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ABSTRACT 

This dissertation consists of three major studies. The first study, described in 

Chapter 3, focuses on the experimental work we carried out; experimental study of the 

electronic transition dipole moment matrix elements (TDMM) for the +
u

1+
g

1 ΣA→Σ5  and 

  u

1

g

1 ΣAΣ6  electronic transitions of the sodium dimer molecule. Here we obtained the 

electronic transition dipole moments through Autler-Townes and resolved fluorescence 

spectroscopy and compared them to the theory. The second study, described in Chapter 4, 

is on sodium dimer ion-pair states.  In this work, we calculated the radiative lifetimes and 

electronic transition dipole moments between Na2 ion-pair states (  g

13 ,  g

14 ,  g

15 ,

 g

16 ) and 

u

1ΣA  state. This study was published in 2015.  The last study, described in 

Chapter 5, is the total lifetime (bound-bound plus bound-free) and  transition dipole 

moment calculations of the ion-pair electronic states,  g

1)63( , of the lithium dimer 

molecule.  
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CHAPTER 1  

INTRODUCTION 

  

Diatomic molecules have a more complicated structure than atoms. In addition to 

their translational motion, rotational and vibrational degrees of freedom are involved. A 

diatomic molecule can rotate as a whole about an axis passing through the center of 

gravity and perpendicular to the line joining the nuclei (internuclear axis). The atoms can 

vibrate relative to each other along the internuclear axis [1]. Due to this fundamental 

difference between atoms and diatomic molecules, one cannot use the atomic model to 

explain the behavior of diatomic molecules.  

The focus of the research described here involves analyzing and extracting 

information on alkali dimer molecules such as lifetimes, transition dipole moment matrix 

elements, Einstein coefficients, Franck-Condon factors etc. by using both computational 

and experimental methods. The key motivating factor here is the effect of the interaction 

of the ion-pair Coulomb potential energy curve on other electronic states. At small 

internuclear distance the potential energy curves of the alkali dimers exhibit parabolic 

behavior. As the internuclear distance increases, the interaction with the ion-pair 

Coulomb potential causes the formation of shoulders and additional wells in the potential 

energy curves which in return drastically changes the overlap integrals of the 

wavefunctions belonging to the upper and lower states. In addition, the transition dipole 

moment matrix elements and the lifetimes of the electronic states show abrubt changes 

around shoulders and additional wells.  Figure 1 shows some of the electronic potential 



 

 

2 

 

energy curves of the sodium dimer molecule. The red dashed line is the Coulomb 

interaction potential, which affects the 
+
g

1Σ3 , +
g

1Σ4   and +
g

1Σ5  electronic states of Na2. 

Alkali dimer molecules have been actively studied by both theoretical and 

experimental physicists due to several reasons. The atoms forming these molecules have 

only one electron in the valence shell and these molecules can be treated as two-electron 

systems which makes them easier to model compared to other molecules. Alkali dimer 

molecules form in an alkali vapor which is easy to produce. Their electronic states can be 

probed by excitation with tunable dye, Ti: Sapphire, and diode lasers because the 

transitions are within the visible or near-infrared spectral regions. Since alkali dimers are 

ideal simple models for theoretical and experimental studies, the data regarding the 

molecular constants such as lifetimes, transition dipole moment matrix elements and 

Einstein coefficients can be extracted for various states. However, determining the 

experimental and computational data for states with multiple wells caused by the 

interaction with the ion-pair Coulomb potential is a challenging process. There is simply 

not enough information to obtain spectroscopic constants for those states [2]. With this 

motivation, we have carried out a computational study on the transition dipole moment 

values as a function of internuclear distance for the   u

1

g

1 ΣAΣ(3,4,5,6)  transitions of 

the Na2 molecule [3]. This computational work on sodium dimer electronic states was 

largely focused on radiative lifetimes associated with bound-bound transitions. For the 

Li2 molecule, we have calculated the spectroscopic constants for bound- bound and 

bound-free transitions for the   u

1

g

1 ΣAΣ(3,4,5,6)  systems. Besides the computational 

work, we have also carried out an experimental study on the transition dipole moment 
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functions for the 51g
+→A

1
u
+

 and 6
1
g
+→A

1
u
+  electronic transitions of the sodium 

dimer molecule and compared the experimental results to the theory from the literature.  
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Figure 1.1    Selected potential energy curves of the Na2  molecule. The dotted line is the 

ion pair Na+ + Na− Coulomb interaction function e2/(4πεR), which crosses the region of 

the electronic states of the neutral molecule and causes the secondary wells and shoulders 

to these potential energy functions. The potential energy curves are taken from references 

[4-14]. 
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CHAPTER 2  

THEORETICAL BACKGROUND  

 

2.1 The Born-Oppenheimer Approximation  

The total energy of a molecule (neglecting spin and magnetic interactions) 

consists of the potential and kinetic energies of the electrons and the potential and kinetic 

energies of the nuclei. The nonrelativistic Hamiltonian of a diatomic molecule is 

expressed as 

 

,
R4ππ

eZZ
+

R4ππ

eZ
+

r4ππ

e
+∇

2m
+∇

M

1

2
=H

12o

2
21

α i αio

2
α

i i>j ijo

2N

1=i

2
i

e

2

2
α

1,2=α α

2

∑∑∑∑∑∑ 
          (2.1) 

 

 

Ĥ =  T̂N(𝑹) + T̂e(𝒓) + V̂ee(𝒓) + V̂eN(𝒓, 𝑹) + V̂NN(𝑹) [1].           (2.2) 

 

Here R stands for the nuclear coordinates and r is for the electronic coordinates. 

T̂N = kinetic energy operator of all the nuclei 

T̂e = kinetic energy operator of all the electrons 

V̂ee = potential energy operator for electron-electron Coulomb interaction 

V̂eN = potential energy operator for Coulombic interaction of all electrons and all nuclei 

V̂NN = Coulombic repulsion between nuclei [1] 
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The total nonrelativistic Hamiltonian in Eqn. 2.2 cannot be separated into nuclear and  

electronic parts because the  V̂eN(𝒓, 𝑹)  term depends on both nuclear and the electronic 

coordinates. The Born-Oppenheimer approximation relies on the fact that the nuclei are 

massive compared to the size of the electrons and their speed is negligible compared to 

the electrons [2]. Hence they can be assumed to be stationary relative to the motion of the 

electrons and thus the R coordinate is fixed and the nuclear and electronic wavefuctions 

can be separated as 𝛹(𝑟, 𝑅) = 𝜓(𝑟)𝜅(𝑅). When the nuclei are fixed, the nuclear kinetic 

energy term T̂N(R ) can be neglected. Thus, for a fixed nuclear configuration Eqn. (2.2) 

can be written as 

 

Ĥ𝑒𝑙 =  T̂e(𝒓) + V̂ee(𝒓) + V̂eN(𝒓, 𝑹).                          (2.3) 

 

The V̂NN(𝑹) term in the new Hamiltonian is left out since it is merely a constant now. It 

shifts the eigenvalues a constant amount. The Schrodinger equation can be written as a 

combination of electronic and nuclear parts as  (Ĥ𝑒𝑙 + V̂NN) 𝛹(𝑟, 𝑅) = 𝐸𝑒𝑙𝜓(𝑟, 𝑅), and 

the total wavefunction can be written as a product of electronic and nuclear 

wavefunctions as follows: 

 

𝛹(𝑟, 𝑅) =   𝜓𝑒𝑙(𝑟, 𝑅)𝑋𝑁(𝑅).                          (2.4) 

 

 

 



 

 

9 

 

2.2 Rotational and Vibrational Energies 

For diatomic molecules, the symbols used to describe the momentum of the 

system are different from those used to describe atoms. For atoms, L is the total angular 

momentum and is conserved, whereas for diatomic molecules Λ, the projection of the 

total angular momentum on the internuclear distance, is conserved and taken as a reliable 

quantum number. The rotation perpendicular to the internuclear axis and the vibration 

along the internuclear axis can be handled separately. The Hamiltonian in Eqn. (2.1) can 

be separated into radial and rotational parts. The simplest model to describe the rotational 

energy of a diatomic molecule is the rigid rotor, where two atoms are assumed to be 

connected by a massless rigid rod. The rotational energy of this system is  

              Erot =
L2

2I
 .                                        (2.5) 

Where L is the angular momentum and  I is the moment of inertia of the system. The 

internuclear distance between the atoms, R, is assumed to be constant in a rigid rotor, 

hence the derivative of the wavefunction with respect to internuclear distance, 
∂Ψ

∂R
, 

vanishes in the Hamiltonian and the rotational energy of a diatomic molecule with rigid 

connection between the atoms can be found as follows :  

 Erot= 
ℏ2(J)(J+1)

2I
 .      (2.6) 

Here, 
ℏ2

2I
  is known as the rotational constant Be in energy units. The spacing between the 

rotational levels is inversely correlated to the reduced mass of the system, μ, and is 

directly proportional to the second power of J which means that the spacing between the 

successive rotational levels increases as J increases and the spacing gets smaller (see 

Figure 2.1) for heavier molecules.  
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Figure 2.1   Vibrational and rotational energy level spacing of a diatomic molecule. 

 

A model for a diatomic molecule that is a better than a rigid rod is a massless 

spring allowing the rotor to stretch as well as rotate. In this case, the rotational energy of 

the system can be described as  

 

                              F(J)= 
Erot

hc
= Be(J)(J+1)+De[J(J+1)] 2…   (2.7) 

 

De is known as the centrifugal distortion constant [2-4]. In spectroscopy, the default unit 

we use is wavenumbers, cm-1.  



 

 

11 

 

For the solution of the vibrational energy component of the total Hamiltonian, the 

ideal initial model is the simple harmonic oscillator. The potential of the energy function 

of the harmonic oscillator is 

 

 V(𝑅) ≅ V(𝑟e) +
1

2
k(𝑅 − 𝑅𝑒)2.      (2.8) 

 

 

The vibrational energy values of the harmonic oscillator are defined as follows: 

 

G𝑣=ωe(𝑣+
1

2
) .     (2.9) 

 

The harmonic oscillator is the simplest prototype to define the vibrational energy levels 

of a diatomic molecule. For higher vibrational levels, the harmonic oscillator model is 

unable to define the energy levels of the system accurately [3]. A more complicated 

prototype that serves the purpose is called an anharmonic oscillator with extra terms in 

the potential. Since the potential energy of the system is the Taylor expansion of the 

potential energy around the equilibrium point, 𝑅𝑒, adding more terms from the Taylor 

expansion to the potential energy yields more generalized energy term values as follows:  

 

  G𝑣=ωe (𝑣+
1

2
) -ωexe(𝑣+

1

2
)2+ωeye(𝑣 +

1

2
)3+…  (2.10) 

 

Figure 2.2 shows the difference between the vibrational energy levels of a harmonic and 

an anharmonic oscillator (Morse potential). The vibrational spacing between two 
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successive states is the same for a harmonic oscillator whereas for anharmonic oscillator 

the spacing gets smaller as 𝑣 increases. 

 

 

 

Figure 2.2  Vibrational energy levels of a harmonic oscillator versus those of an 

anharmonic oscillator (Morse potential). 
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The rotational and vibrational energies can be combined under a generalized formula 

(known as Dunham’s formula [5]) which defines the total energy of a diatomic molecule 

as in Equation 2.11, 

  T𝑣, J = ∑ Ylk(𝑣+
1

2
)
l

Jk(J+1 )k
l,k  .      (2.11) 

 

In this formula the 𝑌𝑙0 constants represent the pure vibrational terms, 𝑌0𝑘 constants are 

pure rotational terms and mixed terms are the ro-vibrational terms.  

𝑌00 = 𝑇𝑒 is the electronic minimum potential when there is no rotation. The 

vibrational energy formula 2.10 is not zero when the vibrational level takes the minimum 

value 0. The total energy of the system is defined in reference to the minimum of the 

potential energy curve. 𝑇𝑒 is an addition to the zero-point energy and must be included in 

the formula [2, 3, 5]. The first three pure vibrational, rotational and rovibrational 

coefficients are related to the spectroscopic constants as follows [5]: 

 

                                             𝑌10~𝜔𝑒 ;  𝑌20~ − 𝜔𝑒𝑥𝑒 ;  𝑌30~𝜔𝑒𝑦𝑒      

            𝑌01~𝐵𝑒 ;  𝑌02~ − 𝐷𝑒 ;  𝑌03~𝐹𝑒 

                       𝑌11~𝛼𝑒 ;  𝑌12~ − 𝛽𝑒 ;  𝑌21~𝛾𝑒       (2.13) 

Where 𝑌𝑖0 terms are the vibrational constants, 𝑌0𝑖 terms are the rotational constants and 

the mixed terms, 𝑌𝑖𝑘, are the rovibrational constants. 
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2.3 Coupling of Angular Momenta and Hund’s Cases 

A diatomic molecule has in general three angular momenta: electronic orbital 

angular momentum L, electronic spin angular momentum S, and nuclear rotation angular 

momentum R. They couple together to form the total angular momentum J. Nuclear spin 

angular momentum I, if present, usually couples to J to form F, but this coupling is 

ignored in this study. In general, J is conserved while L, S, and R are not conserved. We 

consider the limit J >> L, S, where angular momentum addition can be treated 

semiclassically. 

The rotation of the molecule affects the interactions. Hund was the first to 

examine this phenomenon, and he introduced various limiting-case models [6] as 

described in Table 2.1. Table 2.1 shows five limiting coupling cases (Hund's cases (a)-

(e)) for a given value of J at a fixed internuclear separation R. The results pertain to 

bound states of a molecule as well as to two atoms 'in collision' [7].  

Every molecular state approaches an atomic limit for large internuclear distances 

as the molecule dissociates. Taking into account the dominant factors and leaving out the 

negligible ones, one can determine accurately to which atomic limit the molecular state 

belongs. In other words, Hund’s coupling cases give us a road map to determine the 

correlation diagrams between the atomic and molecular states.  

For the motion of the electrons in an atom, the constant of motion is L, so L is 

conserved if the spins are neglected. For molecules, L is not a constant of motion and it is 

not conserved. There is only axial symmetry for diatomic molecules and the projection of 

the total momentum J on the internuclear axis (Ω) is a good quantum number and is 

conserved. Omega, Ω, is defined as the sum of the projections of the spin angular 



 

 

15 

 

momentum (S) and the orbital angular momentum on the internuclear axis. The notation 

of electronic states and quantum numbers for atoms is parallel to that of diatomic 

molecules but the quantum numbers that are conserved are different for diatomic 

molecules [2]. There are 6 Hund’s cases and they are categorized according to the type of 

coupling of angular momenta. Hund’s case (a), (b) and (c) are the most important ones 

for our research. 

 In Hund’s coupling case (a) the coupling of the electronic motion to the 

internuclear axis is strong. 𝑉𝑒𝑙 as shown in Table 1 is the dominant potential. Hund’s case 

(a) is valid for small internuclear separations and small rotational quantum numbers.  

S and L, in this case, precess around the internuclear axis rapidly and couple to the line 

joining the two atoms rather than coupling strongly with each other.  The orbital angular 

momentum component (Λ) and the spin angular momentum component (Σ) along the 

internuclear axis are defined as Λ=|𝑀𝐿| = 0,1,2,3 …  ; Σ = -S,-S+1,...S-1,S, respectively. 

The total angular momentum along the line connecting two atoms is defined as follows: 

 

                           𝛺 = |𝛬 + 𝛴| = |𝛬 − 𝑆|, |𝛬 − 𝑆| + 1, … , 𝛬 + 𝑆.   (2.14) 

 

In Hund’s case (b) the coupling of the spin angular momentum to the internuclear 

axis is weak. L, on the other hand, is coupled strongly to the internuclear axis. Hund’s 

case (c) applies to heavy molecules. Spin-orbit coupling (S coupling to L) far outweighs 

the coupling of either S or L to the internuclear axis. The first four common Hund’s cases 

diagrams are shown in Figure 2.3. 
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Table 2.1  The categorization of Hund’s coupling cases according to electrostatic, spin-

orbit, and rotational energy strengths [7]. 

