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ABSTRACT

SUFFICIENT DIMENSION REDUCTION WITH MISSING DATA

Qi Xia

DOCTOR OF PHILOSOPHY

Temple University, August 2017

Existing sufficient dimension reduction (SDR) methods typically consider

cases with no missing data. The dissertation aims to propose methods to fa-

cilitate the SDR methods when the response can be missing. The first part of

the dissertation focuses on the seminal sliced inverse regression (SIR) approach

proposed by Li (1991). We show that missing responses generally affect the

validity of the inverse regressions under the mechanism of missing at random.

We then propose a simple and effective adjustment with inverse probability

weighting that guarantees the validity of the SIR. Furthermore, a marginal co-

ordinate test is introduced for this adjusted estimator. The proposed method

share the simplicity of SIR and requires the linear conditional mean assump-

tion. The second part of the dissertation proposes two new estimating equation

procedures: the complete case estimating equation approach and the inverse

probability weighted estimating equation approach. The two approaches are

applied to a family of dimension reduction methods, which includes ordinary

least squares, principal Hessian directions, and SIR. By solving the estimat-

ing equations, the two approaches are able to avoid the common assumptions

in the SDR literature, the linear conditional mean assumption, and the con-
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stant conditional variance assumption. For all the aforementioned methods,

the asymptotic properties are established, and their superb finite sample per-

formances are demonstrated through extensive numerical studies as well as a

real data analysis.

In addition, existing estimators of the central mean space have uneven per-

formances across different types of link functions. To address this limitation,

a new hybrid SDR estimator is proposed that successfully recovers the central

mean space for a wide range of link functions. Based on the new hybrid esti-

mator, we further study the order determination procedure and the marginal

coordinate test. The superior performance of the hybrid estimator over exist-

ing methods is demonstrated in simulation studies. Note that the proposed

procedures dealing with the missing response at random can be simply adapted

to this hybrid method.
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CHAPTER 1

INTRODUCTION

As technologies advance dramatically, scientific data grows in both size

and complexity. The high dimensionality of data leads to some challenges

for statistical inference. One is that in regression analysis, the large amount

of predictors makes it cumbersome to detect the relationship between the

response variable and the collection of predictors. Another is that the more

commonly encountered missingness in high-dimensional data can complicate

and weaken the interpretation of statistical analysis.

Sufficient dimension reduction (SDR, Li, 1991; Cook, 1998) has attracted

considerable interests in the analysis of high-dimensional data. It aims to

identify a lower dimensional vector of linear combinations of the predictors,

while maintain full regression information and impose no parametric models.

However, the existing SDR methods typically consider cases with no missing

data. Therefore, it is desirable to develop SDR methods under missing data

framework. This book provides approaches for SDR methods dealing with

missing data.

Throughout the book, we denote R as the set of all real numbers and Rp as
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the p-dimensional Euclidean space. We present a scalar by a lower case letter

x, a (random) vector by a bold lowercase letter x, and a (random) matrix by

a bold upper case letter X. A random variable is denoted by an upper case

letter X.

Following the introduction, we will show basic dimension reduction con-

cepts as well as some classic and modern SDR approaches. After that, we will

give a brief review for missing data analysis.

1.1 Sufficient Dimension Reduction

Sufficient dimension reduction approach assumes that the response vari-

able relates to only a few linear combinations of the many predictors. Thus,

even when all the predictors have explanatory effect, we can formulate the

effect sufficiently as one or more linear combinations. The goal of dimension

reduction is to identify these few linear combinations.

1.1.1 Central Space and Central Mean Space

Let x = (X1, ..., Xp)
T ∈ Rp be a random vector representing the predic-

tors, and let Y be a random variable representing the univariate response. A

main class of SDR problems concern the conditional distribution of Y given

as F (y | x), referred to as central space problem. If there exits a matrix

B = (β1, . . . ,βd) ∈ Rp×d (d < p) with the smallest possible d such that the

distribution of Y conditional on x is the same as that conditional on BTx,

written as,

F (y | x) = F (y | BTx), for all y ∈ R, (1.1)
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where F (y | x) = P (Y ≤ y | x). Then, the p-dimensional covariates x can

be replaced by the d-dimensional linear combinations BTx. Model (1.1) was

mentioned but not explicitly explored in both Li (1991) and Cook (1998).

Zeng and Zhu (2010) proved that (1.1) is equivalent to Li’s (1991) dimension

reduction model, Y = f(BTx, ε), where f(·) is an unspecified link function,

ε is a random error independent of x and E(ε) = 0; also it is equivalent to

Cook’s (1998) independence model, Y ⊥⊥ x | BTx, where ⊥⊥ denotes statistical

independence. It states that given BTx, Y and x are independent of each other.

Note that for B satisfying (1.1), its multiplication to any non-singular matrix

A ∈ Rq×d, will still satisfy (1.1). In other words, if F (y | x) = F (y | BTx),

then F (y | x) = F (y | (BA)Tx). Therefore, B is not identifiable. Instead

of matrix B itself, the column space of B which satisfies (1.1) is the one

that really drives the conditional independence relationship. Such a column

space is called dimension reduction subspace (DRS; Cook, 1994). Aiming at

finding a minimum dimension reduction subspace, Cook (1998) introduced

the concept of central space as the intersection of all dimension reduction

subspaces, and expressed by SY |x. The smallest subspace usually exists under

the premise that the intersection of two dimension reduction subspaces is again

a dimension reduction subspace (Yin et al., 2008), and is uniquely defined

except for some degenerated cases (Cook, 2004). Central space thus becomes

the main objective in dimension reduction inquiry with model (1.1). The

central space dimension d = dim(SY |x) is called structural dimension.

The central space problem concerns the conditional distribution of response

given the predictors and provides a complete picture of their relation. In

many situations, regression analysis is mostly interested in inferring about the
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conditional mean of the response given the predictors. In this case, dimension

reduction hinges on finding the matrix B satisfies a less restrictive assumption

E(Y | x) = E(Y | BTx) (1.2)

such that BTx contains all the information about Y that is available from

E(Y | x). It is equivalent to the assumption that Y ⊥⊥ E(Y | x) | BTx.

Similarly, B in model (1.2) is not unique and the column space of B satisfying

(1.2) is of interest, defined as a mean dimension reduction subspace. The

intersection of all dimension reduction subspaces is called the central mean

space (Cook and Li, 2002), and expressed as SE(Y |x).

Generalizing the idea of the central mean space and central space, Yin and

Cook (2002) introduced the central k-th moment subspace. Extending the

conditional mean to the conditional variance, Zhu and Zhu (2009) defined the

notion of central variance space.

Given standardized predictor z = Σ−1/2(x − µ), where µ = E(x) and

Σ = Cov(x), for η being a basis matrix of the corresponding dimension reduc-

tion subspaces, Y ⊥⊥ z | ηTz if and only if Y ⊥⊥ x | (Σ−1/2η)Tx. We will imme-

diately have the relationships SY |x = Σ−1/2SY |z and SE(Y |x) = Σ−1/2SE(Y |z).

This property is known as the invariance law (Cook, 1998). A practical im-

plication is that standardizing the predictor does not change the nature for

implementing dimension reduction, one can first estimate z-scale central space

SY |z and then transform it back to the x-scale SY |x.
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1.1.2 Classic Sufficient Dimension Reduction Methods

As described in Section 1.1.1, the target of SDR is to estimate a space,

which is the column space of B with the smallest dimension d. There are

mainly two groups of classic methods for estimating the column space of B,

first-order methods and second-order methods. First-order methods include

ordinary least squares (OLS; Li and Duan, 1989), sliced inverse regression (SIR;

Li, 1991), parametric inverse regression (PIR; Bura and Cook, 2001b) and ker-

nel inverse regression (KIR; Zhu and Fang, 1996; Ferre and Yao, 2005). These

methods are also referred as inverse-regression based methods, and mostly re-

quire linear conditional mean (LCM) assumption on the predictor. The LCM

condition assumes that

E(x | BTx) is linear in x. (1.3)

The geometric implication of the LCM assumption (1.3) is that the conditional

expectation E(x |BTx) coincides with PΣx, represented as E(x | BTx) = PΣx,

where PΣ = ΣB(BTΣB)−1BT is called the projection matrix. When LCM

(1.3) holds for all possible B, it indicates that the predictor has an elliptical

distribution (Eaton, 1986). Under condition (1.3), we will introduce OLS and

SIR methods.

Ordinary Least Squares

In the pioneering article, Li and Duan (1989) showed that if (1.3) holds and

the structural dimension d = dim(SY |x) = 1, then βOLS ∈ SY |x, where βOLS

denotes the ordinary least squares estimator and Cov(x, Y ) infers a subspace
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of the column space of βOLS. Without loss of generality, the OLS estimator

is simply Σ−1E(xY ) when E(x) = 0. A brief proof (Li and Duan, 1989) is

presented as following under model (1.1) and condition (1.3) given span(B) =

SY |x.

E(xY ) = E(E(xY | x)) = E(xE(Y | x))

= E(xE(Y | BTx)) = E(E(x | BTx)Y ) = PΣE(xY ).

Thus,

βOLS = Σ−1E(xY ) = B(BTΣB)−1BTE(xY )⇒ Σ−1E(xY ) ⊆ SY |x.

In addition, Cook and Li (2002) illustrated that OLS is indeed to estimate

central mean space and βOLS ⊆ SE(Y |x) ⊆ SY |x. Therefore, OLS is more often

regarded as a dimension reduction method targeting the central mean space

SE(Y |x). The limitations of OLS is that it can at most recover one direction of

the central space. And when the link function between response and predictors

is symmetric about 0 (such as U-shaped curve) OLS will fail to recover the

central space, for instance, βOLS = 0 when x follows normal.

Sliced Inverse Regression

The main idea for inverse regression is reversing the response and the pre-

dictors. Sliced inverse regression method coined by Li (1991) is the most rep-

resentative inverse-regression SDR method. Denote MSIR = Σ−1Cov{E(x |

Y )}Σ−1. It can be shown that span(MSIR) ⊆ SY |x under condition (1.3), thus

the eigenvectors associated with the d largest eigenvalues of MSIR are used
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to recover SY |x. At the population level, let {J1, . . . , JH} be a partition of

the sample space of Y and denote Rh = I(Y ∈ Jh), where ph = E(Rh) and

uh = E(xRh). We have

MSIR = Σ−1Cov{E(x | Y )}Σ−1 = Σ−1

(
H∑
h=1

p−1h uhu
T

h

)
Σ−1,

where ph = E(Rh) and uh = E(xRh). Then span(MSIR)⊆ SY |x. Let {xi, Yi}

i = 1, . . . , n be an i.i.d. sample. Calculate

M̂SIR = Σ̂
−1
(

H∑
h=1

p̂−1h ûhû
T

h

)
Σ̂
−1
,

where, for example, ûh = n−1
∑n

i=1(xi − x̄)I(Yi ∈ Jh) Let β̂1, · · · , β̂d be

the eigenvectors corresponding to the d leading eigenvalues of M̂SIR. Then

B̂ = (β̂1, · · · , β̂d).

Unlike OLS, SIR can recover multiple directions of central space. However,

it has the same limitation when the link function between response and pre-

dictors is symmetric about 0, SIR will fail for E(x | Y ) = 0. The subsequent

second-order methods can resolve this issue.

Second-order methods include principal Hessian direction (PHD; Li, 1992;

Cook and Li, 2004a), the sliced average variance estimator (Cook and Weis-

berg, 1991). These methods require not only (1.3), but also constant condi-

tional variance (CCV):

Cov(x |BTx) is a nonrandom matrix . (1.4)
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Combined with (1.3), (1.4) implies that Cov(x | BTx) = QΣ, where QΣ =

Σ − PΣΣPT
Σ. When LCM(1.3) holds for all possible B, it indicates that the

predictor has an elliptical distribution (Eaton, 1986). When both LCM (1.3)

and CCV (1.4) are held for all possible B, it infers that the predictor follows

multivariate normal distribution. Under condition (1.3) and (1.4), we will

introduce SAVE and PHD methods.

Sliced Average Variance Estimator

To overcome the limitation of SIR, Cook and Weisberg (1991) proposed

sliced average variance estimator (SAVE) to recover the central space by within

slice variance. Denote

MSAVE = Σ−1E
[
{Σ− Var(x | Y )}Σ−1{Σ− Var(x | Y )}

]
Σ−1.

Under the two conditions (1.3) and (1.4), they demonstrated that span(MSAVE) ⊆

SY |x, consequently, the column space of MSAVE belongs to the central space

SY |x. The estimation algorithm for MSAVE is similar to the procedure for SIR.

Principal Hessian Directions

Principal Hessian directions (PHD; Li, 1992) is a well-known second-order

method. The idea derives from the observation that the Hessian matrix

H(x) = ∂2E(Y |x)
∂x∂xT is degenerated along any directions that are orthogonal to

SY |x. Denote

MPHD = Σ−1E(Y xxT)Σ−1E(Y xxT)Σ−1.



9

Li (1992) showed that span(MPHD) ⊆ SY |x and similar to OLS. Cook and

Li (2002) pointed that span(MPHD) ⊆ SE(Y |x) ⊆ SY |x. PHD overcomes the

limitation that OLS can only recover one direction in the central mean space.

And it also can handle symmetric model cases. It can give a more comprehen-

sive estimate but in a trade off for requiring additional assumption (1.4). As

Hessian matrices are important in studying multivariate nonlinear functions,

when it comes to linear function, PHD will not work since H(x) = 0.

1.1.3 Modern Sufficient Dimension Reduction Methods

The preceding classic sufficient dimension reduction methods rely on strin-

gent conditions on the predictors. Because these conditions are too strong for

some applications and not easy to check in practice, modern literature show

more interests to relax the underlying assumptions.

Central Solution Space

Li and Dong (2009) generated the novel construction of central solution

space to circumvent the linear conditional mean assumption and reformu-

late the commonly used first-order (inverse-regression based) methods, such

as OLS, SIR, KIR and PIR. They synthesized the estimators into a com-

mon form and focused on defined inverse regression equation, for example

E(x | Y ) = E{E(x | BTx) |Y } in SIR. The span of the B that solved in the

equation is called a solution subspace. And comparably, the intersection of

the all such spaces will be called the central solution space SCSS. Also it is

showed that SCSS ⊆ SY |x. Linearity assumption (1.3) is relaxed by requiring
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E(x | BTx) to be a polynomial function of BTx.

E(x | BTx) = E
[
xGT(BTx){GT(BTx)GT(BTx)}−1GT(BTx)

]
, (1.5)

where G(BTx) = (f1(B
Tx), ..., fk(B

Tx))T and f1, ..., fk are functions from Rq

to R. Dong and Li (2010) extended the central solution space idea to second

methods such as SAVE and Directional Regression.

Semiparametrics Approach

LCM condition is eliminated in Li and Dong (2009) and Dong and Li

(2010), while the constant variance condition (1.4) is still retained. Ma and

Zhu (2012b) provided an innovative and completely different approach to suffi-

cient dimension reduction through semiparametrics. Consequently, both con-

ditions are released. More advancedly, the approach stimulate deeper and

richer class estimators, obtaining the classic dimension reduction techniques

as special cases in the class.

Their approach starts from deriving the complete family of influence func-

tions via a geometric tool, semiparametrics, in Bickel et al. (1993) and Tsiatis

(2006). Then a general class of estimating equations (1.6) is derived from the

influence functions, that is for any functions g and a,

E
(
[g(Y,BTx)− E{g(Y,BTx) | BTx}]× [a(x)− E{a(x) | BTx}]

)
= 0. (1.6)

With the double robustness property of (1.6), root-n consistent (Newey, 1990)

estimators for central space can be obtained through sample version of (1.6) by

nonparametrically estimating both E{g(Y,BTx) | BTx} and E{a(x) | BTx}.
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Ma and Zhu (2012b) further showed that the estimator B̂ from the sample

version estimating equation

n∑
i=1

[g(Yi, B̂
Txi)− Ê{gi(Y, B̂Txi) | B̂Txi}]× [a(xi)− Ê{a(xi) | B̂Txi}] = 0

is distributed as
√
nAvec(B̂−B)→ N (0,ΣB),

where vec(M) denotes the vector formed by concatenating the columns of M

and

A = E

{
∂vec

(
[g(Y,BTx)− E{g(Y,BTx) | BTx}]× [a(x)− E{a(x) | BTx}]

)
∂vecl(B)T

}

ΣB = Cov{vec([g(Y,BTx)− E{g(Y,BTx) | BTx}]× [a(x)− E{a(x) | BTx}])}.

And when with the sole choice of g(Y,BTx) = Y , (1.6) becomes a general

estimating equation to obtain estimators for central mean subspace. The con-

nection of semiparametrics approach with classic SDR methods such as SIR,

SAVE, OLS and PHD are showed.

With the novel semiparametrics techniques in dimension reduction, Ma

and Zhu (2012a) discovered a paradoxical phenomenon that even when the

linearity condition (1.3) holds in the underlying data, applying the condition

will cause efficiency loss.
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1.2 Missing Data

Missing data is prevalent in many disciplines. Statistical analysis with

missing data has been an area of considerable interest since 1980s. Many

statistical issues such as data with measurement error and two-phase sampling

can be viewed as missing data problems. see Little and Rubin (2002), Tsiatis

(2006) and Kim and Shao (2014) for comprehensive review. In this section, we

will introduce mechanisms leading to missing data, commonly used methods

for missing data and existing SDR methods with missing data.

1.2.1 Missing Mechanisms

Whether the fact that variables are missing is related to the underlying

values of the variables leads to the concern of mechanisms of missing data.

Rubin (1976) and colleagues (Little and Rubin, 2002) formalized the classifi-

cation system for missing mechanisms: missing completely at random, missing

at random and not missing at random. The mechanisms describe relationships

between measured variables and the probability of missing data.

Let the random vector z = (Y,xT)T,x ∈ Rp. The general notion of missing

data is denoted by (z1, z2, δ), where z1 ∈ Rp1 represents the component that

can be missing, z2 ∈ Rp2 is the part that is always observable (p1 +p2 = p+1),

and δ is the missing indicator which takes value 1 when z2 is observed. A

conceptual description of each mechanism in following is given as following.

Missing Completely at Random (MCAR)

If missingness does not depend on the values of the data z, that is, if

δ ⊥⊥ z, then the propensity for a data point to be missing is completely at
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random (MCAR). And the missing data can be thought of a random subset of

the complete data. For example, if a data entry clerk randomly misses some

inputs, the missingness can be considered MCAR.

Missing at Random (MAR)

An assumption less restrictive than MCAR is that missingness only de-

pends on the other measured components (z1) but not on the components

that are missing (z2), that is

δ ⊥⊥ z1 | z2, (1.7)

then the mechanism is defined as missing at random (MAR). For example, if a

two-level test grades second level test for the participants only when he meets

the cut-off for the first level test, then the missingness in the second-level test

will be MAR.

Not Missing at Random (NMAR)

If the propensity of missing data is systematically related to the hypothet-

ical values that are missing, the mechanism is called not missing at random

(NMAR). In other words, the NMAR mechanism describes data that are miss-

ing based on the would-be values of the missing scores. For example, suppose a

questionnaire only asks respondents to fill in questions related to their hobbies,

then the missingness for the unfilled questions can be NMAR.
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1.2.2 Commonly Used Missing Data Methods

Missing data problem attracted extensive research. Among the existing

approaches, complete-case analysis is the most commonly used in sufficient di-

mension reduction with missing data. It confines attention to cases that all the

variables are present, thus removing all subjects with missingness. This ap-

proach is simple to apply, however, it causes the potential loss of precision and

bias when the missingness mechanism is not MCAR. There are several meth-

ods for estimating parameters when data are MAR including score propensity

methods, likelihood-based methods and imputation.

Propensity Scoring Methods

The propensity scoring methods utilizes the propensity score, termed by

Rosenbaum and Rubin (1983), which is defined as π = π(z2) = P (δ = 1 | z2).

Note that z2 is always observable and δ = 1 indicates that z1 is observed.

The most representative approach involving the propensity score is the inverse

probability weighted (IPW) estimators first suggested by Horvitz and Thomp-

son (1952), and later J. M. Robins and Zhao (1995). The basic intuition is

that for any randomly chosen individual z = (zT
1 , z

T
2 )T, the probability that

z will have complete data is π(z2). Therefore any z with complete data can

be thought of as representing π−1(z2) individuals at random from the pop-

ulation, some of which may have missing data. For a size-n random sample

(zi, δi) = {(zT
1i, z

T
2i), δi}, the estimator for µ = E(z) can be suggested as

µ̂ =
1

n

n∑
i=1

δizi
πi(z2)

.
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It can be easily showed that µ̂ is an unbiased estimator for E(z) under MAR

assumption. However, the IPW estimator rely on the correctly specification

for the propensity score, otherwise the estimator would be biased.

Scharfstein et al. (1999) first introduced the notion of double robust estima-

tors, resulting in another prevailing propensity score method. Double robust

estimators were also studies by Lipsitz et al. (1999), and Robins et al. (2000).

