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−1,−1]((rad)); ėq = 0.2× [1,1,1,1,1,1,1,1,1]((rad/s)). . . . . . . . . . . . . 99



xii

Figure Page

4.4 Exponential tracking of the desired motion sd(t) along the contour. Desired
contour Γd: Yw-axis. Desired position trajectory along Γd: sd(t) = 0.5t −
0.16(m). Control gains: Kp = 841; Kd = 58. Initial conditions: eq = 0.1×
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−1,−1,−1](rad); ėq = 0.2× [1,1,1,1,1,1,1,1,1](rad/s). . . . . . . . . . . . 107

4.12 Exponential tracking of the desired motion sd(t) along the contour. Desired
contour Γd: Yw-axis. Desired position trajectory along Γd: sd(t) = 0.5t −
0.16(m). Control gains: Kp = 6400; Kd = 160. Initial conditions: eq = 0.1×
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ABSTRACT

Gu, Yan PhD, Purdue University, August 2017. Time-dependent Nonlinear Control of
Bipedal Robotic Walking . Major Professors: Bin Yao, School of Mechanical Engineering
and C. S. George Lee, School of Electrical and Computer Engineering.

Although bipedal walking control has been extensively studied for the past forty years,

it remains a challenging task. To achieve high-performance bipedal robotic walking, this

dissertation studies and investigates control strategies for both fully actuated and underac-

tuated bipedal robots based on nonlinear control theories and formal stability analysis.

Previously, the Hybrid-Zero-Dynamics (HZD) framework, which is a state-based feed-

back controller design based on the full-order dynamic modeling and the input-output lin-

earization, has successfully realized stable, agile, and efficient bipedal walking for both

fully actuated and underactuated bipedal robotic walking. However, the critical issue of

achieving high walking versatility has not been fully addressed by the HZD framework.

In this dissertation, we propose and develop a time-dependent controller design method-

ology to achieve not only stable, agile, and efficient but also versatile bipedal walking for

fully actuated bipeds. Furthermore, the proposed time-dependent approach can be used to

achieve better walking robustness to implementation imperfections for both fully actuated

and underactuated bipeds by effectively solving the high-sensitivity issue of the state-based

approaches to sensor noises.

In our controller design methodology, the full-order hybrid walking dynamics are first

modeled, which consist of both continuous-time dynamics and rigid-body impact dynam-

ics. Then, the desired path/motion for a biped to track is planned, and the output function

is designed as the tracking error of the desired path/motion. Based on the full-order model

of walking dynamics, the input-output linearization is utilized to synthesize a controller

that exponentially drives the output function to zero during continuous phases. Finally,

sufficient conditions are developed to evaluate the stability of the hybrid, time-varying
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closed-loop control system. By enforcing these conditions, stable bipedal walking can be

automatically realized, and the desired motion can be satisfactorily followed.

Both full actuation and underactuation are common in bipedal robotic walking. Full

actuation occurs when the number of degrees of freedom equals the number of independent

actuators while underactuation occurs when the number of degrees of freedom is greater

than the number of independent actuators. Because a fully actuated biped can directly

control each of its joints, more objectives may be achieved for a fully actuated biped than

an underactuated one. In this dissertation, the exponential tracking of a straight-line contour

in Cartesian space is achieved for both planar and three-dimensional (3-D) walking, which

greatly improves the versatility of fully actuated bipedal robots. To guarantee the closed-

loop stability, the first sufficient stability conditions are developed based on the construction

of multiple Lyapunov functions.

Underactuated walking is much more difficult to control than fully actuated walking

because an underactuated biped cannot directly control each of its joints. In this disser-

tation, control design of periodic, underactuated walking is investigated, and the first set

of sufficient conditions for time-dependent orbitally exponential stabilization is established

based on time-dependent nonlinear feedback control. Without modifications, the proposed

controller design can be directly applied to both planar and 3-D bipeds that are subject to

either underactuation or full actuation.

Extensive computer simulation results validated the proposed time-dependent controller

design methodology for bipedal robotic walking. Specifically, three bipedal models were

simulated: one was a fully actuated, planar bipedal model with three revolute joints, one

was a fully actuated, 3-D bipedal model with nine revolute joints, and one was an underac-

tuated, planar bipedal model with five revolute joints.
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1. INTRODUCTION

1.1 Motivation

There have been ever increasingly extensive studies on bipedal robotic walking since

1970’s [1], and there are several critical reasons for its growing popularity. First, the form of

bipedal robotic locomotion can adapt to the human environment without significant modifi-

cations of existing facilities [2]. Second, bipedalism is dexterous in addressing uneven ter-

rains, narrow passageways [2], and environments with discontinuous supports [3]. Third,

studying bipedal robotic walking may enhance our understanding of human and bipedal

animal walking [4]. Finally, bipedal robots are potentially crucial to applications such as

entertainment, education, disaster response and rescue [3], and space exploration [5].

Stability, versatility, agility, and efficiency are the four main performance indices that

measure the effectiveness of legged locomotion control. For the purpose of operation

safety, guaranteeing walking stability has the top priority. Walking stability can be loosely

defined as the ability to avoid a fall [6]. Versatility is another important index in evaluating

the locomotion capabilities of a legged robot. To accomplish complex tasks such as disaster

response and rescue, it is critical that a robot is capable of versatile locomotion such as sat-

isfactorily tracking a planned path on the walking surface. Besides stability and versatility,

agility and energy efficiency are also important performance indices because it is desirable

that a legged robot can sustain high-speed walking on batteries for a long period. Here,

agility is measured by walking velocity, and the energy cost of walking is measured by the

integral-squared motor torque per step distance [7].

Impressive bipedal walking performance has been demonstrated on today’s most suc-

cessful bipedal robots, including ATLAS (developed by Boston Dynamics) [8], ATRIAS [9]

and MARLO [10] (Oregon State University, University of Michigan, and Carnegie Mellon

University), ASIMO (Honda) [11], HRP (AIST) [12], HUBO (KAIST) [13], and Valkyrie
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(NASA) [5]. However, their walking performance is still far from satisfactory for complet-

ing complex tasks in the real world, and bipedal walking control remains a highly challeng-

ing problem.

There are several contributing factors to the difficulty of controller design in achieving

stable, versatile, agile, and efficient bipedal robotic walking. First, a bipedal robot typically

has high degrees of freedom, which results in a high computational load in both motion

planning and control implementation. For example, a HUBO-2 humanoid robot has 38 in-

dependent joints. Second, a bipedal robot has a non-fixed base. Its support foot can slip on

the walking surface, and it can easily fall over. Therefore, the feasible actuation capacity

has to be severely limited to maintain the full, static contact between the support foot and

the walking surface [14]. In contrast, an industrial manipulator with its base fixed to the

supporting surface never tips over its base edge. Third, bipedal walking dynamics are hy-

brid, which adds to the complexity of control design. The walking dynamics are described

by usual differential equations in the continuous-time domain when one foot swings in the

air and the other is in support, and by instantaneous reset maps in the discrete-time domain

for impact dynamics during foot landing and switching of support foot. Finally, bipedal

robotic walking can sometimes be underactuated. Underactuation occurs when the num-

ber of independent actuators is less than that of degrees of freedom. For example, when a

biped’s support foot rolls about its edge, underactuation happens. The lack of actuators to

control each joint may greatly increase the difficulty of controller design for underactuated

bipeds.

In this dissertation, our focus centers on the development of a time-dependent con-

troller design methodology that realizes high-performance walking for both fully actuated

and underactuated bipedal robots based on full-order dynamic modeling, time-dependent

nonlinear control design, and formal stability analysis.
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1.2 Literature Survey

To provide a context for the content of this dissertation, a few of the more dominant

control strategies of bipedal robotic walking will be reviewed in this section. Because

guaranteeing walking stability is the top priority in walking control design, different mea-

sures of walking stability have been proposed, and different control strategies have been

developed based on these measures [15]. Three groups of such control strategies will be

reviewed, including the Zero-Moment Point Approach, the Capture-Point Approach, and

the Hybrid-Zero-Dynamics Framework.

As this literature survey is not intended to be exhaustive, we will focus on review-

ing three of the most widely applied control strategies for bipedal robotic walking. Some

of the other interesting and important bipedal walking control strategies will not be re-

viewed, including: Marc Raibert’s robotic hopper control [16] [17], virtual model con-

trol [18], passivity-based walking control [19] [20], learning-based walking control [21]

[22], reduction-based walking control [23] [24] [25] [26], intuitive control design based

on the spring-loaded inverted pendulum (SLIP) model [27] [28], walking control based on

sums of squares [29] [30], and optimization-based planning and control [2] [31] [32] [33]

[34] [35] [36].

1.2.1 Definition of Walking Stability

Before reviewing the previous work on stability measure and bipedal walking control,

we will first review the previously proposed definition of bipedal walking stability.

Wieber [37] first introduced viability [38] into the research area of legged robotic loco-

motion. Later on, Pratt and Tedrake [6] introduced the definition of walking stability based

on viability.

Fall - When a point on the biped, other than a point on the feet of the biped, touches the

ground [6].
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Viability - A state is viable if and only if starting from this state the system is able to

realize a movement that never gets inside the basin of fall, which is the set of positions

where the system is considered as having fallen [37].

Stability - A biped is stable if and only if the state of the robot is not inside the basin of

fall [6].

Being equivalent to viability, the above definition essentially states that walking sta-

bility is the ability to avoid a fall during the walking process. However, evaluating the

viability of a certain state is too computationally expensive to be feasible for the real-world

applications [6] [39]. Also, this definition of walking stability is overly vague. It does

not explicitly include many factors related to walking stability such as modeling errors,

disturbances, controller performance, joint limits, and ground-contact constraints.

In addition to viability, various balance criteria have been proposed for bipedal robotic

walking, which will be briefly reviewed next:

1. Among these balance criteria, the most widely used one is the Zero-Moment Point

(ZMP) balance criterion [40] [41] [42], which has been utilized to realize bipedal

walking on various humanoid robot platforms such as ASIMO [11], HRP [43], and

HUBO [13]. There are other point-based balance indicators, including Foot Rota-

tion Indicator (FRI) [44] [45] and Centroidal Moment Pivot (CMP) [46] [47] [48].

However, all of these three balance indicators only evaluate the state of balance for a

biped but not a biped’s walking stability. Also, previous walking strategies often uti-

lize these balance indicators to guarantee stable walking with accurate joint trajectory

tracking, which can only achieve conservative walking performance.

2. Later on, capturability [6] [49] was proposed as a computationally less expensive

approximation of viability based on the concept of Capture Point (CP). Because the

capturability measure only provides a sufficient condition of walking stability, it is

not an ideal stability measure, and it will also lead to conservative walking perfor-

mance.
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3. Stability of periodic walking has been evaluated by the orbital stability of the dynam-

ical walking system. For example, the stability of a passive walker is determined by

the stability of the orbit that is generated by the robot’s periodic motion [39], and the

stability of an actuated biped can be determined by that of the orbit of the closed-loop

dynamics [7] [50]. Because this stability evaluation method only applies to periodic

walking, its generality is severely limited.

In this dissertation research, a walking process is considered stable if there exists a

feasible walking motion that satisfies walking dynamics and necessary constraints (e.g.,

joint limits, actuation limits, ground-contact constraints) such that a biped, with only its

feet touching and detaching from the ground, is able to track this motion in the presence of

modeling errors, disturbances, and initial tracking errors.

With this proposed definition of walking stability, we will review the previous walking

strategies including the ZMP-based approach, the capturability-based approach, and the

Hybrid-Zero-Dynamics framework.

In the following reviews, only horizontal even terrains are considered.

1.2.2 Zero-Moment Point

Before reviewing the previous walking strategies based on the Zero-Moment Point bal-

ance criterion, we will first review the definition of Zero-Moment Point and the ZMP bal-

ance criterion.

Zero-Moment Point - A Zero-Moment Point (ZMP) is a point about which the sum of all

horizontal moments of active forces is equal to zero [41].

ZMP Balance Criterion - A walking robot is balanced when and only when the ZMP

trajectory remains strictly within the support polygon [41].

On horizontal even terrains, the equation of motion of a bipedal walker in Cartesian

space can be written with respect to the world coordinate frame (See Fig. 1.1):

−−−→
OPCoP×FR +

−→
OG×mg+Mz =

−→
OG×maG + ḢG, (1.1)
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Figure 1.1. An illustration of Zero-Moment Point.

where O is an arbitrary point fixed on the ground, PCoP is the Center of Pressure (CoP),
−−−→
OPCoP ∈ R3 is the vector pointing from O to PCoP, G is the whole-body Center of Mass

(CoM),
−→
OG is the vector pointing from O to G, Mz ∈ R3 is the ground frictional moment

about PCoP, FR ∈ R3 is the ground-reaction force, m is the whole-body mass, g ∈ R3 is the

gravitational acceleration, aG ∈ R3 is the CoM acceleration, and HG ∈ R3 the whole-body

angular momentum about G.

From the definition of ZMP, one has:

(ḢG +
−−−−→
PZMPG×m(aG−g))h = 0, (1.2)

where PZMP is the ZMP,
−−−−→
PZMPG ∈ R3 is the vector pointing from PZMP to G, and the sub-

script h represents the components in the horizontal plane.

Comparing Eqs. (1.1) and (1.2), one has:

−−−−→
PZMPP = 0, (1.3)
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which proves that ZMP and CoP always coincide on a horizontal even terrain. Also, both

ZMP and CoP only exist within the support polygon. Their difference is that ZMP is

defined by dynamic forces but CoP is defined by ground-reaction forces. On horizontal

even terrains, CoP is a point about which the horizontal moment of the ground-reaction

force is zero. This point is often used in biomechanics for postural and gait stability anal-

ysis [51] [52] [53] [54]. The ZMP balance criterion is sometimes referred to as the CoP

constraint in biomechanics [51].

According to our proposed definition of walking stability, the ZMP balance criterion is

a sufficient condition for stable walking when applied with accurate joint trajectory track-

ing. For bipedal robots with flat feet, keeping ZMP strictly within the support polygon

ensures that the support foot does not tip over its edge and that the underactuation caused

by foot rotation about the edge is avoided. Hence, a walking robot essentially becomes a

fully actuated, fixed-based robotic manipulator under ZMP-based walking control, which

enables high walking versatility [55] [56] [57] [58] [59] [60] [61] [62] [63] [64].

Despite the high walking versatility, conservative walking performance is the major

disadvantage of the ZMP-based accurate trajectory tracking. The ZMP balance criterion

requires flat-footed walking and prohibits a biped’s support foot from rotating about its

edge. However, a foot rotation does not necessarily lead to a fall. Thus, enforcing the

ZMP balance criterion with accurate joint trajectory tracking is not a necessary condition

for guaranteeing walking stability [6]. In summary, stable walking realized through ZMP-

based accurate joint-trajectory tracking is highly conservative; i.e., the achievable walking

speed of the ZMP approach is highly limited.

Also, high energy consumption is another undesirable feature of the ZMP approach,

which is partly caused by accurate joint-trajectory tracking [65]. Furthermore, the ZMP

approach cannot deal with underactuated bipedal robotic walking.
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1.2.3 Foot Rotation Indicator

The concept of Foot Rotation Indicator is very similar to ZMP in the sense that they

are both indicators of support foot rotation. Therefore, using Foot Rotation Indicator as a

balance indicator suffers from the same problems as ZMP.

Foot Rotation Indicator - A Foot Rotation Indicator (FRI) is a point at which the

ground-reaction force would have to act to keep the support foot stationary [44] [45].

FRI Criterion - The support foot does not rotate if and only if the FRI and the CoP

coincide [44] [45]. Foot rotation occurs only when FRI deviates from CoP.

Figure 1.2. An illustration of Foot Rotation Indicator.

First, let us consider the dynamic equilibrium of the support foot (see Fig. 1.2). The

force and the torque applied to the support foot by the rest of the links can be denoted as

FR1 and τττ1, respectively, which act at the center of the ankle, O1. With respect to the world

coordinate frame, the equation of the support foot’s dynamic equilibrium can be written as:

−−−→
OPFRI×FR +Mz +

−→
OG1×m1g+ τ1 +

−−→
OO1×FR1 =

−→
OG1×m1a1 + ḢG1, (1.4)

where O is an arbitrary point fixed on the ground, PFRI is the FRI,
−−−→
OPFRI ∈R3 is the vector

pointing from O to PFRI , G1 is the CoM of the support foot,
−−→
OG1 ∈R3 is the vector pointing

from O to G1, m1 is the mass of the support foot,
−−→
OO1 ∈ R3 is the vector pointing from O

to O1, a1 is the acceleration of the support foot, and HG1 is the angular momentum of the
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support foot about its CoM. Because the foot will be stationary when the ground-reaction

force acts at the FRI, one has

(
−−−→
OPFRI×FR +

−→
OG1×m1g+ τττ1 +

−→
OO1×FR1)h = 0 (1.5)

and

FR +FR1 +m1g = 0. (1.6)

Also, considering
−→
OG1 =

−−−→
OPFRI +

−−−→
PFRIG1 (1.7)

and
−→
OO1 =

−−−→
OPFRI +

−−−→
PFRIO1, (1.8)

one has

(
−−−→
PFRIG1×m1g+ τττ1 +

−−−→
PFRIO1×FR1)h = 0. (1.9)

For bipedal robots with rigid, flat feet walking on a horizontal even terrain, FRI and

ZMP coincide only when the support foot is stationary. When the support foot tips over its

edge, the ZMP will stay at the edge of the support polygon while the FRI will be outside

the support polygon. For robots walking on horizontal even terrains with flexible or multi-

joint feet, the support foot can tip over its edge while both ZMP and FRI are strictly within

the support polygon. Because support foot rotation does not necessarily imply unstable

walking [66], the FRI may not be a good indicator of bipedal walking stability.

1.2.4 Centroidal Moment Pivot

Centroidal Moment Pivot has been used to indicate the whole-body angular momentum

about a biped’s CoM. It has been verified that the whole-body angular momentum with re-

spect to the whole-body CoM is strictly regulated in normal human walking [48]. However,

this strict regulation is not a necessary condition for guaranteeing walking stability, which,

similar to the ZMP balance criterion, can lead to conservative walking performance.
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Centroidal Moment Pivot - A Centroidal Moment Pivot (CMP) is a point at which the

ground-reaction force would have to act to keep the rate of the whole-body angular mo-

mentum about CoM to be zero [46] [47].

CMP Criterion - CMP coincides with ZMP/CoP only when the rate of change of the

whole-body angular momentum about CoM is zero [46] [47].

Figure 1.3. An illustration of Centroidal Moment Pivot.

From Eq. (1.2) and Fig. 1.3, and by the definition of CMP, one obtains:

(
−−−−→
PCMPG×m(g−aG))h = 0, (1.10)

where PCMP is the CMP and
−−−−→
PCMPG ∈ R3 is the vector pointing from PCMP to G.

The coincidence of CMP with ZMP/CoP is not a necessary condition for balance/stability.

For example, the rate of change of angular momentum is typically not zero during a sit-to-

stand motion of a human, but the motion can still be stable.

A few facts about ZMP, FRI, and CMP are summarized as follows:
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1. On horizontal even terrains, ZMP always coincides with CoP and thus only exists

within the support polygon;

2. On horizontal even terrains, FRI coincides with ZMP/CoP only when the support foot

does not tip over its edge, and the ZMP criterion and the FRI criterion are equivalent

for robots with rigid, flat feet walking on horizontal even terrains;

3. On horizontal even terrains, CMP coincides with ZMP/CoP if the rate of change of

the whole-body angular momentum about the whole-body CoM is zero.

According to our proposed definition of walking stability, the above balance indicators

when applied with accurate joint trajectory tracking are not necessary stability measures,

although they have been successfully implemented on many bipedal robots:

1. The three balance criteria (i.e., ZMP, FRI, CMP) are essentially three different con-

straints, and they are not ideal stability criteria because the key factors to walking

stability are not considered such as joint motion range, joint actuation limits, and

controller performance limits.

2. The ZMP balance criterion is essentially a constraint, which requires that ZMP/CoP

should never move to the edge of the support foot.

3. The FRI criterion requires no foot rotation of the support foot, which is overly con-

servative, and, in fact, previous studies have found that support foot rotation during

the single-support phase contributes to the high efficiency of human walking [67].

4. The CMP criterion is also overly conservative as strict regulation of the whole-body

angular momentum about the whole-body CoM is not necessary for guaranteeing

stable walking.

When these balance criteria are utilized to guarantee walking stability with accurate

joint trajectory tracking, the resulting walking performance will be highly conservative and

energy consuming.
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1.2.5 Capture Point and Capturability

As discussed previously, the complete set of viability is too computationally expensive

to calculate. Capturability, proposed by Pratt and Tedrake [6] [68], provides a reasonable

approximation of viability, and it has been successfully implemented on real walking robots

for push recovery tasks and walking tasks [69] [70]. Because capturability-based walking

strategies no longer require flat-footed walking, the achievable walking performance may

be less conservative than ZMP-based approaches. However, there are other critical prob-

lems associated with this walking control method. Before reviewing its advantages and

disadvantages in greater detail, we will first review the definition of Capture Point and

capturability.

Capture Point - A Capture Point is a point on the ground where the biped can step to in

order to bring itself to a complete stop [49].

N-step Capture Point - An N-Step Capture Point is a point on the ground where the

biped can step to in order to bring itself to a complete stop in N steps [49].

N-step Capturability - N-Step Capturability is informally defined as the ability of a

biped to come to a stop without falling by taking N or fewer steps, given its dynamics and

actuation limits [68] [6].

The Extrapolated CoM [71] [72] was independently proposed in the area of biomechan-

ics, which has the same mathematical expression as a Capture Point when derived based

on a linear inverted pendulum model with point feet. In addition, the concept of feasible

stability region proposed in the area of biomechanics [51] is closely related to the concepts

of capture point and capturability. In fact, stability measure of human walking has been

extensively studied in the area of biomechanics [51] [52] [54] [71] [73] [74].

The derivation of the capture point utilizes simplified dynamic models of walking

robots [6] [49] [68], for example, a three-dimensional Linear Inverted Pendulum Model

(3-D LIPM) with point feet. The 3-D LIPM was first proposed by Kajita, et.al, [55], and

it has then been widely used for ZMP-based bipedal walking control as well. In a 3-D

LIPM, a walking robot is modeled as a point mass with a massless leg. The point mass is
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assumed to move on a constant horizontal plane. Equations of motion with respect to the

world coordinate frame can be derived based on Eq. (1.1) with Mz and ḢG both equal to

zero:
−−−→
OPCoP×FR +

−→
OG×Mg =

−→
OG×maG, (1.11)

FR +mg = maG. (1.12)

Denote the projection of G on the horizontal plane as G′, and define rG :=
−−→
OG′ and rCoP :=

−−−→
OPCoP. Combining Eqs. (1.11) and (1.12), one has:

r̈G =
g

cz0
(rG− rCoP). (1.13)

Since the system dynamics in the Xw- and the Yw-directions are decoupled under the

constant CoM height assumption, Eq. (1.13) can be written as:

ẍG =
g

cz0
(xG− xP) and ÿG =

g
cz0

(yG− yP), (1.14)

where xG and yG are the x- and y- coordinates of rG, and xP and yP are the x- and y-

coordinates of rCoP.

Because the dynamics in the Xw- and the Yw-directions are identical, without loss of

generality, only the Xw-direction component of dynamics is considered and rewritten as: ˙̃xG

¨̃xG

=

 0 1
g

cz0
0

x̃G

˙̃xG

 , (1.15)

where x̃G := xG− xP.

The equilibrium point of the system Eq. (1.15) is a saddle point, which proves that

a walking robot is essentially unstable. The two eigenvalues of the system in Eq. (1.15)

are ±
√

g
cz0

, and the corresponding eigenvectors are determined by
√

g
cz0

x̃G∓ ˙̃xG = 0. The

negative eigenvalue −
√

g
cz0

corresponds to the stable eigenvector
√

g
cz0

x̃G + ˙̃xG = 0 (see

Fig. 1.4). The states that lie along the stable eigenvector in the phase plane will eventually

converge to the equilibrium; i.e. the robot will come to a complete stop. If an unstable state

can be instantaneously moved to a point that is along the stable eigenvector in the state
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space, the biped will come to a complete stop [55]. The point that the support foot should

instantaneously move to is called a Capture Point [49], which is defined as rCP:

rCP = rG +

√
cz0

g
ṙG. (1.16)

Figure 1.4. Phase portrait of Eq. (1.15). (The x-axis and the y-axis represent
x̃G and ˙̃xG, respectively.)

Taking the first derivative of Eq. (1.16) yields

ṙCP =

√
g

cz0
(rCP− rP). (1.17)

Equation (1.17) shows an important property of a capture point; that is, the capture point

diverges from the CoP exponentially fast with a diverging velocity always pointing from the

CoP towards the capture point. Thus, the swing time and the swing length of the stepping

foot are important for push recovery strategies that utilize the capture-point approach. In

human walking, push recovery can be achieved by the hip strategy that regulates the rate

of change of the whole-body angular momentum to bring the human body to come to a
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stop [75]. Accordingly, a reaction mass was incorporated in the 3-D LIPM to emulate this

strategy [68].

Although modeling simplification such as the 3-D LIPM helps to reduce the computa-

tional burden of motion planning and control of bipedal robotic walking, some key elements

of bipedal walking are omitted when a simplified model is utilized in the development of

walking strategies. For example, due to modeling simplification, a controller design based

on capturability ignores variations of the CoM height during walking, the performance

limitations of a controller design, and the internal kinematics and dynamics during bipedal

walking.

1.2.6 The Hybrid-Zero-Dynamics Framework

The last group of walking strategies that will be reviewed in this Chapter is the Hybrid-

Zero-Dynamics (HZD) framework. Instead of relying on a ground-reference point to in-

dicate walking stability, the HZD framework approaches the problem of bipedal walking

control through full-order dynamic modeling, nonlinear feedback control design, and for-

mal closed-loop stability analysis. As the HZD framework does not enforce overly con-

servative walking criteria such as no foot rotation or strict regulation of the whole-body

angular motion, it has enabled much higher walking performance in terms of agility and

energy efficiency as compared with the ZMP approach and the capturability based walk-

ing strategies. Furthermore, the HZD framework can realize high-performance walking for

underactuated bipeds.

However, the HZD framework has been largely focused on bipedal periodic gaits. Ac-

cording to our proposed definition of walking stability, periodic gaits are not a necessary

requirement for stable walking. Therefore, walking control performance of the HZD frame-

work lacks gait versatility.

As the HZD framework focuses on feedback control of periodic gaits, we will first

review a few concepts related to the definition and evaluation of the stability of a periodic

solution of a dynamical system.
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The stability of a periodic gait can be determined by the stability of the orbit generated

by the periodic gait.

Let χ be the nth-dimensional, full state space of a dynamical system. Let x ∈ χ be a

state of the system. Suppose that the system dynamics are autonomous:

ẋ = f(x), (1.18)

where f : χ→ T χ is continuously differentiable on x∈ χ . Suppose that the dynamic system

in Eq. (1.18) has a nontrivial periodic solution p(t) for t ≥ 0 and that

p(t +T ) = p(t),∀t ≥ 0, (1.19)

where T is a finite positive number, which represents the least gait period of p(t). Then,

the periodic orbit Γ generated by p(t) can be formally defined as:

Γ := {x ∈ χ : x = p(t),∀t ≥ 0}. (1.20)

Define an δ -neighborhood of Γ by Uδ := {x ∈ χ : dist(x,Γ) < δ}, where dist(x,Γ)

represents the distance between x and Γ. The stability definition of the orbit Γ will be

reviewed as follows.

