
PATH-INVARIANT AND TIME-OPTIMAL MOTION CONTROL FOR INDUSTRIAL 

ROBOTS 

by 

 

Joonyoung Kim 

B.Eng., Chung-Ang University (Seoul, Korea), 2002 

M.A.Sc., University of Toronto, 2005 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

DOCTOR OF PHILOSOPHY 

in 

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES 

(Mechanical Engineering) 

 

THE UNIVERSITY OF BRITISH COLUMBIA 

(Vancouver) 

 

April 2017 

 

© Joonyoung Kim, 2017 



ii 

 

Abstract 

This thesis presents practical methods for planning and control to improve the motion 

performance of industrial robots. Particular attention is given to the commercial six degrees-of-

freedom articulated robot with a low-cost generic controller. A comparative study of motion 

control methods demonstrated that both smooth trajectory planning and filtering techniques, 

when combined with a traditional Proportional-Derivative control, are limited in achievable 

performance due to reduced accelerations (smooth trajectory) or large path-distortions (filtering 

technique). Instead, faster and more accurate motion is achieved with a low-order trajectory, 

namely, trapezoidal velocity profile, with feedforward control design based on an elastic model. 

The key component that makes the latter approach more appealing is the delay-free dynamic 

input shaper embedded in the feedforward control. Following the results from the comparative 

study, two innovations are proposed to satisfy the path-invariant and time-optimal motion. First, 

an online time-optimal trapezoidal velocity profile planned along multiple path segments is 

presented. The trajectory can be planned for arbitrary boundary conditions and path curvatures 

with only four system-dynamics computations per path segment. Next, a novel control method 

based on the flexible joint dynamic model is proposed to achieve high tracking performance for 

the proposed trajectory. The proposed nonlinear multivariable control can place the closed-loop 

poles arbitrarily with only position and velocity feedback. Real-world experiments with 

commercial industrial robots are carried out to validate the presented methods.  
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Chapter 1: Introduction 

Advancements in industrial robotics research continue to provide significant benefits by 

reducing the need for manual labor that is repetitive, dull, and hazardous to humans. As robots 

become more autonomous and accurate, a larger set of tasks can be roboticized, freeing workers 

to focus on more challenging and cognitively demanding tasks. The roboticization of workspace 

has increased dramatically in recent years. World Robotics Report 2016 

(67TUhttp://www.ifr.org/industrial-robots/statistics)U67T states that “By 2019, the number of industrial robots 

deployed worldwide is expected to increase to around 2.6 million units. That is about one million 

units more than in the year of 2015.” Industrial robots are ubiquitous in traditional manufacturing 

processes such as welding, handling, cutting, painting, and are expected to play a major role in 

Industry 4.0 (linking online simulation with real-time manufacturing), as well as global retooling 

for new materials, shorter product cycles, increased variety of product mix and collaborative 

manufacturing. 

   

Figure 1.1. HS180 (left, 6 axis, payload: 180 kg, major application: spot welding and handling) and Hi5a 

controller and teach pendant (right, commercialized in 2008), used with permission of Hyundai Robotics 

Co., Ltd. 

http://www.ifr.org/industrial-robots/statistics
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The most common configuration for an industrial robot includes a serial linkage (mechanical 

arm) and a control system as shown in Figure 1.1. Each joint of the mechanical arm is actuated 

by an electric motor and power is transmitted to each link via a high ratio gearbox. Thus, 

industrial robots can have high payloads with relatively small motors. The controller is 

connected to a teach pendant that provides a user interface so that robot motion can be 

programmed conveniently. This design allows an industrial robot to be a multi-purpose machine. 

That is, one industrial robot can be used for a wide range of applications in various industries. 

For instance, a typical industrial robot can be used from point-to-point tasks, e.g., spot welding 

and material handling, to line following tasks, e.g., arc welding, painting, and deburring. In most 

of these applications, the motion performance of the robot is critical to the overall system 

efficiency as cycle time is often limited by the speed and required accuracy of the robot 

trajectory. Therefore, research to improve the motion performance has attracted much attention 

from the robotics community. For ‘high’ robot motion performance, i.e., fast motion with a small 

tracking error, designing a ‘good’ control strategy is crucial and is the main topic of this thesis. 

1.1 Motivation and Problem Statement 

While it is important to obtain high performance for industrial robots, obtaining such a goal 

is a challenging task. First of all, the articulated manipulator such as the one shown in Figure 1.1 

is a complex mechanical system. The links connected by six (typical) to eight joints are coupled 

and therefore the inertia changes depending upon the robot’s configuration. In addition, the 

physical space where the robots and the user directly interact with environment, referred to as the 

task space, is not the same as the space where each motor is controlled, referred to as the joint 
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space. The relationship between these two physical spaces is also highly nonlinear. Due to the 

complexity of the dynamics and geometry, the architecture of the motion control system for 

industrial robots is generally hierarchical, that is, the trajectory-planning module (or simply the 

planning module - the higher control level) and the servoing module (the lower control level). By 

adopting a hierarchical strategy, the problem of motion control is simplified because each 

module can be designed and implemented individually.  

In parallel with the architecture of motion control systems, research on motion performance 

of industrial robots has typically been pursued independently in two groups, namely, planning 

and control. The first group, referred to as the planning approach in this thesis, focuses on 

improving the reference trajectory. In particular, the problem of minimum-time trajectory 

planning based on a rigid model has received much attention in this category (Bobrow et al., 

1985; Shin and McKay, 1985). Other topics that are often mentioned include smooth trajectory 

planning (Macfarlane and Croft, 2003) and the filtering techniques (Singer and Seering, 1990). 

These works aim to generate smooth reference trajectories such that a simple Proportional-

Derivative (PD) control can achieve good tracking performance. In the meantime, the second 

group, or the control approach, focuses on improving the control loop such that it can guarantee 

global asymptotic stability for arbitrary reference trajectories. The main focus of the control 

approach is modeling and control synthesis for the nonlinear multivariable dynamics of a robot 

with elastic joints. A number of control methods have been proposed based on the flexible joint 

dynamic model. Some of well-known works include feedback linearization (Spong, 1987), 

feedforward control (De Luca, 2000), passivity-based control (Brogliato et al., 1995), and the 

singular perturbation method (Spong et al., 1985).  
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Although many important results have been achieved by both approaches, the methods 

proposed in the literature are not widely used in industry. Some advanced model-based methods 

are used for only certain industrial robots such as QuickMoveP

TM
P and TrueMoveP

TM
P of ABB 

robots and the torque controller of the KUKA lightweight robot. However, details of the methods 

are rarely reported in the literature due to company confidentiality policies (Moberg, 2010). 

Many of commercial industrial robots today still use a simple planning and control schemes such 

as trapezoidal velocity profiles (TVP) and PD control. However, there are clear reasons why 

more advanced motion control methods are not broadly adopted in industry. For example, the 

classical minimum-time trajectory (Bobrow et al., 1985; Shin and McKay, 1985) requires 

solving dynamics along the entire path in advance, which is impractical to implement in a low-

cost controller in spite of the recent advancements in computer technology. Even if the method 

can be implemented with increased computing power, tracking control is another problem as a 

simple PD control cannot obtain good tracking performance for such a bang-bang/high frequency 

trajectory. Some researchers have shown that increasing the smoothness of the trajectory can 

result in improved tracking performance. However, this approach is not always a viable solution 

in robotic applications where a high demand for cycle time is required, e.g., spot welding. Lastly, 

many proposed controllers are based on assumptions that cannot be applied to a typical industrial 

robot. That is, most of the tracking controllers proposed in the literature require accurate 

estimation of the link states including acceleration and jerk. However, the measurement of a 

typical industrial robot is available only on the motor side. In principle, the link acceleration and 

jerk can be computed based on the measured position and velocity and the dynamic model. In 

that case, measurement of higher order derivatives would not be required. However, in practice, 

the estimation of these derivatives is based on an inaccurate model, and the estimation error 
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increases with the order of differentiation. This is, perhaps, the reason why a successful 

implementation of a model-based control based on high order derivatives is rarely reported in the 

literature. In contrast, it is reported that a control method based on lower order derivatives can be 

implemented successfully (Albu-Schäffer et al., 2007). 

In summary, there exists a sizable gap between the advanced motion control methods 

proposed by academic researchers and the simple methods widely used in industry. This gap 

must be bridged in order for both academia and industry to move forward together for the 

advancement of motion control technology of industrial robots. 

1.2 Objective 

It is the intention of this thesis to bridge the gap between academia and industry in the field 

of motion control technology of industrial robots. The effort starts with a hypothesis that there 

exist significant theoretical benefits in academic research work and at the same time there are 

clear rationales why industry sticks to obsolete techniques. Therefore, this thesis tries to maintain 

a practical standpoint with a focus on implementable solutions built upon the strict industrial 

constraints. To do so, a thorough review of the existing methods available in the literature is 

performed. The review includes works done by both the planning and control approaches to find 

the optimal combination of the planning and control strategies that can lead to high motion 

performance. It is also necessary to identify the constraints of the motion control system of a 

typical industrial robot for practical implementations. Based on the theoretical review and 

identified industrial constraints, this thesis aims to find the answers to the following questions. 

• What is the best motion performance that can be obtained solely by improving the 

reference trajectory assuming a generic robot controller?  
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• What is a practical strategy for generating minimum-time trajectories under strict 

industrial constraints such as bounded computation time and online applications? 

• How should the control loop be designed with available measurements to obtain good 

tracking performance for a minimum-time trajectory? 

1.3 Contributions 

These main contributions of this thesis are as follows: 

1. A general motion control strategy that encompasses both planning and control to achieve 

high motion performance for industrial robots with elastic joints. 

2. The concept of path-invariant and time-optimal motion (PITOM) that specifies how each 

planning and control must be designed to guarantee both high speed and accurate 

tracking simultaneously. 

3. A comparison between the planning approach and control approach in a common 

framework. The methods that are compared include S-curve profiling, the input shaping 

technique (IST), feedforward control, and full-state control. The optimal S-curve 

profiling is proposed such that the jerk period is minimized to achieve vibration free 

responses under a high gain PD control. The reason why the control approach provides 

more opportunity for performance improvement than the planning approach is clearly 

demonstrated. 

4. A solution to the online minimum-time trajectory planning along multiple path segments 

with minimum computational load. The proposed method obtains the minimum-time 

trajectory with only four system-dynamics computations per path segment, which enables 

the robot to quickly respond to sensor inputs with limited computation sources.  
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5. A method for the multivariable nonlinear control of an industrial robot with elastic joints 

without estimating high order states on the link side. A singular perturbation method is 

employed to find a unique set of gains such that the closed-loop poles are placed at the 

desired locations.  

 

1.4 Thesis Outline 

The remainder of the thesis is organized as follows: 

Chapter 2: The related work in the literature on motion control methods for industrial robots 

is reviewed, focusing on the theoretical benefits and implementation issues. Both 

planning and control approaches are overviewed. 

Chapter 3: In this chapter, the motion control system of a typical industrial robot is 

introduced. The constraints that must be satisfied for practical implementation in a 

low-cost robot controller are also discussed. Then, a concept for motion control, 

referred to as the PITOM is introduced. The concept specifies how trajectory and 

control must be designed to guarantee high motion performance. 

Chapter 4:  The purpose of this chapter is to compare some of the well-known motion control 

methods in order to investigate whether they satisfy the concept of the PITOM. 

Four methods, S-curve profiling, the input shaping technique (IST), feedforward 

control, and full-state control are analyzed and tested by experiment. The first two 

methods represent the planning approach and the latter two methods are for the 

control approach. The comparative study reveals that: (i) the optimal S-curve 
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trajectory is too slow especially in short-pitch motions due to the added jerk 

period at every switching point; (ii) the IST will generate poor path accuracy due 

to significant path distortions; (iii) an equally good or better performance can be 

achieved by the control approach with a non-smooth trajectory input. The key 

component that makes the control approach more appealing than the planning 

approach is the delay-free dynamic input shaper that is embedded in the 

feedforward control. The result from this chapter has been submitted for 

publication in IEEE/ASME Transactions on Mechatronics (Kim and Croft, 

submitted in October 2016). 

Chapter 5:  This chapter presents the generation of a time-optimal, low-order trajectory that 

allows for replanning on the fly and planning for continuous motions to meet the 

online requirement. The well-known minimum-time trajectory (Bobrow et al., 

1985; Shin and McKay, 1985) is approximated by the TVP trajectory to achieve 

time-optimality. It is shown that it is sufficient to solve dynamics only at four 

points along a path segment to achieve time-optimality as long as the path and 

dynamic terms can be locally linearized. Simulation and experiment are 

performed to verify the proposed trajectory. The work in this chapter has been 

accepted for publication in IEEE Transactions on Robotics (Kim and Croft, 

accepted in October 2016). 

Chapter 6: In this chapter, a novel nonlinear control strategy is proposed to obtain good 

tracking performance for the proposed time-optimal trajectory. The control 

method is a combination of feedforward control and a singular perturbation 



9 

 

method for feedback control. The feedforward control plays a dominant role in 

the accurate tracking of the time-optimal trajectory. The singular perturbation 

method is applied to suppress the residual vibrations at steady state and to 

guarantee stability. A method of selecting the feedback gain such that an arbitrary 

closed-loop performance can be achieved is also discussed. The proposed control 

method is simulated and experimentally demonstrated with the proposed time-

optimal trajectories. The control method has been submitted for publication in 

IEEE Transactions on Control Systems Technology (Kim and Croft, submitted in 

February 2017). 

Chapter 7: This chapter summarizes the main contributions of the thesis followed by 

concluding remarks and future work on the proposed motion control methods. 
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Chapter 2: Literature Review 

In this chapter, the existing work for motion control methods of industrial robots is 

overviewed. Section 2.1 reviews the planning approach, which focuses on improving the motion 

performance either by time-optimal trajectories or smooth trajectories. Section 2.2 reviews the 

control approaches with emphasis on multivariable nonlinear control for the flexible joint 

dynamic model. 

2.1 Planning Approach 

There are a vast number of research works regarding trajectory planning for industrial robots. 

Since the main topic of the thesis is related to motion performance in terms of speed and 

accuracy, the review is limited to the related work such as minimum-time trajectory planning, 

smooth trajectory planning, and IST. A review on generation of motion trajectories and their 

frequency analysis can be found in Biagiotti and Melchiorri (2008). 

2.1.1 Minimum-Time Trajectory Planning 

2.1.1.1 Offline Trajectory Planning 

The pioneering work for minimum-time trajectory planning is to plan a trajectory such that 

the robot travels along a specified path in minimum time given the maximum torque constraint. 

The path is represented with a single path parameter, s , typically 0 1s≤ ≤ , and then the rigid 

model is represented with the path parameter, s  . This simplifies the problem of finding the 

maximum acceleration and velocity because these maximum values can be calculated on the two 

dimensional phase plane, ( , )s s , which is much simpler than finding them in the n  – 
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dimensional vector space of the original dynamic model. In this method, the equation of motion 

is calculated along a specified path forward and backward in time to find the switching points. 

Due to its large computational burden, the method is sometimes referred to as the off-line method. 

Shin and McKay (1985), Bobrow et al. (1985), and Pfeiffer and Johanni (1987) first introduce 

the concept of minimum-time trajectory planning along specified paths. Shiller and Lu (1992) 

improve the initial work by considering the singular point, where it is shown that the smooth 

transition near a singular point can be obtained by sliding along the tangential direction of the 

velocity limit curve. The time-optimal trajectory along specified path is 1C – continuous and 

therefore generates discontinuity at every switching instance. Since the time-optimal trajectory of 

this early work contains high frequency content, the controlled path generates a large tracking 

error if a simple control loop, e.g., PD control, is used for tracking control. Therefore, the 

original method has been improved in various ways. Dahl (1992) shows that the method can be 

extended to a flexible joint robot, where the maximum path velocity is found based on the 

maximum/minimum jerk along a parameterized path. Constantinescu and Croft (2000) consider 

torque rate as an additional constraint in order to generate a trajectory that is 2C – continuous. 

They report that considering the torque rate significantly complicates the problem because the 

phase plane moves from two to three dimensions. Hollerbach (1984) shows that the time-

optimality can be obtained by uniformly scaling the trajectory in the time domain. De Luca 

(2002) extends Hollerbach’s work (1984) for a dynamic model with elastic joints. Verscheure et 

al. (2009) and Reynoso-Mora et al. (2013) show that the minimum-time trajectory along 

specified paths can be formulated as a convex optimization problem. In recent years, research on 

minimizing energy by scaling the time-optimal trajectory has received an increasing attention 

(Wigstrom et al., 2013). Pham (2014) provides a complete solution for time-optimal trajectory 
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along a specified path. The concept of minimum-time trajectory planning along specified path 

has also been applied to machine tools (Altintas and Erkorkmaz, 2003; Dong et al., 2007). 

In summary, these off-line methods provide a useful framework to design a time-optimal 

trajectory as they allow one to view the relationship between the trajectory and the robot 

dynamics in a transparent way via a simple two dimensional phase plane. However, the large 

computational burden (typically 100 to 1000 times of dynamics computation per path segment) 

makes it difficult to implement the method in a typical robot controller due to their limited 

computational power. In particular, the requirement that the dynamics is solved along the entire 

path makes it extremely difficult to modify the planned trajectory on the fly. This capacity is 

often required in robot applications to meet demanded changes in operating speeds, implement 

collision avoidance trajectories, and move to new waypoints modified by sensor-events. 

2.1.1.2 Online Trajectory Planning 

To address the need for adaptive robot motion, online trajectory planning is essential. A light 

computational burden is the key requirement in online trajectory planning as a new trajectory 

should be generated in one or several control cycles. In addition, for a simple control loop, the 

online trajectory needs to be smooth to achieve a good tracking performance. Lloyd and 

Hayward (1993) propose a blending technique to generate a smooth transition between two path 

segments. Macfarlane and Croft (2003) propose a fifth order trajectory with a sine wave template 

for online applications considering constant kinematic bounds. The transition between two path 

segments is obtained by utilizing the work in Lloyd and Hayward (1993). The experimental 

results show that the proposed trajectory obtains a smaller tracking error and faster settling time 

compared with a traditional TVP trajectory under PD control. Lambrechts et al. (2005) propose a 
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fourth-order trajectory for feedforward control assuming that the controlled system can be 

approximated with a double-mass model. It is assumed that the maximum kinematic bounds up 

to the snap, the derivative of the jerk, are known and the boundary conditions are zeros. Kröger 

and Wahl (2010) optimize S-curve trajectories (3P

rd
P order) such that the traveling time is 

minimized under the maximum velocity, acceleration, and jerk. They propose a detailed map that 

can be used to quickly determine the types of trajectory for different motion states under 

constraints. Broquère et al. (2008) propose a method to transit between two S-curve trajectories 

so that a smooth and continuous trajectory can be obtained at every waypoint. Katzschmann et 

al., (2013) optimizes the acceleration for a third order trajectory by solving dynamics at every 

sampling time but this method suffers from instability. Nguyen et al. (2008) show that the TVP-

like trajectories that consist of a ramp-up, a cruise with constant velocity, and a ramp-down can 

be calculated by a single numerical algorithm. However, their method is limited to zero boundary 

conditions. Ezair et al. (2014) extend the work in Nguyen et al., (2008) for arbitrary boundary 

conditions.  

One common limitation of the online trajectories proposed in the literature is that the 

maximum kinematic bounds are somehow assumed to be known and it is not generally discussed 

how these bounds are chosen in an optimal sense. Therefore, some researchers focused on 

generating online time-optimal trajectories. Antonelli et al. (2007) and Kim et al. (2010) 

calculate the minimum-time TVP trajectory under the maximum torque/velocity constraints and 

proposed a method to generate continuous motions on the fly. Antonelli et al. (2009) improve the 

work in Antonelli et al. (2007) by considering jerk limits and also apply the work in Macfarlane 

and Croft (2003) for continuous motions in Cartesian space. In Kim et al. (2010), it is shown that 

the cycle time of commercial industrial robots could be improved by up to 30 % compared with 
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the TVP designed with constant maximum kinematic bounds. However, the TVP trajectories is 

only 2P

nd
P order and it contains high frequency content that may excite the flexible modes of the 

robot when it is directly used as the reference input to the control loop. However, discussion on 

how to design the control loop for a low order trajectory is not mentioned in these methods. 

Another challenge for these online trajectories is that it is not guaranteed that the resulting path is 

invariant under different kinematic bounds especially during the transition between two path 

segments. For instance, the transition path is often generated by connecting the boundary 

conditions of each path segment by a new trajectory (Antonelli et al., 2007; Broquère et al., 2008; 

Kim et al., 2010). In their methods, the geometric shape of the transition path is dependent upon 

the boundary conditions specified by trajectories along the adjacent path segments. This may 

lead to a large deviation of the path from a desirable one as the geometry of the path is affected 

by the boundary conditions at the beginning and the end of a transition. The method in 

Macfarlane and Croft (2003) does not possess such problem as the transition is generated by a 

geometric blending technique (Lloyd and Hayward, 1993). However, it requires that the 

boundary accelerations are enforced to be zero, which can cause an unnecessary delay in cycle 

times. In summary, this review did not uncover any online strategies for trajectory planning in 

the literature that are path-invariant (a path unaffected by its time-law) and time-optimal. 

2.1.2 Input Shaping Technique 

It is well known that a better tracking performance can be achieved as the order of the 

trajectory increases. However, obtaining a high order trajectory is in fact a challenging task. First 

of all, a closed-form solution of a third or higher order trajectory with arbitrary boundary 

conditions such that it follows a TVP-like trajectory, namely, ramp-cruise-ramp, is not available 
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in the literature (Haschke et al., 2008; Ezair et al., 2014). One must resort to an iterative 

numerical method to calculate such high order trajectories. As it will be shown later in Chapter 4, 

the order of trajectory is inversly proportional to the magnitude of the frequency response of the 

trajectory. In other words, the effect of increasing the order of the trajectory is equivalent to 

lowering the magnitude of the frequency response of the trajectory, thus reducing chances to 

excite the resonant frequencies of the robot. 

One can achieve the same goal by utilzing a low pass filter as long as the frequency content 

is concerned, which is, perhaps, an easier approach than planning with a high order trajectory. 

