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Abstract

Since the discovery of giant magnetoresistance in 1980s, Spintronics became an excit-

ing field which studies numerous phenomena including the spin transport in magnetic

heterostructures, magnetization dynamics and the interplay between them. I have

investigated different topics during my graduate research. In this dissertation, I sum-

marize all my projects including spin pumping, spin convertance and spin injection

into ballistic medium.

First, we develop a linear response formalism for spin pumping effect. Spin pump-

ing refers that a precessing emits a spin current into its adjacent nonmagnetic sur-

roundings, which was originally proposed using scattering theory. The newly de-

veloped formalism is demonstrated to be identical the early theory in limiting case.

While our formalism is convenient to include the effects of disorders and spin-orbit

coupling which can resolve the quantitative controversies between early theory and ex-

periments. Second, the spin pumping experiments indicates a much smaller spin Hall

angle compared with the results obtained via the spin transfer torque measurements.

We found that such issues can be resolved when taking into consideration the effects

of non-local conductivity. And we conclude neither of the two methods measures

the real spin Hall angle while the spin pumping methods provides much accurate

estimations. Third, we developed the spin transport equations in weak scattering

medium in the presence of spin-orbit coupling. Before this, all spin dependent elec-

tron transport has been modeled by the conventional spin diffusion equation. While

recent spin injection experiments have seen the failure of spin diffusion equation. As

the experimental fitting using spin diffusion models led to unrealistic conclusions. At

last, we study the spin convertance in anti-ferromagnetic multilayers, where the spin

information can be mutually transferred between ferromagnetic/anti-ferromagnetic

and conduction electrons. Our theory successfully explained the experiment results

that the insertion of thin NiO film between YIG/Pt largely enhances the spin Seebeck

currents.
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Chapter 1

INTRODUCTION

1.1 Background and Overview

In 1988, Dr. Albert Fert and Dr. Peter Grünberg independently discovered the

Giant Magnetoresistance (GMR) in Fe/Cr/Fe multilayers [1,2]. Experimental results

showed that the electrical resistance of the trilayer is largely influenced by the relative

magnetization direction between the two Fe layers. When the magnetization of two

Fe layers are aligned to be parallel, the resistance of the trilayer is much smaller

compared to that when they are aligned to be antiparallel. Since this Nobel prize

winning discovery, many other exciting spin dependent phenomena have been reported

in last thirty years, including spin Hall effect [3, 4], spin transfer torque [6, 7] and so

on.

Based on the spin information carrier, all spin transport phenomena can be

roughly classified into three major categories, i.e., spin dependent electron trans-

port, magnon mediated spin transport, and the interplay between electronic current

and magnetization dynamics. In this section, we briefly discuss some of those topics

which are closely related to this dissertation.

1.1.1 Spin dependent electron transport

In conducting medium like metallic or semi-conducting heterostructures, both spin

and charge information are carried by conduction electrons. In collinear magnetic

multilayers, two-current model has been used to explain tons of transport phenom-

ena [5]. In such theory, the charge current carried by spin up and spin down electrons

are treated separately both in the bulk and at the interface. Both giant magnetore-

sistance and spin injection [8,9] can be readily explained using two current model. In

materials with spin-orbit coupling, spin-charge conversion is of the most interesting

spin transport topics. Here, we give some brief introduction about two of those ideas.

In magnetic metals, the electron density and the momentum relaxation rates for

spin up and spin down electrons are different. When an electric field is applied, the
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current carried by spin up/down electrons can be obtained via Drude model

j↑ = en↑τ↑E (1.1)

j↓ = en↓τ↓E (1.2)

where ns is the electron density for spin up/down electrons, τs the relaxation time.

We can rewrite the above currents by combining the two equations and introducing

the spin dependent conductivity, σs = ensτs,

je = j↑ + j↓ = (σ↑ + σ↓)E (1.3)

js = j↑ − j↓ = (σ↑ − σ↓)E (1.4)

where je is the charge current and js is the spin current. In magnetic materials,

σ↑ 6= σ↓ and the electric current is always accompanied by a non vanishing spin

current. In magnetic multilayers, we can also use such model which separates the

current carried by spin up/down electrons. In last chapter of this thesis, we investigate

spin injection into a two dimensional electron gas using this technique. Different

from charge current can be fully determined by a flowing direction and magnitude, a

spin current has a flowing direction and a spin polarization direction apart from the

magnitude. For example, the above spin current has a flowing direction identical to

the electric field, and polarization direction which is the direction of the magnetization

(or up spin direction).

Electronic spin current can also be achieved in the absence of magnetic order.

In heavy metals like Pt or Ta and some semi-conductors, there is strong spin-orbit

coupling. When a charge current is injected, the spin up electrons are more likely

to be scattered to left (or right) while spin down electrons are more scattered to the

opposite direction which leads to a spin current flowing perpendicular to the charge

current, as shown in Fig. 1.1(a),

js = θHje (1.5)

the θH is the spin Hall angle which characterize the conversion rate from charge

current to spin current. In spin Hall effect, the spin current polarization direction,

spin current flow direction and charge current flow direction are all perpendicular to

the other two. Such spin current builds up a spin accumulation near the interface [12]

which can be detected using optical method, or measured by spin transfer torque

effects.

In the other way around, when a spin current is injected in such materials, a

charge current will be generated which is referred as the “inverse spin Hall effect”.
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Spin	Hall	 Inverse	Spin	Hall	

Spin	up	electron	 Spin	down	electron	

je jsx

y

Figure 1.1. Spin Hall and inverse spin Hall effect. Left: a charge current is injected

along −y direction. A spin current polarized in z direction flows along y direction

is generated via spin Hall effect. Right: a spin current polarized in z direction is

injected along −x direction. A charge current flowing in y direction is generated via

inverse spin Hall effect.

The conversion rate is identical to the spin Hall angle,

je = θHjs. (1.6)

Such inverse spin Hall effect makes it possible to detect spin transport electrically.

Besides the spin-orbit coupling in material bulk, the SOC at the interface also

leads to spin-charge conversion. While different from the homogeneous symmetry

in bulk material, The interface SOC results in a conversion between only in plane

charge current and spin accumulation at the interface. At heavy metal interface or

topological interface, there is spin momentum locking [11] or Rashba SOC [10]. An

in plane charge current converts to a spin accumulation at the the interface which is

referred as Rashba Edelstein effect [13]. The process vice versa is named as inverse

Rashba Edelstein effect [14, 15]. Such spin-charge conversion contributes to the spin

pumping induced electric voltages discussed in Chapter 2.

1.1.2 Magnon mediated spin transport

Low energy excitation of a magnetic spin lattice is known as magnon. In contrast to

conduction electrons which carry both charge and spin information, magnons carry
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Figure 1.2. (a). Structure of a bilayer for longitudinal spin Seebeck effect. (b).

Structure for spin convertance experiment. The left Pt layer is the driving layer and

the right Pt layer is the detecting layer. The spin current flow direction in both setups

is in z direction. Magnetization is pined in x direction (out of paper).

only spin information. In magnetic insulators, only magnons are present, which makes

magnetic insulators perfect systems to study magnon mediated spin transport. As

magnon cannot be driven by electric field like electrons, up until now, magnonic trans-

port is either driven by a thermal gradient or a non-equilibrium spin accumulation in

an adjacent layer.

First, we discuss the thermally driven magnonic transport which is named as spin

Seebeck effect and illustrated in Fig. 1.2(a). As magnons are bosonic particles, its

occupation number is sensitive to temperature. When a thermal gradient applied to

the YIG layer, more magnons are occupied at the hot end and less in the cold end.

A resultant diffusive magnon current will flow from hot to cold end. When the YIG

layer is coupled to heavy metal, the magnon current can be converted to electronic

spin current in metal layer and detected utilizing inverse spin Hall effect. Notice

that in both YIG and Pt layer, the polarization of the spin current is parallel to the

magnetization direction.

The boundary condition at the YIG/Pt interface, say z = z0, is modeled by the

spin convertance proposed by Zhang and Zhang [16], including the continuity of spin

current and the Ohm’s law for interface conductance [16,19],

jm(z0−) = js(z0+) (1.7)

gth [µm(z0−)− µs(z0+)] = jm(z0−) (1.8)

where jm(z0−) and js(z0+) are the magnon and spin current near the interface, and

µm(z0−) and µs(z0+) the spin accumulation. gth is the interface spin conductance,
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where “th” refers to incoherent thermal magnon. The thermal conductance will be

related to following mixing conductance in later chapters.

Another driving source for magnon transport can be spin accumulation from adja-

cent layer. In Fig. 1.2(b), we show the structure to verify spin convertance proposed

by Zhang and Zhang [16]. The idea can be divided into several steps: 1). We inject

an in plane charge current in the driving layer (left). 2) Via spin Hall effect, a spin

current flowing in perpendicular direction is generated which builds up a spin accu-

mulation near the interface. 3) The spin accumulation can be converted to a magnon

accumulation via spin convertance and the magnon accumulation leads to a diffusive

magnon current in the YIG layer (middle). 4). The magnon current then converts

back to electronic spin current at the right YIG/Pt interface. 5). The spin current

in the right Pt layer can be electrically detected via inverse spin Hall effect.

In above paragraphs, we briefly outlined two magnonic transport phenomena. The

YIG layer acts as the source layer in the first case while conducting medium layer in

the second case. While they share the same boundary condition at interfaces, and

same conductance. The meaning of gth should become more clear in later chapters.

1.1.3 Interplay between magnetization dynamics and electron currents

Spin transfer torque is one of the most studied topics in spintronic research. The struc-

ture originally proposed by J. C. Slonczewski is a spin valve using two FM layer [6].

In his original proposal, the spin current and accumulation is polarized by a ferro-

magnetic layer. The resultant spin current can be used to switch the magnetization

of another ferromagnetic layer. While the spin current in the following example it is

generated from spin Hall effect. We consider a slightly different structure shown in

Fig. 1.3(a) to illustrate the relation between spin pumping and spin transfer torque.

The driving source here is an electric current injected along y direction. Via spin

Hall effect, it generates a spin current flowing along z direction and polarized along x

direction which builds up a spin accumulation near the interface µ = µx̂. This spin

accumulation in turn leads to a torque or a spin current at the interface [17],

js = gmixm× (µ×m) (1.9)

where gmix =
∑

k 1 − r↑r
∗
↓ is the “mixing conductance” which will also be used in

spin pumping effect discussed below, m is unit vector indicating the magnetization

direction. And rs is the spin dependent reflection coefficient at the interface In above

equation, the mixing conductance can be understood as an interfacial conductance
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Figure 1.3. (a): Illustration of spin transfer torque. An in plane charge current is

injected along y direction. The spin Hall current flows in z direction which is polarized

the x direction which builds up a spin accumulation near the interface. (b). Spin

pumping: The magnetization of FM layer precesses around x direction, which emits

a spin current into adjacent NM layer. A charge current is generated via inverse spin

Hall effect.

for a transverse spin accumulation in analogy to Shavin conductance for charge. The

summation over k runs over all possible channels.

The magnetization of the FM layer then rotates subject to this spin current,

dm

dt
= −γm×Heff + βm× (µ×m) (1.10)

where β is the called the polarization factor which is proportional to the current

density and inversely proportional to the FM layer size and magnetization. Heff is

the effective field.

Spin pumping refers to the phenomena that a precessing ferromagnets emits a

pure spin currents in to the adjacent NM layer as shown in Fig. 1.3(b) [24,25].

js =
~
2π
gmixm×

dm

dt
(1.11)

where gmix is the same mixing conductance. In above equation, the spin current flows

from ferromagnetic layer to non-magnetic (NM) layer, and M× dM
dt

indicates the spin

polarization direction. To the leading order of precession angle, the spin pumping

current is an a.c. current. While it has a d.c. components to the second order which

is always measured as a detection of spin pumping.
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Compared to spin transfer torque where a spin current drives the free layer mag-

netization to precessing, spin pumping effect addresses the inverse process where a

spin current is generated by a precessing ferromagnet. Spin pumping is proved to be

identical to spin transfer torque in terms of Onsager’s reciprocity theorem [26]. Thus,

they share the same interface conductance, gmix.

1.2 Outline of the Dissertation

During my Ph.D. research, I have accomplished projects involving all of three above

topics of which the details are discussed in later chapters. This thesis is organized as

follows.

Chapter 2 and 3 are devoted to spin pumping effect. As we have mentioned that

the spin pumping theory is originally formulated using scattering theory. The spin

pumping efficiency is expressed in terms of spin dependent reflection coefficients at

magnetic interfaces. While those transmission and reflection coefficients are conve-

nient to use in ballistic transport regime or mesoscopic structures, they are difficult to

determine in disordered materials. To solve such issues, we develop a linear response

theory of spin pumping in Chapter 2. Our result for the spin current is formulated

using real space Green’s functions which are natural to include any disorders or spin-

orbit couplings. Our result has been demonstrated to be identical to the conventional

result in the limiting cases where any disorders and spin-orbit coupling is absent.

Beyond this ideal case, we discuss the effects of spin-orbit coupling on spin pumping.

We demonstrated that most of the spin pumping current is relaxed at the interface

instead of relaxing in the nonmagnetic layer as assumed by early theory. We can

resolve controversies on spin diffusion lengths reported by experiments from different

groups.

In Chapter 3, we address another controversy in spin pumping experiments. Spin

pumping and spin transfer torque are believed to be the inverse process of each other.

Both of them can be used as experimental method to estimated the spin Hall angle

and spin diffusion length in the NM metals. While the spin pumping experiments

always predicts much smaller spin Hall angle compared to those reported from spin

transfer torque experiments. By taking into account the non-local conductivity in

thin films, we demonstrated that the spin pumping measurements always slightly

underestimate the spin Hall angle while the spin transfer torque experiments always

overestimate the spin Hall angle by a large amount.

In 2012, Zhang and Zhang proposed the spin convertance between ferromagnetic
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magnon and conduction electrons [16]. In Chapter 4, we add anti-ferromagnetic

magnons into the picture and discussed the anti-ferromagnetic (AF) magnon - con-

duction electron convertance, also the convertance between FM magnon and AF

magnon. More interestingly, we propose that the spin pumping effect can be viewed

in terms of electron-magnon spin convertance, which enables us to compare the mix-

ing conductance to the spin convertance conductance. In addition, we applied our

spin convertance results to study spin Seebeck in YIG/NiO/Pt trilayer structure. We

confirm that the spin current can be is enhanced when a thin NiO film is inserted in

between YIG and Pt [20].

In most spin dependent electron transport models, the spin current is described

by spin diffusion equation which is only valid when the electron momentum relax-

ation is much faster than the spin relaxation. In such a diffusive limit, the electron

momentum information is lost so fast that the spin information of all electrons can

be approximated by a momentum averaged spin accumulation. In Chapter 5, we

develop new equations to address spin transport in the opposite regime in weak scat-

tering semiconductors where the electron momentum information lives longer than

the spin information. In the end of 2014, D. Weiss et al. studied the spin injection

into ballistic 2 dimensional electron gas [27]. Using traditional spin diffusion model,

the estimated spin polarization of the injected current exceeds 600% which is unphys-

ical. While using our transport equation, we found that the reported 600% is the real

polarization amplified by a factor of 1 + l20/λ
2 where l0, λ is the electron mean free

path and the spin diffusion/dephasing length. The real spin polarization is still below

100%.

I would like to point out that some parts of this thesis have already been published

in following papers [18,19,21–23].
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Chapter 2

Linear Response theory of Spin Pumping

By using the time-dependent linear response theory, we generalize the spin pumping

formalism for a precessing magnet embedded in a non-magnetic conducting medium.

The spin pumping current outside and inside the precessing magnetic layer can be

calculated on an equal footing. Our formulation can be efficiently applied to systems

with interface roughness and disorders. In the disorder-free limiting cases, we find

the result is identical to the results derived from scattering theory.

2.1 Motivation

One of the most interesting spintronics phenomena is spin pumping which describes

generation of a spin current in a non-magnetic metal layer by an adjacent precessing

ferromagnetic layer. Up until now, the description of the spin pumping current js is

given by the scattering formalism [25] in which transport is formulated via reflection

and transmission coefficients between the leads and the conductor [34],

js =
~
4π

(
grm×

dm

dt
− gi

dm

dt

)
(2.1)

where m is a unit vector representing the precessing magnetization direction, gr and gi
are the real and imaginary parts of the mixing conductance g ≡ gr+igi =

∑
(1−r∗↑r↓)

in which rσ is the reflection coefficient for the spin σ = ↑, ↓ at the interface between

the non-magnetic and magnetic layers.

The above spin pumping theory has successfully been applied to many experi-

mental realizations such as the enhancement of the Gilbert damping of thin films

and spin pumping induced charge voltage. In spite of general acceptance of the spin

pumping phenomenon, the reflection coefficients in the mixing conductance are usu-

ally calculated for an isolated interface [29] and the effects of disorders in the layers

on the mixing conductance are completely discarded. As it has been known that

the reflection and transmission coefficients are most useful for calculating transport

in mesoscopic conductors, but rather inconvenient and prohibitively complicated for

a diffusive system due to the presence of a large number of transverse scattering

paths [30]. In diffusion systems, the standard and convenient description of transport
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is to utilize linear response theories such as the Kubo formalism where the transport

coefficients are expressed in terms of scattering parameters, e.g., mean free paths and

spin diffusion lengths, so that the effects of disorders can be explicitly addressed.

Indeed, theories for disordered media have already been attempted [35,36].

2.2 Derivation of the Formula

In this chapter, we provide a derivation of the spin pumping current based on the

time-dependent linear response theory in which the spin pumping current is related

to a set of conventional spectral density functions instead of the reflection coefficients.

Thus, disorders can be explicitly included via the retarded Green’s functions. We have

found a number of salient features of the spin pumping: 1) the mixing conductance is

non-local, i.e., a two-point spin-pumping conductivity is necessary in order to relate

the magnetization precessing at one site r′ to the induced current at another site r, 2)

the effect of disorders on spin pumping current can be explicitly included and thus,

spin pumping depends on the interface as well as bulk scattering parameters, 3) the

spin current also exists inside the precessing magnetic layer and can be determined by

the same formalism, and 4) in the case of disorder-free layers, the present formulation

is similar to that derived from the scattering theory [25].

We start by considering a magnetic particle or a magnetic layer embedded in

a non-magnetic conducting medium. The magnetization of the magnetic layer is

uniformly precessing around z-axis with a single frequency ω0,

m(r, t) = θF (r) [msez + δm(ex cosω0t+ ey sinω0t)] (2.2)

where δm is the precession amplitude which is small compared to the saturation

magnetization ms ≈ mz, θF (r) is a step function, i.e. θF (r) = 1 if r is inside the

precessing magnet and θF (r) = 0 if outside. The interaction between the itinerant

electron spin and magnetization is modeled by the conventional exchange interaction,

V (r, t) = −Jexσ ·m(r, t). Thus the total Hamiltonian is H = H0 + H ′(t) where the

time-independent term H0 is

H0 = Hkin − Jexmsσ
zθF (r) (2.3)

where Hkin is the electron kinetic energy. The time-dependent perturbation is

H ′(t) = −Jex
∑
α=x,y

σαmα(r, t) (2.4)
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The spin current density tensor jαi , where α denotes the direction of spin-polarization

and i the direction of transport, is calculated from the Kubo formula,

jαi (r, t) =
iJex

2

∑
β=x,y

∫
d3r′

∫
dt′Θ(t− t′)

〈[
J α
i (r, t),Sβ(r′, t′)

]〉
mβ(r′, t′) (2.5)

where Sβ(r′, t′) and J α
i (r, t) are spin density and spin current density operators de-

fined in terms of the spinor quantum field operator ψ(r, t) = (ψ↑(r, t), ψ↓(r, t))
T

Sα(r, t) = ψ†(r, t)σαψ(r, t),

J α
i (r, t) =

~
2mei

ψ†(r, t)σα
↔
∂ iψ(r, t),

(2.6)

where
↔
∂ i =

→
∂ i −

←
∂ i is the anti-symmetric differential operator.

The retarded response function in Eq. (2.5),

Uαβ
i (r, r′; t− t′) ≡ −iΘ(t− t′)

〈[
J α
i (r, t),Sβ(r′, t′)

]〉
,

can be evaluated in the Matsubara frequency representation [37] outlined below. The

equivalent imaginary time form is

Uαβ
i (r, r′; τ) = −

〈[
TτJ α

i (r, τ)Sβ(r′, 0)
]〉
. (2.7)

Inserting the spin current density and spin accumulation density from the definition,

J α
i (r, τ) =

~
2mei

ψ†(r, τ)σα
↔
∂iψ(r, τ);Sα(r, τ) = ψ†(r, τ)σαψ(r, τ), (2.8)

where ψ(r, τ) = (ψ↑(r, τ), ψ↓(r, τ))T is the spinor quantum field operator, we have

Uαβ
i (r, r′; τ) = − ~

2mei

∑
s1s2s3s4

〈
Tτψ

†
s1

(r, τ)σαs1s2
↔
∂iψs2(r, τ)ψ†s3(r′, 0)σβs3s4ψs4(r′, 0)

〉
.

