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ABSTRACT
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Adam Jacoby

DOCTOR OF PHILOSOPHY

Temple University, May, 2017

Dr. Martin Lorenz, Chair

Representation theory is a field of study within abstract algebra that originated

around the turn of the 19th century in the work of Frobenius on representations

of finite groups over the field of complex numbers. Subsequently, representations

of finite groups over an arbitrary base field k have been thoroughly explored and

the theory can by now be considered to be well understood, especially in the case

where the characteristic of k does not divide the order of the group G in question.

The principal tool in the investigation of the representations ofG over k is the group

algebra k[G]. By Maschke’s Theorem, the stated hypothesis on the characteristic of

k amounts to semisimplicity of k[G], a property that allows for a greatly simplified

description of the representations of G over k.

More recently, Hopf algebras – a class of algebras that includes group algebras,

enveloping algebras of Lie algebras, and many other interesting algebras that are

often referred to under the collective name of “quantum groups” – have come to

the fore. The representation theory of Hopf algebras is currently under rapid devel-

opment, in part because it covers the two main classical flavors of representation

theory: representations of groups and of Lie algebras. The principal aim of this

dissertation is to generalize certain results from group representation theory to the

setting of Hopf algebras. Specifically, our focus is on the following two areas:

(1) Frobenius divisibility and Kaplansky’s sixth conjecture, and
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(2) the adjoint representation and the Chevalley property

As for (1), a classical result of Frobenius [17] states that degrees of all irre-

ducible representations of a given finite group G over the complex numbers divide

the order of the group G (“Frobenius divisibility”). Approximately 80 years after

Frobenius, Kaplansky [25] formulated ten conjectures on Hopf algebras, the sixth

of which proposes the following generalized version of Frobenius divisibility: the

degree of every irreducible representation of a semisimple Hopf algebra H over an

algebraically closed field of characteristic 0 divides the dimension of H . Kaplan-

sky’s conjecture remains open despite numerous attempts at proving it in the inter-

vening 40 years since the conjecture was stated. This dissertation describes a new

approach to Frobenius divisibility that is based on some general observations on

symmetric algebras, a class of algebras that includes all semisimple algebras; this

material comes from the joint article [23] with my advisor, Martin Lorenz. I then

use this approach to provide simpler proofs of many of the known partial results

towards Kaplansky’s sixth conjecture, thereby unifying many previously disparate

results under a common framework.

Turning to (2), the adjoint representation of a Hopf algebra is a natural general-

ization of the conjugation action of a groupG on its group algebra, k[G]. It has been

shown by Lorenz and Passman (see [31]) that if the latter representation is com-

pletely reducible, then it actually has the “Chevalley property”: all its tensor powers

are completely reducible as well. This dissertation takes the first steps towards the

goal of generalizing this result to the context of finite-dimensional Hopf algebras.

My main tool is the investigation of conjugacy classes for finite-dimensional Hopf

algebras that are not necessarily semisimple, generalizing results in the literature

for semisimple Hopf algebras in characteristic 0.

Throughout this dissertation, numerous explicit examples are constructed to il-

lustrate my theoretical findings. In order to aid with this task, I have written some

Python code that is specifically tailored to computations with Hopf algebras.
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CHAPTER 1

INTRODUCTION

1.1 Background

The objective of Representation Theory is to investigate the different ways in

which a given algebraic object – such as an algebra, a group, or a Lie algebra –

can act on a vector space. The benefits of such an action are at least twofold:

the structure of the acting object gives rise to symmetries of the vector space on

which it acts; conversely, the highly developed machinery of linear algebra can

be brought to bear on the acting object itself to help uncover some of its hidden

properties. Besides being a subject of great intrinsic beauty, representation enjoys

the additional benefit of having applications in myriad contexts other than algebra,

ranging from number theory, geometry and combinatorics to general physics [52],

quantum field theory [54], and the study of molecules in chemistry [9].

We now give some brief background on the main “flavors” of Representation

Theory insofar as they are relevant to this dissertation.

1.1.1 Groups

Historically, the first application of representation theory in its current form was

to the study of groups, especially finite groups. In detail, a representation of an
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arbitrary group G over a field k is a group homomorphism,

ρV : G→ GL(V ),

where V is a k-vector space and GL(V ) denotes the group of invertible linear trans-

formations of V . The dimension of V , which may be infinite, is called the degree of

the representation. The representation ρV is called irreducible if V 6= 0 and no sub-

space of V other than 0 and V itself is stable under all transformations in the image

of ρV . Such representations play a crucial role in group representation theory. In-

deed, if the groupG is finite and the characteristic of the base field k does not divide

the order |G|, then every representation of G over k can be decomposed uniquely

(up to isomorphism) into a direct sum of irreducible representations. This reduces

the problem of describing all representations of G over k to the case of irreducible

representations. The following key result from classical group representation the-

ory severely narrows the possibilities for the irreducible representations of G; for a

proof, see [49].

Frobenius’ Theorem [17]. Let G be a finite group and let k be an algebraically

closed field whose characteristic does not divide the order |G|. Then the degree of

every irreducible representation of G over k is a divisor of |G|.

Later on many strengthening of this theorem arose, the simplest of which is the

following result of Schur [48].

Theorem 1.1.1. Let G be a finite group and let k be an algebraically closed field

whose characteristic does not divide |G|. Then the degree of an irreducible repre-

sentation of G over k divides |G/Z G|, where Z G is the center of G.

While the complete description of all irreducible representations of a given

group is generally a formidable task, it has in fact been achieved for many groups of

great interest. Foremost among them are the symmetric groups, where a description

of the irreducible representations can be given in combinatorial terms, using the so-

called Young graph of partitions; see Okounkov and Vershik [43] (who elaborate
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on earlier work of Frobenius [18], Schur [48], and Young [56]). Additionally, it is

worth noting that Representation Theory was the main tool used in the proof of the

celebrated Classification Theorem of finite simple groups [51].

1.1.2 Algebras and Other Structures

As has first been observed by Emmy Noether, group representation theory can

be embedded into the more general representation theory of associative algebras.

This is accomplished by associating to each group G and each base field k an as-

sociative algebra, the so-called group algebra k[G]. The precise definition of k[G],

while not difficult, is omitted here, but we do at least mention that a representation

of a k-algebra A is a homomorphism of k-algebras,

ρV : A→ Endk(V ),

where V is a k-vector space. Equivalently, representations of A can be described in

the language of (left) A-modules. The operative fact concerning the group algebra

k[G], in the context of representation theory, is that representations of k[G] are in

natural one-to-one correspondence with the representations of G over k. In particu-

lar, irreducible representations of G over k correspond to irreducible k[G]-modules

in the usual ring theoretic sense.

Similar reductions to the case of algebras exist for the representations of other

algebraic structures as well. For example, in the case of a Lie algebra g, the algebra

in question is the so-called enveloping algebra of g; for a quiver Γ, the vehicle is

the path algebra of Γ.

Exactly as for group algebras, a representation ρV of an algebra A is called

irreducible if V 6= 0 and no subspace of V other than 0 and V itself is stable

under all transformations in ρV (A); this is equivalent to irreducibility of V as A-

module. Similarly, representations of A are called equivalent or isomorphic if

the corresponding A-modules are isomorphic in the usual sense. One of the main

goals of representation theory is to find, for a given algebra A, a description of the

set of all equivalence classes of irreducible representatioins of A. This set, or a
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full representative set of non-equivalent irreducible representations of A, will be

denoted by

IrrA .

For the most part, we shall be concerned with finite-dimensional representations,

that is, dimk V < ∞. In this case, the character of V is the linear form χV ∈ A∗

that is defined by

χV (a) = trace(ρV (a)) (a ∈ A).

A particularly prominent role will be played by to the so-called regular represen-

tation of A; it is obtained by taking V = A and letting A act on itself by left mul-

tiplication. This representation will be denoted by Areg. If A is finite-dimensional,

which will usually be the case below, then we may consider the regular character,

χreg := χAreg .

The regular character will be an important tool in this thesis.

1.1.3 Hopf algebras

While the representation theory of associative algebras provides a useful setting

in which to study many aspects of group representation theory, it turns out that gen-

eral associative algebras fail to capture certain features of group representations; the

same can be said for representations of Lie algebras as well. Additional structure

is needed in order to access these features, and this structure is naturally provided

by the class of Hopf algebras. The formal definition of Hopf algebras is rather

unwieldy; so we refrain from spelling it out until later. In brief, a Hopf k-algebra

is a k-algebra H – so there is a multiplication, m : H ⊗ H → H , and a unit map,

u : k → H – but there are three additional linear structure maps: the comultiplica-

tion ∆: H → H ⊗ H , the counit ε : H → k and the antipode S : H → H . All

these maps must satisfy certain axioms and compatibility conditions. A remarkable

feature of the Hopf algebra axioms is their “self-duality.” This makes it possible to

equip the linear dual H∗ = Homk(H, k) of any finite-dimensional Hopf algebra H
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with the structure of a Hopf algebra in its own right, employing the transposes of

the structure maps of H as the structure maps of H∗.

The comultiplication, counit and antipode of a Hopf algebraH impart additional

structure on the category of finite-degree representations of H; this category will be

denoted by

RepH

Specifically, the comultiplication ∆ allows to form the tensor product representa-

tion V ⊗W of any two given V andW in RepH , and ε yields a distinguished object

of RepH , the so-called trivial representation 1. With these data, RepH becomes

a monoidal category. Furthermore, using the antipode S, one can give a module

structure to the linear dual V ∗ = HomK(V, k) of any V in RepH . For more infor-

mation on monoidal categories with a notion of a dual, see [4] or [16]. Here, we just

mention that, as a consequence of the monoidal structure of RepH , we can assign

a ring, R(H), to this category. The underlying additive group of R(H) has gen-

erators [V ], one for each isomorphism class of objects V in RepH , with defining

relations [U ]+[W ] = [V ] for each short exact sequence 0→ U → V → W → 0 in

RepH . The multiplication of R(H) is given by [V ][W ] = [V ⊗W ] and the identity

element is [1]. The map [V ] 7→ χV yields a well-defined ring homomorphism

χ : R(H)→ H∗

The k-subalgebra of H∗ that is generated by the image χ(R(H)) will be denoted

by R(H) below; it is generally called the representation algebra of H . The repre-

sentation algebra R(H) plays a prominent role in the representation theory of H ,

as we shall repeatedly see throughout this dissertation.

1.2 Summary of Research

As was indicated in the previous section, Hopf algebras provide a common set-

ting in which to treat the representation theories of groups and Lie algebras. The

focus of my research, to be described in this section, was on representations of finite



6

degree. Since “most” irreducible representations of Lie algebras have infinite de-

gree, my principal motivation came from group representation theory. In brief, one

would like to develop the representation theory of finite-dimensional Hopf algebras

to a level that has been achieved for finite groups. One of the challenges one en-

counters in this endeavor is the absence of a distinguished k-basis in a general Hopf

algebraH – for a group algebra k[G], such a basis is provided by the elements of the

group G. Thus, the element-based approach that is common in classical group rep-

resentation theory needs to replaced by more abstract ring theoretic and categorical

methods.

The focus of this dissertation is on possible generalizations of results from group

representation theory to more general classes of Hopf algebras. Specifically, we

consider the following two areas:

(1) Frobenius divisibility and Kaplansky’s sixth conjecture, and

(2) the adjoint representation and the Chevalley property

Throughout this section, H will denote a finite-dimensional Hopf algebra over a

field k. We will occasionally use the Sweedler comultiplication notation for h ∈ H ,

∆(h) = h(1) ⊗ h(2) .

1.2.1 Frobenius Divisibility

The terminology “Frobenius divisibility,” due to Etingof [15], is motivated by

Frobenius’ Theorem on finite group representations as quoted in Section 1.1.1. The

term is now also used in connection with similar divisibility results for the degrees

of irreducible representations of other algebraic objects. Such results play a major

role in classification attempts, since they place severe restrictions on the potential

candidates for irreducible representations.

In [25] Kaplansky proposed ten conjectures on Hopf algebras, the sixth of which

was aimed at a generalization of Frobenius’ Theorem. The original formulation of

the conjecture was missing some crucial hypotheses, and hence easily seen to be

false, but the revised version below has remained open for 40 years.
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Kaplansky’s Sixth Conjecture. Let H be a semisimple and cosemisimple Hopf

algebra over an algebraically closed field. Then the degree of every irreducible

representation of H divides the dimension of H .

Using a variety of different techniques, many partial results of this conjecture

have been proven; some of the main findings are listed below:

• Nichols and Zoeller [40] have shown the conjecture to be true for irreducible

representations of dimension two.

• Montgomery and Witherspoon [36] have confirmed the conjecture when the

dimension of H is a prime power.

• Etingof and Gelaki [14] have shown the conjecture to be true when H is

“factorizable.” This class of Hopf algebras includes the famous Drinfel’d

double. An immediate corollary shows that the conjecture in fact holds for

the more general class of “quasi-triangular” Hopf algebras.

• S. Zhu [57] proved that dimkH is divisible by the degree of any irreducible

representation of H whose character belongs to the center of H∗.

One of the earliest classification results on Hopf algebras, due to Y. Zhu [58],

states that Hopf algebras of prime dimension over an algebraically closed field of

characteristic 0 are in fact group algebras. The crucial tool in the proof of this result

is a different but related Frobenius divisibility result for Hopf algebras:

The Class Equation ([24], [58]). Let H be a semisimple Hopf algebra over an al-

gebraically closed field k of characteristic 0. If e ∈ R(H) is a primitive idempotent,

then dimk(H
∗e) divides dimkH .

Finite-dimensional Hopf algebras are known to have the structure of a Frobenius

algebra in a way that is deeply intertwined with their Hopf structure [29]. A detailed

discussion of Frobenius algebras will be given in Section 2.3.1; in particular, we will
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describe the so-called Casimir element, which is part of the data associated to any

Frobenius algebra. It was shown in [10] that a Hopf algebra satisfies Kaplansky’s

sixth conjecture if and only if its Casimir element satisfies a monic polynomial

over the integers. My advisor and I have shown that many of the aforementioned

partial results on Kaplansky’s conjecture as well as the class equation can be derived

directly from a more general integrality result about Casimir elements of Frobenius

algebras. This opens a new approach to Kaplansky’s long-standing conjecture, in

addition to providing unified proofs of the earlier known results. Additionally, the

result can be used to provide a purely algorithmic approach for determining if a

given semisimple algebra satisfies Frobenius Divisibility. This algorithm has been

implemented in Python code, for more information on the code see chapter 5.

Next, I look at partial generalizations of Theorem 1.1.1. Adapting an argument

due to Tate, I show that some of the known Frobenius Divisibility results for Hopf

algebras actually can be strengthened by using a suitable notion of the Hopf center

of an irreducible character.

1.2.2 The Adjoint Representation of a Hopf Algebra

As is the case with group algebras, any Hopf algebra acts on itself in multiple

ways. One such action of particular importance is the so-called adjoint action.

Using the Sweedler notation, the action of h ∈ H on k ∈ H is given by

hk =
∑

h(1)kS(h(2)) .

This action is a natural generalization of the conjugation action of a group on itself,

extended to an action on the group algebra. The Hopf algebra H , equipped with the

adjoint action, will be denoted by adH . In this way, we obtain a representation

H → Endk(
adH)

that will be referred to as the adjoint representation of H . Much is known about

the adjoint representation for a semisimple Hopf algebra over a field of character-

istic 0, notably through the works of Zhu [59], Witherspoon [55], Burciu [5], and
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Cohen and Westreich [8]. Many of these papers use of an extension of the adjoint

representation to the Drinfel’d double of H; see Section 2.5 for the exact descrip-

tion. The representation of the Drinfel’d double that is afforded by the extended

action will be called the extended adjoint representation. Without the assumption

of semisimplicity almost nothing in known about the adjoint representation of H

and its extended version. This dissertation fills this gap and it uses the resulting

theory to prove new results.

One of the main motivating problems is the question as to when adH is com-

pletely reducible, that is, adH is a sum of irreducible subrepresentations. Here are

the classical examples:

• For a finite-dimensional Lie algebra g and char k = 0, it is a standard fact

that the adjoint representation adU(g) is completely reducible if and only if g

is reductive, that is, g/Z g is semisimple, where Z g denotes the center of g.

• For a finite group G the answer is provided by the top row of the following

diagram:

ad(k[G]) is
completely reducible

��

ks +3 G has a central
Sylow p-subgroup

��
ad(k[G]/ rad k[G]) is
completely reducible

G has a normal
Sylow p-subgroup
+3

Classification
Theorem

ks

(1.1)

Here, the vertical implications are trivial. However, while the top equivalence is

relatively elementary ([31, Exercise 3.32]), the proof of the bottom equivalence

relies on the Ito-Michler Theorem [34], whose proof in turn uses the classification

of finite simple groups; see [31] for further details. It is a long-term goal and hope

that the more general approach via Hopf algebras might shed additional light on

the representation theory of finite groups, in particular on the above equivalence,

ideally rendering the Classification Theorem superfluous for its proof.
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While we have not yet been able to fully determine when adH is completely

reducible for an arbitrary finite-dimensional Hopf algebra H , this dissertation takes

the first steps in this direction. One such result is the calculation of the Hopf annihi-

lator of adH , that is, the largest Hopf ideal that is contained in the usual annihilator

of adH . The first step in the proof of the top equivalence in (1.1) is that complete re-

duciblity of adH implies that char k does not divide the dimension of any conjugacy

classes. This result has successfully been generalized to cosemisimple unimodular

involutory Hopf algebras in this dissertation.
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CHAPTER 2

PRELIMINARIES

This chapter introduced the background, notation, definitions, and results used

throughout this thesis. The reader is assumed to already be familiar with the ba-

sics of the representation theory of associative algebras and groups. The chapter

begins with a detailed definition of a Hopf algebra and a brief introduction to their

representation theory including several important theorems. We then go on to give

the definition of a Frobenius algebra and discuss much of their basic structure to

the extent needed here. A celebrated theorem of Larson and Sweedler states that

all finite-dimensional Hopf algebras are Frobenius algebras. This dissertation will

make extensive use of this fact. Therefore, the next section is devoted to develop-

ing the Frobenius structure of finite-dimensional Hopf algebras and its connections

with the Hopf structure in explicit detail. The chapter concludes with several more

complex constructions that will be used throughout the dissertation, notably the

Drinfel’d double and the extended adjoint representation.

