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It is better to design performance measures according
to what one actually wants in the environment than ac-
cording to one thinks the agent should behave.

Stuart Russell and Peter Norvig



ABSTRACT

Classification is a ubiquitous decision activity. Regardless of whether it
is predicting the future, e.g., a weather forecast, determining an existing state,
e.g., a medical diagnosis, or some other activity, classifier outputs drive future
actions. Because of their importance, classifier research and development is an
active field.

Regardless of whether one is a classifier developer or an end user, evalu-
ating and comparing classifier output quality is important. Intuitively, classifier
evaluation may seem simple, however, it is not. There is a plethora of classifier
summary statistics and new summary statistics seem to surface regularly. Sum-
mary statistic users appear not to be satisfied with the existing summary statis-
tics. For end users, many existing summary statistics do not provide actionable
information. This dissertation addresses the end user’s quandary.

The work consists of four parts:

1. Considering eight summary statistics with regard to their purpose (what
questions do they quantitatively answer) and efficacy (as defined by mea-
surement theory).

2. Characterizing the classification problem from the end user’s perspective
and identifying four axioms for end user efficacious classifier evaluation
summary statistics.

3. Applying the axia and measurement theory to evaluate eight summary
statistics and create two compliant (end user efficacious) summary statis-
tics.

4. Using the compliant summary statistics to show the actionable information
they generate.

By applying the recommendations in this dissertation, both end users and
researchers benefit. Researchers have summary statistic selection and classifier
evaluation protocols that generate the most usable information. End users can
also generate information that facilitates tool selection and optimal deployment,
if classifier test reports provide the necessary information.

Keywords: classifier evaluation; efficacious summary statistic axioms; summary
statistics selection; end user efficacy
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LEXICON

A : The source population from which Y was drawn.

A : The source population from which Y was drawn.

B : Boundary. B∗ is the optimum boundary.

Bias : A systematic difference that favors one group over another or weights
one group more than another. For multiplicative summary statistics, ιT+ =
ιF+ = ιF− = ιT− defines unbiased impacts. For additive summary statistics,
|ιT+ | = |ιF+ | = |ιF− | = |ιT− | defines unbiased impacts.

Boundary : The classification tool input descriptor values used to partition S into
Z and Z.

CI : Confidence interval, the range within which a measurement will occur some
specified percent of the time (X% CI).

Class imbalance : see relative class size.

Confounding factor : also called a confounding variable; an extraneous experi-
mental input, for which if not controlled or accounted, will skew test results.

Confusion matrix : see joint probability table

Contingency table : see joint probability table

CPD : Classification, prediction, diagnosis; three common uses for classifiers.

Dependent variable : also called the response variable; a test output. Generally
used along with “Independent variable”.

Error matrix : see joint probability table

Expectation : In this context, a statistical value. This study’s evaluations are
non-parametric, so use median as a centrality measure. End users defining
problem specific I will select the approach appropriate for their target data.

Explanatory variable : an experimental input which effects test output. Gener-
ally used along with “Response variable”.

F+ : False positive, class A events incorrectly flagged as class A. (Sometimes
called a Type I error.)
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F− : False negative, class A events incorrectly flagged as class A. (Sometimes
called as Type II error.)

Frequency table : see joint probability table

ιT+ = ∑s∈T+ ιs/t+,

ιF+ = ∑s∈F+ ιs/ f+,

ιF− = ∑s∈F− ιs/ f−,

ιT− = ∑s∈T− ιs/t−,

ιZ = ∑s∈Z ιs/|Z| = ιT+ t+/|Z|+ ιF+ f+/|Z|,

ιZ = ∑s∈Z ιs/|Z| = ιF− f−/|Z|+ ιT− t−/|Z|,

ιY = ∑s∈Y ιs/|Y| = ιT+ t+/|Y|+ ιF− f−/|Y| and

ιY = ∑s∈Y ιs/|Y| = ιF+ f+/|Y|+ ιT− t−/|Y|.

I : I = (ιT+ , ιF+ , ιF− , ιT−)

Impact : A measure of CPD effect on a system’s output.

Independent variable : see Explanatory variable; Generally used with “Depen-
dent variable”.

Joint probability table : A table presenting the cardinalities T+, F+, F− and T−.
This is further described in Section 0.1 and illustrated in Table 1. JPT cat-
egory cardinalities are lower case: t+ = |T+|, t− = |T−|, f+ = |F+| and
f− = |F−|.

JPT : joint probability table

pdf : probability distribution function

Proportion : see relative class size

rCS : relative class size

RA : rheumatoid arthritis

Relative class size : ratio+ = |Y|/|Y| [42]

Independent variable : see Explanatory variable. Generally use along with “De-
pendent variable”.

S : The uncategorized data set.
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Summary statistic : summary statistic = f (I, JPT(B)). Because multiple values
are summarized into a single value, information is lost. To the extent essen-
tial information is retained, a summary statistic is useful. A key character-
istic of summary statistics is when they are plotted against the boundary,
they are not monotonic; they have optima. In this study’s context, useful
summary statistic optima indicate overall classifier utility for the boundary
or boundaries and performance parameters at which this optimum utility
was observed.

SS : summary statistic

T+ : Correctly identified events in class A, the “class of interest” (if such a class
exists).

T− : Correctly identified events of class A, the other class.

Y : Actual class A events in the data set.

Y : Actual class A events in the data set.

Z : Events flagged as class A.

Z : Events flagged as class A.

0.1 CPD input data

Although this paper applies well established stochastic concepts, not all
discussions use the same terminology. To avoid confusion, we define our lexicon
for test set categories:

Actual classification (ground truth)
Y Y Totals ↓

Test + : si ∈ {Z} t+ f+ |Z| = t+ + f+
Result − : si /∈ {Z} f− t− |Z| = f− + t−

Totals |Y| = t+ + f− |Y| = f+ + t− |S| = |Y|+ |Y| = |Z|+ |Z|

Table 1: Category cardinalities are often organized into a joint probability table,
such as shown here.

Frequently, these counts are presented as proportions of |S| as shown in
Table 2. The differences between Tables 1 and 2 are that the cell entries in Table
1 are integers, with the total of all four categories equaling |S|, whereas the JPT
category proportions shown in Table 2 are rational numbers that sum up to one.
Additionally, the proportional values represent the probability that for a given
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Actual classification

Y Y Totals ↓
Test + : si ∈ {Z} t+

|S|
f+
|S|

t++ f+
|S| = |Z|

|S|

Result − : si /∈ {Z} ≡ si ∈ {Z} f−
|S|

t−
|S|

f−+t−
|S| = |Z|

|S|

Proportional totals |Y|
|S|

|Y|
|S| 1

Table 2: The values in this JPT are proportions.

relative class size (ratio+ = Y/Y)), any randomly selected CPD output will be a
member of that particular JPT category.

The CPD under test, configured with boundary vector (B, a “surface” that
partitions the problem space), bins S into Z and Z. The JPT(B) bin counts are
snapshots of classifier labeling versus ground truth at B.

Although for supervised tests, the data set ground truth is known, it only
represents the source population. Statistical methods are used to account for vari-
ation between the data sets and the source population. Confidence intervals in-
dicate the quality of the resulting source population characterization. The nature
of the source population is characterized by the class pdfs and their associated
ratio+.

0.2 Contour graphs

I use graphs to assess measure response to selected problem domain char-
acteristics. A contour graph is used to show how measure output (contour lines
on the graph, representing the Z-axis) is affected by ratio+ (Y-axis) and boundary
(B) (X-axis). This graph also shows the optimum boundary (B∗) versus ratio+ as
a dotted line. Figure 1 illustrates the graph type.

Another contour graph shows how the measure value versus boundary
varies as class separation improves. Figure 2 is an example. The X-axis indicates
the ordered sample index at which the measure was calculated. Decreasing the
distribution overlap causes the true boundary ranges to change, so true boundary
values are confounding. Index values provide an easy means of normalizing the
test ranges. The Y-axis indicates the measure value recorded.
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Figure 1: This contour graph shows how a measure is affected by boundary and
relative class size (ratio+). The dotted line indicates the optimum boundary (B∗).
(This graph is for the Matthews Correlation Coefficient [MCC]).

Figure 2: As class overlap decreases, classification improves. Measure responses,
however vary. This graph shows one such test result. The bottom-most line rep-
resents the measure results for two identical gamma distributions that fully over-
lap. As the distributions diverge, causing the overlap to shrink, the test data clas-
sification improves. The MCC measure indicates this with increasing values. In
this particular test, the best classification is skewed to the left side of each curve.
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PREFACE

How did I end up studying “how to evaluate classifiers?” One might have
expected work on a next generation cyber security tool, advanced memory man-
agement or the like. The most abstract answer might be a refusal to accept the
status quo. My Master’s thesis research proposed and tested a novel anomaly
detection algorithm for cyber attack detection. Creating and executing the algo-
rithm went smoothly. The challenge, was measuring classifier quality.

My literature review revealed many opinions regarding classifier assess-
ment. Furthermore, none of the summary statistics seemed to quantify effect on
an end user. I found no compelling reason for classifier summary statistic selec-
tion in the literature, but I did need to be able to compare my algorithm to others.
As a matter of expedience, I selected one of the most common summary statistics,
receiver operating characteristic area under the curve (ROC-AUC).

That might have ended my interest in classifier assessment, had I not faced
the problem again at General Electric Global Research (GEGR). My first project
was maturing my anomaly detector as an deployable cyber security intrusion de-
tector. Once again, I had to revert to the default summary statistic, ROC-AUC.
Now, however, I more strongly missed the end user’s relevance. Compounding
the issue, my original dissertation topic was going to examine potential enhance-
ments to my thesis and results at GEGR. The lack of an efficacious end user sum-
mary statistic was like a stone in my shoe. Unless I radically changed my field of
study, the assessment problem still loomed.

Finding an end user efficacious classifier evaluation summary statistic be-
came a concurrent research project. As I learned about classifier assessment, or
encountered a new summary statistic, I revisited my search. Many research fields
specified class imbalance (aka relative class size [ratio+]) invariance, but did not
agree on a summary statistic. My efforts to define a ratio+ invariant end user effi-
cacious classifier evaluation summary statistic were not successful. My musings,
however, did lead to a “EUREKA” moment – while considering ratio+ invariance,
I realized that some summary statistics were inherently ratio+ invariant, but ra-
tio+ invariance is not a summary statistic characteristic. It can be conferred on
any summary statistic using joint probability table (JPT) values by normalizing
the JPT! Now, any JPT-based summary statistic that generated actionable infor-
mation for end users was valid. The constraint that seemed to make the problem
insoluble had been removed. With success seemingly on the horizon and the re-
sult applicable across a wide and diverse problem domain range, I convinced my
research adviser to shift dissertation topics.

The rest, as the saying goes, is history.
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CHAPTER 1

INTRODUCTION

Some problem domains are analyzed using classifier output. Often, class
affiliation is not the end result. Rather it drives subsequent activities. Examples
include medical diagnoses determining the presence or absence of disease; infor-
mation retrieval gathering relevant material; information system activity being
flagged as malicious; determining insurance or credit terms etc. The list is vir-
tually endless. (Because of classification’s ubiquity, I use the initialism CPD for
classification, prediction and diagnosis.) Incorrect classification can lead to frus-
tration, financial loss and even death. Correct classification is important, hence,
a number of CPD algorithms have been developed and the field remains active.

Characterizing CPD tool effectiveness, then, is important. For example,
CPD tool developers need to know how their particular modification affects CPD
performance; end users want actionable information upon which to choose be-
tween CPD options and to optimally deploy a tool in the field. The term “perfor-
mance” can refer to a variety of operational parameters, including time factors (e.
g., output latency), computation complexity and memory requirements. This re-
search defines performance and effectiveness as characters of CPD output quality.
The goal is to generate “actionable information”, informing users on how a CPD
tool will affect their target outcome, relative to the CPD’s operational settings. I
hypothesize that actionable information is generated by a subset of possible per-
formance summary statistics.

At first glance, quantifying classifier effectiveness might seem intuitive;
however, the consensus appears to be that classifier evaluation and comparison is
actually difficult. If paper publication rate is an indicator, then summary statistic
selection is still an open issue [6, 10, 21, 26, 35, 41, 78, 79]. There is a seemingly
steady stream of publications characterizing summary statistics. Additionally,
papers proposing new summary statistics appear regularly in the literature.

Of the myriad of proposed summary statistics, only a few have gained
traction. Perhaps the most commonly seen summary statistics are Total Accuracy
Rate, the Receiver Operating Characteristic Area Under the Curve, Fβ-score, Youden In-
dex, two related summary statistics, Diagnostic Odds Ratio and Diagnostic Power,
Mathews Correlation Coefficient and Mutual Information Coefficient. These eight sum-
mary statistics will be used as the foundation for summary statistic evaluation.
Summary statistic descriptions are in Chapter 5.
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1.1 CPD end users are underserved stakeholders

All of these summary statistics condense multiple views of CPD quality
into one value. However, because multiple values are summarized into a sin-
gle value, information is lost. To the extent essential information is retained, a
summary statistic can prove useful for CPD evaluation. A key characteristic of
summary statistics is when they are plotted against the boundary, they are not
monotonic; they have optima1. Useful summary statistic optima indicate overall
classifier utility for the boundary or boundaries and performance parameters at
which this optimum utility was observed. Ideally, these summary statistics also
quantify some efficacious aspect of classifier output for end users. Efficacious
summary statistic values enable end users to directly estimate the CPD’s effect
on their situation.

The disorganized state of CPD summary statistic selection is not new.
Sokolova et al. comments “. . . the [summary statistics] in use now do not fully
meet the needs of learning problems in which the classes are equally important
and where several algorithms are compared” [78]. It seems reasonable that, if a re-
searcher is not comfortable with the known summary statistics, that he/she may
be inclined to develop one that suits.

End users want to know how a specific CPD tool will impact their prob-
lem. An informative summary statistic for any stakeholder must be sensitive to
relevant problem domain characteristics and insensitive to irrelevant (confound-
ing) characteristics. CPD tool stakeholders can be partitioned into three groups:

• Basic researchers focus on developing new CPD algorithms. This group
expects that an effective new CPD algorithm will be useful in many prob-
lem domains, so their evaluations need to be application agnostic; specific
problem domain characteristics are, in fact, confounding. Examples of basic
researchers in the CPD context are the persons that introduced CPD tech-
niques such as k nearest neighbor [16], neural net [60] and support vector
machine [90].

• Applied researchers use CPD algorithms on specific problem domains to
create tools useful for that domain; specific problem domain characteris-
tics are important. Examples of tools incorporating CPD algorithms are
anomaly-based intrusion detectors for cyber security [74, 80] and docu-
ment classifiers for enterprise information retrieval systems [2]. In addition
to independent applications, another applied research output is reusable
programming language libraries (code libraries). Such libraries can be de-
ployed by end users to create custom solutions. In this context, the focus is
on the CPD tool; data sets are used to develop and test the tool.

1A common summary statistic, the receiver operating characteristic area under the curve, is
boundary invariant. Since it neither increases nor decreases, it is monotonic. Since there is only a
single value, it is also the optimum.
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• Practitioners deploy CPD tools to solve specific problems in their domain.
Domain-specific characteristics are important, as well as operational aspects
such as impact sensitivity to class boundary settings (, the CPD tool setting
that determines to which class each observation is allocated). Code libraries
may be a frequently used method for CPD tool usage in other fields of study
such as medicine [64], molecular biology [15, 61], finance [1], etc. In this
context, the emphasis is the opposite of the other two groups; the CPD tool
is used to evaluate the data, rather than the data used to evaluate the tool.
Hence, investigators applying CPD methods are end users.

• End users encompass both practitioners and applied researchers, as defined
above.

I consider what summary statistic characteristics are informative for end users.
The researcher definitions align with more general definitions published by the
National Science Board [62].

Jamain and Hand, summarizing their results in a classifier meta-analysis,
comment:

The real question a user generally wants to answer is ‘which classifi-
cation methods [are] best for me to use on my problem with my data
. . .’ [40].

In the broader field of artificial intelligence, Russell and Norvig express a similar
sentiment:

As a general rule, it is better to design performance measures accord-
ing to what one actually wants in the environment, rather than ac-
cording to how one thinks the agents should behave [71].

In published studies read, specific proposed summary statistics may be
mapped to specific problem domains. However, identifying a general means by
which end users can quantify CPD effectiveness in their particular setting has not
been addressed. Indeed, Jamain and Hand, generalize the sentiment of R.P.W.
Duin’s comment regarding comparing automated, heavily parametrized classi-
fiers:

It is difficult to compare these types of classifiers in a fair and objective
way [23].

Seemingly, the research community has viewed the variety of end user
needs as too complex and diverse to address. Thus, for the most part, researchers
have focused on addressing their own needs. End user issues, when discussed,
have been constrained to specific problem domains. To the extent that research
studies present CPD performance information by which end users can estimate
CPD impact (how the CPD affects the end user) in their situation, the studies
provide improved service to the end user.
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In reviewing the literature, generally, new summary statistics are intro-
duced in studies requiring a CPD, rather than in studies in which CPD evalua-
tion is the focus. Investigators must allocate project assets to create the neces-
sary deliverables, hence, limited assets are available to address summary statistic
efficacy. In my literature review, I found no common understanding of what
constitutes a good CPD evaluation summary statistic; this seemed glaring in its
absence. I encountered no basis for, or foundation upon which to develop CPD
evaluation summary statistics. In short, I found no “good summary statistic”
criteria for CPD evaluation. One of the key contributions of this dissertation is
establishing four axioms for end user efficacious CPD summary statistics.

1.2 End user summary statistic efficacy considerations

My interest is addressing end user interests. Regarding CPD selection and
deployment, end users have three questions:

1) What is the CPD’s impact on my problem? To answer this question, I consider
what the summary statistic quantifies and how that relates to end users.

2) What is the boundary that provides the optimum impact? Clearly, only a bound-
ary (B) sensitive summary statistic can provide this information. It is pos-
sible a summary statistic that does not quantify CPD impact may still share
an optimum boundary (B∗) with one that does.

3) How sensitive is the impact to boundary selection? Clearly, only a boundary
sensitive summary statistic can provide this information. Any two sum-
mary statistics with common optimum boundaries and boundary sensitiv-
ities are likely answering the same question, but (possibly) with different
units of measure. This study will look for such occurrences.

Measurement theory provides additional insight on summary statistic ef-
ficacy: numbers are used in different ways. These uses constrain their informa-
tion content and hence, their utility. I use the scale-type definitions proposed
by Stevens [83]. Stevens defined four scale types, nominal, ordinal, interval and
ratio. Ratio scales have the least functional constraints, so summary statistics us-
ing ratio scales are the most information rich. Ratio scales have two unique and
readily identifiable characteristics:

They have meaningful zeros. In this dissertation’s context, a meaningful zero is
relative to the unit measured and the end user’s problem. For example,
if dollars profit is being measured, then zero means there is no profit. If
energy produced is being measured, then zero means no energy was pro-
duced.
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They have a “standard unit”. Abstractly, this means that mx + 1 = mx+1. One
implication of having a standard unit is that there is no upper bound and
the lower bound can be either zero or negative infinity. In this context, a
CPD could potentially have a negative impact on an end user, so the most
widely useful summary statistic’s range must be (−∞, ∞).

Reflecting on the end user interests, only a ratio scale summary statistic will sat-
isfy question 1 above. A recurring topic in studies using CPDs is class imbalance
(ratio+). Accordingly, I evaluate summary statistics regarding i) the three ques-
tions posed above, ii) scale type and iii) sensitivity to the factors ratio+ and pdf.

“Extending the body of knowledge”, must cover new intellectual territory,
validating other’s work is not sufficient. Hence, a literature review is necessary;
Chapter 2 covers this. The research protocol is described in Chapter 3. Under-
standing and clearly stating the problem must come prior to proposing a solu-
tion. The results of this process is covered in two chapters. Chapter 4 defines
the summary statistic evaluation framework and identifies the necessary depen-
dent variables. the Chapter 5 reviews the state-of-the-art and ends with a gap
analysis and problem statement. The CPD problem domain is characterized in
Chapter 6. Before a solution can be crafted, success criteria must be defined. To
this end, Chapter 7 reviews the summary statistic criteria seen in other study
fields. Those insights lead to defining four axioms for end user efficacious CPD
summary statistics in Chapter 8. Two axiom compliant summary statistics are
developed in Chapter 9. Using technical readiness levels, the summary statistics
are mapped to prospective stakeholders in Chapter F. Examples of the enhanced
efficacy of axiom compliant summary statistics are in Chapter 10. User study re-
sults are reported in Chapter 11. Conclusions and future work are in Chapter 12.
The dissertation closes with References and Appendices.
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CHAPTER 2

RELATED WORK

As noted in Chapter 1, this study focuses on CPD evaluation summary
statistics that address end user interests. What constitutes related work? Cer-
tainly not the myriad of research projects that use CPD summary statistics. It
is surprising how many projects “tweak” established summary statistics, poten-
tially making them relevant. However, these enhanced summary statistics almost
never gain a following. Some have; the summary statistics evaluated in Chapter 5
were selected based on their acceptance as “de facto” standards in some problem
domains. Peer acceptance was the selection criterion for inclusion in this study.

This study is rare in that first the CPD problem was defined, then rele-
vant summary statistic characteristics were defined. Only after these problem
constraints were established was any actual summary statistic investigation ex-
ecuted. Of the prior work reviewed, only two investigators applied a similar
strategy:

• Swets, noting a similarity between signal detection problems and medical
diagnoses, suggested the receiver operating characteristic ROC-AUC be ap-
plied [84, 85, 86]. It has since been applied to many CPD problem types.

• Van Rijsbergen proposed a summary statistic that is the complement of Fβ-
score [88]. Van Rijisbergen applied measurement theory to information re-
trieval system evaluation, taking as his inputs select performance criteria
put forth by Cleverdon [14]. The summary statistic is now used in many
problem domains.

The ROC-AUC and Fβ-score may be the most broadly accepted CPD summary
statistics I saw. However, neither can be transformed into values which end users
can use to predict actual impact in their situation.

The majority of the works on CPD evaluation were based on analyzing ex-
isting summary statistics and either inferring some insight that could reduce the
confusion, or demonstrate the value of some proposed summary statistic charac-
teristic. Examples include:

• Sokolova, et al., propose that for rare events, either T+ or T− is most impor-
tant, and summary statistics should be selected based on their Convergence
characteristic, relative to their sensitivity to the important class [77]. Their
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work does not address whether or not a summary statistic provides action-
able information; their work, although similar, addresses another issue.

• Martens, et al., propose two characteristics for a model underlying a CPD.
Comprehensibility relates to the ease with which an end user can under-
stand the model, justifiability relates to how well the model aligns with ex-
isting domain knowledge [57]. Their work does not address whether or not
a summary statistic provides actionable information; their work, although
similar, addresses another issue.

• Parker [68] compares seven binary classifier summary statistics, rating them
on their degree of agreement. His hypothesis was that in the specific cases
where all summary statistics but one agree on the best classifier, then the
one disagreeing must be in error. The study focused on classifier selection
quality, but was silent on a summary statistic’s other actionable informa-
tion.

• Jamain and Hand executed a meta-analysis of classification performance.
After a rigorous selection process, six studies were considered qualified for
a meta-analysis. Their three analytical methods, analysis of linearly scaled
test results, logistic regression analysis and linear regression analysis were
inconclusive. The study suggested that this might have been due to the
confounding effects of unspecified test data characteristics. The authors
suggested that significantly more test data characterization might have al-
lowed compensation for test data effects. A secondary conclusion was that
classifier evaluations may exhibit a tendency to selective reporting. The
study had no hard recommendations. However, the authors did note that a
wise selection strategy might be for performance which is “consistently rea-
sonably good and never very bad”, rather than seeking optimization. They
further note that “the real question a user wants to answer is ’which clas-
sification method is best for me to use on my problem with my data’ ” [40].
Jamain and Hand’s work affirms the value of this study and suggests two
characteristics for efficacious summary statistics for end users. This work
leverages Jamain and Hand’s insights.