Among exisiting filters, the IST has received much attention for controlling mechanical systems 

due to its simple design with a small delay (Singhose, 2009). The idea of the IST is that it applies 

a series of impulse reponses to the input trajectory such that the filtered trajectory contains a 

periodic signal. If the system’s pole is known, then the IST can be designed such that the impulse 

response can have the fundamental frequency that is equal to the pole of the plant. This is 

equialevant to adding a zero to the reference trajectory, which can cancel the plant pole when the 

filtered trajectory is applied to the plant (Hillsley and Yurkovich, 1993). The IST was originally 

proposed for an single degree-of-freedom (DOF) linear time invariant (LTI) system (Singer and 

Seering, 1990). It has been shown that the IST is effective to obtain a vibration-free response to  

simple dynamic systems such as cranes (Parker et al., 1999) and more complex, yet relatively 

linear, systems such as machine tools (Altintas and Khoshdarregi, 2012). The IST was also 

applied to a time-varying system with multiple modes (Khorrami, 1995) and industrial robot 

(Chang and Park, 2005; Park et al., 2006). However, it is challenging to implement a practical 

IST for a time-varying system with multiple modes such as industrial robots. In Khorrami (1995), 

an adaptive scheme for IST is proposed to control a two-link flexible manipulator. In this method, 
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the difficulty of dealing with configuration-dependent flexible modes is relaxed by applying 

feedback linearization in the control loop to cancel nonlinearity and estimating the plant poles by 

measuring the tip vibrations. Chang and Park (2005) and Park et al. (2006) apply the IST to 

industrial robots, where the adaptive IST is applied to the first joint while a fixed IST is applied 

to the second and third joints. One interesting result from Chang and Park (2005) is that a simple 

low pass filter that is tuned at a constant bandwidth achieves almost the same residual vibrations 

as the adaptive IST. In Chang and Park (2005), the adaptive IST exhibits some chattering 

phenomina which is not found in the low pass filter. In fact, a recent work indicates that the 

estimating flexible modes of a typical industrial robot is more complex than it is generally 

known in the literature (Moberg, 2010). In this work, it is suggested that there could be several 

unknown flexible modes at high frequency that cannot be estimated by a commonly known 

method. The IST requires exact knowlge of the flexible modes to obtain vibration-free responses. 

Since the IST is not a low pass filter, it is fundamentaly incapable of handling unknown flexible 

modes at high frequencies. In addition, as discussed in more detail in Chapter 4, the IST and 

many of filtering techniques can distort the geometric shape of the originally planned trajectory 

(Altintas and Khoshdarregi, 2012). 

2.1.3 Summary 

In this section, methods to improve the motion performance for industrial robots have been 

reviewed. The classical time-optimal trajectory along specified paths is difficult to implement 

due to the heavy computational load. However, it provides a clear insight into the relation 

between the dynamics along specified paths. The research on online trajectory planning has 

pursued computationally efficient trajectories that can be planned for arbitrary motion states. 
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However, the constant kinematic bounds can underutilize the capability of the robot’s achievable 

performance. In addition, the high order trajectories may suffer from increased computational 

load due to a numerical apporach. Another problem of the online trajectories is the variation of 

the path depending on the boundary conditions. The IST is effective to eliminate unwanted 

vibrations for a simple dynamic system but it is difficult to apply to industrial robots due to the 

complex dynamics and the phenominon of path-distortion. 

2.2 Control Approach 

Minimum-time trajectories can only be realized if they can be tracked accurately by the 

control loop. There are a large number of research papers dealing with tracking control for 

industrial robots. Therefore, this review focuses on work that is most relevant to model-based 

nonlinear multivariable tracking control. Adaptive control and robust control are also important 

topics but are not discussed in this thesis. 

2.2.1 Rigid Model-Based Control 

Research on tracking control for robot manipulators goes back to the early 80’s. The key 

concepts utilized in this research are feedback linearization and feedforward control, based on 

nonlinear control, assuming that the robot is perfectly rigid (Slotine and Li, 1991; Craig, 2005). 

Feedback linearization for rigid models is sometimes referred to as the computed torque control. 

The main idea of this method is to cancel all nonlinear and configuration-dependent terms such 

as inertial force, Coriolis-centrifugal effect, and gravity force in the inner control loop so that the 

outer control loop becomes a unit mass system, which is a linear, decoupled, and configuration-

independent system. In order for this control method to be realized, an efficient calculation of 
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robot dynamics is essential. Luh et al. (1980) propose an efficient way to calculate the inverse 

dynamics, referred to as the recursive Newton-Euler algorithm (RNEA). The RNEA calculates 

the joint torque recursively utilizing the tree-structure of the robot manipulator, resulting in an 

 algorithm. Park et al., (1995) formulate the RNEA algorithm based on Lie group, which 

results in a more elegant and simpler algorithm than the original one. Asada and Kanade (1983) 

and An et al. (1998) apply the computed torque control to a direct-drive robot manipulator 

assuming that their systems can be approximated to ideal rigid-body dynamic models. They 

show that the tracking error could be decreased significantly by the computed torque control. 

However, they both report that the methods could not obtain good position accuracy for an 

arbitrary trajectory, for example, a trajectory with infinite jerks. The main idea of the 

feedforward control is similar to computed torque control. It pre-calculates all the necessary joint 

torque based on the motion command and feeds this term forward to the control loop. One major 

difference is that the dynamics is computed outside the loop in feedforward control whereas it is 

computed inside the loop in the computed torque method. This difference is an important 

consideration for implementation. In Craig (2005), it is argued that feedforward scheme is a 

preferred choice since the performance is less sensitive to the sampling frequency of the control 

loop. Leahy and Saridis (1987) verify the effectiveness of the feedforward control by experiment 

with a commercial industrial robot. 

The nonlinear control based on a rigid-body model has been improved by several researchers 

to cope with minimum-time trajectories proposed in Bobrow et al. (1985) and Shin and McKay 

(1985). In Dahl and Nielson (1990) and Dahl (1994), it is argued that the nominal 1C  time-

optimal trajectory proposed in the minimum-time trajectories cannot be tracked accurately 

because at least one joint is always saturated during motions and there is no room for torque to 

( )O n
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compensate disturbances. They propose, the path-velocity controller that can modify the nominal 

trajectory in case when it is saturated. The path-velocity controller is expressed in terms of the 

path parameter with the knowledge on the controller model and is designed outside the primary 

control loop, thus not affecting the stability and control performance. The experimental results 

for a commercial industrial robot show an improved tracking performance compared with a 

direct use of the time-optimal trajectory as the reference input (Dahl, 1994). Kieffer et al. (1997) 

proposes a method similar to Dahl and Nielson (1990) but the tracking performance can meet a 

prescribed tolerance. Bianco and Gerelli (2011) extend the original work of Dahl (1994) by 

including additional kinematic constraints. One significant challenge when implementing the 

path-velocity controller is that the controller must be parameterized by the path parameter. As it 

is shown in Chapter 5, the scheme is not suitable for online trajectories where different path 

parameters must be assigned for different path segments. In this case, it is not clear how to 

parameterize the controller at arbitrary motion states for different path parameters. 

2.2.2 Flexible Joint Model-Based Control 

2.2.2.1 High-Order State Feedback Control 

In the mid-1980s, a research paper was published from industry. The paper argues that the 

rigid model is not accurate enough to describe a typical industrial robot (Sweet and Good, 1984; 

Good et al., 1985). The main reason is that the joint elasticity associated with the drive systems 

cannot be ignored and it must be considered for control design to achieve an acceptable control 

performance. Since then, a vast amount of research work have been performed on modeling and 

control for flexible robots with elastic joints. However, the dynamic model with elastic joints is 

much more complex compared with the rigid model. De Luca and Lucibello (1998) show that the 
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flexible joint dynamic model can only be linearized by dynamic state feedback. The control input 

has its own dynamics that cannot be expressed algebraically in terms of state variable. Nicosia 

and Tomei (1998) discuss the necessary and sufficient conditions such that the flexible joint 

model can be feedback linearizable. Spong (1987) proposed the simplified flexible joint model, 

where the inertial coupling between the motor and the link is ignored by assuming that the 

kinetic energy of the rotor is due to its own rotation. It is argued that such assumption is correct 

for a high gear ratio and the model can be linearizable by static state feedback, as opposed to 

general flexible joint model. Since the simplified flexible joint model is much easier for control 

design compared with the general flexible joint model, the former has been studied extensively. 

Amongst others, feedback linearization, which is the counterpart of the computed torque for rigid 

model, is most often cited in the literature. Moberg and Hanssen (2008) discuss the feedback 

linearization from an industrial point of view. They claim that the exact linearization of the 

nonlinearity is difficult to achieve in reality due to the limitation of the achievable sampling rate 

and measurement requirements. The difficulty could be partially related to the fact that the 

feedback linearization requires feedback up to jerk on the link side, which is problematic for a 

typical industrial robot where only measurement on the motor side is available. In fact, real-

world experimental results of feedback linearization are hardly reported in the literature. Albu-

Schäffer and Hirzinger (2001) report that the feedback linearization could not be implemented 

with the available computing power of the given controller with sampling frequency of 1 kHz. 

There are other control methods that have been derived from the simplified flexible joint model. 

Brogliato et al. (1995) compare three nonlinear controllers that are derived from different 

theoretical backgrounds. The control methods that are compared include decoupling-based 

control (Seibert and Suarez, 1990), back-stepping based control (Nicosia and Tomei, 1998), and 
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passivity-based control (Lozano and Brogliato, 1992). They show that the three control methods 

are globally stable with respect to the reference trajectory but they all require feedback up to jerk, 

similar to feedback linearization. Their simulation results indicate that the passivity-based 

control performs relatively better compared with other methods in terms of smoothness of the 

torque. The decoupling-based scheme requires a high gain on the motor side as the performance 

on the link side heavily depends on the error on the motor side. The back-stepping controller is 

beneficial in terms of the systemic derivation of the control law but it can exhibit input chattering 

as the stiffness increases. In Brogliato et al. (1998), the control methods discussed in Brogliato et 

al. (1995), are compared experimentally with additional control methods, PD controller, Slotine 

and Li controller (Slotine and Li, 1988), and singular perturbation approach (Spong et al., 1987). 

Interestingly, the Slotine and Li controller which is effectively the same as the computed torque 

control obtains the best performance overall. The nonlinear controller based on the flexible 

model, however, exhibits very poor performance, generating a large tracking error at steady state 

or even instability. The authors report that the most critical problem of the control methods 

derived from the flexible joint dynamic model is the input chattering which is presumably 

induced by the inaccurate estimation of the high order states such as acceleration and jerk. In fact, 

the major difference between the flexible model-based controller in Brogliato et al. (1995) and 

the Slotine and Li controller is that the former requires feedback up to jerk whereas only position 

and velocity feedback are necessary for the latter. In general, the high order states such as 

acceleration and jerk can only be estimated by numerical differentiation from measurements or 

by computing based on the dynamic model. In either case, it is unavoidable that the estimates on 

acceleration and jerk contain significant error due to measurement noise or model uncertainty.  



22 

 

2.2.2.2 Low-Order State Feedback Control 

Due to the difficulty of estimating high-order states, some researchers focused on developing 

nonlinear controllers that only require position and velocity feedback. Tomei (1991) proves that 

the PD control that utilizes only motor position and velocity can obtain global stability for the 

flexible joint model. Kelly et al. (1994) shows that the method proposed in Tomei (1991) can be 

improved with filtered velocity feedback. De Luca (2000) proposes a feedforward control that 

utilizes only motor position and velocity for feedback control. The control structure is very 

attractive from an industrial point of view because the method can be easily combined with a PD 

controller implemented on the motor side, which is the standard controller for many industrial 

robots. Some researchers show that PD control can be combined with online gravity 

compensation with measured motor positions as opposed to the well-known constant 

compensation scheme with desired link positions (De Luca et al., 2005; Ott et al., 2008). 

However, the performance on the link side is less satisfactory compared with full-state 

control because the feedback control utilizes only motor states, i.e., partial-state feedback (De 

Luca et al., 2007). The control method using the singular perturbation method, shortly the 

singular perturbation control (SPC) in this thesis, has received much attention because it 

provides a theoretical justification for designing a nonlinear controller based on a reduced-model. 

In this method, the flexible joint dynamic model is split into two time-scales. One is the fast 

system governed by the deflection between the motor and the link, or the ‘fast’ variable. The 

other is the rigid model that is ‘slow’ assuming that the joint stiffness is sufficiently high. The 

composite control law is then applied to each subsystem, typically velocity control on the fast 

system and a PD control on the slow system. Spong et al. (1985) applies a manifold-based 

control for the rigid model. Spong and Khorasani (1987) propose a corrective control, namely, a 
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power series of the slow control, to improve the accuracy of the reduced model. It is suggested 

that a PD control on the fast system be used instead of a velocity control, especially for a 

demanding trajectory (Hung, 1991; Wilson and Irwin, 1993). Readman and Belanger (1992) 

show that the SPC can be applied to a direct-drive robot where the inertial coupling between the 

motor and the link cannot be neglected. Yuan and Stepanenko (1993) propose a full-state 

controller that is built upon the SPC, requiring feedback up to acceleration on the link side. 

Ghorbel and Spong (2000) develop a condition of the perturbation parameter to guarantee 

stability of the SPC. Taghirad and Khosravi (2012) propose a corrective PID control for the slow 

system such that it achieves a global stability. Some real-world experiments are carried out to 

show that the composite control is more effective than the rigid control, e.g., computed torque 

control (Gandhi and Ghorbel, 2005; Salmasi et al., 2010). However, a failed experiment with the 

SPC is also reported in Lessard et al. (2012). In Brogliato et al. (1998), it is reported that the 

SPC can exhibit a poor tracking performance for a demanding trajectory. The SPC is also applied 

to robots with flexible links (Siciliano and Book, 1998; Vakil et al., 2011).  

In spite of this extensive research on the SPC, there are some limitations. First and most 

importantly, no simple way to select the gain such that it achieves the desired closed-loop 

performance is available in the literature. Selecting the gain based on each subsystem often leads 

to instability. Although one can examine whether the joint stiffness is large enough for the 

designed controller to guarantee stability by checking some complex conditions (Ghorbel and 

Spong, 2000), designing a new stiffness is difficult in reality when such conditions are not met. 

Second, successful simulation and experimental results have been achieved by using relatively 

smooth reference trajectories. This is perhaps due to the fact that the separation in two-time 

scales assumes a high stiffness value, or a small perturbation parameter. Therefore, if the joint 
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stiffness is not sufficiently high, then the fast varying trajectory may excite some of the closed-

loop poles that are not considered in the SPC model. However, the reference trajectory for 

commercial industrial robots is commonly designed in a time-optimal manner in order to 

minimize the cycle time (Antonelli et al., 2007; Björkman et al., 2008; Kim et al., 2010). As 

implied in Lessard et al., (2012), it is unclear how to design the SPC for a demanding trajectory. 

Lastly, the most commonly used technique to compensate the modeling error in the SPC is to use 

the corrective control for the slow system, that is, by adding corrective terms to the rigid control. 

However, the corrective terms require derivatives of the rigid control. Because the rigid control 

is typically designed as a PD control on the link side, the corrective control must contain higher 

order states than the velocity, i.e., link acceleration and jerk. Therefore, with the corrective 

control, SPC effectively becomes a full-state controller on the link side, similar to feedback 

linearization, defeating the original purpose of avoiding dependence on estimating high order 

states. 

2.3 Summary 

In this section, the research on the control approach for industrial robots has been reviewed. 

The nonlinear control methods based on rigid model cannot obtain a good tracking performance 

due to the lightly damped poles coming from the joint elasticity. Therefore, one must use more 

accurate dynamic model that takes account the joint elasticity. The general flexible joint dynamic 

model is difficult to design control laws as it cannot be feedback linearizable by static state 

feedback (Thümmel et al., 2001). The simplified flexible joint model is a good candidate for 

control design because it can be linearizable by static state feedback while capturing the effect of 

the joint elasticity. The full model-based control such as feedback linearization and other 
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methods mentioned in Brogliato et al. (1995) are difficult to implement because it requires 

accurate estimation of high order states. The reduced model-based control can avoid using the 

high order states for feedback control but it is unclear how the desired closed-loop performance 

should be achieved for arbitrary trajectories. 
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Chapter 3: Motion Control System 

23TIn this Chapter, the motion control system of a typical industrial robot, namely, the dynamic 

model of an articulated robot with elastic joints with a low-cost generic controller is overviewed. 

For the dynamic model, only a brief introduction is provided as the relevant topic is well 

addressed in the literature. Since the control structure of a commercial robot controller is not 

easily available in the literature, the control structure is discussed in more detail with the Hi5a 

controller as an example. With respect to motion control, the Hi5a controller follows many 

aspects of the traditional robot controller such as hierarchical structure, decentralized PD control, 

and a low-cost design. Based on the analysis of the control structure of the Hi5a controller, some 

fundamental limitations of a traditional robot controller are discussed in terms of the relationship 

between the control structure and the achievable motion performance. Then, the concept of 

PITOM is introduced to specify the highest level of motion performance that is pursued by this 

thesis. Finally, a general approach is proposed such that the planning and control modules 

together achieve the PITOM under constraints given by a generic robot controller. 

3.1 Dynamic Model 

It is well-known that a rigid model cannot represent a typical industrial robot because the 

joint elasicity cannot be ignored in the modeling and control design (Good et al., 1985). 

Therefore, the flexible joint dynamic model (Spong, 1987) is used throughout this thesis and it is 

denoted by 

1( ) ( , ) ( ) ( ) n
r r r r r r r r m

−+ + + − = ∈ℜM q q C q q G q K q r q 0  ,                 (3.1a) 
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1 1( ) ( ) n
m m m m m r

− −+ + − = ∈ℜM q f q r K r q q u  ,                                (3.1b) 

where the link position and the motor position are denoted by n
r ∈ℜq  and n

m ∈ℜq , respectively. 

( ) n n
r r

×∈ℜM q  is the position-dependent inertia matrix. ( , ) n
r r r ∈ℜC q q  is the Coriolis-

centrifugal effect. ( ) n
r ∈ℜG q  represents gravity. n n×∈ℜK , n n×∈ℜr , and n n

m
×∈ℜM  are 

constant diagonal matrices, representing the joint stiffness, reduction ratio, and motor inertia, 

respectively. n
m∈ℜf   is the motor friction. n∈ℜu  is the input or the commanded motor torque. 

In Figure 3.1, the dynamic model (3.1) for a 1DOF case is shown. 

mτ

mq k
mJ

r

rJ
rq

 

Figure 3.1. Flexible joint dynamic model for a 1DOF robot ( rJ : link inertia, mJ : motor inertia, k : joint 

stiffness). 

 

This set of two 2P

nd
P order nonlinear ordinary differential equations (ODEs) can be combined by 

first differentiating (3.1a) with respect to time twice then inserting the result into (3.1b), resulting 

in a single 4th order nonlinear ODE such that 

n
rigid flex= + ∈ℜu τ τ ,                                                   (3.2) 

where ( )1 2( ) ( , ) ( ) ( )rigid r r m r r r r r m m
−  + + + + τ r M q r M q C q q G q f q  

 ,                                      (3.3) 

   1
flex m r

−τ M r K τ ,                                                                                                              (3.4) 
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( ) ( , ) ( )r r r r r r r r+ +τ M q q C q q G q 
 .                                                                             (3.5) 

The model described by (3.1) is widely used for controller design as it reflects several important 

aspects of robot dynamics such as inertial coupling, nonlinear velocity-dependent forces, and 

joint elasticity, while still being linearizable by static state feedback. It should be noted that the 

model (3.1) assumes that the inertial coupling between the motor and the link can be ignored for 

a high gear ratio. If the gear ratio is not relatively large, then a different model should be used. In 

this case, however, the model can be linearizable by dynamic state feedback (De Luca, 1998). 

Since the thesis concerns a typical industrial robot, where the gear ratio is relatively high, 

typically ranging from 50 to 200, the model (3.1) is assumed to be sufficiently accurate. 

3.2 Control Architecture 

The architecture of the control system of an industrial robot is typically divided into three 

subgroups; namely, a programming module (the highest control level), a trajectory planning 

module, and a servoing module (the lowest control level). The programming module is accessed 

by a user interface, typically a teach pendant (see Figure 1.1). Through this module, the user can 

teach the path and speed of the robot by specifying a set of waypoints, desired speed (often as a 

percentage of the robot’s maximum speed or speed of the tool center point (TCP)), and the type 

of paths between the waypoints such as straight-lines, circular paths, or splines (see Figure 3.2). 

The user can also specify how closely the robot bypasses a waypoint as a radius, r , an approach 

widely used in industrial robots to optimize the cycle time. The trajectory planning module, or 

simply trajectory planner, interprets the robot program and generates both the geometric path and 

the time-history of motion commands for each joint such that the resulting robot motion 
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produces the programmed motion. The planned trajectory is then sent to the servoing module or 

control loop by generating the trajectory in real-time. The control loop must obtain a good 

tracking performance for the desired trajectory to finally realize the motion intended by the user. 

S1 MOVE P S=100% R=10mm

S2 MOVE L S=1000mm/s R=20mm

S3 MOVE L S=200mm/s R=20mm

0S
1S

2S

1r

2r
3S

 

Figure 3.2. An exemplar robot program and the desired tool path (P: straight line in joint space, L: straight 

line in Cartesian space). 

3.2.1 The Execution of the Robot Program 

The robot program is executed online sequentially, which means that the next instruction 

(motion command) can be executed only after the current instruction is complete. Sequential 

execution is required because the robot’s motion can often be modified by sensor inputs. In 

Figure 3.3, the robot motion with sequential execution is described. In the figure, it is assumed 

that the robot is initially positioned at 0S . When the first instruction is entered, the trajectory 

planner must immediately generate the motion according to the given instruction. Then, the robot 

starts to move towards 1S  with the maximum speed (Figure 3.3(a)). While the robot is moving 

along the path 01S   (the path between 0S  and 1S ), the next instruction is entered (Figure 3.3(b)). 

According to this instruction, the robot should not stop at 1S . Instead, it should bypass 1S  at a 
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given radius of 10 mm and then move at 1000 mm/s along a straight-line to 2S . This process 

continues whenever a new instruction is entered (Figure 3.3(c)). In this thesis, it is assumed that 

the programing module is fully specified and the main focus of the study is the optimal design of 

the planning module and the servoing module.  

0S

1S
S1 MOVE P S=100% R=10mm

 

(a) The robot is requested to move to 1S  from the initial position 0S  with the maximum speed. 

0S
1S

2S

S2 MOVE L S=1000mm/s R=10mm

 

(b) A new path, 12S  (tool speed 1000 mm/s ) is requested while the robot is moving along 01S . 

0S
1S

2S

1r

2r
3S

S3 MOVE L S=200mm/s R=20mm

 

(c) A new path, 23S  (tool speed 200 mm/s) is requested while the robot is moving along 12S . 

