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This dissertation studies two important problems in the field of biomass supply chain

network. In the first part of the dissertation, we study the pre-disaster planning problem

that seeks to strengthen the links between the multi-modal facilities of a biomass supply

chain network. A mixed-integer nonlinear programming model is developed to determine

the optimal locations for multi-modal facilities and bio-refineries, offer suggestions on

reliability improvement at vulnerable links, production at bio-refineries, and make trans-

portation decision under both normal and disrupted scenarios. The aim is to assist investors

in determining which links’ reliability can be improved under specific budget limitations

so that the bio-fuel supply chain network can prevent possible losses when transportation

links are disrupted because of natural disasters. We used states Mississippi and Alabama as

a testing ground for our model. As part of numerical experimentation, some realistic hurri-

cane scenarios are presented to determine the potential impact that pre-investing may have



on improving the bio-mass supply chain network’s reliability on vulnerable transportation

links considering limited budget availability.

In the second part of the dissertation, we study the impact of feedstock supply un-

certainty on the design and management of an inbound biomass co-firing supply chain

network. A two-stage stochastic mixed integer linear programming model is developed to

determine the optimal use of multi-modal facilities, biomass storage and processing plants,

and shipment routes for delivering biomass to coal plants under feedstock supply uncer-

tainty while considering congestion into account. To represent a more realistic case, we

generated a scenario tree based on the prediction errors obtained from historical and fore-

casted feedstock supply availability. We linearized the nonlinear problem and solved with

high quality and in a time efficient manner by using a hybrid decomposition algorithm that

connects a Constraint generation algorithm with Sample average approximation algorithm

and enhanced Progressive hedging algorithm. We used states Mississippi and Alabama as

a testing ground for our study and conducted thorough computational experiments to test

our model and to draw managerial insights.

Key words: Biomass supply chain network, disaster management, network reliability, con-
gestion prevention, sample average approximation, progressive hedging algorithm, rolling
horizon heuristics
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Energy products and transportation fuels produced from the use of biomass are pro-

posed as the solution of our dependence on fossil fuels and increasing pollution of en-

vironment because of green house gases (GHG) emission. Biomass is renewable source

of energy and the process of production of bioenergy/biofuel from biomass along with

the emission during the use of biofuel have lower impact on environment in comparison

to the production and use of fossil fuels. The Energy Policy Act of 2005 and the Energy

Independence and Security Act of 2007 [114] mandate the nation’s annual bio-ethanol pro-

duction should grow from 10.01 billion gallons in 2011 to over 36 billion gallons by 2022

[115]. Similarly, many countries throughout the world have set their targets on biofuel

uses and provide incentive and benefits to industries for promoting the growth of biomass

uses for energy production. Bioenergy industry will be undergoing a rapid expansion on

the coming decade and such an increase in bio-energy production highlights the need for

developing a reliable and efficient supply chain system that not only performs well under

normal conditions but also hedges against risk under various unexpected disruption sce-

narios, uncertainties and possible congestion on network and facilities because of overflow

of the commodities.
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After a series of devastating disasters in recent years, including the U.S. Northeast

blackout in 2003, Hurricane Katrina in 2005, earthquakes in China in 2008, Haiti in 2009,

and Nepal in 2015 and the Gulf of Mexico oil spill in 2010, it is evident that the transporta-

tion infrastructure, particularly those bearing multi-modal traffic, is vulnerable to various

disruption risks. If the transportation link fails, several weeks, months, or years may be

required to restore it back to the normal condition. Therefore, strengthening the weakest

components of the transportation links is necessary to enhance their survivability even after

hurricanes strike. In Chapter 1 we provide the optimization model with the objective of

maximizing the post-disaster connectivity of multi-modal facility links while minimizing

the investment and transportation costs among multiple sources to their respective destina-

tion nodes in a bio-fuel supply chain network.

Co-firing is a low-cost option to convert biomass to electricity in efficient manner and

in very clean way by adding biomass as a substitute feeder on a coal plant boilers. There

is no loss on the efficiency of boilers by co-firing, biomass combustion efficiency to elec-

tricity will be close to 33%-37% while co-firing [85]. The use of biomass for electricity

production is expected to increase. It has great opportunity for co-firing since the coal

powered boilers where co-firing is possible has capacity of generating 310 gigawatts of

electricity.

However, the uncertainty in the availability of biomass is major challenge in long-term

strategic planning of biomass supply system. Biomass supply face more uncertainties com-

pared with the supply of coal due to unpredictable weather condition, and natural disaster

like hurricane and tornadoes. The effects of these uncertainities affect’s the efficiency of the
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system. It will lead either to an in-feasible supply chain network designs or to sub-optimal

performance. Uncertainty and seasonality of the biomass availability can also lead to con-

gestion on the multi-modal facilities and links. Congestion causes delays and it will affect

the reliability of the business, its schedule, production, demand fulfillment and many more.

It not only affect the congested zone, it will have a chain effect throughout the enterprise.

Designing a network considering the congestion and its possible impacts and assigning the

flows in an optimal way while preventing overuse of a hub to cause congestion is required.

On the ongoing work, we had developed a comprehensive stochastic program model for

the optimal design and planning of biomass co-firing supply chain that is robust from the

economic performance perspective under the presence of supply uncertainties and prevent

congestion from occurring or minimize the effect of congestion.

In Chapter 2, we present a pre-disaster planning model that seeks to strengthen a bio-

fuel supply chain system’s multi-modal facility links while accounting for limited budget

availability. The proposed model determines which set of facilities and links to select that

will maximize post-disaster connectivity and minimize bio-fuel supply chain related costs.

The failure probability of the links between the multi-modal facilities is estimated using a

spatial statistic model, which is developed from real world data. We solve this challeng-

ing NP-hard problem developing a generalized Benders decomposition algorithm. The

proposed algorithm is validated via a real-world case study with data from Mississippi

and Alabama. Computational results show that the proposed solution approach is capa-

ble of solving the problem efficiently. Several experiments are conducted to demonstrate

the applicability of this model by testing various model parameters on bio-fuel supply

3



chain network performance, including reliability improvement cost, availability of budget,

biomass supply changes, and the risk averseness degree for decision makers. Numerical

analysis indicates that, under normal conditions, the minimum cost model determines a

unit bio-fuel delivery cost of $3.56/gallon. However, in case of a disaster, the unit bio-fuel

delivery cost provided by the minimum cost model increases to $3.96/gallon, compared to

$3.69/gallon provided by the reliable model solution.

In Chapter 3, we present a two-stage stochastic programming model for the design and

management of a biomass co-firing supply chain network under feedstock supply uncer-

tainty. To represent a more realistic case, we generate scenarios from prediction errors

of the historical and forecasted biomass supply availabilities. We solve the model using

a hybrid decomposition algorithm that combines Sample average approximation with an

enhanced Progressive hedging algorithm. The proposed algorithm is validated via a real-

world case study using data from Mississippi and Alabama. Computational results indicate

that the proposed algorithm is capable of producing high quality solutions in a reasonable

amount of time.

In Chapter 4, we further extend the model presented in Chapter 3 by taking congestion

effects into account. A non-linear cost term is added in the objective function represent-

ing the congestion factor which increases exponentially as flow of biomass approaches the

capacity of multi-modal facility. We first linearize the model and then use a nested decom-

position algorithm to obtain a feasible solution in a reasonable amount of time. The nested

decomposition algorithm that we propose combine Constraint Generation (CG) algorithm

with a Sample Average Approximation (SAA) and Progressive Hedging (PH) algorithm.

4



We apply some heuristics such as Rolling Horizon (RH) algorithm and variable fixing tech-

nique to enhance the performance of the PH algorithm. We develop a case study using data

from the states of Mississippi and Alabama and use those regions to test and validate the

performance of the proposed algorithm. Numerical experiments show that the proposed

algorithm can solve large-scale problems with a larger number of scenarios and time peri-

ods to a near optimal solution in a reasonable amount of time. Results obtained from the

experiments reveal that the delivery cost increases and less hubs with higher capacity are

selected if we take congestion cost into account.

In summary, our study provides models and algorithms to solve a reliable and congested

biomass supply chain network. We have conducted a number of real life experiments that

will help decision makers to design a reliable inbound logistics network for biomass supply

chain.
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CHAPTER 2

DESIGNING A RELIABLE BIO-FUEL SUPPLY CHAIN NETWORK CONSIDERING

LINK FAILURE PROBABILITIES

2.1 Introduction

The U.S. bio-fuel industry is expanding at a phenomenal rate because of the implemen-

tation of the Energy Policy Act of 2005 and the Energy Independence and Security Act of

2007 [114]. Both mandate the nation’s annual bio-ethanol production should grow from

10.01 billion gallons in 2011 to over 36 billion gallons by 2022 [115]. Such an increase

in bio-ethanol production highlights the need for developing a reliable and efficient supply

chain system that not only performs well under normal conditions but also hedges against

risk under various unexpected disruption scenarios.

After a series of devastating disasters in recent years, including the U.S. Northeast

blackout in 2003, Hurricane Katrina in 2005, earthquakes in China in 2008 and Haiti in

2009, and the Gulf of Mexico oil spill in 2010, it is evident that the transportation infras-

tructure, particularly those bearing intermodal traffic, is vulnerable to various disruption

risks. Figure 2.1 shows the impacts of hurricanes Katrina and Camille on the coasts of

Mississippi and Alabama; each color represents the intensity of the hurricanes’ devastating

impact on those regions. The figure suggests that the failure probability of transportation

infrastructure decreases for routes located farther away from the hurricane center. In real
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life cases, the multi-modal facilities located farther away from the hurricane center usually

survive; however, the links that connect the multi-modal facilities may be easily disrupted

due to several reasons such as bridge failure, flash flooding1, landslides2, or other unex-

pected events [89, 52]. If the transportation link fails, several weeks, months, or years may

be required to restore it back to the normal condition. Therefore, strengthening the weakest

components of the transportation links is necessary to enhance their survivability even after

hurricanes strike. In an ideal case, the decision maker strengthen all the links to a targeted

safety level, but because of the potentially high expenditure, a subset of the links should

be selected to meet specified budget limitations. Thus, the optimization model presented

here has the objective of maximizing the post-disaster connectivity of multi-modal facility

links while minimizing the investment and transportation costs among multiple sources to

their respective destination nodes in a bio-fuel supply chain network.

One major stream of research in bio-fuel supply chain literature identifies the optimal

locations of bio-refineries to minimize the cost of the overall supply chain network. Such

problems are generally considered as extensions of classical facility location design prob-

lem. The literature on the topic of facility location and supply chain design is very rich.

The first work on facility location problem dates back to the Weber problem [125] and

since then extensive research have been conducted on different variants of the classical fa-

cility location problem, such as Canel et al., [13], Shiode and Drezner [105], Carrizosa and

1A rapid rise in water levels that can occur quickly due to intense rainfall over a relatively short period of
time

2A landslide is a geological phenomenon in which ground movements, such as rock falls, deep slope
failures, and shallow debris flows, occur and are driven downward by gravity. Landslides are caused when
the stability of a slope changes from stable to unstable condition. [52]
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(a) Hurricane Camille (b) Hurricane Katrina
Figure 2.1

Impacts of hurricanes Katrina and Camille on the coasts of Mississippi and Alabama
[124]

Nickel [15], Melo et al., [78], Farahani et al., [34], Lee and Dong [63], Torres-Soto and

Uster [112], Jena et al., [55], and others. Interested readers are requested to check some

most recent development of facility location problem from the review papers of Melkote

and Daskin [77], Klose and Drexl [61], Snyder [106], and Melo et al. [79]. Studies con-

ducted by Zamboni et al. [132], Eksioglu et al. [29], Huang et al. [49], Xie and Ouyang

[129], Xie et al. [128], Marufuzzaman et al. [74], Meyer et al. [81], and Walther et

al. [121] develop deterministic models optimizing both plant locations and transportation

costs in bio-fuel supply chain networks. Chen and Fan [17], Kim et al. [59], and Maru-

fuzzaman et al. [75] extend those formulations by incorporating stochastic variants in the

optimization model. The aim is to generate reliable solutions for the design and manage-

ment of a bio-fuel supply chain network. However, one of the major drawbacks of these

studies is that the authors assume the supply chain network will always function perfectly,

and it will never fail. In reality, supply chain networks may be potentially impacted by the

unexpected failure of transportation links [20, 91].
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Supply chain reliability and resilience against natural disasters have gained increas-

ing attention. Studies conducted by Daskin [24, 25] first considers facility unavailability

in a maximal covering location problem. Drezner [28] extend those works by develop-

ing a reliable p-median location problem. Snyder and Daskin [107] further extend those

models to consider a reliable uncapacitated fixed-charge location problem (UFLP) and the

p-median problem where the authors assumed that the facilities may fail randomly with

identical probabilities. Over time Cui et al. [22], Li and Ouyang [65], Shen et. al [104],

and Li et al. [64] extend the existing models by relaxing the uniform disruption probability

assumption introduced by [107]. Studied conducted Galindo and Batta [36], Rawls and

Turnquist [96, 98, 97] are more relevant to this study where the authors attempted to de-

velop models for pre-positioning of emergency supplies to hedge against potential natural

disasters. Most recently, some studies attempt to address the impact of bio-refinery disrup-

tion in a bio-fuel supply chain network. Li et al. [66] develop a discrete and a continuous

model to design a reliable bio-fuel supply chain network. The authors consider both site-

independent and dependent disruptions, and they analyze the impact of those disruption

probabilities on optimal refinery deployment decisions. Wang and Ouyang [122] propose

a game-theoretical based continuous approximation model to locate bio-refineries under

spatial competition and facility disruption risks. A very recent study by Marufuzzaman et

al. [76] considers the impact of intermodal hub disruption on bio-fuel supply chain net-

work design. However, none of these previous studies account for the probability of failure

along the multi-modal facility-to-facility links because of the challenges associated with

collecting data about link failures. This paper considers a pre-disaster planning problem
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that seeks to reduce or eliminate risks between the multi-modal facility-to-facility links

subject to budget constraints. A spatial statistics model is utilized to estimate the prob-

ability of link failure based on disaster disruption data that is already available at finite

locations, e.g., multi-modal facilities.

Another stream of research has been conducted to develop link improvement plans for

better disaster response. These studies primarily focus on factors specific to the physi-

cal characteristics of the links and the cost to upgrade them to withstand disaster under a

specific severity level [8, 108]. Moghtaderi-Zadeh and Der Kiureghian [83] propose an

efficient procedure for upgrading the reliability of existing lifeline networks to maximize

post-earthquake serviceability. The authors then use a heuristic approach to invest incre-

mentally in critical components that increase the system reliability beyond a given target

value. Outside the disaster context, several studies address the stochastic degradation of

link capacity occurring because of day-to-day traffic incidents [68, 67]. Clark and Watling

[18] consider the effect of stochastic demand on network reliability, whereas Lo et al. [67]

investigate the scenario related to simultaneous consideration of stochastic demand and

link capacity degradation. However, previous studies do not show how to make link in-

vestment decisions to increase reliability. To the best of our knowledge, the only relevant

study is the paper by Peeta et al. [89] which considers a pre-disaster planning problem in

disaster management that facilitate highway network investment decisions to enhance dis-

aster response. However, the major difference between their work and this paper is that this

work considers multi-modal facility-link improvement investment decisions in the context

of designing a supply chain network.
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To the best of the authors’ knowledge, the impact of multi-modal facility link fail-

ure and its impact on the bio-fuel supply chain network has not been thoroughly stud-

ied. Specifically, the need for increasing post-disaster network connectivity and its impact

on biomass shipments has been generally ignored in the bio-energy supply chain litera-

ture. In light of this gap, this paper proposes a pre-disaster planning model that seeks to

strengthen the multi-modal facility network links subject to budget constraints. The out-

put of this model suggests optimal locations and capacities for multi-modal facilities and

bio-refineries, the number of containers that can be efficiently transported among the fa-

cilities, and the optimal amount of biomass to be transported via trucks and multi-modal

facilities under normal and disrupted scenarios. Additionally, the model identifies a subset

of links that need to be strengthened to increase post-disaster connectivity even under a

specified budget constraint. The aim is to make a right pre-disaster investment decision

that reduces or eliminates risk and enhances post-disaster response, reconstruction, and

recovery time for the bio-fuel supply chain network. The occurrences of disruption and/or

failure of multi-modal facility links are characterized with a spatial statistics model. The

resulting model can also accurately predict the failure probability of the facility links where

historical data about disasters or disruptions may not be available.

Note that this proposed mixed-integer nonlinear programming (MINLP) model con-

tains non-convexity term in the objective function and is considered a challenging problem

as more of the solution space must be searched to ensure a global optimal solution. This

motivates us to develop a generalized Benders decomposition algorithm that facilitates

problem solving by using problem specific cuts, such as integer cuts, logistics cuts, and the
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knapsack inequality. Multiple numerical experiments show that the accelerated generalized

Benders decomposition algorithm is capable of producing a high quality feasible solution

in a reasonable amount of time. In addition to proposing the model, another important

contribution of this paper is its application to a real world case study. With data from

Mississippi and Alabama, this study provides a number of new managerial insights that

can effectively aid decision makers in designing a robust bio-fuel supply chain network.

Suggestions about the optimal deployment of multi-modal facilities and bio-refineries and

reliability improvement plans for transportation links are made, as well as what amounts of

densified biomass and bio-fuel should be transported via different modes of transportation

under both normal and disrupted scenarios. Finally, this paper examines the sensitivity of

supply chain performance and multi-modal facility development to parameters, including

link failure probabilities, reliability improvement costs, budget availability, irregularity in

biomass supply, and the risk averseness degree of the decision maker.

The exposition of this paper is as follows. Section 2.2 formulates the mathematical

model; Section 2.3 discusses the method of predicting the failure probability of links; Sec-

tion 2.4 introduces the solution algorithm; Section 2.5 presents numerical results and draws

managerial insights; and finally, Section 2.6 provides conclusions and future research di-

rections.

2.2 Problem Description and Model Formulation

This paper builds a reliable model that aids the design and management of a bio-fuel

supply chain network by considering the link failure probability among multi-modal fa-
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cilities. The model addresses a pre-disaster planning problem that seeks to strengthen the

links between the multi-modal facilities against disasters. The aim is to maximize post-

disaster connectivity and minimize transportation costs between the origin, the location

of the harvesting sites, to the destination, the markets where bio-fuel is sold. Figure 4.3

presents the bio-fuel logistic network consisting of biomass suppliers, demand cities and

potential locations for bio-refineries and multi-modal facilities.

Markets

(g)

Feedstock Suppliers

(i)

Intermodal Hubs

(j)

Biorefineries

(k)

Substitute   

  Product  

   Supply

Figure 2.2

Network configuration of a bio-fuel supply chain

Consider a logistic network G = (N ,A), where N is the set of nodes and A is the set

of arcs. Set N consists of the set of harvesting sites I; the set of candidate multi-modal

facility locations J ; the set of candidate biorefinery locations K; and set of markets G.

Thus, the node set N is a union of all types of facilities in this logistics network, i.e.,

N = I
∪
J
∪
K
∪
G. Each site i ∈ I produces si unit of biomass. Each market g ∈ G

demands bg gallons of bio-fuel. This formulation assumes that a substitute product in the
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market can be used to satisfy the demand for bio-fuel. The market price for the substitute

product πg represents the penalty cost per unit of unsatisfied demand at market g ∈ G. This

penalty also serves as a threshold of the unit biomass delivery cost, which indicates that if

the unit biomass delivery cost exceeds this threshold, producing biofuel will be no longer

profitable and thus demand will be satisfied by the substitute product. The notations used

in this section are summarized in Table 2.2.

Locating an multi-modal facility/biorefinery of capacity level l ∈ L at each location

j ∈ J
∪
K costs a fixed set-up cost of Ψlj . The set of arcsA is partitioned into four disjoint

subsets, i.e.,A = A1∪A2∪A3∪A4, whereA1 represents the set of arcs joining harvesting

sites I with multi-modal facilities J ; A2 represents the set of arcs between multi-modal

facilities J and biorefinery K; A3 represents the set of arcs that directly connect from

harvesting sites I to biorefinery K; and finally, A4 represents the set of arcs that connect

bio-refineryK with market G. Transportation distance along arcs inA1 is short. Therefore,

trucks are used to ship biomass along these arcs and its unit transportation cost is denoted

by cij . On the other hand, transportation distances, as well as transportation quantities,

along arcs in A2 are large. Thus, long haul transportation modes like rail can be used

to ship biomass along these arcs. The unit cost along arcs (j, k) ∈ A2 are denoted by

cjk. Therefore, the unit transportation cost along arc {(i, j), (j, k)} can be represented as

cijk = cij + cjk. Arcs in A3 represent direct shipments of biomass from suppliers to bio-

fuel plants. These arcs are used when a supplier is located nearby a bio-refinery; thus,

direct truck shipments are preferred. Finally, trucks are used to ship bio-fuel along arcs in

A4. Densified biomass is usually transported in cargo containers between the multi-modal
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facilities, and this process incurs a fixed loading and unloading cost denoted by ξjk. The

capacity of each cargo container is denoted by vcap.

Sets:

• I : set of harvesting sites (farms)

• J : set of multi-modal facilities

• K : set of biorefineries

• G : set of markets

• L : set of capacities

Parameters:

• ψlj : fixed cost of using a multi-modal facility of capacity l ∈ L at location j ∈ J

• ψlk : fixed cost of opening a biorefinery of capacity l ∈ L at location k ∈ K

• ξjk : fixed cost of a cargo container for transporting biomass along arc (j, k) ∈ A2

• clk : unit flow cost along arc (l, k) ∈ A

• plk : unit production cost at a bio-fuel plant of size l

• si : amount of biomass available at site i ∈ I

• bg : bio-fuel demand of market g ∈ G

• vcap : cargo container capacity

• Clj : biomass storage/handling capacity for a facility of size l ∈ L at location j ∈

J
∪
K

• pcaplk : production capacity of a bio-fuel plant of size l ∈ L at location k ∈ K

• B : total available fortification budget

• ∆jk : maximum reliability that can be obtained with availability

• rjk : cost associated with unit reduction of reliability in a given arc (j, k) ∈ A2

• πg : unit penalty cost of not satisfying demand at market g ∈ G

• ϕ : conversion rate from biomass to bio-fuel

• qjk : failure probability associated with link (j, k) ∈ A2
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Let qjk is defined as the failure probability associated with link (j, k) ∈ A2. We assume

that, when a link (j, k) ∈ A2 is disrupted, it is no longer available and the demand is

fulfilled through emergency arcs (i, k) ∈ A3. For each link (j, k) ∈ A2, we introduce ∆jk

as the maximum reliability improvement, which is obtainable with available technology.

Therefore, ideally one can obtain up to ∆jk = ∆jk;∀j ∈ J , k ∈ K. We assume that the

cost of a given link fortification is proportional to the reliability improvement of that link.

We define rjk as the cost associated with a unit reduction in the failure probability of link

(j, k) ∈ A2. Let B denote the total available fortification budget. The following decision

variables may now be introduced in this model.

The primary decision variables Y := {Ylj}l∈L,j∈J ∪
K determine the size and location

for multi-modal facilities and biorefineries, i.e.,

Ylj =


1 if a multi-modal facility of size l is used at location j

0 otherwise;

Ylk =


1 if a biorefinery of size l is opened at location k

0 otherwise;

The second set of decision variables Z := {Zjk}j∈J ,k∈K decides the number of contain-

ers to flow between each pair of facilities. The next set of decision variables determine how

to route the biomass flowing from its origin to destination. Let X := {Xijk}i∈I,j∈J ,k∈K ∪

{Xik}i∈I,k∈K ∪ {Xkg}k∈K,g∈G denote the flow of biomass through the multi-modal facili-

ties, through highways, and the flow of bio-fuel from bio-refinery to the demand city. The

final set of decision variables P := {Plk}l∈L,k∈K determine the amount of bio-fuel pro-
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duced from a bio-finery k of capacity l, U := {Ug}g∈G determine the demand shortage of

bio-fuel in market g, and R := {∆jk}j∈J ,k∈K determine the reliability improvement gains

by fortifying arc (j, k) ∈ A2.

The problem is to identify the location and capacity of multi-modal facilities and bio-

refineries among the candidate locations j ∈ J
∪
K and from the available capacities

l ∈ L. Also, the number of railcar used between the multi-modal facilities should be deter-

mined, as well as how much biomass to deliver through multi-modal facilities or through

highways, how much bio-fuel to produce and ship from a bio-refinery to the demand city,

and how much reliability improvement can be gained by fortifying the vulnerable links.

The goal is to minimize the total system costs under normal and link failure scenarios.

The following is the mixed integer nonlinear programming (MINLP) formulation for the

reliable bio-fuel supply chain network system ([RM]):

minimize :
∑
l∈L

∑
j∈J

∪
K

ψljYlj +
∑
j∈J

∑
k∈K

ξjkZjk +
∑
i∈I

∑
k∈K

cikXik +
∑
k∈K

∑
g∈G

ckgXkg

+
∑
g∈G

πgUg+
∑
l∈L

∑
k∈K

plkPlk+
∑
i∈I

∑
j∈J

∑
k∈K

(
cijk

(
1−(qjk−∆jk)

)
+cik

(
qjk−∆jk

))
Xijk
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Subject to

∑
k∈K

(
Xik +

∑
j∈J

Xijk

)
≤ si ∀i ∈ I (2.1)

∑
i∈I

ϕ

(
Xik +

∑
j∈J

Xijk

)
=

∑
l∈L

Plk ∀k ∈ K (2.2)∑
g∈G

Xkg ≤
∑
l∈L

Plk ∀k ∈ K (2.3)∑
k∈K

Xkg + Ug = bg ∀g ∈ G (2.4)∑
i∈I

∑
k∈K

Xijk ≤
∑
l∈L

CljYlj ∀j ∈ J (2.5)∑
i∈I

Xik +
∑
i∈I

∑
j∈J

Xijk ≤
∑
l∈L

ClkYlk ∀k ∈ K (2.6)∑
i∈I

Xijk ≤ vcapZjk ∀j ∈ J , k ∈ K (2.7)

Plk ≤ pcaplk Ylk ∀l ∈ L, k ∈ K (2.8)∑
l∈L

Ylj ≤ 1 ∀j ∈ J
∪
K (2.9)∑

j∈J

∑
k∈K

rjk∆jk ≤ B (2.10)

∆jk ≤ ∆jk ∀j ∈ J , k ∈ K (2.11)

Ylj ∈ {0, 1} ∀l ∈ L, j ∈ J
∪
K (2.12)

Zjk ∈ Z+ ∀j ∈ J , k ∈ K (2.13)

Xijk, Xik, Xkg, Plk, Ug,∆jk ≥ 0 ∀i ∈ I, j ∈ J , k ∈ K (2.14)

In [RM], the objective function minimizes the total expected system cost, including the

expected construction and transportation costs under both normal and disruptive scenarios.

More specifically, the first and second terms respectively represent the total set-up costs of

establishing the multi-modal facilities and biorefineries and the fixed cost of transporting

cargo containers between the multi-modal facilities. The third and fourth term represent
18



the cost associated with flow of biomass through direct route (i, k) and the flow of bio-fuel

from bio-refinery k to demand city g. The fifth and sixth term represent the production cost

of bio-fuel and penalty cost for demand shortage. The seventh term represents the regular

transportation cost, which is weighted by (1 − (qjk − ∆jk)), the probability that the link

(j, k) is available. The final term of the objective function represents the transportation

cost under disruption scenarios, where (qjk −∆jk) is the probability that the link (j, k) is

unavailable.

Constraints (3.1) indicate that the amount of biomass shipped from a harvesting site i ∈

I is limited by its availability. Constraints (4.2) are the flow conservation constraints at bio-

fuel plants. Constraints (4.3) indicate that the amount of bio-fuel delivered to the market

is limited by the amount of bio-fuel produced at refinery k ∈ K. Constraints (4.4) show

that the total demand for bio-fuel will be fulfilled either through the distribution network

or through substitute products available from the market. Constraints (4.5) demonstrate

that the total amount of biomass shipped through multi-modal facility j ∈ J is limited

by the facility capacity Clj , ∀l ∈ L, j ∈ J . Similarly, constraints (4.6) indicate that the

total amount of biomass shipped to a bio-refinery is limited by the refinery capacity Clk,

∀l ∈ L, k ∈ K. Constraints (4.7) set a limit on the amount of biomass to be routed on the

arcs (j, k) ∈ A2. Constraints (4.8) limit the bio-fuel production capacity at bio-refinery

k ∈ K. Constraints (4.9) indicate that, at most, one multi-modal facility/biorefinery of

capacity l ∈ L is operating in a given location j ∈ J
∪
K. Constraints (4.10) are the total

fortification budget constraints. Constraints (4.11) set a limit on the amount of reliability

that can be improved on the arcs (j, k) ∈ A2. Finally, constraints (4.12) are the binary
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constraints; (4.13) are the integrality constraints; and (3.14) are the standard non-negativity

constraints. Additionally, in order to improve the performance of the branch-and-bound

process we add the following valid inequalities in model [RM].

