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ABSTRACT

ON TWO NEW ESTIMATORS FOR THE CMS THROUGH

EXTENSIONS OF OLS

Yongxu Zhang

DOCTOR OF PHILOSOPHY

Temple University, MAY, 2017

Dr. Yuexiao Dong, Chair

As a useful tool for multivariate analysis, sufficient dimension reduction

(SDR) aims to reduce the predictor dimensionality while simultaneously keeping

the full regression information, or some specific aspects of the regression infor-

mation, between the response and the predictor. When the goal is to retain

the information about the regression mean, the target of the inference is known

as the central mean space (CMS). Ordinary least squares (OLS) is a popular

estimator of the CMS, but it has the limitation that it can recover at most one

direction in the CMS. In this dissertation, we introduce two new estimators of

the CMS: the sliced OLS and the hybrid OLS. Both estimators can estimate

multiple directions in the CMS.

The dissertation is organized as follows. Chapter 1 provides a literature

review about basic concepts and some traditional methods in SDR. Motivated
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from the popular SDR method called sliced inverse regression, sliced OLS is

proposed as the first extension of OLS in Chapter 2. The asymptotic properties

of sliced OLS, order determination, as well as testing predictor contribution

through sliced OLS are studied in Chapter 2 as well. It is well-known that

slicing methods such as sliced inverse regression may lead to different results

with different number of slices. Chapter 3 proposes hybrid OLS as the second

extension. Hybrid OLS shares the benefit of sliced OLS and recovers multiple

directions in the CMS. At the same time, hybrid OLS improves over sliced

OLS by avoiding slicing. Extensive numerical results are provided to demon-

strate the desirable performances of the proposed estimators. We conclude the

dissertation with some discussions about the future work in Chapter 4.
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CHAPTER 1

LITERATURE REVIEW

1.1 Central Space and Central Mean Space

Consider a univariate response Y and a p-dimensional predictor X. The

goal for dimension reduction (Li, 1991; Li, 1992; Cook and Weisberg, 1991;

Cook, 1998) is to find a matrix β ∈ Rp×d, with d < p, such that

Y ⊥⊥ X|β′X, (1.1)

where⊥⊥ denotes independence.

Remark 1.1.1. For any non-singular matrix A ∈ Rd×d, given Y ⊥⊥ X|β′X,

βA will satisfy Y ⊥⊥ X|(βA)′X. Denote Span(β) as the column space of β.

Then it is easy to see Span(β) = Span(βA).

Definition 1.1.1. For β satisfying (1.1), we define Span(β) as a dimension
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reduction space. The central space (CS) for regressing between Y and X is the

intersection of all dimension reduction spaces, denoted as SY |X.

Let β be the basis of the SY |X. Then Span(β) is also the smallest among all β’s

satisfying F (Y |X) = F (Y |β′X), where F denotes the cumulative distribution

function. In other words, the conditional distribution of Y given X is the same

as the conditional distribution of Y given β′X.

Cook and Li (2002) introduced the concept of CMS, which aims to find

β with the smallest column space such that E(Y |X) = E(Y |β′X). More

specifically, CMS is defined as follows.

Definition 1.1.2. For β satisfying Y ⊥⊥ E(Y |X)|β′X, we define Span(β) as a

mean dimension reduction space. The central mean space (CMS) for regressing

between Y and X is the intersection of all mean dimension reduction subspace,

denoted as SE(Y |X).

Remark 1.1.2. It is easy to see Y ⊥⊥ X|β′X implies Y ⊥⊥ E(Y |X)|β′X. With

Definition 1.1.1 and Definition 1.1.2 we can conclude SE(Y |X) ⊆ SY |X.

An important property for CMS is the invariance property below.

Proposition 1.1.1. Let A ∈ Rp×p be non-singular, b ∈ Rp, and X = AZ+b.

Then, SE(Y |X) = (A−1)′SE(Y |Z).

Note that the invariance property is also valid for SY |X.
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Remark 1.1.3. Let E(X) = µ, Var(X) = Σ. Then Z = Σ−1/2(X − µ)

is the standardized predictor. From Proposition 1.1.1, we have SE(Y |X) =

Σ−1/2SE(Y |Z).

1.2 Classical Methods for Dimension Reduction

In this section, we review some classical methods in dimension reduction.

1.2.1 Ordinary Least Squares

Li and Duan (1989) proposed OLS as an estimator of the CS. Cook and Li

(2002) demonstrated the direction that OLS recovered is in the CMS.

Theorem 1.2.1. Suppose E(Z) = 0, Var(Z) = Ip, and Span(η) = SE(Y |Z).

In addition, assume

E(Z|η′Z) is a linear function of η′Z. (1.2)

Then E(ZY ) ∈ SE(Y |Z).

Remark 1.2.1. From Proposition 1.1.1: Σ−1/2SE(Y |Z) = SE(Y |X), together

with Theorem 1.2.1, we have Σ−1E
(
(X−µ)Y )

)
= Σ−1/2E(ZY ) ∈ Σ−1/2SE(Y |Z) =

SE(Y |X). Let β0 = Σ−1E
(
(X− µ)Y )

)
, and we have shown β0 ∈ SE(Y |X).

At the sample level, let X̄ = EnX = 1
n

∑n
i=1 Xi, Σ̂−1 = 1

n

∑n
i=1(Xi −

X̄)(Xi− X̄)′, and En

(
(X−µ)Y

)
= 1

n

∑n
i=1(Xi− X̄)Yi. Then the sample level

OLS estimator can be formed as β̂0 = Σ̂−1En

(
(X− µ)Y

)
.
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One disadvantage of the OLS method is that it can estimate at most one

direction in SE(Y |X). Another disadvantage is that OLS does not perform well

when there is symmetric link function between the response and the predictor.

1.2.2 Principal Hessian Directions

Li (1992) proposed the principal Hessian directions (PHD) and Cook and

Li (2002) further demonstrate that PHD recovers the CMS.

Theorem 1.2.2. Let E(Z) = 0, and Var(Z) = Ip, E(Y) = 0, and Span(η) =

SE(Y |Z). In addition to assumption (1.2) in Theorem 1.2.1, we assume Var(Z|η′Z)

is a constant matrix. Then Span
(
E(Y ZZ′)

)
⊆ SE(Y |Z).

We define the kernel matrix of PHD as MPHD = E(Y ZZ′)E(Y Z′Z), then

Span(MPHD) ⊆ SE(Y |Z).

Remark 1.2.2. From Proposition 1.1.1: Σ−1/2SE(Y |Z) = SE(Y |X), together

with Theorem 1.2.2 and Remark 1.1.1, we have Span
(
Σ−1E

(
Y (X − µ)(X −

µ)′
))

= Span
(
Σ−1E

(
Y (X − µ)(X − µ)

)′
Σ−1/2

)
= Span

(
Σ−1/2E(Y ZZ′)

)
⊆

Σ−1/2SE(Y |Z) = SE(Y |X).

Suppose SE(Y |X) = Span(β) with β ∈ Rp×d. The sample level algorithm is

formally described as follows.

