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ABSTRACT 

Evident similarities and links between the outcomes of traffic crashes and stranded (or 

constrained) mobility have been identified and are reported in this research. Generally, a high level 

of travel activities is an indicator of high crash exposure. However, studies have shown that the 

highest rates of traffic fatalities occur in low- and middle-income regions, where many citizens 

experience relatively low levels of motorized travel. This ironic observation reveals serious 

challenges facing transport mobility systems in the less privileged regions of the world. Studies on 

traffic crashes and mobility constraints also reveal that they both have individual and regional 

variations in their occurrence, effects, and severities. Consequently, the outcomes of traffic crashes 

and constrained mobility are serious public health concerns worldwide.  

As public health problems, their study is analogous to the study of diseases and other 

injuries and thus, suitable for the application of epidemiological techniques. This dissertation 

therefore explores the use of epidemiological techniques to analyze traffic crashes and 

mobility/accessibility constraints from a human-centered perspective. The dissertation therefore 

consists of two major focus areas. The first part of the study applies widely used 

epidemiology/public health – based statistical tools to analyze traffic crashes with the aim of 

gaining better understanding of the human-centered causes and factors that influence these causes, 

and how these ultimately affect the severity of crashes. This part is further divided into two sub-

sections. The first sub-section used latent class analysis to identify homogeneous clusters of 

human-centered crash causal factors and then applied latent class logit and random 
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parameters logit modeling techniques to investigate the effects of these factors on crash outcomes. 

The second sub-section of the first part of the dissertation applies multilevel regression analysis to 

understand the effects of driver residential factors on driver behaviors in an attempt to explain the 

area-based differences in the severity of road crashes across sub-regions. Both studies are 

necessary to develop potential human-centered mitigations and interventions and for the effective 

and targeted implementation of those countermeasures. The second part of the study provides an 

epidemiological framework for addressing mobility/accessibility constraints with a view to 

diagnosing symptoms, recommending treatment, and even discussing the idea of transmission of 

constrained mobility among city dwellers. The medical condition, hypomobility, has been used to 

connote constrained mobility and accessibility for people in urban areas. In transportation and 

urban studies, hypomobility can result in a diminished ability to engage in economic opportunities 

and social activities, hence deepening poverty and social exclusion and increasing transport costs, 

among other negative outcomes. The condition is especially pronounced in poor urban areas in 

developing countries. The framework proposed in this study is expected to help identify and 

address barriers to mobility and accessibility in the rapidly growing cities throughout the 

developing world, with particular applicability to the rapidly developing cities in Sub-Saharan 

Africa. 

Ultimately, this dissertation explores the application of epidemiological techniques to two 

major transportation problems: traffic safety and constrained mobility. The techniques presented 

in this dissertation provide policy makers, agencies, and transport professionals with tools for 

evidence-based policies and effective implementation of appropriate countermeasures.   



iv 

 

DEDICATION 

This dissertation is dedicated to my parents Mr. Emmanuel Kofi Adanu (Sr.) and Mrs. 

Mawunyo Adanu, my siblings, and my cherished friends and loved ones for their support while I 

completed my Ph.D. program. I hope this achievement seals the trust you had in my abilities and 

also fulfils the dream you all had for me.  



v 

 

LIST OF ABBREVIATIONS AND SYMBOLS 

AIC  Akaike’s Information Criterion 

BIC  Bayesian Information Criterion 

CARE  Critical Accident Reporting Environment 

CAPS  Center for Advanced Public Safety 

DUI  Driving under influence 

GDP  Gross Domestic Product 

ICC  Intra-class correlation 

IIA  Independence of irrelevant alternatives 

IID  Independent and identically distributed 

LCA  Latent class analysis 

LC  Latent class 

LL  Log likelihood 

ML  Maximum likelihood 

MNL  Multinomial logit 

NMT  Non-motorized transport 

RPL  Random parameters logit  

UT-DAT Urban transport data analysis tool 

VKT  Vehicle-kilometers of travel 

WHO  World Health Organization 



vi 

 

𝜑   Vector of parameters of chosen density 

𝛽  Coefficients to be determined  

𝜃𝑔   Set of group parameters 

𝑐  Number of latent classes 

𝐺  Possible number of groups in latent class analysis 

𝜋𝑔   Mixture proportions in latent class analysis 

𝑓  Probability density function 

𝛼𝑐   Latent class specific parameters 

𝜂  Log-odds  

𝑃  Probability 

𝑋  Explanatory variable 

𝛾  Higher level regression coefficient 

𝑍𝑛  Vector of latent class probabilities 

𝑍  Sub-regional explanatory variables 

 

 

 

 

 

 



vii 

 

 

 

ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my advisor, Dr. Steven Jones, who has been 

an incredible mentor. He has selflessly provided me with great guidance, valuable advice, ideas, 

and consistent help throughout this journey. I am very fortunate to have had him share with me his 

knowledge and expertise in research. 

My appreciation goes to all my professors especially my committee members, Dr. Jay 

Lindly and Dr. Alexander Hainen for the support and knowledge they shared during my academic 

study. I am also grateful to Dr. Seth Appiah-Opoku and Dr. Joseph Walsh for accepting to serve 

on my dissertation committee. 

Special thanks to Ms. Connie Harris for being very helpful with all the administrative work 

and travel reimbursements. My appreciations also go to my colleagues, Abhay, Samwel, Sufian, 

Rimi, Irina, Preston, for the enormous help, support, discussions, and suggestions on my research.  

I also recognize the quality time spent with my office mates, members of the UA-Chapter 

of African Students Association, other colleagues in the University of Alabama, especially 

Kyeiwaa Asare-Yeboah and Sefadzi Tay-Agbozo, and my Tuscaloosa International Friends host 

families. Their supports have helped to relief the challenges of studying away from my family.  

I would like to thank my family for their continuous encouragement, and support in my 

academic pursuit; the great love, care, and the motivation I needed to undertake my Ph.D. study. 

My ultimate thanks go to God Almighty for granting me good health, strength, and wisdom needed 

to pursue my Ph.D. study.  



viii 

 

 
 

 

 

CONTENTS 

 

 

ABSTRACT .................................................................................................................................... ii 

DEDICATION ............................................................................................................................... iv 

LIST OF ABBREVIATIONS AND SYMBOLS ........................................................................... v 

ACKNOWLEDGMENTS ............................................................................................................ vii 

LIST OF TABLES ......................................................................................................................... xi 

LIST OF FIGURES ...................................................................................................................... xii 

CHAPTER 1 INTRODUCTION .................................................................................................... 1 

1.1 Overview of Transport Mobility and Traffic Safety ............................................................ 1 

1.2 Traffic Safety and Constrained Mobility as Public Health Conditions ................................ 4 

1.2.1 Traffic Crashes as a Public Health Condition ............................................................. 4 
 

1.2.2 Constrained Mobility as a Public Health Condition ................................................... 6 
 

1.3 Motivation for the Dissertation Research ............................................................................. 8 

1.4 Structure of the Dissertation ............................................................................................... 11 

CHAPTER 2 LATENT CLASS ANALYSIS OF THE EFFECTS OF HUMAN  

    FACTORS ON CRASH-INJURY SEVERITIES ................................................................ 13 

2.1 Introduction ........................................................................................................................ 13 

2.2 Human-Centered Traffic Safety ......................................................................................... 15 

2.3 Crash Injury-Severity Models ............................................................................................ 18 



ix 

 

2.4 Data Description ................................................................................................................. 20 

2.5 Methodology ....................................................................................................................... 21 

2.5.1 Clustering of Human-Centered Factors .................................................................... 23 
 

2.5.2 Injury Severity Analysis ............................................................................................ 24 
   

2.5.2.1 Random Parameters Logit Model…………………………………………..……24 

  2.5.2.2 Latent Class Logit Model………………………………………………………..25 

2.6 Estimation Results .............................................................................................................. 27 

2.7 Conclusion .......................................................................................................................... 30 

2.8 References .......................................................................................................................... 33 

CHAPTER 3 MULTILEVEL ANALYSIS OF THE ROLE OF HUMAN FACTORS IN 

SUB-REGIONAL DISPARITIES IN CRASH OUTCOMES ................................................. 44 

3.1 Introduction ........................................................................................................................ 44 

3.2 Multilevel Regression in Traffic Safety Analysis .............................................................. 47 

3.3 Multilevel Logistic Analysis .............................................................................................. 50 

3.4 Multilevel Parameter Estimation and Fit Statistics ............................................................ 53 

3.5 Multilevel Crash Analysis Case Study ............................................................................... 55 

3.6 Discussion of Result ........................................................................................................... 60 

3.6.1 Driver Demographics and Driving Behavior ............................................................ 60 
 

3.6.2. Sub-Regional Characteristics ................................................................................... 62 
 

3.7 Conclusions and Recommendations ................................................................................... 63 

3.8 References .......................................................................................................................... 66 

CHAPTER 4 HYPOMOBILITY – AN EPIDEMIOLOGICAL ANALOGUE FOR  

VIEWING URBAN TRANSPORT CONDITIONS IN AFRICA AND OTHER  

DEVELOPING COUNTRIES ................................................................................................. 72 

4.1 Introduction ........................................................................................................................ 72 

4.2 The Complexity of Urban Transport .................................................................................. 74 



x 

 

4.3 Hypermobility ..................................................................................................................... 76 

4.4 Hypomobility ...................................................................................................................... 78 

4.5 What a City Needs – The Balance Between Hyper – and Hypo – Mobility ...................... 80 

4.6 African Context .................................................................................................................. 84 

4.7 Proposed Approach – Epidemiological Framework of Hypomobility ............................... 87 

4.8 Causes of Hypomobility ..................................................................................................... 89 

4.8.1 Spatial or Geographical Factors ................................................................................ 89 
 

4.8.2 Temporal Factors ...................................................................................................... 90 
 

4.8.3 Personal Factors ........................................................................................................ 91 
 

4.8.4 Economic and Financial Factors ............................................................................... 92 
 

4.9 Signs, Symptoms, and Susceptibility ................................................................................. 92 

4.10 Transmission and Treatment ............................................................................................ 93 

4.11 Conclusions ...................................................................................................................... 95 

4.12 References ........................................................................................................................ 97 

CHAPTER 5 SUMMARY AND FUTURE WORK .................................................................. 104 

5.1 Summary ........................................................................................................................... 104 

5.2 Future Work ...................................................................................................................... 106 

 

 

  



xi 

 

 

 

LIST OF TABLES 

 

 

2.1 Summary statistics of the variables used for model building ..................................................21 

2.2 Criteria for class number selection ..........................................................................................40 

2.3 Classes of human causal factors and their class probabilities ..................................................41 

2.4 Model estimation results ..........................................................................................................42 

2.5 Marginal Effects of the variables on probabilities of the severity outcomes (%) ....................44 

3.1 Multilevel logistic models of serious injury crashes by driver postal codes ...........................58 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

LIST OF FIGURES 

 

4.1 Transport hypermobility-hypomobility ...................................................................................83 

4.2 Tro-tro station in Kumasi, Ghana ............................................................................................87 

4.3 Epidemiological Framework for hypomobility. ......................................................................89



 

1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Overview of Transport Mobility and Traffic Safety 

The primary objective of transportation systems is to provide mobility and accessibility for 

people and goods. The ability of people to move efficiently within, and between cities to access 

jobs, goods, and services is a crucial driver of the quality of life, and a prerequisite for a balanced 

socioeconomic functioning and prosperity of society. Modern concepts of time and space have 

hence stimulated the development of mobility as a means of enhancing access to socioeconomic 

activities. Access to wide range of dispersed basic needs such as hospitals, shopping centers, and 

schools, among others require some convenient mode of transport. The availability of transport 

options, and the way they are delivered, can also present major challenges to the economic growth 

of a region. In today’s world, motorized transport, predominantly automobile transport, has 

broadened the ability to reach places far away in an easier, faster way than ever before. 

Consequently, the demand for increased fast, long-distance travel is socioeconomically linked with 

processes of contemporary globalization (Hall, 2005). Transportation infrastructure investments 

in many regions of the world have therefore been skewed in favor of fast mobility systems, as 

these transport modes are considered to be drivers of socioeconomic growth. Most cities today are 

built around the needs of the automobile and not the people, where roadway geometry has been 

designed to meet the requirements of vehicles – typically at the highest speeds possible. This 

practice and general socioeconomic conditions of the region have led to making changes to where 
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and how people live (Wright, 2005; Kenworthy and Laube, 1996). Individual-level’s 

socioeconomic status and the income level of a region dictate what mode of transport they are 

likely to use and their level of travel activities in general. As travel becomes faster, cheaper, and 

easier for those who can afford the faster motorized modes, it consequently becomes more 

challenging for the poor and other disadvantaged groups. This diminishes the ability of those 

members of society who depend on slow mobility modes, such as walking, as their primary mode 

of transport to engage in competitive economic and social activities. This group of road users face 

many challenges in meeting their daily mobility and accessibility needs. Their reach of basic 

necessities of life become constrained due to changes in land use pattern and transport 

infrastructure that favor motorized transport. Over time, the poor, disadvantaged groups, and even 

entire regions become alienated and may even be socioeconomically excluded, further plunging 

them into extreme poverty. This phenomenon is especially pronounced in poor urban areas in 

developing countries, where social and economic inequalities have become prominent features of 

the development and urbanization processes. 

Another major consequence of the rapid motorized mobility paradigm has been increased 

traffic crashes. The World Health Organization (WHO) estimates that road traffic crashes are 

responsible for nearly 1.3 million deaths annually, with millions of people sustaining varying 

degrees of injury (WHO, 2015).  Traffic crashes have been observed to exhibit geodemographic 

differentials in the frequency of occurrence and severities across regions. Studies of the trend of 

crashes reveal that they occur in clusters at specific sites, along some particular sections of the 

road, or concentrated in some sub-regions (Roberts and Power, 1996). It is ironic that developing 

economies in their early stage of the motorization process experience the highest transport-related 

fatalities, with people who depend on low mobility modes disproportionately represented. The 
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WHO (2015) further reported that more than 90% of road traffic fatalities occur in low- and 

middle- income countries, where it is known that many of their citizens rely on non-motorized and 

often slower mobility modes. Moreover, nearly half of all road traffic fatalities involve pedestrians, 

cyclists, and motorcyclists, the so- called vulnerable road users. It has been shown that though 

high- income sub-regions record high numbers of crashes, few fatalities are recorded compared to 

low- income sub-regions, where relatively lower number of crashes result in high fatality rates 

(WHO, 2015). Even within high-income countries, people from lower socioeconomic 

backgrounds are more likely to be involved in fatal road traffic crashes. A strong correlation can 

therefore be observed between crashes and socioeconomic conditions. According to Traynor 

(2009), the means by which economic conditions impact crash-injury severity can be grouped into 

two broad categories as: at regional level - public expenditures on transport infrastructure, traffic 

law enforcement, and emergency response and the quality of the medical care available to crash 

victims; and at individual level - decisions regarding vehicle choice, use of protective equipment, 

and driving behavior. It can therefore be noted that the disproportional distribution of crashes and 

traffic fatalities among regions can be attributed to a wide range of factors, broadly classified into 

sub-regional and individual-level characteristics.  This means that chances of being involved in or 

dying from a road traffic crash is a function of location (where the individual involved in the crash 

lives and/or where the crash occurred) and what mode of transport is being used.  

There is evidence of a relationship between traffic crash outcomes and transport mobility 

within the socioeconomic definition of a region. Extreme constraints on sustainable levels of 

physical mobility of people and accessibility of place are seen to negatively impact individuals’ 

and regional socioeconomic growth and also strongly correlate with traffic fatalities. 

Consequently, the outcomes of these two human-centered transportation problems are serious 
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public health concerns worldwide. As public health problems, their study is analogous to the study 

of diseases and other injuries and thus, suitable for the application of epidemiological techniques. 

This dissertation therefore explores the techniques to analyze traffic crashes and 

mobility/accessibility constraints from epidemiological, etiological, and preventive perspectives. 

This research explores these two major transport challenges to help policy- and decision- makers 

develop evidence-based solutions to address them.  

1.2 Traffic Safety and Constrained Mobility as Public Health Conditions 

1.2.1 Traffic Crashes as a Public Health Condition 

Crashes account for a significant proportion of morbidity and mortality and are responsible 

for more years of life lost than many diseases (Petridou and Moustaki, 2000). Putting the issue in 

a public health context, the WHO reported that traffic crashes were the ninth leading cause of 

deaths worldwide behind such killers as: heart disease, stroke respiratory/pulmonary conditions, 

HIV/AIDS, diarrheal diseases, and diabetes (WHO, 2014). It therefore seems possible that to study 

traffic crashes as a whole may be akin to studying diseases, where the individuals involved in the 

crash are “patients” and crash severities representing different outcomes of the disease. Like most 

diseases, traffic crashes are preventable if the dynamics of their causes and prevalence are fully 

understood. Health outcomes may vary among patients and also across geographies. This variable 

health-outcome of diseases feature is also exhibited by traffic crashes as it has been shown that 

that the number of road traffic crashes as well as severities resulting therefrom, differ in their 

geographic location and road user type, and possibly the causal circumstances. For instance, in 

2013, WHO reported that the African region had the highest road traffic fatality rate, at 26.6 per 

100,000 people, while the European region had the lowest rate, at 9.3 per 100,000 people; and 
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approximately half of all road traffic deaths were among those with the least protection – 

motorcyclists, cyclists, and pedestrians. Globally, road traffic crashes are the main cause of death 

among those aged 15-29 years (WHO, 2015). Such variations in the “crash-health” outcome may 

be linked to individual crash “patients” and or regional characteristics. Understanding the 

contributing circumstances that lead to these variations require detailed diagnostics of the health 

problem. Diagnosis of disease on the other hand depends fundamentally on causation. For instance, 

if it is established that the occurrence of a disease is associated with a place, it can be inferred that 

factors that increase the risk of the disease are present either in the persons living there or in the 

environment, or both (CDC, 2012). This information is a necessity in identifying treatment 

measures and how best to apply them. Causation is, however, not easy to establish in traffic crash 

analysis. According to Norman (1962), the multiplicity of factors operating in the causation pose 

a challenge in identifying any single preventive countermeasure adequate enough to achieve 

effective minimization of traffic crashes. One of the early attempts by researchers to gain in-depth 

understanding of crash causal factors was the Indiana Tri-Level Study. From this study, Treat et 

al (1979) observed that human errors and deficiencies were definite or probable causes in over 

90% of the crashes examined. Vehicle factors and roadway/environmental characteristics make up 

10% of the crashes. The leading direct human causes identified in the study included improper 

lookout (probable cause in 23% of accidents), excessive speed (17%), inattention (15%), improper 

evasive action (13%), and internal distraction (9%).   