(2.9)

Utilize Wick theorem, with the Mastubara Green’s function defined as [G(r, r′; τ)]s1s2 =

−i
〈
Tτψs1(r, τ)ψ†s2(r, 0)

〉
, we find

Uαβ
i (r, r′; τ) = − ~

2mei

∑
s1s2s3s4

σαs1s2σ
β
s3s4

[G(r′, r;−τ)]s4s1

↔
∂i [G(r, r′; τ)]s2s3(2.10)

=
~

2mei
T r
[
σαG(r, r′; τ)

↔
∂iσ

βG(r′, r;−τ)
]
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Conduct Fourier transform Uαβ
i (r, r′; iωn) =

∫ β0

0
dτeiωnτUαβ

i (r, r′; τ), the response

function in frequency representation is

Uαβ
i (r, r′; iωn) =

1

β0

∑
iωm

~
2mei

T r
[
σαG(r, r′; iωm + iωn)

↔
∂iσ

βG(r′, r; iωm)
]

(2.11)

where β0 = 1/kBT . After the frequency summation, we have

Uαβ
i (r, r′;ω) =

−iω
2π

~3

2mei
T r
[
σαGR(r, r′;EF )

↔
∂iσ

βGA(r′, r;EF )
]
. (2.12)

In the following discussion, we omit the EF argument in the Green’s function for

convenience. Apply the inverse Fourier transform and use F−1[iωm(ω)] = dm(t)/dt,

we arrive at the equation for pumped spin current,

jαi (r, t) =
~
4π

Jex~2

2mei

∑
β

∫
FM

d3r′Tr
[
σαGR(r, r′)

↔
∂iσ

βGA(r′, r)
] dmβ

dt
(2.13)

When spin-orbit coupling is absent in the picture, the above spinor Green’s func-

tion can be expressed in terms of spin up/down Green’s function,

G(r, r′) =
g↑(r, r

′) + g↓(r, r
′)

2
+
g↑(r, r

′)− g↓(r, r′)
2

σ ·m (2.14)

where g↑(r, r
′) and g↓(r, r

′) are the Green’s functions for the electron with spin parallel

or anti-parallel to the magnetization. Expand σ ·m =
∑

γmγσ
γ and insert above

Green’s function into Eq. (2.13)

jαi (r, t) =
~
4π

Jex~2

2mei

∑
β

∫
FM

d3r′
dmβ

dt

2

[∑
γ

iεαγβmγg
R
1 (r, r′)

↔
∂ig

A
0 (r′, r) + iεαβγmγg

R
0 (r, r′)

↔
∂ig

A
1 (r′, r)(2.15)

+ δαβg
R
0 (r, r′)

↔
∂ig

A
0 (r′, r)− δαβgR1 (r, r′)

↔
∂ig

A
1 (r′, r)

]
where g0/1(r, r′) = [g↑(r, r

′)± g↓(r, r′)] /2, we find

jαi (r, t) =
~
4π

Jex~2

me

∑
β

∫
FM

d3r′
dmβ

dt[∑
γ

Re gR↑ (r, r′)
↔
∂ig

A
↓ (r′, r)εαγβmγ − δαβ Im gR↑ (r, r′)

↔
∂ig

A
↓ (r′, r)

] (2.16)
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The above results can be rewritten in by introducing a spin conductance Γ,

ji(r, t) =
~
4π

[
Γrei (r)m× dm

dt
− Γimi (r)

dm

dt

]
, (2.17)

with the spin pumping conductance is Γi(r) = Γrei (r) + iΓimi (r) and

Γi(r) =
Jex~2

me

∫
FM

d3r′gR↑ (r, r′)
↔
∂ig

A
↓ (r′, r) (2.18)

When compare Eq. (2.17) to Eq. (2.1), it is easy to see the equivalence between Γ

defined above and the mixing conductance in scattering theory. The connections will

be discussed in next section.

2.3 Results and Discussion

2.3.1 Comparison with Scattering theory in ideal limit

In this section, we explicitly show the calculation of the Green’s function for a bilayer

and compare our results with Eq. (2.1) derived from the previous scattering approach.

For a one-body spin-dependent potential Vs(z), the green’s function satisfies[
E − E‖ ± i0+ +

~2

2me

d2

dz2
− Vs(z)

]
gR/As (z, z′) = δ(z − z′). (2.19)

For layered structure, the above Green’s function is solved for each layer with a

set of constants of the integration which are subsequently determined via boundary

conditions at the interface,

gA/Rs (0+, 0+) = gA/Rs (0−, 0+) = gA/Rs (0+, 0−) = gA/Rs (0−, 0−). (2.20)

and
d

dz
gA/Rs (z, z′) |z=0+= =

d

dz
gA/Rs (z, z′) |z=0− (2.21)

for an arbitrary interface potential without singularity. For a tunneling contact where

V (z) = aδ(z), the last equation is replaced by

d

dz
gA/Rs (z, z′) |z=0+ − d

dz
gA/Rs (z, z′) |z=0− = gA/Rs (0, 0)

2mea

~2
. (2.22)

Next, we should analytically calculate the Green’s function with a simple model

potential of a FM/NM bilayer given below,

Vs(z) =

{
V0 − sJex

0

z < 0

z > 0
(2.23)
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In this case, the solution of Eq. (2.19) can be expressed by the reflection and trans-

mission coefficients [28],

gRs (z > 0, z′ < 0) = −i me

~2ks
t′se

ikz−iksz′ (2.24)

gRs (z < 0, z′ > 0) = −i me

~2k
tse
−ikz+ik↑z′ (2.25)

gRs (z > 0, z′ > 0) = −i me

~2k

[
eik|z−z

′| + rse
ik(z+z′)

]
(2.26)

gRs (z < 0, z′ < 0) = −i me

~2ks

[
eik|z−z

′| + r′se
−ik(z+z′)

]
(2.27)

where t′s, r
′
s are the transmission and reflection coefficients for right going electrons

(from FM to NM), ts, rs are those for left going electrons, and k =
√

2me

(
E − E‖

)
/~,

ks =
√

2m(E − E‖ − V0 + sJex)/~. The advanced Green’s function can be calculated

from the following relation,

gAs (z, z′) =
[
gRs (z′, z)

]∗
. (2.28)

Insert these Green’s functions into Eq. (2.18) in the main text, we have

Γz(0) =
∑
k‖

k↑ + k↓
2ks

t′↑ (t↓)
∗ (2.29)

Now we are able to compare Eq. (2.29) with the mixing conductance. With the

boundary conditions, Eq. (2.20), we have

t′s
ks

=
ts
k

=
1 + rs
k

=
1 + r′s
ks

. (2.30)

With Eq. (2.21), we have

1− rs =
ks
k
ts, (2.31)

or for a tunneling contact, Eq. (2.22)

− [ik (1− rs)− iksts] = ts
2mea

~2
. (2.32)

Choose either one of Eq. (2.31) or (2.32) together with Eq. (2.30), one can simplify

Eq. (2.29), and prove

Γz(0) =
∑
k‖

1− r↑r∗↓; (2.33)

this proves that our formalism reduces to that of the scattering formalism in the

absence of the interface spin-orbit coupling and diffusive scattering.
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2.3.2 Diffusive Contact

The effects of disorders on the spin pumping are not included in the scattering theory

while fully encoded in the Green’s functions. If the disorder is modeled by a local self

energy (similar to the momentum-independent local relaxation time approximation in

the Boltzmann equation) such that we may approximate the Green’s function as [31]

gimpσ (r, r′) = g(0)
σ (r, r′)Pσ(r, r′) (2.34)

where g
(0)
σ is the Green’s function without disorders and

Pσ(r, r′) = exp

[
−1

2

∫ r

r′
κσ(r′′)n̂ · dr′′

]
(2.35)

where n̂ = (r− r′) /|r− r′|, the integral is over the direct path from r′ to r. κσ(r) is

the inverse of the local mean free path related to the imaginary part of the disorder-

induced self-energy ∆σ(r) via κσ = 2me∆σ/~2kF . Equations (2.34) and (2.35) have a

very intuitive geometrical interpretation: when the electron travels from the point r′

to r, the two-point spectral density is reduced by the collision probability. By using

Eq. (2.18), we find the spin pumping conductance at the interface is reduced by the

impurity scattering

Γimp(0) =
J2
ex

J2
ex + ∆2

Γ0. (2.36)

where ∆ = (∆↑+ ∆↓)/2. Eq. (2.36) indicates that the strong scattering (small mean

free path) near the interface reduces the spin pumping conductance at the interface.

2.3.3 Numerical Results in Layered Structures

In above derivation, we have calculated the the Green’s functions within bilayer struc-

tures. In Fig. 2.1, we show some numerical results for spin pumping current, Γ(x) in

a bilayer structure. Fig. 2.1(a) shows the result of metallic bilayers for two different

exchange parameters. As expected, the spin current in the ferromagnetic layer only

exists in the vicinity of the interface. As the spin pumping current is polarized per-

pendicular to magnetization, of which the relaxation is dominated by the dephasing

due to exchange interaction. The oscillation and decay length of the spin current

can be estimated by 1
kF↑−kF↓

for a spherical Fermi Surface. In previous spin transfer

torque studies, such spin dephasing length is estimated to be 1-2 nm [32]. Also, we

see the influence of exchange strength on the spin pumping current is not significant.

When we increase Jex from 0.5 eV to 5 eV the spin pumping current only alters by
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Figure 2.1. The position-dependence of the real part of the spin pumping conduc-

tance for two magnetic (FM)/non-magnetic (NM) bilayers. (a) Both magnetic and

non-magnetic layers, whose spin-dependent potentials are shown above, are metallic.

(b) The magnetic layer is a ferromagnetic insulator (FI) and the non-magnetic is a

metal. The spin-dependent potentials are also shown (V0 − EF = 9 eV). The Fermi

energy is EF = 6 eV, and the exchange parameters are Jex = 0.5 and 5.0 eV as

marked in the Figure.

a factor of 2. Such result can be understood by combining the result of scattering

theory and our discussion about the diffusive contact. In the mixing conductance

definition, the mixing conductance equals to Sharvin Conductance when Jex is close

to zero so that one should not expect large influence of Jex on spin pumping. Our

Green’s function results suggest that it is only true when Jex outweighs the electron

self energy. Thus, increasing the Jex from 0.5 to 5 eV still changes the current while

only by a relative small amount.

Also, the spin current in this calculation is a constant which is due to the absence

of spin relaxation in our picture. It will be fixed in later chapters when we include

the back flow spin current from NM layer to FM layer.

In Fig. 2.1(b), we show the similar results for spin pumping from a ferromagnetic

insulator. When compared to the metallic case, two differences can be concluded at

the first glance. First, the spin current in ferromagnetic layer decrease exponentially

instead of with oscillation as the spin current is now tunneling into the FM layer

rather than dephasing. For the same reason, the decay length also becomes much
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Figure 2.2. Real and imaginary parts of the spin pump conductance of the FM

layer sandwiched by two semi-infinite non-magnetic metal layers, NM/FM/NM. The

Fermi level EF = 6 eV and the thickness of the FM layer is 2d. (a) Jex = 0.5 eV,

and 2d = 2 nm. (b) Jex = 0.5 eV, and 2d = 4 nm. (c) Jex = 5.0 eV, 2d = 2 nm. (d)

The dependence of the real part of the spin pumping conductance at the interface on

ferromagnetic layer thickness for two different Jex

shorter. Second, the magnitude of spin pumping current now sensitively depends on

the strength of exchange coupling between conduction electrons and magnetization.

We now calculate the spin current in a trilayer structure. In Fig. 2.2, we show

the spin pumping in a trilayer structure with several different parameters. In Fig.

2.2(a) and (b), we calculate Γ(x) for a small exchange coupling and two different FM

layer thicknesses. The result shown in Fig. 2.2(c) is for a large exchange coupling

for a thin FM film. It can be concluded from the numerical results that the real part

of Γ(x) always dominates over the imaginary part beyond the FM layer. And both

the real and imaginary part oscillates within the FM layer. In Fig. 2.2(d), we show

the how the real part of Γ(x) at the interface depends on the FM layer thickness. It

vanishes for small zero FM layer thickness since Γ(x) is anti-symmetric over the FM

layer. The oscillating trend for Γ(x) over FM layer thickness is also reported in [33].
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2.4 Experiments Demonstration of Spin Pumping

Since the discovery of spin pumping in metallic bilayer in 2002, spin pumping exper-

iments has been studied in many different materials including heavy metal [38–44],

semi-conductors [45–47] and topological insulators [15,48,49]. In all of such systems,

the spin-orbit coupling plays a pivot role which is neglected in the scattering theory.

After developing the linear response theory, we are capable of taking the interface

spin-orbit coupling into consideration [21]. More importantly, we confirm the spin

memory loss which is first observed in giant magnetoresistance experiments. Also,

the spin memory loss resolves the issues in determining the spin diffusion length of

heavy metals [50,51]. Spin pumping is usually experimentally detected via enhanced

Gilbert damping and inverse spin Hall voltage. Here we briefly discuss the experi-

ments and the controversies between results published by different groups. To start,

we consider the spin pumping in a metallic bilayer. For convenience, we still use the

mixing conductance which is identical results before we take spin-orbit coupling into

consideration. The spin current at the interface, say x = 0, from direct spin pumping

is,

jpump
s (0) = gmixm×

dm

dt
(2.37)

where we have neglect the imaginary part of mixing conductance. If the NM layer is

a ideal spin sink, all spin current will be immediately relaxed. While for real material,

the spin relaxation is not that fast; Thus, a spin accumulation is built up in the NM

layer which leads to a backflow spin current.

jback
s (0) = gmixµ (2.38)

The total spin current is the difference between the pumped spin current and the

current flows back to the FM layer,

jtot
s (0) = jsp

s (0)− jback
s (0) (2.39)

Another boundary condition is required to solve the all above unknown variables,

jtot
s , jback

s ,µ, where we need the spin diffusion equation within the NM layer. The spin

current density in the NM layer is purely diffusive since the spin information is not

coupled to any field,

jtot
s (x > 0) = −D∇µ(x > 0) (2.40)

where D = v2
F τm is the diffusion constant in the NM layer, vF is the Fermi velocity and

τm is the electron momentum relaxation time. Another equation is spin continuity
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equation,
∂µ(x > 0)

∂t
= −∇jtot

s (x > 0)− µ(x > 0)

τs
(2.41)

where the second term is the gradient of spin current and last term refers to the local

spin relaxation. Here, τs is the spin relaxation time. Above two equations lead to the

spin diffusion equation,
d2µ(x > 0)

dx2
=
µ(x > 0)

λ2
(2.42)

where λ =
√
v2
F τsτm is the spin diffusion equation (SDE). For a NM thin film 0 <

x < tN , the spin current density has the form of

jtot
s (x > 0) =

js(0)

sinh tN/λ
sinh(tN − x)/λ (2.43)

such that the spin current at the outer interface vanishes.

Put all above results together, we can rewrite Eq. (3.1) and solve the total spin

current density at the interface,

jtot
s (0) =

1

1 + ξ
gmixm×

dm

dt
(2.44)

where ξ = (gmixλ/D) coth tN−x
λ

is the backflow parameter.

2.4.1 Enhanced Gilbert damping

The spin pumping current is generated by magnetization precession which is in turn

driven by ferromagnetic resonance. The dynamics of a FM layer is always described

by the Landau-Lifshitz-Gilbert equation,

dm

dt
= −γm×Heff − α0m×

(
m× dm

dt

)
+

gL
4πMtF

js (2.45)

where α is the Gilbert damping of the ferromagnetic layer itself, which is due to the

inhomogeneous broadening and other disorder effects. The last term emerges from

the spin transfer torque effect, where M is the magnetization of the film, tF the FM

layer thickness and gL the Lande factor.

When we plugged in the total spin pumping current we just calculated above, the

spin pumping current act as an extra damping term,

α = α0 +
gLgmix

4π(1 + ξ)MtF
(2.46)

where the second term denotes the extra damping induced by spin pumping.
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2.4.2 Inverse spin Hall voltage

Let’s consider the polarization of the spin pumping current. Recall that the magne-

tization precession is,

m(r, t) = θF (r) [msez + δm(ex cosω0t+ ey sinω0t)] (2.47)

Then the spin pumping current polarization is

m× dm

dt
= ω[δm2ez +msδm(ex cosω0t− ey sinω0t)]. (2.48)

The second term is an ac spin current which is up to the first order of the precessing

magnitude δm, and the first term is of the second order or precessing magnitude but

a dc current. The ac current is difficult to measure experimentally [38,52], so the dc

term is mostly studied in spite of the small magnitude.

Recall Eq. (2.44), the dc part of the spin pumping current is

jtot
s (x > 0) =

gmixω sin2 φ

(1 + ξ) sinh(tN/λ)
sinh

tN − x
λ

(2.49)

where the φ is the precession angle. Such spin current is flowing in x direction while

polarized along z direction. Via inverse spin Hall angle, a electric charge current

flowing in y direction is generated. The the total charge current can be calculated

Ic = θH

∫ tN

0

dxjtot
s (x) =

θHgmixω sin2 φ

(1 + ξ)
tanh

tN
2λ

(2.50)

This current can be measured as an electric voltage.

When comparing Eq. (2.50) and (2.46), both the enhanced damping and the

electric current/voltage depend on the NM layer thickness. For enhanced damping,

the dependence emerges from ξ, while the thickness of electric current emerges from

ξ and the extra tanh term. Obviously, of them should have same length scale as

λ, which significantly differs from the experiment results. The observed enhanced

damping saturates at tN = 2 nm while the charge current signal doesn’t saturates

until 35 nm [41]. In this chapter, we will first theoretically introduce the effects of

interfacial SOC and then discuss how this can resolve above controversies.

2.5 Spin Pumping in the presence of Spin-Orbit Coupling

In Sec. 2.2, we have derived the general formula for spin pumping

jαi (r, t) =
~
4π

Jex~2

2mei

∑
β

∫
FM

d3r′Tr
[
σαGR(r, r′)

↔
∂iσ

βGA(r′, r)
] dmβ

dt
(2.51)
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In Chapter 2, we show the application of the above formula when the spin-orbit

coupling is absent in the system. In the earlier case, the Green’s function is diagonal

in the spin space,

G0(r, r′) =
g↑(r, r

′) + g↓(r, r
′)

2
+
g↑(r, r

′)− g↓(r, r′)
2

σ ·m (2.52)

Here, we try to evaluate spin pumping in the presence of SOC interface; in this

case the spinor Green’s functions are not diagonal in spin space. We consider an

interfacial Rashba spin-orbit coupling of the standard form,

V (r) = αRδ(z)(k̂× ẑ) · σ, (2.53)

where αR denotes the Rashba coefficient. There are two essential approaches to

include the above Rashba potential in the Green’s functions. First, we could intro-

duce an additional term for the boundary condition of the Green’s function, i.e., the

derivative of the Green’s function would have a jump across the interface, similar to

Eq. (2.22) for a δ-potential. Matching boundary conditions that entail rotation of

spinor Green’s functions makes this approach tedious and difficult. An alternative

is to treat the Rashba interaction as a perturbation such that the Green’s function

can be readily obtained as long as we have the Green’s function in the absence of the

Rashba term. We find the latter approach is simpler and valid up to second order in

the Rashba potential. The Green’s function may be obtained via Dyson equation [37],

G(r, r′) = G0(r, r′) +
∫
d3r0G(r, r0)V (r0)G(r0, r

′), where G0 is the Green’s function

without the spin-orbit coupling.

By using the Dyson equation, the Green’s function in the presence of the SOC is

G(r, r′) = G(0)(r, r′) +

∫
d3r0G(r, r0)V (r0)G0(r0, r

′) (2.54)

with G(0)(r, r′) being a 2× 2 matrix defined above. For the bilayer in which the SOC

is confined at z = 0, we can write the Green’s functions in the first and second order

perturbation on the SOC parameter αR,

G(1)(z, z′) = αRG
(0)(z, 0)

[
(k̂‖ × ẑ) · σ

]
G(0)(0, z′)

G(2)(z, z′) = α2
RG

(0)(z, 0)
[
(k̂‖ × ẑ) · σ

]
G(0)(0, 0)

[
(k̂‖ × ẑ) · σ

]
G(0)(0, z′)

(2.55)
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By placing them into Eq. (2.51), the spin current is

j(2),α
z (z, t)

=
~
4π

Jex~2

2mei

∑
β

∫
FM

d3z′
dmβ

dt

{
Tr
[
σiG(1)A(z, z′;EF )

↔
∂zσ

βG(1)R(z′, z;EF )
]

+Tr
[
σαG(0)A(z, z′;EF )

↔
∂zσ

βG(2)R(z′, z;EF )
]

(2.56)

+ Tr
[
σαG(2)A(z, z′;EF )

↔
∂zσ

βG(1)R(z′, z;EF )
]}

After we express the Green’s functions in terms of the unperturbed g↑/↓(z, z
′), e.g.,

G(1)(z, z′)/αR

= g0(z, 0)g0(0, z′)
[
(k̂‖ × ẑ) · σ

]
+g0(z, 0)g1(0, z′)

[
(k̂‖ × ẑ) · σ

]
(σ ·m) (2.57)

+g1(z, 0)g0(0, z′) (σ ·m)
[
(k̂‖ × ẑ) · σ

]
+g1(z, 0)g1(0, z′) (σ ·m)

[
(k̂‖ × ẑ) · σ

]
(σ ·m) .

we find the pumped spin currents at the interface is, up to the second order in SOC,

j(2)
z (z ≈ 0, t) =

~
4π

Γ0 Jex2

J2
ex + ∆2

[
−sign(z)η

(
m× dm

dt

)
z

ẑ − 2ηΘ(z)m× dm

dt

]
(2.58)

with η = α2
Rk

2
F/E

2
F .

After some cumbersome algebra we find to second order in the Rashba coefficient

the spin current near the interface can be written in compact form as,

jz(0
−) =

~
4π

J2
ex

J2
ex + ∆2

Γ0A1 ·
(

m× dm

dt

)
, (2.59)

at the FM side of the interface, and

jz(0
+) =

~
4π

J2
ex

J2
ex + ∆2

Γ0A2 ·
(

m× dm

dt

)
(2.60)

for the NM layer side of the interface. Here ∆ is the imaginary part local self-

energy due to disorder, Γ0 the spin pumping conductivity across the interface without

disorder, which is the same as the “mixing conductance” in the scattering formalism,

and the matrices A1 and A2 are,

A1 =

 1 0 0

0 1 0

0 0 1 + η

 ;A2 =

 1− 2η 0 0

0 1− 2η 0

0 0 1− 3η

 .
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where η = (αRkF/EF )2. From ab-initio calculations the Rashba coefficient has been

estimated to be between 0.03 and 3 eVÅ for different systems [53]. Given that the

Fermi vector, kF , is of the order of an inverse Angstrom, η is as large as 0.3 for the

systems to be discussed below.

