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Abstract 

Due to the open-ended nature of the interaction with Exploratory Learning Environments 

(ELEs), it is not trivial to add mechanisms for providing adaptive support to users. Our goal is to 

devise and evaluate a data mining approach for providing adaptive interventions that help users 

to achieve better task performance during interaction with ELEs.  

The general idea of this thesis is as follows: 

In an exploratory and open-ended environment, we collect interaction data of users 

while they are working with the system, and then find representative patterns of 

behavior for different user groups that achieved various levels of task performance. 

We use these patterns to provide adaptive real-time interventions designed to suggest 

or enforce the effective interaction behaviors while discouraging or preventing the 

ineffective ones. We test and confirm the hypothesis that as a result of these 

interventions, the average learning performance of the new users who work with the 

adaptive version of this ELE is significantly higher than the non-adaptive version. 

We use an interactive simulation for learning Constraint Satisfaction Problems (CSP), the 

AIspace CSP applet, as the test-bed for our research and propose a framework which covers the 

entire process described above, called the User Modeling and Adaptation (UMA) framework. 

The contributions of this thesis are two-fold: 

 It contributes to the Educational Data Mining (EDM) research, by devising, modifying, 

and testing different techniques and mechanisms for a complete data mining based 

approach to delivering adaptive interventions in ELEs summarized in the UMA 

framework. The UMA framework consists of 3 phases: Behavior Discovery, User 

Classification, and Adaptive Support. We assessed each of the above phases in a series of 
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user studies. This work is the first to fully evaluate and provide positive evidence for the 

use of a data mining approach for deriving and delivering adaptive interventions in ELEs 

with the goal of improving the user’s performance. 

 It also contributes to the user modeling and user-adapted interaction community by 

providing new evidence for the usefulness of the eye-gaze data for the purpose of 

predicting learning performance of users while interacting with an ELE. 
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Lay Summary 

Exploratory learning environments such as interactive computer simulations that support 

open-ended interaction with the students, can be very effective tools for self-learning. However, 

there is evidence that only a subset of students can use these tools effectively. This dissertation 

proposes a framework for adding a mechanism that provides personalized support to students 

while they are using these educational tools. The proposed framework relies on the data collected 

from students and uses data mining techniques to discover the effective and ineffective patterns 

of behavior in student interactions. We then use these patterns to provide hints to the new 

students, who need them, as they are working with these tools. We evaluated this framework on 

two different simulations and the results show that we can effectively detect if a student needs 

help. Also, our experiments show that the personalized hints provided, effectively improve the 

learning performance of the students. 
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Chapter 1: Introduction 

1.1 Background and motivation 

Advances in Human-Computer Interaction (HCI) continuously aid the creation of novel 

interfaces to support education and training. For example, interactive simulations are 

increasingly used as Exploratory Learning Environments (ELE henceforth) for learning different 

subjects (Frezzo, Behrens, & Mislevy, 2010; Hamza-Lup et al., 2009; Mavrikis & Gutierrez-

Santos, 2010; Perkins et al., 2006; Salajan et al., 2009). These environments are designed to 

foster exploratory and active learning. This is done by giving students the opportunity to 

proactively experiment with concrete examples of concepts and processes they have learned in 

theory. However, it has been shown that if the students are left to experiment and explore 

without any additional help, the benefits of exploratory learning might be overshadowed due to 

(i) the possibility of getting overwhelmed because of the relatively large number of available 

options compared to step by step guided learning (Sweller, 1999) or (ii) lack of skills needed to 

explore effectively (Ploetzner, Lippitsch, Galmbacher, Heuer, & Scherrer, 2009). Hence, some 

students may not learn well from this relatively unstructured and open-ended form of interaction 

(Shute, 1993; Van Joolingen, De Jong, & Dimitrakopoulou, 2007). These students can benefit 

from having additional guidance when they interact with an interactive simulation (de Jong, 

2006; Njoo & De Jong, 1993; Ploetzner et al., 2009). The goal of this thesis is to devise an 

approach that allows an ELE to provide this guidance in the form of user-adaptive interventions 

that help users explore and learn more effectively with the ELE, based on how each user 

interacts with the system. There are several possible ways to provide adaptive interventions 

described by Jameson (2009); in this work, we experimented with two forms of adaptation 

(intervention types from now on): 
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 Providing explicit hints to help the user with the current task (here, to explore a given domain 

with an ELE), and 

 Adapting the interface items to reinforce the given hints when needed. 

Implementing adaptive interventions requires adding two components to an ELE: 

 A user model that determines if and when to intervene, with additional information on which 

interventions are appropriate at the time; 

 An intervention mechanism that selects the type and content of the next intervention to be 

delivered to the user following an intervention strategy based on the assessment of the user 

model. 

A user modeling approach that has been extensively used in the field of Intelligent Tutoring 

Systems (ITS)  is knowledge engineering, i.e., to rely on domain experts to identify the relevant 

knowledge and behaviours to include in the model, e.g., (VanLehn, 1988, 2006). This expert-

based approach has been extensively leveraged in ITS that support structured problem-solving 

activities, e.g., (Jackson, Olney, Graesser, & Kim, 2006; Stamper, Eagle, Barnes, & Croy, 2013; 

Westerfield, Mitrovic, & Billinghurst, 2013).  It has, however, several disadvantages. First, it can 

be expensive in terms of development cost and time needed to iterate through different viable 

models and evaluate how well they capture various scenarios, e.g., (Beck, Stern, & Haugsjaa, 

1996; Murray & Woolf, 1992). Second, it requires a clear understanding of both the application’s 

domain, as well as the effectiveness of different user actions with respect to task performance 

(e.g., learning). This requirement makes using the expert-based approach difficult in ELEs, 

because the novelty of these systems and the more open-ended nature of the interaction they 

support, compared to more structured pedagogical activities, makes it difficult to judge a priori 

which ensemble of user interaction behaviours are conducive to better/worse task performance 

(e.g.,  learning) and should be represented in the user model (Cocea, Gutierrez-Santos, & 
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Magoulas, 2008). All these issues make the expert-based approach to user modeling difficult to 

apply to ELEs as evidenced in (Ting, Zadeh, & Chong, 2006). Furthermore, these models are 

built for specific domains and rely heavily on domain knowledge (i.e., ad-hoc models). 

Therefore, such generated models suffer from limited transferability which is another challenge 

that makes it even more appealing to use an alternative approach (Amershi & Conati, 2009). 

An alternative method for user modeling that is less reliant on expert knowledge, faster to 

develop, and more cost effective is to learn the user model from data (Amershi & Conati, 2009; 

Baker, 2010; Baker, Corbett, & Koedinger, 2004; Beck & Woolf, 2000). This approach has 

become very popular in recent years contributing to the development of a new field known as  

Educational Data Mining (EDM) (Romero & Ventura, 2007, 2010).  

A common source of user data that has been mined for building user models in EDM is 

interface action logs (Amershi & Conati, 2009; Bernardini & Conati, 2010; Köck & Paramythis, 

2011; Mavrikis, 2010; Shanabrook, Cooper, Woolf, & Arroyo, 2010). In this thesis, we also 

explore the value of eye-gaze data collected with an eye-tracking device as another source for 

informing the user models.  

Most of the focus has been on building user models for well-structured problem-solving 

environments with two main goals: 

 Predicting/modeling user learning and/or detecting problem-solving behaviours/strategies 

(Köck & Paramythis, 2011; Mavrikis, 2010; Shanabrook et al., 2010) or 

 Mining the solution patterns of successful problems solvers for generating automatic hints for 

new users (Barnes & Stamper, 2008; Barnes, Stamper, Lehman, & Croy, 2008; Fournier-

Viger, Nkambou, & Mephu Nguifo, 2009) 
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However, using data mining in ELEs—which enable more open-ended and generally 

unstructured user interaction—has received less attention. Ben-Naim, Bain, & Marcus (2009) 

present the mined student behaviours in an interactive simulation to teachers, so that they can 

evaluate and change the design of the adaptive tutorials they have authored using a content 

development tool called Adaptive eLearning Platform (AeLP). Amershi and Conati (2009) used 

clustering to find students with different levels of learning performance during interaction with 

an ELE for learning to solve constraint satisfaction problems called the Constraint Satisfaction 

Problem applet (Amershi, Carenini, Conati, Mackworth, & Poole, 2008). We refer to it as the 

CSP applet from now on. Amershi and Conati manually analyzed the statistical features of each 

cluster to understand the behaviours that differ between high achieving and low achieving 

clusters of students on a small dataset of users. Extending this work, Bernardini and Conati 

(2010) described a proof-of-concept user modeling approach that uses unsupervised clustering 

and class association rules mining to identify relevant user types/behaviours from the same 

dataset, replacing the manual cluster analysis with automatic analysis of behaviour patterns in 

form of association rules (Bernardini & Conati, 2010).  

We extend this work by proposing a comprehensive user modeling framework that defines 

and streamlines the process of building a user model from an initial dataset of user interaction 

logs with a target ELE. The user model generated by the framework classifies users based on 

pre-generated clusters corresponding to the groups of users that interacted similarly with the 

ELE, with the groups also identifying different levels of learning performance. The user model 

also identifies which specific interaction behaviours are responsible for the classification of a 

user into a given cluster. Classification and behaviour detection are performed in real-time as 

users are interacting with the system. These detected behaviours are then used to provide 
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adaptive support during the interaction. We evaluated the accuracy of this new user modeling 

framework on the same environment used in (Amershi & Conati, 2009; Bernardini & Conati, 

2010) but on a larger dataset (110 students vs. 24), thus providing more convincing evidence on 

the effectiveness of this approach for building user models. More significantly, we went a step 

further and have proved (by means of an experimental evaluation) that there is a learning gain 

derived from providing adaptive interventions (driven by the model), and to a certain extent, this 

has shown pedagogical efficacy. 

In recent years, there has been an increasing interest in eye-tracking data as an additional 

source of information in modeling/predicting user performance/knowledge. Conati, Aleven, and 

Mitrovic (2013) provide a survey of the work done on using eye-tracking information for student 

modeling in ITS. Most related to this thesis on the topic of eye-tracking are studies by Conati and 

Merten (2007) as well as Amershi and Conati (2009). Initial results on the value of eye-tracking 

data in user modeling for an ELE were presented in (Conati & Merten, 2007) and later in 

(Amershi & Conati, 2009). They looked at eye-gaze information related to the occurrence of a 

simple gaze pattern defined a priori as being relevant for learning with an interactive simulation 

for learning mathematical functions. However, pre-defining gaze patterns that indicate learning, 

may not always be easy or possible, due to the often unstructured and open-ended nature of the 

interaction that interactive simulations support. We extend this work by looking at a much 

broader range of general eye-tracking features and try to find patterns that are relevant to 

predicting user performance solely by using data mining techniques.  

Compared to the amount of work done on building user models from user data, there has been 

so far very limited work on how to use these data-based user models to provide adaptive support 

within an ELE (i.e., an aspect that this thesis addresses via the intervention mechanism 
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mentioned above). Data mining approaches have been used for generating hints during structured 

problem-solving activities (Barnes et al., 2008; Fournier-Viger et al., 2009). Intention to use 

generated models/patterns for providing a personalized experience in a learning environment is 

stated in some works, e.g., (Köck & Paramythis, 2011; Shanabrook et al., 2010). However, to the 

best of our knowledge, there is no educational ELE in which both adaptive interventions and the 

user model activating them are generated by mining the user interaction data. This Ph.D. thesis 

contributes to filling this gap. 

To summarize, this thesis builds on the initial ideas presented in (Amershi & Conati, 2009; 

Bernardini & Conati, 2010) and expands their preliminary approach in following ways: 

1- We developed a comprehensive user modeling framework that can be used to generate 

user models for ELEs from data. Based on user interaction data, the user models classify 

users in terms of their learning performance and identify their prominent behaviour 

patterns. Additionally, the framework was evaluated in terms of classification accuracy 

on a much larger dataset (110 students), thus providing more convincing evidence on the 

effectiveness of this approach.  

2- We explored the use of eye-gaze data as a source of user modeling information 

complimentary to action logs. Compared to the initial work by Amershi and Conati 

(2009), a much broader range of general eye-tracking features was used. By using these 

features, relevant patterns for predicting user learning were discovered solely by applying 

data mining techniques, as opposed to using hand-picked pre-defined patterns. 

Furthermore, because these features are general and not related to the specific elements of 

the CSP applet’s interface, their usage can be easily evaluated on other learning 

applications and environments. The performance of the user models built with eye-gaze 
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data provides further evidence that eye-tracking can be used to model learning 

performance of students. 

3- Most importantly, we extended the approach and closed the adaptive loop. That is, we 

built a user-adaptive mechanism to provide adaptive interventions during interaction with 

the ELE, enabling us to fully evaluate our data mining approach for providing user-

adaptive support in an ELE.   

1.2 Goals and objectives 

The goal of our research is to devise and evaluate a framework for adding adaptive support to 

ELEs. Our approach relies on using data mining techniques to (i) cluster users into classes that 

correspond to different levels of learning performance and (ii) identify distinctive behaviours of 

each class. These clusters and the corresponding behaviours are then used to create a user model 

that can classify new users as they interact with the target ELE. The output of the user modeling 

process is predicted user performance along with the interaction behaviours that are associated 

with this performance. This output will be used by an intervention mechanism that provides 

adaptive support during the interaction if the detected user behaviours are associated with 

suboptimal learning performance. We hypothesize that an ELE with user-adaptive interventions 

will be more effective compared to its non-adaptive counterpart. We test this hypothesis by 

building and evaluating adaptive support for an existing ELE (i.e., the CSP applet1).  

In relation to the aforementioned goal, this thesis aims to answer the following research 

questions: 

                                                 

1 As mentioned earlier, the CSP applet is an interactive simulation designed to help students deepen their understanding of 
solving Constraint Satisfaction Problems. This applet is one of a collection of interactive tools for learning common Artificial 
Intelligence algorithms, called AIspace (Amershi, Carenini, Conati, Mackworth, & Poole, 2008).  
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Q1: Can data mining techniques be used to identify from the ELE interaction data, 

groups of users with different performance levels and their distinguishing interaction 

patterns? 

Q2: Is it possible to use the patterns detected in [Q1] to build a classifier user model that 

effectively classifies new users based on their behaviours during the interaction?  

Q3: Can the discovered behaviour patterns in [Q1] be used to derive adaptive 

interventions that are effective in improving user’s learning performance? 

Q4: Is the resulting adaptive version of the exploratory environment more effective than 

the non-adaptive version? 

Q5: What is the value (if any) of eye-gaze data as another source of data for the classifier 

user model? 

1.3 Approach 

As explained earlier, this work extends an initial data mining based approach to user modeling 

for exploratory learning environments (ELEs) developed by (Amershi & Conati, 2009; 

Bernardini & Conati, 2010), by adapting the data mining techniques commonly used in 

Educational Data Mining (EDM) community (i.e., clustering, association rules mining, rule-

based classifiers, etc.) for the purpose of providing adaptive, real-time interventions in an ELE. 

This essentially means covering all four steps of the cycle of applying data mining to an 

educational tool2 (i.e., EDM) as defined in (Romero, Ventura, & García, 2008): 

                                                 

2 Ranging from mostly static Learning Management Systems (LMS), to more dynamic problem solving tools, to ELEs supporting 
exploratory and open-ended interactions. 
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 Data collection: This step usually involves running appropriate user experiments for 

collecting user data (e.g., interface actions and eye-gaze data in the context of this thesis) 

while the application is in use.  

 Preprocessing: This step includes cleaning the collected data, calculating features based on 

this data, and transforming the result into an appropriate format for the mining algorithm.  

 Applying data mining: Applying data mining algorithms that build computational models 

which are used to discover patterns in the data (e.g., clustering, classification, association 

rules mining, etc.). The output of this step can be an easy-to-understand representation of 

these patterns or a computational model built based on the discovered pattern in the data.  

 Interpret, evaluate and deploy the results: The final step is to interpret the information 

discovered by data mining and take appropriate actions with respect to the findings about the 

studied application. This step can be done by an offline analysis of the findings and 

deploying appropriate changes in the educational tool, e.g., informing the courseware 

designers about the effectiveness of different activities in a Learning Management System 

(García, Romero, Ventura, & Castro, 2009). Additionally, it can have an online component 

added to the studied application, allowing it to use the findings for reacting to the user 

actions in real-time, e.g., providing hints during problem-solving (Barnes et al., 2008; 

Fournier-Viger et al., 2009).  

Our work is one of the first to fully evaluate the above 4-step data mining approach as applied 

to ELEs, by proposing the User Modeling and Adaptation (UMA) framework that provides 

adaptive interventions for an ELE. Figure  1-1 shows a schematic representation of the 

components of our framework.  
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building a user model for predicting user’s performance/knowledge level. Thus, the 

evaluation reported in these works is the accuracy of the user model 
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Figure  1-1 Schematic illustration of the proposed framework for providing adaptive interventions
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The rest of this section briefly highlights the significant issues that were addressed in order to 

apply the four steps of the EDM approach for creating a new version of the CSP applet which 

provides adaptive support to students: 

 Data collection: There was not an appropriate dataset available for the CSP applet for 

applying data mining techniques (in terms of the size of the dataset and the interaction data 

collected from users). Therefore, we created two new datasets for user interface actions and 

eye-gaze data by running two user experiments. Running user experiments was challenging 

and a very time-consuming process, both because we needed subjects with very specific 

background knowledge and because there was only one eye-tracker available. In Section  4.1 

we describe the first user study where only interface actions were collected. In Section  4.3 

we explain a modified version of the user study with an eye-tracker. 

 Preprocessing: There are some existing methods for calculating features from action and 

eye-gaze data (Amershi & Conati, 2009; Goldberg & Helfman, 2010; Shanabrook et al., 

2010; Shih, Koedinger, & Scheines, 2010) which we used as the basis of our work (as 

described in Section  8.2). However, for [Q5], eye-gaze data collected in a non-intrusive 

manner3 by a remote eye-tracker4 can be rather noisy5, and the problem can be exacerbated as 

the sessions of collecting data gets longer (Goldberg & Helfman, 2010). Addressing this 

issue required devising methods for cleaning and validation of the eye-gaze data (Section  8.1 

describes our solution for this issue).  

                                                 

3 Not constraining the user’s head movements by a chinrest 
4 Eye-trackers that track user’s eyes remotely with an array of infrared sources and sensors (compare to head-mounted eye-

trackers). 
5 Due to extreme head movements, objects blocking the infra red beam from reaching the eyes, subjects getting distracted, etc.  
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 Applying data mining: In our research, this step involves evaluating different data mining 

techniques available for (i) clustering student interactions and mining their behaviour 

patterns to find effective and ineffective interaction patterns, and (ii) building a user model 

that determines the effectiveness of user interactions during the user’s interaction with an 

ELE. In this thesis, we addressed the following main challenges of this step: 

o We formed a data mining pipeline that includes the whole process of extracting the 

behaviour patterns necessary for creation and delivery of adaptive support in the CSP 

applet (or any other ELE) from user data. We implemented this pipeline in Python, 

and made the transitions between clustering, association rules mining, and building 

the classifier user model steps completely automated. This meant that we needed to 

devise mechanisms for automatically optimizing and validating the outcomes of the 

techniques used in each step including: finding the best parameter settings and 

initialization for k-means clustering, a method for validating the clusters, finding the 

best parameters for rule mining algorithm, and a weighting and aggregation scheme 

for the rules that form the rule-based classifier user model.  

Particularly, we had to define an appropriate multi-criteria objective function for 

clustering the user data. Since, we found that basic clustering is not always able to 

find clusters of users with different performance levels based solely on behaviour 

information (e.g., when clustering is based only on eye-gaze data), we defined a 

multi-criteria method for clustering the user data. This new method, called the hybrid 

approach, allows us to cluster users in a way that users who show similar behaviours 

and achieve similar learning performance are grouped together (see Section  3.2.2.2). 
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o For [Q2] we needed to build an online user classifier that can classify users with 

acceptable and steady accuracy after observing a limited number of their interactions: 

It is important that the classifier user model classifies users correctly early during the 

interaction, so as to provide adaptive interventions early during the interaction. In 

Section  3.3, we present details of our proposed rule-based classifier user model which 

is designed to achieve this requirement. We also provide experimental evaluations 

showing that the user models achieve this requirement on our datasets in Sections  5.3 

and  8.6.  

 Interpret, evaluate, and deploy the results: This thesis is among the first attempts to 

perform a complete evaluation of data mining approach for providing adaptive interventions 

in ELEs. Because of this, we used an iterative process for devising new methods for this step. 

The two main phases of this step are: 

o Leveraging the discovered patterns in the data mining step to define proper 

interventions [Q3]: we proposed an algorithm for sorting the discovered patterns in 

terms of their potential impact on improving users’ learning performance. This 

ranking, combined with the way each pattern is formulated, helped the human expert 

to generate hint messages and other relevant interventions related to each pattern with 

relative ease (see Section  3.4.1). 

o Devising a strategy for delivering the interventions to users as they interact with the 

CSP applet in a manner that is non-intrusive and yet effective in increasing their 

learning: These interventions include interface adaptations and providing explicit 

advice for the appropriate usage of available functionalities in the interface. We 

developed different design alternatives and used a series of pilot studies to find the 
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best set of techniques for this task. See Chapter 6 for the process and Section  3.4.4 for 

the final design. 

o Finally, a third and final user study with the adaptive version of the AIspace CSP 

applet was conducted, to evaluate the effectiveness of our approach quantitatively and 

qualitatively (see Chapter 7). 

1.4 Summary of contributions 

The work described in this thesis helps advance the research in educational data mining 

(EDM), user modeling and user-adapted interactions particularly Intelligent Tutoring Systems 

(ITS) in different aspects. The contributions of this thesis include: 

 Being the first work in ITS area to perform an in-depth and complete evaluation of using data 

mining for both user modeling and providing user-adaptive interventions to support open-

ended interaction with Exploratory Learning Environments (ELEs). We provide both 

quantitative and qualitative evaluations that show the effectiveness of our approach. The 

evaluations of the approach are done in terms of: 

o Performance of the generated user models (user classification accuracy). 

o Effectiveness of the adaptive interventions provided to users based on the generated 

user models, i.e., improvement in user’s learning performance as a consequence of 

the provided adaptive interventions.  

o User acceptance of the adaptive interventions. 

 Formal evaluation and corresponding new insights on using eye-gaze data for capturing user 

learning, which provides positive evidence for the added value of eye-gaze in predicting 

learning, including:  

o identifying and validating meaningful eye-gaze features 
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o evaluating eye-gaze data as a predictor of user learning in ELE both in terms of 

overall accuracy as well as performance over-time  

o comparing/combining eye-gaze and action data as predictors of user learning 

Additionally, several practical contributions have been made during this work. The most 

important ones are: 

 A new dataset containing the interface actions and eye-gaze data of 45 users interacting with 

an exploratory environment (AIspace CSP) made available to the EDM research 

community.6 

 A user modeling framework for ELE with the ability to generate and evaluate the 

performance of user models7 on different user interaction data. It is also able to extract and 

rank8 behaviour patterns that are used to generate adaptive interventions for the target ELE. 

In addition to the data mining functionalities provided in the framework, this framework is 

also able to utilize the data mining functionalities provided in the Weka data mining toolkit9, 

which expands its usability for mining and analyzing user data collected from different 

environments.  

This framework is currently used in another research project at the Intelligent User Interfaces 

group of Laboratory for Computational Intelligence (LCI) at UBC (Fratamico, Conati, Roll, 

& Kardan, 2017). More details on this work are provided in Section 7.6. 

                                                 

6 The actions data is available online at: http://www.cs.ubc.ca/~skardan/data/index.html. The eye-gaze data was too large to be 
hosted on UBC-CS server; however, it is available upon request by email. 

7 Using nested cross-validation 
8 In terms of expected effectiveness on learning performance of students 
9 Weka is a publicly available collection of machine learning algorithms used for data mining. It is available online at: 

http://www.cs.waikato.ac.nz/ml/weka/  
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 The initial versions of the Eye Movement Data Analysis Toolkit (EMDAT) for analyzing eye-

tracking data. EMDAT calculates various eye-gaze measures from the raw eye-gaze data 

exported from an eye-tracker. This toolkit is currently used, maintained, and expanded by 

different members of the Intelligent User Interfaces group of LCI. It is publicly available and 

has been utilized by the research community (e.g., Intelligent Computer Tutoring Group at 

University of Canterbury, New Zealand). 

Finally, with the ever increasing number of available interactive simulations and other ELEs and 

emergence of Massive Open Online Courses which partially rely on these educational tools and 

can act as a source of user interaction data, we see a great opportunity for data mining based 

approaches to providing support in ELEs. By providing a fully tested data mining based 

approach to providing user-adaptive support in ELEs, and backed by the very promising 

evaluation results obtained, this thesis contributes to promoting the application of data mining 

techniques for adding support mechanisms to ELEs, with the goal of improving the learning 

experience of future generations of students. 

