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Mobile applications play an important role in the dissemination of computing and 

information resources. They are often used in domains such as mobile banking, e-

commerce, and health monitoring. Cost-effective testing techniques in these domains are 

critical. This dissertation contributes novel techniques for automatic construction of 

mobile application test suites. In particular, this work provides solutions that focus on the 

prohibitively large number of possible event sequences that must be sampled in GUI-

based mobile applications. This work makes three major contributions: (1) an automated 

GUI testing tool, Autodroid, that implements a novel online approach to automatic 

construction of Android application test suites (2) probabilistic and combinatorial-based 

algorithms that systematically sample the input space of Android applications to generate 

test suites with GUI/context events and (3) empirical studies to evaluate the cost-

effectiveness of our techniques on real-world Android applications. Our experiments show 

that our techniques achieve better code coverage and event coverage compared to random 

test generation. We demonstrate that our techniques are useful for automatic construction 

of Android application test suites in the absence of source code and preexisting abstract 

models of an Application Under Test (AUT). The insights derived from our empirical 

studies provide guidance to researchers and practitioners involved in the development of 

automated GUI testing tools for Android applications. 
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CHAPTER 1

INTRODUCTION

1.1. Motivation

Mobile devices are increasingly powerful tools that provide portable access to comput-

ing resources and services. Smart mobile devices provide Operating Systems (OS) that serve

as a platform for mobile applications (apps). These mobile applications provide services in

critical domains such as ecommerce, mobile banking and mobile health monitoring where a

faulty mobile app could lead to devastating consequences for end users and developers. The

mobile app market is a $77 billion industry [27] and only about 16% of users are likely to

try a failing app more than twice [66]. Therefore, the success of a mobile app may depend

on how thoroughly it is tested.

This dissertation focuses on the Android platform since it currently dominates the

mobile Operating System (OS) market worldwide [33]. The availability of extensive docu-

mentation, development frameworks and app stores has enabled a large number of developers

with limited resources to easily build and distribute Android apps. Many developers lack

extensive training in software testing and may not have the resources necessary to adequately

test their applications before they are released to end users. An analysis of over 600 open

source Android apps shows that only about 14% of the apps contain test cases and the ma-

jority of the apps with test cases provide less than 40% code coverage [35]. These findings

suggest that the majority of Android apps are poorly tested. Many mobile app developers

choose to manually write test scripts with libraries such as Robotium [62], Espresso [28]

and JUnit [34]. An alternative is to use capture-replay tools (such as Robotium Recorder

[61]) that enable developers to manually execute and record sequences of GUI events for

replay at a later time. The significant amount of manual effort that these techniques require

often limits developers’ ability to author tests that adequately explore the vast input space

of a mobile app. Automated GUI testing tools and techniques may minimize the manual

effort required to construct effective test cases for mobile apps. This dissertation describes
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Autodroid, an automated GUI testing tool for Android apps and investigates several algo-

rithms that systematically explore the input space of GUI-based Android applications to

automatically construct cost-effective test suites.

1.2. The Automated Test Generation Problem

This dissertation addresses several challenges that hinder the use of automated test

generation techniques within the context of mobile applications. These challenges include the

vast input space of GUI-based applications, inadequate tool support for generating reusable

test suites, context-sensitivity in mobile applications and limited empirical studies on the

effectiveness of various algorithms.

Vast input space. Mobile applications are Event Driven Systems (EDSs) that take event

sequences as input and respond by changing their state. Mobile applications typically have

a Graphical User Interface (GUI) that enables user interaction via sequences of user actions

such as clicking a button or typing text into an input field. Mobile applications conform to

platform-specific GUI design patterns that must be considered when developing automated

test generation techniques. GUI-based applications are particularly difficult to test because

of the prohibitively large number of possible event sequences that make up the input space

and must be sampled during test generation. Each possible event sequence in the input space

represents a potential test case that may trigger faults in the Application Under Test (AUT).

The automatic test generation problem requires solutions that enable efficient exploration

of this vast input space, especially when there is insufficient information about the inner

workings of the AUT.

Reusable test suites. Any investigation into the cost-effectiveness of various test gener-

ation techniques requires adequate tool support. The majority of existing automated GUI

testing tools for Android applications (e.g. [29, 32, 42]) do not generate reexecutable test

cases that enable automated regression testing and easy reproduction of failures [19]. Testers

often perform regression testing by reusing test cases from previous versions of the AUT.

Regression testing assesses the continued quality of an AUT after one or more changes in its

functionality. In many cases, existing tools generate and execute a single event sequence of
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predetermined length rather than a test suite with distinct event sequences (test cases). A

single event sequence that contains a large number of events may be difficult to examine and

reexecute to reproduce failures. Automated GUI testing tools that generate reusable test

cases facilitate automated regression testing, alleviate the difficulty of failure reproduction

and provide useful insight into the structure of test cases produced by various test generation

techniques.

Context-sensitivity. Mobile applications further complicate the testing process with their

ability to respond not just to GUI events, but also context events (e.g. changes in network

connectivity, battery levels, location, etc.) to provide context-sensitive functionality to users.

Context events often modify one or more context variables (e.g. screen orientation, connec-

tivity status, etc.) that define the operating context of a mobile application and may affect

its behavior. Faults may occur only in specific operating contexts or as a result of interac-

tions between context variables. The majority of existing research focuses predominantly

on GUI events with limited or no consideration for context events and how they affect the

behavior of an AUT. Automated testing techniques that integrate context changes into the

test generation process may enable cost-effective testing of context-sensitive behavior that

may otherwise go untested.

Empirical studies. There is a lack of empirical studies that objectively compare test

generation techniques within the context of Android applications. Prior work (e.g. [19])

compares different automated GUI testing tools for Android apps. The results of such

comparisons are often affected by differences in event abstraction and implementation choices

across various tools. While existing empirical studies may provide information regarding

what tools work best in particular testing scenarios, they do not provide insight into which

algorithms and heuristics are most cost-effective in comparison to random testing. Arcuri

et al. [7] recommend random test generation as a baseline for empirical evaluation of test

generation algorithms especially when such algorithms use randomization. Experiments that

minimize the influence of abstraction and implementation differences across tools may enable

objective comparisons between various test generation algorithms and heuristics.
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This dissertation sets out to investigate the following thesis: within the context

of GUI-based Android applications, probabilistic and combinatorial-based test

generation techniques may be used to develop algorithms that significantly out-

perform random test generation in terms of code coverage and event coverage

despite the additional computational overhead required by such techniques.

1.3. Contributions

1.3.1. Online Construction of Reusable Test Suites for Android Apps

This dissertation describes a novel online approach to automatic construction of

reusable Android application test suites. We define an event sequence metamodel that speci-

fies an abstract representation for automatically generated test cases such that each test case

that conforms to the metamodel may be automatically reexecuted for automated regression

testing or reproduction of failures. We develop a process to automatically construct test

suites that conform to our metamodel and demonstrate the feasibility of our approach with

real-world Android applications.

1.3.2. Test Suite Construction Algorithms and Heuristics

This dissertation presents new algorithms and heuristics for online construction of

Android application test suites. We use probabilistic and combinatorial-based techniques to

develop algorithms that automatically construct Android application test suites with distinct

event sequences as test cases. We develop a framework that enables automated testing of

context-sensitive behavior in Android applications. The framework allows instantiation of

multiple online algorithms to generate tests that interleave GUI events and context events

in different ways.

1.3.3. Autodroid: An Automated GUI Testing Tool for Android Apps

We implement the algorithms and techniques in this work as part of an automated

GUI testing tool, Autodroid, that uses our online approach to automatically generate reusable

test suites. Autodroid provides tool support for our empirical studies and enables objective

comparisons between several test suite construction algorithms.
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1.3.4. Empirical Studies

This dissertation describes empirical studies to evaluate the cost-effectiveness of prob-

abilistic and combinatorial-based algorithms for online construction of Android application

test suites. We perform experiments with real-world Android applications and compare our

techniques to random test generation in terms of code coverage and event coverage. We also

perform experiments to evaluate multiple techniques for online construction of test suites

with context events and GUI events. To facilitate objective comparisons between tech-

niques, we implement the techniques in our empirical studies within the same tool and use

the same abstractions across all algorithms. Our empirical studies provide insight into which

algorithms are most cost-effective for online construction of Android application test suites,

given a fixed time budget for testing. The empirical studies in this dissertation provide

guidance to researchers and practitioners who are involved in the development of automated

GUI testing tools for Android apps.

1.4. Organization

Chapter 2 provides an overview of Android applications and discusses related work

in automated GUI testing. Chapter 3 presents our online approach to automatic construc-

tion of Android application test suites and describes a tool, Autodroid, that implements

our approach. In Chapter 4, we describe and evaluate frequency-based techniques to reduce

redundant event selection in random-based test suites and increase code coverage. Chap-

ter 5 describes and evaluates a combinatorial-based technique that maximizes coverage of

n-way event combinations and considers the order in which events have previously occured

during test suite construction. In Chapter 6, we describe a framework that enables testing

of context-sensitive behavior in Android applications. The framework allows testers to in-

stantiate various test generation algorithms that interleave context events and GUI events

in different ways. Finally, Chapter 7 concludes the dissertation.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides an overview of software testing techniques and Android appli-

cations. We discuss related work in the area of automated GUI testing and describe GUI

testing challenges that motivate the techniques and experiments in this work.

2.1. Automated GUI Testing Techniques

Automated GUI testing techniques generally fall into two categories: offline (model-

based) testing techniques and online testing techniques [3,10]. This section describes both

techniques and the practical issues that affect their application to automated GUI testing.

2.1.1. Offline (Model-based) Testing Techniques

Offline testing techniques require a static abstract model of the Application Under

Test (AUT) to automatically generate test cases. These techniques often use state machines

[5,11,70] or event flow graphs [48,72,76] to generate GUI event sequences. Test generation

and test execution are separate activities and test execution occurs after test generation.

Abstract models of the AUT may be constructed manually or with GUI Rippers that auto-

matically extract models from GUIs. A graph-based model of the AUT enables generation

of event sequences that satisfy graph-based coverage criteria such as node coverage or transi-

tion coverage. Manual construction of abstract models is time-consuming and automatically

constructed models are often inaccurate. Inaccurate models of an AUT’s behavior often

produce test cases that are only partially executable [10]. The majority of existing research

in automated GUI testing uses model-based techniques.

2.1.2. Online (Dynamic) Testing Techniques

Online testing techniques do not require a preexisting abstract model of the AUT.

During test generation, an online algorithm dynamically analyzes each GUI state of the

AUT to identify, select and execute GUI events [3, 10]. Online GUI testing algorithms

create event sequence test cases one-event-at-a-time through multiple iterations of event
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identification, selection and execution. Event selection in each GUI state may be random

or based on some predefined criteria (e.g. prior selection frequency). Test cases generated

with online techniques are always fully executable since test generation and execution occur

cooperatively based on the actual behavior of the AUT, rather than a possibly inaccurate

abstract model.

This dissertation presents new algorithms for online construction of Android appli-

cation test suites and empirical studies to assess their cost-effectiveness. Our techniques do

not require source code analysis or preexisting abstract models of the AUT’s behavior. Our

algorithms automatically construct test cases one-event-at-a-time with an event extraction

cycle that iteratively identifies, selects and executes events from the GUI of the application

under test.

2.2. Random Testing

Random testing is a simple technique that is often used to automatically test software

[9, 31]. Random-based techniques choose tests at random from the input domain of the

System Under Test (SUT). Input selection may be based on a defined probability distribution

(e.g. uniform, normal, etc.) or an operational profile that represents typical usage of the

SUT [67]. Miller et al. [52] show that random testing finds crashes in MacOS command-

line and GUI applications. One criticism of random testing is that it does not leverage any

information about the SUT to improve the testing process. Chen et al. [18] propose an

adaptive approach to random testing that evenly spreads tests across the input domain.

Adaptive Random Testing (ART) techniques operate under the assumption that failure-

causing inputs tend to cluster within the input domain of an SUT. These techniques often

use distance metrics (e.g. euclidean distance) to select test cases that are dissimilar to each

other and maximize some notion of test case diversity within a test suite [41]. Arcuri et

al.[6] show that compared to simple random testing, ART techniques are inefficient even for

trivial problems because of the repeated distance calculations among test cases. Random

testing is often compared to structural testing in terms of code coverage and fault-finding

effectivenesss [9,24]. Naive random testing techniques sometimes perform better than more
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sophisticated techniques that incur extra computational overhead [8,63]. Duran and Ntafos

[24] show that random testing is a useful testing technique that may detect failures in an

SUT with less effort compared to more sophisticated techniques such as partition testing.

These observations suggest that any proposed novel technique for test generation should

be compared to a random-based technique. Such a comparison is necessary to show that

any computational overhead incurred by the novel technique does not outweigh its potential

benefits relative to random testing [7]. In this work, we introduce Autodroid, an automated

testing tool that supports various algorithms for online construction of Android application

test suites. We use random-based test suites generated with Autodroid as a baseline to

evaluate the test suite construction algorithms in this work.

2.3. Combinatorial Interaction Testing

Combinatorial Interaction Testing (CIT) techniques systematically examine interac-

tions between inputs of a system [37,38,59,68,69,74]. CIT often requires system input to

be modeled as parameters and values. Since the number of possible parameter-value combi-

nations may be prohibitively large, CIT techniques use sampling mechanisms that systemat-

ically combine parameter-values to form a covering array. A covering array CA(N ; t; k; v) is

an array with N rows and k columns such that each t-tuple occurs at least once within the

rows. For a covering array CA(N ; t; k; v), k is the number of parameters in the combinatorial

input model, v is the number of values associated with each parameter and t is the strength

of interaction coverage. Each row of the covering array specifies parameter-values for a spe-

cific test. The covering array specifies a collection of tests that cover all t-way combinations

of parameter values, where t is the number of parameters to combine [59]. CIT algorithms

aim to cover all t-way parameter-value combinations in as few tests as possible to detect

failures triggered by interactions between parameters.

Consider the example of a combinatorial testing model in Table 2.1 with four parame-

ters and three values for each parameter. An example of a pairwise interaction for this input

specification is: {OrderCategory=Rent, Location=London}. An exhaustive interaction test

suite requires 34 tests. Table 2.2 shows a 2-way interaction test suite (covering array) that
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requires only 9 tests. Any two columns of the array contain all possible value combinations

for two specific parameters corresponding to the columns.

Order Category Location Order Time Order Type
Buy London Working hours Online
Sell New York Non-working hours In store
Rent Seattle Holiday Phone

Table 2.1. Combinatorial testing model with four parameters and three val-
ues for each parameter

Test
No.

Order
Cate-
gory

Location Order Time Order Type

1 Buy London Working hours Online
2 Buy New York Non-working hours In store
3 Buy Seattle Holiday Phone
4 Sell London Holiday In store
5 Sell New York Working hours Phone
6 Sell Seattle Non-working hours Online
7 Rent London Non-working hours Phone
8 Rent New York Holiday Online
9 Rent Seattle Working hours In store

Table 2.2. A 2-way interaction test suite (covering array)

Empirical studies show that combinatorial-based testing may be effective for detecting

software faults. Kuhn et al. [37, 38] show that faults are often triggered by interactions

among six or fewer parameters. There are several algorithms and techniques for automatic

generation of covering arrays from combinatorial testing models [13–16,20–22,38,39]. Many

of these algorithms focus on testing interactions in systems where inputs are not sequence-

based and the order of inputs is not important. Kuhn et al. [36] apply combinatorial

methods to event sequence testing where the order of events is important. They construct

Sequence Covering Arrays (SCAs) that test any t events in every possible t-way order. Their

technique is limited to situations where events are not repeated, sequences are of fixed length

and there are no constraints on the order in which events occur in a sequence. We extend

their technique to the mobile application domain where there are constraints on the order of
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events, sequences can have varying lengths and events may be repeated. In Chapters 5 and

6, we describe and evaluate online test suite construction algorithms that use covering arrays

and combinatorial methods to automatically construct Android application test suites.

2.4. Related Work in Automated GUI Testing

GUI-based applications are event-driven. Examples of GUI-based applications include

desktop applications, web applications and mobile applications. The large number of possible

event sequences in a GUI-based application makes testing particularly challenging. For a

given AUT, each possible event sequence represents a potential test case. Automated testing

techniques may be used to sample the event sequence space of an AUT and select test cases

that expose faulty behavior [12].

The majority of existing work in automated GUI testing uses model-based testing

techniques to automatically generate event sequences. Model-based techniques require con-

struction of static abstract models of the AUT prior to test generation. Prior work describes

several types of graph-based models for automated GUI testing. For such graph-based mod-

els, graph traversal algorithms (e.g. depth-first search and random traversal) may be used to

generate test cases that correspond to valid paths through the model. Memon [48] describes

an Event Flow Graph (EFG) model for automated GUI testing. An EFG model represents

a set of possible event sequences for a given AUT. The nodes represent GUI events and an

edge from one event e1 to another event e2 indicates that e2 can occur after e1. Model-based

testing techniques may also use state-based models to represent possible event sequences

for a given AUT [5, 51, 65]. In state-based models, nodes represent GUI states and edges

represent events that cause transitions between states.