Bang and Robins (2005) gives an excellent overview. The method suggests the

estimator for µ = E(z) as

µ̂ =
1

n

n∑
i=1

{
δizi
πi(z2)

+

(
1− δizi

πi(z2)

)
E(zi | z2)

}
.

The estimator is also referred to as an augmented inverse probability weighted

(AIPW) estimator. Although it needs specification for both π(z2) and E(z |

z2), it offers double robustness property. The property can be showed in a

sense that the estimator is unbiased if either π(z2) or E(z | z2) is correctly

specified. In later chapters, we will propose approaches partially inspired by

the scoring propensity methods.

Imputation

The motivation of imputation is to provide completed data set so that the

resulting point estimates are consistent among different analysts. Since some

of the data points are missing, the natural strategy is to impute a value for

such missing data and then estimating the parameter as if the imputed values

were true values. For the same size-n random sample (zi, δi) = {(zT
1i, z

T
2i), δi},

suppose that the parameter of interest is µg = E{g(z)}. Then the imputed
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estimator for µg can be computed as

µ̂g =
1

n

n∑
i=1

{δig(zi) + (1− δi)g(z′i)},

where z′i is generated from the conditional distribution of zi | δi = 0 or the

average of multiple imputed values. Also see details in Rubin (1987), Schafer

(1997), and Kim and Shao (2014).

Likelihood-based Methods

Maximizing the likelihood of the observed data is a commonly-used method

for estimating unknown parameters of a model. The same principal holds when

missing data occur, while the difficulty lies in specifying the likelihood of the

observed data. As no plain solution exits to find an estimate that maximize

the likelihood of the observed data when missing data occur, Dempster et al.

(1977) proposed EM algorithm to solve the estimates. Excellent reference in-

clude the books by Little and Rubin (2002), Schafer (1997) and Kim and Shao

(2014).

1.3 Existing Sufficient Dimension Reduction

Methods Handling Missing Data

Li and Lu (2008) brought into new blood to SDR with missingness in

data. Thereafter, the missing values in predictors and in response are treated

separately in dimension reduction literature.
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Inverse Probability Weighted Estimators

In the context of missing predictors, Li and Lu (2008) combined SIR with

the augmented inverses probability weighted method (Robins et al., 1994)

for dimension reduction problem. Partitioning the predictor vector x ∈ Rp

into (xT
1 ,x

T
2 )T, where x1 ∈ Rp1 are observed completely and x1 ∈ Rp2 has

missing subjects, the MAR condition (1.7) is equivalent to δ ⊥⊥ x2 | (Y,x1).

The challenge to estimate SIR matrix MSIR = Σ−1Cov{E(x | Y )}Σ−1 under

missingness is to estimate Σ and Cov{E(x | Y )}. Specifically, one needs to

estimate the moments including E(x1), E(x1x
T
1 ), E(x1 | Y ), E(x2), E(x2x

T
2 ),

E(x2x
T
1 ) and E(x2 | Y ). Note that the first three terms can be estimated

as usual, because they involve no missing observations. However, new con-

sistent estimators need to be derived for the last four terms involving x2.

Although evolving inverse probability weighted method can give unbiased es-

timators, as the method requires a parametric model for the missing propen-

sity π = P (δ = 1 | Y,x1) = π(Y,x1), they proposed the augmented inverse

probability weighted estimator for its embedded robustness property to avoid

the harm of misspecification of π. Denote the resulting estimators as Σ̂ and

Σ̂E(x|Y ), they followed convention and spectral decomposition of Σ̂
−1

Σ̂E(x|Y )

to recover SY |x. However, inverting Σ̂ may be problematic when predictors

have colinearity, and estimating Σ−1 can be impossible when n ≤ p. Dong

and Zhu (2012) studied the inverse probability weighted method in estimating

equation framework to avoid inverting the covariance matrix.

Dong and Zhu (2013) extended the inverse probability weighted procedure

based on SAVE and DR and showed that the estimators can work well under

either MAR or the MCAR mechanism.
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Nonparametric and Parametric Imputation

Zhu et al. (2012) proposed alternative approach for SDR with missing

predictors in an angle of semiparametric regression. Under a slightly differ-

ent MAR assumption that δ ⊥⊥ x | Y , the challenge to estimate SIR matrix

becomes to estimate the conditional moments E(Xk | Y ) when Xk has missing-

ness and E(XkXl | Y ) for 1 ≤ k, l ≤ p when either Xk or Xl has missingness.

They imputed the missing values in E(Xk | Y ) with E(δkXk | Y )/E(δk | Y )

and E(XkXl | Y ) with E(δkδlXkXl | Y )/E(δkδl | Y ) respectively. The con-

ditional expectations evolving δ are estimated using standard nonparametric

regressions. Correspondingly, the unconditional moments can be estimated

through E{E(XkXl | Y )} = E(XkXl) technique.

With the partition idea and same MAR assumption in Li and Lu (2008),

Zhu et al. (2012) proposed different estimators for the moments involve x2

such as E(x2) and E(x2x
T
2 ). For example, by stating that E(x2,k) = E{E(x2,k |

x1, Y )} = E{E(x2,kδk | x1, Y )/E(δk | x1, Y )}, they estimated the quantities

E(x2,kδk | x1, Y ) and E(δk | x1, Y ) nonparametricly when p2 is small. How-

ever, parametric imputation was applied to address the cruse of dimensionality

problem when p2 is fairly large.

Fusion-Refinement Procedure

Being the first to target missing response problem in dimension reduction,

Ding and Wang (2011) introduced a novel two-stage fusion-refinement (FR)

procedure on SIR. MAR (1.7) condition is expressed as δ ⊥⊥ Y | x. By claiming

S(Y,δ)|x = SδY |x, at the fusion stage, they recovered the central space S(Y,δ)|x

by Γ which is the basis of SδY |x. Then at the refinement stage, they built
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a bridge SY |x̃ from SδY |x to SY |x, where x̃ = ΓTx. By claiming that if B is

a basis of SY |x̃, then ΓB is a basis of SY |x, the refinement stage focuses on

recovering SY |x̃. The estimation of SδY |x̃ is through probability mass function

(pmf) imputation. Note that if Sδ|x is close to SY |x, the directions of S(Y,δ)|x

can provide a good estimation of SY |x. Under this situation, one can claim

that S(Y,δ)|x = SδY |x = Sδ|x = SY |x. Dong and Zhu (2013) employed this argu-

ment to extend the Fusion-Refinement procedure to SAVE and DR.

The rest of the book is organized as follows. In Chapter 2, we study

the validity of complete case analysis for both forward and inverse regression

approaches when response is missing at random. Focusing on the seminal

sliced inverse regression (SIR) estimator, we propose a simple and effective

adjustment with inverse probability weighting that guarantees the validity of

the inverse regressions. In Chapter 3, we proposes two new estimating equa-

tion procedures to handle missing response in SDR but avoiding the common

assumptions LCM and CCV. In Chapter 4, we propose a new hybrid SDR

estimator that successfully recovers the central mean space for a wide range

of link functions. The order determination procedure and the marginal coor-

dinate test are studied based on the hybrid estimator. Note that extensive

numerical results are provided in each Chapter to demonstrate the desirable

performances of the proposed approaches. And the technical details are col-

lected in Appendix. We conclude the dissertation with some discussions about

the future work in Chapter 5.
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CHAPTER 2

A NOTE ON INVERSE

REGRESSIONS WHEN

RESPONSES ARE MISSING

AT RANDOM

Approaches for inverse regressions form a class of important methods for

sufficient dimension reduction. Take SIR (Li, 1991) as an example, we show

that when response variable Y can be missing, inverse regressions with com-

plete case analysis, encounter problems and adjustment is necessary. Assume

E(x) = 0 and let Σ be the covariance matrix of x throughout this chapter.

2.1 Issues for Complete Case Analysis

Let δ = 1(0) if the response variable Y is observed (missing). We con-

sider the popular missing at random (Little and Rubin, 2002) for the data
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missingness mechanism:

Y ⊥⊥ δ | x. (2.1)

Due to MAR (2.1), we may define the propensity function as P (δ = 1 | Y,x) =

P (δ = 1 | x) = π(x).

A naive way handling missing response is the complete case analysis, which

ignores the individual observations with missing items. We first note that the

conventional regression approaches, also known as the forward regression ap-

proaches, are generally valid using the complete cases analysis. Examples of

forward regressions include those methods based on linear models and gener-

alized linear models. The key reason is that the conditional distribution of

Y given x, whose probability mass function or probability density function is

denoted by f(Y | x), is the same as the conditional distribution of Y given x

and δ = 1, denoted by f(Y | x, δ = 1). To see that,

f(Y | x, δ = 1) =
f(Y,x, δ = 1)

f(x, δ = 1)
=
P (δ = 1 | Y,x)f(Y,x)

P (δ = 1 | x)f(x)
= f(Y | x), (2.2)

where the last equation is due to (2.1). The invariance of the conditional

distributions in (2.2) implies that complete case analysis is valid with responses

missing at random for forward regression approaches, because they essentially

rely on the information from the conditional distribution of Y given x. In SDR,

take the complete case based OLS estimator under linear model Y = βTx+ε as

a toy example. In this case, with E(x) = 0, {E(xxT | δ = 1)}−1E(xY | δ = 1)

is a complete case estimator to recover SY |x. One can show that {E(xxT | δ =

1)}−1E(xY | δ = 1) = {E(xxT | δ = 1)}−1(xxTβ | δ = 1) = β. It follows that
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{E(xxT | δ = 1)}−1E(xY | δ = 1) ⊆ SY |x.

However, ignoring observations with missing responses will generally lead

to biased inverse regressions. With complete case analysis, the conditional

distribution of x given Y becomes

f(x | Y, δ = 1) =
f(Y,x, δ = 1)

f(Y, δ = 1)
=
P (δ = 1 | Y,x)f(Y,x)

P (δ = 1 | Y )f(Y )
= f(x | Y )w(x, Y ),

(2.3)

with w(x, Y ) = P (δ = 1 | Y,x)/P (δ = 1 | Y ). In (2.3), f(x | Y ) 6= f(x |

Y, δ = 1) unless w(x, Y ) = 1. Therefore, the complete case based inverse

regressions will possibly lead to bias. SIR, kernel inverse regression (KIR; Zhu

and Fang, 1996), and SAVE all belong to the inverse regression family. Take

the complete case based SIR as an example, we have

E(x | Y, δ = 1) = E{E(x | Y,BTx, δ = 1) | Y, δ = 1}

= E{E(x | Y,BTx, δ = 1) | Y, δ = 1}

= E{E(x | BTx, δ = 1) | Y, δ = 1}. (2.4)

The derivation in (2.4) cannot step further unless the LCM condition (1.3) is

true under the complete cases, namely E(x | BTx, δ = 1) = PΣx. Otherwise,

E(x | Y, δ = 1) 6= PΣE(x | Y, δ = 1) and E(x | Y, δ = 1) is biased to recover

central space.

We simulate two toy examples to show the validity and impact of deleting

missing observations with OLS and SIR, respectively. Suppose we generate 200

observations from model Y = X1 + ε where x = (X1, X2)
T follows bivariate

standard normal, and ε ∼ N(0, 0.22) is independent of x. Note that in this
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Table 2.1: Comparison of the estimators β̂Full and β̂CC for both OLS and SIR

OLS SIR

β β̂Full β̂CC β̂Full β̂CC

1.0000 0.9931 0.9687 0.9999 0.8076
0.0000 0.0068 0.0312 0.0238 0.5896

model β = (1, 0). By generating missingness with

P (δ = 1 | x) =
exp(−6 + (X1 + 1)2 + (X2 − 1)2)

1 + exp(−6 + (X1 + 1)2 + (X2 − 1)2)
,

we have 49 complete cases. Denote β̂Full and β̂CC as the sample estimators

for β using full data and complete data, respectively. The comparison of the

OLS estimators with true β in Table 2.1 show the validity of the complete case

analysis for OLS under the linear model. While β̂CC = (0.8076, 0.5896)T is

clearly a misleading direction and demonstrate the invalidity of the complete-

case analysis for SIR. Figure 2.1a, Figure 2.1b provide the relationship between

Y and βTx, β̂
T

Fullx, and β̂
T

CCx for OLS and SIR, respectively. It is expected

that the third panel of Figure 2.1a shows obvious linear relationship between

complete case Y and β̂
T

CCx. It behaves almost identical to βTx and β̂
T

Fullx

but with sparse observations. On the other hand, the result in the third panel

of Figure 2.1b is much lousier due to the inaccurate estimator for β̂CC with

complete case based SIR.
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(a)

(b)

Figure 2.1: Scatterplots of Y versus βTx, β̂
T

Fullx, β̂
T

CCx. (a). OLS estimators.
(b). SIR estimators.
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2.2 Adjustments for Inverse Regressions

Fortunately, adjustment can be developed for missing response in inverse

regressions. We intend to develop an asymptotically unbiased estimator for

Cov{E(x | Y )}, adjusting for possibly missing Y . We illustrate the adjustment

using SIR.

Let {J1, . . . , JH} be a measurable partition of the sample space of Y . Let

Rh = I(Y ∈ Jh) be the indicator function of Y belonging to the hth slice.

For h = 1, . . . , H, let ph = E{δRh/π(x)}, uh = E{δxRh/π(x)}. The inverse

probability weighting adjustment in uh and ph is essential to show that E(x |

Y ∈ Jh) = uh/ph under missing at random scheme (2.1). It follows that uh =

E {E(δ | x)E(xRh | x)/π(x)} = E(xRh) and ph = E {E(δ | x)E(Rh | x)/π(x)} =

E {E(Rh | x)} = E(Rh). We refer to the adjusted approach as IPWSIR for the

following. Define the IPWSIR kernel matrix as M = Σ−1Cov{E(x | Y )}Σ−1 =∑H
h=1 Σ−1p−1h uhu

T
hΣ
−1. We have the following result parallel to classic SIR.

Theorem 2.1. Suppose E(x) = 0, Cov(x) = Σ and all the moments involved

exist. Under the LCM condition (1.3), we have span(M) ⊆ SY |x.

The result states that the column space of M can be used to recover the

central space. The proof follows directly from the well-known property of

kernel matrix of SIR thus is omitted.

Denote {xi, Yi, δi = 1}ni=1 be independent and identical copies of the data,

and Yi is missing if δi = 1. Let the kernel function Kb(z) = b−1K(z/b) for

some symmetric probability density function K(·) and b is a bandwidth which
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can be estimated by leave-one-out cross-validation. Calculate

M̂ = Σ̂
−1
(

H∑
h=1

p̂−1h ûhû
T

h

)
Σ̂
−1
, (2.5)

where ûh = 1
n

∑n
i=1 δiRhi(xi − x̄)/π̂(xi), p̂h = 1

n

∑n
i=1 δiRhi/π̂(xi), and the

sample estimator of π(xi), π̂(xi) can be estimated parametrically or nonpara-

metrically. We have B̂ = (β̂1, · · · , β̂d), where β̂1, · · · , β̂d are the eigenvectors

corresponding to the d leading eigenvalues of M̂.

We study the asymptotic property of M̂ while estimating π(xi) nonpara-

metrically as

π̂(xi) =

∑n
j=1Kb(xi − xj)δj∑n
j=1Kb(xi − xj)

. (2.6)

Let ah = p
−1/2
h Σ−1uh, A = (aT

1 , . . . , a
T
H)T, and the corresponding sample

estimators âh = p̂
−1/2
h Σ̂

−1
ûh and Â = (âT

1 , . . . , â
T
H)T. Then M = ATA

and M̂ = ÂTÂ. For h = 1, . . . , H, we have âh − ah = (p
−1/2
h )∗Σ−1uh +

p
−1/2
h (Σ−1)∗uh + p

−1/2
h Σ−1u∗h + op(n

−1/2) = 1
n

∑n
i=1 `h,i + op(n

−1/2). Then

Â − A = 1
n

∑n
i=1 Li + op(n

−1/2), where Li = (`T1,i, . . . , `
T

H,i)
T. The defini-

tion for (p
−1/2
h )∗, (Σ−1)∗, u∗h and `h,i are illustrated in Appendix A. Note that

E(`h,i) = 0 and 1
n

∑n
i=1 `hi = Op(n

−1/2). We have the next result shows the

asymptotic distribution of vec(Â), where vec(A) means the concatenation of

the columns of A.

Theorem 2.2. Suppose E(x) = 0, Cov(x) = Σ and all the moments involved

exist. Suppose the LCM condition (1.3) holds. Let Γ = E {vec(L)vecT(L)}.
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Then
√
n
(

vec(Â)− vec(A)
)
→ N (0,Γ),

where “→” means converge in distribution.

The technical details for Theorem 2.2 allow us to further show how the non-

parametric estimation of π(x) in (2.6) impacts the efficiency. To illustrate, we

study sample estimators when true propensity score π(x) is applied. Denote

ũh = 1
n

∑n
i=1 δiRhi(xi − x̄)/π(xi), p̃h = 1

n

∑n
i=1 δiRhi/π(xi), ãh = p̃

−1/2
h Σ̂

−1
ũh,

and Ã = (ãT
1 , . . . , ã

T
H)T. We conclude this section with the following proposi-

tion.

Proposition 2.1. Suppose E(x) = 0, Cov(x) = Σ and all the moments in-

volved exist. Suppose the LCM condition (1.3) holds. Then
√
n
(

vec(Ã)− vec(A)
)
→

N (0,Ω), where “→” means converge in distribution. In addition, (Ω− Γ) is

positive definite.

Proposition 2.1 demonstrates a heuristic result that weighting by the inverse

of a nonparametric estimate (2.6) of the propensity score π̂(x), rather than

the true propensity score π(x), leads to a more efficient estimator. Its proof

is included in Appendix A. This finding is not surprising as similar findings

have been discussed in Hirano et al. (2003) when the propensity score is es-

timated noparametrically. In addition, Rosenbaum and Rubin (1983), Rubin

and Thomas (1996), and J. M. Robins and Zhao (1995) show that using para-

metric estimates of the propensity score, rather than the true propensity score,

can avoid some efficiency losses.
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2.3 Marginal Coordinate Test

Cook (2004) introduced the SIR-based marginal coordinate hypothesis for

model-free variable selection. Parallel to the SIR-based marginal coordinate

tests studied in Cook (2004), we construct the IPWSIR-based marginal coordi-

nate test. Model-free variable selection aims to select a subset of the predictors

without assuming the functional form between Y and x, such that the selected

predictors are sufficient to predict F (Y | x), the conditional distribution of Y

given x. Let I = {1, · · · , p} be the full index set. To test whether the kth

predictor is active or not for k = 1, · · · , p, one can consider the hypothesis

H
[k]
0 : k ∈ Ac versus H[k]

a : k ∈ A, (2.7)

where the active set A and the the inactive set Ac are defined as

A = {k ∈ I : F (Y | x) functionally depends on Xk} and

Ac = {k ∈ I : F (Y | x) does not functionally depend on Xk}.

Let xA = {Xk : k ∈ A} denote the vector that contains all the active pre-

dictors. Then we have Y ⊥⊥ x | xA, where “⊥⊥” means independency. It is

closely related to the concept of sufficient dimension reduction. Let ek ∈ Rp,

for k = 1, . . . , p, where the kth element of ek is 1 and all other elements are

zero. For B being the basis for central space SY |x, we have k ∈ Ac if and only

if eT
kB = 0. Thus testing hypothesis (2.7) is equivalent to testing

H
[k]
0 : eT

kB = 0 versus H[k]
a : eT

kB 6= 0. (2.8)
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Here B ∈ Rp×d can be replaced with any matrix that has the same column

space as B.

In Theorem 2.1, we have span(M) ⊆ SY |x. With the additional coverage

condition, span{Σ−1uh : h = 1, . . . , H} = SY |x, we have span(M) = SY |x.

From the discussions following (2.8), we know eT
kMek = 0 for k ∈ Ac. Given

an i.i.d. sample {xi, Yi, δi = 1}ni=1, we can calculate the sample estimator M̂

as (2.5). The IPWSIR-based test statistic for (2.7) is then n times the sample

estimator of eT
kMek, written as

Tk = n

H∑
h=1

eT

kΣ̂
−1
p̂−1h ûhû

T

hΣ̂
−1

ek. (2.9)

We have Tk has an asymptotic distribution that is the sum of weighted χ2(1)

under H
[k]
0 showed in Theorem 4.4.

Theorem 2.3. Suppose E(x) = 0, and all the moments involved exist. Fur-

thermore, suppose the LCM condition (1.3) holds and span{Σ−1uh : h =

1, . . . , H} = SY |x. Then under H
[k]
0 : eT

kB = 0,

Tk →
H∑
h=1

ωk,hχ
2
h(1),

where “→” means converge in distribution, ωk,1, . . . , ωk,H are the eigenvalues

of Cov(Gk), and χ2
h(1)’s are i.i.d. χ2(1) random variables.