Algorithm
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i Let Σ̂ and X̄ be the sample covariance matrix and sample mean

respectively of X, then Ẑi = Σ̂−1/2(Xi − X̄).

ii Let Ŷi = Yi − Ȳ , where Ȳ is the sample mean of Y.

iii Calculate the kernel matrix M̂PHD = En(Y ZZ′)En(Y Z′Z), where

En(Y ZZ′) = 1
n

∑n
i=1 ŶiẐiẐ

′
i.

iv Conduct an eigenvalue decomposition on the kernel matrix M̂PHD to

find the eigenvectors η̂k, k = 1, ..., d, corresponding to the d largest

eigenvalues.

v By Proposition 1.1.1, transfer back to get β̂k = Σ̂−1/2η̂k, and β̂ =

(β̂1, β̂2, . . . , β̂d).

Remark 1.2.3. Unlike OLS, which can estimate at most one direction, PHD

can recover more than one direction in the CMS. Another difference between

OLS and PHD is that OLS does not work well when quadratic trend exists, but

works well when a linear trend exists. PHD is the opposite. See, for example,

Li (1992), Yu et al. (2010) for more details.

1.2.3 Sliced Inverse Regression

Li (1991) proposed the sliced inverse regression (SIR), which to recover the

central space based on the following fact.
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Theorem 1.2.3. Let Span(η) = SY |Z. In addition, assume

E(Z|η′Z) is a linear function of η′Z. (1.3)

Then E(Z|Y ) ∈ SY |Z.

Note that when OLS is reviewed in Section 1.2.1, the assumption (1.2) assigns

Span(η) as the basis of the CMS, while in assumption (1.3), Span(η) denotes

the basis of the CS.

Corollary 1.2.1. Under the same condition of Theorem 1.2.3, we define the

kernel matrix of SIR as MSIR = Var
(
E(Z|Y )

)
, then Span(MSIR) ⊆ SY |Z.

Suppose SY |X = Span(β) with β ∈ Rp×d. The sample level algorithm is

shown as follows.

Algorithm

i Let Σ̂ and X̄ be the sample covariance matrix and sample mean

respectively of X, then Ẑi = Σ̂−1/2(Xi − X̄).

ii Divide the range of Y into H slices and let the probability of Yi

falling into the hth slice be p̂h = (1/n)
∑n

i=1 I(Yi ∈ Jh), I(Yi ∈

Jh) = 1 when Yi is in the hth slice, and 0 otherwise.

iii Within the hth slice, calculate m̂h = (1/np̂h)
∑

Ŷi∈Jh Ẑi. Let the

kernel matrix M̂SIR =
∑H

h=1 p̂hm̂hm̂
′
h.
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iv Conduct an eigenvalue decomposition on the kernel matrix M̂SIR

to find the eigenvectors η̂k, k = 1, ..., d, corresponding to the d

largest eigenvalue.

v By Proposition 1.1.1, transfer back to get β̂k = Σ̂−1/2η̂k. Then

β̂ = (β̂1, β̂2, . . . , β̂d).

Note that when Y is discrete, this denotes the possible values of Y that are in

the set (ξ1, . . . , ξH). Then the hth intraslice mean will be mh = E(Z|Y = ξh),

h = 1, 2, ..., H. The corresponding sample level algorithm is similar and is thus

omitted.

Remark 1.2.4. Note that
∑H

h=1 p̂hm̂h = 1
n

∑H
h=1

∑
Y ∈Ih Ẑi

= 1
n
Σ−1/2

∑H
h=1

∑
Y ∈Ih(Xi − X̄) = 1

n
Σ−1/2

∑n
i=1(Xi − X̄) = 0. Thus we

have m̂1, m̂2, . . . , m̂H are linearly dependent. From the definition of M̂SIR =

ΣH
h=1p̂hm̂hm̂′h, we know d = rank(M̂SIR) ≤ H − 1. Thus we have proved SIR

can estimate at most H − 1 directions in the CS.

1.3 Order Determination

We review the sequential test approach as follows. Let M be the kernel

matrix of a dimension reduction methods. For example MSIR = Var
(
E(Z|Y

)
.

Let M̂ be the sample estimator of M. Suppose rank(M) = d. Order determi-

nation aims to estimate d based on M̂.
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Consider H(l)
0 : d = l v.s. H

(l)
a : d > l. We then estimate d as d̂ =

argmin{l : H
(l)
0 is not rejected}. Specifically, let T̂n,l = n

∑p
j=l+1 λ̂j, where

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p are eigenvalues of the kernel matrix M̂. Then we reject

H
(l)
0 for large values of T̂n,l. The threshold for T̂n,l is decided by the asymptotic

distribution of T̂n,l under H
(l)
0 . For example, see Li (1991; 1992), Cook and Li

(2004), Li and Wang (2007), and Dong and Yu (2012).

1.4 Marginal Coordinate Test

For X = (X1, . . . , Xp)
′, let X−k = (X1, . . . , Xk−1, Xk+1, . . . , Xp)

′ for k ∈

{1, . . . , p}. A marginal coordinate test (Cook, 2004; Shao et al., 2007; Yu and

Dong, 2016) considers H [k]
0 : Y ⊥⊥ X|X−k v.s. H

[k]
a : Y 6⊥⊥ X|X−k. Here 6⊥⊥

denotes non-independence. The following result is due to Dong et al. (2016).

Proposition 1.4.1. Let ek ∈ Rp, k = 1, . . . , p, where the kth element of ek is

1 and all the other elements are zero. Suppose SY |X = Span(β) for β ∈ Rp×d.

Then e′kβ = 0 if and only if Y ⊥⊥ X|X−k.

Recall MSIR = Var
(
E(Z|Y )

)
. Let T SIR

k = e′kΣ
−1/2MSIRΣ−1/2ek. From Propo-

sition 1.4.1, we have the following result from the SIR-based marginal coordi-

nate test.

Proposition 1.4.2. Assume Span(Σ−1/2MSIRΣ−1/2) = SY |X. Then T SIR
k = 0

if and only if Y ⊥⊥ X|X−k.
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Recall MSIR = Var
(
E(Z|Y)

)
= Σ−1/2E

(
E
(
(X− µ)|Y

)
E
(
(X− µ)|Y

)′)
Σ−1/2 ⊆

SY |Z. It follows that Span(Σ−1/2MSIRΣ−1/2) ⊆ SY |X. We need a stronger

assumption that Span(Σ−1/2MSIRΣ−1/2) = SY |X in Proposition 1.4.2.

At the sample level, let T̂ SIR
n,k be the sample estimator of T SIR

k , then we

reject H [k]
0 : Y ⊥⊥ X|X−k for large values of T̂ SIR

n,k . The threshold for T̂ SIR
n,k is

decided by the asymptotic distribution of T̂ SIR
n,k under H [k]

0 . See Cook (2004)

for details.
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CHAPTER 2

SLICED OLS, THE PROPOSED

FIRST METHOD

2.1 Motivation

Along with the advancement of sciences and technologies, high-dimensional

data has the tendency of been collected across various fields. To facilitate the

problem of reduce many predictors to a few predictors, researchers mainly

developed two different approaches in the statistical literature. One is a

variable selection method, like LASSO (Tibshirani, 1996), where researchers

believe that among all the predictors, only a few of them truly are related

to the response. Another approach is (sufficient) dimension reduction, which

assumes the information of response variables can be compressed by a linear
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combination of the predictors.

The rest of this chapter is constructed as follows. In section 2.2, we derive

a new SOLS estimator of the CMS. In the following we study the asymptotic

properties of the SOLS estimator in section 2.3. In section 2.4, we introduce a

sequential test of order determination. In section 2.5, we propose a new vari-

able selection method which utilizes the SOLS estimator in a marginal coor-

dinate test. In the last section, we study the aforementioned topics through

extensive numerical study.

