cluster C is sampled from an event and the mean location and time of

the event is µCl and µCt. Given two clusters C1 and C2, we can estimate whether they are

sampled from the same event by using student’s t-test.

With the location of all the tweets in C1 and C2, we can obtain the mean location of

these two clusters lC1 and lC2 and the variance of them σ2
Cl1

and σ2
Cl2

. With the hypothesis:

(4.6) H0 : µCl1 − µCl2 = 0 H1 : µCl1 − µCl2 6= 0

we need to test:

65



(4.7) Zl =
(lC1 − lC2)− (µCl1 − µCl2)√

σ2
Cl1

n1
+

σ2
Cl2

n2

Here n1 and n2 are the sizes of cluster C1 and C2. If |Z| < |Zα/2|, we will consider

that C1 and C2 are related to the same event. We also test the time distribution of C1 and

C2 in the same way. Assuming that the mean publishing time of tweets in C1 and C2 are tC1

and tC2 and the variance of them are σ2
Ct1

and σ2
Ct2

, then we have:

(4.8) Zt =
(tC1 − tC2)− (µCt1 − µCt2)√

σ2
Ct1

n1
+

σ2
Ct2

n2

In this work, we set the value of α as 0.05.

Algorithm 4: Cluster merging algorithm

Data: Clusters of tweets

Result: Merged clusters

Begin:

Let Cclustered = ∅ and add all the clusters to Cclustering;

for Each Ci ∈ Cclustering do

Cmerge = Ci;

for Each Cj ∈ Cclustering (R-tree index) do

Calculate |Zt| and |Zl| between Cmerge and Cj;

if(|Zt| < |Zα/2| and |Zl| < |Zα/2|)

Merge Cj to Cmerge ;

Remove Cj from Cclustering;

end

Add Cmerge to Cclustered;

end

return Merged clusters of tweets

66



As shown in algorithm 4, for the clusters related to different index terms, they can

be merged if and only if their time and location distribution meet the requirements of |Zt| <

|Zα/2| and |Zl| < |Zα/2|. When seeking for a cluster Cj which can be merged into Cmerge,

we use R-tree index to help to find the clusters which distribution overlapping on time and

space with Cmerge.

4.1.3. Cluster Filtering

Before extracting the event information from clusters, we firstly introduce the meth-

ods we used to filter the detected clusters. From the clusters generated by the method

introduced above, we find two types of clusters that significantly affect the quality of the

results of event detection.

The first type of clusters is generated by events or news which have a global influence.

As we discussed above, many large events or news may have many Twitter users discussing

them in different cities. Sometimes the number of tweets is large enough to form several

clusters in different areas. So firstly we want to remove such clusters. There are two different

cases: 1) The clusters are generated by a news. We need to remove all the clusters related to

the news; and 2) The clusters are generated by a large local event with global influence. We

need to remove the clusters in other places other than the place where the event happens.

We filter the cluster by the following steps: horizontally detect related clusters, calculate the

local weight of each cluster, detect the outlier, and then remove the clusters.

For each cluster, we detect its similar clusters in other areas by analyzing their index

terms and time distribution. For two clusters in different areas, they will be considered as

similar when they share more than 80% common index terms with each other and their t-test

(equation 4.8) of time distributions meet the requirement of |Zt| < |Zα/2|. The similarity is

defined as a transitive relation, which means that if cluster a is similar to cluster b and b

is similar to cluster c, a is also similar to c. We then define the local weight of a cluster as

Clw =
NumberOfTweetsIn C

NumberOfLocalTweets
. The number of local tweets is the tweets published within

a certain distance (2 km in our experiment) and time (e.g. half an hour) to at least one

tweet in C. Then for all the similar clusters, we apply a Gaussian distribution to fit the

67



distribution of the value of local weights of the clusters. If there exists a cluster located

out of 3 standard deviations of the mean and larger than the mean value, we will keep this

cluster and remove others. If there exists none or more than 1 clusters, we will remove all

the clusters.

For the second case, we find that there may be lots of similar tweets with just one

or two words difference published in a short time in an area. In most cases, they are just

meaningless tweets. However, they may lead an abnormal distribution of terms and detected

by our algorithm. So for each cluster, we will use a term level cosine similarity to measure

the common terms between tweets. If there is a group of tweets in a cluster with: the cosine

similarity between each two of them are higher than 0.5 and the number of tweets in the

group is larger than half of the total number of the cluster, we will remove this cluster.

4.1.4. Event Extraction

After the clustering step, we extract the time, location, and content information from

each cluster as the description of an event.

Different event has a different type of influence area and time. For example, events

such as sports games or concerts have a clear location where they are happening. However,

many events do not have a specific point location and time, e.g. some natural disasters. In

[74], the authors use a Poisson distribution to fit the distribution of the number of tweets after

an earthquake. It makes sense because users begin to discuss this only after it happened. The

distribution of time of tweets can be fitted into an exponential distribution. For other events,

such as procession or a football match, people may discuss the event before it happens. In

this work, we estimate the time and location by the density attractors. For each cluster

of tweets, we can obtain the density attractors of this cluster by the method in section

4.1.2. The average time and location of these density attractors will be used as the time and

location of the event.

For extracting the keywords from tweets in the cluster, we use a PageRank-based

algorithm[98]. Each term corresponds to a node in the graph. For each tweet, we add the

weight of edges between two index terms in the tweet by 1. The weight of each node is

68



initialized as 1. Using PageRank algorithm, finally, we select top 5 terms with the highest

weights as the keywords of the event.

In [45], the authors propose a summarization method for a set of tweets. Each term

in a tweet is assigned a weight as equation 4.9 to 4.11:

(4.9) We = tf(e) ∗ log2(idf(e))

(4.10) tf(e) =
#OccurencesOfTermInAllTweets

#TermsInAllTweets

(4.11) idf(e) =
#Tweets

#TweetsInWhichTermOccurs

Each term is assigned a weight based on its term frequency (tf) and inverse document

frequency (idf). Then the weight of a tweet is defined as the average weight of terms it

contains:

(4.12) Wt =

∑
e∈tWe

Terms in t

For each cluster, we select the top 5 tweets with the highest weight to describe the

event.

4.2. Experiment

In this section, we test our algorithm on the Twitter dataset. Firstly we introduce

the dataset used in this work and give the definition of local events. We use precision and

case study to show the results of our event detection algorithm. Then we analyze the types

of events we detected to show the differences between our algorithm and previous methods.

Finally, we provide more details of the detected events to help to get a better understand of

our algorithm.

69



4.2.1. Experimental Settings

We choose the value of the parameters of σ, ψ, and ξ with the method provided

in [39] for the clustering algorithm. In fact, the clustering results, the number of clusters

and the average number of tweets in each cluster, have little difference when we change the

value from 2 to 6 hours. Considering the time complexity, we finally choose the value of ψ

as two hours. When choosing the value of σ, there is another problem that most geotags

of tweets are given by a square with the side of about 10 km. So we cannot obtain the

accurate location of the tweet. In this work, we use the center of the square as the location

of the tweet. However, in this way, we may have more multiple density-attractors for each

cluster. That is also one of the reasons why we chose the arbitrary-shape clustering method.

Since most of the tweets have no accurate coordinates, we assume that they are randomly

distributed in the square. So finally we use the standard deviation of this distribution, 7km,

as the value of σ.

We propose a detailed description of the targeted local events. Currently, there is not

a clear definition of what is a local event. An event is loosely defined as a happening which

has a number of participants getting together at a specific location at a specific time. We

also follow this idea in our work. However, compared with previous work, in our work we

apply more strict criteria when judging whether an event is a local event:

• Time and location: A local event must have a clearly defined set of participants,

location, and time. The participants can be the people who attend an event e.g.

sports games or affected by an event e.g. earthquake. Only events which happen in

a certain location or area will be considered as a local event. For example, national

festivals, such as July 4th, is not a local event, but a firework in a park which is

used to celebrate it will be considered as a local event;

• Regional requirement: A local event must belong to a certain location. For example,

events such as E3 2015 or NBA finals are global events that people discuss anywhere.

In large cities which are not the location where the events are happening, there may

still be a large number of related tweets published. Tweets can form large clusters in

70



many cities with similar characteristics of being an event. However, for such cases,

we only take the event extracted from the cluster at the location where the event

happens as local event;

• Events are different from news. Although some news has a specific time, location,

and participants, it is still news rather than a local event. For example, a soccer

player transferring from a team to another is considered as news. For such news, it

is difficult to provide a clear description of time and location information. In this

work, we only consider these happenings as news.

4.2.2. Experimental Results

We provide a detailed demonstration of the detection results. Both the precision

analysis and case study will be used to show how our algorithm works and the advantages

of our algorithm.

All Clusters 

(Classified by our algorithm)

After Filtering

(Classified by human labeling)

NLE: 69%

NLEN: 30%

NLEM: 39%

LE:31%

LE:47%
NLEN: 33%

NLEM: 20%

Figure 4.1. Proportion of different clusters.

From the Twitter dataset we collected, our LEDS system first obtains a set of can-

didate clusters which may be related to local events. Then we filter the clusters. We divide

the clusters into two classes based on whether they are related to a local event (LE) or

not (NLE). The clusters which are not related to a local event (NLE) are further divided

71



Event Date Index Descriptions Event

id Terms Type

1 Jun 9 1 #teenchoice i nominate @5sos for #rowyso T1

2 Jul 4 1 goonies + fireworks tonight! T3

#hollywoodforevercemetery

3 May 28 1 @sunilrawat @johnolilly i spend way too T2

much time there.

4 Jun 3 1 #teamhouse meeting at @rocknfishlalive with T3

@tamar house.

5 Jun 3 2 happy #ax2015 everyone. T1

6 Jun 26 2 @jaclynglenn protesting the saudi consulate T2

in los angeles.

7 Jun 1 1 caitlyn deal rey. http://t.co/y5lwsilxba. T2

8 May 30 1 mistakes we make can paint a better T3

picture later on.

9 May 28 1 24 minutes till earthquake. T2

10 May 30 2 saul rodriguez vs. antonio capulin. T2

11 Jun 16 3 #e32015 adventures! http://t.co/i2hqqm4jzw T1

12 Jun 13 1 there is a predator alien dancing at this party. T2

13 Jun 3 1 can’t wait for #animeexpo2015 !!! T2

14 Jun 30 1 cool thunder over long beach! T2

15 Jun 22 1 @johnny pypes how’s that golf game?? #thelastship T3

Table 4.2. Selected local events in Los Angeles.

into two subclasses: a global but not local event (or news) (NLEN) and the noise clusters

(NLEM). Please note that based on our definition of local events, when a local event with a

global influence happens, we only take it as a local event at the location where it happens.

72

http://t.co/i2hqqm4jzw


For other locations, we consider it as news rather than a local event.

Figure 4.1 shows the results of our filtering method. The left pie chart is the filtering

results. 31% of the clusters detected by our algorithm are considered as related to local

events and 69% of the clusters are taken as non-local event. Among the 69% clusters, 30%

of them are considered as related to a news (NLEN), and 39% of them are considered as

noise clusters (NLEM).

After the filtering step, there are 31 percent of clusters left and considered as local

events by our algorithm. Then we manually label these clusters. For each cluster, we extract

the time, location, keywords and top 5 tweets in the clusters to describe the event. For each

detected event, we have three people to label whether the cluster is a local event (LE), news

(NLEN) or noise cluster (NLEM) based on these information.

We randomly select 2,000 clusters from the results and manually labeled the clusters

by three people and here we use the majority rule. Each result will be considered as a

local event only when it has two or more positive labels. The right pie chart of Figure 4.1

demonstrates the results of the human labeling. 47% of the clusters after filtering are labeled

as a local event. So the precision of our algorithm is 47%. There are also 20 percent of the

clusters are labeled as noise clusters and 33 percent of clusters are labeled as news.

Then we list detected events to show the results on the real world data set. In Table

4.2, we randomly selected 15 events happened in Los Angeles from May 25 to July 8, 2015.

In this table we show the date of the event, the number of index terms related to the event,

and the top one tweets which are selected to describe the events. We also show the locations

of the first 12 events in the Figure 4.2.

There are several large events which have global influence such as E3 2015, but

more most of them are “smaller” events. They don’t have a large influence and some of

them even will not be mentioned in any news media. Compared with previous methods,

this is an important advantage of our algorithm. For example, on July 4th, we detected a

large number of tweets mentioning the keywords such as “Independent Day” or just “4th of

July”. However, it is not a local event and clusters containing these keywords will be filtered

73



Figure 4.2. Location distributions of events. The id labeled to each event is

consistent with Table 4.2.

by our system. However, we can detect some events such as firework for celebrating the

Independent Day. Local events such as the firework, protesting, smaller earthquake, local

festival, or business events, which may be mentioned by some news media, may still not have

enough related tweets to be detected by the previous methods. The number of tweets in the

clusters related to these events will be discussed in the next section. We also detected many

events which only attract the attention from a certain group of people. For these events, only

the users who attend or directly related to the event will discuss it. For example, parties,

meetings, or events held by some communities like photography lovers. These events may

have only tens of related tweets and are very hard to detect by the tweet spike detection

based methods.

In Table 4.3, we also show some detected results which are not local events. For some

news or non-local events such as national or global festivals, people may talk about them

with some uncommon terms. In this way, the tweets containing such terms form very small

clusters. Although there are also some big clusters related to these news or events, we may

74



fail to merge these small clusters to the large clusters because if the smaller clusters only

contain a few number of tweets, its time and location distribution may be not that stable. So

finally, they are considered as local events by our method. Based on our analysis on labeled

results, more than 60 percent of detected NLEN results belong to this case (the number of

tweets in the cluster is less than 100 and there exist larger clusters related to the same event

or news). Some other factors can also make the problem more complex such as people in

different time zones talking about the same thing or the event happening outside of the area

where we collected the data from (e.g. News id 8).