Figure 3.3. Online execution of a sequential robot program. 



31 

 

Now consider the requirements of the planning module such that the robot motion specified 

by the programming module is successfully executed. First, the final velocity of the trajectory for 

each path segment must be zero in case no further path segments appear. Second, the planner 

should be able to calculate the trajectories with non-zero boundary conditions. For instance, the 

transition path segments shown in red in Figure 3.3 must be planned while the robot is moving 

along the path towards the transition, after the next waypoint is specified. The initial and final 

velocities and accelerations of the transition path segments are not zero in general. Third, a 

unique transition path must be planned regardless of the operating speeds. Path repeatability 

independent of operating speed is required to meet requirements for collision checking and 

safety regardless of the size of the waypoint radius, which itself may not guarantee collision free 

motion. Finally, the trajectory planner must consider dynamics to permit the robot to quickly 

change accelerations while moving along multiple paths at high speeds. 

Therefore, the requirements of the planning module can be summarized as: (i) the trajectory 

is calculated with arbitrary boundary conditions; (ii) the path is uniquely generated given 

waypoints and bypass radii; and (iii) the dynamics must be considered.  

In the meantime, the dynamic model (3.1) is a 4P

th
P order nonlinear ODE. If this model is used 

for trajectory planning, then the trajectory must also be of the 4P

th
P order, meaning that the 

trajectory planner should generate continuous position, velocity, acceleration, and jerk. 

Unfortunately, a closed-form solution for the 3P

rd
P or higher order TVP-like trajectory with 

arbitrary boundary conditions is not available in the literature. Therefore, some of the boundary 

conditions must be forced to be zero in order to find a closed-form solution to ensure bounded 

computation time. However, such a resolution may result in a significant increase in cycle-time. 
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A numerical approach is also not desirable because the trajectory should then be computed 

iteratively with the dynamic model, generating a large computational load. 

3.2.2 The Servoing Module 

Assuming that the trajectory is successfully planned, then the user’s intended motion can be 

realized only if the servoing module tracks the reference trajectory with small tracking error. In 

Figure 3.4, the block diagram for the motion control architecture of a Hi5a controller is shown. 

The reference trajectory for each joint is computed by inverse kinematics and then its unit is 

converted so that it can be used as the reference on the motor side, typically by static conversion, 

i.e., multiplied by the gear ratio. The motor reference is then controlled independently at each 

joint on the motor side by measuring the position and velocity obtained from its own digital 

encoder, namely a decentralized control. The servoing module is usually implemented in a 

separate hardware system from the mainboard where the programming module and planning 

module are implemented. The communication between the servoing module and the planning 

module is generally carried out through Ethernet or shared RAM. Since the servoing module 

controls both the position and the motor torque, the sampling frequency is generally higher than 

the mainboard. For Hi5a controller in Figure 1.1, the sampling frequencies of the planning and 

servoing module are 500 Hz and 2.5 KHz, respectively. Since the servoing module needs a high 

sampling rate, the computing power of each sample must be kept at a minimal cost. Thus, a 

decentralized PD controller is widely adopted for tracking control so that the computation 

required at each sampling period is limited to only several additions and multiplications. 
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Figure. 3.4 Control structure with decentralized control ( df  : user-specified path, cf : controlled path). 

 

In Figure 3.5, PD control implemented in the Hi5a controller (Figure 1.1) is shown. It is a 

cascaded PD controller that is widely used for industrial robots (Miyazaki et al., 2003; Moberg, 

2010). The cascaded PD control is more advantageous than a single loop PD control in terms of 

tuning control gains and robustness against input disturbances. The cascaded PD control shown 

in Figure 3.5 is implemented on the motor side. The feedforward control based on the rigid 

model is typically employed for gravity compensation and better tracking performance. Such a 

control scheme, the PD control plus feedforward control based on a rigid model, is perhaps the 

most common control method for industrial robots (Santibañez and Kelly, 2001; Craig, 2005). 

Note that the steady-state error is typically compensated by adding an integral control in the 

inner-loop. In this thesis, the integral control is not discussed for simplicity. 
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Figure. 3.5. Block diagram of the cascaded PD control for Hi5a controller. 

 

Let us discuss the cascaded PD control mentioned above in more detail. The control law can be 

expressed as 

, ,
n

ff rigid fb m= + ∈ℜu u u ,                                                (3.6) 

where ( )1 2
, ( )d d d d d n

ff rigid m r r r m r
−  = + + + + ∈ℜ u r r M M q C G f rq  ,  

( )d d
r r rM M q ,  ( , )d d d

r r r rC C q q , ( )d d
rqG G , and d

rq  is the desired link position. ,fb mu  is the 

input generated by PD control with motor feedback. One can note that it is assumed that the 

elastic model is not available in the above feedforward control, i.e., →∞K . Applying (3.6) to 

(3.2), we obtain 

( )1 (4) 1
,m r r m r r fb m

− −+ + =rM K M q rM r M e u ,                              (3.7) 

where d
r r r−e q q  is the tracking error on the link side. In (3.7), it is assumed that the dynamic 

model is quite accurate, namely,  

d
r r≈M M , d

r r≈C C , and d ≈G G                                           (3.8) 
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Note that the derivatives of rM , rC , and G  are ignored in (3.7) as they are not as significant as 

other terms. Now let us assume the feedback control, ,fb mu , to be a cascaded PD control as 

shown in Figure 3.5, namely, 

,
n

fb m p m v m= + ∈ℜu K e K e ,                                               (3.9) 

where d
m m m−e q q   is the tracking error on the motor side. pK  and vK  are the gain (diagonal) 

of the outer-loop and the inner-loop, respectively, and p p vK K K .  

In general, the cascaded PD control is tuned in the following way. First, the velocity gain, vK  

is chosen with as large a value as possible provided it satisfies the noise level and the torque 

constraints. To see this rationale, consider the transfer function of the inner loop with respect to 

motor input and motor velocity. 

( )2

3 2
2

( ) V r
v

r
m r r V m V

K J s k
T s

JJ J s J K s k J s K k
r

+
=

 + + + + 
 

                               (3.10)  

The Routh-Hurwitz criterion reveals that (3.10) is stable for 0vK > . Furthermore, it satisfies 

( ) 1vT ω ≤   for ω∀ .                                                  (3.11) 

For a typical industrial robot, the velocity gain is tuned such that the bandwidth of the inner-loop 

is between 80 Hz and 120 Hz, which is much higher than the lowest natural frequency of 

industrial robot, typically 10 Hz or less (Craig, 2005; Moberg, 2010). The closed-loop system on 

the motor side is obtained as 

( )1 1 (4) 1
m p m v m r r m r r

− − − + = + + e K e K rM K M q rM r M e  .                    (3.12)               
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Assuming that the velocity gain is high and the joint stiffness is sufficiently large, then the 

system (3.12) is stable for any positive pK  and the tracking error on the motor side is decreased 

as the position gain increases. And the effect of the link tracking error is suppressed as the 

velocity gain increases. That is, good tracking performance and stability can be achieved 

simultaneously by high gain feedback on the motor side. However, the error dynamics on the 

link side is 

r p r+ ≈e K e ψ  ,                                                        (3.13) 

where ( )1 1 (4) (3)
v m r r r r p r r

− − + +ψ K K M M q M q K M q  and it is assumed that d d
m r=q rq . 

Eq. (3.13) clearly explains the difficulty in choosing the position gain. Notice that a large pK  

also implies a large perturbation or the effect of motion on the link side. Meanwhile, a small pK  

will result in a slow response. Therefore, the rule-of-thumb is to choose pK  such that the 

bandwidth of the outer-loop is slightly less than the natural frequency of the link side. The result 

in (3.13) provides a further insight into how to design the mechanical components and the 

reference trajectory with the control method (3.9). That is, the tracking performance on the link 

side can be improved as the joint stiffness becomes larger and the inertia becomes smaller. If 

such modification is not possible, then the only possible choice is to reduce the effect of the 

derivatives of rq  by smoothing the reference trajectory. 

3.3 Fundamental Limitations 

According to the discussion in Sections 3.1 and 3.2, the motion control system of a typical 

industrial robot can be summarized as follows: 
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• The dynamic model: The flexible joint dynamic model is a 4P

th
P order nonlinear ODE. 

The model can be approximated by a 2P

nd
P order nonlinear ODE if the joint elasticity is 

ignored.  

• Control architecture: To allow online execution, the trajectory must be planned online 

with arbitrary boundary conditions. For a closed-form solution, the order of the trajectory 

cannot be larger than two. The decentralized PD controller can obtain good tracking 

performance on the motor side by high gain feedback. Unless the trajectory is 

sufficiently smooth, the tracking performance on the link side is very poor. 

Therefore, the design of the trajectory in a low-cost robot controller faces several contradictory 

requirements. At the planning module level, it is difficult to plan a time-optimal smooth 

trajectory due to complexity and a high computational load. In addition, a 3P

rd
P or higher TVP-like 

trajectory cannot be solved analytically for arbitrary boundary conditions. This means that it is 

almost impossible to plan a time-optimal yet smooth (order of three or higher) trajectory in a 

low-cost controller. However, the smoothness of the trajectory is imperative for the servoing 

module for good tracking performance on the link side with the decentralized PD control.  

In industry, the time-optimality is a crucial requirement for a commercialized controller as 

the demand for short cycle times in common applications such as spot welding and pick-and-

place material handling is very high. Therefore, the time-optimal TVP trajectory based on a rigid 

model is widely used in industry as they can be easily implemented in a low-cost controller 

(Antonelli et al. 2009; Kim et al. 2010). However, the TVP trajectory will generate poor tracking 

performance with the decentralized PD control as the infinite jerk of the TVP trajectory will 

excite the unmodeled flexibility inside the control bandwidth. If the servoing module cannot be 

modified, then the only feasible remedy for such a TVP trajectory to achieve good tracking 
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performance with PD control is to apply a low-pass filter to the planned trajectory. This explains 

why many industrial robots use a low-pass filter between the planning module and the servoing 

module. However, as it will be discussed in more detail in Chapter 4, adding a low-pass filter 

brings another serious problem associated with path accuracy, named, path-distortion in this 

thesis. 

3.4 Motion Control Strategy 

Based on the above discussion, a new strategy for motion control is now presented. The new 

strategy pursues the Path-Invariant and Time-Optimal Motion. The PITOM is a general 

guideline of motion control for industrial robots such that it achieves both fast motions and small 

tracking errors simultaneously. The conceptual diagram is shown in Figure 3.6. 23TThe PITOM 

states that the user’s intended path should be travelled with the maximum capacity of the robot 

and it should be exactly followed by the controlled path. In other words, the trajectory must be 

time-optimal at all times and the resulting geometric path should be unique regardless of 

different operating speeds. In this way, the time-optimality is guaranteed whenever the robot is 

requested to move at the maximum operating speed and the path deviation does not occur during 

trajectory planning. Since the path-invariance and time-optimality is assured in the planning 

module, the only requirement of the servoing module is a good tracking performance for time-

optimal trajectories. However, for typical industrial robots the servoing module must achieve this 

with motor measurements only. 

23TThere are two major differences between the PITOM compared with the motion control 

approach commonly addressed in the literature. First of all, the PITOM specifies the path 

accuracy in the planning module as well as the servoing module whereas the servoing module is 
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assumed to take the most responsibility for path accuracy in the literature. However, as 

mentioned in Chapter 2, a large deviation from the desired path can occur during trajectory 

planning; high path accuracy cannot be achieved by the servoing module alone. Second, in the 

proposed scheme high tracking performance must be obtained with motor measurement only. 

Many control methods assume that measurements are available both on the motor side and on the 

link side. Without these link side measurements, it is difficult to obtain a desired performance 

specified by the PITOM. A novel control method that does not rely on accurate estimation of the 

link states is needed in the proposed scheme. 

controller

Trajectory
planner

motor

user path controlled path

reference path

Path-Invariant
&

Time-Optimal
Trajectory

 

Figure 3.6. The schematic diagram of the PITOM. 
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3.4.1 Planning Module 

23TThe trajectory that is chosen in this thesis is the TVP trajectory (2nd order) in order to obtain 

a closed-form solution for arbitrary boundary conditions. The well-known rigid model, which is 

second order, suffices for computing the maximum speed and acceleration that are the kinematic 

parameters necessary for planning a TVP trajectory. As noted, the trajectory must also satisfy the 

condition of the path-invariance according to the PITOM. This means that the reference path 

generated by different planned trajectories must be unique. It is well-known that such conditions 

can be met by planning the trajectory, namely, the time law along the path. As shown in Figure 

3.7(a), the path 23T ( )sf 23T is independent of the trajectory, 23T ( )s t 23T. Therefore, the necessary conditions 

of the path should be; (i) the path should be expressed in terms of a single path parameter, 23T s 23T 

and; (ii) the continuity of the path must be at least 23T

2C 23T for feasible acceleration (2nd order 

trajectory). An example of the proposed trajectory is shown in Figure 3.7(b). The maximum 

kinematic values, 23T maxs 23T , 23T 0,maxs 23T, and 23T ,minfs 23T can be obtained by utilizing a rigid model. 

( )sf

0s =

1s =

             

( )s t

t

0s

fs

maxs

0,maxs ,minfs

 

(a) Parameterized path                                          (b) TVP along a parameterized path 

Figure 3.7 Trajectory planning along a parameterized path. 
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3.4.2 Servoing Module 

Since the proposed trajectory is a time-optimal TVP trajectory, the conventional PD 

controller cannot be used due to the lack of smoothness of the trajectory. Note that the proposed 

TVP trajectory is generated by neglecting the joint elasticity, i.e., using a second order model. 

Therefore, the proposed trajectory will excite the flexible modes of the robot when it is directly 

used as the reference input. It has been shown that a feedforward control based on the flexible 

joint dynamic model can be used with PD control on the motor side (De Luca, 2000). The 

method cancels the flexible modes by modifying the motor reference, i.e., a dynamic conversion 

of the motor references as opposed to the static conversion. However, since this method is purely 

a feedforward approach, the performance depends on the accuracy of the model. In addition, the 

feedback system is still realized only on the motor side (partial-state feedback). Therefore, the 

disturbance generated on the link side cannot be suppressed effectively. To achieve a good 

tracking performance on the link side, it is necessary to estimate the state on the link side. 

However, according to Figure 3.6, the measurement is available only on the motor side for 

control. This requires that the servoing module include a state observer to estimate the states on 

the link side. As the performance on the link side is heavily dependent upon the accuracy of the 

observer, the full model (3.1) must be used. Thus, a nonlinear multivariable controller with a 

state observer should be used in the servoing module. This means that the servoing module 

should be redesigned to allow a centralized control as shown in Figure 3.8. In the centralized 

control, the dynamic model (3.1) should be implemented and be computed at the servoing rate. 

Therefore, a major modification of the servoing module is inevitable if the existing servoing 

module is based on the decentralized scheme as shown in Figure 3.4. 
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 Figure 3.8. Control structure with centralized control. 

3.5 Summary 

In this chapter, the motion control system of a typical industrial robot has been overviewed. 

The analysis of the dynamic model and control architecture has revealed that obtaining high 

motion performance with a low-cost controller is a challenging task due to several constraints 

that must be met for practical implementations such as online programming, limited 

computational power, and available measurements for feedback control. Meanwhile, the PITOM 

has been proposed to specify how planning and servoing modules should be designed for high 

motion performance while satisfying the strict industrial constraints. Finally, a 2P

nd
P order time-

optimal trajectory with model-based control (centralized control) has been proposed as a general 

motion control strategy that can satisfy the PITOM. In the next chapter, a comparative study is 

carried out to validate the proposed motion control strategy.  

 



43 

 

Chapter 4: Comparison of Motion Control Methods0F

1 

This chapter evaluates several motion control methods that are widely used for flexible 

mechanical systems such as the model (3.1). In Chapter 3, a time-optimal TVP with model-based 

control is suggested for high motion performance. Since the time-optimal TVP has high 

bandwidth, it is not certain whether good tracking performance can be solely achieved by control 

loop (the control approach). Further, without a head to head comparision, one could argue that 

better performance can be achieved by adopting a smooth trajectory (the planning approach). 

Therefore, in this chapter, the proposed scheme in Chapter 3, namely, a low-order trajectory 

with model-based control, is validated by comparing it against the planning approach. 

In Kim and Croft (2015), an initial study is performed by simulation to show that the control 

approach may obtain better performance than the planning approach. Herein, the work of Kim 

and Croft (2015) is further enhanced with a more detailed analysis and experimental results. For 

comparison, this chapter first focuses on improving the planning approach such that the 

performance is optimized. To do so, a practical method to find the optimal jerk for S-curve 

profiling is presented such that the residual vibrations are minimized with PD control. It turns out 

that finding the optimal jerk does not require the complete dynamic model including the 

controller but the knowledge of the link inertia and joint stiffness will suffice. Therefore, one no 

longer needs to find some “optimal” jerk by trial-and-error, as previously described in the 

literature (Macfarlane and Croft, 2003; Tsay and Lin, 2005; Li et al., 2007; Nguyen et al., 2008; 

                                                 

1  A version of this chapter has been submitted for publication in IEEE/ASME Transactions on 
Mechatronics (Kim and Croft. A comparative study on motion control methods for industrial robots with 
elastic joints). 
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Kröger and Wahl, 2010; Ezair et al., 2014). The optimal S-curve with the TVP in the frequency 

domain is also compared to clearly illustrate the reason why the S-curve generates smaller 

vibrations than the TVP under the same maximum acceleration constraints. In Meckl (1998), a 

method to optimally select the ratio between the ramp-up time and the time to peak velocity is 

proposed. The difference between the proposed method herein and the method in Meckl (1998) 

is that the former is more general; it can be applied to multiple joints, and measurement of the 

natural frequency is not required.  

The analysis of the input shaping technique (IST) reveals that a successful application of the 

traditional IST is extremely difficult due to the complexity of dynamics such as the 

configuration-dependent multiple vibration modes and unknown high frequency modes (Moberg, 

2010). Therefore, a simple scheme that combines the zero-vibration (ZV) shaper and the simple 

moving average (SMA) filter is proposed. Such a combination results in a very robust filter that 

can suppress not only a wide range of frequency but also unknown high frequency modes. 

Furthermore, an important phenomenon when using the IST, namely, path-distortion, is 

discussed. It is shown that path-distortion is an inherent problem of any filtering technique that 

utilizes the previous reference values. 

The proposed planning approaches are then compared with the control approach. The 

feedforward control (De Luca, 2000) and the full-state feedback control (Miyazaki et al., 2003; 

Tungpataratanawong et al., 2005) are selected for comparison as these controllers are widely 

used in industry and can be implemented on the available test platform without significant 

modification of the control structure. It is shown that the feedforward control can be regarded as 

a combination of a delay-free dynamic input shaper and input for the desired trajectory. The 

dynamic input shaper embedded in the feedforward control fundamentally differs from the 



45 

 

traditional IST in that the former has no phase lag, thereby generating zero path-distortion while 

requiring the same knowledge of the model parameters, i.e., the link inertia and joint stiffness. 

The full-state control is the combination of the feedforward control and active damping on the 

link side. Therefore, it can further reduce the residual vibrations, which comes at the expense of 

more complicated control structure. 

This chapter is organized as follows. First, the optimal S-curve profiling and a robust design 

of the IST is proposed. Then, two nonlinear controllers that represent the control approach are 

introduced with emphasis on the dynamic input shaper in the feedforward control. Finally, a real-

world experiment is carried out to validate our theoretical results.  

4.1 Planning Approach 

4.1.1 S-curve Profiling 

In this section, a method is presented to find the optimal jerk for S-curve profiling such that it 

generates no residual vibrations at the end of motion under the cascaded PD controller (Figure 

3.5) with high gain feedback in the inner loop.  

Eq. (3.12) suggests that the following condition may hold for a large vK  and a large stiffness 

value, which may be true for a typical industrial robot. 

d
m m≈q q  .                                                           (4.1) 

Consider the static conversion for the motor reference, d d
m r=q rq . By inserting (4.1) into (3.1a), 

we obtain 

d
r r r r+ =M q K q K q ,                                                  (4.2) 
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where it is assumed that the nonlinear term, gravity, and friction is compensated by the 

feedforward control, ,ff rigidu .  

Let us consider the steady state, when it is possible to linearize the robot dynamics about a 

stationary point. For instance, suppose an instance when the robot starts to move from zero initial 

velocity or at the end of the reference trajectory, ( )d
r tq . At steady state, Eq. (4.2) can be 

expressed in the frequency domain because the inertia matrix can be assumed to be constant, or 

( ) 12( ) ( )d
r r rj jω ω ω

−
= −q K M K q .                                        (4.3) 

Now assume that the reference trajectory is designed as the S-curve (Figure 4.1(a)). The S-curve 

trajectory on the interval [0 ]jT  can be represented as 

( ) ( ) ( )d
r jq t J t t Tγ γ = − −  ,                                             (4.4) 

where ( )tγ  is the unit step function. 

d
rq

d
rq

t

t
jT0

J

          

d
rq

d
rq

t

t
aT0

A

 

(a) S-curve                                          (b) TVP 

Figure 4.1. Comparison between S-curve and TVP. 
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Apply the Fourier Transform to (4.4) to obtain, similar to Biagiotti and Melchiorri (2008), 

( )4( ) 1 jjTd
rq j J e ωω ω −−= − .                                             (4.5) 

Therefore, the S-curve can be interpreted as a low-pass filter with the fundamental period, 1
jT −

[ ]Hz  in the frequency domain. At 1
jN T − , where N  is an integer, the amplitude of (4.5) becomes 

zero. Let us assume that the jerk period for all joints is the same as jT  for a coordinate motion, 

then 

( )4( ) 1 jjTd
r S curvej e ωω ω −−

− = −q J ,                                          (4.6) 

where [ ]1
T

nJ JJ   . Hence, the frequency response of the link position to the S-curve 

trajectory (4.6) at steady state under a high gain feedback control on the motor side is obtained as 

( )( ) 14 2( ) 1 jjT
r S curve rj e ωω ω ω

−−−
− = − −q K M K J .                            (4.7) 

From (4.7), some useful idea can be obtained regarding how to design the jerk. The term 

2
rω−K M  is the denominator of (4.7) for 0ω > . Clearly, the poles are the natural frequencies of 

the link dynamics of (4.2). The natural frequencies can be calculated easily by solving the 

eigenvalue problem, 

1 2
r ω− −=K M x x .                                                        (4.8) 

 Then, the optimal value for jT  should be 

1
,1j nT f −=  ,                                                             (4.9) 
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where 1f  [ ]Hz  is the root square of the largest eigenvalue of (4.8), or the lowest natural 

frequency. By the choice of (4.9), the first mode of the system (4.2) cannot be excited. In 

addition, the higher modes can be suppressed quickly because the magnitude of ( )r jωq  is 

attenuated by the term, 4ω− .  

