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This thesis addresses three interrelated challenges of disease mapping and contributes a 

new approach for improving visualization of disease burdens to enhance disease surveillance 

systems. First, it determines an appropriate threshold choice (smoothing parameter) for the 

adaptive kernel density estimation (KDE) in disease mapping. The results show that the 

appropriate threshold value depends on the characteristics of data, and bandwidth selector 

algorithms can be used to guide such decisions about mapping parameters. Similar approaches 

are recommended for map-makers who are faced with decisions about choosing threshold values 

for their own data. This can facilitate threshold selection. Second, the study evaluates the relative 

performance of the adaptive KDE and spatial empirical Bayes for disease mapping. The results 

reveal that while the estimated rates at the state level computed from both methods are identical, 

those at the zip code level are slightly different. These findings indicate that using either the 

adaptive KDE or spatial empirical Bayes method to map disease in urban areas may provide 

identical rate estimates, but caution is necessary when mapping diseases in non-urban (sparsely 

populated) areas. This study contributes insights on the relative performance in terms of accuracy 

of visual representation and associated limitations. Lastly, the study contributes a new approach 

for delimiting spatial units of disease risk using straightforward statistical and spatial methods 

and social determinants of health. The results show that the neighborhood risk map not only 

helps in geographically targeting where but also in tailoring interventions in those areas to those 

high risk populations. Moreover, when health data is limited, the neighborhood risk map alone is 

adequate for identifying where and which populations are at risk. These findings will benefit 

public health tasks of planning and targeting appropriate intervention even in areas with limited 



 

and poor-quality health data. This study not only fills the identified gaps of knowledge in disease 

mapping but also has a wide range of broader impacts. The findings of this study improve and 

enhance the use of the adaptive KDE method in health research, provide better awareness and 

understanding of disease mapping methods, and offer an alternative method to identify 

populations at risk in areas with limited health data. Overall, these findings will benefit public 

health practitioners and health researchers as well as enhance disease surveillance systems. 
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CHAPTER 1  

INTRODUCTION 

 This dissertation examines three interrelated aspects of the complex questions of disease 

mapping methods and definition of neighborhood units for health research. This chapter provides 

a brief overview of the thesis and its organization as well as the research gaps that this study 

seeks to fill and study’s objectives. 

 

1.1  Background 

 Disease mapping has long been a part of public health and epidemiology since John 

Snow’s map of cholera deaths in the 1850s. It is considered to be an exploratory analysis to 

illustrate the geographic distribution of disease and offers an alternative approach for public 

health to address and specify the hypotheses of disease etiology and causation since it is easier, 

quicker, and less expensive to conduct than case-control and cohort studies. Using GIS and 

spatial analysis methods, disease maps are produced not only to visualize the spatial distribution 

of disease burden but also to emphasize geographically-defined clusters of disease i.e. hotspots 

(Cromley & McLafferty, 2012; McLafferty, 2015) which helps public health practitioners to 

monitor and prevent disease outbreaks as well as target vulnerable populations for intervention. 

 Geographic health data come in two forms – point and areal data (Bithell, 2000; Cromley 

& McLafferty, 2012), and different data types may use different disease mapping methods. Due 

to privacy and confidentiality concerns, however, most heath data are commonly released as 

areal data. This study, therefore, focuses only on methods for areal data. When mapping 

diseases, rates are usually used since they facilitate comparison across different population sizes, 

unlike the number of cases. Because they are easy to compute, crude rates – the ratio of number 
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of cases in a spatial unit divided by its total population – are commonly used to map disease, and 

the resulting spatial distribution is presented as a choropleth map – showing abrupt changes at 

each boundary. In reality, however, the spatial distribution of disease changes gradually and is 

not confined to artificial boundaries such as zip codes, counties or states. To address this 

limitation of choropleth maps, continuous surface or isopleth maps are recommended for 

displaying the spatial distribution of disease (Cromley & McLafferty 2012; Beyer, Tiwari, & 

Rushton, 2012) since these kinds of maps illustrate gradual changes which reflect realistic 

disease distribution. Moreover, using crude rates to map disease requires considerable care 

because of the small numbers problem – a well-known issue in disease mapping. The small 

numbers problem can impact the effectiveness and accuracy of disease maps for disease 

presentation. Any slight change in the number of cases generates wide variations in rates, making 

the resulting rates unstable. Generally, it occurs in areas with small populations. To solve this 

problem, smoothed rate methods have been implemented in disease mapping including kernel 

density estimation and spatial empirical Bayes methods. 

 The kernel density estimation (KDE) method, a nonparametric disease mapping method, 

was introduced in the late 1980s (Silverman, 1986; Kelsall & Diggle, 1995). It uses a surface 

model and extrapolates point data over an area of interest without relying on fixed boundaries 

such as political boundaries. To compute disease rates, a spatial window or kernel (a circle) is 

moved across the study area, and the ratio between density of events (i.e., cases) and the density 

of the background (i.e., population) is calculated within this kernel. The size of the kernel, called 

bandwidth or threshold, is crucial since it determines the smoothness of results (Silverman, 1986; 

Kelsall & Diggle, 1995; Waller & Gotway, 2004). Different bandwidths produce different maps, 

and an inappropriate value can lead to misinterpretation. Current approaches to defining an 
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appropriate bandwidth rely on somewhat arbitrary choices made by experts who understand the 

disease being mapped or by the map-makers themselves. The resulting pattern of disease maps 

depends on the size (radius) of the kernel. Currently, no clear guidance exists for how this may 

or should be done, which is a research gap. In fact, methods for automatically selecting 

bandwidth have been proposed to help users find a bandwidth value that is reasonable for a wide 

range of data distributions, but without any mathematical guarantees of being close to the 

optimal bandwidth (Wand & Jones, 1995). While these methods have been proposed and used 

with non-spatial data, their relative utility in disease mapping remains unknown. To fill this 

research gap and improve the KDE method, this study assesses the relative performance of these 

methods in terms of resolution and reliability for disease mapping. 

 Spatial empirical Bayes method, a model-based approach, is one popular disease 

mapping method. The Bayesian approach is attractive to statisticians and geostatisticians for two 

main reasons. First, the model itself is flexible enough to include related parameters and account 

for all inferences that may occur from those parameters. Second, the Bayes procedure offers 

“borrowing of strength” (Best, Richardson, & Thomson, 2005) across space (in spatial analysis) 

either using global or local means. The latter reason allows researchers to use Bayes in small 

areas with limited samples. The primary objective of both KDE and Bayesian approaches is to 

explore the spatial distribution of disease. Both are widely used since they address the issue of 

the small numbers problem. Since they have different theoretical approaches, several questions 

arise: (1) Does producing disease maps using the same dataset but different methods (KDE or 

Bayesian approach) yield different results? (2) If the two methods provide different results, 

which method should be used and in what context? These questions are important and need to be 

answered because using an inappropriate method may lead to failures in interventions. To the 
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best of my knowledge, these approaches (Bayesian and KDE methods) have never been 

compared, side-by-side, and there is a need to better understand their merits in disease mapping 

and clarify the methods with regard to their use in public health and decision-making. 

 The final motivation of this thesis stems from a limitation of disease maps and 

restrictions imposed by the availability of health data. Though disease maps help us better 

understand the distribution of disease across space and pinpoint where intervention is most 

needed, they alone cannot identify who or which populations are most at risk and need the 

interventions the most. Moreover, in areas with limited and poor-quality health data, such as 

many developing countries, producing reliable representations of disease burdens is problematic. 

Thus, public health tasks of planning and targeting appropriate intervention (McLafferty 2015; 

Cromley & McLafferty, 2012) become extremely difficult. Currently, studies of neighborhood 

boundaries in health research are soaring, and some cross-sectional studies have examined the 

impact of neighborhood characteristics on health and indicated that neighborhood affluence has a 

positive relationship with health (Chaix, Merlo, Evans, Leal, & Havard, 2009; Cockings & 

Martin, 2005; Lebel, Pampalon, & Villeneuve 2007; Coulton, Korbin, Chan, & Su, 2001; 

Browning & Cagney, 2003). Can we identify sub areas, neighborhoods of risk, based on internal 

consistency and external difference with regards to known risk factors? Such maps would be 

invaluable for disease burden assessment and targeting interventions. This is the goal of this 

motivation. This study seeks to define and identify high-risk spatial units for health research. The 

approach is applied to the study of HIV/AIDS in Texas. 

 

1.2  Research Gaps 

 The key gaps in research that this study seeks to fill are as follows:  
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• For the KDE method, what is an appropriate bandwidth (or threshold) value for 
constructing disease maps? How do you determine it?  

• How do different disease mapping methods such as KDE and spatial empirical Bayes 
influence the perception of disease burdens? How effective are these methods foes 
representing disease distribution? 

• When should the KDE or Bayesian method be used to produce disease maps and in 
what situation? What are the criteria to select a disease mapping method? 

• When health data is sparse and has poor quality, how do you produce reliable 
representations of disease burdens? Can the spatial description of place effects help to 
identify where a population at risk resides? 

• What is an appropriate method to define spatial units for health research? What 
variables (e.g., income and education) should be considered and selected? What 
criteria should be used to select these variables?  

 

1.3  Goals and Objectives 

The overall goal of the thesis is to provide a better understanding of the importance of disease 

mapping methods in visualization of disease burdens and enhance disease surveillance systems. 

Within this larger goal, the specific objectives of the study are to: 

1. Improve the KDE method by illustrating an approach to determine the desirable 
threshold choice. 

2. Evaluate the relative performance of the kernel density estimation and spatial 
empirical Bayes in disease mapping.  

3. Provide an alternative approach for defining neighborhood of risk and identifying at 
risk populations in those spatial units.  

 

1.3.1  Objective 1: Improve the KDE Method in Disease Mapping Context 

Most researchers agree that the selection of bandwidth (or threshold) is crucial, as it 

affects the degree of smoothing that occurs on the map (Cromley & McLafferty, 2012; Bithell, 

2000; Carlos, Shi, Sargent, Tanski, & Berke, 2010; Beyer et al., 2012; Chi, Wang, Li, Zheng, & 
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Liao, 2007; Shi, 2010; Talbot, Kulldorff, Forand, & Haley, 2000; Cai, 2007; Rushton & Lolonis, 

1996; Tiwari & Rushton, 2005; Silverman, 1986; Wand & Jones, 1995). Recent studies in 

disease mapping used a knowledge-based judgement to arbitrarily selected threshold values. In 

fact, methods for automatically selecting bandwidths have been proposed and used produce 

distribution of non-spatial data. However, their application for threshold selection in the disease 

mapping context has not been evaluate. Relevant research questions are: 

• How can we apply automatically selecting bandwidth methods in the disease mapping 
context? 

• Do threshold values from a knowledge-based judgement and bandwidth selectors 
significantly represent different spatial distributions of disease? 

• How do different bandwidth values impact the perception of disease burdens? 

• What is a desirable threshold choice to construct disease maps? 

 

1.3.2  Objective 2: Evaluate the Relative Performance of the KDE and Spatial Empirical Bayes 
Methods 

 
In recent years, while many new disease mapping methods have been developed, the comparison 

between disease mapping methods is limited, and no systematic evaluation of the mapping 

methods exists. Relevant research questions are: 

• How do these different mapping methods influence the outcome of maps? 

• What appropriate disease mapping method should be used in what settings 
(rural/urban areas)?  

• What are the criteria and guidelines for selecting an appropriate method? 

 

1.3.3  Objective 3: Provide an Alternative Approach for Defining Neighborhood of Risk and 
Identifying At Risk Populations in those Spatial Units 

 
In areas with limited and poor-quality health data, such as many developing countries, producing 
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reliable representations of disease burdens is problematic. Defining spatial units for health 

research can help public health practitioners reframe approaches for spatial targeting of 

intervention. 

• How do you identify possible locations and configurations of population at risk? 

• What is an appropriate method to define spatial units for health research? 

• What variables should be considered and included in the model? 

• How effective is the proposed method for identifying the possible locations of 
population at risk? 

 

1.4  Study Design 

 To examine the applicability of automatically selecting bandwidths methods and a 

desirable threshold value for the KDE method (objective 1) and to assess the relative 

performance of disease mapping methods (objective 2), this study uses a synthetic dataset 

generated under specific scenarios for known underlying risks and population sizes. A simulated 

dataset, l (l = 1, 2, 3... 100 replications) is generated based on population data from the 2010 U.S. 

Census Bureau (U.S. Census Bureau, 2010) and heart disease mortality data between 2009 and 

2013 obtained from the Centers for Disease Control and Prevention (CDC), National Center for 

Health Statistics (NCHS) (2015). 

 To determine a desirable threshold value, this study includes the total of ten thresholds –

six arbitrary and four calculated thresholds. Six arbitrary thresholds are mostly used in previous 

studies (Rushton & Lolonis 1996; Oppong, Tiwari, Ruckthongsook, Huddleston & Arbona, 

2012). Four calculated thresholds are derived from the population data. Using a simulated 

dataset, each threshold value is used to compute disease rate resulting in 100 replications per 

threshold. Then, the root-mean-square-error (RMSE) is employed to measure the accuracy 
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between estimated state rates computed from thresholds using the KDE method and state rates 

computed directly from the simulated dataset by dividing the total number of simulated cases by 

the total population. The same set of simulated datasets is also used to assess the performance of 

disease mapping methods while computing estimated disease rates using spatial empirical Bayes 

method. Then, the root-mean-square-error (RMSE) is employed to measure the difference 

between rate estimates from the KDE and spatial empirical Bayes methods. 

 To identify high-risk spatial units for HIV infection (objective 3), a list of HIV-related 

variables is selected based on the Centers for Disease Control and Prevention’s (CDC) National 

Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP) guidelines (2010). 

These variables are obtained from the 2013 ACS 5-year estimates dataset at the block group 

level. Factor analysis is employed to reduce the large numbers of HIV-related variables into 

numbers of identifiable dimension. Then, block groups are grouped and assigned into k partitions 

using k-mean clustering method. The resulting k types of clusters are imported to ArcGIS 10.2 

and mapped out to illustrate the delineation of homogeneous zones.  

 

1.5  Organization of the Thesis 

 This thesis consists of five chapters including this introductory chapter. The first 

manuscript (Chapter 2) focuses on the improvement of the KDE method for disease mapping. 

Using ten thresholds (six arbitrary and four calculated thresholds), the study seeks to find a 

desirable threshold choice and evaluate the relative performance of these thresholds. The second 

manuscript (Chapter 3) examines and evaluates the relative efficacy of the KDE and spatial 

empirical Bayes approaches in disease mapping. This study seeks to answer the differences and 

similarities of rate estimates computed from these two methods within the same conditions – 
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using the same dataset and consistent variables. The third manuscript (Chapter 4) illustrates how 

to classify and construct the health-risk map using straightforward statistical and spatial methods. 

This manuscript attempts to portray the usefulness of health-risk maps when health data is sparse 

and/or has poor quality; it also illustrates the powerful effectiveness of the health-risk map when 

combined with health data. The final chapter (Chapter 5) summarizes all the findings, 

contributions, and broader impacts made by this study as well as directions for future research. 

 

1.6  References 

Best, N., Richardson, S., & Thomson, A. (2005). A comparison of Bayesian spatial models for 
disease mapping. Statistical Methods in Medical Research, 14, 35-59. 
doi:10.1191/0962280205sm388oa 

Beyer, K. M., Tiwari, C., & Rushton, G. (2012). Five essential properties of disease maps. 
Annals of the Association of American Geographers, 102(5), 1067-1075. 
doi:10.1080/00045608.2012.659940 

Bithell, J. F. (2000). A classification of disease mapping methods. Statist. Med., 19, 2203-2215. 

Browning, C. R., & Cagney, K. A. (2003). Moving beyond poverty: neighborhood structure, 
social processes, and health. Journal of Health and Social Behavior, 44(4), 552-571. 

Cai, Q. (2007). Mapping disease risk using spatial filtering methods (Unpublished doctoral 
disseration). The University of Iowa, Iowa City, Iowa. 

Carlos, H. A., Shi, X., Sargent, J., Tanski, S., & Berke, E. M. (2010). Density estimation and 
adaptive bandwidths: a primer for public health practitioners. International Journal of 
Health Geographics, 9(39). doi:10.1186/1476-072X-9-39 

Centers for Disease Control and Prevention, National Center for Health Statistics. (2015). 
Underlying cause of death - heart disease mortality data set, 2009 to 2013 [Data set]. 
Retrieved from CDC WONDER Online Database: https://wonder.cdc.gov/ucd-icd10.html 

Centers for Disease Control and Prevention, National Center for HIV/AIDS, Vairal Hepatitis, 
STD, and TB Prevention. (2010). Establishing a holistic framework to reduce inequities 
in HIV, viral hepatitis, STDs, and tuberculosis in the United States. Atlanta, GA: U.S. 
Department of Health and Human Services, Centers for Disease Control and Prevention. 
Retrieved from https://www.cdc.gov/socialdeterminants/docs/SDH-White-Paper-
2010.pdf 



10 

Chaix, B., Merlo, J., Evans, D., Leal, C., & Havard, S. (2009). Neighbourhoods in eco-
epidemiologic research: Delimiting personal exposure areas. A response to Riva, Gauvin, 
Apparicio and Brodeur. Social Science & Medicine, 69(9), 1306-1310. 
doi:10.1016/j.socscimed.2009.07.018 

Chi, W., Wang, J., Li, X., Zheng, X., & Liao, Y. (2007). Application of GIS-based spatial 
filtering method for neural tube defects disease mapping. Wuhan University Journal of 
Natural Sciences, 12(6), 1125-1130. doi:10.1007/s11859-007-0097-6 

Cockings, S., & Martin, D. (2005). Zone design for environment and health studies using pre-
aggregated data. Social Science & Medicine, 60(12), 2729-2742. 

