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Abstract

With growing throughput and dropping cost of High-Throughput Sequenc-

ing (HTS) technologies, there is a continued need to develop faster and

more cost-effective bioinformatics solutions. However, the algorithms and

computational power required to efficiently analyze HTS data have lagged

considerably. In health and life sciences research organizations, de novo

assembly and sequence alignment have become two key steps in everyday

research and analysis. The de novo assembly process is a fundamental step

in analyzing previously uncharacterized organisms and is one of the most

computationally demanding problems in bioinformatics. The sequence align-

ment is a fundamental operation in a broad spectrum of genomics projects.

In genome resequencing projects, they are often used prior to variant calling.

In transcriptome resequencing, they provide information on gene expression.

They are even used in de novo sequencing projects to help contiguate assem-

bled sequences. As such designing efficient, scalable, and accurate solutions

for de novo assembly and sequence alignment problems would have a wide

effect in the field.

In this thesis, I present a collection of novel algorithms and software

tools for the analysis of high-throughput sequencing data using efficient data

structures. I also utilize the latest advances in parallel and distributed com-
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Abstract

puting to design and develop scalable and cost-effective algorithms on High-

Performance Computing (HPC) infrastructures especially for the de novo

assembly and sequence alignment problems. The algorithms and software

solutions I develop are publicly available for free for academic use, to facili-

tate research at health and life sciences laboratories and other organizations

worldwide.

iii



Lay summary

Recent advances in DNA sequencing technologies have altered the scale and

scope of health and life sciences. Using High-Throughput Sequencing tech-

nologies (HTS), huge amounts of data are produced, however, the algorithms

and computational power required to efficiently and accurately process and

analyze HTS data have lagged considerably. Building bioinformatics capac-

ity to address this growing problem is an area of active research. The goal

of my thesis is to design and develop novel algorithms for large-scale bio-

logical sequence analysis including de novo genome assembly and sequence

alignment. I also utilize state-of-the-art parallel and distributed comput-

ing paradigms to build scalable and resource-efficient software solutions on

high-performance computing infrastructures. The algorithms and software

solutions I develop are publicly available for free for academic use, to facili-

tate research at health and life sciences laboratories and other organizations

worldwide, and to advance knowledge about diseases and to improve human

health through disease prevention and diagnosis.
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Preface

Chapter 2 is focused on the biological sequence alignment problem, which

involves identification of the possible coordinates of nucleotide or amino acid

sequences along a target sequence, based on sequence similarity. Although

there are some solutions for this problem, they have limitations in their

accuracy, runtime and memory usage especially when the volume of input

data is drastically increasing. In this chapter I address the challenges related

to large-scale sequence alignment tasks. This work was presented at AGBT

2014 conference as a poster and in ISMB 2014 conference as a selected talk,

and was published in the PloS One journal in 2015 [79]. I designed and

implemented the algorithm and the related software tool, conducted all the

experiments, and wrote the manuscript.

Chapter 3 outlines a new hashing algorithm for bioinformatics applica-

tions. Hashing is an essential operation in many bioinformatics applications

for indexing, querying, and similarity search. My proposed method was

presented in ISMB 2016 conference as a poster and in EMBL Big Data in

Biology and Health 2016 conference as a selected talk, and was published in

the Bioinformatics journal in 2016 [77].

Chapter 4 describes a novel algorithm for cardinality estimation in ge-

nomics data which is desirable for many bioinformatics applications and
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their downstream analysis pipelines to predict genome sizes, measure se-

quencing error rates, and tune runtime parameters for analysis tools. This

work was presented in EMBL Big Data in Biology and Health 2016 con-

ference as a poster, and has been recently published in the Bioinformatics

journal in 2017 [78].
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Chapter 1

Background, motivation, and

research goals

Gathering large volumes of data by measuring physical processes is an

essential feature of contemporary science. Experiments that gather mas-

sive amounts of data have been recently popular in computational biology,

physics, chemistry, and finance. With recent advances in health and life

sciences technologies, using high-throughput sequencing instruments, we

can now produce terabytes of DNA sequencing data from previously un-

known organisms, whole human populations, and thousands of human can-

cers, drastically increasing the computational burden of the related data

analysis. Therefore, there is an essential demand for efficient, scalable, and

cost-effective algorithms and software tools for analyzing the produced data.

The goal of my PhD research is to design and develop computationally

efficient and scalable algorithms and software tools for accurately processing

of raw DNA sequence data produced by new sequencing technologies. The

algorithms and software tools that I develop, in their cores, utilize succinct,

compact, and compressed data structures. These data structures become

more efficient in memory use as the redundancy in the data increases, while
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1.1. DNA sequencing

retaining the ability to perform efficient approximate matching. Using the

algorithms I develop, I build a package to address two major problems in

sequence analysis, sequence alignment and de novo assembly. The first prob-

lem that I address is biological sequence alignment, which involves identifica-

tion of the possible coordinates of nucleotide or amino acid sequences along

a target sequence, based on sequence similarity. Although there are some

solutions for this problem, they have limitations in their accuracy, runtime

and memory usage especially when the volume of input data is drastically

increasing. The second problem that I tackle is the efficient reconstruc-

tion of a genome - the full complement of DNA within a cell - using only

the output from the new sequencing instruments. Given the scale of these

problems, often requiring hundreds of gigabytes of data, computation time

and memory efficiency is a primary concern. I optimize memory usage and

execution time requirements for de novo assembly problem.

In the remainder of this chapter, I introduce DNA sequencing technolo-

gies, give an overview of efficient data structures for next-generation se-

quencing data, and explain key problems of sequence alignment and de novo

assembly. I will also review existing methods for the sequence alignment and

de novo assembly problems. At the end of this chapter, I will present the

overview of my research goals.

1.1 DNA sequencing

DNA sequencing is the process of finding the nucleotide orders within a

DNA molecule. With the limitations of current sequencing technologies,

2



1.1. DNA sequencing

it is not possible to determine the whole sequence of a genome at once,

but a small DNA fragment up to a few thousands of nucleotides can be

sequenced. The process of DNA sequencing starts by first shearing multiple

copies of the target genomes into very short DNA fragments. Afterward,

the short DNA fragments are sequenced separately using DNA sequencing

instruments. There are two categories for sequencing techniques: Sanger

Sequencing and Next-Generation Sequencing (NGS). The Sanger sequenc-

ing technique is the first method of DNA sequencing developed by Frederick

Sanger, and is based on the chain termination principle [92]. It works by

incorporating chain-terminating dideoxynucleoside triphosphates (ddNTPs)

during DNA replications using DNA polymerase. Before replaced by the

Next-Generation Sequencing, Sanger sequencing was the most widely used

approach for nearly quarter-century. In the Next-Generation Sequencing,

the long DNA sequence is sheared into short DNA chunks and then DNA

adapters are connected to the ends of chunks to prepare a short DNA chunk

library [33]. The library will then be amplified before the sequencing pro-

cess. Sanger sequencing is a expensive process with low throughput but

approximately long reads, while NGS produces huge amounts of short reads

faster at lower cost by simultaneously sequencing many DNA fragments.

1.1.1 Next-Generation sequencing

The first NGS technology developed, named “pyrosequencing”, was commer-

cialized by Roche/454 Life Sciences and it is the technology that was used to

sequence the genome of James Watson [107]. The pyrosequencing sequenc-

ing, instead of terminating the chain amplification in Sanger sequencing, is

3



1.1. DNA sequencing

based on detecting pyrophosphates in the process of nucleotide incorpora-

tion [70]. In this approach of sequencing, a single-stranded DNA is captured

by beads, and then loaded into picoliter reaction wells after amplification.

After loading and in a predefined order, fluorescently labeled nucleotides

are included into the reaction. Subsequently, a small pulse of light is issued

when a labeled nucleotide is bound to the template DNA and can be de-

tected using a charge-coupled device (CCD) camera [33]. The reagents are

then cleared after each reaction and before the next addition of nucleotides.

Finally, the sequence of each template molecule is identified in real time by

analyzing the captured images [107]. This technology of sequencing gener-

ates much more data per run than Sanger sequencing, yielding up to 700

Mbases of sequencing data with maximum 1000bp read lengths in about

one-day run [95].

The second NGS technology was developed at the University of Cam-

bridge and commercialized by Solexa that was acquired by Illumina later.

In this technology, a template DNA is attached to sequences fixed on a slide.

A cluster of molecules is then created by amplifying the template DNA in

place. The action of sequencing happens during some cycles. In each cycle,

fluorescent-dye labeled nucleotides, which are reversibly-terminated, are in-

serted into the reaction [95]. The process follows by taking an image and

then chemically removing the dye and terminator to allow the reaction to

proceed to the next base. After finishing the run, the captured images are

processed and by using the color of each cluster the identity of which base

was included during each cycle is identified [5]. This technology now gener-

ates over 1.5 Tbases per run in less than 72-hour run with maximum read
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1.2. Efficient data structures for NGS data

lengths of 150 bp taken from both ends of DNA fragments. The technology

is also able to generate longer length reads (e.g. 250 bp) in other modes of

operation.

Other NGS technologies are sequencing-by-ligation SOLiD by Applied

Biosystems and sequencing based on semiconductor Ion Torrent by Life

Technologies. Sequencing technologies continue to grow by emerging of sin-

gle molecule real-time sequencing approaches requiring no DNA amplifica-

tion (PacBio, HeliScope, Oxford Nanopore) and providing very long reads,

but with high error rate and low accuracy [15, 33].

With the improvements in NGS technologies, huge amounts of data

have been generated and this empowered researchers in investigating hu-

man genome variation and sequencing thousands of human cancers to find

disease-causing mutations and genes associated with diseases. On the other

hand, new sequencing technologies have also imposed new computational

challenges for the analysis of enormous volumes of data being generated.

Hence, we need efficient algorithms and software tools that can be scal-

able and cost-effective to handle the data produced remarkably in routine

problems such as sequence alignment and de novo assembly.

1.2 Efficient data structures for NGS data

In this section, I bring some notations and definitions related to data struc-

tures for the analysis of next-generation sequencing data.

5



1.2. Efficient data structures for NGS data

1.2.1 Bloom filter

A Bloom filter [9] is a probabilistic space-efficient and compact data struc-

ture that is designed to support membership queries on dynamic sets with

an adjustable false positive parameter. It has been broadly employed in

many computer science and engineering applications leveraging its capabil-

ity to compactly describe a set and readily detect items that do not belong

or may belong to the set with a controlled false positive rate. In bioinfor-

matics and computational biology, the Bloom filter data structure has been

used in applications such as genome assembly, k-mer counting, and error

correction [14, 16, 35, 53, 89, 90, 101, 102].

The answer of querying a Bloom filter is: no which means the the queried

element is not definitely present in the data structure, or yes which means

the element maybe present in the filter. The uncertainty comes from the

fact that different items can be mapped to same entries in the Bloom filter

resulting in false positive hits with the following rate:

F = (1− (1− 1

m
)kn)k ≈ (1− e−k/r)k (1.1)

where n is the number of items in the filter, m is the number of bit positions

in the filter, k is the number of hashes per item, and r = m/n is the number

of bits per element [9].

1.2.2 Suffix tree and suffix array

Suffix arrays and suffix trees [67, 68] are two widely-used data structures

for indexing, text searching, and information retrieval. They have been

6



1.2. Efficient data structures for NGS data

widely used in bioinformatics and computational biology applications. There

are two specific types of substrings s[i..j] for a given string s that are vey

important. The substring s[i..n] is a suffix of s for i ∈ [1..n + 1]. The

substring s[1..j] is a prefix of s for any j ∈ [0..n]. For a given string s, the

suffix tree is a tree whose leaves represent all the suffixes of s, where each

suffix of s is shown in the tree as a path starting from the root and ending

at the corresponding leaf. For a given string s, the suffix array is an array of

integers denoting the start positions of the lexicographically sorted suffixes

of s [76]. The Longest Common Prefix, or LCP, of two strings is the longest

string that is the prefix of both strings. LCP is stored alongside the list of

prefix indices, and represents the number of characters a particular suffix

shares with the suffix exactly above it, starting at the beginning of both of

them [76]. This value is useful to make string operations more efficient. For

instance, LCP may be used to speed up searching in the list of suffixes by

avoiding comparison of characters that are already known to be the same.

1.2.3 BWT and FM-index

Burrows-Wheeler Transform (BWT) for a given string T , BT , is a reversible

permutation of T , and it has been widely used in text compression and

indexing. When BWT is coupled with some small auxiliary data structure,

the two form a space-efficient and compact index of T [26]. By appending

an occurrence array, Occ, and an aggregate count vector, C, Ferragina and

Manzini [26] constructed the FM-index as a novel indexing structure. Let

C(a) be the index in SAT of the first suffix that starts with character a. If

v is the number of letters that are alphabetically smaller than a in T , then

7



1.2. Efficient data structures for NGS data

C(a) = v+ 1. Let Occ(a, i) denote the number of times the character a has

been seen in BT [1, i]. To facilitate operations, the sentinel symbol, $, is also

included in C and Occ, where $ is alphabetically smaller than all letters.

Using C(a) and Occ(a, 1), Ferragina and Manzini proposed an algorithm

for searching a query Q in T . Let S denote a string with the suffix array

interval in the range [Rl, Ru]. Now, for aS the new suffix array interval can

be computed from [Rl, Ru] using Occ and C as follows:

Rl = C(a) +Occ(a,Rl − 1)

Ru = C(a) +Occ(a,Ru)− 1

(1.2)

and Rl(aS) ≤ Ru(aS) if and only if aS is a substring of T . This means

O(|Q|) time is required to check if Q is a substring of T and to count the

number of times Q has been seen in T . This is called backward search.

1.2.4 Contiguous seed

Contiguous seed is a run of matches between sequence reads. Contiguous

seed similarity search is based on the fact that a long substring shared

between query and target sequences may be originated from significant sim-

ilarity [76]. The consecutive match of few bases is defined as the seed or hit.

After identifying seed(s) between query and target sequences, the search

is continued by extending the seeds regions up to a threshold measure of

similarity to report the candidate positions. The most popular tool for sim-

ilarity search, BLAST (Basic Local Alignment Search Tool) [3], is based

on the contiguous seed similarity search for finding local alignment. The
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length of the shared substring between sequences, seed, is w=11 by de-

fault. The target and query sequences should have w consecutive identical

characters, or w matches, to be aligned, and is shown as seed in the form

of 11111111111, where a 1 represents a match. The key idea here comes

from the fact that searching exact matches would be easier than looking for

approximate matches.