Zjk ≤
∑
l∈L

⌈ Clj

vcapjk

⌉Ylj ∀j ∈ J , k ∈ K (2.15)

Zjk ≤
∑
l∈L

⌈ Clk

vcapjk

⌉Ylk ∀j ∈ J , k ∈ K (2.16)

Constraints (4.18) and (4.19) indicate that if no hub is established at location j and k,

then no containers will flow between arc (j, k). The constraints also impose the maximum

number of containers that can be transported along an active arc.

2.3 Characterizing Link Failure Probability qjk

We estimate the link failure probability qjk based on a database that consists of his-

torical events of disasters. We assume that whenever a disaster occurs, it causes disrup-

tion/failure of infrastructure (including links and facilities) within the affected areas. In

other words, a link’s disruption probability is approximately equivalent to the probability

of a disaster.

Previous work [76] estimates the failure probability of facilities by assuming that dis-

aster events at different locations are independent, and the likelihood of the occurrence of

a disaster is approximated using the relative frequency. This approach may be valid when

the facilities are distant from each other. However, due to the proximity of links and fa-

cilities and the probability of disaster, the probability of link failure probability may not

be spatially independent. For example, when a disaster, flood for instance, occurs in a
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specific area, the infrastructure close to this area is more likely to be affected/disrupted.

On the other hand, the probability that distant infrastructure is affected by this flood is

much smaller. Therefore, characterizing the spatial dependency among the probability of

the occurrence of disasters, and thus the disruption/failure probability of the infrastruc-

ture, is crucial to predicting the failure probability of infrastructure, where the historical

disaster/disruption data is unavailable.

This paper generalizes the failure probability estimation of facilities in a previous work

to those of links by accounting for the spatial dependence among the failure probabilities

at different locations. To do this, each link is divided into multiple sections, and the failure

probability of each section is estimated. Recall that each link, connecting two facilities,

may cover long distance, e.g., 200 miles. The failure probability at a specific location of

link may not well characterize the failure probability of the entire link since failure prob-

ability at different locations may vary. To address this challenge, each link is segmented

into multiple exclusive sections, and the failure probability at each section of the link is

considered. The maximum length of a section, denoted by da, is selected in a way that the

failure probability does not vary much within each segment. In other words, da represents

the diameter of the Disaster Affected Zone (DAZ), and the choice of da depends on the

major type of disasters that disrupt biomass infrastructure. For instance, the value of da

chosen for the state of Mississippi is 30 miles because most infrastructure disruptions are

caused by flood and tornado. When such disasters damage certain locations, the average

diameter of the affected zone is approximately 30 miles [52].
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Once we estimate the failure probability of the sections within each link, the resulting

probability is used to assess the probability of link failure. This paper, utilizes a con-

servative estimate for link failure probability by evaluating it using the maximum failure

probability of sections within each link. Assume that link (j, k) can be divided into njk

sections, each of which has a failure probability of qℓ for ℓ = 1, . . . , njk. Thus, link failure

probability qjk can be estimated as qjk = maxℓ=1,...,njk
qℓ.

In what follows, we utilize a spatial statistic model to estimate the failure probability

of segments for each link qℓ by leveraging the historical data of disaster occurrence. In

a previous work [76], the relative frequency of disasters at a specific location has been

used to evaluate the risk of disaster which reveals the failure probability of infrastructure

at a specific location. This work utilizes a spatial statistics model to interpolate the failure

probability of locations, where historical data is unavailable.

2.3.1 Spatial Model of Link Failure Probability

We propose a continuous spatial statistics model to characterize the spatial correlation

and trend of failure probability. The model is described below:

q(s) = µ+ e(s) (2.17)

where,

• s represents the long-lat coordinates for the possible location of biomass infrastruc-

ture in the area of interest. Specifically, s can represent the long-lat coordinates of a

facility, a segment of facility-to-facility link, highway, etc.
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• µ, an unknown parameter to be estimated from the data, denotes the average prob-

ability of disaster occurrence and thus the average of failure probability of biomass

infrastructure caused by the disruption of disasters. µ is an unknown parameter to be

estimated from the data.

• e(s) captures the variability in the failure probability and accounts for the spatial

dependence in failure probability q(s). In general, the correlation between the failure

probability of locations with close physical proximity tends to be stronger than those

distant to each other.

We assume that e(s) is a spatial process with a mean of 0 and a covariance structure of

Σ. Σ is unknown in most cases and can be estimated based on a historical data set. We

characterize the structure dependence of Σ via the semi-variogram function γ(h) defined

below:

γ(h) =
1

2
Var [q(s)− q(s + h)] (2.18)

Given the observed historical data of failure probability, q(s1), . . . , q(sn). The Math-

eron empirical estimate of γ(h) is

γ̂(h) =
1

2|N(h)|
∑
N(h)

{q(si)− q(sj)}2 (2.19)

where N(h) is the set of location pairs (si, sj) with a coordinate difference h, and

|N(h)| is the number of distinct pairs in this set.
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2.3.2 Predicting The Link Failure Probability

The model of γ(h) can be established based on its empirical version γ̂(h) by utilizing

various methods of model fitting such as Maximum Likelihood Estimate, Least Square

Estimate, Weighted Least Square Estimate, and others [21]. Once the semi-variogram

model of γ is established, the resulting model, by means of Kriging, is used to interpolate

the failure probability at given locations where historical data is unavailable. Since the

mean value µ is unknown, the Ordinary Kriging can be used. Let q = (q(s1), . . . , q(sn))′

be the set of available historical data set of failure probability. The Ordinary Kriging

estimator for a location s0 is a linear predictor in the form of q̂OK(s0) = λ′q, where λ

denotes the unknown weight coefficients to be estimated. To this end, we choose weight

coefficients λ = (λ1, . . . , λn)
′ that minimize the loss function shown below:

L = E[(λ′q − q(s0))2]

subject to the weight constraint
∑n

i=1 λi = 1.

This problem can be solved as an unconstrained minimization problem introducing the

Lagrange multiplier θ:

argmin
λ,θ

L = argmin
λ,θ

{
E[(λ′q − q(s0))2]− 2θ

(
n∑

i=1

λi − 1

)}
(2.20)

Let Γ = [γ(si − sj)] be the n × n semi-variogram matrix of the existing data points

and γ(s0) = [γ(s0 − s1), . . . , γ(s0 − sn)]′ be the semi-variogram vector between s0 and

{s1, . . . , sn}. The resulting Ordinary Kriging estimate, expressed in terms of the semi-

variogram γ, is:
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q̂OK(s0) = λ′q(s) (2.21)

where

λ′ =

(
γ(s0) + 1

1− 1′Γ−1γ(s0)
1′Γ−11

)′

Γ−1 (2.22)

In real world applications, the true form of the semi-variogram function γ is usually

unknown. In this case, the empirical model of γ, namely γ̂ as shown in expression (2.19),

can be used in expression (2.21).

2.4 Solution Algorithm
2.4.1 Generalized Benders Decomposition Algorithm

Due to the presence of non-convexity term in the objective function of model [RM],

solving this problem is computationally expensive as more of the solution space must be

searched to ensure a global optimal solution. Therefore, we propose a Generalized Benders

decomposition algorithm [40] to solve this challenging mixed integer non-linear program-

ming (MINLP) model [RM]. This approach works well under the assumption that when

the complicated variables are temporarily fixed, the restricted problem is easy to solve. The

aim is to provide a high quality feasible solution for model [RM] in a reasonable amount

of time. For fixed values of {Ŷlj}l∈L,j∈J ∪
K and {Ẑjk}j∈J ,k∈K the Benders subproblem

[BD(SUB)] can now be written as follows:
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[BD(SUB)] Minimize
∑
i∈I

∑
k∈K

cikXik +
∑
k∈K

∑
g∈G

ckgXkg +
∑
g∈G

πgUg +
∑
l∈L

∑
k∈K

plkPlk+

∑
i∈I

∑
j∈J

∑
k∈K

(
cijk

(
1− (qjk −∆jk)

)
+ cik

(
qjk −∆jk

))
Xijk

Subject to (3.1)-(4.4), (4.10), (4.11), (3.14), and

∑
i∈I

∑
k∈K

Xijk ≤
∑
l∈L

CljŶlj ∀j ∈ J (2.23)∑
i∈I

Xik +
∑
i∈I

∑
j∈J

Xijk ≤
∑
l∈L

ClkŶlk ∀k ∈ K (2.24)

Plk ≤ pcaplk Ŷlk ∀l ∈ L, k ∈ K (2.25)∑
i∈I

Xijk ≤ vcapẐjk ∀j ∈ J , k ∈ K (2.26)

Ylj = Y n
lj : δlj ∀l ∈ L, j ∈ J (2.27)

Ylk = Y n
lk : λlk ∀l ∈ L, k ∈ K (2.28)

Zjk = Zn
jk : γjk ∀j ∈ J , k ∈ K (2.29)

For a given value of {Ŷlj}l∈L,j∈J ∪
K and {Ẑjk}j∈J ,k∈K problem [BD(SUB)] is always

feasible. This is ensured via constraints (4.4). Let {δlj ≥ 0|l ∈ L, j ∈ J }, {λlk ≥ 0|l ∈

L, k ∈ K}, and {γjk ≥ 0|j ∈ J , k ∈ K} be the dual variables associated with constraints

(4.23)-(4.25), respectively. These variables are required to construct Benders optimality cut

(shown below via constraints (4.26)). Introducing an additional variable θ, the underlying

Benders master problem [BD(M)] for the generalized Benders decomposition algorithm

can now be written as follows:
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[BD(M)] Minimize
∑
l∈L

∑
j∈J

∪
K

ψljYlj +
∑
j∈J

∑
k∈K

ξjkZjk + θ

Subject to (4.9), (4.12), (4.13), (4.18), (4.19), and

θ ≥ v(Yn,Zn) +
∑
l∈L

∑
j∈J

δnlj(Ylj − Y n
lj ) +

∑
l∈L

∑
k∈K

λnlk(Ylk − Y n
lk)

+
∑
j∈J

∑
k∈K

γnjk(Zjk − Zn
jk) ∀n ∈ N (2.30)

θ ≥ 0 (2.31)

where {Y n
lj }l∈L,j∈J ∪

K and {Zn
jk}j∈J ,k∈K are the y-vector and z-vector generated at

iteration n ∈ N and N denotes the number of Benders cuts generated so far. Constraints

(4.26) are referred to as optimality cut constraints which can be generated iteratively using

the optimal objective function value v(Yn,Zn) obtained from solving the Benders sub-

problem [BD(SUB)] and the dual vectors of δ, λ, and γ. The overall algorithm is described

as follows:

The solution (znMP ) obtained from the master problem [BD(M)] provides a lower bound

(LBn) for the generalized Benders decomposition algorithm. At each iteration, subprob-

lem [BD(SUB)] is evaluated by fixing the values of {Y n
lj }l∈L,j∈J ∪

K and {Zn
jk}j∈J ,k∈K

obtained from the master problem [BD(M)].

Let znMAS =
∑

l∈L
∑

j∈J
∪

K ψljYlj +
∑

j∈J
∑

k∈K ξjkZjk and v(Yn,Zn) denote the solu-

tion of subproblem [BD(SUB)] in iteration n of the Benders decomposition algorithm. In

each iteration, the summation of znMAS and v(Yn,Zn) provides an upper bound (UBn) for

model [RM]. At the end of each iteration we check if the difference between the upper

and lower bound falls below a threshold limit ϵ. Otherwise, constraints (4.26) are added to
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the master problem [BD(M)]. A pseudo-code of the generalized Benders decomposition

algorithm is provided in Algorithm 1.

Algorithm 1: Generalized Benders Decomposition
UBn ← +∞, LBn ← −∞, n← 1, ϵ, terminate← false
while (terminate = false) do

Solve [BD(M)] to obtain {Y n
lj }l∈L,j∈J ∪

K, {Zn
jk}j∈J ,k∈K, znMP , and znMAS

if (znMP > LBn) then
LBn ← znMP

end if
Solve sub-problem [BD(SUB)] to obtain v(Yn,Zn)
Calculate δnlj , λ

n
lk, and γnjk using constraints (4.23)-(4.25)

if (znMAS + v(Yn,Zn) < UBn) then
UBn ← znMAS + v(Yn,Zn)

end if
if ((UBn − LBn)/UBn ≤ ϵ) then

terminate← true
else

Add cut (4.26) in [BD(M)]
end if
n← n+ 1

end while

2.4.2 Algorithmic Enhancement

In this section, we study how to improve the computational performance of the gener-

alized Benders decomposition algorithm in solving model [RM]. To achieve this goal, we

have developed few enhancement strategies to improve the performance of the generalized

Benders decomposition algorithm.

• Integer cuts: To expedite the running time of the master problem we add the follow-

ing inequalities generated using a local branching technique [35]. These inequalities

excludes all binary values searched in the previous iterations and force the master
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problem to select a solution different from the previous solutions. To add these in-

equalities lets first define {Ŷ n
lj }∀l∈L,j∈J ∪

K be the solutions obtained from solving

the master problem in iteration n. Let Yn
1 = {(l, j)|Ŷ n

lj = 1, ∀l ∈ L, j ∈ J } and

Yn
2 = {(l, k)|Ŷ n

lk = 1, ∀l ∈ L, k ∈ K}. We add the following constraint to the

master problem in iteration n+ 1:

∑
(l,j)∈Yn

1

(1− Ylj) +
∑

(l,k)∈Yn
2

(1− Ylk) +
∑

(l,j)/∈Yn
1

Ylj +
∑

(l,k)/∈Yn
2

Ylk ≥ 1 (2.32)

These inequalities when added to the master problem during iteration n + 1, force

the problem to generate a new solution different from the solution generated during

iteration n.

• Logistics Constraints: In the initial stages of the Benders decomposition algorithm,

the master problem produces very few first-stage decision variables. This process

continues until sufficient information is gathered from the subproblem via constraints

(4.26). To overcome this issue in each iteration of the Benders decomposition algo-

rithm we add the following logistics constraints in the master problem. Doing this

will improve the running time of the Benders decomposition algorithm.

Recall the demand satisfying constraints described in equation (4.4). Since this is a

minimization problem, these constraints can be expressed as follows:

∑
k∈K

Xkg + Ug ≥ bg ∀g ∈ G (2.33)

Furthermore, constraints (4.3) and (4.8) can be rewritten as follows:

∑
g∈G

Xkg ≤
∑
l∈L

pcaplk Ylk ∀k ∈ K (2.34)
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Combining constraints (4.28) and (4.29) and dropping the penalty term Ug obtains

the following valid-inequalities that are added to the master problem:

∑
l∈L,k∈K

pcaplk Ylk ≥
∑
g∈G

bg (2.35)

Here bg represents the amount of bio-fuel demand expected to be met through the

supply chain network. Thus, bg = α ∗ bg, ∀g ∈ G. We can initialize the value

of α between 0.0 to 1.0; and when α = 1.0, constraints (4.30) require that all the

demand is satisfied by this supply chain and the introduction of variable Ug becomes

redundant. In our application, we initially set α = 0.2 to provide the Benders master

problem few initial location decisions; however, we remove this constraints when

the gap between the upper and lower bound of the overall Benders decomposition

algorithm falls below 20%.

• Knapsack Inequalities: In order to speed up the branch-and-bound procedure in

the solver, we have added the following knapsack inequality in the master prob-

lem [BD(M)] of the generalized Benders decomposition algorithm. These cuts will

help the state-of-the-art solvers such as CPLEX to derive a variety of valid inequal-

ities which will expedite the convergence of the Benders decomposition algorithm.

Therefore, we add the following cuts to the master problem [BD(M)] in iteration

n+ 1:

LBn ≤
∑
l∈L

∑
j∈J

∪
K

ψljYlj +
∑
j∈J

∑
k∈K

ξjkZjk + θ (2.36)

where LBn denotes the best known lower bound obtained so far.
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• Obtaining Good Solutions before Convergence: In the initial stage of the Ben-

ders decomposition algorithm, the master problem typically produces low quality

solutions. The process continues until sufficient information from the subproblem is

passed to the master problem via constraints (4.26). Additionally, the master problem

is an integer problem for which generating an optimal solution for even a moderate

size network problem is a challenging task. In order to alleviate this problem, we

initially set a large optimality gap which we gradually reduced as the algorithm pro-

gressed. For instance, initially we set an optimality gap of 5% which is reduced to

1% when the gap between the upper and lower bound of the Benders decomposition

algorithm falls below 10%.

• Setting Branching Priorities: In order to accelerate the solution of the master prob-

lem, we set proper branching priorities for variables Zjk, Ylk and Ylj . Branching

priorities helps CPLEX find the order in which the solver branches these variables.

Numerical analysis indicates that setting branching on Zjk variables first followed

by Ylk and Ylj saves some computational time when solving the master problem of

the Benders decomposition algorithm.

2.5 Computational Study and Managerial Insights

This section summarizes and interprets the results from the numerical study. We use

the states of Mississippi and Alabama as a testing ground for our model. This case study

demonstrates how the model can be applied to relevant real-world network design prob-

lems. The proposed model and algorithm are programmed in GAMS 24.2.1 [39] and ex-
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ecuted on a desktop computer with Intel Core i7 3.50 GHz processor and 32.0 GB RAM.

The optimization solvers used are ILOG CPLEX 12.6, BONMIN [9], and CONOPT 3.15

[37].

(a) Biomass distribution (b) Network representation
Figure 2.3

Biomass distribution and facility locations

2.5.1 Data Description

Biomass Supply and Demand: The region of interest in this case study consists of the

states of Mississippi and Alabama. The two main biomass feedstocks in this region are

corn stover and forest residues. The biomass availability data is provided by the Knowl-

edge Discovery Framework (KDF) database of United States Department of Energy [10].

This data was further processed by Idaho National Lab (INL) to identify the amount of

densified biomass available in this region. Figure 4.5a shows the distribution of densified

biomass available in this region. Every year, this region produces 6.85 million tons (MT) of
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densified biomass from 99 different counties. Note that only those counties that produces

more than 10,000 tons of biomass each year are considered here.

The total annual bio-fuel demand for our test region is set at 800 million gallon per

year (MGY) [113]. Counties with a population greater than 30,000 are considered the

demand points in this study. Based on this criteria, 41 counties from the region are selected.

Assume that the distribution of the population in a particular region is a good indicator of

the distribution of demand for bio-fuel. We use the centroid of the county as the point to

which bio-fuel is to be delivered.

Investment Costs: We consider a total of 71 potential multi-modal facility locations

(rail ramps) and 36 potential bio-refinery locations. Figure 4.5b presents the potential

locations of these multi-modal facilities and bio-refineries. We consider five different bio-

refinery sizes: 20 MGY, 40 MGY, 60 MGY, 100 MGY, and 150 MGY and five different rail

ramp capacities: 0.6 MTY, 0.8 MTY, 0.9 MTY, 1.05 MTY, and 1.20 MTY. The annualized

fixed costs for facilities and bio-refineries with their available capacities are obtained from

the study of Marufuzzaman et al. [76]. Although the actual fixed cost may vary by location,

a common fixed cost is presented here as a reasonable approximation.

Transportation Costs: This study assumes that trucks are used to transport biomass

from a feedstock supplier i ∈ I to a multi-modal facility j ∈ J . Trucks can also be used

to transport biomass directly from a feedstock supplier i ∈ I to a bio-refinery k ∈ K and

bio-fuel from bio-refinery k ∈ K to market g ∈ G. The major cost components needed to

calculate the unit cost of truck transportation are summarized in Table 4.2.
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Table 2.1

Truck transportation cost components [88]

Feedstock Bio-fuel
Item Value Unit Value Unit
Loading/unloading 5.0 $/wet ton 0.02 $/gallon
Time dependent 29.0 $/hr/truckload 32.0 $/hr/truckload
Distance dependent 1.20 $/mile/truckload 1.3 $/mile/truckload
Truck capacity 25 wet tons/truckload 8,000 gallons/truckload
Average travel speed 40 miles/hour 40 miles/hour

We set the fixed shipment cost per rail car equal to $2,248 (ξjk), and the unit transporta-

tion cost per rail car per mile is equal to $1.12. These cost parameters are based on a single

rail car of capacity 100 tons and are obtained from the study of Gonzales et al. [42]. We

used Arc GIS Desktop 10 to create a transportation network and then used this network to

identify the shortest paths. The network includes existing railways; local, rural, and urban

roads along with the major highways in Mississippi and Alabama.

Estimating Disruption Probabilities: Failure probabilities of multi-modal facilities are ob-

tained from a study by Marufuzzaman et al. [76]. In developing these estimates, the au-

thors consider three major types of natural disasters (hurricanes, floods and droughts) that

affect the Southeast U.S. Figure 2.4 presents the estimated disruption probabilities of the

candidate multi-modal facilities where the size of a circle is proportional to its disruption

probability. From the figure it is observed that the multi-modal facilities located in the

coastal region of Mississippi and Alabama face high disruption risk.

To model the spatial distribution of failure probability and predict it in locations where

historical data is unavailable, we first estimate the semi-variogram of failure probability

q(s) based on expression (2.19). The resulting empirical semi-variogram is demonstrated
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Figure 2.4

Disruption probability of multi-modal facilities [76]

in Figure 2.5. For both plots, the vertical axis represents the calculated γ̂ and the horizontal

axis represents the distance between any pair of locations (si, sj). The plot on the left is

the scatter plot which is calculated γ̂ based on all pairs of (si, sj)’s, whereas, the plot on

the right is the binned version of the scatter plot. Based on its plot, we fit γ̂ using the

method of Weighted Least Square estimate. The fitted model of γ̂ is shown in Figure 2.6,

which shows that a linear model may be a good fit for the semi-variogram function based

on the existing data set. We also examine the fitted model using the leave-one-out cross-

validation strategy. To do this, data points are removed one by one and predicted by Kriging

using the remaining data. Graphical results of the leave-one-out cross-validation are shown

in Figure 2.7, which summarizes the residual error of leave-one-out cross-validation. It

is shown in Figure 2.7 that most of residual prediction errors are around the value of 0,

which is supportive of the estimated semi-variogram model. Once the semi-variogram
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model is established, we use the Ordinary Kriging method, as shown in Equation (2.21), to

interpolate failure probability of the links.
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Figure 2.5

Empirical plot of the semi-variogram γ̂

2.5.2 Results and Discussion

Impact of budget allocation on system performance: Figure 2.8 depicts the bio-fuel sup-

ply chain network under various budget availability scenarios: $5 million and $10 million.

These prospective budgets total the amount of money given to the decision maker to invest
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Figure 2.6

Fitting the semi-variogram model
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Figure 2.7

Leave-one-out cross validation for the semi-variogram model
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Figure 2.8

Network representation under various budget availability scenarios

in improving the reliability of multi-modal facility-to-facility links. The figure shows that

budget availability has a significant impact on the location and number of facilities and the

reliability of link improvement plans. For example, model [RM] selects nine multi-modal

facilities with a $5 million budget, whereas the model selects fifteen multi-modal facilities

with $10 million. Additionally, the likely reliability improvement suggested by the higher

budget scenario is greater than that of lower budget scenario on the same links. With

the availability of higher budgets, the model tends to cover more regions as the reliability

of the links between the facilities improves. Note that model [RM] selects most of the

multi-modal facilities in the state of Mississippi because 82.06% of the total availability of

biomass in the two states is located in Mississippi.

Impact of reliability improvement cost (rjk) on system performance: Figure 2.9 shows how

reliability improvement cost impacts unit bio-fuel cost, the number of facilities operating,
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Figure 2.9

Impact of reliability improvement cost on system performance
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the number of containers transported between the multi-modal facilities, and bio-fuel pro-

duction under various budget scenarios. Note that the reliability improvement cost for a

given link is a function of several important parameters, such as the number of bridges

within the link, the existing condition of the repair and renovation of a railroad track, and

the proximity of that railroad track to lake, cannel, and river. These parameters as well

as the total reliability improvement cost, for a given link varies. Sensitivity analyses are

conducted to determine if the estimated reliability improvement cost changes and how that

change impacts the bio-fuel supply chain network. Figure 2.9 shows that with the increase

in unit reliability improvement cost, the bio-fuel supply chain network is more stable under

$10 million budget case compared to $5 million budget case. If the estimated unit relia-

bility improvement cost increases more than 10%, then the unit bio-fuel cost increases to

$3.82/gallon from $3.58/gallon in the $5 million budget scenario. However, this cost only

increases to $3.64/gallon from $3.58/gallon for the same experimental conditions in the

$10 million budget case because the decision maker can improve the reliability of several

links, even though the reliability improvement cost is high. The decision to improve im-

pacts the selection of number of facilities operating in a given time period and eventually

impacts the number of containers transported between the multi-modal facilities, as shown

in the second and third sub-figures in Figure 2.9. Therefore, the biomass, which was ini-

tially supposed to be shipped through multi-modal facilities, is diverted to highways by

trucks because of the high risk associated with multi-modal facility-to-facility links. This

not only increases the unit transportation cost for biomass, but it also increases the unit bio-
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fuel delivery cost. In summary, the size of the budget impacts the reliability improvement

cost, which in turn affects the bio-fuel supply chain network.

Impact of different risk levels on system performance: We now analyze the impacts of

different risk levels on bio-fuel supply chain network. Figure 2.10 shows the network

representation under three different risk levels: (a) risk prone, (b) risk neutral, and (c) risk

averse. We made the following definitions for this three different risk levels:

Definition 1 Assume that link (j, k) can be divided into njk sections, each of which has a

failure probability of qℓ for ℓ = 1, . . . , njk. Thus, a risk averse decision maker will estimate

the link failure probability qjk as qjk = maxℓ=1,...,njk
qℓ. Similarly, a risk prone decision

maker will estimate the link failure probability qjk as qjk = minℓ=1,...,njk
qℓ and a risk

neutral decision maker will estimate the link failure probability qjk as qjk = avgℓ=1,...,njk
qℓ

Clearly, when the decision maker adopts a risk prone attitude, then the model selects

bio-refineries further away from the multi-modal facilities (Figure 2.10(a)). However,

when the decision maker adopts a risk averse attitude, the model selects most of the bio-

refineries in Northwest Mississippi that are close to their multi-modal facilities (Figure

2.10(c)). The reason behind selecting a number of multi-modal facilities and bio-refineries

in the Northwest is this region produces abundance of biomass and usually is considered

as a less disaster prone area (see Figure 2.3a and 2.4). Note that these experiments were

conducted under $5 million budget case. In summary, depending on adopting different risk

levels it impacts the bio-fuel supply chain network.
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Figure 2.10

Impact of different risk levels on system performance
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Impact of biomass supply changes on system performance: Table 2.2 presents the im-

pact of supply changes on the unit cost of bio-fuel, the number of multi-modal facilities,

the number of containers transported between the multi-modal facilities, and bio-fuel pro-

duction. The results indicate that a 5% increase in biomass supply reduces the unit cost of

bio-fuel by 11.08%. Therefore, the unit cost of bio-fuel lessened to $3.16 per gallon from

$3.56 per gallon as biomass supply increased by 5%. A 10% increase in biomass supply

decreases the unit cost of bio-fuel by 19.43% ($2.87 per gallon). Furthermore, the number

of multi-modal facilities and the number of containers transported between the facilities are

impacted by the biomass supply changes. For example, a 10% increase in biomass supply

increases the number of multi-modal facilities by 40% to handle the increase of biomass

shipped. This results in an additional 8.54% increase in containers transported between

the multi-modal facilities. With the changes in the number of multi-modal facilities and

the containers transported between them, the biomass supply will also impact the bio-fuel

production, as shown in Table 2.2.

