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Shape memory alloys (SMAs) exhibit the ability to absorb large dynamic loads and, 

therefore, are excellent candidates for structural components where impact loading is expected. 

Compared to the large amount of research on the shape memory effect and/or pseudoelasticity 

of polycrystalline SMAs under quasi-static loading conditions, studies on dynamic loading are 

limited. Experimental research shows an apparent difference between the quasi-static and high 

strain rate deformation of SMAs. Research reveals that the martensitic phase transformation is 

strain rate sensitive. The mechanism for the martensitic phase transformation in SMAs during 

high strain rate deformation is still unclear. Many of the existing high strain rate models assume 

that the latent heat generated during deformation contributes to the change in the stress-strain 

behavior during dynamic loading, which is insufficient to explain the large stress observed 

during phase transformation under high strain rate deformation. Meanwhile, the relationship 

between the phase front velocity and strain rate has been studied. In this dissertation, a new 

resistance to phase transformation during high strain rate deformation is discussed and the 

relationship between the driving force for phase transformation and phase front velocity is 

established. With consideration of the newly defined resistance to phase transformation, a new 

model for phase transformation of SMAs during high strain rate deformation is presented and 

validated based on experimental results from an austenitic NiTi SMA. Stress, strain, and 

martensitic volume fraction distribution during high strain rate deformation are simulated using 

finite element analysis software ABAQUS/standard. For the first time, this dissertation presents 

a theoretical study of the microscopic band structure during high strain rate compressive 

deformation. The microscopic transformation band is generated by the phase front and leads to 

minor fluctuations in sample deformation. The strain rate effect on phase transformation is 



 

studied using the model. Both the starting stress for transformation and the slope of the stress-

strain curve during phase transformation increase with increasing strain rate. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Demands for “new-age” materials for innovative applications and novel materials with 

excellent properties have developed in the last several decades since the early 1960s. Shape 

memory alloys (SMAs) represent one set of ‘smart materials’ that have been used widely in 

aerospace, automotive, civil engineering, and biomedical fields [1, 2]. Typical properties of 

SMAs include high strength [3, 4], good corrosion resistance [5, 6], and excellent 

biocompatibility [2, 7]. Furthermore, as compared to traditional alloys, SMAs are 

well-known for their unique ability to return to predefined shapes, due to a reversible 

martensitic phase transformation driven by stress, temperature, or a magnetic field [8, 9]. 

When an SMA (e.g., NiTi) is deformed above the austenite finish temperature (Af), the 

cubic austenitic structure transforms to a low-symmetry, monoclinic martensitic structure. 

Upon unloading, phase transformation results in about 6% to 10% recoverable strain, which 

is termed pseudoelasticity or superelasticity. When an SMA is deformed below the martensite 

finish temperature (Ms), reorientation of martensitic variants is activated to accommodate the 

loading strains, leading to fully recoverable shape change of the alloy by heating above the 

austenite finish temperature (Af), which is termed the “shape memory effect.” 

For nearly four decades since SMAs were innovated in the 1960s, research has focused 

on the mechanical properties of SMAs under quasi-static deformation [10-12]. SMAs were 

designed for biomedical applications (e.g., eyeglass frames [13], arch wires for orthodontic 

correction [14, 15], and self-expanding stents [16]) or as shape memory actuators and sensors 

1
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[17] where dynamic properties of alloys are insignificant. In the past two decades since 

approximately 2000, interest in extending SMAs to high strain rate applications such as 

seismic damping, blast-mitigation or energy-absorbing devices in earthquake engineering 

[18-22] has grown. Much research has focused on the quasi-static mechanical properties of 

these materials [10-12]. Limited study of the mechanical properties of SMAs under high 

strain rates has curtailed further application of these materials in the aerospace and defense 

industries. At high strain rates, deformation occurs within a relatively short time, making it 

very difficult to measure experimentally. Therefore, it is difficult to analyze the 

microstructural evolution within the SMA. Computer modeling of the behaviors of materials 

is then applied to study the stress, strain, and martensitic volume fraction distribution during 

deformation. The objective of the present research is to develop a new model for SMAs under 

high strain rate deformation. 

1.2 Contributions of the Dissertation 

The three major contributions in the present research include the following. (1) Models 

for quasi-static deformation of SMAs have been established absolutely. In the case of 

dynamic compressive loading, transformation stresses are more sensitive to the latent heat of 

transformation and heat of deformation, since this energy cannot be dissipated in such a short 

time interval. Therefore, in current theoretical research on dynamic deformation of SMAs, 

quasi-static models were applied to simulate high strain rate deformation by modifying heat 

transfer equations. At the same time, dislocations generated during high strain rate 

deformation contribute substantially to the integrity of the constitutive relationship of SMAs. 

2
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The driving force for the phase transformation is related to the phase front velocity. The 

influence of dislocations and phase front velocity on the driving force for phase 

transformation is considered in the present research. A new model for high strain rate 

deformation of SMAs is also established. (2) During high strain rate compression, the sample 

is deformed by a compressive stress wave. Different from microstructural evolution during 

tensile deformation, no macroscopic band structure was observed experimentally. At the same 

time, stress wave propagation within the sample leads to heterogeneous stress distribution in 

the propagation direction, and to the subsequent microscopic band structure. The microscopic 

band structure during phase transformation is simulated for the first time. (3) The influence of 

temperature on the stress-strain curve has been studied experimentally in high strain rate 

deformation of austenitic and martensitic SMAs. Limited experimental techniques have 

precluded in-depth studies of the influence of strain rate on material flows during 

deformation. In the present research, the influence of high strain rate on material flows is 

studied theoretically, and the effect of strain rate on martensite finish temperature (Mf) is 

studied. 

1.3 Arrangement of the Dissertation 

The seven chapters of the dissertation are arranged as follows: 

Chapter 1 summarizes the motivation and contributions of the present research. Chapter 

2 provides background by introducing briefly the history of SMAs. The phase diagram and 

crystal structure of the different phases and precipitates in SMAs systems are discussed. The 

physical metallurgy and processing of NiTi alloys are discussed next. Research on the 

3



mechanical properties of NiTi SMAs are then reviewed. Finally, phase transformation theory 

and various models for SMAs are introduced and briefly discussed. Chapter 3 presents a 

one-dimensional thermomechanical model for high strain rate deformation of austenitic shape 

memory alloys. For the first time, in this model, phase front velocity is related to the driving 

force for phase transformation. Chapter 4 describes finite element simulation of material flow 

during high strain rate deformation of NiTi austenitic shape memory alloys. The formation of 

microscopic band structure is discussed, and the influence of high strain rate on material flow 

is studied theoretically. Chapter 5 introduces the temperature effect on high strain rate 

deformation of austenitic shape memory alloys. The influence of temperature on material 

flow during high strain rate deformation is studied theoretically. Chapter 6 presents the 

conclusions and future research. Chapter 7 reports dissertation appendix data. Finally, 

additional characteristic experimental data related to microstructural evolution during high 

strain rate deformation of austenitic SMA is presented. 

1.4 References 

[1] Barbarino S, Flores ES, Ajaj RM, Dayyani I, Friswell MI. Smart Materials and Structures 

2014;23:063001. 

[2] Jani JM, Leary M, Subic A, Gibson MA. Materials & Design 2014;56:1078. 

[3] Pushin V, Stolyarov V, Valiev R, Kourov N, Kuranova N, Prokof'ev E, Yurchenko L. 

Physics of metals and metallography 2002;94:S54. 

[4] Flomenblit J, Budigina N, Richter J. High strength medical devices of shape memory 

alloy. Google Patents, 1999. 

4



[5] Starosvetsky D, Gotman I. Biomaterials 2001;22:1853. 

[6] Rondelli G. Biomaterials 1996;17:2003. 

[7] Morgan N. Materials Science and Engineering: A 2004;378:16. 

[8] Otsuka K, Wayman CM. Shape memory materials: Cambridge university press, 1999. 

[9] Otsuka K, Ren X. Intermetallics 1999;7:511. 

[10] Chen WW, Wu Q, Kang JH, Winfree NA. International Journal of Solids and Structures 

2001;38:8989. 

[11] Kockar B, Karaman I, Kim JI, Chumlyakov YI, Sharp J, Yu CJ. Acta Materialia 

2008;56:3630. 

[12] Benafan O, Brown J, Calkins FT, Kumar P, Stebner AP, Turner TL, Vaidyanathan R, 

Webster J, Young ML. International Journal of Mechanics and Materials in Design 2013;10:1. 

[13] Zider RB, Krumme JF. Eyeglass frame including shape-memory elements. Google 

Patents, 1988. 

[14] Gil F, Planell J. Journal of Biomedical Materials Research Part A 1999;48:682. 

[15] Duerig TW, Melton K, Stöckel D. Engineering aspects of shape memory alloys: 

Butterworth-Heinemann, 2013. 

[16] Stoeckel D, Pelton A, Duerig T. European radiology 2004;14:292. 

[17] Kahn H, Huff M, Heuer A. Journal of Micromechanics and Microengineering 

1998;8:213. 

[18] Dolce M, Cardone D. International Journal of Mechanical Sciences 2001;43:2657. 

[19] Van Humbeeck J. Journal of Alloys and Compounds 2003;355:58. 

[20] Fugazza D. Shape-memory alloy devices in earthquake engineering: mechanical 

5



properties, constitutive modelling and numerical simulations. Istituto Universitario di Studi 

Superiori di Pavia, 2003. 

[21] Saadat S, Salichs J, Noori M, Hou Z, Davoodi H, Bar-On I, Suzuki Y, Masuda A. Smart 

materials and structures 2002;11:218. 

[22] Dolce M, Cardone D. International Journal of Mechanical Sciences 2001;43:2631. 

6



CHAPTER 2 

BACKGROUND 

2.1 History of SMAs 

Rubber-like behavior in an Au-47.5Cd alloy was first discovered by Arne Ölander in 

1932 [1, 2]. When Ölander and co-workers tested the gold-cadmium alloy, the material was 

found to deform when cooled and return to its original shape when heated. Similar behavior 

in CuZn alloys was later observed by Greninger and Mooradian in 1938 [3]. The 

crystallographic orientation and kinetics of reversible martensitic transformation were studied 

by Kurdyumov and Khandros in 1949 [4]. In 1951, Chang and Read termed this behavior the 

shape memory effect [5]. Extensive research was then applied in this area, and more and 

more alloys, including AuCd and AuAgCd, were determined to exhibit the shape memory 

effect. A breakthrough in the field of shape memory alloys occurred when the same effect 

was observed in equiatomic NiTi alloys by Buehler and his co-workers at the US Naval 

Ordnance Laboratory [6-8]. The relatively low cost, as compared to Au-based SMAs, and 

superior shape memory behavior and structural properties make NiTi alloys attractive for 

practical applications. Compared to copper-based SMAs (e.g., Cu-Al-Ni [9], Cu-Zr [10], 

Cu-Zn-Al [11], et al.) and iron-based SMAs (e.g., Fe-Mn-Si [12]) which are brittle in nature, 

NiTi-based SMAs show good strength and ductility. Therefore, more than 90% of all SMA 

applications are based on NiTi or ternary NiTiX (X=Cu, Nb, Fe, or Co, et al.) [13-15]. 

Due to their nearly unparalleled biocompatibility, NiTi-based SMAs were developed for 

bio-medical applications such as stents [16], orthodontic wire [14, 17], and implants [14]. 

Since the late 1990s, NiTi SMAs were extended to non-medical applications such as smart 
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actuators [18], devices for proportional control [14], hinges for solar panel deployment [19], 

and variable geometry chevrons in aerospace actuation applications [13, 20]. 

2.2 Phase Diagram of NiTi SMAs 

To better understand the microstructure and properties of NiTi SMAs, the phase diagram 

is introduced in this chapter. A phase diagram is important for the scientist to tune the 

properties of materials through heat treatments. The Ni-Ti phase diagram was initially studied 

by Hunter and Bacon [21] when they measured the conductivity of NiTi alloys. Later, Vogel 

and Wallbaum [22] reported the eutectic TiNi3 in a Ni-rich NiTi system. Another compound 

Ti2Ni was reported by Laves and Wallbaum [23, 24] through X-ray investigation. However, 

the reaction from TiNi to Ti2Ni and TiNi3 was controversial until Duwez and Taylor [25] 

initially observed the decomposition of TiNi into Ti2Ni and TiNi3 at 800°C. Phase structure in 

the system was later studied by Poole and Hume-Rothery [26], who observed reversible 

phase transformation from high temperature NiTi phase to a hexagonal phase at 36°C. Based 

on their works, Hansen and Anderko [27] established the Ni-Ti phase diagram. Wasilewski et 

al. [28] identified a new phase Ti2Ni3 using XRD and electron probe microanalysis (EPMA). 

Koskimaki et al. [29] studied the phase of NiTi aged below 625°C and observed a 

plate-shaped precipitate they termed Ti11Ni14, which other researchers later identified as 

Ti3Ni4. Therefore, different phases, such as Ti2Ni, TiNi3, Ti2Ni3, Ti3Ni4, and martensitic NiTi, 

have been identified in Ni-Ti phase diagram. The equilibrium Ni-Ti diagram is shown in Fig. 

2.1 [30, 31]. 
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Heat treatment was applied on SMAs to improve their mechanical properties. An 

equilibrium phase diagram is not convenient to study phase transformation by heat treatment. 

Therefore, an isothermal transformation diagram (also known as 

time-temperature-transformation (TTT) diagram) was established to study phase 

transformation under different heat treatment procedures. Nishida et al. [32] studied phase 

transformation of Ni-rich Ti-52Ni alloys during aging heat treatment. The precipitate, Ti3Ni4, 

is observed when heat-treated at low temperature for a short time. When the sample is aged at 

high temperature for a long time, TiNi3 phase is observed. When the sample is heat-treated at 

intermediary aging temperature and time, Ti2Ni3 precipitates form. Nishida et al. [32] also 

studied phase transformation by continual aging and learned that prior-formed Ti3Ni4 

dissolved into a matrix with the formation of Ti2Ni3 precipitates with continued aging. The 

Fig. 2.1 Ni-Ti equilibrium phase diagram [30,31] 
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Ti2Ni3 precipitates will finally dissolve into the matrix with the formation of TiNi3 

precipitates. The TTT diagram is shown in Fig. 2.2. Similarly, Kainuma et al. [33] provided 

TTT diagrams for Ti-52Ni, Ti-54Ni, and Ti-56Ni alloys. 

2.3 Crystal Structures of Different Phases 

The crystal structures of NiTi SMAs are discussed in detail by Huang et al. [34]. In their 

work, the structures of NiTi SMAs are modeled by first-principles calculations based on 

density function theory (Fig. 2.3). At relatively high temperature, NiTi is stable with B2 

structure. Huang et al. [34] observed three structures with lower energy when distorting cubic 

B2 structure: the orthorhombic B19 structure with space group Pmma; the monoclinic B19
’

phase with space group P21/m; and R phase space group P3. They also observed that B19 

Fig. 2.2 TTT diagram for Ti-52Ni during aging [32] 
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structure is mechanically unstable against monoclinic B19’ structure. Different from 

experimental observations, the angle associated with minimum energy distortion is 

107°rather than 98°. The authors also claim that a new phase with base-centered 

orthorhombic (BCO) structure is observed theoretically. The lattice parameters of these 

phases are shown in Table 2.1. 

R phase is attractive to researchers for such special properties as small hysteresis width. 

Such R phase was first observed by Hwang et al. [35] and later well-studied by other 

researchers [36-38]. R phase is generated by the distortion of B2 structure along <111> 

directions. The crystal structure of R phase is shown in Fig. 2.4 [39]. 

Fig.2.3 (a) The relation between the cubic B2 cell (shaded box) and the undistorted 

(tetragonal) B19 cell. (b) The orthorhombic B19 structure. (c) The distortion to the 

stress-stabilized B19' structure. (d) The BCO minimum-energy structure with further 

doubled conventional cell (shaded box). [34] 
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Table 2.1 Structural parameters relative to B2 for NiTi in the B2, B19 and B19′ structures 

Structures a b c γ 

B2(TMPP-LDA) 2.981 4.216 4.216 90 

B2(USPP-LDA) 2.949 4.171 4.171 90 

B2(USPP-GGAA) 3.009 4.255 4.255 90 

B2(PAW-LDA) 2.937 4.154 4.154 90 

B2(YCH-LDA) 2.977 4.210 4.210 90 

B2(GS) 3.015 4.264 4.264 90 

B19(TMPP-LDA) 2.817 4.573 4.112 90 

B19(USPP-LDA) 2.657 4.567 4.178 90 

B19(PAW-LDA) 2.637 4.557 4.170 90 

B19(USPP-GGA) 2.776 4.631 4.221 90 

B19(YCH-LDA) 2.859 4.582 4.078 90 

BCO(TMPP-LDA) 2.918 4.891 3.943 107.2 

BCO(USPP-LDA) 2.864 4.838 3.933 107.2 

BCO(PAW-LDA) 2.851 4.815 3.921 107.2 

BCO(USPP-GGA) 2.940 4.936 3.997 107.0 

B19’(USPP-LDA) 2.861 4.600 3.970 97.8 

B19’(USPP-GGA) 2.929 4.686 4.048 97.8 

B19’(YCH-LDA) 2.892 4.598 4.049 97.8 

B19’(KTMO) 2.898 4.646 4.108 97.8 

B19’(MS) 2.885 4.622 4.120 96.8 
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When NiTi is heat-treated, three typical precipitates will be generated with different 

temperatures and times. Among these precipitates, Ni4Ti3 precipitate is critical for its 

influence on the mechanical properties of NiTi SMAs [40-44]. The Ni4Ti3 precipitate has a 

lenticular shape and a rhombohedral structure. 

Its group space is R3 with unit cell structure parameters a = 0.6704 nm and α = 113.83° 

[45-47]. Different from the space group of the parent phase (B2 structure), the Ni4Ti3 

precipitate has only 6 symmetry operations. The orientation relationship between coherent 

precipitate Ni4Ti3 and parent phase is [010]Ni4Ti3 ‖[2̅1̅3]NiTi and (001)Ni4Ti3 ‖ (111)NiTi. Therefore, 

there are 8 possible crystallographic orientations at 4 pairs of Ni4Ti3 precipitates in the NiTi 

matrix [48]. The microstructure of Ni4Ti3 is shown in Fig. 2.5 [49]. 

Ti2Ni is another set of precipitates that often forms around grain boundaries, weakening 

the mechanical properties of NiTi alloys [50-52]. Ti2Ni has a cubic structure with space group 

Fig. 2.4 R-phase structure [39] 
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Fd3m. Unit cell parameter is a = 1.1278 nm [52]. Ti2Ni can easily react with oxygen, thereby 

forming a brittle Ti2NiOx phase [43]. Ti2Ni also leads to an increased number of defects in the 

NiTi matrix [50, 51]. In the alloy with Ti2Ni precipitates, thermal cycling destabilizes the 

structure and properties of NiTi alloy [53]. The microstructure of Ti2Ni is shown in Fig. 2.6 

[54]. 

Fig.2.5 Ni4Ti3 precipitates (a) a TEM micrograph of NiTi B2 matrix with Ni3Ti4 

precipitates after stress-free aging at 530°C for 11 hours; (b) the arrangement of 

atoms in one unit cell of the rhombohedral structure of the Ni4Ti3 precipitate. [49] 

Fig. 2.6 Micrograph of Ti2Ni precipitates [54] 
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TiNi3, a hexagonal structure with unit parameter a = 0.5101 nm, c = 0.83067 nm, is 

formed when NiTi is aged at high temperature for an extended period of time. The space 

group of TiNi3 is P63/mmc [55]. TiNi3 precipitates increase mechanical properties, and lead to 

high strength (1400–2000 MPa) and retention of 10–20% ductility and TiNi3 microstructure 

(Fig. 2.7) [56]. 

2.4 Shape Memory Effect and Psedoelasticity 

The phase diagram and crystal structure of different phases in the NiTi system were 

introduced in previous sections. As was discussed above, martensitic phase transformation 

can be activated by applied stress or thermal cycling, and can lead to the two special 

properties of SMAs: shape memory effect and pseudoelasticity [13, 49, 57]. Superelasticity, 

or pseudoelasticity, is a materials property that results from the fully recoverable deformation 

of austenite during loading and unloading. This phenomenon is related to stress-induced 

martensitic transformation. The shape memory effect is a materials property that refers to the 

fully recoverable deformation of martensite upon heating after loading and unloading. The 

detail of shape memory effect and pseudoelasticity (Fig. 2.8) [15] explains that material 

Fig. 2.7 Bright field TEM images of TiNi3 precipitates after aging at 800°C for 0.5h [56] 
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behavior is related to temperatures As, Af, Ms and Mf, which were introduced in Chapter 1. 

The SME could be divided into one-way shape memory (OWSM) [58-60], and two-way 

shape memory (TWSM) [14, 61-64] [51, 65, 66]. The self-accommodation variants of 

martensite are formed during the cooling of austenitic SMA. These martensitic variants can 

be reoriented by applied stress and lead to shape deformation. The shape is recovered after 

the sample reverts to the austenitic phase. No change of shape occurs when the sample is 

cooled below Mf. This phenomenon is defined as OWSM. If the specimen could be deformed 

backward and forward during thermal cycling, it would then be called TWSM. In TWSM of 

SMA, the sample can remember its martensitic shape after trainning. Schematic pictures of 

OWSM and TWSM are shown in Fig. 2.9 [13]. 

Fig. 2.8 Schematic show of shape memory effect and pseudoelasticity [15] 
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2.5 Applications of SMAs 

Automotive [67, 68], aerospace [20, 69], and biomedical [70-73] applications of SMAs, 

which were discussed briefly in Chapter 1, will be discussed in detail here. Generally 

speaking, SME can be used to generate motion, and SE can be used in energy storage 

applications [13, 14]. 

2.5.1 Automotive Applications 

SMAs have been widely designed as sensors and actuators for their mechanical 

simplicity and compactness [13]. Compared to traditional electromagnetic actuators, SMA 

Fig. 2.9 Schematic of one-way SME, two-way SME and pseudoelastic [13] 
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actuators reduce the scale, weight and cost of automotive components and offer substantial 

performance [67, 68]. General Motors (GM), a pioneer in SMA automotive applications, has 

earned 247 patents [13]. Recently, SMA actuators have been used in Chevrolet Corvettes to 

actuate the hatch vent to release air from the trunk. Their excellent performance at high strain 

rate deformation has led to SMA design for automatic pedestrian protection systems to 

minimize pedestrian injuries during impact collision. Details of the application of SMAs for 

the automotive industry are shown in Fig. 2.10 [13]. Although SMAs have many potential 

applications in the automotive industry, only a few have actually been implemented due to 

the limited range of SMA transformation temperatures, lifetime, hysteresis width, and 

stability. Therefore, further research is needed to overcome the challenges [13]. 

2.5.2 Aerospace Applications 

SMAs have been widely used in aerospace as actuators [20, 74], structural connectors, 

Fig.2.10 Existing and potential SMA applications in the automotive domain [13] 
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vibration dampers, sealers, release or deployment mechanisms [13, 75, 76], inflatable 

structures, manipulators [77], and pathfinders [78]. The most well-known application of 

SMAs in aerospace engineering is the variable geometry chevron (VGC) developed by 

Boeing first for GR90-115B jet engines in Boeing 777-300 ER commercial aircraft [79-81]. 

The VGC is designed to reduce noise during take-off and increase cruise efficiency during the 

remainder of the flight (Fig. 2.11) [13]. Multi-component applications with SMA forms are 

subjected to non-homogeneous loading and large deformation. SMAs are selected for their 

high damping properties [13]. Many other researchers also pursued SMA aerospace 

engineering applications, working with the Defense Advanced Research Projects Agency 

(DARPA) for aircraft smart wings [82] and the Smart Aircraft and Marine Propulsion System 

Demonstration (SAMPSON) program for jet engines [83]. 

2.5.3 Biomedical Applications 

NiTi SMA was designed as material for implants since the pseudoelasticity was 

observed by Buehler et al. in 1962 [8]. NiTi is used widely in biomedical engineering when it 

Fig. 2.11 Existing and potential SMA applications in the aerospace domain [13] 
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is introduced in minimally invasive surgery (MIS) [84]. After the Mitek surgical product for 

orthopedic surgery was approved by the U.S. Food and Drug Administration (FDA) in 

September 1989, SMAs enjoyed a significant breakthrough in the biomedical domain [13]. 

Due to high corrosion resistance, bio-compatible, and non-magnetic properties, SMAs are 

designed as endodontics, stents, medical tweezers, sutures, anchors, implants, eyeglass 

frames and guide wires [70-73] (Fig. 2.12 [13]). 

2.6 Classical Models for Martensitic Phase Transformation 

Martensitic transformation was discovered for the first time in the microstructure of 

steels after quenching. Typical features of martensitic transformation are that the 

Fig.2.12 Existing and potential SMA applications in the biomedical domain [13] 
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transformation is diffusionless and driven by shear stress or strain. Martensitic phase 

transformation is activated in typical planes and along typical directions. The crystal 

orientation of the martensitic phase with respect to the interface with the austenitic phase is 

called “habit plane.” Martensitic transformation is important to SMAs; the classical models 

for martensitic transformation are discussed in this section. 

Early theories for the thermodynamics and kinetics of martensitic transformation are 

attributed to Kaufman and Cohen [85-87]. The Gibbs free energy of martensitic and 

austenitic phase is written as: 

𝐺𝑀/𝐴 = 𝐻𝑀/𝐴 − 𝑇𝑆𝑀/𝐴 (2.1) 

where G, H and S are Gibbs free energy, enthalpy and entropy. The footnote M and A 

represents martensite and austenite, respectively. The martensitic and austenitic phase has the 

same energy at temperature T0. As shown in Fig. 2.13, overcooling is needed to activate 

phase transformation. The energy generated by overcooling overcomes the transformation 

barrier by the energy from interface distortion and strain energy. 

The nucleation of martensite is assumed by Kaufman and Cohen and is shown in Fig. 

Fig. 2.13 Gibbs free energy of parent and martensitic phase [86] 
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2.14. Energy change during the nucleation of martensite is written as: 

∆𝐺 =
4

3
𝜋𝑟2𝑐𝛥𝑔 +

4

3
𝜋𝑟2𝑐 (

𝐴𝑐

𝑟
) + 2𝜋𝑟2𝜎 (2.2) 

where 𝐴 ≈ 𝜇(𝛾2 + 𝜀𝑛
2), r and c are the radius and thickness of the nucleation, respectivley.

𝛥𝑔 is the difference between the free energy of the two phases. 𝜎 is the interface energy per 

unit area. 𝛾 and 𝜇 are shear strain and shear modulus, respectively. 𝜀𝑛 is body strain. 

According to the assumption above, the transformation barrier is 

Δ𝐺∗ =
32

3
𝜋 (

𝐴2𝜎2

Δ𝑔4
)     (2.3) 

Olson and Cohen [88] calculated the energy barrier for Fe-30%Ni with Ms = 233K. 