The physical meaning of the diagonal matrices A1,A2 is: without SOC at the

interface the spin current is polarized in the direction of m× dm/dt throughout the

structure; the Rashba term at an interface makes the spin of the electron rotate about

the axis ẑ × k̂. Since this direction is in the plane of a layer, spins polarized parallel

and perpendicular to the plane of the layers receive different torques; thus A1 and

A2 are not unit matrices. However, the matrices remain diagonal because the off-

diagonal terms vanish after summing over the momentum of conduction electrons. In

A2, 1 − 2η and 1 − 3η refer to the spin memory loss factor for spin currents flowing

across the interface that are polarized parallel and perpendicular to the interface .

Having determined the spin pumping current near an interface, we evaluate the

back-scattering or “backflow” of the spin current that reduces the current arising

from spin pumping. Consider a boundary condition such that the spin current is

zero at the outer boundary of the NM layer; then one can write the spin current in

the layer in terms of its value at the interface, i.e., jz(z > 0) = jz(0
+) sinh[(tN −

z)/λsd]/ sinh(tN/λsd), where λsd is the spin-diffusion length. Consequently a spin

accumulation µ is established in the NM layer; this accumulation is polarized trans-

versely to the magnetization of the FM layer. For this reason the spin current

backscattered into the FM layer is also polarized transversely to the magnetization

of the layer, and decays within a spin coherence length, which for a strong ferromag-

net such as Co and Fe is a few monolayers [32], The ensuing difference between spin

accumulations in the NM and FM layers creates a bias which drives a diffusive spin

current flow towards the FM layer known as the “backflow” due to spin pumping [54].

In previous approaches without SOC, backflow was accounted for by introducing the

mixing conductance across the interface. Here, we include backflow by using Eq. (3)

where the source term, the magnetization dynamics in the FM layer, is replaced by

the spin accumulation µ(r) in the NM layer, i.e.,

jα,backz (r) =
~

2meiC

∑
β

∫
NM

d3r′Tr[σαGR(r, r′;EF )
↔
∂zσ

βGA(r′, r;EF )]µβ(r′). (2.61)

where C =
(
me
~2

)2
lm is a normalization factor, and lm the mean free path. By using

calculations similar to those leading to Eqs. (2.59) and (2.60), the backflow spin
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Figure 2.3. Illustration of spin pumping (a) without and (b) with Rashba SOC at

the interface. In both cases, (c) and (d), the spin current decays oscillatorily within

FM layer and exponentially in the NM. The maximum spin current jmax occurs at

z = 0−. The dependence of jmax, normalized to its disorder-free value j0
max, on the

ferromagnetic exchange constant for several values of the disorder parameter ∆, (e),

where ∆ is the imaginary part of self energy. The ratio of the interface spin current

jump ∆jint to the spin current relaxed in the NM layer as a function of the SOC

strength for several thickness of the NM layer, (f) (in plane spin polarization).

current across an interface is,

jbackz (0−) = − ~
2mekF

Γ0A2 · µ(0+), (2.62)

jbackz (0+) = − ~
2mekF

Γ0A1 · µ(0+). (2.63)

By combining currents due to the spin pumping, backflow, and diffusive current
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in the NM layer we finally arrive at the spin pumping current for the FM/NM bilayer.

In the NM layer

jz(z > 0) =
~Γ0

4π

J2
ex

J2
ex + ∆2

N(z)AN ·
(

m× dm

dt

)
, (2.64)

where N(z) = sinh [(tN − z) /λsd] / sinh (tN/λsd); in the FM layer

jz(z < 0) =
~Γ0

4π

J2
ex

J2
ex + ∆2

F (z)AF ·
(

m× dm

dt

)
, (2.65)

where F (z) is 1 at z = 0 and has an oscillatory decay in the FM layer. The matrices

AN and AF are

AN =
1

1 + ξ

 1− 2η 0 0

0 1− 2η 0

0 0 1− 3η − ξη
1+ξ

 ;

AF =
1

1 + ξ

 1 + 4ηξ 0 0

0 1 + 4ηξ 0

0 0 1 + 8ηξ + η
1+ξ

 .

where the backflow factor ξ = (3/2)(Γ0/k2
F )(λsd/lm) coth(tN/λsd), ranges between

zero and infinity. ξ = 0 refers to the case where’s no backflow; then AF , AN reduce

to A1, A2. ξ = ∞ indicates that the entire spin current pumped into the NM bulk

flows back across the interface; then AN vanishes and AF is proportional to η which

means that the entire spin current is relaxed at the interface.

Equations (2.64) and (2.65) are our main results. In Fig. 2.3, we show the spin

current in the FM/NM bilayer for various values of the disorder, SOC strength, and

thickness of the NM layer. We conclude by discussing the salient features of the

dependence of spin pumping on these parameters and relate our results to existing

data.

1) Spin memory loss and spin current absorption at interfaces. The loss of

spin current at Cu/Pt interfaces was proposed more than a decade ago. H. Kurt et al.

[55] observed in their CPP GMR study that the spin current across a Cu/Pt interface

is not continuous. More quantitatively, if the standard spin diffusion equations are

used to fit the data of magnetoresistance, a spin memory loss parameter, as large as

90%, at the Cu/Pt interface has to be introduced. The spin memory loss cannot be

due to strong spin flip scattering in the Pt layer since the measured spin diffusion

length of Pt remains relatively long at 14nm. We consider such spin memory loss
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as the experimental evidence of the strong interfacial SOC. Another experimental

support of the loss of spin current at interfaces is the observation that enhanced

damping due to spin pumping saturates at just a few monolayers of Pt grown on

FM films [41], i.e., a thicker Pt layer does not increase the damping since the spin

current is mainly lost to the interface. These experiments support our idea that the

SOC at interfaces that absorbs a significant portion of the spin current; quantitative

estimates for the loss are determined from Eqs. (2.64) and (2.65) as long as the

Rashba coefficient is known.
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Figure 2.4. The enhanced damping parameter and its anisotropy of spin pumping

for several different SOC parameters. (a) The precessing axis is parallel to the layers

with the backflow fraction at large NM thickness ε ≡ ξ/(1 + ξ) = 10%, and (b)

ε = 40%. The dashed lines indicate the effective thickness of the interface. (c) The

difference of the enhanced damping parameter for the precessing axis perpendicular

and parallel to the layers for ε = 10%, and (d) ε = 40%. The inset in (a) is from the

experimental data in ref. [41].

2) Dependence of the spin current on disorder. Yoshino et al. have inves-

tigated the dependence of the enhanced damping on the composition of the ferro-

magnetic alloy FexNi1−x [56]. It was found that the induced electric voltage scales
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with the average saturation magnetization of the alloy. In our sd model, the sat-

uration magnetization is proportional to the exchange parameter J2
ex, and thus the

spin pumping current, Eq. (2.64) and (2.65), which is proportional to the enhanced

damping parameter, does predict such dependence in the limit of a strong disorder.

In the previous spin pumping theory [25], the mixing conductance is independent of

the alloy composition.

3) Resolving the controversy between short and long spin diffusion length.

Currently there is a lively debate on the spin diffusion length of Pt [39–44]. In FMR

experiments, the thickness dependence of the damping constant leads to a short

length, typically a few monolayers, while the inverse spin Hall effect presages a much

longer spin diffusion length for Pt. This discrepancy is resolved by noting that the

damping enhancement of FMR is mainly associated with absorption of spin current at

the interface, while the inverse spin Hall effect measures the spin current in the bulk

of the Pt layer. Our formalism, Eqs. (2.64) and (2.65), provides a natural explanation

for the different length scales found from different experiments.

4) Anisotropy of enhanced damping. Another prediction from Eqs. (2.64) and

(2.65) is the anisotropy of the pumping current depending on whether the axis for the

precessing magnetization is in or perpendicular to the plane of a layer. If we define

the enhanced damping parameter as the loss of spin current at the interface and in

the NM bulk, we find,

α⊥ ∝
1 + 4ηξ

1 + ξ
(2.66)

α‖ ∝
1 + 6ηξ

1 + ξ
+

η

2(1 + ξ)2
(2.67)

The in-plane damping is always larger than that of the out-of-plane. Early experi-

ments overlooked this anisotropy. In Fig. 2.4, we show the anisotropy of the enhanced

damping as the parameters are varied.

5) Inverse spin Hall from the FM layer. Eq. (2.65) explicitly determines the spin

current in the FM layer. We are unable to analytically write down the expression for

the position dependence of F (z) due to different Fermi surfaces in different materials.

However we can estimate the average spin current, I tF ≡ (1/tFM)
∫ 0

−∞ dzj(z), in the

FM layer by approximating F (z) as an oscillatory decaying function with a period

of Lco = 2π/(kF↑ − kF↓); it follows that I tF ≈ Lcoj(0
−). The inverse spin Hall in the

FM layer converts the spin current into a voltage VISHE proportional to I tF . Such a

voltage has recently been observed in NiFe/YIG bilayers [57].

Finally, we wish to comment that our theory may also be applied to study the
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spin pumping in ferromagnetic and topological insulator bilayers. A spin pump-

ing induced robust spin Hall voltage has already observed in NiFe/Ag/Bi [15] and

NiFe/BiSbTeSe [48]. A possible explanation is that the spin pumping induces a large

spin accumulation near the surface of the topological insulator, and a conversion be-

tween the spin accumulation and electric current occurs at the momentum-spin locked

surface [14]. We point out that a more quantitative treatment of spin accumulation

and induced current on the surface of TI’s would have to include the coupling between

the 2-dimensional TI states and 3-d metallic states; this requires a separate study.

2.6 Spin Pumping induced Electric Voltage

In above section, we proved that the interface Rashba SOC leads to spin memory loss,

which explains the reason why the enhanced Gilbert damping saturates at a small

NM layer thickness. In this section, we discuss the effects of interface SOC on the

induced electric voltage.

2.6.1 Spin pumping induced electric voltages

As both spin currents absorbed by the interface RSOC and by the spin diffusion in

the NM layer would enhance the damping of the FM precession, they also contribute

to the electric voltage. In the NM layer, the injected spin current converts to a charge

voltage via ISHE which may be parameterized by the spin Hall angle θNSH ,

VN =
θNSHeLΓNefff sin2 φλsd

σN tN + σF tF
tanh

tN
2λsd

(2.68)

where we have averaged over a precession period so that the above signal is a dc

voltage; in the above equation, φ is the FM precession angle, L is the length of the

bilayer along y direction, f is the precession frequency, σN(F ) is the conductivity

of the NM (FM) layers, tN(F ) is the thickness of the NM (FM) layer and ΓNeff =

Γ(0)(1− ε)(1− δ) is the effective spin pumping conductance. Note that ΓNeff reduces

to the conventional spin mixing conductance if there is no interface SOC (δ = 0).

The induced charge voltage from the FM layer is

VF =
θFSHeLΓFefff sin2 φlF

σN tN + σF tF
(2.69)

where lF ≡
∫ 0

−∞ dzF (z) can be related to the transverse coherence length, lF ≈ λc,

and ΓFeff = Γ(0) [1− (1− δ)2ε]. Since the coherence length in FM layer is usually
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much smaller than the spin diffusion length [32], the voltage signal contributed from

the FM layer is one to two orders of magnitude smaller compared to that from the

NM layer.

The electric voltage contributed from the interface is modeled by the inverse Edel-

stein effect [14, 15]. The spin current absorbed by the interface would convert into

a spin accumulation of the interface layer which in turn creates a non-equilibrium

charge current; this is the inverse process of the electric current induced spin accu-

mulation in a 2d Rashba electron gas [13]. A simple relation between the charge

current and spin current loss can be established within the constant relaxation time

τ approximation,

je =
αRτ

~
[jF (0)− jN(0)] . (2.70)

This is known as the inverse Edelstein effect and one may define an inverse Edelstein

length λIEE ≡ αRτ/~ [14, 15]. The physical meaning is that the spin relaxation

in the Rashba interface equals the rate of the spin current pumping at the steady

state condition. By using the resistance-in-parallel model, one immediately finds the

contribution of the electric voltage from the interface,

VInt =
λIEEeLΓ(0)δ(1 + ε− δε)f sin2 φ

σN tN + σF tF
. (2.71)

When the layer thickness is comparable to the mean free path, we use the thickness

dependent conductivities, see below.

2.7 Results and discussions

Our central result is that the induced electric voltage comes from all three regions–

the FM layer, the NM layer and the interface. The total electric voltage is thus the

summation of Eqs. (2.68), (2.69) and Eq. (2.71),

V = VF + VN + VInt. (2.72)

While VF is generally smaller than the other two, it could be important when the

other two are absent. For example, for NiFe/YIG bilayer where YIG is an insulator

and thus VN = 0. Also, one expects that the RSOC is much smaller than that of

NiFe/Pt interface and therefore VInt is small. Indeed, Hyde et al. [57] had observed

that the induced electric voltage in NiFe/YiG comes from the NiFe layer. In the

following, we only consider metallic bilayers such as NiFe/Pt and will discard VF in

our numerical calculations.
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Figure 2.5. NM layer thickness dependence of the electric voltage calculated from

Eq. (2.68) and (2.71). The parameters are: θNSH = 0.1, λIEE = 0.06nm, λsd = 7.7nm

and δ = 0.9, σF = 3.3×106Ω−1m−1, tF = 10nm. The spin diffusion length used here

is the value from ref. [40].

To apply Eqs. (2.68) and (2.71) to experimental systems, one needs to have a

reasonable estimate on all parameters. We choose these parameters either from the

experimental data or from “consensus” theoretical assumptions. In Figure 2.5, we

show the bulk and interface contributions to the electric voltage as well as their

sum. The parameters are indicated in the figure caption. A particular choice of

a large RSOC of δ = 90% was in accordance with the experimental result that a

spin memory loss of NiFe/Pt interface is about 90% as far as the spin transport is

concerned [55]. The backflow parameter is taken as about 50%. The conductivity

of the bilayer entering the denominator of Eqs. (2.68) and (2.71) is modeled by the

limiting value of Fuchs-Sondheimer theory in which the thickness dependence of the

Pt conductivity is approximated by,

ρ(tN) = ρ∞

[
1 +

3l

8(tN − h)

]
(2.73)

where l is the mean free path in bulk and h is the interface roughness; we have chosen

theses parameters from ref. [58], h = 0.8nm, l = 4.1nm, ρ∞ = 3.28×107Ωm. Clearly,

with the choice of the parameters given in Fig. 2.5, the interface contribution to the

electric voltage is generally larger than that of the bulk.

Prior to our work, the spin pumping induced electric voltage is exclusively analysed

via the ISHE. We believe that the omission of the interface contribution to the electric



46

voltage is the origin of a few erroneous conclusions. First, the experimental fit to the

enhanced damping parameters and the induced electric voltage often contradicted

each other in terms of the spin diffusion length. Some results are unphysical since

the spin diffusion length derived from fitting to the bulk ISHE is much smaller than

the mean free path. Due to the co-existence of the interface and bulk contribution,

the single exponential fit on the thickness dependence of the NM layer used in the

early fitting procedure is doomed to fail. Second, the backflow parameter ε is not

consistent with the reasonable choice of parameters. Often, an extra-large valid of

the backflow is needed for better fitting [40,111]; this is incompatible with the notion

that Pt is a good spin sink and ε is small. Third, recent experiments have in fact

showed that the electric voltage can be induced by spin pumping without a NM layer

as a spin sink [15,57].

In Fig. 2.5, we compare our calculated results with the experimental data from

ref. [40] by using our Eq. (11). In our calculation, we considered the elliptical mag-

netization dynamics to compare with experiment. Since in real experiments, the

precession orbit is no more a circle due to the contribution to the effective field from

the ferromagnet magnetization [61]. We use the experimental values of the thickness

dependent conductivity, σN(F ) = 4.1(3.5)× (1− etN(F )/29.6(9.8))× 106Ω−1m−1, in order

to reduce the uncertainty of the model parameters. Interestingly, the dependence of

the electric voltage on the FM layer thickness shows non-monotonic behavior; this is

due to 1) the precession angle generated by a fixed power microwave source is inversely

proportional to the thickness of the FM layer, and 2) the conductance of the bilayer

increases with the thickness of the FM layer. With the best fit, we have used the

microwave frequency magnetic field µ0hrf = 1.7× 10−4T which is directly related to

the precession angle, where µ0 is the vacuum permeability. The spin diffusion length

is found to be λsd = 11.8 nm; this is the longest value reported recently. The inverse

Edelstein length for NiFe/Pt interface is 0.055nm, smaller than the recent result for

NiFe/Ag/Bi multi-layers [14, 15].
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Figure 2.6. The comparison of the thickness dependence of the electric voltage

between our theory and experiments of Nakayama et al. [40]. In our calculation, we

used the values L = 1.6mm, f = 9.44GHz, µ0Ms = 0.72T which are from ref. [40].

We use δ = 0.9 as the interface spin memory loss. With the best fit, we find θNSH =

0.035, λsd = 11.8nm, µ0hrf = 1.7× 10−4T, Γ(0) = 3.02× 1019m−2, λIEE = 0.055nm.

(a) dependence on the FM layer thickness for a fixed tN = 10nm, and (b) dependence

on the NM layer for a fixed tF .
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Chapter 3

Spin Hall measurement in spin pumping and spin

transfer torque

Spin Hall angle characterizes the efficiency of spin-charge current conversion and it

has become one of the most important material parameters for spintronics physics

and device application. A long standing controversy is that the spin Hall angles

for a given material measured by the spin pumping and by the spin Hall torque

experiments are inconsistent and they could differ as large as an order of magnitude.

By using the linear response spin transport theory, we explicitly formulate the relation

between the spin Hall angle and measured variables in different experiments. We find

that the non-local conductivity inherited in the layered structure plays a key role to

resolve conflicting values of the spin Hall angle. We provide a generalized scheme for

extracting spin transport coefficients from experimental data.

3.1 Experiments Measurement of spin Hall angle

Spin Hall (SH) and inverse spin Hall (ISH) effects provide an efficient way to convert

charge-to-spin and spin-to-charge currents [3, 4]. Spin Hall angle θH quantitatively

characterizes the conversion efficiency: SH yields a spin current js = θH(~/2e)je from

the applied electric current density je, and ISH generates an electric current je =

θH(2e/~)js from the injected spin current js. Since there is no “spin current meters” to

directly measure the spin current, one relies on indirect measurement in which the spin

current produces some measurable consequences. The first measurement of the SH

effect was achieved via optical Keer effect where spin accumulation at the edge of the

sample is detected [62], but electrical methods are more desirable for nanostructure .

Spin transfer torques (STT) [63–71] and ISH voltage [39–42,72,73] from spin pumping

(SP) or spin Seebeck (SS) are two established electrical measurements of the spin

current. Both methods are based on a bilayer structure made of a ferromagnetic

(FM) layer and a non-magnetic (NM) layer. Typically, the non-magnetic layer is

a heavy metal or a topological layer of which the spin Hall angle is measured. In

STT, an applied in-plane charge current in the heavy metal converts to the spin

current flowing perpendicularly to the layers, and subsequent spin current absorption
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Figure 3.1. Illustration of spin Hall measurement. (a) A precessing magnetic layer

pumps the spin current into the heavy metal. An electric field (or a charge voltage)

from the ISH effect is measured. (b) An applied in-plane electric current accompanies

a spin current flowing perpendicular to the layer due to SH effect. The spin current

exerts a torque on the ferromagnetic layer which is being measured. The table of the

spin Hall angles shows a wide range of values for these two classes of measurement.

creates a spin torque on the ferromagnetic layer. Thus, the spin Hall angles are

determined through the measurement of the current-induced spin torque. In ISH

voltage measurement, a spin current is generated by either the spin pumping from

the precessing ferromagnetic layer or by a thermal gradient in the magnetic layer.

The spin current injected to the heavy metal by SP or SS subsequently converts to an

electric charge current in the plane of the layer, yielding a measurable voltage. While

both methods have been widely studied for different materials, the experimentally

deduced values of θH have consistently differed by a large margin, from several tens

to a few hundred percentage, see Table 3.1 for the experimental data from literature.

In spite of extensive measurement for materials such as Pt, W, Ta, there is no

consensus agreement on the proper value of the spin Hall angle due to apparently

conflicting results among experimental groups. In this letter, we theoretically formu-

late the relation between the spin Hall angle and the measured variables of the above

experimental measurements. As the layer thickness of the experimental bilayers are

often of the order of the electron mean free path, we find the non-local conductivity

in these experiments plays crucial roles, and thereby significant corrections to the

previously claimed spin Hall angles in different experiments are required.
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Table 3.1. Spin Hall angles reported by inverse spin Hall voltage and spin transfer

torque experiments.

Heavy

Metal
θH from ISH θH from STT

Pt

0.012 [41], 0.013 [40],

0.013 [39], 0.027 [42],

0.03 [72], 0.08 [73], 0.1 [74]

0.04 [68], 0.08 [63], 0.19 [67]

Ta -0.02 [72], -0.07 [74] -0.15 [69], -0.2 [66]

W -0.14 [74] -0.2 [70], -0.3 [64], -0.5 [71]

3.2 Role of non-local spin Hall conductivity

3.2.1 Role of None Local Conductivity in Spin Hall Measurement

We start with the ISH method (spin pumping or spin Seebeck) in which a spin current

js is injected from the ferromagnetic layer to the heavy metal. By considering the

process of the spin diffusion and spin current backflow, the spin current in the heavy

metal decays as js(z) = js(0) sinh [(dN − z)/λs] / sinh (dN/λs) where js(0) is the spin

current density at the interface and λs is the spin diffusion length and dN is the

thickness of the NM layer [39]. The spin current yields an in-plane electric field

Esh(z) = θHρNjs(z) where ρN is the resistivity of the bulk heavy metal; for simplicity

we take ~ = e = 1 so that the unit of spin current is same as that of the charge

current. The use of the bulk value of the resistivity indicates that θH is defined as

to the spin Hall angle of the bulk. This electric field drives an electric current in

the plane of the layers (CIP) and a charge accumulation at the sample boundary

is built-up in the steady state, resulting in a measured electric field Em. The total

electric field, Esh(z) + Em, must satisfy the open boundary condition, i.e., the total

electric current is zero,∫ dN

−dF
je(z)dz =

∫ dN

−dF
dz

∫ dN

−dF
dz′σ||(z, z

′) [Em + Esh(z
′)] = 0 (3.1)

where σ||(z, z
′) is the in-plane two-point conductivity tensor of the bilayer. Solving

for the measured electric field from the above equation, we have

Em = G−1
t ρNθsh

∫ dN

0

dzσ||(z)js(z) (3.2)
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where σ||(z) =
∫
dz′σ||(z, z

′) is the position-dependent conductivity, Gt =
∫
σ||(z)dz is

the total conductance, and we assume the ISH current only exists in the heavy metal.