Coulton, C. J., Korbin, J., Chan, T., & Su, M. (2001). Mapping residents' perceptions of 
neighborhood boundaries: a methodological note. American Journal of Community 
Psychology, 29(2), 371-383. 

Cromley, E. K., & McLafferty, S. L. (2012). GIS and public health (2nd ed.). New York, NY: 
The Guilford Press. 

Kelsall, J. E., & Diggle, P. J. (1995). Kernel estimation of relative risk. Bernoulli, 1(1), 3-16. 

Lebel, A., Pampalon, R., & Villeneuve, P. Y. (2007). A multi-perspective approach for defining 
neighbourhood units in the context of a study on health inequalities in the Quebec City 
region. International Journal of Health Geographics, 6, 27. doi:10.1186/1476-072X-6-27 

McLafferty, S. (2015). Disease cluster detection methods: recent developments and public health 
implications. Annals of GIS, 21(2), 127-133. doi:10.1080/19475683.2015.1008572 

Oppong, J. R., Tiwari, C., Ruckthongsook, W., Huddleston, J., & Arbona, S. (2012). Mapping 
late testers for HIV in Texas. Health & Place, 18, 568-575. 
doi:10.1016/j.healthplace.2012.01.008 

Rushton, G., & Lolonis, P. (1996). Exploratory spatial analysis of birth defect rates in an urban 
population. Statistics in Medicine, 15, 717-726. 

Shi, X. (2010). Selection of bandwidth type and adjustment side in kernel density estimation 
over in homogeneous backgrounds. International Journal of Geographical Information 
Science, 24(5), 643-660. doi:10.1080/13658810902950625 

Silverman, B. W. (1986). Density estimation for statistics and data analysis. New York, NY: 
Chapman and Hall. 

Talbot, T. O., Kulldorff, M., Forand, S. P., & Haley, V. B. (2000). Evaluation of spatial filters to 
create smoothed maps of health data. Statistics in Medicine, 19, 2399-2408. 

Tiwari, C., & Rushton, G. (2005). Using spatially adaptive filters to map late stage colorectal 
cancer incidence in Iowa. In P. Fisher, Developments in spatial data handling (pp. 665-
676). Berlin: Springer-Verlag. 



11 

U.S. Census Bureau. (2010). Profile of general population and housing characteristics: 2010 - 
2010 Census Summary File 1 [Data set]. Retrieved from American FactFinder: 
https://factfinder.census.gov/ 

Waller, L., & Gotway, C. (2004). Applied spatial statistics for public health data. Hoboken, NJ: 
John Wiley & Sons, Inc. 

Wand, M. P., & Jones, M. C. (1995). Kernel smoothing. Boca Raton, FL: Chapman & Hall/CRC. 



12 

CHAPTER 2  

EVALUATION OF THRESHOLD SELECTION METHODS FOR ADAPTIVE KERNEL 

DENSITY ESTIMATION IN DISEASE MAPPING 

2.1  Abstract 

Maps of disease rates produced without careful consideration of the underlying 

population distribution may be unreliable due to the well-known small numbers problem. 

Smoothing methods such as Kernel Density Estimation (KDE) are employed to control the 

population basis of spatial support used to calculate each disease rate. The degree of smoothing 

is controlled by a user-defined parameter (bandwidth or threshold) which influences the 

resolution of the disease map and the reliability of the computed rates. Methods for automatically 

selecting a smoothing parameter such as normal scale, plug-in, and smoothed cross validation 

bandwidth selectors have been proposed for use with non-spatial data, but their relative utility 

remains unknown. This study assesses the relative performance of these methods in terms of 

resolution and reliability for disease mapping. Using a simulated dataset of heart disease 

mortality among males aged 35 years and older in Texas, we assess methods for automatically 

selecting a smoothing parameter. The results show that while all parameter choices accurately 

estimate the overall state rates, they vary in terms of the degree of spatial resolution. Further, 

parameter choices resulting in desirable characteristics for one sub group of the population (e.g., 

a specific age-group) may not necessarily be appropriate for other groups. In this research, the 

findings shows that the appropriate threshold value depends on the characteristics of the data, 

and that bandwidth selector algorithms can be used to guide such decisions about mapping 

parameters. An unguided choice may produce maps that distort the balance of resolution and 

statistical reliability. 
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2.2  Introduction 

Disease maps, an essential component of epidemiological surveillance, are used to 

illustrate the geographic distributions of diseases. Disease outcomes are typically represented as 

rates which are computed by dividing the number of disease cases by the population contained 

within some geographic region such as zip code or county. Rates that are computed without 

careful consideration of the underlying population distribution may be unreliable due to the well-

known small numbers problem (Cromley & McLafferty, 2012). For example, areas with small 

populations are more likely to produce unstable rate estimates compared to areas with larger 

population sizes. Smoothing methods including kernel density estimation are commonly used to 

address the problem of unstable rates (Cromley & McLafferty, 2012; Clayton & Kaldor, 1987; 

Marshall, 1991; Rushton & Lolonis, 1996; Bithell, 2000; Talbot, Kulldorff, Forand, & Haley, 

2000; MacNab, Farrell, Gustafson, & Wen, 2004; Best, Richardson, & Thomson, 2005; Tiwari & 

Rushton, 2005; Waller & Carlin, 2010; Beyer, Tiwari, & Rushton, 2012). 

 Kernel density estimation (KDE) is a non-parametric method that can be used to explore 

the spatial density of point data (Cromley & McLafferty, 2012). In the context of disease 

mapping, KDE methods operate by computing rates within a moving spatial window or kernel 

(typically a circle) placed across the entire study area. A ratio of the density of events (i.e., cases) 

and the density of the background (i.e., the population) is calculated within each kernel (Shi, 

2010). Another KDE method computes the rate by dividing the number of cases that fall inside a 

kernel by the population that is contained within the same kernel (Rushton & Lolonis, 1996; 

Tiwari & Rushton, 2005). 



14 

The size of the kernel, bandwidth, is a crucial parameter that influences the degree of 

smoothing on the map in KDE (Silverman, 1986; Kelsall & Diggle, 1995; Waller & Gotway, 

2004). The bandwidth can be either fixed or variable (adaptive). For the fixed bandwidth 

approach, the kernel has a fixed-size radius, and all kernels (circles) have the same radii. In 

health studies, the fixed bandwidth approach may not be suitable since populations are not 

evenly distributed across space. Moreover, unstable rates may result if the circle falls in low 

population-density areas. Similarly, in the adaptive bandwidth approach, the kernel radius grows 

or shrinks to accommodate varying population size. The minimum population size that is used to 

define the kernel bandwidth, and consequently the degree of smoothing on a map, is a user-

defined parameter. In this study, it is referred as the threshold value (h). 

Figure 2.1 illustrates the spatial distribution of heart disease mortality rates for males 

aged 65 years and older using data obtained from the Centers for Disease Control and Prevention 

(CDC), National Center for Health Statistics (NCHS) (2015). These maps were produced using 

the adaptive bandwidth kernel density estimation method with different threshold values. As 

shown in Figure 2.1A, when using the smallest threshold value (h = 50), the resulting map 

portrays high levels of geographic detail in the estimated rate. However, as the thresholds 

increase, the resulting maps show lower levels of geographic detail (Figure 2.1B-D). Further, 

maps produced using small threshold values tend to display greater fluctuations in rate estimates 

(µ = 1,330 per 100,000 population, σ = 639.9 at h = 50). In contrast, maps produced using larger 

threshold values tend to show lower levels of fluctuation (µ = 1,209.5 per 100,000 population, σ 

= 268.4 at h = 1000). The trade-off between geographic detail and reliability depends on the 

choice of the threshold value. A value that is too small may result in under-smoothing, i.e., high 

levels of geographic detail but greater fluctuation in rate estimates (Figure 2.1A). Conversely, a 
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value that is too large will result in over-smoothing, i.e., low levels of geographic detail but less 

fluctuation in rate estimates (Figure 2.1D). 

 

Figure 2.1 Geographic distribution of age-specific heart disease mortality rates for males aged 65 years 
and older between 2009 and 2013. Maps were created using the adaptive bandwidth kernel density 
estimation method with various bandwidths (h): (A) h = 50; (B) h = 100; (C) h = 500; (D) h = 1000. 
(Note: the data were obtained from CDC NCHS (2015))
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The problem of choosing an appropriate smoothing parameter – bandwidth or threshold –  

has been discussed in previous studies (Cromley & McLafferty, 2012; Bithell, 2000; Carlos, Shi, 

Sargent, Tanski, & Berke, 2010; Beyer et al., 2012; Chi, Wang, Li, Zheng, & Liao, 2007; Shi, 

2010; Talbot et al., 2000; Cai, 2007; Rushton & Lolonis, 1996; Tiwari & Rushton, 2005; 

Silverman, 1986; Wand & Jones, 1995). Silverman (1986) and Wand and Jones (1995) 

recommend subjective selection of the bandwidth parameter based on visual inspection. The 

process of visual evaluation of the bandwidth parameter begins with examining several plots of 

the data and selecting the density that is the “most pleasing” in some sense (Wand & Jones, 

1995, p. 58). Although this approach has been used by others (Shi, 2010, p. 654), the process can 

be time-consuming if many density estimates are required. In other cases, map-makers may not 

utilize information about the structure of the data to inform choice of threshold value. 

Many bandwidth selectors available for use with non-spatial data could potentially be 

adapted for spatial data. However, their applicability for this purpose has not been evaluated. 

Non-spatial bandwidth selectors may be grouped into two classes – (a) quick and simple, and (b) 

hi-tech bandwidth selectors (Wand & Jones, 1995). Quick and simple bandwidth selectors aim to 

find a threshold value that is reasonable for a wide range of data distributions. One such method 

is the normal scale bandwidth selector (Wand & Jones, 1995). This method recommends a 

bandwidth value which can be used as a starting point or a “first guess” (Wand & Jones, 1995). 

The bandwidth is calculated by referencing a standard distribution that is derived from the data 

(see Silverman, 1986 and Wand & Jones, 1995 for details). In contrast, hi-tech bandwidth 

selectors, which are data-driven, seek to find an optimal bandwidth by minimizing the mean 

integrated square error (MISE) of the kernel density estimator (Chiu, 1992; Wand & Jones, 

1995). For example, plug-in (Wand & Jones, 1994) and smoothed cross-validation (Hall & 



17 

Marron, 1991) bandwidth selectors stimate a pre-smoothing parameter based on the pairwise 

differences of the observations obtained using the pilot bandwidth value. The pre-smoothing 

parameter is then used to find the optimal bandwidth value (Wand & Jones, 1995; Hall, Sheather, 

Jones, & Marron, 1991). Additional information on the theoretical basis of these methods are 

found in Silverman (1986), Wand and Jones (1994; 1995), Chiu (1992), Hall and Marron (1991), 

Hall et al. (1991). 

In summary, while these methods have been used to produce distributions of non-spatial 

data, their suitability for threshold selection in disease mapping remains unknown. Using a 

simulated dataset, this study illustrates and examines the applicability of such methods for 

disease mapping.  

 

2.3  Data and Methods 

 The methods used in this study were presented in two parts (Figure 2.2). First, this study 

examined the applicability of the visual and subjective methods for choosing a threshold value 

(Objective 1). Initially, threshold values ranging from 50 to 10,000 were used under the 

assumption that map-makers will select threshold values based on arbitrary choices or some prior 

knowledge of the disease. Subsequently, bandwidth selection methods – normal scale (hns), plug-

in (hpi), smoothed cross-validation (hscv), and median – were used for comparison. This study 

used the 10-year age-stratified population data for males in Texas obtained from the 2010 U.S. 

Census Bureau at the zip code level (Table 2.1) (U.S. Census Bureau, 2010). 
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Figure 2.2 Flow chart of methodology showing the steps using in this study.
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Second, the relative performance of different threshold values for disease maps was 

evaluated using the same dataset (Objective 2). We first generated a simulated dataset of age-

specific heart disease mortality rates among males aged 35 years and older in Texas. Statewide 

rates for generating the simulated case counts in each age-group were obtained from the CDC 

NCHS (2015) (Table 2.1).  

Table 2.1 Age-adjusted and age-specific heart disease death rates for males in Texas by age group, 2009-
2013 (CDC NCHS, 2015), and population distribution from the 2010 U.S. Census Bureau (U.S. Census 

Bureau, 2010). 
 

Age Population Range of aggregated population 
at the ZCTA level 

Rate 
(per 100,000) 

35-44 1,722,904 [1, 7925] 33.87 
45-54 1,702,639 [1, 7407] 115.15 
55-64 1,256,976 [1, 4948] 297.36 
65+ 1,135,517 [1, 4792] 1,245.93 
Total (35+) 5,818,036 [1, 22555] 351.15 

 

2.3.1  Methods for Objective 1 

 A total of ten thresholds were used in this study. Six thresholds were a series of arbitrary 

choices – 50, 100, 500, 1000, 5000, and 10000. These six thresholds remained constant for all 

age groups. The remaining four were calculated based on population data aggregated at the zip 

code level using median and three bandwidth selectors – the normal scale (hns), the plug-in (hpi), 

and the smoothed cross-validation (hscv). The median threshold was determined by computing the 

median population value across all zip codes. Threshold values from the three bandwidth 

selectors – hns, hpi, and hscv – were computed using the ks-package in R (Duong, 2017). Since 

these four thresholds were calculated based on data, their values varied among the age groups. 

Desirable threshold options were selected using visual and subjective examination of the data as 

suggested by Silverman (1986). This involved generating plots of estimated population density 
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against the actual population density. For each age group, estimated population densities were 

computed using a kernel function with each of the ten thresholds. The actual population density 

was generated from the population data using a gamma distribution. The gamma distribution was 

used to ensures that the values are not negative. It consists of two positive parameters – shape 

(α) and scale (β) parameters. These two parameters were calculated using mean and standard 

deviation of the population data (equations 2.1 and 2.2). This process was also performed in R 

using probability density function (equation 2.3). 

 𝛼𝛼 =  �𝜇𝜇
𝜎𝜎
�
2
 (2.1) 

 𝛽𝛽 =  𝜎𝜎
2

𝜇𝜇
 (2.2) 

 𝑓𝑓(𝑥𝑥) =  1
𝛽𝛽𝛼𝛼Γ(𝛼𝛼)

𝑥𝑥𝛼𝛼−1𝑒𝑒−𝑥𝑥/𝛽𝛽 (2.3) 

where α and β are shape and scale parameters respectively, µ and σ are respectively mean and 

standard deviation of the population, Γ(α) is the gamma function. 

 

2.3.2  Methods for Objective 2 

2.3.2.1 Step 1 Methods to Generate Simulated Data 

The aim of this step was to generate simulated case data. This step comprised of three 

stages: 

• Stage 1: Generate a Point Pattern of Male Populations by Age at the ZCTA Level 

 The data used in this process are (1) male population data stratified by age as shown in 

Table 1, and (2) a ZIP Code Tabulation Areas (ZCTAs) cartographic boundary file obtained 

from Topologically Integrated Geographic Encoding and Referencing (TIGER) (U.S. Census 

Bureau, 2016). Note that the ZCTAs are created by the U.S. Census Bureau and approximate the 
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spatial boundaries of postal zip code service areas (U.S. Census Bureau, 2015). The age-

stratified population data were joined to the ZCTA cartographic boundary file in ArcGIS 10.2. 

Then, the random point generation tool in ArcGIS 10.2 was used to create a point distribution, 

where each point (xi,s) represents a simulated individual in age group i residing in ZCTA s. The 

age group 𝑖𝑖 ∈ 𝐼𝐼 where I = {35-44, 45-54, 55-64, 65+}.  