Stability - The orbit Γ is stable if, for each ε > 0, there is δ > 0 such that [76]

x(0) ∈Uδ ⇒ x(t) ∈Uε , ∀t ≥ 0. (1.21)

Asymptotic Stability - The orbit Γ is asymptotically stable if it is stable and δ can be

chosen such that [76]

x(0) ∈Uδ ⇒ lim
t→∞

dist(x(t),Γ) = 0. (1.22)

Exponential Stability - The orbit Γ is exponentially stable if there exist δ > 0, k > 0,

and c > 0 such that [77]

x(0) ∈Uδ ⇒ dist(x(t),Γ)< ke−ct , ∀t ≥ 0. (1.23)

A nontrivial periodic solution p(t) of Eq. (1.18) is called:

• Orbitally stable if the orbit Γ generated by p(t) is stable;
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• Orbitally asymptotically stable if the orbit Γ generated by p(t) is asymptotically

stable;

• Orbitally exponentially stable if the orbit Γ generated by p(t) is exponentially stable.

The orbital stability of a periodic solution can be numerically evaluated by the following

equivalent conditions:

• The eigenvalues of the linearized Poincaré return map at the fixed point [50];

• The eigenvalues of the monodromy matrix of the variational equation [39] [78] [79].

There are two groups of bipedal walking whose stability can be determined by this

stability measure [39]. The first group is passive walkers that utilize the natural dynamics

of a biped to achieve stable walking and thus consume very low to zero actuation power

[80] [81] [82] [83] [84] [85] [86] [87] [88] [39] [78] [89] [90] [91]. During flat-terrain

walking, only a small amount of energy needs to be injected into the system to compensate

for the energy loss caused by impact and friction. During down-hill walking, the external

energy consumption can be zero. Although passive walkers are highly energy-efficient,

they severely lack versatility because the orbitally stable gait is mainly determined by the

mechanical design, which leaves little freedom to achieve different types of gaits, not to

mention to negotiate unstructured environments.

The second group is the actuated bipeds, and the most successful and dominant trend

in this group is the Hybrid-Zero-Dynamics (HZD) framework [50]. Orbital stabilization of

bipedal walking can also be realized through oscillator-based stabilization [92] and trans-

verse linearization [77] [93] [94] [95]. For transverse linearization, a transverse coordinate

along a curve, not necessarily an orbit, in the state space is constructed analytically, and

the transverse dynamics is linearized. Convergence to the curve in the state space is then

guaranteed through receding-horizon control of the linearized transverse dynamics. Be-

sides closed-loop feedback control, stable periodic walking has also been realized based on

open-loop optimal control [96] [97] [98].

As this dissertation research is largely inspired by the HZD framework, it will be re-

viewed in greater detail next.
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The Hybrid-Zero-Dynamics Framework (HZD) was first introduced for feedback con-

trol of underactuated bipedal walking by Grizzle et al. [3] [7] [50]. Instead of focusing on

a ground-reference point or utilizing the natural dynamics of a bipedal robot, this approach

stabilizes a walking process by stabilizing the closed-loop control system based on nonlin-

ear feedback control and formal stability analysis. This is the first time that the provably

stable walking was achieved for bipedal robots based on feedback control, and the HZD

framework has achieved high walking speed and high energy efficiency [99] [100] [101].

In the HZD framework, the walking process is modeled as a hybrid dynamical system,

which captures the full-order walking dynamics and consists of continuous phases and

impulse rigid-body impacts of foot landings:ẋ = f(x)+ggg(x)u, for x− /∈ S(x);

x+ = ∆∆∆(x−), for x− ∈ S(x);
(1.24)

where f : χ→ T χ , g : χ→ T χ , u∈Rk (k≤ n) represents the control input, S(x) := {x∈ χ :

zsw(x) = 0, żsw(x) < 0} is the switching surface that defines the moment of a swing-foot

touchdown (zsw represents the swing foot height above the ground), the symbols + and −

represent the moments right before and after an impact, respectively, and ∆∆∆(x) is the reset

map that represents the landing impact dynamics.

The controller design utilized in the HZD framework is state feedback control based on

input-output linearization. The output functions are defined as virtual constraints, and they

are asymptotically driven to zero by the controller during continuous phases. The virtual

constraints were initially defined as functions of a biped’s generalized coordinates alone

[50] [102] [103]. Specifically, the virtual constraints are defined as the tracking error of

the desired walking pattern that defines the desired evolution of the directly actuated joint

variables with respect to a reference joint in a complete gait cycle. The Beziér curves [104]

have been used for defining the walking pattern:

ΦΦΦ(s) :=
K

∑
m=0

am
K!

k!(K−m)!
sm(1− s)K−m, (1.25)

where s represents the encoding variable of the walking pattern, am ∈ Rk is the parameter

of the Beziér curves (recall that k is the number of independently actuated joints and k≤ n),
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and K is the order of the Beziér curves. Later on, angular momentum and velocity have

been used to define the virtual constraints [105] [106]. Recently, the virtual constraints have

been defined as time-dependent functions to solve some implementation issues caused by

sensor noise, which is associated with the state-based definition [107].

Based on the concept of virtual constraints, hybrid zero dynamics is introduced to re-

duce the dimension of stability analysis. In the early exploration, underactuated walking

with a single degree of underactuated is studied, and the convergence of the output func-

tion to zero during a continuous phase is assumed to be finite-time. Under this assumption,

the continuous-time zero dynamics are invariant with respect to the impact event, and thus

the orbital stability of the closed-loop system can be inferred from that of the hybrid zero

dynamics, which greatly reduces the stability analysis dimension [50]. Later on, the finite-

time convergence is relaxed to be exponential convergence, and the hybrid zero dynamics

can be constructed by properly defining the virtual constraints [102]. If there exists an ex-

ponentially stable orbit in the hybrid invariance manifold and the convergence rate to the

hybrid invariance manifold is sufficiently fast, then the closed-loop system is exponentially

orbitally stable. However, hybrid invariance fails to hold for high degrees of underactua-

tion. To extend the construction of hybrid zero dynamics from a single degree of underac-

tuation to higher degrees of underactuation for underactuated walking, an update law of the

output function definition was developed to be applied at the moment right after a landing

impact [103] [108] [109]. Recently, rapidly exponential stabilization has been developed

to deal with the potentially expansive effect of the reset map based on control Lyapunov

functions [110].

In addition to underactuated walking, the HZD framework of orbital stabilization has

also been extended to fully actuated bipedal walking [111]. With the advantage of full actu-

ation, velocity tracking in Cartesian space has been realized. Human-like walking has been

achieved by extracting human walking patterns from experimental data and then using it to

define the output function [111] [112] [113]. Furthermore, the HZD framework has been

extended to compliant HZD [114] [115] [116], planar bipedal running [117] [118], three-

dimensional walking [10] [119] [120] [121] [122] [123] [124], aperiodic walking [125],
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uneven terrain walking [105] [126] [127] [128] [129], multi-domain gait control [130],

walking with nontrivial foot motion [131] [132] [133] [134], control of prosthetic de-

vices [135] [136], and control of exoskeletons [137]. Barrier functions have also been

extended to bipedal walking control based on the HZD framework [138].

1.2.7 Summary

To tackle the challenging problem of bipedal walking control, different walking control

strategies have been proposed based on different measures of walking stability. Among

them, the most widely used approaches are the ZMP Approach, the Capture-Point ap-

proach, and the HZD framework.

The ZMP approach relies on a highly conservative stability criterion and accurate joint

trajectory tracking to guarantee walking stability. One of the main advantages of the ZMP

approach is its high versatility. The ZMP approach has been utilized to realize a variety

of walking motions, such as climbing stairs, making turns, and dancing [55] [56] [57] [58]

[59] [60] [61] [62] [63] [64]. However, the achievable walking speed of the ZMP approach

is limited, and the resulting energy consumption of walking is high. For example, the

energy consumption of ASIMO’s walking is ten times higher than human walking [65].

Furthermore, the ZMP approach cannot handle underactuation well.

The walking strategy design based on the Capturability suffers from the same limita-

tions as the ZMP approach, i.e., limited walking speed and high energy consumption. Sim-

ilar to the ZMP approach, the Capture-Point approach can realize highly versatile walking

for bipedal robots.

In contrast with the ZMP and the Capture-Point approaches, the HZD framework can

achieve bipedal robotic walking with provable stability, high walking speed, and high effi-

ciency. This is because the controller design is established based on the full-order hybrid

dynamics of bipedal walking and the formal stability analysis of the closed-loop control

system. However, the major limitation of the HZD framework is its low walking versa-

tility. As reviewed previously, the HZD framework focuses on periodic walking, which
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severely limits its potentials in real-world applications. Although the HZD framework has

been extended to aperiodic walking [139], the resulting walking motions are not truly ver-

satile. For example, position tracking in Cartesian space has not been fully addressed by

the HZD framework, but the capability of satisfactorily controlling a biped’s position on

the walking surface is critical to real-world applications such as multi-agent coordination.

1.3 Objectives and Proposed Approaches

Although various controller design methodologies have been previously developed to

enable impressive walking motions, the performance of today’s bipedal robotic walking is

still far from satisfactory for real-world applications. Therefore, the objective of this dis-

sertation is to develop a model-based controller design methodology that realizes stable,

versatile, agile, and efficient bipedal robotic walking based on nonlinear control theories

and formal stability proof. Specifically, we will focus on achieving stable, agile, and effi-

cient walking for both fully actuated and underactuated bipeds. In addition, the proposed

controller design methodology will be utilized to achieve high walking versatility for fully

actuated bipeds and improved walking robustness for both fully actuated and underactuated

bipeds.

Inspired by the HZD framework, we will synthesize state feedback controllers that uti-

lize full-order dynamic modeling and input-output linearization. Therefore, similar to the

HZD framework, the proposed controller design methodology can realize stable, fast, and

efficient walking because of its model-based nature. However, different from the HZD

framework that utilizes state-based control design, we will explicitly define the output

function as time-dependent, which will not only significantly improve walking versatility

for fully actuated bipeds [140] [141] but also greatly enhance walking robustness for both

fully actuated and underactuated bipeds [142] [143]. High walking versatility is critical for

accomplishing complex tasks in the real-world environments, and the lack of versatility has

been a major problem of the HZD framework because this state-based approach has been

limited to realizing periodic gaits. High robustness is also a desirable feature for real-world
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applications, and experimental results have shown that walking robustness can be greatly

improved by time-dependent control design as compared with the state-based HZD frame-

work [107]. Despite these advantages of time-dependent approaches, they have not been

fully explored for bipedal walking control based on nonlinear control theories and formal

stability proof.

Because full actuation and underactuation are both common in bipedal robotic walk-

ing, we will apply the time-dependent controller design methodology to both fully actuated

and underactuated bipeds. A bipedal robot is fully actuated if the number of independent

actuators equals the number of degrees of freedom, and a bipedal robot is underactuated

if the number of independent actuators is less than the number of degrees of freedom. For

fully actuated bipeds, we will investigate both planar and three-dimensional (3-D) walking

for versatility improvement. For underactuated bipeds, improving walking versatility may

not be realistic due to the lack of actuators to control each joint. Instead, we will develop a

time-dependent feedback controller to improve walking robustness for underactuated peri-

odic walking, and we will show that our proposed controller design can be directly applied

to fully actuated bipeds as well.

In this dissertation, controller designs for three types of bipedal robots will be proposed

and developed based on the same time-dependent controller design methodology, which

consists of the following four steps:

Step 1: The full-order, hybrid walking dynamics will be modeled;

Step 2: The desired motions will be planned such that the energy consumption of walking is

minimized and that necessary constraints and conditions are satisfied;

Step 3: The tracking error of the desired motions will be utilized to design a time-dependent

output function;

Step 4: The input-output linearization will be utilized to synthesize the needed control law;

Step 5: The sufficient stability conditions for the hybrid, time-varying closed-loop system

will be established based on nonlinear control theories and formal stability analysis.
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Based on this controller design methodology, three types of bipeds will be studied: a)

a fully actuated planar biped, b) a fully actuated 3-D biped, and c) an underactuated planar

biped. Because of the differences in actuation types and control objectives, the controller

designs for these three types of bipeds will be distinctively different from one another, and

they are summarized next.

a) Walking Control of Fully Actuated Planar Bipeds for Improved Walking Ver-

satility: High walking versatility is potentially achievable for a fully actuated biped

because such a biped can directly control each of its joints. High walking versa-

tility is important for accomplishing complex tasks in real-world applications. For

example, realizing aperiodic, asymmetric gaits may become necessary when a biped

operates in a complex environment, and satisfactory position tracking in Cartesian

space is critical for complex tasks such as multi-agent coodination. However, previ-

ous work such as the HZD framework has been heavily focused on achieving periodic

gaits for fully actuated walking, and position tracking in Cartesian space has not been

fully studied. To improve the walking versatility of a fully actuated planar biped as

compared with previous studies, we will develop a controller design that can achieve

exponential tracking of aperiodic, asymmetric gaits and the desired position trajec-

tory in Cartesian space. To our best knowledge, it is the first time that satisfactory

position tracking in Cartesian space has been realized for fully actuated planar biped

through model-based feedback control design and formal stability analysis. This

controller design will be introduced in Chapter 3.

b) Walking Control of Fully Actuated Three-dimensional Bipeds for Improved

Walking Versatility: Because real-world applications of bipedal robots typically re-

quire three-dimensional (3-D) walking, we will extend our controller design for fully

actuated planar bipeds to fully actuated 3-D bipeds in this project. Our main goal is

to achieve exponential tracking of the desired position trajectory in Cartesian space.

Due to the complexity of 3-D bipedal walking, position tracking in Cartesian space is

much more difficult for 3-D walking than planar walking. Position tracking in Carte-
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sian space for 3-D bipeds includes both the convergence to the planned path on the

walking surface and the convergence to the desired motion along the path. However,

convergence to the planned path on the walking surface is a trivial task for planar

walking because a planar biped is confined to only moving in the sagittal plane. In

this project, we will utilize our proposed time-dependent design methodology to syn-

thesize a walking controller that achieves exponential tracking of the desired path on

the walking surface as well as the desired motion along the path. As the first step of

our ongoing research, only straight-line paths will be considered as the desired path

in this project. The details of control design will be presented in Chapter 4.

c) Walking Control of Underactuated Bipeds for Improved Walking Robustness:

As previously explained, underactuation is a common phenomenon in bipedal robotic

walking, and thus it is necessary to investigate controller designs for underactuated

walking. Because it is difficult to handle underactuation due to the lack of actu-

ators to control each joint, achieving high versatility such as position tracking in

Cartesian space will not be addressed in this project. Instead, we will focus on time-

dependent orbital stabilization of underactuated, periodic walking. Orbital stabiliza-

tion of underactuated walking has been extensively studied under the state-based

HZD framework. However, experimental results have shown that, as compared with

the state-based HZD framework, a time-dependent approach can effectively improve

walking robustness by effectively solving the implementation issue caused by sensor

noise [107]. Although time-dependent walking control is advantageous in achieving

high walking robustness for underactuated, periodic walking, it has not been fully

studied. In this project, we will establish the first time-dependent feedback controller

design that can achieve orbitally exponential stabilization of underactuated bipedal

walking. The details of control design will be presented in Chapter 5.

1.4 Organization of Dissertation

The organization of the remainder of the thesis is listed as follows.



25

In Chapter 2, two common gait characterizations will be first explained. The first gait

characterization describes a bipedal gait by the support and the swing legs, which can be

used to compactly express walking dynamics. The second gait characterization describes

a bipedal gait by the left and the right legs, which can be used to conveniently define a

symmetric gait. Then, the full-order, hybrid dynamics of bipedal robotic walking will be

presented, which include both continuous-time dynamics and impulsive rigid-body impact

dynamics. Based on the full-order, continuous-phase dynamic model, we will introduce

and develop the measure of Feasible Center of Mass Dynamic Manipulability (FCDM),

which can be utilized to explain some of the contributing factors to the difficulty of bipedal

walking control.

Chapter 3 presents the controller design for fully actuated planar walking with the ex-

ponential global position tracking capabilities. Following the proposed time-dependent

controller design methodology, the output function is designed as time-dependent, which

represents the tracking error of the desired time-varying global position trajectory as well

as the desired state-based walking pattern. Based on the full-order walking dynamics, an

input-output linearizing controller is synthesized to drive the time-dependent output func-

tion exponentially to zero during continuous phases. Also, we will introduce a new method

of walking pattern design to guarantee the hybrid invariance of the desired motion, and we

will develop sufficient conditions of the closed-loop stability based on the construction of

multiple Lyapunov functions. Finally, the proposed controller design will be validified on

a simulated planar biped with three revolute joints.

Chapter 4 provides the controller design for fully actuated three-dimensional (3-D)

walking. To accomplish the task of exponential position tracking on the walking surface,

we will develop a contouring control strategy that decomposes this task into two subtasks.

One subtask is the exponential convergence to the desired path (i.e., contour), and the

other subtask is the exponential convergence to the desired motion along the path. Similar

to Chapter 3, sufficient stability conditions for the closed-loop system will be developed

based on the construction of multiple Lyapunov functions. Finally, a 3-D biped with nine

revolute joints will be simulated to validate the proposed controller design.
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Chapter 5 introduces the time-dependent orbitally exponential stabilization of underac-

tuated bipedal robotic walking. The objective of the controller design is to realize expo-

nential convergence to the desired orbit in the state space. The desired motion to be tracked

by the controller design is defined by modifying the periodic joint trajectories that reside

on the desired orbit, and the output function is designed as the tracking error of the desired

motion. Based on the full-order walking dynamics presented in Chapter 2, input-output

linearization will be utilized to synthesize a feedback control law that drives the output

function exponentially to zero during continuous phases. In the closed-loop stability analy-

sis, we will first transform the hybrid, time-varying closed-loop system into a time-invariant

one, and then we will establish the closed-loop stability conditions based on the variational

equation of the transformed system. Furthermore, we will introduce a systematic motion

planning method such that walking stability can be guaranteed through integrated motion

planning and control. The results of this Chapter will be tested on a simulated underactu-

ated biped with five revolute joints. Through discussions, it is concluded that the results

of this Chapter can also be directly applied to underactuated bipeds with high degrees of

underactuation as well as fully actuated bipeds.

Chapter 6 presents concluding remarks and briefly introduces potential directions for

future work.
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2. MODELING AND ANALYSIS OF BIPEDAL ROBOTIC WALKING

2.1 Introduction

Before introducing the walking controller designs in Chapters 3 - 5, we will first review

and study dynamic modeling of bipedal robotic walking. Dynamic modeling is critical to

the performance of a model-based controller design. For the purpose of achieving high-

performance walking, all of our controller designs in this dissertation will utilize the full-

order dynamic model of bipedal robotic walking. Specifically, the walking process will be

modeled as a hybrid dynamical system that consists of both continuous phases and impulse

rigid-body impacts.

In this Chapter, we will first describe and compare two common bipedal gait character-

izations. Then, we will present the dynamic model of bipedal robotic walking. Both gait

characterization and dynamic modeling will be used for controller designs in Chapters 3 -

5. Finally, to analyze the contributing factors to the difficulties in bipedal walking control,

the measure of Feasible Center of Mass Dynamic Manipulability (FCDM) will be proposed

and analyzed.

2.2 Bipedal Gait Characterization

There are two common types of bipedal gait characterization. The first one utilizes the

support and the swing legs to describe a bipedal gait, which will be called the support-

swing gait characterization in this dissertation [50] [77] [110]. A leg/foot that moves in

the air is called a swing leg/foot, and a leg/foot that contacts the ground is called a support

leg/foot. During bipedal walking, a swing leg and a support leg switch their roles when the

swing foot touches the ground. Therefore, when a bipedal gait is described by the support-

swing characterization, the states that represent positions and velocities of the support and

the swing legs are always discontinuous at a swing-foot touchdown.
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The second gait characterization utilizes the left and the right legs to describe a bipedal

gait, which will be called the left-right gait characterization in this dissertation [9] [124] [144].

It is straightforward to know that the states representing joint positions will be continuous

and well-defined at a swing-foot landing. The states representing joint velocities will still

experience sudden jumps at an impulse rigid-body landing impact, but the definition of

these states will be consistent throughout a walking process.

As compared with the support-swing characterization, the expression of dynamics is

more complicated under the left-right characterization. However, the left-right gait char-

acterization can be used to conveniently define both symmetric and asymmetric gaits, and

the support-swing characterization can only conveniently define symmetric gaits. The ad-

vantage of the left-right gait characterization in defining asymmetric gaits will be detailed

in Chapter 3, and the support-swing gait characterization will be utilized for the controller

designs in Chapters 4 and 5 for simplicity of expressions.

2.3 Hybrid Dynamics of Bipedal Robotic Walking

A complete bipedal step typically consists of two phases – a single-support phase (SSP)

and a double-support phase (DSP). During a SSP, one foot is the support foot, and the other

is the swing foot. During a DSP, both feet are support feet. A SSP and a DSP are connected

by the switching event of a swing-foot landing. If a biped has full-sized feet, each of the

two phases can be further decomposed into several subphases depending on the movement

of both feet [111].

In this dissertation, the following model assumptions are considered [7] [50]:

1. The mass of each link is lumped at the center of the link;

2. The two legs are identical;

3. The walking surface is flat, horizontal;

4. During a SSP, the support foot is in static, full contact with the walking surface;
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5. The landing impact at a swing-foot touchdown is modeled as a contact between rigid

bodies;

6. At the impact event, the former swing foot neither slips nor rotates upon touching the

walking surface, and the former support foot releases from the walking surface right

after the impact;

7. A DSP is instantaneous.

Based on these model assumptions, we will present the full-order dynamic model of bipedal

robotic walking.

Consider a bipedal robot with n revolute joints and k (k≤ n) independent actuators. Let

Q be the n-dimensional configuration space of the bipedal robot when the support leg is in

static, full contact with the walking surface and the joint position limits are satisfied. Let

χ = T Q⊂ R2n be the full state space.

Under the assumption that the support leg is in static, full contact with the walking

surface, the bipedal robot during a single-support phase will have n degrees of freedom

(DOFs). The single-support-phase dynamics can be obtained with Lagrange’s method,

which can be expressed in terms of the joint positions q ∈ Q and the joint torques u ∈

Rk [7] [50]:

M(q)q̈+ c(q, q̇) = Buu, (2.1)

where M : Q→ Rn×n is the inertia matrix, c : T Q→ Rn is the sum of the gravitational, the

Coriolis, and the centrifugal terms, and Bu ∈ Rn×k is full column rank.

Let zsw(q) : Q→ R represent the height of the swing foot above the walking surface,

and then the occurrence of a swing-foot landing can be determined by the switching surface

Sq(q, q̇) [7]:

Sq(q, q̇) := {(q, q̇) ∈ T Q : zsw(q) = 0, żsw(q, q̇)< 0}. (2.2)

When the swing foot hits the walking surface, an impact occurs. The impact dynamics

can be modeled as:

[q+; q̇+] =

 ∆∆∆q(q−)

∆∆∆q̇(q−)q̇−

 := ∆∆∆(q−, q̇−), (2.3)
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where ∆∆∆ : T Q→ R2n is the reset map.

The details of dynamic modeling can be found in the reference [50].

2.4 Feasible Center of Mass Dynamic Manipulability of Bipedal Robots

Locomotion stability of a bipedal robot is closely related to the capacity to regulate its

Center of Mass (CoM) motion. In this section, the concept of Feasible Center of Mass

Dynamic Manipulability (FCDM) is introduced and analyzed as a measure of this capacity.

The FCDM measure indicates the ability of a bipedal robot to regulate its CoM motion

at a given posture (i.e., joint position q) under ground-contact constraints. Specifically,

three common and important ground-contact constraints – the unilateral contact-force con-

straint, the friction constraint, and the Center of Pressure constraint – are incorporated in

the derivation of FCDM. It geometrically shows how each of the three constraints reduces

the original torque-bounded manipulability polytope and affects the maximum achievable

CoM acceleration in different directions. Finally, we will investigate the effects of postures

on the maximum feasible CoM acceleration in a specific direction.

2.4.1 Center of Mass Dynamic Manipulability

Before introducing the FCDM measure, the concept of CoM dynamic manipulability

(CDM) [145] [146] is first revisited. The CDM measure is developed based on Dynamic

Manipulability, which was originally introduced for robotic manipulators [147] [148] [149]

[150] [151] [152] [153] [154].

Here, only the flat-footed single-support phase in Eq. (2.1) is considered.

The relationship between the CoM velocity and the joint velocities via the CoM Jaco-

bian can be expressed as:

ṙc = Jc(q)q̇, (2.4)
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where rc = [xc,yc,zc]
T ∈ R3 is the CoM position and Jc : Q→ R3×n is the CoM Jacobian.

Taking the time derivative of Eq. (2.4) and combining it with the single-support-phase

dynamics in Eq. (2.1), the CoM acceleration can be obtained as:

r̈c = JcM−1(Buu− c)+ J̇cq̇. (2.5)

To analyze the effect of the joint-torque limit, we consider

u ∈ [−umax,umax],

where umax = [umax1,umax2, ...,umaxn]
T ∈ Rn, and JcM−1Buu can be rewritten as:

JcM−1Buu = JcM−1BuWuN ,

where

W := diag[umax1,umax2, ...,umaxn] ∈ Rn×n

is a scaling matrix and

uN = [uN1,uN2, ...,uNn]
T ∈ Rn

is the normalized joint-torque vector with

|uNi| ≤ 1

for i ∈ {1,2, . . . ,n}.

Denoting J̃= JcM−1BuW and applying singular value decomposition, J̃ can be decom-

posed as

J̃ = UΣVT ,

where

U := [µµµ1,µµµ2,µµµ3] ∈ R3×3

and

V := [ννν1,ννν2, . . . ,νννn] ∈ Rn×n

are orthogonal matrices and
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Σ :=


σ1 0 0

0 σ2 0 03×(n−3)

0 0 σ3

 ∈ R3×n.

Figure 2.1. A CoM dynamic manipulability ellipsoid.

J̃ maps the sphere ‖uN‖ ≤ 1 onto an ellipsoid (see Fig. 2.1) in the CoM acceleration

space, which is the CoM Dynamic Manipulability Ellipsoid. The ellipsoid semi-principal

axes are of length σ1, σ2 and σ3 in the directions of u1, u2 and u3, respectively. Although

the complete torque-bounded set of CoM acceleration at a given posture with given joint ve-

locities is not an ellipsoid but a polytope, which is bounded by |uNi| ≤ 1 for i∈ {1,2, . . . ,n},

the ellipsoid is a reasonable approximation [147] and it shares the same center as the poly-

tope.

2.4.2 Feasible Center of Mass Dynamic Manipulability

Different from a fixed-based robot manipulator, bipedal locomotion is subject to vari-

ous ground-contact constraints. These constraints decide the feasible subset of the torque-

bounded CoM dynamic manipulability polytope. This feasible subset is defined as the

Feasible CoM Dynamic Manipulability (FCDM) Polytope. Here, three common ground-

contact constraints in bipedal robotic walking are considered, including: 1) the unilateral
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ground-contact constraint, 2) the friction constraint, and 3) the CoP constraint (i.e., the

ZMP balance criterion). They are mathematically and respectively described as:

1) Fz ≥ 0;

2)
√

F2
x +F2

y ≤ µ|Fz|; (2.6)

3) rp ∈ {SP}\∂{SP};

where Fx, Fy and Fz are the x-, y- and z-components of the ground-reaction force FR, re-

spectively, µ is the friction coefficient, rp = [xp,yp,0]T is the CoP/ZMP position on the

horizontal even terrain, {SP} is the support polygon, and ∂{SP} is the boundary of {SP}.

To analyze the effects of the above constraints, a planar bipedal robot (see Fig. 2.2) is

considered.

Figure 2.2. Support foot geometry (t f = 0).