While the total conductance of the bilayer Gt can be experimentally measured and the

spin current js(z) has been indirectly measured via the enhanced damping parameter

[39], the position-dependent conductivity σ||(z) is needed in order to determine θH
from the measured electric field Em. At present, the experimental data were fitted to

the above equation by taking the conductivity by the bulk value, i.e., σ||(z) = ρ−1
N ,

i.e., the spin Hall angle was simply fitted by θ0
H = ρ−1

N Gtj̄s where j̄s is the average

current density in the heavy metal. Thus, the ratio R of the spin Hall angle θH from

Eq. (3.2) and θ0
H of the previous value for a given experimentally measured value Em

is

R ≡ θH
θ0
H

=

∫ dN
0

sinh[(dN − z)/λs]dz

ρN
∫ dN

0
σ||(z) sinh[(dN − x)/λs]dz

(3.3)

Clearly, σ||(z) from the two-point conductivity tensor in the bilayer includes the scat-

tering from the interfaces and it could be much smaller than that of the conductivity

of the bulk materials ρ−1
N when the thickness of the layer is comparable or smaller

than the mean free path. Thus, the spin Hall angle determined previously by the

SP or SS was significantly underestimated, particular for those structure with a thin

layer thickness.

Next we consider whether a similar correction is needed for the measurement of the

spin Hall angle by the STT. When an external electric field E0 applied in the plane

of the layer, a non-uniform charge current je(z) =
∫
dzσ||(z, z

′)E0dz
′ ≡ σ||(z)E0

generates a spin Hall electric field Es(z) = θHρNje(z) that drives a spin current

perpendicular to the plane of the layers (CPP). The spin current then generates a

spin accumulation µs(z) so that the effective spin electric field Eeff
s (z) is

Eeff
s (z) = θHρNje(z)− dµs

dz
. (3.4)

The linear response relation, js(z) =
∫
σ⊥(z, z′)Eeff

s (z′)dz′, where σ⊥(z, z′) is the two

point conductivity for the CPP, should be used to self-consistently solving for Eeff
s (z′).

In a previous study of the CPP spin transport, an approximate solution could be

obtained when the spin diffusion length is much longer than the mean free path [75]:

briefly, we invert the response function by writing Eeff
s (z) =

∫
ρs(z, z

′)js(z
′) and note

that js(z) varies with the length scale of spin diffusion length while the resistivity

tensor ρs(z, z
′) varies within the mean free path. We integrate over ρs , which yields
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a local resistivity ρN , i,e, the local Ohm’s law Eeff
s (z) = ρNjs(z) is valid [75], or

js(z) = θHje(z)− ρ−1
N

dµs
dz

(3.5)

By placing it to the rate equation of the spin current, ∇ · js = −µsge/τsf where τsf
is the spin-flip time and ge is the electron density of states, we have,

d2µs
dz2
− µs
λ2
s

= ρNθH
dje(z)

dz
(3.6)

where λs is the diffusion length. Note that the above diffusion equation has a source

term at the right side of the equation when the in-plane current density varies spa-

tially. To solve Eqs. (5-6), we use the boundary condition at the outer boundary,

js(dN) = 0, and at the interface, js(0) = −gmixµs where gmix is the mixing conduc-

tance. We further use the fact that the source term varies with the mean free path

while µs with λsd, and thus we replace j(z) by its average and find

js(0) = θH
gmix

(
1− sechdN

λs

)
gN tanh dN

λs
+ gmix

1

dN

∫ dN

0

je(z)dz (3.7)

where we have introduced gN = 1/(ρNλs). The STT measures the current induced

spin torque which is equivalent to the transverse component of spin current relative

to the magnetization direction of the magnetic layer. Clearly, the spin Hall angle

measurement based on the STT does not contain the factor ρNσ||(z). However, we

point out, the determination of the current in the heavy metal
∫ dN

0
je(z)dz in Eq. (3.7)

could be nontrivial if the interface carries a significant portion of the applied current;

we will discuss this case later.

It is interesting to compare Eq. (3.2) and Eq. (3.7) with the giant magnetoresis-

tance (GMR) of magnetic multilayers in the CIP and CPP geometries [1,2]. For CIP,

the electric field is independent of position, and thus the spin and electric current den-

sities are given by the two-point conductivity which has a length scale of the mean

free path. If two magnetic layers are separated more than the mean free path by

the nonmagnetic layer, the resistivity in one magnetic layer would be independent of

the other magnetic layers and the magnetoresistance vanishes [76–78]. For the CPP

case, the spin current densities are constant within the spin diffusion length, while

the total electric field (the applied plus the induced ones) depends on position. If one

similarly introduces a two-point resistivity tensor, ρ⊥(z, z′) = [σ⊥(z, z′)]−1, one finds

a local Ohm’s law remains valid, i.e., Eeff
s (z) = ρ(z)js; this is the model of resistance
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in series and the current density will be determined by the resistance in series in all

the layers. The CPP magnetoresistance does not decay exponentially with the mean

free path, instead, the much longer spin diffusion length is the relevant length scale

for the CPP GMR [75, 79]. Equations (3.2) and (3.7) involve essentially the same

mathematical features for the CIP and CPP spin transport.

3.2.2 Calculation of Conductivity in Thin Films

We now proceed to evaluate the position-dependence of the current density. For

the SP or SS, we need to find ρNσ||(z), while for STT, we determine the average

current density in the non-magnetic layer compared to the total applied current.

We summarize our model and calculation below; the detailed derivation are given

in the Appendix A. Several different interfaces will be considered. When there is

no interface states, the simplest way to calculate σ||(z) is by using the semiclassical

Boltzmann equation in which the position dependent distribution function is obtained

via boundary conditions [80,81]. Johnson and Camley [82] extended this approach by

including the spin-dependent scattering at the interface and in the bulk to model the

giant magnetoresistance effect in magnetic multilayers. Since the distribution function

varies at the scale of the mean-free path, the interface current density is usually

comparable to the bulk. Another approach is to utilize the linear response theory or

the Kubo formula to evaluate the two point conductivity, which can be expressed in

terms of real space Green’s functions [31,77,83]. The position-dependent conductivity,

with varying impurity distribution, layer thickness and interface roughness, has been

calculated across the magnetic multilayers. All of these approaches assume that the

role of the interface is to scatter conduction electrons, i.e., the interface is treated as a

boundary condition for the distribution function. We should extend the approach of

Ref. [31,77,83] by explicitly including the cases when the differences in the electronic

states for the interface and for the bulk are present.

A simple model Hamiltonian of the bilayer is chosen,

H = H0 +H ′ (3.8)

where H0 = HL+HR+Hint is the sum of the Hamiltonians for the left layer, the right

layer, and the interface monolayer, H ′ describes the coupling between the interfacial

monolayer and the left/right layers. More explicitly,

HL = −t
∑

〈i,j〉∈L,k‖

(
c+
ik‖
cjk‖ + h.c.

)
+
∑
i∈L

c+
ik‖
εLk‖cik‖ (3.9)
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for the left layer and similarly for the right layer (replacing L by R in the above

equation), where t is the hopping strength between the two nearest neighbors, c+
ik‖

=(
c+
ik‖↑, c

+
ik‖↓

)
is conduction electron creation operator at site i, expressed in the spinor

form. Note that we have written the Hamiltonian in the mixed space-momentum

representation: the translation invariance in the plane of the layer allows us to use

the in-plane momentum k|| as a quantum number while we retain the layered index

i to represent the growth direction.

The Hamiltonian of the interface is

Hint =
∑
k‖

c+
0k‖
ε0k||c0k‖ (3.10)

where the sub-index “0” indicates the interface layer, and ε0k|| is the interface energy

dispersion which could be spin-dependent.

The interaction between the interface and left/right layers is modeled by

H ′ = −tL
∑
k‖

c+
0k‖
c−1k‖ − tR

∑
k‖

c+
0k‖
c1k‖ + h.c. (3.11)

where tL/R is the hopping parameter between the interface and the left/right layer.

Note that the left (right) layer is indexed with a negative (positive) integer i repre-

senting the atomic position at z = ia; thus i = −1 and i = 1 are two atomic layers in

contact with the interface layer i = 0.

The two-point conductivity for the layered structure can be obtained by the Kubo

formula [31,77]

σ||(i, j) =
~e2

πa3

∑
k‖

vk‖(i)A
(
i, j;EF ,k‖

)
vk‖ (j)A

(
j, i;EF ,k‖

)
(3.12)

where A
(
i, j;EF ,k‖

)
= i

2

[
Ga

(
i, j;EF ,k‖

)
− [Gr

(
i, j;EF ,k‖

)]
is the spectral density

function, Ga/r is the advanced/retarded Green’s function, vk‖ = ∂εk‖/~∂k‖ is the

velocity operator of the local bands for left, interface or right layers. Note that

Green’s function and the velocity are spinors if the Hamiltonian is spin-dependent.

3.2.3 Controversy between differently measured spin Hall angle

We now apply the above two-point conductivity to a particular bilayer consisting of

NiFe and Pt layers. We first assume there is no interface state and define a specular

reflection parameter p (p = 0 for completely rough interface and p = 1 is completely
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Figure 3.2. (a) and (b): Spatial dependence of the electric conductivity across a

FM (z < 0)/NM (z > 0) bilayer for different film thickness. The magnitude of the

conductivity is normalized by the bulk value of the NM layer. (c): The correction

factor R as a function of NM layer thickness. In above calculation, we have taken

the density of states and for the FM and NM to be the same so that the conductivity

conductivity ratio is identical to the ratio of electron mean free path. In In Fig. 2(a-c)

we take the mean free path as λN = 10 nm and λF = 5 nm and the spin diffusion

length as λs = 10 nm. In Fig 2(d), three different λF = 20, 10, 5 nm are shown.
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Figure 3.3. The conductivity of a thin film with and without surface states as a

function of layer thickness, λ is the electron mean free path in the bulk. When there

is no surface states, the semiclassical continuous model (black square line) and our

tight-binding approach (red circle line) are approximately same. In the presence of

the surface state (c), the conductivity increases at the small thickness. The details of

the parameters used are given in the Appendix A.

smooth interface, and we takes p = 0 at the outer boundaries), as introduced by

Fuchs [80]. We treat both NiFe and Pt as free electron gases with typical room-

temperature resistivity values ρNiFe = 40 µΩcm, and ρPt = 25 µΩcm [42]. In Fig. 2 (a)

and (b), we show the position-dependence of the reduced conductivity σr ≡ ρNσ||(z)

for two different thickness and interface specular parameters. The σr is always smaller

than 1 in the non-magnetic layer due to additional scattering from the interface. The

reduction of σr is more profound for smaller thickness: it is averaged as 0.5 for dN = 7

nm, and 0.3 ∼ 0.4 for dN = 3 nm; this is consistent with the enhancement contribution

of the resistivity from the surface/interface scattering. Using these numerical values,

we can readily show the correction of the spin Hall angle to the previous measured

θH , as plotted in Fig. 2(c). The enhancement of the spin Hall angle is approximately

given by the average over the inverse over σr. For example, for dN = 7 nm and a

rough interface p = 0, we find R = 2. The ferromagnetic conductivity can affect

the enhancement factor as well. In Fig. 2(d), we show R as a function of NM layer

thickness for three different FM conductivity without interface roughness (p = 1).

Clearly, the influence of the ferromagnetic layer is diminished when the interface is

rough (p = 0).

Recently, there is growing evidence that the spin-charge conversion also takes place

at the interface [49, 65, 84–90]. In the presence of large spin-orbit coupling known as
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the Rashba interaction, a spin helix state exists at the transition metal interface,

but not in the bulk. In this case, the current density distribution at the interface

could significantly differ from the bulk. In the extreme case of doped magnetic/non-

magnetic topological insulator bilayer, the interface conduction is much higher than

in the bulk, and thus the proper determination of the spin and charge currents in the

layer and at the surface becomes a challenging issue. As an example, if we model the

interface dispersion by,

ε0k = ε0 + ~vF (k× σ) · ẑ, (3.13)

several additional physics enter: the interface carries a significant in-plane current,

contributes spin Hall signal, and absorbs the spin current. In the SP, the interface

leads to the spin memory loss [21, 50, 91], in the meanwhile, it creates an interface

inverse Edelstein effect [14]. For the STT, there are complications on the relative

contributions of the spin torque from the interface and bulk. We show in Fig. 3, that

in the present of the above interface states, the current has a higher density than that

in the bulk. In general, the quantitative determination of the interface versus bulk

from the present experiments of SP and STT is difficult, we nevertheless propose that

if the spin Hall and inverse spin Hall effects have independent contribution from the

interface and from the bulk, a simple additive formula for the measured electric field

by the spin pumping or spin Seebeck is,

Em = G−1
t js(0)

[
ρNθH

∫ dN

0

dzσ||(z) sinh
dN − z
λs

+ (1− δ)−1θidi

]
(3.14)

where θi is the spin Hall angle of the interface, di the effective thickness of the interface,

δ is the spin memory loss factor that characterizes the reduction of the spin current by

the interface spin-flip process [21] . Similarly, for the STT experiment, one includes

the interface contribution,

js(0) = θH
gmix

(
1− sechdN

λs

)
gN tanh dN

λs
+ gmix

1− δ
dN

∫ dN

0

je(z)dz + θij
i
e (3.15)

where jie is the electrical current at the interface. Through a detailed thickness-

dependent measurement, it is possible to extract the spin Hall angle parameters of

the interface and bulk with a reasonably acceptable accuracy.



58

Chapter 4

Spin convertance at magnetic interfaces

Angular momentum transport in magnetic multilayered structures plays a central role

in spintronic physics and devices. The angular momentum currents or spin currents

are carried by either quasi-particles such as electrons and magnons, or by macro-

scopic order parameters such as local magnetization of ferromagnets. Based on the

generic interface exchange interaction, we develop a microscopic theory that describes

interfacial spin conductance for various interfaces among non-magnetic metals, fer-

romagnetic and antiferromagnetic insulators. Spin conductance and its temperature

dependence are obtained for different spin batteries including spin pumping, temper-

ature gradient and spin Hall effect. As an application of our theory, we calculate

the spin current in a trilayer made of a ferromagnetic insulator, an antiferromagnetic

insulator and a non-magnetic heavy metal. The calculated results on the temperature

dependence of spin conductance quantitatively agree with the existing experiments.

4.1 Motivation

In spintronics, one of the most important variables is spin current which describes the

propagation of angular momentum information through magnetic and non-magnetic

media [92]. There are a number of different carriers that contribute to spin current.

In non-magnetic metals, the carriers are conduction electrons while for magnetic in-

sulators, the angular momentum carriers are magnons or spin waves. When these

different carriers meet at interfaces, they transfer the angular momentum via inter-

facial exchange interaction. For example, the spin pumping describes a precessing

ferromagnet transferring its long wavelength magnon current to an electron spin cur-

rent in the adjacent metallic layer [25, 93], and the spin Seebeck effect addresses the

spatially non-uniform thermal magnon diffusion [94–97].

Recent experiments have shown that angular momentum current transfer at in-

terfaces is a general phenomenon for many combinations of materials as long as the

low-energy carriers (quasi-particles or order parameters) of the materials have nonzero

angular momentum [20,98–106]. In a trilayer made of a ferromagnetic insulator (FI)

layer (YIG) sandwiched between two non-magnetic metallic layers (Pt), it has been
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observed that a charge current applied in one of the metal layers can result in a charge

current in the other layer via magnon-mediated spin current propagation [98–102].

The observed signal is much more profound at high temperature, indicating that a

simple model based on a temperature independent interfacial mixing conductance

would fail to describe the experimental findings [100,102]. Other recent experiments

demonstrated that the spin current can flow from a ferromagnetic insulator to a

non-magnetic metallic (NM) layer with a thin antiferromagnetic insulator (AFI) in

between [20,103–105]. Furthermore, the spin propagation efficiency is much enhanced

at high temperature when compared with the device without the AFI layer [20,104].

These findings call for a more comprehensive theoretical model which is capable of ad-

dressing the angular momentum current across interfaces between different materials

at finite temperature.

There are a number of existing theoretical models for the spin conductance (SC)

near interfaces. In spin pumping, the SC or mixing conductance between a ferromag-

netic layer and non-magnetic metallic layer has been calculated at zero temperature

using first principle methods [107]. In spin Seebeck effect, the SC between the FI and

NM layers has been studied by model Hamiltonians and the resulting SC is highly

temperature dependent [16]. Thus, the spin conductances for the thermally driven

spin Seebeck effect and for the spin pumping are quite different even though the in-

terface is identically same. There are also theoretical studies involving AFI layer.

Ohnuma et al. calculated the spin current due to a temperature difference across the

AFI and NM interface [108]. Cheng et al. studied spin pumping from an AFI layer

to a NM layer [109]. Recently, Rezende et al. introduced a mixing conductance for

the interfaces between FI and AFI layers phenomenologically without calculating its

temperature or material dependence [110].

In this chapter, we develop a theory to formulate the SC for interfaces with differ-

ent material combinations by using a generic interface exchange Hamiltonian, with

an emphasis on the temperature dependence of the SC.

4.2 Magnons and Spin batteries

4.2.1 Three spin Batteries

The interface SC is defined as the ratio of the spin or angular momentum current

across the interface to the spin voltage drop at the two sides of the interface. The

spin voltage is provided by a spin battery. Followed the three spin current genera-

tors introduced in Ref. [111], we define the spin battery voltage in each case before
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calculating the SC.

First, the spin voltage of the “spin pumping battery” [112], which is generated

by an external microwave source such that the magnetization of ferromagnetic layer

undergoes precession motion in the ferromagnetic resonance (FMR) condition, can

be defined as

Vsp =
~
4π

m× dm

dt
, (4.1)

where m is the dimensionless unit vector representing the direction of the magneti-

zation of the layer. It is understood that the spin pumping battery provides non-

equilibrium magnons with zero wave number (k = 0).

The second spin battery is created by a temperature gradient across a FI layer

[16, 116]. The presence of the position-dependent temperature T = T (x) in the FI

layer (x < 0) leads to a non-uniform local magnon density

n(x) =

∫
dεqg

F
m(εq)N0(εq, T )

whereN0(εq, T ) = [eεk/kBT−1]−1 is the Bose-Einstein distribution function and gF
m(εq)

is the FI magnon density of states. The magnon diffusion generates a magnon current

in the FI layer. When the magnon current flows to the interface, a non-equilibrium

magnon density is accumulated near the interface. These non-equilibrium magnon

accumulation becomes a spin voltage that can excite spin degree of freedom at the

other side of the interface. In the open circuit condition (i.e., an isolated FI layer

without a contacting layer), the magnon accumulation is proportional to the magnon

diffusion length. Thus, we define the thermally driven spin battery voltage as

Vth = λF
d(kBT )

dx
m (4.2)

where kB is the Boltzmann constant and λF is the magnon diffusion length within

the FI layer.

The third battery is built up in a non-magnetic layer such as Pt with a large spin

Hall angle. When an in-plane current is applied to the NM layer, a spin Hall current

flowing perpendicular to the charge current is generated. Similar to the magnon

accumulation for magnetic materials, electron spin accumulation is built near the

interface and scales with the spin diffusion length in the open circuit condition [12].

The spin Hall battery voltage in this case is

Vsh = eθshρλNẑ× je (4.3)
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where e is the electron charge, θsh is the spin Hall angle, λN is the spin diffusion

length within the NM material, ρ is the resistivity, ẑ is the unit vector normal to the

interface, and je is the electron current density.

We emphasize a few points on the above definitions: 1) we have chosen the unit

of the spin battery to be that of energy, 2) the spin battery is a vector which charac-

terizes the direction of the angular momentum (note that the spin pumping battery

is transverse to m and the temperature gradient battery is parallel to m), 3) the bat-

tery “stores” different forms of spin angular momenta: zero-wave number magnons

for spin pumping battery, magnon accumulation with a broad distribution of wave

numbers for the thermal battery, and electron spin accumulation for the spin Hall

battery.

These spin batteries, in Eqs. (4.1), (4.2), and (4.3), are defined for an isolated layer,

i.e, in the absence of spin current. When the battery is connected to a layer which is

capable of carrying spin momenta, a spin current flows in the neighboring layer as well

as in the battery layer. Thus, both internal spin current (within the battery layer)

and external spin current will “consume” spin angular momentum. However, the

comparison between charge and spin batteries on the internal and external resistance

or conductance shows one fundamental difference: the electric current is conserved but

the spin current is not, thus the addition of the resistance in series is no longer valid

for the spin resistance [125]; we shall illustrate in later sections on how to calculate

the spin current with many layers or many spin conductors in series. The main

goal of the present paper is to calculate the SC at finite temperatures, for interfaces

between different materials and for three different batteries. We shall first tabulate

our calculated results in Table I. The explanation of the Table I is given below and

the detailed derivation of these results will be given in the next Section.