News Date Index Descriptions

id Terms

1 May 28 1 lebron 7, lower than jordan, bird magic!!! for king james!!!

2 Jul 26 2 beautiful day! marriage equality today! tomorrow, pass

#era @eraeducation! #loveislove @potus @pattyarquette

3 Jul 4 1 happy 4th of july, from the #mets and #dodgers. l’chaim!

4 May 28 1 @ezgimdemirci international day of united nations peacekeepers!

5 May 28 1 why do they kill animals in shows i’m crying

6 Jun 17 2 zombie!! #walkingdead

7 Jun 22 1 @taylorswift13 awesome!!!

8 Jun 25 2 Apparently peru is beating bolivia because my dad keep yellin.

9 Jun 13 1 @jessjjones @ boomer #vegas june 17. hit link to perform.

10 Jun 8 1 world oceans day 8 june.

Table 4.3. Selected detected news (NLEN) in Los Angeles.

4.2.3. Event Type

From the examples above, we can see that it is very difficult to give a clear classifica-

tion of the local events, especially for the events which only extract local attention. Smaller

local events can relate to many things. It is very difficult to find an event ontology which can

75



T1 T2 T3

Cluster Type

0

10

20

30

40

50

P
er

ce
nt

ag
e

Figure 4.3. Proportion of different type of events.

cover all of them. To cover different cases and compare with other methods, we divide the

events into three types based on their influence. The first class (T1) is the “large events”,

which means that the events have a global influence. People in different cities will discuss

the same event when it happens, e.g. the NBA finals and E3 2015. As we discussed above,

for such events, we may detect many clusters related to them in different cities. Here we only

take the cluster in the location where the event happens as the local events related cluster.

The second class (T2) is the event which is mentioned by some news medias but does not

have a global influence. Users who attend or talk about the event mainly come from the

same city, e.g. local festivals or some business events. The last class (T3) are the events

that only attract the attention from the users who participate. For example, for personal

meetings or parties, only the people who are attending will talk about it. We also manually

labeled the types of the event. Each event will be labeled three times and we also follow the

majority rule here.

In Figure 4.3, we show the ratios of these three kinds of classes. These three types

of are 26%, 31%, and 43% respectively. Previous work based on detecting the burst of the

number of tweets can only detect the events in the first type or some of the second type.

The events related to sports, shows, or large scale disasters are the majority of the events

detected by those methods. They will miss all T3 events which are 43% of all the events

76



LEDS detected. They will also miss some of the T2 events (31%). These events only attract

the attention from a small group of users and cannot be seen on news medias. They are

challenging for the previous methods.

<100 100-300 300-500 500-1000 >1000

Number of Related Tweets

0

10

20

30

40

50

P
er

ce
nt

ag
e

(a) Number of Tweets

<1 1-3 3-5 5-7 >7

Time Lasts(hour)

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

(b) Time

1 2 3 >3

Number of Index Terms

0

20

40

60

80

P
er

ce
nt

ag
e

(c) Number of Index Terms

Figure 4.4. Detailed features of detected events.

4.2.4. More Details of the Detected Events

In Figure 4.4, we provide more detailed information of the detected events. Figure

4(a) shows the distribution of the number of tweets of each event. Here the number of

tweets means the counts of tweets in the clusters. Please note that there are also non-related

tweets in these clusters because in the first step, we build the original clusters just based

on the index terms. There may be some non-related tweets containing the index terms in

the clusters. However, the negative impact of these tweets is limited because we only need

to make sure that the related tweets are the majority of the cluster. In the last step, when

extracting information about the events, we can make sure that the extracted information

is highly related to the events. In fact, from our labeling results, there are only 0.75 tweets

of the top 5 extracted tweets not related to the event on average. Most detected events have

less than 300 tweets and there are only less than 8 percent of events with more than 1,000

related tweets. For T1 events, which have a global influence, there are about 65% of them

having more than 1,000 related tweets and for the T3 events, this percentage is 0.

Figure 4(b) shows the distribution of duration of the local events. Here we use the

Gaussian distribution to fit the distribution of tweets of events on the timeline. The time

77



between the ±2σ will be considered as the duration of the events. There are only 12% of

events lasting less than 1 hour and 25% of the events are discussed more than 7 hours. The

differences between the three types of events are not as large as the number of tweets. For

T1 and T2 events, the percentage of the events lasting more than 7 hours is 54% and for T3

events, this percentage is 23%.

Finally, we provide the distribution of the number of index terms of clusters. Most

events come from the clusters with only one index terms, which means that we only detect

one abnormal keyword from this event. The percentage of events with more than three index

terms is only about 4%. For T2 and T3 events, more than 95 percent of them contain only

one index terms. T3 events contain 2.2 index terms on average.

78



CHAPTER 5

SPATIOTEMPORAL TOPIC ASSOCIATION DETECTION ON TWEETS

In this chapter, we first introduce the algorithm for mining uncertainty co-location.

Then we will propose our topic association detection algorithm.

5.1. Mining Uncertainty Co-location

A co-location represents a subset of spatial features whose events frequently appear

together in spatial proximity. In Epidemiology, incidents of different but related diseases

occur in different places. These diseases may exhibit co-location patterns where some types

of diseases tend to occur in spatial proximity. In Ecology, different types of animals can

be observed in different locations. There exist patterns such as symbiotic relationship and

predator-prey relationship. Different types of crimes committed and different types of road

accidents may also exhibit co-location. Many spatial data are uncertain with approximations

and errors in the real world. In Epidemiology, the occurrence of a disease may not be

geo-located precisely and may be often associated with several locations, e.g. home and

workplace. In Ecology, observation of spices is often imprecise. Finding co-locations under

uncertainty is useful for these domains.

s1.e3

s1.e2

s1.e1

s2.e3

s2.e1

s2.e2

s2.e4
s3.e1

s3.e2

s1

s3

s2

Figure 5.1. Example Co-location. Three spatial features: {s1, s2, s3}. s1

has three events, s2 has four events, and s3 has two events.

79



In the problem of mining certain co-locations, a set S of spatial features is given

and each spatial feature s is associated with a set of events s.E. The spatial feature of

a given event e is denoted as s(e). A set of events E is supporting a subset of spatial

feature S ′ ⊆ S if: (1) E forms a clique using a user given distance threshold; (2) for any

e1 ∈ E, e2 ∈ E and e1 6= e2, we have s(e1) 6= s(e2); (3) ∪e∈E{s(e)} = S ′. The participation

ratio PR(s, S ′) of a spatial feature s in a subset of spatial feature S ′ ⊆ S is the probability

of an event of s participating in a supporting clique of S ′. For example, in Figure 5.1,

there are three spatial features S = {s1, s2, s3}. Two events of different spatial features are

connected if their distance is less than a user specified threshold. Feature s2 has four events

and three of them participate in a clique supporting {s1, s2, s3}. So PR(s2, {s1, s2, s3}) is

3/4. Then participation index PI(S ′) is defined as PI(S ′) = mins∈S′{PR(s, S ′)}. In Figure

5.1, PI(s1, s2, s3) = min{2/3, 3/4, 2/2} = 2/3. The problem of co-location mining is to find

all subsets of spatial features with participation indices above a user defined threshold.

When an event is uncertain, there are two main challenges: (1) How to define partic-

ipation ratio and participation index in a probabilistic manner? (2) How to efficiently find

co-locations when the number of uncertain events is large? Let us assume a simple dataset

of 5 spatial features. Let each spatial feature have 4 events and each event has 3 possible

locations. Then we will be 345
= 3.49× 109 possible worlds.

5.1.1. Problem Definition

We follow the commonly used uncertainty model Block-Independent Disjoint Scheme

[12] to define the problem of uncertainty co-location. A probabilistic spatial feature s is

given by a set of uncertain events s = {e1, e2, . . .}. An uncertain event ei is represented by a

set of d-dimensional points u1, u2, . . . reflecting all possible instances of ei. Each instance uk

is assigned with a probability P (uk) denoting the probability that ei appears at uk. Let h

be a user given distance threshold. In Figure 2(a), there are three spatial features. Spatial

feature s1 has three uncertain events, spatial feature s2 has four uncertain events, and spatial

feature s3 has two uncertain events. Each instance of an uncertain event of s1, s2, and s3

is represented by a circle, a square, and a plus sign respectively. Probabilities are assigned

80



to instances of an uncertain event that sums up to 1 within the event. Two instances of

different spatial features that are within a user given threshold h are connected by a line.

In this example, s1, s2, s3 may be three animal species, e.g. s1 = Egyptian plover, s2 = Nile

crocodile, and s3 = monitor lizard. An event of s1 represents a particular Egyptian plover,

e.g. plover Smith. And the instance of the plover Smith is a location where Smith is spotted.

s1.e3

s1.e2

s1.e1

s2.e3

s2.e1
s2.e2

s2.e4

s3.e1

s3.e2

u2

u1

u1 u1
u1

u2

u2

s1

s3

s2

(a) Example of Uncertainty Co-location

s1.e2

s2.e3

s2.e1

s3.e2

u2

u1

u3

u1

u2

u2
u1 u1

u2

u3

(b) Instance Centric Counting

Figure 5.2. In 2(a), feature s1 has three uncertain events, i.e.

{s1.e1, s1.e2, s1.e3}. Event s1.e1 has three uncertain instances.

A possible world ws = us1, u
s
2, . . . of a spatial feature s is a set of instances containing

one instance from each event of s and occurring with a probability of P (ws) =
∏

k P (usk).

Let Ws be the set of all possible worlds for s, then
∑

w∈Ws
P (w) = 1. We are given a

set n of probabilistic spatial features S = {s1, s2, . . . , sn}, a possible world wS is given by

the combination of a possible world of each spatial feature, i.e. ws1 , ws2 , . . . , wsn with a

probability of P (wS) =
∏

i P (wsi). Obviously, let WS be the set of all possible world for S,

then
∑

w∈WS
P (w) = 1 as well.

81



Definition[Complete Possible World] Given a subset of probabilistic spatial features

S, W c
S includes all the instances of all the events of S and is called the complete possible

world with respect to S. For any instance, we use e(u) to denote the event associated with

u and use s(u) to denote the spatial feature of u.

All of the instances in Figure 2(a) is an example of complete possible world of

{s1, s2, s3}.

Definition[Supporting Clique] A set of instances c in the complete world wcS′ is

supporting a subset of spatial feature S ′ ⊆ S if: (1) c forms a clique using a user given

distance threshold; (2) s(u1) 6= s(u2) (which also implies e(u1) 6= e(u2)) for any u1 ∈ c, u2 ∈ c

and u1 6= u2 ; (3) ∪u∈U{s(u)} = S ′. c is called a supporting clique of S ′.

In Figure 2(a), {s1, s2, s3} has 6 supporting cliques. However, not all of them can

appear together in the same possible worlds as explained later.

The participation ratio and index are used to prune the co-locations with low preva-

lence. Different from certain cases, the participation ratio cannot be directly calculated by

counting the instances participating in a supporting clique. In an uncertain case, the par-

ticipation ratio of an instance will be determined by both the probability of possible worlds

and the supporting cliques it participates.

Definition[Participation Ratio of an Instance] For a subset S ′ of S and a user given

distance threshold, the participation ratio of an instance u of spatial feature si in S ′ is

defined as the sum of probabilities of all the possible worlds that instance si.u participates

in a supporting clique of S ′ and this can be calculated as:

(5.1) PR(u, S ′) =
∑

{w|∃c,u∈c,c⊆w,w∈WS′ ,c supports S
′}

p(w)

In Figure 2(b), PR(s1.e2.u2, {s1, s2, s3}) is the sum of the probabilities of all the

possible worlds that contain at least one supporting clique of {s1, s2, s3} with s1.e2.u2 partic-

ipating. In this example, it includes all of the worlds that contain one or more of the three

supporting cliques that s1.e2.u2 participates in the figure. Since s1.e2, s2.e1, s3.e2 and s2.e3

have 3, 2, 2, 3 possible instances respectively, the total number of possible world should be

82



36. Among those, 3 possible worlds have a supporting clique of {s1.e2.u2, s2.e1.u1, s3.e2.u1}, 3

contain that of {s1.e2.u2, s2.e1.u1, s3.e2.u2}, and 2 contain that of {s1.e2.u2, s2.e3.u1, s3.e2.u1}.

Given equal probability of instances, all of the possible worlds have the same probability of

1/36. However, one possible world contains both of the cliques {s1.e2.u2, s2.e1.u1, s3.e2.u1}

and {s1.e2.u2, s2.e3.u1, s3.e2.u1}. So there are totally 3 + 3 + 2− 1 = 7 possible worlds that

s1.e2.u2 participates in a supporting clique of {s1, s2, s3}. The participation ratio of s1.e2.u2

should be PR(s1.e2.u2) = 7× (1/36).

Definition[Probabilistic Participation Ratio] Let si.U be all possible instances of si

where si ∈ S ′ and |si| be the number of events of si. The probabilistic participation ratio

(short as participation ratio or PR here after) of si is:

(5.2) PR(si, S
′) =

1

|si|
∑
u∈si.U

PR(u, S ′)

Definition[Probabilistic Participation Index] For a subset S ′ ⊆ S, the probabilistic

participation index (short as participation index or PI) PI(S ′) of S ′ is defined as follows:

(5.3) PI(S ′) = minPR(si, S
′)

The problem of mining co-location under uncertainty is to find all subsets of spatial

features with participation indexes above a user given threshold θ.

5.1.2. Instance Centric Counting

The naive way to calculate the participation ratio of an instance in S ′ is to enumerate

all the possible worlds and then sum up the probabilities of the worlds where the instance

participates in a supporting clique of S ′. However, this method is very expensive as the

number of possible worlds is very large. We propose an instance centric calculation of the

participation ratio, taking supporting cliques involved into consideration. However, in this

method, avoiding over-counting is a challenge. We prove a Lemma to allow instance centric

counting which will enable efficient algorithms to be developed. Using this method, we can

get the same result as summing up possible worlds above. We first define the relationship

between a possible world and a clique.

83



Definition[Clique Probability] For a supporting clique c of S ′, the probability P (c)

is the sum of the probability of all of the worlds which contains the clique c. And it can be

represented as:

(5.4) P (c, S ′) =
∑

{w|w∈WS′ ,c∈w}

P (w)

Finding all the possible worlds that contain c is very expensive. However, it is easy

to prove the lemma 1. The proof is similar of that of lemma 2 and is omitted due to space

constraint.

