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Abstract

This thesis is mainly concerned with avian flu epidemic recurrence, its
current paradigm, and further mathematical research. Generally, this thesis
aims to characterise the recurrent pattern of epidemics simulated by stochas-
tic avian flu models using mathematical techniques. Of particular interest
here are the stochastic fluctuations observed in recurrent epidemics. This
thesis has two main parts.

The first part presents a thorough analysis of a simple stochastic avian
flu model to provide insight into the role of different transmission routes in
its recurrent dynamics. Recent modelling work on avian influenza in wild
bird population takes into account demographic stochasticity and highlights
the importance of environmental transmission in determining the outbreak
periodicity, but only for a weak between-host transmission rates. A new
analytic approach is used here to determine the relative contribution of
environmental and direct transmission routes to the features of recurrent
epidemics. Using an approximation method to describe noise-sustained os-
cillations, the recurrent epidemics simulated by the stochastic model is iden-
tified to be governed by the product of rotation and a slow-varying standard
mean-reverting stochastic process, in a limiting sense. By analytically com-
puting the intrinsic frequency and theoretical power spectral density, it can
be shown that the outbreak periodicity can be explained by both types of
transmission, and even by either one in the absence of the other.

The final part of this thesis presents a novel approach to understand-
ing the role of parametric (e.g. seasonal) forcing and stochasticity in the
stochastic fluctuations around a cyclic solution. An approximate descrip-
tion about these stochastic fluctuations is developed, which paves the way
for a new mathematical tool to be used for analysing oscillations gener-
ated from the interactions of non-linear terms and stochasticity. The theory
developed here is used to explore a stochastic avian flu model with season-
ally forced environmental transmission which may be applicable to other
stochastic system with seasonal forcing.

This thesis highlights the importance of approximation theory to analyse
complex stochastic systems such as avian flu epidemic recurrence.
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Chapter 1

Introduction

The ever-present outbreaks of avian influenza and its pandemic threats
emphasize the importance of understanding and predicting how the disease
spreads. Mathematical models are important tools in the study of disease
dynamics. Theoretical epidemiological models and methods may not always
be directly applicable to real-life epidemics but they provide qualitative in-
sight into the dynamics of the spread of infection. Most of these models
are mathematically intractable or difficult to analyse and so numerical sim-
ulations of these models have been used for predictions. Hence, analysis of
useful disease models remains as a challenge [6]. Moreover, real-life applica-
tions of disease models demand for more advanced mathematical methods
to be developed that can also be useful in other fields of study [7, 8].

The methods we developed here can be applied to study infectious dis-
eases, such as measles, that display a recurrent pattern. All of the models we
consider in this thesis are formulated as continuous-time Markov processes
whose temporal evolution is described by a system of stochastic differential
equations (SDEs). In the physical literature, the SDE system is typically
derived through the master equation and system-size expansion [9]. Here,
however, we use an alternative approach known as strong approximation
theorems for Markov chains [10] to obtain the full stochastic dynamics. As
with the system-size expansion, the full stochastic dynamics are decomposed
into a macroscopic part (deterministic dynamics) plus a stochastic fluctuat-
ing part scaled by the square-root of the population size.

In this thesis, we are concerned with applying and developing mathemat-
ical methods to analyse disease models that simulate stochastic population
fluctuations. Our study focusses primarily on understanding recurrent avian
flu epidemics. While stochastic simulations can capture the qualitative epi-
demic pattern of recurrent diseases, there remains considerable discussion
regarding the characteristics of this pattern. The novel aspect of this thesis
is the development of an approximate description for the recurrent dynamics
of avian influenza and the subsequent analysis of potential mechanisms that
drive disease recurrence.

1



1.1. Epidemic recurrence

In this chapter, we introduce the technical terms and theoretical back-
ground which are necessary to support the content of this thesis. Specifically,
we describe epidemic recurrence and its models. Moreover, we briefly dis-
cuss here the mathematical theories used in this study. Finally, we note in
detail the structure of this thesis, its aims, and contributions.

1.1 Epidemic recurrence

A disease is said to display recurrent epidemics if its incidence (number of
cases per unit time) fluctuates dramatically over a period of time. Recurrent
epidemics have been observed in childhood diseases such as measles, whoop-
ing cough, and chicken pox. It is also observed in non-childhood diseases
such as avian influenza and cholera (see Figure 1.1).

A recurrent disease can exhibit various patterns of recurrence in different
locations and periods of time [11]. Measles, for instance, displays recurrent
outbreaks that have been observed to transition from an annual to a bien-
nial pattern in some locations [2], or exhibit an irregular pattern in other
locations [12]. Patterns of recurrent epidemics also vary from one disease to
another. In contrast with measles data from Copenhagen [2], wavelet anal-
ysis of data for avian influenza among wild birds revealed multi-year major
outbreak periodicity [1, 13].

The pattern of recurrent epidemics is characterized by large-amplitude
fluctuations, which are said to arise from a resonance phenomenon. Under-
standing the underlying mechanism of this ubiquitous feature of recurrent
disease has received attention from mathematical modellers with an aim
to provide additional insights into the disease transmission process. When
given an epidemiological or ecological time-series with a recurrent pattern,
typical questions raised are:

1. What are the periodicities?

2. Can we identify the sources of these periodicities?

3. Why does the amplitude size of the epidemics vary?

These questions have been addressed in the context of childhood diseases
using traditional modelling approaches. One useful tool for distinguishing
different periodicities in a time-series is the power spectrum, which shows
the distribution of frequencies present in the time-series data [14, 15]. The
power spectrum has been used to demonstrate that childhood diseases, e.g.
measles and whooping cough, have a strong seasonal component. This tool

2



1.1. Epidemic recurrence

(a)

(b) (c)

Figure 1.1: Observed recurrence in epidemics for infectious diseases:(a) Re-
ported incidence of measles in Copenhagen from 1920-1990 [2], (b) monthly
cholera mortality from 1893-1940 in India [3, 4], and (c) annual prevalence
of avian influenza from 1975-2000 in North American wild birds (in green
square) and shorebirds (red circle) [1]. Figures are adopted from cited
sources.
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1.2. Modelling epidemic recurrence

has also been used to illustrate the influence of one disease parameter on the
periodicity of disease outbreaks. In this thesis, we use the power spectrum
to study the relationship between the approximate and exact stochastic
processes describing epidemic recurrence.

1.2 Modelling epidemic recurrence

Models in the form of differential equations are widely used in the study
of biological dynamics [16–19]. Epidemic recurrence, in particular, is an-
other area in which mathematical modelling has played important role. It
is noteworthy to mention that in modelling epidemic recurrence, extensive
datasets are often available and can be used to validate and inform the
modelling exercise. Here we discuss the existing paradigms for modelling
epidemic recurrence.

1.2.1 Damped oscillations

The model developed by Kermack and McKendrick [20] set the foun-
dation for epidemic modelling studies. Their model describes the spread
of an infectious disease wherein recovered individuals gain immunity to re-
infection. Fundamentally, the model considers a population that can be
divided into three classes or compartments and keeps track of how the pop-
ulation of each class changes over time. The dynamic variables are the num-
ber of susceptible (S(t)), infectious (I(t)), and recovered (R(t)) individuals
at time t. The susceptibles are those individuals who have not been infected
by the disease while infectious individuals are those who have the disease
and the ability to spread it to susceptibles. Recovered individuals, on the
other hand, are those who no longer have the disease and are immune to
the disease after infection. The SIR (susceptible-infected-recovered) model
assumes a (homogeneous) well-mixed population and is formulated in terms
of three ordinary differential equations. It was learned from the classical
SIR model that an epidemic threshold exists, which is defined in terms of
the basic reproductive number R0, i.e. the average number of secondary
infections caused by one infected individual in a pool of susceptibles [20]. A
disease can spread and is said to be endemic in the population when R0 > 1,
otherwise, it dies out.

A modification of the SIR model serves as a starting point for modelling
epidemic recurrence. An SIR model that gives rise to damped oscillatory
behaviour, i.e. decaying oscillations, is a typical starting point for recurrent
behaviour. These models has been used to investigate measles dynamics

4



1.2. Modelling epidemic recurrence

[21]. The key point here is that the disease model exhibits an endemic
equilibrium wherein infectives tend to oscillate around a mean value over
time, i.e. exhibit damped oscillations, as a new supply of susceptibles enter
into the system. Damped oscillations can also be observed when another
population class is incorporated to the SIR model. For example, one can
add an exposed class, a population of individuals that are exposed to the
disease but not yet infectious. Such a model is known as an SEIR model,
and is biologically meaningful for many childhood diseases [21]. Another
example is a simple host-pathogen model such as the SIR-V model, where V
represents the virus population. This model is used to study avian influenza
(see [1] and Chapter 3).

Recurrent behaviour, however, is not entirely captured in models pro-
ducing damped oscillations because, in the long-run, the infectives tend to a
constant level. Sustained oscillations obtained by introduction of age struc-
ture in the population, delays and non-linear infection terms [22–25], on
the other hand, are not able to predict the regularity in patterns of most
epidemics. From the literature, it is apparent that there must be two main
ingredients necessary to model epidemic recurrence accurately: (1) stochas-
ticity, because the population is made up of individuals and it changes by
means of random processes [26]; and (2) parametric forcing, because some
parameters vary periodically over time, e.g. seasonally forced transmis-
sion rate for measles [3, 12, 27]. These two factors are well understood
independently but there is a considerable question as to how they interact
[5, 11, 28, 29].

1.2.2 Noise-sustained oscillations

Interacting populations, in general, behave as stochastic processes. The
discrete nature of populations means that there is inherent randomness
in the birth and death terms, thus introducing demographic stochasticity.
In modelling epidemics, the role of stochasticity has long been recognised
as a key element in the appearance of a recurrent pattern of epidemics.
Bartlett [30], in his first stochastic simulations, recognised that the addi-
tion of stochastic noise to a simple deterministic model can drive recurrent
dynamics. The idea here is that noise maintains oscillations by constantly
perturbing the system away from its steady state [31]. A number of sys-
tems exhibit oscillations sustained by noise (or noise-sustained oscillations)
[26, 32–34]. One example is the amplified biochemical oscillations studied
by McKane et al. [34] where they show that noise alone can give rise to dra-
matic fluctuations and explain that intracellular processes may have taken
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advantage of inherent stochasticity to amplify the oscillations. From a theo-
retical standpoint, noise-sustained oscillations are generated by a stochastic
model whose deterministic version shows damped oscillatory behaviour and
are quantified as coherence resonance [35].

According to Coulson et al. [5], the role of stochasticity can either be
categorised as active or passive. Noise has an active role when the system
produces new patterns, due to the interaction of non-linear dynamics and
stochasticity, that the deterministic model alone cannot capture [28, 29].
Noise has a passive role when perturbation of the ’deterministic skeleton’
is sufficient to explain the stochastic dynamics [36]. In the context of dis-
ease dynamics, the passive noise interpretation has gained weight because
it seems to explain the behaviour of time-series and simulations for a broad
range of diseases [5]. In fact, for systems exhibiting noise-sustained oscilla-
tions, demographic stochasticity generally has a passive role.

In epidemic modelling, the use of noise-sustained oscillations to describe
disease recurrence has been observed. For example, Wang et al. [1] added
stochastic noise to an SIR-V model for avian influenza and showed that
the dominant outbreak period varies with the environmental transmission
rate, i.e. the rate at which the virus enters the host from the environment.
Modelling epidemic recurrence with this technique can be challenging, es-
pecially when one is interested in identifying the parameters that influence
the periodicity and/or intensity of outbreaks in a system with more than
two population classes. One of the aims of this thesis is to demonstrate the
use of an approximate stochastic process to study recurrent behaviour in a
population system composed of four populations.

1.2.3 Parametric forcing: Forced limit cycle

Up to this point, we have discussed models of epidemic recurrence with-
out external parametric forcing. Here we introduce the forced limit cycle as
another paradigm for a recurrent pattern in epidemics. A common source of
parametric forcing is time-dependence in a model parameter. In this thesis,
we define a forced limit cycle as a stable limit cycle generated by a determin-
istic system with time-periodic parameter. In the context of epidemiological
models, forced limit cycles occur in seasonally forced systems [33, 37, 38].

The most popular approach for introducing seasonal forcing in an epi-
demic model is by making the transmission rate a periodic function of time.
For example, in studying measles recurrence, the transmission rate is sim-
ply represented as a step function so that transmission is high during school
terms and low otherwise [22, 28]. This deterministic forced epidemic model
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can display a wide range of dynamic behaviour such as limit cycles and at-
tractors with sub-harmonic frequencies depending on the magnitude of the
seasonal forcing [39–41].

The seasonality of avian influenza outbreaks points to a seasonally vary-
ing transmission rate as a potential driver. This idea has been investigated
by [42] who showed that a simple epidemic model with periodic transmission
rate and disease-induced mortality best explained the periodicity of H5N1
avian influenza data from Food and Agriculture Organization of the United
Nations [43]. As with the measles model mentioned above, this simple forced
model for avian flu exhibits complex dynamics, such as period-doubling and
chaos, for various forcing magnitudes.

With respect to the fluctuating avian flu epidemics seen in wild birds,
this thesis explores the possibility of modelling the recurrent pattern as a
forced limit cycle. One potential driver for recurrent behaviour that we
investigate in this study is seasonality in the environmental transmission
rate.

1.2.4 Parametric forcing with noise

It is likely that both seasonal forcing and stochasticity are important
in capturing realistic epidemic dynamics. To illustrate this view, consider
the different plots of whooping cough cases in Figure 1.2. Rohani et al.
[29] demonstrated that although the deterministic SEIR model with sea-
sonal forcing provides the appropriate ’deterministic skeleton’ for the actual
whooping cough cases reported in Birmingham, adding stochastic noise im-
proves the model’s ability to capture the observed qualitative dynamics.

Despite all known studies involving discussion of the role of stochasticity
and seasonal forcing [37, 44], little is known about the stochastic dynamics of
models exhibiting both limit cycle and stochasticity. This point motivates
one of the main questions this thesis aims to answer: how do seasonality
and stochasticity interact within the fluctuations of the system when the
deterministic skeleton of the system is a robust oscillation, i.e. stable limit
cycle? Can we mathematically distinguish between the fluctuations around
an endemic fixed point from the fluctuations around a cyclic solution? The
latter part of this thesis is devoted to answering these questions by means
of analytic methods for stochastic equations.
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Figure 1.2: Whooping cough cases from actual data and SEIR models with
seasonal forcing. The plots are adapted from [5].
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1.3 Mathematical theories and methodology used
in this thesis

Biological systems are characterised by changes in natural variables and
so are often described in terms of differential equations. These equations
are also referred to as dynamical systems. Given a dynamical system, one is
interested in obtaining its solution to accurately determine the ’fate’ of the
system over a period of time. Most differential equations with real-life appli-
cations have solutions that are difficult or even impossible to obtain analyt-
ically. Qualitative methodologies for studying dynamical systems, such as
stability and bifurcation analyses [45], are straightforward to apply in most
deterministic equations. In the case when random processes are involved,
the behaviour of the system is predicted by means of probability distribu-
tion and generating functions [46]. This is due to the fact that multiple runs
of a stochastic model generate different realisations that show variations.
Furthermore, when both randomness and external forcing are incorporated
in the system, the analysis of its dynamical behaviour demands tractable
mathematical techniques.

In this thesis, we focus our attention on stochastic differential equation
(SDE) models to describe the epidemic recurrence observed in avian flu
dynamics. These stochastic epidemic models are approximations to the
Markov chain model for population growth in the epidemiological system.
The SDE models are developed based on the theorem of Kurtz [10], which
shows that the (density-dependent) Markov jump process, normalized by
the total population size N , and the approximating diffusion process can
be constructed on the same probability space. Kurtz [10] proved that the
diffusion process deviates from the jump process by O (logN/N) as N →
∞. Application of this method to epidemic modelling is found mostly in
the literature on stochastic processes [47–49]. Note that in the physical
literature, the method for constructing SDE models is based on the system-
size expansion [9]. This thesis, however, uses the former approach (i.e.
Kurtz’s method) in formulating the SDEs for avian flu epidemics, not only
because it is straightforward to implement but to also introduce this method
to the present body of knowledge on stochastic modelling of epidemics.

The recurrent dynamics displayed by the SDE models in this thesis are
analysed by studying the equations mathematically. Here we apply the
theorem of Baxendale and Greenwood [50] (the BG theorem) to study the
stochastic system without external forcing by constructing an approximate
process that allows us characterise the simulated avian flu recurrent epi-
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demics. The power spectral density (PSD) [15] is used to check the proximity
of the approximate process to the actual process, and stochastic simulations
via the Euler-Maruyama scheme [51] are used to generate sample paths.

In investigating the stochatic system with external forcing, i.e. seasonal
forcing, Floquet theory [52] is applied, which provides the stability informa-
tion of the deterministic perturbation around a cyclic solution (e.g. limit
cycle). The use of this theory is common in the physical literature that takes
into consideration linear differential equation with time-periodic coefficients.
Another novel aspect of this thesis is the extension of the BG theorem to
develop an approximate process for fluctuations in the time course of epi-
demics resulting from the interaction of nonlinear dynamics and stochas-
ticity. Moreover, we extend BG theorem to noise around the forced limit
cycle. Finally, fundamental probability concepts and methodologies, e.g.
Itô’s formula [53], Ornstein-Uhlenbeck process [46], etc., are essential for
the development of the theory.

1.4 Thesis structure and contribution

In this thesis, we study the recurrent pattern of avian flu epidemics by
means of analytic techniques. We begin by gathering information about the
epidemiology, ecology, and outbreak recurrence of avian influenza (Chapter
2).

In Chapter 3, we first develop an understanding about the current paradigm
for modelling avian flu recurrent epidemics. This is done by analysing math-
ematically, i.e. using approximation technique, a host-pathogen stochastic
model for avian influenza recurrent epidemics with two types of transmission
modes. It is found with the aid of analysis that the periodicity of recurrence
is determined by the transmission modes while the noise has a substantial
contribution to the intensity of epidemics.

In Chapter 4, we develop a new approximation tool that can be used
to understand epidemic recurrence modelled as stochastic perturbations
around a limit cycle. Our tool is an extension of the approximate model
for stochastic fluctuations around an equilibrium, i.e. the result of Baxen-
dale and Greenwood [50]. Our approach can be applied to a general class
of SDE systems - SDEs with time-dependent drift and diffusion coefficients
due to periodic parametric forcing. Such systems naturally occur when one
of the parameters is a periodic function of time.

Finally, the conclusion of this thesis is presented in Chapter 6. The main
finding points to the deterministic mechanism playing a key role in influ-
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encing avian flu epidemic recurrence described by stochastic perturbations
around the deterministic dynamics (e.g. endemic equilibrium or forced limit
cycle solution).
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Chapter 2

The Epidemiology, Ecology,
And Epidemic Recurrence Of
Avian Influenza:
An Overview

2.1 Avian influenza (AI)

Avian influenza (AI) also known as “bird flu” is a viral disease that com-
monly infects poultry and wild birds. In poultry, the disease is characterised
by various symptoms such as nasal discharge, lack of energy, and diarrhea,
resulting to “fowl plague” in which mortality of at least 75% has been ob-
served [54]. In wild birds, the disease do not usually manifest symptoms [55].
More than a decade ago, AI was a disease of limited significance [56, 57] but
this perspective has changed since the emergence of various virus strains
(e.g. H1N1 in 1976, 1986, and 1988; H3N2 in 1993; H7N7 in 1996; H9N2 in
1998, 1999; H5N1 in 1997, 2003, and 2013; H7N9 in 2014) that are deadly
to humans [58–60]. Since the disease poses threat to human health, several
efforts have been made to control its spread such as culling large number of
poultry and restrictions on trade of poultry products [61].

2.2 Avian influenza virus (AIV)

The causative agent of avian influenza is an influenza A virus [62] consist-
ing of different combinations of haemaggluttinin (HA) and neuraminidase
(NA) surface glycoproteins [63, 64]. A total of 16 HA subtypes (H1-H16)
and nine NA subtypes (N1-N9) have been recognised [65], and each virus
has one HA and one NA antigen.

The avian influenza viruses (AIVs) can be divided into two distinct
groups according to their virulence in poultry, namely the low pathogenic
avian influenza virus (LPAIV) and the highly pathogenic avian influenza
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virus (HPAIV). The LPAIVs are commonly isolated from many species of
wild birds [66] and cause little harm in the wild [55, 65]. On the other hand,
HPAIVs are not maintained by wild birds [67] but have been isolated from
wild population in the event when the disease has spread to domesticated
birds [68, 69]. Significantly, certain LPAIV subtypes (e.g. H5 and H7) may
become highly pathogenic if they are transmitted to poultry [70–72]. The
ability of LPAIVs to mutate into HPAIVs [73] in poultry and the diversity
of these viruses circulating in bird populations in the wild potentially makes
wild birds the primary source of introduction of influenza into humans [74–
76].

2.3 AIV ecology in wild birds

The AIVs found in wild birds constitute the historic source of human
influenza viruses having a rich pool of diversity that may likely lead to cross-
species transmission [55, 77]. A most recent example is the transmission
of H7N9 AIV to humans in China (see [78] and references therein). The
H7N9 virus is associated with a significant risk of mortality to humans. In
the year 2014, 212 deaths were reported to the World Health Organization
due to infection with H7N9 alone. Thus, it is important to have a better
understanding of the ecology of AIVs in wild birds.

Influenza viruses infect a great variety of birds [66, 79, 80]. Various sub-
types of AIVs are maintained in and isolated from wild bird populations from
a variety of major Families. In 1961, an influenza virus was first isolated
from common terns (Sterna hirundo) in South Africa [81]. Further moni-
toring suggested that ducks and geese are important natural reservoirs of
AIV [82]. Sharp et al. [83] however suggested that waterfowl do not act as a
reservoir for all AIVs. It is possible that AIV that ultimately gets transmit-
ted to humans is maintained in shorebirds and gulls, where the AIV isolates
predominantly have different subtypes than those isolated from ducks [84].
According to Stallknecht and Shane [82], AIVs infect 90 bird species from
22 different Families and 12 Orders. On the other hand, Olsen et al. [85]
lists at least 105 wild bird species from 26 families. With the large number
of recent AI outbreaks, it seems that the actual number of fully susceptible
species is likely to be much greater.