• Stage 2: Generate Simulated Cases from a Point Pattern of Male Populations 
Obtained from Stage 1 

 
 To classify a simulated individual as a case, a random number was assigned to each point 

in the random point pattern generated from stage 1. The random number was generated from a 

uniform distribution on the interval (0, 1) under the assumption that each person has an equal 

probability of being designated as a case. The probability that a simulated point, xi,s, would be 

classified as a case (ci,s) was determined using observed age-specific heart disease mortality rates 

(Table 2.1). For example, the observed age-specific heart disease death rate for males aged 35 to 

44 years old in Texas was 33.87 per 100,000 (0.0003387) (Table 2.1). If a random number 

generated was in the range 0.0000001 to 0.0003387, it was classified as a simulated case. This 

process was replicated 100 times to produce 100 different instances of the case distribution – i.e., 

a 100 simulated maps of heart disease mortality could be produced from this data. For each 

simulated dataset (l, where l = 1, 2, ..., 100), state rates, called simulated baseline rates, were 

computed for each age group as well as for all-groups combined. The rate (yi,l) was computed 

using:  

 𝑦𝑦𝑖𝑖,𝑙𝑙 =
𝐶𝐶𝑖𝑖,𝑙𝑙
𝑃𝑃𝑖𝑖

  (2.4) 

where Ci,l was the total number of simulated cases for age group i at the lth simulation, and Pi 

was the total population for age group i, 
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• Stage 3: Examine the Consistency of the Simulation and Justify the Number of 
Replications 

 
For each age group, the consistency of the simulated baseline rates (𝑦𝑦𝑖𝑖,𝑙𝑙) and the 

justification of the number of replications were examined using a scatter plot of the running root-

mean-square-error (RMSEM) against the total number of replications (Koehler, Brown, & 

Haneuse, 2009). The RMSEM measured the differences between the simulated baseline rates and 

the true value, i.e., CDC’s heart disease mortality rate (Table 2.1) using the following formula: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝐿𝐿𝑀𝑀 =  �1
𝐿𝐿
∑ (𝑦𝑦𝑖𝑖,𝑙𝑙 −  𝑌𝑌𝑖𝑖)2𝐿𝐿
𝑙𝑙=1  (2.5) 

where L was the total number of replications, yi,l was the simulated baseline rate of age group i at 

lth simulation, and Yi was the true rate of age group i. Figure 2.3 illustrates that the magnitude of 

the difference between the simulated baseline rate and the true value (RMSE) stabilizes as L 

increases. In this study, when L > 50, the stable state was achieved for all age groups. In this 

study, we used 100 replications. 

Based on recommendations by Natesan (2015), the coverage rate and bias of interval 

estimates were also examined (Table 2.2). Coverage rate is defined as the percentage of 

statistical estimate intervals that contain the true values. Bias of interval estimates is computed as 

the percentage of the statistical estimate intervals that overestimate and underestimate the true 

value (Natesan, 2015). While the coverage rates for the 95% interval estimates are typically 

expected to be around 95%, our results show that they were extremely low – less than 20% for 

all age groups (Table 2.2). This indicates the extreme conservative estimates of uncertainty 

(large standard deviations) which may result from the uniform distribution that we used to 

generate random numbers in Stage 2. Although the coverage rate was considerably low, the 



23 

percentages of over- and under-estimates were likely to be equal which indicated that the 

simulation was unbiased. 

 

Figure 2.3 The running RMSE between the simulated baseline rates and the true value as a function of the 
number of replicates (L) for all age groups. 
 

Table 2.2 Summaries of characteristics of simulated baseline rate distribution 
 

Age group Mean SD Coverage rate 
(%) 

Over-estimated 
(%) 

Under-estimated 
(%) 

35-44 33.92 1.40 17 50.6 49.4 
45-54 115.17 2.52 11 49.4 50.6 
55-64 297.60 4.49 20 56.2 43.8 
65+ 1245.93 10.21 16 47.6 52.4 
35+ 351.12 2.27 14 52.3 47.7 

 

2.3.2.2 Step 2 Methods to Compute Estimated Rates 

 For each age group i at the lth simulation, estimated rates were computed using the KDE 

method with aggregated simulated cases as the numerators, and the population data as the 

denominators. The KDE method was applied to all ten threshold values. This process was 
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performed using the Web-based Disease Mapping Analysis Program (WebDMAP) (Tiwari C. , 

2008) and custom code written in Python. As a result, 100 estimated rates were produced for 

each threshold and for each age group i. These rates, which were obtained at the ZCTA level, 

were aggregated to the state level (called estimated state rate, 𝑦𝑦�𝑖𝑖,𝑙𝑙). 

 

2.3.2.3 Step 3 Methods to Evaluate Threshold Performance 

 To evaluate the relative performance of each threshold choice, the estimated state rates 

(𝑦𝑦�𝑖𝑖,𝑙𝑙) resulting from different thresholds were compared to the simulated baseline rates in each 

age group i (yi,l from equation 2.4). The root-mean-square-error (RMSE) was employed to 

measure the accuracy between estimated state rates and the simulated baseline rates using the 

following formula: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡 =  � 1
100

∑ (𝑦𝑦�𝑖𝑖,𝑡𝑡,𝑙𝑙 −  𝑦𝑦𝑖𝑖,𝑙𝑙)2100
𝑙𝑙=1  (2.6) 

where RMSEi,t was the RMSE of age group i and threshold t, 𝑦𝑦�𝑖𝑖,𝑡𝑡,𝑙𝑙 was the estimated state rate of 

age group i and threshold t at the lth simulation, and 𝑦𝑦𝑖𝑖,𝑙𝑙 was the simulated baseline state rate of 

age group i at the lth simulation. Further, to illustrate the consistency of the rates computed from 

each threshold (𝑦𝑦�𝑖𝑖,𝑡𝑡,𝑙𝑙), a box-plot was generated to display the variation of 100 estimated state 

rates for each age group.  

 

2.4  Results and Discussion 

2.4.1  The Impact of Threshold Choice on Population Density Estimates  

 The calculated thresholds for the three selectors (plug-in (hpi), smoothed cross-validation 

(hscv), normal scale (hns)) and median are shown in Table 2.3. The hpi and hscv selectors result in 

the smallest threshold values. In contrast, the hns and median selectors are approximately 4 and 8 



25 

times larger for the age groups 55 to 64, 65 years and older, and the overall population (aged 35 

years and older). Further, the hns and median selectors are also approximately 5 and 7 times 

larger for the two youngest groups – 35 to 44 and 45 to 54. These results indicate that for the 

same data, different bandwidth selectors provide different threshold values. For this data, the hpi 

and hscv recommendations produce maps that provide greater geographic detail (lower levels of 

smoothing), but also larger fluctuations in estimated rates. Conversely, the other two bandwidth 

selectors produce greater levels of smoothing, but fewer fluctuations in rates.  

Table 2.3 Descriptive results and calculated threshold stratified by age groups 

Age groups Total 
Population 

Range No. of 
ZCTAs 

Calculated thresholds % ZCTAs with 
specified minimum 

population 
    hpi hscv hns median ≤ 100 ≤ 300 

35-44 1,722,904 [1, 7925] 1911 53 56 280 327 32% 48% 
45-54 1,702,639 [1, 7407] 1910 57 55 255 399 28% 45% 
55-64 1,256,976 [1, 4948] 1906 44 41 177 342 30% 48% 
65 and older 1,135,517 [1, 4792] 1902 41 40 156 330 28% 48% 
Total (35+) 5,818,036 [1, 22555] 1920 200 189 837 1411 14% 25% 

 

In Figure 2.4, the density curves for populations obtained after applying each threshold 

(hpi, hscv, hns, median, and six arbitrary choices – 50, 100, 500, 1000, 5000, 10000) are compared 

to the actual population distribution (see 2.2.1 Methods for Objective 1). For each chart, the X-

axis represents population with a bin size of 200 and the Y-axis is the density of ZCTAs.  

 The actual population density (Figure 2.4 column A) tends to follow a gamma 

distribution (the black line) for all age groups, which indicates that the population is not evenly 

distributed. Thus, many ZCTAs have low populations, and the number of ZCTAs with large 

populations is small. This is indicated by a long tail to the right of the distribution. Figure 2.4 

column B illustrates the population density estimates computed from all ten thresholds. For all 

age groups, the population density estimates computed from thresholds, h = 50, 100, hpi, and hscv, 

provide similar density curve characteristics. The density estimates have a sharp peak and closely 



26 

match the actual gamma distribution. The resulting density curves from these four thresholds 

contain fluctuations at the tail end of the distribution. This suggests that these four thresholds 

may be too small for all age groups. For maps produced using these threshold values, the 

Washington State Department of Health guidelines (2012) suggest extreme caution with 

interpretation since the population (denominator) values are less than 100. In fact, the guidelines 

recommend interpretation with caution for maps produced using populations less than 300. Thus, 

thresholds, h ≤ 100 may not be an appropriate choice to use. This is also true of hpi, and hscv for 

age specific groups in this study. In contrast to these small thresholds, larger thresholds provide 

more smoothed estimates and will not capture adequate geographic detail on a map. For 

example, h = 5000, and 10000, may be too large for all age groups since the density curve 

estimates are almost flat (Figure 2.4 column B). 

While six thresholds result in similar density curve characteristics for all age groups and 

may be considered too small (h = 50, 100, hpi, and hscv) or too large (h = 5000 and 10000), the 

remaining thresholds – hns, median, 500, and 1000 – provide slightly different density curve 

characteristics between age 35 years and older and other age groups. For the age groups 35 to 44, 

45 to 54, 55 to 64, and 65 years and older, the population density estimates computed from h = 

hns, median, and 500 (arbitrary choice) provide similar density curve characteristics. Thus, when 

h = hns, the density estimates are smoother and the fluctuations in the tails cease to exist. When 

threshold values increase (h = median and 500), the density estimates retain the modal structure 

of h = hns but are more smoothed. This density curve characteristic is the most desirable 

compared to the others as it offers a reasonable compromise between smoothing of the mode and 

tail. 
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Figure 2.4 Density curves overlaid on population distribution (age > 35; ZCTA level). Column A 
describes the gamma distribution. Column B describes threshold choices. 
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The thresholds for age 35 years and older that fit this characteristic are h = hns, 500, and 

1000. Although thresholds h = 500 and hns fall in the most desirable characteristic for all age 

groups, their density curve characteristics between age 35 years and older and other age groups 

are slightly different. When h = 500, the density curve is smoother than h = hns for the age groups 

35 to 44, 45 to 54, 55 to 64, and 65 years and older. In contrast, h = hns offers a smoother density 

curve than h = 500 for age 35 years and older. Moreover, when h = 1000, the resulting density 

curve retains the same modal structure as h = hns and 500 (which may be considered as a 

desirable choice for age 35 years and older), but may be too large for other age groups since the 

density curves are even more smoother and almost flat. Differences in population size and 

distribution between age 35 years and older and other age groups are probably the reason. This 

explanation also applies to h = median, which may be considered as one of desirable choices for 

age specific groups but may be too large threshold for ages 35 years and older.  

These findings suggest that thresholds that produce desirable characteristics for one 

group may not necessarily work for other groups possibly due to differences in population size 

and distribution. For producing disease maps that incorporate the population age structure, e.g., 

directly age-adjusted maps, the map-makers must be careful not to choose different threshold 

values for each age strata as this could lead to the use of inconsistent spatial supports. Generally, 

spatial supports must be consistently applied across the entire map (Haining, 2003; Gotway & 

Young, 2002; Beyer & Rushton, 2009). In such circumstances, the map-makers may choose a 

threshold value that best fits a majority of the age groups.  

Table 2.4 summarizes the characteristics of density curve estimates from various 

thresholds by age groups. The thresholds that provide the most desirable density curve 

characteristics are h = hns, median and 500 for age groups 35 to 44, 45 to 54, 55 to 64, and 65 
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years and older and h = hns, 500, and 1000 for age 35 years and older. This is consistent with the 

recommendation of Silverman (1986), to use values that best replicate the population 

distribution. Additional considerations may include a comparison of the estimated rates, obtained 

from various threshold estimators, to the actual state rates 

Table 2.4 Characteristics of the population density curve estimates from various thresholds stratified by 
age groups 

 
Desirable 

characteristics 
Density curve characteristics Age groups 

35-44 45-54 55-64 65+ 35+ 
Most Density curve is smoother, and 

fluctuations in the tail ceases to 
exist. 

hns hns hns hns 500 
 median median median median hns 
 500 500 500 500 1000 
 Density curve closely matches to 

the actual gamma distribution and 
contains fluctuations at the tail. 

100 100 100 100 hpi 
     hscv 

 The highest density estimates of 
density curve is greater than that 
of the actual gamma distribution, 
and the density curve contains 
high fluctuations at the tail. 

50 50 50 50 50 
 hpi hpi hpi hpi 100 
 hscv hscv hscv hscv  

 Density curve is smoother and 
difficult to distinguish between the 
mode and tail. 

1000 1000 1000 1000 median 

 Density curve is flat and cannot 
distinguish between the mode and 
tail. 

5000 5000 5000 5000 5000 

Least 
10000 10000 10000 10000 10000 

 

2.4.2  Impact of Threshold Choice on the Distribution of Rate Estimates 

Figure 2.5 illustrates the distribution of the estimated state rates (𝑦𝑦�𝑖𝑖,𝑙𝑙) of each threshold 

from 100 repetitions. Since hpi and hscv provided almost identical values for all age groups, only 

hpi was used in this study. For each chart, the X-axis represents the thresholds that were used to 

compute the estimated rates ordered from the smallest to the largest, and the number in the 

bracket is the RMSE of each threshold (RMSEi,t from equation 2.6). The Y-axis shows heart 

disease mortality rates (per 100,000 population) obtained from the simulated dataset, and each 

dot represents the estimated state rate for each simulation (𝑦𝑦�𝑖𝑖,𝑙𝑙). The simulated baseline rate (yi) 
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and the crude rate are also included in each chart for reference. A crude rate was computed as the 

average of the ratio of simulated cases to population for each individual ZCTA. Note that the 

scale of the Y-axis is different for each chart – this was done to account for the large differences 

in heart disease risk between age groups (e.g., the average heart disease death rates for age 

groups 35 to 44 and 65 years and older are 33.87 and 1,245.93 per 100,000 population, 

respectively). Also, the crude rate (second boxplot in each panel in Figure 2.5) shows greater 

variation in estimated rates compared to all other boxplots. Moreover, the results show that the 

variation in rates decreases as threshold increase. The smaller box plots indicate that the 

estimated state rates for each map resulting from each simulation tends to be more consistent, 

and vice versa. The details of average, standard deviation, and RMSE of estimated rates are 

shown in Table B.1 (see Appendix B). 

For the age group from 35 to 44 (Figure 2.5A), the median rate (the middle line in the 

boxplot) obtained for each threshold is similar. However, the width of the boxes shrinks towards 

the center in both the upper and lower quartiles when thresholds increase. This indicates that the 

estimated state rates are more consistent. Further, the boxplots tend to be similar in structure for 

thresholds greater than 300 (hns ≥ h ≥ 1000), in which desirable thresholds are included. The 

patterns of boxplots in Figure 2.5B (45-54 age group), 2.5C (55-64 age group), and 2.5D (65 

years and older) follow similar trends while the boxplots for age group 35 years and older follow 

slightly different trends (Figure 2.5E). Thus, although the overall width of each boxplot 

decreases with increasing threshold, the median values also decline as thresholds increase.  
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Figure 2.5 The distribution of estimated rates of each bandwidth from 100 repetitions: (A) Aged 35 to 44 
years; (B) Aged 45 to 54 years; (C) Aged 55 to 64 years; (D) Aged 65 years and older; (E) Aged 35 years 
and older. 
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The inconsistency of estimated state rates for small threshold values is probably due to 

the small numbers problem, specifically when h ≤ 100. This is to be expected since the threshold 

values (h) used to compute the estimated rates in this study are the minimum population size 

(denominator). Using small threshold values can result in unstable and unreliable rate estimates 

in spatial units with small population sizes. These unstable rates can affect the estimated state 

rates since they are aggregated from the smaller spatial units – ZCTA in this study. These results 

also suggest that h ≤ 100 may not be an appropriate choice to use. 

 

2.4.3  Desirable Threshold Choices 

The three desirable thresholds (Table 2.4) – hns, median, and 500 for the age 

stratifications and 500, hns, and 1000 for ages 35 years and older – provide RMSEs that are not 

noticeably different. However, the boxplot widths are different suggesting different levels of 

consistency in average rate estimates in maps (Figure 2.5). For producing disease maps, there is a 

need to balance the amount of geographic detail portrayed on the map and accuracy of estimated 

rates. While the RMSE suggests similar degrees of accuracy between the maps produced using 

the three desirable thresholds, the remaining key factor to consider in selecting an appropriate 

threshold is geographic variation. When the geographic variation is the highest priority, hns may 

be the most desirable threshold choice for all age groups since it provides the greatest variation 

(more geographic detail) among the candidate thresholds, but still produces accurate rates 

(Figure 2.6). Moreover, compared to arbitrary choices, the hns provides a consistent way to 

estimate the appropriate threshold value.  
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Figure 2.6 Geographic distribution of age-specific heart disease mortality rates for males aged 35-44, 45-54, 55-64, 65 years and older, 
and 35 years and older. Maps were created using the adaptive KDE method with simulated cases as numerators, population data as 
denominator, and threshold choices (h) derived from the bandwidth selector methods and arbitrary choices. 
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2.5  Conclusion 

Determining the appropriate threshold value is essential for disease mapping because it 

affects the degree of smoothing that occurs on the map. In this research, methods for selecting 

threshold values for a synthetic dataset on heart disease mortality among males aged 35 years 

and older in Texas are compared using existing bandwidth selectors. The results suggest that hns 

is the most desirable threshold for all age-specific groups and the overall population because it 

provides greater spatial variation while maintaining accuracy in estimated rates. While this is 

true only for the case data used in this study, our findings underscore the importance of carefully 

choosing the threshold values to use in disease mapping. Inappropriate thresholds can produce 

misleading conclusions. 
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CHAPTER 3  

RELATIVE EFFICACY OF ADAPTIVE KERNEL DENSITY ESTIMATION AND SPATIAL 

EMPIRICAL BAYES METHODS FOR DISEASE MAPPING 

3.1  Abstract 

Disease maps are invaluable for monitoring spatial patterns of disease and targeting 

interventions. While many disease mapping methods are available, their relative efficacy and 

limitations remain unclear. Using simulated data generated under specific scenarios for known 

underlying risk and population sizes, this study evaluates the two prominent smoothing methods 

in disease mapping – the adaptive kernel density estimation (KDE) and spatial empirical Bayes. 