Overcooling is assumed to be 200K and 𝛥𝑔 = -1318.8 J/mol. The energy barrier Δ𝐺∗ is

calculated as 5.4×10
8
 J/mol, which is an extremely high value.

Olson and Cohen [89-91] improved the model by considering dislocation. Thus, the 

energy barrier decreases, and the martensite is assumed to be nucleated at the stacking fault 

of the parent phase. They took into consideration the transformation from face center cubic 

Fig. 2.14 Nucleation of martensitic phase in austenitic phase [85] 
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(FCC) to body center cubic (BCC) structure. The close-packed plane of FCC structure is (1 1 

1) plane, which is shown in Fig. 2.15. The atoms in the (1 1 1) plane of the FCC structure

have the same arrangement as those in the (1 1 0) plane of the BCC structure. Therefore, 

martensitic transformation can be seen as the shear of atoms in the (1 1 1) plane in the FCC 

phase to the (1 1 0) plane in the BCC phase (Fig. 2.16). The shear vector is 
1

18
[1 2 1]. 

According to the model, another shear vector 
1

8
[1 1 0] is needed to relocate the atoms in the 

(1 1 0) plane to form the BCC structure (Fig. 2.17). Normal dislocation in the FCC structure 

is 
1

2
[1 1 0]. The first shear vector 

1

18
[1 2 1] can be seen as the decomposing of 

1

2
[1 1 0] 

dislocation as: 

1

2
[1 1 0] →  

1

6
[1 2 1] + 

1

6
[2 1 1̅]    (2.4) 

The second step of the shear needs the decomposing of dislocations in the BCC phase. 

Normal dislocation in the BCC structure is 
1

2
[1 1 1], and we have 

1

2
[1 1 0] →  

1

8
[1 1 0] + 

1

4
[1 1 2] +

1

8
[1 1 4̅] (2.5) 

Therefore, martensitic phase transformation is activated by the two steps of shear through the 

decomposing of dislocations. 

Fig. 2.15 Schematic of (a) BCC structure (b) close packed plane of BCC structure [89] 
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The classical theories discussed above considered only the orientation difference 

between the parent and martensitic phases. The habital relationship is not correctly given 

through these models. Therefore, phenomenological models were established with the 

consideration of habital planes and habital directions during phase transformation. The two 

typical early models include B-M model, which was established by Bowles and Mackenzie 

[92-94]; and W-L-R model, which was established by Wechsler, Lieberman and Read [95, 

96]. In these phenomenological models [92-96], matrix algorithms are applied to calculate the 

relationship between austenitic and martensitic phases. Transformation from parent phase 

(FCC) to martensitic phase (BCC) in Jaswon and Wheeler’s research [97] follows the K-S 

Fig. 2.16 Schematic of the shear from BCC to FCC [89] 

Fig. 2.17 Schematic of relocation of atoms on (110) plane [89] 
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(named after Kurdjamov and Sachs) relationship [98], which is (111)𝑓 ∥ (101)𝑏  and

(11̅0)𝑓 ∥ (111̅)𝑏. Therefore, the three independent coordinate axes of I which are Ix, Iy and Iz

are: 

{

[111]𝑓 ∥ [101]𝑏

[11̅0]𝑓 ∥ [111̅]𝑏
[11̅0]𝑓 × [111]𝑓 ∥ [111̅]𝑏 × [101]𝑏 𝑜𝑟 [1̅1̅2]𝑓 ∥ [12̅1̅]𝑏 

    (2.6) 

Transformation from FCC to BCC can be written in the matrix F/B and the relationship 

between coordinate systems in F, B, and I is that 

(F/B) = (F/I)(I/B) (2.7) 

The coordinate systems in F is 𝐼𝑥 =
1

√3
[111]𝑓 , 𝐼𝑦 =

1

√2
[11̅0]𝑓 and 𝐼𝑧 =

1

√6
[1̅1̅2]𝑓. We

assume that 

(𝑭/𝑰) = [

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

] (2.8) 

Therefore, we have 

{
 
 
 
 

 
 
 
 1

√6
[
−1
−1
2
]

𝑓

= (𝑭/𝑰) [
1
0
0
]

𝐼

= [

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

] [
1
0
0
]

𝐼

= [

𝑎1
𝑎2
𝑎3
]

𝐼

1

√2
[
1
−1
0
]

𝑓

= (𝑭/𝑰) [
0
1
0
]

𝐼

= [

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

] [
0
1
0
]

𝐼

= [

𝑏1
𝑏2
𝑏3

]

𝐼

1

√3
[
1
1
1
]

𝑓

= (𝑭/𝑰) [
0
0
1
]

𝐼

= [

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

] [
0
0
1
]

𝐼

= [

𝑐1
𝑐2
𝑐3
]

𝐼

(2.9) 

The transformation matrix F/I is then solved as 

(𝑭/𝑰) =
1

√6
[
−1 √3 √2

−1 −√3 √2

2 0 √2

] (2.10) 

Similarly, the matrix B/I is solved as: 

(𝑩/𝑰) =
1

√6
[
1 √2 √3

−2 √2 0

−1 −√2 √3

] (2.11) 
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Therefore, the transformation from FCC to BCC can be represented by the matrix: 

(𝑩/𝑭) =
1

6
[
−1 + 2√6 −1 2 + √6

2 + √6 2 + √6 −4

1 1 + 2√6 −2 + √6

] (2.12) 

When considering lattice parameters such as the lattice parameter of austenite is a and 

martensite is α and c, respectively, the transformation matrix is 

[
𝑥𝛼
𝑦𝛼
𝑧𝑐
]

𝑏

= (𝑩/𝑭) [
𝑥𝑎
𝑦𝑎
𝑧𝑎
]

𝑓

                                                    (2.13) 

In 1924, Bain devised a simple way for the transformation from FCC to BCT (Fig. 2.18) 

[99]. The martensitic phase with a BCC structure is assumed to be generated from the FCC 

austenitic phase by simple compression. Therefore, Bain transformation from FCC to BCT is 

represented by matrix B as 

𝐁 = [

𝜂1 0 0
0 𝜂1 0
0 0 𝜂2

] = [
√2𝑎/𝑎0 0 0

0 √2𝑎/𝑎0 0
0 0 𝑐/𝑎0

]       (2.14) 

According to the Bain shear, minimum displacement is needed for atoms to move to the new 

position. Therefore, Bain’s model provides a simple and reasonable assumption for 

martensitic transformation from FCC to BCC structure. Wechsler, Lieberman and Read [95, 

96] extended Bain’s model to general martensitic transformation with the consideration of

twinning structure of martensite. The model is then concluded as W-L-R model [95, 96], and 

the relationship is written as: 

𝑷𝑰 = 𝑹𝑷̅𝑩 (2.15) 

where 𝑷𝑰 is deformation in the invariant plane, 𝑹 is rotation of the matrix, 𝑩 is Bain 

deformation discussed above, and 𝑷̅ is shear by twinning, slip of dislocation and stacking 

fault. Bowles and Mackenzie [92-94] established a model similar to W-L-R model, and is 
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given as: 

𝑷𝟏𝑷𝟐 = 𝑹𝑩 (2.16) 

where 𝑷𝟏 and 𝑷𝟐 are deformation in invariant planes. The other terms have the same 

definition as that in the W-L-R model. The W-L-R model has been applied to predict 

martensitic transformation from the B2 structure to the 9R structure in CuZnAl SMAs [100]. 

According to the W-L-R model, the habital plane is the plane without deformation and 

rotation. Therefore, the vector z in the habital plane has the same length before and after 

phase transformation. 

𝒛𝑻𝑷𝑻𝑩𝑻𝑩𝑷𝒛 = 𝒛𝑻𝒛 (2.17) 

Equation (2.17) can by simplified with the assumption BP = D. Therefore, the W-L-R model 

and equation (2.17) can be rewritten as: 

𝑷𝑰 = 𝑹𝑫 (2.18) 

𝒛𝑻𝑫𝑻𝑫𝒛 = 𝒛𝑻𝒛 (2.19) 

In these equations, the matrix D can be decomposed to an orthogonal matrix Rf and a 

symmetric matrix Ds and therefore 

Fig.2.18 Transformation from FCC to BCT by Bain shear [99] 
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𝑫 = 𝑹𝒇𝑫𝒔 (2.20) 

The symmetric matrix Ds can be diagonalized by unitary congruence 

𝑫𝒔 = 𝑹𝒅𝑫𝒅𝑹𝒅
𝑻 (2.21) 

with 𝑹𝒅
𝑻 = 𝑹𝒅

−𝟏 and the diagonal matrix 𝑫𝒅 having the form as 

𝑫𝒅 = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] (2.22) 

We also have the relationship as 

𝒛 = 𝑹𝒅𝒛𝒅 (2.23) 

Therefore, the relationship in (2.19) can be rewritten as 

𝒛𝒅
𝑻(𝑫𝑻𝑫− 𝝀𝟐𝑰)𝒛𝒅 = 𝟎 (2.24) 

where I is the unit matrix and 𝝀 is the eigenvalue. From (2.24) we have 

Det(𝑫𝑻𝑫− 𝝀𝟐𝑰) = 𝟎 (2.25) 

The equations can be solved easily on the orthogonal basis. Therefore, three vectors in 

the invariant plane are taken to build the new orthogonal basis; the three vectors are the unit 

shear vector 𝑑 = (𝑑1, 𝑑2, 𝑑3), the normal vector of the plane 𝑓 = (𝑓1, 𝑓2, 𝑓3) and the vector

𝑡 = 𝑑⨂𝑓 = (𝑡1, 𝑡2, 𝑡3) . The vectors in the parent lattice can be related to that in the

orthogonal basis through the matrix: 

𝑹(𝒄 𝒐⁄ ) = [

𝑑1 𝑓1 𝑡1
𝑑2 𝑓2 𝑡2
𝑑3 𝑓3 𝑡3

] (2.26) 

The shear matrix in the orthogonal basis is 

𝑷𝒐 = [
1 𝑔 0
0 1 0
0 0 1

] (2.27) 

where g is the value of shear deformation. The Bain matrix and 𝑫𝑻𝑫 in the orthogonal basis

can be rewritten as: 
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𝑩𝒐 = 𝑹𝑻(𝒄 𝒐⁄ )𝑩𝒄𝑹(𝒄 𝒐⁄ ) (2.28) 

(𝑫𝑻𝑫)𝒐 = 𝑷𝒐
𝑻𝑩𝒐

𝑻𝑩𝒐𝑷𝒐 (2.29) 

Therefore, equation (2.25) can be rewritten as: 

(𝜆2)3 − 𝑇(𝜆2)2 + 𝑄𝜆2 − 𝐻 = 0   (2.30) 

where 𝐻 = 𝐷𝑒𝑡[(𝑫𝑻𝑫)𝒐], 𝑇 = 𝑇𝑟[(𝑫
𝑻𝑫)𝒐], 𝑄 = ∑ (𝐽𝑗𝑗𝐽𝑖𝑖 − 𝐽𝑖𝑗

2 )3
𝑖𝑗 and 𝐽𝑖𝑗  is the element 

in the matrix 𝑱 = (𝑫𝑻𝑫)𝒐.

During phase transformation from B2 to 9R, we have the parameter of B2 structure a0 = 

0.29348 nm and the parameters of 9R structure a = 0.44465 nm, b = 0.26617 nm, c = 1.91925 

nm, β = 89.21°. Therefore, shear g is solved as 0.194080; the eigenvalues are 𝜆1
2 = 1,

𝜆2
2 = 1.136325, 𝜆3

2 = 0.867839; the habital plane is (1̅, 7.71151, 9.323679) and the

normal direction of the habital plane is (−0.082367, 0.635174, 0.767965) . The 

transformation matrix 𝑷𝑰 

𝑷𝑰 = [
1.065402 −0.008865 −0.004891
0.008887 0.995086 −0.086275
0.021132 0.097811 0.928036

] (2.31) 

The calculated value of the habital plane matches well with the experimental value, which is 

(1̅, 6.88, 7.90). 

2.7 Martensitic Phase Transformation Models for SMAs 

Constitutive models for SMAs have been developed in the last decades since early 

1990s. Generally speaking, the models can be divided into three groups: microscopic 

thermodynamic, micro-macro, and macroscopic. Microscopic models are established on SMA 

microstructures such as phase boundary, grain boundary, and twinning, to name a few. 

Compared to the microscopic models, micro-macro models focus on the properties at meso 
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scales. To save time for computer calculation, macroscopic models are established based on 

experimental data. Microstructural evolution is not included in macroscopic models. The 

three groups of models are discussed in detail in the following sections. 

2.7.1 Microscopic Thermodynamic Models 

Microscopic models focus on SMA microstructural features such as phase nucleation, 

martensite twin and so on. System energy and stress strain curves are modeled by 

Ginzburg-Landau theory or molecular dynamics. The earliest models for SMAs using Landau 

theory were developed by Falk [101] and later extended by Ball and James [102], Levitas et 

al. [103], Wang et al. [104], Cho et al. [105], and Zhong and Zhu [106]. Energy distribution is 

related to temperature and strain. Equilibrium status is obtained in the energy minima. 

Molecular dynamics are applied to model phase transformation, mechanical properties, and 

the microstructural evolution of SMAs. System energy is established in atomic scales. The 

potential energy among Ni-Ti, Ni-Ni, Ti-Ti atoms is written as Фij. The energy of embedding 

an atom into the system is Fi, which is related to the electron density ρij of the atomic system. 

Lennard-Jones (LJ) [107] or embedded-atom-method (EAM) [108] potentials are the two 

main potentials for atomic energy. Uehara et al. [109] successfully model the phase 

transformation behavior of SMAs composed of 31,000 atoms with EAM potential. 

Chowdhury et al. [110] used the molecular dynamics method to model the influence of Ni4Ti3 

precipitates on transformation. The following section discusses in detail microscopic models 

based on molecular dynamics. 

In molecular dynamics models, Netwon’s equations are applied to describe the motion 
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of atoms. The motion of ith atom is related to energy potential by [111]: 

𝑚𝑖𝑟̈𝑖 = −𝜕𝜙 𝜕𝑟𝑖⁄   (2.32) 

where 𝑚𝑖 is the mass of the atom, 𝑟𝑖 is the position vector of the atom, and 𝜙 is the 

potential energy of interaction between atoms. The temperature of the system is [111]: 

𝑇 =
2𝐸𝐾

3𝑁𝐾𝑏
  (2.33) 

where 𝐾𝑏 is the Boltzmann constant, 𝐸𝐾 is the total kinetic energy and N is the number of 

atoms in the system. Internal stress 𝜎𝑖𝑛𝑡 is related to virial stress 𝜎𝑣𝑖𝑟, which equals Cauchy

stress in continuum mechanics as [112]: 

𝝈𝒗𝒊𝒓(𝒓) =
1

𝐽
𝒉𝜎𝑖𝑛𝑡𝒉𝑻 =

1

𝛺
∑ [−𝑚𝑖𝝂𝒊⨂𝝂𝒊 + ∑

𝜕𝜙(𝑟𝑖𝑗)

𝜕𝑟𝑖𝑗

𝒓𝒊𝒋⨂𝒓𝒊𝒋

𝑟𝑖𝑗
𝑖≠𝑗 ]𝑖 (2.34) 

where 𝒉 is the cell tensor, 𝐽 is the volume change, 𝛺 is the current cell volume, 𝝂𝒊 is the 

velocity vector of the ith atom, and 𝒓𝒊𝒋 is the relative position vector of atom j with respect 

to atom i. The strain between any two atoms i and j is given by [113]: 

𝜀𝑖𝑗
𝛼𝛽
=

1

2
(

𝜕𝑢𝑖𝑗
𝛼

𝜕𝑟
𝑖𝑗
𝛽(0)

+
𝜕𝑢𝑖𝑗

𝛽

𝜕𝑟𝑖𝑗
𝛼(0)

) ≈
1

2[𝑟𝑖𝑗(0)]
2 (𝑢𝑖𝑗

𝛼 𝑟𝑖𝑗
𝛽(0) + 𝑢𝑖𝑗

𝛽
𝑟𝑖𝑗
𝛼(0)) (2.35) 

Therefore, the strain of atom i interacts with N others and can be written as: 

𝜀𝑖
𝛼𝛽
=

1

𝑁
∑ 𝜀𝑖𝑗

𝛼𝛽𝑁
𝑗=1 (2.36) 

In microscopic models, the choice of potential is important; and the two popular energy 

potentials for molecular dynamic models are Lennard-Jones (LJ) [107] and 

embedded-atom-method (EAM) [108]. Uehara et al. [109] used EAM potential function for 

molecular dynamic models for NiAl SMAs. The potential is expressed as 

ϕ = ∑ 𝐹(𝜌𝑖) +
1

2𝑖 ∑ ∑ 𝜙𝑖𝑗(𝑟𝑖𝑗)𝑖≠𝑗𝑖 (2.37) 

where electron density 𝜌𝑖 can be written as 

𝜌𝑖 = ∑ 𝜌̃(𝑟𝑖𝑗) =𝑖≠𝑗 ∑ {𝑁𝑠𝜌̃𝑠(𝑟𝑖𝑗) + 𝑁
𝑑𝜌̃𝑑(𝑟𝑖𝑗)}𝑖≠𝑗   (2.38) 
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where 

𝜌̃𝑠(𝑟𝑖𝑗) = 𝜌̃
𝑑(𝑟𝑖𝑗) = |∑ 𝐶𝐼𝑅𝐼𝐼 |2/4𝜋 (2.39) 

𝑅𝐼 =
(2𝜁𝐼)

𝑛𝐼+1/2

[(2𝑛𝐼)!]1/2
𝑟𝑖𝑗
𝑛𝐼−1𝑒𝑥𝑝(−𝜁𝐼𝑟𝑖𝑗)                                           (2.40)

Here, 𝑁𝑠 , 𝑁𝑑 , 𝐶𝐼 , 𝜁𝐼 , 𝑛𝐼  are parameters depending on the species of the atom. The

embedding function F is given as: 

𝐹(𝜌) = 𝑘1𝜌
1/2 + 𝑘2𝜌 + 𝑘3𝜌

2 (2.41) 

where 𝑘1, 𝑘2, and 𝑘3 are parameters for Ni and Al. The potential energy for a two-body 

term as the distance between two atoms is given as: 

𝜙𝑖𝑗(𝑟𝑖𝑗) = 𝑍𝑖(𝑟𝑖𝑗)𝑍𝑗(𝑟𝑖𝑗)/𝑟𝑖𝑗    (2.42) 

𝑍(𝑟𝑖𝑗) = 𝑍0(1 + 𝛽𝑟𝑖𝑗
𝜐)𝑒𝑥𝑝(−𝛼𝑟𝑖𝑗) (2.43) 

Here 𝑍0, 𝛽, 𝜐, and 𝛼 are parameters for Ni and Al. 

The author considers two configurations of grain structures (Fig. 2.19). Model A is 

composed of two square and two octagonal grains, while model B consists of four hexagonal 

grains. Crystal orientation in a grain is varied for each grain by rotation around the z-axis by 

an angle 𝜃. Crystal orientations in grains G1-G4 are 𝜃1 − 𝜃4. Crystal orientations (𝜃1 − 𝜃4) 

of model A are 0°, 63.4°, 11.3°, and 33.7°. Crystal orientations of model B are 18.4°, 11.3°, 

33.7°, and 14.0°. Crystal orientations of model B1-B6 are shown in Table 2.2. Figures 2.20 

and 2.21 show variations in atomic configuration throughout loading, unloading, heating and 

cooling, depicted with the local structure for model A and B, respectively. Figure 2.22 

represents stress–strain curves during loading for models B1–B6 and model A, in which the 

initial bias due to relaxation is offset by the origin. 
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Table 2.2 Crystal orientations for simulations of B1-B6 in units of degrees 

Model 𝜃1 𝜃2 𝜃3 𝜃4 

B1 18.4 11.3 26.6 33.7 

B2 

B3 

-18.4 

63.4 

11.3 

56.3 

26.6 

71.6 

-33.7 

78.7 

B4 

B5 

B6 

-63.4 

63.4 

-63.4 

56.3 

11.3 

11.3 

71.6 

18.4 

18.4 

-78.7 

78.7 

-78.7 

Fig. 2.19 Illustration of grain arrangement (a) and the applied profile of mechanical and 

thermal conditions (b) [109] 

Fig. 2.20 Configuration of atoms during loading, unloading, heating and cooling for model 

A: (a) initial state, (b) after relaxation, (c) during loading, (d) after loading, (e) after 

unloading, (f ) after heating and (g) after cooling [109] 
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2.7.2 Micro-macro Models 

Compared to microscopic models, micro-macro models focus on the properties at meso 

scales. Mechanical properties on transformation systems are established. The macroscopic 

behaviors of SMAs are obtained from the vector sum of the behaviors of single grains by 

Mori-Tanaka scheme [114], or Sach and Taylor approaches [115]. The transformation strain 

Fig. 2.21 Configuration of atoms during loading, unloading, heating and cooling for model 

B: (a) initial state, (b) after relaxation, (c) during loading, (d) after loading, (e) after 

unloading, (f ) after heating and (g) after cooling [109] 

Fig. 2.22 (a) Stress–strain curves during loading for variously oriented models, B1–B6 (b) 

Stress–strain relation during loading, unloading, heating and cooling for model A [109] 
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of each transformation system is assumed to be related to the transformation plane normal 

vector and direction vector. Total transformation strain is volume product of the 

transformation strain of each martensitic variant. Traction continuity is often applied to solve 

system stress strain. Stupkiewicz and Gorzynska-Lengiewicz [116] studied forward 

transformation of SMAs with 528 transformation systems. Anand and Gurtin [117] compare 

the difference between 192 and 24 transformation systems, and a similar stress strain curve is 

noticed in their research. The reorientation of martensite is studied by Yu et al. [118-120] 

Similar work can be found in Thamburaja et al. [121, 122], and Ostwald [123]. 

The following section discusses in detail micro-macro models using the model of Yu et 

al. [120]. When dealing with small deformation in single crystal NiTi SMAs, total strain 

tensor 𝜺 is composed of three parts; i.e., elastic strain tensor 𝜺𝒆, strain tensor 𝜺𝒎 caused by

thermo-elastic martensitic transformation; reorientation and detwinning of twinned martensite; 

and plastic strain tensor 𝜺𝒑. The relationship is written as:

𝜺 = 𝜺𝒆 + 𝜺𝒎 + 𝜺𝒑 (2.44) 

Strain tensor 𝜺𝒎 can be decomposed into three parts; i.e., martensite transformation strain

𝜺𝒕𝒓, reorientation strain 𝜺𝒓𝒆, and detwinning strain 𝜺𝒅𝒆:

𝜺𝒎 = 𝜺𝒕𝒓 + 𝜺𝒓𝒆 + 𝜺𝒅𝒆   (2.45) 

The model considers 24 martensite variants. Transformation strain 𝜺𝒕𝒓 is related to the

martensitic volume fraction 𝜉𝑡𝑟
𝛼  and strain tensor Λ𝛼 of each variant by equation:

𝜺𝒕𝒓 = ∑ 𝜉𝑡𝑟
𝛼𝟐𝟒

𝜶=𝟏 𝚲𝛼 (2.46) 

where 

𝚲𝛼 =
1

2
𝑔𝑡𝑟(𝒎𝛼⨂𝒏𝛼 + 𝒏𝛼⨂𝒎𝛼) (2.47) 

35

file:///D:/PhD%20documents/PhD%20dissertation/PhD%20thesis%20draft%20-%20副本.docx%23_ENREF_116
file:///D:/PhD%20documents/PhD%20dissertation/PhD%20thesis%20draft%20-%20副本.docx%23_ENREF_117
file:///D:/PhD%20documents/PhD%20dissertation/PhD%20thesis%20draft%20-%20副本.docx%23_ENREF_118
file:///D:/PhD%20documents/PhD%20dissertation/PhD%20thesis%20draft%20-%20副本.docx%23_ENREF_121
file:///D:/PhD%20documents/PhD%20dissertation/PhD%20thesis%20draft%20-%20副本.docx%23_ENREF_122
file:///D:/PhD%20documents/PhD%20dissertation/PhD%20thesis%20draft%20-%20副本.docx%23_ENREF_123
file:///D:/PhD%20documents/PhD%20dissertation/PhD%20thesis%20draft%20-%20副本.docx%23_ENREF_120


In this equation, 𝑔𝑡𝑟 is the magnitude of shearing deformation caused by transformation.

𝒎𝛼 and 𝒏𝛼 are transformation orientation and habit plane normal vectors, respectively. In

their model, strain caused by the reorientation of twinned martensite is chosen the same as 

that of Thamburaja et al. [124] and is expressed as: 

𝜺𝒓𝒆 = ∑ ∑ 𝜆𝑖𝑗𝟐𝟑
𝒊=𝟏 𝐒𝑖𝑗𝟐𝟒

𝒋>𝒊    (2.48) 

where 𝜆𝑖𝑗 represents the amount of martensite transformed from jth to ith orientation due to

reorientation of twinned martensite variants. 𝐒𝑖𝑗 is the orientation tensor which is expressed

as: 

𝐒𝑖𝑗 = 𝚲𝑖 − 𝚲𝑗 (2.49) 

When the term 𝜆𝑖𝑗 is determined, the volume fraction of αth variant 𝜉𝑟𝑒
𝛼  can be calculated

by the equation as: 

𝜉𝑟𝑒
𝛼 = ∑ ∑ 𝑘𝛼𝑖𝑗𝟐𝟑

𝒊=𝟏
𝟐𝟒
𝒋>𝒊 𝜆𝑖𝑗 with α = 1,2,…, 24 (2.50) 

𝑘𝛼𝑖𝑗 = {
1   𝑖𝑓 𝛼 = 𝑖

−1    𝑖𝑓 𝛼 > 𝑖 𝑎𝑛𝑑
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝛼 = 𝑗 (2.51) 

Therefore, the total volume fraction of martensite is expressed as: 

𝜉𝛼 = 𝜉𝑡𝑟
𝛼 + 𝜉𝑟𝑒

𝛼   (2.52) 

During the process of martensite detwinning, strain is defined as the sum of the 

transition amount between two sub-variants, which is therefore written as: 

𝜺𝒅𝒆 = ∑ 𝜉𝛼(𝜆𝛼 − 𝜆0
𝛼)𝑷𝑑𝑒

𝛼𝟐𝟒
𝜶=𝟏                                               (2.53)

Here the volume fractions of two sub-variants in αth martensite variant are 𝜆𝛼 and 1 − 𝜆𝛼,

respectively. 𝜆0
𝛼 is the initial value of martensitic volume fraction. Orientation tensor 𝑷𝑑𝑒

𝛼

has the form: 
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𝑷𝑑𝑒
𝛼 =

1

2
(𝒂𝛼⨂𝒘𝛼 +𝒘𝛼⨂𝒂𝛼) (2.54) 

In their model, plastic deformation is considered. Plastic strain is composed of two parts 

as: 

𝜺𝑝 = 𝜺𝐴
𝑃 + 𝜺𝑀

𝑃 (2.55) 

In the BCC crystal, there are 12 primary slip systems. Therefore, total plastic strain 

caused by slip in austenite is written as: 

𝜺̇𝐴
𝑝 = (1 − 𝜉)∑ 𝛾̇𝐴

𝛽
𝑷𝐴
𝛽12

𝛽=1 (2.56) 

𝑷𝐴
𝛽
=

1

2
(𝒔𝐴

𝛽
⨂𝑰𝐴

𝛽
+ 𝑰𝐴

𝛽
⨂𝒔𝐴

𝛽
) (2.57) 

𝜉 = ∑ 𝜉𝛼24
𝛼=1   (2.58) 

where 𝛾̇𝐴
𝛽

 is the dislocation slipping rate of βth system in the austenitic phase, 𝑷𝐴
𝛽

is 

orientation tensor, 𝒔𝐴
𝛽

is slip direction, and 𝑰𝐴
𝛽

is slip plane normal of the βth system. 𝜉 is 

total volume fraction of the martensitic phase. Plastic strain of the martensitic phase is related 

to deformation of the twinning systems. There are 11 twinnning systems for NiTi martensite. 