Lemma 1. For a supporting clique c of S ′, the probability P (c, S ′) is equivalent to:

(5.5) P (c, S ′) =
∏
u∈c

P (u)

If an instance u only participates in one supporting clique, then the participation ratio

of u is the probability of the clique. However, an instance can participate in multiple cliques

in the same world, resulting in over-counting if we simply sum up the probabilities of all the

supporting cliques that u participates (naive PR calculation). For example, Figure 2(b) is a

subset of Figure 2(a) which includes all events and cliques that relate to s1.e2.u2. The two

instances of s3.e2 cannot happen at the same time (yellow lines and green lines could not

happen in the same world). So not all three cliques can happen in the same world. However,

clique {s1.e2.u2, s2.e1.u1, s3.e2.u1} and {s1.e2.u2, s2.e3.u1, s3.e2.u1} can co-exist, resulting in

over-counting of the worlds that contain both if we use the naive PR calculation.

Definition[Coexistence] Two supporting cliques c1 and c2 of S ′ can coexist, denoted

as �(c1, c2) = 1, in the same possible world under the following condition: ∀u1 ∈ c1, u2 ∈ c2,

if e(u1) = e(u2), then u1 = u2, where e(u) denotes the event associated with the instance u.

Definition[Coexistence of a Set of Supporting Cliques] A set of supporting cliques

C can coexist and is denoted as �(C) = 1 if every pair of the cliques can coexist.

Definition[Probability of Coexisting Clique Set] The probability of a set of coexisting

supporting cliques C of S ′ is the sum of the probabilities of those possible worlds in which

84



C happens:

(5.6) P (C, S ′) =
∑

{w|∀c∈C,c⊆w,w∈WS′}

P (w)

Lemma 2. The probability of a set of coexisting supporting cliques C of S ′ can be

calculated as:

(5.7) P (C, S ′) =
∏
u∈I

P (u)

where I is the union of all instances of the events of the cliques in C.

Proof: Let E be the set of all events. For any E ′ ⊆ E, it is easy to see that the sum of

the probabilities of all possible worlds WE′ that includes an instance from each event in E ′ is

1. The probability of coexisting clique set is the sum of all possible worlds which contain the

coexisting supporting clique set C. We can divide E into two parts: E1 is the set of events

having an instance in the coexisting cliques and E2 is the complementary set. So a possible

world that contains C can also contain any other possible worlds of E2. So the summation

can be calculated as
∏

u∈I P (u)× (
∑

w∈WE2
P (w)). We know that

∑
w∈WE2

P (w) = 1, so the

probability of a set of coexisting supporting cliques is
∏

u∈I P (u).

From lemma 1 we know that the probability of a clique c1 is the sum of all of the

possible worlds that contain the clique. However, those possible worlds can contain both

cliques c1 and c2. So the probabilities of the possible worlds which contain both cliques will

be counted two times if they can coexist when counting the participation ratio of an instance.

To summarize, when there are coexisting cliques and they contribute to the participation

of the same instance, over counting will happen. We define such cliques as star supporting

cliques.

Definition[Star Supporting Clique Set] All the supporting cliques of S ′ that an in-

stance u participates is called the star supporting clique set of u in S ′ and is denoted as

?(u, S ′).

85



Lemma 3. To an instance si.uk in a complete possible world, the star supporting

clique set ?(si.uk, S
′) of S ′ can be used to calculate the participation ratio of the instance as

follows where l = | ? (si.uk, S
′)|:

PR(si.uk, S
′) =

∑
cj∈?(si.uk,S′)

P (cj, S
′)

−
∑

c1∈?(si.uk,S′),c2∈?(si.uk,S′),�(c1,c2)

P (c1 ∪ c2, S
′) + . . .

+ (−1)l+1
∑

c1∈?(si.uk,S′),..cl∈?(si.uk,S′),�(c1,..cl)

P (c1.. ∪ cl, S ′)

(5.8)

Proof: From the definition of participation ratio, PR(uk) =
∑

wi∈WS′
P (wi), where

WS′ is the set of possible worlds which instance uk participates in forming a supporting cliques

of S ′. So we can prove lemma 3 by checking whether the probability of each possible world in

WS′ has been counted and only counted once. For each wi in WS′ , let us assume that wi has n

coexisting cliques {c1, c2...cn}. From the definition of the probability of coexisting clique set,

we know that every time we calculate P (C, S ′), we count the probability of wi once. Here C

represents any possible combinations of coexisting cliques in wi. So when we calculate P (c1)

as well as P (c1 ∪ c2) and any other combinations, we count P (wi) once. In lemma 3, for wi,

each of P (c1)...P (cn) is added to the probability of wi once. Each of P (c1∪ c2)...P (cn−1∪ cn)

subtracts P (wi) once. So P (wi) has been counted C1
n − C2

n + ...(−1)n+1Cn
n = 1 times.

Lemma 4. (Anti-monotone Property) The participation index is anti-monotone with

respect to the number of features in the co-location.

Proof: Let l, l′ be two co-locations and l′ ⊆ l. We use Wl and Wl′ to represent the set

of possible worlds which have supporting cliques of these two co-locations. For each possible

world w in Wl, w contains supporting cliques of l. Because l′ ⊆ l, w will also has supporting

cliques of l′. So if w ∈ Wl, then wi ∈ Wl′ . Therefore, Wl ⊆ Wl′ . From the definition of

participation index, PI(l) =
∑

w∈Wl
P (w) and PI(l′) =

∑
w∈Wl′

P (w), we can conclude that

PI(l′) ≥ PI(l).

86



5.1.3. Mining Co-location from Uncertain Data

In this section, we describe the framework of mining uncertain co-locations. While

participation ratio can be calculated by counting supporting cliques [43] in the certain case,

the participation ratio of uncertain co-locations is calculated by the probabilities of instances.

Thus we divide the process of mining co-location in two steps, (1) finding uncertainty co-

locations and their supporting cliques; (2) calculating the participation ratios. In section

5.1.3, we propose an Apriori-based algorithm to generate supporting cliques under uncer-

tainty. Then we present the feature tree driven method combined with maximal clique

method. We propose event-based pruning and clique-feature table searching to reduce the

computational cost. In section 5.1.4, we will present the algorithm for calculating participa-

tion ratios and then present algebraic analysis of the computational complexity.

In the following part, we use Ck to represent a set of size k cliques, use Lk to represent

a set of size k co-locations and use CM to represent a set of maximal cliques.

Uncertain Apriori (UApriori) Co-location Miner: We first propose an Apriori like

algorithm in the instance level and will present event level pruning. We process in the

uncertain instance level to generate the supporting cliques for each co-location. Algorithm 5

shows the process of how to generate uncertainty co-location by Apriori algorithm. Here we

use an example to illustrate. Figure 3(a) is the Apriori-gen process for the example in figure

2(b). We use plane sweep algorithm to get the neighbor relation of between the instances

of S1, S2, S1, S3 and S2, S3 (the first three tables). They are also the supporting cliques C2

of size-2 co-locations L2. Assuming all of them have a participation index greater than the

threshold, we can generate size-3 co-locations by them. First we generate the supporting

cliques for the co-location {s1, s2, s3} from C2 through joins. For example, we use the size-2

cliques {s1.e2.u2, s2.e1.u1} and {s1.e2.u2, s3.e2.u1} in C2 to generate the size-3 supporting

clique {s1.e2.u2, s2.e1.u1, s3.e2.u1}. When generating the new supporting clique, we calculate

the distance between s2.e1.u1 and s3.e2.u1 by their coordinates instead of searching the c2

table to find the record of clique {s2.e1.u1, s3.e2.u1}.

Event Level Pruning (UApriori-E): However, in uncertainty, each event of a feature

87



Algorithm 5: Generating co-locations from searching table

Apply plane sweep algorithm to generate instance neighbor relation C2

Generate size 2 co-locations L2 by the neighbor relation

k = 2

while Lk 6= ∅ do
k = k + 1

Generate supporting cliques Ck from Ck−1 for co-location Lk

Calculate the participation index of each size k co-location

Generate size k co-location set Lk

end while

Return L2 ∪ L3... ∪ Lk−1

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1 𝑠1  𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2 𝑠2  𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑖2  

𝑠1 . 𝑒2 . 𝑢2 𝑠2 . 𝑒1 . 𝑢1  𝑥1 , 𝑦1  

𝑠1 . 𝑒2 . 𝑢2 𝑠2 . 𝑒3 . 𝑢1   𝑥2 , 𝑦2  

 

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1 𝑠1  𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2 𝑠3  𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑖2  

 𝑠1 . 𝑒2. 𝑢2 𝑠3 . 𝑒2 . 𝑢1   𝑥3 , 𝑦3  

𝑠1 . 𝑒2 . 𝑢2 𝑠3 . 𝑒2 . 𝑢2  𝑥4, 𝑦4  

 

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1 𝑠2  𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2 𝑠3  𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑖2  

𝑠2 . 𝑒1 . 𝑢1 𝑠3 . 𝑒2 . 𝑢1   𝑥3 , 𝑦3  

 𝑠2 . 𝑒1 . 𝑢1 𝑠3 . 𝑒2 . 𝑢2  𝑥4, 𝑦4  

𝑠2 . 𝑒3 . 𝑢1 𝑠3 . 𝑒2 . 𝑢1   𝑥3 , 𝑦3  

 

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1 𝑠1  𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2 𝑠2  𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒3 𝑠3  𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑖3  

𝑠1 . 𝑒2 . 𝑢2 𝑠2. 𝑒1 . 𝑢1  𝑠3 . 𝑒2 . 𝑢1  𝑥3, 𝑦3  

𝑠1 . 𝑒2 . 𝑢2 𝑠2. 𝑒1 . 𝑢1  𝑠3. 𝑒2. 𝑢2  𝑥4, 𝑦4  

𝑠1 . 𝑒2 . 𝑢2 𝑠2 . 𝑒3 . 𝑢1 𝑠3 . 𝑒2 . 𝑢1  𝑥3, 𝑦3  

 

(a) Process of Apriori-gen

<= h
>h

<=h

>h

e1

e2

e4

e3

h

(b) Event Level Pruning

Figure 5.3. Example for the process of UApriori

may have many uncertain instances. Both algebraic and experiments show that with a large

number of instances, the join process to generate cliques become inefficient. To optimize

this process, we propose an event level pruning approach to apply event neighbor relation

checking first and only proceed to instance level join when the minimal distance between

two events are within user given distance.

There are three relations between two events: the minimum distance larger than

threshold h, the maximal distance less than h, and DistanceMax > h ∩ DistanceMin < h.

For the first case, such as e1 and e4 in figure 3(b), we can prune e4 directly. For the second,

88



such as e1 and e2, all instances in e2 can form neighbor relation with instances in e1 without

calculating the distances between them. We only need to calculate the distance between

instances in the third case.

Uncertain Feature Tree Co-location Miner (UFTree) Feature tree has been used in

mining long pattern association rules. However, the main challenge in using the same struc-

ture in co-location mining is the lack of given set of transactions. In this dissertation, we

propose feature tree-based methods in mining uncertain co-locations that deal with the lack

of transactions. In the first step, we use the plane sweep algorithm and the Bron-Kerbosch

algorithm [15] to find all maximal cliques in the complete possible world (optimization will

be discussed shortly) and add them into CM . A naive way to generate the supporting

cliques is to enumerate all sub-cliques of every maximal clique and map them into different

co-locations. But without a pruning process, the cost is prohibitive especially when some

large size cliques exist. Here we build a searching table to help to generate the supporting

cliques and the co-location set. Algorithm 6 describes the framework of this process.

Algorithm 6: Generating co-locations from searching table

L = ∅
while S 6= ∅ do

To si ∈ S, for each instances of si, get maximal cliques contain this instance from CM

Build searching table for si with other features in S

Table searching, generating co-location and adding into L

Remove si from S

end while

Figure 5.4 is an example for building searching table. {c1, c2, ..c6} is the set of maximal

cliques CM and {s1, s2, ..s6} is the set of features S. For s1 in S, we first get the maximal

cliques containing instances of s1: {c1, c2, c3, c4, c5}. Then those maximal cliques will be

mapped into the searching table in figure 5.4. After the co-location generating step, s1 will

be removed from S and will not appear in the searching table built after this. For example,

when we build the searching table for s2, instances from s1 will not be included in the table.

To search this table and generate co-locations, we introduce the searching strategy

on a tree-based structure. The breadth-first searching with follow set pruning approach.

89



       𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐶𝑙𝑖𝑞𝑢𝑒𝑠:                 𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 𝑇𝑎𝑏𝑙𝑒 
  

 

𝑐1: {𝑠1.𝑢1, 𝑠2.𝑢1, 𝑠3.𝑢1, 𝑠5.𝑢1} 
𝑐2: {𝑠1.𝑢1, 𝑠2.𝑢2, 𝑠4.𝑢1} 
𝑐3: {𝑠1.𝑢2, 𝑠3.𝑢1, 𝑠4.𝑢2} 
𝑐4: {𝑠1.𝑢3, 𝑠2.𝑢3, 𝑠4.𝑢2} 
𝑐5: {𝑠1.𝑢4, 𝑠3.𝑢2, 𝑠5.𝑢2} 

𝑐6: {𝑠2.𝑢1, 𝑠3.𝑢2, 𝑠4.𝑢3, 𝑠6.𝑢1} 

 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 
𝑠1 𝑠1.𝑢1 𝑠1.𝑢1 𝑠1.𝑢2 𝑠1.𝑢3 𝑠1.𝑢4 
𝑠2 𝑠2.𝑢1 𝑠2.𝑢2  𝑠2.𝑢3  
𝑠3 𝑠3.𝑢1  𝑠3.𝑢1  𝑠3.𝑢2 
𝑠4  𝑠4.𝑢1 𝑠4.𝑢2 𝑠4.𝑢2  
𝑠5 𝑠5.𝑢1    𝑠5.𝑢2 

Figure 5.4. Searching Table

Uncertainty Feature Tree Searching with Follow Set Pruning (UFTree-FP algorithm):

We introduce the following set searching strategy to generate co-locations on the table. We

first present key definitions for this strategy.

