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ABSTRACT

Sketch Style Recognition, Transfer and Synthesis of Hand-Drawn Sketches

Sara Mohammed Shaheen

Humans have always used sketches to explain the visual world. It is a simple and straight-

forward mean to communicate new ideas and designs. Consequently, as in almost every

aspect of our modern life, the relatively recent major developments in computer science

have highly contributed to enhancing individual sketching experience. The literature of

sketch related research has witnessed seminal advancements and a large body of interest-

ing work. Following up with this rich literature, this dissertation provides a holistic study

on sketches through three proposed novel models including sketch analysis, transfer, and

geometric representation.

The first part of the dissertation targets sketch authorship recognition and analysis of

sketches. It provides answers to the following questions: Are simple strokes unique to the

artist or designer who renders them? If so, can this idea be used to identify authorship or to

classify artistic drawings? The proposed stroke authorship recognition approach is a novel

method that distinguishes the authorship of 2D digitized drawings. This method converts a

drawing into a histogram of stroke attributes that is discriminative of authorship. Extensive

classification experiments on a large variety of datasets are conducted to validate the ability

of the proposed techniques to distinguish unique authorship of artists and designers.

The second part of the dissertation is concerned with sketch style transfer from one free-

hand drawing to another. The proposed method exploits techniques from multi-disciplinary

areas including geometrical modeling and image processing. It consists of two methods of

transfer: stroke-style and brush-style transfer. (1) Stroke-style transfer aims to transfer the

style of the input sketch at the stroke level to the style encountered in other sketches by
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other artists. This is done by modifying all the parametric stroke segments in the input,

so as to minimize a global stroke-level distance between the input and target styles. (2)

Brush-style transfer, on the other hand, focuses on transferring a unique brush look of a

line drawing to the input sketch. In this transfer stage, we use an automatically constructed

input brush dictionary to infer which sparse set of input brush elements are used at each

location of the input sketch. Then, a one-to-one mapping between input and target brush

elements is learned by sparsely encoding the target sketch with the input brush dictionary.

The last part of the dissertation targets a geometric representation of sketches, which

is vital in enabling automatic sketch analysis, synthesis and manipulation. It is based on

utilizing the well known convolutional sparse coding (CSC) model. We observe that CSC

is closely related to how line sketches are drawn. This process can be approximated as the

sparse spatial localization of a number of typical basic strokes, which in turn can be cast as

a non-standard CSC model that forms a line drawing from parametric curves. These curves

are learned to optimize the fit between the model and a specific set of line drawings.

Each part of the dissertation shows the utility of the proposed methods through a variety

of experiments, user studies, and proposed applications.
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cubic Bézier curve fitting; (4) copy the intensity values of pixels where the
fitted curve located at T to the generated curve patch; (5) apply quadratic
projection to the curve patch. . . . . . . . . . . . . . . . . . . . . . . . . . 93



16
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Chapter 1

Introduction

This dissertation provides a holistic study of style in hand-drawn sketches. Hand-drawn s-

ketches are a vital means to communicate ideas and thoughts and to demonstrate individual

talent, ranging from children who initially express their understanding of their surrounding

by simple sketches before words to professional artists who showcase their talents with

outstanding sketches. Moreover, architects, engineers, and designers place their thought

in the form of sketches first. Thus, utilizing modern computing powers and algorithms in

designing models for automatic sketch understanding, analysis, and transfer will enable

a wide range of applications that can enhance various aspects of an individual’s personal

and professional life. For example, an application that automatically detects fraudulent s-

ketches will protect the copyrights of valuable sketches. Also, designing sketch training

applications will minimize training time and effort and will provide better training capabil-

ities. Moreover, automatic transfer of simple sketches to higher quality ones will result in

better quality sketches with minimum effort.

Consequently, all of this has attracted researchers to develop techniques for automatic

sketch analysis [1], recognition [2], beautification [3] and synthesis [4]. Figure 1.1 and

Figure 1.2 show some example applications. This field has also been enriched by means

of a number of commercial products, which were developed to assist artists and designers

in generating professional sketches with minimum effort, such as Adobe Illustrator and

Photoshop [5]. As the research demand in this field is increasing and to facilitate further

research on sketches, a number of sketch datasets were made available to the research

community ranging from portrait sketch datasets [4] to mechanical parts sketch datasets [6].
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Original Line Drawing Line Drawing Style 1

Line Drawing Style 2 Line Drawing Style 3

Line Drawing

Artis!c Stroke Pa"ers Sketch Synthesis Results

(a) (b)

Figure 1.1: Examples of sketch based inspired research work. (a) Sketch beautification and
brush synthesis [3]. (b) Sketch Style transfer at the stroke level [7].

(a) (b)

Figure 1.2: Example of sketch based inspired research work. (a) Sketch recognition [8].
(b) Sketch synthesis of portrait sketches with different levels of details [4].
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The artistic style used to draw a sketch is a vital visual component of a sketch. Some-

times, sketch styles are recognizable to human observers and other times, when subtle

differences exist between styles, they are not. However, in both cases, an artistic style is a

difficult concept to rigorously define. To start any sketch manipulation or analysis process,

a method to describe a sketch in terms of its stroke segments usually goes first in the devel-

opment pipeline. For this purpose, sketches need to be represented as a set of parametric

curves. This is known as sketch vectorization or digitization. It enables sketch transforma-

tions that are invariant to scale and nonrigid body transformations. Consequently, sketches

are usually collected digitally using the Wacom device which through using a stylus pen

and a pressure sensitive pad enables artists to directly render sketches digitally on their

computer screens. As such, accessing stroke information of a sketch becomes a straight

forward process. However, digital sketches require artists to go through special training

on how to use such a device and many complain that it does not give them the freedom to

express their artistic style as when drawing using a regular pen and paper. Alternatively,

non-trivial geometric solutions of sketch vectorization were proposed [9], see Figure 1.3

for example.

Figure 1.3: Examples of sketch vectorization. Sketch strokes are replace with the best
fitting parametric curves [9].
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Dissertation
Holistic Study of Style in 
Hand-Drawn Sketches 

Discriminative Model
Sketch Authorship Recognition

(Chapter 3) 

Parametric 
Reconstruction Model
Sketch Geometric Modeling

(Chapter 5) 

Generative Model
Sketch Style Transfer 

(Chapter 4) 

1.   Stroke Style Transfer

2.  Brush Style Transfer Parametric 
Curves

Sketch 
Reconstruction

Content  Style        Stroke
Transfer 

+ =

Figure 1.4: Dissertation outline. Sketch style is thoroughly studied in this dissertation by
three connected models. The first model is a discriminative model that is concerned with
sketch style analysis and authorship recognition of hand-drawn sketches. The second model
is a generative model that is based on insights gathered from the discriminative model. It
provides two levels of sketch transfer: stroke and brush levels of transfer to target both
subtle and major sketch transformations. The third model provides automatic parametric
sketch representation for geometric sketch modeling.
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1.1 Dissertation Overview

In this dissertation, we aim to provide computational tools that target the analysis and trans-

fer of sketch style in drawings. We show that a discriminative model built using 2D features

can be very effective in discriminating between subtly different sketching styles and more

effective than human performance on the same task. The discriminative model is entitled

stroke authorship recognition. By building on concepts and insights gathered using this

discriminative model, we formulate a generative model that enables transfer of a sketching

style from one sketch to another. We entitle this generative model as sketch style trans-

fer. It provides two different sketch transformation methods that enables for both subtle

and major levels of sketch style transfer. The third model in this dissertation, contributes

an automatic method for sketch parametric representation. This parametric reconstruction

model is entitled as sketch geometric modeling. This model enables the geometric descrip-

tion of a sketch, which is vital for various applications related to sketch style manipulation,

analysis, and synthesis. Together, these three models build a holistic study on the artistic

style of hand-drawn sketches. The overall dissertation outline is depicted in Figure 1.4.

Below, we introduce each of the aforementioned models and highlight the major technical

assumptions, model work flow, applications and contributions to the field of each.

1.1.1 Sketch Authorship Recognition

In the first part of the dissertation (Chapter 3), we investigate whether individuals (specif-

ically artists) are distinguishable by the way they draw, and if so, the extent to which this

uniqueness can identify their drawings, so as to help train them or detect sketch fraud. This

work is the first to address the problem of authorship recognition from drawings. Sketch

authorship recognition (denoted as SAR) assumes that an artist’s style can be recognized

by the frequency distribution of certain mathematical descriptors, which are deduced from

basic sketching strokes. A fundamental assumption is that artist style manifests itself math-



23

ematically in the artist’s basic strokes. For example, we observe that Disney’s Mickey

Mouse tends to exhibit rounded strokes using many, nearly elliptic curves, whereas Looney

Tunes’ Daffy Duck consists of a combination of straighter and tightly curved strokes. By

extracting enough strokes from a digitized drawing, a characteristic histogram is created.

This histogram captures the inherent style of the overall drawing.

The proposed sketch authorship method is useful in a variety of applications such as s-

ketch fraud detection (i.e. discriminating fraudulent from original sketches), where there is

a need to examine fine-grained stroke-level features to discriminate sketches that look sim-

ilar. This problem cannot be approached using existing shape matching techniques, which

are unable to detect local and fine differences. Also, these methods are heavily dependent

on the content of the sketch and not its style. Moreover, this authorship recognition tech-

nique can play a major role in artistic style training and reproduction, since it can be used

to quantitatively assess how the sketching style of an artist in-training progressively be-

comes similar to a desired target style throughout the training process. For example, newly

recruited artists at Disney are typically required to undergo a six month training procedure

to familiarize themselves with the company’s sketch techniques. This is done to ensure

that new and existing characters can be created with the same Disney look. Clearly, there

is a need for an automated technique to examine how an artist progresses during his/her

sketch style training. Another area that can make use of this proposed work is handwriting

verification and signature analysis, where the current state-of-the-art uses features that are

centric/specific to handwriting and the focus is on the uniqueness of letters, punctuation

formation, as well as, flow and structure. The proposed SAR method, on the other hand,

provides a more general context to investigate the uniqueness of drawn strokes. This work

is also useful to other areas including design patent litigation and brand marking. As subtle

differences exist among sketches of different artists, especially when attempting fraud, we

focus on examining low-level stroke features to discriminate between styles that are very

similar. These features are empirically validated and biologically inspired.
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1.1.2 Sketch Style Transfer

The second part of this dissertation (chapter 4) targets sketch style transfer and synthesis.

Based on sketch authorship and style analysis (the discriminative model), this novel gen-

erative model is proposed. Transferring an input sketch to match another artistic style is

useful in building a number of applications, such as sketch style training, where novice

artists or professionals are guided while drawing to transfer their sketches to match another

sketching style. Moreover, sketch style transfer can enhance the quality of sketches drawn

by digital media to the level where they look as if they were drawn freely by an artist. Car-

toon companies can adopt style transfer techniques to preserve the look of their characters

by automatically updating how, for example, a newly employed artist is drawing to match

the style of other senior artists.

Consequently, this part of the dissertation proposes an efficient technique for automatic

sketch style transfer, which transforms a sketch (a query sketch) in such a way that it repre-

sents another artistic sketching style (of a target sketch), regardless of the sketch content. It

consists of two transfer modules. The first module is called the stroke-style transfer, which

focuses on transforming the query sketch at the stroke level. It is built based on the assump-

tion that the subtleties of an artist’s style can be recognized by analyzing the frequency of

some representative geometric stroke-level features. This transfer operation is formulated

as an optimization problem that seeks the best transfer parameters while being regularized

to avoid degenerate solutions and to stay faithful to the original sketch content. The second

transfer module focuses on brush-style transfer. It focuses on transferring the brush look

of a stylized sketch (a target sketch with a unique brush look) to a line drawing (the query

sketch). We find that convolutional sparse coding (CSC) [10] can model/approximate the

sketching process of artists and, therefore, it is used in the brush-style transfer stage. This

assumption is empirically validated in our work through a user experiment. Interestingly,
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we cast brush-style transfer as a mapping problem between stylized brush elements and

their corresponding abstractions using simple strokes. CSC is used here to synthesize a

simple line-drawing that depicts the content of the target but using simple line strokes.

This transfer technique can be used to apply both subtle and major transformations on

hand-drawn sketches. For subtle transformations, artists can use the stroke-style transfer

module to get their sketches closer to a target style, which they are trying to mimic. For

example, this is essential when a new artist is assigned to draw a well-known cartoon char-

acter by following the same style as another artist. Local stroke-level features are hard to

mimic in this case, but they are crucial to maintaining the overall sketch characteristics of

the cartoon character. On the other hand, major sketch transformations are made possible

by our brush-style transfer module. With it, artists are able to automatically apply a unique

brush look of a target sketch to their simple line drawings. This automatic transfer saves

artists a painstakingly large amount of effort, when compared to creating this transferred

brush look manually. The word style is interpreted in so many different ways in different

contexts. Thus, each definition tackles the area of sketch synthesis and transfer differently

leading to different results and serving different applications. Our proposed methodology

in this dissertation adds a new perspective to the problem and defines sketching style to in-

clude both stroke-level and brush-level aspects of a sketch. With both modules, we aim to

present a comprehensive technique for sketch transfer, which is feasible in various artistic

sketch applications.

1.1.3 Sketch Geometric Modeling

The third part of the dissertation (Chapter 5) is on sketch vectorization, which is defined

as representing a sketch as a number of connected parameterized curves. It is of great

demand in the graphics community. It enables sketch transformations that are invariant

to scale and non-rigid body transformations. It also fuels various applications related to
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sketch style manipulation, analysis and synthesis [11]. Previous work on these topics tends

to avoid the non-trivial geometric solutions of sketch vectorization [12] and replaces it with

some manual interaction to access strokes of sketches (strokes are the building blocks of

a sketch). This involves pre-processing steps such as building large libraries of strokes or

digitally collecting sketches using the Wacome device [7, 13]. As such, utilizing existing

modern computing algorithms for automatic sketch parametric representation is a valuable

contribution to the graphics research community.

The proposed work here is an extension to the formulation of the well-known convo-

lutional sparse coding (CSC) model [10], such that it can better model the reconstruction

process of line drawings. This can be done by constraining the filters in CSC to a pre-

defined group of parametric curves. This results in learned filters that, in their content,

describe the sketch geometrically as a set of curves. Such representation can be utilized for

sketch vectorization. We believe that this work is the first to introduce geometry constraints

to the standard CSC formulation. Our choice of the CSC model and how it approximates

the sketching process is validated through experiments and user studies, which are present-

ed in detail in Chapter 5.

In summary, the work presented in this dissertation targets developing and experiment-

ing with new techniques for efficient hand-drawn sketch manipulation. This includes sketch

style analysis, transfer and geometric representation. Below, we present the major contri-

butions of this work.

1.2 Contributions

This section presents a summary of the major contributions in this dissertation:

• Chapter 3 proposes a novel method for sketch authorship recognition based on the

hypothesis that the collection of an artist’s strokes in a sketch are unique to that artist

and their frequency can be used to define his/her style. This can be used for multiple

purposes including the detection of sketch fraud. Another contribution provided in
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the sketch authorship recognition model is the compilation of two new sketch datasets

collected from a number of experienced artists. These datasets are designed to expose

the recognition method to different levels of challenges and sketch variations. They

are made publicly available, along with their digitized form and source code, to allow

for further research in this topic. Using the sketch authorship model two applications

are included. The first provides artists in-training with immediate feedback on how

close their sketching style has become to a particular target style and monitors their

progress throughout the training process. The other provides the first quantitative and

automatic measure to evaluate the quality of automatic sketch synthesis tools.

• Chapter 4 presents an automated and data-driven technique for sketch style transfer

that enables sketch transformations at both the stroke- and brush-level, thus, allowing

for an overall stylization of an input line drawing. Through the first transfer method,

i.e.stroke-style transfer module, we show that it is feasible to transfer a sketching

style of a line drawing to another (regardless of content) by adopting a global repre-

sentation of the sketch as a whole. Such representations are usually used for sketch

discrimination, as in Chapter 3. To the best of our knowledge, this is the first time it

is used for sketch style transformation. The second transfer method, i.e.brush-level

transfer module, can automatically discover detail-rich brush strokes, which are apt

for transfer, as well as, their mappings to simple line strokes.

• Finally, Chapter 5 proposes a method for automatic parametric sketch representation

inspired by the well known CSC model. The original CSC function is reformulated

by adding a constraint on the learned filters to belong to a defined set of parametric

curves. We solve the resulting non-convex optimization and validate its convergence

through experiments.
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1.3 Scientific Publications

+ While working on this dissertation, the following scientific papers were published: [11]

and [14]:

• Sara Shaheen, Alyn Rockwood and Bernard Ghanem. SAR: Stroke Authorship

Recognition. Computer Graphics Forum, 2016.