The complexity of the ecology of AIV is linked to the biology of the
natural host and environment. For example, it seems incidental that ducks
living in freshwater habitats have relatively high prevalence rates of AIV
infection [86] in contrast to shorebirds and gulls, which are salt water birds.
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However, as demonstrated by Stallknecht et al. [87] some AIV isolates are
more sensitive to salinity. Moreover, persistence and prevalence of AIV as
outlined by Stallknecht et al. [88] can depend on three factors: (i) concen-
tration of AIV shed at an adequate time duration, (ii) the stability of AIV
in the environment, and (iii) the AIV concentration required for productive
infection of the next host (infective dose).

Human intervention could play a role in the ecology of AIV. For exam-
ple, the movement of infectious agents among numerous domestic avian and
mammalian species due to global wildlife trade provides transmission mech-
anism into wild bird population when these infected species are released into
the wild [89]. However, as reviewed by Reed et al. [90], human effects on
bird movement patterns may have greater significance. For example, climate
alterations around urban areas may distort the disease epidemiology as it af-
fects the pattern of migration, population densities, and species interaction
of many wild bird species.

2.4 Transmission of AIVs to and between birds

A potential cause of initial infection for AI outbreaks in poultry could
be direct or indirect contact with infected waterfowl populations [91–93].
However, the knowledge about the transmission mechanism of AIVs between
birds is insufficient. It is suggested that AIVs could be transmitted among
birds via oral-oral (respiratory) route [94] or faecal-oral/faecal-cloacal route
[95].

In oral-oral route, i.e. direct transmission, AIVs are transmitted through
direct contact between infected and susceptible birds. Past experimental
assessments on the transmissibility of AIVs in poultry suggested that direct
transmission is a complex process as it depends on the virus strain, the bird
species and many environmental factors [91, 96–99]. For example, HPAIVs
tend to show much poorer transmission from infected to susceptible hosts
in poultry than LPAIVs in both natural and experimental settings. On
the other hand, low LPAIV samples from mallards may suggest that the
respiratory tract plays a limited role in the replication, transmission and
ecology of LPAIV in dabbling ducks [100], yet oral-oral route may be relevant
for bird species in which faecal-oral transmission would prove difficult.

The fecal-oral route is identified to be the main transmission mechanism
among aquatic birds. LPAIVs are thought to be transmitted via the fecal-
oral route in wild bird population when infected birds shed virions in their
faeces and susceptible birds ingest the virions from the contaminated aquatic
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habitat [55, 87, 101–103]. The filtering or drinking of contaminated water
could be a potential explanation for the high AIV prevalence among bird
species aggregating in wetlands. Moreover, the prolonged infectious periods
of the virus could potentially allow temporal and spatial connectivity among
bird populations with their respective virus populations. In freshwater lakes,
AIVs remain infectious for up to 4 days at 22 degrees Celsius and up to 6
months at the freezing point [93]. The virus stays infectious for even longer
time durations in ice or frozen ground [104–107]. During the breeding season,
infected birds in the Arctic region shed AI virions into the environment
through faeces, which then persist in cold water, in ice or frozen ground
throughout the winter. The thawed contaminated ground ice or frozen lake
becomes, in the next spring, a source for re-infection among birds returning
to the breeding ground [93, 108] suggesting that bird migration is associated
with the persistence of AIV in wild bird populations.

Virus transmissibility may be related to the amount of virus released
orally or from excretions. Several factors such as virus strain, bird species,
and immune response can affect the virus shedding rate [71]. For example,
it is possible that a relatively small quantity of virus is excreted during
the course of HPAIVs infections, as they cause rapid deaths in poultry.
The Asian H5N1 HPAIV, on the other hand, are shed at much greater
concentrations and for longer durations from the respiratory tract than by
the cloacal route [109, 110]. Such differences may potentially explain the
efficiency of virus transmission within bird population or to domestic poultry
[88].

2.5 AI epidemic recurrence

Survey-based reports suggest that AI epidemics are recurrent and are
tied to the persistence and prevalence of AIV. Here we give an overview of
LPAI and HPAI outbreaks that have been observed in the past as reviewed
by several authors [66, 111–113]. We also summarize and highlight the
existing modelling efforts that have been done to understand AI outbreaks,
e.g. the role of transmission on its multi-year periodicity.

2.5.1 LPAI outbreaks

The prevalence of LPAIV in its natural reservoir, i.e. wild birds, is
believed to be the source of LPAI infection in poultry. For certain subtypes
of LPAIV, when the AI infection moves to poultry it can escalate to the
highly pathogenic type. In this review of LPAI outbreaks in poultry, it is
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important to distinguish between outbreak events caused by non-mutating
and mutating subtypes as the latter type is linked to HPAI outbreaks.

H5/H7 subtypes

Prior to the discovery that certain subtypes of LPAIV, e.g. H5 or H7, can
mutate to HPAIV, little attention was given on identifying LPAI outbreaks
in wild bird population. In fact, the relationship between wild birds and
LPAIV is assumed to be of a commensal nature [114]. LPAI outbreaks,
however, occur frequently in poultry where the association is less benign.

Since 2006, H5/H7 LPAI outbreaks were observed in several parts of
Europe [115–117]. Between 2002 and 2006, there were sixty LPAIV strains
isolated from poultry and other captive birds in Europe, Asia, Africa and
Australia [118]. Since many outbreaks may remain unnoticed, the actual
number of LPAI outbreaks in poultry may be even higher [112].

A number of outbreaks can spread over large regions as a result of LPAIV
circulating among poultry. From 1997 to 2001, Italy, for example, had
several subtypes of LPAIV circulating in areas populated with a high density
of poultry farms. In 1999 to 2000, an LPAIV (H7N1) that was endemic
in poultry gave rise to the emergence of a highly pathogenic variant [119].
Although efforts have been done to eradicate H7N1 HPAIV,viruses related to
H7 LPAIV appear regularly in Italy and less commonly in other European
countries [115]. Similarly, in 1994-1995, another LPAIV (H5N2) causing
the emergence of a HPAIV in Mexico still circulates throughout Central
America.

An H7N2 LPAIV that had become endemic in poultry circulated among
live bird markets and backyard smallholder flocks for 13 years in the north-
east region of United States. Fortunately, the virus was finally eliminated
in 2006 without evolving into HPAIV [120]. Several LPAIV subtypes have
been introduced recently in poultry farms in Germany, the Netherlands,
Denmark, and Belgium. For most of these outbreaks, it is assumed that
LPAIVs of H7 subtypes are acquired by direct introduction from their nat-
ural reservoir, i.e. wild birds. However molecular analysis suggests that the
LPAIV in poultry has become endemic [116, 121].

Non-mutating subtypes

LPAIVs that do not mutate to HPAIVs may not be a serious problem,
however these viruses can still cause severe illness and so should not be
deemed unimportant. Non-mutating LPAIVs continue to spread in various
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parts of the world: the H3N2 in Italy [122] and China [123], H6N1 in Hong
Kong [124], H6N2 in USA [125], and H9N2 in the Middle East [126]. In
particular, the subtype H9N2 became very widespread and maintained in
poultry throughout large parts of Asia [127]. According to many case re-
ports based on the review by [112], H9N2 has caused high mortality rates
in poultry that is comparable with HPAI outbreaks. Under experimen-
tal conditions, H9N2 do not produce severe symptoms in affected poultry
but secondary infections, accompanied by bronchitis virus and Mycoplasma
gallsepticum are always involved [128]. Since non-mutating LPAIVs pose
harm to poultry and their aggravating symptoms are worrisome, such as the
case of H9N2, eradication (depopulation) or control measures (vaccination)
are applied to such outbreaks [116, 129].

2.5.2 HPAI outbreaks

Several descriptions of disease outbreaks or animal plagues are analogous
to the present HPAIV outbreaks [130]. An HPAI outbreak was first reported
by an Italian scientist Perroncito [131] who described that the infection of
poultry around Torino during the Fall and Winter season of 1877-1878. Al-
though the infected poultry initially did not show serious illness, the disease
became epidemic throughout a larger area causing high mortality among
poultry [113]. After few decades, the outbreak was found to likely involve
the mutation of LPAIV into an HPAIV [132] as witnessed in the United
States of America [133], Mexico [134], Italy [135], Chile [136] and Canada
[137]. Several HPAI outbreaks have been studied from then on.

Major HPAI outbreaks occurred around the world in the early 20th
century, in which poor outbreak detection and management promoted the
spread and distribution of the virus. Nevertheless, it seemed that efforts
were made to control (e.g. live poultry shipping restrictions, depopulation,
quarantine and disinfection) some of these outbreaks [113]. In 1959, the
first HPAI outbreak took place in Scotland and thereafter other outbreaks
occurred in various places. These HPAI outbreaks are enlisted by Alexan-
der and Brown [132], Koch and Elbers [138], Lupiani and Reddy [113], and
World Animal Health Organization (OIE) [117].

Since about 19 years ago, the most worrisome HPAI outbreak, the Asian
H5N1 HPAI, emerged and is still severely infecting poultry all around the
world. It has been found that this notorious virus has managed to spill-over
from poultry to the wild bird reservoir and is maintained in natural hosts
despite its tendency to cause sickness and mortality in these wild birds [138–
141].
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Originating from Hong Kong and other parts of southern China since
2004, it seemed that the Asian H5N1 HPAIV became endemic in birds
throughout south-east Asia [117]. The virus was said to spread across the
Himalayas to the south and westward to Europe and Africa through mi-
gratory routes [142]. In 2006, the H5N1 virus prevalence peaked and has
spread to as many as 63 countries across Asia, Europe and Africa. There is
evidence that the virus continues to spread, but at a slower rate. In 2008,
H5N1 HPAIVs were last detected in Germany. Two years later, the epi-
demic ended in Romania, Bulgaria and Russia [117]. However, Asian H5N1
HPAIV remains endemic in some Asian countries and Egypt as of 2014 [116].

2.5.3 Modelling efforts

Mathematical modelling has been shown to play an important role in un-
derstanding disease dynamics [143, 144]. For AI, models have been used to
describe the disease transmission, evaluate parameters of interest and assess
intervention strategies (see [145] and references therein). Other modelling
work emphasizes the importance of combining modelling with experimen-
tal or survey data to generate quantitative information that is essential for
designing control strategies for epidemics [146]. The probability of trans-
missions and incidence rates, for example, can be used to assess the role of
improving bio-security [147]. Other works showing the use of models and
data from other epidemics are described by Garske et al. [148], Mannelli
et al. [149], McQuiston et al. [150], Sharkey et al. [151], Nishiguchi et al.
[152]. As outlined by Dorjee et al. [145], AI is studied using determinis-
tic and stochastic compartmental models [153–158], and network models
[151, 159].

Past AI models focussed on investigating how the spread of AI to humans
could potentially lead to pandemia [160–162]. A few models were developed
involving both animals and humans linked by a pathogen. An example is
the simplest model that captures the transmission pathway of H5N1 from
poultry to humans [163]. However, in light of the recurrent outbreaks of
LPAI and HPAI, recent models focus on capturing the pattern of AI out-
breaks and identifying the drivers of the disease dynamics. The temporal
pattern of AIV prevalence have been used to shed light on the outbreak pe-
riodicity of LPAI [1, 164]. These studies support the result of Rohani et al.
[165] which emphasises the importance of environmental transmission, i.e.
faecal-oral/faecal-cloacal route, in recovering the pattern of periodicity and
persistence of AIV in waterfowls. On the other hand, seasonal patterns of
infection have been detected where prevalence is highest during late Autumn
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and Winter [3, 42, 76, 166–168]. The patterns are said to be associated with
immune response, bird migration, and/or environmental variability. For in-
stance, the high virus prevalence in juvenile mallards for their low immune
response and the virus persistence in the environment under colder temper-
ature contribute to a spike (or spikes) of influenza activity during winter
months [169].

2.6 Discussion

Avian influenza is indeed a very complex disease in which understanding
of its epidemiology, ecology, and epidemic recurrence is limited by monitor-
ing methods, genetic sequencing technology, and other data gathering tech-
niques. Although it is established that wild birds are the natural reservoir of
AIVs, no accurate tracking survey has been done to show that LPAI-infected
wild birds cause HPAI outbreak in poultry. The recent discovery of HPAIV
infection in wild bird populations poses a challenge to determine whether it
is likely that virus in wild birds will become endemic in the case when the
virus ceases to spread in poultry. The diversity and evolution of AIV are
other important research subjects. The answers to the research questions on
the biology of each virus subtype and the complex nature of its replication
and interaction with the host cell are useful for vaccine development and
other methods to control disease spread.

Mathematical models are effective tools to mimic the complex dynamics
of AI epidemics. The models can assist by evaluating current measures and
mechanisms to explain outbreak pattern, investigating hypothetical scenar-
ios, and making predictions based on empirical data. Some modelling work
has addressed AI systems but more needs to be done. For example, whereas
some AI outbreak recurrence models have been used to provide a persis-
tence mechanism within host populations, these models were based on the
temporal pattern of AIV prevalence data and not on the incidence of in-
fectious cases. It may be true that recurrent prevalence produces recurrent
outbreaks, however such an idea remains poorly tested. We suggest that
careful attention must be given to using epidemiological terminologies when
describing models. Further modelling work is needed in order to evaluate
the relative contribution of other possible persistence mechanisms, as there
are other factors that come into play such as spatial and age structures, host
immunity and evolutionary processes of virus strain. Also other recurrence
models incorporate seasonality due to environmental factors, but a major
drawback is the lack of consideration for spatial features in the transmis-
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sion dynamics of AI. Nevertheless, these final steps serve as a starting point
to acquire further insights about AI epidemiology, ecology, and epidemic
recurrence.
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Chapter 3

The Role Of Direct and
Environmental Transmission
In Stochastic Avian Flu
Epidemic Recurrence

3.1 Background

Avian influenza is an infectious disease present in poultry and wild
birds, and is known to pose threats to humans [170]. The disease pathogen
is the avian influenza virus (AIV) whose natural hosts include aquatic birds
[83, 171] with wild ducks as its main reservoir [172]. AIV strains can be
either highly pathogenic (HP) or lowly pathogenic (LP) according to their
ability to infect hosts. The HPAI viruses are the most virulent and are
responsible for ‘fowl plague’ causing mortality as high as 100% in poultry
[66]. The LPAI viruses are endemic in wild bird populations [55, 85] but can
easily be transmitted to domestic stock and then mutate to HPAI type [173].
Regardless of the type of virus strain, the prevalence data for avian influenza
displays recurrent epidemics over time. The underlying mechanism behind
this outbreak pattern is the subject of active investigation [13, 165, 174–176],
and is a key consideration in the development of effective control strategies
for disease mitigation.

The virus spreads to healthy individuals either (i) by contact with an
infected host i.e. through inter-host (direct) transmission, or (ii) by hosts
acquiring the virus from the environment through drinking or filtering water
while feeding, i.e., through environmental (indirect) transmission [13, 175].
Recently, a few authors have highlighted the importance of environmental
transmission as a driver of AIV epidemics. Rohani et al. [165] demonstrated
how neglecting environmental transmission could lead to underestimates for
the explosiveness and duration of AIV epidemics. Breban et al. [164] de-
veloped a new host-pathogen model combining within-season transmission
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3.1. Background

dynamics, between-season migration and reproduction, and environmental
variation, and showed that environmental transmission offers an explanation
for the 2 to 4 year periodicity of AIV epidemics. Wang et al. [1] formulated a
simple stochastic model to show that increasing environmental transmission
can make the outbreak period shorter. Their model predicted an outbreak
period of 2 to 8 years. Wang et al. [1] found this result consistent with
the observed outbreak period obtained from wavelet analysis of empirical
data [171]. Together, these papers and others point to environmental trans-
mission as the key mechanism behind the approximate periodicity of AIV
epidemics. They are based on the assumption that direct transmission is
weak between wild birds. Recently, however, a simple SI model with only a
direct transmission route, and without stochasticity, was found to provide
the best fit to poultry outbreak data [42] suggesting that direct transmission
may be stronger than originally thought. Motivated by these findings, we
re-examine, mathematically, the contributions of the different transmission
routes to the multi-year periodicity of avian flu epidemics.

The approximate multi-year periodicity of outbreaks is thought to be
due to the random nature of contagion and recovery processes, together
with demographic stochasticity (i.e., uncertainty in birth and death times),
and the deterministic dynamics of the system [26]. It has been shown that
demographic noise can sustain population oscillations that would otherwise
damp to a stable equilibrium. These oscillations are commonly called noise
sustained oscillations [31, 177, 178]. Other treatments of this phenomenon
in various contexts call it coherence resonance [35], stochastic amplification
[32–34], or stochastic resonance [179–181]. Based on known AIV biology,
a plausible model [1] suggests that AIV dynamics may arise from noise
sustained oscillations.

A system exhibiting noise sustained oscillations can be analyzed using a
recently developed approximation method. Baxendale and Greenwood [50]
showed that a stochastic process of two-dimensional noise sustained oscilla-
tions is, in distribution, approximately a rotation whose radius is modulated
by a slowly varying bivariate standard Ornstein-Uhlenbeck (OU) process, a
well-studied mean-reverting stochastic process [182].

In this thesis, we apply the approximation of Baxendale and Greenwood
[50] to a three-dimensional stochastic host-pathogen model, and assess the
contributions of the direct and environmental transmission rates to the re-
current epidemics it produces. First, we show that the avian flu epidemic
process can be approximated by the sum of a scaled univariate OU pro-
cess and the product of a rotation and a bivariate slowly varying standard
OU processes. Using the approximate stochastic process, we show that the
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3.2. The stochastic avian influenza model

outbreak period of the epidemics has a distribution centred at the intrin-
sic frequency of the associated deterministic part of the process, i.e., the
deterministic analogue. We obtain the intrinsic frequency as a function of
the two transmission rates and identify the relationship of each transmission
rate with the dominant outbreak period. Furthermore, we determine how
the outbreak intensity varies over a wide range of direct and environmental
transmission rates.

We organize this chapter as follows. In Section 3.2, we discuss the
stochastic avian flu model formulated in terms of stochastic differential equa-
tions using the result of Kurtz [10]. In the same section, we also suggest
an appropriate range of values to use for the transmission rate parameters.
We review previous analytic work. Section 3.3 contains our own analysis,
which includes determining the approximate process, the theoretical power
spectral density (PSD), and the formula for the intrinsic frequency. We
present in Section 3.4 the interpretation of our analysis, that the disease re-
currence observed in stochastic simulations is approximately governed by a
rotation matrix multiplied by a standard Ornstein-Uhlenbeck (OU) process.
We then describe the influence of each transmission route on the dominant
period of outbreaks (based on the intrinsic frequency) as well as the intensity
of outbreaks (based on the stationary standard deviation of the approximate
process). Finally, in Section 3.5, we discuss the implications of our results
for characterizing avian flu epidemics and providing insights into the depen-
dence of the frequency and variation of recurrent avian influenza epidemics
on each transmission route.

3.2 The stochastic avian influenza model

3.2.1 Model description

Wang et al. [1] formulated a stochastic model for avian influenza
using the susceptible-infected-recovered (SIR) framework with an added en-
vironmental transmission rate. They found that their model was sufficient
to explain the multi-year periodicity of flu outbreaks. In this host-pathogen
model, there is a susceptible duck population of size S, an infected pop-
ulation of size I, a population of recovered individuals of size R, and an
environmental virus concentration V . Note that S, I, and R are integers,
and all populations are functions of time. We also assume that a new sus-
ceptible duck is born once a host dies so that the total duck population is
constant, i.e. S+ I +R = N . Thus, we can solve for R in terms of S and I.
By considering a short time interval [t, t+ ∆t] and denoting by T (σ′|σ) the
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3.2. The stochastic avian influenza model

transition rate from state σ = (S, I, V ) to σ′ = σ ± ν, where νi ∈ {0, 1},
the different system events and their corresponding transition rates are:

1. Infection T (S − 1, I + 1, V |S, I, V ) = βS
I

N
+ ρS

V

NV
(3.1a)

2. Birth and Death T (S + 1, I, V |S, I, V ) = µ(N − S − I), (3.1b)

T (S, I + 1, V |S, I, V ) = µI, (3.1c)

T (S, I, V + 1|S, I, V ) = τI + δV, (3.1d)

T (S, I, V − 1|S, I, V ) = ηV. (3.1e)

3. Recovery T (S, I − 1, V |S, I, V ) = γI. (3.1f)

We schematically present these processes in Figure 3.1.
The first event (3.1a) describes the infection of a susceptible individ-

ual. Infection happens when a susceptible host is in close contact with an
infected host or when it acquires the virus directly from the environment.
The rate of transmission of the disease is given by the likelihood of contact
between a susceptible individual and either infected individuals or virions
in the environment, multiplied by the rate at which virions are acquired by
susceptible individuals in each case. Note that the likelihood of contact de-
pends on the fraction of infected individuals (I/N) and the concentration of
virus in the environment normalised by a reference concentration (V/NV ),
i.e., the likelihood of contact in a frequency-dependent process.

The second category of events (3.1b)-(3.1e) encompasses the birth and
death processes of the host and the virus. For simplicity, it is assumed here
that the per capita host birth and death rates have the same value µ. We
assume that virus is introduced into the environment at a constant rate
δ from alternative hosts. The virus concentration in the environment also
grows when infected ducks shed virions; this shedding occurs at rate τ . The
clearance rate of the virus in the environment is η.

Finally, the third category of events (3.1f) is the recovery of infected
ducks at per capita rate γ.

The parameters β, µ, τ , δ, η and γ are stochastic rates.
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3.2. The stochastic avian influenza model

The resulting stochastic avian flu host-pathogen model (see Appendix A.1)
is approximated for large N by the following system of stochastic differential
equations (SDEs):

ds = (−βsi− ρsv + µ(1− s)) dt+
1√
N

(−G1dW1 +G2dW2 +G3dW3) ,

di = (βsi+ ρsv − (µ+ γ)i) dt+
1√
N

(G1dW1 −G3dW3 −G4dW4) ,

dv = (kτi+ δv − ηv) dt+
1√
NV

(G5dW5 −G6dW6) ,

(3.2)
where,

G1 =
√
βsi+ ρsv, G2 =

√
µ(1− s− i), G3 =

√
µi,

G4 =
√
γi, G5 =

√
kτi+ δv, and G6 =

√
ηv.