Manual construction of behavioral models for automated GUI testing is a challenging

task. Memon et al. [47, 49] and Nguyen et al. [57] describe the GUITAR framework for

reverse engineering of GUI-based applications and automatic generation of event sequences.

The GUITAR framework includes a GUI Ripper that automatically explores the GUI of

the application under test to construct an EFG for model-based testing. Mesbah et al. [51]

present a framework to automatically infer state machine models of web applications for mul-
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tiple purposes including automated testing. Yang et al. [73] use static and dynamic analysis

to automatically extract finite state machine models from mobile applications. Model-based

testing techniques tend to generate infeasible test cases (i.e. test cases that are only partially

executable) because abstract models may not accurately represent the actual behavior of the

AUT.

Some existing research combines model-based testing and combinatorial-based tech-

niques. Yuan et al. [74] use covering arrays and Event Interaction Graphs (EIG) to construct

GUI event sequences that cover all t-way sequences of events. Wang et al. [68,69] use com-

binatorial techniques to automatically construct navigational graphs for web applications.

They also describe a technique to test all pairwise (2-way) interactions between any two

pages of a web application. Di Lucca et al. [23] present a technique that uses preexisting

statechart models to test interactions between web applications and browsers. They use

graph-based coverage criteria to generate test cases that cover all sequences of k transitions

in the statechart model.

Online GUI testing techniques do not require a preexisting abstract model of the AUT

prior to test generation. These techniques interact directly with the AUT to concurrently

generate and execute test cases. Online GUI testing techniques use various strategies to

determine which event to execute in each GUI state during event sequence generation. Event

sequence generation is based on the runtime behavior of the AUT rather than traversal of

abstract graph-based models. In comparison to model-based testing, online GUI testing

techniques tend to achieve higher coverage of the AUT and are less likely to produce infeasible

event sequences [10]. Carino [17] evaluates various online GUI testing algorithms for Java

desktop applications [60]. The algorithms incrementally construct a graph-based model

of previously executed event sequences and uses the model to guide subsequent execution

of events. In this dissertation, we adapt some of the ideas described in [17] to Android

apps. We develop online GUI testing algorithms that automatically generate replayable

event sequences for a given Android application without need for static code analysis or

construction of graph-based models.
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Figure 2.1. Example of an Android application GUI

2.5. Android Mobile Applications

Android mobile applications are Event Driven Software (EDS) and are composed of

several Java components that are instantiated at runtime. An Activity is the primary GUI

component of an Android application. Activities represent screens that are visible to users

and each activity has a unique name within an application. Activities are composed of GUI

widgets that users may interact with (e.g. buttons and text fields). Figure 2.1 shows an

example of an activity with multiple widgets. Widgets in an activity are part of a hierarchical

structure that defines a formal representation of an application’s GUI at any point in time.

Each widget has a set of properties and associated values (e.g. label, caption and size) that

specifies its visual characteristics. Android apps often contain several activities in which user

interaction may occur and only one activity can be active at any time.

Users often interact with Android apps by touching widgets on a screen or by per-

forming actions on an input device (e.g. a keyboard or hardware button). The Android

system may interact with activities to provide functionality that depends on external factors

(e.g. network availability, screen orientation, battery levels, etc.). These interactions trigger

GUI and system events that an Android application may respond to. Activities define event

handlers that execute code in response to events. A sequence of events often causes transi-

tions between activities or between states of the same activity. The Android system manages

activities in a stack. Users can interact only with the activity at the top of the stack (i.e. the
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running activity). When a user or system event launches a new activity, the activity manager

adds the new activity to the stack. Android devices have “back” and “home” navigation

buttons that are always available to users. In most Android apps, the “back” button removes

the running activity from the activity stack and does one of the following: (i) reactivates

the next activity in the stack or (ii) closes the Android app because the activity stack is

empty. The “home” button always closes an Android app and returns to the device’s home

screen. In Chapter 3, we leverage our domain knowledge of Android applications to define

a domain-specific metamodel that enables online construction of reusable test suites.

2.6. GUI Event Interaction in Android Applications

GUI-based Android applications are event-driven systems since they react primarily

to GUI events. An event-driven system may exhibit a particular behavior only when two or

more specific events are executed in the same sequence and in a particular order. Interactions

between events that occur in a particular order may cause faulty behavior in an AUT [36].

Figure 2.2 shows a state transition graph from a real-world Android application (Tomdroid

v1.7.2). The nodes represent GUI states and the edges represent events associated with

particular widgets. The state transition graph has five GUI states {A,B,C,D,E, F,G,H}

and eight distinct events {e1, e2, e3, e4, e5, e6, e7, e8}. State A is the initial GUI state of the

mobile application (i.e. the GUI state after a user launches the application). The widgets

associated with each event are highlighted in rectangles. The two outgoing edges in state F

represent the same event but with varying behavior depending on the path taken through

the graph. We use this graph to illustrate Android application behavior that varies due to

interaction between events that occur in a particular order.

Table 2.3 shows a test suite T = {t1, t2, t3, t4} with four test cases derived from the

state transition graph in Figure 2.2. Each test case ti is an event sequence that represents a

valid path through the state transition graph. Each event sequence covers a set of previously

uncovered event pairs and results in a final GUI state. Test t1 covers ten event pairs and

results in GUI state F as shown in the graph. We construct t2 by appending e8 to t1. Test

t2 covers five previously uncovered event pairs and results in GUI state G. At this point in
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the test suite, no event pairs with e4 and e5 are covered because they do not appear in any

of the event sequences.

A

E

F

G

HD

B C

e6

e1

e2

e4

e8

e8

e5

e7

e3

Figure 2.2. GUI state transition graph for a mobile application (Tomdroid)

ID Start
State

Event Sequence New Pairs Covered Final GUI
State

t1 A 〈e1, e2, e3, e6, e7〉 {(e1, e2), (e1, e3), (e1, e6),
(e1, e7), (e2, e3), (e2, e6),
(e2, e7), (e3, e6), (e3, e7),
(e6, e7)}

F

t2 A 〈e1, e2, e3, e6, e7, e8〉 {(e1, e8), (e2, e8), (e3, e8),
(e6, e8), (e7, e8)}

H

t3 A 〈e1, e2, e4, e5, e6, e7〉 {(e1, e4), (e1, e5), (e2, e4),
(e2, e5), (e4, e5), (e4, e6),
(e4, e7), (e5, e6), (e5, e7)}

F

t4 A 〈e1, e2, e4, e5, e6, e7, e8〉 {(e4, e8), (e5, e8)} G

Table 2.3. GUI event sequences and interaction-based behavior in a real-
world Android app

Consider the behavior of the mobile application when we construct event sequences

with e4 and e5. Test t3 takes the path through 〈e4, e5〉 and covers nine new event pairs. This

results in GUI state F. Test t3 results in the same GUI state (F ) as t1 despite the presence of
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e4, e5 and their corresponding pairwise interactions with other events in the sequence. This

suggests that t1 and t3 cause identical behavior in the mobile application. It also suggests

that appending e8 to t3 should result in the same GUI state as t2, since t2 is also the result of

appending e8 to t1. However, we observe that t4 results in GUI state H which represents new

behavior that is not tested by t1, t2 and t3. We cannot attribute this new behavior to the

presence of e8 in t4 because e8 is also in t2. Test t4 is unique because it covers two new event

pairs, (e4, e8) and (e5, e8). An examination of Tomdroid’s functionality shows that event e4

configures the application to keep deleted notes rather than completely remove them from

storage while e8 confirms deletion of a note. The presence of e4 and e8 in t4 such that e4

precedes e8 causes the note deletion event (e8) to behave differently from other sequences

that do not have this order relation between e4 and e8. We refer to this sort of behavior as

interaction-based behavior.

A complex Android application may contain numerous instances where the order of

GUI events affects its behavior. In Chapter 5, we describe a combinatorial-based technique

that prioritizes coverage of n-way event combinations and increases the likelihood of testing

behavior that occurs only when events are executed in a particular order.

2.7. Context-Sensitivity in Android Applications

A mobile application may use information from external sources (e.g. network de-

vices, sensors, battery, the operating system, etc.) to provide context-sensitive functionality

to users. These external sources of information define the operating context of a mobile

application and may affect the behavior of an AUT. Figure 2.3 shows an example of context-

sensitive behavior that occurs when a user launches a mobile application in different contexts

(GPS on/off). If a user launches the application with the GPS turned off, the application

displays a dialog that prompts the user to turn on the GPS sensor before proceeding. If a

user launches the application with the GPS sensor turned on, the application retrieves the

user’s current location and does not display a dialog. This observation suggests that the

behavior of an application may vary depending on its operating context and that it may be

useful to generate tests that launch the AUT in different contexts.
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(a) GPS = Off (b) GPS = On

Figure 2.3. Launching an Android application in two different contexts

Figures 2.4 and 2.5 show examples of context-sensitive behavior in an Android appli-

cation when the same GUI event is executed in two different contexts. If a user clicks one

of the list items in Figure 2.4 when the mobile device is in airplane mode, the application

displays a dialog that informs the user about the absence of an Internet connection. In this

case, the user is unable to access any other parts of the app beyond that point. Figure 2.5

shows what happens when the device is not in airplane mode and has access to the Internet.

The application is able to retrieve the required information and display it to the user in a

screen that may otherwise be unreachable in a different context. This observation suggests

that it may be useful to generate tests that dynamically manipulate the operating context

of the AUT to execute GUI events in different contexts.

The operating context of mobile applications changes constantly due to the porta-

bility and connectivity requirements of mobile devices. It is important for automated GUI

testing techniques to consider the impact of changing context on the behavior of mobile ap-

plications. In Chapter 6, we describe a framework for automatic construction of test suites
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that dynamically manipulate the operating context of the AUT to execute GUI events in

different contexts and test context-sensitive behavior in Android applications.

Figure 2.4. Clicking a list item with airplane mode ON (no internet access)

Figure 2.5. Clicking a list item with airplane mode OFF (internet access)
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2.8. Automated GUI Testing of Android Applications

The majority of existing research in automated testing of Android applications ex-

plores model-based techniques and pays limited attention to online GUI testing techniques.

Many of these techniques do not consider the existence of interactions among events executed

in a particular order and they do not consider the potential impact of context changes on

the behavior of mobile applications.

There are several tools and techniques for automated GUI testing of Android ap-

plications [2,5,28,29,32,43,53,55,56,62,64,65,77,78]. Many of the tools developed in

prior research studies are no longer compatible with recent versions of the Android operating

system. This makes it difficult to use the tools for further research in automated GUI testing

of Android apps. Monkey [29] is the most widely available automated GUI testing tool for

Android applications since it is part of the official Android Software Development Kit (SDK)

and is particularly easy to use [19]. Monkey automatically executes a predefined number

of pseudorandom GUI and system events on any given Android application. It performs

actions on random screen coordinates regardless of whether the events are relevant to the

application under test. We do not consider Monkey to be an online GUI testing tool since

it does not use any runtime information concerning the GUI structure of the application

under test. Amalfitano et al. [5] develop a model-based testing tool called MobiGUITAR

that automatically extracts a state machine model and traverses the model to automatically

generate event sequences. Machiry et al. [42] develop a tool called Dynodroid that uses on-

line GUI testing techniques to execute an input sequence of predefined length for any given

Android app. Dynodroid does not provide a way to construct a test suite with distinct event

sequences that are replayable. It does not consider potential interactions between events as

part of its input generation process and provides limited consideration for events that change

the operating context of the AUT. Nguyen et al. [58] describe a technique that combines

model-based testing and combinatorial testing to generate event sequences from a manually

constructed finite state model. Their technique converts event sequences into concrete test

cases with combinatorial input data. The technique does not consider the order of events or
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coverage of event combinations. Trimdroid [53] is a framework for GUI testing of Android

applications that uses combinatorial-based methods, automated program analysis and formal

specifications to generate tests. Trimdroid extracts models from application source code and

uses graph-based criteria to generate event sequences that are enhanced with combinatorial

input data. It analyzes source code to detect dependencies between GUI elements and uses

the derived information to reduce the number of input combinations to be tested.

This dissertation describes novel algorithms and heuristics for online construction of

Android application test suites. We use an event sequence metamodel to specify information

that each test case must contain to enable reexecution during regression testing. We also

use our event sequence model to specify equivalence relations between events. Our online

algorithms use the equivalence relations to guide event sequence generation toward coverage

of events and event combinations. In Chapter 3, we describe our automated GUI testing

tool, Autodroid, that uses online GUI testing techniques to generate reusable test suites for

Android applications without need for source code analysis or graph-based models.
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CHAPTER 3

ONLINE CONSTRUCTION OF REUSABLE TEST SUITES FOR ANDROID

APPLICATIONS

Model-based techniques generate tests from a preexisting abstract model of the Ap-

plication Under Test (AUT) and may produce infeasible test cases. Online GUI testing

techniques reduce the likelihood of infeasible tests and often achieve higher code coverage

than model-based techniques [10]. Online GUI testing algorithms (also known as dynamic

event extraction-based algorithms) interact directly with the GUI of the application under

test to concurrently generate and execute event sequences without need for source code anal-

ysis or preexisting abstract models of the AUT. These algorithms iteratively identify, select

and execute events to generate tests one-event-at-a-time [3]. In this chapter, we describe an

online approach to automatic construction of Android application test suites. We describe

an event sequence metamodel that specifies information that each test case must contain to

enable reexecution for automated regression testing and failure reproduction. We use the

event sequence metamodel to define equivalence relations between events and we develop an

algorithm for online construction of test suites with distinct event sequences that conform

to our event sequence metamodel. We implement our techniques in a tool called Autodroid

and compare test suites generated with our online technique to test suites generated with

Monkey [29], a widely available random GUI testing tool for Android applications.

Autodroid and the online techniques in this chapter differ from related work. First,

many existing tools and techniques require a preexisting abstract model of the Applica-

tion Under Test (AUT) for offline event sequence generation and subsequent execution

[4,5,43,77]. Our online algorithms interleave generation and execution of event sequences

without need for source code analysis or preexisting abstract models of the AUT. Second,

in a comparison of automated testing tools for Android applications, Choudhary et al.[19]

notes that the majority of existing tools do not produce event sequences that can be reexe-

cuted for regression testing purposes or reproduction of failures. These tools do not produce
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a structured representation of the event sequences that can be replayed. Many existing tools

automatically execute a single event sequence of predetermined length for the entire dura-

tion of testing. It may be difficult for a tester to reexecute and inspect a single sequence

that contains a large number of events, especially when such events do not conform to a

predefined abstract representation. Our automated GUI testing tool, Autodroid, generates

test suites with distinct event sequences of varying length and our test suites conform to an

event sequence metamodel that enables reuse. Test suites with distinct event sequences of

varying length may be easier to inspect since testers may need to identify and examine only

the particular test cases that fail without having to examine any other test cases in the test

suite. Short event sequences may identify “shallow” faults that are easy to reproduce. Long

event sequences may improve code coverage and identify faults that short event sequences

cannot reach [71]. Finally, many existing tools are no longer compatible with recent ver-

sions of the Android operating system (Android 4.0 and above). This limits the ability of

researchers to use these tools as the basis for further research in automated GUI testing.

Autodroid is compatible with recent versions of the Android operating system and provides

tool support for the empirical studies in subsequent chapters of this dissertation.

3.1. An Event Sequence Metamodel for Online GUI Testing

TestCase

+id: String

Event

+actions: List<Action>
+precondition: Condition
+postcondition: Condition

Action

+type: String
+value: String
+target: Target

1

1..*

1

1..*

Condition

+stateId: String
+activityName: String

1

2

Target

+type: String
+identifier: String
+description: String

1 1

Figure 3.1. GUI event sequence metamodel
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Figure 3.1 shows our event sequence metamodel for online construction of reusable

Android application test suites. We define each element of the metamodel as follows.

Definition 3.1. (Target) A target is a GUI widget or other non-GUI component that

a user or the Android system may interact with. A target has an identifier, type and

description. The identifier is a name that uniquely identifies a GUI widget or non-GUI

component e.g. “btnSignUp” or “wifiDevice”. The type attribute denotes what kind of GUI

widget or non-GUI component the target represents e.g. “Button”, “TextBox” or “gps”.

The description attribute describes the visual characteristics of a target whenever possible.

For example, a button may be visually described by its label. Examples of targets include

buttons, checkboxes, GPS and WiFi .

We define an equivalence relation between targets as follows: two targets are equivalent

if they have the same type, identifier and description.

Definition 3.2. (Action) An action characterizes a user or system interaction with a target.

Every action has a type and value. An action’s type denotes the nature of the interaction (e.g.