1.2.5 Spaced seed

Spaced seed similarity search, proposed by Ma, et.al. in 2002 [65] looks

for matches that are not consecutive and can include some “don’t care”

positions, resulting in a higher probability of catching alignments. The

spaced seed proposed in [65] is 111 ∗ 1 ∗ ∗1 ∗ 1 ∗ ∗11 ∗ 111, where a 1 denotes

for a match and ∗ corresponds to a “don’t care” location. It means, when

looking for a possible alignment, only locations of 1’s are examined, whereas

locations with *’s are not checked. As opposed to the consecutive seed

of BLAST, this class of seeds is referred as spaced seed. Spaced seeds are

the current state-of-the-art for approximate sequence matching, which have

been increasingly used to improve the quality and sensitivity of searching

in different applications including alignment-free methods and metagenomic

studies [29, 30, 39, 84]. Spaced seeds are more sensitive and have higher

chance to identify actual alignments. The weight, denoted by w, of a spaced

seed is defined as the number of 1’s in the seed whereas the total number of

1’s and *’s is defined as the length and denoted by l. A seed’s capability to

identify regions that are similar between sequences is called the sensitivity of

that seed [76]. There is a dynamic programming algorithm for calculating

9
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the sensitivity of a spaced seed [57]. Using a set of several spaced seeds

for similarity search will greatly improve the sensitivity. This set of several

spaced seeds is referred as multiple spaced seeds [76].

There are some limitations when using spaced seeds for approximate

string matching. The first one is designing and finding the optimal seed or

multiple seeds. This is an NP-hard problem (there are exponential number of

candidate sets of spaced seeds to examine, and computing the sensitivity of

each spaced seed set also needs exponential time), and it has been addressed

in the several previous works [23]. The second issue related to spaced seeds

is the large space requirements for spaced seeds index table that makes it

infeasible to apply them for large-scale alignment tasks. Recently, Egidi

and Manzini [23] have proposed a class of spaced seed called, Quadratic

Residue seeds (QR-seed), having competitive sensitivity/specificity to the

best multiple spaced seeds. It is based on one spaced seed, and requires less

memory compared to multiple spaced seeds.

1.3 Sequence alignment

Sequence alignment is one of the essential operations in computational biol-

ogy and bioinformatics, and is affected adversely by the NGS data deluge.

In genome resequencing projects, it is often used prior to variant calling. In

transcriptome resequencing, it provides information on gene expression mea-

surements. It is even used in de novo sequencing projects to help contiguate

assembled sequences. As such, improving the performance of alignment al-

gorithms would have a wide effect in the field.
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Formally, sequence alignment problem is defined as follows. As input we

are given a set of target sequences T , and a set of query sequences S, and the

goal is to find one or more coordinates from each query sequence in the set of

target sequences based on the similarity between sequences. Given a distance

function F , and an error threshold e, we are looking for the set of positions

in T where a query sequence has a distance ≤ e under the distance function

F . Common distance functions are hamming distance, corresponding to the

number of mismatches, and edit distance, corresponding to the number of

mismatches, insertions, and deletions. The best output record of a given

query s ∈ S is the position in the target sequence t ∈ T that is the most

probable position that s originated form. The measures that can be used

to define this likelihood is the minimum number of edit operations or the

minimum sum of Phred quality score of error positions in s. The Phred

quality score Q is defined as a measure of quality related to the base-calling

error probabilities P , and is equal to Q = −10log10P [24]. For instance,

if Phred score of a given base is 20, the probability that the given base is

identified incorrectly is equal to 0.01.

Sequence alignment is broadly categorized into two classes: local align-

ment and global alignment. A local alignment, instead of considering the

total sequence, takes into account regions of all possible lengths, and detects

similar regions between two sequences. Whereas in global alignment all the

bases in two sequences are involved and taken into account in the alignment

process. The most widely used algorithms for solving the global and lo-

cal alignment problems are based on dynamic programming approaches [83,

100]. Creating the dynamic programming alignment matrix and perform-
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ing a backtrack in it to detect the optimal alignment requires O(nm) time.

The dynamic programming approaches are slow due to their quadratic time

complexity, and will take long time especially in cases where we have vey

long target sequences to be compared such as large genomes [76].

Finding exact occurrences of queries in target sequences can take linear

time, however a linear time complexity in order of the length of the long

sequence or target is too expensive, so the time complexity linear in the size

of the short sequence or query is desired. To achieve this goal, an index such

as a suffix array, suffix tree, FM-index, or hash table can be constructed on

the large sequence . Building such an index requires O(n) time and O(nlogn)

memory, where n is the length of the target sequence. The indexing cost

is usually amortized when the index is utilized multiple times, resulting

in quick lookup of the indexed sequences. During the past decade, many

alignment methods have been proposed based on suffix trees [47, 73], suffix

arrays [1, 37], hash tables [3, 12, 34, 38, 56, 63, 64, 93, 99, 108], or FM-

indices [48–50, 52, 54, 55, 59, 69]. Below is a summarized description of

some of the most popular alignment methods in the field.

1.3.1 BWA, BWA-SW, BWA-MEM

BWA [55] is an FM-index based alignment method. For exact string match-

ing, it uses the FM-index and backward search. For inexact matching, it

utilizes a heuristic bounded traversal/backtracking approach. Using the pro-

posed recursive approach, BWA identifies the intervals related to the suffix

array of the target’s substrings matching the query sequence q with less than

e gaps or mismatches. This procedure is performed by backward search to
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sample distinct subsequences from the target sequence which is bounded

by the array D(.), where D(i) is the lower bound on the count of different

bases between prefix q[0; i] and the target sequence. Calculating better esti-

mates for D narrows down the search space and results in a faster and more

efficient process.

BWA-SW [54] constructs FM-index for the target and query sequence.

The method represents the target sequence as a prefix trie implicitly and

describes the query string in a prefix directed acyclic word graph (DAWG),

reconstructed from the prefix trie of the query string. The proposed method

then applies a dynamic programming approach between the DAWG and the

trie, by traversing the query DAWG and the target prefix trie. Instead of

outputting all the significant local alignments, the algorithm only outputs

largely non-overlapping mappings on the query sequence. BWA-SW heuris-

tically finds and ignores seeds contained in a longer alignment, which results

in less computing time for extension of unsuccessful seeds [54].

BWA-MEM [52] is a seed-and-extend based alignment method. The

proposed method works by first seeding an alignment using super-maximal

exact matches, called SMEMs, by utilizing an algorithm that looks for the

longest exact match spanning positions in a given query. Nevertheless, the

actual alignment may not sometimes have any SMEMs. To decrease mis-

alignment resulted from absent seeds, BWA-MEM uses re-seeding. Suppose

we have a SMEM of length l that happens k times in the target sequence. If

the length of SMEM, l, is too long, longer than 28bp by default, BWA-MEM

re-seeds with the largest exact matches that span the middle nucleotide of

the SMEM and appear at least k+1 times in the target [52]. These kinds of
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seeds can be identified by demanding an occurrence threshold in the original

SMEM method.

1.3.2 Bowtie, Bowtie2

Bowtie [50] is an FM-index based alignment algorithm. After building the

index for target sequences, it employs a modified Ferragina and Manzini [26]

exact matching approach to determine the possible mapping coordinates. To

handle inexact matching, Bowtie customizes this method by adding two ex-

tensions. The first one is a quality-aware backtracking procedure allowing

mismatches, and the second one is “double indexing”, to prevent excessive

backtracking. Bowtie allows a limited number of mismatches and chooses

mappings that have lower values for sum of the quality at all mismatched

locations [50]. It launches a backtracking search to identify mappings that

assure the above mapping procedure. The search continues similarly for

the exact backward search, computing ranges for larger query suffixes. The

algorithm may choose a current matched query location if it encounters an

empty range, and changes the related nucleotide with another base. It then

restarts the backward search from the next position after the changed nu-

cleotide. Bowtie algorithm considers only those changes that are compatible

and agree with the mapping policy resulting in a modified suffix that ap-

pears at least once in the target. To reduce excessive backtracking, this

method utilizes “double indexing”. For target sequences, two indices are

constructed. The first one includes the BWT of the forward-strand target

set, called forward index, and the second one consists of the BWT of the

reversed-strand, not the reverse-complement, which is referred as the mirror
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index.

Bowtie2 [49], as opposed to Bowtie, handles the gapped alignment by

extending the FM-index based appraoch of Bowtie to allow gapped align-

ments by dividing the algorithm into two steps: (i) ungapped seed-finding

step based on FM-index that utilizes the speed and memory efficiency of it

and (ii) gapped extension step based on the dynamic programming approach

that takes advantage of single-instruction multiple-data (SIMD) vector pro-

cessing extensions of modern processors. To do so, the proposed method

identifies seeds from the query sequence and its reverse complement. After

seed extraction, Bowtie2 utilizes the FM-index to identify all the ranges re-

lated to these seeds in an ungapped fashion and then prioritizes them and

calculates their positions in the reference genome from the index. Finally,

it uses a SIMD-accelerated version of Smith-Waterman algorithm [25] to

extend the seeds into full alignments.

1.3.3 Novoalign

Novoalign (http://www.novocraft.com) is a hash-based alignment algo-

rithm. It provides the most sensitive results for the alignment problem

by employing a dynamic programming approach. In the indexing stage,

Novoalign constructs a hash table by partitioning the target sequences into

overlapping k-mers. In the mapping phase, after constructing the index ta-

ble, it exploits the Needleman-Wunsch dynamic programming approach [83]

with affine gap penalties to identify the optimal global alignment.
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1.3.4 GEM

GEM [69] is an FM-index based alignment method. It utilizes a filtration-

based paradigm to approximate sequence matching. To do so, all related

candidate matches are identified using an FM-index by appropriate pigeonhole-

like rules followed by a dynamic programming approach for refining align-

ments. Some of the regions may result into many matches as candidates and

require to be verified, and hence resulting in inefficient alignments. GEM

picks a threshold t, which defines an upper bound for candidates that should

be examined for each filtering region. For a given query, GEM scans it back-

ward from right to left with FM-index, appending one base at a time to the

current segment, and calculating the candidates count in the target that map

exactly to the sequence being formed. Any moment the count of candidates

goes under the threshold, it starts a new segment. It should be mentioned

that the number of candidates to be examined per filtering region is always

guaranteed to be less than the threshold.

1.3.5 SOAP, SOAP2, SOAP3

SOAP [59] is a hash-based alignment method. For aligning a query against

the target sequences, SOAP allows a fixed number of mismatches (at most

2) or a single continuous gap (1-3 bp) with no mismatches in the flank-

ing regions. Its criteria for best alignment results are either the smallest

number of mismatches or a shorter gap. SOAP loads the target sequences

into memory and constructs the seed index tables for the target sequences.

For each query, it then builds seeds and searches for candidate hits in the
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corresponding index table. Finally, it performs the alignment and reports

the results. SOAP uses a look-up table to accelerate the alignment. To

reduce the memory requirements, both the query and the target sequences

are converted into 2-bit encoding for each base. A bit-wise EXCLUSIVE

OR (XOR) comparison is performed on query and target sequences to find

the number of different bases. Since gapped hits do not include mismatches,

SOAP uses an enumeration approach that attempts to add a consecutive

gap or delete a region at each possible site in a query.

SOAP2 [60] utilizes Burrows Wheeler Transform (BWT) compact index

to construct index from the target sequences in the main memory. By em-

ploying BWT, SOAP2 improves alignment speed and significantly reduces

memory requirements. SOAP2 constructs a hash table to speed up search-

ing for the location of a query in BWT target index. Because of the hash,

detecting the actual location inside the block requires very few look-up in-

teractions. For alignments with both indels and mismatches, it partitions

the query into segments. To allow a single mismatch, a query is partitioned

into two regions. For handling two mismatches, it partitions a query into

three regions to look for hits. This enumeration approach was utilized to

find mutation positions on the queries.

SOAP3 [62] is a parallel implementation of SOAP2 adapted for the

Graphics Processing Unit (GPU) to improve the speed. It constructs a

GPU variant of the compressed BWT based index used by SOAP2. To

adapt the compressed BWT index with GPU, SOAP3 redesigns the BWT

to decrease memory accesses to the full, while preserving the index efficiency.

It also restricts the patterns introducing too many branches at runtime and
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postpones the execution of them to decrease the idle time of processors.

1.4 Sequence assembly

In bioinformatics, sequence assembly process refers to joining small se-

quences, called reads, of a much larger and unknown DNA sequence in order

to rebuild the initially long sequence. It is a required step in bioinformatics

because the current sequencing technologies cannot generate whole genomes

(a huge sequence, e.g. about 3 billion characters long for human) from start

to end, but rather generate small sequences (reads) between 100 and 5000

bases long (Fig. 1.1: a,b). Then the assembly algorithm stitches together

the genome from short sequenced pieces of DNA (Fig. 1.1: c-e). Therefore,

given a collection of reads, i.e. short subsequences of the genomic sequence

in the alphabet {A, C, G, T}, the goal of genome assembly is to completely

reconstruct the genome from which the reads are derived. There are several

challenges for the assembly problem such as sequencing errors, repeats and

duplications. Also, large genomes require more computational power as well

as memory (most algorithms require more than 300 GB memory for mam-

malian genomes) to assemble billions of reads. Assembly algorithms can

be divided into three major paradigms: Greedy, Overlap-Layout-Consensus

(OLC), and de Bruijn graph [81].

In greedy paradigm, the assembly algorithm always makes the best im-

mediate local choice, e.g. the reads that have the best overlap are joined

incrementally while they are in agreement with the recent built assembly.

Here, the global relationship between the reads is not taken into account and
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a) Genome 

b) Clone, cut to  
     fragments 

c) Select fragments    
    Sequence Reads 

d) Contigs 

e) Scaffold 

Figure 1.1: Genome sequencing and assembly steps.

all choices taken by the assembly method are inherently local. This paradigm

has also challenges with assembling of large and complicated genomes.

In the Overlap-Layout-Consensus paradigm, the assembler first finds po-

tentially overlapping reads (overlap), then merges reads into contigs and

contigs into scaffolds (layout), and finally derives the DNA sequence and

correct read errors (consensus). Because the complexity of overlap step is

O(n2), this paradigm is not efficient for huge assembly problems such as

human genome assembly.

In the de Bruijn graph paradigm, sequences are decomposed into fixed-

length substring of length k, called k-mers. Then, each k-mer is assigned
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to a vertex in the graph and the edges between vertices illustrate that the

adjacent k-mers overlap by k − 1 characters. The assembly algorithm then

tries to join vertices. Hence, assembly task can then be observed as join-

ing vertices of the graph when they are connected unambiguously. Before

concatenating vertices, the graph must be cleaned of edges and vertices re-

sulting from sequencing errors [98]. After creating all the k-mers from the

input reads, the graph is constructed and finally the potential long sequences

(genomes) are obtained by finding the Eulerian tours in the de Bruijn graph.

Several methods exist for the sequence assembly problem.