2.2 SOLS Estimator for the CMS

Inspired by the sliced method from Li (1991), we define W = β′0X and

propose a new method that can recover the CMS by dividing the range of W

into J1, . . . , JH slices. We call the proposed method Sliced OLS (SOLS). Recall

that in Remark 1.2.1, we have β0 = Σ−1E
(
(X − µ)Y )

)
∈ SE(Y |X). Without

loss of generality, we assume E(Y ) = 0, E(X) = 0 throughout the rest of

the chapter, and the corresponding β0 = Σ−1E(XY ) from now on. Then the

theorem of SOLS is shown as follows.

Theorem 2.2.1. Let Span(β) = SE(Y |X) and β0 = Σ−1E(XY ). In addition,

assume E(X) = 0 and

E(X|β′X) is a linear function of β′X. (2.1)



12

Then, Σ−1E(XY |β′0X) ∈ SE(Y |X).

Note that assumption (2.1) here is different from assumption (1.2). Assump-

tion (2.1) is based on X-scale while assumption (1.2) is based on Z-scale. They

imply each other but they are different.

Corollary 2.2.1. Under the same assumption of Theorem 2.2.1, and W =

β′0X , define MSOLS = Σ−1E
(
E(XY |W )E(X′Y |W )

)
Σ−1, then Span(MSOLS) ⊆

SE(Y |X).

The proof of Theorem 2.2.1 can be found in the Appendix.

Remark 2.2.1. Compared with SIR, which can estimate at most H− 1 direc-

tions in the CS, SOLS can estimate at most H directions in the CMS. The

proof is similar to Remark 1.2.4 and can be found in the Appendix.

We define Uh = E(XY Rh), h = 1, . . . , H, where Rh = I(W ∈ Jh) be the

indicator function of W belonging to the hth slice. Let ph = E(Rh), the kernel

matrix of SOLS can be re-written as

MSOLS =
H∑
h=1

p−1h Σ−1UhU
′
hΣ
−1.

Given {(Xi, Yi), i = 1, . . . , n} as a random sample of (X, Y ). Parallel to

the SIR algorithm, we conduct a step by step sample level algorithm.

Algorithm
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i Let Ŵi = β̂′0(X̂i − X̄), β̂0 = n−1Σ̂−1
∑n

i=1(X̂i − X̄)Yi.

ii Divide the range of Ŵ into H slices. Let the probability of Ŵi

falling into the hth slice be p̂h = n−1Σn
i=1I(Ŵi ∈ Jh).

iii Calculate Ûh = n−1
∑n

i=1(X̂i − X̄)YiI(Ŵi ∈ Jh). Let the kernel

matrix M̂SOLS =
∑H

h=1 p̂
−1
h Σ̂−1ÛhÛ

′
hΣ̂
−1.

iv Conduct an eigenvalue decomposition on the kernel matrix M̂SOLS

to find the eigenvectors β̂k, k = 1, ..., d, corresponding to the d

largest eigenvalue. Then β̂ = (β̂1, . . . , β̂k).

Unlike the algorithms in Chapter 1, no transformation is needed at the last

step because the kernel matrix is defined at the Z-scale before, and at the

X-scale here.

2.3 Asymptotic Properties of SOLS

Let V = (V1,V2, . . . ,VH), where Vh = p
−1/2
h Σ−1Uh, and then MSOLS =

VV′. At the sample level, define p̂h as the proportion of Ŵ = β̂′0X that

falls into the hth slice, denoted as p̂h = (1/n)Σn
i=1I(Ŵi ∈ Jh). With Ûh =

En(XY Rh), V̂h = p̂
−1/2
h Σ̂−1Ûh, we have V̂ = (V̂1, V̂2, . . . , V̂H) and M̂SOLS =

V̂V̂′. We are interested in deriving the asymptotic distribution of
√
n(
(
vec(M̂h)−

vec(Mh)
)
, but we will begin by illustrating the asymptotic distribution of

√
n
(
vec(V̂h)−vec(Vh)

)
first. The asymptotic expansions will have the following
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basic form. Let Fn be the empirical measure based on the iid sample. Let S

be a real- or matrix- valued functional on F , where F is a convex set of distri-

butions that includes empirical distributions and the true distribution F.

S(Fn) = S(F ) + EnS
∗(F ) +Op(n

−1), (2.2)

where ES∗(F ) = 0, then EnS
∗(F ) = Op(n

−1/2) (Hampel (1974); Fernholz

(1983); Serfling (1980); Bickel et al. (1993)). Here S∗ is known as the Frechet

derivative.

Lemma 2.3.1. Suppose the entries of E(XY |W ) have finite second moments.

Then the the expansions of p̂h, Σ̂−1, Ûh have the form of equation (2.2), where

(p
−1/2
h )∗, (Σ−1)∗, U∗h take the place of S∗(F ),

(p
−1/2
h )∗ = −1

2
p
−3/2
h (Rh − ph),

(Σ−1)∗ = −Σ−1
(
XX′ − E(XX′)

)
Σ−1,

U∗h = XY Rh − E(XY Rh)−XE(Y Rh).

We can now write the asymptotic distribution of vec(V̂), where vec(V̂) is

the vectorization of matrix V̂, which is the concatenation of columns of V̂.

Theorem 2.3.1. Under the assumption (1.2), and let Γ = Cov(vec(A)),

where A = (A1,A2, . . . ,AH) ∈ Rp×H ,

√
n
(
vec(V̂)− vec(V)

) D−→ N (0,Γ),

with Ah = (p
−1/2
h )∗Σ−1Uh + p

−1/2
h (Σ−1)∗Uh + p

−1/2
h Σ−1U∗h, where (p

−1/2
h )∗,

(Σ−1)∗, U∗h defined in Lemma 2.3.1.
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2.4 Sequential Test for Order Determination

In the previous development of the SOLS estimator, we assume that the

order d is known. In practice, d is usually unknown and the estimation of the

order d is needed. There are mainly two approaches to the order determination.

One needs to derive the asymptotic distribution of the test statistic and the

other one is an empirical method based on the bootstrap re-sampling process.

For both approaches, deriving the asymptotic distribution of the test statistic

is critical.

Recall the sequential test we introduced in Chapter 1. Suppose d =

rank(MSOLS). We parallel the asymptotic test as: H(l)
0 : d = l v.s. H(l)

a : d > l.

Define the test statistic

T̂ SOLS
n,l = n

p∑
j=l+1

λ̂j,

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p are eigenvalues of the kernel matrix M̂SOLS. We

will need to find the asymptotic distribution of the test statistic under the null

hypothesis. H(l)
0 : d = l. Through singular value decomposition of the matrix

V, we can get following form:

V =
(
S1 S0

)D 0

0 0

(T′1
T′0

)
, (2.3)

where S1 ∈ Rp×l, S0 ∈ Rp×(p−l),T1 ∈ RH×l,T0 ∈ RH×(H−l), and D ∈ Rl×l.

Here we introduced the asymptotic testing method, which is based on the
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following corollary.

Theorem 2.4.1. Let A be defined as Theorem 2.3.1 and under the same

condition of Theorem 2.3.1, define H = S′0AT0, and Λ = Cov(vec(H)), where

S0 and T0 are defined as in (2.3). Under H(l)
0 ,

T̂ SOLS
n,l

D−→
(p−l)(H−l)∑

j=1

νjχ
2
j(1),

where ν1, ν2, . . . are the eigenvalues of Λ.