It is tempting to apply the above procedure to the TVP trajectory (Figure 4.1(b)) to see why 

the S-curve generates smaller vibrations than the TVP. Following the same procedure, the 

frequency response of the TVP trajectory is obtained as 

( )3( ) 1 ajTd
r TVPj e ωω ω −−= −q A ,                                             (4.10) 

where [ ]1
T

nA AA   . Therefore, a similar conclusion can be obtained for the TVP 

trajectory as well. That is, the first mode of the system cannot be excited if the acceleration 

period is tuned at the first mode of the link dynamics  

 1
,1a nT f −= .                                                             (4.11) 

However, the result (4.11) cannot be applied to a typical industrial robot, where the maximum 

acceleration is constrained due to a time-optimal design (Antonelli et al., 2007; Kim et al., 2010). 

Nevertheless, it provides a clear reason why the S-curve generates smaller vibrations than the 

TVP. More specifically, consider the magnitudes of the two trajectories in the frequency domain. 

4( ) 2 1 cos( )d
r S curve jq j J Tω ω ω−

− = −                                    (4.12a) 

3( ) 2 1 cos( )d
r TVP aq j A Tω ω ω−= −                                     (4.12b) 
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From the optimal choices, (4-9) and (4-11), and assuming that the maximum accelerations are 

equal in both trajectories, i.e., 1
jJ AT −= , then we obtain the following relation. 

 , ,( ) ( )d d
r i S curve r i TVPj jω ω− <q q  for 1

jTω −> ,                             (4.13) 

where 1, ,i n=  . In Figure 4.2, an example of the above results is shown for a 2DOF robot. It 

can be observed that the peak magnitudes at the first mode are cancelled. Even though there are 

peaks at the second mode in the response (Figure 4.2(b)), the magnitudes are much reduced 

compared with the free response (Figure 4.2(a)). As predicted in (4.13), the magnitude of the 

response to the S-curve trajectory is less than the TVP for ( ) 1
2 1.608 [ ]jf T Hzπ

−
> = . 

The above result suggests a suitable strategy for how the S-curve should be generated in an 

optimal fashion for industrial robots. That is, the acceleration and speed can still be chosen in a 

time-optimal manner by utilizing the rigid-body dynamic model, while the jerk period is selected 

as the period of the first mode of the robot. In this way, a high acceleration and speed can be 

achieved while suppressing the vibration modes of the robot. Notice that the above conclusion 

assumes that the system is linear around a stationary point. Therefore, such tuned S-curves may 

not work well if such assumption is not satisfied, e.g., when the robot is operating at a high speed 

and/or when the inertia changes dramatically during a short period of time as the robot traverses 

the workspace. 
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(a) The free response of (12), ( ) 12( ) rjω ω
−

= −G K M K . 

 

(b) Response to the trajectory,  ( ) ( ) ( )j j jω ω ω=Y G R  (gray: TVP, black: S-curve). 

Figure 4.2. Comparison between the TVP and the S-curve in the frequency domain.

[ ] 210 10 [ / ]diag rad s=A , [ ]10.1 21.4 [ ]nf Hz= , and 1
,1j a nT T f −= = . The model parameters are 

obtained by the CAD data and measurement for the 2P

nd
P and 3P

rd
P links of the robot shown in Figure 4.7. 

And a small damping is assumed in ( )jωG . 
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4.1.2 Input Shaping Technique 

This section discusses another technique that can achieve minimum residual vibrations under 

a high gain PD control. The IST is a filtering method that was originally developed for 

cancelling residual vibrations in finite-time rest-to-rest motion tasks. It can also be applied to 

trajectory following tasks by ‘shaping’ the input trajectory such that the shaped trajectory has 

zero in magnitude at the natural frequency of the system, similar to the optimal S-curve 

presented in the previous section. The IST with minimum time delay, known as the ZV (Zero 

Vibration), is denoted by 

0 1( ) ( ) ( )ZV zh t t t Tα δ α δ= + − ,                                             (4.14) 

where 
2

0

1

1

1 e
πς

ς

α −

−

=

+

, 
2

2

1

1

11

e

e

πς

ς

πς

ς

α

−

−

−

−

=

+

, and ( )tδ  is the unit impulse function. For a lightly 

damped system, 0ζ ≈  , such as the flexible joint dynamic model (3.1), the ZV can be simplified 

as  

[ ]1( ) ( ) ( )
2ZV zh t t t Tδ δ= + − .                                              (4.15) 

In the frequency domain, 

1( ) 1
2

zj T
ZVH j e ωω − = +   .                                                (4.16) 

Therefore, the reference trajectory filtered by the ZV becomes 

 , ,( ) ( ) ( )d d
r i ZV r i ZVt t h t= ∗q q ,                                                (4.17) 
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Or,  

, ,
1( ) 1 ( )
2

zj Td d
r i ZV r ij e jωω ω− = + q q .                                       (4.18) 

As indicated in (4.18), the ZV can be interpreted as a notch-filter, adding a zero at the location, 

zj Te ω−  in the complex plane. Applying (4.18) to (4.3), we obtain 

( ) 121( ) 1 ( )
2

zj Td d
r ZV r rj e jωω ω ω

−− = + − q K M Kq .                          (4.19)          

Thus, the ZV can cancel one pole of the system. However, unlike the S-curve trajectory, the ZV 

is not a low-pass filter. To cancel all the modes, the ZV can be designed as 

, 1 ,( ) ( ) ( ) * ( )d d
r ZV ZV ZV n rt h t h t t= ∗ ∗q q .                                     (4.20) 

In the frequency domain, 

( ),
12

1

1( ) 1 ( )
2

z i
n

j Td d
r ZV r rn

i

j e jωω ω ω
−−

=

 = + − ∏q K M Kq .                       (4.21)        

If we choose, 

( ) 1
, ,2z i n iT f

−
= ,                                                         (4.22) 

then, all the modes cannot be excited. However, as discussed earlier, realization of (4.22) is 

extremely difficult in practice for industrial robots due to their complex dynamics. The modes 

vary significantly depending upon the robot’s configurations. This means that the ZV must be 

designed as a time-varying filter, making it more complex for implementation. Lastly, the model 

(3.1) is only an approximation. There may exist unknown modes that are not considered in the 

model especially at high frequency. Because the ZV is not a low-pass filter, it is inherently 

limited to cope with uncertainties at high frequency. However, one important benefit of the ZV 
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compared with the S-curve profiling is the 50% smaller delay (compare (4.11) with (4.22)) 

assuming a single DOF case. Another benefit is that the ZV can be used for arbitrary reference 

trajectories, allowing one to design a simpler trajectory than the S-curve trajectory. That is, one 

can use a time-optimal TVP trajectory and then apply the ZV. Therefore, a simple filter that can 

be used for industrial robots is proposed to address the time-varying multiple modes. Let us 

consider the combination of the ZV and the SMA (Simple Moving Average). The SMA can be 

represented as 

[ ]1( ) ( ) ( )SMA m mh t T t t Tγ γ−= − − ,                                             (4.23) 

Or 

1 1( ) 1 mjT
SMA mH j j T e ωω ω −− −  = −  .                                          (4.24) 

If we combine the ZV with the SMA,  

( )( )( ) 1 1
2

mz jTjT
ZV SMA

m

jH j e e
T

ωωω
ω

−−
+ = + − .                                (4.25) 

Let us choose 

1
,1m nT f −=  and ( ) 1

,13z nT f
−

= .                                            (4.26) 

In Figure 4.3, the proposed filter (4.25) is shown assuming that the first and second mode varies 

in between 10 Hz and 20 Hz. A benefit of the proposed filter is that it can suppress a wide-range 

of frequency between ,1nf  and 2 ,1nf . For a typical industrial robot, the dominant modes are the 

first and the second mode. These modes are usually located close together when the robot is 

extending its ‘arm’ out from the shoulder because the first two modes are typically associated 
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with the first two joints, whose inertia increases/decreases together with the robot’s 

outstretched/retracted position. Because the filter is a low-pass filter, the unknown high 

frequencies can be suppressed. In Figure 4.3, the proposed filter is shown and is compared with 

another robust ZV, known as extra-insensitive (EI) shaper (Singhose, 2010). The delay of the 

proposed filter, ( ) 1
,14 3 nf

−
, is twice that of the EI shaper, ( ) 1

,12 3 nf
−

, but the magnitude near the 

target frequency (10 ~ 20 Hz) is much smaller in the proposed filter than for the EI shaper. Note 

that the proposed filter (ZV + SMA) is a low-pass filter whereas this is not the case for the EI 

shaper. The magnitudes of the two filters are shown in Figure 4.3. The peak magnitude for the 

proposed filter near the target frequency is only about 15 % and 20 % compared with the EI 

shaper and the single SMA filter, respectively. 

From the perspective of residual vibrations only, the filtering technique is more attractive 

than S-curve profiling because the filtering technique allows one to plan with low order 

trajectories with smaller time delay as pointed out in Singhose (2010). Note that the proposed 

optimal S-curve profiling requires the addition of a jerk period for every transitions of 

acceleration whereas the delay of filtering method is just the filter time. For instance, let us 

consider a point-to-point motion with a small distance. In this case, the delay of the optimal S-

curve trajectory is at least 1
,13 nf
−  (jerk period inserted at stop to ramp-up, ramp-up to ramp-down, 

and ramp-down to stop) whereas the delay for the proposed filter is only ( ) 1
,14 3 nf

−
.  
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Figure 4.3. Frequency response of IST + SMA when target frequencies are in between 10 Hz and 20 Hz. 

Unfortunately, filtering methods have a significant drawback as they distort the originally 

planned trajectory (Khoshdarregi et al., 2014). The filter “shapes” the original reference 

trajectory so that a certain range of frequencies is cut-off. Suppose that the original reference 

trajectory is planned such that the end-effector follows some specific geometric path. Because 

the filter only addresses the frequency content of the reference trajectory, and not the geometric 

shape of the path, there is no way to guarantee that the geometric shape of the filtered trajectory 

will be preserved. This problem can be best described by illustration. In Figure 4.4, the 

geometric distortion by the ZV is shown. The ZV takes the average of the two points at every 

sampling time, namely, one for the current value, ( )d
r tq  and one for the previous one, ( )d

r zt T−q . 

Therefore, unless the planned path is a straight-line in joint space, the planned path is distorted. 

And such distortion becomes more serious as the filter time is longer and the nonlinearity of the 

planned path is significant. The same argument also applies to the SMA or any other filters that 

utilizes the previous values because these filters take the average values including past 

trajectories. 
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Figure 4.4. The distortion of the geometric shape by the ZV. The filtered point (gray circle) at 0t  is not on 

the planned path (thick line). 

4.2 Control Approach 

So far, the planning approach has been discussed, which aims for high motion performance 

by improving the reference trajectory assuming a simple PD control. In this section, control 

methods that have been proposed for industrial robots to improve tracking of the trajectory are 

addressed. In particular, two control methods that are most widely used in industry will be 

considered, namely nonlinear feedforward control (De Luca, 2000) and the decentralized full-

state feedback control (Miyazaki et al., 2004). Both controllers can be derived based on the 

flexible joint dynamic model (3.1). The feedforward controller requires only motor feedback and 

thus can be easily combined with the traditional PD controller on the motor side. The full-state 

controller only requires feedback up to velocity. Accordingly, it does not need to estimate high 

order states such as acceleration and jerk on the link side. However, the full-state control 

(Miyazaki et al., 2004) is a decentralized scheme. Therefore, it cannot represent a true 

performance of a full-state controller that takes account dynamic coupling in the feedback 
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system. Nonetheless, it is assumed that the selected full-state controller is a good choice at least 

for the comparative study in the thesis. 

4.2.1 Feedforward Control 

The key idea of the feedforward control is to “input” the required torque for the robot 

represented as (3.1) to follow the reference trajectory. The feedforward torque can be calculated 

as 

( )1 1d d d d
ff m m m r m

− −= + − +u M q r K r q q f .                                      (4.27) 

Then, the error dynamics is given by 

( )1
,m m m r fb m

−+ − + =rM e K r e e u 0 ,                                        (4.28) 

where ,fb mu  is a feedback control on the motor side. The desired motor reference is obtained by 

utilizing (3.1a), 

( )1d d d d d d
m r r r r

−= + + +q rK M q C G rq  .                                       (4.29) 

Utilizing the same assumption used in (3.7), we have 

m r=e re .                                                           (4.30) 

Inserting (4.30) to (4.28), we obtain 

,m m fb m+ =rM e u 0 .                                                   (4.31) 

Therefore, it is clear that a PD control utilizing only motor measurement is sufficient to make the 

error dynamics in (4.31) stable. One significant benefit of the above feedforward control is that it 

can be combined with the industrial PD control discussed in Chapter 3. However, the 
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feedforward torque (4.27) requires the second derivative of the motor reference (4.29). Therefore, 

the reference of the link side up to fourth derivative is necessary, namely, 

( )
2

1
2

d d d d d d
m r r r r

d
dt

− = + + + q rK M q C G rq  .                                 (4.32) 

In general, the variation of the reference trajectory is much faster than the dynamic terms. In this 

case, one can utilize a simplified version 

(4)
1d d d d

m r r r
−= +q rK M q rq  .                                                 (4.33) 

The conversion from the reference, d
rq , to the motor reference, d

mq  in (4.29) can be regarded as a 

dynamic input shaper for a high gain cascaded PD controller. To see this, let us apply (4.1) to 

(3.1a) to obtain: 

( )1 d
r r r r m

− + + + =rK M q C G rq q .                                          (4.34) 

Utilizing the assumption (4.3), Eq. (4.34) can be expressed in the frequency domain at steady 

state 

( ) 12 1 1( ) ( )d
r r mj jω ω ω

−− −= −q I K M r q ,                                     (4.35) 

where n n×∈ℜI  is the identity matrix. 

Similarly, the mapping (4.29) can also be expressed in the frequency domain at steady state as 

( )2 1( ) ( )d d
m r rj jω ω ω−= −q r I K M q .                                     (4.36) 

By inserting (4.36) into (4.35), the relationship between the reference and the output on the link 

side becomes 

( ) ( )d
r rj jω ω=q q .                                                    (4.37) 
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Therefore, the conversion (4.36) can be thought of as a multivariable dynamic input shaper such 

that all flexible modes of the link dynamics are cancelled simultaneously. In comparison, the 

traditional IST in (4.21) cancels all the poles of the link dynamics by applying a series of impulse 

responses to the reference trajectory and the total delay to achieve this goal is  

, ,
1

n

z total z i
i

T T
=

=∑ .                                                          (4.38) 

Notably, the dynamic input shaper (4.36) achieves exactly the same goal with zero phase lag (no 

path-distortion) by performing the exact inverse of the transfer function of the link dynamics. In 

addition, the realization of the IST (4.21) requires an additional computation to solve the 

eigenvalue problem (4.8) which is not necessary for (4.36). Both methods assume the exact 

knowledge of the link inertia and joint stiffness. In addition, the dynamic input shaper is 

implemented in the time domain (4.29), which is as simple as the IST. Therefore, it can be 

concluded that the dynamic filter used in the feedforward control is more advantageous than the 

IST in terms of cycle time and path accuracy. The only concern regarding the dynamic input 

shaper is that the transfer function (4.36) is not proper. Therefore, unwanted frequency content in 

the reference trajectory may excite unmodeled high frequency modes of the system. It is well 

known that such problem can be resolved if fast poles are added so that the transfer function 

(4.36) becomes proper. Furthermore, the feedforward control requires trajectories whose fourth 

derivatives are available. Assuming that the trajectory is simple TVP (2P

nd
P order) then we need to 

choose an additional filter that not only makes the dynamic input shaper proper but also 

increases the trajectory profile to fourth order. The simplest choice for this role is the double 

SMA filter. In Figure 4.5, the traditional ZV and the dynamic input shaper are compared. In the 
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figure, a double SMA filter (bandwidth 50 Hz) is used to make the dynamic input shaper proper. 

One can note a much smaller phase lag for the dynamic input shaper in comparison with the ZV. 

 

(a) Frequency responses of filters, ( )jωH . 

 

(b) ( ) ( ) ( )j j jω ω ω=T H G . 

Figure 4.5. Comparison between the multi-mode ZV and the dynamic input shaper (4.36) for the model 

used in Figure 4.2 (thick gray: multi-mode ZV, thin gray: ideal dynamic input shaper, black: proper 

dynamic input shaper). Note that the elements of dynamic filter, 1,1( )jωH  and 2,2 ( )jωH are shown 

together in Figure. 4.5(a). 
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However, the inherent limitation of the feedforward controller and the planning approach is that 

the feedback control is performed on the motor side, i.e., only a partial state feedback. It has been 

verified that the full-state control can significantly improve the tracking performance on the link 

side compared with the motor feedback (De Luca et al., 2007). 

4.2.2 Full-State Feedback Control 

The limitation of the feedforward controller discussed previously can be overcome by 

utilizing the full-state feedback. Assuming the link states are available for feedback, consider the 

following control law 

, ,
n

ff fb m fb r= + + ∈ℜu u u u ,                                              (4.39) 

where ffu  is (4.27)  and ,fb mu  is the PD control on the motor side with integral control in the 

inner loop (see Fig. 4.6). The control law (4.39) is the motor controller combined with another 

feedback control based on the link states 

,fb r s s r r= +u K e K e ,                                                    (4.40) 

where 1
s m r

− −e r e e . Then, we obtain the following error dynamics for the inner-loop (Figure 

4.6) expressed in terms of the link states 

( ) ( ) ( )(4) (3)ˆ ˆ ˆ ˆ ˆ ˆ n
r r v r r i s r r r v r r i r

 + + + + + + + + = ∈ℜ JM e K M e K K M K J M e K K K e K e 0  , (4.41) 

where 2
mJ r M , 2ˆ

v vK r K , 2ˆ
i iK r K , ˆ

s sK rK , and ˆ
r rK rK . 

Due to its coupled nature it is not obvious how the gain scheduling must be performed. If we 

assume that the feedforward control effectively cancels the coupling effect, then one may 
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consider a decentralized scheme for feedback control, namely, 

( ) ( ) ( )4 3 2ˆ ˆ ˆ ˆ ˆ ˆ 0r v r r i s r v r iJJ s K J s J K K k J J s k K K s K + + + + + + + + =  .                   (4.42) 

The transfer function of the link side is obtained as 

( ) ( )
( ) ( ) ( )

3 2

4 3 2

ˆ ˆ ˆ ˆ ˆ ˆ( )
ˆ ˆ ˆ ˆ ˆ ˆ( )

v r r v s v r ir
d
r r v r r i s r v r i

K J s J K K s k K K s K kq s
q s JJ s K J s J K K k J J s k K K s K

+ + + + +
=

 + + + + + + + + 

.      (4.43) 

The denominator indicates that it is possible to place the poles at desired locations with a unique 

set of gain. However, the zeros vary depending on the gain (the numerator). In general, as the 

poles are further placed to the left on the real-axis, the peak magnitude of the sensitivity function 

(Skogestad and Postlethwaite, 1996) is increased. This implies that it is not possible to make the 

bandwidth of the inner loop very high. Therefore, one can expect that the above full-state 

controller will have poorer performance than the cascaded PD controller in terms of disturbance 

rejection and tracking on the motor side. Nonetheless, the main benefit of the full-state controller 

is that it is possible to stabilize the error dynamics on the link side. 
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Figure 4.6. The full-state controller (Miyazaki et al., 2003). The additional part for ,fb ru  is shown in 

thick gray lines. 
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4.3 Experiment 

In order to verify the above discussions, the four methods have been implemented on the 

Hi5a controller and tested on a Hyundai robot, HA006B (Figure 4.7). A relevant simulation 

result can be found in Kim and Croft (2015). The planned trajectory generated by the Hi5a 

controller is time-optimal in the sense that the speed and acceleration are generated based on the 

robot dynamics (Kim et al., 2010). In the experiment, the robot’s TCP was moved along a half 

circle (radius: 50 mm) in the vertical plane from its home position. A 3D laser tracker, 

Tracker3P

TM
P is used to measure the TCP. The specification of the measurement system is 

available at 67TUhttp://apitechnical.com/Downloads/2012/T3-Product-Specifications.pdfU67T. 

In Table 4.1, the conditions for the four tested cases are summarized. The first two cases are 

for testing the planning approach while the other two are for the control approach. Therefore, for 

Case I and II, the cascaded PD controller was assumed, which is the default controller of 

HA006B. The bandwidth of the inner-loop and the outer-loop is approximately 100 Hz and 10 

Hz, respectively. In Case I, the optimal S-curve trajectory was used, where the jerk is tuned at 

the first mode, which is near 10 Hz. In Case II, III, and IV, the time-optimal TVP was used. 

Therefore, the maximum values of speed and acceleration for the tested trajectories are the same 

for all four cases. In Case II, the filter proposed in Section 4.1.2 was applied to the TVP 

trajectory. The filter was tuned such that it suppresses modes between 10 Hz and 20 Hz (Figure 

4.3). In Case III and IV, the time-optimal trajectory was filtered by a series of two small SMA 

filters in order to generate reference trajectory up to the fourth derivative for feedforward control 

and to make the dynamic input shaper to be proper. In Case IV, the nonlinear observer (Jankovic, 

1995; Khalil, 2014) was utilized for the second and third joint because these two joints were 

http://apitechnical.com/Downloads/2012/T3-Product-Specifications.pdf
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dominant amongst the six joints for the tested motion. The observer was implemented outside the 

control loop, which runs at 500 Hz. It is because the control platform only allows a decentralized 

scheme. The control loop runs at 2 kHz. The feedback gain for Case IV was tuned such that 

bandwidth of the inner loop and the observer are about 10 Hz.  

The parameters for the dynamic model were obtained from the robot’s CAD data and the 

joint stiffness was found by the multivariable FRF (Frequency Response Functions) (Öhr et al., 

2006; Wernholt and Gunnarsson, 2008). In Figure 4.8, the result for the second and third joints is 

shown. The model was well matched with the real system up to 20 Hz which is well above the 

bandwidth of the outer-loop, 10 Hz.  

In Figure 4.9, the planned trajectories and the reference trajectories are shown. Notice that, 

the duration of the reference trajectory is the longest for Case I due to the jerk period. Also 

notice that the time for the Case II’s reference is much shorter than that of Case I even though 

they are both tuned at the first mode. 