Popular assemblers based on the OLC paradigm are Edena [36] and

SGA [97] and for de Bruijn graph paradigm we can mention ALLPATHS [11,

31, 66], ABySS [98], Euler [86], SOAPdenovo [58], and Velvet [109]. Follow-

ing is a summarized description of some of the assembly methods.

1.4.1 ALLPATHS

ALLPATHS [11] is a unipath graph-based assembly method. A unipath is an

unambiguous path in the graph and a unipath graph is a graph whose edges

are unipaths. Unipaths are found by traversing the nodes until a branching

is found. One end of a unipath is arbitrarily named as the left side and

the other end is named as the right side. For each unipath in the graph,

ALLPATHS finds its neighbors on the left side and also on the right side. If

the distance between the left neighbors and the right neighbors is less than

a threshold then the unipath is removed. The remaining unipaths in the

graph are seed unipaths. ALLPATHS starts assembly from low copy count

seed unipaths called ideal seeds. For each ideal seed unipath, ALLPATHS
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defines its neighborhood based on the distance on each side and constructs

two sets of read clouds: the primary read cloud consists of the reads whose

actual genomic locations are most likely near the seed unipath (reads on

other ideal seed unipaths in the neighbourhood) and the secondary read

cloud consists of all other short-fragments in the neighbourhood [11]. The

reads in the neighborhood of an ideal seed unipath define a local unipath.

Local unipaths are joined iteratively using mate pairs in the primary cloud,

which in the end yield a sequence graph representing the genome. Then,

ALLPATHS simplifies dead-ends, bubbles and loops to further simplify the

graph.

1.4.2 SGA

The String Graph Assembler (SGA) constructs an assembly string graph

to represent the reads. It first removes duplicate and contained reads from

the input set of reads to build an overlap graph. Then transitive edges are

removed resulting in an overlap graph of irreducible edges, called a string

graph [97]. SGA uses an FM-index to directly compute the set of irre-

ducible edges for a given set of reads. Reads in SGA are corrected based on

the k-mer frequencies and approximate overlap between reads. SGA tries

to correct the reads by minimizing the sum of edit distances of all over-

lapping reads in the string graph. After filtering and correction, most of

the remaining reads do not contain errors. Each node in the string graph

denotes a read. Most of the reads in the string graph will have only two

neighbours, one overlapping with a prefix and the other overlapping with a

suffix of the read. The majority of the read sequences in the string graph
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are simply connected on a path without any branching. These reads can

be unambiguously joined together to dercrease the size of the graph [97].

SGA iteratively discovers irreducible edges in the graph and reduces the

nodes that are simply connected. Each edge in the simplified string graph

represents a contig. In the last stage of assembly, paired-end or mate-pair

information are employed to bridge contigs to form scaffolds by a program

called scaffolder. The scaffolder constructs a contig linkage graph that rep-

resents relationships between contigs using mate pairs. The scaffolder then

removes ambiguous edges from the contig linkage graph, where the contigs

cannot be ordered consistently. Finally, terminal vertices (i.e., vertices hav-

ing an edge in only one direction) are identified and all paths between pairs

of vertices are determined. The path with the largest sequence amount is

retained as a scaffold [97].

1.4.3 ABySS

ABySS (Assembly By Short Sequences) is a parallel sequence assembly al-

gorithm implemented using MPI and developed to assemble huge amounts

of NGS data [98]. The ABySS algorithm has two stages. In the first stage,

all k-mers are created from the reads and refined to remove read errors and

build initial contigs. In the second stage, contigs are extended by resolving

ambiguities using mate-pair information. Some genomes have a very large

number of k-mers. For instance, human genome has over 2 billion unique

k-mers. If every k-mer is represented using, say 50 bytes, 100 GB RAM is

required just to represent k-mers. So, the solution of ABySS is distributed

computing which distributes the de Bruijn graph over a cluster of compute
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nodes as follows. Each input read of length l is divided into l−k+ 1 succes-

sive k-mers by shifting a fixed-length window with length k over the input

read sequence [98]. Then, the cluster compute node index of each k-mer is

computed, based on binary representation value of its sequences, and the k-

mer is given to that node and stored in a hash table. After the k-mers were

loaded into the de Bruijn graph which is distributed across several nodes,

the adjacency information for the k-mers is calculated. To do so, a message

is sent to 8 possible neighbors for each k-mer because a node in graph may

connect up to 8 edges, one for each possible single-base extension of {A, C,

G, T}, in both directions. If the neighbor is present, a k − 1 overlap with

the originating k-mer is available, and the adjacency information is updated

respectively [98]. The de Bruijn graph may have false branches caused by

noises and sequencing errors or bubbles caused by repeat read errors. In the

next step, the graph is cleaned of those vertices and edges related to noises

and sequencing errors (Trimming) as well as repeat read errors or haplotypic

variants (Bubble popping). After removing ambiguous edges, the remaining

de Bruijn graph is analyzed for contig extension and then vertices linked

by unambiguous edges are merged together resulting in the initial contigs.

After creating initial contigs, paired-end information is employed for resolv-

ing the ambiguities among contigs. Contigs that can be linked together are

identified by paired-end reads. Then, the linked contigs are filtered to elim-

inate erroneous links resulted from misaligned or mispaired reads. Finally,

contigs are considered to be linked if at least a predefined number of pairs

join them together.

New releases of ABySS address challenges with the increase in read
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length in the third generation of sequencing technologies. In this method, a

new spaced seed data structure and algorithm has bee designed for paired de

Bruijn graph genome assembly [6, 7]. The paired de Bruijn graph method is

easily adaptable into any de Bruijn graph-based framework. This modified

approach deems to be more fit than its predecessor due to the following

reasons (i) Allows for sequence error corrections not only in low coverage

regions but also across the entire genome due to the usage of two k-mers

instead of one; (ii) Longer and unambiguous contigs can be reported from

repeat-rich sequences; (iii) More unique k-mers pairs can be reported for

larger separation distances using small k-mers (k′), which is only possible to

reproduce if a single k-mer length is more than 2k′. There are lesser nodes

in the same de Bruijn graph due to the accommodation of two k-mers in

each of them and less tangled edges due to the unique nodes. As an appar-

ent consequence, the amount of memory and time efficiency is a lot lesser

compared to a typical de Bruijn graph structure.

1.5 Overview of research goals

In Chapter 2, I introduce my technical notation and definitions then de-

scribe a distributed and parallel framework for large-scale sequence align-

ment tasks. This will address the memory requirement challenge for per-

forming large-scale alignment tasks. The method that I develop is similar

to MapReduce framework developed by Google for large scale data process-

ing. It also employs the Bloom filter data structure at its core. As this is

a very compact data structure, its peak memory footprint is much smaller
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than other data structures. This will allow the reduction of the memory

bottleneck of indexing large target sequences.

In chapter 3, I describe a fast hashing algorithm for bioinformatics ap-

plications called ntHash. This algorithm is a recursive or rolling hashing

function in which the new hash value is derived from the previous one by

few more operations. I demonstrate the uniformity and runtime performance

of the proposed method on real sequencing data as well as simulated random

data. Also, I compare the performance of ntHash with the state-of-the-art

hashing algorithms in bioinformatics.

In chapter 4, I propose a streaming algorithm for cardinality estimation

in massive genomics data called ntCard. I will address this problem by

utilizing the ntHash algorithm to efficiently compute hash values for input

stream sequences. I will then sample the calculated hash values to build a

reduced representation multiplicity table describing the sample distribution,

and then derive a statistical model to reconstruct the population distribution

from the sample distribution. I evaluate the performance of ntCard on

whole genome shotgun sequencing experiments on the human genome and

the white spruce genome datasets. I also compare the accuracy, runtime,

and memory usage of ntCard to leading cardinality estimation algorithms.

Finally, in chapter 5, I present concluding remarks.
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Chapter 2

DIDA: Distributed Indexing

Dispatched Alignment

2.1 Publication note

The work described in this chapter was previously published in the PLoS

One journal in 2015 [79]. The outcome algorithm and software tool from this

work was used in two published papers in the Plant Journal in 2015 [106]

and the Genome biology and evolution journal in 2016 [43]. The work de-

scribed in this chapter is the main work of the author, under the supervi-

sion of his PhD supervisor, Inanc Birol. The author designed the algorithm,

implemented the software tool, performed the experiments, and wrote the

manuscript. The co-authors on this work helped in optimizing the software

tool and performing the experiments.

2.2 Author summary

Sequence alignment is one of the most popular and widely-used applica-

tions in bioinformatics that is affected by the high-throughput sequencing

data deluge. In sequence alignment process, nucleotide or amino acid se-
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quences are queried against targets to find regions of close similarity. The

alignment process becomes computationally challenging when queries are

too many and/or targets are too large. This bottleneck is usually ad-

dressed by preprocessing techniques, where the queries and/or targets are

indexed for easy access while searching for matches. When the target is

static, such as in an established reference genome, the cost of indexing

is amortized by reusing the generated index. However, when the targets

are non-static, such as contigs in the intermediate steps of a de novo as-

sembly process, a new index must be computed for each run. To address

such scalability problems, we present DIDA, a novel framework that dis-

tributes the indexing and alignment tasks into smaller subtasks over a clus-

ter of compute nodes. It provides a workflow beyond the common practice

of embarrassingly parallel implementations. DIDA is a cost-effective, scal-

able and modular framework for the sequence alignment problem in terms

of memory usage and runtime. It can be employed in large-scale align-

ments to draft genomes and intermediate stages of de novo assembly runs.

The DIDA source code, sample files and user manual are available through

http://www.bcgsc.ca/platform/bioinfo/software/dida. The software

is released under the British Columbia Cancer Agency License (BCCA), and

is free for academic use.

2.3 Introduction

Performing fast and accurate alignments of reads generated by modern se-

quencing technologies represents an active field of research. At its core, the
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sequence alignment problem is about identifying regions of close similarity

between a query and a target. Most modern algorithms in this domain work

by first constructing an index of the target and/or the query sequences. This

index may be in the form of a suffix tree [47, 73], suffix array [1, 37], hash

table [3, 12, 34, 38, 56, 65, 93, 99, 108], or full-text minute-space index (FM-

index) [48–50, 55, 58, 61, 69]. Although this pre-processing step introduces

an initial computational overhead, indexing helps narrow the list of possible

alignment coordinates, speeding up the alignment task.

When the target sequence is static (e.g., a reference genome), the cost of

index construction represents a one-time fixed-cost. It is performed once as

a pre-alignment operation, and the resulting index is used for many subse-

quent queries. Hence, it is often discounted in performance measurements of

alignment tools. However, there are many applications where the reference

is not static and/or the computational cost of indexing is not negligible.

Such cases include resequencing data analysis of non-model species, where

the target index has to be established, and intermediate stages of a de novo

assembly process where index construction needs to be performed several

times.

One more complicating factor in these two domains is that the target

sequence may not represent chromosome-level contiguity, requiring align-

ments to a fragmented target sequence. This may be a particular challenge

for many alignment algorithms, which perform poorly near target bound-

aries, introducing “edge effects”.

To address these challenges, we have designed and developed DIDA, for

Distributed Indexing and Dispatched Alignment. DIDA works by first dis-
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tributing the index construction over several computing nodes. It dispatches

the query sequences over corresponding computing nodes for alignment. Fi-

nally, partial alignment results from different computing nodes are gathered

and combined for reporting.

We tested DIDA using four datasets: (1) C. elegans genome, (2) Human

draft genome, (3) Human reference genome, and (4) P. glauca genome. Here,

we report on the scalability, modularity and performance of the tool.

2.4 Method

The sequence alignment task is often suitable for parallel processing, and

the widely practiced approach is to perform the task in an embarrassingly

parallel manner. When the target index is available, it is loaded on multiple

processors, and a subset of the query sequences (usually raw reads from a

sequencing experiment) are aligned in parallel to this common target.

In DIDA, we parallelize both the indexing and alignment operations

using a five-step workflow (Fig. 2.1). For the description of the method,

we consider a use case where the target is a draft genome assembly, with

individual contigs and scaffolds related to each other through an assembly

graph. Although, the protocol is general enough for a generic target not

associated with a graph. Before describing the proposed framework, we

provide some preliminary and basic definitions and notation.
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Target	   Target-‐1	   Target-‐2	   Target-‐3	   Target-‐4	  

Index-‐1	   Index-‐2	   Index-‐4	  Index-‐3	  

aligner	   aligner	   aligner	   aligner	  

aln-‐1.	  
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and Merge 
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Query-‐4	  Query-‐3	  Query-‐2	  Query-‐1	  
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k-meri k-merk k-merj 

Figure 2.1: The workflow of DIDA with four partitions as an example. (a)
First, we partition the targets into four parts using a heuristic balanced cut.
(b) Next, we create an index for each partition. (c) The reads are then flowed
through Bloom filters to dispatch the alignment task to the corresponding
node(s). (d) Finally, the reads are aligned on all four partitions and the
results are combined together to create the final output.

2.4.1 Assembly graph

Most modern assembly tools are graph-based algorithms [11, 58, 80, 97, 98,

109]. These algorithms model the assembly problem using a graph data

structure (e.g., de Bruijn graph, overlap graph, string graph) consisting of

a set of vertices (reads or k-mers) and edges (overlaps) representing the

relationship between vertices. After building such graphs, the assembly

problem is converted to a graph traversal problem, where a walk along the
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graph would reconstruct the source genome. In practice, assembly algo-

rithms report unambiguous walks on the assembly graphs, building contigs

as opposed to full genomes or chromosomes. Especially for large genomes,

use of short reads from high-throughput sequencing platforms for assembly

results in a large number of contigs. For example, using 150 base pairs (bp)

reads, the white spruce genome is assembled into several million contigs [8].

Some of the ambiguity on the assembly graph can be mitigated by using

paired end reads or other linkage information. This requires alignment of

queries to a typically highly fragmented draft genome. In DIDA, when avail-

able, we partition the assembly graph keeping tightly connected components

on the same partition, as described below. For other use cases, where the

target components (e.g., contigs or chromosomes) are not related through a

graph, the partition optimization is done based on component lengths.

2.4.2 Bloom filter

As explained in the previous chapter, a Bloom filter [9] is a space-efficient and

compact probabilistic data structure providing membership queries over dy-

namic sets with an allowable false positive rate. Bloom filter has been widely

used in many computing applications, which exploit its ability to succinctly

represent a set, and efficiently filter out items that do not belong to the

set, with an adjustable error probability. In bioinformatics, the Bloom filter

has been recently utilized in applications such as k-mer counting, genome

assembly and contamination detection [14, 16, 74, 90, 102].

