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Abstract

The present thesis is split in two parts. The first deals with the focusing Non-
linear Schrödinger Equation in one dimension with pure-power nonlinearity
near cubic. We consider the spectrum of the linearized operator about the
soliton solution. When the nonlinearity is exactly cubic, the linearized oper-
ator has resonances at the edges of the essential spectrum. We establish the
degenerate bifurcation of these resonances to eigenvalues as the nonlinearity
deviates from cubic. The leading-order expression for these eigenvalues is
consistent with previous numerical computations.

The second considers the perturbed energy critical focusing Nonlinear
Schrödinger Equation in three dimensions. We construct solitary wave solu-
tions for focusing subcritical perturbations as well as defocusing supercritical
perturbations. The construction relies on the resolvent expansion, which is
singular due to the presence of a resonance. Specializing to pure power fo-
cusing subcritical perturbations we demonstrate, via variational arguments,
and for a certain range of powers, the existence of a ground state soliton,
which is then shown to be the previously constructed solution. Finally,
we present a dynamical theorem which characterizes the fate of radially-
symmetric solutions whose initial data are below the action of the ground
state. Such solutions will either scatter or blow-up in finite time depending
on the sign of a certain function of their initial data.

ii



Lay Summary

We conduct a mathematically motivated study to understand qualitative
aspects of the nonlinear Schrödinger equation. For this summary, however,
we imagine our equation as describing the positions of many cold quantum
particles in a cloud. A group of particles may cluster together and persist
in this configuration for all time; this structure being called a soliton. One
aspect we are interested in is the stability of the soliton. It may be stable - a
small disruption of the system will be weathered and the soliton will remain,
or unstable - a perturbation will cause the particles to break up, destroying
the soliton. The soliton also impacts the overall dynamics of the equation.
If the particles do not have enough mass or energy to form a soliton, they
spread out and scatter. On the other hand, with too much mass or energy,
they may blow-up, coming together to form a singularity.
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Preface

A version of Chapter 2 has been published in [19]. I conducted much of the
analysis, all of the numerics, and wrote most of the manuscript.

A version of Chapter 3 has, at the time of this writing, been submitted
for publication to an academic journal. The preprint is available here [20].
I conducted much of the analysis and wrote most of the manuscript.
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Chapter 1

Introduction

1.1 The Nonlinear Schrödinger Equation

The nonlinear Schrödinger equation (NLS) is the partial differential equation
(PDE)

i∂tu = −∆u± |u|p−1u. (1.1)

It attracts interest from both pure and applied mathematicians, with ap-
plications including quantum mechanics, water waves, and optics [35], [74].
Before discussing the applications we establish some terminology and no-
tation. Here u = u(x, t) is a complex-valued function, x is often thought
of a spacial variable (in n real dimensions, x ∈ Rn), and t is typically the
temporal variable (t ∈ R). The operator ∂t is the partial derivative in time
and ∆ = ∂2

x1 + . . . + ∂2
xn is the laplacian. We have chosen the pure power

nonlinearity, ±|u|p−1u, with power p ∈ (1,∞), but could also replace this
nonlinearity with a more complicated function of u. The nonlinearity with
the negative sign, −|u|p−1u, will be referred to as the focusing or attractive
case while the positive, +|u|p−1u, is the defocusing or repulsive nonlinearity.
In applications the most common nonlinearities are the cubic (p = 3) and
the quintic (p = 5). Also common is the cubic-quintic nonlinearity: the sum
or difference of cubic and quintic terms.

Let us now briefly describe some of the contexts in which the NLS can
be applied. Firstly, in quantum physics the nonlinear Schrödinger equation,
and the closely related Gross-Pitaevskii equation (which is NLS subject to
an external potential), describes the so called Bose-Einstein condensate. A
Bose-Einstein condensate is a cloud of cold bosonic particles all of which are
in their lowest energy configuration. In this way, the mass of particles can be
described by one wave function; that is u(x, t). In this context the absolute
value |u(x, t)|2 describes the probability density to find particles within the
cloud at point x in space, and at time t. The inter-particle forces may be
either attractive or repulsive, which, corresponds to focusing or defocusing
nonlinearities, respectively. See [74] or the review [14] for more information.
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1.2. Conserved Quantities, Scaling, and Criticality

The NLS has also applications in water waves, a pursuit that dates back
to [91]. For a thorough description see, for example, Chapter 11 of [74]
(and references therein). The water-wave problem concerns the dynamics
of a wave train propagating at the surface of a liquid. In deep water, the
solution u(x, t) to the 1D cubic (p = 3) NLS describes an envelope which
captures the behaviour of a wave which is modulated only in the direction
in which it propagates.

In nonlinear optics, the function u describes a wave propagating in a
weakly nonlinear dielectric (see again [74], Chapter 1). In this case ∆ is the
Laplacian transverse to the propagation and the time variable t is replaced
by the spacial variable along the direction of propagation. For example in
3D where x = (x1, x2, x3) the NLS may take the form

i∂x3u = −(∂2
x1 + ∂2

x2)u± |u|2u

where x3 is in the direction of propagation.
On the pure mathematical side, the NLS is interesting as a general model

of dispersive and nonlinear wave phenomena. The nonlinear Schrödinger
equation provides an arena to develop techniques which can be applied to
other nonlinear dispersive equations. The NLS is often technically simpler
than other equations [15], such as the Korteweg-de Vries equation (KdV),
the nonlinear wave equation (NLW), Zakharov system, Boussinesq equation,
and various other water-wave models.

1.2 Conserved Quantities, Scaling, and Criticality

The facts we review here are standard and can be found in, for example, the
books [15, 35, 74, 77].

The NLS (1.1) has the following conserved quantities

M(u) =
1

2

∫
Rn
|u|2 dx, E(u) =

∫
Rn

1

2
|∇u|2 ± 1

p+ 1
|u|p+1 dx (1.2)

often called mass and energy, respectively. These quantities are conserved
in time, that is: M(u(x, t)) = M(u(x, 0)) and E(u(x, t)) = E(u(x, 0)) for
sufficiently smooth solutions.

The scaling

u(x, t) 7→ uλ(x, t) := λ−2/(p−1)u(λ−1x, λ−2t) (1.3)

preserves the equation. That is if u(x, t) is a solution to (1.1) then uλ(x, t)
is also a solution.
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1.3. Scattering and Blow-Up

When the power p and dimension n are chosen according to the following
relation

p =
4

n
+ 1

our scaling (1.3) also preserves the mass, that isM(uλ(·, t)) =M(u(·, λ−2t)).
Such an equation is called mass critical. For example, in one dimension
(n = 1) the quintic (p = 5) NLS is mass critical. For values of p < 4/n+ 1
we call the equation mass sub-critical and for p > 4/n + 1 we say mass
super-critical.

Similarly, if

p = 1 +
4

n− 2
, n ≥ 3

then (1.3) preserves the energy, so E(uλ(·, t)) = E(u(·, λ−2t)). We call this
equation an energy critical equation. For example, in three dimensions
(n = 3) the quintic (p = 5) NLS is energy critical. Again we refer to
p < 1 + 4/(n − 2) as energy sub-critical and p > 1 + 4/(n − 2) as energy
super-critical. Note that for dimensions one and two all equations with
p <∞ are energy sub-critical.

1.3 Scattering and Blow-Up

The overall dynamics of the equation are affected by the power p’s relation
to the mass and energy critical values. By overall dynamics we mean the
long time behaviour of the solution subject to an initial condition, ie. the
Cauchy problem {

i∂tu = −∆u± |u|p−1u

u(x, 0) = u0(x)
. (1.4)

We seek theorems which characterize the solution’s eventual behaviour for
a large class of initial conditions u0.

One possibility is that the solution will scatter (Chapter 7 of [15], Chap-
ter 3.3 of [74]). This means that the solution u(x, t) will eventually look like
a solution to the linear Schrödinger equation. That is, after sufficient time,
all nonlinear behaviour has disappeared and only linear behaviour remains.

Solutions to the linear Schrödinger equation (Chapter 2 of [15], Chapter
3.1 of [74]) {

i∂tu = −∆u

u(x, 0) = u0

3



1.3. Scattering and Blow-Up

evolve in a predictable way. The mass, or L2 norm, is preserved while the
L∞ norm (supremum) decays according to

‖u(x, t)‖L∞(Rn) . t
−n/2‖u0‖L1(Rn). (1.5)

The above norms are defined as

‖u(x, t)‖L∞(Rn) = sup
x∈Rn

|u(x, t)| and ‖u(x, t)‖L1(Rn) =

∫
Rn
|u(x, t)| dx

and when we write f(t) . g(t) we mean that there is a constant C, inde-
pendent of t, such that f(t) ≤ Cg(t).

We may think of the linear Schrödinger equation as modeling a free
quantum particle. The particle has a tendency to “spread out” due to
momentum uncertainty, even if it is well localized to start.

A scattering theorem will then have the following form: for all u0 ∈ X
(or some subset of X) we have

‖u(x, t)− ulin‖X → 0, as t→∞.

Here ulin is a solution to the linear Schrödinger equation (chosen according
to the particular u0), X is an appropriate function space, and ‖ · ‖X is a
norm on this space.

Scattering is, to some extent, expected in the defocusing (repulsive) case.
We think about the Laplacian as being a force for dispersion, as evidenced
by the behaviour of the linear Schrödinger equation, and we think of the
defocusing nonlinearity as a repellent to the gathering of mass. We single
out the result [38], a scattering theorem in the energy space X = H1 for
defocusing NLS with power p between mass critical and energy critical,

1 +
4

n
< p < 1 +

4

n− 2
,

in dimensions n ≥ 3. The space H1 consists of functions u whose H1 norm,

‖u(x, t)‖2H1(Rn) = ‖u(x, t)‖2L2(Rn) + ‖u(x, t)‖2
Ḣ1(Rn)

=

∫
Rn
|u(x, t)|2 dx+

∫
Rn
|∇u(x, t)|2 dx,

is finite.
For the focusing equation, with n ≥ 3, X = H1, 1 + 4/n < p < 1 +

4/(n − 2), we have the scattering theory [73]. The key difference now in
the focusing case is the assumption that the energy (H1) norm of the initial
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1.4. Solitary Waves and Stability

condition, u0, be small. Here we see that if we do not have enough mass or
energy to begin with, the force of dispersion will win out over the focusing
nonlinearity’s tendency to attract mass together.

In the focusing equation, however, there are other possible fates for so-
lutions besides scattering. If too much mass is assembled, the attractive
nonlinearity may cause the solution to break down in finite time; that is,
some norm of the solution will blow-up. For example, (Chapter 5 of [74])
consider the focusing NLS with p ≥ 1 + 4/n. There exist initial conditions
in u0 ∈ H1 such that there exists a time t∗ <∞ such that

lim
t→t∗
‖∇u(x, t)‖L2 =∞.

Important for the discussion of mass super-critical and energy sub-critical
equations above, scattering in the defocusing case and blow-up in the focus-
ing case, is the local existence theory. The H1 local theory ensures an initial
data u0 ∈ H1 will generate a solution u(x, t) with continuous in time H1

norm up to some time T . Here T is a non-increasing function of ‖u0‖H1 .
Repeatedly applying the local theory together with an a priori H1 bound
(such as in the defocusing case) then yields global existence, ie. the solution
exists for all time (the maximal time of existence Tmax =∞). In the absence
of an a priori H1 bound (focusing case) it’s possible that the maximal time
of existence for our initial data is finite. Indeed, the local theory provides the
following blow-up criterion: if Tmax <∞ then limt→T−max

‖u(·, t)‖H1 =∞.
The energy critical case, p = 1 + 4/(n − 2), is more challenging since

the blow-up criterion generated by the corresponding local theory is more
complicated. Nevertheless, in the defocusing energy critical case the global
existence and scattering theory is more or less complete. First we have
scattering theorems [10] [11] in dimensions n = 2, 3, also [40] in dimension
n = 3, and then [76] in dimensions n ≥ 5, all where the initial data u0 was
assumed to be radial. The radial assumption was removed in [21] for n = 3
and later in [67] for n = 4 and finally in [83] for n ≥ 5. Scattering in the
defocusing energy super-critical case remains a substantial open problem.

We discuss scattering and blow-up for the focusing energy critical equa-
tion (a study which was initiated in [54]) in Section 1.7 and Chapter 3.

1.4 Solitary Waves and Stability

In the focusing NLS,

i∂tu = −∆u− |u|p−1u,

5



1.4. Solitary Waves and Stability

the dispersive force of the Laplacian may be balanced by the attractive
nonlinearity leading to solutions that neither scatter nor blow-up. Our NLS
may admit solutions of the form

u(x, t) = eiωtQ(x) (1.6)

often called solitary wave solutions or solitons. We think of solitary waves
as bound states or equilibrium solutions: the time dependence is confined
to the phase and the absolute value, |u|, is preserved. We further classify
solitons as ground states if they minimize the action

Sω = E + ωM

among all non-zero solutions of the form (1.6).
The time independent function Q(x) is the solitary wave profile, which,

satisfies the following elliptic partial differential equation

−∆Q− |Q|p−1Q+ ωQ = 0. (1.7)

The above elliptic equation (1.7) is well studied, with results going back
to [72] and [9]. Much of the present thesis concerns solitary waves. In
particular, their existence, stability, and impact on the overall dynamics of
the equation.

Ground state solitary waves are stable for mass sub-critical powers of p
[16] and unstable for mass critical [88] and mass super-critical powers [7]. We
call solitary waves (orbitally) stable if initial conditions close to the soliton
produce solutions which remain close to the soliton (modulo symmetries of
spatial translation and phase rotation) for all time. More precisely, let ϕ(x)
be the spatial profile of the ground state, u0(x) ∈ H1 an initial condition,
and u(x, t) the solution generated by the initial condition. We say eiωtϕ
is (orbitally) stable if for every ε > 0 there exits a δ(ε) > 0 such that if
‖φ− u0‖H1 ≤ δ(ε) then

sup
t∈R

inf
θ∈R

inf
y∈Rn

‖u(·, t)− eiθφ(· − y)‖H1 < ε.

Otheriwise, we say a soliton is unstable. In fact, both [88] and [7] demon-
strate that some initial condition close to the soliton blows up in finite time.

To study stability one can employ variational methods, as in [16], [88], [7]
or else study the linearized operator around the soliton (see [39], [41], [89]).
Understanding the spectrum of the linearized operator is often necessary to
establish asymptotic stability results such as those obtained in [6, 13, 22,

6



1.5. Resonance

23, 26, 36, 65, 68]. A soliton is asymptotically stable if initial conditions
close to the soliton produce solutions which converge to a (nearby) soliton
as t→∞. The study we initiate in Section 1.6 and Chapter 2 concerns the
linearized operator about 1D solitons.

1.5 Resonance

By resonance, or resonance eigenvalue, we mean a ‘would be’ eigenvalue,
usually at the edge of the continuous spectrum. The resonance is not a true
eigenvalue because its resonance eigenfunction does not have sufficient decay
to be square integrable. The appearance of a resonance, in the linearized
operator about a soliton for example, is a non-generic occurrence. While it
is non-generic, however, it does appear in a few key equations; in particular
those NLS that we study in Chapter 2 and Chapter 3. Such a resonance may
complicate analysis, for example by making singular the resolvent expansion
and slowing the time-decay of perturbations to a soliton.

For example, let us consider the linear Schrödinger operator

H := −∆ + V (1.8)

in n dimensions where V = V (x) is a potential. We may have a resonance
eigenvalue λ with resonance eigenfunction ξ such that

Hξ = λξ

but ξ /∈ L2(Rn).
In 3D we require the resonance ξ be in L3

w(R3), the weak L3 space.
Therefore, ξ may decay like 1/|x| at infinity. The original paper [47] com-
putes several terms in the resolvent expansion in the presence of a resonance
in 3D. The resolvent is singular as λ→ 0 and takes the following form (as-
suming we have no edge-eigenvalue):

(H + λ2)−1 = O

(
1

λ

)
(1.9)

as an operator on suitable spaces. Moreover, the time-decay estimate (1.5)
is retarded and decays in time like t−1/2 instead of t−3/2. A restated version
of these results are crucial in the analysis of Chapter 3.

In 1D a resonance ξ may not decay at all. If Hξ = λξ and ξ /∈ Lp

for any p < ∞ but ξ ∈ L∞ then we regard ξ as a resonance. The more
recent work [48] provides a unified approach to resolvent expansions across

7



1.6. The 1D Linearized NLS

all dimensions, and so in 1D in particular, which, we rely on in Chapter 2.
The resolvent expansion itself in 1D appears similar to (1.9).

Interestingly, resonances in the Schrödinger operator only appear in di-
mensions 1-4 [46–48] not in dimensions n ≥ 5 [45].

1.6 The 1D Linearized NLS

Consider now the following focusing NLS in 1 space dimension

i∂tu = −∂2
xu− |u|p−1u. (NLSp)

Chapter 2 deals with the above equation and so we supply here some back-
ground, motivation, and connection to previous works.

The above (NLSp) is known to exhibit solitary waves. Indeed, since we
are in 1D the solitons are available in the following explicit form

u(x, t) = Qp(x)eit

where

Qp−1
p (x) =

(
p+ 1

2

)
sech2

(
p− 1

2
x

)
.

One naturally asks about the stability of these waves, which leads immedi-
ately to an investigation of the spectrum of the linearized operator governing
the dynamics close to the solitary wave solution.

The linearized operator is obtained by considering a perturbation of the
solitary wave,

u(x, t) = (Qp(x) + h(x, t))eit,

and neglecting all but the leading order in the resulting system. After we

complexify, ie. letting ~h =
(
h h̄

)T
, we obtain the linear system

i∂t~h = Lp~h

where

Lp =

(
1 0
0 −1

)((
−∂2

x + 1 0
0 −∂2

x + 1

)
− 1

2

(
p+ 1 p− 1
p− 1 p+ 1

)
Qp−1
p

)
is the linearized operator. See section 2.1. Systematic spectral analysis of
the linearized operator has a long history (eg. [39, 89], and for more recent
studies [17, 30, 85, 86]).

8



1.6. The 1D Linearized NLS

The principle motivation for Chapter 2 comes from [17] where resonance
eigenvalues (with explicit resonance eigenfunctions) were observed to sit at
the edges (or thresholds) of the spectrum for the 1D linearized NLS problem
with focusing cubic nonlinearity. Numerically, it was observed that the same
problem with power nonlinearity close to p = 3 (on both sides) has a true
eigenvalue close to the threshold. We establish analytically the observed
qualitative behaviour. Stated roughly, the main result of Chapter 2 is:

for p ≈ 3, p 6= 3, the linearization of the 1D (NLSp) about its soliton has
purely imaginary eigenvalues, bifurcating from resonances at the edges of the
essential spectrum of linearized (NLS3), whose distance from the thresholds
is of order (p− 3)4.

The exact statement is given as Theorem 2.3.1 in Section 2.3, and includes
the precise leading order behaviour of the eigenvalues.

The eigenvalues obtained here, being on the imaginary axis, correspond
to stable behaviour at the linear level. A further motivation for obtaining
detailed information about the spectra of linearized operators is that such
information is a key ingredient in studying the asymptotic stability of solitary
waves: see [6, 13, 22, 23, 26, 36, 65, 68] for some results of this type. Such
results typically assume the absence of threshold eigenvalues or resonances.
The presence of a resonance is an exceptional case which complicates the
stability analysis by retarding the time-decay of perturbations. Nevertheless,
the asymptotic stability of solitons in the 1D cubic focusing NLS was recently
proved in [29]. The proof relies on integrable systems technology and so is
only available for the cubic equation. The solitons are known to be stable in
the (weaker) orbital sense for all p < 5 (the so-called mass subcritical range)
while for p ≥ 5 they are unstable [41, 90], but the question of asymptotic
stability for p < 5 and p 6= 3 seems to be open. The existence (and location)
of eigenvalues on the imaginary axis, which is shown here, should play a role
in any attempt on this problem.

The generic bifurcation of resonances and eigenvalues from the edge of
the essential spectrum was studied by [28] and [84] in three dimensions.
Edge bifurcations have also been studied in one dimensional systems using
the Evans function in [52] and [53] as well as in the earlier works [50], [51]
and [64]. We do not follow that route, but rather adopt the approach of
[28, 84] (going back also to [48], and in turn to the classical work [47]),
using a Birman-Schwinger formulation, resolvent expansion, and Lyapunov-
Schmidt reduction.

Our work is distinct from [28, 84] due to the unique challenges of working

9



1.7. A Perturbation of the 3D Energy Critical NLS

in one dimension, in particular the strong singularity of the free resolvent
at zero energy, which among other things increases by one the dimension
of the range of the projection involved in the Lyapunov-Schmidt reduction
procedure.

Moreover, our work is distinct from all of [28, 52, 53, 84] in that we study
the particular (and as it turns out non-generic) resonance and perturbation
corresponding to the near-cubic pure-power NLS problem. Generically, a
resonance is associated with the birth or death of an eigenvalue, and such is
the picture obtained in [28, 52, 53, 84]: an eigenvalue approaches the essen-
tial spectrum, becomes a resonance on the threshold and then disappears.
In our setting, the eigenvalue approaches the essential spectrum, sits on the
threshold as a resonance, then returns as an eigenvalue. The bifurcation
is degenerate in the sense that the expansion of the eigenvalue begins at
higher order, and the analysis we develop to locate this eigenvalue is thus
considerably more delicate.

1.7 A Perturbation of the 3D Energy Critical
NLS

In Chapter 3 we consider Nonlinear Schrödinger equations in three space
dimensions, of the form

i∂tu = −∆u− |u|4u− εg(|u|2)u, (1.10)

where ε is a small, real parameter. Equation (1.10) is a perturbed version
of the focusing energy critical NLS. This section is devoted to introducing
the above equation, providing some background on the unperturbed critical
equation, and stating the main theorems of Chapter 3.

The mass and energy of (1.10) are

M(u) =
1

2

∫
R3

|u|2 dx, Eε(u) =

∫
R3

{
1

2
|∇u|2 − 1

6
|u|6 − ε

2
G(|u|2)

}
dx

whereG′ = g. We are particularly interested in the existence (and dynamical
implications) of solitary wave solutions of the form

u(x, t) = Q(x)eiωt

of (1.10). We will consider only real-valued solitary wave profiles, Q(x) ∈ R,
for which the corresponding stationary problem is

−∆Q−Q5 − εf(Q) + ωQ = 0, f(Q) = g(Q2)Q. (1.11)

10



1.7. A Perturbation of the 3D Energy Critical NLS

Since the perturbed solitary wave equation (1.11) is the Euler-Lagrange
equation for the action

Sε,ω(u) := Eε(u) + ωM(u) ,

the standard Pohozaev relations [34] give necessary conditions for existence
of finite-action solutions of (1.11):

0 = Kε(u) :=
d

dµ
Sε,ω(Tµu)

∣∣∣∣
µ=1

=

∫
|∇Q|2 −

∫
Q6 + ε

∫ (
3F (Q)− 3

2
Qf(Q))

)
0 = K(0)

ε,ω(u) :=
d

dµ
Sε,ω(Sµu)

∣∣∣∣
µ=1

= ε

∫ (
3F (Q)− 1

2
Qf(Q)

)
− ω

∫
Q2

(1.12)

where
(Tµu)(x) := µ

3
2u(µx), (Sµu)(x) := µ

1
2u(µx)

are the scaling operators preserving, respectively, the L2 norm and the L6

(and Ḣ1) norm, and F ′ = f (so F (Q) = 1
2G(Q2)).