Recall d̂ = argmin{l : H
(l)
0 is not rejected}, for testing H(l)

0 : d = l v.s.

H
(l)
a : d > l, we describe the sample level algorithm here.

Algorithm

i Conduct a singular value decomposition on V̂ = (V̂1, V̂2, . . . , V̂H),

where V̂h = p̂
−1/2
h Σ̂−1Ûh. Get corresponding Ŝ0, T̂0, where Ŝ0 and

T̂0 are the sample estimator of S0, T0 in equation 2.3. Calculate

Ĥ = Ŝ′0ÂT̂0.

ii Apply the eigenvalue decomposition on Λ̂ = Cov(vec(Ĥ)) to get

eigenvalues ν̂j’s, j = 1, . . . , (p− l)(H − l).

iii GenerateN realizations from a distribution Ωl =
∑(p−l)(H−l)

j=1 ν̂jχ
2
j(1).

Here Ωl is a weighted χ2(1) distribution, in which the weights are

the eigenvalues ν̂j’s, j = 1, . . . , (p − l)(H − l). Denote the upper

5th percentile as Cl.
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iv Reject the null hypothesis of H(l)
0 : d = 1 when T̂ SOLS

n,l > Cl and

accept otherwise.

2.5 Marginal Coordinate Test for Variable Selec-

tion

Now we apply the SOLS estimator to test the predictor contribution. Recall

the marginal coordinate hypothesis test in Chapter 1. We conduct following

hypothesis test to test the contribution of an individual predictor to the regres-

sion mean in the presence of all the other predictors. H [k]
0 : Y ⊥⊥ E(Y |X)|X−k

v.s. H
[k]
a : Y 6⊥⊥ E(Y |X)|X−k. The null hypothesis implies that Xk has no

additional contribution to Y given the other predictors. Parallel to Proposi-

tion 1.4.1, we have the below proposition.

Proposition 2.5.1. Suppose SE(Y |X) = Span(β) for β ∈ Rp×d. Then e′kβ = 0

if and only if Y ⊥⊥ E(Y |X)|X−k.

Knowing that the kernel matrixMSOLS = Σ−1E
(
E(XY |W )E(X′Y |W )

)
Σ−1,

we have below proposition.

Proposition 2.5.2. Assume Span(MSOLS) = SE(Y |X). Let T SOLSk = e′kMSOLSek,

then T SOLSk = 0 if and only if Y ⊥⊥ E(Y |X)|X−k.

Recall from Theorem 2.2.1 that E(XY |W ) ∈ SE(Y |X), with Rh = I(W ∈
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Jh), ph = E(Rh), and Uh = E(XY Rh). The test statistics at the sample level

can be written as

T̂ SOLSn,k = n

H∑
h=1

e′kΣ̂
−1p̂−1h ÛhÛ

′
hΣ̂
−1ek.

Applying the result from Theorem 2.3.1, we can derive the asymptotic distri-

bution of the test statistics and summarize the conclusion as follows.

Theorem 2.5.1. Let A be defined as Theorem 2.3.1 and under the same

condition of Theorem 2.3.1,

T̂ SOLSn,k
D−→

H∑
h=1

γkhχ
2
h(1),

where γ1, γ2, . . . are the eigenvalues of Cov(Gk), where Gk = (gk,2,gk,1, . . . ,gk,H)′,

gk,h = p
−1/2
h e′k(Σ

−1)∗Uh + p
−1/2
h e′kΣ

−1U∗h.

The sample level algorithm is shown as follows.

Algorithm

i Apply the eigenvalue decomposition to matrix Cov(Ĝk) to get the

eigenvalues γ̂j’s, j = 1, . . . , (p−l)(H−l), where Ĝk = (ĝk,1, ĝk,2, . . . , ĝk,H),

ĝk,h = p̂
−1/2
h e′k(Σ̂

−1)∗Ûh + p̂
−1/2
h e′kΣ̂

−1Û∗h.

ii Generate N realizations from a distribution Ψk =
∑H

h=1 γ̂khχ
2
h(1).

Here Ψ is a weighted χ2(1) distribution, in which the weights are the

eigenvalues γ̂kh’s, h = 1, . . . , H. Denote the upper 5th percentile as

Dk.
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iii Reject the null hypothesisH [k]
0 : Y ⊥⊥ E(Y |X)|X−k when T̂ SOLSn,k (ek) >

Dk and accept H [k]
0 otherwise.

2.6 Numerical Study

2.6.1 CMS Estimation

To demonstrate the performance of the proposed SOLS method, we simu-

late data from the following models. Furthermore, we compare the SOLS with

classical methods in parallel to further evaluate the advantages and disadvan-

tages of SOLS in various scenarios.

Model (I) — Sine Link Function: Y = sin(X1) + (X2 + 1) · ε;

Model (II) — Rational Link Function: Y = X1

0.5+(X2+1.5)2
+ 0.1 · ε;

Model (III) — Hybrid Cubic and Quadratic Link Function:

Y = (X1 +X2)
3 + (X3 +X4)

2 + 0.1 · ε.

Fist, let X ∈ R10. Xi’s (i = 1, . . . , 10) and ε are generated from N(0, 1).

All the simulations will be run 100 times. The mean and the variance of

the distances between the estimated spaces and the true directions will be

reported. Here is defined the distance r between two spaces Span(A) and

Span(B), where A ∈ Rp×d and B ∈ Rp×D are orthogonal matrices, with

d ≥ D, the same as the criterion m in Xia et al. (2002).

r(A,B) = ||(Ip −AA′)B||,
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where || · || denotes the Frobenius norm. If Span(B) belongs to Span(A), the

corresponding criterion r will be zero. The closer to zero, the smaller the

distance between Span(A) and Span(B).

Model (I) Comparison of SIR and SOLS. Here X ∈ R10. Xi’s (i =

1, . . . , 10) and ε are generated from N(0, 1).

Here β′1 = (1, 0, 0, . . . ) is in the CMS, but β′2 = (0, 1, 0, . . . ) is not in the

CMS. Both β1,β2 are in the CS. Table 2.1 shows the comparison between SIR

and SOLS when n = 200, 400 and 800. The numbers in the first row of each n

are the mean of criterion r with 100 repetitions.The numbers in parentheses in

the other rows represent the variance of corresponding criterion r. Denote the

estimator of β from SIR and SOLS as β̂SIR and β̂SOLS separately. Assuming

d = 2, the results in table 2.1 show that SIR finds two directions in the CS.

On the other hand, SOLS can find direction β1 in CMS, but not β2. The

accuracy of both approaches improve along with an increasing n.

Model (II) Comparison between OLS and SOLS. Here d = 2 and β′1 =

(1, 0, 0, . . . ),β′2 = (0, 1, 0, . . . ) are in the CMS. The results in table 2.2 show

that OLS gets only one direction, because the distance between β̂OLS and β1

is close to zero, and the distance between β̂OLS and β2 is large. In contrast,

SOLS is able to get both directions, and results improve as sample size n
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Table 2.1: Mean and Variance of the Distance r for the Sine Model (I), d = 2,

p = 10 with 100 repetitions. HSIR = 5 for SIR, H = 2 for SOLS.

n SIR SOLS
r(β̂SIR,β1) r(β̂SIR,β2) r(β̂SOLS,β1) r(β̂SOLS,β2)

200 0.382 0.562 0.425 0.884
(0.009) (0.026) (0.011) (0.014)

400 0.277 0.398 0.324 0.893
(0.004) (0.011) (0.006) (0.016)

800 0.202 0.282 0.239 0.891
(0.002) (0.005) (0.006) (0.015)

increases, which is as expected.