The proof is demonstrated in Appendix A. Note that in practice, the unknown

weights ωk,h’s can be replaced with their sample estimators.
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2.4 Simulation

2.4.1 Accuracy

First we used synthetic data to demonstrate the effectiveness of the pro-

posed inverse probability weighted SIR. Consider the models

I :Y =
βT

1x

0.5 + (βT

2x + 1.5)2
+ .2ε,

II :Y = (βT

1x)(βT

1x + βT

2x + 3) + .2(βT

1x)ε.

where ε ∼ N (0, 1). We generate x = (X1, ..., X10)
T from multivariate normal

with mean zero and covariance matrix (σij)p×p where σij = 0.5|i−j|. Let B =

(β1,β2) and the structural dimension d = 2, where β1 = (.5,−.5, 0, 0, 0, 0, 0, 0, 0, 0)T,

and β2 = (0, 0, 0, 0, 0, 0, 0, 0, .5,−.5)T. Considering response Y is missing, we

define the MAR missingness schemes as

π(x) = P (δ = 1 | x) =
exp(c0 +αTx)

1 + exp(c0 +αTx)
.

where α = β1/||β1|| + (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T. By letting c0 = −1, 0 and

1, we get the corresponding missing proportion approximately as 30%, 50%

and 70%. Each experiment is repeated 200 times with sample size n = 400.

Slice the response Y into H = 4 slices. Let B̂ be the estimate for B, the

basis matrix of SY |x, and P̂ = B̂(B̂TB̂)−1B̂T is the estimator for projection

matrix P. To evaluate the estimation accuracy, we display the boxplots of the

Euclidean distance between B̂ and B, defined as ||P̂−P||2. Another popular

criterion is also reported, that is the trace correlation coefficient, defined by

R2(d) =trace(P̂P/d). A smaller distance and a correlation coefficient close to
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1 indicate better performance. Denote Full for analysis with full data, CC for

analysis with complete case, and IPW for analysis with IPW adjustment.

Based on 200 repetitions, we provide the boxplots of the Euclidean dis-

tances in Figure 2.2 and 2.3 for the two models, respectively. We see that for

both models, although the performance of IPW estimator worsens with the

increasing of missing proportion, it is consistently better than the complete

case estimator. This is as expected because complete case estimator can be

biased with inverse regression. Both CC and IPW estimators have worse per-

formances than the oracle Full. We also report in Table 2.2 the mean trace

correlation coefficient and its standard deviation. Note that while smaller Eu-

clidean distance in Figure 2.2 and 2.3 means better estimation, larger value

in Table 2.2 corresponds to more accurate estimator. The results confirm the

findings in Figure 2.2 and 2.3.

Figure 2.2: Boxplots of Euclidean distances for Model I with different missing
proportions.
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Figure 2.3: Boxplots of Euclidean distances for Model II with different missing
proportions.

Table 2.2: Trace correlation Coefficient R2(d) for both models with different
missing proportions

Model Missing Full CC IPW

I

30%
ave 0.927 0.877 0.896
std 0.031 0.067 0.046

50%
ave 0.927 0.827 0.863
std 0.031 0.095 0.061

70%
ave 0.927 0.750 0.799
std 0.031 0.124 0.076

II

30%
ave 0.896 0.823 0.849
std 0.046 0.090 0.071

50%
ave 0.896 0.764 0.791
std 0.046 0.123 0.096

70%
ave 0.896 0.656 0.687
std 0.046 0.123 0.101
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2.4.2 Marginal Coordinate Test

In addition, we use the same simulation setting to demonstrate the effec-

tiveness of the marginal coordinate test via IPWSIR. We first approximate

the asymptotic distribution of Tk under H
[k]
0 : eT

kB = 0 as
∑H

h=1ωk,hχ
2
h(1),

where ωk,h’s are the eigenvalues of Cov(Gk) for h = 1, . . . , H. Let Wk =

(ωk,1, ωk,2, . . . , ωk,H)T, and C be an m × h-dimensional matrix of i.i.d. χ2(1)

realizations. Then CWk is an m-dimensional vector of i.i.d. realizations of∑H
h=1 ωk,hχ

2
h(1). The proportion of these m realizations larger than Tk is the

approximated p-value for testing H
[k]
0 . We reject H

[k]
0 if the approximated p-

value is smaller than the nominal level α. We set m = 1000 and test α = 0.01,

0.05 and 0.10 respectively in all settings.

In Table 2.3 and 2.4, we report the frequencies that H
[k]
0 is rejected for each

predictor Xk for Model I and II. Note that for the two models, the predictor

dimension at p = 10, and the active predictors are X1, X2, X9, and X10.

For both models, we consider sample sizes n = 400 and 800, and missing

proportions varies with 30%, 50% and 70%. Note that the frequencies for

predictors in the active set A are the estimated powers, and we want them to

be close to 1. The boldfaced entries in Table 2.3 and 2.4 correspond to the

estimated powers. On the other hand, the frequencies for predictors belonging

to the inactive set Ac correspond to the estimated nominal levels, and it is

ideal to have them close to the tested nominal levels.

For both models, the powers improve as sample size increases within each

missing proportion. And not surprisingly, the performance deteriorates with

the increasing of missing proportions. When n = 800, most of the powers for

X1 and X2 become 1 even with 70% missing response. Interestingly, the pow-
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Table 2.3: Marginal coordinate tests for Model I. Based on 1000 repetitions,
frequencies of rejecting H

[k]
0 with different nominal tests and missing propor-

tions are reported.

Missing n α X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

30%

400

0.01 1.00 1.00 0.02 0.01 0.01 0.01 0.03 0.05 0.70 0.77

0.05 1.00 1.00 0.08 0.03 0.07 0.07 0.02 0.07 0.88 0.88

0.10 1.00 1.00 0.13 0.09 0.08 0.12 0.06 0.12 0.94 0.94

800

0.01 1.00 1.00 0.03 0.02 0.01 0.02 0.03 0.04 0.98 0.99

0.05 1.00 1.00 0.05 0.03 0.02 0.03 0.05 0.09 0.99 1.00

0.10 1.00 1.00 0.11 0.10 0.09 0.07 0.11 0.12 1.00 1.00

50%

400

0.01 0.99 0.97 0.01 0.01 0.01 0.03 0.04 0.05 0.43 0.54

0.05 1.00 1.00 0.06 0.08 0.09 0.08 0.06 0.07 0.65 0.77

0.10 1.00 1.00 0.09 0.12 0.14 0.14 0.11 0.14 0.77 0.83

800

0.01 1.00 1.00 0.01 0.01 0.01 0.03 0.04 0.05 0.86 0.85

0.05 1.00 1.00 0.03 0.05 0.03 0.04 0.06 0.09 0.97 0.98

0.10 1.00 1.00 0.04 0.13 0.11 0.13 0.12 0.13 0.97 0.98

70%

400

0.01 0.42 0.41 0.01 0.01 0.00 0.03 0.03 0.07 0.20 0.49

0.05 0.83 0.74 0.06 0.12 0.12 0.11 0.09 0.19 0.44 0.76

0.10 0.97 0.94 0.14 0.17 0.20 0.19 0.21 0.26 0.56 0.84

800

0.01 0.95 0.91 0.00 0.00 0.01 0.03 0.01 0.00 0.45 0.55

0.05 1.00 1.00 0.02 0.03 0.06 0.05 0.03 0.07 0.71 0.75

0.10 1.00 1.00 0.08 0.09 0.07 0.13 0.10 0.19 0.83 0.85

ers for X9 and X10 are relatively lower than the powers for X1 and X2. This

phenomenon may be explained by the numerical findings in Li (1991) that

the performance for SIR to estimate β2 may not be ideal. In their study, β̂2

performed worse than β̂1 in terms of accuracy and β̂2 is more sensitive to the

noise level for both models. The imperfect estimation of β2 may negatively

impact the selection of X9 and X10. In addition, when missing proportion is

small, the estimated nominal levels are never too far away from the true nom-

inal level with both sample sizes. With the increasing of missing proportions,

larger sample size is required to show the desired estimated nominal levels.
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Table 2.4: Marginal coordinate tests for Model II. Based on 1000 repetitions,
frequencies of rejecting H

[k]
0 with different nominal tests and missing propor-

tions are reported.

Missing n α X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

30%

400

0.01 1.00 1.00 0.01 0.02 0.02 0.02 0.04 0.00 0.54 0.67

0.05 1.00 1.00 0.06 0.05 0.06 0.07 0.06 0.02 0.74 0.81

0.10 1.00 1.00 0.11 0.12 0.13 0.10 0.10 0.08 0.82 0.91

800

0.01 1.00 1.00 0.00 0.00 0.01 0.05 0.01 0.01 0.81 0.88

0.05 1.00 1.00 0.04 0.07 0.03 0.09 0.05 0.07 0.94 0.96

0.10 1.00 1.00 0.08 0.10 0.10 0.14 0.12 0.14 0.99 0.98

50%

400

0.01 1.00 1.00 0.01 0.01 0.01 0.00 0.01 0.02 0.39 0.60

0.05 1.00 1.00 0.04 0.06 0.05 0.08 0.06 0.07 0.66 0.80

0.10 1.00 1.00 0.08 0.14 0.13 0.11 0.10 0.12 0.73 0.85

800

0.01 1.00 1.00 0.00 0.01 0.01 0.01 0.04 0.00 0.60 0.74

0.05 1.00 1.00 0.02 0.06 0.06 0.07 0.06 0.04 0.82 0.87

0.10 1.00 1.00 0.11 0.10 0.11 0.14 0.13 0.14 0.90 0.93

70%

400

0.01 0.97 0.99 0.06 0.00 0.02 0.01 0.05 0.07 0.43 0.67

0.05 1.00 1.00 0.20 0.04 0.08 0.10 0.16 0.19 0.70 0.80

0.10 1.00 1.00 0.32 0.15 0.11 0.14 0.27 0.29 0.82 0.90

800

0.01 1.00 0.99 0.02 0.02 0.02 0.02 0.01 0.01 0.96 0.93

0.05 1.00 1.00 0.07 0.09 0.08 0.07 0.09 0.05 0.99 0.98

0.10 1.00 1.00 0.11 0.15 0.11 0.10 0.14 0.09 0.99 1.00

It needs to point out that for the current simulation study, ωk,h’s are the

eigenvalues of Cov(Gk), in which we apply the true propensity score π(x) and

P (I(Y ∈ Rh) | x). The reported results show the validity of the asymptotic

property of the proposed method in Theorem 2.2. Further study is needed for

estimating Ĉov(Gk), thus applying ω̂k,h’s to perform the marginal coordinate

test.
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CHAPTER 3

AN ESTIMATING EQUATION

APPROACH FOR SDR WITH

MISSING RESPONSE

Estimating approach based on estimating equations (EEs; Godambe, 1993)

forms a general framework of statistical inference to accommodate a broad

range of data structure and parameters, and is commonly used when data is

not specified by a parametric model. Estimating equation approach has been

substantially combined with Empirical Likelihood (EL) inference to solve miss-

ing data problem. Zhou et al. (2008), Wang and Chen (2009) proposed differ-

ent reformulations for estimating equations with missing data and combined

the EEs with EL theory. Tang and Qin (2012) introduced a semiparametric

efficient EL approach for estimating equations with missing data. The sim-

ilarity of the preceding approaches is that instead of imputing missing data

directly, they impute the EEs by observed data. Chen et al. (2008) studied
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the semiparametric efficiency bound for methods using estimating equations

with missing data.

In sufficient dimension reduction literature, the employment of estimat-

ing equation approaches is considered in series of papers by Ma and Zhu

(2012b,2012a); The semiparametric efficient estimators are in Ma and Zhu

(2013a) for central space and Ma and Zhu (2013b) for central mean space. In

this chapter, we will introduce an estimating equation approach for sufficient

dimension reduction with missing data.

3.1 An Estimating Equation Approach

Let Bp×d be the basis of central space/central mean space of interest in

model (1.1). Define a vector of r estimating functions as g(z; B) = (g1(z; B), ..., gr(z; B))T,

r ≥ p, where z = (Y,xT)T. The estimating equation is specified by the general

moment restrictions

E{g(z; B)} = 0.

Denote the missing data as (z1, z2, δ), where z1 ∈ Rp1 represents the com-

ponent that can be missing, z2 ∈ Rp2 is the part that is always observable, and

the random missing indicator be δ such that δ = 1(0) if z1 is observed(missing).

To illustrate, the special case if z1 = Y denotes the missing response case. Let

(z1i, z2i, δi) be i.i.d observations, i = 1, ...n. Thus the missing at random as-

sumption will be expressed as,

δi ⊥⊥ z1i | z2i. (3.1)

It is worth to mention that it is homogeneous missingness if z1i corresponds
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to the same component of z or all i, and heterogeneous if z1i can be i specific.

We define the propensity function πi = π(z2i) = P (δi = 1 | z1i, z2i) = P (δi =

1 | z2i).

Denote the estimating function with missing data as g(z, δ; B), thus the

corresponding moment restriction becomes

E{g(z, δ; B)} = 0. (3.2)

With only complete cases, one can write the estimating equation as

E(g(z; B) | δ = 1) = 0, (3.3)

which is referred to as CCEE for the following. The shortcoming of the com-

plete case approach is the smaller sample size and possible bias. The case-wise

validity of complete case estimating equation is discussed in Section 3.2 when

response is missing at random. To address the possible issues in complete case

approach, We further introduce two adjustments.

3.1.1 Inverse Probability Weighting Adjustment

Inverse Probability weighting (IPW) is a straight forward way to correct

for bias, given g(z; B), we define the inverse probability weighted estimating

equation (IPWEE) as

E{g1(z, δ; B)} = E

{
δ

π(z2)
g(z; B)

}
= 0. (3.4)
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And the sample level inverse probability weighted estimating equation is given

as

n∑
i=1

g1(zi, δi; B) =
n∑
i=1

g(zi; B)δi
π(z2i)

= 0. (3.5)

It can be shown that under MAR assumption(3.1), g1(z, δ,B) is an unbiased

estimating function for g(z,B) by

E

{
δ

π(z2)
g(z; B)

}
= E

[
E

{
δ

π(z2)
g(z1, z2; B) | z2

}]
= E

[
E

{
1

π(z2)
g(z1, z2; B) | z2

}
E{δ | z2}

]
= E[ E{g(z; B) | z2} ] = E{ g(z; B) }.

Therefore, this approach will be more favorable than (3.3). The sacrifice is

that we need to extra estimate the propensity function. When there is no sub-

stantial amount of missing data, and the covariate is not of high-dimensional,

this is a viable approach.

3.1.2 Augmented Inverse Probability Weighting Adjust-

ment

The IPW adjustment (3.4) achieves unbiased estimator, in this section, we

will show another approach adjusting the bias, namely the augmented inverse

probability weighted estimating equation (AIPWEE). We will show that this

approach yields unbiased estimator and possesses doubly robust feature. The
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formulation of AIPWEE is given as

E{g2(z, δ; B)} = E

[
δg(z; B)

π(z2)
+

(
1− δ

π(z2)

)
E{g(z; B) | z2}

]
= 0. (3.6)

And the sample level augmented inverse probability weighted estimating equa-

tion is given as

n∑
i=1

g2(zi, δi; B) =
n∑
i=1

[
δig(zi; B)

πi(zi)
+

(
1− δi

πi(zi)

)
E{g(zi; B) | z2i}

]
= 0.

(3.7)

The unbiasedness of this approach is also simple to show,

E

[
δ

π(z2)
g(z; B) +

(
1− δ

π(z2)

)
E{g(z; B) | z2}

]
= E

[
E

{
δ

π(z2)
g(z; B) +

(
1− δ

π(z2)

)
E{g(z; B) | z2}

} ∣∣∣∣ z2

]
= E{g(z; B)}+ E{g(z; B)} − E

{
1

π(z2)
E(δ | z2)E(g(z; B) | z2)

}
= E{g(z; B)} = 0.

Again, it remains to specify π(.) and E{g(z; B) | z}.

Let π∗(z2) and E∗{g(z; B) | z2} denote misspecification of π(z2) and E{g(z; B) |
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z2} respectively. Note that when we misspecify π(z2), we have

E

[
δ

π∗(z2)
g(z; B) +

(
1− δ

π∗(z2)

)
E{g(z; B) | z2}

]
= E

[
E

{
δ

π∗(z2)
g(z; B) +

(
1− δ

π∗(z2)

)
E{g(z; B) | z2}

} ∣∣∣∣ z2

]
= E

[
E(δ | z2)

π∗(z2)
E{g(z; B) | z2}

]
+ E{g(z; B)} − E

[
E(δ | z2)

π∗(z2)
E{g(z; B) | z2}

]
= E{g(z; B)} = 0.

Similarly, when we misspecify E{g(z; B) | z2}, we have

E

[
δ

π(z2)
g(z; B) +

(
1− δ

π(z2)

)
E∗{g(z; B) | z2}

]
= E

[
E

{
δ

π(z2)
g(z; B) +

(
1− δ

π(z2)

)
E∗{g(z; B) | z2}

} ∣∣∣∣ z2

]
= E{g(z; B)}+ E[E∗{g(z; B) | z2}]− E

[
1

π(z2)
E(δ | z2)E

∗{g(z; B) | z2}
]

= E{g(z; B)} = 0.

Thus the estimating equation (3.6) has a double robustness property. That is,

if either the propensity function π(.) or E{g(z; B) | z2} is correctly specified,

the resulting estimator B is unbiased.

Ma and Zhu (2012b) derived a class of estimating equations from the semi-

parametrics tool for estimating the central space or central mean space. The

general form is given as (1.6). We extend SDR estimating equation approaches

to missing data framework. In the following sections, we will discuss in detail

about the formulation of estimating equations for missing response problem

with or without common SDR conditions. We define the estimating function
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g(z; B) in (3.4) and (3.6) as

g(z; B) = g(Y,x; B) = {l(Y )− E(l(Y ) | BTx)} × {a(x)− E(a(x) | BTx)},

(3.8)

for any functions l(·) and a(·). Here g(z; B) also enjoys a doubly robust prop-

erty, such that the misspecification of either E{l(Y ) | BTx} or E{a(x) | BTx}

will do no harm to give an unbiased estimating equation. By choosing specific

l(·) and a(·), the approach can be connected to existing sufficient dimension

reduction methods. When response is missing, we can plug in g(z; B) to (3.3),

(3.4) and (3.6) for complete case, IPW and AIPW estimating equations, re-

spectively. To illustrate, we will specify the estimating equations in terms

of OLS and PHD and SIR approaches. The complete case estimating equa-

tion approaches are demonstrated in Section 3.2. And the IPW and AIPW

estimating equation approaches are unified in Section 3.3.

3.2 Complete Case Estimating Equations

Ma and Zhu (2012b) developed the semiparametric approach for a family of

SDR estimators. Specifically, misspecifying E{l(Y ) | BTx} = 0, E{g(x, Y ; B)}

(3.8) becomes

E [l(Y ){a(x)− E(a(x) | BTx)}] = 0. (3.9)

Without loss of generality, we will assume E(x) = 0, E(Y ) = 0 and

Cov(x) = Ip throughout the chapter. Under the LCM condition (1.3), para-

metric assumption is given as
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E(x | BTx) = Px, (3.10)

where P = B(BTB)−1BT. The CCV condition(1.4) characterizes the variance-

covariance matrix of x conditional on BTx by assuming

Cov(x | BTx) = Q. (3.11)

where Q = Ip − P. Again, focusing on missing response at random, we have

the MAR assumption (3.1) given as δ ⊥⊥ Y | x and the propensity function

π(x) = P (δ = 1 | Y,x) = P (δ = 1 | x).

3.2.1 Sliced Inverse Regression

When specifying l(Y ) = E(x | Y ) and a(x) = xT, we connects (3.9) to SIR

with the following estimating equation,

E [E(x | Y ){x− E(x | BTx)}T] = 0. (3.12)

The validity of (3.12) can be briefly justified as follows. First notice that

E(x | Y ) = E{E(x | Y,BTx) | Y } = E{E(x | BTx) | Y }. (3.13)

The first equality in (3.13) is from the law of iterated expectation, and the

second equality is implied by the definition of the central space in (1.1). It

follows that E{E(x | Y )xT} = E{E(x | Y )ET(x | Y )} = E[E(x | Y )ET{E(x |
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BTx) | Y }] = E{E(x | Y )ET(x | BTx)}, which implies (3.12). We see that the

linear conditional mean assumption (3.10) is not required for the validity of

(3.12).

Remark 3.1. Let B be the basis of SY |x and we have span(B) = SY |x. Here

span(B) denotes the column space of B. When (3.10) is satisfied for B, E(x |

BTx) = Px, where P = B(BTB)−1BT, thus (3.9) becomes E {E(x | Y )xT}Q =

0, where Q = {Ip − P}. Note that E {E(x | Y )xT} = Cov{E(x | Y )}, and

solving this equation for B becomes equivalent to finding the eigenvectors cor-

responding to the nonzero eigenvalues of Cov{E(x | Y )}. In the dimension

reduction literature, it is well-known that SIR estimates the central space from

the eigenvalue decomposition of Cov{E(x | Y )}. Thus solving the estimating

equation (3.12) becomes equivalent to the classical SIR at the population level

when the linear conditional mean assumption (4.1) is satisfied. Furthermore,

(3.13) and (1.3) together lead to E(x | Y ) = PE(x | Y ). It follows that

E(x | Y ) ⊆ span(B) = SY |x. This guarantees the validity of SIR when the

linear conditional mean assumption (1.3) holds.