 

Hund’s  

Coupling Case 
  Vel Vso Vrot 

a strong  intermediate weak 

b strong  weak intermediate 

c intermediate  strong  weak 

d intermediate  weak  strong 

e weak intermediate strong  

e' weak  strong intermediate 
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        Figure 2.3  Hund’s coupling cases (a), (b), (c) and (d). Figure is from Ref. [8]. 
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2.4 Rydberg-Klein-Rees (RKR) Method Properties  

The Rydberg-Klein-Rees method is a common procedure to obtain the potential 

energy curve of a diatomic molecule using the information of vibrational energy levels 

𝐺𝑣, and the rotational constants 𝐵𝑣 [9]. The analytical expression for the energy levels of 

a vibrating rotor is obtained by first-order semiclassical quantization via WKB (Wentzel-

Kramers-Brillouin) formula [4] :  

 

(2𝜇/ℏ2)
1

2 ∫ √𝐸 − 𝑉(𝑅)
𝑅+(𝐸)

𝑅−(𝐸)
 𝑑𝑅 = (𝑣 +

1

2
 )𝜋          

 (2.15) 

 

The R- and R+ stand for the inner and the outer turning points of the potential energy 

curve of a diatomic molecule at energy E as shown in Figure 2.4.  The approximate 

wavefunction according to this can be found as: 

               𝜓 = 𝐴𝑒𝑥𝑝 (∓𝑖 (2𝜇/ℏ2)
1

2) ∫ √𝐸 − 𝑉(𝑅)
𝑅+

𝑅−
𝑑𝑅.        (2.16) 

 

The analytical Dunham formula for the rovibrational energy, defines the energy levels of 

this solution as follows [4, 5]: 

 

                  𝐸𝑣,𝐽 = ∑ 𝑌𝑙𝑘(𝑣 +
1

2
)𝑙𝐽𝑘(𝐽 + 1)𝑘

𝑙,𝑘  .            (2.17) 

 

The WKB quantization in equation (2.15) can be manipulated [4] to give two equations 

involving the inner and outer turning points: 
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𝑅+ − 𝑅− = √2ℏ2/𝜇 ∫
𝑑𝑣′

𝐺(𝑣) − 𝐺(𝑣′)

𝑣

𝑣𝑚𝑖𝑛

 

                           

                                  
1

𝑅−
−

1

𝑅+
= √8𝜇/ℏ2 ∫

𝐵
𝑣′𝑑𝑣′

𝐺(𝑣)−𝐺(𝑣′)

𝑣

𝑣𝑚𝑖𝑛
                                  (2.18)                             

                                        

 

The RKR potential represents the internuclear distance range for which there is 

spectroscopic data resulting for the Dunham fit of coefficients. 
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Figure 2.4   Potential energy curve of the X1g
+ ground state [10] of Na2 diatomic 

molecule. De is the dissociation energy, Re is the equilibrium position. 

 

2.5 Calculation of Molecular Properties with LEVEL 8.0 

In our computational work, we heavily relied on Le Roy’s [11] LEVEL 8.0 

program to calculate transition dipole moments, Einstein coefficients and Franck-Condon 

factors. Using the Einstein coefficients we also calculated the lifetimes for sodium and 

lithium dimer molecular electronic states. Le Roy’s LEVEL 8.0 can be used to solve 

numerically the radial Schrodinger Equation (Eqn. 2.19). 

   −
ℏ2

2𝜇

𝑑2𝜓𝑣,𝐽(𝑅)

𝑑𝑟2 + 𝑉J(𝑅)𝜓𝑣, J(𝑅) = 𝐸𝑣,𝜓𝑣,𝐽(𝑅)  .             (2.19) 
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Here 𝑉𝐽(𝑟) is the sum of rotationless electronic potential and the centrifugal term [11]. 

The centrifugal potential has the form of [J(J+1) − Ω
2]ℏ2/2𝜇𝑟2. Omega (Ω) represents 

the projection of the total electronic angular momentum on the internuclear axis R 

between the atoms of a diatomic molecule. RKR potential energy functions are input to 

the program to calculate corresponding rovibrational wavefunctions. The RKR potentials 

are available in the literature or they can be obtained using the RKR program. The 

“CHARGE” parameter in the LEVEL 8.0 input file defines the total charge on the 

molecule. If the molecule is neutral, this parameter is set to zero. NUMPOT is the 

number of potentials used for the calculations. LEVEL works for a single potential curve 

as well as multiple potentials to calculate different parameters. For a single curve, 

LEVEL determines the energy levels of a single potential. For two curves, on the other 

hand, it calculates the transition dipole moment matrix elements, Franck-Condon factors 

and Einstein coefficients. The VLIM parameter in the LEVEL input file tells the program 

the energy approached at the dissociation limit. The RKR potential energy curves do not 

always cover the full internuclear axis up to the dissociation limit. By default, LEVEL 

interpolates over the missing regions and calculates the remaining levels up to energy set 

by the VLIM parameter. One can define a couple of data points close to the dissociation 

limit for the LEVEL program to extrapolate. But whether the LEVEL program 

extrapolates to the dissociation level as a linear curve or as a polynomial of third order 

causes differences in the calculation of final energy levels and molecular parameters. 

Defining the dissociation limit and the behavior of the potential energy function 

accurately is crucial to obtain the correct results. One can use a custom polynomial to 
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define the type of extrapolation. For inverse potential extrapolation, for instance, one can 

use Eqn. 2.20 by defining the CNN and NCN values.  

 

   𝑉(𝑅) ∝ 𝑉𝐿𝐼𝑀 − 𝐶𝑁𝑁/𝑅𝑁𝐶𝑁    (2.20) 

 

For inverse-power extrapolation (for 𝑁𝐶𝑁 > 0),  NCN coefficient specifies the limiting 

inverse-power behavior. CNN coefficient (when 𝐶𝑁𝑁 ≠ 0) causes the leading inverse-

power coefficient to be fixed at the read-in value rather than be determined from a fit to 

the outmost turning points. 

 

2.6 Autler-Townes Effect and Related Simulations 

Autler-Townes effect is also known as the dynamic (AC) Stark effect. It can be 

observed when one of the two levels involved in the transition is coupled to a third one 

by a strong field [12].  For a three-level cascade system as shown in Figure 2.5, the probe 

laser (L1), is scanned while the strong coupling laser (L2) stays on resonance. As a result, 

a splitting is observed (Figure 2.6) in absorption/emission the spectra. The peak-to-peak 

separation in the spectra is the Rabi frequency (Ω). 
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    Figure 2.5  Autler-Townes cascade scheme for the 51g
+(23,21) ← A1u

+(21,20) ←

     X1g
+(21,20) transition. 
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Figure 2.6    Autler-Townes splitting spectra for the 51g
+(23,21) → A1u

+(21,20)  

transition of Na2. 

 

The goal of an Autler-Townes experiment is to determine the Rabi frequency (Ω), 

a measure of the peak to peak splitting, from the Autler-Townes spectra. This information 

is then used to obtain the absolute dipole moment matrix element of the transition. Once 

the experimental splitting spectrum is obtained, a simulation is run and parameters are 

adjusted  to match the experimental splitting. The Rabi frequency is defined as follows: 

 

Ω =  
𝝁𝑬

ℏ
     (2.21) 
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Here 𝜇 stands for the transition dipole moment matrix element. The Rabi frequency (Ω) 

of the coupling transition is found through the experiment by matching the peak-to-peak 

separation of the simulation with that of the experiment. The AT splitting program [13] 

solves the density matrix equations (Eqn. 2.22) of motion.  

 

∂ρ

∂t
= −

i

ℏ
[H, ρ] + Γ(ρ) + relaxation terms   (2.22) 

  

The Hamiltonian in the interaction picture for this simple three level system (containing a 

pump and a coupling transition)  is as follows: 

 

)32+23(
2

Ω
+)21+12(

2

Ω
+33)Δ+Δ(+22Δ=H

21

211I           (2.23) 

 

where  Ωi  stands for the Rabi frequency Ωi ≡
𝜇𝑖,𝑖+1Ei

ℏ
 for the ith laser with  

 

𝜇𝑖,𝑖+1 = < 𝜓υi+1Ji+1
|𝜇𝑒(𝑅)|𝜓υiJi

>.                                         (2.24) 

 

Ω2 is the Rabi frequency of the transition between second and the third level, |2 >→

|3 >. 

The total Hamiltonian for the system in Eqn. (2.23) represents the combination of 

the Hamiltonian for the isolated molecule and the Hamiltonian for the interaction 

between the molecule and the external electromagnetic field. The dipole interaction here 

is between the molecule and the electric field component of the laser radiation 𝐄 (𝐫, t) =

𝐸𝑒̂ cos(𝐤𝐫 + ωt).  
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To simulate our results we used a computer program, written by Dr. Teodora 

Kirova, for open molecular systems [13]. The program parameters are the Rabi 

frequencies of the lasers, the spot sizes of the laser beams, the rotational and vibrational 

quantum numbers of the energy levels involved, the decay rates to lower states, and the 

wavenumbers corresponding to the wavelengths of the lasers. Among these parameters in 

Dr. Kirova’s AT splitting simulation program, the dominant factors are the spot sizes for 

the laser beams (measured by using the razor blade technique [14, 15], and the laser 

powers. These two parameters change the Rabi frequencies significantly for the probe 

and coupling lasers. The Rabi frequency of the coupling laser is critical since it affects 

the line shape of the simulation drastically. The decay rates and collisional parameters do 

affect the wings and shoulders of the AT line shape but do not have a significant effect on 

the peak to peak separation. Some other parameters used in the AT simulation program 

are transition energies (v31,, v53, v34,) in wavenumbers (cm-1), rotational (J) and 

vibrational numbers (𝑣) of the transitions, beam diameter of the pump laser (2w) and the 

projection of the total angular momentum on the internuclear axis (Λ), which defines the 

types of  the various electronic states.  In AT splitting spectra, the dominant factors which 

affect the splitting most are the Rabi frequency of the coupling laser (L2 in a two laser 

system) and the focusing of the pump laser [16]. 

The Rabi frequency of the coupling laser transition depends on the electric field 

amplitude of the coupling laser and the transition dipole moment matrix element, 

 𝜇𝑖,𝑖+1 = < 𝜓υi+1Ji+1
|𝜇𝑒(𝑅)|𝜓υiJi

> where 𝜇𝑒(𝑅) stands for the electronic component of 

the transition dipole moment as a function of the internuclear distance R.  The AT 

splitting simulation program solves the total Hamiltonian in Equation (2.23) and 
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simulates the AT line shape. Then the Rabi frequency setting for the coupling laser is 

adjusted until the simulation meets the experimental line shape. Having obtained the 

experimental Rabi frequency one can extract the absolute transition dipole moment 

matrix element  for the coupling laser transition from the relation Ω23 ≡
𝜇23𝐸𝐿2

ℏ
 [17]. The 

electric field amplitude is a function of the laser power and for a given laser power value 

the electric field amplitude of the laser is given by the relation E = √
4PL2

πcε0w2 ,  where 𝑤 is 

the beam waist of the laser beam defined at the 1/𝑒2 points of the Gaussian beam profile 

and PL2
 denotes the coupling laser power.  

 

2.7  Calculation of Lifetimes with BCONT 2.2 

The program LEVEL 8.0 can be used to calculate the Einstein coefficients for the 

bound-bound part of the electronic transitions. The LEVEL program cannot calculate the 

Einstein coefficients for bound-free transitions.  

For Li2 molecule electronic states, the transitions corresponding to the higher 𝑣 

values are mostly bound-free. In our calculations, we have combined the LEVEL 8.0 and 

BCONT programs [11, 18] to calculate the lifetimes for Li2 electronic states for energy 

levels within the internuclear distance up to the dissociation level. This is simply done by 

summing up the Einstein coefficients for bound-bound regions calculated by LEVEL 8.0 

with the Einstein coefficients for the bound-free regions calculated by BCONT values 

and applying the formula 2.25.  

 

  𝜏𝑖 = 1/(∑ 𝐴𝑖𝑘)𝑘                                         (2.25) 
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Here 𝐴𝑖𝑘 terms stand for the Einstein coefficients and i stands for the initial level i, which 

undergoes radiative decay to lower energy lying energy levels k in multiple other 

electronic states and their continua.   

 

2.8 Accumulation Curves of Rovibrational Wavefunction Overlap        

Integral 

The sodium dimer experiment which is explained in detail in Chapter 3 has been 

repeated multiple times. However, we have found throughout the experiment that the 

normalized line intensities obtained via resolved fluorescence did not exactly match the 

theoretical line intensities. To understand the ultimate reason behind these inconsistencies 

between the normalized experimental and theoretical line intensities, we have created 

“accumulation curves” which are rovibrational wavefunction overlap integrals building 

up as a function of nuclear distance. Depending on where the overlap integrals 

accumulate, we can determine the R-centroid position corresponding to a specific 

transition. These curves provide us information as to where the transition probabilities are 

strongest and at what internuclear distance ranges the transitions occur. 

Figure  2.7 shows that the line intensities for transitions from 61g
+(16,19) to the 

levels A1u
+(13,20) and A1u

+(16,20) states do not match the theoretical line intensities. 

Figure  2.8, Figure  2.9, Figure 2.10 and Figure 2.11 show the overlap integral 

accumulation curves for the 61g
+(16,19) ← A1u

+(𝑣′, 20) transitions. For the 

61g
+(16,19) ← A1u

+(16, 20) transition, the accumulation occurs over the range 3-5Å 

and R-centroid approximation is not sufficient enough to determine the internuclear range 

accurately and a higher order approximation is required. For the 61g
+(16,19) ←
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A1u
+(11, 20) transition, the overlap integral accumulates mostly at 3.5 Å and R-centroid 

approximation gives information about the internuclear distance range at which the 

transition occurs. 
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Figure  2.7    The comparison of experimental and theoretical line intensities for  the Na2 

61𝑔
+(16,19) → 𝐴1𝑢

+(𝑣′, 20) transitions where 𝑣′ is the vibrational number of the lower 

state. Blue and green dashed lines show the regions where the experiment differs from 

the theory most.  
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Figure  2.8    The accumulation curve for the Na2  61𝑔
+(16,19) → 𝐴1𝑢

+(16, 20) 

transition. The integral accumulates linearly between 3 - 5Å. The dark green trace is for 

the Franck-Condon overlap integral and the dark cyan trace indicates the accumulation of 

the transition dipole moment matrix element. 
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Figure  2.9    The accumulation curve for the Na2  61𝑔
+(16,19) → 𝐴1𝑢

+(13, 20) 

transition. The accumulation is linear between 3-4Å. The accumulation predominantly 

occurs at 4Å. The dark green trace is for the Franck-Condon overlap integral and the dark 

cyan trace indicates the accumulation of the transition dipole moment matrix element. 

  

 

 

 



 

 

33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10   The accumulation curve for the Na2  61𝑔
+(16,19) → 𝐴1𝑢

+(12, 20) 

transition. The integrals accumulate at 3.8Å. The dark green trace is for the Franck-

Condon overlap integral and the dark cyan trace indicates the accumulation of the 

transition dipole moment matrix element. 
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Figure 2.11   The accumulation curve for the Na2  61𝑔
+(16,19) → 𝐴1𝑢

+(11, 20) 

transition. The overlap integral mostly accumulates around 3.5Å. The R-Centroid 

approximation accurately defines the internuclear range for the transition. The dark green 

trace is for the Franck-Condon overlap integral and the dark cyan trace indicates the 

accumulation of the transition dipole moment matrix element. 
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2.9     The R-Centroid Approximation 

The R-Centroid approximation is a widely used method in order to define the R-

dependence of electronic transition dipole moments of diatomic molecules. In the Autler-

Townes method, by determining the peak-to-peak separation (Ω) in Eqn. 2.21, and the 

electric field of the coupling laser, one can extract the term 𝜇, which is the electronic 

transition dipole moment matrix element. More explicitly: 

 

𝜇 = < 𝑣′|𝜇𝑒(𝑅)|𝑣′′ > .                                                    (2.26) 

 

Here |𝑣′ > and |𝑣′′ > denote the higher and lower lying vibrational wavefuntions, 

respectively. 