Therefore, plastic strain of the martensite is: 

𝜺̇𝑀
𝑝 = 𝜉 ∑ 𝑓̇𝑀

𝛽1𝚲𝑀
𝛽111

𝛽1=1
(2.59) 

𝚲𝑀
𝛽1 =

1

2
𝑔𝑡𝑤𝑖𝑛
𝛽1 (𝒎𝑡𝑤𝑖𝑛

𝛽1 ⨂𝒏𝑡𝑤𝑖𝑛
𝛽1 + 𝒏𝑡𝑤𝑖𝑛

𝛽1 ⨂𝒎𝑡𝑤𝑖𝑛
𝛽1 ) (2.60) 

where 𝑓̇𝑀
𝛽1 is the rate of twinning volume fraction for 𝛽1th twinning system of martensite,

𝚲𝑀
𝛽1 is strain of the𝛽1th twinning system, 𝒎𝑡𝑤𝑖𝑛

𝛽1 and 𝒏𝑡𝑤𝑖𝑛
𝛽1 are twinning orientation and 

twinning plane normal, respectively. 𝑔𝑡𝑤𝑖𝑛
𝛽1 is the magnitude of shearing deformation of the 

𝛽1th twinning system. In a representative volume element (RVE) of NiTi SMA, Helmholtz 

free energy 𝜓 can be written as: 

𝜓 = 𝜓𝑒 + 𝜓𝑚 + 𝜓𝑝 (2.61) 
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where 𝜓𝑒  is elastic energy, 𝜓𝑚  is reorientation and detwinning energy, 𝜓𝑝  is plastic

energy. They have the form: 

{
 
 

 
 𝜓𝑒(𝜺𝑒, 𝜉) =

1

2
𝜺𝑒: 𝐶(𝜉): 𝜺𝑒

𝜓𝑚(𝑇, 𝜉𝛼, 𝑡) = 𝑐 [(𝑇 − 𝑇0)− 𝑇𝑙𝑛 (
𝑇

𝑇0
)] + 𝜇(𝑇 − 𝑇0)∑ 𝜉𝛼 +

1

2
∑ 𝐻(𝜉𝛼)2 + ∫ ∑ 𝜉𝛼𝑋𝑀

𝛼 |𝜆̇
𝛼
|𝑑𝑡24

𝛼=1
𝑡

0
24
𝛼=1

24
𝛼=1

𝜓̇
𝑝
= (1 − 𝜉) ∑ 𝑅𝐴

𝛽
|𝛾̇
𝐴
𝛽|+ 𝜉∑ 𝑄

𝑀

𝛽1 𝑓̇
𝑀

𝛽111
𝛽1=1

12
𝛽=1

 

(2.62) 

Clausius dissipative inequality can be applied to the equation as: 

Γ = 𝑤̇ − 𝜓̇ − 𝜂𝑇̇ −
𝒒∙∇𝑇

𝑇
≥ 0 (2.63) 

where 𝑤̇ is the external power and can be written as 𝑤̇ = 𝝈 ∶ 𝜺̇. Therefore, the driving force 

for transformation 𝜋𝑡𝑟
𝛼 , reorientation 𝜋𝑟𝑒

𝑖𝑗
, detwinning 𝜋𝑑𝑒

𝛼 , plastic deformation of austenite 

𝐹𝐴𝑠𝑙𝑖𝑝
𝛽

and plastic deformation of martensite 𝐹𝑀𝑡𝑤𝑖𝑛
𝛽1 can be written as: 

𝜋𝑡𝑟
𝛼 = 𝝈: [𝚲𝛼 + (𝜆𝛼 − 𝜆0

𝛼)𝑷𝑑𝑒
𝛼 ] − 𝜇(𝑇 − 𝑇0) − 𝑯𝜉

𝛼 −
1

2
𝜺𝑒: Δ𝑪 ∶ 𝜺𝑒 (2.64) 

𝜋𝑟𝑒
𝑖𝑗
= 𝝈: [𝐒𝑖𝑗 + ∑ (𝜆𝛼 − 𝜆0

𝛼)𝑘𝛼𝑖𝑗𝑷𝑑𝑒
𝛼𝟐𝟒

𝜶=𝟏 ] − ∑ 𝑘𝛼𝑖𝑗𝐻𝜉𝛼𝟐𝟒
𝜶=𝟏   (2.65) 

𝜋𝑑𝑒
𝛼 = |𝝈: 𝑷𝑑𝑒

𝛼 | − 𝑋𝑀
𝛼 (2.66) 

𝐹𝐴𝑠𝑙𝑖𝑝
𝛽

= |𝝈: 𝑷𝐴
𝛼| − 𝑅𝐴

𝛽
(2.67) 

𝐹𝑀𝑡𝑤𝑖𝑛
𝛽1 = 𝝈: 𝚲𝑀

𝛽1 − 𝑄𝑀
𝛽1 (2.68) 

The simulated stress strain curve by the micro-macro model is compared with the 

experimental result by Shaw and Kyriakides [57]. Simulated results match well with 

experiment under different temperatures. The comparation between the model and 

experimental results in shown in Fig. 2.23. 
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2.7.3 Macroscopic Models 

To save time for computer calculation, macroscopic models are established based on 

experimental data. The phenomenological model was first established by Tanaka and Nagaki 

Fig. 2.23 Stress–strain curves of the NiTi shape memory alloy (initially austenite) 

in uniaxial tension-unloading tests at different temperatures: (a) 333 K; (b) 343 K; 

(c) 353 K; (d) 363 K; (e) 343 K (with high applied stress) [120] 
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[125] and later extended by other researchers [126-131]. Compared to microscopic and 

micro-macro models, only macroscopic parameters are considered. Total energy of the 

system is composed of Gibbs free energy of austenitic phase, martensitic phase and free 

energy of mixture. Free energy of the sample is related to temperature, stress, strain, and 

martensitic volume fraction. Typical macroscopic models can be referred to as models of 

Lagoudas et al. [132-135], Lexcellent et al. [136], Auricchio et al. [137-139], and Zaki et al. 

[126, 129, 140-142]. In research by Lagoudas et al. [132-135], martensitic transformation is 

described by a theory similar to J2-type plasticity theory. Phase transformation has the same 

direction as flow stress direction, and yield surfaces are introduced for transformation. 

Minimum Gibbs free energy and the increase of entropy during phase transformation are the 

base assumptions for the constitutive model. Gibbs free energy of the whole system is 

composed of elastic energy, transformation-related energy and temperature-related energy. 

The driving force for transformation is then related to system stress, strain, and temperature. 

Gibbs free energy is established vis a vis transformation hardening. Transformation hardening 

functions are established with exponential, cosine, and polynomial forms, respectively. 

Transformation-induced plasticity isalso considered. In the recent model, nonlinear hardening 

equations are chosen to smooth stress strain curves of SMAs. Based on this model, the 

irrecoverable plastic deformation during phase transformation is studied. The model is later 

extended to simulate magnetic-field-induced phase transformation by adding to the Gibbs 

free energy additional items related to the magnetic field. Phase transformation during crack 

propagation is also studied in the model. In research by Lexcellent et al. [136], the 

reorientation of martensite variants is first considered. The interaction energy of martensite 
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variants is added to the total Gibbs free energy. In the research, J2 and J3 flow rules are taken 

to model tension-compression asymmetry. Phase transformation near the crack was also 

considered. Auricchio et al. model [137-139] the fatigue properties of SMAs during cyclic 

loading. Plastic deformation and phase transformation behavior of dense and porous SMAs 

were modeled recently in their group. The reorientation of martensite under nonproportional 

loading is modeled by Zaki [137-139]. 

The following section discusses in detail macroscopic models by taking Zaki and 

Moumni’s model [129, 142] as representative. In their model, the Helmholtz free energy 

potential 𝜙 is related to temperature 𝑇, martensitic volume fraction 𝜉, local transformation 

strain tensor for austenite 𝜀𝐴 and martensite 𝜀𝑀 , and local martensite orientation strain 

tensor 𝜀𝑜𝑟𝑖 as:

𝜙(𝑇, 𝜀𝐴, 𝜀𝑀, 𝜀
𝑜𝑟𝑖, 𝜉) = (1 − 𝜉)𝜙𝐴 + 𝜉𝜙𝑀 + 𝐼𝐴𝑀 (2.69) 

where 

{
 
 

 
 𝜙𝐴(𝜺𝑨) =

1

2
𝜺𝑨: 𝑲𝑨: 𝜺𝑨

𝜙𝑀(𝜺𝑴, 𝜺
𝒐𝒓𝒊, 𝑇) =

1

2
(𝜺𝑴 − 𝜺

𝒐𝒓𝒊):𝑲𝑴: (𝜺𝑴 − 𝜺
𝒐𝒓𝒊) + 𝐶0 + 𝜁(𝑇 − 𝐴𝑓

0)

𝐼𝐴𝑀 = 𝐺
𝜉2

2
+ 𝑏1

𝜉2

2
(
2

3
𝜺𝒕𝒓: 𝜺𝒕𝒓) + 𝑏2

𝜉

2
(1 − 𝜉) (

2

3
𝜺𝒕𝒓: 𝜺𝒕𝒓)

(2.70) 

where 𝑲𝑨 is elastic stiffness tensor of austenite, 𝑲𝑴 is elastic stiffness tensor of martensite, 

𝐶0 is the value of heat density of phase transformation 𝐶(𝑇) for 𝑇 = 𝐴𝑓
0 and 𝝈 = 0. 𝜁 

controls the influence of temperature on transformation stress. Transformation hardening 

energy 𝜙𝐾𝑇 is written as: 

𝜙𝐾𝑇 = 𝜆1𝜉 + 𝜆2(1 − 𝜉) + 𝜆3 (𝜀𝑚𝑎𝑥
𝑡𝑟 −√

2

3
𝜺𝑡𝑟: 𝜺𝑡𝑟) + 𝝀: [(1 − 𝜉)𝜺𝐴 + 𝜉𝜺𝑀 − 𝜺]

(2.71) 
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where 𝜺 is macroscopic strain, and 𝜆1, 𝜆2, 𝜆3, and 𝝀 are Lagrange multipliers associated 

with the following Kuhn-Tucker conditions: 

{
 
 

 
 𝜆1 ≥ 0, and 𝜆1𝜉 = 0

𝜆2 ≥ 0, and 𝜆2(1 − 𝜉) = 0

𝜆3 ≥ 0 and 𝜆3 (𝜀𝑚𝑎𝑥
𝑡𝑟 − √

2

3
𝜺𝑜𝑟𝑖: 𝜺𝑜𝑟𝑖) = 0

(2.72) 

The constitutive equation is then reduced to an optimization of Lagrangian: 

𝐿(𝑇, 𝜺, 𝜺𝐴, 𝜺𝑀, 𝜺
𝑜𝑟𝑖, 𝜉) = (1 − 𝜉)𝜙𝐴 + 𝜉𝜙𝑀 + 𝐼𝐴𝑀 + 𝜙𝐾𝑇 (2.73) 

Therefore, dissipation energy 𝐷𝑝 is written as: 

𝐷𝑝 = [𝑎1(1 − 𝜉) + 𝑎2𝜉]|𝜉̇| + 𝜉
2𝜺𝑜𝑟𝑖√

2

3
𝜺𝑡𝑟: 𝜺𝑡𝑟 (2.74) 

In the equation, 𝑎1 and 𝑎2 control the width of the pseudoelastic hysteresis loop for 𝜉 = 0 

and 1. The driving force for forward transformation, reverse transformation and orientation is 

written as: 

{
 

 
𝐹𝜉
𝐹 = 𝐴𝜉 − [𝑎1(1 − 𝜉) + 𝑎2𝜉]

𝐹𝜉
𝑅 = −𝐴𝜉 − [𝑎1(1 − 𝜉) + 𝑎2𝜉]

𝐹𝑜𝑟𝑖 =
𝐹𝑡𝑟

𝜉
= ‖

𝐴𝑡𝑟

𝜉
‖ − 𝜉𝑌 for 𝜉 > 0

(2.75) 

where 𝐴𝜉 = −
𝜕𝐿

𝜕𝜉
and 𝐴𝑡𝑟 = −

𝜕𝐿

𝜕𝜀𝑡𝑟
. If 𝐹𝜉

𝐹 < 0 and 𝐹𝜉
𝑅 < 0, no phase transformation is

activated and 𝜉̇ = 0. If 𝐹𝜉
𝐹 = 0 , forward transformation is activated. Therefore, 𝜉̇ = 0

when 𝐹̇𝜉
𝐹 < 0  or 𝐹̇𝜉

𝐹 = 0  otherwise. If 𝐹𝜉
𝑅 = 0 , reverse transformation is activated.

Therefore, 𝜉̇ = 0 when 𝐹̇𝜉
𝑅 < 0 or 𝐹̇𝜉

𝑅 = 0 otherwise. If 𝐹𝑜𝑟𝑖 = 0, the onset of martensite

orientation is reached. Therefore, 

𝜺̇𝑡𝑟 = 𝜂
𝜕𝐹𝑜𝑟𝑖

𝜕𝑿
(2.76) 

where 𝑿 is the deviatoric part of 𝑑𝑒𝑣(𝐴𝑡𝑟) 𝜉⁄  and 𝜂 is a positive scalar that satisfies the

Kuhn-Tucker conditions: 

𝜂 ≥ 0, 𝐹𝑜𝑟𝑖 ≤ 0, and 𝜂𝐹𝑜𝑟𝑖 = 0 (2.77) 
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The comparison between experiment and model is shown in Fig. 2.24. Numerical predictions 

show good agreement with experimental data for both pseudoelasticity and orientation of 

self-accommodated martensite under various temperatures. 

2.8 Review of Research on High Strain Rate Deformation of NiTi SMAs 

The constitutional relationship of NiTi SMAs is strain rate sensitive. The effect of strain 

rate on transformation behavior in austenitic NiTi SMAs has been studied preliminarily 

[143-146]. C. Elibol and M.F.-X. Wagner [146] studied the effect of strain rate ranging from 

Fig.2.24 Numerical vs experimental stress-strain curves in uniaxial tension at different 

temperatures [129] 
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10
-4

/s to 10
3
/s on tension, compression (Fig. 2.25) and shearing of austenitic NiTi SMAs.

They reported that transformation stress as well as slopes of the stress–strain curves in the 

transformation region increase with increasing strain rate for all loading conditions. This 

phenomenon is attributed to latent heat generated during phase transformation. The 

relationship between the increase of temperature and strain rate was studied by Hao Yin et al. 

[145]. In their study, samples are loaded to 6% strain and strain rates ranging from 4.8 × 10
-5

/s

to 1.2 × 10
-1

/s. Temperature increases from 5.2⁰C at 4.8 × 10
-5

/s to 23⁰C at 1.2 × 10
-1

/s. A

similar trend was noticed by Aslan Ahadi et al. [144]. In their study, strain rate ranges from 4 

× 10
-5

/s to 1 × 10
-1

/s. Temperature increases with strain rate regardless of grain size. Full-field

thermographic imaging was used to map thermal changes as a function of strain rate loading. 

The largest change in temperature of 27.1⁰C occurs at deformation strain of 7% at strain rate 

10
-1

/s in the sample with grain size 90 nm.

Fig. 2.25 Engineering stress–strain curves of five virgin NiTi samples at strain rates from 

10
-4

 /s to 10
-3

 /s under simple compressive loading [146].
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Temperature dependence of plateau stress for forward transformation (dσ/dT) ranges 

from 4.37 MPa/K (grain size 27 nm) to 6.43 MPa/K (grain size 90 nm). Clausius-Clapeyron 

equation is used to estimate the relationship between the increase of temperature and stress by 

Sia Nemat-Nasser et al. [143]. Temperature increase is attributed to deformation work and 

latent heat of phase transformation. The temperature dependence of plateau stress for forward 

transformation (dσ/dT) increases with strain rate. An apparent increase of plateau stress for 

phase transformation and slope of stress-strain curve in the transformation region is also 

noticed when strain rate increases from 330 /s to 1080 /s (Fig. 2.26). Chen and Bo [147] 

studied temperature effect on the stress strain curve of NiTi SMAs deformed at 430/s. The 

sample is deformed at temperatures ranging from 0°C to 50°C. Work hardening behavior is 

observed with increasing temperature. Details are shown in Fig. 2.27. 

Fig. 2.26 Dynamic stress–strain relations for NiTi shape-memory alloy at indicated strain 

rates [143] 

45

file:///D:/PhD%20documents/PhD%20dissertation/PhD%20thesis%20draft%20-%20副本.docx%23_ENREF_143
file:///D:/PhD%20documents/PhD%20dissertation/PhD%20thesis%20draft%20-%20副本.docx%23_ENREF_147


Phase boundaries of NiTi austenite and martensite propagate during deformation; the 

difference of phase front velocity between quasi-static and dynamic deformation has been 

studied briefly [57, 148, 149]. Shaw and Kyriakides [57] studied phase front velocity when 

the polycrystalline NiTi SMA wire is deformed at strain rates from 4 × 10
-5

 to 4 × 10
-2

 /s. They

reported that propagation speed of the phase transformation front ranges from 0.25 mm/s to 

2.31 mm/s at different strain rates. Compared to quasi-static deformation, a much higher 

velocity of phase front is noticed in high strain rate deformation. Escobar et al. [148] studied 

stress-induced phase transformation in NiTi at the extremely high strain rate of 10
4
 /s.

Velocity was 327 m/s. Niemczura and Ravi-Chandar [149] studied the propagation of phase 

boundaries of NiTi under quasi-dynamic conditions. The nucleation and propagation of phase 

fronts were noticed in their experiment, and the phase fronts move in a speed ranging from 37 

Fig. 2.27 Dynamic compressive stress strain curves of the NiTi shape memory alloys at 

different deformation temperature [147] 
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m/s to 370 m/s. They also reported that the driving force for phase transformation is related to 

propagation speed of the phase front. 

While significant experimental research on the strain rate effect on deformation of NiTi 

SMAs in high strain rate deformation has been performed, modeling in this field is limited. 

Based on experimental data, Niemczura and Ravi-Chandar [149] established a model 

connecting the volume fraction of transformed martensite and the speed of the phase front. In 

their model, the simplest tri-linear stress-strain constitutive law is applied for both 

quasi-static and high strain rate deformation. Strain energy is calculated by jump 

discontinuities in the phase front. By assuming maximum energy dissipation in the process of 

phase boundary propagation, the driving force for phase transformation is calculated. Chen 

and Lagoudas [150] established a model describing the propagation of stress waves and phase 

transformation fronts in NiTi SMA rod. The quasi-static thermomechanical constitutive 

relationship for NiTi SMAs developed by Lagoudas et al. [130, 151] was used for impact 

conditions. Wave equations and jump conditions in the phase fronts are considered. Two 

waves are assumed to coexist in the rod. One separates the tranquil and disturbed regions 

with acoustic speed 3300 m/s; and another separates the austenitic and martensitic phases 

with phase boundary speed ranging from 911 m/s to 1100 m/s. According to their model, 

martensitic transformation is activated when stress exceeds 165 MPa, which brings a jump of 

temperature and stress at the acoustic front. Stress and temperature are continuous until stress 

exceeds 586 MPa. A maximum increase of temperature of 56.5 K is estimated when stress 

equals 800 MPa. Stress increase is connected to temperature increase when the impact 

condition can be seen as an adiabatic process. When jump conditions meet, jump leads to a 
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higher stress level than stress when only the temperature effect is considered (Fig. 2.28). 

Bekker et al. [152] talked about wave propagation in SMA rods in adiabatic and 

isothermal cases with different boundary conditions. The stress strain relationship at high 

strain rate deformation in their model is based on the 1-D rate-independent constitutive law 

Fig.2.28 Simulated stress and temperature distribution at phase front during impact 

deformation [150] 
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[153, 154]. Different wave structures of the solution to the impact problem are established on 

1-D field equations for isothermal and adiabatic cases. According to their model, acoustic 

speed is 3300 m/s for both cases. Velocity for the phase front is 650 m/s for the isothermal 

case and 740 m/s for the adiabatic case. Based on the model similar to [150, 152], Lagoudas 

et al. [134] studied wave structure in the SMA rod when deformed by impact loading, and the 

modeling results were then compared with experimental results from split Hopkinson bar 

testing. The experiment is similar to that done by Shaw and Kyriakides [57] and Escobar et al. 

[148]. A set of strain gages are set in the specimen with a specially designed distance to each 

other. Strain and stress information at each strain gage is then collected. Elastic wave velocity 

and phase front are 3294 m/s and 723 m/s, respectively. 
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CHAPTER 3
1

ONE-DIMENSIONAL THERMOMECHANICAL MODEL FOR HIGH STRAIN RATE 

DEFORMATION OF AUSTENITIC SHAPE MEMORY ALLOYS 

3.1 Abstract 

Shape memory alloys (SMAs) exhibit the ability to absorb large dynamic loads and, 

therefore, are excellent candidates for structural components where impact loading is 

expected. While most models focus on the shape memory effect and/or pseudoelasticity of 

polycrystalline SMAs under quasi-static loading conditions; models for dynamic loading are 

limited. Many of the existing high strain rate models assume that the latent heat generated 

during deformation contributes to the change in the stress strain behavior during dynamic 

loading. The driving force for phase transformation is also related to the phase front velocity, 

which is not considered in exist models for the constitutive relationship of SMAs at high 

strain rate deformation. In this paper, the relationship between the driving force for phase 

transformation and phase front velocity is discussed. A new one-dimensional rate-dependent 

model is established for the dynamic loading behavior of SMAs. 

3.2 Introduction 

Shape memory alloys (SMAs) are widely used in aerospace, biomedical, and structural 

This chapter is presented in its entirety from H. Yu and M.L. Young: “One-dimensional Thermomechanical 

Model for High Strain Rate Deformation of Austenitic Shape Memory Alloys”, Journal of Alloys and 

Compounds, 710 (5) 858-868, July (2017) with permission from Elsevier 
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applications due either to pseudoelasticity or the shape memory effect, depending on their 

thermo-mechanical history [1-5]. NiTi-based SMAs are the most commercially successful 

and are readily available at the industrial scale. The most common NiTi-based SMAs include 

austenitic NiTi, martensitic NiTi, NiTiCu, NiTiNb, and NiTiFe; while other emerging binary 

and ternary NiTi-based are expected to become available depending on demand, cost, and 

processability [4]. Thermo-mechanical deformation and fracture behavior of these SMAs at 

quasi-static levels have been studied extensively [6-8]. Currently, there is a need for new 

materials for dynamic loading [9]. NiTi-based SMAs are promising as high strain rate 

materials because of their relatively large amounts of recoverable strain and high damping 

properties [10]. 

Experimental studies on the strain rate effect on the deformation behavior of NiTi SMAs 

have focused mainly on austenitic NiTi SMAs [10-14] and to a lesser extent on martensitic 

NiTi SMAs [15, 16]. The constitutive relationship of NiTi SMAs is strain rate sensitive. The 

effect of strain rate on transformation behavior in austenitic NiTi SMAs has been studied 

preliminarily [12, 14, 17, 18]. The flow stress in the transformation region increases with 

increasing strain rate. This phenomenon is attributed to the increase in temperature associated 

with deformation work and latent heat of phase transformation [18]. As strain rate increases, 

heat generated during deformation has less time to dissipate to the ambient through heat 

conduction, leading to a higher temperature within specimen, which stabilizes austenite. 

Therefore, a higher stress is needed for phase transformation. Although an increase in 

temperature during deformation has been widely used to explain the strain rate effect on the 

constitutive relationship of SMAs at quasi-static deformation, the temperature reaches a 
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saturation value at strain rates higher than 1.2×10
-1

/s [18]. At the same time, heat conduction

is insignificant at high strain rate deformation and the process is adiabatic. Limited 

temperature increasing at high strain rate deformation is observed in experiment [19, 20] and 

therefore self-heating can only partially be used to explain the large flow stress under high 

strain rate deformation. Nemat-Nasser et al [14] proposed a new mechanism for phase 

transformation in NiTi SMAs deformed at strain rate higher than a critical value. The kinetic 

relationship between the driving force for phase transformation and the speed of the phase 

boundary is studied [21, 22]. Niemczura and Ravi-Chandar [20] studied the propagation of 

phase boundaries of NiTi under quasi-dynamic conditions. They reported that the driving 

force for phase transformation is related to the speed of the propagation of the phase front. 

Accurate modeling techniques potentially save not only time and money but also 

improve experimental design procedures. The modeling of NiTi SMAs can be classified into 

two groups: micromechanical and macroscopic phenomenological. The micromechanical 

models focus on the physical behavior of NiTi SMAs during deformation. The macroscale 

properties are related to such microscopic material features as transformation systems and 

phase boundaries. Representative models can be found in work [23-27]. Intensive 

computational consumption limits the use of micromechanical models for industrial 

application. Therefore, since macroscopic thermodynamic models improve the efficiency of 

computer calculation, martensitic phase transformation is represented by the change of 

martensitic phase fraction with macroscopic scalars such as transformation strain, 

irrecoverable deformation, stress and temperature. Transformation hardening is assumed to 

occur during phase transformation [28]. The representative models can be referred to as 
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Lagoudas’ (Bo and Lagoudas [29], Lagoudas and Entchev [30], Lagoudas et al. [31], Hartl et 

al. [32]), Zaki’s (Zaki [33-35], Zaki and Moumni [36, 37], Morin et al. [38, 39]), and 

Auricchio’s [40, 41]. Similar models [42] have been developed by a combination of, 

alteration to, or permutation of these established models. Cisse et al. [43] presented a review 

paper on macroscopic models on shape memory alloys. While many rate-dependent models 

have been developed for quasi-static deformation of SMAs, only a few models have been 

developed for high strain rate deformation of SMAs. The relationship between the phase front 

velocity and strain rate during impact loading has been studied through different models. The 

constitutive relationship for dynamic deformation was assumed to be the same as that for 

quasi-static deformation in these models [28, 44-47]. Stress jump at the phase front was 

assumed to contribute to the large flow stress during phase transformation at high strain rate 

deformation. These models focus on localized microstructure of phase front, while the effect 

of strain rate on global stress-strain behavior is not well predicted. Some rate-dependent 

models [48, 49] have been established by a set of complicated mathematic equations to model 

the stress-strain behavior of SMA under fast loading conditions. The modeled stress-strain 

curve matches well with the experiment, while the physical mechanism is not well illustrated. 