The relative performance of these two methods are determined using two measures: (1) global 

measure of difference – comparing the average rate estimates in the entire study area between 

two methods; (2) local measure of difference – comparing rate estimates between two methods at 

a local scale, i.e., the zip code level. The findings illuminate the similarities and differences 

between these two methods and provide hitherto unknown insights into the two approaches. The 

most important finding of the study is that while both methods provide identical rate estimates at 

the global scale, differences in rate estimates occur at the local scale. Significant differences 

occur in sparsely populated, non-urban zip codes. Thus, using either the adaptive KDE or spatial 

empirical Bayes method to map diseases in densely populated (urban) areas may provide 

identical rate estimates, but caution is necessary when mapping disease in sparsely populated 

areas. Further research is required to determine the optimal disease mapping method for low 

population density areas. 

Keywords: disease mapping, kernel density estimation, Bayesian, smoothing methods, health 

GIS, 
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3.2  Introduction 

 Disease maps have become a powerful tool in epidemiological surveillance. They not 

only illustrate the geographic distribution of diseases but also offer an alternative approach for 

public heath to address and specify the hypotheses of disease etiology and causation (Cromley & 

McLafferty, 2012). To produce maps, disease rates, commonly computed by dividing the number 

of disease cases by the total population in the same geographic area, are recommended. 

However, computing rates requires considerable care since they may lead to the small numbers 

problem – a well-known issue in disease mapping (Cromley & McLafferty, 2012). Basically, in 

areas with small populations, any change in number of cases can generate wide variations in the 

estimated rates. As a result, these maps may contain a combination of rates that are generated 

using stable and unstable population sizes. To address this issue, smoothing methods such as 

kernel density estimation (KDE) and spatial empirical Bayes methods are often used.  

 Kernel density estimation (KDE), a non-parametric method, is a generic approach that 

can be used to calculate disease rates and illustrate them as a continuous surface (Cromley & 

McLafferty, 2012). In the disease mapping context, kernel density estimation methods operate by 

computing rates within a spatial kernel (a circle) that is moved across the study area. Using this 

approach, there are two common ways to apply the KDE method in disease mapping: (1) a ratio 

of the density of events (i.e., cases) within each kernel to the density of the background (i.e., 

population) within the same-sized kernel (Shi, 2010); (2) a ratio of the number of cases to the 

population size within a kernel (Rushton & Lolonis, 1996). Kernel density estimation can 

employ either a fixed or adaptive approach. For a fixed approach, the kernel has a fixed radius 

for all circles. In the adaptive approach, however, the kernel has a variable radius that grows or 

shrinks to accommodate a defined population size. This is more suitable for health studies than 
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the fixed approach since it reflects differences in underlying risk population (Shi, 2010; Carlos, 

Shi, Sargent, Tanski, & Berke, 2010; Tiwari, 2008). In the last decades, KDE methods have been 

used in many studies to explore the geographic distributions of health outcomes (Rushton & 

Lolonis, 1996; Shi, 2010; Carlos et al., 2010; Oppong, Tiwari, Ruckthongsook, Huddleston, & 

Arbona, 2012; Oppong, Kutch, Tiwari, & Arborna, 2014). 

 Spatial empirical Bayes method is a model-based approach that accounts for the small 

numbers problem by aggregating data using some locally-defined neighborhood function 

(Clayton & Kaldor, 1987). In this approach, rates in the areas with small sample sizes are 

smoothed towards some local mean generated by the neighbor (Clayton & Kaldor, 1987; Waller 

& Carlin, 2010). Other approaches include global methods where rates in the areas with small 

populations are equally smoothed toward a global mean (average rate of the entire study area) 

without regard to their relative spatial location (Waller & Carlin, 2010). The rates computed 

using these methods are typically illustrated as a choropleth map – showing abrupt rate changes 

at the boundary. Spatial empirical Bayes applications in disease mapping include Ghosh, 

Natarajan, Waller, and Kim (1999), Morris, Whittaker, and Balding (2000), Meza (2003), 

MacNab, Farrell, Gustafson, and Wen (2004), and Schur et al. (2013). 

Although producing disease maps using the same dataset but different smoothing 

methods may result in different spatial patterns of disease, no systematic evaluation of the 

efficacy of these approaches currently exists. For example, Figure 3.1A-C, illustrates the spatial 

patterns of heart disease mortality rates in Texas. These maps were created using the same 

dataset obtained from the Centers for Disease Control and Prevention (CDC), National Center 

for Health Statistics (NCHS) (2015) but different methods. Figures 3.1A were produced using 

crude death rates as a statistical measure. Figure 3.1B and 3.1C were respectively created using 
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empirical Bayes and the adaptive KDE methods. Figure 3.1A, an unsmoothed choropleth map, 

indicates that high disease rates seem to cluster only in East Texas; Figure 3.1B, a smoothed 

choropleth map, shows that high disease death rates are clustered in the Texas Panhandle, East 

Texas, and the west of Dallas-Fort Worth Metroplex areas, and; Figure 3.1C, a smoothed 

continuous surface map, suggests that the higher disease rates mostly cluster in the west of 

Dallas Fort-Worth Metroplex areas. The conflicting results from these three maps clearly 

demonstrate that the chosen disease mapping method influences the perceived spatial distribution 

patterns of disease rates. This study adopts the simulation-based approach from Goovaerts and 

Gebreab (2008) to evaluate the relative performance of the adaptive KDE and spatial empirical 

Bayes methods. 

 

3.3  Data 

The evaluation of the relative performance of disease mapping methods between adaptive 

KDE and spatial empirical Bayes in this study was illustrated using age-specific mortality rates 

for heart disease in Texas (see Table A.1 in Appendix A for a list of the International 

Classification of Diseases (ICD) for heart diseases used in this study). The data was obtained 

from the CDC NCHS (2015). This study focused on male aged 35-44, 45-54, 55-64, and 65 years 

and older recorded between 2009 and 2013. The age-specific rates were computed using the 

2010 population, obtained from the 2010 U.S. Census Bureau (U.S. Census Bureau, 2010) 

(Table 3.1). The ZIP Code Tabulation Areas (ZCTAs) cartographic boundary files were obtained 

from Topologically Integrated Geographic Encoding and Referencing (TIGER) (U.S. Census 

Bureau, 2016). Note that ZCTAs were created by the U.S. Census Bureau and generalized areal 

representation of USPS ZIP Code service areas (U.S Census Bureau, 2015). 
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Figure 3.1 Spatial distribution of heart disease in Texas, aged 35 years and over, 2010-2012: (A) crude 
death rate; (B) spatially smoothed death rate computed using a local empirical Bayes algorithm proposed 
by Marshall (1991); (C) spatially smoothed death rate computed using KDE method (Note: all maps were 
created using: (1) a quantile classification, and; (2) the same dataset from CDC NCHS (2015))
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Table 3.1 Population distribution (U.S. Census Bureau, 2010) and age-specific heart disease death rate 
among male in Texas, 2009-2013 (CDC NCHS, 2015) 

 
Age Male 

  2010 Population Case (5 yrs) Rate 
35-44 1,722,904 2,918 33.87 
45-54 1,702,639 9,803 115.15 
55-64 1,256,976 18,689 297.36 
65+ 1,135,517 70,739 1,245.93 
Total (35+) 5,818,036 102,149 351.15 

 

3.4  Methods 

3.4.1  Methods to Generate Simulated Data 

Generating the simulated data comprised of two steps. First, population distribution for 

males was generated by the age groups specified in Table 3.1, and distributed using random 

point distribution at the ZCTA level.  Next, a simulated case dataset was generated. For each age 

group, all points were assigned a random number generated from the uniform distribution in the 

interval (0,1). This assumes that each person has an equal probability of being infected. The 

probability that a simulated point would be classified as a case was determined using observed 

age-specific mortality rates (Table 3.1). For example, the observed age-specific heart disease 

death rate for males aged 35 to 44 years old in Texas was 33.87 per 100,000 (0.0003387) (Table 

3.1). If a random number generated was in the range 0.0000001 to 0.0003387, it was classified as 

a simulated case. This step was processed 100 replications (l) for each age group.  

 

3.4.2  Methods to Compute Estimated Rates 

3.4.2.1 Adaptive Kernel Density Estimation 

Web-based Disease Mapping Analysis Program (WebDMAP), an open source and web-

based GIS software (Tiwari, 2008), was used to compute estimated heart disease mortality rates 
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using the adaptive KDE method. WebDMAP requires three separate files – the grid, control, and 

case files. The grid file contained geographic coordinates, which was ZCTA centroids generated 

in ArcGIS 10.2; the control file contained the population in each spatial unit (i.e., ZCTA); and 

the case file contained the number of cases of the disease in each spatial unit (i.e., simulated 

cases in this study). This process was repeated for 100 replications of the case data. Note that the 

grid and control files remained the same for all simulations. The simulations were programmed 

in Python and the analysis was conducted in R. The data for all simulations were stored in a 

PostgreSQL database server. 

 

3.4.2.2 Spatial Empirical Bayes 

 Spatial empirical Bayes method was implemented using Python Spatial Analysis Library 

(PySAL), an open source library of computational tools for spatial analysis developed by Rey 

and Anselin (2010). In addition to case and population data, the spatial empirical Bayes method 

requires a spatial weights file. This file defines the local neighborhood used in the calculation of 

the smoothed rates. All spatial weight matrices were constructed to reflect the same spatial basis 

of support (i.e., same size of spatial unit and population in each spatial unit) used by the adaptive 

KDE method. This was done to ensure consistency in the spatial supports used in the calculation 

of rates between the adaptive KDE and the spatial empirical Bayes methods. The spatial weights 

file was generated using PostgreSQL and R and were converted to the GWT structure for use in 

PySAL. Note that GWT is a weight matrix structure that PySAL allows users to manipulate, 

modify and create their own spatial weight matrix (Anselin, 2003). It comprises of three columns 

– observation (origin), observation’s neighbor(s) and distance. 
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3.4.2.3 Smoothing Parameters 

To compute smoothed rates, both the adaptive KDE and spatial empirical Bayes require 

smoothing parameters – bandwidth (threshold) and prior distribution (defined by spatial weights 

matrix) respectively. These are crucial parameters that influence the degree of smoothing that 

occurs on the map (Silverman, 1986; Kelsall & Diggle, 1995; Waller and Gotway, 2004). To 

account for different sized spatial supports, this study uses a variety of different threshold sizes 

and corresponding spatial weights files. In all, nine thresholds were selected. Six of them were 

arbitrary thresholds - 50, 100, 500, 1000, 5000 and 10000, and the remaining were variable 

thresholds computed based on population data – median (median population), normal scale 

selector (hns) and plug-in selector (hpi). The latter were computed using ks-package in R. A 

normal scale selector is a quick and simple selector that aims to find a threshold value that is 

reasonable for a wide range of data distributions (see Wand & Jones, 1995 for details). A plug-in 

selector is a hi-tech selector that seeks to provide an answer for very general classes of 

underlying functions which involves more mathematical arguments and requires more 

computational effort (see Wand & Jones 1994 for details). 

 

3.4.3  Evaluation 

The relative performance of these two different disease mapping methods was 

determined using two measures: a global and local measure of difference. The global measure of 

difference is estimated by comparing the estimated state rate obtained from the KDE method to 

that obtained from the spatial empirical Bayes method. This measure was computed for each of 

the 100 replications. Boxplots were used to illustrate the variation in estimated state rates 
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between these two methods. The root-mean-square-error (RMSE) was used to measure similarity 

in estimated state rates obtained using these methods (equation 3.1).   

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = � 1

100
∑ (𝑌𝑌𝑖𝑖,𝑡𝑡,𝑙𝑙

𝐾𝐾 − 𝑌𝑌𝑖𝑖,𝑡𝑡,𝑙𝑙
𝐵𝐵 )2100

𝑙𝑙=1  (3.1) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 was RMSE at the global difference of age group i at threshold t when i and t 

represented age groups and thresholds used in this study, and 𝑌𝑌𝑖𝑖,𝑡𝑡,𝑙𝑙
𝐾𝐾  and 𝑌𝑌𝑖𝑖,𝑡𝑡,𝑙𝑙

𝐵𝐵  were respectively the 

estimated state rate computed from the adaptive KDE and spatial empirical Bayes methods for 

age group i and threshold t at the lth simulation. 

The local test checks for consistency in rate estimates between the two methods at a local 

scale, i.e., at the ZCTA level. The reasoning behind this test is based on the assumption that 

similar spatial supports should result in similar rate estimates. For each rate estimate in each of 

the 100 replications, the spatial basis of support for the KDE method was identical to the spatial 

basis of support for the spatial empirical Bayes method. Therefore, the case and population 

counts used in the calculation of each rate estimate was consistent between the two methods. The 

only difference in rate estimates is due to differences in how these two methods smooth the data. 

The RMSE value was used to measure this similarity or dissimilarity between the two methods 

(equation 3.2). Further, boxplots were used to illustrate the variation of RMSEs. 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑙𝑙
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �1

𝑁𝑁
∑ (𝑦𝑦𝑖𝑖,𝑡𝑡,𝑙𝑙,𝑠𝑠

𝐾𝐾 − 𝑦𝑦𝑖𝑖,𝑡𝑡,𝑙𝑙,𝑠𝑠
𝐵𝐵 )2𝑁𝑁

𝑠𝑠=1  (3.2) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑙𝑙
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 was RMSE at the lth simulation of age group i and threshold t when i and t 

represented age groups and thresholds used in this study, 𝑦𝑦𝑖𝑖,𝑡𝑡,𝑙𝑙,𝑠𝑠
𝐾𝐾  and 𝑦𝑦𝑖𝑖,𝑡𝑡,𝑙𝑙,𝑠𝑠

𝐵𝐵  were respectively the 

estimated rates from the adaptive KDE and spatial empirical Bayes methods of age group i and 

threshold t at the spatial unit s in the lth simulation, and N was a total number of ZCTAs at age 

group i and threshold t. 
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3.5  Results and Discussion 

 The state rate computed from the simulation data, called simulated baseline rate in this 

study, is mostly identical to the CDC state rate and has very low RMSE for all age groups (Table 

B.2 in Appendix B). Note that the simulated baseline rate was calculated by dividing the total 

number of simulated cases by total population while the estimated state rate refers to the average 

of rate estimates computed from the adaptive KDE and spatial empirical Bayes methods. 

 

3.5.1  Global Difference 

 Figure 3.2 illustrates the distribution of state rate estimates from the adaptive KDE and 

spatial empirical Bayes methods for each threshold from 100 replications. For each chart, X-axis 

represents threshold values that were used to compute the rate estimates ordered from the 

smallest to largest thresholds, Y-axis is heart disease death rates (per 100,000 population), and 

each dot represents the rate estimates for each replication. Because of the vast difference of heart 

disease risk between age groups, the scale of Y-axis in each chart was adjusted in regard to its 

rates. Overall, the estimated state rates from both methods are identical to each other in all age 

groups and thresholds (Figure 3.2). Thus, we can conclude that the estimated state rate is 

consistent between the two methods.  
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Figure 3.2 The distribution of estimated state rates computed from the adaptive KDE and spatial empirical 
Bayes methods (l = 100 simulations): (A) Age 35 to 44 years; (B) Age 45 to 54 years; (C) Age 55 to 64 
years; (D) Age 65 years and older; (E) Age 35 years and older (overall).
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3.5.2  Local Difference 

Figure 3.3 illustrates the variation of 100 RMSEs in each threshold. The lower RMSEs 

indicate that the estimated rates computed from the adaptive KDE and spatial empirical Bayes at 

the ZCTA levels have small differences in rate estimates, and vice versa. Although we have a 

few extremely high RMSEs, each panel in Figure 3.3 provides a similar pattern when h ≤ 100. 