In Figure 4.10(a), the tracking errors on the motor side are shown. Case III achieved the best 

performance while Case IV generated the worst performance. This is because the bandwidth of 

the inner-loop for Case IV is much smaller (10 Hz) compared with other cases (100 Hz). 

In Figure 4.10(b, c), the TCP measurements are shown. It is assumed that these results can 

represent the performance on the link side. Case I and Case IV generated smallest residual 

vibrations. While such reduced vibration for Case I comes from the smooth trajectory, it is due to 

the active damping on the link side for Case IV. The path error for Case II was much larger than 

other cases. This is due to the distortion of the planned trajectory by the filter. The filter delay for 

Case II is much larger than the others and the planned path is not a straight-line, thus generating 

a large distortion of the planned path, as predicted in Section 4.1.2. 
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Figure 4.7. HA006B (DOF: 6, maximum payload: 6 kg, http://www.hyundai-

robotics.com/robot/robot01.asp). 

 

 

Case Trajectory Filter Control 

I Time-optimal S-curve SMA 50 Hz PD control 

II Time-optimal TVP 
ZV + SMA 

4Hz 
PD control 

III Time-optimal TVP SMA 10 Hz Feedforward motor control 

IV Time-optimal TVP SMA 10 Hz Full-state control 

Table 4.1. Four cases used in experiment. 
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Figure 4.8. FRF of the linearized flexible dynamic model, ( , )i jH , where i  and j  is the joint index 

for  the motor velocity (output) and the motor torque (input), respectively (gray: measurement, black: 

model). 

 

 

Figure 4.9. Motion trajectories for joint 2. 
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(a) Motor tracking error for joint 2                   (b)  Residual vibrations of the TCP 

 

(c) TCP paths 

Figure 4.10. Experimental results. 

4.4 Summary 

A comparative study on motion control methods for industrial robots has been performed. 

The compared methods include both planning approach and control approach. First, the planning 

approach was improved such that the S-curve profiling and the IST such that the jerk of the S-

curve trajectory is optimal and the IST can cope with the complex dynamics of industrial robots. 
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The planning approach was then compared with two well-known nonlinear controllers. The 

theoretical analysis revealed that the planning approach has some fundamental limitations on the 

achievable performance due to the slow motion time (S-curve profiling) and poor path accuracy 

(the IST). More specifically, it was shown that the cycle-time for a point-to-point motion 

achieved by the S-curve profiling cannot be smaller than three times of the period of the first 

mode if the jerk is chosen such that no residual vibrations occur. This means that the S-curve 

profiling will generate slow motions in robot applications where a short-pitch motion is 

dominant such as spot welding. The proposed hybrid filter (IST plus SMA) can handle a time-

varying multiple modes of industrial robots unlike the IST. The benefit of the proposed filter is 

that it provides a very simple way to design the overall motion control system because the 

planned trajectory can be simple as well as the control loop. One major limitation of the filtering 

technique, whether it is the proposed filter or some other filters, is the distortion of the planned 

path, that can result in a large path error especially when the robot’s natural frequency is low 

(large filter delay) and the robot’s speed is high on a curved path (a high curvature within the 

filter window). Therefore, the filtering technique will exhibit a poor performance in robot 

applications where high path accuracy is required such as machining. The filtering technique 

may be a valid approach only if the natural frequency of the system is very high, e.g., for CNC 

machines with natural frequencies much greater than industrial robots (Khoshdarregi et al., 

2014). 

In general, the control approach has obtained better performance than the planning approach 

in terms of cycle-time and path accuracy (the slowest motion: S-curve, the largest path error: 

input shaping). The feedforward motor controller is as simple as the planning approach because 

the method can be implemented with a PD controller. It has been shown that a delay-free 
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dynamic input shaper is a part of the feedforward control. Therefore, if the dynamic parameters, 

the link inertia and joint stiffness, are known, it is recommended that the feedforward control be 

used instead of the IST. The full-state controller makes the overall control system much more 

complex than the other methods due the additional estimation on the link states. However, the 

best performance was obtained by the full-state controller. In summary, the feedforward 

controller is a preferred choice over the planning approach if the control loop should be designed 

with PD control. A full-state controller must be pursued if the robot is used in applications where 

a high demand for speed and path accuracy must be met. 

The results obtained in this chapter show that the motion control strategy proposed in 

Chapter 3, i.e., the low-order trajectory with control based on elastic model, performs better than 

the high-order trajectory with PD control. Therefore, in the next two chapters, methods for time-

optimal trajectory planning and nonlinear control based on the flexible joint dynamic model are 

proposed. 
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Chapter 5: Online Path-Invariant Minimum-Time Trajectory Planning1F

2 

In Chapter 3, a time-optimal TVP along a specified path was suggested as it can be 

implemented in a low-cost controller and satisfy the PITOM. Chapter 4 demonstrated that the 

time-optimal TVP combined with model-based control can obtain better performance than a 

smooth trajectory with PD control. Motivated by this previous work, a new online trajectory 

planning strategy is proposed in this chapter. For online applications, the trajectory is planned 

along an arbitrary path with arbitrary boundary conditions. The maximum number of system-

dynamics computations is limited to four per path segment, enabling generation of a time-

optimal trajectory in a small number of control cycles depending upon the computational 

capacity of the trajectory generator. A method that can transit over multiple segments is also 

presented. The resulting motion is near time-optimal with respect to the system dynamics, and 

segments followed by the robot are not distorted by the speed at which the robot moves along the 

path, thus fully satisfying the PITOM, requirements proposed in Chapter 3. 

A limitation of the proposed method is that some assumptions are made regarding the 

dynamic model and paths. Specifically, each term of the dynamic model expressed in a path 

parameter is assumed to be piecewise linear (between waypoints). This assumption is necessary 

to permit solving dynamics at the limited number of points. When the assumption is not satisfied, 

the proposed method may generate a trajectory that violates the dynamic constraint. However, as 

shown in simulation, the violation is quite small, i.e., only 3%±  of maximum torque violation 

among 44 tested motions. The error is even less significant when considering that the dynamic 

                                                 

2 A version of this chapter has been accepted for publication in IEEE Transactions on Robotics (Kim 
and Croft. Co-designed time-optimal trajectory planning and feedforward control for industrial robots). 
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model used for trajectory planning is only an approximated one, assumed to be perfectly rigid 

with no parameter uncertainty. Therefore, the “sub-optimality” of the trajectory may become less 

important in reality since the modeling error could be more significant. The beneficial trade-off 

of the proposed “sub-optimal” trajectory is the light computational burden while achieving a 

similar performance to existing time-optimal trajectories.  

5.1 Dynamic Model and Constraints 

In this section, the dynamic model used for trajectory planning is described. Since the 

proposed trajectory is second order, the flexible joint dynamic model (3.1) is approximated as a 

second order rigid model by neglecting the joint elasticity i.e., →∞K . This results in the well-

known rigid-body dynamic model written compactly as: 

( ) ( , ) ( ) ( ) n
m= + + + ∈ℜτ M q q C q q q G q rf rq    ,                                (5.1) 

where mτ r τ , rq q , and 2
r m+M M r M . 

Following the work (Shin and McKay, 1985; Bobrow et al., 1985), consider a case where the 

robot needs to follow a smooth path, ( )sf , where ( )sf  is a smooth path with continuity 2C  and  

{ }| 0 1s s s= ∈ℜ ≤ ≤ . If the path is given in joint space, the following relations hold 

2

( )s
s
s s

 =
 ′=
 ′ ′′= +

q f
q f
q f f

 

  

 ,                                                      (5.2) 

where ( )d s
ds

′f f
 and 

2

2 ( )d s
ds

′′f f . 
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As indicated in (5.2), it is assumed that the second derivative of the path is available. Thus, the 

path must be at least 2C – continuous. For Cartesian space paths, Eq. (5.2) holds by defining 

1

1 1

( ) ( ( ))
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

s INV s
s s s

s s s s s

−

− −



′ ′

 ′′′ ′ ′′+

f x
f J x

f J x J x







,                                  (5.3) 

where INV : inverse kinematics, ( ) (3)s SE∈x ,  and ( ) n ns ×∈ℜJ : manipulator Jacobian. By 

inserting (5.2) into (5.1) and assuming a static friction model, sign( )m v m c m= +f f q f q  , we obtain a 

dynamic model that is represented in terms of only path parameter, s , i.e.,  

2

2

( ) ( ) ( ) ( , ) , 0
( ) ( ) ( ) ( ) , 0

n

n

s s s s s s s s s
s s s s s s s s

 + + + ∈ℜ ≥= 
+ + + ∈ℜ >

m b d e
τ

m b d e

    

   

,                         (5.4) 

where ( )s ′m M f , ( )s ′′ ′+b Mf Cf , 2( ) vs ′d r f f , ( , ) sign( )cs s s′+e G rf f 
 , and 

( ) sign( )cs ′+e G rf f . Note that all the dynamic terms in (5.4) are a function of s  only for 

0s > , i.e., robot’s position but not velocity or acceleration. For trajectory planning, it is assumed 

that the dynamic model (5.4) is subject to the following constraints. 

 max, max,i i i− ≤ ≤q q q   , 1, ,i n=                                      (5.5) 

max, max,i i i− ≤ ≤τ τ τ , 1, ,i n=                                      (5.6) 

The inequalities, (5.5) and (5.6), are referred to as the kinematic constraint and the dynamic 

constraint, respectively. Given the kinematic constraint, the maximum path velocity is calculated 

as 

max max,1,...,
( ) min ( )ii n

s s s
=

= s ,                                                (5.7) 
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where max,
max, ( )

( )
i

i
i

s
s

=
′

q
s

f


 . The maximum acceleration satisfying (5.6) is obtained as 

max max,1,...,
( , ) min ( , )ii n

s s s s s
=

= s                                             (5.8a) 

min min,1,...,
( , ) max ( , )ii n

s s s s s
=

= s                                              (5.8b) 

where 

max,

max,

max,

( , )
, ( ) 0

( )
( , )

( , )
, ( ) 0

( )

i i
i

i
i

i i
i

i

s s
s

s
s s

s s
s

s

 −
 >
= 
− −

<


τ c
m

m
s

τ c
m

m



 



, 

max,

min,

max,

( , )
, ( ) 0

( )
( , )

( , )
, ( ) 0

( )

i i
i

i
i

i i
i

i

s s
s

s
s s

s s
s

s

− −
 >
= 

−
<



τ c
m

m
s

τ c
m

m



 



 , 

and, 2( , ) ( ) ( ) ( , )s s s s s s s s+ +c b d e   
 . 

5.2 Minimum-Time Trajectory Planning along Parameterized Paths 

This section first considers a point-to-point case, where the robot must travel from the initial 

state, [ ]0 0s s , to the final state, f fs s   ,  along a specified path, ( )sf , 00 1fs s s≤ ≤ ≤ ≤ , in 

minimum-time subject to (5-5) and (5-6), where ( )s t  is a TVP, i.e., a second order trajectory of 

1C – continuity. This result is then extended to a case for multiple path segments. 

5.2.1 Initial Trajectory 

A TVP trajectory consists of three phases: i.e., a ramp, a cruise and a ramp (Figure 5.1). For a 

ramp phase, a constant acceleration is used. Therefore, in order to obtain the minimum-time TVP, 

we need to obtain three values, the initial maximum acceleration/deceleration (positive/negative 

acceleration), the cruise velocity, and the final maximum acceleration. Notice that the maximum 
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velocity and acceleration are state-dependent as shown in (5.7) and (5.8). Constraints (5.5) and 

(5.6) are coupled since the dynamics is also a function of velocity. One way to simplify this 

problem is to treat (5.5) and (5.6) separately. That is, one can first consider the Kinematic Limit 

Curve (KLC) in the phase-plane defined by (5.7). Next, consider the Dynamic Limit Curve 

(DLC), the curves in the same plane that travels from the initial state to the final state by bang-

bang, in which the initial and final accelerations are obtained by solving (5.8) at the boundaries. 

 

Figure 5.1. TVP shown in the phase plane for a ramp-up, a cruise, and a ramp-down. 

5.2.1.1 The Kinematic Limit Curve 

The KLC is a highly nonlinear function since it is coupled amongst joints and position-

dependent. Therefore, it is difficult to represent the KLC as a simple mathematical function. A 

commonly used method to resolve this problem is to solve (5.7) prior to runtime using a small 

step size of s  for 0 fs s s≤ ≤  and to keep the values in a look-up table. This method is unsuitable 

for online planning, where a trajectory must be planned immediately whenever a new path is 

demanded and the computational burden must be minimized on an industrial controller. In 

particular, if the path is given in Cartesian space, the computational burden will increase because 

Eq. (5.7) includes the Jacobian matrix. A more efficient approach is to interpolate (5.7) by a 

spline curve with selected knot points. Representing (5.7) as a spline is beneficial in term of 
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computational cost since a spline is a scalar function that can be easily calculated. However, 

finding the optimal knots is challenging for arbitrary paths due to the highly nonlinear nature of 

(5.7). This problem is addressed by selecting the knots based on the second derivatives of the 

path, ′′f , i.e., the path curvature. There exist many ways to construct the algorithm using this 

concept. One example is shown below and in Figure 5.2. 
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(a) Pseudo code for knot point selection (tol: tolerance) 
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(b) Representative plot of knot finding method. 

Figure 5.2. Optimal selections of the knots for spline interpolations. 
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At the selected knots, Eq. (5.7) is solved to construct a discrete KLC. The discrete KLC is then 

interpolated by a cubic spline function to obtain a continuous KLC. Note that the optimal knots 

depend upon the initial step size, 0s∆ . In general, the smaller value, the more accurate results can 

be obtained, but at the expense of an increased computational burden. Therefore, the initial step 

size and the tolerance must be chosen considering the computation capacity of the planning 

system. Alternately, one can obtain the KLC by solving (5.7) with a fixed step size in order to 

limit the maximum computational burden for the KLC. 

5.2.1.2 The Dynamic Limit Curve 

The DLC is obtained by maximizing acceleration at the boundaries. Since each boundary has 

two extreme values by (5.8), there are a total of four maximum accelerations. Therefore, four 

possible types of bang-bang trajectories exist that can travel from the initial state to the final state, 

denoted as 

( ) ( )ij o i f jDLC DLC s DLC s   ,                                       (5.9) 

where  

2 *
0 0 0, 0( ) 2 ( )i iDLC s s s s s+ − 

  , 1, 2i = ,                               (5.10a) 

2 *
,( ) 2 ( )f j f f j fDLC s s s s s+ − 

 , 1, 2j = ,                              (5.10b) 

*
0 max,0 min,0s s  s  
 , *

min, max,f f fs s  s  
 , * *

0, 0is ∈ s , and * *
,f j fs ∈ s . 

 

Herein, we assume that the DLC satisfies the following condition. 

0 0[ , ] : ( ) ( )f fs s s DLC s DLC s∃ ∈ =                                       (5.11) 
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The condition (5.8) is required to guarantee that there exists a feasible TVP trajectory generated 

at the boundaries such that the initial state can reach the final-state by a single switching. In case 

when the condition (5.8) is not met, for example, when the final velocity is too high compared 

with the initial velocity or vice versa, the higher boundary velocity needs to be lowered. In 

Figure 5.3, the DLC satisfying (5.11) are shown. 
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(c) 21DLC                                                     (d) 22DLC  

Figure 5.3. The elements of the DLC generated at the boundary under (5.8). 

 

A combination of two elements of the DLC defines the upper and lower bound of the bang-bang 

trajectory, denoted as the DLCµ and DLCλ , respectively. The region between DLCµ and 

DLCλ  is referred to as the admissible region, ϒ ,  
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DLC DLCλ µ≤ ϒ ≤ .                                                (5.12) 

Note that the admissible region (5.12) may violate the dynamic constraints since the DLC is 

calculated only at the boundaries. The validity of the admissible region will be addressed in 

Section 5.2.1.3. For the moment, let us assume that the admissible region (5.12) is valid for the 

entire path segment. There are five possible types of the admissible regions (Figure 5.4). These 

regions can be found efficiently based on the following observation. If 11DLC  is the upper-

bound, then one of the other elements is the lower-bound. And, if 11DLC is not the upper-bound, 

then either 12DLC  or 21DLC  is the upper-bound and 22DLC  is the lower-bound. The admissible 

region collapses to one of the DLC bounds as shown in all figures except Figure 5.4(d). 
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(a) [ ]11 12DLC DLC                                                   (b) [ ]11 21DLC DLC  

 

             
(c) [ ]21 22DLC DLC                                                 (d) [ ]11 22DLC DLC  

 

 
(e) [ ]12 22DLC DLC  

Figure 5.4. The admissible region is the area that can be traversed from the initial state to the final state 

(thick gray lines: DLCµ , thick black lines: DLCλ ). 
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5.2.1.3 Finding Switching Points 

The trajectory switching pointsP2F

3
P are found by utilizing the KLC and the admissible region. 

For a feasible trajectory to be found, the KLC must be above DLCλ  for the entire path segment, 

namely, 

  ( ) ( )KLC s DLC sλ≥ , for 0 fs s s≤ ≤                                         (5.13) 

In Figure 5.5, an example of where the KLC  falls below the admissible region is shown. In this 

case, the only way to generate a feasible trajectory is to lower the velocity at the boundaries. For 

the case shown in Figure 5.5, the final velocity must be lowered.  

 

Figure 5.5. A case that the KLC (dashed) is below the DLCλ . 

 

If the KLC is above the DLCλ , the switching points can be found. To do so, it is required to find 

the closest points to each boundary where the DLCµ  intersects the KLC. If there are no points of 

intersection, then the DLCµ  becomes the trajectory (see Figure 5.6(a)). If there exists a point of 

intersection, then it is necessary to find the smallest local minimum between the two intersection 
                                                 

3 In general, the switching points refer to points where the directions of acceleration change. Therefore, 
the boundary points are also switching points. However, in the subsequent parts in the chapter, they are 
referred to as the ones between the boundary points. 
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points (see Figure 5.6(b,c)). It should be emphasized that the computational burden required to 

find the switching points is very small since the KLC and the DLCµ  are simple scalar functions. 

A numerical method, e.g., Newton-Raphson’s method, can provide a fast but reasonably accurate 

solution.  

  
(a)                                                               (b) 

  
(c) 

Figure 5.6. Cases that the KLC (dashed) is above the DLCλ (circles: switching points, x : intersection 

points and local minimum). 

 

The trajectory proposed in this section is a time-optimal TVP trajectory that satisfies the 

kinematic limit (5.5) for the entire path segment and the dynamic limit (5.6) at the boundaries, 

i.e., the initial trajectory. 
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5.2.2 Trajectory Generation and Tuning 

In this section, a method is proposed to tune the initial trajectory. In tuning the trajectory, it is 

desirable to avoid expensive dynamics computation to maintain real-time operability. To achieve 

this, the methods proposed in Antonelli et al., 2007 and Kim et al., 2010, are considered, where 

the trajectory is tuned at the switching points. However, the methods (Antonelli et al., 2007; Kim 

et al., 2010) do not guarantee an exact solution by solving dynamics only once at a selected point 

since the robot’s position where the switching occurs varies as a result of the trajectory tuning. 

The proposed method guarantees an exact solution by a single computation of dynamics.  

Before proceeding to the method, it is necessary to investigate the validity of the proposed 

approach. Tuning the trajectory only at switching points can be justified by analyzing Eq. (5.4). 

To simplify the analysis, let us first consider the case that the coefficients in Eq. (5.4) are 

constant. 

2 sign( )cs s s s′= + + + +τ m b d G rf f    .                                   (5.14) 

Writing (5.14) more explicitly in the time domain, we obtain 

2( ) ( ) ( )t s t s t= + +τ b d a  .                                               (5.15) 

where sign( )cs s′+ +a m G rf f 
 . Noting that ( )s t  is piecewise linear in the time domain (Figure 

5.7), the torque in (5.15) consists of a piecewise linear function, ( )s td  , a piecewise constant, a , 

and a piecewise nonlinear function,  2( )s tb   on the interval 

(0, )at t∈ , ( , )a ct t , and ( , )c ft t ,                                        (5.16) 

where at , ct , and ft  are the time in a TVP trajectory, defined in Figure 5.7. 
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t

( )s t

at ftct0
 

Figure 5.7. A TVP trajectory shown in the time-domain. 

 

Note that the torque (5.15) is discontinuous at the boundaries and switching points. The term, 

2( )s tb  , is strictly increasing or decreasing in both the ramp phases, (0, )at t∈  and ( , )c ft t . Then, 

the maximum torque of (5.15) must occur either at the boundaries or at switching points because 

the torque is a sum of piecewise linear functions and a strictly monotonic function on the interval 

(5.16). Now let us eliminate the assumption of the constant coefficients in (5.14). The 

coefficients are function of s  only. That is, these coefficients vary depending upon the robot 

configuration only. Therefore, the above statement should be true if the variation of dynamics 

with respect to robot’s configuration is small on each interval. Therefore, the proposed method 

will not work well for long path segments or near singularity configuration where the robot 

dynamics varies significantly. 

Assuming with small variations of the dynamic terms (5.14), the method of tuning the initial 

trajectory is now proposed. Let us denote the torque calculated at a switching point as 

( )* * * *, ,s s sτ τ  
  .                                                    (5.17) 
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In case *
max,i i>τ τ , 1, ... ,i n= , the torque must be lowered such that the new torque, τ , 

satisfies 

 max, max,i i i− ≤ ≤τ τ τ , 1, ... ,i n=                                        (5.18) 

One way to achieve this is to lower either the maximum velocity or the maximum acceleration, 

or both. In general, this will result in a new set of switching points at different configurations and 

thus require new computed dynamic terms. This process continues until the torque is no longer 

saturated at the switching points. Alternatively, the dynamic model expressed in (5.4) permits 

rescaling of the torque without changing the robot configuration. Since 0s >  at switching points, 

Eq. (5.17) can be expressed as 

* * * * *2 * * *( ) ( ) ( ) ( )s s s s s s s= + + +τ m b d e   .                                  (5.19) 

Rewriting (5-19) more simply, it obtains 

( )* * * * * * * *2 * * *, ,s s s s s s= = + + +τ τ m b d e     .                                (5.20) 

As noted in Section 5.2.1, the dynamic terms do not depend on the path velocity and acceleration. 