In this paper, we will present a one dimensional rate-dependent model that includes both 

latent heat and the kinetic relationship. The phase front velocity is incorporated into the 

constitutive relationship for SMA at high strain rate deformation for the first time in our 

model. The effect of dislocation on phase transformation during dynamic loading is 

considered and represented by ‘transformation resistance due to dynamic loading’ in our 

model. The phase transformation is assumed to be fully recovered and therefore the plastic 
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deformation in not included in present model. The paper is organized as follows: section 3.3 

gives the background of high strain rate deformation and the traditional model for quasi-static 

deformation, section 3.4 presents a new constitutive theory by extending the thermodynamic 

formulation of traditional quasi-static deformation and the new term ‘transformation 

resistance due to dynamic loading’ is presented, section 3.5 shows a comparison of the results 

from the model with high strain rate experimental data and the influence of strain rate on 

stress strain curve is predicted, and section 3.6 presents our conclusions. 

3.3 Background 

3.3.1 Difference Between Quasi-static and High Strain Rate Deformation 

The difference between high strain rate and quasi-static deformation is shown in Fig. 3.1. 

In wave theory, a material is composed of particles, and the stress strain behavior of the 

material is connected with wave velocity and particle velocities through wave functions [20]. 

In Fig. 3.1, the particles are represented by a set of solid balls. At high strain rate deformation, 

the particles are accelerated to velocity 𝜐. According to the wave equations, local strain is 

related to particle velocity. Deformation is transferred by stress wave propagation through the 

sample with velocity 𝐶0. The process is shown in Fig. 3.1(a) with global stress 𝜎 and global 

strain 𝜀. Quasi-static deformation with the same stress 𝜎 is shown in Fig. 3.1(b). The 

particles marked by dark blue are compared with the particles at the same position during 

high strain rate deformation. During quasi-static loading, deformation is applied to the sample 

gradually, and extremely slowly. Unlike particles during high strain rate deformation, the 

particles remain static during quasi-static deformation. Therefore, strain is distributed 
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homogeneously throughout the sample. A similar discussion for the difference between 

quasi-static and high strain rate deformation is presented by Niemczura et al. [20]. 

3.3.2 Constitutive Relationship for SMAs at Quasi-static Deformation 

Our work is extended from the phenomenological model developed by Hartl et al. [32]. 

In this section, the three-dimensional quasi-static model is rewritten in one-dimensional form. 

The total Gibbs free energy is composed of the energy of the austenitic and martensitic 

phases and transformation energy caused by the interface energy between the two phases. 

These terms can be written as [32]: 

{
𝐺𝐴/𝑀 = −

𝜎2

2𝜌0𝐸
−

1

𝜌0
𝜎𝛼(𝑇 − 𝑇0) − 𝑆(𝑇 − 𝑇0) + 𝐶 [(𝑇 − 𝑇0) − 𝑇𝐼𝑛 (

𝑇

𝑇0
)]

𝐺𝑡𝑟 = −
1

𝜌0
𝜎𝜀𝑡𝑟 + 𝐹(𝜉)

     (3.1) 

respectively, where α is the thermal expansion coefficient of the material, S is the entropy of 

the material, C is the specific heat at a constant volume, and 𝐹(𝜉) is transformation 

hardening energy and is related to the martensitic volume fraction. The total Gibbs free 

energy is then written as: 

𝐺 = (1 − 𝜉)𝐺𝐴 + 𝜉𝐺𝑀 + 𝐺
𝑡𝑟 = −

1

2𝜌0
𝕊(𝜉)𝜎2 −

1

𝜌0
𝜎𝛼(𝜉)(𝑇 − 𝑇0) + 𝐶(𝜉) [(𝑇 − 𝑇0) −

Fig.3.1 Schematic of the difference between (a) high strain rate and (b) quasi-static 

deformation 
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𝑇𝐼𝑛 (
𝑇

𝑇0
)] − 𝑆(𝜉)(𝑇 − 𝑇0) −

1

𝜌0
𝜎𝜀𝑡𝑟 + 𝐹(𝜉) (3.2) 

where the parameters in the above equations are defined as: 𝐶(𝜉) = 𝐶𝐴 + 𝜉(𝐶𝑀 − 𝐶𝐴) =

𝐶𝐴 + 𝜉Δ𝐶, 𝑆(𝜉) = 𝑆𝐴 + 𝜉(𝑆𝑀 − 𝑆𝐴) = 𝑆𝐴 + 𝜉Δ𝑆 

Transformation strain 𝜀𝑡𝑟  is related to the martensitic volume fraction 𝜉  and the 

relationship is described as: 

𝜀𝑡̇𝑟 = 𝑔𝑡𝑟𝜉̇ (3.3) 

In this equation, 𝑔𝑡𝑟 is the transformation tensor, which determines the transformation strain 

direction and is defined as: 

𝑔𝑡𝑟 = {
𝐻

𝜎

|𝜎|
;   𝜉̇ > 0

𝐻
𝜀𝑡𝑟

|𝜀𝑡𝑟|
;   𝜉̇ < 0

(3.4) 

where H is the maximum transformation strain for the SMAs. The total strain is composed of 

elastic, thermal and transformation strain and can be written as: 

𝜀 = 𝜀𝑒 + 𝜀𝑡ℎ + 𝜀𝑡𝑟 (3.5) 

Therefore, the stress strain relationship can be written as: 

𝜎 = 𝕊(𝜉)−1[𝜀 − 𝜀𝑡ℎ − 𝜀𝑡𝑟] = 𝕊(𝜉)−1[𝜀 − 𝛼(𝜉)(𝑇 − 𝑇0) − 𝑔𝑡𝑟𝜉] (3.6) 

where 𝕊(𝜉) =
1

𝐸𝐴
+ 𝜉 (

1

𝐸𝑀
−

1

𝐸𝐴
) =

1

𝐸𝐴
+ 𝜉Δ𝕊, 𝛼(𝜉) = 𝛼𝐴 + 𝜉(𝛼𝑀 − 𝛼𝐴) = 𝛼𝐴 + 𝜉Δ𝛼  and

𝛼 is the thermal expansion of the material. 

According to second law of thermodynamics in the following form: 

𝜎𝜀𝑡̇𝑟 − 𝜌0
𝜕𝐺

𝜕𝜉
𝜉̇ = 𝜋𝑡𝑟 𝜉̇ ≥ 0 (3.7) 

where 𝜋𝑡𝑟 is the driving force for phase transformation and is solved as: 

𝜋𝑡𝑟 = 𝑔𝑡𝑟𝜎 +
1

2
Δ𝕊𝜎2 + Δ𝛼𝜎(𝑇 − 𝑇0) − 𝜌0Δ𝐶 [(𝑇 − 𝑇0) − 𝑇𝐼𝑛 (

𝑇

𝑇0
)] + 𝜌0Δ𝑆𝜉(𝑇 − 𝑇0) −

𝑓(𝜉) (3.8) 

In the model, hardening energy related to the material properties is defined as 𝑓(𝜉) and 
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takes the following form [32]: 

𝑓(𝜉) = {

1

2
𝑎1(1 + 𝜉

𝑛1 − (1 − 𝜉)𝑛2) + 𝑎3;  𝜉̇ > 0

1

2
𝑎2(1 + 𝜉

𝑛3 − (1 − 𝜉)𝑛4) − 𝑎3;  𝜉̇ < 0
     (3.9) 

where 𝑎1 = 𝜌0Δ𝑆(𝑀𝑓 −𝑀𝑠) , 𝑎2 = 𝜌0Δ𝑆(𝐴𝑠 − 𝐴𝑓) , and 𝑎3 = −
𝑎1

4
(1 +

1

𝑛1+1
−

1

𝑛2+1
) +

𝑎2

4
(1 +

1

𝑛3+1
−

1

𝑛4+1
). 𝑓(𝜉) is related to the materials properties 𝐴𝑠 (starting temperature

for austenitic transformation), 𝐴𝑓 (finishing temperature for austenitic transformation), 𝑀𝑠 

(starting temperature for martensitic transformation), and 𝑀𝑓  (finishing temperature for 

martensitic transformation). 

According to (3.7), the driving force 𝜋𝑡𝑟 > 0 when 𝜉̇ > 0 and 𝜋𝑡𝑟 < 0 when 𝜉̇ < 0. 

Therefore, the transformation function Φ is defined as: 

Φ = {
𝜋𝑡𝑟 − 𝑌  for   𝜉̇ > 0

−𝜋𝑡𝑟 − 𝑌   for    𝜉̇ < 0
     (3.10) 

where Y is the critical barrier for the phase transformation and 𝑌 =
𝜌0Δ𝑆(𝑀𝑠−𝐴𝑓)

2
− 𝑎3[32]. 

Φ ≤ 0 is satisfied during forward (𝜉̇ > 0) and reverse (𝜉̇ > 0) transformation 

Based on the same model discussed above, Andani et al. [50] assumes that Φ̇ = 0 

during phase transformation. Linear hardening is assumed during transformation and 

therefore, 𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 1. The martensitic volume fraction is expressed as [50]: 

𝜉̇ = {
−
(𝑔𝑡𝑟+Δ𝕊𝜎)𝜎̇+𝜌0Δ𝑆𝑇̇

𝜌0Δ𝑆(𝑀𝑠−𝑀𝑓)
;   𝜉̇ > 0

−
(𝑔𝑡𝑟+Δ𝕊𝜎)𝜎̇+𝜌0Δ𝑆𝑇̇

𝜌0Δ𝑆(𝐴𝑠−𝐴𝑓)
;   𝜉̇ < 0

     (3.11) 

3.4 Constitutive Relationship for SMAs at High Strain Rate 

3.4.1 Transformation Resistance due to Dynamic Loading 𝑓𝐷

The interface energy between austenite and martensite, the strain energy, and the energy 
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to overcome the shear resistance contribute to the resistance during martensitic phase 

transformation. Dislocation may be generated at the interface during high strain rate 

deformation, increasing flow stress during transformation. Therefore, in our work, 

transformation resistance 𝑓𝐷 is assumed to represent the additional resistance during high 

strain rate deformation. For simplification, a linear relationship between 𝑓𝐷 and martensitic 

volume fraction 𝜉 is assumed and is expressed as: 

𝑓𝐷(𝜉) = 𝐾𝜉 (3.12) 

where parameter K is related to strain rate and assumed to be constant when strain rate is 

given. Therefore, the driving force for phase transformation 𝜋𝑡𝑟 in equation (3.8) can be 

rewritten fort high strain rate deformation as: 

𝜋𝑡𝑟 = Λ𝜎 +
1

2
Δ𝕊𝜎2 + Δ𝛼𝜎(𝑇 − 𝑇0) − 𝜌0Δ𝐶 [(𝑇 − 𝑇0) − 𝑇𝐼𝑛 (

𝑇

𝑇0
)] + 𝜌0Δ𝑆𝜉(𝑇 − 𝑇0) −

𝑓(𝜉) − 𝑓𝐷(𝜉) (3.13) 

where Λ is the transformation tensor at high strain rate deformation. The martensitic volume 

fraction is correspondingly rewritten as: 

𝜉̇ = {
−
(Λ+Δ𝕊𝜎)𝜎̇+𝜌0Δ𝑆𝑇̇

𝜌0Δ𝑆(𝑀𝑠−𝑀𝑓)+𝐾
;   𝜉̇ > 0

−
(Λ+Δ𝕊𝜎)𝜎̇+𝜌0Δ𝑆𝑇̇

𝜌0Δ𝑆(𝐴𝑠−𝐴𝑓)+𝐾
;   𝜉̇ < 0

(3.14) 

To calculate the transformation resistance 𝑓𝐷 in equation (3.13), the driving force 𝜋𝑡𝑟 

at high strain rate deformation should be solved by thermodynamic laws. The energy 

conservation at short time interval during deformation is expressed as: 

𝜎𝜀 + 𝜌0𝑈 +
1

2
𝜌0𝜐

2 = 0 (3.15) 

where the terms in the left side of equation stands for the strain energy, the internal energy, 

and the kinetic energy, respectively. The kinetic energy does not equal zero at high strain rate 
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deformation, which differs driving force 𝜋𝑡𝑟 for quasi-static and high strain rate deformation. 

The kinetic energy during the phase transformation is assumed to be unrelated to the 

Young’s modulus, temperature, and hardening function of the material. Therefore, to exclude 

the effect of thermal strain, the sample is assumed to be deformed under isothermal 

conditions. However, the isothermal assumption is more appropriate for quasi-static 

deformation, where kinetic energy is unimportant, than the dynamic deformation discussed 

here. For simplification, the assumption is made in this section and temperature increase due 

to heat transfer and latent heat generated during deformation will be considered in section 

3.4.2. The semi-infinite length of the sample is assumed to exclude the effect of dissipation in 

the cross section and the effect of torsional wave propagation. Therefore, the whole procedure 

can be treated as a one-dimensional wave propagation in a semi-infinite rod during 

isothermal deformation. The boundary condition can be written as: 

𝜐(𝑥, 0) = 0, 𝜎(𝑥, 0) = 0, 𝜀(𝑥, 0) = 0, 𝜎(0, 𝑡) = 𝜎0, 𝑇 = 𝑇𝑅 (3.16) 

where 𝜐(𝑥, 0), 𝜎(𝑥, 0), 𝜀(𝑥, 0) are the particle velocity, stress, and strain in the rod before 

deformation, respectively; 𝜎(0, 𝑡) is the stress applied on the impact end of the rod, which is 

assumed to be much higher than the transformation stress 𝜎𝑡𝑟. 

According to equations (3.3) and (3.5), the total strain rate can be written as: 

𝜀̇ = 𝜀𝑒̇ + 𝜀𝑡̇𝑟 = 𝜀𝑒̇ + 𝑔𝑡𝑟𝜉̇ (3.17) 

For a given material deformed at a given strain rate, the parameters 𝜌0Δ𝑆, 𝑀𝑠, 𝑀𝑓, 𝐴𝑠, 𝐴𝑓, 

K, 𝑔𝑡𝑟, and Δ𝕊 in equation (3.11) are constant. According to the isothermal assumption, 

𝑇̇ = 0. 𝜎̇ is assumed to be a constant during deformation at a short time interval. We define 

𝜎𝑡𝑟 = −
𝑔𝑡𝑟

Δ𝕊
 and 𝑅 = −

𝜌0Δ𝑆(𝑀𝑠−𝑀𝑓)+𝐾

𝑔𝑡𝑟𝜎̇Δ𝕊
 for forward transformation or 𝑅 = −

𝜌0Δ𝑆(𝐴𝑠−𝐴𝑓)+𝐾

𝑔𝑡𝑟𝜎̇Δ𝕊
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for reverse transformation, and then equation (3.17) can be rewritten as 

𝜀̇ =
𝜎̇

𝐸
+
𝜎−𝜎𝑡𝑟

𝑅
(3.18) 

which is similar to the constitutive relationship of Maxwellian rate-type viscosity and has 

been selected as the constitutive relationship of SMA under high strain rate deformation by 

Faciu et al. [51]. Similar formula can be concluded from the other method (Appendix). The 

change of Young’s modulus 𝐸 due to the martensitic transformation in a small time interval 

is insignificant. Therefore, E is related to the wave velocity 𝐶0 as 𝐸 = 𝜌0𝐶0
2. To solve the

wave structure in the material, the governing equations from one-dimensional wave theory 

should be added to equation (3.18): 

{
 
 

 
 

∂𝜐

∂x
=

𝜕𝜀

𝜕𝑡

𝜌0
𝜕𝜐

𝜕𝑡
=

∂σ

∂x
𝜕𝜀

𝜕𝑡
=

1

𝐸

𝜕𝜎

𝜕𝑡
+
𝜎−𝜎𝑡𝑟

𝑅

(3.19) 

Characteristic methods [45] are applied to solve the partial differential equations (3.19). 

The simple wave relationship (𝜎 = −𝜌0𝐶0𝜐 and 𝜐 = −𝐶0𝜀) can be applied to satisfy the 

deformation in the wave front (𝑥 = −𝐶0𝑡). The stress in the wave front is then solved as: 

𝜎 = 𝜎𝑡𝑟 + (𝜎0 − 𝜎𝑡𝑟)𝑒𝑥𝑝 (−
𝜌0𝐶0

2𝑅
𝑥)  when 𝑥 = −𝐶0𝑡      (3.20) 

According to equation (3.20), the stress 𝜎 = 𝜎0  when 𝑥 = 0  and 𝜎 = 𝜎𝑡𝑟  when 

𝑥 = +∞. By adding equation (3.20) into equation (3.18), a high strain rate deformation 

region is observed at 𝑥 → 0. Therefore, for high strain rate deformation, equation (3.20) can 

be simplified as: 

𝜎 = 𝜎0 −
𝜌0𝐶0𝑔𝑡𝑟𝜉̇

2
when 𝑥 = −𝐶0𝑡          (3.21) 

The above solution for the stress is limited to the wave front. The deformation at any time 

and position (x, t) can be solved by characteristic methods in the same way with boundary 
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conditions solved by (3.21) as: 

{
 
 

 
 𝜎(𝑥, 𝑡) = 𝜎0 −

1

2
𝑔𝑡𝑟𝜉̇𝜌0𝐶0𝑥

𝜀(𝑥, 𝑡) =
𝜎0

𝐸
+ 𝑔𝑡𝑟𝜉̇𝑡 −

3𝑔𝑡𝑟𝜉̇𝑥

2𝐶0

𝜐(𝑥, 𝑡) = 𝜐0 + 𝑔𝑡𝑟𝜉̇𝑥 −
1

2
𝑔𝑡𝑟𝜉̇𝐶0𝑡

(3.22) 

According to the above assumptions, the deformation at high strain rate (region 𝑥 → 0) is 

taken into consideration. Therefore, equation (3.22) is simplified as: 

{

𝜎 = 𝜎0

𝜀 =
𝜎0

𝐸
+ 𝑔𝑡𝑟𝜉̇𝑡 =

𝜎0

𝐸
+ 𝑔𝑡𝑟𝜉

𝜐 = 𝜐0 −
1

2
𝑔𝑡𝑟𝜉̇𝐶0𝑡 = 𝜐0 −

1

2
𝑔𝑡𝑟𝐶0𝜉

     (3.23) 

According to equation (3.23), the stress during phase transformation remains constant at 

𝜎0, which is the same as predicted by Niemczura and Ravi-Chandar [20]. The deformation 

path related to equation (3.23) is shown in Fig. 3.2a. When stress 𝜎0 is applied on the impact 

end of the sample, the elastic stress wave is first generated to deform the sample to strain 

𝜀0 =
𝜎0

𝐸
. The corresponding particle velocity at the same time is 𝜐0. Phase transformation is

activated when stress 𝜎0 is larger than the critical stress 𝜎𝑡𝑟. The speed of the phase front is 

the same as the wave velocity 𝐶0. During phase transformation, strain increases and particle 

velocity decreases with the nucleation and growth of martensite. Thermodynamic equilibrium 

is satisfied when the strain is equal to 𝜀0
𝑟𝑒𝑎𝑙. Flow stress remains constant during phase

transformation. Therefore, kinetic energy 𝜙𝑘 during phase transformation is: 

𝜙𝑘 =
1

2
𝜌0𝜐

2 =
1

2
𝜌0𝜐0

2 +
1

8
𝜌0𝑔𝑡𝑟

2 𝐶0
2𝜉2 −

1

2
𝜌0𝑔𝑡𝑟𝐶0𝜐0𝜉 (3.24) 

According to equation (3.24), kinetic energy during high strain rate deformation is related to 

particle velocity 𝜐0, wave velocity 𝐶0, and martensitic volume fraction 𝜉. The speed of the 

phase front is assumed to be the same as the wave velocity. This assumption is reasonable for 

deformation at extremely high strain rate. When the sample is deformed at moderate to high 
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strain rate, the speed of the phase boundary is lower than the acoustic speed. Kinetic energy is 

related to the speed of the phase front. 

When the speed of the phase boundary is no longer equivalent to the elastic wave, the 

phase transformation during high strain rate deformation propagates at the speed of 𝐶𝑃. The 

deformation is shown in the schematic in Fig. 3.3. The new martensitic transformation zone 

is generated in the pre-deformed region as illustrated in Fig. 3.3. The martensitic volume 

fraction of the pre-deformed and newly generated zone is 𝜉𝑛−1 and 𝜉𝑛, respectively. The 

strain and stress of the two zones is 𝜀𝑛−1 , 𝜀𝑛  and 𝜎𝑛−1 , 𝜎𝑛 , respectively. During 

propagation of the phase boundary, jump discontinuities are observed across the phase front 

[20, 45]. The relationship between stress and strain is given as: 

{
[𝜐] = −𝐶𝑃[𝜀]

[𝜎] = −𝜌0𝐶𝑃[𝜐]
     (3.25) 

where [] stands for the difference of the quantity across the phase front. The stress evolution 

during the deformation can be seen as a sequence of microscopic jumps shown in Fig. 3.2b. 

We assume the simple wave relationship can be applied to the phase front in each 

microscopic jump. Comparing equation (3.25) with the simple relationship mentioned in 

(a) (b) 

Fig.3.2 Schematic of (a) the deformation path in impact loading when 𝐶𝑃 = 𝐶0 (b) the 

deformation path in impact loading when 𝐶𝑃 ≠ 𝐶0  
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section 3.4.1, kinetic energy under moderate and high strain rate can be written as: 

𝜙𝑘 =
1

2
𝜌0𝜐

2 =
1

2
𝜌0𝜐0

2 +
1

8
𝜌0𝑔𝑡𝑟

2 𝐶𝑃
2𝜉2 −

1

2
𝜌0𝑔𝑡𝑟𝐶𝑃𝜐0𝜉 (3.26) 

In order to derivate the resistance 𝑓𝐷(𝜉), the thermodynamic relationship is established 

in a small representative volume element (RVE) with a cross sectional area of A0. According 

to thermodynamic law, work done by flow stress leads to a change of internal energy and 

kinetic energy of the material. The relationship in equation (3.15) is rewritten as: 

𝜎𝜐 + 𝜌0𝐶𝑃𝑈 + 𝐶𝑃𝜙𝑘 = 0 (3.27) 

Internal energy U, Gibbs free energy G, and entropy S of the system are related by the first 

law of thermodynamics as: 

𝑈 = 𝐺 + 𝑇𝑆 −
1

𝜌0
𝜎𝜀      (3.28) 

Dissipation of the system is given by the second law of thermodynamics in the form of 

Clausius-Planck inequality as: 

𝜌0
𝜕𝑆

𝜕𝑡
≥ 0      (3.29) 

Combining equations (3.2), (3.27)-(3.29), we find the following equations: 

Fig.3.3 Schematic of phase transformation in representative volume element (RVE) 
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𝜌0 (𝑆 +
𝜕𝐺

𝜕𝑇
) 𝑇̇ + [𝑔𝑡𝑟𝜎 +

1

2
Δ𝕊𝜎2 + Δ𝛼𝜎(𝑇 − 𝑇0) − 𝜌0Δ𝐶 [(𝑇 − 𝑇0) − 𝑇𝐼𝑛 (

𝑇

𝑇0
)] +

𝜌0Δ𝑆𝜉(𝑇 − 𝑇0) −
1

4
𝜌0𝐶𝑃

2𝑔𝑡𝑟
2 𝜉 +

1

2
𝜌0𝑔𝑡𝑟𝐶𝑃𝜐0 − 𝑓(𝜉)] 𝜉̇ ≥ 0      (3.30) 

Equation (3.30) is a required condition for all temperatures and martensitic volume fractions 

to be satisfied. The term 𝜌0 (𝑆 +
𝜕𝐺

𝜕𝑇
) 𝑇̇  stands for entropy dissipation and the term 

[𝑔𝑡𝑟𝜎 +
1

2
Δ𝕊𝜎2 + Δ𝛼𝜎(𝑇 − 𝑇0) − 𝜌0Δ𝐶 [(𝑇 − 𝑇0) − 𝑇𝐼𝑛 (

𝑇

𝑇0
)] + 𝜌0Δ𝑆𝜉(𝑇 − 𝑇0) −

1

4
𝜌0𝐶𝑃

2𝑔𝑡𝑟
2 𝜉 +

1

2
𝜌0𝑔𝑡𝑟𝐶𝑃𝜐0 − 𝑓(𝜉)] 𝜉̇stands for phase transformation. Therefore, the driving

force for phase transformation 𝜋𝑡𝑟 can be written as: 

𝜋𝑡𝑟 =
1

2
𝑔𝑡𝑟𝜎 +

1

2
Δ𝕊𝜎2 + Δ𝛼𝜎(𝑇 − 𝑇0) − 𝜌0Δ𝐶 [(𝑇 − 𝑇0) − 𝑇𝐼𝑛 (

𝑇

𝑇0
)] + 𝜌0Δ𝑆𝜉(𝑇 − 𝑇0) −

1

4
𝜌0𝐶𝑃

2𝑔𝑡𝑟
2 𝜉 − 𝑓(𝜉) (3.31) 

According to equation (3.13) and (3.31), Λ =
1

2
𝑔𝑡𝑟 and transformation resistance due to 

dynamic loading 𝑓𝐷(𝜉) is expressed as:

𝑓𝐷(𝜉) = 𝐾𝜉 =
1

4
𝜌0𝐶𝑃

2𝑔𝑡𝑟
2 𝜉 (3.32) 

The speed of phase boundary is related to the deformation rate in the work of Niemczura and 

Ravi-Chandar [20] as 𝑠̇(𝛾− − 𝛾+) = 𝛿̇, where 𝑠̇ is the speed of the phase boundary, 𝛿̇ is

the extension rate at the end of the bar, and 𝛾− and 𝛾+ are the strain behind and ahead of

the moving phase boundary, respectively. We assume the value 𝛾− − 𝛾+ is constant during

high strain rate deformation. The relationship between strain rate and the speed of the phase 

boundary is 

𝐶𝑃 = 𝜅𝜀̇ (3.33) 

The material parameter 𝜅 describes the influence of strain rate to phase boundary velocity, 

which is to be determined experimentally by iteration. According to equation (3.32) and 

(3.33), K is related to 𝜅 as: 
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𝐾 =
1

4
𝜌0𝜅

2𝑔𝑡𝑟
2 (𝜀̇)2 (3.34) 

As we mentioned before, parameter K describe the effect of dislocation on phase 

transformation at high strain rate deformation. K is related to strain rate 𝜀̇ by power law 

equation in equation (3.34). According to the assumption we made at the beginning of this 

section, K is unrelated to the material properties and is constant when strain rate is given. 

Therefore, 𝜅 is constant for all the austenitic SMAs in our model. 