The corresponding unperturbed (ε = 0) problem, the 3D quintic equa-
tion

i∂tu = −∆u− |u|4u, (1.13)

is energy critical ie. the scaling

u(x, t) 7→ uλ(x, t) := λ1/2u(λx, λ2t)

which preserves (1.13), also leaves invariant its energy

E0(u) =

∫
R3

{
1

2
|∇u|2 − 1

6
|u|6
}
dx, E0(uλ(·, t)) = E0(u(·, λ2t)).

One implication of energy criticality is that (1.13) fails to admit solitary
waves with ω 6= 0 – as can be seen from (1.12) – but instead admits the
Aubin-Talenti static solution

W (x) =

(
1 +
|x|2

3

)−1/2

, ∆W +W 5 = 0, (1.14)

whose slow spatial decay means it fails to lie in L2(R3), though it does fall
in the energy space

W 6∈ L2(R3), W ∈ Ḣ1(R3) = {u ∈ L6(R3) | ‖u‖Ḣ1 := ‖∇u‖L2 <∞}.

11



1.7. A Perturbation of the 3D Energy Critical NLS

By scaling invariance, Wµ := SµW = µ1/2W (µx), for µ > 0, also sat-
isfy (1.14), as do their negatives and spatial translates ±Wµ(·+a) (a ∈ R3).
These functions (and their multiples) are well-known to be the only functions
realizing the best constant appearing in the Sobolev inequality [4, 75]∫

R3

|u|6 ≤ C3

(∫
R3

|∇u|2
)3

, C3 =

∫
R3 W

6(∫
R3 |∇W |2

)3 =
1(∫

R3 W 6
)2 ,

where the last equality used
∫
|∇W |2 =

∫
W 6 (as follows from (1.12)). A

closely related statement is that W , together with its scalings, negatives and
spatial translates, are the only minimizers of the energy under the Pohozaev
constraint (1.12) with ε = ω = 0:

min{E0(u) | 0 6= u ∈ Ḣ1(R3), K0(u) = 0} = E0(W ) = E0(±Wµ(·+ a)),

K0(u) =

∫
R3

{
|∇u|2 − |u|6

}
.

(1.15)

It follows that for solutions of (1.13) lying energetically ‘below’ W , E0(u) <
E0(W ), the sets where K0(u) > 0 and where K0(u) < 0 are invariant
for (1.13). The celebrated result [54] showed that radially symmetric so-
lutions in the first set scatter to 0, while those in the second set become
singular in finite time (in dimensions 3, 4, 5). In this way, W plays a central
role in classifying solutions of (1.13), and it is natural to think of W (to-
gether with its scalings and spatial translates) as the ground states of (1.13).
The assumption in [54] that solutions be radially symmetric was removed in
[57] for dimensions n ≥ 5 and then for n = 4 in [32]. Removing the radial
symmetry assumption appears still open for n = 3. A characterization of
the dynamics for initial data at the threshold E0(u0) = E0(W ) appears in
[33], and a classification of global dynamics based on initial data slightly
above the ground state is given in [60].

Just as the main interest in studying (1.13) is in exploring the implica-
tions of critical scaling, the main interest in studying (1.10) and (1.11) here
is the effect of perturbing the critical scaling, in particular: the emergence of
ground state solitary waves from the static solution W , the resulting energy
landscape, and its implications for the dynamics.

A natural analogue for (1.11) of the ground state variational problem (1.15)
is

min{Sε,ω(u) | u ∈ H1 \ {0},Kε(u) = 0}. (1.16)

For a study of similar minimization problems see [7] and [8] as well as [3],
which treats a large class of critical problems and establishes the existence

12



1.7. A Perturbation of the 3D Energy Critical NLS

of ground state solutions. In space dimensions 4 and 5, [1, 2] showed the
existence of minimizers for (the analogue of) (1.16), hence of ground state
solitary waves, for each ω > 0 and εg(|u|2)u sufficiently small and subcritical;
moreover, a blow-up/scattering dichotomy ‘below’ the ground states in the
spirit of [54] holds. Our intention is to establish the existence of ground
states, and the blow-up/scattering dichotomy, in the 3-dimensional setting.
In dimension 3, the question of the existence of minimizers for (1.16) is more
subtle, and we proceed via a perturbative construction, rather than a direct
variational method.

A key role in the analysis is played by the linearization of (1.14) around
W , in particular the linearized operator

H := −∆ + V := −∆− 5W 4, (1.17)

which as a consequence of scaling invariance has the following resonance:

H ΛW = 0, ΛW :=
d

dµ
SµW |µ=0 =

(
1

2
+ x · ∇

)
W /∈ L2(R3). (1.18)

Indeed ΛW = W 3 − 1
2W decays like |x|−1, and so

W, ΛW ∈ Lr(R3) ∩ Ḣ1(R3), 3 < r ≤ ∞.

Our first goal is to find solutions to (1.11) where ω = ω(ε) > 0 is small
and Q(x) ∈ R is a perturbation of W in some appropriate sense. One
obstacle is that W /∈ L2 is a slowly decaying function, whereas solutions
of (1.11) satisfy Q ∈ L2, and indeed are exponentially decaying.

Assumption 1.7.1. Take f : R→ R ∈ C1 such that f(0) = 0 and

|f ′(s)| . |s|p1−1 + |s|p2−1

with 2 < p1 ≤ p2 <∞. Further assume that

〈ΛW, f(W )〉 < 0.

Theorem 1.7.2. There exists ε0 > 0 such that for each 0 < ε ≤ ε0, there
is ω = ω(ε) > 0, and smooth, real-valued, radially symmetric Q = Qε ∈
H1(R3) satisfying (1.11) with

ω = ω1ε
2 + ω̃ (1.19)

Q(x) = W (x) + η(x) (1.20)

13



1.7. A Perturbation of the 3D Energy Critical NLS

where

ω1 =

(
−〈ΛW, f(W )〉

6π

)2

,

ω̃ = O(ε2+δ1) for any δ1 < min(1, p1−2), ‖η‖Lr . ε1−3/r for all 3 < r ≤ ∞,
and ‖η‖Ḣ1 . ε1/2. In particular, Q→W in Lr ∩ Ḣ1 as ε→ 0.

Remark 1.7.3. We have a further decomposition of η but the leading order
term depends on whether we measure it in Lr with r = ∞ or 3 < r < ∞.
See Lemmas 3.1.9 and 3.1.10.

Remark 1.7.4. Note that allowable f include f(Q) = |Q|p−1Q with 2 <
p < 5, the subcritical, pure-power, focusing nonlinearities, as well as f(Q) =
−|Q|p−1Q with 5 < p <∞, the supercritical, pure power, defocusing nonlin-
earities. Observe

〈ΛW,W p〉 =

∫ (
1

2
W p+1 +W p(x · ∇)W

)
=

∫ (
1

2
W p+1 +

1

p+ 1
(x · ∇)W p+1

)
=

∫ (
1

2
− 3

p+ 1

)
W p+1

which is negative when 2 < p < 5 and positive when p > 5.

Remark 1.7.5. Since Qε → W in Lr for r ∈ (3,∞], the Pohozaev iden-
tity (1.12), together with the divergence theorem, implies that for any such
family of solutions, a necessary condition is

〈ΛW, f(W )〉 =

∫ (
1

2
Wf(W )− 3F (W )

)
= lim

ε→0

∫ (
1

2
Qεf(Qε)− 3F (Qε)

)
≤ 0.

Remark 1.7.6. Note that Q ∈ Lr ∩ Ḣ1 (3 < r ≤ ∞) satisfying (1.11) lies
automatically in L2 (and hence H1): by the Pohozaev relations (1.12):

0 =

∫
|∇Q|2 −

∫
Q6 − ε

∫
f(Q)Q+ ω

∫
Q2. (1.21)

The first two integrals are then finite. We can also bound the third∣∣∣∣∫ f(Q)Q

∣∣∣∣ ≤ ∫ |f(Q)||Q| .
∫
|Q|p1+1 +

∫
|Q|p2+1 <∞

14



1.7. A Perturbation of the 3D Energy Critical NLS

since p2 + 1 ≥ p1 + 1 > 3. In this way
∫
Q2 must be finite. Moreover,

since Q ∈ Lr with r > 6, a standard elliptic regularity argument implies
that Q is in fact a smooth function. Therefore it suffices to find a solution
Q ∈ Lr ∩ Ḣ1.

The paper [31] considers an elliptic problem similar to (1.11):

−∆Q+Q−Qp − λQq = 0

with 1 < q < 3, λ > 0 large and fixed, and p < 5 but p → 5. They demon-
strate the existence of three positive solutions, one of which approaches W
(1.14) as p → 5. The follow up [18] established a similar result with p → 5
but p > 5 and 3 < q < 5. While [31] and [18] are perturbative in nature,
their method of construction differs from ours.

The proof of Theorem 1.7.2 is presented in Section 3.1. As the state-
ment suggests, the argument is perturbative – the solitary wave profiles Q
are constructed as small (in Lr) corrections to W . The set-up is given in
Section 3.1.1. The equation for the correction η involves the resolvent of
the linearized operator H. A Lyapunov-Schmidt-type procedure is used to
recover uniform boundedness of this resolvent in the presence of the reso-
nance ΛW – see Section 3.1.2 for the relevant estimates – and to determine
the frequency ω, see Section 3.1.3. Finally, the correction η is determined
by a fixed point argument in Section 3.1.4.

The next question is if the solution Q is a ground state in a suitable
sense. For this question, we will specialize to pure, subcritical powers f(Q) =
|Q|p−1Q, 3 < p < 5, for which the ‘ground state’ variational problem (1.16)
reads

min{Sε,ω(u) | u ∈ H1(R3) \ {0},Kε(u) = 0},

Sε,ω(u) =
1

2
‖∇u‖2L2 −

1

6
‖u‖6L6 −

1

(p+ 1)
ε‖u‖p+1

Lp+1 +
1

2
ω‖u‖2L2 ,

Kε(u) = ‖∇u‖2L2 − ‖u‖6L6 −
3(p− 1)

2(p+ 1)
ε‖u‖p+1

Lp+1 .

(1.22)

Theorem 1.7.7. Let f(Q) = |Q|p−1Q with 3 < p < 5. There exists ε0 such
that for each 0 < ε ≤ ε0 and ω = ω(ε) > 0 furnished by Theorem 1.7.2,
the solitary wave profile Qε constructed in Theorem 1.7.2 is a minimizer
of problem (1.22). Moreover, Qε is the unique positive, radially-symmetric
minimizer.

Remark 1.7.8. It follows from Theorem 1.7.7 that the solitary wave profiles
are positive: Qε(x) > 0.
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Remark 1.7.9. (see Corollary 3.2.12). By scaling, for each ε > 0 there is
an interval [ω,∞) 3 ω(ε), such that for ω ∈ [ω,∞),

Q(x) :=
(ε
ε̂

) 1
5−p

Qε̂

((ε
ε̂

) 2
5−p

x

)
,

where 0 < ε̂ ≤ ε0 satisfies (ω(ε̂)/ω) = (ε̂/ε)4/(5−p), solves the corresponding
minimization problem (1.22). Here the function Qε̂ is the solution con-
structed by Theorem 1.7.2 with ε̂ and ω(ε̂).

The proof of Theorem 1.7.7 is presented in Section 3.2. It is somewhat
indirect. We first use the Q = Qε constructed in Theorem 1.7.2 simply as
test functions to verify

Sε,ω(ε)(Qε) < E0(W )

and so confirm, by standard methods, that the variational problems (1.22)
indeed admit minimizers. By exploiting the unperturbed variational prob-
lem (1.15), we show these minimizers approach (up to rescaling) W as ε→ 0.
Then the local uniqueness provided by the fixed-point argument from The-
orem 1.7.2 implies that the minimizers agree with Qε.

Finally, as in [1, 2], we use the variational problem (1.22) to character-
ize the dynamics of radially-symmetric solutions of the perturbed critical
Nonlinear Schrödinger equation{

i∂tu = −∆u− |u|4u− ε|u|p−1u
u(x, 0) = u0(x) ∈ H1(R3)

(1.23)

‘below the ground state’, in the spirit of [54]. By standard local existence
theory (details in Section 3.3), the Cauchy problem (2.1) admits a unique
solution u ∈ C([0, Tmax);H1(R3)) on a maximal time interval, and a central
question is whether the solution blows-up in finite time (Tmax < ∞) or is
global (Tmax =∞), and if global, how it behaves as t→∞. We have:

Theorem 1.7.10. Let 3 < p < 5 and 0 < ε < ε0, let u0 ∈ H1(R3) be
radially-symmetric, and satisfy

Sε,ω(ε)(u0) < Sε,ω(ε)(Qε),

and let u be the corresponding solution to (2.1):

1. If Kε(u0) ≥ 0, u is global, and scatters to 0 as t→∞;

2. if Kε(u0) < 0, u blows-up in finite time .
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1.7. A Perturbation of the 3D Energy Critical NLS

Note that the conclusion is sharp in the sense that Qε itself is a global
but non-scattering solution. Below the action of the ground state the sets
where Kε(u) > 0 and Kε(u) < 0 are invariant under the equation (1.10).
Despite the fact that Kε(u0) > 0 gives an a priori bound on the H1 norm
of the solution, the local existence theory is insufficient (since we have the
energy critical power) to give global existence/scattering, and so we employ
concentration compactness machinery.

The blow-up argument is classical, while the proof of the scattering result
rests on that of [54] for the unperturbed problem, with adaptations to handle
the scaling-breaking perturbation coming from [1, 2] (higher-dimensional
case) and [56] (defocusing case). This is given in Section 3.3.
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Chapter 2

A Degenerate Edge
Bifurcation in the 1D
Linearized NLS

In this chapter, we state and prove the theorem alluded to in Section 1.6.
The problem is set up in Section 2.1. In Section 2.2 we collect some results
about the relevant operators that are necessary for the bifurcation analy-
sis. Section 2.3 is devoted to the statement and proof of the main result
of this chapter: Theorem 2.3.1. The positivity of a certain (explicit) coef-
ficient, which is crucial to the proof, is verified numerically; details of this
computation are given in Section 2.4.

2.1 Setup of the Birman-Schwinger Problem

We consider the focusing, pure power (NLS) in one space dimension:

i∂tu = −∂2
xu− |u|p−1u. (2.1)

Here u = u(x, t) : R × R → C with 1 < p < ∞. The NLS (2.1) admits
solutions of the form

u(x, t) = Qp(x)eit (2.2)

where Qp(x) > 0 satisfies

−Q′′p −Qpp +Qp = 0. (2.3)

In one dimension the explicit solutions

Qp−1
p (x) =

(
p+ 1

2

)
sech2

(
p− 1

2
x

)
(2.4)

of (2.3) for each p ∈ (1,∞) are classically known to be the unique H1

solutions of (2.3) up to spatial translation and phase rotation (see e.g. [15]).
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In what follows we study the linearized NLS problem. That is, linearize
(2.1) about the solitary wave solutions (2.2) by considering solutions of the
form

u(x, t) = (Qp(x) + h(x, t)) eit.

Then h solves, to leading order (i.e. neglecting terms nonlinear in h)

i∂th = (−∂2
x + 1)h−Qp−1

p h− (p− 1)Qp−1
p Re(h).

We write the above as a matrix equation

∂t~h = JĤ~h

with

~h :=

(
Re(h)
Im(h)

)
J−1 :=

(
0 −1
1 0

)
Ĥ :=

(
−∂2

x + 1− pQp−1
p 0

0 −∂2
x + 1−Qp−1

p

)
.

The above JĤ is the linearized operator as it appears in [17]. We now
consider the system rotated

i∂t~h = iJĤ~h

and find U unitary so that, UiJĤU∗ = σ3H, where σ3 is one of the Pauli
matrices and with H self-adjoint:

σ3 =

(
1 0
0 −1

)
, U =

1√
2

(
1 i
1 −i

)
,

H =

(
−∂2

x + 1 0
0 −∂2

x + 1

)
− 1

2

(
p+ 1 p− 1
p− 1 p+ 1

)
Qp−1
p =: H̃ − V (p).

In this way we are consistent with the formulation of [28, 84]. We can also

arrive at this system, i∂t~h = σ3H~h, by letting ~h =
(
h h̄

)T
from the start.

Thus we are interested in the spectrum of

Lp := σ3H
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and so in what follows we consider the eigenvalue problem

Lpu = zu, z ∈ C, u ∈ L2(R,C2). (2.5)

That the essential spectrum of Lp is

σess(Lp) = (−∞,−1] ∪ [1,∞)

and 0 is an eigenvalue of Lp are standard facts [17].
When p = 3 we have the following resonance at the threshold z = 1 [17]

u0 =

(
2−Q2

3

−Q2
3

)
= 2

(
tanh2 x
− sech2 x

)
(2.6)

in the sense that

L3u0 = u0, u0 ∈ L∞, u0 /∈ Lq, for q <∞. (2.7)

Our main interest is how this resonance bifurcates when p 6= 3 but |p− 3| is
small. We now seek an eigenvalue of (2.5) in the following form

z = 1− α2, α > 0. (2.8)

We note that the spectrum of Lp for the soliton (2.4) may only be located on
the Real or Imaginary axes [17], and so any eigenvalues in the neighbourhood
of z = 1 must be real. There is also a resonance at z = −1 which we do not
mention further; symmetry of the spectrum of Lp ensures the two resonances
bifurcate in the same way.

We now recast the problem in accordance with the Birman-Schwinger
formulation (pp. 85 of [43]), as in [28, 84]. For (2.8), (2.5) becomes

(σ3H̃ − 1 + α2)u = σ3V
(p)u.

The constant-coefficient operator on the left is now invertible so we can write

u = (σ3H̃ − 1 + α2)−1σ3V
(p)u =: R(α)V (p)u.

After noting that V (p) is positive we set

w := V
1/2

0 u, V0 := V (p=3)

and apply V
1/2

0 to arrive at the problem

w = −Kα,pw, Kα,p := −V 1/2
0 R(α)V (p)V

−1/2
0 (2.9)
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with

R(α) =

(
(−∂2

x + α2)−1 0
0 (−∂2

x + 2− α2)−1

)
. (2.10)

We now seek solutions (α,w) of (2.9) which correspond to eigenvalues 1−α2

and eigenfunctions V
−1/2

0 w of (2.5). The decay of the potential V (p) and

hence V
1
2

0 now allows us to work in the space L2 = L2(R,C2), whose standard
inner product we denote by 〈·, ·〉.

The resolvent R(α) has integral kernel

R(α)(x, y) =

(
1

2αe
−α|x−y| 0

0 1
2
√

2−α2
e−
√

2−α2|x−y|

)

for α > 0. We expand R(α) as

R(α) =
1

α
R−1 +R0 + αR1 + α2RR. (2.11)

These operators have the following integral kernels

R−1(x, y) =

(
1
2 0
0 0

)
R0(x, y) =

(
− |x−y|2 0

0 e−
√
2|x−y|

2
√

2

)

R1(x, y) =

(
|x−y|2

4 0
0 0

)

and for α > 0 the remainder term RR is continuous in α and uniformly
bounded as an operator from a weighted L2 space (with sufficiently strong
polynomial weight) to its dual. Moreover, since the entries of the full integral
kernel R(α)(x, y) are bounded functions of |x− y|, we see that the entries of

RR(x, y) =
1

α2

(
R(α)(x, y)− (

1

α
R−1(x, y) +R0(x, y) + αR1(x, y))

)
grow at most quadratically in |x − y| as |x − y| → ∞. We also expand the
potential V (p) in ε where ε := p− 3

V (p) = V0 + εV1 + ε2V2 + ε3VR, ε := p− 3 (2.12)
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and

V0 =

(
2 1
1 2

)
Q2

3 V1 =
1

2

(
1 1
1 1

)
Q2

3 +

(
2 1
1 2

)
q1

V2 =
1

2

(
1 1
1 1

)
q1 +

(
2 1
1 2

)
q2 VR =

1

2

(
1 1
1 1

)
q2 +

(
2 1
1 2

)
qR

V
1/2

0 =
1

2

(√
3 + 1

√
3− 1√

3− 1
√

3 + 1

)
Q3.

Here we have expanded

Qp−1
p (x) = Q2

3(x) + εq1(x) + ε2q2(x) + ε3qR(x)

and the computation gives

Q2
3(x) = 2 sech2 x, q1(x) = sech2 x

(
1

2
− 2x tanhx

)
q2(x) =

1

2

(
2x2 tanh2 x sech2 x− x2 sech4 x− x tanhx sech2 x

)
.

By Taylor’s theorem, the remainder term qR(x) satisfies an estimate of the
form |qR(x)| ≤ C(1 + |x|3) sech2(x/2) for some constant C which is uniform
in x and ε ∈ (−1, 1). We will henceforth write

Q for Q3 and Kα,ε for Kα,p.

2.2 The Perturbed and Unperturbed Operators

We study (2.9), that is:

(Kα,ε + 1)w = 0. (2.13)

Using the expansions (2.11) and (2.12) for R(α) and V (p) we make the fol-
lowing expansion

Kα,ε =
1

α

(
K−10 + εK−11 + ε2K−12 + ε3KR1

)
+K00 + εK01 + ε2K02 + ε3KR2

+ αK10 + αεKR3

+ α2KR4

(2.14)

where KR4 is uniformly bounded and continuous in α > 0 and ε in a neigh-
bourhood of 0, as an operator on L2(R,C2).

Before stating the main theorem we assemble some necessary facts about
the above operators.
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Lemma 2.2.1. Each operator appearing in the expansion (2.14) for Kα,ε

is a Hilbert-Schmidt (so in particular bounded and compact) operator from
L2(R,C2) to itself.

Proof. This is a straightforward consequence of the spatial decay of the

weights which surround the resolvent. The facts that ‖V −1/2
0 ‖ ≤ Ce|x|, and

that ‖V 1/2
0 ‖ ≤ Ce−|x|, while each of ‖V0‖, ‖V1‖, ‖V2‖ and ‖VR‖ can be

bounded by Ce−3|x|/2 (say if we restrict to |ε| < 1
2) imply easily that these

operators all have square integrable integral kernels.

Remark 2.2.2. The same decay estimates for the potentials used in the
proof of Lemma 2.2.1 show that for α > 0 and w ∈ L2 solving (2.9) the corre-

sponding eigenfunction of (2.5) u = V
−1/2

0 w lies in L2 and so the eigenvalue

z = 1−α2 is in fact a true eigenvalue. Indeed w ∈ L2 =⇒ V (p)V
−1/2

0 w ∈ L2

and so u = −R(α)V (p)V
−1/2

0 w ∈ L2, since the free resolvent R(α) preserves
L2 for α > 0 .

We will also need the projections P and P which are defined as follows:
for f ∈ L2 let

Pf :=
〈v, f〉v
‖v‖2

, v := V
1/2

0

(
1
0

)
as well as the complementary P := 1−P . A direct computation shows that
for any f ∈ L2 we have

K−10f = −4Pf. (2.15)

Note that all operators in the expansion containing R−1 return outputs in
the direction of v.