Combined with the unilateral constraint, the friction constraint becomes

−µFz ≤ Fx ≤ µFz. (2.7)

Since Fx = Mẍc and Fz = Mz̈c +Mg (g = 9.81 m/s2 and M is the total mass), the set of

achievable CoM acceleration bounded by the friction constraint is then described by

−µ(z̈c +g)≤ ẍc ≤ µ(z̈c +g). (2.8)



34

For a planar robot, the CoP constraint becomes

x0 < xp < x0 +d f ,

where x0 is the heel location and d f is the length of the support foot. The CoP position

along the Xw-axis of the world coordinate frame OwXwZw is [155]

xp = x0 +h f +
m f gc f − τ1−Mẍct f

M(g+ z̈c)
, (2.9)

where m f , c f , h f and t f are the mass, ankle-CoM distance, ankle-heel distance, and height

of the support foot, respectively, and -τ1 is the joint torque applied to the support foot

(see Fig. 2.2). Combined with the unilateral constraint, the subset of the achievable CoM

acceleration bounded by the CoP constraint then becomes

0 <
m f gc f − τ1−Mẍct f

M(g+ z̈c)
+h f < d f . (2.10)

2.4.3 Effects of Ground-Contact Constraints on Achievable Center of Mass Accel-

eration at a Given Posture

From Eq. (2.8), it is clear that the subset bounded by the friction constraint only de-

pends on the friction coefficient. However, Eq. (2.10) indicates that the subset bounded

by the CoP constraint is dependent on the given posture and the torque limit. Therefore,

it is not straightforward to determine how the CoP constraint shrinks the original torque-

bounded polytope geometrically. The FCDM polytopes for two planar robots with zero

joint velocities are shown in Fig. 2.3. The planar biped corresponding to Fig. 2.3(a) has

two revolute joints – an ankle joint and a hip joint. The planar biped corresponding to

Fig. 2.3(b) has three revolute joints – an ankle joint, a knee joint, and a hip joint.

Figure 2.3 shows that the friction constraint is indeed not affected by the torque con-

straint or the posture because the corresponding boundaries in two cases are the same.

Also, the 3-DOF robot at the given posture has a relatively larger subset bounded by the

CoP constraint as compared with the 2-DOF robot. It indicates that the higher DOFs may

have the higher capacity to regulate CoM acceleration.
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(a)

(b)

Figure 2.3. Feasible CoM dynamic manipulability polytopes (FCMP). (a):
FCDM of a planar biped with an ankle joint and a hip joint. (b): FCDM of a
planar biped with an ankle joint, a knee joint, and a hip joint. Black dot-dashed:
the boundary of the subset bounded by the joint-torque limit. Red solid: the
boundary of the subset bounded by the friction constraint (implicitly with the
unilateral constraint). Blue dashed: the boundary of the subset bounded by the
CoP constraint (implicitly with the unilateral constraint and the joint-torque
limit). Green shaded: the subset bounded by the joint-torque limit and the
three ground-contact constraints; that is, FCMP).
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From Fig. 2.3 we can also see that the achievable CoM acceleration in different direc-

tions is drastically different due to the existence of the ground-contact constraints. Previous

research on evaluation of a robot’s dynamic performance is more focused on the global per-

formance [148] [152]. Here, our interest is in the maximum achievable CoM acceleration

in a specific direction. Thus, it is necessary to first analyze the effects of ground-contact

constraints on the maximum achievable CoM acceleration in different directions. The fol-

lowing analysis is based on Fig. 2.3(b).

• Horizontal Direction: When the CoM acceleration is exactly horizontal, its mag-

nitude is at most µg due to the friction constraint. It also indicates that the CoM

acceleration, in this case, may be realized by an infinite number of postures for a

redundant robot.

• Downward Direction: The vertical downward CoM acceleration is at most g in

magnitude, which is determined by the unilateral constraint. For general downward

acceleration, its magnitude is bounded by the friction constraint (implicitly with the

unilateral constraint). There may exist infinitely many postures for CoM acceleration

maximization.

• Upward Direction: The upward CoM acceleration is bounded by the CoP constraint

(implicitly with the joint-torque constraint) and the friction constraint. For the di-

rections bounded by the friction constraint, an infinite number of postures may exist

for maximization of CoM acceleration. For the directions bounded by the CoP con-

straint, a unique optimal posture may exist.

2.4.4 Effects of Postures on Achievable Maximum CoM Acceleration in Different

Directions

From Eq. (2.5), it is clear that the shape and the orientation of the CoM dynamic el-

lipsoid/polytope are affected by the robot’s posture; that is, a biped’s posture can affect

the maximum feasible CoM acceleration in different directions. Maximizing the feasible
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CoM acceletion is desirable for bipedal walking control because walking stabilty is closely

related to a biped’s capcity to regulate its CoM motion. Therefore, it is necessary to inves-

tigate the effects of postures on a biped’s maximum feasible CoM acceleration.

To help understand the effects of postures on a biped’s maximum feasible CoM accel-

eration, we will first utilize the numerical search to obtain the optimal posture that results

in the maximum CoM acceleration in a specified direction:

max ‖r̈c(q,τττ)‖ (2.11)

subject to q ∈ [qmin,qmax]

u ∈ [−umax,umax]

q̇ = q̇0

r̈c = JcM−1(Buu− c)+ J̇cq̇

Fz ≥ 0√
F2

x +F2
y ≤ µ|Fz|

rp ∈ {SP}\∂{SP}

∠(r̈c) = γ

where γ specifies the desired direction of the CoM acceleration and q̇0 is the given joint

velocities.

Simulation results on a planar robot confirmed the previous analysis. The maximum

feasible CoM acceleration bounded by the friction constraint can be achieved by an infinite

number of postures. For each of the other directions, there exists a unique optimal posture.

Figure 2.4(a) shows the optimal postures for seven of those directions. Figure 2.4(b) shows

the corresponding CoM dynamic ellipses.

From Fig. 2.4, we discover that:

1. The maximum CoM acceleration in the upward direction as shown in Fig. 2.4(a)

seems to be achieved when the hip joint is close to singularity;
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2. Because the changes of both the knee and the hip angles are relatively small at differ-

ent optimal postures as shown in Fig. 2.4(a), the ellipse orientation seems to change

with the ankle angle monotonically;

3. The major axis of the torque-bounded ellipse aligns approximately with the specified

CoM acceleration direction (see Fig. 2.4(b)).

From the simulation results, it is clear that the posture affects a biped’s feasible CoM

acceleration range. Hence, a biped’s posture can be optimized in motion planning so as to

maximize its feasible CoM acceleration capacity.

Figure 2.4. Optimal postures for achieving maximum feasible CoM accel-
eration in different directions and the corresponding torque-bounded CoM dy-
namic manipulability ellipses (specified CoM acceleration directions (from left
to right): 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦).

2.5 Summary

In this Chapter, two types of bipedal gait characterization are described, the hybrid

dynamics of bipedal robotic walking are modeled, and the stability measure of FCDM is

introduced for walking analysis.
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A bipedal gait can be typically characterized in two ways, one by the support and the

swing legs and the other one by the left and the right legs. The support-swing characteri-

zation yields compact expressions of bipedal walking dynamics when symmetric gaits are

of interest. But it cannot be conveniently used for characterization of asymmetric gaits. In

contrast, the left-right characterization can be utilized to conveniently describe asymmetric

gaits, but the resulting dynamic model is not as compact as the support-swing characteri-

zation. In this dissertation, both characterizations will be utilized to describe bipedal gaits.

The dynamic model presented in this Chapter will be used in the model-based feedback

controller designs for different bipedal models and control objectives in later Chapters.

With the analysis based on the FCDM measure, one can visualize the limiting effects of

ground-contact constraints on the feasible Center of Mass (CoM) accelerations, which also

explains one of the main contributing factors to the difficulties in bipedal walking control.

This measure can also be used in motion planning for selecting the desired postures to

maximize a biped’s feasible CoM acceleration capacity.
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3. EXPONENTIAL TRACKING OF GLOBAL POSITION TRAJECTORY FOR

FULLY ACTUATED PLANAR WALKING

3.1 Introduction

This Chapter and Chapter 4 focus on the study and development of model-based feed-

back controllers for fully actuated bipedal robotic walking, and Chapter 5 investigates

walking control of underactuated bipeds. A bipedal robot is fully actuated if its number

of degrees of freedom (DOFs) matches the number of independent actuators. Compared

with underactuated walking, control design for fully actuated walking is relatively straight-

forward, which opens up opportunities for designing advanced controllers to achieve more

control objectives. One such control objective that will be investigated in this Chapter is to

achieve high versatility of walking. Specifically, exponential tracking of the desired global

position trajectory in Cartesian space will be explored for planar bipedal robotic walking.

Controlling a biped’s global position trajectory in Cartesian space is desirable because

it enables planning and control of high-level tasks such as multi-agent coordination and

obstacle avoidance. Previously, the HZD framework has been extended to realize the expo-

nential tracking of the desired walking pattern as well as the desired walking speed for fully

actuated bipedal walking [7] [111]. Because only velocity tracking has been addressed in

those studies, satisfactory position tracking is not guaranteed, thus limiting the walking

versatility of previous studies.

In this Chapter, we focus on achieving high versatility for fully actuated planar walking

by realizing exponential position tracking in Cartesian space. Furthermore, the left-right

gait characterization is utilized to describe a bipedal gait and express the dynamic model

such that asymmetric gaits can be conveniently planned and controlled. Although this type

of gait characterization has been previously utilized [124], the planning and control of

asymmetric gaits have not been fully studied.
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To achieve exponential tracking of the desired global position trajectory as well as the

desired walking pattern, input-output linearization is utilized to synthesize a feedback con-

troller, and the closed-loop stability conditions are derived based on the construction of

multiple Lyapunov functions [156]. In the controller design, the full-order walking dynam-

ics are considered, and the time-dependent output function is designed as the global posi-

tion tracking error and the walking pattern tracking error. By driving the output function

to zero, exponential tracking of the desired global position trajectory can be realized along

with that of the desired walking pattern. Moreover, a new method of walking pattern design

is presented, which guarantees that the planned motion respects the impact events and en-

ables decoupled planning of the desired global position trajectory and the desired walking

pattern. The proposed walking strategy was validated through simulated walking of a pla-

nar biped model with full-sized feet and three revolute joints. Simulation results showed

that exponential tracking of the desired global position trajectory in Cartesian space, as

well as the desired walking pattern in the configuration space, was satisfactorily realized.

A comparison with previous studies on orbital stabilization is also presented to show the

improved versatility.

3.2 Problem Formulation

This chapter explores the control strategies to achieve exponentially stable walking

with improved versatility for a fully actuated, planar biped as compared with previous

studies on orbital stabilization. To improve walking versatility, we will focus on realizing

exponential tracking of the desired walking pattern, both symmetric and asymmetric, as

well as the desired global position trajectory in Cartesian space. With this goal in mind, we

will formulate the control design problem by utilizing the left-right gait characterization to

conveniently define asymmetric walking patterns, modeling the hybrid walking dynamics

of a fully actuated, planar biped, and deriving the mathematical expression of the position

tracking error in Cartesian space as well as the walking pattern tracking error. Based on

the proposed problem formulation, we will develop a model-based feedback control law, a
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new method of desired gait design, and a set of sufficient conditions for guaranteeing the

closed-loop stability.

3.2.1 Planar Walking Dynamics under Left-Right Gait Characterization

A planar bipedal robot with three revolute joints and finite-sized feet are shown in

Fig. 3.1. In addition to the model assumptions listed in Section 2.3, it is assumed that the

feet are massless, thin and that the swing foot always lands flat. Suppose that the actuator

of the support leg’s ankle is activated and that the actuator of the swing leg’s ankle is not

activated. Then, the bipedal robot is fully actuated. Its model parameters are given in

Table 3.1.

Figure 3.1. A planar biped with three revolute joints. (l and r are the lengths
of the trunk and the legs, respectively. MT , MH , and m are the masses of the
trunk, the hip, and the legs, respectively.)

To conveniently define asymmetric gaits as explained in Chapter 2, we use the left and

the right legs to characterize the biped’s gaits (see Fig. 3.2).



43

Table 3.1.
Mass and length parameters of the planar biped model in Fig. 3.1.

m (kg) MH (kg) MT (kg) l, r
2 (m)

10 5 5 0.5

Figure 3.2. A fully actuated planar biped represented by the left-right gait
characterization. (The left leg, the right leg, and the trunk are represented in
blue, green, and orange colors, respectively.) (a): Left leg in support. (b):
Right leg in support.

Under the left-right characterization, the joint position q is defined as

q =


q1

q2

q3

 ∈ Q, (3.1)

where Q ⊂ R3 is the configuration space of the bipedal robot when the support leg is in

static, full contact with the walking surface and the joint position limits are satisfied, q1 is

the joint position of the left leg, q2 is the joint position of the right leg, and q3 is the joint
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position of the trunk. The joint position q is defined with respect to the world coordinate

frame OwXwZw as shown in Fig. 3.2. Let

u =


u1

u2

u3

u4

 ∈ R4

denote the joint-torque vector as illustrated in Fig. 3.2.

When the roles of the left and the right legs are differentiated, a complete gait cycle will

include four subphases: a) left-in-support single-support phase (SSP), b) left-in-support

double-support phase (DSP), c) right-in-support SSP, and d) right-in-support DSP.

Let SL(q, q̇) denote the switching surface that connects the left-in-support DSP and the

right-in-support SSP:

SL(q, q̇) := {(q, q̇) ∈ T Q : zswL(q) = 0, żswL(q, q̇)< 0}, (3.2)

where zswL(q) is the height of the swing foot during a left-in-support SSP and zswL(q) :=

l cos(q1)− l cos(q2).

Let SR(q, q̇) denote the switching surface that connects the right-in-support DSP and

the left-in-support SSP:

SR(q, q̇) := {(q, q̇) ∈ T Q : zswR(q) = 0, żswR(q, q̇)< 0}, (3.3)

where zswR(q) is the height of the swing foot during a right-in-support SSP and zswR(q) :=

l cos(q2)− l cos(q1).

Based on the dynamics equations in Section 2.3 and under the left-right characteriza-

tion, the hybrid walking dynamics can be expressed as:

ΣL :

ML(q)q̈+ cL(q, q̇) = BuLuL, if (q−, q̇−) /∈ SL(q, q̇);

[q+; q̇+] = ∆∆∆L(q−, q̇−), if (q−, q̇−) ∈ SL(q, q̇);

ΣR :

MR(q)q̈+ cR(q, q̇) = BuRuR, if (q−, q̇−) /∈ SR(q, q̇);

[q+; q̇+] = ∆∆∆R(q−, q̇−), if (q−, q̇−) ∈ SR(q, q̇);

(3.4)
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where i ∈ {L,R} indicates whether the left (L) or the right (R) leg is in support, Mi : Q→

R3×3 is the inertia matrix, ci : Q→ R3 is the sum of the Coriolis, the centrifugal, and the

gravitational terms, Bui : R3×3 is the nonsingular input matrix, ui ∈ R3 is the torque vector

of the active joints, and ∆∆∆i : T Q→ R6 is the reset map. The expressions of Mi, ci, Bui, and

ui are given in Appendix A.1, and the expression of ∆∆∆i is given in Appendix A.2.

From the expression of ∆∆∆i in Appendix A.2, it can be known that

∆∆∆i(q, q̇) :=

 q

∆∆∆q̇i(q)q̇

 , (3.5)

where the expression of ∆∆∆q̇i : Q → R3×3 can be obtained from that of ∆∆∆i in Appendix

A.2. Equation (3.5) indicates that the states representing joint velocities may experience a

sudden jump at the switching event, but the states representing joint positions are always

continuous because of the left-right gait characterization.

3.2.2 Tracking Error of the Desired Position Trajectory in Cartesian Space

To accomplish tasks such as multi-agent coordination and obstacle avoidance, it is nec-

essary for a biped to follow the desired travel path with desired motion in Cartesian space,

which can be formulated as a contouring control problem in general. By constructing

an orthogonal global task coordinate frame along the desired travel path, the contour er-

ror and the motion along the desired travel path can be separately represented in two sets

of coordinates, based on which contour error minimization and desired motion following

along the contour can be decoupled into a stabilization problem and a trajectory tracking

problem [157]. In this Chapter, we want to solve this contouring control problem for the

planar biped model in Fig. 3.1, which reduces to the problem of position trajectory track-

ing along the Xw-axis because the Xw-axis is the only feasible travel path for the planar

biped. The complete problem of straight-line contouring control will be considered for a

three-dimensional (3-D) biped in Chapter 4.

A biped’s global position in Cartesian space is needed in order to define its desired

motion along the travel path. With reference to Fig. 3.2, let the biped’s hip position s(t)
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along the Xw-axis represent its global position in Cartesian space. Let (xl,zl) and (xr,zr)

represent the positions of the left and the right feet with respect to the world coordinate

frame, respectively. The hip position s can then be expressed as:

s =

xl + l sin(q1) (left-leg-in-support);

xr + l sin(q2) (right-leg-in-support).
(3.6)

Accordingly, let sd(t) denote the desired hip position trajectory along the Xw-axis.

Hence, the global position tracking error can be expressed as s− sd(t).

Let

qst :=

q1 (left-in-support)

q2 (right-in-support)

be the support-leg angle. Under the assumption that the support foot position is known, the

desired position trajectory of the support leg can be obtained from sd(t) as:

qstd(t) :=

q1d(t) := sin−1( sd(t)−xl
l ) (left-in-support);

q2d(t) := sin−1( sd(t)−xr
l ) (right-in-support).

(3.7)

Then, the tracking error of qst−qstd(t) can be used to indicate the global position tracking

error s− sd(t). If a control law is synthesized such that qst − qstd(t) is driven to zero

exponentially, then the exponential tracking of the desired global position trajectory sd(t)

is realized.

3.2.3 Tracking Error of the Desired Walking Pattern

A walking pattern represents the relative evolution of a biped’s joint positions with re-

spect to a reference (or, encoding) variable in a complete walking cycle [50]. Note that a

complete cycle under the left-right characterization includes two successive steps. Track-

ing a preplanned walking pattern is desirable not only because the joint motion can be

synchronized with respect to the reference variable but also because a proper walking pat-

tern design will lead to some advantages in motion planning and control design. The latter

will be explored and explained in Sections 3.4 and 3.5.
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To integrate walking pattern encoding with a biped’s global motion, the relative position

of the hip with respect to the support ankle, denoted as s̄, is used as the encoding variable:

s̄ =

s− xl (left-leg-in-support);

s− xr (right-leg-in-support).
(3.8)

Note that s̄(t) increases monotonically in time during a forward step.

The desired motion of the swing leg and the trunk can then be encoded by s̄, and the

corresponding desired walking pattern is introduced as

gi(s̄,qsw,q3) = 0, i ∈ {L,R},

where gi(s̄,qsw,q3) is defined as:

left-leg-in-support: gL(s̄,qsw,q3) :=

q2−φ1L(s̄)

q3−φ2L(s̄)

 ;

right-leg-in-support: gR(s̄,qsw,q3) :=

q1−φ1R(s̄)

q3−φ2R(s̄)

 .

(3.9)

Hence, the walking pattern tracking error is simply gi(s̄,qsw,q3), i ∈ {L,R}. The function

φ ji(s̄) (i ∈ {L,R}, j ∈ {1,2}) will be determined with a new method of walking pattern

design in Section 3.4.

From Eqs. (3.6) and (3.8),

s̄ = l sin(qst).

Hence, one has

φ̃ ji(qst) := φ ji(s̄) = φ ji(l sin(qst)) (3.10)

for i ∈ {L,R} and j ∈ {1,2}. Also, by the definition in Eq. (3.9),

 s̄

gL(s̄,qsw,q3)

 and s̄

gR(s̄,qsw,q3)

 are both local diffeomorphisms on q.
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With the above walking encoding method, the walking pattern in terms of the swing-leg

joint position is represented by left-leg-in-support: q2− φ̃1L(q1) = 0

right-leg-in-support: q1− φ̃1R(q2) = 0.
(3.11)

Such a walking pattern is also shown in Fig. 3.3 in terms of the support-leg angle qst and

the swing-leg angle qsw. From Fig. 3.3, an asymmetric gait can be conveniently defined

by differentiating the left and the right legs because φ̃1L(qst) and φ̃1R(qst) can be chosen

independently. However, as shown by the dashed line in Fig. 3.3, the traditional walking

characterization based on the support and the swing legs can at most represent a symmetric

walking pattern where φ̃1L(qst) = φ̃1R(qst) = φ̃1(qst).

Figure 3.3. Encoding the swing-leg pattern using the support-leg angle qst and
the swing-leg angle qsw.

3.3 Model-based Feedback Control through Input-Output Linearization

The control objective of this Chapter is to realize exponential tracking of the desired

walking pattern in the configuration space as well as the desired position trajectory in Carte-

sian space. Under the assumption that there are no modeling errors or disturbances, input-
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output linearization is utilized to synthesize the needed controller to achieve these objec-

tives. Specifically, the swing leg and the trunk are driven to realize exponential tracking

of the desired walking pattern encoded by the support-leg angle, and the support leg is

controlled to realize exponential tracking of the desired motion in Cartesian space.

From Eqs. (3.7), (3.9), and (3.10), the output function is designed as:left-leg-in-support: yL := q−qLd(t,q1);

right-leg-in-support: yR := q−qRd(t,q2);
(3.12)

where

qLd(t,q1) :=


q1d(t)

φ̃1L(q1)

φ̃2L(q1)

 and qRd(t,q2) :=


φ̃1R(q2)

q2d(t)

φ̃2R(q2)

 .

Then, by driving the output function yi(t) (i ∈ {L,R}) to zero exponentially fast, exponen-

tial tracking of the desired global motion sd(t) and the desired walking pattern gi(s̄,qsw,q3)=

0 can be realized simultaneously.

From Eq. (3.12), one obtains

ÿi = Pi(qst)q̈− zi(t,qst , q̇st) , i ∈ {L,R}, (3.13)

where Pi(qst) is proved to be always invertible. The expressions of Pi(qst) and zi(t,qst , q̇st)

are given in Appendix B.

Under the holonomic constraints in Eq. (3.2), motion during each continuous phase

can be completely characterized by the reduced-dimensional generalized coordinates q,

and the ground-reaction force Fi (i ∈ {L,R}) can be eliminated from the continuous-phase

dynamics in Eq. (3.2). Accordingly, one has

q̈ = Mi(q)−1(Buiiui− ci(q, q̇)) , i ∈ {L,R}. (3.14)

From Eqs. (3.13) and (3.14), one has

ÿi = Ni(q)ui−Li(t,q, q̇) , i ∈ {L,R}, (3.15)

where Ni = PiM−1
i Bui is proved to be invertible and Li = PiM−1

i ci + zi.
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Therefore, the feedback control law based on input-output linearization is defined as:

ui = N−1
i (vi +Li), (3.16)

which results in a linear system:

ÿi = vi , i ∈ {L,R}. (3.17)

If vi is chosen as a proportional-derivative (PD) controller,

vi =−KPiyi−KDiẏi, , i ∈ {L,R}, (3.18)

where KPi and KDi are both nonsingular diagonal matrices, one then obtains the following

linear system:

ẋ = Ai(KPi,KDi)x , i ∈ {L,R} (3.19)

with

x : =



x1

x2

x3

x4

x5

x6


:=

yi

ẏi

 ∈ χ (3.20)

and

Ai(KPi,KDi) :=

 03×3 I3×3

−KPi −KDi

 , (3.21)

where χ ⊂ R6 is the full state space and I3×3 ∈ R5 is an identity matrix.

If KPi and KDi are chosen such that Ai(KPi,KDi) is Hurwitz, then there exists a real

positive-definite-symmetric matrix Wi such that Vi(x) = xT Wix is a Lyapunov function

candidate for the continuous-phase dynamics in Eq. (3.19) and there exist positive constants

c1i, c2i, and c3i (i ∈ {L,R}) such that Vi(x) satisfies

c1i‖x‖2 ≤Vi(x)≤ c2i‖x‖2 and V̇i(x)≤−c3iVi(x) (3.22)

for all x during continuous phases [76].
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3.4 Desired Walking Pattern Design for the Construction of Hybrid Invariance

The desired walking motion qid(t,qst) (i ∈ {L,R}) is completely defined by the desired

global position trajectory and the desired walking pattern. Suppose that the desired global

position trajectory sd(t) is determined by the high-level task planner, which is continu-

ously differentiable and monotonically increasing for t > 0. Then, the remaining task of

motion planning is walking pattern design, which should guarantee that the desired motion

qid(t,qst) will satisfy the following conditions:

(C1) ∆∆∆L(τ
−
K ,0) = 0 and ∆∆∆R(τ

−
K+1,0) = 0, ∀ K ∈ {1,3,5, ...};

(C2) Joint position and velocity limits;

(C3) Joint-torque limits;

(C4) Ground-contact constraints including the friction cone and the unilateral constraint.

Since the last four conditions (C2) - (C4) can be easily met through trajectory optimization,

they are not further discussed here. The first condition (C1) essentially states that the de-

sired gait should respect the reset map; that is, if x(τ−K ) = 0, then x(τ+K ) = 0 should always

hold. As will be presented in Section 3.5, the first condition (C1) is important because it

can greatly simplify the stability analysis of the hybrid closed-loop control system. How-

ever, the satisfaction of (C1) is not straightforward as it involves both the desired global

position trajectory and the desired walking pattern. In this section, a new method of walk-

ing pattern design is proposed, which guarantees that (C1) is always satisfied for any sd(t)

that is continuously differentiable and monotonically increasing for t > 0. This is advan-

tageous because the high-level planning of the desired global position trajectory sd(t) and

the low-level planning of the desired walking pattern represented by φ̃ ji(qst) are decoupled

for the satisfaction of (C1).

To minimize the energy cost of walking, the integral-squared motor torque per step

distance can be minimized with the cost function J defined as [7]:

J =
1
d

∫
τ

0
‖ud(t)‖2dt, (3.23)
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where d is the planned step distance and ud is motor torque corresponding to the desired

walking motion. This constrained nonlinear optimization problem can be solved by the

MATLAB command f mincon.

3.4.1 Invariance of x = 0 upon Impacts for Desired Motion

The condition (C1) can be decomposed into two parts. One part requires that the desired

walking pattern should respect the reset map, which can be satisfied based on the same

method of walking pattern design for constructing HZD [103]. The other part is tricky to

meet, which requires that the desired position trajectory of the support leg should respect

the reset map. As indicated in Eq. (3.7), the desired support-leg trajectory is updated at

the beginning of each step and depends on when and where the last actual swing-foot

touchdown occurs. In the following, a new walking pattern design is presented, which

guarantees that (C1) is always satisfied for any sd(t) that is continuously differentiable and

monotonically increasing for t > 0.

Without loss of generality, suppose that the walking process begins with the left-leg-

in-support continuous phase. Then, the Kth step (K ∈ {1,3,5...}) is a left-leg-in-support

phase and the Kth switching is a left-to-right-support switching. For any K ∈ {1,3,5, ...},

the assumption that x = 0 during the Kth continuous phase and the definition of switching

surface in Eq. (3.2) indicate that there may exist a positive number q∗1, which satisfies

q∗1 + φ̃1L(q∗1) = 0, (3.24)

such that the Kth switching aways occurs at the fixed support-leg angle q∗1. Because sd(t)

increases monotonically, q1d(t) also increases monotonically within the Kth step. Hence,

for any K ∈ {1,3,5, ...}, q1d(τK) = q∗1 always holds and uniquely determines the desired

Kth impact time τK .