Table 2.2

Impact of supply changes on system performance

Supply changes
Item -10% -5% 0% +5% +10%
Unit cost of bio-fuel ($/gallon) 4.40 3.95 3.56 3.16 2.87
Number of multi-modal facilities 8 10 10 11 14
Number of containers transported 61,659 65,086 68,512 71,936 74,361
Bio-fuel produced (MGY) 447.64 472.51 497.38 522.25 547.12
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Figure 2.11

Identifying different hurricane scenarios in the bio-fuel supply chain network

Impact of different disruption scenarios on system performance: To quantify the ben-

efits of designing a reliable bio-fuel supply chain system, we create different realistic hur-

ricane scenarios under two different budget considerations: (a) $5 million and (b) $10

million. The reliability improvement suggested by model [RM] is tested by simulating

hurricanes on the coastal regions of Mississippi and Alabama, generally considered as

highly probable locations for such natural disasters to occur. Assume that the multi-modal

facility connecting links located near the epicenter of the hurricane are more prone to dis-

aster than those located toward the outer surface. Four different circles from the epicenter

of the hurricane are developed to represent the failure probabilities of the transportation

links and facilities in those regions. The darker the color of the circles indicate a higher

chance of failure for the facilities within the region. Assume that there is a 50% chance

that the transportation links located within the first circle will fail because the epicenter of

the hurricane is located in the first circle. Though the radius of the circles will vary based
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on the strength of the hurricane’s strikes, this study sets the radius at 60 miles by assuming

that a medium hurricane strikes the coast. Every 60 mile interval from the epicenter of the

hurricane, the failure probability of the transportation links drops down to 15%, 10%, and

5%, respectively. These scenarios are illustrated in Figure 2.11.

We now solve model [RM] using these disruption scenarios and compare the solutions

with the minimum cost model solutions. Note that a minimum cost model does not con-

sider disruption and can be obtained by setting {qjt}j∈J ,k∈K = {∆jk}j∈J ,k∈K = 0.0 into

the objective function value of model [RM]. Under normal conditions, the minimum cost

model provides the minimum delivery cost, $3.44/gallon, compared to the reliable cost

model solution, $3.53/gallon. However, under disaster scenarios, the reliable model solu-

tion outperforms the minimum cost model solution. We vary the failure probability of the

circles by ±5% from the base scenario, and observe that the minimum cost model solu-

tion varies between $3.85-$3.96/gallon, compared to $3.68-$3.76/gallon for the $5 million

budget scenario and $3.61-$3.69/gallon for the $10 million budget case. Thus, the deci-

sion of allocating more budget is justified to improve the reliability of the transportation

network.

Algorithmic performance: This section presents the computational experience of solv-

ing model [RM] using the algorithm proposed in Section 3.2. We implemented the gen-

eralized Benders algorithm on the same version of GAMS, where we used CPLEX for

solving the mixed-integer linear programming master problem [BD(M)] and CONOPT

for solving the nonlinear subproblem [BD(SUB)]. The generalized Benders decomposi-

tion algorithm is terminated when at least one of the following conditions is met: (a) the
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optimality gap (ϵ = |UB −LB|/UB) falls below a threshold value ϵ = 0.01; (b) the max-

imum time limit tmax = 10, 800 CPU seconds is reached; or (c) the maximum iteration

limit Itermax = 1, 000 is reached. Table 4.3 summarizes the problem size considered for

analyzing the performance of the solution algorithms. The table further reports the prob-

lem size considered before and after the processed network. Ideally, model [RM] should

account a fully connected network where all the source nodes are connected with the des-

tination nodes (shown in case 1 and 2 in Table 4.3). However, having too many integer

variables significantly increases the computational complexity of the problem. We then

reduced the potential links to only those that are likely to be in an optimal solution. We

performed the following preprocessing techniques to reduce the complexity of the original

network. The number of variables and constraints reported in Table 4.3 (Case 3 and 4) is a

result of this preprocessing.

• A study conducted by Brower [11] reported that moving biomass through trucks

more than 50 miles to a feedstock supply point severely impacts profits. We use this

information to remove all the arcs greater than 50 miles that connects a feedstock

supplier i ∈ I with a multi-modal facility j ∈ J .

• Multi-modal facilities are typically used for transporting high volume traffics at

longer distances. Therefore, we remove all the arcs between two multi-modal fa-

cilities if the distance between them is smaller than 20 miles.

• We assume that the bio-fuel will not transport through trucks from a bio-refinery to

a demand city if they are located 200 miles away. Therefore, we remove all the arcs

greater than 200 miles that connects a bio-refinery k ∈ K with a demand city g ∈ G.
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Table 2.3

Experimental problem sizes

Cases |J | |I| |K| |G| |L| Binary Integer Continuous Total Total
Variables Variables Variables Variables Constraints

Before Preprocessing
1 45 99 36 60 5 405 1,620 328,344 330,369 488,194
2 71 99 36 60 5 535 2,556 514,608 517,699 769,982
After Preprocessing
3 45 99 36 60 5 405 1,140 146,259 147,804 216,175
4 71 99 36 60 5 535 1,807 279,311 281,653 381,486

Table 2.4

Data parameter settings for algorithm comparison

Data Set # Cases qjk Budget (mil. $)
S1 3 U [0.05, 0.25] 5.0
S2 3 U [0.05, 0.25] 10.0
S3 4 U [0.05, 0.25] 5.0
S4 4 U [0.05, 0.25] 10.0

To compare the performance between GAMS/BONMIN and generalized Benders de-

composition algorithm, we use six different data sets where four data sets are presented in

Table 2.4 and the two remaining sets include data obtained from the real world. Note that

the failure probability between the links of the multi-modal facilities for data sets S1-S4 are

generated using an uniform distribution, i.e., qjk ∼ U [0.05, 0.25]. Finally, Table 2.5 com-

pares the computational results in solving model [RM] between GAMS/BONMIN and the

generalized Benders decomposition algorithm. Note that the algorithm is enhanced with

the integer cuts, knapsack inequalities, and logistics constraints discussed in section 2.4.2.

The best result is identified for each problem solved and presented in boldface. Since a

stopping criteria for the algorithm is ϵ ≤ 1.0%, the algorithms are stopped when such a
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solution is found within the maximum time limit. The algorithm that gave the smallest

running time is highlighted. Otherwise, if such a quality solution is not found within the

maximum time limit or number of iterations, the algorithm with the smallest optimality

gap is highlighted. Based on the results presented in Table 2.5, it is observed that the gen-

eralized Benders decomposition algorithm is capable of solving all the problem instances

(22 out of 22) in less than 1% optimality gap on a reasonable amount of time as compared

to GAMS/BONMIN. For the instances that are interrupted because of the time limit, we

calculate the average gap at the end of the time limit and label them in column ”Avg Gap”.

In overall, the average optimality gap and running time for generalized Benders decom-

position algorithm is reported as 0.89% and 803.1 CPU seconds compared to 48.41% and

10,800 CPU seconds as reported by GAMS/BONMIN.

Table 2.5

Computational performance of the solution algorithm

GAMS/BONMIN Generalized Benders
Data # of Avg Avg # of Avg Avg Avg
Set Solved Gap (%) CPU (sec) Solved Gap (%) CPU (sec) Iter

Real-1a 0/1 47.86 10,800 1/1 0.87 872.9 72
Real-2b 0/1 49.11 10,800 1/1 0.95 859.4 71

S1 0/5 42.18 10,800 5/5 0.86 611.7 58
S2 0/5 41.04 10,800 5/5 0.83 645.7 61
S3 0/5 52.64 10,800 5/5 0.91 923.4 77
S4 0/5 57.67 10,800 5/5 0.94 905.5 75

Average 0/22 48.41 10,800 22/22 0.89 803.1 69
aReal failure probability data with $5.0 million budget and |J | = 71
bReal failure probability data with $10.0 million budget and |J | = 71
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2.6 Conclusion

This paper studies a pre-disaster planning problem that seeks to strengthen the links

between the multi-modal facilities of a bio-fuel supply chain network. A mixed-integer

nonlinear programming model [RM] is developed to determine the optimal locations for

multi-modal facilities and bio-refineries, offer suggestions on reliability improvement at

vulnerable links, production, and make transportation decisions under both normal and

disrupted scenarios. The aim is to assist investors in determining which links’ reliability

can be improved under specific budget limitations so that the bio-fuel supply chain network

can prevent possible losses when transportation links are disrupted because of natural dis-

asters. The failure probability of the links between the multi-modal facilities is estimated

with a spatial statistics model developed from real world data. Finally, this paper presents

a generalized Benders decomposition algorithm for solving our reliable, pre-disaster plan-

ning problem [RM]. This enhanced approach incorporates several algorithmic improve-

ments such as integer cuts, knapsack inequalities, and logistics constraints. Computational

results show that the enhanced generalized Benders decomposition algorithm is capable of

solving realistic size problem instances efficiently compared to GAMS/BONMIN.

The states of Mississippi and Alabama are used as a testing ground for this model,

and several experiments provide insights about the advantages of using model [RM] in a

bio-fuel supply chain network. As part of the numerical experimentation, some realistic

hurricane scenarios are presented to determine the potential impact that pre-investing may

have on improving the bio-fuel supply chain network’s reliability on vulnerable transporta-

tion links considering limited budget availability. In case of a disaster, the unit bio-fuel
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delivery cost provided by the minimum cost model increases to $3.96/gallon, compared

to $3.69/gallon provided by the reliable model solution. Moreover, the impacts of several

features of the bio-fuel supply chain were examined, including network budget alloca-

tion, reliability improvement costs, the risk level for decision makers, and biomass supply

changes. The findings of these experiments, presented here, will help decision makers

design reliable logistics networks for the bio-fuel supply chain network.

This work can be extended in several directions. This study ignores the impacts of sea-

sonality of biomass, an important factor to consider in bio-fuel supply chain literature. Our

work can further be extended by incorporating into the modeling process the impacts of

traffic congestion caused by natural disasters. Furthermore, more realistic and correlated

multi-modal facility failure patterns should be incorporated into the modeling framework.

Finally, research is required to generate stronger cuts that will further enhance the Gener-

alized Benders decomposition algorithm. These issues will be addressed in future studies.
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CHAPTER 3

A HYBRID DECOMPOSITION ALGORITHM FOR DESIGNING A MULTI-MODAL

TRANSPORTATION NETWORK UNDER BIOMASS SUPPLY UNCERTAINTY

Co-firing biomass with coal has been receiving extensive attention from the energy

community due to the several added benefits of the process. First, co-firing biomass re-

duces green house gas (GHG) emissions due to its displacing coal with biomass [26].

Second, biomass co-firing can be accomplished using the existing coal-fired power plant

infrastructures. Therefore, no additional capital investment is required. Third, co-firing

minimizes waste such as wood and agricultural waste and the environmental problem as-

sociated with its disposal [100]. On the contrary, few studies [57, 100], address some

limitations of co-firing biomass with coal: (1) co-firing biomass reduces boiler efficiency

and eventually the overall systems efficiency; (2) biomass has lower heating and density

values, both of which are undesirable from a production point of view; and, (3) biomass

supply is dispersed geographically, adding logistical challenges. This study explores some

of the logistical challenges in the biomass supply chain system that will help the managers

take better decisions.

The efficiency of co-firing biomass depends on how economically the biomass is trans-

ported from the feedstock supply points to the coal plants. This process necessitates devel-
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oping an integrated logistics network that efficiently connects origin fields to destination

coal plants with proper transportation modes. However, designing such a network is chal-

lenging due to the physical characteristics of biomass. Biomass is bulky and difficult to

transport; its supply is highly seasonal and uncertain; and biomass is widely dispersed

geographically. Therefore, modes such as rail can be considered as the viable modes of

transportation to deliver biomass from feedstock suppliers to coal plants. However, the

operations in multi-modal facilities can be highly impacted by the seasonality of biomass.

For instance, the harvesting season for corn stover follows the harvesting of corn which

starts from early September and ends in November. On the other hand, woody biomass is

available all year except three months in the winter. In addition to the feedstock seasonal-

ity, it is observed that the biomass supply fluctuates extensively from one year to another.

This statement is supported by Figure 3.13 which shows the fluctuation of cornstover avail-

ability in the four states Mississippi (MS), Alabama (AL), Tennessee (TN), and Louisiana

(LA) in Southern United States over 1980-2014 [111]. The figure shows that the availabil-

ity of biomass cannot be predicted accurately. The biomass supply fluctuates highly from

one time period to another depending on climatic conditions such as rain, temperature, and

humidity along with other extreme events such as, natural disasters and human interven-

tion [90]. This poses a significant logistics challenge in the network and highlights the

need for developing optimization models to design a cost-efficient, reliable biomass co-

firing supply chain under feedstock supply uncertainty. The study of the biomass supply

chain optimization has increased rapidly in recent years. We group the existing literatures

into deterministic and stochastic research to reflect the contribution of our modeling and
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algorithmic approaches used in this paper. Studies conducted by Zamboni et al. [132],

Eksioglu et al. [29], Eksioglu et al. [30], Huang et al. [49], An et al. [1], Bai et al. [5],

Walther et al. [120], Xie and Ouyang [129], Zhang et al. [3], Roni et al. [100], Xie et

al. [127] and Memisoglu and Uster [80] analyze plant location and transportation issues

in biofuel supply chain networks under a deterministic setting. These studies are further

extended to consider a case when the disruption in bio-refineries (e.g., Li et al. [66], Wang

and Ouyang [122], Bai et al. [6]) or in multi-modal facilities (e.g., Marufuzzaman et al.

[76], Marufuzzaman and Eksioglu [73]) or in the links between the multi-modal facilities

(e.g., Poudel et al. [92]) impact the biofuel supply chain network. Another stream of re-

search in bio-fuel supply chain community develops multi-objective optimization model

that not only minimizes cost but also minimizes Green House Gas (GHG) emissions from

the supply chain network (e.g., Zamboni et al. [131], Giarola et al. [41], You et al. [130]).

All the studies discussed above assume that the model input parameters (e.g., biomass

supply, demand, technology) are known and thus fail to capture the impact of system un-

certainties in the biofuel supply chain network configuration. To represent a more realistic

case, studies conducted by Cundiff et al. [23], Kim et al. [59], Chen and Fan [17], Ge-

breslassie et al. [38], Awudu and Zhang [3], and Marufuzzaman et al. [75] account uncer-

tainties in biomass supply, demand, technology, and pricing. A brief overview of consid-

ering uncertainty and sustainability in a biofuel supply chain network can be found from

a recent study by Awudu and Zhang [54]. Although both the deterministic and stochas-

tic models have done a great job in capturing the overall system level design, the models

did not explicitly consider the option of using long haul transportation modes such as rail

53



or barge as a viable mode of transportation to carry biomass from multi-modal facilities

to bio-refineries except the studies from Marufuzzaman et al. [76], Roni et al. [100],

Marufuzzaman and Eksioglu [73]. Introducing multi-modal facilities in the bio-fuel sup-

ply chain network not only reduces cost but also alleviates congestion in the highways and

as a result improves safety. The case became much stronger after Idaho National Lab-

oratory proposed a biomass delivery system that preprocess biomass prior to transporting

[48]. Densified biomass has physical characteristics which are similar to corn, soybean and

other grains; therefore, it is easy to load/unload and transport, and thus long hauls become

an option. Recent studies by Marufuzzaman et al. [76], Roni et al. [100], Marufuzzaman

and Eksioglu [73], [94] captured this specific product information in the modeling frame-

work and identified the viability of using multi-modal facilities in a bio-fuel supply chain

network. Our model can be considered as a direct extension of these studies in the sense

that we captured feedstock uncertainty in a multi-time period problem to transport biomass

from feedstock supply sites to coal-plants.

Although stochastic programming approaches provide more reliable solutions, they are

often achieved with high computational burden. Commercial solvers fail to solve the model

directly for even a small set of scenarios for most of the real life problems. Therefore, de-

composition algorithms are often employed to overcome the computational difficulties.

Note that our problem can be considered as an extension of multi-time period facility lo-

cation problem that handles multi-commodities under uncertainty. Until now a number of

decomposition techniques have been developed to solve such stochastic facility location

problems. Schutz et al. [103] develops a hybrid decomposition algorithm that uses a sam-
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ple average approximation algorithm along with a dual decomposition algorithm to solve

a Norwegian meat supply chain problem under uncertainty. Santoso et al. [102] devel-

ops a hybrid decomposition algorithm that uses sample average approximation algorithm

and an enhanced Benders decomposition algorithm to solve a realistic size supply chain

network designing problem under uncertainty. Rajgopal et al. [95] proposes a double-

cut L-shaped algorithm to solve a two-stage stochastic supply chain network designing

problem under uncertainty. Keyvanshokooh et al. [58] develops an accelerated Benders

decomposition algorithm to solve a closed-loop supply chain network design problem un-

der uncertainty. Despite all the efforts, little work has been done so far to tackle a fairly

realistic size stochastic bio-fuel supply chain network designing problem. Work done by

Chen and Fan [17] and Huang et al. [50] uses Progressive Hedging Algorithm (PHA) to

solve a single and multi-time period two-stage stochastic programming model formulation

under feedstock supply uncertainty. The authors are able to solve up to eight feedstock sup-

ply scenarios within 1% optimality gap. Marufuzzaman et al. [75] develops a Lagrangian

relaxation based multi-cut L-shaped algorithm to solve a two-stage stochastic bio-crude

supply chain network problem of up to ten feedstock supply scenarios. Gebreslassie et al.

[38] solves a single time period bio-refinery supply chain network problem using a multi-

cut L-shaped algorithm of up to one thousand feedstock supply scenarios. In this study,

we extend the literatures by generating realistic scenarios obtained from prediction errors

of the historical and forecasted biomass supply availabilities and then develop a hybrid so-

lution approach that combines Sample average approximation algorithm with an enhanced

Progressive hedging algorithm to solve a multi-commodity, multi-time period biomass co-
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firing supply chain network designing problem of up to 500 scenarios. To enhance the

Progressive hedging algorithm, we use several stronger techniques, including local and

global adjustment strategies [19], dynamic penalty parameter updating techniques, and

Rolling horizon heuristics. The proposed algorithm is then validated via a real-world case

study with data from Mississippi and Alabama.

In summary, the major contribution of this research to the existing biomass supply

chain literatures are as follows:

• This study proposes a two-stage stochastic mixed-integer linear programming model

formulation for the design and management of a biomass co-firing supply chain

problem under feedstock supply uncertainty. The output of our model provides

season-wise utilization of multi-modal facilities, number of containers transported

between the multi-modal facilities, and the amount of biomass processed, stored,

and transported from multiple feedstock supply sites to coal plants under biomass

supply uncertainty. Our model extends prior biomass co-firing optimization models

(e.g., Roni et al. [100], Karimi et al. [57], [31]) by incorporating seasonality and

uncertainty in the modeling framework.

• We generate realistic scenarios obtained from prediction errors of the historical and

forecasted biomass supply availabilities. The scenarios are then used in the stochas-

tic program to generate more useful and realistic solutions. Such approach has not

been addressed yet by any literatures in the biomass supply chain community.

• We develop a hybrid solution approach that combines Sample average approxima-

tion with an enhanced Progressive hedging algorithm to solve a multi-commodity,
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multi-time period biomass co-firing supply chain network designing problem. To

enhance the Progressive hedging algorithm, we use several stronger techniques, in-

cluding local and global adjustment strategies [14], dynamic penalty parameter up-

dating techniques, and Rolling horizon heuristics. Computational results confirm the

efficiency and robustness of the proposed solution method.

• Finally, we validate the modeling results by developing a case study using data from

Mississippi and Alabama. The outcome of this study provides a number of manage-

rial insights such as deployment of multi-modal facilities, storage, processing and

transportation of biomass under different biomass supply variability levels. These

insights can effectively aid decision makers to design a reliable biomass co-firing

supply chain network. Finally, we demonstrated how the mean biomass supply

changes impacts the supply chain network configuration and also justified the use

of considering stochastic programming modeling approach over deterministic ap-

proach.

The remainder of this paper is organized as follows. Section 4.2 presents the model for-

mulation. Section 3.2 discusses how to generate scenario trees and discusses a hybrid de-

composition algorithm that combines Sample average approximation algorithm with Pro-

gressive hedging algorithm to efficiently solve the proposed model. Section 4.4 conducts

numerical experiments to verify the algorithm performance and to draw managerial in-

sights. Section 4.5 concludes this paper and discusses future research directions.
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3.1 Problem Description and Model Formulation

This section presents a two-stage stochastic programming model formulation for the

design and management of a biomass co-firing supply chain network while taking stochas-

tic nature of biomass supply into account. In the two-stage stochastic programming model

formulation, the first-stage decides the location, capacity, and timing to use a multi-modal

facility among candidate locations prior to realization of any random events. After the

first-stage decisions are made, the random events are realized and the second-stage de-

cisions such as the cost of procuring, storing, and transporting biomass from feedstock

supply sites to coal plants are made. The objective is to minimize the first-stage and ex-

pected second-stage costs across all possible feedstock supply scenarios for the biomass

co-firing supply chain network. Figure 4.3 gives an example of a logistics network for

co-firing biomass with coal that consists of two feedstock suppliers, three multi-modal fa-

cilities, and one coal plant. One can view this network as a set of nodes and arcs where

nodes represent locations where one could potentially use a multi-modal facility, or repre-

sent harvesting sites that supply biomass feedstock, or coal plants where the biomass are to

be delivered. Arcs that connect harvesting sites with multi-modal facilities and coal plants

represent transportation arcs. Finally, the arcs that connect same facility in two consecutive

time periods are the inventory arcs. The problem is to minimize the overall planning and

operational cost where the planning decisions (e.g., use of multi-modal facilities) are made

at the beginning of the year while the operational decisions (e.g., transportation, storage,

processing) are time dependent and made for every season over a year.
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Let G(N ,A) denote a logistics network where N is the set of nodes and A is the set

of arcs. Set N consists of the set of harvesting sites I, the set of candidate multi-modal

facilities J , and the set of coal plants K, i.e., N = I ∪ J ∪ K. The set of arcs A is

partitioned into three disjoint subsets, i.e., A = A1 ∪ A2 ∪ A3, where A1 represents the

set of arcs joining harvesting sites I with multi-modal facilities J ; A2 represents the set

of arcs between multi-modal facilities J and coal-plants K; and finally, A3 represents the

set of arcs that directly connect from harvesting sites I to coal plants K. Let B denote the

set of feedstock types to be distributed in the logistics network in different time periods

of a year, and let T denotes the set of time periods to be considered in this problem. We

further denote Ω as the sample space of the random event, where ω ∈ Ω defines a particular

realization. Let sbitω denote the amount of biomass of type b ∈ B available at site i ∈ I in

time period t ∈ T under scenario ω ∈ Ω. The model considers fixed number of scenarios

(|Ω|) each of which represents a particular realization of biomass supply and there is a

positive probability ρω (ρω ≥ 0) associated with each scenario ω ∈ Ω. Each coal plant

k ∈ K demands dkt tons of biomass in period t ∈ T . We consider that the unmet demand

of the biomass can be substituted. The per unit cost of not satisfying the demand at each

coal plant k ∈ K in period t ∈ T is denoted by πkt. This will be the threshold cost that

customer want to pay for the biomass. If the unit delivery cost of biomass exceeds this

threshold then it will be beneficial to use the substitution rather than getting biomass on

higher cost.

For nodes j ∈ J , ψljt denotes the fixed cost of using a multi-modal facility of capacity

l ∈ L in time period t ∈ T . We choose the candidate location for multi-modal facilities
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which already exist at given location j ∈ J and the fixed cost represents the additional cost

to build the infrastructure (e.g., building additional track, purchasing lifts, track switch).

We assume that the coal plants are co-located with multimodal facilities. We further as-

sume that the transportation cost between multi-modal facilities to nearby coal plants is

negligible. This assumption is made based on the fact that most of the coal plants have

railway access since railway is the common mode to transport coal. Each arc (i, j) ∈ A1

carries biomass of type b ∈ B from a harvesting site i to a multi-modal facility j and are

generally located close to each other (e.g., 10-20 miles). Therefore, trucks are preferred

on (i, j) ∈ A1 and its unit transportation cost is represented by cbij . The arcs (j, k) ∈ A2

carry large-volume long-haul traffic and use rail as a major transportation mode to transport

biomass from multi-modal facilities to coal plants. We represent cbjkt as a unit transporta-

tion cost along arc (j, k) ∈ A2 in time period t ∈ T . Therefore, a unit flow along an

origin-destination route {(i, j), (j, k)} for biomass of type b ∈ B in time period t ∈ T

costs cbijkt = cbijt + cbjkt. Biomass is usually transported in cargo containers between

the multi-modal facilities. Therefore, we consider a fixed cost ξjkt which represents the

cost associated with loading and unloading biomass in the cargo containers in time period

t ∈ T . We further denote cbikt as the unit cost of transporting biomass of type b ∈ B

along arcs (i, k) ∈ A3 in time period t ∈ T . These arcs are preferred when the feedstock

sites are located close to the coal plants and direct shipments of biomass using trucks are

considered cheaper compared to multi-modal facilities. Finally, biomass is required to be

purchased from the farmers and collected and stored before hauling it on truck. Therefore,

we denote δbit and γbit as the unit purchasing and storage cost for biomass of type b ∈ B at
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location i ∈ I in time period t ∈ T . Let us now introduce the following notation for our

two-stage stochastic programming formulation:

Sets:

• I: set of harvesting sites (farms)

• J : set of multi-modal facilities

• K: set of coal plants

• L: set of capacities

• T : set of time periods

• B: set of biomass types (b1 for corn-stover and b2 for forest residues)

• Ω: set of scenarios

Parameters:

• ψljt: fixed cost of using a multi-modal facility of capacity l ∈ L at location j ∈ J

in time period t ∈ T

• ξjkt: fixed cost of a cargo container for transporting biomass along arc (j, k) ∈ A2

in time period t ∈ T

• cbikt: unit transportation cost for biomass of type b ∈ B along arc (i, k) ∈ A3 in time

period t ∈ T

• cbijkt: unit transportation cost for biomass of type b ∈ B along arc (i, j, k) ∈ A1∪A2

in time period t ∈ T

• sbitω: amount of biomass of type b ∈ B available at site i ∈ I in period t ∈ T under

scenario ω ∈ Ω

• dkt: demand for biomass at coal plant k ∈ K in period t ∈ T

• ccap: capacity of cargo container

• hcapk : biomass holding capacity at coal plant k ∈ K

• Clj: biomass storage/handling capacity of a multi-modal facility of size l ∈ L at

location j ∈ J

• αb: deterioration rate of biomass of type b ∈ B
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• pbkt: unit biomass processing cost of type b ∈ B at coal plant k ∈ K in time period

t ∈ T

• hbkt: unit inventory holding cost for biomass of type b ∈ B at coal plant k ∈ K in

time period t ∈ T

• δbit: unit biomass purchasing cost of type b ∈ B at location i ∈ I in time period

t ∈ T

• γbit: unit biomass storage cost of type b ∈ B at location i ∈ I in time period t ∈ T

• πkt: unit penalty cost of not satisfying demand at coal plant k ∈ K in time period

t ∈ T

• ρω: probability of scenario ω ∈ Ω

Decision Variables:

• Yljt: 1 if a multi-modal facility j ∈ J of capacity l ∈ L is used at time period t ∈ T ;

0 otherwise

• Zjktω: number of cargo containers transported between multi-modal facility j ∈ J

to coal plant k ∈ K at time period t ∈ T under scenario ω ∈ Ω

• Xbiktω: amount of biomass of type b ∈ B transported from harvesting site i ∈ I to

coal plant k ∈ K at time period t ∈ T under scenario ω ∈ Ω

• Xbijktω: amount of biomass of type b ∈ B transported from harvesting site i ∈ I to

coal plant k ∈ K through multi-modal facility j ∈ J at time period t ∈ T under

scenario ω ∈ Ω

• Pbktω: amount of biomass of type b ∈ B processed in coal plant k ∈ K at time period

t ∈ T under scenario ω ∈ Ω

• Hbktω: amount of inventory of type b ∈ B stored in coal plant k ∈ K at time period

t ∈ T under scenario ω ∈ Ω

• Uktω: amount of biomass shortage at coal plant k ∈ K in time period t ∈ T under

scenario ω ∈ Ω
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We now introduce the following first and second-stage decision variables for our two-

stage stochastic programming model formulation. The first-stage decision variables Y :=

{Yljt}l∈L,j∈J ,t∈T determine the size, location, and time to use a multi-modal facilities, i.e.,

Yljt =


1 if a multi-modal facility of size l is used at location j at time period t

0 otherwise;

The second-stage decision variables Z := {Zjktω}j∈J ,k∈K,t∈T ,ω∈Ω decide the number

of cargo containers transported between multi-modal facility j ∈ J to coal plant k ∈ K

at time period t ∈ T under scenario ω ∈ Ω; X := {Xbertω}b∈B,(e,r)∈A,t∈T ,ω∈Ω denote the

flow of biomass of type b ∈ B along each link (e, r) ∈ A of the network at time period

t ∈ T under scenario ω ∈ Ω; P := {Pbktω}b∈B,k∈K,t∈T ,ω∈Ω denote the amount of biomass

of type b ∈ B processed in coal plant k ∈ K at time period t ∈ T under scenario ω ∈ Ω;

H := {Hbktω}b∈B,k∈K,t∈T ,ω∈Ω denote the amount of inventory of type b ∈ B stored in coal

plant k ∈ K at time period t ∈ T under scenario ω ∈ Ω; and U := {Uktω}k∈K,t∈T ,ω∈Ω

denote the amount of biomass shortage at coal plant k ∈ K in period t ∈ T under scenario

ω ∈ Ω.