 

1.5 Thesis outline 

The rest of this thesis is organized as follows. First, we review the relevant literature for this 

work in Chapter 2. Then we provide an overview of the proposed user modeling framework in 

Chapter 3. Chapter 4 describes the data collection process and the resulting datasets. Chapters 5 

and 6 provide details of applying the three steps of our user modeling framework to the dataset 

containing user interface actions logs for the CSP applet. Chapter 5 covers behaviour discovery 

and user classification and Chapter 6 covers providing adaptive support. Chapter 7 describes the 

experimental evaluation of the adaptive interventions in the CSP applet. Chapter 8 focuses on 
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utilizing eye-gaze data for modeling user learning in the CSP applet. Chapter 9 summarizes the 

thesis work, highlights its contributions, and outlines areas for future research. Finally, there are 

two appendices included at the end of the thesis. These appendices consist of materials used in 

our user studies. 
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Chapter 2: Background and Related Work 

As mentioned in Chapter 1, the work done in this thesis involves elements from Educational 

Data Mining (EDM), Intelligent Tutoring Systems (ITS) and User-Adaptive Interactions research 

areas. In this chapter, we provide an overview of the existing body of research in these areas that 

are relevant to this thesis.  

Section 2.1 focuses on the application of EDM for modeling students in learning 

environments based on their actions. We start with briefly describing earlier works done in 

traditional environments, and then we move on to works done on exploratory learning 

environments which are the main focus of this section. In Section 2.2, we look into works that 

tried using the eye-gaze information to gain insight about users in different applications 

especially initial ITS works that looked into using eye-gaze to assess the students’ learning. In 

Section 2.3 we review the research done on providing support in interactive simulations for 

learning including the work done on the well-defined problem-solving environments and the few 

instances of initial works done on providing feedback in exploratory learning environments. 

Finally, in Section 2.4, we describe the AIspace CSP applet, the test-bed environment used in 

this thesis. 

2.1 Mining interface action data for modeling users in learning environments  

Using machine learning and data mining techniques on the data collected in different learning 

environments, i.e., EDM, is a new and emerging field. Please refer to (Baker & Yacef, 2009; 

Desmarais & Baker, 2012; Frias-martinez, Chen, & Liu, 2006; Kotsiantis, 2012; Peña-Ayala, 

2014; Romero & Ventura, 2007, 2010) for general reviews of different works done in the EDM 

field. In this thesis, we are especially interested in using data mining techniques for modeling 

users based on their interactions and understanding/analyzing their behaviours.  
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Using data mining for understanding user’s behaviours in the learning environments dates 

back to the end of the 1990’s with early works such as (C. Tang et al., 2000; Zaïane, Xin, & Han, 

1998). The early works that suggested adding a user adaptive functionality to a learning 

environment using patterns discovered in the usage data mainly focused on recommending links 

to the items to be studied next, in well structured web-based learning content delivery 

environments (T. Tang & McCalla, 2005; Zaïane, 2002). After these works, the focus has shifted 

mainly to using data mining for building users models that capture different user behaviours in 

more interactive environments. For instance, different supervised10 user models have been 

trained to detect misusing the help mechanism (Baker, Corbett, Koedinger, & Roll, 2005), 

evaluate student collaboration (Anaya & Boticario, 2011), predict the performance of students in 

a standard test (Trivedi, Pardos, & Heffernan, 2011) or determine the effectiveness of the 

student’s interactions for learning (Mavrikis, 2010), all based on user action data collected from 

the target structured problem solving environments. More relevant to our research, in the 

supervised category, is the work done by Kiesmueller, et al. (2010), on Kara the programmable 

ladybug, which is a learning environment for teaching programming to high school students. In 

order to be able to adapt the programming error messages to the problem-solving strategy that 

the student is using, Kiesmueller, et al., conducted a user study and identified four different 

problem-solving strategies11 based on their observation and then trained a Hidden Markov Model 

with hand annotated interactions for each strategy.  

As mentioned in Chapter 1, data mining has also been used for generating automatic hints in 

problem-solving environments, e.g., (Barnes & Stamper, 2008; Barnes et al., 2008; Fournier-

                                                 

10 Using labeled data for training the model (e.g., labels provided by experts) 
11 The categories are Top down, Bottom up, Hill climbing, and Trial and error. 
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Viger et al., 2009). Barnes, et al. (2008), mined user solutions for generating Markov Decision 

Processes (MDPs) “that represent all student approaches to a particular problem” in a logic proof 

problem-solving environment. Afterward, a hint generation mechanism tries to match the current 

state of a new user in the problem-solving process, to an existing state in the resulting MDPs and 

proposes next actions s/he can take in the form of hints. A later quantitative study showed 

significant improvements in the number of completed problems and overall learning of the 

students who used a version of the environment that provided the automatically generated hints 

(Stamper, Eagle, Barnes, & Croy, 2011).  

Fournier-Viger et al. (2009) used data mining to build a user/knowledge model for the 

RomanTutor, “a simulation-based tutoring system to teach astronauts how to operate 

Canadarm2, a 7 degrees of freedom robotic arm deployed on the International Space Station 

(ISS)”. In the first step, they annotated each action taken in each solution generated by the users 

of the RomanTutor in a number of exercises. Annotations included different dimensions such as 

whether the solution is successful or not, the skills shown by the user so far in this solution, and 

expertise level of the user. After that, they used sequential pattern mining to find the frequent 

sequences in user solutions and then analyzed these common sequences to discover the relation 

between each frequent sequence f, and the label l, measured by how often f was labeled with l in 

the dataset (they call these relations, partial task models). These partial task models are then used 

to recognize a user’s plan for solving a problem, estimate that user’s skill level, and finally, find 

skills that the user is missing for solving the problem and provide hints based on them. To this 

date, there is no published report on the quantitative evaluation of the effectiveness of this type 

of hints in the RomanTutor. It should be noted that, while providing hints that suggest the next 

step for solving a problem can help the students, for ELEs designed for education and training, 
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there is not always a predefined next step available. More importantly, the goal is for the students 

to learn the target process from their interactions with the environment (exploratory learning) as 

opposed to receiving tutored problem-solving.  

As explained in Chapter 1, it not always easy/possible for experts to provide labels for the 

patterns discovered as it is not the case that every domain is well explored similar to the 

problem-solving domain. As an alternative, instead of using experts for providing labels, some 

researchers in the EDM community used unsupervised machine learning techniques (e.g., 

clustering) for discovering different groups of users which show similar behaviours and then 

tried to understand how each of these groups relate to a certain available performance measure 

(e.g., learning performance). For example, Perera et al., (2009) used this approach to study 

online collaboration of groups of students in a collaborative software development tool (called 

TRAC). They applied clustering, to find groups of students with similar behaviour patterns and 

the distinguishing characteristics of each cluster. In addition to clustering, sequence mining was 

also used to find behaviour patterns where time plays a role. Based on the group performance 

scores that authors collected for each team, they were able to identify the discovered patterns as 

good or bad collaboration behaviours. Shanabrook et al., (2010) used sequence mining to 

discover repetitive sequences of actions (motifs) in user actions in a structured problem-solving 

environment (Wayang outpost). Subsequently, using expert knowledge, they coded the 

discovered motifs into seven12 different meaning groups representing known positive/negative 

user behaviours.  

                                                 

12 These seven groups are: Game-like, Frustration (guess), Frustration (hints), Not challenged, Too difficult, Skipping, and On-
task. 



22 

 

As explained in Chapter 1, the most relevant works to our research are works done by 

Amershi and Conati (2009) and Bernardini and Conati (2010). In fact, our work builds upon the 

work done by these two. Amershi and Conati used clustering to find students with different 

levels of learning performance and manually analyzed the statistical features of each cluster to 

understand the behaviours that differ between high achieving and low achieving clusters of 

students on a small dataset of users working with the CSP applet (Amershi & Conati, 2009). 

Extending this work, Bernardini and Conati, described a proof-of-concept user modeling 

approach that uses unsupervised clustering and class association rules to identify relevant user 

types/behaviours from the same dataset, replacing the manual cluster analysis with an automatic 

presentation of behaviour patterns in form of association rules (Bernardini & Conati, 2010).  

2.1.1 Association rules for finding user behaviour patterns 

Association rules have been widely used for off-line analysis of learners’ interaction patterns 

with educational software, e.g., to discover (i) error patterns that can help improve the teaching 

of SQL (Merceron & Yacef, 2003); (ii) similarities among exercises for algebra problem solving 

in terms of solution difficulty (Freyberger, Heffernan, & Ruiz, 2004); (iii) usage patterns relevant 

for revising a web-based educational system spanning a complete university course (García et 

al., 2009).  

Most work on using association rules for on-line adaptation has been done within research on 

recommender systems. In (Changchien & Lu, 2001), for instance, association rules mining is 

used to match the user type with appropriate products. The main difference with our work is that 

in (Changchien & Lu, 2001) there is no on-line classification. Users are “labeled” based on 

clusters built off-line and the labels are used to guide recommendations when these users utilize 

the system. In contrast, we perform online classification of new users, with the goal of eventually 
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providing real-time adaptation. Similarly, associative classification is used in (Zhang & Jiao, 

2007) to classify user requirements and generate personalized item recommendation in an e-

commerce application. The main difference with our work is that the approach in (Zhang & Jiao, 

2007) needs labeled data, while ours can work with unlabeled datasets.  

The work by Romero et al. (2009) is the most similar to the research described here, in that 

the authors aim to use clustering and sequential pattern mining to recognize how students 

navigate through a web-based learning environment, classify them and use some teacher tuned 

rules for recommending further navigation links accordingly. The evaluation of this work 

focused on analyzing the quality of the rules generated by different algorithms, but no results 

have yet been presented on the classification accuracy of the proposed approach. 

2.2 Mining eye-tracking data for modeling users in learning environments  

Using eye-tracking to understand cognitive constructs such as intentions, plans or behaviour 

has received a lot of attention in psychology (Rayner, 1995, 1998). Researchers in human-

computer interaction and intelligent interfaces also started looking at eye-gaze data as a source of 

information to model relevant cognitive processes of users during specific interaction tasks. For 

instance, eye-gaze data has been investigated to capture users’ decision making processes during 

information search tasks (Rong-Fuh, 2010; Simola, Salojärvi, & Kojo, 2008), for activity 

recognition during working with a user interface (Courtemanche, Aïmeur, Dufresne, Najjar, & 

Mpondo, 2011), to predict word relevance in a reading task (Loboda, Brusilovsky, & Brunstein, 

2011), to predict how well users process a given information visualization (Conati et al., 2011; 

Loboda & Brusilovsky, 2010), to estimate mental workload in relation to evaluating users’ 

interruptibility (Iqbal, Adamczyk, Zheng, & Bailey, 2005), and to predict user and task 

characteristics in an information visualization (Steichen, Wu, Toker, Conati, & Carenini, 2014). 
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Muldner et al. (2009) looked at pupil dilation to detect relevant user affective states and meta-

cognitive processes during the interaction with a learning environment that supports analogical 

problem-solving. Knoepfle et al. (2009) used eye-tracking data for comparing existing theories 

of how users learn to play strategies in normal-form games. The theories were compared in terms 

of how they could predict users’ moves and attention to relevant information during interaction 

with a computer card game, with all theories showing limited predictive power. 

In our work, we are interested in investigating whether a user’s gaze patterns during 

interaction with an interactive simulation can be used to assess if s/he is learning. We were 

inspired by existing research showing that it is possible to identify distinctive patterns in the eye-

gaze data of successful vs. unsuccessful users during simple problem solving and question 

answering tasks (Canham & Hegarty, 2010; Hegarty, Mayer, & Monk, 1995; Jarodzka, Scheiter, 

Gerjets, & van Gog, 2010; Tsai, Hou, Lai, Liu, & Yang, 2012). In this body of work, the 

attention patterns analyzed related mainly to processing the problem description (Hegarty et al., 

1995) or supporting visual material (Canham & Hegarty, 2010; Jarodzka et al., 2010; Tsai et al., 

2012). The main finding was that successful problem solvers pay more attention to information 

relevant to answer correctly, while unsuccessful problem solvers show more scattered attention 

patterns. Eivazi and Bednarik (2011) went a step further showing that it is possible to build a 

classifier that relies solely on eye-gaze data to predict users’ performance during an interactive 8-

tile puzzle game. Conati and Merten (2007) and Amershi and Conati (2009) present results that 

are even more relevant for our work, since they also looked at eye-gaze data to model student 

reasoning and learning during interaction with an interactive simulation. As explained earlier, the 

student models in (Amershi & Conati, 2009; Conati & Merten, 2007) combine simple gaze-

pattern information with information on the user’s interface actions, whereas in this thesis we 
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focus on eye-gaze data, in a broader and more generalizable manner, to better isolate its potential 

as a source of information for user modeling in interactive simulation. 

2.3 Support in interactive simulations for learning 

Providing adaptive support to students is an important part of Intelligent Tutoring Systems 

(ITS), where this support is intended to partially replace the guidance a student would receive in 

a one-to-one tutoring setting (VanLehn, 2006).  

There is ample evidence that adaptive support can be beneficial in ITSs that target problem 

solving and other pedagogical activities where there is a well-defined set of solutions/behaviours 

that the ITS can target. For example, Westerfield et al. (2013) showed the effectiveness of 

personalized feedback on errors the students make in an ITS that provides step-by-step training 

on assembling a computer motherboard. Stamper et al., (2013) used a data mining approach to 

generate automatic solicited hints for an algebra tutor, and showed that the tutor performed better 

compared to a non-adaptive version in terms of both number of problems solved and overall 

learning. AutoTutor, an ITS that provides adaptive feedback on answers to physics questions, 

was successfully evaluated in (Jackson et al., 2006). It should be noted that this ITS includes a 

simulation that helps find the answers but no support is given on how to use it. It has also been 

shown that providing real-time feedback on students’ help-seeking behaviour, plays a role in 

self-regulated and active learning (Aleven, Roll, McLaren, & Koedinger, 2016). 

On the other hand, providing adaptive support for Exploratory Learning Environments (ELE) 

is in the early stages of research (Mavrikis, Gutierrez-Santos, Geraniou, & Noss, 2012). One 

defining characteristic of these environments is that there is usually no definition of correct 

behaviours. Students can explore the environment as they like. This makes it difficult to judge a 

priori and track which ensemble of user interaction behaviours should be the target of adaptive 
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support (Ting et al., 2006). Most of the work done so far on designing and evaluating adaptive 

feedback for learning environments that include interactive simulations has dealt with the 

challenge by limiting the exploratory nature of the interaction. For instance, the simulations 

developed by Johnson (Hussain et al., 2009) provide feedback on how to behave in pre-defined 

cultural/language-related scenarios with a clear definition of correct answers/behaviours. CTAT-

VLab, (Borek, McLaren, Karabinos, & Yaron, 2009) provides help on well-defined steps 

required to run a scientific experiment. Science Assistments, (Gobert, Montalvo, Toto, Sao 

Pedro, & Baker, 2010) provides feedback on the specific problem of controlling for variables in 

an experimental design. Thus, although (Hussain et al., 2009), (Borek et al., 2009) and (Gobert et 

al., 2010) add some form of adaptive feedback to interactive simulations, the feedback targets 

pre-defined behaviours that help students find correct answer/solutions in the instructional 

domain. In contrast, in our work, we designed and evaluated adaptive support for a more open-

ended exploratory interaction, with no prior definition for correct actions/solutions. The support 

aims to help students use the simulation to explore the underlying algorithm effectively, not find 

a correct answer/solution. 

The work closest in nature to ours is eXpresser, a simulation environment for learning 

algebra, which leverages a set of predefined feedback strategies to provide both unsolicited and 

solicited feedback to students based on their interactions with the tool (Mavrikis et al., 2012). A 

preliminary qualitative assessment of this feedback resulted in modest positive ratings for student 

perception, but no quantitative study has been published so far (Mavrikis et al., 2012). Thus, our 

work is the first (to the best of our knowledge) to provide a rigorous evaluation of an adaptive 

support mechanism for open-ended exploration in an educational simulation. Moreover, while in 

eXpresser a significant amount of manpower has been spent on defining the behaviours to be 
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tracked in student model and the feedback strategies, in our work both adaptive interventions and 

the user model activating them are generated by mining the user interaction data with minimal 

human involvement. 

There has been some work regarding how to design hints and recommendations in ITSs to 

ensure that they make the greatest impact on the user, e.g., (Santos & Boticario, 2015; 

Tempelaar, Rienties, & Giesbers, 2015; Walker, Rummel, & Koedinger, 2014). In this thesis, we 

followed an iterative design and evaluation process (Dix, 2009) with an informal focus group 

and 3 pilot studies to ensure that our support mechanism is effective and provides the basic 

functionality expected by the users. As a reference for different methods to draw the user’s 

attention, we used (Gluck, Bunt, & McGrenere, 2007). 

2.4 Test-bed: the AIspace CSP applet 

The Constraint Satisfaction Problem (CSP) Applet is one of a collection of interactive tools 

for learning common Artificial Intelligence algorithms, called AIspace (Amershi et al., 2008). 

Algorithm dynamics are demonstrated via interactive visualizations on graphs by the use of color 

and highlighting, and graphical state changes are reinforced through textual messages. 

A CSP consists of a set of variables, variable domains and a set of constraints on legal 

variable-value assignments (Poole & Mackworth, 2010). Solving a CSP requires finding an 

assignment that satisfies all constraints. The CSP applet13 illustrates the Arc Consistency 3 (AC-

3) algorithm for solving CSPs represented as networks of variable nodes and constraint arcs. AC-

3 iteratively makes individual arcs consistent by removing variable domain values inconsistent 

with a given constraint, until all arcs have been considered and the network is consistent. Then, if 

                                                 

13 Available at http://www.aispace.org/constraint/index.shtml 
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there remains a variable with more than one domain value, a procedure called domain splitting 

can be applied to that variable to split the CSP into disjoint cases so that AC-3 can recursively 

solve each case. 

The CSP applet provides several mechanisms for the interactive execution of the AC-3 

algorithm on a set of available CSP problems. These mechanisms are accessible through the 

toolbar shown at the top of Figure  2-1 or through direct manipulation of graph elements.  

In particular, the user can:  

1. Use the Fine Step button to see how AC-3 goes through its three basic steps: selecting an arc, 

testing it for consistency, removing domain values to make the arc consistent (i.e., Fine Step 

(FS) action). Figure  2-2 shows one instance of fine stepping through the CSP. In Figure  2-2a, 

AC-3 selects the blue arc representing the constraint that the value selected for B should be 

greater than the value selected for E. In Figure  2-2b, this arc is turned red because it is not arc 

consistent (given the value 1 for B, there is no corresponding value in E that would satisfy 

the constraint). In Figure  2-2c, the inconsistent value of 1 is removed from the domain of 

variable B;  



 

Figure  2-

2. Directly click on an arc to apply all these steps at once

3. Automatically fine step through

Consistency button (i.e., Auto AC (AAC) action)

4. Pause auto arc consistency using the

5. Select a variable to split on, and specify a subset of its values fo

(i.e., Domain Split (DS) action)

variable D for the CSP shown in

arcs have been made consistent

in the dialogue box, a new CSP is generated with that value for D (

 

-1 The CSP applet with an example CSP problem 

Directly click on an arc to apply all these steps at once (i.e., Direct Arc Click (DAC) action)

fine step through the completion of the problem using the 

(i.e., Auto AC (AAC) action);  

using the Stop button (i.e., Stop action);  

Select a variable to split on, and specify a subset of its values for further application of AC

(i.e., Domain Split (DS) action). Figure  2-3a shows the domain splitting dialog for the 

shown in Figure  2-2c. Domain splitting is being applied once all the 

have been made consistent and only 3 and 4 remain in D’s domain. After 3 gets selected 

in the dialogue box, a new CSP is generated with that value for D (Figure  2-3
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the completion of the problem using the Auto Arc 

r further application of AC-3 

a shows the domain splitting dialog for the 

is being applied once all the 
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 c) 

 

Figure  2-2 Basic steps of AC-3 

6. Retrieve alternative sub-networks generated by domain splitting using the Backtrack button 

(i.e., Backtrack (BT) action). Continuing the example shown in Figure  2-3, via backtracking 

the user can access one of the alternative CSPs resulting from domain splitting on D, in this 

case, the CSP with D taking the value 4 (Figure  2-3c); 

7. Return the graph to its initial status using the Reset button (i.e., Reset action). 

As a student steps through a problem, the message panel above the graph panel reports a 

description of each step. Another message panel situated below the graph panel reports the 

history of domain splitting decisions made by the user, i.e., which value-variable assignment has 

been selected at each domain splitting point 
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a) 

 

 b) 

 
 c) 

 

Figure  2-3 Domain-splitting and Backtracking 

The original CSP applet did not provide any explicit support to help students learn more 

effectively from the mechanisms described above. Research, however, shows that students may 

benefit from this support since unaided exploration of interactive simulations often fails to help 

students learn (Shute, 1993). As mentioned in Chapter 1, we used the CSP applet to evaluate our 

proposed User Modeling and Adaptation framework and added a support mechanism to the CSP 

applet described in Chapter 6. 
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Chapter 3: Overview of the Proposed User Modeling and Adaptation 

Framework 

As explained earlier, the main motivation for this thesis is based on the idea that students may 

benefit from having additional guidance when they interact with an Exploratory Learning 

Environment (ELE). This chapter describes the proposed User Modeling and Adaptation (UMA) 

Framework which aims to provide this guidance adaptively, based on the real-time evaluation of 

whether a user’s interaction behaviour with an ELE is conducive to learning or not. 

3.1 An overview of the UMA framework 

Our user modeling approach consists of three major phases: Behaviour Discovery (Figure 

 3-1A), User Classification (Figure  3-1B), and Adaptive Support (Figure  3-1C).  

In the behaviour discovery phase (Figure  3-1A), data from existing interaction logs is 

preprocessed into feature vectors where features consist of statistical measures that summarize the 

user’s interaction with an ELE (e.g., action frequencies, the time interval between actions, and gaze 

patterns). Each vector summarizes the behaviours of one user. A clustering algorithm then groups 

these vectors according to their similarities, thus identifying users who interact similarly with the 

interface. Next, association rules mining is applied to each cluster to extract its common behaviour 

patterns, i.e., rules in form of X  c, where X is a set of feature-value tuples and c is the predicted 

cluster for the data-points to which X applies. Clusters are then analyzed to identify how they relate 

to student learning performance. Thus, the behaviour discovery phase generates groups of users 

who are associated with different levels of learning performance, as well as sets of interaction 

behaviours representative of each group. 



 

Figure  3-1 Schematic illustration of the proposed User Modeling and Adaptation Framework

Understanding the effectiveness of a user’s interaction 

revealing to developers how the application can be 

However, we also want to use these 

interaction. Thus, the clusters and association rules identified in the 

are used to build an online classifier user model in the next phase of

The user classification phase 

extracted in the behaviour discovery

assesses in real-time the (possibly evolving) learning performance of a new user by (

incrementally building a feature vector based on the interaction events seen so far; (

Schematic illustration of the proposed User Modeling and Adaptation Framework

Understanding the effectiveness of a user’s interaction behaviours is useful in itself for 

revealing to developers how the application can be improved (Hunt & Madhyastha, 2005)

er, we also want to use these behaviours to guide automated adaptive support during

. Thus, the clusters and association rules identified in the behaviour

are used to build an online classifier user model in the next phase of the framework. 

phase (Figure  3-1B) uses the clusters and class association rules 

discovery phase to build an online classifier user model. This classifier 

time the (possibly evolving) learning performance of a new user by (

incrementally building a feature vector based on the interaction events seen so far; (
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Schematic illustration of the proposed User Modeling and Adaptation Framework 

is useful in itself for 

(Hunt & Madhyastha, 2005). 

to guide automated adaptive support during the 

behaviour discovery phase 

the framework.  

uses the clusters and class association rules 

phase to build an online classifier user model. This classifier 

time the (possibly evolving) learning performance of a new user by (i) 

incrementally building a feature vector based on the interaction events seen so far; (ii) classifying 
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this vector in one of the available clusters. Note that the classification can change over time 

depending on the evolution of the user’s interaction behaviours.  

The classifier generated in user classification phase (Figure  3-1B) is used to assess the 

performance of a new user based on her interaction behaviours in real-time. This assessment then 

guides the delivery of adaptive support in the last phase of the framework. 