Table I shows the spin conductance for three spin batteries. In the first two cases

in which the battery layer is a FI, we consider two bilayers, FI/NM and FI/AFI. In

the third case, the battery is the NM layer and we consider NM/FI and NM/AFI

interfaces. In all bilayers, the total spin current also depends on the backflow [54]:

when the battery generates a spin current in the neighboring layer, a spin or magnon

accumulation will be established in the layer, which in turn, flows a portion of the spin

current back to the battery, resulting a smaller interface spin current. The backflow

parameter, ε, is determined by the ratio of the spin conductance at the interface to

that in the layers. In a bilayer structure, the backflow parameter for three batteries

has the same form, ε = Gint/GL +Gint/GR where GL/R is the spin conductance of the

left/right layer, see next section for details.
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Table 4.1. List of spin conductance Ginta
2 (a is the lattice constant) of several

magnetic interfaces driven by different batteries. In these bilayer structures, the spin

current across the interface is js = GintV/(1+ε) where ε characterizes a backflow spin

current and will be calculated in late sections. The Table gives the dependence of the

SC on temperature T , interface coupling strength Jint, electron density of states at

Fermi level ge(EF ), Curie temperature TC , and Néel temperature TN .

Batteries Interface Hint Ginta
2

Spin

pumping

FI/NM Jinta
+
0 c

+
k↑ck′↓

(
Jintge(EF )

)2

FI/AFI Jinta
+
q1
aq2a0βq3

J2
int

(kBTC)(kBTN)

(
T
TC

)2 (
T
TN

)3

Temperature

gradient

FI/NM Jinta
+
q c

+
k↑ck′↓

(
Jintge(EF )

)2 (
T
TC

)3/2

FI/AFI Jinta
+
qαq′

J2
int

(kBTC)(kBTN)

(
T
TC

)1/2 (
T
TN

)3

Spin Hall

NM/FI (µs ⊥m) Jinta
+
0 c

+
k↑ck′↓

(
Jintge(EF )

)2

NM/FI (µs ‖m) Jinta
+
q c

+
k↑ck′↓

(
Jintge(EF )

)2 (
T
TC

)3/2

NM/AFI (µs ‖ n) Jint

(
α+
q + βq

)
c+
k↑ck′↓

(
Jintge(EF )

)2 (
T
TN

)4

For spin pumping at FI/NM interfaces, the angular momentum current conversion

occurs between the zero wave number magnons in the FI layer and the conduction

electron spins in the NM layer [93]. The spin conductance in this case has been iden-

tified as the mixing conductance. The temperature dependence is unimportant since

the conduction electron distribution is weakly dependent on temperature. For other

interfaces, i.e., FI/AFI, the spin conductance involves conversion from FI magnons

to AFI magnons with broadly distributed wave numbers. Since the density of the

magnons is highly temperature dependent, one expects a similar dependence for the

SC. The SC in Table I is for low temperatures (lower than Néel or Curie temper-

atures) where the temperature dependence can be analytically derived. For higher

temperatures, analytical expressions are unavailable; we will present the numerical

results in later Sections. The spin conductances for the temperature gradient battery

are shown with the same two interfaces, FI/NM and FI/AFI. In both cases, there are

strong temperature dependence.

Spin conductance for the spin Hall battery is also summarized. It is interesting

to note that the electron spin current from the spin Hall battery can excite two

types of magnons: coherent zero wave number magnons which represent the uniform
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magnetization precession or spin transfer torque (µs ⊥ m), and incoherent magnons

that produce a dc magnon current (µs ‖m or µs ‖ n). When driven by the spin Hall

effect, the interface spin conductance is either same as the spin pumping conductance

or the thermal conductance depending on the relative direction between the electron

spin accumulation and the magnetization. We will further discuss these in next

section. It is noted that the magnetic metal is not included in this paper because of an

additional complication: a magnetic metal has both magnons and conduction electron

spins, and thus spin current in different layers will involve much more channels; we

will leave such complication for further studies.

4.2.2 Magnons in Ferromagnets and Anti-ferromagnets

For nonmagnetic metals, the spin current carriers are conduction electrons whose

dispersion relations are described by free electron model, i.e., εk = (~k)2/2me. For

FI or AFI, we model the spin Hamiltonian below,

H = ±Jex
∑
〈i,j〉

Si · Sj −Hext

∑
i

Szi −K
∑
i

(Szi )2 (4.4)

where Jex is the exchange constant between nearest neighbors, Hext is the external

magnetic field applied in the z direction and K is the easy axis anisotropy constant.

When choosing the minus sign in the above Hamiltonian, the spin lattice has a

ferromagnetic ground state. Within the spin wave approximation, one can readily

obtain the low-energy quasiparticle spectrum as

HF =
∑
q

εF
qa

+
q aq (4.5)

where εF
q = 2JexSZ(1−γq)+2KS+γ0Hext is the magnon dispersion, Z is the number

of nearest neighbors, S the magnitude of each atomic spin and γq = 1/Z
∑
δ e

iq·δ

where δ runs over all nearest neighbor positions. ∆F = 2KS is the FI magnon gap.

With the positive sign, the Hamiltonian describes an antiferromagnetic lattice.

Within the spin wave approximation, the magnon spectra are

HA =
∑
q

(
εαqα

+
qαq + εβqβ

+
q βq

)
(4.6)

where αq and βq represent two branches of magnon and

εα,βq = JexSZ
√

(1 + 2K/JZ)2 − γq ± γ0Hext.
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𝐿𝐹 = −ℏ

𝐿𝛼 = −ℏ

𝐿𝛽 = +ℏ

ferromagnetic spin wave

antiferromagnetic 𝛼 spin wave

antiferromagnetic 𝛽 spin wave

Figure 4.1. Spin waves in ferromagnets and antiferromagnets. The brown, red and

blue arrows are the spins on the FI lattice, AFI sublattice A and AFI sublattice B,

respectively.

∆A =
√

2KS × JexSZ is the AFI magnon gap .

There are four important distinctions between the FI and AFI magnons which

distinguishes the spin convertace at AFI interface from that at FI interface. First,

the FI magnon has a small energy gap determined by the anisotropy while the AFI

magnon has a much larger gap because it scales with the geometrical average of the

exchange constant and the anisotropy. Another distinction is that each F magnon

carries an angular momentum −~ with respect to the magnetization direction while

in the AF lattice, a magnon in one branch (αq) carries −~ and the other (βq) carries

~. In Fig. 4.1, we depict spin configuration of a FI magnon and a AFI magnon in each

of the two branches. A αq magnon represents the mode with a larger precession angle

for sublattice A (Red) than B (Blue), i.e., θA > θB. While both θA and θB depend on

q, the angular momentum is Lα = −NAS~
[
(θAq )2 − (θBq )2

]
≡ −~ for a α magnon and

Lβ = ~ for a β magnon, where NA is the number of spins in the AFI lattice. In the

absence of the external magnetic field, αq and βq magnons have exactly same energy,

indicating that these two degenerate magnon branches are equally populated at any

temperature, and thus there is no net magnetization or spin current at equilibrium.

Third, the ferromagnetic magnon has identical precession angle which is independent

of magnon wave vector or energy. While the AF magnons have different precession

angles which has on influence on temperature dependence of the spin convertance.
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Last, the ferromagnetic magnon wave vector takes up to the whole Brillouin zone

while the AF magnon wave vectors only occupy half of that. Such difference leads to

Umklapp scattering at the interface of anti-ferromagnets.

Having specified the angular momentum carriers in each layer, we now introduce

the spin interaction between two materials in contact. A generic exchange interaction

at the interface between two spins would be simplest and universal,

Hint = −Jint

∑
i

S
(L)
i · S

(R)
i (4.7)

where S
(L)
i (S

(R)
i ) represents the spin at the interface of the left (right) layer. For the

FI or AFI layers, Si refers to the spin at the local site, while for the NM, Si denotes

the spin of conduction electrons at the interface.

4.3 Spin convertace dirven by Various Batteries

4.3.1 Spin conductance of a spin pumping battery

The spin pumping battery has widely been used for the generation of the spin current

in NM layers. The SC has first been formulated via interfacial reflection and transmis-

sion coefficients in the scattering approach [54]. Other models [93], including a simple

linear response theory [21], yield essentially same result. Here we briefly re-derive it

with Eq. (4.7) for the FI/NM interface and then continue with the derivation for the

FI/AFI interface.

The second quantization of Eq. (4.7) at the FI/NM interface is

Hint = −Jint

√
2SF

∑
kk′q

(
a+
q c

+
k↑ck′↓ +H.c.

)
δk′,k+q (4.8)

where c+
kσ (ckσ) is the conduction electron creation (annihilation) operator, NF (NN)

is number of lattice sites of FI (NM) at the interface and SF is the magnitude of each

FI spin. The spin current across the interface is,

js =

〈
1

iAI

[∑
q

a+
q aq, Hint

]〉
(4.9)

where [, ] is the quantum commutator, 〈〉 refers to the average over all states and AI
is the interface cross area. Use the rough interface approximation, we don’t impose
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the momentum conservation in Eq. (4.8). By placing Eq. (4.8) into Eq. (4.9) and by

utilizing the random phase approximation, we find

js =
2πJ2

intSF

NFNNAI

∑
kk′q

[
(NF

q + 1)(1− fk↑)fk′↓ −NF
q fk↑(1− fk′↓)

]
δ(εF

q + εk − εk′) (4.10)

where NF
q and fk′s are the magnon and electron distribution functions. In thermal

equilibrium, the magnons and electrons can be described by the Boson and Fermion

statistics.

For the spin pumping voltage, the magnon distribution is the sum of the ther-

mal magnon N0(εq, T ) and coherent q = 0 magnons δq0NFSF sin2 θ representing the

uniform precession driven by microwave magnetic field, where θ is the magnetization

precession angle. The energy of a q = 0 magnon is given by the FMR frequency ω,

i.e., εF
q=0 = ~ω. Inserting the distribution function into Eq. (4.10), we find

jsp,NM
s = 2π~J2

intS
2
Fa

4
Ng

2
e(EF)ω sin2 θ (4.11)

where aN is the lattice constant of the NM material and ge(EF) the electron density

of states near Fermi energy. Under the FMR condition, we identify ω sin2 θ as the

dc component of m × dm
dt

. Compare with the definition of the spin conductance

js = Gsp
F/NVsp/2π, we find,

Gsp
F/N = 8π2J2

intS
2
Fa

4
Ng

2
e(EF). (4.12)

The above SC is also known as the mixing conductance [54]. After discarding the

unimportant constants, Eq. (4.12) is listed in the first row of Table 4.1. We note that

Ohnuma et al. have already derived the SC using similar method, but expressed the

result in terms of ferromagnetic susceptibility [93]. By replacing the susceptibility

with the Lindhard susceptibility of a non-magnetic metal, one will directly get the

mixing conductance derived here.

Next, we calculate the spin pumping conductance for a FI/AFI interface. The sec-

ond quantization of Hint in Eq. (4.7) gives the coupling between FI and AFI magnons.

The lowest order terms refer to two magnon interactions. The angular momentum

conservation limits the possible two-magnons processes to a0(α+
q′ + βq′) and its com-

plex conjugate. However, such process is prohibited by the energy conservation: the

energy of the FMR frequency or q = 0 magnon is too small to excite any magnon in

the AFI. Thus, the angular momentum current across the interface must go through

at least four magnon processes. By expanding Eq. (4.7) to four magnon operators,

we obtain a number of terms which satisfy both energy and angular momentum
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conservation. For example, the term a+
q1
a0aq2βq3 represents the transfer of the an-

gular momentum in the FI by annihilating a q = 0 and two thermal magnon of the

FI layer, and simultaneously annihilating a β magnon in the AFI layer, as long as

εF
q1

= εF
0 + εF

q2
+ εαq3

. After tedious but straightforward calculations, we find the spin

current across the interface via such four magnon processes can be written as

jsp,AFI
s =

πJ2
intSA

8NFNA

∑
q1q2q3

(
ζ2
q3

+ ζ−2
q3

)
δ
(
εF
q1
− εF

q2
− εαq3

− εF
0

)
(4.13)[

(NF
q1

+ 1)NF
q2
Nα

q3
NF
q=0 −NF

q1
(NF

q2
+ 1)(Nα

q3
+ 1)(NF

q=0 + 1)
]

where ζ2
q = |(θA − θB)/(θA + θB)| [118] and θA (θB) is the precession angle for a

given spin wave mode, NF
q1/2

and NF
q=0 are the FI magnon distribution functions,

and Nα
q3

are the distribution functions of AFI α magnons; in the long wavelength

limit, ζ2
q ' εq/JexSAZ. By inserting the ferromagnetic resonance driven magnon

distribution function, Nq = N0(εq, T ) + δq0NFSF sin2 θ, we find the SC at FI/AFI

interface due to the a+
q1
a0aq2βq3 process, Gsp

A/F = 2πjsp,AFI
s /Vsp, is

Gsp
A/F = a5

Fa
2
A

J2
intSA

32kBT

∫
dεq

∫
dεq′

(
ζ2
q′ + ζ−2

q′

)
gFm(εq)gA

m(εq′)g
F
m(εq + εq′) (4.14)

csch2 εq
2kBT

csch2 εq′

2kBT
csch2 εq + εq′

2kBT

where aF (aA) is the FI (AFI) lattice constant and g
A/F
m (ε) is the AFI/FI magnon

density of states. For temperatures much lower than the Curie and Néel tempera-

tures, Eq. (4.14) reduces to the value listed in the second row of Table 4.1 where

the unimportant numerical factors are discarded. The term a+
q1
a0aq2α

+
q3

makes iden-

tical contribution to the spin conductance that shown in Eq. (4.14). Notice that

the interaction in Eq. (4.7) also contains other four magnon terms involving three

AFI magnons and one q = 0 FI magnon like a0α
+
q1
α+
q2
αq3 and so on. Below the Néel

temperature, the spin pumping conductance from those terms can be estimated as

a−1
F a−1

A
J2

int

k2
BTCTN

(
T
TN

)5

. The total spin pumping conductance is the sum of all these

contributions.

As we have discussed earlier, the total spin current depends on the backflow.

The backflow can be easily included if the layer thickness is much larger than the

relevant length scales such as the spin or magnon diffusion lengths. The spin current

provided by the spin battery decays in the layer; this creates a spin accumulation or

magnon accumulation that drive a backflow spin current. One may introduce a spin

conductance GN = (h/2e2)(1/ρλN) as the spin conductance for the NM layer and

similarly, GF and GA for the FI and AFI layers. The Onsager reciprocal relation can
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be used to determine the backflow current [26] such that the total spin current across

the interface is reduced by (1 + ε)−1 where the backflow factor ε = Gsp
int(G

−1
F +G−1

N ).

We will discuss the relative magnitudes of these SCs when we apply our theory to a

concrete multilayer.

4.3.2 Spin conductance of a temperature gradient spin battery

The spin Seebeck current across a FI/NM bilayer has been theoretically studied in

different methods [113–116]. In this work, we follow the magnon diffusion theory used

in Refs. [115,116]. Far from the interface, the temperature gradient perpendicular to

the interface drives a magnon current. The magnon current leads to a non-equilibrium

magnon accumulation near the interface. In contrary to the spin pumping case where

the non-equilibrium magnons only exists for q = 0, there is a broad magnon spectrum

distribution. For the FI/NM interface, the interaction in the spin wave approximation

is same as Eq. (4.8) and the expression of Eq. (4.10) remains valid. However, we need

to replace the magnon distribution by,

NF
q =

1

e(Eq−µm(x))/kBT − 1
(4.15)

where we have introduced the spatial dependent magnon chemical potential, µm(x).

At equilibrium, µm(x) is identically zero. In the presence of magnon accumulation,

µm(x) characterizes the number of the non-equilibrium magnons,

δn(x) ' gF
m(T )µm(x). (4.16)

where gF
m(T ) = −

∫
dεgF

m(ε)∂εN0(ε, T ). By inserting the non-equilibrium distribution

functions, NF
q and fkσ = f0 − ∂f0

∂Ek
µσ(0+) into Eq. (4.10), we find the spin current at

the interface is,

jth,NM
s (0) =

Gth
F/N

2π

[
µm(0−)− µs(0+)

]
(4.17)

where µs(0
+) = µ↑(0

+) − µ↓(0+) is the spin split chemical potential at the interface

and

Gth
F/N =

π2J2
intSF

kBT
a3

Na
4
Fge(EF)2

∫
dεqg

F
m(εq)εqcsch2 εq

2kBT
(4.18)

is the thermal driven interface spin conductance. If the temperature is lower than

the Curie temperature of the FI, the SC reduces to a simple T 3/2 power law listed

in Table 4.1. The inclusion of the backflow can be similarly done; the calculated

backflow parameter ε has same forms as that of the spin pumping, with one distinc-

tion: in the present case, GF is the spin conductance for the longitudinal spin current
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(proportional to the magnon-diffusion length), while GF in the spin pumping battery

is for the transverse spin current where the spin dephasing length is much smaller.

The second interface for the thermally driven spin battery is the FI/AFI interface

in which the thermal magnons in the FI transfer to the magnons in the AFI layer.

In contrast to the spin pumping battery where the two magnon process is prohibited,

the thermal magnons have a broad spectrum of the magnon energy in the FI layer

and thus it is possible to directly transfer one FI magnon to one AFI magnon, i.e.,

the interface spin exchange interaction in the form of Jintaqα
+
q′ leads to a spin current

across the interface,

jth,AFI
s =

2πJ2
intSFSA

AI

∑
qq′

(
ζ2
q′ + ζ−2

q′

) [
NF

q (Nα
q′ + 1)− (NF

q + 1)Nα
q′

]
δ(εF

q−εαq′) (4.19)

where NF
q and Nα

q′ are the FI and AFI magnon distribution functions respectively.

Notice that only the transmission from FI magnon to the αq branch of AFI magnon

can conserve energy and angular momentum at the same time. Following the similar

procedure in deriving the SC of FI/NM spin interface, we find the interface current

jth,AFI
s (0) =

Gth
F/A

2π

[
µm(0−)− µm(0+)

]
(4.20)

where µm(0−/+) measures the non-equilibrium FI/AFI magnon accumulation at the

interface, and the interface conductance is

Gth
F/A =

π2J2
intSFSA

kBT
a2

Fa
2
A

∫
dεq

(
ζ2
q + ζ−2

q

)
gF
m(εq)gA

m(εq)csch2 εq
2kBT

(4.21)

4.3.3 Spin conductance with the spin Hall battery

The sources of the spin current in previous two batteries reside in the FI layer. We

next consider a non-magnetic layer with a large spin Hall angle as a spin battery. As

we have introduced earlier, an in-plane charge current creates a spin voltage in the

direction of ẑ × je due to the spin Hall effect. For a ferromagnetic layer in contact

with the spin Hall battery, the spin current would depend on the relative direction

between the magnetization m and the spin voltage. If m is perpendicular to the

spin voltage ẑ × je, the spin current entering the ferromagnetic layer decays within

very small length, resulting a spin torque at the interface. This spin conductance at

the FI/NM interface is the same as the mixing conductance defined in Eq. (4.12).

There are quite extensive studies on the magnetization switching by the spin Hall
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current [66, 119]. In the case where m ‖ ẑ × je, the spin Hall battery creates non-

equilibrium magnons in the FI layer. The spin conductance for the parallel case is

identical to the Gth
F/N shown in Eq. (4.18). Both spin conductances have been already

calculated previously [16, 17], we have listed them in Table 4.1. Here we present the

calculation for the NM/AFI interfaces.

The Hamiltonian in Eq. (4.7) within the spin wave approximation is

Hint = −Jint

√
2SA

∑
kk′q

[
ζq(α+

q + βq)c+
k↓ck′,↑ +H.c.

]
δk′,k+q

+
[
ζ−1
q (α+

q − βq)c+
k↓ck′,↑ +H.c.

]
δk′,k+q+G (4.22)

where the first term is normal scattering, the second term stands for the Umklapp

scattering [109] and G is half of the reciprocal NM lattice vector. Again, we don’t

impose the momentum conservation at the interface in the following calculation. The

angular momentum current across the interface is

js =
2πJ2

intSA

NANNAI

∑
kk′q

(
ζ2
q + ζ−2

q

) [
(Nα

q + 1)(1− fk↑)fk′↓ −Nα
q fk↑

(
1− fk′↓

)]
δ
(
εk + εαq − εk′

)
−
(
ζ2
q + ζ−2

q

) [
(Nβ

q + 1)fk↑(1− fk′↓)−Nβ
q (1− fk↑) fk′↓

]
δ
(
εk − εβq − εk′

)
(4.23)

By placing the non-equilibrium distribution of the battery into Eq. (4.23), we find,

Gth
N/A =

2π2J2
intSA

kBT
g2
e(EF)a4

Na
3
a

∫
dεq

(
ζ2
q + ζ−2

q

)
gA
m(εq)εqcsch2

(
εq

2kBT

)
. (4.24)

The above SC is applied to the case when the spin battery is parallel to the staggered

magnetization of the AFI. The superscript “th” (thermal) indicates the above spin

conductance involves the spin convertance between conduction electrons and magnons

across the whole spectrum instead of only the k = 0 mode. When they are perpen-

dicular, a spin current driven spin torque on the AFI has been proposed; this will

involve the coherent AFI magnon generation by the spin Hall battery [109].

4.4 Spin current enhancement via insertion of thin NiO layer

In Table 4.1, we have listed the interface spin current and conductance of bilayers

with semi-infinite thickness for each layer. Experimentally, there can be more than

two layers whose thicknesses are comparable to the spin or magnon decaying length.

Furthermore, experiments are usually carried out at room temperature which is not
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much lower than the Curie or Néel temperatures. For example, the spin current

with a thin NiO is largest near the Néel temperature [20, 103, 104] . Thus, in the

following, we describe how the interface SCs in Table 4.1 are applied to multilayers

with finite thickness and how these SCs changes at temperatures near or above critical

temperatures.