As a public health problem, traffic crashes may best be studied using epidemiological 

techniques. Methods adopted in public health for the study, control, and prevention of 

epidemiological conditions provide a useful framework and scientific approach for the study of 

traffic crashes (Norman, 1962). Identifying factors that are associated with traffic crashes will help 
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to identify populations at increased risk of crashes. The application of epidemiological techniques 

to traffic crashes will make possible the assessment of the relative influence of the different 

contributing factors, since it is a necessity for the application of treatment measures.  

1.2.2 Constrained Mobility as a Public Health Condition 

As cities get larger and the distances between homes, workplaces, and community services 

get longer, the use of non-motorized transport modes become less feasible. In order to overcome 

these long distances, urban mobility is now predominantly motorized with the automobile as the 

dominant mode in many cities. As a consequence of rapid urbanization, transport systems have 

come under growing strain, exacerbated by transport- related pollutions, traffic crashes, and an 

ironic decline in travel speeds in a modern era where transport means achieving fast mobility 

(Lerner, 2011). Many of the world’s cities currently face an unprecedented mobility and 

accessibility crisis, and are characterized by unsustainable mobility systems. The design of 

transportation infrastructures and the growth of cities around the automobile have negatively 

impacted accessibility and mobility and have led to a degraded quality of urban life especially for 

vulnerable groups. In spite of the rapid growth in motorized transport, some urban dwellers face 

tremendous difficulties to access many places within cities. While many city dwellers suffer from 

inability to access basic services, lacking adequate or affordable transport to reach health care, 

markets, and access to socioeconomic opportunities, equally vast numbers who have access to 

transport spend their travel time stationary, sitting in congested cities, with degraded air quality.  

Class and income disparities have been deeply embedded in the spatial arrangements and 

mobility challenges of many cities (UN-HABITAT 2013). Some groups in the society enjoy fast 

travel and the others, while depending on the slower modes, suffer the negative consequences of 
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the faster modes. Adams (2000) describes the phenomenon as one of the simultaneous existence 

and asymmetric distribution of an overabundance of mobility, defined by the medical conditions 

– hypermobility, and its opposite, a shortage of mobility – hypomobility. Hypermobility endangers 

the quality of life and the ecological sustainability of modern society (Adams, 2001). Hypermobile 

individuals derive benefits from their fast mobility lifestyle but do not pay the full cost of their 

travel behaviors. For example, the cost of traffic crashes, property damage, community severance 

and pollutions resulting principally from the development of high mobility transport systems are 

absorbed by everybody in the community, the majority of whom depend on slow transport modes, 

but with the highly mobile individuals deriving the most benefits from the transport system. 

Hypomobility (or constrained mobility), on the other hand, describes the state of insufficient 

mobility and reduced accessibility, resulting in usually short and infrequent trips, and consequently 

loss of opportunities in a world that strives on sufficient amounts of accessibility and mobility 

(Greico et al. 2008). Constrained mobility and reduced accessibility segregate and alienate the 

poor from the rest of society. Hypomobility, as a phenomenon, can affect an individual, groups, 

or even a region. The condition is experienced through the ability or inability of an individual or 

group (human characteristics) to physically move from place to place and the level of 

reach/accessibility of basic needs and opportunities within a given region (regional 

characteristics). Constrained mobility and transport inaccessibility can result in a diminished 

ability to engage in economic opportunities and social activities, hence deepening poverty, social 

exclusion, increasing costs of transport, among other negative outcomes. The transport 

hypomobility epidemic that has engulfed many cities is causing harm to urban dwellers and 

reducing the economic prosperity and viability of these cities. The condition is practically a public 

health concern. The condition has been observed to be especially pronounced in poor urban areas 
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in developing countries. The urban poor and other vulnerable groups are particularly exposed to 

the condition. By treating hypomobility as an urban ailment, it can be captured in a framework 

using epidemiological techniques. In doing so, the explicit diagnosis of causes and symptoms can 

lead to targeted treatments. 

1.3 Motivation for the Dissertation Research 

 Road traffic crashes are a leading cause of deaths and injuries. Though human factors have 

been shown to dominate the causation of crashes (Tillman and Hobbs, 1949; Treat et al 1979; 

Hendricks et al 1999), many crash studies have focused mainly on roadway characteristics (e.g. 

Safety Performance Functions) and environmental factors. This may partly be due to the vagueness 

of what constitutes human factors in crash causation. Traditionally, human factors have been 

defined as the immediate chain of actions undertaken by a driver that resulted into the crash. This 

definition is premised on crash accounts as reported by the victims themselves, witnesses or by 

professionals trained to investigate and record crashes. Driver demographic characteristics, driving 

styles, and the sub-regional characteristics of where they live influence their exposure to traffic 

crashes (Tillman and Hobbs, 1949). It therefore seems appropriate to state that both the human-

centered and societal characteristics which influence driving behavior in a way which can affect 

the chances of crash occurrence constitute human factors in traffic safety. It is arguable that the 

immediate actions leading to a crash (e.g. speeding, failure to yield, drunk driving etc.) may be the 

results of driving habits that have been “encouraged” by society. Societal factors such as culture, 

socioeconomics, and policies influence drivers’ lifestyles and driving styles, irrespective of driver 

age or gender. For instance, some risky driving behaviors, such as failure to use seatbelt, may be 

normal in societies due to lack of policies or no enforcement of traffic safety laws. These extrinsic 
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sociocultural factors are typically unaccounted for during the crash reporting process. In effect, the 

root “cause” of the immediate chain of actions/events leading to traffic crashes are often either 

ignored or treated as though they have no bearing on the crash event.  

While human factors have been limited to the immediate driver errors, crash studies 

involving human factors have to go beyond human errors to holistically include regional 

characteristics that influence the driving behaviors that put some individuals or groups among the 

population at greater risks of getting into road traffic crashes. It is also possible that the variations 

in safety performance between regions may either be directly due to differences among driving 

styles of people who live there; or groupings based on regions may arise for reasons more 

associated with the characteristics of the regions. This implies that regions and their residents can 

exert influences on each other, suggesting different sources of variations in crash outcomes across 

regions. As such, it can be argued that driver characteristics that increase the likelihood of being 

involved in a crash may be explained through the sub-regional characteristics of where he or she 

lives. Individuals who share common sub-regional characteristics are likely to be more similar 

than others, to the extent that they may be similar in their exposure to crashes. This means that 

instead of viewing each crash event as an independent unit, there may be great value in exploring 

similarities and possible dependencies based on the characteristics of the drivers’ residential 

region. In the conventional crash analysis involving human factors, the influence of these regional 

characteristics in crash causation is masked by the immediate action leading to the crash. These 

factors therefore do not show up as immediate and obvious contributors to crash causation. In 

effect, the underlying “cause” of the human-centered crash causal factors are often either ignored 

all together in safety analyses, or treated as though they act independently of the crash event or the 

individual involved in the crash. A move from the conventional approach to traffic safety studies 
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therefore requires a new understanding of how underlying human characteristics, regional 

characteristics, and their interactions influence risky driving behaviors in crash causation. 

Evident relationship between traffic crash outcomes and the level of travel activities 

(measured in terms of mobility and accessibility) are well known. Generally, high levels of travel 

activities is an indicator of high crash exposure. However, studies have shown that the highest 

rates of traffic fatalities occur in low and middle income regions where many of their citizens 

experience low levels of motorized travel. This ironic observation reveals serious challenges facing 

transport mobility systems in the less privileged regions of the world. Similar to crashes, transport 

mobility challenges vary greatly across the population. Individual and regional level factors can 

put constraints on the extent of mobility citizens can consume. For instance, the development of 

overly motorized urban mobility systems as sign of modernity and economic growth, is a driver 

of hypomobility for those without access to motorized transport. The situation is particularly acute 

in the cities of the developing world where the urbanization process and growth in motorized 

transport are occurring so fast that if current trends continue, these cities will soon grind to a halt 

for lack of adequate infrastructure. Mobility in developing cities is therefore not achieving its 

purpose of increasing accessibility. Land use decisions and urban transport planning practices have 

locked cities in extreme conditions of transport hypermobility and hypomobility. While the rich 

and powerful elite in the society are more likely to be hypermobile, the poor and vulnerable are 

more likely to be hypomobile. This segregation has seen a decline in the provision and support for 

mobility modes that the poor depend on. Adverse effects of the growing imbalance in the levels of 

mobility between the rich and the vulnerable poor city dwellers represent both public security and 

health concerns.  
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As public health problems, the study of constrained mobility/accessibility and traffic 

crashes study is analogous to the study of diseases and other injuries and thus, suitable for the 

application of epidemiological techniques. Methods adopted in public health for the study, control, 

and prevention of epidemiological conditions provide a useful framework and scientific approach 

for the study of these two transport challenges. The multiple circumstantial factors involved in 

their respective causations make the use of epidemiological techniques appropriate. The work 

performed in this dissertation therefore explores the use widely used robust epidemiological 

methods to study these two transportation-based public health problems. The application of 

epidemiological studies in this research makes possible the assessment of the relative importance 

of the contributing factors. Identifying factors that are associated with these conditions will help 

to identify populations at increased risk, so that target countermeasures and treatment measures 

may be effectively implemented.  

1.4 Structure of the Dissertation 

The primary focus of this research is to explore the use of epidemiological techniques to 

analyze traffic crashes and constrained mobility/accessibility. The dissertation therefore consists 

of two major focus areas. The first part of the study applies widely used epidemiology/public health 

– based statistical tools to analyze traffic crashes. This part is further divided into two sub-sections. 

The first sub-section sought to identify homogeneous clusters of human-related crash causal 

factors and also investigate the effects of these factors on crash outcomes. The second sub-section 

investigates the interactive effects of sub-regional and driver characteristics in explaining regional 

variations in traffic crash outcomes. The ultimate goal of the first part of the dissertation is to 

provide data-driven evidence necessary to develop potential mitigations and interventions and for 
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the effective and targeted implementation of human-centered crash countermeasures. The second 

part of the study focuses on the use of epidemiological research methodology to develop a 

framework to address the problem of constrained transport mobility and inaccessibility. Each sub-

section of the first part and the second part of the research have examined crash causal factors 

related to drivers and their driving habits. This study attempts to identify homogeneous clusters of 

human-related crash causal factors and also investigate the effects of these factors on crash 

outcomes. This is achieved by using latent class analysis to identify segments of drivers based on 

common crash causal traits, and then developing latent class logit and random parameters logit 

models to identify how human-centered factors influence injury severity of crashes. Chapter 3 

investigates the disparities in road traffic crashes among segments of the population and also 

among regions. The study applies multilevel regression analysis to understand the effects of driver 

residential factors on driver behaviors in an attempt to explain the area-based differences in the 

severity of road crashes across sub-regions. Chapter 4 provides an epidemiological framework for 

addressing mobility/accessibility constraints with a view to diagnosing symptoms, recommending 

treatment, and even discuss the idea of transmission. Finally, a summary of the studies and 

potential future study proposals are presented in Chapter 5. 
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CHAPTER 2 

LATENT CLASS ANALYSIS OF THE EFFECTS OF HUMAN FACTORS ON CRASH-

INJURY SEVERITIES  

 

2.1 Introduction 

Road traffic crashes occur from a combination of factors related to elements of the 

transportation system, made up of the road and its environment, vehicles, and road users; with 

crash outcomes ranging from property damage to death. Some factors contribute to the crash 

occurrence, while others influence the outcome of the crash, or both. While the effects of some 

crash causal factors such as speed can be immediately obvious, they may be linked to other 

unobserved factors, such as sensation seeking nature of the driver, which are not typically 

accounted for during the crash reporting process. Having a holistic understanding of crash causal 

factors and how they impact on severities is necessary to develop and target countermeasures.  

There is a significant body of road safety literature dedicated to the study of factors 

affecting crash occurrence and severities. Multiple proposals on countermeasures have ranged 

from roadway reengineering, improved vehicle safety features, and strategies to influence driver 

behavior. The development of these proposals or countermeasures have been anchored on 

understanding the factors that affect the likelihood of crash occurrence and/or circumstances that 

influence the severity of the crash outcome. A critical component of road traffic crash analyses has 

been the examination of the driver. Some drivers have habits or choose to drive in ways that 

increase their likelihood of getting into a crash. For instance, driving styles such as choice of 

driving speed, threshold for overtaking, headway, and inclination to commit traffic violations have 
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been strongly linked to certain groups of drivers (Elander et al, 1993). According to Elander et al 

(1993), while certain groups of drivers may be disproportionately represented in crash statistics, 

this may be due to reasons not related to their risk of crash. One of the early attempts by researchers 

to gain in-depth understanding of crash causal factors was the Indiana Tri-Level Study. From this 

study, Treat et al (1979) observed that human errors and deficiencies were definite or probable 

cause in over 90% of the crashes examined. The leading direct human causes identified in the 

study included improper lookout (probable cause in 23% of accidents), excessive speed (17%), 

inattention (15%), improper evasive action (13%), and internal distraction (9%). In a similar study, 

Hendricks et al (1999) investigated the specific driver behaviors and unsafe driving acts that lead 

to crashes. The study further assessed the situational, driver, and vehicle characteristics associated 

with these behaviors. They found human error to be the most frequently cited contributing factor 

in 99.2% of crashes, followed by environmental (5.4%) and vehicle factors (0.5%). Thus, most 

crashes and their associated injuries and fatalities can be linked to some form of unsafe driving 

habits (Hendricks et al 1999). It is therefore important to examine the causal driver characteristics 

and also assess their driving behaviors that increase the likelihood of crash occurrence. 

Many human-centered crash studies focus on the human errors which result in crash 

occurrence. In doing so, these errors are treated as the main cause of crashes, while the relationship 

between these errors and their human-factor catalysts are often not considered. It has therefore 

become necessary to expand the scope of crash studies to identify the intrinsic and extrinsic human 

factors that serve as moderators for the manifestation of these “errors” or failures and also 

investigate how these factors affect driver injury severities.  This user-oriented causal analysis 

embodies a holistic approach where the driver characteristics are studied vis-à-vis driving 

characteristics in determining how these factors collectively influence crash causation and crash 
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outcomes. This paper therefore attempts to identify homogeneous clusters of human-related crash 

causal factors and also investigate the effects of these factors on crash outcomes. This is achieved 

by using latent class analysis to identify segments of drivers based on common crash causal traits, 

and then developing latent class logit and random parameters logit models to identify how human-

centered factors influence injury severity of crashes.  

2.2 Human-Centered Traffic Safety 

Driver-related behavioral factors and human errors dominate the causation of traffic 

crashes (Tillman and Hobbs, 1949; Treat et al 1979; Hendricks et al 1999). Driving behaviors and 

styles are influenced by external and driver-specific factors. Individual and societal characteristics 

which influence driving behavior in a way which can affect the chances of crash occurrence 

collectively constitute human factors in traffic safety. Driver characteristics (e.g. gender, race, age, 

etc.), attitudes, beliefs, and personality traits (e.g. tolerance, caution, inattentiveness, perception of 

risk, sensation seeking, etc.) are some human factors that influence driving habits (Donovan, 1993; 

Yu and Williford, 1993; Elander et al 1993). Societal norms and cultural practices, such as 

enforcement of traffic rules and regulations, on the other hand, also play important roles in shaping 

driver attitudes and beliefs. These have impacts on driving styles and can affect traffic safety 

(NHTSA, 2006; Gaygisiz, 2010; Stanojevic, 2013; AAA Foundation, 2016; Atchley et al. 2014; 

Schlembach et al. 2016). NHTSA (2006) observed that cultural differences and sensitivities 

correlate with motor vehicle fatality and injury rates. In the U.S. for instance, racial and ethnic 

groups are disproportionately killed in traffic crashes compared with the much larger non-Hispanic 

White population (NHTSA, 2006). This means that with other things being equal, some human-
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centered characteristics and behaviors put some groups of the driving population at greater risk of 

causing traffic crashes. 