• Sara Shaheen and Bernard Ghanem. Stroke Style Transfer. Eurographics Association-

Short Papers, 2017.

+ Finally, the following work is to be published at ICCV (2017):

• Constrained Convolutional Sparse Coding for Parametric Based Reconstruc-

tion of Line Drawings. With co-authors: Lama Affara and Bernard Ghanem.
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Chapter 2

Related Work

This chapter of the dissertation surveys the work most related to the problem of the pro-

posed research. We group them into seven main categories that are relevant to sketch style

analysis, synthesis, recognition and vectorization. We also include work related to shape

matching, handwriting and signature analysis and graphical authentication which are par-

tially related to our work. Towards the end of this literature, we survey the well-known

convolutional sparse coding (CSC) model which is a technique used in developing a vital

part of this research problem.

2.1 Sketch Analysis and Transformation

In this section, we highlight previous work on sketch analysis, style transfer and synthesis

that is relevant to our approach.

2.1.1 Sketch Analysis

In the work of Limpaecher et al. [15], a total of 13,000 drawings of faces was collected

where their focus is on providing auto-correction of strokes for novice artists. Ulike the

work prposed in this dissertation, they do not discuss the problem of stroke style authorship.

Lu et al. [16], on the other hand, mimicked a particular artistic style via matching that was

based on filtered velocities and shape context. Also, the approach of Cole et al. [6] studied

where artists draw lines in sketches of objects such as tools, automobile parts and bones.

They concluded that artists tend to draw similar lines in consistent locations. As part of
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the experiments presented in chapter 3, we use the dataset of this work to show interesting

new results regarding the uniqueness of sketch style despite strict sketching constraints

imposed on the artists. More in sketch analysis, the work of Grimm et al. [1] provides

suggestions for research directions in 3D sketching based on an observational study, where

artists are asked to comment on how and why they made the marks on a number of objects

they sketched. Also, a semi-automated method was developed Noris et al. [9] for semantic

segmentation of digital sketch drawings to support further sketch analysis.

2.1.2 Sketch Transfer and Synthesis

The techniques of Hsu et al. [17] are among the first stroke synthesis methods in the liter-

ature of sketch style transfer. Following this seminal work, several more approaches have

since been proposed and we group them into four categories.

Data-Driven Transfer Approaches. Freeman et al. [7] apply artistic style transfer by

matching the k-nearest artistic drawing styles in a database comprising hundreds of strokes

annotated in all possible styles and rotations. A lot of work on style synthesis has focused

on human portrait sketches. For example, the method of Berger et al. [4] used a Wacom

tablet and a stylus pen to collect a database of face sketches, drawn by a number of artists

using reference face photographs. Each stroke is parameterized as a directed curve along

with pen parameters. These strokes are used to build a stroke library that represents the s-

ketching style of an artist and is then used to synthesize a portrait sketch in different artistic

styles. In comparison to this method, our focus is to transfer styles regardless of the sketch

content (i.e. to go beyond human portraits). Moreover, we transfer sketches drawn by any

medium, either digitally or via scanned versions of paper sketches. Interestingly, we use

the sketch synthesis dataset of [4] in this dissertation to demonstrate how our stroke au-

thorship recognition (presented in chapter 3) can quantitatively evaluate sketch synthesis.

Our results are on par with those reported by the authors after an online study with human

participants. Moreover, the PortraitSketch system [18] allows auto-correction of strokes
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for face sketches by novice artists. It automatically adjusts the geometry and stroke pa-

rameters (thickness, opacity, etc.). Unlike our work, their corrections are based on features

taken from the underlying source image, which the novice artist draws on top of it. More

recent work in face sketch synthesis and transfer is found in the work of Zhang et al. [19]

and Wang et al. [20].

Building on the work of Berger et al. [4], Ben et al. [21] use their stroke library to ren-

der a line drawing (not necessarily faces) of the first frame of a video animation. However,

their work focuses on promoting temporal coherence (through video tracking) to extrap-

olate the synthesis across consecutive frames rather than focusing on per-frame transfer

results, which is the scope of our work. Moving to sketch paint synthesis, RealBrush [22]

is a data-driven real median paint brush replicator, while HelpingHand [13] is a system for

stroke synthesis based on filtered velocities and shape context from a library of 6D stylus

trajectories. Decobrush [3], on the other hand, is a system that uses structured decorative

patterns to allow synthesis of such patterns following user-sketched paths. Their synthe-

sis is restricted to a number of defined styles from an example library, while our transfer

method can use the style of any input sketch and transfer its unique strokes to other line

drawings of different content (refer to chapter 4).

Example-Based Transfer Approaches. The proposed work of Hertzman et al. [23] is a-

mong the early methods of example-based sketch synthesis. They learn a statistical model

of curves to synthesize new curves through a computationally intensive process. Moreover,

in an attempt to investigate and define sketching styles, the work of Li et al. [24] transfers

curve styles from examples of 2D curve shapes. Interestingly, it discriminates between

style-revealing and content-revealing curves features. Their content-style separation anal-

ysis is based on a proposed feature-shape association matrix (FSM). Others used graph

techniques for efficient stroke synthesis as the work of Kim and Shin [25].
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Later work by Kalogerakis et al. [26] uses sketches learned by example to transform

new drawings by hatching styles. Another work that synthesizes sketches using hatching

styles is by Gerl et al. [27]. Using probabilistic models in the process of sketch synthe-

sis has also been adapted by a number of recent approaches. Lang et al. [28] propose an

autoregressive Markov model based on sampling over a series of learned feature distri-

butions of curvature values. They explicitly have to handle non-pleasant scenarios, such

as, overshoots and broken lines. More recently, ShipShape [29] is developed as a gener-

al sketch beautification assistant based on preserving geometric relations between strokes.

Their method is based on evaluating different geometric rules on a new sketched path using

the previously drawn and resolved paths. Transfer techniques in this dissertation consider

features extracted from all strokes of the sketch and not each stroke independently, without

the need for tracking paths during sketching. In Painting by feature [30], part of the work

was dedicated for line feature where edges are stylized from an example sketch based on

a a one-dimensional feature representing an arbitrary curvilinear structure. Clearly, each

sketch synthesis and transfer approach starts by a unique definition of style and builds on

this definition to perform transfer/synthesis, thus, including various pros and cons along the

way. Our proposed work can be viewed as an addition to this rich literature, which sheds

light on a new, systematic, and automated approach for sketch style transfer.

Texture- and Image-based Synthesis. Despite the fact that texture synthesis techniques

suffer from scalability due to the textures’ prescribed fixed resolution, Northrup et al. [31]

and more recently Ando and Tsuruno [32] show that texture-mapped strokes are among the

simplest and most efficient ways to stylize lines. Our brush-style transfer module discussed

in chapter 4 is akin to example-based texture synthesis approaches as in Wei et al. [33].

However, to the best of our knowledge, non of the existing approaches utilizes automated

methods to learn the brush strokes and how to transfer them to a line drawing.



33

It is worth mentioning that the seminal work of Kwatra et al. [34] is one of the pioneers

in proposing texture optimization as an alternative method to pixel-based and patch-based

algorithms, while combining the best of both worlds. As it synthesizes an output texture in

the unit of pixels, it considers all pixels together when optimizing an energy function. Fur-

thermore, Yang et al. [35] have proposed a convolution-based method for pencil rendering

by developing a swing bilateral LIC (SBL) filter. Unlike our work where filters are learned

from parametric information of stroke segments (as discussed in chapter 4), their filters

are derived through image-based features such as pencil stroke flow, noise distribution and

shades of grey colors in a sketch. They use multiple stylization approaches that are specific

to the artistic nature of pencil-rendered sketches.

Synthesis through Detail Adaptation. Other approaches to sketch synthesis are con-

cerned with depicting various levels of detail in their synthesis results. The level of detail

can be on the elaboration side [36] or on the abstraction side [37]. The latter is one applica-

tion we present in this dissertation, in chapter 4, as a promising use case for the adaptation

of our brush-style transfer module. In our work, however, we aim to transfer strokes such

that they represent other artistic styles present in other sketches and not to elaborate on or

reduce the stroke set of a sketch. Another wide field of research, into which our work can

partially fall, is the fairing, or neatening of strokes such as the work presented by McCrae

et al. [38] and Simhon et al. [39].

Automatic stroke synthesis has been researched for a few decades. Thus, it is impos-

sible to cover every work related to these topics. For a more detailed representation of the

literature landscape, we refer the reader to two survey papers [40, 41]. They are concerned

with artistic stylization techniques using 2D input images or videos of non-photo realistic

rendering (NPR), as well as, sketch based image retrieval methods.
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2.2 Sketch Recognition and Retrieval

Eitz et al. [2] develop an automated data-driven method to explore a large collection of

hand-drawn sketches using drawings collected by many non-experts. Their primary goal

is to represent sketch content to perform object recognition from a sketch and not sketch

style. Concurrently, Sun et al. [42], propose a system for real-time recognition and retrieval

of semantically meaningful attributes of hand-drawn sketches. Their work is not limited

to pre-defined object classes. Other sketch retrieval methods are based only on geometric

similarity between sketches as the work by Shrivastava et al. [43] and Eitz et al. [8]. Un-

like our work, the field of sketch recognition and retrieval is based on classifying sketch

content from a discrete number of semantic categories. They do not provide comparisons a-

mong similar sketches or across artistic styles and do not address the problem of authorship

recognition.

2.3 Shape Matching

Sketch analysis and authorship determination seem akin to shape matching, but has dif-

ferent requirements as further inspection is needed. Numerous methods have been devel-

oped for shape matching and classification in the past as in Mokhtar et al. [44], Belongie

et al. [45], Jin et al. [46] and Berg et al. [47], as well as, recently the work of Michel

et al. [48] and Ion et al. [49]. Shape matching searches for similar shapes between two

images, where one is usually considered the query image. The work in this dissertation

differs from shape matching in two main aspects. First, shape matching focuses on glob-

al information of contours such as zero crossings of curvature, while the stroke analysis

techniques, adopted in this research, segments the contour and studies detailed local fea-

tures from each curve segment e.g. the eccentricity of a conic fit, as discussed in chapter

3. Second, shape matching is usually applied to low resolution images for computational

reasons, where these images tend to be classified by their content, e.g., a set of different
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mice silhouettes/shapes from different artists tend to belong to the same object class. Tech-

niques developed in this research can be employed efficiently on images of various sizes,

especially those at high resolution. Unlike shape matching, ours is less dependent on sketch

content and more focused on the local intricacies of sketch style.

2.4 Forensic Handwriting Analysis

Forensic handwriting analysis is a well studied problem and entails a large body of previous

work [50]. The aim here is to develop techniques that identify authorship by comparing

hand-written samples of different people. Similarly, signature analysis and more precisely

off-line feature based signature verification has also been studied for many years [51].

More recent work is by Kovar et al. [52] and Srihari et al. [53]. While all this work strives

to prove the individuality of only handwriting and signatures [54] [55], we investigate

the uniqueness of hand-drawn strokes in general (as discussed in chapter 3). As a result,

features extracted in handwriting analysis are only applicable to that specific domain (e.g.,

height of a loop, pitch, baselines etc.) and not generalizable to sketch style analysis [56].

2.5 Graphical Based User Authentication

A number of graphical based user authentication methods such as doodle sketches were

proposed as an alternative to conventional authentication methods. As an example, Pass-

Doodle is a graphical based authentication mechanism, which attempts to identify users by

their handwritten designs (doodles). For authentication, the query doodle is represented

on a regular grid and matched to training doodles in order to determine user authentici-

ty [57,58]. The effectiveness of using PassDoodles for user authentication is demonstrated

by Renaud et al. [59]. Oka et al. [60], on the other hand, develop a sketch-based authentica-

tion method to find the closest sketch in a training database by extracting edge orientation

features from a user’s query sketch. Unlike our stroke analysis techniques proposed in this

dissertation (refer to chapter 3), these authentication methods neither build a discrimnation
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model nor provide an analysis of different artistic styles. Moreover, they do not build an

intermediate sketch representation of the user input which makes them similar to shape

matching techniques discussed above. An exposition of the shortcomings of graphical

based authentication methods is given in [61].

2.6 Sketch Vectorization

To start any sketch manipulation process, a method to describe a sketch in terms of its stroke

segments is the first stage in the pipeline. An example of an automatic sketch vectorization

method is by Noris et al. [12]. They propose an automated method to vectorize clean line

drawings as connected Bézier curve paths. Their approach is based on extracting strokes

centerlines as indicated from the image gradient along a stroke segment. This problem is

not trivial to solve geometrically because even when input drawings are comprised of clean

and high-contrast lines, inherent ambiguities make vectorization difficult. Consequently,

researchers tend to rely on off-the-shelf commercial products, as what is found in Adobe

illustrator [5]. Other approaches are based on collecting sketches digitally using the Wa-

com device, which makes accessing per stroke information and expressing it geometrically

a straight forward process [4, 13]. Our proposed work provides a fully automated model

to represent a sketch geometrically and to provide an automatic mapping to where strokes

should be placed in the sketch utilizing the unique formulation of CSC (as discussed in

chapter 5). This will enable more efficient and reliable sketch style analysis, synthesis and

manipulation.

2.7 CSC Applications and Advancements

In this section, we highlight different applications and previous computational advances of

the convolutional sparse coding (CSC) model. CSC is used in the research work presented

in this dissertation for automatic parametric sketch representation, as discussed in chapter
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5. Consequently, it is vital to highlight the CSC literature in this part of the dissertation.

Research on CSC has taken two main directions. The first direction focuses on applying

CSC to a wide range of computer vision problems such as image processing [62–66], de-

signing new deep learning architectures [67], computational imaging [68], tracking [69]

and structure for motion [70].

The other CSC research direction focuses on finding an efficient solution to the CSC

problem. This direction is driven by the high computational demands of minimizing the

non-convex CSC objective. Moreover, CSC sparse dictionary learning algorithms are spe-

cial as they enable for diverse translation-invariant image patches through using the convo-

lution operator in its image representation. Consequently, the literature witnessed seminal

advances in CSC as found in [10, 71, 72]. Due to the diagonalization property of circulant

matrices in the Fourier domain, speeding up the CSC solution has seen much progress. In

fact, Bristow et al. [10] propose to model the optimization as two convex subproblems that

are solved iteratively in a fixed point strategy. Each subproblem is solved in the Fourier

domain using the Alternating Direction Method of Multipliers (ADMM) [73]. Following

that, Bristow et al. [74] provide a thorough discussion on a number of optimization meth-

ods for solving convolution problems and their applications. To further improve efficiency,

Kong et al. [71] describe an optimization approach that exploits the separability of con-

volutions across bands in the Fourier domain in order to make dictionary learning more

efficient. Despite all of the mentioned advancements, the problem is still computationally

heavy due to the high cost of solving large linear systems. Motivated by that, Heide et

al. [72] propose a new objective function which transforms the original constrained prob-

lem into an unconstrained problem by encoding the constraints in the objective using some

indicator functions. Their proposed objective is further split to a set of convex functions

that are easier to optimize separately. Moreover, they propose a diagonal mask matrix to

the objective to handle boundary artifacts that materialize in the Fourier domain. Final-
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ly, Vorsel et al. [75] propose a non-iterative method in the Fourier domain for computing

the inversion of the convolutional operator using the matrix inversion lemma. In this dis-

sertation, we propose a novel method to facilitate sketch parametrization and geometric

representation based on a reformulation of the CSC model. To the best of our knowledge,

this dissertation is the first to introduce a constrained parametric model for CSC. Inspired

by Heide et al. [72], we solve the constrained problem using the fixed point strategy, which

leads to two subproblems that can be solved in the Fourier domain. Each subproblem is

approached using ADMM. As mentioned earlier, our method facilitates designing sketch

based computer graphics applications.
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Chapter 3

Sketch Authorship Recognition (SAR)

3.1 Introduction

Research in voice and face recognition has developed methods to recognize and distinguish

individuals based on pertinent visual and audio cues [76]. Inspired by this concept, this part

of the dissertation investigates whether individuals (specifically artists) are distinguishable

by the way they draw, and if so, the extent to which this uniqueness can identify their

drawings, so as to help train them or detect sketch fraud. This part of the dissertation is the

first to address the problem of authorship recognition from drawings. This new method,

called sketch authorship recognition (denoted as SAR) assumes that an artist’s style can

be recognized by the frequency distribution of certain mathematical descriptors, which

are deduced from basic sketching strokes. A fundamental assumption is that artist style

manifests itself mathematically in the artist’s basic strokes, For example, we observe that

Disney’s Mickey Mouse tends to exhibit rounded strokes using many, nearly elliptic curves,

whereas Looney Tunes’ Daffy Duck consists of a combination of straighter and tightly

curved strokes. By extracting enough strokes from a digitized drawing, a characteristic

histogram is created. This histogram captures the inherent style of the overall drawing. The

details of the authorship recognition technique, results and applications will be discussed

in details in the coming sections.
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Figure 3.1: The SAR pipeline: 1. compile sketches from different artists; 2. extract strokes
and split them into segments; 3. characterize each stroke segment mathematically 4. rep-
resent each sketch as a distribution of feature frequency; 5. train a machine to recognize
authorship based on 4.