This means that it is possible to scale the torque by changing the path velocity and acceleration 

alone without changing the robot configuration. The new torque τ  at the same robot 

configuration as (5.20) becomes 

( )* * * 2 * *, ,s s s s s s= = + + +τ τ m b d e     .                                    (5.21) 

Eq. (5.21) simplifies trajectory tuning since it is only necessary to find s and s  that satisfy (5.18) 

with known dynamic terms. Therefore, the problem for trajectory tuning reduces to solving 

quadratic inequalities with constant coefficients. When the velocity and acceleration are scaled, 
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two possible cases exist, depending on the boundary velocity. One is the case where it is possible 

to lower *s  and *s  without changing the boundary velocity (Figure 5.8(a)), referred to as the 

fixed-boundary velocity. The other case is that the boundary velocity must also be lowered 

together with *s  and *s  (Figure 5.8(b)), referred to as the free-boundary velocity. 

 

0s

s
*s

s

*s s

*s
s

       

0s

s
*s

s

*s s

*s
s

0s

 

(a) Fixed-boundary velocity                     (b) Free-boundary velocity 

Figure 5.8. Two possible scenarios for trajectory tuning at a switching point. 

 

A switching point for a constant velocity segment has two adjoining accelerations, i.e., zero and 

non-zero. Therefore, Eq. (5.21) can be written separately as 

( )* * * 2 * *
(1) , ,s s s s s s= + + +τ τ m b d e    
 ,                            (5.22a) 

( )* * 2 * *
(2) , , 0s s s s= + +τ τ b d e  
 .                                       (5.22b) 

For the fixed-boundary velocity, the new velocity and acceleration are constrained by  

2 2 *
0 02 ( )s s s s s= + −                                                        (5.23) 

Here, only the first switching point is considered for simplicity. The same method can be applied 

for the second switching point. By inserting (5.23) into (5.22), it obtains: 
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2
(k) ( )k s s= + +τ α β γ  , 1, 2k = ,                                         (5.24) 

where 
*

*
(1) *

02( )s s
+

−
mα b , *

(2)α b , *β d , and *γ e . By solving max, ( ), max,i k i i− ≤ ≤τ τ τ , 

one can find s . Then, the acceleration can be obtained by solving (5.23). 

For the free-boundary velocity, a different strategy is needed because Eq. (5.23) is no longer 

valid and there are three unknown variables, i.e., s , s, and 0s . It turns out that it is possible to 

ensure that the switching point has the same configuration after rescaling the trajectory for the 

free-boundary velocity if it is chosen as: 

*

*
0 0

2 *

s s
s s

s s

λ

λ

λ

 =


=


=

 

 

 

,                                                            (5.25)  

since 

( )*2 *2 2 2 2*2 *2
0 0* 0

0 0 0* * 22 2 2
s s s ss ss s s s

s s s
λ

λ

− −−
= + = + = +

 

 

 

  

.                          (5.26) 

By inserting (5.25) into (5.21), we obtain: 

( )2 * * * * 2 * * *s s s= + + +τ λ m b λd e   ,                                    (5.27) 

where [ ]1 ndiag λ λλ   . By solving max, max,i i− ≤ ≤τ τ τ  and choosing the smallest λ ,  

the three unknowns can be obtained by (5.25). 
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5.3 Continuous Motions for Multiple Path Segments 

So far, trajectory generation for a single path segment has been considered. In this section, 

the method presented previously is extended to continuous motions. In Figure 5.9 and Figure 

5.10, the problem for trajectory planning for multiple segments is shown. Assume that the robot 

is initially stopped at 1k−p . Suppose that the robot is now requested to move to kp  along a 

specified path segment, kf  (Figure 5.9(a)). The path parameter, ks , satisfies 1(0)k k−=f p  and 

(1)k k=f p .  

It first plans a trajectory ( )ks t  utilizing the proposed method in previous sections. Next, 

suppose that the trajectory ( )ks t  is executed and the robot is moving along kf  accordingly when 

a possible collision is detected by a higher-level command (Figure 5.9(b)). The higher-level 

command assigns a new target, 1k+p , a new path segment, 1k+f  and the boundary positions, ,k is  

and 1,k js +  required to avoid the collision (Figure 5.10). Then, it is possible to find a smooth curve, 

cf  between kf   and 1k+f  such that the robot can transit without colliding with the object. 
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 1k−p

kp

( )k ksf

             1k−p

kp

( )k ksf

 
(a)                                                      (b) 

Figure 5.9. A robot moving along a single path segment with an imminent collision. 

 

1k−p
1k+p

( )k ksf 1 1( )k ks+ +f

( )c csf
,k is

1,k js +

kp

 

Figure 5.10. A robot moving along multiple segments. 

 

Next, the minimum-time trajectory, 1( )ks t+  is planned for 1k+f  assuming zero boundary 

conditions at the endpoints, kp  and 1k+p . Since the proposed trajectory is only 1C – continuous, 

the connecting segment, cf , must only satisfy the following boundary conditions 

,0 ,

, 1 1,

( ) ( )

( ) ( )
c c k k i

c c f k k j

s s

s s+ +

 =


=

f f

f f

 

 

.                                                 (5.28) 
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Rewriting (5.28), we obtain 

,0 ,0 ,0 , , ,

, , , 1, 1 1, 1,

( ) ( )

( ) ( )
c c c c k i k k i k i

c f c c f c f k j k k j k j

s s s s

s s s s+ + + +

 ′ ′=


′ ′=

f u f u

f u f u

 

 

 ,                           (5.29) 

where u  is the unit direction vector. In order to satisfy these equalities for arbitrary boundary 

velocities, ,k is  and 1,k js + , the direction vectors at both sides must vanish, i.e., 

,0 ,c k i=u u  and  , 1,c f k j+=u u .                                           (5.30) 

Assuming that the condition (5.30) is satisfied, we obtain 

,0 ,0 , ,

, , 1, 1 1,

( ) ( )

( ) ( )
c c c k i k k i

c f c c f k j k k j

s s s s

s s s s+ + +

′ ′=

′ ′=

f f

f f

 

 

   .                                     (5.31) 

As seen from (5.31), the connecting segment, the only requirement for cf  is to satisfy (5.30). 

Thus, various curves can be used. Bézier curves are a good candidate for this role since the first 

derivatives of the path, ,0( )c cs′f  and ,( )c c fs′f , can be easily controlled by setting control points 

and it has the convex-hull property; the curve exists inside the control polygon (Shoemake, 1985; 

Park and Ravani, 1995). As a result, it is possible to plan cf  such that it exists between kf  and 

1k+f . Assuming that cf  has been planned, then the boundary velocities for cf  can be obtained as 

,
,0 ,

,0

( )
( )

k k i
c k i

c c

s
s s

s

′
=

′

f
f

   and 1 1,
, 1,

,

( )

( )
k k j

c f k j
c c f

s
s s

s
+ +

+

′
=

′

f

f
  .                            

 
(5.32) 

Note that all the terms in the right-hand side in (5.32) are known because the trajectories for kf  

and 1k+f  have been already planned. Now it is possible to plan the trajectory, ( )cs t , with the 

boundary conditions obtained by (5.32). First, plan the trajectory according to the method 

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
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described in the previous sections. In case when the boundary velocities are lowered (free-

boundary velocity), the trajectories for ( )ks t  and 1( )ks t+  are replanned with new boundary 

conditions given by (5.32). For replanning ( )ks t  and 1( )ks t+ , it must solve for the fixed-

boundary velocity. However, during replanning ( )ks t , it is possible that no feasible trajectory for 

( )ks t  with fixed-boundary velocities can be found. This case can occur when the transition from 

kf  to cf  must be executed immediately at a high speed while the boundary velocity, ,k is  is very 

small. In Figure 5.11, an example of replanning ( )ks t  is described. Let us assume that the new 

path segment 1k+f  is entered at ct t=  and assume that the boundary condition (5.32) has been 

obtained. Then, it may be required that the original velocity at , ( )k i k is s t=  be lowered from ,k is  

to ,k is . In this case, ( )ks t  is replanned from the current state, [ ]( ) ( )k c k cs t s t , i.e., the new initial 

state, to the new final state, , ,k i k is s   . However, successful replanning of ( )ks t  may not be 

possible if the time between ct  and it  is too short because the maximum deceleration required to 

arrive at the final state can violate the dynamic constraint. In this case, the transition path, cf , 

must be modified to find a feasible trajectory. Unlike the case for ( )ks t , the problem for 

replanning 1( )ks t+  is much simpler due to the fact that the final velocity of 1( )ks t+  is fixed at 

zero. Note that the final velocity of 1( )ks t+  must be zero because a further path segment after 

1k+f  may not be requested by the high-level motion generator. 
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(a) A replanning is requested at the current motion ( ct t= ) with a new target state ( )i is t s   . 

s

t
ct it

s∆
is

it
 

(b) The time to arrive at is  is increased after replanning. 

Figure 5.11. An example of replanning ( )ks t . Note that the distance to be planned (shaded area) is the 

same before and after replanning. 

5.4 Simulation 

The method proposed in Sections 5.2 and 5.3 has been simulated in MatlabP

TM
P for a 2DOF 

robot assuming a rigid-body model. The parameters used in simulation can be found in Table 5.1. 

The paths are given in joint space. For the single-segment case, a total of 44 path segments were 

tested (24 straight line segments and 20 second order Bézier curve, see Figure 5.12). The joint 

coordinates shown in Figure 5.12 follow the standard convention for a planar 2DOF robot, e.g., 

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
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Hollerbach (1984). To evaluate the performance of the proposed trajectory, the following 

performance measures are defined. 

, 0
max ( )

k
v k vt T

R R t
≤ ≤

                                                         (5.33) 

, 0
max ( )

k
k t T

R R tτ τ≤ ≤
                                                         (5.34) 

 [ ], 0

1 max ( ) ( )kt T

p k vt
k

R R t R t dt
T τ

=

=∫                            (5.35) 

where 
1,...,

max,

( )( ) max i
v i n

i

q tR t
q=







, 
1,...,

max,

( )( ) max i

i n
i

tR tτ
τ
τ=

  , k  : test index, and kT  : motion time.  

The first two measures represent the peak ratio of the velocity and torque, respectively, 

achieved along the trajectory amongst all joints. The last one is the average ratio of the actuator 

utilization. Thus, the measures (5.33) and (5.34) indicate how well the proposed method satisfies 

the constraints (5.5) and (5.6) whereas the measure (5.35) can be used to compare with a true 

time-optimal trajectory. The measure, ,p kR , is one only if the joint velocity and torque are 

saturated at all times. Therefore, the proposed method will generate a ,p kR  less than one because 

the trajectory is designed such that the joint velocity and torque are saturated only once along a 

path segment. 

The simulation results are plotted in Figure 5.13. For the straight line case, the resulting 

trajectories are very close to time-optimality ( , 97 4.8%v kR = ± , , 101 1.2 %kRτ = ± , and 

, 98 1.3%p kR = ± , expressed in a mean value with standard deviation). For curves, the trajectories 

are less efficient than the straight line case ( , 97 7.2%v kR = ± , , 100 0.3%kRτ = ± , 

, 75 7.7%p kR = ± ). Since , 100%kRτ > , the torque constraints were violated. However, the 
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violation was small. The maximum torque violation was about 3 %. The trajectories along the 

straight lines are closer to the true time-optimal trajectories compared with the ones obtained 

along the curved paths. This result is consistent with the work in Sahar and Hollerbach (1986), 

where it is shown that an unconstrained time-optimal path is close to a straight line in joint space. 

For the multiple-segment case, it is assumed that the new path segments are commanded at 

0 s , 0.1s , and 0.42 s . The segments are comprised of straight lines and second order Bézier 

curves. An exemplar multi-segment trajectory is shown in Figure 5.14. 

Parameter Link 1 Link 2 

[ ]m kg  10 21 
2[ ]rJ kg m⋅  1 1.5 

3 2[10 ]mJ kg m⋅  0.909 0.169 

[ / ]vf Nm s rad⋅  0.0017 0.0004 

[ ]cf Nm  0.7819 0.4709 
r  145 137 

Table 5.1. Model parameters for simulation. The distance of the center of mass from each joint is 0.36 m 

and 0.6 m. 
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                                      (a) Straight line                                     (b) second order 67TBézier 

Figure 5.12.  Target positions for simulation (circle: initial position, numbers: simulation indices). 

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
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(a) Motion time                                            (b) Maximum velocity 

      

                                        (c)  Maximum torque                             (d) Maximum actuator utilization 

Figure 5.13.  Simulation result for single-segment case (●: straight line, ∆ :2P

nd
P order Bézier, k  : 

simulation index). 
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(a) Path (gray lines: point-to-point path segments between waypoints) 

 

(b) Joint velocities (thick lines: velocity bound) 

 

(c) Joint torques (thick lines: torque bound) 

Figure 5.14. Simulation results 22Tfor 22Tan exemplar multiple-segment case. 
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5.5 Experimental Results 

The motion control method presented herein has been tested experimentally with HA006B 

(Figure 4.7). For the purpose of the experiment, the proposed time-optimal TVP trajectory and 

the feedforward controller were implemented in the Hi5a controller. The robot program used in 

the experiment consists of four points including the home position. As shown in Figure 5.15, 

three path segments are used; a linear path in joint space, denoted as J, and two linear paths in 

Cartesian space, L. Three different conditions for the path speed are used in the experiment. That 

is, the robot is asked to move the path with 100 mm/s, 500 mm/s, and 1000 mm/s for the same 

path. The TCP distance between each way-point is 100 mm. It is assumed that the transitions 

occur at 20 mm circle from each way-point. The transition path between J – L is planned by a 

Bézier curve whereas a circular path is used for L – L. 

The motion control of the Hi5a controller has two parts, trajectory generation and motor 

control, which runs at 500 Hz and 2.5 kHz, respectively, in separate hardware systems, where a 

shared memory is used for communication between the two systems. In Figure 5.16, the block 

diagram of the implemented method is described. The trajectory planner and the feedforward 

control were implemented in the trajectory generation module. 

In order to meet the constraint on the computational burden of the controller, the trajectory 

planner was implemented in the following way. First of all, the KLC is estimated using a fixed 

step size, i.e., at five points that are evenly spaced along the given path. In addition, in one 

sampling period, only a single segment is planned. In Table 5.2, the computational load of the 

proposed method is shown assuming that the path is given in Cartesian space.  The load is shown 

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
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in terms of the number of times that the controller must compute the dynamic terms (DT), and 

the Jacobian matrix (JT), simplifying comparison to other methods without having to delve into 

the complexity of each controller’s computational architecture. 

At the instant when the new path segment is requested (Figure 5.9(b)), the trajectory for the 

next path segment, 1( )ks t+ , is calculated during the current sampling period. Then, at the next 

period, the trajectory for the transition path, ( )cs t , is generated. Finally, the trajectories, ( )ks t  

and 1( )ks t+ , are replanned in the third period. Therefore, the complete trajectory for desired 

trajectory is planned ‘on the fly’ in three sampling periods, i.e., 6 ms. The maximum torque limit 

was set to 80 % of the maximum joint torque to cope with parameter uncertainty of the dynamic 

model. 

In Table 5.3, the methods used in the experiment are shown. The proposed scheme is 

compared with the conventional scheme. Both schemes assume the proposed TVP trajectory 

with PD control. The only difference is the feedforward action. The proposed scheme utilizes the 

method discussed in Chapter 4 whereas the conventional scheme uses the feedforward control 

based on a rigid-body model, which can be regarded as a feedforward version of computed 

torque control. The feedback controller of the Hi5a controller is a cascaded PD control. In the 

experiment, the default gains were used.  

The proposed second order trajectory is filtered by double SMA filter. For the proposed 

scheme, the purpose of the filter is to increase the order of the trajectory for feedforward control. 

For the conventional scheme, however, it can also smooth the trajectory such that the high 

frequency content that excites the flexible modes is eliminated. One can note that the filter size 

can be arbitrarily small for the proposed scheme if the tested robot is perfectly represented as an 
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ideal flexible joint dynamic model (3.1). However, the filter size must be carefully selected for 

the proposed scheme in reality due to model uncertainty. Too small filter size generates a large 

overshoot and significant vibrations even with feedforward action based on a relatively accurate 

flexible model. As shown in Figure 5.17, the flexible model is sufficiently accurate because the 

measurement and the model are well matched up to 20 Hz, twice the bandwidth of the control 

system, 10 Hz. The filters were tuned such that there were no residual vibrations by visual 

inspection. The conventional scheme required much larger filter size, 160 ms (100 ms, 60 ms), 

whereas for the proposed scheme the filter size is only 80 ms (50 ms, 30 ms). Without the filter, 

the both schemes exhibited large vibrations and the 3D laser tracker, Tracker3P

TM
P failed to 

measure the TCP positions. The main negative effect of the filter, other than introducing constant 

delay, is that the geometric shape planned by the TVP trajectory is distorted as mentioned in 

Chapter 4. The path-distortion grows as the filter size or robot speed increases. As shown in 

Figure 5.18, the conventional scheme generates a large deviation of the path (near waypoints), 

although the tracking errors on the motor side are relatively small due to the high gain PD 

control. The path deviation is much smaller in the proposed scheme due to the smaller filter size 

and better tracking performance (Figure 5.19). 
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Figure 5.15. The robot program used in the experiment. 
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Figure 5.16. The block diagram of the control architecture implemented in the Hi5a controller. 
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Module Period of event Load (time constraint) 

Trajectory 
planner 

random 
(≥  6 ms) 

1( )ks t+ : 4 DT + 5 JT (2 ms) 
( )cs t : 4 DT  + 5 JT (2 ms) 

( )ks t : 4 DT (2 ms) 

Trajectory 
generation/Feedforward control 2 ms 1 DT (2ms) 

Table 5.2. Computational load of the proposed trajectory planner, where 1 DT   the time for the 

controller to calculate the dynamic terms once, and 1 JT    the time for the controller to calculate the 

Jacobian matrix once. 

 

Conditions Conventional scheme Proposed scheme 

Motion planner Time-optimal TVP Time-optimal TVP 

Trajectory 
pre-filter 4 Hz BW 8 Hz BW 

Feedforward control 
Rigid-body 

dynamic model 
 (3.6) 

Flexible joint 
dynamic model 

(4.27) 

Feedback control Cascaded PD control (Figure 3.5) 

Table 5.3. Experiment conditions. 
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Figure 5.17. The flexible joint dynamic model was verified at the home position by the multivariable FRF  

for the motor torque as the input and the motor velocity as the output. FRF of motor torque and motor 

velocity (gray lines: measurement, black lines: model).  
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(a) Conventional scheme 

 

(a) Proposed scheme 

Figure 5.18.  TCP paths for different speed (thin lines: speed 100 mm/s, thick black lines: speed 500 

mm/s, gray lines: speed 1000 mm/s). The reference path is almost identical with the path generated at 100 

mm/s. 
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Figure 5.19.  Tracking errors on the motor side for speed 1000 mm/s (black lines: conventional, gray lines: 

proposed). 

5.6 Summary 

Most existing online trajectory generators aim for good tracking performance by limiting the 

bandwidth of the reference inputs. Such strategy is not always acceptable in industry because in 

some robot applications, e.g., spot welding, handling, the cycle time is critical. A pragmatic 

approach for trajectory generation and control proposed in this chapter is to plan using a low 

order high-bandwidth trajectory and to increase the control bandwidth to compensate.  

In this chapter, a method for online trajectory planning that is computationally efficient, 

time-optimal, and maintains path-following integrity is presented. The fundamental idea behind 

our approach is to combine the well-known offline trajectory planning along a specified path and 
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the TVP trajectory that is widely used in industry. Utilizing the TVP trajectory allows one to 

simplify the problem of dealing with non-zero boundary conditions that inevitably appear when 

solving the problem of replanning on the fly. The resulting trajectory is near-time optimal in the 

dynamical sense but the number of calculations for dynamics is dramatically reduced compared 

with the offline method. Furthermore, the proposed method allows a smooth transition between 

any two parameterized paths with arbitrary boundary conditions. 

In combination with this trajectory planning method, it was demonstrated that a nonlinear 

feedforward control based on the flexible joint dynamic model is a good candidate to increase 

the tracking performance if the joint elasticity limits the control bandwidth. The feedforward 

control can be easily combined with the PD controller widely utilized in industry. The 

experimental result confirms the validity of the scheme proposed in Chapter 3, i.e., the time-

optimal TVP plus nonlinear control based on elastic model. However, as shown in Chapter 3, a 

full-state controller can achieve better performance than feedforward control for time-optimal 

trajectories due to active damping on the link side of the former. In the next chapter, a novel full-

state controller is proposed to further improve the tracking performance for the time-optimal 

trajectory. 
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Chapter 6: A Singular Perturbation Method with Feedforward Control3F

4 

In Chapter 5, a time-optimal TVP along specified path is presented. The experimental result 

shows that the proposed time-optimal trajectory can fully satisfy the specification of the PITOM. 

In this chapter, a full-state controller is proposed to further improve the tracking performance of 

the proposed trajectory. Due to the time-optimal design, the proposed trajectory is very 

demanding. In the previous chapter, it is shown that the feedforward control based on elastic 

model combined with the traditional PD control is effective to track the proposed trajectory. 

However, as shown in Chapter 4, such control scheme can be further improved by employing 

full-state feedback, especially, the tracking on the link side. The full-state controller introduced 

in Chapter 4 is a decentralized scheme. Therefore, the performance is less effective if the 

dynamic coupling is significant such as the dynamic model (3.1). In this chapter, a novel full-

state control method is proposed. The method is obtained by combing the feedforward control 

(De Luca, 2000) and singular perturbation control (SPC). It is assumed that the feedforward 

control is dominant during fast transients (coming from the time-optimal trajectory) and the SPC 

can quickly damp out the residual vibrations at steady state. Unlike the full-state controller 

discussed in Chapter 4, the proposed SPC can fully address the dynamic coupling as it is a 

multivariable full-state controller. Furthermore, the proposed SPC can place the closed-loop 

poles arbitrarily which lacks in the existing SPC. 

                                                 

4 A version of this chapter has been submitted for publication in IEEE Transactions on Control Systems 
Technology (Kim and Croft. A practical approach for feedback linearization control for industrial robots 
with elastic joints). 
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This chapter is organized as follows. First, a linearized singular perturbation model is 

obtained by applying the feedforward control. The linear model is then utilized to investigate 

some of the fundamental properties of the conventional SPC. Next, two SPC methods are 

proposed. The first SPC is derived by explicit computation of the invariant manifold of the 

feedback system. The conditions under which this control guarantees stability are also discussed. 