• Seliya, et al., compare twenty-two summary statistics for correlation. They
ultimately identified three unspecified factors by which they binned the
summary statistics. Their recommendation was to use one summary statis-
tic for each factor, thereby giving a more complete view of CPD perfor-
mance [75]. Their work does not address whether or not a summary statis-
tic provides actionable information; their work, although similar, addresses
another issue.

• Baldi, et al., evaluate nine summary statistics, ultimately concluding that
the Matthews correlation coefficient and Mutual information summary statis-
tics are most balanced, based on their observation that they both use all four
JPT values [3]. Their work does not address whether or not a summary
statistic provides actionable information; their work, although similar, ad-
dresses another issue.
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• Sokolova, et al., evaluate eight summary statistics, proposing that sum-
mary statistics other than TAR, ROC-AUC and Fβ-score are better for assess-
ing CPD ability to distinguish classes [78]. Their work does not address
whether or not a summary statistic provides actionable information. Their
work, although similar, addresses another issue.

• Caruna and Niculesdu-Mizil compared nine summary statistics applied to
test results from fourteen thousand classifier-data set pairings. Each sum-
mary statistic value generated represented a dimension, with each sum-
mary statistic described by a fourteen thousand dimension vector. sum-
mary statistics were then compared based on euclidean distances between
the vectors. Multidimensional scaling indicated that the vectors could be
partitioned into three to five dimension groups. However, the report did
not hypothesize what the partitions represented. The study also considered
pairwise summary statistic correlations. This study did not consider end
user interests [10].

• Lavesson, et al., propose a multi-faceted machine learning evaluation pro-
tocol when evaluating machine learning protocols for application-specific
suitability. One factor, “Accuracy”, refers to the quality of the machine
learning component’s output. The work, however is silent on the actual
summary statistic selected and the selection process [49].

• Ores̆ki and Ores̆ki investigate analysis with unbalanced data sets. They con-
clude that summary statistic selection is critical. Researchers can effectively
skew their results toward different conclusions by their summary statistic
selection. No means to mitigate this risk is provided. [65].

• Bifet, et al., [4] examine the challenges of stream classification. Their discus-
sion addresses managing imbalanced data sets, but does not map summary
statistic selection to end user needs.

None of the studies reviewed specifically focused on end user efficacy: this
was a gap addressed by my doctoral research.

2.1 CPD summary statistics evaluated

Based on the literature review, eight summary statistics that appeared to
be well, but not universally, accepted were selected for in-depth analysis. A brief
description of each follows. Each summary statistic is more fully addressed in
Chapter 5.

Diagnostic Odds Ratio (DOR) [32]
DOR is defined as

DOR =
T+
F−
F+
T−

,
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where T+
F− =True Positive Odds (TPO) and F+

T− =False Positive Odds (FPO).
After simplification,

DOR =
T+T−
F+F−

.

Discriminant Power (DP) [5]
Discriminant power is defined as

DP =
√

3
π

(logX + logW),

where

X =
sensitivity

1− sensitivity
=

T+

F−
and Y =

specificity
1− specificity

=
T−
F+

.

Recasting the equation, we get

DP =
√

3
π

log
(

T+T−
F+F−

)
.

DOR/DP Refers to both the diagnostic odds ratio and discriminant power. DOR/DP
are related summary statistics:

DP =
√

3
π

log(DOR).

F-score [88]
Fβ-score is defined as:

Fβ =
(1 + β2)(precision)(recall)
(β2)(precision + recall)

,

where β is the relative weight of precision and recall:

β =
importance of precision

importance of recall
.

IC [70]
Mutual Information Coefficient is the mutual information (I) contained in
ground truth regarding the test set S (Y ∪ Y) and the CPD prediction of
ground truth, as contained in Z ∪ Z. Normalized by the entropy in ground
truth (H):

IC =
I(Y ∪Y, Z ∪ Z)

H(Y ∪Y)
.
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Expressing I and H in terms of JPT categories,

I(Y ∪Y, Z ∪ Z) = −H
(

T+

N
,

F+

N
,

F−
N

,
T−
N

)
− T+

N
log(|Y| ∗ |Z|)− F+

N
log(|Y| ∗ |Z|)− F−

N
log(|Y| ∗ |Z|)− T+

N
log(|Y| ∗ |Z|),

(2.1)

where

H
(

T+

N
,

F+

N
,

F−
N

,
T−
N

)
= −T+

N
log

T+

N
− F+

N
log

F+

N
− F−

N
log

F−
N
− T−

N
log

T−
N

.

J [97]
Youden Index has a number of expressions. The original is

J =
1
2

[
T+ − F+

T+ + F+
+

T− − F−
T− + F−

]
.

Perhaps a more common representation is

J = sensitivity + speci f icity− 1, where

sensitivity =
T+

Y
and specificity =

T−
Y

.

Further, sensitivity is also known as the true positive rate (TPR) and specificity
is the complement of the false positive rate, specificity = 1− FPR = 1− F+

Y
.

Hence an even simpler (thus better, according to the Minimum Description
Length principal) definition would be

J = TPR− FPR.

MCC [59]
Mathews Correlation Coefficient, in the form commonly seen today:

MCC =
(T+ ∗ T−)− (F+ ∗ F−)√

Y ∗Y ∗ Z ∗ Z

ROC-AUC [84, 85, 86]
Receiver Operating Characteristic Area Under the Curve. The title origi-
nates from the fact that it is the area under a “ROC curve’, a curve defined
by false positive (FPR = F+

M
) and true positive (TPR = T+

M ) rates. These val-
ues are calculated from JPTs of classifier output for a number of thresholds
across the observed range, then graphed as the ROC curve.
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TAR
Total Accuracy Rate is an intuitive summary statistic. It has been in use so
long, its origin is no longer cited:

TAR =
T+ + T−

T+ + T− + F+ + F−

These summary statistics were selected because they were either de facto
standards in particular fields of study, or based on anecdotal evidence, appeared
to be gaining in popularity.
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CHAPTER 3

RESEARCH PROTOCOL

As noted in Chapter 1, investigator sentiment has been that efficacious
end user CPD evaluation is an intractable problem. This belief is given credence
by the myriad summary statistics seen in the literature, often introduced with
comments on frustrations with existing summary statistics. Clearly, an ad hoc
approach has failed to successfully resolve the problem.

My study employed The Theory of Inventive Problem Solving (TRIZ), a pro-
cess first codified in the 1940s by Genrich Altshuller. The field has evolved sig-
nificantly since Altshuller’s first work; a text on the process has been published
recently by Gordon Cameron [7]. A thorough discussion of the field is out of
scope, but the four basic requirements are:

• Identify the problem’s root cause. Insights into the root cause primarily
constituted invalidating commonly held beliefs. This emerged from the
summary statistic characterization study reported in Chapter 5.

• Identify the sufficient explanatory variables. Use of the four JPT categories
is well established. However, the role played by JPT category impact re-
sulted from the summary statistic characterization study reported in Chap-
ter 5 and an exercise working through use cases to precisely define what
constituted actionable information for end users.

• Identify constraints on the solution. The use case analysis provide some
insight, its results are reported in Chapter 1.2. A study of measurement
theory was provided key insights [36, 69, 83].

• Define success criteria for the solution. The good summary statistic study
reported in Chapter 7 and the use case analysis provided the major insights
for this component.

Once these four requirements were met, a satisfactory solution to this dis-
sertation’s problem emerged. The balance of the study consisted of verifying that
the proposed summary statistics satisfied the four axioms and validating their
utility on real-world applications.

12



CHAPTER 4

SUMMARY STATISTIC CHARACTERIZATION

Characterizing the summary statistics required a protocol that was scien-
tifically sound (applied appropriate statistics and tests were repeatable) and that
tested attribute relevance to end users.

4.1 Scientific soundness

Although in many problem domains, populations tend to be normally dis-
tributed, this is not universal. In order to avoid limiting the applicability of my
results, I use analytic procedures that are insensitive to distribution. To preserve
generality, my analysis is strictly non-parametric; medians are used instead of
means and quantiles are used instead of standard deviations. I also execute my
tests with the Monte Carlo method, a non-parametric analytical tool often used
when problem complexity (in my case, potential end user problem complexity)
is not amenable to mathematical analysis. To facilitate repeatability, I use well-
defined pdfs.

As a class, CPD problems can have any number of categories greater than
one. In order to avoid confounding variables, this study is limited to binary CPD
problems. Extension to n-airy problems is left for future work.

CPD evaluation studies can be partitioned into two groups: those that
use “real-world” data and those that use simulated data. Characterizing CPD
evaluation summary statistics requires observing how the summary statistics re-
spond as CPD output varies. Real-world data, such as those available in reposi-
tories, e.g., the UCI Machine Learning Repository, provide the opportunity to test
against a wide variety of complex data types [30]. However, observing the effect
of incremental changes on real world data is difficult at best. For this purpose, I
use simulated CPD output in Chapters 6 and 9. Results using the simulated data
were validated in Chapter 10 using real world applications, with real world data.

4.2 Test framework

I use a supervised test to ascertain CPD quality. This test framework pro-
vides the ability to compare “ground truth” to CPD output. Abstractly described,
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test set elements interact with the defined process (in this context, a CPD). This
interaction “modifies” the elements (perhaps only by adding a tag indicating
strength of the match with a model), leading to a test for class Y membership.
The probability that a randomly selected output will be detected as a member of
class Y is the subsequent probability (Psubsequent). Psubsequent describes the state of the
data stream after interacting with the defined process and is the combined result
of the input mix (quantified as a probability [Pleading = |Y|/|S|] or an odds ratio
[ratio+ = |Y|/|Y|]) and the defined process. The defined process contributes its
own uncertainty (Pevent) to the observed output. Thus the test system can be de-
scribed by the equation Psubsequent = f (Pleading, Pevent). The CPD test set model is
illustrated in Figure 4.1.

Figure 4.1: The test system “ground truth” inputs have a specific mix, represent-
ing the underlying probability for the system (Pleading). The test system outputs
have a specific mix (Psubsequent), representing the interaction of the defined process
and the inputs. The defined process contribution to the uncertainty observed in
the output is represented by Pevent. Often, the results are presented in JPTs.

Tying the test set model to the examples in Chapter 11, Psubsequent consists of
the patient’s rheumatoid arthritis (RA) diagnosis, the bank’s loan funding deci-
sion and the stream of intrusion detector classifications. Pevent for the RA diagno-
sis consists of the strength of the match between the compound assayed and RA,
test quality and the boundary used to determine class membership (diseased, not
diseased). Similarly, Pevent for the bank’s loan decision is subject to the appropri-
ateness of the model, the variables used and the quality of the information re-
ceived. Pevent for the intrusion detection examples consists of the appropriateness
of the model that represents the malicious activity, the reliability of tags defining
the activity and the algorithm (or perhaps rule set) used to make malicious/not
malicious determination.

In the CPD test system described, P̂leading is a characteristic of the input
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test data set, hence, it is always fixed1, 2. It is, in fact, related to ratio+:

P̂leading = 1− ratio+

1 + ratio+
. (4.1)

Test system inputs are also a function of class probability distribution func-
tions (pdf) in the source population. This study considers the effects of both ratio+
and pdf on summary statistic output.

4.3 ratio+ sensitivity

The ratio+ sensitivity tests used normally distributed classes (N(m, σ2);
m is the distribution mean and σ is the standard deviation). For all but IC, the
analyses were based on four hundred data sets consisting of two hundred thou-
sand randomly drawn observations from two source populations; Positive =
N(1.0, 0.04) and Negative = N(2.0, 0.04). Separate tests were run with data sets
having ratio+s of

20 : 1, 21 : 1, 22 : 1, · · · , 213 : 1.
A total of 5,600 independent data sets were used in this study. Due to IC’s compu-
tational complexity, its analysis was based on four hundred data sets consisting
of twenty thousand randomly drawn observations from two source populations.
For each summary statistic evaluated, I observed how the reported metric was af-
fected by ratio+ vs. boundary vs. metric output. The 3-D results are presented as
contour plots. Because the summary statistic values are asymptotic to one (thus
non-linear), I use the median of the four hundred runs for each test case; means
are not valid for non-linear scales. It is impractical to present confidence intervals
on 3-D data, but on the 2-D graphs in 6.1.3, the ninety percent confidence inter-
val (90% CI) is displayed for each ratio+ vs. peak summary statistic value graph.
To illustrate, the 90% CI is indicated by the vertical lines at each ratio+ tested in
Figure 4.2; the plotted line indicates the median.

4.4 pdf sensitivity

Pdf sensitivity was based on ten different source population probability
distribution functions: uniform, normal, extreme value, Gamma, Cauchy and
Beta. Taking advantage of Beta’s configurability, I generate five pdf shapes. Fig-
ure 4.3 shows the pdfs used. pdf selection was intended to provide distributions

1P̂ “P hat” indicates the actual data set. When not “hatted”, P refers to the source population.
The difference between the two is that the data set is always known and only represents the
source population. Generally, I assume data sets accurately represent their source populations.
Confidence intervals indicate the quality of that assumption.

2Such concrete knowledge is unlikely in a field deployment.
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Figure 4.2: The vertical bars in this graph indicate the 90% confidence interval for
measurements at each point observed. The plotted line is the median.

with a wide range of skewness and kurtosis. (Thereby, mitigating the risk of
coming to conclusions that are not generally applicable.) By definition, the area
under pdf curves equal one. The X and Y axis values are artifacts of the probabil-
ity density estimator used (MATLAB ksdensity.m) and have no bearing on this
research.

Pdf sensitivity testing used Monte Carlo evaluation of two identical source
distributions, varying only by their means (for the Cauchy distribution, I varied
the median). To accommodate IC’s computational complexity, data sets consisted
of twenty thousand randomly drawn observations; repetitions were kept at four
hundred. To avoid class imbalance effects, the test set ratio+ was kept at one.
Using each summary statistic, I calculated values for each boundary threshold.
Summary statistic output versus boundary was then graphed. Boundary ranges
varied between distributions tested, as well as by the extent of the test distri-
butions overlaps. In order to avoid potential difficulties comparing summary
statistics, the boundary ranges were normalized.

Basing conclusions on a test which only considers a test series with one
amount of overlap between Y and Y could overlook important trends. Hence,
tests series included class degrees of overlap ranging from full overlap to nearly
full separation.

This protocol provides the flexibility and repeatability necessary for anal-
ysis, abides by the constraints necessary for analysis of less tractable problem
domains with difficult problem environments (e.g., complex CPD input and out-
put distributions) and considers the environmental factors to which end users
must contend.
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(a) Beta 0.2, 0.8 pdf. (b) Beta 0.8, 8.0 pdf.

(c) Gamma pdf. (d) Extreme value pdf.

(e) Beta 1.5, 5.0 pdf. (f) Normal pdf. (g) Cauchy pdf.

(h) Uniform pdf. (i) Beta 1.5, 1.0 pdf. (j) Beta 0.8 0.8 pdf.

Figure 4.3: Graphs of the ten pdfs used for sensitivity testing. In this context,
only the distribution shapes are important: the tests included distributions with
a wide range of skewness and kurtosis. By definition, the areas under pdf curves
equal one; the X and Y axis values are artifacts of the probability density estimator
used (MATLAB ksdensity.m) and have no bearing on this research.
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4.5 Summary statistic output comparison

Test results from the pdf sensitivity analysis is rich, but the numerous
graphs makes comparison between summary statistics difficult. Accordingly, I
use summary graphs which show the summary statistic outputs on the y-axis
and quantify the degree of class difference on the x-axis. It turns out that TAR is
a useful measure of class difference:

degree of class overlap =
f+ + f−
|S| , (4.2)

where 0.5 indicates complete overlap (the classes are totally indistinguishable)
and 1.0 indicates the classes are completely separate. From the JPT definition,

f+ + f− = |S| − (t+ + t−). (4.3)

Substituting equation 4.3 into 4.2, and a bit of algebra,

degree of class overlap = 1− t+ + t−
|S| . (4.4)

Noting that

TAR =
t+ + t−
|S| , (4.5)

substituting equation 4.5 into Equation 4.4 and re-arranging terms,

TAR = 1− degree of class overlap. (4.6)

Hence, TAR is the complement of degree of class overlap, therefore useful to
quantify class difference. Each line on the pdf sensitivity graphs represent the
summary statistic output for a test run with a specific degree of class overlap; the
peak values in each graph in Figure 5.10 provides an indicator for the test set’s
degree of overlap. Result distortions caused by class imbalance were avoided
by using class sizes with ratio+ = 1. Class separability was simulated by vary-
ing values in one class to create a bias between classes. Each line on the graph
represents tests with one bias.
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CHAPTER 5

THE CURRENT STATE - OF - THE - ART

Dissertations must “contribute to the body of knowledge”. Thus, it is es-
sential to know the problem domain’s current status. Once the status is known,
gaps can be identified. The requirement to contribute to the body of knowledge
can thus be satisfied with a research project designed to address a gap.

Summary statistics are intended to provide actionable information for spe-
cific stakeholder actions. As noted in Chapter 1, my focus is end user actions.
While investigating the current state-of-the-art, three motivations emerged as the
drivers resulting in the eight common summary statistics reviewed. This chapter
organizes the summary statistics based on their root motivation.

Taking the criteria identified in Chapter 1.2 as providing actionable infor-
mation for end users, each evaluation considers what actionable information a
specific summary statistic provides for end users.

5.1 Summary statistic motivations

When making evaluations, stakeholders require actionable information.
Summary statistics are a means of providing that information. Measurement the-
ory, a topic not seen much outside the social sciences, defines two of these infor-
mation types. Measurement theory distinguishes between two entity attribute (in
this context, summary statistic) types, intrinsic summary statistics; those that are
part of an entity’s definition (for example, density or mass) and extrinsic summary
statistics; those that are expressions of the entity’s interaction with the environ-
ment (weight, for example) [36]. When reported in joint probability tables (JPT),
classifier output is partitioned into four distinct categories, T+, F+, F− and T−.
After any data set has been tested, the final object count in each category is influ-
enced by the environmental factors relative class size (also known as class imbal-
ance; quantified herein as ratio+ = Y/Y.), class probability distribution functions
(pdf) and boundary used (B, the boundary that determines to which class each
observation is allocated). Thus T+, F+, F− and T− are extrinsic summary statis-
tics. Six of the eight summary statistics used herein address the perceived needs
defined by measurement theory; controlling CPD’s extrinsic factors; and quanti-
fying CPD’s intrinsic qualities. Two of the summary statistics address the third
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perceived need, quantifying an end user’s performance criteria. The summary
statistic discussions in this chapter are organized by stakeholder context.

5.1.1 Mitigating class imbalance (ratio+)

One challenge researchers face is comparing their CPD results to results
reported by others. One of the major difficulties is not all test sets have the same
characteristics. Test sets used may well have different relative class sizes, which
can cloud results. As an example, I ran a classifier on two test sets drawn from
the same class populations. Since both the classes and classifier were the same,
one would expect statistically indistinguishable output. However, since JPT cate-
gories are extrinsic, the anticipated similarity may be masked. Table 5.1 illustrates
the issue.

ratio+ F+ F−
1 125 250
9 25 450

Table 5.1: This table shows the total F+ and F− for two tests with the same clas-
sifier on equally sized data sets (2250 observations), drawn from the same pop-
ulations. The only difference is the samples have different ratio+. Because the
tests were run on data sets with different sized classes, the equivalence of the
classifier’s effectiveness is not apparent. Without prior knowledge that the same
classifier was used, an observer could conclude the classifiers were significantly
different.

The JPT values shown in Table 5.1 are output from one classifier on two
equally sized, two-class test sets. Both test sets were drawn from the same two
class populations. The only difference is one test set has a class divergence of
1 : 9 and the other a class divergence of 1 : 1. The CPD tool performs equally
well in each test; however, the outcome’s dependence on ratio+ masks the CPD
performance equality in the JPTs. When class sizes are equal (ratio+ = 1, there
are twice as many F− observations than F+. However, when ratio+ = 9, here
are eighteen times as many F− observations than F+! Without knowledge of the
test sets used, an observer could well conclude that these were two significantly
different CPD tools.

There are three approaches to mitigating class imbalance.

Balance class sizes by either decreasing the size of the dominant class (under-
sampling) or increasing the size of the lesser class (oversampling). The ap-
proach is appealing, but can be a source of error. Oversampling can distort
a class pdf and undersampling can increase uncertainty. He and Ma present
a nice discussion of these issues in “Imbalanced Learning”[39].
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Use a common data set. Natural language studies often test on common corpora.
For more general use, there are University of California, Irvine’s Machine
Learning Repository and the KDD repository [30, 63]. This approach is ef-
fective, but in dynamic problem domains, the data sets can cause results to
lose relevance rapidly. CPD test results are test set sensitive. Regardless of
the stakeholder being a researcher, developer or end user, this sensitivity
must be taken into account.

Use ratio+ invariant summary statistics. These summary statistics avoid the risks
associated with creating balanced test sets and allow results to be based on
relevant test sets. This dissertation is about summary statistic efficacy; the
challenges of this approach is the focus of this chapter section (5.1.1).

Gary M. Weiss, author of Chapter Two in “Imbalanced Learning”[39], concludes
that the underlying issue is lack of knowledge about the lesser class, particularly
regarding rare events. This deficiency is endemic to the problem domain; the
effectiveness of all class imbalance mitigation strategies are limited as a result.

Receiver operating characteristic area under the curve (ROC-AUC) The re-
ceiver operating characteristic has a solid history. Swets campaigned diligently
to establish it as the evaluation criterion of choice [84, 85, 86]. The {TPR, FPR}
summary statistic suite is the basis for the ROC-AUC summary statistic. The title
originates from the fact that it is the area under a “ROC curve’, a curve defined by
false positive (FPR = F+/Y) and true positive (TPR = T+/Y) rates. These val-
ues are calculated from JPTs of CPD output for a number of boundaries across the
observed range, then graphed as the ROC curve [27, 43]1. ROC-AUC is measured
in the interval [0.5, 1.0].

In contrast to the other summary statistics reviewed, ROC-AUC is gener-
ally accompanied by the ROC curve. (Indeed, the ROC curve may be presented
without providing ROC-AUC.) To a person skilled in the art, the ROC curve pro-
vides a great deal more information regarding CPD performance than does the
single value ROC-AUC summary statistic2. (This is, of course, true for any sum-
mary statistic suite, since consolidation of multiple values into a single summary
statistic value means that information is lost.)

There are numerous ROC-AUC variants [54, 89]. Vanderlooy and Hüllermeier
determined in their comparison, that despite intuitive appeal, none of the vari-
ants confer any CPD selection improvement. From the end user perspective,

1There is a similar summary statistic the “Detection Error Tradeoff” (DET) [58]. DET plots the
missed detection rate instead of the correct detection rate on the y axis. Since the two values are
each other’s complement, comments herein regarding ROC apply equally to DET. Interestingly,
DET is plotted using log scales. This is a real challenge for summary statistics with a lower bound
of zero.