“click” and “text entry”). Some actions have an associated value e.g. the specific text value

entered in a text field. An action’s target represents the GUI widget or non-GUI component

that the action affects. Users execute user actions via the GUI of an app (e.g. clicking a

specific button) and the Android system may execute system actions (e.g. switching GPS

off).

We define an equivalence relation between actions as follows: two or more actions are

equivalent if they have the same type and target.

Definition 3.3. (Event) An event is a sequence of actions that has a precondition and

postcondition. Event execution occurs when a user or automated tool performs all the actions

specified in an event’s action sequence. An event’s precondition describes the GUI state of

the application under test prior to execution of the event. An event’s postcondition describes

the GUI state of the application under test after execution of the event.

We define an equivalence relation between events as follows: two or more events are
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equivalent if they have the same precondition and sequence of actions.

Note that the equivalence relation between events does not include postconditions.

In subsequent chapters, we use equivalence relations between events to distinguish between

previously executed events and events that are yet to be executed. During online test

generation, the postcondition of an event is unknown prior to execution of the event. We

refer to events with undefined postconditions as partial events. An event with a defined

precondition, action sequence and postcondition is called a complete event.

The state of a mobile application’s GUI often changes after execution of one or more

events. An event may consist of one or more actions. We refer to events with only one action

as simple events while events that have more than one action are complex events. An event

that closes the application under test is called a termination event.

Definition 3.4. (Preconditions and Postconditions) The pre- and postconditions of an

event describe the GUI state of an AUT prior to and after execution of the event respectively.

Each precondition and postcondition has an activityName and a stateId. The activityName

uniquely identifies the running activity of an AUT prior to and after event execution. The

stateId is a unique identifier for GUI states before and after event execution. In this work,

we derive the stateId from the name of the running activity and the set of available actions

on a given screen. Two GUI states are equivalent if they have the same activity name and

equal sets of available actions.

Postconditions and preconditions enable an automated regression testing tool to en-

sure that an Android app is in the expected GUI state before and after execution of each

event in a test case.

Definition 3.5. (Test case) A test case is a sequence of events. The length of a test case

is the number of events in the sequence. Every test case has an id that uniquely identifies it

within a test suite. Table 3.1 shows an example of a test case defined in terms of our event

sequence model.
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Definition 3.6. (Test suite) A test suite is a set of test cases.

Start
ID

<testcase>

<id>testcase0001</id>

Event 1 <event>

<precondition>

<activityName>RegActivity</activityName>

<stateId>e9be7ae186ac52a8dcc</stateId>

</precondition>

<actions>

<action>

<type>click</type>

<value></value>

<target>

<id>btn_next</id>

<type>Button</type>

<desc>Next</desc>

</target>

</action>

</actions>

<postcondition>

<activityName>BioActivity</activityName>

<stateId>5336ab0c86f2c254de4</stateId>

</postcondition>

</event>

Event 2 <event>

<precondition>

<activityName>BioActivity</activityName>

<stateId>5336ab0c86f2c254de4</stateId>

</precondition>

<actions>

<action>

<type>click</type>

<value></value>

<target>

<id>btn_finish</id>

<type>Button</type>

<desc>Finish</desc>

</target>

</action>

</actions>

<postcondition>

<activityName>finishActivity</activityName>

<stateId>2447bd0f37c2e791fa2</stateId>

</postcondition>

</event>

End
</testcase>

Table 3.1. Example test case with two events
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3.2. Online Event Sequence Generation

Sequence
initialization

Start Event
identification

Event
selection

Event 
execution

Event
synthesis

Sequence
update
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sequence?

End
Yes

No

Figure 3.2. Online event sequence construction

Figure 3.2 shows the steps in our online approach to event sequence generation. The

steps are as follows:

Step 1: Sequence Initialization. This step creates an empty sequence, deletes application

data created by previously executed sequences (if any) and launches the AUT on the mobile

device. This step produces the initial GUI state of the application under test.

Step 2: Event Identification. This step analyzes the GUI of the application under test,

identifies all available actions and extracts a representation of the current GUI state to be

used as a precondition for each available event. We use this information to derive a set

of event abstractions that conform to our event sequence metamodel. At this point, the

postconditions for the identified events are unknown. The output of this step is a set of

partial events that can be executed from the current GUI state.

Step 3: Event Selection. This step uses an event selection strategy to choose an event from

the set of events identified in step 2.

Step 4: Event Execution. This step executes the event selected in step 3. This is done via

direct interaction with the GUI of the application under test. Event execution often causes

the AUT to change its GUI state.

Step 5: Event Synthesis. This step observes the AUT’s response to event execution, extracts

the postconditions of the executed event and updates the appropriate event abstraction. The

output of this step is a complete event with preconditions, actions and postconditions.

Step 6: Sequence Update. This step adds the executed and synthesized event to the event

sequence under construction.

Our online technique iteratively identifies, selects and execute events (steps 2–6) to
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incrementally construct an event sequence one-event-at-a-time. The objective is to execute

and extract event abstractions that conform to our event sequence metamodel. We refer to

this iterative process as an event extraction cycle. The event sequence generation process

ends when a predefined termination criterion is met.

Algorithm 1: Random-based test suite construction
Input : application under test, AUT

Input : test case termination criterion, tend

Input : test suite completion criterion, Tcomp

Output: test suite, T

1 T ← φ . set of event sequences (test suite)

2 Eterm ← φ . set of termination events to avoid

3 while test suite completion criterion is not satisfied do

4 clear application data and start AUT

5 ti ← φ . event sequence (test case)

6 repeat

7 Eall ← getAvailableEvents()

8 Eall ← removeTerminationEvents(Eall, Eterm)

9 esel ← selectRandomEvent(Eall)

10 execute and synthesize event esel

11 if esel closed the AUT then

12 Eterm ← Eterm ∪ {esel} . update set of termination events

13 end

14 ti ← ti ∪ {esel} . sequence update

15 until test case termination criterion is satisfied

16 T ← T ∪ ti . add event sequence to test suite

17 end

3.3. Random-based Test Suite Construction

Algorithm 1 shows pseudocode for online construction of test suites with distinct

event sequences. The algorithm uses the iterative process in Figure 3.2 to construct multiple

event sequences that each represent a single test case. It requires the following input: (i) the

application under test (ii) a test case termination criterion and (iii) a test suite completion

criterion. The test case termination criterion specifies when to terminate each event sequence

and the test suite completion criterion specifies when a test suite is complete. The test case
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termination criterion may be a specified number of events or some other randomized criterion.

The test suite completion criterion could be a specified number of test cases or a fixed time

limit.

The test suite construction algorithm consists of an event extraction cycle that itera-

tively selects and executes GUI events uniformly at random. Thus, we refer to the algorithm

as random-based. The algorithm maintains a set of termination events Eterm that it uses to

avoid selection of any previously executed event that explores beyond the boundaries of the

AUT (e.g. events associated with the “back” button or an “exit“ button). Lines 4-5 initialize

an empty sequence at the start of each test case and clears any application data generated by

previous event sequences. This initialization process ensures that event sequences in a test

suite are independent of one another and can be reexecuted in isolation. Lines 3-17 represent

the event extraction cycle that incrementally constructs each event sequence. The getAvail-

ableEvents procedure call on line 7 identifies the set of available events Eall in each GUI

state and creates corresponding abstractions for each event. The removeTerminationEvents

procedure call on line 8 removes any known termination events from Eall to encourage ex-

ploration of the AUT. The selectRandomEvent procedure call on line 9 selects an event from

the set of available events Eall uniformly at random. Line 10 executes the selected event and

updates the event abstraction with the appropriate postconditions. If the executed event

closes the AUT, line 12 updates the set of termination events Eterm to ensure that the event

is excluded from subsequent interations of the event extraction cycle. Line 14 updates the

event sequence at the end of each event extraction cycle. Line 16 adds the generated event

sequence to the test suite at the end of each test case.

Test case termination. Our objective is to generate test suites that contain distinct event

sequences of varying length. To achieve this objective, we define a test case termination

criterion that uses a predefined probability value to pseudorandomly terminate each event

sequence. Our test case termination criterion only terminates a test case when such termina-

tion will not produce a duplicate test case in the test suite under construction. The algorithm

also guarantees termination of a test case when an event explores beyond the boundaries of
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the AUT. Algorithm 2 shows pseudocode for our test case termination criterion. The algo-

rithm requires the following as input: (i) the termination probability, 0 < p < 1 (ii) the test

case under construction ti and (iii) the test suite under construction, T . The random(0,1)

procedure call on line 1 pseudorandomly generates a real number between 0 and 1. We use

this termination criterion in subsequent chapters of this dissertation.

Algorithm 2: Probabilistic criterion for termination of event sequences
Input : termination probability, 0 < p < 1

Input : test case under construction, ti

Input : test suite, T

1 if (random(0,1) < p and ti 6∈ T ) or AUT is closed then

2 return true

3 end

4 return false

3.4. Tool Implementation

Configuration files
Application under test

Input

Appium

Emulator/Android Device

Abstraction Manager Event Executor

Event Selector

Test Builder

Autodroid

Test suite
Log files

Coverage metadata

Output

Figure 3.3. Input, output and major components of Autodroid

We implement our algorithms in our automated GUI testing tool, Autodroid. Auto-

droid uses our random-based algorithm to automatically construct Android application test

suites with event sequences that conform to our metamodel. The event data in each sequence

enables Autodroid to reexecute previously generated test suites and perform GUI-level as-

sertions to verify preconditions and postconditions. Figure 3.3 shows the input, output and

major components that Autodroid uses for online test suite construction. Autodroid takes an

Android application package file (APK) and a configuration file as input. The configuration
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file allows users to specify a test case termination criterion and test suite completion crite-

rion. Autodroid is implemented in Java and it uses the Appium test automation library1 to

interact with the GUI of Android applications. The major components of Autodroid include

a test builder, event selector, event executor and abstraction manager.

Test builder. The test builder initiates and coordinates each step of the event sequence gen-

eration process. It performs event sequence updates in each iteration of the event extraction

cycle and maintains a cache of generated event sequences.

Abstraction manager. The abstraction manager uses the Appium library to identify

events in GUI states and create event abstractions that conform to our metamodel. The

abstraction manager identifies the preconditions and postconditions of events and updates

event abstractions as necessary during the test generation process.

Event selector. In each iteration of the event extraction cycle, the event selector chooses

an event to execute from the set of available events in the AUT’s current GUI state.

Event executor. The event executor receives an abstract representation of an event and

uses the provided information to execute the event on the AUT.

In each iteration of the event extraction cycle, Autodroid always includes an event

associated with the “back” navigation button in the set of available events and excludes the

“home“ navigation button. Whenever Autodroid encounters a GUI state with text input

widgets, it generates and executes a complex event that fills out each text input widget with

random strings before interacting with a non-text widget (e.g. a button).

3.5. Experiments

We use Monkey as a baseline for evaluation of test suites generated with Autodroid.

Monkey is one of the most widely used tools for automated GUI testing of Android appli-

cations since it is part of the official Android developer toolkit. It is also one of the few

automated GUI testing tools that remains compatible with recent versions of the Android

operating system. We perform experiments with seven Android applications to answer the

following research question: does our online random-based technique (Autodroid)

1http://appium.io
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generate Android application test suites that achieve higher code coverage than

test suites generated with Monkey?

3.5.1. Subject Applications

App Name Lines Methods Classes Activities
Tomdroid v0.7.2 5,736 496 131 8
Loaned v1.0.2 2,837 258 70 4
Budget v4.0 3,159 367 67 8
A Time Tracker v0.23 1,980 130 22 5
Repay v1.6 2,059 204 48 6
Moneybalance v1.0 1,460 163 37 5
WhoHasMyStuff v1.0.25 1,026 90 24 2

Table 3.2. Characteristics of selected Android apps

We perform experiments with seven Android applications randomly selected from

the F-droid app repository2. We exclude games and system services with no GUIs from our

experiments and only consider apps that allow automatic bytecode instrumentation with

the techniques described in Zhauniarovich et al. [78]. We instrument the bytecode of each

subject application to collect code coverage measurements for our study. Table 3.2 shows

characteristics of the subject applications. The applications range from 1,026 to 5,736 source

lines of code (SLOC) and 3,597 to 22,169 blocks of bytecode.

3.5.2. Experimental Setup

Monkey and Autodroid are different in one critical aspect. Monkey executes a single

sequence of pseudorandom events up to a user-specified length. Autodroid generates test

suites with multiple event sequences of varying length. We run multiple executions of Monkey

for each subject application to simulate multiple test cases within a test suite. We configure

Monkey to generate multiple event sequences of length n = 192, where n is the number

of events in the longest test case generated with Autodroid across all subject applications.

Therefore, each event sequence generated with Autodroid has a smaller or equal number of

2https://f-droid.org
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events as the corresponding event sequence generated with Monkey (i.e. length ≤ 192). We

use a 5% probability value to pseudorandomly terminate event sequences in Autodroid.

We perform our experiments on Android 4.4.4 emulator instances configured with

4 processors and 2GB RAM. We use each tool to generate 10 test suites for each subject

application with a fixed time limit of two hours (120 minutes) for each test suite. We do not

set a time delay between execution of events in Monkey since the tool does not require time

to analyze the GUI of the application under test. In Autodroid, we specify a two-second

delay between execution of consecutive events to enable the AUT respond to each event

before extraction of event data.

3.5.3. Results

Application
Code coverage (%)
Monkey Autodroid

Tomdroid 33.22 45.11
Loaned 20.89 53.53
Budget 58.60 66.06
A Time Tracker 38.24 70.58
Repay 16.87 47.75
Moneybalance 21.81 75.51
WhoHasMyStuff 70.38 75.59

Table 3.3. Mean block coverage for Monkey and Autodroid across 10 test
suites for each subject application

Table 3.3 shows the mean block coverage across 10 test suites for each subject appli-

cation. The results show that Autodroid generates test suites that achieve 5%-53% higher

block coverage compared to the test suites generated with Monkey. Figure 3.4 shows the

distribution of block coverage values across 10 test suites generated with each tool for each

subject application. The results show that the test suites generated with Autodroid have

higher median block coverage in all seven subject applications compared to the median block

coverage of test suites generated with Monkey. The maximum block coverage achieved for

each subject application is higher for test suites generated with Autodroid compared to test

suites generated with Monkey.
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Figure 3.4. Distribution of block coverage values across 10 suites generated
with Autodroid and Monkey for each subject application

3.5.4. Discussion and Implications

Autodroid generates test suites that achieve higher block coverage than those gener-

ated with Monkey. In each iteration of its event extraction cycle, Autodroid analyzes the

GUI of the application under test to determine the set of available events that can be exe-

cuted in each GUI state. Monkey executes a large number of irrelevant events that do not

contribute to code coverage because it does not analyze the GUI of the application under

test during test generation. This limits Monkey’s ability to explore the AUT given a limited

number of events to execute in each test case. Autodroid generates test suites with fewer

events than those generated with Monkey and achieves higher code coverage since it limits

event execution to relevant events.

Monkey is designed to generate and execute a large number of pseudorandom events

in a single sequence. This makes Monkey best suited for scenarios that do not require
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reusable test cases and easy reproduction of event sequences that expose faults. We de-

signed Autodroid to automatically generate test suites with distinct event sequences (test

cases) of varying length, such that each sequence can be reexecuted in isolation. Unlike Mon-

key, Autodroid extracts an abstract representation of each event sequence in a test suite.

This abstract representation contains information required to automatically reexecute event

sequences with GUI-level assertions during regression testing or failure reproduction. The

ability to automatically replay event sequences may make it easier for testers to understand

and reproduce failure-causing test cases.

3.5.5. Threats to Validity

The primary threat to the validity of our empirical study is the randomized nature of

the algorithms and tools used in our experiments. For each app, we generate 10 test suites

with each tool to minimize this threat. We use a 5% probability value for the pseudorandom

test termination criterion in Autodroid. Different probability values may produce different

results.

3.6. Summary and Conclusions

In this chapter, we describe an event sequence metamodel that enables automatic

construction of reexecutable test suites for Android applications. We describe an online

process to automatically generate event sequences that conform to our metamodel and we

develop algorithms and heuristics to automatically construct Android application test suites

with distinct event sequences of varying length. We demonstrate the feasiblity of our tech-

niques with an automated GUI testing tool, Autodroid. We perform experiments with seven

Android applications and show that Autodroid generates test suites that achieve higher code

coverage compared to test suites generated with Monkey, a random GUI testing tool that is

part of the Android developer toolkit.

In Chapter 4, we describe probabilistic event selection strategies to improve the code

and event coverage of test suites generated with online techniques.
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CHAPTER 4

FREQUENCY-BASED TEST SUITE CONSTRUCTION

In Chapter 3, we described an online test suite construction algorithm that iteratively

selects and executes events uniformly at random to construct each test case. We refer to

the algorithm as random-based to denote its use of uniform random event selection in each

GUI state. Event selection is a key step in online event sequence generation and the strategy

used to choose which event to execute may affect the quality of the resulting test suites.