The goal of the adaptive support phase (Figure  3-1C) is reinforcing the effective behaviours 

discovered in the behaviour discovery phase and discouraging the ineffective ones. The adaptive 

support relies on the class assigned to a user interacting with the ELE by the classifier user 

model, as well as the satisfied association rules causing that classification decision (Figure  3-1C) 

to decide which intervention to provide and when. The intervention mechanism consists of two 

components: intervention controller and intervention presenter (Figure  3-1C). Intervention 

controller selects the next intervention to be given and intervention presenter delivers a 

correspondingly appropriate hint message (or any other type of suitable intervention) to the user.  

The rest of this chapter is organized as follows. Section  3.2 describes the components of the 

behaviour discovery phase. Section  3.3 discusses the details of the user classification phase. 

Section  3.4 provides an overview of the objectives, guidelines, and algorithms used in the adaptive 

support phase. Finally, Section 3.5 provides a summary. 

3.2 UMA framework: behaviour discovery 

In this section, we describe different components of the behaviour discovery phase, namely: 

data extraction, clustering, and association rules mining. 

3.2.1 Data extraction 

The first step in behaviour discovery phase is to create a set of data-points from user 

interaction data. For instance, in the datasets used in this thesis, data-points are vectors of 
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features consisting of statistical measures that summarize the user’s interactions with the 

interface based on both interface actions (e.g., action frequencies, time interval between actions, 

etc.) and eye-gaze data (e.g., fixation rate, mean of fixation duration, etc.).  

Handling noise in the interaction data is also part of the data extraction step. For example, 

eye-tracking data can be rather noisy, especially if collected in a setting that does not constrain 

the user’s head. Details on our proposed procedures for clean-up and noise reduction in eye-gaze 

data are provided in Section  8.1. 

3.2.2 User clustering and the hybrid approach 

As mentioned before, we are interested in finding groups of students who behave in a similar 

way, and we employ clustering to achieve this goal. Our first choice for clustering was the k-

means algorithm (Bishop, 2007), which is a common algorithm in EDM research (Baker & 

Yacef, 2009). The simplicity of the k-means algorithm, its effectiveness, and acceptable 

efficiency makes it a popular choice. To refine the clustering step, we experimented14 with other 

clustering algorithms available in the Weka data mining package (Hall et al., 2009), including 

Hierarchical Clustering and Expectation Maximization (Bishop, 2007). However, similar to 

Perera et al. (2009), none of these alternatives produced substantially different outcomes in terms 

of clusters in our datasets (described in Chapter 4). We thus decided to retain k-means as the 

clustering algorithm for our approach, but devised a method to ensure faster convergence to a 

good set of clusters.  

One of the issues when using the k-means algorithm is setting good initial centroids, so that 

the algorithm can quickly converge to a stable set of clusters with a small within-cluster error. 

                                                 

14 Using the CSP-Action-65 dataset described in Chapter 4 
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However, the implementation available in Weka tended to converge slowly on our datasets. We 

thus experimented with Genetic Algorithms (GA) to initialize the centroids for k-means based on 

an approach suggested in (Kim & Ahn, 2008). This approach relies on using “chromosomes” to 

mold initial cluster centroids as needed. These chromosomes represent different initial values for 

each feature of the initial centroids. Through mutation and crossover, in each iteration, new 

initial centroids are generated and the ones with lower corresponding within-cluster error for the 

resultant clusters are retained for the next iteration.  

The method proposed by Kim and Ahn (2008) primarily deals with binary features and 

proposes discretizing continuous variables and using multiple-bit genes to represent these 

variables (14 bits per feature). The user modeling tasks targeted by our framework typically need 

to handle a substantial number of continuous features. For instance, there are at least 21 

continuous features in the datasets used in this thesis; therefore, the method proposed by Kim 

and Ahn (2008) is inefficient because it requires chromosomes with too many extra bits to 

discretize the features without major loss of information (e.g., with 21 continuous features we 

need 21 × 14 =  294 bits for each chromosome). In general, with m continuous features and k 

clusters, 14mk bits are needed following the method proposed by Kim and Ahn (2008).  

We thus changed the method for building the chromosomes to make it more suitable for 

datasets with a high number of continuous features. Instead of each chromosome representing the 

initial value of the centroids, in our version, each chromosome represents one permutation of 

membership assignment of data-points to clusters (e.g., data-point 1 belongs to cluster 1, data-

point 2 belongs to cluster k, etc., where k is the desired number of clusters). Then, each 

chromosome is used to generate a set of centroids that initialize a different run of k-means. In 



37 

 

this setting, each chromosome needs ⌈����(��)⌉ =  ⌈� ����(�)⌉ bits where k is the number of 

desired clusters and n is the number of data-points in the dataset. 

Given the above calculations, we can determine that when the ratio of number of data-points 

over continuous features (i.e., �/�) is less than 14�/���� (�), our approach would definitely 

result in smaller chromosomes and less computation. Also, knowing that � ≥ 2, the lower bound 

for this ratio is 28, which is a relatively high ratio for the existing datasets in the ELE 

community. For ratios above that, the more efficient method is the one proposed by Kim and 

Ahn (2008). 

Given that in our datasets k was expected to be less than or equal to 5 and n is at most 110 

while m is at least 21, our proposed approach is clearly more efficient, e.g., a maximum of 

⌈log�(5���) ⌉ = 256 bits are needed to represent one complete cluster-set in our approach which 

is much smaller than 14�� = 14 × 21 × 5 = 1470 bits needed for k chromosomes generated 

following the method proposed by Kim and Ahn (2008). More interestingly, we do not have to 

discretize the features and there is no need to handle multi-bit chromosomes during the crossover 

and mutation actions (described below). 

The proposed approach uses the following steps. We generate a random population of 100 

initial chromosomes (where each chromosome represents one permutation of membership 

assignment of data-points to clusters), each used to generate a set of centroids that initialize a 

different run of k-means. We then select the half of the chromosomes that led to clusters with the 

lowest within-cluster error and use these to generate the next generation by crossover (i.e., 

selecting two chromosomes and choosing the upper half bits of one chromosome and the lower 

half of the other chromosome to form a new one) and mutation (i.e., selecting a chromosome and 
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3.2.2.1 Clusters and learning performance  

In order to associate behaviours with learning performance, it is first necessary to establish 

how the user groups generated by clustering relate to learning. This can be done in different 

ways, depending on whether information on the users’ learning performance is available or not: 

 If learning performance measures are not available, we face an unsupervised learning 

problem. In this case, clustering is done using GA k-means. It is then left to the judgment of a 

human expert to evaluate how each cluster and associated behaviours may relate to learning. 

Since we have access to a learning performance measure, this case is not considered in this 

work. 

 If learning performance measures are available, one possible approach is to generate the 

clusters solely based on interaction data, and then assign a label for each cluster by 

comparing the average learning performance of the users in that cluster with the performance 

of the users in the other clusters. This is the approach we successfully adopted for interface 

actions data for the CSP applet described in Chapter 5 (called the basic clustering from now 

on). It is possible, however, that clustering solely based on behaviours does not generate 

groups with a clear (i.e., statistically significant) difference in learning performance, making 

it difficult to assign labels to the clusters automatically. To tackle this situation, we propose a 

solution that leverages user performance data to guide the clustering process, thus creating a 

hybrid approach.  

 If learning performance measures are available, the conventional method for creating a 

training set of labeled classes is to divide the performance spectrum into different ranges and 

putting users within each range into one group (e.g., median split for creating 2 classes). The 

number of classes is an arbitrary choice, and data-points at the boundaries are also somewhat 
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arbitrarily forced into one class. When grouping users together, the hybrid approach (see 

Section  3.2.2.2) relies on both learning performance as well as the similarity in user 

interaction data as opposed to only relying on learning performance. Thus, we argue that it 

can generate better performing user models since the user models can only rely on user 

interaction data when classifying users. This hypothesis was confirmed in our experimental 

evaluations presented in Chapter 8. 

3.2.2.2 The hybrid approach 

As mentioned earlier, following the basic clustering approach, without a clear (i.e., 

statistically significant) difference in average learning performance of different clusters, it is 

difficult to assign labels to the clusters found. This issue arose, for instance, when we 

experimented with the eye-gaze interaction data (see Chapter 8 for details). In the rest of this 

section, we present our solution for this issue. 

In our framework, the only requirement for interpretability of the clusters is that there should be 

a significant difference between the average learning performances of members in different 

clusters, as measured by an appropriate statistical test. In other words, since we know the users in 

each cluster behave similarly, just knowing that the members of a cluster achieve significantly 

higher/lower average performance than the other clusters is enough to interpret salient 

behaviours observed in that cluster as effective/ineffective. Based on this requirement, we 

propose the hybrid approach. The hybrid approach finds the best cluster-set (in terms of the sum 

of within-cluster distances) with a significant difference in learning performance15. This is 

achieved by following the search for best cluster-set similar to GA k-means, and keeping track of 

                                                 

15 The measure of learning performance used in this thesis is Proportional Learning Gain (PLG), i.e., the ratio of the difference 
between post-test and pre-test, over the maximum possible gain; described in percentage ratio (see Section 4.4 for details). 
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the best cluster-set visited, for which the learning performance difference is statistically 

significant. It should be noted that using the hybrid approach on datasets where basic clustering 

produces statistically significant clusters (e.g., interface actions data in our case) would result in 

finding the same cluster-set. This feature enables us to replace the basic clustering approach with 

the hybrid approach for all cases.16  

3.2.3 Association rules mining to describe user behaviours 

In our user modeling framework, association rules mining is used to identify the interaction 

behaviours that characterize each of the clusters found in the clustering phase. We use the 

Hotspot algorithm (Hall et al., 2009) to perform association rules mining on our clusters. Hotspot 

inspects the training data and generates the association rules corresponding to a class label (a 

specific cluster, in our case) in form of a tree. For instance, two sample generic rules derived 

from the same tree branching could be as follows: 

If Action A frequency = High    

Cluster X 

If Action A frequency = High  and 

Action B frequency = Low   Cluster X 

The algorithm has three parameters that influence the type and number of rules generated: (i) 

the minimum level of support requested for a rule to be considered relevant (where support for 

rule X  Y is defined as the percentage of data-points satisfying both X and Y in the dataset); 

(ii) the tree branching factor, influencing how many new rules can be generated from an existing 

one by adding a new condition; (iii) the minimum improvement in confidence needed for 

creating a new tree branch (where confidence for rule X  Y is the probability that Y occurs 

when X does). Essentially, the goal is to find a few rules that characterize as many elements in 

                                                 

16 More details on the hybrid approach is provided in Section  8.4.3 
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the cluster as possible and provide an easily understandable explanation of users’ behaviours for 

each cluster.  

Given the tree-like structure of the rules, in UMA framework we filter out rules such that, 

when there is a set of rules derived from the same tree branching, rules closer to the root and 

with low confidence are discarded. The rationale behind this choice is that rules with low 

confidence include interaction behaviours that are not representative of a specific cluster (i.e., 

these behaviours are observed in more than one cluster), and thus they tend to weaken the 

classification ability of the rule set as a whole (more detail on this point is provided in Section 

 3.3). 

Class association rules mining algorithms generally work with both discrete and continuous 

values. The attributes that describe the user interaction behaviours in our user modeling tasks are 

continuous, but they need to be discretized, otherwise, they would produce a large number of 

very fine-grained rules that are unsuitable for classification. Choosing the appropriate number of 

bins for feature discretization involves a trade-off between information loss (having too few 

bins) and generating overly specific rules that are too detailed to capture meaningful patterns 

(having too many bins).  

The UMA framework applies a grid search for parameter exploration to find the optimal 

parameter setting to be used for the Hotspot algorithm (i.e., minimum support, branching factor, 

and minimum improvement of confidence), as well as the optimal number of bins for the 

discretization. We used nested cross-validation for parameter optimization. The parameter values 

that produce the best results in the inner loop in most folds, as measured by the accuracy of the 

classifier user model (described in the next section), are selected.  
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Additionally, we are only interested in rules that apply exclusively to one class of users 

(representative rules), therefore only rules that have a confidence value greater than 50% are 

selected. 

3.3 UMA framework: user classification 

In the user classification phase, as new users interact with the system, they are classified in 

real-time into one of the clusters generated by the behaviour discovery phase, based on which 

association rules match their behaviours. The use of association rules to construct a classifier is 

called Associative Classification Mining or Associative Classification (Thabtah, 2007). 

Algorithms for Associative Classification usually generate a complete set of class association 

rules (CARs) from the training data and then prune this initial set to obtain a subset of rules that 

constitute the classifier. When a new unknown object (a new user in our case) is presented to the 

classifier, it is compared to a number of CARs and its class is predicted based on a measure that 

summarizes how well the user matches the CARs for each class. One simple scheme to use 

CARs for classification is to count the number of CARs satisfied for each cluster. This means 

that all rules are considered equally important for classification, failing to account for the fact 

that some rules with limited class support (i.e., applicable to a fewer number of members in that 

class compared to others) should be considered with caution when deciding the class label of a 

user. Given this limitation, we decided to apply a more sophisticated classification scheme that 

assigns a value to each rule, and calculates class membership scores based on the values of the 

satisfied rules that apply to a class (Han, 2003). We used a variant of this approach where instead 

of calculating membership scores based only on the satisfied rules, all of the CARs that represent 

a cluster are used. The rationale behind this choice is that in our user modeling task the rules that 

do not apply to a new user are also important for determining the final label. For instance, it is 
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important to penalize the score of class c when a major rule (which applies to most of the c’s 

members) is not satisfied for the new user, even if a less distinctive rule for c applies to her. 

Accordingly, the membership function we adopted returns a score SA for a given class A as 

follows: 

�� =
∑ ����(��)×���

�
���

∑ ���
�
���

,                  ����(��) = �
�    �� �� �� ���������
�             ���������

�   ( 3-1 ) 

where ri’s are the m rules selected as representatives for class A, ���
 is the corresponding rule 

weight (based on a measure explained below), and ����(��) is an indicator function that checks 

the applicability of a rule to a given instance. The class with the highest score would be assigned 

as the predicted label for the user. We tried different measures from the literature to define ���
 

(Geng & Hamilton, 2006) (including confidence, support, conviction, and leverage) and found 

confidence to be the measure that generates the best classification accuracy across our datasets. 

3.4 UMA framework: adaptive support 

In addition to classifying the user in one of the available clusters, the CSP’s user model also 

returns the satisfied association rules causing that classification decision (Figure  3-1C). These 

rules represent the distinctive interaction behaviours of a specific user so far, from the set of 

previously identified rules (in the behaviour discovery phase) for each cluster. These clusters are 

associated with high (effective) or low (ineffective) learning performance. The goal of the 

adaptive support component of the framework is to design interventions that would specifically 

target these behaviours (i.e., reinforcing the effective behaviours and discouraging the ineffective 

ones).  
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3.4.1 Deriving interventions from association rules  

The first step for building the intervention mechanism is to process the association rules 

discovered in the behaviour discovery phase and derive representative interventions from those 

rules. As mentioned before, our framework relies on finding clusters of users that achieve 

significantly different learning performances (higher learning gain or HLG vs. lower learning 

gain or LLG). The number of HLG or LLG clusters may be more than one, and there might be 

clusters with average learning performance which do not differ from the HLG or LLG clusters. 

However, following the hybrid approach, we will find at least one HLG and one LLG cluster if 

such clusters exist in the data. Based on this premise, we can use the association rules discovered 

for the HLG cluster(s) and the underlying interaction patterns to devise interventions that 

encourage users to interact more effectively; similarly, we can leverage the association rules 

discovered for the LLG cluster(s) and the underlying patterns to devise interventions that 

discourage users from interacting in an ineffective manner. 

To demonstrate the process, let us assume the behaviour discovery phase for the CSP applet 

has produced 2 clusters, one cluster with higher learning gain (HLG) and another one with lower 

learning gain (LLG). Each cluster will have a set of representative association rules (i.e., rules 

that are exclusive to that cluster). Figure  3-3 shows a sample rule for the LLG cluster. 

Auto AC frequency = High
17

  and  Direct Arc Click frequency  = Low17   Cluster LLG 

Figure  3-3 A sample class association rule 

This rule indicates that members of the LLG cluster (i.e., low learners) show very high 

frequency of Auto AC actions, while rarely using the Direct Arc Click (DAC) action18. A 

                                                 

17 As described in Section 3.2.3, values for the features are discretized for the association rules mining. “High” and “Low” here 
represent the highest and lowest bins for the respective feature. 
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possible explanation of why both these behaviours are associated with limited learning is that 

they identify users who are not very engaged in the exploration process because they prefer to (i) 

run the algorithm to completion instead of stepping through it; (ii) leave to the applet the 

selection of the next arc to work on, rather than being proactive in choosing it. 

Thus, this rule identifies two possible interventions (intervention items from now on) to help 

students correct these suboptimal behaviours exhibited by low learners: (i) discourage excessive 

use of the Auto AC; (ii) encourage higher usage of DAC. At this point, the involvement of a 

human designer is needed to decide how these intervention items should be implemented. For 

example, if the interventions are hint messages, the text for the messages is decided by the 

human designer. In some cases, the human designer might even decide that an intervention is 

only relevant at a certain stage of interaction or when other environmental factors are present. 

This additional information can also be present in the rules if captured during feature extraction 

(see Sections  7.6 and  9.2).  

While one can try to implement all intervention items that can be extracted from the 

discovered rules, we are interested in devising a strategy for ranking and selecting the rules (and 

by extension, the intervention items) based on a weighting scheme (described in the next section) 

that captures their prominence. This is useful when there are limited resources and the designer 

has to focus on a subset of intervention items. 

3.4.1.1 Offline ranking process for intervention items  

In this section, we present a ranking strategy for association rules and intervention items. This 

ranking is performed offline and only once for each ELE. It takes as input the association rules for 

                                                                                                                                                             

18 See Section 2.4 for the detailed description of these actions. 
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the LLG and HLG clusters from the behaviour discovery phase. During this process, the weight 

for each association rule is calculated and patterns are filtered and presented to the human expert 

for generation of the intervention items.  

First, we define the weight ��
19 for each rule � as: 

�� =  ����(�) ×
��������(�)

|�������������(�)|
 

where ��������(�) is the class coverage for rule � and is defined as the ratio of the total 

number of users in the class that rule � applies to over the total number of users in that class; 

|�������������(�)| is the number of preconditions for the rule �; and ����(�) is confidence of 

rule � as defined in Section  3.2.3. 

Then, depending on the desired number of interventions (i.e., depending on implementation 

time that the designer is willing to invest) the lowest ranking rules may be discarded from the 

rest of the offline process.  

Next, each precondition of each remaining rule (e.g., Direct Arc Click frequency = Low and 

Auto AC frequency = High in our sample rule in Figure  3-3), is listed. Preconditions may appear 

in rules of more than one cluster20. If a precondition appears in more than one cluster, it is 

discarded because it indicates a weak association of that pattern to any of these clusters. In other 

words, the pattern (a.k.a., precondition) applies indiscriminately to members of more than one 

cluster when taken alone, and is only useful when it is combined with other patterns21. Finally, 

an intervention item is designed by the human expert for each remaining precondition. The 

                                                 

19 Not to be confused with ���
in equation (3-1) 

20 Note that rules for each cluster are guaranteed to be unique due to the requirement that their confidence must be above 50%. 
However, this does not guarantee that individual preconditions of rules are also unique. 

21 One possible way to use this kind of patterns is to generate interventions based on a combination of patterns; however that 
would make the interventions very complicated. Therefore, we decided to limit the interventions to only one pattern.  
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human expert is aided greatly by the fact that the preconditions describe only one pattern and are 

associated with high or low learning performance. 

3.4.2 Intervention mechanism  

The intervention mechanism in the UMA framework has two components: intervention 

controller and intervention presenter (Figure  3-4). Intervention controller selects the next 

intervention to be given and intervention presenter delivers the respective hint. 

3.4.2.1 Intervention controller 

The process of providing adaptive interventions starts by identifying which of the available 

intervention items are relevant at any given point of a user’s interaction with an ELE based on the 

satisfied association rules at that time. There may be several rules that are active (i.e., all of their 

preconditions are satisfied) at a given time, which brings to bear an important problem with the 

basic approach of considering all the corresponding intervention items for providing adaptive 

support. The problem is that addressing all the relevant patterns by delivering the respective 

interventions at any given time might overwhelm the student and reduce the overall effectiveness 

of the intervention mechanism.  

Our solution is to only address the most prominent behaviour at any given time (i.e., only 

deliver one intervention at a time). This solution requires devising a strategy for ranking the 

intervention items that are relevant at any given time based on their prominence. 

Based on this approach, at each hinting opportunity, the intervention controller chooses the 

intervention item with the highest ranking among the relevant items following the online ranking 

process described next. 
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3.4.2.2 Online ranking process for intervention items  

As mentioned above, this process is done online during the user’s interaction with the ELE. It 

takes as input the rules that are satisfied at each given time for the user and calculates the score for 

each intervention item; subsequently based on these scores the most relevant intervention item is 

determined.  

Each intervention item h is by definition mapped to a precondition which belongs to one or 

more rules in the class. Therefore, each intervention item can be triggered by one or more rules 

in the class. We show this set of rules by rules(h). During a user’s interaction with the ELE, for 

each intervention item h, its score is calculated as the sum of the weight of those rules in rules(h) 

that are satisfied at the given time (namely the rules that caused the user’s current classification 

in one of the available clusters). 

Thus, intervention items are continuously re-ranked based on their score as the user interacts 

with the ELE. This score is calculated based on how the user model currently classifies the user 

and which rules trigger the classification. Note that at any time, only a subset of intervention 

items may be relevant depending on whether there is any satisfied rule that triggers that item. 

Here is an example of how an item becomes relevant: when a user is classified as LLG, and our 

sample rule in Figure  3-3 is activated, then the intervention items related to its preconditions 

become relevant. For the precondition “Direct Arc Click frequency = Low”, the intervention 

entails prompting the user to perform more Direct Arc Click actions and for the precondition 

“Auto AC frequency = High“, the intervention item involves prompting the user to try alternative 

actions instead of Auto AC. 

 



 

Figure 

3.4.2.3 Intervention presenter

The second element of the intervention mechanism is

of the intervention presenter is to 

minimize the intrusiveness of the process. In the rest of 

of the intervention presenter component. In 

this final design. 

Figure  3-4 The adaptive support process 

Intervention presenter 

The second element of the intervention mechanism is the intervention presenter. The objective 

intervention presenter is to deliver interventions while trying to maximize effectiveness and 

of the process. In the rest of Section 3.4, we present the final version 

of the intervention presenter component. In Chapter 6 we explain the iterative process that led to 
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3.4.3 Delivering the adaptive interventions  

Our first design principle is to deliver adaptive interventions incrementally, following well-

established practices in the Intelligent Tutoring Systems literature as reviewed in (Maloy, 

Verock-O’Loughlin, Edwards, & Woolf, 2013; VanLehn, 2011). Thus, each selected 

intervention item is first delivered with a textual hint that prompts or discourages a target 

behaviour, followed when needed by a textual hint that reiterates the same advice, accompanied 

by a related interface adaptation that can help the user follow the advice (e.g., highlighting 

relevant interface items). 

3.4.4 Intervention strategy 

Delivering adaptive interventions also requires deciding whether the interventions should be 

subtle or forceful. Subtle interventions are in the form of suggestions that can be easily ignored 

by the user. Forceful interventions make the user follow the related advice by reducing or 

eliminating user’s options for the next action. We decided to adopt the subtle approach for the 

adaptive-CSP applet because, although with this approach the user can easily decide to ignore 

the system’s suggestions (even when they are appropriate), it has the very desirable advantage of 

being less intrusive than the forceful approach. Therefore, from a usability point of view, it 

makes sense to try and see whether subtle adaptive interventions can already improve the 

effectiveness of the CSP applet. The general mechanism to deliver subtle incremental adaptive 

interventions in the CSP applet works as follows:  

(i) Each intervention item selected for delivery (target item in the rest of this section) is first 

presented as a textual hint message shown in a box at the upper right corner of the applet, as 

shown in Figure  3-5a (level-1 hint). This message is phrased as a suggestion for behaviours to be 

adopted or avoided. For instance, a level-1 textual hint for the DAC_fr intervention item, that we 
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used in our example above, is “Do you know that you can tell AC-3 which arc to make consistent 

by clicking on that arc?” which aims to promote the Direct Arc Click action. In order to draw 

user’s attention to the new message, the hint box first appears in the center of the screen, and 

then quickly moves to the upper right corner of the applet. 