2Since all of the inherently ratio+ invariant summary statistics studies have {TPR, FPR} as
summary statistic suites, the ROC curve could be presented for each of them as well.
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(a) As class sizes diverge, the ROC curve inflec-
tion point moves closer and closer to (0,1), thus
driving the ROC-AUC toward 1. This is signif-
icant; a classifier with a ROC curve that runs
linearly from (0,0) to (1,1) (ROC-AUC = 0.5)
has an accuracy rate equivalent to random se-
lection and a classifier represented by a ROC
curve that passes through (0,1) (ROC-AUC =
1.0) is perfect. Thus as the ROC curve inflec-
tion point approaches (0,1), classifiers appear
more accurate. ROC curves exhibit an unex-
pected sensitivity to class divergence. Hence,
the ROC-AUC may overstate a classifier’s ac-
curacy under certain conditions.

(b) Probability theory, specifically, the strong
law of large numbers, predicts that normal-
ization will increase uncertainty. This is cer-
tainly true for the ROC-AUC. The 90% confi-
dence intervals in this graph (the vertical bars
at each observation point) of the ROC-AUC vs
ratio+ shows how the ROC summary statis-
tic becomes increasingly uncertain as ratio+ in-
creases. The graph also shows how the ROC
starts to overstate classifier quality (the ROC-
AUC increases).

Figure 5.1: These figures provide two views on how ROC-AUC is affected by class
divergence. Historically, the ROC (and summary statistic ROC-AUC) have been
a standard classifier assessment protocol. This figure shows that class divergence
may cause ROC-AUC to overly optimistically report classification effectiveness,
while simultaneously incurring a substantial increase in the confidence interval.

since the underlying summary statistic units remain the same, they all have the
same limited efficacy.

The ROC-AUC has been criticized on more theoretical terms recently [37,
38, 52]. David J. Hand, the main proponent of the issue states

“. . . when interpreted in terms of a balance of the relative costs of
the two kinds of misclassification, the AUC is incoherent in the sense
that it requires that the relative costs of the two kinds of misclassifica-
tion differ from classifier to classifier [38].”

However, because it is boundary and ratio+ invariant, the ROC-AUC is a valued
tool in this research environment. Figure 5.1a illustrate how the summary statistic
is ratio+ invariant: it’s values change very little. Figure 5.1b shows that AUC’s ra-
tio+ invariance does not defy the strong law of large numbers; below ratio+ = 26,
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the ROC-AUC exhibits invariance, however, above 26 (|Y| < 400), the median
ROC-AUC tended to overstate classifier quality in my tests3. I also observed
that the 90% CI increased markedly as class divergence increased4. ROC-AUC
is boundary invariant, so it cannot be used to identify the optimum boundary or
boundary sensitivity.

The ROC-AUC has value for researchers. How does ROC-AUC fare for
end user efficacy?

What question does the summary statistic quantify? The ROC-AUC has been de-
fined as the probability that, given one each, randomly chosen elements of
class Y and class Y, a classifier will rank the class Y instance higher than
class Y one (assuming Y ranks higher than Y) [27]. From the end user’s
perspective, there are two difficulties: i) the probability has nothing to do
with actual classification and ii) the observer needs a priori knowledge of
the instance’s ground truth. If the end user already knows ground truth,
then the CPD is unnecessary.

Is the summary statistic measured on a ratio scale? ROC-AUC is bounded within
the interval [0.5, 1.0], so it does not have a meaningful zero, nor does it have
a standard interval. ROC-AUC is measured on an ordinal scale; impact is
out of scope.

Does the summary statistic exhibit boundary sensitivity? ROC-AUC is bound-
ary invariant, so it can’t be used to identify the optimum boundary.

For end users, ROC-AUC has vanishingly little value.

Youden index (J) The Youden index (traditionally represented by J) was pro-
posed in 1950 and is seen in medical diagnostic studies [97]. There are a number
of expressions of J. The original is

J =
1
2

[
T+ − F+

T+ + F+
+

T− − F−
T− + F−

]
.

3A test series wherein I varied |S| showed that ratio+ the observed invariance failure was a
function of |X|, not ratio+.

4This turns out to be a function of the absolute size of the smaller class and is a consequence
of the Strong Law of Large Numbers. As class sample size decreases, its representation of the
source population decreases. The problem is that as sample size decreases, distribution tails lose
their definition. When a sample size is magnified by JPT normalization, the undefined tails do not
reappear, thus causing the sample to represent a source population with a smaller variance. This
means the class overlap is under-represented. Since process accuracy is inversely related to class
overlap, a reduction in estimated class overlap will result in process accuracy over-estimation. In
my tests, the difference became statistically significant when sample sizes fell below four hundred
members.
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Perhaps a more common representation is

J = sensitivity + speci f icity− 1, where

sensitivity =
T+

Y
and specificity =

T−
Y

.

Further, sensitivity is also known as the true positive rate (TPR) and specificity is the
complement of the false positive rate, specificity = 1− FPR = 1− F+/Y. Hence an
even simpler (thus better, according to the Minimum Description Length princi-
pal) definition would be

J = TPR− FPR. (5.1)

In this form, the Youden Index can be taken to be a summary statistic of the suite
{TPR, FPR}.

J is special in that J = 0 indicates a CPD with an output equal to that of
tossing a fair coin. J = 1 with a perfect CPD and J = −1 for a CPD that mis-
classifies everything. Practically, J is measured on the interval [0, 1.0]. As noted
in their respective literature bases, J shares a characteristic with ROC-AUC, in
that it is insensitive to ratio+. This can be seen in Figure 5.2.

Figure 5.2: The Youden Index has a very uniform shape and the optimum bound-
ary lies along the peak of the Youden Index ridge. This exhibits the expected
ratio+ invariance.

J’s sensitivity to ratio+ and pdf are presented in Figures 5.3 and 5.2. How
does it fare for end user efficacy?

What question does the summary statistic quantify? J quantifies the spread be-
tween the TPR and FPR — this is not actionable information for end users.
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(a) Beta (0.2,0.8) (b) Beta (0.8,8.0)

(c) Gamma (d) Extreme Value

(e) Beta (1.5,5.0) (f) Normal (g) Cauchy

(h) Uniform (i) Beta (1.5,1.0) (j) Beta (0.8,0.8)

Figure 5.3: The Youden index optimum boundary is sensitive to pdf, and its
optimum boundary is consistent with other summary statistics so it provides ac-
tionable information to end users. J’s optimum boundary sensitivity may not be
actionable for end users.
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Is the summary statistic measured on a ratio scale? J is measured on the inter-
val [−1, 1]. It’s zero may be meaningful in some cases, but not the general
case, nor does it have a standard unit. The Youden index is measured on an
ordinal scale; impact is out of scope.

Does the summary statistic exhibit boundary sensitivity? The Youden index ex-
hibits boundary sensitivity. In fact, the sensitivity is equivalent to TAR,
when ratio+ = 1. This equivalence is discussed in section 5.1.3.

Diagnostic odds ratio and discriminant power (DOR/DP) Two related sum-
mary statistics are the diagnostic odds ratio (DOR) [32] and Discriminant Power(DP)
[5]. Diagnostic odds ratio (DOR) is defined as

DOR =
T+
F−
F+
T−

,

where T+
F− =True Positive Odds (TPO) and F+

T− =False Positive Odds (FPO). After
simplification,

DOR =
T+T−
F+F−

Discriminant power(DP) is defined as

DP =
√

3
π

(logX + logW),

where
X =

sensitivity
1− sensitivity

and Y =
specificity

1− specificity
.

Recasting the equation yields

DP =
√

3
π

log
(

T+T−
F+F−

)
.

The derivation is provided in Appendix B. Comparing the two summary statis-
tics,

DP =
√

3
π

log(DOR).

DOR and DP are found in medical research. DOR is measured in the in-
terval [0.0, ∞], DP is measured in the interval [−∞, ∞]. Interestingly, DP = −∞
and DOR = 0 when either T+ = 0 or T− = 0, both need not equal zero. Similarly,
DP = ∞ and DOR = ∞ when either F+ = 0 or F− = 0, both need not equal zero.
Hence a CPD can classify some observations correctly (Total Accuracy > 0), yet
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(a) Contour graph of ratio+ vs. boundary vs.
DOR value. Scaling makes the summary statis-
tic seem somewhat ratio+ sensitive. However,
Graph 5.4b shows DOR is actually ratio+ in-
variant.

(b) Graph of ratio+ vs. DOR, with error bars.

Figure 5.4: Instead of the optimum value being maxima, like the other sum-
mary statistics evaluated, the optimum DOR value is a minimum. Hence, the
contours show a valley instead of a ridge. Also contrary to the other summary
statistics, DOR decreases when the absolute class size effect becomes noticeable.
This means that the contours are closed, instead of open like the others. DOR’s
vertical optimum boundary line and constant value (seen in Graph 5.4b) indi-
cates DOR. (and hence, DP) is ratio+ invariant. DOR/DP optimum boundaries
(approx. 1.2) are offset from the optimum boundaries seen in the other ratio+ in-
variant summary statistics (approx 1.4). DP, the log form of DOR, has the same
characteristics as DOR.
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(a) Beta (0.2,0.8) (b) Beta (0.8,8.0)

(c) Gamma (d) Extreme Value

(e) Beta (1.5,5.0) (f) Normal (g) Cauchy

(h) Uniform (i) Beta (1.5,1.0) (j) Beta (0.8,0.8)

Figure 5.5: Graphs showing DOR’s boundary sensitivity to pdf.
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have DP = −∞ and DOR = 0. This is counter intuitive, since one would ex-
pect DP = −∞ and DOR = 0 to indicate a totally ineffective CPD and DP = ∞
and DOR = ∞ to indicate a perfect CPD, rather than something in-between. In
medical studies, when the event tested for (T+) has a low probability, DOR ap-
proximates relative risk: the rate at which the event was observed in group X
versus the rate it was observed in group Y. This is valuable information. How-
ever, when applied in the more general CPD domain, there is a problem. In any
specific CPD task, the category of interest may not have a sufficiently low proba-
bility T+, thus the approximation may not always be acceptably close.

Unfortunately, DOR and DP have a challenging sensitivity to boundary;
the optimum boundary is indicated by min(DOR) (or min(DP)). Thus for any
test run, the boundary with the smallest T+T− relative to F+F− gives the best
accuracy. Not only is this counter intuitive, but also a potential error source. The
problem originates from the fact that the greater the min(DOR) (or min(DP)),
the better the results. Thus, if the boundary used to partition the test output is
not at the optimum boundary, the results may appear better than they really are5.
Most observations regarding DOR apply to DP as well. For example, DP = 0
when T+T− = F+F−.

Another worrying characteristic is seen in Figure 5.5g. In the distributions
tested, B∗(DOR) were minima in all but the Cauchy. With the Cauchy distri-
bution, DOR exhibited two minima. As an indicator of CPD quality, multiple
optima are acceptable. However, the minima seen in Figure 5.5g do not seem
to indicate CPD quality. Instead, the maximum near boundary point 500 seems
to indicate CPD quality. This is a challenging situation. If a stakeholder is us-
ing DOR to compare two CPDs, care must be taken. Are the observed B∗(DOR)
maxima or minima? DOR and DP’s sensitivity to ratio+ and pdf are presented in
Figures 5.5 and 5.4.

One important characteristic of DOR and DP is that they are ratio+ invari-
ant. An important difference between DOR/DP and the other ratio+ invariant
summary statistics is that their optimum boundaries, although constant in my
tests, are offset from the “minimum error boundary”. These effects can be seen
in Figure 5.46. Since DOR and DP are minima, they follow a valley in the contour

5DOR and DP are seen frequently in medical studies. In this problem domain, the inappropri-
ate boundary risk may not always be present. The risk would exist in a study of heart attacks vs.
cholesterol levels; cholesterol level is a continuous variable. However, in a study of heart attacks
vs. family history, family history could be binary (a close relative died/did not die). In this type
of test, boundary sensitivity is not an issue; care must be taken, however, in test design. Just by
changing the test to a count (“How many close relatives died/did not die”, for instance) causes
the problem to re-appear.

6DP and DOR are measured on different scales than the other summary statistics. In order to
facilitate comparison, DOR was converted from an “odds ratio” type summary statistic (bounded
by [0, ∞]) to a “probability” type summary statistic (bounded by [0, 1]). The relation between the
two forms is

probability measure = 1− 1
odds measure + 1

.
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graph, instead of a ridge, Also contrary to the other summary statistics, DOR de-
creases when the absolute class size effect becomes noticeable. This means that
the contours are closed, instead of open as seen for the other summary statistics.
DOR’s vertical optimum boundary line and constant value (seen in Graph 5.4b)
indicates DOR (and hence, DP) are ratio+ invariant.

DP’s and DOR’s observed optimum boundary differs from the optimum
boundary for the other ratio+ invariant summary statistics tested. Because of this
boundary bias, they may not be useful for selecting boundaries. For example, in
my test environment, TAR at the common optimum boundary is 0.994, TAR at
DOR’s optimum boundary is 0.958; the difference is significant at the 95% confi-
dence level.

How do DP and DOR fare for end user efficacy?

What question does the summary statistic quantify? Since T+ and T− are (sta-
tistically) independent7, (as are F+ and F−), DP and DOR could, in a proba-
bilistic sense, be interpreted as quantifying the odds that, given two random
observations, one will be classified T+ and the other T− rather than one be-
ing classified F+ and the other F−. As with ROC-AUC and J, this value does
not seem actionable information. Thus DOR and DP seem to be relevant in
niche CPD scenarios, but not to general CPD problem types.

Are the summary statistics measured on a ratio scale? Although DOR is meas-
ured in the interval [0.0, ∞] and DP is measured in the interval [−∞, ∞],
their zeros are not meaningful. DOR does have a standard unit; DP, being
a log function, does not. DP and DOR are not measured on a rational scale,
so they cannot quantify end user impact.

Do the summary statistics exhibit boundary sensitivity? These summary statis-
tics are boundary sensitive. However, they are not internally consistent.
Sometimes, min DOR and min DP are optima and (as seen in Figure 5.5g),
maxima are optimum.

5.1.2 Measuring CPD’s intrinsic characteristic

Ideally, a CPD’s output matches ground truth perfectly. Rarely, however,
are the two identical — the CPD model does not describe its input completely.
Intuitively, the match between a CPD’s output and ground truth has the ring of
being a CPD’s intrinsic characteristic. Two concepts, one from statistics (correla-
tion), the other from information theory (mutual information), seem to quantify
the agreement between ground truth and a CPD’s model. Both have been applied
to CPD problems.

7Independence is a highly overloaded term. In this context, it means that any change to T+
will not affect T−.

30



Matthews correlation coefficient (MCC) The Matthews Correlation Coefficient
(MCC) was introduced by B. W. Matthews [59]. In a subsequent classifier sum-
mary statistic survey, Baldi, et al. restated the summary statistic in the form com-
monly seen today [3]:

MCC =
(t+ ∗ t−)− ( f+ ∗ f−)√
|Y| ∗ |Y| ∗ |Z| ∗ |Z|

. (5.2)

MCC is the application of Pearson correlation coefficient to CPD evaluation and
is a summary statistic of the similarity between ground truth and CPD output.
MCC is measured across the interval [−1, 1]. When MCC= 0, the CPD is as ef-
fective as a fair coin; MCC= 1 when ground truth and the CPD output are in
complete agreement. Consequently, MCC’s practical range is [0, 1.0].

Actual target classification Y Y

Test Positive T+
Y

F+
Y

Result Negative F−
Y

T−
Y

Normalized totals 1 1 2

Table 5.2: The expressions in this JPT normalize the category values.

Although not mentioned explicitly in Matthews’ work, Baldi et. al. notes
that the equation requires normalized distributions:

a− a
σA

, where a ∈ {A},

A = {a1, a2, a3, . . . , as} is the class of the input data set (Y or Y in my lexicon)
and s = |A|. a is the mean of A. A is treated in the same manner. One effect of
distribution normalization is class size equalization: ratio+ = 1 (This is discussed
in Chapter 6). Table 5.2 shows the expressions used to generate normalized JPTs;
class size equalization is indicated by the ones in the “normalized totals” row.
To demonstrate Matthews initial intent to use normalized distributions, I recal-
culated Matthews, et al.’s original results using both actual and normalized JPTs.
The values using normalized JPTs matched Matthews results; the values using
actual JPT values varied from Matthews reported values by approximately a fac-
tor of twenty. Thus, MCC, when introduced, was intended to be calculated on
normalized JPTs.

The JPT normalization pre-requisite applied by Matthews, et al. and noted
by Baldi, et al. seems to have been lost, although the belief that MCC is ratio+ in-
variant persists [8, 9, 12, 20, 31, 44, 50]8. As a consequence, Baldi, et al.’s equation

8A Google Scholar search for “Matthews correlation coefficient” turned up well over one thou-
sand articles. The publications cited are but a small sample.
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(a) MCC exhibits ratio+ sensitivity on non-
normalized JPTs.

(b) On normalized JPTs, MCC exhibits ratio+
invariance. The increasing boundary curva-
ture when ratio+ > 26 is a JPT normalization
artifact explained in Chapter 6.1.3.

Figure 5.6: If MCC inputs are not normalized, it is ratio+ sensitive.

is sometimes applied without first normalizing the JPTs. Two of these reports,
Cannon, et al. [8] and Mirceva, et al. [31] include JPTs. Upon recalculating their
results, I determined that the values presented were based on non-normalized
JPTs. In both cases, there were substantial differences between the results on nor-
malized and non-normalized JPTs. In the Cannon, et al. results, the difference
affected not only the values, but also the process rankings. Using normalized
JPTs, the process ranked last by Cannon, et al., (MOLPRINT) moved into the up-
per fifty percent of processes tested. Having rankings of processes substantially
change due to such changes could result in selection of a sub optimal process for
use in real-world settings.

Figure 5.6 shows how normalization impacts the ratio+ sensitivity for MCC.
Graph 5.6a shows MCC’s response when the raw JPT values are used. The peak
boundary (indicated on the graph by the dashed line) shifts as ratio+ varies and
the value decreases as ratio+ increases (indicated by the sloping dashed line that
intersects the contours). In contrast, Graph 5.6b shows that with JPT normaliza-
tion, the peak boundary and calculated optimum MCC value are fixed (indicated
by a vertical dashed line and contours that do not intersect the peak boundary).
Exactly the same data sets were used for both graphs; the only difference is the
presence or absence of JPT normalization.

Comparing MCC results is complicated by the fact that the published re-
ports I surveyed did not identify whether or not the MCC values reported were
on normalized JPTs. As seen in Figures 5.6a and 5.6b, comparing results across
tests where ratio+ is not normalized could lead to errors. Since ratio+ affects the
optimum boundary when raw JPTs are used, a simple correction of reported val-
ues by recalculating MCC on normalized JPTs will most probably be for a sub
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Figure 5.7: The sloped dotted line on the contour graph shows that IC is not
ratio+ invariant.

optimal boundary, thus the corrected MCC value will also be sub optimal9. In
this section, I characterized MCC using non-normalized data. Appendix C de-
rives a ratio+ invariant MCC expression. MCC’s sensitivity to ratio+ and pdf are
presented in Figures 5.6 and 5.8.

Given that MCC does quantify CPD’s intrinsic characteristic, when calcu-
lated on normalized JPTs, the summary statistic appears to be valuable for re-
searchers. How does it fare for end user efficacy?

What question does the summary statistic quantify? MCC quantifies the simi-
larity between ground truth and CPD output.

Is the summary statistic measured on a ratio scale? MCC does have a meaning-
ful zero. However, since it is measured in the interval [−1, 1], it is not a ratio
scale summary statistic. MCC is measured on an ordinal scale; impact is out
of scope.

Does the summary statistic exhibit boundary sensitivity? MCC is sensitive to
both ratio+ and pdf. Surprisingly, on the uniform distribution, it is bimodal.
This characteristic is discussed in Chapter 9.4.

Mutual information coefficient (IC) Rost and Sander introduced an informa-
tion theory-based summary statistic into the literature in 1993 [70]. It was subse-
quently included in a summary statistic comparison by Baldi [3]. Since then, it

9Using the results shown in Figures 5.6a and 5.6b as an example, if a test was run on a sample
with ratio+ = 28 on raw JPTs, the MCC ' 0.33 and B∗ ' 1.1. Recalculating MCC for the normal-
ized JPT observed at ratio+ = 28 and B∗ ' 1.1, results in MCC < 0.69. However, the actual peak
is MCC > 0.85.
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(a) Beta (0.2,0.8) (b) Beta (0.8,8.0)

(c) Gamma (d) Extreme Value

(e) Beta (1.5,5.0) (f) Normal (g) Cauchy

(h) Uniform (i) Beta (1.5,1.0) (j) Beta (0.8,0.8)

Figure 5.8: Graphs showing MCC’s boundary sensitivity to pdf.
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(a) Beta (0.2,0.8) (b) Beta (0.8,8.0)

(c) Gamma (d) Extreme Value.

(e) Beta (1.5,5.0) (f) Normal (g) Cauchy

(h) Uniform (i) Beta (1.5,1.0) (j) Beta (0.8,0.8)

Figure 5.9: Graphs showing IC’s boundary sensitivity to pdf.
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has gained some traction in biological literature [15, 45, 47, 53, 61, 66, 80, 81, 94]
and been seen in network management literature [29]. The summary statistic is
sometimes called the information coefficient or mutual information coefficient; I
use the acronym IC. IC is measured on the interval [0, 1.0]. IC quantifies the pro-
portion of full knowledge an observer has of ground truth, given the target CPD
tool’s output.

As explained by Baldi, et al., IC is the mutual information (I) contained in
ground truth regarding the test set S (Y ∪ Y) and the CPD prediction of ground
truth, as contained in Z ∪ Z. Normalized by the entropy in ground truth (H):

IC =
I(Y ∪Y, Z ∪ Z)

H(Y ∪Y)
.

Expressing I and H in terms of JPT categories,

I(Y ∪Y, Z ∪ Z) = −H
(

T+

N
,

F+

N
,

F−
N

,
T−
N

)
− T+

N
log(|Y| ∗ |Z|)− F+

N
log(|Y| ∗ |Z|)− F−

N
log(|Y| ∗ |Z|)− T+

N
log(|Y| ∗ |Z|),

(5.3)

where

H
(

T+

N
,

F+

N
,

F−
N

,
T−
N

)
= −T+

N
log

T+

N
− F+

N
log

F+

N
− F−

N
log

F−
N
− T−

N
log

T−
N

.

Some reports indicate the belief that the summary statistics are ratio+ in-
variant [53, 66, 94]. Solis and Rackovsky note that their particular information
theoretic summary statistic may not be ratio+ invariant [80]. The belief that in-
formation theoretic summary statistics are ratio+ invariant comes from the fact
that information theory applies to probability density functions, which are al-
ways normalized (ratio+ = 1) [17, 96]. Unless JPTs are normalized prior to use,
IC and related summary statistics cannot be guaranteed to be ratio+ invariant.

Like other summary statistics, IC compares target CPD output to a CPD
using random classification. However, it differs in that IC is based on the entropy
existing in the test set and CPD output. If the input and output are the same,
then IC = 1; if the output of the process is equivalent to random selection, then
IC = 0. A side effect of IC’s use of logs is increased computational complexity. All
of the other summary statistics evaluated have a complexity of O(N), IC is O(N2).
This may limit IC’s utility for large data sets. IC’s computational complexity did
affect my analysis. Had I calculated IC on the two hundred thousand element test
sets used for the other summary statistics, it would have taken approximately
six months. Consequently, I tested IC on twenty thousand element test sets. In
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Figure 5.7, I can see that the peak boundary shifts as ratio+ increases, thus IC is
not ratio+ invariant. As with the other ratio+ sensitive summary statistics, JPT
normalization, can confer ratio+ invariance.