(3.3)

Here, s = S/N, i = I/N, v = V/NV , and k = N/NV . The SDE for the
proportion of recovered ducks r(t) is not necessary because we eliminate r(t)
using r(t) = 1− s(t)− i(t), which follows from S + I +R = N . In (3.2), the
second term vanishes as N,NV →∞ which leads us to the deterministic, or
so-called mean-field, dynamics as found in Wang et al. [1]:

φ̇1 = −βφ1φ2 − ρφ1ψ + µ(1− φ1),

φ̇2 = βφ1φ2 + ρφ1ψ − (µ+ γ)φ2,

ψ̇ = κτφ2 + δψ − ηψ.
(3.4)

The deterministic variables φ1, φ2, ψ represent fractions of the susceptible
hosts, infected hosts, and virus in the environment, respectively, while κ =
limN,NV→∞

N
NV

. The disease is epidemic in model (3.4) if the number of

infected ducks increases, i.e. φ̇2 > 0, which implies that

βφ1

µ+ γ
+

ρφ1ψ

(µ+ γ)φ2
> 1. (3.5)

Note that φ̇1 = 0 and ψ̇ = 0 imply φ2 =
µ(1− φ1)

µ+ γ
and ψ =

φ2κτ

η − δ
,

respectively. We then write the inequality (3.5) in terms of φ1 and obtain

βφ1

µ+ γ
+

ρκτφ1

(µ+ γ)(η − δ)
> 1. (3.6)
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3.2. The stochastic avian influenza model

At the outset of an epidemic, nearly all hosts are susceptible (φ1 ≈ 1).
By substituting φ1 = 1 into (3.6), we arrive at the condition for the disease
to persist,

R0 ≡
β

µ+ γ
+

κρτ

(η − δ)(µ+ γ)
> 1, (3.7)

whereR0 is the basic reproduction number, the average number of secondary
infections resulting from one infected individual in a susceptible population.

The deterministic system has a stable endemic equilibrium, which can
be written in terms of R0,

(φ∗1, φ
∗
2, ψ

∗) =

(
1/R0,

µ

µ+ γ
(1− 1/R0),

κµτ

(η − δ)(µ+ γ)
(1− 1/R0)

)
.

(3.8)
When the basic reproductive number R0 > 1, the disease is epidemic. Re-
sults (3.4)-(3.8) are also found in Wang et al. [1].

We are interested in characterizing the fluctuations of the stochastic
model around the steady-state solution. Hence, we linearize (3.2) around
(φ∗1, φ

∗
2, ψ

∗) and obtain the linear diffusion equation (see Appendix A.2 for
the detailed derivation),

dξ = A0ξ dt+ C0 dW, ξ(t),W(t) ∈ R3,A0,C0 ∈ R3×3. (3.9)

where

A0 =

−βφ∗2 − ρψ∗ − µ −βφ∗1 −ρφ∗1
−βφ∗2 βφ∗1 − µ− γ ρφ∗1

0 κτ δ − η

 , (3.10)

and

C0 =

C11 C12 0
C21 C22 0
0 0 C33

1/2

,

C11 = βφ∗1φ
∗
2 + ρφ∗1ψ

∗ + µ(1− φ∗1),

C12 = C21 = −βφ∗1φ∗2 − ρφ∗1ψ∗ − µφ∗2,
C22 = βφ∗1φ

∗
2 + ρφ∗1ψ

∗ + (µ+ γ)φ∗2,

C33 = κτφ∗2 + δψ∗ + ηψ∗.

(3.11)

Equations (3.9)-(3.11) are the Langevin equations derived by Wang et al.
[1]. The drift coefficient matrix A0 is the Jacobian of the deterministic model
(3.4) evaluated at the endemic equilibrium (φ∗1, φ

∗
2, ψ

∗). The diffusion matrix
C0 is formed using the coefficients of the independent Wiener processes in
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3.2. The stochastic avian influenza model

(3.2). This matrix is the square-root of the covariance matrix B found by
Wang et al. [1]. This chapter focusses on the study of the linear system
(3.9).

3.2.2 Parameter values

All simulations produced in this work use as default parameters the val-
ues in Table 3.1 largely taken from Wang et al. [1]. The values of parameters
µ, η, β, and γ are based on empirical studies in the literature (see caption
of Table 3.1). No data are available for ρ and δ and so they are varied
within the range used by Wang et al. [1]. Note that the unit of the shedding
rate τ is virion/mL/duck/year rather than virion/duck/day as erroneously
reported in Wang et al. [1].

The values for the transmission parameters β and ρ can vary widely with
seasonal climate changes and from one geographic area to another. We thus
give a range of values for β and ρ and study the system’s response to different
levels and modes of transmission. As displayed in Table 3.1, we use a wider
range of β values than was used by Wang et al. [1]. Observe that the infection
term in (3.4) is given by βφ2 = βI/N (rather than simply βI). In ecological
terms, this means that β is the transmission rate for a frequency-dependent
process rather than a density-dependent process. Roche and Lebarbenchon
[175] find that β ranges from 0.00005 to 1500. Here, we plot our results for
β values ranging from 0 to 300.

Avian influenza epidemic models exhibit noise sustained oscillations with
a nonzero dominant frequency for a small range of β values, with some fixed
value of ρ. Knowing only that β falls within a wide range of values, re-
investigation of the relative contribution of each of the transmission modes
is necessary. In particular, a larger β poses the possibility that direct trans-
mission (β) alone, along with stochasticity, can drive avian flu epidemics
with multi-annual periodicity.
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Assessing the relative contribution of each of the transmission rates to
disease recurrence requires a quantitative comparison of results. From (3.7),
we see that if both

β < µ+ γ and ρ <
(η − δ)(µ+ γ)

κτ
, (3.12)

then R0 < 1. Using the values in Table 3.1, we find that when both β < 5.8
and ρ < 0.16 we have R0 < 1.

3.2.3 Preliminary analysis of the model

In this section we highlight key results from the analysis of the model
of Wang et al. [1], and extend these results to include the role of R0 in the
dynamics of avian flu. It is an established fact that the oscillations of a
damped system can be sustained by stochasticity. Wang et al. [1] showed
that the deterministic version of model (3.4) has a stable endemic steady-
state (3.8) when R0 > 1. Here, we take the calculation one step further by
determining the parameter ranges where (3.8) is a stable sink or a stable
focus. We do this by plotting the eigenvalues of the Jacobian in (3.10)
against R0 from (3.7). Figure 3.2 displays this plot.

In Figure 3.2, we see the eigenvalues of A0 plotted as functions of R0.
We use the parameter values in Table 3.1 with β = 0.05. As ρ increases,
so does R0. We observe that for R0 < 1, all of the eigenvalues are real
and one has positive sign. As expected from Wang et al. [1], the endemic
steady-state is unstable for this case and the system evolves to the disease-
free equilibrium. A transition in the signs of the eigenvalues happens at
R0 = 1. When R0 > 1, the system gives rise to a complex-conjugate pair of
eigenvalues with negative real parts, and a negative real eigenvalue. Thus,
the steady-state (φ∗1, φ

∗
2, ψ

∗) is a stable focus, i.e., the deterministic system
exhibits damped population cycles. Note that a similar result is obtained if
we fix ρ and let R0 vary with β.

Suppose that we represent the complex eigenvalues as −λ ± iω where
λ and ω are magnitudes of the real and imaginary parts, respectively. For
R0 > 1 in Figure 3.2, λ is clearly smaller than ω, because the upper solid
curve is above the lower dashed curve with both curves drawn below the
x-axis. Moreover, observe that ω increases faster than λ. Hence we deduce
that the ratio λ/ω decreases as R0 increases.
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Figure 3.2: The real (solid curves) and imaginary (dash-dot curves) parts of
the eigenvalues of A0 in (3.10) associated with the stability of the endemic
steady-state (3.8) plotted against R0 in the case where β = 0.05. There are
three real eigenvalues when R0 < 1, of which two are negative (thick solid
lines). For R0 > 1, we have a complex-conjugate pair of eigenvalues with
negative real parts (thick solid lines) and another negative eigenvalue (thin
solid line). The imaginary parts of the complex eigenvalues are shown by
the dotted lines. Other parameter values are shown in Table 3.1.

In Figure 3.3, we plot typical stochastic realizations of the avian flu
model (3.2) for R0 > 1 using various combinations of parameters. These
stochastic paths display oscillations sustained by noise.

We display the plots of stochastic realizations for the case when β = 0.05
but with different ρ values in Figures 3.3(a) and 3.3(b). Here we notice
that higher amplitude and higher frequency of epidemics are observed in
Figure 3.3(b) as compared to the fluctuation plotted in Figure 3.3(a) where
ρ is twice as much. This observation is consistent with Figure 3.2.
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Figure 3.3: Simulation of the stochastic model (3.2) and its corresponding
deterministic solution for β = 0.05 with (a) R0 = 1.2 and (b) R0 = 2.5, and
for R0 = 2.5 with (c) β = 0 (ρ = 0.4205) and (d) ρ = 0 (β = 14.5).

In Figures 3.3(c) and 3.3(d), we plot stochastic paths for the case when
either β = 0 or ρ = 0 but with roughly the same R0. In this comparison,
R0 ≈ 2.5, the upper bound of the confidence interval for the estimate of R0

for avian influenza in wild birds [183]. Comparing Figures 3.3(c) and 3.3(d),
we observe that the periodicity and intensity of outbreaks in the two cases is
different, even though the basic reproduction number is the same in the two
cases. Current theory points toward the transmission mode as a determining
factor for understanding the periodicity and intensity of avian flu outbreaks.
Here, we develop a method that allows us to determine mathematically the
effect of each transmission mode on the recurrence (periodicity and intensity)

32



3.3. Analytic methods

of avian influenza.

3.3 Analytic methods

In this section we develop the analytic tools we need to understand the
contribution of each transmission route to the dynamic behaviour of the
model. In particular, our goal is to develop a mathematical description of
the noise sustained oscillations that are observed in stochastic simulations,
such as those shown in Figure 3.3.

3.3.1 Approximate solutions

We begin by defining an approximation for the process of oscillations
produced by the stochastic avian flu model. Our starting point is the linear
diffusion equation given by (3.9), which describes the process ξ = (ξS , ξI , ξV )
near the endemic steady-state for large time. Under certain conditions,
an approximate solution of (3.9) can be obtained using an extension of a
result from Baxendale and Greenwood [50]. Specifically, if the eigenvalues
of the drift coefficient matrix A0 (see (A.41) below) are of the form −ζ, and
−λ ± iω with λ/ω small, for ζ, λ, ω > 0, an approximate solution for (3.9)
(see Appendix A.3 for details) is given by

ξapp(t) = y1(t)Q•1 +
σ̃√
λ

[Q•2,Q•3]R−ωtSλt, (3.13)

where Q is the canonical form of the eigenvector matrix associated with
the three eigenvalues. The vector Q•j denotes the jth column of Q. The
stochastic process y1(t) is an Ornstein-Uhlenbeck (OU) process [182] with
mean zero, decay rate ζ, and diffusion coefficient σ1 obtained using the
first row of the matrix Q−1C0. The matrix R−ωt is a rotation matrix. It
describes the circular motion of the process with frequency ω. The vector
process Sλt is a bi-variate OU process with independent components. The
scalar σ̃ is determined by the last two rows of Q−1C0 (the full expression
is given by (A.22) in Appendix A.3). We express the large-time stationary
solution of (3.2) as:

s(t) = φ∗1 +
1√
N
ξS(t) ≈ φ∗1 +

1√
N
ξappS (t),

i(t) = φ∗2 +
1√
N
ξI(t) ≈ φ∗2 +

1√
N
ξappI (t),

v(t) = ψ∗ +
1√
NV

ξV (t) ≈ ψ∗ +
1√
NV

ξappV (t).

(3.14)
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The formulation (3.14) shows that the solution of (3.2) near the endemic
steady-state behaves approximately like the product of a rotation and an
OU process (3.13).

3.3.2 Power spectral density

We use the theoretical power spectral density (PSD) to determine the
distribution of frequency components within the stochastic process produced
by (3.9) with (3.10) and (3.11), and by their approximate form (3.13). A
linear diffusion process is described as a general multivariate OU process,
i.e.,

dx = −Ax(t) dt+ B dW(t). (3.15)

According to Gardiner [46], the PSD of an n-dimensional process is obtained
from the main diagonal of the matrix given by:

S(f) =
1

2π
(A + if)−1BBT (AT − if)−1. (3.16)

From (3.16), it follows that the PSD of ξ(t) satisfying (3.9) is obtained from
the main diagonal of the matrix

S(f) =
1

2π
(−A0 + if)−1C0C

T
0 (−AT

0 − if)−1. (3.17)

On the other hand, the theoretical PSD of the approximate solution ξapp(t)
in (3.13) is determined using the coefficients of (see Appendix A.3 for deriva-
tion)

dξapp(t) = A0ξ
app dt+ Q · diag(σ1, σ̃, σ̃) dW(t).

Thus, the PSD of ξapp is obtained from

S(f) =
1

2π
· diag(σ2

1, σ̃
2, σ̃2) · (−A0 + if)−1QQT (−AT

0 − if)−1. (3.18)

3.3.3 The intrinsic frequency and the decay rate of the
deterministic dynamics

The approximation (3.13) depends explicitly on the intrinsic frequency
ω and the decay rate λ of the damped oscillations predicted by the de-
terministic system (3.4). We can derive these quantities by obtaining the
eigenvalues of the Jacobian matrix A0, which are the solutions of the char-
acteristic polynomial given by

ν3 − aν2 − bν − c = 0, (3.19)
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where:
a = (δ − η)− µR0 − γ − µ+ β/R0,

b = −µ(η − δ + γ + µ)R0 + µβ/R0,

c = −µ(η − δ)(γ + µ)(R0 − 1).

(3.20)

In Appendix A.6, we derive λ and ω as functions of β and ρ, using the
roots of (3.19) and the avian flu parameters in Table 3.1. The results are
shown in Figures 3.6 and 3.7(a) where we see λ/ω and ω are functions of β
and ρ.

3.3.4 Numerical tools and functions

All numerical computations were done using MATLAB [184]. We com-
puted the solution of the deterministic avian flu model (3.4) with the built-in
function ode45(), an ordinary differential equation solver that is based on
the Runge-Kutta (4,5) formula. Stochastic simulations of (3.2) and (3.9)
were done using the Euler scheme (or the Euler-Maruyama scheme) [185],
a first-order discretization method for stochastic differential equations. A
time step of 0.01 was used for simulations of (3.2), (3.4), and (3.9).

3.4 Results

We present our results in two parts. First, we substitute the parameter
values from Table 3.1 into the approximate solution (3.13) of (3.9) with
(3.10) and (3.11). Second, we use the approximation to understand how the
different transmission routes affect the dominant periodicity and the typical
intensity of epidemics (see Section 3.4.2).

3.4.1 An approximate avian flu epidemic process

In this section, we use the approximation (3.13) to describe explicitly
the noise sustained oscillations we saw in Figure 3.3. For consistency with
previous work [1], we have chosen β = 0.05 and ρ = 0.4. This choice
of parameters results in the endemic steady-state φ∗1 = 0.419, φ∗2 = 0.03,
ψ∗ = 1.04 with R0 ≈ 2.39. The deterministic process defined by (3.4)
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persists. The diffusion equation (3.9) with (3.10) and (3.11) becomes

dξ = A0ξ dt+ C0 dW, where

A0 =

−0.716 −0.021 −0.168
0.410 −5.78 0.168

0 100 −2.9

 , and

C0 =

 0.568 −0.161 0
−0.161 0.568 0

0 0 2.494


(3.21)

The eigenvalues of the Jacobian A0 in (3.21) are −ζ = −8.78 and −λ± iω =
−0.309± 0.838i. The ratio λ/ω = 0.309

0.838 ≈ 0.369 is sufficiently small that we
can approximate the process ξ(t) by (3.13), as evidenced by the comparison
of PSDs in Figure 3.4.

Using the eigenvalues above, we arrive at the canonical matrix of eigen-
vectors, i.e., the columns are eigenvectors of A0, given by

Q =

 0.021 −0.078 0.16
−0.059 0.026 0.008
0.998 0.984 0

 . (3.22)

The matrix C0 in the diffusion term of (3.21) gives us

Σ = Q−1C0 =

 2.13 −6.43 0.834
−2.16 6.52 1.69
2.23 3 0.715

 . (3.23)

We compute σ1 (see Appendix A.3) by taking the norm of the first row of
the matrix Σ in (3.23),

σ1 = ||(2.13,−6.43, 0.834)|| ≈ 6.82.

We form the matrix C̃ = (Σ̃Σ̃ᵀ)1/2 where,

Σ̃ =

[
−2.16 6.52 1.69
2.23 3 0.715

]
, (3.24)

to obtain σ̃2 = Tr(C̃C̃ᵀ)/2 and so σ̃ ≈ 5.68.
Using (3.13), the solution to (3.21) near the endemic steady-state is

approximately
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ξappS (t)
ξappI (t)
ξappV (t)

 = y1(t)

 0.021
−0.059
0.998


+ 10.2

−0.078 0.16
0.026 0.008
0.983 0

R−0.838tS0.309t,

(3.25)

where
dy1 = −8.78y1 dt+ 6.82 dW1. (3.26)

One way to see if the process (3.25) is a reasonable approximate solution
for (3.21) is to compute the theoretical PSDs of the exact solution ξ(t) of
(3.21) and the approximation ξapp(t) in (3.25) using formulae (3.17) and
(3.18), respectively. In Figure 3.4, the PSDs of fluctuations ξ(t) and ξapp(t)
agree fairly well. The dominant frequency is close to the intrinsic frequency
ω = 0.8377.

Figure 3.4: Comparisons between the theoretical PSD of the exact process
ξ(t) (solid line) satisfying (3.21) and the approximate process ξapp(t)(dashed
line) given by (3.25), for the fluctuations of the susceptible, infectious, and
the virus populations. Default parameter values are in Table 3.1 with β =
0.05 and ρ = 0.4.

The process ξapp(t) depends on the OU process y1(t) whose dynamics
are described by (3.26), an OU process with asymptotic mean zero, decay
rate 8.78, and diffusion coefficient 6.82. From the first term of (3.25), we
find that the contribution of the process y1(t) to host fluctuation processes,
ξS(t) and ξI(t), is very small as compared to that of the virus fluctuation
process ξV (t). We use the stationary standard deviation to measure the

37



3.4. Results

typical amplitude of the population fluctuations. Note that the stationary
variance of the process y1(t) is 46.51/(2 × 8.78) ≈ 2.65, i.e. stationary
standard deviation

√
2.65 ≈ 1.63. The stationary standard deviation, i.e.

typical amplitude, of the stochastic path for the process ξapp(t) (see (3.29)
or (A.30) in Appendix A.3), is given by

SSDi ≈
√

2.65q2
i1 + 10.22r2

i . (3.27)

The computed typical amplitudes of the susceptible, infectious, and virus
population fluctuations are 1.81, 0.29, and 10.18, respectively. In Figure 3.5,
the stochastic realizations for the different population fluctuations given by
(3.21) and (3.13) are plotted along with their stationary standard deviations
indicated by horizontal lines to indicate that the stochastic oscillations gen-
erally lie within one stationary standard deviation.
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Figure 3.5: A stochastic realization of the population fluctuations by sim-
ulating (3.21) (solid line) and (3.25) (dashed line) and their corresponding
stationary standard deviations, i.e. typical amplitudes (in horizontal lines)
computed using (3.28).
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Writing (3.25) in polar form (see Appendix A.3), we obtain

ξS(t) ≈ 0.021y1(t) + 1.82|S0.309t| cos (ϕ0.309t − 0.838t− 2.02),

ξI(t) ≈ −0.059y1(t) + 0.275|S0.309t| cos (ϕ0.309t − 0.838t− 0.313),

ξV (t) ≈ 0.998y1(t) + 10|S0.309t| cos (ϕ0.309t − 0.838t).

(3.28)

We know from the approximate form (3.28) that the phase differences be-
tween the population fluctuation processes ξi(t) are constants. For in-
stance, the susceptible duck population fluctuation is out of phase with
other populations in the system. With respect to the virus population,
the susceptible duck population exhibits noise-sustained oscillations with
a phase advance, with respect to the virus population, of approximately
2.02/ω = 2.02/0.838 ≈ 2.4 years. The infectious duck population, on the
other hand, oscillates with a phase advance of 0.313/0.838 ≈ 0.37 years from
the virus population.

3.4.2 The relative contribution of the different transmission
routes

One of the key factors leading to outbreaks is the rate of transmission.
As outlined previously, there are two transmission routes for avian flu: direct
transmission of virus from one duck to another, and indirect transmission of
viruses via the environment. We use the approximation ξapp(t) to shed light
on the relative importance of direct and indirect transmission to outbreak
occurrence.

As a first step, we identify the constraints for β and ρ under which one
expects to observe recurrent epidemics and where the approximation is valid.
We use the parameter ranges from Table 3.1 and display in the top panels
of Figure 3.6 a plot of λ/ω as a function of β and ρ.
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(a) (b)

(c)

Figure 3.6: (a,b) Plot of the ratio λ/ω as a function of β and ρ. The
triangular white region in the lower left is where no recurrence is observed.
Panel (a) considers 0 ≤ β ≤ 50 and 0 ≤ ρ ≤ 1 while Panel (b) considers
0 ≤ β ≤ 300 and 0 ≤ ρ ≤ 3. The grey region in both panels is where
λ/ω ≤ 0.35. In Panel (b), the black curve corresponds to λ/ω = 1. (c) Plot
of the basic reproduction number R0 as a function of β and ρ. The darker
(blue online) shade indicates that no epidemic can be observed in the model
for this parameter region. Parameter values and ranges from the literature
are in Table 3.1.

In Figure 3.6(a), we see a triangular region surrounding β = ρ = 0 where
the approximation is no longer relevant because no recurrent epidemics can
be observed there. In the triangular parameter region, R0 ≤ 1 as seen in
Figure 3.6(c) and there are no recurrent epidemics. Within a large portion
of the remaining parameter region defined by 0 ≤ β ≤ 15 and 0 ≤ ρ ≤ 1 (see
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Figure 3.6(a)), λ/ω is sufficiently small that the approximation is valid.
We further extend the range of transmission parameters to 0 ≤ β ≤ 300

and 0 ≤ ρ ≤ 3 as displayed in Figure 3.6(b) to show the behaviour of λ/ω
for larger values of β and ρ. We observe that when β and ρ are both very
large, as depicted by the white region in the upper portion of Figure 3.6(b),
λ/ω > 1 and so the approximation is not necessarily valid. In Figure 3.6(b),
a black curve is drawn, which corresponds to λ/ω = 1. The approximation
is valid for β and ρ values in the region well below this curve. For instance,
it is guaranteed that the approximation can be used to precisely describe
the system in our parameter space when 0 < λ/ω ≤ 0.35 (grey region).
Since there is a sufficient portion of the region defined by 0 ≤ β ≤ 300 and
0 ≤ ρ ≤ 3 where the approximation is applicable, the following analysis
focusses on the region well below the black curve to study how the different
routes of transmission influence the periodicity and intensity of recurrent
epidemics reflected by the model.