Definition[Pre-Node Set] Node N is a node in the feature tree. The pre-node set

Pre{N} of N is the set of nodes which have the same father node as N and at the left side

of N in the feature tree.

Definition[Follow set] The following set of node N is a set of features which may

form co-locations with the features in node N .

For example, for the root node of the tree in figure 5(a), the set of {s2, s3, s4, s5} is the

following set of this root node. Feature s1 will be combined with each of them to generate

new co-locations in the next level of this tree.

                   𝑠1 𝑠2, 𝑠3, 𝑠4, 𝑠5,             

  

         𝑠1, 𝑠2 𝑠3, 𝑠5  𝑠1, 𝑠3 𝑠5       𝑠1, 𝑠4       𝑠1, 𝑠5 ∅  

 

      𝑠1 , 𝑠2 , 𝑠3 𝑠5     𝑠1 , 𝑠2 , 𝑠4   …      𝑠1 , 𝑠3 , 𝑠4          …   𝑠1, 𝑠4, 𝑠5 

 

𝑠1, 𝑠2, 𝑠3, 𝑠5                                       

(a) Searching tree

e1

e2

e4

e3

h

e5

(b) Finding maximal cliques at

event level

Figure 5.5. Strategie on searching the table

90



Algorithm 7 describes the process of breadth-first search to generate co-locations

related to si. When searching the table, we will generate the follow set for each node. First,

we set the following set of the root node as Ssi − si and add the root node to the node

list. Then we process each node in the node list. For every node, we combine the feature

set of the node with each feature SFi in the following set and get a new co-location. If the

participation index of the new co-location is greater than the threshold, this node will be

added to the node list and the feature SFi will be added into the following sets of every

pre-node of this node.

Algorithm 7: The breadth-first searching algorithm

Set co-location set L = ∅
Node list NL = ∅
Add root node to NL

Set the follow set of root node as Ssi − si

i = 0

while i ≤ NL.size do

N = NL[i]

Combine the feature set of N with each feature sFi in the follow set and generate a new co-location ln

Calculate the participation index PI

if PI ≥ threshold then

Add N ′ to the node list, the feature set of N ′ composed by the features in ln and the follow set is node N ’s

follow set besides sFi

Add sFi to the follow sets of each pre-node of N ′

L = L ∪ ln

end if

end while

Return L

Figure 5.5 (b) is an example for breadth-first search. During the search for the node

of {s1, s3}, if the participation ratio is greater than the threshold, s3 will be added into the

follow set of node {s1, s2}. The participation ratio of {s1, s4} is less than the threshold,

so the sub-tree of this node {s1, s4, s5} will be pruned and s4 will not be added into the

follow sets of the pre-nodes of {s1, s4}. So the node of {s1, s2, s4} and {s1, s3, s4} will also

be pruned.

The process of finding maximal cliques can be computational expensive with a high

91



density of instances. To avoid this, we generated maximal cliques in the event level at first

and used this as an index to generate instance level cliques used in the searching table. For

example, in the figure 5(b), there are four maximal event cliques: {e1, e2, e3}, {e2, e4}, {e3, e5}

and {e4, e5}.

5.1.4. Calculating the Participation Index

We have proposed lemma 3 to calculate the participation ratio of each possible in-

stance. If there was no coexisting cliques, lemma 3 can be represented as: PR(si.uk, S
′) =∑

cj∈?(si.uk,S′) P (cj, S
′). So we can calculate all the participation ratios of possible instances

by calculating the probability of each supporting clique and add the probability to the ratio of

the instances belonging to this clique. If ci and cj are two coexisting cliques and {u1, u2...un}

are their common possible instances, to these instances, their participation ratios PR(u) will

be deducted by P (ci∪cj) according to the lemma 3. So we need to calculate the probabilities

of different combinations of coexisting cliques and add or subtract the results to the ratios of

instances shared by those cliques according to lemma 3. After getting all of the participation

ratios, we can calculate the participation indexes of co-locations by the method described in

the definition of probabilistic participation ratio and participation index.

Table 5.1 summarizes the parameters used in complexity analysis as well as in the

experiment section. In the UApriori algorithm, when generating size(k+1) co-locations from

size k, the worst case is: for each supporting clique, we have to see if they have k−1 instances

in common with other cliques. If we define NC(k) as the number of supporting cliques of

size k co-locations, the cost of generating supporting cliques is: O(
∑w−1

k=2 (k − 1) | NC(k) |).

For the uncertain feature tree algorithm, the cost of generating step can be divided into

three parts: finding out all maximal cliques, building a searching table, and generating

supporting cliques. Finding maximal cliques is a NP problem [15]. Thus we propose to do

this step on event level in our approach to avoid high computational cost. For each feature,

we use NCL as the average number of supporting cliques of each co-location and NFi as the

number of cliques related to each feature. So the cost of building the searching table is

| F | NFiNCL . To generate supporting cliques for each co-location set, we need to search a

92



line of the searching table and the worst case is O(NFi). So the cost of UFTree algorithm is

O(| F | NFiNCL +NFi

∑w
k=2 | C(k) |).

Ns Number of Features

OL The overlapping ratio of co-locations

I Average number of instances of an event

NL Number of co-locations

L Average length of co-locations

E Average number of events of each feature

C Average number of supporting cliques of a co-location in event level

Table 5.1. Parameters used in generating synthetic data

5.1.5. Experimental Results

In this section, we will first compare the algorithms on different synthetic datasets to

show the influence of parameters. Since there were no algorithms solving the same problem

with us, here we only compared our own method and analysis the results. Then we will use

the Shanghai taxi trip dataset to illustrate the application of our algorithms in real world.

Synthetic Data Generation: Our model of the synthetic data is similar of that of paper

[43]. Parameters in table 5.1 are used to generate synthetic data. We generated uncertainty

datasets with a broad range of values for the chosen parameters to evaluate the performance

of those algorithms. The length of co-location, the average number of supporting cliques, and

the average number of instances in an event will be picked from three Poisson distributions

P (L), P (C) and P (I). The generating step will be divided into three steps: 1. Generating a

co-location; 2. Generating event level supporting cliques for this co-location; 3. Transforming

each event into possible instances using a Poisson distribution in an area of given size. We

generated the datasets by setting different values for L (from 2 to 11), E (from 3 to 16), I

(from 2 to 8), and setting 5 values for OL : 0, 20%, 40%, 60%, 80%.

Figure 5.6 presents the running time of the algorithms under different values of those

93



4 6 8 10 12 14 16
0

100

200

300

400

500

R
un

ni
ng

 T
im

e 
(s

ec
)

Average number of events

 

 

UApriori
UApriori−E
UFTree

(a) NL = 10k, L = 4, E : 4 ∼ 16, I = 4

3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

R
un

ni
ng

 T
im

e 
(s

ec
)

Average number of instances

 

 

UApriori
UApriori−E
UFTree

(b) NL = 20k, L = 4, E = 5, I : 3 ∼ 8

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

R
un

ni
ng

 T
im

e 
(s

ec
)

Overlapping ratio (in percentage)

 

 

UApriori
UApriori−E
UFTree

(c) NL = 20k, L = 5, E = 3, I = 3, overlap-

ping ratio(%) : 0 ∼ 80

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

200

400

600

800

1000

1200

1400

R
un

ni
ng

 T
im

e 
(s

ec
)

Threshold of participation index (in percentage)

 

 

UApriori
UApriori−E
UFTree

(d) NL = 20k, L = 6, E = 3, I = 3,PI

threshold(%) : 0.02 ∼ 0.1

3 3.5 4 4.5 5 5.5 6 6.5 7
0

100

200

300

400

500

600

700

R
un

ni
ng

 T
im

e 
(s

ec
)

Average length of co−locations

 

 

UApriori
UApriori−E
UFTree

(e) NL = 20k, L : 3 ∼ 7, E = 3, I = 2

4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

600

700

800

900

R
un

ni
ng

 T
im

e 
(S

ec
)

Average length of co−locations

 

 

UFTree−SP
UFTree

(f) NL = 20k, L : 4 ∼ 12, E = 3, I = 3

Figure 5.6. Experimental results on synthetic data.

94



Figure 5.7. Four example co-locations from top 10 co-locations on the taxi

trip dataset. Rectangle areas represent the spatial features. Their trip ends

are represented by a triangle, circle and pentagram respectively.

parameters. We first compare those algorithms by changing the value of E and I. The

results are shown in figure 6(a) and 6(b). Figure 6(a) shows the influence of E. E has little

influence on the UFTree algorithm. However, with the increasing value of E, the advantage

of event pruning process becomes significant between UApriori and UApriori-E algorithms.

In figure 6(b), we can see that with the increase of the average number of instance, the

running times of both UApriori-E and UApriori algorithm increase quickly. But the UFTree

algorithm still uses a very short time. This phenomenon illustrates that generating cliques

in the searching table performs much better than the Apriori-gen process. From figure 6(c),

we can conclude that the overlapping ratio has litter influence on those algorithms. In figure

6(d), we tested the influence of the threshold of participation ratio on running time.

The UFTree algorithm performs much better due to its fast matching process and

95



searching strategy. To illustrate this phenomenon, we can simplify the expression of the

computational complexity and just concentrate on the generating process to analyze the

computational cost. For UApriori, UApriori-E and UFTree algorithms, the worst case of

generating the supporting cliques can be represented by O((k− 1) + (E × I)2), O((k− 1) +

E
2

+E× (I)2) and O((E× I)2) in generating the supporting cliques of a size k co-locations.

But with different values of parameters, the costs of UApriori and UFTree algorithm are

typically far less than that. For example, if event from one feature can only form one

event pair with another event and there is only one instance pair between them, the cost of

UApriori and UFTree will become O((k− 1) +E
2

+E× I2
) and O(E). So with the increase

of L, the UApriori Algorithm becomes much slower and the UFTree algorithms provide a

much better performance. We can see that in the results of figure 6(e).

Tree-based algorithm has been used in long pattern association rule mining. A sig-

nificant advantage of this algorithm is its subset pruning strategy. For example, when we

get {S1, S2, S3}, we need not to test {S2, S3} due to the anti-monotone property. In our

experiment mentioned above (figure 6(a) to 6(e)), we didn’t use this strategy. In figure 6(f),

we compared the UFTree algorithm with and without the subset pruning: UFTree-Subset

Pruning and UFTree algorithm. The results show that subset pruning can improve the

performance especially in mining co-locations of large sizes. The reason is larger sized co-

locations contain more subsets (equal to the number of power set). From the results, we can

see that when the size of co-locations is larger than 8, the UTFree-Subset Pruning method

made a significant improvement.

Data for the framework is based on trips of 17,000 Shanghai taxis for one day (May

29, 2009); the dataset contains 432,327 trips. Each trip includes the starting and destination

coordinates and the start/end time. Our real data experiment is based on the premise that

if people from two or more areas often take taxi to some other common areas, these two or

more areas may have some potential characteristics in common. For example, they may be

all university areas or residential areas. Of course, people from adjacent areas also tend to

have the same destinations because adjacent areas tend to have similar characteristics. But

96



the taxi trips start and end coordinates can be different even when they have the same start

and destination areas. For example, a university may have several entrances and people can

get on or off taxis at any entrance. So it becomes an uncertainty co-location problem. The

university area is an event and each entrance can be a possible instance in our uncertainty

co-location model.

We generate the dataset according to our uncertainty model from the real world taxi

trips. Firstly, we divided the region of Shanghai into 500× 300m rectangles. Top 680 areas

with more than 300 trip starting points are chosen as feature areas. Each area is a spatial

feature. For each feature s, an area e with a trip starting in s and ending in e is an event

of s. The trip ending points in an event e of s is then clustered into small groups, each

representing an instance with probability as the ratio of the number of trip ending points in

the small group over that in e.

We ran the mining algorithms on the taxi trips dataset with instance distance thresh-

old as 100 meters. Figure 5.7 shows 4 example results from the top 10 co-locations. Table

5.2 describes the feature areas of the co-locations in figure 5.7 and gives the possible reasons

for the co-locations. Feature areas in example 1 and 2 have the same characteristics (resi-

dences, school zones). Example 3 and 4 show three adjacent features. Especially in example

4, People’s Square and People’s Park are famous attractions in Shanghai. People often visit

them together.

5.2. Spatiotemporal Topic Association Detection on Tweets

detection of topic associations has several challenges. First, we need an appropriate

measurement to evaluate the closeness between two or more topics. The second challenge is

that each topic may have a large number of related tweets. We need algorithms scalable to a

large number of tweets and topics. More importantly, the closeness of topic associations can

be different in different time and region. So we must take time-region frame into consideration

to provide a more accurate measurement, which can make the calculation more complex and

expensive. Finally, the detection may result in a large number of topic associations. So it is

necessary to filter out the less interesting topic associations.

97



Co-location Samples with Top Rank Participation Index

1. {Chengxi Flower Garden }, { Shanxin Apartment},

{Zongtongwan Garden}

Explanation: All of those three areas are large and up-scale neighborhoods with

many community facilities and amenities.

2. {Shanghai Longbai Middle School, Longbai Rainforest Preschool},

{Longbai No.1 Elementary School, Xijiao Apartment},

{Shanghai Tianshan Middle School}

Explanation: These three areas largely overlap with a school zone.

3. {Hongxian Unit, Xinle Unit}, {Hongxian Unit}, {Xianxia Villa}

Explanation: Three adjacent residential areas.

4. {People’s Square, Shanghai Grand Theatre},{People’s Square},

{People’s Park}

Explanation: Three famous adjacent entertainment and tourism areas in Shanghai.

Table 5.2. Examples of real data co-location

First we define the closeness among topics by examining the co-occurrence of tweets

containing these topics. Closely related topics may tend to be talked in the similar time

and region. Based on this idea, we define the participation index of topic associations. If

the tweets of a set of topics tend to be found in the same time and region, they will have a

higher participation index. We evaluate this concept in our experiments by comparing the

measuring results of participation index with the human judgment. Based on the concept of

participation index, we propose three different types of queries to help users to extract topic

associations with different semantics in different time-region frames.