Throughout this chapter, k denotes an arbitrary field and all tensor products are

assumed to be over k unless otherwise denoted.
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2.1 Hopf algebras

2.1.1 Coalgebras

The familiar axioms of a k-algebra with multiplication m : A⊗A→ A and unit

µ : k→ A can be expressed by the commutativity of the following diagrams in the

category of k-vector spaces:

A⊗ A⊗ A A⊗ A A⊗ A k⊗ A

A⊗ A A A⊗ k A

Id⊗m

m

m⊗ Id m

∼

∼

µ⊗ Id

Id⊗µ
m

Associativity Unit

Reversing the direction of all arrows in the above diagrams, we obtain commutative

diagrams describing the defining axioms of coalgebras. In detail, a k-coalgebra is

a k-vector space, C, that is equipped with two linear maps, the comultiplication

∆: C → C ⊗ C and the counit ε : C → k, which satisfy the coassociativity and

counit axioms:

C ⊗ C ⊗ C C ⊗ C C ⊗ C k⊗ C

C ⊗ C C C ⊗ k C

Id⊗∆

∆

∆⊗ Id ∆

∼

∼

ε⊗ Id

Id⊗ε
∆

Coassociativity Counit

For example, if A is a finite-dimensional k-algebra, then the k-linear dual C = A∗

becomes a k-coalgebra by taking the dual maps ∆ = m∗ and ε = µ∗.

Without special notation, computations using the comultiplication ∆ quickly

become unwieldy. This dissertation will make use of an abbreviated notation known
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as Sweedler notation (after Moss Sweedler, one of the first to research Hopf alge-

bras). In this notation the element ∆(c) =
∑

i c
i
(1) ⊗ ci(2) will be abbreviated by

∆(c) = c(1) ⊗ c(2) ,

where summation is assumed. Using this notation, the counit axiom can be written

simply as

〈ε, c〉 = 〈ε, c(1)〉c(2) = c(1)〈ε, c(2)〉

and the coassociativity axiom can be expressed as

c(1)(1) ⊗ c(1)(2) ⊗ c(2) = (Id⊗∆)∆(c) = (∆⊗ Id)∆(c) = c(1) ⊗ c(2)(1) ⊗ c(2)(2) .

We will write the map (Id⊗∆) ◦ ∆ = (∆ ⊗ Id) ◦ ∆ more simply as ∆2 and it is

also customary to write ∆2(c) = c(1)⊗ c(2)⊗ c(3). Inductively, for any number n of

iterations of the comultiplication, one obtains a linear map ∆n : C → C⊗(n+1) that

will be written as

∆n(c) = c(1) ⊗ c(2) ⊗ . . .⊗ c(n+1) .

A subcoalgebra of a coalgebra C is defined exactly as expected: it is a subspace

D of C such that ∆(D) ⊆ D ⊗D. Given two coalgebras C and D, a k-linear map

φ : C → D is a morphism of coalgebras if ∆D ◦φ = (φ⊗φ)◦∆C and εC = εD ◦φ.

A coideal of a coalgebra C is a subspace I ⊆ C such that ∆(I) ⊆ I ⊗H +H ⊗ I
and I ⊆ Ker(ε). These are exactly the conditions necessary to make the coalgebra

structure maps descend to the vector space C/I , thus giving it the structure of a

coalgebra. As in the case of associative algebras, it remains true that coideals are

exactly the kernels of coalgebra morphisms.

We now discuss two important constructions. Given an algebra A, we can con-

struct it opposite algebraAop in the familiar way. A similar construction is available

for coalgebras. Namely, given a coalgebra C, its coopposite coalgebra Ccop is the

vector space C with comultiplication given by ∆cop = τ ◦∆, where τ : C ⊗ C →
C ⊗ C simply switches the order of the tensor factors, and with εcop = ε. Next,

given two coalgebras C and D, we can give their tensor product the structure of a
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coalgebra by defining εC⊗D = εC ⊗ εD and ∆C⊗D = (Id⊗τ ⊗ Id) ◦ (∆C ⊗ ∆D)

or, in Sweedler notation,

∆(c⊗ d) = c(1) ⊗ d(1) ⊗ c(2) ⊗ d(2) .

Example 2.1.1. One of the simplest and most useful examples of a k-algebra is the

matrix ring Mn(k). Its dual Mn(k)∗ gives us one of the simplest and most useful

examples of a coalgebra. Let Ei,j ∈ Mn(k) be the matrix with a 1 in position (i, j)

and a 0 everywhere else and take {di,j} to be the basis of Mn(k)∗ that is dual to

{Ei,j}. In terms of this basis the coalgebra structure of Mn(k)∗ is given by the

equations below:

∆(di,j) =
n∑
k=1

di,k ⊗ dk,j

ε(di,j) = δi,j (Kronecker delta)

Example 2.1.2. The vector space k[x] admits a coalgebra structure with structure

maps as given below:

∆(xn) =
n∑
k=0

(
n

k

)
xn−k ⊗ xk

ε(xn) = δn,0

This is an example of an infinite-dimensional k-coalgebra.

2.1.2 Convolution Product

Given a k-algebraA and a k-coalgebraC, we can give Homk(C,A) the structure

of an algebra. The multiplication is called the convolution product, it is denoted by

∗ and defined by ∗ = m◦( .⊗ . )◦∆: Homk(C,A)⊗Homk(C,A)→ Homk(C,A).

In explicit elementwise form, for c ∈ C and f, g ∈ Homk(C,A),

〈f ∗ g, c〉 = 〈f, c(1)〉〈g, c(2)〉 .

The unit map is given by it is straightforward to verify that µ ◦ ε : C → k → A

serves as a unit element for ∗ .
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2.1.3 Bialgebras and Hopf Algebras

A bialgebra is a coalgebra in the category of algebras or, equivalently, an al-

gebra in the category of coalgebras. More explicitly a k-bialgebra is both a k-

algebra and a k-coalgebra and the coalgebra structure maps are algebra morphisms

or, equivalently, the algebra structure maps are coalgebra morphisms.

Example 2.1.3. The vector space k[x] is a bialgebra, where k[x] has the usual poly-

nomial algebra structure and the coalgebra structure described in Example 2.1.2.

Let H be a k-bialgebra. Then Endk(H) = Homk(H,H) is an algebra via the

convolution product, where the first H is viewed as a coalgebra structure and the

second H as an algebra. If there exists a two-sided inverse, S ∈ Endk(H), to the

identity morphism, IdH ∈ Endk(H), thenH is called a Hopf Algebra. The element

S is then called the antipode of H . In Sweedler notation, the defining property of

the antipode can be written as

S(h(1))h(2) = ε(h)µ(1) = h(1)S(h(2)) .

It is worth noting that the antipode is always an antialgebra and anticoalgebra map

[35]. Explicitly, for any a, b, h ∈ H ,

S(ab) = S(b)S(a) and S(h(2))⊗ S(h(1)) = S(h)(1) ⊗ S(h)(2) .

A remarkable feature of Hopf algebras is that their axioms are self dual. Thus

given a finite-dimensional Hopf algebra H , the k-linear dual H∗ also has the struc-

ture of a Hopf algebra, where the structure maps of H∗ come from applying the

dualizing functor . ∗ to the structure maps of H .

Example 2.1.4. Given a group G and a field k, we can construct the group algebra

k[G]: it is the k vector space with basis the elements of G; multiplication is given

by linear extension of the group multiplication; and unit element of k[G] is given by

the unit element of G. The group algebra is in fact a Hopf algebra, with coalgebra
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structure maps and the antipode as given below, for g ∈ G:

∆(g) = g ⊗ g

ε(g) = 1

S(g) = g−1

Example 2.1.5. When |G| < ∞ we can construct the Hopf algebra k[G]∗, the k-

linear dual of k[G]. Let {ρx | x ∈ G} denote the basis of k[G]∗ that is dual to the

basis G of k[G]. Then for g, h ∈ G the Hopf algebra structure of k[G]∗ is given by:

µ(1) =
∑
g∈G

ρg = ε ρgρh = δg,hρg

ε(ρg) = ρg(1) = δg,1 ∆(ρg) =
∑
h∈G

ρh ⊗ ρh−1g

S(ρg) = ρg−1

Group algebras are particularly nice examples of Hopf algebras in that they are

cocommutative, meaning that, τ ◦ ∆ = ∆ where τ is the twist map as in Section

2.1.1. In other words, k[G]cop = k[G].

An element h of a Hopf algebra is called group-like if ∆(h) = h ⊗ h and

ε(h) = 1. In this case S(h) will also be a group-like element, and S(h) is the

multiplicative inverse of h. As the name suggests, the collection of all group-like

elements of any Hopf algebra H forms a subgroup of the group of units of H .

A Hopf algebra is called trivial if it is isomorphic to a group algebra or the

dual of a group algebra. The smallest non-trivial example of a Hopf algebra is a

four-dimensional example named after Sweedler, who first constructed it.

Example 2.1.6. Assume that k has characteristic 6= 2. The Sweedler algebra, de-

noted H4, is the unique non-commutative and non-cocommutative Hopf algebra of

dimension 4. The algebra structure of H4 is defined by H4 = k〈g, x | g2 = 1, x2 =

0, xg = −gx〉. The coalgebra structure and the antipode of H4 are defined by:

∆(g) = g ⊗ g , ∆(x) = x⊗ 1 + g ⊗ x ,

ε(g) = 1 , ε(x) = 0 ,

S(g) = g , S(x) = −gx .
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2.1.4 Hopf Subalgebras and Quotient Hopf Algebras

A Hopf subalgebra of a Hopf algebra H , by definition, is a subalgebra of H

that is also a subcoalgebra and is stable under the antipode. Likewise, a Hopf ideal

of H is an ideal of H that is also a coideal and is stable under the antipode.

We will commonly use the following technique to construct Hopf subalgebras.

Given a subalgebra, A, of H we define H (A) to be the subalgebra of A that is

generated by all Hopf subalgebras of H that are contained in A. It is a simple

exercise to see that this subalgebra is in fact a Hopf subalgebra, and thus is the

unique largest Hopf subalgebra of H contained in A. Of particular interest will

be the largest Hopf subalgebra contained in the center of H . For brevity, we will

simply write

ζ(H) = H Z (H) .

A similar process can be done starting with an ideal I of H to construct the

largest Hopf ideal, H (I), contained in I: define H (I) to be the sum of all Hopf

ideals of H that are contained in I . Given an H-module, M , we can use this con-

struction to construct the largest Hopf ideal of H contained in the annihilator of M ;

this ideal will be called the Hopf kernel of M and denoted by

H Ker(M) .

A representation ofH that is given by anH-moduleM with Hopf kernel H Ker(M) =

0 will be called inner faithful.

Example 2.1.7. Given a Hopf algebra H , we always have the augmentation ideal,

H+ := Ker(ε). This is in fact a Hopf ideal. The quotient Hopf algebra H = H/H+

is isomorphic to k as an algebra and the coalgebra structure is given by ∆H(c) =

c ⊗ 1. Given a Hopf subalgebra K in H , we can form the left ideal HK+ of H . It

is easy to see that HK+ is also a coideal of H . In Section 2.2.4, we will discuss

under which circumstances HK+ is in fact a Hopf ideal of H .

Example 2.1.8. For any group G, the Hopf subalgebras of the group algebra k[G]

are exactly the various k[H], where H is a subgroup of G. The Hopf ideals of k[G]
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are exactly the ideals of the form k[G]k[H]+, where H is a normal subgroup of G.

Furthermore, k[G]/k[G]k[H]+ ∼= k[G/H]. An inner faithful representation of k[G]

is just a representation of G such that no group element g ∈ G other than g = 1

acts as the identity transformation.

It is important to note that, while all Hopf ideals of group algebras arise from

Hopf subalgebras, this is not always the case in general. This is illustrated in the

next example.

Example 2.1.9. Observe the set G := {1, g} ⊆ H4 in the Sweedler algebra is a

group. The Hopf algebra k[G] is the only Hopf subalgebra of the Sweedler algebra

other then k and H4. The space H4k[G]+ has basis {x+ gx, 1− g} which is not an

ideal of H4 since it does not contain x−gx = (1−g)x. Now look at the Hopf ideal

of H4 given by the k-span of {x, gx}. This is in fact the Jacobson radical of H4.

Since this Hopf ideal did not arise from the unique nontrivial Hopf subalgebra k[G]

it could not have arisen from any Hopf subalgebra. The corresponding quotient

Hopf algebra is isomorphic to the group algebra k[C2], where C2 is the cyclic group

of order two.

2.2 Representation Theory

As is the case with groups, Hopf algebras have a representation theory that has

additional features not present in the representation theory of general associative

algebras. Throughout this dissertation we will focus on left modules. This is only

for consistency as the theory could be formulated equally well for right modules.

In the following, H denotes a Hopf k-algebra and RepH denotes the category

of left H-modules that are finite-dimensional over k. All further assumptions will

be explicitly stated when they are needed.

2.2.1 The Representation Ring and Character Algebra

The coalgebra structure ofH allows us to endow the category of leftH-modules

with the structure of a tensor category. The precise definition of a tensor category
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is not needed and hence will be omitted; the details can be found in Categories for

the Working Mathematician [32]. The key fact that is needed is that, given two left

H-modules V and W , the tensor product V ⊗W has an H-module structure with

h ∈ H acting by

h.(v ⊗ w) = h(1).v ⊗ h(2).w . (2.1)

The counit of a Hopf algebra gives rise to a representation, which will be called

the trivial representation and denoted by 1. Explicitly, 1 = k with h ∈ H acting

by h.1 = 〈ε, h〉. It is easy to see that, for any V ∈ RepH , the isomorphisms

V ⊗1 ∼= V ∼= 1⊗V hold in RepH . Using the trivial representation we get a notion

of the invariants of any V ∈ RepH ,

InvV = {v ∈ V |h.v = 〈ε, h〉v} .

The antipode of the Hopf algebra allows us to give the k-linear dual of a module

the structure of an H-module. Given V ∈ RepH , the vector space V ∗ becomes an

H-module with action defined by

〈h.f, v〉 = 〈f, S(h).v〉 . (2.2)

We will work with the representation ring R(H) of H , which is defined as

the abelian group with generators the isomorphism classes [V ] of representations

V ∈ RepH and with relations [U ] + [W ] = [V ] for each short exact sequence

0 → U → V → W → 0 in RepH . The multiplication of R(H) comes from the

tensor product of representations: [V ][W ] = [V ⊗W ]. By extension of scalars from

Z to k, we obtain the k-algebra Rk(H) := k ⊗ R(H); this algebra will be called

the representation algebra of H .

It is a standard fact that the representation algebra Rk(H) embeds into the lin-

ear dual H∗ via the character map and this embedding is a homomorphism of

k-algebras for the convolution algebra structure of H∗; see [31, Proposition 12.10].

Explicitly, for any V ∈ RepH , the character χV is the linear form on H that is

defined by 〈χV , h〉 = trace(hV ), where hV ∈ Endk(V ) denotes the operator given
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by the action of h ∈ H . The character map is given by

χ : Rk(H) H∗

∈ ∈

[V ] χV

The image of the character map in H∗ is called character algebra of H and is

denoted R(H). A k-basis of R(H) is given by the irreducible characters of H ,

that is, the characters of a full set of non-isomorphic irreducible finite-dimensional

representations of H . If H is semisimple and k is a splitting field for H (e.g., if k is

algebraically closed), then the character algebra R(H) coincides with the subspace

of all trace forms on H , that is, the linear forms on H that vanish on the subspace

[H,H] spanned by the Lie commutators [h, k] = hk − kh for h, k ∈ H . Thus, the

space of trace forms is isomorphic to (H/[H,H])∗; it can equivalently be thought

of as the set of cocommutative elements of H∗.

Example 2.2.1. Let G be a finite group. Then the set of irreducible characters of

k[G]∗ are the elements of G and hence k[G] = R(k[G]∗).

2.2.2 Comodules

Given an algebra A = (A,m, µ), the familiar axioms of a left A-module M can

be expressed by the existence of a k-linear “action” map a : A⊗M →M such that

the following diagrams are commutative:

A⊗ A⊗M A⊗M A⊗M k⊗M

A⊗M M M

Id⊗a

a

m⊗ Id a ∼

µ⊗ Id

a

Dually, if C = (C,∆, ε) is a k-coalgebra, then a k-vector space N is called a left

C-comodule if there is a k-linear “coaction” map ρ : N → C ⊗ N such that the

following diagrams commute:
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C ⊗ C ⊗N C ⊗N C ⊗N k⊗N

C ⊗N N N

Id⊗ρ

ρ

∆⊗ Id ρ ∼

ε⊗ Id

ρ

As with coalgebras it is customary to use a version of the Sweedler notation when

dealing with comodules: for n ∈ N ,

ρ(n) = n(−1) ⊗ n(0) .

For right comodules, defined by the obvious modification of the above, we will

instead use the notation

ρ(n) = n(0) ⊗ n(1) ∈ N ⊗ C .

Let M be a right C-comodule. Then M can be viewed as a left a left module

over the convolution algebra C∗ via

c∗.m = m(0)〈c∗,m(1)〉 (c∗ ∈ C∗,m ∈M) .

If C is finite-dimensional, then all left C∗-modules arise in this fashion; so there

is equivalence between the categories of right C-comodules and left C∗-modules.

Thus, as one would expect, there are analogs of all constructions and properties

of modules for comodules. For example, a subcomodule of a left comodule M

is a subspace V ⊆ M such that ρ(V ) ⊆ C ⊗ V . When C is a bialgebra, one

subcomodule of particular interest is given by the coinvariants,

coInvM := {m ∈M |ρ(m) = 1⊗m} .