An ordinary Bloom filter consists of a bit array B of m bits, which are

initially set to 0, and ϕ hash functions, h1, h2, . . . , hϕ, mapping keys from
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a universe U to the bit array range {1, 2, . . . ,m}. In order to insert an

element x from a set S = {x1, x2, . . . , xn} to the filter, the bits at positions

h1(x), h2(x), . . . , hϕ(x) are set to 1. To query if an element q is in the

filter, all of the bits at positions h1(q), h2(q), . . . , hϕ(q) are examined. If at

least one bit is equal to 0, then q is definitely not in S. Otherwise, q likely

belongs to the set. The uncertainty stems from coincidental cases, where

all the corresponding bits, hi(q) i = 1, 2, . . . , ϕ, may be equal to one even

though q is not in S. This is possible if other keys from S were mapped into

these positions. Such a chance occurrence is called a false positive hit, and

its probability is called the false positive rate, F . The probability for a false

positive hit depends on the selection of the parameters m and ϕ, the size of

the bit array and the number of hash functions, respectively. After inserting

n distinct elements at random to the bit array of size m, the probability

that a specific bit in the filter is 0 is (1− 1
m)ϕn. Therefore, the false positive

rate is:

F = (1− (1− 1

m
)ϕn)ϕ ≈ (1− e−ϕ/r)ϕ (2.1)

where r = m/n is the number of bits per element. Minimizing the equation

(1) for a fixed ratio of r yields the optimal number of hash functions of

ϕ = rln(2), in which case the false positive rate is (0.6185)r [10].

2.4.3 DIDA

Our proposed distributed and parallel indexing and alignment framework,

DIDA, consists of five major steps to perform the indexing and alignment
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task: distribute, index, dispatch, align, and merge. The indexing and dis-

patch steps are performed in parallel. Each step is explained in detail as

follows.

Distribute. In this step, the set of target sequences is partitioned into

several subsets. Depending on the nature of the target sequences (static as

in reference genomes, or non-static as in a draft assembly; unrelated as in

chromosomes, or related as contigs in an assembly graph) different partition-

ing strategies may apply to initial target set. The key point in all cases is to

keep the partitions as balanced as possible. The target partitioning problem

is a variant of the bin-packing problem and since the bin-packing problem

is NP-hard, there is no polynomial time solution to the target partitioning

problem either. However, there are efficient heuristics developed to solve

the problem [44, 105]. Other than the theoretical hardness of the target

partitioning problem, having well-balanced partitions in practice when the

target set contains few number of long sequences will also be difficult.

In the case of a static and independent set of target sequences, the par-

titioning is performed using the best fit decreasing strategy that is among

the simplest greedy approximation algorithms for solving the bin-packing

problem. Here, the bins correspond to computing nodes, and items are the

target sequences. This strategy operates by first sorting the target sequences

to be partitioned in decreasing order by their lengths, and then distributing

each target sequence into the best node in the list, which is the node with

the minimum sufficient remaining space for the target sequence.

When the target sequences are related, such as contigs in a draft assem-

33



2.4. Method

bly, the partitioning starts by first identifying all connected target sequences

using adjacency information in the assembly graph. This is performed by

launching a depth-first search traversal of the undirected adjacency graph,

and by finding all connected components. Then, the partitioning proce-

dure continues by applying the best fit decreasing strategy for identified

connected components to distribute them over computing nodes.

Index. An exact pattern search can take linear time in the target length.

But when the target length is very long, it is desirable to have the search

time linear in the query length and independent of the target length. To

do so, an index such as a suffix tree, suffix array [67, 68, 87], hash table, or

FM-index [26, 27] on the long sequence or text can be created. Constructing

such an index takes O(n) time and O(nlogn) space, where n is the size of

the target [87]. This cost is often amortized when the index is used several

times, providing very fast searching of the indexed target.

For the indexing step, and on each computing node, DIDA takes the

subset of target sequences from the Distribute step, and constructs an index

for each subset in parallel on all computing nodes. Then, the indices are

stored on each computing node to be invoked later in the alignment step.

Depending on the alignment algorithm, any indexing approach can be used

in this step. The reduced target size (n/P in the best-case scenario, where

P is the number of partitions) allows linear scaling of the indexing time

and better than linear scaling in the index space. While both would have

a positive impact on alignments against dynamic targets, the latter would

also help cases where the target is too large to fit into the memory of a single
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computer.

Dispatch. To keep track of each subset of target sequences, and to identify

which read may align on which partition of the target, a set of Bloom filters

is created for all partitions of target sequences. The reads are then flowed

through these Bloom filters, and dispatched to the corresponding node(s).

To create a Bloom filter for each partition of target sequences, all target

subsequences of length b (b-mer) in the partition are scanned. Each scanned

b-mer, x, is then inserted into the corresponding Bloom filter by setting

the related bits in the bit array, i.e. B[hi[x]] = 1, i = 1, 2, . . . , ϕ. After

constructing the Bloom filters, all possible read b-mers are queried against

the Bloom filters. If at least one hit is found for each read, the read is

dispatched to the corresponding node. This procedure continues until all

the reads are either dispatched or discarded. By choosing the b-mer length,

b, small enough, we make sure that no read sequence will be missed in the

Bloom filter query step. This is performed by setting b less than or equal

to the minimum seed or exact match length of aligners, l, for candidate

hits. Detailed procedure for choosing b, loading and querying Bloom filters

is explained below.

Loading Bloom filter. In this stage, all target sequences in the target set

T = {T1, T2, . . . } are scanned using a sliding substring of length b. For each

target sequence Ti, all possible |Ti| − b + 1 b-mers are scanned and then

inserted to the Bloom filter after specifying the corresponding bit vector

positions by computing the ϕ hash values for each b-mer (Fig. 2.2).

Querying Bloom filter. In this step, all reads in the read setR = {R1, R2, . . . }
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_________________________target-seq_____________________ 
__________ 
<----b---> 
 __________  
<---b+1---> 
   __________ 
<----b+2---->           . . . 
                                              __________  
<-------------------------|T|--------------------------> 

Figure 2.2: Loading the Bloom filter using a sliding substring of length b.

are queried using the same b-mer length in the loading stage. If at least one

hit is found for a read, the read is dispatched to the corresponding node. We

can use sliding b-mer windows (with step size of one base, s = 1) or jumping

b-mer windows (with step size greater than one base) to interrogate each

read Rj as explained in Fig. 2.3.

_________________________read-seq_______________________ 
__________ 
<----b---> 
       __________ 
<--s--><----b---> 
              __________ 
<--s--><--s--><----b--->  . . . 
                                              __________  
<-------------------------|R|--------------------------> 

Figure 2.3: Querying the Bloom filter using a substring of length b.

Suppose that the minimum seed or exact match length to report a candi-

date hit for an aligner is l. We choose b ≤ l and then load the Bloom filters

as mentioned in the Loading Bloom filter stage. In the querying stage, the

b-mers of each read sequence is interrogated against all Bloom filters from

different partitions. If b = l, the reads are scanned using sliding window

with step size of one base, i.e. s = 1. By choosing b < l, the interrogation
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step will be faster but with more extra dispatched reads, and the step size is

computed as follows to cover all possible seeds or exact matches of length l

between the target sequence Ti and read sequence Rj . If the l-mer starting

at position p is covered by at least one b-mer, to cover the next l-mer start-

ing at position p+ 1 we should have s+ b ≤ l + 1. Therefore, s ≤ l − b+ 1

(Fig. 2.4).

_________________________read-seq_______________________ 
__________ 
<----b--->        __________ 
<--s--><----b---> 

<-------l+1-----> 

________________ 
<-------l------> 
 ________________ 
 <-------l------> 

s+b=l+1 

Figure 2.4: Choosing the jumping size s for querying the Bloom filter.

In the implementation, the values of r and ϕ can be set as input pa-

rameters and we have considered 8 bits for each b-mer, r = 8, as default.

Therefore, the optimal number of hash functions that minimizes the false

positive rate of Bloom filter is ϕ = rln2 ≈ 5, resulting in a false positive

error rate slightly larger than 2%. It should be mentioned that the false

positive rate does not affect the final alignment result. It only imposes more

workload on nodes by dispatching reads that do not necessarily belong to

those nodes as a result of false positive Bloom filter hits. Fig. 2.5 shows

an example of how different values of r and ϕ affect the number of extra

dispatched reads over multiple nodes.
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Figure 2.5: Extra dispatched reads vs. r and ϕ. (a) Percentage of the extra
dispatched reads vs. the number of hash functions, ϕ, for the fixed value of
r = 16 on the C. elegans dataset. (b) Percentage of the extra dispatched
reads vs. the number of bits per item, r, for the fixed value of ϕ = 5 on the
C. elegans dataset.

Align and Merge. After constructing indices for all sets of target se-

quences and dispatching the reads to the computing nodes, DIDA aligns the

reads against the target sequence in parallel on each node. Note that, DIDA
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itself does not offer an alignment algorithm; instead, it can use a variety of

third party alignment tools.

In the merging step, partial alignment results, usually stored as SAM or

BAM (Sequence Alignment/Map Format) [55] records from different com-

puting nodes, are gathered and combined into the final SAM/BAM output.

Depending on the aligner parameters for reporting the output, different

merging approaches are applied. For example, when aligner parameters are

adjusted in order to obtain the best unique mapped query, the merger will

take into account that information to pick up the best quality mapped record

for each query from the related records in all partitions. With the reporting

parameters set to obtain multiple alignment records, the merger procedure

searches for all or up to a predefined distinct number of alignment records

in the partial alignment results in all partitions. The pseudo-code for DIDA

is presented in Algorithm 2.1.

2.4.4 Implementation

DIDA is written in C++ and parallelized using OpenMP for multi-threaded

computing on a single computing node. For distributed computing, DIDA

employs Message Passing Interface (MPI) for inter-processor communica-

tions. As input, it gets the set of target sequences and the set of queries

in FASTA or FASTQ formats, and the default output alignment format is

SAM.
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Program 2.1 The DIDA algorithm

1: Input: Set T of target sequences, set Q of query sequences
2: procedure Distribute
3: comp← dfs(T ) . identifying connected components
4: compsorted ← qsort(comp) . sorting connected components
5: P ← best-fit-decreasing(compsorted) . partitioning sorted connected

components

6: procedure Index
7: for all p ∈ P in parallel do
8: indexp ← build-index(p) . constructing index for each partition
9: store-index(indexp) . storing index for alignment step

10: procedure Dispatch
11: for all p ∈ P in parallel do . loading Bloom filter for each

partition
12: for all t ∈ p do
13: for all b-mer ∈ t do
14: insert(b-mer,BF [p])

15: for all q ∈ Q do . flowing queries through partitions
16: for all p ∈ P in parallel do
17: if contain(b-mer ∈ q,BF [p]) then
18: dispatch(q,nodep)

19: procedure Align
20: for all p ∈ P in parallel do . aligning queries against targets on

all partitions
21: receive(q, nodep)
22: s← align(q, indexp)
23: send(s, nodemerger)

24: procedure Merge
25: while receive(s, nodei) in parallel do . merging results from all

partitions
26: insert(s, priority-queue)
27: s← priority-queue.pop()
28: write(s, samFile)

29: Output: File samFile
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2.4.5 Evaluated tools

To evaluate the performance of DIDA, four alignment tools have been used

within the proposed framework: BWA-MEM [52], Bowtie2 [49], Novoalign

(http://www.novocraft.com), and ABySS-map [98]. The first three algo-

rithms were described in detail in Section 1.3.

Similar to BWA and Bowtie2, ABySS-map, a utility within the ABySS

genome assembly software [98], constructs an FM-index for target sequences

to perform exact matches. It is mainly used for alignment tasks in the

intermediate stages of the ABySS assembly pipeline. In order to speed up

the alignment operations, and hence the total assembly process, ABySS-map

only performs exact matching and avoids backtracking for inexact matching.

All four tools are run with their default parameters, and the parame-

ters related to the resource usage are set in a way to utilize the maximum

capacity on each computing node. For example, all tools are run in multi-

threaded mode with the maximum number of threads on each node. The

performance of each alignment method is compared with itself within the

DIDA framework.

Results were obtained on a high performance computer cluster consisting

of 500 computing nodes, each of which has 48 GB of RAM and dual Intel

Xeon X5650 2.66GHz CPUs with 12 cores. The operating system on each

node is Linux CentOS 5.4. The cluster’s network fabric and file system are

Infiniband 40 Gbps and the IBM GPFS, respectively.
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2.5 Results

2.5.1 Performance on real data

To evaluate the performance and scalability of DIDA on real data, we down-

loaded publicly available sequencing data on the C. elegans genome, a draft

human genome assembly, human reference genome, and the P. glauca (white

spruce) genome from the following websites.

• C. elegans:

http://www.ncbi.nlm.nih.gov/sra/?term=ERR294494

• Human genome (NA12878):

http://www.nature.com/ng/journal/v43/n5/full/ng.806.html

• Human genome reference (hg19, GRCh37):

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/

• P. glauca (accession number: ALWZ0100000000 and PID: PRJNA83435):

http:/www.ncbi.nlm.nih.gov/bioproject/83435

In order to assess the performance of DIDA for each aligner on non-static

targets, we assembled the reads from each dataset (except the human refer-

ence genome) using ABySS 1.3.7, and used the assembly graph in interme-

diate stages to guide partitioning. We have also evaluated the performance

of DIDA for each aligner on human genome reference (hg19, GRCh37) as

a static target. The detailed information of each dataset is presented in

Table 2.1.
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Table 2.1: Dataset specification.
Data #targets target(bp) #reads read(bp)

length length

C. elegans 152,841 106,775,302 89,350,844 8,935,084,400
Human 6,020,169 3,099,949,065 1,221,224,906 123,343,715,506
hg19 93 3,137,161,264 1,221,224,906 123,343,715,506
P. glauca 70,868,549 35,816,518,982 1,079,576,520 161,936,478,000

Fig. 2.6 shows the scalability of wall-clock time and indexing peak mem-

ory usage of all four aligners on the C. elegans dataset, in standalone case

(grey bars) or within the DIDA framework on two, four, eight, and 12 nodes,

as indicated. For instance, for ABySS-map, the runtime of 2154 sec without

DIDA is decreased to 893 sec using DIDA on four computing nodes. From

Fig. 2.6 we can see the runtime scalability and modularity of different align-

ers within DIDA protocol. Notably, we have better scalability for the slower

alignment tool, Novoalign. On memory usage, all aligners scale well within

the DIDA framework. For example, the peak memory usage of ABySS-map

indexing goes from 1100 MB without DIDA to 238 MB with DIDA on four

computing nodes.