In an attempt to explore the causal link between human factors and the likelihood of 

crashes, Petridou and Moustaki (2000) distinguished behavior-related factors into two major 

categories: those that reduce the capability of a driver to perform driving tasks (e.g. inexperience, 

accident proneness, alcohol and drug use) and those factors that influence risk taking while driving 

(e.g. habitual disregard of traffic laws and regulations). Differences in the behavioral factors exist 

among different demographic groups. For instance, McGwin and Brown (1999) observed that 

alcohol was less likely to be a factor in traffic crashes involving older drivers, while the primary 

problems with young drivers are risk-taking and lack of skill. Crashes among young drivers are 

more likely to involve a single vehicle, one or more driving errors, speed as a factor, or involve 

alcohol abuse. Moller and Haustein (2013) have also observed that young males are more prone 

to excessive speeding influenced by peer pressure. Female drivers on the other hand are more 

prone to driving errors (Shi et al 2010). Other studies have shown that inexperienced drivers are 

more susceptible to errors and more likely to fail to recover when they get distracted (Groeger, 

2006; Shi et al 2010). Gulliver and Begg (2007) conducted a study to examine the effects of 

personality factors assessed during adolescence on persistent risky driving behavior and traffic 

crash involvement among young adults. They found that for males, aggression, traditionalism, and 

alienation were the personality traits most frequently associated with risky driving behavior and 

crash risk. Willfully flouting driving laws and regulations may be indicative of risk taking 

behavior. Blows et al (2005) identified that unlicensed drivers were at significantly higher risk of 

car crash injury than those holding a valid license. Beyond the individual characteristics, certain 

driving styles and behaviors also affect the severity of the crash. For instance, seat-belt non-use 
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has been associated with increased risk of injury and death in a crash. NHTSA (2016) estimates 

reveal that more than half of teen drivers (13-19 years) and adults aged 20-44 years who died in 

crashes in 2014 were unrestrained at the time of the crash. Faster driving speeds are also known to 

increase the likelihood of crash occurrence, and also the severity of the crash consequences. 

Speeding-related fatalities constituted approximately a third of total traffic fatalities across the 

United States between 2005 and 2014 (NHTSA, 2016). Impairment by alcohol and other drugs, 

driver distraction and inattention have been cited frequently as contributing factors in crashes and 

these can also affect the severity of the crash outcome (e.g. Treat et al. 1979; Hendricks et al. 1999; 

Klauer et al. 2006; NHTSA, 2015).]. Statistics show that alcohol-impaired-driving fatalities 

accounted for a third of all crash fatalities in the United States in 2014 (NHTSA, 2015). Driver 

inattention has also been extensively linked to crash occurrence. Nearly 10 percent of fatal crashes, 

18 percent of injury crashes, and 16 percent of all police-reported motor vehicle traffic crashes in 

2014 were reported be distracted driving related (NHTSA, 2016). 

Considering that human factors are responsible for the highest proportion of traffic crashes, 

countermeasure implementation should largely be human-centered. According to Ogden (1996), 

crash countermeasures achieve best results when they influence driver behavior. Human-centered 

countermeasures may take the form of improved driver training and testing, education campaigns 

aimed at changing driving practices, legislation to control driver behavior, and improvements to 

the design of road systems and automobiles (Elander et al 1993). Promoting a culture of safe road 

user behavior is required to achieve sustained reductions in road traffic injuries. 
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2.3 Crash Injury-Severity Models 

The primary emphasis of crash injury-severity studies is to identify factors that influence 

the severity of crash outcomes. Safety researchers have relied on myriad of statistical modelling 

techniques, applied to post-crash records and other non-crash specific data, to gain data-driven 

knowledge and understanding into crash causal circumstances. Mujalli and De Ona (2011) have 

shown that interest in identifying factors that affect crash injury severity has increased 

considerably in the last few years; perhaps, due to the availability of data and proliferation of 

advanced statistical packages. Depending on data characteristics and scope of studies, researchers 

have the option of choosing from a wide range of statistical tools for crash severity studies. 

Discrete-choice (logit and probit) models have been used extensively over the years to 

analyze crash injury severity due to the classification of the severities into discrete outcomes. 

These methodologies have been applied to study safety of different roadway facilities, and have 

included variables that describe the crash circumstances, environmental conditions, roadway, 

vehicle, and driver characteristics. For instance, Shankar, et al. (1996) used a nested logit 

formulation to predict crash severity on a section of rural interstate in Washington State. This study 

investigated the effect of environmental conditions, highway design, crash type, driver 

characteristics, and vehicle attributes on crash severity. Haleem and Abdel-Aty (2010) and Daniels 

et al (2010) also applied nested logit techniques to analyze crash severity at un-signalized 

intersections and at roundabouts respectively. Other logit modelling techniques that have been 

used in injury severity studies include binary logistic models (Dissanayake, 2004; Savolainen and 

Mannering, 2007; Peek-Asa et al, 2010; Kononen et al, 2011), ordered logit models (Abdelwahab 

and Abdel-Aty, 2001; Khattak and Rocha, 2003; Jung et al, 2010; Quddus et al, 2010), 

(Malyshkina and Mannering, 2009; Schneider et al, 2009), mixed logit (Milton et al, 2008; Morgan 
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and Mannering, 2011), and heterogeneous models (Quddus et al, 2010). Logit models are however 

not able to handle random variations and are not applicable to panel data with temporally correlated 

errors. They also do not allow any pattern of substitution (Train 2009). Probit models address these 

limitations. Ordered probit model is the most used type of probit models in crash severity analysis 

(e.g. Xie et al 2009; Wang, 2009; Haleem and Abdel-Aty, 2010; Zhu and Srinivasen, 2011). 

Khattak et al (2002) used ordered probit modeling techniques to isolate factors that contribute to 

injuries in older drivers involved in crashes. Abdel-Aty and Keller (2005) analyzed crashes at 

signalized intersections to determine the expected injury severity level using ordered probit model. 

Data mining techniques have also been used to analyze traffic crash injury severity. For instance, 

Council and Stewart (1996) and Chang and Wang (2006) used classification and regression trees 

and Chen and Jovanis (2000) appliedused Chi-squared automatic interaction detection to crash 

severities. Other advanced methodologies used in literature include Bayesian networks (e.g. 

Simoncic, 2004; De Ona et al. 2011), neural networks (e.g. Abdel-Aty and Abdelwahab, 2004; 

Delen et al. 2006), and linear genetic programming (e.g. Das and Abdel-Aty, 2010). Latent class 

approach has recently been used for analyzing driver injury severities (Xiong and Mannering, 

2013; Chu, 2014; Yasmin et al., 2014).  

The fundamental characteristics of crash data and purpose of study result in methodological 

limitations (Savolainen et al. 2011). Many other methods have been used for crash injury severity 

studies. This chapter is by no means exhaustive on the subject. Savolainen, et al. (2011) for 

instance, presents a review of crash injury severity models and methodological approaches. 

Similarly, Mujalli and De Ona (2011) undertook a meta-analysis and presents a documentation on 

the characteristics and limitations of different modeling methods for safety researchers.  
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2.4 Data Description 

This study is based on 2011 – 2015 injury-related crash data for the State of Alabama, 

obtained from the Critical Analysis Reporting Environment (CARE) system developed by the 

Center for Advanced Public Safety at the University of Alabama. The data was filtered to select 

crashes that were reported to have human-centered factors as their primary contributing 

circumstance. These human-centered factors consist of driving styles, decisions, and activities 

undertaken by the driver, which led to the crash. For each crash event, information on the driver’s 

license status and seatbelt use were obtained. Demographic information of the causal driver was 

also obtained. Observations with missing values were omitted from the dataset, resulting in a total 

of 87,326 observations. Table 1 shows the summary statistics of the variables available for model 

building and analysis.  

Two categories of severity were adopted. Serious injury (defined as fatal or incapacitating 

injury) constituted 30% of the data and minor injury (defined as non-incapacitating injury or 

possible injury) made up 70% of the crash observations. Crashes involving some form of driver 

error (defined to include aggressive driving, failure to yield, following too close, ran traffic control 

device) made up approximately half of injury crashes. About 44% of injury crashes were reported 

to involve women.  
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Variable name Description Mean (standard deviation) 

Crash Severity Serious injury /Minor injury  0.30/0.70 

Driver error Primary cause: error attributed to driver (1=Yes, 0=No) 0.49 (0.50) 

DUI Primary cause: DUI (1=Yes, 0=No) 0.09 (0.29) 

Speed Primary cause: Speeding (1=Yes, 0=No) 0.11 (0.32) 

Distracted  Primary cause: Distracted driving (1=Yes, 0=No) 0.11 (0.31) 

Fatigue Driver condition at time of crash: Fatigued (1=Yes, 0=No) 0.06 (0.23) 

Invalid license License status of causal driver: Invalid license (1=Yes, 0=No) 0.07 (0.26) 

No seatbelt Seatbelt use: No seatbelt (1=Yes, 0=No) 0.11 (0.31) 

Female Driver gender: Female (1=Yes, 0=No) 0.44 (0.50) 

Black  Driver race: African American (1=Yes, 0=No) 0.24 (0.43) 

Young Driver age: less than 30 (1=Yes, 0=No) 0.42 (0.49) 

Old Driver age: more than 60 (1=Yes, 0=No) 0.15 (0.36) 

Unemployed Driver employment status: Unemployed (1=Yes, 0=No) 0.30 (0.46) 

Table 2.1 Summary statistics of the variables used for model building 

A third of the drivers involved in injury crashes were unemployed and about 42% of the 

drivers were less than 30 years old. Some 9% of the drivers were under the influence of drugs, 

alcohol, or medication, while 11% involved speeding.  

2.5 Methodology 

Unobserved heterogeneity is a critical issue in traffic safety research. Ignoring the 

moderating effect of unobserved variables can lead to biased estimates and incorrect inferences if 

inappropriate methods are used (Shaheed and Gkitza, 2014; Mannering et al., 2016). Limiting the 

impact of a variable to its statistical significance in a model can mean eliminating some otherwise 

risky factors. Ulfarsson and Mannering (2004) observed that an insignificant variable in one model 

may be due to lack of observations. On the other hand, significance of a variable in an injury 

severity model is not an automatic indication that it is an important etiologic factor.  
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The ordinal nature of reporting crash injury severities make ordered probit and logit models 

appropriate (Zhu and Srinivasan, 2011; Islam and Hernandez, 2013). However, these model forms 

restrict the way variables influence outcome probabilities, leading to incorrect inferences 

(Savolainen and Mannering, 2007; Washington et al., 2011). Compared to the traditional ordered 

probability models, multinomial logit (MNL) models have a flexible structure which allows each 

severity outcome to have a different function for capturing the probabilities of injury severities 

(Malyshkina and Mannering, 2008; Jones, et al, 2013; Shaheed and Gkritza, 2014). This 

notwithstanding, the MNL model is deficient in its application as it is susceptible to correlation of 

unobserved effects from one crash severity level to the next. Such correlation leads to a violation 

of the model's independence of irrelevant alternatives (IIA) property (Washington et al., 2011). 

Also, the assumption that random terms in the crash severity functions in MNL models are 

independent and identically distributed (IID) is often violated in practice because crash severity 

functions do not contain a complete list of all contributing factors. Even though nested logit models 

can capture some unobserved effects shared by some injury severity outcomes, they cannot address 

unobserved heterogeneity in the data. Random parameters (mixed logit) models and latent class 

(finite mixture) logit models have the ability to capture the unobserved heterogeneity by allowing 

parameters to differ across observations (Morgan and Mannering, 2011; Behnood and Mannering, 

2015; Mannering et al. 2016). For this study, latent class analysis was first carried out to identify 

clusters of human-centered causal factors within a large set of heterogeneous crash data. Injury 

severity analysis was then performed to identify explanatory factors associated with increasing 

probability of particular injury severities. A traditional MNL injury severity model was first 

developed to identify how the human-centered variables influence crash outcomes. Random 

parameters logit (RPL) and latent class (LC) logit models were then estimated to address the 
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heterogeneity challenges inherent in the MNL model. Estimation results for the RPL and the LC 

logit models are then compared to select the best fitting alternative model to the MNL model.  

2.5.1 Clustering of Human-Centered Factors 

Latent class analysis (LCA) is a widely used model-based clustering method for discrete 

data (Dean and Raftery, 2010). This modeling technique is based on the assumption that each 

observation of a heterogeneous data comes from one of a number of classes, and models each with 

its own probability distribution (McLachlan and Peel, 2000; Fraley and Raftery 2002).  The overall 

population therefore follows a finite mixture model, given as:  

𝑥 ~ ∑ 𝜋𝑔𝑓(𝑥|𝜃𝑔)𝐺
𝑔=1            (1) 

where 𝑓 is the density for group 𝑔, 𝐺 is the number of groups, 𝜋𝑔 are the mixture proportions, 0 <

𝜋𝑔 < 1, ∀𝑔, ∑ 𝜋𝑔
𝐺
𝑔=1 = 1 and  𝜃𝑔 is the set of parameters for the group. 

In LCA, the variables are usually assumed to be independent given knowledge of the group 

an observation came from, an assumption of local independence. Each variable within each group 

is then modeled with a multinomial density. So, given 𝑘 variables, the joint group density can be 

expressed as a product of the individual group densities. Given that 𝑥 = (𝑥1, … , 𝑥𝑘)  the joint 

group density is expressed as: 

𝑥|𝑔 ~ ∏ ∏ 𝑝𝑖𝑗𝑔
1{𝑥=𝑗}𝑑𝑖

𝑗=1
𝑘
𝑖=1           (2) 

where 1{𝑥 =𝑗} is the indicator function equal to 1 if the observation of the 𝑖th variable takes value 

𝑗 and 0 otherwise, 𝑝𝑖𝑗𝑔 is the probability of the variable 𝑖 taking a value 𝑗 in group 𝑔, and 𝑑𝑖 is the 

number of possible values or categories the 𝑖th variable can take. The overall density is then a 

weighted sum of these individual densities, given by: 

𝑥 ~ ∑ (𝜋𝑔 ∏ ∏ 𝑝𝑖𝑗𝑔
1{𝑥=𝑗}𝑑𝑖

𝑗=1
𝑘
𝑖=1 )𝐺

𝑔=1          (3) 
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The model parameters 𝑝𝑖𝑗𝑔 and 𝜋𝑔 can be estimated from the data (for a fixed value of 𝐺) 

by maximum likelihood using the EM algorithm or the Newton-Raphson algorithm or a hybrid of 

the two. The number of classes that gives the best model is selected based on the Bayesian 

Information Criterion (BIC), which is computed as: 

𝐵𝐼𝐶 = 2 ∗ log(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) ∗ log (𝑛)   (4) 

where 𝑛 is the number of observation. Lower BIC values indicate a better model fit. Keribin (1998) 

showed BIC to be consistent for the choice of the number of components in a mixture model under 

certain conditions, when all variables are relevant to the grouping. A difference greater than 10 in 

BIC values is considered strong evidence that the two models are significantly different (Kass and 

Raftery 1995). 

2.5.2 Injury Severity Analysis 

2.5.2.1 Random Parameters Logit Model 

RPL model allows for heterogeneity within observed crash data by varying the elements 

of the vector of estimable parameters,  𝛽𝑖 . The outcome specific constants and elements of 𝛽𝑖 may 

either be fixed or randomly distributed over all parameters with fixed means. The random 

parameters logit model formulation is obtained from the standard MNL by introducing random 

parameters with 𝑓(𝛽𝑖|𝜑), where 𝜑 is a vector of parameters of the chosen density function (mean 

and variance) (McFadden and Train, 2000; Train, 2009; Washington et al. 2011) as:  

𝑃𝑛(𝑖|𝜑) = ∫
𝑒𝑥𝑝 (𝛽𝑖𝑋𝑖𝑛)

∑ 𝑒𝑥𝑝 (𝛽𝑖𝑋𝑖𝑛)∀𝐼
𝑓(𝛽𝑖|𝜑)𝑑𝛽𝑖        (5) 

and 𝑃𝑛(𝑖|𝜑) is the probability of injury severity i conditional on 𝑓(𝛽𝑖|𝜑).    
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For model estimation, 𝛽𝑖 can now account for unobserved heterogeneity of the impact of 

X on injury-severity outcome probabilities, with the density function 𝑓(𝛽|𝜑) used to determine 𝛽𝑖. 

Random parameters logit probabilities are weighted average for some different values of 𝛽 across 

observations where some elements of the parameter vector 𝛽 are fixed parameters and some may 

be randomly distributed. A continuous distribution relating how parameters vary across crash 

observations is assumed by the researcher. For this study the normal distribution is assumed for 

model estimation (Milton et al. 2008). 

2.5.2.2 Latent Class Logit Model 

LC logit model offers an alternative perspective to the random parameters logit model in 

terms of accommodating heterogeneity (Greene and Hensher, 2010; Behnood, and Mannering, 

2015; Mannering et al., 2016). This model replaces the continuous distribution assumption of 

random parameter model with a discrete distribution in which unobserved heterogeneity is 

captured by membership of distinct classes (Greene and Hensher, 2010; Mannering and Bhat, 

2014). A latent class logit model allows the driver injury severity to have C different classes so 

that each of the classes will have their own parameters with the probability given by (Behnood et 

al., 2014): 

𝑃𝑛(𝑐) =
𝑒𝑥𝑝(𝛼𝑐𝑍𝑛)

∑ 𝑒𝑥𝑝(𝛼𝑐𝑍𝑛)∀𝐶
           (6) 

where 𝑍𝑛 represents a vector that shows the probabilities of 𝑐 for crash 𝑛, 𝐶 is the possible classes 

𝑐, and 𝛼𝑐 represents the estimable parameters (class specific parameters). The probability of driver 

having injury severity 𝑖 is given by: 

𝑃𝑛(𝑖) = ∑ 𝑃𝑛(𝑐) ∗ 𝑃𝑛(𝑖/𝑐)∀𝐶           (7) 



 

26 

 

where 𝑃𝑛(𝑖/𝑐) is the probability of drivers to have injury severity level 𝑖 for crash 𝑛 in class 𝑐. 

Based on the two equations above, the latent class logit model for class 𝑐 will be: 

𝑃𝑛(𝑖/𝑐) =
𝑒𝑥𝑝(𝛽𝑖𝑐𝑋𝑖𝑛)

∑ 𝑒𝑥𝑝(𝛽𝑖𝑐𝑋𝑖𝑛)∀𝐼
           (8) 

where  𝐼  represents the possible number of injury severity levels and  𝛽𝑖𝑐  is a class-specific 

parameter vector that takes a finite set of values.  