Lemma 2.2.3. The operator P (K00 + 1)P has a one dimensional kernel
spanned by

w0 := V
1/2

0 u0

as an operator from Ran(P ) to Ran(P ).

Proof. First note that by (2.7)

−V0u0 = σ3u0 − H̃u0, [−V0u0]1 = [u0]′′1 (2.16)
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2.2. The Perturbed and Unperturbed Operators

from which it follows that

Pw0 = 0, i.e. w0 ∈ Ran(P ).

Then a direct computation using (2.16), the expansion (2.14), the expression
for R0, and integration by parts, shows that

(K00 + 1)w0 = 2v

and so indeed P (K00 + 1)Pw0 = 0.
Theorem 5.2 in [48] shows that the kernel of the analogous scalar operator

can be at most one dimensional. We will use this argument, adapted to the
vector structure, to show that any two non-zero elements of the kernel must
be multiples of each other. Take w ∈ L2 with 〈w, v〉 = 0 and P (K00 +1)w =
0. That is (K00 + 1)w = cv for some constant c. This means

−V 1/2
0 R0V0V

−1/2
0 w + w = cV

1/2
0

(
1
0

)
.

Let w = V
1/2

0 u where u =

(
u1

u2

)
. We then obtain, after rearranging and

expanding(
u1

u2

)
=

(
c− 1

2

∫
R |x− y|Q

2(y) (2u1(y) + u2(y)) dy
1

2
√

2

∫
R exp

(
−
√

2|x− y|
)
Q2(y)(u1(y) + 2u2(y))dy

)
.

We now rearrange the first component. Expand

−1

2

∫
R
|x− y|Q2(y)(2u1(y) + u2(y))dy

=− 1

2

∫ x

−∞
(x− y)Q2(y)(2u1(y) + u2(y))dy

− 1

2

∫ ∞
x

(y − x)Q2(y)(2u1(y) + u2(y))dy

and rewrite the first term as

− x

2

∫ x

−∞
Q2(y)(2u1(y) + u2(y))dy +

1

2

∫ x

−∞
yQ2(y)(2u1(y) + u2(y))dy

=
x

2

∫ ∞
x

Q2(y)(2u1(y) + u2(y))dy + b− 1

2

∫ ∞
x

yQ2(y)(2u1(y) + u2(y))dy
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where

b :=
1

2

∫
R
yQ2(y)(2u1(y) + u2(y))dy

and where we used
∫
R 2Q2u1 + Q2u2 = 0 since 〈w, v〉 = 0. So putting

everything back together we see(
u1

u2

)
=

(
c+ b+

∫∞
x (x− y)Q2(y) (2u1(y) + u2(y)) dy

1
2
√

2

∫
R exp

(
−
√

2|x− y|
)
Q2(y)(u1(y) + 2u2(y))dy

)
. (2.17)

We claim that as x→∞(
u1

u2

)
→
(
c+ b

0

)
.

Observe ∣∣∣∣ ∫ ∞
x

(x− y)Q2(y) (2u1(y) + u2(y)) dy

∣∣∣∣
≤
∫ ∞
x
|y − x|Q2(y)|2u1(y) + u2(y)|dy

≤
∫ ∞
x
|y|Q2(y)|2u1(y) + u2(y)|dy

→ 0

as x→∞. Here we have used the fact that w ∈ L2 implies Q|2u1 +u2| ∈ L2

and that |y|Q ∈ L2. As well, in the second component∫
R
e−
√

2|x−y|Q2(y)(u1(y) + 2u2(y))dy

=e−
√

2x

∫ x

−∞
e
√

2yQ2(y)(u1(y) + 2u2(y))dy

+ e
√

2x

∫ ∞
x

e−
√

2yQ2(y)(u1(y) + 2u2(y))dy
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and∣∣∣∣e−√2x

∫ x

−∞
e
√

2yQ2(y)(u1(y) + 2u2(y))dy

∣∣∣∣
≤ e−

√
2x

∫ x

−∞
e
√

2yQ2(y)|u1(y) + 2u2(y)|dy

≤ e−
√

2x

(∫ x

−∞
e2
√

2yQ2(y)dy

)1/2(∫ x

−∞
Q2(y)|u1(y) + 2u2(y)|2dy

)1/2

≤ Ce−
√

2x

(∫ x

−∞
e2
√

2yQ2(y)dy

)1/2

≤ Ce−
√

2x

(∫ x

−∞
e2
√

2ye−2ydy

)1/2

≤ Ce−
√

2x
(
e−2
√

2xe−2x
)1/2

≤ Ce−x → 0, x→∞

where we again used Q|u1 + 2u2| ∈ L2. Similarly,∣∣∣∣e√2x

∫ ∞
x

e−
√

2yQ2(y)(u1(y) + 2u2(y))dy

∣∣∣∣→ 0

as x→∞ which addresses the claim.
Next we claim that if c + b = 0 in (2.17) then u ≡ 0. To address the

claim we first note that if c + b = 0 then u ≡ 0 for all x ≥ X for some X,
by estimates similar to those just done. Finally, we appeal to ODE theory.
Differentiating (2.17) in x twice returns the system

u′′1 = −2Q2u1 −Q2u2 (2.18)

u′′2 − 2u2 = −Q2u1 − 2Q2u2. (2.19)

Any solution u to the above with u ≡ 0 for all large enough x must be
identically zero.

With the claim in hand we finish the argument. Given two non-zero
elements of the kernel, say u and ũ with limits as x→∞ (written as above)
c+ b and c̃+ b̃ respectively, the combination

u∗ = u− c+ b

c̃+ b̃
ũ

satisfies (2.17) but with u∗(x) → 0 as x → ∞, and so u∗ ≡ 0. Therefore, u
and ũ are linearly dependent, as required.
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Note that K00, and hence P (K00 + 1)P , is self-adjoint. Indeed

K00 = −V 1/2
0 R0V0V

−1/2
0

= −V −1/2
0 V0R0V

1/2
0

= (K00)∗.

As we have seen above in Lemma 2.2.1, thanks to the decay of the poten-
tial, PK00P is a compact operator. Therefore, the simple eigenvalue −1 of
PK00P is isolated and so

(P (K00 + 1)P )−1 : {v, w0}⊥ → {v, w0}⊥ (2.20)

exists and is bounded.
With the above preliminary facts assembled, we proceed to the bifurca-

tion analysis.

2.3 Bifurcation Analysis

This section is devoted to the proof of the main result of Chapter 2:

Theorem 2.3.1. There exists ε0 > 0 such that for −ε0 ≤ ε ≤ ε0 the
eigenvalue problem (2.13) has a solution (α,w) of the form

w = w0 + εw1 + ε2w2 + w̃

α = ε2α2 + α̃
(2.21)

where α2 > 0, w0, w1, w2 are known (given below), and |α̃| < C|ε|3 and
‖w̃‖L2 < C|ε|3 for some C > 0.

Remark 2.3.2. This theorem confirms the behaviour observed numerically
in [17]: for p 6= 3 but close to 3, the linearized operator JĤ (which is uni-
tarily equivalent to iLp) has true, purely imaginary eigenvalues in the gap
between the branches of essential spectrum, which approach the thresholds

as p → 3. Note Remark 2.2.2 to see that u = V
−1/2

0 w is a true L2 eigen-
function of (2.5). In addition, the eigenfunction approaches the resonance
eigenfunction in some weighted L2 space. Furthermore, we have found that
α2, the distance of the eigenvalues from the thresholds, is to leading order
proportional to (p − 3)4. Finally, note that α = ε2α2 + O(ε3) with α2 > 0
gives α > 0 for both ε > 0 and ε < 0, ensuring the eigenvalues appear on
both sides of p = 3.
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2.3. Bifurcation Analysis

The quantities in (2.21) are defined as follows:

w0 := V
1/2

0 u0

Pw1 :=
1

4
K−11w0

Pw1 := −
(
P (K00 + 1)P

)−1
(

1

4
PK00K−11w0 + PK01w0

)
Pw2 :=

1

4

(
K−11w1 +K−12w0 + α2(K00 + 1)w0

)
Pw2 := −

(
P (K00 + 1)P

)−1

(
1

4
PK00K−11w1 +

1

4
PK00K−12w0

+
α2

4
PK00(K00 + 1)w0 + PK01w1 + PK02w0 + α2PK10w0

)
α2 :=

−1
4〈w0,K00K−11w1〉 − 1

4〈w0,K00K−12w0〉 − 〈w0,K01w1〉 − 〈w0,K02w0〉
〈w0,K10w0〉+ 1

4〈w0,K00(K00 + 1)w0〉
.

Remark 2.3.3. A numerical computation shows

α2 ≈ 2.52/8 > 0.

Since the positivity of α2 is crucial to the main result, details of this com-
putation are described in Section 2.4.

Note that the functions on which P (K00 + 1)P is being inverted in the
expressions for Pw1 and Pw2 are orthogonal to both w0 and v, and so these
quantities are well-defined by (2.20). The projections to v are zero by the
presence of P . As for the projections to w0, the identity

〈w0,
1

4
K00K−11w0 +K01w0〉 = 0 (2.22)

has been verified analytically. It is because of this identity that the O(ε)
term is absent in the expansion of α in (2.21). The fact that

0 = 〈w0,
1

4
K00K−11w1 +

1

4
K00K−12w0 +

α2

4
K00(K00 + 1)w0 +K01w1

+K02w0 + α2K10w0〉

comes from our definition of α2.
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The above definitions, along with (2.15), imply the relationships below

0 = K−10w0 (2.23)

0 = K−11w0 +K−10w1 (2.24)

0 = K−10w2 +K−11w1 +K−12w0 + α2(K00 + 1)w0 (2.25)

0 = P (K00 + 1)w1 + PK01w0 (2.26)

0 = P (K00 + 1)w2 + PK01w1 + PK02w0 + α2PK10w0 (2.27)

which we will use in what follows.
Using the expression for α in (3.1.1), our expansion (2.14) for Kα,ε now

takes the form

Kα,ε =
1

α

(
K−10 + εK−11 + ε2K−12 + ε3KR1

)
+K00 + εK01 + ε2K02 + ε3KR2

+ (α2ε
2 + α̃)K10 + (α2ε

2 + α̃)εKR3 + (α2ε
2 + α̃)2KR4

=:
1

α

(
K−10 + εK−11 + ε2K−12 + ε3KR1

)
+K00 + εK1 + α̃K2

where K1 is a bounded (uniformly in ε) operator depending on ε but not α̃,
while K2 is a bounded (uniformly in ε and α̃) operator depending on both
ε and α̃.

Further decomposing

w̃ = βv +W, 〈W, v〉 = 0,

we aim to show existence of a solution with the remainder terms α̃, β and
W small. We do so via a Lyapunov-Schmidt reduction.

First substitute (2.21) to (2.13) and apply the projection P to obtain

0 = P (Kα,ε + 1)w

= P (Kα,ε + 1)(w0 + εw1 + ε2w2 + βv +W )

= P (K00 + 1)w0 + εP (K00 + 1)w1 + εPK01w0

+ ε2P (K00 + 1)w2 + ε2PK01w1 + ε2PK02w0 + ε2α2PK10w0

+ P (K00 + 1)(βv +W ) + α̃PK10w0 + P
(
εK1 + α̃K2

)
(βv +W )

+ ε3P
(
KR2w0 +K02w1 +K01w2 + εK02w2 + εKR2w1 + ε2KR2w2

)
+ (α2ε

2 + α̃)PK10(εw1 + ε2w2) + (α2ε
2 + α̃)εPKR3(w0 + εw1 + ε2w2)

+ (α2ε
2 + α̃)2PKR4(w0 + εw1 + ε2w2).

(2.28)
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Making some cancellations coming from Lemma 2.2.3, (2.26) and (2.27)
leads to

−P (K00 + 1)PW =

βPK00v + α̃PK10w0 + P
(
εK1 + α̃K2

)
(βv +W )

+ ε3P
(
KR2w0 +K02w1 +K01w2 + εK02w2 + εKR2w1 + ε2KR2w2

)
+ (α2ε

2 + α̃)PK10(εw1 + ε2w2) + (α2ε
2 + α̃)εPKR3(w0 + εw1 + ε2w2)

+ (α2ε
2 + α̃)2PKR4(w0 + εw1 + ε2w2)

=: F(W ; ε, α̃, β).

According to (2.20), inversion of P (K00 + 1)P on F requires the solv-
ability condition

P0F = 0, P0 :=
1

‖w0‖22
〈w0, ·〉w0, P 0 := 1− P0 (2.29)

which we solve together with the fixed point problem

W =
(
−P (K00 + 1)P

)−1
P 0F(W ; ε, α̃, β) =: G(W ; ε, α̃, β) (2.30)

in order to solve (2.28).
Write

F := P
(
βK00v + α̃K10w0 +

(
εK1 + α̃K2

)
(βv +W ) + ε3f1 + εα̃f2 + α̃2h1

)
where f1 and f2 denote functions depending on (and L2 bounded uniformly
in) ε but not α̃, while h1 denotes an L2 function depending on (and uniformly
L2 bounded in) both ε and α̃.

Lemma 2.3.4. For any M > 0 there exists ε0 > 0 and R > 0 such that for
all −ε0 ≤ ε ≤ ε0 and for all α̃ and β with |α̃| ≤M |ε|3 and |β| ≤M |ε|3 there
exists a unique solution W ∈ L2 ∩ {v, w0}⊥ of (2.30) satisfying ‖W‖L2 ≤
R|ε|3.

Proof. We prove this by means of Banach Fixed Point Theorem. We must
show that G(W ) maps the closed ball of radius R|ε|3 into itself and that
G(W ) is a contraction mapping. Taking W ∈ L2 orthogonal to v and w0 such
that ‖W‖L2 ≤ R|ε|3 and given M > 0 where |α̃| ≤ M |ε|3 and |β| ≤ M |ε|3,
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we have, using the boundedness of
(
−P (K00 + 1)P

)−1
P 0,

‖G‖L2

≤ C|β|‖PK00v + P
(
εK1 + α̃K2

)
v‖L2 + C|α̃|‖P (K10w0 + εf2 + α̃h1) ‖L2

+ C‖P
(
εK1 + α̃K2

)
W‖L2 + |ε|3C‖Pf1‖L2

≤ CM |ε|3 + CM |ε|3 + C|ε|‖W‖L2 + C|α̃|‖W‖L2 + C|ε|3

≤ C|ε|3 + CR|ε|4

≤ R|ε|3

for some appropriately chosen R with |ε| small enough. Here C is a positive,
finite constant whose value changes at each appearance. Next consider

‖G(W1)− G(W2)‖L2

≤ C‖P
(
εK1 + α̃K2

)
‖L2→L2‖W1 −W2‖L2

≤ C|ε|‖P K1‖L2→L2‖W1 −W2‖L2 + C|α̃|‖P K2‖L2→L2‖W1 −W2‖L2

≤ C|ε|‖W1 −W2‖L2 ≤ κ‖W1 −W2‖L2

with 0 < κ < 1 by taking |ε| sufficiently small. Hence G(W ) is a contraction,
and we obtain the desired result.

Lemma 2.3.4 provides W as a function of α̃ and β, which we may then
substitute into (2.29) to get

0 = 〈w0,F〉
= β〈w0,K00v〉+ α̃〈w0,K10w0〉+ εβ〈w0,K1v〉+ α̃β〈w0,K2v〉

+ ε3〈w0, f1〉+ εα̃〈w0, f2〉+ α̃2〈w0, h1〉+ ε〈w0,K1W 〉+ α̃〈w0,K2W 〉
=: β〈w0,K00v〉+ α̃〈w0,K10w0〉+ F1 (2.31)

which is the first of two equations relating α̃ and β.
The second equation is the complementary one to (2.28): substitute
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(2.21) to (2.13) but this time multiply by α and take projection P to see

0 = αP (Kα,ε + 1)w

= K−10w0 + ε(K−11w0 +K−10w1)

+ ε2 (K−10w2 +K−11w1 +K−12w0) + ε2α2(K00 + 1)w0

+ ε3(K−11w2 +K−12w1 +KR1w0 + εK−12w2 + εKR1w1 + ε2KR1w2)

+ βK−10v +K−10W + ε(K−11 + εK−12 + ε2KR1)(βv +W )

+ α̃(K00 + 1)w0 + ε3α2P (K00 + 1)(w1 + εw2) + εα̃P (K00 + 1)(w1 + εw2)

+ ε2α2P (K00 + 1)(βv +W ) + α̃P (K00 + 1)(βv +W )

+ αP (εK01 + ε2K02 + ε3KR2 + αK10 + αεKR3 + α2KR4)

× (w0 + εw1 + ε2w2 + βv +W ).

(2.32)

After using known information about w0, w1, w2, α2 coming from (2.23),
(2.24), (2.25) and noting that K−10W = −4PW = 0 from (2.15) we have

0 = βK−10v + α̃(K00 + 1)w0

+ ε3(K−11w2 +K−12w1 +KR1w0 + εK−12w2 + εKR1w1 + ε2KR1w2)

+ ε(K−11 + εK−12 + ε2KR1)(βv +W )

+ ε3α2P (K00 + 1)(w1 + εw2) + εα̃P (K00 + 1)(w1 + εw2)

+ ε2α2P (K00 + 1)(βv +W ) + α̃P (K00 + 1)(βv +W )

+ αP (εK01 + ε2K02 + ε3KR2 + αK10 + αεKR3 + α2KR4)

× (w0 + εw1 + ε2w2 + βv +W ).

Written more compactly, this is

0 =βK−10v + α̃(K00 + 1)w0

+ ε3f4 + εK3(βv +W ) + α̃εf5 + α̃K4(βv +W ) + α̃2h2

where K3 is a bounded (uniformly in ε) operator containing ε but not α̃,
while K4 is a bounded (uniformly in ε and α̃) operator containing both ε
and α̃. Functions f4 and f5 depend on ε (and are uniformly L2-bounded)
but not α̃, while the function h2 depends on both ε and α̃ (and is uniformly
L2-bounded). To make the relationship between α̃ and β more explicit we
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take inner product with v

0 = β〈v,K−10v〉+ α̃〈v, (K00 + 1)w0〉+ ε3〈v, f4〉
+ ε〈v,K3(βv +W )〉+ α̃ε〈v, f5〉+ α̃〈v,K4(βv +W )〉+ α̃2〈v, h2〉

=: β〈v,K−10v〉+ α̃〈v, (K00 + 1)w0〉+ F2. (2.33)

Now let

~ζ =

(
α̃
β

)
and rewrite (2.31) and (2.33) in the following way

A~ζ :=

(
〈w0,K10w0〉 〈w0,K00v〉
〈v, (K00 + 1)w0〉 〈v,K−10v〉

)(
α̃
β

)
=

(
F1

F2

)
which we recast as a fixed point problem

~ζ = A−1

(
F1

F2

)
=: ~F (α̃, β; ε). (2.34)

We have computed

A =

(
0 16
16 −32

)
so in particular, A is invertible. We wish to show there is a solution (α̃, β)
of (2.34) of the appropriate size. We establish this fact in the following
Lemmas. Lemmas 2.3.5 and 2.3.6 are accessory to Lemma 2.3.7.

Lemma 2.3.5. The operators and functions K2, K4 and h1, h2 are contin-
uous in α̃ > 0.

Proof. The operators and function in question are compositions of continu-
ous functions of α̃.

Lemma 2.3.6. The W given by Lemma 2.3.4 is continuous in ~ζ for suffi-
ciently small |ε|.

Proof. Let (α̃1, β1) give rise to W1 and let (α̃2, β2) give rise to W2 via Lemma
2.3.4. Take |α̃1−α̃2| < δ and |β1−β2| < δ. We show that ‖W1−W2‖L2 < Cδ
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for some constant C > 0. Observing K2 depends on α̃, we see

‖W1 −W2‖L2 =

‖
(
P (K00 + 1)P

)−1
P 0‖L2→L2‖F(W1, ~ζ1; ε)−F(W2, ~ζ2; ε)‖L2

≤ C
∥∥∥∥(β1 − β2)K00v + (α̃1 − α̃2)K10w0 + ε(β1 − β2)K1v

+ εK1(W1 −W2) + α̃1β1K2(α̃1)v − α̃2β2K2(α̃2)v + α̃1K2(α̃1)W1

− α̃2K2(α̃2)W2 + ε(α̃1 − α̃2)f2 + α̃2
1h1(α̃1)− α̃2

2h1(α̃2)

∥∥∥∥
L2

≤ Cδ + C|ε|‖W1 −W2‖L2

+ ‖α̃1K2(α̃1)(W1 −W2) +
(
α̃1K2(α̃1)− α̃2K2(α̃2)

)
W2‖L2

≤ Cδ + C|ε|‖W1 −W2‖L2

noting that |α̃1| ≤M |ε|3. Rearranging the above gives

‖W1 −W2‖L2 < Cδ

for small enough |ε|.

Lemma 2.3.7. There exists ε0 > 0 such that for all −ε0 ≤ ε ≤ ε0 the
equation (2.34) has a fixed point with |α̃|, |β| ≤M |ε|3 for some M > 0.

Proof. We prove this by means of the Brouwer Fixed Point Theorem. We
show that ~F maps a closed square into itself and that ~F is a continu-
ous function. Take |α̃|, |β| ≤ M |ε|3 and and so by Lemma 2.3.4 we have
‖W‖L2 ≤ |ε|3R for some R > 0. Consider now

‖A−1‖ |F1|

≤ ‖A−1‖

(
|ε||β||〈w0,K1v〉|+ |α̃||β||〈w0,K2v〉|+ |ε|3|〈w0, f1〉|

+ |ε||α̃||〈w0, f2〉|+ |α̃|2|〈w0, h1〉|+ |ε||〈w0,K1W 〉|+ |α̃||〈w0,K2W 〉|

)
≤ CM |ε|4 + CM2|ε|6 + C|ε|3 + CM |ε|4 + CM2|ε|6 + CR|ε|4

≤ C|ε|3 + CM |ε|4 ≤M |ε|3
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and

‖A−1‖ |F2|

≤ ‖A−1‖

(
|ε|3|〈v, f4〉|+ |ε||〈v,K3(βv +W )〉|+ |α̃||ε||〈v, f5〉|

+ |α̃||〈v,K4(βv +W )〉|+ |α̃|2|〈v, h2〉|

)
≤ C|ε|3 + CM |ε|4 + CR|ε|4 + CM |ε|4 + CM2|ε|6 + CMR|ε|6 + CM2|ε|6

≤ C|ε|3 + CM |ε|4 ≤M |ε|3

for some choice of M > 0 and sufficiently small |ε| > 0. Here C > 0 is a
constant that is different at each instant. So ~F maps the closed square to
itself.