When the response is subject to missingness, the original estimation equa-

tion (3.12) can not be evaluated directly at the sample level, which prompts

us to consider the following modified estimating equation,

E [E(x | Y, δ = 1){x− E(x | BTx, δ = 1)}T | δ = 1] = 0. (3.14)

Equation (3.14) essentially replaces all the expectations and conditional ex-

pections in (3.12) with the expectations conditioning on an additional δ = 1,

which means the expectations and conditional expectations are now based
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only on the complete cases. We refer to (3.14) as the complete case estimating

equation of SIR. The verification of (3.14) is parallel to the justification of

(3.12). Similar to (3.13), we have

E(x | Y, δ = 1) = E{E(x | Y, δ = 1,BTx) | Y, δ = 1}

= E{E(x | BTx, δ = 1) | Y, δ = 1},
(3.15)

where the first equality is from the law of iterated expectation, and the second

equality is due to the fundamental SDR definition in (1.1). It follows that

E{E(x | Y, δ = 1)xT | δ = 1} = E{E(x | Y, δ = 1)ET(x | Y, δ = 1) | δ = 1}

= E[E(x | Y, δ = 1)ET{E(x | BTx, δ = 1) | Y, δ = 1} | δ = 1]

= E{E(x | Y, δ = 1)ET(x | BTx, δ = 1) | δ = 1},

which implies (3.14). The derivation above does not require the linear condi-

tional mean assumption (3.10), nor does it make any assumptions about the

missingness scheme.

Remark 3.2. We have seen in Remark 3.1 that when the linear conditional

mean assumption (3.10) holds, the estimating equation approach based on

(3.12) becomes equivalent to the classical SIR. In the case with missing data,

if we have

E(x | BTx, δ = 1) = Px, (3.16)

then (3.14) becomes E{E(x | Y, δ = 1)xT | δ = 1}Q = 0. Note, for example,

(3.16) can be implied by (3.10) if Y is missing completely at random. Solving
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this equation for B becomes equivalent to finding the eigenvectors corresponding

to the nonzero eigenvalues of E{E(x | Y, δ = 1)ET(x | Y, δ = 1) | δ = 1}, which

can be viewed as the complete-case version of the classical SIR. Furthermore,

(3.15) and (3.16) together imply that E(x | Y, δ = 1) = B(BTB)−1BTE(x |

Y, δ = 1). It follows that E(x | Y, δ = 1) ⊆ span(B) = SY |x. However, (3.16)

is generally not true even if (3.10) holds. Thus even with (3.10) being satisfied,

complete case SIR could be biased. Similar bias issue has also been showed in

Chapter 2 for inverse regressions. On the other hand, the estimating equation

approach bypasses the requirement of (3.10) in the case of full data and the

requirement of (3.16) in the case of missing data. Hence the original estimating

equation (3.12) from Ma and Zhu (2012b) and our proposed complete case

estimating equation (3.14) lead to unbiased estimators in the absence of the

linear conditional mean assumption (3.10).

3.2.2 Ordinary Least Squares

The OLS method (Li and Duan, 1989) takes Cov(x, Y ) = E(xY ) as a

subspace of column space of B. Regardless of LCM condition, it is always

true that E(xY ) = E{E(xY ) | x} = E{xE(Y | BTx)} = E{E(x | BTx)Y }, the

resulting estimating equation E{g(Y,x; B)} = 0 is thus

E[Y {x− E(x | BTx)}] = 0. (3.17)

It is equivalent to (3.9) by letting a(x) = x and l(x) = Y . When the common

assumed LCM condition (3.10) holds, the derivation continues with E(xY ) =

E{E(x | BTx)Y } = E(PxY ), obviously, E{g(Y,x; B)} becomes E(QxY ) = 0,
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where Q = Ip −P. When the response is subject to missingness, we consider

the following complete case estimating equation of OLS.

E [Y {x− E(x | BTx, δ = 1)} | δ = 1] = 0. (3.18)

The verification of (3.18) is parallel to the justification of (3.17). We have

E(Y x | δ = 1) =E{E(Y x | x, δ = 1) | δ = 1}

=E{xE(Y | BTx, δ = 1) | δ = 1} (3.19)

=E{Y E(x | BTx, δ = 1) | δ = 1},

which implies (3.18). The derivation above does not require the linear con-

ditional mean assumption (1.3), nor does it make any assumptions about the

missingness scheme.

Remark 3.3. Similar to Remark 3.2, in the case of OLS, we have E(Y x | δ =

1) = E{E(Y x | x, δ = 1) | δ = 1} = E{xE(Y | x, δ = 1) | δ = 1} = E{xE(Y |

BTx, δ = 1) | δ = 1} = E{Y E(x | BTx, δ = 1) | δ = 1}. The derivation cannot

step further unless we have (3.16). With (3.16), E(Y x | δ = 1) = E(QxY |

δ = 1), which can be viewed as the complete-case version of the classical OLS.

However, (3.16) is generally not true even if (3.10) holds. Thus even with

(3.10) being satisfied, classical OLS with only complete cases could be biased.

The exemption is discussed in Chapter 1.1.2 when the link function between

response and the predictor is linear, classical SIR is valid to recover central

space with complete case analysis.
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3.2.3 Principal Hessian Directions

The PHD method (Li, 1992; Cook and Li, 2004a) recovers the central space

via the eigenvectors associated with the d eigenvalues of MPHD = E(Y xxT ).

In a similar fashion, one can derive the corresponding estimating equation

E{g(Y,x; B)} directly by E(Y xxT) = E{E(Y xxT) | x} = E{E(Y | BTx)xxT} =

E{Y E(xxT | BTx)}. It follows that

E{g(Y,x; B)} = E[Y {xxT − E(xxT | BTx)}], (3.20)

which is the same as (3.8) but letting a(x) = xxT and l(Y ) = Y . As classic

PHD method requires LCM (3.10) and CCV (3.11) conditions, we can continue

to derive the following when incorporating both conditions,

E(Y xxT) = E{Y E(xxT | BTx)} = E[Y {Var(x | BTx) + E(x | BTx)E(xT | BTx)}]

= E(Y )Q + PE(Y xxT)P = E(YPxxTP),

Thus the E{g(Y,x; B)} is simplified as E{Y (xxT −PxxTP)} = 0.

When the response is subject to missingness, we consider the following

complete case estimating equation of PHD.

E [Y {xxT − E(xxT | BTx, δ = 1)} | δ = 1] = 0. (3.21)

The verification of (3.21) is the same as the justification of the complete case

estimating equation of OLS in (3.19) by replacing x with xxT. Note that the

derivation in (3.21) does not require the LCM assumption (3.10), nor does it

make any assumptions about the missingness scheme.
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Remark 3.4. In order to relate the estimating equation (3.21) to complete case

based classical PHD, we need to additionally introduce the following condition,

Cov(x | BTx, δ = 1) = Q, (3.22)

which can be viewed as the constant conditional variance assumption under

complete cases. When both (3.16) and (3.22) are satisfied, we will have

E{Y (xxT −PxxTP) | δ = 1} = 0, (3.23)

which can be viewed as the complete case based classical PHD. However, (3.16)

and (3.22) are generally not true even if (3.10) and (3.11) hold. Thus even with

(3.10) and (3.10) being satisfied, classical PHD with complete case analysis

could be biased.

3.3 Inverse Probability Weighted Estimating

Equation

Although the complete case estimating equation approach leads to unbi-

ased estimator, we lose efficiency by ignoring the information in the incomplete

cases, especially when the missing proportion is large. To address this limi-

tation, we continue to propose adjusted estimating equation approaches with

both inverse probability and and augmented inverse probability weighting for

SDR when response is missing at random. The adjusted estimating equations

can be given by plugging g(z; B) = g(Y,x; B) = l(Y ){a(x) − E(a(x) | BTx)}

into (3.4) and (3.6) directly. Particularly, with appropriate sets of a(x) and
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l(Y ) defined the same as in Section 3.2, we have the corresponding adjusted

estimating equations for SIR, OLS and PHD. To illustrate, the inverse prob-

ability weighted estimating equation for SIR is given as,

E

[
δ

p(x)
E(x | Y ){x− E(x | BTx)}T

]
= 0. (3.24)

To check the validity of (3.24), first note that

E{E(x | Y )xTδp−1(x)} = E[E(x | Y )ET{xδp−1(x) | Y }]. (3.25)

On the other hand, the MAR assumption Y ⊥⊥ δ | x implies that

E{xδp−1(x) | Y } = E[E{xδp−1(x) | x, Y } | Y ] = E(x | Y ). (3.26)

Equations (3.25) and (3.26) lead to E{E(x | Y )xTδp−1(x)} = E{E(x | Y )xT}.

Similarly, one can show E{E(x | Y )ET(x | BTx)δp−1(x)} = E{E(x | Y )ET(x |

BTx)}. Together with the original inverse regression estimating equation

(3.12), (3.24) is guaranteed to hold. We refer to (3.24) as the inverse proba-

bility weighted estimating equation for SIR.

In addition, to access the double robustness property, the augmented in-

verse probability weighted estimating equation for SIR is given as follows,

E

[{
δ

π(x)
E(x | Y ) +

(
1− δ

π(x)

)
E(E(x | Y ) | x)

}
{x− E(x | BTx)}T

]
= 0.

(3.27)

Remark 3.5. In the case when the common assumed LCM condition (3.10)

holds, {x − E(x | BTx)}T in equation (3.24) and (3.27) can be replaced with
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xTQ, where Q = Ip − P and P = B(BTB)−1BT. The resulting estimating

equations are valid only when LCM holds.

Similarly, we obtain the IPWEE and AIPWEE for OLS and PHD. As

IPWEE is part of AIPWEE, we only give IPWEE to avoid repetition.

OLS: E

[{
δY

π(x)
+

(
1− δ

π(x)

)
E(Y | x)

}
{x− E(x | BTx)}

]
= 0. (3.28)

PHD: E

[{
δY

π(x)
+

(
1− δ

π(x)

)
E(Y | x)

}
{xxT − E(xxT | BTx)}

]
= 0.

(3.29)

Remark 3.6. When the common assumed LCM assumption (3.10) holds, x−

E(x | BTx) = Qx in equation (3.28). And with additional CCV assumption

(3.11), xxT − E(xxT | BTx) can be replaced with xxT − PxxTP in equation

(3.29). The resulting estimating equations are valid only when the required

assumptions hold.

3.4 Implementation

With the purpose of delivering the proposed approaches, we demonstrate

the implementation details in practice. As exhibited in Section 3.2 and 3.3,

the proposed approaches for SIR, OLS and PHD share similar components of

estimating unobserved terms and solving estimating equations. For example,

they require the derivations for the general conditional expectations E(x |

BTx), E(xxT | BTx), E(Y | x), E(Y | x), E{E(Y | x) | x} and the propensity

function π(x). To ease the notation, we discuss the general x and Y regardless

of the subscript for observations. Let K(·) to denote a kernel function, and
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Kb(·) = K(·/b)/b for any bandwidth h.

Following Tang and Qin (2012), the propensity function is estimated non-

parametrically by

π̂(x) = Ê(δ | x) =

∑n
j=1 δjKb(x− xj)
n∑
i=1

Kb(x− xj)
. (3.30)

Note that π(x) can also be estimated by other methods.

The conditional expectations E(x | BTx) and E(xxT | BTx) can be es-

timated parametrically (Li and Dong, 2009) or nonparametrically (Ma and

Zhu, 2012b). Li and Dong’s parametric idea is expressed in (1.5), to esti-

mate E(x | BTx) as a function of BTx but it does not solve the case for

E(xxT | BTx). Therefore, Ma and Zhu’s nonparametric estimation is adopted

as following,

Ê(x | BTx) =

∑n
j=1 xjKb(B

Tx−BTxj)
n∑
i=1

Kb(BTx−BTxj)
, (3.31)

and

Ê(xxT | BTx) =

∑n
j=1 xjx

T
jKb(B

Tx−BTxj)
n∑
i=1

Kb(BTx−BTxj)
. (3.32)

Inspired by Zhu et al. (2012), under MAR assumption,

E(Y | x) =
E(δY | x)

E(δ | x)
. (3.33)

As both δ and δY are observable, the two quantities E(δY | x) and E(δ | x)
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can be estimated nonparametrically via kernel regression estimation,thus

Ê(Y | x) =

∑n
j=1 δjYjKb(x− xj)∑n
j=1 δjKb(x− xj)

. (3.34)

In Chapter 2, we introduced a sliced method for estimating E(x | Y ). While

in this chapter, as all other conditional expectations are estimated nonpara-

metrically, we propose a novel kernel estimator. Under missing at random

scheme (3.1), it can be shown that E(x | Y ) = E{xδp−1(x) | Y }, and

E{δp−1(x) | Y } = E[E{δp−1(x) | Y,x} | Y ] = 1, thus we have

E(x | Y ) =
E{xδp−1(x) | Y }
E{δp−1(x) | Y }

. (3.35)

This motivates us to consider

Ê(x | Y ) =

∑n
j=1 xjδj p̂

−1(xj)Kb(Y − Yj)∑n
j=1 p̂

−1(xj)Kb(Y − Yj)δj
. (3.36)

Similar to (3.33), we have

E{E(x | Y ) | x} =
E{δE(x | Y ) | x}

E(δ | x)
. (3.37)

This prompts us to consider

Ê{Ê(x | Y ) | x} =

∑n
j=1 δjÊ(x | Yj)Kb(x− xj)∑n

j=1 δjKb(x− xj)
. (3.38)

To achieve B̂, we need to solve the sample estimating equations with

numerical optimization. Let {(xi, Yi, δi), i = 1, . . . , n} be an i.i.d. sample.

Without loss of generality, assume δi = 1 for i = 1, . . . , n1 and δi = 0 for
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i = n1 + 1, . . . , n. We list the sample version of complete case estimating

equation and AIPWEE for SIR in (3.39) and (3.40), respectively. Then other

cases can be obtained similarly.

n1∑
i=1

Ê(x | Yi, δ = 1){xi − Ê(x | B̂Txi, δ = 1)}T = 0. (3.39)

n∑
i=1

[
δi

π̂(xi)
Ê(x | Yi) +

(
1− δi

π̂(xi)

)
Ê{Ê(x | Yi) | xi}

]{
xi − Ê(x | B̂Txi)

}T

= 0.

(3.40)

Remark 3.7. Note that for those complete case approaches, we only include

the complete data for nonparametrically estimating the conditional expecta-

tions. Take E(x | Yi, δ = 1) for i = 1, . . . , n1 as an example,

Ê(x | Yi, δ = 1) =

∑n1

j=1Kh(Yi − Yj)xj∑n1

j=1Kh(Yi − Yj)
. (3.41)

Then other complete case conditional expectations can be obtained correspond-

ingly.

To solve for B̂, the practical implementation adopts Newton-Raphson pro-

cedure to minimize the Fronbenius norm of the estimating equations. The

algorithm is showed below.

1. Pick an arbitrary starting value for B(0).

2. At the jth iteration, nonparametrically estimate E(x | B(j)Tx), E(xxT |

B(j)Tx), E(Y | x), E(Y | x), E{E(Y | x) | x}, and π(x) by (3.31), (3.32),

(3.34), (3.36), (3.38), and (3.30), respectively.
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3. Let g(B(j)) be the sample version of the estimating functions at the jth

iteration, for example, the left-hand side of (3.40) for AIPW SIR without

common conditions is given as

g(B(j)) =
n∑
i=1

[
δi

π̂(xi)
Ê(x | Yi) +

(
1− δi

π̂(xi)

)
Ê{Ê(x | Yi) | xi}

]
×
{

xi − Ê(x | B(j)Txi)
}T

.

4. Update B(j) using the Newton-Raphson algorithm which is a second-

derivative-based gradient descent process. Form B(j) to get B
(j)
k+ = B(j)+

αek and B
(j)
k− = B(j) − αek where ek has the same size as B but has 1

in the kth entry while 0 elsewhere. Set the kth row of the first partial

derivative ∂{‖g(B)‖2}/∂{vec(B)} to be {‖g(B
(j)
k+)‖2−‖g(B

(j)
k−)‖2}/(2α).

Repeat for all the entries of B(j). Then following similar procedures to

get the second partial derivative ∂2{‖g(B)‖2}/∂{vec(B)}∂{vec(B)}T. α

is designed to be 0.001 in practice.

5. Update

vec(B(j+1)) = vec(B(j))−
[

∂2{‖g(B(j))‖2}
∂{vec(B(j))}∂{vec(B(j))}T

]−1
× ∂{‖g(B(j))‖2}

∂{vec(B(j))}
.

6. Repeat Steps 2 to 5 until ‖vec(B(j+1))− vec(B(j))‖ < ε where ε is set to

0.0001 in practice.
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3.5 Asymptotic Properties

In this chapter, we study the asymptotic properties for the estimators de-

rived from complete case (3.3), inverse probability weighted (3.4) and aug-

mented inverse probability weighted (3.6) estimating equations. We formulate

a unified form for the embedded estimating function g(Y,x; B) as

g? = l?(Y ){a?(x)− E(a?(x) |BTx)},

for any functions a?(·) of x and l?(·) that satisfies E(l? | x) = E(l? | BTx).

And we define the general CCEE, IPWEE and AIPWEE in order to consider

the special cases SIR, OLS and PHD simultaneously:

CCEE: E {g? | δ = 1} = 0.

IPWEE: E

{
δ

π(x)
g?
}

= 0.

AIPWEE: E

{
δg?

π(x)
+

(
1− δ

π(x)

)
E(g? | x)

}
= 0.

Note that Specifying l?(Y ) = E(x | Y ) and a?(x) = x yields the SIR case;

l?(Y ) = Y and a?(x) = x yields the OLS case; l?(Y ) = Y and a?(x) = xxT

yields the PHD case.

In order to study the properties of the space estimation via studying the

properties in estimating the parameters in B, we follow the particular param-

eterization in Ma and Zhu (2012a). We require the upper d× d sub-matrix of

B to Id to ensure identifiability of B. Thus estimating SY |x is equivalent to

estimating the lower (p − d) × d sub-matrix in B. We use vecl(B) to denote

the length (p−d)d vector formed by the concatenation of the columns in lower

(p − d) × d sub-matrix in B, and use vec(X) to denote the concatenation of

the columns of any matrix X.
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As showed in Ma and Zhu (2012a), they performed a generalized method

of moments (GMM) treatment to reduce the number of estimating equations

to (p− d)d, and obtain the simplified sample version of E(g?) = 0 as

n∑
i=1

k∑
j=1

[lj(Yi){aj(xi)− E(aj(xi) |BTxi)}] = 0. (3.42)

Note that for complete case, n = n1. We will directly use (3.42) in our discus-

sion for CCEE, IPWEE and AIPWEE. The Analysis of (3.42) for k > 1 can

be easily obtained after thorough study for k = 1. Therefore, we ignore the

subscript j in the sequel. In the k = 1 case, given

ĝ?i = l(Yi){a(xi)− Ê(a(xi) |BTxi)},

we obtain the estimator B̂CC for CCEE, B̂IPW for IPWEE, and B̂AIPW for

AIPWEE by solving the following quations respectively,

n1∑
i=1

ĝ?i = 0,

n∑
i=1

(
δi

π̂(xi)
ĝ?i

)
= 0,

n∑
i=1

{
δi

π̂(xi)
ĝ?i +

(
1− δi

π̂(xi)

)
Ê (ĝ?i | xi)

}
= 0,

where Ê(· | xi) is estimated nonparametrically as stated in Section 3.4. We will

display the following important theorems to illustrate the asymptotic proper-

ties of the two estimators. The technical details are demonstrated in Appendix

C.
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3.5.1 Asymptotic Property for Complete Case Estimat-

ing Equation Approach

Theorem 3.1. Under regularity conditions, as n → ∞, the estimator B̂cc

satisfies

√
n1vecl(B̂CC −B)→ N (0,A−11 ΓA−11 ),

where

A1 = E

{
∂vec(gcc)

∂vecl(B)T

∣∣∣∣ δ = 1

}
and Γ = E[vec(gcc){vec(gcc)}T | δ = 1]

with

gcc = {l(Y )− E(l(Y ) | BTx, δ = 1)}{a(x)− E(a(x) | BTx, δ = 1)}.

The regularity conditions are provided in Appendix. The proof of Theorem

3.1 has the same fashion as the proof of Theorem 1 in Ma and Zhu (2012a)

with complete data rather than the full data, and is neglected.

3.5.2 Properties of Inverse Probability Weighted Esti-

mating Equation approaches

Theorem 3.2. Under regularity conditions, when n→∞, B̂IPW satisfies

n1/2vecl(B̂IPW −B)→ N (0,A−1Γ1A
−1), (3.43)

where

A = E

{
∂vec(g)

∂vecl(B)T

}
and Γ1 = Cov

[
vec

{
δ

π(x)
g

}]
with

g = {l(Y )− E(l(Y ) |BTx)}{a(x)− E(a(x) |BTx)}.
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Theorem 3.3. Under regularity conditions, when n→∞, B̂AIPW satisfies

n1/2vecl(B̂AIPW −B)→ N{0,A−1Γ2A
−1} (3.44)

where

A = E

{
∂vec(g)

∂vecl(B)T

}
and Γ2 = Cov

[
vec

{
δ

π(x)
g +

(
1− δ

π(x)

)
E(g | x)

}]
,

with

g = {l(Y )− E(l(Y ) |BTx)}{a(x)− E(a(x) |BTx)}.