The second SPC method is obtained by utilizing the full model. Such an approach results in a 

very simple way to calculate the feedback gain such that it can place the closed-loop poles at 

arbitrary locations. The experiment with a 6DOF commercial industrial robot (Figure 6.1) is 

carried out to validate this approach. 

In Appendix A.1, brief introduction to SPC is provided. A more detailed discussion on the 

SPC can be found in Kokotovic et al. (1999). 

 

Figure 6.1. HS165 (Hyundai 6DOF industrial robot, maximum payload: 165 kg, main application: spot 

welding, http://www.hyundai-robotics.com/robot/robot01.asp). 
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6.1 Dynamic Model and Feedforward Control 

By applying the feedforward control (4.27) to (3.1), the following error dynamics is obtained 

as: 

( )1 n
r r r m

−+ − = ∈ℜM e K e r e 0 ,                                         (6.1a) 

( )1 1 n
m m m r fb

− −+ − + = ∈ℜM e r K r e e u 0 .                           (6.1b) 

Let us assume that the feedforward control is dominant during transients. This assumption will 

be verified later by experiment. At the end of motion or steadystate, the system (6.1) can 

completely determine the system. At steady state, it is further assumed that the oscillation is 

small and the variation of the inertia can be ignored. If such assumption holds, then the system 

(6.1) is linear with constant coefficients. By defining ( )1
m r

− −μ K r e e , the system (6.1) can be 

written as a singularly perturbed form 

1
r r

−=e M μ                                                                        (6.2a) 

( )2 1 1 1
rε − − −= − + −μ K J M μ KJ v  ,                                     (6.2b) 

where fbv ru ,  2 (1)Oε= =K K , and 0 1ε<  : the perturbation parameter. 

The system (6.2) can be converted into a standard state-space form 

= +x Ax Bz                                                        (6.3a) 

ε = +z Cz Dv ,                                                      (6.3b) 
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where [ ]Tr r=x e e , [ ]Tε=z μ μ ,  
 
 

0 I
A

0 0
 , 1

r
−

 
 
 

0 0
B

M 0
 , ( )1 1

r
− −

 
 
− +  

0 I
C

K J M 0
 , and 

1−

 
 − 

0
D

KJ
 .  

Consider the boundary layer system 

( , ( ))sε ε ε= −η z φ x v x  ,                                                 (6.4) 

where M ε  : ( , )ε=z φ x  is the invariant manifold. ( , )ε−η z φ x  is the deviation of the fast 

variable, z , from the invariant manifold. The term ( )sv x  is the slow control in the composite 

feedback control, ( ) ( )f s= +v v η v x .  

In the fast time-scale, d
dτ

′η η
, where 1 d

dt
τ

ε


, Eq. (6.4) becomes 

f′ = +η Cη Dv ,                                                           (6.5) 

By utilizing (6.3b), the equilibrium manifold, 0M ε = , is obtained as  

                   ( ) 1
1

0
r r s

s

−
−  − += − =  

  

M J M vφ C Dv
0

.                                     (6.6) 

Therefore, the slow model defined in 0M  or 0M ε =  becomes 

( ) 10
r

r s
−

 
= + =  

− +  

e
x Ax Bφ

J M v



 .                                         (6.7) 

It can be observed that the slow model (6.7) is the rigid error dynamics on the link side since it is 

equivalent to 
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( )r r s+ + =J M e v 0 .                                                    (6.8) 

6.2 Conventional Composite Control 

6.2.1 Fast Control 

Notice that the poles of the boundary layer (6.5) are located along the imaginary axis. In 

order to make the boundary layer system asymptotically stable, the fast input can be chosen as 

f =v Lη ,                                                               (6.9) 

where p d =  L L L . pL  and dL  are diagonal and positive definite matrices, i.e., PD control. 

However, implementation of the fast control (6.9) is challenging since η  is not measurable 

directly. Alternately, it is chosen as 

f =v L z  .                                                           (6.10) 

One can verify that for the fast time scale, it holds =η z  for 0ε = . Inserting (6.9) into (6.5), we 

obtain the closed-loop boundary layer system as 

′ =η Cη ,                                                           (6.11) 

where ( )1 1 1
p r d

− − −

 
 

 − + + −   

0 I
C

K J I L M KJ L
 . 

However, it is complex to choose the gain L such that the poles of (6.11) are located at some 

desired locations unless the inertial coupling is ignored. 
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6.2.2 Slow Control 

For a non-zero pL  in the fast input, the original equilibrium manifold 0M  is modified into 

( )p r r s + + + = J I L M e v 0                                          (6.12) 

Then, the slow input is designed for (6.12) typically as a PD control with the gain 

s s=v K x                                                            (6.13) 

where ( )s p r s = + + K J I L M K , s p d =  K K K , and pK  and dK  are constant diagonal 

matrices and positive definite. With (6.13), the closed-loop slow system becomes 

r d r p r+ + =e K e K e 0  .                                                 (6.14) 

6.2.3 Corrective Control 

Since the slow input (6.13) is designed on 0M , the model (6.7), or 0( , )=x f x φ , has an error 

of ( )O ε . The corrective control compensates for this error by adding some corrective terms to 

the slow input. In most cases, the corrective control assumes that the original 0M  (6.6) is not 

affected by the fast control. Therefore, only the case p =L 0  is considered. Now let us pursue the 

corrective control for 0 1( , )ε= +x f x φ φ . To do so, choose 0 1ε= +φ φ φ  and 0 1s ε= +v v v , then 

inserting them into the manifold condition (6.3b), we have 

( ) ( ) ( )0 1 0 1 0 1ε ε ε ε+ = + + +φ φ C φ φ D v v  .                             (6.15) 
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Since ε  is non-zero, Eq. (6.15) must satisfy 

0 0+ =Cφ Dv 0                                                            (6.16) 

1 1 0+ − =Dv Cφ φ 0 .                                                    (6.17) 

The condition (6.16) suggests that 0v  be designed on 0M , whereas Eq. (6.17) is expanded by the 

power series, 

0

1
0 0

1 0 0( , ) ( , )
z ϕ

−

=

∂ ∂∂ = −  ∂ ∂ ∂ 

φ φgDv f x φ C f x φ
x z x

.                            (6.18) 

Thus, 1 =Dv 0 because ∂ =
∂
g C
z

 and it is non-singular.  The result (6.18) implies 

0 0 1( , ) ( , )ε= = +x f x φ f x φ φ ,                                          (6.19) 

because 

( )
0 1

1 0
0 0

2
0 0

( , )

( , ) ( )
x

ε

ε −

−

= +
∂

= + + +
∂

= + = =

x f x φ φ
φAx Bφ BC Ax Bφ

Ax Bφ f x φ BC D 0





.                                (6.20) 

It can be easily verified that the following is satisfied 

0 1( ) ( )C C⊥φ φ ,                                                     (6.21) 

where ( )C •  is the column space of a matrix • . 
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Therefore, the corrective control designed on 1φ  cannot reach the equilibrium manifold, 0φ , 

because the vector spaces spanned by each manifold are orthogonal to each other. Instead, the 

corrective control for the modeling error of 2( )O ε  is pursued, or 

2
0 2s ε= +v v v .                                                     (6.22) 

Again, applying it to the manifold condition, 

( ) ( ) ( )2
0 1 0 1 0 2ε ε ε ε+ = + + +φ φ C φ φ D v v                                (6.23) 

The term with 2ε  satisfies 

( )

( )

1
2 0

1 0
0

1 0 0
0

d
dt

−

−

−

=

∂ = + ∂ 
∂ ∂ = + + ∂ ∂ 

Dv C φ
φC Ax Bφ
x

φ φC Ax B Ax Bφ
x x



 .                              (6.24) 

Utilizing 1
0 0

−= −φ C Dv  and 0 s=v K x  yields 

10
s

−∂
= −

∂
φ C DK
x

.                                                     (6.25) 

Eq. (6.24) is written as 

( )22 1
2 s s

− −= − −Dv C DK A BC DK x .                                   (6.26) 

Therefore, 

( ) ( )1 2 2
2 ( ) ( )r d p d d p r d p p r

−  = − − + − v JK M K K K K K e K K K e                (6.27) 
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So far, we have calculated the corrective control (6.27) by solving the manifold condition 

with the standard form. However, it is questionable how much better the corrective control (6.27) 

compared with the 0s =v v  because (6.27) can only compensate the modeling error of 2( )O ε  but 

not ( )O ε . Therefore, it is necessary to perform an analysis on the validity of the corrective 

control (6.27). To do so, first the reduced model 2
0 2( , )ε= +x f x φ φ  is obtained and this model 

is compared with 0( , )=x f x φ .Then, the two models are compared with the full-model. 

In order to obtain the model 2
0 2( , )ε= +x f x φ φ , it is required to obtain 2φ . After some 

lengthy manipulation, one can obtain 

0 0 0

1 2
20 1

2 1 0 12( , )
−

= = =

 ∂ ∂∂ ∂ ∂   = + −   ∂ ∂ ∂ ∂ ∂   z φ z φ z φ

φ φg f gφ φ f x φ φ
z x z x z

 .                  (6.28) 

See Appendix A.2 for the detailed derivation for (6.28). Utilizing the following results 

( )
0

1
0

1 0

2 1

( , )

s s

−

=

− −

∂∂ =  ∂ ∂ 

=− −

z φ

φgφ f x φ
z x

C DK A BC DK x

,                                              (6.29) 

( )2 11
s s

− −∂
= − −

∂
φ C DK A BC DK
x

,                                                (6.30) 

we obtain 

( ) ( )2 2 3 1 1
2 s s s s s

− − − − − = − − − φ C DK BC DK C DK A BC DK A BC DK x .                (6.31) 

It can be verified that 0φ  and 2φ  share the same subspace, 
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0 2( ) ( )C C=φ φ .                                                     (6.32) 

As an example, let us consider a single-DOF case, where the model 2
0 2( , )ε= +x f x φ φ  is 

expressed as 

( ) ( )2 2 2 21 2 1 0r r
r p d d r p d p r

r r

JJ JJe k k k e k k k e
J J J J

ε ε
   

+ + − + + − =   + +   
  ,                (6.33) 

where 
0 1
0 0
 

=  
 

A  , 
0 0
1 0

rJ

 
 =  −
  

B  
0 1

1 1 0
rJ J

 
 =  − −
  

C  
0
1
J

 
 =
 −
 

D  , s p dk k =  K . 

 

In Figure 6.2, the three models 0( , )=x f x φ , 2
0 2( , )ε= +x f x φ φ , and the full model are 

compared in the frequency domain with the model parameter obtained from the first joint of the 

industrial robot shown in Figure 6.1. The reduced models are close to the full model only at low 

frequency and the modeling errors increases dramatically as the frequency increases. This 

explains why the conventional corrective control cannot cope with a time-optimal trajectory. The 

time-optimal trajectory contains high frequency content, which increases the modeling error of 

the reduced models and potentially generates unstable motion. Second, the frequency responses 

of the first two models are nearly the same with only small deviation at high frequency. One can 

check the locations of the poles are almost identical between the two models. Also notice that 

even if the gain is chosen such that the reduced model is stable, the full model could exhibit a 

resonance phenomenon (Fig. 6.2(b)). Therefore, it can be concluded that the corrective control 

(6.27) has almost no effect because the two models, 0( , )=x f x φ  and 2
0 2( , )ε= +x f x φ φ are 
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nearly the same. In addition, neither of the reduced models can be used for time-optimal 

trajectories due to the significant modeling error at high frequency. 

       

(a) 0.7ξ = , 4s Hzω =                                              (b) 0.7ξ = , 8s Hzω =  

Figure 6.2. Comparison of the reduced models ( 0( , )=x f x φ : black solid lines, 2
0 2( , )ε= +x f x φ φ : 

dotted lines, full model: gray lines). It is assumed that 2d fl Jζ ω=  , where 1 1
f

rJ J
ω = + , and 0pl = . 

The figures are plotted for the characteristic equation of the slow system, 2 22 0s ss sζω ω+ + =  with the 

model parameters, 2407J kg m= , 63 10 Nmk rad= × . 

 

6.3 Proposed Composite Control 

The significant modeling error of the conventional composite control is the property (6.21). 

From (6.20), it is sufficient to satisfy to following condition in order for the first order correction 

1εφ  to be non-zero. That is, 

1
0 0 1( , ) ( , )ε− ≠ → = ≠ +BC D 0 x f x φ f x φ φ .                              (6.34) 
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6.3.1 Decoupling Control for the Fast Subsystem 

The simplest choice to satisfy 1− ≠BC D 0 is that the matrix C  is modified by the fast control. 

However, the PD control (6.10) results in a coupled closed-loop system, complicating the gain 

calculation. Therefore, the proposed method applies decoupling control to the boundary layer. To 

do so, we rewrite the boundary layer (6.5) as 

( )1 1 1
f r

− − −′′= − − +v JK μ J J M μ .                                        (6.35) 

Consider the following control law  

( )1 1 1
f r

− − −= − − +v JK ν J J M μ ,                                          (6.36) 

where ν  is a new control yet to be determined. Comparing (6.35) with (6.36) implies that ′′=ν μ . 

Choosing 

 d p′= − −ν L μ L μ ,                                                         (6.37) 

the closed-loop boundary layer system is obtained as 

d p′′ ′+ + =μ L μ L μ 0 ,                                                     (6.38) 

which is a decoupled system. An explicit form of the fast input, fv , is expressed as 

f f=v L z ,                                                           (6.39) 

where ( )1 1 1 1
f p r d

− − − − = − − L J K L J M JK L . By inserting (6.39) into (6.3b), we obtain 

sε = +z Cz Dv ,                                                        (6.40) 
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where 
p d

 
 − − 

0 I
C

L L
 . 

The following terms are necessary in the derivation of the reduced model. 

1 p d p− − − 
=  
 

L L L
C

I 0
                                                   (6.41) 

2 d p d d p
p

d

− − 
=  − − 

L L L I L L
C L

L I
                                     (6.42) 

1
1 1 1

r p

−
− − −

 
= ≠ 
 

0
BC D 0

M L K J
                                         (6.43) 

With the fast control (6.40), we have another singularly perturbed system, 

= +x Ax Bz                                                       (6.44a) 

sε = +z Cz Dv ,                                                   (6.44b) 

with the equilibrium manifold, defined by 

1
0 s

−= −φ C D v                                                       (6.45) 

and the reduced model on 0M  , 

1 1 1
r r p s

− − −+ =e M L KJ v 0 .                                               (6.46) 

The model (6.46) suggests that the slow input be chosen as 

s s=v K x ,                                                           (6.47) 
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where 1
s p r s

−K JK L M K , so that the closed-loop slow system becomes (6.14). By the result in 

(6.43), it is guaranteed that there exists a reduced model with error of only 2( )O ε , or

0 1( , )ε= +x f x φ φ . Applying (6.47) to (6.45), we have 

0
r p r d− − 

=  
 

M K M K
φ x

0 0
.                                          (6.48)  

As in (6.29), one obtains 

( )2 1
1 s s

− −= − −φ C DK A BC DK x                                    (6.49) 

Utilizing (6.41), (6.42), and (6.43), 

1 1
2 p d r p p d r d

s
r p r d

− −
−  − −

=  
  

L L M K L L M K
C DK

M K M K
                           (6.50) 

1
s

p d

−  
=  
 

0 0
BC DK

K K
                                                          (6.51) 

Therefore, 

1 1 1 2

1 2
p d r d p p d r p p d r d

r d p r p r d

− − − − −
=  − +  

L L M K K L L M K L L M K
φ x

M K K M K M K
                       (6.52) 

The first order approximation of the invariant manifold, eM , can be assumed in the form 

11 12
0 1

21 22

ε
 

= + =  
 

γ γ
φ φ φ x

γ γ
.                                           (6.53) 
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Therefore, the following reduced model can be expressed as 

0 1

2
1 1

11 1 12 2

( , )

r r

ε

− −

= +

 
=  + 

x f x φ φ
x

M γ x M γ x



                                              (6.54) 

More explicitly, 

( )1 1 2 1 1 n
r d r p d r d p r p r p d r d p rε ε− − − −   + + − + + = ∈ℜ  e K M L L M K K e K M L L M K K e 0        (6.55) 

It should be noted that the error of the reduced model (6.55) is 2( )O ε  without a corrective 

control. The input of the model is assumed as a PD control (6.47), which requires only position 

and velocity feedback on the link side. Thus, it is not necessary to take derivatives on the input as 

it is usually done in the conventional SPC. 

6.3.2 Stability of the Composite Control Law 

In this section, the condition that the system (6.44), modified singularly perturbed system by 

the decoupling fast control, is stable is discussed. With the control laws (6.39) and (6.47), the 

closed-loop system is represented in separate time-scales. 

r d r p r+ + =e K e K e 0                                                      (6.56a) 

d p′′ ′+ + =μ L μ L μ 0                                                      (6.56b) 

It is assumed that the system (6.56) can be expressed in the following form. 

22r s r s rζω ω+ + =e e e 0                                                   (6.57a) 
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22 f fζω ω′′ ′+ + =μ μ μ 0                                                  (6.57b) 

where sω  is the natural frequency of the slow system in the slow time scale, t , and fω  is the 

natural frequency of the fast system in the fast time scale, τ , and 0 1ξ< ≤  is damping ratio. Eq. 

(6.57b) can be expressed in the slow time scale, t  as ( ) ( )22 s sa aζ ω ω+ + =μ μ μ 0  , where 0a >  

represents how much the fast system is faster than the slow system.  

Now let us consider the error dynamics of the full model (6.2). Writing (6.2) in terms of 

the link error, we have 

( )
(4)

2 1
r r r rε − + + + =JK M e J M e v 0 .                                       (6.58) 

The composite control law is given by 

s f f s= + = +v v v L z K x .                                              (6.59) 

Utilizing the fact r r=μ M e  and r r=μ M e , the input can also be written in terms of the link error, 

( ) ( )
(3)

1 1 1
d r r p r r r p r d r p rε − − −= + − − + +v JK L M e JK L M J M e JK L M K e K e  .           (6.60) 

By inserting (6.60) into (6.58), the error dynamics of the full model becomes 

( )
(4) (3)

2
r r d r r p r r d r p rε ε+ + + + =M e L M e L M e K e K e 0                             (6.61) 

Let us choose the gain as 

d dl=L I ,  p pl=L I ,                                                      (6.62a) 
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d dk=K I , p pk=K I  ,                                                   (6.62b) 

Then, the full model (6.61) becomes decoupled and can be written in the Laplace domain as 

4 1 3 2 2 2 2 0d p p d p ps l s l s l k s l kε ε ε ε− − − −+ + + + = .                               (6.63) 

To satisfy (6.57), choose, 2 2 2
p sl aε ω=  , 2d sl aε ζ ω= , 2

p sk ω= , and 2d sk ζω= . 

 

The Routh-Hurwitz table for (6.63) is shown below. 

4 2 2 4

3 2 3

2 2 2 4

2 3
1

0 2 4

1

2 2

( 1)

2 ( 2)
1

s s

s s

s s

s

s

s a
s a a
s a a a

a as
a

s a

ω ω

ζ ω ζ ω

ω ω

ζ ω

ω

−

−
−

 

Therefore, the system (6.63) is stable only if 

2a > .                                                               (6.64) 

Note that the system (6.57) can be regarded as a generalized closed-loop system of a 

singularly perturbed system. Therefore, the same conclusion can be obtained as long as the 

closed-loop system is assumed to be in the form (6.57). The constant, a , represents how much 

the boundary layer should be faster than the quasi-steady state. The condition (6.64) states that 

the boundary layer must be at least twice as fast as the quasi-steady state for stability. Note that 

the stability condition (6.64) is true regardless of the perturbation parameter, ε  (at least at steady 
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state) as the closed-loop system (6.63) has become independent of ε  by the proposed gain 

selection. 

6.3.3 Gain Selection 

In this section, simple yet practical methods to compute the gain (6.62) are presented. The 

first method is based on the reduced model (6.55) with stability condition (6.64) whereas the 

pole-placement technique is applied to the second method utilizing the full model. 

6.3.3.1 Reduced Model-Based Scheme 

By applying (6.62) to (6.38) and (6.55), the two subsystems can be written as 

 ( )22 2
r d d p r p d p r

n n

k k k k k k
a a
ζ ζ
ω ω

   
+ + − + + =   
   

e e e 0                         (6.65a) 

d pl l′′ ′+ + =μ μ μ 0 .                                                     (6.65b) 

The goal of tuning the gain is to make the system (6.65) to be equal to (6.57). Assuming that a  

is chosen according to (6.64), the gain for the slow input, pk  and dk , is calculated as 

3

2
s

p
s d

ak
a k

ω
ω ζ

=
+

                                                          (6.66a) 

( )2 21/3

1/3 2

12
6 3 6

ss
d

a aak
ω ζωβ

ζ β ζ

+
= − +  ,                            (6.66b) 

where ( )
3

2 2
36 3 18 3 0sa a aωβ α ζ

ζ
 + + + >  , and 
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( ) ( )
2 6

2 2 2 2 2
4 1 2 9 8 27 0sa a aωα ξ ξ ξ ξ

ξ
 − + − + >  . 

The gain (6.66) makes the closed-loop poles of the reduced model, 0 1( , )ε= +x f x φ φ , in M ε , 

equal to (6.57a). However, it is interesting to investigate whether the system, 0( , )=x f x φ  in 0M  

with the gain (6.66) will also be stable. To do so, it suffices to show that the gain is strictly 

positive, i.e., 0pk >  and 0dk > . First, let us check for dk . It holds 

1/3 20 6 0d dk kβ ζ> ⇔ > .                                              (6.67) 

Multiply 1/3 26β ζ to (6.66b) to obtain 

( )
( )

1/3 2 2 2/3 1/3 2 2

1/3 1/3 2 2 2 2

6 2 12

2 12

d s s

s s s

k a a a

a a a

β ζ ζ β ζ ω β ω ζ

ζβ ζβ ω ω ζ ω

= − + +

= − + +
.                     (6.68) 

It is trivial to show that 

 1/3 saωβ
ζ

> .                                                          (6.69) 

Applying (6.69) to (6.68), 

( )1/3 2 2 2 2 2

1/3 2 2 2

1/3 2

6 2 12

6 12

6 0
0

d s s s s s

d s

d

d

k a a a a a

k a
k

k

β ζ ω ω ω ω ζ ω

β ζ ζ ω

β ζ

> − + +

→ >

→ >
→ >

                     (6.70) 

By (6.66a), it holds 0 0d pk k> → > . 
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In Figure 6.3, the reduced model (6.55) is compared with the full model with the same model 

parameters in Figure 6.2. Notice that the error of the reduced model is reduced compared with 

the previous case. The unstable behavior of the full model in the previous case is not observed in 

Figure 6.3. 