The objective function of the biomass co-firing supply chain network model [CSC]

minimizes the first-stage costs and the expected value of the random second-stage costs.

The first-stage decisions include the fixed costs of using multi-modal facilities at different

time period of a year. These decisions are required to be made before the uncertainty is

revealed. However, after the uncertainty is revealed the second stage decisions are made

which include transportation, storage, processing, and penalty costs. The following is a
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two-stage mixed-integer linear programming (MILP) model formulation of the problem

referred to as model [CSC].

[CSC] Minimize
Y

∑
l∈L

∑
j∈J

∑
t∈T

ψljtYljt +
∑
ω∈Ω

ρωQ(Y, ω) (3.1)

Subject to

∑
l∈L

Yljt ≤ 1 ∀j ∈ J , t ∈ T (3.2)

Yljt ∈ B ∀l ∈ L, j ∈ J , t ∈ T (3.3)

with Q(Y, ω) being the solution of the following second-stage problem:

Q(Y, ω) = Minimize
Z,X,P,H,U

∑
t∈T

(∑
j∈J

∑
k∈K

ξjktZjktω +
∑
b∈B

(∑
i∈I

∑
k∈K

(cbikt + δbitγbit)Xbiktω

+
∑
i∈I

∑
j∈J

∑
k∈K

(cbijkt + δbit + γbit)Xbijktω +
∑
k∈K

pbktPbktω +
∑
k∈K

hbktHbktω

)
+
∑
k∈K

πktUktω

)
(3.4)
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Subject to

∑
k∈K

Xbiktω +
∑
j∈J

∑
k∈K

Xbijktω ≤ sbitω ∀b ∈ B, i ∈ I, t ∈ T , ω ∈ Ω (3.5)∑
i∈I

Xbiktω +
∑
i∈I

∑
j∈J

Xbijktω

+(1− αb)Hb,k,t−1,ω = Hbktω + Pbktω ∀b ∈ B, k ∈ K, t ∈ T , ω ∈ Ω (3.6)∑
b∈B

Pbktω + Uktω = dkt ∀k ∈ K, t ∈ T , ω ∈ Ω (3.7)∑
b∈B

Hbktω ≤ hcapk ∀k ∈ K, t ∈ T , ω ∈ Ω (3.8)∑
b∈B

∑
i∈I

Xbijktω ≤ ccapZjktω ∀(j, k) ∈ A2, t ∈ T , ω ∈ Ω (3.9)∑
b∈B

∑
i∈I

∑
k∈K

Xbijktω ≤
∑
l∈L

CljYljt ∀j ∈ J , t ∈ T , ω ∈ Ω (3.10)

Zjktω ≤
∑
l∈L

⌈Clj

ccap

⌉
Yljt ∀j ∈ J , k ∈ K, t ∈ T , ω ∈ Ω (3.11)

Zjktω ∈ Z+ ∀j ∈ J , k ∈ K, t ∈ T , ω ∈ Ω (3.12)

Xbijktω, Xbiktω, Hbktω,

Pbktω, Uktω ∈ R+ ∀b ∈ B, i ∈ I, j ∈ J , k ∈ K, t ∈ T , ω ∈ Ω

(3.13)

The objective function (3.1) is the sum of the first-stage cost and the expected second-

stage cost over all scenarios. The first-stage cost represents the costs of using multi-modal

facilities of capacity l ∈ L at location j ∈ J in period t ∈ T . Constraints (4.2) indicate

that at most one multi-modal facility of capacity l ∈ L is operating in a given location

j ∈ J at time period t ∈ T . Constraints (4.3) define binary restrictions for the first-stage

decision variables. The second-stage objective function (4.4) consists of six parts: the first

term represents the fixed cost of transporting cargo containers between the multi-modal
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facilities, the second and third terms represent the expected transportation cost of biomass

routed through highways and multi-modal facilities, the fourth and fifth terms represent the

expected processing and holding cost of biomass at the coal plants, and the last term of the

objective function represents the expected penalty cost for unsatisfied demand. Constraints

(4.5) indicate that the amount of biomass of type b ∈ B shipped from a harvesting site i ∈ I

at time period t ∈ T and under scenario ω ∈ Ω is limited by its availability. Constraints

(4.6) are the flow balance constraints which ensure that at any time period t ∈ T and under

scenario ω ∈ Ω the biomass of type b ∈ B can be either processed or stored in a coal

plant k ∈ K. Constraints (4.7) indicate that the demand of biomass will be fulfilled either

through the processed biomass obtained from the distribution network or through substitute

products available in the market. Constraints (4.8) limit the amount of biomass that can be

stored in a coal plant k ∈ K at time period t ∈ T and under scenario ω ∈ Ω. Constraints

(4.9) set a limit on the amount of biomass to be routed on arcs (j, k) ∈ A2 at time period

t ∈ T and under scenario ω ∈ Ω. Constraints (4.10) indicate that the total amount of

biomass shipped through multi-modal facility j ∈ J at time period t ∈ T and under

scenario ω ∈ Ω is limited by the facility capacity Clj; ∀l ∈ L, j ∈ J . Constraints (4.11)

serve as a valid-in-equality for model [CSC] which indicate that if no multi-modal facility

is established at location j ∈ J , then no containers will flow between arcs (j, k) ∈ A2 at

time period t ∈ T and under scenario ω ∈ Ω. Finally, constraints (4.12) are the integrality

constraints and (4.13) are the standard non-negativity constraints.
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3.2 Solution Approach

By setting |Ω| = 1 and |T | = 1 i.e., a single scenario and a single season, we can show

that problem [CSC] is a special case of a capacitated facility location problem which is

known to be an NP-hard problem [69]. Therefore, commercial solvers, such as CPLEX,

cannot solve large-scale instances of this problem. In this section, we first use a predic-

tion method to generate biomass supply scenarios and then use a hybrid decomposition

algorithm that combines Sample average approximation algorithm and Progressive hedg-

ing algorithm to solve problem [CSC]. The goal is to generate high quality solution for

problem [CSC] in a reasonable amount of time.

3.2.1 Scenario Generation for Biomass Supply Uncertainty

The availability of corn-stover varies significantly from one year to the other. Figure

3.13 supports this statement by showing Mississippi as a case example where the avail-

ability of corn-stover increases from 35 million tons in 2006 to 135 million tons in 2007

and then drops down to 98 million tons in 2008 [111]. Similar variations can be observed

in other neighboring states of Mississippi, such as Alabama, Tennessee, and Louisiana

(Figure 3.13). This mandates that there is a need to consider a large scenario set for

biomass supply availability to develop a two-stage stochastic programming model formu-

lation. However, such instances will not only increase the size of the problem but also will

pose high computational challenges in solving model [CSC]. To alleviate this problem, a

reliable prediction model needs to be developed that takes the historical biomass availabil-

ity in a given region into account to predict the availability of biomass for the targeted year.

67



The prediction error provided by the model can be used to generate scenario trees for the

two-stage stochastic programming model formulation. The aim is to reduce the scenario

size for the two-stage stochastic programming model formulation.

Like Schutz et al., [103] and Keyvanshokooh et al., [58], we utilize a deterministic pth-

order Vector Autoregressive Process (VAR) as the forecasting method and add a realization

of error term ϵωbi,t+1 to predicted the supply of corn-stover (b1) in location i ∈ I at time

t+ 1 under scenario ω ∈ Ω, denoted by sωbi,t+1:

ŝωbi,t+1 = α +

p∑
m=1

βmsbi,t+1−m + ϵωbi,t+1 (3.14)

where, ŝωbi,t+1 denotes the n× 1 vector of variables included in the VAR for year t + 1;
α is a constant parameter; βi is an autoregressive parameter and there are p autoregressive
matrices; and sbi,t+1−m is the historical biomass supply quantity in period (t+1−m). We
observed that the predictive performance of the first, third and fourth models are better than
other (as shown in figure 3.1). The VAR(3) diagonal model seems to be the best and most
parsimonious fit, so we used VAR(3) diagonal to fit our data and make a prediction. The
Normalized Root Mean Square Error (NRMSE) for our pth-order VAR forecasting model
is 0.2138.

The biomass supply scenario is now generated as follows:

ŝωbi,t+j =


α +

∑p
m=1 βmsbi,t+j−m + ϵωbi,t+1 j = 1

α +
∑j−1

m=1 βmŝωbi,t+j−m +
∑p

m=j βmsbi,t+j−m 1 < j ≤ p

α +
∑p

m=1 βmŝωbi,t+j−m j > p

(3.15)

where the error terms are assumed to be independent and normally distributed with

mean zero and variance σ2. Figure 3.15 shows the prediction of biomass for year 2015. It

is observed that if we do not consider the prediction model then we will have to generate
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Figure 3.1

Sum of squared error

a large scenario set between ϵ1t and ϵ1t where ϵ̂1t is the average biomass supply scenario for

biomass type b ∈ B at time t ∈ T . However, by developing a reliable prediction model we

can generate a relatively small scenario set between ϵ2t and ϵ2t which is a subset of scenarios

generated by [ϵ1t , ϵ
1
t ]. We then use the prediction errors of biomass supply fluctuations to

generate a tree of |I| scenarios for period time t ∈ T which is illustrated in Figure 3.16.

We further use the scenario tree of the prediction error term (shown in Figure 3.16) and

combine the forecasting and scenario generation to generate biomass supply scenarios for

model [CSC], as illustrated in Figure 3.17. We use the same approach to generate scenarios

for both corn-stover and woody biomass.
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3.2.2 Sample Average Approximation

The number of scenarios generated in Section 3.2.1 is still large and commercial solvers

such as CPLEX can not solve them. This motivates us to use Sample average approxima-

tion (SAA) algorithm to reduce the size of the problem defined by (3.1)-(4.13). SAA was

previously applied to solve large scale supply chain network flow related problems, such

as [116], [102], [16], [103] and others. SAA provides high quality feasible solutions along

with the statistical estimation of their optimality gap. We can refer the work by Kleywegt et

al.[60] for the proof of convergence properties of SAA and the work by Norkin et al. [87],

[86] and Mark et al. [71] for the evaluation of statistical performance of SAA. In SAA, a

smaller set of scenarios are solved repeatedly instead of solving the original problem with

large number of scenarios and the procedure is repeated until a pre-specified tolerance

gap is achieved. The first step in SAA will be generating random samples with N < |Ω|

realizations of uncertain parameter and then approximate the recourse function with the

sample average function 1
N

∑N
n=1 Q(Y, n). The problem (3.1)-(4.13) is now approximated

by the following SAA problem:

Minimize
Y ∈Y

{
ĝ(Y ) :=

∑
t∈T

(∑
l∈L

∑
j∈J

ψljtYljt +
1

N

N∑
n=1

Q(Y, n)
)}

(3.16)

As the sample size (value of N ) increases the optimal solution of (4.15), ỸN , and the

optimal value vN , converges with probability one to an optimal solution of the original

problem (3.1)-(4.13) [60]. Assuming that the SAA problem is solved within an absolute
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optimality gap δ ≥ 0, we can estimate the sample size N needed to guarantee an ϵ-optimal

solution to the true problem with probability at least equal to (1− α) as:

N ≥ 3σ2
max

(ϵ− δ)2

(
|L||J ||T |(log2)− logα

)
(3.17)

where ϵ > δ, α ∈ (0, 1) and σ2
max is a maximal variance of certain function differences

[60]. Sample size estimation using equation (4.16) is too conservative for practical appli-

cations. Thus, one can choose a sample size N as a trade-off between the solution quality

obtained by solving (4.15) to the original problem (3.1)-(4.13) and the computational bur-

den needed to solve it. Solutions of the SAA problems with a sample size N provides

a statistical lower and upper bounds for the original problem and the process terminates

when the gap between the estimators falls below a pre-specified threshold value. The steps

involved in solving [CSC] problem using Sample average approximation (SAA) are given

below:

1. The smaller scenario set N are drawn randomly from the scenario tree N’.

2. Generate M independent biomass supply sample scenarios of size N i.e.,

{s1m(ω), s2m(ω), ..., sNm(ω)}, ∀m = 1, ...,M , where s = {sbitω,∀b ∈ B, i ∈ I, t ∈

T , ω ∈ Ω} and solve the corresponding SAA:

Minimize
Y ∈Y

{
ĝ(Y ) :=

∑
t∈T

(∑
l∈L

∑
j∈J

ψljtYljt +
1

N

N∑
n=1

Q(Y, n)
)}

(3.18)
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The optimal objective value is denoted by vm
N and the optimal solution by Ŷ

m

N ; m =

1, ...,M .

3. Compute the average of the optimal solutions obtained by solving all SAA problems,

v̄N
M and variance, σ2

v̄NM
:

v̄N
M =

1

M

M∑
m=1

vm
N

σ2
v̄NM

=
1

(M − 1)M

M∑
m=1

(
vm
N − v̄N

M

)

where, v̄N
M provides a statistical lower bound on the optimal objective function value

for the original problem (3.1)-(4.13) [87].

4. Pick a feasible first-stage solution Ỹ ∈ Y obtained from Step 1 of the SAA algo-

rithm, e.g., one of the solutions from Ŷ
m

N and estimate the objective function value

of the original problem [CSC] using a reference sample N ′ as follows:

g̃N ′(Ỹ ) :=
∑
t∈T

(∑
l∈L

∑
j∈J

ψljtỸljt +
1

N ′

N ′∑
n=1

Q(Y, n)
)

(3.19)

The estimator g̃N ′(Ỹ ) serves as an upper bound for the optimal objective function

value of problem [CSC] which will be updated in each iteration if the value obtained

is less than the value of the previous iteration. N ′ is another set of samples gener-

ated independently for the biomass supply scenarios, i.e., {s1(ω), s2(ω), ..., sN ′
(ω)},

∀n = 1, ..., N ′. Typically, sample size N ′ is chosen much larger than the sample size
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N in the SAA problems i.e., N ′ ≫ N . We can estimate the variance of g̃N ′(Ỹ ) as

follows:

σ2
N ′(Ỹ ) =

1

(N ′ − 1)N ′

N ′∑
n=1

{∑
t∈T

(∑
l∈L

∑
j∈J

ψljtỸljt +Q(Y, n)
)
− g̃N ′(Ỹ )

}2

5. Compute the optimality gap (gapN,M,N ′(Ỹ )) and its variance (σ2
gap) using the esti-

mators calculated in Steps 2 and 3.

gapN,M,N ′(Ỹ ) = g̃N ′(Ỹ )− v̄N
M

σ2
gap = σ2

N ′(Ỹ ) + σ2
v̄NM

The confidence interval for the optimality gap is then calculated as follows:

g̃N ′(Ỹ )− v̄N
M + zα

{
σ2
N ′(Ỹ ) + σ2

v̄NM

}1/2

with zα:= Φ−1(1 − α), where Φ(z) is the cumulative distribution function of the

standard normal distribution.

3.2.3 Progressive Hedging Algorithm

Solving Step 1 in Sample average approximation algorithm is still considered chal-

lenging. This is because the step involves in solving a two-stage stochastic mixed integer

linear programming model formulation with N scenarios. Even though the size of the

SAA problem is significantly lower than the original problem [CSC], it is still a challeng-

ing problem. To overcome this challenge, we solve each subproblems of the SAA problem
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using a Progressive hedging algorithm (PHA) proposed by Rockafellar and Wets [99]. The

PHA proceeds by applying a scenario decomposition technique based on the augmented

Lagrangian relaxation scheme to solve a number of individual scenario subproblems and

finally aggregating the individual scenario solutions. Progressive hedging algorithm has

successfully applied to a number of different application areas, such as financial planning

[84], fisheries management [47], surgery planning [44], hydrothermal operation planning

[101], [14], and others. The readers are referred to the studies of Wallace and Helgason

[119], Watson and Woodruff [123] for a detail discussion about the algorithm implemen-

tation.

Note that constraints (4.10) and (4.11) link the first-stage decisions with the second-

stage decision variables. These constraints will not allow problem (4.17) separable by

scenarios. To apply scenario decomposition scheme we define a new decision variable:

{Yljtn}∀l∈L,j∈J ,t∈T ,n∈N ∈ {0, 1}. By doing this, a copy of the first-stage decision variable

is created for each scenario n ∈ N . Problem (4.17) can now be rewritten as follows:

Minimize
Y,Z,X,P,H,U

1

N

N∑
n=1

∑
t∈T

{∑
l∈L

∑
j∈J

ψljtYljtn +
∑
j∈J

∑
k∈K

ξjktZjktn+

∑
b∈B

(∑
i∈I

∑
k∈K

(cbikt + δbit + γbit)Xbiktn +
∑
i∈I

∑
j∈J

∑
k∈K

(cbijkt + δbit + γbit)Xbijktn+

∑
k∈K

pbktPbktn +
∑
k∈K

hbktHbktn

)
+
∑
k∈K

πktUktn

}
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Subject to: (4.5)-(4.9), (4.12), (4.13), and

∑
b∈B

∑
i∈I

∑
k∈K

Xbijktn ≤
∑
l∈L

CljYljtn ∀j ∈ J , t ∈ T , n ∈ N (3.20)

Zjktn ≤
∑
l∈L

⌈Clj

ccap

⌉
Yljtn ∀j ∈ J , k ∈ K, t ∈ T , n ∈ N (3.21)∑

l∈L

Yljtn ≤ 1 ∀j ∈ J , t ∈ T , n ∈ N (3.22)

Yljtn = Yljtm ∀n,m ∈ N, n ̸= m (3.23)

Yljtn ∈ B ∀l ∈ L, j ∈ J , t ∈ T , n ∈ N (3.24)

Constraints (4.22) are referred to as nonanticipativity constraints which link the first-

and second-stage decision variables and force all the scenarios to yield a same first-stage

decision variables. This makes the model not separable to scenarios. To make the model

separable and to apply Lagrangian relaxation, we need to rewrite the nonanticipativity

constraints. Let {Ȳljt}∀l∈L,j∈J ,t∈T ∈ {0, 1} be the “overall design vector”. The following

constraints are equivalent to (4.22):

Yljtn = Ȳljt ∀l ∈ L, ∀j ∈ J , t ∈ T , n ∈ N (3.25)

Ȳljt ∈ B ∀l ∈ L, j ∈ J , t ∈ T (3.26)

Prior studies such as Wallace et al. [119], Mulvey et al. [84], and Haugen et al. [46]

showed that constraints (25) and (26) are essentially equivalent to constraint (23).

We will now follow the decomposition scheme proposed by Rockafellar and Wets [99]

to relax constraints (4.24) using an augmented Lagrangian strategy and obtain the follow-

ing objective function:
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Minimize
Y,Z,X,P,H,U

1

N

N∑
n=1

∑
t∈T

{∑
l∈L

∑
j∈J

ψljtYljtn +
∑
j∈J

∑
k∈K

ξjktZjktn+

∑
b∈B

(∑
i∈I

∑
k∈K

(cbikt + δbit + γbit)Xbiktn +
∑
i∈I

∑
j∈J

∑
k∈K

(cbijkt + δbit + γbit)Xbijktn+

∑
k∈K

pbktPbktn +
∑
k∈K

hbktHbktn

)
+
∑
k∈K

πktUktn +
∑
l∈L

∑
j∈J

λljtn(Yljtn − Ȳljt)+

1

2

∑
l∈L

∑
j∈J

ϕ(Yljtn − Ȳljt)2
}

where {λljtn}∀l∈L,j∈J ,t∈T ,n∈N defines the Lagrangian multipliers for the relaxed con-

straints and ϕ defines a penalty ratio. Given the binary requirements of variables

{Yljtn}∀l∈L,j∈J ,t∈T ,n∈N and {Ȳljt}∀l∈L,j∈J ,t∈T the quadratic term
∑

l∈L
∑

j∈J ϕ(Yljtn −

Ȳljt)
2 shown in the above objective function can be reduced as follows:

∑
l∈L

∑
j∈J

ϕ(Yljtn − Ȳljt)2 =
∑
l∈L

∑
j∈J

(
ϕ(Yljtn)

2 − 2ϕYljtnȲljt + ϕ(Ȳljt)
2

)
=

∑
l∈L

∑
j∈J

(
ϕYljtn − 2ϕYljtnȲljt + ϕȲljt

)
The objective function therefore can be reduced as follows:

Minimize
Y,Z,X,P,H,U

1

N

N∑
n=1

∑
t∈T

{∑
l∈L

∑
j∈J

(ψljt + λljtn − ϕȲljt +
ϕ

2
)Yljtn +

∑
j∈J

∑
k∈K

ξjktZjktn+

∑
b∈B

(∑
i∈I

∑
k∈K

(cbikt + δbit + γbit)Xbiktn +
∑
i∈I

∑
j∈J

∑
k∈K

(cbijkt + δbit + γbit)Xbijktn+

∑
k∈K

pbktPbktn +
∑
k∈K

hbktHbktn

)
+
∑
k∈K

πktUktn −
∑
l∈L

∑
j∈J

λljtnȲljt −
1

2

∑
l∈L

∑
j∈J

ϕȲljt

}
When the value of the overall plan {Ȳljt}∀l∈L,j∈J ,t∈T is fixed, the last two terms of the

objective function (4.26) becomes constant and thus can be decomposed into a series of
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deterministic problem for each scenario n ∈ N . The overall problem can be formulated as

follows:

[CSC(PHA)] Minimize
Y,Z,X,P,H,U

∑
t∈T

{∑
l∈L

∑
j∈J

(ψljt + λljtn − ϕȲljt +
ϕ

2
)Yljtn +

∑
j∈J

∑
k∈K

ξjktZjktn+

∑
b∈B

(∑
i∈I

∑
k∈K

(cbikt + δbit + γbit)Xbiktn +
∑
i∈I

∑
j∈J

∑
k∈K

(cbijkt + δbit + γbit)Xbijktn+

∑
k∈K

pbktPbktn +
∑
k∈K

hbktHbktn

)
+
∑
k∈K

πktUktn

}
Subject to

∑
k∈K

Xbiktn +
∑
j∈J

∑
k∈K

Xbijktn ≤ sbitn ∀b ∈ B, i ∈ I, t ∈ T (3.27)∑
i∈I

Xbiktn +
∑
i∈I

∑
j∈J

Xbijktn +

(1− αb)Hb,k,t−1,n = Hbktn + Pbktn ∀b ∈ B, k ∈ K, t ∈ T (3.28)∑
b∈B

Pbktn + Uktn = dkt ∀k ∈ K, t ∈ T (3.29)∑
b∈B

Hbktn ≤ hcapk ∀k ∈ K, t ∈ T (3.30)∑
b∈B

∑
i∈I

Xbijktn ≤ ccapZjktn ∀(j, k) ∈ A2, t ∈ T (3.31)∑
b∈B

∑
i∈I

∑
k∈K

Xbijktn ≤
∑
l∈L

CljYljtn ∀j ∈ J , t ∈ T (3.32)

Zjktn ≤
∑
l∈L

⌈Clj

ccap

⌉
Yljtn ∀j ∈ J , k ∈ K, t ∈ T(3.33)∑

l∈L

Yljtn ≤ 1 ∀j ∈ J , t ∈ T (3.34)

Yljtn ∈ B ∀l ∈ L, j ∈ J , t ∈ T (3.35)

Zjktn ∈ Z+ ∀j ∈ J , k ∈ K, t ∈ T (3.36)

Xbijktn, Xbiktn, Hbktn, Pbktn, Uktn ∈ R+ ∀b ∈ B, i ∈ I, j ∈ J , k ∈ K, t ∈ T(3.37)
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Let r denote the index for the iteration number for the progressive hedging algorithm

and {λr
ljtn}∀l∈L,j∈J ,t∈T ,n∈N is the lagrangian multipliers and ϕr is the penalty parameter at

iteration r. The general idea of the basic Progressive hedging algorithm is to solve N de-

terministic [CSC(PHA)] problem and obtain the consensus parameter {Ȳ r
ljt}∀l∈L,j∈J ,t∈T .

If the gap between the binary variable Y r
ljtn and the consensus parameter Ȳ r

ljt falls below

a threshold value ϵ (i.e., ϵ = 0.001) for each l ∈ L, j ∈ J , t ∈ T then the algorithm

terminates; otherwise, the values of λr
ljtn and ϕr are updated using equations (3.38) and

(4.39) and the process continues.

λr
ljtn ← λr−1

ljtn + ϕr−1
ljt (Y r

ljtn − Ȳ r−1
ljt ) ∀l ∈ L, j ∈ J , t ∈ T (3.38)

ϕr ← αϕr−1 (3.39)

where λ0
ljtn is set to zero for each scenario n ∈ N ; ϕ0 is set to a fixed positive value

which ensures that ϕr → ∞ as the number of iteration r increases and the constant pa-

rameter α > 1. A pseudo-code of the basic Progressive hedging algorithm is provided in

Algorithm 1.

Termination Criteria: The Progressive hedging algorithm terminates when one of the

following condition is satisfied. These criteria are obtained from the studies of Watson and

Woodruff [123], Crainic et al.[19], and Chen and Fan [17]:

• 1
N

∑N
n=1

∑
l∈L
∑

j∈J
∑

t∈T |Y r
ljtn − Ȳ r

ljt| ≤ ϵ; where ϵ is a pre-specified tolerance

gap
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Algorithm 1: Progressive Hedging Algorithm
Initialize, r ← 1, ϵ, {λr

ljtn}∀l∈L,j∈J ,t∈T ,n∈N ← 0, ϕr ← ϕ0

terminate← false
while (terminate = false) do

for n = 1 to N
Solve [CSC(PHA)] and obtain {Y r

ljtn}∀l∈L,j∈J ,t∈T ,n∈N
end for
Calculate the consensus parameter:

Ȳ r
ljt ← 1

N

∑N
n=1 Y

r
ljtn; ∀l ∈ L, j ∈ J , t ∈ T

if (r > 1) then
Update the lagrangian parameter:

λr
ljtn ← λr−1

ljtn + ϕr−1
ljt (Y r

ljtn − Ȳ r−1
ljt );∀l ∈ L, j ∈ J , t ∈ T

Update the penalty parameter:
ϕr ← αϕr−1 and α > 1

end if
if ((Y r

ljtn − Ȳ r−1
ljt )∀l∈L,j∈J ,t∈T ≤ ϵ) then

terminate← true
end if
r ← r + 1

end while

• 10 consecutive non-improvement iterations

• Maximum iteration limit is reached (i.e., itermax = 100)

• Maximum time limit is reached (i.e., timemax = 10,800 CPU seconds)

3.2.4 Enhanced Progressive Hedging Algorithm

Our initial computational experimentation with Progressive hedging algorithm with

relatively large network size problem exposes its inability to converge within a reason-

able amount of time. This motivates us to explore additional enhancement techniques to

improve the convergence and stability of the Progressive hedging algorithm. Therefore,

the following subsections will present some enhancement techniques to solve problem

[CSC(PHA)] efficiently.
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3.2.4.1 Penalty Parameter Updating

In this study, we set a constant value for the penalty parameter ϕ. Prior research indi-

cates that setting of ϕ strongly influences the value of the objective function [17, 50]. It

is observed that when the value of ϕ is too large then the algorithm convergence fast to

a suboptimal solution. On the other hand, if the value of ϕ is too low then the algorithm

convergence slowly to a near optimal solution. To tackle this issue, we used a method

proposed by Hvattum and Lokketangen [53] to dynamically adjust the value of ϕ over iter-

ations based on comparing the convergence rate of the algorithm at iterations r and r − 1.