Table 2.2: Alignment time/indexing memory for all aligners on C. elegans.
time/mem (sec/MB)

node# abyss-map bwa bowtie novoalign

1 2154/1100 945/156 1700/274 19671/589
2 1261/522 667/80 1014/163 6305/263
4 893/238 574/65 737/99 5184/151
8 723/120 526/134 595/62 4788/69
12 700/81 547/89 601/46 4464/50

Tables 2.2-2.5 summarizes all results in the form of alignment-time/indexing-
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Figure 2.6: Scalability of different aligners using DIDA for C. elegant data.
Y-axis indicates the runtime/memory scalability in the in the [0..1] interval
for different alignment tools. The scalability of each tool is shown in the
standalone case and within DIDA framework on 2, 4, 8, and 12 nodes [79].

memory. Regarding the accuracy of the alignment results for all aligners

within DIDA framework on multiple nodes, we have compared them with

the baseline results and found the accuracy of results the same as expected.

As mentioned in the previous section, by choosing the b-mer length small

enough, we make sure that no potential alignment is missed in the dispatch
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Table 2.3: Alignment time/indexing memory for all aligners on human draft
assembly.

time/mem (min/MB)
abyss-map bwa bowtie novoalign

1-node 652/31000 407/4400 1174/6100 59125/9300
2-node 472/15000 254/2200 611/2900 35728/4100
4-node 343/8100 216/1100 493/1600 23311/3700
8-node 253/4100 191/559 371/977 17485/2100
12-node 210/2700 181/372 296/590 13141/1200

Table 2.4: Alignment time/indexing memory for all aligners on hg19.
time/mem (min/MB)

abyss-map bwa bowtie novoalign

1-node 444/33823 379/4709 996/5528 NA
2-node 323/16911 254/2354 512/3042 NA
4-node 232/8455 205/1177 352/1417 NA
8-node 173/4227 171/588 254/667 NA
12-node 160/3170 164/441 226/495 NA

Table 2.5: Alignment time/indexing memory for all aligners on Picea glauca.
time/mem (min/GB)

abyss-map bwa bowtie novoalign

1-node NA NA NA NA
2-node 1201/184 NA NA NA
4-node 827/81 NA NA NA
8-node 638/45 NA NA NA
12-node 574/31 NA NA NA

step, and therefore, the accuracy of final alignment results will not be de-

graded. For example, the number of aligned reads for total 89,350,844 reads

in the C. elegans dataset using ABySS-map within DIDA on 2, 4, 8, and 12

nodes is 86,851,694 which is almost the same as in baseline or standalone

mode with the same SAM/BAM quality scores.

One point that should be addressed is that by increasing the compu-
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tational power, i.e., number of computing nodes, we may not necessarily

obtain better runtime scalability due to the related overhead of the dis-

patch and merge steps. In general, for any parallel algorithm the runtime

scalability should follow the behaviour shown in Fig. 2.7.
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Figure 2.7: Runtime scalability behaviour with the number of nodes.

The optimal value for the number of nodes, p, may be different for each

dataset and each algorithm. For example, for a small dataset such as C.

elegans, with the BWA and Bowtie2 aligners, p is between 8 to 12 nodes.

For ABySS-map and Novoalign we have p > 12. The scalability performance

of DIDA for C. elegans dataset and ABySS-map alignment method for [2,

4, 8, 16, 32] nodes is presented in Fig. 2.8. For larger datasets such as human

genome, the value of p is greater than 12. In general, the larger the datasets
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Figure 2.8: The scalability performance of ABySS-map+DIDA for C. ele-
gans dataset.

or the slower the alignment methods, the greater the value of p. For instance,

the runtime of Bowtie2 within DIDA framework on eight computing nodes

is 595 sec compared to 601 sec on 12 computing nodes. This is because of

the related overhead of the dispatch and merge steps. Another point that

should be explained is the unexpected memory scalability for BWA from 4 to

8 nodes on the C. elegans dataset. Based on the size of target set, bwa-index

automatically chooses between bwtsw and is (induced sorting) algorithms

to generate BWT in the index construction process. For short target sets

(≤ 25Mb), bwa-index uses is algorithm while for long target sets (> 25Mb) it

employs bwtsw. The memory usage of bwtsw is less than is for a given target

set. When we divide C. elegans dataset into 8 or more partitions, the size of
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Figure 2.9: Scalability of different aligners using DIDA for human draft
assembly [79].

each subset becomes less than 25Mb, and hence, bwa-index automatically

invokes is algorithm. On the other hand, for 4 partitions or less, bwa-index

uses bwtsw algorithm. Therefore, we see the memory scalability of BWA for

C. elegans not behaving as expected.

Fig. 2.9 shows the results on the human draft assembly data. Com-

pared to the smaller datasets, for human genome we see better runtime and
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Figure 2.10: Scalability of different aligners using DIDA for hg19.

memory usage scalability, illustrating that DIDA shows better performance

on large data due to the amortization of the overhead of the distributed

paradigm. That means the overhead of dispatch and merge steps are com-

pensated for large-scale indexing and alignment applications. We have also

evaluated the performance of DIDA on the human reference genome (hg19)

as a static target set. Fig. 2.10 and Table 2.4 shows the scalability of wall-
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clock time and indexing peak memory usage of different aligners, except

Novoalign (due to its long runtime). As expected, the scalabilities for run-

time and memory are similar to the case of non-static target set.
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Figure 2.11: Scalability of abyss-map aligner using DIDA for P. glauca.

Fig. 2.11 and Table 2.5 shows the result for ABySS-map on P. glauca

draft assembly. Due to resource restrictions, we could not obtain the result

of ABySS-map aligner without DIDA. The required memory for construct-

ing the index for the spruce draft assembly is about 400 GB. However, using

DIDA framework we can divide the draft spruce assembly into a number

of partitions, and perform the indexing and alignment operation in a dis-

tributed way. From Table 2.5, we can easily see the scalability for runtime

and indexing peak memory usage of ABySS-map within DIDA.
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2.6 Discussion

Indexing large target sequences, and aligning large queries are computation-

ally challenging. In this article, we described a novel, scalable and cost-

effective parallel workflow for indexing and alignment, called DIDA.

The performance of DIDA was measured and evaluated when coupled

with popular alignment methods BWA, Bowtie2, Novoalign, and ABySS-

map on C. elegans, human draft genome, human reference genome, and P.

glauca genome. Compared to their baseline performance, when run through

the DIDA framework with 12 nodes, BWA, Bowtie2, Novoalign, and ABySS-

map use less memory (91%, 90%, 87%, and 91%, respectively) and execute

faster (55%, 74%, 77%, and 67%, respectively) for a draft human genome

assembly.

DIDA is an enabling technology for large-scale alignment and assembly

tasks especially for labs that have limited compute resources. It enabled

our lab at Genome Sciences Centre in BC Cancer Agency to assemble the

white spruce (P. glauca) genome [8]. For this large-scale de novo assembly

task, the required memory for index construction from the draft genome on

a single node is about 400 GB of RAM, which requires the use of a special

big memory machine, and may be prohibitive for many labs. Using the

DIDA framework, the indexing was performed in a distributed way on 12

low-memory compute nodes with peak memory usage of 31 GB on any one

node. Therefore, DIDA efficiently made this huge indexing and alignment

and assembly task feasible, well scalable, and modular [43, 106]. DIDA

has also enabled our lab to perform many experiments at a time without
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requisitioning large memory machines.

As the cost of DNA sequencing is dropping faster than the cost of com-

putational power, the need for scalable and cost-effective parallel and dis-

tributed algorithms and software tools for accurately and expeditiously pro-

cessing “big data” from high-throughput sequencing is increasing. DIDA

offers a solution to this growing issue for the alignment problem, especially

when the target is non-static, or large. In life sciences research organiza-

tions and clinical genomics laboratories, alignment and de novo assembly

are becoming two key steps in everyday research and analysis. Especially

for labs that have limited computational resources, DIDA may offer an ap-

propriate solution to address their needs and expectations by reducing heavy

computational resource requirements.
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Chapter 3

ntHash: recursive nucleotide

hashing

3.1 Publication note

The work described in this chapter was previously published in the Bioin-

formatics journal in 2016 [77]. The outcome algorithm and software tool

from this work was used in three published journal papers in BMC Medical

Genomics in 2015 [104], Genome Research in 2017 [42], and Bioinformat-

ics in 2017 [78]. The work described in this chapter is the main work of

the author, under the supervision of his PhD supervisor, Inanc Birol. The

author designed the algorithm, implemented the software tool, performed

the experiments, and wrote the manuscript. The co-authors on this work

helped in performing the experiments.

3.2 Author summary

Hashing has been widely used for indexing, querying, and rapid similarity

search in many bioinformatics applications, including sequence alignment,

genome and transcriptome assembly, k-mer counting, and error correction.
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Hence, expediting hashing operations would have a substantial impact in

the field, making bioinformatics applications faster and more efficient. In

this chapter, we present ntHash, a hashing algorithm tuned for processing

DNA/RNA sequences. It performs the best when calculating hash values

for adjacent k-mers in an input sequence, operating an order of magnitude

faster than the best performing alternatives in typical use cases. ntHash is

available online at http://www.bcgsc.ca/platform/bioinfo/software/

nthash and is free for academic use.

3.3 Introduction

Hashing is a common function across many informatics applications, and

refers to mapping an input key value of arbitrary size to an allocated mem-

ory of predetermined size. Among other uses, it is an enabling concept for

rapid search operations, and forms the backbone of Internet search engines.

In bioinformatics, it has many applications including sequence alignment,

genome and transcriptome assembly, RNA-seq expression quantification, k-

mer counting, and error correction. Large-scale sequence analysis often relies

on cataloguing or counting consecutive k-mers in DNA/RNA sequences for

indexing, querying, and similarity searching. An efficient way of implement-

ing such operations is through the use of hash based data structures, such as

hash tables or Bloom filters. Therefore, improving the performance of hash-

ing algorithms would have a great impact in a wide range of bioinformatics

tools. Here, we present ntHash, a fast function for recursively computing

hash values for consecutive k-mers.
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3.4 Method

We propose an algorithm to hash consecutive k-mers in a sequence, r of

length l > k, using a recursive function, f , where the hash value of the new

k-mer H is computed from the hash value of the previous k-mer:

H(k−meri) = f(H(k−meri−1), r[i+ k − 1], r[i− 1]) (3.1)

Such a recursive function, also called rolling hash function, offers huge im-

provements in performance when hashing consecutive k-mers. This has been

previously described and investigated for n-gram hashing for string match-

ing, text indexing, and information retrieval [17, 32, 45, 51]. In this work,

we have customized the concept for hashing all k-mers of a DNA sequence,

and implemented an adapted version of the cyclic polynomial hash function,

ntHash, to efficiently calculate normal or canonical hash values for k-mers

in DNA sequences. In hashing by cyclic polynomial, ntHash uses barrel

shifts instead of multiplications to make the process faster. To compute

hash values for all k-mers of the sequence r of length l, we first hash the

initial k-mer, k-mer0, as follows:

H(k−mer0) = rolk−1h(r[0])⊕ rolk−2h(r[1])⊕ · · · ⊕ h(r[k − 1]) (3.2)

where rol is a cyclic binary left rotation, ⊕ is the bit-wise EXCLUSIVE OR

(XOR) operator, and h(.) is a seed table, in which the letters of the DNA

alphabet,
∑

= {A,C,G, T}, are assigned different random 64-bit integers.

The hash values for all consequent k-mers, k-mer1, . . . , k-merl−k, are then
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computed recursively as follows:

H(k−meri) = rol1H(k−meri−1)⊕ rolkh(r[i− 1])⊕ h(r[i+ k − 1]) (3.3)

We note that the time complexity of ntHash for sequence r is O(k+ l) com-

pared to O(kl) complexity of regular hash functions. In some bioinformatics

applications, one might be interested in computing the hash value of forward

and reverse-complement sequences of a k-mer. To do so, we add in the seed

table integers that correspond to the complement bases, such that table in-

dices of base-complement base pairs are separated by a fixed offset. Using

this table, we can easily compute the hash value for the reverse-complement

(as well as the canonical form) of a sequence efficiently, without actually

reverse-complementing the input sequence, as follows:

H̄(k−mer0) = h(r[0]+d)⊕rol1h(r[1]+d)⊕· · ·⊕rolk−1h(r[k−1]+d) (3.4)

The canonical hash values for all consequent k-mers, k-mer1, . . . , k-merl−k,

are then computed recursively as follows:

H̄(k−meri) = ror1H̄(k−meri−1)⊕ror1h(r[i−1]+d)⊕rolk−1h(r[i+k−1]+d)

(3.5)

where ror is a cyclic binary right rotation, and d is the offset of complement

base in the seed table h(.). Additionally, ntHash provides a fast way to

calculate multiple hash values for a given k-mer, without iterating the full

process for each hash value. To do so, a single hash value is computed from

a given k-mer, and then each extra hash value is computed by few more
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multiplication, shifting and XOR operations on the initial hash value. This

would be very useful for certain bioinformatics applications, such as those

that utilize the Bloom filter data structure.

Experimental results show a significant speed improvement over tradi-

tional methods, while maintaining a near-ideal hash value distribution. In

the Results section, we have used sequencing data on the human individual

NA19238 from the Illumina Platinum Genomes project, as well as simulated

random DNA sequences.

• Real data of Human individual NA19238 from Illumina Platinum Genome

project: http://sra.dnanexus.com/runs/ERR309932

• Simulated random DNA sequences using seqgen in ntHash package:

https://github.com/bcgsc/ntHash/blob/master/lib/seqgen.hpp

3.5 Results

A good hash function should generate hash values that are uniformly dis-

tributed across the target domain resulting in fewer collisions. To evaluate

the uniformity of ntHash, one way is to use the correlation coefficient be-

tween the bits of 64-bit hash values. That is, if each bit xi, i = 1, . . . , 64, in

a 64-bit hash value vector X = {x1, x2, . . . , x64} is an independent random

variable, then there should be no correlation between them. To test this, we

first generated sets of hash values on randomly generated DNA sequences.

We next computed the correlation coefficient matrix for each sample set,

and performed significance tests with Bonferroni correction for the hypoth-

esis that the correlation coefficients are consistent with zero. Fig. 3.4 shows
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the correlation coefficients of two sample sets of size 100 (below diagonal)

and 100,000 (above diagonal). The plot shows natural statistical fluctuations

for smaller sample sets. The correlations dissipate rapidly for large sample

sets (Figs. 3.1- 3.5). Comparing the computed correlation coefficients with

a confidence interval around the theoretical zero correlation shows that for

all hash functions tested, the number of observations outside the 99.7% con-

fidence interval is around 0.3%, in agreement with theoretical expectations..

Figure 3.1: Correlation coefficient plots of cityhash for one (right) and three
(left) hashes on small (100 data points, below diagonal) and large sample
set (100,000 data points, above diagonal).