Most RMSEs are less than 0.01 (Table B.3 in Appendix B). This indicates that the estimated 

rates computed from the adaptive KDE and spatial empirical Bayes approaches are mostly 

identical. 

When h > 100, the results show greater differences of rate estimates between the two 

methods in all age-specific groups, but the degree of differences varies. The greater differences 

in rate estimates when thresholds increase is probably due to the population distribution and 

different smoothing approaches. Note that the threshold value is a minimum value used to 

compute the estimated rate. For example, when h = 100, the ZCTAs that have population equal 

or greater than 100 have their own rates: the population size in these ZCTAs reach the minimum, 

so the estimated rate – the ratio of a number of cases to population in those ZCTAs – can be 

directly computed. According to the 2010 U.S. Census Bureau (2010), about 70% of the total 

ZCTAs contains population equal or greater than 100, and approximately 50% of the total ZCTA 

has greater than 300 population when stratified by age (Table 2.3 in section 2.3.1). That is, when 

h = 100 and 300, 70% and 50% of the total ZCTAs have their own rates (non-smoothed ZCTAs) 

while about 30% and 50% of total ZCTAs are smoothed, respectively. The percentages of 

smoothed ZCTAs increase as the threshold increases.  
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Figure 3.3 The distribution of RMSE (the difference of rate estimates between the adaptive KDE and 
spatial empirical Bayes methods) (L = 100 simulations): (A) Age 35 to 44 years; (B) Age 45 to 54 years; 
(C) Age 55 to 64 years; (D) Age 65 years and older; (E) Age 35 years and older (overall)
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When h = 10000 – the largest threshold in this study, the difference in rate estimates 

between the adaptive KDE and spatial empirical Bayes methods has the greatest dissimilarity for 

all age-specific groups. The results found that there is no ZCTA that contains population greater 

than 10,000 in this study. As a result, to compute rate estimates when h = 10000, all ZCTAs are 

smoothed to reach the minimum requirement (threshold). This may indicate that the more 

ZCTAs are smoothed, the more variations and differences may occur.   

Considering the unusual high RMSEs (Figure 3.3), there are some similarities between 

the two younger groups and between the older groups. For the younger groups (age 35 to 44 and 

45 to 54) (Figure 3.3A and 3.3B), when h < 10000, all median RMSEs are less than 0.05 while 

they are greater than 0.1 at the largest threshold in both groups. The unusually high RMSEs 

when h < 5000 for both age groups are less than 10% of the total simulations. In other words, the 

rate estimates from the adaptive KDE and spatial empirical Bayes are identical and accounted for 

90% of the total simulations for both age groups. When h < 5000, the results show that there are 

a few simulations that provide greater differences in rate estimates between the adaptive KDE 

and spatial empirical Bayes methods. For each threshold in both age groups, these unusually high 

RMSEs are caused by one ZCTA. Note that the causing ZCTA is not necessarily the same ZCTA 

between thresholds. The similarities of the unusually high RMSEs of these two age groups are: 

(1) when h < 1000, the ZCTAs that have the greatest difference in estimated rates are in non-

urban areas, and; (2) when h = 10000, the ZCTA that provides the greatest difference in 

estimated rates in both age groups is the same ZCTA and located in urban areas. In addition to 

the population distribution discussed above, one possible reason for the greatest difference in rate 

estimates in urban areas may be due to the low number of cases in the ZCTA and its neighbors. 

According to the Washington State Department of Health (2012), disease rates are unreliable 
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when each spatial unit has less than 20 cases. The ratio of heart disease mortality of these two 

age groups are about 1:2,950 and 1:870 respectively (CDC NCHS, 2015). This indicates that 

although there is an adequate population size for computing disease rates, unstable rates may 

occur if the spatial unit has a low number of cases. However, this scenario only occurs when h > 

1000 in this study. 

Unlike the younger age groups, the older age groups – 55 to 64 and 65 years and older – 

have a great number of high differences in rate estimates at the mid-size threshold – h = 500 for 

age 55-64 and h = median for age 65 years and older (Figure 3.3C and 3.3D). For both age 

groups, the number of these high differences are greater than 50% of the total simulations. For 

each age group, the results found that these high differences are caused by only one ZCTA, and 

all simulations that have the greatest difference in rate estimates are from the same ZCTA. The 

ZCTAs for both age groups that causes this circumstance are located in non-urban areas and 

contain population less than 15. Similar to age-specific groups, the unusual differences in rate 

estimates for age 35 years and older when h = 1,000 and 5,000 (Figure 3.3E) are also from the 

ZCTAs that contain a small population size in non-urban areas. 

In summary, when using small thresholds (h ≤ 100 in this study), the estimated rates 

computed from the adaptive KDE and spatial empirical Bayes are most identical in greater than 

90% of the total simulations. When thresholds increase, the degree of differences in rate 

estimates between the two methods increase in all age groups. For all thresholds, the cause of the 

greatest difference in rate estimates is from only one ZCTA, and this ZCTA is mostly located in 

non-urban areas and has a small population size. This also applies to a large number of unusual 

differences in rate estimates when h = 500 and median in age groups 55 to 64 and 65 years and 

older respectively. Since the spatial basis of support for both methods are identical in this study, 
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the cause of greater difference in rate estimates, in addition to population distribution, is 

probably due to the difference of smoothing mechanism behind the adaptive KDE and spatial 

empirical Bayes methods. Moreover, the number of cases may be another key factor that causes 

this circumstance. 

 

3.6  Conclusion 

Disease maps play a significant role in disease surveillance systems to help public health 

practitioners to monitor and prevent disease outbreaks as well as target vulnerable people for 

intervention. Even though various smoothing methods have been developed and used, no 

systematic evaluation of such approaches currently exists. Using a simulated disease dataset, this 

study evaluated the relative performance of the adaptive KDE and spatial empirical Bayes 

methods. For all age groups, the results found that both methods provide identical estimated state 

rates in all thresholds. This is one of important findings in this study. 

The estimated rates at the ZCTA level computed from the adaptive KDE and spatial 

empirical Bayes are identical when h ≤ 100, and the difference in rate estimates increases when 

thresholds increase for all age groups. For the older age groups – 55 to 64 and 65 years and older 

– a large number of unusual high differences in rate estimates are found in the mid-size threshold 

values. In this study, the cause of these high RMSEs is mostly due to a ZCTA with small 

population size located in non-urban areas. This also applies to some unusually high differences 

in rate estimates for all age groups. Since the cause of extremely high differences in rate 

estimates for all age groups is from the small population ZCTA in non-urban areas, this implies 

that using either the adaptive KDE and spatial empirical Bayes approach to map disease in urban 

areas may provide identical rate estimates, and caution is needed when mapping disease in non-
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urban areas. Note that the scenarios found in this study may be suitable only for degenerative 

diseases such as heart disease in Texas. Other diseases and areas may provide different scenarios 

due to the difference of population distribution and disease characteristics. 
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CHAPTER 4  

DEFINING SPATIAL UNITS FOR MAPPING HIV AND  

TARGETING INTERVENTION IN TEXAS 

4.1  Abstract 

Disease mapping has become a powerful tool for understanding the spatial patterns of 

outcomes and pinpointing where intervention is most needed. Yet, disease maps alone cannot 

identify who or which populations are most at risk, and may need interventions the most. This 

limitation could hamper disease prevention and control efforts. Informed by the social 

determinants of health (SDH) framework, this study examines the spatial units of HIV risk in 

Texas. By combining SDH with these maps, we are able to not only geographically target where 

but also tailor interventions in those areas to those high-risk populations. Moreover, even when 

health data is limited, the health risk map alone is adequate for identifying where and which 

populations are at risk since it is constructed from publicly accessible disease-related data. The 

findings have implications for public health policy targeted at HIV risk communication and 

management. 

Keywords: defining spatial units, mapping health risk, social determinants of health, 

neighborhood characteristics, HIV/AIDS, Texas 

 

4.2  Introduction 

Disease mapping is routinely used to visualize not only the spatial patterns of disease 

burdens but also to target and evaluate interventions. However, because diseases do not follow 

neat standard boundaries such as counties or even zip codes – the typical spatial unit used for 

reporting disease data – the usefulness of such maps depends critically on the spatial unit 
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employed during mapping. Kernel density estimation and kriging are frequently used to address 

the most common problems, but they fail to address the fundamental question of who within that 

micro spatial unit has the highest disease burden and should be prioritized for intervention. 

Hence, the question is whether we can identify sub areas, neighborhoods of risk, based on 

internal consistency and external difference with regards to known risk factors. Such maps would 

be invaluable for disease burden assessment and targeting interventions but are rarely developed 

in this study context. Consequently, this paper identifies neighborhoods of HIV/AIDS risk in 

Texas and the subgroups that may be prioritized for intervention. 

A neighborhood describes an area or spatial unit where people interact with each other. 

People tend to have a good perception of what they view as their neighborhood, but its 

boundaries may be different from other people in their neighborhood. Because the perceived 

boundaries are not universally accepted, delimiting neighborhood boundaries is difficult. In 

health research, the term neighborhood has been used loosely to refer to “a person’s immediate 

residential environment, which is hypothesized to have both material and social characteristics 

potentially related to health” (Diez Roux, 2001). In other words, neighborhood environments 

and/or characteristics can influence individual health (Emch, Root, & Carrel, 2017). For 

example, individuals living in affluent places tend to have better health than those living in 

impoverished areas (Diez Roux, Mujahid, Hirsch, Moore, & Moore, 2016; Chaix, Merlo, Evans, 

Leal, & Havard, 2009; Cockings & Martin, 2005; Lebel, Pampalon, & Villeneuve, 2007; 

Coulton, Korbin, Chan, & Su, 2001; Browning & Cagney, 2003). This is known as social 

gradient in health (Emch et al., 2017) and is also relevant to the concept of place vulnerability – 

“where people live matters in their vulnerability to disease” (Oppong & Harold, 2009). 

Regardless of whether people are healthy or unhealthy, rich or poor, those who live in vulnerable 
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neighborhoods (e.g., areas with poor sanitation, food desert environments, with high poverty and 

high crime rates) tend to have poorer. In contrast, vulnerable people who live in healthier places 

(less vulnerable e.g., with access to recreation and healthy food) generally have better health. 

This implies that where people live affects not only their habits and behaviors, but also shapes 

their choices and exposures. Furthermore, vulnerable people are attracted to, and tend to live in, 

vulnerable neighborhoods because that is the only place they can afford. Finally, a high 

concentration of vulnerable people in any neighborhood can make those neighborhoods more 

vulnerable and less able to resist disease, and increases the vulnerability of all who live in that 

location. 

In neighborhood health studies, administrative units have often been used as rough 

proxies for defining neighborhoods (Emch et al., 2017; Diez Roux, 2001; Rauh, Andrews, & 

Garfinkel, 2001; Pearl, Braveman, & Abrams, 2001). Emch et al. (2017) suggested using local-

level areal patterns such as census blocks, block groups or tracts would be more appropriate than 

using coarser scales such as the health service region (HSR) or county-level. Moreover, using the 

smallest available geographic unit for defining neighborhoods enhances the identification of 

local assets and gaps (CDC, 2015). 

The characteristics to be included in defining a neighborhood in health studies varies with 

the research focus and the preferences of the researchers. Lebel et al. (2007) suggested that both 

geographical scale (as suggested by Emch et al., 2017) and inner characteristics, which are 

defined as an important element that is able to characterize a neighborhood such as structural, 

infrastructural, demographic, proximity, political, public services, environmental, social-

interactive, class status, and sentimental characteristics, should be considered when defining 

neighborhood characteristics (Lebel, et al., 2007; Galster, 2001). In practice, choice of inner 
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characteristics, however, is based on the purpose and rationale for describing the neighborhood. 

In this study, social determinants of health (SDH) for HIV/AIDS are used to define 

neighborhood characteristics. The definition of social determinants of health is “the 

circumstances in which people are born, grow up, live, work and age, and the systems put in 

place to deal with illness” (WHO, 2016a). Five determinants of population health are generally 

recognized in the scientific literature – biology and genetics, individual behavior, social 

environment, physical environment, and health services (Tarlov, 1999). They consist of a wider 

set of forces such as economics, social policies, and politics and have been acknowledged as a 

critical component of the post-2015 sustainable development global agenda and of the push 

towards progressive achievement of universal health coverage (UHC) (WHO, 2016a). The 

World Health Organization (WHO) encourages members to address SDH in order to improve 

health outcomes and reduce health inequity as well as help to identify entry points for 

intervention (WHO, 2016a; CDC NCHHSTP, 2010). In the U.S., the Centers for Disease Control 

and Prevention’s (CDC) National Center for HIV/AIDS, Viral Hepatitis, STD, and TB 

Prevention (NCHHSTP) has adopted WHO’s social determinants of health conceptual 

framework to better analyze and understand the drivers of health and health inequities of persons 

infected with HIV, viral hepatitis, sexually transmitted diseases (STDs), and tuberculosis (TB) as 

well as determine priorities and target to refocus intervention efforts (CDC NCHHSTP, 2010). 

While many public health efforts historically focused on individual behaviors, NCHHSTP points 

out that SDH typically refers to three categories including social environment (e.g., incomes, 

education), physical environment (e.g., place of residence, built environment), and health 

services (e.g., access to care, insurance status) (CDC NCHHSTP, 2010). Many studies have 

revealed that social determinants of health such as poor access to care, low education, and 
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economic status have a great influence on health disparities in HIV/AIDS (CDC, 2016; Goswami 

et al., 2016; Denning & DiNenno, 2015; Vaughan, Rosenberg, Shouse, & Sullivan, 2014; Reif et 

al., 2013). Yet, methods to define neighborhoods of risk for specific diseases such as HIV/AIDS 

are limited. To fill this research gap, this study develops and tests a methodology for delimiting 

areas with high risk of HIV/AIDS using SDH.  

 

4.3  Study Areas 

Texas, the second most populous and second largest state in area of the U.S., is located in 

the south-central part of the country and comprises of 254 counties with fairly similar size and 

shape. It ranked third among 50 states in the number of HIV diagnoses in 2013 (CDC 

NCHHSTP, 2015), and the lifetime risk of HIV diagnosis was 1 in 81, which was higher than the 

national risk (1 in 99) (CDC NCHHSTP, 2016).  

Texas Department of State Health Services (DSHS) has divided the state into 11 public 

health regions for health services programming and administration including preventive, 

protective, regulatory, and preparedness functions, and all regions are held together by the DSHS 

Division for Regional and Local Health Services (RLHS) (DHSH, 2016a). Each county is 

assigned to 1 of the 11 public health regions to provide resources for health promotion and 

disease prevention and control (DSHS, 2016b). This study focuses on two public health regions 

including Public Health Regions (PHR) 3 and 4 (Figure 4.1 and Table 4.1). 

PHR 3 comprises of 19 counties with a total of nearly 7 million population centered on 

the Dallas-Fort Worth Metroplex, the fourth largest metropolitan area in the U.S. after Chicago, 

Los Angeles, and New York City (U.S. Census Bureau, 2016); According to the 2013 National 

Center for Health Statistics (NCHS) Urban-Rural Classification Scheme for Counties (Ingram & 
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Franco, 2014), 13 out of the 19 counties in PHR 3 are considered as large metropolitan counties 

and part of 1 county is a small micro area; 5 of them are characterized as nonmetropolitan 

(Ingram & Franco, 2014). 

In contrast, PHR 4 contains 23 mostly rural counties with approximately 1 million 

population in total. Only 5 of 23 counties are small metros; the rest are defined as 

nonmetropolitan (Ingram & Franco, 2014). Table 4.1 shows a summary of the characteristics of 

both regions. 

 
 
Figure 4.1 Study area 
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Table 4.1 A summary of study area characteristics 

Characteristics Public Health Region 3 Public Health Region 4 

Area (square miles) 15,522.0 15,887.8 

Total population 6,884,072 1,116,214 

Total number of counties 19 23 

- Large central or fringe metros 13  

- Micropolitan 4 7 

- Small metros 1 5 

- Non-metros 1 11 

Total number of block groups (BGs) 4,403 812 

- BG with no population 5 2 

- Range of population [34, 9615]* [225, 6337] 
* Note: There is only 1 block group that contains less than 100 population. 
 

4.4  Data and Methods 

This study used census-defined block groups as the basic unit for analysis. A census 

block group is the smallest geographical unit that the U.S. Census Bureau publishes sample data 

on demographic and socioeconomic indicators. Block Groups generally contain between 600 and 

3,000 people and never cross state, county, or census tract boundaries (U.S. Census Bureau, 

2012). The block group cartographic boundary files were obtained from 2013 Topologically 

Integrated Geographic Encoding and Referencing (TIGER/Line) files (U.S. Census Bureau, 

2013).  