6.3.3.2 Full Model-Based Scheme 

Eq. (6.63) is the characteristic equation of the full model if the composite control law (6.59) 

is applied as long as the gain satisfies (6.62). Suppose that the desired closed-loop performance 

of (6.63) is described by 

4 3 2
3 2 1 0 0s c s c s c s c+ + + + = ,                                             (6.71) 

where 0ic > . Then, we obtain the unique set of gain 

3dl cε= , 2
2pl cε= , 

2
1 1

2
d

p

c ck
l c
ε

= = , 
2

0 0

2
p

p

c ck
l c
ε

= = .                        (6.72) 

Notice that all the gain is constant. Furthermore, they are all strictly positive, implying that the 

gain is also valid in the sense of separate time-scales (6.56). Even though the result obtained in 

this section is very simple, in fact it is a rather significant. That is, it has been shown that the 

closed-loop poles of the full model can be placed arbitrarily with only position and velocity 

feedback. It is emphasized again that the existing control methods using the full model typically 

require feedback up to jerk. Unless the inertial coupling is neglected, it is not trivial to obtain a 

control law that can achieve an arbitrary performance with the full model (Miyazaki et al., 2003). 

Such attempts will typically result in a coupled term with the motor inertia, J , on the link 
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acceleration. The key part of eliminating J  is the fast input, or decoupling control applied to the 

fast subsystem, which enables us to obtain the closed-loop system (6.61) without J . 

 

       

(a) 0.7ξ = , 4s Hzω =                                             (b) 0.7ξ = , 8s Hzω =  

Figure 6.3. Comparison of the reduced model (black lines: 0 1( , )ε= +x f x φ φ , gray lines : the full model). 

6.4 Simulation 

In Figure 6.4, the simulation result is shown. The conventional SPC (Spong, 1987) is 

assumed with/without feedforward control. The same model parameter is assumed as in Figure 

6.2 and Figure 6.3. For both controllers, the gain is chosen according to (6.64). Two reference 

trajectories are used. One is a slowly varying trajectory (reference 1) and the other is a fast 

varying trajectory similar to the time-optimal trajectory used in industry (reference 2). The 

reference 1 is obtained by adding a large low-pass filter to reference 2. To avoid a perfect 

feedforward control, a parameter uncertainty of 10 % on the inertia and joint stiffness is assumed. 

As shown in the figure, the conventional method generates a large tracking error for a time-
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optimal trajectory. The proposed control generates much less tracking error during transient. But 

the residual vibrations at steady state are similar in both controllers for the fast varying trajectory. 

 
(a) Reference Trajectories 

 

(b) Tracking error at the link side 

Figure 6.4. The effect of feedforward control with the SPC ( 0.7ζ =  , 8n Hzω = , 2.5a = ). 
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is calculated based on the reduced model, 0( , )=x f x φ . A much better performance is obtained 

when the gain is tuned based on the model, 0 1( , )ε= +x f x φ φ . The best performance is achieved 

when the gain is tuned utilizing the full model. 

 
(a) Position tracking error 

 
(b) Velocity tracking error 

Figure 6.5. Comparison of tracking errors depending upon gains, where black solid line: 0( , )=x f x φ  , 

dotted-line : 0 1( , )ε= +x f x φ φ , and gray line: the full-model ( 0.7ζ = , 8n Hzω = , 2.5a = ). 
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6.5 Experiment 

The experiment was performed on a large industrial robot (Figure 6.1) as the perturbation 

parameter could be large at a configuration with high inertia. The proposed control method was 

implemented in the Hi5a controller (Figure 1.1, right). Because the robot has only measurement 

on the motor side, a nonlinear observer (Jankovic, 1995; Khalil 2014) was implemented in the 

controller. At this time, the observer was applied to the first three joints. For comparison, a total 

of five different control methods were implemented (Table 6.1). Controller 1 is the conventional 

f-SPC as described in the previous section. Controller 2 and 3 are the proposed controllers 

discussed in Section 6.2. Controller 4 is the default control method of the Hi5a controller, a 

cascaded PD controller with the position and velocity feedback on the motor side with 

feedforward control based on rigid model (similar to the computed torque controller). Controller 

5 is that same as Controller 4 except that the feedforward input was designed based on the 

flexible joint model. 

The control methods were tested in the Hardware-in-the-loop (HIL) simulation before 

running the experiment. The controller was connected to a real-time PC where the flexible joint 

dynamic model was simulated by the 4P

th
P-order Runge-Kutta method at 2.5 kHz. The simulation 

was successful for all the control methods except for Controller 1. Controller 1 became unstable 

immediately after the control action was initiated. Even in case when the gain is very small (< 1 

Hz), the system has become unstable. 

After verifying all control methods in the hardware in the HIL simulation, a real-world 

experiment was carried out. Controller 1 was first tested for the first joint to see if the same 

problem found in the simulation would occur. As in the simulation, the robot has become quickly 
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unstable as soon as the motor was engaged. It was impossible to find a condition, i.e., gain and 

robot configurations, such that Controller 1 did not exhibit instability. Therefore, Controller 1 

was excluded in the experiment for safety and to prevent from damage on the system. Controller 

2 was also tested for the first joint. Instability was also observed as Controller 1. However, 

Controller 2 was able to stabilize the robot at a configuration with a low inertia (Figure 6.1). 

However, Controller 2 became unstable when it was applied to the second joint. Controller 3, 4, 

and 5 did not exhibit instability at all. The reason why Controller 1 and 2 exhibit instability could 

be explained based on the gain. Note that the only difference amongst Controller 1, 2, and 3 is 

the gain. It was found that the gain, dK  and pK  became the largest for Controller 1 and smallest 

for Controller 3 even though the gain is calculated for the same bandwidth. Such high gain could 

generate input with high frequency noise, which could effectively excite the unmodeled 

dynamics at high frequency. As shown in Figure 6.2 and Figure 6.3, the gain tuned by Controller 

1 and 2 may misplace the poles due to the modeling error especially, the high frequency. And the 

error increases as the system becomes less stiff. This explains why Controller 2 only works at the 

configuration with low inertia. 

In Figure 6.6, the experimental result for Controller 2 for configuration shown in Figure 6.1 

is shown compared with Controller 3. In the test, the robot was requested to move the first joint 

by 10 degrees. The reference trajectory generated by the Hi5a controller is the time-optimal TVP 

with a small low-pass filter (Figure 6.6a) proposed in Chapter 5. Since Controller 3 did not 

exhibit instability at all, it was tested at a configuration with high inertia (Figure 6.7) at which 

the robot would be normally tested for motion performance. The robot moved along a short 

straight line, 100 mm along X+, Y+, and Z- simultaneously, with maximum speed. The motion 

was selected as it is similar to motions used in spot welding applications. The dynamic model 
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was verified by utilizing the multivariable FRF (Figure 6.8). To measure the TCP, Tracker3P

TM
P is 

used. 

In Figure 6.9, 6.10 and 6.11, the experimental results for Controller 3, 4, and 5 are compared. 

The tracking performance and the torque of Controller 3 and 5 were very similar during transient. 

Therefore, the assumption that the feedforward control is dominant during transient was 

validated. The rigid controller, Controller 4, generated a large tracking error with significant 

residual vibrations. The residual vibrations are dramatically reduced in Controller 3 compared 

with other two controllers. The input of Controller 3 is as smooth as other two controllers. In 

general, Controller 3 obtained by-far the best performance without chatter. 

 

Controller 
index Control method Gain 

1 

f-SPC 

0( , )=x f x φ  

2 0 1( , )ε= +x f x φ φ  

3 Full model 

4  PD + feedforward with rigid model Default 

5 PD + feedforward with flexible 
model Default 

Table 6.1. Control methods used in experiment. 
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(a) Reference Trajectory                                                (b) Fast variable      

      

(c) Tracking error on the link side                                          (d) control input 

Figure 6.6. Experimental results for Controller 2 and 3 at a low inertia (sold lines: Controller 2, dotted 

lines: Controller 3, 0.7ζ =  , 7n Hzω = , 2.5a = ). The tracking error for Controller 3 is larger than that of 

Controller 2 because the gains, pK  and dK , are larger in Controller 2. 
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Figure 6.7. The configuration of HS165 at a high inertia. 
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(a) Low inertia 

 
(b) High inertia 

Figure 6.8. The FRF of the three main axes (shown in order, joint 1, joint 2, and joint 3 from left, The 

lines with smaller noise represents the model). 
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(a) TCP speed 

 
(b) Path error during the entire motion 

 
(c) Path error at steady state 

Figure 6.9. Experimental results for Controller 3, 4, and 5 at a high inertia (gray lines: Controller 3, black 

solid lines: Controller 4, dotted lines: Controller 5). 
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Figure 6.10. Experimental results for Controller 3, 4, and 5 at a high inertia: residual vibrations of TCP 

(gray lines: Controller 3, black solid lines: Controller 4, dotted lines: Controller 5). 
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Figure 6.11. Experimental results for Controller 3, 4, and 5 at a high inertia: control input of the first three 

joints (gray lines: Controller 3, black solid lines: Controller 4, dotted lines: Controller 5). 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-40

-20

0

20

40

t [s]

u
1
[N

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-60

-40

-20

0

20

t [s]

u
2
[N

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
5

10

15

20

25

30

t [s]

u
3
[N

m
]



137 

 

6.6 Summary 

The existing control strategies for flexible joint robots take one of two approaches. One is to 

utilize the full dynamic model from derivation of control laws. This approach generally leads to a 

controller that requires feedback up to jerk on the link side, which makes it difficult to 

implement due to possible chatter. The other approach uses the singular perturbation technique, 

which allows one to design a controller with feedback up to velocity. In spite of its theoretical 

benefit, a practical use of the SPC has been limited due to its inability to follow a fast varying 

trajectory. Two remedies have been proposed that can improve the conventional SPC. The 

feedforward control based on the flexible model is effective to cancel the nonlinearity during fast 

transients. With feedforward control, it was possible to linearize the feedback at steady state, 

obtaining a linearized singular perturbation model for the feedback system. For the feedback 

system, an invariant manifold without corrective control was found with a condition such that the 

closed-loop poles of the full model are located strictly on the left half plane. It was also shown 

that the decoupling control for the fast subsystem with PD control on the slow subsystem 

generates a decoupled closed-loop system which allows one to place the closed-loop poles 

arbitrarily with only position and velocity feedback. A real-world experiment with a 6DOF 

industrial robot demonstrated that the composite control based on the invariant manifold may not 

be sufficient as it exhibited instability unless the inertia is low. The composite control with gain 

tuned by the full model was successfully tested for the proposed time-optimal TVP trajectory 

proposed in Chapter 5, at an outstretched robot configuration where the perturbation parameter 

could be large. 



138 

 

Chapter 7: Conclusion 

23TThis thesis has investigated practical methods to obtain high motion performance of an 

industrial robot, especially one with a low-cost generic controller. The literature review 

suggested that time-optimal motion is difficult to implement with a high order trajectory due to 

the computational requirements. Therefore, a low order trajectory with model-based control was 

proposed as the motion control strategy. The validity of the strategy was verified by a 

comparative study. Then, two methods were proposed for planning and control. For planning, an 

online time-optimal TVP that can be planned along multiple path segments was presented. For 

control, a nonlinear multivariable control that requires only position and velocity feedback was 

proposed. In Section 7.1, the main contribution made in the thesis is summarized. The future 

work is discussed in Section 7.2. 

7.1 Summary of Contributions 

• A comparative study on motion control methods 

A comparative study on motion control methods for industrial robots has been presented. 

Two distinctive approaches, planning and control, which had been studied independently, 

were considered in a common framework with respect to the dynamic model and 

experimental platform. To improve the planning approach, a practical method to find the 

optimal jerk for smooth trajectory planning was proposed. Some limitations of the filtering 

technique were also discussed. The comparative study revealed that applying the planning 

approach to a robotic application where high motion performance is demanded is 

fundamentally limited either by slow motion or poor path accuracy even using an optimal 
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design. It was shown that the key component that makes the control approach more 

attractive is the delay-free dynamic input shaper which is embedded in the feedforward 

control. The theoretical analysis was verified by a real-world experiment with a 

commercial industrial robot.  

• Online minimum-time trajectory planning 

A novel trajectory planning method has been presented towards online industrial robot 

applications. The proposed method generates trajectories that are computationally efficient, 

dynamically near time-optimal, and maintain path-following integrity in high-frequency 

planning-and-control cycles. The method is based on the well-known minimum-time 

trajectory planning along specified paths. It was shown that this trajectory can be quickly 

approximated with a TVP, resulting in near time-optimal trajectories along specified paths 

requiring only four system-dynamics computations per path segment. For continuous 

motions, a method to safely transit between adjacent optimal path segments within 

geometric bounds was also presented. It was also shown that how the proposed second 

order, high frequency trajectory can be successfully used as the reference input for 

trajectory tracking by improving the control loop with a nonlinear feedforward control 

based on an elastic model. A real-world experiment with a 6DOF industrial robot validated 

the proposed approach.  

• Nonlinear control for the flexible joint dynamic model 

A multivariable nonlinear controller that requires only position and velocity feedback has 

been proposed for industrial robots with elastic joints. The control method is a 

combination of a nonlinear feedforward control and the singular perturbation method for 
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the linearized feedback system. Decoupling control was applied to the fast subsystem and 

then two control methods for the slow subsystems were proposed. First, the approximated 

reduced model that did not require a corrective control was derived by an explicit 

computation of the invariant manifold. The stability analysis revealed that the system was 

stable as long as the fast subsystem was at least twice as fast as the quasi-steady state. The 

second method was based on the full dynamic model to find the feedback gain. It was 

shown that the second method resulted in a multivariable full-state feedback controller that 

could obtain an arbitrary closed-loop performance with only position and velocity 

feedback. A real-world experiment with a 6DOF commercial industrial robot was carried 

out to verify these results.  

7.2 Future Work 

The following topics can be investigated further to improve the motion performance of industrial 

robots. 

 Estimation of Joint Stiffness 

In order for the proposed scheme to work successfully, obtaining an accurate dynamic 

model (3.1) is indispensable. In general, it is relatively easy to obtain an accurate model 

for the rigid part. However, estimating the joint stiffness is quite challenging. According 

to a recent study in Moberg (2010), the flexible joint dynamic model (3.1) cannot 

globally represent the elastic behavior of industrial robots. It was suggested to use the 

extended flexible joint model to represent the dynamic model more accurately. However, 

it is not clear how the extended flexible joint model can be used for control because the 

added passive joints make the model extremely complicated for control design in terms 
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of controllability and observability. Further study is required to find a suitable strategy to 

estimate the joint stiffness using a more simplified model for practical control design. 

 Friction and nonlinear gearbox 

In this thesis, the main study is focused on time-optimal motions, namely, fast transients 

followed by residual vibrations.  The flexible joint dynamic model (3.1) can represent the 

dominant behaviors during time-optimal motions such as inertial coupling, the Coriolis-

centrifugal effect, and mechanical oscillations due to joint stiffness. However, the 

flexible joint dynamic model may not be good enough during slow motions. At low 

speed, the friction becomes dominant. Obtaining a good friction model for a typical 

industrial robot is extremely difficult due to its dependence on temperature and robot 

configuration (Section 3.2.3 in Moberg, 2010). Another important phenomenon during 

slow motions is the angular transmission error generated in the gearbox (Yoshioka et al., 

2014), as well as the hysteresis, nonlinear stiffness, and backlash. In order to achieve 

high motion performance regardless of speed, obtaining good models for friction and the 

gearbox is required. 

 Nonlinear state-observer 

A typical industrial robot has measurement only on the motor side. However, an accurate 

estimation on the link side is essential for fast damping of the residual vibrations on the 

link side. Even though the proposed control method in this thesis has alleviated the 

problem of estimating the link states by reducing the order from four (up to jerk) to two 

(up to velocity), a good estimation of the link states is still an open problem. However, it 

seems that the problem of estimating the link states based on the motor measurement has 

not received much attention from the robotics community. Notably, the work in Jankovic 
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(1995) is the only observer based on the flexible joint dynamic model that can estimate 

the link position and velocity from the motor measurements. Most of the related works 

assume that the link position is available for measurement (Nocosia et al., 1988; Nicosia 

and 22TTornambè, 1989; Nicosia and Tomei, 1990; Tomei, 1990). 22TThe observer proposed 

in Jankovic (1995) is a nonlinear reduced observer. The major challenge of this observer 

is that the robustness is guaranteed by high gain and accurate estimation of the joint 

stiffness. Therefore, it is difficult to select the observer gain in case of model uncertainty 

and limited sampling rate. Further studies are needed for state observers in order to 

estimate the link states more robustly for practical implementation. 
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Appendices 

 

Appendix A   

A.1 Singular Perturbation Theory 

The standard form of a singularly perturbed system can be written as 

( , ) n= ∈ℜx f x z                                                            (A.1a)  

( , , ) mε ε= ∈ℜz g x z ,                                                     (A.1b) 

where 0 1ε<  : the singular perturbation parameter, x : slow variable , and z : fast variable. 

Suppose an n –dimensional smooth manifold, M ε , residing in the n m+ – dimensional state 

space 

: ( , ) mM ε ε= ∈ℜz φ x .                                                   (A.2) 

M ε  is referred to as the invariant manifold if the solution of (A.1) satisfies 

  * *( ) ( ( ), ) ( ) ( ( ), )t t z t tε ε= → =z φ x φ x  for  *t t∀ ≥ .                       (A.3) 

When the condition (A.3) is not satisfied, or solutions of (A.1) are not on M ε , there is a 

deviation between the fast variable and M ε , 

( , ) mε= − ∈ℜη z φ x .                                                     (A.4) 

Inserting (A.4) into (A.1), we obtain two subsystems in separate time-scales, 
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( , ( , ) )ε= +x f x φ x η                                                     (A.5a) 

( , ( , ) ) ( , ( , ) )ε ε∂′ = + − +
∂
φη g x φ x η f x φ x η
x

,                (A.5b) 

where 1 d
dt
τ

ε


 and d
dτ

′η η
. On M ε , it holds  

,= =η 0 η 0 .                                                       (A.6) 

By inserting (A.6) into (A.5), we obtain the exact slow model  

( , ( , ))ε=x f x φ x ,                                                      (A.7) 

and the manifold condition 

( , ( , )) ( , ( , ))ε ε ε∂
=

∂
φ f x φ x g x φ x
x

.                                      (A.8) 

At 0ε = , the system (A.5) is decoupled in separate time-scales. Namely, the slow system or the 

quasi-steady state  

( , ( ,0))=x f x φ x ,                                                     (A.9) 

and the fast system or the boundarylayer 

( , ( ,0) )′ = +η g x φ x η .                                              (A.10) 

Assuming that the boundary layer is stable about the equilibrium point, =η 0 , =η 0 , then (A.10) 

becomes 

( , ( ,0))=0 g x φ x .                                                  (A.11) 
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In the fast time scale, (A.7) can be written as 

( , ( , ))ε ε′ =x f x φ x .                                                (A.12) 

Clearly, (A.12) is stationary at 0ε = . Therefore, the two systems (A.9) and (A.10) are all 

stationary in the fast time-scale at 0ε =  and the invariant manifold, M ε , approaches to the 

equilibrium manifold, 0M . According to Tikhonov’s theorem, M ε  exists if (A.11) has 

distinctive real roots and the boundary layer is strictly stable. 

A typical control strategy based on the singular perturbation method pursues a composite 

control law for the quasi-steady state and the boundary layer. That is, the control law is designed 

independently for each subsystem as 

0( , )=x f x φ                                                      (A.13a) 

0( , )′ = +η g x φ η .                                                (A.13b) 

If the boundary layer is stable, i.e., =η 0  and =η 0 , then the error of the model (A.13a) is ( )O ε . 

If ε  is not negligible, one can pursue a more accurate slow model with error of 2( )O ε . To do so, 

assume 

0 1ε= +φ φ φ .                                                       (A.14) 

In general, the term 0φ  is obtained by solving for (A.1b) at 0ε =  as 

0( , ,0)=0 g x φ .                                                     (A.15) 

The term 1φ  can be obtained by a power series expansion on the manifold condition about 0ε = , 

resulting in 



155 

 

0

1
0

1 0( , )
−

=

∂∂ =  ∂ ∂ z φ

φgφ f x φ
z x

.                                        (A.16) 

The detailed calculation of (A.16) can be found in Appendix A.2. Therefore, the approximate 

slow model with the error 2( )O ε is obtained as 

0 1( , )ε= +x f x φ φ .                                                (A.17) 

A.2 Approximated Invariant Manifold by the Power Series Expansion 

A power series expansion is applied to the manifold condition  

( , ) ( , )ε ∂ =
∂
φ f x φ g x φ
x

.                                              (A.18) 

Let  

2
0 1 2ε ε= + +φ φ φ φ .                                                (A.19) 

The Taylor expansion about 0ε =  results in 

0 0

0 0

20 1 2

2
2 2 2

0 1 2 1 2

2
2 2 2

0 1 2 1 22

( , ) ( ) ( )

( , ) ( ) ( )

ε ε ε

ε ε ε ε

ε ε ε ε

= =

= =

∂ ∂ ∂ + + ∂ ∂ ∂ 
 ∂ ∂ × + + + +
 ∂ ∂ 

∂ ∂
= + + + +

∂ ∂

z φ z φ

z φ z φ

φ φ φ
x x x

f ff x φ φ φ φ φ
z z

g gg x φ φ φ φ φ
z z

 .                 (A.20) 

Utilizing 0( , ) =g x φ 0  and ignoring the terms higher than 2ε  , we obtain 
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0

0 0 0

20 0 1
0 1 0

2
2 2

1 2 12

( , ) ( , )ε ε

ε ε

=

= = =

 ∂ ∂ ∂∂
+ +  ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ = + +
 ∂ ∂ ∂ 

z φ

z φ z φ z φ

φ φ φff x φ φ f x φ
x x z x

g g gφ φ φ
z z z

.                  (A.21) 

Equating the terms for ε  and 2ε , the following results are obtained. 

0

1
0

1 0( , )
−

=

∂∂ =  ∂ ∂ z φ

φgφ f x φ
z x

                                                       (A.22)                                                 

0 0 0

1 2
20 1

2 1 0 12( , )
−

= = =

 ∂ ∂∂ ∂ ∂   = + −   ∂ ∂ ∂ ∂ ∂   z φ z φ z φ

φ φg f gφ φ f x φ φ
z x z x z

  (A.23) 
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