Assuming x(τ−K ) = 0, one has

q(τ−K ) = HqL(q∗1) and q̇(τ−K ) = Hq̇L(q∗1)q̇1d(τ
−
K ), (3.25)
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where

HqL(q1) :=


q1

φ̃1L(q1)

φ̃2L(q1)

 and Hq̇L(q1) :=


1

dφ̃1L
dq1

(q1

dφ̃2L
dq1

(q1)

 . (3.26)

Then, at t = τ
+
K , due to the continuity in joint positions and the reset map on joint velocities,

q(τ+K ) = q(τ−K ) = HqL(q∗1),

q̇(τ+K ) = ∆∆∆q̇L(q(τ−K ))q̇(τ−K ) = ∆̃∆∆q̇L(q∗1)Hq̇L(q∗1)q̇1d(τ
−
K ),

(3.27)

where ∆̃∆∆q̇L(q∗1) := ∆∆∆q̇L(HqL(q∗1)) = ∆∆∆q̇L(q(τ−K )).

Assuming x(τ+K ) = 0, one has

q(τ+K ) = HqR(q2d(τ
+
K )) and q̇(τ+K ) = Hq̇R(q2d(τ

+
K ))q̇2d(τ

+
K ), (3.28)

where

HqR(q2) :=


φ̃1R(q2)

q2

φ̃2R(q2)

 and Hq̇R(q2) :=


dφ̃1R
dq2

(q2)

1
dφ̃2R
dq2

(q2)

 . (3.29)

Because sd(t) is continuously differentiable for t > 0, one has

sd(τ
+
K ) = sd(τ

−
K ) (3.30)

and

ṡd(τ
+
K ) = ṡd(τ

−
K ). (3.31)

Also, s(t) is continuous for t > 0. Therefore, considering Eqs. (3.7) and (3.24), one obtains

q2d(τ
+
K ) = φ̃1L(q∗1) (3.32)

and

q̇2d(τ
+
K ) =

cos(q∗1)
cos(φ̃1L(q∗1))

q̇1d(τ
−
K ) := γL(q∗1)q̇1d(τ

−
K ). (3.33)

where

Therefore, if φ̃ ji (i ∈ {L,R}, j ∈ {1,2}) can be designed to satisfy

HqL(q∗1) = HqR(φ̃1L(q∗1)) (3.34)
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and

∆̃∆∆q̇L(q∗1)Hq̇L(q∗1) = Hq̇R(φ̃1L(q∗1))γL(q∗1), (3.35)

then x(τ+K ) = ∆∆∆L(τ
−
K ,0) = 0 holds for any K ∈ {1,3,5, ...}.

Similarly, assume that x = 0 holds during the (K + 1)th (K ∈ {1,3,5, ...}) continuous

phase and that the (K + 1)th impact occurs at the fixed support-leg angle q2 = q∗2 . If φ̃ ji

(i ∈ {L,R}, j ∈ {1,2}) is designed to satisfy

HqR(q∗2) = HqL(φ̃1R(q∗2)) (3.36)

and

∆̃∆∆q̇R(q∗2)Hq̇R(q∗2) = Hq̇L(φ̃1R(q∗2))γR(q∗2) (3.37)

with

∆̃∆∆q̇R(q∗2) := ∆∆∆q̇R(HqR(q∗2))

and

γR(q∗2) :=
cos(q∗1)

cos(φ̃1R(q∗2))
,

then ∆∆∆R(τ
−
K+1,0) = 0 for any K ∈ {1,3,5, ...}.

3.4.2 Walking Pattern Parameterization with Beziér Curves

Introduce the reference variables as:

λL(q1) =
q1−q10

q∗1−q10
and λR(q2) =

q2−q20

q∗2−q20
, (3.38)

where q10 and q20 are the initial support-leg angles of the left-leg-in-support and the right-

leg-in-support phases, respectively, determined by the desired walking pattern and the

switching surfaces.
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Similar to the previous study [102], the function φ̃ ji (i ∈ {L,R}, j ∈ {1,2}), which

defines the desired walking pattern, can be parameterized by the Mth-order Beziér curves:

φ̃1L(q1) := φ̄1L(λL) =
M

∑
p=0

αLp
M!

p!(M− p)!
λ

p
L (1−λL)

M−p,

φ̃2L(q1) := φ̄2L(λL) =
M

∑
p=0

βLp
M!

p!(M− p)!
λ

p
L (1−λL)

M−p,

φ̃1R(q2) := φ̄1R(λR) =
M

∑
p=0

αRp
M!

p!(M− p)!
λ

p
R (1−λR)

M−p,

φ̃2R(q2) := φ̄2R(λR) =
M

∑
p=0

βRp
M!

p!(M− p)!
λ

p
R (1−λR)

M−p,

(3.39)

where αip and βip (i ∈ {L,R}) are parameters of the Beziér curves.

Because Beziér curves are chosen to define φ̄ ji(λi) (i ∈ {L,R}, j ∈ 1,2), the desired

function φ̄ ji(λi) has the following properties:

1. φ̄1i(0) = αi0, φ̄2i(0) = βi0;

2. φ̄1i(1) = αiM, φ̄2i(1) = βiM;

3. dφ̄1i
dλi

(0) = Mαi1−αi0, dφ̄2i
dλi

(0) = Mβi1−βi0;

4. dφ̄1i
dλi

(1) = MαiM−αi(M−1),
dφ̄2i
dλi

(1) = MβiM−βi(M−1).

These properties can be utilized to construct the desired walking pattern that satisfies

the hybrid invariance conditions in Eqs. (3.34) - (3.39), which will be explained with an

example next.
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3.4.3 A Walking Pattern Design Example with Third-order Beziér Curves

In this subsection, the procedure of obtaining the unknown parameters of φ̃ ji (i∈{L,R},

j ∈ {1,2}) in Eq. (3.39) is explained. Suppose M = 3. From Eqs. (3.34) - (3.38) and the

properties of φ̃ ji (i ∈ {L,R}, j ∈ {1,2}), one has:

q∗1 = αR0, q∗2 = αL0, q10 = αR3, q20 = αL3, (3.40)

λL(q1) =
q1−αR3

αR0−αR3
, λR(q2) =

q2−αL3

αL0−αL3
, (3.41)

βL3 = βR0, βL0 = βR3, (3.42)

γL(αR0)


3αR1−αR0
αL0−αL3

1
3βR1−βR0
αL0−αL3

= ĨL(αR0)


1

3αL3−αL2
αR0−αR3
3βL3−βL2
αR0−αR3

 , (3.43)

γR(αL0)


1

3αL1−αL0
αR0−αR3
3βL1−βL0
αR0−αR3

= ĨR(αL0)


3αR3−αR2
αL0−αL3

1
3βR3−βR2
αL0−αL3

 . (3.44)

When the desired walking direction is forward, the function φ̃ ji (i ∈ {L,R}, j ∈ {1,2})

should satisfy the following switching conditions:

l cos(αR0)− l cos(αL3) = 0,

l(−sin(αR0)+ sin(αL3)
3αL3−αL2

αR0−αR3
)< 0,

l cos(αL0)− l cos(αR3) = 0,

l(−sin(αL0)+ sin(αR3)
3αR3−αR2

αL0−αL3
)< 0.

(3.45)

There are 16 unknown parameters of the eight 3rd-order Beziér curves, and there are 10

equations and 2 inequality constraints in Eqs. (3.42) - (3.45). Therefore, the function φ̃ ji

(i ∈ {L,R}, j ∈ {1,2}) can be determined through numerical search in order to satisfy the

first condition (C1).



57

3.5 Closed-Loop Stability Analysis

Based on previous analysis, the closed-loop walking dynamics can be compactly writ-

ten as ẋ = ALx, if (t−,x−) /∈ SL→R(t,x)

x+ = ∆∆∆L→R(t−,x−), if (t−,x−) ∈ SL→R(t,x)
(3.46)

during the left-leg-in-support phase andẋ = ARx, if (t−,x−) /∈ SR→L(t,x)

x+ = ∆∆∆R→L(t−,x−), if (t−,x−) ∈ SR→L(t,x)
(3.47)

during the right-leg-in-support phase, where the expression of ∆∆∆i(t−,x−) (i ∈ {L,R}) can

be derived from Eqs. (3.4) and (3.12). The switching surfaces SL→R(t,x) and SR→L(t,x)

can be obtained from Eqs. (3.2) and (3.3) as:

SL→R(t,x) := {(t,x) : hL(t,x) = 0, ḣL(t,x)< 0},

SR→L(t,x) := {(t,x) : hR(t,x) = 0, ḣR(t,x)< 0},
(3.48)

where the expression of hi(t,x) (i ∈ {L,R}) can be derived from zswi(q).

Suppose that the walking process begins with the left-leg-in-support continuous phase

at t = t0. Without loss of generality, suppose t0 = 0. Let TLk and TRk , k∈ {1,2, ...}, represent

the actual moments of the kth left-to-right-support and the kth right-to-left-support impacts,

respectively. Without loss of generality, assume TR0 = t0. Let τLk and τRk , k ∈ {1,2, ...},

denote the desired moments of the kth left-to-right impact assuming x(t) = 0 ∀t > TRk−1 and

the kth right-to-left impact assuming x(t) = 0 ∀t > TLk , respectively.

Properties of TLk and TRk are summarized in Theorem 3.1, which is introduced based on

Lemma 2 in [79].

Theorem 3.1 Consider the fully actuated walking system in Eqs. (3.46) and (3.47). Let the

following conditions hold:

(A1) There is no beating effect at impacts;

(A2) The desired global position trajectory sd(t) is continuously differentiable and mono-

tonically increasing for t > 0;
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(A3) The function φ̃ ji(qst) (i ∈ {L,R}, j ∈ {1,2}) that represents the desired walking pat-

tern is continuously differentiable in qst .

Then, there exists a small neighborhood U of the point (τik ,0), i ∈ {L,R}, k ∈ {1,2, ...},

such that Tik(τik ,pik(τik)) is a unique continuously differentiable function in U , where pLk(t)

is the solution of ẋ = ALx on t ∈ (TRk−1,+∞) with initial condition pLk(T
+

Rk−1
) = x(T+

Rk−1
)

and pRk(t) is the solution of ẋ = ARx on t ∈ (TLk ,+∞) with initial condition pRk(T
+

Lk
) =

x(T+
Lk
). Also, Tik has the following properties:

(P1) TLk(τLk ,0) = τLk , TRk(τRk ,0) = τRk ;

(P2) There exists a positive number Lτ such that |Tik(τ,w)−Tik(τ,u)| ≤Lτ‖w−u‖, ∀(τ,w),

(τ,u) ∈U .

�

Proof: By the definitions of Tik and τik , (P1) holds. From the conditions (A1) - (A3) and

Eqs. (3.46), (3.47), and (3.48), it is easy to know that the functions that define the continu-

ous dynamics, the reset maps, and the switching surfaces are all continuously differentiable

in t and x. Then, by the implicit function theorem, (P2) holds. �

We are now ready to present the main theorem of this study.

Theorem 3.2 Let the conditions (A1) - (A3) hold. Assume that ∆∆∆L(τ
−
Lk
,0)= 0 and ∆∆∆R(τ

−
Rk
,0)=

0 for any k ∈ {1,2, ...}. There exist sufficiently large KPi and KDi (i ∈ {L,R}) and a posi-

tive number δ such that for any x(0) ∈ Bδ (0) := {x ∈ χ : ‖x‖< δ} the hybrid closed-loop

system in Eqs. (3.46) and (3.47) is locally exponentially stable. �

Proof: Without loss of generality, suppose that the walking process begins with the left-

leg-in-support continuous phase.

Let VL(x) and VR(x) be the Lyapunov functions associated with the left-leg-in-support

and the right-leg-in-support phases, respectively. Let VR|+K and VL|+K+1 (K ∈ {1,3,5, ...})

denote the values of Lyapunov functions right after the Kth and the (K + 1)th impacts, re-

spectively. By stability analysis via multiple Lyapunov functions [156], the overall system

is exponentially stable if VL(x) and VR(x) are exponentially decreasing in the left-leg-in-
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support and the right-leg-in-support phases, respectively, and if {VR|+1 ,VR|+3 ,VR|+5 ...} and

{VL|+2 ,VL|+4 ,VL|+6 ...} are both strictly decreasing sequences.

As explained in Section 3.3, if KPi and KDi (i∈{L,R}) are chosen such that Ai(KPi,KDi)

is Hurwitz then the continuous-phase subsystems are exponentially stabilized. Therefore,

the remaining task is to derive stability conditions so that the sequences {VR|+1 ,VR|+3 ,VR|+5 ...}

and {VL|+2 ,VL|+4 ,VL|+6 ...} are both strictly decreasing. This requirement can be rewritten as:

VR|+K+2 <VR|+K and VL|+K+3 <VL|+K+1, (3.49)

for any K ∈ {1,3,5, ...}.

First, we prove that there exist positive-definite diagonal matrices KPi, KDi (i∈ {L,R}),

and a positive number δR such that VR|+K+2 <VR|+K for any x(0) ∈ BδR(0).

From Eq. (3.22), one has

VR(x)≤ e−c3R(t−TK)VR|+K (3.50)

during the continuous phase right after the Kth impact and

VL(x)≤ e−c3L(t−TK+1)VL|+K+1 (3.51)

during the continuous phase right after the (K +1)th impact.

Because of the assumption ∆∆∆R(τ
−
K+1,0) = 0,

‖x|+K+1‖= ‖∆∆∆R(T−K+1,x|
−
K+1)‖

≤ ‖∆∆∆R(T−K+1,x|
−
K+1)−∆∆∆R(τ

−
K+1,x|

−
K+1)‖

+‖∆∆∆R(τ
−
K+1,x|

−
K+1)−∆∆∆R(τ

−
K+1,0)‖,

(3.52)

where TK+1 is the moment of the actual (K + 1)th impact, x|−K+1 and x|+K+1 represent the

values of x right before and after the (K+1)th impact, respectively, and τK+1 is the moment

of the desired (K +1)th impact assuming x(t) = 0 ∀t > TK .

Because the reset map ∆∆∆i(t,x), i ∈ {L,R}, is continuously differentiable in t and x, it

is locally Lipschitz continuous in t and x. Hence, there exists r∗R > 0 such that for any

x(0) ∈ Br∗R(0), one has

‖∆∆∆R(τ
−
K+1,x|

−
K+1)−∆∆∆R(τ

−
K+1,0)‖ ≤ L∆Rx‖x|

−
K+1‖ (3.53)
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and

‖∆∆∆R(T−K+1,x|
−
K+1)−∆∆∆R(τ

−
K+1,x|

−
K+1)‖ ≤ L∆Rt |TK+1− τK+1| (3.54)

for some Lipschitz constants L∆x and L∆t .

Define

x̃R(t) := eAR(t−TK)x|+K , ∀t > TK, (3.55)

and then by Theorem 3.1 there exist positive numbers h∗R and Lτ such that

|TK+1− τK+1|= |TK+1(τK+1, x̃R(τK+1))−TK+1(τK+1,0)|

≤ Lτ‖x̃R(τK+1)‖
(3.56)

for any x(0) ∈ Bh∗R(0).

From Eqs. (3.52), (3.53), (3.54), and (3.56), one has

‖x|+K+1‖
2 ≤ L∆R(‖x|

−
K+1‖

2 +‖x̃R(τK+1)‖2), (3.57)

where L∆R := max{2L2
∆Rx

,2L2
∆Rt

L2
τ}.

Similarly,

‖x|+K+2‖
2 ≤ L∆L(‖x|

−
K+2‖

2 +‖x̃L(τK+2)‖2), (3.58)

where L∆L is a constant and can be obtained similarly to L∆R and x̃L(t) is defined as

x̃L(t) := eAL(t−TK+1)x|+K+1, ∀t > TK+1. (3.59)

According to Eq. (3.22), the following inequalities hold:

VR|−K+1 ≥ c1R‖x|−K+1‖
2, VR(x̃R(τK+1))≥ c1R‖x̃R(τK+1)‖2,

VL|−K+2 ≥ c1L‖x|−K+2‖
2, VL(x̃L(τK+2))≥ c1L‖x̃L(τK+2)‖2,

VL|+K+1 ≤ c2L‖x|+K+1‖
2, VR|+K+2 ≤ c2R‖x|+K+2‖

2.

(3.60)

Furthermore, from Eqs. (3.50), (3.51), (3.55), and (3.59), one has

VR(x̃R(τk+1))≤ e−c3R(τk+1−TK)VR|+K (3.61)

and

VL(x̃L(τk+2))≤ e−c3L(τk+2−TK+1)VL|+K+1. (3.62)



61

Combining Eqs. (3.57) - (3.62), one obtains

VR|+K+2 ≤
c2Lc2R

c1Rc1L
L∆LL∆R(e

−c3L∆τK+1(e−c3L(TK+2−τK+2)+1)

+ e−c3R∆τK(e−c3R(TK+1−τK+1)+1))VR|+K ,
(3.63)

where ∆τK := τK+1− TK and ∆τK+1 := τK+2− TK+1, K ∈ {1,3,5, ...}. Note that ∆τK is

the desired duration of the (K +1)th step, which is known right after the Kth actual impact

occurs.

From Eqs. (3.22) and (3.55),

‖x̃R(τk+1)‖ ≤
√

c2R

c1R
e−

c3R
2c2R

∆τk‖x|+K‖, (3.64)

holds, and thus from Eqs. (3.56) and (3.64) one has

|TK+1− τK+1| ≤ Lτ

√
c2R

c1R
e−

c3R
2c2R

∆τK‖x|+K‖. (3.65)

Similarly,

|TK+2− τK+2| ≤ Lτ

√
c2L

c1L
e−

c3L
2c2L

∆τK+1‖x|+K+1‖. (3.66)

Therefore, it is easy to know that for any εR > 0 there exist sufficiently large c3R and c3L

and a positive number l∗ such that

e−c3R(TK+1−τK+1) ≤ 1+ ε and e−c3L(TK+2−τK+2) ≤ 1+ ε (3.67)

hold for all x(0) ∈ Bl∗(0).

Then, it can be obtained from Eqs. (3.63) and (3.67) that

VR|+K+2 ≤
c2Lc2R

c1Lc1R
L∆LL∆R(1+ ε)2e−(c3L∆τK+1+c3R∆τK)VR|+K (3.68)

holds for any x(0) ∈ BδR(0) where δR := min{r∗R,h∗R, l∗}.

Similarly,

VL|+K+3 ≤
c2Lc2R

c1Lc1R
L∆LL∆R(1+ ε)2e−(c3L∆τK+3+c3R∆τK+2)VL|+K+1, (3.69)

holds for any x(0) ∈ BδL(0) where δL can be found similarly to the above analysis.
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Note that c3i is determined by KPi and KDi, i ∈ {L,R}. Hence, if the PD gains are suffi-

ciently large such that Ai is Hurwitz and that there exists a positive number δ <min{δL,δR}

such that

c3L∆τK+1 + c3R∆τK > 2ln(
c2Lc2R

c1Lc1R
L∆LL∆R(1+ ε)) (3.70)

and

c3L∆τK+3 + c3R∆τK+2 > 2ln(
c2Lc2R

c1Lc1R
L∆LL∆R(1+ ε)) (3.71)

hold for any x(0) ∈ Bδ (0) and any K ∈ {1,3,5, ...}, then VR|+K+2 < VR|+K and VL|+K+3 <

VL|+K+1 hold for any x(0) ∈ Bδ (0) and any K ∈ {1,3,5, ...}; that is, the closed-loop system

in Eqs. (3.46) and (3.47) is locally exponentially stable. �

The stability conditions in Eqs. (3.70) and (3.71) indicate that the output function should

converge to zero sufficiently fast so as to diminish the divergence caused by reset maps.

Note that gait recharacterization does not affect the expansiveness of a reset map. In previ-

ous studies, rapidly exponential convergence of output function has been proposed to deal

with the expansiveness of a landing impact [110], which can also be applied here to further

increase the convergence rate.

Also, note that the assumptions ∆∆∆L(τ
−
K ,0) = 0 and ∆∆∆R(τ

−
K+1,0) = 0 in Theorem 3.2 will

always hold for any K ∈ {1,3,5, ...} if the desired walking pattern is designed properly as

introduced in Section 3.4.

3.6 Simulation Results

Computer simulations are carried out on a fully actuated, planar biped (see Fig. 3.2) to

show the validity of the proposed walking strategy. We first compare our proposed gait de-

sign and control with previous studies based on the same desired symmetric walking pattern

to show that we can achieve exponential tracking of the desired global position trajectory

sd(t) but the previous study can only track a constant walking speed. Moreover, an asym-

metric walking pattern, which cannot be realized based on previous gait characterization,

is simulated with two different desired global position trajectories sd(t) – one with a con-

stant walking speed and the other with a time-varying walking speed – to further show the
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versatility of the proposed walking strategy. Simulation results show that the desired gait

respects the reset map regardless of the choice of sd(t) when the desired walking pattern

is designed as introduced in Section 3.4. Finally, effects of the continuous-phase conver-

gence rate on the closed-loop stability are analyzed through simulations, which validates

the stability conditions in Section 3.5.

A symmetric walking pattern and an asymmetric walking pattern are generated through

the proposed gait design in Section 3.4. For the purpose of illustration, the symmetric

walking pattern of the swing-leg angle qsw with respect to the support-leg angle qst is shown

in Fig. 3.4 (a), and the asymmetric one is shown in Fig. 3.4 (b).

3.6.1 Comparison with Orbitally Exponential Stabilization

In the previous work on orbital stabilization [111], the bipedal gait is characterized by

the support and the swing legs. Thus, only a symmetric walking pattern can be exponen-

tially tracked. Besides walking pattern tracking, another control objective of the previous

work is velocity tracking in Cartesian space.

In order to compare our proposed walking strategy with the previous orbital stabi-

lization [111], the desired walking pattern is chosen as the symmetric walking pattern in

Fig. 3.4(a). The desired global position trajectory sd(t) is defined as monotonically in-

creasing with a constant speed. Because the previous walking strategy focuses on velocity

tracking in Cartesian space, its desired global motion is defined as ṡd(t).

The simulation results corresponding to the previous work are shown in Fig. 3.5. From

Fig. 3.5, it is clear to see that exponential tracking of the desired symmetric walking pattern

is achieved. However, there is always a nonzero steady-state tracking error of the desired

global position trajectory sd(t), although the desired global velocity trajectory ṡd(t) can be

exponentially tracked.

In contrast, with our proposed walking strategy, we can realize exponential walking

pattern tracking and exponential global position tracking, as shown in Fig. 3.6.
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Figure 3.4. Desired walking patterns of swing-leg angle qsw with respect to
support-leg angle qst . (a): Symmetric. (b): Asymmetric.

This comparison clearly illustrates that our proposed walking strategy can greatly im-

prove walking versatility as compared with the previous work on orbital stabilization.
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Figure 3.5. Simulation results of previous studies with walking characteri-
zation by support leg and swing leg. Green (blue) dashed: desired swing-leg
(trunk) trajectory determined by the desired walking pattern.
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Figure 3.6. Simulation results of proposed desired gait design and control with
walking characterized by left leg and right leg. Dashed lines (red, green, blue):
desired trajectories determined by gi(s̄,qsw,q3) = 0 (i ∈ {L,R}) and sd(t).

3.6.2 Stable Symmetric Walking

In this subsection, we will show two sets of bipedal walking with the same desired sym-

metric walking pattern (see Fig. 3.4(a)) but different desired hip trajectories sd(t). Without

loss of generality, the control gains are chosen the same for both cases: KPL = KPR =

diag[28,28,28], KDL = KDR = diag[11,11,11]. These control gains are chosen such that

the matrices AL and AR in Eq. (3.19) are both Hurwitz and that the conditions in Eqs. (3.70)
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and (3.71) are met under relatively large initial tracking errors. These two sets of bipedal

walking also share the same initial conditions:

s(0)− sd(0) =−0.1(m), ṡ(0)− ṡd(0) = 0.1(m/s),

q2(0)− φ̃1L(q1(0)) = 0.1(rad),

q3(0)− φ̃2L(q1(0)) =−0.1(rad),

q̇2(0)− dφ̃1L
dq1

(q1(0))q̇1(0) =−0.1(rad/s),

q̇3(0)− dφ̃2L
dq1

(q1(0))q̇1(0) = 0.1(rad/s).

(3.72)

Due to the identical control gains, A = AL = AR. Then, without loss of generality, the

Lyapunov functions during the left-leg-in-support and the right-leg-in-support phases are

chosen to be the same:

VL(x) =VR(x) = xT Wx, (3.73)

where W is the solution of the Lyapunov equation AW+WAT +Q = 0 with Q = I6×6 [76].

Figure 3.7 shows the results with sd(t) = 0.6t − 0.1(m), and Fig. 3.8 corresponds to

sd(t) = 2.3e−0.3(t+0.5)+0.6t−2.1(m). From the plots, we can see that exponential track-

ing of the desired hip trajectory sd(t) with either constant or time-varying walking speed

is achieved under the same desired walking pattern. It confirms that a walking pattern

generated through the proposed gait design method in Section 3.4 can be automatically

incorporated with an arbitrary hip trajectory sd(t) that is differentiable and monotonically

increasing. Note that the Lyapunov function plot in Fig. 3.7 shows a relatively large jump

at the first impact at t = 0.5 (s) while the one in Fig. 3.8 shows no significant jump at the

first landing impact at t = 2 (s). Because the desired global position trajectory in Fig. 3.8

has a much lower velocity in the first few seconds than that in Fig. 3.7, the duration of the

first step is much longer in Fig. 3.8, which results in the much smaller trajectory tracking

error right before the first impact and the much smaller jump of the Lyapunov function

right after the first impact in Fig. 3.8.
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Figure 3.7. Symmetric walking with sd(t) = 0.6t − 0.1(m), KPi=
diag[28,28,28,28,28], and KDi= diag[11,11,11,11,11]. Dashed lines (red,
green, blue): desired joint trajectories determined by gi(s̄,qsw,q3) = 0 (i ∈
{L,R}) and sd(t).
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Figure 3.8. Symmetric walking with sd(t) =
2.3e−0.3(t+0.5) + 0.6t − 2.1(m), KPi= diag[28,
28,28,28,28], and KDi=diag[11,11,11,11,11]. Dashed lines (red, green,
blue): desired joint trajectories determined by gi(s̄,qsw,q3) = 0 (i ∈ {L,R})
and sd(t).

3.6.3 Stable Asymmetric Walking

As stated earlier, the left-right gait characterization enables planning and tracking of

an asymmetric walking pattern, which is illustrated with two sets of simulation results in

Figs 3.9 and 3.10. Except for the desired global position trajectories sd(t), these two sets of
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simulations share the same desired asymmetric walking pattern as in Fig. 3.4(b), the same

control parameters KPL = KPR = diag[12,12,12,12,12] and KDL = KDR= diag[7,7,7,7,7],

and the same initial conditions and definitions of Lyapunov functions as in Section 3.6.2.

Figure 3.9. Asymmetric walking with sd(t) = 0.6t − 0.1(m),
KPi=diag[12,12,12,12,12], and KDi=diag[7,7,7,7,7]. Dashed lines (red,
green, blue): desired joint trajectories determined by gi(s̄,qsw,q3) = 0
(i ∈ {L,R}) and sd(t).
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Figure 3.10. Asymmetric walking with
sd(t) = 2.3e−0.3(t+0.5) + 0.6t − 2.1(m), KPi=diag[12,
12,12,12,12], and KDi=diag[7,7,7,7,7]. Dashed lines (red, green, blue):
desired joint trajectories determined by gi(s̄,qsw,q3) = 0 (i∈ {L,R}) and sd(t).