Let ∆r
1 and ∆r

2 be indicators of the convergence rates in the dual space and in the primal

space, respectively. Thus, the penalty value can be updated as follows:

∆r
1 =

∑
l∈L

∑
j∈J

∑
t∈T

(Y r
ljt − Ȳ r

ljt)
2 (3.40)

∆r
2 =

∑
l∈L

∑
j∈J

∑
t∈T

(Ȳ r
ljt − Ȳ r−1

ljt )2 (3.41)

ϕr =


φϕr−1 if ∆r

1 −∆r−1
1 > 0

1
φ
ϕr−1 else if ∆r

2 −∆r−1
2 > 0

(3.42)

where φ is a constant parameter which value is set to φ > 1.

3.2.4.2 Heuristic Strategies

We will now use few heuristic strategies by modifying the fixed cost of using multi-

modal facilities in solving problem [CSC(PHA)] at each iteration r of Algorithm 1 (see
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Crainic et al. [19] for details). The first strategy is termed as global heuristics since this

strategy modifies the fixed cost of using a multi-modal facility at the end of each iteration.

Remember that the problem [CSC(PHA)] is composed of a series of N deterministic sub-

problems. At the end of each iteration r in Algorithm 1, one obtain the values of the

consensus parameter {Ȳ r
ljt}∀l∈L,j∈J ,t∈T which provide an indication of how many times a

multi-modal facility was used in the previous iterations. A higher value of Ȳ r
ljt translates

the fact that the multi-modal facility j of capacity l at time period t was used in most of

the previous iterations. Conversely, a lower value of Ȳ r
ljt indicates that the multi-modal

facility j of capacity l at time period t was not a favorable decision in most of the previous

iterations. Let c and c are the two parameters that define the upper and lower threshold

value. Therefore, if the value of Ȳ r
ljt is greater that the threshold value c, then lowering the

fixed cost of using the multi-modal facility will attract the subproblems to use the facility in

the coming iterations. Similarly, if the value of Ȳ r
ljt is lower that the threshold value c, then

increasing the fixed cost of using the multi-modal facility will avoid the subproblems use

the facility in the coming iterations. This will fix the decisions of using few multi-modal

facilities to either one or zero and thus will help to reduce the size of the problem. The

adjustment strategy is shown below:

ψr
ljt =



βψr−1
ljt if Ȳ r−1

ljt < c

1
β
ψr−1
ljt if Ȳ r−1

ljt > c

ψr−1
ljt Otherwise

(3.43)
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where ψr
ljt represents the modified fixed cost of using a multi-modal facility of capacity

l ∈ L at location j ∈ J in time period t ∈ T and at iteration r; c and c are the two constant

parameters whose values are set to 0 < c < 0.3 and 0.7 < c < 1; and β is a constant

parameter whose value is set to β > 1.

The above global heuristics strategy can be pushed even further to modify the fixed

cost of using multi-modal facilities locally within the scenario level. Crainic et al. [19]

named this strategy as local heuristics strategy since the modification of the fixed cost only

impacts the subproblem of scenario n at current iteration r. This strategy emphasizes in

modifying the fixed cost of using the multi-modal facility at scenario n ∈ N in iteration r

if the gap between Y r
ljtn and Ȳ r

ljt is sufficiently large. The local adjustment strategy applied

to Algorithm 1 is shown below:

ψr
ljtn =



βψr
ljt if |Y r−1

ljtn − Ȳ r
ljt| ≥ cfar and Y r−1

ljtn = 1

1
β
ψr
ljt if |Y r−1

ljtn − Ȳ r
ljt| ≥ cfar and Y r−1

ljtn = 0

ψr
ljt Otherwise

(3.44)

where ψr
ljtn represents the modified fixed cost of using a multi-modal facility of capac-

ity l ∈ L at location j ∈ J in time period t ∈ T under scenario n ∈ N and at iteration r;

cfar is a threshold at which point a local adjustment to the fixed cost of using multi-modal

facility is applied and is set to 0.5 < cfar < 1; and β is a constant parameter whose value

is set to β > 1.
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3.2.4.3 Rolling Horizon (RHA) Heuristic

Note that, in Progressive hedging algorithm we need to solve problem [CSC(PHA)]

N times which is a deterministic, multi-time period facility location problem. Solving this

problem is still considered challenging since the problem is a special case of a capacitated

facility location problem which is known to be an NP-hard problem [69]. In this section

we solve this problem using a heuristic approach proposed by Balasubramanian and Gross-

man [7] and Kostina et al.[62]. This approach decomposes problem [CSC(PHA)] into a

series of small subproblems where each subproblem includes few consecutive time periods

which are drawn from the overall planning horizon. The algorithm terminates when all the

subproblems are investigated. The overall algorithm is shown in Algorithm 2.

Let tr0 denote the starting time period of subproblem r. Let M r denote the number of

time periods comprised in subproblem r. We can set a fixed or variable size ofM r for each

subproblem. Each approximate subproblem of the rolling horizon algorithm is denoted by

[CSC(PHA(r))]. Now, for each scenario n ∈ N the approximate subproblems are solved

by setting the variables as: (i) {Yljtn}∀l∈L,j∈J ,t∈T ∈ {0, 1} and {Zjktn}∀j∈J ,k∈K,t∈T ∈ Z+

for tr0 ≤ t ≤ tr0 + M r, (ii) 0 ≤ Yljtn ≤ 1 and Zjktn ∈ R+ for t > tr0 + M r. Once

a subproblem is solved, we fix the values of Y r
ljtn = Y r−1

ljtn ;∀l ∈ L, j ∈ J , t ∈ T and

Zr
jktn = Zr−1

jktn; ∀j ∈ J , k ∈ K, t ∈ T for t < tr0 and update the step size r. The process

terminates when all the subproblems are solved. Figure 3.2 shows an example of using the

rolling horizon approach to solve a three time period problem.
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Figure 3.2

Application of a rolling horizon strategy for a three time period problem

3.3 Computational Study and Managerial Insights

In order to test the performance of the algorithms proposed in Section 3.2 we develop

a case study where we use Mississippi and Alabama as a testing ground for the analysis.

All the algorithms are coded in GAMS 24.2.1 [39] and executed on a desktop computer

with Intel Core i7 3.50 GHz processor and 32.0 GB RAM. The optimization solver used

is ILOG CPLEX 12.6. In this section, we first provide details about the data used to

develop the case study. Next, we conduct a computational study on model [CSC] to test

the performance of the algorithms and finally we present results from the case study and

draw managerial insights.

3.3.1 Data Description

Biomass Supply and Demand: Two states in the Southern United States Mississippi

(MS) and Alabama (AL) are considered as a testing ground for this case study. The two

main biomass feedstocks available in these two states are corn stover and forest residues.

Biomass are not available all year around. Corn stover are available only in fall season

(from September until November) whereas woody biomass are available all year around

84



Algorithm 2: Rolling Horizon (RHA) Heuristic
tr0 = 0, r ← 1, M r, terminate← false
while (terminate = false) do

Set:
Yljtn ∈ {0, 1} and Zjktn ∈ Z+ for tr0 ≤ t ≤ tr0 +M r

0 ≤ Yljtn ≤ 1 and Zjktn ∈ R+ for t > tr0 +M r

Solve the approximate sub-problem [CSC(PHA)] using CPLEX
if(t0 > |T |) then

stop← true
else

Fixing the values of Yljtn and Zjktn for t < tr0
end if
r ← r + 1

end while

except three months during the winter (December to February). The historical availability

data of corn stover and woody biomass is reported by the Knowledge Discovery Frame-

work (KDF) database of United States Department of Energy [10]. The data was fur-

ther processed at Idaho National Lab (INL) to calculate the amount of densified biomass

available in Mississippi and Alabama. Figure 4.5a shows the distribution of densified

biomass available in this region where the position and size of the dot represents the loca-

tion and amount of biomass available in each supply site i ∈ I. In total 99 suppliers spread

throughout Mississippi and Alabama and the counties that produce more than 10,000 tons

of biomass each year are only considered here.

The data about coal-fired power plant locations and capacities is obtained from the

National Energy Technology Laboratory [110]. We have considered in total 15 coal plants

which are distributed in Mississippi and Alabama and their geographic distribution are

shown in Figure 4.5b. We assume that power plants will replace 6% of coal’s demand with

densified biomass to produce renewable electricity. This results in a demand of 5.6 million
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tons per year (MTY) of densified biomass for Mississippi and Alabama. This amount is

estimated based on the nameplate capacity, efficiency and operating hours of the plant, and

the lower heating values of coal and biomass [57].

(a) Biomass distribution (b) Network representation

Figure 3.3

Biomass distribution and facility locations

Investment Costs: This study considers a total of 57 potential locations for rail ramps

whose geographical location and distribution in the states of Mississippi and Alabama are

shown in Figure 4.5b. The annualized fixed cost for a rail ramp of capacity 1.05 MTY that

sends a single railcar is set to $54,949/year [70]. We considered four different rail ramp

capacities: l = 0.5 MTY, 0.75 MTY, 1.0 MTY, and 1.25 MTY. These costs are estimated

based on a lifetime of 30 years, and a discount factor of 10% is assumed.

Transportation Costs: This study assumes that trucks are used to transport biomass

from a feedstock supplier i ∈ I to a multi-modal facility j ∈ J . Trucks can further be used

to transport biomass directly from a feedstock supplier i ∈ I to a coal plant k ∈ K. Table
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4.2 shows the major cost components used to calculate the unit cost of truck transportation

which are obtained from the study of Parker et al. [88].

Table 3.1

Truck transportation cost components [88]

Item Value Unit
Loading/unloading 5.0 $/wet ton
Time dependent 29.0 $/hr/truckload
Distance dependent 1.20 $/mile/truckload
Truck capacity 25 wet tons/truckload
Average travel speed 40 miles/hour

This study further assumes that railcar will be used to transport biomass from a multi-

modal facility j ∈ J to a coal plant k ∈ K. We used $2,248 (ξjkt) as the fixed cost and

$1.12 as the unit transportation cost per mile traveled for a single railcar of capacity 100

tons [42]. Finally, we used Arc GIS Desktop 10 to create a transportation network and

used this network to identify shortest paths between the sources and destinations. The

network includes actual railways as well as local, rural, urban roads and major highways

in Mississippi and Alabama.

3.3.2 Analyzing the Performance of Solution Algorithms

This section presents our computational experience in solving model [CSC] using the

algorithms proposed in Section 3.2. To help the readers follow our approaches, we have

used the following notations to represent the algorithms:

• [SAA]: Sample Average Approximation (SAA) algorithm (described in Section 4.3.2)
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• [SAA+PHA]: Sample average approximation algorithm where the subproblem of

the [SAA] is solved using Progressive Hedging algorithm (PHA) (described in Sec-

tion 3.2.3)

• [SAA+PHA+HEU]: Sample average approximation algorithm where the subprob-

lem of the [SAA] is solved using an enhanced Progressive Hedging algorithm (PHA)

(enhancement techniques described in Section 4.3.4.1 and 3.2.4.2)

• [SAA+PHA+HEU+RHA]: Sample average approximation algorithm where the sub-

problem of the [SAA] is solved using an enhanced Progressive Hedging algorithm

(PHA) (enhancement techniques described in Section 4.3.4.1, 3.2.4.2, and 3.2.4.3)

The algorithms presented above are terminated when at least one of the following con-

dition is met: (a) the optimality gap (i.e., ϵ = |UB − LB|/UB) falls below a threshold

value ϵ = 0.01; or (b) the maximum time limit timemax = 10,800 (in CPU seconds) is

reached; or (c) the maximum number of iteration itermax = 100 is reached. To terminate

the Progressive Heading algorithm, we have used some additional stopping criteria which

are described at the end of Section 3.2.3. The sizes of the deterministic equivalent problems

of model [CSC] are presented in Table 4.3.

Table 3.2

Problem size of the test instances
Case |I| |J | |K| |L| |B| |T | Binary Integer Continuous Total No. of

Variables Variables Variables Variables Constraints
1 99 57 15 4 2 4 912 3,420 689,340 693,672 8,329
2 99 57 15 4 2 8 1,824 6,840 1,378,680 1,387,344 16,657
3 99 57 15 4 2 12 2,736 10,260 2,068,020 2,081,016 24,985
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The first set of experiments (reported in Table 3.3) show how using different enhance-

ment techniques speed up the convergence and improves the quality of the Progressive

Hedging algorithm ([PHA]). The enhancement techniques used are: (i) [PHA+HEU] that

incorporates heuristics strategies (described in Section 3.2.4.2) and penalty parameter up-

dating techniques (described in Section 4.3.4.1) in [PHA] algorithm and

(ii) [PHA+HEU+RHA] that incorporates rolling horizon algorithm (described in section

3.2.4.3) along with heuristics strategies (described in Section 3.2.4.2), penalty parameter

updating techniques (described in Section 4.3.4.1) in [PHA] algorithm. We consider three

scenario sizes N = {20, 30, 40} and three time periods |T | = {4, 8, 12} to obtain 9 differ-

ent problem instances. Additionally, we have tested the performance of the enhancement

techniques under both normal and uniform distribution to obtain an overall 18 different

problem instances. We do not present the results obtained from CPLEX. This is because

CPLEX gets out of memory in solving all the problem instances described in Table 3.3.

In all of our experimental results, if the algorithms are solved in less than the stopping

criteria ϵ then we highlighted the algorithm which gave the smallest running time. Oth-

erwise, if such a quality solution is not found within the maximum time or iteration limit

then the algorithm with the smallest optimality gap is highlighted. The results indicate

that implementing the cuts presented in section 3.2.4 substantially improves the perfor-

mance of the Progressive hedging algorithm. It is observed that algorithm [PHA+HEU]

solves 13 out of 18 problem instances in 1% optimality gap within the specified time limit.

On the other hand, the standard Progressive hedging algorithm [PHA] fails to solve any

problem instances within the pre-specified optimality gap. We observe that the perfor-
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mance can be enhanced even further by solving algorithm [PHA+HEU] in a rolling hori-

zon framework ([PHA+HEU+RHA]). Algorithm [PHA+HEU+RHA] is capable of solv-

ing 17 out of 18 problem instances in less that 1% optimality gap within the specified

time limit. On average, algorithm [PHA+HEU+RHA] is 1.42 times faster than algorithm

[PHA+HEU]. Furthermore, algorithm [PHA+HEU+RHA] drops the average optimal-

ity gap to 0.82% from 2.00% provided by the [PHA+HEU] algorithm. Note that algo-

rithm [PHA+HEU+RHA] does not guarantee to generate valid lower bound for algorithm

[PHA]. Therefore, in Table 3.3 we use the lower bound of [PHA+HEU] algorithm to

present an optimality gap for [PHA+HEU+RHA] algorithm i.e., 100*(UB[PHA+HEU+RHA]−

LB[PHA+HEU])/UB[PHA+HEU+RHA]%. Table 3.3 shows that even though algorithm

[PHA+HEU+RHA] terminates with an ϵ-optimal solution, the quality of solution pro-

duced by the [PHA+HEU+RHA] algorithm is consistently high.

We now show the benefits of using different accelerated techniques in each replica-

tion of the sample average approximation [SAA] algorithm. Figure 3.4 shows the aver-

age computing time spent in each replication to solve the instances with a problem size

of |I| = |J | = |K| = 10, |L| = |T | = 4, |B| = 2, N = 10, M = 50 and the sce-

narios are generated using a normal distribution. It is observed that the computational

time is significantly reduced by using the [SAA+PHA+HEU] algorithm over algorithm

[SAA+PHA]. The computational time can be reduced even further by incorporating the

rolling horizon framework in the [SAA+PHA+HEU] algorithm. On average, algorithm

[SAA+PHA+HEU+RHA] is 1.4 and 1.2 times faster than the [SAA+PHA+HEU] and

[SAA+PHA] algorithms, respectively.
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Comparison of solution time in each replication of the SAA algorithm

Table 3.4 presents the results from solving model [CSC] using the algorithms proposed in

Section 3.2. The problems were solved using Case 3 problem instances obtained from Ta-

ble 4.3 with varying sample sizeN and replication numberM in the [SAA] algorithm. The

size of the large scenario set was chosen equal toN ′ = 500 to evaluate the SAA gap. We do

not present results obtained from CPLEX since CPLEX gets out of memory in solving all

the problem instances reported in Table 3.4. Results indicate that, [SAA] is able to solve

only 1 out of 12 problem instances in less than 1.0% optimality gap within the specified

time limit. The performance can be improved slightly by solving the subproblems of the

[SAA] algorithm using [PHA] algorithm. It is observed that algorithm [SAA+PHA] is

now able to solve 3 out of 12 problem instances in less than 1.0% optimality gap within

the specified time limit. The benefits of using the algorithms become more evident when
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the enhancement techniques (developed in section 3.2.4) implemented in [PHA] algorithm

is used to solve the subproblems of the [SAA] algorithm. The overall average optimality

gap for the the [SAA+PHA+HEU] algorithm is reported as 2.21%, with 7 out of 12 prob-

lem instances is solved in less than 1.0% optimality gap within the specified time limit.

On the other hand, the overall average optimality gap for the [SAA+PHA+HEU+RHA]

algorithm is reported as 1.03%, with 9 out of 12 problem instances is solved in less than

1.0% optimality gap within the specified time limit. It is important to note that algorithm

[SAA+PHA+HEU+RHA] saves 11.7% time over algorithm [SAA+PHA+HEU] in pro-

ducing the optimality gaps. In overall, the [SAA+PHA+HEU+RHA] algorithm seems to

offer high quality solutions consistently within the experimental range.

3.3.3 Experimental Results
3.3.3.1 Performance evaluation of stochastic and deterministic solution:

We first justify the use of stochastic programming approach in solving model [CSC]

over its deterministic equivalent solution. We use the average biomass supply sbit =

sbitω/|Ω| where sbitω is obtained from the stochastic programming approach to generate

the deterministic equivalent solutions. Figure 3.5 shows the key supply chain network de-

cisions with and without considering biomass supply uncertainty. It is observed that the

stochastic programming approach selects on average 3.65% additional multi-modal facil-

ities in each time period t ∈ T of the year to cope against feedstock supply variability.

Figure 3.6 shows the comparison of network configuration between stochastic and deter-

ministic approaches. This results an additional 2.82% (on average) containers transported

between the multi-modal facilities and coal plants in each time period t ∈ T of the year.
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Furthermore, the coal plants store on average 9.05% additional biomass between months

of December to February (t=5-7) when neither corn-stover nor woody biomass is available.

This results in an overall 44.19% decrease in biomass shortage quantity and thus reduces

the unit delivery cost of biomass to $40.97/ton (stochastic programming solution) from

$45.11/ton (deterministic equivalent solution). In summary, it is observed that the biomass

supply uncertainty highly impacts the supply chain network decisions.

3.3.3.2 Impact of biomass supply variation levels on system performance:

The second set of experiments shows how different levels of supply variation impact the

biomass supply chain network performance. To achieve this goal, we create three different

realistic scenarios. In the first scenario (base case), we solve model [CSC] using the input

parameters discussed in Section 4.4.1. The second (high variations) and third scenarios

(low variations) are created by setting ϵ = 50% for high biomass supply variation levels

and ϵ = 5% for low biomass supply variation levels and the scenarios are generated using

a uniform distribution between [sbit(1 − ϵ), sbit(1 + ϵ)] for each biomass type b ∈ B in

location i ∈ I and in time period t ∈ T . Note that sbit represents the mean biomass supply

scenario for each biomass type b ∈ B in location i ∈ I and in time period t ∈ T . Figure 3.7

presents the impact of different biomass supply variation levels on supply chain network

performance. Results indicate that as the level of biomass supply variability increases

the number of multi-modal facilities (|Y|) and the number of containers (|Z|) transporting

between the links (j, k) ∈ A2 in each time period t ∈ T also increases. Furthermore,

we observe that to cope against high biomass supply variability levels, the coal plants
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Figure 3.5

Key supply chain network decisions with and without considering biomass supply
uncertainty
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(a) Deterministic solution (b) Stochastic solution

Figure 3.6

Biomass supply chain network configuration with and without considering biomass

supply uncertainty

now tend to store more biomass during the off production seasons (December to February)

when neither corn stover nor woody biomass is available. This in turn decreases the overall

shortage quantity of biomass supply in each coal plant k ∈ K at time period t ∈ T . Figure

3.8 shows the distribution of multi-modal facilities under low and high biomass supply

variability levels. It is observed that compared to low biomass supply variability levels,

an additional six multi-modal facilities are selected to transport biomass in coal plants in

high biomass supply variability levels which further increases the unit cost of biomass to

$42.84/ton from $40.97/ton. This supports that the biomass supply variability levels highly

impacts the biomass supply chain network decisions.

3.3.3.3 Impact of mean biomass supply changes on system performance:

The third set of experiments highlight the impact of biomass supply mean changes

in supply chain network configuration. The mean biomass supply may change due to
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Figure 3.7

Supply chain network decisions under different biomass supply variability levels

(a) Low supply variability (b) High supply variability
Figure 3.8

Impact of biomass supply variability on network configuration
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unexpected natural catastrophe, new initiative from government (e.g., promoting farmers

to cultivate more biomass) or any other related factors [73]. However, the biomass supply

variability still exists from one time period to another despite the change in mean supply for

biomass. Therefore, we now conduct some additional experiments to observe the change in

mean biomass supply on supply chain network configuration. To run these experiments, we

generate scenarios from the same variability level which are obtained from Section 3.2.1.

Figure 3.9 presents the impact of biomass supply mean changes on supply chain network

configuration. We observe that as the value of mean biomass supply sbit, ∀b ∈ B, i ∈ I, t ∈

T increases by 20%, model [CSC] selects an additional 49.8% multi-modal facilities to

cope with high biomass mean supply changes (shown in Figure 3.10b). Furthermore, it is

observed that the number of containers transported between the multi-modal facilities and

the biomass storage quantities in coal plants is significantly impacted by biomass supply

changes. This in turn drops the shortage quantity (U) of biomass supply at each coal

plant k ∈ K by 25.9%. On the other hand, when we assume that the mean biomass

supply (sbit) is decreased by 20%, the number of multi-modal facilities (|Y|) as well as the

number of containers (|Z|) transported between link (j, k) ∈ A2 is decreased by 13.9% and

16.3%, respectively. A layout of the network configuration under this scenario is shown in

Figure 3.10a. The low mean biomass supply scenario (e.g., -20% biomass supply change)

increases the unit delivery cost of biomass to $43.54/ton from $40.97/ton which could have

dropped down to $37.89/ton if there exists a high mean biomass supply scenario (e.g., 20%

biomass supply change). In summary, it is observed that the mean biomass supply changes

will highly impact the biomass supply chain network decisions.

97



Figure 3.9

Biomass supply chain network configuration under different supply chain mean levels
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(a) Low biomass supply scenario (b) High biomass supply scenario
Figure 3.10

Impact of mean biomass supply changes on network configuration

3.3.3.4 Impact of Multi-modal Transportation on System Performance:

The fourth set of experiment highlights the impact of multi-modal facilities in biomass

supply chain network configuration. We run a set of experiments considering truck to

be the only mode to transport feedstock from biomass supplier sites to the coal plants

and compare it with the case when both modes of transportation (i.e., rail and truck) are

available. We compare the case under different biomass supply variation levels. To achieve

this goal, we create two different scenarios: high and low biomass variations (as discussed

previously in Section 4.3.2) and calculate the unit cost under the assumption that no multi-

modal facilities are used; hence, everything will be shipped via highways.

Figure 3.11 shows the impact of not considering multi-modal facilities on biomass

supply chain network. We observe that as the multi-modal facilities are not considered
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the level of shortage of feedstock increases by 90.15% to 104.13% during low and high

biomass variation levels, respectively. The shortage in the feedstock was fulfilled by pur-

chasing the biomass from outside market at higher price (πkt) of $54/ton.
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Figure 3.11

Biomass shortage vs. time periods under different supply variability level

Figure 3.12 shows changes of unit cost of biomass under both deterministic and stochas-

tic settings and under the case when only trucks are used as the only modes of transporta-

tion to transport biomass from the feedstock supplier sites to the coal plants. It is observed

that the unit cost of biomass increases to $51.24/ton from $45.11/ton under determinis-

tic settings and $49.74/ton from $40.97/ton (low biomass variation) and $50.39/ton from

$42.84/ton (high biomass variation) under stochastic settings and when only trucks are

used. Results indicate that introducing multi-modal facilities in the biomass supply chain
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network hedges against supply variations compared to using standalone truck transporta-

tion.

Deterministic Low Variation High Variation

$\
to

n

0

10

20

30

40

50

60
Only Trucks
Multi-Modal Facilities

Figure 3.12

Unit cost per ton of biomass under different supply variability level

3.4 Conclusion

This paper studies the impact of feedstock supply uncertainty to the design and man-

agement of an inbound biomass co-firing supply chain network. A two-stage stochastic

mixed integer linear programming model [CSC] is developed to determine the optimal use

of multi-modal facilities, biomass storage and processing plans, and shipment routes for

delivering biomass to coal plants under feedstock supply uncertainty. To represent a more

realistic case, we generate a scenario tree based on the prediction errors obtained from

historical and forecasted feedstock supply availability. The scenario tree problem is then
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solved using a Sample average approximation algorithm that uses an enhanced Progressive

hedging algorithm to solve the scenario subproblems. The enhanced Progressive hedg-

ing algorithm incorporates several algorithmic improvements such as the dynamic penalty

parameter updating technique, the local and global heuristics techniques, and the Rolling

horizon algorithm. Computational results indicate that the hybrid decomposition algorithm

([SAA+PHA+HEU+RHA]) is capable of producing high quality solutions in a reasonable

amount of time to solve realistic large-size problem instances.

By using the states of Mississippi and Alabama as a testing ground for our study, we

conducted thorough computational experiments to test our model and to draw managerial

insights. Our computational experiments reveal some insightful results about the impact

of feedstock supply uncertainty on a biomass co-fired supply chain network. Based on the

results, it is observed that high feedstock supply variability increases the unit delivery cost

of biomass to $42.84/ton from $40.97/ton. Moreover, when the mean feedstock supply

increases (e.g., 20%) it will drop the unit delivery cost of biomass to $37.89/ton from

$40.97/ton. The sensitivity analysis further reveals the justification of using stochastic

programming model solutions over deterministic equivalent model solutions in solving

model [CSC].

In summary, the contributions of the paper to the literature are manifold. First, we

present a two-stage stochastic programming model formulation that captures the details

of inbound transportation network design decisions for a biomass co-firing supply chain

under feedstock supply uncertainty. Second, we generate realistic scenarios by using the

prediction errors obtained from historical and forecasted feedstock supply availability. The
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scenario tree problem is then solved with high quality and in a time efficient manner by

using a hybrid decomposition algorithm that connects Sample average approximation algo-

rithm with an enhanced Progressive hedging algorithm. Finally, a real-world case study of

the model is presented that reveals the impact of feedstock supply uncertainty on a biomass

co-firing supply chain network designing problem. The findings can be used by decision

makers to design a reliable inbound logistics networks for biomass co-firing supply chain.

This work can be extended in several directions. This study assumes that the multi-

modal facilities are reliable and will never fail. However, in reality multi-modal facilities

can be disrupted due to natural (e.g., 2005 Hurricane Katrina, 2008 China and 2009 Haiti

Earthquakes) or human-made disasters (e.g., 2010 Gulf of Mexico Oil Spill). Furthermore,

our work can be extended to consider congestions caused by feedstock seasonality in multi-

modal facilities. These issues will be addressed in future studies.