A comodule M is called simple if M contains no subcomodules other than 0 and

M itself, and M is called indecomposable if it can not be expressed as the direct

sum of two nonzero subcomodules. A coalgebra C is called cosemisimple if all

C-comodules are direct sums of simple comodules. We will not go into detail on

cosemisimplicity as, in the case where C is finite-dimensional, it is equivalent to

the dual algebra C∗ being semisimple by our remark above. A Hopf algebra with

cosemisimple coalgebra structure is called cosemisimple.
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Example 2.2.2. The group algebra k[G] is cosemisimple. All simple comodules

are one dimensional and have the form kg for g ∈ G with structure map given by

ρ(g) = g ⊗ g.

Example 2.2.3. The coalgebra Mn(k)∗ of Example 2.1.1 is also cosemisimple. Up

to isomorphism it has exactly one simple left comodule. This module can be viewed

as k{ei,1} with ρ(ei,1) =
∑

k ei,k ⊗ ek,1. If k is algebraically closed, then dualizing

the Artin-Wedderburn structure theorem of semisimple algebras, one sees that all

cosemisimple coalgebras over k are isomorphic to a direct sum of duals of matrix

algebras.

2.2.3 Module Algebras

Quantum invariant theory is concerned with actions of Hopf algebras on asso-

ciative algebras. In detail, let A be an associative k-algebra and assume that A is a

left module over the Hopf k-algebra H with action map H⊗A→ A, h⊗ a 7→ h.a.

If the multiplication m : A⊗ A→ A and the unit map µ : A→ k = 1 are maps of

H-modules, then we say A is a H-module algebra. These axioms can be stated in

Sweedler notation as folows: for b, c ∈ A and h ∈ H , we have

h.(bc) = (h(1).b)(h(2).c) and h.1A = 〈ε, h〉1A .

Example 2.2.4. Let A be an associative algebra and let G be a subgroup of the

autmorphism group Autalg(A). Then the G-action on A extends to an action of the

group algebra k[G], making A a k[G]-module algebra.

2.2.4 Adjoint Representation

Let V be an H-bimodule, that is, a left module over the algebra H ⊗Hop. Then

we can form a left adjoint module of V , denoted by adV , by defining

hv := h(1)vS(h(2)) (h ∈ H, v ∈ V ) .

Naturally, there is also an analogous right adjoint action, given by

vh = S(h(1))vh(2) .
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However, by passing to the opposite-cooposite Hopf algebra, this action can be

reduced to the above action; so we will mainly focus on the left-handed version

here. In fact, we will mostly be interested in the case where V = H is the regularH-

bimodule, with left and right actions given by multiplication. As in the Introduction,

the corresponding representation ofH will be called the adjoint representation. The

algebra H , with the (left) adjoint H-action, is an example of an H-module algebra

as introduced in the previous section.

For any H-bimodule V , the ordinary H-actions on V and the adjoint action are

related by:

hv = (h(1)v)h(2) . (2.3)

The H-invariants of adV are given by:

Inv(adV ) = Z V := {v ∈ V | hv = vh for all h ∈ H} . (2.4)

Indeed, for v ∈ Z V and h ∈ H , we have hv = h(1)S(h(2))v = 〈ε, h〉v; so v ∈
Inv(adV ). Conversely, if v ∈ Inv(adV ) and h ∈ H , then (2.3) gives hv = (h(1)v)h(2) =

〈ε, h(1)〉vh(2) = vh.

Example 2.2.5. For G a group the adjoint action of k[G] is given by the k-linear

extension of G acting on itself by conjugation.

Example 2.2.6. To he adjoint action of H4 is given on algebra generators by:

gg = g gx = −x g1 = 1 ggx = −gx
xg = −2gx xx = 0 x1 = 0 xgx = 0

If a Hopf subalgebra K of H is stable under the left and right adjoint actions of

H , then we say K is normal. In this case, the coideal HK+ of H is also a two-

sided ideal of H , and hence it is a Hopf ideal. If H is finite dimensional, then the

converse holds as well: for any Hopf subalgebra K of H , the Hopf ideal HK+ is

an ideal of H if and only if K is normal; see [35, Corollary 3.4.4].



24

2.2.5 Integrals, Semisimplicity and Cosemisimplicity

A k-algebra, A, is said to be augmented if A is equipped with a given algebra

map ε : A→ k, called the augmentation map of A. Thus, a Hopf algebra is always

an augmented algebra, the augmentation map ε being the counit. A left integral

in an augmented algebra (A, ε) is an element Λ ∈ A such that aΛ = ε(a)Λ for

all a ∈ A. Right integrals are defined similarly by the condition Λa = Λε(a) for

all a ∈ A. Throughout this thesis, Λ will always be used to denote an integral,

superscripts of L or R will be used to distinguish left and right integrals. The space

of all left integral of an augmented algebra A will be denoted
∫ L
A

and similarly the

space of right integrals will be denoted
∫ R
A

. The following theorem of Larson and

Sweedler shows that finite-dimensional Hopf algebras always have integrals, and

they are unique up to scalar multiples [29].

Theorem 2.2.7. Let H be a finite-dimensional Hopf algebra. Then the spaces
∫ L
H

and
∫ R
H

are one dimensional.

AsH∗ is also a Hopf algebra it is an augmented algebra with augmentation map

µ∗. Thus Theorem 2.2.7 also implies the existence of integrals of H∗. These inte-

grals will commonly be denoted with the lowercase Greek letter λ and superscripts

of L and R will be used to distinguish left and right integrals.

Observe for all h ∈ H we have hΛR is also a right integral and since the space

of right integrals is one dimensional this gives hΛR = 〈α, h〉ΛR for some α ∈ H∗.
The element α is easily seen to be an algebra map; thus it is a group-like element of

H∗. The element α is called the distinguished group-like element of H∗. A Hopf

algebra is called unimodular if the distinguished group like element of H∗ is the

counit ofH or equivalently ifH contains a central integral. IdentifyingH withH∗∗

we also get a distinguished group-like element of H .

The integral of a Hopf algebra can be used to easily determine when the Hopf

algebra is semisimple via the following theorem.

Maschke’s Theorem for Hopf Algebras [29]. A Hopf algebra H is semisimple iff

H is finite dimensional and ε(
∫ L
H

) 6= 0 or, equivalently, ε(
∫ R
H

) 6= 0.
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The theorem, though due to Larson and Sweedler, is generally named after

Heinrich Maschke, who proved the special case of group algebras: k[G] is semisim-

ple if and only if G is finite and char k does not divide the order |G| [49].

It is an immediate consequence of Maschke’s Theorem that a semisimple Hopf

algebra is unimodular. Another immediate consequence is that semisimple Hopf

algebras are separable: F⊗H remains semisimple for all field extensions F/k. This

follows, because any integral of H is also an integral of F ⊗H . If char k = 0, then

a theorem of Larson and Radford [27] gives thatH is also cosemisimple. Moreover,

in this case, the antipode of H and H∗ must satisfy S ◦ S = Id. A Hopf algebra

with the latter property is called involutory [28]. It was shown in [27] that, for an

involutory unimodular Hopf algebra, the character of the regular representation is

an integral of H∗. We will make frequent use of this fact in this thesis.

Example 2.2.8. For a finite group G, the standard integral of k[G] is
∑

g∈G g. It

is easily seen to be central and hence group algebras are unimodular. Applying

Maschke’s Theorem for Hopf algebras, we get back Maschke’s original result that

k[G] is semisimple iff G is finite and char k does not divide |G|. Even in the case

where char k divides |G|, the group algebra k[G] is still involutory as, clearly, the

antipode g 7→ g−1 composed with itself is the identity.

Example 2.2.9. The standard integral of k[G]∗ is ρ1 where 1 is the identity element

of k[G]. Since k[G]∗ is commutative, it is clearly unimodular.

Example 2.2.10. The Sweedler algebraH4 is our first example of a non-unimodular

Hopf algebra. The space of left integrals is spanned by gx+x, and the space of right

integral by−gx+x. The distinguished group like element of the dual is defined on

algebra generators by α(x) = 0 and α(g) = −1. Since ε(gx + x) = 0, Maschke’s

Theorem for Hopf algebras tells us that H4 is not semisimple. In fact, as we have

pointed out in Example 2.1.9, the Jacobson radical of H4 is the 2-dimensional ideal

of H4 that is generated by the element x .
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2.2.6 Chevalley Property

For a non-semisimple Hopf algebra the tensor product of two completely re-

ducible modules fails to be completely reducible in general. It is of interest to

know when the tensor product inherits complete reduciblity from its factors. Fol-

lowing [3], a Hopf algebraH (not necessarily finite-dimensional) is said to have the

Chevalley property if the tensor product of any two finite-dimensional completely

reducible H-modules is again completely reducible. A classical result of Chevalley

[6] states that group algebras of arbitrary groups over fields of characteristic zero

do in fact have this property; see also [22, Theorem VII.2.2]. We will say that a left

H-module M has the Chevalley property if all tensor powers M⊗n are completely

reducible or, equivalently, the H-module T(M) :=
⊕

n∈Z+
M⊗n is completely re-

ducible. The Chevalley property for H , in the above sense, is evidently equivalent

to the Chevalley property for the direct sum of all finite-dimensional irreducible

H-modules.

2.3 Frobenius and Symmetric Structure

Frobenius algebras were first studied by Georg Frobenius in [19] and later in

more detail by Tadasi Nakayama in [37], [38] and [39]. Hopf algebras carry the

structure of a Frobenius algebra in a way that is deeply intertwined with their Hopf

structure. This thesis will make extensive use of this fact in proving our main re-

sults. This section reviews the necessary background material on Frobenius alge-

bras, including the special case of symmetric algebras, and gives explicit descrip-

tions of these structures for finite-dimensional Hopf algebras.

2.3.1 Frobenius and Symmetric Algebras

Every k-algebra A carries the “regular” (A,A)-bimodule structure: the left ac-

tion of a ∈ A on A is given by the left multiplication operator, aA, and the right

action by right multiplication, Aa. This structure gives rise to an (A,A)-bimodule

structure on the linear dual A∗ = Homk(A, k), for which the following notation is
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customary in the Hopf literature:

a⇀f↼b
def
= f ◦ bA ◦ Aa or 〈a⇀f↼b, c〉 = 〈f, bca〉,

for a, b, c ∈ A and f ∈ A∗. The algebra A is said to be Frobenius if A ∼= A∗

as left A-modules. It is a standard fact that this is equivalent to an isomorphism

A ∼= A∗ as right A-modules. Note that even a mere k-linear isomorphism A∗ ∼= A

forces A to be finite-dimensional; so Frobenius algebras will necessarily have to

be finite-dimensional. Fixing a left A-module isomorphism A ∼−→ A∗, the image

of 1A ∈ A has special significance; it is called the Frobenius form afforded by

the given isomorphism. Throughout this thesis, Frobenius forms will commonly be

denoted with the symbol λ. Then the given isomorphism can be realized as follows:

A A∗

∈ ∈

a a ⇀ λ

∼
(2.5)

A Frobenius algebra can equivalently be defined as a finite-dimensional k-algebra

A equipped with a non-degenerate bilinear form 〈 . , . 〉 : A × A → k that is asso-

ciative in the sense that 〈ab, c〉 = 〈a, bc〉 for all a, b, c ∈ A. Indeed, such a bilinear

form gives rise to an isomorphism A ∼= A∗ as left A-modules via a 7→ 〈 . , a〉, or

as right A-modules via a 7→ 〈a, . 〉. Conversely, given a left A-module isomor-

phism A ∼−→ A∗ with corresponding Frobenius form λ, we obtain an associative

non-degenerate bilinear form by (a, b) 7→ λ(ab).

For a Frobenius algebra A, the isomorphism between A and A∗ need not be

unique and thus there can be multiple Frobenius forms. However, if λ is one such

form, then the complete set of possible Frobenius forms is given by {u ⇀ λ | u ∈
A×}. Because of this lack of uniqueness we will think of a Frobenius algebra as a

pair (A, λ) consisting of the algebra A together with a fixed Frobenius morphism λ.

A morphism (A, λ)→ (B, µ) of Frobenius algebras is a k-algebra map f : A→ B

such that λ = µ ◦ f .

The algebra A is said to be symmetric if A satisfies the stronger condition that

A ∼= A∗ as (A,A)-bimodules. This amounts to the identity a ⇀ λ = λ ↼ a for the
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corresponding Frobenius form λ, which in turn spells out to λ being a trace form,

that is, 〈λ, ab〉 = 〈λ, ba〉 for all a, b ∈ A. Symmetry of A is also equivalent to

the corresponding bilinear form 〈 . , . 〉 : A × A → k being symmetric. When we

say that (A, λ) is symmetric, it is being understood that λ is a trace form. We note

that just because an algebra A admits a symmetric structure does not mean that all

Frobenius forms are trace forms. For a symmetric algebra (A, λ), the Frobenius

morphism u ⇀ λ is a trace form iff u is a central unit of A.

Let (A, λ) be a Frobenius algebra. Non-degeneracy of λ gives that there exists

η ∈ Autk(A) such that a ⇀ λ = λ ↼ η(a) for all a ∈ A. In fact it is easy to check

that η ∈ Autk−alg(A). The map η is called the Nakayama automorphism of (A, λ).

Let (A, λ) be a Frobenius algebra. Then the canonical k-linear isomorphism

Endk(A) ∼= A ⊗ A∗ gives rise to an isomorphism Endk(A) ∼= A ⊗ A by virtue

of (2.5). The element cλ ∈ A ⊗ A that corresponds to IdA ∈ Endk(A) under this

isomorphism is called the Casimir element of (A, λ):

Endk(A) A⊗ A∗ A⊗ A

∈ ∈

IdA cλ :=
∑

i xi ⊗ yi

∼
can.

∼
via λ as in (2.5)

Explicitly, this means that

a =
∑
i

xi〈λ, ayi〉 =
∑
i

〈λ, xia〉yi (a ∈ A). (2.6)

Choosing the xi to be k-linearly independent, as we may, this condition states

that the xi form a k-basis of A such that 〈λ, xiyj〉 = δi,j for all i, j. The family

(xi, yi) will be called dual bases of (A, λ). Using the identity a =
∑

i xi〈λ, ayi〉 =∑
i yi〈λ, axi〉 for all a ∈ A, we compute∑
i

axi ⊗ yi =
∑
i,j

xj〈λ, axiyj〉 ⊗ yi =
∑
i,j

xj ⊗ yi〈λ, yjaxi〉 =
∑
j

xj ⊗ yja .

Thus,

cλ(a⊗ 1) = (1⊗ a)cλ . (2.7)
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Now assume that (A, λ) is a symmetric algebra. Then we additionally get the

identity ∑
i

xi ⊗ yi =
∑
i

yi ⊗ xi . (2.8)

Applying the switch automorphism τ to (2.7) and using the fact that cλ is stable

under τ by the above identity, we also obtain (1 ⊗ b)cλ = cλ(b ⊗ 1) for all b ∈ A.

Hence,

cλ(a⊗ b) = (b⊗ a)cλ . (2.9)

The following operator was originally introduced by D.G. Higman [21]:

γλ : A A/[A,A] Z A

∈ ∈

a
∑

i xiayi

can.

(2.10)

Part (a) of the following lemma justifies the claims, implicit in (2.10), that γλ is a

center-valued trace function on A. We will refer to γλ as the Casimir trace of the

symmetric algebra (A, λ).

Lemma 2.3.1. Let (A, λ) be a symmetric algebra. Then aγλ(bc) = γλ(cb)a for all

a, b, c ∈ A. Furthermore,

c2
λ = (Id⊗γλ)(cλ) = (γλ ⊗ Id)(cλ) ∈ Z (A⊗ A) = Z A⊗Z A .

Proof. Spelling out (2.9) results in
∑

i axi ⊗ byi =
∑

i xib⊗ yia. Multiplying this

identity in A⊗ A on the right with c⊗ 1 and then applying the multiplication map

A⊗A→ A gives
∑

i axicbyi =
∑

i xibcyia or, equivalently, aγλ(cb) = γλ(bc)a as

claimed. From (2.9) we also obtain c2
λ(a⊗ b) = cλ(b⊗ a)cλ = (a⊗ b)c2

λ, proving

that c2
λ ∈ Z (A⊗ A). Finally,

c2
λ =

∑
i

(xi ⊗ yi)cλ =
(2.9)

∑
i

(xi ⊗ 1)cλ(yi ⊗ 1) = (γλ ⊗ Id)(cλ)

and the identity c2
λ = (Id⊗γλ)(cλ) also follows by applying the switch operator τ

and using the fact that cλ is τ -invariant by (2.8).
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The Casimir element cλ can be used to give a convenient trace formula for en-

domorphisms f ∈ Endk(A):

trace(f) =
∑
i

〈λ, f(xi)yi〉 =
∑
i

〈λ, xif(yi)〉 . (2.11)

To see this, note that (2.6) gives f(a) =
∑

i f(xi)〈λ, ayi〉 for all a ∈ A. Thus,

trace : Endk(A) A⊗ A∗ k
∈ ∈ ∈

f
∑

i f(xi)⊗ (yi⇀λ)
∑

i〈λ, f(xi)yi〉

∼
can. evaluation

This proves the first equality; the second follows from (2.8) and the fact that λ is a

trace form.

Example 2.3.2. The k-algebra (Mn(k),Tr) is a symmetric algebra where Tr is the

ordinary matrix trace. Let Ei,j be the matrix with a 1 in position (i, j) and 0 ev-

erywhere else. Then the Casimir element is given by
∑

i,j Ei,j ⊗Ej,i. The Higman

trace is identical to the ordinary matrix trace:

γTr(Ek,`) =
∑
i,j

Ei,jEk,`Ej,i = δk,` Idn×n . (2.12)

It is easy to check that the regular character of Mn(k) is given by

χreg = nTr (2.13)

In particular, if char k - n, then we may also take χreg as our Frobenius trace form.

Additionally (Mn(k), U ⇀ Tr) is a Frobenius algebra iff det(U) 6= 0, and this

structure is symmetric iff U is a scalar matrix.