The latent class logit model can be estimated with maximum likelihood procedures (Greene 

and Hensher, 2003). The latent class method however does not account for the possibility of 

variation within a class since it assumes homogeneous characteristics of the within-class 

observations (Mannering and Bhat, 2014). Greene and Hensher (2013) and Bujosa et al. (2010) 

present the random parameter latent class model as an extension of the latent class logit model to 

capture interactions with observed contextual effects within the latent classes. 

Marginal effects are typically computed to reveal the relative impact of explanatory 

variables on the dependent variable. Marginal effect in a latent class logit model is computed for 

each class as the difference in the estimated probabilities with the indicator changing from zero to 

one, while keeping all the other variables at their means.  Greene (2007) has shown that the direct 

and cross-marginal effects can be computed respectively as follows: 

𝜕𝑃𝑛𝑖

𝜕𝑥𝑛𝑖𝑘
= 𝛽𝑖𝑘𝑃𝑛𝑖(1 − 𝑃𝑛𝑖)          (9) 

𝜕𝑃𝑛𝑞

𝜕𝑥𝑛𝑖𝑘
= −𝛽𝑖𝑘𝑃𝑛𝑖𝑃𝑛𝑞           (10) 

The direct marginal effect shows the effect of a unit change in 𝑥𝑛𝑖𝑘 on the probability, 𝑃𝑛𝑖 , 

for crash 𝑛 to result in severity 𝑖. The cross-marginal effect shows the impact of a unit change in 

variable 𝑘  of alternative 𝑖  ( 𝑖 ≠ 𝑞 ) on the probability 𝑃𝑛𝑞  for crash 𝑛  to result in outcome  𝑞 . 

According to Greene (2007) and Xie et al. (2012), the final marginal effect of an explanatory 
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variable is the sum of the marginal effects for each class weighted by their posterior latent class 

probabilities. 

2.6 Estimation Results 

The objective of the first part of the study was to identify classes of human-centered causal 

factors contributing to injury crashes. LCA was applied to identify seven distinct classes as 

summarized by the fit statistics reported in Table 2.  The classes organized around specific driving-

related actions (speeding, not wearing a seat belt, etc.) and included demographic information to 

provide additional context underlying the exhibited behaviors.  No significant improvement was 

observed beyond seven classes.  The seven class model also exhibited good separation among 

classes as indicated by the entropy criterion (McLachlan and Peel, 2000), where entropy criterion 

of one (1) indicates perfect classification.  

Table 3 shows the probabilities of the various human causal factors contributing to each 

class (parameters with class membership probability less than 0.3 were not included). The classes 

in table 3 were named to capture the primary human aspects defining each class.  For example, 

Class 1, which accounted for roughly 2% of injury crashes was named risk takers.  All drivers in 

this class were driving without a valid license, 77% percent were under the influence of drugs or 

alcohol, and with 48% probability of no seatbelt use at the time of the crash. The majority (63%) 

of risk takers were unemployed and a third were African American.  It can also be inferred that 

the majority of risk takers were men as the probability of being female was less than 0.3.   

Speed seekers (Class 2) were involved in about 11% of injury crashes. This group too 

showed a significant contribution by unemployed drivers but the largest contribution came from 

younger drivers.  Interestingly, women were shown to be a significant proportion of speed seekers 
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– a finding that is interesting given recent evidence of increased rates of aggressive driving among 

females (e.g., Hennessy and Wiesenthal, 2001; Romano et al., 2008). 

Class 3 was termed reckless drivers and comprised some 10% of injury crashes.  The 

reckless drivers class was similar to the risk takers expect it did not include a significant portion 

of drivers without valid licenses.  It did, however, exhibit significant probabilities of DUI and not 

wearing seat belts and indicated that younger and unemployed drivers were an important 

component of the reckless driver class.   

The improper drivers class (4) accounted for 31% of injury crashes and was named such 

due to the high probability of driver error being the main contributing factor.  Again, unemployed 

drivers were seen to be an important contributor to injury crashes and Class 4 indicates that women, 

younger drivers, and African Americans were significant to the improper drivers class.   

Class 5 captured injury crashes attributable to fatigued drivers and illustrated the 

importance of women and young people in relation to crashes caused by tired and drowsy drivers.  

Class 6 indicates that some 29% of injury crashes are attributable to driver error and that erring 

drivers are mostly men (although women were found to contribute significantly to this class). 

Finally, distracted driving (Class 7) accounted for 12% of injury crashes.  Table 3 shows that 

women and young people both represented half of distracted drivers. 

Examination of the classes of human-centered factors among injury crashes revealed 

interesting information on what behaviors contribute to injury crashes and, to some extent, what 

types of drivers commit them.  In order to develop a more nuanced understanding of how human-

centered factors affected crash severity, series of analyses were conducted to examine the extent 

to which the various parameters are useful in estimating crash injury severity. A total of 12 

variables were used for model building. Table 4 shows the estimation results for the RPL and the 
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LC logit models. Since the RPL and LC logit models are improved extensions of the standard 

MNL model, results for the MNL model has also been shown to confirm this. 

The MNL model reveals that crashes involving fatigue, drivers with invalid license, no 

seatbelt use, old and unemployed drivers were more likely to result into serious injury while driver 

error, DUI-, speed-, and distracted driving- related crashes were more likely to be lead to minor 

injuries. The MNL model also shows that female drivers, young drivers, and African American 

drivers were more likely be involved in minor injury crashes. The effects of the parameters in the 

MNL model are fixed across severity levels. This implies that variables are assumed to influence 

either minor injuries or serious injuries, not both. The RPL model, however, reveals that driver 

error, speeding, distracted driving, no seatbelt use, and young driver indicators were random 

variables. The random variables significantly contributed to both serious and minor injury crashes. 

This means that some proportion of crashes involving a random variable, for instance driver error, 

resulted in serious injuries and some proportion resulted in minor injuries.   

Two distinct classes with homogeneous attributes were identified to be significant for the 

LC logit model; latent class 1 (LC 1) with probability of 0.72 and latent class 2 (LC 2) with 

probability of 0.28. An inspection of the constant term defined for the serious injury function 

indicates that a crash in LC 1 is more likely to result in serious injury than a crash in LC 2. One 

interesting observation was that old drivers had high chance of being involved in serious injury 

crashes regardless of the latent class.  Driver error, driver error, DUI-, speed-, and distracted 

driving- related crashes were likely to be lead to minor injuries in LC 2, but more likely to result 

in minor injury in LC 1. Similarly, crashes involving females, African American, and young 

drivers were likely to result in serious injury in LC 2 and minor injury in LC 1. Unemployed drivers 
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were more likely to be involved in serious injury crashes in LC 1 but less likely to be involved in 

same in LC 2.  

The marginal effects (Table 5) show that old drivers and crashes involving no seatbelt use 

respectively had 0.73% and 1.89% higher likelihood of resulting into serious injury. This outcome 

is interesting as it points to a high possibility of low seatbelt usage among older drivers. Injury 

crashes involving unemployed drivers, drivers with invalid license, and fatigued driving 

respectively had 4.19%, 0.32%, and 0.05% higher chance of lead to serious injury outcome. This 

results also indicate that drivers with no employment have high likelihood to drive with invalid 

license. Another interesting result from this study is that though a high proportion of the injury 

crashes were attributed to driver error, DUI, and speeding, their outcomes were more likely to be 

minor injury.  

A comparison of the fit statistics (e.g. McFadden pseudo R2 = 0.069, 0.183, 0.193 for MNL, 

RPL and LC logit models respectively) suggest a stronger support for the LC logit model over the 

MNL and RPL models. Similar conclusions have been reported by other researchers (e.g. see 

Greene and Hensher, 2003; Shen, 2009; Xie et al., 2012; Wen et al., 2012). An attempt was made 

to develop LC random parameters logit model for this study. However, none of the random 

parameters had statistically significant standard deviations. There was also no significant 

improvement in model fit statistics when compared with the LC logit model.  

2.7 Conclusion 

In this paper, latent class analysis was performed to identify seven distinct classes of 

human-related crash causal factors. A latent class logit model and random parameters model were 

further developed as alternatives to the traditional multinomial logit model for crash injury severity 
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analysis to account for unobserved heterogeneity. The study was based on 2011 – 2015 injury-

related crash data, for the State of Alabama, and considered only crashes that had human-related 

primary causal factors. Two crash injury outcomes were examined: serious injury (fatal and 

incapacitating injury) and minor injury (non-incapacitating and possible injuries). Twelve 

variables were used to build the models.  

The latent class analysis results show that about 2% of the injury crashes involved drivers 

believed to be risk takers. This group consisted of male unemployed drivers with no valid driver’s 

license and also engaged in drunk driving with no seatbelt. African Americans made up 33% of 

this group.  Female drivers were observed to be involved in mostly crashes attributed to driver 

error. DUI- and speeding- related injury crashes involved high proportion of young male drivers. 

Fatigue related crashes involved 35% and 40% of female drivers and young drivers respectively. 

About half of the distracted driving-related injury crashes involved younger drivers and women. 

Injury-severity analysis involved developing a random parameters model and a two-class 

latent class logit model. The random parameter showed that driver error, speeding, distracted 

driving, no seatbelt use, and young driver indicator variables had varying effects on serious and 

minor injuries.  Serious injury crashes were more likely to involve unemployed drivers, crashes 

involving no seatbelt use, old drivers, fatigue driving, and drivers with no valid driver’s license. 

Model estimation results point to high possibility of low seatbelt usage among older drivers. The 

results also indicate that drivers with no employment have high likelihood to drive with no license 

or invalid driver’s license. In view of these results, recommendations can be made on targeted 

public awareness and education, backed by comprehensive enforcement programs especially 

among the identified risk takers group of drivers. 
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Comparison of fit statistics show that the two-class latent class logit model outperformed 

the random parameters model, as an alternative to the traditional MNL model. This result is 

generally in line with past studies in this area. An attempt was made to identify random parameters 

for the LC logit model. However, none of the random parameters had statistically significant 

standard deviations. There was also no significant improvement in model fit statistics when 

compared with the LC logit model. Further research, including more data and variables, may be 

required to explore the strengths of the LC random parameters model for injury severity analysis. 
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  Number of classes 

Fit statistics 2 3 4 5 6 7 

Log-likelihood -422683.30 -416732.11 -412901.8 -411805.47 -411342.48 -411089.35 

G-squared 27955.01 16052.63 8391.92 6199.34 5273.36 4767.12 

AIC 28001.01 16122.63 8485.92 6317.34 5415.36 4933.12 

BIC 28216.69 16450.84 8926.66 6870.61 6081.16 5711.44 

CAIC 28239.69 16485.84 8973.66 6929.61 61852.16 5794.44 

Entropy 1.00 0.99 0.87 0.73 0.71 0.74 

Table 2.2. Criteria for class number selection 
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Variable 

Class 1 (2%): 

risk takers 

Class 2 (11%): 

speed seekers 

Class 3 (10%): 

reckless drivers 

Class 4 (31%): 

improper drivers 

Class 5 (5%): 

fatigued drivers  

Class 6 (29%): 

erring drivers 

Class 7 (12%): 

distracted drivers 

Driver error   0.81  0.76  

DUI 0.77  0.78     

Speed  0.95      

Distracted       0.67 

Fatigue     1.00   

Invalid license 1.00       

No seatbelt 0.48  0.37     

Female  0.42  0.59 0.35 0.37 0.50 

Black  0.33   0.31    

Young  0.56 0.38 0.51 0.40  0.48 

Unemployed 0.63 0.38 0.42 0.50    

Table 2.3. Classes of human causal factors and their class probabilities 
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  MNL RPL LC 1 LC 2 

Variable  Serious injury Minor injury Serious injury Minor injury Serious injury Minor injury Serious injury Minor injury 

Constant  -0.26 (-13.23)   -0.12 (-4.45)   0.69 (11.94)   -20.67 (-0.06)   

Driver error  0.95 (50.05)  2.19 (7.61) rp 1.64 (23.24)  -17.71 (-0.05) 

DUI  0.26 (8.99)  0.43 (9.43)  1.26 (8.40)  -19.83 (-0.06) 

Speed  0.39 (14.93)  0.94 (4.13) rp 0.83 (11.60)  -16.92 (-0.05) 

Distracted   1.26 (41.57)  6.10 (5.74) rp 2.48 (29.16)  -9.81 (-0.53) 

Fatigue 0.14 (4.35)  0.02 (0.47)  -2.19 (-12.81)  47.11 (0.00)  

Invalid license 0.10 (3.44)  0.13 (2.71)  0.09 (1.41)  0.35 (1.21)  

No seatbelt 1.01 (41.70)  2.46 (8.71) rp  1.59 (21.19)  -1.64 (-3.52)  

Female  0.17 (10.90)  0.26 (9.09)  0.26 (8.10)  -0.28 (-1.50) 

Black   0.12 (6.77)  0.17 (5.89)  0.18 (5.29)  -0.04 (-0.21) 

Young  0.23 (13.38)  0.55 (6.58) rp 0.43 (10.21)  -1.16 (-4.19) 

Old 0.11 (4.77)  0.11 (3.42)  0.11 (2.11)  0.50 (1.34)  

Unemployed 0.22 (12.74)  0.38 (11.56)   0.40 (10.85)  -0.60 (-2.55)  

         

Latent Class Probability   0.72 (74.94) 0.28 (29.71) 

Log-likelihood at zero  -60529.77  -60529.77 

Log-likelihood at 

convergence -49584.82  -49451.9  -48868.27 

McFadden Pseudo R2 0.069   0.183   0.193 

Halton draw of 200 was used for the RPL model (Bhat 2003). The random parameters found in the RPL model (indicated by rp superscripts) were assumed to be 

normally distributed (see Milton et al., 2008) and had statistically significant standard deviations at 0.05 significance level. 

Table 2.4. Model Estimation Results 
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  Driver error DUI Speed Distracted Fatigue Invalid license No seatbelt Female Black Young Old Unemployed 

Serious injury -13.18% -1.50% -1.28% -0.88% 0.05% 0.32% 1.89% -4.93% -1.73% -1.99% 0.73% 4.19% 

Minor injury 3.80% 0.94% 0.78% 0.37% -0.03% -0.18% -1.73% 1.95% 0.69% 1.17% -0.35% -2.24% 

Table 2.5. Marginal Effects of the variables on probabilities of the severity outcomes (%) 

  



 

44 

 

CHAPTER 3 

MULTILEVEL ANALYSIS OF THE ROLE OF HUMAN FACTORS IN SUB-

REGIONAL DISPARITIES IN CRASH OUTCOMES 

 

3.1 Introduction 

Road safety is both a public health and socioeconomic concern. The World Health 

Organization (WHO) estimates that about 1.25 million deaths occur annually through road traffic 

crashes, with millions of people sustaining various degrees of injury (WHO, 2013). Globally, road 

traffic crashes are the main cause of death among those aged 15-29 years (WHO, 2015). To be 

able to improve traffic safety, there is the need to understand the underlying causes and prevalence 

of crashes. In an attempt to understand the general distribution of crashes by causal factors, Treat 

et al. (1979) categorized the relationship among three groups of risk factors contributing to road 

crashes: human factors, roadway factors, and vehicle-related factors (Treat et al., 1979). The study 

cited human factors as the probable cause of about 93% of crashes. A growing body of research 

has examined the disparities in road traffic safety among population groups and among geographic 

regions (e.g., Abdalla et al., 1997; Ameratunga et al., 2006; Factor et al., 2008; Anderson, 2010; 

Sehat et al., 2012). These studies reveal disparities in crash outcomes that exist between people 

and regions with different socioeconomic status and have overwhelmingly observed the 

disproportionately high fatalities in low income regions (e.g., Nantulya and Reich, 2003; Traynor 

2009; Chen et al., 2010; Harper et al., 2015; WHO, 2015).  

Humans play major roles, directly or indirectly, in crash causation. Human factors-focused 

traffic safety analyses, however, often focus on issues that directly contribute to crashes such as 
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driver error (e.g., failure to yield) and risky actions (e.g., speeding or overtaking) discerned during 

the crash reporting process.  There are, however, complex relationships between traffic safety and 

the broader social, economic, and environmental context of the humans involved (Tillman and 

Hobbs, 1949; Abdalla et al., 1997; Lu et al., 2000; Kim et al., 2006; Choudhry et al., 2007; Factor 

et al., 2008; Traynor 2009; Anderson, 2010; Lee et al., 2014).  Indeed, considerable work has been 

done to define and explore how safety behavior relates to deeper cultural currents (AAA, 2007; 

Rakauskas et al., 2009; Lund and Rundmo, 2009; Albrecht et al., 2013; Edwards et al., 2014; 

Atchley et al., 2014; Nordfjaern et al., 2014; AAA, 2015).  

Understanding the influence of both direct and indirect factors is particularly relevant to 

crash studies involving human elements as it has long been established that people are influenced 

by the sociocultural and economic conditions of where they live; people sharing the same context 

are more likely to be similar (Hox, 2010). The net effect of these factors on traffic safety require 

some in-depth analysis of historical crash data by considering the bigger social network of the 

people involved. 