Figure 3.13

1980-2014 Cornstover supply fluctuation [111]
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Figure 3.14

The biomass co-firing supply chain network
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Figure 3.15

Biomass supply prediction for year 2015

Figure 3.16

Scenario tree for the prediction error term
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Figure 3.17

Biomass supply forecasting and scenario generation scheme
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Table 3.3

Performance of the enhancement techniques used in PHA

[PHA] [PHA+HEU] [PHA+HEU+RHA]
N |T | Gap CPU Iter Gap CPU Iter Gap CPU Iter

(%) (sec) (%) (sec) (%) (sec)
Normal distribution

20 4 9.15 10,800 35 0.91 2,375 7 0.92 1,584 3
8 6.23 10,800 34 0.99 6,662 9 0.83 2,894 2

12 66.38 10,800 11 0.95 7,562 6 0.89 5,741 4
30 4 9.86 10,800 24 0.95 3,467 6 0.91 3,301 4

8 2.13 10,800 30 0.82 6,841 6 0.83 4,122 4
12 65.41 10,800 8 0.35 9,428 5 0.74 7,628 3

40 4 4.24 10,800 17 0.97 4,141 6 0.89 4,645 5
8 34.29 10,800 8 5.22 10,800 8 0.68 6,287 2

12 47.32 10,800 5 3.23 10,800 5 0.55 9,875 2
Average 22.22 10,800 19.1 1.60 6,897 6.4 0.80 5119.7 3.2

Uniform distribution
20 4 48.55 10,800 33 0.90 3,444 10 0.74 1,384 2

8 33.30 10,800 16 0.76 6,723 9 0.86 2,941 2
12 38.85 10,800 10 0.51 10,620 8 0.91 6,842 4

30 4 48.67 10,800 23 0.74 4,141 8 0.79 3,180 5
8 24.90 10,800 11 0.92 10,262 9 0.81 4,522 2

12 65.47 10,800 7 1.31 10,800 6 0.57 8,854 3
40 4 49.28 10,800 17 0.80 5,761 8 0.97 4,385 5

8 27.90 10,800 8 4.82 10,800 5 0.86 6,181 2
12 65.35 10,800 6 10.82 10,800 4 1.03 10,800 2

Average 44.70 10,800 14.6 2.40 8,150 7.4 0.84 5,454.3 3.0
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Table 3.4

Comparison of different solution approaches

[SAA] [SAA+PHA] [SAA+PHA+HEU] [SAA+PHA+HEU+RHA]
N M Gap CPU Iter Gap CPU Iter Gap CPU Iter Gap CPU Iter

(%) (sec) (%) (sec) (%) (sec) (%) (sec)
Normal distribution

20 5 2.32 10,800 1 2.45 10,800 2 0.32 4,625 2 0.88 4,522 2
10 out of timea 3.83 10,800 2 0.93 7,526 2 0.96 6,904 2

30 5 out of memoryb 2.58 10,800 2 0.89 7,811 1 0.91 5,721 1
10 out of memory 25.31 10,800 1 3.48 10,800 1 0.78 9,562 1

40 5 out of memory out of memory 0.95 9,964 2 0.93 7,941 2
10 out of memory out of memory 3.51 10,800 1 0.94 10,567 1

Average 2.32 10800 1.0 8.54 10800 1.8 1.68 8588 1.5 0.90 7536 1.5
Uniform distribution

20 5 0.65 8,482 1 0.64 4,689 1 0.94 3,871 2 0.96 3,481 2
10 out of time 0.35 8,647 2 0.98 5,126 1 1.12 4,529 1

30 5 out of memory 0.86 9,240 1 0.90 7,861 2 0.94 6,314 2
10 out of memory out of memory 4.26 10,800 1 1.38 10,800 1

40 5 out of memory out of memory 2.52 10,800 1 0.98 8,115 1
10 out of memory out of memory 6.81 10,800 1 1.58 10,800 1

Average 0.65c 8482 1.0 0.62c 7525 1.3 2.74 8210 1.3 1.16 7340 1.3
aunable to find any feasible solution within the time limit
bCPLEX runs out of memory
cInstances with (a) and (b) did not contribute to average calculations
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CHAPTER 4

MANAGING CONGESTION IN A MULTI-MODAL TRANSPORTATION NETWORK

UNDER BIOMASS SUPPLY UNCERTAINTY

4.1 Introduction

Biomass co-firing is a low-cost, sustainable option for efficiently and cleanly converting

biomass to electricity. Biomass co-firing is predicted to have a sharp increase at coal-fired

power plants. The Energy Information Administration (EIA) projected a sharp increase

in biomass co-firing till 2040 [113] (shown in Figure 4.1). In fact, 40 out of 560 coal-

fired plants in U.S. are already co-firing biomass with coal and this number is expected

to increase in coming years. Such an increase in biomass co-firing mandates designing

a lean transportation network that efficiently connects origin fields with destination coal

plants with proper transportation modes. To achieve this goal, this study explores the key

logistical challenges associated with biomass transportation and develops an optimization

framework that helps decision makers better manage their supply chain network.

Switching from fossil fuels to renewable sources of energy is one of the best ap-

proaches to control Green House Gas (GHG) emissions in the energy supply sector. Direct

co-firing is one of the most interesting and effective means of reducing GHG emissions

from the coal-fired power plants. The supplies for co-firing potentially include woody

biomass, short-rotation crops, agricultural residues and wastes, wood wastes, municipal
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solid wastes, saw dust, grass, waste from food processing, animal wastes and a host of

other materials [27]. There are some challenges associated with biomass co-firing that

comes along with its benefits: (1) ash fusion temperature for biomass are lower than that

for the coal ash fusion which will increase the rate and extend of boiler slagging; (2) higher

moisture level as much as 50% moisture reduces the efficiency of boiler; (3) biomass are

bulky and difficult to transport; (4) supply is uncertain and highly seasonal; and (5) biomass

are widely spread geographically. Long haul transportation modes such as rail and barge

can be utilized to transport biomass from supplier sites to coal plants and provide a means

of solution against challenges (3) and (5) listed above. However, the uncertainty in sup-

ply and the seasonality will impact the operation of multi-modal facilities directly. For

instance, the harvesting season for corn-stover follows the harvesting of corn, which starts

from early September and ends in November. On the other hand, woody biomass is avail-

able all year round, except three months during the winter. Early September through late

November is the peak biomass production season in U.S. when more biomass is expected

to ship through multi-modal facilities. This seasonality not only congests the facilities for

a given time period of the year, but also impacts overall biomass supply chain activities.

Additionally, multi-modal facilities such as railways requires significant investment to alle-

viate the impact of congestion from the network. For example, Burlington Northern Santa

Fe Corporation (BNSF) is planning to invest a record of $60 billion in 2015 to relieve net-

work congestion caused by surging demand for grain and oil shipments [51]. A majority

of this investment will go for expansion projects.
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Figure 4.1

Biomass co-firing estimates of 2013 and 2014 [113]

U.S. railways are experiencing a tremendous increase in grain transportation for the

last few years. The number has increased by 25% compared to the average of the last three

years (2011-2013) grain transportation [113]. The spike in grain transportation not only

causes the delay in transportation but also contributes other ripple effects such as increase

road traffic and elevate levels of air pollution. Seasonal surges in freight demand and dis-

ruptions from incidents and maintenance activities add to congestion as volume reaches

capacity on the reduced mainline railroad network. Figure 4.2 shows the comparison of

train volume to capacity of railway where Figure 4.2a shows the condition at year 2007 and

Figure 4.2b shows the condition at year 2035 if the demand keeps increasing based on a

constant rate of 2007 while capacity remains unchanged. It is observed that the congestion

of the mainline railroad network is forecasted to spread significantly by year 2035. Ac-

cording to Association of American Railroads (AAR), 30% of the network will experience

unstable flows and service breakdown because of congestion in 2035 if no planning takes
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place now [2]. This alarming fact encourages us to incorporate the effect of congestion in

our proposed optimization model and plans to mitigate its effect in the context of a biomass

supply chain network.

(a) Current train volume to capacity (b) Train volume in 2035 to capacity

Figure 4.2

Train Volume Compared to Railway Capacity [2]

The study of the biomass supply chain optimization has increased rapidly in recent

years. Studies conducted by Zamboni et al. [132], Eksioglu et al. [29, 30], Huang et al.

[49], An et al. [1], Bai et al. [5], Xie and Ouyang [129], Zhang et al. [3], Roni et al.

[100],[93] and Memisoglu and Uster [80] analyze plant location and transportation issues

in biofuel supply chain networks under a deterministic setting. These studies are extended

by Cundiff et al. [23], Kim et al. [59], Chen and Fan [17], Gebreslassie et al. [38], Awudu

and Zhang [3], and Marufuzzaman et al. [75] to represent a more realistic case which

captures system uncertainties (e.g., biomass supply, demand, technology, pricing) using

optimization models. A brief overview of studies dedicated to uncertainty and sustain-
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ability in a biofuel supply chain network can be found from a recent study by Awudu and

Zhang [54]. The other stream of research in biofuel supply chain community considers

network sustainability (e.g., Zamboni et al. [131], Giarola et al. [41], You et al. [130])

and facility reliability (e.g., Li et al. [66], Wang and Ouyang [122], Bai et al. [6], Maru-

fuzzaman et al. [76], Marufuzzaman and Eksioglu [73], Poudel et al. [92]) which impact

the biofuel supply chain network. Note that all the studies discussed above assume that the

facilities will never get congested despite the fact that feedstock seasonality coupled with

system uncertainty present in the biofuel supply chain network.

In the context of general network design, researchers have become increasingly inter-

ested in the effect of facility congestions on network performance. Grove and O’Kelly [43]

are among the first researchers who investigate the relationship between hub-and-spoke

networks and congestion by simulating the daily operations of a single assignment hub-

and-spoke network. Kara and Tansel [56] develop a function to minimize the latest travel

time and excessive delays at the hubs. Marianov and Serra [72] model the hub-and-spoke

network as an M/D/c queuing network and solve the optimization problem using a Tabu

search heuristic. Elhedhli and Hu [32] introduce a non-linear cost term in the objective

function of an uncapacitated hub location design problem. In Elhedhli and Wu [33], the

authors further extend the previous study to a capacitated hub-and-spoke network design

problem. In both papers, the authors linearize the non-linear cost function by approximat-

ing a set of tangent hyper-planes and then use a Lagrangian relaxation algorithm to solve

the problem in a reasonable amount of time. Most recently, Camargo et al. [12] model

the congestion as a convex cost function and develop a mixed integer nonlinear program-
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ming model for a multiple allocation hub-and-spoke network design problem. The authors

successfully solve as many as 81 nodes by using a generalized Benders decomposition

algorithm. Few studies such as Miranda et al. [82] and Vidyarthi and Jayaswal [118] fo-

cus on the impact of facility congestion under demand uncertainty. A brief overview of

the hub location problems and solution methodologies can be found in a recent study by

SteadieSeifi et al. [109].

Although a few researchers have already highlighted the importance of incorporating

the congestion factor in a single facility or in a hub-and-spoke network structure, little work

has been conducted till now to identify the impact of facility congestion from a supply

chain point of view. There is a specific need to address multi-modal congestion issues in a

biomass supply chain network since this industry is highly impacted by feedstock seasonal-

ity along with different sources of uncertainties (e.g., biomass supply, demand, technology,

government policies). Bai et al. [4] first introduce the traffic congestion in the traditional

facility location model to decide the optimal locations of refineries and the flow of biomass

and ethanol in the transportation network. The authors propose a Lagrangian relaxation al-

gorithm that is nested under a branch-and-bound framework to find a high-quality feasible

solution in a reasonable amount of time. Finally, the authors conduct a number of sensi-

tivity analyses to show the effects of highway congestion on biorefinery location design

and supply chain costs. Most recently, Hajibabai and Ouyang [45] propose an integrated

mathematical model that aims to minimize the total cost of facility construction, roadway

capacity expansion, including highway links and railway segments, and biomass/biofuel

transportation delay due to congestion. In order to solve the model in a reasonable amount
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of time, the authors develop a Genetic Algorithm that integrates Lagrangian relaxation and

convex combination algorithms. A real world case study is developed to show the effects

of roadway expansion and traveler time value on biofuel supply chain design decisions.

4.1.1 Research Scope and Contributions

The key feature distinguishing this study from most existing work on biomass supply

chain is the the integration of uncertainty of biomass supply with the impact of facility con-

gestion and feedstock seasonality on a coal-fired power plant supply chain system. The aim

is to minimize the overall system costs which include the costs of biomass transportation,

processing, storage, delay, and investment to use multi-modal facilities. To accomplish this

goal, we have developed a two-stage stochastic mixed-integer non-linear programming

model that provides location of multi-modal facilities, number of containers transported

between the multi-modal facilities, amount of biomass processed, stored, and transported

from feedstock supply sites to coal plants under biomass supply uncertainty while pre-

venting congestion to occur. We develop a hybrid decomposition algorithm that combines

Constraint Generation algorithm with a Sample Average Approximation algorithm and an

enhanced Progressive Hedging algorithm to solve the optimization model. We use few

enhancement techniques to accelerate the performance of the Progressive Hedging algo-

rithm, such as local and global adjustment strategies, dynamic penalty parameter updating

techniques, and Rolling Horizon heuristics. Through multiple experiments we have shown

that the hybrid decomposition algorithm is capable of producing high quality solution to

solve the large-size problem instances of our model in a reasonable amount of time.
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In addition to proposing the general model, another important contribution of this pa-

per is applying this model to a real-world case study. We use the states of Mississippi

and Alabama as a testing ground for our case study. The outcome of this study provides a

number of managerial insights such as the deployment of multi-modal facilities, biomass

stored, processed, and transportation decisions under different biomass supply variabil-

ity levels and congestion prices, which can effectively aid decision makers to design a

reliable and realistic biomass co-firing supply chain network. Finally, we show how the

mean biomass supply changes impact the supply chain network configuration and justi-

fied the use of considering stochastic programming modeling approach over deterministic

approach considering biomass seasonality and multi-modal congestion factor into account.

The remainder of this paper is organized as follows. Section 4.2 presents the model

formulation. Section 4.3 introduces various solution approaches such as Constraint Gen-

eration (CG), Sample Average Approximation (SAA), Progressive Hedging Algorithm

(PHA), and Rolling Horizon (RH) heuristics to efficiently solve the proposed optimization

model. Section 4.4 conducts numerical experiments to verify the algorithm performance

and to draw managerial insights. Section 4.5 concludes this paper and provides future

research directions.

4.2 Problem Description and Model Formulation

This section presents a two-stage stochastic programming model formulation for the

design and management of a biomass co-firing supply chain network while taking the

stochastic nature of biomass supply along with the impact of congestion in the multi-modal
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facilities into account. In the two-stage stochastic programming model formulation, the

first-stage decides the location, capacity, and timing to use multi-modal facilities among

candidate locations prior to the realization of any random events. After the first-stage

decisions are made, the random events are realized and the second-stage decisions such

as the cost of procuring, storing, transporting biomass from feedstock supply sites to coal

plants, and managing congestions in multi-modal facilities are made. The objective is

to minimize the first-stage and expected second-stage costs across all possible feedstock

supply scenarios for the biomass co-firing supply chain network. Figure 4.3 presents the

structure of the supply chain network consisting of two biomass suppliers, three multi-

modal facilities, and two coal plants.

4.2.1 Nonlinear Model Formulation

Consider a logistics network G(N ,A), where N is the set of nodes and A is the set

of arcs. Set N consists of the set of harvesting sites I, the set of candidate multi-modal

facilities J , and the set of coal plants K, i.e., N = I ∪ J ∪ K. The set of arcs A

consists of three disjoint subsets, i.e., A = A1 ∪ A2 ∪ A3, where A1 represents the set

of arcs joining harvesting sites I with multi-modal facilities J ; A2 represents the set of

arcs between multi-modal facilities J and coal plants K; and finally, A3 represents the set

of arcs that directly connects harvesting sites I to coal plants K. Let B denotes the set of

feedstock types to be distributed in the logistics network in different time periods of a year.

We further let T be the set of time periods and L be the set of sizes for the multi-modal
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facilities to be considered in this problem. Finally, we denote Ω as the sample space of the

random event where ω ∈ Ω defines a particular realization.

Let sbitω denotes the amount of biomass of type b ∈ B available at site i ∈ I in time

period t ∈ T under scenario ω ∈ Ω. Each coal plant k ∈ K demands dkt tons of biomass

in time period t ∈ T . We assume that the unmet demand for biomass can be substituted.

The per unit cost of biomass substitution at the coal plant k ∈ K in time period t ∈ T is

denoted by πkt. This will be the threshold cost that customers want to pay for the biomass.

If the unit delivery cost of biomass exceeds this threshold cost, it will be beneficial to use

the substitution rather than getting biomass from the internal supply chain network.

For nodes j ∈ J , ψljt denotes the fixed cost of using a multi-modal facility of capac-

ity l ∈ L at time period t ∈ T . The multi-modal facilities already existing in the tested

regions are considered as candidate locations for this study and the fixed cost represents

the additional cost required to use the facilities (e.g., building additional tracks, purchasing

lifts, track switch). Each arc (i, j) ∈ A1 carries biomass of type b ∈ B from a harvesting

site i to a multi-modal facility j and are generally located close to each other (e.g., 10-20

miles). Therefore, trucks are preferred on (i, j) ∈ A1 and its unit transportation cost is

represented by cbijt. Arcs (j, k) ∈ A2 connect multi-modal facilities with coal plants and

usually carries large-volume of biomass. Thus, long-haul transportation mode such as rail

can be used as a major carrier between them. We represent cbjkt as the unit transporta-

tion cost along arc (j, k) ∈ A2. Therefore, a unit flow along an origin-destination route

{(i, j), (j, k)} for biomass of type b ∈ B at time period t ∈ T costs cbijkt = cbijt + cbjkt.

Biomass is usually transported in cargo containers between the multi-modal facilities. We
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impose a fixed cost ξjkt as the cost for loading and unloading cargo containers in the multi-

modal facilities. Furthermore, this study allows biomass to be shipped directly by trucks

along arcs (i, k) ∈ A3, which incurs a unit transportation cost cbikt. These arcs are pre-

ferred when the harvesting sites i ∈ I are located close to the coal plants k ∈ K and thus

direct shipments of biomass using trucks are cheaper compared to multi-modal facilities.

Finally, biomass are required to be purchased from the farmers and collected and stored

before hauling it on truck. Therefore, we denote δbit and γbit as the unit purchasing and

storage cost for biomass of type b ∈ B at location i ∈ I and under time period t ∈ T .

Following notations summarize the sets and input parameters for our two-stage stochastic

programming model formulation:

Figure 4.3

Supply chain network for biomass co-firing with coal

119



• I: set of harvesting sites (farms)

• J : set of multi-modal facilities

• K: set of coal plants

• L: set of facility capacities

• T : set of time periods

• B: set of biomass types (b1 for corn-stover and b2 for forest residues)

• Ω: set of scenarios

Parameters:

• ψljt: fixed cost of using a multi-modal facility of capacity l ∈ L at location j ∈ J

in time period t ∈ T

• ξjkt: fixed cost of a cargo container for transporting biomass along arc (j, k) ∈ A2

in time period t ∈ T

• cbikt: unit transportation cost for biomass of type b ∈ B along arc (i, k) ∈ A3 in time

period t ∈ T

• cbijkt: unit transportation cost for biomass of type b ∈ B along arc (i, j, k) ∈ A1∪A2

in time period t ∈ T

• sbitω: amount of biomass of type b ∈ B available at site i ∈ I in period t ∈ T under

scenario ω ∈ Ω

• dkt: demand for biomass at coal plant k ∈ K in period t ∈ T

• ccap: capacity of cargo container

• hcapk : biomass holding capacity at coal plant k ∈ K

• Clj: biomass storage/handling capacity of a multi-modal facility of size l ∈ L at

location j ∈ J

• αb: deterioration rate of biomass of type b ∈ B

• pbkt: unit biomass processing cost of type b ∈ B at coal plant k ∈ K in time period

t ∈ T
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• hbkt: unit inventory holding cost for biomass of type b ∈ B at coal plant k ∈ K in

time period t ∈ T

• δbit: unit biomass purchasing cost of type b ∈ B at location i ∈ I in time period

t ∈ T

• γbit: unit biomass storage cost of type b ∈ B at location i ∈ I in time period t ∈ T

• πkt: unit penalty cost of not satisfying demand at coal plant k ∈ K in time period

t ∈ T

• ρω: probability of scenario ω ∈ Ω

Decision Variables:

• Yljt: 1 if a multi-modal facility j ∈ J of capacity l ∈ L is used at time period t ∈ T ;

0 otherwise

• Zjktω: number of cargo containers transported between multi-modal facility j ∈ J

to coal plant k ∈ K at time period t ∈ T under scenario ω ∈ Ω

• Xbiktω: amount of biomass of type b ∈ B transported from harvesting site i ∈ I to

coal plant k ∈ K at time period t ∈ T under scenario ω ∈ Ω

• Xbijktω: amount of biomass of type b ∈ B transported from harvesting site i ∈ I to

coal plant k ∈ K through multi-modal facility j ∈ J at time period t ∈ T under

scenario ω ∈ Ω

• Pbktω: amount of biomass of type b ∈ B processed in coal plant k ∈ K at time period

t ∈ T under scenario ω ∈ Ω

• Hbktω: amount of inventory of type b ∈ B stored in coal plant k ∈ K at time period

t ∈ T under scenario ω ∈ Ω

• Uktω: shortage of biomass demand at coal plant k ∈ K in period t ∈ T under

scenario ω ∈ Ω
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We now introduce the first and second-stage decision variables for our two-stage stochas-

tic programming model formulation. The first-stage decision variables Y := {Yljt}l∈L,j∈J ,t∈T

determine the size, location, and time to use a multi-modal facilities, i.e.,

Yljt =


1 if a multi-modal facility of size l is used in location j at time period t

0 otherwise;

The second-stage decision variables Z := {Zjktω}j∈J ,k∈K,t∈T ,ω∈Ω determines the num-

ber of containers transported between the multi-modal facilities j ∈ J to coal plants k ∈ K

in time period t ∈ T under scenario ω ∈ Ω; X := {Xbertω}b∈B,(e,r)∈A,t∈T ,ω∈Ω denote the

flow of biomass of type b ∈ B along each link (e, r) ∈ A of the network at time period

t ∈ T under scenario ω ∈ Ω; P := {Pbktω}b∈B,k∈K,t∈T ,ω∈Ω denote the amount of biomass

of type b ∈ B processed in coal plant k ∈ K at time period t ∈ T under scenario ω ∈ Ω;

H := {Hbktω}b∈B,k∈K,t∈T ,ω∈Ω denote the amount of biomass of type b ∈ B stored in coal

plant k ∈ K at time period t ∈ T under scenario ω ∈ Ω; and U := {Uktω}k∈K,t∈T ,ω∈Ω

denote the amount of biomass shortage at coal plant k ∈ K in period t ∈ T under scenario

ω ∈ Ω.

Both corn-stover (b1) and forest residues (b2) are available during the peak biomass sea-

son which occurs during the months from September till November. Multi-modal facilities

are expected to congest during this peak harvesting seasons of biomass which may lead to

a dramatic increase in total supply chain cost. The impact of congestion becomes more se-

vere when the total flow of feedstock Xbijktω approaches the capacity Clj of a multi-modal

facility j ∈ J [33]. Under steady-state conditions, the system-wide average waiting time
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for the entire network can be represented as:
∑

j∈J
∑

t∈T

( ∑
i∈I

∑
k∈K Xbijktω∑

l∈L CijYljt−
∑

i∈I
∑

k∈K Xbijktω

)
.

For a facility j ∈ J , when the amount of feedstock Xbijktω increases, the ratio of this

equation will also increase exponentially. Thus, the impact of congestion can be addressed

realistically by the model. Now, let’s consider c0 be the congestion factor, then the system-

wide congestion cost becomes:
∑

j∈J
∑

t∈T c0

( ∑
i∈I

∑
k∈K Xbijktω∑

l∈L CijYljt−
∑

i∈I
∑

k∈K Xbijktω

)
. Taking

these factors into account, the following two-stage stochastic Mixed-Integer Nonlinear

Programming (MINLP) model, referred to as [CSM], can be formulated as follows:

[CSM] Minimize
Y,Z,X,P,H,U

∑
t∈T

(∑
l∈L

∑
j∈J

ψljtYljt +
∑
ω∈Ω

ρω

(∑
j∈J

∑
k∈K

ξjktZjktω +

∑
b∈B

(∑
i∈I

∑
k∈K

(
cbikt + δbit + γbit

)
Xbiktω +

∑
i∈I

∑
j∈J

∑
k∈K

(
cbijkt + δbit + γbit

)
Xbijktω +

∑
k∈K

pbktPbktω +
∑
k∈K

hbktHbktω +
∑
j∈J

c0

( ∑
i∈I
∑

k∈KXbijktω∑
l∈LCljYljt −

∑
i∈I
∑

k∈KXbijktω

))
+

∑
k∈K

πktUktω

))
(4.1)
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Subject to

∑
k∈K

Xbiktω +
∑
j∈J

∑
k∈K

Xbijktω ≤ sbitω ∀b ∈ B, i ∈ I, t ∈ T , ω ∈ Ω (4.2)∑
i∈I

Xbiktω +
∑
i∈I

∑
j∈J

Xbijktω +

(1− αb)Hbk,t−1,ω = Hbktω + Pbktω ∀b ∈ B, k ∈ K, t ∈ T , ω ∈ Ω(4.3)∑
b∈B

Pbktω + Uktω = dkt ∀k ∈ K, t ∈ T , ω ∈ Ω (4.4)∑
b∈B

Hbktω ≤ hcapk ∀k ∈ K, t ∈ T , ω ∈ Ω (4.5)∑
b∈B

∑
i∈I

Xbijktω ≤ ccapZjktω ∀(j, k) ∈ A2, t ∈ T , ω ∈ Ω (4.6)∑
b∈B

∑
i∈I

∑
k∈K

Xbijktω ≤
∑
l∈L

CljYljt ∀j ∈ J , t ∈ T , ω ∈ Ω (4.7)∑
l∈L

Yljt ≤ 1 ∀j ∈ J , t ∈ T (4.8)

Zjktω ≤
∑
l∈L

⌈Clj

ccap

⌉
Yljt∀j ∈ J , k ∈ K, t ∈ T , ω ∈ Ω (4.9)

Yljt ∈ B ∀l ∈ L, j ∈ J , t ∈ T (4.10)

Zjktω ∈ Z+ ∀j ∈ J , k ∈ K, t ∈ T , ω ∈ Ω (4.11)

Xbijktω, Xbiktω, Hbktω,

Pbktω, Uktω ≥ 0 ∀b ∈ B, i ∈ I, j ∈ J , k ∈ K, t ∈ T , ω ∈ Ω

(4.12)

In [CSM], the objective function minimizes the first-stage costs and the expected value

of the random second-stage costs for the biomass co-firing supply chain network. The

objective function consists of eight terms: the first term represents the costs of using

multi-modal facilities in different time period of the year; the second term represents the
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fixed costs of loading and unloading cargo containers between the multi-modal facilities;

the third and forth term represent the expected transportation costs through highways and

multi-modal facilities along with purchasing and storing costs of feedstock at the harvest-

ing sites; the expected processing and storing costs at the coal plants are represented by

the fifth and sixth terms of the objective function; the seventh term represents the expected

costs due to congestion at the multi-modal facilities; and finally the last term of the objec-

tive function represents the expected penalty costs for biomass supply shortages.

Constraints (4.2) indicate that the amount of biomass of type b ∈ B supplied from

supplier site i ∈ I in period t ∈ T under scenario ω ∈ Ω is limited by its availability.

Constraints (4.3) are the flow balance constraints which ensure that at any time period

t ∈ T and under scenario ω ∈ Ω the biomass of type b ∈ B can be either produced or

stored in a coal plant k ∈ K. Constraints (4.4) indicate that the demand must be satis-

fied either through processed biomass obtained from the biomass supply chain network

or through substitute products available in the market. Constraints (4.5) limit the amount

of biomass that can be stored in a coal plant k ∈ K in time period t ∈ T to the maxi-

mum storage capacity of that plant hcapk ; ∀k ∈ K. Constraints (4.6) limit the amount of

feedstock transported through arcs (j, k) ∈ A2 using multi-modal facilities at time t ∈ T

under scenario ω ∈ Ω. Constraints (4.7) indicate that the total amount of biomass shipped

through multi-modal facility j ∈ J in time period t ∈ T under scenario ω ∈ Ω is limited

by the facility capacity Clj; ∀l ∈ L, j ∈ J . Constraints (4.8) indicate that at most one

multi-modal facility of capacity l ∈ L can be used at location j ∈ J in time period t ∈ T .