Theorem 3.4. Under the conditions in Theorems 3.2 and 3.3, when n→∞

n
[
Cov{vecl(B̂IPW )} − Cov{vecl(B̂AIPW )}

]
is positive definite.

Technical details for Theorem 3.2, 3.3 and 3.4 are shown in B.1. Combining

the results in Theorems 3.1, 3.2, 3.3 and 3.4. We can claim that B̂CC , B̂IPW

and B̂IPW are unbiased estimators for B, the basis of SY |x. And compared to

B̂IPW , B̂AIPW is a more efficient estimator, thus the AIPWEE framework will

be a recommended estimating equation approach to solve sufficient dimension

reduction with missing data problems.

3.6 Numerical Results

In this section, the simulation studies are conducted to evaluate the per-

formance of the approaches. Each experiment is repeated 200 times with 200

sample size. Throughout the simulation, Epanechnikov kernel is applied with

the default bandwidth selector implemented in Matlab routine ksdensity,

which is σ̂(3n/4)−1/(d+4) with σ̂ being the robust estimation of the standard
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deviation of BTx. To ensure the uniquely mapping the central space SY |x to

one basis matrix/vector B, here we only consider basis matrix/vector of SY |x

has the form B = (Id,B
T
l )T, where Bl is of dimension (p− d)× d. For predic-

tor x = (X1, ..., Xp), the dimension p is chosen to be 10 and the following two

cases are considered.

Case (i): We generate x = (X1, ..., Xp)
T from multivariate normal with

mean zero and covariance matrix (σij)p×p where σij = 0.5|i−j|. In this case,

the predictors satisfy both LCM (3.10) condition and CCV (3.11) conditions.

Case (ii): We again generate x = (X1, ..., Xp)
T from multivariate normal

with mean zero and covariance matrix (σij)p×p where σij = 0.5|i−j|. Then

we regenerate X3 and X4 from nonlinear models X3 = |X1 + X2| + |X1|ε1

and X4 = |X1 + X2|2 + |X2|ε2. Here for i = 1, 2, εi is independent from X1

and X2 and follows standard normal distribution. We also regenerate X5 and

X6 independently from two Bernoulli distributions with success probability

exp(X2)/{1+exp(X2)} and Φ(X2) respectively, where Φ(·) denotes the cumu-

lative distribution function of standard normal. The linear conditional mean

assumption (4.1) is violated in this case.

For both cases, we generate the response using the following models,

I: Y = exp(βT

1x) + .5ε,

II: Y = (βT

2x)2 + (βT

3x)2 + .5ε,

III :Y = (βT

2x)(βT

2x + βT

3x + 3) + .5(βT

2x)ε,

where B is a p-dimensional vector and ε ∼ N (0, 1) is the random error term.

For Model I, d = 1, we let β1 = (1, 1/3, 1/3, . . . , 1/3)T. For Model II and III,

d = 2, we let β2 = (1, 0, 1/
√

8, 1/
√

8..., 1/
√

8)T and β3 = (0, 1, 1/
√

8,−1/
√

8...,−1/
√

8)T.
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Models I to III are chosen to test OLS, PHD and SIR, respectively with their

estimating equation counterparts. Consider the case when Y is missing, we

denote missingness indicator δ = 1 when Y is observed and δ = 0 otherwise.

We define the MAR missingness schemes as

P (δ = 1 | x) =
exp(c1 +αTx)

1 + exp(c1 +αTx)
.

The missing proportion of the response can be controlled by adjusting c. Set-

ting α = (1, 1, 1, ..., 1)T
p/
√
p. Let c1 = 1, 0,−1, we compare results for 30%,

50% and 70% missing proportions.

3.6.1 Simulation Study

Denote B̂ as the estimator of B. Two criteria are used to evaluate the accu-

racy of B̂. Following Li and Dong (2009), we can measure the distance between

B̂ and B as ∆ = ||P̂ − P||2, where P̂ = B̂(B̂TB̂)−1B̂T, P = B(BTB)−1BT,

and || · || denotes the matrix Frobenius norm. Smaller values of ∆ imply better

estimation. We also report R2 = trace(P̂P/d), which is always between 0 and

1, with values close to 1 implying better estimation. We refer to ∆ and R2 as

the Euclidean distance and the trace correlation coefficient, respectively.

For each case, we examine the performance with or without incorporat-

ing the common SDR conditions, LCM (3.10) and CCV (3.11). We denote

Full, CC, EE1, EE2 to represent the estimates with full data analysis, CCEE,

IPWEE analysis and AIPWEE analysis respectively. The subscripts 1 and

2 refers to analysis with and without the common conditions. The boxplots

of the Euclidean distances regrading to Model I to III are reported in Figure

3.1, 3.2, and 3.3, respectively. In each subfigure, the left panel presents the
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analysis incorporating the common conditions, while the right panel presents

the analysis without the common conditions.

Focusing on case (i), within each panel, we can see that the two estimating

equation estimators EE1 and EE2 show better performance than CC with

smaller Euclidean distances in both panels. The worst performances of CC 1

for all models correspond to the possible bias caused by classical SDR methods

under complete cases. Also it is noticed that the AIPWEE approach performs

better than the IPWEE approach. The cross panel comparison with case (i)

show that even when the common conditions hold for the model, avoiding them

(right panels) result in better performance. This paradox coincides with the

claim of efficiency loss caused by linearity condition in Ma and Zhu (2012a).

For case (ii), the cross panel comparison clearly demonstrate the invalidity

of incorporating LCM and CCV conditions when they do not hold for the un-

derlying predictor. And the observation confirms that the estimating equation

estimators do not rely on the common conditions, which is not true for the left

panel estimators. Again, within the right panels, we can see that the two esti-

mating equation estimators EE1 2 and EE2 2 show better performance than

CC 2 with smaller Euclidean distances. The exception is in model I, when

missing proportion is relatively small, CC 2 gives slightly better results than

EE1 2. Note that all estimators CC, EE1 and EE2 perform worse than the

oracle Full estimator. Also it is noticed that the AIPWEE approach performs

better than the IPWEE approach. Overall the good performance of CC 2 is

reasonable as the estimators by solving the complete case estimating equations

are unbiased. The same conclusions can be drawn by looking into the numbers

for mean trace correlations displayed in Table 3.1, 3.2 and 3.3. Note that while
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a smaller Euclidean distance in Figures means better estimation, larger value

in the tables corresponds to more accurate estimators.

By varying c0 = −1, 0, 1 to get different missing proportions, it reveals that

the performance of CC 2 deteriorates with increasing missing proportion and

may become significantly worse than Full EE when the missing proportion is

large. It is the same case for IPWEE estimators EE1 2, but slightly better

than the CCEE estimators. On the other hand, the AIPWEE estimators

EE2 1 under case (i), and EE2 2 for both cases are less sensitive to the missing

proportion. Take EE2 2 as an example, in the challenging case of 70% missing

response for case (i), the mean trace correlation is as high as 0.986, 0.970, 0.962

for model I to III respectively; for case (ii), the mean trace correlation is as

high as 0.989, 0.972, 0.940 for model I to III with 70% missing proportion.
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(a) Missing 30% Case (i) (b) Missing 30% Case (ii)

(c) Missing 50% Case (i) (d) Missing 50% Case (ii)

(e) Missing 70% Case (i) (f) Missing 70% Case (ii)

Figure 3.1: Boxplot of Euclidean distance for OLS estimating equations with
different missing proportions (Model I)
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(a) Missing 30% Case (i) (b) Missing 30% Case (ii)

(c) Missing 50% Case (i) (d) Missing 50% Case (ii)

(e) Missing 70% Case (i) (f) Missing 70% Case (ii)

Figure 3.2: Boxplot of Euclidean distance for PHD estimating equations with
different missing proportions (Model II)
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(a) Missing 30% Case (i) (b) Missing 30% Case (ii)

(c) Missing 50% Case (i) (d) Missing 50% Case (ii)

(e) Missing 70% Case (i) (f) Missing 70% Case (ii)

Figure 3.3: Boxplot of Euclidean distance for SIR estimating equations with
different missing proportions (Model III)
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Table 3.1: Mean and standard deviation of trace correlation coefficient R2 for
OLS estimating equations with different missing proportions (Model I).

Case
Missing

Full 1 CC 1 EE1 1 EE2 1 Full 2 CC 2 EE1 2 EE2 2
Proportion

(i)

30%
ave 0.973 0.956 0.961 0.972 0.993 0.992 0.989 0.992
std 0.018 0.024 0.021 0.018 0.005 0.006 0.008 0.006

50%
ave 0.973 0.948 0.950 0.970 0.993 0.987 0.984 0.991
std 0.018 0.027 0.026 0.020 0.005 0.009 0.010 0.006

70%
ave 0.973 0.945 0.941 0.940 0.993 0.976 0.967 0.986
std 0.018 0.036 0.033 0.022 0.005 0.017 0.027 0.010

(ii)

30%
ave 0.886 0.880 0.867 0.886 0.993 0.986 0.975 0.992
std 0.042 0.040 0.042 0.043 0.006 0.014 0.026 0.007

50%
ave 0.886 0.871 0.869 0.885 0.993 0.978 0.967 0.991
std 0.042 0.042 0.044 0.035 0.006 0.015 0.033 0.009

70%
ave 0.886 0.873 0.864 0.886 0.993 0.959 0.962 0.989
std 0.042 0.046 0.046 0.044 0.006 0.031 0.046 0.011

Table 3.2: Mean and standard deviation of trace correlation coefficient R2 for
PHD estimating equations with different missing proportions (Model II).

Case
Missing

Full 1 CC 1 EE1 1 EE2 1 Full 2 CC 2 EE1 2 EE2 2
Proportion

(i)

30%
ave 0.934 0.892 0.928 0.939 0.994 0.989 0.984 0.987
std 0.029 0.041 0.029 0.030 0.004 0.006 0.016 0.010

50%
ave 0.934 0.843 0.915 0.945 0.994 0.983 0.976 0.982
std 0.029 0.081 0.047 0.034 0.004 0.012 0.018 0.012

70%
ave 0.934 0.776 0.915 0.943 0.994 0.962 0.957 0.970
std 0.029 0.099 0.061 0.046 0.004 0.026 0.035 0.021

(ii)

30%
ave 0.747 0.694 0.798 0.792 0.994 0.989 0.984 0.987
std 0.105 0.123 0.099 0.097 0.003 0.005 0.014 0.009

50%
ave 0.747 0.654 0.807 0.807 0.994 0.980 0.978 0.982
std 0.105 0.136 0.111 0.114 0.003 0.016 0.017 0.011

70%
ave 0.747 0.599 0.830 0.830 0.994 0.966 0.965 0.972
std 0.105 0.140 0.114 0.120 0.003 0.020 0.024 0.017
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Table 3.3: Mean and standard deviation of trace correlation coefficient R2 for
SIR estimating equations with different missing proportions (Model III).

Case
Missing

Full 1 CC 1 EE1 1 EE2 1 Full 2 CC 2 EE1 2 EE2 2
Proportion

(i)

30%
ave 0.939 0.905 0.898 0.905 0.985 0.975 0.969 0.977
std 0.051 0.072 0.071 0.090 0.016 0.035 0.034 0.032

50%
ave 0.939 0.860 0.875 0.884 0.985 0.943 0.964 0.975
std 0.051 0.124 0.100 0.086 0.016 0.086 0.032 0.029

70% ave 0.939 0.851 0.836 0.854 0.985 0.915 0.943 0.962
std 0.051 0.136 0.120 0.110 0.016 0.112 0.088 0.068

(ii)

30% ave 0.848 0.785 0.757 0.816 0.985 0.962 0.956 0.957
std 0.114 0.107 0.121 0.146 0.027 0.043 0.045 0.052

50%
ave 0.848 0.764 0.732 0.791 0.977 0.924 0.942 0.945
std 0.114 0.129 0.134 0.156 0.027 0.078 0.056 0.105

70%
ave 0.848 0.740 0.679 0.804 0.977 0.884 0.917 0.940
std 0.114 0.131 0.152 0.167 0.027 0.114 0.081 0.112

3.6.2 Real Data Application

We compare complete-case estimating equation and inverse probability

weighted estimating equation approaches through a real data example. Con-

sider the mussel data with n = 82 observations collected in an ecological

study of New Zealand. The response is the mussel’s muscle mass in g. The

four predictors are the shell mass S in g, the shell length L, the shell height

Ht, and the shell width W in mm. This data set is available in R under

the dr package. The data set has been studied in Bura and Cook (2001a)

and Dong et al. (2015), and the structural dimension is estimated to be 1.

The scatterplot matrix of the predictors is provided in the left panel of Figure

4. With d = 1, we first estimate β with the sample version of estimating

equation (3.9) based on all 82 observations. The corresponding estimator is

β̂0 = (.385, 0.804, .442, .104)T, which is the Full 2 estimator in the previous

section. We refer to β̂
T

0x. as the oracle predictor. The right panel of Figure 4

is the sufficient plot of the response versus the oracle predictor.

Denote δ as the missingness indicator of the response Y . In each repetition,
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Figure 3.4: Left panel: the scatterplot matrix of the predictor. Right panel:

the sufficient plot of muscle mass versus the oracle predictor β̂
T

0x.

we generate δi from the Bernoulli distribution with success (Yi observed) proba-

bility p(xi) = {exp(c0 +αTxi)} / {1 + exp(c0 +αTxi)} for i = 1, . . . , 82. Here

we set α = (0.4, 0.3, 0.2, 0.1)T and c0 = −1. We treat Yi as observed if δi = 1,

and Yi is considered missing if δi = 0. Based on {(xi, Yi, δi), i = 1, . . . , 82},

we calculate the complete-case estimating equation estimator (the CC 2 esti-

mator) and denote it as β̂1. We also get the IPWEE (EE1 2) and AIPWEE

(EE2 2) estimators and denote them as β̂2 and β̂3. For j = 1, 2, 3, calculate

∆j = ||P̂0−P̂j||2, where P̂0 = β̂0(β̂
T

0 β̂0)
−1β̂

T

0 and P̂j = β̂j(β̂
T

j β̂j)
−1β̂

T

j . Based

on 200 repetitions, the average missing proportion is 72.5%, the average ∆1

value for the CCEE estimator β̂1 is 0.129, the average ∆2 value for the IPWEE

estimator β̂2 is 0.072, and the average ∆3 value for the AIPWEE estimator β̂3

is 0.056. The result confirms our findings in the simulation section that EE1 2

and EE2 2 have better performance than CC 2 when the missing proportion

is large.
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CHAPTER 4

ON A NEW HYBRID

ESTIMATOR FOR THE

CENTRAL MEAN SPACE

As aforementioned, SIR and OLS can be categorized as first-order methods,

which depend on linear functions of x such as E(x | Y ) and E(Y x). On

the other hand, SAVE and PHD belong to the second-order methods, which

involve both linear and quadratic functions for x, such as E(x | Y ), E(xxT | Y ),

and E(Y xxT). First-order methods do not work well when the link function

between the response and the predictors is symmetric about the origin, while

second-order methods are not efficient with linear link functions between Y

and x. See, for example, Dong and Li (2010) and Dong (2016) for a nice

summary. Due to the complementary nature of the first-order and the second-

order methods, hybrid moment-based SDR estimators have been proposed

in the literature. See, for example, Gannoun and Saracco (2003), Ye and
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Weiss (2003), Zhu et al. (2007), Li and Wang (2007), Shanker and Prendergast

(2011), and Yu et al. (2014). With the exception of Shanker and Prendergast

(2011), the existing hybrid methods all focus on estimating the central space.

Shanker and Prendergast (2011) proposed an iterative algorithm, which can be

applied to estimators of the central space as well as estimators of the central

mean space. To the best knowledge, there is no non-iterative hybrid estimator

in the literature that exclusively focuses on estimating the central mean space.

The main contribution of this chapter (Xia and Dong (2017)) is to propose

a new hybrid estimator of the central mean space, such that it works well for

linear as well as symmetric link functions. The dimensionality of the central

mean space is denoted by d, which is generally unknown in practice. The

procedure to estimate d is called order determination. The second contribution

of the paper is to propose an order determination procedure based on the

newly proposed hybrid estimator. Last but not least, following the idea of

Cook (2004), the proposed hybrid method naturally leads to a new marginal

coordinate test. Without assuming any parametric models, test is conducted

for the contribution of an individual predictor to the regression mean in the

presence of all the other predictors.

Without loss of generality, we assume E(Y ) = 0 and E(x) = 0 throughout

this chapter. Let Σ = Var(x) denote the covariance matrix of x, and B ∈ Rp×d

denotes the basis of the central mean space.
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4.1 A New Hybrid Estimator for The Central

Mean Space

4.1.1 Population Level Development

Before introducing the new hybrid estimator, we first review OLS and PHD

as estimators of the central mean space. The OLS estimator can be expressed

as βOLS = Σ−1E(xY ). The following condition was first proposed in Li and

Duan (1989),

E(x | BTx) is linear in BTx. (4.1)

We refer to (4.1) as the linear conditional mean (LCM) condition. Under the

LCM condition, Li and Duan (1989) proved that βOLS ∈ SY |x. In addition to

the LCM condition, the following condition is needed for PHD,

Cov(x | BTx) is a nonrandom matrix. (4.2)

We refer to (4.2) as the constant conditional variance (CCV) condition. Define

matrix MPHD = Σ−1E(Y xxT). Under both the LCM and the CCV conditions,

Li (1992) proved that span(MPHD) ⊆ SY |x, where span(MPHD) denotes the

column space of MPHD. Although OLS and PHD were initially proposed as

estimators of the central space, Cook and Li (2002) revealed later that they

are estimators of the central mean space. It is now well-known that βOLS ∈

SE(Y |x) ⊆ SY |x with the LCM condition, and span(MPHD) ⊆ SE(Y |x) ⊆ SY |x

when both the LCM and the CCV conditions are satisfied.

As estimators of the central mean space, OLS and PHD have their limi-

tations. OLS performs well with monotone link functions but fails with sym-
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metric link functions. PHD, on the other hand, does not work well when the

link function is linear. This motivates us to consider a hybrid estimator that

simply concatenates βOLS and MPHD. Specifically, we define M ∈ Rp×(p+1) as

M = (βOLS,MPHD) = Σ−1 (E(Y x),E(Y xxT)) = Σ−1E (Y x(x∗)T) , (4.3)

where x∗ = (1,xT)T. The next result states that the column space of M can

be used to recover the central mean space. We omit its proof, which follows

directly from the well-known properties of the OLS and the PHD estimators.

Theorem 4.1. Suppose E(Y ) = 0, E(x) = 0, and all the moments involved

exist. Under the LCM condition (4.1) and the CCV condition (4.2), we have

span(M) ⊆ SE(Y |x) ⊆ SY |x.

4.1.2 Sample Estimator

Given an i.i.d sample {(x1, Y1), · · · , (xn, Yn)}, the sample level algorithm

becomes

1. Calculate x̄ = n−1
n∑
i=1

xi, Ȳ = n−1
n∑
i=1

Yi, and Σ̂ = n−1
n∑
i=1

(xi− x̄)(xi−

x̄)T.

2. Center the data x̃i = xi − x̄ and Ỹi = Yi − Ȳ . Denote x̃∗i = (1, x̃T
i )T,

i = 1, . . . , n.

3. Calculate M̂ = Σ̂
−1
n−1

n∑
i=1

Ỹix̃i(x̃
∗
i )

T and F̂ = M̂M̂T.

4. Perform eigenvalue decomposition of F̂. Denote B̂1, . . . , B̂d as the

eigenvectors corresponding to the d largest eigenvalues of F̂. Then B̂ =

(B̂1, . . . , B̂d) ∈ Rp×d is the final estimator of B.



74

In step 4 of the algorithm above, we assume d is known. The procedure to

determine d will be discussed later in Section 3. Let F = MMT be the popula-

tion counterpart of F̂ in step 3. From the definition of M in (4.3), we see that

F = FOLS + FPHD, where FOLS = βOLSβ
T

OLS and FPHD = MPHDMT
PHD. Thus

our proposed hybrid estimator can be viewed as a convex combination of the

OLS kernel matrix FOLS and the PHD kernel matrix FPHD, where each com-

ponent has equal weight. Convex combination methods, among others, have

been studied in Ye and Weiss (2003) and Zhu et al. (2007). While these exist-

ing combination methods focus on estimating the central space, our estimator

is proposed to recover the central mean space.

Let A = Σ−1Y x(x∗)T − Σ−1xxTΣ−1E(Y x(x∗)T). We conclude this sec-

tion with the asymptotic distribution of vec(M̂), where vec(M̂) means the

concatenation of the columns of M̂.