One of the challenges is that the number of tweets can be very large as well as the

topics and their combinations. For example, in the sample we collected, there are 364,333

geo-tagged tweets that contain the hashtag #job in the U.S. in July 2015. So how to develop

98



an efficient algorithm to help to calculate the participation index of a set of topics will be

the most important step. Here we propose a multi-layer geographic index and a time index

to help us to filter the topic sets under the threshold quickly to calculate the participation

index.

Another challenge in our work is the number of topics. Our dataset contains 492,492

hashtags. Any subset of these hashtags can be a potential topic association. To deal with

the exponential nature of the hashtag associations, we propose two methods to optimize

the mining algorithm: topic filtering and topic combination. In the topic filtering, we will

remove some topics which are not affected by other topics or real-world events. These

topics participate in a large number of associations and the resulting associations are not

interesting. Furthermore, we propose an algorithm to combine similar topics to further

reduce the complexity.

This work makes the following contributions:

• We define the participation index of a set of topics by measuring the time and loca-

tion distributions of tweets containing the topics; We define three types of queries

to answer questions related to topic associations;

• By introducing the time and location indexes, we propose an efficient algorithm to

calculate the participation index;

• Topic filtering and topic combination methods are developed to optimize the query-

ing results;

• We test our algorithm on a large Twitter dataset which contains 27,956,257 tweets

and 492,492 hashtags. The results demonstrate that our method is effective and

efficient.

5.2.1. Problem Definition

In this section, we introduce the definition of participation index of topic association

and three kinds of topic association queries. Table 5.3 gives the notations used in this work.

A tweet vi is represented by a triple (ti, li,Hi), where ti is the time when it is shared,

li is the location where it is shared, and Hi is a set of hashtags contained in the tweet. For

99



vi Tweet i

ti, li,Hi The time, region and hashtags of tweet vi

w, r Time and region windows

W,R Set of time and region windows

h,H Topic h and a set of topics H

t, d, θ, k Thresholds in query

Table 5.3. Notations and parameters

example, in the Figure 1.2, the triple for the first tweet v1:(t1, l1,H1) has the time information

September 24, location information l1, and the topics list {#amazon}.

Definition[Topic] The topics of each tweet are defined as the hashtags it contains.

One tweet can relate to several topics.

Let w and r denote time and region windows, and we define the pair of 〈w, r〉 as a

time-region frame. Each frame corresponds to a set of tweets V〈w,r〉 = {vi|ti ∈ w ∧ li ∈ r}.

Definition[Related Tweets] For each topic, its related tweets are the tweets which

contain this topic. So the set of related tweets of topic h in a time-region frame 〈w, r〉 can

be denoted as: V〈w,r〉(h) = {vi|h ∈ Hi ∧ ti ∈ w ∧ li ∈ r}.

Definition[Topic Set] A topic set is a set of hashtags and denoted as: H = {h1, h2, . . .}.

5.2.2. Calculating Participation Index

Definition[Neighbor Relationship] Two tweets, vi and vj, are neighbors when: 1)

|ti − tj| 6 ϕ and |li − lj| 6 δ where ϕ and δ are two user given thresholds on time and

distance.

Definition[Supporting Tweet] A set V = {v1, v2, . . . , vk} of k tweets supports a size-

k topic set H = {h1, h2, . . . , hk} if tweets in V are pairwise neighbors and hi ∈ Hi for

i = 1, 2, . . . , k. Each tweet vi in the set V is called supporting H with hi and the predicate

s(vi, hi,H) is true.

Definition[Participation Ratio] The participation ratio of topic h in the topic set H

100



in the time-region frame 〈w, r〉 is defined as:

(5.9) pr〈w,r〉(h,H) =
|{vi|s(vi, h,H) ∧ vi ∈ V 〈w, r〉}|

|V〈w,r〉(h)|

Definition[Participation Index] The participation index of topic set H in time-region

frame 〈w, r〉 is defined as:

(5.10) pi〈w,r〉(H) = minh∈Hpr〈w,r〉(h,H)

Definition[Topic Association] A topic set H is a topic association if its participation

index meets a given threshold, and such topic set will be denoted as Hc.

5.2.3. Definitions of Queries

Each query q(Wq, Rq, ϕq, δq, θ, k) contains six constraints: 1) A set of time windows

Wq = {w1, w2, . . .}; 2) A set of region windows Rq = {r1, r2, . . .}; 3) Time threshold ϕq;

4) Distance threshold δq and 5) A user given participation index threshold θ; 6) a rank

threshold k. Based on the return of queries, we define two kinds of queries: vertical query

and horizontal query. Then we replace k with a topic set to define super topic association

query which allows a user to find other topics associated with a topic set that he is interested

in.

Vertical Query: A vertical query qv(Wq, Rq, ϕq, δq, θ, k) includes five constraints and a

ranking threshold k. The Cartesian product of Wq and Rq defines a set of time-region frames,

which are all the possible combinations of time and region windows, {〈w, r〉|w ∈ Wq∧r ∈ Rq}.

Each frame corresponds to a set of tweets V〈w,r〉. For each time-region frame 〈w, r〉, we will

calculate the participation index of topic sets H using related tweets in V 〈w, r〉, and query

qv will return the sets of topic associations with the participation indexes larger than θ and

ranking in the top-k among all the topic sets.

Horizontal Query: Similarly, the horizontal query qh(Wq, Rq, ϕq, δq, θ, k) also has a

ranking threshold k. For each topic set H, we calculate its participation indexes pi〈w,r〉(H)

in different time-region frames 〈w, r〉 and then return the time-region frames with top-k

101



Vertical Query 

(k = 2)
Horizontal  Query

(k = 2)

Q(W, R, φ, δ, θ, k)

For each <w, r>, 

detect the topic 

associations

<w1, r1>

Topic Association PI

#deal, #buy 0.85

#deal, #bargains 0.72

#buy, #ebay 0.50

#buy, #bargains 0.36

<w1, r2>

Topic Association PI

#buy, #ebay 0.54

#deal, #buy 0.47

#buy, #bargains 0.39

#deal, #bargains 0.25

<w2, r2>

Topic Association PI

#deal, #bargains 0.82

#buy, #ebay 0.51

#deal, #buy 0.45

#buy, #bargains 0.30

...

Queries

<w1, r1>

#deal, #buy 0.85

#deal, #bargains 0.72

<w1, r2>

#buy, #ebay 0.54

#deal, #buy 0.47

<w2, r2>

#deal, #bargains 0.82

#buy, #ebay 0.51

...

#deal, #bargains

<w2, r2> 0.81

<w1, r1> 0.72

#buy, #ebay

<w1, r2> 0.54

<w2, r2> 0.51

#deal, #buy

<w1, r1> 0.85

<w1, r2> 0.47

#buy, #bargains

<w1, r2> 0.39

<w1, r1> 0.36

...

Super topic association query

H = {deal}

<w1, r1>

#deal, #buy 0.85

#deal, #bargains 0.72

<w1, r2>

#deal, #buy 0.47

#deal, #bargains 0.25

<w2, r2>

#deal, #bargains 0.82

#deal, #buy 0.45

...

Figure 5.8. Vertical query, horizontal query, and super topic association query

highest values of pi〈w,r〉(H). The number of returned frames may be less than k if there are

less than k frames having participation index higher than the given threshold θ.

Super Topic Association Query: The super topic association query, qh(Wq, Rq, ϕq, δq, θ,H′),

replaces k with a set of topics/hashtags H′. For each time-region frames 〈w, r〉 in Wq ×Rq,

it returns topic associations H where H′ ( H and pi〈w,r〉(H) larger than θ.

For example, Figure 5.8 shows the results of the vertical query and horizontal query.

W contains two time windows w1 and w2, and R contains two regions r1 and r2. Assuming

102



θ = 0.25, there are several hashtags and they can form topic associations in different time-

regions frames. The participation index of each topic association is shown in the figure.

For the vertical query, assuming k = 2, it will return the top-2 topic associations in each

frame. For example in 〈w1, r1〉, it returns {#deal,#buy} and {#deal,#bargains} since

their participation indexes are larger than the threshold and ranked in the top-2. For the

horizontal query, it returns the top related time-region frames. For instance, the topic

association {#deal,#bargians} achieves highest participation index in 〈w2, r2〉 and 〈w1, r1〉.

So when k = 2, it will return these two time-region frames for this topic association. For the

super topic association query, assuming that the set of hashtags inputted is {#deal}, it will

return the associations in different time-region frames which contain #deal.

5.2.4. Mining Topic Association

Given the definition of the participation index, we now propose algorithms for the

queries of mining topic association.

Calculation of the Participation Index: When considering the neighbor relationship

between tweets vi and vj, we redefine it as |ti − tj| ≤ ϕq and vi and vj are published in the

same city because real-world events are greatly affected by the geographic boundary. People

may be interested in completely different topics in different cities even the distance between

the two cities is short. Another reason is that sometimes we do not have an accurate location

of the tweet. We may only have the city level location from the tweets or from the profiles

of authors. Finally, users may have a city level active area and they may publish tweets

anywhere in the city they live.

From the definition of the participation ratio and index, we can see the most important

step in detecting topic association is counting the number of supporting tweets of each topic

h in H and calculating the participation index. The Algorithm 8 gives the process of this

step.

Previous work has developed R-tree based [100] or grid-based [85] index for spatial

related search engines. In this problem, the tweets V〈w,r〉(h) of each topic h are distributed

in a three dimensions space, latitude, longitude, and time. Based on our definition of neigh-

103



Algorithm 8: Calculation of Participation Index

Data: Topic geographic index IT and Time index Ic, set of topics H, time-region

frame 〈w, r〉

Result: Participation index of hashtag set H in 〈w, r〉

Begin:

Supporting[h] = 0 ;

Find cities containing topics in H by index IT , limited by region window r:

R(H) = B(h1) ∩B(h2) ∩ . . . , h ∈ H ;

for Each c in R(H) do

Get the common effective time window by time index Ic, limited by time window

w: Wcommon(H) = W〈w,c〉(h1) ∩W〈w,c〉(h2) ∩ . . . , h ∈ H ;

for h ∈ H do

Count the number n of tweets of topic h in Wcommon(H) at c by the time index

Ic ;

Supporting[h] = Supporting[h] + n ;

end

end

pr〈w,r〉(h,H) = Supporting[h]
|V〈w,r〉(h)| (Equation 5.9) ;

pi〈w,r〉(H) = minh∈Hpr〈w,r〉(h,H) (Equation 5.10) ;

return pi〈w,r〉(H)

bor relationship, we use the bitmap index as the Topic Geographic Index IT as shown in

Figure 5.9. For each topic h, IT contains the index IT (h) of h which records the geographic

distribution of tweets among cities related to topic h. If we divide the region window r into

city level as: r = {c1, c2, . . .}, where c represents a city level region window, we can denote

V〈w,r〉(h) as {V〈w,c1〉(h)∪ V〈w,c2〉(h)∪ . . .}. Each time index in a city c corresponds to a set of

tweets V〈w,c〉(h) if it is not empty (topic h has at least one tweet in region c during the time

windows in w), and we denote the set of these cities c as B(h).

Then we apply an Time index Ic(h) on the time dimension on each set of tweets

104



V〈w,c〉(h) as it is shown in Figure 5.9. Every tweet vi of topic h at city c has an “ effective

period” [ti−ϕq, ti +ϕq] defined by the user given time threshold ϕq in the query. The union

of the effective periods of tweets in V〈w,c〉(h) is the total effective periods of topic h in the

city c and denoted as W〈w,c〉(h). So based on the definition of neighbor relationship, for a

tweet vj of another topic, if vj was published at city c and during the period of W〈Wq ,c〉(h),

we can find at least one tweet vi of topic h which has neighbor relation with vj.

Topic A

City.1

City.3

..
.

Topic A at City 3
TimeA.1 A.2 A.3 A.4 A.5

Topic B ...

B.1

Topics

Common cities: 

(Bitmap)

City.2

City.3

..
.

Topic B at City 3

B.2 B.3 B.4

Figure 5.9. Calculation of participation index of topic sets H: There are

two topics in this example, #Topic A and B. #Topic A has related tweets

distributed in two cities. We use the bitmap index IT to record cities which

has tweets related to #Topic A. For the tweets in each city, e.g. the tweets

related to #Topic A in City.3, we will use the Time Index Ic to record the

begin and end time of the effective period and the tweets published during

these periods.

Algorithm 8 provides the process of the calculation of participation index. Given a

set of topics H and the time-region frame 〈w, r〉, we first find the cities which contain tweets

of every topic h in H. For each topic h, we have the topic geographic index IT (h) to help to

get the set of cities which have related tweets of h and we denote the set of cities as B(h).

So the intersection of all B(h), h ∈ H, is the set R(H) of cities containing related tweets of

105



every topic in H.

Based on our definition of neighbor relation, for a tweet vi(ti, li, {hi}), li ∈ c, we can

find a neighbor vj related to another topic topic hj only when hj has tweets published in city

c and ti ∈ W〈w,c〉(hj). For a set of topics, we can calculate the effective period W〈w,c〉(h) of

each topic in a city c. The common effective period of the topics is denoted as Wcommon(H).

For each topic h in H, if it has a related tweet v published in Wcommon(H) in the city c, we

can find at least one neighbor tweet from other topics in H. So v will be a supporting tweet

for H. In Algorithm 8, for each city c in R(H), we use the time index of tweets in city c of

topic h, Ic(h), which records the begin and end time of each effective period and the tweets

published during the period, to achieve the common period Wcommon(H). Tweets of each

topic in Wcommon(H) will be counted as supporting tweet for H. After scanning all the cities

in R(H), we can calculate the participation ratio of h by the number of supporting tweets

and get the participation index of H.

5.2.5. The Algorithms of Queries

For the horizontal query, we need to generate all the topic associations in each time-

region frame. Algorithm 9 provides this process. For each 〈w, r〉 frame in Wq×Rq, we firstly

put every topic in the set of a size-1 topic association {Hc}〈w,r〉1 . In each loop, we use the

apriori-gen algorithm [5] to generate size-n topic association candidates {H}n by size-(n−1)

topic association {Hc}〈w,r〉n−1 . Then we use the Algorithm 8 to calculate the participation index

of every candidate and get the size-n topic association. After generating topic associations

in every 〈w, r〉 frames, we will return every topic association H ∈ {Hc} and the top-k frames

which H achieves the highest participation index.