It is left to show that ~F is continuous. Given η > 0 take |α̃1 − α̃2| < δ
and |β1 − β2| < δ. Let (α̃1, β1) give rise to W1 and let (α̃2, β2) give rise to
W2 via Lemma 2.3.4. We will also use Lemma 2.3.5 and Lemma 2.3.6. Now
consider

|F1(α̃1, β1)−F1(α̃2, β2)|

=
∣∣∣ε(β1 − β2)〈w0,K1v〉+ α̃1β1〈w0,K2(α̃1)v〉 − α̃2β2〈w0,K2(α̃2)v〉

+ ε(α̃1 − α̃2)〈w0, f2〉+ α̃2
1〈w0, h1(α̃1)〉 − α̃2

2〈w0, h1(α̃2)〉

+ ε〈w0,K1(W1 −W2)〉+ α̃1〈w0,K2(α̃1)W1〉 − α̃2〈w0,K2(α̃2)W2〉
∣∣∣

≤ Cδ + C‖h1(α̃1)− h1(α̃2)‖L2

+ C‖W1 −W2‖L2 + C‖K2(α̃1)−K2(α̃2)‖L2→L2

≤ Cδ < η

‖A−1‖
√

2

for small enough δ. Similarly we can show

|F2(α̃1, β1)−F2(α̃2, β2)| ≤ Cδ < η

‖A−1‖
√

2

for δ small enough. Putting everything together gives |~F (~ζ1) − ~F (~ζ2)| < η
as required. Hence ~F is continuous.

So finally we have solved both (2.28) and (2.32), and hence (2.13), and
so have proved Theorem 2.3.1.
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2.4 Comments on the Computations

Analytical and numerical computations were used in the above to compute
inner products such as the ones appearing in the definition of α2 (2.21). It
was critical to establish that α2 > 0 since the expansion of the resolvent
R(α) (2.10) requires α > 0. Inner products containing w0 but not w1 can
be written as an explicit single integral and then evaluated analytically or
numerically with good accuracy. For example

〈w0,K02w0〉+
1

4
〈w0,K00K−12w0〉

=− 1

2

∫
R2

|x− y|
(
4Q2(x)− 3Q4(x)

)
×
(
Q2(y)q1(y)− q1(y) + 3Q2(y)q2(y)− 4q2(y)− c2

2
Q2(y)

)
dydx

+
1

2
√

2

∫
R2

e−
√

2|x−y|(2Q2(x)− 3Q4(x)
)

×
(
Q2(y)q1(y)− q1(y) + 3Q2(y)q2(y)− 2q2(y)− c2

4
Q2(y)

)
dydx

=−
∫
R
Q2(y)

(
Q2(y)q1(y)− q1(y) + 3Q2(y)q2(y)− 4q2(y)− c2

2
Q2(y)

)
dy

−
∫
R
Q2(y)

(
Q2(y)q1(y)− q1(y) + 3Q2(y)q2(y)− 2q2(y)− c2

4
Q2(y)

)
dy

≈− 2.9369

where

c2 =
1

2

∫
R
Q2q1 − q1 + 3Q2q2 − 4q2.

To reduce the double integral to a single integral we recall some facts about
the integral kernels. Let

h(y) = −1

2

∫
R
|x− y|

(
4Q2(x)− 3Q4(x)

)
dx.

Then h solves the equation

h′′ = −4Q2 + 3Q4.

Notice that −4Q2 + 3Q4 = −2Q2u1−Q2u2 where u1 and u2 are the compo-
nents of the resonance u0 (2.6). Observing the equation (2.18) we see that
h = u1 + c = 2 − Q2 + c for some constant c. We can directly compute
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h(0) = −2 to find c = −2 and so h = −Q2. A similar argument involving
(2.19) gives

1

2
√

2

∫
R
e−
√

2|x−y|(2Q2(x)− 3Q4(x)
)
dx = u2(y) = −Q2(y).

Many of the inner products can be computed analytically. These include
the identity (2.22), the entires in the matrix A in (2.34) and the denomi-
nator appearing in the expression for α2. As an example we evaluate the
denominator of α2:

〈w0,K10w0〉+
1

4
〈w0,K00(K00 + 1)w0〉

= −
∫
R2

(
3Q4(x)− 4Q2(x)

)(x− y)2

4

(
3Q4(y)− 4Q2(y)

)
dydx

+
1

2

∫
R2

(
4Q2(x)− 3Q4(x)

)
|x− y|Q2(y)dydx

− 1

4
√

2

∫
R2

(
4Q2(x)− 3Q4(x)

)
e−
√

2|x−y|Q2(y)dydx

=
3

2

∫
R
Q4(y)dy

= 8

where the first integral is zero by a direct computation and the remaining
double integrals are converted to single integrals as above.

Computing inner products containing w1 is harder. We have an explicit
expression for Pw1 but lack an explicit expression for Pw1. Therefore we
approximate Pw1 by numerically inverting P (K00 + 1)P in

P (K00 + 1)Pw1 = −
(

1

4
PK00K−11w0 + PK01w0

)
=: g.

Note that 〈g, v〉 = 〈g, w0〉 = 0. We represent P (K00 + 1)P as a matrix with
respect to a basis {φj}Nj=1. The basis is formed by taking terms from the
typical Fourier basis and projecting out the components of each function
in the direction of v and w0. Some basis functions were removed to ensure
linear independence of the basis. Let Pw1 =

∑N
j=1 ajφj . Then

B~a = ~b

where Bj,k = 〈φj , (K00 + 1)φk〉 and bj = 〈φj , g〉. So we can solve for ~a by
inverting the matrix B. Once we have an approximation for Pw1 we can
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Figure 2.1: The two components of Pw1 computed numerically with 32
basis terms.

compute P (K00 + 1)Pw1 directly to observe agreement with the function g.
With this agreement we are confident in our numerical algorithm and that
our numerical approximation for Pw1 is accurate. In Figure 2.1 we show
the two components of Pw1 as computed numerically. Figure 2.2 shows the
components of the function g with the computed P (K00 + 1)Pw1 on top.

With an approximation for Pw1 in hand we can combine it with our
explicit expression for Pw1 and compute inner products containing w1 in
the same way as the previous inner product containing w0. In this way we
establish that α2 > 0. We list computed values for the numerator of α2

against the number of basis terms used in Table 2.1.
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Figure 2.2: The two components of function g with the computed P (K00 +
1)Pw1 on top. Again 32 basis terms were used in this computation. At this
scale the difference can only be seen around zero and at the endpoints.

Number of Basis Terms 8α2

20 2.4992

24 2.5137

28 2.5189

30 2.5201

32 2.5207

Table 2.1: Numerical values for 8α2 for the number of basis terms used in
the computation.
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Chapter 3

Perturbations of the 3D
Energy Critical NLS

In this chapter we prove Theorems 1.7.2, 1.7.7, and 1.7.10. The construction
of the solitary wave profiles appears in Section 3.1, variational arguments
which establish the solitary waves as ground states appear in Section 3.2,
and the dynamical (scattering/blow-up) theory appears in Section 3.3.

3.1 Construction of Solitary Wave Profiles

This section is devoted to the proof of Theorem 1.7.2, constructing solitary
wave profiles for the perturbed NLS via perturbation from the unperturbed
static solution W .

3.1.1 Mathematical Setup

Let λ2 = ω with λ ≥ 0. Now substitute (1.20) to (1.11) to see

(−∆− 5W 4 + λ2)η = −λ2W + εf(W ) +N(η)

where

N(η) = (W + η)5 −W 5 − 5W 4η + ε (f(W + η)− f(W ))

collects the higher order terms. We can rewrite the above as

(H + λ2)η = F , H = −∆ + V, V = −5W 4 (3.1)

where
F = F(ε, λ, η) = −λ2W + εf(W ) +N(η).

To understand the resolvent (H + λ2)−1 for small λ, we follow [47]. Use the
resolvent identity to write

(H + λ2)−1 = (1 +R0(−λ2)V )−1R0(−λ2)
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3.1. Construction of Solitary Wave Profiles

where
R0(ζ) = (−∆− ζ)−1

is the free resolvent, and apply Lemma 4.3 of [47] to obtain the expansion

(1 +R0(−λ2)V )−1 = − 1

λ
〈V ψ, ·〉ψ +O(1) (3.2)

where ψ is the normalized resonance eigenfunction (1.18):

ψ(x) =
1√
3π

ΛW (x),

∫
R3

V ψ =
√

4π.

The above expansion is understood in [47] in weighted Sobolev spaces. We
choose instead to work in higher Lp spaces. Precise statements are found in
the following Section 3.1.2.

To eliminate the singular behaviour as λ→ 0 we require

0 = 〈R0(−λ2)V ψ,F(ε, λ, η)〉. (3.3)

Satisfying this condition determines λ = λ(ε, η). This is done in Section
3.1.3. With this condition met, we can invert (3.1) to see

η = (H + λ2)−1F = (H + λ2(ε, η))−1F(ε, λ(ε, η), η) =: G(η, ε), (3.4)

which can be solved for η via a fixed point argument. This is done in
Section 3.1.4.

3.1.2 Resolvent Estimates

We collect here some estimates that are necessary for the proof of Theorem
1.7.2.

In order to apply Lemma 4.3 of [47] and so to use the expansion (3.2)
in what follows (Lemmas 3.1.1 and 3.1.4) we must have that the operator
H has no zero eigenvalue. However, it is true that H(∂W/∂xj) = 0 for
each j = 1, 2, 3. To this end, we restrict ourselves to considering only radial
functions. In this way H has no zero eigenvalues and only the one resonance,
ΛW (see [33]).

The free resolvent operator R0(−λ2) for λ > 0 has integral kernel

R0(−λ2)(x) =
e−λ|x|

4π|x|
. (3.5)
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3.1. Construction of Solitary Wave Profiles

An application of Young’s inequality/generalized Young’s inequality gives
the bounds

‖R0(−λ2)‖Lq→Lr . λ3(1/q−1/r)−2, 1 ≤ q ≤ r ≤ ∞ (3.6)

‖R0(−λ2)‖Lqw→Lr . λ
3(1/q−1/r)−2, 1 < q ≤ r <∞ (3.7)

with 3(1/q − 1/r) < 2, as well as

‖R0(−λ2)‖Lq→Lr . 1 (3.8)

where 1 < q < 3/2 and 3(1/q − 1/r) = 2 (so 3 < r <∞). We will also need
the additional bound

‖R0(−λ2)‖
L

3
2−∩L

3
2+→L∞

. 1, (3.9)

where the +/− means the bound holds for any exponent greater/less than
3/2, to replace the fact that we do not have (3.8) for r =∞ and q = 3/2.

Observe also that R0(0) = G0 has integral kernel

G0(x) =
1

4π|x|

and is formally (−∆)−1.
We need also some facts about the operator (1 + R0(−λ2)V )−1. The

idea is that we can think of the full resolvent (1 + R0(−λ2)V )−1R0(−λ2)
as behaving like the free resolvent R0(−λ2) providing we have a suitable
orthogonality condition. Otherwise we lose a power of λ due to the non-
invertibility of (1 +G0V ): indeed,

ψ ∈ ker(1 +G0V ), V ψ ∈ ker ((1 +G0V )∗ = 1 + V G0) . (3.10)

First we recall some results of [47]:

Lemma 3.1.1. (Lemmas 2.2 and 4.3 from [47]) Let s satisfy 3/2 < s < 5/2
and denote B = B(H1

−s, H
1
−s) where H1

−s is the weighted Sobolev space with
norm

‖u‖H1
−s

= ‖(1 + |x|2)−s/2u‖H1 .

Then for ζ with Imζ ≥ 0 we have the expansions

1 +R0(ζ)V = 1 +G0V + iζ1/2G1V + o(ζ1/2)

(1 +R0(ζ)V )−1 = −iζ−1/2〈·, V ψ〉ψ + C1
0 + o(1)
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in B with |ζ| → 0. Here C1
0 is an explicit operator and G0 and G1 are

convolution with the kernels

G0(x) =
1

4π|x|
, G1(x) =

1

4π
.

Remark 3.1.2. The expansion is also valid in B(L2
−s, L

2
−s) where L2

−s is
the weighted L2 space with norm

‖u‖L2
−s

= ‖(1 + |x|2)−s/2u‖L2 .

Remark 3.1.3. Since our potential only has decay |V (x)| . 〈x〉−4 our
expansion has one less term than in [47] and we use 3/2 < s < 5/2 rather
than 5/2 < s < 7/2.

The following is a reformulation of Lemma 3.1.1 but using higher Lp

spaces rather than weighted spaces. This reformulation was also used in
[44].

Lemma 3.1.4. Take 3 < r ≤ ∞ and λ > 0 small. Then

‖(1 +R0(−λ2)V )−1f‖Lr .
1

λ
‖f‖Lr .

If we also have 〈V ψ, f〉 = 0 then

‖(1 +R0(−λ2)V )−1f‖Lr . ‖f‖Lr

and

‖(1 +R0(−λ2)V )−1f − Q̄(1 +G0V )−1P̄ f‖Lr

.

{
λ1−3/r, 3 < r <∞
λ log(1/λ), r =∞

}
‖f‖Lr (3.11)

where

P :=
1∫
V ψ2

〈V ψ, ·〉ψ, P̄ = 1− P

Q :=
1∫
V ψ
〈V, ·〉ψ, Q̄ = 1−Q

(3.12)

Proof. We start with the identity

g := (1 +R0(−λ2)V )−1f = f −R0(−λ2)V (1 +R0(−λ2)V )−1f

= f −R0(−λ2)V g

43



3.1. Construction of Solitary Wave Profiles

so

‖g‖Lr . ‖f‖Lr + ‖R0(−λ2)V g‖Lr .

We treat the above second term in two cases. For 3 < r < ∞ let 1/q =
1/r + 2/3 and use (3.8) and for r =∞ use (3.9)

‖R0(−λ2)V g‖Lr .
{
‖V g‖Lq , 3 < r <∞
‖V g‖

L3/2−∩L3/2+ , r =∞

.

{
‖V 〈x〉2‖Lm‖g‖L2

−2
, 3 < r <∞

‖V 〈x〉2‖
L6−∩L6+‖g‖L2

−2
, r =∞

. ‖g‖L2
−2
.

Here we used that |V (x)| . 〈x〉−4, and with 1/q = 1/m + 1/2 we have
(4 − 2)m > 3. Finally we appeal to Lemma 3.1.1 and use the fact that
Lr ⊂ L2

−2 to see

‖R0(−λ2)V g‖Lr . ‖(1 +R0(−λ2)V )−1f‖L2
−2
.

1

λ
‖f‖L2

−2
.

1

λ
‖f‖Lr

where we can remove the factor of 1/λ if our orthogonality condition is
satisfied.

In light of (3.10),

1 +G0V : Lr ∩ V ⊥ → Lr ∩ (V ψ)⊥

is bijective, and so we treat the operator (1 +G0V )−1 as acting

(1 +G0V )−1 : Lr ∩ (V ψ)⊥ → Lr ∩ V ⊥,

which is the meaning of the expression Q̄(1+G0V )−1P̄ involving the projec-
tions P̄ and Q̄. That the range should be taken to be V ⊥ is a consequence
of estimate (3.14) below.

To prove (3.11), expand

R0(−λ2) = G0 − λG1 + λ2R̃,

R̃ :=
1

λ2

(
R0(−λ2)−G0 + λG1

)
=

1

λ

(
e−λ|x| − 1 + λ|x|

4πλ|x|

)
∗
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and consider f ∈ (V ψ)⊥ ∩ Lr with 3 < r ≤ ∞. We first establish the
estimates

‖h‖Lq .

{
1, 1 < q <∞
log(1/λ), q = 1

, h := V R̃V ψ, (3.13)

|〈V, (1 +R0(−λ2)V )−1f〉| .
{

λ, 3 < r <∞
λ log(1/λ), r =∞

}
‖f‖Lr . (3.14)

For the purpose of these estimates we may make the following replacements:
V ψ → 〈x〉−5, V → 〈x〉−4, and R̃(x)→ min(|x|, 1/λ). To establish (3.13) we
must therefore estimate

〈x〉−4

∫
R3

min(|y|, 1/λ)〈y − x〉−5dy,

and we proceed in two parts:

• Take |y| ≤ 2|x|. Then

〈x〉−4

∫
|y|≤2|x|

min(|y|, 1/λ)〈y − x〉−5dy

. 〈x〉−4 min(|x|, 1/λ)

∫
〈y − x〉−5dy

. 〈x〉−4 min(|x|, 1/λ)

and

‖〈x〉−4 min(|x|, 1/λ)‖qLq

.
∫ 1

0
rq+2dr +

∫ 1/λ

1
r−3q+2dr +

1

λ

∫ ∞
1/λ

r−4q+2dr

. 1 +

{
1, q > 1

log(1/λ), q = 1

}
+ λ4(q−1)

.

{
1, q > 1

log(1/λ), q = 1
.

• Take |y| ≥ 2|x|. Then

〈x〉−4

∫
|y|≥2|x|

min(|y|, 1/λ)〈y − x〉−5dy . 〈x〉−4

∫
|y|〈y〉−5dy

. 〈x〉−4

and

‖〈x〉−4‖Lq . 1.
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With (3.13) established we now prove (3.14). Let g = (1+R0(−λ2)V )−1f
and observe

0 =
1

λ
〈V ψ, f〉

=
1

λ
〈V ψ, (1 +R0(−λ2)V )g〉

=
1

λ
〈(1 + V R0(−λ2))(V ψ), g〉

=
1

λ
〈(1 + V (G0 − λG1 + λ2R̃))(V ψ), g〉

= 〈(−V G1 + λV R̃)(V ψ), g〉

= − 1√
4π
〈V, g〉+ λ〈h, g〉

noting that (1 + V G0)(V ψ) = 0. Now

|〈V, g〉| . λ‖h‖Lr′‖g‖Lr . λ
{

1, 3 < r <∞
log(1/λ), r =∞

}
‖f‖Lr

applying (3.13).
With (3.14) in place we finish the argument. For f ∈ Lr ∩ (V ψ)⊥ we

write

g = (1 +R0(−λ2)V )−1f and g0 = (1 +G0V )−1f.

We have

0 = (1 +R0(−λ2)V )g − (1 +G0V )g0

and so

(1 +G0V )(g − g0) = −R̂V g

where R̂ = R0(−λ2) − G0. The above also implies R̂V g ⊥ V ψ. We invert
to see

g − g0 = −(1 +G0V )−1R̂V g + αψ

noting that ψ ∈ ker(1 +G0V ). Take now inner product with V to see

α〈V, ψ〉 = 〈V, g〉
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and so

|α| . |〈V, g〉| .
{

λ, 3 < r <∞
λ log(1/λ), r =∞

}
‖f‖Lr

observing (3.14). It remains to estimate (1 +G0V )−1R̂V g. We note that

R̂ =

(
e−λ|x| − 1

4π|x|

)
∗

and so for estimates we may replace R̂(x) with min(λ, 1/|x|). There follows
by Young’s inequality

‖(1 +G0V )−1R̂V g‖Lr . ‖R̂V g‖Lr
. ‖min(λ, 1/|x|)‖Lr‖V g‖L1

. ‖min(λ, 1/|x|)‖Lr‖g‖Lr

. λ1−3/r‖f‖Lr .

And so after putting everything together we obtain (3.11).

We end this section by recording pointwise estimates of the nonlinear
terms

N(η) = (W + η)5 −W 5 − 5W 4η + ε (f(W + η)− f(W )) .

Bound the first three terms as follows:

|(W + η)5 −W 5 − 5W 4η| .W 3η2 + |η|5.

For the other term we use the Fundamental Theorem of Calculus and As-
sumption 1.7.1 to see

|f(W + η)− f(W )| =
∣∣∣∣∫ 1

0
∂δf(W + δη)dδ

∣∣∣∣
=

∣∣∣∣∫ 1

0
f ′(W + δη)ηdδ

∣∣∣∣
. |η| sup

0<δ<1

(
|W + δη|p1−1 + |W + δη|p2−1

)
. |η|

(
W p1−1 + |η|p1−1 +W p2−1 + |η|p2−1

)
. |η|

(
W p1−1 +W p2−1

)
+ |η|p1 + |η|p2
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and so together we have

|N(η)| .W 3η2 + |η|5 + ε|η|
(
W p1−1 +W p2−1

)
+ ε|η|p1 + ε|η|p2 . (3.15)

Similarly

|f(W + η1)− f(W + η2)|
. |η1 − η2|

(
W p1−1 + |η1|p1−1 + |η2|p1−1 +W p2−1 + |η1|p2−1 + |η2|p2−1

)
and so

|N(η1)−N(η2)| . |η1 − η2|(|η1|+ |η2|)W 3 + |η1 − η2|(|η1|4 + |η2|4)

+ ε|η1 − η2|
(
W p1−1 +W p2−1

)
+ ε|η1 − η2|

(
|η1|p1−1 + |η2|p1−1 + |η1|p2−1 + |η2|p2−1

)
.

(3.16)

3.1.3 Solving for the Frequency

We are now in a position to construct solutions to (1.11) and so prove
Theorem 1.7.2. The proof proceeds in two steps. In the present section, we
will solve for λ in (3.3) for a given small η. Then in the following Section 3.4,
we will treat λ as a function of η and solve (3.4). Both steps involve fixed
point arguments.

We begin by computing the inner product (3.3). Write

0 = 〈R0(−λ2)V ψ,F〉 = 〈R0(−λ2)V ψ,−λ2W + εf(W ) +N(η)〉

so that

λ · λ〈R0(−λ2)V ψ,W 〉 = ε〈R0(−λ2)V ψ, f(W )〉+ 〈R0(−λ2)V ψ,N(η)〉.
(3.17)

It is our intention to find a solution λ of (3.17) of the appropriate size. This
is done in Lemma 3.1.6 but we first make some estimates on the leading
order inner products appearing above.

Lemma 3.1.5. We have the estimates

〈R0(−λ2)V ψ, f(W )〉 = −〈ψ, f(W )〉+O(λδ1) (3.18)

λ〈R0(−λ2)V ψ,W 〉 = 2
√

3π +O(λ) (3.19)

where δ1 is defined in the statement of Theorem 1.7.2.
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Proof. Firstly

〈R0(−λ2)V ψ, f(W )〉 = 〈G0V ψ, f(W )〉+ 〈(R0(−λ2)−R0(0))V ψ, f(W )〉

First note that since Hψ = 0 we have V ψ = −(−∆ψ) so

〈G0V ψ, f(W )〉 = 〈−(−∆)−1(−∆ψ), f(W )〉 = −〈ψ, f(W )〉.

Note that this inner product is finite. For the other term use the resolvent
identity R0(−λ2)−R0(0) = −λ2R0(−λ2)R0(0) to see

〈(R0(−λ2)−R0(0))V ψ, f(W )〉 = λ2〈R0(−λ2)ψ, f(W )〉.

Observe now that

λ2|〈R0(−λ2)ψ, f(W )〉| ≤ λ2‖R0(−λ2)ψ‖Lr‖f(W )‖Lr∗

where 1/r + 1/r∗ = 1. Choose an r∗ > 1 with 3/p1 < r∗ < 3/2. In this way
f(W ) ∈ Lr∗ observing Assumption 1.7.1. We now apply (3.7) with q = 3
noting that 3 < r <∞. Hence

λ2|〈R0(−λ2)ψ, f(W )〉| . λ2 · λ3(1/3−1/r)−2‖ψ‖L3
w
‖f(W )‖Lr∗

. λ1−3/r.

If p1 ≥ 3 we can take r as large as we like. Otherwise we must take 3 < r <
3/(3−p1) and so 1−3/r can be made close to p1−2 (from below). We now
see (3.18).

