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Abstract 

 

The progression of damage in composite laminates is influenced by the interactions of several 

failure/damage mechanisms including matrix cracking, fibre breakage, splitting and 

delamination. In capturing detailed prediction of various damage modes, it is important to 

maintain the efficiency of the computational models so that they can be readily used by 

engineers for damage tolerant design of composite components. Continuum damage models are 

commonly employed to simulate the smeared response of certain failure modes such as matrix 

cracking and fibre failure due to their higher numerical efficiency in comparison with discrete 

damage models. However, application of continuum damage based models for accurate 

prediction of the onset and propagation of macro-discrete damage modes (i.e. splitting and 

delamination) and their interactions with other failure modes is limited.  

 

This work presents an efficient methodology to capture the interacting effect of discrete and 

smeared cracks based on a combination of the continuum and discrete approaches. Here, 

delamination is the only damage mode captured by a discrete approach (cohesive zone interface), 

while all intra-laminar forms of damage including splitting are modelled using the non-local 

composite damage model (CODAM2) in a mesoscopic context. Through placement of discrete 

delamination interfaces and synchronizing the onsets of delamination and matrix cracks, the 

computational effort is markedly reduced. The effect of ply thickness and constraints imposed by 

neighbouring plies on initiation of intra-laminar matrix damage modes is also considered. A 

novel methodology involving a combination of physical and virtual tests on notched laminates is 

proposed to calibrate the in-situ fracture energies of intra-laminar damage modes. 

 

The numerical simulations are conducted using an enhanced version of CODAM2, implemented 

in the explicit finite element software, LS-DYNA, as a user-defined model (UMAT), together 

with a built-in tie-break cohesive interface in LS-DYNA to model delamination. The proposed 

approach is validated using various layups and notched specimen geometries under tensile 

loading. The reasonable agreement of the predictions with experiments in terms of global 

behaviour and detailed damage patterns proves the efficiency and applicability of the presented 

methodology for damage tolerant assessment of composite laminates.  
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Lay Summary 

 

The industrial application of composite materials has experienced rapid growth in the last few 

decades. Starting in the late 1970’s application of composites expanded widely including aircraft 

and aerospace structures, automotive components, sporting goods and underground pipes. The 

progression of damage in composite laminates under mechanical loads is influenced by the 

interactions of several damage mechanisms. This work presents an efficient numerical tool to 

predict the evolution of damage in composite materials and provide details of damage pattern 

progressing at level of the constituent plies and interfaces of the composite laminate. The 

methodology established in this research provides an engineering approach to model the 

response of composite laminates to loads that cause significant damage. The model parameters 

come from a set of standard tests as well as a few specialized tests that in a novel way are 

combined with numerical analysis to extract the required input to the model.  
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This thesis entitled "An Efficient Virtual Testing Framework to Simulate the Progression of 

Damage in Notched Composite Laminates" presents the research conducted by Mina Shahbazi. 

The research was supervised by Dr. Reza Vaziri at the University of British Columbia. 

 

Some of the contents of Chapter 2 are published as a book chapter entitled "An Overview of 

Continuum Damage Models used to Simulate Intra-laminar Failure Mechanisms in Advanced 

Composite Materials", Chapter 6 in "Numerical Modelling of Failure in Advanced Composite 

Materials", Editors: Hallet S.R. and Camanho P.P., Woodhead Publishing,  2015, pp. 151-173 

[73]. The chapter was co-authored by Dr. Alireza Forghani, and reviewed/revised by Dr. Navid 

Zobeiry, Professor Reza Vaziri and Professor Anoush Poursartip. 

 

A version of the contents of Chapter 3, Chapter 4, and Chapter 5 is included in a paper entitled 

"An Engineering Approach to Numerical Simulation of Damage Progression in Tensile Loading 

of Notched Composite Laminates" that is going to be submitted as a journal article. These 

sections include the proposed methodology and formulations, the calibration and validation of 

the method using over-height compact tension (OCT) test configurations. The paper is reviewed 

by Professor Reza Vaziri and Dr. Navid Zobeiry.    

 

Some of the contents of Chapter 6 on simulation of OCT quasi-isotropic laminates were 

presented and published in a paper entitled "An Efficient Virtual Testing Framework to Simulate 

the Interacting Effect of Intra-laminar and Inter-laminar Damage Progression in Composite 

Laminates" at the 31st Technical Conference of American Society for Composites (ASC-31st), 

Virginia, USA, September 2016 [219]. This paper was reviewed by Professor Reza Vaziri, Dr. 

Navid Zobeiry and Dr. Alireza Forghani.  

 

Some of the contents of Chapter 6 is included in a paper entitled "Simulation of the Open-hole 

Tensile Response of Composite Laminates using a Combined Discrete and Continuum Damage 

Approach" that is under preparation for submission as a journal article. These sections include 
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the validation of the proposed methodology for progression of damage in open-hole tensile 

(OHT) test configurations.   

 

Parts of the contents of Chapter 6 on simulation of OHT test for quasi-isotropic laminates were 

accepted for presentation and publication in a paper entitled "Simulation of Open-Hole Tension 

Tests on Composite Laminates using Combined Discrete and Continuum Damage Approach", at 

the 10th Canadian-International Conference on Composites (CANCOM-2017), to be held in 

Ottawa, Canada, July 2017.  

 

Some parts of Chapter 6 on the size effect problem in simulation of OHT specimens are also 

accepted for a conference paper entitled "Simulation of Open-Hole Tension Tests on Composite 

Laminates using Combined Discrete and Continuum Damage Approach" for the 21st 

International Conference on Composite Material (ICCM-21st) to be held in Xian, China, August 

2017. 

 

The experimental tests that are used for calibration and validation purposes in Chapter 5 are 

selected from the work by Li et al. [154]. The test panels for these specimens were provided by 

the University of Bristol. The tests were conducted by Xiaodong Li at the University of British 

Columbia (UBC) to study the progressive damage behaviour of different layups. Later, C-scans 

were conducted by Navid Zobeiry at UBC for further observation of delamination zones in a few 

post-mortem specimens. The results of these C-scans are used in Figure  5.3, Figure  6.4 and 

Figure  6.7. The experimental test results that are used in Chapter 6 for validation purpose are 

adopted from the work by Green et al. [82] at the University of Bristol.  
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Chapter 1: Introduction 

 

The application of composite materials has experienced a rapid growth in the last few decades. 

Starting in the late 1970s application of composites expanded widely including aircraft and 

aerospace structures, automotive components, sporting goods, underground pipes and biomedical 

products.  Increasing use of composites in new aircraft programs, such as Boeing 787, Airbus 

A350, is the major driving force of putting the aerospace industry on the frontline of this field. In 

automotive industry, OEMs are continuously looking for innovative materials to reduce vehicle 

weight and achieve fuel efficiency and carbon emission targets. BMW has taken on a leading 

role for mass production of composite vehicles.  

 

The basic advantage of composite materials lies in their high specific strength and stiffness, and 

that complex shape and large scale structures can be manufactured in one piece thus reducing 

costly assembly requirements. Fibre-reinforced composites in the form of multidirectional 

laminates with stacks of plies oriented in different directions enable material optimization to 

achieve minimum weight and required mechanical properties. However, the numerous available 

options and the heterogeneous nature of composites make the process more involved and their 

analysis more complex. Unlike conventional engineering materials, development of analytical 

models and procedures for determining material properties for prediction of structural behaviour 

of composite laminates is very challenging. By increasing the load beyond the elastic level, 

laminated composites exhibit intricate behaviour. This is due to the various modes of failure that 

emerge and the extreme anisotropy of the laminate constituents, i.e. plies.   

 

The progression of damage in composite laminates is highly influenced by the interactions of 

several failure/damage mechanisms including matrix cracking, fibre breakage, splitting and 

delamination (see Figure  1.1). Given difficulties associated with numerical simulation of damage 

and failure in composites, in the recent decade many studies have been dedicated to improve 

numerical analysis of damage tolerance in such structures. A reliable prediction of the complex 

behaviour of composite materials must include the interaction of distinct failure mechanisms 

such as matrix cracking, fibre breakage, splitting and delamination. Such numerical tools, if 

validated, enable engineers to reduce the number of experimental tests at the coupon level and 
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probably sub-component level with virtual tests. However, as it was shown by the extensive 

studies in the so-called World-Wide Failure Exercise (WWFE) [100,123,228], developing 

computational models that yield quick and reliable results is still challenging and requires 

numerous validation case studies to identify their capabilities and limitations.  

 

 

Figure  1.1: A schematic of different damage modes   

 

Among the various approaches to model fracture and damage in solids, methods of continuum 

damage mechanics (CDM) have gained the most attention [73]. This is mainly due to the 

convenience of their implementation in general purpose finite element software. In continuum 

approaches, the effect of material degradation due to fracture and damage in the fracture process 

zone (FPZ) is modelled in a smeared manner and by reducing the apparent stiffness of the 

material (strain-softening) inside the FPZ. Although strain-softening is not a real physical 

phenomenon at the microscale of the material, it provides an appealing framework to simulate 

the effect of damage on the macroscopic structural response. 

 

Since the Boeing-lead program for Advanced Technology Composite Aircraft Structure 

(ATCAS) in the early to mid-1990s, strain-softening approaches for simulation of damage in 

composite structures have gained notable attention. The Boeing collaboration with the 

Composites Group at the University of British Columbia that included testing of notched 

laminated composite panels with various materials and geometric configurations, provided a 

comprehensive experimental and strain-softening based modelling framework to simulate 
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damage and failure in laminated composites (see Dopker et al., 1994; Ilcewicz et al., 1993, 1996; 

Kongshavn and Poursartip, 1999; Williams and Vaziri, 1995, 2001). 

 

When there is no single isolated crack that dominates the zone of damage, one may consider the 

effect of multiple micro-cracks smeared into a locally homogeneous continuum field in a CDM 

approach. To characterize the damage state of this field, the quantities that define the stiffness 

degradation of the material within that zone need to be identified. This modelling approach is 

used extensively in finite element analysis due to its straightforward implementation and 

numerical efficiency. A successful example of a fully continuum damage model is the sub-

laminate based approach that was first introduced by Williams et al. [267] at UBC known as 

COmposite DAmage Model (CODAM). The application of this model leads to reasonably 

accurate modelling of damage in quasi-brittle materials, for cases where damage is not 

dominated by macro discrete failure modes (i.e. splits and delamination) (see [73,75,171-173]). 

More recently, the second generation of this material model (CODAM2) was introduced by 

Forghani et al. ([75,76]), equipped with a non-local regularization limiter scheme to address the 

mesh dependency. The required material properties for this material model are obtained with a 

characterization scheme developed by Zobeiry et al. [289,290].  This technique identifies the 

optimum effective strain-softening curve of the locally homogenized damaged zone of the 

laminate. For material characterization in tension, they used the over-height compact tension 

(OCT) test configuration that was originally designed by Kongshavn and Poursartip [129] in 

order to have a stable crack growth.  

 

For cases where failure is governed by discrete macro-crack propagation such as large splits and 

delamination, continuum damage models often fail to correctly capture the propagation of 

damage through the structure.  Discrete macro-cracks redistribute the stresses around the damage 

zone and consequently alter the load paths within the structure. For instance, delamination which 

is usually accompanied by intra-laminar discrete matrix cracks close to notches or general 

discontinuities potentially blunts the damage front and reduces the stress concentration. In these 

cases the mesoscopic models are more suited as they attempt to capture both intra-laminar 

(within the plies) and inter-laminar (between the plies) damage modes. However, the challenge is 

to understand the sequence of different damage modes in ply-scale and defining physical 
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parameters in material’s constitutive laws that determine which mode will dominate.  The 

behaviour of a laminate depends on the interplay of different failure processes which complicates 

the development of computational models.  

 

This work presents a combination of discrete and continuum damage models in a mesoscopic 

approach that leads to an acceptable prediction of the structural response whether or not the 

delamination is a dominant damage mechanism.  Compared to fully discrete methods, this 

method offers a much higher numerical efficiency by only modeling delaminations discretely.  

The intra-laminar damage modes including splitting are captured using a non-local continuum 

model rather than a discrete model. However, application of this methodology requires guidance 

from experimental studies of damage mechanisms in order to properly characterize and calibrate 

the required material properties. A significant contribution of this work is to address this need.  

 

In the proposed methodology, the intra-laminar modes of damage including matrix cracking and 

fibre fracture are captured with an enhanced form of the non-local CODAM2 material model. 

The non-local averaging technique is very effective in predicting the trajectory of in-plane 

macro-cracks irrespective of the mesh orientation.  Therefore, the need to introduce pre-inserted 

discrete elements to capture the growth of discrete cracks is eliminated and the computational 

cost is reduced significantly. The enhancements in the original CODAM2 formulation are 

described in order to relate the damage initiation and progression of individual delaminated plies 

to the mechanical properties of unidirectional laminates. The enhanced CODAM2 material 

model formulation is implemented as a user-defined material model (UMAT) in the commercial 

finite element software package, LS-DYNA [158]. 

 

A common cause of delamination is the inter-laminar stresses induced at the tip of matrix cracks 

[232] which highlights the importance of proper estimation of the onset of matrix cracking. 

Many studies show that the formation of transverse matrix cracks in a ply depends on the 

constraining effects of its neighboring plies as well as the thickness of the ply [191,217]. For 

example, experiments show higher transverse tensile and shear strengths for a 90 ply 

constrained by plies with different orientations in comparison with a unidirectional 90 laminate 

(see [10,45,82,127,191]).  Based on these observations, some researchers differentiate between 
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the behaviour of a unidirectional lamina and that of a lamina embedded within a laminate 

[52,70,227]. In this work, Hashin’s failure criteria [94,95] are used to identify the onset of intra-

laminar matrix and fibre damage modes. The constraining effect of the immediate neighboring 

plies and the ply thickness are also considered through an approximate analytical model based on 

combination of linear elastic fracture mechanics and a shear lag theory introduced by Zhang et 

al. [278,279].  

 

From a numerical point of view, the explicit modelling of delamination as a macro-crack 

separation of plies at the interface enables the split in the separated ply to grow independently of 

the remainder of the laminate. Therefore, in combination with CODAM2 model which captures 

the intra-laminar damage (including the splits), a mixed-mode cohesive-based contact 

formulation available in LS-DYNA [158] is used to model the delamination between all 

dissimilar plies. A common drawback of cohesive methods is that robust and accurate 

simulations require very fine finite element spatial discretization to accurately represent the 

tractions in the cohesive zone. This will inevitably affect the computational efficiency of the 

mesoscopic models which is addressed in this work. A methodology is introduced to calibrate 

the material properties of the cohesive model such that it automatically takes into account the 

size of in-plane elements and the inter-laminar stress distribution in a region close to the notches 

where the matrix cracks and delamination are expected to occur first. With this technique, one 

can eliminate the need to have very fine mesh size to obtain accurate prediction using the 

cohesive interfaces. Moreover, it implicitly accounts for the effect of ply thickness on the 

initiation of delamination since the initiation of delamination is indirectly linked to the matrix 

cracking which is in turn influenced by ply thickness.  

 

A significant contribution of this work is to introduce a methodology to obtain the in-situ 

material properties associated with initiation and progression of intra-laminar damage modes. 

Most of these properties including the elastic moduli and strength properties can be gathered 

from the standard tests.  However, the main challenge is to obtain the fracture energies 

associated with the progression of fibre and matrix damage modes. While there is more literature 

available on the characterization of fibre fracture energy, less work has been done for 

characterization of intra-laminar matrix fracture energy. This is a quantity which may not be 
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directly measured from standard experiments on unidirectional laminates and is considered to be 

essential in continuum representation of multiple matrix cracks that are confined to an off-axis 

ply constrained between stiff layers. A systematic and novel procedure has been proposed to 

extract the intra-laminar fracture energies of the material system of interest in tension from a few 

experiments on OCT specimens with specific layups. The intent is to implicitly account for the 

interaction of matrix cracks with delamination and damage in neighboring plies. These are the 

type of interacting mechanisms that do not show up in conducted tests on unidirectional 

laminates.  

 

In this work the input material properties of the enhanced CODAM2 material model in 

mesoscopic context are calibrated for IM7/8552 carbon-fibre/epoxy (CFRP) material system 

using the test results conducted by Li et al. [154]. The proposed mesoscopic numerical approach 

is examined for two tensile notched geometries including OCT and open-hole tensile (OHT) test 

configurations. In the first case, cross-ply and quasi-isotropic laminates with dispersed-ply and 

blocked-ply laminate layups are studied.  In the second case, OHT specimens made of quasi-

isotropic with various size and laminate thicknesses are examined. 

 

1.1 Objectives 

 

The main objective of this work is to present a numerical methodology to simulate the 

progression of damage in laminates that are prone to macro-discrete damage modes (i.e. splitting 

and delamination). The proposed approach must also be applicable to laminate layups and 

loading geometries where the effect of delamination is negligible. The goal is to capture the 

global behaviour and detailed damage response of the laminate without compromising the 

efficiency of the methodology. To achieve this goal, firstly the material model formulation needs 

to have the capability of modeling different modes of damage and their interactions. Secondly, 

the key material parameters associated with intra-laminar and inter-laminar damage modes need 

to be identified and their effects on the material model behaviour understood. Finally, these 

parameters are required to be calibrated such that they represent the effective behaviour of the 

constituent plies within a multi-directional laminate. 
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1.2 Outline 

 

The layout of the thesis is as follows: 

 

Chapter 2 provides a review of the existing numerical approaches and computational methods in 

simulation of initiation and progression of different damage mechanisms in continuous fibre-

reinforced composites.  

 

Chapter 3 first presents a summary of the second generation of the sub-laminate-based 

(macroscopic) non-local CODAM model (i.e. CODAM2) developed by Forghani et al. ([75,76]). 

Second, the mesoscopic version of this model is introduced to capture the intra-laminar damage 

mechanisms at ply-level. The modifications in the material model formulation associated with 

prediction of initiation and progression of damage at individual plies are described in detail.  

 

Chapter 4 provides a brief summary of the widely used cohesive zone model (CZM) to capture 

delamination between the plies. A common drawback of cohesive-based models and the 

available solutions in literature are discussed which motivates the solution proposed in the 

following chapter.  

 

Chapter 5 provides a brief summary of existing experimental methods for characterization of 

damage properties of unidirectional laminates. The detailed methodology for calibration of the 

intra-laminar (enhanced non-local CODAM2) and inter-laminar (CZM) models for IM7/8552 

CFRP material system is provided.  

 

Chapter 6 shows the performance of the presented methodology in predicting the progression of 

damage in OCT and OHT geometry configurations for the same material system calibrated in 

Chapter 5. The predicted overall response and the damage patterns are shown and compared 

against the experimental results for various laminate layups, ply thickness and specimen sizes. 

This purpose is to assess the efficiency of the presented framework for reliable prediction of 

laminate failure from its initiation through evolution to complete failure. 
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Chapter 7 wraps up the thesis with summary, conclusion remarks, contributions and future 

works. 

 

Appendix A provides detailed formulation of the shear lag theory used in Chapter 3. Appendix B 

establishes the relationship between the experimental intra-laminar fracture energy and the input 

fracture energy density for the enhanced non-local CODAM2 model in mesoscopic context. 

Appendix C provides a general guideline for the structure of the user material model subroutines 

in LS-DYNA. Appendices D and E include the introduced material model’s input parameters and 

their definitions, as well as some notes on post processing the outcome of the material model. 

Appendix F provides the pseudo code and the implementation of the material model.  
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Chapter 2: Literature Review 

 

2.1  Introduction 

 

The heterogeneous nature of fibre-reinforced composite laminates that gives rise to multiple 

crack types interacting as failure progresses makes the prediction of failure complicated. These 

damage mechanisms may lead to significant redistribution of stresses and thus affect the load 

level, at which final structural failure occurs. Therefore, there is a need for models, capable to 

simulate the entire damage process from its initiation through evolution to complete failure of the 

composite structure. 

 

Although composite laminates may be considered to be homogeneous macroscopically, they 

show various heterogeneities at microscopic level. Formation and propagation of damage in 

composite structures is a multiscale event in nature. It usually initiates with microscale cracking 

in the matrix typically accompanied by small-scale delamination at the layer interfaces. Further 

increase of the load results in growth of matrix cracks to mesoscale cracks and delamination, 

which eventually leads to macroscale cracks and fibre breakage. Therefore, it is required to study 

their behaviour at various scales. With a rapid growth in computational power of computers, 

multi-scale modelling of fibre-reinforced composites has become an important means of 

understanding the behaviour of such materials. A multi-scale approach considers three scale 

levels for the analysis of heterogeneous composite materials [277] described below (see 

Figure  2.1): 

 

1. Micro-scale: The micro-scale is the lowest material scale taking into account the 

behaviour of constituents (fibres and matrix) of the material. Here, fibre and matrix 

phases and their interface are modelled separately, and the average properties of a single 

reinforced layer are determined based on properties of individual constituent using a 

homogenisation technique. Interaction between constituents and the resulting behaviour 

of the composite (micro-strain and –stress fields) is the main concern at this scale 

[83,273,281]. Although the microscale models have been shown to be very successful in 

predicting the properties of the undamaged material and also in predicting the onset of 
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damage, they are unable to predict damage evolution. This is due to the fact that the 

representative volume assumed for predicting the behaviour of the virgin material in a 

microscale model cannot be used as a representative volume for the extensively damaged 

material. In other words, in a damaged material, smearing and homogenization cannot be 

performed at the same scale that is performed in the undamaged material.  

 

2. Meso-scale: The meso-scale considers the ply as a basic homogeneous continuum entity 

for mechanical analysis of, and failure prediction in laminated composites 

[128,138,161,201,238,250,266,268]. Each ply is modelled separately as a homogeneous 

material and the fibre direction is taken into account in terms of orthotropy of the 

homogeneous material. This scale can be much more easily implemented in analysis of 

large structures than the micro-scale due to lower computational effort. After the 

pioneering work by Ladevèze [136] and Matzenmiller [166], Pinho et al. [197,198], 

Maimí et al. [161,162], Laurin et al. [145] and Camanho et al. [33] proposed the stiffness 

degradation models and different damage evolution laws for different damage modes of 

the constitutive plies which can be used in a mesoscopic approach. The ply’s mechanical 

and elastic properties can be determined through experimentation, but modelling at this 

scale does not provide any information about a character of interaction between the 

constituents. Considering the fact that the standard test methods suggested for 

characterization of unidirectional laminates often exhibit instability (or catastrophic 

failure), the behaviour observed in such a test would not represent the behaviour of a ply 

in a multidirectional laminate. In a multidirectional laminate, neighbouring plies provide 

structural support to the damaged layers and introduce alternative load paths to the 

structure. Therefore, the effective behaviour of a ply, when placed in a multidirectional 

laminate, have been considered in some meso-models [34,217]. 

 

3. Macro-scale: The macro-scale is defined at the level of components at which the 

structure is a completely homogeneous continuum and its material behaviour is described 

by an anisotropic constitutive law. The macroscale models are typically not capable of 

predicting the details of the damage events in the layers. Main advantages of macroscale 

models are their simplicity as well as capability to be adapted to large scale problems. 
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The sub-laminate-based approach, which was first introduced by Williams et al. [267], 

takes the sub-laminate as the building block of the laminated composite structure. This 

approach considers the sub-laminates as the representative volume and as the base level 

for constructing the damage model. In this approach, in contrast with the ply-based 

approach, an element in the numerical simulation represents a sub-laminate. The goal of 

the sub-laminate approach is to predict, in a smeared manner, the essence of the overall 

nonlinear response of a laminated composite structure (e.g., its stiffness, load-carrying 

capacity, stability and post-peak behaviour) due to progressive damage caused by a given 

loading condition. In general, the main drawback of macro-scale models is that since the 

interface of plies is not modelled explicitly, the actual damage mechanisms especially 

large matrix macro-cracks and delamination are not captured, leading to an arguable lack 

of physical representativeness. This issue will be more discussed in this thesis. 

 

Multi-scale modelling transfers the damage information from lower to higher scale to predict the 

final failure of laminates. However, multi-scale failure analysis using the finite-element models 

combining coarse meshes and finer meshes at the macro and micro levels respectively is still 

computationally costly because of a large volume of calculations. Therefore, meso- and macro-

level models coupled with continuum damage mechanics still works well in design and failure 

prediction of composite laminates and it is also employed in this work. 

 

Figure  2.1: The three scales of damage analysis in composite laminates 
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The most promising and suitable tool for modeling damage progression in composite materials is 

a computational approach based on the finite-element method (FEM). This approach has the 

potential to model the complex damage process, initiating from matrix cracking, evolving in 

delamination and fibre breakage to composite structural ultimate failure. However, the 

development of proper numerical model representing the physics of damage mechanisms is a 

challenging task [251]. Reliable and accurate simulations of discrete damage behaviour of 

composite laminates require guidance from experimental and theoretical studies of damage 

mechanisms. Understanding a sequence of different damage modes and defining physical 

parameters in material’s constitutive laws that determine which mode will dominate is a 

challenge of respective simulations.  The strength of a laminate depends on the interplay of 

different failure processes which complicates the development of computational models. For 

example, laminate strength does not linearly scale with increasing the thickness of the laminate. 

In fact, the failure type may change completely when the thickness of the plies is changed [82]. 

Moreover, characterization of the effect of manufacturing-induced defects such as residual 

stresses on mechanical performance of composites can be quite challenging. The material 

properties are evolving during processing and an accurate estimation of these defects requires the 

consideration of the processing history of the material system, e.g. [67,68,117,151,284,288]. 

 

Cox and Yang [44] have pointed out that the main challenge in damage modeling of composites 

is to categorize and characterize possible mechanisms of damage and represent them in a model 

in a realistic and physical way. Moreover, understanding the origins of numerical instabilities 

that often occur in simulations of heterogeneous materials adds another challenge. It is important 

to know whether these instabilities are due to numerical approximations or rather they represent 

the actual unstable progression of damage as it is often observed in experiments. Modelling of 

damage mode sequences and their interaction successfully in a computationally cost-effective 

way is of key motivation to developing tools for use as virtual tests. 

 

In order to characterize the onset and progression of damage for analysis of composite structures, 

various approaches are implemented in finite-element models. In the next section, various 

damage analysis approaches based on numerical techniques are presented. The damage in 

composite laminates is a complex phenomenon and results in various failure modes that interact 
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with each other. Usually, failure of the first ply represents the damage initiation, but does not 

lead to the ultimate structure failure. Numerous existing composites failure and damage 

methodologies can include one or two parts, one being focused on the prediction of initiation of 

different damage mechanisms and the second dealing with prediction of the progression of 

damage in a composite laminate leading to its ultimate failure. Theories and models at these two 

stages of damage (initiation and progression) are reviewed separately in following Sections  2.2 

and  2.3. 

 

2.2 Initiation of failure mechanisms 

 

The first component for damage progression prediction in composite laminates is to identify the 

initiation of various failure mechanisms such as fibre breakage, matrix cracking and 

delamination. The need to predict failure initiation in composites has led to the proposal of 

several failure criteria. There is numerous number of failure theories in the literature of which 

some predict initiation of an individual damage mode while some predict failure in a general 

sense. Some of these failure theories are associated with intra-laminar failure modes while the 

others focus on inter-laminar failure modes.  

 

Most of these criteria are expressed in terms of the stress components and strength properties 

referred to as strength-based criteria. In application of the strength criteria, the material is said to 

be damaged once these criteria are satisfied. The strength-based failure criteria can be expressed 

in terms of stress components relevant to a specific damage mode. They can also be expressed in 

terms of other internal variables such as strain, displacement or rotations. The strength-based 

criteria only characterize damage for its initiation and not the propagation of the existing 

damaged region. 

 

A selection of the failure criteria commonly used in literature is presented here that are 

categorized based on the approach used in their derivations [61,190]: non physically-based (or 

not associated with the failure modes, or non-phenomenological) and physically-based (or 

associated with the failure modes, or phenomenological).  
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1. Non physically-based failure criteria. These are criteria in which a failure envelope is 

defined by using a mathematical expression, usually a polynomial, which predicts failure 

by interpolating between a few experimental points. No attempt is made to predict which 

failure mode is taking place, and the criterion itself is not the result of a physically-based 

failure model. 

 

2. Physically-based failure criteria. These are criteria which result from models that try to 

describe the physics of the failure process. These criteria can predict the type of failure 

mode.  

 

The former criteria are developed from the theories originally developed for metals and updated 

for anisotropic materials. These criteria are usually expressed as a polynomial in terms of stress 

components and the experimentally determined strength values. The most common polynomial 

failure criteria is proposed by Tsai and Wu [242]. Other failure theories of this category can be 

found in the reviews by Nahas [181] or by Paris [190]. The advantage of these criteria is the 

simplicity of their implementation in finite element methods and their smooth envelopes. 

 

In physically-based failure criteria, on the other hand, the distinction between failure modes is 

considered. The failure envelopes corresponding to these criteria are therefore not always 

smooth, and the vertices correspond usually to a change in the failure mode. Hashin and Rotem 

[95] are the pioneers to establish a failure theory that accounts for failure of different constituents 

of a ply and to predict each of them separately. In this category of stress-based criteria, Hashin 

and Rotem’s work in 1973 [95] and later Hashin’s work in 1980 [94] have inspired considerable 

research in failure-mode oriented criteria. Depending on the failure mode, the following 

subsections summarize the common failure criteria for different intra- and inter-laminar failure 

modes. 
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2.2.1 Fibre failure 

 

For composite laminates, fibre failure in tension is usually expressed in terms of a maximum 

stress or maximum strain criterion at each ply, with the material limit values extracted from 

experimental results. Hashin [95]  uses a stress-based criterion, while Puck and Schürmann [204] 

use a criterion with a stress magnification factor applied to transverse normal stress. Common 

failure criteria for fibre failure in tension are summarized in Table  2-1.  

 

Fibre failure in compression is mostly due to microbuckling and the formation of kink bands 

[195]. Most researchers have only used a maximum stress or maximum strain criteria using limit 

values from experimental characterization, while only some of them have tried to incorporate the 

effects of microbuckling and kinking [195]. These criteria are summarised in Table  2-2. 

 

Table  2-1: Fibre failure criteria in tension 

Criterion Formulation Notes 

Max stress 
1 TX    

Max strain  
1 T    

Hashin-2D [95] 2

1 1
TX

 
 

 
 

 

Hashin-3D [95] 
 

2

2 21
12 132

12

1
1

TX S


 

 
   

 
 

1,2,3 stand for material principal 

directions 

Puck [204] 
12

1 2

1

1
1

f

f

T f

m
E




 



 
   

 

 
Subscript f indicates fibre values 

fm  : stress scale factor 

 

Table  2-2: Fibre failure criteria in compression 

Criterion Formulation Notes 

Max stress 
1 CX    

Max strain  
1 C    

Puck [204] 
12 2

1 2 12

1

1
1 (10 )

f

f

C f

m
E




  



 
    

 

 
Subscript f indicates fibre 
values 

fm  : stress scale factor 
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Table  2-2: Fibre failure criteria in compression 

Criterion Formulation Notes 

LaRC03 [52] 
12 12 22

22

12,

2 2

22 22 12
22

, , 12,

  0 :  1

  0 :    (1-g) 1

m m

m

is

m m m
m

T is T is is

for
S

for g
Y Y S

  


  



 

     
             

     

 
22 12,  m m  : stresses in 2D 

kinking frame, at angle   

/Ic IIcg G G  

LaRC04 [195] 
22

12

12, 12 22

22

2
0
23 23 1222 22

, , 12,

  0 :  

    1

  0 :    

( )
     (1-g) 1

( )

m

m

m
is

m

m mm m

m
T is T is is

for

S

for

g
Y Y







 



   

 








     
        

   

 

22 12 23,  ,m m m   :are stresses in 3D 

kinking frame, at angles ,     

3D kinking angles found by 
iteration 

/Ic IIcg G G  

Maimí-et-al. [161] 
12 12 22

12

1

m m

S

  
  

22 12,  m m  : stresses in 2D 

kinking frame, at angle   

 

 

2.2.2 Matrix failure 

 

Matrix failure in laminated composites can be in the form of cracks initiating from defects or can 

occurs as the fibre–matrix debonding and splitting. Accumulation of the cracks and their 

coalescence leads to failure across a critical fracture plane. Many researchers have developed 

approaches for predicting the initiation of matrix cracks and predicting the fracture plane angle 

under a variety of loading conditions.  

 

Criteria for matrix failure in tension involve an interaction of the traction components on a 

critical fracture plane in the transverse tension direction. Apart from the maximum stress and 

maximum strain criteria, the simplest proposal is the quadratic interaction criterion of Hashin and 

Rotem [95] and further developments include in-situ transverse tensile and shear strengths of the 

ply, use of through-thickness shear strength terms [195] as shown in Table  2-3.  

 

The criteria for matrix failure in compression are given in Table  2-4. Hashin and Rotem [95] 

assumed the fracture plane was in the transverse direction and proposed a simple quadratic 
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interaction criterion using the transverse normal and in-plane shear components. Hashin [94] 

later used similar approach but included the effect of the through-thickness strength. 

 

Puck took the basic idea of the Hashin criteria for Inter Fibre Failure (IFF) and extended it [204]. 

Following the idea of a Mohr Coulomb type of failure, a fracture plane is identified. IFF is 

assumed to occur on a plane parallel to the reinforcing fibres. There are three tractions acting on 

the fracture plane, the normal traction  and the two shear tractions. Only those three components 

of stress will contribute to failure. The failure criteria are therefore written in terms of fracture 

plane stresses. The computational effort for finding the critical angle can be cumbersome. The 

concept of the fracture plane was already proposed by Hashin in 1980 but not pursued due to the 

lack of computing power. The main criticism of the Puck failure theory has been the 

comparatively large number of required parameters. It is sometimes claimed that those 

parameters are of empirical nature and require extensive experimental material characterization 

procedures [108]. 

 

Davila and Camanho [52] extended the Puck theory by suggesting ply thickness dependent 

strength parameters. Fracture mechanics based analysis was employed to derive the influence of 

the ply thickness on the strength. In particular, thin and thick embedded plies were investigated. 

The idea was further developed by Pinho et al. [195] for three-dimensional stress states. 

 

In parallel with Puck, Cuntze and Freund [48] developed the failure mode concept. The 

fundamental assumptions for both theories are identical, but Cuntze defines his failure criteria in 

terms of stress invariants and avoids therefore a search for the critical fracture plane orientation. 

Cuntze composes the failure surface by a set of three different failure criteria. Each failure 

criterion characterizes a certain failure mechanism and incorporates only one strength parameter. 

The first IFF mode is a tensile failure transverse to the fibre which is characterized by the 

transverse tensile strength 
TY . The second IFF mode is a shear failure which is characterized by 

the in-plane shear strength 
12S . This failure results in a matrix crack which is oriented at  

0o
f   where f  is the angle of the fracture plane. The third IFF mode is characterized by 

transverse compressive strength 
CY  and results in a fracture plane which is inclined by 0o

f  . 
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Table  2-3: Matrix failure criteria in tension 

Criterion Formulation Notes 
Max stress 22 TY    
Max strain  

22 T    

Hashin-Rotem-
2D [95] 

2 2

22 12

12

1
TY S

    
    

   
 

 

Hashin-Rotem-
3D [94] 

2 2 2 2
22 33 23 22 33 12 13

2 2
23 12

1
TY S S

            
      

     
 

1,2,3 stand for material principal 
directions 

Chang-Lessard 
[38], 
Ladaveze [136] 

2 2

2 2 2max

2 2 2int 2

2

22

2 2 22
2 2

Use d ,   to indicate damage

Total failure for  d 1 or 

/

( ) ,   max ( )
2 (1 )

critd

t t
E d









   

   

    


 
2,max, ,max 2

 if  a 0,  else 0

material parameters:

: tension test on [ 67.5]  coupon

Also uses plasticity law

crit s

a a

 

 

 

Puck [204] 

   

 

2
2 2( )12

|| 21 22

21

( )
|| 22 21 11 1

1 / /

        / 1 /

T T

D

P Y S Y
S

P S




  







 
   

 

 

 

 
22

( )
|| 12 22 0

/P d d


 
 

   

1  is stress value for linear degradation 

LaRC03 [52] 2 2

22 22 12

, , 12,

 (1-g) 1
T is T is is

g
Y Y S

       
            

     

 
Factor 

/Ic IIcg G G  

LaRC04 [195] 2
0 2
23 23 1222 22

, , 12,

( )
 (1-g) 1

( )T is T is is

g
Y Y

   

 

     
        

   

 
/Ic IIcg G G  

Maimí-et-al. 
[161] 

2 2

22 22 12
22

12

12 12 22

22

12

0 :    (1-g) 1

0 :    1

T T

g
Y Y S

S

  


  


     
        

     


 

 

0
0

12 0
12 2

0

/ .  53

cos 2

cos 2

Ic IIc

C

g G G

S

Y








 

 
 

 
 

Vogler [256] 2
1 1 2 2 3 3 32 3

3

1

  0

t t
Mf I I I I

for I

       


 

2
1

2
1

2

1
32 2

3 32
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1 /

1 / (2 ) / 4

2

1
2

2

T

L

t T BT T
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S

S

Y Y Y

Y Y Y

Y
Y








 





 




 

 

Cuntze [48]  1 4

2 2
2 22 33 2 22 33 23

/ 2 1

 ,   ( ) 4

TI I Y

I I    

 

    
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Table  2-4: Matrix failure criteria in compression 

Criterion Formulation Notes 
Max stress 

22 CY    

Max strain  
22 C    

Hashin-Rotem-2D 
[95] 

2 2

22 12

12

1
CY S

    
    
  

 
 

Hashin -3D [94] 
 

2 2

2 22 12
22 23

23 12

/ / 2 1 1
2

C CY Y S
S S

 


   
           

 

 

Puck [204] 

 

0

2
2 ( ) ( )
12 || 22 || 22 11 1

21

22 22 12 12

0

2

12 22
11 1( )

2221
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( ) 1 /
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A
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S
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YP S
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

    

   



 
 





 
 








   

  



   
     

     

22 12 22 120  and    0 / /  A

c R     

 

 
2
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|| 21

1 1

/
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/

1 /

A
c

A
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R Y P

P P R S

f


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
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
 

 
  

 

 


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1  is stress value for linear degradation 
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Table  2-4: Matrix failure criteria in compression 

Criterion Formulation Notes 
Cuntze [48] 

  4 || 32

2

2 2
2 22 33 3 22 13

2 2
4 22 33 23

1 1

 ,   ,

( ) 4

c c

b I b II
b

Y Y

I I

I

 



   

  

 



 
  

   

  

 

The parameters b characterize the slope 
of failure envelopes  

 

2.2.3 Delamination 

 

Delamination failure occurs as a result of inter-laminar shear stresses and through-thickness 

stresses, resulting in separation of adjacent layers with dissimilar fibre orientation. Delamination 

usually starts from stress concentrations which can be found at free edges, at ply-drops, at 

regions subjected to out-of-plane bending such as bending of curved beams (see Figure  2.2). In 

general, delamination initiation does not coincide with structural failure of the laminate. 