As shown in Algorithm 10, for each time-region frame 〈w, r〉, after we generate size-n

topic association, we will prune the topic association by removing the association ranking

out of k in {Hc}〈w,r〉 because such topic association cannot be a subset of a topic association

which has a higher participation index.

The algorithm of super topic association query is based on the method of the verti-

cal query. The difference is that the process will begin at generating size-(|H′| + 1) topic

106



Algorithm 9: Horizontal Query

Data: Tweets vt, l,H, topic geographic index IT , time index Ic, set of topics H,

time-region frame 〈w, r〉, query qh(Wq, Rq, ϕq, δq, θ, k)

Result: Topic association {Hc} and top-k 〈w, r〉 frames with highest participation

index of each topic association Hc

initialization;

{Hc} = φ ;

for 〈w, r〉 ∈ Wq ×Rq do

{Hc}〈w,r〉 = φ ;

Add all topics to {Hc}〈w,r〉1 ;

for n = 2; {Hc}〈w,r〉n−1 6= φ;n+ + do

{H}n = apriori− gen({Hc}〈w,r〉n−1 ) //Generate new topic association candidates ;

for ∀H ∈ {H}n do

Calculate the participation index of H by Algorithm 8 ;

end

{Hc}〈w,r〉n = {H|pi〈w,r〉(H) ≥ θ ∧H ∈ {H}n} ;

end

{Hc}〈w,r〉 = ∪n{Hc}〈w,r〉n ;

{Hc} = {Hc} ∪ {Hc}〈w,r〉 ;

end

for H ∈ {Hc} do

Get the top-k 〈w, r〉 frames with highest pi〈w,r〉(H) ;

end

return {Hc} and top-k 〈w, r〉 frames for H ∈ {Hc}

association candidates and these candidates must contain all the hashtags in H′.

107



Algorithm 10: Vertical Query

Data: Tweets vt, l,H, topic geographic index IT , time index Ic, set of topics H,

time-region frame 〈w, r〉, query qv(Wq, Rq, ϕq, δq, θ, k)

Result: Top-k topic association with highest participation index in every time-region

frames

initialization;

for 〈w, r〉 ∈ Wq ×Rq do

{Hc}〈w,r〉 = φ ;

Add all topics to {Hc}〈w,r〉1 ;

for n = 2; {Hc}〈w,r〉n−1 6= φ;n+ + do

{H}n = apriori− gen({Hc}〈w,r〉n−1 ) //Generate new topic association candidates ;

for ∀H ∈ {H}n do

Calculate the participation index of H by Algorithm 8 ;

end

{Hc}〈w,r〉n = {H|pi〈w,r〉(H) ≥ θ ∧H ∈ {H}n} ;

{Hc}〈w,r〉 = ∪{Hc}〈w,r〉n ;

Prune topic association in {Hc}〈w,r〉 and {Hc}〈w,r〉n by only keeping the topic

association with the participation index ranking in the top-k in {Hc}〈w,r〉 ;

end

end

return {{Hc}〈w,r〉|〈w, r〉 ∈ Wq ×Rq}

5.2.6. Optimization of Querying Results

Topic Combination: Many topic pairs or groups refer to the same thing or same event.

These topics may share similar words and be talked in the same area and the same time

(e.g. #amazonwishlist and #amazoncart). Some official Twitter accounts even list several

hashtags and tell users that all these hashtags are related to the same thing, for example,

#choicetvchemistry and #choicetvliplock in Table 5.4. If such a hashtag group contains n

108



hashtags, it may generate 2n topic associations. It increases computation time and leads to a

huge number of redundant associations. So before we apply our algorithm, we will combine

some hashtags which are related to the same thing together to make the algorithm more

efficient, and less number of detected results can help to extract useful topic associations

more easily.

We combine the hashtags in two steps: First, we build a hashtag similarity graph.

Each hashtag is a node in this graph and there is an edge between every hashtag pair. We

assign each edge a weight as:

Weight(hashtag1, hashtag2)

=
|Total longest common substring|

max{|hashtag1|, |hashtag2|}

(5.11)

We follow the method in [33] to get the longest substring. We remove the longest com-

mon substring of the two hashtags iteratively until there is no common substring longer than

1. For example, the longest substring of #amazonwishlist and #amazoncart is “amazon”

and the weight of the edge is 0.43.

Then we run the hierarchical clustering algorithm on this graph. The distance between

two clusters is defined as the average weight of edges between hashtags in these two clusters.

However, we have two other problems: 1) when we stop the hierarchical clustering, some

hashtags share long common substrings but actually, they do not refer to the same thing

(e.g. #braves and #travel). Table 5.4 lists more examples. All these examples are similar

strings but their participation index is 0.

To solve these problems, we introduce the participation index here. Before we combine

two clusters together, we will calculate the participation index of the new cluster. If it is

less than the threshold, we won’t combine them and we will go to next two clusters with the

highest average weight of edges. If all the top-N candidates cannot meet the requirement,

we will stop the hierarchical clustering. Table 5.4 shows that the use of participation index

in topic clustering can filter out hashtags “similar in appearance but dissimilar in spirit”.

109



Topic Pairs Wt PI

tamuc, tamuk 0.8 0

longlivela, longlivejr 0.8 0

rays, raya 0.75 0

live, livy 0.75 0

freedom, freedex 0.71 0

amazoncart, amazonwishlist 0.42 0.95

phillies, philly 0.625 0.81

travelnursing, travelhealthcare 0.375 0.68

nationaldonutday, nationaldoughnutday 0.84 0.48

choicetvchemistry, choicetvliplock 0.47 0.43

Table 5.4. Apply participation index in topic combination

Topic Filtering: Many topics follows a rhythm of a typical day. For example, they

happen more when there are more people using Twitter such as lunchtime. These topics

such as job advertisement are white noises and do not relate to other topics. Here we

propose a method to filter out these topics to prevent them from participating in most

topics associations.

In a time-region frame 〈w, r〉, we calculate the correlation coefficient between topic h

and all the topics by their distributions of number of tweets in each city c in r during the

time window w as:

(5.12) Cor(h,Htotal) =

∑n
u=1(|vhu| − |vhu|)(|vHu | − |vHu |)√∑n

u=1(|vhu| − |vhu|)2
∑n

u=1(|vHu | − |vHu |)2

Here, V〈u,c〉(h) = {vh1 , vh2 , . . .}, V〈u,c〉(H) = {vH1 , vH2 , . . .}, and u denotes a unit of time,

such as one day.

When a topic correlates with total volume of the tweets above a threshold, these

110



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is
tr
ib
ut
io
n

Days

nyc/0.96
texas/0.43
nbafinals/0.24
job/0.98
total

(a) New York

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is
tr
ib
ut
io
n

Days

nyc/0.30
texas/0.87
nbafinals/0.31
job/0.96
total

(b) Austin

Figure 5.10. The distribution of tweets of different topics in New York and

Austin.

tweets are considered as uninteresting and are excluded from the topic association mining.

Figures 10(a) shows that #nyc is a topic highly correlated to the number of tweets in New

York during a day while #texas (correlation index of 0.87) is not. In Austin however as

shown in Figure 10(b), #texas is a highly correlated topic (correlation index of 0.87) while

#nyc and #nbafinals are not. #job is a highly correlated topic in both cities. So the topics

like #job will not be considered in topic association mining since such topics are not affected

by other topics or real-world events.

111



5.2.7. Experimental Results

In this section, we first introduce the dataset used in the experiment. Then we

evaluate the effect of parameters of queries by comparing the running time of each query.

Finally, we demonstrate the experiment results in some time-region frames to explain the

meaning of the topic association. We show the results of topic filtering. We compare the

results produced by our algorithms with human judges.

Parameter Definition Default value Test scope

NH The total number of topics used 1,000 [100, 2000]

Wq The total time windows 20 days [1, 20]

Rq The total region window US [city level, U.S.]

Wgran The granularity of time window 1 [1, 20]

Rgran The granularity of region window 1 [city level, U.S.]

ϕq Time threshold of neighbor relation 1 hour fixed

δq Distance threshold of neighbor relation City level fixed

θ The threshold of the participation index 0.8 [0.04 0.8]

k The ranking threshold of the query 40,000 [500 40,000]

Table 5.5. Parameters used in queries

We collected tweets published from May 21 to June 15, 2015, using Twitter Streaming

API1 with the spatial bounding box [24◦3′N , 127◦7′W , 48◦8′N , 65◦5′W ], which covers U.S.

mainland. The dataset consists 27,956,257 tweets from 492,492 topics. We removed the

topics with less than 1,000 related tweets, and finally, we selected 10,201,960 tweets which

contain both geotag and hashtag from 2,000 topics.

Firstly, we evaluate the effect of different parameters on the running time. Table 5.5

gives the list of parameters and the default values. Figure 11(a) shows the running time of

vertical query and horizontal query under a different number of topics. More topics mean

1https://dev.twitter.com/streaming/overview

112



0 500 1000 1500 2000
0

100

200

300

400
T

im
e 

(s
ec

.)

Total number of topics

Vertical Query
Horizontal Query

(a) Number of topics NH

Total 1/2 1/4 1/8 1/16 1/32 City
0

20

40

60

80

100

120

T
im

er
(s

ec
.)

RegionrWindow

VerticalrQuery
HorizontalrQuery

(b) Region window Rq

15 16 17 18 19

June

0

500

1000

1500

N
um

be
r 

of
 T

w
ee

ts

(c) Time window Wq

2 4 8 16 State
100

105

110

115

120

125

T
im

ez
(s

ec
.)

Regionzgranularity

VerticalzQuery
HorizontalzQuery

(d) Rgran

2 4 6 8 10
100

200

300

400

500

600

700

800

T
im

ez
(s

ec
.)

Timezgranularity

VerticalzQuery
HorizontalzQuery

(e) Wgran

0.05 0.1 0.15 0.2 0.25 0.3
10

2

10
3

10
4

T
im

ez
(s

ec
.)

ThresholdzofzPI

VerticalzQuery
HorizontalzQuery

(f) θ

0 1 2 3 4

xu10
4

0

20

40

60

80

100

T
im

eu
(s

ec
.)

Rankinguthresholduk

VerticaluQuery
HorizontaluQuery

(g) Ranking threshold k (1)

0 1 2 3

xu10
4

100

200

300

400

500

600

T
im

eu
(s

ec
.)

Rankinguthresholduk

VerticaluQuery
HorizontaluQuery

(h) Ranking threshold k (2)

Figure 5.11. Running time under different setting of parameters.

more topic associations under the same settings and the increase of the number of topic

associations can be exponential in the worst case. The running time in Figure 11(a) shows

this trend. In our algorithm, each topic will have a time index in each city and a geographic

index to record its distribution. So the increase of the number of topics will take more

memory to store the indexes but it has little influence on the running time.

In this experiment, we use four parameters to describe the time-region frame. Wq and

Rq are largest time and region frame and Wgran and Rgran are use used to divide the largest

113



time and region frames into smaller ones, i.e. we divide Wq and Rq based on the length of

Wgran and Rgran.

Firstly, we test the influence of the region window Rq. We divide the cities in U.S.

into 1 to 32 groups equally and record the average querying time on these groups. Figure

11(b) gives the results of this experiment. The numbers on the x-axis represent the Rgran

proportion of each group of the total region window. For example, 1/2 means that we divide

the whole area of the U.S. into two groups and the y-axis is the average running time of the

queries on these two groups. The results show that the running time has a linear relationship

with the scope of the region window, e.g. the running time of two groups is about half of

the “total” case and twice as much as the “1/4” case. The two queries perform differently

in the “city” case, where we set each city as the region window. Running the queries in city

granularity will generate a large number of topic associations. So the horizontal query has

a longer running time since the vertical query can prune more topic association candidates.

We will provide more analysis in the following section.

The influence of time window size is shown in Figure 1(b). Similar as the results of

changing the total region window, the running time has a linear relationship with the time

window. The increase of time and region window needs additional indexes to record the

distribution of new tweets. If we only increase the region window, for each topic set, we need

to scan more cities to calculate the participation. If we increase the time window only, for

each city we need to scan a larger time window by the time index. That explains why the

running time increases linearly with the region and time window.

Then we fixed the largest time and region windows and change the granularity of the

sub-time and sub-region windows. If we set smaller time or region window, each query will

be faster, but the query needs to be executed more times. When changing the granularity of

the region window (Figure 11(d)), we can see that the total running time does not change

too much. It only increases in the “state” case because some state only contains one city and

the query will take longer time. Figure 11(e) is the results of the running time of different

time window granularities. The total running time can be smaller when we set a longer time

114



window granularity. Actually, we can estimate the results in Figure 11(d) and 11(e) by the

results in Figure 11(b) and 1(b).

City: New York Chicago Houston

1 braves, bruins rockets, rays traffic, houstonastros

2 nationaldonutday, astros, traffic, houstontexans,

uclfinal rockets houstonastros

3 sundayfunday, sunday astros, rockets, rays traffic, houstontexans

4 gsw, astros, rays, houstontexans,

nbafinals2015 texasedmfamily houstonastros

5 nbafinals, cle rockets, rays, texasedmfamily whodatnation, gramfam

Table 5.6. Vertical query

The threshold of the participation index greatly affects the number of topic associ-

ations. As shown in Figure 11(f), with the decreasing of the value of the threshold θ, the

running time increase quickly since there will be an exponential growth of the number of

topic associations. Here the ranking threshold k of the vertical query is big enough, so the

optimization is not useful and the running time of both the two queries is similar.

gsw, nbafinals2015 nbafinals, cle

Frame 1 New York, June 7 New York, June 7

Frame 2 New York, June 4 New York, June 4

Frame 3 New York, June 16 New York, June 14

Table 5.7. Horizontal query

In Figure 11(g) and 11(h), we test the influence of the ranking threshold k of vertical

query. In these two experiments, we set the value of the threshold of participation index

θ as 0.8 and 0.12 separately. In both the two cases, the ranking threshold greatly affects

the running time. So when this threshold is not large enough, during the generating step,

115



we can prune a part of topic associations which have their participation index larger than

the threshold θ. So the running time of the vertical query will be much smaller than the

horizontal query. With the increase of the ranking threshold k, the gap of the running time

of the two queries becomes smaller.