3.2 Sketch Authorship Recognition Approach

This section includes a detailed description of the proposed approach. The overall pipeline

of SAR is depicted in Figure 3.1. Given a sketch image, the first stage in SAR is to extract

major stroke contours in the image and segment these strokes into stroke segments. These

strokes occur both at the silhouette and the interior of the sketch. Stroke segments from

many sketches across multiple artists are grouped (using low-level image features) to form

a universal dictionary of stroke segments. This dictionary is employed in a hierarchical

bag-of-words model, which is used to represent a sketch image I as a histogram of stroke

segments. This stroke histogram encodes some of the characteristics of an artist’s unique

style and thus can be used to discriminate this artist’s sketches from others. Discrimina-

tion is performed in a supervised manner using multi-class classification, where each class

designates an artist. An elaboration of the individual stages of SAR is presented in what

follows.

3.2.1 Stroke Extraction and Segmentation

Image I is decomposed into strokes that are further split into stroke segments that can ex-

pose authorship. Representing sketches at such a local scale can identify stroke segments

that play an essential role in discriminating authorship.
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Stroke Extraction. We use Adobe Live Trace for stroke extraction. It is an off-the-shelf

digitization technique, to decompose a sketch into a set of paths, each of which comprises a

number of Bézier curves depicting artistic strokes [5]. There exists a number of other com-

mercial and non-commercial digitization techniques, such as the recent work by Noris et

al. [12]. However, Adobe Live Trace is chosen in SAR, since it stays faithful to the original

sketch and it is widely accessible and easy to use. With Adobe Live Trace, different levels

of digitization can be applied to the original sketch. Using this tool, all the digitization pa-

rameters are kept 1 the same across all sketches of all artists, excluding the grey threshold

value, which is varied among artists. This variation is needed because artists used different

types of pens with different pressure. In Section 3.5.2, the effect of this digitization is eval-

uated on sketch style recognition. Extracted strokes are then traced and sampled as pixels

in the image for stroke segmentation. It is worthwhile to note here that pixel tracing along

edges has to be performed in a non-trivial manner, so as to avoid visiting the same pixels

multiple times and adding redundancy to the trace.

Pixel Ordering. Both boundary and internal strokes segmentation requires contiguous

pixels for representing each stroke. Usually, a pixel loop can be connected by starting from

one pixel and ending at the same pixel. Connection means that each pixel has at most two

neighbors in an 8-connected neighborhood, so that pixels can be tracked one after another.

The Canny operator is the most widely used method for edge extraction. However, it can

result in more than two neighbors for one pixel in an 8-connected neighborhood, which

leads to redundant lines. This situation is shown in Figure 3.2(b), in which the edges

are detected by the Canny operator from Figure 3.2(a). To solve this problem, we use a

template to search neighbors in a fixed order, along with a tag vector to avoid repeat visits.

Let the set of edge pixels be denoted by Pi, i = 1, ..., l, where each pixel Pi = [Pi(x), Pi(y)],

and l is the number of pixels. The process of ordering pixels connects independent pixels

1The values of these parameters are set as follows, Blur = 0 px, Max Stroke Weight = 30 px, Min Stroke
Length = 10 px, Path Fitting = 50 px, Corner Angle = 20 degrees and noise = 2 px.
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(a) (b) (c) (d)

Figure 3.2: Examples of edge pixels. (a) 16 pixels from an image (d), where 0 is the
background pixel and 1is the silhouette pixel; (b) an edge detected by the Canny operator
from (a), where 1 represents edge pixels, red arrows indicate possible pixel order leading
to multiple lines; (c) searching order of pixels, the middle p is the current pixel, the order
of searching is labeled from 1 to 8. (d) the revised searching order indicated by red arrows.

Pi according to their 8-connected neighborhood. Let the reordered pixels be placed in a

l × 2 list L, where L1 is the starting pixel, Li+1is the next neighbor to Li. Initially we

choose an arbitrary pixel Pk as the starting pixel L1, set L1 = Pk, and mark pixel Pk as

visited. Then iteratively search the next neighbor Li+1 of Li according to the searching

order given in Figure 3.2(c). Suppose Li is located at p, starting from position 1, the first

unvisited Pu is taken as Li+1. The ordering process stops when the searched Li+1 = L1.

Figure 3.2(d) shows a revised search which avoids the polyline.

Stroke Segmentation. Strokes extracted from I can be quite long and contain a rich

amount of geometric information. Modeling these strokes as a whole is a difficult task

in itself, since it should encode variations that a particular stroke can take on. Instead,

each stroke is broken into smaller units (called segments) that are represented in a more

straightforward and conventional manner. A b-spline curve is fitted to each stroke and i-

dentify break points as locations of local maximum curvature in the b-spline. Linear strokes

are explicitly handled by placing break points at its two ends to avoid over-segmentation.

The pixels between two consecutive breakpoints (or the beginning/end of the stroke) are

grouped together and denoted as a stroke segment. Figure 3.3 shows stroke segments

extracted from two sketches taken from one of our sketch datasets.
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(a)

(b)

Figure 3.3: Stroke segmentation. (a) shows two sketches after digitization and (b) shows
their extracted stroke segments (color-coded)

3.2.2 Mathematical Characterization

After I is decomposed into stroke segments, it is represented according to its stroke content.

The aim is to describe a stroke segment’s structure and the manner in which it is drawn.

This part of the work focuses on local features that are simple to extract, representative,

and invariant to various deformations (e.g. rotation, translation, and scale). Each segment

is described by four simple features that encode eccentricity, symmetry, local consistency,

and inflection. The first three features describe the stroke segment itself, while the last one

describe its relationship to its neighbors. These features are both empirically validated and

biologically inspired. When considering the process needed to analyze drawing traits at

the stroke level, one fundamental factor arises, namely the neuro-geometry of hand-arm

movement, i.e. the physiology in drawing strokes. In the foundational paper of [77], it was

shown that different subjects produce hand/arm movements that are very similar to or coin-

cide with simple curve strokes. Although low curvature change was generally maintained

across different subjects and experiments, it was also found that individuals exhibited u-
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nique stroke characteristics. This finding was also confirmed in the work of [78]. In [79], a

mathematical model based on minimizing jerk (change of curvature) and analyzing stroke

velocity was verified empirically. In summary, this and other work (see references in [79])

strongly suggest that (1) gesturing (i.e. the physical mechanism of drawing) and strokes

can be unique and identifiable for an individual, and (2) that curvature and its change are

key features for analyzing simple strokes. Inspired by the above physiological findings,

stroke segments are characterized by focusing on curvature and its change in each stroke

segment.

Moreover, in analyzing a large number of simple strokes, it has become obvious that a

conic fit to a stroke segment is faithful to its original geometry and representative enough

for the purpose of authorship recognition. From each conic, eccentricity, symmetry, local

consistency, and inflection features are extracted. They are conveniently invariant to rigid-

body deformations. Needless to say, this invariance also holds when the entire sketch is

represented using stroke segment features. Next, is a description of those four features.

Eccentricity: This feature represents the change of curvature in a stroke segment. It mea-

sures how the segment deviates from being circular, i.e. how rounded or sharp it is. By

fitting a conic section to the stroke segment [80], eccentricity (ε) is computed as a function

of the ratio between the conic’s major and minor axis lengths as in (3.1).

ε =


√

1− b2

a2
if the conic is an ellipse√

1 + b2

a2
if the conic is a hyperbola

(3.1)

Symmetry: To crudely evaluate how symmetric a stroke segment is, the absolute difference

in eccentricity of the segment’s two halves is taken (refer to Figure 3.4(a)). The segment is

divided into two equal length parts (denoted as attack and decay following typical sketch

nomenclature) and the eccentricity of each part is computed as described above.
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(a) (b)

Figure 3.4: Attack and decay parts used to construct stroke segments. (a) shows a stroke
segment divided into equal length parts enabling the computation of the symmetry fea-
ture. (b) shows two adjacent stroke segments connected by an inflection breakpoint. The
inflection feature is computed by comparing these two segments.

Local Consistency: This feature measures the extent of local variation within a stroke seg-

ment. It is computed as the average absolute difference between the eccentricity of the

entire segment and the eccentricity of distinct overlapping parts of this segment. To gener-

ate these distinct parts, a sliding window approach is employed across the segment, where

the window size is one third the size of the segment itself and the step size is half the win-

dow size. This feature captures subtle changes in shape and curvature.

Inflection: The previous three features describe the stroke segment itself. However, char-

acteristics of artistic style are encoded in how stroke segments are sequenced. Of special

interest are locations of inflection, where the sign of curvature changes. An inflection point

is detected by SAR as a breakpoint between two stroke segments that together form a

stroke (refer to Figure 3.4(b) for an example). To encode such relational information at an

inflection point, we compute the absolute difference in eccentricity between each pair of

stroke segments that share this inflection point. For segments forming a T-junction (i.e. a

stroke segment with inflection points at either end), their average eccecntricity difference is

computed. For stroke segments whose breakpoints are not inflection points, their inflection

feature is set to a nominal value (-1).
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3.2.3 Feature Frequency Distribution

Having each stroke segment si of sketch image I characterized by the 4D feature vector

described above, this stage represents I as a distribution of frequencies of those features.

Building a Universal Stroke Segment Dictionary. The assumption here is that the fre-

quency in which an artist uses particular types of strokes is a suitable indicator of his/her

authorship. To formalize this observation, a dictionary of stroke segments that tends to

be universal among different artists is compiled. The dictionary is learned on the stroke

segments of the sketches that are used in training only. To construct a dictionary of n ele-

ments, hierarchical k-means clustering is applied on a large set of stroke segments. In our

experiments, we set n = 60. This dictionay is denoted as the universal stroke segment dic-

tionary as it tends to capture the most commonly used stroke segments among artists. This

clustering step is the first stage of the bag-of-words (BoW) model popularly used to repre-

sent natural images for image classification [81]. Hierarchical k-means is used because it is

more robust and less sensitive to the choice of n than traditional k-means clustering. And it

generates a tree of n cluster centers (and not only a set of centers as in the case of k-means),

which encodes the membership of any stroke segment at all levels of the tree and not just

the leaves. To encode a stroke segment, one has to traverse this tree starting from the root

and recursively select among its children the nearest cluster center in 4D feature space. As

a result, each stroke segment is encoded as a binary membership vector of length n, where

each value reflects whether the feature traversed the corresponding tree node or not. Figure

3.5 shows image examples of cluster centers in the universal stroke segment dictionary, as

well as, the color-coded membership of each stroke segment in a sketch. Such assignment

is independent of where a stroke segment exists in a sketch.

Bag-of-Words Features. After constructing the universal dictionary, a sketch is repre-

sented as a histogram of stroke segments following the traditional Bag-of-Words (BoW)
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(a) (b)

Figure 3.5: (a) Some elements of the universal stroke segment dictionary constructed from
the segments of the training sketches. (b) Color-coded nearest neighbor assignment of
segments to dictionary elements.

framework. Sketch image I containing m stroke segments produces m binary membership

vectors each of length n. These membership vectors are pooled together to produce the

BoW feature vector fI. Gaussian weighted mean pooling is used [82] to encode the fre-

quency in which an artist uses each element of the universal dictionary. As discussed later,

coupling fI with a discriminative model enables authorship recognition. Since the original

4 stroke segment features are invariant to rotation, translation, and scale, the BoW feature

vector is invariant to these deformations [83].

Dataset # Artists # Sketches # Strokes Content Variety Constraints Level

Free Style 10 100 5500 10 different sketching objects
No constraints

(Draw this sketch)

Fraud 9 90 4900 10 different sketching objects
High constraints

(Draw and simulate fraud)

Line Study 11 107 6000 Up to 12 different objects
Very high constraints

(Re-draw over the original Image)

Table 3.1: A summary of datasets used in SAR. We compiled the first two and reused the
line study dataset of [6].
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3.2.4 Authorship Recognition

So far, a sketch image is represented by a sparse n-dimensional histogram depicting the

frequency in which each type of stroke segment is used by the artist in the sketch. As such,

we expect the BoW feature to possess enough discriminative power to determine authorship

based on simple strokes alone. We validate this assumption empirically in Section 3.5.1.

Given a training set of sketches labelled according to the artist who drew them, we build

a discriminative model using the training BoW features. In order to reduce testing time

and to pinpoint the most discriminative portions of the BoW feature, we employ a forward

feature selection procedure, which greedily appends a single feature at a time only if this

addition improves classification accuracy [84]. Based on our experiments, only a small

subset of the n features is actually used for discrimination. Using these subsampled BoW

histograms, we build a multi-class classifier to assign authorship to an unseen sketch image.

For sketch fraud detection, we use a binary classifier (original vs. fraudulent) instead. We

experimented with a variety of classifiers and found that an RBF (Radial Basis Function)

kernel SVM and a kNN classifier achieve the best performance. However, we decided on

the kNN classifier because of its minimal training time. We use two experimental setups to

evaluate the accuracy of our classifier: 2-fold cross validation and leave-one-out. The first

is a popular setup in image classification, while the latter sheds light on how dependent

the classifier performance is to the amount of training data. Following common practise,

the best k value for the kNN classifier is estimated using cross-validation on a finite set of

possible k values.

3.3 Sketch Datasets

To evaluate the performance of SAR, we compile two new sketch datasets collected from

experienced artists. Participating artists were screened, so as to guarantee high levels of

sketching capability. The chosen artists were graphical or interior designers by profession,
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each with 7-10 years of sketching experience. We gave them the freedom to draw using a

pen, pencil or digitally at any scale. Moreover, they were allowed to correct their strokes or

redraw the entire sketch with no time limit. Since we had direct access to these profession-

als, we were able to administer different sketching scenarios. This allowed us to control

the content variety (i.e. what the artist draws in a sketch) and the extent of sketching con-

straints (i.e. how the artist should sketch). These two factors impact the strokes an artist

chooses and ultimately his/her style. To our knowledge, this work is the first to compile

such a diverse set of sketch data for the purpose of studying authorship from strokes. To

allow for further research in this area, we make all these datasets (images and annotations)

publicly available. Next, we describe the datasets used in this work (refer to Table 3.1 for

a summary).

Free Style Dataset. We collected 10 images of objects from diverse semantic categories

and then asked 10 artists to sketch them. The objects were chosen to be detailed enough

to adequately reflect artistic style and to be relatively easy to replicate by an experienced

artist in a reasonable amount of time. On average, it took each artist 2 weeks to submit the

10 sketched objects. In total, the 10 artists collectively drew 100 sketches. No constraints

or specific instructions were given to the artists, thus, giving them complete sketching free-

dom.

Fraud Dataset. Here, we simulate a sketch fraud scenario. Using the same images in the

free style dataset, we chose the sketches of one of the artists as original drawings. We asked

the other 9 artists to draw all the original sketches. We provided them with an instruction

sheet, where they were requested to draw the original sketches in such a way that it would

be very hard to distinguish their own drawings from the originals, thus, simulating sketch

fraud. The 9 artists were prohibited from using methods or supplies (e.g. translucent trac-

ing paper) that could produce copies of the original sketches. Each artist took an average of



50

2 weeks to finish the copying task. We collected a total of 90 new sketches. (refer to Figure

3.6 for examples). Since the artists were requested to simulate sketch fraud, this dataset

is highly constrained from an artistic style point of view. Therefore, it poses a substantial

challenge to any authorship recognition system, albeit manual or automatic.

Line Study Dataset. We also use the line study dataset generated in [6]. This dataset is

a collection of sketches of various objects (e.g. mechanical tools, automobile parts, and

bones) drawn by multiple artists. The sketching tasks were highly constrained, since artists

were asked to draw their sketched lines over a faded copy of the original image. Clearly,

the task of recognizing sketch authorship in this dataset is more difficult than the previous

two. We selected all sketches from artists, who drew at least 6 sketches, thus, leading to a

dataset of 107 sketches from 11 artists.