During construction of a particular test case ti in test suite T , an algorithm that selects

events uniformly at random has no mechanisms to avoid redundant selection of an event

ej that has already been executed in ti or in a previous test case t(i−k) ∈ T . Redundant

execution of events may inhibit code and event coverage especially when it occurs in GUI

states with events that have not yet been executed in the test suite. Consequently, random-

based algorithms may fail to explore parts of the GUI that cover significant amounts of code

or expose faults. While there is a significant body of work on automated GUI testing tools

and model-based techniques [5,10,32,41,42,46,48,48,53,64,65,77,78], prior research gives

little attention to event selection strategies for online construction of Android application

test suites.

In this chapter1, we extend our random-based test suite construction algorithm to

include a cache of previously executed events and their prior execution frequencies in the

test suite under construction. We use equivalence relations between events (as defined in

chapter 3) to distinguish between events and determine whether or not they have been

previously executed. We develop two frequency-based event selection strategies that use the

prior execution frequencies of each available event in a GUI state to dynamically alter event

selection probabilities. During test suite construction, our frequency-based event selection

algorithms prioritize selection of events that have not yet been previously executed in the

1Parts of this chapter have been previously published in D. Adamo, R. Bryce, T.M. King. Randomized
Event Sequence Generation Strategies for Automated Testing of Android Apps. In Information Technology
- New Generations, pp. 571-578. Springer, Cham, 2017.
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test suite under construction. The objective is to use frequency information about previously

executed events to minimize redundant event execution and maximize code coverage and

event coverage in each test case.

Algorithm 3: Frequency-based test suite construction
Input : application under test, AUT

Input : test case termination criterion, tend

Input : test suite completion criterion, Tcomp

Output: test suite, T

1 T ← φ . set of event sequences (test suite)

2 Fmap ← map of distinct events to prior execution frequencies

3 Eterm ← φ . set of termination events to avoid

4 while test suite completion criteria not true do

5 clear application data and start AUT

6 ti ← φ . event sequence (test case)

7 repeat

8 Eall ← getAvailableEvents()

9 Eall ← removeTerminationEvents(Eall, Eterm)

10 esel ← selectEvent(Eall, Fmap)

11 execute and synthesize event esel

12 if application is closed then

13 Eterm ← Eterm ∪ {esel} . add to set of termination events

14 end

15 ti ← ti ∪ {esel}
16 update selection frequency of esel in Fmap

17 until test case termination criteria is true

18 T ← T ∪ ti
19 end

4.1. Test Suite Construction Algorithm

Algorithm 3 shows our modified algorithm for online construction of Android appli-

cation test suites. The defining characteristic of the algorithm is that it maintains a history

of prior event execution frequencies and uses the frequency information to choose which

event to execute. Thus, we refer to the algorithm as frequency-based. The algorithm takes

the following input: (i) the application under test (ii) a test case termination criterion and

(iii) a test suite completion criterion. The test case termination criterion specifies when to
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terminate each event sequence and the test suite completion criterion specifies when a test

suite is complete. The test case termination criterion may be a specified number of events

or some other randomized criterion. The test suite completion criterion could be a specified

number of test cases or a fixed time limit.

The frequency-based test suite construction algorithm uses the same event extraction

cycle (lines 7-17) as the random-based algorithm we described in chapter 3 with the addition

of a step (line 16) that updates the prior execution frequency of each executed event. It

begins with an empty test suite (line 1) and generates multiple event sequences as test cases.

It terminates event sequences when the specified test case termination criterion is satisfied

and ends the test suite construction process when the specified test suite completion criterion

is satisfied. Line 2 initializes an empty map of previously identified events and their prior

execution frequencies in the test suite. The prior execution frequency of any identified

event that has never been executed is zero. The algorithm maintains a set of termination

events Eterm that it uses to avoid selection of any previously executed event that explores

beyond the boundaries of the AUT (e.g. events associated with the “back” button or an

“exit“ button). Line 16 updates the map of events and execution frequencies each time the

algorithm executes an event.

The implementation of the selectEvent function call on line 10 defines the event

selection strategy used to choose which event to execute in each GUI state. A uniform

random strategy selects an event uniformly at random in each GUI state without considering

the prior execution frequency of each event. In uniform random event selection, each event

in a GUI state is equally likely to be selected and the probability distribution never changes.

Uniform random selection is often implemented with pseudorandom number generators that

select a random event from the set of available events in each GUI state. In this chapter, we

present frequency-based alternatives to uniform random selection.

4.1.1. Frequency Weighted Event Selection

This strategy computes the event selection probability of each available event based

on the number of times the event has been previously executed in the test suite under
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construction. Similar to uniform random selection, each event in a GUI state may be selected.

Unlike uniform random selection, every event in a GUI state is not equally likely to be

selected.

Algorithm 4: Frequency weighted event selection algorithm
Input : set of available events in GUI state, Eall

Input : map of events and prior execution frequencies, Fmap

Output: selected event, esel

1 function freqWeightedSelection(Eall, ti, Fmap)

2 totalWeight← 0.0

3 for event in Eall do

4 totalWeight← totalWeight + getWeight(event)

5 end

6 esel ← first event in Eall

7 selectionWeight← random(0, 1)× totalWeight

8 weightCount← 0.0

9 for event in Eall do

10 weightCount← weightCount + getWeight(event)

11 if weightCount ≥ selectionWeight then

12 esel ← event

13 return esel

14 end

15 end

16 return esel

Algorithm 4 shows the frequency weighted selection algorithm. The algorithm takes

the set of available events in a GUI state as input and assigns weights to each event based

on prior execution frequency. The random(0,1) procedure call on line 7 generates a pseu-

dorandom real number between 0 and 1. The weight of each event in a GUI state is given

by:

(1) weight(e) =
1

N(e) + 1

where e is an event and N(e) is the number of times the event has been previously executed

in the test suite. The algorithm makes a pseudorandom selection biased by the weight of each
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available event. In any given GUI state with a set of available events Eall, the algorithm

is more likely to select an event ei ∈ Eall that has been previously executed fewer times

relative to other available events. Note that every event in Eall has a non-zero probability

of selection, but the probability varies across events.

4.1.2. Minimum Frequency Event Selection

This strategy considers only the subset of available events that have been executed

least frequently in a given GUI state. Unlike uniform random and frequency weighted selec-

tion, there are instances in which some events in a GUI state have no chance of selection.

This strategy gives exclusive consideration to the least frequently executed events in a GUI

state.

Algorithm 5: Minimum frequency event selection algorithm
Input : set of available events in GUI state, Eall

Input : map of events and prior execution frequencies, Fmap

Output: selected event, esel

1 function minFreqSelection(Eall, Fmap)

2 candidates← φ

3 minFreq ←∞
4 for event in Eall do

5 selectionFreq ← getExecutionFrequency(event)

6 if selectionFreq < minFreq then

7 candidates← φ

8 candidates← candidates ∪ {event}
9 minFreq ← selectionFreq

10 else if selectionFreq = minFreq then

11 candidates← candidates ∪ {event}
12 end

13 end

14 esel ← selectRandom(candidates)

15 return esel

Algorithm 5 shows the minimum frequency selection algorithm. The algorithm takes

the set of available events in a GUI state as input. It iterates through the set of available

events and identifies the subset of events that have been executed the least number of times.
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All events that are not in this subset are discarded. If there is more than one event that has

been previously executed the least number of times, the algorithm makes a uniform random

selection (i.e. random tie breaking). This event selection strategy is a non-deterministic

variant of the Frequency strategy described in Machiry et al. [42].

4.2. Implementation

We extend our automated GUI testing tool, Autodroid, to include a frequency engine

that keeps track of the prior execution frequency of each distinct event. Autodroid’s fre-

quency engine and event selector use the frequency information to dynamically alter event

selection probabilities in each iteration of the event extraction cycle.

4.3. Experiments

4.3.1. Research Questions

We perform an empirical study with seven Android applications to address the fol-

lowing research questions:

RQ1: Do the frequency-based event selection strategies generate test suites that achieve

higher code coverage than those generated with uniform random event selection?

RQ2: Do the frequency-based event selection strategies generate test suites that achieve

higher event coverage than those generated with uniform random event selection?

4.3.2. Subject Applications

App Name Lines Methods Classes Activities
Tomdroid v0.7.2 5,736 496 131 8
Loaned v1.0.2 2,837 258 70 4
Budget v4.0 3,159 367 67 8
A Time Tracker v0.23 1,980 130 22 5
Repay v1.6 2,059 204 48 6
Moneybalance v1.0 1,460 163 37 5
WhoHasMyStuff v1.0.25 1,026 90 24 2

Table 4.1. Characteristics of selected Android apps

39



We evaluate each event selection strategy on seven real-world Android applications.

Each application is publicly available in the F-droid app repository2 and/or Google Play

Store3. Table 4.1 shows the characteristics of the selected applications. The apps range from

1,026 to 5,736 source lines of code (SLOC), 90 to 496 methods, 24 to 131 classes and 2 to 8

activities. Since our implementation relies on Android GUI testing libraries, we select apps

with GUIs that predominantly use the standard widgets provided by the Android framework.

We limit our selection of apps to those that allow automatic bytecode instrumentation [78]

without direct modification of source code.

4.3.3. Experimental Setup

Our experiments examine the following event selection strategies: (i) Rand – uni-

form random event selection (ii) FreqWeighted – frequency weighted event selection and (iii)

MinFrequency – minimum frequency event selection.

We perform our experiments on Android 4.4 emulator instances with 4 processors

and 2GB RAM. For each subject application, we generate 10 test suites using each event

selection strategy (uniform random, frequency weighted and minimum frequency). We use

a fixed time budget of two hours (120 minutes) to generate each test suite. We set a two-

second delay between execution of consecutive events in each test case to give the AUT time

to respond to each event. We use a fixed probability value of 5% for the test case termination

criterion.

4.3.4. Variables and Measures

We use the following metrics to investigate our research questions:

Block coverage: This metric measures the proportion of code blocks that a test suite

executes for a given AUT. A (basic) block is a sequence of code statements that always

executes as a single unit [26].

2https://f-droid.org/

3https://play.google.com/store/apps
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Figure 4.1. Examples of APBC measures

Method coverage: This metric measures the proportion of methods that a test suite

executes for a given AUT.

Number of distinct events (event coverage): This metric measures the number of

unique events in a test suite. It is a representation of how much of an AUT’s GUI a test

suite explores.

Average percentage of blocks covered (APBC): We use the APBC metric [40] as a

measure of how quickly a test suite covers the source code of the AUT over a given time

interval. The APBC metric estimates the code coverage rate of a test suite and is similar

to the Average Percentage of Faults Detected (APFD) [25] metric often used in test case

prioritization studies. The APBC of a test suite corresponds to the area under its coverage-

time graph as illustrated in Figure 4.1. If tn is the total time to generate a test suite T , ti

is some arbitrary point in time during test suite generation and cov(ti) is the block coverage

at time ti, then the APBC for the test suite is given by:

(2) APBC =

∑n−1
i=0 (ti+1 − ti)(cov(ti+1) + cov(ti))

2× tn × 100
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4.3.5. Data collection

We use techniques described in Zhauniarovich et al. [78] to instrument the bytecode

of each subject application. Bytecode instrumentation enables collection of code coverage

measurements for each test suite. For each test suite, we collected code coverage measure-

ments at time intervals that correspond to the end of each test case. Our test generation

tool stores an abstract representation of the event sequences in each test suite. We analyze

each test suite to collect event coverage information.

4.3.6. Statistical tests

To standardize comparisons across multiple apps, we use min-max normalization [54]

to rescale the measurements for each application. We combine the rescaled measurements

from all applications and perform Mann-Whitney U-tests [45] to determine whether the

frequency-based test suites are significantly better than random-based test suites. We use

the non-parametric Mann-Whitney U-test because it does not assume that the measurements

for each dependent variable conform to a normal distribution. We consider p-values less than

0.05 to be statistically significant. A p-value less than 0.05 indicates that there is less than

a 5% probability that the observed results are due to chance.

4.3.7. Results

Block coverage. Table 4.2 shows the mean block coverage across 10 test suites for each

subject application and event selection strategy. The values in bold type indicate higher

block coverage measurements compared to uniform random event selection. On average, the

FreqWeighted test suites achieve up to 7% higher mean block coverage compared to the Rand

test suites across six out of seven subject applications. The MinFrequency test suites achieve

up to 9% higher mean block coverage compared to the Rand strategy across all seven subject

applications.

Figure 4.2 shows the distribution of block coverage values across 10 test suites for each

application and event selection strategy. The FreqWeighted test suites achieve higher median

block coverage compared to the Rand test suites in six out of seven subject applications.
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Application
Block coverage (%)

Rand FreqWeighted MinFrequency
Tomdroid 45.11 47.52 47.41
Loaned 53.53 51.83 59.16
Budget 66.06 67.62 69.20
A Time Tracker 70.58 73.24 74.61
Repay 47.75 51.54 56.32
Moneybalance 75.51 82.82 84.69
WhoHasMyStuff 75.59 80.17 80.62

Table 4.2. Mean block coverage for Rand, FreqWeighted and MinFrequency
test suites

Figure 4.2. Boxplot of block coverage values across 10 suites for each subject
application and event selection strategy

Null Hypothesis Alternate Hypothesis p-value

BC(Rand) = BC(FreqWeighted) BC(Rand) 6= BC(FreqWeighted) 9.06× 10−5

BC(Rand) = BC(MinFrequency) BC(Rand) 6= BC(MinFrequency) 1.10× 10−9

BC(FreqWeighted) = BC(MinFrequency) BC(FreqWeighted) 6= BC(MinFrequency) 0.004

Table 4.3. Statistical comparison of block coverage (BC) values for Rand,
FreqWeighted and MinFrequency test suites
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The MinFrequency suites achieve higher median block coverage compared to the Rand test

suites across all seven subject applications.

Table 4.3 shows the results of Mann-Whitney U-tests to compare the block coverage

of the random-based and frequency-based test suites. The results show that: (i) there is a

significant difference in block coverage between the Rand test suites and the FreqWeighted

test suites (ii) there is a significant difference in block coverage between the Rand test suites

and the MinFrequency test suites and (iii) there is a significant difference in block coverage

between the FreqWeighted test suites and the MinFrequency test suites.

Method coverage. Table 4.4 shows the mean method coverage across 10 test suites for

each subject application and event selection strategy. The values in bold type indicate

higher method coverage measurements compared to uniform random event selection. The

FreqWeighted test suites achieve 2-3% higher method coverage on average compared to Rand

test suites across six out of seven subject applications. The MinFrequency test suites achieve

2-6% higher method coverage on average compared to Rand test suites across all seven

subject applications.

Application
Method coverage (%)

Rand FreqWeighted MinFrequency
Tomdroid 47.76 50.74 50.06
Loaned 65.99 65.50 72.01
Budget 75.45 77.51 78.70
A Time Tracker 73.20 76.05 77.33
Repay 59.86 62.88 65.82
Moneybalance 81.90 85.11 85.99
WhoHasMyStuff 90.68 92.48 92.78

Table 4.4. Mean method coverage for Rand, FreqWeighted and MinFre-
quency test suites

Figure 4.3 shows the distribution of method coverage values across 10 test suites for

each application and event selection strategy. The FreqWeighted test suites have higher me-

dian method coverage values compared to Rand test suites in all seven subject applications.

The MinFrequency test suites have higher median method values compared to Rand test

suites in all seven subject applications.
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Figure 4.3. Distribution of method coverage values across 10 suites for each
subject application and event selection strategy

Null Hypothesis Alternate Hypothesis p-value

MC(Rand) = MC(FreqWeighted) MC(Rand) 6= MC(FreqWeighted) 0.0001

MC(Rand) = MC(MinFrequency) MC(Rand) 6= MC(MinFrequency) 2.18× 10−8

MC(FreqWeighted) = MC(MinFrequency) MC(FreqWeighted) 6= MC(MinFrequency) 0.03

Table 4.5. Statistical comparison of method coverage (MC) values for Rand,
FreqWeighted and MinFrequency test suites

Table 4.5 shows the results of Mann-Whitney U-tests to compare the method coverage

of the random-based and frequency-based test suites. The results show that: (i) there is a

significant difference in method coverage between the Rand test suites and the FreqWeighted

test suites (ii) there is a significant difference in method coverage between the Rand test

suites and the MinFrequency test suites and (iii) there is a significant difference in method

coverage between the FreqWeighted test suites and the MinFrequency test suites.

Average percentage of blocks covered (APBC). Table 4.6 shows mean APBC values

for the random-based and frequency-based test suites. The APBC value for a given test suite
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quantifies how quickly the test suite covers the source code of the AUT. The FreqWeighted

test suites have a higher block coverage rate on average compared to the Rand test suites

in six out of seven subject applications. The MinFrequency test suites have a higher block

coverage rate on average compared to Rand test suites across all seven subject applications.