(ii) After receiving a level-1 hint on the target item, the student is given some time to change 

her behaviour accordingly (a reaction window equal to 20 actions for the given hint). During this 

time, the user model will keep updating the feature vector describing the user interaction 

behaviour, its classification, and the ranked list of active intervention items, excluding the target 

item, thus other hints may be given during this time if relevant and needed. To avoid 

overwhelming the user with hints, a maximum frequency of one hint per ten actions is enforced 

(i.e., hinting opportunity). In other words, students may receive a hint every 10 actions, but they 

may receive a hint on the same behaviour only every 20 actions. At each hinting opportunity, 

either a new hint is displayed or, if there are no new hints, the hint box disappears. As shown in 

Figure  3-5, the user can also close the hint box using the “close” button at any time. 

(iii) At the end of the reaction window, based on the updated feature vector, the user model 

determines whether the user has followed the hint for the target item or not. If at this point the 

preconditions for the adaptation rule that generated the level-1 hint for the target item are still 

satisfied, then the user has not followed the hint and the target item is selected for delivery again. 
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(a) 

 

(b) 

Figure  3-5 Sample Level-1 (a) and Level-2 (b) hints.  

The text for the Level-1 hint on the left: "Did you know you can tell AC-3 which arc to make consistent by clicking 

on that arc?" 

(iv) In this case, a level-2 hint is delivered, consisting of both a text message as well as the 

highlighting of relevant interface elements that can help the user follow the hint. Figure  3-5b 

shows an example of a level-2 hint for the DAC_fr intervention item. The text messages in level-

2 hints are more detailed than for level-1 hints. The first part of a level-2 hint reiterates the level-

1 hint with slightly different wording, while the second part provides a justification for the 

suggestion22 and, if relevant, mentions the highlighted elements of the interface. For instance, in 

Figure  3-5b, the arcs of the displayed CSP graph that can be selected via Direct Arc Click are 

highlighted in yellow. The phrase “relevant arcs” in the hint message is highlighted similarly to 

                                                 

22 Please note that, while the content of the first part (related to the behaviour) is derived from the pattern, the justification is 
based on the designer’s interpretation of why that behaviour is good or bad based on his/her pedagogical knowledge of the 
domain. Therefore, adding the justification is optional and depends on the designer’s knowledge of the domain and confidence 
in his/her interpretation of the behaviour pattern. 
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create a visual link between the text and the change in the graph. Different hints will cause 

different interface elements to be highlighted, such as nodes in the graph (Figure  3-6 right) or 

toolbar buttons (Figure  3-6 left).  

  

Figure  3-6 In a level-2 hint, the relevant elements of the interface are highlighted 

The highlight effect is automatically removed as soon as the user performs a relevant action 

(e.g., clicks on an arc for DAC_fr). The highlights can also be manually toggled using the 

“hide/show highlights” button at the bottom of the hint box (see Figure  3-5b).  

(iv) If the user’s behaviour during the reaction window following a level-2 hint shows that the 

user still did not follow the system’s suggestion, the corresponding intervention item will be put 

back on the list of active items and, if selected, it will be delivered starting again from a level-1 

hint. In the current version of the applet, there is no limit to the number of times a hint is 

delivered following the above process (alternating between level-1 and level-2)  

3.5 Summary 

In this chapter, we described different phases of the proposed User Modeling and Adaptation 

(UMA) framework: Behaviour Discovery, User Classification, and Adaptive Support. In the 

behaviour discovery phase, clusters of users who interact in the same way are found, and the most 

descriptive behaviours of each cluster are mined in form of class association rules. In the user 

classification phase, an online classifier user model is built (based on the discovered rules in the 

previous phase) that classifies each new user into the appropriate group of users based on his/her 

behaviour. Finally, the adaptive support phase consists of an intervention controller and an 
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intervention presenter. The intervention controller is the mechanism for selecting adaptive 

suggestions based on the output of the user model that identifies in real-time if a student is learning 

well from the CSP applet and, if not, why. The intervention presenter is the user-facing element of 

the framework and uses a two-level subtle method of delivering interventions (suggested by the 

intervention controller) using both text messages and interface highlights. More details on each 

phase of the framework and the user experiments used to arrive at the final version of the 

framework are provided in Chapters 5, 6, and 7. In the next chapter, we describe the data collection 

process and datasets used in our data mining efforts. 
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Chapter 4: User Studies for Data Collection 

In this chapter, we describe the two user studies that we ran to collect user interaction data 

with the purpose of evaluating the proposed user modeling and adaptation framework. First, we 

describe the common study design used for both user studies, then we provide more information 

about each study, and finally, we describe the data extraction process from the user activity logs 

collected during the two studies. 

4.1 Study design 

The general process of the studies done throughout this thesis involves some common 

elements with minor changes depending on the design and the goals of the study. One common 

requirement is that participants should be learning the concepts related to Constraint Satisfaction 

Problems (CSPs) for the first time. Additionally, they should already have a basic understanding 

of graph theory which is required for learning how to represent the CSP problems and how to 

solve them using the AC-3 algorithm. Therefore, all the studies start by asking participants to 

study a textbook chapter on Constraint Satisfaction Problems and the AC-3 algorithm (Poole & 

Mackworth, 2010). This part was allotted 45 minutes and all the participants reported finishing 

the material within the given time in all of our studies. Another common component of all the 

main studies in this thesis is the measurement of learning gain by asking participants to write a 

pre-test and a post-test before and after the main study task, respectively. Both pre-test and post-

test in all studies involved conceptual as well as problem-solving questions designed to evaluate 

their understanding of the CSP concepts that were covered in the chapter they had studied 

(sample tests are available in Appendix A-2). The tests were taken in pen-and-paper format and 

were marked following a marking scheme. Another requirement of the studies was that 

participants did not have prior experience using the CSP applet. Because of this requirement we 
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made sure every participant received the same information regarding how to use the applet 

before starting the main task. We provided a comprehensive video that described all the 

functionalities of the CSP applet to the participants. Participants could pause the video and ask 

questions about the information provided in the video or could ask about any of the actions in the 

applet after the video. Most of the participants found the information provided in the video 

adequate and were ready to use the CSP applet afterward. A few participants chose to ask 

questions from the experimenter or watch parts of the video again. The main task of all studies 

included finding all the solutions for a set of given CSP problems. The difficulty of the problems 

increased from the first to the last problem (as measured by the number of variables and 

constraints and the number and type of steps necessary to find the solutions, ranked by the 

author). A sheet containing all the necessary information about the task was given to the 

participants prior to the start of the task. Students were asked to work with the applet for a 

minimum of 10 minutes however there was no maximum time limit for this part of the study. As 

mentioned before, after finishing the main task participants were asked to write a post-test that 

had a similar structure to the pre-test. This process is shown in Figure  4-1. 

4.2 First user study 

The goal of the first user study was to collect user interaction data so that we could investigate 

whether students interact differently with the CSP applet in terms of how they use the interface 

actions. We also wanted to find out if there were meaningful differences in learning performance 

of the students that could be associated to the differences in their interaction behaviours. 

This user study followed the experimental protocol for the CSP applet described in the 

previous section. All participants were university students who had taken a set of courses 

ensuring that they were familiar with basic graph theory, thus having the prerequisites to study 
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4.3 Second user study 

During 2011, we ran a second user study to collect user interaction patterns from two sources: 

(i) interface action logs similar to the first study, and (ii) eye-gaze patterns which were collected 

using an eye-tracker. The purpose of the study described in this section was to collect data in 

order to investigate whether a user’s attention patterns can be indicators of effective vs. non-

effective learning with the CSP applet. 

Fifty computer science students participated in this user study. The data for 5 students was not 

usable due to technical issues, reducing the dataset to 45 users. The general structure of the study 

is similar to the study design described in Section 4.1, except for changes necessary to use the 

eye-tracker. Participants were run one at a time, and each experimental session was structured as 

follows. Similar to the previous study, participants were asked to study the same textbook 

chapter on Constraint Satisfaction Problems and the AC-3 algorithm and write a pre-test for 

evaluating their understanding of the material they had studied. Next, participants were shown a 

video that explained the functionalities of the CSP applet. 

The main part of the experiment was run on a Pentium 4, 3.2GHz, with 2GB of RAM with a 

Tobii T120 eye-tracker as the main display. Tobii T120 is a remote eye-tracker embedded in a 

17” display (Figure  4-1), providing unobtrusive eye-tracking (as opposed to what head-mounted 

devices do). In addition to the user’s eye-gaze data, Tobii also records video data of the user’s 

face. After undergoing a calibration phase for the eye-tracker, the participants started working 

with the applet to solve two CSP problems: first an easier problem involving 3 variables, 3 

constraints and at most 2 domain splitting actions to find its unique answer; next, a more difficult 

problem involving 5 variables, 7 constraints and a minimum of 5 domain splitting actions to find 

its two solutions. Participants were instructed to find both of these solutions. All relevant 
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instructions for this phase were provided on a written instruction sheet. No time limit was given 

for this phase, which lasted on average 16.7 (SD = 9.0) minutes. The study ended with a post-test 

analogous to the pre-test.  

 

Figure  4-2 A participant working with the CSP applet on a display with integrated eye-tracker 

4.4 Measure of learning performance 

To quantify students’ learning performance as a result of working with the CSP applet we 

need to define a measure based on their pre-test and post-test scores. Learning level was 

measured using a standard measure of learning performance (Proportional Learning Gain, or PLG), 

calculated as follows: 

��� = �
����������

��������
×���                                 �� ����� − ���� > 0

�                                                             ����������           
�   ( 4-1 ) 

where PreT and PostT are the student’s test scores and Max is the maximum possible score.  

The advantage of PLG compared to measuring the absolute difference between pre-test and 

post-test scores, is that it assigns more value to each point improvement of post-test score 
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compared to pre-test score when users start from a higher pre-test score. This is important because 

the level of understanding needed to improve user’s score raises as the basis of user’s knowledge 

(pre-test score) increases. 

4.5 Datasets 

Given the duration of data collection, we used different sub-sets of the overall data for our 

analyses depending on availability of data at the time. In the rest of this thesis we use three 

versions of the data collected during the above user studies: 

1) CSP-Action-65: This dataset contains the interface-action data of 65 users collected 

during the first study. This was the basis for our initial analysis and evaluation of the user 

model performance. 

2) Eye-and-Action-45: This dataset contains interface-action data and eye-tracking 

information for 45 users, who participated in the second study. This dataset was used in 

our eye-gaze and eye-movement analyses reported in Chapter 8. 

3) CSP-Action-110: This is the final dataset of interface-action data for all 110 users that 

worked with the original version of the applet (i.e., non-adaptive). This dataset is the 

result of combining the interface action data from the above two datasets and is the most 

comprehensive one on interface-action data. The behaviour patterns found in this dataset 

are used for building the adaptive version of the applet. 

The descriptive statistics for the three mentioned datasets are presented in Table  4-1. We 

compared the average learning performance of users in CSP-Action-65 and Eye-and-Action-45 

datasets and found no significant difference, t(108) = 0.47, p = 0.64. This suggests that the 

additional information provided by the eye-tracker did not affect learning performance of 
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students, as we expected. Thus, given that every other aspect of the protocols and material of the 

2 studies are similar, we can safely combine the two to create the CSP-Action-110 dataset. 

 

Table  4-1 Descriptive Statistics for the 3 Datasets 

 CSP-Action-65 Eye-and-Action-45 CSP-Action-110 

Number of users 65 45 110 

Total number of actions 13,078 12,308 25,386 

Average length of the interaction with 
the applet (minute) 

16.1 16.7 16.35 

Average Pre-test score (out of 22) 13.39 (SD = 5.08) 11.36 (SD = 5.36) 12.56 (SD = 5.24) 

Average Percentage Learning Gain (%) 52.75 (SD = 32.25) 44.46 (SD = 28.06) 49.36 (SD = 30.74) 

 

In the next chapter, we report the results of the behaviour discovery and user classification 

phases on CSP-Action-65 and CSP-Action-110 datasets.  
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Chapter 5: Behaviour Discovery and User Classification on Interface Action 

Data 

This chapter covers the results of the Behaviour Discovery phase of the User Modeling and 

Adaptation (UMA) framework (described in Chapter 3) on collected interface action data 

obtained by the user studies (described in Chapter 4). In this chapter we provide answers to the 

following research questions posed in the introduction: 

Q1: How can data mining techniques be used to identify from the ELE interaction data, 

groups of users with different performance levels and their distinguishing interaction patterns? 

Q2: Is it possible to use the patterns detected in [Q1] to build a classifier user model that 

effectively classifies new users based on their behaviours during the interaction? 

5.1 Data extraction 

For each user, we calculate one feature vector that summarizes his/her interaction behaviour 

during the session. To calculate this feature vector from the collected action logs, we calculated: 

(i) usage frequency of each interface action, and (ii) mean and standard deviation of latency 

between actions. Average latency is an indicator of the time spent reflecting after an action and 

planning for the next one, while the standard deviation of latency tells if the user was consistent 

or selective in the amount of pausing after each action. As described in Chapter 2, we have 7 

interface actions (i.e., Fine Step, Direct Arc Click, Auto Arc Consistency, Stop, Domain 

Splitting, Backtrack, and Reset) thus the calculated feature vectors are 21-dimensional. Table  5-1 

shows the feature names for the three features generated for action “Fine Step”. 
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Table  5-1 Feature names for the “Fine Step” action 

Action Frequency Average latency Standard deviation of latency 

Fine Step Fine Step frequency Fine Step pause average Fine Step pause standard deviation 

 

5.2 Outcomes of behaviour discovery 

In this section, the outcomes of behaviour discovery phase are presented. All results are for 

the CSP-Action-110 dataset. 

5.2.1 Outcomes of user clustering 

First, we determined the optimal number of clusters for the data (k = 2) following the method 

described in Section  3.2.2. Then, we checked if/how the discovered clusters relate to learning 

performance of students. From the calculated test scores, we computed the proportional learning 

gains for each student (in percentage) and then analyzed the clusters detected for K=2, to see if 

there is any significant difference with regard to learning gains. An independent samples t-test 

revealed a significant difference in the learning gain between the two clusters (p = .03 < .05) 

with a medium effect size (Cohen d = .47). We refer to these clusters as High (n = 18, M = 

61.32, SD = 27.38) and Low (n = 47, M = 39.28, SD = 62.06) Learning Gains (HLG and LLG 

respectively). There is no significant difference between the average pre-test scores of LLG and 

HLG (p = .19), indicating that behaviour patterns of the HLG group have an impact on their 

learning. This information is summarized in Table  5-2. 
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Table  5-2 Learning difference between the two clusters 

 ALL HLG LLG 
t-value p-value Cohen’s d 

 Mean SD Mean SD Mean SD 

PLG 49.36 30.60 53.20 30.33 41.13 29.54 1.96 0.0273 0.40 

Pre-test 12.56 5.24 12.20 5.30 13.33 5.03 -1.07 0.1438 -0.22 

 

5.2.2 Outcomes of association rules mining 

As explained in Section  3.2.3, there are 3 parameters for the association rules mining 

algorithm (i.e., minimum support, branching factor, and minimum improvement of confidence) 

and an additional parameter for the discretization algorithm (i.e., the optimal number of bins). 

Using nested cross-validation we found 50%, 3, and 5% to be the optimal values for minimum 

support, branching factor, and minimum improvement of confidence accordingly. We also found 

7 to be the optimal upper-bound for the number of bins for the discretization algorithm.  

Table  5-3 shows the representative rules (i.e., rules with a confidence value above 50%) for 

the HLG and LLG clusters in the CSP-Action-110 dataset, where we report the preconditions for 

each rule but leave out the consequence23. The table also shows, for each rule, its level of 

confidence (conf), and support within its cluster (class cov). In the rest of this section, we discuss 

a few examples of the rules generated by the framework and how they can be used to define 

adaptive interventions. The complete list of adaptive interventions is presented in Section  6.1. 

Auto Arc Consistency frequency appears in Rule 1 for the HLG cluster, with its value in the 

lowest bin, while it appears in Rule 5 for LLG with its value falling in the highest bin, indicating 

that LLG members use Auto Arc Consistency much more than HLG members. These 2 rules 

                                                 

23 The consequence is always the class label 



66 

 

reinforce the idea that students are prone to abusing this action without learning the details of the 

algorithm24. Thus it would be beneficial to trigger an intervention to advise them against this 

behaviour (i.e., high frequency of Auto Arc Consistency) for students who engage in it.  

 

Table  5-3 Representative rules for HLG and LLG clusters 

Rules for HLG cluster* (75/110): 

 Rule 1: Auto AC frequency = Lowest (Conf = 92.31%, Class Cov = 48/75) 

└ Rule 2: Auto AC frequency = Lowest and Fine Step frequency = lowest (Conf = 100% , 
Class Cov = 33/75) 

 

 Rule 3: Direct Arc Click Pause STD = Highest (Conf = 92.11%, Class Cov = 35/75) 

 

 Rule 4: Direct Arc Click Pause Avg = Highest (Conf = 91.43%, Class Cov = 32/75) 

Rules for LLG cluster* (35/110): 

 Rule 1:  Backtrack frequency = Highest (Conf = 85.19%, Class Cov = 23/27) 

└ Rule 2:    Backtrack frequency = Highest and Auto AC frequency = Highest (Conf = 
100%, Class Cov = 20/20) 

└ Rule 3:   Backtrack frequency = Highest and Direct Arc Click Pause STD = Lowest (Conf 
= 100%, Class Cov = 19/19) 

└ Rule 4:   Backtrack frequency = Highest and Direct Arc Click Pause Avg = Lowest (Conf 
= 100%, Class Cov = 16/16) 

   

Rule 5:  Auto AC frequency = Highest (Conf = 82.35%, Class Cov = 28/34) 

└ Rule 6:     Auto AC frequency = Highest and Reset frequency = Highest (Conf = 100%, 
Class Cov = 15/15) 

                                                 

24 Recall that Auto Arc Consistency quickly runs AC-3 to completion making the whole graph arc-consistent 
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└ Rule 7:     Auto AC frequency = Highest and Auto AC Pause STD = High (Conf = 
93.33%, Class Cov = 14/15) 

└ Rule 8:     Auto AC frequency = Highest and Auto AC Pause STD = High and Direct 
Arc Click frequency = Lowest (Conf = 100%, Class Cov = 14/14) 

└ Rule 9:     Auto AC frequency = Highest and Reset Pause Avg = Low (Conf = 93.33%, 
Class Cov = 14/15) 

 

  Rule 10:  Reset frequency = Highest (Conf = 78.26%, Class Cov = 18/23) 

└ Rule 11:     Reset frequency = Highest and Fine Step Pause Avg = Lowest (Conf = 87.5%, 
Class Cov = 14/16) 

└ Rule 12:    Reset frequency = Highest and Domain Split frequency = Highest (Conf = 
85%, Class Cov = 17/20) 

└ Rule 13:     Reset frequency = Highest and Domain Split frequency = Highest and 
Auto AC frequency = Highest (Conf = 100%, Class Cov = 15/15) 

└ Rule 14:     Reset frequency = Highest and Domain Split frequency = Highest and 
Domain Split Pause STD = Lowest (Conf = 93.75%, Class Cov = 15/16) 

└ Rule 15:     Reset frequency = Highest and Domain Split Pause STD = Lowest (Conf = 
84.21%, Class Cov = 16/19) 

* Conf= Confidence; Avg= Average; Class Cov= Class Coverage, STD = Standard Deviation 

 

Rule 8 for LLG indicates that low learners show very high frequency of Auto AC actions, while 

rarely using the Direct Arc Click (DAC) action. A possible explanation of why both of these 

behaviours are associated with limited learning is that they identify users who are not very engaged 

in the exploration process because they prefer to (i) run the algorithm to completion instead of 

stepping through it; (ii) leave to the applet the selection of the next arc to work on, rather than 

being proactive in choosing it. 



68 

 

Thus, this rule identifies two possible interventions (intervention items from now on) that 

address these suboptimal behaviours exhibited by low learners: (i) discourage excessive use of the 

Auto AC; (ii) encourage higher usage of DAC. 

As our last example, we discuss an intervention regarding the time spent after an action 

(pause). Rule 4 for HLG indicates that high learners tend to spend more time after performing 

the DAC action (Direct Arc Click Pause Avg = Highest) which could indicate reflecting on the 

outcomes of the action. Conversely, Rule 4 for LLG indicates that low learners use the Backtrack 

action frequently and tend to spend less time after performing DAC. Again there are two possible 

intervention items for these rules: (i) encourage reflection after DAC actions; (ii) discourage 

excessive use of Backtrack action. 

5.2.3 Summary 

In summary, this section illustrates that the proposed behaviour discovery process can 

effectively identify groups of students who interacted similarly with the CSP applet as applied to 

the CPS-Action-110 dataset. Also, rules generated by our framework are informative and can be 

used for generating real-time adaptive interventions. These interventions, however, are 

appropriate only if the classifier user model can recognize which users need them. In the next 

section, we present the evaluation results for the classifier user model generated from these 

association rules. 

5.3 Resulting rule-based classifier  

One of the first evaluations of this work was finding out if the user model created from the 

association rules can achieve an acceptable accuracy in classifying new users while they are 

interacting with the system (Kardan & Conati, 2011). This section presents the performance of 
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the user model classifier built in the user classification phase for the CSP-Action-110 dataset. 

We present the over-time accuracy (described later in this section) of the classifier user model. 

As mentioned in Section 5.2, behaviour discovery on the CSP-Action-110 dataset generated 

two clusters of users, namely High Learning Gain (HLG) and Low Learning Gain (LLG) groups, 

therefore creating a binary classification problem. We evaluated the average over-time accuracy 

(described later in this section) of the rule-based classifier using 10-fold cross-validation. In all 

of our evaluations of the classifier user model, the reference labels (i.e., ground truth) are the 

cluster labels assigned to each user, based on the user’s complete interaction data at the end of 

the session. This makes the classification task especially challenging at the early stages of the 

interaction since less data is available to the classifier. 

The over-time accuracy is calculated as users progressed through the session at different 

percentage points (e.g., first 10% of the session, first 25% of the session, etc.). Average over-

time accuracy is calculated by averaging the 100 points derived from calculating the over-time 

accuracy at each percentage of the session. Our goal is to provide adaptive support during the 

session, not at the end of it, thus average over-time accuracy was selected over final accuracy 

(i.e., using 100% of session data) to favor classifiers that achieve better performance earlier in 

the session. 

The over-time accuracy of the classifier is shown in Figure  5-1. We presented the overall 

accuracy as well as class accuracy for HLG and LLG classes. For comparison, we also included 

the overall accuracy of the most likely class (HLG in this case) classifier as the baseline. The 

rule-based classifier reaches a relatively high accuracy in early stages of the interaction which is 

essential when the goal is to provide adaptive interventions to improve the user experience with 

an ELE. The average over-time accuracy is 77.58% (SD = 5.3).  More importantly, the classifier 
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achieved an overall accuracy of 78.2% after observing only the first 25 percent of the 

interactions, indicating that this user model can be reliably used to trigger adaptive interventions 

from the early stages of the interaction (Figure  5-1). 

 

Figure  5-1 Performance of the rule-based classifier on CSP-Action-110 dataset 

5.4 Discussion 

It is essential to ensure that the results obtained for the accuracy of a user model can be 

repeated for new students (i.e., generalizability across the population). In addition to using 

proper accuracy evaluation schemes (such as nested cross-validation used here), one should also 

look into the size and diversity of the dataset used for the training and testing of the model. We 

used a relatively large dataset with 110 students, compared to 24 students used in the previous 

similar studies on the CSP applet (Amershi & Conati, 2009; Bernardini & Conati, 2010), and the 

data was collected over 2 years from 4 different cohorts of students. This made us confident in 

the generalizability of the user model across the population and repeatability of the results for 

new students. If fact, in Section 7.5, we provide the accuracy results for the user model on 
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another group of 38 students that participated in our final evaluation study (i.e., a new test-set). 

As expected, the accuracy of the model (78.95%) remained consistent with the results obtained 

here (77.58%).  

One feature of our datasets which made the classification challenging was the fact that we 

used summary features for describing the user interactions, and these features by nature have a 

high variance at the early stages of the interaction. This characteristic of the features meant that 

in order to achieve high accuracy in the early stages of the interaction, we needed a model that is 

not highly sensitive to small variations in the feature values. We think the discretization of 

feature values into bins before training the model helped in this regard by reducing the 

fluctuations in the data over the interaction (i.e., the bin assigned to a “discretized feature” is 

much less likely to change over the interaction compared to the value of the underlying feature). 

As mentioned earlier, in our case, discretization was done in association rules mining process 

prior to building the rule-based classifier user model. In Chapter 8, we provide a comparison in 

terms of over-time accuracy between the rule-based classifier used in UMA framework and other 

common classifiers available in the Weka data mining toolkit. 

5.5 Summary 

In this chapter, we provided an empirical evaluation of the behaviour discovery and user 

classification phases of the UMA framework. The results on CSP-Action-110 dataset provide 

evidence that not only the UMA framework can cluster users into meaningful groups [Q1], but 

also it can classify new users accurately [Q2]. More importantly, the framework generates rules 

that provide a fine-grained description of common behaviours for users in different clusters. 