The relationship between the martensitic volume fraction rate and the transformation 

function is proposed by Qidwai et al. [52] for three-dimensional models. The relationship is 

therefore rewritten in one-dimensional form for the present model as: 

𝜉̇ =
Φ

±𝕊(
𝜕Φ

𝜕𝜎
)
2
−
𝜕Φ

𝜕𝜉

(3.35) 

When the form of Φ is taken into equation (3.35), the martensitic volume fraction rate 

during forward transformation is solved as: 

𝜉̇ =

1

2
𝑔𝑡𝑟𝜎+

1

2
Δ𝕊𝜎2+Δ𝛼𝜎(𝑇−𝑇0)−𝜌0Δ𝐶[(𝑇−𝑇0)−𝑇𝐼𝑛(

𝑇

𝑇0
)]+𝜌0Δ𝑆𝜉(𝑇−𝑇0)−

1

4
𝜌0𝐶𝑃

2𝑔𝑡𝑟
2 𝜉−

1

2
𝑎1(1+𝜉

𝑛1−(1−𝜉)𝑛2)−
𝜌0Δ𝑆(𝑀𝑠−𝐴𝑓)

2

𝕊[Δ𝕊𝜎+Δ𝛼(𝑇−𝑇0)+
1

2
𝑔𝑡𝑟]

2
−𝜌0Δ𝑆(𝑇−𝑇0)+

1

4
𝜌0𝐶𝑃

2𝑔𝑡𝑟
2 +

1

2
𝑎1(𝑛1𝜉𝑛1−1+𝑛2(1−𝜉)

𝑛2−1)

(3.36) 

3.4.2 Temperature Increase during High Strain Rate Deformation 

Temperature increase by heat transfer is discussed in this section. The heat transfer 

equation for SMA could be written as [50]: 

𝜌0𝐶
𝜕𝑇

𝜕𝑡
= 𝑃 + ℎ𝐴(𝑇 − 𝑇0) + 𝜌0Δ𝑄

𝜕𝜉

𝜕𝑡
(3.37) 

where P, h, A are the dissipated power, heat convection coefficient, the area of the sample, 

respectively. ParameterΔ𝑄 is the latent heat generated during transformation. Our work focus 
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on the one dimensional model of SMAs deformed at strain rate higher than 100/s. The 

process is adiabatic and the term related to heat conduction equals zero. Therefore, h=0. 

According to energy conservation, 

𝜌0
𝜕𝑈

𝜕𝑡
+
1

2
𝜌0

𝜕𝜐2

𝜕𝑡
= −𝜎

𝜕𝜀

𝜕𝑡
(3.38) 

From the definition of Gibbs free energy in the rate-dependent model, G is related to the 

stress, strain, temperature, and volume fraction of the martensitic phase: 

𝜌0
𝜕𝑈

𝜕𝑡
= 𝜌0

𝜕𝐺

𝜕𝜀

𝜕𝜀

𝜕𝑡
+ 𝜌0

𝜕𝐺

𝜕𝜎

𝜕𝜎

𝜕𝑡
+ 𝜌0

𝜕𝐺

𝜕𝜉

𝜕𝜉

𝜕𝑡
+ 𝜌0

𝜕𝐺

𝜕𝑇

𝜕𝑇

𝜕𝑡
+ 𝜌0𝑇

𝜕𝑆

𝜕𝑡
+ 𝜌0𝑆

𝜕𝑇

𝜕𝑡
− ε

𝜕𝜎

𝜕𝑡
− σ

𝜕𝜀

𝜕𝑡
    (3.39) 

and 

𝑆 = −
𝜕𝐺

𝜕𝑇
=

1

𝜌0
𝛼(𝜉)(𝑇 − 𝑇0) + 𝐶(𝜉)𝐼𝑛 (

𝑇

𝑇0
) + 𝑆(𝜉), 𝜀 = 𝜌0

𝜕𝐺

𝜕𝜎
, 𝜎 = 𝜌0

𝜕𝐺

𝜕𝜀
(3.40) 

Substituting equation (3.40) into (3.39), the equation can be simplified to: 

𝜌0𝑇
𝜕𝑆

𝜕𝑡
= 𝜋𝑡𝑟

𝜕𝜉

𝜕𝑡
(3.41) 

Thus, equation (3.41) has the same form as that in the rate-independent model [46]. The only 

difference is the definition of 𝜋𝑡𝑟. In the rate-independent model, 𝜋𝑡𝑟 is determined by the 

applied stress, temperature, and volume fraction of the martensitic phase. The strain rate 

effect is not shown in these models. We incorporate the formula of entropy in equation (3.40) 

into equation (3.41). Since the specific heat for the austenitic and martensitic phases are the 

same, 𝐶(𝜉) = 𝐶 and equation (41) can be rewritten as: 

𝜌0𝐶
𝜕𝑇

𝜕𝑡
= (𝜋𝑡𝑟 − 𝜌0𝑇Δ𝑆)

𝜕𝜉

𝜕𝑡
− 𝑇

𝜕𝛼(𝜉)𝜎

𝜕𝑡
     (3.42) 

The heat transfer equation is concluded in equation (3.42). The latent heat generated during 

transformation equals 𝜋𝑡𝑟 − 𝜌0𝑇Δ𝑆 and the dissipated power equals 𝑇
𝜕𝛼(𝜉)𝜎

𝜕𝑡
.

According to experimental results [53] and [54], we find that 𝜋𝑡𝑟 ≪ 𝜌0𝑇Δ𝑆 for NiTi SMAs. 

Equation (3.42) can be simplified to: 
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𝜌0𝐶
𝜕𝑇

𝜕𝑡
= −𝑇

𝜕

𝜕𝑡
(𝜌0Δ𝑆𝜉 + 𝛼(𝜉)𝜎) (3.43) 

and equation (3.43) can be solved as: 

𝑇 = 𝑇0exp [−
1

𝜌0𝐶
(𝜌0Δ𝑆𝜉 + 𝛼(𝜉)𝜎)]      (3.44) 

The temperature solved in equation (3.44) has the same form as that in the rate-independent 

model [46]. For both the rate-independent and rate-dependent models, the basic assumption is 

the same: heat transfer is neglected in both models. The change in temperature caused by the 

deformation work then has the same form. According to equation (3.44), the temperature 

increase is related to thermal expansion and the change in entropy of the material. By 

replacing the T in the driving force 𝜋𝑡𝑟 with equation (3.44), we can obtain a model for the 

high strain rate deformation in the adiabatic case. 

3.5 Comparison of the Model with Experimental Results 

3.5.1 Parameters for the Model 

This paper presents a new model by adding a kinetic relation to the traditional 

thermodynamic model to simulate the deformation of SMAs at high strain rate. The driving 

force for phase transformation is related to the speed of the phase boundary 𝐶𝑃;. when that 

speed is 0, the present model will be the same as the traditional models for quasi-static 

deformation discussed in section 3.4.1. Both models are compared in Table 3.1. To solve the 

proposed model established in the previous section requires several parameters. According to 

equation (3.6), the following terms (Young’s moduli of austenitic and martensitic phases 𝐸𝐴 

and 𝐸𝑀, respectively, thermal expansion of austenitic and martensitic phases 𝛼𝐴 and 𝛼𝑀, 

respectively, and martensitic volume fraction 𝜉) are needed to relate strain to stress. The 
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martensitic volume fraction 𝜉  is related to the driving force 𝜋𝑡𝑟  in equation (3.28). 

According to equations (3.9,31,32), driving force 𝜋𝑡𝑟 is related to density 𝜌0, specific heat 

of austenitic and martensitic phases 𝐶𝐴 and 𝐶𝑀, respectively; speed of phase boundary 𝐶𝑃, 

maximum recoverable strain H; and the start and finish temperatures for austenitic and 

martensitic phase transformation 𝐴𝑠 , 𝐴𝑓 , 𝑀𝑠 , and 𝑀𝑓 , respectively. The maximum 

recoverable strain H is experimentally determined as 7%. The phase transformation 

temperatures are also experimentally determined to be 𝐴𝑠 = 288𝐾 , 𝐴𝑓 = 302𝐾 , 𝑀𝑠 =

277𝐾, and 𝑀𝑓 = 252𝐾 for a NiTi SMA with a composition of 50.8 at.%Ni-49.2 at.%Ti, 

commonly referred to as SE508,. The strain rate sensitivity parameter 𝜅 is selected by 

iteration to be 0.73, based on experimental results. The other material properties selected are 

the same as that in Hartl et al. [32]. Material parameters are listed in Table 3.2. The Young’s 

modulus of austenitic phase and martensitic phase are selected as 32 GPa and 57 GPa, 

respectively. Although the Young’s modulus for the austenitic phase is 70 GPa, the inaccuracy 

for the experiment in small strain in the Kolsky compression bar will lead to a Young’s 

modulus of around 40 GPa for most experiments [12]. For high strain rate deformation on 

Kolsky compression bar, one dimensional equilibrium is assumed during deformation. The 

effect of the dispersion in the cross section and the torsional wave is ignored. The Young’s 

modulus is underestimated in the experiment on Kolsky bar. In our one dimensional 

phenomenological model, the influence of the dispersion in the cross section and the torsional 

wave on the transformation strain is calibrated by the selection of 𝜅 in our model 
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Table 3.1 Comparison of new model and traditional model 

Model New Model Traditional Model 

Driving force 𝜋𝑡𝑟 =
1

2
𝑔𝑡𝑟𝜎 +

1

2
Δ𝕊𝜎2

+ Δ𝛼𝜎(𝑇

− 𝑇0)

−𝜌0Δ𝐶 [(𝑇 − 𝑇0)

− 𝑇𝐼𝑛 (
𝑇

𝑇0
)] 

+𝜌0Δ𝑆𝜉(𝑇 − 𝑇0)

−
1

4
𝜌0𝐶𝑃

2𝑔𝑡𝑟
2 𝜉 − 𝑓(𝜉)

𝜋𝑡𝑟 = 𝑔𝑡𝑟𝜎 +
1

2
Δ𝕊𝜎2

+ Δ𝛼𝜎(𝑇 − 𝑇0)

−𝜌0Δ𝐶 [(𝑇 − 𝑇0) − 𝑇𝐼𝑛 (
𝑇

𝑇0
)]

+𝜌0Δ𝑆𝜉(𝑇 − 𝑇0) − 𝑓(𝜉)

Evolution equation 

𝑔𝑡𝑟 = {

𝐻
𝜎

|𝜎|
;   𝜉̇ > 0

𝐻
𝜀𝑡𝑟
|𝜀𝑡𝑟|

;  𝜉̇ < 0
𝑔𝑡𝑟 = {

𝐻
𝜎

|𝜎|
;   𝜉̇ > 0

𝐻
𝜀𝑡𝑟
|𝜀𝑡𝑟|

;   𝜉̇ < 0

Hardening energy 𝑓𝐷(𝜉) + 𝑓𝑀(𝜉) 𝑓𝑀(𝜉)

Temperature increase 𝑇 = 𝑇0exp [−
1

𝜌0𝐶
(𝜌0Δ𝑆𝜉

+ 𝛼(𝜉)𝜎)] 

Preassumed 50K for high strain 

rate deformation [45] 

Mechanism for large stress 

increase during phase 

transformation 

Microscopic stress jump 

across the phase boundary 

and dynamic hardening 

Global stress jump [45] 
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Experimental work performed by Guo et al. [56] is used for calibration. In Guo et al. 

[56], experimental data from dynamic deformation using Kolsky compression bar of an 

austenitic NiTi SMAs with 50.8 at.% Ni from Nitinol Devices and Components (NDC) is 

presented. A pulse shaper is used to achieve constant strain rate during high strain rate 

deformation. The stress strain curve for deformation at 2500/s is selected for calibration and 

Table 3.2 Parameters for current model 

Elastic modulus of 

austenite EA 

32 GPa 

Austenitic finish 

temperature Af 

302 K 

Elastic modulus of 

martensite EM 

57 GPa Density ρ0 6450.0 kg/m
3

Thermal expansion 

coefficient for 

austenite αA 

2.8 × 10
-5

 K
-1 

Specific heat C 329 J/kg°C 

Thermal expansion 

coefficient for 

martensite αM 

2.8 ×10
-5

 K
-1

Strain rate 

sensitive 

parameter K 

0.73 

Martensitic start 

temperature MS 

252 K 

Stress influence 

coefficient ρ0∆S 

-0.35 MPaK
-1

Martensitic finish 

temperature Mf 

277 K 𝑛1,𝑛2,𝑛3,𝑛4 0.30, 0.10, 0.20, 0.25 

Austenitic start 

temperature AS 

288 K 

Reference 

temperature T0

300 K 
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is shown as the light blue curve in Fig. 3.4. Stress strain curves modeled by current and 

traditional models are shown in red and blue dashed lines, respectively. 

According to Fig. 3.4, the stress strain curve simulated by the current model matches 

well with the experimental result. The starting stress for phase transformation occurs at about 

600 MPa experimentally and is also observed in the current and traditional models. The 

maximim stress occurs at a strain of ~6%, and the value is about 1700 MPa experimentally 

and in current models. The maximun stress in the traditional model is only 1100 MPa. During 

the unloading process, elastic recovery of the martensitic phase is observed until the stress 

value is about 700 MPa, which is the same experimentally and in the two models. Reverse 

transformation is activated when the stress is lower than 700 MPa. The error can be 

calculated by 𝑒% = |
𝜎𝑚𝑜𝑑−𝜎𝑒𝑥𝑝

𝜎𝑒𝑥𝑝
|. The stress at a strain of 3% is taken into consideration. The

experimental stress is about 920 MPa, while the predicted values for the current model and 

Fig.3.4 Comparison of the experimental result [56], with current model and traditional 

model at strain rate 2500/s 

Guo 2500/s [56] 

Current Model 2500/s 

Traditional Model 2500/s 
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traditional model are 900 MPa and 700 MPa, respectively. The error associated with the 

current model and the traditional model is 0.02 and 0.22, respectively. Therefore, the current 

model better predicts stree value as compared to the traditional model. 

In the experiment, the sample is deformed at 296 K; the same ambient temperature is 

assumed in the model. Change of temperature during deformation is shown in Fig. 3.5. 

Predictively, the temperature remains the same as the ambient temperature during elastic 

deformation of the material. When phase transformation is activated at strains larger than 2%, 

the temperature gradually increases with strain. The maximum temperature occurs at a strain 

of 6%, and the temperature value is 310 K in the current model and 331 K in the traditional 

model. The maximum temperature is maintained until unloading to a strain of 3% for the 

current model and 4% for the traditional model. The temperature decreases rapidly as the 

strain approaches zero. After the strain is fully recovered, the temperature returns to the 

ambient temperature of 296 K. The maximum increase of temperature is 35 K in the 

Fig.3.5 Prediction of temperature in current model and traditional model 
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traditonal model, while it is only 15 K in the current model. The prediction of temperature 

increase matches well with the experimental data during high strain rate deformation [19, 55]. 

Therefore, the current model is predictive of deformation behavior at high strain rate. 

3.5.2 Stress Strain Relationship at Different Strain Rates 

Dynamic deformation of austenitic NiTi SMAs at various high strain rates have been 

studied experimentally by Guo et al [56]. Stress strain curves from experimental data and 

from the current model are compared in Fig. 3.6. Simulated results match well with the 

experimental data. 

According to Fig. 3.6, the starting stress for forward phase transformation increases with 

strain rate. Similar to the forward transformation, the starting stress for reverse transformation 

also increases with strain rate. Note that a nearly linear stress strain relationship occurs at 

Guo 13000/s[56] 

Guo 9000/s [56] 

Guo 1500/s [56] 

Guo 900/s [56] 

Guo 2500/s [56] 

Fig.3.6 Stress strain curves at different strain rates 
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strain rates higher than 9000/s. This phenomenon is observed experimentally and is simulated 

in the current model. The influence of strain rate on the hardening effect during phase 

transformation is also shown in Fig. 3.6. The hardening effect is determined as 𝑑𝜎/𝑑𝜀 

during phase transformation. From the experiment and the model, 𝑑𝜎/𝑑𝜀 increases from 10 

GPa to 20 GPa when strain rate increases from 900/s to 2500/s. At strain rates higher than 

9000/s, 𝑑𝜎/𝑑𝜀 approaches the elastic modulus of the material. 

The previous section compares simulated results from the current model with 

experiment results of Guo et al. [56] The current model can also be applied to the 

deformation of other austenitic SMAs. Nemat-Nasser et al. [14] experimentally studied the 

high strain rate behavior of austenitic SMAs with composition 50.4 at.% Ni-49.6 at.% Ti at 

strain rate ranges from 330/s to 1080/s. To simulate the high strain rate behavior of the 

material requires phase transformation temperatures 𝐴𝑠, 𝐴𝑓, 𝑀𝑠, and 𝑀𝑓, which are not 

listed. In the present model, the hardening energy 𝑓𝑀(𝜉) is related to phase transformation

temperatures, and we define hardening energy as 𝑚𝑓𝑀(𝜉) and 𝑛𝑓𝑀(𝜉) for forward and

reverse transformation, respectively. m in the equation is calibrated by the stress strain curve 

during forward transformation and n is calibrated by the stress strain curve in reverse 

transformation. In the present model, the parameters m and n are calibrated by the stress 

strain curve for strain rate 1080/s, and m=2 and n=1.5 are calibrated for the experiment. 

Calibration of the model to the experimental data is shown in Fig. 3.7. The parameters m and 

n are then taken into the model to illustrate stress strain behavior under different strain rates. 

Young’s moduli of the austenitic and martensitic phases are experimentally determined to be 

35 GPa and 30 GPa, respectively, for the material in Nemat-Nasser et al. [14]. The strain rate 
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sensitivity parameter 𝜅 is constant for all the austenitic SMAs as 0.73. Current model results 

are compared with the experimental data in Fig. 3.8. 

Fig.3.7 Calibration of the model with experimental data [14] 

Fig.3.8 Comparison of the model with experimental data [14] 

 
Nemat-Nasser 570/s  

Nemat-Nasser 610/s  

Nemat-Nasser 1080/s 

Nemat-Nasser 330/s  
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3.5.3 Deformation at Different Loading and Unloading Strain Rates 

In the previous sections, strain rates during loading and unloading conditions were 

assumed to be equivalent. During actual deformation, strain rates for loading and unloading 

conditions are not necessarily equivalent. Nemat-Nasser and Guo [55] experimentally studied 

the effect of different strain rates in loading and unloading conditions at room temperature 

(296K). The material selected in the experiment  is the same as that in the previous 

experiment. Therefore, the parameters for modeling are the same as those for the previous 

experiment. The experimental and simulated results are shown in Fig. 3.9. Loading strain 

rates range from 440/s to 2100/s and unloading strain rates range from 330/s to 400/s. 

According to Fig. 3.8, the change of slope 𝑑𝜎/𝑑𝜀 with strain rate during the loading process 

follows the same trend as that discussed in section 3.5.2. The slope 𝑑𝜎/𝑑𝜀 is almost the 

same during unloading. By comparing the stress strain curve at strain rate 1500/s in Figs. 3.6 

and 3.9, we find that the hysteresis area increases with the decrease of unloading strain rate. 

We can also conclude that the change of parameters in model to account for different strain 

rates in unloading does not change the prediction for the loading part. Therefore, loading and 

unloading deformation at high strain rate can be seen as independent processes. 
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3.5.4 Influence of Strain Rate on Temperature Increase 

The stress strain curve under different hign strain rate deformation is predicted in Fig. 

3.10. The material is assumed to be the same as that of Nemat-Nasser et al. [14], As predicted 

in Fig. 3.10, only a little change in the stress strain curve is observed under strain rate 2000/s. 

When the strain rate is higher than 2000/s, the stress strain curve changes apparently with 

strain rate. Nemat-Nasser et al [14] argued that the mechanism for transformation varies 

when the strain rate is higher than a critical value. According to our current model, the 

constitutive relation of SMA is influenced by the transformation resistance 𝑓𝐷(𝜉), which

plays a dominant role at extremely high strain rate. 

Nemat-Nasser 1400/s (400/s) 

Nemat-Nasser 1500/s (330/s) 

Nemat-Nasser 2100/s (360/s) 

Nemat-Nasser 440/s (330/s) 

Fig.3.9 Comparison of the model with experimental data [55] for deformation under 

different loading and unloading rates 
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The temperature increase at different high strain rate is shown in Fig. 3.11. According to 

the figure, the temperature increase is about 20 °C when the strain rate is lower than 2000/s. 

The maximum temperature decreases when the strain rate increases. At the strain rate of 

10000/s, the temperature increase is only about 5 °C. The trend is different from that at 

quasi-static deformation when strain rate is lower than 10/s. At quasi-static deformation, the 

heat conduction is important to the stress strain curve of the material. The heat conduction 

will be inhibited when the strain rate increases and therefore, the temperature increases with 

increasing strain rate at quasi-static deformation. The deformation is adiabatic at high strain 

rate deformation. The temperature increase is related to the latent heat generated during 

transformation. According to our model, the transformation resistance will increase with 

increasing strain rate, which decrease the martensitic transformation. Therefore, the 

temperature decreases with strain rate at high strain rate deformation. 

Fig.3.10 Prediction of strain rate effect on stress strain curve at dynamic loading 
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3.6 Summary and Conclusions 

This paper presents a new model for high strain rate deformation of SMAs. Compared to 

traditional models for quasi-static deformation, the new model is rate-dependent and takes 

into account the difference in particle velocities during phase transformation. A 

phenomenological model is established by combining thermodynamic and field equations. 

According to the model, particle velocity increases with increasing stress. Compared to the 

traditional models, the new model presented here considers the additional energy needed for 

kinetic energy change during phase transformation as an attribute to the large increase of 

stress during phase transformation. Strain rate effect and deformation at different 

loading/unloading rates are discussed. The increase of strain rate is shown to increase the 

initial plateau stress for phase transformation. The slope 𝑑𝜎/𝑑𝜀 increases with the increase 

of strain rate. The value 𝑑𝜎/𝑑𝜀 is close to the elastic modulus of the material at extremely 

Fig.3.11 Prediction of strain rate effect on temperature at dynamic loading 
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high strain rate. 
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CHAPTER 4
2

THREE-DIMENSIONAL MODELING OF HIGH STRAIN RATE DEFORMATION OF 

AUSTENITIC SHAPE MEMORY ALLOYS 

4.1 Abstract 

A three-dimensional model for phase transformation of shape memory alloys during 

high strain rate deformation is developed and is then calibrated based on experimental results 

from an austenitic NiTi shape memory alloy (SMA). Stress, strain, and martensitic volume 

fraction distribution during high strain rate deformation are simulated using finite element 

analysis software ABAQUS/standard. For the first time, this paper presents a theoretical 

study of the microscopic band structure during high strain rate compressive deformation. The 

microscopic transformation band is generated by the phase front and leads to minor 

fluctuations in sample deformation. The strain rate effect on phase transformation is studied 

using the model. Both the starting stress for transformation and the slope of the stress-strain 

curve during phase transformation increase with increasing strain rate. 

4.2 Introduction 

Shape memory alloys (SMAs) are an important group of “smart” materials capable of 

large recoverable deformation due either to pseudoelasticity or to the shape memory effect [1]. 

The mechanism for this unique behavior is due to a diffusionless and reversible martensitic 

This chapter is presented in its entirety from H. Yu and M.L. Young: “Three-dimensional modeling of high 

strain rate deformation of austenitic shape memory alloys”, in press in Smart Materials and Structures, 

November (2017) with permission from IOP publishing 
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phase transformation activated by loading/unloading or heating/cooling [1]. The most widely 

used commercial SMAs include NiTi-based, Fe-based, and Cu-based alloys [2]. Due to the 

large recoverable strain, high damping properties and good biocompatibility, NiTi-based 

SMAs show the most promise as structural materials for aerospace and biomedical 

applications [2-6]. While research on mechanical properties of NiTi SMAs deformed at 

quasi-static strain rates has been abundant, relatively few studies have focused on NiTi SMAs 

deformed at high strain rates [7-15]. Compared to quasi-static deformation, austenitic NiTi 

SMAs deformed at high strain rate show three distinct differences [12-15]: (1) The starting 

stress for phase transformation increases with increasing strain rate. (2) The slope of 

stress-strain curve during phase transformation increases with increasing strain rate. (3) 

Latent heat generated during rapid deformation results in an increase in sample temperature. 

While Nemat-Nasser et al. [8] and Ahadi et al. [7] present representative experimental work 

of this behavior, various theoretical models have been developed to understand the physical 

mechanism of martensitic phase transformation and to improve the design of SMA devices 

[16-20]. Generally speaking, the models can be divided into three groups: a) microscopic 

thermodynamic, b) micro-macro, and c) macroscopic. 

Microscopic models are generally based on SMA’s microstructural features such as 

phase boundaries, grain boundaries, and twinning. [18, 21-29]. The system’s energy and 

stress-strain curves are modeled by Ginzburg-Landau theory or molecular dynamics. The 

earliest models for SMAs using Landau theory were developed by Falk [21] and later 

extended by Ball and James [22], Levitas et al. [23], Wang et al. [24], Cho et al. [25], and 

Zhong and Zhu [26]. Basic energy distribution is related to temperature and strain in these 
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models. Equilibrium occurs at the energy minima of the system. The system’s energy is 

accounted for at the atomic scale. Lennard-Jones (LJ) [27] or embedded-atom-method (EAM) 

[28] potentials are the two main potentials for atomic energy among Ni-Ti, Ni-Ni, and Ti-Ti 

atoms. 

Compared to microscopic models that concentrate on the microstructure of SMAs, 

micro-macro models focus on meso-scale properties based on the mechanical behavior of the 

phase transformation that occurs in SMAs [30-39]. The macroscopic behavior of SMAs can 

be modeled from the vector sum of the behavior of single grains, for example, by 

Mori-Tanaka [30], or Sach and Taylor methods [31]. The transformation strain of each 

transformation system is assumed to be related to the transformation plane normal vector and 

direction vector. The total transformation strain is the volume product of the transformation 

strain of each martensitic variant. Representative work is reported by Stupkiewicz and 

Gorzynska-Lengiewicz [32], Anand and Gurtin [33], Yu et al. [34-36], Thamburaja et al. [37, 

38], and Ostwald [39]. 

To save computing time, macroscopic models were developed based on experimental 

data [16, 17, 20, 40-54]. The phenomenological model was first substantiated by Tanaka and 

Nagaki [40] and later extended [20, 41-45]. Compared to microscopic and micro-macro 

models, only macroscopic parameters are considered in phenomenological models. Total 

energy of the system is composed of the Gibbs free energy of the austenitic phase, martensitic 

phase, and free energy of the mixture. Free energy of the sample is related to temperature, 

stress, strain, and martensitic volume fraction. Typical macroscopic models are presented in 

Lagoudas et al. [16, 46-48], Lexcellent et al. [49], Auricchio et al. [17, 50, 51], and Zaki et al. 
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[41, 44, 52-54]. 

Compared to models on quasi-static deformation of austenitic and martensitic SMAs, 

models for high strain rate deformation of SMAs have not been fully developed [55-61]. By 

considering jump conditions and wave functions, Chen and Lagoudas [55] established a 

one-dimensional model for stress wave propagation of SMAs under dynamic loading. The 

thermomechanical law for the material follows the work of Lagoudas et al. [48]. Bekker et al. 