Social determinants of health variables, selected based on CDC’s NCHHSTP guidelines 

(2010), were obtained from 2013 ACS 5-year estimates dataset at the block group level. These 

guidelines provide three broad categories of the social determinants of health – social 

environment, physical environment, and health services (CDC NCHHSTP, 2010). For a 

complete list of SDH variables and their classes, see Table A.2 in Appendix A. To reduce the 
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large number of variables into a smaller number of identifiable dimensions, factor analysis, an 

explanatory analysis to maximize the homogeneity of variables (Vyas & Kumaranayake, 2006), 

was performed in SPSS. Theoretically, highly correlated variables, whether positive or negative, 

are basically influenced by the same factors and are combined into an identifiable dimension 

known as a factor. To consider whether factor analysis is an acceptable process, Kaiser-Meyer-

Olkin (KMO) and Bartlett’s test of sphericity were used to examine factorability of a set of 

variables, in which KMO should be greater than |0.45| and Bartlett’s test should be significant (p 

< 0.05) (Kaiser & Rice, 1974). However, prior to performing factor analysis, all 66 variables 

were tested to determine if they met the criterion for the factor analysis (Yong & Pearce, 2013). 

Following standard practices, the variables that contained missing values greater than 40%, low 

variance, and/or extremely high correlation (> |0.900|) were dropped. For extremely highly 

correlated variables, one was included in the analysis and another was dropped since the 

extremely high correlation indicates both explain the same thing. As a result, a total of 26 

variables were selected and entered into a Principal Component Factor Analysis to create 

composite variables describing demographic and socioeconomic characteristics (Table 4.2). 

Then, factor scores were computed for each block group using a least squares regression 

approach (DiStefano, Zhu, & Mindrila, 2009) and used in subsequent analysis – the cluster 

analysis.  

Using the k-means clustering method, block groups were partitioned into k different 

clusters based on their socio-demographic characteristics. K-means, a distance-based method for 

partitional clustering, uses an allocation/re-allocation algorithm to optimally reassign objects to 

the nearest cluster centroid and is largely employed to classify areas (Riva, Apparicio, Gauvin, & 

Brodeur, 2008). The distances within cluster (intra-cluster distances) are minimized while the 
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distances between clusters (inter-cluster distances) are maximized. In other words, the block 

groups with similar characteristics are grouped together while those that are dissimilar are put in 

other groups.  

For cluster analysis, input variables have to be somewhat different and need to be 

standardized (Milligan & Cooper, 1988). In this study, the factor scores obtained from the 

previous step were used as input variables. This ensures that there is no multicollinearity 

between input variables since homogeneous SDH variables were grouped within the same 

dimension factor.  

Table 4.2 Social determinants of health variables used in the study obtained from 2013 ACS 5-year 
estimates at the block group level. 

 
SDH variables Census 

Table ID 
Table Title 

Social environment 
  

Race/ethnicity B03002 Hispanic or Latino origin by race 
Education attainment B15003 Education attainment for the population 25years and older 
Income/poverty C17002 Ratio of income to poverty level in the past 12 months  

B19001 Household income in the past 12 months (in 2013 inflation-
adjusted dollars)  

B25044 Tenure by vehicles available 
Employment status B23025 Employment status for the population 16 years and older 
Occupation C24010 Occupation for the civilian employed population 16 years and 

older 
Physical environment 

  

Housing structure B25024 Units in structure 
Values of house B25075 Value 
Housing spaces B25017 Rooms 
Health services 

  

Language barrier (may 
indicate access to care) 

B16002 Household language by household limited English speaking 
status 

Health insurance status B27010 Type of health insurance coverage by age 
 

Prior to k-means analysis, the number of clusters, k, must be determined. The sum of 

squared errors (SSE), a common measure, was used to determine an appropriate k (equation 4.1) 

(Everitt et al., 2011). The error is the distance between each object (i.e., block group in the 
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study) and its nearest cluster. SSE is the summation of these squared errors. A small SSE 

indicates that the objects are close to the cluster centroid – thus, less variation within the cluster, 

indicating homogeneity.  

 𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ ∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑚𝑚𝑖𝑖, 𝑥𝑥)𝑥𝑥∈𝐶𝐶𝑖𝑖
𝑘𝑘
𝑖𝑖=1  (4.1) 

where k is a number of clusters; Ci is a cluster i when i = 1, 2, …, k; x ∈ Ci is a data point (i.e., 

block group) in cluster Ci; mi is the centroid of cluster Ci. 

SSE tends to decrease when k increases and approaches 0 when k is equal to the total 

number of objects in the dataset. To determine k, the dataset was first run through k-means 

clustering for a range of k values from 1 to 20 using factor scores as input variables in R. The 

sum of squared errors (SSE) for each k was then calculated and were plotted against the number 

of clusters, k. Using the elbow method, the optimal k was selected at the ‘elbow’ position in the 

graph, where the SSE decreases abruptly.  

Subsequently, the value of k was used to perform k-mean clustering analysis in R. The k 

types of clusters resulting from the analysis were imported to ArcGIS 10.2 and mapped out to 

illustrate the delineation of homogeneous zones. 

 

4.5  Results 

4.5.1  Classifying Characteristics 

 Five composite factors were obtained from the factor analysis for both Public Health 

Regions (PHRs) 3 and 4, in which the total percentage of explained variance in each region is 

71.5 and 61.8 respectively. Though their composite factors are slightly different between two 

regions, two of five composite factors in both regions are strongly influenced by race/ethnicity, 

specifically Black and Hispanic, as well as low socioeconomic variables such as low education 
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and income. However, the three remaining composite factors contributed by other 

socioeconomic variables do not provide a readily meaningful explanation (see Table B.4 in 

Appendix B). Moreover, the Kaiser-Meyer-Olkin (KMO) and Bartlett’s sphericity test could not 

be computed due to non-positive definite (NPD) matrix, and the determinant of the correlation 

matrix is zero. The cause of zero determinant and NPD may be due to linear dependencies 

among the variables (Wothke, 1993; Joreskog &Yang, 1996), which could lead to unreliable 

results. One solution to this problem is to change the set of variables (Wothke, 1993). Therefore, 

instead of including all 26 variables at the same time, these variables were divided into two 

groups: (1) racial/ethnic groups and low socioeconomic variables, and; (2) socioeconomic 

variables. Each group, then, was used to perform the factor analysis. Note that the variables in 

each group were selected based on the initial results as discussed above.  

 The results show that all factor analysis performed in both PHRs 3 and 4 have KMOs 

greater than 0.7 and significant Bartlett’s test (p < 0.001). This indicates that the variables 

included in each group – Group 1 racial/ethnic groups included and Group 2 racial/ethnic groups 

excluded – are correlated highly enough to provide a reasonable basis and are well predicted by 

each factor (Kaiser & Rice, 1974). In this study, the variables with loading at least |0.45| (fair) 

are retained in the factor and indicate the factor(s) they belong to (Comrey & Lee, 1992; 

Tabachnick & Fidell, 2007). Then, each composite factor is named corresponding to those high 

positive loadings. In PHR 3, a total of six composite factors were extracted from both groups – 

three factors each (Table 4.3) while a total of five composite factors were extracted in PHR 4 – 

three factors from Group 1 and two factors from Group 2 (Table 4.4). 
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Table 4.3 Factor loadings of selected variables in Public Health Region 3 
 

Variables Race/ethnicity included Race/ethnicity excluded 
Commu-
nalities 

Low 
Education
–Hispanic 

Low 
SES 

Extreme 
Poverty– 

Black 

Commu-
nalities 

High 
SES 

Upper 
Middle  

SES 

Lower 
Middle 

SES 
Percent of variance - 30.5 24.0 17.1 - 33.5 22.8 16.7 
Eigenvalues - 8.367 1.718 1.379 - 4.945 2.056 1.039 
Race/ethnicity         
White population 0.736 -0.608  -0.571     
Black population 0.712   0.809     
Hispanic population 0.856 0.888       
Education attainment         
Less than high school 0.868 0.822 0.377      
High school degrees 0.810  0.889      
Some college and 
associate degrees 

    0.520   0.663 

Bachelor degrees and 
higher  

0.887 -0.396 -0.829  0.835 0.792 0.453  

Income to poverty ratio         
< 0.50 0.493   0.647     
Between 0.50 and 0.99 0.508 0.497  0.417     
≥ 2.00 0.846 -0.591 -0.467 -0.528     
Household incomes         
$50,000–99,999     0.569   0.743 
$100,000-149,999     0.655  0.706  
$150,000-199,999     0.619 0.527 0.570  
≥ $200,000     0.862 0.891   
Value of house         
< $100,000 0.705 0.401 0.674      
$100,000-149,999     0.709   0.788 
$150,000-299,999     0.855  0.924  
≥ $300,000     0.853 0.874   
Housing ≥ 8 rooms     0.743 0.723 0.458  
Occupations         
Construction 0.588 0.621 0.441      
Management 0.858 -0.519 -0.732  0.818 0.732 0.520  
Production 0.516 0.317 0.626      
No vehicle own 0.571   0.730     
No health insurance 0.750 0.720 0.423      
Limited speaking 
English 

0.759 0.862       

Note: All variables are in the percentage unit; Boldfaced values indicated variables that contribute in the 
composite factor (factor loadings ≥ |0.45|); Factor loadings < |0.3| are suppressed. 
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Table 4.4 Factor loadings of selected variables in Public Health Region 4 
 

Variables Race/ethnicity included Race/ethnicity excluded 
Commu-
nalities 

Poverty-
Black 

Low 
Education
-Hispanic 

Low 
SES 

Commu-
nalities 

High 
SES 

Middle  
SES 

Percent of variance  28.3 22.7 16.6  35.7 23.4 
Eigenvalues  5.484 2.133 1.846  3.829 1.494 
Race/ethnicity        
White population 0.815 -0.733 -0.498     
Black population 0.733 0.838      
Hispanic population 0.832  0.900     
Education attainment        
Less than high school 0.713 0.350 0.730     
High school degrees 0.684 0.321  0.710    
Some college and 
associate degrees 

    0.450  0.670 

Bachelor degrees and 
higher  

0.789 -0.467  -0.707 0.722 0.765 0.370 

Income to poverty ratio        
Less than 1.00 0.613 0.714      
≥ 2.00 0.771 -0.764 -0.382     
Household incomes        
$75,000-149,999     0.554 0.355 0.654 
≥ $200,000     0.675 0.818  
Value of house        
< $100,000 0.669 0.637  0.449    
$100,000-149,999     0.510  0.714 
$150,000-299,999     0.529 0.536 0.492 
≥ $300,000     0.645 0.781  
Housing ≥ 8 rooms     0.599 0.733  
Living in mobile home 0.568   0.692    
Occupations        
Construction 0.507   0.628    
Management     0.640 0.632 0.491 
No vehicle own 0.535 0.724      
No health insurance 0.525 0.318 0.602     
Limited speaking 
English 

0.708  0.839     

Note: All variables are in the percentage unit; Boldfaced values indicated variables that contribute in the 
composite factor (factor loadings ≥ |0.45|); Factor loadings < |0.3| are suppressed. 
 

The results from factor analysis (Table 4.3 and 4.4) show that there is a strong association 

between Black populations and poverty in both regions – ‘Extreme Poverty-Black’ and ‘Poverty-

Black’ for PHRs 3 and 4 respectively. According to variable loadings in these factors, it indicates 

that Blacks living in urbanized areas (PHR 3) tend to have a greater depth of poverty than those 
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living in non-urbanized areas (PHR 4). ‘Low Education-Hispanic’ is characterized in both 

regions and indicates that Hispanic populations tend to have education attainment less than high 

school and no health insurance. ‘Low SES’ (SES stands for socioeconomic status) is also 

categorized in both regions. The variables loading in this factor indicates that having low 

education (high school degrees) influences their jobs and living standard regardless of living in 

urbanized or non-urbanized areas. ‘Middle SES’ is a socio-economic characteristic identified in 

both regions, but the construct of this characteristic is quite complex in PHR 3. While PHR 4 can 

be simply classified as ‘Middle SES’, Public Health Region 3 is sub-classified as ‘Lower Middle 

SES’ and ‘Upper Middle SES’. While other socioeconomic characteristics are associated with 

different variables, the composite variables of ‘High SES’ are the same in both regions. 

 

4.5.2  Defining Spatial Units 

 Consequently, k-mean clustering analysis was performed for each region to determine 

homogeneous zones using factor scores of those characteristics. In this study, the result suggests 

that the optimal number of clusters, k, is 5 for both PHRs 3 and 4 which provide 60 and 61 

percent of total variance explained respectively. The results from ANOVA confirm that all six 

characteristics in PHR 3 and five characteristics in PHR 4 play significant roles to perform 

clusters (p < 0.01, d.f. = 4, 4144 for PHR 3 and p < 0.01, d.f. = 4, 800 for PHR 4). For PHR 3, 

Cluster 1, 2, 4, and 5 are clearly dominated by ‘Upper Middle SES’, ‘Extreme Poverty–Black’, 

‘High SES’, and ‘Low Education–Hispanic’ respectively (indicated by the highest cluster means 

in Table 4.5). Therefore, these clusters are used to name the respective characteristics. Unlike 

other clusters, Cluster 3 is likely to be dominated by two characteristics – ‘Lower Middle SES’ 

and ‘Low SES’ since the cluster means of these two components in this cluster are close to each 
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other (Table 4.5). Therefore, Cluster 3 is named ‘Low to Lower Middle SES’. For PHR 4, 

Clusters 1 to 5 are dominated by ‘Low SES’, ‘Poverty-Black’, ‘High SES’, ‘Middle SES’, and 

‘Low Education-Hispanic’ respectively (Table 4.5). 

Table 4.5 The cluster means for each of the significant factors of Public Health Regions 3 and 4 
 

 
Cluster 

1 2 3 4 5 
Public Health Region 3      

High SES .09968 -.67021 -.15113 2.43336 -.73405 
Upper middle SES 1.44908 -.57530 -.26326 -.42219 -.71676 
Lower middle SES -.10361 -.64226 .79461 -.76131 -.74833 
Low SES -.78614 .47174 .55392 -1.46901 .35375 
Low education- Hispanic -.42244 -.29237 -.37631 -.41011 1.69820 
Extreme poverty - Black -.26689 2.21242 -.35275 -.30626 -.02628 

Public Health Region 4      
High SES -0.09878 -0.59530 3.08343 0.05508 -0.54469 
Middle SES -0.15383 -0.86838 -0.24834 1.25751 -0.86858 
Low SES 0.71673 -0.26389 -1.82365 -0.81876 -0.01914 
Low education-Hispanic -0.23543 -0.33056 -0.37247 -0.28968 2.25152 
Poverty-Black -0.27499 1.93282 -1.08914 -0.45018 0.30707 

 

Figure 4.2A illustrates cluster zones in PHR 3. As can be seen, there are a lot of zone 

variations around the Dallas-Fort Worth metroplex. In the metroplex, both ‘Extreme Poverty–

Black’ and ‘Low Education–Hispanic’ characteristics mostly cluster and occur in the vicinity of 

Dallas and Fort Worth areas. These two characteristics seem to be adjacent to each other and 

account for 41.6 and 24.4 percent of the total population in Dallas and Tarrant Counties 

respectively. The results also show that the next adjacent zones to these poverty and low 

education areas mostly are ‘Low to Lower Middle SES’, ‘Upper Middle SES’, and ‘High SES’ 

zones respectively. In contrast, Collin County (northeast of Dallas County) and Denton County 

(northwest of Dallas County) are dominated by ‘Upper Middle SES’ and ‘High SES’ while other 

counties are dominated by ‘Low to Lower Middle SES’ characteristic – accounted for 37.4% of 

the total population. 
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 In PHR 4, zone variations mostly occur in small-metro counties such as Smith and Gregg 

Counties (Figure 4.2B). In these counties, ‘Poverty-Black’ and ‘Low Education-Hispanic’ 

characteristics are concentrated in the vicinity of cities while ‘Middle SES’ and ‘High SES’ seem 

to occur in the suburbs. In contrast, the geographic patterns of neighborhood characteristics in 

non-metropolitan counties vary. In fact, ‘Low SES’, the dominant characteristics in these 

counties, accounted for 47.0% of the total population. 

 In summary, the disease specific neighborhood maps show that ‘Poverty-Black’ tends to 

cluster in the vicinity of cities regardless of urbanized or non-urbanized areas. Yet, there are 

some spatial differences between urban and non-urban areas. In large metropolitan areas such as 

Dallas and Fort Worth, the extent of ‘Poverty-Black’ and ‘Low Education-Hispanic’ 

neighborhoods are larger than in smaller metropolitan areas, and they are adjacent to each other 

resulting in large areas of social disadvantage. In contrast, ‘Low Education-Hispanic’ 

neighborhoods in non-urbanized areas seem to be scattered and are not necessary in the vicinity 

of cities.
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Figure 4.2 Disease specific neighborhood maps of: (A) Public Health Region 3; (B) Public Health Region 4. 
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4.5.3  The Use of HIV and Disease Specific Neighborhood Maps 

 The HIV/AIDS data used in this analysis came from a de-identified database obtained 

from Texas Department of State Health Services that includes all persons newly diagnosed with 

HIV/AIDS in these two regions between 1 January 2009 and 31 December 2013. Cases were 

aggregated at the zip code level. Then, to ensure spatially continuous representations of 

HIV/AIDS in PHRs 3 and 4, HIV/AIDS map was produced using the spatially adaptive filters 

method (Tiwari & Rushton, 2005) in Web-based Disease Mapping and Analysis Program 

(WebDMAP) and ArcGIS 10.2. To facilitate visualization, the HIV/AIDS map was overlaid on 

the disease specific neighborhood maps. 