Model (III) Comparison between PHD and SOLS. Recall the hybrid

model. We can see the true dimensions β1, β2, with β′1 = (1/
√

2, 1/
√

2, 0, . . . )

and β′2 = (0, 0, 1/
√

2, 1/
√

2, 0, . . . ), which are both in the CMS. Results from

table 2.3 are compatible with the inference drawn from the population level,

which is that SOLS can get a direction with a linear link function, β2, but

cannot recover a direction with the quadratic link function β1. PHD is on the

opposite.

We summarize the simulation results of all models with just SOLS in

table 2.4. And here we want to test SOLS with a different number of slices

H = 2, 5, 10 and with correlated predictors, where X = (X1,X2, . . . ,Xp) is

generated from multivariate normal with a mean of zero and covariance matrix
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Table 2.2: Mean and Variance of the Distance r for the Rational Model (II),

d = 2, p = 10, H = 2 with 100 repetitions.

n OLS SOLS
r(β̂OLS,β1) r(β̂OLS,β2) r(β̂SOLS,β1) r(β̂SOLS,β2)

200 0.204 0.996 0.185 0.521
(0.002) (0.000) (0.002) (0.018)

400 0.142 0.999 0.131 0.347
(0.001) (0.000) (0.001) (0.007)

800 0.099 0.999 0.092 0.251
(0.001) (0.000) (0.001) (0.005)

Table 2.3: Mean and Variance of the Distance r for the Hybrid Model (III),

d = 2, p = 10, H = 2 with 100 repetitions.

n PHD SOLS
r(β̂PHD,β1) r(β̂PHD,β2) r(β̂SOLS,β1) r(β̂SOLS,β2)

200 0.712 0.399 0.213 0.830
(0.025) (0.032) (0.001) (0.026)

400 0.663 0.287 0.144 0.866
(0.025) (0.017) (0.003) (0.020)

800 0.649 0.207 0.103 0.831
(0.021) (0.005) (0.001) (0.025)
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Table 2.4: Mean and Variance of the Distance r for Model I, Model II and

Model III, n = 800, p = 10 with 100 repetitions. H = 2, 5, 8.

H=2 H=5 H=10
r(β̂,β1) r(β̂,β2) r(β̂,β1) r(β̂,β2) r(β̂,β1) r(β̂,β2)

Model I 0.269 0.919 0.334 0.883 0.366 0.861
(0.005) (0.008) (0.010) (0.013) (0.011) (0.015)

Model II 0.106 0.265 0.166 0.287 0.232 0.301
(0.001) (0.004) (0.003) (0.006) (0.005) (0.011)

Model III 0.132 0.832 0.146 0.883 0.179 0.923
(0.001) (0.016) (0.002) (0.011) (0.002) (0.008)

Σ = (σij)p×p, σij = 0.5|i−j|.

By testing different numbers of slices, we found that SOLS is sensitive to

the slice number. The result is better when H = 2 for all three models. As

we expected, the SOLS method is able to recover the CMS with predictors

correlation present.

2.6.2 Order Determination

Now we run a simulation to determine the order d. As we mentioned before,

a sequential hypothesis testing of H(l)
0 : d = l v.s. H(l)

a : d > l is conducted for

Models I, II, III and the results are reported in Table 2.5. The probability of

rejecting the null hypothesis is reported based on 100 repetitions with nominal

level 0.05. Recalling that SOLS recovers directions only in the CMS. Thus,

for model I , the order is d = 1 with only one direction in the CMS, d = 2 for
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Table 2.5: Report on Probabilities of Rejectiong H(l)
0 : d = l based on Sequential

Test of Order Determination with H = 5, 10 and n = 400, 800.

H=5 H=10
n d̂ = 0 d̂ = 1 d̂ = 2 d̂ = 0 d̂ = 1 d̂ = 2

Model I 400 1.00 0.00 0.00 0.89 0.04 0.00
800 1.00 0.04 0.00 1.00 0.04 0.01

Model II 400 1.00 0.99 0.13 1.00 0.71 0.12
800 1.00 1.00 0.16 1.00 1.00 0.15

Model III 400 0.99 0.04 0.10 0.99 0.07 0.10
800 1.00 0.03 0.13 1.00 0.04 0.12

model II. For model III, since SOLS cannot estimate the quadratic direction,

we are expecting test order d = 1. We boldface the entries that reject the null

hypothesis for easy reference. We can see that the proposed SOLS method

can estimate the order d while rejecting the corresponding null hypothesis at

around 1 when n = 200, or equal to 1 when n = 800, and accept the null

hypothesis at around nominal level 0.05.

2.6.3 Marginal Coordinate Test

We apply the marginal coordinate test of SOLS in favor of variable selec-

tion through Models I to III. The results are shown in table 2.6 with the

probabilities of rejecting the null hypothesis. Here rejecting a null hypothesis

is equivalent to the tested predictor contributing to the function. Ideally, we

want those Xk’s in the model to have probability of been rejected as high as

1 and those not contributed has probability at the nominal level. Here we
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compare the results of variable selections through SIR and SOLS at nominal

level α = 0.05 and the potion of been rejected serve the estimators of the

probabilities, which based on 100 repetitions,

Overall, the results show that both SIR and SOLS asymptotic tests are

able to test predictor contribution, but the difference is SOLS only tests those

predictors that contributed to CMS, while SIR accounts for all of the predictors

in CS. This phenomenon can be seen in Model I, where X2 can be tested only

by SIR, because it does not contribute to the CMS. In the case of Model II,

both SIR and are SOLS reject the null hypothesis with probabilities around 1,

and not able to reject the null hypothesis for X2 to X10 at probabilities around

α = 0.05. The results of Model III show us both SIR and SOLS cannot test

predictors X3, X4 which has a quadratic trend.
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Table 2.6: Report on Probabilities of Rejecting H [k]
0 : k ∈ Ac based on Asymp-

totic Test on SOLS with H = 2, n = 200, 400, 800.

n X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Model I 200 SIR 1.00 0.92 0.12 0.05 0.06 0.07 0.07 0.06 0.11 0.05
SOLS 0.99 0.12 0.08 0.06 0.06 0.09 0.03 0.07 0.05 0.03

400 SIR 1.00 1.00 0.05 0.07 0.10 0.07 0.05 0.03 0.03 0.03
SOLS 1.00 0.09 0.03 0.06 0.03 0.05 0.07 0.05 0.04 0.05

800 SIR 1.00 1.00 0.07 0.06 0.04 0.03 0.04 0.03 0.09 0.11
SOLS 1.00 0.03 0.02 0.01 0.04 0.06 0.04 0.07 0.06 0.09

Model II 200 SIR 1.00 1.00 0.09 0.05 0.07 0.09 0.06 0.07 0.07 0.07
SOLS 1.00 0.99 0.04 0.08 0.03 0.05 0.06 0.09 0.06 0.07