3.4 Human Sketch Authorship Recognition
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Figure 3.6: Samples of sketches from the fraud dataset. The first row shows the origi-
nal sketches drawn by Artist A. The other two rows show the sketches of 2 other artists
(Artists B and C), who attempted sketch fraud. Obviously, the fraudulent sketches look
extremely similar to the originals, making authorship recognition (manual or automatic)
quite difficult.

For comparison and as a baseline, we study the inherent difficulty of the authorship
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recognition problem for humans. The human visual system (HVS) is renowned for it-

s effectiveness in successfully completing many high-level recognition tasks (e.g. object

and action recognition), so much so, that it remains the gold standard to which automated

recognition systems aspire. Despite significant advances in computer vision, the HVS al-

most always outperforms automated methods in such tasks. However, there do exist recog-

nition tasks, in which the HVS underperforms. These tasks usually deal with fine-grained

recognition of objects (e.g. faces), where the inter-class variation is minimal and on par

with the intra-class variation. We motivate this fact with an example. Although the HVS

can easily discriminate between a ’chair’ and a ’dog’, it does not do so well in recognizing

a person’s face in a large dataset of people (e.g. the entire population of a country) from the

same cultural and racial background. The differences between people’s faces are so subtle

that the minute details discriminating them are hard to uncover by the HVS. However, it

is exactly these details that automated recognition methods focus on. This enables them

to outperform the HVS in these tasks (e.g. robust face recognition [85]). In this section,

we provide extensive empirical evidence from two user studies that highlight the sheer d-

ifficulty people and experienced artists face when trying to recognize authorship from 2D

sketches.

Authorship Recognition by Non-Artists. The aim of this study is to shed light on how

accurately people can recognize sketch authorship. As an online quiz, participants are first

shown sample sketches from the free style dataset labeled with artists who drew them. We

showed 5 randomly selected sketches from each of the 10 artists. Next, we administered

for each online participant a total of 5 questions, each of which asked him/her to assign an

not previously seen sketch to one of the 10 artists that he/she thought drew it. We chose to

show users only 5 of the 10 images per artist so as not to overwhelm them and to enable

a fair comparison with the 2-fold experiments we conducted using our automated method.

We allowed participants to zoom-in to the images when needed. To reach a large number
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of participants, we published our user study on Amazon Mechanical Turk (AMT). To vali-

date the quality and seriousness of each Turker’s answers (as usually done in practise), we

administer control questions at the beginning of the quiz. Moreover, Turkers are randomly

directed to one of the many versions of the online study and answers from unique workers

are recorded.

After 6 weeks of activity and more than 2000 unique participants, the accumulated re-

sults of this study show that people can successfully recognize the authorship of a sketch

(among 10 different artists) with an average accuracy of 29% and with standard deviation

of 8%. Participants took an average of 4 minutes to complete the assigned quiz. We see

that average human performance is moderately better than a random choice classifier (i.e.

choose one of the 10 artists at random irrespective of what the sketch is) with an average

accuracy of 10%. Obviously, this establishes that sketch authorship recognition is quite

difficult for people. More importantly, we show later that our automated SAR method

achieves an accuracy of 56% under the same conditions.

Sketch Fraud Detection by Artists. We conduct a similar study, but we target artists

specifically because it is conceivable that the average person might find this task difficult

due to his/her lack of sketching experience and/or artistic talent. The aim here is to evaluate

the performance of artists in discriminating fraudulent sketches from original ones. A total

of 25 experienced artists were given an online quiz, where 5 original and 5 fraudulent

sketches were made known to each user. The sketches were taken from the fraud dataset

described earlier. Each artist is then given a set of 5 recognition questions, whereby he/she

needs to label the unseen sketch as original or fraudulent. Moreover, artists were given the

chance to view their quiz results and to email us feedback.s

The quiz results show that the artists could distinguish original sketches from fraudu-

lent ones only 47% of the time, as compared to 50% random chance. Each artist took an

average of 5 minutes to complete the task. As expected, most of the feedback we received
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elaborated on how truly difficult the task is. Later, we show that SAR significantly outper-

forms the artists’ recognition accuracy, thus, motivating the plausibility of using SAR in an

automated fraud detection system for sketches (e.g. patent drawings and cartoon sketches).

3.5 Experimental Results and Evaluation

This section presents a number of experimental results we obtained to assess multiple facets

of the proposed SAR approach. (1) To evaluate the effect of sketching constraints on SAR,

as well as, its overall effectiveness in recognizing sketch authorship and detecting sketch

fraud, we test SAR on the datasets described in Section 3.3. (2) We also evaluate the

sensitivity of SAR to a number of algorithmic variations. These results, in turn, are used to

design the most representative and discriminative variant of SAR.

3.5.1 Computational Authorship Recognition

We ask the following questions: Are simple strokes unique to the artist who draws them?

If they are, then to what extent can they identify the author who drew them? To our knowl-

edge, these questions are not adequately addressed in prior work. To answer them, we

conduct several experiments on three separate datasets, which provide a rich diversity of

sketch content and sketching constraints. In what follows, we report SAR classification ac-

curacy for each dataset and provide cross-dataset analysis. We also evaluate SAR’s ability

to detect sketch fraud using the fraud dataset.

Free Style Dataset. On this constraint-free dataset, SAR accuracy on test data is 56% and

53% using leave-one out and 2-fold validation respectively with 7% standard deviation.

For comparison, random chance in this case is 10%. To verify the statistical significance of

our classification results, we run a standard student t-test with a significance level of 95%.

The null hypothesis, ”SAR performs similar to a random classifier”, is rejected 97% of the

time (i.e. p-value is 0.03).
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Fraud Dataset. Is artistic style among different artists still preserved when they are con-

sciously attempting to commit fraud? To answer this, we use our fraud dataset to build

a 10-class SAR classifier to discriminate among the 10 artists. Using this dataset, ran-

dom chance is 10%. Here, SAR reaches a significantly higher average accuracy of 48%

(leave-one-out) and 43% (2-fold cross validation) with 6% standard deviation. This result

suggests that an artist’s sketching style is still distinguishable (to a certain extent) even

when attempting sketching fraud. To visualize the discrimination power of SAR, we show

the BoW features of three sketches (same object) drawn by 3 artists from this dataset in

Figure 3.7. One of the sketches is an original and the rest are fraudulent. Although all

three sketches look very similar, their underlying features have obvious differences, which

SAR capitalizes on to determine authorship. By conducting the student t-test with a 95%

significance level, we conclude that SAR is more discriminative than a random classifier

with a p-value of 0.04.

Figure 3.7: BoW features of the same sketch object drawn by 3 artists (one original and
two fraudulent). Although they look very similar, their features are different.

Line Study Dataset. The sketching task in the dataset compiled by [6] is highly con-
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strained as discussed in Section 3.3. As it is similar in spirit to the fraud dataset, we expect

similar results. We train and test SAR in the same way as before but with a total of 11

artists and 107 sketches. With 11 classes, random chance is 9%, which is significantly low-

er than SAR’s average accuracy of 33% (leave-one out) and 30% (2-fold) with 5% standard

deviation. This noteworthy discrepancy in performance indicates that artists still maintain

some uniqueness in their sketching style, even though they are forced to copy a different

style altogether. The p-value of the student t-test in this case is 0.05.

We give a performance summary for SAR on the three datasets in Table 3.5.1. The

slight difference in accuracy between leave-one out (i.e. all but one sketch are used for

training) and 2-fold cross validation (i.e. only 50% of sketches are used for training) in-

dicates that SAR is reasonably insensitive to the amount of training data used. This also

suggests that SAR is generalizable, a promising property for a classifier in the presence of

unseen data.

Rand Chance % Leave-one out % 2-Fold % Standard Deviation
Free Style 10 56 53 7

Fraud 10 48 43 6
Line Study 9 33 30 7

Table 3.2: A summary of SAR performance on three datasets. Average accuracy (%) is
reported for leave-one-out and 2-fold setups. Random chance accuracy (%) is also reported
for comparison.

Cross-Dataset Analysis. In the datasets above, the contributing artists were subject to

varying levels of sketching constraints, ranging from unconstrained (free style dataset) to

highly constrained (line study dataset). To investigate the sensitivity of SAR performance

with sketching constraints, we compare its accuracy across all datasets in Figure 3.8(a).

The datasets are ordered in increasing levels of constraint. To normalize the effect of d-

ifferent numbers of classes across datasets, we plot the ratio of SAR accuracy to random

chance. As expected, recognizing sketch authorship becomes harder as more constraints

are imposed on the artist. However, on all the datasets, SAR performance is significantly
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(at least 2.5 times) higher than random chance. This suggests that artists do not lose all

characteristics of their unique style even under the strictest of constraints.
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Figure 3.8: (a) The ratio between SAR accuracy and random chance on three datasets or-
ganized in increasing order of sketching constraints. Clearly, the more constraints imposed
on artists, the less discriminative their strokes become. (b) Fraud recognition performance
improves as more fraudulent artists are used in training, especially on sketches from artists
who were not included in training.

Fraud Recognition Experiment. Here, we setup a fraud recognition experiment (original

vs. fraudulent) that predicts SAR performance in a real-world scenario. It is unrealistic to

assume that the SAR classifier will have access to fraudulent training examples from all

artists. However, we expect that when more fraudulent samples are used in training, SAR’s

test performance on fraudulent sketches from artists, who were not included in training,

will improve. In other words, knowing more about how fraud looks like will help SAR

better detect sketch fraud, even for fraudulent artists whose sketches are not trained on.

To validate this expectation, we train the SAR binary (fraud vs. original) classifier with

fraudulent sketches from increasingly more fraudulent artists (i.e. from 1 to 5 artists). In

each case, 50% of the original sketches are used for training (2-fold validation). Then, each

SAR classifier is tested on the remaining original and fraudulent sketches. This means

that SAR will always be tested on fraudulent sketches from artists, whose style has not
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Figure 3.9: (a) Contribution of each feature type to SAR recognition. (b) SAR accuracy
on the free style dataset when its segmentation method is replaced with a manual or ran-
dom one. SAR accuracy drops by 15% when the segmentation is done manually and 20%
when it is done randomly. (c) SAR accuracy on the free style dataset, when the stroke
segments are taken to be all the segments in the entire sketch, all the segments in the sil-
houette of the sketch, or a randomly sampled fixed percentage of the segments in the entire
sketch. In the last case, we only consider the percentage of segments in the sketch that are
from the silhouette, which is estimated to be around 40% for each sketch. Adding internal
stroke segments does improve accuracy but the improvement is only about 10%. Silhou-
ette strokes are more discriminative than the same number strokes sampled from the entire
sketch. This shows the discriminative power of the silhouette.

been seen during training. In Figure 3.8(b), we plot the average test accuracy of SAR as

the number of fraudulent artists used in training increases. Clearly, this result endorses

our aforementioned expectation. In fact, SAR’s fraud detection performance reaches 96%

when 8 of the 9 fraudulent artists are used for training and the 9th for testing. Despite the

extremely high similarity between fraudulent and original sketches, we conclude that SAR

is able to effectively spot artistic fraud. Moreover, this result suggests that SAR can be used

in an online active learning setup, where test samples are sequentially classified and in turn

weighted and then used in re-training the classifier.

3.5.2 Algorithmic Details

Varying the details of the different computational modules of SAR (refer to Figure 3.1),

leads to a variant of SAR. In this section, we investigate many of these variations and

provide algorithmic details to reproduce the SAR classifier.
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Feature Contribution. Stroke segments are represented by 4 biologically inspired fea-

tures, as discussed in Section 3.2.3. Here, we study the contribution of each feature to

SAR’s discriminative power. To do this, we employ a conventional forward feature selec-

tion method that greedily determines which features (along with their importance weights)

should be incorporated into the SAR classifier. This is a data-driven process, so different

training-test splits of the dataset can lead to different feature selections and weights. By

training SAR (with 2-fold validation) multiple times on the free style dataset, we accu-

mulate an average selection weight for each feature (refer to Figure 3.9(a)). We see that

eccentricity and local consistency are the most discriminative followed by inflection and

symmetry with no one feature dominating.

Variations in Stroke Segmentation. To justify our stroke segmentation method (refer to

Section 3.2.1), we compare it against two baseline methods: manual and random stroke

segmentation. For manual segmentation, we asked 10 artists to manually segment sketches

into strokes as they see fit, while in the random case, breakpoints are selected uniformly

at random within each extracted stroke. We set a minimum length for each stroke seg-

ment to prevent singularities. SAR accuracy (2-fold) using each of the three segmentation

methods on the free style dataset is summarized in Figure 3.9(b). Clearly, our automated

segmentation method outperforms the other two. Similar to the human recognition result in

Section 3.4, SAR improvement over manual segmentation lends more evidence to the fact

that human performance is suboptimal in fine-grained tasks, such as authorship recognition.

Silhouettes Vs. All Strokes. In many cases (e.g. the Mickey Mouse cartoon character),

the silhouette of a sketch can be very discriminative, so much so, that silhouettes have been

used as primary features in other recognition tasks (e.g. action recognition [86]). Here,

we study how discriminative silhouette stroke segments are on their own within the SAR

pipeline. In Figure 3.9(c), we use two datasets to compare SAR accuracy when the stroke
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segments are taken to be all the silhouette segments, all the sketch segments, or a sample set

of the the sketch segments, where the sample size is based on the percentage of silhouette

stroke segments in the sketch. This percentage is 40% on average. Interestingly, silhouettes

seem to be quite discriminative in their own right, as SAR performance remains high even

when only silhouettes are used. In fact, including stroke segments from the sketch interior

only improves accuracy by about 10%. When comparing silhouette segments to the same

number of segments sampled from the entire sketch, we see that the former is much more

discriminative, thus, validating the discriminative power of a sketch’s silhouette.

Effects of Digitization. As mentioned in Section 3.2.1, stroke segments are extracted

from a sketch using the well-known Adobe Live Trace digitization technique. The level

of digitization is controlled by the user to tradeoff faithfulness to the original sketch with

compactness of representation. For instance, high levels of digitization tend to smooth out

strokes, thus, masking aspects of the artist’s intrinsic style and possibly affecting SAR per-

formance. To investigate the effect of digitization on SAR, it is applied to the fraud dataset

after applying three distinct levels of digitization. This is done by varying the path fitting

parameter in Live Trace. We report the average accuracies due to this parameter variation

in Table 3.3. As expected, the higher the digitization level), the lower the SAR accura-

cy is. This result suggests another application that could benefit from SAR, namely the

quantitative assessment of various digitization techniques. SAR can conceivably be used

to evaluate how much of the unique sketching style is preserved after digitization.

Style not Content. SAR is designed to represent and classify artistic sketch style, while

not being significantly sensitive to sketch content in general. This is a primary factor that

distinguishes SAR from existing shape matching techniques discussed in chapter 2. In fact,

our experiments show that sketches of different content (objects) drawn by the same artist

tend to have more similar BoW features than sketches of the same content drawn by differ-
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level of digitization leave-one-out 2-fold cross validation
Low 48 43

Medium 40 36
High 28 23

Table 3.3: Effects of digitization on SAR accuracy. Sketches from the fraud dataset are
processed using three levels of digitization in Adobe Live Trace. SAR accuracy decreases
significantly with higher levels of digitization.

ent artists. For instance, the BoW feature of a flower drawn by one artist is more similar to

a butterfly drawn by that artist than the feature of the same flower drawn by another artist,

as illustrated in Figure 3.10. To quantify this observation, we use a normalized Gaussian

similarity measure s(I1, I2) based on the Euclidean distance between two BoW features.

From the free style dataset, we randomly select a sketch IAi drawn by artist A and the same

sketch IBi drawn by another artist B to compute s(IAi , I
B
i ). We then randomly select a s-

ketch IAj drawn by A with i 6= j and compute s(IAi , I
A
j ). By performing this operation

across the whole dataset, we compute the average inter-artist similarity s(IAi , I
B
i ) = 68%

and the average intra-artist similarity s(IAi , I
A
j ) = 89%. This result shows that SAR can

abstract an artist’s style from different sketch content. We would like, however, to em-

phasize that strokes are not completely independent from the content. For example, SAR

cannot recognize the authorship of sketches of a single square if an author’s training data

only includes circles. Therefore, SAR inherently assumes that the training data contains

non-trivial sketches with sufficient stroke diversity characterizing the overall style of any

particular artist.

3.6 Applications

In this section, we show SAR’s feasibility in two useful applications other than sketch fraud

detection, namely sketch style training and sketch synthesis evaluation.
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Figure 3.10: A visual comparison between the BoW features of three sketches from the
free-style dataset: a flower drawn by Artist A (middle), a butterfly drawn by Artist A (left),
and the same flower object drawn by Artist B (right). From the features themselves and
their average pairwise similarity scores, we see that SAR discrimination abstracts artistic
style and is not significantly affected by sketch content.