However, the initiated delamination may grow in an unstable manner and finally result in an 

interaction of in-plane failure modes which can cause a catastrophic final failure. 

 

Delamination initiation criteria are based mainly on two approaches, stress based criteria and 

fracture mechanics based criteria. In the following, some of the proposed criteria for both 

approaches are introduced. A review of delamination initiation criteria for both, stress based and 

fracture mechanics based models, can be found in [46]  
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Figure  2.2: Delamination induced by inter-laminar stresses at zones highlighted by dotted circles, adapted 
from [206] 

 

Several criteria are available to predict the initiation of delamination using the stress values of an 

interface element between plies as summarized in Table  2-5. These criteria all use combinations 

of the out of plane tensile and shear parameters, in linear, quadratic or curve-fit relationships.  

 

Alternatively, delamination criteria can be formulated based on fracture mechanics. It is assumed 

that the material contains defects even before the onset of failure. The onset of delamination is 

therefore treated as a propagation of cracks which are already in the material. Strain energy 

release rates are calculated and failure is assumed to propagate if the strain energy release rate G  

reaches a critical energy release rate cG . A simple example for this approach has been proposed 

by O’Brien [186]. He derived a simplified energy release rate G  (energy per unit of delaminated 

area) as follows: 

 

 
2

*

2
lam

t
G E E


   ( 2.1) 
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and compared it with a critical energy release rate cG  in order to find the critical strain, c , for 

the initiation of delamination. In Equation ( 2.1),  lamE  refers to the original longitudinal laminate 

Young’s modulus and *E  refers to the longitudinal Young’s modulus of the remaining sub-

laminates after delamination. The variable t  denotes the thickness of the laminate.  

 

Today, the increasing use of FE solvers allows for more complex models and more accurate 

calculation of the energy release rates. However, in most applications stress based failure criteria 

are used to determine the onset of delamination and fracture mechanics based formulations find 

their application in the damage propagation laws that will be discussed in Section  2.3.  

 

Table  2-5: Failure criteria for delamination 

Criterion Formulation 
Max stress 

33 31 31 23 23,  ,  TZ S S      

Hashin [94] 2 22

33 23 31

23 31

1
TZ S S

      
      

     
 

Tsai [240] 22 2
33 23 1 1 3

2
23

1
T TZ S X

        
     

     
 

Tong [240]  22 2
33 23 1 1 3

23

1
T T CZ S X X

        
     

     
 

Zhang [280] 2 2
33 12 13 23 and  ( )  TZ S      

Goyal [81] 2

33 23 31

23 31

1,  :  curve fit parameter
TZ S S

 
  


     

       
    

 

 

2.3 Progression of damage  

 

The onset of damage in laminated composite materials does not usually lead to ultimate failure. 

Therefore, it is necessary to account for the progression of damage modes in order to accurately 

predict composite material performance in a damage tolerance analysis. Failure in a laminate 

may be caused by failure of individual laminae or plies within the laminate (intra-laminar failure) 

or by separation of contiguous laminae (inter-laminar failure) or both. Numerous models have 

been developed to represent the various damage mechanisms and these damage models have 
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been used both in conjunction with and independent of the failure criteria presented in the 

previous section for damage initiation.  

 

From a computational point of view, different methods for the modelling progression of damage 

can be divided into two categories: the continuum approach and the discontinuous approach. In 

the continuum approach, the crack is smeared over a band with finite width. This is appealing 

because of its simple implementation in general finite element codes. However, in discontinuous 

approach, the crack is explicitly modelled as a displacement discontinuity in the continuum. The 

different types of these two approaches and related methods of implementation are briefly 

reviewed in the following. 

 

2.3.1 Continuum approach 

 

Incorporation of continuum models into the finite element framework is often straightforward as 

they are usually implemented in the relation between stress and strain. A continuum progressive 

damage methodology attempts to represent the accumulation of damage in a composite laminate 

by reducing selected material properties. The structure is loaded until a failure criterion is 

satisfied, at which point a corresponding material property or property set is reduced, and the 

analysis is continued. The degraded material property, most commonly stiffness, is selected so as 

to simulate the loss of load-carrying capacity in a particular direction. Hinton and Soden [101] 

have categorized the post-initial-failure models into two main groups: (a) instantaneous 

degradation using ply discount methods where the material is assumed to lose its entire stiffness 

and strength in the dominant stress direction or (b) progressive degradation using damage 

potential functions where the material is assumed to lose its stiffness and strength gradually in 

the failure direction.  

 

2.3.1.1 Ply discount methods 

 

Typically, for instantaneous degradation of stiffness properties once a failure criterion is reached, 

researchers usually apply knockdown factors that are either empirical or obtained from specific 

experiments [190]. Although this approach is simple, the instantaneous knockdown of properties 
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is particularly suited to the quasi-brittle nature of fibre-reinforced composites [102]. Examples of 

such methods are given in Table  2-6. However, the ply-discount progressive failure analysis of 

composites can underestimates laminate strength and stiffness because it does not recognize that 

the damage is localized and that a failed ply may have residual load-carrying capability. 

 

Table  2-6: Ply discount models used in literature [101] 

Researchers Failure mode Degradation of stiffness properties 
Wolfe [269] Matrix failure 

2 12 120,  0,  0E G     

Puck [204] Cracking under tension Mode 
A 

0 0 0
2 2 12 12 12 12,  ,  ,

 is a parameter which varies with stress

E E G G   



  
 

Cracking under compression 
Modes B and C 

0 0
12 1 12 12 1 12

1

,  ,

 is smaller than 

G G  

 

 
 

Chamis [79,80] Matrix failure 
mE  is replaces with a negligible value and 1 2 12 12, , ,E E G 

are computed from micromechanics 
Sun [233,234] Shear matrix failure 

2 120,  0E G   

Transverse matrix failure 
2 0E   

Tsai [133,155] Matrix failure  

22 0   

0 0
12 120.15 ,  0.15m mE E     

2 12,E G are computed from micromechanics 

Matrix failure 

22 0   

0 0
2 2 12 12

0 0
12 12 1 1

0.01 ,  0.01 ,  

0.01 ,  0.01

E E G G

E E 

 

 
 

Zinoviev [282] 
 

Open cracks 

22 0   
For *

12 12 ,   

when 

(a) * 0 0
2 2 2 2 2 12 3 12:   ,  ,E E G G        

(b) * 0
2 2 2 12 3 12:   0,  ,E G G      

 is a function of strain 

For *
12 12 ,   

when 

(a) * 0
2 2 2 2 2 12:   ,  0,E E G      

(b) 2 2 120 :   0,  0,E G     

 
Closed cracks 

22 0   
For 2 0 :   

(a) * 0
12 12 12 3 12:  G G     

(b) 12 120 :  0G    
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2.3.1.2 Continuum damage-based methods 

 

A more straightforward option is the progressive degradation based on continuum damage 

mechanics (CDM). The loss of stiffness can be considered as the macroscopic representation of a 

series of distributed microcracks. The simplest formulation is by introducing phenomenological 

damage tensor H(ω)  relevant to failure modes written as [36]: 

 eσ = H( )C ε C( )ε  ( 2.2) 

 

where C(ω)  is the stiffness tensor and the damage tensor, H(ω) , is in terms of damage 

parameters   for different damage modes, which grows from 0 to 1during failure. Generally, the 

stiffness degradation is computed explicitly from the strain, which make the implementation of 

continuum damage straightforward. Kachanov [119] introduced for the first time the concept of 

smearing damage due to microcracking over a continuous medium and representing this damage 

by single scalar variable to study creep in metals. Scalar damage representations are appropriate 

for isotropic damage, where the damage is randomly distributed, or in cases that the void density 

is small [179]. To describe anisotropic damage, a higher-order representation of damage is 

required. These tensor forms accommodate descriptions of damage that include damage in 

various directions as well as interactions of damage parameters in the different directions. 

Several damage models have been developed that describe damage as a second order tensor [36] 

or as a fourth order tensor [188,222,223]. 

 

The thermodynamic formulation is usually used as a general framework to formulate constitutive 

equations. The Helmholtz free energy per unit mass for a damaged solid is expressed in terms of 

internal state variables, namely damage parameters: 

( , )ij ijH    
( 2.3) 

where   is the free energy function which represent the elastic deformations and   is the 

density. The thermodynamic conjugate forces ijY  corresponding to the internal variables ijH  (i.e. 

damage parameters) are expressed as: 
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,  ij ij

ij ij

Y
H

 
  



 
 

 
 ( 2.4) 

The thermodynamic formulation gives the thermodynamic forces and the dissipation inequality 

equation but no information about the evolution laws for internal variables. The only restriction 

imposed by the continuum thermodynamics on the evolution laws is that the Clausius–Duhem 

dissipation inequality must be fulfilled, which takes the following form: 

0ij ij         ( 2.5) 

where   is the power of dissipation due to damage and a dot denotes the rate with respect to 

time. From Equations ( 2.1)-( 2.5), the dissipation inequality is expressed as 

0ij ijY H    ( 2.6) 

If the dissipation reaches the maximum, the damage evolution law is given by: 

d
d

ij

ij

F
H

Y






  ( 2.7) 

where ( , )d
ij ijF H   is the damage potential function, 0d   is called the consistency parameter 

and it is assumed to obey the Kuhm-Tucker consistency requirements: 

 

0,  0,  0d d dF F      
( 2.8) 

When the damage potential function ( , )d
ij ijF H   is determined, the damage evolution 

information can be acquired. Then, as the consistency parameter d  is derived, the damage 

tensor and internal variable as well as the consistent constitutive equations are obtained. A 

popular approach to formulate the evolution law is based on the hypothesis of maximum damage 

dissipation, which is analogous with the associate flow rule in plasticity. In this approach, the 

evolution of each damage parameter is governed by its work conjugate that are also called the 

energy release rate density parameters. 

 

A more general approach motivated by the non-associated flow rule in plasticity defines a 

potential of dissipation function, ( , )d
ij ijF H  , and damage evolution law is written in terms of 

the conjugates of each damage parameter with respect to the dissipation potential function. The 

choice of the dissipation potential function depends on the available test data and the purpose of 
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the damage model. The hypothesis of maximum damage dissipation can be seen as a special case 

where the Helmholtz free energy ( , )ij ijH   is chosen as the dissipation potential.  

 

Kwon and Liu [134], Schipperen [216], Maa and Cheng [159], Camanho et al. [33], Barbero and 

Vivo [17] established the thermodynamic models to describe the progressive failure properties 

and to interpret the stiffness degradation of composite laminates. In their models, the various 

failure modes were assumed and the relationships between the damage tensor, conjugate forces 

and internal stresses/strains were further formulated.  

 

Based on the CDM theory, Ladevèze [136], Schapery [215], Hayakawa et al. , Basu et al. [19], 

Pinho et al. [197,198], Maimí et al. [161,162], Laurin et al. [145] and Camanho et al. [33] 

proposed the isotropic/anisotropic stiffness degradation models and damage evolution models. In 

these models, the relationships between the damage dissipation potential, the conjugate forces 

and the damage tensor were addressed, which were explained by different damage evolution 

laws for different damage modes. These models are well suited to be used as a mesoscopic 

model where intra-laminar damage modes in the plies are captured using CDM. 

 

Apart from thermodynamically based damage laws, damage growth can also be related to 

statistical variations in the strength of a material. Damage is related to the probability that a 

given stress or strain state is likely to exceed the strength of the RVE. A common statistical 

approach to describing variations in the strength of materials is Weibull’s formulation [261]. 

Weibull’s probability distribution function has been implemented into a number of models 

[131,152,166,268]. An example is the damage in Matzenmiller’s model defined in one 

dimension as: 

1

1

m

fme

f

e







    
  
   

 
 
 
 

   
( 2.9) 

 

where e is the exponential function, m is the Weibull modulus, and f  is the nominal 

failure strain. A major shortcoming of such models, however, is the difficulty in relating 

the statistical parameters to physical characteristics of the problem. Selection of the Weibull 
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modulus, m, can be quite challenging without a priori knowledge of the statistical variation of the 

nominal failure strain in the specific material examined. 

 

Despite the advances in progressive damage modeling, recent studies indicate that CDM models 

coupled with cohesive zone models (CZM) in a mesoscopic context may not always represent 

laminate failure sequences properly [251]. These deficiencies are particularly evident when the 

observed fracture mode exhibits matrix splitting or when the fracture is characterized by a strong 

coupling between transverse matrix cracking and delamination. The deficiencies of the predictive 

capabilities can be attributed to several factors, including the incorrect prediction of the damage 

zone size normal to the fracture direction when using crack-band models, and the inability of 

local CDM models to reliably predict matrix crack paths. These limitations are mostly due to the 

fact that CDM models are usually implemented as “local” rather than “non-local” models 

[72,116,193,194] i.e., the evolution of damage in a local CDM model is evaluated at individual 

integration points without consideration of the state of damage at neighboring locations, and the 

inability of standard finite elements to represent localized shear bands. Therefore, the commonly 

used crack-band approach for regularizing CDM models cause the damage to localize into a band 

with a width equivalent to the element dimension and may not predict correctly the width of the 

damage zone nor the local stress field. Consequently, stress redistribution resulting from damage 

development may be inaccurately predicted and can potentially result in inaccurate 

representation of damage mode interactions and failure sequences. However, as will be discussed 

in this thesis, using the non-local methods for regularization of CDM models can significantly 

alleviate the above-mentioned problem. 

 

In order to improve the predictability of CDM models in a mesoscopic approach, some 

researchers use aligned mesh structure for each ply of the composite laminate [183,229]. The 

edges of elements are parallel with the direction of the fibre orientation in each ply. This method 

has been successful to some extent by enforcing the matrix cracks to grow in parallel with the 

fibre direction [229].  
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2.3.2 Discontinuous approach 

 

The alternative to smearing a crack over the continuum is to insert a discontinuity in the 

displacement field. Although this is a more intuitive approach to failure, since displacements 

really are discontinuous over a crack, it requires more fundamental changes to the finite element 

formulation. In general, the kinematical formulation has to be adapted to accommodate the 

discontinuity. One of the most common applications of discontinuous approach is in prediction 

of delamination growth.  

 

One of the most popular tools for simulating the propagation of delamination in composites, are 

methods that are based on linear elastic fracture mechanics (LEFM) theory. It states that after the 

onset of delamination, the delamination propagation is not controlled by the through-thickness 

strength any more, but by the inter-laminar fracture toughness, mainly the critical strain energy 

release rate cG . The basic numerical implementation of these methods usually involves 

computing the total strain energy release rate G, or in mode dependent models, IG and IIG  

associated with normal opening mode and shear mode are computed separately.  Comparing 

these values to some critical values cG  ( IcG and IIcG  in case the model is mode dependent) 

usually serves as the delamination propagation criteria.  Once the local value reaches the critical 

value, the delamination front will propagate.  

 

LEFM based methods such as the J-integral proposed by Rice [211] which is limited to plane 

structures can be used to calculate the energy release rate.  For complex 3D laminated structure, 

however, the virtual crack closure technique (VCCT) initially proposed by Rybicki and 

Kanninen [213] can calculate the fracture parameters at the crack tip for the mixed fracture 

modes more effectively than the J-integral. The main assumption in the finite element 

calculations using the VCCT is that the energy required for the crack propagation length Δa is 

equal to that required for closuring two separate crack surfaces with the crack length Δa. Since 

using VCCT method does not require any information on the stress field around the crack tip, it 

does not require a very fine mesh around the crack front, which is a very important advantage in 
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comparison with J-integral method. A comprehensive review of the state-of-the-art of VCCT 

was recently presented by Kruenger [132]. 

	

However, the VCCT cannot be competent for the prediction of the failure initiation and 

subsequent evolution for the cracking composite laminates since the self-similar crack 

propagation mode is assumed. Accordingly, the cohesive zone models (CZM) are becoming 

more common, particularly for progressive failure analysis with non-self-similar crack growth.  

 

Cohesive based approaches is based on the early work by Barenblatt [18], who showed that the 

fracture process zone in the region near the crack tip can be modelled as a lumped line with its 

nonlinear behaviour governed by a form of stress-displacement law which exhibits softening. 

The rest of the model is assumed to behave elastically. As shown in Figure  2.3, the variation of 

stress-strain is shown in the fracture process zone. The point with zero displacement is called the 

fictitious mathematical crack tip and the point at which the crack surface traction vanishes is 

called the physical crack tip. To control the amount of energy that is dissipated in the crack as it 

propagates and to remove the singularity from the stress field at the crack tip, cohesive forces are 

applied on the crack surface. This means that a second constitutive law is introduced besides the 

constitutive law for the continuum. This ‘cohesive law’ relates the cohesive traction t  to the size 

of the displacement jump over the crack [[ ]]u  (i.e. ([[ ]])t t u ). Cohesive based approaches have 

the advantages to investigate both initiation and growth of damage in the same analysis, and to 

incorporate both strength and fracture mechanics theories. Also, as opposed to classical fracture 

mechanics, this approach does not require the assumption of an initial damage size or 

propagation direction for delamination, and eliminates the need to apply difficult and 

computationally expensive re-meshing to accommodate the propagating delamination front. 
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Figure  2.3: Fracture process zone in cohesive crack models- adapted from [176] 

 

Following the earlier work of Dugdale [60] and Barenblatt [18], later Hutchinson and Suo [104], 

Tvergaard and Hutchinson  [247], Allen and Searcy [13], Camanho et al. [32], Xie and Waas 

[275], Turon et al. [245] developed the cohesive theories which assume there is a process zone in 

front of the crack tip whose fracture properties are controlled by the cohesive traction-

displacement discontinuity relationships, and allows non-self-similar crack propagation. 

 

Delamination fracture tends to be a mixed-mode phenomenon. Camanho et al. [31] developed a 

cohesive law in which the fracture toughness is a phenomenological function of mode mixity as 

formulated by Benzeggagh and Kenane [28]. This cohesive law was improved for 

thermodynamical consistency by Turon et al. [243]. Alternative formulations have been 

proposed among others by Allix and Corigliano [14], Yang and Cox [276] and Jiang et al. [114].  

Table  2-7 summarizes a number of criteria in cohesive law formulations for predicting the 

growth of pre-existing delamination. These criteria are all based on the fracture mechanics 

concept of a strain energy release rate, G, in crack growth, and combine the G components with 

the threshold Gc toughness values in the mode I, II and III directions.  

 

 

 

 

uc u 

t 
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Table  2-7: Criteria for growth of delamination 

Criterion Formulation Notes 

Single mode ,  G ,  GI Ic II IIc III IIIcG G G G     

Power law delamination 

[264] 1

m n p

I II III

Ic IIc IIIc

G G G

G G G

     
       

     
 

, , :  curve fit

linear: n=m=p=1

quadratic: m=n=p=2

m n p

 

Benzeggagh and Kenane 

[28] 
 ( ) / ( )T Ic IIc Ic II I IIG G G G G G G


     

:  curve fit  

T I II IIIG G G G    

 

While it has been successfully used to predict the delamination failure mechanisms of dissimilar 

material interfaces, the cohesive theory extends rapidly to predict the failure initiation and 

damage evolution in the progressive failure analysis of composite laminates.  

 

The implementation of cohesive zone models in finite element methods can be done either using 

interface elements/surfaces or using partition of unity finite element methods as described below. 

 

2.3.2.1 Interface elements/surfaces 

 

The most straightforward implementation of a discontinuous approach is to have the 

discontinuity between the elements. Duplicate nodes are used along the crack path to describe a 

jump in the displacement field (see Figure  2.4). Interface behaviour is determined by the 

constitutional relationship (mostly based on cohesive zone models) between the relative 

displacement of the two connected nodes, and the traction generated between them as a result.  

 

(a) (b) 

 

Figure  2.4: Application of continuum and lumped interface elements in a discontinuous approach, adapted 
from [274]  
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Cohesive zone models in the form of node to node 1D elements [47], or continuous interface 

elements [31], or cohesive contact formulations [29] are used to define the behaviour of an 

interface in finite element methods. These models are increasingly being applied by researchers 

to model delaminations and debonds in composite structures. After the element passes the 

strength limit of the material, the stiffness is reduced gradually. This continues until the interface 

has zero stiffness, at which point the substructures are completely separated, and the interface 

element acts only as a contact region to prevent any interpenetration of the two debonded 

surfaces. In the cohesive element formulation, the work done in reducing the material stiffness to 

zero is equal to the fracture toughness (Gc). This will incorporate fracture mechanics theories 

into the damage mechanics-based approach.  

 

Wisnom, Hallett and coworkers have successfully studied behaviour of different notched and un-

notched geometries using the interface elements to capture the effect of both intra-laminar 

damage modes and delamination [87,88,114,153,235]. This, however, requires fine and specific 

mesh arrangement for each ply and is less predictive as a result of pre-insertion of interface 

elements at priori known crack paths. Therefore, the direction of crack growth and the location 

of major macrocracks have to be known from the experiments in order to use the interface 

elements in an optimal way [87,88].   

 

For the specific case of simulating delamination in composite material, it is known that the crack 

propagation plane is located in between dissimilar plies through the thickness of the laminate. 

This reduces the complexity of the problem by simply putting the cohesive elements in between 

the plies.  

 

2.3.2.2 Partition of unity finite element method 

 

An alternative class of methods for modelling of cracks is based on enrichment of the finite 

element solution basis with discontinuous functions, referred to as the Partition-of-Unity Finite 

Element Method (PUFEM) [16] or the eXtended Finite Element Method (XFEM) [176]. Based 

on the partition of unity property of the finite element shape functions, any function can be added 

to the basis functions in order to improve its accuracy. Belytschko and Black [27] and Moës et 
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al. [177] were among the first groups who added a discontinuous function in form of Heaviside 

function for the modelling of cracks. In this way, a discontinuity can be running through the 

elements, which obviously offers more flexibility for the crack path than interface elements. 

 

Originally, asymptotic functions were used for enrichment around the crack tip to approximate 

the singular stress field. Alternatively, it is possible to add cohesive tractions on the crack 

surface, as proposed by Wells and Sluys [263] and Moës and Belytschko [176]. In this case the 

crack tip singularity is removed from the stress field.  

 

Iarve et al. [105] used PUFEM to model matrix cracking in unidirectional composites with a 

smooth enrichment function instead of standard Heaviside functions. In this case, the matrix 

crack were inserted a priori without progressive damage modeling which was later added in 

[107] that includes the interaction with delamination as well. They used this approach to model 

the over-height compact tension tests [178], where they used a statistical strength distribution to 

obtain a random crack pattern and a CDM criterion to capture fibre breakage. 

 

An alternative method has been proposed by Hansbo [90], in which two overlapping elements 

are introduced with independent displacement fields which are partially active. This method is 

commonly known as phantom node method (PNM). In other words, once an element is cut by a 

discontinuity, extra nodes are added to the original nodes and two superposing sub-elements are 

formed. Effectively, only part of the domain in each sub-element is active, and the stiffness and 

nodal force integration is only performed on this active part of the domain. When modelling a 

strong discontinuity, the PNM becomes equivalent to the XFEM with the Heaviside enrichment 

function [230]. Cohesive tractions were also applied in this method by Mergheim et al. [175]. An 

advantage of Hansbo’s method over PUFEM is associated with its relatively easier 

implementation, because the method does not require any changes to be made in the elements 

adjacent to the cracked elements.  

 

PNM in combination with cohesive interface elements have been shown to be able to model 

interaction of intra-laminar macroscopic matrix cracks and delamination. An example of this is 

the failure modelling of open-hole composite laminates by Van Der Meer et al.  [253]. Another 
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example is the matrix cracking induced delamination modelled by PNM and breakable CZM 

cohesive elements [208] which combines discrete matrix cracking with cohesive interface failure 

in composite laminates under flexural loading.  

 

While the PNM is well suited for modelling an individual discontinuity within an element, 

extensions which allow modelling more complex networks of discontinuities (such as multiple 

intersecting cohesive cracks) become considerably more challenging. Moreover, both XFEM and 

PNM introduce an error in the representation of the geometry of discontinuities while mapping 

the discontinuities from the physical to the natural space of the elements [36]. To prevent this 

issue, a new method called the floating node method (FNM) is introduced by Chen et al. [41], 

which is similar to the PNM in terms of computational methodology, where discontinuities 

within an element are modelled by partitioning the original element into sub-elements. However, 

the FNM directly uses crack boundary coordinates for the definition and transformation of the 

sub-elements, as opposed to PNM which uses the coordinates of the phantom nodes instead. This 

reduces the error in the representation of discontinuities in the natural coordinates associated 

with the PNM and XFEM. Additionally, FNM is more suited for modelling weak and cohesive 

discontinuities. 

 

2.4 Status of numerical methods in composite structural design 

 

The expansion of composites application in the industry has led to an increasing demand for an 

effective design methodology suitable for heterogeneous materials such as continuous fibre 

reinforced systems. An emerging idea represented by “integrated product development”, has 

been introduced in the Composite Materials Handbook-17 [1], which can be applied to the 

development of new products in most of the major industries. The collective judgment and 

insight for designing a new product can be obtained from an appropriate balance between the 

coordinated testing and analysis activities that are represented by the “integrated product 

development pyramid”, alternatively known as the “Building Block Approach”. A specific 

illustration related to aerospace products is shown in Figure  2.5. 
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Figure  2.5: Building Block pyramid 

 

The idea is to build the knowledge on the material and structural behaviours step by step, starting 

from the fundamental stage at the coupon level up to the full scale (i.e. the full wing or even the 

full aircraft). It is widely acknowledged that tests can be expensive when repeated several times 

for different material configurations (e.g. different stacking sequences) or when changes in the 

components geometry or loading are studied, and so using virtual testing can help reduce the 

product development costs. Physically insightful methods of analysis and thoroughly verified 

numerical methods can be employed as virtual test to replace some of the physical tests 

specifically at the coupon level. Having developed the material basis values and design allowable 

including some correlation with predictive methods at the coupon level, the critical 

subcomponents at higher level can be identified for test evaluation and analysis using the 

knowledge built at the coupon level. At higher levels, the verification of the structural integrity 

of the full-scale structure can be verified based on consideration of the most critical load 

conditions for the structure that has been determined by test/analysis correlation at previous 

levels. The numerical analysis at lower level, therefore, can be more useful in understanding the 

major mechanisms of damage that will be critical in subcomponent and complex assemblies.   

 



37 

 

In summary, effective product development usually depends to a large degree on the insight and 

judgment gained from integrated test and analysis efforts. Therefore, having a physically based 

analysis method that is fully verified and can be readily and efficiently used in practice is of 

great value. A summary of the ongoing methodologies and techniques adopted by various 

research groups around the world as well as those available in commercial FE software packages 

are listed in Table  2-8. 

 

There have been some landmark studies to assess existing computational models in the field of 

composite materials. Three of the major studies that have been done so far are presented in the 

following. 

 

2.4.1 World-Wide Failure Exercise (WWFE) 

 

The so-called World-Wide Failure Exercise (WWFE) [102] was conducted as a landmark study 

on the effectiveness of numerical approaches including failure theories and constitutive models.  

 

The goal was to (1) assess the predicting capability of the numerical approaches, (2) to close the 

knowledge gap between theoreticians and design practitioners in the field and (3) to provide 

design engineers with more robust and accurate failure prediction methods [102]. To do this, 

Hinton and Soden (‘the organizers’) laid out a plan for a unique blind study of failure theories for 

composite laminates. This was done in three stages. The first and second stages involved 

assessment of failure criteria in composite structures under 2D and tri-axial state of stresses 

[102]. The third world-wide failure exercise [120] was concerned with damage evolution under 

uniaxial, biaxial, bending and loading/unloading scenarios in combination with ply constraint, 

stacking sequence and thermal effects as well as interacting failure modes. 

 

The organizers selected a number of test cases for the failure theories to examine. The test cases 

were limited to continuous fibre reinforced thermoset plastics, and specifically to two types of 

carbon fibres, two types of glass fibres (E-glass), and epoxy resin systems. The test cases 

included a wide range of lay-ups, a wide range of loading conditions, a variety of damage types, 

and behaviours that were linear and non-linear. For each lay-up and loading scenario, there were 
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requirements to determine failure stress envelopes, both initial failure and final failure, and 

stress-strain curves for loading in specific directions, depending on the case. Leading researchers 

in failure of composites were invited to participate and to present their approaches and 

predictions.  

 

Hinton and Soden summarized and compared the similarities and the differences between 

predictive capabilities of the leading theories [100,101,122,227]. They assessed the performance 

of the participating theories in three ways. Qualitative assessments of the correlation between the 

theories and the experiments were made on a test-by-test basis and on a theory-by-theory basis, 

and they performed a quantitative assessment of the performance of the theories using 125 tests 

that they developed in five categories: the biaxial strength of unidirectional laminae (UD), the 

initial biaxial strengths of multidirectional laminates (MD), the final strengths of MD laminates, 

the deformation (stress-strain curves) of MD laminates, and the ability of the theory to predict 

general trends. 

 

Of the theories that performed well, Zinoviev [282,283] and Puck [204] were phenomenological 

approaches, while the Tsai approach [133,155] is an interactive failure criterion approach. Those 

theories that performed poorly consisted of Sun [233,234], an interactive approach, Eckold [62], 

a design code approach, and McCartney [168,169], a damage mechanics approach. All three of 

these theories did not address all of the test cases, which significantly affected their 

ranking by the organizers. 

 

The organizers developed a number of recommendations for designers on the basis of the results 

of the WWFE. They noted that for isolated laminae, the theories were fairly mature, and 

recommended using either Tsai or Puck for these types of analyses. In attempting to predict the 

initial strength of MD laminates, the theories were all fairly poor. In recommending approaches 

to predict initial failure, Zinoviev [282,283] and Wolfe [30,269] were recommended. A similarly 

poor performance exists for predicting the final strength of MD laminates. Puck, Zinoviev, Tsai, 

and Hart-Smith(3) [92,93] were recommended, but the organizers noted that the best a designer 

could hope for was ±50% accuracy. Deformation predictions were only reasonably accurate 

when fibre failure was the dominant mode of failure. Zinoviev and Puck were recommended. 
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The organizers noted that in this context, “lack of robustness is a feature”. For situations where 

the prediction of other features, such as the mode or sequence of failure, is required, once again 

Puck and Zinoviev were recommended. 

 

Several lessons can be learned from the WWFE. Firstly, most criteria were unable to capture 

some of the trends in the experimental results. Secondly, most expressions proposed to predict 

each failure mode are still to some extent empirical. From the limited predictive capabilities of 

the most accurate analyses available, it is clear that further developments in failure models are 

required before any analysis approach can be used with confidence to predict the strength of a 

typical composite component. In conclusion, this exercise highlighted the gap between the 

theoreticians and designers. The designers need easy to use software tools to perform the 

analyses of composite laminates. Therefore, the theoreticians need to recognize the trade 

between a complex theory and a practical predictive tool.  

 

2.4.2 Composite Materials Handbook (CMH-17): Crashworthiness Section   

 

The Composite Materials Handbook-17 (CMH-17) is the product of another example of 

extensive studies done by experts from the industry, academia and regulators, which is supported 

by the Federal Aviation Administration (FAA) in the United States. It provides reliable 

guidelines and standards for design, fabrication, characterization, test and maintenance of 

composite materials and structures. A round-robin exercise was initiated in 2008 as part of the 

CMH-17 crashworthiness and energy management activities. Its main purpose was to assess the 

performance of various commercial FE codes, in predicting the crush response of a number of 

composite components. Commercial code vendors, academia and industry participants willing to 

participate in this exercise have attempted to use the current capabilities of explicit FE codes, 

LS-DYNA, Abaqus/Explicit, PAM-Crash, and Radioss, to tackle these challenging problems. 

This is an on-going simulation effort backed by testing program for their validation that is 

progressing from the base level of the building-block consisting of small scale and simple 

coupons through to sub-assemblies of configured composite components that are representative 

of crash absorbing structures. 
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2.4.3 Damage tolerance design principles (DTDP) program  

 

More recently, Air Force Research Laboratory (AFRL) funded a program called “Damage 

Tolerance Design Principles (DTDP)” with the goal to evaluate existing technology in composite 

damage progression modeling and prediction, and evaluate them for application to future damage 

growth analysis needs. This program was limited to participants from analysis teams based in 

USA including: (1) the University of Michigan, who is running the NASA Glenn MAC/GMC 

software, Enhanced Schapery Theory, and NCYL, (2) AlphaSTAR, who is running their 

GENOA software, (3) Multiscale Design Systems, who is running their MDS-C software, (4) 

Autodesk, who is supporting LM Aero on the application of their ASCA software, (5) Vanderbilt 

University, who is running their Reduced-order Space-Time Homogenization software; (6) 

Global Engineering and Materials, Inc., who is running their X-FEM software, and (7) 

University of Dayton Research Institute, who is running their BSAM software. 

 

The goal of this study was to assess the ability of emerging progressive damage analysis methods 

to predict the type and location of damage as a function of fatigue cycles and to predict the 

residual strength and stiffness after fatigue. This research project was expected to assess the 

‘readiness’ of various progressive damage analysis tool for design application. This program 

conducted through four separate contracts. The largest was with Lockheed Martin Aeronautics 

Company who led the study for the first four analysis teams mentioned above. The other three 

teams were part of three separate contracts being led by the Aerospace Systems (RQ) and 

Materials and Manufacturing (RX) Directorates of AFRL. 

 

In the first phase of the program, AFRL and Lockheed Martin (LM) assessed the ability of nine 

different analysis methods to predict the mechanical response of open-hole coupons made of 

IM7/977-3 with three different layups [0/45/90/-45]2s, [60/0/-60]3s and [30/60/90/-60/-30]2s under 

static and fatigue tensile and compressive loading conditions. They were asked to blind predict 

the static strength of unnotched and notched coupons and once they delivered the predictions, 

they were allowed to review the test data and make “recalibrations” to their models if need be. 

The same process was repeated for notched fatigue coupons. Each analysis team ran simulations 

to predict the residual static properties, damage progression, and stiffness degradation as a 
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function of cycles. Some of the assessments are published by Engelstad and Clay [63,64] for 

fatigue test of open-hole laminate layup [0/45/90/-45]2s, which indicates that the fatigue average 

blind prediction error in terms of residual stiffness and strength was 21%, and the recalibrated 

error was 10%, a factor of two improvement over the blind predictions.  

 

Among the factors that they found essential in the predictions were, having finite element 

modeling expertise regardless of the level of complexity of the damage formulations, adjusting 

for mesh dependency in damage analysis, including the inter-laminar damage in the analysis. It is 

specifically noted that inter-laminar fatigue is an important failure mode for aircraft structure, 

and a focus on maturing this capability would be very important. Most of the micromechanics-

based (multi-scale) analysis teams did not include discrete (cohesive based) inter-laminar 

damage in their analysis which led to loss of accuracy in the results.  

 

2.5 Summary  

 

In this chapter, different scales of damage in composite materials were discussed. An overview 

of the current failure theories for prediction of the initiation of various damage modes including 

fibre failre, matrix failure and delamination was provided.  