Quantitative crash studies are undertaken to uncover hidden patterns in crash data or to 

predict the safety performance of facilities. Studies are carried out to investigate relationships 

between crash occurrence and various potentially contributing factors. Such crash prediction 

models (e.g., Safety Performance Functions) are popular techniques to predict crash frequency for 

a particular facility or location type (e.g. Jones et al., 1991; Miaou and Lum, 1993; AASHTO, 

2010; Brimley et al., 2012, Mehta et al., 2015). For other purposes, crash studies may be concerned 

with identifying factors that affect severities of crash outcomes (e.g. Shankar and Mannering, 

1996; Al-Ghamdi, 2002; Quddus et al., 2002; Abdel-Aty and Keller, 2005). Crash models have 

evolved with the development of sophisticated statistical methods to improve the accuracy of crash 
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prediction. Crash prediction and analytical studies generally involve exploring multiple years of 

crash records. These studies generally lead to understanding the dynamics of crash causes, usually 

limited to the factors gathered at the time of the crash or factors believed to be directly linked to 

the crash occurrence. If it is established, for instance, that a high proportion of a type of crash 

occurs at a particular location, it can be inferred that the factors that contribute to this trend may 

be attributable to the characteristics of the people involved or to the location characteristics, or 

some interaction between both. Similarly, if crash analyses reveal an overrepresentation of certain 

groups of the population in crashes, then further investigations may be required to understand why 

such trends exist.  

Human behaviors may be influenced by external local characteristics of where they live. 

Drivers from different regions are therefore likely exhibit different driving characteristics. As such, 

behaviors that expose drivers to crashes may indirectly be traceable to where they live or come 

from. This paper explores human-related crash causal factors and is premised on the common 

assumption that sub-regional (local) factors interact with driver characteristics to influence the 

occurrence and severity of crashes. The clustering of crashes within regions introduces multilevel 

correlation among observations and this can have implications for crash model parameter 

estimates. For this reason, the study applies multilevel regression analysis to investigate the 

associations between area of residence of a driver and their crash – injury severities. Exploring 

these underlying relationships can bring clearer understanding of the fundamental effects of 

regional characteristics on the direct human-centered causes of traffic crashes, with the aim of 

reforming the implementation of countermeasures to achieve the desired results. 



 

47 

 

3.2 Multilevel Regression in Traffic Safety Analysis 

Understanding the human-centered elements that lead to disparities in crash outcomes 

among regions requires investigating the relationship between individuals and the segment(s) of 

society in which the live. Individuals are influenced by the social groups to which they belong and 

the groups are in turn influenced by the individuals who make up that group (Jencks and Mayer, 

1990; Jones and Duncan, 1995; Kreft and De Leeuw, 1998; Wilkinson, 1999; Snijders and Bosker, 

1999; Raudenbush and Bryk, 2002; O’Connell and McCoach, 2008). Social groups may be 

categorized based on the characteristics of the population which constitute the group. A category 

of social groups can be defined based on similarities (e.g. risk taking behaviors, beliefs, 

socioeconomic characteristics) of the people. It is therefore possible to define a category to contain 

social groups that are widely separated. Individuals and their societies may hence be viewed as a 

hierarchical system of individuals nested within societies (Hox, 2010). Since human errors are 

responsible for over 90% of road traffic crashes, it is possible that disparities in crash frequencies 

and consequent severities between regions may either be due to the driving characteristics of the 

people (direct human factors) in those regions. On the other hand, clusters of crashes may arise for 

reasons less strongly associated with the people who live in the regions (indirect human factors). 

This implies that regions and their residents can exert influences on each other in crash causation, 

suggesting different sources of variation in crash outcomes. Due to this nested structure, the odds 

of an individual getting into a crash are not truly independent because individuals who share 

common sub-regional characteristics (e.g. driving regulations, land use pattern, social networks, 

socioeconomic characteristics, roadway features) may be similar in their exposure and 

involvement in crashes. In effect, the characteristics of crashes (measured through severity, type 

and causes) involving drivers from the same sub-region would be correlated. This means that 
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instead of viewing each crash victim as an independent unit, there is value in exploring similarities 

and possible dependencies based on the social groups to which they belong. This presents crash 

data in a hierarchical structure where crash victims are nested within regions (or contexts).  

The general idea that there exists bidirectional influential effects between individuals and 

the social contexts or groups to which they belong, and that the individuals and the social groups 

are conceptualized as a hierarchical system of individuals nested within groups is the sine qua non 

of multilevel research. Individuals from the same geographical area are seen to be more similar to 

each other than are individuals from different geographical areas as this spatial proximity tends to 

influence/reflect social grouping (Hox, 2010). Samples of individuals from different geographical 

areas are therefore not completely independent. The average correlation, expressed as intraclass 

correlation (ICC), between variables measured on individuals from the same geographical area 

would therefore be expected to be higher than the average correlation between variables measured 

on individuals from different geographical areas (Hox, 2010). ICC is an indication of the 

proportion of the variance explained by the grouping structure in the population. The partition of 

variance at different levels of the hierarchical structure improves statistical estimation (Merlo, 

2003). Standard statistical tests are based on the assumption of independence of the observations. 

If this assumption is violated, which is always the case for hierarchical data, the estimates of the 

standard errors of conventional statistical tests may be wrong and possibly lead to an overstatement 

of statistical significance.  

The use of multilevel analysis allows for the exploration of causal heterogeneity (Western, 

1998). Specifying cross-level interactions makes it possible to determine whether causal effect of 

lower-level predictors is influenced by higher-level predictors (Steenbergen and Jones, 2002). 

Multilevel modeling allows simultaneous study of ecological (or regional) and individual-level 
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risk factors, which is particularly useful in understanding how sub-regional factors translate into 

differences in individual-level risk (Bryk and Raudenbush, 1992; DiPrete and Forristal, 1994; 

Huttner and Eeden, 1995; O’Campo et al., 1997; Gelman and Hill, 2007). Multilevel analysis 

eliminates potential confounding of individual-level explanatory models caused by the omission 

of higher-level factors. Conducting an analysis at any of these levels while ignoring the lower 

levels (e.g., individuals) or contextual levels (e.g., sub-regions) can lead to erroneous conclusions. 

Studies have shown that ignoring a level of nesting in data can impact estimated variances and 

power to detect covariate effects (Julian, 2001; Shadish et al., 2002; Moerbeek, 2004), can also 

inflate Type I error rates (Wampold and Serlin, 2000), and may lead to significant errors among 

regression estimates (Rodriguez and Goldman, 1995; Goldstein, 2003) and consequently in the 

interpretation of results (Nich and Carroll, 1997; Snijders and Bosker, 1999). Multilevel models 

have been developed to properly account for the hierarchical (correlated) nesting of data (Heck 

and Thomas, 2000; Klein and Kozlowski, 2000; Raudenbush and Bryk, 2002; Goldstein, 2003) 

and are frequently used for research in a variety of disciplines such as education, sociology, 

political science, and public health. Increasing number of public health studies apply multilevel 

regression analysis to investigate the associations between area of residence and individual health 

outcomes (Diez-Roux, 2000; Kawachi and Berkman, 2003), with many of these studies focusing 

on traditional measures of association such as fixed effects using regression models to find the 

relationship between neighborhood characteristics and individual health (Merlo, 2003). Even 

though multilevel techniques have been successfully used in a wide range fields, the traffic safety 

community has been slow in embracing it. 

Traffic crash data also exhibit hierarchical structure due to the data collection and clustering 

process (Huang and Abdel-Aty, 2010). The inclusion of site-specific random effects and time 
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factors to improve the explanatory power of crash models by Shankar et al. (1998) was the first 

attempt in using hierarchical models for studying traffic crashes. Since then other traffic safety 

researchers have explored the use of modeling techniques to account for the potential cross-group 

heterogeneity arising from hierarchical crash data structure (e.g. Chin and Quddus, 2003; Jones 

and Jorgensen, 2003; Lenguerrand et al., 2006; Mitra and Washington, 2007; Huang et al., 2008; 

Huang and Abdel-Aty, 2010). Some safety researchers have also adopted random parameter 

modeling techniques similar to multilevel models in which parameters are allowed to have varying 

effects among crash locations (e.g, Li et al., 2008; Huang et al., 2009; El-Basyouny and Sayed, 

2009). Recognizing the hierarchical structure in crash data ensures that the varying relationships 

between crash count/severities and exposure across locations are appropriately accounted for in 

crash studies. 

3.3 Multilevel Logistic Analysis  

Logistic regression techniques have been applied to understand the effects of selected 

predictor variables on crash-injury severities, especially in studies where specific injury categories 

are of interest. Considering the disparity in local safety performance within a region, different 

regression models may be developed for each locality or a single model may be developed for the 

entire region by ignoring the disparity, as is done in many cases. If the crash data can be organized 

into a hierarchical structure with clusters of crashes in some defined categories, then the 

appropriate approach for data analysis should be based on nested sources of variability – arising 

from different levels of the hierarchy. In that case, developing a single regional level logistic 

regression model for the analysis of crash-injury severities without accounting for the sub-regional 

disparities may lead to inaccurate inferences. Multilevel logistic regression models recognize the 
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hierarchical structure in data and also provide information to compute the amount of variability in 

the data attributable to each level of the hierarchy. While traditional logistic regression assumes 

independence of crash observations, multilevel logistic regression takes into consideration 

dependency of observations in defined groups. 

As an illustration of the use of multilevel regression in crash analysis, consider that a 

researcher wants to investigate the effect of some characteristics of a driver’s region of residence 

on the outcome of a crash. Specifically, the researcher may be interested in understanding the 

likelihood of individual drivers (level 1) from different sub-regions (level 2) getting involved in a 

fatal crash. So a binary response variable is created in terms of “fatal crash”, defined as Y=1 if the 

severity of the crash is fatal and 0 otherwise.  

First, each group of 𝑛𝑗  drivers within j sub-regions is assumed to follow a sub-region 

specific logistic regression. For a crash involving ith driver from the jth sub-region, observe a 

binary response, 

𝑌𝑖𝑗 = {
 1     for a fatal crash,                                 
0     for non fatal crash                            

 

𝑌𝑖𝑗|𝑝𝑖𝑗~  Bernouilli (𝑝𝑖𝑗), where 𝑝𝑖𝑗 = Pr(𝑌𝑖𝑗 = 1). 

The probability, 𝑝𝑖𝑗  of driver i, from sub-region j, getting into a fatal crash, given one 

parameter measured on the driver, 𝑋𝑖 (e.g. age) is then given by equation 1. 

logit(𝑝𝑖𝑗) = 𝜂𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋𝑖𝑗                                                                 (1) 

where 𝜂𝑖𝑗  is the log odds of driver i in sub-region j getting into a fatal crash for, 𝛽0𝑗 is the intercept 

or the average log odds of getting into a fatal crash specific to sub-region j, 𝑋𝑖𝑗 is a driver level 

predictor for driver i in sub-region j, and 𝛽1𝑗 is the slope, showing the relationship between the 

driver level variable and the log odds of getting into a fatal crash. It must be noted that unlike 

hierarchical linear models where error variance is included at level 1, the variance in a multilevel 
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model is a function of the population mean and is directly determined by this mean for hierarchical 

generalized linear models with binary outcomes (Luke, 2004). The difference between Equation 1 

and the traditional regression model is the assumption that each sub-region has a different intercept 

coefficient 𝛽0𝑗  and may have different slope coefficient 𝛽1𝑗. 

The next step in the hierarchical regression model is to explain the variation of the 

regression coefficients, and introducing explanatory variables at the sub-regional level. This means 

assuming that both the intercept and the slope (effect of the level 1 variable) from Equation 1 are 

not fixed across sub-regions but vary depending on some sub-regional variable 𝑍𝑗 (e.g. average 

household income) then: 

𝛽0𝑗 = 𝛾00 + 𝛾01𝑍𝑗 + 𝑢0𝑗                                                                             (2) 

𝛽1𝑗 = 𝛾10 + 𝛾11𝑍𝑗 + 𝑢1𝑗                                                                            (3) 

where 𝛾00 provides the log odds of getting into a fatal crash at a typical sub-region, 𝑍𝑗  is a sub-

regional explanatory variable for sub-region j, 𝛾01 is the slope associated with this predictor, 

𝑢0𝑗  and 𝑢1𝑗 are the sub-regional level error terms showing unique effects associated with sub-

region j, 𝛾10 is the average effect of the driver-level predictor, and 𝛾11 is the slope showing the 

relationship between the sub-region predictor and fatal crash rate in sub-region j.   

The combined level 1 and level 2 model is then created by substituting the values of 𝛽0𝑗 and 

𝛽1𝑗 into equation 1 as: 

𝜂𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾11𝑋𝑖𝑗𝑍𝑗 + 𝛾01𝑍𝑗 + 𝑢1𝑗𝑋𝑖𝑗 + 𝑢0𝑗                    (4) 

In the case where the effect of the driver level predictor is modeled as fixed across sub-

regions (i.e. equation 3 is not substituted into equation 1), then Equation 4 represents a random 

intercept-only model. Suppressing the sub-region errors so that Equation 4 becomes a fixed effects 

model and amenable to standard regression requires assuming that driver-level effects are the same 
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across sub-regions. The equation represents a random intercepts random slopes model if driver 

level predictors are also allowed to vary across sub-regions (nesting).  

For the random intercept-only model, the log odds of driver i from sub-region j getting into 

a fatal crash 𝜂𝑖𝑗, is hence determined by combining the log odds of getting into a fatal crash by a 

typical driver from a typical sub-region (𝛾00), the effects of the driver-level (𝛾10𝑋𝑖𝑗) and sub-

regional level (𝛾01𝑍𝑗 ) predictors, and the sub-regional level error [𝑢0𝑗 , 𝑢0𝑗  ~ 𝑁(0, 𝜏00)] . An 

additional effect due to nesting driver-level parameters in sub-regions (𝛾11𝑋𝑖𝑗𝑍𝑗) and 𝑢1𝑗𝑋𝑖𝑗 are 

included for the random intercept random slopes model. 

For easy interpretation, the log odds of getting into a fatal crash may be converted into 

probabilities as: 

𝜂𝑖𝑗 = log (
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
)                                                                                (5) 

𝑝𝑖𝑗 =
𝑒𝜂𝑖𝑗

1 + 𝑒𝜂𝑖𝑗
                                                                                            (6) 

where 𝑝𝑖𝑗  is the probability of a driver i from sub-region j getting into a fatal crash and 1 - 𝑝𝑖𝑗  is 

the probability if the crash is not fatal.  

3.4 Multilevel Parameter Estimation and Fit Statistics  

Multilevel models are generally estimated using maximum likelihood (ML) methods. In 

multilevel linear modeling, estimating the model parameters via ML estimation allows the 

researcher to assess model fit by either conducting a likelihood ratio test when examining 

differences in the deviance or by investigating the change in Akaike’s Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) when the models are either nested or not nested and 

differ in both fixed and random effects. Given the non-normal nature of the outcome variables in 
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hierarchical generalized linear models, the use of the traditional ML estimation is not appropriate. 

However, there are several estimation techniques available for hierarchical generalized linear 

models that are approximate to ML or are “quasi-likelihood” strategies. These estimation 

techniques are based on integral approximation or based on linearization methods. Integral 

approximation methods (such as adaptive Gaussian quadrature, Laplace approximation, and 

importance sampling) approximate the log likelihood function of the generalized linear mixed 

models and numerically optimize the approximated function. Linearization proceed on the other 

hand methods iteratively. The process starts with approximate parameter values that are improved 

in each successive iteration. For this study, Laplace approximation is adopted because it allows 

model fit assessment using strategies similar to multilevel linear models. Fit statistics provide the 

basis to assess and compare models at every stage of the model building process. The models 

developed for this study are nested, hence model assessment is done by examining the change in 

AIC, BIC, and the deviance between models. Smaller AIC, BIC, and deviance values indicate 

better model fit. However, models with more parameters will most likely have lower fit statistics. 

For this reason, likelihood ratio test is used to investigate whether or not the change in the deviance 

is statistically significant. This likelihood ratio test is similar to a Chi-square difference test, where 

χ2 is equal to the difference in the deviance of the simpler model (i.e., the model with fewer 

parameters to be estimated) minus the deviance of the more complex model, and with degrees of 

freedom (df) equal to the difference in the number of parameters between the two nested models. 

The deviance test between two models is performed as: 

𝜒𝑑𝑖𝑓𝑓
2 = −2 ∗ (𝐿𝐿𝑀𝑜𝑑𝑒𝑙 1 − 𝐿𝐿𝑀𝑜𝑑𝑒𝑙 2 )                                                     (7) 

Raftery (1995 as cited in O’Connell and McCoach, 2008) proposed that differences in BIC 

between 0-2 provide weak evidence favoring the more complex model; 2-6 provide positive 
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evidence for favoring the more complex model, 6-10 provide strong evidence; and differences 

above 10 provide very strong evidence favoring the more complex model. However, researchers 

are allowed to make the ultimate determination depending on the sensitivity of the study. All fit 

statistics were examined in the following case study application. 