3.6.4 Effects of Proportional-derivative Control Gains on Closed-Loop Stability

Theorem 3.2 introduced in Section 3.5 indicates that the continuous-phase convergence

rate determined by the PD gains should be sufficiently fast to guarantee the stability of the

closed-loop hybrid dynamical system in Eqs. (3.46) and (3.47). Here, two sets of simu-

lated bipedal walking (see Figs. 3.11 and 3.12) are presented under different PD gains but
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with the same initial conditions, desired walking pattern, and desired hip trajectory as in

Fig. 3.9. Definitions of the Lyapunov functions are the same as in Eq. (3.73). The PD gains

corresponding to Fig. 3.11 is larger than those that correspond to Fig. 3.12. Accordingly,

the actual joint trajectories q(t), as well as the hip position s(t), converge to the desired mo-

tions faster in Fig. 3.11 than in Fig. 3.12. This trend is also shown by the plots of Lyapunov

functions. This comparison illustrates Theorem 3.2 and shows that a higher convergence

rate during the continuous phases results in faster closed-loop convergence.

Figure 3.11. Asymmetric walking with
sd(t) = 0.6t − 0.1(m), KPL=KPR=diag[28,28,28,28,
28], and KDL= KDR= diag[11,11,11,11,11]. Dashed lines (red, green,
blue): desired joint trajectories determined by gi(s̄,qsw,q3) = 0 (i ∈ {L,R})
and sd(t).
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Figure 3.12. Asymmetric walking with sd(t) = 0.6t − 0.1(m),
KPi=diag[6,6,6,6,6], and KDi=diag[5,5,5,5,5]. Dashed lines (red, green,
blue): desired joint trajectories determined by gi(s̄,qsw,q3) = 0 (i ∈ {L,R})
and sd(t).

3.7 Summary

In this Chapter, provably stable, fully actuated, planar bipedal robotic walking has been

achieved with improved versatility as compared with previous studies. In order to define

both symmetric and asymmetric walking patterns, the left and the right legs were used

to characterize a bipedal gait. A feedback controller was then synthesized in order to re-

alize exponential tracking of the desired global position trajectory in Cartesian space as

well as the desired walking pattern, both symmetric and asymmetric, in the configuration
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space. Closed-loop stability conditions were analyzed based on the construction of multi-

ple Lyapunov functions, which essentially require that the continuous-phase convergence

rate of the output function should be sufficiently fast in order to overcome the possibility

of divergence caused by landing impacts. A new method of walking pattern design was

proposed, which guarantees that the low-level planning of the desired walking pattern can

be decoupled from the high-level planning of the desired global motion. Provably expo-

nential stabilization and versatility of the proposed walking strategy were confirmed with

simulated bipedal walking.

The result of this Chapter will be extended to a fully actuated three-dimensional (3-D)

biped for contouring control in Chapter 4.
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4. EXPONENTIAL TRACKING OF GLOBAL POSITION TRAJECTORY FOR

FULLY ACTUATED THREE-DIMENSIONAL WALKING

4.1 Introduction

In Chapter 3, exponential tracking of the desired global position trajectory was inves-

tigated for fully actuated planar bipedal robotic walking. To our best knowledge, it is the

first time that global position tracking of planar bipedal robotic walking has been addressed

based on nonlinear feedback control and formal stability analysis. However, the walking

strategy developed in Chapter 3 is for planar bipedal robots that are confined to moving in

the sagittal plane. In this Chapter, the controller synthesis in Chapter 3 will be extended

to the global position tracking problem for fully actuated three-dimensional (3-D) bipedal

robotic walking.

For many complex tasks such as multi-agent coordination, it is important that a bipedal

robot can satisfactorily track the desired global position trajectory on the walking surface.

This problem has been studied mainly by the Zero-Moment Point (ZMP) approach, which

utilizes the ZMP balance criterion to stabilize bipedal walking and track the desired mo-

tion [41] [158]. However, it has not been fully explored using model-based feedback con-

trol that utilizes full-order dynamic modeling and formal stability analysis. Velocity track-

ing in Cartesian space has been studied for fully actuated walking based on the concept of

partial hybrid zero dynamics [111], but global position tracking for 3-D bipedal robots has

not been addressed under the HZD framework.

The objective of this Chapter is to realize exponential tracking of the desired posi-

tion trajectory in Cartesian space as well as the desired walking pattern for 3-D bipedal

robotic walking. The desired walking pattern is defined as the desired relative evolution

of joint positions with respect to a phase variable that represents how far a step has pro-

gressed [50]. The desired position trajectory in Cartesian space is defined as the planned



76

path on the walking surface along with the desired motion along the path. The problem of

position tracking in Cartesian space will be formulated as a contouring control problem.

Contouring control has been extensively studied for machining tasks such as cutting and

milling [157] [159] [160]. Here, the concept is adapted to legged robotic locomotion. A

contour is defined as a 1-D geometric path on the walking surface, and the contouring con-

trol problem will be decomposed into two subproblems. One is a stabilization problem,

and the objective is to realize exponential convergence to the shape of the desired contour.

The other is a position tracking problem, and the objective is to realize exponential con-

vergence to the desired position trajectory along the desired contour. In this Chapter, the

desired paths/contours on the walking surface are limited to straight-line paths/contours.

4.2 Problem Formulation

The controller design in this Chapter focuses on the realization of exponential tracking

of the desired position trajectory in Cartesian space as well as the desired walking pattern

for fully actuated, 3-D bipedal robotic walking. For simplicity, only symmetric gaits are

considered here, which will be described using the support-swing gait characterization.

The first step of the proposed controller design is to model the full-order hybrid dynamics

of 3-D bipedal robotic walking under the support-swing gait characterization. Then, we

will derive the mathematical expression of the tracking error of the desired walking pattern

as well as the desired contour and motion.

4.2.1 Three-dimensional Walking Dynamics under Support-Swing Gait Character-

ization

A 3-D bipedal robot with nine revolute joints is shown in Fig. 4.1 [121]. Different from

the planar biped model in Chapter 3 that only has pitch joints (see Fig. 3.1), the 3-D biped

model as shown in Fig. 4.1 also has roll joints. To clearly show the distribution of joint

actuators, their arrangement is illustrated in Fig. 4.1.
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(a)

(b)

Figure 4.1. A fully actuated 3-D biped represented by the support-swing gait
characterization. (a): The right leg is in support. (b): The left leg is in support.
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In addition to the model assumptions listed in Section 2.3, it is assumed that the biped’s

feet are massless, thin. Also, for simplicity and without loss of generality, it is assumed

that the swing foot always lands flat pointing towards the positive direction of the Xw-

axis. Hence, the orientation of the support foot coordinate frame O f X fYf Z f is always

aligned with the world coordinate frame OwXwYwZw. This 3-D biped model is fully actuated

because it is supposed that the actuator of the support ankle is activated and that the actuator

of the swing ankle is not.

Parameters of the simulated biped model are shown in Table 4.1.

Table 4.1.
Mass and length parameters of the three-dimensional biped model in Fig. 4.1.

m1 (kg) m2 (kg) mT (kg) l1, l2, l3
2 (m) w (m)

3 6 20 0.4 0.3

For the simplicity of expression, only the support-swing characterization will be con-

sidered here to describe a 3-D bipedal gait. Therefore, a complete gait cycle consists of a

SSP and an instantaneous DSP.

Under the support-swing characterization, the joint position q is defined as:

q =



q1

q2

q3

q4

q5

q6

q7

q8

q9



∈ Q, (4.1)
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where Q ⊂ R9 is the configuration space of the bipedal robot when the support leg is in

static, full contact with the walking surface and the joint position limits are satisfied, q1,

q2, q3, q4, and q5 are joint positions of the support leg, q6, q7, and q8 are joint positions of

the swing leg, and q9 is the joint position of the trunk. Let

u =



u1

u2

u3

u4

u5

u6

u7

u8

u9



∈ R9

represent the joint-torque vector.

Although a complete gait of the 3-D biped in Fig. 4.1 consists of a SSP and an in-

stantaneous DSP under the support-swing characterization, the expressions of the dynamic

matrices for the left-in-support phases are different from the right-in-support phases.

Let SL(q, q̇) represent the switching surface that connects the left-in-support DSP and

the right-in-support SSP:

SL(q, q̇) := {(q, q̇) ∈ T Q : zswL(q) = 0, żswL(q, q̇)< 0}, (4.2)

where zswL(q) is the height of the swing foot when the left leg is in support.

Let SR(q, q̇) denote the switching surface that connects the right-in-support DSP and

the left-in-support SSP:

SR(q, q̇) := {(q, q̇) ∈ T Q : zswR(q) = 0, żswR(q, q̇)< 0}, (4.3)

where zswR(q) is the height of the swing foot when the right leg is in support.
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The hybrid walking dynamics for the 3-D biped in Fig. 4.1 under the support-swing

characterization can be expressed as:

ΣL :

ML(q)q̈+ cL(q, q̇) = Buu, if (q−, q̇−) /∈ SL(q, q̇);

[q+; q̇+] = ∆∆∆L(q−, q̇−), if (q−, q̇−) ∈ SL(q, q̇);

ΣR :

MR(q)q̈+ cR(q, q̇) = Buu, if (q−, q̇−) /∈ SR(q, q̇);

[q+; q̇+] = ∆∆∆R(q−, q̇−), if (q−, q̇−) ∈ SR(q, q̇);

(4.4)

where i ∈ {L,R} indicates whether the left (L) or the right (R) leg is in support, Mi : Q→

R9×9 is the inertia matrix, ci : Q→ R9 is the sum of the Coriolis, the centrifugal, and the

gravitational terms, Bu : R9×9 is the nonsingular input matrix, u ∈ R9 is the torque vector

of the active joints, and ∆∆∆i : T Q→ R18 is the reset map. The expressions of Mi, ci, Bu

and ∆∆∆i will not be given in the Appendices due to space limitations. Once the expressions

of ML, cL, and ∆∆∆L are determined, the expressions of MR, cR, and ∆∆∆R can be obtained by

replacing w with −w in ML, cL, and ∆∆∆L, respectively [122].

4.2.2 Tracking Error of the Desired Walking Pattern

A walking pattern represents the relative evolution of joint positions with respect to a

phase variable within a complete walking cycle [50]. Denote the desired walking pattern

as:

h1(q) := hc(q)−φφφ(θ(q)) = 0, (4.5)

where θ : Q→Q f ⊂R is a phase variable, which is monotonically increasing during a step

and used to encode the walking pattern, hc : Q→Qc ⊂R7 is continuously differentiable in

q, and φφφ(θ) : Q f → R7 is continuously differentiable in θ . The desired walking pattern in

Eq. (4.5) is also called virtual constraints [50].
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The function hc(q) is defined as follows:

hc(q) =



q9

θr,h(q)

θp,h(q)

xh2sw(q)

yh2sw(q)

zsw(q)

zh(q)


, (4.6)

where q9 is already define, zsw is the swing foot height, and the rest of the elements are

defined with respect to the world coordinate frame as follows:

• θr,h(q) is the angle from the horizontal plane to the vector
−−−−→
HstHsw where Hst and Hsw

represent the hip points of the support and the swing legs, respectively (see Fig. 4.1);

• θp,h(q) is the angle from the z f -axis to the trunk link;

• (xh2sw(q),yh2sw(q)) is the relative position of the swing foot with respect to the pelvis

H, projected on the walking surface;

• zh(q) is the height of the pelvis H above the walking surface.

The desired function φφφ(θ) is defined as:

φφφ := [φ1(θ),φ2(θ),φ3(θ),φ4(θ),φ5(θ),φ6(θ),φ7(θ)]
T . (4.7)

Similar to the HZD framework [102] and our previous work [140] [141] [142] [143],

Bezier Curves are used to define the desired function φφφ(θ):

φφφ(θ) :=
M

∑
k=0

ak
M!

k!(M− k)!
s(θ)k(1− s(θ))M−k (4.8)

with

s(θ) :=
θ −θ0

θ ∗−θ0
, (4.9)
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where k ∈ {0,1, ...,M},

ak :=



ak1

ak2

ak3

ak4

ak5

ak6

ak7


∈ R7

is the unknown vector to be optimized in Section 4.5, and θ0 and θ ∗ are the planned values

of θ at the beginning and the end of a step, respectively.

For simplicity, only symmetric gaits are discussed in this Chapter. Therefore, the de-

sired function φφφ(θ) is the same for both the left-in-support and the right-in-support phases

except for the desired function φ5(θ) that defines the desired pattern for yh2sw. Define φ5(θ)

as:

φ5(θ) :=

φ5L(θ) (left-in-support) ;

φ5R(θ) (right-in-support) .
(4.10)

Because of the left-right symmetry, φ5L(θ) =−φ5R(θ).

4.2.3 Tracking Error of the Desired Contour and Position Trajectory in Cartesian

Space

Suppose the walking process begins with the continuous phase. Let (xst,k,yst,k,0) de-

note the the support foot position right after the kth (k ∈ {1,2, ...}) swing-foot touchdown,

which is defined with respect to the world coordinate frame. Without loss of generality,

(xst,0,yst,0,0) represents the initial support foot position at t = 0. During the kth step, the

horizontal hip position (xh,yh) with respect to the world coordinate frame can be expressed

as:
xh = xst,k−1 + x̄h(q);

yh = yst,k−1 + ȳh(q),
(4.11)
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where x̄h : Q→Qx ⊂R and ȳh : Q→Qy ⊂R, defined with respect to the world coordinate

frame, represent the x- and y-coordinates of the relative position of the hip with respect to

the support foot, respectively.

Let Γd be the desired contour. An orthogonal coordinate frame can be established along

the desired contour [157]: the curvilinear coordinate rc along the normal direction of the

desired contour represents the contour error, and the curvilinear coordinate rm represents

the motion along the desired contour. Define the desired motion along Γd as sd(t), which is

monotonically increasing and continuously differentiable in t. The objectives of contouring

control are then:

1. To drive rc to zero, and

2. To drive rm to sd(t).

For simplicity, we consider a straight-line contour on the walking surface and define

the contour as the Yw-axis:

Γd = {(xh,yh) ∈ R2 : yh = 0}. (4.12)

Then, rc = yh;

rm = xh.

(4.13)

4.3 Model-based Feedback Control through Input-Output Linearization

Similar to Chapter 3, a model-based feedback controller will be designed to achieve ex-

ponential tracking of the desired walking pattern and the desired global position trajectory

in Cartesian space. It is then natural to define the output function y as the tracking error

derived in Section 4.2. Because the biped in Fig. 4.1 has nine independent actuators, nine

output functions can be designed.

First, the output function y1 is designed as the walking pattern tracking error:

y1 = h1(q). (4.14)
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If y1 is exponentially driven to zero, hc(q) will accordingly converge to the desired function

φφφ(θ(q)) exponentially, and the desired walking pattern will be exactly followed at the

steady state.

Second, the output function y2 during the kth (k ∈ {1,2, ...}) step is designed as:

y2 = h2(t,q) =

x̄h(q)

ȳh(q)

−
sd(t)− xst,k−1

−yst,k−1

 , (4.15)

where (xst,k−1,yst,k−1) is the projection of the support-foot position on the walking surface

during the kth step and sd(t) is a monotonically increasing and continuously differentiable

function that defines the desired motion along the desired contour.

Finally, the output function y can be compactly written as:

y = h(t,q), (4.16)

where

y :=

y1

y2

 (4.17)

and

h(t,q) :=

 h1(q)

h2(t,q)

 . (4.18)

As a straight-line contour is of interest and the desired motion along the contour is

defined as monotonically increasing in this study, x̄h(q) will be chosen as the phase variable

to encode the desired function φφφ in Eq. (4.5); that is,

θ := x̄h(q). (4.19)

To drive the output function y to zero such that the desired position trajectory in Carte-

sian space and the desired walking pattern are both satisfactorily followed, a feedback

controller is synthesized based on input-output linearization.

The feedback control law is chosen as [76]

u = (∂h
∂qM−1

L B)−1(v+ ∂h
∂qM−1

L cL− ∂ 2h
∂ t2 − ∂

∂q(
∂h
∂q q̇)q̇) (4.20)
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when the left leg is in support and

u = (∂h
∂qM−1

R B)−1(v+ ∂h
∂qM−1

R cR− ∂ 2h
∂ t2 − ∂

∂q(
∂h
∂q q̇)q̇) (4.21)

when the right leg is in support.

The continuous-phase dynamics then become:

ÿ = v. (4.22)

Choosing v as the following proportional-derivative (PD) control law:

v =−KPy−KDẏ, (4.23)

where KP ∈R9×9 and KD ∈R9×9 are positive-definite diagonal matrices, one then obtains

the following linear dynamics of output function:ẏ

ÿ

=

09×9 I9×9

−KP −KD

y

ẏ

 := A(KP,KD)

y

ẏ

 , (4.24)

where 09×9 ∈ R9×9 is a zero matrix and I9×9 ∈ R9×9 is an identity matrix.

Defining

x :=

y

ẏ

 ∈ χ,

where χ ⊂ R18 is the full state space, one can compactly rewrite the closed-loop dynamics

as:

ΣL :

ẋ = A(KP,KD)x, if (t−,x−) /∈ SL→R(t,x);

x+ = ∆∆∆L→R(t,x−), if (t−,x−) ∈ SL→R(t,x);

ΣR :

ẋ = A(KP,KD)x, if (t−,x−) /∈ SR→L(t,x);

x+ = ∆∆∆R→L(t,x−), if (t−,x−) ∈ SR→L(t,x);

(4.25)

where the expressions of SL→R(t,x) and SR→L(t,x) can be obtained from Eqs. (4.2) and

(4.3), respectively.
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If KP and KD are chosen such that A(KP,KD) is Hurwitz, then there exists a real

positive-definite-symmetric matrix W such that V (x) = xT Wx is a Lyapunov function can-

didate for the continuous-phase dynamics. Furthermore, there exist positive constants c1,

c2, and c3 such that V (x) satisfies

c1‖x‖2 ≤Vi(x)≤ c2‖x‖2 and V̇ (x)≤−c3V (x) (4.26)

for all x during continuous phases [76].

4.4 Closed-Loop Stability Analysis

In this section, the closed-loop stability of the hybrid time-varying system is analyzed.

Before introducing the main theorem on the closed-loop stability of this study, we first

present some properties of the system.

Suppose that the walking process begins with the left-in-support continuous phase at

t = 0.

Let Tk be the moment of the kth (k ∈ {1,2, ...}) actual impact, which is defined as the

moment of the first intersection with the kth switching surface Sk(t,x) on t > T+
k−1. Without

loss of generality, define T0 = 0. The kth switching surface Sk is defined as:

Sk(t,x) :=

SL→R(t,x), if k ∈ {1,3,5, ...};

SR→L(t,x), if k ∈ {2,4,6, ...}.
(4.27)

In the following, ?(T−k−1) and ?(T+
k−1) will be denoted as ?|−k−1 and ?|+k−1, respectively,

when notational simplicity is preferred.

Let x̃(t; t0,λ0) = [q̃(t; t0,λ0); ˙̃q(t; t0,λ0)] denote a solution of ˙̃x = A(Kp,Kd)x̃ with the

initial condition x̃(t0) = λ0, ∀t > t0. Note that a solution x(t) of the hybrid dynamics in

Eq. (4.25) with impact moments Tk (k ∈ {1,2, ...} satisfies

x(t) = x̃(t;T+
k−1,x|

+
k−1), ∀t ∈ (Tk−1,Tk]. (4.28)

Let τk denote the kth (k∈ {1,2, ...}) desired impact moment, which is defined as the mo-

ment of the first intersection with the kth switching surface Sk(t,x) on t > T+
k−1 assumsing

x = 0 ∀t > T+
k−1.
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Theorem 5.1 Consider the following assumptions:

1. The desired function φ6(θ) has at least one intersection with zero for both θ < 0 and

θ > 0 (denote the interaction for θ < 0 that is nearest to zero as θ0);

2. The phase variable θ increases monotonically from θ0 to a positive number during a

step.

Then, there exists a constant θ ∗ such that θ(τ−k ) = θ ∗ always holds under the assumption

that x = 0 ∀t > T+
k−1. Therefore, hc(τ

−
k ) = φφφ(θ ∗). Furthermore, if φ1(θ) = 0, φ2(θ) = 0,

φ3(θ) = 0, and yst,k−1 = ystd := φ5(θ
∗), then q(τ−k ) ∈ Q, if exists, is also fixed and equal

to a unique value, denoted as q∗. �

Proof: By the definitions of τk and the switching surface, one has

zsw(τ
−
k ) = 0. (4.29)

By the definition of y1 and under the assumption that x = 0 ∀t > T+
k−1, one has

zsw(τ
−
k ) = φ6(θ). (4.30)

Therefore,

φ6(θ(τ
−
k )) = 0 (4.31)

holds. Because θ increases monotonically from a negative number during a step and φ6(θ)

has at least one intersection with zero for θ > 0, Eq. (4.31) indicates that θ(τ−k ) is fixed;

that is, there exists a constant θ ∗ such that

θ(τ−k ) = θ
∗ (4.32)

always holds. Accordingly, hc(τ
−
k ) = φφφ(θ ∗) always holds.

When yst,k−1 = ystd := φ5(θ
∗) and the desired function is chosen such that φ1(θ) = 0,

φ2(θ) = 0, and φ3(θ) = 0, it can be proved that the following equation
hc(q)

x̄h(q)

ȳh(q)

=


φφφ(θ ∗)

θ ∗

−ystd


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has a unique solution for q ∈ Q. �

In fact, when q9 = 0, θr,h(q) = 0, and θp,h(q) = 0, it can be proved that there exists a

diffeomorphism D : Qc×Q f ×Qy→ Q.

Theorem 5.2 (Convergence of the Support Foot Position along Yw-Axis) Define ystd :=

φ5(θ
∗). Then there exists positive numbers βst and r2 such that

|yst,k− ystd| ≤ ‖x|−k ‖+βst‖x̃(τk;T+
k−1,x|

−
k−1)‖ (4.33)

holds for any x(0+) ∈ Br2(0) := {x ∈ R18 : ‖x‖ ≤ r2} and k ∈ {1,2, ...}. �

Proof:

The y-coordinate of the support-foot position during the (k+ 1)th (k ∈ {1,2, ...}) step

can be expressed as

yst,k = yh(T−k )+ yh2sw(T−k ). (4.34)

Therefore,

|yst,k− ystd|= |yh(T−k )+ yh2sw(T−k )− ystd| ≤ |yh(T−k )|+ |yh2sw(T−k )− ystd|. (4.35)

Because ystd = φ5(θ
∗), one has:

|yh2sw(T−k )− ystd| ≤|yh2sw(T−k )−φ5(θ(T−k ))|

+ |φ5(θ(T−k ))−φ5(θ̃(τk;T+
k−1,x|

+
k−1))|

+ |φ5(θ̃(τk;T+
k−1,x|

+
k−1))−φ5(θ

∗)|.

(4.36)

By the definition of y1,

|yh2sw(T−k )−φ5(θ(T−k ))| ≤ ‖x(T−k )‖.

Recall that θ(T−k ) = θ̃(Tk;T+
k−1,x|

+
k−1)). Because φ5(θ) and θ(q(t)) are continuously

differentiable in θ and t, respectively, there exists a positive number r1 and Lipschitz con-

stants Lφ5 and Lθt such that

‖φ5(θ(T−k ))−φ5(θ̃(τk;T+
k−1,x|

+
k−1))‖ ≤ Lφ5‖θ(T

−
k )− θ̃(τk;T+

k−1,x|
+
k−1)‖ (4.37)
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and

‖θ(T−k )− θ̃(τk;T+
k−1,x|

+
k−1)‖ ≤ Lθt |Tk− τk|

hold for any x(0+) ∈ Br1(0) Also, by [Theorem 1, [141]], there exists a positive number r2

and a Lipschitz constant LTx such that

|Tk− τk| ≤ LTx‖x̃(τk;T+
k−1,x|

+
k−1)‖ (4.38)

for any x(0+) ∈ Br2(0).

Because θ ∗ = θ̃(τ−k ;T+
k−1,0) = sd(τk)− xst,k−1, one has

|θ̃(τ−k ;T+
k−1,x|

+
k−1)−θ

∗|=‖x̃h(τ
−
k ;T+

k−1,x|
+
k−1)− (sd(τk)− xst,k−1)‖

≤‖x̃(τk;T+
k−1,x|

+
k−1)‖.

(4.39)

Let β = Lφ5(Lθt LTx + 1) and d1 = min(r1,r2). Then, from Eqs. (4.36)-(4.39), one ob-

tains

|yst,k− ystd| ≤ ‖x|−k ‖+βst‖x̃(τk;T+
k−1,x|

−
k−1)‖ (4.40)

for any x(0+) ∈ Bd1(0). �

Theorem 5.3 (Hybrid Invariance under yst,k−1 = ystd) Denote

Hv(q) :=


dhc
dq (q)
dx̄h
dq (q)
dȳh
dq (q)

 . (4.41)

If the desired function φφφ(θ) is designed such that the following conditions are satisfied:

(A1) hc(∆∆∆q(q∗)) = φφφ(x̄h(∆∆∆q(q∗)));

(A2) dx̄h
dq (∆∆∆q(q∗))∆∆∆q̇(q∗)H−1

v (q∗)


dφφφ

dθ
(θ ∗)

1

0

= 1;

(A3) Hv(∆∆∆q(q∗))∆∆∆q̇(q∗)H−1
v (q∗)


dφφφ

dθ
(θ ∗)

1

0

 =


dφφφ

dθ
(x̄h(∆∆∆q(q∗)))

1

0

 .
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Then, under the condition yst,k−1 = ystd , the hybrid invariance holds; that is, if x(τ−k ) = 0

then x(τ+k ) = ∆∆∆i(τ
−
k ,0) = 0. �

Proof: From Theorem 5.1 and x(τ−k ) = 0, one has

q(τ+k ) = q0 := ∆∆∆q(q∗), θ(τ+k ) = θ0 := x̄h(q0). (4.42)

Then, from (A1), one has

y1(τ
+
k ) = hc(q0)−φφφ(θ0) = 0. (4.43)

Because x(τ−k ) = 0 and xh, yh, and sd(t) are all continuous in t, one has

y2(τ
+
k ) = y2(τ

−
k ) = 0. (4.44)

Therefore, from Eqs. (4.43) and (4.44), y(τ+k ) = 0 holds.

Now, because ẏ(τ−k ) = 0, one has

Hv(q∗)q̇(τ−k ) =


dφφφ

dθ
(θ ∗)

1

0

 θ̇(τ−k ). (4.45)

Without loss of generality, suppose that Hv(q) is locally invertible within a small neighbor-

hood about q∗. One obtains

q̇(τ−k ) = Hv(q∗)−1


dφφφ

dθ
(θ ∗)

1

0

 θ̇(τ−k ). (4.46)

Then, from the reset map in Eq. (2.3), one has:

q̇(τ+k ) = ∆∆∆q̇(q∗)q̇(τ−k ). (4.47)

Because ẋ+hd− ẋst,k = ẋ+hd = ẋ−hd = ẋ−hd− ẋ−st,k−1 = θ̇(τ−k ) and by the definition of y, one

has:

ẏ(τ+k ) = Hv(q0)q̇(τ+k )−


dφφφ

dθ
(θ0)θ̇(τ

+
k )

θ̇(τ−k )

0

 . (4.48)
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From (A2), one has:

θ̇
+ =

dx̄h

dq
(q0)q̇(τ+k ) = θ̇

−. (4.49)

Then, from (A3) and Eq. (4.49), one has

ẏ+ = 0. (4.50)

�

Theorem 5.4 (Closed-Loop Stability Conditions) Let the conditions (A1) - (A3) in The-

orem 5.3 hold. The closed-loop control system in Eq. (4.25) is locally exponentially sta-

ble if the PD gains in Eq. (4.23) are chosen such that A(Kp,Kd) is Hurwitz and that the

continuous-phase convergence rate is sufficiently fast. �

Proof: Let V (x) be the Lyapunov function candidate. By stability analysis based on

the construction of multiple Lyapunov functions [156], the hybrid time-varying system

in Eq. (4.25) is locally exponentially stable if there exists a positive number d2 such that

V (x) is exponentially decreasing during each continuous phase and that {V |+1 ,V |
+
2 ,V |

+
3 ...}

is a strictly decreasing sequence for any x(0+) ∈ Bd2(0).