 

Common computational methods to simulate the progression of damage in composite structures, 

namely the continuum and discontinuous approaches were presented in this chapter. Table  2-8 

provided a summary of different research groups that pursue one or combination of the presented 

numerical methodologies in an attempt to address different attributes of composite structures 

including static, dynamic, impact and crash analysis.  

 

Based on the landmark studies that were described in this chapter, there are still technology gaps 

in both experimental and computational methods. The objective of this study is to improve the 

computational modeling of progressive failure of composite laminates. The focus is primarily on 

the meso-level and we will work towards a framework in which different failure processes are 

taken into account. The main challenge is to account for the interaction of these damage 

processes without compromising the efficiency of the modeling framework. To formulate 
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physically based, reliable and robust models is one thing, but to characterize the input material 

properties and calibrate them is at least as challenging. This is therefore one of the main issues 

that has been tried to address in the development of the proposed framework. 
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Table  2-8: An overview of the ongoing research on simulation of damage in composites at various research institutes and finite element vendors around 
the world including sample articles/references and model scales as well as their capabilities and applications, extended from [73] 

Research Group/FE Vendors Sample References Scales Capabilities and Applications  
  Micro Meso Macro   

University of Liege, 

Computational & Multiscale 

Mechanics of Materials 

 

(Wu, Noels et al. 2012) [271] 

(Wu, Noels et al. 2013) [272] 

x  x 2-phase composites with moderate fibre volume 

fraction (unidirectional) 

Polytechnic University of 

Madrid 

 

(Llorca, Gonzalez et al. 2011) [156] x  x 2-phase unidirectional composites 

Northwestern University 

Michigan University 

(Smilauer, Hoover et al. 2011) [226]  x x 2-phase braided composites 

Ohio State University (Ghosh, Bai et al. 2007) [78] 

(Raghavan, Li et al. 2004) [205]  

x x x Matrix with particle reinforcements 

Luisiana State University (Voyiadjis, Deliktas et al. 2001) 

[257] 

x  x Transverse matrix cracking 

LMT-Cachan 

 

(Lemaitre, Desmorat et al. 2000) 

[150]  

(Ladeveze 2004) [137] 

(Ladeveze, Nouy 2003) [139]  

 x 

x 

x 

 Examples shown for unidirectional and woven 

materials but applicable to various architectures 

 

University of Illinois at Urbana-

Champaign 

 

(Inglis, Geubelle et al. 2008) [109] x  x Transverse crack in matrix  

Delft University of Technology 

 

(Nguyen, Stroeven et al. 2012) [182] 

(Van Der Meer, Moës 2012) [250] 

x  

x 

x 

x 

Can be applied to transverse matrix cracking 

Mixed cohesive-XFEM for Laminates 
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Table  2-8: An overview of the ongoing research on simulation of damage in composites at various research institutes and finite element vendors around 
the world including sample articles/references and model scales as well as their capabilities and applications, extended from [73] 

Research Group/FE Vendors Sample References Scales Capabilities and Applications  
  Micro Meso Macro   

Columbia University (Fish, Yu 2001) [69] x x x Transverse matrix cracking 

Texas A&M University  

 

(Singh, Talreja 2009) [224] x x  Matrix cracking in multi-directional laminate 

University of Girona 

University of Porto 

 

(Maimi, Camanho et al. 2007) [161] 

 

 x 

x 

 

x 

Ply-based (unidirectional lamina) 

Sub-laminate 

NASA Lewis Research Centre 

NASA Glenn Research Centre 

(Chamis, Murthy et al. 1996)[37] 

 

x x 

x 

x Multi-scale framework 

Part of the WWFE I 

Clarkson University 

AlphaSTAR GENOA 

(Abdi, Godines et al. 2015) [9] x x  Multi-scale progressive failure analysis involving 

damage and fracture evolution 

GENOA supports the following strength-based failure 
criteria: maximum stress/strain, Tsai-Wu, Tsai-Hill, 
Puck, Hoffman and Hashin. 
Various specific micromechanical degradation 
approaches are available to model matrix defects or 
residual stresses due to curing and manufacturing 
effects. Fibre failure in tension and compression can 
be modelled with probabilistic Weibull strength 
distribution. 
Standard CZM and VCCT features are implemented 
in GENOA. 
Constitutive modelling is available to implement 
subroutines in FORTRAN, C/C++ and PYTHON. 

AutoDesk/LM Aero (Dalgarno, Robbins 2012) [50]  x x Using constituent average stress states to predict 
damage and failure of the constituents 
Autodesk Simulation Composite Analysis (ASCA) 
software 
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Table  2-8: An overview of the ongoing research on simulation of damage in composites at various research institutes and finite element vendors around 
the world including sample articles/references and model scales as well as their capabilities and applications, extended from [73] 

Research Group/FE Vendors Sample References Scales Capabilities and Applications  
  Micro Meso Macro   

Autodesk/Helius http://www.autodesk.com/products/h
elius-composite/overview 

   Autodesk Helius Composite is a standalone package 
that offers a collection of analytical tools for 
conceptual design of composite materials. 
 
Helius Progressive Failure Analysis (PFA) is an add-
on for commercial FEA programs and provides 
multiscale simulation capabilities. It is compatible 
with Abaqus, Ansys and MSC products, Multiple 
failure criteria are available to enable users to view 
damage effects in the fibre and matrix and identify 
multiple modes of failure. 

Ansys Composite PrepPost http://www.ansys.com/  x x Various failure criteria are available: maximum 
stress/strain, Tsai-Wu, Tsai-Hill, Hashin, LaRC, 
Cuntze and Puck. Degradation is coupled with the 
Chang and Chang softening model [39]. 
VCCT capability is implemented. 
CZM interfaces can be defined interms of maximum 
relative displacement at interface and critical fracture 
energy values. 
User defined material models can be implemented in 
UPFs (User-Programmable Features) written in C or 
FORTRAN. 
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Table  2-8: An overview of the ongoing research on simulation of damage in composites at various research institutes and finite element vendors around 
the world including sample articles/references and model scales as well as their capabilities and applications, extended from [73] 

Research Group/FE Vendors Sample References Scales Capabilities and Applications  
  Micro Meso Macro   

Abaqus Simulia http://www.3ds.com/products-
services/simulia/ 

   Damage initiation can be controlled by maximum 
stress/strain criterion or two-dimensional Hashin’s 
criteria.  
Material degradation due to damage is governed by 
linear or exponential softening. 
CZM is available in the form of cohesive surfaces or 
elements in two- and three-dimensional applications. 
VCCT is implemented in combination with several 
linear, bilinear and mixed-mode fracture criteria. 
X-FEM is possible. A pre-crack (if existing) and a 
potentially cracked domain need to be defined by the 
user a priori. 
User defined constitutive modelling can be 
implemented in C or FORTRAN through USDFLD or 
UMAT subroutines for implicit solvers and 
VUSDFLD and VUMAT in explicit problems. 

LSDYNA http://www.lstc.com/    Initiation and progression of damage in composites is 
available through Chang and Chang’s failure criteria 
with associated strength and stiffness degradation 
[39].  
Other failure criteria such as Tsai-Wu or maximum 
strain criterion are also available. Strain rate effects 
can additionally be considered.  
The material library is frequently updated in order to 
provide most recent developments such as the non-
local sub-laminate based CDM approach (MAT219) 
or orthotropic continuum damage models (MAT261 
and 262). 
Cohesive surfaces/elements are available in 
combination with mixed mode or trilinear traction-
separation law.  
VCCT approach is implemented. 
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Table  2-8: An overview of the ongoing research on simulation of damage in composites at various research institutes and finite element vendors around 
the world including sample articles/references and model scales as well as their capabilities and applications, extended from [73] 

Research Group/FE Vendors Sample References Scales Capabilities and Applications  
  Micro Meso Macro   

MSC  
 
Patran/ Marc/ Mastran  

 
 

http://www.mscsoftware.com/    Damage initiation can be determined by maximum 
stress/strain, Hill, Hoffman, Tsai-Wu, Hashin and 
Puck criteria. 
 
VCCT and CZM capabilities are implemented. 
 
User defined failure models can be incorporated 
through UFAIL subroutines. 

University of Dayton Research 
Institute (UDRI) 

(Iarve, Hoos et al. 2016) [107]  x x B-spline interpolated finite element approach 
Embedded mesh independent through thickness 

cracks or in-plane delaminations in a similar manner 

to X-FEM 

University of California, 

Berkeley 

(Matzenmiller, Lubliner et al. 1995) 

[166] 

 x  Unidirectional lamina 

Technical University of 

Denmark 

Georgia Institute of Tech 

(Talreja 1985) [238] 

(Talreja 1989) [237] 

(Lacy, McDowell et al. 1997) [135] 

 x  Unidirectional lamina 

Short fibre composites 

University of Illinois at 

Chicago 

(Krajcinovic 1985) [130] x x  Unidirectional lamina 

NPL Materials Centre, UK (McCartney 2005) [167]  x  Unidirectional laminate 

Louisiana State University (Voyiadjis, Deliktas 2000) [258]  x x Composite Laminates 

RPI and Northwestern (Cusatis, Beghini et al. 2008) [49]  x  Micro-plane based damage model for unidirectional 

lamina 

US Airforce Materials Lab 

Hercules Materials Tech. Dept. 

(Tan, Nuismer 1989) [239]   x Matrix cracking in laminates 
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Table  2-8: An overview of the ongoing research on simulation of damage in composites at various research institutes and finite element vendors around 
the world including sample articles/references and model scales as well as their capabilities and applications, extended from [73] 

Research Group/FE Vendors Sample References Scales Capabilities and Applications  
  Micro Meso Macro   

University of Bristol (Hallett 2005) [86] 

(Hallett, Green et al. 2009) [87] 

 x 

x 

x 

x 

Ply-based simulation of laminates 

University of Alberta  

(Karihaloo, Xiao 2003) [126] 

(Grufman, Ellyin 2007) [84] 

x 

x 

x 

  Micro-mechanical models for matrix cracking and 

fibre-matrix interface failure in unidirectional 

laminates 

University of British Columbia (Williams, Vaziri et al. 2003) [267] 

(Forghani, Zobeiry et al. 2011)  [76]  

(Forghani, Zobeiry et al. 2013) [75] 

  x Macro-scale modelling of laminated composites using 

sub-laminate approach 

MAT219 in LSDYNA 
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Chapter 3: Intra-laminar Damage Modelling  

 

3.1 Introduction  

 

Continuum damage mechanics (CDM) has been commonly used to simulate the damage 

behaviour of composite laminates. The main challenge in this approach is to describe the secant 

stiffness of the damaged orthotropic material in terms of damage parameters and to specify the 

growth law for damage modes. 

 

The sub-laminate based approach that was first introduced by Williams et al. [267] known as 

Composite DAmage Model (CODAM) is a CDM approach where the reduction of the stiffness 

matrix is written in terms of a set of damage parameters. The model represents damage growth in 

a Representative Volume Element (RVE) as shown schematically in Figure  3.1. The height and 

width of the RVE are equal to the characteristic length of damage in each of these directions.  

The characteristic height of a quasi-brittle material is defined as the actual height the damage 

would grow to if experimentally tested under conditions that lead to stable self-similar damage 

growth.  The thickness corresponds to the thickness of the sub-laminate.  Defining the RVE 

thickness in such a way allows smearing the stiffness reduction effect of macro-cracks as well as 

making the model more computationally efficient. CODAM material model as a CDM approach 

provides a smeared representation of damage mechanisms and their growth within a damage 

zone which encompasses the matrix cracking and fibre breakage and minor delamination. The 

main purpose of this model is to predict the effect of damage on the macroscopic behaviour of 

the laminate such as its stiffness, load carrying capacity, post-peak behaviour and energy 

absorption.  Damage growth in the RVE is represented by an overall decrease in the normalized 

secant modulus ( oEEE  , where oE  is the initial undamaged modulus).  The modulus reduces 

with increasing amounts of damage, as indicated by three damage variables ( ) that represent 

the degradation of effective modulus in two perpendicular directions (in-plane principal 

directions) and the shear modulus in the same coordinate system (plane). The damage parameters 

in this model are explicitly written in terms of effective strain function (F). The effective strain is 

a function of the various strain components, which allows strain interactions to be incorporated 
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into the model.   A damage growth curve (  vs. F), is defined for each principal direction (x, y, 

and z) for both tension and compression (see [267] for further details). The damage parameter for 

the in-plane shear is defined based on the damage parameters in x and y directions. In this model 

a general multi-linear relation between the damage parameter and the equivalent strain function 

can be defined (see [267]). By changing ω vs. F   curves, one can get a variety of stress-strain 

behaviours such as instantaneous failure and brittle fracture. 

 

Figure  3.1 schematically shows an RVE of a laminate subjected to uniaxial strain. Figure  3.1(b) 

shows the typical nominal stress-strain behaviour of the sub-laminate RVE under the applied 

deformation. 

 

 

Figure  3.1: (a)  Schematic of an RVE for a cross-ply laminate at three stages: (1) before the damage starts (2) 
formation of microcracks mainly in the matrix and fibre (3) microcracks merge and form a through crack in 
the laminate. (b) schematic nominal stress vs. nominal strain behaviour of the RVE under applied 
deformation, adapted from [267]  

 

The ability of CODAM was demonstrated under various loading scenarios including: 

1- Quasi-static loading of notched laminates [71,266,267,286,287] 

2- Transverse impact of composite plates [266,268] 

3- Axial impact of composite tubes [170,171,174] 

Elastic
Matrix cracks, delamination 

and some fibre cracks
Complete 

failure

(a) (b)



Force

1

2

3

Initial 
stiffness of 
laminate box

  

1 2 3






thickness
w

L

RVE



51 

 

Forghani [76] showed that the original formulation of CODAM has an unrealistic dependency on 

the choice of the coordinate system used to formulate it and it is not capable of predicting the 

damage-induced orthotropy. Therefore, Forghani [76] improved the formulation of CODAM by 

writing the formulation of damage potential functions in terms of the strain components in the 

direction of fibres and transverse to the fibres of the constituent plies. Therefore, the new 

formulation which is called CODAM2 has a direct relationship with the directional properties of 

the constituent layers inside the sub-laminate [76]. Bringing the fibre orientation into the damage 

formulation provides the opportunity to address the dependency of the model on the choice of 

material’s coordinate system.  Similar to the original formulation of CODAM, the sub-laminate 

is modelled as a whole unit (i.e. macroscopically) given that there is no major delamination in 

the sub-laminate. It should be noted that CODAM2 developed by Forghani [76] is not meant to 

predict the details of damage in the layers of the laminate. However, by assuming the effective 

behaviour of layers, the goal is to capture the overall behaviour of the laminate in a structure.  

 

In using the sub-laminate as the building block, delamination within the sub-laminate cannot be 

explicitly simulated. As will be discussed in detail, the application of CODAM2 material model 

faces some limitations in applications where macroscopic matrix cracks (e.g. splits) are 

accompanied by large delamination zones. This brings a motivation for having a more general 

numerical approach in order to tackle not only the problems for which damage progression can 

be treated in a smeared continuum approach, but also for problems where large delaminations 

cannot be smeared using a fully continuum damage model.  

 

In this chapter a brief description of the original CODAM2 material model formulation and its 

main limitation in addressing the response of composite laminates that are prone to delamination 

will be presented (see Section  3.2). As will be explained in this chapter, the discrete delamination 

damage mode will interact with the intra-laminar damage modes specifically the intra-laminar 

fibre/matrix splits. This effect can be captured by explicitly modelling discrete delamination 

using a cohesive interface approach (see Chapter 4) in combination with CODAM2 material 

model for treating intra-laminar damage modes. However, in order to use CODAM2 in the 

context of a mesoscopic model with the presence of delamination, its formulation is enhanced 

and presented in Section  3.2.4.  
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3.2 UBC composite damage Model- CODAM2 

 

The CODAM2 material model developed by Forghani [76] is the second generation of the UBC 

CODAM model, which aims to address the material objectivity issue inherent in the original 

CODAM formulation. 

 

Owing to the mismatch between the individual layer properties in laminated composites, the 

local stress and strain state in the laminate is very complex. The complexity increases when 

damage is introduced to the system as damage modes interact at smaller scales. The interaction 

between the layers and existence of various damage mechanisms affects the behaviour of a layer 

within the laminate significantly. CODAM2 acknowledges the fact that orientations of the layers 

play an important role in damage behaviour of the laminate. In CODAM2, the response of the 

laminate is based on the effective behaviour of the layers in the laminate. In the following 

subsections, the formulation of this material model as well as the characterization procedure for 

its main damage parameters will be explained.  

  

3.2.1 Formulation 

 

As mentioned before, the composite damage model (CODAM) is a macro-scale model in which 

the effect of damage propagation on the overall response of the laminate is described at the level 

of the RVE [267].  

 

The necessity of being able to consider the exclusive effect of individual plies- associated with 

their fibre orientations and stacking sequence- on the propagation of damage has demanded 

development of the second generation of Composite Damage Model (CODAM2) [75]. The 

damage behaviour of the sub-laminate in CODAM2 is defined in terms of the effective strain of 

its constituent layers to account for the layup scheme of the sub-laminate. This is in contrast to 

the original formulation of CODAM where damage states were defined directly based on overall 

sub-laminate strains. 
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(a) (b)  

Figure  3.2: (a)  A four-layer quasi-isotropic sub-laminate subjected to uniaxial tensile strain and its typical 
stress-strain response, (b) the typical stress-strain response of individual layers in both the fibre direction and 
transverse to the fibre direction  

 

The basic concept behind CODAM2 is shown schematically in Figure  3.2. The stress-strain 

curve for a quasi-isotropic laminate subjected to a uniaxial tensile strain is shown in 

Figure  3.2(a). This curve is built-up of the bilinear stress-strain curves of individual plies as 

shown in Figure  3.2(b). The points on the laminate’s stress-strain curve indicate different stages 

of damage within the constituent layers. For example under tensile loading, first at point #1 

matrix damage in the 90º plies initiates. Later at point #2, the fibres in the 0º layer start to 

degrade. At point #3, fibre damage initiates in the ±45º layers while matrix damage of 90º layer 

has saturated. At point #4, fibre damage in the 0º is saturated and finally at point #5, the load 

carrying capacity of the laminate is exhausted through saturation of fibre damage in the ±45º 

layers. 
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In this material model, for a plane-stress condition the stiffness of the damaged laminate, dQ , is 

written as the summation of the effective contributions of the layers in the laminate.  

*1d T d
k k k k

k

t
t

 Q T Q T  ( 3.1) 

where kt  is the kth layer thickness, t  is the laminate thickness, dQ  is the effective reduced 

secant stiffness of the laminate, *T
kT  and kT  are the transformation matrices for strain and stress 

vectors and d
kQ  is the damaged in-plane secant stiffness of the kth layer in its principal material 

direction written as: 
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Q  ( 3.2)  

 

A physically-based and yet simple approach is adopted to derive the damaged stiffness matrix. 

Two reduction coefficients, 1R  and 2R , that represent the reduction of stiffness in the 

longitudinal (fibre) and transverse (matrix) directions have been employed. The shear modulus 

has also been reduced with the same matrix stiffness reduction parameters. The stiffness 

reduction parameters, ( 1,2)R   , are defined as linear functions of damage parameters, 

( 1,2)   , as shown in Figure  3.3 (a). 

 

The damage parameters, ( 1,2)   , are explicitly defined in terms of the maximum  

equivalent strains that the material has experienced throughout its loading history. 

 

The damage parameters, ( 1,2)   , are calculated as a function of the corresponding non-local 

equivalent strains. In CODAM2 the damage parameters are assumed to grow as a hyperbolic 

function (Figure  3.3 (b)) of the damage potentials (i.e. equivalent strains) such that when used in 

conjunction with stiffness reduction factors that vary linearly with the damage parameters 
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(Figure  3.3 (a)), they result in a linear strain-softening response (or a bilinear stress-strain curve) 

for each mode of damage. The explicit form of this relation is shown below: 

 ,       for 0,   {1,  2}
eq i s

eq i

s i eq
  

  
  

  
   

  


   


 ( 3.3)  

 

where superscripts i and s denote, respectively, the damage initiation and saturation values of the 

strain quantities to which they are attached.   The equivalent strain function that governs the fibre 

stiffness reduction parameter, 1
eq , is written in terms of the longitudinal normal strains as shown 

in Equation ( 3.4). The equivalent strain function that governs the matrix stiffness reduction 

parameter, 2
eq , is written in an interactive form in terms of the transverse and shear components 

of the local strain as shown in Equation ( 3.5). 

1 11
eq   ( 3.4) 

2 212
2 22( ) ( )       

2
eq 

    ( 3.5) 

 

The sign of the principal strain with maximum absolute value plays a role in initiation and 

growth of matrix damage since it indicates the compressive or tensile nature of the matrix 

damage driven by 2
eq . Whereas, the sign of strain in the fibre direction determines the 

compressive or tensile nature of fibre damage which is driven by 1
eq . 

 
Damage is considered to be a monotonically increasing function of time, t, such that: 

(t) max ( ) t      
 

 ( 3.6)   

where (t)  is the damage parameter for the current time (load state), and ( )   represents the 

state of damage at previous time steps t   . 
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                      (a) (b) 

Figure  3.3: (a) The stiffness reduction factor vs damage, (b) Damage parameter vs equivalent strain 
parameter 

 

The material formulation of CODAM2 was introduced by Forghani [76] in the finite element 

code, OOFEM [192]. OOFEM is an open-source code distributed under GNU General Public 

License.  Later, this material model became available as a built-in material model, MAT219, in 

the commercial finite element software, LS-DYNA [158].  

 

It is widely acknowledged that continuum damage models lead to the localization phenomenon. 

The solution for a structure made of a progressively damaging elastic solid predicts localization 

of damage over a surface of zero thickness leading to the energy dissipated by the damage 

process being equal to zero. This would happen regardless of the shape of the softening part of 

the stress-strain curve [115]. 

 

The above problem manifests itself as spurious mesh size dependency in the finite element 

solution. In such cases damage/crack pattern tends to localize to the smallest length scale of the 

model that is the height of one element. Therefore, with successive mesh refinement, damage 

localizes into a zone of zero volume and the numerical predictions fail to converge to a unique 

solution. Consequently, the global response of the system shows a strong dependency on the 

spatial discretization. 

 

To address the localization issue, various solutions have been proposed. A simple approach that 

has been widely used in continuum damage-based methodologies is the crack-band method. In 

R

w



i


s


eq
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this approach that was originally proposed by Bazant [24], the softening part of the stress-strain 

relation is scaled according to the height of the element to keep the energy dissipated during the 

damage progression constant and independent of element height. Assuming that fg  is the area 

under the stress-strain curve known as the fracture energy density, then the fracture energy, fG , 

can be written in the following form:      

ff cG g h  ( 3.7) 

where ch  is a characteristic length scale of damage that can be related to the height of the 

damaged zone. In a finite element analysis where damage localizes into a single row of elements, 

ch  would be equal to the height of the element, eh .  

 

By scaling the fracture energy density according to the height of element, the crack-band method 

ensures that the fracture energy fG  remains constant and independent of the element size.  

f cf
f

e e e

g hG
g

h h
   

( 3.8) 

The crack-band model can be seen as a representation of cohesive crack in a smeared sense 

where the traction-separation law is translated into a stress-strain law. In this case, opening of the 

crack faces is smeared over the height of an element and is represented by strain.  

 

While simplicity and ease of implementation in commercial codes are the advantages of the 

crack-band approach, a few points should be taken into account when using this approach: 

 

 Crack-band method works best in structured meshes with rectangular elements. 

Triangular elements and unstructured quadrilateral elements bring complications to the 

concept of height of element in the analysis.  

 The damage pattern predicted using the crack-band approach does not represent the 

physical shape of the damage zone as its height is equal to the height of one element.  

 Similar to cohesive crack models, this method is applicable to cases where in reality there 

is a distinct localization of damage and formation of a crack. Growth of damage and 

crack in a notched specimen under quasi-static loading is an example of such situation. In 
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very fast dynamic events such as blast and high-velocity impact loading where the 

damage takes a more spatially distributed form and thus a well-defined path for the crack 

propagation does not exist, the applicability of the crack band concept becomes 

questionable. 

 The crack-band method cannot solve the mesh-orientation dependency problem 

associated with the local finite element solution. 

Based on the limitations of this method, an alternative approach using the non-local averaging 

technique can be used in CODAM2 material model to address localization. This method that was 

introduced by Forghani [76] will be presented in the following subsection. This technique 

prevents the localization by implicitly introducing a length scale in the governing equations. 

Introduction of this length scale forces the damage to grow in a zone with a finite width that is 

independent of spatial finite element discretization. A detailed body of literature on different 

types of non-local damage formulations is available in [23,25,72].   

 

3.2.2 Non-local averaging  

 

In a damage formulation enhanced with a non-local scheme, unlike the local formulation, the 

state of stress at a point does not only depend on the state of strain and history parameters at that 

point, but also depends on the state of these parameters in a finite neighborhood of that point. 

Non-local averaging is a common approach among the non-local methods. In this method, a 

suitable parameter,   is averaged over a neighborhood of a generic point iX  as follows:  

1
( ) ( ) ( )i i

i

W d
W

 


  
x

X x X x  

( )i iW W d


  
x

X x  

( 3.9) 

In this equation,   is the average of   over the zone x  and W  is a weighting function. It is 

critical to choose an appropriate parameter for averaging in a non-local formulation. Various 

case studies have shown that the equivalent strains eq
  defined by Equations ( 3.4) and ( 3.5) are 

suitable parameters for averaging in CODAM2 formulation (see [72]).  Therefore, the local 
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equivalent strains, eq
 , in Equation ( 3.3) for calculation of damage will be replaced by their 

corresponding non-local values, eq
 , leading to damage parameters in non-local CODAM2 

material model being written as: 

  

 ,       for 0,   {1,  2}
eq i s

eq i

s i eq
  

  
  

  
   

  


   


 ( 3.10)  

 

Averaging is usually performed over a finite neighborhood of the original point using a weight 

function. In the following, two possible domains over which averaging can be performed are 

described. 

 

3.2.2.1 Orthotropic non-local averaging 

 

An orthotropic averaging scheme was introduced by Forghani [72] that was implemented in 

OOFEM for CODAM2 material model. The idea behind the orthotropic averaging is motivated 

by the physics of damage growth in a fibre reinforced composite medium. The neighboring 

points of a material point for which averaging is performed, have different contributions. It 

depends not only on the distance of the neighbour point from the material point but also on the 

alignment of the vector that connects it to the material point with respect to the fibre direction. 

Therefore, it is suggested to write the weight function for orthotropic averaging in terms of the 

effective distance (radius) as follows: 

2 2

1 2
1

1 2

eff d d
r

r r


   
    

   
 

  

( 3.11) 

                                 

where 1d  and 2d  are the components of the vector that connects a material point like ‘A’ shown 

in Figure  3.4(a) to its neighbor point ‘B’ in the 1x  and 2x  directions (parallel and perpendicular 

to the fibre directions). In this equation, 1r  is the non-local radius along the fibre direction and 2r  

is the non-local radius in the transverse direction and 1 2r r . The weight function in the form of 

a bell function is written in terms of the effective radius,
eff , defined as: 



60 

 

22

1

( ) 1
eff

effW
r




  
    
   

 ( 3.12) 

This method introduces two length scales, 1r  and 2r , into the system. The predicted height of 

damage in the laminate would depend on these two averaging radii as well as the lay-up and the 

loading configuration. 

 

  

(a) (b)  

Figure  3.4: The averaging zone in non-local approach for (a) orthotropic averaging method and (b) for 
isotropic averaging method 

 

3.2.2.2 Isotropic non-local averaging 

 

The application of non-local averaging for the built-in CODAM2 material model in the 

commercial finite element software LS-DYNA (MAT219) is possible by using an 

implementation of non-local averaging based on the work by Bazant and Pijaudier-Cabot [25]. 

When the CODAM2 material model is used in conjunction with the non-local averaging 

capability of LS-DYNA, the averaged equivalent strains of each point will be computed similar 

to Equation ( 3.9): 

1
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where x  is the averaging zone which in contrast to the orthotropic method introduced by 

Forghani [72] is a circle with radius, r,  as shown in Figure  3.4(b). Therefore, the neighboring 

points of a material point have the same contribution irrespective of the alignment with respect to 

eff
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the fibre direction of the vector that connects them to the material point. Thus, this method will 

be referred to as the isotropic non-local averaging method. The weight function available in LS-

DYNA for this purpose is defined as: 

  

2 2
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( )    with 
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( 3.14) 

 

in which p and q are parameters that define the shape of the weight function. The variation of 

this function for different sets of p and q are shown in Figure  3.5. In the built-in version of 

CODAM2 material model available in LS-DYNA (MAT219), however, the weight function is 

similar to the Gaussian function of Equation ( 3.12) introduced by Forghani in OOFEM [72].  

 

 

 

 

Figure  3.5: Distribution of non-local averaging weight function in x-direction (parallel with notch direction 
in an OCT configuration) calculated from Equations and ( 3.12) and ( 3.14) over a circular averaging 
domain  

 

Although choosing a non-local approach may increase the computation time especially when the 

radius of averaging is much larger than the element size, it is a suitable approach to use in order 

to predict the height of damage and the direction of damage growth irrespective of the finite 

element discretization.   

 

 p=8, q=2 in Eq. (3.14) 

 p=30, q=2 in Eq. (3.14) 

 p=3, q=6 in Eq. (3.14) 

 Gaussian func. Eq. (3.12) 
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As will described in Section  3.2.4, the isotropic non-local averaging feature available in LS-

DYNA will be used in conjunction with the enhanced form of CODAM2 implemented as a user-

defined material model. Therefore, in the enhanced CODAM2 model, the weight function is 

defined based on Equation ( 3.14). However, the parameters p and q  are set to 3 and 6, 

respectively, such that Equation ( 3.14) yields a shape similar to the Gaussian function that was 

used by its predecessor (MAT219).  

 

3.2.3 Limitations of the fully continuum damage modelling approach 

 

For cases where failure is governed by discrete crack propagation such as large splits or 

delamination, continuum damage models often fail to correctly describe the propagation of 

damage through the structure. Discrete cracks redistribute the stresses around the damage zone 

and consequently alter the load paths within the structure. For instance, delamination which is 

usually accompanied by intra-laminar discrete matrix cracks close to notches or general 

discontinuities, potentially creates blunt damage fronts that reduce the stress concentration. An 

example of this can be found in open-hole tensile tests conducted by Green et al. [82] on quasi-

isotropic laminates made of IM7/8552 carbon-fibre/epoxy prepregs. It is pointed out that the 

growth of delamination from the boundary of the hole leads to propagation of splits in the 0ᴼ 

plies that act as a crack-blunting mechanism. There are many other cases with similar 

susceptibility to large delamination zones and splits that can be caused by reasons related to the 

material properties, material layup and the geometry of the problem. Examples of these cases are 

schematically shown in Figure  2.2 and can be summarized as follows: 

 

- Material systems with low inter-laminar strength that promotes delamination 

- Laminates with layups that have blocked plies 

- Geometries with free-edge or discontinuities that can promote edge delamination  

- Notched subcomponents 

- Subcomponents with holes and other geometric discontinuities 

- Components with stiffeners and ply-drops 

- Low velocity Impact 



63 

 

The effect of discrete macroscopic cracks such as delamination and large splits cannot be directly 

captured by merely using a continuum damage approach. Therefore, a combination of the 

continuum and the discrete approach at the mesoscopic scale can be used to tackle the problems 

where the effect of discrete cracks cannot be smeared. From a numerical point of view, the 

explicit modelling of delamination as a macro-crack separation of plies at the interface enables 

the split in the separated ply to grow independently of the remainder of the laminate. The 

separation from the laminate allows the split to grow so long as there is enough energy for such 

growth to occur.  

 

In the proposed methodology, in combination with the continuum approach to capture the intra-

laminar damage, a mixed-mode cohesive-based interface approach will be used to capture the 

delamination between dissimilar plies (see Chapter 4). The intra-laminar modes of damage, on 

the other hand, including matrix cracking and fibre fracture are captured with an enhanced form 

of the non-local CODAM2 material model in a mesoscopic context. The non-local averaging 

technique is very effective in predicting the trajectory of in-plane macro-cracks irrespective of 

the finite element discretization.  Therefore, the need to introduce pre-inserted discrete elements 

to capture the growth of discrete cracks is eliminated. This aspect of the proposed approach 

offers a significant advantage and therefore utility by engineers. The enhancements in the 

original CODAM2 formulation are described in order to be able to link the initiation and 

progression of damage for individual delaminated plies to the mechanical properties of 

unidirectional laminates. As will be discussed, the effect of ply thickness and constraining 

conditions imposed by neighbouring plies will also be considered.  

 

3.2.4 Damage characterization and model calibration at the sub-laminate (macro) level 

 

Zobeiry et al. [285] have used the OCT specimen that was first introduced by Kongshavn and 

Poursartip [129] for estimating the strain-softening response of laminates made of unidirectional 

prepregs under tensile loading. This geometry can lead to a self-similar and stable damage 

growth which allows application of progressive fracture analysis to the material inside the 

damage zone. Similarly, a Compact Compression Test (CCT) is used for characterizing the 

strain-softening response under compressive loading.  
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Upon employing a digital image correlation (DIC) technique and analysis of the measured 

surface displacement/strain data, the effective strain-softening response of a sub-laminate can be 

constructed.  The key parameters in characterization of a sub-laminate are the damage initiation 

strain of the laminate, the critical energy release rate or fracture energy of the sub-laminate and 

the height of damage growing in a self-similar manner.  

 

The first step in this methodology is to identify the boundary of the damaged zone [285]. 

Assuming a virtual mesh on the surface of the specimen, the displacement vectors at the virtual 

nodes of the elements are measured from the high resolution images taken from the surface. The 

nodal forces for each element will be calculated assuming that the material within the element is 

elastic. The damage zone will then be the area in which the equilibrium of forces at the nodes 

cannot be satisfied within an acceptable tolerance. The damage initiation strain of the laminate, 

i , will be the average of strain values at the boundary of the damaged zone. The fracture 

energy, Gf, associated with the laminate will also be calculated using the effective damage length 

and the area below the load-displacement curve. These damage properties are then used to 

calibrate the sub-laminate based damage model, CODAM2. 

 

Using this approach, Zobeiry [286] characterized the stress-strain response of the damaged zone 

for a quasi-isotropic laminate with [90/45/0/-45]4s layup made of IM7/8552 carbon fibe/epoxy 

prepregs. The experimental results showed minor delamination with a self-similar damage zone 

with approximate height of 4-6mm. Forghani [72] used the isotropic non-local CODAM2 model 

to simulate the progression of damage for the same test. The predictions showed a good 

agreement with the experimental results in terms of the load-displacement response and the 

damage height. Later, Zobeiry et al. [289] used the same methodology to simulate the 

progression of damage for a similar laminate layup [45/90/-45/0]4s with the same material system 

and again good agreement was achieved.  

 

Forghani [72] showed that the estimation of the damage saturation strain values has a 

relationship with the fracture energy that depends on the selected radius of averaging. In order to 

establish this relationship, he simulated the above mentioned OCT problem with an in-plane 
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finite element mesh of 0.25 mm close to the notch with varying radius of averaging. He 

calculated the predicted fracture energy value based on its fundamental definition, i.e. the change 

in the dissipated energy divided by the change in cracked surface area as the crack advances 

from one load state to the next. Then, he calculated an effective length scale, ch , which is 

defined as the ratio of the predicted fracture energy from finite element simulation, f
FEG , and the 

fracture energy density, fg , as: 

f
c FE

f

G
h

g
  ( 3.15) 

 

with 
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where ΔW is the external work done and ΔU is the change in the strain energy of the system 

when the crack length advances by an amount Δa and t  is the thickness of the laminate. He 

approximated the fracture energy density in Equation ( 3.15) from the simulation of a single 

element under uniaxial tensile strain. He showed that for two cases of 1r  mm and 2r  mm, 

ch  is approximately a constant factor of the radius of averaging (i.e. 1.6ch r ). Moreover, the 

predicted height of damage was found to be approximately2.5r . Based on the latter finding, the 

radius of averaging can be selected based on the observed height of damage in experiments (i.e. 

exp0.4r h  where exph  is the experimental damage height perpendicular to the direction of crack 

growth).  

 

Therefore, for a given laminate with known experimentally measured damage initiation strain, 

damage height and fracture energy, first the fibre and matrix damage initiation strains are 

approximated based on the damage initiation strain of the laminate. Second, the damage 

saturation strains can be approximated from the experimental fracture energy of the laminate 

with the help of Equation ( 3.15) where 1.6ch r  and r  is a factor of the damage height (i.e. 

exp0.4r h ). The idea is to estimate values for the saturation strains such that the predicted 
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energy release rate agrees with the experimental measurements of fracture energy. An iterative 

procedure can be used to estimate the saturation strain values. In a multi-directional laminate, 

assuming that the damage saturation strain for the matrix and fibre are the same, they can be 

estimated using the effective length scale 1.6ch r  in Equation ( 3.15). The iterative process can 

be summarized as follows: 

 

For a given experimental fracture energy value of the laminate, use a trial value for the fibre and 

matrix damage saturation strains:  

 

1- Simulate a single element subjected to uniaxial strain and calculate the resulting area 

under the stress-strain curve (which represents the fracture energy density, fg ).  