Application
APBC

Rand FreqWeighted MinFrequency
Tomdroid 0.39 0.40 0.41
Loaned 0.47 0.45 0.51
Budget 0.59 0.60 0.62
A Time Tracker 0.57 0.59 0.63
Repay 0.40 0.43 0.47
Moneybalance 0.67 0.72 0.75
WhoHasMyStuff 0.68 0.72 0.72

Table 4.6. Mean APBC values for Rand, FreqWeighted and MinFrequency
test suites

Figure 4.4. Boxplot of APBC values across 10 test suites for each app and
event selection strategy
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Figure 4.4 shows the distribution of APBC values for the random-based and frequency-

based test suites. The FreqWeighted test suites have higher median APBC values compared

to Rand test suites in six out of seven subject applications. The MinFrequency test suites

have higher median APBC values compared to Rand test suites in all seven subject appli-

cations.

Null Hypothesis Alternate Hypothesis p-value
APBC(Rand) = APBC(FreqWeighted) APBC(Rand) 6= APBC(FreqWeighted) 0.001
APBC(Rand) = APBC(MinFrequency) APBC(Rand) 6= APBC(MinFrequency) 1.96× 10−10

APBC(FreqWeighted) = APBC(MinFrequency) APBC(FreqWeighted) 6= APBC(MinFrequency) 3.45× 10−5

Table 4.7. Statistical comparison of APBC values for Rand, FreqWeighted
and MinFrequency test suites

Table 4.7 shows the results of Mann-Whitney U-tests to compare the block coverage

rates of the random-based and frequency-based test suites. The results show that: (i) there

is a significant difference in block coverage rate between the Rand test suites and the Fre-

qWeighted test suites (ii) there is a significant difference in block coverage between the Rand

test suites and the MinFrequency test suites and (iii) there is a significant difference in block

coverage rate between the FreqWeighted test suites and the MinFrequency test suites.

Figures 4.5-4.11 show coverage-time graphs of test suites that achieve the highest

block coverage across 10 trials for each subject application and event selection strategy. The

results show that the best FreqWeighted and MinFrequency test suites (in terms of block

coverage) achieve similar or better code coverage rates than random-based test suites in

the majority of subject applications. In some instances (e.g. Figure 4.6 and Figure 4.8),

the best random-based test suites have similar or better code coverage rates than the best

FreqWeighted and MinFrequency test suites.
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Figure 4.5. Coverage-time graph
for Tomdroid

Figure 4.6. Coverage-time graph
for Loaned

Figure 4.7. Coverage-time graph
for Budget

Figure 4.8. Coverage-time graph for
ATimeTracker
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Figure 4.9. Coverage-time graph for Repay
Figure 4.10. Coverage-time graph
for Moneybalance

Figure 4.11. Coverage-time graph
for WhoHasMyStuff

Number of distinct events (event coverage). Table 4.8 shows the average number of

distinct events executed across 10 test suites for each subject application and event selec-

tion strategy. The FreqWeighted test suites execute 5-22 more distinct events on average

compared to Rand test suites across all seven subject applications. The MinFrequency test

suites execute 12-53 more distinct events on average compared to Rand test suites across all

seven subject applications.
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Application
Event coverage (%)

Rand FreqWeighted MinFrequency
Tomdroid 258 280 282
Loaned 140 153 153
Budget 243 263 296
A Time Tracker 110 117 122
Repay 115 128 137
Moneybalance 190 200 224
WhoHasMyStuff 145 150 157

Table 4.8. Average number of distinct events (event coverage) for Rand,
FreqWeighted and MinFrequency test suites

Figure 4.12. Distribution of event coverage values across 10 suites for each
subject application and event selection strategy

Figure 4.12 shows the distribution of event coverage values for the random-based

and frequency-based test suites. The FreqWeighted test suites have higher median event

coverage values compared to Rand test suites in six out of seven subject applications. The

MinFrequency test suites have higher median event coverage values compared to Rand test

suites in all seven subject applications.
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Table 4.9 shows the results of Mann-Whitney U-tests to compare the event coverage

of the random-based and frequency-based test suites. The results show that: (i) there is a

significant difference in event coverage between the Rand test suites and the FreqWeighted

test suites (ii) there is a significant difference in event coverage between the Rand test suites

and the MinFrequency test suites and (iii) there is a significant difference in event coverage

between the FreqWeighted test suites and the MinFrequency test suites.

Null Hypothesis Alternate Hypothesis p-value

EC(Rand) = EC(FreqWeighted) EC(Rand) 6= EC(FreqWeighted) 4.96× 10−7

EC(Rand) = EC(MinFrequency) EC(Rand) 6= EC(MinFrequency) 9.05× 10−15

EC(FreqWeighted) = EC(MinFrequency) EC(FreqWeighted) 6= EC(MinFrequency) 2.77× 10−5

Table 4.9. Statistical comparison of event coverage (EC) values for Rand,
FreqWeighted and MinFrequency test suites

4.3.8. Discussion and Implications

The frequency-based event selection algorithms require a dynamically updated cache

of events and the number of times they have been previously executed during test suite

construction. The FreqWeighted and MinFrequency strategies compute event selection prob-

abilities during test construction to encourage selection of events that have been previously

executed fewer times relative to other events in a given GUI state. This ensures that pre-

viously unexecuted events in a given GUI state have a higher chance of selection compared

to events that have already been executed at least once. This may be a factor in the signif-

icantly higher number of distinct events in the frequency-based test suites compared to the

random-based test suites. Event handlers constitute a significant portion of source code for

GUI-based applications. The frequency-based event selection strategies prioritize selection

of previously unexecuted events and this may be a factor in the significantly higher overall

code coverage and code coverage rates of the frequency-based test suites compared to the

random-based test suites. Compared to uniform random event selection, the frequency-based

event selection algorithms are less likely to select the same event repeatedly within a short

time interval. The FreqWeighted event selection strategy encourages selection of previously

unexecuted events but does not guarantee that such events will be selected whenever avail-
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able. In one subject application (Loaned), the FreqWeighted test suites achieve higher event

coverage on average compared to random-based test suites but do not show an increase in

code coverage. This result indicates that increased event coverage does not always lead to

increased code coverage. The MinFrequency strategy considers only the subset of available

events that have been previously executed the least number of times in a given GUI state.

Unlike the FreqWeighted strategy, the MinFrequency event selection strategy guarantees se-

lection of previously unexecuted events whenever such events are available in a given GUI

state. Compared to the FreqWeighted strategy, the MinFrequency strategy uses a more ag-

gressive approach to minimize redundant event execution and is much less likely to select the

same event disproportionately more often than other events in a given GUI state. This may

be the reason why the MinFrequency test suites achieve the most significant improvement

in overall code coverage, code coverage rate and event coverage compared to random-based

test suites.

The results of our experiments show that the choice of event selection

strategy has a significant impact on the cost-effectiveness of online test suite

construction algorithms. The frequency-based event selection strategies out-

perform uniform random event selection in terms of code coverage, APBC and

event coverage. It is important for an event selection algorithm to prioritize selection of

previously unexecuted events and minimize repeated selection of events that do not result in

additional code coverage and event coverage. Online test suite construction algorithms that

use information about previously executed events to guide subsequent selection of events are

likely to be more cost-effective than algorithms that select and execute events uniformly at

random.

4.3.9. Threats to Validity

The principal threat to validity of this study is the generalizability of the results as

we use a limited number of subject applications. The size and complexity of the AUT may

affect the results obtained with our techniques. We minimized this threat by selecting apps

of different sizes. The randomized nature of the event selection algorithms is also a threat to
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validity. To minimize this threat, we used each event selection strategy to generate 10 test

suites for each application.

4.4. Summary and Conclusions

In this chapter, we describe a frequency-based approach to online construction of

Android application test suites. Our test suite construction algorithm maintains a cache

of events and their prior execution frequencies during test suite construction. We develop

two frequency-based event selection strategies that use frequency information about pre-

viously executed events to minimize redundant event execution and prioritize selection of

new events. Both strategies dynamically alter event selection probabilities based on the

prior execution frequency of events during test suite construction. We perform experiments

on seven Android applications and compare our frequency-based techniques to a test suite

construction algorithm that selects and executes events uniformly at random. The results

show that our frequency-based approach shows significant improvements in code coverage

and event coverage compared to a random-based approach. These improvements indicate

that the choice of event selection strategy has a significant impact on the the effectiveness

of online test generation algorithms and that it is important to use event selection strategies

that minimize redundant event execution and prioritize selection of previously unexecuted

events.

A significant portion of the source code in GUI-based applications defines event

handlers that are executed when users perform GUI actions. The assumption behind the

frequency-based algorithms in this chapter is that there is a positive correlation between the

number of distinct GUI events in a test suite and code coverage. In practice, GUI-based ap-

plications (and Event Driven Systems in general) exhibit behavior and may contain failures

that are triggered not just by individual events, but also by interactions among events that

occur in a particular order. In the next chapter, we describe a combinatorial-based tech-

nique that considers the order in which events have been previously executed and maximizes

coverage of n-way event combinations as part of the test suite construction process.
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CHAPTER 5

COMBINATORIAL-BASED TEST SUITE CONSTRUCTION

Android applications are Event Driven Systems (EDSs) that take Graphical User In-

terface (GUI) event sequences as input and respond by changing their state. Examples of

GUI events include clicking a button or entering data in a text field. EDS often include

functionality that can be tested only when specific events in a sequence occur in a particular

order and interactions among these events may cause a System Under Test (SUT) to enter a

failure state. Combinatorial-based methods are able to systematically generate event com-

binations to test EDSs where the order of events is important [36]. These methods often

require adaptation to the specific constraints imposed by GUI-based software such as mobile

applications. As with other types of EDS, it may be important to test a mobile application’s

response to specific events executed in a particular order. Combinatorial-based testing is

challenging because the number of possible event combinations in GUI-based software in-

creases exponentially with the number of events. Combinatorial-based methods for event

sequence testing manage this complexity by systematically examining combinations for only

a subset of events [30,36,59]. Empirical studies in combinatorial testing show that testing

interactions among a small number of inputs may be an effective way to detect software

faults [16,37,38,74].

In this chapter, we describe a combinatorial-based technique for online construction

of Android application test suites. The combinatorial-based technique prioritizes execution

of new events in a given GUI state, considers the order in which events have previously been

executed and does not require static analysis of source code or preexisting abstract models

of the Application Under Test (AUT). Our combinatorial-based test suite construction al-

gorithm maintains a cache of executed events and the order in which they were executed

relative to other events. It uses information about previously executed event combinations

to greedily select and execute events that maximize coverage of n-event-tuples (i.e. n-way

event combinations), where n is a specified event combination strength. This technique en-
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ables automatic construction of test suites with an increased likelihood of testing behavior

that occurs only when events are executed in a particular order within a single test case.

Existing techniques for automated GUI testing pay limited attention to combinatorial-

based testing of mobile applications and often require static analysis of source code or con-

struction of static behavioral models prior to test generation [2,5,23,53,58,68,69,74,75].

It is difficult to construct accurate models of GUI-based software and testers may not

have access to the AUT’s source code. Prior work in online GUI testing of Android apps

uses random-based and frequency-based algorithms to generate and execute event sequences

[2,29,32,42,56]. These algorithms often select and execute GUI events uniformly at random

and have a tendency to redundantly execute events without consideration for the order in

which the events have previously occurred. Since our combinatorial-based technique maxi-

mizes coverage of event combinations, it may be effective for testing Android app behavior

that occurs only when events are executed in a particular order.

5.1. Combinatorial-based Test Suite Construction Algorithm

Algorithm 6 shows our online combinatorial-based algorithm that automatically con-

structs Android application test suites and maximizes coverage of event tuples. An n-event-

tuple (e1, e2, ..., en) is covered in a test suite if there exists at least one test case that con-

tains all n events in the tuple such that e1 ≺ e2 ≺ ... ≺ en
1. For example, the test suite

T = (〈e1, e2, e3, e4〉, 〈e4, e5, e6, e7〉) covers the following 3-event-tuples:

{(e1, e2, e3), (e1, e3, e4), (e1, e2, e4), (e2, e3, e4), (e4, e5, e6), (e4, e6, e7), (e4, e5, e7), (e5, e6, e7)}. The

algorithm requires the following input: (i) an Android Application Package (APK) file (ii)

the required event combination strength (iii) a test case termination criterion and (iv) a test

suite completion criterion. The test case termination criterion may be a fixed number of

events or some probabilistic criterion (as described in Chapter 3). The test suite completion

criterion may be a specific number of test cases or a fixed time budget. An event combination

strength of n specifies that the algorithm should maximize coverage of n-event-tuples (i.e.

valid combinations of n events) during test suite construction. The algorithm maintains a

1e1 ≺ e2 denotes that e1 precedes e2 in a given sequence of events
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set of termination events and a set of covered event-tuples to facilitate greedy selection and

execution of events that cover the largest number of uncovered tuples.

Algorithm 6: Combinatorial-based test suite construction
Input : application under test, AUT

Input : event combination strength, n

Input : test case termination criteria, tend

Input : test suite completion criterion, Tcomp

Output: test suite, T

1 T ← φ . set of event sequences (test suite)

2 Eterm ← φ . set of termination events to avoid

3 coveredTuples← φ . set of covered k-event-tuples (k ≤ n)
4 while test suite completion criteria not true do

5 clear application data and start AUT

6 ti ← φ . event sequence (test case)

7 repeat

8 Eall ← getAvailableEvents()

9 Eall ← removeTerminationEvents(Eall, Eterm)

10 C ← selectCandidates(Eall, ti, coveredTuples, n)

11 esel ← breakTies(C)

12 execute and synthesize event esel

13 if application is closed then

14 Eterm ← Eterm ∪ {esel} . add to set of termination events

15 end

16 update covered event tuples in coveredTuples

17 ti ← ti ∪ {esel}
18 until test case termination criteria is true

19 T ← T ∪ ti
20 end

The event sequence generation process in Algorithm 6 uses an event extraction cycle

that consists of the following steps:

Step 1: Sequence Initialization. Line 6 initializes an empty test case. Before construction

of each test case, line 5 of the algorithm clears any data generated by previous test cases

and restarts the AUT from its initial GUI state. This ensures that all test cases start from

the same GUI state and the results of one test case do not affect the behavior of subsequent

test cases.
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Step 2: Event identification. The getAvailableEvents procedure call on line 8 identifies

all available events that can be executed in the current GUI state of the AUT and constructs

an abstract representation of each event. In Android devices, an event associated with the

“back” navigation button is always available in each GUI state. The product of this step is

a set of available events Eall in the current GUI state.

Step 3: Candidate selection. The algorithm selects a subset of the events identified

in step 2. The removeTerminationEvents procedure call on line 9 uses the set of termina-

tion events Eterm defined on line 2 to remove any known termination events from the set of

available events Eall. The selectCandidates procedure call on line 10 selects a set of candi-

date events C from the set of available events Eall such that each event ei ∈ C covers the

highest number of uncovered event-tuples if added to the test case under construction. The

selectCandidates procedure is defined in Algorithm 10.

Step 4: Tie breaking. The breakTies procedure call on line 11 handles instances where

there is more than one event in the set of candidate events C. This step uses a tie-breaking

strategy to choose a single event from C. In this work, we break ties at random. This step

produces a single event esel to be executed on the AUT.

Step 5: Event execution. Line 12 executes the selected event esel from step 4 by interact-

ing directly with the GUI of the application under test. Event execution often covers a set of

previously uncovered event tuples and may cause the AUT to change its GUI state. Event

execution may also close the AUT or explore beyond its boundaries. Lines 13-15 update

the set of termination events Eterm each time the algorithm executes a previously unknown

termination event. This prevents repeated execution of termination events and encourages

exploration of the AUT.

Step 6: Coverage update. After event execution, line 16 of the algorithm adds the newly

covered event tuples (if any) to the set of covered event-tuples.

Step 7: Sequence update. Line 17 adds an abstract representation of the executed event

to the test case under construction.

The algorithm uses multiple iterations of the event extraction cycle (steps 2-7) to
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construct and execute a single test case one-event-at-a-time until it satisfies a predefined

test case termination criterion. The algorithm constructs and executes multiple test cases

until it meets the predefined criterion for test suite completion (e.g. a specified number of

test cases or a fixed time budget).

Algorithm 7: Greedy n-way event selection
Input : set of available events in current GUI state, Eall

Input : test case under construction, ti

Input : set of covered event tuples, coveredTuples

Input : event combination strength, n

Output: set of candidate events, C

1 function selectCandidates(ti, Eall, coveredTuples, n)

2 maxCount← 0

3 C ← φ . set of candidate events

4 for event ei in Eall do

5 tupleCount← 0

6 if |ti| < n then

7 tuples← {ti}
8 else

9 tuples← generateTuples(ti, n− 1)

10 end

11 for tuple in tuples do

12 eventTuple← tuple ∪ {ei}
13 if eventTuple 6∈ coveredTuples then

14 tupleCount← tupleCount+ 1

15 end

16 end

17 if tupleCount > maxCount then

18 C ← φ

19 C ← C ∪ {ei}
20 maxCount← tupleCount

21 else if tupleCount = maxCount then

22 C ← C ∪ {ei}
23 end

24 end

25 return C
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5.1.1. Candidate Event Selection

Algorithm 7 shows pseudocode to select a set of candidate events C from the set of

available events Eall such that each event ei ∈ C covers the highest number of uncovered

event tuples. The event selection algorithm requires the following input to generate the

set of candidates: (i) the set of available events Eall in the current GUI state (ii) the test

case under construction ti (iii) the event combination strength n and (iv) the set of already

covered event tuples.