More generally, every finite-dimensional semisimple k-algebra A is symmetric

[11, 9.8]. Indeed, Wedderburn’s Structure Theorem allows us to assume that A is

simple. Thus, K = Z A is an extension field of k and A⊗K K is a matrix algebra

over an algebraic closure K of K. By the above example, the matrix trace is then a

Frobenius trace form λ for A⊗KK, and this form clearly does not vanish on A. By

simplicity λ does not vanish on any nonzero ideal of A, proving non-degeneracy.
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2.3.2 Frobenius Structure of Finite-Dimensional Hopf Algebras

In [29] it was shown that all finite-dimensional Hopf algebras are in fact Frobe-

nius algebras. This structure was later explored in more depth by Schneider and

Oberst in [41]. For an English reference, see the lecture notes [47] of a course

Schneider gave at Universidad Nacional de Córdoba. Here is a brief summary of

the essentials. Throughout, H denotes a finite-dimensional Hopf k-algebra.

First, the Frobenius form can to chosen to be any left integral 0 6= λL ∈ H∗ or

any right integral 0 6= λR ∈ H∗. The Nakayama automorphism of (H,λL) is given

by

η := m ◦ (S2 ⊗ µ ◦ α) ◦∆

or, in Sweedler notation, h 7→ S2(h(1))α(h(2)). For (H, λR) the Nakayama au-

tomorphism is given by m ◦ (µ ◦ α ⊗ S−2) ◦ ∆ or, in Sweedler notation, h 7→
α(h(1))S

−2(h(2)). The Casimir element of (H,λL) is given by

cλL = ΛR
(2) ⊗ S(ΛR

(1)) ,

where 〈λL,ΛR〉 = 1. The Casimir element of (H,λR) is given by S(ΛL
(2)) ⊗ ΛL

(1)

where 〈λR,ΛL〉 = 1.

From the descriptions of the Nakayama automorphisms, we obtain:

(H,λL) is symmetric ⇐⇒ (H,λR) is symmetric

⇐⇒ H is unimodular and involutory.

It is possible forH admit the structure of a symmetric algebra even if λL and λR are

not trace forms. A Hopf algebra admits the structure of a symmetric algebra exactly

when H is unimodular and S2 is an inner automorphism. When S2(h) = uhu−1

then (H, u ⇀ λL) and (H, u−1 ⇀ λR) are symmetric algebras.

Example 2.3.3. For a finite group G, the Hopf algebra (k[G], ρ1) is a symmetric

algebra. The Casimir element is given by
∑

g∈G g ⊗ g−1.

Example 2.3.4. For a finite group G, the Hopf algebra (k[G]∗,
∑

g∈G g) is a sym-

metric algebra. The Casimir element is given by
∑

g∈G ρg ⊗ ρg.
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Example 2.3.5. Let {ρ1, ρg, ρx, ρgx} be a basis of H∗4 that is dual to the basis

{1, g, x, gx} of H4. A left integral of H∗4 is given by ρgx and a right integral is

given by ρx. So (H4, ρgx) is a Frobenius algebra; it has Nakayama automorphism

given by g 7→ −g and x 7→ x and Casimir element gx⊗g−1⊗x−x⊗1+g⊗x. Ad-

ditionally, (H4, ρx) is a Frobenius algebra, with Nakayama automorphism g 7→ −g
and x 7→ −x and Casimir element gx⊗ g − 1⊗ x+ x⊗ 1− g ⊗ x. The Sweedler

algebra does not admit a symmetric structure as it is not unimodular.

2.3.3 Frobenius Structure of the Character Algebra

For details concerning the following, see [31, Chapter 12]. Let H be a semisim-

ple Hopf algebra H and assume that k is a splitting field for H . Then the represen-

tation algebra Rk(H) is also a symmetric algebra, with Frobenius trace form

Inv : Rk(H)→ k , [V ] 7→ dimk
InvV ,

where InvV is the space of H invariants of V . The Casimir element is then given by

cInv =
∑

V ∈IrrH

[V ]⊗ [V ∗] .

Pushing this structure through the character map to gives a symmetric structure on

R(H). In this case the Frobenius trace form is given by Λ|R(H), where Λ ∈ H is

the idempotent integral and we have identified H with H∗∗. The Casimir element

becomes
∑

χ∈Irr(H) χ⊗S(χ). Thus the character map χ : (Rk(H), Inv)→ (H∗,Λ)

is a morphism of symmetric algebras. Also of interest is that γΛ(1) is the character

of the adjoint representation:

γΛ(1) =
∑

χ∈IrrH

χS(χ) = χad .

2.4 The Drinfel’d Double, Almost Cocommutativity,

Quasitriangularity and Factorizablity

Cocommutative Hopf algebras possess many nice properties. However, assum-

ing cocommutativity generally greatly restricts the structure of the available Hopf
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algebras. For example, the only cocommutative semisimple Hopf algebras over an

algebraically closed base field are group algebras of finite groups. The notion of

almost cocommutativity, due to Drinfel’d [13], is significantly weaker than cocom-

mutativity while still preserving some of the desirable features of cocommutativity.

In detail, a Hopf algebra H having an invertible antipode S is called almost cocom-

mutative if there exists

R := R1 ⊗R2 ∈ (H ⊗H)×

such that R∆(h)R−1 = τ ◦∆(h). (Here and in the following, we have suppressed

the summation symbol.) Because there may be multiple such R, we will frequently

write (H,R) to specify an almost commutative Hopf algebra. In this case, for any

V,W ∈ RepH , the map V ⊗ W ∼−→ W ⊗ V , v ⊗ w 7→ R−1.(w ⊗ v) is an

isomorphism in RepH . Thus, the representation ring R(H) is commutative.

A stronger notion than almost cocommutativity, but still weaker than cocommu-

tativity, is quasitriangularity. In detail, a Hopf algebra H is called quasitriangular

if it is almost cocommutative and the element R above satisfies the following prop-

erties:

(Id⊗∆)(R) = i13(R)i12(R) (2.14)

(∆⊗ Id)(R) = i13(R)i23(R) (2.15)

Here i12 : H ⊗ H → H ⊗ H ⊗ H is defined via a ⊗ b 7→ a ⊗ b ⊗ 1 and i13 and

i23 are defined likewise. At first glance, these conditions seem arbitrary, but there

are in fact strong connections with physics via the Yang-Baxter equation. Given a

quasitriangular Hopf algebra, we can construct a map Φ = ΦR ∈ Homk(H
∗, H)

as follows. Let b := τ(R)R = b1 ⊗ b2 and define Φ(f) = b1f(b2) for f ∈ H∗.

Following Drinfel’d [13], we also put

C(H) := {f ∈ H∗ | f(xy) = f(yS2(x)) for all x, y ∈ H} .

The usefulness of the map Φ comes from the following theorem.
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Theorem 2.4.1 ([13]). Let (H,R) be a quasitriangular Hopf algebra and let Φ =

ΦR : H∗ → H be as above. Then, for all f ∈ H∗ and g ∈ C(H),

Φ(g) ∈ ZH and Φ(fg) = Φ(f)Φ(g) .

A quasitriangular Hopf algebra (H,R) is called factorizable if the map ΦR is

bijective. An important example of a factorizable Hopf algebra is the Drinfel’d

double D(H) of any finite-dimensional Hopf algebra H . As a coalgebra,

D(H) = (H∗)cop ⊗H .

To avoid confusion with the ordinary tensor product of Hopf algebras, H∗⊗H , the

element f ⊗ h ∈ D(H) is commonly denoted by f ./ h and we will also write

D(H) = (H∗)cop ./ H . Then the multiplication of D(H) is given by the following

formula; see [35, Lemma 10.3.11]:

(f ./ h)(g ./ k) = f(h(1) ⇀ g ↼ S−1(h(3))) ./ h(2)k . (2.16)

The subspaces ε ./ H and (H∗)cop ./ 1 are in fact Hopf subalgebras of D(H) that

are isomorphic to H and (H∗)cop, respectively. We will often view H and (H∗)cop

as Hopf subalgebras ofD(H) in this way. Let (hi) be a k-basis ofH and let (fi) the

dual basis of H∗. Then the factorizable structure of D(H) come from the element

R :=
∑
i

(ε ./ hi)⊗ (fi ./ 1) =
∑
i

hi ⊗ fi ∈ D(H)⊗D(H) .

For a more in-depth review on the Drinfel’d double, see any of the standard ref-

erences on Hopf algebras. We mention that, for any quasitriangular Hopf alge-

bra (H,R), there is a surjective Hopf algebra map D(H) � H , f ./ h 7→∑
f(R1)R2h, where R =

∑
R1 ⊗R2 as usual.

Example 2.4.2. Any cocommutative Hopf algebra H is quasitriangular, with R =

1⊗ 1. In particular, all group algebras are quasitriangular. For a finite group G, the

multiplication of D(k[G]) is given by

(ρh ./ g)(ρk ./ `) = δh,gkg−1ρh ./ g`

for g, h, k, ` ∈ G
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2.5 The Extended Adjoint Representation

Earlier, in Section 2.2.4, the adjoint representation adH was introduced. In this

section, we describe an extension of the adjoint action of H on itself to an action of

the Drinfel’d doubleD(H) onH . We also present some important results pertaining

to this extended action. Throughout this section, H will be a semisimple Hopf

algebra over an algebraically closed field k of characteristic 0. Then the space

C(H) ⊆ H∗, as introduced earlier in connection with Theorem 2.4.1, becomes the

space of trace forms, which is identical to the character algebra R(H):

C(H) := {f ∈ H∗ | f(xy) = f(yx) for all x, y ∈ H} = R(H) .

Following Y. Zhu [59], the extended D(H)-action on H is defined by

(f ./ h).k = (hk) ↼ S−1(f) . (2.17)

We will call this action the extended adjoint action and denote the corresponding

module by AdH . Naturally, AdH provides a powerful tool in studying adH . The

main result of Zhu’s paper can be summarized as follows:

Theorem 2.5.1. Let H be a semisimple Hopf algebra over an algebraically closed

field of characteristic 0. Then the algebra EndD(H)(
AdH) is isomorphic to the char-

acter algebra C(H).

Using the inclusion of H into D(H) we get the isomorphism AdH ∼= kε↑D(H)
H ;

this will be explained in detail later (§4.3.4). From this view point, the extended

adjoint representation was studied further by Burciu [5]. The following result of his

is of interest.

Theorem 2.5.2. Let H be a semisimple Hopf algebra over an algebraically closed

field of characteristic 0. Then the Hopf kernel of the adjoint representation adH is

the Hopf ideal ζ(H)+H arising from the largest central Hopf subalgebra, ζ(H).

Finally, let us turn to conjugacy classes of a Hopf algebraH . For almost cocom-

mutative semisimple Hopf algebras over the complex numbers, a notion of conju-

gacy class sums was first studied by Witherspoon [55]. Later, Cohen and Westreich
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[8] gave a definition of conjugacy classes in a slightly more general setting as fol-

lows:

Definition. A conjugacy class of a semisimple Hopf algebra H over an alge-

braically closed field k of characteristic 0 is an irreducible subrepresentation of
AdH .

Example 2.5.3. For finite group algebras k[G], the action of D(H) on Ad
k[G] is

explicitly given by

(ρh ./ k).g = δh−1,kgk−1kgk−1

for g, h, k ∈ G. The above definition of conjugacy classes is closely related to the

usual definition of conjugacy classes in a group: the k-subspaces of k[G] that are

generated by the conjugacy classes of G are exactly the conjugacy classes of k[G].

2.6 Freeness and Faithful (Co)flatness

Given a subalgebra K of a finite-dimensional algebra H , we are interested in

the regular representation of H restricted to K. In general, not much can be said

about this K-representation, but in the case that K is a Hopf subalgebra, it has a

very simple structure:

Nichols-Zoeller Theorem 2.6.1. Let H be a finite-dimensional Hopf algebra and

let K a Hopf subalgebra of H . Then H is a free as left K-module (with the regular

multiplication action).

Example 2.6.1. Let G be a finite group and let H be a subgroup of G. Then,

clearly, kH is a Hopf subalgebra of k[G]. In this case, the Nichols-Zoeller Theorem

is an immediate consequence of Lagrange’s Theorem: G is the disjoint union of

the cosets Hg with g ∈ H\G, and hence k[G] =
⊕

g∈H\G k[H]g. This even holds

when G and H are not necessarily finite.

In general, when H is infinite dimensional, the Nichols-Zoeller Theorem fails:

infinite-dimensional Hopf algebras need not be free over all Hopf subalgebras; see,
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for example, Oberst and Schneider [42, Proposition 10]. Instead, it is better to

ask for the weaker property of H being faithfully flat as (left) module over Hopf

subalgebras or, alternatively, of H being faithfully coflat. In order to define what

it means for H is be faithfully coflat over K, we need to introduce the notion of a

cotensor product. Let C be a coalgebra then, given a right C-comodule V and a

left C-comodule W , the cotensor product of V and W is the k-vector space that is

defined by

V�CW := {
∑
i

vi ⊗ wi|
∑
i

ρ(vi)⊗ wi =
∑
i

vi ⊗ ρ(wi)} .

We say that V if a coflat right C-comodule if the functor V�C− from left C-

comodules to k-vector spaces preserves exact sequences; similarly for left coflat-

ness. If the functor V�C− is additionally faithful, in the sense that the k-linear map

V�Cf : V�CW → V�CW
′ is nonzero for any nonzero map f : W → W ′ of left

C-comodules, then we say that V is faithfully coflat. In general, Hopf algebras are

not faithfully (co)flat over Hopf subalgebras. However, many theorems are known

for determining when this occurs. For example, H is faithfully flat over all its Hopf

subalgebras when the coradical of H is cocommutative [33].
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CHAPTER 3

FROBENIUS DIVISIBILITY

In this chapter, I present my main results on Frobenius Divisibility. The chapter

is organized into four main sections: the first discusses general Frobenius Divis-

ibility for semisimple algebras; the second then uses these results to construct an

algorithm for studying the degrees of irreducible representations; the third section

applies our general results to Hopf algebras to give alternate proofs of many of the

main known results, putting them into a common framework; and lastly, section

four extends some of these results by considering the Hopf center of characters.

3.1 Semisimple Algebras

Let A be a finite-dimensional semisimple k-algebra. Consider the Wedderburn

isomorphism

a
(
aS
)∈ ∈

A
∏

S∈IrrA

EndD(S)(S)∼

(3.1)

where D(S) = EndA(S) is the Schur division algebra of S and aS ∈ EndD(S)(S)

is given by the action of a on S. The primitive central idempotent e(S) ∈ Z A is

the element corresponding to (0, . . . , 0, IdS, 0, . . . , 0) ∈
∏

S∈IrrA EndD(S)(S) under
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the Wedderburn isomorphism; so

e(S)T = δS,T IdS (S, T ∈ IrrA).

The following proposition gives a formula for e(S) using the character χS of S,

defined by 〈χS, a〉 = trace(aS) for a ∈ A, together with data coming from the

structure of A as a symmetric algebra (§2.3.1).

Proposition 3.1.1. Let A be a finite-dimensional semisimple k-algebra with Frobe-

nius trace form λ . Then, for each S ∈ IrrA , we have the following formula in

A = k⊗ A,

γλ(1) e(S) = d(S) (χS ⊗ IdA)(cλ) = d(S) (IdA⊗χS)(cλ),

where d(S) = dimD(S) S. In particular, γλ(1)S = 0 if and only if χS = 0 or

d(S) 1k = 0.

Proof. First, (χS ⊗ IdA)(cλ) = (IdA⊗χS)(cλ) by (2.8). So we only need to show

that γλ(1) e(S) = d(S) (IdA⊗χS)(cλ), which amounts to the condition

〈λ, γλ(1) e(S) a〉 = d(S) 〈λ, (IdA⊗χS)(cλ)a〉

for all a ∈ A by nondegeneracy of λ. But

〈λ, (IdA⊗χS)(cλ)a〉 =
(2.8)
〈λ,
∑

i xi〈χS, yi〉a〉 =
∑

i 〈χS, yi〉〈λ, xia〉 = 〈χS, a〉,

and so we need to show that

〈λ, γλ(1) e(S) a〉 = d(S) 〈χS, a〉 (a ∈ A) (3.2)

For this, we use the regular character,

〈χreg, e(S) a〉 =
(2.11)
〈λ, γλ(1) e(S) a〉.

On the other hand, by Wedderburn’s Structure Theorem, the regular representation

of A has the form Areg
∼=
⊕

T∈IrrA T
⊕d(T ), which gives χreg =

∑
T∈IrrA d(T )χT .

Since e(S)⇀χT = χT↼e(S) = δS,TχS , we obtain

e(S)⇀χreg = χreg↼e(S) = d(S)χS (3.3)

Therefore, 〈χreg, e(S)a〉 = d(S)〈χS, a〉, proving (3.2). Finally, (3.2) also shows

that γλ(1) e(S) = 0 if and only if d(S)χS = 0, which implies the last assertion in

the proposition.
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3.1.1 The Casimir Square

Continuing to assume that A is a finite-dimensional semisimple k-algebra, we

now describe the Casimir square c2
λ ∈ Z A ⊗ Z A in terms of the following iso-

morphism coming from the Wedderburn isomorphism (3.1):

A⊗ A
∏

S,T∈IrrA

EndD(S)(S)⊗ EndD(T )(T )
∈ ∈

a⊗ b
(
aS ⊗ bT

)
∼

(3.4)

We will write tS,T ∈ EndD(S)(S) ⊗ EndD(T )(T ) for the (S, T )-component of the

image of t ∈ A⊗A under the above isomorphism; so (a⊗ b)S,T = aS ⊗ bT . Recall

that S ∈ IrrA is absolutely irreducible if and only if D(S) = k.

Theorem 3.1.2. LetA be a finite-dimensional semisimple k-algebra with Frobenius

trace form λ . Then (cλ)S,T = 0 for S 6= T ∈ IrrA. If S is absolutely irreducible,

then (dimk S)2 (c2
λ)S,S = γλ(1)2

S .

Proof. For S 6= T , the identity (a⊗ b)cλ = cλ(b⊗ a) in (2.9) gives

(cλ)S,T =
(
(e(S)⊗e(T ))cλ

)
S,T

=
(
cλ(e(T )⊗e(S))

)
S,T

= (cλ)S,T (0S⊗0T ) = 0.