3.5 Multilevel Crash Analysis Case Study 

In order to illustrate the potential for crash causation knowledge gained from multilevel 

analysis, a case study of crash data from the State of Alabama is presented.  Specifically, crash 

data between 2009 and 2013 were obtained from the Critical Analysis Reporting Environment 

(CARE), developed by the Center for Advanced Public Safety (CAPS) at the University of 

Alabama (CAPS, 2015). The data was grouped by the postal code (i.e., sub-county level) of the 

driver who caused the crash. The data was filtered and only the driver demographic characteristics 

(age, gender, race, and employment status) and proxies for driving behaviors (primary contributing 

circumstance such as speeding, condition at the time of crash such as intoxicated, validity of 

driver’s license, and safety equipment use) were obtained. After exploring and cleaning the data, 

a total of 414,806 individual crash records, consisting of 25,830 serious injury (fatal and 

incapacitating injury) crashes and 388,976 minor injury and property damage only crash 

observations were available for model estimation. Additionally, socio-demographic and travel 

behavior data by postal codes were obtained from the U.S. Census Bureau (U.S. Census Bureau, 

2010; 2013). Finally, average credit score rating data produced by Experian was obtained for the 

postal code level as this has been shown to be a reliable measure of general risk taking behavior, 

including risky driving (Brockett and Golden, 2007; Rivero, 2011). The average VantageScore for 

each postal code was used. 
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The primary objective of this case study is to investigate the effects of driver and sub-

region (i.e., causal driver’s residential postal code) level characteristics on the likelihood of a 

crashresulting into serious injuries. Hence, using driver characteristics (defined as level 1) and sub-

region information (defined as level 2), two-level hierarchical models are developed to understand 

the relationship between serious injury crash rates and predictor variables at both levels. The 

specific research questions explored include: 

1. What is the serious injury crash rate of Alabama drivers? Do serious injury crash rates vary 

across sub-regions? (Model 1) 

2. How much variance in serious injury crash rates is attributable to the sub-region of a 

driver’s residence? (Model 1) 

3. What is the relationship between driver characteristics and the likelihood of getting into a 

serious injury crash while controlling for sub-regional characteristics? (Model 2) 

4. Does the influence of any driver-level predictor vary among sub-regions? (Model 3) 

5. What is the relationship between the sub-region and the likelihood of a serious injury crash 

while controlling for driver characteristics? (Model 4) 

To answer the research questions, the model process began with an empty, unconditional 

model with no predictors. This model only includes a random intercept and provided information 

to investigate the existence of a possible sub-regional (or contextual) effect on crash outcomes. 

This model provides an overall estimate of the serious injury crash rate for drivers at a typical sub-

region, as well as providing information about the variability in serious injury crash rates between 

sub-regions. The log odds (or rate), 𝜂𝑖𝑗 of driver i, from sub-region (postal code) j, causing a 

serious injury crash is only function of the sub-region, expressed as: 

𝜂𝑖𝑗 = 𝛾00 + 𝑢0𝑗                                                                                  (8) 
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The model estimation results are presented in Table 1 with the fit statistics. 

The Model 1 intercept estimate (-2.57) is the log odds of a driver from a typical postal code 

causing a serious injury crash (where 𝑢0𝑗 = 0). The log odds is then converted into probability for 

easy interpretation. Substituting the log odds into Equation 6 will help answer the first part of the 

first research question, in terms of the probability of a serious injury crash involving a typical 

Alabama driver. 

              𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑠𝑒𝑟𝑖𝑜𝑢𝑠 𝑖𝑛𝑗𝑢𝑟𝑦 = 𝑝𝑖𝑗 =
𝑒−2.57

1 + 𝑒−2.57
= 0.07 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑛𝑜 𝑠𝑒𝑟𝑖𝑜𝑢𝑠 𝑖𝑛𝑗𝑢𝑟𝑦 = 1 − 𝑝𝑖𝑗 = 0.93 

Model 1 also shows a statistically significant covariance estimate. This indicates variability 

in the log odds of a driver causing a serious injury crash across postal codes (as shown in the 

random intercept), providing response to the second part of the first research question. The 

unconditional model (Model 1) therefore revealed that the probability of drivers from a typical 

postal code in Alabama causing a serious injury crash is 0.07 (first part of research question 1). 

However, the serious injury crash rate for drivers varies significantly across postal codes (second 

part of research question 1).  
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  Model 1 Model 2 Model 3 Model 4a 

Fixed effects         

Intercept -2.57* (0.02) -2.97* (0.02) -2.97* (0.02) -3.30* (0.08) 

Age (ref. age < 30years)   -0.19* (0.01) -0.19* (0.02) -0.19* (0.02) 

Gender (ref. male)   0.08* (0.01) 0.08* (0.01) 0.08* (0.01) 

Employment status (ref. unemployed)   0.29* (0.02) 0.29* (0.02) 0.28* (0.02) 

Race (ref. African American) -0.09* (0.02) -0.10* (0.02) -0.11* (0.02) 

License status (ref. Invalid)   0.32* (0.02) 0.32* (0.02) 0.32* (0.02) 

Seatbelt usage (ref. not used)   1.78* (0.02) 1.78* (0.02) 1.78* (0.02) 

Condition at time of crash (ref. DUI) 0.64* (0.02) 0.64* (0.03) 0.64* (0.03) 

Primary contributing factor (ref. speed)   0.78* (0.02) 0.78* (0.02) 0.78* (0.02) 

Distracted driving (ref. yes)   0.17* (0.05) 0.13* (0.06) 0.13* (0.06) 

Postal code average Credit Score     -0.01* (0.01) 

Postal code mean travel time to work    0.01* (0.01) 

Postal code average population     -0.01* (0.01) 

      

Error Variance      

Intercept   0.26* (0.01)    0.20* (0.01)  0.19* (0.01) 0.15* (0.01) 

Age (ref. age < 30years)     0.01* (0.01) 0.01* (0.01) 

Employment status (ref. unemployed)     0.04* (0.01)     0.04* (0.01) 

Race (ref. African American)     0.02* (0.01)     0.03* (0.01) 

Seatbelt usage (ref. not used)       0.04* (0.01) 0.04* (0.01) 

Condition at time of crash (ref. DUI)      0.05* (0.02) 0.05* (0.02) 

Distracted driving (ref. yes)      0.15* (0.07)     0.15* (0.07) 

         

Model fit         

-2 Log Likelihood 188125.20 175281.90 175196.60 175094.50** 

AIC (smaller is better) 188129.20 175303.90 175230.60 175134.50** 

BIC (smaller is better) 188138.00    175352.50    175305.70 175222.80** 

Note: *p<0.05; ** = significant improvement in Fit statistics. Entries show parameter estimates with standard errors 

in parentheses; Estimation method = Laplace. aBest fitting model 

 

Table 3.1. Multilevel logistic models of serious injury crashes by driver postal codes  

 

From the covariance estimate for Model 1 shown in Table 1, ICC can be computed to 

answer the second research question. ICC indicates how much of the total variation in the 

probability of getting into a serious injury crash is accounted for by the postal code of the driver 



 

59 

 

residence. In hierarchical generalized linear models, there is assumption of no error at level 1, 

therefore, a slight modification is needed to calculate the ICC. This modification assumes that the 

binary outcome comes from an unknown latent continuous variable with a level-1 residual that 

follows a logistic distribution with a mean of 0 and a variance of 
𝜋2

3
 (Rasbash et al., 2003; 

Goldstein, 2003; Enders and Tofighi, 2007). Therefore, 3.29 is used as the level-1 error variance 

in calculating ICC. 

𝐼𝐶𝐶 =
𝜏00

𝜏00 + 3.29
=

0.26

0.26 + 3.29
= 0.073 

This indicates that 7.30% of the variability in the serious injury crash rate is accounted for 

by the postal codes of the driver residence, leaving 92.70% of the variability to be accounted for 

by the drivers or other factors. In other words, elements common to the sub-region (e.g., safety 

culture, infrastructure condition, emergency response) influence crash severity beyond the 

immediate driver behavioral (i.e., human) contributing factors.   

The model building process progressed by adding the driver level covariates first as fixed 

effects (Model 2) to answer the third research question, then allowing them to vary across postal 

codes (Model 3) to answer the fourth research question. Model 3 shows that six out of the nine 

driver level variables varied significantly across postal codes. The postal code level covariates are 

added in Model 4 to provide answer to the last research question.  

After examining the fit statistics, it was determined that Model 4 is the best fitting model, 

justifying the usefulness of nesting. It should be noted that for proper interpretation of the intercept 

values, predictor variables that did not have a “meaningful zero” values were grand-mean centered 

(Hofmann and Gavin, 1998; Enders and Tofighi, 2007). 
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3.6 Discussion of Result 

The objectives of this paper have been set out in five research questions for which four 

multilevel models were developed as shown in the preceding section. Model estimation has 

revealed that postal code of residence account for about 7.3% of the variability in the probability 

of a driver causing a serious injury crash, regardless of the driver characteristics. It has also been 

shown that the proportion of serious injury crashes varies with respect to the postal codes of 

drivers’ residence. Some sub-regional characteristics and driver characteristics have been 

identified to be significant covariates for explaining the occurrence of serious injury crashes. 

Discussion of the multilevel model estimation results of these factors is grouped under the driver 

demographics and driving behaviors and sub-regional characteristics. 

3.6.1 Driver Demographics and Driving Behavior 

The driver-level variables used in this study include demographic information and 

indicators of risky driving behaviors. Results show that the odds of getting into a serious injury 

crash increase with drivers’ age. Drivers under 30 years old were less likely to be seriously injured 

in a crash. Males compared to females had a higher chance of being involved in a serious injury 

crash. This may partly be because more men than women drive on daily basis. The odds of 

unemployed driver getting into a serious injury crash is 1.32 times higher than employed, self-

employed, or retired drivers. Unemployed drivers are likely to drive older cars with fewer safety 

features and may not be able to withstand the impact of most crashes. Also, unemployed drivers 

may not be able to keep up with the costs of regular basic vehicle maintenance, hence increasing 

their exposure to more severe injuries during crashes. African American drivers have 0.47 
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probability of getting into serious injury crashes compared to Caucasian drivers. This may be 

attributed to the relatively low vehicle ownership and low African American driver population.  

Driving is a complex activity that requires the driver to be alert at all times. Alcohol and 

other drugs affect a driver’s ability to effectively perform driving tasks. Likewise, any form of 

unwanted distraction to the driver can lead to crashes. Sometimes these distractions may range 

from objects or persons inside or outside the vehicle to thoughts in the mind of the driver. The 

causal driver’s mental condition and alertness can therefore affect the severity of a crash. From 

this study, the odds of DUI-related and distracted driving related crashes resulting into serious 

injuries are 1.89 and 1.14 times higher. These findings confirm existing knowledge from literature 

that DUI and distracted driving crashes can lead to serious injuries.  

Some information recorded by law enforcement officers when crashes occur may be 

indicative of the driving behaviors and habits of the driver involved. Variables believed to convey 

information on risky driving habits were obtained from the Alabama crash records and used in 

model building. Results indicate that the probability of serious injuries were higher for drivers with 

no, suspended, or invalid license, driving with no seatbelt, and speed-related crashes. The odds of 

getting into serious injury crash is 5.90 times and 2.17 times higher for drivers who did not use 

seatbelts and for drivers who were engaged in speeding respectively. It is debatable that these 

driving habits may not be one-time events for most of the crash victims but are traits that have 

been developed over time. 

The effects of gender, license status of driver, and speeding on the occurrence of serious 

injury crashes have been found to be fixed across postal codes. However, the study has shown that 

sub-regional disparities exist in the occurrence of serious injury crashes involving unemployed 

drivers, young drivers, and African American drivers among postal codes. Some driving habits 
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have also been found to be significantly common among drivers from some postal codes than 

others. Study results reveal disparities in the proportions of serious injury crashes involving no 

seatbelt usage, DUI, and distracted driving. This information reveals the human-centered factors 

that account for the sub-regional variations in safety performance. 

3.6.2. Sub-Regional Characteristics 

Local (sub-regional) factors are known to indirectly influence driver behaviors in crash 

causation. For instance, sub-regional socioeconomic status affect investment in the development, 

operation, and maintenance of local transportation infrastructure. Similarly, enforcement of 

driving regulations and quality of emergency response services are both linked to regional 

socioeconomic characteristics (i.e., availability and quality of services). Lack of enforcement of 

driving regulations can result in the emergence of bad safety culture in a region and may 

subsequently affect the local driving behavior of drivers. Also, the nature of the road network, the 

absence of rapid emergency response service, and well-equipped trauma centers can make a 

difference in the post-crash injury severity of crash victims. An indirect relation between regional 

socioeconomic characteristics on one hand and the occurrence of crashes on the other hand is 

observable.  

Sub-regional factors can be a reflection of the aggregate effect of the characteristics of the 

people who live in the sub-region. Such locality-specific factors may generally be used as proxy 

for individual characteristics if information is unavailable at the individual level. One such factor 

used in this study as a sub-regional covariate is the average postal code credit score. Credit score 

information at the postal code level was used as a measure of the average “riskiness” of residents 

of that postal code. Model estimation results show that on average, drivers who lived in postal 
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codes with high credit score had a lower chance of causing serious injury crashes. High credit 

score is assumed to be an indicator of risk aversion (financial) – a trait that is believed to be 

exhibited in other aspects of life, including driving. As such, high credit score is assumed to be a 

reflection of low risky driving behavior. The model results supported the assumption that regions 

that have high average credit score are likely to have less risky drivers, hence low frequency of 

serious injury crashes. Using average commute time as a measure of level of travel activities, 

drivers who lived in postal codes with high mean travel time to work were more likely to be 

involved in serious injury crashes. The longer amount of time spent traveling on the road is an 

expression of increased exposure to crashes, predominantly, fatigue related crashes. Drivers from 

highly populated postal codes have a relatively lower chance of getting into serious injury crashes. 

Postal code population correlates with other socioeconomic indicators such as median household 

income. A higher population in a postal code may be indicative of the presence of booming 

economic activities. High postal code population hence gives a somewhat good socioeconomic 

outlook though in some cases, high variances may exist among residents. Consequently, it can be 

argued that different sub-regional characteristics influence the driver characteristics/behaviors that 

lead to crashes differently. Regional factors may therefore be important in explaining why crash 

frequencies and severities linked to different driver characteristics and behaviors differ among 

regions. 

3.7 Conclusions and Recommendations 

Given the hierarchical structure inherent in crash data, the use of many traditional crash 

analysis techniques that do not account for data structure can lead to erroneous inferences. 

Statistical methods such as hierarchical analysis have been developed to take care of the 
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deficiencies in the traditional approaches. One such method is multilevel modeling. Multilevel 

modeling incorporates parameters that vary at more than one level and gives a researcher the ability 

to know the amount of variability in the response variable due to nesting of different levels of data. 

Even though multilevel techniques have been successfully used in a wide range fields, the traffic 

safety community has been slow in embracing it.  

This study demonstrates the robustness and relative ease of using multilevel modeling 

approach in human-focused crash studies. Multilevel logistic regression has been used to explore 

the influence of sub-regional characteristics on human-centered factors in explaining the 

differential safety performance of sub-regions. The sharing of sub-regional contexts may be 

reasons for the clustering of risky driving behaviors of drivers which may subsequently be linked 

to the high occurrence of serious injury crashes in those regions. Model estimation results have 

shown that on the average, the probability of a driver from a typical postal code in Alabama causing 

a serious injury crash is 0.07 while the postal code of the causal driver accounts for about 7.3% of 

the variability in this probability irrespective of the driver characteristics.  Some postal code 

characteristics and driver characteristics have been identified to be significant covariates for 

explaining the occurrence of serious injury crashes. The study has shown that sub-regional 

disparities exist in the occurrence of serious injury crashes involving unemployed drivers, young 

drivers, and African American drivers among postal codes. Postal code credit score, mean travel 

time to work, and population were also shown to be statistical significant in explaining regional 

influence on serious injury crash rates. Some driving habits have also been found to be significantly 

common among drivers from some postal codes than others. Study results reveal disparities in the 

proportions of serious injury crashes involving no seatbelt usage, DUI, and distracted driving. 
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These information reveal the human-centered factors and sub-regional characteristics that account 

for the sub-regional variations in safety performance. 

The use of multilevel modeling techniques for traffic crash analysis present decision and 

policy makers with strong analytical tool to formulate evidence-based policies. The variability in 

serious injury crash rates observed across sub-regions in this study mean that sub-regions may be 

targeted for the implementation of specific countermeasures.    
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CHAPTER 4 

HYPOMOBILITY – AN EPIDEMIOLOGICAL ANALOGUE FOR VIEWING URBAN 

TRANSPORT CONDITIONS IN AFRICA AND OTHER DEVELOPING COUNTRIES 

 

4.1 Introduction 

It is estimated that by 2030, some 50 percent of the world population will be urban dwellers.  

The most rapid growth in these new urban dwellers is projected to be in the cities and towns of the 

developing world (UNS, 2009). Transport plays an important role in the urbanization process, with 

the associated infrastructure constituting the backbone of urban form (Lyons, 2003). As a 

consequence of rapid urbanization, transport systems have come under growing strain, exacerbated 

by transport related pollutions, traffic crashes, and an ironic decline in travel speeds in a modern 

era where transport means achieving fast mobility (Lerner, 2011; UN-Habitat, 2013). The ability 

of people to move efficiently within, as well as between cities to access jobs, goods, and services 

will therefore be a crucial driver of the quality of urban life in the coming decades, and that will 

be a prerequisite for the balanced socioeconomic functioning and prosperity of cities (Banister, 

2000; UN-Habitat, 2013). Urban mobility crisis plagues cities throughout the developing world 

and is particularly acute in many cities across sub-Saharan Africa (Gwilliam, 2003). This poses a 

serious challenge in the roadmap of achieving sustainable development.  
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Urban transport systems and their use continue to change within the evolving 

socioeconomic context in which they exist and operate. Achieving higher mobility and increased 

accessibility have been linked with socioeconomic progress (Khisty and Sriraj 1999). This concept 

of more travel at higher speeds covering longer distances generates economic prosperity is 

gradually catching up with cities in developing countries, especially those in Africa. As a result of 

this notion, African cities are experiencing rapid motorization rates that have led to chronic traffic 

congestions and poor levels of service for public transport due partly to inadequate transport 

infrastructure (UN-Habitat, 2010).  This transformation in mobility trends is having overwhelming 

social and economic consequences in cities (Adams, 2001; Gwilliam, 2013; UN-Habitat, 2013). 

The current economic growth, urbanization, and motorization being experienced in the developing 

world has for the most part exposed the unsustainable nature of their transport systems. According 

to Peñalosa (2005), in such situations, transport “gets worse rather than better with economic 

development”. This is largely due to the inability of transport systems to absorb the “shocks” that 

come with human development and rapid economic transformation. This can be seen for instance 

in the rise in the number of often unregulated informal public transport mini-buses and motorcycles 

across African cities to meet the rising demand.  