Next on to (3.19). Note that this computation is taken from [44]. First
we isolate the troublesome part of W and write

W =

√
3

|x|
+ W̃ .

There is no problem with the second term since W̃ ∈ L6/5 and V ψ ∈ L6/5

so we can use (3.8) with q = 6/5 and r = 6 to see

λ|〈R0(−λ2)V ψ, W̃ 〉| . λ‖R0(−λ2)V ψ‖L6‖W̃‖L6/5

. λ‖V ψ‖L6/5‖W̃‖L6/5 (3.20)

. λ. (3.21)

Set g := V ψ and concentrate on

λ
√

3

〈
R0(−λ2)g,

1

|x|

〉
=

√
6

π
λ

〈
ĝ(ξ)

|ξ|2 + λ2
,

1

|ξ|2

〉
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where we work on the Fourier Transform side, using Plancherel’s theorem.
So √

6

π
λ

〈
ĝ(ξ)

|ξ|2 + λ2
,

1

|ξ|2

〉
=

√
6

π
λ ĝ(0)

〈
1

|ξ|2 + λ2
,

1

|ξ|2

〉
+

√
6

π
λ

〈
ĝ(ξ)− ĝ(0)

|ξ|2 + λ2
,

1

|ξ|2

〉
where the first term is the leading order. We invert the Fourier Transform
and note that ĝ(0) = (2π)−

3
2

∫
g to see√

6

π
λ ĝ(0)

〈
1

|ξ|2 + λ2
,

1

|ξ|2

〉
=
√

3

(∫
g

)
λ

〈
e−λ|x|

4π|x|
,

1

|x|

〉

=
√

3

∫
g = 2

√
3π.

We now must bound the remainder term. It is easy for the high frequencies∫
|ξ|≥1

|ĝ(ξ)− ĝ(0)|
|ξ|2(|ξ|2 + λ2)

dξ . ‖ĝ‖L∞
∫
|ξ|≥1

dξ

|ξ|4
. ‖g‖L1 . 1.

For the low frequencies note that since |x|g ∈ L1 we have that ∇ĝ is contin-
uous and bounded. In light of this set

h(ξ) := φ(ξ) (ĝ(ξ)− ĝ(0)−∇ĝ(0) · ξ)

where φ is a smooth, compactly supported cutoff function with φ = 1 on
|ξ| ≤ 1. Now since ∫

|ξ|≤1

ξ

|ξ|2(|ξ|2 + λ2)
dξ = 0

we have ∫
|ξ|≤1

ĝ(ξ)− ĝ(0)

|ξ|2(|ξ|2 + λ2)
dξ =

∫
|ξ|≤1

h(ξ)

|ξ|2(|ξ|2 + λ2)
dξ

and so bound this integral instead. If we recall the form of g we see |g| .
〈x〉−5 and so (1+|x|1+α)g ∈ L1 for some α > 0. Therefore (1+|x|1+α)ȟ ∈ L1

and noting also that ∇h(0) = 0 we see |∇h(ξ)| . min(1, |ξ|α). The Mean
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Value Theorem along with h(0) = 0 then gives |h(ξ)| . min(1, |ξ|1+α). With
this bound established we consider two regions of the integral∫

|ξ|≤λ

|h(ξ)|
|ξ|2(|ξ|2 + λ2)

dξ .
∫
|ξ|≤λ

|ξ|
|ξ|2(|ξ|2 + λ2)

dξ

.
∫
|ζ|≤1

1

|ζ|(|ζ|2 + 1)
dζ . 1

and∫
λ≤|ξ|≤1

|h(ξ)|
|ξ|2(|ξ|2 + λ2)

dξ .
∫
λ≤|ξ|≤1

|ξ|1+α

|ξ|2(|ξ|2 + λ2)
dξ

. λα
∫

1≤|ζ|≤1/λ

|ζ|α−1

|ζ|2 + 1
dζ . λα · λ−α . 1.

Putting everything together gives (3.19).

With the above estimates in hand we turn our attention to solving (3.17).

Lemma 3.1.6. For any R > 0 there exists ε0 = ε0(R) > 0 such that for
0 < ε ≤ ε0 and given a fixed η ∈ L∞ with ‖η‖L∞ ≤ Rε the equation (3.17)
has a unique solution λ = λ(ε, η) satisfying ελ(1)/2 ≤ λ ≤ 3ελ(1)/2 where

λ(1) =
−〈ΛW, f(W )〉

6π
> 0. (3.22)

Moreover, we have the expansion

λ = λ(1)ε+ λ̃, λ̃ = O(ε1+δ1). (3.23)

Remark 3.1.7. Writing the resolvent as (3.5), and thus the subsequent
estimates (3.6)-(3.8), require λ > 0 and so it is essential that we have es-
tablished λ(1) > 0. This is the source of the sign condition in Assumption
1.7.1.

Proof. We first estimate the remainder term. Take ελ(1)/2 ≤ λ ≤ 3ελ(1)/2
and η with ‖η‖L∞ ≤ Rε. We establish the estimate

|〈R0(−λ2)V ψ,N(η)〉| . ε1+δ1 . (3.24)

We deal with each term in (3.15). Take j = 1, 2. We frequently apply (3.6),
(3.8) and Hölder:
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• |〈R0(−λ2)V ψ,W 3η2〉| . ‖R0(−λ2)V ψ‖L6‖W 3η2‖L6/5

. ‖V ψ‖L6/5‖η‖2L∞‖W 3‖L6/5

. ε2

• |〈R0(−λ2)V ψ, η5〉| . ‖R0(−λ2)V ψ‖L1‖η5‖L∞
. λ−2‖V ψ‖L1‖η‖5L∞
. ε3

• ε|〈R0(−λ2)V ψ, ηpj 〉| . ε‖R0(−λ2)V ψ‖L1‖ηpj‖L∞
. ελ−2‖V ψ‖L1‖η‖pjL∞
. ε · εpj−2

The term that remains requires two cases. First take pj > 3 then

ε|〈R0(−λ2)V ψ, ηW pj−1〉| . ε‖R0(−λ2)V ψ‖Lr‖ηW pj−1‖Lr∗

. ε‖V ψ‖Lq‖η‖L∞‖W pj−1‖Lr∗

. ε2

where we have used (3.8) for some r∗ < 3/2 and r > 3. Now if instead
2 < pj ≤ 3 we use (3.6) with r∗ = (3/(pj − 1))+ so 1− 1/r = ((pj − 1)/3)−

and

ε|〈R0(−λ2)V ψ, ηW pj−1〉| . ε‖R0(−λ2)V ψ‖Lr‖ηW pj−1‖Lr∗

. ελ3(1−1/r)−2‖V ψ‖L1‖η‖L∞‖W pj−1‖Lr∗

. ε · ε(pj−2)−

and so we establish (3.24).
With the estimates (3.18), (3.19), (3.24) in hand we show that a solution

to (3.17) of the desired size exists. For this write (3.17) as a fixed point
problem

λ = H(λ) :=
ε〈R0(−λ2)V ψ, f(W )〉+ 〈R0(−λ2)V ψ,N(η)〉

λ〈R0(−λ2)V ψ,W 〉
(3.25)

with the intention of applying Banach Fixed Point Theorem. We show that
for a fixed η with ‖η‖L∞ . ε the function H maps the interval ελ(1)/2 ≤
λ ≤ 3ελ(1)/2 to itself and that H is a contraction.

First note that −〈ψ, f(W )〉 > 0 by Assumption 1.7.1 and so after ob-
serving (3.18), (3.19), (3.24) we see that H(λ) > 0. Furthermore for ε small
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enough we have that ελ(1)/2 ≤ H(λ) ≤ 3ελ(1)/2 and so H maps this interval
to itself.

We next show that H is a contraction. Take ελ(1)/2 ≤ λ1, λ2 ≤ 3ελ(1)/2
and again keep η fixed with ‖η‖L∞ ≤ Rε. Write

H(λ) =
a(λ) + b(λ)

c(λ)

so that

|H(λ1)−H(λ2)| ≤ |a1||c2 − c1|+ |a1 − a2||c1|+ |b1||c2 − c1|+ |b1 − b2||c1|
|c1c2|

. |a1 − a2|+ |b1 − b2|+ ε|c1 − c2|

using (3.18), (3.19), (3.24). We treat each piece in turn.
First

|a1 − a2| = ε|〈
(
R0(−λ2

1)−R0(−λ2
2)
)
V ψ, f(W )〉|

= ε|λ2
1 − λ2

2||〈R0(−λ2
1)R0(−λ2

2)V ψ, f(W )〉|

by the resolvent identity. Continuing we see

|a1 − a2| . ε2|λ1 − λ2|‖R0(−λ2
1)R0(−λ2

2)V ψ‖Lr‖f(W )‖Lr∗

where 1/r + 1/r∗ = 1. Note that by Assumption 1.7.1 we have f(W ) ∈ Lr∗

for some 1 < r∗ < 3/2 so 3 < r <∞. Applying now (3.8) we get

|a1 − a2| . ε2|λ1 − λ2|‖R0(−λ2
2)V ψ‖Lq

with 3(1/q − 1/r) = 2 so 1 < q < 3/2. Now apply the bound (3.6)

|a1 − a2| . ε2|λ1 − λ2|λ3(1−1/q)−2‖V ψ‖L1

. ε3(1−1/q)|λ1 − λ2|

and note that 3(1− 1/q) > 0.
Next consider

|b1 − b2| = |〈R0(−λ2
1)V ψ,N(η)〉 − 〈R0(−λ2

2)V ψ,N(η)〉|.

Proceeding as in the previous argument and using (3.6) we see

|b1 − b2| . ε|λ1 − λ2|‖R0(−λ2
1)R0(−λ2

2)V ψ‖Lr‖N(η)‖Lr∗

. ε|λ1 − λ2|λ−2
1 ‖R0(−λ2

2)V ψ‖Lr‖N(η)‖Lr∗
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for 1/r + 1/r∗ = 1. We can estimate this term (using different r and r∗

for different portions of N(η)) using the computations leading to (3.24) to
achieve

|b1 − b1| . ε−1 · ε1+δ1 |λ1 − λ2| = εδ1 |λ1 − λ2|.

Lastly consider

ε|c1 − c2| = ε|λ1〈R0(−λ2
1)V ψ,W 〉 − λ2〈R0(−λ2

2)V ψ,W 〉|.

Again we write W =
√

3/|x|+W̃ where W̃ ∈ L6/5. The second term is easy.
We compute

ε|λ1〈R0(−λ2
1)V ψ, W̃ 〉 − λ2〈R0(−λ2

2)V ψ, W̃ 〉|
. ε|λ1 − λ2||〈R0(−λ2

1)V ψ, W̃ 〉|+ ε3|λ1 − λ2||〈R0(−λ2
1)R0(−λ2

2)V ψ, W̃ 〉|

. ε|λ1 − λ2|+ ε3λ−2
1 λ

3(1−1/6)−2
2 |λ1 − λ2|‖V ψ‖L1‖W̃‖L6/5

. ε|λ1 − λ2|

where we have used (3.21) once and (3.6) twice. For the harder term we
follow the computations which establish (3.19) and so work on the Fourier
Transform side

ελ1〈R0(−λ2
1)V ψ, 1/|x|〉 − ελ2〈R0(−λ2

2)V ψ, 1/|x|〉

= Cελ1

〈
ĝ(ξ)

|ξ|2 + λ2
1

,
1

|ξ|2

〉
− Cελ2

〈
ĝ(ξ)

|ξ|2 + λ2
2

,
1

|ξ|2

〉
= Cελ1

〈
ĝ(ξ)− ĝ(0)

|ξ|2 + λ2
1

,
1

|ξ|2

〉
− Cελ2

〈
ĝ(ξ)− ĝ(0)

|ξ|2 + λ2
2

,
1

|ξ|2

〉
= Cε(λ1 − λ2)

〈
ĝ(ξ)− ĝ(0)

|ξ|2 + λ2
1

,
1

|ξ|2

〉
+ Cελ2

〈
(ĝ(ξ)− ĝ(0))

(
1

|ξ|2 + λ2
1

− 1

|ξ|2 + λ2
2

)
,

1

|ξ|2

〉
where we have used the fact that

λ1

〈
ĝ(0)

|ξ|2 + λ2
1

,
1

|ξ|2

〉
= λ2

〈
ĝ(0)

|ξ|2 + λ2
2

,
1

|ξ|2

〉
.

Continuing as in the computations used to establish (3.19) , we bound

ε|λ1 − λ2|
∣∣∣∣〈 ĝ(ξ)− ĝ(0)

|ξ|2 + λ2
1

,
1

|ξ|2

〉∣∣∣∣ . ε|λ1 − λ2|
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and

ελ2

∣∣∣∣〈(ĝ(ξ)− ĝ(0))

(
1

|ξ|2 + λ2
1

− 1

|ξ|2 + λ2
2

)
,

1

|ξ|2

〉∣∣∣∣
. ελ2(λ1 + λ2)|λ1 − λ2|

∫
dξ

|ξ|(|ξ|2 + λ2
1)(|ξ|2 + λ2

2)

. ε|λ1 − λ2|
∫

dζ

|ζ|(|ζ|2 + 1)(|ζ|2 + λ2
2/λ

2
1)

. ε|λ1 − λ2|.

In this way we finally have

ε|c1 − c2| ≤ ε|λ1 − λ2|.

So, putting everything together we see that by taking ε sufficiently small,

|H(λ1)−H(λ2)| < κ|λ1 − λ2|

for some 0 < κ < 1, and hence H is a contraction. Therefore (3.25) has a
unique fixed point of the desired size.

To find the leading order λ(1) let λ take the form in (3.23), substitute
to (3.17) use estimates (3.18), (3.19), (3.24) and ignore higher order terms.
An inspection of the higher order terms gives the order of λ̃.

In this way we now think of λ as a function of η. We will also need the
following Lipshitz condition for what follows in Lemma 3.1.9.

Lemma 3.1.8. The λ generated via Lemma 3.1.6 is Lipshitz continuous in
η in the sense that

|λ1 − λ2| . εδ1‖η1 − η2‖L∞ .

Proof. Take η1 and η2 with ‖η1‖L∞ , ‖η2‖L∞ ≤ Rε. Let η1 and η2 give rise to
λ1 and λ2 respectively through Lemma 3.1.6. Consider now the difference

|λ1 − λ2| =
∣∣∣∣ε〈R0(−λ2

1)V ψ, f(W )〉+ 〈R0(−λ2
1)V ψ,N(η1)〉

λ1〈R0(−λ2
1)V ψ,W 〉

− ε〈R0(−λ2
2)V ψ, f(W )〉+ 〈R0(−λ2

2)V ψ,N(η2)〉
λ2〈R0(−λ2

2)V ψ,W 〉

∣∣∣∣
=:

∣∣∣∣a(λ1) + b(λ1, η1)

c(λ1)
− a(λ2) + b(λ2, η2)

c(λ2)

∣∣∣∣
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observing (3.25). Now we estimate

|λ1 − λ2| ≤
∣∣∣∣b(λ1, η1)− b(λ1, η2)

c(λ1)

∣∣∣∣+

∣∣∣∣a(λ1) + b(λ1, η2)

c(λ1)
− a(λ2) + b(λ2, η2)

c(λ2)

∣∣∣∣
≤C|〈R0(−λ2

1)V ψ,N(η1)−N(η2)〉|+ κ|λ1 − λ2|

for some 0 < κ < 1. The second term has been estimated using the com-
putations of Lemma 3.1.6 and taking ε small enough. Now we estimate
the first. Observing the terms in (3.16) we use the same procedure that
established (3.24) to obtain

|〈R0(−λ2
1)V ψ,N(η1)−N(η2)〉| . εδ1‖η1 − η2‖L∞ .

So together we now see

(1− κ)|λ1 − λ2| . εδ1‖η1 − η2‖L∞

which gives the desired result.

3.1.4 Solving for the Correction

We next solve (3.4), given that (3.3) holds. Recall the formulation of (3.4)
as the fixed-point equation

η = G(η, ε) = (H + λ2)−1F

where in light of Lemma 3.1.6, we take λ = λ(ε, η) and F = F(ε, λ(ε, η), η)
so that (3.3) holds.

Lemma 3.1.9. There exists R0 > 0 such that for any R ≥ R0, there is
ε1 = ε1(R) > 0 such that for each 0 < ε ≤ ε1, there exists a unique solution
η ∈ L∞ to (3.4) with ‖η‖L∞ ≤ Rε. Moreover, we have the expansion

η = εQ̄(1 +G0V )−1P̄
(
G0f(W )− λ(1)

√
3λR0(−λ2)|x|−1

)
+OL∞(ε1+δ1)

where P̄ and Q̄ are given in (3.12).

Proof. We proceed by means of Banach Fixed Point Theorem. We show
that G(η) maps a ball to itself and is a contraction. In this way we establish
a solution to η = G(η, ε, λ(ε, η)) in (3.4).

Let R > 0 (to be chosen) and take ε < ε0(R) as in Lemma 3.1.6. In this
way given η ∈ L∞ with ‖η‖L∞ ≤ Rε we can generate

λ = λ(ε, η) = λ(1)ε+ o(ε).
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We aim to take ε smaller still in order to run fixed point in the L∞ ball of
radius Rε.

Consider

‖G‖L∞ = ‖(1 +R0(−λ2)V )−1R0(−λ2)F‖L∞
. ‖R0(−λ2)F‖L∞

in light of Lemma 3.1.4 and since we have chosen λ to satisfy (3.3). Contin-
uing with

‖G‖L∞ . ‖R0(−λ2)
(
−λ2W + εf(W ) +N(η)

)
‖L∞

we treat each term separately. For the first term it is sufficient to replace
W with 1/|x| (otherwise we simply apply (3.9))

λ2‖R0(−λ2)W‖L∞ . λ
∥∥∥∥λR0(−λ2)

1

|x|

∥∥∥∥
L∞

. λ

∥∥∥∥∥λ
∫
e−λ|y|

|y|
1

|x− y|
dy

∥∥∥∥∥
L∞

. λ

∥∥∥∥∥
∫
e−|z|

|z|
1

|λx− z|
dz

∥∥∥∥∥
L∞

. λ

∥∥∥∥∥
(
e−|x|

|x|
∗ 1

|x|

)
(λx)

∥∥∥∥∥
L∞

. λ . ε.

Now for the second term use (3.9)

ε‖R0(−λ2)f(W )‖L∞ . ε‖f(W )‖
L3/2−∩L3/2+ . ε.

And for the higher order terms we employ (3.6) and (3.9)

• ‖R0(−λ2)(W 3η2)‖L∞ . ‖W 3η2‖
L3/2−∩L3/2+

. ‖W 3‖
L3/2−∩L3/2+‖η‖2L∞

. R2ε2

• ‖R0(−λ2)η5‖L∞ . λ−2‖η5‖L∞ . λ−2‖η‖5L∞ . R5ε3

• ε‖R0(−λ2)ηpj‖L∞ . ελ−2‖ηpj‖L∞
. ε−1‖η‖pjL∞
. Rpjεpj−1
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for j = 1, 2. The remaining remainder term again requires two cases. For
pj > 3 we use (3.9) to see

ε
∥∥R0(−λ2)

(
ηW pj−1

)∥∥
L∞
. ε‖ηW pj−1‖

L3/2−∩L3/2+

. ε‖η‖L∞‖W pj−1‖
L3/2−∩L3/2+

. Rε2

and for 2 < pj ≤ 3 we apply (3.6)

ε
∥∥R0(−λ2)

(
ηW pj−1

)∥∥
L∞
. ελ(pj−1)−−2‖η‖L∞‖W pj−1‖

L3/(pj−1)+

. Rε1+(pj−2)−

Collecting the above yields

‖G‖L∞ ≤ Cε
(

1 +R2ε+R5ε2 +Rp1εp1−2 +Rp2εp2−2 +Rε+Rε(p1−2)−
)

(3.26)

and so taking R0 = 2C, R ≥ R0, and then ε small enough so that Rε +
R4ε2 +Rp1−1εp1−2 +Rp2−1εp2−2 + ε+ ε(p1−2)− ≤ 1

2C , we arrive at

‖G‖L∞ ≤ Rε.

Hence G maps the ball of radius Rε in L∞ to itself.
Now we show that G is a contraction. Take η1 and η2 and let them give

rise to λ1 and λ2 respectively. Again ‖ηj‖L∞ ≤ Rε and denote F(ηj) by Fj ,
j = 1, 2. Consider

‖G(η1, ε)− G(η2, ε)‖L∞
= ‖(1 +R0(−λ2

1)V )−1R0(−λ2
1)F1 − (1 +R0(−λ2

2)V )−1R0(−λ2
2)F2‖L∞

≤ ‖(1 +R0(−λ2
1)V )−1

(
R0(−λ2

1)F1 −R0(−λ2
2)F2

)
‖L∞

+ ‖
(
(1 +R0(−λ2

1)V )−1 − (1 +R0(−λ2
2)V )−1

)
R0(−λ2

2)F2‖L∞
≤ ‖R0(−λ2

1)F1 −R0(−λ2
2)F2‖L∞

+ ‖
(
(1 +R0(−λ2

1)V )−1 − (1 +R0(−λ2
2)V )−1

)
R0(−λ2

2)F2‖L∞
≤ ‖R0(−λ2

1) (F1 −F2) ‖L∞ + ‖
(
R0(−λ2

1)−R0(−λ2
2)
)
F2‖L∞

+ ‖
(
(1 +R0(−λ2

1)V )−1 − (1 +R0(−λ2
2)V )−1

)
R0(−λ2

2)F2‖L∞
=: I + II + III

where we have applied Lemma 3.1.4, observing the orthogonality condition.
We treat each part in turn.
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3.1. Construction of Solitary Wave Profiles

Start with I. This computation is similar to those previous. We also
apply Lemma 3.1.8:

‖R0(−λ2
1) (F1 −F2) ‖L∞ = ‖R0(−λ2

1)
(
(λ2

2 − λ2
1)W +N(η1)−N(η2)

)
‖L∞

. |λ1 − λ2|+ εδ1‖η1 − η2‖L∞

. εδ1‖η1 − η2‖L∞ .

Part II is also similar to previous computations:

‖
(
R0(−λ2

1)−R0(−λ2
2)
)
F2‖L∞ = |λ2

1 − λ2
2|‖R0(−λ2

1)R0(−λ2
2)F2‖L∞

. |λ1 + λ2||λ1 − λ2|λ−2
1 ‖R0(−λ2

2)F2‖L∞
. ε1 · ε−2 · ε|λ1 − λ2|
. |λ1 − λ2|
. εδ1‖η1 − η2‖L∞ .

Part III is the hardest. First we find a common denominator

(1 +R0(−λ2
1)V )−1 − (1 +R0(−λ2

2)V )−1

= (1 +R0(−λ2
1)V )−1(1 +R0(−λ2

2)V )(1 +R0(−λ2
2)V )−1

− (1 +R0(−λ2
1)V )−1(1 +R0(−λ2

1)V )(1 +R0(−λ2
2)V )−1

= (1 +R0(−λ2
1)V )−1

(
R0(−λ2

2)V −R0(−λ2
1)V

)
(1 +R0(−λ2

2)V )−1

so that(
(1 +R0(−λ2

1)V )−1 − (1 +R0(−λ2
2)V )−1

)
R0(−λ2

2)F2 =

(1 +R0(−λ2
1)V )−1(R0(−λ2

2)V −R0(−λ2
1)V )(1 +R0(−λ2

2)V )−1R0(−λ2
2)F2

= (1 +R0(−λ2
1)V )−1

(
R0(−λ2

2)V −R0(−λ2
1)V

)
G(η2).