400 SIR 1.00 1.00 0.07 0.02 0.07 0.03 0.07 0.06 0.03 0.05
SOLS 1.00 1.00 0.05 0.07 0.08 0.03 0.02 0.05 0.02 0.05

800 SIR 1.00 1.00 0.08 0.05 0.05 0.03 0.05 0.05 0.02 0.06
SOLS 1.00 1.00 0.04 0.06 0.05 0.08 0.09 0.08 0.03 0.07

Model III 200 SIR 1.00 1.00 0.12 0.08 0.05 0.01 0.09 0.06 0.05 0.04
SOLS 1.00 0.99 0.16 0.11 0.03 0.10 0.12 0.12 0.05 0.05

400 SIR 1.00 1.00 0.15 0.15 0.08 0.05 0.08 0.05 0.02 0.04
SOLS 1.00 1.00 0.09 0.15 0.04 0.08 0.09 0.05 0.02 0.04

800 SIR 1.00 1.00 0.19 0.22 0.07 0.07 0.06 0.05 0.04 0.11
SOLS 1.00 1.00 0.18 0.23 0.09 0.04 0.10 0.07 0.03 0.04
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CHAPTER 3

HYBRID OLS, THE PROPOSED

SECOND METHOD

3.1 Motivation

Recall that the disadvantage of all the sliced methods is the sensitivity to

the number of slices H. In fact, all sliced methods involve a pre-determination

of the number of slices H, which leads to a question of choosing the best

H. The number of slices also relates to the maximum number of directions

found, and SOLS can estimate at most H directions of CMS. Slice methods

are limited by the number of possible response value when the response is a

categorical variable. For example, when Y is categorical data with 4 possible

values, then the possible number of slices will be no more than 4. In this
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chapter, we propose a new approach named Hybrid Ordinary Least Squares

(HOLS) which does not need to take slices.

3.2 HOLS Estimator for the CMS

Theorem 3.2.1. Let Z have mean E(Z) = 0, and Var(Z) = Ip, (Z̃, Ỹ ) be

the independent copy of (Z, Y ), where Z, Z̃ ∈ Rp and Y, Ỹ ∈ R. Under the

assumption (1.2),

Span
(
E(ZZ̃′Y Ỹ |β′0Z− β′0Z̃|)

)
⊆ SE(Y |Z),

where β0,Z = E(ZY′) ∈ Rp×q denotes the OLS estimator βOLS of Z-scale.

With the invariance property, for X with Var(X) = Σ, we can get the conclu-

sion Σ−1E(XX̃′Y Ỹ |β′0X− β′0X̃|)Σ−1 ⊆ SE(Y |X).

We conclude the algorithm below, which breaks down the method at the

sample level. Let Xi ∈ Rp , where i = 1, . . . , n, be the independent sample of

p-dimensional vectors. Let Yi ∈ R be the random univariate response variable.

Algorithm

i Let Ẑi = Σ̂−1/2(Xi − µ̂).

ii Calculate β̂0 = 1
n

∑n
i=1 ẐiYi.

iii Let m̂i = ẐiYi, m̂j = ẐjYj, and g(Ẑi, Ẑj) = |β̂′0Ẑi − β̂′0Ẑj|, where

i, j = 1, . . . , n. Then define V̂ = 1
n(n−1)

∑n
i,j=1 m̂im̂

′
jg(Ẑi, Ẑj) .
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iv Conduct an eigenvalue decomposition on the kernel matrix M̂HOLS,

where M̂HOLS = V̂V̂′, to find the largest d eigenvalue corresponding

eigenvectors η̂k, k = 1, ..., d.

v By Proposition 1.1.1, transfer back to get β̂k = Σ̂−1/2η̂k. Then

β̂ = (β̂1, β̂2, . . . , β̂d).

3.3 Multivariate Response

Real world analysis involves not only univariate responses but also multi-

variate responses. Let Y ∈ Rq be a q-dimensional response variable. Let

X ∈ Rp be a p-dimensional predictor. The dimension reduction problem for

multivariate response is to find a reduced column space of β′X conditionally

on which the q-dimensional response Y is independent of the p-dimensional

predictor X. Denote as Y ⊥⊥ X|β′X. Furthermore, finding β′X reduces the

regression mean, which makes the equation below hold: E(Y|X) = E(Y|β′X).

In this section, we extend the HOLS method into a multivariate response case

and show the results in a numerical study.

Recall Theorem 3.2.1, E(ZZ̃′Y Ỹ ||β′0Z−β′0Z̃||) ∈ SE(Y |Z). Similarly we can

get Theorem 3.3.1 whenY is a multivariate response. The proof is similar and

thus omitted.

Theorem 3.3.1. Let (X̃, Ỹ) be the independent copy of (X,Y), where X, X̃ ∈
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Rp and Y, Ỹ ∈ Rq. Under the assumption (1.2), Span
(
Σ−1E(XY′ỸX̃′||β′0X−

β′0X̃||)Σ−1
)
⊆ SE(Y|X), where β0,Z = E(ZY′) ∈ Rp×q denotes the OLS esti-

mator βOLS of Z-scale.

The sample level algorithm is listed below.

Algorithm

i Let Ẑi = Σ̂−1/2(Xi − µ̂).

ii Let Ỹ′i = (Ỹi,1, Ỹi,2, . . . , Ỹi,q), where Ỹi,s = σ−1s (Yi,s − Ȳs) with s =

1, . . . , q, Ȳs and σ2
s are mean and variance of Ys respectively.

iii Calculate β̂0 = 1
n

∑n
i=1 ZiỸi, where β̂0 ∈ Rp×q.

iv Let m̂i = ẐiỸ
′
i, m̂j = ẐjỸ

′
j, and ĝ(Ẑi, Ẑj) = ‖β̂′0Ẑi − β̂′0Ẑj‖,

where i, j = 1, . . . , n. Then get the kernel matrix M̂m-HOLS =∑n
i,j=1 m̂im̂

′
j ĝ(Ẑi, Ẑj).

v Conduct an eigenvalue decomposition on the kernel matrix M̂m-HOLS

for the largest d eigenvalue corresponding eigenvectors η̂k(k = 1, ..., d).

vi With the invariance property, transfer back to get the X-scale basis

β̂k = Σ̂−1/2η̂k, and β̂ = (β̂1, . . . , β̂d).
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3.4 Numerical Study

We have introduced two new dimension reduction methods based on the

regression mean. To demonstrate how HOLS works, we walk through the same

models in Chapter 2 and compare HOLS with SOLS side by side.

Recall the models in Chapter 2:

Model (I) — Sine Link Function: Y = sin(X1) + (X2 + 1) · ε;

Model (II) — Rational Link Function: Y = X1

0.5+(X2+1.5)2
+ 0.1 · ε;

Model (III) — Hybrid Cubic and Quadratic Link Function:

Y = 0.5 · (X1 +X2)
3 + (X3 +X4)

2 + 0.1 · ε.

In the comparison of SOLS and HOLS, the number of observations is fixed

to n = 800 and the simulation is run over 100 times. SOLS is applied with

a different number of slices H = 2, 5 and 10. All Xi’s, i = 1, . . . , 10, and ε

are generated from the standard multivariate normal N(0,Σ). The means and

the variances of the distance r, which are defined in Chapter 2 are reported in

table 3.1. In SOLS, β̂ represents β̂SOLS and in HOLS, β̂ represents β̂HOLS.

In the results from table 3.1, we can see that HOLS estimator behaves

similar as the SOLS estimator. The results from model I shows that both

methods recovery the CMS, not the CS. And by extend the OLS, both success-

fully find 2 directions in the CMS in model II. As we expect, HOLS enjoys

the advantage of OLS, which estimate well when linear trend exist, but facing

the challenge of quadratic trend. The results of model (II) also finds SOLS is
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Table 3.1: Mean and Variance of the Distance r for Model (I), Model (II)

and Model (III), d = 2, p = 10 with 100 repetitions.