These rules appear to be suitable to guide adaptive interventions targeted at improving 



72 

 

interaction effectiveness which is relevant to [Q3]. The next chapter discusses the process of 

providing adaptive support based on the discovered association rules. 
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Chapter 6: Providing Adaptive Support based on Interface Action Patterns 

In this chapter, we describe the process of providing adaptive support based on the discovered 

association rules in the behaviour discovery phase (described in Section  5.2). Providing adaptive 

support is the third and final phase of the UMA framework proposed in Chapter 3. First, we 

focus on the intervention controller and the intervention items extracted from the association 

rules presented in Table  5-3, that are the outcome of applying behaviour discovery to the CSP-

Action-110 dataset. Then we describe the iterative design process for the intervention presenter 

component of the CSP applet which resulted in the final design that is presented in Chapter 3. 

6.1 Adaptive interventions for the CSP applet 

Based on the 19 rules extracted in the behaviour discovery phase, we derived 9 intervention 

items summarized in  

Table  6-2. We followed the offline ranking process described in Section  3.4.1.1 and arrived at 

the weights and ranking presented in Table 6-1. 

There were originally 15 patterns (i.e., preconditions) in the discovered rules. However, when 

designing the interventions items, we made two design decisions that reduced this number to 9. 

These two decisions are specific to the CSP applet and the features calculated for the interface 

actions in the CSP-Action-110 dataset. One issue was related to designing interventions for 

features pertaining to the standard deviation of the time spent reflecting after each action. It is 

rather easy to describe the behaviour that results in a low vs. high value for these features, i.e., 

users are consistent vs. selective/irregular in the amount of time they spend after the target 

action. However, it is confusing and impractical to tell users to be more consistent (for low 

standard deviation) or selective (for high standard deviation) in the amount of time they are 

spending after an action. After careful deliberation and multiple discussions, we could not find a 
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way to formulate the hint messages related to the standard deviation of pause-after-action 

features that were detected in the process (namely Direct Arc Click Pause STD25, Auto AC Pause 

STD, and Domain Split Pause STD). Finally, we decided to discard the four patterns related to 

these features from the rest of the process26.  

The second issue was an observation that there were opposing patterns in the rules for 

opposing clusters. For example, the precondition Auto AC frequency = Lowest is present in rules 

1 and 2 for HLG cluster while Auto AC frequency = Highest is present in rules 2, 5, 6, 7, 8, 9, 

and 13 for the LLG cluster. The intervention item for Auto AC frequency = Lowest in HLG 

entails encouraging users to use Auto AC less often (or use alternative actions) and the 

interventions item for Auto AC frequency = Highest in LLG entails discouraging users from 

using Auto AC too often (and use alternative actions). These two items are essentially the same, 

thus it is possible to design one intervention item for both patterns and map the association rules 

for both preconditions to trigger that same item.  

This was also the case for Direct Arc Click Pause Avg = Highest for HLG and Direct Arc 

Click Pause Avg = Highest for LLG patterns. In this case, we are interested in giving a hint if a 

user is not spending enough time after performing Direct Arc Clicks. The condition of not 

spending enough time can be determined by HLG4 (if not satisfied) or LLG4 (if satisfied), both 

triggering “encourage the user to spend more time thinking about the outcomes of the Direct Arc 

Click action”. As a result, the total number of intervention items was reduced to 9 (see Table 

 6-2). 

                                                 

25 This feature appears in one pattern for HLG and one pattern for LLG. 
26 It noteworthy that the standard deviation of pause-after-action features are still useful as they contribute to the user’s 

classification. 
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Table  6-1 Weight and ranking of association rules 

Rule 
Confidence 

(%) 
Class Coverage Weight 

Rank in 
class 

HLG1 92.31 0.64 59.0784 1 

HLG2 100 0.44 22 4 

HLG3 92.11 0.466667 42.98467 2 

HLG4 91.43 0.426667 39.01013 3 

LLG1 85.19 0.657143 55.982 2 

LLG2 100 0.571429 28.57143 4 

LLG3 100 0.542857 27.14286 5 

LLG4 100 0.457143 22.85714 6 

LLG5 82.35 0.8 65.88 1 

LLG6 100 0.428571 21.42857 7 

LLG7 93.33 0.4 18.666 10 

LLG8 100 0.4 13.33333 15 

LLG9 93.33 0.4 18.666 11 

LLG10 78.26 0.514286 40.248 3 

LLG11 87.5 0.4 17.5 12 

LLG12 85 0.485714 20.64286 8 

LLG13 100 0.428571 14.28571 13 

LLG14 93.75 0.428571 13.39286 14 

LLG15 84.21 0.457143 19.248 9 

 

To implement the online ranking process described in Section  3.4.2.2, we saved the pre-

calculated weights for the rules as well as the mapping of the rules to intervention items in a data 

structure as presented in  
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Table  6-2.  

Additionally, we implemented a method that, given the id of the rules that were active 

(provided by the classifier user model), would produce a list of relevant intervention items sorted 

by their score (i.e., sum of the weights of the active rules mapped to that item, as explained in 

Section  3.4.2.2). Thus at every hinting opportunity, if a user is classified as LLG, the 

intervention controller produces the best intervention item to be delivered and triggers the 

intervention presenter to deliver that intervention item. 
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Table  6-2 List of intervention items, their descriptions, and corresponding association rules27 

Intervention 
Code 

Intervention Description Corresponding association rules 

DAC_fr Using Direct Arc Click more often LLG 8 

DAC_PA 
Spending more time for reflection, after performing Direct Arc 

Clicks 
HLG 428, LLG 4 

Reset_fr Using Reset less frequently LLG 6, 10, 11, 12, 13, 14, 15 

AAC_fr Using Auto Arc-Consistency less frequently 
HLG 1, 2 LLG 2, 5, 6, 7, 8, 9, 

13 

DS_fr 
Using Domain Splitting less frequently (only when 

appropriate) 
LLG 12, 13, 14 

FS_PA Spending more time after performing Fine Steps LLG 11 

BT_fr Using Backtrack less frequently (only when appropriate) LLG 1, 2, 3, 4 

FS_fr Using Fine Step less frequently HLG 2 

Reset_PA Spending more time after Resetting the graph, for planning LLG 9 

 

The next section illustrates the iterative design process behind the intervention presenter 

mechanism which is tasked with delivering the interventions while trying to maximize 

effectiveness and minimize the intrusiveness of the process. 

6.2 Delivering the adaptive interventions  

As mentioned in Chapter 3, the goal for the intervention presenter component is to deliver 

hints in the most effective way while avoiding intrusion as much as possible. The final hint 

                                                 

27 The text messages for these hints are provided in Appendix  A.3 
28 As mentioned earlier, in this case we are interested in giving a hint if a user is not spending enough time after performing 

Direct Arc Clicks. The condition of not spending enough time can be determined by HLG4 (if not satisfied) or LLG4 (if 
satisfied). The same applies for other interventions when HLG association rules are listed. 
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delivery mechanism described in Chapter 3 is the result of an iterative design and evaluation 

process based on three different pilot studies which we describe in the rest of this section. All 

these studies had a similar set up: participants first studied a textbook chapter on the AC-3 

algorithm and then wrote a pre-test to establish their initial understanding of the concepts 

covered in the chapter. Next, they used the new CSP applet with interventions to solve two 

CSPs, while their gaze was tracked with a Tobii T120 eye-tracker. Afterward, they wrote a post-

test analogous to the pre-test. At the end, a qualitative evaluation of the relevant aspects of the 

interaction was done using a post-hoc questionnaire and a follow-up interview. 

6.2.1 First pilot study 

The first pilot was a Wizard-of-Oz study during which an experimenter triggered the 

interventions following a set of simplified rules based on the adaptation rules described in 

Section  6.1. The goal of the study was to pilot test the general two-level hints approach in terms 

of visibility, intrusiveness and the follow-rate of the interventions. Six computer science students 

(all second or third-year students) were recruited for this pilot study.  

 

 

Figure  6-1 A hint suggesting the use of Direct Arc Click action with the interface highlights (left); and the 

content of the hint box (right).  

 

The initial version of the two-level hints consisted of: 
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  A stationary message box at the top-right corner of the applet’s window which was used to 

display the text messages, and 

 An interface change for level-2 hints which was bolding the relevant interface element(s) 

(i.e., increasing the thickness of the border) 

A level-2 hint as presented in this initial version of interventions is shown in Figure  6-1. 

The results of the post-hoc questionnaire for textual hints were very encouraging as 

summarized in Figure  6-2. The participants did not find the hint messages intrusive or annoying. 

They found the messages easy to notice and useful in the process of interaction. Moreover, most 

of the participants reported following the instructions provided in the hints. The rest of this 

section will present quantitative results derived from action logs and eye-gaze data collected 

during the interaction. 

Regarding visibility of the hints, out of 27 hints provided in total, 25 of them were attended to 

by the participants. One of two omitted hints was a level-1 hint given to participant 4 (P4), while 

she did not notice this hint, the subsequent level-2 of the same hint (with interface change) 

managed to get her attention. The second case was a level-2 hint given to P6, where he decided 

not to follow a level-1 hint prior to this hint and was given a level-2 hint. In this case, the 

interface change reminded him of the recommended action (Direct Arc Click) from the level-1 

hint, thus he followed the hint without having to look at the hint box. These two cases underscore 

the importance of the two-level hinting strategy reinforced by interface changes.  



 

Figure  6-2 Reception of the text hints by 
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also spent less time reading each hint (on average). This is expected as these users are the ones 

with sub-optimal interaction behaviours and this again shows the importance of the two-level 

progressive hinting strategy which gets more intrusive the second time a hint is provided.  

 

Table  6-3 Hint rate, self-rated following of hints, and average reading time for each participant in the first 

pilot 

 P1 P2 P3 P4 P5 P6 

Followed Hints - Self-rated (1-5) 4 4 4 2 4 3 

Avg. Reading Time (ms) 2814 1642 1547 925 2639.5 9460 

Avg. Reading Time: Followed (ms) 2814 1530.6 1663 937.5 3464 8975 

Avg. Reading Time: Dismissed (ms) - 2199 1199 887.5 1815 9945 

# Hints given 3 6 4 9 2 3 

 

In summary, participants generally did not find the hint messages intrusive, and they rated 

them as useful. The interviews, however, uncovered various issues with visibility: for the textual 

hints, subjects reported that sometimes it was “hard to notice when a new message appeared”. 

For the highlights provided in the level-2 hints, some participants “did not notice them at all”; 

others saw them but failed to “make the connection with the textual hint”. These observations 

were confirmed by the eye-gaze data collected with the eye-tracker.  

6.2.2 Design alternatives 

To address the issues uncovered in the first pilot study related to interface changes, we came 

up with a set of design alternatives for how hints are presented. We added visual effects to the 

hint box in order to make sure students would easily notice when a new hint is presented (goal: 
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notice new hints). We also came up with alternatives for the interface changes (goal: notice 

interface changes) and tried to use visual effects to make it easy for students to create a 

connection between these changes and the text message presented in the hint box (goal: connect 

text and interface changes). We aimed to achieve these mentioned improvements while trying to 

keep the intrusiveness of the hints at an acceptable level. 

To achieve the “notice new hints” goal we tried two alternative visual effects for the hint box 

inspired by (Gluck et al., 2007): 

1- Moving Box (Figure  6-4): the hint box would originate from the center of the relevant 

area on the screen (i.e., center of the graph if the hint was related to the graph elements 

and the toolbar if the hint was related to an action on the toolbar) in minimized mode and 

grow and move to the top right corner of the screen reaching the normal size in its 

permanent location. 

2- Sliding Box (Figure  6-5): When a new text message appears in the hint box, the box 

appears in the top right corner of the screen and slides down from the top incrementally 

displaying the text.  
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(1) 

 

(2) 

 

(3) 

 

(4) 

Figure  6-4 A Moving Box originated from the relevant point on screen 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

Figure  6-5 Sliding hint box 
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To achieve the “connect text and interface changes” goal for level-2 hints, we focused on 

creating a visual link, with these visual effects: 

1- Arrow (Figure  6-6): after a new hint is displayed, an arrow is drawn from the hint box to 

the relevant area of the screen (the area is determined following the same strategy used 

for the moving box effect) and will disappear after a time interval. 

2- Keyword highlights (Figure  6-7): the same highlighting effect used on interface 

element(s) is also used on relevant keywords in the text message.  

We should note that in addition to creating a visual link between the text and the interface 

changes, the arrow effect also serves to draw user’s attention to the hint box thus helping to make 

sure the user realizes that a new hint is available for level-2 hints (“notice new hints” goal), 

however we considered this a secondary function for the arrow effect.  

 

Figure  6-6 An arrow pointing to the relevant point on the screen 

 



85 

 

 

Figure  6-7 Keyword highlighting (with yellow highlight effect) 

To achieve the “notice interface changes” goal for level-2 hints, we aimed to increase the 

attentional draw (Gluck et al., 2007) by using more prominent effects compared to the original 

version used in the first pilot study where we only increased the border size of the relevant items. 

Based on the list of available effects in increasing degree of the attentional draw (and 

intrusiveness) presented in (Gluck et al., 2007), we selected the following: 

1- Yellow highlight (Figure  6-8): the relevant items are highlighted with yellow color. 

2- Blinking (Figure  6-9): The blinking effect is generated by repeatedly increasing the border 

size of the relevant elements and resetting them back to normal. 

In both cases, the effect disappears after the user performs any action in the relevant area of the screen 

(e.g., if the effect is related to any of the elements on the graph, then an action on the graph would make 

the effect disappear). 
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Figure  6-8 Yellow highlight effect for arcs, on a sample problem 

 

  

Figure  6-9 Blinking effect for arcs, on the same sample problem 

Next, we describe the selection process we used for the design alternatives and updates to the 

final design. 
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6.2.3 Informal focus group 

We combined the mentioned visual effects for “notice new hints” and “connect text and 

interface changes” goals to create 3 different alternatives (the keyword highlighting effect was 

combined with both sliding and moving box effects, however, the arrow was only combined with 

sliding box due to the visual noise caused by combined moving box and arrow animations that 

happen in opposite directions). Combining highlighting and blinking options for interface 

changes with these 3 alternatives on visual effects for hint box and the visual link would have 

resulted in 6 different conditions. Given the limited pool of participants for our studies (due to 

requirements for the participants described in Section 4.1), we decided to use an informal focus 

group setting to reduce the number of conditions by removing the alternatives where a consensus 

was reached by all participants. 

The informal focus group consisted of 5 Computer Science graduate students who were all 

involved in HCI-related research. At the beginning of the 90-minute session, the goal of the 

hinting process was explained briefly and all 6 alternatives were shown to the participants. Then, 

each alternative was shown again and they were given a chance to experience it while working 

with the app in a typical use setting. Then the design alternatives were discussed in terms of pros 

and cons. Finally, participants were asked to pick one alternative for each aspect of the design 

(namely, visual effect for hint box, the blinking vs. highlighting effect for interface changes, and 

visual link for the hint message and interface changes). All participants preferred the moving hint 

box compared to sliding effect. They were mostly concerned that the sliding effect was too 

subtle, especially on larger display screens. There was no consensus regarding the blinking vs. 

highlighting effects for interface changes and highlighting was favored by 2 as the less intrusive 

alternative, others did not rule out blinking as a viable option. In terms of the “visual link”, all 
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participants preferred the keyword highlight effect over the arrow as the more visually appealing 

option. Participants especially liked the fact that the text message explicitly mentioned that the 

relevant items were highlighted on the graph or toolbar. 

Based on the findings of the informal focus group we decided to compare the blinking vs. 

highlighting effects in a within-subject design described next. 

6.2.4 Second and third pilot studies 

We ran two pilot studies to compare the blinking vs. highlighting effects for interface changes 

by collecting user preferences in a within-subject design with 2 conditions blinking and 

highlighting. Each user would start with one condition and switch to the other condition. The 

starting condition was balanced between the 2 conditions. We aimed to run these studies in a 

close to the real-world situation while making sure all users received different hints in both 

conditions. Therefore, we developed a version of the applet that used a random user model to 

trigger different hints with a uniform distribution. This study also provided an opportunity to test 

the intervention controller and intervention presenter components that were added to the original 

applet. 

For this pilot study, we relaxed the requirements for participants and included the students 

who had already studied a course that covered the constraint satisfaction problems because we 

were not planning to measure the learning gain. As a result, at the beginning of the study, 

participants were given the option of studying the reading material on solving CSPs if they were 

not familiar with the concept or wanted to refresh their memory. Then, they watched an 

introductory video on the CSP applet. Afterward, the main task of solving two CSP problems 

using the CSP applet was explained to the participants (similar to the task described in Section 

4.1). During the task, the participant would receive different hints selected randomly by the 
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random model. For the first problem, the interface changes were presented according to the 

starting condition, and the alternative condition was used for the second problem. Finally, a post-

hoc questionnaire was given to the participant and an interview was conducted to collect user 

preferences between the 2 alternatives, comparing them from different aspects. The 

questionnaire asked participants to rate statements about each condition on a scale of 1-5 

(“strongly disagree” to “strongly agree”). 

For pilot #2, we recruited a total of 5 participants after which we decided to conclude this 

pilot and make modifications to the software based on the feedback from participants to make 

the settings more realistic and improve the blinking effect. For pilot #2, the random model would 

trigger a hint at every hinting opportunity (every 10 actions by the user) which could be too high 

in a realistic scenario. Therefore we changed the model to trigger the hints based on the outcome 

of a binary event with equal chances, which reduced the average hinting frequency by 50%. One 

complaint about the blinking condition was that the blinking effect was too slow in such a way 

that it could be confused with other animations in the applet (e.g., when the user clicked on the 

arc to make it consistent). To rectify this issue, we decreased the blinking interval to half a 

second. We also added a button (the “hide/show highlights” button) to the hint box, to give users 

the ability to hide or display the interface changes manually in addition to automatic hiding 

mechanism originally implemented (Figure  6-10). After these changes, we conducted another 

pilot study (pilot #3) with 6 participants. Pilot #3 helped to test the modifications and confirm the 

findings of pilot #2. 
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Figure  6-10 Multi-function button for showing/hiding the interface changes 

 

6.2.5 Findings and Summary 

In both pilots, highlighting the relevant items and the text keywords with yellow color was 

preferred overall (Figure  6-11). Participants found the blinking effect easier to notice and useful 

for detecting when a new hint was available, however, preferred the highlighting effect overall as 

they found blinking too intrusive and annoying. The highlighting with yellow color was also 

voted as the more effective way to create the visual link between text messages and the interface 

changes. The summary of user ratings aggregated across the two pilot studies is presented in 

Figure  6-11. Participants also rated the “hide/show highlights” button very positively.  

To summarize, the final design of the intervention presenter component is the result of an 

iterative design process. After testing our original two-level hint design with a Wizard-of-Oz 

pilot study we modified the design to address 3 main issues raised by participants and confirmed 

by eye-tracking. More specifically:  

 Visibility of new textual hints was increased by adding the motion and change in initial 

positioning of the hint box as described earlier.  
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 Visibility of the highlights for level-2 hints was increased by testing two alternative ways to 

emphasize the target elements, namely yellow highlighting vs. blinking. Yellow highlighting 

proved to be the preferred and more effective method based both on user’s feedback as well as 

eye-gaze data.  

 The connection between the level-2 hint messages and the related interface changes was 

emphasized by both mentioning in the hint text that the relevant elements are highlighted, and 

by using the same highlight effect on keywords in the text. 

6.3 Summary 

In this chapter, we presented the process of building the two main components for providing 

adaptive support in the CSP applet, namely the intervention controller and intervention presenter, 

based on the discovered association rules in the behaviour discovery phase. For the intervention 

controller component, we described how a rule triggers an intervention item and listed the 

intervention items extracted from the association rules. For the intervention presenter 

component, we described the iterative design process and pilot studies used to arrive at the final 

hint delivery process for the CSP applet. 

Next chapter presents the results of the experimental evaluation of the new CSP applet which 

comes with adaptive support. 



 

Figure  6-11 Summary of user preferences for pilot #2 and pilot #3
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Chapter 7: Comprehensive Summative Evaluation 

In this chapter, we describe the final evaluation of the UMA framework on the CSP applet. 

We evaluated the effect of the adaptive support provided by the intervention mechanism 

(described in Chapter 6) added to the CSP applet on the learning performance of users. In the rest 

of this chapter, we first provide details of the user study conducted to evaluate the new version of 

the CSP applet and then provide the results of the study in terms of both quantitative and 

qualitative measures. In this chapter we provide answers to the following questions posed in the 

Introduction chapter: 

Q3: Can the discovered behaviour patterns in [Q1] be used to derive adaptive interventions 

that are effective in improving user’s learning performance? 

Q4: Is the resulting adaptive version of the exploratory environment more effective than the 

non-adaptive version? 

7.1 User study 

To investigate the effectiveness of the intervention mechanism, we conducted a user study 

that tested the following hypothesis: 

H1: Under similar conditions, participants who work with the adaptive-CSP applet (i.e., 

receiving adaptive support, a.k.a. Adaptive condition) will have a higher learning performance 

compared to ones that work with the original CSP applet (Control condition). 

7.1.1 Procedure 

The experiment was a between-subjects design, fitting in a single session lasting at most 2 

hours. There were two randomized experimental conditions: in the Control condition participants 
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worked with the original CSP applet; in the Adaptive condition participants used the adaptive-

CSP applet29.  

During the study each participant: (1) studied a textbook chapter on the AC-3 algorithm; (2) 

wrote a pre-test30 on the concepts covered in the chapter; (3) filled out a questionnaire about 

different aspects of attitude towards help seeking and completed an online test for reading 

comprehension speed; (4) watched an introductory video on how to use the main functionalities 

of the CSP applet; (5) used the CSP applet to solve three CSPs; (6) took a post-test31 analogous 

to the pre-test; and (7) took a questionnaire on aspects relevant to both groups (described below). 

Participants in the Adaptive condition took an additional questionnaire on aspects specific to the 

adaptive-CSP applet. The study ended with a follow-up interview that solicited explanations for 

user ratings. 

7.1.2 Study material 

The study tests involved items selected from a standard bank of homework questions used in 

an introductory AI course at UBC. They required students to apply knowledge of different 

aspects of the AC-3 algorithm on selected CSP networks. The maximum possible score for both 

tests was 25 based on existing marking schemes. 

                                                 

29 It should be noted that this design does not fully isolate the contribution of the hints from the adaptive delivery component. We 
did plan to have a third condition with hints triggered randomly, but we could not get enough users with the right background 
for a 3-way study. We chose not to use this random condition as control because we used it in our pilots and user feedback 
indicated irritation with it. Thus we felt that it would not be a good control due to its intrusiveness. This was later verified by a 
pilot study using the random user model (Section 7.4) 

30 Available in Appendix  A.2 
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All study participants took a post-questionnaire31 (general questionnaire from now on) in 

which they rated the following three statements (using a Likert scale from 1: strongly disagree to 

5: strongly agree):  

 I felt more confident answering the post-test questions compared to the pre-test questions 

(improved confidence) 

 I think I did better in the post-test compared to the pre-test (perceived learning) 

 I found the applet helpful in understanding the AC-3 algorithm (helpfulness of the applet) 

The additional questionnaire administered to participants in the Adaptive condition (referred 

to as intervention questionnaire) included 18 items on different elements of the intervention 

mechanism, also ranked on a 5-point Likert scale. Pairs of similar statements were provided to 

evaluate hint messages and highlights in terms of relevance, usefulness, noticeability, 

intrusiveness, and annoyance:  

 In general, the [hint messages | highlighting of the interface items] were appropriate given my 

behaviour (relevance). 

 The [messages displayed in the hint box| highlighting of the interface items] were useful for me 

(usefulness). 

 I easily noticed the [new messages displayed in the hint box| highlighting of the interface 

items] (noticeability). 

 I found the [hint box| highlighting of the interface items] intrusive (intrusiveness). 

 I found the [hint box| highlighting of the interface items] annoying (annoyance). 

                                                 

31 Available in Appendix  A.1 
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It should be noted that, in our first pilot, we did not have items for annoyance, because we 

thought intrusiveness would capture a user’s negative perception of how the interventions 

interfere with their work. However, some participants who rated the hints as intrusive 

commented in follow-up interviews that they did not perceive these interruptions as negative; 

therefore a new set of items targeting annoyance was added.  

The remaining 8 items focused on specific attributes of each element of the intervention 

mechanism. These items are: 

 The messages displayed in the hint box were easy to understand. 

 I usually followed the advice displayed in the hint box. 

 Highlighting the interface items helped me notice that a new message has appeared in the hint 

box. 