Dominant outbreak period

The period of any oscillating function is the inverse of the frequency.
We analyze the dominant outbreak period of the simulated epidemic from
(3.9) by considering the intrinsic frequency of the deterministic system. For
a parameter range where the approximation (3.13) is close to the exact
process satisfying (3.9) (see Figure 3.4), the dominant frequencies predicted
by the two are very close. In addition, this frequency is close to that from
the deterministic system when λ is small [186]. Hence we use ω given by
formula (A.44) (see Appendix A.6).

Using formula (A.44) in Appendix A.6, we compute the intrinsic fre-
quency ω = ω(ρ, β) over 0 ≤ ρ ≤ 3 and 0 ≤ β ≤ 300 for the parameters in
Table 3.1 to obtain Figure 3.7(a).

We are interested in the parameter domain when R0 > 1, that is, where
the disease has recurring epidemics (see Figure 3.6(c)). In Figure 3.7(a),
we find a region where the intrinsic frequency is relatively high, namely
for low environmental transmission (ρ ≤ 0.5) and high direct transmission
(β ≥ 100). When the β and ρ values are both very low or very high, the
intrinsic frequency is near zero, and so all populations fluctuate around their
endemic equilibrium very slowly.

The steady-state infectious proportion is approximately 0.05 and is ac-
companied by a very low steady-state proportion of susceptibles (see Fig-
ure 3.7(b)). Thus in this parameter region, the host population is mainly
composed of individuals that have recovered from the disease.
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We also find that, for (β, ρ) values where the approximation is valid, the
dominant outbreak period is 2 to 8 years, as seen by comparing the grey
region of Figure 3.6(b) with Figure 3.7(a).

(a)

(b)

Figure 3.7: Plots of (a) the intrinsic frequency ω and (b) the steady-state
proportions of the susceptible and infectious populations as functions of the
direct transmission rate β (left) and the environmental transmission rate ρ
(right). The dark region in (a) is where the 2 to 8 year recurrence period is
observed. Parameter values are in Table 3.1.
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For the default parameter values with β = 224 and ρ from 0 to 0.05, the
largest 5.6 radians per year, corresponding to an avian flu outbreak period
of 2π/5.6 ≈ 1.12 years. For the default parameter values with β = 224, the
highest intrinsic frequency reached is 5.6 radians per year corresponding to
0 < ρ < 0.05. This maximum intrinsic frequency corresponds to an avian
flu outbreak period of 2π/5.6 ≈ 1.12 years (Figure 3.7(a)).

We determine the outbreak periodicity for various values of either β or
ρ alone by computing the theoretical PSD of the linear system (3.9) with
(3.10) and (3.11) (Figure 3.8). When there is no direct transmission, the
dominant frequency of the simulated outbreaks increases with the environ-
mental transmission rate (Figure 3.8(a)). Similarly, the dominant frequency
increases with the direct transmission rate in the absence of environmental
transmission (Figure 3.8(b)).

In parallel with the increasing dominant frequency, the width of the
PSD also increases with increasing environmental transmission rate. This
means that, at low transmission rates, the outbreak pattern is more regular,
and becomes more irregular as transmission rate increases. Consequently,
when transmission rates are high, the timing of outbreaks is more difficult
to predict.

Note here that we have chosen values of ρ (when β = 0) and β (when
ρ = 0) that give roughly the same basic reproduction number R0, allowing
for comparison between the theoretical PSDs. Consider the PSDs associ-
ated with (ρ, β) = (0.22, 0) and (ρ, β) = (0, 7.5) in Figure 3.8(b) and 3.8(a),
respectively. Both parameter values correspond to R0 ≈ 1.3, a value used
by [1] to define a boundary between disease persistence and stochastic ex-
tinction for their model. If we compare the PSDs between Figures 3.8(a)
and 3.8(b), we find that, with the values in Table 3.1, the model predicts
larger-valued PSDs in the case when environmental transmission is absent
than when direct transmission is absent.

The corresponding dominant outbreak period is shown in Figure 3.8(c)
and 3.8(d). Both dominant periods of the approximate and exact process are
shown. The results are indistinguishable. We also observe in Figure 3.8(c)
that, for β = 0, an increase in ρ from 0.22 to 1.1 results in a decline of
approximately 12 years in the outbreak period. However, for ρ = 0, an
increase in β from 7.5 to 37.5 only results in a decrease of approximately
7 years in the outbreak period (see Figure 3.8(d)). In other words, when
the disease is epidemic but R0 is close to 1, increasing the environmental
transmission can cause a greater drop in the outbreak period than increasing
direct transmission. However, for larger transmission rates we find that the
dominant outbreak period declines slowly as transmission rate increases and
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Figure 3.8: Top panels: Theoretical PSDs of the infectious population fluc-
tuations ξI(t) for (a) ρ = 0.22, 1.1, 2.2 when β = 0 and (b) β = 7.5, 37.5, 75
when ρ = 0. The linewidth of the PSD curves increases with the trans-
mission parameter values. Bottom panels: Approximate dominant outbreak
period, 2π/ω with formula (A.42), as a function of (c) ρ when β = 0 and
(d) β when ρ = 0. The square markers in (c) and (d) are located at
ρ = 0.22, 1.1, 2.2 and β = 7.5, 37.5, 7.5, respectively. The black dots rep-
resent the exact dominant outbreak period obtained using the theoretical
PSDs in the top panels. The black dots and square markers are indistin-
guishable from each other. The horizontal lines in (c) and (d) indicate the
2 to 8 year periods observed in actual prevalence data (See [1]). The corre-
sponding R0 values are also shown. Default values for all other parameters
are given in Table 3.1.
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so the effects of changes in the individual transmission rates may be difficult
to distinguish.

Typical intensity of outbreaks

For each i = S, I, V , the stationary standard deviation of ξappi (t) is

SSDi =

√
q2
i1σ

2
1

2ζ
+ r2

i

σ̃2

λ
(3.29)

for r2
i = q2

i2 + q2
i3 where qij are entries of the matrix Q, e.g. (3.22), to

determine the typical intensity of outbreaks. Here we show how the typical
outbreak intensity is influenced by each type of transmission. In Figure 3.9,
we display the plots of SSDi’s of each process ξappi (t) as functions of β and
ρ.

In Figure 3.9, we have focused on the (ρ, β) region that corresponds
to R0 > 1 and λ/ω small, i.e. where the approximation method is valid.
Typical amplitudes in simulated epidemics when 0 ≤ ρ ≤ 1 and 0 ≤ β ≤ 100
are depicted in Figure 3.9.

In Figure 3.9(b), we see that in general, fluctuation amplitudes are higher
for larger values of β, the direct transmission rate. On the other hand, in
Figure 3.9(a), the fluctuation amplitudes for the susceptibles are lower for
larger β, and there is high sensitivity to β. Figure 3.9(c) shows an optimal
region in β for the fluctuation amplitude of virus especially for low ρ.
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(a) (b)

(c)

Figure 3.9: Typical amplitude (intensity) of the fluctuations in the propor-
tion of (a) susceptible, (b) infectious, and (c) virus populations, measured
by their stationary standard deviations (3.29) as a function of the environ-
mental transmission rate ρ and β. All other parameters are at the default
values in Table 3.1.

3.5 Discussion

We have written the Wang et al. [1] stochastic model for avian influenza
including direct and environmental transmission routes as stochastic dif-
ferential equations using the method of Kurtz [10], following Greenwood
and Gordillo [47]. Under large host and virus populations, the stochastic
model approaches the deterministic system wherein, for R0 > 1, the en-
demic steady state is a stable focus. Our discussion of the avian flu model
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in Section 3.2 suggests that the disease can persist (R0 > 1) if either one of
the two transmission routes is sufficiently strong. We have also shown via
stochastic simulations that the model gives rise to noise sustained oscillation
in the presence of either transmission route.

Our analysis allows us to conclude that the temporal pattern of epi-
demic recurrence is the sum of two processes: (1) a scaled OU process with
long-term mean zero, and (2) the product of a rotation and a slowly varying
standard OU process in two dimensions. This structure holds for any disease
where the decay rate in the amplitude of successive epidemics is sufficiently
slower than the frequency of recurrent epidemics. That is, as the determin-
istic process decays, there will be several noticeable epidemics before the
system decays to near the steady state.

After linearisation, we study the stochastic path in three-dimensional
space. The sample path behaves as an OU process that travels along the
axis pointing in the direction of an eigenvector associated with the negative
real eigenvalue, and cycles on the subspace spanned by the eigenvectors
associated with the complex eigenvalues (See Appendix A.4).

We have shown that there is good agreement between the theoretical
PSDs of the exact and approximate processes for each population type con-
sidered in the system. Although we observe small differences in the PSDs of
the approximate and exact processes, we find that the two PSDs have closely
matching dominant frequencies. The dominant frequency of the simulated
epidemics is close to the intrinsic frequency ω. We know from e.g. Green-
wood et al. [186] that the difference between the dominant and intrinsic
frequencies is O(λ), where λ, which is small here, represents the decay rate
of the deterministic solution. Based on the polar form of the approximate
process (3.28), each population cycles at a frequency corresponding to the
intrinsic frequency ω perturbed by a stochastic phase process ϕλt.

We also notice that the PSDs of the exact process appear flat for low
frequency and have a downward slope for high frequency, which are features
of the PSD of a stationary OU process [46]. This observation is in agreement
with the approximate process we derived (3.25), which is a sum of an OU
process (3.26), and the product of a rotation and a bi-variate standard OU
process.

Previous studies [1, 13, 165] of the recurrence of avian flu epidemics have
focussed on identifying mechanisms that explain the multi-annual periodic-
ity of the disease. Wang et al. [1] claimed that environmental transmissibility
is an important ingredient in explaining the 2 to 8 year period of avian flu.
Using theoretical PSDs, they showed that for a fixed direct transmission
rate, the outbreak period decreases as the environmental transmission rate
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is increased. Their results are based on the assumption that direct trans-
mission is weak. However, according to Roche and Lebarbenchon [175], the
direct transmission rate β can have a wide range of values. Our results show
that the 2-8 year outbreak period can also be obtained chiefly as a result
of direct transmission, and even in the absence of environmental transmis-
sion. Thus we conclude that both transmission rates are important factors
in understanding the multi-year periodicity of disease outbreaks.

Our approach also allows us to obtain approximate values for the typical
amplitude of the population fluctuations, because the stationary behaviour
of the OU process is known. For the given avian flu parameter values, we find
that the virus population fluctuations peak after the infectious population
fluctuations peak. Typically, the phase lag is on the order of 0.3127/ω =
0.31/0.8377 ≈ 0.37 of a year, i.e. approximately 4 months. This lag is
reasonable as we have evidence that virus can be excreted by an infected
bird for many days after infection [97].

High amplitude epidemics arise when the direct transmission rate is high.
In this case, the stochastic perturbation phase process changes slowly and
so the dominant frequency of epidemics is comparatively regular.

Our analysis emphasizes that the interaction of stochasticity and trans-
mission routes indeed plays an important role in determining outbreak pe-
riodicity and intensity. We suggest here that the recurrent pattern of avian
flu outbreaks in itself is a result of noise amplification wherein its peri-
odicity and amplitudes are influenced by either or both of the modes of
transmission. The approach we introduced here could be used to perform a
systematic study of other recurrent diseases.
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Chapter 4

Sustained Oscillations in
Stochastic Models
With Periodic Parametric
Forcing

4.1 Motivation

Modellers have long been interested in identifying the mechanisms be-
hind cyclic population fluctuations in natural systems such as those observed
in infectious diseases [3, 187, 188]. In one theory, the fluctuations are at-
tributed to the stochastic nature of the system. For example, in population
biology, the number of individuals over time could fluctuate simply due to
the presence of demographic stochasticity (i.e. uncertainty in the birth and
death times) together with stochasticity in infection and recovery rates. In
the absence of any stochasticity, we have damped oscillations over a large
parameter range [32]. Sometimes the cyclic dynamics are modelled as a
deterministic system with time-periodic parameter, i.e. parametric forc-
ing, such as seasonal forcing driving recurrent epidemics [28, 39]. A rather
more general model of irregular cyclic dynamics has been introduced and
simulated quite recently. The model incorporates both randomness and pe-
riodic forcing to describe the fluctuating patterns observed in systems with
large populations [11, 33, 44] and expressed in terms of Itô stochastic dif-
ferential equations (SDEs). These SDEs can be constructed starting from
an ODE model derived from compartmental analysis and adding Gaussian
white noise with covariance matrix that depends on the terms of the ODEs.
Periodic parametric forcing is introduced in the model by assigning at least
one of the parameters to be a periodic function of time. Here I coin the
phrase stochastic periodically parametrically forced (stochastic PPF) mod-
els to mean stochastic models with time-periodic parameters. Such models
are SDE systems with time-dependent periodic drift and/or diffusion coef-
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ficients.
Stochastic PPF models is appear in studies of disease dynamics [33, 37,

164] that are mainly concerned with characterizing the sustained oscilla-
tions exhibited in stochastic simulations of the system. In stochastic PPF
models, the stochastic fluctuations around a limit cycle are identified by
“linearising” the stochastic PPF model around the solution of its determin-
istic analogue. Though the nature of stochastic fluctuations around a limit
point is well understood [26, 35, 50], limited knowledge is available about
stochastic fluctuations around a limit cycle.

Typically, solutions of linear SDE models are studied using numerical ap-
proaches [51]. However, it is sometimes possible for approximate solutions
to be written in closed form. In the work of Baxendale and Greenwood
[50], for example, an approximate solution was obtained for n-dimensional
(n ≥ 2) linear SDE systems whose drift and diffusion coefficient matrices
are constant matrices, and where the eigenvalues of the drift coefficient ma-
trix include a complex-conjugate pair, −λ ± iω, with λ, ω > 0, and other
negative real eigenvalues. They showed that as long as λ � ω, such a
SDE system has an approximate solution in closed form that describes the
nature of noise-sustained oscillations as a constant times a circular motion
multiplied by a bivariate standard Ornstein-Uhlenbeck (OU) process [182]
time-scaled by λ. They compared the power spectral densities (PSD) of the
numerical and approximate solutions of the SDE system and found agree-
ment. The closed form approximation allows the identification of the source
of the dominant frequency of the fluctuations and the parameters that con-
trol amplification. Our aim here is to obtain such a closed form approximate
solution for stochastic PPF models linearized around a limit cycle.

From numerical evidence found in the literature [11, 44], we know that
the stochastic fluctuations around the limit cycle, produced by stochastic
PPF models, have three governing frequencies: the frequency the around the
limit cycle in response to the stochastic perturbation, the sum and difference
of the response and limit cycle frequencies. The response frequency is the
dominant one among the three and is identified as the imaginary part of
the complex-conjugate pair of Floquet exponents [189]. Though it has been
suggested that these frequencies resulted from stochastic amplifications, it
has not been understood how they arise from the solutions of the model.

We begin with a general formulation of discrete state-space two-dimensional
stochastic PPF models and their macroscopic limit, using the method of
Kurtz [10], an approach for developing SDE models which parallels the Van
Kampen [9] system-size expansion. Assuming that a limit cycle solution
exists in the macroscopic limit, we show that the stochastic fluctuations can
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be written as a linear diffusion equation with time-dependent drift and dif-
fusion coefficients. We use the approach of Baxendale and Greenwood [50]
to obtain an approximate solution of the linear stochastic model. First, we
re-formulate the problem using a series of transformations similar to those
of Baxendale and Greenwood [50] but for time-varying coefficients. In one
of these transformations, we apply Floquet theory [52].

We find that when the Floquet exponents are a complex-conjugate pair
with negative real part and the perturbation rotates more quickly than it de-
cays, the stochastic PPF model can approximated by a standard OU process
multiplied by periodic matrices carrying the response frequency predicted
by Floquet theory and the limit cycle frequency. Moreover, the process is
amplified by the ratio of a time-averaged standard deviation from the time-
varying co-variance matrix and the square-root of the magnitude of the real
part of the complex-valued Floquet exponent.

We illustrate our approximation result using a linear harmonic oscillator
model with one-dimensional noise. We compare the power spectral densities
(PSDs) of the exact and approximate solutions computed numerically, for
various forcing amplitudes and noise levels. By considering a simple case
of the model and using a fundamental matrix solution that contains the
well-studied Mathieu functions [190], we provide further insight into the
approximate solution. For instance, in Section 4.4, we compute stochastic
differential equations for the amplitude and phase processes. In Section
4.5, we apply to a stochastic epidemic model with seasonal forcing, in the
context of a host-pathogen model for avian influenza with time-dependent
environmental transmission.

This chapter is organized as follows. In Section 2, we present the model
and its assumptions, and derive an expression for the linearisation around
its limit cycle. This fluctuation process is a stochastic PPF model. We
derive in Section 3 a useful approximation to the stochastic PPF model of
Section 2. This explicit form of the solution of the system that allows us to
tease apart the effects of stochasticity and periodic forcing. In Section 4, we
illustrate our approximation technique with a parametrically forced linear
oscillator model with noise. In Section 5 is an example of the applicability
of the approximation to an avian flu model with demographic stochasticity
and seasonal forcing. Finally, further analysis and discussion of theoreti-
cal results and the significance of the approximation are in Section 6 with
emphasis on how the approach can shed light on fluctuations observed in
epidemic models.
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4.2 A periodically parametrically forced (PPF)
Markov model

4.2.1 Description

We consider a continuous-time Z2-valued Markov process X(t) =
(X1(t), X2(t))T with transition rates, or jump rates, f (r)(X(t), t) where r ∈
R2 ranges over a set of possible jumps between pairs of integers. These rates
explicitly depend on time t. Following Kurtz [10], we write the process X(t)
as

X(t) = X(0) +
∑
r

rN (r)(t), (4.1)

where N (r)(t) is the number of jumps of type r jumps within the time
interval [0, t]. Here N (r)(t) is a counting process with rate f (r)(X(t), t) and
N (r)(t)−

∫ t
0 f

(r)(X(s), s) ds is a martingale and this implies that

N (r)(t) = Ψ(r)

(∫ t

0
f (r)(X(s), s) ds

)
, (4.2)

where Ψ(r)(u) are independent, unit Poisson processes with u =
∫ t

0 f
(r)(X(s), s) ds =

E[N (r)(t)] (Section 10.4 of Kurtz [53]).
Suppose that X1(t) + X2(t) = N where N is constant for all t ≥ 0.

Combining (4.2) to (4.1), we write the scaled process XN (t) ≡ X(t)
N as

XN (t) = XN (0) +
∑
r

r

N
Ψ(r)

(∫ t

0
Nf (r)(XN (s), s) ds

)
. (4.3)

The integrand in (4.3) represents stochastic rates in density-dependent
processes. In this thesis, the separate dependence on the time variable in
the jump rate will be a periodic parametric forcing.

Using essentially the proof of Kurtz [10], we see that the diffusion ap-
proximation of (4.3) can be written similarly as

X̃N (t) = X̃N (0) +
∑
r

r

N
B(r)

(∫ t

0
Nf (r)(X̃N (s), s) ds

)
, (4.4)

where B(r)(t) = W (r)(t)+t and W (r)(t) are independent, standard Brownian
motion (Wiener process). Hence, (4.4) can be written as the Itô equation
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X̃N (t) = X̃N (0) +

∫ t

0
F(X̃N (s), s) ds+

∑
r

r√
N

(∫ t

0

√
f (r)(X̃N (s), s) dW (r)(s)

)
,

(4.5)

where F(·) =
∑

r rf (r)(·).
The process (4.5), in more compact form, is

dX̃N (t) = F(X̃N (t), t) dt+
1√
N

C(X̃N (t), t) dW(t). (4.6)

Here C(X̃N (t), t) is a 2×2 matrix that is obtained by taking the square-
root of the covariance matrix function defined by [Vij ] =

∑
r rirjf

(r)(X̃N (t), t).
The vector F ∈ R2 represents the deterministic dynamics of the macroscopic
limit for (4.6) and W(t) is a two-dimensional Brownian motion.

As N → ∞, the process X̃N (t) approaches a macroscopic limit φ(t)
satisfying the two-dimensional ODE

φ̇ = F(φ(t), t) ≡ F(φ(t); θ(t)). (4.7)

In (4.7), the notation θ(t) appears in the re-written form of F(φ(t), t) to
indicate that the vector-field F varies with t explicitly because a parameter
that periodically varies with time is introduced. Hence, we refer to (4.7) as
periodically parametrically forced (PPF) model.

Using the same argument as Kurtz [10], by the Law of Large Numbers
for Ψ(r) under the assumption that F(·) is Lipschitz and as a consequence
of the central limit theorem, it follows that:

XN (t) = φ(t) +O
(

1√
N

)
. (4.8)

Since XN (t) ≈ X̃N (t), we have

X̃N (t) ≈ φ(t) +O
(

1√
N

)
≡ φ(t) +

1√
N
ξ(t). (4.9)

The process ξ(t) defined in (4.9) represents the random fluctuations
around the macroscopic limit φ(t). Analysis of this process when φ(t) has a
stable fixed point is the common theme in studies on sustained oscillations
around this fixed point observed in stochastic simulations of various popu-
lation models [32, 33, 189]. In this chapter, we study the behaviour of ξ(t)
when φ(t) has a stable limit cycle.
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4.2.2 Stochastic fluctuations around the limit cycle solution

Existing work suggests that models of the form (4.7) may have a stable
limit cycle [33, 191]. In this section, we derive a stochastic differential equa-
tion (SDE) for the process that describes the stochastic fluctuations around
a stable limit cycle where it exists. Let us assume that the system (4.7) has
a stable limit cycle solution L(t) with period TLC .