For the most part, IC’s optimum boundary are consistent with the other
summary statistics. However, MCC and IC are bimodal with a uniform distribu-
tion (Figure 5.8h). Potential implications of this behavior are discussed in Section
9.4. IC’s sensitivity to ratio+ and pdf are presented in Figures 5.7 and 5.9. How
does it fare for end user efficacy?

What question does the summary statistic quantify? IC quantifies the propor-
tion of full knowledge an observer has of ground truth, given the target
CPD tool’s output.

Is the summary statistic measured on a ratio scale? IC is measured on the inter-
val [0, 1.0], so it is measured on an ordinal scale; impact is out of scope.

Does the summary statistic exhibit boundary sensitivity? IC is sensitive to both
ratio+ and pdf. Surprisingly, on the uniform distribution, it is bimodal. This
characteristic is discussed in Chapter 9.4.

5.1.3 Tailoring to an end user’s interest

So far, I have considered summary statistics mitigating an extrinsic fac-
tor confounding CPD comparisons by researchers (Section 5.1.1) and summary
statistics quantifying a CPD’s “intrinsic” characteristic (Section 5.1.2). The third
summary statistic creation strategy is addressing the end user’s need. In a poorly
posed form, end users want to know “how well with this CPD work for me?”.
This section considers two solutions to that question.

Total accuracy rate (TAR) In the general case, one would expect maximizing
correct classifications to be the goal for end users. Based on that assumption,
an intuitive summary statistic would simply be a matter of measuring correctly
partitioned targets in the test data and reporting the percent-correct. (An equiv-
alent strategy would measure the incorrectly partitioned targets and report the
percent-error.):

Total Accuracy Rate (TAR) =
t+ + t−
|S| .

TAR’s summary statistic suite consists of the accuracy rates for the two “True”
categories:

T+Accuracy =
t+
|S| ,
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(a) Beta (0.2,0.8) (b) Beta (0.8,8.0)

(c) Gamma (d) Extreme Value

(e) Beta (1.5,5.0) (f) Normal (g) Cauchy

(h) Uniform (i) Beta (1.5,1.0) (j) Beta (0.8,0.8)

Figure 5.10: Graphs showing TAR’s boundary sensitivity to pdf.
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Figure 5.11: Being the sum of the observed correct classifications. It is significant
that the dashed line, indicating the optimum boundary, is not vertical; this shows
that TAR is ratio+ sensitive.

T−Accuracy =
t−
|S| .

TAR’s sensitivity to ratio+ and pdf are presented in Figures 5.11 and 5.10.
Figure 5.11 shows TAR as boundary and ratio+ vary. The TAR contour ap-

pears to vary little and be relatively constant over a wide boundary range. The
optimum boundary (shown on the graph as the black dashed line) intersects the
x axis at around 1.45 and slopes toward 1.0. Additionally, the contour around the
optimum boundary flattens as ratio+ increases. The optimum boundary and the
reported accuracy rate both change as ratio+ varies. TAR is seen in the literature,
but often used as an example of a poor summary statistic. TAR is ratio+ sensi-
tive, a characteristic which is confounding for researchers. This topic will arise in
following chapters. How does it fare for end user efficacy?

What question does the summary statistic quantify? TAR quantifies the propor-
tion of correctly partitioned targets in the test data.

Is the summary statistic measured on a ratio scale? TAR is measured on the in-
terval [0, 1.0]. However, the zero is not meaningful for end users and it does
not have a standard unit, so is measured on an ordinal scale; impact is out
of scope.

Does the summary statistic exhibit boundary sensitivity? TAR exhibits bound-
ary sensitivity. In fact, the sensitivity is equivalent to J, when ratio+ = 1.
This equivalence is discussed in section 5.1.3.
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(a) Beta (0.2,0.8) (b) Beta (0.8,8.0))

(c) Gamma (d) Extreme value

(e) Beta (1.5,5.0) (f) Normal (g) Cauchy

(h) Uniform (i) Beta (1.5,1.0) (j) Beta (0.8,0.8)

Figure 5.12: Graphs showing Fβ-score’s boundary sensitivity to pdf.
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Fβ-score The summary statistic suite for Fβ-score is recall and precision, infor-
mation retrieval performance criteria put forth by Cleverdon as actionable in-
formation in that problem domain [14]. Recall quantifies a CPD’s completeness
(what is the probability that the desired observations in the database are correctly
identified). Precision quantifies what the probability is that undesired observa-
tions are mistakenly labeled as desired. Van Rijsbergen used precision and recall
as the basis for an effectiveness summary statistic [88]. Fβ-score is the complement
to Van Rijsbergen’s summary statistic and is now used in other problem domains.

Recall and precision correspond to the conditional probabilities P(T+|Y)
and P(T+|Z) (also known as “True Positive Rate” (TPR) and “Positive Predictive
Value” (PPV)). In the problem domain within which they were introduced (infor-
mation retrieval), these summary statistics quantify how well a CPD relates an
object to a concept, such as selecting a document based on keywords. Fβ-score is
defined as:

Fβ-score =
(1 + β2)(precision)(recall)
(β2)(precision + recall)

,

where β is the relative importance of precision and recall:

β =
importance of precision

importance of recall
.

Substituting for precision and recall and rearranging terms,

Fβ-score =
t+

t+ + β2

1+β2 f+ + 1
1+β2 f−

In information retrieval, irrelevant documents (T−) are valueless. Because of this,
Fβ-score excludes T−. What is important, is T+ and the degrading effects of error
(F+ and F−) on the results received by the end user. This is what Fβ-score quanti-
fies. One of the information retrieval system evaluation questions posed by Van
Rijsbergen is “is it worth it?”. Unfortunately, Fβ-score is measured in the interval
[0, 1.0], so is an ordinal scale summary statistic. Systems can be ranked, but the
intervals are not easily interpretable – “worthiness” cannot be determined.

In contrast to TAR, Fβ-score’s ratio+ sensitivity varies, depending upon the
category ignored (T+ or T−). The effect can be seen in Figures 5.13a and 5.13b.
Fβ-score is based on factors which information retrieval end users and researchers
seemingly agree are important. Even though it is ratio+ sensitive, it has become
a de facto standard in some CPD evaluation problem domains. Considering Fβ-
score’s end user efficacy, it is not clear what Fβ-score is quantifying. Fβ-score’s
sensitivity to ratio+ and pdf are presented in Figures 5.12 and 5.13.

How does it fare for end user efficacy?

What question does the summary statistic quantify? Fβ-score measures the de-
grading effects of error (F+ and F−) on the results received by the end user.
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(a) The relatively flat area around the optimum
boundary (black dashed line in the graph) with
low ratio+ suggests a low boundary sensitivity.
The ridge follows the same optimum bound-
ary as that of the total accuracy rate.

(b) If, instead of selecting T+, I select T−,
then Fβ-score looks remarkably similar to TAR
. Thus, Fβ-score quantifies the categorical pro-
cess’s effect on a specific category.

Figure 5.13: These graphs show that Fβ-score, a summary statistic commonly used
to compare CPD effectiveness, is ratio+ sensitive. This is a desirable characteristic
for problem domains such as information retrieval. In addition to ratio+ sensitiv-
ity, Fβ-score is also sensitive to the target class.

This is the problem in information retrieval, the domain for which Fβ-score
was created. Unfortunately, this is not impact.

Is the summary statistic measured on a ratio scale? Fβ-score falls within the in-
terval [0, 1.0]. It has a meaningful zero, but it does not have a standard unit.
Fβ-score is an ordinal scale summary statistic; impact is out of scope.

Does the summary statistic exhibit boundary sensitivity? Fβ-score is sensitive to
both ratio+ and pdf.
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5.2 Gap analysis

Summary statistic
TAR Fβ-score Youden MCC IC DOR AUC

Type III error avoided No No No No No No No
Ratio scale No No No No No No No
Boundary sensitivity Yes Yes Yes Yes Yes Yes No

Table 5.3: None of the summary statistics considered meet end user needs.

Statisticians have introduced a term useful in addressing summary statis-
tic efficacy: Type III error — getting the right answer to the wrong problem. End
user’s attempting to glean actionable information for CPD assessment are pre-
sented with Type-III results. As an example of the problem end users face, con-
sider ratio+ sensitivity. Two commonly seen summary statistics, total accuracy
rate (TAR), an intuitive summary statistic and the Fβ-score [88], have opposite re-
sponses to ratio+ [24]. The Fβ-score monotonically decreases as ratio+ increases.
Under the same conditions, TAR monotonically increases. It would seem that in
some problem domains, the summary statistic used (TAR versus Fβ-score) would
lead to contradictory conclusions. Table 5.3 summarizes the end user efficacy of
the summary statistics tested; none are end user efficacious.

This may seem a surprising state of affairs. However, perhaps it should not
be. From a purely academic perspective, the goal for many researchers is to char-
acterize the CPD performance independent of environment. Hence, a plethora
of environmentally insensitive summary statistics have emerged and summary
statistics have been tested for environmental invariance. For example, Sokolova
and Lapalme summary statistics used for CPD evaluation for invariance to vari-
ous JPT perturbations [79].

The situation may be the result of a more basic deficiency. I was blinded
by the absence of any framework for characterizing CPD problems. Without any
points of reference, how can one navigate? One supporting observation was how
similar problem domains, instead of converging on a common summary statistic,
may use dissimilar summary statistics. For example, intrusion detection and in-
formation retrieval are in many ways similar, yet ROC-AUC prevails in intrusion
detection and information retrieval generally uses Fβ-score. These two summary
statistics have very little similarity: ROC-AUC is class size imbalance and bound-
ary invariant, Fβ-score is neither. The two summary statistics also have differ-
ent theoretical foundations. Fβ-score is based on efficacy criteria for information
retrieval proposed by Cleverdon; ROC-AUC is based on the receiver operating
characteristic, a summary statistic originating in signal detection.

The gap, then, is the lack of a framework for characterizing CPD problems.
The lack of end user efficacious CPD evaluation summary statistics is a symptom
of that underlying deficiency.
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5.3 Bridging the gap

Having identified the root cause for the dearth of end user efficacious CPD
evaluation summary statistics, I now have the two end points for this disserta-
tion. The process has five milestones:

1. Identify key differentiators for CPD problems. It might be fair to state that
each end user’s need is, in some way, unique. However, uniqueness does
not imply a lack of useful common problem characteristics. Chapter 6 de-
velops the deliverable for this milestone.

2. Define Axioms for efficacious CPD evaluation summary statistics. Once key
differentiators have been identified, they can be applied to establish specific
performance indicators for efficacious CPD evaluation summary statistics.
Chapter 8 develops the deliverable for this milestone.

3. Develop Axiom-compliant CPD evaluation summary statistics. Given specific
needs for each problem type, two summary statistics that provide action-
able information and comply with the axioms are developed. Chapter 9
develops the deliverable for this milestone.

4. Test the efficacious CPD evaluation summary statistics. Re-analyzing published
results shows the actionable information previously unavailable to end users.
The increased summary statistic efficacy is shown in Chapter 10.

5. Determine the CPD evaluation summary statistics bounds. Creating a CPD
tool starts with the original idea, moves through a development process
and ultimately results in a mature, marketable product. This process has
been quantized into technical readiness levels. Chapter section 12.2 devel-
ops the deliverable for this milestone.

The end result will be an improved understanding of the CPD domain. This
knowledge leads to better summary statistics and summary statistic selection and
application.
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CHAPTER 6

END USER EXPLANATORY VARIABLES

Basic research is application agnostic. As a consequence, application-spe-
cific factors are confounding. In contrast, end users are concerned with how CPD
tools function for their specific application: application-specific factors are ex-
planatory / independent. This chapter identifies two end user explanatory vari-
ables and summarizes the means by which they are addressed in the summary
statistics reviewed. For each explanatory variable, practical considerations and
implications are presented, relative to two published CPD problems published in
the literature, Egyptian Bank loan decisions [1] and a medical diagnostic test [64].

6.1 The role of ratio+

What is ratio+ to the end user? In Chapter 5, some of the summary statis-
tics characterized were intentionally created to be ratio+ invariant, while others
were created without a concern for invariance. Does this imply that for some end
user problems, ratio+ is an explanatory factor and for others it is confounding? If
so, then how can the two problem types be differentiated? (Note that in the test
model presented in Figure 4.1, ratio+ and Pleading quantify the same environmental
characteristic.)

When could ratio+ be explanatory? One such situation arises where in-
dividual results are significant only to the extent to which they contribute to a
cumulative result. Consider a bank lending decision. The impact is cumulative,
with each evaluation activity contributing to the bank’s overall profitability. In
this case, relative class size (expressed as Pleading or ratio+ in this work) is impor-
tant. If the end user were to base a deployed classifier’s boundary on Pevent by
using a ratio+ invariant summary statistic (a summary statistic that could not
reflect the bank’s estimate of their lending environment), there would likely be
either excessive losses due to lending to unqualified borrowers, or unrealized
gain due to rejecting qualified borrowers. Cases of this type, where each individ-
ual outcome contributes to a cumulative result, require knowledge of both Pleading
and Pevent.

• Of the eight summary statistics reviewed, four are ratio+ sensitive: MCC,
IC, TAR and Fβ-score.
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• The opposite responses of TAR and Fβ-score to ratio+ suggests the existence
of other explanatory variables in the CPD problem structure. This is ad-
dressed in Section 6.2.

Actual target classification Y Y

Test Positive t+
|Y|

f+
|Y|

Result Negative f−
|Y|

t−
|Y|

Normalized totals 1 1 2

Table 6.1: The values in this JPT have been normalized. Normalization results in
equal class sizes (the totals both equal one).

When could ratio+ be confounding? One such situation is when individual
results are important and cumulative results are not. Consider a person tested
for rheumatoid arthritis (RA). Depending upon the physician’s office ordering
the test, the frequency of patients positive for rheumatoid arthritis (RA+) tested
could vary considerably. The example in Section 10 presents a case with two
physician’s offices. One was a general practitioner, where patients tested for RA
had a ratio+ of 0.01 (|RA+|/|RA−|). The other was a rheumatologist. In that
office, patients tested for RA had a ratio+ of 100 (|RA+|/|RA−|). If each office set
test boundaries to minimize their respective error rates, there would be a range
of test scores that would be classified differently by different offices. Clearly, both
diagnoses cannot be correct; a person cannot be simultaneously RA+ and RA−.
In this case, considering the physician’s ratio+ based Pleading does not minimize the
error for the patient: ratio+ is confounding.

Four of the summary statistics reviewed in this dissertation are ratio+ in-
variant: ROC-AUC, J, DOR and DP. As shown in Chapter 5, none are end user
efficacious. Fortunately, ratio+ invariance is NOT strictly a summary statistic
characteristic. It can be conferred by using an intermediate JPT representation:
a normalized JPT.

6.1.1 JPT tuning

In statistical circles, standardizing distributions is a well established tech-
nique. One effect of standardization is that the area under the probability density
function (pdf) equals 1. This simplifies pdf analysis, since the area of any segment
of the curve can be interpreted as the probability of an event occurring within the
bounds defined by that segment [11]. Similarly, distribution standardization fa-
cilitates pdf comparisons. In CPD analysis, distribution standardization takes
the form of tuning JPTs so that ratio+ = 1: JPT normalization. Table 1 shows a
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(a) Contour graph of normalized Accuracy
rate. The reader may note that, other than the
contour values, the graph is almost exactly the
same as the Youden Index graph.

(b) Contour graph of normalized F-score. As
with Youden Index and normalized Accuracy
rate, the optimum boundary follows the “min-
imum error boundary”.

Figure 6.1: The normalized Accuracy rate and Fβ-score seem to be relatively in-
variant to ratio+. Not only is the value relatively constant, but the boundary stays
constant as well.

JPT displaying “raw” data – actual category cardinality. After normalization, the
class totals (bottom row in the Table 6.1) are one. Thus, JPT normalization seems
to be a cause for ratio+ invariance in summary statistics. As such, it provides a
benefit to end users with problems where ratio+ is confounding: any JPT-based
CPD evaluation summary statistic will have output for ratio+ = 1 test data in-
put, if the input JPTs are normalized. (Illustrated in Figure 6.1). Although any
summary statistic can be ratio+ invariant when the JPTs are normalized, some
summary statistics have emerged which have intrinsic ratio+ invariance. These
inherently ratio+ invariant summary statistics all have {TPR, FPR} (ratios that
normalize the JPTs) as summary statistic suites, thus rather than being counter ex-
amples, they provide empirical evidence that JPT normalization is the root cause
for ratio+ invariance in summary statistics; a proof is beyond the scope of this
dissertation.

There is also a benefit for end users with ratio+ sensitive problems. Statis-
ticians use distribution standardization to mitigate ratio+ effects, however, the
process is reversible. JPTs with ratio+ = 1 can be “tuned” to any desired ratio+
simply by multiplying one class by a constant c so that cY

Y
equals the desired

value1. Thus, an end user with a ratio+ sensitive problem can adjust reported
results to fit their need. JPT tuning also allows end users to execute sensitiv-
ity analyses and estimate how the CPD will perform in their environment, over
the expected ratio+ range. These insights are applied to real-world problems in
Chapter 10.

1This expression does not require that ratio+ = 1 initially. With the exception of Y or Y equal-
ing zero, any JPT can be transformed (tuned) from one ratio+ to another.
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Source population
Y Y

Test Positive TPR FPR
Result Negative FPR = 1− TPR TNR = 1− FPR

Totals 1 1 2

Table 6.2: A normalized JPT has class sizes adjusted to one. The four classification
categories are expressed as proportions of the test set class of which they actually
are members.

However, the optimum boundary is ratio+ dependent, thus the tool is not
complete. To apply to all end users, results for all possible optimum boundaries
would need to be provided2. This is impractical, if not impossible for CPD test
reports to include. As illustrated in chapter 5, footnote 9, the tuned JPTs will
indicate trends, but cannot be considered definitive. Nonetheless, JPT tuning
extends JPT normalization in a way I have not previously seen in the literature
and provides end users with a valuable capability.

6.1.2 Practical considerations and implications

JPT tuning has value, regardless of whether an end user’s problem domain
is ratio+ sensitive or not. If the domain is ratio+ sensitive, such as banks making
loan decisions, then JPT tuning allows end users to adjust reported results to their
specific ratio+. If ratio+ confounding for the domain, such as a medical diagnosis,
then JPT tuning can normalize the test results (ratio+ = 1).

An important implication is that CPD evaluations are no longer tied to
inherently ratio+ invariant summary statistics. Hence, end users are free to use
any summary statistic that quantifies the characteristic of interest. This possibility
is further developed in this study.

6.1.3 Summary statistics with intrinsic ratio+ invariance

Although the ROC-AUC, Youden Index and DOR/DP are distinctly differ-
ent summary statistics, they all have one key similarity: normalized input. The
ROC-AUC and Youden Index both are (TPR, FPR) and since TPR and FPR are
conditional probabilities P(T+|Y) and P(F+|Y). Likewise, TNR and FNR are
conditional probabilities P(T−|Y) and P(F−|Y). If, in the JPT, I replace T+ by

2There may be a solution to this deficiency; I will investigate this in future work.
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Source population
Y Y Totals ↓

Test Positive cY ∗ TPR cY ∗ FPR Z
Result Negative cY ∗ (1− TPR) cY ∗ (1− FPR) Z

Totals cY cY N

Table 6.3: JPTs can be defined in terms of the TPR and FPR. cY and cY are the
class sizes in the test set.

TPR, F+ by FPR, T− by TNR, F− by FNR, then the marginal totals Y and Y
are replaced by 1s and N becomes 2. This is shown in Table 6.2. Since the two
marginal totals representing class size are equal, this process compensates for ra-
tio+: the CPD output JPTs have been normalized. In this dissertation, calculations
and discussion using the ratio+ invariant JPT form shown in Table 6.3 will refer to
“normalized” versions. Any discussions not referring to “normalization” are of
summary statistics using the “raw” JPT form as presented in the Lexicon, Table
1.

Regardless of the actual test set ratio+s, the input values for the ROC-AUC
and Youden Index incorporate JPT normalization. Although not as evident, this
is also true for DOR and DP. Any JPT can be defined in terms of the TPR and
FPR. This is illustrated in Table 6.3. Using Table 6.3 definitions,

DOR =
(cY ∗ TPR)(cY ∗ (1− FPR))
(cY ∗ (1− TPR)(cY ∗ FPR)

after simplification,

DOR =
TPR(1− FPR)
FPR(1− TPR)

.

Thus I find that DOR and DP are based on normalized JPTs as well.
DOR and DP do have one important difference from the other ratio+ in-

variant summary statistics (this includes TAR, MCC and Fβ-score on normalized
JPTs). Their optimum boundaries is not the same.

Figure 6.2 shows the optimum boundary vs. ratio+ for the normalized
TAR, normalized F1-score, normalized MCC, Youden index and DOR. As can be
seen in the Figure, DOR peaks at a different boundary than the other ratio+ in-
variant summary statistics tested and (excepting DOR) the optimum boundary is
relatively stable until ratio+ > 26, after which the detected optimum boundary
starts dropping rapidly3. Figure 6.2 supports my observation in Chapter 5 DOR
and DP should not be used to identify the optimum boundary.

3We noticed a similar effect on the summary statistic’s values. The values started becoming
overly optimistic (once again, excepting DOR, the values of which dropped). The cause turned
out to be a result of the Strong Law of Large Numbers. The effect became significant when class
Y’s size fell below 400 elements.
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Figure 6.2: This figure plots the optimum boundary for five summary statistics,
but seems to only have two lines. This is because all but DOR/DP identified
essentially the same optimum boundary. Hence, the upper line is an overlay of
plots for four separate summary statistics.

From the literature, I see that MCC is ratio+ invariant when calculated on
normalized JPTs. Presumably, other ratio+ sensitive summary statistics will be
ratio+ invariant when calculated on normalized JPTs as well. I tested this hy-
pothesis by calculating TAR, Fβ-score and MCC values on normalized versions.
Figure 6.3 displays the peak Accuracy rate and Fβ-score on normalized JPTs and
compares them to the output of the established ratio+ invariant summary statis-
tics, ROC-AUC, DOR4 and Youden Index. (DP, being just a log expression of
DOR. was left out.) The graphs are provided solely to compare their response to
ratio+. Any conclusions from Figure 6.3 beyond that must be made with care.

Figure 6.3 brings out some interesting insights:

• Confidence interval response to ratio+ seems to fall into two categories. All
of the normalized summary statistics (including ROC-AUC, Youden index,
DOR and DP) have relatively stable CIs below ratio+S = 26. Above ratio+ =
26, there is an observable trend away from the stable value. This is due to
an issue with absolute sample size resulting from the strong law of large
numbers. In my tests, the problem became statistically significant when the
smaller sample had less than four hundred members.
For normalized TAR, Youden Index, normalized Fβ-score and normalized
MCC, the 90% confidence interval generally increases as ratio+ increases.
Analyzing the CIs is difficult because (all but DOR) are measured on scales
with an upper bound, their scales are not linear. The CI changes observed,
however, are consistent with expectations. In general, as the positive class

4All of the other summary statistics are bound. In order to facilitate comparison, DOR. was
transformed from an “odds” format to the equivalent “probability” format.
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(a) Peak normalized Accuracy rate (90% CI). It
strongly resembles the Youden Index.

(b) Peak normalized Fβ-score (90% CI). It ex-
hibits the most ratio+ instability.

(c) Peak normalized MCC (90% CI). The ear-
lier similarity noted between MCC and Fβ-score
does not as strong on normalized JPTs.

(d) Peak Youden Index (90% CI). This sum-
mary statistic turns out to be related to the nor-
malized Accuracy rate.

(e) Peak ROC-AUC (90% CI). It appears some-
what less sensitive to absolute sample size.