[56] later established a similar work to model the propagation of the phase transformation 

front under different impact loading conditions. Acoustic velocity and phase front velocity 

were modeled under isothermal and adiabatic cases. Niemczura and Ravi-Chandar [57] 

applied a simple tri-linear stress-strain relationship to model high strain rate deformation of 

SMAs. Dispersion of the phase front was considered when modeling the velocity of the phase 

front during impact loading. According to the models discussed above, phase front 

propagation will lead to the localized phase transformation phenomenon in SMAs under high 

strain rate deformation; however, experimental observation of the phase front propagation 

and localized phase transformation is difficult because of the extremely short duration of 

deformation. Elibol and Wagner [13] studied the localization of martensitic transformation 

under tension and compression at various strain rates. Lüders-like macroscopic bands are 

observed in the tensile deformation of NiTi SMAs, while homogeneous deformation occurs at 

high strain rate compressive loading. Although no macroscopic band structure is observed at 

compressive loading, minor strain fluctuation is detected in the work of Elibol and Wagner 

[13]. 

Experimental difficulty heretofore has precluded comprehensive study of stress, strain, 
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and martensitic volume fraction distribution during high strain rate deformation. However, 

for the first time, in the present work, stress, strain, and martensitic volume fraction 

distribution during high strain rate deformation are studied theoretically and computer 

simulated. The one-dimensional model for high strain rate deformation of austenitic SMAs 

was established in the authors’ previous paper [62]. A new three-dimensional model is put 

forth by developing the one-dimensional model [62] through several assumptions. Details of 

the three-dimensional model are presented in section 4.3. For the first time, the microscopic 

band structure during high strain rate compressive deformation is studied theoretically and 

computer simulated by finite element analysis software ABAQUS/standard. The stress strain 

distribution and evolution of microscopic band structure during high strain rate deformation 

is discussed in section 4.4. The results of the paper are concluded in section 4.5. 

4.3 Development of the Constitutive Model 

The three-dimensional model for martensitic phase transformation under high strain rate 

deformation is established here. The one-dimensional model for high strain rate deformation 

was reported previously [62]. Several assumptions offered in this section extend the 

one-dimensional model to three-dimensional deformation and are discussed in section 4.3.1. 

Compared to quasi-static deformation, the effect of kinetic energy on phase transformation 

must be considered during high strain rate deformation. Kinetic energy is related to particle 

velocity and to the speed of the phase front. The three-dimensional form of kinetic energy is 

discussed in section 4.3.2. Based on thermodynamic equations and dissipative laws, the 

constitutive relationship for high strain rate deformation of SMAs is presented in section 
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4.3.3. 

4.3.1 Background 

Experimental investigation on high strain rate deformation of austenitic NiTi SMAs was 

performed using a modified Kolsky compression bar, as described previously [9-11]. The 

SMA rod sample is sandwiched between the incident bar and the transmitted bar. The current 

paper focuses on a theoretical study of the deformation of a NiTi SMA rod using a Kolsky 

compression bar. We define the longitudinal direction, i.e., parallel to the drawing direction of 

the rod, as x; and correspondingly, the other two directions are defined as y and z. The normal 

stresses in x, y, and z directions are defined as 𝜎1, 𝜎2,and 𝜎3, respectively. The shear stresses 

in x-y, x-z, and y-z planes are defined as 𝜏12, 𝜏13 and 𝜏23, respectively. During high strain 

rate deformation using a Kolsky compression bar, stress in the longitudinal direction is much 

larger than stress in the other directions. Therefore, deformation in the Euclidean space W 

can be treated as unidirectional compression. Therefore, 𝜎1 ≠ 0, 𝜎2 = 𝜎3 = 𝜏12 = 𝜏13 =

𝜏23 = 0. According to traditional continuum mechanics, the stress-strain relationship during 

elastic deformation can be written as: 

{
 

 
 𝜀1 =

𝜕𝑢𝑥

𝜕𝑥
=

𝜎1

𝐸
 

𝜀2 =
𝜕𝑢𝑦

𝜕𝑦
= −

𝜈

𝐸
𝜎1 = −𝜈𝜀1

𝜀3 =
𝜕𝑢𝑧

𝜕𝑧
= −

𝜈

𝐸
𝜎1 = −𝜈𝜀1

                                                (4.1)

where 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 are displacement in x, y, z directions, respectively; 𝜀1, 𝜀2, 𝜀3 are strain in 

x, y, z directions, respectively; E is elastic modulus of the material; and 𝜈 is Poisson’s ratio 

of the material. Based on these assumptions, wave function can be generated by momentum 

conservation in the longitudinal direction. During deformation, change of the cross-sectional 
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area cannot be ignored. Therefore, in the longitudinal direction, the total force equals 

𝐴0𝜎1 +
𝜕𝐴0𝜎1

𝜕𝑥
𝑑𝑥. 𝐴0 is the cross-sectional area of the sample. The first term is static force, 

and the second term is inertial force, which leads to energy increase in the longitudinal 

direction. The relationship can be written as: 

𝜕𝐴0𝜎1

𝜕𝑥
𝑑𝑥 ∙ 𝜐1 =

𝜕

𝜕𝑡
(
1

2
𝜌0𝐴0𝑑𝑥 ∙ 𝜐1

2) (4.2) 

The application of equation (4.2) is not limited to elastic deformation; it can be applied 

during phase transformation. The solution to equation (4.2) is: 

𝜌0
𝜕𝜐1

𝜕𝑡
=

∂𝜎1

∂𝑥
     (4.3) 

From equation (4.1), we can conclude that 

𝜕𝜀1

𝜕𝑡
=

𝜕2𝑢𝑥

𝜕𝑥𝜕𝑡
=

𝜕𝜐1

𝜕𝑥
(4.4) 

Equations (4.3) and (4.4) have forms similar to typical relationships in one-dimensional wave 

propagation. The Euclidean space W has orthogonal basis. Therefore, high strain rate 

deformation in Kolsky compression bar can be treated as one-dimensional stress propagation 

in x direction and dispersion in y and z directions. Dispersion per unit volume is related to 

strain in the cross-sectional plane and takes the form of: 

Φ𝑑 =
1

𝐴0𝑑𝑥
∫

1

2
𝜌0(𝜐2

2 + 𝜐3
2)𝑑𝑥𝑑𝑦𝑑𝑧

𝐴0
=

1

2
𝜌0𝜈

2𝑟𝑔
2 (

𝜕𝜀1

𝜕𝑡
)
2

(4.5) 

where Φ𝑑 is dispersion energy and 𝑟𝑔=
1

𝐴0
∫

1

2
(𝑦2 + 𝑧2)𝑑𝑦𝑑𝑧

𝐴0
= 𝑎/√2 for the rod sample 

with radius a. The traditional three-dimensional model for quasi-static deformation of shape 

memory alloys relates phase transformation to deviatoric stresses in the system [42]. To 

extend the quasi-static model for shape memory alloys [42] to high strain rate deformation, a 

nominal inertial force I is assumed, and it has the same value in y and z directions. Therefore, 

the work done by the inertial force equals half of the dispersion energy: 
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𝐼𝜀2̇ =
1

2

𝜕

𝜕𝑡
(+

1

4
𝜌0𝑎

2𝜀2̇
2) (4.6) 

Equation (4.6) can be solved as: 

𝐼 =
1

4
𝜌0𝑎

2 𝛿
2𝜺𝟐

𝛿𝑡2
=

1

4
𝜌0𝑎

2 𝛿
2𝜐2

𝛿𝑦𝛿𝑡
                                     (4.7)

The nominal inertial force is a fictitious force that leads to cross-sectional dispersion in 

elastic deformation and martensitic evolution during phase transformation. Jump 

discontinuities are observed across the phase front during high strain rate deformation [57]. 

Therefore, inertial stress is assumed to jump to a value equal to deviatoric stress in y and z 

directions when phase transformation is activated. In the present case of unidirectional 

compression, the deviatoric stress in y and z axes is assumed to trigger martensitic phase 

transformation in these two directions. During phase transformation, one-dimensional wave 

theory is assumed to be verified in y and z directions, respectively. Fig. 4.1 shows 

deformation and transformation in the x-y plane. Deformation in the other plane is similar to 

that in the x-y plane. Deformation in the sample can be seen as the sum of deformation in 

different planes. Therefore, deformation in the x-y plane is representative. When phase 

transformation is activated, the phase front is formed when speeds of phase front and acoustic 

wave are different (the maroon region in Fig. 4.1). The phase front is formed in both x and y 

directions in x-y plane. The phase transformation zone is adjacent to the phase front (light 

blue in Fig. 4.1). As mentioned before, deformation in the system can be seen as the sum of 

the deformation in all directions. The phase transformation band is therefore depicted as the 

dark blue region in Fig. 4.1. 𝐶𝑃 is the speed of phase front and is related to material 

properties. 𝐶𝑃 is assumed to be the same in all three directions when the material is isotropic. 
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4.3.2 Kinetic Energy during Phase Transformation 

In our previous paper [62], the kinetic energy for one dimensional case is: 

𝜙𝑘 =
1

2
𝜌0𝜐

2 =
1

2
𝜌0𝜐0

2 +
1

8
𝜌0Λ𝑥

2𝐶𝑃
2𝜉2 −

1

2
𝜌0Λ𝑥𝐶𝑃𝜐0𝜉 (4.8) 

where speed of the phase front in the one-dimensional case is related to global strain rate as: 

𝐶𝑃 = 𝜅𝜀̇    (4.9) 

The material parameter 𝜅 describes the influence of strain rate to phase boundary velocity, 

which in our previous paper [62] was determined as 0.73. The directions of stress, strain and 

particle velocity are assumed not to change at the phase front and therefore the speed of phase 

front,𝐶𝑃, can be treated as a scalar value rather than a tensor for simplicity. According to the 

assumptions made in section 4.3.1, stress, strain and velocity in the y and z directions during 

phase transformation can be solved using the same methods discussed above in x direction. 

Therefore: 

{
𝝊𝟎 = −𝐶𝑃𝜺𝟎
𝝈 = −𝜌0𝐶𝑃𝝊𝟎

(4.10) 

Kinetic energy in three-dimensional deformation can be written as: 

Fig.4.1 Schematic of phase transformation in the x-y plane during high strain rate 

deformation 
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𝛟𝒌 =
1

2
𝜌0𝝊: 𝝊 =

1

2
𝜌0𝝊𝟎: 𝝊𝟎 +

1

8
𝜌0𝚲:𝚲𝐶𝑃

2𝜉2 −
1

2
𝜌0𝐶𝑃𝚲: 𝝊𝟎𝜉   (4.11) 

4.3.3 Constitutive Relationship during High Strain Rate Deformation 

The stress-strain relationship during phase transformation at high strain rate deformation 

is established by energy conservation in the phase transformation band (dark blue in Fig. 4.1). 

System work then leads to increased internal and kinetic energy. The relationship can be 

written as:   

𝝈: 𝜺 + 𝜌0𝑼 +𝛟𝒌 = 0   (4.12) 

In this equation, internal energy U is related to the Gibbs free energy of system G, entropy of 

system S, and strain energy of system 𝝈: 𝜺, which is 

𝑼 = 𝑮 + 𝑇𝑺 −
1

𝜌0
𝝈: 𝜺 (4.13) 

Gibbs free energy G in equation (4.13) is composed of Gibbs free energy of austenitic phase 

𝑮𝐴, martensitic phase 𝑮𝑀, and energy for phase transformation 𝑮𝑡𝑟. The form of energy for 

each phase is written as [42]: 

{
𝑮𝑃 = −

1

2𝜌0
𝝈: ℂ𝑃: 𝝈 −

1

𝜌0
𝝈: 𝛂𝑃(𝑇 − 𝑇0) + 𝑐 [((𝑇 − 𝑇0) − 𝑇𝐼𝑛 (

𝑇

𝑇0
))] − 𝑇𝑺𝑃

𝑮𝑡𝑟 = −
1

𝜌0
 𝝈: 𝜺𝑡𝑟 + 𝑭(𝜉)

(4.14) 

where P = A or M for austenitic or martensitic phase. ℂ𝑃 is the fourth-order compliance 

tensor. 𝑭(𝜉) is transformation hardening energy. 𝜺𝑡𝑟 is transformation strain tensor. In the

paper, it is assumed to be related to the martensitic volume fraction 𝜉̇, and this rate alone.

Transformation strain 𝜺𝑡𝑟 can be written in three-dimensional form as 

𝜺̇𝑡𝑟 = 𝚲𝜉̇ (4.15) 

Transformation strain has the same formula as that in the quasi-static deformation model. 
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Therefore, following the same definition as that in quasi-static deformation, transformation 

tensor 𝚲 is assumed to be related to deviatoric stress 𝝈𝑑𝑒 during forward transformation 

and transformation strain 𝜺𝑡𝑟
𝑟  at transformation reversal. The formation is written as

𝚲 = {

3

2
𝐻
𝝈𝑑𝑒

‖𝝈‖
     for     𝜉̇ > 0 

   𝐻
𝜺𝑡𝑟
𝑟

‖𝜺‖
   for   𝜉̇ < 0          

     (4.16) 

where H is maximum uniaxial transformation strain. ‖𝝈‖ is the Mises equivalent stress and 

‖𝝈‖ = √
3

2
𝝈𝑑𝑒: 𝝈𝑑𝑒 . ‖𝜺‖  is the equivalent strain and ‖𝜺‖ = √

2

3
𝜺𝑡𝑟
𝑟 : 𝜺𝑡𝑟

𝑟 . 𝝈𝑑𝑒  is the

deviatoric stress and 𝝈𝑑𝑒 = 𝝈 −
1

3
tr(𝝈)𝐈. 

The total Gibbs free energy G is given as 

𝑮 = (1 − 𝜉)𝑮𝐴 + 𝜉𝑮𝑀 + 𝑮𝑡𝑟 = −
1

2𝜌0
𝝈: ℂ(𝜉): 𝝈 −

1

𝜌0
𝝈:𝜶(𝜉)(𝑇 − 𝑇0) + 𝑐(𝜉) [(𝑇 − 𝑇0) −

𝑇𝐼𝑛 (
𝑇

𝑇0
)] − 𝑺(𝜉)(𝑇 − 𝑇0) −

1

𝜌0
𝝈: 𝜺𝒕𝒓 + 𝑭(𝜉) (4.17) 

where ℂ(𝜉):= ℂ𝐴 + 𝜉(ℂ𝑀 − ℂ𝐴), 𝜶(𝜉):= 𝛂𝐴 + 𝜉(𝛂𝑀 − 𝛂𝐴), 𝑐(𝜉) = 𝑐𝐴 + 𝜉(𝑐𝑀 − 𝑐𝐴), and

𝑺(𝜉) = 𝑺𝐴 + 𝜉(𝑺𝑀 − 𝑺𝐴).

The second law of thermodynamics in the form of Clausius-Planck inequality is: 

𝜌0
𝜕𝑺

𝜕𝑡
≥ 0  (4.18) 

Combining equations (4.12-18) leads to the conclusion that: 

(𝜺 + 𝜌0
𝜕𝐺

𝜕𝝈
) 𝝈̇ − 𝜌0 (𝑆 +

𝜕𝐺

𝜕𝑇
) 𝑇̇ + [𝚲: 𝝈 +

1

2
𝝈: Δℂ: 𝝈 + Δ𝜶: 𝝈(𝑇 − 𝑇0) − 𝜌0Δ𝑐 ((𝑇 − 𝑇0) −

𝑇𝐼𝑛 (
𝑇

𝑇0
)) + 𝜌0Δ𝑆𝜉(𝑇 − 𝑇0) −

1

4
𝜌0𝐶𝑃

2𝚲:𝚲𝜉 +
1

2
𝜌0𝐶𝑃𝚲: 𝝊𝟎 − 𝑓(𝜉)] 𝜉̇ ≥ 0

(4.19)

Following the same treatment as Truesdell and Noll, strain and entropy can be solved as: 

𝜺 = −𝜌0
𝜕𝐺

𝜕𝝈
= ℂ: 𝝈 + 𝜶(𝑇 − 𝑇0) + 𝜺𝒕𝒓   (4.20) 
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which can be rewritten in terms of stress by introducing 𝕊 = ℂ−1. Equation (4.20) is then

written in the common form of Hooke’s law: 

𝝈 = 𝕊 ∶ [𝜺 − 𝜶(𝑇 − 𝑇0) − 𝜺𝒕𝒓] = 𝕊 ∶ [𝜺 − 𝜺𝒕𝒉 − 𝜺𝒕𝒓] (4.21) 

In the equation, 𝜺𝒕𝒉 is thermal strain. According to equation (4.19), entropy of the system 

can be solved as 

𝑺 = −
𝜕𝐺

𝜕𝑇
=

1

𝜌0
𝜶(𝜉)(𝑇 − 𝑇0) + 𝑐(𝜉)𝐼𝑛 (

𝑇

𝑇0
) + 𝑺(𝜉)  (4.22) 

According to equation (4.22), the latent heat generated during deformation can be calculated 

and is referred to in the authors’ previous paper [62]. The driving force for phase 

transformation is defined as 𝜋𝑡𝑟 and is related to the term: 

𝚲: 𝝈 +
1

2
𝝈: Δℂ: 𝝈 + Δ𝜶: 𝝈(𝑇 − 𝑇0) − 𝜌0Δ𝑐 ((𝑇 − 𝑇0) − 𝑇𝐼𝑛 (

𝑇

𝑇0
)) + 𝜌0Δ𝑆𝜉(𝑇 − 𝑇0) −

1

4
𝜌0𝐶𝑃

2𝚲:𝚲𝜉 +
1

2
𝜌0𝐶𝑃𝚲: 𝝊𝟎 − 𝑓(𝜉). When equation (4.10) is incorporated into (4.19), the

driving force 𝜋𝑡𝑟 can be written as: 

𝜋𝑡𝑟 =
1

2
𝚲: 𝝈 +

1

2
𝝈: Δℂ: 𝝈 + Δ𝜶:𝝈(𝑇 − 𝑇0) − 𝜌0Δ𝑐 ((𝑇 − 𝑇0) − 𝑇𝐼𝑛 (

𝑇

𝑇0
)) + 𝜌0Δ𝑆𝜉(𝑇 −

𝑇0) −
1

4
𝜌0𝐶𝑃

2𝚲:𝚲𝜉 − 𝑓(𝜉) (4.23) 

The transformation hardening function can be written as [63] 

𝑓(𝜉) = {
  
1

2
𝜌0Δ𝑆(𝑀𝑠 −𝑀𝑓)𝑙𝑛(1 − 𝜉) + 𝜇1       for         𝜉̇ > 0

1

2
𝜌0Δ𝑆(𝐴𝑠 − 𝐴𝑓)𝑙𝑛(𝜉) + 𝜇2         for     𝜉̇ < 0

(4.24) 

where 𝑀𝑠, 𝑀𝑓, 𝐴𝑠, and 𝐴𝑓 are starting temperature, finishing temperature for martensitic 

and austenitic phase transformation, respectively. 𝜇1  and 𝜇2  are material constants. 

According to the formulation (4.19), 𝜋𝑡𝑟 > 0, when  𝜉̇ > 0 and 𝜋𝑡𝑟 < 0, when  𝜉̇ < 0. 

Therefore, the transformation function Φ is defined as: 
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Φ = {
𝜋𝑡𝑟 − 𝑌  for   𝜉̇ > 0

−𝜋𝑡𝑟 − 𝑌   for    𝜉̇ < 0
(4.25) 

where Y is internal dissipation during phase transformation. Φ ≤ 0 is satisfied during 

forward (𝜉̇ > 0) and reverse (𝜉̇ < 0) transformations. 

4.3.4 Numerical Implementation 

The present model is evaluated by computer simulation using finite element analysis 

software ABAQUS by user material subroutine (UMAT). After each calculation cycle, stress, 

transformation strain, and total strain are updated by equations (4.15)-(4.24). The new values 

are then set into equation (4.25) to determine whether phase transformation is activated. 

When the criteria in equation (4.25) is unsatisfied, which means Φ > 0 , stress, 

transformation strain, and total strain must be updated to satisfy the formulation Φ ≤ 0. 

Several methods have been established for this purpose. The present work selected the cutting 

plane return mapping algorithm. The details referred to Qidwai and Lagoudas’s work [64] 

and are discussed briefly in the following section. We first assume that at time 𝑡 = 𝑡𝑛, stress, 

transformation strain, and martensitic volume fractions are calculated as 𝝈𝑛, 𝜺𝑡𝑟𝑛, 𝜉𝑛. The

condition Φ ≤ 0 is satisfied at 𝑡 = 𝑡𝑛. At time 𝑡 = 𝑡𝑛+1, a small deformation is applied to 

the sample. Strain is updated as 𝜺𝑛+1. Stress, transformation strain, and martensitic volume 

fractions are unknown in the new iteration. In the kth iteration, the values calculated before 

are applied directly and, therefore, 𝜺𝑡𝑟𝑛+1
𝑘 = 𝜺𝑡𝑟𝑛, 𝜉𝑛+1

𝑘 = 𝜉𝑛. 𝕊 and 𝜶 can be calculated

when 𝜉 is known. Stress is calculated as 

𝝈𝑛+1
𝑘 = 𝕊 ∶ [𝜺𝑛+1 − 𝜶(𝑇 − 𝑇0) − 𝜺𝑡𝑟𝑛+1

𝑘 ] (4.26) 

The updated stress 𝝈𝑛+1
𝑘 is then folded into 𝜋𝑡𝑟  to determine the direction of 
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transformation. Φ is then calculated to determine whether 𝝈𝑛+1
𝑘 is the correct value for the 

solution. If Φ > 0, transformation strain should be updated. The martensitic volume fraction 

is calculated in Qidwai and Lagoudas [65] as 

𝛥𝜉 =
Φ

±
𝜕Φ

𝜕𝝈
:𝕊:
𝜕Φ

𝜕𝝈
−
𝜕Φ

𝜕𝜉

(4.27) 

In this equation, “+” stands for forward transformation and “-” stands for reverse 

transformation. According to equation (4.15), Δ𝜺𝑡𝑟 = 𝚲𝛥𝜉; therefore 

𝜉𝑛+1
𝑘+1 = 𝜉𝑛+1

𝑘 + 𝛥𝜉                                             (4.28)

𝜺𝑡𝑟𝑛+1
𝑘+1 = 𝜺𝑡𝑟𝑛+1

𝑘 + Δ𝜺𝑡𝑟                                             (4.29)

Equations (4.28) and (4.29) are incorporated into equation (4.26) to calculate 𝝈𝑛+1
𝑘+1. The

same procedure is repeated until Φ ≤ 0 is satisfied. 

4.4 Finite Element Analysis 

A schematic of the finite element model for high strain rate deformation on a Kolsky 

compression bar is shown in Fig. 4.2. Dimensions for the incident and transmitted bars are 

represented by LB and D for their length and diameter, respectively; while the sample 

dimensions are represented by LS and d for its length and diameter, respectively. Isotropic 

properties of the material are assumed. To ensure efficient calculation and maintain accuracy, 

our simulation featured three simplifications. First, lengths of the incident bar and transmitted 

bar were reduced from 6080 mm and 3040 mm in the experiment, respectively, to 1000 mm in 

the model. The diameter of the incident bar and transmitted bar is increased from 19 mm to 

25 mm. Length and diameter of the sample are set as 22 mm and 18 mm, respectively. Second, 

since the striker in the experiment is used only to generate stress pulse at the impact end of 
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the incident bar, stress pulse is applied directly to the incident bar. Third, the single loading 

system in the experiment used to control strain is simplified as a non-deformable rod between 

the incident bar and the transmitted bar. Frictionless contact is assumed in the tangential 

direction of the contact between the sample and the bar. Hard contact is assumed as normal 

behavior of the interaction between the sample and the bar. The mesh of the model is shown 

in Fig. 4.2. 

The incident bar and the transmitted bar are made of stainless steel with a Young’s 

modulus and Poisson’s ratio of 200 GPa and 0.3, respectively. Bar density is 7.85×10
3
 kg/m

3
.

According to the model established in section 4.3, parameters including Young’s modulus, 

thermal expansion, density, and specific heat of austenitic and martensitic phases; speed of 

phase boundary 𝐶𝑃 ; maximum recoverable strain H; start and finish temperatures for 

austenitic and martensitic phase transformation 𝐴𝑠 , 𝐴𝑓 , 𝑀𝑠 , and 𝑀𝑓 , respectively, are 

needed to solve the constitutive relationship of the material. Material parameters μ1 and μ2 are 

determined by iteration as -4.2 MPa and -6.3 MPa, respectively, based on experimental 

results [8]. The other model parameters can be referred to in [62]. 

Stress pulse is applied at the impact end of the incident bar. Pulse duration is calculated 

Fig.4.2 ABAQUS finite element mesh of the Kolsky compression bar system 
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so that incident pulse and transmitted pulse will not overlap during deformation. Wave 

velocity is calculated as: 

𝐶0 = √
𝐸

𝜌
= 5048 𝑚/𝑠  (4.30) 

where E is Young’s modulus and 𝜌 is steel density. To avoid overlap of the wave in the bar, 

the distance the wave propagated should be less than twice the length of the bar. Therefore, 

duration of the stress pulse is: 

𝑡 <
2𝐿

𝐶0
= 4 × 10−4s    (4.31) 

A triangular-shaped pulse is used in the model. Pulse duration is 2.4 × 10−4s. Peak

value is at time 1.6 × 10−4s. The pulse shape is shown in Fig. 4.3.

4.5 Results and Discussion 

4.5.1 Calibration of the Model 

The current three-dimensional model is extended by the authors’ previous 

Fig.4.3 The incident wave pulse structure 
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one-dimensional model, calibration of which can be referred to in [62]. A comparison of the 

stress-strain relationship simulated by the current three-dimensional model, one-dimensional 

model in previous paper [62], and directly studied by experiment [8], is shown in Fig. 4.4. 

The relationship between the von Mises equivalent stress and equivalent strain simulated by 

the current three-dimensional model is compared with the stress-strain curve by the 

one-dimensional model [62] and experiment [8]. Note that the simulated stress-strain curve 

by the current model matches well with the one-dimensional model and the experimental data. 

Phase transformation is activated at strain about 0.01, and activation stress for phase 

transformation is about 400 MPa; both are predicted in the model and are revealed in the 

experiment. 

The proposed model can also be used to simulate experimental data [8] at the other 

strain rates (i.e., 330/s, 570/s, and 1080/s, respectively). The simulated stress-strain responses 

Fig.4.4 Comparison of the stress-strain relation at a strain rate of 610/s by the current 3D 

model, 1D model [62], and the experimental data [8] 
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of NiTi SMAs by the proposed model at a strain rate of 330/s, 570/s, and 1080/s (Fig. 4.5) 

reveal that the simulations agree well with the experiment [8]. Slight changes in stress-strain 

curve are observed both in models and experiment when strain rate increases from 330/s to 

1080/s. 