In PHR 3, the areas with higher HIV/AIDS rates (greater than state rate) mostly occur in 

the central region specifically in Dallas-Fort Worth areas (Figure 4.3A). Considering the 

moderate high and greater HIV/AIDS rates (> 59.73 per 100,000 population) (Figure 4.3B – 

striped line), ‘Extreme Poverty-Black’ neighborhoods tend to have a greater risk than other 

neighborhoods in the center of Dallas while ‘High SES’ seems to have a greater risk in the north 

of Dallas. In those highest incidence areas, poverty and Black population in the heart of Dallas 

and high SES in north Dallas should be prioritized for targeting intervention. While the higher 

HIV/AIDS rates in PHR 3 are mostly concentrated in the Dallas-Fort Worth metroplex – the 

most urbanized areas, those in PHR 4 are clustered in the cities and have higher concentration 

specifically in the south and east of the region (Figure 4.4A), where those counties are 

characterized as non-urban areas (Ingram & Franco, 2014). The areas with high incidence of 

HIV/AIDS in PHR 4 mostly occur in ‘Poverty-Black’ and ‘Low Education-Hispanic’ 

neighborhoods which is similar to those in PHR 3. Figure 4.4B (solid line) indicates that ‘Low 

Education-Hispanic’ in the south and ‘Poverty-Black’ in the north and east of the region should 



74 

be prioritized for targeting interventions. These examples illustrate that combining HIV/AIDS 

and neighborhood characteristics maps can identify not only where the higher rates occur but 

also who or which populations have a greater risk and should be prioritized for control and 

treatment. 

 

4.6  Discussion 

4.6.1  Poverty and Black Populations 

 The focus of this paper was to identify high risk areas for HIV/AIDS. The results found a 

strong association between Black populations and poverty in urban areas of both public health 

regions. It is well-known that poverty is an important factor that increases the chance of poor 

health (Conway, 2016; WHO, 2016b) and the spread of diseases such as HIV/AIDS (Denning & 

DiNenno, 2015; Parkhurst, 2010; International Labor Office, 2005). This is not confined to only 

poor people. People living in poor areas tend to have poorer health and are at greater risk than 

those living in better places (Emch et al., 2017; Oppong & Harold, 2009; Chaix, et al., 2009; 

Cockings & Martin, 2005; Cawthorne, 2010). Moreover, in the U.S., the Black population has 

the highest rate of HIV/AIDS among all racial/ethnic groups (CDC, 2016). The combination of 

these two risk markers compounds the problem. Thus, spatial units that are dominated by this 

characteristic within the cities of Dallas, Fort Worth, and Tyler should be targeted for 

intervention.  
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Figure 4.3 The use of HIV and neighborhood characteristics maps of Public Health Region 3: (A) The spatial distribution of HIV incidence 
between 2009 and 2011; (B) A neighborhood map with a transparent overlay of high HIV incidence rates. 
 



76 

 
 
Figure 4.4 The use of HIV and neighborhood characteristics maps of Public Health Region 4: (A) The spatial distribution of HIV incidence 
between 2009 and 2011; (B) A neighborhood map with a transparent overlay of high HIV incidence rates. 
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4.6.2  Low Education and Hispanic Population 

 In both regions, the results indicate that Hispanic population has a positive association 

with social disadvantage variables including low education attainment and high rate of uninsured 

– one of the six key health and health care indicators (Kaiser Family Foundation, 2009; U.S. 

Census Bureau, 2015). The results imply that in addition to potentially being uninsured, 

Hispanics appear to have SES that limits their access to health care. Even though they may not 

be poor, lack of health insurance directly relates to limited access to care resulting in late disease 

diagnoses as well as delaying appropriate care. This is important. Specifically, for HIV infection, 

late diagnosis not only affects the effectiveness of treatment but also is an important factor in 

HIV spread. Approximately 70,000 people living with HIV were uninsured in 2009 (CDC 

NCHHSTP, 2016; Kate, et al., 2014), thus limiting their access to HIV therapy and resulting in 

overall poorer health outcomes. In fact, HIV symptoms in the early stages are flu-like symptoms 

and may take several years to present in some individuals. Lacking routine care, the uninsured 

are more likely to be diagnosed with HIV during a health emergency, and thus may miss the 

benefits of early treatment. In addition to being uninsured, Hispanic is also a risk marker for late 

HIV diagnosis. In Texas, approximately two in five Hispanics with HIV are diagnosed late (CDC 

NCHHSTP, 2015; DSHS, 2013). Consequently, spatial units dominated by this characteristic - 

‘Low Education-Hispanic’ should be prioritized for testing and other appropriate interventions. 

 

4.6.3  The Use of Health and Disease Specific Neighborhood Maps 

Though disease maps can help in identifying areas with the highest disease burdens and 

pinpoint locations that should be prioritized for targeted intervention, they do not provide the 

information on who or which populations have the greatest risk. Without that information, 
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generating effective control plans becomes extremely difficult. Disease specific neighborhood 

maps help in identifying and delineating the high-risk neighborhoods that possibly have high 

rates of disease (HIV in this case) – spatial units dominated by ‘Poverty-Black’ and ‘Low 

Education Hispanic’. Thus, these spatial units potentially have higher risk than others, although 

they may or may not have the highest rates. In the situation that health data are not available, 

disease specific neighborhood maps can be used to identify potential areas and populations at 

risk to prioritize for prevention and control. If health data is available, such disease specific 

neighborhood maps can become even more powerful and meaningful. In this study, although the 

spatial mismatch precludes a statistical comparison of HIV disease burdens and the disease 

specific neighborhood maps, the simple comparison (overlay) between HIV/AIDS and disease 

specific neighborhood maps shows strong evidence of the utility of these maps. Combining these 

two maps not only helps in determining where but also who or which populations should be 

prioritized for intervention and control. 

 

4.7  Limitations 

 Socio-demographic characteristics in this study are constructed from selected social 

determinants of health for HIV/AIDS. Other diseases could possibly provide a different set of 

characteristics. Due to the spatial mismatch between SDH and HIV/AIDS data, statistical cross-

validation between these two different data is not feasible. In fact, socio-demographic 

characteristics and neighborhood zones are constructed using the data at the census block group 

level, and HIV data used in this study are at the zip code level. 
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4.8  Conclusion 

 Disease maps are a powerful tool for disease surveillance systems and very useful for 

monitoring and preventing disease outbreaks. While they can be used to pinpoint the areas that 

have high disease burdens and show where the population at risk is, they cannot identify who or 

which populations in those areas is most at risk. Using SDH variables for HIV/AIDS, this study 

has defined neighborhood units and identified who in those areas has the most need for targeted 

intervention and where they live.  

 Disease specific neighborhood maps not only illustrate the spatial distribution of socio-

demographic characteristics but also identify the characteristics of the population at risk. 

Moreover, combining and overlaying these disease specific neighborhood maps with disease 

maps can help in geographically targeting and tailoring policy to both places and populations 

most in need. Since this study focuses on HIV surveillance, these disease specific neighborhood 

maps may not be appropriate for other diseases that may have different social determinants of 

health. Nevertheless, the straightforward statistical and spatial methods illustrated in this study 

can be simply applied to construct other specific disease neighborhood maps. 
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CHAPTER 5  

SUMMARY AND CONCLUSIONS 

 This chapter summarizes the major findings of this thesis and contributions with regard to 

kernel density estimation method in disease mapping and defining spatial units for health 

research. It also provides a discussion of the implications of the study for practice. 

 

5.1  Introduction 

 Disease mapping has become a powerful tool for understanding the distribution of 

disease across space. It offers an alternative approach for public health to specify and address 

hypotheses of disease etiology and causation as well as plan and target appropriate interventions. 

Yet, some limitations remain to be addressed in order to improve their effectiveness for disease 

mapping as well as control efforts.  

 To map disease, smoothed disease rate methods are recommended since they permit 

comparison across different population sizes, unlike the number of cases, and also address the 

small numbers problem – a well-known issue in disease mapping (Cromley & McLafferty, 

2012). Though many smoothing methods are available, two of them – kernel density estimation 

(KDE) and spatial empirical Bayes – are most commonly used (Rushton & Lolonis, 1996; 

Clayton & Kaldor, 1987; Besag, York, & Mollie, 1991; Berke, 2004; Best, Richardson, & 

Thomson, 2005; Tiwari & Rushton, 2005; Oppong, Tiwari, Ruckthongsook, Huddleston, & 

Arbona, 2012; Moraga & Lawson, 2012). For smoothed disease rates, these two methods require 

a smoothing parameter called bandwidth/threshold and spatial weight in KDE and spatial 

empirical Bayes methods respectively. The selection of smoothing parameters is crucial because 

using different smoothing parameters may affect the degree of smoothing that occurs on the map. 
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While the selection of smoothing parameters in spatial empirical Bayes is overlooked, that of 

KDE has been identified repeatedly in many studies (Cromley & McLafferty, 2012; Bithell, 

2000; Carlos, Shi, Sargent, Tanski, & Berke, 2010; Beyer, Tiwari, & Rushton, 2012; Chi, Wang, 

Li, Zheng, & Liao, 2007; Shi, 2010; Talbot, Kulldorff, Forand, & Haley, 2000; Cai, 2007; 

Rushton & Lolonis, 1996; Tiwari & Rushton, 2005; Silverman, 1986; Wand & Jones, 1995). In 

fact, several approaches to select smoothing parameters for KDE have been proposed 

(Silverman, 1986; Wand & Jones, 1995), but the application of those methods in disease 

mapping is limited. Thus, for both methods, current approaches use knowledge-based judgement 

made by experts who understand the disease being mapped or by the map-makers themselves 

(Beyer et al., 2012; Chi et al., 2007; Shi, 2010; Talbot et al., 2000; Cai, 2007; Rushton & 

Lolonis, 1996; Tiwari & Rushton, 2005). The questions of what is an appropriate smoothing 

parameter and how to select one remain unanswered. Moreover, since both KDE and spatial 

empirical Bayes are commonly used to map smoothed rates, the following questions have been 

raised: “Do different methods provide different results?” and “Which method should be used to 

map disease?” These questions are important, and there is a need to better understand their merits 

in disease mapping and clarify the methods with regard to their use in public health and decision-

making.  

 In addition to improving disease mapping methods, this study also explores an alternative 

approach to enhance the effectiveness of disease prevention and control efforts as well as 

improve approaches for spatial targeting of intervention. Though disease maps allow public 

health practitioners to pinpoint where intervention is most needed by illustrating the geographical 

pattern of disease, they alone cannot identify who or which populations are most at risk and need 

the interventions the most. Moreover, in areas with limited and poor-quality health data, such as 
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many developing countries, producing reliable representations of disease burdens is problematic. 

Thus, public health tasks of planning and targeting appropriate intervention (McLafferty, 2015; 

Cromley & McLafferty, 2012) become extremely difficult. To fill this research gap, this study 

develops and tests a methodology for defining spatial units with high risk for HIV/AIDS in 

Texas and identifying the characteristics of the people groups at highest risk within those areas.  

 The overall goals of this study are to provide better understanding of the importance of 

disease mapping methods and enhance disease surveillance systems. The primary objectives of 

the research are as follows: 

1. To improve the KDE method in the disease mapping context by illustrating how to 
determine a desirable smoothing parameter. 

2. To examine and evaluate the relative efficacy of KDE and Bayesian approaches in 
disease mapping and determine whether they provide different results. 

3. To provide an alternative approach for defining neighborhood of risk and identifying 
at risk populations in those spatial units.  

 

5.2  Summary of Findings 

5.2.1  Objective 1: To Improve Kernel Density Estimation Method in Disease Mapping Context 

 Using a simulated dataset generated based on age-specific heart disease death rates 

among males aged 35 years and older, the study examines the applicability of bandwidth 

selection methods which calculate a threshold value based on the population data. For each age 

group, this study provides comparisons between maps produced using these methods and using 

arbitrary threshold choices and assesses the relative performance of these methods in terms of 

resolution and reliability (Chapter 2). 

 Our findings show that each bandwidth selector provides a different value. Threshold 

values calculated from plug-in and smoothed cross validation selectors, which are less than 100 
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in all age groups, may not be an appropriate choice to use in a large study area, e.g., the State of 

Texas (Washington State Department of Health, 2012). To consider which one is a desirable 

choice, the estimated state rates computed from other thresholds (including arbitrary choices) are 

observed for relative performance by comparing them to the actual state rates (i.e., simulated 

baseline rate in this study). In all age-specific groups, all thresholds accurately give the estimated 

state rates but provide different geographic detail. As threshold values increase, the variation in 

rates between geographic units decreases, i.e., less geographic detail. That is there is a trade-off 

between statistical stability of estimates and geographic precision. In disease mapping, we prefer 

the maps that provide more geographic detail but also need to compromise between precision 

and spatial variation. Since their precisions are similar, the remaining key factor for selecting a 

desirable threshold is geographic variation. When geographic variation is the highest priority, the 

results suggest that recommendations made by the normal scale selector, an automated 

bandwidth selector algorithm, generally provide significantly better performance when compared 

to other choices because it provides a consistent way to estimate the appropriate threshold value. 

In effect, the appropriate threshold value depends on the data distribution. Unguided choice of 

thresholds could produce misleading conclusions. 

 

5.2.2  Objective 2: To Evaluate the Relative Efficacy of the Adaptive Kernel Density 
Estimation and Spatial Empirical Bayes Approaches in Disease Mapping 

 
 Using the same parameters and simulated dataset created from Chapter 2, this study 

examined and compared the rate estimates computed from two different disease mapping 

methods – adaptive kernel density estimation (KDE) and spatial empirical Bayes (Chapter 3). 

 Considering global rate (estimated state rates), the results show that both the adaptive 

KDE and spatial empirical Bayes provide identical rate estimates at all thresholds and all age 
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groups. While there is no difference of the global rate estimates between the adaptive KDE and 

spatial empirical Bayes methods, the local rate estimates show some differences and vary among 

thresholds and age groups. The results indicate that when the given threshold is less than 100, 

both methods mostly provide identical rate estimates in all focus groups, and over 90% of total 

simulations in each threshold have RMSEs less than 0.5. When thresholds are greater than 100, 

the degree of difference varies among the focus groups, in which the largest threshold illustrates 

the highest difference. However, some extremely high differences and variations occur at least 

one mid-size threshold in all focus groups. The results found that the cause of high RMSEs is 

mostly influenced by lower population ZCTA in non-urban areas. 

 The most important finding of the study is the rate estimates from both methods are 

mostly identical, especially disregarding the extreme differences. Since the cause of extreme 

differences in all focus groups is from the ZCTA in non-urban areas, the results suggest that 

using either method to map diseases in densely populated (urban) areas may provide identical 

rate estimates, and caution is necessary when mapping disease in sparsely populated areas. 

Further research is required to determine the optimal method for low population density areas. 

 

5.2.3  Objective 3: To Provide an Alternative Approach for Defining Neighborhood Of Risk 
and Identifying At Risk Populations in those Spatial Units 

 
 Using social determinants of health (SDH), this study sought to identify the predictive 

characteristics of high-risk neighborhoods for HIV infection. It illustrates how to classify and 

construct the health risk map using straightforward statistical and spatial methods (Chapter 4). 

Instead of the entire state of Texas, this study focused on Public Health Regions (PHRs) 3 and 4. 

These regions are designated by Texas Department of State Health Services (DSHS).  PHRs 3 

and 4 are respectively located in North Central Texas and North-East Texas and considered as 
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urban and non-urban areas according to the 2013 NCHS Urban-Rural Classification Scheme for 

Counties (Ingram & Franco, 2014). The social determinants of health variables were selected 

based on CDC NCHHSTP guidelines (2010) and obtained from the 2013 ACS 5-year estimates 

dataset at the block group level. 

 Due to a large number of SDH variables, factor analysis was employed, and the results 

indicated that socio-demographic characteristics are slightly different between these two regions. 

PHR 3 has more complexity of characteristics (six groups of socio-demographic characteristics) 

and higher depth of poverty than PHR 4 (five groups of socio-demographic characteristics). 

When constructing homogeneous zones using these characteristics, each characteristic in PHR 4 

represents its own cluster while one cluster zone in PHR 3 – ‘Low to Lower-middle SES’ - is the 

combination of two characteristics. 

 When mapping these clusters, the results illustrate that the ‘Poverty-Black’ characteristic, 

considered as a higher risk of HIV infection, mostly clusters and concentrates in the vicinity of 

cities in both regions regardless of small or large cities and urban or non-urban areas. Moreover, 

the findings highlight that ‘Low Education-Hispanic’ characteristic, a risk marker of HIV 

infection, mostly occurs adjacent to spatial units dominated by ‘Poverty-Black’ in the urbanized 

cities in both regions resulting in large areas of social disadvantages. In contrast to these 

urbanized cities, spatial units dominated by ‘Low Education-Hispanic’ in non-urbanized areas 

seem to be scattered and are not necessarily in the vicinity of cities. 