If the test case under construction ti has fewer events than the specified coverage

strength n, the algorithm computes the number of new |ti + 1|-event tuples that will be

covered by each available event ei ∈ Eall. If |ti| ≥ n, the algorithm generates all (n − 1)-

event-tuples in the test case ti (line 9) and computes the number of n-event-tuples that each

available event will cover if added to the test case. This incremental process ensures that

the algorithm always prioritizes coverage of new event combinations even when the test case

ti does not yet contain enough events to satisfy the specified event combination strength n.

For example, if the specified event combination strength n is 4, and the test case at the time

of event selection is ti = (e1), the algorithm will compute the number of new event pairs that

will be covered for each ei ∈ Eall. Similarly, when ti = (e1, e2) with n = 4, the algorithm

will count the number of new event triples, and so on until |ti| ≥ n. When |ti| ≥ n, the

algorithm computes the number of new n-event-tuples that will be covered if a given ei in

Eall is added to the test case. The output of Algorithm 7 is a set of events that cover the

highest number of uncovered event tuples.

5.2. Experiments

5.2.1. Research Questions

We describe experiments to address the following research questions:

• RQ1: Does 2-way and 3-way combinatorial-based test suites increase code coverage

and rate of code coverage compared to random-based test suites?
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• RQ2: Does 2-way and 3-way combinatorial-based test suites increase event coverage

compared to random-based test suites?

• RQ3: How does an increase in event combination strength from 2-way to 3-way

affect code coverage and rate of code coverage?

• RQ4: How does an increase in event combination strength from 2-way to 3-way

affect event coverage?

5.2.2. Subject Applications

App Name Lines Methods Classes Activities
Tomdroid v0.7.2 5,736 496 131 8
Loaned v1.0.2 2,837 258 70 4
Budget v4.0 3,159 367 67 8
A Time Tracker v0.23 1,980 130 22 5
Repay v1.6 2,059 204 48 6
Moneybalance v1.0 1,460 163 37 5
WhoHasMyStuff v1.0.25 1,026 90 24 2

Table 5.1. Characteristics of selected Android apps

We evaluate the combinatorial-based technique on seven Android apps retrieved from

the F-droid Android app repository2. Table 5.1 shows the characteristics of the selected apps.

The apps range from 1,026 to 5,736 source lines of code (SLOC), 90 to 496 methods, 24 to

131 classes and 2 to 8 activities. Since our implementation relies on Android GUI testing

libraries, we select apps with GUIs that predominantly use the standard widgets provided

by the Android framework. We limit our selection of apps to those that allow automatic

bytecode instrumentation [78] without direct modification of source code.

5.2.3. Experimental Setup

Our experiments examine the following techniques:

Random-based (Rand). This technique selects and executes events uniformly at random.

2http://f-droid.org
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2-way combinatorial-based. This technique uses the combinatorial-based algorithm to

greedily select and execute events that maximize coverage of event pairs (i.e. 2-way event

combinations).

3-way combinatorial-based. This technique uses the combinatorial-based algorithm to

greedily select and execute events that maximize coverage of 3-event-tuples (i.e. 3-way event

combinations).

We perform our experiments on Android 4.4.4 emulator instances with 4 proces-

sors and 2GB RAM. We generate 10 test suites using each criteria (random-based, 2-way

combinatorial-based and 3-way combinatorial-based) for each subject application. We use

a fixed time budget of two hours (120 minutes) to generate each test suite. We set a two-

second delay between execution of consecutive events in each test case to give the AUT time

to respond to each event. We set the probability of test case termination to 5%. Most open

source Android applications either have no test suites or have test suites that only cover up

to 40% of the application’s source code [35]. We chose the 5% probability value because it

enables the random-based (i.e. the baseline) algorithm to consistently generate test suites

that achieve an average of at least 40% code coverage within the two-hour time budget and

in all our subject applications.

5.2.4. Variables and measures

We use the following metrics to investigate our research questions:

Block coverage: This metric measures the proportion of code blocks that a test suite

executes for a given AUT. A (basic) block is a sequence of code statements that always

executes as a single unit [26].

Method coverage: This metric measures the proportion of methods that a test suite

executes for a given AUT.

Number of distinct events (event coverage): This metric measures the number of

unique events in a test suite. It is a representation of how much of an AUT’s GUI a test

suite explores.
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Average percentage of blocks covered (APBC): We use the APBC metric [40] as a

measure of how quickly a test suite covers the source code of the AUT over a given time

interval. The APBC metric estimates the code coverage rate of a test suite and is similar

to the Average Percentage of Faults Detected (APFD) [25] metric often used in test case

prioritization studies. The APBC of a test suite corresponds to the area under its coverage-

time graph. If tn is the total time to generate/execute a test suite T , ti is some arbitrary

point in time during test suite generation and cov(ti) is the block coverage at time ti, then

the APBC for the test suite is given by:

(3) APBC =

∑n−1
i=0 (ti+1 − ti)(cov(ti+1) + cov(ti))

2× tn × 100

5.2.5. Implementation

We extend our automated GUI testing tool, Autodroid, to include a combinatorics

engine that computes and tracks event combinations during test suite construction. Auto-

droid’s combinatorics engine and event selector use the combinatorial information to greedily

select events that maximize coverage of uncovered event combinations.

5.2.6. Data collection

We use techniques described in Zhauniarovich et al. [78] to instrument the bytecode

of each subject application. Bytecode instrumentation enables collection of code coverage

measurements for each test suite. For each test suite, we collected code coverage measure-

ments at time intervals that correspond to the end of each test case. Our test generation

tool stores an abstract representation of the event sequences in each test suite. We analyze

each test suite to collect event coverage information.

5.2.7. Statistical tests

To standardize comparisons across multiple apps, we use min-max normalization [54]

to rescale the measurements for each application. We combine the rescaled measurements

from all applications and perform Mann-Whitney U-tests [45] to determine whether the
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combinatorial-based test suites are significantly better than random-based test suites. We use

the non-parametric Mann-Whitney U-test because it does not assume that the measurements

for each dependent variable conform to a normal distribution. We consider p-values less than

0.05 to be statistically significant. A p-value less than 0.05 indicates that there is less than

a 5% probability that the observed results are due to chance.

5.2.8. Results

Block coverage. Table 5.2 shows the mean block coverage values of the random-based

and combinatorial-based test suites for each application. The values in bold type indicate

higher block coverage measurements compared to the random-based test suites. The 2-way

combinatorial-based test suites achieve 1.5% - 9.9% higher mean block coverage compared

to random-based test suites across all seven subject applications. The 3-way combinatorial-

based test suites achieve 0.2% - 6.4% higher mean block coverage compared to random-based

test suites across all seven subject applications. The 3-way combinatorial-based test suites

achieve higher mean block coverage than the 2-way combinatorial-based test suites in two

out of seven applications.

Figure 5.1 shows the distribution of block coverage values for the random-based and

combinatorial-based test suites. The 2-way and 3-way combinatorial-based test suites achieve

higher median block coverage than random-based test suites in all seven subject applications.

In three out of seven subject applications, 3-way combinatorial-based test suites achieve

higher median block coverage than 2-way combinatorial-based test suites.

Table 5.3 shows the results of Mann-Whitney U-tests to compare the block coverage

of the random-based, 2-way combinatorial-based and 3-way combinatorial-based test suites.

The results show that: (i) there is a significant difference in block coverage between the

random-based test suites and the 2-way combinatorial-based test suites (ii) there is a sig-

nificant difference in block coverage between the random-based test suites and the 3-way

combinatorial-based test suites and (iii) there is no significant difference in block coverage

between the 2-way combinatorial-based test suites and the 3-way combinatorial-based test

suites.
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Application
Block coverage (%)

Rand 2-way 3-way
Tomdroid 45.11 46.57 45.28
Loaned 53.53 56.90 59.40
Budget 66.06 69.77 69.66
A Time Tracker 70.58 75.19 73.40
Repay 47.75 57.10 54.19
Moneybalance 75.51 85.39 81.74
WhoHasMyStuff 75.59 81.15 81.17

Table 5.2. Mean block coverage of random-based and combinatorial-based
test suites

Figure 5.1. Boxplot of block coverage values across 10 suites for each app
and technique

Null Hypothesis Alternate Hypothesis p-value
BC(Rand) = BC(2way) BC(Rand) 6= BC(2way) 6.5× 10−10

BC(Rand) = BC(3way) BC(Rand) 6= BC(3way) 3.8× 10−7

BC(2way) = BC(3way) BC(2way) 6= BC(3way) 0.22

Table 5.3. Statistical comparison of block coverage (BC) values for random-
based, 2-way combinatorial-based and 3-way combinatorial-based test suites
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Method coverage. Table 5.4 shows the mean method coverage values of the random-

based and combinatorial-based test suites. The 2-way and 3-way combinatorial-based test

suites achieve higher mean method coverage compared to random-based test suites across all

seven subject applications. The 3-way combinatorial-based test suites achieve higher mean

method coverage than the 2-way combinatorial-based test suites in two out of seven subject

applications.

Application
Method coverage (%)

Rand 2-way 3-way
Tomdroid 47.76 50.12 48.59
Loaned 65.99 69.68 71.52
Budget 75.45 79.32 78.48
A Time Tracker 73.20 78.16 76.93
Repay 59.86 67.16 64.31
Moneybalance 81.90 86.78 85.51
WhoHasMyStuff 90.68 91.73 92.86

Table 5.4. Mean method coverage of random-based and combinatorial-based
test suites

Figure 2 shows the distribution of method coverage values for the random-based

and combinatorial-based test suites. The 2-way and 3-way combinatorial-based test suites

achieve higher median method coverage compared to random-based test suites across all

seven subject applications. In two out of seven subject applications, 3-way combinatorial-

based test suites achieve higher median method coverage than 2-way combinatorial-based

test suites.

Null Hypothesis Alternate Hypothesis p-value
MC(Rand) = MC(2way) MC(Rand) 6= MC(2way) 2.1× 10−8

MC(Rand) = MC(3way) MC(Rand) 6= MC(3way) 1.5× 10−6

MC(2way) = MC(3way) MC(2way) 6= MC(3way) 0.2

Table 5.5. Statistical comparison of method coverage (MC) values for
random-based, 2-way combinatorial-based and 3-way combinatorial-based test
suites

Table 5.5 shows the results of Mann-Whitney U-tests to compare the method coverage

of the random-based, 2-way combinatorial-based and 3-way combinatorial-based test suites.
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Figure 5.2. Boxplot of method coverage values across 11 ten suites for each
app and technique

The results show that: (i) there is a significant difference in method coverage between

the random-based test suites and the 2-way combinatorial-based test suites (ii) there is a

significant difference in method coverage between the random-based test suites and the 3-way

combinatorial-based test suites and (iii) there is NO significant difference in method coverage

between the 2-way combinatorial-based test suites and the 3-way combinatorial-based test

suites.

Average percentage of blocks covered (APBC). Table 5.6 shows mean APBC values

for the random-based and combinatorial-based test suites. The APBC value for a given test

suite quantifies how quickly the test suite covers the source code of the AUT. In all seven

subject applications, the 2-way and 3-way combinatorial-based test suites achieve an equal

or higher mean block coverage rate compared to random-based test suites. In three out of

seven subject applications, the 3-way combinatorial-based test suites achieve an equal or

higher mean block coverage rate compared to 2-way combinatorial-based test suites.
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Application
APBC

Rand 2-way 3-way
Tomdroid 0.39 0.39 0.39
Loaned 0.47 0.47 0.49
Budget 0.59 0.62 0.61
A Time Tracker 0.57 0.62 0.62
Repay 0.40 0.49 0.45
Moneybalance 0.67 0.75 0.71
WhoHasMyStuff 0.68 0.74 0.73

Table 5.6. Mean APBC values for the random-based and combinatorial-
based test suites

Figure 5.3. Boxplot of APBC values across 10 test suites for each app and
technique

Figure 5.3 shows the distribution of APBC values for the random-based and combinatorial-

based test suites. The 2-way combinatorial-based test suites achieve higher median APBC

values than random-based test suites in six out of seven subject applications. The 3-way

combinatorial-based test suites achieve higher median APBC values than random-based

test suites in all seven subject applications. In three out of seven subject applications,
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3-way combinatorial-based test suites achieve higher median block coverage than 2-way

combinatorial-based test suites.

Null Hypothesis Alternate Hypothesis p-value
APBC(Rand) = APBC(2way) APBC(Rand) 6= APBC(2way) 1.4× 10−8

APBC(Rand) = APBC(3way) APBC(Rand) 6= APBC(3way) 1.6× 10−6

APBC(2way) = APBC(3way) APBC(2way) 6= APBC(3way) 0.42

Table 5.7. Statistical comparison of APBC values for random-based, 2-way
combinatorial-based and 3-way combinatorial-based test suites

Table 5.7 shows results of Mann-Whitney U-tests to compare the APBC values of

the random-based, 2-way combinatorial-based and 3-way combinatorial-based test suites.

The results show that: (i) there is a significant difference in block coverage rate between

the random-based test suites and the 2-way combinatorial-based test suites (ii) there is a

significant difference in block coverage rate between the random-based test suites and the

3-way combinatorial-based test suites and (iii) there is no significant difference in block

coverage rate between the 2-way combinatorial-based test suites and 3-way combinatorial-

based test suites.

Figures 5.4-5.10 show coverage-time graphs of the best test suites (in terms of code

coverage) for each subject application and technique. The 2-way and 3-way combinatorial-

based test suites achieve similar or better code coverage rates compared to random-based test

suites for the majority of subject applications. The 2-way and 3-way combinatorial-based

test suites that achieve the highest code coverage for Moneybalance (Figure 5.9) and Loaned

(Figure 5.5) take more time to achieve similar levels of coverage as the best random-based

test suites.
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Figure 5.4. Coverage-time graph
for Tomdroid

Figure 5.5. Coverage-time graph
for Loaned

Figure 5.6. Coverage-time graph
for Budget

Figure 5.7. Coverage-time graph for
ATimeTracker
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Figure 5.8. Coverage-time graph for Repay
Figure 5.9. Coverage-time graph
for Moneybalance

Figure 5.10. Coverage-time graph
for WhoHasMyStuff

Number of distinct events (event coverage). Table 5.8 shows the average number of

distinct events executed across 10 test suites for each subject application and technique.

In all seven subject applications, the 2-way combinatorial-based test suites have an equal

or higher number of distinct events compared to the random-based test suites. In all seven

subject applications, the 3-way combinatorial-based test suites have a higher average number
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of distinct events compared to the random-based test suites. In four out of seven subject

applications, the 3-way combinatorial-based test suites have an equal or higher average

number of distinct events compared to the 2-way combinatorial-based test suites.

Application
Number of distinct events

Rand 2-way 3-way
Tomdroid 258 279 279
Loaned 140 155 155
Budget 243 264 260
A Time Tracker 110 121 120
Repay 115 148 146
Moneybalance 190 207 207
WhoHasMyStuff 145 145 156

Table 5.8. Average number of distinct events covered (rounded to whole
numbers) across 10 test suites for each subject application and technique

Figure 5.11. Boxplot of number of distinct events across 10 test suites for
each app and technique

Figure 5.11 shows the distribution of event coverage values for the random-based and

combinatorial-based test suites. The 2-way combinatorial-based test suites have a higher

median number of distinct events compared to the random-based test suites in six out of
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seven subject applications. In all seven subject applications, the 3-way combinatorial-based

test suites have a higher median number of distinct events compared to the random-based test

suites. The 3-way combinatorial-based test suites have an equal or higher median number

of distinct events than the 2-way combinatorial-based test suites in four out of seven subject

applications.

Null Hypothesis Alternate Hypothesis p-value
EC(Rand) = EC(2way) EC(Rand) 6= EC(2way) 6.2× 10−8

EC(Rand) = EC(3way) EC(Rand) 6= EC(3way) 9.7× 10−12

EC(2way) = EC(3way) EC(2way) 6= EC(3way) 0.23

Table 5.9. Statistical comparison of event coverage (EC) for random-based,
2-way combinatorial-based and 3-way combinatorial-based test suites

Table 5.9 shows results of Mann-Whitney U-tests to compare the number of distinct

events in the random-based, 2-way combinatorial-based and 3-way combinatorial-based test

suites. The results show that: (i) there is a significant difference in event coverage between

random-based test suites and 2-way combinatorial-based test suites (ii) there is a significant

difference in event coverage between random-based test suites and 3-way combinatorial-

based test suites and (iii) there is no significant difference in event coverage between 2-way

combinatorial-based test suites and 3-way combinatorial-based test suites.