According to the experiments of Elibol and Wagner [13], no macroscopic band structure 

is observed during high strain rate compression of NiTi SMAs. The experimental result is 

confirmed in this section by the current model. The macroscopic map of stress distribution in 

NiTi SMA rod during high strain rate deformation is shown in Fig. 4.6. Generally speaking, 

stress distributed homogenously during impact deformation indicates one-dimensional 

equilibrium deformation in the sample. Stress in the middle of the sample is a little lower 

than at the exterior. When strain is about 1%, stress is about 400 MPa, which is the same as 

Fig.4.5 Comparison of the stress-strain relation at a strain rate of 330/s, 570/s and 1080/s 

by current 3D model, 1D model [62], and experiment [8], respectively. 
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that shown in the stress-strain curve in Fig. 4.4. The sample is elastically deformed at this 

strain. According to Fig. 4.6, stress in the sample is lower than that in the bar during elastic 

deformation of the rod. When strain is about 3%, stress is about 680 MPa. Stress in the 

sample is higher than that in the bar. The maximum stress is about 900 MPa when sample 

deformation is about 5%. The sample is also homogenously deformed during the unloading 

procedure. Stress is lower during the unloading process as compared to the loading process 

when the sample is deformed to the same strain. Residual strain exists when stress is about 0 

MPa. 

Distribution of strain rate and martensitic volume fraction during impact deformation is 

shown in Fig. 4.7. The moment when the sample is deformed is defined as t=0.00 ms. Strain 

rate increases quickly at the initial stage of deformation. A constant strain rate of 610/s is 

observed during the forward transformation at time t=0.06 ms to t=0.14 ms, and the reverse 

transformation at time t=0.24 ms to t=0.32 ms. A huge change of strain rate is observed 

during elastic recovery of the sample at time t=0.14 ms to t=0.24 ms. As elastic deformation 

of the sample is insensitive to strain rate, the huge change of strain rate during elastic 

deformation of the sample does not affect model accuracy. 

Fig.4.6 Macroscopic maps of stress distribution during high strain rate deformation 
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4.5.2 Strain, Stress, and Martensitic Volume Fraction Distribution during Impact Deformation 

Elibol and Wagner [13] observe minor strain fluctuations during high strain rate 

deformation of NiTi SMAs. While not examined thoroughly experimentally, these 

fluctuations can be modeled as a microscopic band structure Martensitic volume fraction, 

strain, and stress distribution of NiTi SMAs during impact deformation at a strain rate of 

610/s are simulated by the current model (Figs. 4.8, 9, and 10, respectively). Elastic wave 

structure is presented at strain less than 1% (Fig. 4.9 (a) and 4.10 (a)). No phase 

transformation is observed when strain is less than 1% (Fig. 4.8 (a)). During elastic 

deformation, strain and stress of the sample are linearly related to each other by Hook’s law, 

which is indicated by the strain and stress distribution maps (Figs. 4.9 (a) and 4.10 (a)). 

According to Fig. 4.9 (a), surface region strain is a little higher than in the interior of the 

sample. When average strain is about 1% (Fig. 4.9 (b)), strain of the exterior of the sample is 

Fig.4.7 Distribution of strain rate and martensitic volume fraction during high strain rate 

deformation of a NiTi SMA rod 
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about 1.092%. Martensitic phase transformation starts at the exterior of the sample (Fig. 4.8 

(b)). According to Figs. 4.8 (b), 4.9 (b), and 4.10 (b), martensitic phase transformation is 

activated when strain is higher than 1% (Fig. 4.9 (b)). The start stress for phase 

transformation is about 400 MPa (Fig. 4.10 (b)). When the whole sample is under martensitic 

phase transformation, microscopic band structure appears (Figs. 4.8 (c) and 4.9 (c)). The 

mechanism for the formation of the microscopic band structure as discussed in section 4.3.1 

pointed out that the phase front will divide the sample between pre-deformed zones and phase 

transformation bands. A larger volume fraction of martensite exists in the phase 

transformation band than in the pre-deformed region. Distribution of the strain and 

martensitic volume fraction in the sample when microscopic band structure is formed are 

shown in Figs. 4.8 (c) and 4.9 (c), respectively. When average strain is about 2.4%, strain in 

the phase transformation band of about 2.5% (Fig. 4.9 (c)) corresponds to the martensitic 

volume fraction of 16% (Fig. 4.8 (c)); while the strain in the pre-deformed zone has a strain 

of 2.2% (Fig. 4.9 (c)) and martensitic volume fraction of 14% (Fig. 4.8 (c)). Stress 

distribution at a strain of 2.4% is shown in Fig. 4.10 (c). According to the figure, phase 

transformation stress is nearly the same as that in the pre-deformed zone (about 560 MPa). 

The normal direction of the band at 45° to the longitudinal direction of the sample indicates 

that phase front speed is the same in the longitudinal direction and in the direction normal to 

the sample surface. When the sample is deformed to average strain of 4.1% (Fig. 4.9 (d)), 

strain in the phase transformation band is about 4.2%, and strain in the pre-deformed zone is 

about 4.0%. Martensitic volume fraction in the phase transformation band and the 

pre-deformed zone is about 35% and 33%, respectively (Fig. 4.8 (d)). Stress is about 780 
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MPa. Maximum martensitic volume fraction is about 44% (Fig. 4.8 (e)) when the sample is 

deformed to 5% (Fig. 4.9 (e)). Maximum stress in the sample is about 920 MPa (Fig. 4.10 

(e)). According to Figs. 4.9 (e) and 4.10 (e), the interior of the sample has a little larger 

deformation than the exterior of the sample. The phase transformation band structure is clear 

during forward transformation (Fig. 4.8 (c-e), Fig. 4.9 (c-e)). 

Fig.4.8 Martensitic volume fraction distribution of a NiTi SMA rod deformed at a strain 

rate of 610/s 

Fig.4.9 Strain distribution of a NiTi SMA rod deformed at a strain rate of 610/s 
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Sample unloading is shown in Figs. 4.8 (f-j), 4.9 (f-j) and 4.10 (f-j). According to Figs. 

4.9 (f) and 4.10 (f), sample unloading appears first in the interior of the sample where strain is 

about 4.5% and stress is about 685 MPa. When global strain is about 5% (Fig. 4.9 (f)), the 

exterior of the sample is still under the loading process, while the interior of the sample is 

under the unloading process. According to Figs. 4.9 (g) and 4.10 (g), the whole sample is 

under the unloading process when strain is about 4%. Distribution of martensitic volume 

fraction when average strain is 5% and 4%, respectively, being essentially equivalent during 

the unloading process (Fig. 4.8 (f) and (g)) indicates that the sample is first elastically 

recovered during unloading. Reverse martensitic phase transformation is shown in Fig. 4.8 (h) 

and (i). The phase transformation band structure also appears during the unloading process. 

Stress is distributed homogenously during the reverse phase transformation (Fig. 4.10 (h) and 

(i)). When the sample is fully unloaded, average stress is about 0 MPa (Fig. 4.10 (j)). 

Residual strain is about 0.8% (Fig. 4.9 (j)) when the residual martensitic volume fraction is 

about 10% (Fig. 4.8 (j)). Figures 4.8, 4.9 and 4.10 also show that the phase transformation 

band structure is more apparent in the interior than at the exterior of the sample. Therefore, a 

Fig.4.10 Stress distribution of a NiTi SMA rod deformed at a strain rate of 610/s 
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critical experimental technique is needed to detect the band structure during phase 

transformation. 

4.5.3 Strain Rate Effect on the Deformation of the Sample 

Strain rate effect on the stress strain curve is simulated by the current model; the result 

confirms that the start stress for phase transformation increases slightly with increased strain 

rate (Fig. 4.11). When strain rate is lower than 1000/s, the start stress for phase 

transformation is about 400 MPa, and increases to about 450 MPa when strain rate is 5000/s. 

The start stress for phase transformation is about 500 MPa when strain rate is 10000/s. A 

larger slope in the stress strain curve during forward phase transformation is observed with 

increased strain rate. The slope dσ/dε equals 13000 MPa when strain rate is less than 

1000/s and increases to 205000 MPa when strain rate is 5000/s. The slope dσ/dε equals 

300000 MPa when strain rate is 10000/s. Similar to the forward transformation, the strain 

stress slope also increases with strain rate during reverse transformation. Fig. 4.11 also 

verifies that the stress strain curve changes only slightly when strain rate is lower than 1000/s. 

An apparent change of the stress strain curve is observed at strain rate higher than 2000/s. A 

nearly linear loading and unloading curve is observed at strain rate 10000/s. The hysteresis 

area decreases with increased strain rate. A similar trend is also observed in the experiment of 

Nemat-Nassse et al. [8], who suggested different mechanisms for SMAs deformed at 

moderately high and very high strain rates. Their observations are confirmed by the current 

paper and are discussed in detail in the following section. 
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The effects of strain rate on martensite and strain distribution during loading are shown 

in Figs. 4.12 and 4.13, respectively. When global strain is less than 1%, the sample is 

elastically deformed. Martensitic distribution and strain flow are similar for all strain rates. 

Martensitic phase transformation starts at strain of 1% no matter the strain rates. When global 

strain is 2%–5%, phase transformation is activated. A distinct difference is observed for strain 

rates lower and higher than 2000/s. The microscopic band is formed at strain rates lower than 

2000/s. The band structure becomes vague with increased strain rate. When strain rate is 

higher than 2000/s, the band structure disappears, and the material behaves like traditional 

metals. This phenomenon can be explained by the change of resistance during high strain rate 

deformation with strain rate. According to the current model, resistance for transformation 

increases with strain rate. Therefore, stress needed for phase transformation increases. The 

slope of the stress-strain curve then increases. According to the current model, phase front 

speed is related to the slope of the stress-strain curve during phase transformation. 

Fig.4.11 Strain rate effect on the stress-strain curve 
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When the strain rate is high enough, the slope of the stress-strain curve during phase 

transformation is close to the elastic modulus of the material. Phase front speed is then close 

to elastic wave velocity. According to the current model, the microscopic band is formed due 

to the difference between phase front speed and elastic wave velocity. The microscopic band 

is inhibited at high strain rate, and the sample then behaves like traditional metals. 

Fig.4.12 Strain rate effect on the distribution of martensitic volume fraction during high 

strain rate deformation 
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Therefore, the martensite appears everywhere in the sample during phase transformation 

without microscopic band formation and propagation when strain rate is higher than 2000/s. 

Fig. 4.11 also confirms that the maximum volume fraction of martensite decreases with strain 

rate. When strain rate is less than 1000/s, maximum martensitic volume fraction is about 44% 

at a strain of 5%. The maximum martensitic volume fraction decreases to 26% when strain 

Fig.4.13 Strain rate effect on strain distribution during deformation 
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rate is 5000/s. The value is only about 12% when strain rate is 10000/s. 

4.6 Conclusions 

A three-dimensional model for high strain rate deformation is compared with 

experimental data from an austenitic NiTi SMA rod sample under unidirectional compression 

during high strain rate deformation using a Kolsky bar. One-dimensional equilibrium is 

satisfied during deformation, and macroscopic stress is distributed homogenously. The model 

shows that microscopic band structure during phase transformation divides the sample into 

pre-phase-transformed and phase-transformed regions. The microscopic band structure 

disappears when the strain rate is higher than 2000/s. Increasing strain rate causes an increase 

of the start stress for phase transformation and the slope of the stress-strain curve. The model 

shows that the sample is less sensitive to strain rate when strain rate is less than 2000/s. A 

linear stress-strain relationship is observed at extremely high strain rate. 
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CHAPTER 5 

TEMPERATURE EFFECT ON MATERIAL FLOW BEHAVIOR AT HIGH STRAIN RATE 

DEFORMATION OF AUSTENITIC SHAPE MEMORY ALLOYS BY 

PHENOMENOLOGICAL MODELING 

5.1 Abstract 

High strain rate compressive behavior of austenitic shape memory alloys (SMAs) is 

investigated by finite element analysis at temperatures ranging from the martensitic start 

temperature (Ms) to the temperature (Md) above which stress-induced martensite no longer 

forms. It is found that the start stress for phase transformation increases with increasing 

temperature. The maximum martensitic volume fraction during phase transformation 

decreases with increasing temperature. When the ambient temperature is higher than Md, 

phase transformation is no longer observed and the SMA deforms like a pure elastic material 

according to the model. At temperatures below Md and above Ms, the microscopic band 

structure is observed during phase transformation. The critical strain for initiation of the band 

structure increases with increasing temperature. The band structure disappears at 

temperatures approaching or above Md. The same influence of temperature on the 

compressive behavior is observed for different high strain rates. In the model, the temperature 

Md is assumed to be ~100°C higher than the austenitic finish temperature (Af) and is 

independent of strain rate. 
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5.2 Introduction 

Shape memory alloys (SMAs) are a group of unique alloys capable of enduring large 

recoverable deformation which results from reversible martensitic phase transformation 

induced by stress, temperature, or a magnetic field [1, 2]. The start and finish temperature for 

the forward transformation is defined as the austenitic start temperature (As) and austenitic 

finish temperature (Af), respectively. Similarly, the start and finish temperature for the reverse 

transformation is defined as the martensitic start (Ms) and martensitic finish temperature (Mf), 

respectively. When an SMA is deformed at temperatures higher than Af and below Md, some 

inelastic strain will be recovered after unloading. This phenomenon is known as 

pseudoelasticity [1]. 

It is known that the martensitic phase transformation is sensitive to the strain rate and 

temperature [3-8]. The strain rate effect on the mechanical properties has been studied on the 

deformation of austenitic [9, 10] and martensitic [11-13] SMAs. Ahadi and Sun [14] reported 

that the start stress for the transformation and work hardening rate increases with increasing 

strain rate when samples are deformed at strain rate ranging from 4×10
-5

/s to 1×10
-1

/s.

Similar behavior is also observed at various high strain rates [6-10, 15]. Nemat-Nasser et al. 

[6] studied the high strain rate deformation from 330/s to 1080/s of 50.4Ni-49.6Ti (at.%) at 

room temperature. In their study, the observed transition stress increases with increasing 

strain rate. The work hardening rate in phase transformation regime increases steadily and 

then rapidly with increasing strain rate. A similar result is concluded in the high strain rate 

deformation of austenitic SMAs with same and different compositions at room temperature 

and high temperatures [7-10, 15]. The increase in temperature by deformation work and latent 
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heat generated during phase transformation was used to explain the work hardening observed 

with increasing strain rate, while a maximum temperature increment is observed at strain 

rates higher than 1.2×10
-1

/s [3]. Niemczura and Ravi-Chandar [16] related the driving force

for the transformation to the phase front velocity at quasi-dynamic deformation of austenitic 

NiTi SMAs. The relationship between the phase front velocity and strain rates on the 

deformation of NiTi SMA wires is studied by Shaw and Kyriakides [2] . The increase of 

strain rate leads to an increase in the phase front velocity, which increases the critical driving 

force for phase transformation. A few studies have focused on the influence of temperature on 

the stress strain behavior at quasi-static and high strain rate deformation of austenitic and 

martensitic SMAs [4, 5, 11]. Benafan et al. [4] reported that the start stress for phase 

transformation increases when Ni49.9Ti50.1(at.%) is isothermally deformed at temperatures 

between 165°C and 290°C and decreases when the SMA is isothermally deformed at a 

temperature above Md. No stress-induced martensite is observed when the SMA is deformed 

above Md. The high strain rate compressive behavior of martensitic NiTi SMAs at different 

temperatures has been studied by Qiu et al. [11]. It is found that the critical stress for the 

transformation increases first and then decreases with increasing temperatures. The 

phenomenon is attributed to the competing strain hardening and thermal softening effects. 

Chen and Bo [5] studied the effect of temperature from 0°C to 50°C on the stress strain curve 

of NiTi SMAs deformed at 430/s. The work hardening behavior is observed with increasing 

temperature. 

Although some research has been performed on the mechanical properties of high strain 

rate deformation of SMAs at various temperatures [4, 5, 11], research on the microstructural 
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evolution during high strain rate deformation of SMAs at various temperatures is limited, 

likely due to the fact that the deformation occurs over an extremely short amount of times, 

thus, making it difficult to observe the microstructural evolution. Accurate modeling 

techniques potentially not only save experimental time but also provide a substitutive method 

for studying the microstructural changes which occur during high strain rate deformation. 

The models can be generally divided into microscopic thermodynamic models [17, 18], 

micro-macro models [19-22], and macroscopic models [23-28] according to the scales the 

models are focused on. Microscopic thermodynamic models and micro-macro models focus 

on the relationship between the macroscopic mechanical properties and microscopic material 

properties such as grain boundaries, slip systems, etc... Due to the efficiency of computer 

calculation, macroscopic phenomenological models are already established. The phase 

transformation is related to the change of martensitic phase fraction with macroscopic scalars 

such as transformation strain, irrecoverable deformation, stress, and temperature. A 

phenomenological model for the high strain rate deformation of austenitic SMAs has been 

presented in our previous paper [29]. In this paper, the previous model is summarized and the 

effect of temperature on the mechanical properties of the material under various strain rates is 

added to the previous model. 

5.3 Framework of the Model 

The macroscopic model for high strain rate deformation of austenitic NiTi SMAs has 

been established in our previous research [29] to describe the strain rate effect on the 

mechanical properties of the material at room temperature. The model is summarized and 
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extended here to account for the effect of temperature on the high strain rate deformation of 

SMAs. During high strain rate deformation of SMAs at various temperatures, the total strain 

includes the elastic strain 𝜺𝒆, thermal strain 𝜺𝒕𝒉, and transformation strain 𝜺𝒕𝒓 as follows: 

𝜺 = 𝜺𝒆 + 𝜺𝒕𝒉 + 𝜺𝒕𝒓   (5.1) 

In this equation, elastic strain can be written as: 

𝜺𝒆 = ℂ: 𝝈    (5.2) 

Where ℂ is the effective compliance tensor and is related to the elastic tensor of 

austenitic phase ℂ𝐴, martensitic phase ℂ𝑀, and the martensitic volume fraction 𝜉 as follows: 

ℂ(𝜉):= ℂ𝐴 + 𝜉(ℂ𝑀 − ℂ𝐴)  (5.3) 

The thermal strain 𝜺𝒕𝒉 is related to the ambient temperature 𝑇, initial temperature 𝑇0, 

and thermal expansion parameter 𝜶 according to: 

𝜺𝒕𝒉 = 𝜶(𝑇 − 𝑇0) (5.4) 

The transformation strain in equation (5.1) is related to the martensitic volume fraction 

𝜉 and transformation tensor 𝚲 as follows: 

𝜺𝒕𝒓 = 𝚲𝜉 (5.5) 

In equation (5.5), the transformation tensor 𝚲 is written as: 

𝚲 = {

3

2
𝐻
𝝈𝑑𝑒

‖𝝈‖
     for     𝜉̇ > 0 

   𝐻
𝜺𝑡𝑟
𝑟

‖𝜺‖
   for   𝜉̇ < 0          

  (5.6) 

In equation (5.6), H is the maximum uniaxial transformation strain. ‖𝝈‖ is the von 

Mises equivalent stress and ‖𝝈‖ = √
3

2
𝝈𝑑𝑒: 𝝈𝑑𝑒. ‖𝜺‖ is the equivalent strain and ‖𝜺‖ =

√
2

3
𝜺𝑡𝑟
𝑟 : 𝜺𝑡𝑟

𝑟 . 𝝈𝑑𝑒 is the deviatoric stress where 𝝈𝑑𝑒 = 𝝈 −
1

3
tr(𝝈)𝐈. 

The martensitic volume fraction 𝜉 is related to the driving force 𝜋𝑡𝑟. According to the 
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second thermodynamics law, 𝜋𝑡𝑟 is solved as: 

𝜋𝑡𝑟 =
1

2
𝚲: 𝝈 +

1

2
𝝈: Δℂ: 𝝈 + Δ𝜶:𝝈(𝑇 − 𝑇0) − 𝜌0Δ𝑐 ((𝑇 − 𝑇0) − 𝑇𝐼𝑛 (

𝑇

𝑇0
)) + 𝜌0Δ𝑆𝑇 −

𝑓𝐷(𝜉) − 𝑓𝑀(𝜉) (5.7) 

where 𝑓𝐷(𝜉) is the dynamic hardening energy and is written as:

𝑓𝐷(𝜉) =
1

4
𝜌0𝐶𝑃

2𝚲:𝚲𝜉 (5.8) 

𝑓𝑀(𝜉) is the transformation hardening energy related to the material properties and is

written as follows: 

𝑓𝑀(𝜉) = {
  
1

2
𝜌0Δ𝑆(𝑀𝑠 −𝑀𝑓)𝑙𝑛(1 − 𝜉) + 𝜇1       for         𝜉̇ > 0

1

2
𝜌0Δ𝑆(𝐴𝑠 − 𝐴𝑓)𝑙𝑛(𝜉) + 𝜇2         for     𝜉̇ < 0

(5.9) 

where 𝑀𝑠 , 𝑀𝑓 , 𝐴𝑠 , and 𝐴𝑓  is the starting temperature, finishing temperature for 

martensitic and austenitic phase transformation, respectively. 𝜇1  and 𝜇2  are material 

constant. During the phase transformation, the driving force 𝜋𝑡𝑟 > 0, when  𝜉̇ > 0 and 

𝜋𝑡𝑟 < 0, when  𝜉̇ < 0. Therefore, the transformation function Φ is defined as: 

Φ = {
𝜋𝑡𝑟 − 𝑌  for   𝜉̇ > 0

−𝜋𝑡𝑟 − 𝑌   for    𝜉̇ < 0
(5.10) 

where Y is the internal dissipation during the phase transformation. Φ ≤ 0 is satisfied 

during the forward (𝜉̇ > 0) and reverse (𝜉̇ > 0) transformation. The martensitic volume 

fraction 𝜉 is related to the transformation function as 

𝜉̇ =
Φ

±
𝜕Φ

𝜕𝝈
:𝕊:
𝜕Φ

𝜕𝝈
−
𝜕Φ

𝜕𝜉

(5.11) 

In this equation, “+” stand for the forward transformation and “-” stand for the reverse 

transformation. During the high strain rate deformation, heat is generated with the phase 

transformation. The heat flow is related to the driving force for the transformation 𝜋𝑡𝑟, the 

entropy of the material S, and the martensitic volume fraction 𝜉 as follows: 
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𝜌0𝐶
𝜕𝑇

𝜕𝑡
= (𝜋𝑡𝑟 − 𝜌0𝑇Δ𝑆)

𝜕𝜉

𝜕𝑡
− 𝑇

𝜕𝛼(𝜉)𝜎

𝜕𝑡
(5.12) 

The framework of the model is,  thus, complete. For more details, please refer to our 

previous paper [29]. 

5.4 Results and Discussion 

The thermomechanical model for the high strain rate deformation at various 

temperatures presented in the previous section was coded in user defined material mechanical 

behavior (UMAT) of finite element analysis software ABAQUS/Standard. Results from the 

model are discussed here and highlight the effect of temperature on the material flow 

behavior at high strain rate deformation. The details of the finite element model include the 

selection of the mesh, the type of the element, the boundary conditions, and the material 

parameters for the model can be referred to our previous paper [29]. 

5.4.1 Effect of Temperature on Material Flow Behavior at Selected Strain Rate 

As illustrated in Fig. 5.1, simulations of the stress-strain curves of the austenitic NiTi 

SMAs at temperatures of 25°C, 40°C, 50°C, 75°C, 100°C, 110°C, and 125°C are presented 

for deformation at a strain rate of 600/s. As the temperature increases, the start stress for the 

transformation increases and the stress-strain slope during the phase transformation remains 

nearly constant, indicating that the transition stress is more sensitive to the temperature as 

compared to the stress increment during the phase transformation. The start stress for the 

phase transformation at room temperature (25°C) is about 210 MPa. It increases to about 450 

MPa at temperature 40°C, 600 MPa at temperature 50°C, 950 MPa at temperature 75°C, and 
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1200 MPa at temperature 100°C. The influence of the temperature on the start stress for the 

transformation is defined as 𝑑𝜎𝑆 𝑑𝑇⁄  and equals 16 MPa/K in the present case. When the

temperature equals 125°C, a linear stress-strain curve is observed, which indicates that no 

phase transformation is activated during the deformation. The temperature at which the phase 

transformation is fully inhibited is referred to as Md. At a deformation strain rate of 600/s, Md 

equals 125°C, which is about 100°C higher than the austenitic finish temperature Af. In the 

current model, the sample is assumed to be fully recovered within the strain of 0.04 and 

plastic deformation is not included. Therefore, the material behaves like a pure elastic 

material at Md. 

The temperature change during the deformation is shown in Fig. 5.2. Note that the 

temperature increases when the phase transformation is activated. The maximum temperature 

is observed at the maximum deformation. The temperature starts to decrease when the sample 

Fig.5.1 Stress-strain curve of austenitic NiTi SMAs at various temperatures (25°C, 40°C, 

50°C, 75°C, 100°C, 110°C, 125°C) under high strain rate deformation (600/s) 

132



is unloaded to the strain of 0.03. The sample will be unloaded to its initial temperature when 

the strain is fully recovered. The maximum temperatures under the high strain rate 

deformation at different initial temperature are also shown in Fig. 5.2. When the sample is 

deformed at room temperature, the maximum temperature of the sample during deformation 

is 45.5°C and the temperature increment is 20.5°C. The maximum temperature increases as 

the ambient temperature increases. The temperature increment decreases as the ambient 

temperature increases. When the sample is deformed at the temperature of 110°C, the 

temperature increment is only 3.2°C. No temperature increase is observed when the sample is 

deformed at Md. The temperature results match well with the change of the hysteresis 

observed with changing ambient temperature as shown in Fig. 5.1. The hysteresis area 

decreases with increasing temperature. Therefore, the latent heat generated during the phase 

transformation decreases with increasing temperature and the temperature increment 

decreases with increasing temperature. 

Fig.5.2 Temperature change of austenitic NiTi SMAs under high strain rate deformation 

(600/s) at various temperatures  
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The change of temperature is related to the evolution of the martensitic volume fraction 

in equation (12). The change of martensitic volume fraction with strain is shown in Fig. 5.3. 

The strain when the phase transformation starts increases with increasing temperature. The 

strain for full recovery from the reverse phase transformation also increases with increasing 

temperature. At the temperature of Md, no phase transformation is observed and the 

martensitic volume fraction is zero during the deformation. According to Fig. 5.3, the strain 

for the maximum martensitic volume fraction related to the phase transformation appears to 

occur at a value of ~0.37 strain during loading, irrespective of temperature. The reverse phase 

transformation is activated when the sample is unloaded to the strain around 0.03. The little 

fluctuation of the strain to initiate reverse transformation is due to the competing of 

temperature softening and strain rate hardening. The residual martensitic volume fraction is 

about 0.15 when the sample is deformed at room temperature. It decreases to about 0.04 

Fig.5.3 The change of martensitic volume fraction under high strain rate deformation 

(600/s) at various temperatures 
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when the sample is deformed at 40°C. The martensitic transformation is fully recovered when 

the sample is deformed at a temperature higher than 50°C. The maximum martensitic volume 

fraction during the deformation is related to the temperature. It decreases from 0.42 at room 

temperature to 0.05 at the temperature of 110°C. Therefore, the maximum martensitic volume 

fraction decreases with increasing temperature up to Md. 