Now

III = ‖(1 +R0(−λ2
1)V )−1

(
R0(−λ2

2)V −R0(−λ2
1)V

)
G(η2)‖L∞

and here we just suffer the loss of one λ (Lemma 3.1.4) to achieve

III . λ−1
1 ‖

(
R0(−λ2

2)V −R0(−λ2
1)V

)
G(η2)‖L∞

. λ−1
1 |λ

2
2 − λ2

1|‖R0(−λ2
2)R0(−λ2

1)V G(η2)‖L∞

. λ−1
1 |λ2 + λ1||λ2 − λ1|λ−1/2

2 ‖R0(−λ2
1)V G(η2)‖L2

. ε−1 · ε1|λ2 − λ1|λ−1/2
2 λ

−1/2
1 ‖V G(η2)‖L1

. ε−1|λ2 − λ1|‖V ‖L1‖G(η2)‖L∞
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3.1. Construction of Solitary Wave Profiles

and using Lemma 3.1.8 and (3.26) we see

III . |λ1 − λ2| . εδ1‖η1 − η2‖L∞ .

Hence, by taking ε smaller still if needed, we have

‖G(η1, ε)− G(η2, ε)‖L∞ ≤ κ‖η1 − η2‖L∞

for some 0 < κ < 1 and so G is a contraction. Therefore, invoking the
Banach fixed-point theorem, we have established the existence of a unique
η, with ‖η‖L∞ ≤ Rε, satisfying (3.4).

To see the leading order observe the order of the terms appearing in the
previous computations as well as the following. First if p1 ≥ 3 then

ε‖
(
R0(−λ2)−G0

)
f(W )‖L∞ . ελ2‖R0(−λ2)G0f(W )‖L∞

. ελ2 · λ−1−‖G0f(W )‖
L3+

. ελ1−‖f(W )‖
L1+

. ε2−

and if instead 2 < p1 < 3 then take 3/q = (p1 − 2)− and

ε‖
(
R0(−λ2)−G0

)
f(W )‖L∞ . ελ2‖R0(−λ2)G0f(W )‖L∞

. ελ2 · λ3/q−2‖G0f(W )‖Lq

. ελ3/q‖f(W )‖
L(3/p1)

+

. ε1+(p1−2)− .

The lemma is now proved.

With the existence of η established we can improve the space in which
η lives.

Lemma 3.1.10. The η established in Lemma 3.1.9 is in Lr ∩ Ḣ1 for any
3 < r ≤ ∞. The function η also enjoys the bounds

‖η‖Lr . ε1−3/r

‖η‖Ḣ1 . ε1/2

for all 3 < r ≤ ∞. Furthermore we have the expansion

η = Q̄(1 +G0V )−1P̄R0(−λ2)(−λ2
√

3|x|−1) + η̃
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with

‖η̃‖Lr .

max

{{
ε1−, if 2 < p1 < 3 and r = 3/(p1 − 2)

ε, else

}
, εp1−2+1−3/r, ε2(1−3/r)

}
for 3 < r <∞ and where P̄ and Q̄ are given in (3.12).

Proof. The computations which produce (3.26) are sufficient to establish the
result with r =∞. Take 3 < r <∞ and consider:

‖η‖Lr . λ2‖R0(−λ2)W‖Lr + ε‖R0(−λ2)f(W )‖Lr + ‖R0(−λ2)N(η)‖Lr .

For the first term use (3.7)

λ2‖R0(−λ2)W‖Lr . λ2 · λ3(1/3−1/r)−2‖W‖L3
w
. ε1−3/r

to see the leading order contribution.
While the second term contributed to the leading order in Lemma 3.1.9

it is inferior to the first term when measured in Lr. We do however need
several cases. Suppose that 3 ≤ p1 < 5 or r > 3/(p1 − 2) and apply (3.8)
with 1/q = 1/r + 2/3

ε‖R0(−λ2)f(W )‖Lr . ε‖f(W )‖Lq . ε.

Note that under these conditions f(W ) ∈ Lq. Now suppose that 2 < p1 < 3
and r = 3/(p1 − 2) and apply (3.6) with q = (3/p1)+

ε‖R0(−λ2)f(W )‖Lr . ελ3(1/q−(p1−2)/3)−2‖f(W )‖Lq . ε1− .

And if 2 < p1 < 3 and 3 < r < 3/(p1 − 2) apply (3.7) with q = 3/p1

ε‖R0(−λ2)f(W )‖Lr . ελ3(p1/3−1/r)−2‖f(W )‖Lqw . ε
1−3/r+p1−2.

And thirdly the remaining terms. First use (3.8) where 1/q = 1/r+ 2/3
to see

‖R0(−λ2)(W 3η2)‖Lr . ‖W 3η2‖Lq . ‖W 3‖L3/2‖η‖Lr‖η‖L∞ . ε‖η‖Lr

and now use (3.6) with 1/q = 1/r to obtain

‖R0(−λ2)η5‖Lr . λ−2‖η5‖Lr . λ−2‖η‖Lr‖η‖4L∞ . ε2‖η‖Lr .
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and similarly for j = 1, 2

ε‖R0(−λ2)ηpj‖Lr . ελ−2‖ηpj‖Lr . ε−1‖η‖pj−1
L∞ ‖η‖Lr . ε

pj−2‖η‖Lr

noting that p2 − 2 ≥ p1 − 2 > 0. For the last remainder term we have two
cases. If pj > 3 then use (3.8) with 1/q = 1/r + 2/3

ε‖R0(−λ2)
(
ηW pj−1

)
‖Lr . ε‖ηW pj−1‖Lq . ε‖η‖Lr‖W pj−1‖L3/2 . ε‖η‖Lr .

If instead 2 < pj ≤ 3 then we need (3.7) with 1/q = (pj − 1)/3 so that

ε‖R0(−λ2)
(
ηW pj−1

)
‖Lr . ελ3(1/q−1/r)−2‖ηW pj−1‖Lqw
. ελp1−1−3/r−2‖η‖L∞‖W pj−1‖Lqw
. εpj−2ε1−3/r

So together we have

‖η‖Lr ≤ Cε1−3/r + κ‖η‖Lr

where κ may be chosen sufficiently small to yield the desired Lr bound for
3 < r < ∞. An inspection of the higher order terms gives the size of η̃.
We also must note Lemma 3.1.4. There are several competing terms which
determine the size of η̃ depending on p1 and r.

On to the Ḣ1 norm. We need the identity

η = (1 +R0(−λ2)V )−1R0(−λ2)F
= R0(−λ2)F −R0(−λ2)V (1 +R0(−λ2)V )−1R0(−λ2)F
= R0(−λ2)F −R0(−λ2)V η

so we have two parts

‖η‖Ḣ1 ≤ ‖R0(−λ2)F‖Ḣ1 + ‖R0(−λ2)V η‖Ḣ1 .

For the first

‖R0(−λ2)F‖Ḣ1 . λ2‖R0(−λ2)W‖Ḣ1 + ε‖R0(−λ2)f(W + η)‖Ḣ1

+ ‖R0(−λ2)
(
W 3η2 +W 2η3 +Wη4 + η5

)
‖Ḣ1

and

λ2‖R0(−λ2)W‖Ḣ1 . λ2‖R0(−λ2)∇W‖L2

. λ2 · λ1/2−2‖∇W‖
L
3/2
w

. ε1/2
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and

ε‖R0(−λ2)f(W + η)‖Ḣ1 . ε‖R0(−λ2)f ′(W + η)(∇W +∇η)‖L2

. ελ−1/2‖f ′(W + η)∇W‖L1

+ ελ1−‖f ′(W + η)∇η‖
L6/5−

. ε1/2‖f ′(W + η)‖
L3−‖∇W‖L3/2+

+ ε0+‖f ′(W + η)‖
L3−‖∇η‖L2

. ε1/2 + κ‖η‖Ḣ1

with κ small and

‖R0(−λ2)
(
W 3η2 +W 2η3 +Wη4 + η5

)
‖Ḣ1

. ‖R0(−λ2)η(∇Wf1 +∇ηf2)‖L2

where f1 and f2 are in L2 so

‖R0(−λ2)
(
W 3η2 +W 2η3 +Wη4 + η5

)
‖Ḣ1

. λ−1/2‖η‖L∞ (‖∇W‖L2‖f1‖L2 + ‖∇η‖L2‖f2‖L2)

. ε1/2 + κ‖η‖Ḣ1 .

For the second

‖R0(−λ2)V η‖Ḣ1 =

∥∥∥∥∥
(
∇e
−λ|x|

|x|

)
∗ (V η)

∥∥∥∥∥
L2

=
∥∥(λ2g(λx)

)
∗ (V η)

∥∥
L2

where g ∈ L3/2
w . So using weak Young’s we obtain

‖R0(−λ2)V η‖Ḣ1 . λ2‖g(λx)‖
L
3/2
w
‖V η‖L6/5

. λ2 · λ−2‖V ‖L3/2‖η‖L6

. ‖η‖L6

. ε1/2.

So putting everything together gives

‖η‖Ḣ1 ≤ C
(
ε1/2 + κ‖η‖Ḣ1

)
which gives the desired bound by taking κ sufficiently small.
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3.1. Construction of Solitary Wave Profiles

Combining Lemmas 3.1.6, 3.1.9, 3.1.10 and Remark 1.7.6 completes the
proof of Theorem 1.7.2.

At this point we demonstrate the following monotonicity result which
will be used in Section 3.2.

Lemma 3.1.11. Suppose that f(W ) = W p with 3 < p < 5. Take ε1 and ε2

with 0 < ε1 < ε2 < ε0. Let ε1 give rise to λ1 and η1 and let ε2 give rise to
λ2 and η2 via Theorem 1.7.2. We have

|(λ2 − λ1)− λ(1)(ε2 − ε1)| . o(1)|ε2 − ε1|. (3.27)

Proof. We first establish the estimate

|λ2 − λ1| ≤
(
λ(1) + o(1)

)
|ε2 − ε1| (3.28)

We write, as in Lemma 3.1.6 and Lemma 3.1.8

λ2 − λ1 =
a(ε2, λ2) + b(ε2, λ2, η2)

c(λ2)
− a(ε1, λ1) + b(ε1, λ1, η1)

c(λ1)

=
a(ε2, λ2)− a(ε1, λ2) + b(ε2, λ2, η2)− b(ε1, λ2, η2)

c(λ2)

+
a(ε1, λ2) + b(ε1, λ2, η2)

c(λ2)
− a(ε1, λ1) + b(ε1, λ1, η1)

c(λ1)
.

The second line, containing only ε1 and not ε2, has been dealt with in the
proof of Lemma 3.1.8 and so there follows

|λ2 − λ1| ≤
∣∣∣∣a(ε2, λ2)− a(ε1, λ2) + b(ε2, λ2, η2)− b(ε1, λ2, η2)

c(λ2)

∣∣∣∣
+ o(1)‖η2 − η1‖L∞ + o(1)|λ2 − λ1|

≤ |ε2 − ε1|
(
λ(1) + o(1)

)
+ o(1)‖η2 − η1‖L∞ + o(1)|λ2 − λ1|.

For the η’s we estimate

‖η2 − η1‖L∞ . o(1)‖η2 − η1‖L∞ + |λ2 − λ1|+ |ε2 − ε1|

appealing to Lemma 3.1.9. So putting everything together we have

|λ2 − λ1| ≤
(
λ(1) + o(1)

)
|ε2 − ε1|

establishing (3.28).
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Now we proceed to the more refined (3.27). Observing the computations
leading to (3.28) we have

|λ2 − λ1 − (ε2 − ε1)λ(1)| ≤
∣∣∣∣a(ε2, λ2)− a(ε1, λ2)

c(λ2)
− (ε2 − ε1)λ(1)

∣∣∣∣
+o(1)‖η2 − η1‖L∞ + o(1)|λ2 − λ1|.

By (3.28) the last two terms are of the correct size and so we focus on the
first. We have∣∣∣∣a(ε2, λ2)− a(ε1, λ2)

c(λ2)
− (ε2 − ε1)λ(1)

∣∣∣∣
=

∣∣∣∣(ε2 − ε1)

(
〈R0(−λ2

2)V ψ,W p〉
λ2〈R0(−λ2

2)V ψ,W 〉
− λ(1)

)∣∣∣∣
= o(1)|ε2 − ε1|

noting (3.18) and (3.19). And so, putting everything together we achieve

|λ2 − λ1 − (ε2 − ε1)λ(1)| . o(1)|ε2 − ε1|

as desired.

3.2 Variational Characterization

It is not clear from the construction that the solution Q is in any sense a
ground state solution. It is also not clear that the solution is positive. In
this section we first establish the existence of a ground state solution; one
that minimizes the action subject to a constraint. We then demonstrate
that this minimizer must be our constructed solution. In this way we prove
Theorem 1.7.7.

In this section we restrict our nonlinearity and take only f(Q) = |Q|p−1Q
with 3 < p < 5. Then the action is

Sε,ω(u) =
1

2
‖∇u‖2L2 −

1

6
‖u‖6L6 −

ε

p+ 1
‖u‖p+1

Lp+1 +
ω

2
‖u‖2L2 . (3.29)

We are interested in the constrained minimization problem

mε,ω := inf{Sε,ω(u) | u ∈ H1(R3) \ {0}, Kε(u) = 0} (3.30)

where

Kε(u) =
d

dµ
Sε,ω(Tµu)

∣∣∣∣
µ=1

= ‖∇u‖2L2 − ‖u‖6L6 −
3(p− 1)

2(p+ 1)
ε‖u‖p+1

Lp+1
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and (Tµu)(x) = µ3/2u(µx) is the L2 scaling operator. Note that for Qε =
W + η as constructed in Theorem 1.7.2 we have Kε(Qε) = 0 since any
solution to (1.11) will satisfy Kε(Q) = 0.

Before addressing the minimization problem we investigate the impli-
cations of our generated solution Qε with specified ε and corresponding
ω = ω(ε). In particular there is a scaling that generates for us additional
solutions to the equation

−∆Q−Q5 − ε|Q|p−1Q+ ωQ = 0 (3.31)

with 3 < p < 5.

Remark 3.2.1. For any 0 < ε̃ ≤ ε0, we have solutions to (3.31) given by

Qµ = µ1/2Qε̃(µ·)

with ε = µ(5−p)/2ε̃ and ω = µ2ω(ε̃). So for any ε > 0, we obtain the family
of solutions

{ Qµ | µ =
(ε
ε̃

) 2
5−p

, ε̃ ∈ (0, ε0] }

with

ω =
(ε
ε̃

) 4
5−p

ω(ε̃) ∈

[(
ε0

ε̃0

) 4
5−p

ω(ε̃0), ∞

)

since as ε̃ ↓ 0,
(
ε
ε̃

) 4
5−p ω(ε̃) ∼ ε̃

2(3−p)
5−p →∞.

We now address the minimization problem by first addressing the exis-
tence of a minimizer.

Lemma 3.2.2. Take 3 < p < 5. Let Q = Qε solving (3.31) with ω = ω(ε)
be as constructed in Theorem 1.7.2. There exists ε0 > 0 such that for 0 <
ε ≤ ε0 we have

Sε,ω(ε)(Qε) <
1

3
‖W‖6L6 = S0,0(W ).

It follows, see Proposition 2.1 of [1], which is in turn based on the ear-
lier [12], that the variational problem (3.30) with ω = ω(ε) admits a non-
negative, radially-symmetric minimizer, which moreover solves (3.31).
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Proof. We compute directly, ignoring higher order contributions. Using
(1.21) we write the action as

Sε,ω(Q) =
1

3

∫
Q6 +

p− 1

2(p+ 1)
ε

∫
|Q|p+1

=
1

3

∫
(W + η)6 +

p− 1

2(p+ 1)
ε

∫
|W + η|p+1.

Rearranging we have

Sε,ω(Q)− 1

3

∫
W 6 = 2

∫
W 5η +

p− 1

2(p+ 1)
ε

∫
W p+1 +O(ε2)

where the higher order terms are controlled for 3 < p < 5:

• ‖W 4η2‖L1 . ‖W 4‖L1‖η‖2L∞ . ε2

• ‖η6‖L1 . ‖η‖6L6 . ε3

• ε‖W pη‖L1 . ε‖W p‖L1‖η‖L∞ . ε2

• ε‖ηp+1‖L1 . ε‖η‖p+1
Lp+1 . εp−1.

We now compute

2

∫
W 5η = 2

〈
W 5, (H + λ2)−1

(
εW p − λ2W +N(η)

)〉
= 2

〈
W 5, (1 +R0(−λ2)V )−1P̄R0(−λ2)

(
εW p − λ2W +N(η)

)〉
where we have inserted the definition of η from (3.4) and so identify the two
leading order terms. There is no problem to also insert the projection P̄
from (3.12) since we have the orthogonality condition (3.3) by the way we
defined ε, λ, η.

We approximate in turn writing only R0 for R0(−λ2). In what follows
we use the operators (1 + V G0)−1 and (1 + V R0)−1. The former as acts on
the spaces

(1 + V G0)−1 : L1 ∩ (ΛW )⊥ → L1 ∩ (1)⊥

and the later has the expansion

(1 + V R0)−1 =
1

λ
〈ΛW, ·〉V ΛW +O(1)

67



3.2. Variational Characterization

in L1. We record here also the adjoint of P̄ :

P̄ ∗ = 1− P ∗, P ∗ =
〈ΛW, ·〉∫
V (ΛW )2

V ΛW.

To estimate the first term write

2ε〈W 5, (1 +R0V )−1P̄R0W
p〉 = 2ε〈(1 + V R0)−1W 5, P̄R0W

p〉
= 2ε〈(1 + V G0)−1W 5, P̄R0W

p〉+O(ε2).

The error is controlled with a resolvent identity:

ε
∣∣〈((1 + V R0)−1 − (1 + V G0)−1

)
W 5, P̄R0W

p
〉∣∣

= ε
∣∣〈(1 + V R0)−1V (G0 −R0)(1 + V G0)−1W 5, P̄R0W

p
〉∣∣

= ε
∣∣〈P̄ ∗(1 + V R0)−1V (G0 −R0)

(
−W 5/4 + V ΛW/2

)
, R0W

p
〉∣∣

. ε
∥∥P̄ ∗(1 + V R0)−1V (G0 −R0)

(
−W 5/4 + V ΛW/2

)∥∥
L1 ‖R0W

p‖L∞
. ε

∥∥V R̄ (−W 5/4 + V ΛW/2
)∥∥
L1 ‖W p‖

L3/2−∩L3/2+

. ελ

. ε2

where we have substituted G0 − R0 = λG1 + R̄, note that G1(−W 5/4 +
V ΛW/2) = 0 since (−W 5/4 + V ΛW/2) ⊥ 1, and have computed

∥∥V R̄ (−W 5/4 + V ΛW/2
)∥∥
L1 .

∫
〈x〉−1dx

∫
λ
|λy|
〈λy〉
〈x− y〉−5dy . λ.

Continuing, we have

2ε〈W 5, (1 +R0V )−1P̄R0W
p〉 = 2ε〈P̄ ∗(1 + V G0)−1W 5, R0W

p〉+O(ε2)

= −1

2
ε〈W 5, R0W

p〉+O(ε2)

= −1

2
ε〈R0W

5,W p〉+O(ε2)

= −1

2
ε〈G0W

5,W p〉+O(ε2)

= −1

2
ε〈W,W p〉+O(ε2)

= −1

2
ε

∫
W p+1 +O(ε2)
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3.2. Variational Characterization

where the other error term is bounded:

ε
∣∣〈(R0 −G0)W 5,W p〉

∣∣ . ελ2
∣∣〈R0G0W

5,W p〉
∣∣ . ελ2 |〈R0W,W

p〉| . ε2

observing the computations that produce (3.19).
For the second term we proceed in a similar manner

−2λ2〈W 5, (1 +R0V )−1P̄R0W 〉 =
1

2
λ2〈W 5, R0W 〉+O(ε2−)

=
1

2
λ
√

3

∫
W 5 +O(ε2−)

= 6πλ+O(ε2−)

= −ε〈ΛW,W p〉+O(ε2−)

= ε

(
3

p+ 1
− 1

2

)∫
W p+1 +O(ε2−)

again referring to (3.19) and also Remark 1.7.4. The error term coming from
the difference of the resolvents is similar. Note

λ2
∣∣〈((1 + V R0)−1 − (1 + V G0)−1

)
W 5, P̄R0W

〉∣∣
. λ2

∥∥P̄ ∗(1 + V R0)−1V (G0 −R0)
(
−W 5/4 + V ΛW/2

)∥∥
L1 ‖R0W‖L∞

. λ3 ‖R0W‖L∞

. λ3λ−1−‖W‖
L3+

. λ2−

. ε2− .

The term coming from N(η) is controlled similarly, and so, all together
we have

Sε,ω(Q)− 1

3

∫
W 6 =

(
3

p+ 1
− 1

2
− 1

2
+

p− 1

2(p+ 1)

)
ε

∫
W p+1 +O(ε2−)

= − p− 3

2(p+ 1)
ε

∫
W p+1 +O(ε2−)

which is negative for 3 < p < 5 and ε > 0 and small. We note that when
p = 3, this leading order term vanishes.

Lemma 3.2.3. Take 3 < p < 5. Denote by V = Vε a non-negative, radially-
symmetric minimizer for (3.30) with ω = ω(ε) (as established in Lemma
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3.2. Variational Characterization

3.2.2). Then for any εj → 0, Vεj is a minimizing sequence for the (unper-
turbed) variational problem

S0,0(W ) = min{S0,0(u) | u ∈ Ḣ1 \ {0}, K0(u) = 0} (3.32)

in the sense that

K0(Vεj )→ 0, lim sup
ε→0

S0,0(Vεj ) ≤ S0,0(W ).

Proof. Since

0 = Kε(V ) = K0(V )− 3(p− 1)

2(p+ 1)
ε

∫
V p+1,

and by Lemma 3.2.2,

S0,0(W ) > mε,ω(ε) = Sε,ω(ε)(V ) = S0,0(V )− 1

p+ 1
ε

∫
V p+1 +

1

2
ω

∫
V 2,

(3.33)
the lemma will be implied by the claim:

ε

∫
V p+1 → 0 as ε→ 0. (3.34)

To address the claim, first introduce the functional

Iε,ω(u) := Sε,ω(u)− 1

3
Kε(u)

=
1

6

∫
|∇u|2 +

1

6

∫
|u|6 +

p− 3

2(p+ 1)
ε

∫
|u|p+1 +

1

2
ω

∫
|u|2

and observe that since Kε(V ) = 0,

Iε,ω(ε)(V ) = Sε,ω(V ) < S0,0(W )

and so the following quantities are all bounded uniformly in ε:∫
|∇V |2,

∫
V 6, ε

∫
V p+1, ω

∫
V 2 . 1.