 Highlighting the interface items helped me find the right elements of the applet to work with. 

 I could easily see the connection between the highlighted elements and the text shown in the 

hint box. 

 I found the ‘hide highlights’ button helpful. 

 I found the mechanism that automatically hid the highlights helpful. 

 I found the ‘show highlights’ button helpful. 

Screenshots of all the relevant intervention elements were provided in the questionnaire to 

facilitate recollection (general and intervention questionnaires are available in Appendix A-1). 

7.1.3 Study tasks 

The 3 CSP problems used in the study task were selected to provide incremental coverage of 

all relevant aspects of the AC-3 algorithm, as well as different outcomes. The first CSP had one 
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solution that could be found without domain splitting. The second CSP had no solution and 

required one domain splitting to reach this conclusion. The third problem had 3 solutions, which 

required multiple domain-splitting and backtracking actions to be found.  

Participants were given an instruction sheet indicating that they needed to report the outcome 

of using AC-3 on each of the problems. They were given a minimum of 15 minutes for working 

on this activity but no maximum time limit was imposed. 

7.1.4 Study participants  

Thirty-eight university students ranging in age from 19 to 28 (11 female) participated in the 

experiment. We selected the number of participants by performing a power analysis (Lenth, 

2006) a priori on the parameters of our experimental design, defined to detect a large effect size 

of d = 1.0 in terms of performance with 0.8 power. Considering the phenomenon observed by 

Bloom (Bloom, 1984), that the average student tutored on a one-to-one basis could perform two 

standard deviations better than students who learn in a conventional class setting, we decided to 

set an ambitious goal of improving the average learning performance of students by at least one 

standard deviation.  

Participants were selected such that they did not have any knowledge on solving constraint 

satisfaction problems beforehand (a new concept); however, they had the computer science pre-

requisite knowledge necessary to learn this concept (e.g., basic graph theory and algebra). We 

used flyers, email, and social media to recruit participants with these prerequisites at UBC.  

7.2 Results for performance measures  

We looked at the impact of study condition on three different measures of performance: 

learning performance from pre-test to post-test, as measured by the Percentage Learning Gains 

(PLG) defined in equation 4-1; task performance, which is a score out of 10 given based on the 
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number of correct solutions found for the 3 CSP problems using the applet (including identifying 

the CSP with no solution); task time, i.e., the time in minutes spent working on the 3 CSP 

problems using the applet; Summary statistics for the three performance measures and pre-test 

for each condition are shown in Table  7-1.  

An independent samples t-test on the pre-test scores of the two conditions found no 

significant difference (t(36) = .189, p =.851, η2 = .001), indicating that the random assignment of 

participants to conditions was successful in generating two groups with comparable initial 

knowledge. Also, the correlation between pre-test and PLG is not significant (r = .178, p = .126) 

indicating that other factors are behind the variation in the PLG.  

In addition to studying the impact of experimental conditions on our performance measures, 

we are also interested in verifying whether the impact is moderated by a student’s initial 

knowledge, as measured by pre-test. Thus, we ran a moderated multiple regression analysis 

(Cohen, West, Aiken, & Cohen, 2002) for each of our performance measures, with that measure 

as the dependent variable. Independent variables (IV) are condition (coded as -1 for Control and 

1 for Adaptive), pre-test, and the interaction between condition and pre-test. This interaction is 

calculated by first centering pre-test (by subtracting the sample mean) and then multiplying pre-

test and condition together. Alpha level is set to 0.05, and Pearson r is reported to show the effect 

size (small for .1, medium for .3, and large for .5 (Cohen, 1988)). Models are adjusted for 

family-wise error by applying the Bonferroni correction. Data screening did not suggest 

problems with assumptions of normality and linearity (e.g., excess kurtosis of -0.82 and 

skewness of 0.21 for the Control condition and excess kurtosis of -1.01 and skewness of -0.32 

for the Adaptive condition are all well within the -2 and 2 range). The multicollinearity 

assumption was not violated by any of the models, based on the condition of Variance Inflation 
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Factors being smaller than ten32 (O’Brien, 2007). For each independent variable, we report both 

standardized regression coefficient (β) and squared semi-partial correlation (sr2). 

Table  7-1 Descriptive Statistics for the performance measures 

Measure 
Pre-test 
(of 25) 

Post-test 
(of 25) 

PLG 
Task 

Performance 
Task Time 

Condition Cont. Adapt. Cont. Adapt. Cont. Adapt. Cont. Adapt. Contr. Adapt. 

Mean 9.66 9.37 13.18 17.97 28.59 54.29 8.58 8.42 18.32 18.37 

Std. Dev. 5.553 3.696 5.822 4.264 19.045 24.784 2.434 2.364 3.198 5.756 

 

7.2.1 Results on learning performance 

The overall regression model significantly predicted PLG, F(3, 34) = 7.435, p = .001, R2 = 

.396, adjusted R2 = .343. There was a significant PreTest×Condition interaction, β = −.296, t(34) 

= −2.048, p = .048, sr2 = .075, with a medium effect size (r = .331). The interaction accounts for 

an additional 7.5% of the variance in PLG. There was also a significant main effect for condition 

β = .517, t(34) = 3.878, p < .001, sr2 = .267, with a large effect size (r = .554), however the main 

effect for pre-test was not significant (β = .128, t(34) = .886, p = .382, sr2 = .014).  

The main effect for condition shows that the difference in learning performance of the two 

groups in the study is significant; with the Adaptive condition having greater learning 

performance compared to the Control condition (the average standardized difference is 1.034 

which is slightly more than one standard deviation). This confirms our hypothesis H1. 

The interaction effect indicates the effect of condition on PLG is moderated by pre-test. To 

better qualify this finding, we plotted the effect of condition on PLG at three different levels of 

                                                 

32 VIF(PLG) = 1.66, VIF(Task Performance) = 1.15, and VIF (Task Time) = 1.05  
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standardized pre-test scores labeled (z-scores) as high (z=1), average (z=0), and low (z=−1); 

(Figure  7-1). The line equations are derived from the standardized β values. As shown in Figure 

 7-1 the effect of condition on PLG is highest for the low pre-test group and decreases as pre-test 

performance improves, i.e., the interventions are most effective for the students with lower initial 

knowledge. This is very encouraging for us because these are the students who need the most 

help. 

 

Figure  7-1 Interaction between PreTest and Condition 

 

7.2.2 Results on task performance and completion time 

The regression models with the aforementioned IVs did not significantly predict task 

performance, F(3, 34) = 1.650, p = .196, R2 = .127, adjusted R2 = .050 or task time, F(3, 34) = 

.554, p = .649, R2 = .047, adjusted R2 = .038. These results indicate that condition did not 

significantly explain the variance of task performance or task time, i.e., the two conditions are 
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not significantly different in terms of these two measures. The fact that participants in the 

Adaptive and Control conditions performed equally well in the task with the CSP applet, while 

achieving very different results for learning gain, confirms that unaided interaction with the CSP 

applet can lead students to find solutions without obtaining a clear understanding of the process. 

In other words, students can use or misuse the simulation to find the solution(s) to the provided 

problems, and achieve a high task performance level. As evidenced by the results here, high task 

performance level does not always translate to learning. 

7.3 Results on interventions acceptance 

The success of any adaptive support mechanism highly depends on the users’ perception of its 

quality. To gauge this perception, in this section we will look at both objective and subjective 

indicators: respectively, the actual follow-rate for the hints and post-questionnaires ratings. 

7.3.1 Hint follow-rate 

For every hint received by a user in the Adaptive condition, we check the user model after the 

reaction window to see if the user is still showing the behaviour that triggered the hint. If the user 

was not showing that behaviour, the hint is marked as followed and vice versa. Figure  7-2 shows 

the descriptive statistics for the number of hints given in total, at level-1 and level-2, along with 

the follow-rate for each. One participant did not receive any hints, and thus it is not included in 

this analysis as well as in the analysis of subjective measures in the next section. 
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Table  7-2 Descriptive Statistics for Hints 

 N Min Max Mean Std. Dev. 

Number of Hints (Level-1 and Level-2) 18 1 15 7.06 4.65 

Level-2 Hints 18 0 8 1.56 2.09 

Follow-rate Level-1 (%) 18 16.67 100 62.96 32.95 

Follow-rate Level-2 (%) 10 0.0 100 73.33 37.84 

Follow-rate overall (%) 18 16.67 100 64.44 31.65 

 

As shown in Table  7-2, the overall follow-rate is 64.4 percent, indicating a relatively good 

acceptance of the adaptive suggestions. Notably, the average follow-rate for hints increases from 

63 percent for level-1 hints to 73.3 percent for level-2 hints. This validates the two-level design 

of our interventions.  

To ascertain whether the number of hints received affects follow-rate, we ran a correlation 

analysis between these two measures. We found a very strong negative relationship (r = −0.754, 

p <0.001) between follow-rate and number of hints given. 

7.3.2 Qualitative evaluation 

We first compare the user ratings on the general post questionnaire items, which were 

completed by both the Control and Adaptive conditions. Then, we discuss the ratings provided 

by participants in the Adaptive condition for a selected set of items from the interventions 

questionnaire. 

7.3.2.1 User ratings for the general questionnaire 

We used Mann-Whitney U tests to compare the ratings of the three items in the general post 

questionnaire. The distributions in the two groups did not differ significantly for Improved 
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Confidence (Mann–Whitney U = 150.50, n1 = n2 = 19, P = .322 two-tailed), Perceived Learning 

(Mann–Whitney U = 142.50, n1 = n2 = 19, P = .223 two-tailed), and Helpfulness of the applet 

(Mann–Whitney U = 171.50, n1 = n2 = 19, P = .766 two-tailed). The ratings were generally 

positive for all three items across conditions (see Figure  7-2). The positive ratings reflect the 

value of the CSP applet for visualizing the steps of the AC-3 algorithm compared to studying 

examples in the textbook as revealed by the follow-up interviews (e.g., It is “much easier to 

learn” from the applet; I could “see the outcomes in real-time” and "step-by-step"; I easily 

“learned from my mistakes").  

Notably, however, there is a mismatch between the relatively high perceived learning for the 

Control condition and the actual learning performance of the participants in this condition. 

Possibly, perceived learning is positively influenced by their task performance, which as 

illustrated in the previous section was as good as that of the students in the Adaptive condition. 

The mismatch between perceived and actual learning is concerning because these students will 

not feel the need to explore more problems to improve their learning if left to their own devices. 

Improved Confidence Perceived Learning Helpfulness of the applet 

   

Figure  7-2 User ratings of the general items (5: most positive) 

7.3.2.2 User ratings for the interventions questionnaire 

In this section, we report user ratings for items on the intervention questionnaire that evaluated 

hint messages and highlights in terms of relevance, usefulness, noticeability, intrusiveness, and 
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annoyance (as described in Section  7.1.2). One participant in the Adaptive condition did not 

receive any hints; therefore, we only have 18 ratings for the hint messages. Also, due to the fact 

that highlights were only present for the level-2 hints, and only 8 of the 18 participants received a 

level-2 hint with highlights, we report ratings for hint messages and highlights separately.  

The rating distributions for the items relating to hint messages are shown in Figure  7-3. To 

simplify the analysis in the following discussion we combined the “agree” and “strongly agree” 

ratings as agree-all and “disagree” and “strongly disagree” ratings as disagree-all. The majority 

of the users (over 67%) found the hints relevant to their behaviour, whereas 28% found them 

irrelevant. Usefulness received fewer negative ratings, with only 22% reporting that they did not 

find the hint useful, however, there were more neutral ratings, resulting in fewer users agreeing 

over usefulness (45%). Based on post interviews, one prominent reason given for negative rating 

of usefulness and relevance was the nature of the textual hints. Some users reported expecting 

the hints to give more explicit help on how to solve the problem at hand, rather than telling them 

how to use the applet, possibly because they focused on getting the job done (e.g., “I wanted to 

find the solution and the hints kept telling me to slow down”) as opposed to trying to improve 

their understanding of the AC-3 algorithm, which is the task that is supported by the intervention 

mechanism. 

Our design decision to increase the prominence of the appearance of the hint box (to ensure 

new hint messages are not missed) succeeded in improving noticeability of these hints, reaching 

100% of agree-all rating, at the expense of only a small increase in ratings for intrusiveness (28% 

agree-all, which is 6% higher than the analogous ratings from the first pilot). Compared to results 

from our pilot studies, a higher number of users rated the hint box as annoying. In the follow-up 

interviews, the majority of those who reported annoyance indicated that their reason for such 
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rating was repeatedly receiving hints that they did not agree with (i.e., the alternating level-1 and 

level-2 hints given for a behaviour after the first level-2 hint was given for that behaviour). This 

happens when a user insists on not following a hint, and this hint stays ranked high in the list of 

active intervention items, indicating high relevance to learning performance. In addition to the 

negative ratings, we observe a trend in actual follow-rate where it declines for the repeated hints 

compared to the first two times a hint is delivered (i.e., first delivery of level-1 and level-2 hints). 

We cannot judge from the available data to what extent hints given repeatedly were actually 

justified (recall that the user model is not 100% accurate), but regardless, our results indicate that 

we should consider reducing the number of repeated hints in future versions of the applet33. In 

the post interview, none of the users attributed their annoyance to the animation used for the 

appearance of the hint box, which provides further positive feedback on the current design of the 

hint box. 

Ratings for the corresponding questionnaire items for highlights were generally more positive 

than for hint boxes, with the exception of noticeability: relevance (88% agree-all, median = 

“agree”), usefulness (75% agree-all, median = “agree”), noticeability (88% agree-all, median = 

“agree”), intrusiveness and annoyance (0% agree-all, median = “disagree” for both items). 

Positive ratings for highlights show an effective balance between noticeability and 

intrusiveness/annoyance. 

                                                 

33 Some ideas for this are presented in Section  9.2.1 
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Figure  7-3 Ratings of selected items for the hint messages 

 

The distribution of user ratings for the other 8 items in the intervention questionnaire is 

presented in Table  7-3. Other than self-reported hint follow-rate, none of the other items are 

rated negatively. The positive ratings presented in Table  7-3 show that the modifications for 

creating a visual link between hint messages and interface changes have been successful.  Also, 

both the automatic and manual methods for hiding highlights are rated positively (last 3 items) 

although the lower number of ratings may imply that some users may not have noticed and used 

them. Considering the actual follow-rate of 64.4%, it is interesting that only 16.7% of users rated 

the item related to following the hints negatively. 
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Table  7-3 Distribution of ratings for specific items in the intervention questionnaire 

 Strongly 
Disagree 

Disagree Neutral Agree 
Strongly 
Agree 

The messages displayed in the hint box were easy 
to understand. 

0 0 0 13 5 

I usually followed the advice displayed in the 
hint box. 

1 2 6 8 1 

Highlighting the interface items helped me notice 
that a new message has appeared in the hint box. 

0 0 3 2 3 

Highlighting the interface items helped me find 
the right elements of the applet to work with. 

0 0 1 4 3 

I could easily see the connection between the  
highlighted elements and the text shown in the 
hint box 

0 0 0 5 3 

I found the ‘hide highlights’ button helpful 0 0 0 3 1 

I found the mechanism that automatically hid the 
highlights helpful 

0 0 3 1 4 

I found the ‘show highlights’ button helpful 0 0 1 2 0 

 

7.4 Pilot study with random user model 

The initial design of the study included a third condition with hints triggered by the random 

user model that was used in pilot #3. However, we could not get enough users with the right 

background for a 3-way study and decided to run a 2-way study instead. We also decided not to 

use the Random condition as the control because user feedback in pilot studies indicated 

irritation with it. Thus we felt that it would not be a good control due to its intrusiveness.  

We chose instead to conduct, at a later time, a further pilot study of the random user model 

with the goal to provide further insights on its acceptance.  The study was structured similarly to 

the main study, with the only difference that instead of the classifier user model, a random user 



 

model was employed. At each hinting

hint with 50% probability. If a hint 

of available hints.  For this pilot study, we managed to recruit 8 participants. As expected, the 

reaction to random hints was not positive. None of the participants agreed with the statement “I 

usually followed the advice displaye

the other 3 (37.5%), rating this statement as neutral. Compare this to 3 out of 18 disagreeing 

(16.7%) and 9 agreeing (50%) 

participant (12.5%) did not find the hints annoying, while 3 

neutral and 4 (50%) found the hints annoying (compared with a balanced rating of 6 agreements 

(33.3%) and 7 disagreements (38.9%) 

distribution of ratings for the Random and Adaptive conditions for the above items 

percentage of participants. 

 (a) 

Figure  7-4 Distribution of ratings for (a) 

 

hinting opportunity (every 10 actions), this model would present a 

hint with 50% probability. If a hint was presented, it would be chosen at random among the set 

of available hints.  For this pilot study, we managed to recruit 8 participants. As expected, the 

reaction to random hints was not positive. None of the participants agreed with the statement “I 

usually followed the advice displayed in the hint box” with 5 out of 8 disagreeing

rating this statement as neutral. Compare this to 3 out of 18 disagreeing 

(50%) with the statement for the Adaptive condition. Only one 

find the hints annoying, while 3 (37.5%) rated this statement as 

found the hints annoying (compared with a balanced rating of 6 agreements 

38.9%) for Adaptive condition). Figure  7-4 shows the detailed 

distribution of ratings for the Random and Adaptive conditions for the above items 

 (b) 

Distribution of ratings for (a) "Followed" and (b) "Annoying" in Random vs. Adaptive 

conditions 
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at random among the set 

of available hints.  For this pilot study, we managed to recruit 8 participants. As expected, the 

reaction to random hints was not positive. None of the participants agreed with the statement “I 

d in the hint box” with 5 out of 8 disagreeing (62.5%) and 

rating this statement as neutral. Compare this to 3 out of 18 disagreeing 

for the Adaptive condition. Only one 

rated this statement as 

found the hints annoying (compared with a balanced rating of 6 agreements 

shows the detailed 

distribution of ratings for the Random and Adaptive conditions for the above items in terms of 

"Annoying" in Random vs. Adaptive 
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In terms of performance measures, while the sample size is too small to run statistical tests for 

comparison, we observed that in terms of PLG and Task Performance the Random condition is 

not performing better than the Control condition (Table  7-4). Perhaps the most indicative of the 

negative effects of random hints is the trend observed on Task Time measure which shows that 

participants in the Random condition are spending more time to finish the task while not 

performing any better in terms of learning. 

 

Table  7-4 Performance statistics for the Random and Control conditions 

Condition n Task Performance (out of 10) Task Time (minutes) PLG (percentage) 

Control 19 8.58 (SD = 2.43) 18.32 (SD = 3.20) 28.59 (SD = 19.05) 

Random 8 7.75 (SD = 2.71) 22.38 (SD = 7.41) 25.08 (SD = 31.89) 

 

Given the above observations, we argue that selection of non-adaptive CSP for the Control 

condition was the better choice for a 2-way study. We should also point out that relevance of the 

hints (which is based on the user model in the Adaptive condition) is very important to convince 

users to follow the hints and potentially benefit from them. As one participant in the Random 

condition put it “the hints would be very helpful if they [were] shown at the right time”. 

7.5 Evaluation of the user model on the new data 

As a final evaluation of the user model, we decided to use the interface-action data of the new 

38 users that participated in the final study as a new test-set. We exported the final label assigned 

by the Adaptive-CSP’s user model for each of the 19 users in the Adaptive condition. To obtain 

the labels for the 19 users in the Control condition, we fed their actions from the logs to a 

simulator that updated the user model and produced the final label predicted by the model. To 
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obtain the reference labels (i.e., ground truth) for these 38 users, we calculated their feature 

vectors and determined their cluster labels based on the distance of each vector from the 

centroids of the HLG and LLG clusters previously identified in the CPS-Action-110 dataset. 

Recall that we are not using the conventional approach of splitting users based on learning 

performance into classes to label them (i.e., PLG-based median split). In fact, to demonstrate that 

labeling users solely based on median split on PLG is somewhat arbitrary, consider the 

following: for labeling the Control condition users by a median split, if the median of the users in 

the Control condition (29.03) is used, we get 9 users as HLG; while using the median of all users 

in the CSP-Action-110 dataset (45.83) would identify only 3 HLG users in the Control condition. 

A detailed comparison between the conventional PLG-based approach and our labeling approach 

is provided in Chapter 8. 

 The accuracy of the model on the new test-set is 78.95%, which is in line with the cross-

validated accuracy reported in Section  5.3. It should be noted that while final accuracy of the 

user model on the CSP-Action-110 dataset is slightly higher than the accuracy achieved on the 

new testset, half of these users received hints which affect the time-based features (e.g., 

artificially increase the pause time after actions because user is reading the hint), that in turn 

affects the accuracy of the model. In fact, we are pleased with the robustness of the model 

considering the addition of hints. 

We were also interested to see if users in the Control condition34 who were labeled as HLG (n 

= 8) by the model performed significantly better than their counterparts that were labeled as LLG 

(n = 11). To test this hypothesis we compared the average PLG for the two groups using Welch’s 

                                                 

34 We excluded users in the Adaptive condition as their average learning performance was boosted by the hints as reported in 

Section  0 
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t-test. Among the users in the Control condition, there was a significant difference for average 

learning performance between the HLG (M = 40.85, SD = 15.28) and the LLG (M = 19.87, SD = 

16.88) groups; T(16.08) = 3.17, p = 0.006 < 0.05, with a large effect size (d = 1.30). This finding 

is interesting and encouraging given the small sample size.  

7.6 Application of the UMA framework on a different ELE 

Following the successful evaluation of the UMA framework on the CSP applet, we started 

applying the framework to a more complex simulation on electric circuits called Circuit 

Construction Kit (CCK). CCK supports over 20 different action types, which can be applied to 

several different circuit components with a variety of outcomes, originating a large set of 

possible interface actions (over 120 actions) that allows users to build, modify and test different 

electric circuits. Given the complexity of the environment, a more complex representation of 

user interaction events was necessary (Kardan, Roll, & Conati, 2014).  

The behaviour discovery and user classification phases of the framework have been 

successfully applied to the user action logs. Specifically, multiple representations for interactions 

have been compared and evaluated in terms of accuracy of user classification  (Fratamico et al., 

2017). The results of user classification are promising and consistent with those obtained with 

the CSP applet, with the strongest classifier user models beating the baseline as early as 30% into 

the interaction (baseline accuracy = 68.8%) and all models achieving over 80% accuracy at the 

end of the interaction. The average over-time accuracy, which measures the accuracy during the 

interaction at different intervals35, for the best model was 76.5%. The usefulness of extracted 

rules from the behaviour discovery phase for informing adaptive support has been established in 

                                                 

35 See Section  5.3 for more details on calculation of average over-time accuracy. 
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(Fratamico et al., 2017). The next step of this project is generating the personalized adaptations 

and evaluating the resulting adaptive support system. These findings are an exciting step towards 

establishing the generality of the proposed framework in the context of exploratory learning 

environments36. 

 

Figure  7-5 A screenshot of the CCK environment 

7.7 Summary 

In this chapter, we presented the formal evaluation of the final step of the UMA framework, 

namely providing user-adaptive interventions designed to guide students in learning at best 

through open-ended exploration, as tested on an exploratory learning environment called 

                                                 

36 It should be noted that using the UMA framework with the CCK simulation required extending the approach with a process to 
add levels of knowledge engineering (albeit simple) to the creation of the feature sets necessary for user modeling. 
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AIspace CSP applet. There is extensive evidence that not all students can learn well from 

interactive simulations, due to the rather unstructured and open-ended nature of the interaction 

that they support. Our work is the first to show formal results on the effectiveness of providing 

adaptive support for open-ended exploration in an interactive simulation. More interestingly, our 

approach relies on the strategies that are automatically learned from previous learner interaction 

data.  

A formal evaluation of these interventions against the original version of the CSP applet not 

only shows very encouraging results for both learning performance of users and their perception 

of the system, but also provides valuable insights for further improvements. 

Students in the two experimental conditions performed similarly in terms of time on task and 

task performance37, but students in the Adaptive condition learned significantly more than 

students in the Control condition based on pre- and post-tests. Furthermore, the effect of 

interventions on learning is even more pronounced for students with lower levels of initial 

knowledge. In terms of users’ acceptance of the intervention mechanism, there was a positive 

attitude towards the applet in general and users followed 64.4% of the recommendations given to 

them. The users’ ratings of the interventions were generally positive; however, they indicated 

that the number of repeated hints should be reduced since that was a source of annoyance for 

users. 

We also reported the findings of a pilot study where we used a random user model to provide 

hints to students to isolate the effect of getting any hints from receiving them adaptively, and the 

acceptability of such setting by users. The qualitative results provided evidence that adaptive 

                                                 

37 As mentioned earlier, it is possible to misuse the simulation to find the solution(s) to the provided problems, and achieve a high 
task performance level without learning the concepts. 
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delivery of hints plays an important role in their effectiveness and earning user’s trust of the 

system. 