It remains to consider (c2
λ)S,S for S absolutely irreducible. Then, for c ∈ Z (A),

the operator cS ∈ Endk(S) is a scalar and χS(c) = d(S)cS with d(S) = dimk S.

Therefore, writing ρS(a) = aS for a ∈ A, we calculate

d(S)(ρS ◦ γλ)(a) = (χS ◦ γλ)(a) = χS(
∑

ixiayi) = χS(
∑

iayixi)

= χS(a γλ(1)) = χS(a) γλ(1)S
(3.5)

and further

d(S)2 (c2
λ)S,S = d(S)2 (ρS ⊗ ρS)

(
(γλ ⊗ Id)(cλ)

)
= d(S)2

(
(ρS ◦ γλ)⊗ ρS

)
(cλ)

=
(3.5)

d(S) (χS ⊗ ρS)(cλ) γλ(1)S

= (Idk⊗ρS)
(
d(S) (χS ⊗ Id)(cλ)

)
γλ(1)S

= ρS
(
e(S)γλ(1)

)
γλ(1)S = γλ(1)2

S ,

which completes the proof of the theorem.
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3.1.2 Integrality and Divisibility

Theorem 3.1.2 is a useful tool in proving certain divisibility results for the de-

grees of irreducible representations. A semisimple k-algebra A is said to be split

if D(S) = k holds for all S ∈ IrrA. All split semisimple k-algebras are finite di-

mensional, and any finite-dimensional semisimple k-algebra over an algebraically

closed field k is split.

Corollary 3.1.3. Let A be a split semisimple k-algebra with Frobenius trace form

λ. Assume that char k = 0 and that γλ(1) ∈ Z . Then the following are equivalent:

(i) The degree of every irreducible representation of A divides γλ(1);

(ii) the Casimir element cλ is integral over Z.

Proof. Theorem 3.1.2 gives the formula

(c2
λ)S,S =

(
γλ(1)

dimk S

)2

. (3.6)

If (i) holds, then the isomorphism (3.4) sends Z[c2
λ] to

∏
S∈IrrH Z, because (cλ)S,T =

0 for S 6= T by Theorem 3.1.2. Thus, Z[cλ] is a finitely generated Z-module and

(ii) follows. Conversely, (ii) implies that c2
λ also satisfies a monic polynomial over

Z and all (c2
λ)S,S satisfy the same polynomial. Therefore, the fractions γλ(1)

dimk S
must

be integers, proving (i).

Next, for a given homomorphism (A, λ) → (B, µ) of symmetric algebras, we

may consider the induced module IndBA S = B ⊗A S for each S ∈ IrrA

Corollary 3.1.4. LetA be a split semisimple algebra over a field k of characteristic

0 and let λ be a Frobenius trace form forA. Furthermore, let (B, µ) be a symmetric

k-algebra such that γµ(1) ∈ k and let φ : (A, λ) → (B, µ) be a homomorphism of

symmetric algebras. If the Casimir element cλ is integral over Z, then so is the

scalar γµ(1)

dimk IndBA S
for each S ∈ IrrA.

Proof. It suffices to show that

γµ(1)

dimk Ind
B
A S

=
γλ(1)S
dimk S

. (3.7)
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Indeed, by Theorem 3.1.2, the square of the fraction on the right equals (c2
λ)S,S ,

which is integral over Z if cλ is. To check (3.7), let us put e := e(S) for brevity.

Then S⊕ dimk S ∼= Ae and so IndBA S
⊕ dimk S ∼= Bφ(e). Since φ(e) ∈ B is an

idempotent, dimkBφ(e) = trace(Bφ(e)). Therefore,

dimk IndBA S
⊕ dimk S = trace(Bφ(e)) = 〈µ, φ(e) γµ(1)〉 = 〈µ, φ(e)〉 γµ(1)

= 〈λ, e〉 γµ(1) =
(dimk S)

2

γλ(1)S
γµ(1).

The desired equality (3.7) is immediate from this.

We will say a finite-dimensional k-algebra A satisfies the Frobenius Divisibil-

ity Property, often abbreviated FD, if the dimension of every S ∈ IrrA divides

dimkA .

Example 3.1.5. Let A be a split semisimple k-algebra and assume that char k = 0.

Then the Wedderburn isomorphism (3.1) takes the form A =
∏

S∈IrrAAS with

AS ∼= Endk(S). Thus, the regular character χreg of A can be written as follows:

χreg =
∑

S∈IrrA

(χreg)S =
∑

S∈IrrA

(dimk S) TrS , (3.8)

where (χreg)S and TrS denote the regular character and the ordinary trace function

ofAS ∼= Endk(S), repectively, and both are understood to vanish on all components

AT with T 6= S; the last equality in (3.8) follows from (2.13). Instead of χreg , we

will often work with the following element of A∗, which will be referred to as

normalized regular character of A:

χ̂reg :=
χreg

dimkA
.

Recall from Example 2.3.2 that γTrS(a) = TrS(a) Id for all a ∈ AS . Using χ̂reg as

our Frobenius trace form, we obtain for a =
∑

S aS ∈ A,

γχ̂reg(a) =
∑

S∈IrrA

γ dimk S

dimk A
TrS

(aS) =
∑

S∈IrrA

dimk A
dimk S

TrS(aS)

=
∑

S∈IrrA

dimk A
dimk S

TrS(aS)e(S)
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In particular,

γχ̂reg(1) =
∑

S∈Irr(A)

(dimkA)e(S) = (dimkA)1A .

Thus, by Corollary 3.1.3, A satisfies FD iff cχ̂reg is integral.

Example 3.1.6. Consider the group algebra k[G] of any finite group G and assume

that k is a splitting field for k[G] with char k = 0; so k[G] is split semisimple.

The Frobenius form λ = ρ1 of Example 2.3.3 is the same as the one specified in

Example 3.1.5. The corresponding Casimir element is

cλ =
∑
g∈G

g ⊗ g−1.

Thus, cλ ∈ Z[G]⊗ZZ[G], a subring of k[G]⊗k[G] that is finitely generated over Z.

Therefore, condition (ii) in Corollary 3.1.3 is satisfied. Moreover, γλ(1) = |G| ∈ Z
as required in Corollary 3.1.3, and so the corollary yields that the degrees of all

irreducible representations of k[G] divide γλ(1) = |G|, as stated in Frobenius’

classical theorem.

3.2 Algorithms

Throughout this section A, will denote a split semisimple k-algebra and we

assume that char k = 0. It is usually prohibitively complex to check if A satisfies

FD by finding all the irreducible representations. However, using the approach

presented in Section 3.1.2, it becomes a far simpler matter; in fact, the test for

FD can be done completely algorithmically. The first step in the algorithm is to

compute the normalized regular character introduced in Example 3.1.5,

λ = χ̂reg :=
χreg

dimkA
.

The next step is to compute the corresponding Casimir element cλ. To this end,

let (bi)
dimk A
i=1 be a chosen k-basis of A and write cλ =

∑
i bi ⊗ (

∑
k αi,kbk) for

suitable scalars αi,k ∈ k. Then, for all i, j ≤ dimkA,

〈λ, bj(
∑
k

αi,kbk)〉 = δi,j .



44

This is a system of (dimkA)2 linear equations for the (dimkA)2 unknown scalars

αi,k. To obtain the coefficient matrix of the system, we need to know the products

bjbk, that is, the multiplication matrix of A. Solving the system, which is possible

by non-degeneracy of λ, we find the Casimir element cλ.

Recall from Example 3.1.5 that γλ(1) = dimkA. Therefore, using Theorem

3.1.2 we obtain the following formula for the image of c2
λ under the multiplication

map m : A⊗ A→ A of A:

C := m(c2
λ) =

∑
S∈IrrA

(dimk A)2

(dimk S)2
e(S) . (3.9)

Observe that

A satisfies FD ⇐⇒ (dimk A)2

(dimk S)2
∈ Z for all S ∈ IrrA

⇐⇒ C is integral over Z .

The advantage of working with C rather than c2
λ is that C ∈ A, a space of smaller

dimension than A ⊗ A. So computations with C are simpler and faster. Writing

aS = ae(S) for a ∈ A, Equation (3.9) gives (C2 − (dimk A)2

(dimk S)2
C)S = 0. Hence,∏

S∈IrrA

(C2 − (dimk A)2

(dimk S)2
C) = 0.

Let D = {d ∈ N | d| dimkA, d ≤
√

dimkA}. Then C is integral over Z iff C

satisfies the following polynomial in Z[x]:

p(x) :=
∏
d∈D

x2 − (dimk A)2

d2
x.

Hence, we can tell if A satisfies FD simply by evaluating C on p(x). While this

approach works well for many examples, the computational difficulty scales with

the number of divisors of dimkA. For dimkA large and highly composite, the

polynomial p(x) can be of large degree, which can often lead to rounding errors if

floating point numbers are being used. This necessitates the use of symbolic tools,

which while more accurate come at the cost of a large computational efficiency

trade off.
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For an alternative algorithm, let LC ∈ Endk(A) be the operator given by (left)

multiplication with C. By Equation (3.9), the eigenvalues of LC are of the form
(dimk A)2

(dimk S)2
with S ∈ IrrA. The multiplicity of the eigenvalue (dimk A)2

(dimk S)2
is (dimk S)2

times the number of non-isomorphic irreducible representations having dimension

equal to dimk S. One problem is that the algorithms for finding the eigenvalues

of an operator scales quickly with dimension. One way to alleviate this problem

is to instead work with Z A. The best way to compute Z A will vary case by

case, but it can always be computed as the image of the Higman trace. Then since

C ∈ Z A we let L′C be the multiplication operator of C on Z A. Then L′C has the

same eigenvalues of C but the eigenvalue (dimk A)2

(dimk S)2
now has multiplicity equal to the

number of non-isomorphic irreducible representations of dimension dimk S.

If the multiplicities are not needed we can take advantage of the fact that we

have a finite collection of possible eigenvalues of LC (or equivalently L′C). There

is an irreducible representation of dimension n iff:

det(LC −
(dimkA)2

n2
Id) = 0.

As with the other methods, rounding errors can become a problem when dimkA is

large if measures are not taken to curb them.

I have implemented these algorithms in Python code. The code takes the matrix

corresponding to the multiplication of the algebra as input and can run any of the

algorithms mentioned above. For more details on this code, see Section 5.

3.3 Hopf Algebras

3.3.1 Frobenius Divisibility for Hopf Algebras

We first offer an extension, due to Cuadra and Meir [10, Theorem 3.4], of Frobe-

nius’ Divisibility Theorem to the context of Hopf algebras. The proof will be iden-

tical to the one given in Example 3.1.6 for finite group algebras.

Theorem 3.3.1. Let H be a split semisimple Hopf algebra over a field k of charac-

teristic 0 and let Λ ∈ H be the unique integral of H such that 〈ε,Λ〉 = 1. Then the
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following are equivalent:

(i) FD holds for H , that is, dimk S divides dimkH for all S ∈ IrrH;

(ii) The element dimk(H)Λ(1) ⊗ S(Λ(2)) is integral over Z.

Proof. Choose the Frobenius trace form λ for H to be the normalized regular char-

acter. Since 〈χreg,Λ〉 = 1, the integral Λ′ := dimk(H)Λ satisfies 〈λ,Λ′〉 = 1 as

required in §2.3.2. Thus, the Casimir element for λ is given by

cλ = dimk(H)Λ(1) ⊗ S(Λ(2))

and γλ(1) = dimkH . Thus, the theorem is a consequence of Corollary 3.1.3.

3.3.2 The Class Equation

We now prove the celebrated class equation due to Kac [24, Theorem 2] and Y.

Zhu [58, Theorem 1]. The proof given here is based on [30]. To set the stage, let

us assume that H is a semisimple Hopf algebra over an algebraically closed field

k with char k = 0 and consider Rk(H), with the Frobenius structure discussed in

Section 2.3.3.

Theorem 3.3.2. Let H be a semisimple Hopf algebra over an algebraically closed

field k of characteristic 0. Then dimk IndH
∗

Rk(H) M divides dimkH for every M in

Irr Rk(H).

Proof. This is an application of Corollary 3.1.4 to the morphism of symmetric alge-

bras that is given by the character map χ : (Rk(H), Inv)→ (H∗,Λ), where Λ ∈ H
be the unique integral ofH such that 〈ε,Λ〉 = 1; see Section 2.3.3. We have already

shown that γλ(1) = dimkH . The last condition needed is that cInv is integral. How-

ever, this is true since cInv ∈ R(H)⊗2 a finitely generated Z-module. Therefore,

Corollary 3.1.4 applies and yields that the fraction dimkH

dimk IndH
∗

Rk(H)M
is integral over Z,

proving the theorem.

Frobenius’ Divisibility Theorem for finite group algebras k[G] also follows from

part (a) above applied to H = (k[G])∗, because χk : Rk(H) ∼−→ H∗ = k[G] in this

case.
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3.3.3 Factorizable Hopf Algebras

Schneider [46] proved the following result for factorizable semisimple Hopf

algebras H over an algebraically closed field k of characteristic 0: if S ∈ IrrH ,

then (dimk S)2 divides dimkH . In this papragraph, we will give an alternate proof

of Schneider’s result using our approach to Frobenius divisibility via Frobenius

algebras.

As in Section 2.4, we let Φ = ΦR : H∗ ∼−→ H denote the isomorphism associ-

ated to H = (H,R); it is defined by

Φ(f) = b1f(b2) (f ∈ H∗) ,

with b := τ(R)R = b1 ⊗ b2 ∈ (H ⊗ H)×. Recall also that R(H) ⊆ H∗ is the

character algebra, that is, the image of the character map χ : Rk(H)→ (H∗,Λ). It

follows directly from Theorem 2.4.1 that Φ|R(H) is an algebra map whose image is

contained in ZH . Since R(H) and ZH have the same dimension, we obtain an

isomorphism of algebras

Φ|R(H) : R(H) ∼−→ ZH .

Furthermore:

Proposition 3.3.3. Let H = (H,R) be a semisimple factorizable Hopf algebra

and assume that k is algebraically closed with char k = 0. Let Λ ∈ H be the

unique integral of H such that 〈ε,Λ〉 = 1 and let λ ∈ H∗ be the normalized regular

character. Then the map Φ|R(H) : (R(H),Λ)→ (H, λ) is a morphism of Frobenius

algebras.

Proof. It just needs to be shown that λ ◦ Φ = Λ. To do this, we will need to some

known facts about Φ. First, b1ε(b2) = (Id⊗ε)(τ(R)R) = 1, because (Id⊗ε)(R) =

(Id⊗ε)(τ(R)) = 1 by [35, 10.1.11]. It follows that ε(Φ(f)) = f(b1ε(b2)) = f(1)

for any f ∈ H∗. Using Theorem 2.4.1 again, we obtain

Φ(λ)h = Φ(λ)Φ(Φ−1(h)) = Φ(λΦ−1(h)) = Φ(λ)(Φ−1(h))(1) = Φ(λ)ε(h).
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So Φ preserves integrals. In particular Φ(λ) is an integral of H , and we also have

ε(Φ(λ)) = λ(1) = 1 = ε(Λ). Since the space of integrals is 1-dimensional, it

follows that Φ(λ) = Λ, as desired.

We are now ready to prove the main result of the section.

Theorem 3.3.4. Let H be a semisimple factorizable Hopf algebra over an alge-

braically closed field k of characteristic 0. Then (dimk S)2 divides dimkH for

every S ∈ IrrH .

Proof. Recall that the character map χ : (Rk(H), Inv) ↪→ (H∗,Λ) is a monomor-

phism of symmetric algebras with image R(H). Thus, by Proposition 3.3.3, the

composition of Φ|R(H) with χ is a monomorphism of symmetric algebras,

φ : (Rk(H), Inv) ↪→ (H, λ) ,

with Imφ = ZH . If e(S) ∈ ZH is the central primitive idempotent associated to

S, then φ−1(e(S)) is a primitive idempotent in Rk(H); so

IS := Rk(H)φ−1(e(S))

is a 1-dimensional ideal of the representation algebra Rk(H). Applying Corollary

3.1.4 to the map φ, we obtain that dimk(IndHRk(H) IS) divides γλ(1) = dimkH .

Finally, dimk(IndHRk(H) IS) = dimk(He(S)) = (dimk S)2, finishing the proof.

3.4 Hopf Centers and Frobenius Divisibility

3.4.1 Hopf Commutators

Given two elements h and k of an arbitrary Hopf algebra H , we define the Hopf

commutator [h, k] by

[h, k] = h(1)k(1)S(h(2))S(k(2)).

Note the following relations with the adjoint action:

hk = [h, k(1)] k(2) and [h, k] = hk(1) S(k(2)) (3.10)
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Commutators are useful for determining when two Hopf subalgebras ofH commute

as shown in the following lemma.

Lemma 3.4.1. Let K and L be Hopf subalgebras of H . The following conditions

are equivalent:

(i) kl = lk for all k ∈ K and l ∈ L;

(ii) kl = ε(k)l for all k ∈ K, l ∈ L;

(iii) lk = ε(l)k for all k ∈ K, l ∈ L;

(iv) [l, k] = ε(l)ε(k) for all k ∈ K, l ∈ L.

Proof. Assuming (i) we compute kl = k(1)lS(k(2)) = k(1)S(k(2))l = ε(k)l; so (ii)

holds. Conversely, (ii) gives kl = (k(1)l) k(2) = ε(k(1))lk(2) = lk, proving (i). The

formulae in (3.10) immediately yield the equivalence of (ii) and (iv). Thus (i), (ii)

and (iv) are all equivalent. By symmetry, (i) is also equivalent to (iii).

3.4.2 Hopf Centers of Representations

For the remainder of this section, we work over an algebraically closed field k,

which can be of arbitrary characteristic unless explicitly specified otherwise. Given

an arbitrary Hopf k-algebra H and a finite-dimensional irreducible representation

V ∈ IrrH , we have a surjective algebra map

ρV : H � Endk(V ) .

We define the Hopf center of V to be the largest Hopf subalgebra of H that is

contained in the subalgebra ρ−1
V (k IdS) of H; the Hopf center of V will be denoted

by

H Z (V ) or H ZH(V ) .