5.2.9. Discussion and Implications

Within the specified two-hour time budget for each test suite, the 2-way and 3-

way combinatorial-based test suites achieve significantly higher code coverage compared to

random-based test suites. The 2-way combinatorial-based test suites show the most signifi-

cant improvement in code coverage compared to random-based test suites. There is no sta-

tistically significant difference in code coverage between the 2-way and 3-way combinatorial-

based test suites. This result suggests that given a fixed time budget, an increase in event

combination strength for combinatorial-based test suites does not necessarily increase over-

all code coverage. In two out of seven subject applications (Loaned and WhoHasMyStuff ),

3-way combinatorial-based test suites achieve higher mean and median block/method cover-

age compared to 2-way combinatorial-based test suites. WhoHasMyStuff and Loaned have
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two and four activities respectively and the other five subject applications in our experi-

ments range from five to eight activities. This observation suggests that compared to 2-way

combinatorial-based test suites, higher event combination strengths may be more effective

(in terms of code coverage) for simple Android applications that have few activities.

The 2-way and 3-way combinatorial-based test suites show a significant improvement

in event coverage compared to random-based test suites. The random-based algorithm is

likely to repeatedly select events that do not provide any added benefits in terms of code

coverage and event coverage. During test suite construction, events that have been selected

least frequently (or not at all) are most likely to cover the highest number of new event tuples.

Our combinatorial-based technique prioritizes selection and execution of new or infrequently

selected events as a side effect of its maximization of event tuple coverage. This may be

a factor in the improved event coverage of the combinatorial-based test suites compared to

random-based test suites. There is no statistically significant difference between the event

coverage of the 2-way and 3-way combinatorial-based test suites.

In two of the seven subject applications (Loaned and WhoHasMyStuff ), the 3-way

combinatorial-based test suites achieve faster code coverage than the 2-way combinatorial-

based test suites. These subject applications are the only ones that have fewer than five

activities. This suggests that given a fixed time budget, an increase in event combination

strength may lead to increased code coverage rates in simple Android applications with a

small number of activities.

Combinatorial-based techniques may test interactions between events that occur in

a particular order. Our results demonstrate the cost-effectiveness of combinatorial-based

techniques for automatic construction of Android application test suites. With a limited time

budget, our combinatorial-based technique produces test suites with equal or higher code

coverage, code coverage rates and event coverage compared to a random-based technique.

Users of automated GUI testing tools for Android apps need to consider the complexity of of

the application under test, particularly the number of lines of code, number of activities and

amount of interaction between widgets before choosing an event combination strength for
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combinatorial-based event sequence testing. The computational cost of our combinatorial-

based algorithm increases in direct proportion to the specified event combination strength.

The effectiveness of test suites produced with higher event combination strengths (n > 2)

may depend on the available time budget and the complexity of the application under test.

5.2.10. Threats to Validity

The randomized nature of our combinatorial-based algorithm is the primary threat to

the validity of this study. To minimize this threat, we experiment with 10 test suites for each

application and test generation criterion. Another threat to the validity of this study is the

generalizability of the results as we evaluate our combinatorial-based technique on a limited

number of Android applications. The effectiveness of our approach may depend on the size

and complexity of the application under test. To minimize this threat, we experiment with

seven Android applications of various sizes.

We perform experiments with a fixed time budget of two hours for each test suite.

A smaller or larger time budget may produce results different from those reported in this

study. The results of our experiments with a two hour time budget provide useful insight

into the cost-effectiveness of our combinatorial-based technique compared to a random-based

technique. We use a greedy algorithm to generate event sequences that maximize coverage

of event tuples. Other techniques (e.g. search-based) may yield different results.

5.3. Summary and Conclusions

This chapter presents a combinatorial-based technique to automatically construct

Android application test suites and maximize coverage of n-way event combinations, where n

is a predefined event combination strength. The objective is to minimize redundant execution

of events and increase the likelihood of testing behavior that occurs only when events are

executed in a particular order. Our online technique does not require source code analysis

or static abstract models of the AUT’s behavior. We evaluated our combinatorial-based

technique on seven Android applications and compared it to a random-based technique.

The results of our experiments show that 2-way and 3-way combinatorial-based test suites
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are more effective than random-based test suites in terms of code coverage, code coverage

rate and event coverage despite the additional overhead of computing event combinations.

There is no statistically significant difference between 2-way and 3-way combinatorial-based

test suites. Higher event combination strengths may require additional time to produce test

suites that are more effective than those produced with lower event combination strengths.

This is because the computational cost of our combinatorial-based algorithm increases in

direct proportion to the specified event combination strength.

In Chapter 6, we describe a framework and pairwise event selection technique that

enables automatic construction of Android application test suites with systematically inter-

leaved GUI events and context events (e.g. changes in network connectivity, screen orienta-

tion and battery levels).
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CHAPTER 6

TESTING CONTEXT-SENSITIVE BEHAVIOR IN ANDROID APPLICATIONS

Mobile applications are Event Driven Systems (EDSs) that pose unique testing chal-

lenges. Users typically interact with mobile applications via a Graphical User Interface

(GUI). These applications take GUI event sequences as input and respond by changing their

state. GUI-based software is difficult to test due to the prohibitively large number of pos-

sible GUI event sequences in the input space [50]. Mobile applications further complicate

the testing process with their ability to respond to context events (e.g. changes in network

connectivity, battery levels, location, etc.). These context events often modify one or more

context variables (e.g. screen orientation, connectivity status, etc.) that define the operat-

ing context of a mobile application and may affect its behavior. A mobile application may

react directly to context changes or respond differently to identical GUI events executed in

multiple contexts. Some features of a mobile application may be accessible only in specific

contextual conditions (e.g. availability of an internet connection) and faults may occur only

in specific contexts or as a result of interactions between context variables. GUI states and

lines of code that drive context-sensitive functionality may be unreachable with test suites

that do not manipulate the operating context of the AUT. Mobile applications may respond

to context changes and are often expected to function reliably in different operating contexts.

It is important to develop cost-effective testing techniques that consider context changes in

addition to GUI events.

There are several tools and techniques for automated GUI testing of mobile appli-

cations [2–5, 42, 46, 53, 56, 78]. The majority of these tools do not consider the operating

context of the AUT during test generation and execution. They execute GUI event sequences

in a single predefined context and may test only the subset of an AUT’s functionality that

is available in the predefined context. Some prior research describes techniques to execute

preexisting test suites in multiple contexts and techniques to insert context events into pre-

existing test suites [1,44,64]. These techniques may produce infeasible GUI event sequences
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since context changes often alter the behavior of the AUT.

In this chapter, we develop a framework that allows testers to use different criteria to

automatically generate Android application test suites that include context events and GUI

events. The framework considers the operating context of an AUT to be a combination of

values for a predefined set of context variables and enables testers to instantiate different

test generation techniques that assess the behavior of Android applications under changing

contexts. It enables testers to instantiate different test generation techniques that assess

the behavior of Android applications under changing contexts. As part of our framework,

we develop a pairwise event selection technique that systematically executes GUI events in

different contexts, tests potential interactions between context variables and automatically

regulates the frequency of context changes in relation to GUI events. The test generation

techniques explored in this chapter combine context manipulation and test generation into

a single process. Techniques in prior work treat context manipulation and test generation

as separate activities. We hypothesize that systematic execution of GUI events in multiple

contexts is a cost-effective way to manage the large input space and improve the quality of

test suites for context-sensitive Android applications.

6.1. Context Modelling

Our framework requires a combinatorial context model that specifies a set of context

variables and values for use during test generation. Testers may specify combinatorial context

models in line with specific requirements of the AUT.

WiFi Battery AC Power Screen Orientation
Connected Ok Connected Portrait
Disconnected Low Disconnected Landscape

Table 6.1. Combinatorial testing model with four context variables and two
values for each variable

Table 6.1 shows a combinatorial context model with four context variables (WiFi,

battery, AC power and screen orientation). Each context variable has two possible values.

Hence, there are 24 possible value combinations. The number of context variables in the
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combinatorial context model may be expanded to include other variables (e.g. GPS, blue-

tooth, etc.) in line with requirements of the AUT. A combinatorial context model may also

define constraints between context variables. An exhaustive combination of k context vari-

ables, each with v possible values, results in vk possible value combinations. A combinatorial

context model with 10 context variables and three possible values for each variable implies

that the AUT may be exhaustively tested in 310 possible contexts. Exhaustive combination

of values for context variables quickly becomes cost prohibitive since the number of possi-

ble combinations increases exponentially with the number of context variables. To manage

this combinatorial explosion, given a combinatorial context model with k context variables,

a tester may model the possible operating contexts of an AUT as a t-way covering array.

For a combinatorial model with k variables and v possible values for each variable, a t-way

covering array CA(N ; t; k; v) has N rows and k columns such that each t-tuple occurs at

least once within the rows, where t is the strength of interaction coverage [13].

ID WiFi Battery AC Power Screen Orientation
c1 Connected Low Disconnected Landscape
c2 Connected OK Connected Portrait
c3 Disconnected Low Connected Landscape
c4 Disconnected OK Disconnected Portrait
c5 Disconnected Low Disconnected Portrait
c6 Connected OK Disconnected Landscape

Table 6.2. A 2-way covering array that defines six contexts

Table 6.2 shows a 2-way covering array for the combinatorial context model in Ta-

ble 6.1. Each row of the covering array ci represents a single operating context that will be

used to assess the functionality of the AUT. Our framework generates context covering arrays

from combinatorial context models to enable testing of potential interactions between con-

text variables and reduce the combinatorial explosion when the number of context variables

increases.

6.2. Definitions

The framework relies on a set of abstractions to automatically construct test suites for

context-sensitive Android applications. We define context, context-GUI event pair coverage
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and context-state pair coverage as follows.

Definition 6.1. (Context) A context is an n-tuple c = {(p1, v1), (p2, v2), ..., (pn, vn)} where

pi is a context variable, vi is its corresponding value and n is the number of context variables.

Definition 6.2. (Context-GUI event pair coverage) A context-GUI event pair (ci, ej) is

covered in a test suite T if there is at least one test case in T that executes GUI event ej in

context ci.

Definition 6.3. (Context-state pair coverage) A context-state pair (ci, sj) is covered in a

test suite T if for every GUI event e available in GUI state sj, there is a test case in T that

executes e in context ci.

6.3. Test Suite Construction Framework

The framework uses an event extraction cycle to iteratively select and execute events

from the GUI of the application under test to construct test cases one-event-at-a-time.

Algorithm 8 shows pseudocode for the test suite construction framework. It provides a

high-level description of a process to automatically construct test suites for context sensitive

Android apps. Lines 9-15 represent the event extraction cycle that incrementally constructs

each test case. The framework requires specifications for several parameters (shown in boxes)

to instantiate different test generation techniques. The test generation process consists of

the following steps:

Step 1: Generate context covering array. Line 1 generates a covering array C from

the combinatorial context model M specified as input. The covering array specifies a set

of contexts that will be used to test the AUT. Each context specified in the covering array

has a corresponding context event that changes the operating context of the AUT. This step

occurs once for a single test suite.

Step 2: Initialize test case. Lines 4-8 initialize each test case in the test suite. Line 4

creates an empty event sequence. The InitialContextStrategy procedure call on line 5 uses a

predefined strategy to select a start context for each test case and line 6 adds the associated

79



Algorithm 8: Pseudocode for test suite construction framework (boxes indicate frame-

work parameters)

Input : android application package, AUT

Input : combinatorial context model, M

Output: test suite, T

1 C ← generate context covering array from M

2 T ← φ

3 repeat

4 ti ← φ

5 ccurr ← InitialContextStrategy(C)

6 add initial context event to test case ti

7 install and launch AUT, add launch event to ti

8 scurr ← initial GUI state

9 while TerminationCriterion is not satisfied do

10 Eall ← GUI events in current GUI state scurr

11 esel ← EventSelectionStrategy(Eall, Call, C)

12 ti ← ti ∪ {esel}
13 scurr ← current GUI state

14 ccurr ← current context

15 end

16 T ← T ∪ {ti}
17 finalize test case (clear cache/SD card, uninstall app, etc.)

18 until CompletionCriterion is satisfied

context event as the first event in the new test case. Line 7 launches the AUT in the selected

start context and adds a launch event to the test case. Line 8 retrieves the initial GUI state

of the AUT.

Step 3: Select and execute an event. The EventSelectionStrategy procedure call on

line 11 uses a predefined strategy to select and execute a context event or GUI event in

each iteration of the event extraction cycle (lines 9-15). Event execution often changes the

GUI state of the AUT and/or the value of one or more context variables. This iterative

event selection and execution incrementally constructs a test case that may include context

events and GUI events. A single test case ends when the algorithm satisfies a predefined
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TerminationCriterion. We describe our pairwise event selection strategy in Section 6.3.1.

Step 4: Finalize test case. At the end of each test case, line 17 resets the state of the

AUT and clears all data that may affect the outcome of subsequent test cases.

The algorithm generates multiple test cases until it satisfies a predefined Completion-

Criterion that specifies when the test suite is complete.

6.3.1. Pairwise Event Selection

In each iteration of the event extraction cycle, the EventSelectionStrategy parameter

in our framework specifies a strategy for choosing: (i) whether to execute a GUI event or

context event and (ii) which particular event to execute, given a set of available GUI events

and a context covering array.

Algorithm 9: Pairwise event selection
Input : set of GUI events in current GUI state, Eall

Input : context covering array, C

Output: GUI event, esel, or context event csel

1 ccurr ← current context

2 scurr ← current GUI state

3 esel ← select GUI event ei from Eall such that (ccurr, ei) is not yet covered

4 if esel = φ then

5 mark context-state pair (ccurr, scurr) as covered

6 csel ← select a context event for ci ∈ C such that (ci, scurr) is not yet covered

7 if csel 6= φ then

8 execute context event csel

9 return csel

10 else

11 esel ← select random GUI event ei from Eall

12 end

13 end

14 execute event esel

15 mark context-GUI event pair (ccurr, esel) as covered

16 return esel

Algorithm 9 shows pseudocode for our pairwise event selection strategy. The algo-

rithm maintains a set of covered context-GUI event pairs (definition 6.2) and a set of covered

context-state pairs (definition 6.3). The set of covered context-GUI event pairs enables the
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algorithm to track which GUI events have been executed in a particular context. The set

of covered context-state pairs enables the algorithm to recognize when all GUI events in a

particular GUI state have been executed in a particular context. The pairwise event selec-

tion strategy prioritizes execution of GUI events in new contexts and enables generation of

test cases that may contain multiple context changes interleaved with GUI events. Lines 1

and 2 identify the current context ccurr and current GUI state scurr respectively. On line 3,

the algorithm attempts to select and execute a GUI event ei that has not yet been executed

in the current context. If the algorithm finds a GUI event ei that satisfies the criterion, it

simply executes ei. Failure to find such an event in the current GUI state scurr indicates

that all events available in scurr have been executed in the current context ccurr. In this

situation, the algorithm marks the context-state pair (ccurr, scurr) as covered and attempts

to find a context ci in the covering array C such that there is at least one event in the current

GUI state scurr that has not been executed in ci. If the algorithm finds such a context ci, it

executes a context event that changes the current context to ci. If the algorithm is unable to

find a GUI event or context event that satisfies any of the aforementioned criteria, it selects

a GUI event uniformly at random.

6.3.2. Test Generation Techniques

FixedContext RandStart IterativeStart RandInterleaved PairsInterleaved
InitialContextStrategy Fixed Random Iterative Random Iterative
EventSelectionStrategy Random Random Random RandomInterleaved PairwiseInterleaved
TerminationCriterion Probabilistic Probabilistic Probabilistic Probabilistic Probabilistic
CompletionCriterion Time Time Time Time Time

Table 6.3. Test generation techniques with corresponding parameter speci-
fications

Table 6.3 shows five test generation techniques and their corresponding parameter-

values in our framework. The FixedContext technique generates test suites in a single prede-

fined context without any consideration for context changes. The RandStart and IterativeS-

tart techniques generate test suites that execute context changes only at the beginning of

each test case. The RandStart technique randomly selects a start context for each test case

while the IterativeStart technique selects a start context for each test case in a round-robin

82



manner. With RandStart and IterativeStart, each test case begins with a single context

event and continues with a sequence of randomly selected GUI events. The RandInterleaved

technique generates test suites with randomly interleaved context events and GUI events.

The PairsInterleaved technique uses our pairwise event selection technique to systematically

interleave context events with GUI events. Only the RandInterleaved and PairsInterleaved

techniques generate test cases that may contain several context changes. All the techniques

defined in Table 6.3 except FixedContext enable execution of GUI events in multiple contexts

within a single test suite. Each technique uses a predefined probability value (e.g. 0.05) to

pseudorandomly terminate test cases and a predefined time limit to determine when test

suite construction is complete.