4.4.1 Boundary conditions for spin currents in multilayers

Similar to the electron spin transport in metallic multilayers, we need boundary con-

ditions and the spin/magnon diffusion equations within each layer. The SC in Table

4.1 will be used as boundary conditions at x = 0,

js(0
+) = js(0

−) =
Gint

2π

[
µ(0+)− µ(0−)

]
(4.25)

where Gint is the interface SC for a particular interface, and µ(0+) [µ(0−)] represents

the chemical potential of the electrons or magnons at the right [left] interface. Within

each layer, including the battery layer, the spin current is given by

js(x) = jb(x)− σdµ(x)

dx
(4.26)

where jb(x) is the source spin current in the battery layer and is zero elsewhere.

To illustrate how these boundary conditions along with the diffusion equations de-

termine the spin current in the entire multilayers, we take an example of a trilayer

consisting of FI/AFI/NM, driven by a temperature gradient battery across the FI

layer. The spin/magnon chemical potentials in each layer has the following forms:

µm = C1 exp(x/λF) in the FI layer (x < 0), µm(x) = C2 exp(−x/λA) + C3 exp(x/λA)

in the AFI layer (0 < x < dA) and µs(x) = C3 exp(−x/λN) in the NM layer (x > dA)

where dA is the thickness of the AFI layer, λF, λA, and λN are the diffusion lengths

in each layers. of the AFI layer. By using the boundary conditions, Eq. (4.25) for the

interfaces FI/AFI and AFI/NM at x = 0 and x = dA, four constants of integration Ci
(i = 1− 4) are readily determined. While the expression of the spin current is rather

lengthy and cumbersome for an arbitrary thickness of the AFI, it takes a particularly

simple form if we assume 1) the thickness of the AFI is much smaller than λA so that

there is no spin current decay in the AFI layer, and 2) the interface spin conductance

of the FI/AFI is much larger than that of the NM/AFI interface. We find the spin

current in the NM layer is

jtris (x) =
Gth

N/A exp(−x/λN)

1 +Gth
N/A/GF +Gth

N/A/GN

Vth

2π
(4.27)
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If we further approximate the FI as a good spin sink so that one may neglect the

second term in the denominator [116]. Comparing the spin current above to that of

the bilayer FI/NM, i.e., without the AFI insertion, we have

ηth ≡
jtris
jbis

= 1 +
(a− 1)GN

Gth
N/A +GN

(4.28)

where

a =
Gth

N/A

Gth
F/N

= C ′
(
JNiO/Pt

JYIG/Pt

)2(
T

TN

)2(
T

Tc

)−3/2

(4.29)

C ′ is a numerical constant of the order of 1, JNiO/Pt and JYIG/Pt are the interface

exchange constants and we have used the interface SC of Table 4.1.

Interestingly, if a � 1, i.e., the spin conductance for NiO-Pt interface is much

larger than YIG-Pt interface, the enhancement with an AFI layer insertion is sig-

nificant and the largest occurs at high temperatures. We will further address the

enhancement in the next subsection. Next, we consider the same trilayer structure

by replacing the thermal battery with a spin pumping battery. Within the same

approximation, the spin current in the NM layer is

jsp,tri
s (x) =

~
4π

Gsp
F/A exp(−x/λN)

1 +Gsp
F/A/G

th
N/A +Gsp

F/A/GN

m× dm

dt
. (4.30)

Notice that at the YIG/NiO interface, the battery is magnetization precession in the

YIG layer. Thus, we use Gsp
F/A as the interface conductance. At the NiO/Pt interface,

the spin battery is the magnon accumulation with broad wave number distribution,

and the interface spin conductance is given by Gth
N/A. Again, the spin pumping current

vanishes at low temperature, reflecting the fact that magnon or spin current is blocked

by either the FI/AFI or AFI/NM interface at low temperatures. The spin current

enhancement with the AFI layer is,

ηsp = 1 +
(b− 1)(GN +Gsp

F/N)

Gsp
F/A

(
1 +GN/Gth

N/A

)
+GN

(4.31)

where b = Gsp
F/A/G

sp
F/N.

4.4.2 Modeling spin current at elevated temperatures

As our theory is built on the spin wave approximation, one would expect the theory

not applicable to high temperatures, in particular, near the transition temperature.
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Figure 4.2. The spin Seebeck signal enhancement factor, ηth, as a function of

temperature for various spin conductance of the NM layer from GN = 1, 2, 5, 10,∞
(1018m−2), calculated by using Eq. (4.28). The parameters are aF = 1.39 nm, aA =

0.42 nm, TC = 560 K, TN = 160 K (tNiO = 0.6 nm), ge(EF ) = 3ne/2EF with

ne = 5 × 1022cm−3 and EF = 5 eV. JYIG/Pt = 0.07 eV and JNiO/Pt = 0.13 eV are

the sd constant at the interface. (a) The enhancement factor for a number of spin

conductance of the NM layer. (b) Comparison of the experimental points [20] with

the theoretical curve for GN = 6.7× 1018m−2.

However, the most interesting features with the AFI layers discovered experimentally

occur at a temperature near or even above the Néel temperature [20, 103]. Thus, it

is desirable to extend the formalism with reasonably approximations.

The spin transport near transition temperatures is in general an unresolved theo-

retical issue. While there are a number of approximate methods to treat the critical

phenomena, no rigorous theory exists for a wide range of temperatures. Here we

should remain to use the spin wave approximation with one limitation: above the

transition temperature, the spin wave approximation breaks down since spin correla-

tion length becomes finite. In early theories and neutron scattering experiments, it

was indeed found that the spin wave with long wavelengths loses its meaning, but the

short wavelength magnon remains intact [120,121]. For example, the spin correlation

length of NiO is

ι = l

(
T − TN

TN

)−ν
(4.32)

where l = 1.2aNiO, aNiO = 0.42 nm is the lattice constant of NiO and ν = 0.64 [121].
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The magnon whose wavelength is shorter than ι has well-defined dispersion relation

[120], indicating the presence of short-range AF spin correlations. We thus modify our

spin wave approximation by assuming a cutoff energy ~ωqc where qc = 1/ι such that

Nq = 0 for q < qc. When the temperature increases, the long wavelength magnons

do not participate transport. With this modification, we are able to address the spin

current propagation for a wide range of temperatures.

As an example, we consider the same FI/AFI/NM (YIG/NiO/Pt) trilayer. At

high temperatures, we no longer use Table 4.1 for the interface SC. Instead, we will

use the general expression, Eqs. (4.18) and (4.24) by placing the cutoff energy as a

lower bound of the integration. In Fig. 4.2(a), we show the spin current enhance-

ment as a function of the temperature for a thermal battery for different NM spin

conductance. As the temperature increases, the number of magnons and the inter-

face conductance increase, thus the spin current, mediated by the magnons in the AFI

layer increases. When the temperature reaches to the Néel temperature of the AFI

(Note that the Curie temperature of YIG is much higher), the number of magnons

participating the angular momentum transport begins to decrease due to removing of

the long wavelength magnons. Meanwhile, the spin current in the bilayer structure

keeps increasing with temperature when TN < T < TC. Thus, both the spin conduc-

tance Gth
N/A and the enhancement factor ηth are maximum near the Néel temperature.

We notice that spin current peak at the transition temperature has been obtained

by Okamoto by using a different approach [124]. The enhancement is reduced as

the NM layer SC decreases due to enhanced back flow, consistent with Eq. (4.29).

Interestingly, the peak position occurs at a lower temperature for smaller SC of the

NM layer; this can be explained as follows. When Gth
N/A becomes larger than GN, the

spin current in the YIG/NiO/Pt trilayer saturates, while for the YIG/Pt bilayer, spin

current continues to increase with temperature since Gth
N/F remains smaller than GN.

Notice that the calculated ηth deviates the T 1/2 law even at low temperatures due

to the large AF magnon gap. In Fig. 4.2(b), we compare our calculations with GN

measured in previous publication [41]; the agreement is considered to be excellent [20].

4.4.3 Discussions and conclusions

We have developed a theory based on spin current transfer at interfaces. The different

spin current carriers are mutually converting via an interfacial spin exchange Hamil-

tonian. Within the spin wave approximation, we are able to explicitly formulate the

SC for different sources of the spin current (spin batteries) and for different interfaces

at finite temperature.
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We point out that the SC studied here is for quasi-particle spin transport, i.e.,

the spin current carriers are incoherent low-energy quasiparticles, which is different

from the “super-current” carried by the macroscopic classical magnetization (coherent

magnons), or the order parameter. For the quasiparticle transport, the quantum

statistics governs the temperature dependent properties. In general, both incoherent

and coherent magnons contribute to the spin transport.

Our theory is particularly effective to be used for multilayered structure at finite

temperature with arbitrary layer thickness. Using the diffusion equation for each layer

along with the interface SCs, one is able to determine the spatial and temperature

dependence of the spin current. The spin battery, which is an extension of the spin

pumping battery introduced earlier [112], is a convenient concept that can be used

to describe the spin current flow. In analogy with an electric battery: the spin

battery has just one terminal while the electrical battery must have at least two

terminals because of the conservation law imposed to the charge current. The non-

conservative nature of spin current has also been studied by Camsari et al. in a

recent publication [125]. For the spin battery, one can still use spin Ohm’s law,

i.e., dVs(x)/dx = js(x)G−1
s (x) where G−1

s (x) is a local spin resistivity. Due to non-

conservative nature of the spin current, the spin current js(x) is no longer a constant

throughout the layers. Thus, the spin Ohm’s law alone (even if Gs is known) cannot

determine the spin current. In this paper, we have provided a general scheme for

computing the spin current.

Our theory provides a natural explanation to the temperature dependence of cur-

rent propagation through FI and AFI insulators. Recent experiments on Pt/YIG/Pt

have confirmed our earlier prediction [16]. The spin current enhancement by inserting

a thin NiO layer at the interface of the YIG/NM [20, 103], quantitatively supports

our theory. The other theories based on the order parameter spin transport [122,123]

have not taken into account finite temperature effects.

4.5 Other Remarks

4.5.1 Magnon density vs Magnon chemical potential

In Eq. (4.17) and (4.18), we build the boundary condition for a metal/FI interface

where there are thermal incoherent magnons in ferromagnetic layers. In [16, 115],

the same case has been addressed using similar method. In their result, the magnon

accumulation is denoted by spin density instead of chemical potential.
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Here, we choose to use the magnon chemical potential which allows us the write

the interface spin conductance just like contact conductance. A large interface spin

conductance leads to the continuity of chemical potentials at two sides of the interface.

While using spin density to address the magnon accumulation, one has two introduce

two different interface conductance [16] which makes the boundary conditions more

tedious. However, the magnon chemical potential can be ill defined in some cases

which makes the current formalism troublesome. Consider a ferromagnetic magnon

band, the magnon chemical potential can be calculated using the magnon density of

states,

µm = δn/gF
m(T ) (4.33)

where δn is the non-equilibrium density and gFm(T ) is the magnon density of states

defined below Eq. (4.16). For a gapless quadratic magnon band, gF
m(T ) diverges. Even

such issue is well known, magnon chemical potential is still used in many theoretical

works including ours.

4.5.2 Different formalism of spin pumping

In current and previous chapters, we have mentioned four different formula for spin

pumping which are summarized below. For comparison, we only consider the dc

part of the spin pumping current. In the original spin pumping theory [25], the spin

current is calculated using mixing conductance?

jsp
s =

~
4π
gmixω sin2 θ (4.34)

In another paper [93], Ohnuma et al. calculate the spin pumping into ferromagnetic

metals. The spin current is expressed in terms of susceptibility of the metal,

jsp
s =

J2
sdS

2

~2

∑
k

Imχk(ω)

ω
ω sin2 θ. (4.35)

In our work, we proposed the real space Green’s function approach and the spin

convertance formula Eq. (4.11).

In Chapter 2, we have demonstrated that the equivalence between our Green’s

function approach and the mixing conductance in the limiting case. By replacing the

susceptibility in Eq. (4.35) with Lindhard susceptibility one can show that the result

is identical to our spin convertance formula. In Ref. [93], the authors shows that their

results are identical to the mixing conductance in nonmagnetic case. Though all

results are identical in the limiting case, one should find one of them more convenient

in some particular cases.
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Chapter 5

Spin transport in weak scattering media in the

presence of spin-Orbit coupling

Conventional spin diffusion equation, based on the presence of spin-split local chem-

ical potentials, has successfully described spin accumulation attendant to diffusive

transport in spintronics. Recent experiment shows that spin accumulation far ex-

ceeds the limit set by such spin diffusive theory when the mean free path is longer

than the spin dephasing length. By introducing the momentum and spin dependent

chemical potential, we develop a generalized spin transport equation that is capable

of addressing spin transport in systems where ballistic processes are embedded in the

overall diffusive conductor. We find that the ballistic spin injection through a barrier

into a diffusive non-magnetic layer with strong spin-orbit coupling can enhance spin

accumulation by an order of magnitude when compared to the conventional theory.

5.1 Spin diffusion equation and spin injection into disordered

medium

Spin accumulation (SA), a non-equilibrium spin density created by external sources

such as spin injection across a tunnel barrier, and spin currents (SC), the difference

between the electric currents carried by spin up and down electrons, play central roles

in spintronics. At present, the macroscopic description of SA and SC relies on the

spin diffusion equation in which the spatial and temporal dependence of SA, m(r, t),

satisfies,
∂m

∂t
= D∇2m− m

τsf
(5.1)

and the diffusion SC is given by the spin-dependent Ohm’s law, js = −D∇m where

D is the diffusion constant and τsf is the spin flip scattering time. It is understood

that the above equation can be used to determine the local SA and SC at length

scales larger than the mean free path (MFP) [79, 126]. While Eq. (5.1) has been

successfully applied to explain and predict spin transport phenomena in almost all

spintronic devices [5], recent experimental result has challenged the validity of this

theory: the SA could be much larger than that predicted by Eq. (5.1) when the
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distance between the spin injector and detector in a non-local spin-valve geometry is

less than the mean free path [27,128].

Before introducing the new spin injection experiment results, we first go through

the conventional spin injection experiments and results. In Fig. 5.1, we show the

illustration of spin injection in lateral spin valve. The spin valve consists of a charge

current source, a voltmeter, a spin injector, a spin detector and a non-magnetic

channel which is the gray layer at the bottom. The spin injector polarizes the charge

current injected into the NM channel, which in turn builds up a spin accumulation

in the NM channel. Such spin accumulation can be detected by by the voltmeter,

the magnitude depends on the relative direction of the magnetization of the spin

inejctor and spin detector. When we sweep a magnetic field from large negative to

large positive, the relative direction between the magnetization of the spin injector

and spin detector changes from parallel to antiparallel, and then back to parallel.

In Fig. 5.1(b), we show the typical reading of the voltmeter when sweeping the

magnetic field, where Rs = V/Ic is the voltage normalized by the charge current. The

peak height of in Rs has been calculated based on the spin diffusion equation [131]

Rs = pjpdρλA
−1 exp (−L/λ) (5.2)

where pj/d is the spin current polarization at the spin injector/detector, and ρ is the

resistivity of the NM material at bottom, λ is the spin diffusion length of NM material,

A the cross-area and L is the distance between spin injector and spin detector.

In [27], the author reported the results on similar spin injection experiments. They

use a high mobility 2 dimensional electron gas as the NM channel, and a magnetic

tunneling contact as both spin injector and spin detector. When using above equation

to estimate the spin current polarization at the injector, 650% was obtained while

the polarization of a charge current should never exceeds 100%. Another controversy

reported is that the observed spin diffusion length is even smaller than the electron

mean free path which can be deduced from material conductivity and electron density.

This finding calls for a new theory beyond the conventional spin diffusion equation.

Several earlier attempts [129–132] by incorporating quantum and ballistic effects have

not been able to predict an enhanced spin accumulation in the ballistic regime.

Recall that the above spin diffusive equation was established based on the as-

sumption that the SDL is much larger than MFP, it would be inevitably fails in the

opposite limit: the spin-dependent local chemical potentials (LCP) without specify-

ing the direction of electron momentum becomes meaningless. In ballistic transport

in which the relevant spatial length is shorter than the mean free path, the LCP is
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Figure 5.1. Illustration of spin injection in lateral spin valve. In subfigure (a),

we show the structure of a lateral spin valve. (b) shows the typical results of spin

injection results taken from [127] where L is the distance between spin injector and

spin detector.

ill-defined since the “chemical potential” (CP) of electrons at a given spatial point

depends on the direction of electron momentum. If the entire system is ballistic, the

standard mesoscopic transport assumption would be that the left-going (right-going)

electrons has a CP of the right (left) reservoir [30]. To address the SA within the

length scale of mean free path, the ballistic nature of the transport must be included.

One attempt would be completely giving up the concept of chemical potentials and

instead, directly solve the distribution function from the generalized semiclassical

integro-differential Boltzmann equation. Such approach is numerically complicated

in general, and the obtained numerical results may not give arise significant physical

insight. Alternatively, we derive a set of useful macroscopic spin transport equations,

similar to Eq. (5.1), but take into account ballistic processes embedded in a diffusive

conductor. The key component is to introduce the spin and directional dependence

of the LCP, namely, the left-going and right-going electrons have different CPs, in

addition to the spin-dependent CP. We find that macroscopic equations of these CPs

can be established by approximately solving the spinor Boltzmann equation in the

presence of spin-orbit coupling (SOC), e.g., of the Dresselhaus form. The new spin

ballistic-diffusion equations are solved for the spin injection from a magnetic tunnel

junction to a non-magnetic (NM) layer. We show that the SA in the NM layer can

largely exceed the classical limit set by the conventional spin diffusion theory when the

mean free path is longer than the spin-orbit coupling induced spin dephasing length.

Our calculated results successfully explain recent experimental observations [27].

The Chapter is organized as follows. In Sec. 5.2, we start from the Boltzmann



80

Figure 5.2. A model bilayer consists of a ferromagnet and a non-magnetic metallic

layer separated by a tunnel barrier at x = 0. The spin-dependent transmission and

reflection coefficients are Tσ and Rσ. The spin accumulation at both sides of the

barrier is also shown and will be quantitatively calculated.

equation and derive the spin transport equations within a 2d electron gas (2DEG)

in the presence of Dresselhaus SOC. In Sec. 5.3, by utilizing our newly derived spin

transport equations together with appropriate boundary conditions, we study the spin

injection into a 2DEG across a tunnel barrier. Compared to the spin injection into

a diffusive material, we find that there is an enhancement of the spin accumulation

when the mean free path is larger than the spin relaxation length within the 2DEG.

5.2 Spin transport equation in ballistic medium

We start by considering a simple bilayer structure shown in Fig. 5.2 where a ferromag-

netic (FM) layer injects spin-polarized electrons into a NM 2DEG through a tunnel

barrier and we determine the SA in the NM 2DEG. An example of this layered struc-

ture is Ga1−xMnxAs as the FM layer, (Al,Ga)As/GaAs interface as the NM layer,

and tunnel barrier between them can be either a Schottky barrier or an insulator

film spacer. Note that the actual experimental geometry in Ref. [27] involves a non-

local spin valve for the measurement of the SA. The steady-state spinor distribution

F̂ (x,k) in the NM layer satisfies the Boltzmann equation [133],

v̂x
∂F̂

∂x
+
eE

m

∂F̂

∂vx
− 1

i~
[ĤSO, F̂ ] = − F̂ − F̄

τm
− F̄ − (1/2)ÎTr(F̄ )

τsf
(5.3)

where E is the electric field in x- direction, ĤSO = (~/2)Ωk · σ̂ is the Hamiltonian

for the spin-orbit coupling, the bar over F indicates an average over the momentum,
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τm and τsf are momentum and spin relaxation times due to impurity scattering, and

Î is the 2 × 2 unit matrix. In the presence of SOC, the velocity is a spinor v̂x =

~kxÎ + ∂ĤSO/∂kx which leads to spin-charge transport coupling, namely, the charge

density and charge current are dependent on the spin density and spin current, and

vice versa. In Eq. (5.3), v̂x
∂F̂
∂x

stands of the anti-commutator, 1
2
{v̂x, ∂F̂∂x }. In Ref. [134]

and [135], a set of coupled spin and charge transport equations in a diffusive conductor

have been derived. In the present work, we first simply take vx = ~kx in Eq. (5.3)

such that the spin and charge currents are not coupled. We show in Appendix B.1

that the spinor velocity could be included but the resulting transport equations are

far more cumbersome. Since our present focus is on the ballistic contribution to spin

accumulation and spin current, we consider the limit that spin-orbit coupling remains

small compared to the Fermi energy, i.e., ESO/EF � 1 such that the charge and spin

transport are separated, as shown in Appendix B.1.

One may explicitly separate the equilibrium F0 and non-equilibrium parts of the

distribution function,

F̂ = F0Î +

(
−∂F0

∂ε

)(
f0Î + f1 · σ

)
(5.4)

where f0 and f1 characterize the spin-independent and spin-dependent parts of the

non-equilibrium distributions. By placing Eq. (5.4) into Eq. (5.3), and only keeping

the term linear in the electric field, one finds,

vx
∂f0

∂x
+ eEvx = −f0 − f̄0

τm
(5.5)

vx
∂f1

∂x
−Ωk × f1 = −f1 − f̄1

τm
− f̄1

τsf
. (5.6)

To establish macroscopic equations for SA and SC from the above integro-differential

equation, Eq. (5.5) and (5.6), for arbitrary ratios of the mean free path and spin

dephasing length, we introduce left-going and right-going CPs for spin and charge,

f0 = µ>0 (x)θ(kx) + µ<0 (x)θ(−kx)− g0(kx, x), (5.7)

f1 = µ>1 (x)θ(kx) + µ<1 (x)θ(−kx)− g1(kx, x) (5.8)

where θ(kx) is a step-function; thus we identify µc ≡ (µ>0 +µ<0 )/2 as the CP of charge

and µcb ≡ µ>0 − µ<0 is the ballistic component of the CP. Similarly, we define that

µs ≡ (µ>1 +µ<1 )/2 is the spin CP and µb ≡ µ>1 −µ<1 is its ballistic part, see Appendix
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B.1. Next, we specify the spin-orbit coupling Ωk. For systems with either structure-

inversion or bulk-inversion symmetry-breaking, Ωk is usually taken as linear with

respect to the momentum k, i.e., Ωk = 2α/~ (k× ẑ) for the Rashba Hamiltonian,

and Ωk = 2α/~(kx,−ky, 0) for the Dresselhaus Hamiltonian where α is the Rashba

or Dresselhaus constant. By placing the above definitions in Eqs. (5.5) and (5.6),

we have shown in the Appendix B.1 that following macroscopic equations can be

obtained for the Dresselhaus SOC (similarly for Rashba SOC),

d2

dx2
µb −

2

λ

d

dx
(êx × µb) =

1

l2eff
µb +

1

λ2
(êz · µb)êz (5.9)

and

d2

dx2
µs −

2

λ

d

dx
(êx × µs) =

1

λ2
[µs + (êz · µs)êz] +

1

2l0

d

dx
µb −

1

2l0λ
êx × µb (5.10)

where l0 = vF τm/
√

2 is the mean free path, λ ≡ ~2/2(meα) is the spin dephasing

length due to spin-orbit coupling, and leff = (1/l20 + 1/λ2)−1/2 is the effective mean

free path (EMFP).