Additionally, we provided a brief report on applying the UMA framework on a more complex 

ELE for physics called CCK (Fratamico et al., 2017). The positive results of that work in terms 

of user classification accuracy and usefulness of the discovered patterns for providing adaptive 

support, provides valuable evidence towards the generality of the UMA framework.  

In conclusion, the findings reported in this chapter provide ample evidence for positive 

answers to questions [Q3] and [Q4] posed in the Introduction chapter of this thesis (see Section 

1.2). 
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Chapter 8: Mining Eye-gaze Data for Building the User Model 

This chapter presents an experimental evaluation of eye-gaze data as a source for modeling 

user’s learning in ELEs. We compare the performance of classifier user models trained only on 

eye-gaze data vs. models trained only on interface actions vs. models trained on the combination 

of these two sources of user interaction data. Our findings show that including eye-gaze data as 

an additional source of information to the CSP applet’s user model significantly improves model 

accuracy compared to using interface actions or eye-gaze data alone. 

In this chapter we provide some insights into the following question posed in the Introduction 

chapter: 

Q5: What is the value (if any) of eye-gaze data as another source of data for the classifier 

user model? 

8.1 Data preparation and preprocessing 

Eye-tracking data can be rather noisy when collected with eye-trackers that, like the Tobii 

T120 used here, do not constrain the user’s head movements (Goldberg & Helfman, 2010). In 

this section, we briefly explain the process we used to deal with two sources of noise in our 

dataset. This validation process is crucial to ensure that the data reliably reflects the attention 

patterns that users generated while working with the CSP applet.  

The first source of noise relates to the eye-tracker collecting invalid samples while the user is 

looking at the screen, due to issues with calibration, excessive user movements, or other user-

related issues (e.g., eyeball shape). Thus, eye-gaze data for each user needs to be evaluated to 

ascertain whether there are enough valid samples to retain this user’s data for analysis. The 

second source of noise relates to users looking away from the screen either for task-related 

reasons (e.g., looking at the instruction sheet) or due to getting distracted. During the looking-



 

away events, the eye-tracker reports invalid samples similar to when there is a tracking error on 

the user’s gaze, even though there was no gaze to track. Thus, sequences of invalid samples due 

to looking-away events must be removed before starting the validation process of user’s

eye-gaze samples. One source of 

first CSP problem and wanted to switch to the second problem

instruction sheet to find the name of the second problem

automatically detected when the user

the trajectory of fixations heading outside the screen. Automatic detection, however, is not 

possible when the user’s gaze 

manually identified by an investigator using videos of the user recorded during the study. 

Figure  8-1 A sample timeline showing segments and “look

Detection of looking-away events resulted in the partitioning of the remaining

samples into sequences occurring between two such events (

 8-1). The next step was to analyze the validity of these gaze segments. In particular, we needed 

to set a “minimum data quality”

threshold from the dataset. We use this threshold 

whether there are enough valid samples in the user’s complete interaction, represented by the 

                                                

38 As described in Chapter 4, during the main task, participants solved 2 problems with increasing

eports invalid samples similar to when there is a tracking error on 

there was no gaze to track. Thus, sequences of invalid samples due 

events must be removed before starting the validation process of user’s

One source of looking-away events was when participants were done with the 

first CSP problem and wanted to switch to the second problem38. They had to look at the 

instruction sheet to find the name of the second problem (Figure  8-1). Looking-away events were 

automatically detected when the user’s gaze moved out of the screen gradually, by calculating 

the trajectory of fixations heading outside the screen. Automatic detection, however, is not 

possible when the user’s gaze abruptly moves away from the screen. These events were 

manually identified by an investigator using videos of the user recorded during the study. 

A sample timeline showing segments and “looking away” events

events resulted in the partitioning of the remaining

samples into sequences occurring between two such events (segments from now on, see

analyze the validity of these gaze segments. In particular, we needed 

” threshold to discard segments and users that did not meet this 

threshold from the dataset. We use this threshold to determine, for each user in our datas

whether there are enough valid samples in the user’s complete interaction, represented by the 

         

As described in Chapter 4, during the main task, participants solved 2 problems with increasing difficulty using the applet.
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away events were 

gaze moved out of the screen gradually, by calculating 

the trajectory of fixations heading outside the screen. Automatic detection, however, is not 

moves away from the screen. These events were 

manually identified by an investigator using videos of the user recorded during the study.  

 
events 

events resulted in the partitioning of the remaining eye-gaze 

from now on, see Figure 

analyze the validity of these gaze segments. In particular, we needed 

discard segments and users that did not meet this 

, for each user in our dataset: (i) 

whether there are enough valid samples in the user’s complete interaction, represented by the 

difficulty using the applet. 



 

aggregation of her eye-gaze segments; 

each segment. This second step is to avoid 

samples in an overall valid interaction are concentrated in 

data in these segments unreliable. 

We determined the threshold by plotting the percentage of segments that g

different threshold values. The threshold value of 85% was 

percentage of discarded segments starts to rise sharply (

percentage of samples left after discarding the invalid segments based on the 85% threshold. For 

all users except one, more than 90 percent of the samples 

each user’s interaction with the CSP applet only changed from 16.7 (SD = 9.0) to 16.3 (SD = 

8.8) minutes. Next, we will explain the 

Figure  8-2 Percentage of segments discarded for 

different threshold values

8.2 Eye-gaze features 

An eye-tracker provides eye-gaze information 

at one point on the screen) and saccades

to another), which are analyzed to derive a viewer’s attention patterns. As mentioned in 

related work section, previous research on using
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gaze segments; if so, (ii) whether there are sufficient valid samples in 

each segment. This second step is to avoid accepting cases in which a large number of the invalid 

samples in an overall valid interaction are concentrated in a few segments, making the

data in these segments unreliable.  

We determined the threshold by plotting the percentage of segments that g

different threshold values. The threshold value of 85% was selected because it is where the 

percentage of discarded segments starts to rise sharply (Figure  8-2). Figure 

of samples left after discarding the invalid segments based on the 85% threshold. For 

all users except one, more than 90 percent of the samples were kept. The average durati

each user’s interaction with the CSP applet only changed from 16.7 (SD = 9.0) to 16.3 (SD = 

8.8) minutes. Next, we will explain the eye-gaze features calculated for each user.

 

f segments discarded for 

different threshold values 

Figure  8-3 Histogram of users with 

percentage of segments left after removing the 

invalid segments

gaze information in terms of fixations (i.e., maintaining eye

saccades (i.e., a quick movement of gaze from one fixation point 

to another), which are analyzed to derive a viewer’s attention patterns. As mentioned in 
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) whether there are sufficient valid samples in 

in which a large number of the invalid 

few segments, making the eye-gaze 

We determined the threshold by plotting the percentage of segments that got discarded for 

because it is where the 

Figure  8-3 shows the 

of samples left after discarding the invalid segments based on the 85% threshold. For 

. The average duration of 

each user’s interaction with the CSP applet only changed from 16.7 (SD = 9.0) to 16.3 (SD = 

features calculated for each user. 

 

Histogram of users with different 

percentage of segments left after removing the 

invalid segments 

(i.e., maintaining eye-gaze 

(i.e., a quick movement of gaze from one fixation point 

to another), which are analyzed to derive a viewer’s attention patterns. As mentioned in the 

information for assessing learning in 
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ELEs relied on tracking one specific attention pattern, predefined a priori (Amershi & Conati, 

2009; Conati & Merten, 2007). In contrast, in our analysis, we use a large set of basic eye-

tracking features, described by (Goldberg & Helfman, 2010) as the building blocks for 

comprehensive eye-data processing. These features are built by calculating a variety of statistics 

upon the basic eye-tracking measures described in Table  8-1. 

Table  8-1 Description of basic eye-tracking measures 

Measure  Description 

Fixation Rate  Rate of eye fixations per milliseconds  

Number of Fixations Number of eye fixations detected during an interval of interest 

Fixation Duration Time duration of an individual fixation  

Saccade Length 
Distance between the two fixations delimiting the saccade (d in 
Figure  8-4) 

Relative Saccade Angles 
The angle between the two consecutive saccades (e.g., angle y in 
Figure  8-4) 

Absolute Saccade Angles 
The angle between a saccade and the horizontal (e.g., angle x in 
Figure  8-4) 

 

Of these measures, Fixation Rate, Number of Fixations, and Fixation Duration are widely 

used (e.g., (Canham & Hegarty, 2010; Hegarty et al., 1995; Jarodzka et al., 2010; Loboda & 

Brusilovsky, 2010)); we also included Saccade Length (e.g., distance d in Figure  8-4), Relative 

Saccades Angle (e.g., angle y in Figure  8-4) and Absolute Saccade Angle (e.g., angle x in Figure 

 8-4), as suggested in (Goldberg & Helfman, 2010), because these measures are useful to 

summarize trends in user attention patterns within a specific interaction window (e.g., if the 

user’s gaze seems to follow a planned sequence as opposed to being scattered). Statistics such as 

sum, average, and standard deviation can be calculated over these measures with respect to: (i) 



 

the full CSP applet window, to get a sense of a user’s overall attention; (

interest (AOI from now on) identifying parts of the inte

understanding a user’s attention processes.

 

Figure 

the full CSP applet window, to get a sense of a user’s overall attention; (ii) specific areas of 

interest (AOI from now on) identifying parts of the interface that are of specific relevance for 

understanding a user’s attention processes. 

Figure  8-4 Saccade-based eye measures 

Figure  8-5 Areas of Interest for the CSP applet 
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We defined four AOIs for our analysis, corresponding to the areas that provide conceptually 

different functionalities in the CSP applet. Rectangles corresponding to these AOIs are shown in 

Figure  8-5. One AOI covers the region of the applet toolbar that includes action buttons (toolbar 

AOI); one covers the main graph panel (graph AOI); another covers the part of the top panel 

where the description of every step of the algorithm is displayed (top AOI); and the last covers 

the part of the bottom panel that displays domain splitting information (bottom AOI).  

Table  8-2 shows the set of eye-gaze features calculated from the eye movement measures in 

Table  8-1 over the full CSP applet window. Table  8-3 shows the set of features calculated for each 

of the four AOIs. As the table shows, the two sets are different. For the AOIs, we added features 

that measure a user’s relative attention to each AOI: Proportion of Total Number of Fixations 

and Proportion of Total Fixation Duration give the percentage of the overall number of fixations 

and fixation time, respectively, that were spent in each AOI. We also added features that quantify 

gaze transitions between different pairs of AOIs (Goldberg & Helfman, 2010) (including from an 

AOI to itself), as a way to capture the dynamics of a user’s attention patterns. Transitions are 

represented both in terms of total number (Number of Transitions between pairs of AOIs in Table 

 8-3), as well as a proportion of all transitions (Proportion of Transitions between pairs of AOIs). 

Adding the aforementioned AOI-specific features substantially increases the overall number of 

features considered. In order to keep this number manageable, for the AOIs we did not compute 

saccade-based features, which are less commonly used than fixation-based features in eye-

tracking research. In total, we included 67 features, 11 for the full CSP window, and 56 for AOI. 
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Table  8-2 Derived eye-tracking features for the 

full CSP applet window 

Fixation Rate 

Total Number of Fixations 

Sum of Fixation Durations 

Mean and Std. Dev. of Fixation Durations 

Mean and Std. Dev. of Saccade Length 

Mean and Std. Dev. of Relative Saccade 
Angles 

Mean and Std. Dev. of Absolute Saccade Angle 
 

Table  8-3 Derived eye-tracking features for each 

of the four AOIs 

Fixation Rate 

Total Number of Fixations 

Proportion of Total Number of Fixations 

Mean Fixation Durations 

Proportion of Total of Fixation Durations 

Highest Fixation Duration 

Number of Transitions between pairs of AOIs 

Proportion of Transitions between pairs of 
AOIs 

 

 

8.3 Eye Movement Data Analysis Toolkit (EMDAT) 

Based on the works described in Sections 8.1 and 8.2, we developed and published Eye 

Movement Data Analysis Toolkit (EMDAT), an open-source toolkit for gaze data processing. 

The main functionalities of EMDAT include: 

1- computation of a large number of gaze features some of which are not typically provided 

by existing commercial and open source gaze-processing software, and  

2- sophisticated data preprocessing and validation not available in other gaze processing 

software. In addition, EMDAT has been designed with generalizability in mind and can be 

reused for a variety of applications. Simple configuration files allow experimenters to 

quickly adapt the Python library to their needs. 

Compared to the existing well-established gaze processing software, such as Tobii Studio, a 

commercial product, and OGAMA, an open-source GUI-driven package (available at: 
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www.ogama.net), EMDAT (as of version 2.1.1) added some important features (e.g., features 

related to saccade and transitions between AOIs) and its embedded preprocessing and validation 

module ensure reliability of the results. While EMDAT is customizable in various ways, the 

provided best-practice settings file enables researchers with different levels of experience with 

eye-gaze data to start using it with little effort. 

Since the release of version 2.1.1, the development of EMDAT has been continued by other 

members of the Intelligent User Interfaces group in Laboratory for Computational Intelligence 

(LCI) at UBC. 

8.4 Interface actions and eye-gaze data 

Considering the additional cost of acquiring eye-gaze interaction data (i.e., the eye-tracker and 

related software) and extra effort needed for preparing the eye-gaze data (due to extra noise), we 

were interested in comparing this source of user interaction data with interface actions. Thus, in 

the rest of this chapter, we describe the setting we used to compare the interface actions vs. eye-

gaze data vs. a combination of the two on the Eye-and-Action-45 dataset. 

8.4.1 Comparison dimensions 

The interaction data used as features by a classifier user model to perform on-line user 

classification can include a variety of sources. As we discussed at the beginning of this chapter, 

we want to compare using features based on interface actions vs. eye-gaze data vs. a combination 

of the two. We also want to evaluate the effectiveness of each of the two major components of 

our classifier user model: (1) using the hybrid approach (described in Section 3.2.2.1) to generate 

the training set for the classifiers (i.e., groups of users with labels that describe their learning 

performance) compared to a conventional approach; (2) using our proposed rule-based classifier 

for learning vs. other available classifiers (see Section  3.3). Thus, we have three dimensions in 



123 

 

our evaluation: the feature set, the approach for training set generation, and the type of classifier. 

In the rest of this section, we describe each of these three evaluation dimensions. 

8.4.2 Different feature sets for classification 

The first set of features consists of statistical measures that summarize a user’s interface 

actions (ACTION dataset from now on39). We calculated usage frequency for each action, as 

well as mean and standard deviation of the time interval between actions (similar to other action 

datasets in Section  4.5) for a total of 12,308 actions. As described in Section  2.4, there are 7 

actions available on the interface resulting in 21 features (none were highly correlated). 

The second set of features captures user’s attention patterns using eye-gaze information 

collected by the eye-tracker (EYE dataset from now on), namely fixations (i.e., maintaining eye-

gaze at one point on the screen) and saccades (i.e., a quick movement of gaze from one fixation 

point to another). The features were derived by computing a variety of statistics (sum (total), 

average, standard deviation, and rate) as appropriate, for the measures shown in Table  8-2 and 

Table  8-3. Unlike the ACTION dataset, of the initial 67 features in the EYE dataset, we found 

and removed 16 features that were highly correlated (r > 0.7), reducing the final number of eye-

related features to 51. 

Finally, the third set of features (ACTION+EYE dataset) is obtained by combining the two 

feature sets described above. For each user, the ACTION and EYE feature vectors are 

concatenated to form a new vector with 72 features. This process generated a dataset with 45 

data-points (participants) with 72 dimensions (features).40 

Given these three datasets, we want to test the following hypothesis: 

                                                 

39 This label is used to refer to the interface action portion of the Eye-and-Action-45 dataset. Not to be confused with the CSP-
Action-65 and CSP-Action-110 datasets used in previous chapters. 

40 No additional highly correlated features were found in the ACTION+EYE dataset. 
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H1: Combining both eye-tracking and interface action data significantly enhances the 

performance of the resulting user model, as opposed to using either eye-tracking or interface 

actions data alone. 

8.4.3 Different approaches for training set generation 

As mentioned earlier, the first step in our approach for building a classifier user model is to 

identify groups of users that interact similarly with the learning environment and then label these 

groups based on the learning performance of their members, in order to provide the training set 

for the classifier. As pointed out in Section  3.2.2.1, we used the hybrid approach for clustering 

the EYE dataset41. The hybrid approach finds the best cluster-set (in terms of the sum of within-

cluster distances) with a significant difference in learning performance.  

When determining the optimal number of clusters with the hybrid approach using the three 

different feature sets described in Section  8.4.2 (ACTION, EYE, and ACTION+EYE), we found 

that two was always the optimal number of user groups (i.e., clusters), but with slightly different 

composition. We use Fleiss' kappa (a measure of agreement among more than two raters) for 

comparing the three different sets of user labels thus generated and found high agreement (kappa 

= 0.701). This kappa value shows that the two groups detected using each feature set share the 

same core of users (supporting the relevance of using clustering to detect these groups), with few 

users that are labeled differently when using different sources of data (showing that there is non-

overlapping information captured by each source). For illustration, the size and performance 

measures associated with the two clusters generated by the hybrid approach applied to the 

                                                 

41 As mentioned in Section 3.2.2.1, using the hybrid approach on datasets where basic clustering produces clusters with 
statistically significant difference in learning (e.g., interface actions data in our case) would result in finding the same cluster-
set. This feature enables us to replace the basic clustering approach with the hybrid approach for all cases. Essentially, all 
results presented in the previous chapters using the basic clustering, would be repeated using the hybrid approach.   
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ACTION+EYE dataset is shown in Table  8-4, where LLG stands for Low Learning Gain and 

HLG stands for High Learning Gain. The difference in PLG is significant (p = 0.017 < 0.05) 

with a medium effect size (d = 0.625). 

When the performance measure of interest for classification is available (in our case, PLG), 

the conventional method for creating a training set of labeled classes is to divide the performance 

spectrum into different ranges and assign users within each range into one group. Thus, in our 

evaluation, we want to compare our hybrid approach for generating the training set against the 

standard approach that relies solely on PLG. We generate what we call the PLG-based training 

set by dividing users into two groups based on the median of the PLG measure (45.83). Table 

 8-4 reports the size and PLG measures for the corresponding groups.  

 

Table  8-4 Descriptive statistics of the training sets generated via different methods 

 Hybrid on ACTION+EYE PLG-based 

HLG 
Number of users 19 22 

Average (std. dev.) 53.29 (SD = 22.79) 68.27 (SD = 12.39) 

LLG 
Number of users 26 23 

Average (std. dev.) 32.45 (SD = 39.33) 15.40 (SD = 30.29) 

 
When grouping users together, the hybrid approach relies on both PLG as well as the 

similarity in user interaction data as opposed to only relying on PLG. Thus, we argue that it can 

generate better performing user models since the user models can only rely on user interaction 

data when classifying users. This is the second hypothesis we will test in our evaluation: 

H2: The hybrid approach for training set generation outperforms the conventional PLG-based 

approach in terms of user model performance. 



126 

 

8.4.4 Different types of classifiers 

Our goal is to evaluate the rule-based classifier generated by our user modeling framework. 

Thus, we compare its performance with a battery of ten different classifiers available in the 

Weka toolkit on the EYE, ACTION, and ACTION+EYE datasets. These classifiers are C4.5, 

Support Vector Machine, Linear Ridge Regression, Binary Logistic Regression, Multilayer 

Perceptron, as well as Random Subspace and AdaBoost with different base classifiers. We tested 

the 10 Weka classifiers on each of the three datasets, and report the results for the classifier with 

the highest performance, which we will simply refer to as the Weka classifier. The third 

hypothesis tested in this study is the following: 

H3: The rule-based classifier will have better performance compared to the best Weka 

classifier on each dataset. 

8.5 Results and discussion 

In this section, we present the evaluation results across each of the three dimensions described 

in the previous section. We compare the performance of the rule-based and Weka classifiers 

described in the previous section in terms of their average over-time accuracy in classifying new 

users as high or low learners. This means that the interaction features for a new user are 

calculated over incremental time intervals and the classifier is asked to provide a label for this 

user at the end of each interval. In Section  5.3, classifier accuracy was calculated after each user 

action, because only actions were used as data sources. Here, however, we have two different 

data sources, which provide information at different rates (typically length of a fixation is much 

shorter than the time between two interface actions). Thus, we compute current accuracy of the 

classifier at intervals of 30 seconds, i.e., long enough for observing at least one user action and a 

fair number of fixations. Then, to be able to combine accuracy data across users (with different 
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interaction durations), we retrieve current accuracy after every one percent of user interaction, 

calculating 100 accuracy points for each user. 

We use 9-fold cross-validation for calculating the performance of the classifiers. Table  8-5 

summarizes the over-time accuracy of the two classifiers on the three feature sets (ACTION, 

EYE, and ACTION+EYE) using both the hybrid and the PLG-based approach to generate the 

training set. We also report the average Cohen's kappa value for agreement between the actual 

labels and the labels predicted by the model. Cohen's kappa accounts for agreement by chance 

(Ben-David, 2008) and is useful here for comparing performance across different dimensions, 

because the size of the classes generated by the PLG-based approach and by the hybrid approach 

on each feature set are slightly different, changing the probability of agreement by chance in 

each case.  

A 3 (feature set) by 2 (training set approach) by 2 (classifier type) ANOVA with kappa scores 

as dependent measure shows significant main effects for each factor (F(1.43,198) = 294.27 for 

feature set; F(1,99) = 398.02 for training set; F(1,99) = 329.98 for classifier type, with p < 0.001 

for all factors).  
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Table  8-5 Average over-time performance results for different training sets, classifiers, and feature sets. 
The best performance in each column is indicated in bold. 

Training Set Classifier Measure Feature Set 

     ACTION EYE ACTION+EYE 

PLG-based 

Weka 
Accuracy 51.18 57.62 58.18 

Kappa 0.027 0.144 0.157 

Rule-based 
Accuracy 57.24 64.29 62.2 

Kappa 0.134 0.283 0.245 

Hybrid 

Weka 
Accuracy 79.87 71.49 77.24 

Kappa 0.359 0.384 0.522 

Rule-based 
Accuracy 84.04 81.76 84.51 

Kappa 0.471 0.614 0.675 

 

For post-hoc analysis, we used pair-wise t-tests with Bonferroni adjustment using the 

estimated marginal means for each factor. Pair-wise comparisons over the feature set factor show 

that the models trained on the EYE+ACTION dataset outperform the models trained either on 

EYE or ACTION feature sets (p < 0.001), thus supporting H1. Pair-wise comparisons over the 

training set factor show that the hybrid approach outperforms the PLG-based approach (p < 

0.001), thus supporting H2. Finally, pair-wise comparisons over the classifier type factor show 

that the rule-based classifier significantly outperforms the Weka classifier (p < 0.001), thus 

supporting H3. The findings show that we were able to extend our user modeling framework 

with an effective training set generation approach (H2), and the updated framework is able to 

build models that employ interface actions and eye-gaze data effectively (H3), reinforcing the 

validity of our findings regarding the added value of eye-gaze data (H1). 
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8.6 Ensemble model for combining EYE and ACTION features 

The superior performance generated by the feature set that combines eye-gaze and action 

information indicates that there is an advantage in leveraging both data sources. Thus, we 

decided to investigate whether we could further this advantage by using a more sophisticated 

approach to combine eye-gaze and action information. In particular, for each combination of 

training set (hybrid and PLG-based) and classifier type (rule-based vs. Weka) we created an 

ensemble classifier (Baker, Pardos, Gowda, Nooraei, & Heffernan, 2011) that classifies a new 

user by using majority voting among the three following classifiers on the ACTION+EYE 

dataset: one trained using only the action-based features subset, one trained using the eye-based 

features subset, and one trained over the complete ACTION + EYE feature set. This ensemble 

model benefits from the added information captured by the eye-gaze data (if any) by being able 

to correctly classify the user in some of the cases where the classifier trained solely on the 

action-based features fails. Moreover, in some cases combining the features in the way that it is 

done in the previous section on the ACTION+EYE dataset introduces some noise in the dataset, 

thus diluting the information value gained. In such cases, classifiers trained on the eye-based 

subset and an action-based subset will not be affected and will be able to capture characteristics 

of each user as detected by each data source. Therefore, we hypothesize that: 

H4: Each ensemble model outperforms the individual model equivalent to it (i.e., the model 

with the same classifier type and training set generation approach).  