The Topic Association: In this experiment, we use the results of the two queries to

show that our algorithm can detect meaningful topic associations. We also compare the

results with/without the topic filtering method.

Vertical Query: Table 5.6 shows the top-5 topic associations (sorted by participation

index) in New York, Chicago, and Houston from May 25 to Jun 15. The relationship

between hashtags in most topic associations can be easily revealed by investigating the real

world event they refer to. For example, “#gsw,#nbafinals2015” and “#nbafinals,#cle”,

#gsw and #cle refer to the two teams which play against in the NBA final, 2015.

#nbafinals PI #amazoncart PI

#gsw 0.79 #amazonwishlist 0.95

#cle 0.76 #einkaufen 0.94

#nbafinals2015 0.71 #bargains 0.92

Table 5.8. Super topic association query

Horizontal Query: Table 5.7 shows examples of horizontal query results. Here we

select two topic associations in Table 5.6, gsw, nbafinals2015 and nbafinals, cle. For the

first topic association, the days when it achieves highest participation indexes is June 7, 4,

and 16, and for the second example, they are June 7, 4, and 14. If we check the schedule of

NBA finals in 2015, we will find that there exists a match in all these days. So we can see

that the horizontal query will return the most related time-region frames.

Super Topic Association Query: Table 5.8 lists two examples for super topic associ-

ation query. We set H′ as {#nbafinals} and {#amazoncart} and the query returns the

topic associations containing those hashtags.

116



Before Filtering After Filtering

nyc, newyork braves, bruins

job, hiring nationaldonutday, uclfinal

job, nyc sundayfunday, sunday

job, newyork gsw, nbafinals2015

hiring, jobs nbafinals, cle

Table 5.9. Topic filtering

Topic Filtering: In Table 5.9 we compare the querying results with and without the

topic filtering. We apply the same settings with the experiment for the vertical query. Here

we list the top-5 topic associations which have the highest participation indexes in New

York from May 25 to Jun 15. If we do not apply the topic filtering method, we will detect

lots of topic associations including nyc, newyork and job, hiring. They have a very high

participation index because people discuss them very often and they can form supporting

cliques easily. After we filter such topics, we can see that the new results are more meaningful.

Most of them are caused by some real-world event.

<=0 (0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
is

tr
ib

ut
io

n

Spearman'skRank

Figure 5.12. Compare the ranking based on the participation indexes with

the human judgment.

To verify the effectiveness of participation index, which greatly affects the final results,

117



we compare the experimental results with human judgment in this experiment. Since it is

difficult to give an appropriate measurement to judge the tightness between topics, we only

compare the tightness of topic sets. First, we create topic set groups. Each topic set group

contains 5 topic sets and each topic sets contain two topics. The participation indexes of

these five topic sets should be in the range of (0, 0.05], (0.05, 0.15], (0.15, 0.3], (0.3, 0.45],

and (0.45, 1] respectively. The gap of participation indexes of each two topic set should

be larger than 0.05. Based on the participation indexes, we can get a rank of these topic

sets X. Then we manually compare the tightness of topic sets in the same group and give

a rank Y based on their judgment. To make the judgment easier and more accurate, the

topic sets in the same group will share a common topic. Finally, we use Spearman’s rank

correlation coefficient to compare the human judgment with the experiment (rank based on

the participation index).

(5.13) ρ = 1− 6
∑

(xi − yi)2

n(n2 − 1)

The xi and yi is the ranking of the ith element in the topic set group given by

participation index and human judgment. Since we fix the size of topic set group as five, the

value of n is 5. The average value of the Spearman’s rank correlation of our 200 cases is 0.68,

which illustrates that the participation index can measure the tightness of topics effectively.

Figure 5.12 shows the distribution of the values of the Spearman’s rank correlation coefficient.

Most cases have the Spearman’s rank correlation coefficient larger than 0.4 and 40 percent

cases have the value larger than 0.8.

118



CHAPTER 6

CONCLUSION

In this dissertation, we study the location estimation, event detection, and topic as-

sociation analysis. For location estimation, we propose different indexes to measure social

closeness and friend structure, the friend co-location, and the local social coefficient. We

investigate the relationship between the two indexes and geographic distance. Based on this,

we develop two user location estimation models, the friend co-location based model and the

local social coefficient mode. Since the two models work better in different cases, we further

combine these two models to avoid the disadvantages of each. To improve the estimation

accuracy, we also propose an anomaly friends elimination method and a confidence-based it-

eration method. Finally, we test these models on two different datasets and demonstrate how

the models work under different situations. The experiment results show that our method

can improve the estimation accuracy by 5%-20% compared with the baseline algorithms.

Then we propose a framework for local event detection. The proposed LEDS frame-

work can detect smaller-scale and more types of local events. The framework uses terms

instead of number of tweets to detected events which are more sensitive. The density-based

clustering and time-location-distribution-based method can help to cluster tweets which may

be related to the same event effectively. Finally, we extract the time, location, and content

information from each cluster. The results show that greater variety of local events can be

detected by our method including shows, disasters, parties, business activities, and personal

meetings.

Finally, we introduce the algorithm for mining topic associations on Twitter data. We

apply participation index as the measurement of topic closeness. We define three different

kinds of queries to mining the topic association. For each query, we design the algorithm

for it. Two optimization methods, topic filtering and topic combination are used to help in

getting a better query results. We test our method on a large Twitter data set with 27,956,257

tweets which contain both hashtags and geo-tag. The results of the experiment show that

119



the mining algorithms are effective and efficient. We also compare the experimental results

with human judgment to verify the effectiveness of using the participation index to measure

the closeness among topics.

In the future work, we will focus on improving the accuracy of real-time location

estimation especially when the user is traveling to other cities. We will also try to improve

the results of the event detection by filtering more meaningless events and provide a better

description of the events. We can also extend the work of mining topic association to event

association detection.

120



REFERENCES

[1] Hamed Abdelhaq, Christian Sengstock, and Michael Gertz, Eventweet: Online localized

event detection from twitter, Proceedings of the VLDB Endowment 6 (2013), no. 12,

1326–1329.

[2] Harshavardhan Achrekar, Avinash Gandhe, Ross Lazarus, Ssu-Hsin Yu, and Benyuan

Liu, Predicting flu trends using twitter data, INFOCOM WKSHPS, IEEE, 2011,

pp. 702–707.

[3] Charu C. Aggarwal, Yan Li, Jianyong Wang, and Jing Wang, Frequent pattern mining

with uncertain data, Proceedings of the 15th ACM SIGKDD, 2009.

[4] Rakesh Agrawal and Ramakrishnan Srikant, Fast algorithms for mining association

rules in large databases, Proc. VLDB, 1994.

[5] Rakesh Agrawal, Ramakrishnan Srikant, et al., Fast algorithms for mining association

rules, VLDB, vol. 1215, 1994, pp. 487–499.

[6] Einat Amitay, Nadav Har’El, Ron Sivan, and Aya Soffer, Web-a-where: geotagging

web content, SIGIR, ACM, 2004, pp. 273–280.

[7] Paolo Arcaini, Gloria Bordogna, Dino Ienco, and Simone Sterlacchini, User-driven

geo-temporal density-based exploration of periodic and not periodic events reported in

social networks, Information Sciences (2016).

[8] Sitaram Asur and Bernardo A Huberman, Predicting the future with social media,

WI-IAT, vol. 1, IEEE, 2010, pp. 492–499.

[9] Lars Backstrom, Eric Sun, and Cameron Marlow, Find me if you can: improving

geographical prediction with social and spatial proximity, WWW, ACM, 2010, pp. 61–

70.

[10] Hila Becker, Mor Naaman, and Luis Gravano, Beyond trending topics: Real-world

event identification on twitter, (2011), 438–441.

[11] Jon Louis Bentley, Multidimensional binary search trees used for associative searching,

Communications of the ACM 18 (1975), no. 9, 509–517.

121



[12] Thomas Bernecker, Tobias Emrich, Hans-Peter Kriegel, Matthias Renz, Stefan Zankl,

and Andreas Züfle, Efficient probabilistic reverse nearest neighbor query processing on

uncertain data, Proc. VLDB Endow. (2011).

[13] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre,

Fast unfolding of communities in large networks, Journal of Statistical Mechanics:

Theory and Experiment 2008 (2008), no. 10, P10008.

[14] Han Bo and Paul COOK1 Timothy BALDWIN, Geolocation prediction in social media

data by finding location indicative words, Proceedings of COLING 2012: Technical

Papers (2012), 1045–1062.

[15] Coen Bron and Joep Kerbosch, Algorithm 457: finding all cliques of an undirected

graph, Commun. ACM (1973).

[16] Ceren Budak, Theodore Georgiou, Divyakant Agrawal, and Amr El Abbadi, Geo-

scope: Online detection of geo-correlated information trends in social networks, VLDB

7 (2013), no. 4, 229–240.

[17] Ceren Budak, Theodore Georgiou, and Divyakant Agrawal Amr El Abbadi, Geowatch:

Online detection of geo-correlated information trends in social networks, Tech. report,

Technical report, UCSB, 2013.

[18] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu, Mafia: a maximal

frequent itemset algorithm, TKDE (2005).

[19] Simon Carter, Manos Tsagkias, and Wouter Weerkamp, Twitter hashtags: Joint trans-

lation and clustering, ACM WebSci (2011).

[20] Mete Celik, James M. Kang, and Shashi Shekhar, Zonal co-location pattern discovery

with dynamic parameters, Proceedings of the Seventh IEEE ICDM, 2007.

[21] Junghoon Chae, Dennis Thom, Harald Bosch, Yun Jang, Ross Maciejewski, David S

Ebert, and Thomas Ertl, Spatiotemporal social media analytics for abnormal event

detection and examination using seasonal-trend decomposition, VAST, IEEE, 2012,

pp. 143–152.

122



[22] Swarup Chandra, Latifur Khan, and FB Muhaya, Estimating twitter user location using

social interactions–a content based approach, SocialCom, IEEE, 2011, pp. 838–843.

[23] Tao Cheng and Thomas Wicks, Event detection using twitter: a spatio-temporal ap-

proach, PloS one 9 (2014), no. 6, e97807.

[24] Zhiyuan Cheng, James Caverlee, and Kyumin Lee, You are where you tweet: a content-

based approach to geo-locating twitter users, Proceedings of the 19th ACM international

conference on Information and knowledge management, ACM, 2010, pp. 759–768.

[25] Eunjoon Cho, Seth A Myers, and Jure Leskovec, Friendship and mobility: user move-

ment in location-based social networks, Proceedings of the 17th ACM SIGKDD, ACM,

2011, pp. 1082–1090.

[26] Aaron Clauset, Mark EJ Newman, and Cristopher Moore, Finding community struc-

ture in very large networks, Physical review E 70 (2004), no. 6, 066111.

[27] Ryan Compton, David Jurgens, and David Allen, Geotagging one hundred million twit-

ter accounts with total variation minimization, arXiv preprint arXiv:1404.7152 (2014).

[28] Michele Coscia, Fosca Giannotti, and Dino Pedreschi, A classification for community

discovery methods in complex networks, Statistical Analysis and Data Mining 4 (2011),

no. 5, 512–546.

[29] Clodoveu A Davis Jr, Gisele L Pappa, Diogo Rennó Rocha de Oliveira, and Filipe

de L Arcanjo, Inferring the location of twitter messages based on user relationships,

Transactions in GIS 15 (2011), no. 6, 735–751.

[30] Xiao Feng, Shuwu Zhang, Wei Liang, and Zhe Tu, Real-time event detection based on

geo extraction and temporal analysis, ADMA, Springer, 2014, pp. 137–150.

[31] David Flatow, Mor Naaman, Ke Eddie Xie, Yana Volkovich, and Yaron Kanza, On the

accuracy of hyper-local geotagging of social media content, Proceedings of the Eighth

ACM International Conference on Web Search and Data Mining, ACM, 2015, pp. 127–

136.

[32] Santo Fortunato, Community detection in graphs, Physics Reports 486 (2010), no. 3,

75–174.

123



[33] Carol Friedman and Robert Sideli, Tolerating spelling errors during patient validation,

Computers and Biomedical Research 25 (1992), no. 5, 486–509.

[34] D.G. Corneil G.D. Mulligan, Corrections to bierstone’s algorithm for generating

cliques, Commun. ACM (1972).

[35] Michelle Girvan and Mark EJ Newman, Community structure in social and biological

networks, Proceedings of the National Academy of Sciences 99 (2002), no. 12, 7821–

7826.

[36] Kimberly Glasgow and Clayton Fink, Hashtag lifespan and social networks during

the london riots, Social Computing, Behavioral-Cultural Modeling and Prediction,

Springer, 2013, pp. 311–320.

[37] K. Gouda and M.J. Zaki, Efficiently mining maximal frequent itemsets, ICDM, 2001.

[38] Zhanying He, Chun Chen, Jiajun Bu, Can Wang, Lijun Zhang, Deng Cai, and Xiaofei

He, Document summarization based on data reconstruction., AAAI, 2012.

[39] Alexander Hinneburg and Daniel A Keim, An efficient approach to clustering in large

multimedia databases with noise, KDD, vol. 98, 1998, pp. 58–65.

[40] Tin Kam Ho, Jonathan J Hull, and Sargur N Srihari, Decision combination in multiple

classifier systems, Pattern Analysis and Machine Intelligence, IEEE Transactions on

16 (1994), no. 1, 66–75.

[41] Jianbin Huang, Heli Sun, Yaguang Liu, Qinbao Song, and Tim Weninger, Towards

online multiresolution community detection in large-scale networks, PloS one 6 (2011),

no. 8, e23829.

[42] Yan Huang, Jian Pei, and Hui Xiong, Mining co-location patterns with rare events from

spatial data sets, Geoinformatica (2006).

[43] Yan Huang, Shashi Shekhar, and Hui Xiong, Discovering colocation patterns from

spatial data sets: A general approach, TKDE (2004).