For large t, keeping in mind that N is also large and using (4.9), we can
replace φ(t) by L(t) and obtain:

X̃N (t) ≈ L(t) +
1√
N
ξ(t). (4.10)

We substitute (4.10) into F and C in (4.6) and linearise them around the
limit cycle L(t) to obtain

F(X̃N (t), t) ≈ F

(
L(t) +

1√
N
ξ(t), t

)
≈ F(L(t), t) +

1√
N

DF(L(t), t) ξ(t),

and C(X̃N (t), t) ≈ C(L(t), t),

(4.11)

where

DF(L(t), t) =

[
∂F1
∂φ1

∂F1
∂φ2

∂F2
∂φ1

∂F2
∂φ2

]∣∣∣∣∣
φ(t)=L(t)

≡ A(t), (4.12)

i.e. the Jacobian of F with respect to the first variable evaluated at L(t). The
matrix (4.12) carries the forcing frequency embedded in the time-periodic
forcing parameter θ(t) and the frequency of the limit cycle L(t).

We integrate (4.6) and substitute (4.10) and (4.11) into X̃N (t), F and
C, respectively to obtain

L(t) +
1√
N
ξ(t) ≈ L(0) +

1√
N
ξ(0) +

∫ t

0
F(L(s), s) ds

+
1√
N

∫ t

0
DF(L(s), s) ξ(s) ds

+
1√
N

∫ t

0
C(L(s), s) dW(s).

(4.13)
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Since L(t) satisfies (4.7),

L(t)− L(0) =

∫ t

0
F(L(s), s) ds, (4.14)

and. writing C(L(s), s) = C(s), (4.13) simplifies to,

ξ(t) = ξ(0) +

∫ t

0
A(s) ξ(s) ds+

∫ t

0
C(s) dW(s). (4.15)

In differential form,

dξ(t) = A(t)ξ(t) dt+ C(t) dW(t). (4.16)

We now refer to (4.16) as the “linearisation” of the stochastic PPF model
(4.6). It is an equation of motion for the fluctuations ξ(t), about the de-
terministic trajectory L(t). In physics language, such an equation is known
as a linear Langevin equation, which can be obtained by means of a Van
Kampen [9] system-size expansion as in Black and McKane [191].

Consider (4.16) in the absence of noise, i.e. when C(t) = 0. The remain-
ing term describes the behaviour of the system when perturbed away from
the limit cycle L(t). We call this behaviour the response of the system to a
deterministic perturbation. We expect this response to exhibit damped os-
cillations with a frequency that is not necessarily the same as the frequency
of the limit cycle. We call this new frequency the response frequency.

Simulations of systems of the form (4.16) with A(t) given by (4.12)
applied to disease and population dynamics produce sustained oscillations
[11, 33, 44, 189]. The nature of the oscillations described by ξ(t) has been
studied using the power spectral density (PSD), i.e. the distribution of
frequencies in their stochastic simulations. The PSD of ξ(t) in specific ex-
amples [189, 191] consistently shows a dominant peak at the imaginary part
of complex Floquet exponents associated to the limit cycle and two smaller
peaks at frequencies equal to the sum and difference of the imaginary part
of these Floquet exponents and the limit cycle frequency.

The nature of the fluctuation in (4.16) has been analyzed using Floquet
theory [52], which is useful when establishing the stability of a limit cycle.
For example, Boland et al. [189] showed that stochastic noise gives rise to
large-amplitude, coherent sustained oscillations for systems with stable limit
cycles having complex Floquet multipliers. On the other hand, Black [11]
developed an analytic tool based on Floquet quantities to predict the pe-
riodicity in oscillations produced by a stochastic SIR model with seasonal
forcing. However, it remains to show how the interaction of the stochastic
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noise and parametric forcing produce large-amplitude oscillations that are
sustained over time. Moreover, the differences between the characteristics
of the fluctuations arising from a stochastic PPF model and an unforced
stochastic model remains unclear. In the next section, we derive an approx-
imate form of ξ(t) which makes apparent the source of the PSD frequencies
found by simulation in Boland et al. [189], Black and McKane [191].

4.3 The approximation

The solution ξ(t) of the SDE (4.16) fluctuates at a rate that is in-
fluenced by parametric forcing and by the limit cycle embedded in A(t),
and also varies according to Brownian noise with diffusion matrix C(t) that,
again, depends on the forcing parameter θ(t).

Clearly, it is not possible to separate the roles of stochasticity and of
parametric forcing by simply examining the numerical simulations of (4.16).
Here we develop an approximation that allows us to separate the roles of
stochasticity and forcing in a stochastic PPF model whose deterministic
analogue has a limit cycle solution.

4.3.1 Transformations

Our starting point is the system of SDEs defined by (4.16) where
φ(t) in (4.7) has a limit cycle. We apply a series of transformations. First,
we re-write (4.16), for brevity, as:

dξt = Atξt dt+ Ct dWt, (4.17)

The subscript means that each variable is a function of t. Let T be the
period of A(t).

We can see from (4.17) that when Ct is the zero matrix, we obtain a
linear ODE system with T -periodic coefficient matrix A(t). Let us consider
the system

ẋ = A(t)x, x(t) ∈ R2. (4.18)

One can think of (4.18) as resulting from linearising (4.7) about the
limit cycle solution L(t). In other words, x(t) is a perturbation around
L(t) whose dynamics is governed by (4.18). Now suppose that x1(t) and
x2(t) are linearly independent vector solutions of (4.18), then the matrix
Φ(t) = [x1 x2] is called a fundamental matrix solution of
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Φ̇ = A(t)Φ. (4.19)

According to Floquet theory [52], if Φ(t) is a fundamental matrix so-
lution for (4.18) so is Φ(t + T ) and there exists a constant matrix B that
satisfies the relation Φ(t+T ) = Φ(t)B. The eigenvalues of B, which we de-
note here as ρj for j = 1, 2, are called the Floquet multipliers. The Floquet
exponents are µj = ln ρj/T . If their real parts are both negative, then the
limit cycle L(t) is stable. Since B = Φ(t)−1Φ(t+T ) is constant in t, a simple
way of expressing this matrix is by putting t = 0 so that B = Φ(0)−1Φ(T ).
One can choose the principal fundamental matrix solution, i.e. Φ(0) = I, so
that the Floquet multipliers are the eigenvalues of B = Φ(T ).

Given ρj and µj , according to Floquet theory, there exists a T -periodic
function p(t) ∈ R2 such that x(t) = diag[eµ1t, eµ2t]·p(t). Thus, the principal
fundamental matrix Φ0(t) for (4.18) has the form

Φ0(t) = P0(t)Y0(t), (4.20)

where the nonsingular 2×2 matrix P0(t) satisfies P0(t+T ) = P0(t), ∀t and
Y0(t) = diag[eµ1t eµ2t]. Moreover, one sees that Y0(t) satisfies the matrix
differential equation with constant coefficients of the form

Ẏ0 = D0Y0,

with D0 = diag[µ1, µ2].
Since the limit cycle L(t) is stable, then the solution of (4.18) has damped

oscillations, which implies that we have complex-valued Floquet exponents
with Re{µj} < 0. As a result, the solutions Φ0(t) are complex-valued. We
used these complex-valued Φ0(t) to construct linearly independent, real-
valued solutions for (4.19).

As in Grimshaw [52], if we suppose that µ and µ̄ are complex- conjugate
pair, then µ = −λ+ iω (for λ, ω > 0) where |ρ| = e−λT and arg ρ = ωT , and
p(t) = q(t) + ir(t), where q(t), r(t) ∈ R2 are T -periodic, then the real and
imaginary parts of eµtp(t),

Re{eµtp(t)} = e−λtq(t) cosωt− e−λtr(t) sinωt,

Im{eµtp(t))} = e−λtq(t) sinωt+ e−λtr(t) cosωt,
(4.21)

form the real-valued fundamental matrix solution for (4.19). Hence, we can
rewrite Φ0(t) as a real-valued solution
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Φ0(t) = [Re{eµtp(t)}, Im{eµtp(t)}],

= [q(t) r(t)]︸ ︷︷ ︸
Q(t)

e−λt
[

cosωt sinωt
− sinωt cosωt

]
︸ ︷︷ ︸

Y(t)

. (4.22)

We see from (4.22) that the matrix P0(t) in (4.20) can be written as the
invertible periodic matrix Q(t) = [q(t) r(t)] and

Y(t) ≡ e−λtR−ωt, (4.23)

where Rθ is the rotation matrix. Note that Q(t) has period T . On the other
hand, Y(t) comes from the ODE (4.18) whose period is 2π/ω not necessarily
equal to T . Additionally, Y(t) satisfies the equation

Ẏ = ΛY where Λ =

[
−λ ω
−ω −λ

]
.

With this information about Φ0, the fundamental matrix solution of the
deterministic equation (4.19), we go back to the stochastic equation (4.17).
Let us write ξ(t) = Q(t)y(t) in (4.17). Since y(t) is a stochastic process, we
describe its dynamics using Itô calculus. By Itô’s formula, we have

dy = Q̇−1Qy dt+ Q−1AQy dt+ Q−1C dW. (4.24)

We wish to simplify the SDE (4.24) so that it is of the form

dy = Λy dt + Q−1C dW. (4.25)

Denote by [Q(t)]ij and [Q−1(t)]jk (for i, j, k = 1, 2) the components of
Q(t) and Q−1(t). For every t,

2∑
j=1

[Q]ij [Q
−1]jk = δik, (4.26)

where δik is the Kronecker delta. The time derivative of (4.26) gives us

2∑
j=1

[
[Q]ij

(
d

dt
[Q−1]jk

)
+

(
d

dt
[Q]ij

)
[Q−1]jk

]
= 0, (4.27)

which implies that
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2∑
j=1

[Q]ij

(
d

dt
[Q−1]jk

)
= −

2∑
j=1

(
d

dt
[Q]ij

)
[Q−1]jk. (4.28)

A shorthand form of (4.28) is:

[Q · Q̇−1]ik = −[Q̇ ·Q−1]ik. (4.29)

From (4.29), we conclude that Q · Q̇−1 = −Q̇ ·Q−1 and so,

Q̇−1 = −Q−1Q̇Q−1. (4.30)

Substituting (4.30) into (4.24), we have

dy = Q−1(AQ− Q̇)y dt+ Q−1C dW. (4.31)

In (4.22), we see that

Q(t) = Φ0(t)Y−1(t) = Φ0(t)eλtRωt. (4.32)

It follows that

Q̇ = Φ̇0e
λtRωt + λΦ0e

λtRωt + eλtΦ0Ṙωt. (4.33)

Define the notation R̃ωt by

Ṙωt = ω

[
− sinωt − cosωt
cosωt − sinωt

]
≡ ωR̃ωt. (4.34)

From (4.33), (4.34), (4.22), (4.19), (4.23), and simplifying, we obtain

Q̇ = (A + λI)Q + ωeλtΦ0R̃. (4.35)

Knowing from (4.32) that

Φ0(t) = e−λtQ(t)R−ωt (4.36)

and writing ωRωtR̃ =

[
0 −ω
ω 0

]
, (4.35) now reads

Q̇ = AQ−QΛ. (4.37)

Therefore, using (4.37), the SDE system (4.31) simplifies to (4.25) to which
the proof of Baxendale and Greenwood [50] applies with some minor changes.

Following Baxendale and Greenwood [50], we apply three changes of
variables to (4.25). First, we write y(t) = R−ωtz(t) to simplify the drift

59



4.3. The approximation

term. Again, by Itô’s formula, the two-dimensional SDE for z(t) is found to
be:

dz = −λz dt+ RωtQ
−1C dW. (4.38)

This means that

z(t) = z(0)− λ
∫ t

0
z(s) ds+

∫ t

0
RωsQ

−1(s)C(s) dW(s). (4.39)

Rescaling time by replacing t by t/λ, (4.39) then reads:

z(t/λ) = z(0)− λ
∫ t/λ

0
z(s) ds+

∫ t/λ

0
RωsQ

−1(s)C(s) dW(s). (4.40)

We apply the substitution s = u/λ =⇒ ds = du/λ to (4.40) and obtain

z(t/λ)− z(0) = −
∫ t

0
z(u/λ) du+

∫ t

0
Rωu/λQ

−1(u/λ)C(u/λ) dW(u/λ).

(4.41)
Let C̃t = Q−1(t)C(t). Define

σ2(t) =
1

2
Tr
(
C̃tC̃

∗
t

)
(4.42)

and

σ̄2 =
1

T

∫ T

0
σ2(t) dt. (4.43)

By defining U(t) =
√
λz(t/λ)/σ̄, Equation (4.41) becomes

U(t)−U(0) = −
∫ t

0
U(u) du+

∫ t

0

√
λ

σ̄
Rωu/λQ

−1(u/λ)C(u/λ) dW(u/λ).

(4.44)
Using the scaling property of Brownian motion, i.e. W̃(t) =

√
λW(t/λ),

and the notation D(t/λ) = 1
σ̄Q−1(t/λ)C(t/λ), (4.44) takes the differential

form

dU(t) = −U(t) dt+ Rωt/λD(u/λ) dW̃(t). (4.45)

We note that (4.45) takes a similar form as with the SDE found in Eq. (15)
in Baxendale and Greenwood [50], which was compared to the bivariate
standard Ornstein-Uhlenbeck process.

Using the Martingale Problem method, Baxendale and Greenwood [50]
proved that, on any fixed bounded time interval [0, τ ], the distribution of
Ũ(t) satisfying the equation

dŨ(t) = −Ũ(t) dt+ Rωt/λD dW̃(t), where Tr (DD∗) = 2 (4.46)
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converges to the distribution of the bivariate standard Ornstein-Uhlenbeck
process S(t) generated by the SDE

dS(t) = −S(t) dt+ dW(t) (4.47)

as λ/ω → 0. In their context, D is a constant matrix.
We check that in our context where D is a function of t, limλ→0 Tr(DD∗) =

2 holds for (4.45). Observe that

Tr(Dt/λD
∗
t/λ) =

1

σ̄2
Tr
(
C̃t/λC̃

∗
t/λ

)
=

2σ2(t/λ)

σ̄2
. (4.48)

Since σ2(t/λ) is periodic, its frequency increases as λ → 0. This implies
that in the limit, σ2(t/λ) can be approximated by its time-average over the
interval [0, T ], i.e. σ̄2. Hence, the Tr(Dt/λD

∗
t/λ) → 2 as λ → 0, and the

theorem of Baxendale and Greenwood [50] applies to (4.45). We conclude
that the process U(t) converges weakly to the process S(t).

4.3.2 Result

The approximate process

We conclude that the solution ξ(t) of (4.17) when λ� ω can be approx-
imated as follows:

ξ(t) = Q(t)y(t) = Q(t)R−ωtz(t) =
σ̄√
λ

Q(t)R−ωtUλt

≈ σ̄√
λ

Q(t)R−ωtSλt ≡ ξapp(t).
(4.49)

We see from (4.49) that the stochastic fluctuations ξ(t) around the limit
cycle oscillate at frequencies which are combinations of the frequency of
the drift coefficient A(t) and the frequency ω, which arise already from the
deterministic system (4.18). Note that the frequency ω is the imaginary
part of the Floquet exponents associated with the deterministic portion of
(4.17). The typical amplitude of the fluctuation ξ(t) depends on the factor
σ̄/
√
λ, where σ̄ is square-root of the average variance σ2(t) over the time

interval [0, T ] and λ is the magnitude of the real part of the complex Floquet
exponents.
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4.3. The approximation

The phase and amplitude processes

We write R−ωtSλt in polar form to see the role of the two-dimensional
standard Ornstein-Uhlenbeck process Sλt appearing in (4.49) and obtain

ξapp(t) =
σ̄√
λ

Q(t)Zλt

[
cos(ωt− ϕλt)
sin(ωt− ϕλt)

]
, (4.50)

where Zλt = |Sλt| and ϕλt = arg[S1(λt) + iS2(λt)]. In (4.50), we have a
well-defined phase process ϕ(t) and a radial process Z(t) which are known
to satisfy the following stochastic diffential equations [46]:

dZ(t) =

[
1

2Z(t)
− Z(t)

]
dt+ dWZ(t),

dϕ(t) =
1

Z(t)
dWϕ(t),

(4.51)

where WZ(t) and Wϕ(t) are independent Wiener processes: WZ(t) is a stan-
dard Brownian motion and Wϕ(t) is a Brownian motion run on a unit circle.
Note here that in the context of (4.50), Z(t) and ϕ(t) in (4.51) should be
run at a rate λ. Hence, the amplitude of ξapp(t) does not depend only on
the scalar factor and the magnitude of the T -periodic matrix Q0(t) but is
also modulated by the two-dimensional slowly varying standard Ornstein-
Uhlenbeck process S(λt). Furthermore, the process Wϕ(t) is responsible for
the random phase slips (instantaneous change in the phase of an oscilla-
tor) affecting the deterministic phase of the cycles produced by Q(t)R−ωt.
From (4.51), we observe that when the radial process Z(t) is large for a
random time interval, the phase process moves at a slow rate and so im-
plies that the phase process of ξ(t) predominantly follows Q(t)R−ωt in an
approximate sense. In this case, the radial process behaves much like an
Ornstein-Uhlenbeck process. On the other hand, the increments of ϕ(t)
become prominent when Z(t) is small.

The form of Q(t) and its consequence

At this point, we only know that Q(t) ∈ R2×2 is T -periodic, i.e. Q(t)
has the same period as A(t). When Q(t) have function entries that belong
to a class of smooth functions whose Fourier series coefficients decay rapidly
with increasing frequency index [192], then we can write

Q(t) ∼ Q0 + Q1 cos νt+ Q2 sin νt, (4.52)
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4.3. The approximation

where Q0,Q1, and Q2 are constant matrices of Fourier coefficients with
[Q0]ij > [Q1]ij > [Q2]ij for i, j = 1, 2 and ν = 2π/T . Thus,

Q(t)R−ωt ∼ Q0R−ωt + Q1R−ωt cos νt+ Q2R−ωt sin νt. (4.53)

Using product-to-sum trigonometric identities, we have

R−ωt cos νt =
1

2

[
cosψ+

t + cosψ−t sinψ+
t − sinψ−t

sinψ−t − sinψ+
t cosψ+

t + cosψ−t

]
(4.54)

and

R−ωt sin νt =
1

2

[
sinψ+

t + sinψ−t cosψ−t − cosψ+
t

cosψ+
t − cosψ−t sinψ+

t + sinψ−t

]
, (4.55)

where ψ±t = (ν±ω)t. Therefore, the entry of Q(t)R−ωt is a sum of sine and
cosine functions with frequencies ω and ν ± ω.

Given the form of Q(t) in (4.52), we let

Qk =

[
Q

(1,1)
k Q

(1,2)
k

Q
(2,1)
k Q

(2,2)
k

]
, k = 0, 1, 2 (4.56)

and rewrite (4.50) as

ξapp(t) =
σ̄√
λ
Zλt

[
r

(1)
0 cos Ψ01 + 1

2r
(1)
1

(
cos Ψ+

11 + cos Ψ−11

)
+ 1

2r
(1)
2

(
sin Ψ+

21 + sin Ψ−21

)
r

(2)
0 cos Ψ02 + 1

2r
(2)
1

(
cos Ψ+

12 + cos Ψ−12

)
+ 1

2r
(2)
2

(
sin Ψ+

22 + sin Ψ−22

)] ,
(4.57)

where

r
(j)
k =

√(
Q

(j,1)
k

)2
+
(
Q

(j,2)
k

)2
, (4.58)

θ
(j)
k = arctan

(
Q

(j,2)
k

Q
(j,1)
k

)
, (4.59)

Ψ0j = ωt− ϕλt − θj0, (4.60)

and

Ψ±ij = νt± ωt∓ ϕλt ∓ θ
(j)
i . (4.61)

In (4.57), with (4.58)-(4.61), we find that the approximate process ξapp(t)
representing the stochastic perturbation around the limit cycle is a linear
combination of sinusoidal functions whose central frequencies are ω and ν±
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4.4. Example: Driven harmonic oscillator with 1D noise

ω, which are determined from the deterministic matrix function Q(t)R−ωt.
Based on (4.60) and (4.61), each central frequency is perturbed by the slowly

varying stochastic phase process ϕλt and has θ
(j)
k , given by (4.59), as phase

shifts. Moreover, the amplitude of ξapp(t) in (4.57) is modulated by the
slowly varying amplitude process Zλt (as in (4.50)) and depends on the

constants r
(j)
k , which is given by (4.58). These constants are associated to

sinusoidal waves that determine the rotational dynamics of the process ξ(t).

From (4.58), we find that r
(j)
k is obtained from a sequence of decaying Fourier

coefficients and so we expect that the process ξ(t) predominantly rotates at
a central frequency ω, in an approximate sense.

In the following section, we will illustrate that ξ(t) ≈ ξapp(t) in an ex-
ample by verifying that their numerical power spectral densities (averaged
over many realizations) are in good agreement.

4.4 Example: Driven harmonic oscillator with
1D noise

Consider the stochastic PPF model:

dξ(t) = A(t)ξ(t) dt+ C(t) dW(t), where (4.62)

A(t) =

[
0 1
−k0 −b0(1 + b cos 2πat)

]
and C(t) =

[
0 0
0 σ0(1 + b cos 2πat)

]
.

(4.63)
Model (4.62) is linear in ξ(t) = [ξ1, ξ2]T and if we let x = ξ1, we can write
it as

ẍ+ k0ẋ+ b0(1 + b cos 2πat)x = σ0(1 + b cos 2πat)Ẇ . (4.64)

Equation (4.64) describes a harmonic oscillator which is driven by peri-
odic variation of one of its parameters at frequency a and is further affected
by a white noise whose variance depends on time and other parameters in
the model. This white noise acts as an external force applied to the oscil-
lator. In the model, the parameters affecting the frequency of the oscillator
are the forcing frequency (a) and amplitude (b).

In the absence of parametric forcing and noise, i.e. b = 0, σ0 = 0, (4.64)
is the well-known damped harmonic oscillator model. For the harmonic
oscillator system, the coefficient k0 represents the damping rate and ω0 =

64



4.4. Example: Driven harmonic oscillator with 1D noise

√
b0 is the oscillator’s angular frequency when it is not damped. A nonzero k0

implies that the harmonic oscillator is damped i.e., the oscillator’s amplitude
gradually goes to zero. In this case, the frequency of the oscillator does not
only depend on ω0 but also to the damping ratio ζ = k0/2

√
b0. In particular,

the frequency of a damped harmonic oscillator is given by ω1 = ω0

√
1− ζ2.