Target Style  Training 0  Training 1 Target Style  Training 0  Training 1

Figure 3.11: Samples sketches drawn by artists at the first and final stages of training
along with the target style sketches. Sketches on the left correspond to the intermediate
artist while ones on the right to the novice artist. The progress in their sketching styles is
noticeable for both artists but more so for the novice one.

3.6.1 SAR for Sketch Style Training

How persistent are artistic styles when artists undergo extensive training for the explicit

purpose of altering their style and adopting another? For example, this type of training is

administered in major cartoon companies (e.g. Walt Disney). For this purpose, we develop

a SAR-based application that allows artists, designers, and animators in-training to quanti-

fy their progress in adopting the target style of a particular artist, whose sketches have been
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encoded in SAR as demonstrated next.

Style Training Setup We first determined a target style by finding a reasonably known

artist, who has published his work online along with specific instructions on how to follow

his drawing style. The target artist also provided YouTube videos showing how his sketches

can be drawn step-by-step. We selected fives sketches from his portfolio, specifically those

with video instructions. Then, we identified three artists with varying levels of sketching

and artistic experience (novice, intermediate, and advanced) to undergo the style training

process. The advanced level artist is a professional with 10 years of experience and the

intermediate artist has 3, while the novice artist only sketches as a hobby.

In the first stage of training, we asked all three artists to draw the five target sketches

and then used the SAR-based tool to give them quantitative feedback on how similar their

sketching style is to the target. The measure based on BoW features defined earlier in Sec-

tion 3.5.2 is used to compute style similarity. In the second stage, we asked the artists to

draw the sketches again after consulting a set of textual instructions on how to draw the tar-

get sketches. These instructions were obtained from the target artist’s website. In the third

stage, we provided the artists with their new SAR similarity scores along with instructional

online videos. After submitting their newest sketches, we again computed their SAR simi-

larity scores. Sample sketches of both novice and intermediate level artists at the first and

last stages of training are shown in Figure 3.11. It is obvious from these results that the

novice artist has improved more significantly than the intermediate artist in adopting the

target style.

Style Training Results Figure 3.12 plots the evolution of the SAR similarity score through-

out the 3-stage training process for each artist. As expected, each trainee’s score increases

with training. The novice artist exhibits an overall improvement of 10%, which can be

attributed to the explicit use of textual and video instruction for target training. The initial
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similarity scores for the intermediate and advanced level artists are much higher than the

novice one, but they also exhibit an improvement of 4% and 2% respectively. The slight

improvement by the advanced artist conveys how difficult it is for an artist with a well-

defined style and extensive experience to adopt a new style, as well as, how much easier it

is for a novice artist to do the same. Based on our results, we conclude that SAR can be

successfully employed to quantitatively monitor training progress. A training executable

is publicly available online. We will also release the training source code to extend this

application to a larger set of sketches from more participating artists and to allow users to

build their own training applications using their own sketch data.

Figure 3.12: SAR similarity-to-target scores for 3 novice, intermediate, and advanced level
artists after 3 stages of training. The novice artist has the least score in the initial stage but
progresses the most with training.

3.6.2 SAR for Evaluating Sketch Synthesis Results

As mentioned in chapter 2, there is a number of recent methods that focus on sketch syn-

thesis and artistic style analysis. Their aim is to develop automatic sketch synthesis tools

that mimic a particular artistic style. Most of these tools do not provide a quantitative as-

sessment of how close the synthesized style is to the target one, thus, making it difficult to
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compare synthesis methods. A few of them have validated their synthesis quality through

extensive user studies, which are cumbersome to compile and require careful analysis. We

propose using SAR to quantitatively evaluate sketch synthesis methods without the need

to conduct tedious user studies. To exemplify this application, we use SAR to analyze the

synthesis results of [4]. In their work, portrait sketches are synthesized from artistic styles

of 7 artists, each of which drew 24 portrait sketches. The real and synthesized sketches are

publicly available.

We first use SAR to classify artistic style among the real portrait sketches only. In

this case, SAR accuracy is 52% (leave-one-out) and 50% (2-fold), as compared to random

chance accuracy of 14%. When classifying only synthesized sketches, we obtain 54% accu-

racy (leave-one out) and 51% accuracy (2-fold) respectively. The similarity in performance

between the two scenarios suggests that the synthesized portraits are as hard to distinguish

as the real ones and that the synthesis tool of [4] maintains a very similar amount of style

diversity as in the real sketches. Next, we use SAR to classify the real sketches using the

synthesized ones only as training and vice versa. In this case, SAR accuracy dropped to

26% (leave-one-out) and 25% (2-fold). This performance drop can be used as a quantita-

tive measure of synthesis quality, as it allows for comparison between different synthesis

methods. In fact, an ideal synthesis tool should produce a SAR accuracy drop close to zero,

since the style of the synthesized sketches should be indistinguishable from that of the real

sketches.

Our results are on par with those of the three user (perceptual) studies in [4]. In fact, we

setup the SAR classification experiments above to follow the same setup used in these user

studies, where the only difference between the two is that SAR performs the classification

automatically without any human feedback. The participants in the user studies registered a

very similar accuracy when classifying the real and synthesized portraits separately (as did

SAR). More importantly, the drop in classification by human participants is around 20%,

which is comparable to the 25% drop reported by SAR. This result validates that SAR
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can be used to automatically and quantitatively evaluate sketch synthesis tools, without the

need to conduct cumbersome user studies.

3.7 Conclusion

In this par of the dissertation, we shed light on a new direction in sketch analysis, namely

authorship recognition through stroke analysis. We propose a stroke authorship recogni-

tion (SAR) approach that discriminates between artistic sketch styles based on the choice

and frequency of use of basic strokes. SAR is motivated by real-world issues, including

the fact that fraudulent copies of original sketches with patent and copyright protection are

sold on some websites, which claim them to be original. As it is hard for an individual to

discriminate authentic and fraudulent sketches (Section 3.4), original sketches from known

companies and artists are in danger of replication and copyright infringement. Moreover,

cartoon artists undergo months of training before they can officially contribute, so as to

ensure that the style in which the characters are drawn is not distorted when artists are re-

placed (Section 3.6.1). Similar to handwriting and signatures, sketches can be used for user

authentication as discussed in chapter 2. Thus, detecting major and minor differences in

sketching style is important. Furthermore, design patents that contain sketches of commer-

cial designs need to be protected, as is apparent in the ongoing lawsuits between Apple and

Samsung for example. All of this shows the need to have automatic tools, such as SAR, to

assess the authenticity of sketched objects and identify their authorship.

From our extensive experiments and user studies (Section 3.5.1), we provide empirical

evidence that SAR does encode unique and consistent characteristics of an artist’s sketch-

ing style, which are in turn used to discriminate one artist’s sketches from others. We also

showed that the extent to which SAR can be used for discrimination is dependent on the

sketching constraints imposed on the artist. Moreover, our extensive user studies empiri-

cally validate the difficulty of this fine-grained recognition problem and indicate that SAR

can improve upon human performance. All the compiled data (datasets and user studies)
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and source code will be made publicly available to enable further research on this exciting

topic and to allow for quantitative comparison.
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Chapter 4

Sketch Style Transfer

1 2

Target StyleQuery Sketch Target Style
Local Transfer 

Result
Query Sketch

1

Global Transfer 

Result

Figure 4.1: An overview of the proposed style transfer pipeline. The first module (stroke
style transfer) deals with transforming a line-drawing at the stroke-level so its style is sim-
ilar to that of a stroke transfer line-drawing. The second module (brush style transfer)
transforms a line-drawing into a stylized sketch given a sketch with a unique style.

4.1 Introduction

In this chapter, we propose an efficient technique for automatic sketch style transfer, which

transforms a sketch (a query sketch) in such a way that it represents another artistic sketch-

ing style (of a target sketch), regardless of the sketch content. We propose two methods of

transfer as shown in Figure 4.1. The first method focuses on stroke-style transfer, by trans-

forming the query sketch at the stroke level. It is built on concepts and insights uncovered

by the discriminative SAR model, proposed in chapter 3. In chapter 3, we demonstrate

that the subtleties of an artist’s style can be recognized by analyzing the frequency of some

representative geometric stroke-level features. In stroke-style transfer, we exploit this local

stroke representation by first modeling stroke segments as rational (parametric) quadratic

Bézier curves for both query and target line drawings. Based on the parametrization of the
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Bézier curves, the distribution of geometric features (e.g. stroke eccentricity) in the query

sketch can be modeled and its SAR distance to the target sketch style can be minimized. In

doing so, all strokes in the query are modified to closer resemble the target’s stroke-level

style.

The second transfer method (i.e. brush-style transfer) focuses on transferring the brush

look of a stylized sketch (a target sketch with a unique brush look) to a line drawing (the

query sketch). We find that convolutional sparse coding (CSC) can model/approximate the

sketching process of artists and, therefore, it is used for brush-style transfer stage. This

assumption is empirically validated in our work through a user experiment. Interestingly,

we cast brush-style transfer as a mapping problem between stylized brush elements and

their corresponding abstractions using simple strokes. CSC is used here to synthesize a

simple line-drawing that depicts the content of the target but using simple line strokes.

Our technique can be used to apply both subtle and major transformations on hand-

drawn sketches. For subtle transformations, artists can use the stroke-style transfer module

to get their sketches closer to a target style, which they are trying to mimic. For example,

this is essential when a new artist is assigned to draw a well-known cartoon character by

following the same style as another artist. Local stroke-level features are hard to mimic

in this case, but they are crucial to maintaining the overall sketch characteristics of the

cartoon character. On the other hand, major sketch transformations are made possible by

our brush-style transfer module. With it, artists are able to automatically apply a unique

brush look of a target sketch to their simple line drawings. This automatic transfer saves

artists a painstakingly large amount of effort, when compared to creating this transferred

brush look manually. The word style is interpreted in so many different ways in different

contexts. Thus, each definition, as we show in chapter 2, tackles the area of sketch synthe-

sis and transfer differently leading to different results and targeting and serving different

applications. Our proposed methodology adds new perspective to the problem and defines

sketching style to include both stroke-level and brush-level aspects of a sketch. With both
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methods of style transfer, we aim to present a comprehensive technique for sketch transfer,

which is feasible in various artistic sketch applications.

4.2 Stroke Style Transfer

2

2

Transfer �rough 

Optimization
Update Query Local RepresentationInput Line Drawings

Query

Target 

Figure 4.2: The work flow towards stroke-style transfer: (1) given a query and a target
line drawings ;(2) apply techniques for stroke extraction and segmentation and characterize
each stroke segment mathematically upon which each sketch is represented as a distribution
of feature frequency; (3) solve an optimization to approximate the query distribution to the
target’s; (4) update the query sketch accordingly.

In this section, we give a detailed description of the first sketch style transfer method stroke-

style transfer. It focuses on transferring the style of a sketch at the stroke level. Our method

is built on the concepts discussed in chapter 3. In chapter 3, we show that the frequency in

which an artist uses a set of basic strokes is unique to that artist and can be used for stroke

authorship recognition (SAR). This work developed a SAR distance (or loss) that can be

used to measure the difference in style between two line drawings. We exploit this distance

and extend its use to sketch style transfer.

Given the query line drawing Iq and a target stroke-style line drawing It, we aim to trans-

form the stroke segments of Iq such that the SAR distance between the transformed sketch

IS and that of It is minimized, as demonstrated in Figure 4.2.

4.2.1 Stroke-Based Sketch Representation

To formulate the SAR distance, drawings Iq and It are decomposed into strokes, which are

further split into smaller segments, small enough to be modeled by conic sections. Each
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stroke segment is parameterized as a quadratic rational Bézier curve. Strokes are grouped

together based on their eccentricity values to form a dictionary of stroke segments. Based

on that, each sketch is represented as a histogram of stroke segments using a hierarchical

bag-of-words (BoW) model, which encodes some aspects of the artist’s unique style. Fur-

ther elaboration is provided in what follows.

Stroke Extraction and Segmentation. We use the vectorized version of the free style

sketch dataset provided in chapter 3. The free-style sketches, composed of 70 sketch-

es by 10 artists, are vectorized using Adobe Live Trace. It is an of-the-shelf digitization

technique, which generates sketches that stay faithful to the original sketch [5]. Strokes

extracted from the vectorized sketches are quite long and contain a lot of geometric infor-

mation. Thus, they need to be further split into smaller segments. We fit a b-spline curve to

each stroke and locate break points at local maximum curvature locations in the b-spline.

To avoid over-segmentation, linear strokes are handled by placing break points at its two

ends. Each stroke segment is identified by the pixels between two consecutive break points.

Mathematical Characterization. After Iq and It are decomposed into stroke segments,

each segment is parameterized using a quadratic rational Bézier curve model, as in Eq (4.1).

f(t) =

∑2
i=0wipiB

2
i (t)∑2

i=0wiB
2
i (t)

, t ∈ [0, 1] , (4.1)

where pi is the ith control point of the 2D curve, wi is the corresponding weight, and

B2
i (t) is the quadratic Bernstein polynomial (i.e. (1 − t)2, 2t(1 − t), t2). Following the

standard form in [87], we set w0 = 1, w1 = w > 0 and w2 = 1. Bézier curves have been

widely used in computer graphics to model smooth curves [87, 88]. By manipulating the

control points of a Bézier curve, it can be intuitively deformed. Quadratic Bézier curves

are enough to model conic sections and only three control points {pi}2i=0 are needed.

A fundamental parameter of a conic section is its eccentricity, i.e. the deviation of
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that conic from a circle. Thus, eccentricity can be used not only to distinguish between

different types of conics (as done in chapter 3), but also to provide information of their

overall shape. This feature is also invariant to rigid body deformations. In the previous

chapter, eccentricity is mainly used as a local feature to mathematically characterize stroke

segments for sketch authorship discrimination. All of these stated motives encourage us to

choose eccentricity as the local feature to describe a stroke segment. The eccentricity e of

a rational quadratic Bézier curve is computed as in Eq (4.2).

e(p0,p1,p2)
2 =

2
√
4√

4− b
, (4.2)

where4 =
[
k‖s− t‖2 − 2(‖s‖2 + ‖t‖2)

]2
+ 4(k − 1)(‖s‖2 − ‖t‖2)2.

To provide some control over the representation as in [89], we set k = 1
w2 , s = p0 − p1,

t = p2 − p1 and b = −k‖s− t‖2 − 4(s · t). For derivation, proof and further discussion

on eccentricity of rational Bézier curves refer to [89].

Eccentricity Distribution. Given each stroke segment si characterized by an eccentricity

value ei, where i ∈ {1, ....,M} and M is the number of stroke segments in Iq, we now

represent this sketch as a distribution of eccentricity values. Following the framework in

the previous chapter (chapter 3), we build a stroke segment dictionary of K elements using

hierarchical k-means clustering on the stroke segments of the free style dataset. We choose

K = 20 for our experiments. This same stroke segment dictionary is used in the brush-style

transfer module in Section 4.3. Using theK elements of this dictionary as high dimensional

quantized bins and following the traditional BoW technique [81], we can represent a sketch

as a histogram of these stroke segments using their eccentricity information. In other words,

a sketch (either query Iq or target It) can be represented using a K dimensional histogram,

which quantifies the frequency in which each stroke segment is used in the sketch.
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To modify the strokes in Iq, we need to parameterize its BoW histogram, so as to

generate a smooth functional form that can be varied to minimize a particular objective.

We use kernel density estimation (KDE) for this purpose. We estimate the probability of

each bin (bk ∀k ∈ 1, · · · , K), in the histogram using Gaussian kernel density estimation

as shown below:

f(bk) =
1

M
√

2πh

M∑
i=1

exp

(
−[ei(p

i
0,p

i
1,p

i
2)− bk]

2

2h2

)
,

where h is the bandwidth value (h = 0.1 for our experiments), ei is the eccentricity in

Eq (4.2) of the ith stroke segment.By concatenating the probabilities of all K bins, we

obtain the desired sketch representation histogram hq for Iq. Note that this histogram is

parameterized by the control points of all M stroke segments {pi0,pi1,pi2}Mi=1.

hq({pi0,pi1,pi2}Mi=1) = [f(b1) · · · f(bk)]
> (4.3)

4.2.2 Transferring Stroke-Style from It to Iq

In this section, we show that stroke-style transfer can be realized by solving a properly

formulated optimization problem. It is based on the assumption that sketches drawn by

the same artist have more similar representative feature distributions (KDEs) than sketches

drawn by different artists, while remaining independent of sketch content. This assumption

is validated in [11]. We aim to transfer the style of It (represented by ht) to that of Iq

(represented by hq). This can be done by minimizing the objective in Eq (4.4).