Clearly, H Z (V ) is a normal Hopf subalgebra of H . Moreover, since ρV (ZH) ⊆
k IdV , we have ζ(H) ⊆ H Z (V ), where ζ(H) is the Hopf center of H , that is,

the largest Hopf subalgebra of H that is contained in the ordinary center, ZH . For

inner faithful representations, more can be said:
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Lemma 3.4.2. Let H be finite-dimensional and let V ∈ IrrH be inner faithful.

Then

H Z (V ) = ζ(H) .

Proof. It suffices to show that K := H Z (V ) ⊆ ZH . By Lemma 3.4.1, this

means that

[h, k] = ε(h)ε(k) for all h ∈ H, k ∈ K .

To this end, consider the representation V ⊗n of H and recall that the H-action on

V ⊗n comes from the algebra map ρ⊗nV ◦∆n−1 : H → Endk(V )⊗n ∼= Endk(V
⊗n).

Let us write hV ⊗n ∈ Endk(V
⊗n) for the image of h ∈ H under this map. We claim

that, for all h ∈ H and k ∈ K,

[h, k]V ⊗n = ε(h)ε(k) IdV ⊗n .

It will then follow that the element [h, k] ∈ H acts on T(V ) =
⊕

n≥0 V
⊗n as

the scalar operator ε(h)ε(k) IdT(V ). Since inner faithfulness of S is equivalent to

faithfulness of T(V ) in the usual sense by [45], we obtain the desired conclusion,

[k, h] = ε(k)ε(h).

To prove the claim, we proceed by induction on n. The base case n = 0 states

the obvious identity ε([h, k]) = ε(h)ε(k). For the inductive step, note that

[h, k]V ⊗n = ρV (h(1)k(1)S(h(2n))S(k(2n)))⊗ ...⊗ ρV (h(n)k(n)S(h(n+1))S(k(n+1))).

Since ∆2n−1(k) ∈ H Z (V )⊗2n, we can move S(k(n+1)) past S(h(n+1)) to rewrite

the right hand side above in the following form:

ρV (h(1)k(1)S(h(2n))S(k(2n)))⊗ ...⊗ ρV (h(n)k(n)S(k(n+1))S(h(n+1)))

= ρV (h(1)k(1)S(h(2n−2))S(k(2n)))⊗ ...⊗ ρV (h(n−1)k(n−1)S(k(n))S(h(n)))⊗ IdV

= [h, k]V ⊗n−1 ⊗ IdV = ε(h)ε(k) IdV ⊗n−1 ⊗ IdV = ε(h)ε(k) IdV ⊗n ,

where the penultimate equality uses our inductive hypothesis. This completes the

proof.
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3.4.3 Frobenius Divisibility Modulo Centers

The following theorem is a generalization of Theorem 1.1.1 for Hopf algebras,

extending the work in [50]. The main part of the proof given below is an adaptation

of an argument due to Tate.

Theorem 3.4.3. Let C be class of finite-dimensional Hopf k-algebras that is closed

under tensor products and taking under (Hopf) homomorphic images. Assume that

all H ∈ C satisfy FD, that is, dimk V divides dimkH for all V ∈ IrrH . Then, in

fact, dimk V divides dimkH
dimk H Z (V )

for all V ∈ IrrH and H ∈ C.

Proof. We first show that dimk V divides dimkH
dimk ζ(H)

. Note that V ⊗n is an irreducible

representation of H⊗n for each n ≥ 0, because ρ⊗nV maps H⊗n onto Endk(V )⊗n ∼=
Endk(V

⊗n). Since ζ(H) is commutative, the multiplication map µn := m⊗n−1|ζ(H)⊗n :

ζ(H)⊗n → ζ(H) is a morphism of Hopf algebras, and hence Kerµn is a Hopf ideal

of ζ(H)⊗n. Furthermore, the following diagram commutes:

k
⊗n

k

ζ(H)⊗n ζ(H)

∼

µn

ρ⊗nV
ρV

Thus ρ⊗nV (Kerµn) = 0 and so V ⊗n is an irreducible representation of the the fol-

lowing Hopf algebra, which belongs to C:

Hn := H⊗n/(Kerµn)H⊗n.

Consequently, dimk V
⊗n = (dimk V )n divides dimkHn . Finally, putting d :=

dimkH and δ := dimk ζ(H) for brevity, we know by the Nichols-Zoeller Theorem

that H⊗n is free of rank (d
δ
)n as module over ζ(H)⊗n. Therefore,

dimk(Kerµn)H⊗n = (dimk Kerµn)

(
d

δ

)n
= (δn − δ)

(
d

δ

)n
= dn − dn

δn−1
,

and so dimkHn = dn

δn−1 . Therefore (dimk V )n divides dn

δn−1 for all n. In other

words, q := d
δ dimk V

satisfies qn ∈ 1
δ
Z for all n, and so Z[q] ⊆ 1

δ
Z. It follows that

the fraction q is integral over Z, and hence q ∈ Z, proving that dimk V divides d
δ

.
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To obtain the stronger assertion, that dimk V divides dimkH
dimk H Z (V )

, consider the

canonical map : H � H = H/H KerV . Then H ∈ C and V can be viewed

as an inner-faithful irreducible representation of H . By the foregoing, dimk V di-

vides dimk(H)

dimk ζ(H)
, and hence it suffices to show that dimk(H)

dimk ζ(H)
divides dimkH

dimk H Z (V )
. But

H Z (V ) ⊆ H ZH(V ) = ζ(H), where the last equality holds by Lemma 3.4.2.

Thus, the canonical Hopf epimorphism H � H � H/Hζ(H)+ factors through

the epimorphism H � H/HH Z (V )+, giving an epimorphism

H/HH Z (V )+ � H/Hζ(H)+,

and hence a Hopf monomorphism (H/Hζ(H)+)∗ ↪→ (H/HH Z (V )+)∗. The

Nichols-Zoeller Theorem now gives the desired conclusion that dimkH/Hζ(H)+ =
dimk(H)

dimk ζ(H)
divides dimkH/HH Z (V )+ = dimkH

dimk H Z (V )
, finishing the proof.

Corollary 3.4.4. Assume that char k = 0. Let H be a semisimple quasitriangular

Hopf algebra and let V ∈ IrrH . Then dimk V divides dimkH/ dimk H Z (V ).

Proof. The class of semisimple quasitriangular Hopf k-algebras is closed under

tensor products and quotients. Additionally, semisimple quasitriangular Hopf k-

algebras satisfy FD by [14].

Corollary 3.4.5. Assume that char k = 0. Let H be a semisimple Hopf k-algebra

and let V ∈ IrrH be such that χV ∈ Z (H∗). Then dimk V divides dimkH
dimk H Z (V )

.

Proof. LetK be a normal Hopf subalgebra ofH withK ⊆H Ker(V ). Then, as in

the last part of the proof of Theorem 3.4.3, V descends to a representation of H =

H/HK+, and the character χV belongs to the (Hopf) subalgebra H
∗

= (HK+)⊥

of H∗. Therefore, χV ∈ Z (H
∗
).

Also, viewing V ⊗n as a representation of H⊗n as in the first part of the proof

of Theorem 3.4.3, we have χV ⊗n = χ⊗nV ∈ Z ((H⊗n)∗). Lastly, by [57], we know

that the degree of any central irreducible character must divide the dimension of

the Hopf algebra. With these three observations, the proof of Theorem 3.4.3 goes

through.
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CHAPTER 4

THE ADJOINT

REPRESENTATIONS

This chapter contains my results on the adjoint representation adH of a Hopf

algebra H and its extended version, AdH . The first section determines the Hopf

kernel of adH in a large range of settings; the second section discusses the conse-

quences of this result for the Chevalley property of adH; the third section defines

the notion of a conjugacy class in our context and generalizes many of the known

results on conjugacy classes and the extended adjoint representation; and lastly, the

fourth section presents an example of the conjugacy classes of a non-trivial Hopf

algebra over a field of characteristic 3.

4.1 The Hopf Kernel of the Adjoint Representation

4.1.1 Hopf Centralizers

Given a Hopf subalgebra K of H , we let CH(K) denote the centralizer of K in

H , that is,

CH(K) = {h ∈ H | hk = kh for all k ∈ K} (4.1)

= {h ∈ H | kh = ε(k)h for all k ∈ K} . (4.2)
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Here, the second equality follows from (2.4) or Lemma 3.4.1. As in §2.1.4, we

let H CH(K) denote the largest Hopf subalgebra of H that is contained in the

subalgebra CH(K). We will refer to H CH(K) as the Hopf centralizer of K in H .

The following proposition is a generalization of [7, Theorem 2.2]. The first part of

the proof is simply an adaptation of the argument given in [7]. The entire proof is

included here for the sake of completeness.

Proposition 4.1.1. Let K be a Hopf subalgebra of H . Then

H CH(K) = {x ∈ H | ∆(x) ∈ H ⊗ CH(K)}

= {x ∈ H | ∆(x) ∈ CH(K)⊗H}

= {x ∈ H | ∆(x) ∈ CH(K)⊗ CH(K)} .

Proof. Put M := {x ∈ H | ∆(x) ∈ H ⊗ CH(K)}; this is a subalgebra of H , since

H⊗CH(K) is a subalgebra of H⊗2. Note also that M = (ε⊗ Id)(∆M) ⊆ CH(K).

Moreover, any Hopf subalgebra L ⊆ CH(K) is contained in M , because ∆(L) ⊆
L ⊗ L ⊆ H ⊗ CH(K). Thus, in order to show that M = H CH(K), it suffices to

show that M is a Hopf subalgebra of H .

The first step is to show that:

∆(M) ⊆ CH(K)⊗ CH(K) .

In view of (4.2), it is enough to show that that, for all x ∈ M and k ∈ K, we have
kx(1) ⊗ x(2) = ε(k)∆(x). This is done in the following computation:

kx(1) ⊗ x(2) = k(1)x(1)S(k(2))⊗ x(2)

= k(1)x(1)S(k(4))⊗ k(2)S(k(3))x(2)

= k(1)x(1)S(k(4))⊗ k(2)x(2)S(k(3))

= ∆(kx) = ε(k)∆(x) .

It follows that M = {x ∈ H | ∆(x) ∈ CH(K)⊗ CH(K)}. By symmetry, we also

have

{x ∈ H | ∆(x) ∈ CH(K)⊗H} = {x ∈ H | ∆(x) ∈ CH(K)⊗ CH(K)} .



55

Thus, all three sets on the right hand side of the proposition coincide.

Next, note that (Id⊗∆)(∆(x)) = (∆ ⊗ Id)(∆(x)) ∈ H ⊗ H ⊗ CH(K) for

x ∈ M . This shows that ∆(M) ⊆ H ⊗M and, in the same way, one also obtains

that ∆(M) ⊆ M ⊗ H . Therefore, ∆(M) ⊆ (H ⊗M) ∩ (M ⊗ H) = M ⊗M ,

proving that M is a subcoalgebra of H . It just remains to show that S(M) ⊆ M .

Since ∆(S(M)) ⊆ S(M) ⊗ S(M) it suffices to show that S(M) ⊆ CH(K). This

is done in the following computation, for m ∈M and k ∈ K:

kS(m) = ε(m(1))kS(m(2)) = S(m(1))m(2)kS(m(3))

= S(m(1))km(2)S(m(3)) = S(m)k

This completes the proof.

Corollary 4.1.2. If N is a normal Hopf subalgebra of H , then H CH(N) is also

normal.

Proof. We first observe that, for any H-bimodule V , the N -invariants N(adV ) are

an H-submodule of adV . This follows from the following computation, for n ∈ N ,

h ∈ H and v ∈ N(adV ):

nhv = (h(1)n
h(2) )v = h(1)

(
ε(nh(2))v

)
= ε(n) hv

Here, the first equality uses the analog of (2.3) for the right adjoint action of H on

N . Similarly, one shows that N -invariants for the right adjoint action, (V ad)N , are

an H-submodule of V ad. Finally, by (2.4),

(V ad)N = N(adV ) = {v ∈ V | nv = vn for all n ∈ N} .

So this space is stable under the left and right adjoint actions of H on V . In par-

ticular, CH(N) = N(adH)N is stable under both adjoint actions of H . Now let

x ∈H CH(N). Then ∆(x) = x(1) ⊗ x(2) ∈ H ⊗ CH(N) and so:

∆(hx) = h(1)x(1)S(h(4))⊗ h(2)x(2) ∈ H ⊗ CH(N)

In view of Proposition 4.1.1, this shows that hx ∈ H CH(N). Closure under the

right adjoint action follows by a similar argument.
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4.1.2 Hopf Kernels

This section will focus on the largest Hopf ideal that annihilates the adjoint

representation adH , that is, the Hopf kernel of adH , in the terminology of §2.1.4.

The example below shows that the Hopf kernel of adH is generally strictly smaller

than the usual kernel, Ker(adH), that is, the ordinary annihilator of the H-module
adH .

Example 4.1.3. Recall from Example 2.2.6 that the adjoint action of the algebra

generators of the Sweedler algebra H4 is given by:

g1 = 1 , gg = g , gx = −x , g(gx) = −gx ,
x1 = 0 , xg = −2gx , xx = 0 , x(gx) = 0 .

A simple computation shows that Ker(adH4) = kΛ with Λ = x+ gx. However, kΛ

is not a Hopf ideal and so we must have H Ker(adH4) = 0; see also Corollary 4.1.5

below.

Recall from Section 2.1.4 that all Hopf ideals of the group algebra k[G] have

the form k[G]k[D]+ for some normal subgroup D of G. It follows that the Hopf

kernel of ad(k[D]), for the adjoint k[G]-action, is given by k[G]k[CG(D)]+. The

following theorem establishes the corresponding statement for more general classes

of Hopf algebras. We note that (b) includes all cocommutative Hopf algebras (e.g.,

group algebras and enveloping algebras of Lie algebras) as well as all pointed Hopf

algebras.

Theorem 4.1.4. Let H be a Hopf algebra with N a normal Hopf subalgebra. As-

sume that H satisfies one of the following conditions:

(a) H is finite-dimensional or

(b) the coradical of H is cocommutative.

Then the Hopf kernel of the adjoint H-action on N is given by H Ker(adN) =

H(H CH(N))+.
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Proof. The beginning of the proof is the same for (a) and (b). For the inclusion

H(H CH(N))+ ⊆ H Ker(adN), recall that H CH(N) is a normal Hopf subal-

gebra of H by Corollary 4.1.2. For n ∈ N and z ∈ (H CH(N))+, we have
zn = z(1)nS(z(2)) = z(1)S(z(2))n = 0. Thus H(H CH(N))+ is a Hopf ideal of

H that is contained in the annihilator of the adjoint representation adN , which gives

the desired inclusion.

Let denote the canonical surjections of H onto H := H/H Ker(adN), and

define the left coaction ρ := ( ⊗Id)◦∆: H → H⊗H and denote the coinvariants

of ρ by C. For c ∈ C, we compute ((ρ ⊗ Id) ◦ ∆)(c) = ((Id⊗∆) ◦ ρ)(c) =

1 ⊗ ∆(c). Therefore, ∆(C) ⊆ C ⊗ H . Moreover, since factors through the

quotient H/HH CH(N)+ by the first paragraph of the proof, we certainly have

H CH(N) ⊆ C. For the reverse inclusion, note that the adjoint H-action on N

descends to an action of H on N . For c ∈ C and n ∈ N , formula (2.3) gives

cn = (c(1)n)c(2) = (1n)c = nc. Thus, C ⊆ CH(N) and hence ∆(C) ⊆ C ⊗H ⊆
CH(N) ⊗ H . Proposition 4.1.1 now gives C ⊆ H CH(N) as desired. Therefore,

H CH(N) = C.

The next step is to show that H is a faithfully coflat H-comodule. In the finite-

dimensional case, this is clear, sinceH is a freeH-comodule by the Nichols-Zoeller

Theorem applied to the dual. For case (b), Theorem 1.3 of [33] states that H is

faithfully coflat over all quotient left H-module coalgebras, and thus H is certainly

faithfully coflat over all quotient Hopf algebras.

Now, in [53, Theorem 2], it is shown that I = H(coH/IH)+ holds for any leftH-

module coideal, I , such that H is a faithfully coflat left H/I-comodule. Applying

this for I = H Ker(adN) and using that the coinvariants are given by H CH(N)

gives the desired result of H Ker(adN) = H(H CH(N))+.

The key fact in the proofs of both cases of Theorem 4.1.4 is thatH is a faithfully

coflat H/H Ker(adN)-comodule. The result still holds only assuming this weaker

but less natural assumption. In the special case of N = H , Theorem 4.1.4 implies

the following result.



58

Corollary 4.1.5. Let H be a Hopf algebra satisfying one of the following condi-

tions:

(a) H is finite-dimensional or

(b) the coradical of H is cocommutative.

Then the Hopf kernel of the adjoint H-action on H is given by H Ker(adH) =

Hζ(H)+.

4.2 The Chevalley Property

Throughout this section, we let H denote a finite-dimensional Hopf algebra.

4.2.1 Background

Recall that an H-module M is said to have the Chevalley property if the H-

module T(M) =
⊕

n≥0M
⊗n is completely reducible. If M has the Chevalley

property, then M must evidently be completely reducible. The converse fails in

general.

We put

HM := H/H Ker(M) = H/Ker(T(M)) .

Here, the second equality holds by a result of Rieffel [45]. The following lemma

reduces the question of weather a module has the Chevalley property to a question

of semisimplicity of the Hopf algebra HM .

Lemma 4.2.1. Let M be an H-module. Then M has the Chevalley property if and

only if HM is a semisimple algebra.

Proof. Clearly, complete reducibility of M as H-module is equivalent to complete

reducibility as HM -module. Also, semisimplicity of HM certainly implies that the

HM -module T(M) is completely reducible. Conversely, if T(M) is completely

reducible, then HM has a faithful completely reducible module, and hence HM is a

semisimple algebra.
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If M =
⊕

S∈IrrH S is the direct sum of all irreducible H-modules, then HM =

H/H (radH), where radH denotes the Jacobson radical of H . Thus, the Hopf

algebra H has the Chevalley property if and only if the Jacobson radical of H is a

Hopf ideal.