When k0 is zero, we recover the simple harmonic oscillator whose frequency
is ω0.

4.4.1 Power spectral density (PSD)

One aim of this work is to determine that the approximation is a good
description for the stochastic oscillations produced by (4.62) as represented
by the PSD for various values of the forcing amplitude b and noise level
σ0. Two main parameter regimes are considered here, namely when the
deterministic system is damped (k0 6= 0) or undamped (k0 = 0). We choose
these regimes because both can give rise to noisy but sustained oscillations.

We obtained 100 realizations of stochastic simulations and computed the
average power spectral density (PSD) numerically. We compare the PSD
outputs for different regimes and various levels of b and σ0 (See Figure 4.1).
We choose the forcing frequency to be a = 1. We compare these with the
PSD of the stochastic simulations (on average), based on the approxima-
tion (4.49). In Figure 4.1, there is a good agreement in the PSDs of the
approximate and exact solutions with respect to capturing the governing
frequencies of the process. The approximate process tends to give higher
PSD values than the exact process.

In the damped regime, the deterministic system displays decaying os-
cillations approaching to zero solution while in the undamped regime, the
system oscillates regularly at a frequency ω0 without damping. In both
regimes, the process ξ(t) have large PSD peaks at the system’s intrinsic fre-
quency ω0 indicating that the process’ dominant frequency is amplified by
stochastic and parametric forcing. The undamped regime however gives rise
to higher PSD values than the PSD values in the damped regime. Other
observed PSD structure is the broadening of PSD peaks which results from
the stochastic phase perturbations explained by the form of our approxima-
tion (4.49). The flattening of the PSDs in the right end indicates that the
process is comparable to the Ornstein-Uhlenbeck process.
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Figure 4.1: Numerical PSDs of the approximate (solid curves) and exact
(dashed curves) solutions of (4.62), given (a,b) damped and (c,d) undamped
regimes as defined in Section 4.4.1, obtained using forcing amplitudes (a,b)
b = 0.01 and (c,d) b = 0.5 for noise levels σ0 = 1 (gray curves) and σ0 = 5
(black curves). Other parameters are held fixed, namely a = 1, b0 = 2,k0 =
0.1 for underdamped case, and k0 = 0 for the undamped case.
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4.4. Example: Driven harmonic oscillator with 1D noise

4.4.2 Amplitude and phase as stochastic processes

We now apply the approximation to mathematically describe the ampli-
tude and phase of the stochastic fluctuations produced by (4.62),(4.63) in
terms of the model parameters. We use the fundamental matrix solution
Φ0(t) of the system

ẋ(t) =

[
0 1
−k0 −b0(1 + b cos 2πat)

]
x(t) (4.65)

and write the approximation as

ξapp(t) =
σ̄√
λ
eλtΦ0(t)Sλt. (4.66)

Here (4.66) is obtained by re-writing ξapp(t) in (4.49) using (4.36). Recall
that Φ0(t) is the principal fundamental matrix solution that satisfies (4.19).

We compute the fundamental matrix solution of (4.65) using DSolve
command in Mathematica [193] and obtain

Φ(t) = e−
1
2
k0t

[
C (α, q, x) S (α, q, x)

−k0
2 C (α, q, x) + aπC ′(α, q, x) −k0

2 S (α, q, x) + aπS ′(α, q, x)

]
,

(4.67)

where α =
4b0 − k2

0

4a2π2
, q =

bb0
2a2π2

, and x = aπt. The functions C and S are

known as Mathieu cosine and sine, respectively, which are unique solutions
to the Mathieu equation [194, 195] given by

d2y

dx2
+ [a− 2q cos (2x)]y = 0.

The functions C ′ and S ′ are derivatives with respect to x.
For simplicity, we consider the case when the forcing amplitude is small,

i.e. b ≈ 0, so that q is small. In theory, when q is small, we have C (α, q, x) ≈
cos (
√
αx) and S (α, q, x) ≈ sin (

√
αx) /

√
α [190]. Hence, assuming that the

forcing amplitude b is small with all other parameters fixed, it follows that
q � 1,

C (α, q, x) ≈ cos

(
1

2
t
√

4b0 − k2
0

)
, and

S (α, q, x) ≈ 2aπ√
4b0 − k2

0

sin

(
1

2
t
√

4b0 − k2
0

)
.
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4.4. Example: Driven harmonic oscillator with 1D noise

Define θ = 1
2

√
4b0 − k2

0, then C ′ = −θ sin(θt)/aπ and S ′ = cos(θt). There-
fore, for small forcing amplitude, the fundamental matrix solution of (4.65)
reads

Φ(t) = e−
1
2
k0t

[
cos(θt) aπ

θ sin(θt)

−k0
2 cos(θt)− θ sin(θt) −aπk0

2θ sin(θt) + aπ cos(θt)

]
.

(4.68)
We hence construct the principal fundamental matrix solution of (4.65)
using Φ0(t) = Φ(t)Φ−1(0) and obtain

Φ0(t) = e−
1
2
k0t

[
cos(θt) + k0

2θ sin(θt) 1
θ sin(θt)(

−θ − k20
4θ

)
sin(θt) −k0

2θ sin(θt) + cos(θt)

]
. (4.69)

The real and imaginary part of the complex Floquet exponents −λ ± iω,
computed by taking the eigenvalues of Φ0(T ), are λ = − cos θT and ω =
| sin θT |, respectively. To guarantee that λ > 0 and λ � ω, we must have
that π/2T < θ < 3π/4T or 5π/4T < θ ≤ 3π/2T .

Therefore, for appropriate θ and by (4.66), the approximate solution for
(4.62) when b� 1 is given by

ξ(t) ≈ ξapp(t)

=
σ̄√
λ
e(λ−k0/2)t ×[
cos(θt) + k0

2θ sin(θt) 1
θ sin(θt)(

−θ − k20
4θ

)
sin(θt) −k0

2θ sin(θt) + cos(θt)

] [
S1(λt)
S2(λt)

]
.

(4.70)

In (4.70), we have ξapp(t) expressed as an explicit SDE system which
has a unique solution. We write (4.70) in terms of phase-shifted sine and
cosine to characterise the amplitude and phase of the approximate process.
Let S1(λt) = Ẑλt cos ϕ̂λt and S2(λt) = θẐλt sin ϕ̂λt where Ẑ(λt) = |S1(λt) +
i1
θS2(λt)| and ϕ̂(λt) = arg{S1(λt) + i1

θS2(λt)}. By expanding (4.70) and
using formulas for products of sine and cosine functions, we have

ξapp(t) =
σ̄√
λ
e

(
λ− k0

2

)
t
Ẑλt ×[
cos Θ−t + k0

4θ sin Θ+
t + k0

4θ sin Θ−t

−k0
4 cos Θ−t + k0

4 cos Θ+
t −

k20
8θ sin Θ+

t + (θ − k20
8θ ) sin Θ−

]
,

(4.71)

where Θ±t = θt± ϕ̂λt.
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The amplitude of ξapp(t) varies stochastically in a slow manner due to
the radial process Ẑλt. On the other hand, the stochastic process rotates at
a dominant angular frequency θ and has a phase that varies according to
the stochastic perturbation given by ϕ̂λt.

We can take a further step in our analysis by obtaining the stochastic
dynamics of the radial process Ẑ(t) and phase process ϕ̂(t). To do this, we
consider

log

(
S1(t) + i

1

θ
S2(t)

)
= log Ẑ(t) + iϕ̂(t). (4.72)

We then apply the Itô formula to obtain

d
(

log Ẑ + iϕ̂
)

=
d(S1 + iS2/θ)

S1 + iS2/θ
− 1

2

[d(S1 + iS2/θ)]
2

(S1 + iS2/θ)2
. (4.73)

By expanding the dSi terms in (4.73) using (4.47) and noting that dW1(t)dW2(t) =
0, dW 2

i (t) = dt, and dWi(t)dt → 0 faster than dW 2
i (t) as dt → 0, we find

that (4.73) simplifies to

d
(

log Ẑ + iϕ̂
)

= −(S1 + iS2/θ)

S1 + iS2/θ
dt+

dW1 + idW2/θ

S1 + iS2/θ
− (1− 1/θ)

2(S1 + iS2/θ)2
dt.

(4.74)
We write S1 + iS2/θ = Ẑeiϕ̂ and group together appropriate terms in (4.74)
so that we arrive at

d
(

log Ẑ + iϕ̂
)

=

(
−1−

(
θ − 1

2θ

)
cos ϕ̂+ i sin ϕ̂

Ẑ2

)
dt

+
(dW1 + idW2/θ)(cos ϕ̂+ i sin ϕ̂)

Ẑ
.

(4.75)

We now take the real part of (4.75) and apply the Itô formula to ˆZ(t) =

elog Ẑ(t) and obtain the SDE for Ẑ(t), which is

dẐ(t) =

(
1− θ

2θẐ(t)
cos ϕ̂(t)− Ẑ(t)

)
dt+ dWẐ(t)

+

(
1

2Ẑ(t)
cos2 ϕ̂(t) +

1

2Ẑ(t)θ2
sin2 ϕ̂(t)

)
dt.

(4.76)

The imaginary part of (4.75) gives the SDE for the phase process ϕ̂(t), which
is

dϕ̂(t) =
1− θ

2θẐ2(t)
sin ϕ̂ dt+

1

Ẑ(t)
dWϕ̂(t). (4.77)
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The scalar Wiener processes dWẐ and dWϕ̂ are independent of each

other. As a check, we can set θ = 1 and find that the radial process Ẑ(t) in
(4.76) and phase process ϕ̂(t) in (4.77) satisfy (4.51). In this example, we
can see from (4.76) and (4.77) that the angular frequency θ, which depends
on the damping rate k0 and the parameter b0, plays an important role in
describing the stochastic dynamics of Ẑ(t) and ϕ̂(t). For instance when
θ � 1, we observe that in a random time interval, the phase ϕ̂(t) tends to
be more influenced by its drift term whenever Ẑ(t) is small. This behaviour
is not observed in the phase process described in (4.51).

4.5 Application: an avian flu model

Stochastic epidemic models have been used to capture the qualitative
pattern of recurrent epidemics. Some of these stochastic models incorporate
both demographic stochasticity and periodic parametric forcing [33, 37, 189].
These stochastic PPF model account for the seasonal but stochastic nature
of the epidemics. In this section, we describe a stochastic model for avian
flu that takes into account seasonal environmental transmission and show
how our analytic tool can be applied.

4.5.1 Stochastic avian flu model with seasonal forcing

A simple stochastic avian flu model was recently developed by Wang
et al. [1] and further by Mata et al. [196]. There are three stochastic pro-
cesses representing the susceptible and infected host populations, and the
virus concentration in the environment. In the model, the disease is as-
sumed to be transmitted via direct contact by infected host to a suscepti-
ble individual (direct transmission) and/or via ingestion of virus particles
from a contaminated aquatic habitat by a susceptible host (environmental
transmission). The model reveals that the dominant outbreak period of the
disease varies with environmental transmission. Motivated by this result
and given that there is biological evidence supporting seasonal variation in
environmental transmission, e.g. virus persistence in cold water [93, 169], we
explore here the dynamics of the stochastic avian flu model in the presence
of seasonal forcing. The system of SDEs for the unforced stochastic avian flu
model was originally derived using a Van Kampen [9] system-size expansion
[1] and has been developed alternatively using Kurtz [10] method [196]. We
obtain a seasonally forced stochastic model for avian influenza by replacing
the constant environmental transmission rate parameter ρ, in the unforced
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system, with a time-periodic sinusoidal function (i.e. ρ(t) = ρ0(1+b cos 2πt))
given by

ds = (−βsi− ρ(t)sv + µ(1− s)) dt+
1√
N

(−G1 dW1 +G2 dW2 +G3 dW3) ,

di = (βsi+ ρ(t)sv − (µ+ γ)i) dt+
1√
N

(G1 dW1 −G3 dW3 −G4 dW4) ,

dv = (kτi+ δv − ηv) dt+
1√
NV

(G5 dW5 −G6 dW6) ,

(4.78)
where

G1 =
√
βsi+ ρ(t)sv, G2 =

√
µ(1− s− i), G3 =

√
µi, G4 =

√
γi,

G5 =
√
kτi+ δv, and G6 =

√
ηv.

(4.79)

The stochastic processes s(t), i(t), and v(t) represent proportions of suscepti-
ble, infected, and virus populations, respectively. Infection occurs by direct
transmission with a constant rate β and by environmental transmission with
a time-periodic rate ρ(t). The environmental transmission rate varies around
a reference rate ρ0 in a sinusoidal manner whose intensity is represented by
a forcing amplitude b. Note that the variation is expressed in terms of a
cosine function with one-year period. Viruses are more persistent and so
are likely to be transmitted during the winter season, i.e. the beginning and
end of the year. For simplicity, a host is assumed to be born and to die at
the same constant rate µ. Infected individuals recover at the rate γ. The
virus population in the environment increases with the shedding rate τ of
infected ducks and produced from an alternate population of infected birds
at a rate δ. The population of the virus decreases with the clearance rate η.
The host population is also assumed to be constant with size N while the
viral reference concentration is represented by a constant parameter NV . In
the model (4.78), the scaling parameter k = N/NV resulted from the deriva-
tion of the SDE, and the Wiener process Wi(t) whose standard deviation is
Gj . The Wiener processes are independent of each other. Note that G1 is
time-periodic since it depends on ρ(t). Using equivalences among Brownian
motions [48], (4.78) can be written as

dx(t) = F(x(t), t) dt+ DC(x(t)), t) dW(t), (4.80)
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where x(t) = (s(t), i(t), v(t)), D = diag
(

1√
N
, 1√

N
, 1√

NV

)
, W(t) ∈ R3 repre-

sent independent Wiener processes,

F(x, t) =

−βsi− ρ(t)sv + µ(1− s)
βsi+ ρ(t)sv − (µ+ γ)i

kτi+ δv − ηv


and

C(x, t) =

C11 C12 0
C21 C22 0
0 0 C33

1/2

, (4.81)

for C11 = βsi+ ρ(t)sv + µ(1− s), C12 = C21 = −βsi− ρ(t)sv − µi,
C22 = βsi+ ρsv + (µ+ γ)i, and C33 = kτi+ δv + ηv.

4.5.2 Deterministic dynamics

As N,NV →∞, (4.78) gives rise to the macroscopic limit

φ̇1 = −βφ1φ2 − ρ(t)φ1ψ + µ(1− φ1),

φ̇2 = βφ1φ2 + ρ(t)φ1ψ − (µ+ γ)φ2,

ψ̇ = κτφ2 + δψ − ηψ.
(4.82)

The avian flu SIR-V deterministic system (4.82) exhibits dynamics that
is similar to an SIR model with time-dependent forcing studied by Black and
McKane [191]. In the absence of forcing, i.e. b = 0, the avian flu system,
using appropriate avian flu parameter values (Table 4.1), exhibits damped
oscillations. On the other hand, when forcing is present (e.g. b = 1), a
stable limit cycle is observed (See Figure 4.2).

The existence of the stable limit cycle generated by (4.82), induced by
seasonal forcing, implies that the deterministic system (4.82) displays regular
oscillations for large t. In fact, the amplitude of these oscillations increases
as the intensity of forcing is increased (Figure 4.3). The frequency of the
limit cycle is, in this example, equal to the forcing frequency a = 1.

72



4.5. Application: an avian flu model

0.6
0.03

0.65

0.7

0.33

ψ

0.025

0.75

φ
2

0.8

0.32

φ
1

0.85

0.02
0.31

0.015 0.3

(a) (b)

Figure 4.2: Deterministic dynamics when (a) b = 0 and (b) b = 1. The
initial condition is indicated by a black arrow. The initial conditions used
are: (φ1, φ2, ψ) = (0.3295, 0.0298, 0.6935).

Figure 4.3: Limit cycle generated from the solution of (4.82) for different
values of the forcing amplitude b.
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4.5. Application: an avian flu model

4.5.3 Stochastic fluctuation around the limit cycle and its
approximation

We are interested in the stochastic fluctuation around the limit cycle
solution associated with the deterministic analogue of (4.78). Suppose that
(φ̄1, φ̄2, ψ̄) denotes the limit cycle solution of (4.78). The stochastic fluctu-
ations around (φ̄1, φ̄2, ψ̄) can be described as in Section 4.2 by the system
of SDEs given by

dξ(t) = A(t)ξ(t) dt+ C(t) dW(t), (4.83)

where

A(t) =

−βφ̄2 − ρ(t)ψ̄ − µ −βφ̄1 −ρ(t)φ̄1

−βφ̄2 βφ̄1 − µ− γ ρ(t)φ̄1

0 κτ δ − η

 , (4.84)

and

C(t) =

V11 V12 0
V21 V22 0
0 0 V33

1/2

, where

V11 = βφ̄1φ̄2 + ρ(t)φ̄1ψ̄ + µ(1− φ̄1),

V12 = V21 = −βφ̄1φ̄2 − ρ(t)φ̄1ψ̄ − µφ̄2,

V22 = βφ̄1φ̄2 + ρ(t)φ̄1ψ̄ + (µ+ γ)φ̄2, and

V33 = κτφ̄2 + δψ̄ + ηψ̄.

(4.85)

Here ξ and W take values in R3, and A,C take values in R3×3. Equations
(4.83)-(4.85) are obtained by linearising (4.80) around xLC(t) = (φ̄1, φ̄2, ψ̄)
using the substitution

x(t) = xLC(t) + Dξ(t),

where D = diag
(
N−1/2, N−1/2, N

−1/2
V

)
. Using avian flu parameter values

displayed in Table 4.1, we find that the drift and diffusion matrices are
periodic with period T = 1. We illustrate this point by plotting the values
of A11(t) and C11(t) in Figure 4.4.
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Figure 4.4: Computed values of (a) A11(t) and (b) C11(t) in (4.83)-(4.85).
The parameter values used are in Table 4.1. Each function has a periodic
behaviour with period equal to 1, the period of the limit cycle and the forcing
frequency.

Since A(t) in (4.83) is periodic for avian flu parameter values, we use
Floquet theory to determine the quantities needed to confirm that (4.83)
can be approximated using (4.49).

The Floquet matrix associated to the deterministic analogue of (4.83) is

B =

−0.0787 −1.3454 −0.0884
0.1208 0.0619 0.0043
2.6447 3.8381 0.2582

 . (4.86)

We compute the ratio of the natural logarithm of the eigenvalues of the
Floquet matrix B and the period of A(t) to obtain the Floquet exponents
which are −0.4967 ± 1.3714i and −8.1455. These quantities imply that a
deterministic perturbation in three-dimensional space damps toward a limit
cycle on a plane. The subspace where the limit cycle lies is spanned by
the eigenvectors of the Floquet matrix B corresponding to the complex
eigenvalues.

Now, we observe that the ratio of the decay rate and cycle frequency is
0.4969/1.3715 = 0.3622, which is significantly less than 1. Hence, one can
use (4.49) to make an approximate description of the stochastic process ξ(t)
satisfying (4.83).

Though we have limited tools to obtain an explicit form of the matrix
Q(t) in terms of avian flu parameters, it is still possible to describe the
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approximate dynamics of the stochastic fluctuations ξ(t) for the stochastic
avian flu model with seasonal forcing. In Mata et al. [196], we know that
without seasonal forcing, the stochastic fluctuation is drawn toward a plane
spanned by the eigenvectors associated by the complex eigenvalues of the
constant drift coefficient matrix. The fluctuations chiefly lie on this plane
and its dynamics follow a cyclic path modulated by a bi-variate standard
OU process. We expect the stochastic fluctuations in the seasonally forced
case, i.e. (4.83), to behave in a similar manner with slight modifications.
First, note that since the fluctuations are stochastic perturbations around
the limit cycle, the subspace where the fluctuations will be attracted to
is equivalent to a plane where the limit cycle lies. Second, the governing
frequencies of the stochastic fluctuations are determined by the periodicity
of Q(t) and the angular frequency identified using Floquet exponent (e.g.
1.3715). Finally, the amplitude of the fluctuations around the limit cycle
depends on the amplitude of the entries of Q(t), the decay rate of the deter-
ministic perturbation (e.g. 0.4969), and a time-averaged standard deviation.
Thus, based on approximation (4.49) and the previous analysis, the stochas-
tic population fluctuations in our avian flu system (4.78) satisfying (4.83)
must be a sum of a scaled one-dimensional OU process, and a product of
deterministic and a stochastic (i.e. slowly-varying bi-variate OU) processes.
The deterministic processes involve the interactions of (i) periodic trans-
formation (Q(t)), (ii) rotation (R−ωt), and ratio of time-averaged standard
deviation (σ̄) and square-root of the decay rate (

√
λ) of the deterministic

perturbation.

4.6 Discussion

Stochastic models with periodic parametric forcing are seen to produce a
limit cycle with noise in stochastic simulations [11, 26, 33]. We have shown
that the stochastic fluctuation around the limit cycle can be approximated
by a product of a scalar σ̄/

√
λ, a periodic matrix Q(t), a rotation matrix

R−ωt, and a slowly varying bivariate standard Ornstein-Uhlenbeck (OU)
process Sλt. The parameters λ, ω, and the matrix Q(t) arose from Floquet
theory applied to the solution of the deterministic analogue of the linear
SDEs with time-periodic coefficients. In particular, λ and ω are magnitudes
of the real and imaginary part of the Floquet exponents while Q(t) depends
on the forcing frequency a, which determines the periodicity of the deter-
ministic solution. In numerical PSDs generated by a model examples, i.e.,
the driven harmonic oscillator model with one-dimensional noise and the
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4.6. Discussion

avian flu model (not shown), we see that the approximate process describes
the exact process well in terms of the peak frequencies observed. The PSD
outputs show that stochasticity and parametric forcing result in a process
whose dominant frequency is close to the intrinsic Floquet frequency of the
deterministic analogue.

Linear SDE models as in (4.17) arise from systems that incorporate
parametric forcing and stochastic noise. Though in our example we only
assume one forcing parameter that is time-periodic, the approximation result
we derived here also applies to the case where there is more than one time-
periodic forcing parameter. The resulting approximate process in such a
case would have a complicated structure for the periodic matrix Q(t).