Model
SOLS HOLS

H=2 H=5 H=10
r(β̂,β1) r(β̂,β2) r(β̂,β1) r(β̂,β2) r(β̂,β1) r(β̂,β2) r(β̂,β1) r(β̂,β2)

I 0.239 0.891 0.236 0.909 0.236 0.926 0.239 0.856
(0.006) (0.015) (0.004) (0.011) (0.005) (0.007) (0.004) (0.019)

II 0.092 0.251 0.092 0.576 0.093 0.838 0.102 0.239
(0.001) (0.005) (0.001) (0.023) (0.001) (0.020) (0.001) (0.004)

III 0.103 0.831 0.105 0.930 0.112 0.931 0.125 0.881
(0.001) (0.025) (0.001) (0.007) (0.001) (0.008) (0.001) (0.017)

sensitive to the number of slices. This phenomenon gives us an incentive to

use HOLS over SOLS in certain circumstances.

We further demonstrate HOLS by looking at a multivariate response numer-

ical study.

Let X ∈ R10 with mean 0 and covariance matrix I10. Let Y′ = (Y1, Y2) be

a multivariate response variable with Y ∈ R2. Conduct the following model.

Y =

Y1
Y2

 ∈ R2 X =


X1

...

X10

 ∈ R10


Y1 = X1

0.5+(X2+1.5)2
+ 0.1 · ε

Y2 = sin(X3) + 0.1 · ε

ε ∼ N(0, 1). True dimension reduction space is Span(β) ∈ R10×3, where β =
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Table 3.2: Mean and Variance of the Distance r for the multivariate response

model, p = 10, d = 3 with 100 repetitions.

n r(β̂HOLS,β1) r(β̂HOLS,β2) r(β̂HOLS,β3)

200 0.185 0.479 0.083
(0.002) (0.017) (0.001)

400 0.139 0.338 0.059
(0.002) (0.010) (0.000)

800 0.094 0.235 0.041
(0.001) (0.004) (0.000)

‘

(β1,β2,β3) with β′1 = (1, 0, 0, . . . ), β′2 = (0, 1, 0, . . . ) and β′3 = (0, 0, 1, . . . ).

Applying the HOLSthe HOLS to a multivariate study. We report the

distance r in table 3.2. With the distance between estimate space β̂HOLS and

true directions close to zero, HOLS is able to find all three directions. By

increasing the sample size n, the results improve. HOLS proves to be good at

estimating the CMS when response variable Y is a multivariate variable.

Data visualization can be done by a set of scatter plots of marginal rela-

tionship of Ys versus β̂kX, s = 1, . . . , q, k = 1, . . . , d. With q = 2 and d = 3,

six plots are shown here in figure (3.1). The first column of scatter plots (a)-(c)

are plots for Y1, and we find (b) and (c) show strong patterns. Similarly for

column (d)-(f), plot (d) shows a relationship between Y2 and β̂1X.
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(f)

β̂3' x

y 2

Figure 3.1: (a) Scatter plot of Y1 versus β̂′1X, (b) Scatter plot of Y1 versus

β̂′2X,(c) Scatter plot of Y1 versus β̂′3X,(d) Scatter plot of Y2 versus β̂′1X,(e)

Scatter plot of Y2 versus β̂′2X,(f) Scatter plot of Y2 versus β̂′3X, for multivariate

response model.
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CHAPTER 4

CONCLUSION AND FUTURE

WORK

4.1 Summary

Dimension reduction of the regression mean has been an important topic in

the field of dimension reduction. With the development of database manage-

ment system (DBMS) and other technologies, more and more high dimensional

data is stored and needs to be analyzed after reducing its dimension. Many of

these analyses only yield the mean of the data.

This proposal introduced two regression methods: SOLS in Chapter 2 and

HOLS in Chapter 3. Both methods are expanded from OLS. SOLS is regression

with slicing. By taking slices, the SOLS algorithm is more computationally
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effective than a non-slice method. But the result can vary depending on the

number of slices H. Furthermore, the maximum number of directions SOLS

can get is H. HOLS can estimate the regression mean without taking slices.

Also, HOLS can be more robust when the response variable is multivariate,

because slicing a multivariate response causes the exponential increase of the

number of slices. Neither method can estimate CMS when the link function

is quadratic. Or in other words, when the first derivative of the conditional

expectation of Y given Z is zero, both methods fail. But when compared with

PHD, they are successful when the link function is linear.

We further utilize SOLS to conduct a sequential test for order determina-

tion and a marginal coordinate test for variable selection. Further expansion

of HOLS for these tests is necessary.
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APPENDIX

Proof of Theorem 1.2.3. Let Span(η) = SY |Z. Then, E(Z|Y ) =

E[E(Z|Y,η′Z)|Y ] = E[E(Z|η′Z)|Y ]. Let Pη = η(η′η)−1η′ be the Euclidean

projection. Under assumption (1.2), E(Z|η′Z) = PηZ, we can get E[E(Z|η′Z)|Y ] =

E(PηZ|Y ) = PηE(Z|Y ) = η(η′η)−1η′E(Z|Y ).

Proof of Theorem 1.2.1. By the law of total expectation E(ZY ) =

E[E(ZY |Z)] = E[ZE(Y |Z)]. Let Span(η) = SE(Y |Z), under the conditional

independence of means implied by Definition 1.1.2, E(Y |Z) = E(Y |η′Z).

Above equation can be rewritten as, E[ZE(Y |Z)] = E[ZE(Y |η′Z)]. Followed

by the self-adjoint property of projection operator, we can get below equa-

tion. See the proof of self-adjoint property. E[ZE(Y |η′Z)] = E[Y E(Z|η′Z)] =

E(Y PηZ) = PηE(ZY ). The last step was derived from assumption (1.2),

which is E(Z|η′Z) = PηZ.

Proof of Theorem 1.2.2. By the law of total expectation, we can

get E(Y ZZ′) = E[E(Y ZZ′|′Z)] = E[E(Y |Z)ZZ′]. Let Span(η) = SE(Y |Z),

then under Definition 1.1.2 , E(Y |Z) = E(Y |η′Z) and self-adjoint property,



41

E[E(Y |η′Z)ZZ′] = E[Y E(ZZ′|η′Z)], we have E[E(Y |Z)ZZ′] = E[E(Y |η′Z)ZZ′] =

E[Y E(ZZ′|η′Z)] = E{Y [Var(Z|η′Z)− E(Z|η′Z)E(Z′|η′Z)]}.

Recall that E(Y ) = 0. Under assumption Var(Z|η′Z) is a constant matrix,

let Var(Z|η′Z) = Qη, where Qη = I − Pη, we further break down above

equation as follows. E{Y [Var(Z|η′Z) − E(Z|η′Z)E(Z′|η′Z)]} = E{Y [Qη −

PηZ(PηZ)′]} = E(YQη) − E(PηY ZZ′P ′η) = PηE(Y ZZ′)P ′η. Thus, we have

proved the column space from Hessian matrix MPHD = E(Y ZZ′) is subspace

of SE(Y |Z). Similarly, when Var(X) = Σ, above theorem can be updated as

Span{E(YXX′)} = Span{Σ−1E(YXX′)Σ−1} ∈ SE(Y |X).