If the PD gains KP and KD are chosen such that the matrix A in Eq. (4.25) is Hurwitz,

then, from Eq. (4.26), one has

V |−k ≤ e−c3(Tk+1−Tk)V |+k−1, (4.51)

during the kth (k ∈ {1,2, ...}) step.

Now, consider the kth (k ∈ {1,2, ...}) impact event. The corresponding kth reset map ∆∆∆k

is defined as

∆∆∆k(t,x) :=

∆∆∆L→R(t,x), if k ∈ {1,3,5, ...};

∆∆∆R→L(t,x), if k ∈ {2,4,6, ...}.
(4.52)

To explicitly discuss the effect of yst,k−1 on the reset map, the reset map is rewritten as:

∆∆∆k(T−k ,x|−k ) = ∆∆∆k(T−k ,x|−k ,yst,k−1).
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Because x|+k = ∆∆∆k(T−k ,x|−k ), one has

‖x|+k ‖= ‖∆∆∆k(T−k ,x|−k ,yst,k−1)‖ ≤‖∆∆∆k(T−k ,x|−k ,yst,k−1)−∆∆∆k(τ
−
k ,x|−k ,yst,k−1)‖

+‖∆∆∆k(τ
−
k ,x|−k ,yst,k−1)−∆∆∆k(τ

−
k ,0,yst,k−1)‖

+‖∆∆∆k(τ
−
k ,0,yst,k−1)−∆∆∆k(τ

−
k ,0,ystd)‖

+‖∆∆∆k(τ
−
k ,0,ystd)‖.

(4.53)

As the desired function φφφ(θ) satisfies the conditions (A1) - (A3) in Theorem 5.3, one

has

‖∆∆∆k(τ
−
k ,0,ystd)‖= 0. (4.54)

Because the reset map ∆∆∆k(t,x,yst,k−1) is continuously differentiable in t, x, and yst,k−1,

there exist a positive number r3 and Lipschitz constants L∆t , L∆x , and L∆st such that the

following inequalities hold for any x(0+) ∈ Br3(0):

‖∆∆∆k(T−k ,x|−k ,yst,k−1)−∆∆∆k(τ
−
k ,x|−k ,yst,k−1)‖ ≤ L∆t‖Tk− τk‖;

‖∆∆∆k(τ
−
k ,x|−k ,yst,k−1)−∆∆∆k(τ

−
k ,0,yst,k−1)‖ ≤ L∆x‖x|

−
k ‖;

‖∆∆∆k(τ
−
k ,0,yst,k−1)−∆∆∆k(τ

−
k ,0,ystd)‖ ≤ L∆st |yst,k−1− yst,d|.

(4.55)

From Eqs. (4.38) and (4.55), one has

‖∆∆∆k(T−k ,x|−k ,yst,k−1)−∆∆∆k(τ
−
k ,x|−k ,yst,k−1)‖ ≤ L∆t LTx‖x̃(τk;T+

k−1,x|
+
k−1)‖ (4.56)

for any x(0+) ∈ Bd2(0), where d2 = min{r2,r3}.

From Theorem 5.2 and Eq. (4.55), one has

‖∆∆∆k(τ
−
k ,0,yst,k−1)−∆∆∆k(τ

−
k ,0,ystd)‖ ≤ L∆st (‖x|

−
k ‖+βst‖x̃(τk;T+

k−1,x|
−
k−1)‖) (4.57)

for any x(0+) ∈ Bd2(0).

Therefore, from Eqs. (4.53) - (4.57), one has, for any x(0+) ∈ Bd2(0),

‖x|+k ‖= ‖∆∆∆k(T−k ,x|−k ,yst,k−1)‖ ≤ (L∆t LTx +L∆st βst)‖x̃(τk;T+
k−1,x|

−
k−1)‖+(L∆x +L∆st )‖x|

−
k ‖

:= L̃(‖x̃(τk;T+
k−1,x|

−
k−1)‖+‖x|

−
k ‖),

(4.58)

where L̃ := max(L∆t LTx +L∆st βst ,L∆x +L∆st ).
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From Eq. (4.26), one has:

‖x|−k ‖ ≤
√

c2

c1
e−

c3
2c2

(Tk−Tk−1)‖x|+k−1‖;

‖x̃(τk;T+
k−1,x|

−
k−1)‖ ≤

√
c2

c1
e−

c3
2c2

(τk−Tk−1)‖x|+k−1‖.
(4.59)

Therefore, from Eqs. (4.58) and (4.59), one has

‖x|+k ‖ ≤ 2L̃
√

c2

c1
e−

c3
2c2

(τk−Tk−1)(1+ e−
c3

2c2
(Tk−τk))‖x|+k−1‖. (4.60)

For any ε > 0 there exist PD gains KP and KD that correspond to sufficiently high

continuous-phase convergence rate c3
2c2

such that

e−
c3
2c2

(Tk−τk) ≤ 1+ ε. (4.61)

Hence, from Eqs. (4.60) and (4.61), one has

‖x|+k ‖ ≤ Be−
c3

2c2
∆τk‖x|+k−1‖, (4.62)

with B := 2L̃
√

c2
c1
(2+ ε) and ∆τk := τk−Tk−1 for any x(0) ∈ Bd2(0).

If KP and KD are chosen such that

Be−
c3

2c2
∆τk < 1 (4.63)

holds, then the sequence {V |+1 ,V |
+
2 ,V |

+
3 ...} is strictly decreasing for any x(0+) ∈ Bd2(0).

Therefore, if the PD gains are chosen such that A(KP,KD) is Hurwitz and that Eq.(4.63)

is satisfied for any x(0+) ∈ Bd2(0), then the closed-loop hybrid system is locally exponen-

tially stable. �

4.5 Simulation Results

Computer simulations on a 3-D bipedal robot with nine revolute joints (see Fig. 4.1) was

performed to validate the proposed walking strategy. Motion planning of φφφ(θ) is developed

to find the desired function φφφ such that necessary constraints are satisfied. To demonstrate

the high versatility of the proposed walking strategy, two sets of desired position trajectory
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on the walking surface are chosen for simulations along with a symmetric walking pattern.

The first desired position trajectory has a constant velocity, and the second one has a time-

varying velocity. For both cases, the proposed walking strategy can realize exponential

tracking of the desired position trajectory in Cartesian space as well as the desired motion

along the contour. Furthermore, the effects of the continuous-phase convergence rate on

the closed-loop stability are illustrated through simulations.

4.5.1 Motion Planning

The objective of motion planning here is to find the desired function φφφ(θ) such that nec-

essary constraints and conditions are satisfied. Planning of the desired position trajectory

sd(t) is not addressed in this Chapter, which is monotonically increasing and continuously

differentiable in t and assumed to be provided by a high-level planner.

Similar to our desired gait design for a fully actuated, planar biped in Chapter 3, op-

timization is utilized to find the desired function φφφ(θ) that defines the desired walking

pattern (i.e., virtual constraints). In addition to the conditions (A1) - (A3), the following

constraints are considered in the motion planning:

(B1) Feasibility constraints:

(a) Joint position limits;

(b) Joint velocity limits;

(c) No scuffing the ground of the swing leg.

(B2) Performance specifications:

(a) The desired step distance.

As the focus of this Chapter is on control design and stability analysis, the above list is not

intended to be exhaustive. The Matlab command f mincon is used to search for the desired

function φφφ(θ) such that the constraints (B1) - (B2) are satisfied. The optimization variables

are ak (k ∈ {0,1,2, ...,6}) as defined in Eq. (4.8).
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In the following, three sets of 3-D bipedal walking will be simulated, and they share

the same desired walking pattern. The desired contour is chosen as the Yw-axis. The ini-

tial conditions are chosen such that the tracking errors projected on the joint position and

velocity are the same for three cases:

eq = 0.1× [−1,1,−1,1,−1,1,−1,−1,−1](rad);

ėq = 0.2× [1,1,1,1,1,1,1,1,1](rad/s).
(4.64)

4.5.2 Exponential Tracking of a Straight-Line Contour with Constant Velocity

The desired motion along the straight-line contour yh = 0 is chosen as:

sd(t) = 0.5t−0.16 (m).

Without loss of generality, the PD gains are chosen the same for all output functions, and

their values are denoted as Kp and Kd , respectively. Choosing

Kp = 841 and Kd = 58,

we obtain a pair of real closed-loop poles at p1,2 = −29 for the continuous dynamics.

Therefore, A(KP,KD) in Eq. (4.25) is Hurwitz.

Figure 4.2 shows the tracking of the desired walking pattern as defined in Eq. (4.5). As

clearly shown in the graph, the actual gait converges to the desired walking pattern expo-

nentially. The exponential convergence of yh to the Yw-axis, which is the desired contour, is

shown in Fig. 4.3. Also, the desired motion along the Yw-axis is exponentially tracked (see

Fig. 4.4). These two plots clearly show the exponential tracking of the desired contour and

the desired motion along the contour is realized. Figure 4.5 shows that the actual support

foot position along the Yw-axis converges to a constant value as predicted by Theorem 5.2.

4.5.3 Exponential Tracking of a Straight-Line Contour with Time-varying Velocity

One of the main advantages of the proposed walking strategy is that it decouples the

higher-level planning of the desired motion along the desired contour from the lower-level
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planning of the desired walking pattern. The walking pattern encoded and planned as in this

study can be automatically used in the contouring tracking of an arbitrary, feasible motion

along the contour. This argument is illustrated with the simulation results in Figs. 4.6 - 4.9.

The same desired function φφφ(θ) as in the last set of simulations is used here. The

desired position trajectory along the straight-line contour yh = 0 is chosen as:

sd(t) = 2.3e−0.3(t+0.5)+0.6t−2.2 (m). (4.65)

The PD gains Kp and Kd are chosen as:

Kp = 625 and KD = 50. (4.66)

These values yield a pair of real closed-loop poles at p1,2 = −25 for the continuous dy-

namics. Therefore, A in Eq. (4.25) is Hurwitz.

Figures 4.7 and 4.8 show that the biped exponentially converges to the desired con-

tour as well as the desired motion along the contour. Also, the desired walking pattern

is exponentially followed as shown in Fig. 4.6. These simulation results validate the high

versatility of the proposed walking strategy.

4.5.4 Effects of Proportional-derivative Control Gains on Closed-Loop Stability

To analyze the effects of PD gains on the closed-loop stability through simulation re-

sults, this set of simulation shares the same conditions as the first set except for the PD

gains. Here, higher PD gains are chosen as compared with the first set of simulations, and

they are selected as:

Kp = 6400 and KD = 160. (4.67)

The corresponding closed-loop poles for the continuous phase are then p1,2 =−80, which

are much faster than the first simulations. Accordingly, the overall convergence rate is

much faster than the first simulations, as shown in Figs. 4.10 - 4.13.
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4.6 Summary

Based on nonlinear feedback control and formal stability analysis, this Chapter has pro-

posed and developed a controller design that can realize exponential tracking of a straight-

line contour for fully actuated 3-D bipedal robots. With the output function designed as the

tracking error of the desired straight-line contour, the desired motion along the contour, and

the desired walking pattern, an input-output linearizing controller was synthesized to drive

the output function exponentially to zero during continuous phases. By carefully selecting

and encoding the walking pattern, hybrid invariance was constructed for the desired motion

at the steady state. The sufficient stability conditions for the hybrid time-varying closed-

loop system were established, and the simulation results on a 9-DOF, 3-D biped confirmed

the effectiveness of the proposed walking strategy in improving walking versatility for fully

actuated bipedal robots.
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Figure 4.2. Exponential tracking of the desired walking pat-
tern hc = 0. Desired contour Γd: Yw-axis. Desired position
trajectory along Γd: sd(t) = 0.5t − 0.16(m). Control gains:
Kp = 841; Kd = 58. Initial conditions: eq = 0.1 × [−1,1,−1,1,
−1,1,−1,−1,−1](rad); ėq = 0.2× [1,1,1,1,1,1,1,1,1](rad/s).
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Figure 4.3. Exponential tracking of a straight-line contour
(yh = 0). Desired contour Γd: Yw-axis. Desired position tra-
jectory along Γd: sd(t) = 0.5t − 0.16(m). Control gains: Kp =
841; Kd = 58. Initial conditions: eq = 0.1 × [−1,1,−1,1,−1,1,−1,
−1,−1]((rad)); ėq = 0.2× [1,1,1,1,1,1,1,1,1]((rad/s)).
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Figure 4.4. Exponential tracking of the desired motion sd(t) along the
contour. Desired contour Γd: Yw-axis. Desired position trajectory along
Γd: sd(t) = 0.5t − 0.16(m). Control gains: Kp = 841; Kd = 58. Ini-
tial conditions: eq = 0.1× [−1,1,−1,1,−1,1,−1,−1,−1](rad); ėq = 0.2×
[1,1,1,1,1,1,1,1,1](rad/s).
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Figure 4.5. Support foot position (xst ,yst). Desired contour Γd: Yw-
axis. Desired position trajectory along Γd: sd(t) = 0.5t − 0.16(m).
Control gains: Kp = 841; Kd = 58. Initial conditions: eq = 0.1 ×
[−1,1,−1,1,−1,1,−1,−1,−1](rad); ėq = 0.2× [1,1,1,1,1,1,1,1,1](rad/s).
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Figure 4.6. Exponential tracking of the desired walking pattern hc = 0. De-
sired contour Γd: Yw-axis. Desired position trajectory along Γd: sd(t) =
2.3e−0.3(t+0.5) + 0.6t − 2.2(m). Control gains: Kp = 625; Kd = 50. Ini-
tial conditions: eq = 0.1× [−1,1,−1,1,−1,1,−1,−1,−1](rad); ėq = 0.2×
[1,1,1,1,1,1,1,1,1](rad/s).
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Figure 4.7. Exponential tracking of a straight-line contour (yh = 0). De-
sired contour Γd: Yw-axis. Desired position trajectory along Γd: sd(t) =
2.3e−0.3(t+0.5) + 0.6t − 2.2(m). Control gains: Kp = 625; Kd = 50. Ini-
tial conditions: eq = 0.1× [−1,1,−1,1,−1,1,−1,−1,−1](rad/s); ėq = 0.2×
[1,1,1,1,1,1,1,1,1](rad/s).
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Figure 4.8. Exponential tracking of the desired motion
sd(t) along the contour. Desired contour Γd: Yw-axis. De-
sired position trajectory along Γd: sd(t) = 2.3e−0.3(t+0.5)

+0.6t − 2.2(m). Control gains: Kp = 625; Kd = 50. Initial con-
ditions: eq = 0.1 × [−1,1,−1,1,−1,1,−1,−1,−1](rad); ėq =
0.2× [1,1,1,1,1,1,1,1,1](rad/s).
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Figure 4.9. Support foot position (xst ,yst). Desired contour
Γd: Yw-axis. Desired position trajectory along Γd: sd(t) =
2.3e−0.3(t+0.5) + 0.6t − 2.2(m). Control gains: Kp = 625; Kd =
50. Initial conditions: eq = 0.1 × [−1,1,−1,1,−1,1,−1,−1,
−1](rad); ėq = 0.2× [1,1,1,1,1,1,1,1,1](rad/s).
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Figure 4.10. Exponential tracking of the desired walking pat-
tern hc = 0. Desired contour Γd: Yw-axis. Desired position
trajectory along Γd: sd(t) = 0.5t − 0.16(m). Control gains:
Kp = 6400; Kd = 160. Initial conditions: eq = 0.1 × [−1,1,−1,1,
−1,1,−1,−1,−1](rad); ėq = 0.2× [1,1,1,1,1,1,1,1,1](rad/s).
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Figure 4.11. Exponential tracking of a straight-line contour
(yh = 0). Desired contour Γd: Yw-axis. Desired position tra-
jectory along Γd: sd(t) = 0.5t − 0.16(m). Control gains: Kp =
6400; Kd = 160. Initial conditions: eq = 0.1 × [−1,1,−1,1,−1,1,
−1,−1,−1](rad); ėq = 0.2× [1,1,1,1,1,1,1,1,1](rad/s).
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Figure 4.12. Exponential tracking of the desired motion sd(t) along the
contour. Desired contour Γd: Yw-axis. Desired position trajectory along
Γd: sd(t) = 0.5t − 0.16(m). Control gains: Kp = 6400; Kd = 160. Ini-
tial conditions: eq = 0.1× [−1,1,−1,1,−1,1,−1,−1,−1](rad); ėq = 0.2×
[1,1,1,1,1,1,1,1,1](rad/s).
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Figure 4.13. Support foot position (xst ,yst). Desired contour Γd:
Yw-axis. Desired position trajectory along Γd: sd(t) = 0.5t − 0.16(m).
Control gains: Kp = 6400; Kd = 160. Initial conditions: eq = 0.1 ×
[−1,1,−1,1,−1,1,−1,−1,−1](rad); ėq = 0.2× [1,1,1,1,1,1,1,1,1](rad/s).
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5. TIME-DEPENDENT ORBITALLY EXPONENTIAL STABILIZATION OF

UNDERACTUATED WALKING

5.1 Introduction

Underactuation is a common phenomenon in both human walking and bipedal robotic

walking [111]. When a biped has higher degrees of freedom than the number of actua-

tors, underactuation occurs. For example, bipedal robots with point feet are underactuated

because they have no ankle actuators. Even for bipedal robots with full-sized feet, under-

actuation may occur when the support foot rolls about its edge. Robots with compliant

transmission systems are also underactuated [28] [109]. Hence, it is important to study

walking control for underactuated bipedal robots.

Underactuation is more difficult to handle than full actuation due to the lack of actu-

ators to control each joint. Thus, it is challenging to improve the walking versatility of

underactuated walking by utilizing a controller design that is based on full-order dynamic

modeling and formal stability analysis. Instead, we will focus on improving the robustness

of underactuated periodic walking by developing a time-dependent feedback controller that

orbitally exponentially stabilizes underactuated walking. This Chapter focuses on the more

difficult problem of stabilizing underactuated walking, and the result of this Chapter can be

applied to fully actuated walking as well.

Motion control of underactuated bipedal robotic walking has been extensively stud-

ied [9] [10] [28] [50] [77] [102] [103] [105] [110] [138] [161] [162]. Because of the cyclic

nature of normal bipedal walking, periodic gaits are the focus of these studies. As re-

viewed in Chapter 1, the HZD framework has been heavily focused on orbital stabilization

of underactuated walking. Besides the HZD framework, the stabilization of underactuated

bipedal robotic walking has also been studied based on transverse linearization and op-

timal control [77] [93] [95]. A transverse coordinate is analytically constructed along a
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periodic orbit in the state space, and the transverse dynamics are linearized based on which

a receding-horizon controller is synthesized to stabilize the orbit. In addition, stable under-

actuated walking has been achieved based on reduced-order dynamic modeling and energy

regulation as well [28].

In all of the above-mentioned studies that are developed based on the HZD framework,

the output function is defined by the tracking error of the desired walking pattern, which

can be encoded by functions of joint positions [50] [102] [103], angular momentum [106],

velocity [105], and/or time [107] [162]. Previous studies have shown that state-based en-

coding can cause implementation issues due to sensor noise and that the time-dependent

encoding can solve that problem effectively by improving the robustness of the closed-loop

control system [107]. Therefore, it is meaningful to investigate time-dependent control and

provide stability conditions for the closed-loop system.

When states such as joint positions, angular momentum, and/or joint velocities are

used to define the output function, the resulting closed-loop system is autonomous whose

stability can be evaluated by the first approximation of the Poincaré return map at the fixed-

point on the Poincaré section [7]. However, when the encoding variable is chosen as time,

the output function becomes an explicit function of time, and the closed-loop dynamics will

be aperiodically time-varying with internal dynamics caused by underactuation. Since it is

not straightforward to evaluate the stability of a periodic orbit for such a system, no explicit

conditions for orbitally exponential stability are provided in the previous studies on time-

dependent feedback control [107] [162]. Sufficient conditions for exponentially stabilizing

underactuated bipedal walking have also been developed based on time-dependent open-

loop control [98], but open-loop control is problematic when dealing with uncertainties and

modeling errors in the real-world environment.

In this Chapter, sufficient conditions for orbitally exponential stabilization of under-

actuated walking are developed based on time-dependent feedback control. The output

function is designed as linear combinations of the actual joint positions and some desired

time functions, which leads to an aperiodically varying closed-loop system. To evaluate

the stability of the nonautonomous closed-loop system, a new state variable is introduced
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and used to define an augmented set of states. The system dynamics in terms of the aug-

mented states are autonomous whose stability is more straightforward to evaluate than that

of the original, aperiodically varying system and is thus used to determine the closed-loop

stability conditions. Because the stability of the zero dynamics caused by underactuation

can only be affected by the definition of output function but not the control law, the def-

inition of output function is systematically optimized in motion planning so as to satisfy

the proposed stability conditions and create an exponentially stable orbit of the closed-loop

system.

5.2 Problem Formulation

In this Chapter, a feedback control law based on input-output linearization will be pro-

posed to stabilize the walking process for an underactuated biped model. In problem for-

mulation, the full-order dynamics of underactuated bipedal robotic walking will be first

established, which will be utilized in the proposed model-based controller design. For no-

tational simplicity and without loss of generality, the support-swing gait characterization

is utilized to describe the gait. Then, the desired gait is presented, which is periodic and

symmetric.

5.2.1 Planar Walking Dynamics under Support-Swing Gait Characterization

A planar bipedal robot with five revolute joints and point feet is shown in Fig. 5.1. Be-

cause this biped has point feet instead of finite-sized feet, its ankles are not actuated. Hence,

this biped has four actuators, and it is underactuated. Also, this planar biped satisfies all of

the model assumptions listed in Section 2.3. Its model parameters are given in Table 5.1.

Without loss of generality, we only consider symmetric gaits in this Chapter, and the

robot’s gait is characterized by the support and the swing legs. When the support-swing

gait characterization is used to describe a bipedal gait, a complete gait cycle will consist of

two subphases – a single-support phase (SSP) and an instantaneous double-support phase

(DSP) (see Fig. 5.2).
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Figure 5.1. A planar biped with five revolute joints. (l1, l2 and l3 are the
lengths of the lower limbs, the upper limbs, and the trunk, respectively.)

Table 5.1.
Mass and length parameters of the planar biped model in Fig. 5.1.

m1 (kg) m2 (kg) mT (kg) l1, l2, l3
2 (m)

3 6 20 0.4

Define the joint position q as

q =



q1

q2

q3

q4

q5


∈ Q, (5.1)

where Q ⊂ R5 is the configuration space of the bipedal robot when the support leg is in

static, full contact with the walking surface and the joint position limits are satisfied, q1
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(a) (b)

Figure 5.2. An underactuated planar biped represented by the support-swing
gait characterization. (a): The right leg is in support. (b): The left leg is in
support. (The left leg, the right leg, and the trunk are represented in blue,
green, and orange colors, respectively.)

and q2 are joint positions of the support leg, q4 and q5 are joint positions of the swing leg,

and q3 is the joint position of the trunk. Let

u =


u1

u2

u3

u4

 ∈ R4

represent the joint-torque vector as illustrated in Fig. 5.2.

The switching surface Sq(q, q̇) is defined as

S(q, q̇) := {(q, q̇) ∈ T Q : zsw(q) = 0, żsw(q, q̇)< 0}, (5.2)

where zsw(q) is the height of the swing foot above the walking surface and

zsw(q) := l1 cos(q1)+ l2 cos(q2)− l2 cos(q4)− l1 cos(q5).

The hybrid walking dynamics can be compactly written as:M(q)q̈+ c(q, q̇) = Buu, if (q−, q̇−) /∈ Sq(q, q̇);

[q+; q̇+] = ∆∆∆(q−, q̇−), if (q−, q̇−) ∈ Sq(q, q̇);
(5.3)
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where M : Q→ R5×5 is the inertia matrix, c : Q→ R5 is the sum of the Coriolis, the

centrifugal, and the gravitational terms, Bu : R5×4 is the input matrix and is full column

rank, u∈R3 is the joint-torque vector, and ∆∆∆ : T Q→R10 is the reset map. The expressions

of M, c, and Bu are given in Appendix C.1. Due to space limitation, the derivation instead

of the expression of ∆∆∆ is given in Appendix C.2.

5.2.2 A Periodic Symmetric Gait

Before introducing the control law, we shall first describe the desired periodic gait,

which corresponds to a periodic orbit in the state space. The desired periodic gait in this

study is defined as symmetric. A gait is called symmetric if the relative evolution of joint

positions (i.e., walking patterns) characterized by the support and the swing legs is identical

for both the left-leg-in-support and the right-leg-in-support phases. However, the proposed

controller synthesis in this Chapter can be readily extended from symmetric gaits to asym-

metric gaits by recharacterizing the gait with the left and the right legs instead of the support

and the swing legs [140].

Suppose that the walking process begins with the initial moment of a single-support

phase (SSP) at t = t+0 . Without loss of generality, define t0 = 0. Let q̄d(t) denote a set of

desired joint position trajectories defined by the desired orbit,

q̄d(t) :=



q̄1d(t)

q̄2d(t)

q̄3d(t)

q̄4d(t)

q̄5d(t)


∈ R5, (5.4)

and then

q̄d(t) = q̄d(t + kτ), ∀t > 0, (5.5)

where k ∈ {1,2, ...} and the positive number τ is the least gait cycle of the desired gait. The

desired periodic orbit, where (q̄d(t), ˙̄qd(t)) resides, can then be formally defined as

Γd := {(q, q̇) ∈ T Q : q = q̄d(t), q̇ = ˙̄qd(t), t > 0}.
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Due to the coordinate swap and the rigid impact, q̄d(t) is piece-wise continuous with

discontinuities caused by the desired swing-foot touchdown at τk = kτ , k∈ {1,2, ...}. With-

out loss of generality, define τ0 = t0 = 0.

5.3 Model-based Feedback Control through Input-Output Linearization

Although the control objective is to realize exponential convergence to the desired orbit

Γd , q̄d(t) cannot be directly used to define the output function. The reasons are that the

landing moments associated with q̄d(t) do not necessarily coincide with the actual ones

and that both joint positions and velocities experience sudden jumps upon a swing-foot

landing. Therefore, the desired periodic joint trajectories q̄d(t) are modified to define the

desired time functions qd(t),

qd(t) =



q1d(t)

q2d(t)

q3d(t)

q4d(t)

q5d(t)


∈ R5. (5.6)

Let Tk (k ∈ {1,2, ...}) denote the moment of the kth actual swing-foot landing. Without loss

of generality, define T0 = t0 = 0. During the (k+1)th step, the desired time functions qd(t)

are defined as

qd(t) := q0(t−Tk), ∀t ∈ (Tk,Tk+1], (5.7)

where q0(t) ∈ R5 is a smooth extension of q̄d(t) from t ∈ (0,τ] to t ∈ (−∞,+∞). The

definition of qd(t) indicates that the discontinuities of qd(t) are at Tk (k ∈ {1,2, ...}) instead

of τk and that qd(T+
k ) = q̄d(τ

+
k ). An illustration of q̄2d(t) and q2d(t) is shown in Fig. 5.3.
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Figure 5.3. An illustration of q̄2d(t) and q2d(t).
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In our previous study [142], the lower-limb joint position of the support leg q1(t) is

chosen as the indirectly controlled joint, and the directly controlled joints qa(t) are denoted

as:

qa :=


q2

q3

q4

q5

 ∈ Qa ⊂ Q. (5.8)

The output function y is then defined as

y = qa−qad(t), (5.9)

where

qad(t) :=


q2d(t)

q3d(t)

q4d(t)

q5d(t)

 ∈ R4. (5.10)

This previous definition is limited in the sense that the definition of output functions is fixed

and thus cannot be optimized in order to find a stable gait in motion planning. Although

the proposed feedback controller can directly drive y(t) to zero as t → ∞, the stability of

internal dynamics caused by the underactuation is also affected by the definition of output

function [76]. Therefore, a more general definition of output function is introduced and

investigated, from which a systematic optimization method for finding a stable gait will be

proposed and presented in Section 5.5.