We have also evaluated the uniformity of different hash methods by

utilizing a Bloom filter data structure. We first load a Bloom filter with a

number of unique k-mers, and then query the Bloom filter with another set

of unique k-mers. The results show the false positive rate of ntHash, as well

as other hash functions tested comply with the theoretical false positive

rate for Bloom filters, indicating the uniform distribution of hash values
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Figure 3.2: Correlation coefficient plots of murmur for one (right) and three
(left) hashes on small (100 data points, below diagonal) and large sample
set (100,000 data points, above diagonal).

Figure 3.3: Correlation coefficient plots of xxhash for one (right) and three
(left) hashes on small (100 data points, below diagonal) and large sample
set (100,000 data points, above diagonal).
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Figure 3.4: Correlation coefficient plots of ntHash for one (right) and three
(left) hashes on small (100 data points, below diagonal) and large sample
set (100,000 data points, above diagonal).

generated (Table 3.1- 3.8). We have compared the uniformity and runtime

performance of ntHash algorithm with three most widely used hash methods

in bioinformatics:

• cityhash: https://github.com/google/cityhash

• murmur: https://github.com/aappleby/smhasher

• xxhash: https://github.com/Cyan4973/xxHash

In all experiments, we first load the Bloom filter with 100 long sequences

of length 5,000,000bp and allocating 8 bit/k-mer in Bloom filter. Next we

query 4,000,000 real reads of length 250bp with k-mer of sizes 50, 150 and

250. The theoretical approximate false positive rate for h=1, 3, and 5 are

11.75%, 3.06% and 2.17%, respectively.
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Table 3.1: Bloom filter evaluation for cityhash on real data.
k Hash# Set bit# Query# False hit# FPR%

50
1 470,017,244 804,000,000 94,378,728 11.74
3 1,250,823,778 804,000,000 24,570,368 3.06
5 1,858,906,097 804,000,000 17,400,323 2.16

150
1 469,998,731 404,000,000 47,919,015 11.86
3 1,250,821,595 404,000,000 12,338,460 3.05
5 1,858,931,600 404,000,000 8,748,217 2.17

250
1 469,986,185 4,000,000 472,181 11.8
3 1,250,802,647 4,000,000 121,776 3.04
5 1,858,880,965 4,000,000 85,939 2.15

Table 3.2: Bloom filter evaluation for murmur on real data.
k Hash# Set bit# Query# False hit# FPR%

50
1 470,007,281 804,000,000 94,295,129 11.73
3 1,250,852,012 804,000,000 24,560,434 3.05
5 1,858,955,242 804,000,000 17,381,581 2.16

150
1 470,002,596 404,000,000 47,411,326 11.74
3 1,250,839,667 404,000,000 12,338,781 3.05
5 1,858,923,413 404,000,000 8,750,161 2.17

250
1 469,997,041 4,000,000 469,325 11.73
3 1,250,795,983 4,000,000 122,051 3.05
5 1,858,914,749 4,000,000 86,649 2.17

Table 3.3: Bloom filter evaluation for xxhash on real data.
k Hash# Set bit# Query# False hit# FPR%

50
1 470,016,553 804,000,000 94,292,232 11.73
3 1,250,840,753 804,000,000 24,518,667 3.05
5 1,858,942,822 804,000,000 17,394,611 2.16

150
1 469,995,918 404,000,000 47,411,924 11.74
3 1,250,830,011 404,000,000 12,340,660 3.05
5 1,858,930,859 404,000,000 8,743,269 2.16

250
1 469,986,739 4,000,000 469,547 11.74
3 1,250,798,629 4,000,000 122,788 3.07
5 1,858,874,277 4,000,000 86,494 2.16
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Table 3.4: Bloom filter evaluation for ntHash on real data.
k Hash# Set bit# Query# False hit# FPR%

50
1 469,999,521 804,000,000 94,251,857 11.72
3 1,250,842,928 804,000,000 24,535,428 3.05
5 1,858,926,469 804,000,000 17,420,006 2.17

150
1 469,998,307 404,000,000 47,418,185 11.74
3 1,250,807,514 404,000,000 12,333,989 3.05
5 1,858,901,461 404,000,000 8,743,479 2.16

250
1 469,989,680 4,000,000 469,293 11.74
3 1,250,786,386 4,000,000 122,542 3.06
5 1,858,855,900 4,000,000 86,775 2.17

Table 3.5: Bloom filter evaluation for cityhash on simulated data.
k Hash# Set bit# Query# False hit# FPR%

50
1 470,004,731 804,000,000 94,467,037 11.75
3 1,250,839,836 804,000,000 24,581,360 3.06
5 1,858,937,046 804,000,000 17,433,637 2.17

150
1 470,001,865 404,000,000 47,475,319 11.75
3 1,250,810,005 404,000,000 12,352,225 3.06
5 1,858,911,301 404,000,000 8,757,714 2.17

250
1 469,989,444 4,000,000 469,599 11.74
3 1,250,773,973 4,000,000 122,939 3.07
5 1,858,866,870 4,000,000 87,331 2.18

Table 3.6: Bloom filter evaluation for murmur on simulated data.
k Hash# Set bit# Query# False hit# FPR%

50
1 470,017,505 804,000,000 94,484,767 11.75
3 1,250,827,988 804,000,000 24,589,864 3.06
5 1,858,925,731 804,000,000 17,424,248 2.17

150
1 469,997,827 404,000,000 47,469,314 11.75
3 1,250,784,464 404,000,000 12,347,235 3.06
5 1,858,877,467 404,000,000 8,757,213 2.17

250
1 469,992,778 4,000,000 469,332 11.73
3 1,250,777,246 4,000,000 121,813 3.05
5 1,858,869,175 4,000,000 86,187 2.15
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Table 3.7: Bloom filter evaluation for xxhash on simulated data.
k Hash# Set bit# Query# False hit# FPR%

50
1 470,008,758 804,000,000 94,470,794 11.75
3 1,250,821,114 804,000,000 24,585,395 3.06
5 1,858,965,631 804,000,000 17,434,877 2.17

150
1 469,991,012 404,000,000 47,464,074 11.75
3 1,250,815,185 404,000,000 12,350,539 3.06
5 1,858,920,189 404,000,000 8,751,526 2.17

250
1 469,997,137 4,000,000 470,919 11.77
3 1,250,793,131 4,000,000 122,493 3.06
5 1,858,893,379 4,000,000 86,618 2.17

Table 3.8: Bloom filter evaluation for ntHash on simulated data.
k Hash# Set bit# Query# False hit# FPR%

50
1 470,001,008 804,000,000 94,473,191 11.75
3 1,250,822,696 804,000,000 24,594,765 3.06
5 1,858,911,305 804,000,000 17,428,958 2.17

150
1 470,009,333 404,000,000 47,464,574 11.75
3 1,250,812,436 404,000,000 12,351,716 3.06
5 1,858,915,330 404,000,000 8,757,143 2.17

250
1 469,979,683 4,000,000 469,658 11.74
3 1,250,795,888 4,000,000 122,625 3.07
5 1,858,897,893 4,000,000 86,664 2.17
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Usually, we compute a single hash value when we hash a given k-mer.

However, there are some bioinformatics applications utilizing the Bloom fil-

ter data structure that requires computing multiple hash values for a given

k-mer. The existing hash methods do this by repeating the whole hash-

ing procedure on a given k-mer with different initial seeds while in ntHash

we have provided a version to compute the multiple hash values in an ef-

ficient way. Given the number of required hash values, we first compute a

hash value for the k-mer in the regular way using NT64 function. We then

perturb the 64-bit computed hash values by few additional operations with-

out repeating the whole hashing procedure to get required number of hash

values. The detailed procedure for the multi-hash version of ntHash is ex-

plained below. The uniformity results for the multi-hash version of ntHash

and other hash functions have been presented in Figs. 3.1- 3.4.

Fig. 3.6 shows the runtimes for hashing different length k-mers in 5

million DNA sequences of length 250 bp. In the inset, we see ntHash out-

performs other algorithms when hashing more than two consecutive k-mers

in a DNA sequence. The runtime of all hash methods for hashing one billion

k-mers of lengths {50,100,150, 200,250} is shown in Fig. 3.7. We have also

calculated the runtime for canonical hashing of 1 billion k-mers presented

in Fig. 3.8. From these results, we see ntHash computes the regular and

canonical hash values very quickly. Fig. 3.9 illustrates a typical use case of

computing multiple hash values for 50-mers in DNA sequences of length 250

bp, and shows that ntHash is over 20× faster than the closest competitor.
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3.6 Discussion

In this work, we introduced ntHash algorithm for computing regular or

canonical hash values for all possible k-mers in a DNA/RNA sequence. Be-

ing a recursive or rolling hash function, ntHash calculates the hash value for

the new k-mer from the hash value of the previous k-mer. This idea boosts

the performance of ntHash with significant speed improvement in compar-

ison with conventional hash methods in bioinformatics, and maintains the

near-ideal distribution for generated hash values. Moreover, by providing

a fast way for computing multi-hash values for a given k-mer, ntHash was

demonstrated to be very useful for applications utilizing the Bloom filter

data structure. ntHash has been employed in a series of algorithms and soft-

ware tools to expedite the hashing operations. Examples include our current

and new version of ABySS genome assembly software package [42, 98], the

new version of BioBloomTools [16], Konnector [103, 104], ChopStitch [46],

and our new algorithm for cardinality estimation, ntCard, which will be

explained in the next chapter.
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Figure 3.5: Correlation coefficient of hash algorithms for different sample
sets. We see the correlation between hash value bits is near-ideal for ntHash
as well as the state-of-the-art hashing methods like cityhash, murmur, and
xxhash.
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Chapter 4

ntCard: a streaming

algorithm for cardinality

estimation in genomics data

4.1 Publication note

The work described in this chapter was previously published in the Bioinfor-

matics journal in 2017 [78]. The outcome algorithm and software tool from

this work was used in one published journal paper in Genome Research in

2017 [42], and one submitted journal paper in Bioinformatics in 2017 [46].

The work described in this chapter is the main work of the author, under

the supervision of his PhD supervisor, Inanc Birol. The author designed the

algorithm, implemented the software tool, performed the experiments, and

wrote the manuscript. The co-author on this work, Hamza Khan, helped in

performing the experiments.
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4.2 Author summary

Many bioinformatics algorithms are designed for the analysis of sequences

of some uniform length, conventionally referred to as k-mers. These include

de Bruijn graph assembly methods and sequence alignment tools. An effi-

cient algorithm to enumerate the number of unique k-mers, or even better, to

build a histogram of k-mer frequencies would be desirable for these tools and

their downstream analysis pipelines. Among other applications, estimated

frequencies can be used to predict genome sizes, measure sequencing error

rates, and tune runtime parameters for analysis tools. However, calculating

a k-mer histogram from large volumes of sequencing data is a challenging

task. In this chapter, we present ntCard, a streaming algorithm for esti-

mating the frequencies of k-mers in genomics datasets. At its core, ntCard

uses the ntHash algorithm to efficiently compute hash values for streamed

sequences. It then samples the calculated hash values to build a reduced rep-

resentation multiplicity table describing the sample distribution. Finally, it

uses a statistical model to reconstruct the population distribution from the

sample distribution. Our benchmarks demonstrate ntCard as a potentially

enabling technology for large-scale genomics applications. ntCard is imple-

mented in C++ and is released under the GPL-3 license. The software and

source codes are freely available at https://github.com/bcgsc/ntCard.

4.3 Introduction

Many bioinformatics applications rely on counting or cataloguing fixed-

length substrings of DNA/RNA sequences, called k-mers, generated from
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reads coming out of high-throughput sequencing platforms. This is a very

important step in de novo assembly [11, 61, 91, 98, 109], multiple sequence

alignment [22], error correction [35, 72], repeat detection [96], SNP detec-

tion [82, 94], and RNA-seq quantification analysis [85]. The problem of

counting k-mers has been well studied in the literature, including the Jel-

lyfish [71], BFCounter [74], DSK [88], and KMC [21] algorithms. These

tools need considerable computational resources and can be improved in

terms of memory, disk space, and runtime requirements for processing and

obtaining the histogram of k-mer frequencies in large sets of DNA/RNA

sequences. During the past few years there have been many studies to im-

prove the memory and time requirements for the k-mer counting problem.

While a näıve approach would keep track of all possible k-mers in the in-

put datasets, employing a succinct and compact data structure [18], or a

disk-based workflow [21, 88] would reduce memory usage. Although the

improved methods with efficient implementations have considerable impact

on memory and time usage, they require processing of all possible k-mers

base-by-base and storing them in memory or disk. Therefore, the time and

memory requirements for theses efficient solutions grow linearly with the

input data size, and can take hours or days using terabytes of memory for

large datasets. In the recent works by Chikhi-Medvedev [13] and Melsted-

Halldrsson [75], the authors proposed methods to approximate the k-mer

coverage histogram in large sets of DNA/RNA sequences, which are about

an order of magnitude faster, and require only a small portion of the mem-

ory compared with previous k-mer counting algorithms [75]. However, these

methods still can take considerable amount of time for processing terabytes
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of high-throughput sequencing data, or may not provide the full histogram

for k-mer abundance.

In this article, we present an efficient streaming algorithm, ntCard, for

estimating the k-mer coverage histogram for large high-throughput sequenc-

ing genomics data. The proposed method requires fixed amount of memory,

and runs in linear time with respect to the size of the input dataset. At

its core, ntCard uses the ntHash algorithm [77] to efficiently compute hash

values for streamed sequences. It samples the calculated hash values to

build a reduced representation multiplicity table describing the sample dis-

tribution, which it uses to statistically infer the population distribution. We

compare the histograms estimated by ntCard with the exact k-mer counts

of DSK [88], and illustrate that the ntCard estimations are approximations

within guaranteed intervals. We also compare the accuracy, runtime and

memory usage of ntCard with the best available exact and approximate al-

gorithms for k-mer count frequencies such as DSK [88], KmerGenie [13],

KmerStream [75], and Khmer [41].

4.4 Method

Let’s first introduce the problem background and notations on streaming

algorithms for identifying the distinct elements. Then we will derive a statis-

tical model to estimate k-mer frequencies, and outline the generated model.
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4.4.1 Background, notations, and definitions

Streaming algorithms are algorithms for processing data that are too large

to be stored in available memory, but can be examined online, typically in

a single pass. There has been a growing interest in streaming algorithms

in a wide range of applications, in different domains dealing with massive

amounts of data. Examples include, analysis of network traffic, database

transactions, sensor networks, and satellite data feeds [19, 20, 40].

Here, we propose a streaming algorithm to estimate the frequencies of

k-mers in massive data produced from high-throughput sequencing tech-

nologies. Let fi denote the number of distinct k-mers that occur i times in

a given sequencing dataset. The k-mer frequency histogram is then the list

of fi, i ≥ 1. The kth frequency moment Fk is defined as

Fk =
∞∑
i=1

ik.fi (4.1)

The numbers Fk provide useful statistics on the input sequences. For ex-

ample, F0 denotes the number of distinct k-mers appearing in the stream

sequences, F1 is the total number of k-mers in the input datasets, F2 is the

Gini index of variation that can be used to show the diversity of k-mers,

and F∞ is related to the most frequent k-mer in the input reads.