In other words, the R-Centroid approximation aims to extract the transition dipole 

moment function, 𝜇𝑒(𝑅) from Eqn. (2.26). The relative line intensities of the electronic 

transitions of a diatomic molecule depend on  the product of the rotational line strength 

and the vibrational band strength. The rotational line strength can be calculated by 

diagonalizing the Hamiltonian to obtain the required rotational wavefunctions. The 

vibrational band strength is given by the equation [19] : 

 

  𝑃(𝑣′, 𝑣′′) = | ∫ 𝜓𝑣′(𝑅)𝜇𝑒(𝑅)𝜓𝑣′′(𝑅)
∞

0
𝑑𝑅|2 

      = | < 𝑣′|𝜇𝑒(𝑅)|𝑣′′ > |2        (2.27)  

 

By assuming that 𝜇𝑒(𝑅) is constant and does not change with R over the region where the 

vibrational wavefunction overlap is significant, one can rewrite Eqn. 2.27 as 
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   𝑃(𝑣′, 𝑣′′) = [𝜇𝑒(𝑅̅)]2 < 𝑣′|𝑣′′ > |2,         

 

with       𝑅̅ ≡
|<𝑣′|𝑅| 𝑣′′>|

|<𝑣′|𝑣′′>|
  .        (2.28) 

 

In the R-Centroid approximation, it is assumed that  𝜇𝑒(𝑅)  is constant in the range where 

the overlap integral accumulates most of its value. The R-Centroid approximation is a 

first order approximation. The dipole moment function can be expanded in power series 

for higher order approximations as follows: 

 

...Rμ+Rμ+μ=(R)μ  ;    Rμ=(R)μ 2
210e

∞

0=i

i
ie ∑                           (2.29) 

  

In this case, more terms are calculated in order to predict the dipole moment function as a 

function of internuclear distance R. The transition dipole moment matrix elements can be 

written as a power series as follows:          

     

     |< 𝑣′|𝜇𝑒(𝑅)|𝑣′′ >| = |< 𝑣′|𝑣′′ > |∑
∞

0=i

i

i Rμ ,      𝑅𝑖̅̅ ̅̅ ≡
|<𝑣′|𝑅𝑖| 𝑣′′>|

|<𝑣′|𝑣′′>|
                       (2.30) 
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CHAPTER 3  
 

MEASUREMENT OF THE ELECTRONIC 

TRANSITION DIPOLE MOMENT MATRIX 

ELEMENTS OF THE 51g
+→ A

1u
+ AND 6

1g
+→ A

1u
+ 

TRANSITIONS OF THE SODIUM DIMER VIA 

OPTICAL-OPTICAL DOUBLE RESONANCE AND 

AUTLER-TOWNES SPECTROSCOPY 

 

3.1  Introduction 
 

We present here an experimental study of the electronic transition dipole moment 

matrix elements (TDMM) for the 51g
+→A

1
u

+ and 6
1
g

+→A
1
u

+ electronic transitions of 

Na2. Lifetime calculations based on these  Na2 TDMM’s for the 

g

1Σ3 , 

g

1Σ4 , 

g

1Σ5 , and 



g

1Σ6  electronic states were published earlier [1]. An accurate knowledge of the 

transition dipole moment matrix elements is crucial because critical parameters for 

diatomic molecules such as emission and absorption line intensities, lifetimes and 

Einstein coefficients depend on these matrix elements. The Na2 


g

1Σ5  and 

g

1Σ6  

electronic states of the sodium dimer, which interact significantly with the ion-pair 
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(Na+ + Na-) Coulomb interaction potential, exhibit double wells and shoulders due to 

avoided crossings of the adiabatic potential energy functions [2-4]. The amplitude of the 

rovibrational wavefunctions for the electronic states increase around the shoulders and 

the outer wells of the potential energy functions. This causes the coupling of the lower 

and upper state wavefunctions to change abruptly, which in turn causes the electronic 

transition dipole moments of the 51g
+→A

1
u

+ and 6
1
g

+→A
1
u

+ electronic transitions to 

exhibit rapidly changing behavior as a function of R [1]. 

Traditionally, electronic transition dipole moments have been determined by ab 

initio calculations or experimentally by using spectral line intensities. However, only 

relative transition dipole moments can be determined based on line intensities.  Lifetime 

measurements involve decay to several lower lying electronic states and thus include the 

effect of multiple transition dipole moments. Intensity measurements are not absolute, 

because it is very difficult to calibrate the wavelength and the polarization dependence of 

the detection system and to determine the molecular densities with high accuracy [5]. On 

the other hand, by using the absolute transition dipole moment matrix elements from the 

Autler-Townes splitting measurements, these relative transition dipole moments can be 

converted to an absolute scale. The Autler-Townes method for a three-level system 

involves a weak probe laser pumping the population from the ground state to an 

intermediate state and a strong coupling laser transferring the population from the 

intermediate state to the higher state. The weak probe laser is scanned while the strong 

coupling laser is kept on resonance and the Autler-Townes splitting is obtained. The 

Autler-Townes method is superior to other experimental methods in obtaining the 

electronic transition dipole moment as a function of internuclear distance R, because it 
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only requires an accurate measurement of the coupling laser electric field amplitude and 

the determination of the Rabi frequency from the Autller-Townes splitting spectra [5]. 

Optical-optical double resonance (OODR) experiments [6-12] provide a quantum state 

selective method to probe transition dipole moments of thermal samples of diatomic 

molecules both in terms of relative fluorescence intensity measurements as well as by 

using coherence effects such as the Autler-Townes (AT) effect for the measurement of 

the absolute magnitude of the transition dipole matrix element [5, 13-17]. For the cascade 

excitation scheme in Doppler-broadened systems, the lasers must be counter-propagating 

for the AT splitting to be resolved [18, 19]. Here the pump transition is 

  2|ΣA1|ΣX u

1

g

1  and the coupling laser transitions are   3|Σ52|ΣA g

1

u

1  

and   3|Σ62|ΣA g

1

u

1  of the Na2 molecule. In order to test the ab initio transition 

dipole moment functions, we have carried out OODR and Autler -Townes experiments. 

The absolute values of the transition dipole moment matrix elements (TDMM) for 

specific transitions need to be obtained from the AT splitting experiments [20]. The 

relative spectral line intensities, for many transitions, obtained through resolved 

fluorescence are given by 𝐼𝑓𝑙𝑢𝑜𝑟 ∝  𝜈𝑖𝑘
4 |𝜇𝑖𝑘|2 where νik is the transition frequency and μik  

is the transition dipole matrix element with indexes i and k denoting the upper and lower 

levels of the transition. This relationship can be used to obtain more absolute transition 

dipole moment matrix elements by combining the AT splitting data with the data 

obtained through resolved fluorescence. The ratio of line intensities in the expression 

 
𝐼𝑖𝑗

𝐼𝑖𝑘
=

𝜈𝑖𝑗
4 |𝜇𝑖𝑗|

2

𝜈𝑖𝑘
4 |𝜇𝑖𝑘|2 is equal to the ratio of dipole moment matrix elements squared. Using one 

of the absolute transition dipole moment matrix element measurements obtained through 
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AT splitting method (for which we also obtained the line intensity from resolved 

fluorescence spectra following OODR excitation) more absolute dipole moment matrix 

elements can be obtained for transitions recorded by resolved fluorescence. 

Combining the Autler-Townes splitting method with resolved fluorescence 

experiment is beneficial in certain aspects. Both methods have their own limitations and 

advantages. The Autler-Townes method works only for strong coupling laser transitions 

|2>→|3> for the three-level cascade system here, for which the transition dipole moment 

matrix elements are strong in accordance with the Franck-Condon principle [21]. The 

resolved fluorescence, on the other hand, is useful also for recording relatively weak 

transitions (with TDMM ≤ 1.0 Debye) making it possible to obtain data corresponding to 

a greater range of 𝑣 and J (and hence, through R-centroid approximation, a greater 

internuclear distance). Since the line intensities obtained from resolved fluorescence are 

only relative, by combining these two methods, absolute values of transition dipole 

matrix elements are made available for a larger range of internuclear distances compared 

to that provided by the Autler-Townes measurements. In addition, the Autler-Townes 

effect based measurements can be used to test theoretically calculated ab initio electronic 

transition dipole moments, which are also absolute. The experimental setup for the AT 

splitting measurements is the same as for an OODR experiment with a couple of 

differences. The pump laser (L1), and the probe laser (L2) in the OODR experiment are 

now called the probe and coupling lasers, respectively. In addition, to observe the AT 

splitting effect, the coupling laser transition must have a strong transition dipole moment 

matrix element since the AT splitting will be smaller if the |2>→ |3> transition is weak.  

A strong coupling laser transition leads to the observation of a more easily resolved AT 
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splitting in the spectrum.  In addition, the probe and coupling laser beams should be 

perfectly collinearly aligned and counterpropagating [20]. 

 

3.2 Experimental Details 

 

3.2.1 Experimental Overview 
 

The experimental setup for Autler-Townes and OODR experiments is as shown in 

Figure 3.1. The Sodium vapor was generated in a five-arm heat pipe oven. Argon gas was 

used as the buffer gas with a pressure of about 300-400mTorr. The temperature of the 

heat pipe oven was in the range of 600K to 800K. In both experiments, single, 

longitudinal mode, frequency stabilized, tunable, continuous-wave (CW) Coherent, Inc. 

Autoscan 699-29 ring dye lasers pumped by Verdi V10 (Coherent, Inc.) were used. The 

probe laser (L1) was operated with a DCM dye, while the coupling laser (L2) with a R6G 

590 dye. For the Autler-Townes experiments the first laser is called the probe laser and 

the second the coupling laser. For OODR experiments, on the other hand, the first laser is 

called the pump laser and the second is called the probe laser. A lock-in amplifier 

(Stanford Research SR850) was used for phase sensitive detection of the photomultiplier 

signal with a mechanical chopper (SR540) to modulate the pump laser beam. A 

photomultiplier (PMT) (Hamamatsu R928), mounted on the top window of the heat pipe, 

was used to monitor the signal during the OODR scans. The photomultiplier tube voltage 

at the SPEX double monochromator was set to 984V.  Fluorescence emitted along the 

horizontal arm of the heatpipe perpendicular to the laser propagation was collected and 

sent to a SPEX 1404 double monochromator. The resolved fluorescence spectrum was 

obtained by scanning the SPEX 1404 spectrometer while the probe and the coupling 
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lasers were kept on resonance. The line intensities in the recorded spectra where 

calibrated for wavelength variation of the spectrometer response using a white light 

incandescent source [22]. In the AT effect based measurements, the coupling laser (L2) 

was kept on resonance while the probe laser (L1) was scanned. To ensure that the lasers 

remained on resonance while the resolved fluorescence was recorded the total 

fluorescence from the excited 51g
+(𝑣, J ) and 61g

+(𝑣, J ) states was monitored with a 

bandpass filtered PMT attached to one of the side arms of the heatpipe oven. In order to 

minimize the residual Doppler linewidth the two lasers were counter-propagated. To 

ensure that the coupling laser E field amplitude was homogenous in the volume probed in 

the AT splitting measurements the spot size of the coupling laser was chosen to be 

approximately twice as large as the spot size for the probe laser. The spot sizes for L1 and 

L2 for the 51g
+ state were 150m and 263m, while for the 61g

+(𝑣, J ) state they were 

158m and 278m, respectively. The electric field amplitudes were calculated from the 

measured spotsize (w) defined at the 1/𝑒2 points of the Gaussian beam profile and laser 

power P using the expression 𝐸 = √
4P

πcε0𝑤2. The spot sizes were determined 

experimentally using the razor blade technique (see sec. 3.2.3). The loss at the entrance 

window of the heatpipe for each laser was estimated to be approximately 10%, obtained 

from the measured total laser transmission of the cold heatpipe. 
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Figure 3.1  Experimental schematic of Autler-Townes spectroscopy and resolved 

fluorescence experiments. L1 and L2 are the tunable pump/probe and the coupling lasers, 

respectively. The tunable ring dye lasers are pumped by Verdi V10 lasers. The total 

fluorescence collection PMT was mounted on the top arm of the heatpipe. A BOMEM 

FT-IR spectrometer was used to calibrate the probe and coupling lasers. For the AT 

splitting experiment, a PMT was used, and for the resolved fluorescence experiment a 

photon counter was used. 
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3.2.2 Doppler Profile 

The AT splitting program requires various parameters as input. The temperature 

inside the heat pipe at the moment of the experiment is one of these parameters. It is 

determined from the Doppler broadening of a particular pump laser transition. When the 

coupling laser is off, the pump laser is scanned to obtain the Doppler broadening as in the 

Figure 3.2.  
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Figure 3.2  Doppler profile for the A
1
u

+(4.20) ←  X1g
+(0,19) transition of Na2 

molecule, detected by scanning the pump laser while observing the A
1
u

+(4.20) ←

 X1g
+(0,19) fluorescence. 
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The temperature is found by using the Doppler broadening formula (Eqn. 3.1). The 

temperature depends on the center frequency at maximum intensity of the Doppler 

profile,  the full width at half maximum frequencies, the Boltzmann constant, and the 

speed of light. 

 

                                              ∆𝑓𝐹𝑊𝐻𝑀 =  𝑓0√
8𝑘𝑇𝑙𝑛2

𝑚𝑐2
  .                                        (3.1)  

 

3.2.3 Laser Beam Profiling Using the Razor Blade Technique 

The spot size (w) of a laser beam is a major factor in AT spectroscopy 

experiments. In order to obtain quantitative information from the Autler-Townes splitting 

measurement, the spot size of the pump laser must be significantly smaller than that of 

the coupling laser. In addition, the spot size values are used in the Autler-Townes 

simulation program to obtain the simulated curve for the Autler-Townes spectra. 

Parameters in this simulation are adjusted to fit the experimental curve in order to extract 

the experimental Rabi frequencies (Ω).  

The electric field amplitude of a laser often exhibits a radial Gaussian distribution. 

The electric field amplitude and the power of a laser beam are related as follows: 

𝐸(𝑟) = 𝐸0 exp (−
𝑟2

𝑤2
) 

    𝑃𝑇𝑜𝑡 = ∫ ∫ 𝐼(𝑟)𝑟𝑑𝑟𝑑𝜑
2𝜋

0

+∞

0
          (3.2) 
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Here the intensity is 𝐼(𝑟) = 𝜖𝑐𝐸2(𝑟)/2.  The result of the integration of the total power 

yields: 

      𝐸0 =  √
4𝑃𝑇𝑜𝑡

𝑐𝜖0𝜋𝑤2
  .                                                  (3.3) 

In the razor blade technique, the laser beam is assumed to have a Gaussian 

waveform and the laser beam is gradually cut by a sharp blade while the position of the 

blade and the laser power after the blade are recorded.  The spot size of the Gaussian 

beam is defined as the radius measured at 1/𝑒2 of the intensity of the beam profile [23].  

There are two common ways of calculating the beam waist w after recording the data.  

The first method is simply recording the intensity versus distance data and fitting the data 

to a Gaussian curve. In this case  the horizontal width between 1/𝑒2 locations of two 

sides of the Gaussian profile is 2w. The beam waist is half of this value. The second 

method of obtaining the beam waist is simply to record  the positions of the blade at 75% 

(𝑑75)and 25% (𝑑25)  transmission of the total laser beam power and using the formula 

 

    𝑤 =  
1

2√𝐶
 (𝑑75 − 𝑑25) .        (3.4) 

 

Here C is defined as the solution of the error function erf(𝑐) = 1/2, and has the value   

C= 0.47 [24]. In our experiments we used this method to obtain the spot size of the laser 

beams. Eqn. (3.4) has been derived from the Gaussian profile in Ref.[24]. 
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3.3 Results and Discussion 

Using the AT splitting and resolved fluorescence methods the transition dipole moment 

matrix elements for a number of rovibratinal transitions between the 

u

1ΣA  and the 

g

1Σ5  

and 

g

1Σ6  ion-pair states were measured. Line intensities are proportional to the matrix 

elements through the relation 𝐼𝑓𝑙𝑢𝑜𝑟 ∝  𝜈4|µ|2. From the ratio of line intensities, using 

one measured transition dipole moment matrix element (TDM) from the AT method as 

the reference, one can find the absolute TDM for the remaining transition. This method 

allowed us to obtain more absolute transition dipole moment matrix elements in addition 

to those obtained directly from the AT method. Experimental and calculated transition 

dipole moments, using the first order R-Centroid approximation and the second-order 

approximation [25] for both experiments are listed in Table 3.1 and Table 3.2. It was 

possible to obtain more data for the 51g
+(𝑣, J )→ A

1
u

+(𝑣', J' ) transition compared to the 

61g
+(𝑣, J )→ A1

u
+(𝑣', J' ) electronic transition corresponding to an internuclear distance 

range of 2.73-5.27Å. By combining the Autler-Townes splitting data with the resolved 

fluorescence data, we were able to expand this range to 2.33-5.42Å. Figure 3.3 (a) shows 

the Autler-Townes excitation scheme for the 51g
+(23,21)→ A1

u
+(21,20) electronic 

transition. Figure 3.4 shows the Autler-Townes splitting spectrum for the 51g
+(23,21) →

A1g
+(21,20) transition. We have obtained the resolved fluorescence data for the 

51g
+(23,21)→ A1

u
+(21,22) Autler-Townes splitting transition, corresponding to the P 

line of this transition. This transition was then used to calibrate the dipole moments 

obtained from resolved fluorescence to an absolute scale. In the end, we have used the R-
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Centroid and second order multivariable fit to plot transition dipole moments as a 

function of R as shown in Figure 3.7. 