By interpolation

ε

∫
V p+1 ≤ ε‖V ‖(5−p)/2

L2 ‖V ‖3(p−1)/2
L6

. εω−(5−p)/4
(
ω

∫
V 2

)(5−p)/4
.
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3.2. Variational Characterization

So (3.34) holds, provided that ε4/(5−p) � ω. Since ω ∼ ε2, this indeed holds
for 3 < p < 5.

With the claim in hand we can finish the argument. The fact that
K0(V )→ 0 now follows from Kε(V ) = 0. Also, from Lemma 3.2.2 we know
that for ε ≥ 0

S0,0(V )− ε

p+ 1

∫
V p+1 ≤ Sε,ω(V ) ≤ S0,0(W )

and so lim supε→0 S0,0(V ) ≤ S0,0(W ).

Lemma 3.2.4. For a sequence εj ↓ 0, let V = Vεj be corresponding non-
negative, radially-symmetric minimizers of (3.30) with ω = ω(εj). There is
a subsequence εjk and a scaling µ = µk such that along the subsequence,

V µ = µ1/2V (µ·)→ νW

in Ḣ1 with ν = 1.

Proof. The result with ν = 1 or ν = 0 follows from the bubble decomposition
of Gérard [37] (see eg. the notes of Killip and Vişan [58], in particular The-
orem 4.7 and the proof of Theorem 4.4). Therefore we need only eliminate
the possibility that ν = 0.

If ν = 0 then
∫
|∇Vε|2 → 0 (along the given subsequence). Then by the

Sobolev inequality,

0 = Kε(Vε) = (1 + o(1))

∫
|∇Vε|2 −

3(p− 1)

2(p+ 1)
ε

∫
V p+1
ε ,

and so ∫
|∇Vε|2 . ε

∫
V p+1
ε .

However, we have already seen∫
|∇Vε|2 . ε

∫
V p+1
ε . εω−(5−p)/4

(
ω

∫
V 2
ε

)(5−p)/4(∫
|∇Vε|2

)3(p−1)/4

via interpolation and so(∫
|∇Vε|2

)(7−3p)/4

. εω−(5−p)/4
(
ω

∫
V 2
ε

)(5−p)/4
→ 0

as above. Note that (7 − 3p)/4 = −3(p − 7/3)/4 < 0. Hence ν = 0 is
impossible and so we conclude that ν = 1. The result follows.
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3.2. Variational Characterization

Remark 3.2.5. This lemma implies in particular that for V = Vε, ω = ω(ε),
S0,0(V ) = S0,0(V µ)→ S0,0(W ), and so by (3.33) and (3.34),

ω

∫
V 2 → 0.

Remark 3.2.6. Note that V µ is a minimizer of the minimization problem
(3.30), and a solution to (3.31), with ε and ω replaced with

ε̃ = µ
5−p
2 ε, ω̃ = µ2ω.

Under this scaling the following properties are preserved:

ε̃
4

5−p = µ2ε
4

5−p � µ2ω = ω̃

ε̃

∫
(V µ)p+1 = ε

∫
V p+1 → 0

ω̃

∫
(V µ)2 = ω

∫
V 2 → 0.

Moreover,
ε̃→ 0, ω̃ → 0,

the latter since otherwise ‖V µ‖L2 → 0 along some subsequence, contradicting
V µ →W 6∈ L2 in Ḣ1, and then the former by the first relation above.

Lemma 3.2.7. Let

V µ = W + η̃, ‖η̃‖Ḣ1 → 0, ε̃→ 0

be a sequence as provided by Lemma 3.2.4. There is a further scaling

ν = νε̃ = 1 + o(1)

so that

(V µ)ν = W ν + η̃ν =: W + η̂

retains ‖η̂‖Ḣ1 → 0, but also satisfies the orthogonality condition

0 = 〈R0(−ω̂)V ψ,F(ε̂, ω̂, η̂)〉 (3.35)

with the corresponding ε̂ = ν(5−p)/2ε̃ and ω̂ = ν2ω̃.
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3.2. Variational Characterization

Proof. We may rewrite the above inner-product as

〈R0(−ω̂)V ψ,F(ε̂, ω̂, η̂)〉 =
−5√

3
〈η̂, (H + ω̂)R0(−ω̂)W 4ΛW 〉

and observe from the resonance equation (1.18)

5R0(−ω̂)W 4ΛW = ΛW − ω̂R0(−ω̂)ΛW

and so

(H + ω̂)R0(−ω̂)W 4ΛW = (−∆ + ω̂ − 5W 4)R0(−ω̂)W 4ΛW

= (1− 5W 4R0(−ω̂))W 4ΛW = ω̂W 4R0(−ω̂)ΛW

so the desired orthogonality condition reads

0 =
1√
ω̂
〈η̂, (H + ω̂)R0(−ω̂)W 4ΛW 〉 =

√
ω̂〈W ν −W + η̃ν ,W 4R0(−ω̂)ΛW 〉.

Now since ΛW = d
dµW

µ|µ=1, by Taylor expansion

‖W ν −W − (ν − 1)ΛW‖L6 . (ν − 1)2,

and using (3.7)

‖W 4R0(−ω̂)ΛW‖
L

6
5
. ‖R0(−ω̂)ΛW‖L∞ .

1√
ω̂
,

we arrive at

0 = (ν − 1)
(√

ω̂〈ΛW, W 4R0(−ω̂)ΛW 〉
)

+O((ν − 1)2) +O(‖η̃ν‖L6)

Computations exactly as for (3.19) lead to

√
ω̂〈ΛW, W 4R0(−ω̂)ΛW 〉 =

6
√

3π

5
+O(

√
ω̂),

and so the desired orthogonality condition reads

0 = (ν − 1)(1 + o(1)) +O((ν − 1)2) +O(‖η̃ν‖L6)

which can therefore be solved for ν = 1 + o(1) using ‖η̃ν‖L6 = o(1).
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3.2. Variational Characterization

The functions
Wε̂ := (V µ)ν = W + η̂

produced by Lemma 3.2.7 solve the minimization problem (3.30), and the
PDE (3.31), with ε and ω replaced (respectively) by ε̂ → 0 and ω̂. Since
νε̃ = 1 + o(1), the properties

ε̂
4

5−p � ω̂ → 0, ε̂

∫
W p+1
ε̂ → 0, ω̂

∫
W 2
ε̂ → 0

persist.
It remains to show that that Vε̂ agrees with Qε̂ constructed in Theo-

rem 1.7.2. First:

Lemma 3.2.8. For 3 < r ≤ ∞, and ε̂ sufficiently small,

‖η̂‖Lr . ε̂+
√
ω̂

1− 3
r .

Proof. Since Wε̂ is a solution of (1.11), the remainder η̂ must satisfy (3.4).
So

‖η̂‖Lr = ‖(H + ω̂)−1 (−ω̂W + ε̂f(W ) +N(η̂)) ‖Lr

. ε̂+
√
ω̂

1− 3
r + ‖R0(−ω̂)N(η̂)‖Lr

using (3.35) and after observing the computations of Lemma 3.1.9. We now
establish the required bounds on the remainder, beginning with 3 < r <∞.
Let q ∈ (1, 3

2) satisfy 1
q −

1
r = 2

3 :

• ‖R0(−ω̂)ε̂W p−1η̂‖Lr . ε̂‖W p−1η̂‖Lq . ε̂‖W‖p−1

L
3
2 (p−1)

‖η̂‖Lr . ε̂‖η̂‖Lr

• ‖R0(−ω̂)ε̂η̂p‖Lr . ε̂ω̂−
5−p
4 ‖η̂p‖

L
6r

6+(p−1)r
. o(1)‖η̂‖p−1

L6 ‖η̂‖Lr
. o(1)‖η̂‖Lr

• ‖R0(−ω̂)W 3η̂5‖Lr . ‖W 3η̂2‖Lq . ‖W‖3L6‖η̂‖L6‖η̂‖Lr . o(1)‖η̂‖Lr

• ‖R0(−ω̂)η̂5‖Lr . ‖η̂5‖Lq . ‖η̂‖4L6‖η̂‖Lr . o(1)‖η̂‖Lr

where in the second inequality we used ω̂ � ε̂4/(5−p). Combining, we have
achieved

‖η̂‖Lr . ε̂+
√
ω̂

1− 3
r + o(1)‖η̂‖Lr

and so obtain the desired estimate for 3 < r < ∞. It remains to deal with
r = ∞. The first three estimates proceed similarly, while the last one uses
the now-established Lr estimate:
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3.2. Variational Characterization

• ‖R0(−ω̂)ε̂W p−1η̂‖L∞ . ε̂‖W p−1η̂‖
L

3
2−∩L

3
2+

. ε̂‖W‖p−1

L
3
2 (p−1)−∩L

3
2 (p−1)+

‖η̂‖L∞ . ε̂‖η̂‖L∞

• ‖R0(−ω̂)ε̂η̂p‖L∞ . ε̂ω̂−
5−p
4 ‖η̂p‖

L
6
p−1
. o(1)‖η̂‖p−1

L6 ‖η̂‖L∞
. o(1)‖η̂‖L∞

• ‖R0(−ω̂)W 3η̂5‖L∞ . ‖W 3η̂2‖
L

3
2−∩L

3
2+ . ‖W‖3L6−∩L6+‖η̂‖L6‖η̂‖L∞

. o(1)‖η̂‖L∞

• ‖R0(−ω̂)η̂5‖L∞ . ‖η̂5‖
L

3
2−∩L

3
2+ . ‖η̂‖4L6−∩L6+‖η̂‖L∞

. (ε̂+ ω̂
1
4
−)4‖η̂‖L∞ . o(1)‖η̂‖L∞

which, combined, establish the desired estimate with r =∞. Strictly speak-
ing, these are a priori estimates, since we do not know η̂ ∈ Lr for r > 6 to
begin with. However, the typical argument of performing the estimates on
a series of smooth functions that approximate η remedies this after passing
to the limit.

Lemma 3.2.9. Write ω̂ = λ̂2. For ε̂ sufficiently small, ‖η̂‖L∞ . ε̂, and
λ̂ = λ(ε̂, η̂) as given in Lemma 3.1.6. Moreover, Wε̂ = W + η̂ = Qε̂.

Proof. From the orthogonality equation (3.35),

0 = 〈R0(−λ̂2)V ψ,−λ̂2W + ε̂W p +N(η̂)〉
= −λ̂ · λ̂〈R0(−λ̂2)V ψ,W 〉+ ε̂〈R0(−λ̂2)V ψ,W p〉+ 〈R0(−λ̂2)V ψ,N(η̂)〉.

Now re-using estimates (3.18) and (3.19), as well as

• |〈R0(−λ̂2)V ψ,W 3η̂2〉| . ‖R0(−λ̂2)V ψ‖L6‖W 3η̂2‖L6/5

. ‖V ψ‖L6/5‖η̂‖2L∞‖W 3‖L6/5 . ‖η̂‖2L∞

• |〈R0(−λ̂2)V ψ, η̂5〉| . ‖R0(−λ̂2)V ψ‖L6‖η̂5‖
L

6
5

. ‖V ψ‖
L

6
5
‖η̂‖5L6 . ‖η̂‖5L6

• |〈R0(−λ̂2)V ψ, ε̂η̂p〉| . ε̂‖R0(−λ̂2)V ψ‖L6‖η̂p‖
L

6
5

. ε̂‖V ψ‖
L

6
5
‖η̂‖p

L
6
5 p
. ε̂ · ‖η̂‖p

L
6
5 p

• |〈R0(−λ̂2)V ψ, ε̂W p−1η̂〉| . ε̂‖R0(−λ̂2)V ψ‖L6‖W p−1η̂‖
L

6
5

. ε̂‖V ψ‖
L

6
5
‖W p−1‖

L
3
2
‖η̂‖L6 . ε̂‖η̂‖L6 ,
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combined with Lemma 3.2.8, yields

(λ̂− λ(1)ε̂)(1 +O(λ̂1−)) = O(λ̂2 + ε̂2 + ε̂λ̂
1
2 )

from which follows
λ̂− λ(1)ε̂� ε̂,

and then by Lemma 3.2.8 again,

‖η̂‖Lr . ε̂1− 3
r , 3 < r ≤ ∞.

It now follows from Lemma 3.1.6 that λ̂ = λ(ε̂, η̂) for ε̂ small enough.
Finally, the uniqueness of the fixed-point in the L∞-ball of radius Rε̂

from Lemma 3.1.9 implies that Wε̂ = Qε̂, where Qε̂ is the solution con-
structed in Theorem 1.7.2.

We have so far established that, up to subsequence, and rescaling, a
sequence of minimizers Vεj eventually coincides with a solution Qε as con-

structed in Theorem 1.7.2: ξ
1/2
j Vεj (ξj ·) = Qε̂j (here ξj = νjµj). It remains

to remove the scaling ξj and establish that ε̂j = εj :

Lemma 3.2.10. Suppose V (x) = ξ−
1
2Qε̂(x/ξ) solves (3.31) with ω = ω(ε)

(as given in Theorem 1.7.2), where ε̂ = ξ(5−p)/2ε, ω̂ = ξ2ω, and ω̂ = ω(ε̂).
Then ξ = 1 and ε̂ = ε, and so V = Qε.

Proof. By assumption ω̂ = ξ2ω(ε) = ω(ε̂), so

ω(ε) = Ωε(ε̂), Ωε(ε̂) :=
(ε
ε̂

)4/(5−p)
ω(ε̂).

This relation is satisfied if ε̂ = ε (ξ = 1), and our goal is to show it is not
satisfied for any other value of ε̂. Thus we will be done if we can show
that Ωε is monotone in ε̂. Take ε1 and ε2 with 0 < ε1 < ε2 ≤ ε0. Let
α = 4/(5− p) > 2 and assume that 0 < ε2 − ε1 � ε1. Denoting ω(εj) = λ2

j ,
we estimate:

ε−α (Ωε(ε2)− Ωε(ε1)) = ε−α2 λ2
2 − ε−α1 λ2

1

= ε−α2 (λ2 − λ1)(λ2 + λ1) + λ2
1

(
ε−α2 − ε−α1

)
≈ ε−α1 λ(1)(ε2 − ε1) · 2λ(1)ε1

+ ε2
1(λ(1))2ε−α1

(
− α
ε1

(ε2 − ε1) +O

((
ε2 − ε1

ε1

)2
))

≈ ε1−α
1 (λ(1))2(ε2 − ε1) (2− α)

< 0
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where we have used Lemma 3.27. With the monotonicity argument complete
we conclude that ε = ε̂ and ξ = 1 so there follows V = Qε.

The remaining lemma completes the proof of Theorem 1.7.7:

Lemma 3.2.11. There is ε0 > 0 such that for 0 < ε ≤ ε0 and ω = ω(ε), the
solution Qε of (3.31) constructed in Theorem 1.7.2 is the unique positive,
radially symmetric solution of the minimization problem (3.30).

Proof. This is the culmination of the previous series of Lemmas. We know
that minimizers V = Vε exist by Lemma 3.2.2. Arguing by contradiction, if
the statement is false, there is a sequence Vεj , εj → 0, of such minimizers,
for which Vεj 6= Qεj . We apply Lemmas 3.2.3, 3.2.4, 3.2.7, 3.2.8 and 3.2.10
in succession to this sequence, to conclude that along a subsequence, Vεj
and Qεj eventually agree, a contradiction.

Finally, for a given ε, we establish a range of ω for which a minimizer
exists and is, up to scaling, a constructed solution. This addresses Remark
1.7.9.

Corollary 3.2.12. Fix ε > 0 and take ω ∈ [ω,∞) where

ω = ε4/(5−p)ε
−4/(5−p)
0 ω(ε0) ≤ ω(ε).

The minimization problem (3.30) with ε and ω has a solution Q given by

Q(x) = µ1/2Qε̂(µx)

where Qε̂ is a constructed solution with 0 < ε̂ ≤ ε0 and corresponding ω(ε̂).
The scaling factor, µ, satisfies the relationships

ε = ε̂µ(5−p)/2, ω = ω(ε̂)µ2.

Proof. Fix ε > 0. Take any 0 < ε̂ ≤ ε0 and corresponding constructed ω(ε̂)
and constructed solution Qε̂. Then, for scaling µ = (ε/ε̂)2/(5−p) the function

Q(x) = µ1/2Qε̂(µx)

is a solution to the elliptic problem (3.31) with ε and ω = ω(ε̂)µ2. Recall
from Lemma 3.2.10 that ω(ε̂)µ2 is monotone in ε̂. Taking ε̂ ↓ 0 yields
ω →∞. Setting ε̂ = ε0 yields ω = ω.

In other words if we fix ε and ω ∈ [ω,∞) from the start we determine
an ε̂ and µ that generate the desired Q. We claim that the function Q(x)
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3.3. Dynamics Below the Ground States

is a minimizer of the problem (3.30) with ε and ω. Suppose not. That
is, suppose there exists a function 0 6= v ∈ H1 with Kε(v) = 0 such that
Sε,ω(v) < Sε,ω(Q). Set w(x) = µ−1/2v(µ−1x) and note that 0 = Kε(v) =
Kε̂(w). We now see

Sε̂,ω(ε̂)(w) = Sε,ω(v) < Sε,ω(Q) = Sε̂,ω(ε̂)(Qε̂)

which contradicts the fact that Qε̂ is a minimizer of the problem (3.30) with
ε̂ and ω(ε̂). Therefore, Q(x) is a minimizer of (3.30) with ε and ω, which
concludes the proof.

3.3 Dynamics Below the Ground States

In this final section we establish Theorem 1.7.10, the scattering/blow-up
dichotomy for the perturbed critical NLS (2.1).

We begin by summarizing the local existence theory for (2.1). This is
based on the classical Strichartz estimates for the solutions of the homoge-
neous linear Schrödinger equation

i∂tu = −∆u, u|t=0 = φ ∈ L2(R3) =⇒ u(x, t) = eit∆φ ∈ C(R, L2(R3))

and the inhomogeneous linear Schrödinger equation (with zero initial data)

i∂tu = −∆u+ f(x, t), u|t=0 = 0 =⇒ u(x, t) = −i
∫ t

0
ei(t−s)∆f(·, s)ds :

‖eit∆φ‖S(R) ≤ C‖φ‖L2(R3),

∥∥∥∥∫ t

0
ei(t−s)∆f(·, s)ds

∥∥∥∥
S(I)

≤ C‖f‖N(I),

(3.36)
where we have introduced certain Lebesgue norms for space-time functions
f(x, t) on a time interval t ∈ I ⊂ R:

‖f‖LrtLqx(I) =
∥∥‖f(·, t)‖Lq(R3)

∥∥
Lr(I)

,

‖f‖S(I) := ‖f‖L∞t L2
x(I)∩L2

tL
6
x(I), ‖f‖N(I) := ‖f‖

L1
tL

2
x(I)+L2

tL
6
5
x (I)

,

together with the integral (Duhamel) reformulation of the Cauchy prob-
lem (2.1):

u(x, t) = eit∆u0 + i

∫ t

0
ei(t−s)∆(|u|4u+ ε|u|p−1u)ds
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3.3. Dynamics Below the Ground States

which in particular gives the sense in which we consider u(x, t) to be a
solution of (2.1). This lemma summarizing the local theory is standard
(see, for example [15, 56]):

Lemma 3.3.1. Let 3 ≤ p < 5, ε > 0. Given u0 ∈ H1(R3), there is a unique
solution u ∈ C((−Tmin, Tmax);H1(R3)) of (2.1) on a maximal time interval
Imax = (−Tmin, Tmax) 3 0. Moreover:

1. space-time norms: u,∇u ∈ S(I) for each compact time interval I ⊂
Imax;

2. blow-up criterion: if Tmax < ∞, then ‖u‖L10
t L

10
x ([0,Tmax)) = ∞ (with

similar statement for Tmin);

3. scattering: if Tmax = ∞ and ‖u‖L10
t L

10
x ([0,∞)) < ∞, then u scatters

(forward in time) to 0 in H1:

∃ φ+ ∈ H1(R3) s.t. ‖u(·, t)− eit∆φ+‖H1 → 0 as t→∞

(with similar statement for Tmin);

4. small data scattering: for ‖u0‖H1 sufficiently small, Imax = R, ‖u‖L10
t L

10
x (R) .

‖∇u0‖L2, and u scatters (in both time directions).

Remark 3.3.2. The appearance here of the L10
t L

10
x space-time norm is nat-

ural in light of the Strichartz estimates (3.36). Indeed, interpolation between
L∞t L

2
x and L2

tL
6 shows that

‖eit∆φ‖LrtLqx(R) . ‖φ‖L2 ,
2

r
+

3

q
=

3

2
, 2 ≤ r ≤ ∞

(such an exponent pair (r, q) is called admissible), so then if ∇φ ∈ L2, by a
Sobolev inequality,

‖eit∆φ‖L10
x
. ‖∇eit∆φ‖

L
30
13
x

∈ L10
t ,

since (r = 10, q = 30
13) is admissible.

The next lemma is a standard extension of the local theory called a
perturbation or stability result, which shows that any ‘approximate solution’
has an actual solution remaining close to it. In our setting (see [56, 78]):
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3.3. Dynamics Below the Ground States

Lemma 3.3.3. Let ũ : R3 × I → C be defined on time interval 0 ∈ I ⊂ R
with

‖ũ‖L∞t H1
x(I)∩L10

t L
10
x (I) ≤M,

and suppose u0 ∈ H1(R3) satisfies ‖u0‖L2 ≤M . There exists δ0 = δ0(M) >
0 such that if for any 0 < δ < δ0, ũ is an approximate solution of (2.1) in
the sense

‖∇e‖
L

10
7
t L

10
7
x (I)

≤ δ, e := i∂tũ+ ∆ũ+ |ũ|4ũ+ ε|ũ|p−1ũ,

with initial data close to u0 in the sense

‖∇ (ũ(·, 0)− u0) ‖L2 ≤ δ,

then the solution u of (2.1) with initial data u0 has Imax ⊃ I, and

‖∇ (u− ũ) ‖S(I) ≤ C(M)δ.

Remark 3.3.4. The space-time norm ∇e ∈ L
10
7
t L

10
7
x in which the error is

measured is natural in light of the Strichartz estimates (3.36), since L
10
7
t L

10
7
x

is the dual space of L
10
3
t L

10
3
x , and (10

3 ,
10
3 ) is an admissible exponent pair.

Given a local existence theory as above, an obvious next problem is to de-
termine if the solutions from particular initial data u0 are global (Imax = R),
or exhibit finite-time blow-up (Tmax < ∞ and/or Tmin < ∞). Theo-
rem 1.7.10 solves this problem for radially-symmetric initial data lying ‘be-
low the ground state’ level of the action: for any ε > 0, ω > 0, set

mε,ω := inf{Sε,ω(u) | u ∈ H1(R3) \ {0},Kε(u) = 0} (3.37)

(see (1.22) for expressions for the functionals Sε,ω and Kε), and note that
for ε� 1 and ω = ω(ε), by Theorem 1.7.7 we have mε,ω = Sε,ω(Qε). From
here on, we fix a choice of

ε > 0, ω > 0, p ∈ (3, 5)

(though some results discussed below extend to p ∈ (7
3 , 5)):

Theorem 3.3.5. Let u0 ∈ H1(R3) be radially-symmetric and satisfy

Sε,ω(u0) < mε,ω,

and let u be the corresponding solution to (2.1):

80



3.3. Dynamics Below the Ground States

1. If Kε(u0) ≥ 0, u is global, and scatters to 0 as t→ ±∞;

2. if Kε(u0) < 0, u blows-up in finite time (in both time directions).