(f) Best DOR. (90% CI). As ratio+ invariance
weakens, the DOR value drops.

Figure 6.3: The normalized summary statistics are ratio+ invariant, but a well-
known absolute sample size effect shows when ratio+ > 26. The effect was statis-
tically significant when |Y| < 400.
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size decreases, normalization magnifies any changes in T+ and F− far more
than normalization of the negative class makes offsetting reductions. (The
Positive class decreases by a factor of 214, while the Negative class increases
by a factor of less than 21.)

• Summary statistic families have been found in the summary statistics evalu-
ated. As discussed earlier, DOR and DP are related. The test also reveals a
similarity between the normalized Accuracy rate and Youden Index:

Youden Index = TPR− FPR

norm TAR =
TPR + 1− FPR

2
so that

norm TAR =
Youden Index + 1

2
. (6.1)

Thus I see that normalized accuracy rate and Youden Index are related.

• JPT normalization can inflate reported process accuracy. Each graph in Figure
6.3 exhibits ratio+ stability when ratio+ < 26. However, when ratio+ > 26,
ratio+ invariance seems to weaken. This turns out to be a function of the
absolute size of the smaller class and is a consequence of the strong law
of large numbers. As class sample size decreases, its representation of the
source population decreases. The problem is that as sample size decreases,
distribution tails lose their definition. When a sample size is magnified
by JPT normalization, the undefined tails do not reappear, thus causing
the sample to represent a source population with a smaller variance. This
means the class overlap is under-represented. Since process accuracy is in-
versely related to class overlap, a reduction in estimated class overlap will
result in process accuracy over-estimation. In my tests, the difference be-
came statistically significant when sample sizes fell below four hundred
members.
Violating the strong law of large numbers also affects the optimum bound-
ary. As the apparent source population variance decreases, the boundary
shifts toward that class. This can be seen in all of the contour graphs. In
order to increase ratio+, my protocol decreases |Y|. Y has the lower mean,
thus as ratio+ increases, the calculated optimum boundary starts shifting
toward µY. In my tests, when ratio+ > 26, the shift becomes statistically
significant.

6.1.4 Practical considerations and implications

JPT tuning is valuable to end users regardless of whether ratio+ is con-
founding or explanatory in their problem domain. If the domain is ratio+ sen-
sitive, such as banks making loan decisions, then JPT tuning allows end users
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to adjust reported results to their specific ratio+. If ratio+ is confounding for the
domain, such as a medical diagnosis, then JPT tuning can normalize the test re-
sults (ratio+ = 1). This mitigates ratio+’s effect on CPD problems where ratio+ is
confounding (as constrained by the strong law of large numbers).

An important implication is that CPD evaluations are no longer tied to
inherently ratio+ invariant summary statistics. Hence, end users are free to use
any summary statistic that quantifies the characteristic of interest.

Another valuable possibility is that JPT tuning enables sensitivity analysis
for CPD problems where ratio+ is explanatory. These possibilities are further
developed in this study, with examples in Chapter 10.

6.2 JPT category impact

While characterizing summary statistics in Section 5, I noted that two sum-
mary statistics which are based on end user interests, TAR and Fβ-score, differ in
their ratio+ sensitivity. As can be seen in Figure 6.4, when TAR monotonically
increases, Fβ-score monotonically decreases. Clearly, the two summary statistics
are answering different questions.

What is the factor that causes the differences observed between TAR and
Fβ-score? Comparing the TAR and Fβ-score equations, I see different treatments of
the four JPT categories. The most notable difference is with T−. TAR includes T−
and Fβ-score does not:

TAR =
t+ + t−
|S| while

Fβ-score =
t+

t+ + β2 f+
1+β2 + f−

1+β2

.

(a) When ratio+ increases, TAR
increases as well.

(b) When ratio+ increases, Fβ-
score decreases.

Figure 6.4: Although both TAR and Fβ-score reputedly address end user inter-
est, they exhibit different ratio+ sensitivities. This brings into question for what
problems are these summary statistics appropriate?
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Figure 6.5: As ratio+ increases, the optimum boundary shifts out the dominant
class’s tail. Classification accuracy of the dominant class improves, to the detri-
ment of the other class’s classification accuracy.

Also, the errors (F+ and F−) are discounted in Fβ-score’s denominator. These
differences have a significant effect. As Y increasingly dominates the test set, the
optimum boundary shifts out the tail of Y. The shift moves the optimum bound-
ary closer to the expected value of Y, increasing the number of Y elements in F−,
adversely affecting Y’s classification. The effect can be seen in Figure 6.5. The
TAR indicates the ratio+’s effect on overall accuracy, the Fβ-score only indicates
the change in Y’s accuracy. The Fβ-score originated as a summary statistic for in-
formation retrieval algorithm evaluation. In that problem domain, the value is in
the correct information retrieved (T+), there is no value in incorrect information
not retrieved (T−). Hence, considering category importance, it is reasonable that
T− be excluded. β allows end users to further tailor the Fβ-score to meet their
particular category importance combinations. Consequently, as ratio+ increases,
TAR monotonically increases and the Fβ-score monotonically decreases. The dif-
ference between TAR and Fβ-score, then, results from weighing the JPT categories
differently. TAR assumes all JPT categories have an equal impact on end users,
Fβ-score sets JPT category impacts as appropriate for information retrieval.

Based on these insights, I can now generalize impact. Considering the
individual test set elements, each element will have an impact (ι) on the end user.
Since all elements are placed into one of the four possible categories, a statistical
expectation (E) can be calculated for each category.

For each category, there is a gain or loss (positive or negative ι) associated
with each element output. ι will be tied to the JPT category, with each category
tied to a specific (not necessarily unique) quantity I = (ιT+ , ιF+ , ιF− , ιT−). Thus,
the expected effect on the end user of each and every element output will be
reflected by the element of I applicable to the category to which the element is
binned. (Typically, gains are viewed as positive values and losses are negative
values, although there are exceptions.) If the bin counts in a JPT are expressed
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as proportions as described in the Lexicon and there is a sufficiently large (i.e.,
statistically significant) |S|, then ι can be viewed in a number of contexts. From
the raw data, individual element impacts can be viewed: ιsn , ιyn , ιyn

, ιzn or ιzn (n
denotes the specific element of the source set, S, Y, Y, Z or Z). Impact can also
be expressed as statistical expectations (expected individual element impact) by cat-
egory or class, I = (ιT+ , ιF+ , ιF− , ιT−), where
ιT+ = ∑s∈T+ ιs/t+,
ιF+ = ∑s∈F+ ιs/ f+,
ιF− = ∑s∈F− ιs/ f−,
ιT− = ∑s∈T− ιs/t−,
ιZ = ∑s∈Z ιs/|Z| = ιT+ t+/|Z|+ ιF+ f+/|Z|,
ιZ = ∑s∈Z ιs/|Z| = ιF− f−/|Z|+ ιT− t−/|Z|,
ιY = ∑s∈Y ιs/|Y| = ιT+ t+/|Y|+ ιF− f−/|Y| and
ιY = ∑s∈Y ιs/|Y| = ιF+ f+/|Y|+ ιT− t−/|Y|.

TAR and Fβ-score are members of the same summary statistic (SS) family:

SS =
ιT+ t+ + ιT− t−

ιT+ t+ + ιF− f− + ιF+ + f+ + ιT− t−
. By applying different I vectors, (6.2)

TAR = SS|I(TAR) = (1, 1, 1, 1) and (6.3)

Fβ-score = SS|I(Fβ-score) = (1,
β2

1 + β2 ,
1

1 + β2 , 0). (6.4)

In essence, Fβ-score is a weighted TAR. Although heretofore unrecognized, impact
is already an element of some commonly seen summary statistics.

6.2.1 Practical considerations and implications

The impact vector I meets an essential end user need: tailoring CPD eval-
uations to their specific problem. In the bank loan decision problem,
I = {1.0,−0.01,−0.05,−0.01}, based on background information provided in
the study leveraged. The rheumatoid arthritis diagnostic test comparison set
I = {$0, $ − 7, 900, $ − 13, 000, $0}, using reported misdiagnosis costs. In both
cases, factoring I into the analysis provides insights not previously available.

This Chapter reports the first actionable insights for end users:

• End user problems can be partitioned into two types, those in which ratio+
is important and those in which it is confounding.

• JPT normalization can compensate for test set ratio+ on problems where the
characteristic is confounding.
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• JPT tuning can allow end users to adjust test outputs for different ratio+
conditions.

• Summary statistic values are influenced by their (often implicit) JPT cate-
gory impacts. Hence, end users need to assure that summary statistics used
have relevant JPT category impacts.

These insights will contribute to the other research outcomes.
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CHAPTER 7

CHARACTERISTICS OF A GOOD SUMMARY STATISTIC

Although measurement theory provides a foundation (such as defining
numbering systems and “necessary and sufficient conditions” for summary statis-
tics) [36, 69], there seems to be a dearth of literature on “what constitutes a good
summary statistic”. As a concept, quality has tended to be ill-defined; it would
seem that “goodness” is a somewhat elusive concept. This work’s goal is to iden-
tify efficacious summary statistics for end users. To that end, I looked at how
other problem domains defined “goodness”.

In engineering (which I am classing as a “hard” discipline), the criteria for
assessing the relative quality of tools used to quantify some material character-
istic seem to be be clearly defined. Soft disciplines, such as psychometry, have
struggled with understanding measurement; psychological characteristics (emo-
tions, for instance) are not so readily quantified. Nonetheless, the “soft sciences”
have some general understanding of “goodness”. In my review of the CPD as-
sessment discipline, any such discussions were very narrowly scoped; a generally
applicable framework was conspicuously absent.

Often, understanding principles used in different problem domains can
bring to light commonalities and suggest fruitful strategies elsewhere. Hence,
I start by identifying “good summary statistic” insights from “hard” and “soft”
disciplines as well as measurement theory.

7.1 Observations from soft disciplines

Soft sciences have addressed the good summary statistic issue. Their effort
has produced a framework, measure validity, to rank measurement tools [93].
The framework’s underlying ideas are useful:

• Utility Users are expecting to receive information relevant to their needs.
Hence defining stakeholders and their issues establishes a foundation for
quantifying a summary statistic’s usefulness (Utility is equivalent to effi-
cacy; I use both terms). This reinforces Cleverdon’s points.

• Quality Users need to know how much confidence can be placed on the in-
formation. Measure validity defines three ranked categories. The least reli-
able are based on conjecture — the summary statistics are “self-evident”,
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but have not had their effectiveness tested. Somewhat better summary
statistics are pragmatic — empirical experience has demonstrated that the
values can be mapped to the characteristic of interest, but the function relat-
ing them is unknown. The most reliable summary statistics both i) work in
practice and ii) apply underlying principles — they have a theoretical basis
which supports their use.

Utility and quality are not summary statistics. Rather, they are “good sum-
mary statistic” attributes identified by the soft sciences. Efficacy and quality are
sufficiently vague terms that they can be perceived as being virtually synony-
mous. However, quality in this context relates to the degree to which the under-
lying model or process(es) affecting a summary statistic’s values are understood
— and there is a close association between the two. This study’s topic is improv-
ing CPD evaluation efficacy by providing a means of selecting context relevant
summary statistics. Applying the three quality tiers given above, this study re-
sults in the highest quality summary statistics: i) it provides a theoretical basis
for proposed summary statistics in Section 9.1, ii) the summary statistic’s effec-
tiveness in practice are demonstrated in Section 10 [11, 42, 67].

7.2 Observations from hard disciplines

Although the soft sciences have struggled with understanding measure-
ment, “hard disciplines” such as engineering, seem to have settled on two spe-
cific summary statistics for process output quality: precision and accuracy. These
summary statistics have been widely and successfully applied to a wide range
of engineering measurement problems. CPD problems do not use measurement
in the engineering sense; the two problem domains are disjoint. Nonetheless, an
understanding of the characteristics that make precision and accuracy useful may
be mapped onto the CPD solution space.

David Hand defines precision and accuracy as:

• Precision: The degree to which multiple measurements are the same or sim-
ilar. (result uncertainty) This is often quantified with uncertainty measures
such as standard deviation and confidence interval.

• Accuracy: The degree of conformity of a measured quantity to its true value.
(result bias) This is often quantified by calculating the difference between
ground truth (the known true value) and a result centrality measure such
as mean or median [36].

I see four summary statistic attributes in precision and accuracy:

• They are useful and they provide information by which an end user can
make comparisons relevant to their problem.
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• They describe the process’s output set distribution. Engineering system
characteristics are generally assumed to be Gaussian (or normally) distributed
(N (µ, σ2)), so the precision can be mapped to the output’s standard devia-
tion (σ) and accuracy can be mapped to the bias between the sample popula-
tion’s expected value (x) and the domain’s true value (µ): accuracy = |µ− x|.
Using a non-parametric mapping, accuracy reflects the measure’s bias while
precision reflects the measure’s uncertainty. Given the precision and ac-
curacy describing an engineering measurement system’s output, someone
could create data sets consistent with actual output from that system.

• They are unrelated. Knowing an engineering system’s standard deviation
(precision) provides no insight into that system’s bias (accuracy); precision 6=
f (accuracy) and accuracy 6= f (precision). An engineering system can be
completely described by orthogonal summary statistics.

• They are quantified using ratio scales (a term coined by Stevens) [83]. It is
desirable for summary statistics to respond equally to system changes they
detect (a “standard sequence”1). Also, a ratio scale measure has a “mean-
ingful” zero2 [36].

7.3 Building the “good summary statistic” framework

Considering the user benefits derived from the soft and hard science good
summary statistic attribute lists, this section identifies good summary statistic
criteria for CPD evaluation. Comparing the two lists, we find there is only one
common attribute; efficacy. It is reassuring that such an intuitive criterion is com-
mon in both hard and soft summary statistics. It is, however, the only common
criterion. The balance of this section considers the disjoint criteria; Table 7.1 re-
caps the key points.

As mentioned at the beginning of this Chapter, CPD and engineering-type
summary statistics are disjoint problem domains. One characteristic where their
lack of similarity shows is metric independence. As previously noted, using the
engineering summary statistics precision and accuracy, it is possible to charac-
terize an engineering system with independent summary statistics. However,

1A detailed treatment of standard sequence is beyond the scope of this paper; those interested
are referred to measurement theory texts such as Hand [36]. In the context used here, the sum-
mary statistic must satisfy concatenation: (a + 1)x = ax + x, where x is some standard unit of
measure and a ∈ [0, ∞).

2This is important because ratio scales are capable of expressing magnitude as well as rank.
Temperature measured in degrees Kelvin is an example of a ratio scale. There can be no tem-
perature less than zero degrees Kelvin, and temperature effects are generally linear: f (n) will
yield a result that is one half of the same calculation using the temperature f (2n); temperature
measurements with the Kelvin scale exhibit linearity.
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with categorical problems, characterizing the system may require using depen-
dent variables. Of the four variables necessary to completely describe a system
state, two are fixed by the data set. Thus a CPD evaluation only controls two vari-
ables. As an example, let a JPT be defined by the four marginal totals, Y, Y, Z and
Z. Test result classifier output is expressed in the quantities Z and Z. No matter
what that test’s output is, it can never alter Y or Y 3. Since test result classifier out-
put consists of only Z and Z, the only other JPT value that can be derived is S; the
others require knowledge of the sample’s ground truth. Thus, it is not possible
to completely define a system state using only classifier output (Z and Z). Lim-
iting usable variables to those that are unrelated, results in an incomplete system
state description; requiring completeness forces the use of dependent variables.
Hence in the CPD problem domain, we can have either a complete system de-
scription, or all unrelated summary statistics, but not both. How do we choose?
What we learn from the engineering domain, however, is that there are two im-
portant summary statistic characteristics, bias and uncertainty4. So long as we
can quantify these two factors relevant to their problem domain, a stakeholder
has actionable information.

How is accuracy and precision expressed in CPD problems? Engineering
problems of the type discussed here have some sense of distance, a continuous
variable. This is not true of CPD problems. Instead, results are binned and the
discrete bin counts analyzed. The concept of precision still exists, however. It is
the rate at which observations are mis-classified; perfect precision (a zero bias;
the CPD model matches reality exactly) is equivalent to error-free test results. As
noted earlier, we are limiting this discussion to 2x2 JPTs. Problems so expressed
have two error types, F+ and F−. Quantifying precision requires that both error
types be accounted for, I consider both.

Precision’s definition stated earlier is related to the statistical concept of
uncertainty. In both engineering quantification requires repeated tests; the con-
cept maps directly to CPD problems. Uncertainty is quantified as the degree of
variation between test outcomes. An important point is that uncertainty is a test
characteristic, not a summary statistic characteristic, thus we can disregard it as
a good summary statistic criterion.

One feature inherent to CPD problems and absent in the soft and hard dis-
cipline’s discussion is classifier output sensitivity to boundary. JPTs are actually
snapshots of system performance at specific boundaries. The output classifier’s
tags shown in Figure 4.1 could be more fully labeled as Z and Z. Y and Y are
ground truth5, thus not influenced by boundary. The other JPT elements are
influenced by boundary, however, so could be more fully labeled Z(B), Z(B),

3The same case can be made for any other set of four JPT values sufficient to re-create the JPT.
Value sets can be transformed by solving linear equations.

4Quantifying bias and uncertainty are, to a great extent the motivation behind statistics.
5Ground truth is the presumed objective reality or “known good” values, derived from sources

or by means believed to be highly reliable.
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T−(B), T+(B), F−(B) and F+(B). The summary statistics we are considering can
all be expressed as f {Z(B), Z(B), T−(B), T+(B), F−(B), F+(B)}, thus we can see
that the summary statistics can also be expressed as f (B). For a practitioner, op-
timizing output from a system such as diagrammed in Figure 4.1 requires using
the optimum boundary; the boundary that maximizes impact for the end user.

The soft discipline’s perspective on summary statistic quality differs from
the hard discipline’s by focusing on the strength of a summary statistic’s tie to
the underlying model. In essence, the stronger the tie, the more confidence users
have in the results: quality is an expression of user confidence. Whereas precision
and accuracy are quantifiable, summary statistic validity’s “quality” characteris-
tic is qualitative. Despite the differences between the three summary statistic
characteristics, each is addressing the same user concern: “How confident am I
that my results are actionable?”. This study directly addresses summary statistic
validity. My hypothesis is that a summary statistic with strong validity will also
be demonstrably more efficacious than summary statistics with weak validity.

Sifting through the candidate good summary statistic criteria, we arrive at
three characteristics necessary for a “good CPD evaluation summary statistic”:
ratio scale behavior, efficacy and boundary sensitivity:

• Ratio scale behavior: Since JPT values consist of counts, it is impossible for
any category to have a negative value. Also, an empty bin (category count
equals zero) is meaningful, thus there is a meaningful zero. Also counts, by
definition, are standard sequences. Hence, ratio scale measures should be
possible.

• Efficacy: The information provided by the summary statistics must clearly
address the stakeholder’s problem. For each CPD problem type, we now
add the requirement that the summary statistic must quantify bias.

• Boundary sensitivity: If a summary statistic is boundary invariant, then it is
useless for labeling output from a CPD. Thus for the practitioner, boundary
sensitivity is essential.

Table 7.1 lists the specific criteria mined from the problem domains considered
and the final criteria determined to be relevant for CPD evaluation. The pur-
pose of this exercise was to identify candidate criteria. The designations “hard
disciplines” and “soft disciplines” were not intended to uniquely or completely
partition the universe of problem domains. Indeed, the partitioning has little, if
any, effect on CPD problem density; CPD evaluation problems can be found in
virtually all disciplines.

The four “good summary statistic criteria” gleaned from other problem
domains inform the efficacious summary statistic axioms defined for CPD evalu-
ation.
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Source
Candidate Soft Hard Final Relevant

Criteria Disciplines Disciplines Criteria Discussion

Efficacy X X X Four axia
Chapter 8

Quality X X Compliant Summary
statistics (Chapter 9)

Ratio scale X X X Measurement theory
Chapter 8.5

Uncertainty X — —

Bias X X Compliant Summary
statistics (Chapter 9)

Boundary X Axiom 2
sensitivity Chapter 8

Table 7.1: Of the candidate good summary statistic criteria considered, all but
one (uncertainty) are relevant to end users evaluating CPDs. Since these criteria
influence further work, the relevant discussions are mapped to the criteria.
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CHAPTER 8

FOUR AXIOMS FOR END USER EFFICACIOUS SUMMARY
STATISTICS

My intent is to improve the ability of end users to use CPD test results; effi-
cacious end user summary statistics of CPDs must reflect the CPD’s performance
in the end users environment and their problem’s context. There are many types
of performance. For instance, classifier speed, memory usage or CPU usage are
factors that might affect CPD efficacy. I focus on CPD output utility, the CPD’s
ability to approach the optimal response for an end user. In the previous sections,
I have identified some problem characteristics that can partition end user prob-
lems and three questions end users have about how a CPD tool will work in their
environment. I now express the insights gained as Axioms. After presenting each
Axiom, I evaluate seven commonly seen summary statistics’ compliance with the
Axiom.

8.1 Axiom 1, Category importance

An efficacious end user summary statistic must be sensitive to the same
factors and to the same degree as the end users are to their respective problems.
With regard to utility, the end user’s context is defined by the importance, or
impact, of elements from each JPT category on the end user. The axiom follows
directly from the previous discussion. A small change to any element of I will
generate corresponding changes in a compliant summary statistic. TAR and the
Fβ-score are examples discussed in Chapter 6.2. The response of these two sum-
mary statistics to the same input JPTs are distinctly different. The commonality
between TAR and Fβ-score leads to my first axiom.

Axiom 1 (Category importance) An end user efficacious summary statistic must be a
function of problem specific impact vector I = (ιT+ , ιF+ , ιF− , ιT−), where each element of
I ∈ Q.

A summary statistic that complies with Axiom 1 is sensitive to I. Thus end users
can tune the summary statistic output to match their particular problem.

None of the summary statistics I reviewed in Chapter 5 satisfy Axiom
1. The Fβ-score, conditioned by β, provides some ability to incorporate impact.
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However, since ιT− = 0 regardless of β, it fails. The other summary statis-
tics considered, TAR, Youden index, ROC-AUC, DOR/DP, MCC and IC do not
have a provision for setting impacts. Instead, all have fixed impacts: implicitly,
I = (1, 1, 1, 1).

8.1.1 Practical considerations and implications

The observations made in Chapter Section 6.2.1 are directly applicable to
this Axiom.

8.2 Axiom 2, Environmental sensitivity

In order to receive the greatest benefit from a deployed CPD, end users
need to identify and use the optimum boundary, as well as be able to estimate
the optimum impact and boundary sensitivity in their particular situation. In
Chapter 5, I evaluated summary statistic sensitivity to pdf; in Chapter 6.1.3, I
explored how the optimum boundary is sensitive to the ratio+. For the type of
CPD problems under consideration, optimum boundary is sensitive to both ra-
tio+ and class distribution shapes (pdf). Usually, pdfs are considered to have
equal areas under their curves, however, since end users are sensitive to ratio+,
I use the term “pdf” to indicate the problem appropriate relationship, either ob-
served, or normalized. It may be possible to identify a CPD problem where the
optimum boundary is not sensitive to input class pdfs. However, I contend that
one end user need is to identify an appropriate classifier boundary for their prob-
lem. Consider an end user environment with two classes, defined by f (µ, σ) and
g(µ′, σ′), where µ and µ′ are the distribution means and σ and σ′ are the distri-
bution standard deviations. Let the end user have optimum boundary B∗. If I
change both distributions by adding ∆µ to µ and µ′, then the optimum boundary
becomes B∗ + ∆µ and ι remains constant. There are myriad permutations that
can be made to this simple end user environment. Most will affect the optimum
boundary and/or ι; some will not. The point is that class distribution invariance
is not an end-user-efficacious summary statistic characteristic; end users are bet-
ter served by summary statistics that are class distribution sensitive.