Our work differs from that of Baxendale and Greenwood [50] in that we
consider a diffusion process described by a linear SDE system with time-
periodic drift and diffusion coefficients. The mathematical structure of our
approximate process (4.49) is very similar to the approximate process in
Baxendale and Greenwood [50] but with a different interpretation of its fac-
tors. In this study, the approximate process is a perturbation process, due
to stochastic noise and parametric forcing, around a stable limit cycle. In
Baxendale and Greenwood [50], however, the approximate process is a per-
turbation process around a stable limit point. As a result, our approximate
process contains frequencies that depend on the limit cycle frequency, aside
from the intrinsic frequency of the deterministic analogue. Note that for
both types of approximate process, the description of sustained oscillations
contains a slowly varying bivariate standard OU process.

In our examples, we found that the interaction of stochasticity and para-
metric forcing can make hidden frequencies visible. When the intensity of
forcing is high and the stochastic noise level is sufficient, the process de-
scribed by (4.17) will have three main frequencies: (1) an intrinsic frequency
ω/2π, (2) the sum of the intrinsic frequency and the limit cycle frequency
(e.g. 1 + ω/2π), and (3) the difference of the limit cycle frequency and
the intrinsic frequency (e.g. 1− ω/2π). According to the approximate form
(4.49), we see that these frequencies all come from the product of Q(t)R−ωt,
which is related to the fundamental matrix solution associated with the de-
terministic analogue of the stochastic PPF model.

Given the approximate description of the sustained oscillations produced
by the simple stochastic PPF model, such as the driven harmonic oscillator
with noise and the stochastic avian flu model with seasonal forcing, we
arrive at the following conclusions. First, the prominent frequencies of the
sustained oscillations in the linear stochastic PPF model can be derived from
its deterministic analogue. For example, if we want to identify the dominant
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frequency of the stochastic perturbations in a stochastic PPF model, we
must determine the response frequency of the parametrically forced linear
system (i.e. without noise).

Second, our description of the stochastically amplified frequencies en-
hances our understanding of processes generated by stochastic models with
parametric forcing. Take, for example, the PSD of the oscillations observed
from the seasonally forced stochastic SIR model of Black and McKane [191].
Note that in Black and McKane [191], it was shown by using a Van Kampen
[9] system-size expansion that a process in the seasonally forced stochastic
epidemic model can be expressed as the sum of the deterministic periodic
solution and the stochastic fluctuation scaled by the reciprocal of the square-
root of the population size. The evolution of the stochastic fluctuation is
derived by linearising the model around the limit cycle solution. This results
in a linear stochastic PPF model of the form (4.17). Black and McKane [191]
observed that the sharp but narrow peak in their PSD corresponds to the
limit cycle frequency while the broader (stochastic) peaks in the PSD are
due to the stochastic amplification of the transients.

With the analysis presented here, we can now see that all of the frequen-
cies predicted by the aforementioned stochastic peaks in the PSD arise from
the deterministic aspect of the model represented by (4.18). The fundamen-
tal matrix solution of the deterministic system (4.18) has the form (4.22),
which contains frequencies ω from R−ωt and, 2π/T ≡ ν from Q(t). The
smoothness condition we have for Q(t), as discussed in Section 4.3.2, allows
us to decompose Q(t) into a constant matrix and some constant matrices
multiplied by sinusoidal functions with frequency ν. Hence, using product-
to-sum trigonometric identities, the product Q(t)R−ωt have frequencies ω
and ν ± ω. From these general principles, we therefore expect that the
product in (4.53) leads to the emergence of the central frequencies ω and
ν ± ω observed in the PSD of ξ(t) where the largest power corresponds to
frequency ω. The form of the approximate process in (4.57) also allows us
to conclude that the broad peaks observed in the PSD of ξ(t) are due to
the slowly varying stochastic phase perturbation process around the central
frequencies, which are predicted by the deterministic aspect of the system
(4.17).

Third, for a linear stochastic PPF model, the noise intensity level con-
tributes only to the overall amplification of the system. Thus, for sufficient
population size, the stochastic fluctuation may become dominant over the
limit cycle. The closed form approximation may be a good tool to mathe-
matically analyze the stochastic PPF disease model to predict the period-
icity of outbreaks in the presence of stochasticity and seasonal forcing. For
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stochastic epidemic modelling, the approximation can be used to compare
the importance of parameters (or drivers) that contribute to fluctuation
amplification or emergence of frequencies. The question on whether season-
ality matters in the presence of demographic stochasticity may be further
explored mathematically now that an approximate form of the fluctuation
process for stochastic PPF models has been derived. The theory of Mathieu
equations may enter into any further progress in the analysis of the nonlinear
interactions occurring in the stochastic fluctuation.

Finally, it may be that the approximation method is limited by the
unknown aspects of the fundamental matrix solution (4.22). This limitation
provides motivation for modellers to develop mathematical tools to compute
the fundamental matrix solutions of particular differential equation models
for complex systems.
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Chapter 5

Conclusions and Future
Work

The main theme of this thesis is the mathematical analysis of recurrent
epidemics, in general, and in avian flu in particular. From our overview of
the existing literature on the epidemiology, ecology, and epidemic recurrence
of avian influenza in Chapter 2, we see that the recurrent behaviour of the
disease is a complex process and further investigation using models and
mathematical analysis is needed. SDE models [197] are a promising tool in
this study, but existing analysis has been restricted to computer simulations.

The pattern of epidemic recurrence can be described by the period be-
tween epidemics, the amplitude or intensity of epidemics, length of inter-
epidemic (endemic) time interval, and the amount of variability. This thesis
is focused on understanding recurrent pattern of epidemics with respect to
the period and amplitude of epidemics.

Epidemic recurrence can be studied by formulating the system as a
continuous-time Markov jump processes, and then by modelling the dy-
namics via a master equation. Unfortunately, the only way to obtain exact
solutions to the master equation is by stochastic simulation. Another ap-
proach to model the stochastic dynamics is by approximating the Markov
jump process by a system of SDEs either via system-size expansion [9], a
well-known method in the physical literature, or equivalently via the method
of Kurtz[198]. The stochastic path of the SDEs is then investigated by com-
puting the theoretical power spectra which can be used to study how fluc-
tuations vary with the parameter of interest. The major drawback with this
approach is that it cannot fully explain the mechanisms behind observed
fluctuations. Analysing how the dominant period and typical amplitudes of
fluctuating epidemics vary with the parameters is computationally cumber-
some.

In this thesis, we emphasise the importance of analytic tools to better
understand epidemic models exhibiting recurrent behaviour as they shed
light on the underlying mechanisms that were not realised before. This
chapter is devoted to conclusions drawn from previous results. We broadly

81



5.1. Factors influencing epidemic recurrence

summarise them in the following sections. We also discuss potential research
directions for future considerations.

5.1 Factors influencing epidemic recurrence

Generally speaking, the factors influencing epidemic recurrence of avian
influenza can be determined from the epidemiology and ecology of the dis-
ease. The differences in immune responses of host individuals, host interac-
tions and movement, variations in virus strains, and variability of environ-
mental factors all contribute to the recurrence pattern. As an example, we
would expect the recurrence period to be shorter in a population with high
rate of exposure to the novel avian influenza viruses, or in a population with
low exposure of virus in the environment but higher movement, i.e. high
contact rate [61]. The growing body of knowledge regarding the epidemi-
ology and ecology of avian flu offers an opportunity for the formulation of
new hypotheses to explain epidemic recurrence. One must be cautious in
formulating the hypothesis as existing literatures pose problem in basic ter-
minologies. For example, “outbreaks” and “epidemics” may have the same
meaning since several authors seemed to be using these terms interchange-
ably. Apart from word usage, epidemic recurrence is a complex dynamical
phenomenon that mathematical approaches are ideally suited to untangle
[11].

Our theoretical approach allows us to study, within a stochastic frame-
work, factors that are thought to influence epidemic recurrence. As our
starting point, we considered the stochastic model developed by Wang et al.
[1]. We chose this model because it is simple yet complex enough to mimic
the overall dynamics of avian flu recurrence data, e.g. the dominant out-
break period. Using an approach different from that in Wang et al. [1],
we re-derive the stochastic avian flu model and so deduce that the element
of stochasticity comes from centred Poisson increments. These increments
represent the uncertainty in our knowledge of various aspects of the dis-
ease. This inherent uncertainty makes a stochastic model appropriate for
describing the avian flu system.

The presence of demographic stochasticity makes it difficult to identify
exactly how individual factors influence epidemic recurrence. In modelling
terms, this task involves determining the parameters in the model that can
give rise to recurrent epidemics and finding meaningful parameter ranges
that are consistent with biological data. In Chapter 3, we overcame this
challenge by extending the method of Baxendale and Greenwood [50] to the
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three-dimensional case. We then applied the new result to the stochastic
model, and found that avian flu epidemic recurrence can be represented
as a sum of two processes: (1) a scaled one-dimensional OU process and
(2) a scaled rotation multiplied by a slowly-varying bi-variate standard OU
process. We conclude from this formulation that the stochastic elements
of avian flu recurrence act as perturbations of the phase and amplitude of
the transient deterministic dynamics. The stochastic perturbations of OU
processes follow a distribution that has been studied in the literature [46].
By identifying the stochasticity of avian flu as arising from an OU process,
we are able to understand the role of stochasticity in modulating the pattern
of epidemic recurrence for avian flu.

One factor that is identified to have a key role in driving avian flu
epidemic recurrence, by previous modellers, is environmental transmission.
However, our study shows that having a sufficient amount of transmission,
from either direct or environmental sources, is an important ingredient for
recurrence. Our analytic approach has shed light on this fact and found that
when one transmission rate is weak, the other has a critical role in altering
the features of epidemic recurrence, e.g. the typical amplitude and dominant
period. We conclude that in a stochastic setting, either direct or indirect
transmission is an important factor that influences epidemic recurrence and
understanding their contributions may be necessary for the development of
appropriate policies for controlling the disease.

5.2 The stochastic fluctuations around a
deterministic skeleton

We defined stochastic fluctuations as the ”fuzziness” around the deter-
ministic dynamics. This description suggests that stochastic noise in this
study has a passive role.

In this thesis, we considered two models of avian flu epidemic recurrence:
(1) the stochastic host-pathogen model (the SIR-V model) developed by
Wang et al. [1] and (2) an extension of the SIR-V model incorporating a
seasonally forced environmental transmission rate. The main motivation for
considering the latter model is the fact that environmental transmission has
an important role in explaining multi-year periodicity in avian flu epidemics
[1, 13, 165] and is well-known to show a seasonal pattern. We note here that
though the second model is more complex than the first one, we can still
mathematically contrast the stochastic fluctuations that they generate.

Our novel approach which is discussed in Chapter 4, shows that the pro-

83



5.3. Avian flu in a stochastic and seasonally forced environment

cess describing stochastic fluctuations around a periodic solution induced by
(seasonal) forcing can be approximated by another periodic process mod-
ulated by a standard Ornstein-Uhlenbeck process. We conclude that, for
both types of stochastic fluctuations (with or without seasonal forcing),
stochasticity perturbs the deterministic dynamics in a similar way. Stochas-
tic fluctuations around an endemic equilibrium are noise-sustained oscilla-
tions whose dominant frequency is close to the intrinsic frequency of the
deterministic version. On the other hand, fluctuations around a forced limit
cycle are also noise-sustained oscillations but their dominant frequency is
close to the intrinsic frequency of the deterministic perturbation of the limit
cycle, not necessarily the intrinsic frequency of the deterministic version of
the model. This point implies that the key to characterising these stochastic
fluctuations is the understanding of the deterministic perturbation around
the limit cycle, which gives rise to the product Q(t)R−ωt in (4.49).

Rozhnova and Nunes [44] showed how the population size affects the full
stochastic dynamics of a forced stochastic epidemic system. Since we have
an approximate process that describes the stochastic fluctuation around
the limit cycle, we can use the approximate process to investigate how the
resonance produced by the interaction of a deterministic periodic solution
and the stochastic fluctuation vary with population size. This way, we can
answer the question: To what extent does population size affect the full
stochastic dynamics? The answer to this question relies on the magnitude of
the stochastic fluctuations which is approximately determined by the scalar
factor σ̄/

√
λ in (4.49).

5.3 Avian flu in a stochastic and seasonally
forced environment

A typical approach for analysing avian flu epidemic recurrence is by
incorporating demographic stochasticity. In this formulation, we do not
have to make any assumptions about the form or strength of the noise the
system is subjected because the variance is defined in the formulation of the
stochastic model. In this thesis, we have explored the possibility of modelling
avian flu epidemic recurrence by combining stochastic and seasonal effects.

The way we include seasonal effects is by representing the environmental
(virus-host) transmission rate as a time-periodic function. In this setting,
the dynamics of avian flu epidemics exhibit a limit cycle (i.e. forced limit
cycle) as the intensity of forcing increases. The frequency of the epidemics,
however, does not change with the forcing intensity but depends on the
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5.3. Avian flu in a stochastic and seasonally forced environment

periodicity of the environmental transmission rate. Moreover, it has been
shown previously that for a low direct transmission rate, the period of avian
flu epidemics can be influenced by the environmental transmission rate that
measures how frequently the virus is transmitted to the host from the envi-
ronment (See Chapter 3).

Our theoretical approach describes avian flu epidemic recurrence, pro-
duced from a seasonally forced and stochastic environment, as oscillations
that can be expressed as a sum of the forced limit cycle and stochastic fluctu-
ations scaled by the square-root of the total population size. The stochastic
fluctuations have a dominant frequency that largely depends on the intrinsic
frequency of the deterministic perturbation of the limit cycle although other
frequencies, e.g. the forcing frequency and the limit cycle frequency, are also
involved in driving the fluctuations. Now in the case where the dominant
frequency of the stochastic fluctuations is larger than the frequency of the
deterministic dynamics, we mathematically identified possible mechanisms
whereby stochastic effects could dominate over seasonal effects, based on the
form of the approximate process we formulated in Chapter 4:

1. When the population size is sufficiently small. For a density-dependent
process, it is know that its stochastic dynamics can be regarded as
the sum of the macroscopic dynamics and the stochastic fluctuations
divided by the square-root of the population size N . Therefore, if N
is sufficiently small, the stochastic fluctuations term would be greater
than the macroscopic term hence, will have substantial effects to the
full dynamics.

2. The time-average of noise variance is sufficiently large. This point
is due to the fact that the amplitude of the approximate process for
stochastic fluctuations tends to increase as the time-average of the
noise variance increases.

3. The decay rate of the deterministic perturbation around the periodic
solution is small enough. This point is related to the form of the
approximate process, which is inversely proportional to the square-
root of the decay rate. The decay rate is determined by the real part
of the Floquet exponent associated to the deterministic perturbation
of the limit cycle.

For future work, it would be interesting to identify the components that
make up the time-average noise variance and the decay rate of the deter-
ministic perturbation. Furthermore, a detailed numerical or mathematical
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study on the conclusions drawn above would be useful for validation and
explore the active role of stochastic noise in the full dynamics. Our analysis
could pave a way to develop new tools in quantifying the differences between
effects of stochasticity and parametric forcing for other SDE models from
different disciplines.

5.4 Open questions

The results and analysis presented in this thesis lead us to ask a variety
of open questions left for the reader to explore. We end this thesis by
presenting the following open questions:

1. Are there other biological factors that contribute to periodicity and
amplitude of recurrence pattern in the avian flu system?

2. It is known that, in a stochastic setting, either direct or environmen-
tal transmission has a major influence in the dynamics of avian flu
epidemics. How does this result change in the presence of other mech-
anism such as seasonality?

3. Given that the nature of stochastic fluctuations describing epidemic
recurrence can be determined via an approximate solution, how can
these results be used to understand other diseases displaying epidemic
recurrence? How can we quantify the distinction between two diseases,
e.g. measles and whooping cough, displaying epidemic recurrence ac-
cording to the nature of their stochastic oscillations?

4. How will the results and analysis change if environmental stochasticity
is involved?

5. How can we use the analytic methods here to approximately determine
other features of recurrence pattern, e.g. the length of inter-epidemic
time interval, amount of variability?

6. How does our mathematical results be used for fitting avian flu data
displaying recurrent pattern?

This thesis has provided new tools for studying stochastic disease dy-
namics, or any dynamics with noise-sustained oscillations or noisy limit cy-
cles. One can use these tools as starting point to answer the open questions
above. For instance, the first three questions above can be answered by in-
vestigating the effects of other parameters and applying the methods to other
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diseases, i.e. as done in Chapter 3 of this thesis. On the other hand, the
general derivation of the stochastic system with parametric forcing shown
in Chapter 4 may be a useful framework for model involving environmental
stochasticity as mentioned in question 4. The approach for answering the
last two questions are unclear at this point but we think that a careful anal-
ysis of the phase and amplitude processes of the OU process, as well as its
associated curve fitting techniques, is necessary to address them.
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Appendices A

Supplementary materials
for Chapter 3

A.1 Derivation of the avian flu SDE system

First, we define the probability of a jump or an increment ∆ ~X as

P (∆ ~X = σt+∆t − σt) = T (σ′|σ)∆t.

Note that the increments of stochastic processes St, It and Vt are ∆S =
St+∆t − St, ∆I = It+∆t − It, and ∆V = Vt+∆t − Vt, respectively. Then,
the expected values of the increments given the transition probabilities in
Section 3.2.1 are

E[∆S] = −
(
β
S

N
I + ρS

V

NV

)
∆t+ µ(N − S − I)∆t+ µI∆t,

E[∆I] =

(
β
S

N
I + ρS

V

NV

)
∆t− µI∆t− γI∆t,

E[∆V ] = τI∆t+ δV∆t− ηV∆t.

(A.1)

Now, each increment can be expressed as the expected value of the incre-
ment plus a sum of centred increments [47]. Hence, we write the increments
as:

∆S =

(
−β S

N
I − ρS V

NV
+ µ(N − S − I) + µI

)
∆t−∆Z1 + ∆Z2 + ∆Z3,

∆I =

(
β
S

N
I + ρS

V

NV
− µI − γI

)
∆t+ ∆Z1 −∆Z3 −∆Z4,

∆V = (τI + δV − ηV ) ∆t+ ∆Z5 −∆Z6.
(A.2)

Here the quantities ∆Zi are conditionally centred Poisson increments
with mean zero with conditional variances that are related to the tran-
sition rates. The Poisson increment ∆Z1 corresponding to infection of a

susceptible individual has a conditional variance
(
β S
N I + ρS V

NV

)
∆t. The
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A.1. Derivation of the avian flu SDE system

increments ∆Z2, and ∆Z3 corresponding to births in susceptible class (or
deaths in recovered and infected class) respectively have conditional vari-
ances µ(N−S−I)∆t, and µI∆t. On the other hand, the Poisson increment
∆Z4 that corresponds to recovery of an infected individual has a conditional
variance equal to γI∆t. Finally, the two increments corresponding to the
replication and decay of viruses ∆Z5 and ∆Z6 must have conditional vari-
ances (τI + δV ) ∆t and ηV∆t, respectively. Divide (A.2) by N and NV

appropriately and take ∆t→ 0 to obtain

dS =

(
−β S

N
I − ρS V

NV
+ µ(N − S − I) + µI

)
dt− dZ1 + dZ2 + dZ3,

dI =

(
β
S

N
I + ρS

V

NV
− µI − γI

)
dt+ dZ1 − dZ3 − dZ4,

dV = (τI + δV − ηV ) dt+ dZ5 − dZ6.
(A.3)

Suppose we replace the Poisson increments in (A.2) by multiples of
Wiener increments, i.e. ∆Zi → gi∆Wi, with same standard deviations as
the Poisson increments they replace. By doing the same limiting process
∆t→ 0, we obtain the stochastic differential equations (SDE):

dS =

(
−β S

N
I − ρS V

NV
+ µ(N − S − I) + µI

)
dt− g1dW1 + g2dW2 + g3dW3,

dI =

(
β
S

N
I + ρS

V

NV
− µI − γI

)
dt+ g1dW1 − g3dW3 − g4dW4,

dV = (τI + δV − ηV ) dt+ g5dW5 − g6dW6,
(A.4)

where

g1 =

√
β
S

N
I + ρS

V

NV
, g2 =

√
µ(N − S − I), g3 =

√
µI,

g4 =
√
γI, g5 =

√
τI + δV , and g6 =

√
ηV .

(A.5)

Furthermore, we can re-write (A.4) by expressing the host and virus
populations as proportions rather than absolute numbers, i.e.

s =
S

N
, i =

I

N
, v =

V

NV
, and k =

N

NV
.
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A.2. Stochastic linearization

The corresponding SDEs for the proportions of ducks and virus are then
given by (3.2).

The approximation (A.4) is an example of a result of Kurtz [10]. An
alternate approach is to use a van Kampen [9] system-size expansion of the
Kolmogorov (Master) equation, see e.g. in Baxendale and Greenwood [50].

A.2 Stochastic linearization

In matrix notation, (3.2) can be written as:

dx = F(x(t)) dt+ DG(x(t)) dW (A.6)

where D = diag( 1√
N
, 1√

N
, 1√

NV
), dW(t) = (dW1, dW2, dW3, dW4, dW5, dW6)T ,

and G(x(t)) =

−G1 G2 G3 0 0 0
G1 0 −G3 −G4 0 0
0 0 0 0 G5 −G6

 .
Note that x = (s, i, v) which depends on N and NV and limN,NV→∞F(x)

is a vector whose components are the right-hand side of (3.4). It has been
pointed out by Allen et al. [48] that one can construct a stochastic system,
which is the same in distribution such that all matrices in the diffusion term
of (A.6) are square matrices whose sizes are equal to the dimension of x, i.e.
in this case, a matrix C ∈ R3×3 such that (A.6) would be equivalent in law
to the stochastic system

dx̃ = F(x̃(t)) dt+ DC(x̃(t)) dW̃. (A.7)

The Wiener processes W̃ ∈ R3×1 and W ∈ R6×1 both have independent
terms. Moreover, the stochastic processes x̃ in (A.7) are different from the
originally defined stochastic processes found in (A.6) but it can be shown
that their stochastic paths are the same. Thus, x̃ can be replaced by the
R3-valued stochastic process x that is considered originally. Matrices G and
C are related through the 3× 3 matrix V, where V = GGᵀ and C = V1/2.
An explicit computation of V confirms that it is the general form for the
noise covariance matrix B that was described in Wang et al. [1]. In other
words,

V(x, t) =

βsi+ ρsv + µ(1− s) −βsi− ρsv − µi 0
−βsi− ρsv − µi βsi+ ρsv + (µ+ γ)i 0

0 0 kτi+ δv + ηv

 .
(A.8)
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A.2. Stochastic linearization

Letting N,NV → ∞ so that s → φ1, i → φ2, and v → ψ and t → ∞ we
have φ1 → φ∗1, φ2 → φ∗2, and ψ → ψ∗ implies that limN,NV ,t→∞V = B
which is a constant matrix whose entries are displayed as follows where
xeq ≡ (φ1 = φ∗1, φ2 = φ∗2, ψ = ψ∗), the equilibrium state of the deterministic
system:

B =

B11 B12 0
B21 B22 0
0 0 B33

 , where

B11 = βφ∗1φ
∗
2 + ρφ∗1ψ

∗ + µ(1− φ∗1),

B12 = B21 = −βφ∗1φ∗2 − ρφ∗1ψ∗ − µφ∗2,
B22 = βφ∗1φ

∗
2 + ρφ∗1ψ

∗ + (µ+ γ)φ∗2, and

B33 = κτφ∗2 + δψ∗ + ηψ∗.