6.3.3. Framework Implementation

Configuration files

Application under test

Context model

Input

Emulator/Android Device

Event Selector Event Executor

Context manager

Abstraction manager

Autodroid

Test suite

Execution logs

Coverage metadata

Output

Appium ADB

ACTS

Figure 6.1. Framework implementation

Figure 6.1 shows the components of our framework. We implement the framework as

part of our automated testing tool, Autodroid. The framework takes an Android application

package (APK), combinatorial context model and configuration file as input. The combi-

natorial context model specifies a set of context variables and values for test generation.

The configuration file enables users to specify different criteria for test suite construction.

The framework uses the criteria specified in the configuration file to instantiate various test

generation techniques. Autodroid automatically generates event sequence test suites, ex-

ecution logs and code coverage metadata without need for source code or static abstract
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models of the AUT. Autodroid uses ACTS1 to generate covering arrays from combinatorial

context models. It uses Appium2 to identify and execute GUI events on an Android emu-

lator or physical device. The Android Debug Bridge (ADB)3 enables Autodroid to modify

context variables and execute context changes. The ContextManager tracks the current op-

erating context of the AUT during test generation. The AbstractionManager creates and

manipulates event, action, GUI state and context abstractions. The EventSelector uses the

abstractions to choose events for the EventExecutor to execute.

6.4. Experiments

6.4.1. Research Questions

Our experiments address the following research questions:

• RQ1: Does execution of GUI events in multiple contexts improve code coverage of

test suites?

• RQ2: Does execution of GUI events in multiple contexts improve fault detection

effectiveness of test suites?

6.4.2. Subject Application

We use an Android app called EmployeeBase to demonstrate the feasibility of our

framework and combinatorial-based technique. We use the app as a case study of context-

sensitive behavior that may require specialized testing techniques. The app has four activities

and 1081 source lines of code (SLOC). It provides a GUI to create, retrieve and store employee

information in a remote database. The app relies on an internet connection for most of

its functionality. It polls the remote database for updates at a predefined interval that is

determined by the current battery level and whether the device is connected to a power

source. The app automatically adjusts the poll interval whenever it senses a change in the

battery status (low/ok) or power status (connected/disconnected). It also notifies users

whenever it is unable to retrieve records from the remote database.

1http://csrc.nist.gov/groups/SNS/acts/index.html

2http://appium.io

3https://developer.android.com/studio/command-line/adb.html
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6.4.3. Experimental Setup

We generated 10 test suites with each technique and specified a fixed time limit of

two hours (120 minutes) for each test suite. The techniques used are described as follows:

• The FixedContext technique generates a test suite in a single predefined context

by randomly selecting and executing GUI events without consideration for context

changes.

• The RandStart technique randomly selects a context event only at the beginning

of each test case.

• The IterativeStart technique selects a different context event at the beginning

of each test case by iterating through the context covering array in a round-robin

manner.

• The RandInterleaved technique generates test suites with a random mix of context

events and GUI events.

• The PairsInterleaved technique uses our pairwise event selection strategy to sys-

tematically execute GUI events in multiple contexts.

We used the FixedContext technique to construct test suites in a single context

c = {WiFi=connected, Battery=OK, AC Power=connected, ScreenOrientation=Portrait}

that represents favorable operating conditions for the AUT. For the RandStart, IterativeS-

tart, RandInterleaved and PairsInterleaved strategies, we generated a 2-way context covering

array from a combinatorial context model. The combinatorial context model has four context

variables {WiFi, Battery, AC Power, ScreenOrientation} and two values for each variable

(as described in section 6.1). We generated the test suites on Android 4.4 emulator in-

stances and used a probability value of 0.05 to pseudorandomly terminate test cases. The

Android emulator instances in our experiments only have Internet access via an emulated

WiFi connection. Thus, any contexts with {WiFi=disconnected} imply a loss of Internet

access.
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FixedContext RandStart IterativeStart RandInterleaved PairsInterleaved
Average 77.04 83.56 83.56 78.81 87.31
Median 77.04 83.56 83.56 78.71 87.21
Minimum 77.04 83.52 83.52 70.18 85.35
Maximum 77.04 83.56 83.56 86.79 90.03
Standard Dev. 0 0.01 0.01 5.09 1.28

Table 6.4. Summary block coverage statistics across 10 test suites for each
technique

Figure 6.2. Average number of events executed in each context

6.4.4. Results and Discussion

Code coverage. Table 6.4 shows summary block coverage statistics for the FixedContext,

RandStart, IterativeStart, RandInterleaved and PairsInterleaved techniques. The FixedCon-

text technique executes randomly selected GUI events in a single predefined context. All 10

test suites generated with the FixedContext technique never achieve beyond 77.04% block

coverage. Figure 6.2 shows the average number of distinct events executed in each of the

six contexts defined in our context covering array. The FixedContext technique executes the

highest number of distinct events in context c2 and does not execute events in any other

context. The FixedContext technique limits test suites to the subset of the AUT’s code that

is reachable in the predefined context and thus achieves the lowest average code coverage

compared to the other techniques. Test suites that execute GUI events in only one context

may be unable to test context-sensitive behavior that occurs when GUI events are executed
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in multiple contexts.

The RandStart and IterativeStart techniques change the operating context of the AUT

only at the beginning of each test case. This enables a single test suite to execute GUI events

in multiple contexts. The RandStart and IterativeStart techniques achieve up to 7% higher

code coverage on average compared to the FixedContext technique. These techniques achieve

higher code coverage than the FixedContext strategy because they enable testing of context-

sensitive behavior that occurs in response to GUI events executed in different operating

contexts. These results suggest that execution of GUI events in multiple contexts may lead

to increased code coverage for context-sensitive Android apps compared to techniques that

execute GUI events in a single context.

The RandInterleaved technique generates test suites that contain a random mix of

context events and GUI events in each test case. The test suites execute GUI events in

multiple contexts and may contain multiple context changes in a single test case. The

RandInterleaved technique shows a wide variation in code coverage across multiple test suites

because it tends to execute too many context events at the expense of GUI exploration and

code coverage. This may explain why the RandStart and IterativeStart techniques achieve

higher code coverage on average compared to the RandInterleaved technique.

The PairsInterleaved technique, which uses our pairwise event selection strategy,

achieves the highest code coverage compared to the other techniques in our experiments.

Like the RandInterleaved technique, the PairsInterleaved technique may change the AUT’s

operating context multiple times within a single test case, but it regulates the frequency

of context changes in relation to GUI events to avoid adverse effects on GUI exploration

and code coverage. Inclusion of multiple context events in a single test case enables testing

of context-sensitive behavior that is triggered by a specific sequence of context changes

interleaved with GUI events. Figure 6.2 shows that the PairsInterleaved technique executes

a higher number of GUI events in different contexts compared to the other techniques in our

experiments. These results show that the code coverage of test suites may improve with test

generation techniques that systematically execute GUI events in multiple contexts, allow
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multiple context changes within a single test case and regulate the frequency of context

changes in relation to GUI events.

FixedContext RandStart IterativeStart RandInterleaved PairsInterleaved
java.lang.IllegalArgumentException 7 7 7 3 3
libcore.io.GaiException 7 7 7 3 3
java.lang.UnknownHostException 7 7 7 3 3

Table 6.5. Exceptions found by each test generation technique

Fault detection. We examined execution logs from our experiments for exceptions/stack

traces thrown by the AUT. We consider these exceptions to be indicators of faulty behav-

ior in the AUT. Table 6.5 shows the exceptions found by the test suites generated with

each technique. The RandInterleaved and PairsInterleaved techniques found three unique

exception types across 10 test suites. The FixedContext, RandStart and IterativeStart tech-

niques produce test suites that do not trigger any exceptions. The two techniques that

enable multiple context changes within a single test case, RandInterleaved and PairsInter-

leaved, produce test suites that detect three types of exceptions in the application under test:

java.lang.IllegalArgumentException, libcore.io.GaiException and java.lang.UnknownHost- Ex-

ception. These exceptions are related to areas of the AUT’s code that depend on an Internet

connection to retrieve data from a remote database. We observe that java.lang.IllegalArgument-

Exception causes the AUT to crash when a test case changes the screen orientation, dis-

connects from WiFi and repeatedly presses the “back” button. Recall that the Android

emulators in our experiments rely on a WiFi connection for Internet access. The other ex-

ceptions, libcore.io.GaiException and java.lang.UnknownHostException, occur when a test

case executes a GUI event to retrieve data from the remote database but disconnects from

WiFi before the connection is complete. These observations suggest that several faults in

context-sensitive Android applications may be triggered by interactions between several con-

text variables and GUI events. The fault detection effectiveness of test suites improves with

test generation techniques that execute GUI events in multiple contexts and allow multiple

context changes within a single test case.
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6.4.5. Threats to Validity

The primary threat to validity of our experiments is the generalizability of our re-

sults. The characteristics of the application under test may impact the effectiveness of our

framework and event selection technique. Another possible threat is the number of con-

text variables incorporated into the test cases. When and how often to change the context

variables is still unknown for optimal cost effectiveness. In future work, we will extend our

empirical study to include several context variables and Android apps of varying size and

complexity. The randomized nature of the techniques in the study is another threat to

validity. To minimize this threat, we constructed 10 test suites with each test generation

technique.

6.5. Summary and Conclusions

Mobile applications may react to context events in addition to GUI events. Context

events may alter the operating context of an application under test and cause changes in

behavior. It is important to generate tests that manipulate the operating context of the

AUT to test context-sensitive behavior. This chapter describes a context-aware automated

testing framework that allows testers to use different criteria to construct Android application

test suites with context events and GUI events. As part of our framework, we develop

a pairwise event selection technique that systematically executes GUI events in multiple

contexts to test context-sensitive behavior. The results of our experiments show that our

pairwise technique improves fault detection effectiveness and achieves up to 10% higher code

coverage compared to a technique that generates test suites in a single predefined context.

This chapter demonstrates the importance of manipulating the operating context of an

AUT during test generation and shows that systematic execution of GUI events in multiple

contexts may improve the code coverage and fault detection effectiveness of test suites for

context-sensitive Android applications.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Prior work in automated GUI testing focuses on model-based techniques that require

a preexisting abstract model of the AUT for offline generation and subsequent execution of

event sequences. Several studies investigate online GUI testing as an alternative to model-

based testing and often use algorithms that select and execute events uniformly at random.

The majority of online GUI testing tools, techniques and experiments in prior work are often

not directly applicable to mobile applications without significant modification. The majority

of prior work in mobile application testing focuses predominantly on GUI events and does

not describe techniques to test context-sensitive behavior triggered by context changes (e.g.

changes in network connectivity, battery levels, screen orientation, etc.). In many cases,

existing tools do not produce event sequences that can be reused for automated regression

testing and reproduction of failures.

This dissertation presents novel probabilistic and combinatorial-based algorithms for

online construction of Android application test suites. Our algorithms are based on an event

extraction cycle that iteratively identifies, selects and executes events to construct reusable

test cases one-event-at-a-time without need for source code analysis or preexisting abstract

models of the AUT. We implement our algorithms in an automated GUI testing tool called

Autodroid and perform empirical studies to assess the effectiveness of our techniques. The

results of our experiments provide empirical data that may help software testing researchers

and practitioners choose between several online test generation techniques for mobile appli-

cations.

7.1. Summary of Contributions

The following are the major contributions of this dissertation:

Autodroid. We develop an automated GUI testing tool, Autodroid, that implements an

online approach to automatic construction of Android application test suites. Autodroid’s

online algorithms consist of an event extraction cycle that iteratively identifies, selects and
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executes events to construct event sequences one-event-at-a-time. Autodroid generates test

cases that conform to an event sequence metamodel to enable reuse for automated regression

testing and reproduction of failures. We demonstrate that Autodroid’s random-based algo-

rithm generates test suites that achieve higher code coverage than test suites generated with

Monkey, a widely used random GUI testing tool for Android applications. We implemented

the algorithms and techniques in this work as part of Autodroid.

Frequency-based test suite construction. We developed an online test suite construc-

tion technique that uses the prior execution frequency of events to prioritize selection of

previously unexecuted events and minimize redundant event execution during test suite

construction. We develop two frequency-based event selection algorithms that alter event

selection probabilities based on the prior execution frequency of available events in a given

GUI state. We compared test suites generated with our frequency-based event selection al-

gorithms to test suites generated with uniform random event selection. The major findings

from our experiments with seven Android applications are as follows:

• The event selection strategy used in an online test suite construction algorithm

has a significant impact on cost-effectiveness in terms of code coverage and event

coverage.

• Given a fixed time budget of two hours, our frequency-based event selection algo-

rithms generate test suites that achieve higher code coverage and event coverage

compared to test suites generated with uniform random event selection.

• Test suite construction algorithms that prioritize selection of previously unexecuted

events tend to achieve higher code coverage and event coverage compared to random-

based algorithms that select and execute events uniformly at random.

Combinatorial-based test suite construction. The order in which events occur may

influence the behavior of Event Driven Software (EDS) including GUI-based software such

as mobile applications. We developed a combinatorial-based test suite construction tech-

nique that considers potential interactions between events that occur in a particular order.

During test suite construction, our combinatorial-based algorithm prioritizes selection of
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previously unexecuted events, considers the order in which events have previously occurred

and maximizes coverage of n-way event combinations, where n is a specified event combi-

nation strength. We compared 2-way and 3-way combinatorial test suites to random-based

test suites in terms of code coverage and event coverage. The major findings from our

experiments with seven Android applications are as follows:

• Given a fixed time budget of two hours, our 2-way and 3-way combinatorial-based

test suites achieve higher code coverage and event coverage than a random-based

technique despite the additional overhead of computing event combinations.

• The cost-effectiveness of higher event combination strengths (n > 2) depends on

the characteristics of the AUT. Compared to 2-way combinatorial-based test suites,

higher event combination strengths (n > 2) are likely to be most effective for simple

Android applications with a small number of activities.

• Online test suite construction with event combination strength n > 2 may require

additional time to generate test suites that are more cost-effective than those gen-

erated with lower event combination strengths because of the computational cost of

computing event combinations.

Framework for testing context-sensitive Android applications. Mobile applications

may react to context events (e.g. changes in network connectivity) in addition to GUI events.

Context events may alter the operating context of an application under test and cause

changes in behavior. We develop a framework that allows testers to use different criteria to

automatically construct test suites for context-sensitive Android applications and a pairwise

event selection technique to systematically execute GUI events in multiple contexts. The

framework combines context manipulation and test generation into a single process. We

use the framework to instantiate multiple test generation techniques that integrate context

events and GUI events in different ways and perform an empirical study to compare test

suites generated with the different techniques. The major findings from our experiments

with a context-sensitive Android application are as follows:

• Test generation techniques that execute GUI events in multiple contexts are nec-
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essary to improve the effectiveness of test suites for context-sensitive mobile ap-

plications. All such techniques must regulate the frequency of context changes in

relation to GUI events and minimize the combinatorial explosion that occurs when

combining context events and GUI events.

• Our pairwise event selection technique achieves significant improvement in code cov-

erage and fault-finding effectiveness compared to a technique that selects a random

mix of GUI events and context events, techniques that change the operating con-

text of the AUT only at the start of each test case and a technique that randomly

executes GUI events in a single predefined context.

7.2. Future Work

This dissertation lays the foundation for future work in the following areas.

Context-sensitivity in mobile applications. Mobile applications may react to a number

of context events in addition to GUI events generated by users. This represents an increase

in the input space that must be sampled in order to effectively test mobile applications,

especially those that rely on contextual information to provide context-sensitive behavior

to users. This dissertation proposes a framework that automatically constructs test suites

for context-sensitive Android application. We will extend our empirical study to include

additional subject applications and improve our techniques to consider constraints between

context variables based on real-world data collected from users. We will also investigate the

impact of higher interaction strengths between context variables on the code coverage and

fault-finding effectiveness of test suites generated with our framework.

Reinforcement learning and online graph exploration techniques. Online GUI test-

ing algorithms traverse the GUI of an application under test by visiting GUI states and

selecting events to execute. This process is similar to online learning and online graph ex-

ploration problems. Online GUI testing algorithms may benefit from reinforcement learning

techniques that enable more intelligent event selection based on information about the AUT’s

response to previously executed events. One major challenge in this research direction is the

definition of a suitable reward function that effectively embodies the goals of the testing pro-
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cess. This is particularly challenging since the behavior of software differs from traditional

reinforcement learning environments in many ways.

Fault detection studies. This dissertation evaluates online test suite construction tech-

niques in terms of code coverage and event coverage. We will perform additional empirical

studies that focus on the fault finding effectiveness of our techniques. This may require

manual fault seeding of subject applications or the use of mutation testing tools.

Extensive tool support. Our automated GUI testing tool, Autodroid, provides tool sup-

port for the techniques and empirical studies in this work. We will extend Autodroid with

test debugging, test prioritization and test reduction capabilities to support further research

in those areas.
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