2- The resulting fracture energy can be approximated using Equation ( 3.15) (i.e. 

1.6f c f f
FEG h g rg   where exp0.4r h  ) 

3- Compare the estimated fracture energy, f
FEG , with the fracture energy measured from the 

OCT test, fG . If the difference is not acceptable, the process needs to be repeated. 

 

In the above calibration process, one should note that the suggested relationship between ch  and 

r  is only an approximation based on fracture energy density response of a uniaxially loaded 

single element. In the actual model, the predicted average fracture energy density of damaged 

elements might be slightly lower or higher than what is predicted from a uniaxial tensile test of a 

single element. This is due to the fact that the initiation and saturation of damage in this material 

model is based on the non-local strains reaching a threshold rather than the local strains. 

Therefore, the stress-strain curve of an element damaged in an averaged zone is slightly different 

from that obtained from a single element loaded uniaxially. In testing a single element, damage 

state is not affected by neighbor elements as they are in a real model. For example, in a 

monotonic tensile loading of an OCT specimen, when the equivalent strains of a material point 

with a potential to get damaged is averaged, its non-local equivalent strains might be less than its 

local equivalent strains; therefore, damage in the element might be delayed. This may lead to 
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over-prediction of the peak stress and the overall peak force which can be unrealistic. However, 

this problem can be addressed by using the above mentioned iterative process. 

 

The above mentioned iteration process can be avoided by introducing a more straightforward 

method for indication of the initiation and saturation strains of damage modes. In other words 

instead of approximating the damage initiation and saturation values from the local stress-strain 

behaviour of a single element followed by iterations, these values can be directly calculated as 

part of the material formulation. As will be shown in Section  3.2.4, using a set of stress-based 

failure criteria, the initiation of equivalent strains can be directly specified in order to 

automatically account for the effect of the stress-state at the initiation of damage. This will 

ensure that the maximum stress of the local stress-strain curves is not over-predicted. Moreover, 

the saturation values will also be directly calculated as part of the material formulation by 

inputting the fracture energy entities directly. These modifications have been carried out as part 

of the enhancement of CODAM2 material model which will be discussed in detail in 

Section  3.2.4.  

 

3.3 Enhanced CODAM2 material model 

 

In application of macroscopic CODAM2, as mentioned in the previous sections, the initiation 

and saturation of equivalent strains for fibre and matrix damage modes can be estimated by 

knowing the effective stress-strain (strain softening) curve of the sub-laminate and its fracture 

energy. However, when delamination is dominant, measurement of the sub-laminate’s fracture 

energy in presence of extensive delamination zones between the plies becomes impossible.  This 

is due to the fact that the notched experiments needed to characterize the fracture properties do 

not lead to self-similar and stable growth of damage. The estimation of the initiation of matrix 

cracking also becomes more complex as a result of its interaction with the adjacent plies through 

delamination. In fact, a common cause of delamination is the high inter-laminar stresses induced 

at the tip of matrix cracks [232] which highlights the importance of proper estimation of the 

onset of matrix cracking. Many studies have shown that the formation of transverse matrix 

cracks in a ply depends on the constraining effects of its neighboring plies as well as the 

thickness of the ply [191,217]. For example, experiments show higher transverse tensile and 
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shear strengths for a 90 ply constrained by plies with different orientations in comparison with a 

unidirectional 90 laminate (see [10,45,82,127,191]).  Based on these observations, some 

researchers differentiate between the behaviour of a unidirectional lamina and that of a lamina 

embedded within a laminate [52,70,227]. Moreover, thicker transverse plies are more prone to 

matrix cracking and delamination. The interaction of splits and delamination in adjacent 

interfaces has also been the subject of extensive studies on matrix-crack induced delamination 

that promotes splits in the neighboring plies (see [10,82,87,127]).  

 

In simulating the behaviour of laminates that are prone to delamination, the CODAM2 material 

model needs to be used in a meso-model context where intra-laminar damage modes in plies are 

captured by non-local continuum damage approach and delamination is captured by a discrete 

methodology. To achieve the first part, some enhancements are made to the original formulation 

of CODAM2. The added features to CODAM2 material model in addition to what is available in 

the built-in form of the original model in LS-DYNA (i.e. MAT219), are implemented in a user 

material model (UMAT) [158]. The enhanced formulation allows one to predict the growth of 

intra-lamimar damage modes at plies that are separated from the sub-laminate as a result of 

delamination. This is essential in studying the behaviour of laminate layups or loading 

geometries that are prone to delamination. 

 

The rest of this chapter will summarize all the modifications that are implemented in CODAM2 

material formulation to be able to use the model in conjunction with a discrete approach. We 

may refer to this enhanced form of the material model, the mesoscopic non-local CODAM2 

model to distinguish it from its predecessor which was used in macroscopic scale.  

 

3.3.1 Intra-laminar damage  

 

The CODAM2 material model is modified and implemented as a user material model for LS-

DYNA in order to predict the initiation and progression of damage in the individual plies as the 

building blocks of the laminate.  
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Similar to the original formulation of CODAM2, the progression of intra-laminar damage modes 

are tracked by two damage parameters that are written in terms of the non-local averaged 

equivalent strain components,  eq
 ( {1, 2}  ), as follows (see Figure  3.3b): 

,     {1,  2}
eq i s

s i eq
  



  

  
 

  

 
  

 
 ( 3.17) 

 

where i
  and s

  indicate the strain values associated with damage initiation and saturation, 

respectively. Based on the concept of non-local continuum damage and the averaging feature 

available in LS-DYNA [158] for user-defined material models, the averaged equivalent strains, 

2
eq   and 1

eq , at each integration point are obtained by averaging the local equivalent strains of 

all the integration points within a circular domain with radius, r (see Equation ( 3.13)). For user-

defined material models, the weight function of non-local averaging is defined by Equation 

( 3.14). In order to be consistent with the bell-shape Gaussian function that is used for the original 

formulation of CODAM2 in OOFEM and in the built-in MAT219 in LS-DYNA, the values of 

p=3 and q=6 are selected for the weight function defined in Equation ( 3.14). As can be observed 

from Figure  3.5, these values yield a weight function similar in shape to the Gaussian function.  

 

The local equivalent strains, 1
eq  and 2

eq , for fibre and matrix damage modes are defined as: 

1 11
eq   ( 3.18) 

2 2
2 22 12( ) ( )       eq e     ( 3.19) 

 

Note that in the equivalent strain equation for matrix damage, 12
e  is the elastic part of the in-

plane shear strain in cases where the in-plane shear behaviour is non-linear. It is well-known that 

the in-plane shear response in most unidirectional laminates is nonlinear and inelastic e.g. 

[140,195,254] among others. Therefore, this nonlinear in-plane shear stress vs strain constitutive 

behaviour has been implemented as part of the improvements made to CODAM2 material 

model. Using a linear in-plane shear behaviour as in the original CODAM2 material model may 

lead to premature matrix damage due to prediction of higher shear stress at a specific shear strain 

value. Since progression of damage is driven only by elastic internal energy at the onset of 
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matrix damage, only the elastic component of the total shear strain ( 12
e ) is taken into account in 

the matrix equivalent strain formulation. The implementation of nonlinear in-plane shear 

behaviour will be presented in more detail in Section  3.3.3. 

 

3.3.1.1 Damage initiation  

 

The original CODAM2 material model [75] is applicable to loading scenarios that leads to 

formation of a progressive damage zone small enough not to interact with the boundaries of the 

structure with minimal delamination at the ply interfaces. In those cases, the stiffness reduction 

in the laminate is mainly driven by progression of fibre breakage. However, in material layups 

and geometries that are marked by formation of large splits followed by discrete macro-

delamination between the plies, fibre breakage will be delayed and the laminate stiffness 

reduction is mostly governed by the initiation of splits and delamination. Given the sensitivity of 

these types of response to initiation of damage (mainly matrix cracking and the ensuing 

delamination), it is important to have failure initiation criteria that consider the effect of in-situ 

strength properties of the plies. This enables one to account for the thickness and constraining 

effect of the neighboring plies on the initiation of matrix cracking. The interactive effect of 

transverse normal and shear stress components on matrix cracking combined with the inherent 

non-linear shear stress-strain response of unidirectional composites necessitates the use of stress-

based criteria to signal initiation of matrix damage.  

 

For simplicity, Hashin’s failure criteria [94,95] in which the failure surface is expressed in terms 

of stress reaching a critical state is used here for initiation of intra-laminar matrix and fibre 

damage modes. It should be noted that any other failure initiation criteria can also be used but 

with Hashin’s criteria minimum number of additional parameters will be required for the 

material model to be calibrated. The criteria for intra-laminar fibre and matrix failure initiation 

are listed in Table  3-1 only for tensile loading which are relevant to the simulation cases 

presented in this work. In Table  3-1,  TX  and TY  are tensile strengths in the fibre and transverse 

directions, LS  indicates the longitudinal shear strength, and ij  are the stress components.  
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Table  3-1: Damage initiation criteria based on Hashin’s failure theory [94,95] 

Damage mode Failure Criterion  

Fibre tension 

2

11
1 1T

T

F
X

 
  
 

 

Matrix tension 

2 2

22 12
2 1T

T L

F
Y S

    
     
   

 

 

The initiation values of the equivalent strain components in Equation ( 3.17) will be determined 

when the failure criteria listed in Table  3-1 are satisfied for each damage mode. Therefore: 

 

11 1 @ 1
i eq

F    ( 3.20)  

 

22 2 @ 1
i eq

F    ( 3.21)  

     
In the original formulation of CODAM2 material model, the damage initiation values for the 

equivalent fibre and matrix strains have to be predefined by the user. This estimation can be 

more difficult for the matrix equivalent strain since it is defined as a combination of transverse 

strain and shear strain. Depending on the loading scenario, the contribution of each component to 

the matrix equivalent strain varies. For example, in a problem where the in-plane shear strain is 

dominant, defining the initiation value of matrix equivalent strain based only on the transverse 

matrix strength may lead to premature prediction of matrix damage since the shear strength of 

the material is neglected. The higher strength in shear than transverse direction in many cases, as 

well as the nonlinearity of the material in shear can effectively delay the initiation of matrix 

damage. Therefore, the use of a stress-based criterion for indicating the initiation point of matrix 

damage will automatically consider the contribution of both shear stress and transverse stress in 

triggering the initiation of matrix damage. 
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3.3.1.2 Damage saturation  

 

For the case of a bi-linear strain-softening curve, the damage saturation values for the matrix 

equivalent strain, 2
s , are calculated based on the associated value of intra-laminar matrix 

fracture energy as well as the transverse and shear stress components at the onset of damage. For 

this purpose, an equivalent stress corresponding to the equivalent matrix strain is introduced as 

follows: 

 

22 22 12 12
2 2 2

22 12

( )

( ) ( )

e
eq

e

   


 





  ( 3.22) 

The value of this equivalent stress at the initiation of matrix damage mode 
2

2 @ 1
( )eq

F
T 


 is used 

to estimate the saturation strain for matrix damage such that: 

 

2
2

2 f
s g

T
   

( 3.23) 

 

where, 2
fg  is the intra-laminar matrix fracture energy density. Similar to what was explained in 

Section  3.2.4 in the context of a sub-laminate, the value of 2
fg  can be related to the experimental  

intra-laminar matrix fracture energy, 2
fG , through an effective length scale, 2

ch , such that 

2 2 2/f f cg G h .  With the use of non-local averaging technique, as discussed in Section  3.2.4, 2
ch

2
ch  is related to the radius of averaging. The radius of averaging will also affect the height of 

damage captured in the finite element predictions. In application of the original (macroscopic) 

non-local CODAM2 formulation for OCT simulations on a dispersed-ply quasi-isotropic 

laminate [75,289], the radius of averaging was selected to be 0.4 exph  in order to predict the 

height of damage close to what was observed from the experiments. It was also shown that for a 

given mesh size of 0.25mm, 1.6ch r . Therefore, knowing the experimentally measured 

fracture energy of the sub-laminate, its fracture energy density required for the calculation of 
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fibre and matrix damage saturation strains could be obtained using Equation ( 3.15) with 

1.6ch r .   

 

In the mesoscopic application of the non-local CODAM2 model, we need to be able to capture 

the potential discrete matrix cracks in a continuum sense. Therefore, the non-local radius, r , 

used for averaging should be small enough to capture a narrow height of damage that is 

representative of the matrix cracks running parallel to the fibre direction. Thus, the value of r is 

limited to two times the finite element size to ensure that there is more than one integration point 

within the averaging zone and to prevent an excessively large width for discrete cracks 

perpendicular to its growth direction. In order to obtain the relationship between the fracture 

energy, 2
fG , and the fracture energy density 2

fg  (i.e. the value of 2
ch ), several simulations are 

performed on a unidirectional 90o laminate in an OCT specimen configuration with different 

element sizes and averaging radii (see  Appendix B  for details). For a given input of fracture 

energy density, the fracture energy of the UD 90o laminate is calculated using the area under the 

predicted force-displacement curve (energy dissipated during fracture) divided by the fractured 

area associated with crack growth. It is found that the ratio of the predicted 2
fG to the input 

fracture energy density, 2
fg , for a given mesh size is a constant factor of the radius of averaging 

(see  Appendix B  for details). This is similar to what was explained for the application of 

macroscopic CODAM2 for sub-laminates. Therefore, for an experimentally known intra-laminar 

matrix fracture energy, 2
fG , and a given mesh configuration, the input fracture energy density 

 is selected as 2 2/f cG h  with 2
ch  as a constant factor of r . To approximate this factor the 

procedure explained in Appendix B can be followed. 

 

The equivalent strain value for fibre damage saturation is similarly calculated as follows: 

1
1

2 f
s g

X
   

( 3.24) 

2
fg
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where X  is the strength in the fibre direction and 1
fg is the intra-laminar fibre fracture energy 

density. The relationship between 1
fg and 1

fG  for the fibre damage mode can be stablished 

similar to what is done for the matrix fracture energy (see  Appendix B  for details).  

 

3.3.2 Effect of ply thickness and constraints on matrix crack initiation 

 

It is well known that the crack density and stiffness reduction of a cracked ply can be influenced 

by the thickness of the ply and the stiffness of the immediate neighboring plies [191,260]. Due to 

the stress singularity at the transverse crack tip, the exact solution of this problem cannot be 

derived, and only approximate analytical methods can be applied. A popular approach among 

these methods is the shear lag theory where the cracked ply is considered as a 2D unit cell 

between two consecutive cracks (see Figure  3.8). In the plane of a transverse crack, the 

transverse ply carries no load, while away from the crack part of the load is transferred to the 

transverse ply through shear stresses. The concept of shear lag theory has been used by Han and 

co-workers [89], Laws and Dvorak [146], Lee and Daniel [148], and Zhang et al [279]. In the 

present study, we use the latter work in order to obtain an approximation of the in-situ strength 

properties of the cracked plies using the combined concepts of shear lag and linear elastic 

fracture mechanics. In the following, the details of this method are presented.  

 

3.3.2.1 Shear-lag theory 

 

In a laminate, each layer can be considered as a homogeneous material with a distribution of 

microcracks which is constrained by the surrounding material through shear and normal forces 

on the contact surfaces with neighboring elements. In a shear lag theory, the constitutive 

equation of the constrained, piecewise homogeneous lamina in the in-situ microcracked state will 

be developed. In other words, the effects of the constrained cracked lamina on the behaviour of 

the laminate will be determined by developing the in-plane stiffness matrix ( )kQ of the cracked 

lamina. The extensional stiffness, A , bending stiffness, D  and coupling stiffness, B , of 

composite laminates can then be determined  using the classical laminate theory.   
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With the limitation of the micro-cracks to the transverse matrix cracking and not delamination, 

this model is proposed by Zhang et al. [279] for a cracked layer denoted here as Layer 2 with the 

ply angle   constrained symmetrically by the homogeneous  upper and lower equivalent 

constrained layers  denoted as Layer 1  (see Figure  3.8). It is assumed that the constraining plies 

are intact. The laminate will be referred to the global xyz  and local 1 2 3x x x  coordinate systems 

with 1x  directed along the fibres in the  -layer (  is the angle of fibres in the cracked ply with 

respect to the global x-axis). Matrix cracks are assumed to span the full width and the full 

thickness of Layer 2 and be spaced uniformly at a distance 2s with their crack surface being 

perpendicular to the lamina principal axes.  

 

 

Figure  3.6: A symmetric laminate with transverse cracks in the mid-ply constrained by adjacent plies 

 

The overall compliance of the cracked lamina (i.e. Layer 2) with micro-cracks can be expressed 

in the lamina coordinate system 1 2 3x x x  as: 

(2) (2) (2)ˆ  *S S S  

(2) (2) (2)ε S σ  

 

( 3.25) 

or inversely as: 

(2) (2) (2)ˆ  *Q Q Q  

(2) (2) (2)σ Q ε  
( 3.26) 

xx

xx
2w

L

Layer 2

2s
Layer 1

Layer 1

xy
xy

y
z

x

2x

3 ,x z

xy
(2)2h

(1)h

(1)h
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where (2)Ŝ  and (2)Q̂  are, respectively, the elastic compliance and stiffness matrices of the ply 

without damage, (2)*S  is an additional compliance dependent on the configurations and 

distribution of micro-cracks, and (2)*Q  is the reduction in stiffness matrix of the lamina due to 

damage. 

 

With assumption of uniformly distributed cracks, only  *(2)
22S  and *(2)

66S  are non-zero for in-plane 

loading conditions. Therefore, Equation ( 3.26) for the stiffness matrix of the Layer 2 can be 

written as:  

 

 
2

(2) (2) (2) (2) (2)
(2) (2)(2) (2) 12 22 22 12 22
11 1211 12

(2) (2) (2) (2) (2) (2) (2) (2)
12 22 12 22 12 22 22 22

(2) (2) (2) (2)
66 66 66 66

ˆ ˆ ˆ 0ˆ ˆ 00
ˆ ˆ ˆ ˆ0 0 0

ˆ ˆ0 0 0 0 0 0

Q Q QQ QQ Q

Q Q Q Q Q Q

Q Q Q

      
    

       
          

 

 

 

( 3.27) 

in which (2)  ( , 2,6)ij i j   are related to *(2)
22S  and *(2)

66S  as follows: 

 

(2) *(2)
(2) 22 22
22 (2) *(2)

22 22

(2) *(2)
(2) 66 66
66 (2) *(2)

66 66

ˆ

ˆ1

ˆ

ˆ1

Q S

Q S

Q S

Q S

 


 


 

 

( 3.28) 

where (2)
22  and (2)

66  are the in-situ damage effective functions (IDEF) that indicate the stiffness 

loss caused by the in-situ damage state of the cracked ply under the constraint conditions.  

 

After the three-layer model for the cracked ply is built, a 2-D shear lag theory is used to obtain 

the IDEFs (2)
ij . These functions will be expressed using a series of microscopic parameters and 

constraint variables such as the crack density variable, (2)D , the thickness ratios  , and the 
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undamaged stiffness and compliance components of the cracked layer and the constraining 

layers. Therefore, we have: 

 

(2) (2) (2) (1) (2)ˆ ˆ ˆ( ,  ,  , , ),   , 1,2,6ij ij ij ijf D Q S S i j    ( 3.29) 

with  

(2) (1)
(2)

(2)
,     

h h
D

s h
   ( 3.30) 

where (2)h  is the half-thickness of the cracked ply and (1)h  is the thickness for each of the 

constraining plies and s  is half of the distance between uniformly spaced cracks (see  

Figure  3.8). The derivation of IDEFs is presented in detail in Appendix A.   

 

Once the in-plane stiffness matrix of the cracked ply (2)Q  in the local coordinate system 1 2 3x x x  

is determined using Equations ( 3.27) and ( 3.29) for any crack density value, it can be 

transformed to the global coordinate system xyz  using standard tensor transformation functions 

(see Figure  3.8). 

  

 

3.3.2.2 Estimation of in-situ strength properties 

 

The total strain energy associated with matrix cracking in the cracked layer can be related to the 

IDEF rate, (2) (2)/ijd dD , which indicates the stiffness loss under the constrained in-situ 

condition.   

 

Considering a unit cell with a finite length, L  and width, 2w  (Figure  3.8), the total area of 

cracked surface for the case of 90o   will be (2)2A wLD . The potential energy of this unit 

cell is: 

2 i iU W U LHw       ( 3.31) 
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where U  is the total strain energy stored in the laminate unit cell. Using the constitutive equation 

of the cracked lamina given in Equation ( 3.27), we have: 

 (2) (2) (1) (1)1
4 ( )( ) 4 ( )( )

2
ij im m jl l ij im m jl lU Lwh Q S S Lwh Q S S      ( 3.32) 

 

where ( , , )ijS i j x y  are the laminate compliance matrix components, (2) (1),  ( , , )ij ijQ Q i j x y are 

the stiffness components of the cracked ply and constraining plies and ( , )i i x y   are the 

applied stresses on the laminate in global coordinate system. The energy release rate is equal to 

the first partial derivative of the potential energy with respect to the crack surface area under 

fixed applied laminate load: 

(2)

(2)2 ( )( )
ij

im m jl l

i

Q
G Lwh S S

A A
 


   

 
 ( 3.33) 

 

using (2)2A wLD , we obtain: 

(2)

(2)

(2)
( )( )

ij

im m jl l

Q
G h S S

D
 


 


 ( 3.34) 

 

Therefore, knowing the in-plane stiffness matrix of the cracked lamina, (2)
ijQ (i,j=x,y), for a given 

crack density (2)D , the energy release rate can be derived from Equation ( 3.34) in terms of the 

crack density and the applied loads ( , )i i x y  .  

 

Under pure tensile loading, x , applied perpendicular to the cracked 90o layer the energy release  

rate is equal to mode I inter-laminar fracture toughness, ICG , at the onset of matrix cracking. 

Therefore, the laminate stress at the initiation point of matrix cracks, ( )x init , will be the root of 

the following equation when (2) 0D  , that is: 

 

( 2)

(2)

0

( , )
( ) root limit 1I x

x init
D

IC

G D

G






  
    

  
 ( 3.35) 
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The in-situ tensile strength of the 900 layer at the initiation point of matrix cracks can now be 

obtained using the laminate compliances and the constitutive equation of the cracked layer: 

 

(2) (2)( ) ( )is
T xx xx x init xy xy x initY Q S Q S    ( 3.36) 

 

Under pure shear loading, xy ,  the energy release rate is equal to mode II inter-laminar fracture 

toughness, IICG  at the onset of matrix cracking. Therefore, the laminate stress at the initiation 

point of matrix cracks, ( )xy init , will be the root of the following equation when (2) 0D  , that 

is: 

( 2)

(2)

0

( , )
( ) root limit 1

II xy

xy init
D

IIC

G D

G






  
     

  

 ( 3.37) 

 

Therefore, the in-situ shear strength of the constrained cracked layer, is
LS , will be: 

 

(2) ( )is
L xy xy xy initS Q S   ( 3.38) 

 

The Hashin’s failure criterion for matrix in tension can now be expressed in terms of the ply 

stresses and the strength properties replaced by their in-situ equivalents, is
TY  and is

LS , obtained 

from Equations ( 3.36) and ( 3.38). Therefore: 

 

2 2

22 12
2 1T is is

T L

F
Y S

    
     
   

 ( 3.39) 
 

 

where 22  and 12  are the transverse and shear stress components in the ply. 

 

 

 



80 

 

3.3.3 In-plane shear behaviour  

 

Based on the experimental observations in the literature (and also in-house experiments carried 

out at UBC), the in-plane shear behaviour in most laminates is nonlinear and exhibit irreversible 

shear strains. Therefore, it is important to incorporate the nonlinearity in the shear stress vs strain 

response in CODAM2 material model formulation.  

  

The shear behaviour of composite laminates during loading-unloading can be very complex. As 

experimental works show, some materials exhibits constant unloading modulus approximately 

equal to the initial modulus (see [140]), while others might exhibit a slight decrease in the 

unloading modulus (see [254]). Van Paepegem et al. [255] have introduced a model that includes 

both plasticity and damage with parameters that can be calibrated with respect to the measured 

loading and unloading stiffness as well as the permanent strain of the material in shear. For the 

sake of simplicity, similar to the model introduced in [195], it is assumed that the slope of 

unloading is identical to the initial shear modulus as shown in Figure  3.7. The loading curve for 

shear stress is defined as a function of shear strain which can be extracted from standard tests 

[15]. The in-plane shear stress-strain formulation before matrix damage initiates can be written 

as: 

12

12

12

12

*
12 12 12

12
0 *
12 12 12 12 12

( )                  ,  for  = 

   ,    for pG









   


   




 
 

 
( 3.40) 

 

     

 where 12( )   is the curve that defines the nonlinear shear behaviour obtained from experiments 

and 0
12G  is the initial shear modulus. The operator .  is the Mc-Cauley bracket defined as 

max{0, },x x x R  . Also, *
12  is the maximum shear strain (over time) and 12

p  is the inelastic 

shear strain defined as follows: 

 

 *
12 12( ) max ( )

t
t


  


  

* * 0
12 12 12 12/p G     

( 3.41) 
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where  * *
12 12    is the value of shear stress at *

12 . 

 

 

  

 

Figure  3.7: Schematic in-plane nonlinear shear behaviour 

 

While some of the energy will be absorbed uniformly over all the specimen due to the nonlinear 

(irreversible) shear behaviour (see Figure  3.8), after the initiation of matrix cracks and formation 

of fractured surfaces, further energy will be absorbed which is proportional to the area created. 

Only the elastic internal energy in the element at onset of failure contributes to the fracture 

process. Therefore, the definition of the driving strain for matrix damage needs to consider only 

the elastic part of shear strain. This requires the following change in the equation for equivalent 

matrix strain in the enhanced CODAM2 as was shown in Equation ( 3.19): 

 

2 2
2 22 12( ) ( )eq e     ( 3.42) 

 

where 12
e  is the elastic component of the in-plane shear strain of each layer calculated from the 

point where the matrix damage initiates: 

2
12 12 12 @ 1

e p

F
  


   ( 3.43) 

where 
2

12 @ 1

p

F



 is the inelastic shear strain at the point when matrix damage initiates (i.e. when 

F2=1). Once matrix damage initiates, the in-plane shear stress is calculated as: 

12
p *

12
12

 12 12  

0
12G

1

0
12G

1

 * *
12 12  
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( 3.44) 

where 12R  is the shear stiffness reduction factor which is dependent on both fibre and matrix 

damage parameters. This is in contrast to the original formulation of CODAM2 material model 

where it was only dependent on the matrix damage parameter.  

 

 

Figure  3.8: In-plane nonlinear shear behaviour and the contribution of elastic  shear strain to fracture energy 

 

3.3.4 Stiffness matrix in damaged state 

 

Upon calculation of damage parameters, the nominal stresses in each ply are calculated from the 

reduced in-plane secant stiffness of the ply. For plane stress conditions, the damaged in-plane 

stiffness matrix, dQ , for each ply can be written: 
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where 1E , 2E  are the undamaged material moduli, 12 , 21  are undamaged major and minor 

Poisson’s ratios, and 1 1(1 )R   , 2 2(1 )R    are stiffness reduction factors in terms of 

damage parameters 1 , 2   in the longitudinal and transverse directions, respectively. Note that 

when the in-plane shear stress is nonlinear, the shear modulus, 12G , is not constant anymore. It is 

a function of the shear strain as defined by Equations ( 3.40) and ( 3.44). The shear stiffness 

reduction factor, 12 1 2R R R , as mentioned before is dependent on both fibre and matrix damage 

modes.  

 

The above intra-laminar damage formulation is also extendable to a three-dimensional 

constitutive model suitable for three-dimensional elements available in LS-DYNA including the 

solid and thick-shell element formulations [158]. 

 

In problems where bending is significant, shell elements with a plane-stress constitutive 

formulation defined in Equation ( 3.45) will be adequate provided that there are enough number 

of integration points through the thickness of the element. This will ensure that the linear 

variation of in-plane strains through the thickness is captured. However, in plane stress 

constitutive formulations, it is assumed that the out-of-plane normal and shear stresses are zero. 

In order to obtain those stress components, one needs to use the equilibrium equations.  

 

In applications where delamination between the layers is dominant, either due to free-edge 

induced out-of-plane stresses or bending deformations, elements with three-dimensional 

kinematics formulations can directly capture the out-of-plane stresses based on the three-

dimensional Hooke’s law. Therefore, a three-dimensional constitutive formulation for CODAM2 

material model is required for such cases. In the current approach, delamination is modelled as 

an interface between the plies with a cohesive-based constitutive behaviour to describe the out-

of-plane stress components (see Section  4.2). Therefore, in the three-dimensional constitutive 

formulation of CODAM2, the out-of-plane stiffness components of the plies are assumed to 

remain elastic and undamaged (i.e. no reductions are applied to the out-of-plane stiffness 

components). Instead, such reductions are applied indirectly through the inter-laminar cohesive-
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based formulation. Accordingly, the 3-D damaged stiffness matrix for a single ply can be written 

as: 

 

2 23 32 1 21 23 31 1 2 1 31 2 21 32 1 1

1 31 13 2 2 32 1 31 12 2 2

1 2 21 12 3

12 12 12

23

13

(1 ) ( ) ( ) 0 0 0

(1 ) ( ) 0 0 0

(1 ) 0 0 01

( ) 0 0

0

.

f

d

R R E R R E R R E

R R E R R E

R R E

DR GD

DG

sym DG

       

    

 



   
   
 

  
 
 
 
  

C

 

where    
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This stiffness matrix is obtained by inversing the 3-D compliance matrix which (similar to the 

plane stress compliance matrix of CODAM2) follows the approach proposed by Matzenmiller et 

al. [166], to achieve a symmetric secant stiffness matrix. The compliance matrix is written as: 
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Note that in the above equation, no reduction is applied on the out-of-plane stiffness components.  
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3.4 Summary  

 

In this chapter the formulation of the original macroscopic non-local CODAM2 model was 

briefly reviewed as the tool for capturing the intra-laminar damage modes of a sub-laminate. It 

was discussed that for cases where failure is governed by discrete macro-crack propagation such 

as large splits or delamination, continuum damage models cannot correctly describe the 

propagation of damage through the structure. Discrete cracks redistribute the stresses around the 

damage zone and consequently alter the load paths within the structure. Moreover, when 

delamination is dominant, the sub-laminate’s fracture energy in presence of extensive 

delamination zones between the plies becomes difficult to define and measure. Therefore, it is 

necessary to explicitly model delamination which will then allow the growth of macro-cracks 

(e.g. splits) in the separated ply. This can be done by using a cohesive-based interface model 

which will be discussed in Chapter 4. The intra-laminar modes of damage, on the other hand, 

including matrix cracking and fibre fracture can be captured with the presented enhanced form of 

the non-local CODAM2 material model in a mesoscopic context. In Chapters 5 and 6, it will be 

shown that the non-local averaging technique is very effective in predicting the trajectory of in-

plane macro-cracks irrespective of the finite element discretization. Therefore, the need to 

introduce pre-inserted discrete cohesive elements in the plane of a ply to capture the growth of 

matrix cracks is eliminated which reduces the computational cost significantly. 

 

In this chapter, the enhancements required for considering individual plies as the building blocks 

of the laminate were introduced. These enhancements and modifications were associated with 

the prediction of initiation and saturation of matrix and fibre damage modes. The interactive 

effect of transverse normal and shear stress components on matrix cracking combined with the 

inherent non-linear shear stress-strain response of unidirectional composites necessitates the use 

of a stress-based criterion to signal initiation of matrix damage. Therefore, Hashin’s failure 

criteria {{1332 Hashin,Z. 1973; 1327 Hashin,Z. 1980}} were used to identify the onset of both 

intra-laminar matrix and fibre damage modes. This will also make the process of calibration of 

damage material properties more straightforward since the initiation and saturation values of the 

equivalent strain parameters are calculated directly by the material model. The constraining 

effect of the immediate neighboring plies and the ply thickness on the unidirectional strength 
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properties were also considered through an approximate analytical model based on combination 

of fracture mechanics and a shear lag theory introduced by Zhang et al.  [278,279]. Moreover, 

the irreversible nonlinear behaviour of in-plane shear was incorporated in both elastic and 

damage regimes of the loading. The structure and algorithm of this material model written as a 

user-defined material model in LS-DYNA are summarized in Appendix B through Appendix F. 

 

The material parameters required for this model include the strength properties of unidirectional 

plies and the fracture energies associated with fibre fracture and matrix cracking. In Chapter 5, 

the available methods and standards for extracting strength properties and the fracture energy 

values are discussed. Specifically, a unique methodology will be proposed to numerically 

calibrate the in-situ fracture energy of both intra-laminar fibre fracture and intra-laminar matrix 

cracking (corresponding to matrix crack propagation in a ply constrained by adjacent plies within 

a laminate). These are the type of quantities that may not be directly measured from standard 

experiments.  
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Chapter 4: Inter-laminar Delamination Modelling 

 

4.1 Introduction  

 

For cases where failure is governed by discrete crack propagation such as large splits or 

delamination, fully continuum damage models often fail to correctly describe the propagation of 

damage through the structure.  In continuum models, these cracks are “smeared” as part of the 

damage homogenization process. However, in reality, discrete cracks redistribute the stresses 

around the damaged zone and consequently alter the load paths within the structure. 

 

Delamination in a structure subjected to in-plane loads is a subcritical failure mode [186,207] 

with possible effect of stiffness loss, local stress concentration in load bearing plies, and a local 

instability causing its further growth leading to compressive failure.  

 

Elevated levels of inter-laminar stresses caused by impact, eccentricities in structural load paths 

or geometric discontinuities in the structure can lead to delamination (see Figure  2.2). Some of 

the structural details which may induce the local out-of-plane loads leading to inter-laminar 

stresses [59] are (1) free edges (either straight or curved edges) or (2) ply terminations or ply 

drops at taped sections, (3) bonded or co-cured joints, and (5) bolted joints. In these cases, even 

when the remote loading is applied in-plane the local stresses that develop around such 

discontinuities may be out-of-plane.  

 

Two major causes of inter-laminar stresses that can lead to delamination in an in-plane loading 

condition are free-edges and intra-laminar matrix cracks.  
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Delamination caused by free Edges 

 

Typically inter-laminar stresses develop near the free edges of a laminated composite. These 

stresses (Figure  4.1) occur due to the mismatch in engineering properties, i.e. mismatch in 

Poisson’s ratio xy  and coefficient of mutual influence ,xy x  between layers of different fibre 

orientations [96]. 

 

Figure  4.1: Inter-laminar stresses in a ply of a symmetric balanced laminate under axial loading, adapted 
from [111] 

 

The mismatch in xy  gives rise to inter-laminar normal z  and shear zy  stresses and the 

mismatch in ,xy x  causes inter-laminar shear stress zx  near the free edge of a laminate (see 

Figure  4.1). The magnitude of these stresses depends on the severity of the mismatch in  xy  and 

,xy x , elastic and shear moduli, stacking sequence and mode of loading.  

 

The other parameter affecting the inter-laminar stresses is ply thickness. Thick plies tend to 

promote higher inter-laminar stresses thus causing early delamination. This is obvious from 
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Figure  4.2  where the critical strain, c , for the onset of edge delamination in [45n/-45n/0n/90n]s 

(n=1, 2, 3) T300/5208 graphite/epoxy laminates under unidirectional tensile loading is shown 

[186]. The specimens were 254mm long by 38mm wide and were loaded monotonically in 

tension at a rate of 44.5 N/sec until a delamination was detected. The load level corresponding to 

delamination onset was recorded and the corresponding applied stress, c , was calculated. Then, 

in order to determine the nominal strain at the onset of delamination, c was divided by the 

modulus of laminate, lamE , calculated from laminated plate theory. As can be seen, the strain at 

initiation of delamination decreases with increase in ply thickness. It should be noted that the 

predictions using the approximate solution by O’Brien [186] (Equation ( 2.1)) are also in 

agreement with the experimental results and show an inverse relationship between the strain at 

the onset of delamination and the ply thickness. Similar trends have also been reported for other 

laminate layups including [±35/0/90n]s, [±30/90n]s, [(±30)n/90n]s (n=1/2, 1, 3/2, 2) when the 

thickness of the 900 ply increases [185]. 

 

 

Figure  4.2: Effect of ply thickness on the onset of delamination onset strain, adapted from [186] 
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Delamination caused by matrix cracks 

 

Another cause of delamination development in a laminate is matrix cracking in off-axis plies. 

These off-axis ply cracks create inter-laminar stresses as shown in Figure  4.3. In a quasi-

isotropic graphite/epoxy laminate [0/90/±45]s, Reifsnider and coworkers [232] have estimated 

these inter-laminar stresses near the tip of the matrix crack in 90o ply. These inter-laminar 

stresses frequently cause local delamination which grow along ply interfaces near matrix cracks.  