For the 61g
+(𝑣, J )→  A1

u
+(𝑣', J' ) transitions the simulated and the experimental 

electronic transition dipole moments differ from 1 to 13%. All of the transitions from the 

AT splitting experiments correspond to an internuclear distance range of 3.16Å to 4.22Å 

(Table 3.2). Since among the 61g
+(𝑣, J )→ A

1
u

+(𝑣', J' ) rovibronic  transitions there were 

only a few strong transitions involving mainly low lying rovibrational levels in the 6
1
g

+ 

state, the data obtained through the Autler-Townes method was limited. The resolved 

fluorescence experiment for the 61g
+(𝑣, J )→ A

1
u

+(𝑣', J' ) excitation used the same 

experimental setup except that both lasers (L1 and L2 in Figure 3.3 (b)) were kept on 

resonance while the SPEX 1404 monochromator was scanned. As a result, the 

experimental data spanned the internuclear distance range of 2.87-4.54Å. Figure 3.5 

shows the Autler-Townes simulation for the 6
1
g

+(15,19)→A
1
u

+(15,20) electronic 

transition. The spectra from resolved fluorescence are shown in Figure 3.6. Having 

obtained the absolute transition dipole moments, we have applied the R-centroid 

approximation [25] as well as a second order multivariable fit and obtained the transition 

dipole moment as a function of internuclear distance as shown in Figure 3.8. Both the 

first order R-centroid approximation and the second order multivariable fit show good 

agreement with the theoretically calculated ab initio data (Figure 3.8). 

The R-Centroid values of the transition dipole moments for the 51g
+(𝑣, J )→ 

A
1
u

+(𝑣', J' ) transition are scattered around 3.5Å and 5Å in Figure 3.7. The transition 

dipole moment matrix elements obtained around 5Å are as small as 1.0 Debye. The AT 

splitting is quite small for transitions with transition dipole moment matrix elements 
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smaller than 2.0 Debye. This could be a limitation to the precision of the observations in 

this region due to the fact that it is difficult to observe and optimize the splittings that are 

too small. The larger splittings with TDM values greater than 2.0 Debye, on the other 

hand, are easier to obtain and optimize. Once the splitting is obtained, laser powers, 

alignment of the counterpropagating beams and spot sizes were optimized to maximize 

the AT splitting. The TDM values for 51g
+(𝑣, J )→ A1

u
+(𝑣', J' ) around 3.5Å and 5Å are 

also the regions where the transition dipole moment function D(R) has physical sharp 

turning points (Figure 3.3 (a)). This indicates that the value of the overlap integrals of the 

wave functions changes drastically around these regions due to the change of the shape of 

the potential energy curves. Around 5Å the potential energy curve of 51g
+ state starts 

broadening to the right becoming less steep. This causes the wavefunction of the 51g
+  

state to expands over this region. This has an effect on the overlap integral values and the 

transition dipole moment matrix elements. The calibrated wavenumbers for the AT 

splitting experiments and the laser power values for the probe and the coupling lasers for 

all transitions are given in the supplementary data. 

With double resonance excitation schemes, the inner well behavior of the 

electronic transition dipole moment functions for the 51g
+→ A1

u
+ and 6

1
g

+→ A1
u

+  

transitions could be observed. However, their behavior at a larger internuclear distance is 

not available. This is the case because the Franck-Condon Factors (FCFs) and transition 

dipole moment matrix elements are only strong for the double resonance excitation for a 

few of the 51g
+→ A1

u
+ and 61

g
+→ A1

u
+  transitions. Therefore, these double resonance 

experiments are limited to the inner well behavior of the transition dipole moment 

functions. Nevertheless, the theoretically calculated ab initio transition dipole moments 
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cover the full internuclear distance range. Triple resonance and quadruple resonance 

experiments could be used for additional experimental mapping of the transition dipole 

moment internuclear distance dependence if Franck-Condon factors are favorable for 

these excitation schemes. 
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Figure 3.3   The Na2 excitation scheme for the 51g
+ A

1
u 

+ X1g
+  (a), and the     

6
1
g

+ A
1
u 

+ X1g
+ (b) transitions. L1 and L2 are counter-propagating probe and 

coupling lasers respectively. The ab initio transition dipole moment function[1] is 

highlighted in red. The blue dashed line is the Na++Na
-
 ion-pair curve.       
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Table 3.1   Transition dipole moment matrix elements obtained from the Autler-Townes 

splitting method and from the resolved fluorescence line intensities for the Na2  

𝟓1g
+(𝒗, J )→ A

1
u

+(𝒗', J' ) transitions. 

 

5g
+(𝒗 , 𝐽)  

 

A1u
+(𝒗′ , 𝐽′) 

TDMM 

(Debye) 

Experiment 

TDMM 

(Debye) 

Theory 

 

< 𝒗 , J |𝒗' , J'

> 

 

R, Å 

 

R2, Å2 

(4,21) (4,20) 3.124 3.605 0.992 3.74 14.08 

(8,21) (8,20) 3.238 3.327 0.952 3.81 14.78 

(10,21) (10,20) 2.902 3.089 0.903 3.84 15.08 

(10,20) (9,21) 0.767 1.005 0.264 2.73 6.41 

(11,20) (10,21) 0.988 1.195 0.316 2.93 7.90 

(12,21) (11,22) 1.238 1.395 0.372 3.09 9.18 

(13,21) (13,20) 2.278 2.529 0.768 3.86 15.3 

(13,21) (12,20) 1.389 1.646 0.444 3.26 10.45 

(13,19) (14,18) 0.839 1.062 0.347 5.27 26.09 

(15,21) (14,20) 1.931 2.034 0.616 3.81 15.07 

(15,21) (16,22) 0.987 1.110 0.380 5.22 25.79 

(17,21) (16,20) 2.208 2.327 0.661 3.65 13.56 

(17,21) (18,20) 0.894 1.051 0.374 5.15 25.34 

(20,21) (19,20) 2.068 2.178 0.662 3.8 14.87 

(23,21) (21,20) 1.913 2.034 0.593 3.7 14.00 

(27,21) (24,20) 1.504 1.710 0.525 3.76 14.64 

(23,21) (20,20) 0.561 0.667 0.180 2.46 4.55 

(23,21) (20,22) 0.512 0.608 0.164 2.33 3.51 

(23,21) (21,22) 1.913 2.029 0.590 3.69 13.96 

(23,21) (22,20) 1.086 0.844 0.294 3.42 12.36 

(23,21) (22,22) 1.160 0.909 0.314 3.47 12.68 

(23,21) (23,20) 0.792 0.729 0.266 5.37 26.92 

(23,21) (23,22) 0.695 0.710 0.261 5.42 27.34 

(17,21) (17,20) 1.152 1.204 0.401 3.65 13.65 

(17,21) (17,22) 1.124 1.272 0.422 3.63 13.83 

(17,21) (18,20) 0.894 1.051 0.374 5.15 25.34 

(17,21) (18,22) 0.842 1.035 0.371 5.19 25.61 

(17,21) (19,20) 0.746 0.874 0.403 4.70 22.55 
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Table 3.2    Transition dipole moment matrix elements obtained from the Autler-Townes 

splitting method and from the resolved fluorescence line intensities for the  Na2 

 𝟔1g
+(𝒗, J )→ A

1
u

+(𝒗', J' ) transitions. 

 

 

 

 

 

 

 

61g
+(𝒗 , J ) 

 

 

A1u
+(𝒗′, J′) 

TDMM 

(Debye) 

Experiment 

TDMM 

(Debye) 

Theory 

 

< 𝒗 , J |𝒗' , J'

> 

 

R, Å 

 

R2, Å2 

(4,19) (3,20) 2.284 2.205 0.482 3.42 11.66 

(5,19) (4,20) 2.158 2.128 0.469 3.43 11.69 

(7,19) (4,20) 1.000 1.156 0.201 3.16 9.92 

(10,19) (11,20) 1.596 1.545 0.661 4.14 17.29 

(13,19) (14,20) 1.328 1.311 0.531 4.22 18.05 

(15,19) (15,20) 1.136 1.201 0.359 3.69 13.43 

(19,19) (19,20) 1.159 1.250 0.444 3.98 15.98 

(22,19) (21,20) 1.095 1.158 0.323 3.62 12.99 

(15,19) (9,18) 0.518 0.516 0.086 2.88 8.20 

(15,19) (9,20) 0.474 0.502 0.084 2.87 8.17 

(15,19) (10,18) 0.917 0.946 0.161 2.99 8.87 

(15,19) (10,20) 0.869 0.929 0.158 2.98 8.84 

(15,19) (11,18) 1.375 1.406 0.249 3.10 9.57 

(15,19) (11,20) 1.314 1.393 0.246 3.10 9.55 

(15,19) (12,18) 1.642 1.592 0.301 3.19 10.16 

(15,19) (12,20) 1.608 1.598 0.301 3.19 10.13 

(15,19) (13,18) 1.359 1.126 0.258 3.36 11.28 

(15,19) (13,20) 1.357 1.159 0.263 3.35 11.22 

(15,19) (15,18) 1.122 1.220 0.366 3.70 13.53 

(15,19) (16,18) 1.215 0.962 0.369 4.29 18.80 

(15,19) (16,20) 1.192 1.000 0.386 4.28 18.75 

(15,19) (17,18) 0.821 0.955 0.617 4.53 20.52 

(15,19) (17,20) 0.762 0.936 0.614 4.54 20.60 
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       Figure 3.4   Autler-Townes splitting spectra for Na2  51g
+(23,21) → A1u

+(21,20)  

       transition.  
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       Figure 3.5    Autler-Townes Splitting spectra for Na2  61g
+(15,19) → A1g

+(15,20 )  

       transition.        
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     Figure 3.6    Resolved fluorescence from the Na2 61g
+(15,19) state to vibrational          

 

     levels of the  A1𝑢
+  state. 
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       Figure 3.7  Electronic transition dipole moment function, μe(R), for the Na2  

       51g
+ ← A1u

+ electronic transition. 
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      Figure 3.8    Electronic transition dipole moment function, μe(R), for the Na2 

      

      61g
+ ← A1u

+  electronic transition. 
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3.4 Conclusions 

We have combined Autler-Townes splitting data for transition dipole matrix 

elements with resolved fluorescence spectral line intensity data from OODR resolved 

fluorescence to generate experimental transition dipole moment functions μe(R) for the 

51g
+→ A1

u
+ and 6

1
g

+→ A1
u

+  transitions of Na2.  For strong transitions, we have made 

use of the Autler-Townes splitting technique [14, 15, 20, 26, 27] to obtain absolute 

transition dipole moment matrix elements. For weaker transitions, we have used spectral 

line intensity data from resolved fluorescence spectra. By combining the Autler-Townes 

splitting based absolute measurements of the transition dipole matrix elements with the 

relative resolved fluorescence-based intensity measurements it was possible to expand the 

internuclear distance range of the experimental transition dipole moment mapping on an 

absolute scale for these transitions. The experimental results confirm a strong variation of 

these transition dipole moments as a function of internuclear distance. This is caused by 

the strong coupling of the Na2 5
1g

+ and 6
1
g

+ electronic states with the Na+ + Na
-
 ion-pair 

potential. In the range of internuclear distances accessible by OODR excitation, we have 

also compared the experimental transition dipole moments with theoretical ab initio 

calculations, which also provide absolute transition dipole moments.  
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CHAPTER 4  

ELECTRONIC TRANSITION DIPOLE MOMENT 

AND RADIATIVE LIFETIME CALCULATIONS OF 

 SODIUM DIMER ION-PAIR STATES 

 

4.1    Introduction 

We present here a  description of a computational study of lifetimes and transition 

dipole moment matrix elements for the sodium dimer ion-pair states of  g

1  symmetry. 

These electronic states have multiple wells and shoulders that broaden the potential 

energy wells. Previously, Dr. Magnier calculated the ab initio electronic transition dipole 

moment functions [1] that vary strongly with internuclear distance.  These were used in 

the present calculations of lifetimes and transition dipole moment matrix elements. We 

calculated the lifetimes and they agree well with experimental values from the literature 

when available. We published this work in the Journal of Chemical Physics [2].  

Alkali dimer M2 and alkali hydride MH molecular electronic states with ion-pair 

character are known to exhibit multiple minima and shoulders in their potential energy 

curves [3-7]. This exotic behavior of the +
g

1Σ  symmetry states is caused by avoided 

crossings of the zero-order covalent and ionic (M+ + M) potential energy curves. In 

addition to exhibiting discontinuous slopes of vibrational G(𝑣) and rotational B(𝑣) 
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functions with increasing vibrational quantum number 𝑣, a pronounced variation of the 

electronic transition moment is predicted for regions of internuclear distance that involve 

avoided crossings of zero-order covalent or ionic configurations [8-10]. Some evidence 

for such behavior has been found in a few electronic states of alkali hydrides [4, 5, 11, 

12]. In addition, in the lighter molecules such as H2 and LiH, breakdown effects of the 

Born-Oppenheimer approximation have also been observed [4, 5, 13]. As a result of this, 

potential energy curves differ significantly from one isotopomer to the other. For the 

slightly heavier Li2 molecule, the resulting anomalous isotope shifts are quite small [14]. 

The E-F, G-K and H-H  states of H2 have been studied extensively both theoretically and 

experimentally since the '70s [6].  For example, the E-F double minimum state of H2 has 

served as a gateway state to higher lying excited states in double resonance spectroscopy 

[15] as well as for the study of photodissociation to their continua [16]. 

The Li2  ion-pair states +

g

1Σ3(E)  and +

g

1Σ4(F)  have been well characterized both 

theoretically and experimentally [9, 17, 18] and the +
g

1Σ4(F)  rovibrational levels exhibit 

interesting rovibrational isotopomer dependent predissociation behavior [19, 20] to the 

continuum of the +
g

1Σ3(E)  state. The analogous Na2 state +
g

1Σ4(F)  does not predissociate 

[21]. 

Due to the poor Franck-Condon factors for excitation from the thermal population 

of the ground state via the 1(A)
u

1
  state, these ion-pair states have been observed using 

either atomic fluorescence following predissociation [19, 20], ion detection  with a 

thermal molecular sample [21-25], or in a molecular beam [26]. In a series of 

experiments S. R. Leone et al. have used the Li2 
+
g

1Σ3(E)  state in femtosecond coherent 
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control wavepacket experiments for control of wave packet dynamics [27, 28], alignment 

effects in multiphoton coherent excitation [29], and the manipulation of rovibronic 

wavepacket compositions [30]. 

The Na2 ion-pair +
g

1Σ3 , +
g

1Σ4 , +
g

1Σ5  and +
g

1Σ6  states, plotted in Figure 4.1, have 

been calculated by Sylvie Magnier et al. [10] using two effective potential methods. In 

these two ab initio approaches, potential energy curves (PECs) of +
g

1Σ , +
u

1Σ  highly 

excited states display strange patterns located at intermediate and large internuclear 

distances (5.3Å< R <21Å). Shoulders are found in the PECs of the +
g

1Σ3  and +
g

1Σ4  

electronic states for 5.3Å< R <21Å, as well as a large avoided crossing between these 

curves. 
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Figure 4.1    Selected potential energy curves of the Na2 molecule excited states. The 

dotted line is the ion pair Na+ + Na  Coulomb interaction function e2/(4πεR), which 

crosses the region of the electronic states and causes the secondary wells and shoulders 

for these potential energy functions. The potential energy curves are from Refs.[10, 22-

26, 31-35]. 
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For R varying between 10.6Å and 18.5Å, two very close avoided crossings 

between the PECs of the 4 +
g

1Σ , 5 +
g

1Σ  and 6 +
g

1Σ  electronic states are observed, which are 

due to the ionic-covalent interaction. A diabatic approach has been developed to extract 

from adiabatic calculations, the diabatic states dissociating into the ionic state (Na+ + Na–

) and those correlated to a covalent state (Na(nl) + Na(n'l')) [36]. In these calculations, 

only the ionic ground state Na– (1S) has been considered and some of the observed 

structures correspond to crossings between relevant covalent and ionic energy curves as 

plotted in Figure 4.2. In order to model the ionic-covalent interaction and extend it to 

other molecular symmetries more accurately, in the ab initio calculations, Dr. Magnier 

has determined the lowest 1,3S, 1,3P and, 1,3D excited states of Na– [37] through large 

atomic interaction configuration calculations including 3s-7s, 3p-7p, 3d-7d and 4f-6f 

orbitals. Dr. Magnier obtained for the ionic ground state, an energy of -0.209008au, 

which is in good agreement with the previously determined experimental -0.209884au 

[38] and ab initio -0.208813au [36] values.  