Unfortunately, transportation infrastructure investments have heavily been skewed in favor 

of the car-dependent population. The consequence of this bias is that as travel becomes faster, 

cheaper and easier for the wealthy it becomes more challenging for the poor and vulnerable road 

users (pedestrians, cyclists, and motorcyclists). This group of road users face many challenges in 

meeting their daily mobility needs. The negative externalities (e.g. traffic crashes, pollutions) of 

the automobile-centric system are also disproportionately borne by the poor and vulnerable 
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transport system users, though they depend on the slower and environmentally sustainable modes 

of transport.   

A term alluded to in the late 1990’s, hypomobility, is used to connote difficulty to achieve 

sustainable levels of physical mobility and accessibility for people, particularly in urban areas. The 

term originates as a medical one referring to difficulty in normal movement within human 

muscular-skeletal systems. In transportation and urban studies, hypomobility can result in a 

diminished ability to engage in economic opportunities and social activities, hence deepening 

poverty, social exclusion, increasing costs of transport, among other negative outcomes. The 

condition is especially pronounced in poor urban areas in developing countries. This study 

proposes a framework for addressing hypomobility in Africa and other developing country cities 

from an epidemiological approach with a view to diagnosing symptoms, recommending treatment, 

and even discuss the idea of transmission. 

4.2 The Complexity of Urban Transport 

The patterns of, needs for, and impacts of human and goods movement in cities are 

complex (Cox, 2010). Cities are diverse in terms of their structure, spatial form, economy, wealth, 

culture, local resources and ecological impact. These features are interlaced and are influenced by 

the city’s transport system, and vice versa. Transport is responsible for personal mobility; provides 

access to socioeconomic activities, and is integral to the delivery of consumer goods. However, 

the economic and social benefits derived from transport come with many negative impacts (UN-

Habitat, 2011). As transport systems become increasingly motorized, users become vulnerable to 

traffic-related accidents, congestion, and pollutions, while financially and socially penalizing those 

who cannot afford or access any motorized mode (UN-Habitat, 2013). In spite of the rapid growth 
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in motorized transport, majority of urban dwellers face tremendous difficulties to access many 

places within cities. It has even been argued that while it became possible for man to travel to the 

moon, it also became impossible, in many cases, to safely walk across the street (Vanderwagen, 

1995). Mobility has erroneously been equated to speed. 

The inadequacy and inefficiency of urban transport infrastructure and services are major 

impediments to the socioeconomic growth of cities. Rapid urban growth, which has surpassed the 

growth of basic services, has given rise to many unplanned poor urban settlements that lack access 

to transport and other services (Maxwell, 2003). Current urban transport infrastructure and services 

across most African and other developing countries cities are grossly inadequate to meet the needs 

of the rapidly growing heterogeneous and spatially dispersed urban population. This is having a 

negative consequence on countries as studies have shown for instance that about three to six 

percent of a city’s GDP is lost to urban congestion (Kessides, 1993; World Bank, 1994; World 

Bank, 2002). Even with such overwhelming evidence, remedial measures appear to be very slow, 

making the quest to achieve transport sustainability increasingly difficult, if not impossible. Cox 

(2010) identifies that urban characteristics including spatial layout, governance, and the 

heterogeneous urban dwellers create a complex web that invariably affect the nature, and drives 

the unsustainability of contemporary urban transport systems. The present state of transport 

systems has partly been due to the conventional paradigm which favors minimizing travel time 

and increasing speeds. The consequent impacts on travel distances have however not been part of 

that debate, notwithstanding that reducing travel distances is central to achieving sustainable 

transport (Banister, 2011). Cities in the developing world are growing and motorizing at such 

unprecedented pace that they do not have the time and money to build new infrastructure or 

capacity to adapt to new technologies.  
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The transport system is intricately connected with the land-use system, the transport system 

being one of the prime determinants of the movement and activity of people and goods. The 

transport-land use system is in turn embedded in the larger socioeconomic and cultural system 

(Khisty and Ayvalik, 2003). Travel patterns affect land use, the natural and built environments, 

and the socioeconomic well-being of citizens. Growth in geographic spread is undermining the 

ability of public transport and non-motorized transport systems to provide the services on which 

most urban dwellers rely for the bulk of their mobility needs (WBCSD, 2001). It has previously 

been shown that the physical characteristics of cities are very important in understanding urban 

travel behaviors. Newman and Kenworthy (1989) and Kenworthy and Laube (1999) have shown 

that the physical characteristics of cities are very important in understanding urban travel 

behaviors. In order to overcome the long distances between home and attractions caused by 

contemporary city forms, urban mobility is now predominantly motorized with the automobile as 

the dominant mode in many cities. It is now undeniable that this auto-dependent culture of the 

developed nations that is creeping into the developing nation cities is not sustainable in either 

economic, environmental or social terms (Kenworthy and Laube, 1996; Vasconcellos, 1997; 

Vuchic, 1999; Whitelegg and Haq, 2003; Banister, 2000; Bergmann and Sager, 2008; Cox 2010). 

4.3 Hypermobility 

Modern concepts of time and space have stimulated the development of mobility as a 

means of enhancing access to socioeconomic activities. Motorized transport has broadened the 

ability to reach places far away in an easier, faster way than ever before (Bergmann, 2008). 

Consequently, the demand for increased fast, long-distance travel is socioeconomically linked with 

processes of contemporary globalization (Hall, 2005). The high speed, long-distance mobility 
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culture and its attendant problems has prompted the notion of hypermobility (Whitelegg, 1993; 

van der Stoep and Kee, 1997; Cox, 1997; Khisty and Sriraj, 1999; Adams, 2001; Khisty and 

Zeitler, 2001; Khisty and Ayvalik, 2003). Hypermobility has been defined as a condition of 

excessive and imbalanced mobility caused by transport modes that excessively emphasize travel 

speed and, therefore, distance traveled (Khisty and Zeitler, 2001). Hypermobility endangers the 

quality of life and the ecological sustainability of modern society (Khisty and Sriraj 1999; Adams 

2001; Khisty and Zeitler 2001). It also impinges on the normal functioning of the transportation 

system. Societies whose members move at high speed and over great distances consume more 

space, energy and financial resources (Adams, 2001). As evidenced in the research of Appleyard 

(1981), hypermobile communities have often lost their sociability. In effect, hypermobility 

ultimately threatens social systems of planning and democracy (Bergmann, 2008). Commentators 

have described the problem of hypermobility as a situation representative of “The Tragedy of the 

Commons” – where individual benefits derived from the use of some common public resource 

outweigh the individual costs (Hardin, 1968). Hypermobile individuals derive benefits from their 

fast mobility lifestyle but do not pay the full cost of their travel behaviors. For example, the cost 

of traffic crashes, property damage, community severance and pollutions resulting principally from 

the development of high mobility transport systems are absorbed by everybody in the community, 

the majority of whom depend on slow transport modes, but with the highly mobile individuals 

deriving the most benefits. 
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4.4 Hypomobility 

If hypermobility connotes overemphasis on high speed, long distance travel, then its 

converse, hypomobility can be defined as the difficulty to move around even small distances with 

less speed. The Mosby’s Medical Dictionary defines hypomobility as a decrease in the normal 

movement of a joint or body part, as may result from an articular surface dysfunction or from 

disease or injury that affects bone, muscle, or joint. It also describes the condition in which 

ligaments are tight and movement is restricted. Similar to the human body, certain factors may not 

allow for the normal movement of people and goods, and the accessibility of services; normal 

movement is constrained. Transport hypomobility therefore describes the state of insufficient 

mobility and reduced accessibility, resulting in usually short and infrequent trips, and consequently 

loss of opportunities in a world that strives on sufficient amounts of accessibility and mobility 

(Adams, 2001; Khisty and Ayvalik, 2003; Grieco and Hine, 2008). In a broader sense, transport 

hypomobility encompasses the condition in which an individual’s ability to move and/or desired 

level of physical mobility, or accessibility of a place and services is temporarily or otherwise 

limited beyond the individual’s control. Hypomobility sets in when the individual has the ability 

and is willing to undertake activities that require transport but is constrained. “Stranded mobility” 

is often used to describe hypomobility. The term, stranded mobility, was a concept developed to 

define the situation of constrained mobility and poor accessibility experienced by the black 

townships as a result of policies of apartheid that sought to repress the black population of South 

Africa (Grieco and Hine, 2008). Many developing nation cities, particularly in Africa have become 

replicas of the segregated apartheid townships, with the difference being that this time the partition 

is predominantly along socioeconomic classes. A city that makes it difficult for certain groups to 

achieve their normal mobility and accessibility needs may be described as hypomobile.  
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Hypomobility is a feature present in some form in many urban areas and is driven primarily 

by transport and land use planning decisions. For instance, Grieco and Hine (2008) observed that 

constrained mobility 

 

“is to be found on the British peripheral low income housing estates which were developed 

within a planning logic of low cost regular public transport to city centers and service 

locations but which now have highly restricted public transport as a consequence of 

changing economic and policy logics without any corresponding improvement in the 

provision of locally available facilities and services.”  

 

The condition is also found where extreme environmental events and topological features 

separate poorly resourced populations from their normal range of venues and activities (Grieco 

and Hine, 2008).   Hypomobility can be associated with temporal factors (time of the day, day of 

the week, season, etc.) and spatial factors (developed versus underdeveloped neighborhoods, 

zoning, etc.). Hypomobility, as a phenomenon, can affect an individual, groups or even a locality. 

The condition is experienced through the ability or inability of an individual or group (human 

characteristics) to physically move from place to place and the level of reach/accessibility of basic 

needs and opportunities within a given region (regional characteristics). The issue of transport 

hypomobility becomes complex when many causal factors are involved. For instance, the ability 

of emergency response team to attend to an incident in a slum development, during morning rush 

hours may be limited by traffic congestion and the availability of access routes to the slum.  

Typically, constrained mobility and accessibility segregate and alienate the poor from the 

rest of society. Similarly, a dominant automobile society discriminates against certain groups in 
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the society (Khisty and Ayvalik, 2003). Consequently, class and income disparities are deeply 

rooted in the spatial arrangements and mobility challenges of many developing country cities 

(Sandhu and Sandhu, 2007; UN-Habitat, 2013). Inequalities between rural and urban areas and 

especially within urban areas have been features of the development and urbanization processes 

(Cohen, 2006). Hypomobility can therefore result in a diminished ability to engage in economic 

opportunities and social activities, hence deepening poverty, social exclusion, increasing costs of 

transport, among other negative outcomes. The condition has been observed to be especially 

pronounced in poor urban areas in developing countries.  As such, many cities in the developing 

world, especially those in Sub-Saharan Africa suffer some form of hypomobility. The urban poor 

and other vulnerable groups are particularly exposed to the condition.  

4.5 What a City Needs – The Balance Between Hyper – and Hypo – Mobility 

It has emerged over the years that a transportation system dependent on a limited choice of 

modes is unsustainable and more susceptible to inefficiency, disruption and eventual system failure 

than one with many mobility options (UN-Habitat, 2010). Hirsch (1976) argues that the 

competitive advantage that is previously gained by using a particular mode of transport is lost 

when everyone uses it. That is the story of the automobile, with its attendant negative externalities, 

in many cities particularly in the developing countries. There is now broad and growing 

recognition that future plans to address urban mobility and accessibility needs cannot rely solely 

on the expansion of transport infrastructure for only one mode. Decisions made today on transport 

infrastructure development and urban planning will lock cities into mobility behavior patterns for 

many years. It is therefore vital that these decisions are shaped to put the city on the path of 

sustainable urban transport (UN-Habitat, 2010). To achieve this, UNDESA Agenda 21 called upon  
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“all countries to integrate land use and transportation planning to encourage development 

patterns that reduce transport demand; adopt urban transport programs favoring high 

occupancy, as appropriate; encourage non-motorized modes of transport by providing safe 

cycle ways and footways in urban and sub-urban centers in countries, as appropriate; 

devote particular attention to effective traffic management, efficient operation of public 

transport and maintenance of public infrastructure; promote the exchange of information 

among countries and representatives of local and metropolitan areas; and reevaluate present 

consumption and production patterns in order to reduce the use of energy and natural 

resources” (UNDESA, 1992).  

 

An overall framework for understanding the relationship between transport hyper- and 

hypo-mobility is proposed in Figure 1.  The more mobile society becomes, the more certain groups 

are excluded from and/or disproportionately impacted by the system (Khisty and Zeitler, 2001; 

Kenyon et al., 2003). This suggests that to reduce transport induced socioeconomic exclusion, 

policies should not only be oriented towards the populations that are currently excluded or at risk 

of exclusion but also on reducing the worsening dynamic of hypermobility and its effects across 

society as a whole (Urry, 2004). It is early in the motorization process that public policy 

interventions can have the greatest impact and help preserve the viability of sustainable urban 

transport modes (Barter and Kenworthy, 1997; Grant, 2014). For mobility to be sustainable, it 

must improve accessibility while avoiding disruptions that offset the benefits of the improvements 

(WBCSD, 2001). Public transport and non-motorized transport remain the principal means of 

mobility for most citizens of the developing world. The challenge for policy-makers is to integrate 
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all modes of transport in a manner that decreases deficiencies and increases mobility while 

minimizing other costs to the external environment. This is necessary to balance the transport 

demands of both the highly mobile wealthy few and those of the majority least mobile dwellers 

such that all transport users pay appropriate costs for their travel decisions. The hypomobile do 

not have to suffer the negative impacts of hypermobility, and vice versa. A more integrated 

transport-land use system, backed with appropriate policies and legislation will create transport 

systems that will increase the socioeconomic competitiveness of cities. Also, the provision of 

opportunities and services within the reach of the poor and vulnerable urban dwellers is necessary 

for the creation of an all-inclusive urban area for shared prosperity. 
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Figure 4.1. Transport hypermobility-hypomobility 
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4.6 African Context 

Transport in urban Africa is quite different from those of industrialized nations. 

Throughout Africa, travel times are already quite high and continue to increase. There is rapid 

motorization, with travel demand far exceeding the supply of roadways and related facilities (e.g., 

signalized intersections and interchanges). Public transit trips account for about 75 percent of 

urban vehicular trips, and the general mobility concerns demand a viable public transportation 

system. Privatization has, in many cases throughout Africa, had a negative impact on the quality 

of transportation and resulting accessibility and mobility.  Where public buses exist, their 

operations are often not sustainable because the vehicles deteriorate quickly due to lack of 

maintenance exacerbated by poor road conditions (Gakenheimer, 1999; Godard, 2013). 

Furthermore, low fares and irregular subsidies make providing consistent and high quality services, 

extremely difficult.   

 The failure of governments (whether on their own or as a result of privatization) to supply 

organized and high-occupancy public transportation systems has given way to the proliferation of 

privately operated minibuses such as: tro-tros in Ghana (Figure 2), matatus in Kenya, danfos in 

Nigeria, gbakas in Ivory Coast, and sotramas in Mali, etc (Kumar and Barrett, 2008).  The 

minibuses are often operated unprofessionally by private individuals with vehicles usually in 

substandard and, even, unsafe conditions and the passenger facilities are often informal and chaotic 

(see Figure 2). Some parts of Africa have seen a rise in informally operated motorcycle taxis (e.g., 

okadas in Nigeria and currently in Ghana) whose operations have been received with mixed 

reactions - transportation professionals see such modes as a major public safety concern while 

many system users view them as a relief for often-stranded commuters. Such conditions render 
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public transportation unattractive to emerging middle classes.  This leads to increased demand for 

private automobiles and vehicle-kilometers of travel (VKT) on an underdeveloped road system. 

The net effect for developing countries is premature traffic congestion at lower levels of 

automobile ownership, deteriorating urban environment, reduced accessibility for the poor, and 

safety and security concerns due to high incidence of transportation related injuries. Of particular 

significance is the issue of traffic safety, as about 85 percent of traffic related injuries worldwide 

occur in developing countries with 75 percent of these occurring in urban areas (Gwilliam, 2003). 

 Throughout Africa, road construction projects favoring the minority automobile users 

ignore the majority of the public travelling as pedestrians or other means of non-motorized 

transportation Ahmed et al., 2008; Freeman, 2009; Obeng-Odoom, 2014). In addition to the 

provision of roads and public transportation (e.g., buses), Africa requires transportation planning 

and development that facilitates an equitable provision of safe NMT.  Such an approach should 

recognize the social exclusion of the poor from transportation development and promote 

infrastructure and operations that facilitate accessibility for all (Riverson and Carapetis, 1991; 

Porter, 2007).  

Nonetheless, many transportation plans and policies in Africa are developed via 

conventional transportation planning approaches that originate from an automobile-dependent, 

Western context (Dimitriou, 1992; Feng et al., 2010). These conventional approaches are typically 

intended to maximize throughput for automobile traffic at the highest achievable levels of service. 

Much of this Western influence is leftover from colonial times, as the spatial framework and 

accompanying transport systems of many cities in Africa were laid during the colonial period 

(Otiso and Owusu, 2008). Such conventional approaches can be rigid and mode-specific, and in 

many cases do not adequately integrate analyses of the various modes prevalent in Africa, such as 
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high pedestrian volumes, non-motorized forms of transportation, and reliance on informal public 

transport (Johnston, 2004; Khisty and Arslan, 2005; Feng et al., 2010; Samberg et al,. 2011; Zheng 

et al., 2011). Furthermore, the conventional approaches, when applied in developing countries, can 

be quite weak in public involvement and stakeholder participation.  As such, they often do not 

sufficiently identify local needs and issues that may impact the sustainability of transportation 

projects, plans and policies.  In South Africa for instance, the guidelines are mostly based on 

American standards that emphasize speed and efficiency (Jennings and Covary, 2008). 