(A.9)

It remains to show that the set of Langevin equations obtained by Wang
et al. [1] can be constructed from the linear stochastic differential equations
(the tilde in (A.7) is dropped for brevity)

dx = F(x(t)) dt+ DC(x(t)) dW. (A.10)

Recall that the diagonal matrix D is given in (A.6) and C = V1/2 where
the entries of V is described in (A.8). The system (A.10) with the stochastic
term generates the deterministic process (3.4), since (A.10) becomes (3.4)
as N,NV →∞ which means that this term describes the average dynamics
of the processes. On the other hand, the second term is referred to as the
diffusion term. It represents the variation from the average dynamics, the
O(N−1/2) fluctuations of x(t) away from the deterministic process. The
diffusion term prevents a damped system from settling to an equilibrium
state.

We linearize (A.10) using the substitution x(t) = xeq + Dξ(t) and obtain

Ddξ = F(xeq) dt+ DJ(xeq)ξ dt+ DC(xeq) dW. (A.11)

The Jacobian of F(x) evaluated at xeq is denoted by J(xeq). Now, F(xeq) =
0 and so simplifies (A.11), after pre-multiplying by D−1, to

dξ = J(xeq)ξ dt+ C(xeq) dW. (A.12)

Eq. (A.12) is the Langevin (i.e. stochastic) equation in [1](See Eq.6) written
in slightly different form. In particular, the two equations would be equiv-
alent if we divide (A.12) by dt and denote A = J(xeq) and represent the
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A.3. Approximate solution for linear diffusion equations in three dimensions

diffusion term as ζ(t), i.e. Gaussian white noise with correlation function
〈ζ(t), ζ(t′)T 〉 = Bδ(t−t′). In (3.9), we have A0 = J(xeq) and C0 = C(xeq).

A.3 Approximate solution for linear diffusion
equations in three dimensions

We follow Baxendale and Greenwood [50] to derive the approximate
solution for our example where the diffusion processes have values in R3.

Consider the stochastic system

dξ = A0ξ dt+ C0 dW, ξ(t),W(t) ∈ R3,A0,C0 ∈ R3×3. (A.13)

where,

A0 =

−βφ∗2 − ρψ∗ − µ −βφ∗1 −ρφ∗1
−βφ∗2 βφ∗1 − µ− γ ρφ∗1

0 κτ δ − η

 , (A.14)

and

C0 =

βφ∗1φ∗2 + ρφ∗1ψ
∗ + µ(1− φ∗1) −βφ∗1φ∗2 − ρφ∗1ψ∗ − µφ∗2 0

−βφ∗1φ∗2 − ρφ∗1ψ∗ − µφ∗2 βφ∗1φ
∗
2 + ρφ∗1ψ

∗ + (µ+ γ)φ∗2 0
0 0 κτφ∗2 + δψ∗ + ηψ∗

1/2

.

(A.15)
Here W(t) contains independent Wiener processes (or Brownian motion).

Suppose that A0 has eigenvalues −ζ and −λ± iω for ζ, λ, ω ∈ R+. One
can find a matrix Q ∈ R3×3 such that

Q−1A0Q = Λ ≡

−ζ 0 0
0 −λ ω
0 −ω −λ

 . (A.16)

The matrix Λ is called the real block diagonal form of the eigenvalue matrix
of A0 so it follows that Q is the real block diagonal form of the associated
matrix of eigenvectors. By pre-multiplying (A.13) with Q−1 and using the
substitution y(t) = Q−1ξ(t),we have

dy = Λy dt+ Q−1C0 dW. (A.17)

Let Σ = Q−1C0 and denote Σ•j and Σi• as its jth column vector and
ith row vector, respectively. With y = [y1, y2, y3]ᵀ, we write (A.17) as

dy1 = −ζy1 dt+ Σ1• dW, (A.18a)

dỹ = Λ̃ỹ dt+ Σ̃ dW, (A.18b)
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A.3. Approximate solution for linear diffusion equations in three dimensions

where ỹ = [y2, y3]ᵀ, Λ̃ =

[
−λ ω
−ω −λ

]
, and Σ̃ = [Σ2•,Σ3•]

ᵀ .

Now, using the result of [48], we find that the SDE (A.18a) is equivalent to

dy1 = −ζy1 dt+ σ1 dW1, (A.19)

where σ2
1 = Σ1•Σ

ᵀ
1• is the variance of the stationary distribution of y1(t)

and W1(t) is a one-dimensional Wiener process. It is apparent that (A.19)
describes an Ornstein-Uhlenbeck process [182] in one dimension with a sta-
tionary variance σ2

1/2ζ. The square-root of this stationary variance corre-
sponds to the standard deviation typically observed in the process y1(t).

On the other hand, (A.18b) is equivalent to:

dỹ = Λ̃ỹ dt+ C̃ dW̃, (A.20)

where C̃ = (Σ̃Σ̃ᵀ)1/2 and W̃(t) is a two-dimensional Wiener process. The
approximate solution of (A.20) is related to a two-dimensional Ornstein-
Uhlenbeck process as proven by Baxendale and Greenwood [50]. The ap-
proximation is reasonable under the assumption that λ � ω. Thus, if it
is assumed that λ � ω then by the theorem of Baxendale and Greenwood
[50], the approximate solution for ỹ is:

ỹ ≈ ỹapp =
σ̃√
λ

R−ωtSλt, (A.21)

where

σ̃2 =
1

2
Tr(C̃C̃ᵀ). (A.22)

Thus,
ξ ≈ ξapp ≡ Qyapp = y1Q•1 + yapp2 Q•2 + yapp3 Q•3

= y1Q•1 + [Q•2,Q•3]ỹapp.
(A.23)

More precisely,

ξapp(t) = y1(t)Q•1 +
σ̃√
λ

[Q•2,Q•3]R−ωtSλt. (A.24)

Now, we know that in polar coordinates

R−ωtSλt =

[
cosωt sinωt
− sinωt cosωt

] [
S1(λt)
S2(λt)

]
=

[
S1(λt) cosωt+ S2(λt) sinωt
−S1(λt) sinωt+ S2(λt) cosωt

]
.

(A.25)
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A.3. Approximate solution for linear diffusion equations in three dimensions

Using the formula x cos θ+y sin θ = z cos(θ − ϕ) where z = |x+ iy| and ϕ =
arg(x+ iy) for x, y ∈ R and i =

√
−1, we then write S1(λt) = z(λt) cosϕ(λt)

and S2(λt) = z(λt) sinϕ(λt) with z(λt) =
√
S2

1 + S2
2 ≡ |S(λt)| and ϕ(λt) =

tan−1(S2/S1) to obtain

R−ωtSλt = z(λt)

[
cos (ϕ(λt)− ωt)
sin (ϕ(λt)− ωt)

]
≡ |S(λt)|

[
cos (ϕλt − ωt)
sin (ϕλt − ωt)

]
. (A.26)

Applying (A.26) to the second term of (A.24) yieldsξapp1 (t)
ξapp2 (t)
ξapp3 (t)

 = y1(t)

q11

q21

q31

+
σ̃√
λ
|S(λt)|

q12 cos (ϕλt − ωt) + q13 sin (ϕλt − ωt)
q22 cos (ϕλt − ωt) + q23 sin (ϕλt − ωt)
q32 cos (ϕλt − ωt) + q33 sin (ϕλt − ωt)

 ,
(A.27)

where Q = [qij ].

We define qi2 = ri cos θi and qi3 = ri sin θi where ri =
√
q2
i2 + q2

i3 and

θi = tan−1(q13/q12) so that the approximate fluctuation of each component
takes the form:

ξappi (t) = qi1y1(t) +
σ̃√
λ
|S(λt)|ri cos(ϕλt − ωt− θi). (A.28)

The polar form of the approximation reveals that each model component
fluctuates according to a combination of a univariate and bi-variate OU
processes. The first term of the approximation contains a one-dimensional
OU process weighted by a scalar determined from the transformation matrix
Q while the second term contains the two-dimensional OU process that
varies slowly and λt is a quantity that influences the radius and phase of the
circular path. The stationary variance of ξappi (t) is the sum of the stationary
variance of each term in (A.28). This means that the long-term variance of
a fluctuation is

q2
i1σ

2
1

2ζ
+ r2

i

σ̃2

λ
(A.29)

Hence, the typical magnitude of ξappi (t), i.e. stationary standard deviation,
is

SSDi =

√
q2
i1σ

2
1

2ζ
+ r2

i

σ̃2

λ
. (A.30)

Note that the fluctuation of each component i has a constant phase shift θi,
which is useful in computing phase differences between disease components.
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A.4 Additional insight from the approximation
on the interaction of disease components

In Section 3.4.1, we showed that for the given set of avian flu parameter
values, the system exhibits noise-sustained oscillations which can be viewed
as a sum of two processes given by (3.25): (i) a process proportional to the
one-dimensional OU process and (ii) a process proportional to the product
of a rotation matrix and a standard OU process.

We describe here, using (3.13), the behaviour of the sample path in
three-dimensional space. The first term of (3.13) means that sample path
behaves as an Ornstein-Uhlenbeck process y1(t) that travels along the axis
that points to the direction of Q•1, i.e. the eigenvector associated to −ζ. In
addition, the second term of (3.13) implies that the sample path cycles on
the subspace spanned by the last two column vectors of the transformation
matrix Q, i.e. eigenvectors of the eigenvalues −λ ± iω. This subspace
contains a plane whose equation (see (A.35) in Appendix A.5 for general
formulation), for our chosen set of parameters, is given by:

ξS − 19.376ξI + 0.5814ξV = 0. (A.31)

Figure A.1 shows the plane (A.31) and a realization of the stochastic
simulation of (3.25). In Figure A.1(a), we observe that the sample path lies
chiefly on or near the plane (A.31). However, if we neglect the first term
of (3.25), the dynamics of the fluctuations lie entirely on this plane (see
Figure A.1(b)). Thus, the portion of the sample path that departs from the
plane is clearly due to the one-dimensional OU process whereas the second
term constrains the sample path to move within the plane.

From (3.25), we know that the stationary standard deviation of y1(t) is
1.63 which is small compared to the constant σ̃/

√
λ = 10.21 that appears

in the second term of the equation. Therefore, we can neglect the first term
of (3.25) and show that avian flu epidemics cycle on the plane (A.31). This
can be achieved mathematically when the magnitude of the real eigenvalue
ζ is larger than λ, which means that the approximate process approaches
the hyperplane in fast manner.
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Figure A.1: (Colour online) A sample path of the approximate fluctuations
given by (3.25) when the first term is (a) not set to zero and (b) set to zero.
The grey region is the plane (A.31) that lies in the subspace spanned by the
eigenvectors of −0.3091± 0.8377i.

In Figure A.2, we compute the magnitude ζ over combinations of β and ρ
values and found that the epidemic cycles occur primarily in the hyperplane
when β is below 100 and ρ is high, i.e. where ζ is larger than λ.
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Figure A.2: (Colour online) Plot of ζ (left panel) and λ (right panel) as
functions of β and ρ. The white region is where R0 < 1, i.e. noise-sustained
oscillations cannot be observed here. Default parameter values are in Ta-
ble 3.1.

The fact that avian flu dynamics could primarily occur in the plane
suggest that under certain conditions for each transmission route, one can
project the avian flu system (3.9) onto the plane (A.31) and so simplify the
analysis. For instance, using the equation of the plane, we can write one
component in terms of the other and convert the three-dimensional linear
avian flu SDE system (3.9) into a two-dimensional one. The possibility of
modelling recurrent avian flu epidemics as stochastic system in two dimen-
sions must therefore be explored.
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A.5 The subspace where the cycling takes place

For the case when the stationary standard deviation (s.s.d.) of the second
term is very large compared to the s.s.d. of the first term in our approxi-
mation, the first term of (A.24) is negligible and we expect the stochastic
path to primarily lie in a plane, i.e. a subspace of R3, spanned by the last
two column vectors of Q (Q•2 and Q•3). Here we show a general way for
computing the equation of this plane.
The sample path defined by the fluctuations ξi(t) is centred at (0, 0, 0) and
so the equation of the plane should take the form:

a1ξ1 + a2ξ2 + a3ξ3 = 0 (A.32)

We know that the vectors Q•2 and Q•3 span the plane, hence must satisfy
(A.32).Therefore,

[a1, a2, a3] · [Q•2,Q•3] = 0. (A.33)

By Gaussian elimination or by manipulating the explicit form of the linear
system, we can eliminate a3 in (A.33) and a little algebra turns (A.33) into
a simpler equation,

det(M1)a1+det(M2)a2 = 0 where M1 =

[
q12 q13

q32 q33

]
and M2 =

[
q22 q23

q32 q33

]
.

(A.34)

Now we require det(M2) 6= 0 so that a2 = −det(M1)

det(M2)
a1, which gives

a3 =
a1

q32

(
det(M1)

det(M2)
q22 − q12

)
. Therefore, assuming that a1 6= 0, the de-

sired equation of the plane is

ξ1 −
det(M1)

det(M2)
ξ2 +

1

q32

(
det(M1)

det(M2)
q22 − q12

)
ξ3 = 0. (A.35)

A.6 Derivation of the explicit form of the
mean-field eigenvalues

Our starting point is the Jacobian evaluated at the stable endemic equi-
librium point [1], i.e.,

J(xeq) =

−βφ∗2 − ρψ∗ − µ −βφ∗1 −ρφ∗1
−βφ∗2 βφ∗1 − µ− γ ρφ∗1

0 κτ δ − η

 , (A.36)
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where φ∗1 =
1

R0
, φ∗2 =

µ

µ+ γ

(
1− 1

R0

)
, and ψ∗ =

κµτ

(η − δ)(µ+ γ)

(
1− 1

R0

)
for the basic reproduction number

R0 =
β

µ+ γ
+

κρτ

(η − δ)(µ+ γ)
.

The condition R0 > 1 must be satisfied for the non-trivial steady-state
xeq = (φ∗1, φ

∗
2, ψ

∗) to exist.
The eigenvalues of J(xeq) determine the local dynamics of the deter-

ministic SIR-V system close to the non-trivial equilibrium point xeq. Now,
denote the eigenvalues of J(xeq) as ν. It follows that |J(xeq)−νI| = 0 gives
rise to a cubic polynomial of the form

ν3 − aν2 − bν − c = 0, (A.37)

where:
a = (δ − η)− µR0 − γ − µ+ β/R0

b = −µ(η − δ + γ + µ)R0 + µβ/R0

c = −µ(η − δ)(γ + µ)(R0 − 1).

(A.38)

Equations (A.37) and (A.38) in fact appeared in the Appendix section
of [1], where it was proven that the endemic equilibrium is stable. Now,

substitute ν = y +
a

3
to yield the normal form transformation,

y3+py+q = 0 where p =
1

3
(−a2−3b) and q =

1

27
(−2a3−9ab−27c).

(A.39)
This method is also known as Vieta’s subsitution [199]. Equation (A.39)
has been well-studied and has known solutions in general form:

y1 = Y+ + Y−,

y2 = −1

2
(Y+ + Y−) + i

√
3

2
(Y+ − Y−),

y3 = −1

2
(Y+ + Y−)− i

√
3

2
(Y+ − Y−),

(A.40)

where: Y± =

(
−q

2
±
√
q2

4
+
p3

27

)1/3

and i =
√
−1.

We are interested in the case when all three roots exist with two of them

being complex conjugates. This is satisfied by assuming that
q2

4
+
p3

27
> 0.
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A.6. Derivation of the explicit form of the mean-field eigenvalues

By back substitution, the solutions of (A.37) are:

ν1 = Y+ + Y− +
a

3
,

ν2 = −1

2
(Y+ + Y−) +

a

3
+ i

√
3

2
(Y+ − Y−),

ν3 = −1

2
(Y+ + Y−) +

a

3
− i
√

3

2
(Y+ − Y−).

(A.41)

The eigenvalues ν2 and ν3 are conjugate pairs whose real part is negative
as confirmed by Wang et al. [1]. The magnitude of the real and imaginary
part corresponds to the decay rate λ and the intrinsic frequency ω, respec-
tively, of the deterministic system linearized at the endemic equilibrium
state. Therefore,

λ =

∣∣∣∣−1

2
(Y+ + Y−) +

a

3

∣∣∣∣ ,
ω =

∣∣∣∣∣
√

3

2
(Y+ − Y−)

∣∣∣∣∣ .
(A.42)

Using avian flu parameters in Table 3.1, we can write λ and ω in terms
of β and ρ, as follows:

λ(ρ, β) ≈
∣∣∣− 2.9− 0.0172β − 0.5945ρ+

β

0.5172β + 17.84ρ

− 0.5
(

3
√

F(ρ, β) + G(ρβ) + 3
√
F(ρ, β)− G(ρ, β)

) ∣∣∣, (A.43)

ω(ρ, β) ≈
√

3

2

∣∣∣− 3
√

F(ρ, β) + G(ρ, β) + 3
√
F(ρ, β)− G(ρ, β)

∣∣∣, (A.44)

where

F(ρ, β) =
−0.5P1(ρ, β)

(0.1724β + 5.945ρ)3
,

G(ρ, β) = 0.56

√
81P1(ρ, β)2

(0.1724β + 5.945ρ)6
+

12P2(ρ, β)3

(0.1724β + 5.945ρ)6
,

P1(ρ, β) =

6∑
i=0

6∑
j=0

Mi+1,j+1β
iρj ,

P2(ρ, β) =
6∑
i=0

6∑
j=0

Ni+1,j+1β
iρj .

(A.45)
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A.6. Derivation of the explicit form of the mean-field eigenvalues

Here

M =



0 0 0 9190 3152 −646 88.3
0 0 236 311 −119 15.4 0
0 1.39 13.5 −8.33 1.11 0 0

−0.008 0.306 −0.284 0.043 0 0 0
0.003 −0.005 0.001 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


(A.46)

and

N =



0 0 −892 183 −37.5 0 0
0 −19 23 −4.35 0 0 0

−0.135 0.871 −0.189 0 0 0 0
0.01 −0.004 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


. (A.47)

Additionally, the first eigenvalue ν1 < 0 (eigenvalue with largest negative
real part) and so the decay rate of the OU process y1(t) in (3.13) is ζ = |ν1|.
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Appendices B

Supplementary materials
for Chapter 4

B.1 Floquet Theory

We present here the formal statement of the theory preceded by def-
initions of essential terminologies [52]. One can refer to the notes of Dr.
Michael J. Ward for examples and detailed discussion of the theory (see http:
//www.emba.uvm.edu/~jxyang/teaching/Floquet_theory_Ward.pdf).

Definition B.1 (Principal fundamental matrix). Let x1(t), ...,xn(t) be n
linearly independent solutions of

ẋ(t) = A(t)x(t). (B.1)

The n×n matrix X(t) =
[
x1(t) · · ·xn(t)

]
is a fundamental matrix solution of

(B.1) if Ẋ = AX for a given X(t0). Moreover, if X(t0) = I then X(t) ≡ X0

is the principal fundamental matrix.

Definition B.2 (Floquet multipliers and exponents). For t ∈ [0, T ], de-
fine B = X−1(0)X(T ), e.g. B = X0(T ). The eigenvalues ρ1, . . . , ρn of B
are called the Floquet multipliers of Ẋ(t) = A(t)X(t) or equivalently, of
(B.1). The Floquet exponents are µ1, . . . , µn satisfying ρj = eµjT . Note
that ρj , µj ∈ C.

Theorem B.3 (Floquet theory). Let ρ be a Floquet multiplier for (B.1)
and let µ be the corresponding Floquet exponent so that ρ = eµT . Then
there exists a solution x(t) of (B.1) such that x(t + T ) = ρx(t) for all t.
Further, there exists an n-dimensional T -periodic function p(t) such that
x(t) = eµtp(t).
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B.2. Itô formula for multi-dimensional process

Analogous to the interpretation of the eigenvalues in continuous- or
discrete-time systems with A(t) = A0 a constant matrix, the long-time
behaviour of the solutions to (B.1) can be predicted using both the Floquet
exponents µj and multipliers ρj . Below we enumerate the possible solution
behaviours:

1. If Re(µj) < 0, or equivalently |ρj | < 1, for all j, then x(t) → 0 as
t→∞.

2. If Re(µj) > 0, or equivalently |ρj | > 1, for some j, then x(t) → ∞ as
t→∞.

3. If Re(µj) = 0, or equivalently |ρj | = 1, for some j, then we have a
pseudo-periodic solution.

In application, Floquet exponents are used to describe the growth rate of
various perturbations over a cycle on the average

Corollary B.4 (Lyapunov transformation). Under the transformation x(t) =
P (t)y(t), which is invertible and periodic, the periodic system given by (B.1)
yields a time-invariant system.

B.2 Itô formula for multi-dimensional process

Theorem B.5. Suppose a multi-dimensional process X satisfies

dX = u dt+ V dW ,

where X ∈ Rn,u ∈ Rn, V ∈ Rn×n,W ∈ Rn. Let Y (t) = (g1(t,X(t)), . . . , gp(t,X)(t)).
Then the process Y (t) satisfies

dYk(t) =
∂gk
∂t

(t,X) dt+
∑
i

∂gk
∂xi

(t,X) dXi +
1

2

∑
i,j

∂2gk
∂xi∂xj

(t,X) d〈Xi, Xj〉,

where 〈Xi, Xj〉 denotes the bracket process. When the SDEs dX = u dt +
V dW is linear in X, the last term in the Itô formula above vanishes since
∂2gk
∂xi∂xj

= 0.
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