 

 

 

 

 

 

 

 



 

 

70 

 

 

 

 

 

 

Figure 4.2    Diabatic potential energy curves for the +
g

1Σ  states correlated to 

Na(3s) + Na (4s, 3d, 4p, 5s) and for the ionic ground state Na–(1S). 
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The first Na–(1S) ionic excited states are located below the atomic threshold 

Na(3p) at an energy of -41217.55 cm-1 and -40262.62 cm-1, respectively. As displayed in 

Figure 4.3 (b), pseudo-crossings between ionic curves of these states and the PECs of 

+
g

1Σ3  and +
g

1Σ4  states are observed in the region of the shoulders. Similar remarks may 

be made for the potential energy curves of the 
+

u

1Σ  states dissociating into the same 

asymptotes as shown in Figure 4.3 (a). The potential energy calculations have been 

supplemented by determination of the transition dipole moments (TDM) [1]. Variations 

of TDM for (3-6) +
g

1Σ ← +
u

1Σ  and (3-6) +
g

1Σ ←2 +
u

1Σ  transitions are presented in Figure 4.4. 

The TDM functions for (3-6) +
g

1Σ ← u
1ΠB  transitions are shown in Figure 4.5. A crossing 

is observed between the TDM of the 3 +
g

1Σ ← u
1ΠB  and 4 +

g
1Σ ← u

1ΠB  transitions at 3.86Å, 

which corresponds to the position of a large avoided crossing between the two PECs. In 

the region of the shoulder, the 4 +
g

1Σ ← u
1ΠB  TDM decreases with increasing R and 

approaches 0 at the end of the shoulder before increasing again and crossing the 5 +
g

1Σ ←

u
1ΠB  TDM at 14.8Å. This is very close to the position of the avoided crossing of the 

molecular potential energy curves. In the range of 6.35Å-15.87Å, the 5 +
g

1Σ ← u
1ΠB  TDM 

is seen to be constant. When the pseudo-crossing occurs in the PECs with the ionic curve 

of the ground state, the 5 +
g

1Σ ← u
1ΠB  TDM decreases to 0 with increasing R while for the 

4 +
g

1Σ ← u
1ΠB  TDM increases up to the value of the 5 +

g
1Σ ← u

1ΠB  TDM. Because of the 
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potential well due to pseudo-crossings with ionic curves, a little peak is observed in 6 +
g

1Σ

←
u

1ΠB  TDM, while the variation of TDM is more important for the 6 +
g

1Σ → 2
+
u

1Σ   

transition (Figure 4.4  (b)). Similar observations may be made for the transitions between 

the 2 +
u

1Σ  and (3-6)  g

1  states. The influence of ionic-covalent interaction is not 

negligible for these transition dipole moments and may induce strong variations as well 

as inversion of TDM values. The transition dipole moments of the (3-6) +
u

1+
g

1 ΣA←ΣX  

transitions are illustrated in Figure 4.4 (a) and Table 4.1  Table of transition dipole 

moment functions for each transitions that we have used in our calculation. Dipole 

moment functions are in Debye and internuclear distances are in atomic units. Unlike the 

Li2 4(F) +
g

1Σ  state, these ion-pair states do not predissociate and rovibrational energy 

levels with large R-centroid values have been observed by ion detection based Optical-

Optical Double Resonance (OODR) [21-25] and fluorescence enhanced triple resonance 

spectroscopy [26]. 

 

 

 

 



 

 

73 

 

 

 

Figure 4.3    (a) Adiabatic potential energy curves of the (2-5) 
+
u

1Σ  states crossed by the 

ionic Na-(1S) state. (b) Adiabatic potential energy curves of the (3-6) 
+
g

1Σ  states crossed 

by the ionic Na-(1-3S) states. 
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Figure 4.4    (a) Electronic transition dipole moment function, 𝜇𝑒(𝑅), plots for transitions 

between the low-lying excited and the first excited electronic state of the sodium dimer. 

(b) Electronic transition dipole moment function, 𝜇𝑒(𝑅), plots for transitions between the 

low-lying excited and the second excited electronic state of the sodium dimer. 
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Figure 4.5    Electronic transition dipole moment functions, 𝜇𝑒(𝑅), for 

(3-6) 
+
g

1Σ  ← u
1ΠB  transitions of Na2. 
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The aim of this study is to present a road map for the critical parameters for an 

Autler-Townes spectroscopic probe of the predicted pronounced variation of the 

electronic transition dipole moments of the Na2 dimer between the ion-pair states of  +
g

1Σ   

symmetry and the 1(A)
+
u

1Σ  state. The focus of this probe is on the avoided crossing 

regions between the zero-order covalent and ionic Na+ + Na– configurations. Using 

quadruple resonance spectroscopy [39] and Autler-Townes splitting based measurements, 

the absolute magnitude of the electronic transition dipole moment matrix elements for the 

coupling laser rovibronic transitions (3-6) +
g

1Σ → 1(A)
+
u

1Σ  can be obtained. 

Using the Autler-Townes technique, the Rabi frequency  =
𝐸

ℏ
  can be extracted 

from the observed Autler-Townes splitting spectrum for different R-centroid values as 

has been demonstrated for the 1(A)
+
u

1Σ – 1(X) +
g

1Σ systems of Na2 and Li2 [40, 41]. For 

regions of internuclear distance where the transition dipole moment matrix elements are 

smaller, calibrated fluorescence intensity data can be combined with absolute calibration 

of selected strong transitions for complete experimental mapping of the electronic 

transition dipole moment as demonstrated in Ref. [42]. Such accurate knowledge of the 

experimental transition dipole moment function is important to test the pronounced 

variation of the transition dipole moments as a function of internuclear distance predicted 

by ab initio calculations, and for understanding the structure of the excited states and 

their decay dynamics to gain more information for quantum control of molecular 

dynamics [27-30]. 
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Traditional probes of the electronic transition dipole moment variation as a 

function of internuclear distance have also included lifetime measurements. However, 

since the upper state often decays to multiple lower lying electronic states, such 

measurements involve contributions from several transition dipole moments. In calibrated 

fluorescence measurements this no longer is a limiting factor since specific rovibronic 

transition intensities are observed [42]. However, the radiative lifetimes are of great 

interest in atomic/molecular physics or astrophysics since absolute transition probabilities 

can be determined from the measured lifetime of an excited level into the lower levels 

[43]. The radiative lifetime also plays a role in the simulations of the Autler-Townes 

splitting spectra, in particular in the spectral line wings. The line center of the Autler-

Townes splitting spectrum is dominated by the Rabi frequency of the coupling laser [39, 

40, 44-46]. 

 

4.2     Computational Background of Critical Parameters 

An oscillating electric dipole moment can be induced with an external 

electromagnetic field and their interaction is resonant if the frequency of the field 

corresponds to the frequency of the transition between the upper and lower levels. Thus, 

the amplitude of this moment between the upper rovibrational level (𝑣′,J') and the lower 

rovibrational level (𝑣′′,J'') is referred as the transition dipole moment matrix element 

 

           𝜇𝑣′J′v"J" ≡ ∫𝑣′J′(𝑅)𝜇𝑒 (𝑅)𝑣"𝐽"(𝑅)𝑑𝑅 =< 𝑣′𝐽′|𝜇𝑒(𝑅)|𝑣"J" >                       (4.1) 
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where R is the internuclear distance. The electronic transition moment 𝜇𝑒 can then be 

calculated from this matrix element using the R-centroid approximation 

           

                 𝜇𝑒(𝑅𝑐) =
<𝑣′𝐽′|𝜇𝑒(𝑅)|𝑣"J">

<𝑣′𝐽′|𝑣"J">
                              (4.2) 

    

where 𝑅𝑐 =
<𝑣′𝐽′|𝑅|𝑣"J">

<𝑣′𝐽′|𝑣"J">
  is the R-centroid. The integral over the products of the upper and 

lower wavefunctions is the square root of the Franck-Condon factor 𝑞𝑣′𝐽′𝑣"J" =

| ∫𝑣′𝐽′(𝑅)𝑣"𝐽"(𝑅)𝑑𝑅|2. 

The absolute transition intensities either in absorption or emission spectra are 

related to the transition dipole moment matrix elements and the transition frequency. For 

emission, which we use to observe the resolved fluorescence spectra in our experiments, 

the transition probabilities are proportional to |µ2|v3 for photon detectors.  

The measurement of the absolute magnitude of the vibrationally averaged 

transition dipole matrix element is critical for comparison with theoretical values [40, 

41]. Similarly calibrated intensity measurements are only relative but can be normalized 

to an absolute scale using the measured intensity for the same transition that was used for 

the Autler-Townes splitting measurement of the transition dipole moment matrix element 

[42]. The experimental Autler-Townes splitting spectra are theoretically simulated using 

standard density matrix formalism [39, 40, 44-46]. The transition dipole moment matrix 

elements are sensitively dependent on the wave functions of upper and lower states and 

provide crucial tests for the quality of computed wave functions.  
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In addition to the ab initio transition dipole moment values, we present  here the 

background calculations needed for the mapping of the transition dipole moment 

functions for the (3,4,5) +
g

1Σ  states to the 1(A)
+
u

1Σ  state of Na2 molecule using the Autler-

Townes effect. We have calculated radiative lifetimes of the ion-pair +
g

1Σ  states and the 

first excited A
+
u

1Σ  state, electronic transition dipole moment matrix elements, and 

Franck-Condon factors for the sodium dimer. The main purpose of this paper is to 

identify optimal quadruple resonance [39] excitation pathways to probe Na2 ion-pair 

 +
g

1Σ ← A
+
u

1Σ  transition dipole moment functions.  

As indicated above, the radiative lifetimes of the upper and lower states of the 

coupling laser are needed in the simulations of the Autler-Townes split coupling laser 

transition line wings. The radiative lifetimes, to be used in the AT simulations, are 

calculated from the Einstein coefficients Aik for spontaneous emission using the computer 

program called LEVEL [47]. This program uses the previously obtained experimental 

(when available) or ab initio potential energy curves and transition dipole moments of the 

specific transitions which are presented here for the first time. It then solves the radial 

Schrödinger equation and produces the Einstein coefficients, Franck-Condon factors, and 

transition dipole moment matrix elements. We present the results of the calculations 

below.  
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4.3 Pseudopotential Calculation of Electronic Transition Dipole          

Moments 

The transition dipole moments between various pairs of electronic states of Na2 

have been computed by Magnier et al. [1] over a large range of internuclear distances 

5𝑎0 < 𝑅 < 40𝑎0. Molecular energies and two-electron wave functions have been 

determined through configuration-interaction (CI) calculations in the framework of the 

pseudopotential method. Details of the method and the basis sets used in this work may 

be found in Ref. [10]. The expectation value of the operator ∑ 𝑟𝑖
2
𝑖=1  has been estimated 

using the basis set of CI two-electron wave functions. The absolute values of the 

transition dipole moment functions for the transitions +
g

1Σ → +
u

1ΣA  are listed in Table 4.1 

as a function of internuclear distance.  

 

4.4     Lifetime Calculations 

We have calculated the radiative lifetimes, τ, of the ion-pair (3,4,5) +
g

1Σ  states of 

the Na2 molecule rovibrational levels and compared them with the experimental results 

from the literature when available. The lifetime is simply the inverse of the total decay 

rate of the excited level to all possible lower energy levels. We denote with i the lifetime 

of the excited level |i> , with Aik  the total decay rate of the excited level |i>, and with Aik 

the decay rate of the excited level |i> to the lower level |k>. The Aik are known as the 

Einstein coefficients, which runs over all  possible rovibrational transitions. Therefore we 

can write 
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 i = Ai
-1 = (Aik)

-1.            (4.3) 

Using the calculated wavefunctions, the LEVEL program calculates the transition 

quantities, i.e. frequencies of the all possible rovibrational transitions, Franck-Condon 

factors, transition dipole moment matrix elements, and Einstein coefficients. In addition 

to radiative lifetimes, we also present the results for the transition dipole moment matrix 

elements and Franck-Condon factors. The Einstein coefficient for one single decay 

channel from the upper level (𝑣′,J') to the lower level (𝑣′′,J'') is represented by 

𝐴𝑣′𝐽′𝑣"𝐽" = 𝑘
𝑆𝐽′𝐽"

𝑔′(2𝐽′+1)
3|µ|3. 

 is the transition frequency, µ is the transition dipole moment between the two levels, 

SJ'J'' is the Hönl-London rotational intensity factor; g is the degeneracy factor which is 1 

for  = 0, and 2 for   0 states. For S = 0 that the line strengths are normalized to (2J+1) 

for  transitions and to 2(2J+1) for all other singletsinglet transitions. The total decay 

rate of the excited state rovibrational level is obtained by summing up all the individual 

Einstein A coefficients, 𝐴𝑣′𝐽′ = ∑ 𝐴𝑣′𝐽′𝑣′′𝐽′′𝑣′′𝐽′′ . We have calculated the individual 

rovibrational level decay rates, and added them up to obtain the total decay rate. 
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Table 4.1  Table of transition dipole moment functions for each transitions that we have 

used in our calculation. Dipole moment functions are in Debye and internuclear distances 

are in atomic units. 

 

R 

 

a.u 

+
u

1ΣA  

 

+
g

1ΣX  

+
g

1Σ3  

 

+
u

1ΣA  

+
g

1Σ3  

 

u
1ΠB  

+
g

1Σ4  

 

+
u

1ΣA  

+
g

1Σ4  

 

u
1ΠB  

+
g

1Σ5  

 

+
u

1ΣA  

+
g

1Σ5  

 

u
1ΠB  

+
g

1Σ5  

 

+
u

1Σ2  

+
g

1Σ6  

 

+
u

1ΣA  

+
g

1Σ6  

 

u
1ΠB  

+
g

1Σ6  

 

+
u

1Σ2  

5.00 8.67 3.59 8.41 5.37 2.45 2.77 0.35 8.18 5.16 1.21 7.13 

6.00 9.42 4.99 8.72 7.95 3.09 3.37 0.47 13.39 5.52 0.90 11.32 

7.00 10.12 7.33 8.18 10.08 4.29 3.83 0.62 19.67 3.47 0.52 9.63 

8.00 10.56 10.62 6.49 9.53 5.93 3.46 0.72 21.72 1.79 0.31 4.95 

9.00 10.58 13.08 4.42 7.47 6.73 2.61 0.52 18.59 1.37 0.03 3.07 

10.00 10.25 13.92 3.19 6.32 6.54 0.90 0.16 14.26 1.84 0.59 3.44 

11.00 9.80 13.98 2.56 5.76 6.24 1.58 0.73 12.42 2.35 1.04 4.19 

12.00 9.45 13.85 2.20 4.83 6.18 3.80 0.52 11.45 2.68 1.39 4.67 

13.00 9.26 13.59 2.00 3.33 6.24 5.38 0.21 10.59 2.86 1.73 5.27 

14.00 9.19 12.95 1.90 1.66 6.27 6.36 1.00 9.85 2.18 1.96 6.42 

15.00 9.16 11.84 1.89 0.20 6.26 6.96 1.63 9.35 0.43 1.76 7.71 

16.00 9.15 10.54 1.96 0.90 6.22 7.37 2.08 9.10 2.68 1.35 7.43 

17.00 9.14 9.34 2.13 1.64 6.14 7.67 2.41 9.04 3.51 1.13 6.41 

18.00 9.13 8.42 2.44 2.02 6.01 7.88 2.65 9.15 3.67 1.00 5.02 

19.00 9.11 7.83 2.94 2.01 5.76 8.03 2.85 9.33 3.52 0.90 3.06 

20.00 9.10 7.53 3.69 1.55 5.30 8.13 3.00 9.37 3.22 0.81 0.18 

22.00 9.08 7.26 5.35 0.35 3.60 8.18 3.23 7.85 2.47 0.64 7.23 

24.00 9.06 7.00 6.02 1.63 2.33 8.09 3.34 5.68 1.77 0.48 11.39 

26.00 9.05 6.75 6.21 2.52 1.97 7.84 3.33 4.62 1.24 0.34 12.97 

28.00 9.04 6.65 6.28 4.43 2.48 6.85 2.91 5.18 0.89 0.25 13.53 

30.00 9.03 6.60 6.31 7.39 3.60 3.28 1.24 7.19 0.70 0.20 13.43 

32.00 9.03 6.56 6.33 7.92 3.79 1.21 0.38 9.68 0.68 0.18 11.82 

34.00 9.02 6.53 6.35 7.95 3.82 0.35 0.09 14.05 0.66 0.15 5.90 

36.00 9.02 6.51 6.36 7.93 3.82 0.08 0.01 15.05 0.45 0.08 2.18 

38.00 9.02 6.50 6.37 7.90 3.83 0.02 0.00 15.15 0.30 0.04 0.99 

40.00 9.02 6.48 6.37 7.88 3.83 0.21 0.02 0.52 5.33 5.12 0.00 
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4.5     The Overview of Na2 Electronic States 

There were two different experimental data sets that have been used to map the 

potential energy curve of the +
g

1ΣX  state  available from the literature; (i) Kusch et al. 