Example 4.2.2. Let k[G] be the group algebra of a finite group G and put p =

char k (≥ 0). It is a standard fact that, for M the direct sum of all irreducible

k[G]-modules as above,

HM
∼= k[G/Op(G)] ,

where Op(G) denotes the largest normal p-subgroup of G (which is understood to

be {1} if p = 0). In particular, k[G] has the Chevalley property if and only if either

p = 0 or p > 0 and G has a normal Sylow p-subgroup.

4.2.2 The Chevalley Property for the Adjoint Representation

Corollary 4.1.5, in conjunction with Lemma 4.2.1, immediately implies the fol-

lowing result.

Corollary 4.2.3. The adjoint representation adH has the Chevalley property if and

only if H/Hζ(H)+ is a semisimple algebra.

Corollary 4.2.3 gives in particular that ad
k[G] has the Chevalley property if and

only if the order of G = G/Z G is not divisible by char k or, equivalently, k[G]

is semisimple. By an earlier remark in §1.2.2—see especially eqrefAd:Diag—

this condition s also equivalent to complete reducibility of ad
k[G]. Consequently,

complete reducibility of ad
k[G] actually implies that ad

k[G] also has the Chevalley

property. I do not know to what extent this fact generalizes to arbitrary finite-

dimensional Hopf algebras.

4.2.3 Unimodularity

This subsection will show that the Chevalley property of adH implies the uni-

modularity of H . The result will follow directly from the following more general

lemma.
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Lemma 4.2.4. H is unimodular if and only if H/Hζ(H)+ is unimodular.

Proof. Let Γ be the integral of ζ(H) and let : H � H := H/Hζ(H)+ be

the canonical surjection. Furthermore, define φ : H → M := HΓ = ΓH via

φ(h) = hΓ. Using the Nichols-Zoeller Theorem it is easy to see that φ is a (left and

right) H-module isomorphism. Therefore, letting H( · ) and ( · )H denote invariants

of left and right H-modules, respectively, we have HH ∼−→ HM and HH ∼−→MH

via φ. Here, HH and HH are of course the spaces of left and right integrals of H ,

respectively. Finally, it is also easy to see, again with Nichols-Zoeller, that HH =

HM and HH = MH . Thus, HH ∼−→ HH and HH ∼−→ HH via φ. Therefore,
HH = HH if and only if HH = HH .

Corollary 4.2.5. If the adjoint representation adH has the Chevalley property, then

H is unimodular.

Proof. By Corollary 4.2.3, our assumption on adH means thatH/Hζ(H)+ is semisim-

ple and thus unimodular. Now the result follows from Lemma 4.2.4.

4.3 Conjugacy Classes

Recall that the adjoint representation ad
k[G] for a finite group G is completely

reducible if and only if the group algebra k[G/Z G] is semisimple (§1.2.2). The

conjugacy classes of G play a key role in the proof of this fact; indeed, the order

of G/Z G is not divisible by char k if and only if this holds for the sizes of all

conjugacy classes of G. Thus it is natural to proceed in our exploration of the

adjoint representation by studying a generalization of the notion of a conjugacy

class to the context of Hopf algebras.

4.3.1 Notation

For the remainder of this thesis, H will continue to denote a finite-dimensional

Hopf algebra. Furthermore, Λ will denote a nonzero integral of H and λ denotes

a nonzero integral of H∗ with 〈λ,Λ〉 = 1. Superscripts R and L will be used
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to distinguish right and left integrals. The distinguished group-like element of H

will be denoted by x and the distinguished group-like element of H∗ by α; these

elements are characterized by the following conditions:

fλR = 〈f, x〉λR (f ∈ H∗)

hΛR = 〈α, h〉ΛR (h ∈ H).

4.3.2 The Subalgebra C(H)

The following subalgebra of H∗, introduced by Drinfel’d [13] in his study of

quasitriangular Hopf algebras, will play a key role in our analysis of the adjoint

representation:

C(H) := {f ∈ H∗ | 〈f, ab〉 = 〈f, bS2(a)〉}

If H is involutory, then C(H) coincides with the algebra of all trace forms on H .

In general, since S is invertible, we also have

C(H) = {f ∈ H∗ | 〈f, ab〉 = 〈f, S−2(b)a〉} .

In the following lemma, we let (adH)α denote the kα-homogeneous component

of adH , that is,

(adH)α = {h ∈ H | kh = h〈α, k〉 for all k ∈ H} .

Recall also that 1 = kε denotes the trivial representation of H .

Lemma 4.3.1. (a) HomH(adH, 1) = C(H).

(b) (adH)α = {h ∈ H | kh = h〈α, k(1)〉k(2) for all k ∈ H} = C(H) ⇀ ΛR

= C(H) ⇀ ΛL.

Proof. (a) Let f ∈ C(H) and observe that the following equalities hold in k = 1:

〈f, hk〉 = 〈f, h(1)kS(h(2))〉 = 〈f, kS(h(2))S
2(h(1))〉 = 〈ε, h〉〈f, k〉 = h.〈f, k〉
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Thus C(H) ⊆ HomH(adH, 1). For the other inclusion, let f ∈ HomH(adH, 1).

Then:

〈f, ab〉 = 〈f, a(1)bS
2(a(3))S(a(2))〉 = 〈f, a(1)(bS2(a(2)))〉 = 〈f, aS2(b)〉

This proves the claimed equality.

(b) Put M := {h ∈ H | kh = h〈α, k(1)〉k(2) for all k ∈ H}. It is a straight-

forward check that M ⊆ (adH)α. For the other inclusion, let m ∈ (adH)α. Then

equation (2.3) gives hm = (h(1)m)h(2) = m〈α, h(1)〉h(2). Thus, (adH)α = M ,

proving the first equality in (b). The following calculations show that ΛL,ΛR ∈M :

hΛL = ΛL〈ε, h〉 = ΛL〈α, h(1)〉〈α−1, h(2)〉 = ΛL〈α, h(1)〉h(2)

and

hΛR = ΛR〈α, h〉 = ΛR〈α, h(1)〉〈ε, h(2)〉 = ΛR〈α, h(1)〉h(2) .

Next, we show that M is a left C(H)-module for the action ⇀. To this end, let

f ∈ C(H) and m ∈M and calculate

h(f ⇀ m) = hm(1)〈f,m(2)〉

= h(1)m(1)〈f, S−1(h(3))h(2)m(2)〉

= m(1)〈α, h(1)〉h(2)〈f, S−1(h(4))m(2)h(3)〉

= m(1)〈α, h(1)〉h(2)〈f,m(2)h(3)S(h(4))〉

= m(1)〈α, h(1)〉h(2)〈f,m(2)〉

= (f ⇀ m)〈α, h(1)〉h(2) .

Consequently, C(H) ⇀ ΛR and C(H) ⇀ ΛR are both contained in M . For the

reverse inclusions, we will need some technical facts. I claim that

S(M) = {h ∈ H | ah = h〈α, a(2)〉a(1)} .

To see this, denote the right hand side of the above equality by M ′ and let h ∈ M .

Then 〈α−1, a(1)〉a(2)h = ha and so

aS(h) = S(hS−1(a)) = S(〈α−1, S−1(a(2))〉S−1(a(1))h)

= S(〈α, a(2)〉S−1(a(1))h) = S(h)〈α, a(2)〉a(1) .
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Thus, S(M) ⊆ M ′. For the other direction let h ∈ M ′. Then the following

calculation shows that S−1(h) ∈M and hence H ∈ S(M):

aS−1(h) = S−1(hS(a)) = S−1(〈α−1, S(a(1))〉S(a(2))h)

= S−1(〈α, a(1)〉S(a(2))h) = S−1(h)〈α, a(1)〉a(2) .

Next, we need two identities related to the Frobenius structure of H . Recall from

Section 2.3.2 that cλL = ΛR
(2) ⊗ S(ΛR

(1)). Thus, Equation (2.6) gives

〈λL, hS(ΛR
(1))〉ΛR

(2) = h (h ∈ H).

Since the Nakayama automorphism of (H, λL) is m ◦ (S2 ⊗ µ ◦ α) ◦ ∆ (Section

2.3.2), we have

〈λL, ab〉 = 〈λL, 〈α−1, b(2)〉S−2(b(1))a〉 (a, b ∈ H) . (4.3)

Now assume that f ⇀ ΛR ∈M for f ∈ H∗. Then the following calculation shows

that f ∈ C(H):

〈f, ab〉 = 〈f, 〈λL, abS(ΛR
(1))〉ΛR

(2)〉

= 〈λL, abS(f ⇀ ΛR)〉

= 〈λL, aS(f ⇀ ΛR)〈α, b(2)〉b(1)〉

= 〈λL, 〈α, b(3)〉〈α−1, b(2)〉S−2(b(1))aS(f ⇀ ΛR)〉

= 〈λL, S−2(b)aS(ΛR
(1))〈f,ΛR

(2)〉〉

= 〈f, 〈λL, S−2(b)aS(ΛR
(1)〉ΛR

(2)〉

= 〈f, S−2(b)a〉

Since H∗ ⇀ ΛR = H , it follows that C(H) ⇀ ΛR ⊇ M , proving the equality

C(H) ⇀ ΛR = M . By nondegeneracy of action of H∗ on ΛR, we also obtain

dimkC(H) = dimkM . Hence, by nondegeneracy of the action of H∗ on ΛL, we

also have dimk(C(H) ⇀ ΛL) = dimkM and thus C(H) ⇀ ΛL = M .

4.3.3 Definition of Conjugacy Classes

The definition of the extended adjoint representation AdH in (2.17) works for

any finite-dimensional Hopf algebra H . For semisimple H and k of characteristic
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0, a notion of conjugacy classes of H was introduced in [8]: up to isomorphism,

they are exactly the irreducible components of AdH . Now, for semisimple H and

char k = 0, the Drinfel’d doubleD(H) is semisimple ([35, Corollary 10.3.13]), and

hence AdH is a completely reducible representation of H . As we shall see below,

this fails for general finite-dimensional Hopf algebras. Therefore, generalizing the

definition of [8], we define the conjugacy classes of H to be the indecomposable

components of AdH—these components are determined up to isomorphism by the

Krull-Schmidt Theorem. In Corollary 4.3.5 below, we will give another expression

for the conjugacy classes of H .

The following lemma motivates the definition of conjugacy classes. The lemma

also shows that AdH can be completely reducible even if D(H) is not a semisimple

algebra, and complete reducibility of AdH does not force adH to be completely

reducible.

Lemma 4.3.2. Let G be a finite group. Then Ad(k[G]) is a completely reducible

D(k[G])-module. The k-subspaces of k[G] that are spanned by the various conju-

gacy classes of G are pairwise non-isomorphic irreducible D(k[G])-submodules of
Ad(k[G]) and Ad

k[G] is the direct sum of these subspaces.

Proof. For each conjugacy class of C ⊆ G, let kC ⊆ k[G] be the subspace generated

by C. Clearly, k[G] is the direct sum of these subspaces. We will show that, for any

0 6= c =
∑

x∈C αxx ∈ kC, we have D(k[G]).c = kC. This will prove that kC
is irreducible as D(k[G])-module. We may assume that αy = 1 for some y ∈ C.

Letting {δx | x ∈ G} denote the basis of k[G]∗ that is dual to the basis G of k[G],

we have S(δy).c = c ↼ δy = y by (2.17) and x.y = xyx−1 for x ∈ G. This shows

that D(k[G]).c = kC, since the elements δy and x generate the algebra D(k[G]).

Finally, since δy (y ∈ C) annihilates all kD for conjugacy classes D 6= C, the

various irreducible D(k[G])-submodules kC are non-isomorphic.

It follows from the lemma that the conjugacy classes of k[G] are uniquely de-

fined as subspaces of k[G], not only up to isomorphism: they are the homogeneous

components of the completely reducible D(k[G])-representation Ad
k[G].
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4.3.4 AdH as an Induced Representation

Using the inclusion of H into D(H) we can induce kα up to a D(H)-module.

This module will be denoted kα ↑D(H)
H ; it can be described via the isomorphisms

below:

kα↑D(H)
H = D(H)⊗H kα

∼= D(H)(ε ./ ΛR) = H∗ ./ ΛR (4.4)

Thus using (2.16) we have that kα↑D(H)
H
∼= H∗ as D(H)-modules, where the action

of D(H) on H∗ is given by:

(f ./ h).g = 〈α, h(2)〉f(h(1) ⇀ g ↼ S−1(h(3))) (f, g ∈ H∗, h ∈ H) (4.5)

Under the assumption thatH is semisimple and char k = 0, this module was studied

by Burciu [5]. In this case, H is unimodular; so α = ε and (4.5) simplifies to

(f ./ h).g = f(h(1) ⇀ g ↼ S−1(h(2))) (f, g ∈ H∗, h ∈ H) (4.6)

In Burciu’s study of AdH , significant use was made of the fact that AdH could be

constructed by inducing the trivial module 1 = kε up fromH toD(H). The follow-

ing proposition establishes a similar fact in general, with the role of 1 being played

by kα.

Proposition 4.3.3. The following isomorphism holds in RepH:

AdH ∼= kα↑D(H)
H .

Identifying kα↑D(H)
H with H∗ via (4.4), this isomorphism is explicitly given by h 7→

(h ⇀ λL) for h ∈ AdH = H .

Proof. Let φ : AdH → kα↑D(H)
H be the map given by φ(h) = h ⇀ λL. By nonde-

generacy of the action of H on λL, the map φ is bijective. It only remains to show

that φ is a D(H)-module map.

Recall from (4.3) that 〈λL, ab〉 = 〈λL, 〈α−1, b(2)〉S−2(b(1))a〉. Using this fact,
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the following computation shows that φ is an H-module map:

〈φ(hk), a〉 = 〈λL, ah(1)kS(h(2))〉

= 〈λL, 〈α−1, S(h(2))(2)〉S−2(S(h(2))(1))ah(1)k〉

= 〈λL, 〈α, h(2)〉S−1(h(3))ah(1)k〉

= 〈〈α, h(2)〉h(1) ⇀ (k ⇀ λL) ↼ S−1(h(3))), a〉

= 〈h.φ(k), a〉.

That φ is an H∗-module map follows from the computation below:

〈φ(f.h), a〉 =〈φ(〈S−1(f), h(1)〉h(2)), a〉

= 〈S−1(f), h(1)〉〈λL, ah(2)〉

= 〈S−1(f), S(a(1))a(2)h(1)λ
L(a(3)h(2))〉

= 〈S−1(f), S(a(1))λ
L(a(2)h)〉

= 〈f(h ⇀ λL), a〉

= 〈f.φ(h), a〉.

4.3.5 The Endomorphism Algebra of AdH

Zhu [59] proved that, for a semisimple Hopf algebra H over a field of charac-

teristic 0, the action of the Drinfel’d double on H and the action of the character

algebra on H form a commuting pair. We now give the following generalization of

Zhu’s result for general finite-dimensional Hopf algebras.

Theorem 4.3.4. The following map is an isomorphism of k-algebras:

Ψ: C(H) EndD(H)(
AdH)

∈ ∈

g (f.ΛL 7→ f.(g ⇀ ΛL))

∼
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Proof. We first establish an isomorphism of vector spaces HomH(kα,
adH) ∼−→

EndD(H)(
AdH); it is given by Frobenius reciprocity (FR):

HomH(kα,
adH) HomH(kα, kα↑D(H)

H ↓H) HomD(H)(kα↑D(H)
H , kα↑D(H)

H ) EndD(H)(
AdH)

∈ ∈ ∈ ∈

(1 7→ z) (1 7→ (z ⇀ λL)) (f 7→ f(z ⇀ λL)) (ΛL 7→ z)

∼ ∼ ∼

Prop 4.3.3 FR Prop 4.3.3

The first map is the isomorphism from Proposition 4.3.3, the second is Frobenius

reciprocity and the third uses the inverse of the isomorphism from Proposition 4.3.3

and the equality (ΛL ⇀ λL) = ε. Note that AdH ↓D(H)
H∗ = H∗.ΛL; so elements of

EndD(H)(
AdH) are determined by their values on ΛL.

Define ψ : C(H)→ HomH(kα,
adH) by

ψ(f) = (1 7→ (f ⇀ ΛL)).

This map is injective since the action of H∗ on ΛL is non-degenerate, and it is

an epimorphism in RepH by Lemma 4.3.1(b). The map Ψ in the theorem can be

written as ψ composed with the aforementioned bijection of vector spaces arising

from Frobenius reciprocity. Thus, being a composition of bijections, Ψ is bijective.

That Ψ is an algebra map is shown below:

Ψ(f) ◦Ψ(g)(ΛL) = Ψ(f)(g ⇀ ΛL) = Ψ(f)(S(η(g)).ΛL) = S(η(g)).Ψ(f)(ΛL)

= S(η(g)).(f ⇀ ΛL) = S(η(g))S(η(f)).ΛL = S(η(fg)).ΛL

= ΛL ↼ η(fg) = (fg) ⇀ ΛL .

Here η : H∗ → H∗, f 7→ 〈x−1, f(2)〉f(1) , is the Nakayama automorphism that

is associated to the Frobenius form ΛL of H∗, with x the distinguished group-like

element of H .

4.3.6 Decomposition of AdH

Theorem 4.3.4 now gives us a way to useC(H) to express the conjugacy classes

of H more explicitly. Indeed, it is a standard fact from module theory that, for any

(left) module M over a ring R, decompositions

M = M1 ⊕ · · · ⊕Mt
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with R-submodules Mi correspond to idempotent decompositions of IdM in E :=

EndR(M):

IdM =
t∑
i=1

ei with eiej = δi,jei . (4.7)

Here, Mi = ei(M) is indecomposable if and only if ei is primitive, that is, it is not

possible to write ei = e + f with nonzero idempotents e, f that are orthogonal to

each other in the sense that ef = fe = 0. Any collection of primitive idempotents

e1, . . . , et ∈ E satisfying (4.7) is called a complete set of primitve idempotents of

E. For all this, see [2, Proposition 5.7 and Corollary 5.11] or [26, Theorem 1.4],

for example. Thus, we may record the following consequence of Theorem 4.3.4:

Corollary 4.3.5. The conjugacy classes of H are the D(H)-submodules of AdH of

the form H∗.(e ⇀ ΛL), where e ∈ C(H) is a primitive idempotent.