{4x∗i }
M
i = argmin

{4xi}Mi

∥∥∥hq ({4xi}Mi
)
− ht

∥∥∥2
2

+ λ
M∑
i=1

‖4xi‖22 , (4.4)

where hq is the KDE of eccentricities (ei, ...eM) from sketch Iq, and ht is the same KDE

for sketch It. The set of optimization variables in this optimization is {4xi}Mi , where

4xi = [4xi
0; 4xi

1; 4xi
2] ∈ R6 is the concatenation of the three offset vectors for the
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2D control points pi0, p
i
1 and pi2 of the ith segment si of Iq. In other words, Iq will be

transformed into IS by transforming each segment si in Iq into another segment ŝi with the

following three control points: p̂ij = pij + 4xi
∗j for j ∈ {0, 1, 2}. As in many inverse

problems, we breakdown the cost function into two complementary parts: a data term and

a regularizer. The data term
∥∥∥hq ({4xi}Mi

)
− ht

∥∥∥2
2

encourages that the SAR distance be-

tween the query and target eccentricity histograms be minimum, i.e. the query style gets

closer to the target style. The regularizer term
∑M

i=1 ‖4xi‖22 penalizes a degenerate trans-

fer that simply copies the target. In our work, we set the tradeoff coefficient λ = 0.5.

Implementation Details. Each stroke segment curve passes through p0 and p2, the initial

and last points of the Bézier curve. To preserve connectivity in our transferred sketch, we

enforce 4xi
0 = 4x2

i−1 (or equivalently, p̂i0 = p̂i−12 ) in the optimization, whenever the

(i− 1)th and ith curves are connected in Iq. In addition to connectivity, we should maintain

similar coherence between consecutive stroke segments in the transformed sketch as in the

query sketch (refer to Figure 4.3 for an example). In other words, tangent values between

connected curves should be preserved in IS . Since we are only interested in finding the

tangent at the beginning and end of the curve segment (at t ∈ {0, 1}), we produce an

analytical form of the tangent at both ends of each curve segment and force tangent values

at the end of one segment and the beginning of the connected segment to be equal. We add

this equality to the objective function of our optimization.

We minimize the cost function in Eq (4.4) by using a Quasi-Newton method with a

cubic line search procedure for updating the approximation of the Hessian matrix [90],

which is implemented in the fminunc function of MATLAB. To speedup the process and

since the cost is smooth, we can generate the analytical form of its gradient w.r.t. the

variables {4xi}Mi . Since the cost is non-convex, the proposed optimization method can

only guarantee a local minimum. However, our experiments show that this local solution

is quite reasonable and results in visually appealing style transfer.
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After obtaining the {4x∗i }
M
i solution from the optimization, we can generate the control

points of the transformed sketch IS . Knowing these control points is enough to generate

(and sample) the underlying Bézier curves using the de Casteljau algorithm [91], thus,

rendering the transferred sketch.

query

target

Figure 4.3: A comparison of transfer results when a rectangle sketch is used as the query
and a circle as the target. The synthesis result on the left uses our optimization with-
out maintaining local coherence in tangent, which leads to poor non-smooth (cloudy like)
transfer. The transfer on the right, however, enforces this coherence leading to a more
visually appealing result.
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4.3 Brush Style Transfer
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Figure 4.4: Brush-style transfer module: (1) given a target stylized sketch ;(2) construct a
skeleton-look of the target sketch (enforcing sparsity) using our stroke segment dictionary;
(3) match brush strokes from the target image with each of the original stroke segment dic-
tionary; (4) Obtain the sparse codes of a line drawing by solving an optimization problem
and using our stroke dictionary; (5) replace each stroke in the dictionary with its matching
brush stroke and convolve with the original sparse codes to obtain a transferred sketch.

Up to this stage, we have applied style transfer at the stroke level to produce subtle but

distinctive transformations in IS . The second transfer method in this chapter, applys style

transfer at the brush level, where the brush-look of the entire sketch is transferred, leading

to significant sketch transformation (IB). We asked a number of artists to draw target

sketches characterized by a unique brush look and used their stylized sketches as a target

It for our brush transfer. For this type of transfer, we need to find a mapping between

a stroke segment (from a line-drawing) and its corresponding brush element. To do this

automatically (without manual interaction), we generate a skeletonized version of the target

sketch It by applying convolutional sparse coding (CSC) and the stroke segment dictionary

defined earlier in Section 4.2.1. Since it can be argued that CSC approximates how sketches

are drawn, overlaying this skeleton on top of Iq (query sketch) finds one-to-one mappings

between brush image patches in It and corresponding stroke segments used to reconstruct

this patch in its skeletonized version. As such, brush-style transfer becomes equivalent

to mapping the stroke segment dictionary used to represent sketches in the stroke-style

transfer to a corresponding dictionary of brush element patches used in It. The overall

brush-style transfer procedure is depicted in Figure 4.4. In what follows, we introduce the
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CSC model in the context of brush-style transfer. Since it is not commonly used in this

area, we validate our choice of CSC intuitively and empirically through a user experiment.

Then, we elaborate on each stage of the brush-style transfer module.

4.3.1 Sketch Reconstruction using CSC

CSC represents an image by a sum of convolutional responses generated from image filters

and sparse maps. These filters constitute a CSC dictionary D = {d1, ...,dK}, and when

convolved with their corresponding sparse maps Z = {z1, ..., zK}, the image is reconstruct-

ed. CSC has become an important tool in several computer vision applications, including

classification, localization, tracking, denoising, deblurring and inpaiting [92]. Given the

CSC dictionary, inferring the sparse maps for an input image x is done by solving the gen-

eral CSC optimization in Eq (4.5). The data term enforces the CSC image representation

model and an `1 term is added to enforce sparsity on the elements in Z.

arg min
Z

1

2

∥∥∥∥∥x−
K∑
k=1

dk ∗ zk

∥∥∥∥∥
2

2

+ β
K∑
k=1

‖zk‖1 . (4.5)

This model is closely related to sketch drawing. The ith map zi can be viewed as a sparse

score map, which scores each pixel based on whether the filter or stroke di is localized there

or not. A pixel location with a high score means that di contributes significantly at this pixel

to form the corresponding patch in the original image x. To solve the optimization in Eq

(4.5), we use the conventional ADMM algorithm [93]. We solve the problem efficiently in

the Fourier domain, as discussed in detail in [94].

4.3.2 Validating CSC for Sketch Drawing

In our work, we utilize CSC in implementing the brush-style transfer stage motivated by

the way image reconstruction takes place in such a model. As discussed above, CSC re-

constructs an image using a summation over a convolution between response maps Z spec-
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ifying where in the image a response takes place and a set of filters D, which reflect what

the response (stroke) will look like. We believe that this model approximates how an artist

would draw a sketch, i.e. making the decision where to draw a stroke and what the stroke

will look like (from a dictionary of strokes), except that it is a union operation rather than

a pixel-level summation as in CSC. To validate our assumption, we use CSC to reconstruct

line-drawings, where the filters are taken to be the elements of our stroke dictionary (20

strokes) introduced in Section 4.2.1. Figure 4.5 shows the evolution of the reconstruction

for a sketch drawing at different iterations of the ADMM optimization. The sketch is re-

constructed with high visual clarity, thus, justifying CSC and the stroke dictionary we use.

We also validate the choice of CSC in brush-style transfer through an empirical case study,

which estimates how many times an artist (on average) passes through a certain square

region while drawing a stylized sketch. We demonstrate details of the experiment below.

Increase in the number of  CSC iterations

Figure 4.5: Evolution of CSC reconstruction across various ADMM iterations.

Experiment Setup. Using a Wacom and a stylus pen, three artists are asked to freely

draw a given sketch. We parse the Wacom data files containing the sketches and divide the

sketches into square areas of 60×60, 30×30, and 10×10 pixels, where the whole image is

of 300×300 pixel resolution. For each square region, we count the average number of times

an artist passes his/her pen through this area. This is done using the spatial and temporal

information generated from the Wacom device. We eliminate areas that contain no strokes.

Experiment Results. Results of this experiment are shown in Table 4.1.According to this

experiment, the sparsity of strokes used in patches of a sketch reaches a reasonable amount

when using patches of 30×30 pixels, which is the size we adopt for the CSC dictionary
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elements in our work. Using larger sizes (i.e. 60×60) results in less sparsity, since artists

tend to use overlapping strokes that cover larger areas. Using smaller sizes (i.e. 10×10),

on the other hand, carries trivial details of a stylized sketch that is not enough to represent a

brush look. We conclude that artists need only pass their stylus pens through the same area

of a stylized sketch a sparse number of times. This observation validates the concept of

using response maps showing where strokes (filters) would be sparsely placed in a sketch,

thus, justifying the overall use of CSC.

Table 4.1: The frequency in which an artist needs to pass his/her stylus pen through a
60×60, 30×30 and 10×10 pixel region while drawing a stylized sketch of resolution
300×300 pixels. Refer to the text for details.

1-pass 2-passes 3-passes 4-passes
60×60 pixels 16% 40% 32% 12%
30×30 pixels 60% 30% 10% 0%
10×10 pixels 80% 18% 2% 0%

4.3.3 Brush-Style Transfer from It to Iq using CSC

Since CSC can be viewed as a way to model the sketching process, we can reformulate

the brush-style transfer problem from It to Iq as a matching problem between the stroke

segments used to generate Iq and their corresponding brush elements. If this mapping

is known, then the transferred sketch can be generated using the CSC formation model,

where the sparse response maps Z are generated by encoding Iq using the stroke segment

dictionary D (i.e. the K strokes found using kmeans in Section 4.2.1) and the filters are

replaced by the equivalent brush stroke dictionary. In this case, the placement of the stroke

is the same but the strokes themselves are replaced. Next, we focus on how this mapping

can be done automatically.

Skeletonized Sketch Generation from It. The one-to-one mapping between brush ele-

ments and stroke segments could be easily inferred, if the same content of the target sketch

It is drawn again but using the simple strokes in D. In other words, the artist of It would be

asked to redraw his sketch but only using a limited number of strokes, primarily one stroke
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per location in the canvas. In doing so, we overlay both sketches and generate a one-to-one

mapping between each brush element (of a particular patch size) and the simple stroke that

the artist used at the same location. Obviously, generating such a skeletonized sketch of It

requires significant manual interaction by the artist, as well as, pixelwise accurate registra-

tion for a correct overlay. To avoid this tedious step, we generate the skeletonized sketch

automatically.

Given the target It, we need to output a skeletonized sketch Iskeleton (refer to the second

stage of Figure 4.4 for an example). In fact, Iskeleton approximates what It would look like

if only simple strokes are used to draw it and the elaborate brush style is suppressed. To

produce Iskeleton automatically, we encode It using the CSC model in Eq (4.5), where the

CSC dictionary D is taken to be the stroke segment dictionary in Section 4.2.1. Since the

tradeoff parameter β can significantly impact the quality of the reconstruction (e.g. higher

values result in sparser maps and more abstract reconstructions, while smaller values give

more exact reconstructions), we use a high value of β to skeletonize It.

The skeletonized sketch Iskeleton is produced according to Eq (4.6), where dsk is the kth

stroke segment in D and zsk is its corresponding sparse response map. Figure 4.6 shows the

an example skeletonized sketch reconstruction for β = 5.

Iskeleton =
K∑
k=1

dsk ∗ zsk . (4.6)

Brush-Style Matching. Now that Iskeleton has been constructed, what remains is to match

brush patches from the target It with stroke segments in Iskeleton. To do this, we use the

sparse maps inferred from the CSC coding of Iskeleton. For each sparse map zsk, we find

the pixel location ck with the highest score. This location corresponds to the region in the

skeletonized sketch, where the corresponding stroke dsk is most prevalent. Then, this stroke

is matched with the brush stroke patch dbk from It localized at ck, as per Eq. (4.7).

dbk = Π(Ib, ck), (4.7)
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Figure 4.6: Skeletonized reconstruction of the left image using CSC and the stroke segment
dictionary.

where Π(I, c) represents a local patch from image I around c with size equal to the size

of a stroke dictionary element. This step is depicted in the middle part of Figure 4.4. It is

worth mentioning here that we can delete some parts of the matched patch, if it has edges

or traces from other parts of the image especially at corners. This sometimes occurs when

the size of the stroke element is relatively large.

Stylizing Iq with Brush-Style from It. Finally, to generate the final synthetic sketch IB,

we use the CSC formation model, where the response maps {zk}Kk=1 are adopted from

encoding Iq using the stroke dictionary {dsk}Kk=1, while the filters used for convolution are

the mapped brush elements {dbk}Kk=1 inferred from the skeletonized sketch Iskeleton. Eq.

(4.8) summarizes this formation. This step is depicted in the rightmost part of Figure 4.4

for a line-drawing from the free style sketch dataset of [11].

Iq ≈
K∑
k=1

dsk ∗ zk
brush style−−−−−−→ IB =

K∑
k=1

dbk ∗ zk. (4.8)
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4.4 Results and Validation

In this section, we provide an assessment and discussion of the visual results obtained

using our sketch style-transfer approach along with a validation user study. As in any

synthesis and transfer problem, a successful algorithm should meet the following three

requirements [95]:

• Style requirement: transferred sketches should be close to the hand-drawn sketches

drawn by artists.

• Identity requirement: transferred sketches should not influence the identity of the

object, i.e. content independent style transfer.

• Quality requirement: transferred sketches should have good visual quality, i.e. limit-

ed over-smoothing and noise.

Motivated by these requirements, we first discuss the results of the stroke-style transfer

method and the then brush-style transfer method to assess the synthetic transferred results

for both methods.

4.4.1 Stroke-Style Transfer Results

We test our algorithm on different sketches from the free-style sketch data set compiled

in chapter 3. We build our stroke-style transfer method based on their findings (namely

the SAR distance between sketches), which emphasize that an artistic sketching style is

sufficiently determined by the frequency of a collection of artist’s stroke that he/she uses

while sketching. We take our previous findings one step further and experiment if such

uniqueness can be used in stroke transfer. As shown in Figure 4.7, transferring a sharp

edgy shark sketch using a rounder and a fuller gold fish sketch leads to the replacement of

those edgy strokes with rounder ones. It is also obvious that the content is still preserved

and that the transferred sketch still represents a shark but a fatter one. Moreover, comparing



82

Query Sketch & Histogram Target Style & Histogram Transformation Result

Figure 4.7: An example of stroke style transfer. The transferred shark sketch is rounder
and less edgy in comparison to the prior transfer sketch (query). Moreover, the feature
frequency distribution of the transferred sketch is closer to the distribution of the target
golden fish sketch than it is to the query.

the histograms of the eccentricity feature of the query, target, and transfer result shows that

the transferred sketch distribution is closer to the target sketch than it is to the query, which

has the same content. This validates our choice of minimizing the SAR distance in our

stroke-style transfer optimization in Eq (4.4).

Another example is demonstrated in Figure 4.8, where we transfer the stroke-style of one s-

ketch into multiple styles using different target sketches. We choose our targets to represent

the same content (a star), but with varying stroke characteristics (frequencies of eccentrici-

ty). These three targets represent different levels of sharpness and roundness. Interestingly,

the transfer results reflect the influence of the target sketch. In other words, the sharper the

target is, the sharper the transferred results are and vice versa. This is quantitatively evident

when we visualize the eccentricity histograms of the transferred sketches.

4.4.2 Brush-Style Transfer Results

As discussed in Section 4.3, we also enable the user to change the brush look of a line-

drawing. Given a stylized sketch with a unique brush look, we apply our brush-style trans-
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Input Sketch Segments & 

Histogram

Target Styles Sketch Segments &

 Histograms 

Transformed Sketch & 

Histogram

Figure 4.8: An example of stroke-style transfer of a line drawing using various target s-
ketches. Different transferring results are obtained reflecting the roundness and sharpness
properties of target sketches.

fer module to produce the tree sketch example in Figure 4.11 and the various sketches

in Figure 4.12. Going back to the previously listed requirements of successful transfer,

we believe that the style, identity and quality requirements are sufficiently achieved in our

proposed transfer algorithm.

4.4.3 Sketch Abstraction via Skeletonization

Sketch abstraction is a form of visual representation that aims to omit extraneous details of

a sketched object, while not affecting the perception of the sketch content. It has recently

gained attention in the community [37]. In fact, the skeletonization component of our

brush-style transfer module can be applied to the field of sketch abstraction as well (refer

to Figure 4.9 for an example). Different abstraction levels can be achieved by varying the

tradeoff parameter β in Eq (4.6).