 

 

Figure  4.3: Inter-laminar stresses due to matrix cracks in off-axis plies  

 

Prediction of delamination behaviour in composites has been the subject of research for many 

years. Most of such work has been to determine the stresses in the boundary layer near the free 

edges whether curved or straight. The problem of determining the edge stresses involves the 

solution of an interfacial crack between two highly anisotropic fibre composite laminae under 

general loading conditions. The analytical approaches to such problems have been developed to 

determine stress intensity factors at the tips of the crack at the interface of two or more isotropic 

layers or transversely isotropic half planes [40,65,210], or for an edge delamination in an angle 

ply laminate [259]. 

 

Because of the complexities involved analytical solutions to such problem have been rather 

limited. Therefore, more emphasis has been placed on the use of either finite difference 

[202,214] or finite element methods [57,125,184,212]. A thorough review of the most recent 

z
y

z

x

F

F

y

zy



91 

 

numerical methods including finite difference, 2D finite element and 3D finite element methods 

is summarized in [124]. However, for thick realistic structural laminates, solving edge stress 

problems tend to be expensive using such methods.  

 

The singular stress states that appear at the neighbourhood of the tip of transverse cracks 

terminating at the interface end of the delamination cracks and the mechanisms of their further 

progression have also attracted the attention of a large number of authors. 

Examples are the characterization of the influence of the bi-material parameters on the 

singularity of a crack perpendicular to and terminating at the interface between orthotropic 

materials [42], and studying the actual mechanism of growth of a crack approaching and 

deflecting at the interface [149,164]. 

 

Cohesive zone models as discussed in Section  2.2.3 offer a powerful method to analyze 

composite delamination problems. Problems of delamination in the absence of large notches or 

holes have been studied using this method [14,32,53,114,243,262].  

 

Cohesive zone models offer the prospect of determining important issues such as the influence of 

stacking sequence on delamination crack propagation, free edge delamination initiation and 

propagation, and delamination around pin holes. Moreover, if damage-mechanics based in-plane 

failure modes are incorporated into the continuum elements representing the plies, the coupling 

effects between in-plane damage modes and out-of-plane delamination can be taken into 

account. 

 

In this work, we will use a cohesive zone model to predict delamination in between the plies 

while the intra-laminar damage modes are captured by the mesoscopic non-local CODAM2 

material model. In the following, the cohesive-zone model used in this work and its limitations 

are described. 
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4.2 Cohesive zone model  

 

As mentioned before, the inter-laminar damage mode in this work (i.e. delamination) is modelled 

using a discrete approach based on cohesive zone model. The potential delamination interfaces 

between plies in LS-DYNA can be modelled using a cohesive-based tie-break contact known as 

*CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE_TIEBREAK [158]. The 

separation between nodal points of the elements from two neighboring plies is triggered by a 

damage parameter, D , when it reaches its maximum value of one.  

 

 

 

 
 
 

 
 

 

 

Figure  4.4:Mixed-mode traction separation law, adapted from [158]  
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Let us consider a point at an interface like the one shown in Figure  4.4(a). The tractions it  

between the top and bottom surfaces of the interface at that point are related to the relative 

displacement i  at the same point for i = 1, 2, 3 (Figure  4.4). The index value 1i  corresponds 

to an opening mode (mode I), while the index values i = 2 and 3 correspond to a shear mode 

(mode II). 

 

The formulation that governs the relationship between the relative displacement, i , and the 

tractions, it , can be illustrated in a three-dimensional mixed-mode map, as used by several 

authors [32,114,196], by presenting the normal opening mode (mode I) on the 0 – Nt – I  plane, 

and the transverse shear mode (mode II) on the 0 – St – f
II  plane (see Figure  4.4 (a)). The 

triangles 0 – max
Nt – f

I  and 0 – max
St – f

II  are the bi-linear responses in the pure opening and pure 

shear modes, respectively (see Figure  4.4 (b) and (c)). Any point on the 0 – I – II  plane 

represents a mixed-mode relative displacement. The shear relative-displacement, II , and the 

magnitude of the relative mixed-mode displacement, m , are defined as: 

2 2
2 3II     

2
2

1m II     

( 4.1) 
 

 

where the operator .   is the Mc-Cauley bracket defined as max{0, },  Rx x x  . The mixed-

mode ratio,  β, that defines the participation of the different modes, is defined as: 
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Using the mixed-mode ratio, the relative displacements in pure mode I and II are related to the 

mixed-mode displacement, m , as follows: 
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The initiation of delamination damage mode is predicted by the following quadratic mixed-mode 

criterion: 
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( 4.4) 

where Nt  and St are the normal and shear tractions between the top and bottom surfaces of the 

interface, and max
Nt  and max

St  are peak normal and shear inter-laminar strength values in pure mode 

I and mode II separation. The shear and normal tractions, St and Nt , are defined as: 
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( 4.5) 
 

  

where IE  and IIE  are the stiffness components corresponding to pure mode I and mode II 

traction-separation law. The interface stiffness needs to be large enough to assure a stiff 

connection between the two neighboring layers and small enough to avoid spurious oscillations. 

With the use of Equation ( 4.3), the shear and normal tractions,  and Nt , can be related to the 

mixed-mode displacement as follows: 
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( 4.6) 
 

 

Therefore, for a given mode ratio, the displacements and tractions corresponding to mode I and 

II at the onset of delamination can be obtained from Equations ( 4.3) and ( 4.6) by replacing, m , 

with its initiation value 0
m . 

St



95 

 

 

The onset relative-displacement, 0
m , is obtained by substituting  0

max
N

I It E  , 0
max
S

II IIt E   and 

Equations ( 4.3) and ( 4.6) at the onset of delamination into the  mixed-mode initiation criterion of 

Equation ( 4.4) which leads to: 
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The mixed-mode propagation criterion establishes the state of complete decohesion 

for different ratios of normal and shear mode energy release rates. There 

are several criteria that describe mixed-mode propagation (see Table  2-7). The cohesive zone 

model in LS-DYNA follows the Power Law criterion [264] expressed as: 
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where IcG  and IIcG  are the mode I and mode II inter-laminar fracture energy values. The power 

coefficient,  , in the current study is chosen to be one. The energy absorbed by each mode in a 

mixed-mode loading is equal to the shaded area shown in Figure  4.4(b) and (c): 
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Substituting the above relations into Equation ( 4.8), yields the final mixed-mode displacement,

f
m , as: 
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Based on the cohesive zone model, the stresses after the onset of delamination are calculated 

using the damage variable from the following equations: 

 

(1 )N
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( 4.12) 
 

 

where the corresponding damage parameter associated with delamination growth, D , is defined 

based on the mixed-mode displacement m  and its corresponding initiation and final values: 
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4.2.1 Cohesive element size requirement 

 

In order to obtain accurate representation of the fracture zone using CZM, the tractions in the 

cohesive zone must be represented properly by the finite element spatial discretization. When the 

cohesive zone is discretized by too few elements, the distribution of tractions ahead of the crack 

tip is not represented accurately. The length of the cohesive zone is defined as the distance from 

the crack tip to the point where the maximum cohesive traction is reached. A robust and accurate 

prediction using CZM requires the elements to be several times smaller than this cohesive zone 

length. The length of the cohesive zone is related to the fracture energy, stiffness and strength, 

but for delamination cracks in laminates, the thickness is an additional factor to be considered 

[91,246,276]. Different models have been suggested in the literature for determining the length 

of the cohesive zone length. Irwin [110] estimated the size of plastic zone ahead of crack tip in 

an infinite ductile body by considering the crack tip zone where the stress exceeds the tensile 

yield stress. Dugdale [60] calculated the size of cohesive zone by idealizing the plastic region as 

a narrow strip ahead of crack tip that is loaded by constant yield stress. Following the work by 

Irwin and Dugdale, Hui [103] estimated the length of the cohesive zone for soft elastic materials, 

while Rice [209] and Falk et al. [66] estimated the length of the cohesive zone as a function of 
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the crack growth velocity. Barenblatt [18] used assumptions similar to Dugdale [60] for ideally 

brittle materials. The length of cohesive zone suggested by these models for the case of plane 

stress condition have the following generalized form: 

 

2
max( )

c
cz

G
l ME

t
  ( 4.14) 

 

where E  is the Young modulus of the material, cG  is the critical energy release rate, maxt  is the 

maximum interfacial strength, and M  is a parameter that depends on the cohesive zone model 

and is summarized in Table  4-1 for the plane stress conditions.  

 

Table  4-1: Estimated cohesive zone length ( czl ) and equivalent value for M in Equation ( 4.14)  

Source czl  M  

Irwin [110] 2
max

1

( )
cG

E
t

 0.31 

Hui [103] 2
max

2

3 ( )
cG

E
t

 0.21 

Dugdale [60], Barenblatt [18] 2
max8 ( )

cG
E

t


 0.4 

Rice [209],  Falk et al. [66] 2
max

9

32 ( )
cG

E
t


 0.88 

    Hillerborg et al. [97]     
2

max( )
cG

E
t

 1 

 

The above mentioned estimations are for cracks in isotropic materials, but as pointed out by 

Yang et al. [276], the elastic modulus in the cohesive length equation for orthotropic materials 

becomes a function of the material’s longitudinal modulus, transverse modulus, shear modulus, 

depth and plane stress or plane strain conditions. It should be noted that the above analytical 

estimation are for infinite bodies, where material depth has no effect on the cohesive zone length. 

For analysis of composite delamination, the effects of specimen thickness on cohesive zone 

length can be critical due to the slender nature of typical laminates. Cox and Yang [276] 

proposed a formulation for estimating the cohesive zone length in slender laminates, with centred 

cracks, under mode I and mode II loading,  respectively: 
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where h is the laminate half-thickness, IE  and IIE  are equivalent elastic moduli for orthotropic 

material (see [43]), and max
Nt  and max

St  are the peak stresses in the cohesive law for mode I and II, 

respectively. 

 

The length of the cohesive zone given by the above analytical solutions are proportional to the 

fracture energy release rate (Gc) and to the inverse of the interfacial strength maxt . According to 

Turon et al. [245,246], the length of the cohesive zone is smaller than one or two millimeters for 

typical graphite–epoxy or glass–epoxy composite materials. Since elements must be several 

times smaller than the cohesive zone length, very small element sizes are commonly required for 

robustness and accuracy of the solution. This element size requirement seriously limits the 

specimen dimensions that can be simulated within reasonable computation time. The number of 

elements in the cohesive zone is: 

cz
e

e

l
N

l
  ( 4.17) 

 

where el  is the element size in the direction of crack growth. Turon et al. [245,246] have 

proposed an engineering solution to this limitation to increase the length of the cohesive zone in 

the simulation artificially by reducing the interface strength. The interface strength properties are 

reduced such that the  length  of  the  cohesive  zone  increases  to  cover  at  least  three  

elements.  Results presented in [51,245], show that using this approach the computational cost of 

the simulations is reduced considerably thus rendering possibility of analysing large scale 

structures. 

 

Alfano and Crisfield [12] observed that variations of the maximum interfacial strength do not 

strongly influence the predicted results, but that lowering the interfacial strength can improve the 
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convergence rate of an implicit solution. The result of using a lower interfacial strength is that 

the length of the cohesive zone and the number of elements in the cohesive zone increase. 

Therefore, the representation of the softening response of the fracture process ahead of the crack 

tip is more accurate with a lower interface strength at the expense of altering the stress 

distribution in the regions near the crack tip [12]. Although the stress concentrations in the bulk 

material near the crack tip are less accurate when using a reduced interfacial strength value, the 

mechanics of energy dissipation are properly captured, which ensures the proper propagation of 

the crack front. 

 

The proposed methods for scaling down the interfacial strength values are mostly given based on 

estimation of the length of the cohesive zone. Different formulations have been proposed for a 

prescribed pure mode I or pure mode II cohesive traction laws for plane stress cases in 

undamaged isortropic materials or unidirectional transversely isotropic materials 

[18,60,66,97,103,209]. However, no numerical studies have been presented to validate the 

accuracy of such analytical formulations across a range of material properties, structural 

geometries and load conditions. For more complex problems, delamination occurs under mixed-

mode loading either originating from free-edge inter-laminar stresses between plies with 

different fibre orientations or from intra-laminar matrix crack tips reaching the ply interfaces. 

Estimating the cohesive zone length in these cases is not straightforward. Another issue is that 

the minimum number of elements needed in the cohesive zone is not well established: Moes and 

Belytschko [176] suggested using more than 10 elements. However, Falk et al. [21] used 

between 2 and 5 elements in their simulations. Camanho et al. [31], suggested that 3 elements are 

sufficient for a double cantilever beam (DCB) to predict the propagation of delamination in 

mode I. 

 

In Chapter 5, a more intuitive approximate method is introduced for reduction of interfacial 

strength properties for cases where delamination starts as a result of matrix cracks and their 

migration to the ply interface. Based on this method, the amount of reduction in the interfacial 

strength properties will implicitly be dependent on the geometry, the ply thickness and the fibre 

orientation of the plies. Using this simple and practical method, the growth of delamination can 

be coupled with the growth of intra-laminar matrix damage modes quite effectively. 



100 

 

4.3 Summary  

 

In this chapter the common causes of delamination specially those associated with inter-laminar 

stresses induced by matrix cracks or created at free edges were discussed. While the intra-

laminar damage modes are captured by the mesoscopic non-local CODAM2 material model as 

proposed in the previous chapter, the inter-laminar delamination between dissimilar plies is 

captured by the mixed-mode cohesive interface model described in this chapter. A common 

drawback of cohesive methods is that the cohesive zone has a given length and that robust and 

accurate simulations require the elements to be several times smaller than this cohesive zone. 

One engineering solution commonly used in the literature is to artificially increase the length of 

the cohesive zone in the simulation by reducing the interface strength. However, the estimation 

of the amount of reduction is not known for any geometry, loading scenario and laminate 

sequence, since the prediction of the length of the cohesive zone is not well studied or validated 

for all the cases. In the following chapter, as part of numerical calibration of the inter-laminar 

damage model, a simple yet intuitive method will be proposed to estimate the amount of 

reduction for the interface strength properties. 
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Chapter 5: Model Calibration  

 

In using the proposed methodology of combined continuum and discrete approaches described in 

Chapters 3 and 4, the damage parameters need to be characterized using a combination of 

experimental and numerical analysis. In this chapter, the methodology for determining the 

material parameters associated with the inter-laminar and intra-laminar damage modes will be 

outlined in detail. 

 

5.1 Inter-laminar model parameters 

 

In this section the calibration of material parameters required for the cohesive interface to 

capture delamination mode is summarized. The behavior of the cohesive interface is governed by 

the inter-laminar strength parameters and the inter-laminar fracture energy values which will be 

discussed in the following. 

 

5.1.1 Inter-laminar damage initiation- numerical calibration  

 

As discussed in Chapter 4, one of the drawbacks in the use of CZM is that very fine meshes are 

needed to assure a reasonable number of elements are present in the cohesive zone.  An 

engineering solution is to reduce the interfacial strength values in order to increase the size of the 

cohesive zone artificially and hence accommodate coarser elements to accurately capture the 

softening behaviour ahead of the crack tip.  

 

In the presence of matrix cracks, the accurate prediction of the singular state of inter-laminar 

stresses in finite element methods requires an extremely fine mesh which is quite often 

impractical. In order to capture the onset of delamination stemming from the matrix crack tips 

using a finite element model with a reasonable mesh size, we propose to scale down the inter-ply 

strength values based on the value of the operative inter-laminar stresses at the instant when 

matrix damage in the neighboring ply (plies) is deemed to have occurred. Therefore, we conduct 

a preliminary finite element analysis step with the same mesh size as in the main model but with 
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cohesive contact interfaces deactivated to identify the status of inter-laminar stress distribution at 

locations where matrix cracks and hence delaminations are expected  to occur. 

 

The process involves running a model in which each dissimilar ply is modelled with 3D elements 

through the thickness and the intra-laminar damage modes in the plies are active while the 

cohesive interface remains intact. For this purpose, the inter-laminar normal and shear strengths, 

max
Nt  and max

St  are set to high values to inhibit delamination. Alternatively, the plies can be tied 

together using the constrained contact formulation available in LS-DYNA 

(*CONTACT_TIED_SURFACE_TO_SURFACE [158]). From this simulation the inter-laminar 

shear and normal stresses will be obtained over a finite region around the notch tip (or free edge) 

where matrix damage first occurs. The number of elements inside this region must be large 

enough to adequately capture the softening behaviour of the cohesive zone model. Based on 

numerical studies in the literature [245,246] and various numerical case studies using CODAM2, 

it is deemed that 3-4 elements give reasonable spatial resolution.  As schematically shown in 

Figure  5.1 for the notch tip in an OCT specimen geometry for a given laminate layup, the inter-

laminar stresses will be obtained at an interface for a region around a point where matrix damage 

initially occurs (in this case the points around the notch tip). At the instant when matrix damage 

initiates in any of the elements of the adjacent plies inside this region, the inter-laminar normal 

and shear stresses will be averaged over this region. This process will be repeated for all the 

interfaces through the laminate thickness and the maximum of the averaged inter-laminar normal 

and shear stresses for all the interfaces will be used as the inter-laminar strength values, max
Nt  and 

max
St , in Equation ( 4.4).  The justification behind this procedure is that matrix cracking-induced 

delamination is the culmination of multiple micro-delaminations, which are initiated when 

multiple transverse matrix cracks reach the interface, and coalesce to form a macro-delamination. 

This approach is not only aligned with the practical solution offered by Turon et al. [244], it also 

implicitly accounts for the effect of ply thickness on the initiation of delamination since the 

initiation of delamination is indirectly linked to the matrix cracking which is in turn influenced 

by ply thickness. In this work, the dependency of matrix damage initiation on ply thickness is 

enabled using the shear lag theory (Section  3.3.2) and details of intra-laminar model calibration 

are described later in this chapter (Section  5.2).  
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Figure  5.1: Exploded through-thickness view of the region close to the notch tip of OCT specimen showing 
contact interface between adjacent dissimilar plies modelled using 3D solid or thick shell elements. The 

averaged interface shear and normal stresses, 
S
avgt  and 

N
avgt , inside a zone of ‘n’ elements close to the notch 

tip will be extracted from an elastic (undamaged) tied contact interface. At a time step when intra-laminar 

matrix damage in adjacent plies initiates (i.e. 2 0   in 
kL  or 

1kL 
), the averaged normal and shear stresses 

are used as the calibrated maximum inter-laminar stresses, max
St  and max

Nt , for the cohesive-based contact 

interface. 

 

5.1.2 Inter-laminar damage progression- Experimental calibration 

 

While the numerically calibrated inter-laminar strength values replace the actual inter-laminar 

strength properties, the first and second mode of inter-laminar fracture energies, IcG  and IIcG , 

will not be changed in order to properly capture the mechanics of energy dissipation and 

progression of delamination. The mode I component of the fracture toughness, IcG , can be 

measured using the Double Cantilever Beam (DCB) test ASTM-D 5528 [15]. The mode II 

component of the fracture toughness, IIcG , can be measured using the Four-Point End Notched 
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Flexure (4-ENF) test specimen [163,180].  These tests have been the subject of an extensive 

research throughout the years. A comprehensive review of these tests can be found in 

[165,187,218]. 

 

5.2 Intra-laminar model parameters 

 

In this section the calibration of material parameters required for initiation and saturation of 

intra-laminar damage modes including fibre and matrix damage modes are described. The 

available methodologies in the literature are reviewed. For cases where standard tests are not 

available, a systematic methodology is introduced to obtain the parameters through the 

correlations of numerical virtual tests with relevant experimental tests.  

 

5.2.1 Intra-laminar damage initiation- Experimental calibration 

 

As discussed in Section  3.3.1.1, the intra-laminar fibre and matrix damage initiation are related 

to the strength properties of individual plies. These strength properties can be measured by 

conducting ASTM standard tests on unidirectional laminates [6-8]. While relatively simple to 

perform, the complete series of tests required to characterize a given material system are 

expensive both in terms of time and resources.  With the extensive research in the field of 

composites, there exists a body of published characterization data available for many of the 

widely used material systems (see for example [1,2,121]).  These data can also be supplemented 

by material suppliers and larger material end-users who frequently have libraries of material 

characterization data for use in design calculations.  

 

Based on what was presented in Section  3.3.2.2, the in-situ in-plane tensile and shear strength 

properties,  is
TY  and is

LS , can be calculated by using Equations ( 3.36) and ( 3.38) in order to 

account for the effect of ply thickness and constraint imposed by neighboring plies on the 

initiation of matrix damage. 
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5.2.2 Intra-laminar damage progression- Review of existing experimental methods  

 

As described in Section  3.3.1.2, the progression of the intra-laminar damage is governed by the 

fracture energy values for the fibre and matrix damage modes. The determination of the fracture 

energies associated with both fibre and matrix failure modes are more complicated since there 

are no standard tests available to determine them. Typically notched tests such as compact 

tension/compression loading geometries are employed to extract fracture toughness of materials. 

However, the purpose of these tests is to achieve stable and self-similar crack growth which in 

the case of composites can only be achieved for weakly orthotropic or quasi-isotropic layups.   

 

5.2.2.1 Intra-laminar fibre fracture energy 

 

Different notched geometries have been used in the literature to characterize the intra-laminar 

fracture behaviour of composites fibre failure mode [35,58,141-144,147]. The following 

provides a brief review of some of the tests used by researchers to determine the fibre fracture 

energy. 

 

Leach and Seferis [147] used three-point bend specimens with a [0]40 layup to measure the 

fracture toughness associated with the tensile fibre failure mode of a carbon/PEEK composite, 

and reported a critical energy release rate of 26 kJ/m2.  

 

Jose et al. [118] investigated intra-laminar fracture energy of laminates made of M55J/M18 

carbon/epoxy with layup [0/90]15, to determine the fracture toughness associated with tensile 

loading using Over-height Compact Tension (OCT) specimens. The experimental results were 

compared with finite element simulations using a modified crack-closure integral method. Based 

on the work by Jose et al. [118], Pinho et al. [200] concluded that the mode I critical energy 

release rate reported by Jose et al. corresponds to the mode I critical energy release rate for fibre 

fracture in the 00 layers combined with matrix crack propagation in the 900 layers. Assuming that 

those energies are additive, and that the matrix tensile toughness is similar in magnitude to the 

(inter-laminar) mode I critical energy release rate (i.e. 0.2 kJ/m2), they reported the critical 

energy release rate for the fibre tensile failure mode of M55J/M18 carbon/epoxy to be about 31.7 
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kJ/m2. Using the same procedure, Laffan et al. [144] have reported an R-curve for the fibre 

fracture energy of IM7/8552 CFRP with initiation and propagation values of 112±9.8 kJ/m2 and 

147±12 kJ/m2, respectively. This procedure neglects other damage modes including delamination 

as well as the interactions between the different layers that are failing in different modes. It is 

also assumed that a single matrix crack parallel to the pre-crack occurs in the 90o layers. 

 

Pinho et al. [200] also used the same assumption to investigate the intra-laminar toughness 

associated with fibre breakage in tension and fibre-kinking in compression in unidirectional 

prepreg composites using Compact Tension (CT) and Compact Compression (CC) specimens 

made of T300/913 carbon-epoxy for a [90/0]8s layup. The initiation and propagation values of the 

tensile fibre failure critical energy release rate were determined to be 91.6 kJ/m2 and 133 kJ/m2, 

respectively. For compressive loading, propagation values could not be obtained directly because 

of contact in the crushed area of the specimen. The measurement of the energy dissipation 

associated with longitudinal compressive loading is complex because several dissipative 

phenomena are involved, such as crack growth, crushing and friction. Later, Donadon et al. [58], 

presented a numerical and experimental investigation on the mode I intra-laminar fracture 

energies of a hybrid plain weave composite laminate manufactured using resin infusion under 

flexible tooling (RIFT) process. The pre-cracked geometries consisted of OCT, double edge 

notch (DEN) and centrally cracked four-point bending (4PB) test specimens. The authors also 

presented a methodology based on the numerical evaluation of the strain energy release rate 

using the J-integral method to derive new geometric correction functions for the determination of 

the stress intensity factor for composites. They reported a lower scatter in the toughness values 

using 4PBT specimens. They obtained initiation and propagation toughness values around 2 

kJ/m2 and 10 kJ/m2, respectively, in the weft direction. Whereas, initiation and propagation 

toughness values around 100 kJ/m2 and 165 kJ/m2, respectively, were obtained in the warp 

direction. 

 

Vaiyda and Sun [248] carried out tensile tests on several centre-notched laminates made of 

AS4/3501-6 graphite/epoxy with different laminate layups including [0/90/45/-45]s, [45/-

45/90/0]s, [90/0/45/-45]s, [0/15/-15]s, [0/30/-30]s, [0/45/-45]s, [0/90]2s. They observed from the 

X-ray results that only the 00 plies exhibited fibre failure whereas the off-axis plies failed along 
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matrix cracks. Hence, it was proposed that the fracture toughness of the 00 plies ( 0
IcK ) is a 

constant at failure which means that the laminate fails when the stress in the 00 plies reaches the 

critical value 0
IcK  (i.e. the toughness of 00 plies in the event of fibre breakage). Vaiyda and Sun 

[248] suggested a simple method to estimate this parameter. Using lamination theory, the load 

carried by the 00 plies is related to the applied load on the laminate without accounting for the 

effect of stress distribution in the damaged zone: 

 

0
c c   ( 5.1) 

 

where c  is the laminate applied stress at failure, 0
c  is the remote stress in the 00 ply, and   is 

a parameter that depends on the laminate configuration and the material system and can be 

calculated using the classical lamination theory. Knowing that the laminate toughness, IcK , can 

be expressed as ( )Ic cK a f a  and by substituting for c  in terms of 0
c , we have: 

 

0
Ic IcK K  ( 5.2) 

 

Therefore, they suggested that the fracture toughness of the laminate can be related to a single 

parameter 0
IcK . They showed that for the above mentioned laminate configurations the calculated 

0
IcK  values based on Equation ( 5.2) lead to a mean value of 110 MPa.m1/2 with less than 10% 

standard deviation.  

 

5.2.2.2 Intra-laminar matrix fracture energy 

 

There is an extensive work on the measurement of inter-laminar matrix fracture energy. 

However, the intra-laminar fracture characterization is not so well studied owing to some 

experimental difficulties mostly due to fibre bridging and the effect of constraining plies. This 

translaminar fracture is commonly characterized by a crack running parallel to fibres through the 

layers’ thickness and is required for transverse matrix cracking analysis. 
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The intra-laminar mode-I fracture toughness has been measured for a number of unidirectional 

material systems including graphite/epoxies [98,160], glass/epoxies [189,220], and 

graphite/thermoplastics [98,147]. Several test geometries have been used, including the double 

cantilever beam (DCB), CT, 3PB and 4PB, and mixed bending-tension (MBT) tests (see 

Table  5-1). In all these types of experiments, it has been attempted to confine the matrix crack to 

a single crack parallel to a transverse intra-laminar starter crack. This can be done by creating a 

pre-crack using disk cutters [220], diamond coated wires [231], razor blades [113] or by inserting 

a Teflon film through the thickness of the laminate [199].  In most cases, the magnitude of mode 

I intra-laminar critical strain energy release rate obtained from a unidirectional laminate 

configuration is reported to be comparable to its inter-laminar counterpart with a ratio ranging 

from 0.9 to 1.8.  

 

The amount of work on characterizing the intra-laminar fracture energy dominated by shear 

mode is very limited in comparison with mode I. As pointed out in [26], mode II fracture 

toughness is measured by methods based on fracture near a central crack under an applied shear 

load [270]  or flexure of end-notched specimens [157]. Both of these types of tests lead to 

unstable crack growth, and therefore only a crack initiation fracture toughness can be measured. 

In contrast, splitting of unidirectional composites near a central hole under longitudinal tensile 

load is stable, and the entire R-curve may be determined. Bazhenov [26] used this specimen 

configuration to measure the R-curve for mode II failure for four different unidirectional 

laminates with reinforcements including, S-glass, carbon UKN-5000 and aramid SVM, Armos 

and Terlon fibres. Hot-setting epoxy EDT-10 resin was used as a matrix. It was shown that under 

mode II loading, the difference between fracture toughness at split initiation and that at split 

growth is significant. It was observed that the fracture toughness increases with increase in split 

length. The mode II fracture toughness was between 1.35 to 10 kJ/m2 depending on split length 

and fibre type. Except for the initial parts of R-curves for split lengths less than 20mm, the 

fracture toughness was high, approximately l0-times higher than the typical mode I values (0.2 to 

0.8 kJ/m2). For example at a split length of 50 mm, the mode II fracture energy was measured to 

be between 4 to 10 kJ/m2, essentially higher than those at split initiation and mode I loading. The 

increase in fracture toughness was attributed to the presence of friction and unbroken fibres 

bridging the opposite sides of the split.  
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Table  5-1:A summary of experimental studies on measurement of intra-laminar matrix fracture energy  for 
various material systems in unidirectional laminates 

Composite materials Test methods 

 

Graphite/epoxies  

(Hine, Brew et al. 1989) [98] 

(Slepetz, J.M. and L. Carlson 1975) [225] 

(Macedo, Pereira et al. 2012) [160]  

 

Glass/epoxies 

 (Slepetz, J.M. and L. Carlson 1975) [225] 

(Shaw Ming Lee 1986) [220] 

(Parhizgar, Zachary et al. 1982) [189] 

 

Graphite/thermoplastics 

(Leach, Moore 1985) [147] 

(Hine, Brew et al. 1988) [99]  

(Hine, Brew et al. 1989) [98] 

 

 

Double cantilever beam (DCB)  

(Sørensen, Jacobsen 1998) [231] 

(Iwamoto, Ni et al. 1999b, Iwamoto, Ni et al. 

1999a)[112,113] 

 

(de Moura, Campilho et al. 2010) [54] 

(Hine, Brew et al. 1988) [99] 

(Hine, Brew et al. 1989) [98] 

 

Compact tension (CT)  

(Slepetz, J.M. and L. Carlson 1975) [225] 

(Garg 1986a) [77] 

(Truss, Hine et al. 1997) [241] 

(Jose, Ramesh Kumar et al. 2001) [118] 

(Gutkin, Laffan et al. 2011) [85] 

 

Four-point bend (4PB)  

(Leach, Moore 1985) [147] 

(Garg 1986a) [77] 

(Hine, Brew et al. 1989) [98] 

 

Mixed bending-tension (MBT)  

(Macedo, Pereira et al. 2012) [160] 

 

 

The measurement of intra-laminar matrix fracture energy from a unidirectional laminate does not 

take into account the interaction of matrix damage in a laminate with delamination. Moreover, 

matrix cracking in a multidirectional laminate may not occur as a single crack similar to what 

can be achieved in an experimental setup for a unidirectional laminate. Often they are in the form 

of multiple distributed cracks with a combination of mode I and mode II actions. In some 

numerical studies [87,114], where intra-laminar damage at the ply level is modelled by using 

discrete elements, this type of damage is treated similarly to delamination. This can be justified 

by the fact that enough number of potential crack interfaces is inserted in the plies to dissipate 

the same amount of energy by matrix cracks as in the experiment. Therefore, the intra-laminar 

matrix fracture energy is assumed to be similar to the inter-laminar fracture energy values.  

However, in the proposed methodology where we use a continuum damage based approach, the 
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fracture surfaces caused by all matrix/fibre debonding and matrix cracks are not modelled 

directly (explicitly). Therefore, the inter-laminar fracture energy values do not represent the 

correct amount of energy absorbed by this damage mechanism.  

 

 

5.2.3 Intra-laminar damage progression- Numerical calibration 

 

In this work, we calibrate the intra-laminar fracture energy in tension from the numerical 

analysis of a set of OCT tests on cross-ply laminates using a series of virtual tests. Cross-ply 

laminates made of IM7/8552 CFRP material with two different stacking sequences: (i) blocked-

ply layup ([04/904]2s), and (ii) a dispersed-ply layup ([0/90]8s) in OCT configuration were tested 

by Li et al. [154] and are used here for extracting intra-laminar fracture energies for both fibre 

and matrix damage modes.  While the dispersed laminate exhibits minor delamination with 

multiple matrix cracks and fibre breakage confined to a local and measurable damage zone ahead 

of the notch, the lumped (blocked-ply) laminate shows individual isolated discrete damage 

modes [154]. 

 

The experimental results for the blocked cross-ply laminate that are governed by delamination 

and splitting (i.e. matrix damage dominated) are used to estimate the appropriate values of the 

matrix intra-laminar fracture energy. The numerical analyses are performed using a range for 

fracture energy of matrix cracking while keeping all the other damage parameters constant. The 

numerical predictions in terms of the global behaviour (e.g. force-displacement) and damage 

mechanisms are compared against the experimental results to calibrate the intra-laminar matrix 

fracture energy. Once the intra-laminar matrix fracture energy is calibrated, the same process is 

repeated for the dispersed cross-ply laminate with its damage behaviour dominated by fibre 

fracture. The dispersed layup is useful for calibration of the fibre fracture since the extent of 

delamination and splits is very limited in comparison with the block-ply laminates. In order to 

validate the final estimated values for intra-laminar fracture energies, they will be used in 

simulations of quasi-isotropic laminate layups made of the same material system in next chapter 

(see Section  6.1).  
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In the following, the numerical calibration for intra-laminar matrix and fibre fracture energies is 

shown with more details for laminates made of IM7/8552 CFRP unidirectional prepregs. 

However, the process will be similar for any other material system. 

 
 
 
5.2.3.1 Calibration of intra-laminar fracture energies for IM7/8552 CFRP 

 

Figure  5.2 shows the experimental force vs the pin-opening displacement (POD) for both 

dispersed-ply ([0/90]8s) and blocked-ply ([04/904]2s) laminates made of IM7/8552 CFRP 

unidirectional prepregs [154]. The experimental curves have been shifted left in order to account 

for initial testing machine and test fixture compliance. The test panels for these specimens were 

provided by the University of Bristol. The tests were conducted at the University of British 

Columbia (UBC) to study the progressive damage behaviour of different layups.  

 

For the purpose of comparison of delamination zones, C-scans were conducted1 at UBC on a few 

post-mortem specimens (see Figure  5.3).  Phased array equipment was used to perform a pulse-

echo inspection based on the guidelines provided in References [3-5]. The ultrasonic inspection 

technique was used with a 64-element, 5.0 MHz phased array equipment. Groups of eight 

elements were excited at an interval of 1 element. In other words, elements 1 to 8 were excited 

first, then elements 2 to 9 and so on. A focal depth of 50 mm was used for inspection. From the 

scan results, the back wall amplitude was analyzed with TomoView software [5] to identify 

defect areas. The threshold for defect was set at -6dB or a 50% drop of the mean back wall 

signal. The color palette shown in Figure  5.3 is red for a range from 0% full-screen height (FSH) 

to 50% of the mean back wall signal, and has black-to-white gradient from 50% of the mean 

back wall signal to 100% FSH [5].  

 

It can be observed from Figure  5.3 that the dispersed-ply laminate shows a smaller delamination 

zone in comparison with the blocked-ply laminates. This difference in the damage mechanisms 

can also be confirmed from the force vs pin-opening displacement (POD) as shown in Figure  5.2 

                                                
1 The C-scan on these samples were conducted by Navid Zobeiry at University of British Columbia. 
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where the blocked-ply laminates show higher failure load and a tougher overall behaviour. This 

can be associated with the presence of delamination and large splits in the 00 plies that delays the 

fibre breakage as a result of the crack-blunting mechanism. 

 

 

Figure  5.2: Experimentally obtained force vs. pin-opening displacement (POD) curves for both dispersed 
[0/90]8s and blocked [04/904]2s cross-ply laminates in OCT specimens [154]    

 

 

 
 

(a) (b) 

Figure  5.3: C-Scan results showing the delaminated zone in OCT specimens of (a) blocked-ply [04/904]2s 
laminate, and (b) dispersed-ply [0/90]8s laminate [154]  
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5.2.3.1.1 Numerical model setup for OCT simulation 

 

All numerical simulations were carried out using the commercial explicit finite element software 

package, LS-DYNA [158]. The enhanced CODAM2 material model with all the features 

described in Chapter 3 is implemented as a user-defined material model in LS-DYNA and was 

used for the following simulations. Due to symmetry of the layups, in all cases half-models 

through the thickness were used. The geometry and the finite element mesh of the specimen are 

shown in Figure  5.4. A prescribed displacement was applied at each of the rigid pins of the 

models until the Pin Opening Displacement (POD) reached the maximum displacement that was 

attained in experiments. 

 

Each individual ply was modelled with one layer of reduced-integrated thick shell elements 

(element formulation 5 in LS-DYNA) in the thickness direction which can capture the through 

thickness stress distribution. For each ply of elements, one integration point was considered 

through the thickness given that the loading is in-plane. Moreover, the enhanced CODAM2 

material model was assigned to each layer of elements with its own ply orientation. Both 

blocked-ply and dispersed-ply layups were modelled using this approach. A cohesive-based tie-

break contact as explained in Section  4.2 was defined between dissimilar plies to simulate 

delamination within the laminate. A stiffness based  hourglass control (Type 4) was used with 

stiffness coefficient of 0.5 to prevent zero energy mode shapes due to the presence of only one 

integration point in the plane of elements.  