[34] and (ii) Babaky et al. [31]. The latter, which was used in our calculations, provided 

the +
g

1ΣX  state up to the maximum vibrational level 𝑣 = 62 with the outer turning point 

of vibration at R=11.2310124 Å with energy of 6017.8555 cm-1 above the ground state 

minimum.  

For the calculations of the A +
u

1Σ  state lifetimes and transition dipole moment 

matrix elements; potential energy curves from Ref.[33] and from Ref.[31] for the +
u

1ΣA  

and +
g

1ΣX  states are used, respectively. The potential energy curve is presented in Figure 

4.1. The +
u

1ΣA  state only undergoes one allowed electronic transition, which is to the 

singlet ground +
g

1ΣX  state. According to the Hönl-London intensity factors, Σ-Σ 

transitions decay only to lower rotational levels of the P and R branches, where P and R 

represent J''=J'+1 and J''=J'-1 rotational transitions, respectively. As can be seen in 

Figure 4.4 (a), the transition dipole moment function is biggest between R3.5  6.0 Å. 

This results in the strongest transitions around the same region, thus leading to larger 

Einstein A coefficients and shorter lifetimes. The lifetime results for +
u

1ΣA  vibrational 

levels up to 𝑣 = 52 are presented in Figure 4.6 for the rotational quantum number J=1. 

The plot shows that the lifetime is shorter with larger dipole moment.  
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Figure 4.6   Plot of the radiative lifetime values versus the vibrational levels of the 

+
u

1ΣA  +
g

1Σ3 , +
g

1Σ4   and  +
g

1Σ5  states of Na2.  

 

 

 

 

 



 

 

85 

 

For the higher vibrational levels, 𝑣 > 30 the decay to the continuum of the 

ground state becomes more significant [4, 5]. We have compared our results with the 

experimental data of Baumgartner et al. [48] for various rovibrational levels of Na2.  

For the +
g

1Σ3  state, there are two allowed decay transitions to the lower electronic 

states; (i) +
g

1Σ3 → u
1ΠB  and (ii) +

g
1Σ3 → A +

u
1Σ . For the calculations of the +

g
1Σ3  state 

lifetimes and transition dipole moment matrix elements; potential energy curves of the  

+
g

1Σ3  [22], A +
u

1Σ  [33] and u
1ΠB  [34, 35] states were used. The inner well of the u

1ΠB  

state is from Ref.[34] and the potential barrier is from Ref.[35]. The lifetime results for 

this state are presented in Figure 4.6 up to 𝑣 = 145 rovibrational levels for the rotational 

quantum number J=1. For the inner well, where the vibrational number is smaller than 

20, lifetimes decrease with increasing 𝑣. Lifetimes and transition dipole moments show 

rapid changes around shoulders and second minima of the potentials. This can be 

observed in Figure 4.6. At 𝑣 = 23, lifetimes show a  increase with increasing 𝑣. 

For the +
g

1Σ4  state, there are two allowed fluorescence decay channels to lower 

states; (i) +
g

1Σ4 → u
1ΠB  and (ii) +

g
1Σ4 → A

+
u

1Σ  transitions. The potential energy curve for 

the +
g

1Σ4  state is from Ref.[23] and for the u
1ΠB  state from Refs. [34, 35]. We have 

calculated the individual rovibrational level decay rates and added them up for the total 

decay rate. The lifetime results for this state are presented in Figure 4.6 up to 𝑣 = 185 for 

the rotational quantum number J =1. Transition dipole moment matrix elements of the 

rovibrational transitions from the +
g

1Σ4  state to the +
u

1ΣA  state are presented in Figure 

4.9. The lifetimes increase with increasing 𝑣 for the inner well up to 𝑣 = 52 and then 
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starts decreasing past the shoulder for 𝑣 > 52, which is consistent with the ab initio 

transition dipole moment function in Figure 4.4 (a). 

For the +
g

1Σ5  state, there are three allowed electronic transitions to the lower 

electronic states; (i) +
g

1Σ5 → u
1ΠB , (ii) +

g
1Σ5 → +

u
1ΣA , and (iii) +

g
1Σ5 → +

u
1Σ2 . The 

potential energy curve of the +
g

1Σ5  state is taken from Ref.[24] and the u
1ΠB  state is from 

Ref.[34, 35]. We have calculated the individual rovibrational level decay rates and added 

them up for the total decay rate. The results are presented in Figure 4.6 up to 𝑣 = 140 for 

the rotational quantum number J=1. Transition dipole moment matrix elements of the 

rovibrational transitions from +
g

1Σ5  to +
u

1ΣA  are also presented in Figure 4.10 (d). 

Comparing the total lifetime plot in Figure 4.6 to the ab initio curve for +
g

1Σ5  state in 

Figure 4.3(b), one can see the inverse correlation. Lifetimes are the smallest at 𝑣′ = 62, 

while the ab initio dipole moment function reaches its maximum value. Lifetimes are 

larger for 𝑣′ > 62 where the dipole moments are smaller as shown in Figure 4.4 (a). 

Transition dipole moment matrix elements of rovibrational transitions from +
g

1Σ6  to 

+
u

1ΣA  are also presented in Figure 4.11. 

. For the +
g

1Σ6  state There are three allowed transitions to the lower lying 

electronic states ; (i) +
g

1Σ6 → u
1ΠB , (ii) +

g
1Σ6 → +

u
1ΣA , and (iii) +

g
1Σ6 → +

u
1Σ2 . We have 

calculated the individual rovibrational level decay rates and added them up for the total 

decay rate, and results are presented in  Figure 4.12  up to 𝑣′ = 304. The +
g

1Σ6  state has 

one inner well [25], one outer well [26] and a potential barrier in between [10]. That 



 

 

87 

 

makes it more difficult to handle this state computationally than the other electronic 

states. The inner well is labeled in red and the outer well in black in Figure 4.12. Figure 

4.13 shows representative wavefunctions for vibrational levels belonging to the inner and 

outer wells of the +
g

1Σ6  electronic state. The ab initio transition dipole moment function 

for the +
g

1Σ6 → +
u

1ΣA  transition and the potential energy functions of the +
g

1Σ6  and +
u

1ΣA  

states are presented in Figure 4.14. The lifetimes for the inner well and the outer well 

vibrational levels show quite different behaviors. Levels for 𝑣 < 40 all belong to the 

inner well. At 𝑣 = 40, some vibrational levels belong to the inner well and others belong 

to the outer well. Lifetimes of the vibrational levels belonging to the outer well are 

distinctly longer than those of levels belonging to the inner well. Lifetimes increase with 

increasing 𝑣 for the inner well levels and a decrease with increasing 𝑣 for the outer well 

levels. 
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Figure 4.7   Mapping of the transition dipole moment matrix elements as a function of  

rovibrational levels for transitions between the electronic states  (a) +
u

1ΣA   and  +
g

1ΣX  of 

Na2. 
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Figure 4.8    Mapping of the transition dipole moment matrix elements as a function of 

rovibrational levels for transitions between the electronic states +
g

1Σ3   and +
u

1ΣA  of Na2.   
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Figure 4.9    Mapping of the transition dipole moment matrix elements as a function of  

rovibrational levels for transitions between the electronic states +
g

1Σ4   and +
u

1ΣA  of Na2.   
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Figure 4.10    Mapping of the transition dipole moment matrix elements as a function of  

rovibrational levels for transitions between the electronic states +
g

1Σ5  and +
u

1ΣA  of Na2. 
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Figure 4.11   Mapping of the transition dipole moment matrix elements as a function of 

rovibrational levels for transitions between the electronic states +
g

1Σ6   and +
u

1ΣA  of Na2. 
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Figure 4.12  Radiative lifetimes of the vibrational levels of the +
g

1Σ6  state of Na2. 
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Figure 4.13   Vibrational wavefunctions for representative inner-well (𝑣′ = 170), outer-

well (𝑣′ = 171) and above the barrier (𝑣′ = 174) vibrational levels of the +
g

1Σ6   state of 

𝑁𝑎2. 
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Figure 4.14    Potential curves for  +
g

1Σ6 , +
u

1ΣA  states of Na2 and the ab-initio transition 

dipole moment curve between the states. 
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Table 4.2  Total lifetimes for the Na2 molecular states (lifetimes in nanoseconds). 𝑣 and  

J are vibrational and rotational quantum numbers. A, 3 ,4, 5, 6 are 
+
u

1ΣA , 
+
g

1Σ3 , 
+
g

1Σ4 , 

+
g

1Σ5  and 
+
g

1Σ6  states respectively. 

 

Total Lifetimes for the Na2 Molecular States 

 (lifetimes in nanoseconds) 
 

𝑣 A(J=1) A(J=20) A(J=40) A(J=60) 3(J=1) 4(J=1) 5(J=1) 6(J=1) 

0 12.2023 12.2260 12.2949 12.4078 38.9804 12.7221 37.0186 141.9680 

1 12.2274 12.2509 12.3190 12.4306 37.0126 12.9307 37.6302 137.5085 

2 12.2505 12.2737 12.3410 12.4510 35.1479 13.1572 38.2283 134.5513 

3 12.2723 12.2952 12.3616 12.4700 33.3690 13.3882 38.7832 132.5992 

4 12.2927 12.3153 12.3808 12.4879 31.6653 13.6349 39.3209 131.4270 

5 12.3121 12.3345 12.3992 12.5050 30.1563 13.8949 39.8850 130.9479 

6 12.3307 12.3528 12.4170 12.5218 28.8431 14.1596 40.4451 130.9823 

7 12.3488 12.3707 12.4343 12.5380 27.6557 14.4219 41.0045 131.4060 

8 12.3660 12.3877 12.4506 12.5527 26.5681 14.6779 41.5669 132.1823 

9 12.3819 12.4033 12.4653 12.5660 25.6053 14.9309 42.1700 133.2764 

10 12.3966 12.4177 12.4788 12.5781 24.7796 15.1818 42.8189 134.5945 

11 12.4104 12.4312 12.4913 12.5889 24.0333 15.4326 43.5071 136.0820 

12 12.4232 12.4436 12.5027 12.5986 23.3701 15.6835 44.2431 137.6939 

13 12.4349 12.4550 12.5130 12.6072 22.8165 15.9361 45.0349 139.3734 

14 12.4455 12.4652 12.5223 12.6148 22.3519 16.1902 45.9163 141.1399 

15 12.4550 12.4744 12.5306 12.6215 21.9870 16.4447 46.9386 142.9330 

16 12.4637 12.4828 12.5380 12.6273 21.6848 16.7064 48.1168 144.6782 

17 12.4715 12.4903 12.5445 12.6320 21.4447 17.0041 49.4067 146.3514 

18 12.4785 12.4969 12.5499 12.6350 21.2898 17.3015 50.7630 147.9579 

19 12.4842 12.5021 12.5535 12.6358 21.2295 17.7929 52.2207 149.4682 

20 12.4877 12.5050 12.5548 12.6346 21.3179 18.1514 53.7673 150.8523 

21 12.4891 12.5059 12.5546 12.6342 21.6192 18.8759 55.2861 152.0717 

22 12.4899 12.5067 12.5557 12.6372 22.6605 19.2698 56.8502 153.1401 

23 12.4930 12.5102 12.5604 12.6417 28.7041 19.6635 58.3674 154.0026 

24 12.4992 12.5164 12.5653 12.6408 28.7751 19.9456 59.6806 154.6580 

25 12.5034 12.5194 12.5641 12.6347 30.3007 20.3446 60.7370 155.1943 

26 12.5010 12.5159 12.5590 12.6330 30.1681 20.8382 61.4559 156.0310 

27 12.4973 12.5126 12.5581 12.6336 30.3246 21.2409 61.6364 156.3267         
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𝑣 A(J=1) A(J=20) A(J=40) A(J=60) 3(J=1) 4(J=1) 5(J=1) 6(J=1) 

28 12.4988 12.5143 12.5596 12.6449 30.5072 21.5913 61.1591 156.6336 

29 12.4979 12.5125 12.5577 12.6520 30.8628 21.9668 59.9722 156.5051 

30 12.4992 12.5138 12.5738 12.7820 31.2779 22.6606 58.1064 157.3199 

31 12.4994 12.5196 12.6001 12.8694 31.5118 23.0657 55.7952 157.5757 

32 12.5585 12.5753 12.7577 13.4948 31.8238 23.4875 53.2600 158.3060 

33 12.5852 12.6443 12.8848 13.8639 32.0748 23.9653 50.7423 158.3899 

34 12.9173 12.9297 13.6251 15.5725 32.3705 24.6175 48.4151 159.5128 

35 13.0828 13.3063 13.9983 16.3736 32.6975 25.1171 46.3375 159.6054 

36 14.2006 14.1558 15.8930 18.0911 32.9488 25.9061 44.4942 159.2477 

37 14.7130 15.2488 16.4424 18.3668 33.2167 26.8213 42.7847 160.1761 

38 16.6419 16.5057 18.0401 18.3317 33.5044 27.5540 41.2142 161.0946 

39 17.2619 17.6379 18.0819 18.4616 33.8013 28.8284 39.7684 161.0299 

40 17.8887 17.8788 18.0482 19.7109 34.0825 29.7598 38.4219 162.4380 

41 17.8069 17.8106 18.1243 20.7825 34.3868 31.0437 37.2809 7260.7826 

42 18.1078 18.0353 19.8880 21.1131 34.6629 32.4173 36.2845 6635.3561 

43 18.6505 19.2118 20.2689 21.0024 34.9238 33.8914 35.3047 6162.7994 

44 20.0181 19.8947 20.6069 21.6935 35.2220 35.9309 34.3057 161.8641 

45 20.3973 20.3887 20.4666 23.1983 35.5318 38.0687 33.3102 5759.0497 

46 20.3003 20.2645 21.7800 23.3614 35.8151 41.0067 32.2602 5411.2383 

47 20.5955 21.0793 22.3115 23.3288 36.0633 44.6739 31.2776 5112.7693 

48 21.7927 21.6421 22.6799 23.9779 36.3238 49.7003 30.3673 4878.3579 

49 22.4416 22.3967 22.5170 25.5903 36.6072 57.7253 26.0374 4695.9503 

50 22.2939 22.2146 23.9847 25.3379 36.9192 73.3256 26.6488 161.9446 

51 22.7466 23.2645 24.5689 26.1452 37.2430 128.6917 26.0379 4747.4174 

52 23.7526 23.6551 24.4977 26.7321 37.5478 236.1928 25.8492 4767.2097 

53 24.1521 23.9954 24.6140 27.2465 37.8450 180.9730 28.4406 4859.4821 

54 24.1259 23.8966 26.2404 27.0956 38.0982 154.4352 25.7555 4772.3928 

55 25.2851 25.7179 26.3960 29.5914 38.3302 145.9349 25.6621 4490.7699 

56 25.7484 25.7422 26.5855 29.4538 38.6209 139.2378 27.4228 4241.6564 

57 25.5769 25.6222 27.5276 29.8101 38.9406 133.7432 25.5330 161.9578 

58 26.1620 25.8334 28.0267 30.2441 39.2725 129.4439 25.3573 4171.8884 

59 27.7152 27.5470 27.7849 31.1019 39.6082 124.7423 25.1081 4067.4188 

60 27.4169 27.1914 29.2582 30.7967 39.9585 122.0096 26.3107 3877.0689 

61     40.2685 118.9945 24.8135 3694.3537 

62     40.5515 116.7988 24.5191 161.2291 

63     40.8267 114.5727 25.0395 3599.1809 

64     41.0757 112.5176 24.4053 3496.1963 

65     41.3214 110.9407 24.1981 3344.7282 

66     41.6280 109.3290 24.8860 3225.9623 
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𝑣 A(J=1) A(J=20) A(J=40) A(J=60) 3(J=1) 4(J=1) 5(J=1) 6(J=1) 