There are streaming algorithms in the literature for estimating differ-

ent kth frequency moments. The problem of estimating F0, also known

as distinct elements counting, has been addressed by the FM-Sketch [28]

and K-Minimum Value [4] algorithms. An F2 estimation algorithm was

first proposed in Alon et al. [2], and F∞ was investigated by Cormode and
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Muthukrishnan [20]. These proposed algorithms can perform their estima-

tions within a factor of (1 ± ε) with a set probability using O(ε−2 log(D))

operations, where D is the number of distinct k-mers in the dataset [75].

4.4.2 Estimating k-mer frequencies, fi

To estimate the k-mer frequencies, we use a hash-based approach similar to

the KmerStream algorithm [75]. KmerStream is based on the K-Minimum

Value algorithm [4], and it samples the data streams at different rates to

select the optimal sampling rate giving the best result.

ntCard works by first hashing the k-mers in read streams, which it sam-

ples to build a reduced multiplicity table. After calculating the multiplicity

table for sampled k-mers, it uses this table to infer the population histogram

through a statistical model.

Hashing

ntCard utilizes the ntHash algorithm [77] to efficiently compute the canon-

ical hash values for all k-mers in DNA sequences. ntHash is a recursive, or

rolling, hash function in which the hash value for the next k-mer in an input

sequence of length l (l ≥ k) is derived from the hash value of the previous

k-mer as described in the previous chapter.

We have shown earlier that ntHash has significant speed improvement

over conventional approaches, while maintaining a near-ideal hash value

distribution [77].
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s ... r 

!"#$%&'()*('

Figure 4.1: 64-bit hash value generated by ntHash. The s left bits are used
for sampling the k-mers in input datasets and the r right bits are used as
resolution bit for building the reduced multiplicity table, with r + s < 64.

Sampling and building the multiplicity table

After computing the hash values for k-mers in DNA streams using ntHash,

ntCard segments the 64-bit hash values into three parts as shown in Fig-

ure 4.1. It uses the left s bits in the 64-bit hash value for its sampling

criterion, picking k-mers for which these bits are zero, resulting in an aver-

age sampling rate of 1/2s. Earlier, we have demonstrated that ntHash bits

are independently and uniformly distributed [77]. Consequently, on average

1/2 of the hash values start with 0, 1/4 of them will start with two zeros,

and 1/2s will start with s zeros. Therefore, by selecting the hash values

starting with s zeros, we build our sample with the cardinality of 1/2s.

Also building on the statistical properties of computed hash values, we

use the right r bits, called the resolution bits, to build a k-mer multiplicity

table for sampled k-mers. To do so, we use an array of size 2r to keep

observed k-mer counts. The resolution bits of each hash value serve as

the index for the count array. We note that, each entry in the array is

an approximate count of the sampled k-mers, since there may be multiple

k-mers with the same r bit pattern, resulting in count collisions.

Ideally, one would want a hash function that generates a unique hash

value for every k-mer, say using infinite number of bits. Also, if one has

access to infinite memory to hold all these values, the ideal values for s and
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r would be zero and infinity, respectively. Since we do not in practice have

access to such resources, we use 64-bit hash values, subsample our dataset

by 1/2s, and tabulate 2r patterns (some with zero counts). To infer the

population histogram from these measurements, we derived the following

statistical model.

Let’s denote the count array with 2r entries by t(r). If we were to extend

our resolution to r + 1, we would obtain a new count array, t(r+1), with

2r+1 entries, twice the size of the current array t(r). There is a relation

between the entries of the current array t(r) and the new count array t(r+1).

By folding the first half of t(r+1) with its second half, we can construct t(r)

using

t(r)n = t(r+1)
n + t

(r+1)
2r+n , ∀n ∈ [0, . . . , 2r − 1] (4.2)

where t
(r)
n denotes the count for entry n in the table t(r).

Next, if we let p
(r)
i be the relative frequency of counts i ≥ 0 in table t(r),

with
∑∞

i=0 p
(r)
i = 1, we can make the following observations. An entry of

t
(r)
i = 0 is only possible if t

(r+1)
i = 0 and t

(r+1)
2r+i = 0. Since there is no a

priori reason why the first and second half of t(r+1) should have different

count distributions, we can relate the frequencies of zero counts in the two

tables through

p
(r)
0 = (p

(r+1)
0 )2 (4.3)

Similarly, a count of one in t(r) is only possible if the first half of t(r+1) is

a one and the second half a zero corresponding to that entry, or vice versa,
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which we can write mathematically as

p
(r)
1 = 2p

(r+1)
0 p

(r+1)
1 (4.4)

This can be generalized as

p
(r)
i =

i∑
i′=0

p
(r+1)
i′ p

(r+1)
i−i′ (4.5)

Note that, equations (4.3) - (4.5) can be solved for p
(r+1)
i through the recur-

sive formula

p
(r+1)
i =



(
p
(r)
0

)1/2
for i = 0

p
(r)
1

2p
(r+1)
0

for i = 1

1

2p
(r+1)
0

(
p
(r)
i −

∑i−1
i′=1 p

(r+1)
i′ p

(r+1)
i−i′

)
for i > 1

(4.6)

Now, just like extensions from a resolution of r to r+ 1, resolution to r+ x

is also mathematically tractable. Ultimately, we would be interested in

relating the observed count frequencies p
(r)
i to the count frequencies p

(∞)
i ,

and in calculating k-mer multiplicity frequencies

f̂i =
p
(∞)
i

1− p(∞)
0

(4.7)

For example, for i = 1, this can be calculated as

f̂1 = lim
x→∞

p
(r)
1

2x(p
(r)
0 )

2x−1
2x

1− (p
(r)
0 )

1
2x

=
−p(r)1

p
(r)
0 ln p

(r)
0

(4.8)
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and for i = 2 as

f̂2 =
−p(r)0 p

(r)
2 + 1

2(p
(r)
1 )2

(p
(r)
0 )2 ln p

(r)
0

(4.9)

In general, for f̂i, i ≥ 1, we can write the following equation

f̂i =
1

(p
(r)
0 )i ln p

(r)
0

i−1∑
j=0

(−1)i+j(p
(r)
0 )j

i− j

(
∑

∀(l,u)∈Z2s.t.∑
k uk=i−j∑
k lkuk=i

|u|∏
k=1

(
i− j −

∑k−1
k′=0 uk′

uk

)
(p

(r)
lk

)uk

)
(4.10)

where u0 = 0, uk 6= uk′ for all k 6= k′, and |u| = argmax
k

{uk}.

This complex-looking formula can also be written in the following recur-

sive form

f̂i =
−p(r)i

p
(r)
0 ln p

(r)
0

− 1

i

i−1∑
j=1

jp
(r)
i−j f̂j

p
(r)
0

(4.11)

The two terms of this equation can be interpreted as follows. The first term

corresponds to count frequencies i in table t(r) assuming none of the entries

collided with any non-zero entries through folding rounds from limx→∞(r+x)

to r. The second term is a correction to the first term, accounting for all

collisions of (i− j), 0 < j < i and j, result of which is a count frequency of

i.

Now, we can derive an estimate for F0 by a similar approach we used for

relative frequencies.

F0 = lim
x→∞

2s(1− p(r+x)
0 )2r+x (4.12)
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This formula has three terms inside the limit, the first one, 2s, correcting

for the subsampling we have performed. The second term is the frequency

of non-zero entries in table t(r+x), and the third entry is the normalizing

factor that was used to convert occurrences of counts in this table to their

frequencies, p
(r+x)
i . Taking this limit then gives

F0 = −2s+r ln p
(r)
0 (4.13)

Using the equations (4.11) and (4.13) we can obtain the k-mer coverage fre-

quencies as outlined in Algorithm 4.1 with a binomial proportion confidence

interval. The workflow of ntCard algorithm is also presented in Fig. 4.2.

Program 4.1 The ntCard algorithm

1: function Update(k-mer)
2: for each read seq do
3: for each k-mer in seq do
4: h← ntHash (k-mer) . Compute 64-bit h using ntHash
5: if h64:64−s+1 = 0s then . Checking the s left bit in h
6: i← hr:1 . r is resolution parameter
7: ti ← ti + 1

8: function Estimate
9: for i← 1 to 2r do

10: pt[i] ← pt[i] + 1

11: for i← 1 to tmax do
12: pi ← pi/2

r

13: F0 = − ln p0 × 2s+r . F0 estimate
14: for i← 1 to tmax do

15: f̂i ← −pi
p0 ln p0

− 1
i

∑i−1
j=1

jpi−j f̂j
p0

. Relative frequency estimates

16: for i← 1 to tmax do
17: fi ← f̂i × F0 . fi estimates

18: return f, F0
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DNA sequence 
streams 

ntHash 

64-bit hash value 

s bits r bits 

Use s as sampling rate parameter 

Use r to construct array for  
frequencies of count i 

Sampled dataset with cardinality of 1/2s 

Extend using a statistical model and  
build  relative frequencies 

Compute estimated population 
frequencies from sample relative 
frequencies 

H0 = rolk-1h(r[0]) ⊕ rolk-2h(r[1]) ⊕ … ⊕ h(r[k-1]) 
Hi = rol1Hi-1 ⊕ rolkh(r[i-1]) ⊕ h(r[i+k-1]) 
 

(pi )
pi =

ti
2r

f̂i = −
pi

p0 ln p0

−
1
i

jpi− j f̂ j
p0

,  i ≥1
j=1

i−1

∑

fi = f̂iF0, i ≥1,  F0 = − ln(p0 )×2r+s

( f̂i )

k-mer histogram  

( fi ), i ≥1

Figure 4.2: The workflow of ntCard algorithm for estimating the k-mer cov-
erage frequencies and the total number of distinct k-mers in DNA sequence
streams.
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4.4.3 Implementation details

Selection of the resolution parameter, r, represents a tradeoff between accu-

racy and computational resources. While it should not be too low to avoid

poor estimates of frequency counts, it should not be too high for feasible

peak memory usage. In our experience, values r > 20 work well for accurate

estimates, and the memory usage peaks above 1 GB for r ≥ 28. We have set

the default value to r = 27. We have also observed that estimations based

on only tr, without applying the statistical model, has higher error rates due

to count collisions, as expected.

If input reads or sequences contain ambiguous bases, or characters other

than {A,C,G, T}, ntCard ignores them in the hashing stage. This is per-

formed as a functionality of ntHash algorithm. When ntHash encounters

a non-ACGT character it can jump over the ambiguous base, and restarts

the hashing procedure from the first valid k-mer containing only ACGT

characters.

ntCard is implemented in C++ and parallelized for multi-threading on

a single compute node by OpenMP. As input, it gets the set of sequences

in FASTA, FASTQ, SAM, or BAM formats. The input sequences can also

be in compressed formats such as .gz and .bz formats. ntCard is distributed

and released under GNU General Public License (GPL-3). Documentation,

software, and source codes are all freely available at https://github.com/

bcgsc/ntCard.
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4.5 Results

4.5.1 Experimental setup

To evaluate the performance and accuracy of ntCard, we downloaded the

following publicly available sequencing data.

• The Genome in a Bottle (GIAB) project [110] sequenced seven individ-

uals using a large variety of sequencing technologies. We downloaded

2x250 bp paired-end Illumina whole genome shotgun sequencing data

for the Ashkenazi mother (HG004).

• We downloaded a second H. Sapiens dataset from the 1000 Genomes

Project, for the individual NA19238 (SRA:ERR309932).

• To represent a larger problem, we used the white spruce (Picea glauca)

genome sequencing data that represents the genotype PG29 [106] (ac-

cession number: ALWZ0100000000 and PID: PRJNA83435).

The information of each dataset including the number of sequences, size

of sequences, total number of bases, and total input size of datasets is pre-

sented in Table 1. To evaluate the performance of ntCard, we compare it

to KmerGenie, KmerStream, and Khmer in terms of accuracy of estimates,

runtime, and memory usage. We also compare the accuracy of our results

with DSK, which is an exact k-mer counting tool. Results were obtained on

computing nodes with 48 GB of RAM and dual Intel Xeon X5650 2.66GHz

CPUs with 12 cores. The operating system on each node was Linux CentOS

5.4.
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Table 4.1: Dataset specification.
Dataset Read number Read length Total bases Size

HG004 868,593,056 250 bp 217,148,264,000 480 GB
NA19238 913,959,800 250 bp 228,489,950,000 500 GB
PG29 6,858,517,737 250 bp 1,714,629,434,250 2.4 TB

All five tools are run with their default parameters, and the parameters

related to the resource usage are set in a way to utilize the maximum capacity

on each computing node. For example, all tools are run in multi-threaded

mode with the maximum number of threads available on the computer.

4.5.2 Accuracy

In Tables 4.2-4.4, we see the results of DSK, ntCard, KmerGenie, Kmer-

Stream, and Khmer for distinct number of k-mers, F0, as well as the num-

ber on singletons, f1, on three datasets. We compared the accuracy of

estimated counts from ntCard, KmerGenie, KmerStream, and Khmer with

exact counts from DSK. We see that, for all k-mer lengths, ntCard com-

putes F0 and f1 for all three datasets with error rates less than 0.7%. In

comparison, the error rates of KmerGenie, KmerStream, and Khmer can be

up to 17%, 9%, and 11%, respectively. Note that, the Khmer algorithm only

estimates the total number of distinct k-mers, F0.