Introducing the coordinate transformation as

qT :=



qT 1

qT 2

qT 3

qT 4

qT 5


= HT q, (5.11)

where HT ∈ R5×5 is a nonsingular matrix, we then design the output function y as:

y = H(qT −qT d(t)), (5.12)
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where H ∈ R4×5 is full row rank and

qT d(t) =



qT 1d(t)

qT 2d(t)

qT 3d(t)

qT 4d(t)

qT 5d(t)



T

= HT qd(t). (5.13)

The continuous-time dynamics during an SSP in Eq. (5.3) becomes

MT (qT )q̈T + cT (qT , q̇T ) = Buu, (5.14)

where MT (qT ) := M(H−1
T qT )H−1

T and cT (qT , q̇T ) := c(H−1
T qT ,H−1

T q̇T ).

The reset map is obtained as:

∆∆∆T (qT , q̇T ) = HT ∆∆∆(H−1
T qT ,H−1

T q̇T ). (5.15)

Without loss of generality, suppose that qT 1 is not directly controlled. Denote the di-

rectly controlled variables as qTa:

qTa := HqT =


qT 2

qT 3

qT 4

qT 5

 , (5.16)

where

H =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 . (5.17)

Accordingly, denote

qTad(t) :=


qT 2d(t)

qT 3d(t)

qT 4d(t)

qT 5d(t)

 := HqT d(t). (5.18)
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From Eq. (5.14), one has

q̈T = M−1
T (Buu− cT ). (5.19)

From Eqs. (5.12) and (5.19), it can be obtained that

ÿ = H(M−1
T Buu− (M−1

T cT + q̈T d(t))). (5.20)

Assume that there are no disturbances or modeling errors and suppose that HM−1
T Bu is

globally invertible [50]. Then, input-output linearization is utilized to construct the control

law based on Eqs. (5.14) and (5.20),

u = (HM−1
T Bu)

−1(v+H(M−1
T cT + q̈T d(t))), (5.21)

which linearizes the nonlinear dynamics in Eq. (5.14) into

ÿ = v (5.22)

during each continuous phase. If v is chosen as a proportional-derivative (PD) control law,

v =−KPy−KDẏ, (5.23)

where KP ∈R4×4 and KD ∈R4×4 are positive-definite diagonal matrices, one then obtains

the following linear dynamics of output function:ẏ

ÿ

=

04×4 I4×4

−KP −KD

y

ẏ

 := A(KP,KD)

y

ẏ

 , (5.24)

where 04×4 ∈ R4×4 is a zero matrix and I4×4 ∈ R4×4 is an identity matrix.

Suppose that HM−1
T Bu is globally invertible [50]. Furthermore, if the PD gains in KP

and KD are designed properly such that A is Hurwitz, then y will exponentially converge

to zero during each continuous phase, and the convergence rate can be adjusted by tuning

KP and KD [76].

Let χ denote the full state space. Define

x :=

x1

x2

 ∈ χ, (5.25)
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where x1 := qT and x2 := q̇T . Accordingly, define

x̄d(t) :=

x̄1d(t)

x̄2d(t)

 :=

q̄T d(t)

˙̄qT d(t)

 ∈ R10. (5.26)

From Eq. (5.2), the switching surface S(x) can be written as:

S(x) := {x ∈ χ : ψ(x) = 0,
∂ψ

∂x1
x2 < 0}, (5.27)

where ψ(x) := zsw(H−1
T x1). From Eqs. (5.12), (5.14), (5.21), (5.23), and (5.27), the closed-

loop control system can be rewritten as:ẋ = f(t,x), if x /∈ S(x),

∆∆∆x = I(x), if x ∈ S(x),
(5.28)

where ∆∆∆x(t) = x(t+)−x(t) and the expressions of I(x) and f(t,x) are given in Appendice

D. For notational simplicity, left continuity at a switching moment is assumed here, i.e.,

x(t) = x(t−).

5.4 Closed-Loop Stability Analysis

With the proposed feedback control law, the output function will be driven to zero

at an exponential rate determined by the gain matrices KP and KD. However, internal

dynamics exist due to the underactuation, which determines the closed-loop stability [76].

It is, therefore, necessary to investigate the sufficient conditions for closed-loop stability.

In contrast to previous studies where the internal dynamics are explicitly considered in

the stability analysis [50] [77] [102] [103], the stability conditions will need to be derived

based on the complete closed-loop control system.

5.4.1 Augmented Autonomous System

The stability of the nonlinear, aperiodically varying, hybrid closed-loop system in Eq.

(5.28) is challenging to evaluate. However, it can be converted into an equivalent, au-

tonomous system, based on which the closed-loop stability conditions are established in

this section.
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Introduce a new variable ρ as

ρ = t−Tk, ∀t ∈ (Tk,Tk+1], k ∈ {0,1,2, ...}. (5.29)

From Eq. (5.29), ρ can be viewed as a phase indicator of the actual walking process within

each step. Another important property of ρ is that it is reset to zero at the initial moment

of each step; that is, ρ(T+
k ) = 0, k ∈ {0,1,2, ...}. By its definition, one can obtain the

dynamics of ρ as ρ̇ = 1, if x /∈ S(x);

∆ρ =−ρ, if x ∈ S(x);
(5.30)

where ∆ρ(t) := ρ(t+)−ρ(t)−= ρ(t+)−ρ(t). When all of the joints follow the desired pe-

riodic trajectories q̄d(t) exactly, the phase variable ρ will also evolve on its desired periodic

trajectory ρ̄d(t) given by

ρ̄d(t) = t− τk, ∀t ∈ (τk,τk+1], k ∈ {0,1,2, ...}. (5.31)

From Eqs. (5.7) and (5.29), qd(t) can be rewritten as

qd(t) := q0(ρ). (5.32)

Hence, from Eqs. (5.14), (5.21), and (5.32), f(t,x) can be rewritten as some function g(ρ,x)

during a SSP. The expression of g(ρ,x) is given in the Appendix E.

Introduce the augmented state xe as

xe :=

ρ

x

 ∈ χe, (5.33)

where χe ⊂ R11 is the augmented state space. Accordingly, denote

x̄ed(t) :=

ρ̄d(t)

x̄d(t)

 ∈ R11. (5.34)

Then, an autonomous system equivalent to Eq. (5.28) can be obtained asẋe = ge(xe), if xe /∈ Se(xe);

∆∆∆xe = Ie(xe), if xe ∈ Se(xe);
(5.35)
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where

ge(xe) :=

 1

g(ρ,x)

, Ie(xe) :=

−ρ

I(x)

 , (5.36)

and the switching surface is defined as

Se(xe) := {xeχe : ψe(xe) := zsw(H−1
T x1) = 0,

∂ψe

∂xe
(xe)ge(xe)< 0}.

The expression of ge(ρ,x) is given in Appendix E.

5.4.2 Stability Conditions

Stability of the hybrid periodic orbit Γd can be numerically evaluated in two equivalent

ways. One is the method of Poincaré section [50], and the other is based on the mon-

odromy matrix of the variational equation [79] [98]. We shall employ the second method

to establish the closed-loop stability conditions.

The variational equation of the augmented autonomous system in Eq. (5.35) can be

obtained as [79]: 
dze

dt
=

∂ge

∂xe
(x̄ed(t))ze, if t 6= τk;

∆∆∆ze = Mkeze, if t = τk;
(5.37)

where

Mke =
∂ Ie

∂xe
+[g+e −ge−

∂ Ie

∂xe
ge]

∂ψe
∂xe

∂ψe
∂xe

ge
(5.38)

and
ge := ge(x̄ed(τk)), g+e := ge(x̄ed(τ

+
k )),

∂ Ie

∂xe
:=

∂ Ie

∂xe
(x̄ed(τk)),

∂ψe

∂xe
:=

∂ψe

∂xe
(x̄ed(τk)).

(5.39)

The closed-loop stability conditions are now introduced based on the equivalence of the

original and the augmented systems.

Theorem 5.1 (Closed-loop Stability) Let the following conditions hold:

(A1)
∂ψ

∂x
(x̄d(τk)) ˙̄xd(τk) 6= 0;
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(A2) There is no beating at a landing impact;

(A3) The monodromy matrix of the linear, periodically varying system in Eq. (5.37) has

only one unity-modulus eigenvalue, and the moduli of all the other eigenvalues are

strictly less than one.

Then, x̄d(t) is a locally orbitally exponentially stable solution of the closed-loop system in

Eq. (5.28); that is, the hybrid periodic orbit Γd is locally exponentially stable. �

Proof : The linear system in Eq. (5.37) is the variational equation of the augmented au-

tonomous system in Eq. (5.35) [163]. It can be proved that the biped model in Eq. (5.3)

satisfies the following conditions:

1. The function f : R× χ → R2n is piecewise continuous on t ∈ R+ and continuously

differentiable on x ∈ χ;

2. The function I : χ → R2n is continuously differentiable on χ;

3. The function zsw : Q→ R is continuously differentiable on Q.

Then, by Theorem 1 in [163], the condition (A3) guarantees that there exists a positive

number δ > 0 such that for any xe(0) ∈ Bδ (Γ), where Γed := {xe ∈ χe : xe = x̄ed(t), t > 0},

xe(t) will converge to the periodic orbit Γed exponentially fast for the system in Eq. (5.35).

Because the original system in Eq. (5.28) is equivalent to Eq. (5.35) and by the definition

of x̄ed in Eq. (5.34), x̄d(t) is a locally orbitally exponentially stable solution of the original

closed-loop system in Eq. (5.28). �

These three conditions are straightforward to evaluate in motion planning. Because we

are dealing with orbital stabilization, the monodromy matrix of the variational equation in

Eq. (5.37) always has a unity-modulus eigenvalue. Therefore, according to the condition

(A3), the eigenvalue with the largest modulus among all the other eigenvalues determines

the stability of the hybrid periodic orbit Γd and is denoted as λs. Also, there is always

an eigenvalue zero because ρ is reset to zero upon an impact, and this property will be

formally summarized in the next subsection.
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5.4.3 Obtaining the Eigenvalues of a Monodromy Matrix

Because applying Theorem 5.1 requires the evaluation of the eigenvalues of the mon-

odromy matrix in the condition (A3), steps to obtaining a monodromy matrix of the varia-

tional equation in Eq. (5.37) are explained in details.

Let Ze(t) ∈ R11×11 be a fundamental matrix of the linear, periodically varying system

in Eq. (5.37). The monodromy matrix We ∈ R11×11 associated with Ze(t) is a nonsingular

(constant) matrix such that Ze(t + τ) = Ze(t)We for t > 0 [79]. Note that the monodromy

matrices associated with different fundamental matrices are similar, and thus they share

the same set of eigenvalues. Therefore, if Ze(0+) is chosen as an identity matrix I11×11 ∈

R11×11, one has

Ze(τ
+) = Ze(0+)We = We, (5.40)

and the monodromy matrix We can be obtained by numerically computing Ze(τ
+). Specif-

ically, let ze1(t), ze2(t),..., ze10(t), and ze11(t) ∈ R11 be the solutions of Eq. (5.37) under

the initial conditions ze1(0+) = [1,0,0, ...,0,0,0]T , ze2(0+) = [0,1,0, ...,0]T , ..., ze10(0+) =

[0,0,0, ...,0,1,0]T , and ze11(0+) = [0,0,0, ...,0,0,1]T , respectively. Then, one has

We =
[
ze1(τ

+), ze2(τ
+), ..., ze10(τ

+), ze11(τ
+)

]
. (5.41)

Note that zei(τ
+) (i ∈ {1,2, ...,11}) can be computed numerically.

To reduce the computational burden of obtaining the monodromy matrix We, it can be

analytically decomposed as summarized in Theorem 5.2.

Theorem 5.2 (Analytical Decomposition of Monodromy Matrix) Define

Mk =
∂ I
∂x

+[g+−g− ∂ I
∂x

g]
∂ψ

∂x
∂ψ

∂x g
,

Wc =
[
z1(τ), z2(τ), ..., z10(τ)

]
,

Wρ = zρ(τ),

(5.42)

where
g := g(x̄d(τk)), g+ := g(x̄d(τ

+
k )),

∂ I
∂x

:=
∂ I
∂x

(x̄d(τk)),
∂ψ

∂x
:=

∂ψ

∂x
(x̄d(τk)),

(5.43)
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z1(t), z2(t),..., z9(t), and z10(t) ∈ R10 are the solutions of

dz
dt

=
∂g
∂x

(x̄d(t))z (5.44)

under the initial conditions

z1(0+) = [1,0,0, ...,0,0]T ,

z2(0+) = [0,1,0, ...,0,0]T ,

...,

z9(0+) = [0,1,0, ...,1,0]T ,

and

z10(0+) = [0,0,0, ...,0,1]T ,

respectively, and zρ(t) is the solution of

dz
dt

=
∂g
∂x

(x̄d(t))z+
∂g
∂ρ

(x̄d(t)) (5.45)

under the initial condition zρ(0+) = 010×1.

Then, We in Eq. (5.41) can be decomposed as

We =


∂ψ

∂x
∂ψ

∂x g
Wρ

∂ψ

∂x
∂ψ

∂x g
Wc

(Mk + I10×10)Wρ (Mk + I10×10)Wc

 . (5.46)

�

Proof: By the definitions of Mke and Mk, one obtains

Mke + I11×11 =

 0
∂ψ

∂x
∂ψ

∂x g

010×1 Mk + I10×10

 . (5.47)

Denote

Wec :=
[
ze1(τ), ze2(τ), ..., ze10(τ), ze11(τ)

]
. (5.48)

Then, by the definition of zei(τ) (i ∈ {1,2, ...,11}), Wρ , and Wc, one has

Wec =

 1 01×10

Wρ Wc

 . (5.49)



127

Then, from Eqs. (5.37) and (5.41),

We = (Mke + I11×11)Wec. (5.50)

Therefore, from Eqs. (5.47), (5.49), and (5.50), one obtains

We =


∂ψ

∂x
∂ψ

∂x g
Wρ

∂ψ

∂x
∂ψ

∂x g
Wc

(Mk + I10×10)Wρ (Mk + I10×10)Wc

 . (5.51)

�

By Theorem 5.2, We can be computed by integrating the 10th-order differential equa-

tions in Eqs. (5.44) and (5.45) instead of the 11th-order differential equation in Eq. (5.35),

which leads to a relatively lower computational load.

Besides matrix decomposition, another important property of We is summarized in

Theorem 5.3.

Theorem 5.3 (Zero-modulus Eigenvalue of Monodromy Matrix) Any monodromy ma-

trix of the variational equation in Eq. (5.37) always has an eigenvalue zero. �

Proof: From Eq. (5.47), Mke + I11×11 is a singular matrix that possesses an eigenvalue

zero. Hence, from Eq. (5.50), We has an eignenvalue zero. Because different monodromy

matrices associated with different fundamental matrices are similar and share the same

eigenvalues, any monodromy matrix of the variational equation in Eq. (5.37) has an eigen-

value zero. �

5.5 Systematic Optimization of Output Function Design

In order to find an exponentially stable hybrid orbit Γd with desired features, a sys-

tematic optimization approach has been developed. There are several reasons why opti-

mization is needed for finding the desired hybrid orbit Γd . First, due to the underactuation,

Γd should satisfy the continuous-time zero dynamics during an SSP as well as the peri-

odicity constraint at switching. Second, the desired gait should meet necessary feasibility

constraints, such as torque limits, joint position and velocity limits, and ground-contact

constraints. Third, there may be other performance specifications on walking speed, step
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length, energy consumption, etc. Last but not the least, the stability conditions in Theorem

5.1 should be satisfied to realize orbitally exponentially stable walking. Note that internal

dynamics exist due to the underactuation and that its stability depends on the definition of

output function. Therefore, the closed-loop stability is determined by both the feedback

controller and the definition of output function.

There are two steps in the proposed systematic optimization. The first step is to find a

hybrid periodic orbit that meets necessary constraints. Because the same periodic orbit ob-

tained from the first step may have different stability properties under different definitions

of output function, the second step is to guarantee that the orbit obtained from the first step

is exponentially stable by optimizing the definition of output function in Eq. (5.12). Specif-

ically, the transformation matrix HT in Eq. (5.11) is optimized to ensure the closed-loop

stability.

Without loss of generality, the optimization constraints are limited to the following

items:

(R1) Periodicity;

(R2) Hybrid walking dynamics in Eq. (5.3);

(R3) Feasibility constraints:

(a) joint position limit;

(b) joint velocity limit;

(c) no scuffing the ground for the swing leg;

(R4) Performance specifications:

(a) the desired range of step period τ;

(b) the desired step distance;

(R5) Orbitally exponential stability.
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5.5.1 Step 1: Finding Periodic Gaits

The first step of the proposed motion planning is to reach the requirements in (R1) -

(R4), which is inspired by the method based on walking pattern encoding [7] [102] [103].

Without loss of generality, choose the lower-limb position q1 of the support leg as the

encoding variable to define the walking pattern of qa. Then, there exists a unique walking

pattern ΦΦΦ(q1) ∈ R4 that corresponds to q̄d(t) and satisfies

q̄ad(t) = ΦΦΦ(q̄1d(t)) (5.52)

on t ∈ (0,τ], where

q̄ad(t) :=


q̄2d(t)

q̄3d(t)

q̄4d(t)

q̄5d(t)

 ∈ R4. (5.53)

The walking pattern ΦΦΦ(q1) can be parameterized by Beziér curves [103]. Here, we choose

to use 6th-order Beziér curves (M = 6),

ΦΦΦ(q1) := ΨΨΨ(s) :=
M

∑
k=0

ak
M!

k!(M− k)!
sk(1− s)M−k (5.54)

with

s =
q1−a64

a04−a64
, (5.55)

where

ak :=


ak1

ak2

ak3

ak4

 ∈ R4×1, k ∈ {0,1, ...,6}, (5.56)

is an unknown parameter to be optimized.

Then, ¨̄qad(t) can be written as

¨̄qad(t) = ∂ 2ΦΦΦ

∂q2
1
(q̄1d) ˙̄q2

1d(t)+
∂ΦΦΦ

∂q1
(q̄1d) ¨̄q1d(t), (5.57)

on t ∈ (0,τ].



130

Let B⊥u denote a 1×5 matrix that satisfies B⊥u Bu = 0. Multiplying both sides of Eq. (5.3)

by B⊥ and substituting Eq. (5.57) into Eq. (5.3), one obtains

α(q̄1d(t)) ¨̄q1d(t)+β (q̄1d(t)) ˙̄q2
1d(t)+ γ(q̄1d(t)) = 0 (5.58)

on t ∈ (0,τ], where the expressions of α , β , and γ can be derived from Eq. (5.3).

Suppose that p1(t) (t > 0) is a solution of Eq. (5.58) with the initial condition [θ10,ω10] :=

[p1(0+), ṗ1(0+)]. Define

p(p1) :=

 p1

ΦΦΦ(p1)

 . (5.59)

If there exists a positive constant τ such thatp(p1(τ))

ṗ(p1(τ))

 ∈ Sq(p, ṗ) (5.60)

and p(p1(τ
+))

ṗ(p1(τ
+))

 : =

p(p1(τ))

ṗ(p1(τ))

+ I(p(p1(τ)), ṗ(p1(τ)))

=

p(p1(0+))

ṗ(p1(0+))

 (5.61)

hold, then

q̄d(t) = p(t− τk), ∀t ∈ (τk,τk+1], k ∈ {0,1,2, ...}, (5.62)

is a periodic solution of the continuous-time zero dynamics and the reset map for t > 0;

that is, x̄d(t) = [q̄d(t); ˙̄qd(t)] (t > 0) is a periodic solution of the closed-loop dynamics in

Eq. (5.3) under the control law in Eqs. (5.21) and (5.23).

In the first step of optimization, the optimization variables are chosen as an (n∈{0,1, ...,6}),

θ10, and ω10. To achieve energy-efficient walking, the integral-squared motor torque per

step distance is minimized, and the cost function J is defined as [7]:

J =
1
d

∫
τ

0
‖ud(t)‖2dt, (5.63)

where d is the step distance and ud is defined by substituting q = q̄d = p and q̇ = ˙̄qd =

∂p
∂ p1

ṗ1 into Eqs. (5.21) and (5.22). This constrained nonlinear optimization problem can be

solved by the MATLAB command f mincon.
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5.5.2 Step 2: Optimization of Output Function

In Step 2, the objective is to optimize the definition of output function so as to meet

the closed-loop stability requirement in (R5). The optimization variables are the elements

of HT . The single constraint in Step 2 is that HT should be nonsingular. The MATLAB

command f mincon is again utilized to optimize the eigenvalues of the monodromy matrix

associated with Eq. (5.37) such that there is only one unity-modulus eigenvalue and that

the largest modulus |λs| of all the other eigenvalues is strictly less than one.

Note that the optimization results can be a local optimum instead of a global one. Fur-

thermore, not all of the necessary ground-contact constraints are considered here, for ex-

ample, the friction-cone and the unilaterality constraints.

5.5.3 Optimization Results

The proposed optimization method is applied to the planar biped model in Fig. 5.1.

After the first step of optimization, the energy consumption is minimized to 2134.40 (N2 ·

m · s), the step length is 0.41 (m), and the walking speed is 0.85 (m/s). The optimization

variables are found to be:

θ0 =−0.36 (rad),

ω0 = 3.39 (rad/s),

a0 = [−0.16,0.18,0.23,0.34]T ,

a1 = [−0.27,0.27,0.02,0.67]T ,

a2 = [−0.24,0.19,0.10,0.62]T ,

a3 = [−0.53,0.62,−0.34,1.13]T ,

a4 = [−0.38,0.43,−0.22,−0.11]T ,

a5 = [0.61,0.04,−0.17,−0.56]T ,

a6 = [0.23,0.16,−0.07,−0.34]T .
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With the control gains chosen as KP = diag[40000,40000,40000,40000] and KD =

diag[400,400,400,400], the stability index λs is optimized to be |λs|= 0.56 after the second

step of optimization. The moduli of the other eigenvalues are 1.00, 0.53, 0.00, 0.00, 0.00,

0.00, 0.00, 0.00, 0.00, and 0.00. HT is found to be

HT =



0.10 0.03 0.11 0.01 −0.05

0.02 −0.11 0.02 −0.05 0.11

0.10 −0.00 −0.02 0.05 0.01

−0.01 0.10 −0.02 0.06 0.09

0.03 0.04 0.15 0.01 0.00


. (5.64)

5.6 Simulation Results

The proposed walking control is implemented on a planar biped model (see Fig. 5.2)

with the optimization results in Section 5.5. Simulation results show that orbitally exponen-

tial stabilization is achieved based on the proposed time-dependent control. Furthermore,

the effects of the definition of output function, as well as the PD gains, on the closed-loop

stability are illustrated with simulation results.

5.6.1 Orbitally Exponential Stabilization

Based on the output function design in Eqs. (5.12) and (5.64) and the proposed control

design, ten steps of walking are simulated with initial conditions and PD gains specified as:

q(0+)−qd(0+) =



0.1

−0.1

0.1

0.2

−0.2


(rad), q(0+)−qd(0+) =



0.1

−0.1

−0.1

0.2

0.2


(rad/s);

KP = diag
[
40000, 40000, 40000, 40000

]
,

KD = diag
[
400, 400, 400, 400

]
.

(5.65)
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Under the proposed control law with the above PD control gains, the directly controlled

variables qTa(t) should converge to the desired time functions qTad(t) exponentially fast

during each continuous phase, which matches the results in Fig. 5.4. Figure 5.4 shows

the actual transformed variables qT (t) and the desired time functions qT d(t) during the

ten steps of walking. Within each step, the directly controlled variables qTa(t) indeed

exponentially converge to the desired time functions qTad(t), which means that the output

function y converges to zero exponentially fast. This is because the PD gains in Eq. (5.65)

guarantee that A(KP,KD) in Eq. (5.24) is Hurwitz.

With the proposed optimization method in Section 5.5, the optimized definition of out-

put function in Eqs. (5.12) and (5.64) should ensure the exponential stability of the desired

periodic orbit Γd . As shown in Fig. 5.5, all of the actual joint trajectories q(t) do not con-

verge to the desired periodic joint trajectories q̄d(t). Instead, they converge to the desired

orbit Γd where x̄d(t) resides. Furthermore, there is a constant steady-state phase delay be-

tween q(t) and q̄d(t); that is, there exists a constant number ∆T such that q(t) = q̄d(t+∆T )

at the steady state. To show the exponential stability of the desired orbit Γd clearly, the rel-

ative evolution of q̇5(t) with respect to q5(t) during the ten steps is shown in Fig. 5.6, which

indeed shows the exponential convergence of the actual joint trajectories to the desired orbit

Γd .

5.6.2 Effects of Output Function Design on Closed-Loop Stability

As discussed previously, the design of output function affects the stability of internal

dynamics and is thus optimized in Section 5.5. To illustrate the effects of output function on

closed-loop stability, a different design of output function other than the optimized one is

applied in the control design, based on which bipedal robotic walking is simulated. Define

the output function as in Eq. (5.9), or equivalently, set the coordinate transformation matrix

HT in Eq. (5.12) as an identity matrix HT = I5×5. Then, qT = q, qT d = qd , and q̄T d = q̄d .

Since the definition of output function is different from the optimization results, it is

expected that the eigenvalues of the monodromy matrix associated with Eq. (5.37) will
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also be different. The modulus of λs under the output function definition in Eq. (5.9) is cal-

culated as |λs| = 3.93, and the moduli of the other eigenvalues are 1.00, 0.25, 0.00, 0.00,

0.00, 0.00, 0.00, 0.00, 0.00, and 0.00. Because |λs| > 1, the desired periodic orbit Γd ob-

tained in Section 5.5 is unstable under the output function definition in Eq. (5.9). Figure 5.7

shows the divergence of the actual joint trajectories q(t) from the desired periodic orbit Γd .

This comparison confirms that the definition of output function can affect the closed-loop

stability.

5.6.3 Effects of Proportional-derivative Control Gains on Closed-Loop Stability

The effects of PD gains on the closed-loop stability are also investigated. The PD

gains are changed to KP = diag[400, 400, 400, 400] and KD = diag[40, 40, 40, 40]. The

corresponding |λs| is computed as |λs|= 0.98, and the moduli of the other ten eigenvalues

are calculated to be: 1.00, 0.96, 0.03, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, and 0.00. The

simulation result in Fig. 5.8 shows that the actual joint trajectories q(t) converge to a small

neighborhood of the desired orbit within five steps, while Fig. 5.5 shows the convergence to

the same neighborhood in about four steps. The simulation results seemed to indicate that

the output function should converge to zero sufficiently fast to guarantee the closed-loop

stability. In our future study, the effects of PD gains on the closed-loop stability will be

analyzed based on formal theorem proof.
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Figure 5.4. Exponential convergence of the actual tra-
jectories qT (t) to the desired time functions qT d(t) during
each continuous phase. Control gains: KP = diag[40000,
40000,40000,40000]; KD= diag[400,400,400,400]. Initial condi-
tions: q(0)−qd(0)= [0.1,−0.1,0.1,0.2,−0.2]T (rad); q̇(0)−q̇d(0)=
[0.1,−0.1,−0.1,0.2,0.2]T (rad/s).
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Figure 5.5. Exponential convergence of the actual joint
trajectories q(t) to the desired orbit Γd . Control gains:
KP = diag[40000,40000,40000,40000]; KD = diag[400,400,
400,400]. Initial conditions: q(0)−qd(0) = [0.1,−0.1,0.1,0.2,−0.2]T (rad);
q̇(0)− q̇d(0) = [0.1,−0.1,−0.1,0.2,0.2]T (rad/s).
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Figure 5.6. Exponential convergence to the desired orbit Γd .