[44] Bernardo A. Huberman, Daniel M. Romero, and Fang Wu, Social networks that matter:

Twitter under the microscope, CoRR abs/0812.1045 (2008).

124



[45] David Inouye and Jugal K Kalita, Comparing twitter summarization algorithms for

multiple post summaries, PASSAT and SocialCom, IEEE, 2011, pp. 298–306.

[46] David Jurgens, That’s what friends are for: Inferring location in online social media

platforms based on social relationships, ICWSM, 2013.

[47] Krishna Y Kamath, James Caverlee, Kyumin Lee, and Zhiyuan Cheng, Spatio-temporal

dynamics of online memes: a study of geo-tagged tweets, WWW, International World

Wide Web Conferences Steering Committee, 2013, pp. 667–678.

[48] Sheila Kinsella, Vanessa Murdock, and Neil O’Hare, I’m eating a sandwich in glasgow:

modeling locations with tweets, Proceedings of the 3rd international workshop on Search

and mining user-generated contents, ACM, 2011, pp. 61–68.

[49] Longbo Kong, Zhi Liu, and Yan Huang, Spot: Locating social media users based on

social network context, Proceedings of the VLDB Endowment 7 (2014), no. 13, 1681–

1684.

[50] John Krumm and Eric Horvitz, Eyewitness: Identifying local events via space-time

signals in twitter feeds, (2015).

[51] Su Mon Kywe, Tuan-Anh Hoang, Ee-Peng Lim, and Feida Zhu, On recommending

hashtags in twitter networks, Social Informatics, Springer, 2012, pp. 337–350.

[52] Erwan Le Martelot and Chris Hankin, Fast multi-scale detection of relevant commu-

nities in large-scale networks, The Computer Journal 56 (2013), no. 9, 1136–1150.

[53] Ryong Lee and Kazutoshi Sumiya, Measuring geographical regularities of crowd behav-

iors for twitter-based geo-social event detection, LBSN, ACM, 2010, pp. 1–10.

[54] Ryong Lee, Shoko Wakamiya, and Kazutoshi Sumiya, Discovery of unusual regional

social activities using geo-tagged microblogs, WWW 14 (2011), no. 4, 321–349.

[55] Rui Li, Kin Hou Lei, Ravi Khadiwala, and Kevin Chen-Chuan Chang, Tedas: A

twitter-based event detection and analysis system, ICDE, IEEE, 2012, pp. 1273–1276.

[56] Rui Li, Shengjie Wang, Hongbo Deng, Rui Wang, and Kevin Chen-Chuan Chang,

Towards social user profiling: unified and discriminative influence model for inferring

home locations, Proceedings of the 18th ACM SIGKDD, ACM, 2012, pp. 1023–1031.

125



[57] Zhi Liu and Yan Huang, Closeness and structure of friends help to estimate user

locations, International Conference on Database Systems for Advanced Applications,

Springer, 2016, pp. 33–48.

[58] Alan M MacEachren, Anthony C Robinson, Anuj Jaiswal, Scott Pezanowski, Alexander

Savelyev, Justine Blanford, and Prasenjit Mitra, Geo-twitter analytics: Applications

in crisis management, 25th International Cartographic Conference, 2011, pp. 3–8.

[59] Jalal Mahmud, Jeffrey Nichols, and Clemens Drews, Home location identification of

twitter users, CoRR abs/1403.2345 (2014).

[60] Robert Munro, Sanjay Chawla, and Pei Sun, Complex spatial relationships, Proceed-

ings of the Third IEEE ICDM, 2003.

[61] Ani Nenkova and Lucy Vanderwende, The impact of frequency on summarization,

Microsoft Research, Redmond, Washington, Tech. Rep. MSR-TR-2005-101 (2005).

[62] Mark EJ Newman, Mixing patterns in networks, Physical Review E 67 (2003), no. 2,

026126.

[63] Mark EJ Newman and Michelle Girvan, Finding and evaluating community structure

in networks, Physical review E 69 (2004), no. 2, 026113.

[64] Jukka-Pekka Onnela, Samuel Arbesman, Marta C González, Albert-László Barabási,

and Nicholas A Christakis, Geographic constraints on social network groups, PLoS one

6 (2011), no. 4, e16939.

[65] Saša Petrović, Miles Osborne, and Victor Lavrenko, Streaming first story detection

with application to twitter, NAACL, Association for Computational Linguistics, 2010,

pp. 181–189.

[66] Jay M Ponte and W Bruce Croft, A language modeling approach to information re-

trieval, Proceedings of the 21st annual international conference on Research and de-

velopment in information retrieval, ACM, 1998, pp. 275–281.

[67] Mason A Porter, Jukka-Pekka Onnela, and Peter J Mucha, Communities in networks,

Notices of the AMS 56 (2009), no. 9, 1082–1097.

[68] Reid Priedhorsky, Aron Culotta, and Sara Y Del Valle, Inferring the origin locations

126



of tweets with quantitative confidence, Proceedings of the 17th ACM conference on

Computer supported cooperative work and social computing, ACM, 2014, pp. 1523–

1536.

[69] Afshin Rahimi, Trevor Cohn, and Timothy Baldwin, Twitter user geolocation using a

unified text and network prediction model, arXiv preprint arXiv:1506.08259 (2015).

[70] Jörg Reichardt and Stefan Bornholdt, Statistical mechanics of community detection,

Physical Review E 74 (2006), no. 1, 016110.

[71] Alan Ritter, Oren Etzioni, Sam Clark, et al., Open domain event extraction from

twitter, ACM SIGKDD, ACM, 2012, pp. 1104–1112.

[72] Stephen Roller, Michael Speriosu, Sarat Rallapalli, Benjamin Wing, and Jason

Baldridge, Supervised text-based geolocation using language models on an adaptive grid,

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning, Association for Computa-

tional Linguistics, 2012, pp. 1500–1510.

[73] Adam Sadilek, Henry Kautz, and Jeffrey P Bigham, Finding your friends and following

them to where you are, WSDM, ACM, 2012, pp. 723–732.

[74] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo, Earthquake shakes twitter users:

real-time event detection by social sensors, WWW, ACM, 2010, pp. 851–860.

[75] Takeshi Sakaki, Masahide Okazaki, and Yoshikazu Matsuo, Tweet analysis for real-

time event detection and earthquake reporting system development, TKDE 25 (2013),

no. 4, 919–931.

[76] Jagan Sankaranarayanan, Hanan Samet, Benjamin E Teitler, Michael D Lieberman,

and Jon Sperling, Twitterstand: news in tweets, ACM SIGSPATIAL, ACM, 2009,

pp. 42–51.

[77] Salvatore Scellato, Cecilia Mascolo, Mirco Musolesi, and Vito Latora, Distance matters:

geo-social metrics for online social networks, Proceedings of the 3rd conference on

Online social networks, 2010, pp. 8–8.

127



[78] Salvatore Scellato, Anastasios Noulas, Renaud Lambiotte, and Cecilia Mascolo, Socio-

spatial properties of online location-based social networks., ICWSM 11 (2011), 329–336.

[79] Axel Schulz, Aristotelis Hadjakos, Heiko Paulheim, Johannes Nachtwey, and Max

Mühlhäuser, A multi-indicator approach for geolocalization of tweets., ICWSM, 2013.

[80] Shashi Shekhar and Yan Huang, Discovering spatial co-location patterns: A summary

of results, SSTD, 2001.

[81] SocialMediaToday, http://socialmediatoday.com/irfan-ahmad/1854311/twitter-

statistics-ipo-infographic, 2013.

[82] Takuya Sugitani, Masumi Shirakawa, Tenshi Hara, and Shojiro Nishio, Detecting local

events by analyzing spatiotemporal locality of tweets, WAINA, IEEE, 2013, pp. 191–196.

[83] Ramine Tinati, Leslie Carr, Wendy Hall, and Jonny Bentwood, Identifying communi-

cator roles in twitter, WWW, ACM, 2012, pp. 1161–1168.

[84] Oren Tsur and Ari Rappoport, What’s in a hashtag?: content based prediction of the

spread of ideas in microblogging communities, WSDM, ACM, 2012, pp. 643–652.

[85] Subodh Vaid, Christopher B Jones, Hideo Joho, and Mark Sanderson, Spatio-textual

indexing for geographical search on the web, SSTD, Springer, 2005, pp. 218–235.

[86] Yves van Gennip, Blake Hunter, Raymond Ahn, Peter Elliott, Kyle Luh, Megan

Halvorson, Shannon Reid, Matthew Valasik, James Wo, George E Tita, et al., Com-

munity detection using spectral clustering on sparse geosocial data, SIAM Journal on

Applied Mathematics 73 (2013), no. 1, 67–83.

[87] Lucy Vanderwende, Hisami Suzuki, Chris Brockett, and Ani Nenkova, Beyond sum-

basic: Task-focused summarization with sentence simplification and lexical expansion,

Information Processing & Management 43 (2007), no. 6, 1606–1618.

[88] Lizhen Wang, Pinping Wu, and Hongmei Chen, Finding probabilistic prevalent coloca-

tions in spatially uncertain data sets, IEEE TKDE (2013).

[89] Xiao Fan Wang and Guanrong Chen, Complex networks: small-world, scale-free and

beyond, Circuits and Systems Magazine, IEEE 3 (2003), no. 1, 6–20.

[90] Xufei Wang, Huan Liu, Peng Zhang, and Baoxin Li, Identifying information spreaders

128



in twitter follower networks, Tech. Report TR-12-001, School of Computing, Informat-

ics, and Decision Systems Engineering, Arizona State University, 2012.

[91] Kazufumi Watanabe, Masanao Ochi, Makoto Okabe, and Rikio Onai, Jasmine: a

real-time local-event detection system based on geolocation information propagated to

microblogs, CIKM, ACM, 2011, pp. 2541–2544.

[92] Andreas Weiler, Michael Grossniklaus, and Marc H Scholl, Run-time and task-based

performance of event detection techniques for twitter, CAiSE, Springer, 2015, pp. 35–

49.

[93] Jianshu Weng and Bu-Sung Lee, Event detection in twitter., ICWSM 11 (2011), 401–

408.

[94] Lei Yang, Tao Sun, Ming Zhang, and Qiaozhu Mei, We know what@ you# tag: does

the dual role affect hashtag adoption?, WWW, ACM, 2012, pp. 261–270.

[95] M.J. Zaki, Scalable algorithms for association mining, TKDE (2000).

[96] Chengxiang Zhai and John Lafferty, A study of smoothing methods for language models

applied to ad hoc information retrieval, Proceedings of the 24th annual international

ACM SIGIR conference on Research and development in information retrieval, ACM,

2001, pp. 334–342.

[97] Xin Zhang, Nikos Mamoulis, David W. Cheung, and Yutao Shou, Fast mining of spatial

collocations, ACM SIGKDD, 2004.

[98] Wayne Xin Zhao, Jing Jiang, Jing He, Yang Song, Palakorn Achananuparp, Ee-Peng

Lim, and Xiaoming Li, Topical keyphrase extraction from twitter, ACL HLT, Associa-

tion for Computational Linguistics, 2011, pp. 379–388.

[99] Xiangmin Zhou and Lei Chen, Event detection over twitter social media streams, The

VLDB journal 23 (2014), no. 3, 381–400.

[100] Yinghua Zhou, Xing Xie, Chuang Wang, Yuchang Gong, and Wei-Ying Ma, Hybrid

index structures for location-based web search, CIKM, ACM, 2005, pp. 155–162.

[101] Qinghua Zou, W.W. Chu, and Baojing Lu, Smartminer: a depth first algorithm guided

by tail information for mining maximal frequent itemsets, ICDM, 2002.

129


	ACKNOWLEDGMENTS
	LIST OF TABLES
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. RELATED WORK
	2.1. Community Detection
	2.2. Location Estimation
	2.3. Event Detection
	2.4. Document Summarization
	2.5. Mining Uncertainty Co-locations
	2.6. Mining Topic Relationship

	CHAPTER 3. LOCATION ESTIMATION
	3.1. Community Detection on Social Network
	3.1.1. Network Locality
	3.1.2. Connection Locality
	3.1.3. Node Similarity
	3.1.4. The Algorithm
	3.1.5. Experimental Results

	3.2.  Location Estimation
	3.2.1. Social Closeness and Geographic Distance
	3.2.2. Friend Distribution of Connected Pairs
	3.2.3. Structure of an Individual's Friends in a City
	3.2.4. Social Closeness and Social Structure-Based Model (SoSS)
	3.2.5. Iteration with Confidence-Based Improvement
	3.2.6. The Dataset
	3.2.7. Tweets Geotagging: Estimating Real-Time User Locations

	3.3. Experimental Results
	3.3.1. Experimental Results of Home Location Prediction
	3.3.2. Real-Time User Location Estimation

	3.4. Demo System for Home Location Prediction
	3.4.1. Demonstration Scenario


	CHAPTER 4. EVENT DETECTION ON SOCIAL MEDIA
	4.1. The Event Detection Algorithm
	4.1.1. Detecting Index Terms
	4.1.2. Tweets Clustering
	4.1.3. Cluster Filtering
	4.1.4. Event Extraction

	4.2. Experiment
	4.2.1. Experimental Settings
	4.2.2. Experimental Results
	4.2.3. Event Type
	4.2.4. More Details of the Detected Events


	CHAPTER 5. SPATIOTEMPORAL TOPIC ASSOCIATION DETECTION ON TWEETS
	5.1. Mining Uncertainty Co-location
	5.1.1. Problem Definition
	5.1.2. Instance Centric Counting
	5.1.3. Mining Co-location from Uncertain Data
	5.1.4. Calculating the Participation Index
	5.1.5. Experimental Results

	5.2. Spatiotemporal Topic Association Detection on Tweets
	5.2.1. Problem Definition
	5.2.2. Calculating Participation Index
	5.2.3. Definitions of Queries
	5.2.4. Mining Topic Association
	5.2.5. The Algorithms of Queries
	5.2.6. Optimization of Querying Results
	5.2.7. Experimental Results


	CHAPTER 6. CONCLUSION
	REFERENCES