As defined by Schaeffer, a pdf can be interpreted as the long-run relative
frequency of occurrence of outcomes resulting from a random experiment (in my
case, an experiment using test sample S drawn from pdf (S)) [73]. From such a
pdf, the expectation (E), or most common outcome can be calculated. From the
category definitions and Table 1 in Chapter 1, it can be seen that T+ and F− are
both unique subsets of Y; Y is similarly partitioned into unique subsets T− and
F+. Table 1 also shows that S = Y ∪ Y. The classification of each element of S
into Z and Z is determined by the boundary (B) used by the target CPD. Thus for
any given CPD processing multiple Ss, there will exist a long-run expected object
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count for each JPT category (E(JPT)). E(JPT) is a function of boundary and pdf (S)
(alternatively expressed as B, pdf (Y) and pdf (Y)). I will present an example where
pdf (S) is changed by varying pdf (Y). The example applies to pdf (S), regardless of
whether pdf (Y), pdf (Y), or both vary.

1. For every element in a test set, regardless of ground truth, a CPD boundary
can be configured such that the element under evaluation can be classified
as Z. Similarly, a boundary can be configured such that the same element
can be classified as Z.

2. Y is an ordered set, such that a boundary change will cause the CPD to
reclassify elements of Y in order.

3. For each element of Y in T+, a boundary, Bk, exists such that {y1, y2, · · · , yk} ∈
T+, but {yk+1, yk+2, · · · , y|Y|} ∈ F−. For simplicity, I discuss a single bound-
ary. In reality, a family of boundaries could exist that satisfy the criterion.

4. Therefore, an ordered set of boundaries also exists where there is a one-to-
one mapping between the elements of Y and {B1, B2, · · · , B|Y|}. Thus, for
all i <= |Y|, when the subject CPD is using boundary Bi (CPD(Bi)), t+ = i
and f− = |Y| − i.

5. Now let there be two test set elements, (ym, ym+n) ∈ Y, where m and n are
arbitrary. Each element is defined by vectors found on ordered boundaries
Bm and Bm+n, with Bm < Bm+n. The boundary used (Bk) effects ym’s and
ym+n’s classification:

When k ≥ m + n, CPD(Bk ∈ {Bm+n, Bm+n+1, · · · , B|Y|}) will classify
both

ym and ym+n as Z: {ym, ym+n} ⊂ T+(Bk).
When m + n > k ≥ m, CPD(Bk ∈ {Bm, · · · , Bm+n−1} will label ym as Z

(JPT category T+) and ym+n as Z (JPT category F−):
ym ∈ T+(Bk) and ym+n ∈ F−(Bk).

When k < m, CPD(Bk ∈ {B1, B2, · · · , Bm−1}) will classify both
ym and ym+n as Z (JPT category F−): {ym, ym+n} ⊂ F−(Bk).

6. After executing a sufficiently large number of experiments, I can determine
expected cardinality for each JPT category within each boundary interval;
E(t+|Bk) and E( f−|Bk).

7. Using the expectations for each JPT category for a specific boundary, I can
also determine the expected summary statistic value: E(SS|Bk).

A summary statistic valuable to end users will be sensitive to changes in the end
user’s environment. Pdf (S) represents the end user’s environment. Thus, I show
how such a change will be reflected in a suitably sensitive summary statistic.

65



(a) (b)

(c) (d)

Figure 8.1: As the boundary shifts from left to right, the difference between Y and
Y′ are reflected in the JPT categories. An end user efficacious summary statistic
will be sensitive to these changes.

If Y is replaced by Y′, a set drawn from a source population with a prob-
ability density function different from pd f (Y), the difference between the two
can be described by ∆ =pdf (Y′)−pdf (Y). Because the difference can be negative
across some interval where the pdfs are defined, ∆ is not a pdf. I can, however,
draw samples from ∆ and create a set, epsilon. Set elements drawn from negative
regions of ∆ are indicated by ε−, set elements drawn from positive regions of ∆
are indicated by ε. The difference between epsilon and a conventional set such as
S or Y, is that the interaction between elements in epsilon and S is destructive for
ε−: {sl}

⋃{ε−l } = ∅; sl indicates ε−l ’s nearest neighbor. The interaction between
elements in epsilon and S is constructive for epsilon’s elements within a boundary
interval where ∆ is positive: {sk}

⋃{εk} = {sk, εk}. One consequence of this be-
havior is that individual elements of ∆ will cause |S| to change. I am considering
a finite sample of size |S|, so ∆ must have an equal number of ε and ε−.

1. Given Y and its subset {ym, ym+n} ∈ Y from the previous discussion, let
there be a ∆ from which a small representative sample, epsilon= {εl, ε−m+n}
is drawn. ε−m+n is from a range in ∆ that is negative, hence {ym+n}∪{ε−m+n} =
∅. The resulting union of Y and epsilon, generates {εl, ym} ∈ Y′ where
|Y′| = |Y|. For this example, I stipulate that εl < ym, thus, the boundaries
for this example have the same relationship: Bl < Bm < Bm+n.

2. I now consider the effect of the change on the JPT generated from process-
ing Y′, as Bk varies across the interval [BY′(1), BY′(|Y′|)]. The four cases are
illustrated on Figure 8.1.
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a) When k ≥ m + n, both elements are correctly classified as Z and the
JPTs for S and S′ are the same: (εl, ym) ∈ T′+(Bk); t+(Bk|Y′) = t+(Bk|Y).1

b) When m + n > k ≥ m, both elements are correctly classified as Z but
the JPTs for S and S′ differ: (εl) ∈ T′+(Bk); t+(Bk|Y′) = t+(Bk|Y).

c) When m > k ≥ l, only εl is correctly classified as Z; the JPTs for S and
S′ differ:εl ∈ T′+(Bk) and ym+n ∈ F′−(Bk); t+(Bk|Y′) = t+(Bk|Y) + 1.

d) When l > k, both elements are misclassified as Z and the JPTs for S
and S′ are the same: (εl, ym+n) ∈ F′−(Bk); t+(Bk|Y′) = t+(Bk|Y).

After executing a sufficiently large number of experiments, I can determine
E(t+(Bk|Y′)) and E( f−(Bk|Y′)) within each boundary interval. I see that
within the boundary range [Bl, Bm+n] defined by the pdf perturbation
∆ =pdf (Y′)−pdf (Y), Y′ ∩ Y 6= ∅; the expectation for some JPT categories
will differ from the unperturbed JPT expectations. For clarity, I have lim-
ited the pdf (Y)’s perturbation to substituting one element; εl replaces ym+n.
The perturbation could be of any size; however, the discussion would be
substantially more involved.

An efficacious summary statistic will reflect those differences. Tables 8.1
and 8.2 summarize the result of the described pdf change.

Thus, my second axiom for end user efficacious summary statistics (SS) is:

Axiom 2 (Environmental sensitivity) With a change in pdf(Y),
(e.g., pdf(Y′)= ∆+pdf(Y), pdf(S))=pdf(Y)+ pdf(Y) and pdf(S′)=pdf(S)+∆), where
∆ describes a perturbation in Y’s and S’s source population, for all boundaries within ∆,
there exists a E(SS(B)|S′))− E(SS(B)|S)) 6= 0. The same is true for a change in Y and
for any ratio+.

For any given boundary within the interval affected by a probability distri-
bution change, an effective summary statistic’s expected output will reflect that
probability distribution change. The input class pdfs of any environment can
vary by user. Thus, an optimum boundary for one end user may not be optimum
for another. A summary statistic compliant with Axiom 2 will reflect how the
target CPD impacts the end user when provided with different inputs. Each of
these points are effects of boundary sensitivity.

Of the summary statistics I reviewed in Chapter 5, only TAR, MCC and IC
comply fully. AUC fails to satisfy Axiom 2: it is boundary invariant. The Youden
index and DOR/DP, being ratio+ invariant, fail for ratio+ sensitive problems. The
Fβ-score fails because of its T− invariance.

1At this point, I have extended my notation. In the previous paragraph, the discussion regards
only one input distribution, so there was need to only distinguish between JPTs created using
different boundaries. Hence, the notation presents category membership when the CPD uses
a specific boundary: X(Bk), where X indicates the JPT category and Bk represents the boundary
used. However, I now start comparing JPTs with inputs drawn from different source populations.
To do so, I compare the JPT category cardinalities. t+(Bk|Y′) refers to the cardinality of the T+
category, when Bk was the boundary and the source population was pd f (Y′).
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Effect of a change in pdf (Y versus Y′) on E(t+(Bk))
Bk (ym, ym+n) ∈ Y? (εl, ym) ∈ Y′? E(t+(Bk|Y′))− E(t+(Bk|Y))

k ≥ m + n (ym, ym+n) ∈ Y (εl, ym) ∈ Y′ 0
m + n > k ≥ m (ym) ∈ Y (εl) ∈ Y′ 0
m > k ≥ l () ∈ Y (εl) ∈ Y′ 1
k < l () ∈ Y () ∈ Y′ 0

Table 8.1: Changes in class pdfs effect JPT categories. In the Axiom 2 example,
E(t+(Bk)) is affected by a pdf change within the interval [Bl, Bm). Outside that
interval, E(t+(Bk)) remains unaffected.

Effect of a change in pdf (Y versus Y′) on E( f−(Bk))
Bk (ym, ym+n) ∈ Y? (εl, ym) ∈ Y′? E( f−(Bk|Y′))− E( f−(Bk|Y))

k ≥ m + n (ym, ym+n) ∈ Y (εl, ym) ∈ Y′ 0
m + n > k ≥ m (ym) ∈ Y (εl) ∈ Y′ 0
m > k ≥ l () ∈ Y (εl) ∈ Y′ -1
k < l () ∈ Y () ∈ Y′ 0

Table 8.2: The t+ increase noted in Table 8.1 triggers the corresponding f− de-
crease shown here. An end user efficacious summary statistic should be sensitive
to such changes.

8.2.1 Practical considerations and implications

Summary statistics that are environmentally sensitive, confer three bene-
fits to end users. i) They provide end users with optimum boundary estimates.
ii) They provide end users with estimates of actual impact under their field con-
ditions. iii) They exhibit boundary sensitivity. This is important because CPD
inputs are stochastic in nature, so over any particular observation window, end
user’s actual experience will vary. Boundary sensitive measures allow end users
to estimate the range over which to expect their actual outcomes to occur. Sensi-
tivity results are shown in both the banking and medical diagnostic test examples.

ratio+ sensitive summary statistics have broader applicability than mea-
sures that are ratio+ invariant. The observations made in Chapter Section 6.1.4
are directly applicable to this Axiom.

8.3 Axiom 3: CPD output basis

End users have limited visibility into a deployed CPD’s process. For in-
stance, they have knowledge of the inputs and outputs, but not their ground
truth. Thus, end users may find CPD evaluation summary statistics that can be
calculated from, or decomposed into Z and Z more useful than others.
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Consider an end user desiring to prevent intrusions (unauthorized access
and activity) into an information system. Ideally, these end users would be able
to detect and prevent all attempted system intrusions. Unfortunately, the only
CPD information directly observable by end users is the fallible output of their
intrusion detection and prevention systems (Z and Z). The end user needs to
assess the impact of the CPD output on their problem. Typical end user questions
might be:

a) “Given that the test result is positive, what is the expected impact (ιZ)?”

a) “Given that the test result is negative, what is the expected impact (ιZ)?”

(End users also have knowledge regarding their problem environment to assist
in calculating impact. This, however, is independent of the CPD output.) In the
field, end users will have access to only the test results (Z and Z). Quantitative
answers to a and a provide readily actionable information for deployed systems.

In contrast, answering the questions:

b) “Given that ground truth is Y, how probable is it that the test result is positive
(P(T+|Y))?”

b) “Given that ground truth is Y, how probable is it that the test result is nega-
tive (P(T−|Y))?”

may be less readily usable, since it assumes knowledge of the ground truth –
often, the information end users don’t know and are trying to obtain. This is the
situation in intrusion detection and prevention. f− and t− cannot be known with
certainty, thus it is impossible to determine |Y| and |Y|. Questions b and b are
conditioned by |Y| and |Y|. If these two variables are unknown, then answers to
questions b and b, although estimable in a supervised test, may have little value
to end users. Because ground truth is unknown in the field, applying answers to
these two questions may be difficult to calculate for deployed systems. Answers
to questions a and a, however, are estimable from field observations. Because
they can be directly mapped to field results, end users may find a and a easier to
use, thus more valuable than b and b.

One advantage Axiom 3 confers to end users is the ability to compare pre-
dicted outcomes to field observations. Assume that intrusion detection and pre-
vention is a “ratio+ is important” problem. An end user can gather information
on t+ and f+ and verify whether or not the expected impact of Z is satisfactorily
close to the observed impact. However, if the observed and actual Z impacts are
not acceptably close, then either the end user’s expected ratio+ is incorrect, or the
intrusion detection system is not performing as expected. An end user may be
able to use the discrepancy to justify an in-depth investigation.

If the actual and expected Z impacts are acceptably close, an end user can
then impute the expected f−. The expected f− quantifies the missed attack rate,
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thus the end user can project an expected impact for the missed attacks. This
information can then be used for decisions regarding risk reduction options such
as adding detection or planning for remediation.

In the case of a “ratio+ is confounding” problem such as a medical diag-
nosis, efficacious end user information is based on normalized test results; |Zn|
and |Zn| are not directly observable. However, E(|Z|) and E(|Z|) can be cal-
culated: E(|Z|/|S|) = t+n/|S| + ratio+ ∗ f+n/|S| and E(|Z|/|S|) = f−n/|S| +
ratio+ ∗ t−n/|S|. Thus an end user can, using their observed results, calculate the
apparent ratio+, if a CPD application vendor publishes (t+n/|S|, f+n/|S|, f−n/|S|,
t−n/|S|). The end user can then compare the apparent ratio+ against their expec-
tations and decide whether or not the apparent ratio+ is reasonable. An end user
may want to further investigate an apparently anomalous ratio+.

Given the proper summary statistic, end users can better assess their CPD
options and monitor CPD effectiveness. These end user visibility observations
lead to the third Axiom.

Axiom 3 (CPD output basis) An end user efficacious summary statistic must be quan-
tifiable in terms relative to information known and visible to the end user (Z and Z).

As noted in Chapter 6.1, I find that the ratio+ invariant summary statistics,
ROC-AUC and the Youden index have as their basis, the summary statistic suite
{t+/|Y|, f+/|Y|}. Both of these summary statistics are conditioned by ground
truth (Y and Y), not the CPD outputs visible to the end user (Z and Z), hence
they do not satisfy Axiom 3. However, the ratio+ invariant summary statistic
pair DOR/DP do satisfy Axiom 3. I can demonstrate Axiom 3 compliance by
substituting the four conditional ratios

t+
|Z| ,

f+
|Z| ,

f−
|Z|

,
t−
|Z|

(8.1)

for t+, f+, f− and t− in the summary statistics. In the DOR. equation, I have

DOR =
t+
|Z| ∗

t−
|Z|

f+
|Z| ∗

f−
|Z|

.

Multiplying the numerator and denominator by |Z| ∗ |Z|, results in

DOR =
t+ ∗ t−
f+ ∗ f−

,

the original DOR. equation. As noted in Chapter 5, DP =
√

3
π log(DOR), thus DP

also satisfies Axiom 3.
If I use the same substitution applied in DOR. into the equations for TAR,

Fβ-score, ROC-AUC, MCC and the IC, I find that none are equivalent to the orig-
inal equations. Of the commonly seen summary statistics considered, only the
DOR/DP satisfies Axiom 3.
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8.3.1 Practical considerations and implications

This capability is indeed new and the information generated is potentially
valuable to end users. For instance, in the banking example, prudent institu-
tions will be tracking performance indicators for loans made (perhaps average
income per loan) and loan applications rejected (perhaps total application pro-
cessing cost) and application acceptance ratio. Summary statistics that comply
with this Axiom will provide bankers information on the expected performance
ratio values. If the expected and actual values differ substantially, the lending
institution may want to more closely examine their processes and CPD tool.

A similar situation exists with medical diagnoses CPDs. The RA example
includes expected patient impacts for both positive and negative test results. As
noted above, these values can be used to calculate the apparent ratio+ value. If
these differ from the observed value significantly, then medical practitioners can
more closely examine their processes and diagnostic tool.

8.4 Axiom 4: summary statistic value appropriateness

In order for a summary statistic to be end user efficacious, the end user
must be able to map the summary statistic output to their problem. The end user
concern is to avoid the inverse of “type III” errors (receiving the right answer to
the wrong question [46]); having to make a decision, given information on an
unrelated question. An informed end user may know what the values presented
quantify. However, if the values are not relevant to their problem and cannot
be transformed into values that are applicable, the end user must rely on “soft”
transformations, such as expert opinion. Opinions can vary from expert to expert,
so soft transformations incur considerable uncertainty. As the saying goes “your
results may vary”.

Consider the intrusion detection and prevention problem presented in Sec-
tion 8.3. In selecting an intrusion detection and prevention program, an informa-
tion system administrator may want to compare the cost of operation of each
program. Fβ-score provides some ability to adjust for cost. However, it fully dis-
counts the T− category, this bias skews the result. The Fβ-score and TAR are ratios,
so they cannot provide net costs. Instead, they provide relative costs. In the gen-
eral case, the information system will not operate in an environment where the
volume of malicious activity is approximately the same as the volume of legiti-
mate activity, so the ratio+ invariant summary statistics, ROC-AUC, DOR/DP and
Youden Index are not suitable. MCC and IC summary statistic basic CPD charac-
teristics, but their output cannot be mapped to the system administrator’s need;
these summary statistic values are not appropriate either. In order to use these
summary statistic values, the end users may attempt a “seat of the pants” trans-
formation, based on experience. Such results are subjective and may vary from
expert to expert. End users are better served when subjective transformations can
be avoided; when the information received answers the correct question.
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Axiom 4 (summary statistic value appropriateness) An end user efficacious sum-
mary statistic output must quantify the CPD’s impact on the end user’s characteristic of
interest.

While Axiom 4 might seem self-evident, not all commonly seen summary
statistics satisfy it. For example, the ROC-AUC quantifies the probability that a
randomly selected member of class Y will have a lower test value than a ran-
domly selected member of class Y. Thus the ROC-AUC value would be difficult
for an end user to use directly, since it assumes prior knowledge of ground truth,
a situation not likely to exist in the field.

DOR/DP quantify the odds of two randomly selected elements of the test
set being one each T+ and T−, rather than one each F+ and F−. DOR/DP do
not require prior knowledge of ground truth, but it is a very specific scenario.
One limitation is that it requires output pairs, rather than considering individual
outputs. A second limitation is that there are ten possible pairings (e.g., two
T+s) and ninety unique and potentially useful ratios. (When counting, I do not
consider ratio inverses to be unique. A useless ratio would be one where the
numerator and denominator are the same, for example t+t+/t+t+.) Thus, the
DOR/DP output is not broadly applicable.

From the end user perspective, the ROC-AUC, DOR/DP, TAR and Fβ-score
all share another failing; all have lower bounds of zero, thus cannot quantify a
negative impact.

8.4.1 Practical considerations and implications

The bottom line for Axiom 4 is that the units in which evaluation output
is quantified must be relevant to the end user. For example, the banking example
uses a “standard loan income” unit. This value can be mapped to local currency.
The original work was in Egyptian pounds. Such a value would be readily un-
derstood by persons in the Egyptian banking industry.

The rheumatoid arthritis example quantifies the mis-diagnosis impact on
quality of life in U.S. dollars. Once again, results explained in these terms will
be broadly understood. Patients, for example, could readily understand such
values, whereas probabilities and likelihood ratios would be less familiar.

8.5 Preconditions from measurement theory

At a more abstract level, measurement theory has addressed end user
summary statistic efficacy [36]. One relevant insight is that numbers are used in
different ways and that these uses constrain their information content and hence,
their utility. I use the scale-type definitions proposed by Stevens [83]. Stevens
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defined four scale types, nominal, ordinal, interval and ratio. Ratio scales are
the most information rich and have the least functional constraints, so summary
statistics using ratio scales are preferred.

8.5.1 Practical considerations and implications

Re-analysis of the bank example and medical diagnoses examples both
output currency values. Currency scales have both a meaningful zero and are
quantified with a standard sequence. In both examples, the information gener-
ated with summary statistics results on ratio scales demonstrate the benefit of
using ratio scales.

Of the summary statistics reviewed, none are measured on a ratio scale.
Hence, I find that none of the commonly seen summary statistics satisfy all of the
criteria. Table 8.3 recaps how each summary statistic tested conforms to the ax-
ioms and two ratio scale properties, having a meaningful zero an being standard
sequences. Sokolova, et al. tested invariance to JPT perturbations [79]. Where
their tests are relevant to my axioms, their results corroborate ours.

8.6 Relevance for research

Over time, useful technical concepts evolve into useful tools and project
underwriters shift from basic researchers to developers and end users. To man-
age technology development and product acquisition risk, NASA developed an
assessment framework, based on a nine level “technical readiness” (TRL) scale.
TRL has been subsequently adopted by the US Department of Defense (DoD)
[22, 56]. Early technology development fleshes out the technical concepts. The
lack of insight means that assessments are generally qualitative. By TRL 3, how-
ever, the technology is well enough defined that quantitative assessments are

Summary statistic
TAR Fβ-score Youden MCC IC DOR AUC

Axiom 1: category impacts No Partial No No No No No
Axiom 2: pdf sensitivity Yes Yes Yes Yes Yes Yes No
Axiom 3: perspective No No No No No Yes No
Axiom 4: relevance No No No No No No No
Ratio: meaningful zero No No Yes Yes Yes No No
Ratio: standard sequence No No No No No Yes No

Table 8.3: None of the summary statistics considered satisfy all four axioms, nor
do any exhibit both of the characteristics necessary to be ratio scale measures;
having a meaningful zero and being standard sequences.
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possible. At this stage, experimental critical function and/or characteristic proof
of concept can be executed. While some specific problem domains may have
been proposed, initial critical function and/or characteristic assessments should
be application agnostic.

Challenges for basic research CPD assessment are that i) the source pop-
ulation (Y

⋃
Y) for any test set (and hence the test set itself) will always have a

ratio+ and pdf. ii) all summary statistics weigh their variables. In the example
presented in Chapter 6.2 (Equation 6.2), TAR has implicit weights (Equation 6.3)
and Fβ-score has explicit weights (Equation 6.4). Taking the Bayesian perspective,
the choices should reflect the lack of prior information: ratio+ = 1, I = (1, 1, 1, 1)
and source populations with uniform pdfs.

This dissertation addresses end user interests (TRL≥ 4), so I treat ratio+
as appropriate, use the commonly seen normal distribution and impacts as ap-
propriate (I = (1, 1, 1, 1) for non-specific evaluation; for the examples, where
available, published I were used).
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CHAPTER 9

TWO AXIOM COMPLIANT SUMMARY STATISTICS

Applying TRIZ, I have identified the root cause of the end user’s CPD
evaluation problem (the starting point), identified summary statistic characteris-
tics valuable to end users (the desired end point) and the solutions’ dependent
variables. The final task is to devise a solution.

9.1 Measuring impact

As noted in Chapter 5 and supported in Chapter 8, the commonly seen
CPD evaluation summary statistics do not well quantify end user impact. In this
chapter, I propose suitable summary statistics. I have identified two problem
types, so I consider each separately.