Constraints (4.9) indicate that if no multi-modal facility is used at location j ∈ J then no

125



containers will flow between arcs (j, k) ∈ A2 at time period t ∈ T and under scenario

ω ∈ Ω. Note that constraints (4.9) serve as valid-in-equalities for model [CSM] which

helps the branch-and-bound process while solving the optimization problem. Finally, con-

straints (4.10) are the binary constraints, (4.11) are the integrity constraints, and (4.12) are

the standard non-negativity constraints.

4.2.2 Model Linearization

Model [CSM] is nonlinear due to the presence of congestion function in the objective

function of the model. We use the technique proposed by Elhedhli and Wu [33] to linearize

the congestion term. Let’s now introduce a new decision variable M := {Mjtω}j∈J ,t∈T ,ω∈Ω

as follows:

Mjtω =

∑
i∈I
∑

k∈KXbijktω∑
l∈LCljYljt −

∑
i∈I
∑

k∈KXbijktω

(4.13)

Equation (4.13) can be further reduced as follow:

∑
b∈B

∑
i∈I

∑
k∈K

Xbijktω =

(
Mjtω

1 +Mjtω

)∑
l∈L

CljYljt =
∑
l∈L

Clj

(
Mjtω

1 +Mjtω

)
Yljt

∀j ∈ J , t ∈ T , ω ∈ Ω (4.14)

We now introduce another continuous variable R := {Rljtω}l∈L,j∈J ,t∈T ,ω∈Ω as follows:

Rljtω =

(
Mjtω

1 +Mjtω

)
Yljt ∀l ∈ L, j ∈ J , t ∈ T , ω ∈ Ω (4.15)
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Given that Yljt = 1, the above equation becomes:

∑
l∈L

Rljtω =
Mjtω

1 +Mjtω

∀j ∈ J , t ∈ T , ω ∈ Ω (4.16)

In the condition when {Yijt}i∈I,j∈J ,t∈T = 0 constraints (4.15) forces

{Rljtω}l∈L,j∈J ,t∈T ,ω∈Ω = 0. This is ensured by adding an additional constraint 0 ≤ Rljtω ≤

Yljt ∀l ∈ L, j ∈ J , t ∈ T , ω ∈ Ω in the model formulation.

Lemma 2 The function Rljtω(Mjtω) =
Mjtω

1+Mjtω
is concave in Mjtω ∈ (0,∞).

Proof: While differentiating the function Rljtω w.r.t. Mjtω, we get the first derivative,

δ
δMjtω

(Rljtω) = 1/(1 +Mjtω)
2 > 0, and the second derivative, δ2

δM2
jtω

(Rljtω) = −2/(1 +

Mjtω)
3 < 0. The first derivative is positive while the second derivative is negative; thus, it

proves that the function Rljtω(Mjtω) is concave in Mjtω.

Lemma 1 implies that function Rljtω(Mjtω) is concave and can be approximated by a

set of tangent cutting planes as shown below [33]:

Mjtω

1 +Mjtω

=Minh∈H

[
Mjtω(

1 +Mh
jtω

)2 +

(
Mh

jtω

1 +Mjtω

)2]
(4.17)

which is equivalent to:

Mjtω

1 +Mjtω

≤ Mjtω(
1 +Mh

jtω

)2 +

(
Mh

jtω

1 +Mjtω

)2

∀j ∈ J , t ∈ T , h ∈ H, ω ∈ Ω (4.18)

where {Mh
jtω}j∈J ,t∈T ,ω∈Ω,h∈H are the set of points used to approximate equation (4.18).

The value of {Yljt}l∈L,j∈J ,t∈T is finite; therefore, the value that {Mjtω}j∈J ,t∈T ,ω∈Ω pro-
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vides is also finite. This implies that the set H should be finite. We now derive equation

(4.19) using (4.16) and (4.18) as follows:

∑
l∈L

Rljtω ≤
Mjtω(

1 +Mh
jtω

)2 +

(
Mh

jtω

1 +Mjtω

)2

∀j ∈ J , t ∈ T , h ∈ H, ω ∈ Ω (4.19)

The linearized objective function [LCSM] for model [CSM] now becomes:

[LCSM]Minimize
∑
t∈T

(∑
l∈L

∑
j∈J

ψljtYljt +
∑
ω∈Ω

ρω

(∑
j∈J

∑
k∈K

ξjktZjktω+

∑
b∈B

(∑
i∈I

∑
k∈K

(
cbikt + δbit + γbit

)
Xbiktω +

∑
i∈I

∑
j∈J

∑
k∈K

(
cbijkt + δbit + γbit

)
Xbijktω+

∑
k∈K

pbktPbktω +
∑
k∈K

hbktHbktω

)
+
∑
j∈J

c0Mjtω +
∑
k∈K

πktUktω

))
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Subject to

∑
k∈K

Xbiktω +
∑
j∈J

∑
k∈K

Xbijktω ≤ sbitω ∀b ∈ B, i ∈ I, t ∈ T , ω ∈ Ω (4.20)∑
i∈I

Xbiktω +
∑
i∈I

∑
j∈J

Xbijktω +

(1− αb)Hk,t−1,ω = Hbktω + Pbktω ∀b ∈ B, k ∈ K, t ∈ T , ω ∈ Ω

(4.21)∑
b∈B

Pbktω + Uktω = bkt ∀k ∈ K, t ∈ T , ω ∈ Ω (4.22)∑
b∈B

Hbktω ≤ hcapk ∀k ∈ K, t ∈ T , ω ∈ Ω (4.23)∑
b∈B

∑
i∈I

Xbijktω ≤ vcapZjktω ∀(j, k) ∈ A2, t ∈ T , ω ∈ Ω(4.24)∑
b∈B

∑
i∈I

∑
k∈K

Xbijktω ≤
∑
l∈L

CljRljtω ∀j ∈ J , t ∈ T , ω ∈ Ω (4.25)

∑
l∈L

Rljtω ≤ Mjtω(
1 +Mh

jtω

)2 +

(
Mh

jtω

1 +Mjtω

)2

∀j ∈ J , t ∈ T , ω ∈ Ω, h ∈ H (4.26)

Rljtω ≤ Yljt ∀l ∈ L, j ∈ J , t ∈ T , ω ∈ Ω (4.27)∑
l∈L

Yljt ≤ 1 ∀j ∈ J , t ∈ T (4.28)

Zjktω ≤
∑
l∈L

⌈Clj

ccap

⌉
Yljt ∀j ∈ J , k ∈ K, t ∈ T , ω ∈ Ω

(4.29)

Yljt ∈ B ∀l ∈ L, j ∈ J , t ∈ T (4.30)

Zjktω ∈ Z+ ∀j ∈ J , k ∈ K, t ∈ T , ω ∈ Ω(4.31)

Xbijktω, Xbiktω, Hbktω,

Pbktω, Uktω, Rljtω,Mjtω ≥ 0 ∀b ∈ B, i ∈ I, j ∈ J , k ∈ K, t ∈ T , ω ∈ Ω

(4.32)
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4.3 Solution Approach

This section presents the solution techniques used to solve model [LCSM]. Note that

by setting |Ω| = 1 and |T | = 1 i.e., a single scenario and a single season, we can show

that problem [LCSM] is a special case of a capacitated facility location problem which is

known to be an NP-hard problem [69]. Therefore, commercial solvers, such as CPLEX,

cannot solve large-scale instances of this problem. In this section, we propose a hybrid

decomposition algorithm that combines Constraint Generation algorithm, Sample Average

Approximation algorithm, and enhanced Progressive Hedging algorithm to solve problem

[LCSM]. The aim is to generate high quality solution for problem [LCSM] in a reasonable

amount of time.

4.3.1 Constraint Generation Algorithm

In model [LCSM], (4.26) generates large number of constraints. Therefore, it is really

challenging to solve model [LCSM] while considering all the constraints at once. This

motivates us to develop a Constraint Generation (CG) algorithm that can efficiently solve

model [LCSM] despite generating large number of constraints through (4.26). The al-

gorithm, extensively studied in [126] and [117], proceeds by solving a series of integer

programs with a subset of the constraints obtained from (4.26) and added thereafter as

needed. The process stops when the algorithm finds a solution for the sub-problem which

does not violate any constraints within some accepted tolerance in the full problem [CSM].

Otherwise, a new set of points and thus a new set of constraints/cuts are generated which

are added to [LCSM] in the next iteration. The algorithm is discussed in details below:
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Let UBq and LBq denote an upper and lower bound of the original problem at iteration

q. We further let v[LCSM] be the solution of the objective function value of [LCSM] and

(Yq,Zq,Xq,Pq,Hq,Uq) be its optimal solution. The following proposition provides the

lower bound of the CG algorithm.

Proposition 1 For any given subset of points {Mh
jtω}Hq⊂H, (4.33) provides the lower

bound of the optimal objective function value of [CSM].

LB =v[LCSM](Hq) =
∑
t∈T

(∑
l∈L

∑
j∈J

ψljtYljt +
∑
ω∈Ω

ρω

(∑
j∈J

∑
k∈K

ξjktZjktω+

∑
b∈B

(∑
i∈I

∑
k∈K

(
cbikt + δbit + γbit

)
Xbiktω +

∑
i∈I

∑
j∈J

∑
k∈K

(
cbijkt + δbit + γbit

)
Xbijktω+

∑
k∈K

pbktPbktω +
∑
k∈K

hbktHbktω

)
+
∑
j∈J

c0Mjtω +
∑
k∈K

πktUktω

))

(4.33)

Proof: [LCSM](Hq) is the relaxed version of problem [LCSM]. Thus, the optimal objec-

tive function value v[LCSM](Hq) obtained from equation (4.33) provides the lower bound

to the optimal objective value of [LCSM]. Since problem [LCSM] is an approximation for

problem [CSM], solution v[LCSM](Hq) will also provide a valid lower bound for optimal

objective function value of [CSM].

The algorithm starts with a subset Hq ⊂ H of the cuts where H1 can be empty or

chosen a priori while generate the rest as needed. The subset of points {Mh
jtω}Hq⊂H are

required to obtain the initial subset of cuts and is used to approximate functionRljtω(Mjtω).

The resulting set is then used to obtain v[LCSM](Hq) which provides a valid lower bound

for the original problem [CSM] (as shown in Proposition 1). We then use this solution to
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obtain an upper bound for the CG algorithm. The following proposition is used to obtain

an upper bound for the CG algorithm.

Proposition 2 For any given subset of points {Mh
jtω}Hq⊂H, (4.34) provides the upper

bound for the optimal objective function value of [CSM].

UB =
∑
t∈T

(∑
l∈L

∑
j∈J

ψljtYljt +
∑
ω∈Ω

ρω

(∑
j∈J

∑
k∈K

ξjktZjktω+

∑
b∈B

(∑
i∈I

∑
k∈K

(
cbikt + δbit + γbit

)
Xbiktω +

∑
i∈I

∑
j∈J

∑
k∈K

(
cbijkt + δbit + γbit

)
Xbijktω+

∑
k∈K

pbktPbktω +
∑
k∈K

hbktHbktω +
∑
j∈J

c0

( ∑
i∈I
∑

k∈KXbijktω∑
l∈LCijYljt −

∑
i∈I
∑

k∈KXbijktω

))
+

∑
k∈K

πktUktω

))

(4.34)

Proof: Any solution feasible to [LCSM](Hq) also provides a feasible solution to [CSM]

since all the constraints of [CSM] are contained by [LCSM](Hq). Thus, the objective

function value of [CSM] evaluated at (Yq,Zq,Xq,Pq,Hq,Uq), as shown in equation (4.34),

provides an upper bound for the optimal objective value of [CSM].

The algorithm continues until the gap between the lower and upper bound falls below

a tolerance level ϵ; otherwise, a new set of points {Mhnew
jtω } are generated using the current

solution (shown below) and the process continues.

Mhnew
jtω =

∑
i∈I
∑

k∈KX
q
bijktω∑

l∈LCljY
q
ljt −

∑
i∈I
∑

k∈KX
q
bijktω

(4.35)

A pseudo-code of the Constraint Generation algorithm CG is provided in Algorithm

1.
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Algorithm 1: Constraint Generation Algorithm
Initialize, q ← 1, ϵ, UBq ← +∞, LBq ← −∞
terminate← false
Choose an initial set of points: {Mh

jtω}Hq⊂H
while (terminate = false) do

Solve [LCSM](Hq) to obtain v[LCSM](Hq) and (Yq,Zq,Xq,Pq,Hq,Uq)
Update the lower bound: LBq ← v[LCSM](Hq) using (4.33)
Update the upper bound UBq using (4.34)
if ((UBq − LBq)/UBq ≤ ϵ) then

terminate← true
else

Mhnew
jtω =

∑
i∈I

∑
k∈K Xq

bijktω∑
l∈L CljY

q
ljt−

∑
i∈I

∑
k∈K Xq

bijktω

Mh,q+1
jtω =Mh,q

jtω ∪ {M
hnew
jtω }

end if
q ← q + 1

end while

4.3.2 Sample Average Approximation

Obtaining a lower bound by solving problem [LCSM](Hq) in the CG algorithm is still

considered challenging. Commercial solvers, such as CPLEX fails to solve a moderate

size of this problem. To overcome this challenge, Sample Average Approximation (SAA)

algorithm is employed to reduce the computational burden to solve problem [LCSM](Hq).

SAA has previously applied to solve large scale supply chain network flow related prob-

lems, such as [116], [102], [16], [103] and others. SAA provides high quality feasible

solutions along with the statistical estimation of their optimality gap. Interested readers

can review the works from Kleywegt et al. [60] for the proof of convergence properties

of SAA and Norkin et al. [87], [86], and Mark et al. [71] for the evaluation of statistical

performance of SAA. In SAA, a sample ω1, ω2,....., ωN of N sample scenarios are gener-

ated from Ω according to a probability distribution P and they are solved repeatedly until a
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pre-specified tolerance gap is achieved. Therefore, instead of solving the original problem

with a large number of scenarios (Ω), the SAA problem is evaluated in each iteration with

a smaller number of scenarios. The lower bound of the CG algorithm defined by equa-

tion (4.33) subject to constraints (4.20)-(4.32) is now approximated by the following SAA

problem:

LB =v[LCSM](Hq
N) =

∑
t∈T

(∑
l∈L

∑
j∈J

ψljtYljt +
1

N

N∑
i=1

(∑
j∈J

∑
k∈K

ξjktZjktn+

∑
b∈B

(∑
i∈I

∑
k∈K

(
cbikt + δbit + γbit

)
Xbiktn +

∑
i∈I

∑
j∈J

∑
k∈K

(
cbijkt + δbit + γbit

)
Xbijktn+

∑
k∈K

pbktPbktn +
∑
k∈K

hbktHbktn

)
+
∑
j∈J

c0Mjtn +
∑
k∈K

πktUktn

))

(4.36)

As the sample size (value of N ) increases, the optimal solution of [LCSM](Hq), i.e.,

(Yq,Zq,Xq,Pq,Hq,Uq) and the optimal objective value v[LCSM](Hq) converges with

probability one to an optimal solution of the original problem [CSM] [60]. Assuming

that the SAA problem is solved within an absolute optimality gap δ ≥ 0, we can esti-

mate the sample size N needed to guarantee an ϵ-optimal solution to the true problem with

probability at least equal to (1− α) as:

N ≥ 3σ2
max

(ϵ− δ)2

(
|L||J ||T |(log2)− logα

)
(4.37)

where ϵ > δ, α ∈ (0, 1) and σ2
max is a maximal variance of certain function differences

[60]. Sample size estimation using equation (4.37) is too conservative for practical applica-

tions. Hence, selection of a sample size N will be a trade-off between the solution quality
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obtained by solving equation (4.36) to the original problem (4.33) and the computational

burden needed to solve it. Solutions of the SAA problems with a sample size N provides

a statistical lower and upper bounds for the original problem and the process terminates

when the gap between the estimators falls below a pre-specified threshold value. The steps

involved in solving problem [LCSM](Hq) using SAA is given below:

1. Generate M independent feedstock supply scenarios of size N

i.e., {s1m(ω), s2m(ω), ..., sNm(ω)}, ∀m = 1, ...,M , where s = {sbiω,∀b ∈ B, i ∈ I, ω ∈

Ω}. The lower bound problem for CG algorithm, defined by (4.33) and subject to

constraints (4.20)-(4.32), can now be approximated by the following SAA problem:

Minimize
Y ∈Y

ĝ(Y q
N) =

∑
t∈T

(∑
l∈L

∑
j∈J

ψljtYljt +
1

N

N∑
i=1

(∑
j∈J

∑
k∈K

ξjktZjktn+

∑
b∈B

(∑
i∈I

∑
k∈K

(
cbikt + δbit + γbit

)
Xbiktn +

∑
i∈I

∑
j∈J

∑
k∈K

(
cbijkt + δbit + γbit

)
Xbijktn+

∑
k∈K

pbktPbktn +
∑
k∈K

hbktHbktn

)
+
∑
j∈J

c0Mjtn +
∑
k∈K

πktUktn

))

(4.38)

Subject to

∑
k∈K

Xbiktn +
∑
j∈J

∑
k∈K

Xbijktn ≤ sbitn ∀b ∈ B, i ∈ I, t ∈ T , n ∈ N (4.39)∑
i∈I

Xbiktn +
∑
i∈I

∑
j∈J

Xbijktn +

(1− αb)Hk,t−1,n = Hbktn + Pbktn ∀b ∈ B, k ∈ K, t ∈ T , n ∈ N

(4.40)∑
b∈B

Pbktn + Uktn = bkt ∀k ∈ K, t ∈ T , n ∈ N (4.41)
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∑
b∈B

Hbktn ≤ hcapk ∀k ∈ K, t ∈ T , n ∈ N (4.42)∑
b∈B

∑
i∈I

Xbijktn ≤ vcapZjktn ∀j ∈ J , k ∈ K, t ∈ T , n ∈ N (4.43)∑
b∈B

∑
i∈I

∑
k∈K

Xbijktn ≤
∑
l∈L

CljRljtn ∀j ∈ J , t ∈ T , n ∈ N (4.44)

∑
l∈L

Rljtn ≤
Mjtn(

1 +Mh
jtn

)2 +

(
Mh

jtn

1 +Mjyn

)2

∀j ∈ J , t ∈ T , n ∈ N, h ∈ H (4.45)

Rljtn ≤ Yljt ∀l ∈ L, j ∈ J , t ∈ T , n ∈ N (4.46)∑
l∈L

Yljt ≤ 1 ∀j ∈ J , t ∈ T (4.47)

Zjktn ≤
∑
l∈L

⌈Clj

ccap

⌉
Yljt ∀j ∈ J , k ∈ K, t ∈ T , n ∈ N (4.48)

Yljt ∈ B ∀l ∈ L, j ∈ J , t ∈ T (4.49)

Zjktn ∈ Z+ ∀j ∈ J , k ∈ K, t ∈ T , n ∈ N (4.50)

Xbijktn, Xbiktn, Hbktn,

Pbktn, Uktn, Rljtn,Mjtn ≥ 0 ∀b ∈ B, i ∈ I, j ∈ J , k ∈ K, t ∈ T , n ∈ N

(4.51)

The optimal objective value is denoted by vN
m and the optimal solution by

Ŷ
m

N ; m = 1, ...,M .

2. Compute the average of the optimal solutions obtained by solving all SAA problems,

v̄N
M and variance, σ2

v̄NM
:
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v̄N
M =

1

M

M∑
m=1

vm
N

σ2
v̄NM

=
1

(M − 1)M

M∑
m=1

(
vm
N − v̄N

M

)2
where, v̄N

M provides a statistical lower bound on the optimal objective function value

for the original problem (4.33) subject to equation (4.20)-(4.32) [87].

3. Pick a feasible first-stage solution obtained from Step 1 i.e., one of Ŷ
m

N and solve the

original problem (4.33) using a reference sample N ′ as follow:

Minimize
Y ∈Y

g̃N ′(Ỹ ) =
∑
t∈T

(∑
l∈L

∑
j∈J

ψljtỸljt +
1

N ′

N ′∑
i=1

(∑
j∈J

∑
k∈K

ξjktZjktn+

∑
b∈B

(∑
i∈I

∑
k∈K

(
cbikt + δbit + γbit

)
Xbiktn +

∑
i∈I

∑
j∈J

∑
k∈K

(
cbijkt + δbit + γbit

)
Xbijktn+

∑
k∈K

pbktPbktn +
∑
k∈K

hbktHbktn

)
+
∑
j∈J

c0Mjtn +
∑
k∈K

πktUktn

))

(4.52)

The estimator g̃N ′(Ỹ ) serves as an upper bound for the problem [LCSM](Hq) and

will be updated in each iteration if the value obtained is less than the value of the

previous iteration. N ′ is another set of samples generated independently for the

feedstock supply scenarios, i.e., {s1(ω), s2(ω), ..., sN ′
(ω)}, ∀n = 1, ..., N ′. Typi-

cally, the sample size N ′ is chosen much larger than the sample size N used in the

SAA problems i.e., N ′ ≫ N . The variance of g̃N ′(Ỹ ) is estimated as follow:

σ2
N ′(Ỹ ) =

1

(N ′ − 1)N ′

N ′∑
n=1

{∑
t∈T

(∑
l∈L

∑
j∈J

ψljtỸljt +Q(Y, n)
)
− g̃N ′(Ỹ )

}2
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where Q(Y, n) represents the solution of the second-stage problem.

4. Compute the optimality gap (gapN,M,N ′(Ỹ )) and its variance (σ2
gap) using the esti-

mators calculated in Steps 2 and 3.

gapN,M,N ′(Ỹ ) = g̃N ′(Ỹ )− v̄N
M

σ2
gap = σ2

N ′(Ỹ ) + σ2
v̄NM

The confidence interval for the optimality gap is then calculated as follows:

g̃N ′(Ỹ )− v̄N
M + zα

{
σ2
N ′(Ỹ ) + σ2

v̄NM

}1/2

with zα:= Φ−1(1 − α), where Φ(z) is the cumulative distribution function of the

standard normal distribution.

4.3.3 Progressive Hedging

Step 1 in SAA algorithm involves in solving a two-stage stochastic mixed-integer linear

programming model of N scenarios. The problem is still considered challenging from

solution point of view; thus, it motivates us to solve each subproblems of the SAA problem

using a Progressive Hedging Algorithm (PHA) [99]. The PHA proceeds by applying a

scenario decomposition technique based on the augmented Lagrangian relaxation scheme

to solve a number of individual scenario subproblems and finally aggregating the individual

scenario solutions. Progressive Hedging algorithm has successfully applied to a number

of different application areas, such as financial planning [84], fisheries management [47],
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surgery planning [44], hydrothermal operation planning [101], [14], and others. For a detail

understanding about the method, readers can review the studies conducted by Wallace and

Helgason [119] and Watson and Woodruff [123].

Note that constraints (4.46) and (4.48) in ĝ(Y q
N) (shown in Step 1 on SAA algorithm)

link the first-stage decisions with the second-stage decision variables. These constraints

will not allow problem ĝ(Y q
N) separable by scenarios. To remedy this problem, we define a

new decision variable {Yljtn}∀l∈L,j∈J ,t∈T ,n∈N ∈ {0, 1} that creates a copy of the first-stage

decision variable for scenario n ∈ N . Problem ĝ(Y q
N) can now be rewritten as follows:

Minimize
Y,Z,X,P,H,M,U

1

N

N∑
n=1

∑
t∈T

(∑
l∈L

∑
j∈J

ψljtYljtn +
∑
j∈J

∑
k∈K

ξjktZjktn+

∑
b∈B

(∑
i∈I

∑
k∈K

(
cbikt + δbit + γbit

)
Xbiktn +

∑
i∈I

∑
j∈J

∑
k∈K

(
cbijkt + δbit + γbit

)
Xbijktn+

∑
k∈K

pbktPbktn +
∑
k∈K

hbktHbktn

)
+
∑
j∈J

c0Mjtn +
∑
k∈K

πktUktn

)
Subject to: (4.39)-(4.45), (4.50), (4.51), and

Rljtn ≤ Yljtn ∀l ∈ L, j ∈ J , t ∈ T , n ∈ N (4.53)∑
l∈L

Yljtn ≤ 1 ∀j ∈ J , t ∈ T , n ∈ N (4.54)

Zjktn ≤
∑
l∈L

⌈Clj

ccap

⌉
Yljtn ∀j ∈ J , k ∈ K, t ∈ T , n ∈ N (4.55)

Yljtn = Yljtm ∀n,m ∈ N,n ̸= m (4.56)

Yljtn ∈ B ∀l ∈ L, j ∈ J , t ∈ T , n ∈ N (4.57)

Constraints (4.56) are referred to as nonanticipativity constraints. These constraints

force the model not to be separable by scenarios. We need to rewrite these nonanticipa-
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tivity constraints in order to make the model separable by scenarios and applicable to use

Lagrangian relaxation technique. Let {Ȳljt}∀l∈L,j∈J ,t∈T ∈ {0, 1} be the “overall design

vector”. The following constraints are equivalent to (4.56):

Yljtn = Ȳljt ∀l ∈ L, ∀j ∈ J , t ∈ T , n ∈ N (4.58)

Ȳljt ∈ B ∀l ∈ L, j ∈ J , t ∈ T (4.59)

We will now follow the decomposition scheme proposed by Rockafellar and Wets [99]

to relax constraints (4.58) using an augmented Lagrangian strategy and obtain the follow-

ing objective function:

Minimize
Y,Z,X,P,H,M,U

1

N

N∑
n=1

∑
t∈T

(∑
l∈L

∑
j∈J

ψljtYljtn +
∑
j∈J

∑
k∈K

ξjktZjktn

+
∑
b∈B

(∑
i∈I

∑
k∈K

(
cbikt + δbit + γbit

)
Xbiktn +

∑
i∈I

∑
j∈J

∑
k∈K

(
cbijkt + δbit + γbit

)
Xbijktn

+
∑
k∈K

pbktP
q
bktn +

∑
k∈K

hbktHbktn

)
+
∑
j∈J

c0Mjtn +
∑
k∈K

πktUktn

+
∑
l∈L

∑
j∈J

λljtn(Yljtn − Ȳljt) +
1

2

∑
l∈L

∑
j∈J

ϕ(Yljtn − Ȳljt)2
)

where {λljtn}∀l∈L,j∈J ,t∈T ,n∈N defines the Lagrangian multipliers for the relaxed constraints

and ϕ defines a penalty ratio. Given the binary requirements of variables

{Yljtn}∀l∈L,j∈J ,t∈T ,n∈N and {Ȳljt}∀l∈L,j∈J ,t∈T the quadratic term
∑

l∈L
∑

j∈J ϕ(Yljtn −

Ȳljt)
2 shown in the above objective function can be reduced as follows:
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∑
l∈L

∑
j∈J

ϕ(Yljtn − Ȳljt)2 =
∑
l∈L

∑
j∈J

(
ϕ(Yljtn)

2 − 2ϕYljtnȲljt + ϕ(Ȳljt)
2

)
=

∑
l∈L

∑
j∈J

(
ϕYljtn − 2ϕYljtnȲljt + ϕȲljt

)
The objective function, therefore, can be reduced as follows:

Minimize
Y,Z,X,P,H,M,U

1

N

N∑
n=1

∑
t∈T

(∑
l∈L

∑
j∈J

(ψljt + λljtn − ϕȲljt

+
ϕ

2
)Yljtn +

∑
j∈J

∑
k∈K

ξjktZjktn +
∑
b∈B

(∑
i∈I

∑
k∈K

(
cbikt + δbit + γbit

)
Xbiktn

+
∑
i∈I

∑
j∈J

∑
k∈K

(
cbijkt + δbit + γbit

)
Xbijktn +

∑
k∈K

pbktPbktn +
∑
k∈K

hbktHbktn

)

+
∑
j∈J

c0Mjtn +
∑
k∈K

πktUktn −
∑
l∈L

∑
j∈J

λljtnȲljt −
1

2

∑
l∈L

∑
j∈J

ϕȲljt

)
When the value of the overall plan {Ȳ q

ljt}∀l∈L,j∈J ,t∈T is fixed, the last two terms of the

above objective function becomes constant and thus can be decomposed into a series of

deterministic problem of n ∈ N scenarios. The overall problem can be formulated for

each scenario n ∈ N as follows:

[LCSM(PHA)] Minimize
Y,Z,X,P,H,M,U

∑
t∈T

(∑
l∈L

∑
j∈J

(ψljt + λljtn − ϕȲljt +
ϕ

2
)Yljtn

+
∑
j∈J

∑
k∈K

ξjktZjktn +
∑
b∈B

(∑
i∈I

∑
k∈K

(
cbikt + δbit + γbit

)
Xbiktn

+
∑
i∈I

∑
j∈J

∑
k∈K

(
cbijkt + δbit + γbit

)
Xbijktn +

∑
k∈K

pbktPbktn +
∑
k∈K

hbktHbktn

)

+
∑
j∈J

c0Mjtn +
∑
k∈K

πktUktn

)
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Subject to

∑
k∈K

Xbiktn +
∑
j∈J

∑
k∈K

Xbijktn ≤ sbitn ∀b ∈ B, i ∈ I, t ∈ T (4.60)∑
i∈I

Xbiktn +
∑
i∈I

∑
j∈J

Xbijktn

+(1− αb)Hk,t−1,n = Hbktn + Pbktn ∀b ∈ B, k ∈ K, t ∈ T (4.61)∑
b∈B

Pbktn + Uktn = bkt ∀k ∈ K, t ∈ T (4.62)∑
b∈B

Hbktn ≤ hcapk ∀k ∈ K, t ∈ T (4.63)∑
b∈B

∑
i∈I

Xbijktn ≤ vcapZjktn ∀(j, k) ∈ A2, t ∈ T (4.64)∑
b∈B

∑
i∈I

∑
k∈K

Xbijktn ≤
∑
l∈L

CljRljtn ∀j ∈ J , t ∈ T (4.65)

∑
l∈L

Rljtn ≤
Mjtn(

1 +Mh
jtn

)2 +

(
Mh

jtn

1 +Mjtn

)2

∀j ∈ J , t ∈ T , h ∈ H (4.66)

Rljtn ≤ Yljtn ∀l ∈ L, j ∈ J , t ∈ T (4.67)∑
l∈L

Yljtn ≤ 1 ∀j ∈ J , t ∈ T (4.68)

Zjktn ≤
∑
l∈L

⌈Clj

ccap

⌉
Yljtn ∀j ∈ J , k ∈ K, t ∈ T (4.69)

Yljtn ∈ B ∀l ∈ L, j ∈ J , t ∈ T (4.70)

Zjktn ∈ Z+ ∀j ∈ J , k ∈ K, t ∈ T (4.71)

Xbijktn, Xbiktn, Hbktn,

Pbktn, Uktn, Rljtn,Mjtn ≥ 0 ∀b ∈ B, i ∈ I, j ∈ J , k ∈ K, t ∈ T (4.72)

Let r denote the index for the iteration number for the PHA and

{λr
ljtn}∀l∈L,j∈J ,t∈T ,n∈N is the lagrangian multipliers and ϕr is the penalty parameter at
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iteration r. The general idea of the basic PHA is to solve N deterministic [LCSM(PHA)]

problem and obtain the consensus parameter {Ȳ r
ljt}∀l∈L,j∈J ,t∈T . If the gap between the

binary variable Y r
ljtn and the consensus parameter Ȳ r

ljt falls below a threshold value ϵ (i.e.,

ϵ = 0.001) for each l ∈ L, j ∈ J , t ∈ T then the algorithm terminates; otherwise,

the values of λr
ljtn and ϕr are updated using equations (4.73) and (4.74) and the process

continues.