 

The in-plane mesh size of the region close to the notch in all models is 0.5 mm and the elements 

are coarser with increasing distance from the notch tip. For a mesh size of 0.5mm and one in-

plane integration point in each element, the non-local averaging radius was chosen to be 1mm to 

ensure that it covers more than one in-plane integration point in the averaging zone. 
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(a) (b) 

Figure  5.4: (a) OCT specimen geometry and (b) the FE mesh 

 

The initiation of fibre and matrix damage is captured using the Hashin’s stress-based failure 

criteria with the strength properties measured from the standard unidirectional tests. The 

experimentally measured strength properties for a unidirectional laminate of IM7/8552 CFRP are 

shown in Table  5-2 [121]. The in-situ transverse tensile and shear strength properties of thin 

(0.125 mm) and thick (0.5 mm) plies for each laminate layup were also calculated using the 

procedure described in Section  3.3.2. The in-situ strength properties that were obtained for the 

thicker plies (0.5mm) are quite in agreement with the reported measurements for unidirectional 

laminates of IM7/8552 CFRP in [121] (see Table  5-2). This shows that the constraining effect of 

the adjacent plies in a blocked-ply laminate with ply thickness more than 0.5 mm can be ignored. 

However, it leads to a relative increase in the in-situ transverse tensile and in-plane shear 

strength properties of the thin plies (0.125 mm) in the dispersed-ply layups. The calculated in-

situ strength properties are shown in Table  5-2 for both thin and thick plies.  

  

Loading pins 
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Table  5-2: Elastic and damage material parameter (tensile) for plies for [904/04]2s and [90/0]8s OCT laminates 
in meso-modelling approach 

Experimental properties for unidirectional plies:       
                           

1 165 GPaE  ; 
2 9.0 GPaE  ; (a) 0

12 5.1 GPaG  , 
12 0.34   

2560MPaTX  , 73MPaTY  , 90MPaLS   

                                                            Intra-laminar damage parameters for each ply 

Input Parameters [904/04]2s [90/0]8s 

Longitudinal tensile strength  2560MPaTX   2560MPaTX   

Transverse tensile strength 73MPais
TY   122MPais

TY   

In-plane shear strength  90MPais
LS   

98.5MPais
LS   

Fibre fracture energy 2
1 [90 150]kJ/mfG    2

1 [90 150]kJ/mfG    

Fibre fracture energy density ( 1 1 / (0.86 )f fg G r ) 2
1 [104.7  174.4]N/mmfg    2

1 [104.7  174.4]N/mmfg    

Matrix fracture energy 2
2 [0.65 6.5]kJ/mfG    2

2 [0.65 6.5]kJ/mfG    

Matrix fracture energy density ( 2 2 / (0.65 )f fg G r ) 2
2 [1 10]N/mmfg    2

2 [1 10]N/mmfg    

Non-local averaging radius  1 mm 1 mm 

                                                                                           Inter-laminar damage parameters 

Input Parameters [904/04]2s [90/0]8s 

Maximum  inter-laminar  normal stress  
max [17 30]MPaNt    

max [7 10]MPaNt    

Maximum inter-laminar shear stress max [17 30]MPaSt    max [7 10]MPaSt    

Inter-laminar fracture energy, Mode-I 20.2kJ/mIcG   20.2kJ/mIcG   

Inter-laminar fracture energy, Mode-II 
20.8kJ/mIIcG   20.8kJ/mIIcG   

(a) The nonlinear shear stress-strain curve is provided in [121] 

 

5.2.3.1.2 OCT simulation of blocked cross-ply laminates [904/04]2s 

 

Here, with the use of a reference model for [904/04]2s laminate, a series of simulations were 

conducted to estimate the proper intra-laminar matrix fracture energy value, 2
fG . A range of 

values for 2
fG  from 0.65 to 6.5 kJ/m2 were considered (see Table  5-2). The input for the material 

model is the corresponding fracture energy density, 2
fg , which is related to 2

fG  with an effective 

length scale, 2
ch (i.e. 2 2 2/f f cg G h ). This length scale as discussed on Section  3.3.1.2 and detailed 
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in Appendix B is a function of the selected radius of non-local averaging. For the chosen radius 

of 1r mm  and a length scale of 0.65ch r  as suggested in Appendix B, the corresponding 

matrix fracture energy density 2
fg  ranges from 1 to 10 N/mm2. In all cases, the intra-laminar 

fibre fracture energy and all the other mechanical properties were kept the same. In the reference 

model, it was assumed that 2
1 150kJ/mfG   which is closer to the upper bound of the range [100-

150] kJ/m2 that is reported in [144] for IM7/8552 CFRP material system. However, the effect of 

using lower values within the reported range for fibre fracture energy will also be discussed. The 

inter-laminar fracture energy values IcG  and IIcG  were chosen from [121] as listed in Table  5-2. 

The adjusted maximum inter-laminar shear and normal stress values were obtained using the 3D 

stress analysis as described in Section  5.1.1 for each numerical case (see Table  5-2).  

 

Upon conducting the numerical analysis for each of the adopted intra-laminar matrix fracture 

energy values, the resulted force-displacement and damage patterns were investigated and 

compared against the experimental results conducted by Li et al. [154].  

 

Figure  5.5 displays the predicted force vs POD response of the blocked cross-ply laminate with 

intra-laminar fracture values between 0.65 to 6.5 kJ/m2. For values smaller than 2.6 kJ/m2, the 

peak force is underestimated as a result of insufficient amount of energy dissipation. On the other 

hand, for values above 2.6 kJ/m2, the maximum force is over-predicted. The predicted damage 

pattern (fringe plots of 1  and 2 ) for intra-laminar damage modes in the 00 and 900 layer as 

well as delamination between them (fringe plots of D ) for the case where 2
fG =2.6 kJ/m2 are 

shown in Figure  5.6 and Figure  5.7.  

 

The predicted damage pattern is consistent with experimental results [154] where there is 

negligible fibre breakage and the splits (in the 00 layer) and interface delamination are the 

dominant damage mechanisms. Although the nature of the predicted damage pattern with all the 

chosen values of matrix fracture energy is the same, the speed of split growth in the 00 plies is 

dependent on the available matrix fracture energy.  Figure  5.8 shows the increase in the split 

length as the load increases for different values of intra-laminar matrix fracture values. Note that 
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the figure shows half of the total split over upper or lower half of the specimen from the notch tip 

to the upper or lower edge of the specimen. It can be seen that decreasing the available intra-

laminar matrix fracture energy leads to an increase in the rate of split growth. This also explains 

the behaviour in the force-displacement result, where lower value of matrix fracture energy leads 

to faster saturation of matrix crack that grows in the 0o plies. Delamination also grows along with 

the split and saturates the whole height of the specimen and causes the load drop to occur earlier 

with decreasing matrix fracture energy.  This trend, however, reverses as the intra-laminar matrix 

fracture energy increases. 

 

Fibre damage did not initiate in any of the above numerical cases with blocked-ply laminates. 

Therefore, changing the value of fibre fracture energy from 150kJ/m2 to lower values did not 

change the response of the laminate. However, as will be shown in the following, the fibre 

fracture energy can affect the overall response of the dispersed cross-ply laminates as their 

behaviour is dominated by fibre damage mode.   

 

The correlation between the simulation results and the experimental tests could be done in a 

more quantitative manner by having more accurate measurements of the damage modes. For 

example tracking the length of the splits in the 00 ply in the experiment could be used as an 

additional measure for correlating the numerical and experimental results and hence achieving a 

more accurate value of the matrix fracture energy.   
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Figure  5.5:  Comparison of the experimental and predicted force-displacement curves for [04/904]2s laminate 
with different values of matrix fracture energy and fibre fracture energy of 150 kJ/m2 [154] 

 

 

 

    

 

(a) MD (
2 ) (b) FD (

1 ) (c) MD (
2 ) (d) FD (

1 ) 
 

Figure  5.6: Predicted damage patterns for each ply of the  [04/904]2s OCT laminate with 2
fG =2.6 kJ/m2 at 

POD=4.8mm, (a) matrix damage in 00 layer, (b) fibre damage in 00 layer, (c) matrix damage in 900 layer and 
(d) fibre damage in 900 layer 
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(a) predicted D  (b) C-scan 

Figure  5.7: Comparison of (a) the predicted delamination zone at 0ᴼ/90ᴼ interface of the [04/904]2s 
OCT laminate at POD=5 mm with (b) the final measured delamination zone from the C-scan results 

 

 

 

Figure  5.8: Comparison of the predicted split length over half of the specimen height from the notch to the 
upper boundary in the 00 ply for intra-laminar matrix fracture energy values ranging from 0.65 to 6.5 kJ/m2 
for the [04/904]2s  blocked-ply OCT laminate 
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The finite element mesh that was used for the above simulation was in square shape and the 

edges of the elements were parallel with the global x and y direction of the model (the load is 

applied in y direction). In order to investigate the effect of mesh structure ahead of the notch tip, 

a non-structured mesh configuration as shown in Figure  5.9(a) was used for both 0o and 90o 

plies. The size of the elements is roughly 0.5 mm but the orientation of mesh ahead of the notch 

tip is not parallel with the global coordinate system and not necessarily square in shape. The 

above-mentioned laminate layup was simulated using this mesh configuration with the same 

value of radius for nonlocal averaging and 2
fG =2.6 kJ/m2 (i.e. 2

fg =4 N/mm2). The predicted 

force vs. POD curve was found to be in good agreement with the experimental results and the 

predicted matrix damage pattern in each ply is shown in Figure  5.9(b) and (c). Since the obtained 

predictions are more or less the same, one can conclude that the calibrated parameters obtained 

from a structured mesh can also be used for a non-structured mesh as long as the non-local 

approach is used.     

 

   

 

(a) mesh configuration at the notch tip (b) MD (
2 ) (c) MD (

2 ) 
 

Figure  5.9: (a) An non-structured mesh configuration ahead of the notch tip for the  [04/904]2s OCT laminate, 

(b) predicted matrix damage in 00 layer, (c) predicted matrix damage in 900 layer for =2.6 kJ/m2 at 

POD=4.8mm 

 

 

  

2
fG

Notch tip 
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5.2.3.1.3 OCT simulation of dispersed cross-ply laminates [0/90]8s 

 

Similar virtual tests have been performed for thin-ply laminate layup [0/90]8s with fracture 

energy of matrix cracking ranging from 2.6 to 6.5 kJ/m2 and eliminating values lower than 2.6 

kJ/m2 based on the predictions for blocked-ply laminates. Again, in a reference case, the upper 

bound of fibre fracture energy (i.e. 2
1 150 kJ/mfG  ) is used, but the effect of lower values are 

also studied. The curves in Figure  5.10 show the force-displacement results for the upper and 

lower bounds 2
2 6.5 kJ/mfG  and 2

2 2.6 kJ/mfG  that are over-laid on the experimental results. 

The behaviour shown by the global force-displacement results for each case can be explained by 

investigating the predicted damage pattern shown in Figure  5.11 through Figure  5.13. The intra-

laminar and inter-laminar damage patterns for the case with 2
2 2.6 kJ/mfG  are shown in 

Figure  5.11 and Figure  5.12, respectively, whereas Figure  5.13 shows the damage patterns for 

2
2 6.5 kJ/mfG  . Using the upper bound for matrix fracture energy delays the growth of matrix 

damage in the 0o plies. Consequently, there is enough time for the stress in the fibre direction to 

increase and reach the initiation point of fibre breakage before any splits can be formed. Thus, 

fibre breakage becomes the dominant damage mechanism. In this case delamination zone is also 

very small. For the lower bound (i.e. 2
2 2.6 kJ/mfG  ), however, the splits grow to some extent 

to allow delamination to occur between the plies. However, the splits and delamination are not 

large enough to redistribute the stress as in the case of the blocked-ply laminate. Therefore, the 

stress in the fibres increases sufficiently to reach the damage initiation criterion and fibre 

breakage ensues.  

 

From the above results, we conclude that a value of intra-laminar matrix damage fracture energy 

of 2
2 2.6 kJ/mfG  is sufficient to capture the response of this material system both for blocked 

and dispersed laminate layup.  However, the initiation damage properties for the intra-laminar 

damage (i.e. the in-situ strength properties) and inter-laminar damage (i.e. the interface strength 

properties) modes have to be adjusted depending on the ply thickness and laminate layup based 

on the procedure proposed in this work.  
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Figure  5.10: Comparison of the experimental and predicted force-displacement curves for the [0/90]8s OCT 
laminates for a low and a high value of intra-laminar matrix fracture energy and fibre fracture energy of 150 
kJ/m2 [154] 
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Figure  5.11: Predicted damage patterns for each ply of the [0/90]8s OCT laminate with 2

2 2.6 kJ/mfG  at 

POD=3.8 mm, (a) matrix damage in 00 layer, (b) fibre damage in the 00 layer, (c) matrix damage in 900 layer, 
and (d) fibre damage in 900 layer 

 
 



123 

 

 

 

(a) predicted 
D  (b) C-scan 

Figure  5.12: Comparison of (a) the predicted delamination zone at 0ᴼ/90ᴼ interface of the [0/90]8s OCT 

laminate with 2

2 2.6 kJ/mfG   at POD=3.8 mm with (b) the final measured delamination zone from the C-

scan results 
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Figure  5.13: Predicted damage patterns for each ply of the [0/90]8s OCT laminate with 2

2 6.5 kJ/mfG  at 

POD=3.8 mm, (a) matrix damage in 00 layer, (b) fibre damage in the 00 layer, (c) matrix damage in 900 layer, 
and (d) fibre damage in 900 layer 
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Once the matrix fracture energy is calibrated using the reference models of blocked and 

dispersed cross-ply laminates where fibre fracture was assumed to be equal to an upper bound of 

150kJ/m2, the effect of lower values for fibre fracture energy is also investigated. It was 

mentioned that the change in fibre fracture energy did not affect the response of blocked-ply 

laminates since damage progression was dominated by matrix cracking and delamination. 

However, the dispersed-ply laminate is a good candidate to study the effect of fibre fracture 

energy on the progression and overall behaviour of the laminate. For this purpose, the dispersed 

cross-ply OCT specimen was simulated with a range of fibre fracture energy values between 90 

to 150 kJ/m2, while the matrix fracture energy was kept constant at 2.6kJ/m2. Figure  5.14 shows 

the force-displacement curves overlaid on the experimental results. It can be seen that by 

reducing the amount of fibre fracture energy, the peak force as well as the post-peak response 

drops which is a result of the reduction in the saturation strain associated with fibre damage. As 

the fibre fracture energy is decreased, damage in the 00 plies becomes dominated by the fibre 

damage mode similar to what was shown in Figure  5.13. Therefore, the fibre fracture energy 

values within the range 140 to 150 kJ/m2 are considered to be acceptable for this material 

system.  

 

Although the input material parameters are calibrated in a deterministic sense, once some level 

of confidence is obtained, one can also approach the process of calibration in a probabilistic 

sense. To this end, the variability in the experimental results can be considered and accordingly a 

range of variability of the calibrated input parameters can be obtained using a probabilistic 

approach.       

 

The numerical noise that are observed in the form of high frequency oscillations in the force vs. 

POD response in Figure  5.5 and Figure  5.14 are associated with the explicit nature of the finite 

element solution procedure specifically once the intra-laminar and inter-laminar damage modes 

initiate. Similar behaviour has been observed in numerical solutions that are based on explicit 

finite element solutions (e.g. [153])    

In the following chapter, the numerically calibrated intra-laminar matrix and fibre fracture 

energies are used for prediction of damage progression in two geometries. In the first case, two 

quasi-isotropic laminates made of IM7/8552 CFRP material with a dispersed-ply and blocked-
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ply laminate layup in an OCT configuration are simulated. In the second case, OHT specimens 

made of quasi-isotropic laminates of IM7/8552 carbon fibre/epoxy material system with various 

size and laminate thicknesses are modelled. 

 

 

Figure  5.14:   Comparison of the experimental and predicted force-displacement curves for the [0/90]8s OCT 

laminates with 2

2 2.6 kJ/mfG  and a range for fibre fracture energy values, 1
fG  [154]. 

 

5.3 Summary  

 

In this chapter, the guidelines and procedures to determine the intra-laminar and inter-laminar 

damage parameters for the mesoscopic non-local CODAM2 material model were presented.  

 

In order to have an accurate prediction of delamination using the cohesive zone model without 

the need to use very fine mesh, the length of the cohesive zone in the simulation was artificially 

increased by reducing the interface strength. A simple yet intuitive method was proposed to 

estimate the amount of reduction for the interface strength properties. The inter-laminar strength 

properties were adjusted based on the status of inter-laminar stresses that were obtained from a 

3D stress analysis on the laminate while delamination was prevented between the plies. The 

average of inter-laminar stresses within a zone close to the notch or discontinuities where the 

matrix cracks and delamination were expected to occur first was selected as the inter-laminar 
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calibrated strength properties. However, the inter-laminar fracture energy values remained 

unchanged. With this approach, one can eliminate the need to have very fine mesh size to get 

accurate prediction using the cohesive interfaces. Moreover, it also implicitly accounts for the 

effect of ply thickness on the initiation of delamination since the initiation of delamination is 

indirectly linked to the matrix cracking which is in turn influenced by ply thickness. In this work, 

the dependency of matrix damage initiation on ply thickness is enabled using the shear lag theory 

(Section  3.3.2). 

 

The methodologies for determining the material constants required for the intra-laminar damage 

modes were also discussed.  Most properties including the elastic moduli and strength properties 

can be gathered from the standard tests. The effect of the ply thickness on initiation of matrix 

cracking is considered using the in-situ strength properties that are approximated by the shear lag 

theory.  

 

While there is more literature available on the characterization of fibre fracture energy, less work 

has been done for characterization of intra-laminar matrix fracture energy values. A systematic 

and novel procedure was proposed to calibrate the intra-laminar fracture energies of a material 

system in tension from a few experiments on over-height compact tension specimens of cross-

ply laminates. The intent is to implicitly account for the interaction of matrix cracks with 

delamination and damage in neighboring plies. These are the type of interacting mechanisms that 

do not show up in conducted tests on unidirectional laminates. Two types of blocked-ply and 

dispersed-ply laminates with cross-ply layup were used to calibrate the intra-laminar fracture 

energy values for IM7/8552 carbon-fibre/epoxy material system. The experimental results for the 

blocked cross-ply laminate that are governed by delamination and splitting (i.e. matrix damage 

dominated) were used to estimate the appropriate values of the matrix intra-laminar fracture 

energy. The numerical analyses were performed using a range for fracture energy of matrix 

cracking while keeping all the other damage parameters including the fibre fracture energy 

constant. The numerical predictions in terms of the global behaviour (e.g. force-displacement) 

and damage mechanisms were compared against the experimental results to calibrate the intra-

laminar matrix fracture energy. Moreover, the effect of the experimental range reported for the 

fibre fracture energy of this material in the literature was investigated. While the response of the 
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blocked-ply laminate was independent of the fibre fracture energy, the peak force and the post 

peak response of the dispersed-ply laminate reduced as the fibre fracture energy decreased. The 

response of the dispersed-ply laminate refined the range of fibre fracture energy that fit the 

experimental results.  

 

The calibrated material properties for the above mentioned material system will be used in the 

next chapter for validating the proposed methodology for different layup and loading geometry 

of the same material system. 
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Chapter 6: Model Validation 

 

Having calibrated the intra-laminar matrix and fibre fracture energies for the IM7/8552 CFRP 

material using OCT simulation of blocked and dispersed cross-ply laminates (see 

Section  5.2.3.1), in this chapter the calibrated model is used to simulate the tensile response of 

notched laminates of IM7/8552 CFRP with different layup and loading geometry for validating 

the model.  

 

In Section  6.1, two quasi-isotropic laminates made of IM7/8552 CFRP material with different 

stacking sequences: (i) a dispersed-ply layup ([45/90/-45/0]2S), and (ii) a ply-scaled layup 

([454/904/-454/04]S) are simulated in OCT test setting [154]. The geometry of the specimens is 

the same as the cross-ply laminates that were used for calibration. Again, these two laminates 

were chosen because of their distinct nature of damage modes. The major damage mechanism in 

the dispersed-ply laminate is fibre fracture in the 0 and 45 layers while delamination is the 

main failure mechanism in the blocked-ply laminate.  

 

In Section  6.2, the applicability of the proposed methodology as well as the calibrated material 

properties are examined for the same material system but a different geometry. For this purpose, 

a series of open-hole specimens that have been tested under tensile loading at the University of 

Bristol [82] are modelled using the proposed approach. The specimens are made of IM7/8552 

CFRP laminates with a quasi-isotropic layup, with varying hole diameter, ply and laminate 

thickness while keeping the ratios of the hole diameter to specimen width and length constant. It 

was observed that both strength and failure mechanisms of the open-hole laminates varied with 

layup configurations. We will demonstrate that the proposed approach captures the dominant 

failure mechanisms as well as the overall behaviour, including the size and layup effect on the 

notched strength of the laminate.  

 

6.1 OCT tests on quasi-isotropic laminates 

 

Here, both the blocked-ply and dispersed-ply quasi-isotropic laminates made of IM7/8552 CFRP 

that were experimentally tested by Li et al. [154] are modelled with the proposed methodology. 
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The model specifications and the in-plane mesh size are similar to what was described for the 

cross-ply laminates in Section  5.2.3.1. The mechanical properties and other numerical 

parameters required for determination of damage initiation for intra-laminar fibre and matrix 

damage modes are similar to what were used for cross-ply laminate with thin and thick plies. As 

calibrated in chapter, the intra-laminar matrix fracture energy is selected as 2
2 2.6kJ/mfG   and 

fibre fracture energy is 2
1 [140 150]kJ/mfG   . Similar to the cross-ply laminates, the adjusted 

maximum inter-laminar shear and normal stress values are obtained using the 3D stress analysis 

as described in Section  5.1.1 (see Table  6-1).  

 

Table  6-1: Inter-laminar damage material parameters for [454/904/-454/04]s and [45/90/-45/0]2s  
laminates in the combined damage modelling approach for OCT specimens 

 [454/904/-454/04]s [45/90/-45/0]2s 

Maximum  inter-laminar  normal stress  max 15MPaNt   max 10MPaNt   

Maximum inter-laminar shear stress max 25MPaSt   max 20MPaSt   

 

6.1.1 Simulation results and discussions 

 

The predicted force-displacement response for the dispersed-ply and blocked-ply laminates is 

shown in Figure  6.1(a) and (b) overlaid by the experimental results. These results are shown for 

intra-laminar fracture energy values of 150kJ/m2 and 2.6kJ/m2 for fibre and matrix damage 

modes, respectively. Note that the experimental curves have been shifted left in order to account 

for initial testing machine and test fixture compliance. It can be seen that the current 

methodology is capable of predicting the overall response of both laminate layup types. The 

main reason for the more gradual decrease of the stiffness in the blocked-ply laminate compared 

to the dispersed one is the presence of the splits and delamination. This leads to stress 

redistribution in the layers and prevents major fibre fracture.  

 

Figure  6.2 shows the predicted matrix cracks ( 2  distribution) at POD of 2.2 mm predicted close 

to the ultimate failure load. The surface split in the 450 layer is in good agreement with what has 

been observed from the experiments [154]. The evolution of the extent of matrix damage in each 

ply with increasing POD is shown in Figure  6.3. The predicted projection of delamination zones 
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at 0ᴼ/-45ᴼ, -45ᴼ/90ᴼ and 90ᴼ/45ᴼ interfaces is also shown in Figure  6.4(a) at POD of 2.2mm. 

Figure  6.4(b) shows the corresponding C-scan results obtained in-house for one of the post-

mortem specimens. The predicted direction of delamination growth at different interfaces is 

found to be in consistent with the C-scan results. 

 

The matrix and fibre damage modes for each ply of the dispersed-ply [45/90/-45/0]2s laminate at 

POD of 2.2mm are shown in Figure  6.5 and Figure  6.6, respectively. The presence of fibre 

fracture in the 00 and ±450 plies is the major reason for the brittle behaviour of this layup in 

comparison with the block-ply laminate. The projection of delaminated zone at POD of 2.2 mm 

is also shown in Figure  6.7 along with the C-scan results for one of the post-mortem specimens. 

Note that the predicted delamination and the C-scan results provided here might be at slightly 

different loading points (POD level). However, the shape and the path of the predicted 

delamination growth are in fairly good agreement with corresponding C-scan results. 

 

  

(a) (b) 

Figure  6.1: Comparison of the experimental and predicted force-displacement curves for (a) [454/904/-454/04]s 
and (b) [45/90/-45/0]2s laminates under OCT loading geometry [154] 
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(a) (b) (c) (d) 

Figure  6.2: Predicted matrix damage pattern ( 2  distribution) for each ply of the blocked-ply [454/904/-

454/04]s laminate at POD=2.2mm 

 

 

 

Figure  6.3: Predicted length of matrix damage versus pin opening displacement (POD) for each ply of the 
blocked-ply [454/904/-454/04]s laminate under OCT loading  
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(a) (b) 

Figure  6.4: Predicted projected delamination zone for [454/904/-454/04]s laminate at POD=2.2mm and the 
experimental C-scan result obtained from a corresponding post-mortem specimen 

 

 (a) First sub-laminate 

(b) Second sub-laminate 

Figure  6.5: Predicted matrix damage pattern ( 2  distribution)  for each ply of the [45/90/-45/0]2s  laminate 

at POD=2.2 mm for (a) the first and (b) second sub-laminates (from the mid-plane to the free surface) 
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(a) First sub-laminate 

(b) Second sub-laminate 

Figure  6.6: Predicted fibre damage pattern ( 1  distribution)  for each ply of the [45/90/-45/0]2s  laminate at 

POD=2.2 mm for (a) the first and (b) second sub-laminates (from the mid-plane to the free surface) 

 
 

 
 

(a) (b) 

Figure  6.7: Predicted projected delamination zone for [45/90/-45/0]2s laminate at POD=2.2mm and the 
experimental C-scan result obtained from a corresponding post-mortem specimen 
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In order to investigate the sensitivity of the response to the chosen value for the fibre fracture 

energy, Figure  6.8 shows the force vs POD for the dispersed-ply [45/90/-45/0]2s laminate for 

different values of 1
fG  ranging from 140 to 150 kJ/m2. It can be seen that with decreasing the 

amount of fracture energy, the peak force and the post peak response slightly decrease but the 

predicted response is still within the range of the experimental results. 

 

 

Figure  6.8: Comparison of the experimental [154] and predicted force-displacement curves for [45/90/-45/0]2s 
OCT laminate with different values of fracture energy for fibre damage mode 

 

The presented numerical results show the advantage of the proposed approach for a laminate 

layup which is prone to large delamination zones. Without capturing delamination as the major 

damage mechanism, the predicted damage will be smeared over a finite zone and the behaviour 

of the laminate will be dominated by fibre fracture. This phenomenon can be shown by 

simulating the blocked-ply quasi-isotropic laminate [454/904/-454/04]s using the fully continuum 

damage approach. For this purpose, the model has been setup as previously described (i.e. ply-

by-ply) but all the plies are tied together using the constrained contact formulation available in 

LS-DYNA (*CONTACT_TIED_SURFACE_TO_SURFACE [158]). This will eliminate the 

occurrence of delamination. The enhanced CODAM2 material model is assigned to each ply 

with all intra-laminar damage parameters as was used before with 2
1 150kJ/mfG   and 

2
2 2.6kJ/mfG  .  It can be observed from Figure  6.9(a) that without capturing delamination 
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between the plies, the force-displacement response becomes more brittle. In this case damage is 

dominated by fibre fracture leading to severe under-prediction of the failure load. This shows 

that the response of a blocked-ply laminate can be correctly modelled only when the plies are 

allowed to delaminate at the interfaces, thus redistributing the stresses and resulting in a tougher 

response. 

 

The application of the fully continuum damage approach to capture the overall response of the 

dispersed-ply quasi-isotropic laminate [45/90/-45/0]2s is also investigated. For this purpose, two 

simulations have been conducted. In the first one, all the plies are fully tied together to prevent 

delamination with all intra-laminar damage parameters as was used before with 2
1 150kJ/mfG   

and 2
2 2.6kJ/mfG  . In the second simulation, however, half-thickness of the laminate is 

modelled by only one layer of thick shell elements with two integration point through the 

thickness where for each integration point the original sub-laminate-based (macroscopic) 

CODAM2 material model as described in Section  3.2 is used. As outlined in Section  3.2.4, each 

integration point will represent the effective strain-softening behaviour of a sub-laminate once its 

initiation and saturation strain values are calibrated using the characterized damage properties of 

the sub-laminate. Since the loading is in-plane, one can also get the same result by using only 

one integration point through the thickness of the elements. The calibrated material properties for 

this laminate are chosen to be similar to [45/90/-45/0]4s (i.e. eight sub-laminates instead of four) 

which was characterized by Zobeiry et al. [289]. The calibrated input parameters including the 

matrix and fibre damage initiation and saturation strains are listed in Table  6-2 [289]. The fibre 

damage initiation strain of 0.011 is used based on the range of experimentally measured values. 

Matrix damage initiation strain of 0.008 is also used based on the reported values in the literature 

[121]. The measured laminate’s fracture energy of 105 kJ/m2 and a damage height equal to 

5.0mm, are used to determine the damage saturation strain values [289,290]. Figure  6.9(b) shows 

the predicted force-displacement (POD) response using both of the above mentioned 

methodologies (both considered as a fully CDM approach). It is observed that both methods can 

capture the force-displacement response of the dispersed-ply quasi-isotropic laminate within the 

range of experimental results. The major predicted damage pattern is fibre fracture in the 0 and 

±45 layers. Therefore, the fully continuum damage approach may provide a reasonable 
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prediction of the overall response for cases where delamination is minor. It is observed from 

Figure  6.9(b) that when delamination is prevented in the ply-by-ply model with the enhanced 

CODAM2 model, the force-displacement result is showing a more brittle behaviour in 

comparison with the case where delamination is allowed. This difference is associated with 

influence of delamination on redistributing the stress in the plies and delaying the initiation of 

fibre damage.  

 

Table  6-2: Calibrated damage material parameters for [45/90/-45/0]2s  laminate using the original sub-
laminate based (macroscopic) CODAM2 [289] 

Damage property Symbol Value 

Matrix damage initiation strain 2
i  0.008  

Fibre damage initiation strain 1
i  0.011 

Damage saturation strain (fibre and matrix) 1 2,s s   0.075 

Non-local averaging radius (mm) r 2.0 

 

  

(a) (b) 

Figure  6.9: Comparison of the experimental and predicted force-displacement curves with and without 
accounting for delamination for (a) blocked-ply[454/904/-454/04]s and (b) dispersed-ply [45/90/-45/0]2s laminates 
[154,289] 
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6.2 Open-hole tensile (OHT) tests on quasi-isotropic laminates 

 

The open-hole tensile (OHT) test is one of the test configurations that is commonly used in 

aerospace industry for composite design since it is representative of common features in 

composite components causing stress concentrations such as fastener holes and cutouts. The 

simulation of damage  progression in OHT poses a great challenge due to the complex failure 

modes and their interaction that depend on fibre and matrix associated in-plane damage modes, 

stacking sequence, hole diameter, width/diameter ratios, ply thickness and others. The adopted 

virtual test method must be able to capture the failure scenarios and the dominant damage modes 

that lead to final failure of the specimen. Without capturing the correct failure mechanisms the 

notched ultimate strength may not be predicted correctly. 

 

Several modelling strategies have been used recently to simulate the progression of damage and 

to account for all the possible damage mechanisms. The discrete damage method applied at the 

ply level in combination with discrete interface methods have gained significant attention, since 

it automatically takes into account the coupling between the intra-laminar and inter-laminar 

damage. As an example of this methodology, one can refer to the work by Hallett et al. [87], 

Achard and Bouvet et al. [11] where a refined complex mesh is made with a layer of elements 

per ply and interfaces for in-plane matrix crack and delamination. The paths of possible failures 

are limited to the number of interfaces pre-inserted in the model. Other methods have also been 

used to account for the discrete nature of matrix cracks. Prabhakar and Waas [203] proposed a 

triangular finite element that enables the possibility of splitting elements into two parts to capture 

the matrix crack failure.  Methods that are based on XFEM are also used for this purpose. 

Vander Meer [249,252,253] used phantom node method to capture the in-plane matrix cracks 

within a limited area close to the hole with very fine mesh. Iarve et al. [105,106,236] used the 

regularized XFEM method to simulate the hole size effect in thick-ply laminates where the 

failure occurs in the delamination mode. They have used a minimum crack spacing which is 

dependent on the maximum size of any element on the crack path with the restriction that two 

adjacent crack paths have to be separated by several elements. Introducing the matrix cracks in 

this method will induce additional degrees of freedom and therefore an upper limit for the 

number of cracks per ply is enforced. This method has shown very good correlation with the 
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experimental results of thick ply laminates in OHT. They also extended their methodology to 

model fatigue in open-hole tests [107]. 

 

Meso-models using the CDM approach to capture intra-laminar damage modes are also used for 

this problem. Among them, Song et al. [229], proposed a modeling approach for the analysis of 

the open-hole tension specimens that consists of different meshes for each ply orientation, such 

that the element edges were aligned with the ply fibre direction, and cohesive element layers 

embedded between plies. Tie constraints were then used to connect the individual ply meshes 

with the cohesive element layers. They used the CDM formulation that is available in Abaqus to 

capture intra-ply damage modes. They have been able to predict the matrix crack and 

delamination pattern in blocked ply open hole laminates. However, they have reported that 

failure loads for specimens exhibiting a delamination failure mode are consistently over 

predicted. They have attributed this discrepancy to the late onset of delamination to link up 

damage through the laminate width compared to the experimental results.  

 

The original sub-laminate based non-local CODAM2 was also employed to predict two of the 

test cases for the third round of World Wide Failure Exercise (WWFEIII) [75]. In these test 

cases, open hole tensile and compressive specimens of a quasi-isotropic [454/904/-454/04]s 

IM7/8552 laminate were modeled. For this geometry and material layup, the edge delamination 

and splitting in the layers, especially in the 00 layer have important roles to play in redistribution 

of stress in the layers. The effect of edge delamination, in this problem, was implicitly accounted 

for by reducing the in-plane stiffness of the laminate using a damage parameter which was 

driven by the maximum principal strain. The initiation strain of this damage mode was calculated 

based on the analytical formulation of O’Brien [186] that defines the critical in-plane strain 

corresponding to the onset of edge delamination. The stiffness reduction factor according to this 

damage mode was applied to all stiffness components of the laminate. The paper did not show 

satisfactory agreements with experiments. Since the sub-laminate was modelled as a block 

without modelling the ply interface separation, splits and delaminations were not captured.  

 

Camanho et al. [33] also used both Linear Elastic Fracture Mechanics (LEFM) approaches and a 

local CDM approach for modeling size effect of open hole specimens only with dispersed 
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laminate layups.  Delamination was not simulated as it was not the driving failure for sub-

laminate-level scaled laminates in contrast to ply-blocked laminates. They concluded that a 

CDM approach can quantify the size effect of such problems more accurately than LEFM 

approaches.    

  

In this chapter, we will show that the proposed method can capture the response of OHT tests in 

terms of the final strength value, damage patterns and size effect in an efficient manner without 

the need to use discrete approaches to capture the intra-laminar matrix damage modes.  

  

6.2.1 Test setup 

 

The experimental details are presented fully by Green et al. in [82]. Key details are recounted 

here for comparison to the numerical results generated.  

 

The specimen design is shown in plan-view in Figure  6.10. It consists of a gauge section of 

constant cross-sectional area, with width W, thickness t and length L, and a centrally located hole 

of diameter D. At either end of the gauge section is a gripping region. The specimen gauge 

length has constant ratios of W/D=5 and L/D=20 for all specimen sizes. 

 

A quasi-isotropic laminate with stacking sequence [45m/90m/-45m/0m]ns was used, with 0 being in 

the direction of the applied loading. The product of m and n is equal to the laminate thickness, 

i.e. m, n = 1 for a 1 mm thick laminate; m = 2, n = 1 or m = 1, n = 2 for a 2 mm thick laminate; 

etc. Increasing m increases the number of plies of the same orientation blocked together, i.e. it 

increases the effective ply thickness. Hereafter, this is referred to as ply-level scaling. Increasing 

n keeps a constant ply thickness, but increases the laminate thickness by increasing the number 

of sub-laminates present. From now on this is referred to as sub-laminate-level scaling.  
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Figure  6.10: Specimen geometry of the open hole tensile laminates 

 

The dimensions of the baseline specimen are scaled by a factor of 2 each time up to a maximum 

of 4. The minimum hole diameter used is 3.175 mm. Three different scaling routines are used: 

one-dimensional, two-dimensional and three-dimensional scaling. In the case of one-dimensional 

scaling only the thickness of the laminate is increased; in two-dimensional scaling, the in-plane 

dimensions (hole diameter, and hence width and length) are increased but the thickness kept the 

same. Three-dimensional scaling is where all dimensions are scaled simultaneously. The 

specimens were loaded using a constant nominal strain rate across the different sizes. A nominal 

strain rate of 0.78% /min was used, which equates to constant displacement rates of 0.5, 1 and 2 

mm/min being used for hole diameters of 3.175, 6.35 and 12.7 mm, respectively. The failure 

load xF  was taken as being the first significant (greater than 5%) load drop on the load-

displacement curve, which corresponded to either fibre failure or extensive delamination 

throughout the gauge section. The failure strength x  was obtained by dividing the failure load 

with the gross cross-sectional area of the specimen: 

x
x

F

Wt
   ( 6.1) 

 

Table  6-3 shows the experimental strength results and dominant failure modes from [82] for the 

tested laminates. The scatter associated with each value is variable in a range of 1% to 8% for the 

coefficients of variation. 