67     41.9275 107.9013 25.3093 3121.2071 

68     42.3113 106.5582 25.4509 161.5104 

69     42.7607 105.4788 25.9315 3040.0209 

70     43.1960 104.3608 26.4550 2922.1814 

71     43.9787 103.5007 27.0151 2818.0071 

72     44.6379 102.5429 27.6826 2767.9684 

73     45.5074 101.7039 28.3194 2669.5704 

74     47.1095 100.9643 29.0471 0.0000 

75     47.8700 100.2059 30.3417 2592.7516 

76     49.8506 99.6659 32.1699 2526.9592 

77     51.2746 99.0588 33.5293 2454.1201 

78     52.2982 98.6004 34.2814 2406.4322 

79     53.6683 98.3437 35.4155 2334.7188 

80     54.0830 98.0148 36.3385 161.3971 

81     54.4540 97.8684 36.5941 2268.7331 

82     54.9123 98.1194 37.3904 2225.0403 

83     55.3750 97.9535 38.1032 2190.5556 

84     56.8847 97.9892 38.9970 2121.4691 

85     57.5804 98.0549 41.1742 163.0783 

86     59.1594 97.8179 42.1196 2063.1686 

87     59.7740 97.7127 42.8777 2051.3462 

88     60.1900 97.4795 43.6314 2003.3197 

89     60.5897 97.3104 44.2439 1952.4783 

90     60.9719 97.1928 46.0870 1914.3877 

91     62.6741 97.0928 46.7626 162.5436 

92     63.5131 96.9369 48.7831 1883.4029 

93     64.4841 96.8254 49.1558 1861.0980 

94     64.8323 96.7187 50.6005 1824.4752 

95     65.1131 96.5677 51.1422 1781.4633 

96     66.4250 96.4756 53.7534 165.6643 

97     67.0275 96.4130 54.3983 1752.2877 

98     68.7154 96.3397 55.9776 1744.3612 

99     69.0142 96.2571 56.3425 1714.0817 

100     69.3402 96.2050 59.2267 1680.4624 

101     70.2684 96.1946 59.7303 1653.4365 

102     71.1547 96.1858 61.7595 165.2423 

103     72.8354 96.1905 62.6249 1632.1230 

104     73.1931 96.2312 64.2474 1624.8237 

105     73.5737 96.2547 66.3884 1600.8139 
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𝑣 A(J=1) A(J=20) A(J=40) A(J=60) 3(J=1) 4(J=1) 5(J=1) 6(J=1) 

106     74.0057 96.3230 67.0762 1569.3728 

107     76.2345 96.4213 69.2621 168.9428 

108     76.7400 96.4608 69.9889 1545.8752 

109     77.3034 96.5675 72.8938 1535.4474 

110     77.7430 96.7376 74.3400 1521.8264 

111     78.9703 96.8582 74.6408 1504.2229 

112     80.4211 96.9765 78.0739 169.2409 

113     81.2424 97.1134 78.9594 1475.3552 

114     81.4926 97.3043 80.3893 1448.4107 

115     82.0841 97.4750 83.4157 1439.0054 

116     84.1760 97.6182 84.1463 1419.1657 

117     85.0127 97.8472 86.6125 1396.7509 

118     85.3703 98.0395 89.1789 172.7025 

119     85.6987 98.1934 89.6499 1361.1403 

120     87.6568 98.3257 92.5462 1320.5015 

121     88.7621 98.5862 95.5177 1288.1238 

122     89.3178 98.7561 96.3736 1256.5119 

123     89.6052 98.8658 98.9504 174.0626 

124     90.5212 99.1889 102.6480 1208.2119 

125     92.6360 99.3382 104.2778 1161.6079 

126     93.0211 99.5538 106.0474 1108.3385 

127     93.1938 99.7772 110.6180 1049.9152 

128     93.3262 100.1313 113.3489 176.9896 

129     95.1966 100.3647 114.7661 1022.7096 

130     96.2103 100.5190 118.9443 960.8650 

131     96.5270 101.0390 123.2902 925.4773 

132     96.5034 101.2970 126.0827 877.5573 

133     96.8426 101.5051 128.8396 826.6879 

134     96.9037 101.7302 134.7724 179.2795 

135     98.3580 102.3693 140.5733 800.9176 

136     99.7622 102.6021 145.8405 759.8399 

137     100.3121 102.8460 153.7619 730.5079 

138     101.1338 103.5019 168.2069 702.3883 

139     102.1386 103.7939 189.3523 182.0759 

140     103.2150 103.9844 203.4716 675.6215 

141     104.3537 104.1809 246.2637 653.5861 

142     105.7413 104.9613 377.3992 651.4660 

143     107.3225 105.0775 818.2497 633.2908 

144     109.2583 105.6843 918.0842 185.1047 
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𝑣 A(J=1) A(J=20) A(J=40) A(J=60) 3(J=1) 4(J=1) 5(J=1) 6(J=1) 

145      105.9816 993.0787 639.3041 

146      106.1682 1018.5558 635.1595 

147      106.4737 957.3343 629.7286 

148      107.0788 841.6993 644.9417 

149      107.1753 713.6792 634.9915 

150      107.1476 595.7783 189.1442 

151      107.9592 495.4425 642.6938 

152      108.0427 418.0219 636.4711 

153      108.3700 448.9550 628.4677 

154      108.3151 1060.0080 626.3436 

155      108.3302 1181.8450 194.1684 

156      107.8977 1916.7279 627.6022 

157      109.1413 2779.7196 622.9271 

158      108.6370 3376.6144 626.4641 

159      108.5389 3923.5171 627.6786 

160      107.9765 4484.6672 202.4606 

161      107.4578 4884.6860 622.1981 

162      106.4307 8310.4190 638.4091 

163      107.0307 6107.7220 630.2019 

164      105.3656 4373.9803 636.6879 

165      104.0846 3106.9120 217.1060 

166      101.9167  643.0889 

167      99.6840  641.0742 

168      96.5995  662.3583 

169      95.0901  666.0233 

170      90.6320  253.6792 

171      85.4822  666.7991 

172      79.3168  686.6076 

173      72.2726  700.7321 

174      63.9597  486.0026 

175      55.7693  472.7036 

176      48.6481  630.4017 

177      41.4608  615.4835 

178      36.7100  550.3700 

179      35.5109  544.5124 

180      34.3229  567.1349 

181      33.6724  573.2468 

182      33.1814  581.4114 

183      32.7769  599.7276 
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𝑣 A(J=1) A(J=20) A(J=40) A(J=60) 3(J=1) 4(J=1) 5(J=1) 6(J=1) 

184      32.4316  600.3229 

185      32.0975  605.1751 

186      31.8107  630.8502 

187      31.5992  643.1963 

188      31.4526  649.2626 

189      31.3386  665.4061 

190      31.2366  669.9424 

191      31.1400  673.3162 

192      31.0526  684.3415 

193      30.9858  685.0229 

194      30.9564  689.5883 

195      30.9997  701.5421 

196      31.1576  697.2173 

197      31.4688  693.9159 

198      31.9297  703.0818 

199      32.4401  702.4195 

200      32.8199  700.6993 

201      19512277.6147  707.3507 

202      22071533.8417  703.8431 

203      25045636.1969  699.7528 

204      28515162.6589  705.5896 

205      32583887.1288  703.9984 

206      37383709.6257  700.2065 

207      43081629.2878  704.1886 

208      49890990.8918  701.6495 

209      58117909.5590  696.0326 

210      68025830.0954  698.2372 

211      80183774.0743  698.6885 

212      95171084.2190  694.0119 

213      113820606.7591  691.0860 

214      137593145.6282  690.6172 

215      167759794.7555  689.1537 

216      206744132.5052  684.4785 

217      257550745.2188  682.8360 

218      326734011.3514  683.1668 

219      416858651.7035  676.4237 

220        671.8490 

221        674.1798 

222        668.8067 
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𝑣 A(J=1) A(J=20) A(J=40) A(J=60) 3(J=1) 4(J=1) 5(J=1) 6(J=1) 

223        654.1744 

224        646.8118 

225        630.7142 

226        597.6914 

227        531.5264 

228        403.9381 

229        300.6004 

230        373.3167 

231        501.2833 

232        544.9681 

233        513.9969 

234        405.9128 

235        424.2793 

236        535.2372 

237        555.6774 

238        476.0284 

239        441.3174 

240        534.5140 

241        541.9880 

242        447.4208 

243        458.8987 

244        554.5716 

245        510.0629 

246        455.8248 

247        550.6405 

248        531.4995 

249        462.9313 

250        543.0459 

251        514.6384 

252        457.6617 

253        549.5860 

254        496.3859 

255        499.2884 

256        556.4033 

257        479.0301 

258        544.2793 

259        505.8743 

260        493.7176 

261        536.0960 
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𝑣 A(J=1) A(J=20) A(J=40) A(J=60) 3(J=1) 4(J=1) 5(J=1) 6(J=1) 

262        473.1899 

263        543.0536 

264        479.2211 

265        538.4641 

266        498.5447 

267        530.6479 

268        502.7340 

269        515.5893 

270        493.6890 

271        503.7963 

272        493.5821 

273        513.6847 

274        496.0942 

275        529.8437 

276        490.4047 

277        531.7077 

278        475.7307 

279        512.2382 

280        477.7299 

281        492.0497 

282        514.0090 

283        485.7727 

284        530.3177 

285        489.9721 

286        487.0482 

287        502.4532 

288        462.9736 

289        492.8883 

290        508.5154 

291        490.6445 

292        512.3371 

293        510.6314 

294        472.0371 

295        474.0782 

296        494.0025 

297        494.3127 

298        507.2134 

299        546.1581 

300        546.5790 
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𝑣 A(J=1) A(J=20) A(J=40) A(J=60) 3(J=1) 4(J=1) 5(J=1) 6(J=1) 

301        514.1608 

302        492.8729 

303        504.8901 

304        553.1082 

 

 

4.6     Suggested Excitation Schemes 

Double [45], triple [49] and quadruple [39] resonance excitation schemes can be 

used to measure the absolute magnitude of the transition dipole moments matrix elements 

by using the Autler-Townes effect. As demonstrated in reference [40] these 

measurements can be combined with calibrated intensity measurements for weaker 

transitions for broader internuclear range mapping of the transition dipole moment 

functions. In this section, we suggest an excitation scheme for Autler-Townes splitting 

based measurement of the absolute transition dipole moment function. Published in 2006 

by E.H. Ahmed et al. [40] presented a new approach for measuring the transition dipole 

moment of molecular transitions by using the Autler-Townes splitting. To simulate these 

experiments one needs to know the lifetimes of the excited molecular states. The ion-pair 

states in Na2 have very complicated  vs. R behavior. Here we provide the preliminary 

calculations for mapping this behavior; trying to find the best candidates to use for the 

coupling laser transition, L4, shown in Figure 4.15 for this purpose. 
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Figure 4.15   All-optical quadruple resonance technique sample excitation scheme. The 

goal is to find a set of transitions, which is in the range of available lasers, and also 

satisfies the conditions of higher FCF and a higher 𝜇 matrix element. Excitation schemes 

used for the all-optical quadruple resonance experiment [39]. L4 is the coupling laser 

which couples levels |4> and |5> to the system. The Autler-Townes splitting caused by L4 

is observed in the fluorescence spectra by scanning the frequency of the probe laser L3, 

while all other lasers are kept on resonance. 
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4.7     Conclusions 

This work presents calculations of the transition their matrix elements between 

the +
u

1ΣA  state and the ion-pair states  +
g

1ΣX , +
g

1Σ3 , +
g

1Σ4 , +
g

1Σ5 , +
g

1Σ6  of the Na2 

molecule. In addition, lifetimes of these states have been calculated (Table 4.2). 

Transition dipole moment matrix elements maps for +
u

1ΣA ← +
g

1ΣX  and (3-6) +

g

1Σ ← +
u

1ΣA  

transitions are as shown in Figure 4.7, Figure 4.8, Figure 4.9, Figure 4.10  and Figure 

4.11, respectively. The lifetime plots for +
u

1ΣA  and (3-6) +
g

1Σ  states are as depicted in 

Figure 4.6 Both inner and outer wells of +
g

1Σ6  electronic state are studied 

computationally and the wavefunctions are plotted. We have determined the inner-well 

behavior of the transition dipole moment matrix elements by carrying out OODR and 

Autler-Townes experiments for (4-5) +
g

1Σ ← +
u

1ΣA  transitions and the results are listed in 

Chapter 3. An Optical-Optical Double Resonance excitation scheme is not enough to 

reach transitions of the outer well. Hence, one needs to carry out a quadruple resonance 

scheme to reach those levels. The calculated lifetimes and transition dipole moment 

matrix element plots in this work will be helpful in the design of double or quadruple 

resonance based Autler-Townes experiment.  A possible quadruple resonance scheme to 

study the outer well behavior of TDMs is shown in Figure 4.15. The calculated lifetimes 

are listed in Table 4.2. Even if the transition dipole moment matrix elements do not 

facilitate Autler-Townes probing of the transition dipole moments for transitions from the 

outer well, the energy levels could be observed using quadruple resonance excitations. 
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CHAPTER 5  

LIFETIME AND TRANSITION DIPOLE MOMENT 

CALCULATIONS OF LITHIUM DIMER ION-PAIR 

ELECTRONIC STATES 

 

5.1 Introduction 

Being the smallest homonuclear diatomic molecule after H2, there are many 

experimental and theoretical studies of the lithium dimer since it is a relatively simpler 

system compared to other alkali dimer molecules. In this work we focused on the 7Li2 

molecule. Figure 5.1 shows the potential energy curves of the lithium dimer molecular 

electronic states. As can be seen from the figure, these states exhibit double wells and 

shoulders due to the interaction with the Li+ Li- ion-pair configuration. The double well 

behavior is predominantly observed for higher lying electronic states states of  g

1  

symmetry at larger internuclear distance. The ion-pair character of these  potential energy 

curves makes their lifetimes also interesting because of  the unusual behavior of their 

transition dipole moments which exhibit rapid changes in regions of internuclear distance 

corresponding to potential energy curve shoulders and double wells. The changing 

wavefunction amplitudes and wavelength around the shelf regions as seen  Figure 5.2 in 

turn cause the overlap integrals to differ significantly compared to those involving lower 

lying excited state vibrational levels.  



112 

 

 

 

2 4 6 8 10 12 14 16 182 4 6 8 10 12 14 16 18

38503.14

A
to

m
ic

 E
ne

rg
y 

(c
m

-1
)

30925.52

29807.24

27206.07

30000

48000

40000

20000

14903.62

2s+3p

2s+2p

4
1


+

g

 

5
1


+

g

6
1


+

g

X
1


+

g

 

  
  

 M
ol

ec
ul

ar
 

E
ne

rg
y 

(c
m

-1
)

Internuclear Distance R (Å)

1/R

A
1


+

u

3
1


+

g

2
1


+

u

B
1


u

2s+2s

Li++ Li
-

Li2

2s+3s

 

0

08516.78

2p+2p

 

Figure 5.1    Potential energy curves of the lithium dimer 7Li2, including some 

ion-pair electronic states. The red dashed curve is the ion-pair curve. 
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Figure 5.2  7Li2 5
 g

1 (𝑣 = 25, J=1) vibrational wavefunction for a level near the 

shelf region. 

 

Besides the multiple wells and shoulders, the lithium dimer is particularly exciting 

for analysis because in contrast to the sodium dimer, there are bound to continuum 

transitions for higher lying states. In this work, we present a computational study of total 

lifetimes (including bound-bound and bound-continuum transitions) and transition dipole 

moment matrix elements for the lithium dimer ion-pair states. We have calculated the 
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total lifetimes (Table 5.1), τ, of these ion-pair states and we compare them with 

experimental results from literature when available [1-6].  

 

5.2 Potential Energy Curves (PECs) and Transition Dipole Moment    

Functions (TDM) for Li2 Ion-Pair States 

For the Li2 ground state, we used the X1g
+, potential energy curve from Ref.[7] 

and the  A1
u

+ potential from Ref.[4]. The Li2 E(3)  g

1  ion-pair state was first studied by 

Bernheim [8-10]. Trying to construct the potential energy curve using the RKR method 

failed around the shoulder of the E(3)  g

1
 state. Since the RKR method cannot be applied 

to the potentials with double minima or shoulders. Because of this, the inverted 

perturbation technique (IPA) was used by Bernheim to construct the potential energy 

curve. In the IPA method, the effect of the nonadiabatic contributions to the potential was 

not precisely known and suggested as a  future work in Bernheim’s paper [10]. Later,  W. 