Theorem 4.2. Suppose E(Y ) = 0, E(x) = 0, and all the moments involved

exist. Let Γ = E (vec(A)vecT(A)). Then

√
n
(

vec(M̂)− vec(M)
)
→ N (0,Γ),

where “→” means converge in distribution.

4.1.3 Hybrid Estimator When Response is Missing at

Random

Recall the discussions in Chapter 2 for the validity of complete case OLS

and PHD when response is missing at random. The conclusion can pass to the

proposed hybrid estimator under the same missing scheme. In other words, it

can be shown that Σ−1E(Y x(x∗) | δ = 1) is invalid to recover central mean
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space. Thus in this section, we propose a simple and valid inverse probability

weighted hybrid estimator in a similar fashion as in Chapter 2. The IPW

hybrid estimator is denoted as

Mδ = Σ−1E

{
δ

π(x)
Y x(x∗)

}
(4.4)

where δ is the missing indicator with value 1(0) representing observed (miss-

ing). And under the missing at random scheme, δ ⊥⊥ Y | x, thus the propensity

score π(x) = P (δ = 1 | x). It can be shown that Mδ ⊆ SE(Y |x) with the same

conditions listed in Theorem 4.1.

Given an i.i.d sample {(x1, Y1, δ1), · · · , (xn, Yn, δn)}, the sample estimator

of Mδ becomes M̂δ = Σ̂
−1
n−1

n∑
i=1

δiπ̂
−1(xi)Ỹix̃i(x̃

∗
i )

T and F̂δ = M̂δ(M̂δ)T,

where Σ̂
−1
, Ỹi and x̃i are calculated the same as in Section 4.1.2, and π̂(xi) is

estimated nonparametrically as in (3.30). Then perform eigenvalue decompo-

sition of F̂δ to achieve the final estimator of B.

4.2 Sequential Tests for Order Determination

In the sample level algorithm from Section 2, we have assumed that the

dimension of the central mean space d is known. In practice, the structural

dimension d is unknown and has to be estimated. The procedure of determin-

ing d is called order determination. We follow the development of Li (1991),

Cook and Li (2004b), and Li and Wang (2007), and develop a sequential test

approach for order determination in this section.

Note that d = rank(F) for F = MMT. We consider the following hypothe-
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ses,

H
(`)
0 : rank(F) = ` v.s. H(`)

a : rank(F) > ` for ` = 1, ..., p− 1.

The rank of F is then estimated as the first ` for which H
(`)
0 is accepted. If H

(`)
0

is accepted for some 0 ≤ ` ≤ p−1, we have d̂ = argmin{` : H
(`)
0 is accepted}. If

H
(`)
0 is rejected for all 0 ≤ ` ≤ p−1, we estimate d by d̂ = p. Let λ̂1 ≥ · · · ≥ λ̂p

be the eigenvalues of F̂ = M̂M̂T. The test statistic for H
(`)
0 is

T` = n

p∑
j=`+1

λ̂j, (4.5)

and we reject H
(`)
0 for large values of T`.

Following Li and Wang (2007), we study the asymptotic distribution of T`

next. Under H
(`)
0 , M has rank `. Denote the singular value decomposition of

M under H
(`)
0 as

M =

(
U1 U0

)D 0

0 0


VT

1

VT
0

 ,

where U1 ∈ Rp×` and U0 ∈ Rp×(p−`) form the p×p othogonal matrix (U1,U0),

V1 ∈ R(p+1)×` and V0 ∈ R(p+1)×(p+1−`) form the (p + 1) × (p + 1) orthogonal

matrix (V1,V0), and D is an ` × ` diagonal matrix with positive diagonal

elements. The asymptotic distribution of T` under H
(`)
0 is provided in the

following theorem.

Theorem 4.3. Suppose E(Y ) = 0, E(x) = 0, and all the moments involved

exist. Let H = UT
0 AV0, and Λ = E

(
vec(H)vecT (H)

)
. Then under H

(`)
0 , T`

converges in distribution to

T` →
(p−l)(p+1−l)∑

j=1

νjχ
2
j(1),
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where “→” means converge in distribution, νj’s are the eigenvalues of Λ, and

χ2
j(1)’s are i.i.d. χ2(1) random variables.

The asymptotic variance Λ needs to be estimated in practice. Recall that

Σ̂ = n−1
n∑
i=1

(xi− x̄)(xi− x̄)T. Denote Âi = Σ̂
−1
Ỹix̃i(x̃

∗
i )

T− Σ̂
−1

x̃ix̃
T
i Σ̂
−1

Σ̂
∗
Yxx,

where Σ̂
∗
Yxx = n−1

n∑
i=1

Ỹix̃i(x̃
∗
i )

T. Let Û0 and V̂0 be the sample estimators of U0

and V0, and let Ĥi = ÛT
0ÂiV̂0. Then the sample estimator of Λ becomes Λ̂ =

n−1
n∑
i=1

vec(Ĥi)vecT (Ĥi). The asymptotic distribution of T` under H
(`)
0 can

then be approximated by
∑(p−l)(p+1−l)

j=1 ν̂jχ
2
j(1), where ν̂j’s are the eigenvalues

of Λ̂. Denote (p − l)(p + 1 − l) by s. Let ν = (ν̂1, . . . , ν̂s)
T and W be

an N × s matrix of i.i.d. χ2(1) realizations. Then the N elements of Wν

become realizations of the approximate T` distribution, and the proportion of

T` in (4.5) greater than these N elements is the approximate p-value. We use

N = 500 in our simulation studies.

4.3 Testing Predictor Effects

Without assuming any parametric models, the hybrid estimator provides

a unique opportunity to test the contribution of an individual predictor to

the regression mean in the presence of all the other predictors. Recall that

B ∈ Rp×d denotes the basis of the central mean space. For k = 1, ..., p, define

ek ∈ Rp, where its kth element is one and all the other elements are zero. To

test the effect of the kth predictor Xk, consider

H
[k]
0 : eT

kB = 0 v.s. H [k]
a : eT

kB 6= 0. (4.6)

Let x−k = (X1, . . . , Xk−1, Xk+1, . . . , Xp)
T. It can be shown that eT

kB = 0 if

and only if Y ⊥⊥ E(Y | x) | x−k. Thus H
[k]
0 in (4.6) implies that Xk is not
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contributing to the regression mean given all the other predictors. Hypotheses

(4.6) is a special case of the marginal coordinate hypotheses. The SIR-based

and the SAVE-based marginal coordinate tests are studied in Cook (2004)

and Shao and Cook (2007), respectively. A hybrid of SIR-based and SAVE-

based procedure is proposed in Zhou and Dong (2016). While these existing

procedures focus on testing the predictor contribution to the central space,

hypotheses (4.6) aims at testing the predictor contribution to the central mean

space.

The proposed hybrid estimator M satisfies span(M) ⊆ span(B) = SE(Y |x).

Under H
[k]
0 , we have eT

kMMTek = eT
kFek = 0. A natural test statistic for

(4.6) becomes Gk = neT
k F̂ek, and we reject H

[k]
0 for large values of Gk. The

asymptotic distribution of Gk under H
[k]
0 is provided next.

Theorem 4.4. Suppose E(Y ) = 0, E(x) = 0, and all the moments involved

exist. Furthermore, suppose the LCM condition (1.3) and the CCV condition

(1.4) hold. Let Ck = E(ATeke
T
kA). Then under H

[k]
0 ,

Gk →
p+1∑
h=1

ωk,hχ
2
h(1),

where “→” means converge in distribution, ωk,1, . . . , ωk,p+1 are the eigenvalues

of Ck, and χ2
h(1)’s are i.i.d. χ2(1) random variables.

Recall from Section 3 that Âi = Σ̂
−1
Ỹix̃i(x̃

∗
i )

T − Σ̂
−1

x̃ix̃
T
i Σ̂
−1

Σ̂
∗
Yxx. Let

Ĉk = n−1
n∑
i=1

ÂT
i eke

T
kÂi. We can then approximate the asymptotic distribution

of Gk under H
[k]
0 as

∑p+1
h=1ω̂k,hχ

2
h(1), where ω̂k,1, . . . , ω̂k,p+1 are the eigenvalues

of Ĉk. Following similar development in Section 3, we can get the approximate

p-value for the marginal coordinate hypotheses (4.6).
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4.4 Simulation Studies

Extensive simulation studies are carried out in this section to evaluate the

performance of the proposed hybrid estimator. Consider the following models,

I : Y = (.5X1 − .5Xp) + sgn(.5X1 − .5Xp) + .1ε,

II : Y = (.5X1 − .5X2)
2 + sin(.5X1 − .5X2) + .1ε,

III : Y = sin(X1) + cos(Xp) + .1ε,

IV : Y = (X1 +Xp)
2 + 2(X2 +X3 +Xp) + .1ε.

In all four models, x = (X1, ..., Xp)
T is generated from the multivariate normal

distribution with zero mean vector and covariance matrix Σ = (σij)p×p, where

σij = 0.5|i−j| for 0 ≤ i, j ≤ p. The error ε ∼ N (0, 1) and ε is independent of

x. The LCM condition (1.3) and the CCV condition (1.4) are satisfied due to

the normality of x. We fix the predictor dimension at p = 10 and consider

sample sizes n = 200 and 800.

4.4.1 Accuracy

For estimator B̂ and the basis B, denote their corresponding projection

matrices as PB̂ = B̂(B̂TB̂)−1B̂T and PB = B(BTB)−1BT. Then we measure

the effectiveness of the estimator by ∆ = ‖PB̂ − PB‖2, where ‖ · ‖ is the

matrix Frobenius norm. Smaller values of δ indicate better estimation of the

central mean space. Based on 200 repetitions, we report the mean and the

standard deviation of ∆ in Table 4.1. Three estimators of B are included for

this comparison: the OLS, the PHD, and our proposed hybrid estimator. OLS

always estimates B as a vector in Rp, while PHD and the hybrid estimators

use the true structural dimension d in the eigenvalue decomposition step.
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Table 4.1: Comparison for estimating B. The mean and the standard deviation
of ∆ are reported based on 200 repetitions.

OLS PHD HYB

Model n mean s.d. mean s.d. mean s.d.

I
200 0.232 0.061 1.796 0.268 0.051 0.030
800 0.065 0.018 1.763 0.252 0.004 0.002

II
200 0.485 0.171 0.292 0.208 0.108 0.073
800 0.337 0.091 0.062 0.037 0.022 0.014

III
200 1.209 0.081 2.107 0.251 0.558 0.343
800 1.161 0.038 1.898 0.241 0.118 0.052

IV
200 1.209 0.063 2.103 0.306 0.873 0.481
800 1.180 0.035 1.883 0.253 0.159 0.083

Note that the linear component in model I favors OLS, which has smaller

∆ values than PHD. On the other hand, the quadratic component in model

II leads to smaller ∆ values for PHD when compared with OLS. Although

models I and II are suitable for OLS or PHD, the hybrid estimator can still

improve over OLS and PHD in both models. While the first two models have

d = 1, the next two models are more complex with d = 2. For B ∈ R10×2

in models III and IV, the OLS estimator is clearly not ideal as βOLS ∈ Rp

can recover at most one direction in the central mean space. Due to the sine

function in model III and the linear link function in model IV, PHD also fails

to recover B accurately. The hybrid estimator is again the best performer with

the smallest ∆ values for models III and IV. As n increases from 200 to 800,

all three methods improve, and the hybrid estimator maintains its advantage

over OLS and PHD across all four models.

Consider the case when Y is missing, we denote missingness indicator δ = 1

when Y is observed and δ = 0 otherwise. We define the MAR missingness
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schemes as

P (δ = 1 | x) =
exp(c1 +αTx)

1 + exp(c1 +αTx)
.

The missing proportion of the response can be controlled by adjusting c. Set-

ting α = (1, 1, 1, ..., 1)T
p/
√
p. Let c1 = 1, 0,−1, we compare results for Model I

and II across different missing proportions as 30%, 50% and 70%. We measure

the effectiveness of the estimator by the Euclidean distances ∆ . Based on 200

repetitions, we report the mean and the standard deviation of ∆ in Table 4.2.

The OLS, PHD, and our proposed hybrid estimator of B are compared with

Full data analysis, complete case analysis and inverse probability weighting

adjustment. Full data analysis serves as the oracle estimator. for this com-

parison: the OLS, the PHD, and our proposed hybrid estimator. For Model I

and II, all estimators estimate B as a vector in Rp. It is as expected that the

performance for the inverse probability weighted hybrid estimator are consis-

tently better than the inverse probability weighted OLS and PHD estimators.

In addition, the inverse probability weighted hybrid estimator performs better

than the complete case estimators and worsens with the increasing of missing

proportion.

4.4.2 Order Determination and Marginal Coordinate

Test

To evaluate the effectiveness of the proposed order determination proce-

dure, we report the frequencies of the estimated structural dimension d̂ over

200 repetitions in Table 4.3. The nominal level for testing H
(`)
0 : d = ` v.s.

H
(`)
a : d > ` is set as 0.05, and the proposed procedure from Section 3 is com-
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Table 4.2: Comparison for estimating B when response is missing at random.
The mean and the standard deviation of ∆ are reported based on 200 repeti-
tions.

Model Missing β̂
OLS PHD HYB

mean s.d. mean s.d. mean s.d.

I

30%
Full 0.232 0.061 1.796 0.268 0.051 0.030
CC 0.547 0.111 1.230 0.483 0.248 0.192

IPW 0.539 0.113 1.118 0.483 0.257 0.158

50%
Full 0.232 0.061 1.796 0.268 0.051 0.030
CC 0.580 0.126 1.126 0.515 0.495 0.411

IPW 0.577 0.132 0.867 0.405 0.377 0.192

70%
Full 0.232 0.061 1.796 0.268 0.051 0.030
CC 0.603 0.160 1.213 0.520 0.815 0.528

IPW 0.616 0.173 0.812 0.393 0.554 0.279

II

30%
Full 0.485 0.171 0.292 0.208 0.108 0.073
CC 0.532 0.185 0.401 0.287 0.202 0.138

IPW 0.543 0.190 0.401 0.281 0.174 0.167

50%
Full 0.485 0.171 0.292 0.208 0.108 0.073
CC 0.596 0.214 0.470 0.315 0.282 0.180

IPW 0.640 0.235 0.460 0.303 0.249 0.195

70%
Full 0.485 0.171 0.292 0.208 0.108 0.073
CC 0.733 0.268 0.648 0.417 0.453 0.342

IPW 0.822 0.328 0.596 0.385 0.440 0.294

pared with the PHD-based sequential test. Recall that d = 1 for models I and

II, and d = 2 for models III and IV. We boldface the entries with the dominate

frequency across d̂ = 0, 1, or 2 for easy reference. From the left panel of Table

4.3, we see that except for model II with n = 800, PHD fails to estimate the

correct structural dimension d with dominate frequency. Order determination

with the hybrid method, on the other hand, can estimate the true structural

dimension of single-index models I and II with frequency close to 1 (n = 200)

or equal to 1 (n = 800). In the more challenging case of multi-index models

III and IV, our proposal can still estimate the true d with dominate frequency
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Table 4.3: Comparison for order determination. The frequencies of the esti-
mated structural dimension d̂ are reported based on 200 replications.

PHD HYB

Model n d̂ = 0 d̂ = 1 d̂ = 2 d̂ = 0 d̂ = 1 d̂ = 2

I
200 1.000 0.000 0.000 0.010 0.990 0.000
800 1.000 0.000 0.000 0.000 1.000 0.000

II
200 0.735 0.265 0.000 0.020 0.980 0.000
800 0.000 1.000 0.000 0.000 1.000 0.000

III
200 0.510 0.490 0.000 0.010 0.780 0.210
800 0.000 1.000 0.000 0.000 0.000 1.000

IV
200 0.820 0.180 0.000 0.335 0.660 0.005
800 0.000 1.000 0.000 0.000 0.055 0.945

when the sample size is large (n = 800).

The results of testing predictor contribution are summarized in Table 4.4.

At 0.05 nominal level, we report the frequencies of rejecting H
[k]
0 : eT

kB = 0

based on 200 replications. Note that rejecting H
[k]
0 is to conclude that the kth

predictor Xk contributes to the regression mean. For the ease of reference,

we boldface all the frequencies that correspond to the contributing predictors,

or when the corresponding H
[k]
0 is false. Ideally, we want the frequency to be

close to 1 for predictors in the regression mean, and the frequency close to the

nominal level for predictors not in the regression mean. The proposed pro-

cedure from Section 4 is compared with the PHD-based marginal coordinate

test. The hybrid-based test works very well across all four models. Specifi-

cally, when H
[k]
0 is false, we reject the null with high frequencies for n = 200,

and the power of our proposal to detect the contributing predictors becomes

1 with n = 800. When H
[k]
0 is true, the frequency of rejecting the null is close

to the nominal level. The PHD-based marginal coordinate test works well for

model II, where the quadratic link function favors PHD. While it can detect
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Table 4.4: Comparison for testing predictor contribution. The frequencies of
rejecting H

[k]
0 : eT

kB = 0 are reported based on 200 replications.

Model n Method X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

I

200
PHD 0.005 0.020 0.040 0.030 0.0200 0.020 0.035 0.060 0.030 0.010

HYB 1.000 0.020 0.040 0.030 0.020 0.020 0.035 0.055 0.030 1.000

800
PHD 0.010 0.025 0.010 0.025 0.025 0.015 0.020 0.015 0.030 0.000

HYB 1.000 0.025 0.010 0.025 0.025 0.015 0.020 0.015 0.025 1.000

II

200
PHD 0.780 0.745 0.020 0.025 0.015 0.03 0.015 0.025 0.035 0.040

HYB 0.995 0.990 0.025 0.020 0.015 0.020 0.015 0.025 0.045 0.035

800
PHD 1.000 1.000 0.025 0.015 0.030 0.025 0.040 0.005 0.030 0.025

HYB 1.000 1.000 0.035 0.015 0.030 0.025 0.030 0.010 0.030 0.025

III

200
PHD 0.005 0.020 0.050 0.030 0.010 0.030 0.035 0.035 0.015 1.000

HYB 1.000 0.025 0.050 0.030 0.010 0.030 0.035 0.035 0.015 1.000

800
PHD 0.010 0.040 0.030 0.015 0.040 0.020 0.035 0.020 0.070 1.000

HYB 1.000 0.040 0.035 0.015 0.045 0.020 0.035 0.020 0.075 1.000

IV

200
PHD 0.920 0.015 0.020 0.025 0.020 0.025 0.015 0.015 0.015 0.855

HYB 0.920 0.405 0.310 0.025 0.020 0.020 0.015 0.015 0.015 0.980

800
PHD 1.000 0.010 0.010 0.055 0.025 0.010 0.015 0.020 0.030 1.000

HYB 1.000 1.000 1.000 0.055 0.020 0.015 0.015 0.015 0.025 1.000

X10 in model III as well as X1 and X10 in model IV, the PHD-based test can

not detect the contributing predictors that appear in the linear component of

model I and model IV or the sine component of model III.

4.5 Discussion

In this chapter, a new hybrid estimator for the central mean space is pro-

posed. The method inherits the strengths of both the OLS component and

the PHD component, and works well across a wide range of models. In ad-

dition, the sequential test approach is developed for order determination, and

the marginal coordinate test procedure is studied for testing predictor con-

tributions. Our proposal is different from existing hybrid estimators, most of

which focus on recovering the central space. Our comprehensive treatment
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of the hybrid estimator, together with the ease of computation, suggests that

the new proposal could be a useful addition to the SDR literature. To im-

prove the asymptotic efficiency of the hybrid central mean space estimator,

the minimum discrepancy approach Cook and Ni (2005) for hybrid SDR esti-

mators can be explored, which chooses the weights for the hybrid components

adaptively. Yoo and Cook (2007) proposed a central mean space estimator for

multivariate response. A hybrid procedure to estimate the central mean space

with multivariate response is worth further investigation. In addition, parallel

to CCEE, IPWEE and AIPWEE for OLS and PHD, the estimating equation

approaches can be readily applied to the hybrid estimator.
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CHAPTER 5

SUMMARY AND FUTURE

RESEARCH

In current stage, we proposed a inverse probability weighting SIR and two

novel estimating equation approaches,the complete-case estimating equation

and the inverse probability weighted estimating equation, to solve missingness

problem in sufficient dimension reduction. In the study of inverse probabil-

ity weighting SIR, we differentiate missing issues in inverse regressions from

forward regression. With the asymptotic study for proposed inverse proba-

bility weighting SIR estimator, we interestingly find that weighting with the

nonparametrically estimated propensity score gains efficiency than using the

true propensity score. In addition, the estimator allows us to further per-

form marginal coordinate test for model-free variable selection to detect the

active predictor. The study of this proposal can be further explored along

the following directions. First, the proposal can be generalized to other in-

verse regression family estimators such as SAVE and directional regression.

Second, besides the inverse probability weighted adjustment to the estimat-
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ing equation, augmented inverse probability weighted adjustment can also be

implemented under a similar framework.

To the best of our knowledge, all the existing SDR methods in the litera-

ture that deal with missing data require linear conditional mean and sometimes

conditional constant covariance assumptions, and our estimating equation pro-

posals fill this important gap. In addition, the study delightfully finding that

under the proposed complete case estimating equations framework, the result-

ing SDR estimators are still unbiased even when applying to inverse regression

approaches such as SIR. The proposed framework has more to explore. The

following is a list to prospect for future researches.