These health risk maps help in identifying and delineating the high-risk spatial units that 

possibly have high rates of disease (HIV/AIDS in this case) –  spatial units dominated by 

‘Poverty-Black’ and ‘Low Education-Hispanic’. These spatial units potentially have higher risks 

than the others, although they may or may not have the highest rates. In the situation that health 
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data are not available, these health risk maps can be used to identify potential areas and 

populations at risk to prioritize for prevention and control. If health data is available, such these 

maps can become even more powerful and meaningful. In this study, although the spatial 

mismatch precludes a statistical comparison of HIV disease burdens and the health risk maps, the 

simple comparison (overlay) between HIV/AIDS and health risk maps shows strong evidence of 

the utility of these maps. Combining these two maps not only helps in determining where but 

also who or which populations should be prioritized for intervention and control. 

 

5.3  Broader Impacts 

The study not only fills the identified gaps of knowledge in disease mapping but also has 

a wide range of broader impacts. Moreover, it impacts health disparities research and benefits 

public health practitioners and related health organizations in many ways. First, since the choice 

of threshold affects the degree of smoothing that occurs on the map, the approach to threshold 

selection for the KDE to determine a desirable threshold with statistical supports can help in 

reducing bias and constraint on the issue of threshold selection. Moreover, our findings 

underscore the importance of carefully choosing the threshold values to use in disease mapping. 

Inappropriate thresholds can produce misleading conclusions. 

Second, the findings on the relative efficacy of the KDE and spatial empirical Bayes 

approaches will help public health practitioners and related health organizations to better 

understand the merits of these disease mapping methods in terms of accuracy of visual 

representation while recognizing the limitations and importance of selected disease mapping 

methods.  
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Lastly, the contribution of neighborhood health and place vulnerability concepts to define 

neighborhood of risk and identify at risk populations in those spatial units will benefit public 

health tasks of planning and targeting appropriate intervention even in areas with limited and 

poor-quality health data. 

Dissemination of results is also extremely important to the success of this study. The 

findings of each manuscript (Chapter 2-4) have been presented at the national meetings of the 

American Association of Geographers and the International Medical Geography Symposium to 

map-makers, GIS specialists, public health workers and related health organizations. Moreover, 

the Chapter 2 and Chapter 4 manuscripts were submitted to appropriate peer-reviewed journals, 

and the Chapter 3 manuscript is currently being prepared for publication. 

In sum, the findings of this study improve and enhance the use of the KDE method in 

health research, provide better awareness and understanding of disease mapping methods, and 

offer an alternative method to identify populations at risk in areas with limited health data. 

Overall, these findings will benefit health society as well as enhance disease surveillance 

systems. 
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Table A.1 A list of the International Classification of Diseases (ICD) for heart diseases used in this study 

Cause of death ICD-10 
Acute rheumatic fever I00-I02 
Chronic rheumatic heart diseases I05-I09 
Hypertensive heart disease I11 
Hypertensive heart and renal disease I13 
Ischemic heart diseases I20-I25 
Pulmonary heart disease and diseases of pulmonary circulation I26-I28 
Other forms of heart disease I30-I51 

Source 

Heron, M. 2015. Deaths: Leading causes for 2011. Nation Viatal Statistics Reports 64(7). 
Hyattsville, MD: National Center for Health Statistics. Available at 
http://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_07.pdf [last accessed 5 November 
2015]. 
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Table A.2 A list of social determinants of health variables used in this study 
 

Social environment Physical environment Health services 
Race/ethnicity 

White 
Black 
Hispanic (non-White) 

Households by size Health insurance coverage 
Number of rooms in household 

2-4 rooms 
5-7 rooms 

Health insurance coverage by 
age 

Under 18 years 
Educational attainment 

Less than 9th grade 
9th -12th grade 
High school completion 
Some college or associate’s 
degree 
Bachelor’s degree 
Master’s degree or higher 

8 or more rooms 18-34 years 
35-64 years 

Housing units by structure  
Single-family detached homes 
Mobile home 

65 years and older 
Household language  

Total household of limited 
English 
Spanish and limited English 
speaking household 

Housing units by year built 
Before 1960 
1960-1979 

Ratio of income to poverty level 
Less than 0.50 
0.50-0.99 
1.00-1.24 
1.25-1.49 
1.50-1.99 
2.00 or greater 

1980-1999 
2000 or after 

Other languages and limited 
English speaking household 

Median value of home  
Values of homes 

Less than $50,000 
$50,000-$99,999 
$100,000-$149,999 

 

Household income 
Less than $15,000 
$15,000-$24,999 
$25,000-$34,999 
$35,000-$49,999 
$50,000-$74,999 
$75,000-$99,999 
$100,000-$149,999 
$150,000 or greater 

$150,000-$199,999 
$200,000-$299,999 
$300,000 and higher 

 

Transportation to work 
By car, truck, or van 
By public transportation 
By bicycle or walked 
Worked at home 

 
Median household income   
Median household income by 
race and Hispanic origin 

White (not Hispanic) 
White 
Hispanic  

  

Tenure by vehicles available 
No vehicle 
1 vehicle 
2 vehicles 
3 vehicles or greater 

  

Employment status   
(table continues) 
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Table A.2 (continued) 
 

Social environment Physical environment Health services 
Occupation for civilian 
employed 

Management 
Services 
Sales and office 
Construction 
Production, transportation, and 
material moving 
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SUPPLEMENTARY RESULTS
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Table B.1 Summation of the average, standard deviation and RMSE of estimated disease rates from 100 replications. 
 

 Aged 35-44 Aged 45-54 Aged 55-64 Aged 65+ Aged 35+ (overall) 
 Avg SD RMSE Avg SD RMSE Avg SD RMSE Avg SD RMSE Avg SD RMSE 

Simulated 
baseline 
rate 

33.9   115.2   297.6   1245.4   351.1   

Crude rate 35.8 299.7 9.2 115.8 476.5 12.3 298.0 822.2 20.8 1243.0 1614.5 41.3 409.3 614.9 60.7 
Arbitrary 
choices 

               

50 34.4 126.2 3.7 115.1 222.0 7.3 298.0 374.1 10.5 1244.1 746.3 19.9 407.8 351.9 57.4 
100 34.1 98.7 3.1 115.3 178.2 6.0 298.1 304.3 8.4 1243.0 615.3 17.7 407.1 292.4 56.6 
500 34.1 58.4 2.3 115.4 107.2 3.8 298.4 181.2 5.8 1244.4 371.2 10.8 401.6 188.7 50.7 
1000 34.1 46.2 2.0 115.4 85.1 3.3 298.1 142.8 5.2 1244.6 290.8 9.9 398.7 158.9 47.7 
5000 34.1 24.2 1.6 115.4 44.4 2.4 297.6 72.4 3.5 1244.7 147.1 6.8 390.9 109.9 39.9 
10000 34.0 17.6 1.5 115.5 32.5 2.1 297.9 52.3 3.1 1244.7 106.7 6.0 387.4 91.7 36.4 
Calculated 
threshold 

               

hpi 34.3 123.4 3.6 115.2 214.3 7.0 298.1 388.8 10.8 1242.9 785.5 20.9 404.9 243.2 54.2 
hns  34.2 71.5 2.6 115.6 133.3 4.6 298.6 253.8 6.8 1244.0 535.1 14.7 399.3 165.5 48.4 
median 34.2 67.2 2.4 115.5 115.7 4.1 298.8 206.0 6.5 1244.7 428.3 11.7 396.5 145.3 45.6 
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Table B.2 Summation of the average, standard deviation and RMSE of estimated state rates from 100 replications (global difference). 
 
 Age 35-44 

Avg ± SD (RMSE) 
Age 45-54 

Avg ± SD (RMSE) 
Age 55-64 

Avg ± SD (RMSE) 
Age 65 years and older 

Avg ± SD (RMSE) 
Overall 

Avg ± SD (RMSE) 
Threshold KDE SEB KDE SEB KDE SEB KDE SEB KDE SEB 
50 34.4 ± 126.2 34.4 ± 127.7 115.1 ± 222.0 115.1 ± 223.1 298.0 ± 374.1 298.0 ± 374.8 1,244.1 ± 746.3 1,244.1 ± 746.8 407.8 ± 351.9 407.8 ± 352.4 
 (0.002275) (0.001141) (0.001965) (0.003566) (0.002343) 
100 34.1 ± 98.7 34.1 ± 99.3 115.3 ± 178.2 115.3 ± 178.7 298.1 ± 304.3 298.1 ± 304.7 1,243.0 ± 615.3 1,243.0 ± 615.6 407.1 ± 292.4 407.1 ± 292.8 
 (0.002280) (0.001310) (0.002148) (0.005295) (0.002553) 
500 34.1 ± 58.4 34.1 ± 58.5 115.4 ± 107.2 115.4 ± 107.3 298.4 ± 181.2 298.3 ± 181.2 1,244.4 ± 371.2 1,244.4 ± 371.4 401.6 ± 188.7 401.6 ± 188.8 
 (0.002802) (0.000977) (0.166347) (0.003041) (0.002632) 
1000 34.1 ± 46.2 34.1 ± 46.3 115.4 ± 85.1 115.4 ± 85.1 298.1 ± 142.8 298.1 ± 142.8 1,244.6 ± 290.8 1,244.6 ± 291.0 398.7 ± 158.9 398.6 ± 158.8 
 (0.004345) (0.001318) (0.001082) (0.001729) (0.088989) 
5000 34.1 ± 24.4 34.1 ± 24.3 115.4 ± 44.4 115.4 ± 44.5 297.6 ± 72.4 297.6 ± 72.4 1,244.7 ± 147.1 1,244.5 ± 147.2 390.9 ± 109.9 390.7 ± 109.2 
 (0.010697) (0.000170) (0.000196) (0.124612) (0.259353) 
10000 34.0 ± 17.6 34.0 ± 17.7 115.5 ± 32.5 115.5 ± 32.5 297.9 ± 52.3 297.9 ± 52.4 1,244.7 ± 106.7 1,244.5 ± 106.5 387.4 ± 91.7 387.2 ± 91.3 
 (0.006893) (0.023784) (0.008555) (0.175745) (0.201128) 
hpi 34.3 ± 123.4 34.3 ± 124.7 115.2 ± 214.3 115.2 ± 215.2 298.1 ± 388.8 298.1 ± 389.6 1,242.9 ± 785.5 1,242.9 ± 786.0 404.9 ± 243.2 404.9 ± 243.4 
 (0.002270) (0.001208) (0.001930) (0.003700) (0.002418) 
hns 34.2 ± 71.5 34.2 ± 71.7 115.6 ± 133.3 115.5 ± 133.4 298.6 ± 253.8 298.6 ± 253.9 1,244.0 ± 535.1 1,244.0 ± 535.3 399.3 ± 165.5 399.3 ± 165.6 
 (0.002603) (0.054586) (0.001963) (0.003172) (0.002480) 
Median 34.2 ± 67.2 34.2 ± 67.2 115.5 ± 115.7 115.5 ± 115.7 298.8 ± 206.0 298.8 ± 206.0 1,244.7 ± 428.3 1,244.6 ± 428.1 396.5 ± 145.3 396.5 ± 145.3 
 (0.005161) (0.001738) (0.001741) (0.200337) (0.002995) 
Crude rate 35.8 ± 299.7 115.8 ± 476.5 298.0 ± 822.2 1,243.0 ± 1,614.5 409.3 ± 614.9 
Simulated 
baseline rate 

33.9 115.2 297.6 
 

1,245.4 351.1 

Note: KDE – the adaptive KDE method; SEB – the spatial empirical Bayes method. 
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Table B.3 Summary of RMSE at ZCTA level (local difference) 
 

Threshold Age 35-44 
Median RMSE [min, max] 

Age 45-54  
Median RMSE [min, max] 

Age 55-64  
Median RMSE [min, max] 

Age 65 years and older  
Median RMSE [min, max] 

Overall  
Median RMSE [min, max] 

50 0.0089 [0, 0.96] 0.0150 [0, 0.19] 0.0325 [0.01, 0.23] 0.0656 [0.02, 0.42] 0.0133 [0, 0.96] 
100 0.0101 [0, 0.96] 0.0210 [0, 0.16] 0.0407 [0.01, 0.28] 0.0739 [0.03, 1.15] 0.0177 [0, 0.96] 
500 0.0120 [0, 0.96] 0.0240 [0.01, 0.16] 4.5180 [0.02, 22.59] 0.0713 [0.03, 0.66] 0.0239 [0.01, 0.96] 
1,000 0.0126 [0, 1.06] 0.0192 [0.01, 0.43] 0.0332 [0.01, 0.22] 0.0749 [0.03, 0.23] 3.4843 [0.01, 8.71] 
5,000 0.0173 [0, 1.67] 0.0112 [0.01, 0.03] 0.0140 [0.01, 0.03] 4.6476 [1.75, 7.95] 11.0038 [4.40, 16.73] 
10,000 0.1878 [0, 0.75] 0.7070 [0.28, 1.72] 0.2256 [0, 1.13] 7.5849 [5.07, 10.96] 6.9595 [4.25, 9.73] 
hpi 0.0092 [0, 0.96] 0.0175 [0, 0.22] 0.0307 [0.01, 0.39] 0.0725 [0.02, 0.59] 0.0190 [0.01, 0.96] 
hns 0.0111 [0, 0.96] 0.0258 [0.01, 13.83] 0.0342 [0.01, 0.21] 0.0807 [0.03, 0.42] 0.0214 [0.01, 0.96] 
Median 0.0118 [0, 2.03] 0.0257 [0, 0.48] 0.0401 [0.01, 0.40] 6.0184 [0.04, 24.07] 0.0224 [0.01, 0.96] 
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Table B.4 Factor loadings of all 26 variables included in the factor analysis (initial results). 
 

Variables Public Health Region 3 Public Health Region 4 
 Commu- 

nalities 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Commu- 

nalities 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Percent of variance  26.1 15.6 12.4 11.5 5.7  17.1 15.9 12.9 8.8 7.1 
Race/ethnicity             

White 0.782 -0.650  0.467  0.319 0.792  0.555 -0.510  0.372 
Black 0.672   -0.712   0.687  -0.613    
Hispanic 0.857 0.903     0.833   0.895   

Education attainment             
Less than high 
school 

0.887 0.871     0.755   0.701 -0.320  

High school degree 0.850  -0.830    0.628 -0.410  -0.302 -0.410 0.413 
Some college and 
associate degree 

0.697 -0.502 -0.660    0.482   -0.334 0.495  

Bachelor degree 
and higher  

0.831 -0.515 0.517  0.446  0.779 0.715    -0.307 

Income to poverty 
ratio 

            

Less than 0.50 0.500   -0.643   0.411  -0.617    
Between 0.50 and 
0.99 

0.525 0.506  -0.449   0.443  -0.535    

Equal or greater 
than 2.00 

0.873 -0.634  0.546 0.367  0.818 0.391 0.733 -0.321   

Household incomes             
$50,000-99,999 0.630  -0.500 0.562   0.607  0.757    
$100,000-149,999 0.636 -0.379  0.327 0.614  0.415 0.337 0.495    
$150,000-199,999 0.592 -0.362 0.404  0.518  0.326 0.543     
Equal or greater 
than $200,000 

0.839 -0.423 0.795    0.620 0.775     

Occupation             
Management 0.831 -0.640 0.419  0.403  0.632 0.594   0.325  
Construction 0.594 0.677     0.649     0.767 
Production 0.444 0.448   -0.350  0.640 -0.365  0.337 -0.546  

(table continues) 
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Table B.4 (continued) 
 

Variables Public Health Region 3 Public Health Region 4 
 Commu- 

nalities 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Commu- 

nalities 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Value of house             
Less than $100,000 0.777 0.494  -0.363 -0.501 0.332 0.809 -0.589 -0.372  -0.543  

Between $100,000 
and 149,999 

0.688  -0.480   -0.549 0.643    0.749  

Between $150,000 
and 299,999 

0.888    0.901  0.534 0.528 0.321  0.326  

Equal or greater 
than $300,000 

0.840 -0.403 0.808    0.629 0.764     

Living in mobile 
home 

     0.759 0.552    -0.346 0.575 

Housing with ≥ 8 
rooms 

0.671 -0.450 0.532  0.371  0.576 0.659 0.306    

No vehicle own 0.570   -0.724   0.551  -0.693    
No health insurance 0.745 0.770     0.544 -0.312 -0.311 0.555   
Limited speaking 
English in the 
household 

0.716 0.827     0.716   0.839   

Note: All variables are in percentage unit; Boldfaced values indicated variables that contribute in the composite factor (factor loadings ≥ |0.45|); 
Factor loadings < |0.3| are suppressed. 
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