The distribution of martensite during high strain rate deformation at various 

temperatures is shown in Fig. 5.4. The phase transformation band structure is clearly 

observed during the loading and unloading process at temperatures lower than 50°C. At the 

temperature of 75°C, the transformation band structure is blurred and indistinct. The band 

structure disappears at temperatures above 75°C. More martensite is observed at the 

periphery of the sample. At Md , no martensitic phase is observed. According to the change of 

martensitic volume fraction with strain at various temperatures shown in Fig. 5.3, the critical 

martensitic volume fraction to form a transformation band is 0.18. When the martensitic 

volume fraction is lower than the critical value, no phase transformation band structure is 

observed during deformation. The relationship between the start strain when the 

transformation is activated and temperature is also shown clearly in Fig. 5.4. According to 

Fig. 5.3, the strain at which the phase transformation starts increases with increasing 

temperature. The reverse phase transformation finishes earlier at high strain levels during the 

unloading process. According to Fig. 5.4, the microstructure at a strain of 0.04 changes little 

during the loading and unloading process. It can also be concluded from Fig. 5.4 that the 

martensitic volume fraction at each strain decreases with temperature, which means that 

increasing temperature hinders the martensitic transformation. 

135



Fig.5.4 Distribution of martensite under high strain rate deformation at various 

temperatures 

(a) Distribution of martensite during the loading process 

(b) Distribution of martensite during unloading process 
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(a) Stress distribution during the loading process 

(b) Stress distribution during the unloading process 

Fig.5.5 Distribution of stress under high strain rate deformation at various temperatures 

137



The stress distribution during the loading and unloading process at various temperatures 

is shown in Fig. 5.5. Similar to the microstructure shown in Fig. 5.4, a distinct difference in 

the stress distribution between the elastic deformation and phase transformation is observed. 

Elastic deformation is the main mechanism for the high strain rate deformation at higher 

temperatures. At temperatures higher than 100°C, nearly no phase transformation is observed. 

The distribution of the stress is close to that of pure elastic deformation although the phase 

transformation is observed in Fig. 5.4. According to Fig. 5.4, martensite disperses within the 

sample without the formation of the transformation band structure at higher temperatures. 

Therefore, the contribution of the martensitic transformation to the stress distribution is 

limited at higher temperatures. According to Fig. 5.5, the average stress at a strain of 0.01 at 

room temperature is about 300 MPa. The maximum stress is 357 MPa and the minimum 

stress is 284 MPa. The average stress increases to about 400 MPa at temperature higher than 

room temperature. The maximum and minimum stress is 456 MPa and 386 MPa, respectively, 

for all the temperatures higher than 25°C, which indicates that the elastic deformation during 

the loading process is insensitive to temperature. The same phenomenon is observed at elastic 

deformation at higher strain levels. Unlike the loading process, the stress in the elastic 

unloading process at the same strain for different temperatures differs. Although a similar 

distribution of the stress is observed during the elastic unloading of the sample, the influence 

of the martensitic phase leads to the variation in stress. 

5.4.2 Temperature Effect on the Deformation at Various High Strain Rates 

The influence of temperature and strain rate to the stress-strain curve of SMAs is 
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compared in this section. The temperature effect on the deformation at various high strain 

rates is shown in Fig. 5.6. Similar to the result on the deformation at the strain rate of 600/s 

discussed in section 5.4.1, the increasing temperature leads to the increase of the start stress 

for the phase transformation at the strain rate of 1000/s, 2000/s and 5000/s. As we discussed 

before, the influence of the temperature on the stress strain curve can be represented by the 

term 𝑑𝜎 𝑑𝑇⁄ |𝜀 = 𝜀0. At the strain of 0.03 during the loading process, phase transformation is

fully activated for nearly all the temperatures at all three strain rates. Therefore, 𝜀0 is 

selected as 0.03 for the loading process. For the same reason, 𝜀0 is selected as 0.02 for the 

unloading process. 𝑑𝜎 𝑑𝑇⁄  equals to 7.5 MPa/°C, 6.5 MPa/°C, 5.0 MPa/°C for the strain rate 

of 1000/s, 2000/s, 5000/s, respectively, during the loading process and 6.6 MPa/°C, 6.4 

MPa/°C, 4.1 MPa/°C for the strain rate of 1000/s, 2000/s, 5000/s, respectively, during the 

unloading process. Therefore, the increasing temperature has less influence on the 

stress-strain cure when strain rate increases. According to Fig. 5.6a and b, the maximum 

stress during deformation at room temperature changes from 873 MPa to 904 MPa when the 

strain rate increases from 1000/s to 2000/s. According to Fig. 5.6a, the maximum stress 

during deformation at the strain rate of 1000/s increases from 873 MPa to 973 MPa when the 

temperature increases from 25°C to 40°C. Therefore, the deformation is more sensitive to the 

temperature than the strain rate. The same result is concluded in the experimental research by 

Nemat-Nasser et al. [9] on the high strain rate deformation of austenitic NiTi SMAs at 

various temperatures. According to Fig. 5.6, the linear elastic deformation during the high 

strain rate deformation is observed at the temperature of 120°C for all the strain rates. 

Therefore, the Md temperature is insensitive to the strain rate and is about 100°C higher than 
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the Af temperature. The influence of temperature and strain rate on the hysteresis area is also 

shown in Fig. 5.6. Note that increasing of both temperature and strain rate will lead to the 

decrease of hysteresis area. The hysteresis area is more sensitive to the temperature than the 

strain rate. 

The change of temperature with strain during deformation at various temperatures and 

strain rates is shown in Fig. 5.7. Note that the temperature increases during the loading 

process and decreases during the unloading process for the deformation at all strain rates and 

temperatures below Md. The temperature increment is 21.2°C when the sample is deformed 

under the strain rate of 1000/s at room temperature. The temperature increment is 18.8°C and 

12.4°C for the strain rate of 2000/s and 5000/s, respectively, at the same temperature. The 

temperature increment is 17.7°C when the sample is deformed at 40°C under strain rate of 

Fig.5.6 Temperature effect on the stress-strain curve at various strain rates 
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1000/s. The temperature increment is 16.7°C and 10.7°C under the strain rate of 2000/s and 

5000/s at temperature of 40°C. The temperature increment is 15.3°C, 14.1°C, and 9.8°C for 

the strain rate of 1000/s, 2000/s and 5000/s, respectively, when sample is deformed at 50°C. 

Therefore, the temperature increment decreases with increasing strain rates and temperatures. 

When the sample is deformed at 110°C, the temperature increment is about 2-3°C for all the 

strain rates. Therefore, the temperature increment is more and more insensitive to the strain 

rate when temperature increases. 

The influence of the strain rate and temperature to the maximum temperature during the 

deformation is also shown in Fig. 5.7. The maximum temperature during the deformation 

increases with both increasing strain rate and temperature. When the sample is deformed at 

temperature higher than 100°C, the maximum temperature during deformation is nearly the 

same for different strain rates. Therefore, the maximum temperature is less sensitive to the 

Fig.5.7 Temperature change of austenitic NiTi SMAs at various ambient temperatures 

under high strain rate deformation (a) 1000/s (b) 2000/s (c) 5000/s 
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strain rate at high temperatures. 

The influence of temperature on the martensitic volume fraction during deformation at 

various strain rates is shown in Fig. 5.8. The peak value of martensitic volume fraction 

changes from 0.42 at strain rate of 1000/s to 0.37 and 0.25 at strain rate of 2000/s and 5000/s, 

respectively, when the sample is deformed at room temperature. The peak value of 

martensitic volume fraction changes from 0.33 at strain rate of 1000/s to 0.32 and 0.21 at 

strain rate of 2000/s and 5000/s, respectively, when the sample is deformed at 40°C. The 

maximum martensitic volume fraction when sample is deformed at 1000/s changes from 0.42 

at 25°C to 0.05 at 110°C. Therefore, the maximum volume fraction of martensite during 

deformation decreases with increasing temperature and strain rate. 

While this new macroscopic thermomechanical finite element model captures the effect 

Fig.5.8 The change of martensitic volume fraction at various ambient temperatures under 

high strain rate deformation (a) 1000/s (b) 2000/s (c) 5000/s 
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of temperature during high strain rate deformation of austenitic NiTi SMAs, the model would 

benefit from experimental validation. 

5.5 Conclusions 

A macroscopic thermomechanical finite element model, which examines the effect of 

temperature on high strain rate deformation of austenitic NiTi SMAs, is presented in this 

paper. This model expands upon a previous model to include the effect of temperature. The 

following observations can be made based on simulations from this model: 

 The start stress for the transformation increases with increasing temperature and

the stress-strain slope during the phase transformation remains nearly constant at 

a constant high strain rate. 

 Transformation bands form during deformation at temperatures lower than 75°C.

The start strain for initiation of the transformation bands increases with 

increasing temperature. 

 The maximum martensitic volume fraction decreases with increasing

temperature up to Md. Pure elastic deformation is observed when the sample is 

deformed at Md. Md is ~100°C higher than Af. 

 Phase transformation is more sensitive to temperature than strain rate. Md is

insensitive to strain rate. 

Experimental validation of the model is needed to determine the accuracy of the new 

model. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

A new phenomelogical model for high strain rate deformation of austenitic SMA derived 

in present study. The model is based on the second law of thermodynamics and is calibrated 

by experimental results. 

A one-dimensional rate-dependent phenomelogical model is develped in the first part of 

this work. Compared to quasi-static deformation of SMA, high strain rate deformation of 

SMA leads to a high temperature increase in a short time. The impact deformation of SMA is 

therefore treated as adiabatic process. The driving force for martensitic phase transformation 

is related to latent heat generated during deformation and the interaction of dislocations. The 

new term ‘transformation resistance due to dynamic loading’ is presented to describe the 

influence of dislocation on phase transformation during dynamic deformation of SMA. 

Transformation resistance due to dynamic loading is related to wave front speed and 

martensitic volume fraction by the power law equation. The simulated stress strain 

relationship at various high strain rates matches well with the experiment [1]. 

Following J2 type flow rule, a three-dimensional model for high strain rate deformation 

of SMA on Kolsky compressive bar was developed in the second part of this work. 

Martensitic transformation is related to Von-Mises equivalent stress. The relationship 

between Von-Mises equivalent stress and strain is calibrated experimentally, and simulated 

results match well with experiment [1]. Finite element analysis software ABAQUS/Standard 

was applied to simulate the distribution of stress, strain and martensitic volume fraction 
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during high strain rate deformation. According to current work, microscopic phase 

transformation band is observed during deformation under critical high strain rate. The phase 

transformation band is sensitive to strain rates. At strain rate higher than 2000/s, the 

microscopic bands disappear and transformation happens everywhere within the sample. 

Based on the model developed in Chapters 1 and 2, the effect of temperature on material 

flow behavior at high strain rate compression of austenitic SMA was studied in Chapter 3. 

Deformation is studied at temperatures ranging from the martensitic start temperature (Ms) to 

the temperature (Md) above which stress-induced martensite no longer forms. Result shows 

that martensitic transformation is inhibited with increasing temperature. At temperature 

higher than Md, no phase transformation was observed. The coupling of strain rate effect and 

temperature on phase transformation was also studied. Phase transformation is more sensitive 

to temperature than strain rate. Md is about 100°C higher than Af, which is insensitive to 

strain rate. Residual martensite observed after unloading of the sample leads to residual strain 

after high strain rate deformation. 

6.2 Future Work 

A new rate-dependent model was established to simulate high strain rate compression of 

austenitic SMAs. Planned follow-on work is described below. 

1. Current work was limited to the pseudoelastic deformation of austenitic SMAs. When

deformation of SMAs is larger than a critical value (usually about 6%~10%), plastic 

deformation occurs. Plastic deformation of SMAs is sensitive to strain rate and temperature, 

especially at high strain rate deformation. Thus, study of the coupling of phase transformation 

and plastic deformation at high strain rate deformation of SMA is warranted. 
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2. A model for high strain rate deformation of martensitic SMAs needs to be developed.

Experimental study shows that deformation of martensitic SMAs is strain-rate sensitive. 

Hence, strain rate effect on the reorientation of martensitic variants needs to studied. 

3. High strain rate tensile deformation on austenitic SMAs need to be studied. Since

experimental results show Luder-like band structures form during high strain rate tension of 

austenitic SMAs the strain rate effect on Luder band needs to be studied. 

6.3 References: 
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APPENDIX A 

EXPERIMENTAL RESULTS 
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Experimental investigation on high strain rate deformation of austenitic NiTi SMAs was 

performed using a modified Kolsky compression bar. According to one-dimensional wave 

theory, stress, strain, and strain rate of the sample can be calculated in the form of transmitted 

and reflected pulse as: 

{
 

 
 𝜀𝑠̇(𝑡) = −

2𝐶0

𝐿𝑠
𝜀𝑅(𝑡)   

𝜀𝑠(𝑡) = −
2𝐶0

𝐿𝑠
∫ 𝜀𝑅(𝜏)𝑑𝜏
𝑡

0
   

𝜎(𝑡) =
𝐴0𝐸

𝐴𝑆
𝜀𝑇(𝑡)  

  (A1) 

where 𝜀𝑠̇(𝑡) is the strain rate history of the specimen, 𝐿𝑠 is the length of the specimen, 𝐶0

is the elastic wave velocity of the steel bars, 𝜀𝑅(𝑡) is the strain history of the reflected pulse,

𝜀𝑆(𝑡) is the strain history of the specimen, 𝜎(𝑡) is the stress history of the specimen, 𝐴0 is

the cross-sectional area of the bar, and 𝐴𝑆 is the initial cross-sectional area of the specimen. 

Austenitic NiTi SMA (50.8 at.% Ni, named as SE508) rod samples with an aspect ratio 

of 1:1 were studied during high strain rate deformation. The rod length is 6.10 mm and the 

rod diameter is Ф 6.21 mm. Homogenization was performed at 800°C for 5 h before 

deformation. After homogenization, the sample was heat treated at 550°C for 1 h. A copper 

plate used as the pulse shaper, insured constant strain rate deformation on the sample. The 

sample was deformed to 4% strain. The incident, transmitted, and reflected waves are shown 

in Fig. A1; note that both incident and transmitted waves have a triangular pulse structure. 

Whereas the duration of the incident pulse is about 0.2 ms, and the duration of the transmitted 

wave is about 0.3 ms, the reflected wave has a plateau at the peak of the pulse, which 

represents constant strain rate deformation. Strain rate can be calculated from equation (A1), 

and the distribution of strain rate with time is shown in Fig. A1. Strain rate increases at the 

beginning of the deformation when elastic deformation of the material is activated and 
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remains constant at 600/s during the activation of phase transformation. Stress and strain can 

be calculated from equations (A1). The stress-strain relationship at high strain rate 

deformation is shown in Fig. A2. According to the experimental result, the elastic modulus is 

35 GPa and 28 GPa for austenitic and martensitic phases, respectively. Stress to activate 

phase transformation is 300 MPa. Unlike the stress plateau often observed in quasi-static 

deformation, an apparent increase of stress during deformation is shown in the pseudoelastic 

region. 

Fig.A1 Stress wave and strain rate distribution in the sample 
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Scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) 

were performed on FEI Nova 200 NanoLab instrument to detect microstructural changes 

before and after deformation (Fig. A3 and A4). The average grain size of the sample after 

heat treatment is 65.4 μm (Fig. A3). The grain structure is the same before and after high 

strain rate deformation. Microstructural evolution is indicated by the pole figures in Fig. A4. 

Note that crystal orientation is nearly the same before and after deformation; the only 

Fig.A2 Stress-strain curve of NiTi rod under deformation with strain rate 600/s 

(a)                 (b)                 

Fig.A3 SEM images from the cross-section of top surface of the austenitic NiTi SMA (a) 

before and (b) after deformation 
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difference is that a slight rotation of the grain is observed (for example, the (111) planes align 

more in RD and TD after deformation) and the texture strength increases from 9.1 to 10.4 

after deformation. Also after deformation, the specimen is nearly fully recovered (only 0.5% 

unrecoverable strain), to 4% strain at strain rate 600/s. 

Changes of phase transformation temperatures before and after deformation are detected 

by a Netzsch DSC 204 FI Phoenix differential scanning calorimeter (DSC). Start and finish 

temperatures for austenitic and martensitic phase transformation are 𝐴𝑠, 𝐴𝑓, 𝑀𝑠, and 𝑀𝑓, 

respectively. Phase transformation temperatures of the sample before deformation are 

Fig.A4 Pole figures (a) before deformation (b) after deformation 

(a) (b) 

Fig.A5 DSC curve before and after deformation 
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𝑀𝑠 = 273𝐾, 𝑀𝑓 = 253𝐾, 𝐴𝑠 = 285𝐾, 𝐴𝑓 = 295𝐾 (Fig. A5). Figure A5 also shows that 

the martensitic transformation during cooling is a two-step process, which likely is the result 

of a B2 to R-phase transformation and R-phase to B19
’
 phase transformation, respectively.

Our model does not consider the two-step process and only takes into account the 

transformation as a whole, i.e. input parameters 𝑅𝑠, and 𝑀𝑓 only. The DSC curves show 

that after deformation, the peak for both austenitic transformation and martensitic 

transformation are nominally unchanged, although a small amount of broadening has 

occurred which also appears as an overall decrease in peak intensity, which indicates a small 

microstructural change after deformation and is confirmed by the slight texturing observed in 

the pole figures in Fig A4 and in the macroscopic stress-strain curve (Fig A2) which exhibits 

about 0.5% unrecoverable strain. These changes are to be studied by computer simulation in 

the following sections. 
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APPENDIX B 

DERIVATION OF INTERNAL ENERGY 
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The internal energy per mass of RVE is U, which is related to enthalpy H and work done 

on the RVE by 

𝐻 = 𝑈 +
1

𝜌
𝜎𝜀 (B1) 

where 𝜎 and 𝜀 are the macroscopic stress and strain. The Gibbs free energy G is related to 

enthalpy H and entropy S by 

G = H-TS (B2) 

Therefore, the internal energy U can be written as: 

𝑈 = 𝐺 + 𝑇𝑆 −
1

𝜌0
𝜎𝜀 (B3) 
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APPENDIX C 

WAVE VELOCITY DURING PHASE TRANSFORMATION 
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According to wave theory, the wave velocity 𝐶𝑃  can be solved by the following 

equation: 

𝐶𝑃 = √
1

𝜌0

𝑑𝜎

𝑑𝜀
(C1) 

The stress-strain curve for NiTi SMA deformed at strain rate 2500/s is shown in Fig. 3.4. A 

linear stress-strain relationship is observed in the stress-strain curve. According to the current 

model, when strain equals 0.025, the stress is about 800 MPa. When strain equals 0.035, the 

stress is about 1000 MPa. In the current model, the density 𝜌0 is selected as 6450 kg/m
3
.

Thus, the wave velocity 𝐶𝑃 is solved as: 

𝐶𝑃 = √
1

𝜌0

𝑑𝜎

𝑑𝜀
= √

1

6450

1000×106−800×106

0.035−0.025
= 1760 m/s (C2) 

A linear relationship between strain rate and wave velocity is assumed in the current model as 

follows: 

𝐶𝑃 = 0.73𝜀̇ = 1825 𝑚/𝑠 (C3) 

The error can be calculated as: 

𝑒% =
1825−1760

1760
= 0.037 (C4) 

which means the linear relationship between the wave velocity and strain rate provides a 

good prediction of the wave velocity in the current model. 

158



APPENDIX D 

RELATIONSHIP BETWEEN PLASTICITY AND MARTENSITE 
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Both the yielding of austenitic and martensitic materials and the existence of retained 

martensite can be attributed to plastic deformation of the material. Experimental results in 

Chapter 3 and 4 show no yielding of the austenitic and martensitic phase when NiTi SMA is 

deformed below 6% strain. Therefore, the unrecovered strain observed experimentally is 

asumed to be due to retained martensite. In the current model, a large resistance is assumed to 

present during the forward and reverse transformation, leading to a large stress to activate the 

phase transformation and retained martensite after unloading. The relationship between 

plastic deformation 𝜀𝑃 and retained martensite 𝜉𝑟 is given by 

𝜀𝑃 = 𝐻𝜉𝑟 (D1) 

Where H is the maxmim strain during deformation. According to Fig. 4.7, 𝜉𝑟 = 20% and 

the plastic strain is calculated as: 

𝜀𝑃 = 𝐻𝜉𝑟 = 0.05 × 20% = 0.01 (D2) 

which is the same as shown in the stress-strain curve in Fig. 4.4. 
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APPENDIX E 

THERMODYNAMICS AT HIGH STRAIN RATE DEFORMATION 
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The deformation state in the model in a random plane is shown in Fig.E1. The 

stress-strain and particle velocity at the end of loading is the same as defined in the above 

section. At time τ, the wave contains the phase transformation information for propagation to 

the A-B plane. Due to the one-dimensional deformation assumption, the stress and strain will 

remain constant across the cross section area. The stress is defined as 𝜎𝐴𝐵 in Fig.E1. Time t 

stands for the time after the A-B plane has been impacted by the wave and, thus, contains 

phase transformation information. After a short time interval, the stress in the A-B plane will 

change from 𝜎𝑡 to 𝜎𝑡+Δ𝑡. By defining τ = 0, t become the time associated with the austenitic 

phase transformation to martensitic phase at the stress 𝜎𝑡. The whole deformation process 

discussed above is equivalent to a stress 𝜎𝐴𝐵 loading of a rod in the A-B plane. In this case, 

𝜎𝑡𝑟 = 𝜎𝐴𝐵. In contrast to the constant stress 𝜎∗ of the experimental end of loading, the stress

at the A-B plane after time t has the same value as the stress at position (𝑥𝐴𝐵 − 𝐶0𝑡) at time 

τ. Although it can be assumed that a constant stress is maintained at a short time interval ∆t, 

the stress changes with time. A constant transformation rate is assumed at a small time 

interval in the model. To solve the stress, thermodynamic equations are needed to add to the 

wave field equations. 

During the impact loading of the material, deformation occurs in a short time and the 

𝜎∗ 𝜎𝐴𝐵 

𝜈∗ 

𝜀∗ 

𝜈𝐴𝐵 

𝜀𝐴𝐵 

Fig.E1 Schematic showing the deformation state in a random plane 
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thermodynamic equilibrium cannot be satisfied in the material. The rod under deformation is 

seen as an isolated system where energy is conserved at any given time. Suppose the rod has 

a cross section of A0 and according to the energy conservation in a short time interval ∆t, the 

following equation can be derived: 

(𝜎𝑡𝜈𝑡 − 𝜎𝑡+Δ𝑡𝜈𝑡+Δ𝑡)𝐴0𝑑𝑡 + (𝑈𝑡 − 𝑈𝑡+Δ𝑡)𝜌0𝐴0𝑑𝑥 +
1

2
(𝜈𝑡

2 − 𝜈𝑡+Δ𝑡
2 )𝜌0𝐴0𝑑𝑥 = 0      (E1) 

The first term in the equation represents the work by the applied stress. The second term 

represents the internal energy change in the material. The third item is the change in kinetic 

energy. The equation can be rewritten as: 

[𝜎𝜈] + 𝜌0𝐶0[𝑈] +
1

2
𝜌0𝐶0[𝜈

2] = 0      (E2) 

The evolution rate of internal energy can be derived from equation E2 as: 

𝜌0𝐶0
𝑈𝑡+Δ𝑡−𝑈𝑡

Δ𝑡
= −𝜎

𝜈𝑡+Δ𝑡−𝜈𝑡

Δ𝑡
−
1

2
𝜌0𝐶0

𝜈𝑡+Δ𝑡
2 −𝜈𝑡

2

Δ𝑡
      (E3) 

By combining equation (3.23) into (E3), the following equation results: 

𝜌0
𝜕𝑈

𝜕𝑡
=

1

2
𝑔𝑡𝑟𝜉̇𝜎 −

1

4
𝜌0𝐶0

2𝑔𝑡𝑟
2 𝜉𝜉̇ +

1

2
𝜌0𝐶0𝜈𝐴𝐵𝑔𝑡𝑟𝜉̇ (E4) 

In the discussion above, it is assumed that the deformation occurs at a constant high ambient 

temperature. A more common case is that the sample is deformed in air. Thus, the whole 

procedure cannot be considered as an isothermal case. Therefore, the thermal energy should 

be taken into consideration. 

To account for the thermal energy change, two terms,  q as heat flux and r as the rate of 

internal heat generation, are then added to equation (E4) as: 

𝜌0
𝜕𝑈

𝜕𝑡
=

1

2
𝑔𝑡𝑟𝜉̇𝜎 −

1

4
𝜌0𝐶0

2𝑔𝑡𝑟
2 𝜉𝜉̇ +

1

2
𝜌0𝐶0𝜈𝐴𝐵𝑔𝑡𝑟𝜉̇ + 𝜌0𝑟 − 𝑑𝑖𝑣(𝑞) (E5) 

As we only take a small time interval into consideration, the first law of thermodynamics can 

be applied as: 
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𝑈 = 𝐺 + 𝑇𝑆 −
1

𝜌0
𝜎𝜀    (E6) 

According to (E6) , the partial differential equation of U can be written as: 

𝜌0
𝜕𝑈

𝜕𝑡
= 𝜌0

𝜕𝐺

𝜕𝑡
+ 𝜌0𝑇

𝜕𝑆

𝜕𝑡
+ 𝜌0𝑆

𝜕𝑇

𝜕𝑡
− σ

∂ε

∂t
− ε

∂σ

∂t
    (E7) 

We can apply the second law of thermodynamics in the form of Clausius-Planck inequality 

as: 

𝜌0
𝜕𝑆

𝜕𝑡
+

1

𝑇
𝑑𝑖𝑣(𝑞) −

𝜌0𝑟

𝑇
≥ 0      (E8) 

Therefore, the driving force for phase transformation can be solved, which is discussed in 

detail in Chapter 3. 
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APPENDIX F 

TEMPERATURE EFFECT ON THE STRESS-STRAIN CURVE 
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Experimental results on the temperature effect on the stress-strain curve of an SMA 

under high strain rate deformation is limited. Chen and Song [1] studied the temperature 

dependence of NiTi SMA’s behavior at a high strain rate. The NiTi SMA is deformed in a 

temperature ranging from 0 °C to 50 °C. The sample deforms in the austenitic state when the 

temperature is higher than 23 °C. Therefore, the stress-strain curves for deformation at 35 °C 

and 50 °C are selected for comparision with simulated results, as shown in Fig. F1. 

According to Figure F, the current model provides a good prediction of the temperature effect 

on the stress-strain curve of an SMA during high strain rate deformation. 

Reference: 

[1] Chen W, Song B. Journal of Mechanics of Materials and Structures 2006;1:339. 

Fig.F1 Comparison of the experimental result [1], with current model and traditional 

model at strain rate 440/s at temperature 35°C and 50°C 
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