Jastrzebski et al. [3] reanalyzed the E(3)  g

1  shoulder region with an improved IPA 

method which removed the unphysical oscillations in the shoulder region. W. Jastrzebski 

et al. used fewer parameters around the shelf region and used a cubic spline method 

which they argue is  more flexible than the Legendre polynomial method used in 

Ref.[10]. Jastrzebski’s study of the E(3)  g

1  PEC [3] concludes that the nonadiabatic 

contributions to the E(3)  g

1   state are as small as 0.1cm-1. We used W. Jastrzebski’s 

 E(3)
1
g

+ PEC in our calculations since it was smoother than the PEC given in Ref. [10] 

and extended to longer internuclear distance.  
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 The 7Li2 F(4)
1
g

+ state  has a shelf region due to the interaction with the ion-pair 

curve. We used the RKR curve from Ref. [11] for our calculations. The F(4)
1
g

+ state was 

first studied by Bernheim [8] by OODR technique and vibrational levels up to 𝑣 = 30 

were detected. Antonova et al. [11] used the same OODR spectroscopy method and 

observed levels up to (𝑣 = 33). Then these authors used the more sensitive ionization 

technique in an attempt to observe higher levels. However none were observed. This was 

due to the fact that the  F(4)
1
g

+ state predissociated via the  E(3)
1
g

+ continuum to the 

2s+3s atomic limit which is about 2600cm-1 below the 2p+2p atomic limit [8, 11]. 

The Li2 51g
+ and 61

g
+ states were both first studied by Bernheim et al. 

experimentally through OODR spectroscopy as referred to in Refs. [2, 12]. Bernheim's 

work covers the low vibrational values (𝑣 < 25) for these states and does not include the 

shelf and second minimum regions. Song et al. [12] carried out an ab initio calculation 

for both states which cover the full range of internuclear distance. According to Song et 

al., the 7Li2 51g
+ and  61

g
+ states approach the 2p+2p and 2s+3p atomic limits, 

respectively. We used Sylvie Magnier’s ab initio curves for the 51g
+ and  61

g
+  states 

because Magnier’s curves [13] are smoother and are defined better for outer wells close 

to the dissociation limits. 

Both BCONT and LEVEL programs require the input of transition dipole moment 

functions for calculation of lifetimes. The transition dipole moment functions [13] used in 

LEVEL 8.0 and BCONT programs to calculate the lifetimes are plotted in Figure 5.3. 
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Figure 5.3    The transition dipole moment functions, D(R), of 7Li2 ion-pair transitions 

[13]. 

5.3 Results and Discussion 

As indicated in earlier chapters, one common way of obtaining molecular transition 

dipole moment matrix elements, Franck-Condon factors, and Einstein coefficients is by 

solving the radial Schrodinger equation numerically. LEVEL 8.0, a computational tool 

developed by Robert Le Roy [5], is used also here to calculate the bound-bound Einstein 

coefficients. Determining all Einstein coefficients leads to the knowledge of lifetimes. 

The problem with lithium dimer electronic states is that the electronic transitions between 
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certain states include significant bound-continuum contributions. LEVEL 8.0 can only 

handle bound-bound transitions. Bound-continuum transitions calculated by LEVEL 8.0 

results in unphysical values for the transition probabilities. Therefore,  the decay rates for 

bound-to-continuum transitions are calculated using the BCONT program [14]. The 

transitions corresponding to inner wells and lower lying vibrational levels do not have 

significant bound-continuum contributions so these transitions are calculated by LEVEL 

8.0. For the bound-continuum high vibrational level transitions, we have combined the 

Einstein coefficients calculated by LEVEL 8.0 and BCONT to obtain an accurate 

physical lifetime behavior.  

 As can be seen in Figure 5.1, the A
1
u

+→ X1g
+ transitions are bound-bound 

transitions only up to 𝑣 = 25 of the A
1
u

+ state after which the bound-continuum 

contribution becomes significant. Figure 5.4 shows that the Einstein coefficients 

contribution calculated by BCONT  after 𝑣 = 25 becomes significant and the brings the 

total lifetime curve down. The total lifetime values of A
1
u

+ after 𝑣 = 25 decrease slowly 

with increasing 𝑣. 
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Figure 5.4  The A
1
u

+ state lifetimes calculated with and without the bound- free 

contribution obtained using the BCONT program for 7Li2. 

 

The E(3)1g
+ state has a second shallow well between 5.39-6.16Å. The effect of 

the Coulombic 1/R interaction on the potential is dominant in this region. The lifetime 

values experience a step increase at 𝑣′ = 13 (Figure 5.5). The rotational constants right 

drops %30 as 𝑣′ increases beyond 13  Figure 5.5 shows that 3
1
g

+→ A1
u

+ transitions 

have bound-to-continuum components for transitions corresponding to larger internuclear 

distances. For the vibrational levels 𝑣′ > 37 of the 3
1
g

+, the bound-unbound Einstein 

coefficients become significant and as shown in Figure 5.5. The lifetime values 



119 

 

calculated with inclusion of BCONT contributions are lower than those calculated with 

LEVEL neglecting the bound-continuum contributions.  
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Figure 5.5    The 7Li2 E(3)
1
g

+ state lifetimes calculated with and without bound-

free contributions obtained using the BCONT program. 

 

The lifetimes of F(4)
1
g

+ state show a step increase around vibrational number 

𝑣′ = 39. This is due to large shelf region of the F(4)
1
g

+ state. Here the overlap integral 

of upper and lower states changes suddenly as 𝑣′ changes resulting in a jump in the 

lifetime value. As it can be seen from Figure 5.6, the lifetime contribution due to bound-

unbound transitions for the inner curve 𝑣′ < 39 is not significant. For the outer well of 
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F(4)
1
g

+ state, on the other hand, the gap between the total lifetimes (green curve) and the  

lifetimes calculated without including bound-continuum transitions (red curve) increases 

due to the increasing contribution of bound-to-continuum transitions to the total lifetime. 
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Figure 5.6  The 7Li2 F(4)
1
g

+ state lifetimes calculated with and without bound- 

free contributions obtained using the BCONT program. 
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The  51g
+ state has a very shallow second well around vibrational level 𝑣′ = 12. 

In Figure 5.7,  it can be seen that the total lifetime is dominated by bound-bound 

transitions up to 𝑣′ = 12. For 12 < 𝑣′ < 30, the bound-unbound contributions from the 

BCONT calculation are significant and shift the total lifetime curve down. For 𝑣′ > 30, 

bound-unbound transitions again become insignificant and the two calculations agree. 
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Figure 5.7   The 7Li2  51g
+ state lifetimes calculated with and without bound- free 

contributions obtained using the BCONT program. 
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The theoretical 61g
+ potential energy curve we use was calculated by Sylvie 

Magnier [13] and it has three potential minima which is quite unusual. The last minimum 

of the theoretical 61g
+ potential occurs around 13Å. The BCONT program currently 

cannot handle a potential curve with three minima and we are currently working with 

Prof. Le Roy to address this issue.  

The calculated total lifetime values for the ion-pair states of lithium dimer via 

LEVEL and BCONT programs are listed on Table 5.1. The transitions corresponding to 

the lower vibrational numbers are calculated by LEVEL whereas the higher vibrational 

numbers are calculated by BCONT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 

 

Table 5.1  Total lifetimes for the 7Li2  molecular states (lifetimes in nanoseconds). 𝑣 is 

the vibrational quantum number. The calculations are carried out for the rotational 

number J=1. 

Total Lifetimes for the Li2 Molecular States 

 (lifetimes in nanoseconds) 
 

𝑣 A1u
+ E(3)

1
g

+ F(4)
1
g

+
 51g

+
 6

1
g

+
 

0 17.9117 39.2792 12.3350 34.4581 109.9584 

1 18.0299 34.2441 13.1211 36.8950 98.0293 

2 18.1412 29.5096 13.9316 39.3055 90.3364 

3 18.2370 25.3688 14.7180 41.8644 85.1926 

4 18.3101 22.1379 15.5086 44.4090 83.3262 

5 18.3546 19.7584 16.2800 46.8868 84.4236 

6 18.3657 18.1013 17.0417 49.4338 87.5683 

7 18.3643 16.9787 17.7812 52.0977 91.1569 

8 18.3749 16.2058 18.5339 55.0724 93.1837 

9 18.4102 15.6640 19.3358 58.8795 91.6531 

10 18.4793 15.2681 20.1741 65.8243 88.2432 

11 18.5693 15.0038 21.4991 91.6678 85.7916 

12 18.6746 14.9118 22.3622 78.0587 84.7568 

13 18.7818 15.2842 23.7037 77.4407 86.2215 

14 18.8902 19.9175 24.2088 77.4810 86.0888 

15 19.0016 20.0750 24.6166 89.0893 91.0430 

16 19.1148 20.8461 25.1093 84.8032 100.0754 

17 19.2267 21.2008 25.5933 73.9164 99.7282 

18 19.3342 21.6787 25.7698 67.3006 97.7449 

19 19.4369 22.1241 25.9078 59.6389 97.5472 

20 19.5384 22.5630 26.3690 52.6079 -- 

21 19.6592 22.9782 26.3628 46.7772 92.0603 

22 19.7952 23.3616 26.6271 41.9534 47.1552 

23 20.1517 23.7397 26.7495 37.9111 46.6771 

24 20.5314 24.1391 26.7994 34.6393 49.8789 

25 22.2065 24.5830 27.1268 31.9653 51.9719 

26 23.5056 25.0466 27.2498 29.7494 54.1974 

27 28.4702 25.4939 27.7001 27.9244 56.9314 

28 30.5872 25.8959 28.0117 26.3548 60.2672 

29 33.0090 26.2350 28.5377 24.9176 65.1124 

30 32.8467 26.5251 29.1714 23.6088 92.6410 
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𝑣 A1u
+ E(3)

1
g

+ F(4)
1
g

+
 51g

+
 6

1
g

+
 

31 35.0700 26.7933 30.0346 22.4238 72.6733 

32 35.9598 27.0628 31.2972 21.3257 82.8523 

33 40.7918 27.3512 33.0978 20.3716 92.6634 

34 40.2101 27.6522 35.4570 19.4935 103.3279 

35 42.7253 27.9966 38.7246 18.6670 121.3605 

36 42.7556 28.3817 44.5024 17.9086 136.6780 

37 45.3714 28.8147 56.0681 17.2152 97.4100 

38 44.4725 29.6121 84.6706 16.6004 142.6975 

39 50.5145 30.3410 131.7471 16.0237 158.5245 

40 48.9298 31.5247 122.1834 15.5298 173.0099 

41 46.9111 33.5751 125.9984 15.1077 198.8137 

42 48.8660 34.5655 125.8794 14.7711 232.6331 

43 52.4511 37.1131 109.6629 14.5237 144.7067 

44 51.5130 38.1398 108.7730 14.3768 139.4032 

45 51.1213 39.1257 107.8118 14.3412 262.9468 

46 50.5016 39.5703 104.9443 14.4049 266.2999 

47 48.6937 40.0277 103.5541 14.6494 273.1139 

48 56.3140 41.5854 102.0681 15.4095 255.3443 

49 56.4457 42.5218 101.8084 16.7009 262.5900 

50 58.4152 44.8269 101.4665 18.5474 295.1729 

51 55.7068 45.5728 100.8476  310.2723 

52 54.0115 46.1554 101.3710  324.2372 

53 57.7145 47.3656 104.2897  326.5158 

54 64.0778 48.4246 106.9988  345.1753 

55 72.2703 51.6181 109.3240  360.0658 

56 77.3495 52.6751 113.9210  372.5047 

57 75.8209 53.3266 113.9578  396.7436 

58 72.4827 54.1074 115.8646  399.7465 

59 70.9185 58.0761 115.8656  431.0772 

60 71.8905 59.1669 115.5989  431.6276 

61 79.5093 60.5845 115.5817  444.8876 

62 89.3356 61.4224 115.6379  469.8345 

63 108.7990 65.3562 115.5752  474.5302 

64  66.7547 116.7665  502.9642 

65  68.9355 120.0521  526.6458 

66  69.6404 121.6465  536.0330 

67  72.7066 122.1817  563.0725 

68  76.4735 125.1369  599.8636 

69  77.6320 131.4917  627.6997 

70  78.0813 134.7876  692.8164 
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𝑣 A1u
+ E(3)

1
g

+ F(4)
1
g

+
 51g

+
 6

1
g

+
 

71  78.5404 134.9543  817.9635 

72  85.3383 136.6973  1131.8571 

73  86.4414 144.0505  2107.3195 

74  86.1647 154.5219  4349.3120 

75  88.5579 165.0793  5323.5878 

76  88.3694 165.9964  6301.1327 

77  92.0513 165.1052  7137.2029 

78  91.5445 171.0190  7864.4712 

79  91.6674 177.0934  8496.2196 

80  100.1439 185.5441  9040.5859 

81  100.2561 190.5563  9514.5284 

82  100.3086 188.3069  9940.8406 

83  104.3877 186.8835  10337.7278 

84  105.4170 182.4217  10713.9312 

85  108.7590 177.0920  11076.4485 

86  108.2330 171.4814  11438.2604 

87  110.3046 161.7755  11817.2881 

88  110.8548 146.5907  12204.5354 

89  117.6823 117.0953  12579.9109 

90  116.2588 49.4524  12948.1629 

91  116.1462   13306.3267 

92  118.6810   13658.3851 

93  124.7009   14005.5491 

94  122.3755   14339.5389 

95  122.2750   14663.2150 

96  121.6930   14979.2842 

97  127.9817   15277.6063 

98  124.3279   15579.1697 

99  125.5797   15862.8895 

100  122.2007   16135.9972 

101  123.5328   16432.3992 

102  125.6567   16691.4697 

103  121.1524   16980.1322 

104  122.1654   17248.4989 

105  120.2629   17506.4022 

106  116.3661   17805.8552 

107  117.6632   18051.5857 

108  117.0531   18357.1657 

109  112.4365   18606.8862 

110  109.8816   18880.5889 
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𝑣 A1u
+ E(3)

1
g

+ F(4)
1
g

+
 51g

+
 6

1
g

+
 

111  109.5499   19154.4996 

112  107.9510   19396.3072 

113  104.5369   19699.6629 

114  101.0688   19927.5935 

115  98.4895   20233.6763 

116  96.6152   20462.0286 

117  95.0351   20737.8371 

118  93.5677   20979.7411 

119  92.2375   21218.4192 

120  91.1261   21487.2092 

121  90.2919   21700.2953 

122  89.7422   21993.0522 

123  89.4468   22194.4865 

124     22490.6589 

125     22689.5059 

126     22964.9717 

127     23169.3467 

128     23411.4837 

129     23630.6271 

130     23841.6868 

131     24084.2920 

132     24275.1509 

133     24536.1540 

134     24717.1969 

135     24989.1843 

136     25167.0982 

137     25436.3775 

138     25614.1270 

139     25868.0822 

140     26046.9596 

141     26278.2127 

142     26459.4616 

143     26667.1675 

144     26852.3191 

145     27040.8140 

146     27231.2227 

147     27407.5004 

148     27603.7152 

149     27775.0111 

150     27976.3828 
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𝑣 A1u
+ E(3)

1
g

+ F(4)
1
g

+
 51g

+
 6

1
g

+
 

151     28148.4948 

152     28353.3085 

153     28529.9412 

154     28735.9611 

155     28918.7844 

156     29123.5873 

157     29312.5224 

158     29513.9409 

159     29707.7783 

160     29904.1146 

161     30104.1474 

162     30295.5854 

163     30495.1074 

164     30680.8126 

165     30880.3374 

166     31060.0014 

167     31254.7391 

168     31414.5499 

169     31560.5716 

170     31552.9308 

171     31100.5510 
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CHAPTER 6  

                               CONCLUSIONS 
 

 

 

6.1   Summary of Work 

 
In this dissertation, I included three main studies I carried out. The experimental 

study of transition dipole moments was explained at length in Chapter 3. It included 

determination of the transition dipole moment matrix elements for the    u

1

g

1 ΣAΣ5  

and   u

1

g

1 ΣAΣ6  transitions of sodium dimer molecule. By combining the Autler-

Townes and resolved fluorescence methods, I determined the absolute transition dipole 

moment matrix elements, carried out both R-Centroid and multivariable fits and 

constructed the transition dipole moment functions for both transitions depicting for the 

inner-well behavior. Chapter 4 focused on the calculation of radiative lifetimes and 

transition dipole moment matrix elements (TDMs) of ion-pair states of sodium dimer. 

This work has been published in the Journal of Chemical Physics 143, 104304 (2015). 

Chapter 5 detailed my study on the lifetimes and transition dipole moment matrix 

elements calculations of lithium dimer molecule. In this work I have also counted the 

bound-to-continuum transitions by combining LEVEL 8.0 and BCONT 2.2 programs.  

 