Relationshiop with Previous Work. Our sketch style transfer pipeline is fully automated,
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so it can be used to transfer any existing sketching style regardless of the sketched content

and the method of drawing. Existing sketch style transfer methods (Section ??), on the oth-

er hand, are either content dependent, as is the case of portrait sketches, or semi-automated

with various levels of user supervision required. Other methods require sketches to be col-

lected with specific devices, such as a Wacom and stylus pen. They cannot handle scanned

versions of a sketch. Moreover, we target sketch transfer at both stroke and brush levels

which distinguish our technique in comparison with related transfer methods. Moreover,

our technique is designed to transfer sketches to any target style represented in an exam-

ple stylized sketch, while existing methods tend to target only specific well-defined styles,

such as the style of pencil drawing. Since these methods are either content dependent or too

specific in their applicability, they cannot be easily extended to the general transfer prob-

lem (no constraints on sketch content and target styles) we are focusing on in this paper.

Therefore, a fair comparison with these transfer methods is not possible.

Increase in Abstraction Level

Figure 4.9: Results of applying our brush-style transfer in sketch abstraction. Different
levels of abstraction are presented.

4.4.4 Evaluation of Style Transfer: A User Study

We conducted a user study to quantitatively assess our transfer results. In this study, par-

ticipants are asked to match a transferred version of a line-drawing to the stylized sketch
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(i.e. with a unique brush look), which they believe was used for style transfer. Such assess-

ment studies are common in the validation process of sketch transfer and synthesis results

as in [21]. A total of 4 questions were asked and each has 3 choices to choose from. To

illustrate this study further, an example of one of these questions is given in Figure 4.10.

The experiments were conducted on Amazon Mechanical Turk and a total of 500 master

workers participated. The recognition rate was 86%, as opposed to 33% random chance.

Line Drawing

Stylized Drawing

Figure 4.10: An example of one question presented in the validation study. Given a line
drawing and its transferred style, participants need to match them to one of the sketches in
the options which they think was used in the transfer process.

4.5 Conclusion

In this chapter, we shed light on a new automatic technique for sketch style transfer from

one hand drawing to another with different sketching style. It consists of two methods

of transfer: stroke-style and brush-style transfer. Stroke-style transfer targets the transfer

of sketching at the stroke level through modifying the parameters of stroke segments of a

sketch. To do so, a global sketch distance between both query and target sketches is min-
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Skeleton-Look  
Representation

 Query Line Drawing  Transferred SketchTarget Stylized Sketch

Figure 4.11: Examples of applying sketch style transfer to the same query sketch.
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  Skeletonized 
Representation

 Query Line Drawing  Transferred SketchTarget Stylized Sketch

Figure 4.12: Examples of sketch style transfer of various query and target sketches.
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imized. Our global sketch representation is based on insights from our stroke authorship

recognition technique, discussed in chapter 3, which assumes that an artist’s style can be

recognized by the frequency distribution of certain mathematical descriptors collected from

basic sketching strokes. Brush-style-transfer, on the other hand, aims to transfer the brush

look of a sketch to an input line-drawing. For this stage of transfer, we find a mapping

between a stroke segment and its corresponding brush element in the stylized sketch. This

is done automatically by using convolutional sparse coding (CSC). As it is intuitively and

empirically validated in our work, CSC is found to model the sketching process well. In

fact, brush-style transfer becomes a matter of mapping the stroke segments to their corre-

sponding brush element patches.

With these two methods of sketch transfer, our sketch style transfer technique can be used to

automatically apply both subtle and major transformations on sketches. Furthermore, it can

be used to transfer a sketching style independent of the sketched content and for sketches

drawn either digitally or by hand. It is also capable of transferring a sketch style to any

target style of a given example sketch. Our pipeline adds a new comprehensive perspective

to the problem of style transfer. Our extensive experiments show that our transfer results

are visually appealing both qualitatively and quantitatively (through a large user study).
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Chapter 5

Sketch Geometric Modeling

5.1 Introduction

Sketch vectorization, which is defined as representing a sketch as a number of connected

parameterized curves, is of great demand in the graphics community. It enables sketch

transformations that are invariant to scale and non-rigid body transformations. It also fu-

els various applications related to sketch style manipulation, analysis and synthesis [11].

Previous work on those topics tends to avoid the non-trivial geometric solutions of sketch

vectorization [12] and replaces it with some manual interaction to access strokes of sketch-

es (strokes are the building blocks of a sketch). This involves pre-processing steps such

as building large libraries of strokes or digitally collecting sketches using the Wacome de-

vice [7,13]. As such, utilizing existing modern computing algorithms for automatic sketch

parametric representation is a valuable contribution to the graphics research community.

In this chapter, we propose an extension to the formulation of the well-known convolu-

tional sparse coding (CSC) model, such that it can better model the reconstruction process

of line drawings. CSC plays an essential role in many computer vision applications rang-

ing from image compression to deep learning. Here, we spot the light on a new application

where CSC can effectively serve, namely line drawing analysis. This can be done by con-

straining the filters in CSC to a pre-defined group of parametric curves. This results in

learned filters that, in their content, describe the sketch geometrically as a set of curves.

Such representation can be utilized for sketch vectorization. We believe that our work is

the first to introduce geometry constraints to the standard CSC formulation.
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Figure 5.1: Constrained Convolutional Sparse Coding (CSC) Model. An input image is rep-
resented by a sum of dictionary elements belonging to set of parametric curves convolved
with corresponding sparse maps and resulting in a reconstructed image that is similar to the
input image.

CSC represents an image by a sum of convolutional responses generated from image

filters and sparse maps. These filters constitute a CSC dictionary D = {d1, ..,dK}, and

when convolved with their corresponding sparse maps Z = {z1, .., zK}, the image is re-

constructed. Given an input image x, the CSC optimization is described in Eq (5.1).

arg min
dk,zk ∀k

1

2
||x−

K∑
k=1

dk ∗ zk||22 + β
K∑
k=1

||zk||1

s.t. ||dk||22 ≤ 1 ∀k ∈ {1, ..., K}

(5.1)

CSC approximates how sketches are drawn. If the filters in the dictionary are generated

from actual parametric strokes, then the summation of convolution responses between these

filters and the sparse maps specify where in the image a stroke emerges and the set of filters

reflect what the response (stroke) will look like. We believe that this model approximates

how an artist would draw a sketch; however, a more accurate depiction of this process

would be to replace the summation with a spatially localized max operation (representing

a union instead of a sum). Unfortunately, this higher fidelity model makes the optimiza-

tion significantly harder to do, although it could still be solved using standard fixed point

(alternating) optimization techniques popularly used for bi-convex problems.

To validate our choice of CSC for the task of line drawing analysis, we conducted a
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user experiment. Using a Wacom and a stylus pen, three artists are asked to freely draw

a given sketch. We parse the Wacom data files containing the sketches and divide the

sketches into square areas of 30×30 pixels, where the whole image is of 300×300 pixel

resolution. For each square region, we count the average number of times an artist passes

his/her pen through this area. This is done using the spatial and temporal information

generated from the Wacom device. We eliminate areas that contain no strokes. According

to this experiment, the sparsity of strokes used in patches of a sketch reaches a reasonable

amount with only 1-pass with the stylus pen over a squared region 60% of the times. This

observation validates the use of sparse response maps, thus, justifying the overall use of

CSC.

Figure 5.1 gives an illustrative example of how our proposed constrained CSC model

is used for line drawing reconstruction using filters that are learnt from a set of parametric

curves. We solve the resulting non-convex optimization using ADMM. Through experi-

ments, we empirically validate the convergence of our method to a feasible solution. As

this novel method is expected to provide a reliable and automatic method for parametric

sketch representation, a number of sketch manipulation examples are demonstrated in this

chapter.

5.2 Constrained Parametric CSC Optimization

In this section, we give a brief overview of the standard CSC model. Then, we reformulate

the problem to include our proposed parametric projection constraint. In this work, we

consider the CSC problem with circular boundary conditions as discussed in the work of

Brisow et al. [10].

5.2.1 Standard CSC Model

The CSC problem is generally expressed in Eq (5.1), where dk ∈ RM are the vectorized

2D patches representing K dictionary elements, and zk ∈ RD are the vectorized sparse
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maps corresponding to each of the dictionary elements. The data term represents the image

x ∈ RD as the sum of 2D convolutions of the dictionary elements with the sparse maps,

and the `1 term is added to enforce sparsity onto the feature maps with β controlling the

level of sparsity. The CSC objective function can be easily extended to multiple training

images, where K sparse maps are learned for each image and all images share the same K

dictionary elements.

The objective in Eq (5.1) is not convex, yet it is bi-convex. So, solving it for one variable

while keeping the other fixed leads to two convex subproblems: the coding subproblem and

the dictionary learning subproblem.

Learning Subproblem. The learning subproblem is shown in Eq (5.2). It learns the dic-

tionary elements for a set of sparse feature maps.

arg min
d

1

2
‖x− Zd‖22 s.t. ‖dk‖22 ≤ 1 ∀k (5.2)

Here, Z = [Z1 . . .ZK ] is a concatenation of Toeplitz convolution matrices of the sparse

maps, and d = [dT1 . . .d
T
K ]T is a concatenation of all the dictionary elements.

Coding Subproblem. The coding subproblem is detailed in Eq (5.3). It computes optimal

sparse maps for a set of dictionary elements.

arg min
z

1

2
‖x−Dz‖22 + β‖z‖1 (5.3)

Similar to above, D = [D1 . . .DK ] is a concatenation of Toeplitz convolution matrices of

the dictionary elements, and z = [zT1 . . . z
T
K ]T is a concatenation of the vectorized sparse

maps.

One approach to solve each of the above subproblems is to cast it in an ADMM frame-

work. Also, it can be solved efficiently in the Fourier domain. For more details about the
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Figure 5.2: The work flow of parametric curve projection for each filter patch: (1) given
an input filter patch T ;(2) extract the largest set of connected pixels with intensity values
above a threshold and then extract its centerline; (3) apply cubic Bézier curve fitting; (4)
copy the intensity values of pixels where the fitted curve located at T to the generated curve
patch; (5) apply quadratic projection to the curve patch.

CSC model and for a discussion on various methods to solve it, we refer the reader to the

work of Bristow et al. [74].

5.2.2 Constrained Parametric CSC

In this section, we describe the variations we make on the standard CSC model to solve for

a constrained parametric CSC (i.e.to allow for filters to be constrained to a set of parametric

curves). This reformulation enforces geometrical properties on the filters during the train-

ing step. As we explain the model, it will become obvious how such reformulation enables

a parametric curve representation of the reconstructed line drawings. We reformulate the

CSC problem by adding a parametric constraint as follows:

arg min
dk,zk ∀k

1

2
‖x−

K∑
k=1

dk ∗ zk‖22 + β

K∑
k=1

‖zk‖1

s.t. dk ∈ Sb; ∀k ∈ {1, ..., K}

(5.4)

This constraint is added to the learning subproblem so that the learned dictionary patches

are geometrically constrained to belong to a set of parametric curves Sb. We define the set

of parametric curves as follows:

Sb =
{
a : ‖a‖22 ≤ 1 s.t. support of a ∈ f(t)

}
, (5.5)
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where the support of a denotes the set of pixel indices with non-zero intensity in a and f(t)

is the cubic Bézier curve function in Eq (5.6).

f(t) =
3∑
i=0

piB
3
i (t), t ∈ [0, 1] , (5.6)

where pi is the ith control point of the 2D curve, and B3
i (t) is the cubic Bernstein polyno-

mial (i.e. (1 − t)3, 3t(1 − t)2, 3t2(1 − t), t3) [87]. By manipulating the control points of

a Bézier curve, it can be intuitively deformed. Cubic Bézier curves are enough to model

various curve shapes and only four control points {pi}3i=0 are needed as shown in Figure

5.3. Unlike normal functions, parametric Bézier curves do not define a y coordinate in

terms of an x coordinate. Instead, they link the values to control variables. If we vary the

value of t, then with every change we get two new values, which we can use as (x, y) coor-

dinates in the curve plot. The variable t can be viewed as the variable which we sample the

curve along as its value changes over a defined range [88]. We choose cubic Bézier curves

to represent underlying strokes in line drawings, since they are widely used in computer

graphics and geometric modeling applications that focus on smooth curves [87, 88].

Figure 5.3: Examples of cubic Bézier curves. Four control points are enough to represent
the curve.

Learning Subproblem. Changes on the standard CSC are only reflected in the dictionary

learning subproblem. The learning subproblem corresponding the constrained parametric

CSC is shown in Eq (5.7). The inequality constraint on the dictionary elements shown in
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Eq (5.1) is now embedded as part of the parametric projection proximal of the set Sb as

defined earlier in Eq (5.5). To be able to solve this subproblem using ADMM, we add the

second equality constraint and introduce an auxiliary variable u as follows:

arg min
d,u

1

2
‖x− Zd‖22 s.t.


uk ∈ Sb

uk = dk

∀k (5.7)

Using an indicator I for the constraint, we can move it into the objective yielding the

following objective with one constraint, which constitutes our proposed constrained para-

metric CSC:

arg min
d,u

1

2
||x− Zd||22 +

K∑
k=1

I{uk∈Sb}

s.t. dk = uk; ∀k ∈ {1, ..., K}

(5.8)

To apply ADMM to Eq (5.8), we define the augmented Lagragian function L as follows:

L (d,u,λ) :=
1

2
||x− Zd||22 +

K∑
k=1

I{uk∈Sb}

+ λT (u− d) +
ρ

2
||u− d||22

(5.9)

where λ is the Lagrangian dual variable of the constraint. The iterative ADMM steps to

minimize Eq (5.9) w.r.t. the primal variables (d,u) are described in Algorithm1. ADMM

updates are performed by optimizing for the variables d and u one at a time, while keeping

the other. Then, the dual variable λ is updated using gradient ascent. Now, we list the

optimization solutions to update the primal variables in the ADMM algorithm.

Update dt+1: At the tth iteration, the update of this variable is a simple least squares

problem, which has the following solution: dt+1 =
(
ZTZ + ρI

)−1 (
ZTx + λt + ut

)
. We

initialize d as randomly generated parametric curves.
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Algorithm 1 ADMM for learning subproblem
1: Set ADMM optimization parameter ρ > 0
2: Initialize variables d, u, λ
3: while not converged do
4: dt+1 = arg mind

1
2
||x− Zd||22 − λTd) + ρ

2
||u− d||22

5: ut+1 = prox f
ρ

(
dt+1 + λt

ρ

)
where f(u) =

∑K
k=1 I{uk∈Sb}

6:
7: λt+1 = λt + ρ (ut+1 − dt+1)
8: ρ = ρ+ c

9: Output solution variables

Update ut+1: Updating this variable is done through the proximal operator g(.) for the

indicator function of set Sb. Mathematically, the underlying optimization is:

g(T) = arg min
u

ρ

2
‖u−T‖22 +

K∑
k=1

I{uk∈Sb}

where T = dt+1 + λt

ρ
. Consequently, the goal of our parametric projection proximal op-

erator g(.) is to find the best cubic Bézier curve, which defines the support of an image

patch closest in intensity to T. In this way, we are geometrically guiding the indices of

the non-zero elements of the learned filters to form a proper Bézier curve. To achieve that,

we develop a method to perform this parametric projection to a Bézier curve, as illustrated

in Figure 5.2. First, we extract the largest set of connected pixels with intensities above

the average intensity of T. We then apply morphological skeletonization [96] to extract

the centerline of those high intensity pixels. This will generate a skeleton representation

of the extracted pixels. Next, we fit a cubic Bézier curve on the extracted skeleton using

Eq (5.6) and then copy the intensity values at these pixels from T. Lastly, we project the

resulting image patch onto the unit ball to enforce that ‖uk‖22 ≤ 1; ∀k ∈ {1, ..., K}. This

ensures that the solution vector is of the proper scale. It is important to mention that the set

Sb is a non-convex set, thus, the parametric projection is not necessarily globally optimal.
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However, our experiments, as we demonstrate later, show that our multi-stage technique to

define the proximal operator g(.) converges to feasible solutions.

Coding Subproblem. The coding subproblem of the constrained parametric CSC is the

same as in the standard CSC discussed in Section 5.2.1. It is solved by applying ADMM

where the update steps involve solving a linear system and a proximal operator for the

`1 norm. The linear system is solved efficiently in the Fourier doamin making use of the

circulant structure of the convolution matrices. The proximal operator, on the other hand,

is solved using soft-thresholding. We refer the reader to the work of Heide et al. [72] for

details on how to solve the coding subproblem and for overall complexity analysis.