The efficacious CPD evaluation summary statistic discussion makes some
assumptions regarding the end user’s need:

• The end user’s problem either treats each input set element individually (as
in the case of a medical diagnosis or intrusion detection) or the problem is
based on the cumulative effect of the elements in the input stream (as in the
case of bank loan application decisions or information retrieval).

• The problem does not involve a multiplicative or exponential effect. Such
problem domains do exist, but must be treated as additive problems. Con-
sider an information retrieval task gathering all of the information known
about topic x. As information sources are identified, there will most likely
start to be information overlaps, thus individual resource contributions to
the body of knowledge gradually diminish. After some point, additional
resources add no new information, thus have zero value. Ideally, it would
be useful to be able to rate the contribution of each resource. However, there
are difficulties:

– The valuation of each resource is sequence dependent. Assuming re-
sources are randomly selected for evaluation, the same resource, if an
early selection, could have no duplicate information, thus retain its full
value. If it is a late selection, it could be valueless.
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– The end user cannot precisely know the full extent of the information.
Thus, even though it appears that the end point is being approached,
the possibility exists that the next resource evaluated will be totally
unique. In such a case, the resource’s value would not be discounted.

In such a scenario, it may not be practical for an end user to identify the
uniqueness of each individual resource. Relevance, the basis of information
retrieval, however, is based on key word analysis and has been demon-
strated to be practical. It is an additive function and thus avoids the two
difficulties presented.

• All CPD events are independent. Sequence dependence is discussed in the
previous bullet.

• The problem is restricted to a 2x2 matrix. (The matrix size constraint is for
discussion clarity. Extension to MxM matrices is deferred for future work.).

When the impact is cumulative, there will be either a gain or loss (impact,
ι) associated with each element output. ι can be expressed as a statistical, not nec-
essarily unique, expectation for each JPT category: I = (ιT+ , ιF+ , ιF− , ιT−). Thus,
each and every element output will affect the end user by the element of I appli-
cable to the category to which the element is binned1. An end user can expect the
net gain or loss to be the sum of the individual element gains and losses. If the el-
ements of I are proportions as described in the Lexicon and there is a sufficiently
large (i.e., statistically significant) test sample (|S|), then ι can be viewed in the
contexts introduced in Section 6.2. As noted in that section, impacts can also be
expressed as a statistical expectation for each element of S, regardless of category.
For problems where impact is cumulative,

ιI = ιT+

t+
|S| + ιF+

f+
|S| + ιF−

f−
|S| + ιT−

t−
|S| . (9.1)

ιI can also be expressed on Z and Z, the outputs actually observed by the end
user:

ιI = ιZ
|Z|
|S| + ιZ

|Z|
|S| (9.2)

The estimated total impact for the test set S, then is:

estimated total impact : ιtot = |S|ιI .

1The elements of I can be defined in different ways, depending upon the information known
about each element of S. For instance, if elements were bank loan applications, then the impact
could be measured per dollar requested. Alternatively, impact could be based on the statistical
expectation for the category. Once again using bank loan applications, the impact could be per
loan, where an average loan amount is known. I assume the latter situation.
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A similar summary statistic, “Profit”, has been introduced for customer churn
prediction models by Verbraken, et al. [92]. It differs from ιI in two ways: i)
Profit’s costs and benefits must consist of all positive values and ii) misclassifi-
cation costs are deducted, correct classification gains are added. Intuitively, Ver-
braken et al.’s constraints seem correct: gains are positive values and losses are
negative values. As will be seen in Section 10, intuition does not hold in every
case. Recasting a problem to fit Profit’s requirements could cause the measure-
ment scale to no longer have a meaningful zero. Should this occur, the analysis
is now using an interval scale rather than a ratio scale. Consequently, analyses
such as Verbraken, et al.’s proposed cost-benefit ratio would no longer be valid.
ιI , as seen in Equation 9.1, does not have Profit’s constraints, so is not susceptible
to summary statistic degradation.

There are occasions when the impact is not cumulative, but each output is
important individually, e.g., a medical diagnosis. The individual result is impor-
tant. In these situations, ratio+ is confounding, so normalized JPTs are used; nor-
malization mathematically balances the relative class sizes, thus it mitigates any
skew resulting from ratio+. In order to facilitate comparison with non-normalized
JPTs, the sum of all categories is kept at one (|S| = 1). Another commonly seen
normalized JPT would have |S| = 2. In this table, the JPT category proportions
are real numbers that sum up to one and the individual input class totals add up
to 0.5.

Actual classification

Y Y Totals ↓
Test + : si ∈ {Z} t+n = t+

2|Y| f+n = f+
2|Y| |Zn|

Result − : si /∈ {Z} f−n = f−
2|Y| t−n = t−

2|Y| |Zn|

Normalized totals 0.5 0.5 1

Table 9.1: The values in this JPT have been normalized.

The end user’s concern, a) “given that a result is rendered, how am I af-
fected?”, however, can be partitioned into two questions;
a1) “given that the result is positive, how am I affected?” and
a2) “given that the result is negative, how am I affected?”2. These questions indi-

2Partitioning based on CPD output is not unique to situations where outputs are important
individually. Problems where CPD results are cumulative can be partitioned in the same way.
However, when results are cumulative, question a is the most useful for an end user; questions
a1 and a2 may be of secondary importance. When individual outputs are important, questions a1
and a2 are primary. They are directly applicable by an end user to individual results; question a
is less useful.
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cate that the values of interest are weighted conditional expectations:

ιZ =
ιT+ t+n + ιF+ f+n

|Zn|
and ιZ =

ιT− t−n + ιF− f−n

|Zn|
. (9.3)

Because each output is independent, the average of these two values provides the
expected impact (ι) per outcome:

ισ =
ιZ + ιZ

2
. (9.4)

Substituting the normalized expressions from Table 9.1, the expected impact be-
comes:

ισ =
1
2

(
ιT+ t+n

|Zn|
+

ιF+ f+n

|Zn|
+

ιT− t−n

|Zn|
+

ιF− f−n

|Zn|

)
. (9.5)

The summary statistic and associated suite are valuable to end users. Those
directly affected (e.g., medical patients) may find the normalized JPT values and
I more informative.

The two problem types (individual impact and cumulative impact) have
their unique characteristics, resulting in different sets of relevant summary statis-
tics. For problems where impact is cumulative, the summary statistic,

ιI =
1
|S|
(
ιT+ t+ + ιF+ f+ + ιF− f− + ιT− t−

)
, (9.6)

provides actionable information to the end user. The monotonic summary statis-
tics upon which it is based and which provide more insight into CPD impact are
the two end user visible values:

ιZ =
1
|S|
(
ιT+ t+ + ιF+ f+

)
and ιZ =

1
|S|
(
ιF− f− + ιT− t−

)
. (9.7)

The factors addressed in developing ιI and ισ satisfy the underlying model re-
quirement for the highest quality summary statistics, as stated in Chapter 7.3.

Impact vectors are problem specific, but there may be occasions when
some problems have Is that differ by a multiplicative constant. Such problem
sets can be considered problem families, represented by a single I with different
scaling. Appendix D presents a means of scaling.

Both ιI and ισ have optima, so they are summary statistics. In the case of
ιI , the associated suite (summary statistics that provide insight into a specific as-
pect of the CPD output) consists of ιZI and ιZI

, the two outputs observable by end
users. ιI differs from the usual summary statistic in that it directly quantifies the
characteristic of interest to end users. ισ’s summary statistic suite consists of the
conditional expectations of the two outputs observable by an end user, ιZσ and
ιZσ

. For problem domains where ισ is appropriate, the summary statistic does
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contain less information. Consider, for instance, the example where a person re-
ceives a medical diagnosis. If the test result is positive, then that person’s impact
will be either ιT+ or ιF+ . Likewise, if the test result is negative, then that person’s
impact will be either ιT− or ιF− . The three composite summary statistics, ισ, ιZσ

and ιZσ
may have little utility for the patient. The values are, however useful to

diagnosticians in assessing diagnostic and treatment strategies.
Interestingly, ιI is, in a sense, already in use. It is implicit in TAR: TAR=

ιI |I = (1, 0, 0, 1). Equation 6.1 shows that J is a rescaled TAR on normalized JPTs.
Hence, J is also a rescaled ιI |I = (1, 0, 0, 1) on normalized JPTs.

9.1.1 Practical considerations and implications

An abstract analysis of ιI and ισ suggest that they will generate more in-
formation rich output than other measures currently in use. The four examples
in Chapter 10 illustrate the differences. In the bank loan example, not only does
the conclusion regarding the best selection algorithm change, but actual income
expectations and sensitivity to ratio+ are revealed. The rheumatoid arthritis di-
agnostic test comparison conclusions on the better test stay the same with both
the original and impact-based measures. However, the outputs, being quantified
in currency, are much easier to understand.

9.2 Summary statistic usage

There are two end user motivations for measuring CPD impact. One is to
directly estimate performance on their problem and in their environment. The
summary statistics proposed in this chapter directly provide that utility. CPD
output bias, as introduced in Chapter 7.3, is measurable with ιI and ισ.

The second motivation is to compare relative CPD impacts on their prob-
lem and in their environment. Intuitively, generating a ratio of two CPD impacts,

ι ratio =
ι(1)
ι(2)

,

would quantify the desired relationship. However, since the values can be either
positive or negative, interpretation is problematic. If ι(1) > 0, ι(2) > 0 and
ι(1) > ι(2), then ι ratio > 1 and an end user can infer that CPD 1 is better than
CPD 2 by a certain magnitude. If ι ratio < 1, then the reverse is true; CPD 2 is
better than CPD 1 by a certain magnitude. However, if ι(1) < 0, ι(2) < 0 and
ι(1) > ι(2), then ι ratio < 1, the opposite of when ι(1) > 0 and ι(2) > 0. summary
statistic interpretation is not ι(n) sign invariant. Depending upon conditions,
either the larger value or the smaller value can indicate greater effect. Attention
must be paid to this detail.
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Special care must be taken if the two impacts have different signs. As an
example, consider two CPD evaluation scenarios: i) ι(A) = −1000 and ι(B) = 1
and ι(C) = 1000 and ι(D) = −1,. In both cases, the ratio is -1000. One might
reasonably assume equivalent impact. However, the opposite is true: selecting
CPD A instead of CPD B will result in a small gain, rather than a large loss. In the
second case, a small loss can be converted into a large gain. The end result on an
end user is nowhere near the same; simple ratios may be difficult for an end user
to interpret.

The difficulty is a result of potentially having both positive and negative
estimated impacts. There is a solution, shifting the output range such that the
minimum is zero:

max(ιI) = ιT+ + ιT− − ιF+ − ιF− and

min(ιI) = ιF+ + ιF− − ιF+ − ιF− = 0.

After the translation,
biased ιI = ιI − ιF+ − ιF− and (9.8)

biased ισ = ισ −
ιF+ + ιF−

2
. (9.9)

Now the simple ratio is

ι ratio =
biased ι(1)
biased ι(2)

.

Equations 9.8 and 9.9 both still satisfy the four Axioms, but for these equations,
zero is now defined as “the worst possible output”, rather than “no effect”. Con-
sequently, the biased impacts do not have meaningful zeros. The solution defeats
the purpose: the transformed scales are now interval, rather than ratio scales, so
ratios are no longer valid.

The problem caused by impacts with different signs, however, may be
moot. If the impacts being compared have different signs, then one must pro-
vide a desired result and the other will provide an undesirable result. In such
a case, magnitude is irrelevant: an end user will always choose the CPD which
provides a desirable result. This practicality aside, such a ratio quantifies the ex-
tent to which one CPD benefits the end user to the extent to which the end user
is hindered by the other: the comparison is irrelevant.

9.3 Addition and ratio based summary statistic comparison

ιI and ισ are addition-based summary statistics that represent the impact
of a CPD on an end user; a new perspective on CPD evaluation. This requires in-
corporating relevant environmental variables that quantify the effect individual
CPD outcomes have on the end user. Ratio-based summary statistics (e.g., TAR,
Fβ-score, MCC, ROC-AUC, DOR, Youden index and IC) do not incorporate relevant
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(a) When I is unbiased (ιT− = 1) and ra-
tio+ = 1, ιI responds linearly to changes
in class distinguishability, MCC and IC
respond non-linearly. As expected, they
converge when TAR = 1.

(b) Only two summary statistics are valid
for biased I (e.g., ιT− = 0). Com-
pared to ιI , Fβ-score’s response to class
distinguishability is non-linear and the
summary statistics do not converge when
TAR = 1.

(c) When ratio+ varies and I is unbiased
(ιT− = 1), impact (ιI) is still most similar to
TAR . MCC and IC both decrease as ratio+
increases; ιI and TAR increase.

(d) As ratio+ increases and I is biased
(ιT− = 0), impact (ιI) exhibits exponential
decay; Fβ-score does not.

Figure 9.1: ιI reflects the target CPD’s effect on end users. These figures show
that, under the conditions tested, ratio summary statistics do not. Thus, the ben-
efit end users might expect based on ratio summary statistics, may not exist.
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environmental variables, hence fail in this regard and are not directly applicable
to the end user 3. ιI and ισ address this deficiency. However, this comparison is
not tied to any particular problem or domain, so I use unbiased Is; for the addi-
tive summary statistics, I = (1,−1,−1, 1); the ratio summary statistics (excepting
F1-score) implicitly use I = (1, 1, 1, 1). The F1-score is inherently biased, so I also
ran tests with ιT− = 0.

Figure 9.1 shows the results of comparing ιI versus summary statistics
valid for ratio+ sensitive problems. Two test series were run:

• One series held ratio+ = 1. I randomly drew two equally sized samples
from the same probability density distribution, then adjusted one to be off-
set (exhibit bias) from the other (pdf (Z) = pdf (Z) + offset. The offsets were
selected so that the class overlap ranged from full overlap (µZ − µZ = 0) to
full separation (µZ − µZ ≥ 4σ)).

TAR is my baseline summary statistic. It is a simple, intuitive, distribution
invariant CPD summary statistic. TAR = 0.5 means that one-half of the
CPD output is correctly classified (the case when two class distributions
overlap completely). TAR = 1.0 means that all of the CPD output is cor-
rectly classified. The top two graphs (Figures 9.1a and 9.1b) show the effect
of varying class overlap.

• The other series held a fixed offset (µZ 6= µZ) between classes (the source
distribution for class Z not the same as the source distribution for class Z)
and varying ratio+ ∈ [1, ∞]. log2(ratio+) = 0 indicates that the test sample
had equally sized CPD input classes (|Y| = |Y|). The bottom two graphs
(Figures 9.1c and 9.1d) show the effect of varying ratio+.

The left column (Figures 9.1a and 9.1c) are tests on summary statistics when all
four JPT categories are unbiased; the right column (Figures 9.1b and 9.1d) shows
the effect of bias on summary statistic value; I test when T− is unimportant (ιT− =
0).

Comparing the effect of varying ιT− (Figures 9.1a versus 9.1b), I see that
when ιT− = 1 (and ratio+ = 1), ιI converges with the other applicable sum-
mary statistics as TAR approaches 1. When ιT− = 0, ιI does not intersect with
the acceptable ratio-type summary statistic, Fβ-score. Comparing ιI and TAR, I
see in Figure 9.1a, that they share the same endpoint, varying only by slope. In
Figure 9.1c, both summary statistics monotonically increase as ratio+ increases.
These similarities result from a relationship between the two summary statistics:
|S| = t+ + f− + f+ + t−, thus TAR = (t+ + t−)/|S|. TAR is a member of the ιI
family, with I = (1, 0, 0, 1). In this context, TAR is a biased form of ιI , so it is not
applicable when I must be unbiased.

3Fβ-score has the β variable, which expresses the relative importance of precision to recall.
However, when used, end users have trouble mapping the Fβ-score values to their situation.
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Figures 9.1c versus 9.1d show how ratio+ sensitivity is also markedly dif-
ferent. When ιT− = 0, (Figure 9.1d), ιI and Fβ-score have dissimilar responses to
changes in ratio+. Comparing ιI in Figures 9.1c and 9.1d, I can see a dramatic
change in ιI’s character. In Figure 9.1c, ιI asymptotically approaches 1; in Figure
9.1d, ιI asymptotically approaches 0. An end user basing a decision on a ratio
summary statistic might be led to expect performance different than will actually
be experienced.

(a) When all of the category impacts are
equally weighted (ιT− = 1) and class over-
lap varies from 100% to 0%, ισ is function-
ally equivalent to the Youden index. The
equivalence does not hold, however, over
all possible category weights.

(b) When ιT− = 0, ισ responds to the
change from a balanced I by reducing the
impact. The weighted TAR increases.

Figure 9.2: ισ is the expectation of the impact on the end user, conditioned on
the CPD output. Regardless of the value of ιT− the ratio summary statistics con-
verge on one when the classes are fully separable. When ιT− = 0, the loss of that
positive contribution reduces ισ.

Comparing ιI , MCC and IC in Figure 9.1c, I see that MCC and IC mono-
tonically decrease as class sizes diverge, whereas end user impact monotonically
increases. Hence neither MCC nor IC characterize end user impact. Of the four
potential summary statistics, only ιI is end user efficacious.

ισ is for problems requiring ratio+ invariance, so I execute the test series
varying class median and forgo the ratio+ sensitivity test. When ιT− = 1, I com-
pare ισ against ROC-AUC, the Youden Index and DOR. I also compare ισ against
TAR 4, MCC and IC, commonly seen ratio+ sensitive summary statistics, calcu-
lated on normalized JPTs. The results of the comparison is shown in Figure 9.2a.
All seven summary statistics follow unique tracks, thus ισ uniquely quantifies
impact.

4TAR is my baseline (x-axis) summary statistic, against which all summary statistics are com-
pared. As a biased version of ιI , it is not valid for this problem type. However, it is commonly
seen; I include it here so all summary statistics have the same visual representation.
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When ιT− = 0, I compare ισ against the Fβ-score. For the reasons noted
above, the other summary statistics are excluded. The results of the ιT− = 0 com-
parison is shown in Figure 9.2b. Both summary statistics follow unique tracks,
thus ισ uniquely quantifies impact.

Comparing ισ in Figures 9.2a and 9.2b, I see that when ιT− = 0, ισ is about
half of Fβ-score. The change is due to T− being discounted. As with ιI in my biased
I test, the summary statistic does not converge with Fβ-score, when the classes are
perfectly separable. The key point is that from the end user’s perspective, ισ
accurately reflects the effect of ιT− = 0; the increase observed in Fβ-score does not.
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9.4 Completing impact summary statistic comparison

Chapter 5 considered some summary statistics seen in CPD evaluation lit-
erature. In this chapter, two axiom compliant summary statistics were identified.
For completeness, the three questions posed for each of the pre-existing summary
statistics are answered for ιI and ισ. Since ιI and ισ are not impact invariant, the
pdf sensitivity analysis includes tests with I = (1,−1,−1, 1) for comparison with
TAR, J, MCC, IC and DOR/DP; I = (1,−1/2,−1/2, 0) is used for comparison
with F1-score.

ιI What question does the summary statistic quantify? ιI quantifies the expected
per object impact (measured in a standard interval unit relevant to the
end user) of a CPD’s output, in the end user’s environment; ratio+ is
important.

Is the summary statistic measured on a ratio scale? ιI has a meaningful zero.
By definition, a standard interval unit is used, so ιI is a ratio scale sum-
mary statistic.

Does the summary statistic exhibit boundary sensitivity? ιI is sensitive to
both ratio+ and pdf. Figure 9.3 shows the pdf sensitivity with a bal-
anced I; Figure 9.4 shows the pdf sensitivity when I is unbalanced.

ισ What question does the summary statistic quantify? ισ quantifies the expected
per object impact (measured in a standard interval unit relevant to the
end user) of a CPD’s output when the end user’s environment is con-
founding; ratio+ is confounding.

Is the summary statistic measured on a ratio scale? ισ has a meaningful zero.
By definition, a standard interval unit is used, so ιI is a ratio scale sum-
mary statistic.

Does the summary statistic exhibit boundary sensitivity? ισ is sensitive to
both ratio+ and pdf. Figure 9.5 shows the pdf sensitivity with a bal-
anced I; Figure 9.6 shows the pdf sensitivity when I is unbalanced.
Surprisingly, on some distributions, (e.g., the uniform distribution as
seen in Figure 9.5h), it is bimodal. Some of the distributions tested re-
sulted in bi-modal curves. This is not an issue for CPD comparison,
particularly if one peak is dominant. However, in situations where
peaks are statistically equivalent, it does pose a problem for optimal
boundary selection. If the two maxima are statistically equivalent,
how can one be selected over the other? What is the significance of
two maxima? Is this actionable information? I suggest that one maxi-
mum provides the best ιZ while minimizing ιZ, the other provides the
best ιZ while minimizing ιZ. Considering a medical diagnosis, per-
haps the optimal diagnostic strategy would be to have three possible
test results, “Positive”, “Negative” and “Unknown”. A test result in
the inter-modal space would be inconclusive; a test result above the
upper optimal boundary would be conclusive for one condition and a
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test result below the lower optimal boundary would be conclusive for
the alternate condition. A similar approach may be appropriate when
there are multiple, statistically different maxima. This issue will be
dealt with in the future.

This Chapter reports the final actionable insights for end users: two sum-
mary statistics which are tailored for end user efficacy. The following chapters
evaluate the measurement problem from different stakeholder perspectives.
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(a) Beta (0.2,0.8) (b) Beta (0.8,8.0))

(c) Gamma (d) Extreme value

(e) Beta (1.5,5.0) (f) Normal (g) Cauchy

(h) Uniform (i) Beta (1.5,1.0) (j) Beta (0.8,0.8)

Figure 9.3: Graphs of the ten pdfs used for ιI sensitivity testing when I =
(1,−1,−1, 1).
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(a) Beta (0.2,0.8) (b) Beta (0.8,8.0))

(c) Gamma (d) Extreme value

(e) Beta (1.5,5.0) (f) Normal (g) Cauchy

(h) Uniform (i) Beta (1.5,1.0) (j) Beta (0.8,0.8)

Figure 9.4: Graphs of the ten pdfs used for ιI sensitivity testing when I =
(1,−1/2,−1/2, 0).
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(a) Beta (0.2,0.8) (b) Beta (0.8,8.0))

(c) Gamma (d) Extreme value

(e) Beta (1.5,5.0) (f) Normal (g) Cauchy

(h) Uniform (i) Beta (1.5,1.0) (j) Beta (0.8,0.8)

Figure 9.5: Graphs of the ten pdfs used for ισ sensitivity testing when I =
(1,−1,−1, 1).
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(a) Beta (0.2,0.8) (b) Beta (0.8,8.0))

(c) Gamma (d) Extreme value

(e) Beta (1.5,5.0) (f) Normal (g) Cauchy

(h) Uniform (i) Beta (1.5,1.0) (j) Beta (0.8,0.8)

Figure 9.6: Graphs of the ten pdfs used for ισ sensitivity testing when I =
(1,−1/2,−1/2, 0).
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CHAPTER 10

EXAMPLES

How much better do the impact summary statistics address end user con-
cerns on real problems? To demonstrate, I re-analyze four published CPD prob-
lems, a bank loan decision problem where ratio+ is important (ιI is relevant), a
rheumatoid arthritis meta-analysis where ratio+ is confounding (ισ is relevant),
detecting a masquerade-type cyber attack and an intrusion detection problem
where summary statistic suitability is context sensitive. The fourth problem is
the first known to apply the impact summary statistics.

10.1 Bank loan decisions

Optimizing bank loan decisions is a “cumulative output” type of CPD
problem. End user impact is best quantified by ιI . Although there is a body
of credit scoring algorithms tests, I found none with sufficient data available for
a full re-analysis. The H. A. Abdou work selected [1], included sufficient detail
to compare peak outputs identified by the algorithms tested.