 

 

 

 

 

x 

y 
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Table  6-3: Experimental gross average failure stresses for laminates (MPa)(cv,%), reference [82] 

 

Hole Diameter D (mm) 

Sub-laminate level scaled Ply-level scaled  

3.175 6.35 12.7 3.175 6.35 12.7 

Laminate thickness (mm) 

1 570(7.7) - - - - - 
2 500(4.0) 438(2.4) - 396(5.2) 498(6.5) - 
4 478(3.1) 433(2.0) 374 (1.01) 275(5.6) 285(5.2) 362 (2.6) 
8 476(5.1) - - 202(7.9) - - 

 Fibre breakage         Delamination  

 

 

6.2.2 Model setup 

 

To reduce the model size, only the gauge length was modelled. For the symmetry of the lay-ups, 

half the thickness of the laminates was modelled and plane symmetric boundary conditions were 

applied at the mid-plane of the laminates.  

 

The finite element mesh used to discretize the specimens for a region close to the hole are shown 

in Figure  6.11 for three cases of hole size. The mesh size is about 0.25 mm around the hole edge 

and increases along the width and height of the specimen to a maximum of 0.5mm along the y-

axis at x=0. The mesh size along the height of specimen increases to as large as 1.5mm at the 

free boundaries at x=L/2. A pair of prescribed motions with constant rates of 317.5mm/s, 

635mm/s and 1270mm/s was applied on the two ends of the specimens with hole diameters of 

3.175mm, 6.35mm and 12.7mm, respectively. 

 

Each individual ply was modelled with one layer of reduced-integrated thick shell elements 

(formulation 5 in LS-DYNA). Moreover, the enhanced CODAM2 material model was assigned 

to each layer of elements with its own ply orientation. Both blocked-ply and dispersed-ply layups 

were modelled using this approach. The tie-break contact with cohesive-based damage 

formulation, as described in Section  4.2, was defined between dissimilar plies to simulate 

delamination within the laminate. A stiffness based  hourglass control (Type 4) was used with 
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stiffness coefficient of 0.6 to prevent zero energy mode shapes due to the presence of only one 

integration point in the plane of elements. 

 

All the material properties are adopted similar to what was used in the previous chapter except 

for the strength parameters related to intra-ply and inter-ply matrix damage modes that are 

summarized in Table  6-4 for different ply thicknesses. The fracture energy values for matrix and 

fibre damage modes are assumed to be 2.6 and 140 kJ/m2, respectively. 

 

 (a)  (b) (c) 

Figure  6.11: Finite element mesh around the hole with width and height of 2.5D for specimens with (a) 
D=3.175mm, (b) D=6.35mm, (c) D=12.7mm 

 

 

6.2.3 Simulation results  

 

The predicted failure strength x  corresponding to the first load drop greater than 5% and their 

difference with the experimental measured average strength values reported in [87] are shown in 

Table  6-5. The load values are divided by the unnotched cross-section width to obtain the 

resultant stresses. The stress vs opening displacement curves are also shown in Figure  6.12 

through Figure  6.14 for D=3.175 mm, D=6.35 mm and D=12.7 mm for different laminate 

thicknesses. In the following, the numerical results will be discussed and compared against the 

experimental observations from Reference [82].  The numerical results and the sequence of 

x 

y 

x 

y y 

x 
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damage development are summarized based on the experimental observation of size effect due to 

ply thickness scaling and in-plane scaling of the specimens.  

 

Table  6-4: Damage material parameters for [45m/90m/-45m/0m]ns laminates in the combined damage 
modelling approach for OHT specimens 

                                                  Intra-laminar damage parameters for each ply 

Input parameters 
[45m/90m/-45m/0m]ns 

m=1, n=1,2,4 m=2, n=1,2,4 m=4, n=1,2,4 m=8, n=1,2,4 

Transverse tensile strength 122MPais
TY   90MPais

TY   73MPais
TY   73MPais

TY   

In-plane shear strength  98.5MPais
LS   94MPais

LS   90MPais
LS   90MPais

LS   

                                                 Inter-laminar damage parameters  

Input parameters m=1, n=1,2,4 m=2, n=1,2,4 m=4, n=1,2,4 m=8, n=1,2,4 

Maximum  inter-laminar  normal stress  max 33MPaNt   max 24MPaNt   max 21MPaNt   max 9MPaNt   

Maximum inter-laminar shear stress max 40MPaSt   max 29MPaSt   max 25MPaSt   max 12MPaSt   

 

 

Table  6-5: Finite element predicted gross average failure stresses for [45m/90m/-45m/0m]ns laminates 
(MPa)(difference with average experimental results,%) 

Laminate thickness 
(mm) 

Hole Diameter D (mm) 

Sub-laminate level scaled [45/90/-45/0]ns Ply-level scaled [45m/90m/-45m/0m]s 

3.175  6.35 12.7 3.175 6.35 12.7 

1 540(5.3) - - - - - 

2 520(4.0) 440(0.5) - 393(5.8) 468(6.0) - 

4 515(7.7) 436(0.7) 357(4.5) 297 (8.0) 305(7.0) 343 (5.2) 

8 509 (8.9) - - 194(4.0) - - 

 Fibre breakage         Delamination  
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Figure  6.12: Predicted load versus displacement curves of OHT laminates with different laminate 
thicknesses: (a) ply-level scaled and (b) sub-laminate-level scaled specimens [45m/90m/-45m/0m]ns with 
D=3.175mm 

 

 

Figure  6.13: Predicted load versus displacement curves of OHT laminates with different laminate 
thicknesses: (a) ply-level scaled and (b) sub-laminate-level scaled specimens [45m/90m/-45m/0m]ns with 
D=6.35mm 
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Figure  6.14: Predicted load versus displacement curves of OHT laminates with different laminate thicknesses 
for a ply-level scaled and a sub-laminate-level scaled specimens [45m/90m/-45m/0m]ns with D=12.7mm 

 

6.2.3.1 Ply-thickness size-effect 

 

The predicted and experimental results for strength of the ply-scaled specimens with 

D=3.175mm and D=6.35mm are shown in Figure  6.15 along with the average experimental 

values for the two hole sizes. The load values are divided by the unnotched cross-section width 

to visualize the size effect. It is seen that the size effect with respect to the ply thickness is 

captured well with the proposed numerical framework. Without the size effect the maximum 

load would have linearly scaled with the thickness resulting in a constant maximum far-field 

stress.  
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Figure  6.15: Comparison between numerical and experimental strength values for ply-level scaled specimens 
for D=3.175mm and D=6.35mm.  

 

Figure  6.16 (a) and (b) shows the stress versus the displacement for the 4mm thick specimens 

with D=3.175 mm and D=6.35 mm when the ply thickness is increased from 0.125 to 0.5mm. It 

is seen that for single ply laminates (tk=0.125mm) the behaviour is almost linear until an abrupt 

failure occurs. The failure corresponds to fibre breakage in the 0o plies. Predicted damage pattern 

for these thin-ply laminates is shown in Figure  6.17 through Figure  6.19 for D=3.17mm for a 

post-peak time step as indicated by the red square marker in Figure  6.16(a). Similar damage 

patterns are also predicted for D=6.35mm and D=12.7mm hole size specimens with 0.125mm 

thick plies which are not shown here. 
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(a) D=3.175mm (b) D=6.35mm 

 

(c) D=12.7mm 

Figure  6.16: Predicted load-displacement curves for 4mm thick specimens with (a) D=3.175mm, (b) 
D=6.35mm and (c) D=12.7mm hole size made of single and quadruple ply thickness 

 

 Fibre Damage 

Sub-laminate 1 Sub-laminate 2      Sub-laminate 3 Sub-laminate 4 

 
 

 

 

 

 

Figure  6.17: State of fibre damage in 0ᴼ plies for a time step after failure (marked with red squares in 
Figure  6.16(a)) for [45/90/-45/0]4s specimen with hole size D=3.175mm 
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Figure  6.18: State of matrix damage in all the plies for a time step after failure (marked with red squares in 
Figure  6.16(a)) for [45/90/-45/0]4s specimen with hole size D=3.175mm 

 

mid-plane 

free-surface 



149 

 

 

 
 Delamination 

 0o/-45o -45o/90o 90o/45o 45o/0o 

S
u

b
-l

am
in

at
e 

1 

 

 

 

 

 

 

 

S
u

b
-l

am
in

at
e 

2 

 

 

 

 

 

 

 

S
u

b
-l

am
in

at
e 

3 

 

 
 

 
 

 
 

 
 

 
 

 

S
u

b
-l

am
in

at
e 

4 

 

 
 

 

 
 

 

 

Figure  6.19: State of delamination in all the interfaces for a time step after failure (marked with red squares in 
Figure  6.16(a)) for [45/90/-45/0]4s specimen with hole size D=3.175mm 
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It can be seen from Figure  6.16(a) that for thick-ply laminates (tk=0.5mm), however, the laminate 

stiffness gradually decreases before the load drop which corresponds to the failure point. 

Depending on the hole size, the load drop in these laminates can be a series of smaller drops or a 

single drop. Damage patterns predicted for the thick-ply laminate with D=3.175mm hole size are 

shown in Figure  6.20 for two points corresponding to time steps after the first and second load 

drops as  indicated by the red square markers in  Figure  6.16(a). Similarly, damage mechanisms 

for thick-ply laminate with D=6.35mm hole size are shown in Figure  6.21 for a post-peak time 

step as indicated by red square marker in Figure  6.16(b).  The failure in thick-ply laminates 

(tk=0.5mm) is the result of the propagation of delamination as will be discussed in more details in 

the following. 
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Figure  6.20: State of matrix damage for all plies and delamination at each interface for [454/904/-454/04]s

specimen with D=3.175mm at a time step after the first and second load drop (marked with red squares in 
Figure  6.16(a)) 
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Figure  6.21: State of matrix damage for all plies and delamination at each interface for [454/904/-454/04]s

specimen with D=6.35mm at a time step after the first load drop (marked with red squares in Figure  6.16(a)) 

 

In the following the patterns of different damage modes are explained in more detail for both thin 

and thick-ply laminates. 

 

Thin plies: fibre-dominated failure 

 

According to the experimental studies [82], the failure mode in thin ply specimens is dominated 

by fibre breakage except for limited delamination mostly concentrated in the vicinity of the hole. 

The load curve of this type of behaviour is mostly linear with abrupt failure. Similarly, the 

predicted damage patterns in Figure  6.17 through Figure  6.19 for thin-ply specimen with hole 

size D=3.175mm ([45/90/-45/0]4s) also shows fibre breakage with matrix cracking and 

delamination occurring in a limited zone at the free edges of the hole. The extent of delamination 

and matrix cracking in the sub-laminate closest to the top surface (sub-laminate 4 in Figure  6.18 

and Figure  6.19) is larger than the other sub-laminates as a result of the reduced constraining 

effect from the neighboring plies.  The stress-displacement curve of this specimen in 

Figure  6.16(a) also shows a linear behaviour up to the final abrupt drop which is consistent with 

the experimental results. 



153 

 

Thick plies: delamination- dominated failure 

 

In thick-ply laminates (tk=0.5mm), the failure is dominated by delamination. Based on 

experimental observations [82], the stiffness degradation begins with matrix cracking in the outer 

45o layer along the hole edges and then it will propagate across the plies and interfaces until the 

delamination at the -45/0 interface crosses the whole width of the specimen which corresponds to 

the first load drop of specimen. According to the experiments [82], there can be a single load 

drop or a series of smaller drops. When a series of load drops are observed, the delamination at 

the -45/0 interface as well as the splits in the 0o plies propagate asymmetrically. However, when 

the delamination covers the entire gauge section instantaneously and symmetrically on both sides 

of the hole edge, a single load drop is observed. The experimental results have shown that the 

asymmetric behaviour in propagation of splits in 0o plies and delamination at -45/0 interface is 

more pronounced in the specimens with smaller hole diameter. 

 

The simulation results of thick-ply specimens, shown in Figure  6.20 and Figure  6.21, are in good 

agreement with the experimental observations and the predicted evolution of matrix cracking and 

associated interface delamination. On the load-displacement curve (Figure  6.16(a)), there is a 

gradual decrease in the slope which is related to the progression of transverse matrix cracks and 

delamination.  

 

It is seen that at the first load drop in smaller hole size (D=3.175mm) (Figure  6.20), delamination 

growth path at -45/0 interface as well as the associated splits in the 0o layer is asymmetric with 

respect to the hole centre as a result of the adjacent -45 plies. This is in agreement with what has 

been observed in the experiments.  In comparison, however, the specimen with larger hole size 

of D=6.35mm (Figure  6.21) shows a symmetric propagation of the 0o-ply splits in all the four 

quadrants of specimen which will lead to a single load drop but larger failure load. The same 

behaviour is also predicted by a fully discrete methodology conducted in [87]. As a result of 

using a non-local averaging technique, the current model is able to successfully predict the path 

of transverse matrix cracks propagating in the 00 and off-axis plies.  
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In conclusion, the predictions have well captured the transition from the fibre-dominated failure 

mode to the delamination-dominated mode as the thickness of plies increases. Therefore, the 

introduction of the ply thickness effect for transverse matrix cracking prediction and the coupling 

between intra-laminar and inter-laminar behaviour are essential requirements for capturing such 

transition. The dependence of initiation of matrix damage on the ply thickness will allow earlier 

prediction of such mechanisms for thicker plies. The coupling between matrix damage and 

delamination onset through the unique calibration procedure for inter-laminar maximum stresses, 

allows triggering development of delamination which is the characteristic failure mode in the 

case of thick plies.  

 

6.2.3.2 In-plane size effect 

 

In this section, the focus is on the comparison of results between different sizes of hole and in-

plane size of specimens.  

 

Previous studies have shown that in quasi-brittle materials the size effect falls between strength 

theories, e.g. theory of plasticity (for which there is no size effect) and linear elastic fracture 

mechanics (LEFM) (for which the size effect is the strongest). This transitional size effect is an 

indication of the presence of a certain non-negligible characteristic length of the material. In fact, 

this length is a representation of the size of the fracture process zone (FPZ) [21,22].  

 

The predicted stress values and the corresponding experimental values for thin-ply (tk=0.125mm) 

and thick ply (tk=0.5mm) laminates with total thickness of 4mm are plotted in Figure  6.22 as a 

function of hole-diameter. There are some differences in terms of splitting pattern of 0o plies in 

thick-ply laminates where they tend to be more asymmetric in the small specimen in comparison 

with the largest specimen where less asymmetric splitting pattern is evident. This was already 

discussed and shown in Figure  6.20 and Figure  6.21 for specimens with D=3.175 mm and 

D=6.35 mm, respectively.  
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Thin-plies: classical fracture mechanics hole-size effect 

 

For thin-ply laminates, the fibre breakage is the dominant damage mechanism for all specimen 

scales. The increase in hole size leads to a decrease in strength due to an increase in the in-plane 

dimensions (green dashed line in Figure  6.22). This is consistent with the classical hole size 

effect based on fracture mechanics. Among these models, one can mention the Whitney-Nuismer 

hole size model [265]. 

 

Thick-plies: inverted hole-size effect 

 

For thick-ply laminates, the failure is dominated by delamination in all the specimen scales. The 

hole-size effect is, however, the opposite of what is observed in thin plies. An increase in the in-

plane dimensions leads to an increase in the strength (blue dashed line in Figure  6.22). In [87], 

this behaviour was attributed to the fact that in larger coupons the ligament (i.e. the space 

between the hole edge and the specimen’s free edge in y-direction in Figure  6.10) is larger and 

the propagation of delamination across the whole width of the specimen requires more energy. 

 

 

Figure  6.22: Effect of specimen size on the strength of 4-mm thick specimens of [45/90/-45/0]4s and [454/904/-
454/04]s laminates with different hole diameter size both in experiments and the predicted results. The 
strength of thin-ply laminates show a decreasing trend, while the thick-ply laminates exhibit an increasing 
trend as the hole diameter increases. 
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Figure  6.23 repeats the results of Figure  6.22 for dispersed layups overlaid by the predictions 

based on the LEFM-scaled model. The vertical axis in this figure represents the logarithm of the 

remote stress and the horizontal axis represents the logarithm of the hole diameter. Based on the 

LEFM, the failure stress of a specimen with a hole diameter D2 can be calculated from the failure 

stress of the specimen with a hole diameter D1: 

 

(2) (1) 1

2

x x

D

D
   ( 6.2) 

 

 

The failure stress measured in the specimens with the largest hole diameter of 12.7 mm was used 

in the LEFM model to predict the strength of the specimens with other hole diameters. 

 

 

Figure  6.23: Effect of specimen size on the strength of 4-mm thick specimens of [45/90/-45/0]4s with different 
hole diameter. Comparison of the predictions of the current methodology and LEFM with experiments.  

 

 

It is seen that the strength is over-predicted for small hole diameters. For small specimens, the 

damaged region at the edge of the hole cannot be considered to be negligible when compared 

with the characteristic dimensions of the specimen, and the assumptions of LEFM are not 

applicable. It should also be noted that the LEFM predictions based on scaled specimens always 
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result in a line with a  slope of -1/2 that passes through the baseline point (Figure  6.23). This 

means that the use of a small hole diameter as the baseline point would result in severe under-

predictions of the notched strength of larger specimens. In comparison with LEFM, the nonlocal 

CODAM2 material model is capable of capturing the size effect by introducing a length scale 

and capturing the extent of the damage that is dependent on the fracture energy values. The use 

of discrete interface enables the model to predict the size effect specifically for the case of 

blocked-ply laminate where its behaviour is dominated by delamination. In this case a reverse 

size-effect trend is obtained that cannot be predicted by LEFM.   

 

The size effect that is observed from the experiments and are captured well by the proposed 

methodology are energetic size effect which cannot be predicted by using a statistical approach 

like the Weibull theory [261]. The Weibull theory is based on the concept that the larger the 

structure, the higher the probability of presence of defects. It can be shown that in the Weibull 

theory, the average nominal strength of the material depends on a characteristic size of the 

specimen which leads to a logarithmic linear relationship between the stress and volume [20]. 

The application of Weibull theory works best for describing the failure of brittle materials that 

fail immediately after a microscopic crack becomes macroscopic. However, it suffers from a few 

limitations for the case of quasi-brittle materials as pointed out by Bazant [20]. The size effect in 

this formulation is a power law which does not include any characteristic length (i.e. the length 

of fracture process zone).  Moreover, there is no consideration of the failure mechanisms in a 

mathematical formulation of the structure.  

 

6.3 Summary 

 

In this chapter, the calibrated enhanced CODAM2 material model in combination with cohesive 

interfaces between the plies was used for prediction of the response and damage progression in 

quasi-isotropic laminates under two different notched loading geometries for IM7/8552 CFRP 

material system. In the first case, two quasi-isotropic laminates ([45m/90m/-45m/0m]ns) with a 

dispersed-ply (m=1 and n=2) and blocked-ply (m=4,n=1) laminate layups in an OCT 

configuration were simulated. In the second case, OHT specimens with similar material system 

and layups with various size and laminate thicknesses were modelled. 
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Overall, the predictions have well captured the transition from the fibre-dominated failure mode 

to the delamination-dominated as the thickness of plies increases. Therefore, the introduction of 

the ply thickness effect for transverse matrix cracking prediction and the coupling between intra-

laminar and inter-laminar behaviour are essential requirements for capturing such transition. The 

dependence of initiation of matrix damage on the ply thickness will allow earlier prediction of 

such mechanism for thicker plies in comparison with thinner ones. The coupling between intra-

laminar matrix damage and delamination enables triggering of delamination which is the 

characteristic failure mode in the case of thick plies.  

 

The predictions have also correctly captured the in-plane size effect for both thin and thick-ply 

laminates in OHT specimens. The in-plane size effect for the thin ply laminates is consistent with 

the classical hole size effect as expected based on fracture mechanics. However, for thick plies 

the failure is mostly dominated by matrix cracking and delamination. An increase in the in-plane 

dimensions (i.e. an increase in the size of the ligaments) leads to an increase in the strength, since 

the propagation of delamination across the whole width of specimen requires more energy.  
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Chapter 7: Conclusions and Future Work 

 

7.1 Conclusions 

 

The development of a proper numerical model representing the physics of damage mechanisms 

in composite laminates is a challenging task. Although there is a vast body of work with the 

focus to capture the details of the complex damage process, they are still not being used by 

engineers in practice due to their high level of complexity and computational cost. The main goal 

in this study was to present an efficient numerical framework with the potential to model the 

complex damage process, initiating from matrix cracking, evolving in delamination and fibre 

breakage, and leading to the ultimate failure of the composite.  

 

A common modelling technique which is used extensively in finite element analysis due to its 

straightforward implementation and numerical efficiency is the fully continuum damage (CDM) 

based approach. However, for cases where failure is governed by discrete macro-crack 

propagation such as large splits or delaminations, a fully continuum-based approach cannot 

correctly describe the propagation of damage through the structure. The basic assumption of 

compatibility of displacement/strain fields in the CDM approach is not applicable to 

delamination-dominated responses. Delamination redistributes the stresses around the damaged 

zone and consequently alters the load paths within the structure. Moreover, when delamination is 

dominant, the sub-laminate’s fracture energy in presence of extensive delamination zones 

between the plies becomes difficult to define and measure. Therefore, it is necessary to explicitly 

model delamination which will then allow the growth of macro-cracks (e.g. splits) in the 

separated ply. This limitation of the CDM approach is the main motivation of the current work 

with the goal to capture both delamination and the intra-laminar damage modes including highly 

localized and discrete forms of damage such as transverse and longitudinal  matrix damage 

(splits).   

 

The main contribution of the presented work was to further enhance the capabilities of the in-

house macroscopic CODAM2 material model such that it can be used in a mesoscopic context 

(see Chapter 3). This material model was used in conjunction with the cohesive interface method 
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in order to capture the inter-ply separations (see Chapter 4). This improvement allowed efficient 

and accurate prediction of damage progression in several loading geometries and laminate 

layups. The methodology also accounted for the in-situ behaviour of the individual plies within 

the laminate and the change in the stacking sequence. The presented methodology offers more 

computational efficiency in comparison with fully discrete methodologies where cracks, whether 

in the form of interface disbonding (delamination) or intra-laminar disbonding of fibre and 

matrix (i.e. splits), are explicitly represented in the geometry model of the structure. With the use 

of the non-local capability, the presented enhanced CODAM2 material model can effectively 

predict the trajectory of in-plane macro-cracks irrespective of the finite element discretization. 

Therefore, prior knowledge of intra-laminar crack paths and the need to introduce pre-inserted 

discrete cohesive elements in the plane of a ply is eliminated. 

 

The enhancements required for considering individual plies as building blocks of the laminate 

were introduced in Chapter 3. These enhancements and modifications were related to the 

prediction of initiation and saturation of matrix and fibre damage modes. The interactive effect 

of transverse normal and shear stress components on matrix cracking combined with the inherent 

non-linear shear stress-strain response of unidirectional composites necessitates the use of stress-

based criteria to signal initiation of matrix damage. Hashin’s failure criteria were used to identify 

the onset of intra-laminar matrix and fibre damage modes. The constraining effect of the 

immediate neighboring plies and the ply thickness on the unidirectional strength properties were 

considered through an approximate analytical model based on a combination of fracture 

mechanics and shear lag theory introduced by Zhang et al.  [278,279]. Moreover, the irreversible 

nonlinear behaviour of in-plane shear was introduced in both elastic and damage regimes of 

loading. The progression of intra-laminar damage modes at the ply level took into account the 

fracture toughness corresponding to each failure mode.  

 

Another contribution of the current work is to establish a methodology for obtaining the in-situ 

material properties associated with the initiation and progression of intra-laminar damage modes 

for the presented advanced non-local CODAM2 material model in the mesoscopic context. Most 

of these properties including the elastic moduli and strength properties can be gathered from the 

standard tests. For the material considered in this study, IM7/8552 CFRP, the literature provided 
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a well-established database. However, the main interest was to obtain the fracture energies 

associated with the progression of fibre and matrix damage modes (see Chapter 5).  

 

While there is more literature available on the characterization of fibre fracture energy, less work 

has been done for characterization of intra-laminar matrix fracture energy. In fully discrete 

models where intra-laminar matrix cracks at the ply level is modelled by using cohesive discrete 

elements, this type of damage is treated similarly to delamination. This can be justified by the 

fact that enough number of potential crack interfaces is inserted in the plies to dissipate the same 

amount of energy by matrix cracks as in the experiment. Therefore, the intra-laminar matrix 

fracture energy is assumed to be similar to the inter-laminar fracture energy values.  However, in 

the proposed methodology where we use a CDM approach, the fracture surfaces caused by all 

matrix/fibre debonding and matrix cracks are not modelled directly (explicitly). Thus, the inter-

laminar fracture energy values do not represent the correct amount of energy absorbed by this 

damage mechanism. Therefore, a systematic and unique procedure was proposed to calibrate the 

intra-laminar fracture energies of a material system in tension from a few experiments on OCT 

specimens of cross-ply laminates (see Chapter 5). The intent was to implicitly account for the 

interaction of matrix cracks with delamination and damage in neighboring plies. These are the 

type of interacting mechanisms that do not show up in tests conducted on unidirectional 

laminates.  

 

For the purpose of calibration of intra-laminar fracture energy values for IM7/8552 CFRP 

material system, two types of blocked and dispersed cross-ply laminates with OCT configuration 

were used. The experimental results for the blocked cross-ply laminate that are governed by 

delamination and splitting (i.e. matrix damage dominated) were used to estimate the appropriate 

value of the matrix intra-laminar fracture energy. The numerical analyses were performed using 

a range of fracture energy values for matrix cracking while keeping all the other damage 

parameters constant. The numerical predictions in terms of the global behaviour (e.g. force-

displacement) and damage mechanisms were compared against the experimental results to 

calibrate the intra-laminar matrix fracture energy. Moreover, the effect of the experimental range 

reported for the fibre fracture energy of this material in the literature was investigated. While the 

response of the blocked-ply laminate was independent of the fibre fracture energy, the peak force 
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and the post-peak response of the dispersed-ply laminate were found to be sensitive to the fibre 

fracture energy value.  

 

Another issue that was addressed in this work was the drawback associated with use of cohesive 

zone model that was used to capture the interface delamination. In order to have an accurate 

prediction of delamination using the cohesive zone model without the need to use very fine 

mesh, the length of the cohesive zone in the simulation was artificially increased by reducing the 

interface strength. A simple yet intuitive method was proposed to estimate the amount of 

reduction for the interface strength properties (see Chapter 5).  The inter-laminar strength 

properties were adjusted based on the status of inter-laminar stresses that were obtained from a 

3D stress analysis on the laminate while delamination was prevented between the plies. The 

average of inter-laminar stresses within a zone close to the notch or discontinuities where the 

matrix cracks and delamination were expected to occur first was selected as the inter-laminar 

calibrated strength properties. However, the inter-laminar fracture energy values remained 

unchanged. With this approach, one can eliminate the need to have very fine mesh size to get 

accurate prediction using the cohesive interfaces. Moreover, it also implicitly accounts for the 

effect of ply thickness on the initiation of delamination since the initiation of delamination is 

indirectly linked to the matrix cracking which is in turn influenced by ply thickness. 

 

The calibrated material properties for the above mentioned material system were used to validate 

two loading geometries. In the first case, two quasi-isotropic laminates of IM7/8552 CFRP with 

a dispersed-ply and blocked-ply laminate layup in an OCT configuration were simulated. In the 

second case, the same laminates in an OHT loading geometry with various size and laminate 

thicknesses were modelled. 

 

In conclusion, the model calibrated using correlation between the simulations and experiments 

on blocked and dispersed cross-ply laminates has found to predict the details of the response of 

the blocked and dispersed quasi-isotropic laminates under both OCT and OHT loading 

configurations. In all cases, the model captured the transition from the fibre-dominated failure 

mode to the delamination-dominated mode with increasing the thickness of plie. The 

introduction of the ply thickness effect for initiating transverse matrix cracking and the coupling 
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between intra-laminar and inter-laminar damage were essential requirements for capturing such 

transition. The dependence of initiation of matrix damage on the ply thickness will allow earlier 

prediction of such mechanism for thicker plies. The inter-laminar coupling allows to trigger 

development of delamination which is the characteristic failure mode in the case of thick-ply 

laminates.  

 

7.2 Contributions 

 

The contributions of this work can be summarized as follows: 

- The capabilities of the UBC’s in-house macroscopic CODAM2 material model were 

enhanced so it can be used in a mesoscopic context. This makes the model applicable to a 

wider range of problems, especially when the damage response of the composite laminate 

is dominated by matrix cracking and delamination damage modes. These are the type of 

problems that cannot be simulated with fully CDM models. 

- A simple technique was proposed to avoid the use of very fine mesh structure, and couple 

the interface delamination with matrix damage, which is in turn influenced by ply 

thickness. 

- A novel methodology was proposed for obtaining the in-situ material properties 

associated with the initiation and progression of intra-laminar damage modes for the 

presented advanced non-local CODAM2 material model in the mesoscopic context. 

 

7.3 Future works 

 

To make the model capable of simulating a wider range of damage propagation problems for 

different loading scenarios and material systems, the proposed methodology needs to be further 

improved. The following are some of the features that will achieve this. 

 

-CODAM2 formulation in compression 

 

One of the enhancements would be to add the capability of simulating the plateau behaviour and 

residual deformation observed in compressive tests on notched laminated composite specimens 
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[174,287]. Residual deformation was also observed in low velocity lateral impact tests on 

composite panels [55,56]. To be able to predict the residual deformations, a coupled damage-

plasticity formulation needs to be employed for modelling the behaviour of the material under 

compressive loading. The damage with plasticity model employed in [74] for an isotropic 

material was shown to be successful in predicting the unloading behaviour of the impacted plate 

as well as predicting the residual deformation. The challenge here is to adopt an appropriate 

plasticity model that is compatible with the fundamentals of CODAM2. 

 

-Automation of delamination  

 

In order to reduce the computational cost of this methodology even further, one can avoid a prior 

introduction of cohesive interfaces between all the plies by using an automated local cohesive 

zone (LCZ) methodology [221]. This method allows modelling the structure without a priori 

definition of the delamination location in the analysis, i.e. delaminations initiate and evolve as 

the simulation progresses. The continuum elements are split through their thickness and potential 

paths for delamination growth are seeded into the model adaptively. Combining the enhanced 

CODAM2 material model with the LCZ eliminates the need to use cohesive zones between all 

plies and reduces the computational costs. Implementation of the enhanced CODAM2 in the 

mesoscopic form advanced in this thesis as an addition to the built-in material type MAT219 in 

LS-DYNA as well as the LCZ method can be of great benefit for engineers in practice. 
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Appendices 

 

Appendix A  - Derivation of IDEFs in shear lag theory   

 

This section summarizes the process of deriving the formulation for the in-situ damage effective 

functions (IDEF) (2)
ij  for a constrained cracked ply in the shear lag theory used in 

Section  3.3.2.1.  (2)
ij  indicate the stiffness loss caused by the in-situ damage state of the cracked 

ply under the constraint conditions.  

 

Considering Figure  3.6, let us assume that (2)
ij and (2)

ij are the averaged in-plane microscopic 

stresses and strains in the cracked layer (Layer 2) averaged across the thickness of the layer to 

ignore the minor effects of the variation of in-plane displacements and strains inside the layer. 

The in-plane microstresses (2)
ij  are determined with a 2-D shear lag theory. For this purpose, the 

equilibrium equations in terms of micro-stresses (2)
ij for the cracked layer are expressed as 

 

(2)
2

2 2

0,   1, 2
j jd

j
dx h
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
 

 

(A.1) 

 

where j are the interface stresses. Based on the shear lag theory, in absence of delamination, the 

deformation transformation between the cracked layer and the surrounding constrained layers is 

through the interface stresses. With the assumption of a linear distribution of the out-of-plane 

shear stresses along the x3-axis with zero condition at the middle plane ( 3x =0) and top plane (

3x h ) will give: 
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Upon writing the out-of-plane constitutive equations in terms of the in-plane displacements, 

substituting them into Equation (A.2) and integrating with respect to x3, yields: 

 

   (2) (1) (2) (1)
1 1 1 2 2 2j j jK u u K u u         

 
(A.3) 

where the interface shear stresses j  are expressed in terms of the in-plane displacements 

(1) ( 1,2)iu i   and (2) ( 1, 2)iu i  , averaged across the thickness of the layers, with: 

11 1
(1) (1) (2) (2)
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(A.4) 

where ( (1) (1) (1)
44 45 55

ˆ ˆ ˆ,  ,  Q Q Q )  and ( (2) (2) (2)
44 45 55

ˆ ˆ ˆ,  ,  Q Q Q ) are out-of-plane shear moduli in the constraining  

layers and the cracked layer.  

 

Substitution of Equation (A.3) into Equation (A.2) and subsequent differentiation of Equation 

(A.2) with respect to 2x  lead to the equilibrium equations in terms of in-plane micro-stresses and 

micro-strains: 
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 (A.5) 

 

In the above equations the micro-strains will be excluded using the constitutive equations for 

both layers: 
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as well as  the equations of global equilibrium of the laminate: 
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 (A.7) 

 

In the above equation, xx  and xy  are the applied stresses as shown in Figure  3.6. Using the 

generalized plane strain condition (1) (2)
11 11   and combination of the Equations (A.7) and (A.6), 

the stresses in the constraining layers (i.e. Layer 1) can be excluded from (A.5) and a coupled 

second order non-homogeneous  system of equations in terms of (2)
12  and (2)

22  will be obtained. 

The solution to such equation for the case of 90o   for the cracked layer leads to: 
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where  
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The in-plane micro-stresses in the cracked layer, (2)
ij , can be used to evaluate the reduction of 

the laminate stiffness properties. Instead of a damaged laminate, one considers an equivalent 

laminate, in which the damaged ply is replaced with an equivalent homogeneous  layer with 

degraded stiffness properties. The constitutive equation of the ‘equivalent layer’ is: 

 

(2) (2) (2)σ Q ε  (A.10) 

 

where the lamina macro-stresses (2)σ  are obtained by averaging the micro-stresses (2)
ij  in 

Equation (A.8) cross the length of the representative cracked segment:  
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(A.11) 

 

The in-plane stiffness of the equivalent homogeneous  layer in the local co-ordinate system, (2)Q

, is related to the in-plane stiffness matrix of the undamaged material, (2)Q̂ , via the in-situ 

damage effective functions (IDEFs) as stated earlier in Equation ( 3.27). 

 

Substituting Equation ( 3.27) into the constitutive equations for the ‘equivalent’ layer, Equation 

(A.10), gives the IDEFs, (2)
22 and (2)

66  in terms of the lamina macro-stresses (2)σ  and macro-

strains (2)ε .  
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The macro-strains in the equivalent layer (2)ε  in Equation (A.12) are calculated from the 

combination of constitutive equations and equations of global equilibrium for the laminate 

assuming that (2) (1)ε ε . Therefore, Equation (A.12) can be simplified by substituting for (2)
22 ,  

(2)
12 , (2)

11 , (2)
22 and (2)

12  such that we will have: 
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(A.14) 

 

Once the in-plane stiffness matrix of the cracked ply (2)Q  in the local coordinate system 1 2 3x x x  

is determined using Equations ( 3.27) for any crack density value, it can be transformed to the 

global coordinate system xyz  using standard tensor transformation functions (see Figure  3.8). 
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Appendix B  - Correlation of intra-laminar fracture energy with input fracture 

energy density and non-local radius 

 

As mentioned in Section  3.3.1.2, in the mesoscopic application of the non-local CODAM2 

model, the potential discrete matrix cracks have to be captured in a continuum sense. Therefore, 

the non-local radius, r , used for averaging should be small enough to capture a narrow width of 

damage that is representative of the matrix cracks running parallel to the fibre direction. Thus, 

the value of r is limited to two times the finite element size to ensure that there is more than one 

element within the averaging zone and also to prevent an excessively large width for discrete 

cracks.  

 

Once the radius of non-local averaging, r , and the experimental intra-laminar fracture energy 

values are known, the required inputs for the material model are the fracture energy density 

values from which the saturation strain of each damage mode is automatically calculated by the 

material model with the use of  Equations ( 3.23) and ( 3.24). The focus of this section is to 

establish the relationship between the experimental fracture energy and the material model input 

fracture energy density when the non-local CODAM2 is used in a mesoscopic context.  Here, we 

first show this for intra-laminar matrix fracture energy and the same process will be repeated for 

fibre fracture energy.  