5.3 Experimental Results and Evaluation

In this section, we provide an assessment and a discussion of the proposed constrained para-

metric CSC. We start with an overview of the implementation details and the parameters

selected throughout our experiments. Then, we discuss the convergence of our technique

and provide visual evaluation of the learned parametric filters, as compared to standard C-

SC, along with image reconstruction quality. Towards the end of this section, we present

some qualitative examples of sketch synthesis and manipulation using our parametric mod-

el.

5.3.1 Implementation Details

The line drawings used in our experiments are from the free style line drawings dataset

of the stroke authorship recognition model presented in chapter 3. It comprises 70 clean

line drawings of multiple experienced artists. Before learning the dictionary elements, we

apply contrast normalization to the sketch images to generate normalized images with black

background and white sketch drawings in the foreground. All these images of 300 × 300

spatial resolution.



98

The number of dictionary elements is chosen to be K = 100, where each element has

a spatial size of 31 × 31 pixels. We found that this size of individual dictionary elements

is representative enough of the different curves in a line drawing, thus, allows for a various

collection of Bézier curves to be fit to the learned image filters. Smaller dictionary ele-

ments, on the other hand, lead to non-significant details per dictionary patch while larger

filter sizes carry lots of details such that it is impossible to fit a single Bézier curve per

dictionary patch. We initialize each dictionary element as a normalized image with black

background and a white foreground with a support that traces a randomly generated Bézier

curve.

We choose the value of the sparsity coefficient β = 0.6, which we find to deliver a good

trade-off between sparsity and data fit. Moreover, for the ADMM learning steps we start

with a value of ρ = 0.1 which increases by 2% at every iteration.

5.3.2 Simple Reconstruction Example

In Figure 5.4, we present an example for constructing a simple primitive shape (a circle)

using K = 4 dictionary elements using our constrained parametric CSC model. Starting

with initial dictionary patches that are almost linear Bézier curves, it is obvious how the

dictionary patches in the last iteration have changed to represent a new set of curves that

are of better representation power for the end shape (a circle). Using this simple exam-

ple, we demonstrate how our constrained parametric CSC model works in general. The

learned parametric filters can now be used to describe the reconstructed image geometri-

cally. Moreover, the quality of reconstruction is reflected on how the constructed circle

image is very close to the input.

5.3.3 Evaluation of Constrained Parametric CSC

Multiple intuitive questions arise while discussing our proposed parametric CSC, which we

address in this section. First, we study the reconstruction quality of the parametric CSC and
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Figure 5.4: An example of reconstructing a circle using our constrained parametric CSC.
Filters in the last iteration have deformed to a new set of curves that are clearly represent-
ing the reconstructed image and describe it geometrically. Furthermore, the reconstructed
image quality is preserved when compared with the input image.

show how the dictionary elements look like upon convergence. As illustrated in the first

2 columns of Figure 5.5, learned dictionary elements (strokes) change significantly when

compared against the initial random curves. Such change yields to dictionary elements that

represent the image geometrically through the parametrically defined filters. Also, we see

that the reconstruction quality is good with a Peak Signal-to-Noise Ratio (PSNR) of 29dB.

We also compare our parametric model with standard CSC. Dictionary elements learned

on the standard model are illustrated in Figure 5.5. It is obvious that they do not carry clear

geometric information evident in line drawings and they cannot be used for parametric
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Figure 5.5: A comparison of the the dictionary learning elements and the quality of the
reconstructed images between (1) the constrained parametric CSC, (2) the standard CSC
and (3) the standard CSC with curves fitting (particularization) in the last iteration.

representation of sketches. However, the reconstruction quality of the standard CSC is

higher than our parametric CSC with PSNR=40dB. This is expected, since standard CSC

ideally offers a lower bound objective to that of our constrained parametric CSC. It is

important to mention that all experiments are conducted at the same sparsity level (of 60%)

for the sparse codes.

To evaluate the need for applying the proximal operator g(.) within the ADMM frame-

work, we apply this operator to fit cubic Bézier curves to the filters learned by standard

CSC. As shown in Figure 5.5, these learned filters are not representative of the content of

the line drawing, since it is hard to fit one curve to each filter generated through standard

CSC. Projecting these learned filters onto Sb generates subpar results that are not reflective

of the strokes drawn by the artist. In addition, the reconstruction quality using these pro-

jected filters is 18dB lower than our constrained parametric CSC. Therefore, we conclude

that our method is capable of generating high reconstruction quality line drawings, while

constraining its filters to be parametric Bézier curves.
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5.3.4 Convergence

Our constrained parametric CSC optimization is non-convex in general. This is because

the set Sb in Eq (5.7) is non-convex, i.e.the convex combination of any two patches with

cubic Bézier curve support does necessarily generate a patch whose support is a cubic

Bézier curve. Despite this non-convexity, our experiments show that the ADMM iterations

do empirically converge (refer to Figure 5.6). The plots in Figure 5.6 are generated when

constructing multiple line drawings with 300 × 300 pixel resolution and with K = 100

dictionary elements of resolution 31× 31 pixels, similar to Figure 5.5. The first plot on top

shows how the overall objective value of parametric CSC decreases as the fixed point (or al-

ternative optimization) iterations progress, refer to Eq (5.4). The second plot is an evidence

of convergence for a single learning subproblem that uses ADMM, Eq (5.8). The learning

objective eventually decreases and then saturates after a certain number of iterations. The

early increase in this plot is due to the fact that the current solution is not feasible, i.e.the

variables d and u are far away from each other. This is clear from the bottom plot, which

measures how the primary variables d and u are getting closer as the ADMM iterations

progress for the single learning subproblem. As this distance measure reaches zero, the

resulting variables are guaranteed to be the same, thus, reaching a feasible solution to the

constrained problem in Eq (5.7).

As in any non-convex optimization problem, initialization of the optimization variables

is an important element to solve the problem so it converges to a feasible solution. Our para-

metric optimization, on the other hand, is not significantly sensitive to initialization. This

is evident on how our optimization is able to converge and generate promising results when

using randomly generated cubic Bézier curves images as its initial dictionary elements.

However, the closer the initialized parametric filters to the actual stroke of the drawings,

the faster the convergence and the higher the overall reconstruction quality. Lastly, we

leave the proof of convergence of ADMM on this non-convex problem to future work.
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Figure 5.6: Convergence experiments. The first plot shows how the objective function
value decreases over alternating optimization iterations. The second plot shows how the
ADMM subproblem objective value decreases over the dictionary learning iterations and
then saturated. The third plot shows how the primary variables u and d are getting closer
to each other until the difference between them is almost 0.
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Manipulated Sketch 1 Manipulated Sketch 2 Manipulated Sketch 3 Manipulated Sketch 4

Figure 5.7: Examples demonstrating how sketch stylization and manipulation is enabled
upon having parametric representation of sketches.

5.3.5 Qualitative Sketch Manipulation Results

As mentioned earlier in Section 5.1, parametric representation of sketches is vital to enable

for automatic sketch synthesis and manipulation. Here we demonstrate a number of line

drawing manipulation or stylization examples (i.e. embedding a new style into a line draw-

ing) on one hand-drawn sketch as shown in Figure 5.7. Given the parametric filters learned

by our constrained parametric CSC model, as in Figure 5.5, we can now directly apply

various geometric transformations to those parametric curves. This will generate a set of

new dictionary elements which we use to reconstruct the same line drawing using the same

sparse feature maps inferred from the constrained parametric CSC model. Consequently,

this will embed a new style to the strokes of the line drawing.

The first manipulation example we include in this work aims to increase the thickness

of strokes in the sketched line drawing. This is simply achieved by increasing the thickness

of the parametric curve in each patch by generating the same curve and take two copies of

it and place them one pixel above and one pixel below the original curve. The process of

shifting and copying the curve can be repeated as many times as needed around the original
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parametric curve with increasing pixel values until getting the desired thickness. Then we

replace the parametric learned filters with the modified ones and reconstruct the line draw-

ings using the earlier inferred feature maps to embed this new style. Thickness stylization

result is shown on the sketch labeled as ”Manipulated Sketch 1” of Figure 5.7. Another

kind of manipulation can be generated by replacing each parametric curve with a period-

ic function, g(t), over the curve path. We choose three types of periodic functions: sin,

square and sawtooth periodic functions. Such stylization can be accomplished by replacing

each parametric curve f(t) in Eq (5.6) with f(t) + g(t), where g(t) is a periodic function.

Similarly, this will generate a new set of dictionary elements which are used to reconstruct

the line drawing to embed the new style. Manipulation results are shown in Figure 5.7. It

shows examples of periodic sin, square and sawtooth manipulations in the sketches labeled

”Manipulated Sketch 2” to ”Manipulated Sketch 4” respectively.

5.3.6 Conclusion

In this chapter, we present an automatic method for representing a sketch geometrically

as a set of parametric curves. It is based on utilizing the well known convolutional sparse

coding (CSC) model. This is based on our observation that CSC is closely related to the

line drawing process. The ith map zi can be viewed as a sparse score map, which scores

each pixel based on whether the filter or stroke di is localized there or not. This scenario

resembles how one would draw a sketch, i.e.making the decision what stroke to draw and

where to place it. To make it a better fit to the task of line drawing analysis, we reformulate

the standard CSC model such that the dictionary elements are constrained to belong to a

set of images, whose support is a parametric cubic Bézier curve. As such, sketches are

represented geometrically through the learned CSC filters. Such reformulation leads to

a non-convex learning subproblem of the CSC, which we solve using ADMM. Although

convergence is not theoretically guaranteed in this non-convex case, experiments show that

our algorithm reliably converges to a good solution.
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Chapter 6

Concluding Remarks

In this chapter, the main conclusions and contributions of the previous work will be sum-

marized and additional comments for future work will be provided. In this dissertation, we

provided new techniques and applications in the field of sketch analysis, style transfer and

geometric representation. The conclusions of each proposed technique is presented below:

Sketch Authorship Recognition (Chapter 3): In this chapter, we shed light on new direc-

tion in sketch analysis, namely authorship recognition through stroke analysis. We propose

a stroke authorship recognition (SAR) approach that discriminates between artistic sketch

styles based on the choice and frequency of use of basic strokes. It is motivated by real-

world issues, including the fact that fraudulent copies of original sketches with patent and

copyright protection are sold on some websites, which claim them to be original. As it

is hard for an individual to discriminate authentic and fraudulent sketches (section 3.4),

original sketches from known companies and artists are in danger of replication and copy-

right infringement. Moreover, cartoon artists undergo months of training before they can

officially contribute, so as to ensure that the style in which the characters are drawn is not

distorted when artists are replaced (Section 3.6.1). Similar to handwriting and signatures,

sketches can be used for user authentication as discussed in chapter 2. Thus, detecting ma-

jor and minor differences in sketching style is important. Furthermore, design patents that

contain sketches of commercial designs need to be protected, as is apparent in the ongoing

lawsuits between Apple and Samsung for example. All of this shows the need to have au-

tomatic tools, such as SAR, to assess the authenticity of sketched objects and identify their
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authorship. Our new shape representation and authorship classification technique is based

on analyzing local features of the sketch’s silhouettes and internal strokes which are then

used to represent a sketch as a histogram of universal strokes segments. The later repre-

sentation is used in a k-NN based authorship classification model. The proposed method

is applicable to sketches in various sizes, and invariant to non-rigid motion, scaling and

rotation.

From our extensive experiments and user studies (section 3.5.1), we provide empirical

evidence that SAR does encode unique and consistent characteristics of an artist’s sketch-

ing style, which are in turn used to discriminate one artist’s sketches from others. We also

showed that the extent to which SAR can be used for discrimination is dependent on the

sketching constraints imposed on the artist. Moreover, our extensive user studies empiri-

cally validate the difficulty of this fine-grained recognition problem and indicate that SAR

can improve upon human performance. All the compiled data (datasets and user studies)

and source code are publicly available to enable further research on this exciting topic and

to allow for quantitative comparison. Below is a listed summary of major findings and

experiments of our stroke authorship recognition technique:

• Uniqueness of Sketch Style. Based on results in Section 3.5.1, we conclude that SAR

does encode unique and consistent characteristics of an artist’s sketching style, which

are in turn used to discriminate one artist’s sketches from others. This result validates

SAR’s applicability in important real-world tasks, such as sketch fraud detection (e.g.

for design patents and cartoon characters) and training/teaching artistic style.

• Style and Sketch Constraints. The extent to which SAR can be used for discrimina-

tion is dependent on the sketching constraints imposed on the artist. Although overall

SAR accuracy decreases with more constraints, unique elements of artistic style still

persist even under the strictest of constraints (fraud).

• Silhouettes. We identify that a sketch’s silhouette is a richer source of discriminative
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information than internal strokes in general.

• Human Performance. Our extensive user studies empirically validate the difficulty

of this fine-grained recognition problem and indicate that SAR can improve upon

human performance. All the compiled data (datasets and user studies) and source

code will be made publicly available to enable further research on this exciting topic

and to allow for quantitative comparison with future methods.

Sketch Style Transfer (Chapter 4): In this chapter, we present a new automatic technique

for sketch style transfer from one hand drawing to another with different sketching style.

It consists of two methods of transfer: stroke-style and brush-style transfer. Stroke-style

transfer targets the transfer of sketching at the stroke level through modifying the parame-

ters of stroke segments of a sketch. To do so, a global sketch distance between both query

and target sketches is minimized. Our global sketch representation is based on insights

from sketch style discrimination discussed in chapter 3. It assumes that an artist’s style can

be recognized by the frequency distribution of certain mathematical descriptors collected

from basic sketching strokes. Brush-style-transfer, on the other hand, aims to transfer the

brush look of a sketch to an input line-drawing. For this method of transfer, we find a map-

ping between a stroke segment and its corresponding brush element in the stylized sketch.

This is done automatically by using convolutional sparse coding (CSC). As it is intuitively

and empirically validated in our work, CSC is found to model the sketching process well.

Based on that, a one-to-one mapping between brush image patches in a stylized sketch and

corresponding stroke segments used to reconstruct this patch in its skeletonized version is

found by overlaying the obtained skeleton-look on top of a line drawing. In fact, brush-

style transfer becomes a matter of mapping the stroke segments to their corresponding

brush element patches.

With its two method of sketch transfer, our sketch style transfer technique can be used

to automatically apply both subtle and major transformations on sketches. Furthermore,

it can be used to transfer a sketching style independent of the sketched content and for
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sketches drawn either digitally or by hand. It is also capable of transferring a sketch style

to any target style of a given example sketch. Our pipeline adds a new comprehensive

perspective to the problem of style transfer. A number of sketch style transfer results of

both modules are presented in 4.4. They sufficiently satisfy an assessment criteria which

includes style, identity and quality requirements. Our style Transferred sketches are also

validated through a recognition study where participants with high accuracy managed to

match a transferred sketch with a sketch they believe was used as the target sketch in the

transfer.

Sketch Geometric Modeling (Chapter 5): In this chapter, we present an automatic method

for representing a sketch geometrically as a set of parametric curves. It is based on utilizing

the well known convolutional sparse coding (CSC) model. This is based on our observa-

tion that CSC is closely related to the line drawing process. The ith map zi can be viewed

as a sparse score map, which scores each pixel based on whether the filter or stroke di is

localized there or not. A pixel location with a high score means that di contributes signifi-

cantly at this pixel to form the corresponding patch in the original image x. This scenario

resembles how one would draw a sketch, i.e.making the decision what stroke to draw and

where to place it. To make it a better fit to the task of line drawing analysis, we reformulate

the standard CSC model such that the dictionary elements are constrained to belong to a

set of images, whose support is a parametric cubic Bézier curve. As such, sketches are

represented geometrically through the learned CSC filters. Such reformulation leads to a

non-convex learning subproblem of the CSC. We solve the resulting non-convex optimiza-

tion using ADMM. While proof of convergence is left for future work, our experiments

show that our ADMM solver converges to a good feasible solution. We solve the problem

efficiently in the Fourier domain [72].
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6.1 Future Research Work

We aim to improve the discriminative nature of our sketch authorship recognition technique

(chapter 3) by enhancing the learned universal stroke segment dictionary. One way to do

this is to investigate how strokes are actually generated by the artists through tracking their

hand movements while sketching using data collected in 3D through a tracking camera. We

want to investigate if the way an artist holds the pen and positions his/her arm with respect

to the plane conveys unique information discriminating a certain artistic style from others.

We also aim to consider the way artists draw by collecting sketches using a digitizing pen

so we can take advantage of the pressure, tilt and speed used during the creation of the

drawing. Furthermore, for future work, we aim to utilize the learned parametric dictionary

elements generated by the geometric representation model (discussed in chapter 5) to help

design fully automated techniques for sketch synthesis and transfer.
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shipshape,” Comput. Graph., vol. 56, no. C, pp. 46–58, May 2016.



112
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