Using the Nakayama automorphism that is associated to ΛL, as discussed in the

proof of Theorem 4.3.4, we can see that all conjugacy classes of H have the form

H∗S(η(e)).ΛL for a primitive idempotent e ∈ C(H). Since S is an antiautomor-

phism and η is an automorphism {S(η(ei))}i forms the complete set of primitive

idempotents of the algebra S(η(C(H))) = {f ∈ H∗ | 〈f, ab〉 = 〈f, S2(xb)a〉}. So

all conjugacy classes can be alternatively expressed in the form H∗e.ΛL where e is

a primitive idempotent of S(η(C(H))).

4.3.7 Complete Reduciblity of AdH

It is natural to ask when the conjugacy classes of H are simple modules or,

equivalently, when is AdH a completely reducible D(H)-module. As we have seen,

this always holds for finite group algebras (Lemma 4.3.2). The following proposi-

tion shows that unimodularity of H is a necessary condition.

Proposition 4.3.6. If AdH is a completely reducible D(H)-module, then H is uni-

modular.

Proof. The first step is to show that

HomD(H)(
AdH, 1D(H)) = C(H) ∩

∫ L

H∗
.
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By Lemma 4.3.1 we have HomD(H)(
AdH, 1D(H)) ⊆ HomH(adH, 1H) = C(H).

Thus it suffices to show HomD(H)(
AdH, 1D(H)) consists of exactly the left integrals

of H∗. Let λ ∈ HomD(H)(
AdH, 1D(H)). Then:

〈S−1(f)λ, h〉 = 〈S−1(f), h(1)〉〈λ, h(2)〉 = 〈λ, S−1(f)(h(1))h(2)〉

= 〈λ, f.h〉 = f(1)〈λ, h〉 = S−1(f)(1)〈λ, h〉

and λ is a left integral by bijectivity of S−1. For the other direction let λ ∈∫ L
H∗ ∩C(H). Since λ ∈ C(H) it is an H-module map, so it suffices to show that λ

is an H∗ module map, this follows from the computation below:

〈λ, f.h〉 = 〈λ, S−1(f)(h(1))h(2)〉

= 〈S−1(f)λ, h〉 = S−1(f)(1)〈λ, h〉 = f(1)〈λ, h〉 = f.〈λ, h〉

and so HomD(H)(
AdH, 1D(H)) = C(H) ∩

∫ L
H∗ as desired.

Now note that k1H is a trivial D(H) submodule of AdH thus since AdH is com-

pletely reducible we have HomD(H)(
AdH, 1D(H)) 6= 0 thus C(H)∩

∫ L
H∗ 6= 0. So let

λL ∈
∫ L
H∗ ∩C(H).The result then follows by the computation below:

α−1 = λL ↼ ΛL = S2(ΛL) ⇀ λL = 〈S2(ΛL), λL〉ε

Therefore α−1 = ε, since distinct group-like elements are linearly independent,

proving that H is unimodular.

Unimodularity of H says that ε = α; so in the isomorphism in Proposition 4.3.3

takes the form
AdH ∼= 1H↑D(H)

H .

Additionally the homogeneous component (adH)α in Lemma 4.3.1 is now the in-

variants of adH or, more simply, the center ZH .

The example of group algebras suggests that the cosemisimplicity of H plays

a role in AdH being a completely reducible D(H)-module. Indeed, the proposition

below shows that this is always a necessary condition.

Proposition 4.3.7. (a) If AdH is a completely reducible D(H)-module then H is

cosemisimple.
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(b) If H is cosemisimple and adH is a completely reducible H-module then AdH

is a completely reducible D(H)-module.

Proof. (a) Assume that AdH is completely reducible. Then, by Proposition 4.3.6,

H is unimodular and λL : AdH → 1D(H) is a D(H)-module map. Since adH is a

completely reducible D(H)-module, there is a splitting σ : 1D(H) → AdH . Clearly,

σ(1) must be anH∗-invariant, but the onlyH∗-invariants of AdH are scalar multiple

multiples of 1. Thus, λL(σ(1)) 6= 0 implies that λ(1) 6= 0. By Maschke’s Theorem

for Hopf algebras, this says that H is cosemisimple.

(b) Assume that H is cosemisimple and adH is a completely reducible. It suf-

fices to show that there is a D(H)-module projection onto all submodules, M ,

of AdH . Since adH is completely reducible there exists an H-module projection

ρ : adH → M . By cosemisimplicity we can choose λ ∈
∫
H∗ such that λ(1) = 1.

Define

ρ̃ : AdH →M, ρ̃(h) = λ(1).ρ(S(λ(2)).h).

Equation (2.9) implies that fλ(1)⊗S(λ(2)) = λ(1)⊗S(λ(2))f ; so ρ̃ is anH∗-module

map. It is is a straightforward check that ρ̃ is the identity on M . To complete the

proof, it remains to show that ρ̃ is an H-module map. This is done in the following

computation:

ρ̃(kh) = λ(1).ρ(S(λ(2)).
kh)

= λ(1).ρ(〈S−1(S(λ(2))), k(1)h(1)S(k(3))〉k(2)h(2))

= λ(1).
k(2)ρ(〈λ(2), k(1)h(1)S(k(3))〉h(2))

= 〈λ(2), k(1)h(1)S(k(5))〉〈S−1(λ(1)), k(2)ρ(h(2))(1)S(k(4))〉k(3)ρ(h(2))(2)

= 〈λ(2), k(1)h(1)S(k(5))〉〈λ(1), k(4)S
−1(ρ(h(2))(1))S

−1(k(2))〉k(3)ρ(h(2))(2)

= 〈λ, k(4)S
−1(ρ(h(2))(1))S

−1(k(2))k(1)h(1)S(k(5))〉k(3)ρ(h(2))(2)

= 〈λ, S−1(ρ(h(2))(1))h(1)S(k(2))S
2(k(3))〉k(1)ρ(h(2))(2)

= 〈λ, S−1(ρ(h(2))(1))h(1)〉kρ(h(2))(2)

= 〈λ(1), S
−1(ρ(h(2))(1))〉kρ(〈λ(2), h(1)〉h(2))(2)

= k(λ(1).ρ(S(λ(2)).h)) = kρ̃(h).
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To summarize, when AdH is assumed to be completely reducible, then much

of the structure discussed in the foregoing simplifies, since H is both unimodular

and cosemisimple. In this case, Radford’s formula for S4 [44, Theorem 10.5.6]

gives that S4 = Id. Thus, S−2 = S2 and hence C(H) = S(C(H)). Next, C(H)

is a semisimple algebra, since it is the endomorphism algebra of the completely

reducible module AdH . Now the map η, as seen in the proof of Theorem 4.3.4,

simply becomes S2. However, S2|C(H) = Id. Thus,

ZH = (C(H) ⇀ Λ) = (Λ ↼ C(H))

and the conjugacy classes of H are all of the form H∗e.Λ, where e ranges over the

primitive idempotents of C(H).

4.3.8 Complete Reduciblity of adH and Class Sums

For the remainder of this thesis, H will be assumed to be cosemisimple and

unimodular.

Fix λ ∈
∫
H∗ with 〈λ, 1〉 = 1 and Λ ∈

∫
H

with 〈λ,Λ〉 = 1. Generalizing

[8], we will call e.Λ the class sum of the conjugacy class (H∗e).Λ, where e is a

primitive idempotent of C(H). By Lemma 4.3.1 (b), class sums are always central.

The following example shows that this definition is a generalization of the familiar

notion of class sums for finite groups.

Lemma 4.3.8. Let G be a finite group. Then the class sums as defined above are

the classical class sums.

Proof. Let C be a conjugacy class of G and let c =
∑

g∈C g be the classical class

sum of C. By Lemma 4.3.2, kC is a conjugacy class of k[G]. Letting {δx | x ∈ G}
denote the basis of (k[G])∗ that is dual to the basis G of k[G], we have δ1 ∈

∫
k[G]∗

with 〈δ1, 1〉 = 1 and Λ =
∑

g∈G g ∈
∫
k[G]

with 〈δ1,Λ〉 = 1.

We know that the class sum of kC, in the above sense, is a central element of

k[G] that belongs to kC; so it must be a scalar multiple of c. Then the class sum can

be expressed as α
∑

g∈C δg−1 .Λ for some scalar α ∈ k and α
∑

g∈C dg−1 must be an
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idempotent. This forces α = 1 and it follows that the class sum in question is c, as

desired.

When char k = 0, then H is semisimple and S2 = Id by [27], [28]. Thus, if k is

also algebraically closed, then C(H) is the character algebra R(H). A major tool

for studying the character algebra is the Frobenius structure discussed in Section

2.3.3. Much of this structure can still be recovered for positive characteristics.

Theorem 4.3.9. Assume adH is a completely reducibleH-module. Then the bilinear

form { . , . } : C(H)×C(H)→ k, {f, g} = 〈Λ, fg〉, is nondegenerate, associative

and symmetric. If k is algebraically closed, then the counit of H does not vanish on

any class sum of H .

Proof. The form { . , . } is clearly associative. For nondegeneracy, it suffices to

show that Λ does not vanish on any left ideal of C(H). Since C(H) is semisimple,

it suffices to show that Λ does not vanish on C(H)e for e a primitive idempotent

of C(H). But 〈Λ, H∗e〉 6= 0 by nondegeneracy of the action of H∗ on Λ. Now,

by hypothesis, H∗e is a completely reducible H-module via the isomorphism of

Proposition 4.3.3. It has H-invariants given by C(H) ∩ H∗e = C(H)e. Observe

that Λ : H∗e → 1H is a nonzero H-module map. Since H∗e is a completely

reducible H-module, there exists an H-module splitting σ : 1H → H∗e. Now σ(1)

is anH invariant so σ(1) ∈ C(H)e and 〈Λ, σ(1)〉 = 1 6= 0. Hence 〈Λ, C(H)e〉 6= 0.

To see that { . , . } is symmetric note that, sinceH∗ is unimodular, the Nakayama

automorphism associated to Λ is S2, but S2|C(H) = Id as desired.

For the final statement, let k be algebraically closed. Then C(H) is a split

semisimple algebra. So Λ does not vanish on any primitive idempotent e ∈ C(H),

since symmetric forms of matrix algebras don’t vanish on primitive idempotents.

The result now follow from the computation below:

〈ε, e.Λ〉 = 〈ε, 〈S−1(e),Λ(1)〉Λ(2)〉 = 〈S−1(e),Λ〉 = 〈e, S−1(Λ)〉 = 〈e,Λ〉 6= 0.
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4.3.9 The Involutory Case

If H is assumed to be involutory, in addition to the assumptions of Theorem

4.3.9, then a nonzero integral for H becomes a symmetric form on H∗. In fact,

given λ ∈
∫
H∗ with 〈λ, 1〉 = 1 and choosing Λ ∈

∫
H

such that 〈λ,Λ〉 = 1, then

Λ = χH∗ , where χH∗ denoted the character of the regular representation of H∗.

With this assumption, the previous theorem can be used to generalize the result for

finite groups G that completely reducibility of ad
k[G] implies that char k does not

divide the size of any conjugacy class of G.

Corollary 4.3.10. AssumeH is cosemisimple, unimodular and involutory, with adH

a completely reducible H-module and k algebraically closed. Then char k does not

divide the dimensions of any conjugacy class of H .

Proof. By Corollary 4.3.5, it suffices to fix e a primitive idempotent of C(H) and

show that char k does dot divide dimk(H
∗e) or, equivalently, 0 6= 1k dimk(H

∗e).

But, by Proposition 4.3.9, 0 6= 〈ε, e.Λ〉 = 〈Λ, e〉 = 〈χH∗ , e〉 = 1k dimk(H
∗e).

The assumption of k algebraically closed can be weakened to k being a splitting

field for C(H).

4.4 An Example

This section will give an explicit nontrivial example of the conjugacy classes

of a non-semisimple Hopf algebra. All computations for this example were done

using Python code; for more information on this code see chapter ??.

4.4.1 The structure of B2,3

Let k be an algebraically closed field of characteristic 3 and let G be the group

defined by the generators and relations below:

G =

a, b, σ, τ
∣∣∣∣∣∣σ

2 = τ 2 = a3 = b3 = 1, σa = a2σ, τb = b2τ,

[a, b] = [σ, τ ] = [a, σ] = [b, τ ] = 1


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Define B2,3 to be k[G] as a k-algebra. The counit of B2,3 remains unchanged

from that of k[G]. Also σ and τ remain group-like elements in B2,3. The comulti-

plication on the remaining algebra generators of B2,3 is then given by

∆(a) = 2(a⊗ a+ aτ ⊗ a+ a⊗ a2 − aτ ⊗ a2)

∆(b) = 2(b⊗ b+ b⊗ bσ + b2 ⊗ b− b2 ⊗ bσ) .

The antipode is given by

S(a) = 2(a2 + a2τ + a− aτ)

S(b) = 2(b2 + b2σ + b− bσ) .

The Hopf Algebra B2,3 is a special case of a class of Hopf algebras introduced by

Galindo and Natale [20, Section 8].

We now list some basic properties of B2,3. The formula for the comultiplication

directly gives that B2,3 is not cocommutative. By Maschke’s Theorem, k[G] is not

semisimple, and hence B2,3 is not semisimple, since B2,3 = k[G] as k-algebra.

Since the counit of B2,3 remains unchanged from that of k[G], it also follows that

B2,3 is unimodular. A direct calculation gives that S2 = Id; so B2,3 is involutory.

Let {ρaibjσkτ`} be the basis of B∗2,3 that is dual to {aibjσkτ `}. Then ρ1 is an integral

of B∗2,3, and hence B2,3 is cosemisimple by Maschke’s Theorem.
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4.4.2 The submodules of C(B2,3)

Since B2,3
∼= k[G] as algebras and S2 = Id in both cases, we have C(B2,3) =

C(k[G]) as sets. Hence we get the following basis of C(B2,3),

C(H) = k{ρ1}

∪ k{γa := ρa + ρa2 , γb := ρb + ρb2}

∪ k{γσ = ρσ + ρaσ + ρa2σ, γτ := ρτ + ρbτ + ρb2τ}

∪ k{γab := ρab + ρa2b + ρab2 + ρa2b2}

∪ k{γbσ := ρbσ + ρabσ + ρa2bσ + ρb2σ + ρab2σ + ρa2b2σ}

∪ k{γaτ := ρaτ + ρabτ + ρab2τ + ρa2τ + ρa2bτ + ρa2b2τ}

∪ k{γστ =
∑

0≤i≤j

ρaibjστ}

Thus, dimkC(B2,3) = 9. In fact, C(B2,3) is commutative and semisimple; so

its primitive idempotents are uniquely determined, and hence so are the conjugacy

classes of B2,3. The table below lists the primitive idempotents of C(B2,3) and the

corresponding conjugacy class sums.

Idempotent Conjugacy Class sum

ρ1 1

2γa a+ a2

2γb b+ b2

γσ σ + aσ + a2σ

γτ τ + bτ + b2τ

γab ab+ a2b+ ab2 + a2b2

γbσ bσ + abσ + a2bσ + b2σ + ab2σ + a2b2σ

γaτ aτ + abτ + a2bτ + a2τ + ab2τ + a2b2τ

γστ
∑

0≤i,j≤2 a
ibjστ
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We then get the following conjugacy classes:

Cρ1 = k〈1〉

Cρa = k〈a, a2〉

Cρb = k〈b+ b2, bσ − b2σ〉

Cρσ = k〈a, aσ, a2σ〉

Cρτ = k〈τ, bτ, b2τ〉

Cρab = k〈ab+ ab2, a2b+ a2b2, abσ − ab2σ, a2bσ − a2b2σ〉

Cρbσ = k

〈
bσ, b2σ, abσ + a2bσ, ab2σ + a2b2σ

abστ − a2bστ, ab2στ − a2b2στ

〉

Cρaτ = k

〈
aτ, a2τ, abτ + ab2τ, a2bτ + a2b2τ

abστ − ab2στ, a2bστ − a2b2στ

〉

Cρστ = k

〈
στ, bστ, b2στ, aστ + a2στ, aσ + a2σ

abστ + a2bστ, ab2στ − a2b2στ, abσ − ab2σ, ab2σ − a2b2σ

〉

Observe that dimkCρσ = 3 = char k. Hence, by Corollary 4.3.10, adB2,3 is not

completely reducible.
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CHAPTER 5

BROADER INTERESTS

Currently, the construction and study of explicit new examples or counterexam-

ples in the theory of Hopf algebras is a rather difficult task. This is in part because

there is currently no public software that is designed specifically for working with

Hopf algebras. To aid in my personal research, I have developed Python code for

calculations in finite-dimensional Hopf algebras. This code can be found on my

GitHub page at https://github.com/AdamJacoby/Hopf.

At the center of the code is the Hopf algebra class. LetH be a finite-dimensional

Hopf algebra, with a fixed basis (bi)
dimkH
i=1 , and give H ⊗H the basis (bi ⊗ bj) with

the lexicographic order. The multiplication of H is then encoded as a matrix of size

dimkH by (dimkH)2, where column i ∗ dimkH + j corresponds to bibj . The unit,

counit, comultiplication and antipode are encoded similarly. The Hopf algebra class

has additional attributes for integrals and Casimir elements, with functions included

to compute them for the structure data. Classes exist for algebras, coalgebras, mod-

ules and module algebras as well.

The code contains many tools for constructing new objects from Hopf alge-

bras; it contains, among others, the following constructions: duals, tensor products,

smashed products, Drinfeld twists, dual Drinfeld twists, crossed products, and ad-

joint modules.

To aid in working within a Hopf algebra, I have also devolved the Hopf algebra

element class. Elements can be added, multiplied and exponentiated using the +, ∗
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and ∗∗ operations. Functions are also available for the antipode, comultiplication,

counit, tensor product and module actions. The primary advantage of working with

this class is that elements can be created and referred to by name rather than as a

vector, making working with them far more natural and intuitive as the user never

has to delve into the vector and matrix notation at the core of the code.
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