 

As discussed in Section  3.3.1.2, the value of input matrix fracture energy density, 2
fg , is related 

to the intra-laminar matrix fracture energy, 2
fG , through an effective length scale, 2

ch , such that 

2 2 2/f f cg G h .  Here, a numerical case study is performed to obtain the value of 2
ch  and its 

dependence on the size of element and the radius of averaging.  Unidirectional 90ᴼ laminate in an 

OCT configuration is modelled as shown in Figure B.1 (a) with the fibres parallel to the direction 

of the initial notch. Two mesh configurations shown in Figure B.1 (b) are used for the analysis in 

LS-DYNA, one with element size 0.5el  mm close to the notch and the other with 0.25el 

mm. The mesh is generated with thick shell elements with reduced integration formulation which 

means that each element has only one in-plane integration point. The material system used here 

is IM7/8552 CFRP and the input elastic moduli, tensile and shear strength properties are given in 
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Table B-1. The matrix fracture energy density is considered to be constant and equal to 

2
2 4 /fg N mm  for both mesh configurations. Note that this is an arbitrary value and is used 

here to numerically obtain the relation between 2
fG  and 2

fg . 

 

  

 

Element size of 0.25 mm ahead of notch tip 

 

Element size of 0.5 mm ahead of notch tip 
(a) (b) 

Figure B. 1: (a) OCT specimen geometry and (b) the FE mesh with element size 0.25mm and 0.5mm ahead of 
notch tip 

 

Table B-1: The material properties of IM7/8552 carbon-epoxy unidirectional lamina [121] 

Material E1 E2 

(a) 0
12G  XT  YT SL  

IM7/8552 165(GPa) 9(GPa) 5.1(GPa) 2560(MPa) 73(MPa) 90(MPa) 

(a) The nonlinear shear stress-strain curve is provided in [121] 

 

The specimen is simulated under tensile loading for different values of non-local averaging 

radius, r, for each element size. For 0.25el  mm, the values 0.5,  0.75 and 1.0r  mm and for 

0.5el  mm, the values 1.0,  1.5 and 2.0r  mm are selected such that for each case 2, 3 and 4 

number of neighbor integration points will be present inside the averaging domain (circle) in the 

direction of crack path.  

 

The predicted fracture energy for each case is calculated based on its definition, that is: 
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 



 (B.1) 

 

where ΔW is the external work done and ΔU is the change in the strain energy of the system 

when the crack length advances by an amount Δa and t  is the thickness of the laminate. The 

difference between ΔW and U is equivalent to the shaded area under the load-displacement 

curve of the specimen shown in Figure B.2.  

 

 

Figure B. 2: Dissipated energy calculated from the area below the load vs. pin-opening displacement (POD) curve  

 

For each numerical case mentioned above, Table B-2 provides the number of integration points, 

N , inside the averaging domain in the direction of crack path (i.e. (2 / 1)er l   ), the predicted 

fracture energy 2
fG  calculated from the force-displacement results using Equation (B.1), and the 

effective length scale 2 2 2/f fch G g  where 2
fg is the input fracture energy density (i.e. 4 N/mm2). 

 

 

 

 

 

 

Force

Dissipated 
Energy

POD
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Table B-2: The predicted intra-laminar matrix fracture energy from the simulations of a unidirectional 90º 
OCT laminate for a given input fracture energy density of 4 N/mm2, different non-local radii and element 
sizes. The effective length scale and its ratio to r are also presented. 

el (mm) r (mm) 2 / 1eN r l   
2
fG  

2
ch  2

ch

r
 

0.25 0.50 3 2.6 0.65 1.3 
0.25 0.75 5 4.0 1.00 1.3 
0.25 1.00 7 4.8 1.20 1.2 
0.50 1.00 3 2.6 0.65 0.65 
0.50 1.50 5 4.0 1.00 0.67 
0.50 2.00 7 5.0 1.25 0.63 

 

It can be seen that as long as the number of integration points within the circle domain of 

averaging is the same, the length scale, 2
ch , is a constant.  Based on these results, for a constant 

element size, the effective length scale  2
ch  is approximately a constant factor of the radius of 

averaging regardless of the selected value for  r (i.e. 1.3r  for 0.25el  mm and 0.65r for 0.5el 

mm). The scale factor for a 0.25mm mesh is two times as large as the one for 0.5 mm mesh size. 

This model provides a benchmark for finding the relationship between 2
fg  and 2

fG  for a known 

mesh size, radius of averaging and fracture energy.  

 

The length scale 1
ch  which relates the fracture energy density of fibre to the fibre fracture energy 

can also be found using the same model setup as that shown in Figure B.2 using a unidirectional  

00  lamina.  However, the dominant damage mode for a unidirectional 00 lamina in an OCT 

configuration is the split that grows parallel with fibre direction.  Therefore, the transverse tensile 

strength and in-plane shear strength properties were set to large values in order to prevent any 

matrix damage to initiate. This will allow the fibre damage mode to occur and be a dominant 

damage mode. The input value for the fibre fracture energy density in the material model was 

assumed to be 230 N/mm2.  The specimen was simulated under tensile loading for different 

values of non-local averaging radius, r, for each element size. For 0.25el  mm, the values 

0.5 and 0.75r  mm and for 0.5el  mm, the values 1.0 and  1.5r  mm were selected such that 

for each case 2 or 3 neighbor integration points is located inside the averaging domain (circle) in 

the direction of crack path. Again, it can be seen that as long as the number of integration points 
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within the selected domain of averaging is the same, the length scale of 1
ch is constant. In general, 

1
ch  for fibre fracture energy is slightly larger than 2

ch  for matrix fracture energy.   

 

Table B-3: The predicted fibre fracture energy from the simulations of a unidirectional 0º OCT laminate for 
a given input fracture energy density of 230 N/mm2, different non-local radii and element sizes. The effective 
length scale and its ratio to r are also presented. 

el (mm) r (mm) 2 / 1eN r l   
1
fG  

1
ch  1

ch

r
 

0.25 0.50 3 197.8 0.86 1.72 
0.25 0.75 5 303.6 1.32 1.76 
0.50 1.00 3 197.8 0.86 0.86 
0.50 1.50 5 303.6 1.32 0.88 
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Appendix C  - General introduction to user defined features in LS-DYNA  

 

Before laying out the pseudo code for the CODAM2 user material, a short introduction on 

general layout of a user material model in LS-DYNA is explained here. LS-DYNA provides 

user-defined interfaces, i.e. the source code which is partly open for customized modifications.  

 

Several user interfaces for the implementation of numerical models or algorithms exist. To be 

able to modify and incorporate these source codes into the standard LS-DYNA  models, a so-

called “usermat package” is needed, which is available via local LS-DYNA distributors. 

In general, this package is a compressed archive which contains several files such as library files 

(*.a), object files (*.o), include files (*.inc), Fortran files (*.f) and a Makefile. Most important 

files for the user are the Fortran files dyn21.f and dyn21b.f, as well as the Makefile. The 

last one specifies how to derive the target program, in this case the LS-DYNA executable. It also 

gives information about the specific Fortran compiler that should be used. If this compiler is 

installed, then the make command will start compiling the Fortran files and creating a binary 

executable. This executable can then be operated in the same way as a standard version of LS-

DYNA. The next step is to implement the algorithms for materials, elements, or other features 

into the user subroutines of Fortran files dyn21.f and/or dyn21b.f. Every time a change is 

made inside the Frtran files, the files have to be recompiled to update the executable. 

 

All subroutines for the user defined features in LS-DYNA are collected in the files dyn21.f 

and dyn21b.f and are ready for editing using any text editor. Mechanical user materials are 

defined in dyn21.f, while user defined elements and cohesive user materials are in 

dyn21b.f, just to give a few examples. The prevailing programming language is Fortran 77. 

 

With the help of the keyword *MAT_USER_DEFINED_MATERIAL_MODELS in the input file, 

one can define the input for the user material interface. If this keyword is used, the main program 

calls subroutine usrmat in dyn21.f, and from there, different subroutines are called 

depending on the element type in use: urmathn for solid elements, urmats for 2D plane 

stress and 3D shell elements, urmatb for beam elements, urmatd for discrete elements and 

urmatt for truss beam elements. Those subroutines in turn contain the calls to the user material 
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subroutines umatXX , where it is the objective to compute stresses from strains (see Figure C.1). 

The letters XX stands for a number between 41 and 50 and matches the parameter MT specified 

in the material card *MAT_USER_DEFINED_MATERIAL_MODELS. Therefore, up to ten user 

material subroutines can be implemented simultaneously to update the stresses in solids, shells, 

beams, discrete beams and truss beams.  

 

 

 

Figure C.1: Schematic of user defined material in LS-DYNA  

 

C.1 User material subroutines 

 

The input arguments to a user material subroutine are material constants defined by 

*MAT_USER_DEFINED_MATERIAL_MODELS in the input file as well as the strain 

increments, old stresses, old history variables containing user-defined quantities, current time 

and step size, and others. The output variables are the new (Cauchy) stresses and the updated 

history values. In the umatXX  subroutines, which will be modified by the user, the following 

data structures are initialized for scalar-type material subroutines. 

LS-DYNA element subroutines

call usrmat(…)

libdyna.a Subroutine usrmat (…)

call urmathn(…)  solids
call urmats(…)   shell and tshells
call urmatb(…)   beams
call urmatd(…)   discrete elements

dyna21.f

Subroutine umatxx(…)

dyna21.f Subroutine urmatxx(…)

call umat41(…)
call umat41v(…)
.
.
.

call umat50(…) 
call umat50v(…)  

dyna21.f

User 
material 
model 



199 

 

 

sig(6) – stresses in previous time step 

eps(6) – strain increments 

epsp – effective plastic strain in previous time step 

hsv(*) – history variables in previous time step excluding plastic strain 

dt1 – current time step size 

tt – current time 

temper –current temperature 

failel – flag indicating failure of element 

 

In the vectorized version of the user-material routines indicated by umatXXv, variables are in 

general stored in vector blocks of length nlq, with vector indexes ranging from lft to llt, 

which allows for a more efficient execution of the material routine. If this type of user-material 

subroutine is used, the vectorization flag must be set to one (IVECT=1) on the material card. 

CODAM2 material model is also written in this type of subroutine. The data structures for the 

vectorized subroutine case will be: 

 

sigX(nlq) – stresses in previous time step 

dX(nlq) – strain increments 

epsps(nlq) – effective plastic strains in previous time step 

hsvs(nlq,*) – history variables in previous time step 

dt1siz(nlq) – current time step sizes 

tt – current time 

temps(nlq) – current temperatures 

failels(nlq) – flags indicating failure of elements 

 

where  X in  sigX  ranges from 1 to 6 for different components. Each entry in a vector block is 

associated with an element in the finite element mesh for a fix integration point. The number of 

entries in the history variables array (indicated by * in the above) matches the number of history 
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variables requested on the material card indicated by (NHV). All history variables, are initially 

zero.  

Furthermore, all user-defined material models require a bulk modulus and shear modulus for 

time step calculations. In addition to the variables mentioned above, the following data can be 

supplied to the user material routines, regardless of whether vectorization is used or not. 

 

cm(*) – material constants array 

crv(lq1,2,*) – array representation of curves defined in the keyword deck  

 

The length of material constants array must be specified on the material card (LMC). 

A specific material routine, umatXX in the scalar case or umatXXv in the vectorized case, is 

now called with any necessary parameters of the ones above, and possibly others as well.  

This subroutine is written by the user, and should update the stresses and history variables for the 

current time. To be able to write different stress updates for different element types, the 

following character string is passed to the user-defined subroutine: 

 

etype– character string that equals solid, shell, tshel, beam, dbeam or tbeam  

 

CODAM2 user material model is coded in vectorized user material subroutine called umat45v 

for which the material input card *MAT_USER_DEFINED_MATERIAL_MODELS and the input 

parameters that will be stored in material array cm(*) are described in the APPENDIX D. The 

list of useful history variables that can be output for visualization is also listed in APPENDIX E. 

The Pseudo code for the material model is provided in APPENDIX F.  

 

C.2 Load curves in user material subroutines 

 

If the material of interest should require load curves, as in CODAM2 material model for 

instance, where a curve defines undamaged part of the in-plane shear stress as a function of shear 

strain, the variable crv should be used in the user material subroutine. The curve defined in the 

keyword deck is represented by points (��,��), �=1,...,��1−1, stored in the array crv 
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together with a number defining the increments Δ� stored in position ��1. To be more precise, 

the first � value is stored in crv(1,1,*), the first � value in crv(1,2,*),the second � 

value in crv(2,1,*), the second � value in crv(2,2,*), and so on. The increment Δ� is 

stored in crv(lq1,1,*). The third index in the crv array represents the internal load curve 

id. This is an approximate representation of a curve in the input deck, where the abscissa range 

is split into ��1 − 2 equidistant intervals and the ordinate values are stored for the ��1−1 points. 

Therefore, using this approach may result in loss of the resolution. In order to improve the 

accuracy, on *CONTROL_SOLUTION card the variable LCINT=��1−1 can be increased. 

 

 The following few lines of code in Fortran file dyn21.f has to be used in Fortran code to 

extract the ordinate value y at the abscissa x for a curve defined by *DEFINE_LOAD_CURVE 

with external curve id given by crvid_ext. 

 

  integer crvid_int                              
                                    
$  obtain internal curve id                        
 
  crvid_int=lcids(nint(crvid_ext)) 
 
$  proceed if curve id is valid 
 
  if (crvid_int.gt.0) then 
 
$ obtain increment in x and first x value 
 
  xinc=crv(lq1,1,crvid_int) 
  xbgn=crv(1,1,crvid_int) 
 
$ find interval in which x is situated 
 
  ind=aint((x-xbgn)/xinc)+1 
  ind=min(ind,lq1) 
  ind=max(ind,1) 
 
$ find slope of that particular segment 
 
  slope=(crv(ind+1,2,crvid_int)-crv(ind,2,crvid_int))/ 
        (crv(ind+1,1,crvid_int)-crv(ind,1,crvid_int)) 
 
$ evaluate ordinate value y 
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   y=crv(ind,2,crvid_int)+slope*(x-crv(ind,1,crvid_int)) 
 
   endif 
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Appendix D  - Material card for the enhanced CODAM2 user material model 

 

The corresponding material input deck for the enhanced CODAM2 user material model in LS-

DYNA is presented in Table D-1. Note that by using the appropriate flags, one can use this 

material model the same way as MAT219 (i.e. the original formulation of CODAM2 in LS-

DYNA) by inputting the relevant parameters. All the material input constants are defined in 

Table D-2. 

 

Table D-1: *MAT_USER_DEFINED_MATERIAL_MODELS_CODAM2 

User 

Material 

specs 

mid ro mt lmc nhv iortho ibulk ig 

ivect      ifail     itherm     ihyper       ieos       lmca     unused unused 

Material 

coords 

aopt       mafc         xp         yp         zp         a1         a2         a3 

v1         v2         v3         d1         d2         d3       beta      ievts 

Model 

parameters 

E1         E2        G12        V12        V23    nLayers E3 G23 

Angle 1 Angle 2 Angle 3    Angle 4   Angle 5    Angle 6   Angle 7  Angle 8 

Init MatT   InitFibT   unused   unused   SatMatT   SatFibT   unused unused   

Init MatC   InitFibC Alpha1   Alpha2 SatMatC   SatFibC   unused ShearCurveId   

ErosionFlag   unused   EquivStrFlag ShearRedFlag   BMod      GMod      unused   unused   

SL ERParamT ERParamC   unused   unused   unused   unused unused 

 

Table D-2: Definition of material constants in the enhanced user material model of CODAM2 

Parameter Description 

mid The id of the material that will be referred to by *part keyword 

ro The material density 

mt The id that specifies the user material subroutine number in Fortran file dyna21.f. It must be set to 45 for CODAM2 

which is written in subroutine umat45v  

lmc The maximum number of material constants to be input. Set it to 40.  

nhv Maximum number of history variables to be stored. Set it to 170 (see Remark 1). 

iortho Orthotropic flag (for CODAM2 must be set to  1) : 

EQ. 0: non orthotropic material  

EQ. 1: orthotropic material  

ibulk Address of bulk modulus in material constants array in subroutine umat45v. Set it to 36. 

ig Address of shear modulus in material constants array in subroutine umat45v. Set it to 37.  

ivect   Vectorization flag (for CODAM2 must be set to 1) 

EQ. 0: off 

EQ. 1: on 

ifail   Deletion flag (the default for CODAM2 is 0): 

EQ. 0: No element deletion 

EQ. 1: Allows element deletion when the first integration point through the thickness of element is identified for 

erosion based on the ErosionFlag. If  ErosionFlag is 0, there will be no element deletion even if ifail=1..  

LT. 0: If set to a negative number, its absolute value is the address of NUMINT in the material constant array. 
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Table D-2: Definition of material constants in the enhanced user material model of CODAM2 

Parameter Description 

NUMINT is the number of failed integration points through the thickness of element that will trigger element deletion. 

Note that for element deletion, the ErosionFlag has to be non-zero. 

Itherm EQ. 0: If no thermal loading is applied or if the applied thermal loading is handled by using the external 

*MAT_ADD_THERMAL_EXPANSION (see Remark 2) 

EQ. 1: CODAM2 itself will handle the thermal loading. For this case, the coefficients of thermal expansion for the 

material directions 1, 2 has to be given  (see Remark 2) 

ihyper Not applicable to CODAM2. Set it to 0. 

ieos Not applicable to CODAM2. Set it to 0. 

lmca    Set it to 8 for the extra material constants required for this material model 

Aopt 

mafc  

xp, yp, zp 

a1, a2, a3 

v1, v2, v3 

d1, d2, d3 

beta 

ievts     

 A coordinate system defined for the part that is assigned by CODAM2. See LS-DYNA manual for different options to 

define this coordinate system. Note that the direction of fibres for each ply has to be given with respect to first axis of 

this coordinate system.  

E1    The elastic modulus in the fibre direction (i.e. material direction 1) 

E2    The elastic modulus transverse to fibre direction (i.e. material direction 2) 

E3 The elastic modulus in direction 3. (If set to zero, it will be equal to 
2E ) 

G12 The in-plane shear modulus in 1-2 plane (if nonlinear shear is used, G12 would be the initial modulus) 

G23 The shear modulus in 2-3 plane. ( If set to zero, it will be equal to 
2 232(1 )E  ) 

V12 Major Poisson’s ratio in 1-2 plane. For transversely isotropic material 
13  will be equal to 12 . 

V23 Poisson’s ratio in 2-3 plane.  

nLayers Number of dissimilar plies in the sub-laminate. If each ply is modelled by one element, nLayers would be 1. 

Angle1,…, Angle 8 The angle of fibres in each ply with respect to the first axis of the coordinate system defined by Aopt option. 

Alpha1 Thermal expansion coefficient in direction 1 

Alpha2   Thermal expansion coefficient in direction 2 and 3 

EquivStrFlag Equivalent strain formulation: 

EQ. 1: The equivalent strains for fibre and matrix damage modes are calculated based on Equations ( 3.4) and ( 3.5) for 

a sub-laminate approach (this will be exactly similar to MAT219) 

EQ. 8: The equivalent strains for fibre and matrix damage modes are calculated based on Equations ( 3.18) and ( 3.19) 

which also accounts for the case where there is nonlinear in-plane shear behaviour. 

ShearRedFlag   Shear modulus reduction factor: 

EQ. 1: 
12 1 2R R R  

EQ. 2: 
12 2R R  (this is similar to the formulation of MAT219). 

 

InitMatT   If EquivStrFlag =1:  The initiation value for matrix equivalent strain in tension  

If EquivStrFlag =8:  The transverse strength in tension  

InitMatC   If EquivStrFlag =1:  The initiation value for matrix equivalent strain in compression  

If EquivStrFlag =1:  The transverse strength in compression  

InitFibT   If EquivStrFlag =1:  The initiation value for fibre equivalent strain in tension  

If EquivStrFlag =8:  The fibre strength in tension  

Init FibC   If EquivStrFlag =1:  The initiation value for fibre equivalent strain in compression  

If EquivStrFlag =8:  The fibre strength in compression  

SatMatT   If EquivStrFlag =1:  The saturation value for matrix equivalent strain in tension  
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Table D-2: Definition of material constants in the enhanced user material model of CODAM2 

Parameter Description 

If EquivStrFlag =8:  The fracture energy density for matrix damage 
2
fg  

SatMatC   If EquivStrFlag =1:  The saturation value for matrix equivalent strain in compression  

If EquivStrFlag =8:  The fracture energy density for matrix damage 
2
fg  

SatFibT   If EquivStrFlag =1: The saturation value for matrix equivalent strain in compression  

If EquivStrFlag =8: The fracture energy density for fibre damage 
1
fg  

SatFibC   If EquivStrFlag =1: The saturation value for matrix equivalent strain in compression  

If EquivStrFlag =8: The fracture energy density for fibre damage 
1
fg  

ShearCurveId EQ.0. : The in-plane shear behaviour is linearly elastic 

GT.0. : The id for the nonlinear shear stress-strain curve defined by *define_curve.  

SL EQ.0. : if EquivStrFlag =1 

GT.0. : if EquivStrFlag =8, this will be the maximum shear strength. 

BMod The bulk modulus of the material for calculation of time step size and hourglass stiffness (see Remark 3) 

GMod The shear modulus of the material for calculation of time step size and hourglass stiffness (see Remark 3) 

ErosionFlag   Erosion Flag (see Remark 4) 

EQ.0: Erosion is turned off. 

EQ.1: Non-local strain based erosion criterion. 

EQ.2: Local strain based erosion criterion. 

EQ.3: Use both 1 and  2 criteria 

ERParamT Erosion parameter in tension (see Remark 4) 

ERParamC Erosion parameter in compression (see Remark 4) 

 

Remark 1: 

History variables for CODAM2 are enumerated in Table E-1 in Appendix E. In order to include 

them in the d3plot database results, the parameters NEIPH (bricks) or NEIPS (shells) on 

*DATABASE_EXTENT_BINARY has to be set to the desired number of history variables. The 

maximum number of history variables that can be visualized depends on the number of plies 

specified in the material input card. 

 

Remark 2:  

In order to take into account the residual stresses produced by the temperature change from the 

cure temperature of composite laminate to room temperature, a thermal load using 

*LOAD_THERMAL_LOAD_CURVE needs to be defined. The thermal loading should be applied 

before the mechanical loading. The birth time for the mechanical loading must be bigger than the 

time where the temperature reaches from zero to the cure temperature decrease. 
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Along with the temperature load curve, the thermal expansion coefficients in the local direction 

of material should be specified using the *MAT_ADD_THERMAL_EXPANSION which takes the 

part id of the composite parts and thermal coefficients ��, 	�� and ��. In this approach, the solver 

will deduce the thermal strains from the total strains and the remainder will be passed to the user 

material model to calculate the stress.  

 

Another approach is to specify the thermal expansion coefficients  ��, 	��, 	�� = ��    directly 

within the CODAM2 user material card instead of using *MAT_ADD_THERMAL_EXPANSION. 

By doing this, the thermal strains in 1, 2 and 3 direction for each ply will be calculated (

1 1
T T   , 2 2

T T   , 3 3
T T    ) and subtracted from the total strain to obtain the 

mechanical strains which will then be used for the mechanical stress calculations. In this case, 

the itherm flag needs to be set to 1 in the user material card. 

 

Remark 3:  

The bulk modulus and the shear modulus of material are required by the finite element solver to 

compute the time step size. Moreover, they will be used if a stiffness-based hourglass control is 

used for the under integrated elements. It is suggested that: 

 

 11 22 12BMOD  ,  C ,  Cax Cm  

 44 55 66GMOD  ,  C ,  Cax Cm  
( 0.1) 

 

where 11 22 12 and,  C  CC  are the elastic in-plane stiffness components of a unidirectional lamina 

with the elastic material properties defined in the input card, and 44 55 66 and,  C  CC are three 

elastic shear stiffness components. 

 

Remark 4:  

When ErosionFlag  > 0, an erosion criterion is checked at each integration point. Elements 

will be deleted when the erosion criterion is met at any of the integration points if “ifail” in card 

2 is set to 1. If “ifail” is set to a negative value, its absolute value specifies the address of 



207 

 

NUMINT in the material constant array. NUMINT is defined as the number of failed integration 

points through the thickness of element that will trigger element deletion. For example if “ifail”  

is set to “-42” and the value of the first material constant in card 10 (i.e. 42nd  material constant) 

is set to 3, the element will be deleted only if 3 integration points are failed.   

For ErosionFlag= 1, the erosion criterion is met when maximum principal strain exceeds 

either ERParamT for elements in tension or ERParamC for elements in compression. Elements 

are in tension when the magnitude of the first principal strain is greater than the magnitude of the 

third principal strain and in compression when the third principal strain is larger.  

When ErosionFlag= 1 and the *Mat_Non-local is also used, the erosion criterion is 

checked using the non-local (averaged) principal strain.  

For ErosionFlag = 2, the erosion criterion is met when the local (non-averaged) maximum 

principal strain exceeds ERParamT or ERParamC.  

For ErosionFlag= 3, both of these erosion criteria are checked. 
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Appendix E  - Post-processing a user-defined material 

 

In order to post process those variable that are defined and saved as history variables in the user 

material model, the user need to request for those variables to be written in the binary d3plot 

database that contains all the other results. The number of history variables written to the d3plot 

database must be requested using the parameters NEIPH (for bricks) and/or NEIPS (for shells) 

on *DATABASE_EXTENT_BINARY. For instance, if NEIPH (NEIPS) is set to 2, the first two 

history variables in the history variables array are available for visualization as history var#1 and 

history var#2 in the d3plot database. By putting NEIPH (NEIPS) equal to NHV, all history 

variables are written to the d3plot database.  

 

The history variables can be visualized at each individual integration points through the 

thickness of element or as the average of all those integration points. The history variables that 

contain the global strains are recorded with respect to the local coordinate axis defined by AOPT 

in the material input card.  

 

The strain and stress components in the fibre and transverse to fibre directions for each 

integration point can also be visualized using the corresponding history variables as shown in 

Table E-1. 

 

Table E-1: History variables for the enhanced CODAM2 model 

The history variable  The quantities 

Hsvs(2:7) strains with respect to coordinate system (x,y,z) defined by AOPT in 

material keyword 

 

Hsvs(2): xx  

Hsvs(3): yy  

Hsvs(4): zz  

Hsvs(5):  xy  
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Table E-1: History variables for the enhanced CODAM2 model 

The history variable  The quantities 

Hsvs(6):  yz  

Hsvs(7):  zx  

Hsvs(8:9) Maximum and minimum principal strains 

Hsvs(8): max
prn  

Hsvs(9): min
prn  

 

Hsvs(10:2n+9) The damage parameters for fibre and matrix in each layer of the sub-

laminate 

 

Hsvs(9+(2j-1)): 1 - fibre damage in jth layer  

Hsvs(9+(2j)):    2 - matrix damage in jth layer 

Hsvs(2n+12: 4n+11) The non-local averaged equivalent strains used for calculation of fibre 

and matrix damage. 

 

Hsvs(2n+11+(2j-1)):  1
eq  for jth layer 

Hsvs(2n+11+(2j)):      2
eq   for jth layer 

 

Hsvs(4n+12: 6n+11) The strains in the fibre and transverse direction of each layer calculated 

by rotating the strains to the local coordinate of that layer. 

 

Hsvs(4n+11+(2j-1)): 11  strain in fibre direction for jth layer 

Hsvs(4n+11+(2j)):  22 strain in transverse direction for jth layer  
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Table E-1: History variables for the enhanced CODAM2 model 

The history variable  The quantities 

hsvs(15n +21:17n+20) The stresses in the fibre and transverse direction of each layer 

calculated by rotating the strains to the local coordinate of that layer. 

 

Hsvs(15n+20+(2j-1)): 11 stress in fibre direction for jth layer 

Hsvs(15n+20+(2j)): 22 stress in transverse direction for jth layer  

n : number of layers specified in Mat keyword (j=1 … n) 
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Appendix F  - Pseudo-code 

 

The following sections present the algorithm that is implemented in the User Material Models of 

CODAM2 in LS-DYNA for shell and Thick shell element formulations. 

 

1. Loop over the integration points (i) 

2. Initialize the current strains with the previous time step’s values, 
1

, ,[ ]n
x y z

ε , that were saved by history 

variables: 
1

, , , ,[ ] [ ]n n
x y z x y z

ε ε  

3. Read the current strain rates, , ,[ ]n
x y zΔε , and add them to the strains from previous time step: 

1
, , , , , ,[ ] [ ] [ ]n n n

x y z x y z x y z
 ε ε Δε . Save the current , ,[ ]n

x y zε into history variables. From now on the 

superscript n will be omitted for more clarity in notations.  

4. Initialize the current stress values for the laminate with zero  , ,[ ] 0Tot
x y z σ  

5. Call PrincipalStrains subroutine and pass , ,[ ]x y zε to get the principal strains  , ,[ ]prn
x y zε  and 

specify the maximum and minimum principal strains max
prn , min

prn .  

6. If max min
prn prn   and max 0prn  , the status of stress is identified as tensile and go to step 7.                              

Else the status of stress is identified as compressive and go to step 8. 

7. Loop over the number of layers (j).  

While j is less than the total number of layers n 

If EquivStrainFlag is 1 

Set 2
i  to InitMatT given by the user-material keyword card. 

Set 2
s  to SatMatT given by the user-material keyword card.   

Set 1
i  to InitFibT given by the user-material keyword card.   

Set 1
s  to SatFibT given by the user-material keyword card.  

Else If EquivStrainFlag is 8 
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Set  TY  to InitMatT given by the user-material keyword card. 

Set  2
fg to SatMatT given by the user-material keyword card.   

Set TX  to InitFibT given by the user-material keyword card.   

Set 1
fg  to SatFibT given by the user-material keyword card.  

End while. 

 Go to step 9. 

8. Loop over the number of layers (j). 

While j is less than the total number of layers 

If EquivStrainFlag is 1 

Set 2
i  to InitMatC given by the user-material keyword card. 

Set 2
s  to SatMatC given by the user-material keyword card.   

Set 1
i  to InitFibC given by the user-material keyword card.   

Set 1
s  to SatFibC given by the user-material keyword card.  

Else If EquivStrainFlag is 8 

Set  CY to InitMatT given by the user-material keyword card. 

Set  2
fg to SatMatT given by the user-material keyword card.   

Set CX  to InitFibT given by the user-material keyword card.   

Set 1
fg  to SatFibT given by the user-material keyword card.  

End while. 

Go to step 9. 

9. Start Loop over the number of layers (j) 

10. Call  rotateStrain and pass , ,[ ]x y zε to get 1,2,3[ ]ε in local direction of the ply with angle  : 

1,2,3 , ,[ ] [ ] [ ]x y zε T ε  

11. Subtract the thermal strains from the total strains to get the mechanical strains in the three directions 1,2 

and 3 .Only if the itherm in user-material card  is set to 1, the temperature part has non-zero value. 

( ) ,   1,2,3ii mech ii i T i       (The subscript mech will be suppressed in the following.) 



213 

 

12. Save 11 and 22  in the fibre and in-plane transverse directions into history variables for 

visualization. 

13. Save the maximum in-plane shear strain that has been experienced up to time nt : 

      If 12 ( )nt > 1
12 ( )nt   

max
12 12( ) ( )n nt t   

      Else 

            
max max 1
12 12( ) ( )n nt t    

     End 

14. Call subroutine localStress and pass 1,2,3[ ]ε , 
max

12 , the element type and get the undamaged 

effective stresses of the ply.  

For Shell elements: 

11 1 12 2 11

22 12 2 2 22

12 12 12 12

0
1

0

0 0 ( )

E E

E E
D

DG

  

  

  

     
          
          

 

12 211D     

 For Thick shell elements: 

11 1123 32 1 21 23 31 1 31 21 32 1

22 2231 13 2 32 31 12 2

33 3321 12 3

12 1212 12

2323 23

1313 13

(1 ) ( ) ( ) 0 0 0

(1 ) ( ) 0 0 0

(1 ) 0 0 01

( ) 0 0

0

.

E E E

E E

E

DGD

DG

sym DG

        

     

  

 

 

 

     
       
   

   
   
   
   

      











 

23 32 12 21 31 12 23 31 131 2D               

15.Calculate the elastic in-plane shear strain: 

12 12 12
e p     

16. Initialize the damage parameters for fibre and matrix damage (i.e.  1 2,    ) with their values from 

previous time step that had been saved into history variables:  

  1

1 1

n
 


  

  1

2 2

n
 


  
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17. Set the non-local equivalent strain functions 2
eq  and 1

eq to the corresponding history variables that 

contain the averaged equivalent strains from the previous time step.  The averaging is done by LSDYNA 

using a Gaussian weight function.  

 
1

2 2

n
eq eq 


  

 
1

1 1

n
eq eq 


  

18. Calculate the current local equivalent strain functions. 

1 11
eq   

2 2
2 22 12( ) ( )eq e     

19. Save the current local equivalent strains into history variables that will be passed to LSYNA for 

averaging. The averaging can be done only when stress state of all the integration points in the model is 

updated. Those history variables will then be used in step 17 as the non-local equivalent strain for the next 

time step. 

20. If EquivStrainFlag is 1, the parameters for calculation of damage including 2
i , 2

s , 1
i  and 1

s  are 

already saved in steps 8 and 9.  Go to step 24.  

21. Else if EquivStrainFlag is 8, calculate 1F and 2F  as follows. 

2

11
1

ˆ

T

F
X

 
  
 

  for tension 

2

11
1

ˆ

C

F
X

 
  
 

 for compression 

2 2

22 12
2

ˆ ˆ

T L

F
Y S

    
    
   

 for tension 

2 2 2

22 22 12
2

ˆ ˆ ˆ
1

2 2
C

T T C L

Y
F

S S Y S

        
         
       

 for compression 

22. If 1 1F   and 1 0i   then  
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Fibre damage will be initiated in this time step. Obtain the initiation value of equivalent strain 

for fibre damage using the current strain components. 

1 1
i eq    

1
1

2 f
s g

X
   

      Else  

Fibre damage has not initiated yet.  

  1 0i    

       End if  

23. If 2 1F  and 2 0i   then  

Matrix damage will be initiated in this time step. Obtain the initiation and saturation value of 

equivalent strain for matrix damage using the current strain components. 

2 2
i eq   

22 22 12 12

2 2
22 12

ˆ ˆ( )

( ) ( )

e

e
T

   

 





    

2
2

2 f
s g

T
   

      Else  

            Matrix damage has not initiated yet.  

2 0i      

     End if  

24. If 1 1
eq i   and  1 0i   then  

Calculate a temporary damage parameter 

 1 1 1
1

1 1 1

eq

eq

i s

s i

  


  





   

     Else  

           1 0  . 

    End 

    If 1 1  , then 1 1   End 

If  1 1    then   

      1 1    and save 1 into its corresponding history variable to be passed to next time step. 
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End If 

25. If 2 2
eq i   and  2 0i   then  

Calculate a temporary damage parameter,  

2 2 2
2

2 2 2

eq

eq

i s

s i

  


  





 .  

     Else  

           2 0  . 

    End 

    If 2 1  , then 2 1   End 

   If  2 2    then  

       2 2    and save 2 into its corresponding history variable to be passed to next time step. 

    End If 

       26. Calculate the stiffness reduction coefficients 

     

2 2

1 1

12 2 1

1

1

R

R

R R R





 

 



 

27. Call subroutine localStress  and pass 1,2,3[ ]ε , 
max

12 , 2R , 1R , 12R  and the element type and get the 

stresses of the damaged ply.  

For Shell elements: 

1 1 1 2 12 2

( )1 2 12 21 1 2 12 21
11 11

2 2
22 22

1 2 12 21
12 12

12 12 12

0
1 1

0
1

( )

k

R E R R E

R R R R

R E

R R

sym R G



   
 

 
 

 


 
  
    
                 
 
 

 

 

 For Thick shell elements: 
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11 2 23 32 1 21 23 31 1 2 1 31 2 21 32 1 1

22 1 31 13 2 2 32 1 31 12 2 2

33 1 2 21 12 3

12 12 1212

2323

1313

(1 ) ( ) ( ) 0 0 0

(1 ) ( ) 0 0 0

(1 ) 0 0 01

( ) 0 0

0

.

fR R E R R E R R E

R R E R R E

R R E

DR GD

DG

sym DG

        

     

  







     
       
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28. Transform the damaged stresses of the ply back to the global direction: 
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29. Divide the ply stresses by the total number of plies and add it to the total stress of the laminate 
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30. If j is less than the number of layers, go to step 10. Otherwise, go to step 31. 

31. Pass the total stresses of the laminate, , ,[ ]Tot
x y zσ , to the solver for calculation of nodal force, nodal 

displacement and strain increments. 

32. Go to step 1.  

 