Figure 5.7. Effects of output function on closed-loop stability: divergence
of the actual joint trajectories q(t) from the desired orbit Γd . Control gains:
KP = diag[40000, 40000,40000,40000]; KD= diag[400,400,400,400]. Ini-
tial conditions: q(0)−qd(0)= [0.1,−0.1,0.1,0.2,−0.2]T (rad); q̇(0)−q̇d(0)=
[0.1,−0.1,−0.1,0.2, 0.2]T (rad/s).



138

Figure 5.8. Effects of PD gains on closed-loop stability: exponential con-
vergence of the actual joint trajectories q(t) to the desired orbit Γd . Con-
trol gains: KP = diag[400, 400,400,400]; KD= diag[40,40,40,40]. Ini-
tial conditions: q(0)−qd(0)= [0.1,−0.1, 0.1,0.2,−0.2]T (rad); q̇(0)−q̇d(0)=
[0.1,−0.1,−0.1,0.2,0.2]T (rad/s).

5.7 Discussions and Extensions

The proposed walking strategy including motion planning and control design is intro-

duced based on a planar biped model with five revolute joints and point feet. A DSP is

assumed to be instantaneous, and there is a single degree of underactuation (DOU) during

an SSP. A more general biped model should include more joints, full-sized feet, a finite-

time DSP, and high DOU during an SSP. To point out the practicality of the proposed

walking strategy, the extension to such a biped model is discussed.
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5.7.1 From One to High Degrees of Underactuation

A biped model with a compliant transmission system may have high Degrees of Un-

deractuation (DOU) [103]. Since the incorporation of a compliant transmission system can

potentially reduce the energy consumption of robotic walking, it is necessary to extend

the proposed strategy to such models. Although the biped model considered in this study

has only a single DOU, the proposed motion planning, control design, and stability condi-

tions are general in terms of DOU. Thus, the results of the proposed walking strategy can

be applied to bipedal walking with high DOU, as long as the robot is not purely passive.

Furthermore, the proposed walking strategy can also be extended to fully actuated walking.

5.7.2 From Planar to Three-dimensional Walking

Since there are no underlying assumptions on the number of degrees of freedom (DOFs)

or walking space dimensions in the theoretical analysis, the results of this Chapter are

also valid for higher DOFs and three-dimensional (3-D) walking. However, one of the

major concerns for practical implementation is that high DOFs can lead to an even heavier

computational load in motion planning. It is then necessary to develop efficient searching

algorithms to solve this problem, for example, a direct collocation method [164].

5.7.3 From Instantaneous to Finite-time Double-Support Phase

The biped model considered in this study has point feet, and it is thus reasonable to

assume that the Double-Support Phase (DSP) is instantaneous. If a biped model has full-

sized feet, this assumption will be no longer realistic and a finite-time DSP should be

included in the dynamic model. A complete bipedal walking cycle will then include an SSP,

a rigid impact with an impulse effect, and a finite-time DSP. This essentially only increases

the number of subphases in a complete walking cycle, to which it is straightforward to

extend the proposed walking strategy. In fact, because the biped will be overactuated during

a DSP when both full-sized feet are in full contact with the ground, the extra degrees
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of control freedom due to the overactuation might be advantageous in terms of walking

stabilization.

5.8 Summary

In this Chapter, orbitally exponential stabilization of bipedal robotic walking has been

realized based on time-dependent feedback control. The desired gait of interest is symmet-

ric and periodic, which defines the desired periodic orbit in the state space. A feedback

controller based on input-output linearization was then utilized to exponentially stabilize

the desired periodic orbit. Because the moments of swing-foot touchdown associated with

the desired periodic joint trajectories do not necessarily coincide with the actual ones and

because both joint positions and velocities experience sudden jumps at swing-foot touch-

downs, the desired periodic joint trajectories were modified to define the desired time func-

tions that determine the output function. The output function was then designed as linear

combinations of the actual joint positions and the desired time functions. The resulting

closed-loop system is nonlinear, aperiodically varying, and hybrid with internal dynamics

caused by the underactuation. An augmented autonomous system equivalent to the orig-

inal closed-loop system was constructed, from which the closed-loop stability conditions

were established. A systematic optimization method was proposed for finding a stable, pe-

riodic gait that satisfies the walking performance specifications and necessary constraints.

Specifically, the optimization method involves optimizing the output function definition to

guarantee the orbitally exponential stability of the closed-loop system because the stability

of the zero dynamics depends on the definition of output function. A planar biped was sim-

ulated to confirm the effectiveness of the proposed walking strategy. Through discussions,

it was also concluded that the proposed walking strategy can be extended to 3-D biped

models that are subject to full actuation and/or underactuation.
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6. CONCLUSIONS AND FUTURE RESEARCH

6.1 Summary and Conclusions

Because bipedal robots are capable of highly versatile motion, they will become a very

important part of our society in many applications such as disaster response and rescue,

space exploration, education and social studies, and personal assistance. However, the

walking performance of today’s bipedal robots is still far from satisfactory. Therefore, it

is critical to developing controller design methodologies for achieving high-performance

bipedal robotic walking.

The objective of this research is to study and investigate a controller design methodol-

ogy that can be applied to both fully actuated and underactuated bipedal robots. Specifi-

cally, we have focused on the controller designs of the following three types of bipeds:

1. A fully actuated planar biped with 3 revolute joints and 3 independent actuators (the

controller design is effective for any fully actuated planar bipeds);

2. A fully actuated 3-D biped with 9 revolute joints and 9 independent actuators (the

controller design is effective for any fully actuated 3-D bipeds);

3. An underactuated biped with 5 revolute joints and 4 independent actuators (the con-

troller design is effective for any underactuated bipeds).

The characteristics of the proposed controller design methodology include:

1. Modeling of full-order hybrid walking dynamics;

2. Motion planning based on optimization techniques that minimize the energy cost of

walking under necessary constraints and conditions such as joint limit, actuator limit,

and ground-contract constraints;
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3. Model-based feedback control design based on nonlinear control theories and formal

stability analysis.

Among these three characteristics, the key difference between our proposed controller de-

sign and the previous controller designs based on Hybrid Zero Dynamics is that our con-

troller design is explicitly time-dependent while the HZD framework utilizes time-invariant

controller designs. This difference is caused by the fact that our output function design

is explicitly time-dependent instead of time-invariant as in HZD framework. A time-

dependent design of output function opens up many opportunities in defining complex

tasks such as position tracking in Cartesian space. It can also be utilized to achieve high

walking robustness.

With these characteristics of the proposed control strategy, the impact and contributions

of this research are listed as follows:

1. We have achieved provably stable walking for both fully actuated and underactu-

ated bipeds based on time-dependent walking control design. Because our controller

design is time-dependent, the overall closed-loop control system is accordingly time-

varying. It is challenging to evaluate the stability of a time-varying control system,

but we have established sufficient conditions for such evaluation based on nonlinear

control theories and formal stability analysis;

2. We have achieved highly versatile walking for fully actuated, planar bipeds. Because

fully actuated bipeds can directly control each of its joints, high walking versatility

is potentially achievable for fully actuated planar bipeds. The capability of position

tracking in Cartesian space is crucial to accomplishing complex tasks such as multi-

agent coordination, but global position tracking has not been fully studied in previous

studies on model-based walking control. In this dissertation, we have developed

the first walking controller design that utilizes formal stability analysis to achieve

position tracking in Cartesian space for fully actuated planar bipeds [140] [141].

Furthermore, we have realized exponential tracking of asymmetric gaits, which is

potentially meaningful for walking control of impaired human walking.
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3. We have achieved highly versatile walking for fully actuated, 3-D bipeds. In com-

parison with a planar biped, walking control of a 3-D biped is much more difficult

because of its extra degree of freedom on the walking surface. Although velocity

tracking in Cartesian space has been studied for fully actuated 3-D bipeds under the

HZD framework, position tracking in Cartesian space has not been explored. In this

dissertation, exponential tracking of a straight-line path on the walking surface has

been achieved for fully actuated 3-D bipeds, which greatly improves the walking

versatility as compared with previous work. Potential applications of this controller

design include complex tasks such as multi-agent coordination and obstacle avoid-

ance.

4. We have achieved robust walking for underactuated bipeds. Due to the lack of ac-

tuators to directly control each joint, underactuated bipeds are difficult to stabilize,

especially under a time-dependent controller design methodology. This dissertation

research has established the first set of sufficient conditions for orbitally exponen-

tial stabilization of underactuated walking [142] [143]. This controller design can

achieve improved robustness of bipedal robotic walking as compared with the HZD

framework. Furthermore, the proposed walking strategy can be applied to any de-

grees of underactuation as well as any types of actuation including full actuation.

A comparison with previous work on bipedal walking control for fully actuated and

underactuated bipeds is shown in Tables 6.1 and 6.2, respectively.
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Table 6.1.
Comparisons with previous controller designs for fully actuated walking.

Walking strategies Provable High High High

stability versatility speed efficiency

The ZMP approach × X × ×

The HZD framework X × X X

Proposed control design X X X X

Table 6.2.
Comparisons with previous controller designs for underactuated walking.

Walking strategies Provable High High High

stability robustness speed efficiency

The ZMP approach NA NA NA NA

The HZD framework X X/× X X

Proposed control design X X X X

6.2 Future Research

There are several limitations of the proposed controller design methodology. To fully

leverage the effectiveness of our proposed controller design methodology, these limitations

will be addressed in our future research listed as follows.

• General Contour Tracking: One limitation of the developed contour tracking con-

troller for fully actuated walking is that the controller is developed for straight-line

contours alone. To realize the satisfactory tracking of a general contour on the walk-

ing surface, the current control law needs to be extended. One promising solution is

to design transition gaits that piece together straight-line contours so that the biped
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can access the entire walking surface. Furthermore, a high-level motion planner

can be developed to determine the transition gaits. Because the proposed controller

can track any feasible motion along a straight-line on the walking surface, it can be

conveniently integrated with a high-level planner. Future investigations will include

online motion planning and control design for achieving satisfactory tracking of a

general contour on the walking surface.

• Construction of Time-dependent Hybrid Zero Dynamics: One weakness of the

developed time-dependent orbital stabilization is that the motion planning has a high

computational load. For example, to plan the desired periodic orbit for underactuated

walking, it involves the numerical integration of the variational equation of the full-

order closed-loop dynamics, which can be highly computationally expensive. For

example, the state space of a bipedal model with five revolute joints is 10th dimen-

sional when the support foot maintains full, static contact with the ground. With

the proposed decomposition of the monodromy matrix, finding the monodromy ma-

trix requires integration of the 10×10 matrix over the least gait cycle. A promising

solution to significantly reduce the computational load is to construct hybrid zero

dynamics for the time-dependent feedback control system.

• Time-dependent Multi-Domain Control: In this dissertation study, bipedal walk-

ing control of underactuated bipeds and fully actuated bipeds are addressed sepa-

rately. Our ultimate goal is to incorporate phases of both full actuation and underac-

tuation in a complete gait cycle.

Observations of human walking show that there are several advantages of integrating

both actuation types in a complete bipedal gait: a biped can be significantly acceler-

ated by lifting the toe of its support foot during the take-off phase, and a biped can

be re-stabilized during a finite-time double-support phase when both feet are in sup-

port. Inspired by human walking, it will be interesting to explore the possibility of

utilizing the underactuated take-off phase to efficiently accelerate a biped. Also, the
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finite-time double-support phase may be the key to realizing contour tracking even

in the presence of underactuated phases within a complete gait.
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[78] Y. Hürmüzlü and G. D. Moskowitz. The role of impact in the stability of bipedal
locomotion. Dynamics and Stability of Systems, 1(3):217–234, 1986.

[79] D. D Bainov and P. S. Simeonov. Impulsive differential equations: Periodic solu-
tions and applications, volume 66. CRC Press, 1993.

[80] A. Goswami, B. Thuilot, and B. Espiau. A study of the passive gait of a compass-like
biped robot: Symmetry and chaos. The International Journal of Robotics Research,
17(12):1282–1301, 1998.

[81] S. H. Collins, M. Wisse, and A. Ruina. A three-dimensional passive-dynamic walk-
ing robot with two legs and knees. The International Journal of Robotics Research,
20(7):607–615, 2001.

[82] M. Wisse, A. L. Schwab, and F. C. T. van der Helm. Passive dynamic walking model
with upper body. Robotica, 22(06):681–688, 2004.

[83] F. Asano and Z. Luo. On energy-efficient and high-speed dynamic biped locomotion
with semicircular feet. In Proc. of IEEE International Conference on Intelligent
Robots and Systems, pages 5901–5906, 2006.

[84] M. Wisse and A. L. Schwab. A 3D passive dynamic biped with yaw and roll com-
pensation. Robotica, 19(03):275–284, 2001.

[85] I. Fumiya and T. Russ. Minimalistic control of biped walking in rough terrain.
Autonomous Robot, 28(1):355–368, 2010.

[86] D. G. E. Hobbelen and M. Wisse. Ankle actuation for limit cycle walkers. The
International Journal of Robotics Research, 27(6):709–735, 2008.

[87] D. Hobbelen, T. de Boer, and M. Wisse. System overview of bipedal robots Flame
and TUlip: Tailor-made for limit cycle walking. In Proc. of IEEE International
Conference on Intelligent Robots and Systems, pages 2486–2491, 2008.



153

[88] M. Wisse and J. Van Frankenhuyzen. Design and construction of MIKE: A 2-D
autonomous biped based on passive dynamic walking. In Adaptive motion of animals
and machines, pages 143–154. 2006.

[89] A. Goswami, B. Espiau, and A. Keramane. Limit cycles and their stability in a
passive bipedal gait. In Proc. of IEEE International Conference on Robotics and
Automation, volume 1, pages 246–251, 1996.

[90] S. H. Collins and A. Ruina. A bipedal walking robot with efficient and human-like
gait. In Proc. of IEEE International Conference on Robotics and Automation, pages
1983–1988, 2005.

[91] S. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient bipedal robots based on
passive-dynamic walkers. Science, 307(5712):1082–1085, 2005.

[92] C. Canudas-de Wit, B. Espiau, and C. Urrea. Orbital stabilization of underactuated
mechanical systems. In Proc. of IFAC World Congress, 2002.

[93] A. Shiriaev, J. W. Perram, and C. Canudas-de Wit. Constructive tool for orbital
stabilization of underactuated nonlinear systems: Virtual constraints approach. IEEE
Transactions on Automatic Control, 50(8):1164–1176, 2005.

[94] G. Song and M. Zefran. Underactuated dynamic three-dimensional bipedal walking.
In Proc. of IEEE International Conference on Robotics and Automation, pages 854–
859, 2006.

[95] A. S. Shiriaev, L. B. Freidovich, and I. R. Manchester. Can we make a robot balle-
rina perform a pirouette? Orbital stabilization of periodic motions of underactuated
mechanical systems. Annual Reviews in Control, 32(2):200–211, 2008.

[96] K. D. Mombaur, H. G. Bock, J. P. Schloder, and R. W. Longman. Human-like
actuated walking that is asymptotically stable without feedback. In Proc. of IEEE
International Conference on Robotics and Automation, volume 4, pages 4128–4133,
2001.

[97] K. D. Mombaur, H. G. Bock, J. P. Schlöder, and R. W. Longman. Open-loop sta-
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A. PLANAR WALKING MODEL WITH THREE REVOLUATE JOINTS UNDER

LEFT-RIGHT GAIT CHARACTERIZATION

The following denotations are used here:

Si := sinqi,

Ci := cosqi,

Si j := sin(qi−q j),

Ci j := cos(qi−q j),

where i, j ∈ {1,2,3}.

A.1 Continuous-Time Dynamics

The dynamic matrices in Eq. (3.4) can be derived based on the Lagrange’s equations [50].

Details of the model derivation can be found in the reference [50].

The dynamic matrices are given as follows:

ML(q) =


(5

4m+MT +MH)r2 −1
2mr2C12 MT rlC13

−1
2mr2C12

1
4mr2 0

MT rlC13 0 MT l2

 ,

cL(q, q̇) =


−1

2mr2S12q̇2
2 +MT rlS13q̇2

3− (3
2m+MT +MH)grS1

1
2mr2S12q̇2

1 +
1
2mgrS2

−MT rlS13q̇2
1−MT glS3

 ,

BuL =


1 0 −1

0 1 0

0 −1 1

 ,
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uL =


u1

u3

u4

 ;

MR(q) =


−1

2mr2C12 (5
4m+MT +MH)r2 MT rlC23

1
4mr2 −1

2mr2C12 0

0 MT rlC23 MT l2

 ,

cR(q, q̇) =


1
2mr2S12q̇2

1 +MT rlS23q̇2
3− (3

2m+MT +MH)grS2

−1
2mr2S12q̇2

2 +
1
2mgrS1

−MT rlS23q̇2
2−MT glS3

 ,

BuR =


0 0 −1

1 1 0

0 −1 1

 ,

uR =


u2

u3

u4

 .

A.2 Reset Map

Derivation of the reset map ∆∆∆i(q, q̇) (i ∈ {L,R}) in Eq. (3.4) can be found in the refer-

ence [50]. Its expression is given as:

q+

q̇+

= ∆∆∆L(q−, q̇−) =



q−1

q−2

q−3

ω
+
1L(q

−, q̇−)

ω
+
2L(q

−, q̇−)

ω
+
3L(q

−, q̇−)


,
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where

ω
+
1L(q, q̇) =

1
a
[mq̇1− (4m+4MH +2MT )q̇1 cos(2q1−2q2)

+2MT q̇1 cos(2q1−2q3)+2mq̇2C12],

ω
+
2L(q, q̇) =

1
a
[2MT q̇1 cos(−q1 +2q3−q2)

− (2m+4MH +2MT )q̇1C12 +mq̇2],

ω
+
3L(q, q̇) =

1
al
[(2mr+2MHr+2MT r)q̇1 cos(q3 +q1−2q2)

−2MHrq̇1C13− (2mr+2MHr)q̇1C13

+mrq̇1 cos(−3q1 +2q2 +q3)− rmq̇2C23

− (3ml +4MH l +2MT l)q̇3 +2mlq̇3 cos(2q1−2q2)

+2MT lq̇3cos(−2q2 +2q3)]

a =−3m−4MH−2MT +2mcos(2q1−2q2)

+2MT cos(−2q2 +2q3);

q+

q̇+

= ∆∆∆R(q−, q̇−) =



q−1

q−2

q−3

ω
+
1R(q

−, q̇−)

ω
+
2R(q

−, q̇−)

ω
+
3R(q

−, q̇−)


, (A.1)

where

ω
+
1R(q, q̇) =

1
a
[mq̇2− (4m+4MH +2MT )q̇2 cos(2q1−2q2)

+2MT q̇2 cos(2q2−2q3)+2mq̇1C12],

ω
+
2R(q, q̇) =

1
a
[2MT q̇2 cos(−q2 +2q3−q1)

− (2m+4MH +2MT )q̇2C12 +mq̇1],
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ω
+
3R(q, q̇) =

1
al
[(2mr+2MHr+2MT r)q̇2 cos(q3 +q2−2q1)

−2MHrq̇2C23− (2mr+2MT r)q̇2C23

+mrq̇2 cos(−3q2 +2q1 +q3)− rmq̇1C13

− (3ml +4MH l +2MT l)q̇3 +2mlq̇3 cos(2q1−2q2)

+2MT lq̇3 cos(−2q1 +2q3)],

a =−3m−4MH−2MT +2mcos(2q1−2q2)

+2MT cos(−2q1 +2q3).
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B. INPUT-OUTPUT LINEARIZATION

The expressions of Pi and zi, i ∈ {L,R}, in Eq. (3.13) are given as follows:

PL =


1 0 0

−dφ̃1L
dq1

1 0

−dφ̃2L
dq1

0 1

 ;

zL =


q̈1d

d2φ̃1L
dq2

1
q̇2

1

d2φ̃2L
dq2

1
q̇2

1

 ;

PR =


1 −dφ̃1R

dq2
0

0 1 0

0 −dφ̃2R
dq2

1

 ;

zR =


d2φ̃1R
dq2

2
q̇2

2

q̈2d

d2φ̃2R
dq2

2
q̇2

2

 .
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C. PLANAR WALKING MODEL WITH FIVE REVOLUATE JOINTS UNDER

SUPPORT-SWING GAIT CHARACTERIZATION

The following denotations are used in this section:

Si := sinqi,

Ci := cosqi,

Si j := sin(qi−q j),

Ci j := cos(qi−q j),

where i, j ∈ {1,2, ...,5}.

C.1 Continuous-Time Dynamics

The dynamic matrices in Eq. (5.3) can be derived based on the Lagrange’s equations [50].

Their expressions are given as follows.

M(q) = [mi j(q)], i, j ∈ {1,2, ...,5}, (C.1)

where

m11 =
1
4
(5m1 +8m2 +4MH +4MT )l2

1 ,

m12 = m21 =
1
2
(2m1 +3m2 +2MH +2MT )l1l2C12,

m13 = m31 =
1
2

MT rl1C13,

m14 = m41 =−
1
2
(2m1 +m2)l1l2C14,

m15 = m51 =−
1
2

m1l2
1C15,

m22 =
1
4
(4m1 +5m2 +4MH +4MT )l2

2 ,
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m23 = m32 =
1
2

MT rl2C23,

m24 = m42 =−
1
2
(2m1 +m2)l2

2C24,

m25 = m52 =−
1
2

m1l1l2C25,

m33 =
1
4

MT r2,

m34 = m43 = 0,

m35 = m53 = 0,

m44 =
1
4
(4m1 +m2)l2

2 ,

m45 = m54 =
1
2

m1l1l2C45,

m55 =
1
4

m1l2
1 .

c(q, q̇) = C(q̇)q̇+G(q), i ∈ {1,2, ...,5}, (C.2)

where

C(q) = [ci j(q)], i, j ∈ {1,2, ...,5}, (C.3)

with

c11 = 0,

c12 =
1
2
(2m1 +3m2 +2MH +2MT )l1l2S12q̇2,

c13 =
1
2

MT rl1S13q̇3,

c14 =−
1
2
(2m1l2 +m2l2)11S14q̇4,

c15 =−
1
2

m1l2
1S15q̇5,

c21 =−
1
2
(2m1 +3m2 +2MH +2MT )l1l2S12q̇1,

c22 = 0,

c23 =
1
2

MT rl2S23q̇3,

c24 =−
1
2
(2m1 +m2)l2

2S24q̇4,
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c25 =−
1
2

m1l1l2S25q̇5,

c31 =−
1
2

MT rl1S13q̇1,

c32 =−
1
2

MT rl2S23q̇2,

c33 = 0,

c34 = 0,

c35 = 0,

c41 =
1
2
(2m1 +m2)l1l2S14q̇1,

c42 =
1
2
(2m1 +m2)l2

2S24q̇2,

c43 = 0,

c44 = 0,

c45 =
1
2

m1l1l2S45q̇5,

c51 =
1
2

m1l2
1S15q̇1,

c52 =
1
2

m1l1l2S25q̇2,

c53 = 0,

c54 =−
1
2

m1l1l2S45q̇4,

c55 = 0,

and

G =



−1
2(3m1 +4m2 +2MH +2MT )gl1 sin(q1)

−1
2(2m1 +3m2 +2MH +2MT )gl2 sin(q2)

−1
2MT gr sin(q3)

1
2(2m1 +m2)gl2 sin(q4)

1
2m1gl1 sin(q5)


.
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Bu =



1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 −1


. (C.4)

C.2 Reset Map

The reset map ∆∆∆(q, q̇) in Eq. (5.3) includes a coordinate swap and the rigid-body impact

dynamics. Because the impact involves the motion of the point feet, an extended set of

generalized coordinates are needed to derive ∆∆∆(q, q̇), which includes the support foot’s

position p = (px, pz) in the world coordinate frame XwOZw in Fig. 5.2. Let Qe ⊂R7 be the

extended configuration space. Let qe ∈ Qe be the extended generalized coordinates:

qe =


q

px

pz

 :=

q

p

 .

The impact is assumed to be instant with an impulse effect, and the swing foot remains

in static contact with the ground upon impact. Based on the derivations in the previous

study [50], one has ωωω+
e

Fsw

=

Me(q) −JT
sw(q)

Jsw(q) 02×2

−1Me(q)q̇e

02×1

 , (C.5)

where ωωω+
e represents the first derivatives of the extended coordinates right after an impact,

Fsw ∈ IR2 is the impulse force at the swing foot, Me : Q→ R7×7 is the extended inertia

matrix, and Jsw : Q→ R2×7 is the Jacobian matrix relating q̇e to the swing foot velocity.

The upper-left 5× 5 block of Me = [mi j] (i, j ∈ {1,2, ...,7}) is M, and the other elements

are:

m16 = m61 =
1
2
(3M1 +4M2 +2MH +2MT )l1C1,

m17 = m71 =−
1
2
(3M1 +4M2 +2MH +2MT )l1S1,
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m26 = m62 =
1
2
(2m1 +3m2 +2MH +2MT )l2C2,

m27 = m72 =−
1
2
(2m1 +3m2 +2MH +2MT )l2S2,

m36 = m64 = m63 =
1
2

MT rC3,

m37 = m73 =−
1
2

MT rS3,

m46 =−
1
2
(2m1 +m2)l2C4,

m47 = m74 =
1
2
(2m1 +m2)l2S4,

m56 = m65 =−
1
2

m1l1C5,

m57 = m75 =
1
2

m1l1S5,

m66 = 2m1 +2m2 +MH +MT ,

m67 = m76 = 0,

m77 = 2m1 +2m2 +MH +MT .

The Jacobian matrix Jsw is defined as

Jsw =

 l1C1 l2C2 0 −l2C4 −l1C5 1 0

−l1S1 −l2S2 0 l2C4 l1C5 0 1

 . (C.6)

Then, the reset map ∆∆∆(q, q̇) is defined as

∆∆∆(q, q̇) =

 R 05×5

05×5 R

 q

ωωω+

 , (C.7)

where

R =



0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0


(C.8)

represents the coordinate swap caused by the role switching between the support and the

swing legs and ωωω is the vector of the first seven elements of ωωωe.



169

D. STATE-SPACE REPRESENTATION OF CLOSED-LOOP DYNAMICS

The expression of f(t,x) in Eq. (5.28) is given as follows:

f(t,x) :=

f1(t,x)

f2(t,x)

 (D.1)

with
f1(t,x) :=x2,

f2(t,x) :=M−1
T [Bu(HM−1

T Bu)
−1(−KPH(x1−qT d)

−KDH(x2− q̇T d)+H(M−1
T hT + q̈T d)−hT ].

(D.2)

Define Iq(q, q̇) as

Iq(q, q̇) = ∆∆∆(q, q̇)−

q

q̇

 . (D.3)

Then, the reset map I(x) can be obtained from Iq(q, q̇) as

I(x) :=

 HT 05×5

05×5 HT

Iq(H−1
T x1,H−1

T x2). (D.4)
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E. AUGMENTED AUTONOMOUS SYSTEM

The function g(ρ,x) in Eq. (5.36) is defined as:

g(ρ,x) :=

g1(ρ,x)

g2(ρ,x)

 (E.1)

with
g1(ρ,x) :=x2,

g2(ρ,x) :=M−1
T [Bu(HM−1

T Bu)
−1(−KPH(x1−HT q0(ρ))

−KDH(x2−HT q̇0(ρ))+H(M−1
T hT +HT q̈0(ρ))

−hT ],

(E.2)

where q̇0(ρ) =
∂q0(ρ)

∂ρ
ρ̇ and q̈0(ρ) =

∂ 2q0(ρ)
∂ρ2 ρ̇2 + ∂q0(ρ)

∂ρ
ρ̈ .
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