1. Besides the current nonparametric estimation, establishing a parametric

estimation for the propensity function π(x) to build a more complete asymp-

totic theory.

2. The structural dimension d has been assumed as known for the estimat-

ing equation approaches. Ma and Zhang (2015) developed a novel procedure

to determine d in the estimating equation framework. The extension of Ma

and Zhang (2015) in the case of missing data is worth further investigation.

3. Although the study in this book focus on special cases such as OLS,

PHD and SIR, the proposals can be generalized to other SDR estimators such

as SAVE, and directional regression to derive a rich class of estimators.

4. For now, we only discovered the missing response case, expanding it to

the general missingness is of interest to tell a more thorough story.

5. In the discussion of complete case estimating equation, no missingness

schemes are required to show its validity. However, IPWEE and AIPWEE rely

on missing at random assumption. More missing mechanisms can be studied
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under the framework, such as missing not at random.

Last but not least, the hybrid SDR estimator address the limitation that

existing estimators of the central mean space have uneven performances across

different types of link functions. Based on the new hybrid estimator, theories

and numerical studies can be further implemented to combine the aforemen-

tioned procedures to deal with missing response.
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APPENDIX A

TECHNICAL DETAILS FOR

CHAPTER 2

Proof of Theorem 2.2. To study the asymptotic property of M̂, we investi-

gate âh = Σ̂
−1
p̂
−1/2
h ûh, where ûh = 1

n

∑n
i=1 δiRhi(xi − x̄)/π̂(xi), and p̂h =

1
n

∑n
i=1 δiRhi/π̂(xi). Let f(x) be the probability density function of x, g(x) =

π(x)f(x), and ĝ(x) = 1
n

∑n
i=1Kb(x− xi)δi and f̂(x) = 1

n

∑n
i=1Kb(x− xi) are

the sample estimators of g(x) and f(x) respectively. We have

π̂(xi) =

∑n
j=1Kb(xi − xj)δi∑n
j=1Kb(xi − xj)

=
ĝ(xi)

f̂(xi)
.

It can be shown that

1

π̂(xi)
− 1

π(xi)
=

1

π2(xi)

[
1

f(x)
{ĝ(xi)− g(xi)} −

π(xi)

f(xi)

{
f̂(xi)− f(xi)

}]
+ op(n

−1/2). (A.1)

Step 1 Show that
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p̂h − ph =
1

n

n∑
i=1

{(
1− δi

π(xi)

)
E(Rh | xi) +

δi
π(xi)

Rhi

}
− ph + op(n

−1/2)

(A.2)

Let p̃h = 1
n

∑n
i=1 δiRhi/π(xi), we have p̂h − ph = p̂h − p̃h + p̃h − ph. To show

(A.2), we only need to study p̂h − p̃h.

p̂h − p̃h =
1

n

n∑
i=1

δiRhi

{
1

π̂(xi)
− 1

π(xi)

}

=
1

n

n∑
i=1

δiRhi

π2(xi)

[
1

f(xi)

{
1

n

n∑
j=1

Kb(xj − xi)δj − g(xi)

}

− π(xi)

f(xi)

{
1

n

n∑
j=1

Kb(xj − xi)− f(xi)

}]
+ op(n

−1/2) (A.3)

=S1 − S2 + op(n
−1/2)

Note that

S1 =
1

n

n∑
i=1

δiRhi

π2(xi)f(xi)

1

n

n∑
j=1

Kb(xj − xi)δj − ph

=
1

n2

n∑
i=1

n∑
j=1

1

2

{
δiRhiδj

π2(xi)f(xi)
Kb(xj − xi) +

δiRhjδj
π2(xj)f(xj)

Kb(xj − xi)

}
− ph

=
1

n2

n∑
i=1

n∑
j=1

{w(xi,xj)− ph} =
2

n

n∑
i=1

{w1(xi)− ph}+ op(n
−1/2) (A.4)

=
1

n

n∑
i=1

{
δiRhi

π(xi)
+

δi
π(xi)

E(Rh | xi)− ph
}

+ op(n
−1/2)
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where

w1(xi) = Ej{w(xi,xj)} =Ej

[
1

2

{
δiRhiδj

π2(xi)f(xi)
Kb(xj − xi)

+
δiRhjδj

π2(xj)f(xj)
Kb(xj − xi)

}]
, (A.5)

and the last two steps of (A.5) are true because E{w1(xi)} = E(Rh) = ph,

Ej

{
δiRhiδj

π2(xi)f(xi)
Kb(xj − xi)

}
=

δiRhi

π2(xi)f(xi)
Ej {δjKb(xj − xi)}

=
δiRhiδj

π2(xi)f(xi)
Ej {π(xj)Kb(xj − xi)}

=
δiRhi

π2(xi)f(xi)

1

b

∫
π(x)f(x)K

(
x− xi
b

)
dx (A.6)

=
δiRhi

π2(xi)f(xi)
π(xi)f(xi) =

δiRhi

π(xi)
+ op(n

−1/2),

and

Ej

{
δiRhjδj

π2(xj)f(xj)
Kb(xj − xi)

}
= δiEj

{
Rhj

π(xj)f(xj)
Kb(xj − xi)

}
=
δi
b

∫ ∫
Rh(y)

π(xj)f(xj)
K

(
x− xi
b

)
f(x, y)dxdy (A.7)

= δi

∫
Rh(y)

π(xi)

f(xi, y)

f(xi)
dy =

δi
π(xi)

E(Rh | xi) + op(n
−1/2).
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In addition, with the similar U-statistic technique applied in (A.5), we have

S2 =
1

n

n∑
i=1

δiRhi

π2(xi)

π(xi)

f(xi)

1

n

n∑
j=1

Kb(xj − xi)− ph

=
1

n2

n∑
i=1

n∑
j=1

{
δiRhi

π(xi)f(xi)
+

δjRhj

π(xj)f(xj)

}
Kb(xj − xi)− ph (A.8)

=
1

n

n∑
i=1

{
δiRhi

π(xi)
+ E(Rh | xi)

}
+ op(n

−1/2).

By combining (A.3), (A.5) and (A.8), we have

p̂h − p̃h =
1

n

n∑
i=1

(
1− δi

π(xi)

)
E(Rh | xi) + op(n

−1/2). (A.9)

and thus (A.2) is obtained.

Step 2 Show that

ûh − uh =
1

n

n∑
i=1

{(
1− δi

π(xi)

)
xiE(Rhi | xi) +

δixiRh

π(xi)
− xiph − uh

}
.

(A.10)

Proof. Let ũh = 1
n
δixiRhi/π(xi). Note that ûh − uh = ûh − ũh + ũh − uh, we

first write
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ũh − uh =
1

n

n∑
i=1

δiRhi(xi − x̄)

π(xi)
− E(xRh)

=
1

n

n∑
i=1

δiRhixi
π(xi)

− E(xRh)−
1

n

n∑
i=1

x̄

{
δiRhi

π(xi)
− ph + ph

}
(A.11)

=
1

n

n∑
i=1

{
δiRhixi
π(xi)

− E(xRh)− xiph

}
+ op(n

−1/2).

Then it remains to study ûh − ũh.

ûh − ũh =
1

n

n∑
i=1

δiRhixi

{
1

π̂(xi)
− 1

π(xi)

}

=
1

n

n∑
i=1

δiRhixi
π2(xi)

[
1

f(xi)

{
1

n

n∑
j=1

Kb(xj − xi)δj − g(xi)

}
(A.12)

− π(xi)

f(xi)

{
1

n

n∑
j=1

Kb(xj − xi)− f(xi)

}]
+ op(n

−1/2).

With a similar fashion as (A.5) to (A.8) in step 1, it can be shown that

ûh − ũh =
1

n

n∑
i=1

(
1− δi

π(xi)

)
xiE(Rh | xi) + op(n

−1/2). (A.13)

Let p∗h = p̂h−ph, u∗h = ûh−uh, and Σ∗ = Σ̂−Σ =
∑n

i=1 xix
T
i −Σ. We have

(p
−1/2
h )∗ = p̂

−1/2
h −p−1/2h = −1

2
p
−3/2
h p∗h+op(n

−1/2), and (Σ−1)∗ = 1
n
Σ̂
−1
−Σ−1 =

−Σ−1Σ∗Σ−1, we have Σ∗ =
∑n

i=1 xix
T
i − Σ, Σ−1∗ = −Σ−1Σ∗Σ−1. Note

that âh = p̂
−1/2
h Σ̂

−1
ûh, we have âh − ah = (p

−1/2
h )∗Σ−1uh + p

−1/2
h (Σ−1)∗uh +



102

p
−1/2
h Σ−1u∗h + op(n

−1/2) = 1
n

∑n
i=1 `h,i + op(n

−1/2), where

`h,i =− 1

2

{(
1− δi

π(xi)

)
E(Rh | xi) +

δiRhi

π(xi)

}
Σ−1uh +

1

2
p
−1/2
h Σ−1uh

− p−1/2h Σ−1xix
T

i Σ
−1 (A.14)

+ p
−1/2
h Σ−1

{(
1− δi

π(xi)

)
xiE(Rh | xi) +

δixiRhi

π(xi)

}
− p1/2h Σ−1xi.

Then Â − A = 1
n

∑n
i=1 Li + op(n

−1/2), where Li = (`T1,i, . . . , `
T

H,i)
T. Note

that E(`h,i) = 0, 1
n

∑n
i=1 `hi = Op(n

−1/2), Theorem 2.2 is demonstrated, with

L = (`T1 , . . . , `
T

H)T and

`h =− 1

2

{(
1− δ

π(x)

)
E(Rh | x) +

δRh

π(x)

}
Σ−1uh +

1

2
p
−1/2
h Σ−1uh

− p−1/2h Σ−1xxTΣ−1 (A.15)

+ p
−1/2
h Σ−1

{(
1− δ

π(x)

)
xE(Rh | x) +

δxRh

π(x)

}
− p1/2h Σ−1x.

Proof of Theorem 4.4. Let tk = (tk,1, . . . , tk,H)T and t̂k = (t̂k,1, . . . , t̂k,H)T,

where tk,h = eT
kah and t̂k,h = eT

k âh for h = 1, . . . , H. Under H
[k]
0 , the Frechet

derivative of tk,h is defined as gk,h = p
−1/2
h eT

k(Σ−1)∗uh + p
−1/2
h eT

kΣ
−1u∗h, where

(p
−1/2
h )∗eT

kΣ
−1uh is omitted because eT

kΣ
−1uh = 0 for k ∈ Ac. It follows that

√
n(̂tk − tk)→ N (0,Cov(Gk)), where Gk = (gk,1, · · · , gk,H)T. Because tk = 0

for k ∈ Ac, We have Tk = nt̂T
k t̂k has an asymptotic distribution that is the

sum of weighted χ2(1) under H
[k]
0 .
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Proof of Theorem 2.1. Recall that ãh = Σ̂
−1
p̃
−1/2
h ũh, and âh = Σ̂

−1
p̂
−1/2
h ûh,

we can apply the same procedures in the proof of Theorem 2.2 to find the

covariance matrix Ω by replacing (p
−1/2
h )∗ with −1

2
p
−3/2
h (p̃h− ph), and u∗h with

ũh − uh.

As A = (aT
1 , . . . , a

T
H)T, to compare Γ and Ω, we only need to study Cov(âh)

and Cov(ãh). In addition, Σ̂
−1

can be ignored as it has the same effect for

both counterparts. Let c1 = p̂
−1/2
h ûh − p̃−1/2h ũh and c2 = p̃

−1/2
h ũh − p−1/2h uh,

we have p̂
−1/2
h ûh − p−1/2h uh = c1 + c2, we have

c1 = (p̂
−1/2
h − p̃−1/2h )ũh + p̃

−1/2
h (ûh − ũh) + op(n

−1/2)

= −1

2
p
−3/2
h (p̂h − p̃h)uh + p

−1/2
h (ûh − ũh) + op(n

−1/2) (A.16)

= b1 + b2 + op(n
−1/2)

c2 = −1

2
p
−3/2
h (p̃h − ph)uh + p

−1/2
h (ũh − uh) + op(n

−1/2)

= b3 + b4 + op(n
−1/2) (A.17)

Thus Var(p̂
−1/2
h ûh−p−1/2h uh) = Var(c1)+Var(c2)+2Cov(c1, c2). The following

steps (A.18) to (A.27) show that 2Cov(c1, c2) = −2Var(c1) and therefore

Var(p̃
−1/2
h ũh−p−1/2h uh)−Var(p̂

−1/2
h ûh−p−1/2h uh) = Var(c1) is positive definite.

First, we study Var(c1) via (A.18) to (A.21).

Var(c1) =Var(b1) + Var(b2) + 2Cov(b1,b2)

=
1

4
p−3h uhVar(p̂h − p̃h)uT

h + p−1h Var(ûh − ũh) (A.18)

− p−2h Cov(p̂h − p̃h, ûh − ũh)uh,
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where

Var(p̂h − p̃h) =Var

{(
1− δ

π(x)

)
E(Rh | x)

}
= E

{(
1− δ

π(x)

)2

E2(Rh | x)

}

=E

{(
1

π(x)
− 1

)
E2(Rh | x)

}
, (A.19)

Var(ûh − ũh) =Var

{(
1− δ

π(x)

)
xE(Rh | x)

}
=E

{(
1− δ

π(x)

)2

x2E2(Rh | x)

}
(A.20)

=E

{(
1

π(x)
− 1

)
x2E2(Rh | x)

}
,

and

Cov(p̂h − p̃h, ûh − ũh) =E

{(
1− δ

π(x)

)2

xE2(Rh | x)

}

=E

{(
1

π(x)
− 1

)
xE2(Rh | x)

}
. (A.21)

Then we study Cov(c1, c2) from (A.22) to (A.27).

Cov(c1, c2) =Cov(b1,b3) + Cov(b2,b4) + Cov(b1,b4) + Cov(b2,b3)

=
1

4
p−3h uCov(p̂h − p̃h, p̃h − ph)uT + p−1h Cov(ûh − ũh, ũh − u)

− 1

2
p−2h {Cov(p̂h − p̃h, ũh − uh) + Cov(p̃h − ph, ûh − ũh)}uh,

(A.22)
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where

Cov(p̂h − p̃h, p̃h − ph) =E

{
δ

π(x)

(
1− δ

π(x)

)
RhE(Rh | x)

}
=E

{(
1− 1

π(x)

)
E2(Rh | x)

}
, (A.23)

Cov(ûh − ũh, ũh − uh)

= E

{(
1− δ

π(x)

)
xE(Rh | x)

(
δ

π(x)
xRh − xph

)}
= E

{(
1− δ

π(x)

)
δ

π(x)
x2RhE(Rh | x)

}
− phE

{(
1− δ

π(x)

)
xE(Rh | x)xph

}
= E

{
E

(
δ

π(x)
− δ

π2(x)

∣∣∣x)x2E2(Rh | x)

}
− 0 (A.24)

= E

{(
1− 1

π(x)

)
x2E2(Rh | x)

}
,

and

Cov(p̂h − p̃h, ũh − uh) =Cov(p̃h − ph, ûh − ũh)

=E

{
δ

π(x)

(
1− δ

π(x)

)
xRhE(Rh | x)

}
=E

{
E

(
δ

π(x)
− δ

π2(x)

∣∣∣x)xE2(Rh | x)

}
(A.25)

=E

{(
1− 1

π(x)

)
xE2(Rh | x)

}
.

It follows that

2Cov(c1, c2) = −2Var(b1)− 2Var(b2)− 4Cov(b1,b2) = −2Var(c1), (A.26)
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and thus

Var(p̂
−1/2
h ûh − p−1/2h uh) = Var(c2)− Var(c1). (A.27)
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APPENDIX B

TECHNICAL DETAILS FOR

CHAPTER 3

B.1 Technical Details

Lemma B.1. Under Conditions (C1)-(C5), we have

max
1≤i≤n

|π̂(xi)− π(xi)| = op(n
−1/4)

Following the approach in Härdle (1990) and Härdle and Mammen (1993), one

can show under certain conditions (will be listed) Lemma C.1 holds.

Lemma B.2. Under Conditions (C1)-(C5), we have

n∑
i=1

δi
πi(x)

[
E(l | ηi){a(xi)− E(a | ηi)}+ E(l | ηi)

{
E(a | η)− Ê(a | ηi)

}]
= op(n

1/2)

The proof of Lemma C.2 is similar to the proof of Lemma A2 in Ma and Zhu

(2012a).
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Lemma B.3.

1

n

n∑
i=1

δi
πi(x)

εi{E(a | ηi)− Ê(a | ηi)} = Op{hm/n1/2 + h2m + log2 n/(nhd)}

The proof of Lemma B.3 is similar to the proof of Lemma A1 in Ma and Zhu

(2012a) and is neglected.

Proof of Theorem 3.2. The estimating equation which yields B̃ is given as

n∑
i=1

{
δi

π̂i(x)
l(Yi){a(xi)− Ê(a(xi) | B̃Txi)}

}
= 0 (B.1)

Note that

1

π̂i(x)
=

1

πi(x)
+
πi(x)− π̂i(x)

πi(x)π̂i(x)
. (B.2)

We have

n∑
i=1

(
δi

π̂(xi)
ĝ?i

)
=

n∑
i=1

(
δi

πi(x)
ĝ?i

)
+

n∑
i=1

(
πi(x)− π̂i(x)

πi(x)π̂i(x)
δiĝ

?
i

)
. (B.3)

It is clear that by Lemma C.1, the second term at the right hand side of (B.3)
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is

n∑
i=1

(
πi(x)− π̂i(x)

πi(x)π̂i(x)
δiĝ

?
i

)
=

n∑
i=1

πi(x)− π̂i(x)

πi(x)π̂i(x)
δil(Yi){a(xi)− Ê(a(xi) | B̃Txi)}

=
n∑
i=1

πi(x)− π̂i(x)

πi(x)π̂i(x)
δil(Yi){a(xi)− E(a(xi) |BTxi)}

+
n∑
i=1

πi(x)− π̂i(x)

πi(x)π̂i(x)
δil(Yi){E(a(xi) |BTxi)− Ê(a(xi) |BTxi)} (B.4)

+
n∑
i=1

πi(x)− π̂i(x)

πi(x)π̂i(x)
δil(Yi){Ê(a(xi) |BTxi)− Ê(a(xi) | B̃Txi)}

= n ∗ (op(n
−1/2) + op(n

−1/2) + op(n
−1/2)) = op(n

1/2)

Thus the estimating equation (B.1) becomes

n∑
i=1

[
δi

πi(x)
l(Yi){a(xi)− Ê(a(xi) | B̃Txi)}

]
= 0 (B.5)

Denoting ηi = BTxi, η̃i = B̃Txi, E(a(xi) |ηi) = E(a | η) and E(l(Yi) |ηi) =

E(l | ηi), we rewrite (B.5) to obtain

−
n∑
i=1

[
δi

πi(x)
E(l | ηi){a(xi)− Ê(a | η̃i)}

]
=

n∑
i=1

δi
πi(x)

{l(Yi)− E(l | ηi)}{a(xi)− Ê(a | η̃i)}+ op(n
1/2). (B.6)
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We first study the left hand side of (B.6).

−
n∑
i=1

[
δi

πi(x)
E(l | ηi){a(xi)− Ê(a | η̃i)}

]
= −

n∑
i=1

δi
πi(x)

E(l | ηi){a(xi)− E(a | ηi)}

−
n∑
i=1

δi
πi(x)

E(l | ηi){E(a | ηi)− Ê(a | ηi)}

−
n∑
i=1

δi
πi(x)

E(l | ηi){Ê(a | ηi)− Ê(a | η̃i)}

= −(Un1 + Un2 + Sn)

Lemma C.2 gives that Un1 + Un2 = op(n
1/2). We continue to study Sn. De-

noting ⊗ as Kronecker product, i.e. A⊗B = (aijB) for any matrices A and

B. Using Taylor’s expansion, the weak law of large numbers and the fact that

∂vec(fgT )/∂xT = g ⊗ ∂f/∂xT + ∂g/∂xT ⊗ f and E(l | x) = E(l | η), we

vectorize Sn to obtain the following,
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− vec

[
n∑
i=1

δi
πi(x)

E(l | ηi){Ê(a | ηi)− Ê(a | η̃i)}

]

=
n∑
i=1

vec

[
δi

πi(x)
E(l | ηi)Ê(a | η̃i)−

δi
πi(x)

E(l | ηi)Ê(a | ηi)
]

=
n∑
i=1

[
δi

πi(x)

∂vec{E(l | ηi)Ê(a | ηi)}
∂vecl(B)T

]
vecl(B̃−B) + op(n

1/2)

=
n∑
i=1

{
δi

πi(x)

∂Ê(a | ηi)
∂vecl(B)T

⊗ E(l | ηi)

}
vecl(B̃−B) + op(n

1/2)

= nE

{
δ

π(x)

∂E(aT | η)

∂vecl(B)T
⊗ E(l | η)

}
vecl(B̃−B) + op(n

1/2)

= nE

[
E

{
δ

π(x)

∂E(aT | η)

∂vecl(B)T
⊗ E(l | η)

∣∣∣∣ x

}]
vecl(B̃−B) + op(n

1/2)

= nE

[{
E(δ | x)

π(x)

}
E

{
∂E(aT | η)

∂vecl(B)T
⊗ E(l | η)

∣∣∣∣ x

}]
vecl(B̃−B) + op(n

1/2)

= nE

{
∂E(aT | η)

∂vecl(B)T
⊗ E(l | η)

}
vecl(B̃−B) + op(n

1/2)

= −nAvecl(B̃−B) + op(n
1/2) (B.7)

where

A = E

{
∂vec [{g(Y )− E(l | η)}{a(x)− E(a | η)}]

∂vecl(B)T

}

Let a(x,η) = a(x)− E(a | η) and l(Y,η) = l(Y )− E(l | η), we can show that
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the last equality of (B.7) holds by the following derivation.