Compared to ntCard and KmerStream, Khmer and KmerGenie esti-

mates for distinct number of k-mers, F0, have the highest error rates (>7%)

on PG29 data; though, for HG004 and NA19238, Khmer estimates F0 with

lower error rates, and KmerGenie has very accurate estimates with error

rates <1% for all k values. On all three datasets, KmerStream has more
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Table 4.2: Accuracy of algorithms in estimating F0 and f1 for HG004 reads.
The DSK column reports the exact k-mer counts, and columns for the for
other tools report percent errors.
k DSK ntCard KmerGenie KmerStream Khmer

32
f1 13,319,957,567 0.01% 0.97% 7.04% −
F0 16,539,753,749 0.02% 0.64% 5.12% 0.67%

64
f1 17,898,672,342 0.02% 0.35% 0.73% −
F0 21,343,659,785 0.00% 0.22% 0.66% 0.15%

96
f1 18,827,062,018 0.36% 0.87% 0.00% −
F0 22,313,944,415 0.24% 0.69% 0.05% 0.31%

128
f1 18,091,241,186 0.36% 0.76% 0.40% −
F0 21,555,678,676 0.25% 0.62% 0.20% 0.30%

Table 4.3: Accuracy of algorithms in estimating F0 and f1 for NA19238
reads. The DSK column reports the exact k-mer counts, and columns for
the for other tools report percent errors.
k DSK ntCard KmerGenie KmerStream Khmer

32
f1 14,881,561,565 0.00% 0.53% 6.36% −
F0 18,091,801,391 0.00% 0.40% 4.64% 1.82%

64
f1 19,074,667,480 0.02% 0.75% 0.68% −
F0 22,527,419,136 0.01% 0.77% 0.65% 1.22%

96
f1 19,420,503,673 0.22% 0.66% 0.09% −
F0 22,932,238,161 0.16% 0.66% 0.07% 0.46%

128
f1 17,902,027,438 0.21% 0.85% 0.19% −
F0 21,421,517,759 0.13% 0.76% 0.03% 1.05%

Table 4.4: Accuracy of algorithms in estimating F0 and f1 for PG29 reads.
The DSK column reports the exact k-mer counts, and columns for the for
other tools report percent errors.
k DSK ntCard KmerGenie KmerStream Khmer

32
f1 27,430,910,938 0.02% 15.33% 9.41% −
F0 42,642,198,777 0.01% 11.02% 7.37% 8.86%

64
f1 44,344,130,469 0.04% 16.36% 2.61% −
F0 67,800,291,613 0.02% 11.14% 1.73% 11.18%

96
f1 43,300,244,443 0.66% 17.51% 0.73% −
F0 69,855,690,006 0.46% 11.13% 0.57% 9.36%

128
f1 32,089,613,024 0.40% 14.82% 0.06% −
F0 58,195,246,941 0.30% 8.35% 0.27% 7.39%
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accurate estimates for longer k-mers, where error rates increase rapidly for

shorter k-mers. Although ntCard generally has the opposite trend, it also

has the most stable performance for all three datasets. Except for k=128

bp on NA19238 and PG29, and k=96 bp on NA19238 and HG004, ntCard

consistently displays the best accuracy both for F0 and f1, as indicated by

the bold entries in Tables 4.2-4.4, and in all these cases it was a close second.

We have also evaluated the accuracy of full k-mer frequency histograms

of ntCard on all three datasets with different k values. Since the Kmer-

Stream algorithm only computes estimates for F0 and f1 and Khmer only

estimates F0, we could only compare the accuracy of the ntCard histogram

with the estimated results of KmerGenie and the exact histogram from

DSK method. Figures 4.3-4.5 shows the k-mer frequency histograms of

DSK, ntCard, and KmerGenie for all three datasets with four k values,

{32, 64, 96, 128}. Since the results of f1 have already been presented in Ta-

bles 4.2-4.4, and because f2..f62 � f1, the histograms in Figures 4.3-4.5

show the k-mer frequencies starting from f2. From Figures 4.3-4.5 and Ta-

bles 4.2-4.4, we can see ntCard estimates the k-mer frequency histograms

for all three datasets more accurate than KmerGenie.

4.5.3 Runtime and memory usage

We have calculated the memory usage of all benchmarked tools. DSK uses

both main memory and disk space for counting k-mers, and therefore we

obtained both values for it. We should also mention that DSK was executed

on compute nodes equipped with solid-state drives (SSD). This helps the

runtime of DSK be greatly reduced with the SSD and multi-threaded par-
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Figure 4.3: k-mer frequency histograms for human genome HG004. We have
used DSK k-mer counting results as our ground truth in evaluation (orange
circle data points). The k-mer coverage frequency results, f2..f62 of ntCard
and KmerGenie for different values of k = 32, 64, 96, 128 (the four columns
from left to right) are shown with the symbols (+) and (�), respectively.

allelism. The memory usage for DSK on all three datasets was the same

at about 20 GB of RAM, while the disk space usage was 500 GB for hu-

man genomes HG004 and NA19238, and 1 TB for the white spruce genome

PG29.
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Figure 4.4: k-mer frequency histograms for human genome NA19238. We
have used DSK k-mer counting results as our ground truth in evaluation
(orange circle data points). The k-mer coverage frequency results, f2..f62
of ntCard and KmerGenie for different values of k = 32, 64, 96, 128 (the
four columns from left to right) are shown with the symbols (+) and (�),
respectively.

The memory usage of KmerGenie to estimate the full k-mer frequency

histograms for all datasets was about 200 MB of RAM. KmerStream uses 2-

bit counters to estimate F0 and f1, resulting in lower memory requirement.
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Figure 4.5: k-mer frequency histograms for the white spruce genome PG29.
We have used DSK k-mer counting results as our ground truth in evaluation
(orange circle data points). The k-mer coverage frequency results, f2..f62
of ntCard and KmerGenie for different values of k = 32, 64, 96, 128 (the
four columns from left to right) are shown with the symbols (+) and (�),
respectively.

The memory usage for KmerStream on all three datasets was about 65

MB of RAM. The Khmer algorithm requires the lowest amount of memory

among all algorithms but only estimates F0. It requires about 15 MB of
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RAM to estimate the total number of distinct k-mers in all three datasets.

The memory requirement of ntCard for all three datasets was about 500

MB of RAM, although we note that it computes the full k-mer multiplicity

histogram. We have also implemented a special runtime parameter to only

compute the total number of distinct elements, F0, in which case it requires

about 2 MB of RAM.

Figures 4.6-4.8 shows the runtime of all methods on the experimented

datasets with different k values from 32 to 128. The runtime of ntCard

to obtain the full k-mer frequency histograms for human genome datasets

(HG004, NA19238) is about 6 mins. For KmerStream, it takes about 100

mins to obtain F0 and f1 on human genome datasets, while this is about

200 mins for Khmer to estimate just the total number of distinct k-mers,

F0. DSK and KmerGenie take up to 600 and 800 minutes, respectively, to

compute the k-mer coverage histograms for human genome datasets. For

the white spruce PG29 dataset, ntCard requires about 30 mins to estimate

k-mer frequency histograms, while for KmerStream it takes about 450 mins

to obtain F0 and f1. The Khmer takes longer about 1200 mins to estimate

F0. DSK and KmerGenie can take up to 2700 and 3400 mins to compute

the k-mer frequency histograms.

We should note that ntCard, KmerGenie, and KmerStream algorithms

have an option to pass multiple k values and compute multiple k-mer cov-

erage histograms in a single run. This option will reduce the amortized

runtime per k value, but it will increase the memory usage. From the run-

time results, we see ntCard estimates the full k-mer coverage frequency

histograms > 15× faster than the closest competitor, KmerStream, which
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Figure 4.6: Runtime of DSK, ntCard, KmerGenie, KmerStream, and Khmer
for HG004 dataset.
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Figure 4.7: Runtime of DSK, ntCard, KmerGenie, KmerStream, and Khmer
for NA19238 dataset.
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Figure 4.8: Runtime of DSK, ntCard, KmerGenie, KmerStream, and Khmer
for PG29 dataset.

only computes F0 and f1. In our experiments and computing environment,

approximately one third of the ntCard runtime is spent on reading input

datasets, and the rest on computing k-mer coverage histograms. Therefore

I/O efficiency, which is system and architecture dependent, has a consider-

able impact on the runtime performance of ntCard.

4.6 Discussion

With growing throughput and dropping cost of the next generation sequenc-

ing technologies, there is a continued need to develop faster and more effec-

tive bioinformatics tools to process and analyze data associated with them.

Developing algorithms and tools that analyze these huge amounts of data

on the fly, preferably without storing intermediate files, would have many
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benefits in a broad spectrum of genomics projects such as de novo genome

and transcriptome assembly, sequence alignment, repeat detection, error

correction, and downstream analysis.

In this work, we introduced the ntCard streaming algorithm for estimat-

ing the k-mer coverage frequency histogram for high-throughput sequencing

genomics data. It employs the ntHash algorithm for hashing all k-mers in

DNA/RNA sequences efficiently, samples the k-mers in datasets based on

the k-mer hashes, and reconstructs the k-mer frequencies using a statistical

model. Using an amount of memory comparable to similar tools, ntCard

estimates k-mer frequency histogram for massive genomics datasets, several

folds faster than the state-of-the-art approaches.

Sample use cases of ntCard include tuning runtime parameters in de

Bruijn graph assembly tasks such as optimal k value for the assembly, and

setting parameters in applications utilizing the Bloom filter data struc-

ture. ntCard has been used in the new version of our genome assembly

software package, ABySS 2.0 [42], to determine the values for total mem-

ory size and number of hash functions. It has been also utilized to set

the Bloom filter sizes in BioBloom tools [16], which is a general use fast

sequence categorization tool utilizing Bloom filters. Using ntCard these

tools are able to get the total number of distinct k-mers F0, as well as

the number of k-mers above a certain multiplicity threshold. The k-mer

coverage histograms computed by ntCard can be also used as input to util-

ities like GenomeScope (http://qb.cshl.edu/genomescope/) for estimat-

ing genome sizes, sequencing error rates, repeat contents, and heterozygosity

of genomes [13, 71, 75, 96].
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4.6. Discussion

We expect ntCard to provide utility in efficiently characterizing certain

properties of large read sets, helping quality control pipelines and de novo

sequencing projects.
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Conclusion

High-throughput sequencing technologies have profoundly altered the scale

and scope of research in health and life sciences. As sequencing through-

puts continue growing and costs keep dropping, there will be continued

needs for accurate and cost-effective algorithms and software tools for the

analysis of increasing DNA sequencing data. In health and life sciences re-

search organizations and clinical genomics laboratories, de novo assembly

and sequence alignment are becoming two key steps in everyday research

and analysis. Hence, designing scalable, accurate, and fast algorithms to

improve the runtime, memory, and other computational resources in de novo

assembly pipelines would have a great impact in the field. During my PhD

research work, I have designed, developed, and optimized efficient, scalable,

and cost-effective algorithms and software tools for the analysis of high-

throughput sequencing data specially for sequence alignment and de novo

assembly problems using state-of-the-art parallel and distributed computing

paradigms on high-performance computing infrastructures. Depending on

the level of communication required in problems, I utilized different parallel

computing paradigms such as “embarrassingly parallel”, “loosely coupled,

or “ tightly coupled” to design efficient and scalable methods to tackle them.
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I first introduced DIDA, a distributed and parallel indexing and align-

ment framework for large-scale sequence alignment tasks. Although there

were some solutions for this problem, they still had room for improvement

in their runtime and memory usage. Moreover, methods presented in widely

popular alignment tools assumed that the target sequence is static and usu-

ally represented as a reference genome. The first stage to perform read

alignment within those tools involved “indexing” of this reference sequence

for faster alignment; a costly stage which is usually discounted in perfor-

mance measurements. However, there are many applications, where the

reference is not static and/or the performance cost of indexing is not neg-

ligible. Such cases include resequencing work done on non-model species,

and intermediate stages of a de novo assembly process. Using DIDA, we

were able to address the above challenges and perform large-scale alignment

tasks by distributing them across several compute nodes, solving each sub-

task on a node separately, and finally gathering the partial results into the

final output. DIDA was employed in the de novo assembly project of the

white spruce genome at the Genome Sciences Centre in BC Cancer Agency

and enabled us to perform several rounds of large-scale alignment jobs to

finish the assembly process.

Later in ntHash, I designed and developed a fast hash algorithm for

bioinformatics applications. Many applications in bioinformatics rely on

cataloguing or counting DNA/RNA sequences for indexing, querying, and

similarity search. These include sequence alignment, genome and transcrip-

tome assembly, RNA-seq expression quantification, and error correction.

An efficient way of performing such operations is through the use of hash-
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based data structures, such as hash tables or Bloom filters. Thus, improv-

ing the performance of hashing algorithms would have a broad impact for a

wide range of bioinformatics tools. ntHash achieved this goal by computing

hash values for consecutive k-mers in a given sequence using a recursive ap-

proach. It was an implementation of cyclic polynomial rolling hashing, and

was adapted to the reduced alphabet of DNA sequences. It also efficiently

handled computations for reverse-complemented and consequently canonical

hash values. Further, ntHash provided a fast way for calculating multiple

hash values for a k-mer without repeating the whole hashing procedure for

each value - a very useful functionality for bioinformatics applications that

utilize the Bloom filter data structure. Our experiments demonstrated sig-

nificant speed improvements over traditional methods, while maintaining

near-ideal distributions for generated hash values. ntHash was employed in

a series of software tools to improve the performance of hashing operations

such as ABySS, BioBloomTools, ChopStitch, and ntCard.

Finally, I developed a streaming algorithm, called ntCard, for estimating

the frequencies of k-mers in genomics data. Many bioinformatics algorithms

are designed for the analysis of sequences of some uniform length, conven-

tionally referred to as k-mers. These include sequence alignment tools, and

de Bruijn graph assembly software. An efficient algorithm to enumerate the

number of unique k-mers, or even better, to build a histogram of k-mer

frequencies would be desirable for these tools and their downstream analy-

sis pipelines. Among other applications, estimated frequencies can be used

to predict genome sizes, measure sequencing error rates, and tune runtime

parameters for analysis tools. However, calculating a k-mer histogram from
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large volumes of sequencing data is a challenging task and hence I designed

ntCard to tackle these challenges. At its core, ntCard utilized the ntHash

algorithm to efficiently compute hash values for steamed sequences. It sam-

pled the calculated hash values to build a reduced representation multiplic-

ity table describing the sample distribution. Finally, it derived a statistical

model to reconstruct the population distribution from the sample distri-

bution. The experimental results demonstrated that the ntCard algorithm

estimated cardinalities 15× faster, using less memory than the state-of-the-

art algorithms, with higher accuracy rates. This makes it as a potentially

enabling technology for large-scale genomics applications. ntCard was em-

ployed in the new version of our genome assembly software package ABySS

2.0, BioBloomTools, KmerGenie, and ChopStitch algorithms [46].

High-throughput sequencing technologies have extended the frontiers of

genomics and bioinformatics research, opening up new doors to investiga-

tion and analysis and offering better understanding of broad areas of biology

and medicine. Rapid developments and recent advances in DNA sequencing

technologies are lowering costs and increasing speeds. With the emergence

of third generation sequencing platforms, this continuously developing tech-

nology is now being applied within clinical environments, where it has the

potential to change treatment and diagnosis outcomes of diseases such as

cancer. On the other hand, the third-generation sequencing technology will

change the algorithmic landscape. As the read length of the third generation

sequencing platforms grows, the related sequencing error increases as well.

Therefore, their is a continued need for resource-efficient and accurate algo-

rithms that can handle higher errors and other complex events. It is essential
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to tune and adapt existing tools with the need of new sequencing technolo-

gies. Inventing new methods that can handle third generation sequencing

data efficiently will reduce the computational requirements significantly and

consequently speed up and improve the diagnosis and treatment outcomes

of diseases.
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