One immediately notes from Eq. (5.9) that the ballistic spin-dependent potential

µb has a length scale determined by the EMFP. In the weak spin-orbit coupling limit

where l0 � λ, or leff ≈ l0, the ballistic CP approaches zero beyond the length scale

of l0 while the spin CP or spin diffusion survives up to a larger scale of the order of

λ. This is the conventional scenario. In the opposite limit where l0 � λ, the ballistic

CP and the spin CP have a common length scale, leff ≈ λ.

The salient feature of spin ballistic-diffusion equation, Eq. (5.10), is that the spin

CP µs depends on the ballistic components of the chemical potential µb. In addition

to the precession term, Eq. (5.10) contains the gradient of µb, indicating that the SA

within the length scale of leff could differ from that of the conventional theory.

The presence of the ballistic CP also modifies the spin-dependent Ohm’s law. The

SC js and the SA δm can be expressed in terms of these CPs, see Appendix B.1,

jsρ = −dµs
dx

+
µb
2l0

+
1

λ
êx × µs (5.11)

δm = µs −
l0
2

dµb
dx

+
l0
2λ

êx × µb (5.12)

where ρ is the Drude resistivity.

Equations (5.9) and (5.10), along with (5.11) and (5.12), are generalizations of the

macroscopic spin diffusion and spin-dependent Ohm’s law. The crucial ingredient is
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the existence of the ballistic CPs. If one places µb = 0, these equations are identical to

the conventional results. How and when does µb becomes non-zero? For a mesoscopic

system where the sample size is smaller than the mean free path, µb naturally exists

since there is no scattering to establish a well-defined local potential in the sample,

i.e., the left-going electrons have the CP of the right reservoir while the right-going

electrons have the CP of the left reservoir. For a diffusive conductor, such as magnetic

metals, µb is identically zero inside the sample. For magnetic tunnel junctions where

a tunnel barrier is imbedded in the diffusive layers, as shown in Fig. 5.2, µb is non-

zero in the vicinity of the tunnel barrier because the transport across the barrier is

governed by the quantum (ballistic) tunneling rather than diffusive scattering. To

determine µb in this bilayer system, a set of boundary conditions are needed.

5.3 Spin injection into ballistic medium

In this section, we study the spin injection into a 2DEG across a tunnel barrier

characterized by the spin dependent transmission and reflection coefficients Tσ and

Rσ where σ =↑, ↓ and Tσ + Rσ = 1. In principle, these coefficients are momentum

dependent as well. For our macroscopic description, we simply consider them as their

average values. Within the ballistic picture, the CPs for the incoming and outgoing

electrons are related by these coefficients,

µ>σ (+0) = Tσµ
>
σ (−0) +Rσµ

<
σ (+0) (5.13)

and

µ<σ (−0) = Tσµ
<
σ (+0) +Rσµ

>
σ (−0). (5.14)

The next boundary condition involves the definition of contact resistance at the in-

terface that connects the spin current to the CPs between the left and right sides of

the interface,

µ>σ (−0)− µ<σ (+0) = Rσ
Jjσ(0) (5.15)

where Rσ
J = (h/Ne2) (Rσ/Tσ) is the interface resistance of spin channel σ, and N is

the number of modes within the layer per unit cross-section area [30, 136, 137]. By

combining Eqs.(5.13) through (5.15), we immediately find

µ>σ (−0)− µ<σ (−0) = µ>σ (+0)− µ<σ (+0) = jσ
h(1− Tσ)

e2N
. (5.16)

From the definition µb = (µ>↑ − µ>↓ )− (µ<↑ − µ<↓ ), we have

µb(+0) = µb(−0) = jepeff

(
h

e2N

)
, (5.17)
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Figure 5.3. Spin injection through a tunnel barrier (Tσ � 1) into a diffusive NM

layer, l0/λ = 0.2, the polarization of the barrier resistance is pJ = 0.5. We plot CPs

and spin accumulation in unit of ρjepJλ. (a) The directional and spin dependence of

chemical potentials in the NM layer for left-going, right-going, spin up and spin down

electrons. (b) the spin-dependent CP µs and its ballistic part µb, as well as the spin

accumulation δm derived from CPs shown in top panel.

where we have defined the effective spin polarization peff ≡ [(1 − T↑)j↑ − (1 −
T↓)j↓]/(j↑ + j↓).

The above boundary conditions result in three interesting consequences: 1) the

ballistic CP is continuous across the junction which is in direct contrast with the

diffusive CP which has a jump if there is interface roughness scattering or if the

interface is treated as a diffusive resistor, 2) the ballistic CP is zero if Tσ = 1, i.e., if

there is no tunnel barrier; this is evident since the entire bilayer is diffusive, and 3) if

Tσ is small, the ballistic CP is always non-zero, indicating the fundamental difference

between tunneling and diffusive scattering.

These boundary conditions together with the continuity of current and the spin
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ballistic-diffusion equations, Eqs. (5.9-5.12), completely determine the position de-

pendence of the CP, spin accumulation, and spin current. To gain further insight on

the roles of ballistic CP, we present the detailed solution for a simple case where the

magnetization of the FM layer is parallel to êx such that the precession terms (the

terms with cross products) in Eqs. (5.9-5.12) vanish and µs = µsêx and µb = µbêx,

d2µb
dx2

=
µb
l2eff

, (5.18)

and
d2µs
dx2

=
µs
λ2

+
1

2l0

dµb
dx

. (5.19)

The solutions are

µb =A exp

(
− x

leff

)
µs = − l0

2leff
A exp

(
− x

leff

)
+ A′ exp

(
−x
λ

)
,

(5.20)

where A and A′ are integration constants determined by the boundary conditions.

The general expressions for spin accumulation, spin current, and CPs for arbitrary

parameters are given in the Appendix B.2. Here, we illustrate some limiting cases.

In Fig. 5.3, we show four CPs (spin up and down with the momentum right and

left-going) as well as µs, µb and δm at x > 0 where we have chosen a small ratio of

the mean free path to the spin diffusion length, l0/λ = 0.2; this is the case valid for

the conventional spin-diffusion equation. The left-going and right-going CP merges

to a single value after x = l0, but a spin-split CP exists up to λ. Equivalently, µb
approaches zero for x > l0 and µs survives between l0 and λ. For l0 < x < λ, δm

arises purely from µs. Thus, we conclude that the conventional spin-diffusion equa-

tion, describes the transport well in this limit, even though the ballistic transmission

through the tunnel barrier is not a diffusive process.

Next, we consider the case, l0 > λ. Within the conventional spin diffusion theory,

the SA in the non-magnetic layer is δm0 = pJjeρλ exp(−x/λ), where pJ is the spin

polarization at the interface, je is the electric current density and ρ is the resistivity

[8,9]. In Fig. 5.4(a) we show four CPs and the corresponding µs, µb ; in Fig. 5.4(b) we

show the SA. On comparison with the conventional result for δm0 one immediately

sees that the SA is greatly enhanced.

The enhancement of the SA originates from the existence of the ballistic CP, i.e.,

the second term of Eq. (5.12). By recalling that µb characterizes the difference in



86

0 2 4 6

-4

0

 

 



x/

0 2 4 6
0

2

4

x/
 

 



(a) 

(b) 

 



 



 



 



m

s
b

Figure 5.4. Spin injection through a tunnel barrier into a weak scattering NM layer

where we choose l0/λ = 2 and pJ = 0.5. All CPs and spin accumulation are plotted

in unit of ρjepJλ. (a) The directional and spin dependence of chemical potentials in

the NM layer for left-going, right-going, spin up and spin down electrons. (b) the

spin-dependent CP µs and its ballistic part µb, as well as the spin accumulation δm.

The dotted line shows δm0 = ρjepJλe
−x/λ.

the number of electron spins moving to the left and right, we may loosely consider

µb as a source of spin current. The divergence of the spin current generates a spin

accumulation, therefore −l0dµb/dx ∝ (l0/leff )µb is the ballistic contribution to SA.

More quantitatively, when we carry out the detailed algebra in the limit of a large

tunnel resistance (see the Appendix B.2) we find,

δm =

(
1 +

l20
λ2

)
jepJρλ exp (−x/λ) . (5.21)

Thus the enhancement factor of the SA, which is defined as the ratio of SA to the
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Figure 5.5. The enhancement factor of spin accumulation as a function of the ratio

of the mean free path and spin dephasing length for various transmission coefficients.

The other parameters are, ρFλF = 5, ρFσlFσ = 2, pF = 0.5, ρl0 = 1, (h/e2N) = 2,

where ρFσ (lFσ) is the resistivity (mean free path) in FM layer for spin channel σ,

pF = (ρF↓ − ρF↑)/(ρF↓ + ρF↑), λF is the spin diffusion length of the FM layer and

ρF = ρF↑ρF↓/(ρF↓ + ρF↑).

conventional one, η ≡ δm/δm0,in the limiting case Tσ � 1 is

η = 1 + l20/λ
2. (5.22)

In Fig. 5.5, we show the SA enhancement factor as a function of the ratio l0/λ for

various tunnel transmission coefficients. When l0/λ � 1, there is no enhancement,

η = 1 for all transmission coefficients; as l0/λ increases, the enhancement depends

on the transmission coefficient. As T increases η decreases. Thus we conclude that

the large enhancement must simultaneously satisfy two conditions: a spin-dependent

barrier resistance that dominates over the bulk resistance, and a long mean free path

compared to the spin dephasing length. Our results are consistent with experimental

results [27]: η could be as large as 6 when the temperature is lowered such that the

mean free path exceeds the spin dephasing length in the 2d electron gas at a (Al,

Ga)As/GaAs interface when a spin current is injected through a tunnel barrier.

Finally, we wish to emphasize a few points on the role of the ratio of the mean free

path relative to the spin dephasing length. First, in quantum wells, the D’yakonov-
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Perel’ relaxation [138, 139] has been well studied theoretically and experimentally in

both strong and weak scattering limits [140–143]. One might ask whether the ballistic

components have to be considered in the weak scattering limit as well. The answer

relies on the initial or boundary conditions; if the SA is optically injected over a large

spatial region, which is the case for most experiments on semiconductor, the ballistic

chemical potentials remain zero even if l0/λ > 1 because there is no mechanism to

introduce a non-zero µb. Second, the spin-orbit coupling has various forms due to dif-

ferent growth directions of quantum wells [144,145] or the coexistence of Rashba and

Dresselhaus SOC [143,144], therefore the resulting spin ballistic-diffusions, Eqs. (5.9)

and (5.10), would be modified. In these cases, the solutions becomes rather tedious

and complex. However, the physics on the spin accumulation enhancement from the

ballistic transport remains the same.
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Appendix A

Conductivity in layered thin films

In this Appendix, we show the detailed calculations of the position dependent conduc-

tivity which are omitted from the main text. This supplemental material is organized

as follows: We introduce our model Hamiltonian for a bilayer system with interface

states in Sec. A.1. The Green’s functions in thin films and multilayers are derived

in Sec. A.2. In Sec. A.3, We show that our calculated conductivity is identical with

semiclassical results in limiting case by comparing the results of a single thin film.

We show example calculations where interface states is in presence in Sec. A.4.

A.1 Model Hamiltonian

A simple model Hamiltonian of the bilayer is chosen,

H = H0 +H ′ (A.1)

where H0 = HL+HR+Hint is the sum of the Hamiltonians for the left layer, the right

layer, and the interface monolayer, H ′ describes the coupling between the interfacial

monolayer and the left/right layers. More explicitly,

HL = −t
∑

〈i,j〉∈L,k‖

(
c+
ik‖
cjk‖ + h.c.

)
+
∑
i∈L

c+
ik‖
εLk‖cik‖ (A.2)

for the left layer and similarly for the right layer (replacing L by R in the above

equation), where t is the hopping strength between the two nearest neighbors, c+
ik‖

=(
c+
ik‖↑, c

+
ik‖↓

)
is conduction electron creation operator at site i, expressed in the spinor

form. Note that we have written the Hamiltonian in the mixed space-momentum

representation: the translation invariance in the plane of the layer allows us to use

the in-plane momentum k|| as a quantum number while we retain the layered index

i to represent the growth direction.

The Hamiltonian of the interface is

Hint =
∑
k‖

c+
0k‖
ε0k||c0k‖ (A.3)
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where the sub-index “0” indicates the interface layer, and ε0k|| is the interface energy

dispersion which could be spin-dependent.

The interaction between the interface and left/right layers is modeled by

H ′ = −tL
∑
k‖

c+
0k‖
c−1k‖ − tR

∑
k‖

c+
0k‖
c1k‖ + h.c. (A.4)

where tL/R is the hopping parameter between the interface and the left/right layer.

Note that the left (right) layer is indexed with a negative (positive) integer i repre-

senting the atomic position at z = ia; thus i = −1 and i = 1 are two atomic layers in

contact with the interface layer i = 0.

A.2 Tight binding Green’s function in thin film

In this appendix, we briefly outlined how the Green’s functions used in the main text

are calculated. We start from an infinite lattice of which the Hamiltonian is

HNM = −t
∑
〈i,j〉,k‖

(
c+
ik‖
cjk‖ + h.c.

)
+ εk‖

∑
i∈L

c+
ik‖
cik‖ . (A.5)

The energy dispersion in such a lattice is

E = −2t cos ka+ εk‖ (A.6)

The Green’s function of which can be found in many quantum mechanics textbooks,

g∞
(
i, j;E,k‖

)
=
±e±ika|i−j|

2it sin ka
(A.7)

where k is determined from

−2t cos ka = E − εk‖ ± i∆im (A.8)

and ∆im is the imaginary part of the self-energy. The Green’s function in an semi-

infinite lattice and thin film can be calculated via the Dyson equation.

We first consider a potential

V = t
(
c+
n0,k‖

cn0−1,k‖ + h.c.
)

(A.9)

which breaks the hopping between site i = n0 and n0 − 1. The infinite lattice breaks

into two separated semi-infinite lattice. The Green’s function a semi-infinite lattice
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can be calculated using following Dyson equation, for i, j ≥ n0,

gsemi(i, j; E ,k‖) = g∞
(
i, j;E,k‖

)
(A.10)

+ tg∞
(
i, n0 − 1;E,k‖

)
gsemi

(
n0, j;E,k‖

)
+ tg∞

(
i, n0;E,k‖

)
gsemi

(
n0 − 1, j;E,k‖

)
where the last term vanish since gsemi

(
n0 − 1, j;E,k‖

)
= 0, i.e., the site n0 − 1 is

disconnected from the right semi-infinite lattice. From above equation, we can solve

the gsemi
(
i, j;E,k‖

)
after some straight forward calculation. Here, I list only the

results for a semi-infinite lattice z ≥ n0,

gsemi
(
i, j ≥ n0;E,k‖

)
=

±1

2it sin ka

[
e±ika|i−j| − eika(|i−n0|+|n0−j|)

]
(A.11)

If we continue breaking the hopping between site i = n1 and n1 + 1, we can get

the Green’s function in a thin film, n0 ≤ i ≤ j ≤ n1, which is

gfilm
(
i, j;E,k‖

)
=

1

t sin ka

sin ka (i− n0 + 1) sin ka (n1 − j + 1)

sin ka (d+ 1)
(A.12)

where d = n1 − n0 + 1 is the number of atomic layers. For a special case, the

tight binding Green’s function at the interface of a thin film can be written by take

i = j = n0/1, we get

gfilm
(
n0, n0;E,k‖

)
= gfilm

(
n1, n1;E,k‖

)
= − sin kad

t sin ka (d+ 1)
(A.13)

For a monolayer, where d = 1, the above Green’s function reduces to

gint
(
n0, n0;E,k‖

)
= − 1

2t cos ka
=

1

E − εintk‖
± i∆im

(A.14)

where we used the results from Eq. (A.8).

A.3 Compare with Semiclassical Results

A.3.1 Comparison with Drude Model

The last equation from above section shows the Green’s function of an atomic mono-

layer. Thus, the conductivity is obtained as,

σ(n0) =
~e2

πa3

∑
k‖

v2
k‖

[
A(n0, n0;EF ,k‖)

]2
. (A.15)
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For the interfacial monolayer with a spin-independent quadratic band, εintk‖
= tk2

‖a
2,

the above conductivity σ(n0) = ekFvF/(4~πa∆im) is the Drude conductivity of the

two-dimensional free-electron gas.

In the second limiting case, we consider an infinite lattice. The Green’s function

between any two sites is,

g0
a/r(i, j;EF ,k‖) =

±1

2it sin ka
e±ika|i−j|. (A.16)

where k is the solution of −2t cos ka = EF − tk2a2 ±∆im. The conductivity can be

calculated using the following equation,

σ(i) =
~e2

πa3

∑
k‖,j

v2
k‖

[
A(i, j;EF ,k‖)

]2 ≈ ~e2

πa3

∑
k‖,j

v2
k‖
ga(j, i;EF ,k‖)gr(i, j;EF ,k‖).

(A.17)

By inserting above Green’s function and taking the small wave vector approximation,

sin ka ∼ ka, one finds

σ(i) =
ek2

FvF
6~π2∆im

(A.18)

which is exactly Drude conductivity of three dimensional electron gas.

A.3.2 Comparison with results of Boltzmann Equation

We now consider a single thin film. Eq. (A.12) shows two-site Green’s function when

assuming the interface is perfectly reflective which corresponds to the p = 1 case in

the Fuchs model. The calculated conductivity uniform across the thin film and the

magnitude is same as that in a large bulk, which is same as the semiclassical results.

While the Green’s function also indicates oscillation near the interface with the range

of 1/kF which is neglected in the semiclassical approach.

Another limiting case can be easily compared is that when the outer interface is

completely rough so that all momentum information is lost when electron is reflected

by the interface. The Green’s function in such a case is the same as the one in an

infinite lattice,

ga/r(i, j;EF ,k‖) =
±1

2it sin ka
e±ika|i−j|. (A.19)

One can easily calculate the conductivity at site i and also the average conductivity

across the film. Here it is,

σ(i) =
~e2

πa3

∑
k‖,j

v2
k‖

[
A(i, j;EF ,k‖)

]2 ≈ ~e2

πa3

∑
k‖,j

v2
k‖
ga(j, i;EF ,k‖)gr(i, j;EF ,k‖).

(A.20)
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Now we use the free electron dispersion to compare with the Fuchs’ results and we

have k =
√
k2
F − k2

‖ + kF∆im

2EF
√

1−k2
‖/k

2
F

. Above conductivity can be written as

σ(x) =
e2

2π2h

∫ d

0

dx′
∫
dk‖

k3
‖

k2
F cos θ2

exp

(
−|x− x′|
| cos θ|λ

)
(A.21)

where we have introduced
√

1− k2
‖/k

2
F = cos θ and λ = EF

∆imkF
is the mean free path.

One can simplify above results

σ(x) =
e2kF
2π2h

∫ π/2

0

dθ sin3 θ

[
2− exp

(
−|d− x|

cos θλ

)
− exp

(
−|x|

cos θλ

)]
(A.22)

The spatial averaged conductivity is

σ =
1

d

∫
dxσ(x) =

e2kF
π2h

∫ π/2

0

dθ sin3 θ

[
1− λ cos θ

d

(
1− e−d/ cos θλ

)]
(A.23)

which is the same as Fuchs’ results.

A.4 spatial dependence of conductivity in the presence of

interface states

The interface states depend on many factors. Due to spatial broken symmetry at

the interface, interface states are usually no longer an extended state in the direction

of the growth. For example, a Rashba interaction which requires a spatial inversion

symmetry-breaking exists at the interface, but not in the bulk, and thus the helix

spin states are limited to the interface. The interface states could also be affected by

interface disorders. In the following, we describe the current density distribution in

the bilayer for several interface states.

We next discuss the current density with interface states that take a variety of

forms. In semiconductor heterostructure, the band mismatch of two layers could

generate an interface band structure hosting a 2D-electron gas and the electron con-

duction is strictly limited at the interface region. In the presence of large spin-orbit

coupling known as the Rashba interaction, a spin helix state exists at the transition

metal interface, but not in the bulk. Let’s first consider generic two-dimensional

states formed at the interface and the coupling between the 2d states and nearest

neighbor atoms is modeled by Eq. (A.17). The conductivity at the interface can be

written as

σ(0) = σ(0, 0) +
∑
j

σ(0, j) (A.24)
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Figure A.1. (a). The local and nonlocal contributions to the interface conductance

as a function of the coupling between 2d and 3d states. In our calculation, we took

kFa = 1. (b). The current distribution throughout the bilayer for fixed hopping

parameters.

which contains both the local and non-local contributions.