A =E

{
∂vec [{l(Y )− E(l | η)}{a(x)− E(a | η)}]

∂vecl(B)T

}
=E

{
aT (x,η)⊗ ∂l(Y,η)

∂vecl(B)T

}
+ E

{
∂aT (x,η)

∂vecl(B)T
⊗ l(Y,η)

}
=− E

{
aT (x,η)⊗ ∂E(l | η)

vecl(B)T

}
− E

{
∂E(a | η)T

vecl(B)T
⊗ l(Y,η)

}
=− E

{
∂vec{E(l | η)a(x,η)}

∂vecl(B)T

}
− E

{
∂E(aT | η)

vecl(B)T
⊗ E(l | η)

}
− E

{
∂E(aT | η)

vecl(B)T
⊗ l(Y )

}
+ E

{
∂E(aT | η)

vecl(B)T
⊗ E(l | η)

}
=− E

{
∂E(aT | η)

vecl(B)T
⊗ l(Y )

}
=− E

{
∂E(aT | η)

∂vecl(B)T
⊗ E(l | η)

}
,

where the last two equalities hold because E [E(l | η){a(x)− E(a | η)}] = 0

and E{l(Y )− E(l | η)} = 0, hence

E

{
∂vec[E(l | η)a(x,η)]

∂vecl(B)T

}
= 0

E

{
∂vecE(aT | η)

∂vecl(B)T
⊗ {l(Y )− E(l | η)}

}
= 0
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Next we study the right hand side of (B.6).

n∑
i=1

δi
πi(x)

{l(Yi)− E(l | ηi)}{a(xi)− Ê(a | η̃i)}+ op(n
1/2)

=
n∑
i=1

δi
πi(x)

{l(Yi)− E(l | ηi)}{a(xi)− E(a | ηi)}

+
n∑
i=1

δi
πi(x)

{l(Yi)− E(l | ηi)}{E(a | ηi)− Ê(a | ηi)}

+
n∑
i=1

δi
πi(x)

{l(Yi)− E(l | ηi)}{Ê(a | ηi)− Ê(a | η̃i)}+ op(n
1/2)

= Rn + Tn +Wn + op(n
1/2)

Because E{l(Y ) − E(l | η)} = 0, envoking Lemma B.3 results that Tn =

Op{n1/2hm+nh2m+log2 n/hd}, which is op(n
1/2) when nh2d →∞ and nh4m →

∞. We vectorize Wn by Taylor expansion,

vec

[
n∑
i=1

δi
πi(x)

{l(Yi)− E(l | ηi)}{Ê(a | ηi)− Ê(a | η̃i)}

]

=
n∑
i=1

vec

[
δi

πi(x)
{l(Yi)− E(l | ηi)}Ê(a | ηi)−

δi
πi(x)

{l(Yi)− E(l | ηi)}Ê(a | η̃i)}
]

= −
n∑
i=1

{
δi

πi(x)

∂vec[{l(Yi)− E(l | ηi)}Ê(a | ηi)]
∂vecl(B)T

}
vecl(B̃−B) + op(n

1/2)

= −
n∑
i=1

[
δi

πi(x)

∂Ê(a | ηi)
∂vecl(B)T

⊗ {l(Yi)− E(l | ηi)}

]
vecl(B̃−B) + op(n

1/2)

= −nE

[
δ

π(x)

∂E(a | η)

∂vecl(B)T
⊗ {l(Y )− E(l | η)}

]
vecl(B̃−B) + op(n

1/2)

= op(n
1/2),

where the last equality holds because E{l(Y )− E(l | η)} = 0. Vectorizing Rn

completes the vectorization of the right hand side of (B.6). To summarize the
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results concerning (B.6), we obtain

−nAvecl(B̃−B) =
n∑
i=1

vec

[
δi

πi(x)
{l(Yi)− E(l | ηi)}{a(xi)− E(a | ηi)}

]
+ op(n

1/2)

(B.8)

The proof of Theorem 3.2 is completed by accessing the asymptotic property

of B̃ from (B.8).

Proof of Theorem 3.3. We redefine ĝ?i = l(Yi){a(xi) − Ê(a | η̂i)}, and denote

m̂(ĝ?i ) = Ê(ĝ?i | xi) to show the following.

n∑
i=1

m̂
[
l(Yi){a(xi)− Ê(a | η̂i)}

]
=

n∑
i=1

m̂ [g(Yi){a(xi)− E(a | ηi)}]

+
n∑
i=1

m̂
[
l(Yi){a(xi)− Ê(a | η̂i)} − l(Yi){a(xi)− Ê(a | ηi)}

]
+

n∑
i=1

m̂
[
l(Yi){a(xi)− Ê(a | ηi)} − l(Yi){a(xi)− E(a | ηi)}

]
=

n∑
i=1

m̂ (l(Yi){a(xi)− E(a | ηi)}) +M1n +M2n

=
n∑
i=1

m̂ [l(Yi){a(xi)− E(a | ηi)}] + op(n
1/2)

= M3n +
n∑
i=1

m [l(Yi){a(xi)− E(a | ηi)}] + op(n
1/2)

=
n∑
i=1

m [l(Yi){a(xi)− E(a | ηi)}] + op(n
1/2)

where
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M1n =
n∑
i=1

m̂
[
l(Yi){a(xi)− Ê(a | η̂i)} − l(Yi){a(xi)− Ê(a | ηi)}

]
M2n =

n∑
i=1

m̂
[
l(Yi){a(xi)− Ê(a | ηi)} − l(Yi){a(xi)− E(a | ηi)}

]
M3n =

n∑
i=1

{m̂ [l(Yi){a(xi)− E(a | ηi)}]−m [l(Yi){a(xi)− E(a | ηi)}]}

We will state lemmas to show that Mins, i = 1, 2, 3, are of order op(n
1/2). Thus

by further applying (B.2) and Lemma C.1, the estimating equation which

yields B̂ is thus given as

n∑
i=1

{
δi

πi(x)
l(Yi){a(xi)− Ê(a | η̂i)}+

(
1− δi

πi(x)

)
m (l(Yi){a(xi)− E(a | ηi)})

}
+ op(n

1/2) = 0 (B.9)

We rewrite (B.9) to obtain

−
n∑
i=1

{
δi

πi(x)
E(l | ηi){a(xi)− Ê(a | η̂i)

}
=

n∑
i=1

{
δi

πi(x)
{l(Yi)− E(l | ηi)}{a(xi)− Ê(a | η̂i)

}
(B.10)

+

(
1− δi

πi(x)

)
E [l(Yi){a(xi)− E(a | ηi)} | x] + op(n

1/2)

By the proof of Theorem 3.2, we get the vectorized left hand side of (B.10) is

−nAvecl(B̂−B). Also we can show that
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E [l(Yi){a(xi)− E(a | ηi)} | x] = E [{l(Yi)− E(l | ηi)}{a(xi)− E(a | ηi)} | x]

+ E [E(l | ηi){a(xi)− E(a | ηi)} | x] (B.11)

= E [{l(Yi)− E(l | ηi)}{a(xi)− E(a | ηi)} | x]

The last equality holds for E [E(l | η){a(x)− E(a | η)}] = 0. Therefor the

proof of Theorem 3.3 is completed by combining (B.11) and then vectorizing

the right hand side of (B.10) and access the asymptotic property for B̂.

Proof of Theorem 3.4. From Theorem 3.2 and 3.3, we can easily obtain that

Γ1 − Γ2 = −Cov

[
vec

{(
1− δ

π(x)

)
E(g | x)

}]
− 2E

[
vec

{
δ

π(x)

(
1− δ

π(x)

)
gE(gT | x)

}]
.

Similar to the proof of Lemma 1 in Tang and Qin (2012),

Cov

[
vec

{(
1− δ

π(x)

)
E(g | x)

}]
= E

[
vec

{(
1

π(x)
− 1

)
E(g | x)E(gT | x)

}]

and

E

[
vec

{
δ

π(x)

(
1− δ

π(x)

)
gE(gT | x)

}]
= E

[
vec

{(
1− 1

π(x)

)
E(g | x)E(gT | x)

}]

Thus

Γ1 − Γ2 = E

[
vec

{(
1

π(x)
− 1

)
E(g | x)E(gT | x)

}]
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which is positive definite. Hence

n
[
Cov{vecl(B̃)} − Cov{vecl(B̂)}

]
= A−1(Γ1 − Γ2)A

−1

is positive definite.

B.2 More Simulation Results

With the same simulation setting in Chapter 3, we have more numerical

results for OLS and PHD estimating equations for the following two mod-

els. Model (I): Y = BTx + ε1 for OLS method; Y = (BTx)2 + ε2 for PHD

method; Model (II): Y = exp(BTx) + ε3, where B is a p-dimensional vec-

tor and εi’s ∼ N (0, 1) is the random error term. As we fix q = 1, we let

B = (β1, ..., βp)
T , where β1 = 1 and (β2, ..., βp)

T = (1, ..., 1)T/
√
p− 1. The

dimension p is chosen to be 6, 8, 10 and 12 respectively. The boxplots of

Euclidean distance are showed in Figure B.1 to B.8. In addition, the canoni-

cal correlation and Euclidean distance are reported in Table B.1 to B.8. The

numerical results match the finding in Section 3.5
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(a) p = 6 (b) p = 8

(c) p = 10 (d) p = 12

Figure B.1: Boxplot of Euclidean distance for OLS Case (i)-Model (I)
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(a) p = 6 (b) p = 8

(c) p = 10 (d) p = 12

Figure B.2: Boxplot of Euclidean distance for OLS Case (ii)-Model (I)
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(a) p = 6 (b) p = 8

(c) p = 10 (d) p = 12

Figure B.3: Boxplot of Euclidean distance for PHD Case (i)-Model (I)
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(a) p = 6 (b) p = 8

(c) p = 10 (d) p = 12

Figure B.4: Boxplot of Euclidean distance for PHD Case (ii)-Model (I)
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B p=6 p=8 p=10 p=12

Corr Dis Corr Dis Corr Dis Corr Dis

Full 1 0.995 0.021 0.993 0.027 0.988 0.049 0.992 0.033

CC 1 0.980 0.072 0.975 0.093 0.950 0.218 0.964 0.143

EE1 1 0.982 0.070 0.976 0.093 0.942 0.224 0.963 0.143

EE2 1 0.981 0.075 0.975 0.097 0.944 0.217 0.963 0.143

Full 2 0.994 0.024 0.992 0.033 0.984 0.065 0.990 0.041

CC 2 0.984 0.062 0.977 0.089 0.940 0.229 0.963 0.146

EE1 2 0.986 0.057 0.979 0.084 0.951 0.192 0.967 0.129

EE2 2 0.992 0.032 0.988 0.049 0.967 0.128 0.972 0.109

Table B.1: Correlation and Euclidean distance for OLS Case (i)-Model (I)

B p=6 p=8 p=10 p=12

Corr Dis Corr Dis Corr Dis Corr Dis

Full 1 0.911 0.340 0.923 0.296 0.935 0.253 0.942 0.225

CC 1 0.863 0.555 0.863 0.525 0.874 0.477 0.874 0.488

EE1 1 0.864 0.503 0.860 0.516 0.872 0.476 0.868 0.487

EE2 1 0.896 0.393 0.894 0.401 0.899 0.380 0.892 0.406

Full 2 0.918 0.313 0.935 0.251 0.947 0.207 0.952 0.188

CC 2 0.877 0.453 0.892 0.403 0.901 0.372 0.902 0.369

EE1 2 0.878 0.451 0.907 0.436 0.904 0.362 0.904 0.362

EE2 2 0.902 0.368 0.896 0.390 0.909 0.346 0.910 0.341

Table B.2: Correlation and Euclidean distance for OLS Case (ii)-Model (I)
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B p=6 p=8 p=10 p=12

Corr Dis Corr Dis Corr Dis Corr Dis

Full 1 0.957 0.166 0.940 0.229 0.927 0.277 0.910 0.340

CC 1 0.885 0.454 0.865 0.535 0.836 0.639 0.804 0.753

EE1 1 0.877 0.445 0.854 0.529 0.821 0.638 0.781 0.753

EE2 1 0.934 0.247 0.927 0.275 0.928 0.270 0.908 0.336

Full 2 0.980 0.080 0.970 0.119 0.957 0.165 0.955 0.172

CC 2 0.925 0.273 0.894 0.381 0.910 0.334 0.879 0.439

EE1 2 0.936 0.238 0.947 0.202 0.922 0.292 0.936 0.242

EE2 2 0.964 0.137 0.958 0.159 0.957 0.166 0.948 0.201

Table B.3: Correlation and Euclidean distance for PHD Case (i)-Model (I)

B p=6 p=8 p=10 p=12

Corr Dis Corr Dis Corr Dis Corr Dis

Full 1 0.944 0.217 0.932 0.260 0.924 0.288 0.917 0.313

CC 1 0.943 0.301 0.919 0.389 0.893 0.472 0.877 0.534

EE1 1 0.941 0.226 0.940 0.232 0.946 0.206 0.946 0.209

EE2 1 0.950 0.193 0.948 0.202 0.939 0.234 0.941 0.228

Full 2 0.979 0.083 0.972 0.109 0.971 0.113 0.965 0.138

CC 2 0.963 0.142 0.956 0.169 0.947 0.203 0.931 0.261

EE1 2 0.972 0.108 0.973 0.104 0.968 0.125 0.962 0.146

EE2 2 0.978 0.086 0.981 0.075 0.978 0.086 0.974 0.100

Table B.4: Correlation and Euclidean distance for PHD Case (ii)-Model (I)
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Figures and Tables for Model (II)

(a) p = 6 (b) p = 8

(c) p = 10 (d) p = 12

Figure B.5: Boxplot of Euclidean distance for OLS Case (i)-Model (II)
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(a) p = 6 (b) p = 8

(c) p = 10 (d) p = 12

Figure B.6: Boxplot of Euclidean distance for OLS Case (ii)-Model (II)

B p=6 p=8 p=10 p=12

Corr Dis Corr Dis Corr Dis Corr Dis

Full 1 0.967 0.127 0.954 0.180 0.944 0.218 0.931 0.266

CC 1 0.938 0.235 0.923 0.313 0.907 0.379 0.887 0.461

EE1 1 0.948 0.200 0.923 0.291 0.914 0.327 0.902 0.369

EE2 1 0.963 0.143 0.942 0.222 0.932 0.260 0.920 0.305

Full 2 0.984 0.065 0.975 0.099 0.967 0.129 0.958 0.164

CC 2 0.961 0.150 0.941 0.225 0.929 0.269 0.906 0.350

EE1 2 0.963 0.144 0.944 0.215 0.938 0.236 0.935 0.248

EE2 2 0.980 0.080 0.959 0.160 0.954 0.179 0.940 0.229

Table B.5: Correlation and Euclidean distance for OLS Case (i)-Model (II)
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(a) p = 6 (b) p = 8

(c) p = 10 (d) p = 12

Figure B.7: Boxplot of Euclidean distance for PHD Case (i)-Model (II)
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(a) p = 6 (b) p = 8

(c) p = 10 (d) p = 12

Figure B.8: Boxplot of Euclidean distance for PHD Case (ii)-Model (II)
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B p=6 p=8 p=10 p=12

Corr Dis Corr Dis Corr Dis Corr Dis

Full 1 0.788 0.741 0.768 0.809 0.749 0.867 0.739 0.897

CC 1 0.804 0.741 0.792 0.813 0.778 0.862 0.757 0.927

EE1 1 0.787 0.745 0.765 0.814 0.750 0.862 0.727 0.929

EE2 1 0.863 0.720 0.777 0.780 0.755 0.846 0.737 0.899

Full 2 0.937 0.234 0.941 0.224 0.927 0.275 0.916 0.310

CC 2 0.890 0.393 0.884 0.416 0.879 0.435 0.879 0.433

EE1 2 0.924 0.277 0.918 0.304 0.913 0.321 0.907 0.346

EE2 2 0.954 0.175 0.945 0.208 0.934 0.246 0.926 0.279

Table B.6: Correlation and Euclidean distance for OLS Case (ii)-Model (II)

B p=6 p=8 p=10 p=12

Full 1 0.946 0.206 0.926 0.280 0.908 0.345 0.8898 0.410

CC 1 0.932 0.236 0.907 0.323 0.885 0.415 0.867 0.475

EE1 1 0.963 0.144 0.946 0.207 0.934 0.252 0.871 0.475

EE2 1 0.971 0.155 0.945 0.213 0.937 0.241 0.929 0.271

Full 2 0.975 0.091 0.966 0.131 0.959 0.161 0.949 0.196

CC 2 0.972 0.110 0.962 0.148 0.955 0.175 0.944 0.216

EE1 2 0.980 0.078 0.970 0.116 0.963 0.146 0.956 0.170

EE2 2 0.984 0.063 0.977 0.091 0.974 0.103 0.975 0.098

Table B.7: Correlation and Euclidean distance for PHD Case (i)-Model (II)
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B p=6 p=8 p=10 p=12

Full 1 0.7739 0.7776 0.7527 0.8494 0.7449 0.8757 0.7286 0.9288

CC 1 0.7975 0.7266 0.7826 0.8472 0.7554 0.91 0.7752 0.9007

EE1 1 0.7938 0.7179 0.7396 0.8674 0.7343 0.8876 0.7387 0.8973

EE2 1 0.7894 0.7234 0.7885 0.7103 0.7638 0.7898 0.7446 0.8761

Full 2 0.9137 0.3068 0.9046 0.3388 0.9116 0.3159 0.9131 0.3167

CC 2 0.8972 0.3665 0.8946 0.3654 0.9175 0.3037 0.9078 0.3395

EE1 2 0.9382 0.2274 0.9203 0.295 0.9174 0.3114 0.921 0.2937

EE2 2 0.9267 0.2586 0.9209 0.2861 0.9231 0.2879 0.9243 0.2832

Table B.8: Correlation and Euclidean distance for PHD Case (ii) -Model (II)
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APPENDIX C

TECHNICAL DETAILS FOR

CHAPTER 4

Proof of Theorem 4.2. Let M = Σ−1Σ∗Yxx, where Σ∗Yxx = E
(
Y x(x∗)T

)
.

Similarly, denote M̂ = Σ̂
−1

Σ̂
∗
Yxx, where Σ̂ = n−1

n∑
i=1

x̃ix̃
T
i and Σ̂

∗
Yxx = n−1

n∑
i=1

Ỹix̃i(x̃
∗
i )
T .

From Li et al. (2003), we have

Σ̂
−1
−Σ−1 = −Σ−1

(
1

n

n∑
i=1

(xix
T
i −Σ)

)
Σ−1 +Op(n

−1) (C.1)

Because E(Y ) = 0 and E(x) = 0, it can be shown that

Σ̂
∗
Yxx −Σ∗Yxx =

1

n

n∑
i=1

(
Yixi(x

∗
i )
T −Σ∗Yxx

)
+Op(n

−1) (C.2)

By combining (C.1) and (C.2), we have

M̂−M =
1

n

n∑
i=1

Ai +Op(n
−1),
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where

Ai = Σ−1Yixi(x
∗
i )
T − Σ−1xix

T
i Σ−1Σ∗Yxx. It follows that

√
n(vec(M̂) −

vec(M))→ N (0,Γ), where Γ = E
(
vec(A)vecT (A)

)
.

Proof of Theorem 4.3. The proof is similar to Theorem 5 of Li and Wang

(2007), and thus omitted.

Proof of Theorem 4.4. The proof is similar to Theorem 1 of Zhou and Dong

(2016), and thus omitted.

Lemma C.1. Under Conditions (C1)-(C5), we have

max
1≤i≤n

|π̂(xi)− π(xi)| = op(n
−1/4)

Following the approach in Härdle (1990) and Härdle and Mammen (1993), one

can show under certain conditions (will be listed) Lemma C.1 holds.

Lemma C.2. Under Conditions (C1)-(C5), we have

n∑
i=1

δi
πi(x)

[
E(l | ηi){a(xi)− E(a | ηi)}+ E(l | ηi)

{
E(a | η)− Ê(a | ηi)

}]
= op(n

1/2)

The proof of Lemma C.2 is similar to the proof of Lemma A2 in Ma and Zhu

(2012a).