Table  8-6 shows the performance results for the ensemble models (measured by kappa 

scores). In order to evaluate the performance of the ensemble models vs. the individual models 

described in the previous section, we performed a 2 (model type) by 2 (training set approach) by 

2 (classifier type) ANOVA with kappa scores for the ACTION+EYE dataset as the dependent 
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measure. Here, we are only interested in testing to see whether there is a main effect for the 

model type factor (i.e., individual vs. ensemble). The analysis shows a significant main effect for 

the model type factor (F(1,99) = 165.420, with p < 0.001). Post-hoc analysis using pair-wise t-

tests with Bonferroni adjustment shows that the ensemble models significantly (p < 0.001) 

outperform their individual model counterparts thus supporting H4. Particularly, we are 

interested in the best performing individual model (rule-based model trained using hybrid 

training set) and its ensemble equivalent, where in addition to improved average over-time 

performance (86.56% vs. 84.51%), the ensemble model exhibits a more balanced performance 

across the HLG and LLG classes as well (85.33% and 87.52% for the ensemble vs. 79% and 

88.54% for the individual model respectively).  

Table  8-6 Average over-time performance results for different training sets and classifiers for the 

ensemble models, in terms of kappa scores 

Training Set PLG-based Hybrid 

Classifier Weka Rule-based Weka Rule-based 

Kappa 0.194 0.315 0.585 0.725 

 

Considering the ultimate goal of providing adaptive interventions to the users during their 

interaction, we are also interested in having a user model that can achieve an acceptable accuracy 

in early stages of the interaction. Thus, we plotted the over-time accuracy of the rule-based 

ensemble model trained using hybrid training set in Figure  8-6. Performance of the majority 

class classifier is also plotted as the baseline. The model achieves 80% accuracy in both classes 

after observing 22 percent of the interaction (Figure  8-6), which shows that this model is highly 

reliable for providing adaptive interventions during the user interaction. 



 

Figure  8-6 Over

8.7 Summary 

In this chapter, we presented an exper

of user data for modeling user’s learning in an ELE, the CSP applet. The main finding is that 

eye-gaze data, when used as an additional source of user data in combination with the interface 

actions, significantly boosts the average 

trained to distinguish students who learned well from students who did not

provide an answer to [Q5] posed in the Introduction chapter.

We also presented the details of

as applied to the eye-gaze data (i.e., the hybrid approach)

the clustering approach used in the previous 

data when building classifier user models. The evaluation results obtained here demonstrated that 

using the hybrid approach leads to models with significantly higher performance compared to a 

conventional alternative (PLG-based).

                                                

42 As mentioned in Chapter 3, by design, the hybrid approach is completely compatible with the clustering approach used in the 
previous chapters and produces the same clusters when applied to the interface

Over-time performance of the rule-based ensemble model

In this chapter, we presented an experimental evaluation of eye-gaze as an additional source 

of user data for modeling user’s learning in an ELE, the CSP applet. The main finding is that 

, when used as an additional source of user data in combination with the interface 

boosts the average over-time performance of the classifier user models 

trained to distinguish students who learned well from students who did not

provide an answer to [Q5] posed in the Introduction chapter. 

details of our approach for generating training sets from 

gaze data (i.e., the hybrid approach). The hybrid approach which extends 

the clustering approach used in the previous chapters42 enabled us to effectively utilize

data when building classifier user models. The evaluation results obtained here demonstrated that 

using the hybrid approach leads to models with significantly higher performance compared to a 

based). 

         

As mentioned in Chapter 3, by design, the hybrid approach is completely compatible with the clustering approach used in the 
previous chapters and produces the same clusters when applied to the interface-action data. 
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Chapter 9: Conclusion 

The main research goal of this thesis was to devise and evaluate a framework for adding 

adaptive support to Exploratory Learning Environments (ELEs). The main idea was that an ELE 

with user-adaptive interventions would be more effective compared to its non-adaptive 

counterpart. We thoroughly tested this idea by building and evaluating user-adaptive support for 

an existing ELE (i.e., the AIspace CSP applet). 

9.1 Thesis contributions 

The work described in this thesis helps advance the research in educational data mining, user 

modeling, and user adapted interactions particularly Intelligent Tutoring Systems (ITS) in 

different aspects. The main contributions of this thesis are the following: 

9.1.1 First in-depth and complete evaluation of using data mining for user modeling and 

providing user-adaptive interventions to support open-ended interaction with ELEs 

We proposed the User Modeling and Adaptation (UMA) framework that provides a data 

mining based solution for providing user-adaptive support to students in an exploratory learning 

environment. UMA framework applies our modified version of clustering called the hybrid 

approach to identify groups of students who interact in the same manner with our test-bed ELE 

(AIspace CSP applet) and detect the successful vs. non-successful groups (i.e., classes). Then, 

association rules mining is used to identify the prominent behaviour patterns of each class. These 

rules are used to build a classifier user model that is able to classify users into the discovered 

classes as they interact with the ELE. Finally, the CSP applet was furnished with an intervention 

mechanism that was built based on the discovered behaviour patterns following an iterative 

design process. The intervention mechanism, based on the output of the classifier user model, 
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provides adaptive support to the students to help them improve their learning from their 

interaction with the ELE.  

We conducted both quantitative and qualitative evaluations of the components of the UMA 

framework as follows: 

 For the hybrid approach, we compared the performance of the classifiers trained on feature-

sets generated using the hybrid approach labels, with feature-sets generated by the common 

approach of labeling users based on their test scores in Chapter 8 and showed that using 

labels generated by the hybrid approach leads to significantly higher classification accuracy. 

We also demonstrated that using the hybrid approach leads to models with significantly 

higher performance compared to a conventional alternative. 

 For UMA’s rule-based classifier user models, we used average over-time accuracy43 to 

measure the performance of the models. Our proposed classifier user model used by the CSP 

applet archives 78.2% cross-validated accuracy after only observing the first 25 percent of 

the interaction which provides an acceptable level of confidence for triggering adaptive 

interventions based on the user model. We also compared the accuracy of the rule-based 

classifier with other off-the-shelf classifiers available in a popular data mining toolkit in 

Chapter 8. The performance of the rule-based classifier on different datasets was superior to 

other classifiers when using the average over-time accuracy measure. 

 To evaluate the effectiveness of the adaptive interventions provided to users based on the 

UMA-generated rules and user models, we measured the improvement in user’s learning 

performance due to provided adaptive interventions compared to the non-adaptive version of 
                                                 

43 This measure is more appropriate for the task of providing adaptive support because it favors classifiers that can achieve 
acceptable and consistent accuracy earlier in the interaction when less data is available as opposed to classifiers that can 
achieve very high accuracy but require much more data to get to an acceptable level of accuracy. 
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the CSP applet. Our experimental evaluation of the adaptive support mechanism added to the 

CSP applet shows more than one standard deviation improvement in learning performance 

for those students who used the new adaptive version of the applet vs. the students who used 

the original non-adaptive version. 

There is extensive evidence that not all students can learn well from interactive simulations 

due to the rather unstructured and open-ended nature of the interaction that they support. Thus, 

several researchers have been working on how to address this problem by providing real-time, 

personalized user support. However, our work is the first to show formal results on the 

effectiveness of this approach. Moreover, as reported in Chapter 7, the UMA framework has 

been successfully applied to another ELE for physics that supports more complex interactions, 

providing evidence for the generality of the approach.  

The methodology proposed in the UMA framework is easily applicable to any ELE provided 

that the interaction of students is captured in a meaningful way (e.g., for a more complex 

interface, more detailed representation of interaction events might be necessary). Furthermore, 

the built-in checks in the UMA framework (i.e., significance testing for clusters and calculation 

of cross-validated accuracy for the classifier user model with a built-in baseline) allows the 

researchers to get a quick quantitative feedback on the quality of the representation of the 

interaction data. Finally, the use of association rules, along with the ranking algorithm provided 

in the adaptive support phase, makes it easier for researchers to focus on developing 

interventions for the most relevant and impactful patterns. 

9.1.2 Investigating the value of eye-gaze data for capturing student learning in ELEs 

In the final part of the thesis, we focused on evaluating eye-gaze interaction data as an 

additional source of information for modeling and predicting learning performance of users. We 
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ran a user study to collect both user action and eye-gaze data along with learning performance 

information to conduct an experimental evaluation. The main finding was that eye-gaze data, 

when used as an additional source of user data in combination with the interface actions, 

significantly boosts the average over-time performance of the classifier user models trained to 

distinguish students who learned well from students who did not. 

During the process of evaluating the predictive value of eye-gaze data in ELEs, we managed 

to propose improved methods for cleaning up and validating the noisy eye-gaze data.  

9.1.3 Practical contributions 

In addition to the main contributions discussed earlier, several practical contributions have 

also been made during this work. The most important ones are: 

 A new dataset containing the interface actions and eye-gaze data of 45 users interacting 

with an exploratory learning environment (AIspace CSP) made available to the EDM 

research community. 

 A user modeling framework for ELE with the ability to generate and evaluate the 

performance of user models on different user interaction data. In addition to the data 

mining functionalities provided in this framework, it is also able to utilize the data mining 

functionalities provided in the Weka data mining toolkit44 (a publicly available collection of 

machine learning algorithms used for data mining), which expands its usability for mining 

and analyzing user data collected from different environments. This framework is currently 

used in other research projects at the Intelligent User Interfaces group in Laboratory for 

Computational Intelligence (LCI) at UBC (Fratamico et al., 2017). 

                                                 

44 http://www.cs.waikato.ac.nz/ml/weka/ 
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 The initial versions of the Eye Movement Data Analysis Toolkit (EMDAT) for 

analyzing eye-tracking data. EMDAT calculates different eye-gaze measures from the raw 

eye-gaze data exported from an eye-tracker. The main advantages of EMDAT include: (i) 

computation of a large number of gaze features some of which are not typically provided by 

existing commercial and open source gaze-processing software, and (ii) sophisticated data 

preprocessing and validation not available in other gaze processing software. This toolkit is 

currently used, maintained, and expanded by different members of the Intelligent User 

Interfaces group in LCI. It is publicly available and has been used by the research community 

(e.g., Intelligent Computer Tutoring Group at University of Canterbury, New Zealand). 

9.2 Limitations and Future Directions 

9.2.1 Further personalization of the hint delivery  

While the overall perception of the interventions provided in the adaptive-CSP applet was 

generally positive, further personalization of the hint delivery could address the concerns raised 

by some users, for instance, reducing the number of repeated hints given to each user. To 

alleviate this, we can have multiple versions of text messages for each hint, and alternate 

between them each time a hint is delivered. However, ultimately, the applet should be able to tell 

when to stop delivering a certain intervention to a user, potentially by adopting a maximum for 

the number of times a hint is delivered in a session. Other areas for personalization include 

changing the frequency of hints delivered, the degree of prominence of the hint box movement 

animation, and even the length of the text message (if alternatives are available) based on 

classification confidence of the user model. 
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9.2.2 Enhancing results of students with higher level of prior knowledge 

While on average, the interventions improved learning performance for all students, the 

students with the highest prior knowledge (i.e., pre-test score) benefited less from the 

interventions. One possible explanation is that the interventions were too shallow for these 

students. More analysis is needed to investigate the improvement of interventions with the goal 

of enhancing results for these students. 

9.2.3 Considering combination of patterns for providing interventions 

As mentioned in Chapter 6, there are specific features related to the standard deviation of time 

spent after actions for which we could not find any suitable interventions. It is rather easy to 

describe the behaviour that results in a low vs. high value for these features, i.e., users are 

consistent vs. selective/irregular in the amount of time they spend after the target action. 

However, it is confusing and impractical to tell users to be more consistent (for low standard 

deviation) or selective (for high standard deviation) in the amount of time they are spending after 

an action. We avoided using the combination of patterns in this thesis, however, one possible 

way to use these patterns is to look at the evolution of these features over-time, in combination 

with the corresponding average time spent after each action, and explore providing interventions 

that would indirectly prevent a user from drifting to a detrimental pattern.  

9.2.4 Further application of the UMA framework 

The UMA framework has already been successfully applied to two different ELEs (CSP 

applet and CCK simulation) and on two different sources of user interaction (interface actions 

and eye-gaze data) which strengthen the case for its generality to be used for providing user-

adaptive support in ELEs. However, more ELEs need to be tested and explored to find the 

potential improvement points in the UMA framework. 
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The three-phase design of UMA framework makes it easy to make adaptations to the methods 

(if necessary) to accommodate other ELEs while adhering to the principles of each phase. In 

behaviour discovery, the underlying clustering method can be changed as long as the principle 

used in the hybrid approach, that clustering should be guided and validated using a performance 

measure, is followed. In user classification phase, given the gradual nature of the data received, it 

is essential that the underlying classifier should be able to make decisions with little data (with 

reasonable accuracy) and be tolerant of small variations in feature values. This characteristic is 

more important than the final accuracy achieved at the end of the interaction. Also, it is 

imperative that in addition to the class label, the classifier should provide the patterns that led to 

each classification decision (to be used in the adaptive support phase). For the adaptive support 

phase, based on our experience, we suggest starting from simpler interventions that are linked to 

single widely observed patterns (same as we did here) to maximize the effectiveness of 

interventions.  

As an example of adapting the UMA framework, when applying it to the CCK simulation, 

given the high number of actions available and the complexity of the interactions, it was intuitive 

that a more detailed feature representation was necessary. However, no change to the underlying 

data mining methods (e.g., the clustering algorithm, the association rule mining method, or the 

rule-based classifier), was necessary.  

9.2.5 Capturing and integrating more information about users’ interactions 

Application of the UMA framework to the CCK simulation showed that for more complex 

interactions, capturing the context information for the actions is essential. There is room for 

further integration of information such as the state of ELE (e.g., whether the problem graph is 
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arc-consistent at the time of user’s interaction with the CSP applet) and other context information 

to be added to the clustering and association rules mining processes. 

9.2.6 Estimating the probability of following each relevant intervention based on a user’s 

previous reactions 

The current version of the framework ranks relevant intervention items based on their 

expected impact as calculated from the association rules. However, as more data is collected with 

the adaptive version of the ELEs, the aggregated follow records of users can be used for 

selecting the next intervention to be delivered. In other words, the goal would be to deliver the 

item that is most likely to be followed by each user. This can be implemented by collaborative 

filtering or a similar scheme to calculate the likelihood that the current user would follow an 

intervention based on his/her prior follow record and similarity of his/her record to the existing 

users and their respective follow records.  
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Appendices 

Appendix A  Material Used in the Experiments 

A.1 Post-study Questionnaires 

General questionnaire 

 

Please rate the following statements. 

  Stron
gly 
Disagree 

Disag
ree 

Neut
ral 

 

Agre
e 

Stron
gly 
Agree 

1
9 

I felt more confident answering the post-test 
questions compared to pre-test questions 

     

2
0 

I found the applet helpful in understanding 
the AC-3 algorithm 

     

2
1 

I think I did better in the post-test compared 
to pre-test 
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Intervention Questionnaire 

 

Please rate the following statements about the hint box that appeared at the right corner of the screen 
(shown above). 

  Stron
gly 
Disagree 

Disag
ree 

Neut
ral 

Agre
e 

Stron
gly 
Agree 

1 In general, the hints were appropriate given 
my behaviour. 

     

2 The messages displayed in the hint box were 
easy to understand. 

     

3 The messages displayed in the hint box were 
useful. 

     

4 I usually followed the advice displayed in the 
hint box. 

     

5 I found the hint box intrusive.      

6 I found the hint box annoying.      

7 I easily noticed the new messages displayed in 
the Hint box. 
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As shown above, with some hints, you saw that the corresponding elements of the applet (arcs, nodes, or 
buttons) were highlighted with yellow color. These changes are designed to draw your attention.  

 
Please rate the following statements regarding the highlighting effect 
  Stron

gly 
Disagree 

Disag
ree 

Neut
ral 

Agre
e 

Stron
gly 
Agree 

N
/A 

8 In general, the highlighting of the interface 
items was appropriate given my behaviour. 

      

9 Highlighting the interface items was useful 
for me. 

      

1
0 

I found the highlighting of the interface 
items intrusive. 

      

1
1 

I found the highlighting of the interface 
items annoying. 

      

1
2 

I easily noticed the highlighting of the 
interface items. 

      

1
3 

Highlighting the interface items helped me 
notice that a new message has appeared in the 
hint box. 

      

1
4 

Highlighting the interface items helped me 
find the right elements of the applet to work 
with. 

      

1
5 

I could easily see the connection between 
the  highlighted elements and the text shown in 
the hint box 
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There were two ways to hide the highlights in the applet 
(1) Manually by clicking on the ‘Hide highlights’ button (shown above). 
(2) Let the applet determine when you have noticed the highlight and remove it automatically. 

In both cases, you could use the ‘Show highlights’ to see the highlights again (shown above). 
 
Please rate the following statements for these methods 
  Stron

gly 
Disagree 

Disag
ree 

Neu
tral 

 

Ag
ree 

Stron
gly 
Agree 

Did 
not use 

1
6 

I found the ‘hide highlights’ button helpful       

1
7 

I found the mechanism that automatically hid 
the highlights helpful 

      

1
8 

I found the ‘show highlights’ button helpful       
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A.2 Pre-test and Post-test 

CSP Pre-Test (15 Minutes) 

*If you could not finish the question, please state why (i.e., not enough time, didn’t 
understand question, etc)* 

 
* If you need extra room write on the back of the test* 
 
 
1. Consider the constraint graph shown below. Imagine that arc consistency has just reduced 

the domain of X as a result of considering the edge <X, C1>.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Do we have to add the edge <Y, C1> back to the list of “to-do arcs”? Why or why not?  

X C

C

Z 

Y 
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2. Consider the following constraint network: Note that (X+Y) mod 2=1 means that X+Y is 
odd.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

a)  Is this constraint network arc consistent?  

 

 

b)  If it is, explain why the constraint network is arc consistent.  If it isn't, explain why the 
constraint network is not arc consistent AND state which arcs are not arc consistent.  

  

    

X 

(X+Y)mod 2 

X + 2 = not (Y 

    Z 

 

   

Y 

Y is 
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3. Consider the following constraint network. 
 
 
 

 

 

a)  Is this constraint network arc consistent?  

 

b)  If it is, explain why the constraint network is arc consistent. If it isn't, make the network 
arc consistent and give all solutions.  
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4. Consider a scheduling problem with four activities labeled {A, B, C, D}. The domain of 
each activity is {2, 3, 4}.  Suppose that the constraints on scheduling are as follows: A≠ B, C<A, 
A< D, B=D and C<D. 

 
a) Draw the initial constraint network, including domains of all nodes and arcs representing 

all binary relations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Make the network arc consistent and give all solutions. 
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5. Consider the following constraint network. Note that (X+Y) mod 2=1 means that X+Y is 
odd.  

 

 

 

 

 

 

 
 
 
 
a) Make the constraint network arc consistent. For each domain element removed from a 

node, identify the constraint responsible for the removal, i.e., you have to write a sequence of 
steps of the form  

“val1,…,valK removed from VarX because of constraintC”. 
 
 
 
 
b) Why is domain splitting necessary for this CSP? 
 
 
 
 
c) Show how domain splitting can solve this problem.  Choose to split on X, and then find all 

solutions to the network.  Write out the steps as you did for part a above, and include steps for 
domain splitting and backtracking where necessary. 

 

     X 

 
(X+Y) mod 2 

X + 1 Y <= 

   

Z 

    Y 
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CSP Post-Test (15 Minutes) 

*If you could not finish the question, please state why (i.e., not enough time, didn’t 
understand question, etc)* 

 
* If you need extra room write on the back of the test* 
 
 
1. Consider the constraint graph shown below. Imagine that arc consistency has just reduced 

the domain of X as a result of considering the edge <X, C1>.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Do we have to add the edge <X, C2> back to the list of “to-do arcs”? Why or why not?  

X C

C

Z 

Y 
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2. Consider the following constraint network.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

a) Is this constraint network arc consistent?  

 

b)  If it is, explain why the constraint network is arc consistent. If it isn't, make the network 
arc consistent and give all solutions.  

 
 
 
 

    

A 

A = 

A < C 

   

B 

C >= 

   

C 
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3. Consider the following constraint network: Note that (X+Z) mod 2=1 means that X+Z is 
odd.   

 

 

 

 

 

 

 

 

 

 

 

a)  Is this constraint network arc consistent?  

 

b)  If it is, explain why the constraint network is arc consistent.  If it isn't, explain why the 
constraint network is not arc consistent AND state which arcs are not arc consistent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

X 

X < 

(X+Z) mod 2 not (Y 

  

Z 

   

Y 
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4. Consider the problem of scheduling four activities labeled {W, X, Y, Z}. The domain of 

each activity is {1, 2, 3}. Suppose that the constraints on scheduling are as follows: W> X, W<Z, 
W=Y, Y=X and Z ≠ 2.   

 
a) Draw the initial constraint network, including domains of all nodes and arcs representing 

all binary relations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Make the network arc consistent and give all solutions. 
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5. Consider the following constraint network. Note that (X+Y) mod 2=1 means that X+Y is 
odd.  

 

 

 

 

 

 

 

 

a) Make the constraint network arc consistent. For each domain element removed from a 
node, identify the constraint responsible for the removal, i.e., you have to write a sequence of 
steps of the form “val1,…,valK removed from VarX because of constraintC”. 

 
 
 
 
b) Why is domain splitting necessary for this CSP? 
 
 
c) Show how domain splitting can solve this problem.  Choose to split on X, and then find all 

solutions to the network.  Write out the steps as you did for part a above, and include steps for 
domain splitting and backtracking where necessary. 

 
 
 
 
 
 
 
 

  

   

Z 

     X 

 

X + 1 (X+Y) mod 2 

  Z > 
    Y 
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A.3 Hint Messages 

Intervention 
Code 

Intervention Description 
Level 1 message 

Level 2 message 

DAC_fr 
Using Direct Arc Click 

more often 

"Did you know you can tell AC-3 which arc to make 
consistent by clicking on that arc?" 

As I suggested earlier, you can choose which arc to 
make consistent next by clicking on it. 

 
This way, you can get more involved in applying the 

AC-3 algorithm. 
I have highlighted the relevant arcs for you. 

DAC_PA 
Spending more time for 

reflection, after performing 
Direct Arc Clicks 

Recently, you have performed a few direct arc clicks 
(clicking on the arcs) very fast. 

 
Please try to slow down. 
Once again, I see that you have performed a few direct 

arc clicks (clicking on the arcs) very fast. 
 
Please try to slow down, this may help you think more 

about the outcomes of each action. 

Reset_fr 
Using Reset less 

frequently 

You have used the Reset button excessively. 
 
I recommend that you limit your usage of this action. 
You have reset the problem over and over again. 
 
Why don’t you try using the other available actions 

instead of resetting the problem? 

AAC_fr 
Using Auto Arc-

Consistency less frequently 

You are often using "Auto Arc-Consistency" to make 
the graph arc-consistent. 

 
Please consider other options available in the applet. 
You are still using "Auto Arc-Consistency" to make 

the graph arc-consistent. 
 
As I suggested earlier, you can use other actions 

which can get you more involved in making the graph 
arc-consistent. 

DS_fr 
Using Domain Splitting 

less frequently (only when 
appropriate) 

You have been using domain splitting very frequently. 
 
I suggest avoiding this action when it is not necessary 

according to the AC-3 algorithm. 
Once more, you are performing domain splitting very 

often. 
 
As before, I strongly recommend using this action 

only when it is necessary according to the AC-3 
algorithm. 
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FS_PA 
Spending more time after 

performing Fine Steps 

You seem to be performing "Fine Step" actions rather 
quickly. 

 
Please try to slow down. 
Again, you seem to be performing "Fine Step" actions 

rather quickly. 
 
If you slow down, this may help you think more about 

the outcomes of each action. 

BT_fr 
Using Back Track less 

frequently (only when 
appropriate) 

I see that you are using the "Back Track" button very 
often. 

 
I recommend using the Back Track button only when 

necessary according to the AC-3 algorithm. 
Again, you continue to use the "Back Track" button 

frequently. 
 
As I suggested earlier, you should only use the Back 

Track button when you are done applying the AC-3 
algorithm on the CSP generated after the last domain 
splitting. 

FS_fr 
Using Fine Step less 

frequently 

Using the "Fine Step" button has been your main 
choice for making the graph arc-consistent. 

 
Please consider other options available in the applet. 
You continue to rely on the "Fine Step" button to 

make the graph arc-consistent. 
 
As I suggested earlier, you can use other actions 

available for this purpose. 

Reset_PA 
Spending more time after 

performing after resetting for 
planning 

After resetting the problem, you tend to perform your 
next action right away. 

 
I recommend that after resetting, you spend some time 

planning what to do next 
Once again, you are performing your next actions 

without any pause after resetting the problem. 
 
As I suggested earlier, after using the reset button, you 

should spend some time planning your strategy on how to 
apply the AC-3 algorithm effectively. 

 

 
 
 
 
 