In Eq. (A.14), we show the Green’s function at the isolated interface. With finite

interlayer hopping, one can show that the Green’s function has a similar form,

G0
a/r(0, 0;EF ,k‖) =

1

EF − ε0k‖ ± i (∆im + ∆T )
(A.25)

where

∆T ≡ t2LIm[G0(−1,−1;EF ,k‖)] + t2RIm[G0(1, 1;EF ,k‖)] (A.26)

is the self-energy introduced by hopping. So that when considering the interface

conductivity, the hopping has two roles: on one hand it increases the self-energy at

the interface and increases the non-local conductivity.

When the hopping parameters between 2d and 3d states are turned off, the in-

terface and bulk current densities are independent. In terms of the Green’s function,

we have GR/A(0, i) = 0. In Fig, A.1(a), we show the interface conductance σ(0) when

tL = tR turns on. The contribution from the σL = σ(0, 0) decreases as the hopping in-

creases, due to the enhanced relaxation from 2d states to 3d states, Eqs (A.25,A.26).

On the contrary, the non-local contribution σNL(0) =
∑

j 6=0 σ(0, j) begins to show

up. Interestingly, the total interface conductance σ(0) = σL(0) + σNL(0) has a local

minimum at around tL = tR ' 0.6t. If we take a fixed value of tL = tR, the position
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Figure A.2. The conductivity of a thin film with and without surface states as a

function of layer thickness, λ is the electron mean free path in the bulk. When there

is no surface states, the semiclassical continuous model (black square line) and our

tight-binding approach (red circle line) are approximately same. In the presence of the

surface state (c), the conductivity increases at the small thickness. The parameters

used here: Rashba split is 0.2EF , mean free path 5 nm, the interfacial hopping

tL/t = 0.4.

dependent conductance are shown in Fig. A.1(b). We notice that the current den-

sity shows a non-monotonic variation, which results from the opposite dependence of

the local and nonlocal contribution on the interlayer hopping. For small interlayer

hopping, the conductivity at the interface is dominated by the local contribution,

increasing tL/R increases the self-energy in Eq. (A.26) which in turn reduces the con-

ductivity. For larger hopping, tL/R > 0.7t, the self-energy is in Eq. (A.26) is so large

that the conductivity σ(0) mainly comes from the non-local contribution. As tL/R
keeps rising up, the Green’s function G(0, i) increases and so does the conductivity.

For another example, we consider the thickness dependence of the conductivity

when interface states are at present. We model the interface dispersion by,

ε0k = ε0 +
~2k2

2m
+ ~αF (k× σ) · ẑ, (A.27)
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we find the current has a higher density at the interface than that in the bulk. The

average conductivity for a thin film is shown in Fig. A.2 for the plausible parameters

indicated.
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Appendix B

Derivation and Calcuation for Spin Transport

Equation in Ballistic Regime

B.1 Derivation of the ballistic spin transport equation

In this appendix, we show the derivation of Eqs. (5.9-5.12) starting from the Boltz-

mann equation, Eq. (5.3). We use the Dresselhaus Hamiltonian to model the SOC.

Thus, v̂x = vxÎ + ασ̂x, then Eq. (5.3) reads

vx
∂F̂

∂x
+

1

2
α

{
σ̂x,

∂F̂

∂x

}
+
eE

m

∂F̂

∂vx
− 1

i~
[ĤSO, F̂ ] = − F̂ − F̄

τm
− F̄ − (1/2)ÎTr(F̄ )

τsf
(B.1)

Substitute the distribution function with equilibrium and non-equilibrium parts de-

fined in Eq. (5.4), we get the equations for the spin and charge parts distribution

functions,

vx
∂f0

∂x
+ eEvx +

α

~
∂ (f1 · êx)

∂x
= −f0 − f̄0

τm
(B.2)

vx
∂f1

∂x
−Ωk × f1 +

α

~
∂f0

∂x
êx = −f1 − f̄1

τm
− f̄1

τsf
. (B.3)

where the third terms on the left hand side are the spin charge coupling (SCC). Same

equations have been derived in Ref. [134] except that we have taken the distribution

function to be uniform along ŷ direction. We then neglect the spin flip term and

assume the spin relaxation is dominated by the spin-orbit coupling.

Insert the left and right split CPs defined in Eqs. (5.7, 5.8), we start to derive

our novel spin transport equations in the presence SOC. We only show the detailed

derivation for the spin part, Eq. (B.3). For the charge part, the derivation is similar.

With f1 substituted with CPs, Eq. (B.3) now reads,

vx
∂

∂x
[µ>1 θ(kx) + µ<1 θ(−kx)− g1(kx, x)]− Ωk × [µ>1 θ(kx) + µ<1 θ(−kx)− g1(kx, x)]

+
α

~
∂

∂x
[µ>0 (x)θ(kx) + µ<0 (x)θ(−kx)− g0(kx, x)] (B.4)

= −µ
>
1 θ(kx) + µ<1 θ(−kx)− g1(kx, x)

τm
+
µ>1 + µ<1 − 2ḡ1

2τm
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where Ωk = α/2(kx,−ky, 0).

Following the conventional protocol to establish the corresponding macroscopic

equation from the Boltzmann equation, one needs to relate g1(kx, x) to µ>1 and µ<1 .

The common choice is

g0(kx, x) = vxτm
∂

∂x
[µ>0 θ(kx) + µ<0 θ(−kx)]

g1(kx, x) = vxτm
∂

∂x
[µ>1 θ(kx) + µ<1 θ(−kx)]− τmΩk× [µ>1 θ(kx) + µ<1 θ(−kx)] .

(B.5)

The average over Fermi Circle is

ḡ1 ≈
l0
2

[
∂

∂x
(µ>1 − µ<1 )− 1

λ
êx× (µ>1 − µ<1 )

]
(B.6)

=
l0
2

(
∂

∂x
µb −

1

λ
êx×µb

)
where l0 =

√
v̄2
xτm = vF τm/

√
2 is the mean free path, and we have approximated

¯|vx| ≈
√
v̄2
x = vF/

√
2 to simplify the notation without changing essential results

obtained below. We have also introduced the definition of the ballistic spin CP,

µb ≡ µ>1 − µ<1 , as explained in the main text.
Inserting the above expression of g1(kx, x) and ḡ1 into Eq. (B4) and averaging over

left (kx < 0) and right (kx > 0) half Fermi Circles separately, we get two equations,

∂2µ>
1

∂x2
−

2

λ
êx ×

∂µ>
1

∂x
−∆

[
1

l0

∂µ>
0

∂x
−
∂2µ>

0

∂x2

]
êx =

µ>
1

l20

−
1

l20

[
µs −

l0

2

(
∂

∂x
µb −

1

λ
êx×µb

)]
+ Γµ

>
1 (B.7)

∂2µ<
1

∂x2
−

2

λ
êx ×

∂µ<
1

∂x
−∆

[
1

l0

∂µ<
0

∂x
+
∂2µ<

0

∂x2

]
êx =

µ<
1

l20

−
1

l20

[
µs −

l0

2

(
∂

∂x
µb −

1

λ
êx×µb

)]
+ Γµ

<
1 (B.8)

where ∆ = ESO/EF denotes the strength of SCC and Γ is a matrix which describes

the anisotropic spin relaxation due to Dresselhaus spin-orbit coupling and

Γ =

 λ−2 0 0

0 λ−2 0

0 0 2λ−2

 .

Linear combination of the above two equations leads to the following two differential

equations,

∂2

∂x2
µb −

2

λ
êx ×

∂

∂x
µb −∆

[
∂

l0∂x
µcb − 2

∂2

∂x2
µc

]
êx =

(
1

l20
+ Γ

)
µb (B.9)

∂2

∂x2
µs−

2

λ
êx×

∂

∂x
µs−∆

[
∂

l0∂x
µc −

1

2

∂2

∂x2
µcb

]
êx =

1

2l0

(
∂

∂x
µb −

1

λ
êx×µb

)
+Γµs (B.10)
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The above equations are equivalent to Eqs. (5.9) and (5.10) in the main text when

the SCC is neglected (∆ = 0). Similarly, one can get

∂2

∂x2
µcb −∆

[
∂

l0∂x
µb · êx − 2

∂2

∂x2
µs · êx

]
=
µcb
l20

(B.11)

∂2

∂x2
µc −∆

[
∂

l0∂x
µs · êx −

1

2

∂2

∂x2
µb · êx

]
=

1

2l0

∂

∂x
µcb (B.12)

The spinor current density is defined as ĵ = e
2

∫ {
v̂x, F̂

}
d2k, where F̂ is the spinor

distribution function. By separating the current density into the charge and spin and

parts, ĵ = jeÎ + js · σ̂, and by utilizing F̂ defined in Eq. (5.10) and Eq. (B5), with

v̂x = ~kx/m+ ασ̂x, we obtain the expression for spin current js,

jsρ = −∂µs
∂x

+
µb
2l0

+
1

λ
êx × µs +

∆

l0
δnêx (B.13)

Similarly for the charge current, je,

jeρ = −∂µc
∂x

+
µcb
2l0

+
∆

l0
δm · êx (B.14)

where ρ is the Drude conductivity for 2D electron gas. Similarly, we can derive the

expression of the charge and spin accumulation by using the relation δnÎ + δm · σ̂ =∫
F̂ d2k, we find

δm = µs −
l0
2

∂

∂x
µb +

l0
2λ
êx× µb (B.15)

δn = µc −
l0
2

∂

∂x
µcb (B.16)

Equations (B13) and (B15) are the spin-dependent Ohm’s law used in the main text,

Eqs. (5.11) and (5.12).

The effects of SCC on spin transport: In the main text, we discard the SCC in

all equations, which is valid when ∆ � 1. When ∆ cannot be neglected, the spin

injection into the 2DEG with SOC can still be evaluated using above differential

equations, Eqs. (B9-B12) and boundary conditions mentioned in the main text, Eqs.

(5.13-5.15). We redo the calculation and keep up to the second order of ∆. We find

the SCC reduces the spin relaxation length,

1

λ′
=

1

λ
+ ∆2

(
1

λ
+
λ

l20

)
. (B.17)

where λ is the spin relaxation length defined in the main text which is merely deter-

mined by the spin-orbit coupling. When injecting spin into a 2DEG across a tunnel
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barrier, the SCC modifies the spin accumulation enhancement in ballistic regime

(l0 � λ)

δm = [1 + (1 + 3∆2)l20/λ
2]ρjepJλ

′e−x/λ
′
. (B.18)

B.2 Detailed Calculation for spin injection into ballistic ma-

terial

In the following, we first show the solution for a simple case where the polarization

of the spin current is solely determined by the tunneling barrier between the FM and

NM layer. We then solve the equation for general cases where the resistance of the

layers are comparable to the tunnel resistance.

B.2.1 Resistance dominated by the tunnel barrier

If the resistance due to tunneling is much larger than the impurity scattering induced

resistance in the layers, the injected current density and its spin polarization across

the interface will be entirely determined by tunnel parameters, independent of the

resistance in the layers, i.e.,

js(0) = jepJ (B.19)

where

pJ =
R↓J −R

↑
J

R↓J +R↑J
(B.20)

and Rσ
J = (h/e2)(Rσ/Tσ) ≈ (h/e2)(1/Tσ). From the boundary condition, Eq. (16),

µb(+0) = jepJR
′ (B.21)

where R′ = h/e2N , we may directly obtain the solution of δm by using Eqs. (5.11-

5.12) and Eq. (5.20),

δm = jepJe
−x/λ

[
R′

2

l0λ

l2eff
+ ρλ

(
1− R′

2ρl0

)]
(B.22)

The above expression can be simplified by relating the number of channels to the

bulk resistivity and mean free path as we show below.

For an ideal conductor with N modes per unit cross-section area which connects

two reservoirs, the current density flowing through the conductor carried by one spin

channel is given by the Landauer formula,

je =
e2N

h
(µL − µR); (B.23)
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where µR/L is the chemical potential of the left or right reservoir. In our case, the

current density is given by

jσ =
1

ρσ

[
−∂µ

>
σ

∂x
− ∂µ<σ

∂x
+

1

l0
(µ>σ − µ<σ )

]
(B.24)

where the last term describes in the same way as contact potential from Eq. (B23).

Thus, we can easily identify
1

ρσlσ
=
e2N

h
. (B.25)

Insert this relation in to Eq. (B22) and take ρσ = 2ρ, lσ = l0 for the NM layer, we

find

δm =
l20
l2eff

jeρλpJe
−x/λ (B.26)

which is the same as the Eq. (5.21) from the main text.

B.2.2 General solution and exact calculation

When the tunnel resistance is not much larger than that of the bulk, equivalently,

when the transmission coefficient is not small (note that Tσ = 1 describes the trans-

parent barrier or no barrier), one must solve the CPs for the entire bilayer, including

the ferromagnetic layer. In this case, the spin polarization and spin accumulation

depend on the detailed parameters of all layers in addition to the barrier transmis-

sion coefficients. We first write down the general solution of CPs according to Eqs.

(B9-B12) (while the SCC terms are neglected) and then determine the coefficients by

using the boundary conditions from main text.

In the NM layer (x > 0),

µ>↑ (x) = γ0 + γ1z + 2ce−x/λ + ae−x/leff (B.27)

µ<↑ (x) = γ0 + γ1z − ge−x/l0 + 2ce−x/λ + be−x/leff (B.28)

µ>↓ (x) = γ0 + γ1z − 2ce−x/λ − ae−x/leff (B.29)

µ<↓ (x) = γ0 + γ1z − ge−x/l0 − 2ce−x/λ − be−x/leff (B.30)

where µ>σ = µ>0 ± µ>1 · êx, σ =↑, ↓. The Eq. (B10) also requires

a+ b = − l0
leff

(a− b). (B.31)
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For notation simplicity, we assume that the effective mean free path is same as the

mean free path and the spin diffusion length is much longer in the FM layer (x < 0).

The general solution in the FM layer is,

µ>↑ (x) = γ′0 + γ′1z +
ρ↑F
ρF
c′ex/λF + a′ex/lF↑ (B.32)

µ<↑ (x) = γ′0 + γ′1z +
ρ↑F
ρF
c′ex/λF (B.33)

µ>↓ (x) = γ′0 + γ′1z −
ρ↓F
ρF
c′ex/λF + b′ex/lF↓ (B.34)

µ<↓ (x) = γ′0 + γ′1z −
ρ↓F
ρF
c′ex/λF . (B.35)

where ρF = ρF↑ρF↓/ (ρF↑ + ρF↓), ρFσ = h
e2

√
2π

kF lFσ
, and the polarization of the conduc-

tivity is

pF =
(
ρ↓F − ρ

↑
F

)
/
(
ρ↓F + ρ↑F

)
= (lF↑ − lF↓) / (lF↑ + lF↓) . (B.36)

There are many constants to be determined. γ0 and γ′0 are the voltages on two sides

of the interface of which the difference addresses the voltage drop due to contact

resistance. The total charge current density can be obtained from Eq. (A14)

−γ1/ρF = −γ1/ρ = je/2 (B.37)

where je is the injected charge current density and ρF , ρ are the resistivity of the FM

and NM layer respectively. In Eq. (B37), we have assumed the cross-section area of

the FM and NM layer to be the same for simplicity. With the boundary conditions

from the main text, one can determine all the coefficients straightforward. The final

results for the spin accumulation and spin polarization are

δm = jeρλe
−x/λ (B.38)

2pFRF
1−p2

F
+ 2R′

(
T−1
↓ − T

−1
↑

)
− RF

1−p2
F

(1− β2)T (pF + pJ)

+ 2R′(1− β2)
T 2
↓−T

2
↑

T↑T↓
+ (T↑ − T↓)R′(2− β − 5β2)

2β2RF
1−p2

F
+ 2β2R′

(
T−1
↓ + T−1

↑

)
+RN [2− (1− β2)(T )] + β(1 + 3β)R′T − 2β(1 + 5β)R′

pinj =

2β2pFRF
1−p2

F
+ 2β2R′

(
T−1
↓ − T

−1
↑

)
+
[
(1− β2)RN − β(1 + 3β)R′

]
(T↑ − T↓)

2β2RF
1−p2

F
+ 2β2R′

(
T−1
↓ + T−1

↑

)
+RN [2− (1− β2)(T )] + β(1 + 3β)R′T − 2β(1 + 5β)R′

(B.39)
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where T = T↑+T↓, RF ≡ ρFλF , RN ≡ ρλ, R′ = 2ρl0 and β ≡ leff/l0. Below we show

the results for two limiting cases.

Transparent Interface: By placing T↑ = T↓ = 1 into Eqs. (B38) and (B39), we

have

pinj =

pFRF
1−p2

F

RF
1−p2

F
+RN

(B.40)

δm = jeρλpJe
−x/λ (B.41)

Thus, there is no SC enhancement; this is because the transport is purely diffusive

and the conventional spin diffusion theory applies.

Tunneling dominated Interface: For the resistance dominated by the tunneling

interface, we take Tσ � 1, Rσ
J ≈ h

e2N
1
Tσ

, and R↓J , R
↑
J � RN , R

′, RF . Equations (B38)

and (B21) are reduced to

pinj = pJ =
R↓J −R

↑
J

R↓J +R↑J
(B.42)

δm = jeρλpJe
−x/λ (1 + l20/λ

2
)

(B.43)

where we used the definition of leff and β−2 = l20/l
2
eff = 1 + l20/λ

2.
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K. Kern, and M. Grioni, Giant Spin Splitting through Surface Alloying, Phys.

Rev. Lett. 98, 186807 (2007).

[54] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Spin pumping and magneti-

zation dynamics in metallic multilayers, Phys. Rev. B 66, 224403 (2002).

[55] H. Kurt, R. Loloee, W. P. Pratt, Jr., and J. Bass, Spin-memory loss at 4.2 K in

sputtered Pd and Pt and at Pd/Cu and Pt/Cu interfaces, Appl. Phys. Lett. 81,

4787 (2002).

[56] T. Yoshino, K. Ando, K. Harii, H. Nakayama, Y. Kajiwara, and E. Saitoh,

Universality of the spin pumping in metallic bilayer films, Appl. Phys. Lett. 98,

132503, (2011).

[57] P. Hyde, L. Bai, D. M. J. Kumar, B. W. Southern, C.-M. Hu, S. Y. Huang, B. F.

Miao, and C. L. Chien, Electrical detection of direct and alternating spin current



109

injected from a ferromagnetic insulator into a ferromagnetic metal, Phys. Rev.

B, 89, 180404(R) (2014).

[58] Althammer M et al., Quantitative study of the spin Hall magnetoresistance in

ferromagnetic insulator/normal metal hybrids, Phys. Rev. B 87, 224401 (2013).

[59] H. J. Jiao, G.E.W. Bauer, Spin Backflow and ac Voltage Generation by Spin

Pumping and the Inverse Spin Hall Effect, Phys. Rev. Lett. 110, 217602 (2013).

[60] E. Saitoh, M. Ueda, H. Miyajima, G Tatara, Appl. Phys. Lett. 88, 182509 (2006).

[61] Ando K, Kajiwara Y, Takahashi S, Maekawa S, Takemoto K, Takatsu M, Saitoh

E, Angular dependence of inverse spinHall effect induced by spin pumping in-

vestigated in a Ni81Fe19/Pt thin film, Phys. Rev. B 78, 014413 (2008).

[62] Y. K., Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Observation of

the spin Hall effect in semiconductors, Science 306, 1910-1913 (2004).

[63] Luqiao Liu, Takahiro Moriyama, D. C. Ralph, and R. A. Buhrman, Spin-Torque

Ferromagnetic Resonance Induced by the Spin Hall Effect, Phys. Rev. Lett. 106,

036601 (2011).

[64] C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin

transfer torque devices utilizing the giant spin Hall effect of tungsten, Appl.

Phys. Lett. 101, 122404 (2012).

[65] A. R. Mellnik, J. S. Lee, A. Richardella, J.L. Grab, P. J. Mintun, M. H. Fis-

cher, A. Vaezi, A. Manchon, E.-A. Kim and N. Samarth, Spin-transfer torque

generated by a topological insulator, Nature 511, 449 (2014).

[66] Luqiao Liu, Chi-Feng Pai, Y. Li, H. W. Tseng, D. C. Ralph, R. A. Buhrman,

Spin torque switching with the giant spin Hall effect of tantalum, Science 336,

555 (2012).

[67] W. Zhang, W. Han, X. Jiang, S.-H. Yang and S. S. P. Parkin, Role of trans-

parency of platinumferromagnet interfaces in determining the intrinsic magni-

tude of the spin Hall effect, Nat. Phys. 11, 496-502 (2015).

[68] X. Zhou, M. Tang, X. L. Fan, X. P. Qiu, and S. M. Zhou, Disentanglement of

bulk and interfacial spin Hall effect in ferromagnet/normal metal interface, Phys.

Rev. B 94, 144427 (2016).



110

[69] M. Cecot, L. Karwacki, W. Skowronski, J. Kanak, J. Wrona, A. Zywczak, L. Yao,

S. van Dijken, J. Barnas, T. Stobiecki, Influence of intermixing at the Ta/CoFeB

interface on spin Hall angle in Ta/CoFeB/MgO heterostructures, Sci. Reports 7,

968 (2017).

[70] J. Kim, P. Sheng, S. Takahashi, S. Mitani, and M. Hayashi, Spin Hall Magne-

toresistance in Metallic Bilayers, Phys. Rev. Lett. 116, 097201 (2016).

[71] K.-U. Demasius et al., Enhanced spin-orbit torques by oxygen incorporation in

tungsten films, Nat. Commun. 7, 10644 (2016).

[72] C. Hahn, G. de Loubens, O. Klein, M. Viret, V. V. Naletov, and J. Ben Youssef,

Comparative measurements of inverse spin Hall effects and magnetoresistance in

YIG/Pt and YIG/Ta, Phys. Rev. B 87, 174417 (2013).

[73] A. Azevedo, L. H. Vilela-Leão, R. L. Rodrãguez-Suárez, A. F. Lacerda Santos,
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