λr
ljtn ← λr−1

ljtn + ϕr−1
ljt (Y r

ljtn − Ȳ r−1
ljt ) ∀l ∈ L, j ∈ J , t ∈ T (4.73)

ϕr ← αϕr−1 (4.74)

where λ0
ljtn is set to zero for each scenario n ∈ N ; ϕ0 is set to a fixed positive value

which ensures that ϕr →∞ as the number of iteration r increases and the constant param-

eter α > 1. A pseudo-code of the basic PHA is provided in Algorithm 2.

Termination Criteria: The Progressive Hedging algorithm terminates when one of the

following condition is satisfied:

• 1
N

∑N
n=1

∑
l∈L
∑

j∈J
∑

t∈T |Y r
ljtn − Ȳ r

ljt| ≤ ϵ; where ϵ is a pre-specified tolerance

gap

• 10 consecutive non-improvement iterations

• Maximum iteration limit is reached (i.e., itermax = 100)

• Maximum time limit is reached (i.e., timemax = 10,800 CPU seconds)
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Algorithm 2: Progressive Hedging Algorithm
Initialize, r ← 1, ϵ, {λr

ljtn}∀l∈L,j∈J ,t∈T ,n∈N ← 0, ϕr ← ϕ0

terminate← false
while (terminate = false) do

for n = 1 to N
Solve [LCSM(PHA)] and obtain {Y r

ljtn}∀l∈L,j∈J ,t∈T ,n∈N
end for
Calculate the consensus parameter:

Ȳ r
ljt ← 1

N

∑N
n=1 Y

r
ljtn; ∀l ∈ L, j ∈ J , t ∈ T

if (r > 1) then
Update the lagrangian parameter:

λr
ljtn ← λr−1

ljtn + ϕr−1
ljt (Y r

ljtn − Ȳ r−1
ljt );∀l ∈ L, j ∈ J , t ∈ T

Update the penalty parameter:
ϕr ← αϕr−1 and α > 1

end if
if ((Y r

ljtn − Ȳ r−1
ljt )∀l∈L,j∈J ,t∈T ≤ ϵ) then

terminate← true
end if
r ← r + 1

end while

4.3.4 Enhanced Progressive Hedging Algorithm

Our initial computational experimentation with PHA to solve [LCSM(PHA)] for a

sufficiently large network size problem exposes its inability to converge within a reason-

able amount of time. This motivates us to explore additional enhancement techniques to

improve the convergence and stability of the PHA algorithm. The following subsection

discusses some PHA enhancement techniques to solve problem [LCSM(PHA)] efficiently

in a reasonable amount of time.

4.3.4.1 Penalty Parameter Updating

A number of studies, such as Chen and Fan [17], Huang et al. [50], showed that setting

of ϕ strongly influences the performance of the PHA algorithm. The authors observed that
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when the value of ϕ set too high then the algorithm converges fast to a suboptimal solution.

Conversely, if we set a conservative value for ϕ, then the algorithm converges slowly to

a near optimal solution. To tackle this challenge, this study uses a method proposed by

Hvattum and Lokketangen [53] to dynamically adjust the value of ϕ over iterations based

on the computational performance obtained from prior iterations of the PHA algorithm.

Let ∆r
1 and ∆r

2 be indicators of the convergence rates in the dual space and in the primal

space, respectively. Thus, the penalty value can be updated as follows:

∆r
1 =

∑
l∈L

∑
j∈J

∑
t∈T

(Y r
ljt − Ȳ r

ljt)
2 (4.75)

∆r
2 =

∑
l∈L

∑
j∈J

∑
t∈T

(Ȳ r
ljt − Ȳ r−1

ljt )2 (4.76)

ϕr =


φϕr−1 if ∆r

1 −∆r−1
1 > 0

1
φ
ϕr−1 else if ∆r

2 −∆r−1
2 > 0

(4.77)

where φ is a constant parameter which value is set to φ > 1.

4.3.4.2 Heuristic Strategy

We will now use two heuristic strategies that modify the fixed cost of using the multi-

modal facilities in problem [LCSM(PHA)] and enhances the PHA algorithm. The first

strategy is termed as global heuristic [19] since this strategy modifies the fixed cost of

using a multi-modal facility at the end of each iteration. Note that problem [LCSM(PHA)]

is composed of a series of N deterministic sub-problems. In Algorithm 2, at the end of

each iteration r one can obtain the values of the consensus parameter {Ȳ r
ljt}∀l∈L,j∈J ,t∈T
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which provide an indication of how many times a multi-modal facility was used in the

previous iterations. A higher value of Ȳ r
ljt translates the fact that the multi-modal facility

j of capacity l at time period t was used in most of the previous iterations. Conversely,

a lower value of Ȳ r
ljt indicates that the multi-modal facility j of capacity l at time period

t was not a favorable decision in most of the previous iterations. Let c and c be the two

parameters that define an upper and lower threshold value. Therefore, if the value of Ȳ r
ljt

is greater that the threshold value c, then lowering the fixed cost of using the multi-modal

facility will attract the subproblems to use the facility in the coming iterations. Similarly,

if the value of Ȳ r
ljt is lower that the threshold value c, then increasing the fixed cost of

using the multi-modal facility will avoid the subproblems use the facility in the coming

iterations. This will fix the decisions of using few multi-modal facilities to either one or

zero and thus will help to reduce the size of the problem. The adjustment strategy is shown

below:

ψr
ljt =



βψr−1
ljt if Ȳ r−1

ljt < c

1
β
ψr−1
ljt if Ȳ r−1

ljt > c

ψr−1
ljt Otherwise

(4.78)

where ψr
ljt represents the modified fixed cost of using a multi-modal facility of capacity

l ∈ L at location j ∈ J in time period t ∈ T and at iteration r; c and c are the two constant

parameters whose values are set to 0 < c < 0.3 and 0.7 < c < 1; and β is a constant

parameter whose value is set to β > 1.
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The above global heuristic strategy can be enhanced even further by modifying the

fixed cost of using a multi-modal facility within the scenario level. This strategy is termed

as local heuristics [19] since the modification of the fixed cost only impacts the subproblem

of the current scenario at a particular iteration. In scenario n ∈ N and iteration r, if the

gap between Y r
ljtn and Ȳ r

ljt is sufficiently large then we modify the fixed cost of using the

multi-modal facilities using the following equation. The local adjustment strategy applied

to Algorithm 2 is shown below:

ψr
ljtn =



βψr
ljt if |Y r−1

ljtn − Ȳ r
ljt| ≥ cfar and Y r−1

ljtn = 1

1
β
ψr
ljt if |Y r−1

ljtn − Ȳ r
ljt| ≥ cfar and Y r−1

ljtn = 0

ψr
ljt Otherwise

(4.79)

where ψr
ljtn represents the modified fixed cost of using a multi-modal facility of capacity

l ∈ L at location j ∈ J in time period t ∈ T under scenario n ∈ N and at iteration r; cfar

is a threshold at which point a local adjustment to the fixed cost of using a multi-modal

facility is applied and is set to 0.5 < cfar < 1; and β is a constant parameter whose value

is set to β > 1.

4.3.4.3 Rolling Horizon

Problem [LCSM(PHA)] is a deterministic, multi-time period facility location problem.

It is a special case of a capacitated facility location problem which is known to be anNP-

hard problem [69]. Therefore, in this section we solve problem [LCSM(PHA)] using a

Rolling Horizon [RH] heuristic approach proposed by Balasubramanian and Grossman
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[7] and Kostina et al. [62]. This approach decomposes multi-time period [LCSM(PHA)]

problem into a series of small subproblems with few consecutive time periods and the

algorithm terminates when all the subproblems are investigated. A pseudo-code of the

[RH] algorithm is shown in Algorithm 3

Let tr0 denote the starting time period of subproblem r. Let Mr denote the number of

time periods comprised in subproblem r. We can set a fixed or variable size of Mr for each

subproblem. Each approximate subproblem of the Rolling horizon algorithm is denoted by

[LCSM(PHA(r))]. Now, for each scenario n ∈ N the approximate subproblems are solved

by setting the variables as: (i) {Yljtn}∀l∈L,j∈J ,t∈T ∈ {0, 1} and {Zjktn}∀j∈J ,k∈K,t∈T ∈ Z+

for tr0 ≤ t ≤ tr0 + Mr, (ii) 0 ≤ Yljtn ≤ 1 and Zjktn ∈ R+ for t > tr0 + Mr. Once

a subproblem is solved, we fix the values of Y r
ljtn = Y r−1

ljtn ; ∀l ∈ L, j ∈ J , t ∈ T and

Zr
jktn = Zr−1

jktn; ∀j ∈ J , k ∈ K, t ∈ T for t < tr0 and update the step size r. The process

terminates when all the subproblems are solved. Figure 4.4 shows an example of using the

rolling horizon approach to solve a three time period problem.

Figure 4.4

Application of a rolling horizon strategy for a three time period problem
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Algorithm 3: Rolling Horizon (RH) Heuristic
r ← 1, tr0 = 0, M r, terminate← false
while (terminate = false) do

Set:
Yljtn ∈ {0, 1} and Zjktn ∈ Z+ for tr0 ≤ t ≤ tr0 +M r

0 ≤ Yljtn ≤ 1 and Zjktn ∈ R+ for t > tr0 +M r

Solve the approximate sub-problem [LCSM(PHA)] using CPLEX
if(t0 > |T |) then

stop← true
else

Fixing the values of Yljtn and Zjktn for t < tr0
end if
r ← r + 1

end while

4.4 Computational Study and Managerial Insights

We develop a case study in order to evaluate the impact of congestion in supply chain

network performance under feedstock supply uncertainty. We use the states of Mississippi

and Alabama as a testing ground for this analysis. All the algorithms are coded in GAMS

24.2.1 [39] and executed on a desktop computer with Intel Core i7 3.50 GHz processor and

32.0 GB RAM. The optimization solver used is ILOG CPLEX 12.6.

4.4.1 Data Description
4.4.1.1 Biomass Supply

Corn stover and forest residues are the two major feedstock sources available in Mis-

sissippi and Alabama. Forest residues are available all year around except three months

during the winter (December to February) whereas corn stover is harvested only during the

fall season (from September until November). The historical biomass availability data was
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adopted from the Knowledge Discovery Framework (KDF) database of the United States

Department of Energy [10]. This data was further processed by Idaho National Lab (INL)

to calculate the amount of densified biomass available in Mississippi and Alabama. Table

4.1 summarizes the key feedstock parameters used in this study. In total 99 suppliers from

Mississippi and Alabama are considered whose geographic distribution are shown in Fig-

ure 4.5a. The counties that produce more than 10,000 tons of biomass each year are only

considered here.

(a) Biomass distribution (b) Network representation

Figure 4.5

Biomass distribution and facility locations

4.4.1.2 Biomass Demand

The data about coal-fired power plant locations, nameplate capacity, types of coal used,

efficiency and operating hours of the plants, and annual heat input rates are obtained from

the National Energy Technology Laboratory [110]. We have considered in total 15 coal

plants which are distributed in Mississippi and Alabama and their geographic distribution
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Table 4.1

Key feedstock parameters

Feedstock Availability Deterioration rateb Storage costa Procurement costb

type (MTY) (per season) ($/dry ton) ($/dry ton)
Corn-stover 2.45 10% 8.0 35.0
Forest residues 1.91 12% 2.0 30.0
aObtained from Xie et al. [128]
bObtained from Parker et al. [88]

are shown in Figure 4.5b. We assume that the power plants will replace 6% of coal’s

demand with densified biomass to produce renewable electricity. This results a demand of

5.6 million tons per year (MTY) of densified biomass that is required to be satisfied by the

biomass supply chain network.

4.4.1.3 Investment Costs

This study considers a total of 57 potential locations for rail ramps located in Missis-

sippi and Alabama (shown in Figure 4.5b). The annualized fixed cost for a rail ramp of

capacity 1.05 MTY that sends a single railcar is set to $54,949/year [70]. We consider

four different facility capacities (l = 0.5 MTY, 0.75 MTY, 1.0 MTY, and 1.25 MTY).

These costs are estimated based on a lifetime of 30 years and a discount factor of 10% is

assumed.

4.4.1.4 Transportation cost

In this study we assume that trucks are used to transport biomass from a feedstock

supplier site i ∈ I to a multi-modal facility j ∈ J . Trucks can further be used to transport

biomass directly from a feedstock supplier site i ∈ I to a coal plant k ∈ K. Table 4.2
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shows the major cost components used to calculate the unit truck transportation cost and

are obtained from the study of Parker et al. [88]. This study further assumes that railcar can

be used to transport biomass from a multi-modal facility j ∈ J to a coal plant k ∈ K. The

fixed and variable cost component for a single rail car that carries 100 tons of grains is set

equal to $2,248 and $1.12/ton/mile traveled [42]. For all modes of transportation, we used

Arc GIS Desktop 10 to create a transportation network for identifying the shortest path

between each source to destination pairs. The network includes actual railways as well as

local, rural, urban roads, and major highways for the states of Mississippi and Alabama.

Table 4.2

Truck transportation cost components [88]

Item Value Unit
Loading/unloading 5.0 $/wet ton
Time dependent 29.0 $/hr/truckload
Distance dependent 1.20 $/mile/truckload
Truck capacity 25 wet tons/truckload
Average travel speed 40 miles/hour

4.4.2 Experimental Results
4.4.2.1 Impact of congestion cost on system performance

The first set of experiment studies the impact of congestion cost on biomass co-firing

supply network decisions. Figure 4.6 provides a relationship between different decision

variables under different c0 values. Clearly, increasing the c0 values for a given multi-

modal facility j ∈ J decreases the number of multi-modal facilities |Y| and thus the

number of containers transported between the multi-modal facilities |Z| by the biomass
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supply chain network. This relationship is reflected in Figures ?? and ??. Furthermore, it

is observed that after a certain value of c0 all the lines become flat. This is the critical point

after which no multi-modal facilities |Y| and thus no containers |Z| transported between

the multi-modal facilities are used to ship biomass in the supply chain network. This in turn

increases the amount of biomass shipped via highways (i.e. trucks), as shown in Figure ??.

We now present the optimal design for biomass co-firing supply chain network while

considering a low (e.g., c0 = $10,000) and a high congestion cost (e.g., c0 = $100,000)

into account. Figure 4.7 shows the optimal multi-modal facility deployment under this two

experiments. It is observed that in total 34 multi-modal facilities are selected for the case

when a lower congestion cost are taken into account (shown in Figure 4.7a). Among the 34

multi-modal facilities 24 are selected with a capacity of 0.5 MTY, 5 with 0.75 MTY, and

5 with 1.25 MTY. On the other hand, we observe a total of 21 multi-modal facilities are

selected for the case when a higher congestion cost are taken into account (shown in Figure

4.7b). Among the 21 multi-modal facilities 4 are selected with a capacity of 0.5 MTY, 6

with 0.75 MTY, and 11 with 1.25 MTY. Clearly, as the congestion cost c0 increases, the

number of multi-modal facilities |Y| decreases but the tendency to select the number of

facilities with higher capacity increases. In summary, we can conclude that the congestion

cost has a direct impact in the size and selection of location for the multi-modal facilities.

4.4.2.2 Impact of supply changes on system performance

The second set of experiment (shown in Figure 4.8) shows the impact of biomass sup-

ply changes on biomass co-firing supply chain network performance. There are a number
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Figure 4.6

Impact of different congestion cost on system performance

of factors which impacts the biomass availability in a given region, such as, unexpected

natural catastrophe, new initiative from government to cultivate (i.e., promoting farmers

to cultivate more biomass) or any other related factors [73]. We test model [LCSM] by

varying the mean biomass supply sbit, ∀b ∈ B, i ∈ I, t ∈ T between -20% to +20% and ob-

serve that the number of multi-modal facilities and the containers transported between the

facilities are significantly impacted by the changes in biomass supply. To run these exper-
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(a) Congestion cost, c0 = $10,000 (b) Congestion cost, c0 = $100,000

Figure 4.7

Network representation under different congestion costs

iments, we kept the congestion cost fixed for all the instances (i.e., c0 = $10, 000). Figure

?? indicates that if the mean biomass supply sbit increases by 20% then model [LCSM]

selects an additional 32.2% multi-modal facilities |Y| to cope with this high biomass sup-

ply changes. Note that this number would change to 38.1% if the congestion costs were

ignored by the model. We observe the same trend among the number of containers |Z|

transported between the multi-model facilities. Results show that a 20% increase in mean

biomass supply sbit increases |Z| by 18.04% if the congestion costs were taken into ac-

count (shown in Figure ??) while the number would reach to 25.52% if the congestion

costs were ignored. We further observe a 17.64% increase in highway transportation |X|

across all possible scenarios if the mean biomass supply sbit would increase by 20%. On

the other hand, when we assume that the mean biomass supply sbit is decreased by 20%, the

number of multi-modal facilities |Y|, the number of containers |Z| transported between the

multi-modal facilities, and the shipment through highways |X| would decrease by 24.73%,
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16.12%, and 12.16%, respectively. This clearly indicates that the changes in mean biomass

supply sbit will highly impact the biomass supply chain network decisions.

Figure 4.8

Impact of supply changes on system performance

4.4.2.3 Performance evaluation of stochastic vs. deterministic solution

To understand the importance of using stochastic programming approach over deter-

ministic approach this study solves model [CSM] using both approaches and compared
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their solutions. To solve the deterministic approach, this study uses the average biomass

supply sbit = sbitω/|Ω| where sbitω is obtained from the different supply scenario in

stochastic programming approach. Figure 4.9 shows the comparison of key supply chain

decisions with and without considering biomass supply uncertainty. It is observed that the

stochastic programming approach selects almost 50% more multi-modal facilities |Y| than

the deterministic approach. This results an additional 32.82% increase in container trans-

portation |Z| between the multi-modal facilities and thus the amount of biomass transported

via highways is decreased by 19.19%. In overall, the unit delivery cost of biomass trans-

portation drops from $45.30/ton (deterministic equivalent solution) to $41.39/ton (stochas-

tic programming solution) if the biomass seasonality and uncertainty are taken into con-

sideration.

In our experiments, we set t = 1 to represent the month of June. Corn stover is typically

harvested from September (t = 4) until November (t = 6) in a given calender year. On the

other hard, forest residues are harvested all year, except three months during the winter:

December to February (t = 7 - 9). This data supports the statement that September (t = 4) to

November (t = 6) are the peak biomass production months in a given calender year whereas

neither corn stover nor woody biomass are available during three months of the winter (t =

7 - 9) and can be classified as the off-peak production season for biomass. Therefore, the

multi-modal facilities are most likely become congested during the peak biomass produc-

tion season of a year (t = 4 - 6). We now compare the solutions between deterministic and

stochastic approach under high (shown in Figure 4.10) and low biomass (shown in Figure

4.11) availability seasons. It is observed that under both high and low biomass production
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seasons stochastic programming solution selects some additional multi-modal facilities to

cope against high feedstock seasonality and uncertainty. In summary, we can conclude

that feedstock supply uncertainty posses high impact on biomass co-firing supply chain

network decisions and use of stochastic solution is beneficial over deterministic solution.

Figure 4.9

Impact of stochastic vs. deterministic solution on system performance
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(a) Deterministic solution (b) Stochastic solution
Figure 4.10

Network representation with and without considering biomass supply uncertainty on peak
biomass season (t = 5)

(a) Deterministic solution (b) Stochastic solution
Figure 4.11

Network representation with and without considering biomass supply uncertainty on low
biomass season (t = 8)

159



4.4.3 Analyzing the performance of solution algorithms

We used the algorithms proposed in Section 4.3 to solve model [LCSM]. To help the

readers follow our approaches, we have used the following notations to represent the algo-

rithms:

• [CG]: Constraint Generation Algorithm (CG) algorithm (described in Section 4.3.1)

• [Hybrid 1]: Constraint Generation Algorithm (CG) algorithm where the subprob-

lem of the [CG] is solved using Sample Average Approximation (SAA) algorithm

(described in Section 4.3.2)

• [Hybrid 2]: Constraint Generation Algorithm (CG) algorithm where the subprob-

lem of the [CG] is solved using Sample Average Approximation (SAA) algorithm

and the subproblem of SAA is solved using Progressive Hedging algorithm (PHA)

(described in Section 4.3.3)

• [Hybrid 3]: Constraint Generation Algorithm (CG) algorithm where the subproblem

of the [CG] is solved using Sample Average Approximation (SAA) algorithm and

the subproblem of SAA is solved using an enhanced Progressive Hedging algorithm

(PHA) (enhancement techniques described in Section 4.3.4.1)

• [Hybrid 4]: Constraint Generation Algorithm (CG) algorithm where the subproblem

of the [CG] is solved using Sample Average Approximation (SAA) algorithm and

the subproblem of SAA is solved using an enhanced Progressive Hedging algorithm

(PHA) (enhancement techniques described in Section 4.3.4.1, 4.3.4.2, and 4.3.4.3)
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The algorithms presented above are terminated when at least one of the following con-

dition is met: (a) the optimality gap (i.e., ϵ = |UB − LB|/UB) falls below a threshold

value ϵ = 0.01; or (b) the maximum time limit timemax = 10,800 (in CPU seconds) is

reached; or (c) the maximum number of iteration itermax = 100 is reached. To terminate

the Progressive Heading algorithm, we have used some additional stopping criteria which

are described at the end of Section 4.3.3. The size of the deterministic equivalent problem

of model [LCSM] is presented in Table 4.3.

Table 4.3

Problem size of the test instances
Case |I| |J | |K| |L| |B| |T | Binary Integer Continuous Total No. of

Variables Variables Variables Variables Constraints
1 99 57 15 4 2 4 912 3,420 689,340 693,672 8,329
2 99 57 15 4 2 8 1,824 6,840 1,378,680 1,387,344 16,657
3 99 57 15 4 2 12 2,736 10,260 2,068,020 2,081,016 24,985

Table 4.4.3 presents the results from solving model [LCSM] using the algorithms pro-

posed in Section 4.3. We vary the sample size N and then solve model [LCSM] with

different cases as shown in Table 4.3. Results indicate that, [CG] is able to solve only 2

out of 18 problem instances in less than 1% optimality gap within the specified time limit.

Introducing SAA to solve the subproblem of [CG] (termed as [Hybrid 1]) helps to solve 8

out of 18 problem instances in less than 1% optimality gap within the specified time limit.

Note that the size of the large scenario set is chosen equal to N ′ = 500 to evaluate the SAA

gap. We then further improve the performance of the [Hybrid 1] algorithm by introducing

PHA algorithm to solve the subproblems of the SAA algorithm, which we refer as [Hy-
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brid 2] algorithm. Results further show that [Hybrid 2] algorithm is capable of solving

10 out of 18 problem instances in less than 1% optimality gap within the specified time

limit. The benefits of using PHA algorithm becomes more evident after applying the en-

hancement techniques discussed in Section 4.3.4. Results indicate that algorithm [Hybrid

4] (employs all the enhancement techniques discussed in Section 4.3.4) saves 30.44% time

while dropping the optimality gap by 55.28% over algorithm [Hybrid 3] (employs only

“penalty parameter updating scheme” discussed in Section 4.3.4.1). In summary, [Hybrid

4] algorithm seems to offer high quality solutions consistently within the experimental

range.

4.5 Conclusion

This paper studies the impact of multi-modal facility congestion on the design and man-

agement of a biomass co-firing supply chain network under feedstock supply uncertainty.

A two-stage stochastic mixed-integer nonlinear programming model [CSM] is developed

that not only determines the optimal locations of multi-modal facilities, feedstock storage

and processing plans, and shipment routes for biomass transportation but also considers

delay costs associated with hub congestions under feedstock supply uncertainty. We then

develop a hybrid decomposition algorithm that combines Constraint Generation algorithm

with Sample Average Approximation algorithm and an enhanced Progressive Hedging al-

gorithm to solve problem [CSM]. The enhanced Progressive Hedging algorithm incorpo-

rates several algorithmic improvements such as the dynamic penalty parameter updating

technique, the local and global heuristic techniques, and the Rolling horizon algorithm.

162





Computational results indicate that the hybrid decomposition algorithm ([Hybrid 4]) is

capable of producing high quality solutions in a reasonable amount of time to solve realis-

tic large-size problem instances for model [CSM].

We use the states of Mississippi and Alabama as a testing ground to evaluate the perfor-

mance of the modeling results for our study. Our computational experiments reveal some

insightful results about the impact of facility congestion on a biomass co-fired supply chain

network under feedstock supply uncertainty. We observe that the congestion cost plays a

significant role in selecting the size and location of the multi-modal facilities in a biomass

co-fired supply chain network. Moreover, we observe that the unit biomass transportation

cost drops from $45.30/ton (deterministic equivalent solution) to $41.39/ton (stochastic

programming solution) if the biomass seasonality and uncertainty are taken into consid-

eration. The sensitivity analyses further reveal the impact of biomass supply changes on

biomass co-fired supply chain network performance.

This work can be extended in several directions. Our study assumes that the congestion

occurs only in multi-modal facilities. However, in reality congestion may occur in both

highways and in multi-modal facilities. Moreover, our study assumes that the multi-modal

facilities are reliable and will never fail. It will be interesting to see how biomass supply

chain mitigates congestion under facility disruptions. These issues will be addressed in

future studies.
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