Proof of Proposition 1.4.1. This proof can be found in Dong et

al. (2016) and thus omitted.

Lemma 4.1.1. Let U , V and W be random variables. Then the self-adjoint

property of the condition mean is E[E(U |W )V ] = E[UE(V |W )].

Proof of lemma 4.1.1. Proof of the self-adjoint property, U ∈

R, V ∈ R and W ∈ R. We have E[E(U |W )V ] = E[E[E(U |W )V |W ] =

E[E(U |W )|E(V |W )] = E[E[UE(V |W )|W ]] = E[UE(V |W )].

Proof of Theorem 2.2.1. Define β0,Z = E(ZY ). By the law of total

expectation, E(ZY |β′0,ZZ) = E[E(ZY |β′0,ZZ,Z)|β′0,ZZ] = E[E(ZY |Z)|β′0,ZZ].

Assuming Span(η) = SE(Y |Z), by Definition 1.1.2, E(Y |Z) = E(Y |η′Z). Above

equation can be rewritten as, E[E(ZY |Z)|β′0,ZZ] = E[ZE(Y |η′Z)|β′0,ZZ].

Also, recall that β0,Z ∈ SE(Y |Z), and self-adjoint property, E[ZE(Y |η′Z)|β′0,ZZ] =
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E[ZE(Y |η′Z,β′0,ZZ)|β′0,ZZ] = E[E(Z|η′Z,β′0,ZZ)Y |β′0,ZZ] = E[E(Z|η′Z)Y |β′0,ZZ].

Assumption (1.2) implies E(Z|η′Z) = PηZ. We can get E[ZY |β′0,ZZ] =

E[E(Z|η′Z)Y |β′0,ZZ] = PηE(ZY |β′0,ZZ). Thus, we have proved that E(ZY |β′0,ZZ) ∈

SE(Y |Z).

When X has variance Σ, by the invariance property, we have Σ−1E(XY |β′0X) =

Σ−1E(XY |β′0,ZX) ⊆ Σ−1/2SE(Y |Z) = SE(Y |X).

Proof of Corollary 2.2.1. Denote µh = E(ZY |β′0,ZZ ∈ Jh),

by Theorem 2.2.1 µh ∈ Span(η) = SE(Z|Y ). Let µh = ηch, where ch ∈

Rd. Then, E[E(ZY |β′0,ZZ)E′(ZY |β′0,ZZ)] =
∑H

h=1 P (β′0,ZZ ∈ Jh)µhµ
′
h =∑H

h=1 P (β′0,ZZ ∈ Jh)ηch(ηch)′ = η[
∑H

h=1 P (β′0,ZZ ∈ Jh)chch
′]η′, which is in

the form of eigendecomposition. Then Span{E[E(ZY |β′0,ZZ)E′(ZY |β′0,ZZ)]} ⊆

SE(Y |Z. By the invariance property, we have Span{Σ−1E[E(XY |β′0X)E′(XY |β′0X)]Σ−1} ⊆

SE(Y |X..

Proof Remark 2.2.1.

Recall Remark 1.2.4 that SIR can estimate at most H − 1 directions,

because the restriction on conditional expectation took 1 degree of freedom.

The restriction is

H∑
h=1

E(Z|Y ∈ Jh)P (Y ∈ Jh) = E(E(Z|Y )) = E(Z) = 0.

However, E(ZY ) 6= 0, we will not have this restriction in SOLS, which makes

the maximum number of directions SOLS can reach H.

Proof of Lamma 2.3.1. For the notion of Frechet derivative, see,
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for example, Fernholz (1983). We refer to G∗(F ) as the Frechet derivative of

G(F ). Following Yu and Dong (2016), we have p∗h = Rh − ph, Σ∗ = XX′ −

E(XX′), (p
−1/2
h )∗ = −1

2
p
−3/2
h p∗h = −1

2
p
−3/2
h (Rh− ph), (Σ−1)∗ = −Σ−1Σ∗Σ−1 =

−Σ−1[XX′−E(XX′)]Σ−1, U∗h = E∗[(X−E(X)Y Rh] = E∗(XY Rh)−E∗(X)E(Y Rh)−

E(X)E∗(Y Rh) = XY Rh − E(XY Rh)−XE(Y Rh).

Proof of Theorem 2.3.1. Followed by the result of Lamma 2.3.1.

Let Ah = V∗h, Theorem 2.3.1 can be derived directly by Yu and Dong (2016),

V∗h = (p
−1/2
h )∗Σ−1Uh + p

−1/2
h (Σ−1)∗Uh + p

−1/2
h Σ−1U∗h

Proof of Theorem 2.4.1. The proof is similar to Theorem 3 in Xia

and Dong (2016), and thus omitted.

Proof of Proposition 2.5.1. The proof is similar to Proposition

3.1. in Dong et al. (2016), and thus omitted.

Proof of Proposition 2.5.2. The proof is similar to Proposition

3.2. in Dong et al. (2016), and thus omitted.

Proof of Theorem 2.5.1. Let tk = (tk,1, tk,2, . . . , tk,H)′ and t̂k =

(t̂k,1, t̂k,2, . . . , t̂k,H)′, where tk,h = e′kVh = p
−1/2
h e′iΣ

−1Uh and t̂k,h = e′kV̂h =

p̂
−1/2
h e′kΣ̂

−1Ûh. Then we can write (tk,h)
∗ as follows: (tk,h)

∗ = (p
−1/2
h )∗e′kΣ

−1Uh+

p
−1/2
h e′k(Σ

−1)∗Uh + p
−1/2
h e′kΣ

−1(Uh)
∗. Knowing when k ∈ Ac, e′kΣ

−1Uh = 0,

then under H0, (tk,h)
∗ = gkh = p

−1/2
h e′k(Σ

−1)∗Uh + p
−1/2
h e′kΣ

−1(Uh)
∗. Thus,

√
n(t̂k − tk)

D→ N (0,Cov(Gk)). Substitute (tk)
∗ = Gk = (gk1, gk2, . . . , gkh)

into the test statistic of SOLS, we can get T SOLSk (ek) = t′ktk. Since tk = 0
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under H0: k ∈ Ac, T SOLSk (ek)
D→
∑H

h=1 γkhχ
2
h(1), where (γ1, γ2, . . . , γH) are

eigenvalues of Cov(Gk).

Proof of Theorem 3.2.1. By the law of total expectation, E[ZZ̃′Y Ỹ |β′0Z−

β′0Z̃|] = E[E(ZZ̃′Y Ỹ |β′0Z−β′0Z̃| |β′0Z,β′0Z̃)] = E[E(ZZ̃′Y Ỹ |β′0Z,β′0Z̃) |β′0Z−

β′0Z̃|] = E[E(ZY |β′0Z)E(Z̃′Ỹ |β′0Z̃) |β′0Z−β′0Z̃|]. Recall Theorem 2.2.1, E(ZY |β′0Z) =

PηE(ZY |β′0Z), where Span(η) = SE(Y |Z). Then above equation can be re-

written as E[PηE(ZY |β′0Z)E(Z̃′Ỹ |β′0Z̃)P ′η |β′(Z− Z̃)|] = PηE(ZZ̃′Y Ỹ |β′0Z−

β′0Z̃|)P ′η. It follows that Span{E(ZZ̃′Y Ỹ |β′0Z− β′0Z̃|)} ⊆ SE(Y |Z).