 Lack of access, costs, and unreliability of mobility services are barriers to the 

socioeconomic development of African cities and their citizens. While high speed, long-distance 

travels are experiencing the fastest growth rates, the low speed and environmentally sustainable 

modes of transport are in steep decline (Cox, 2010). Despite the increasing level of urban mobility, 

access to goods, places, activities and services has become increasingly difficult for many urban 

dwellers who do not have access to the high speed mobility lifestyle, hence increasing the gap 

between the mobility-rich and the mobility-poor residents in cities (Adams, 2001).  

 



 

87 

 

 

Figure 4.2. Tro-tro station in Kumasi, Ghana. 

4.7 Proposed Approach – Epidemiological Framework of Hypomobility 

To the extent that the terms hypermobility and hypomobility both owe their roots to 

medical science, this paper proposes an epidemiological approach to analyze hypomobility in 

developing countries, particularly those in Africa, with the aim of understanding its causes, 

symptoms, transmission, and ultimately, diagnosis and treatment. It is important to understand the 

patterns of hypomobility in space and time. From the patterns one may infer causes, predict the 

future and then make preventive, control and treatment decisions for the condition.  

It is a common practice to use epidemiological techniques in studies outside public health, 

and this has successfully been carried out by many researchers. Epidemiological techniques have 

been applied in studies to investigate the spread of homicides (Zeoli et al., 2012), civil conflict and 

violence (Galtung, 1996), urban blight (Gilreath, 2013), violence (Huesmann and Taylor, 2006), 
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invasive species (Drake, 2005), water quality risk assessment (Blumenthal et. al., 2001). 

Epidemiological studies have also been carried out in the field of transportation: road traffic 

accidents (e.g. (Mishra et al., 2010; Saadat and Soori, 2011; Jha et al., 2004; Labinjo et al., 2009), 

drunk driving (Hingson and Winter, 2003), transport noise and cardiovascular risk (Babisch, 2008), 

and even the relationships between transport, physical activity and public health (Florindo et al., 

2009). 

The transport hypomobility epidemic that has engulfed many cities is causing harm to 

urban dwellers and reducing the economic prosperity and viability of these cities. The condition is 

unfortunately endemic for cities in developing countries. By treating hypomobility as an urban 

ailment, it can be captured in a framework using epidemiological techniques.  In 2011, the World 

Bank Group released the Urban Transport Data Analysis Tool (UT-DAT) developed by Agarwal 

et al. (2011).  Although not developed explicitly from an epidemiological approach, the UT-DAT 

is an Excel-based tool for comparing urban transport performance measures among peer cities.   It 

produces a performance report for the study city that, as the developers stated, can generate a 

“report that would be something like a pathologist’s report helping a doctor better identify the 

patient’s ailment”. This study proposes an expansion of this basic premise – to explicitly treat 

transport hypomobility as a “disease”.  In doing so, the explicit diagnosis of causes and symptoms 

can, ideally, lead to targeted treatments and other measures that can be applied and repeated in 

other locations with similar conditions.  The basic epidemiological framework being proposed is 

illustrated in Figure 3.  
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Figure 4.3. Epidemiological Framework for hypomobility 

4.8 Causes of Hypomobility 

Burchardt et al. (1999) have shown that an individual's mobility and accessibility to 

socioeconomic activities are affected by range of interconnected factors including: their own 

personal characteristics; characteristics of the area in which they live; and social, civil and political 

institutions with which they have to interact. These factors may act alone or in combination to 

cause hypomobility. This section discusses some of these causes. 

4.8.1 Spatial or Geographical Factors 

The built environment that makes up the transportation infrastructure can affect the 

accessibility and mobility of some groups of people. The sociocultural environment influences 

what modes of transport are suitable. For instance cultural beliefs in some societies forbid women 

from driving or even riding bikes. So, in the absence of a robust alternative mode of transport, 

these women may face challenges meeting their daily mobility needs. Topographical barriers such 

as hills, valleys, water bodies, and other geographical relief features dictate the nature of transport 
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that may be available (Cox, 2010). With little or no money to build transport systems to overcome 

these barriers, access to opportunities can be problematic for residents.  

The presence of several lanes of highways with heavy and high speed motorized traffic can 

cause community severance, leading to hypomobility for those who may not be able to cross-over 

to access their daily needs (Freund and Martin, 1993). Also, the location of services and 

opportunities far away from home means that access to motorized transport is imperative. This 

phenomenon is a major driver of urban sprawl. For vulnerable groups in the urban society, urban 

sprawl and lack of means of transport often leads to socioeconomic isolation/exclusion (Lucas, 

2009). 

4.8.2 Temporal Factors 

Mobility and accessibility may be affected by temporal features such as rush hour delays, 

seasonal events (e.g. festivals), time of the day (e.g. night). Gaffron et al. (2001) have shown that 

temporal factors affect people’s participation in certain activities. Travel activities using especially 

NMT and public transport for some vulnerable groups such as women and children may be 

restricted to day time, due to personal security reasons. Sexual harassments and fear of attacks 

contribute to constrained access and mobility. Additionally, transport services may not be readily 

available at all the time. For instance, public transport services to certain suburbs of the city is 

demand-driven and may only be available at specific times.  

Other temporal factors such as natural disasters (e.g. floods, epidemics), curfews imposed 

due to conflicts and fear of terrorist attacks can affect physical mobility of people and goods. 

Perennial floods are common phenomena in many African cities (e.g. Accra), as a result of 

inadequate and poor drainage systems. Also, many African countries have or are still embroiled in 
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conflicts (e.g. South Sudan, the Boko Haram resurgence in Nigeria), while others such as Liberia 

and Sierra Leone have in recent times been plagued with the Ebola epidemic. These temporal 

factors affect patterns of mobility and subsequently have negative impacts on the socioeconomic 

well-being of citizens. 

4.8.3 Personal Factors 

Individual characteristics such as age, gender, and disabilities affect people’s travel 

behaviors. Transport facilities can be available but inaccessible because of their nature and the 

personal characteristics, such as age, of the transport user. Societal factors (such as mobility 

histories, cultures and belief systems) typically influence these personal characteristics. For 

instance, racist, sexist or other discriminatory attitudes of transport providers can hinder the use of 

the available transport facilities by certain groups of people (Lavery et al., 1992).  Generally, it has 

been shown that, women travel shorter distances, closer to home, but make more frequent trips 

than men. However, women are more sensitive to safety concerns hence limit their movements 

and activities as much as possible. Also, men usually get access and priority for the use of the 

faster modes of transport.  

In Africa and other developing countries, transport infrastructure are rarely designed to 

cater for the needs of physically disabled system users. The chaotic nature of the transport system, 

exacerbated by lack of disability-friendly facilities contribute to the constrained mobility of people 

living with some form of disability. Children and the elderly are often faced similar challenges.  
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4.8.4 Economic and Financial Factors 

Regional economic conditions affect the nature and health of the transport system. Increase 

in regional income correlates with transport infrastructure development. Cities across the 

developing world have seen improvements in their transport infrastructure over the past decades, 

with a boom in their economies. 

Transport costs can be a constraint for people on low incomes, influencing their decision 

on mode and extent of travel (Church et al., 2000). Due to economic reasons and unavailability of 

the alternate modes, the poor use NMT for most of their trips and depend on public transport for 

longer trips (Hook, 2006). Barter (2002) observed that the poor travel shorter distances and make 

fewer trips, but take more time to do so than the rich. In extreme situations, the poor may not be 

able to afford any motorized transport, hence drastically reducing their ability to access widely 

dispersed opportunities and basic needs. 

4.9 Signs, Symptoms, and Susceptibility 

Preston and Rajé (2007) have identified three criteria that are useful in identifying the 

degree of transport hypomobility. These include the level of travel in the area as a whole (area 

mobility), the level of travel made by particular individuals or groups (individual mobility) and 

the overall accessibility of the area. These criteria are however not exclusively independent. 

Hypomobility may range from mobility and accessibility constraints caused by traffic congestion 

to transport-related socioeconomic exclusion. Hypomobility is perceived and experienced 

differently by different people. Subjective perceptions and experiences of transport users, and 

objective analysis by experts are therefore significant in diagnosing hypomobility. Personal 

experiences give the symptoms, while regional characteristics as observed by experts define the 
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signs of hypomobility. A hypomobile region exhibits low economic competitiveness that naturally 

leads to citizens migrating to other regions, leaving behind individuals and families that may not 

have the means or opportunities to move out. Political, institutional, and geographical factors can 

interplay to form a constraint on mobility and accessibility to basic human needs, to and from a 

region. These regions tend to be poor neighborhoods often inhabited by low skilled migrants, with 

poor or no access to basic services. In many developing nations, such settlements (or slums) have 

become so prominent that resettlement efforts are easily thwarted and in some cases almost fiscally 

and politically impossible. Land use planning and the spatial distribution of attractions of the 

region are strong indicators of what forms of transport may be present.  

A hypomobile neighborhood in a city center is characterized by withdrawal of local 

services, collapse of support systems leading to decaying housing stock. While low mobility is 

good for social interaction, severe transport hypomobility may lead to alienation and segregation 

as consequences of the inability to engage in economically or socially valued activity. Personal 

characteristics can be influenced by other factors to cause transport hypomobility. For instance, 

due to the chaotic transport system, people with disabilities tend to make fewer trips. For the 

visually impaired and those who walk only with special assistance, the lack of unimpeded and 

secure sidewalk footing as well as curb ramps may be serious barriers to mobility. Also, street 

crossings have been planned without consideration of disabled people (insufficient pedestrian 

crossing time, “talking lights”, etc.). 

4.10 Transmission and Treatment  

Transport hypomobility can be a spatiotemporal characteristic of a region or characteristic 

of an individual. As a feature of a region, it can be transmitted to residents. If the ability to move 
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is not constrained by human characteristics such as disabilities, then transport hypomobility may 

directly or indirectly “enter” a person or a population through other personal or regional factors. 

For instance, lack of transport infrastructure linking a community to basic goods and services 

means that residents of that community are excluded from accessing those needs, even though 

residents have the ability and desire to do so. Other sociocultural, temporal or even permanent 

topological, and environmental features of an area such as rivers and hills can induce transport 

hypomobility into certain individuals of the community. Land use characteristics coupled with 

transport planning influence the location and accessibility of services. Such factors can prevent 

residents of certain communities from achieving their needs.  

For cities in Africa and the developing world, the decision to emulate Western car 

dependency or design an alternative urban transport strategy will likely set over the course of the 

next decades (Wright, 2004). Cities in the early stages of large-scale infrastructure development 

have a unique opportunity to choose an efficient and sustainable pathway. Since major investments 

in transport infrastructure are relatively irreversible over the medium term, decisions made by 

developing nation officials today will likely determine the shape and direction of their future urban 

form. With regard to urban transport, developing nations could “leap-frog” and move directly to 

more sustainable options rather than committing to the predominantly auto-based urban form 

which breeds transport poverty among vulnerable groups of society (Wright, 2004). Instead of 

reinventing the wheel, African cities can adopt and adapt innovative measures being implemented, 

in the form of lessons of general experience, technology, and institutional management from the 

developed world (Godard, 1999).  

Treatment measures may be a combination of best practices such as policies, governance 

and law enforcement, proper integration of land-use planning strategies, engineering and technical 
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solutions, and other soft strategies as participatory approach to transport planning. This will ensure 

that cities apply the principle of “planning before development,” with a central focus on the future 

needs of low-income populations (Garau et al., 2006). Otherwise, once policies are oriented 

towards unsustainable motorization, it will be difficult to return to more sustainable options at a 

later time. For instance, lessons from the developed world show that, moving commuters away 

from cars to public transport and non-motorized options is quite difficult and costly. It is early in 

the transport development process that certain policies and practices can be most effective and 

sustainably implemented. 

4.11 Conclusions 

Mobility and accessibility are essential to economic and social development of a city, and 

by extension, to the overall development of a country.  This is particularly true for Africa, where 

cities have become the symptom and standard of determining development in its entire connotation. 

With the rapid rates of urbanization and development, cities reflect the socioeconomic dynamics 

of a country. Urban mobility systems enable people to access economic activities, opportunities 

and social networks. Although increased mobility yields great benefits, it also generates many 

negative externalities. The development of overly motorized urban mobility systems as sign of 

modernity and economic growth, is a driver of hypomobility for those without access to motorized 

transport. The situation is nowhere more acute than in the cities of the developing world where the 

urbanization process and growth in motorized transport are occurring so fast that if current trends 

continue, these cities will soon grind to a halt for lack of adequate infrastructure. Mobility in 

developing cities is therefore not achieving its purpose of increasing accessibility. Land use 

decisions and urban transport planning practices have locked cities in the extreme conditions of 
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transport hypermobility and hypomobility. While the rich and powerful elite in the society are 

more likely to be hypermobile, the poor and vulnerable are more likely to be hypomobile. This 

segregation has seen a decline in the provision and support for transport modes that the poor 

depend on. Integration of policy and technical solutions can help cities balance the challenges of 

hyper-and hypo-mobility that has characterized transport systems in most cities. 

This study has therefore proposed an epidemiological framework that can help transport 

decision and policy makers to better understand the phenomenon of hypomobility, its impacts on 

Africa and other developing countries and the potential to counteract them. This framework treats 

hypomobility as a disease and also captures adequate information about the condition to help 

identify appropriate treatment measures. Ultimately, it is our expectation that this framework will 

help in identifying and addressing barriers to mobility and accessibility in the rapidly growing 

cities throughout the developing world, with particular applicability to the rapidly developing cities 

in Sub-Saharan Africa.  
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CHAPTER 5 

SUMMARY AND FUTURE WORK 

 

5.1 Summary 

Providing safe, affordable, and sustainable mobility remains a top priority for many 

transportation agencies as well as governmental policy makers. However, much of the world faces 

an unprecedented mobility and accessibility crisis, characterized by unsafe and unsustainable 

mobility systems. The burden of mobility and its attendant safety crises on citizens have been 

described as public health problems. Viewing these human-centered transport problems as 

ailments that can be studied using epidemiological techniques present transportation decision 

makers with a robust tool to aid in making informed evidence-based decisions concerning 

promoting safe and equitable mobility to promote socioeconomic growth. The application of 

widely used epidemiological methods makes possible the assessment of the relative importance of 

the contributing factors of these problems and also helps identify populations at increased risk, so 

that target countermeasures and treatment measures may be effectively implemented. The first 

chapter of the dissertation presents an overview of the current state of constrained mobility and 

traffic safety as public health conditions and makes the case for a shift from the conventional 

approach of studying them. A summary of the subsequent chapters of the dissertation and the 

findings of the studies are detailed as follows: 
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Chapter 2 examined crash causal factors related to drivers and their driving habits. The 

study identified homogeneous clusters of human-related crash causal factors and also investigated 

the effects of these factors on crash outcomes. Homogeneous clustering of human-related crash 

causal factors was achieved by using latent class analysis to identify seven distinct segments of 

drivers based on common crash causal traits. A latent class logit model and random parameters 

model were further developed to understand the effects of the human factors on crash injury 

severity. The LC logit and RPL models were chosen as alternatives to the traditional multinomial 

logit model to account for unobserved heterogeneity. 

Chapter 3 presented a study on the use of multilevel regression modeling techniques to 

explore the factors responsible for explaining the area-based differences in the frequency and 

severity of crashes across the state of Alabama. Unlike many conventional crash studies, this 

research used only driver characteristics and the characteristics of their place of residence to 

explain the variability in the occurrence of fatal crashes. With its unique feature of intra-class 

correlation, the multilevel analysis revealed that the area of residence of a driver accounts for about 

7.3% of the variability in the probability of getting into a fatal crash, irrespective of the driver 

characteristics. This study revealed disparities in human-centered crash causal factors and crash 

outcomes that exist between people and regions with different characteristics and pointed out 

disproportionately high fatalities in low income regions. This paper has confirmed previous studies 

that regional characteristics can be significant correlates in explaining the differences in crash 

outcomes across regions. The use of multilevel modeling techniques for traffic crash analysis 

presents decision and policy makers with a strong analytical tool to formulate evidence-based 

policies. 
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Chapter 4 proposed an epidemiological framework that can help transport decision and 

policy makers to better understand the phenomenon of constrained mobility and accessibility, 

defined as hypomobility. This framework treats hypomobility as a disease afflicting urban areas 

and captures adequate information about the condition to help identify appropriate treatment 

measures. Ultimately, this framework is expected to help in identifying and addressing barriers to 

mobility and accessibility in the rapidly growing cities throughout the developing world, with 

particular applicability to the rapidly developing cities in Sub-Saharan Africa. 

5.2 Future Work 

The results of this dissertation present a number of promising directions for future work. 

Some of the proposed directions follow: 

1. The two crash studies focused solely on human-centered causal factors. It is known that 

road traffic crashes occur from a combination of factors related to the road and its 

environment, vehicles, and road users. Further research is required to investigate how the 

other elements of the transportation system affect driving behavior in crash causation. 

2. The latent class logit method applied in this study does not account for the possibility of 

variation within a class since it assumes homogeneous characteristics of the within-class 

observations. Further research, including more data and variables, may be required to 

explore the strengths of the LC random parameters model for injury severity analysis. 

3. Another potential study area is to apply multilevel analysis techniques to study the effects 

of crash location characteristics on driver injury severities. 
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4. All the crash models presented in this study are based on Alabama crash data sets. The 

proposed models should be evaluated using data sets from other states or nations to see if 

similar trends may be obtained.  

5. Difficulties in acquiring mobility data in developing countries have hindered evidence-

based research in that area. One potential area of future research is to use crowd-sourced 

travel data to quantify mobility constraints.  