Remark 3.3.6. The argument which gives the finite-time blow-up (the sec-
ond statement) is classical, going back to [61, 62]. It rests on the following
ingredients: conservation of mass and energy imply Sε,ω(u) ≡ Sε,ω(u0) <
mε,ω, so that the condition Kε(u) < 0 is preserved (by definition of mε,ω); a
spatially cut-off version of the formal variance identity for (NLS)

d2

dt2
1

2

∫
|x|2|u(x, t)|2dx =

d

dt

∫
x · = (ū∇u) dx = 2Kε(u) ; (3.38)

and exploitation of radial symmetry to control the errors introduced by the
cut-off. In fact, a complete argument in exactly our setting is given as the
proof of Theorem 1.3 in [1] (it is stated there for dimensions ≥ 4 but in fact
the proof covers dimension 3 as well). So we will focus here only on the
proof of the first (scattering) statement.

The concentration-compactness approach of Kenig-Merle [54] to proving
the scattering statement is by now standard. In particular, [2] provides a
complete proof for the analogous problem in dimensions ≥ 5. In fact, the
proof there is more complicated for two reasons: there is no radial symmetry
restriction; and in dimension n, the corresponding nonlinearity includes the
term |u|p−1u with p > 1 + 4

n loses smoothness, creating extra technical dif-
ficulties. We will therefore provide just a sketch of the (simpler) argument
for our case, closely following [56], where this approach is implemented for
the defocusing quintic NLS perturbed by a cubic term, and taking the ad-
ditional variational arguments we need here from [1, 2], highlighting points
where modifications are needed.

In the next lemma we recall some standard variational estimates for
functions with action below the ground state level mε,ω. The idea goes back
to [63], but proofs in this setting are found in [1, 2]. Recall the ‘unperturbed’
ground state level is attained by the Aubin-Talenti function W :

m0,0 := E0(W ) = inf{E0(u) | u ∈ H1(R3) \ {0},K0(u) = 0},

and introduce the auxilliary functional

Iω(u) := Sε,ω(u)− 2

3(p− 1)
Kε(u)

=
p− 7

3

2(p− 1)

∫
|∇u|2 +

5− p
6(p− 1)

∫
|u|6 +

1

2
ω

∫
|u|2
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3.3. Dynamics Below the Ground States

which is useful since all its terms are positive, and note

Kε(u) ≥ 0 =⇒ ‖u‖2H1 . Iω(u) ≤ Sε,ω(u). (3.39)

Define, for 0 < m∗ < mε,ω, the set

Am∗ := {u ∈ H1(R3) | Sε,ω(u) ≤ m∗, Kε(u) > 0}

and note that it is is preserved by (2.1):

u0 ∈ Am∗ =⇒ u(·, t) ∈ Am∗ for all t ∈ Imax.

Indeed, by conservation of mass and energy Sε,ω(u(·, t)) = Sε,ω(u0) ≤ m∗.
Moreover if for some t0 ∈ Imax, Kε(u(·, t0)) ≤ 0, then by H1 continuity
of u(·, t) and of Kε, we must have Kε(u(·, t1)) = 0 for some t1 ∈ Imax,
contradicting m∗ < mε,ω.

Lemma 3.3.7. 1. mε,ω ≤ m0,0, and (3.37) admits a minimizer if mε,ω <
m0,0;

2. we have

mε,ω = inf{Iω(u) | u ∈ H1(R3) \ {0},Kε(u) ≤ 0}, (3.40)

and a minimizer for this problem is a minimizer for (3.37), and vice
versa;

3. given 0 < m∗ < mε,ω, there is κ(m∗) > 0 such that

u ∈ Am∗ =⇒ Kε(u) ≥ κ(m∗) > 0. (3.41)

After the local theory, and in particular the perturbation Lemma 3.3.3,
the key analytical ingredient is a profile decomposition, introduced into the
analysis of critical nonlinear dispersive PDE by [5, 55]. This version, taken
from [56] (and simplified to the radially-symmetric setting), can be thought
of as making precise the lack of compactness in the Strichartz estimates for
Ḣ1(R3) data, when the data is bounded in H1(R3):

Lemma 3.3.8. ([56], Theorem 7.5) Let {fn}∞n=1 be a sequence of radially
symmetric functions, bounded in H1(R3). Possibly passing to a subsequence,
there is J∗ ∈ {0, 1, 2, . . .} ∪ {∞} such that for each finite 1 ≤ j ≤ J∗ there
exist (radially symmetric) ‘profiles’ φj ∈ Ḣ1 \ {0}, ‘scales’ {λjn}∞n=1 ⊂ (0, 1],
and ‘times’ {tjn}∞n=1 ⊂ R satisfying, as n→∞,

λjn ≡ 1 or λjn → 0, tjn ≡ 0 or tjn → ±∞.
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3.3. Dynamics Below the Ground States

If λjn ≡ 1 then additionally φj ∈ L2(R3). For some 0 < θ < 1, define

φjn(x) :=


[
eit

j
n∆φj

]
(x) λjn ≡ 1

(λjn)−
1
2

[
eit

j
n∆P≥(λjn)θ

φj
] (

x

λjn

)
λjn → 0,

where P≥N denotes a standard smooth Fourier multiplier operator (Littlewood-
Paley projector) which removes the Fourier frequencies ≤ N . Then for each
finite 1 ≤ J ≤ J∗ we have the decomposition

fn =

J∑
j=1

φjn + wJn

with:

• small remainder: lim
J→J∗

lim sup
n→∞

‖eit∆wJn‖L10
t L

10
x (R) = 0

• decoupling: for each J , lim
n→∞

[
M(fn)−

J∑
j=1
M(φjn)−M(wJn)

]
= 0,

and the same statement for the functionals Eε, Kε, Sω,ε and Iω;

• orthogonality: lim
n→∞

[
λjn
λkn

+ λkn
λjn

+ |tjn(λjn)2−tkn(λkn)2|
λjnλkn

]
=∞ for j 6= k.

The global existence and scattering statement 1 of Theorem 1.7.10 is
established by a contradiction argument. For 0 < m < mε,ω, set

τ(m) := sup
{
‖u‖L10

t L
10
x (Imax) | Sε,ω(u0) ≤ m, Kε(u0) > 0

}
where the supremum is taken over all radially-symmetric solutions of (2.1)
whose data u0 satisfies the given conditions. It follows from the local theory
above that τ is non-decreasing, continuous function of m into [0,∞], and
that τ(m) < ∞ for sufficiently small m (by part 4 of Lemma 3.3.1). By
parts 2-3 of Lemma 3.3.1, if τ(m) <∞ for all m < mε,ω, the first statement
of Theorem 1.7.10 follows. So we suppose this is not the case, and that in
fact

m∗ := sup{m | 0 < m < mε,ω, τ(m) <∞} < mε,ω.

By continuity, τ(m∗) =∞, and so there exists a sequence un(x, t) of global,
radially-symmetric solutions of (2.1) satisfying

Sε,ω(un) ≤ m∗, Kε(un(·, 0)) > 0, (3.42)
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and

lim
n→∞

‖un‖L10
t L

10
x ([0,∞)) = lim

n→∞
‖un‖L10

t L
10
x ((−∞,0]) =∞ (3.43)

(the last condition can be arranged by time shifting, if needed). The idea
is to pass to a limit in this sequence in order to obtain a solution sitting at
the threshold action m∗.

Lemma 3.3.9. There is a subsequence (still labelled un) such that un(x, 0)
converges in H1(R3).

Proof. This is essentially Proposition 9.1 of [56], with slight modifications
to incorporate the variational structure. We give a brief sketch. The se-
quence un(·, 0) is bounded in H1 by (3.39), so we may apply the profile
decomposition Lemma 3.3.8: up to subsequence,

un(·, 0) =
J∑
j=1

φjn + wJn .

If we can show there is only one profile (J∗ = 1), that λ1
n ≡ 1, t1n ≡ 0,

and that w1
n → 0 in H1, we have proved the lemma. By (3.42) and the

decoupling,

m∗ − 2

3(p− 1)
κ(m∗) ≥ Sε,ω(un(·, 0))− 2

3(p− 1)
Kε(un(·, 0))

= Iω(un(·, 0)) =

J∑
j=1

Iω(φjn) + Iω(wJn) + o(1),

and since Iω is non-negative, we have, for n large enough, Iω(φjn) < m∗

for each j and Iω(wJn) < m∗. Since m∗ < mε,ω, it follows from (3.40) that

Kε(φjn) > 0 and Kε(wJn) ≥ 0, so also Sε,ω(φjn) > 0 and Sε,ω(wJn) ≥ 0. Hence
if there is more than one profile, by the decoupling

m∗ ≥ Sε,ω(un(·, 0)) =
J∑
j=1

Sε,ω(φjn) + Sε,ω(wJn) + o(1),

we have, for each j, and n large enough, for some η > 0,

Sε,ω(φjn) ≤ m∗ − η, Kε(φjn) > 0. (3.44)

Following [56], we introduce nonlinear profiles vjn associated to each φjn.
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3.3. Dynamics Below the Ground States

First, suppose λjn ≡ 1. If tjn ≡ 0, then vjn = vj is defined to be the solution
to (2.1) with initial data φj . If tjn → ±∞, vj is defined to be the solution
scattering (in H1) to eit∆φj as t→ ±∞, and vjn(x, t) := vj(t+ tjn). In both
cases, it follows from (3.44) that vjn is a global solution, with ‖vjn‖L10

t L
10
x (R) ≤

τ(m∗ − η) <∞.
For the case λjn → 0, we simply let vjn be the solution of (2.1) with initial

data φjn. As in [56] Proposition 8.3, vjn is approximated by the solution ũjn
of the unperturbed critical NLS (1.13) (since the profile is concentrating,
the sub-critical perturbation ‘scales away’) with data φjn (or by a scattering
procedure in case tnj → ±∞). The key additional point here is that by (3.44),
and since m∗ < mε,ω ≤ m0,0, it follows that for n large enough

E0(vjn) ≤ m∗ < m0,0, K0(vjn) > 0,

and so by [54], ũjn is a global solution of (1.13), with ‖ũjn‖L10
t L

10
x (R) ≤

C(m∗) < ∞. It then follows from Lemma 3.3.3 that the same is true of
vjn.

These nonlinear profiles are used to construct what are shown in [56] to
be increasingly accurate (for sufficiently large J and n) approximate solu-
tions in the sense of Lemma 3.3.3,

uJn(x, t) :=
J∑
j=1

vjn(x, t) + eit∆wJn

which are moreover global with uniform space-time bounds. This contra-
dicts (3.43).

Hence there is only one profile: J∗ = 1, and the decoupling also implies
‖w1

n‖H1 → 0. Finally, the possibilities t1n → ±∞ or λ1
n → 0 are excluded

just as in [56], completing the argument.

Given this lemma, let u0 ∈ H1(R3) be the H1 limit of (a subsequence) of
un(x, 0), and let u(x, t) be the corresponding solution of (2.1) on its maximal
existence interval Imax 3 0. We see Sε,ω(u) = Sε,ω(u0) ≤ m∗. Whether u is
global or not, it follows from Lemma 3.3.1 (part 2), (3.43) and Lemma 3.3.3,
that

‖u‖L10
t L

10
x (Imax) =∞, hence also Sε,ω(u) = m∗.

It follows also that

{u(·, t) | t ∈ Imax} is a pre-compact set in H1(R3).
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To see this, let {tn}∞n=1 ⊂ Imax, and note that since

‖u‖L10
t L

10
x ((−Tmin,tn]) = ‖u‖L10

t L
10
x ([tn,Tmax)) =∞,

and so (the proof of) Lemma 3.3.9 applied to the sequence u(x, t−tn) implies
that {u(x, tn)} has a convergent subsequence in H1.

The final step is to show that this ‘would-be’ solution u with these special
properties, sometimes called a critical element cannot exist. For this, first
note that u must be global: Imax = R. This is because if, say, Tmax < ∞,
then for any tn → Tmax−, u(·, tn) → ũ0 ∈ H1(R3) (up to subsequence)
in H1, by the pre-compactness. Then by comparing u with the solution ũ
of (2.1) with initial data ũ0 at t = tn using Lemma (3.3.3), we conclude that
u exists for times beyond Tmax, a contradiction.

Finally, the possible existence of (the now global) solution u is ruled out
via a suitably cut-off version of the virial identity (3.38), using (3.41), and
the compactness to control the errors introduced by the cut-off, exactly as
in [56] (Proposition 10, and what follows it). �
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Chapter 4

Directions for Future Study

We collect here some suggestions (and speculations) for future problems
relating to the results of Chapters 2 and 3.

4.1 Improvements and Extensions of the Current
Work

As mentioned in Section 1.6 the asymptotic stability for the 1D mass sub-
critical (p 6= 3) NLS is still open. This problem presents serious challenges.
A successful attempt on this problem may involve detailed knowledge of the
spectrum of the linearized operator as obtained in Chapter 2.

The results of Chapter 3 apply only to dimension 3. The works [1,
2] addressed the dynamics (scattering/blow-up) for the perturbed energy
critical NLS (below the threshold) in dimensions n ≥ 4. Nevertheless it
would be interesting to see if the construction of Section 3.1 can be achieved
in 4D. One would need to redo the resolvent estimates in Section 3.1.2 using
[46] in place of [47], as well as perform many of the computations in 4D since
we have used the particular 3D free resolvent expansion (3.5) and particular
3D Young’s inequality (3.6), (3.7) and so on. If the same methods produce
constructed solutions in 4D it’s possible we could complete the analysis of
Sections 3.2 and 3.3 to achieve a dynamical theorem. While this theorem
already exists [1, 2] some comparison may be interesting.

In dimensions n ≥ 5 the linearized operator (1.17) no longer has a reso-
nance (as a resonance appearing in dimensions 5D and higher is impossible
[45]) but does have an edge-eigenvalue. Replacing the role of [47] with [45]
we may be able to use our methods to achieve the results of Chapter 3 in
5D and higher.

One important case we are missing from Sections 3.2 and 3.3 is the case
when p = 3. Of course, the cubic-quintic NLS is important for applications
and seems as well to present interesting mathematical difficulties. While
we are able to construct solitary wave solutions in Section 3.1 we cannot
demonstrate these solutions to be ground states in Section 3.2. In Lemma
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4.2. Small Solutions to the Gross-Pitaevskii Equation

3.2.2 the leading order in the computation of Sε,ω(Q) is zero when p = 3 and
the next to leading order is difficult to resolve. If we were able to at least
demonstrate the existence of a ground state we could run the arguments of
Section 3.3 to achieve our dynamical theorem for p = 3. (although a ground
state in this case may simply not exist). Supposing that a ground state
solution does exist for p = 3 we would still have difficulty to demonstrate
our constructed solutions as the ground state (it also simply may not be) as
the series of Lemmas 3.2.3, 3.2.4, 3.2.7, 3.2.8 and 3.2.10 in Section 3.2 all
require 3 < p < 5. One could look for additional boundary case arguments
to add or else try to demonstrate that our constructed solution is not a
ground state.

4.2 Small Solutions to the Gross-Pitaevskii
Equation

A distinct but related problem is to consider solutions to the Gross-Pitaevskii
equation (the nonlinear Schrödinger equation with a potential)

i∂tψ = (−∆ + V )ψ ± |ψ|p−1ψ (4.1)

with small initial data ψ(x, 0) = ψ0 ∈ H1 in n dimensions. Function V (x)
is a potential which we can think of as a Schwartz (fast decaying) function.
The power p should be taken mass super-critical but energy sub-critical to
ensure solutions do not blow-up in finite time. Global well-posedness is a
result of conservation of mass and energy and the smallness of initial data
(see [15] Chapter 6). We think mainly about H1 results but there are also
results where further localizing assumptions (ψ0 ∈ L1) on the initial data
are made such as [66] [69] [70] [87].

The simplest result is when −∆+V has no bound states nor a resonance.
In this case all solutions of (4.1) will scatter; a result due to [49] and [73].
The result with a single simple bound state was obtained for a class of
nonlinearities in [42] in 3D. This result was extended to 1D with supercritical
power nonlinearity in [59]. In this situation the bound state of −∆ + V
generates nonlinear bound states of (4.1). These nonlinear bound states
give rise to stable solitary waves. Both [42] and [59] establish that any small
solution can be decomposed into a piece approaching a nonlinear bound
state and a piece that scatters. The state of the art is [27] where they treat
the 3D cubic defocusing equation with many simple eigenvalues. There are
some conditions on the relative values of the eigenvalues but the treatable
cases are quite generic. While the result obtained is analogous to [42] and
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[59] the methods used in this paper differ from [42] and [59]. The paper
[27] uses instead variational methods. By means of a Birkhoff normal forms
argument they find an effective Hamiltonian which gives rise to a nonlinear
Fermi Golden Rule. The connection between the Hamiltonian structure and
a Fermi Golden Rule was originally introduced in [24]. See also [25] for the
intuition behind the argument. For us the special case of two eigenvalues in
[27] will be most relevant. There are also some other results for two bound
states [71] [79] [80] [81] [82] which impose stronger restrictions on the initial
data and placement of the eigenvalues.

Our questions revolve around the case when operator −∆ + V has a
resonance. That is when (−∆ + V )φ1 = 0 for some φ1 /∈ L2 but φ1 ∈ Lq for
some 2 < q ≤ ∞ where q depends on the dimension n. For the statement of
questions bellow we also assume that −∆+V also has a simple bound state,
that is (−∆ + V )φ0 = e0φ0 with e0 < 0. We could, however, ask analogous
questions if −∆ +V has no bound state and just the resonance or if instead
of a resonance we have a simple threshold eigenvalue.

Firstly, we may suspect that φ1 will generate nonlinear bound states.
When H := −∆ + V has a bound sate the nonlinear problem (4.1) admits
a family of nonlinear bound states Q0[z] parametrized by z = (Q0, φ0) with
eigenvalue E0 = E0[|z|]. This follows from standard bifurcation theory (see
the Appendix of [42]). The existence of nonlinear bound states coming
from the resonance eigenfunction does not follow immediately from the true
eigenvalue result. If for example we write

Q1(x) = zφ1(x) + q(x) (4.2)

then to have Q1 ∈ L2 we cannot have q ∈ L2. The Birman-Schwinger
trick used in Chapter 2 does not work due to the presence of the nonlinear
term in (4.1) but we can instead proceed as in Chapter 3. A formal and
preliminary computation suggests that generically in the defocusing case the
resonance will not yield nonlinear bound states while in the focusing case we
will have nonlinear bound states with corresponding eigenvalues close to the
threshold. The idea is to follow the analysis of Section 3.1 and substitute
(4.2) to the nonlinear eigenvalue equation

(H + λ2)Q1 ± |Q1|p−1Q1 = 0

and write the resulting equation as a fixed point problem for q

q = (H + λ2)−1f.
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Here f = f(λ, z, q). From [47] and [48] we have the resolvent expansion

(H + λ2)−1 =
1

λ
〈R0(λ)V φ1, ·〉φ1

where R0(λ) = (−∆ + λ2)−1 is the free resolvent. The idea now is to solve

0 = 〈R0(λ)V φ1, f〉
q = (H + λ2)−1f

for λ = λ(z) via fixed point arguments where q is in a higher Lp space.
Adjustments of the fixed point arguments of Section 3.1 may prove fruitful
in this setting.

Secondly, we may consider the asymptotic stability of the ground state
family e−iE0tQ0. One approach would be to proceed as in [42] but with
weaker decay estimates. Taking the power in the nonlinearity higher may
help in this direction. An alternative, and perhaps more favourable, ap-
proach to this problem would be to understand the spectrum of the linearized
operator around Q0 in the presence of the resonance φ1. We comment on
this direction. Since we are interested in the stability of the family of ground
state solitary waves we consider a solution to (4.1) of the form

ψ(x, t) = e−iE0t
(
Q0(x) + ξ(x, t)

)
where ξ is a small perturbation of Q0. Since Q0 is the ground state we
can take it positive and real. Substituting the above to (4.1) and removing
known information about Q0 yields

i∂tξ = (H − E0)ξ ± (p− 1)Qp−1
0 Reξ +Qp−1

0 ξ +N(ξ)

where N(ξ) is nonlinear in ξ. The above with N removed is the linearized
equation. We complexify by letting

~ξ :=

(
ξ
ξ̄

)
to see

i∂t~ξ = L~ξ

where

L :=

(
H − E0 ± p+1

2 Qp−1
0 ±p+1

2 Qp−1
0

∓p+1
2 Qp−1

0 −
(
H − E0 ± p+1

2 Qp−1
0

)) .
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The unperturbed L0 for z = 0 then has a resonance at the threshold. Indeed

L0 =

(
H − e0 0

0 − (H − e0)

)
has essential spectrum (−∞, e0] ∪ [−e0,∞), a double eigenvalue at 0 and a
resonance on each threshold. The question is then about the spectrum of L.
The full operator in question has essential spectrum (−∞, E0]∪ [−E0,∞) as
well as the double eigenvalue at 0 but the fate of the resonance has yet to be
seen. Again, a formal preliminary computation suggests that generically in
the focusing case we have a true eigenvalue close to the threshold and that
in the defocusing case the resonance disappears. In 3D we may be able to
apply [28] which treats general perturbations of the linearized operator. In
1D the experience gained from Chapter 2 may be of use. Once the spectrum
of the operator L is understood we may be able to proceed as in [79–82] to
obtain asymptotic stability results for the ground state as well as the excited
state, in any case where it may exist. A difficulty in this series of papers
was the eigenvalues of H being close together or, after complexification, L
having eigenvalues close to zero. For us any non-zero eigenvalues of L will
be close to the threshold and so far from zero.

Finally, we may wish to understand the long time behaviour of all small
solutions of (4.1). That is obtain an asymptotic stability and completeness
theorem in the spirit of [42], [59], [27]. This is the most substantial and
challenging question present. The goal is to prove a theorem resembling the
following. For any small solution ψ of (4.1) we have the unique decomposi-
tion

ψ(t) = Q0[z0(t)] +Q1[z1(t)] + η(t)

in the presence of nonlinear bound states connected to the resonance or

ψ(t) = Q0[z0(t)] + η(t)

in the absence of nonlinear bound states connected to the resonance. In the
above zj and η must also enjoy some smallness properties. Additionally the
zj should converge in some sense as t→∞ where only one zj converges to
a nonzero value. The function η should scatter and converges to a solution
of the free linear Schrödinger equation. While we would like to, after under-
standing the existence on nonlinear bound states and the linearized operator,
proceed as in [42], [59], [27] we draw attention to the fact that eigenvalues
arbitrarily close to the threshold will adversely affect the necessary decay
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estimates. The convergence of ψ (if at all) to a nonlinear bound state will be
slow and achieving such an asymptotic stability and completeness theorem
(if true) may be beyond current mathematical technology.
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