10.1.1 Test protocol

Abdou provides the normalized JPT proportions and reports a misclassi-
fication cost ratio of 5 : 1; MCR=cost of Type II errors ( f+)/cost of Type 1 errors ( f−).
(MCR considers direct costs only. It does not include the opportunity cost, the
lost income attributable to qualified applicants not being funded.) Abdou does
not provide loan amount information, so I define a “standard loan unit” of some
arbitrary number of Egyptian pounds (EGP) and calculate the impact per loan
unit. The JPT categories are defined as:

Good applicants (ιT+ = 1.0) These are loans that are made and pay off as ex-
pected.

Known defaulters (ιT− = −.01) These are applicants rejected where ground truth
is a known default. Abdou is not clear on how this JPT category is quanti-
fied. In a strict sense, these loans are not made, so how can ground truth be

91



Original and reanalysis results
EMC ιI at ratio+=

Test 5 : 1 ratio+=1 ratio+=0.67 ratio+=0.48 ratio+=0.40
WOET2 0.4627 0.3484 0.4223 0.4764 0.5068

PA 0.6232 0.4377 0.5299 0.5975 0.6354
GPp 0.5679 0.4315 0.5555 0.5896 0.6259
GPt 0.6964 0.4590 0.5561 0.6271 0.6670

Table 10.1: This table compares Abdou’s original credit scoring algorithm results
[1] using estimated misclassification cost (EMC) and ιI as summary statistics. The
highlighted values indicate the best results. EMC is a cost, thus the lower the
value, the better; WOE is best. ιI estimates the net impact; the higher the number
the better; GPt is best. The ιI results are consistent with other studies; generally,
AI-derived algorithms outperform manual algorithms.

a known default? All applicants, including those rejected, incur an applica-
tion processing cost, hence, ιT− is negative.

Unknown defaulters (ιF+ = −.05) These are loans made that defaulted. The value
is based on MCR= 5 : 1.

Unknown good applicants (ιF− = −.01) These are rejected applicants that later
proved to be good.

In order to limit complexity, I assume that the standard loan unit has a defined an-
nual profit expectation. Intuitively, I might expect ιT− > 0. Contrary to intuition,
in Abdou’s scenario, ιT− has a slight negative impact. This is due to application
processing costs incurred, regardless of the loan decision made.

Abdou also normalizes his data ratio+ = 1.0. However, the problem is
ratio+ sensitive, so I use JPT tuning to adjust to the reported value, ratio+ = 0.48.
Abdou ran a sensitivity analysis on EMC; I will use JPT tuning to illustrate how
an end user can run a ratio+ sensitivity analysis. (As I noted Chapter 6.1, such
a sensitivity analysis can test results at the identified boundary, however, ratio+
causes the optimum boundary to shift. So without the actual data, JPT tuning
cannot be used to estimate the peak impact.) I tune the JPT to two other relative
class sizes, ratio+ = 0.67 and ratio+ = 0.40. The four weight of the evidence
(WOE) JPTs and four genetic programming (team) (GPt) JPTs are shown in Ap-
pendix E; Table 10.1 compares my ιI results with the estimated misclassification
cost (EMC) reported by Abdou.

10.1.2 Results

Abdou concludes that the WOE model is the best performer, based on
EMC. However, ιI shows that genetic programming performs the best. Abdou
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does not report confidence intervals, but because the results for probit analysis
(PA) and GPp are so similar, there is reason to suspect that the the difference is
statistically insignificant. Based on ιI , WOE seems to be the worst performer.
WOE has a substantial negative impact on the lender compared to either PA and
GP. My re-analysis indicates that GP is at least equivalent to the best non-artificial
intelligence method tested – this is consistent with other tests comparing Artifi-
cial Intelligence (AI) and non-AI methods.

Using the Egyptian banking environment assumptions presented here, my
sensitivity analysis of GP shows that for ratio+ = [0.40, 0.67], the annual profit
per loan unit would range from fifty-six to sixty-seven percent of the amount
that would be received if loan decisions were perfect. Thus by using ιI , the bank
decision makers receive valuable information that can be used to define loan ap-
plication scoring policy and procedures. I want to emphasize that the banking
environment assumptions used will probably not be extensible to a wide bank
pool. Thus, ιI will be most useful when each institution tunes the values to their
specific environment.

10.2 Rheumatoid arthritis testing

The Hippocratic oath is commonly held to characterize the medical prac-
titioner’s mantra: do no harm. This dedication to their patient’s welfare would
seem to make impact a suitable measure. Indeed, in recent years, there has been a
discussion thread in the medical community regarding difficulties medical prac-
titioners have interpreting and properly applying medical tests. Steurer, et al.,
sound the alarm by observing that medical practitioners do not have a clear un-
derstanding of commonly used summary statistics such as sensitivity and pos-
itive predictive value. The authors found that adding non-technical language
improved clinicians ability to correctly interpret the information [82]. Whiting, et
al., performed a meta-analysis on the issue. They found that practitioners con-
sistently have difficulty interpreting Bayesian values [95]. A report by Zhelev, et
al., is a case in point. This study focused on Cochrane diagnostic test accuracy re-
views. Cochrane reviews are a well-trusted evidence-based health care resource,
yet Zhelev, et al., discovered that regardless of experience with the reviews, prac-
titioner’s understanding was poor [98]. Of the papers reviewed, the one most
aligned with my work was Gopalakrishna, et al. The authors confirmed the diffi-
culty observed by others and identified three contributing factors “methodologi-
cal issues, resource limitations and a lack of awareness on the need for evidence
that links testing to patient outcomes”. Gopalakrishna, et al. recommend edu-
cation as a quick mitigation, but go on to note that “a shift in the way we view
the value of a test is required: to move away from solely considering how accu-
rate a test may be in diagnosing a condition to including the value it may bring
to the patient receiving the test” [34]. The impact summary statistic used in this
example satisfy Gopalakrishna, et al.’s suggested paradigm shift.
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Nishimura, et al. [64] published a meta-analysis [18] of two rheumatoid
arthritis (RA) diagnostic tests comparing two medical diagnostic tests for RA.
The meta-analysis is quite thorough and accounts for many potential variations
between studies. The team concludes that one test is better than the other, how-
ever, does so without using a summary statistic. My re-analysis adds ισ, the ap-
propriate impact summary statistic identified in Chapter 9.

Nishimura, et al.’s study uses two summary statistics, positive likelihood
ratio (LR+) and negative likelihood ratio (LR−). Both of these ratios are condi-
tioned on ground truth (Y and Y) rather than (Z and Z), the outputs observable
by end users. Given a typical test using supervised inputs (where ground truth
is known), these two values are efficacious for researchers. They are less so in the
field, where end users have only the CPD output; ground truth is unknown.

Normalized odds ratio summary statistics
Test LR+ LR−

Anti-CCP 12.46 (9.72–15.98) 0.36 (0.31–0.42)
RF 4.86 (3.95–5.97) 0.38 (0.33–0.44)

Expected (annual economic) impact ($103)
Test ιZ ιZ ισ

Anti-CCP -0.55 (-0.56– -0.44) -9.6 (-9.7– -9.5) -5.1 (-5.1– -5.0)
RF -1.4 (-1.6– -1.3) -9.5 (-9.6– -9.4) -5.5 (-5.5– -5.5)

Table 10.2: These tables compare the summary likelihood ratios originally re-
ported [64] (top table) and the corresponding ιZ, ιZ and ισ (bottom table). Both
summary statistic suites show that the anti-CCP test is better, as does the sum-
mary statistic ισ. The additional insight gained by assessing impact may lead an
end user to want substantial corroboration of a negative test result.

10.2.1 Test protocol

The authors observe that RA treatment is harmful to and costly for persons
with false positive results. Regardless of the diagnosis, a correct diagnosis maxi-
mizes the subject’s quality of life. Accordingly, I define the meaningful zero as the
costs associated with a correct diagnosis: {ιT+ = 0, ιT− = 0}. An incorrect diag-
nosis results in reduced quality of life. Rounding Lajas, et al.’s reported costs [48]
to Nishimura et al.’s degree of precision(two significant digits), the mis-diagnosis
costs are: ιF+ = −$7, 900 and ιF− = −$13, 000.

Since each individual diagnosis is important, ισ is the appropriate sum-
mary statistic. In my extension to Nishimura et al.’s report, I calculate the ιZ(σ),
ιZ(σ) and ισ on the pooled test data.
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Actual RA condition
Diseased Not diseased

Anti-CCP test Positive 0.67 (0.65–0.68) 0.05 (0.04–0.06)
Result Negative 0.33 (0.32–0.35) 0.95 (0.94–0.95)

Totals 1 1

Actual RA condition
Diseased Not diseased

RF test Positive 0.69 (0.68–0.7) 0.15 (0.14–0.16)
Result Negative 0.31 (0.3–0.32) 0.85 (0.84–0.86)

Totals 1 1

Table 10.3: These normalized JPTs of Nishimura et al.’s pooled anti-CCP and RF
test data were calculated from Nishimura, et al.’s reported sensitivities and speci-
ficities [64]. A person without RA is far less likely to be mis-diagnosed than one
with the disease when the anti-CCP test is used.

Anti-CCP test Actual RA condition
Result Diseased Not diseased ι

Positive 0 -.55 (-.56– -.44) ιZ(σ)=-.55 (-.56– -.44)
Negative -9.6 (-9.7– -9.5) 0 ιZ(σ)=-9.6 (-9.7– -9.5)

ισ=-5.1 (-5.1– -5.0)

RF test Actual RA condition
Result Diseased Not diseased ι

Positive 0 -1.4 (-1.5– -1.3) ιZ(σ)=-1.4 (-1.6– -1.3)
Negative -9.5 (-9.6– -9.4) 0 ιZ(σ)=-9.5 (-9.6– -9.4)

ισ=-5.5 (-5.5– -5.5)

Table 10.4: These tables show the ιZ(σ), ιZ(σ) and ισ as well as the proportional
contribution of each JPT category. All values are in thousands of dollars. The
values indicate the unnecessary annual economic cost resulting from an incorrect
diagnosis.
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10.2.2 Results

Table 10.2 shows the original likelihood ratios reported by Nishimura et
al. and the proposed new summary statistics. (The parenthesized range is the
95% confidence interval. On a single tailed test as used here, only one bound is
relevant, thus the bound indicates a 97.5% confidence.) Reassuringly, the results
of the proposed summary statistics and the original summary statistics used are
similar and the same conclusion reached (the anti-CCP test is better than the RF
test). Comparing ισ for each test and keeping in mind the end user context re-
quires ratio+ invariance, the anti-CCP test estimated annual economic impact on
patients is four hundred dollars less than the RF test’s estimated annual economic
impact.

End users inspecting the raw JPT values in Table 10.3 may note that anti-
CCP has a substantially lower F+ rate than the RF test. They might therefore be
inclined to place substantially more trust in the RF test’s negative result, rather
than in a negative result from the anti-CCP test. However, that trust does not
result in a better outcome for the patient. Actually both tests have statistically
equivalent negative impacts. In fact, the end user can see that in contrast to a
positive test result, a negative result can have a substantial negative annual cost:
an end user may not want to conclude a patient with a negative test result is RA
free without strong corroboration. Regarding positive test results, the RF test has
approximately three times worse (negative) impact than anti-CCP.

Table 10.4 shows the JPTs for both raw proportions and impacts. Assessing
the RA test’s impacts provides information to the researcher, however, the real
contribution may be that it its a shift in the way medical practitioners view test
value. Gopalakrishna, et al. recommend including the value it may bring to the
patient receiving the test; ισ is such a summary statistic. This example shows its
value to the end user.

recommend education as a quick mitigation, but go on to note that “a shift
in the way we view the value of a test is required: to move away from solely
considering how accurate a test may be in diagnosing a condition to including
the value it may bring to the patient receiving the test

10.3 A Cyber security masquerade study

This re-analysis and the next address cyber security issues. Early cyber
security strategy focused on “keeping the bad guys out”. Over time, this strategy
has evolved into a risk-based strategy that considers the impact of specific mali-
cious activities. The cost of low impact events may be dominated by processing
false alarms (F+) in which case cumulative effects are important: ιI is the ap-
propriate summary statistic. The cost of high impact events may be dominated
by processing missed attacks (F−) and for some impact events, a single missed
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(a) Ground truth for the compression algo-
rithm

(b) Ground truth for the uniqueness algo-
rithm

Figure 10.1: These plots show that both classifiers can perfectly distinguish be-
tween normal and masquerade traffic. Uniqueness has a wider gap between
classes, so is a more robust classifier.

attack may be disruptive, perhaps catastrophic. In such cases, ισ is the appro-
priate summary statistic. Hence, for both cyber security examples, both impact
summary statistics are used.

10.3.1 Test protocol

Schonlau, et al. simulate a masquerade attack by capturing UNIX com-
mands resulting from specific user activity, then inserting UNIX commands gen-
erated by another user into the original command stream [74]. In the other two
examples, the data available only allowed re-analyses of the original work. How-
ever, Schonlau’s test data and raw test results are available online (click the Mas-
querading User Data tab on http://www.schonlau.net), so it is possible to illus-
trate a hypothetical end user analysis.

Using Schonlau, et al.’s data, I simulated two end users assessing the per-
formance of two anomaly-based intrusion detectors. Schonlau simulated fifty
users and tested six detection algorithms; I selected two each. Schonlau’s study
used test sets that were moderately sized, one hundred blocks of test data, of
which a small, random portion were masquerade activity. As noted in Chapter
5, my experience with small class sizes indicate that the evaluation results tend
to yield optimistic results. To minimize this effect, I selected the two test sets
(users) with the most balanced class sizes. Users 9 and 24 had ratio+ = 3.8 and
3.3, respectively.

Schonlau tested six different CPD algorithms. Overall, Schonlau, et al.
reported that “uniqueness” provided the best detection rate, “compression” the
worst. I chose the two extremes.

97



(a) high risk curve for the compression algo-
rithm

(b) high risk curve for the uniqueness algo-
rithm

(c) low risk curve for the compression algo-
rithm

(d) low risk curve for the uniqueness algo-
rithm

Figure 10.2: Impact graphs for User 24. For both high and low risk events, the
uniqueness algorithm exhibits less optimum boundary sensitivity. The optimum
boundary is indicated on the graphs as a green circle.
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(a) low risk curve for the compression algo-
rithm

(b) low risk curve for the uniqueness algo-
rithm

Figure 10.3: ιI sensitivity to ratio+ graphs for User 24. Both the compression and
uniqueness algorithms exhibit the same ratio+ sensitivity over a 20% variation,
ιI ≈ [1.68, 1.99].

For a low impact scenario, I = ($5,−$1,−$1, $1) is used;
I = ($10,−$1,−$100000, $1) is used for a high impact scenario. Impact is mea-
sured in currency (USD), so the greater the value, the better the expected result
for the user. In this analysis, I calculate ιI and ισ, test ratio+ sensitivity for ιI
and assess the optimum boundary sensitivities for both ιI and ισ. All four data
sets have approximately equal ratio+. In keeping with the user product selection
theme, both user’s evaluations will end with a downselect matrix and recom-
mendations.

10.3.2 Results

Users 9 and 24 represent two independent stakeholders doing their own
independent analyses for their separate environments. Table 10.5 shows the ιI
and ισ results for user 24. “+” indicates the better algorithm; “-” indicates the
worse algorithm; and “=” indicates that the algorithms are equivalent. In the
table, “@x” indicates the normalized boundary at which the value was observed
(the boundaries are normalized to a 0 to 100 interval). In this table, both classifiers
have the same peak impacts at the same optimum boundaries. This is because,
as can be seen in Figure 10.1, both classifiers correctly identify the entire test set.
ιI reflects the effect of the test set’s ratio+. ισ is ratio+ invariant; for a perfect
classifier, its value is the average of ιT+ and ιT− .

How do the two classifier optimum boundary sensitivities compare for
high risk events? Figures 10.2a and 10.2b show that the uniqueness algorithm
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Classifier type
Scenario Compression Uniqueness

Low risk (ιI) $1.84 @ 21 $1.84 @ 21
High risk (ισ) $5.50 @ 21 $5.50 @ 21

Low risk B∗ sensitivity - +
High risk B∗ sensitivity - +

Low risk ratio+ sensitivity = =

Table 10.5: User 24’s downselect matrix shows that although the impacts and
optimum boundaries are the same for both tests, the uniqueness algorithm is
less sensitive, thus performs better than compression. User 24 would choose the
uniqueness-based detector. “+” indicates the better algorithm; “-” indicates the
worse algorithm; and “=” indicates that the algorithms are equivalent. “@x” in-
dicates the normalized boundary at which the value was observed.

drops off much faster to the right of B∗ the optimum boundary than does com-
pression. However, when the observation value ranges are normalized, unique-
ness has a substantially larger area under the curve, so provides the better out-
come overall. This is the result of the difference in the gaps between the two
classes. Whereas compression detection could be fooled by edge cases (Schon-
lau’s test sets are not large, so are likely to not include less frequent events for
either group), uniqueness has a large gap, so will be less sensitive to edge cases.
Considering the severe impact of a missed attack, the gap provides a buffer against
missed attacks.

How do the two classifier optimum boundary sensitivities compare for
low risk events? Figure 10.2d shows that the uniqueness algorithm exhibits an
impact plateau near the optimum boundary, whereas Figure 10.2c shows that
the impact for the compression algorithm rapidly degrades. This shows that
whereas the uniqueness impact is constant across the interval [−100, 400] (the
gap between the two classes), compression’s impact shows no stability around
B∗. Also, when the observation value ranges are normalized, uniqueness has a
substantially larger area under the curve, so provides the better outcome overall.

ισ is ratio+ invariant, but ιI is not. How sensitive to ratio+ is ιI? Both
classifiers exhibit the same ratio+ sensitivity. This can be seen in Figure 10.3.

These findings are summarized in the downselect matrix for User 24 (Ta-
ble 10.5). The two classifiers only vary in their optimum boundary sensitivity:
uniqueness is better. Hence, User 24 would deploy the uniqueness-based classi-
fier. Figure 10.1 shows the data plots for User 24’s ground truth. Both classifiers
correctly label the entire test set. However, uniqueness has a greater gap between
classes, so is a more robust tool for User 24.

Table 10.6 shows the peak expected impact test results for User 9. For
the low risk events and the I selected for this analysis, the compression algo-
rithm expected impact is approximately 2.4 times better than the uniqueness al-
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gorithm. For low risk events, the uniqueness algorithm performs optimally when
all events are treated as normal (B∗ = 1). This boundary suggests that uniqueness
cannot differentiate between normal and masquerade traffic.

For high risk events, uniqueness performs optimally when all events are
treated as masquerades (B∗ = 100). Once again, this boundary suggests that
uniqueness cannot differentiate between normal and masquerade traffic, how-
ever, now the end user is better off assuming all traffic is masquerade. Table 10.6
shows that compression provides a positive benefit for end users, uniqueness has
a large loss.

How do the two classifier optimum boundary sensitivities compare? For
both high and low impact scenarios, the compression algorithm exhibits relative
impact stability while B is slightly less than B∗. When B > B∗, the compression al-
gorithm’s impact degrades precipitously. In contrast, any change in uniqueness’s
B away from B∗ causes a precipitous drop in impact. This is shown in Figure 10.4.
Since uniqueness provides its best result when all values are classified the same,
it is really an ineffective algorithm for User 9.

How sensitive to ratio+ is ιI? This is shown in Figure 10.5. Over a 20% vari-
ation, the compression algorithm’s impact range is ιI ≈ [1.08, 1.37]. The unique-
ness algorithm’s sensitivity differs markedly from that of compression and from
that seen with User 24. The “V” shape was unexpected. An investigation of the
figure’s underlying data revealed that the slope change is caused by a change
from B∗ = 1 to B∗ = 100 around ratio+ = 3. The figure shows the peak im-
pact value, regardless of B∗, thus, the cause is not apparent in the figure. User
9, however, is unlikely to know when to shift the optimum boundary, so this
“V” performance is unlikely to be experienced in the field. (The discussion is
academic, however, since uniqueness is ineffective for User 9.)

Table 10.6 is the downselect matrix for User 9. In every category, the
compression-based classifier is better than the uniqueness-based classifier. Hence,
User 9 would deploy the compression-based classifier. Figure 10.6 shows the data
plots for User 9’s ground truth. Both classifiers have large overlaps between nor-
mal and masquerade traffic. Compression’s overlap is slightly less, so is a more
robust tool for User 9. User 9, however, may want to use two thresholds. Com-
paring the high impact optimum boundary’s result in the low impact scenario in
Figure 10.4 and vice versa, the optimum threshold for high risk events only has
about seventy percent of the benefit received with the low risk impact. Similarly,
the low impact optimum threshold results in a large negative impact from high
risk events.

Schonlau. et al. use a modified ROC curve to analyze their results. Since
they use a ROC-like summary statistic, they are unable to assess risk-based im-
pact, nor can they assess B∗ or ratio+ sensitivities. Impact-based analyses can.
This example also shows how sensitive CPD performance (and thus, end user
tool selection) is to the end user’s environment. In User 24’s environment, both
algorithms work well, but uniqueness exhibits less boundary sensitivity, it is the
better performer. In User 9’s environment, neither algorithm works well, but
uniqueness is essentially useless, with compression being the better performer.
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(a) high risk curve for the compression algo-
rithm

(b) high risk curve for the uniqueness algo-
rithm

(c) low risk curve for the compression algo-
rithm

(d) low risk curve for the uniqueness algo-
rithm

Figure 10.4: Impact graphs for User 9. For both high and low risk events, the
compression algorithm exhibits less optimum boundary sensitivity. Optimum
boundary is indicated on the graphs as a green circle.

Classifier type
Scenario Compression Uniqueness

Low risk (ιI) $1.22 @ 17 $0.50 @ 1
High risk (ισ) $3.24 @ 77 -$25,200 @ 100

Low risk B∗ sensitivity + -
High risk B∗ sensitivity + -

Low risk ratio+ sensitivity + -

Table 10.6: User 9’s downselect matrix shows that the compression algorithm
performs better for User 9 than uniqueness.
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(a) low risk curve for the compression algo-
rithm

(b) low risk curve for the uniqueness algo-
rithm

Figure 10.5: ιI sensitivity to ratio+ graphs for User 9. Over a 20% variation,
the compression algorithm’s impact range is ιI ≈ [1.08, 1.37]. The uniqueness
algorithms sensitivity differs markedly from that of compression and from that
seen with User 24. The “V” shape was unexpected. Investigation into the result
determined that it was caused by a change from B∗ = 1 to B∗ = 100. The test
tracked the peak impact, regardless of B∗. User 9, however, is unlikely to know
when to shift the optimum boundary, so this “V” performance is unlikely to be
experienced in the field.

(a) Ground truth for the compression algo-
rithm

(b) Ground truth for the uniqueness algo-
rithm

Figure 10.6: These plots show that both classifiers have a large overlap in normal
and masquerade traffic. Compression has somewhat less overlap, so is the more
robust classifier.
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End users are ill-advised to rely on “generic” test results for tool selection and
configuration decisions.

10.4 Selecting an intrusion detection system for an industrial control system

Section 10.3, illustrates comparing two masquerade detection algorithms.
This section illustrates how ιI and ισ can aid in a “GO / NO GO” intrusion de-
tector deployment decision. Similar to the Rheumatoid Arthritis example and
the cyber security masquerade example, there are decision options. In this ex-
ample, the options are i) keeping the current system with only security incident
response and recovery capabilities (equivalent to classifying all events as normal
[test=negative]) or ii) adding an intrusion detection system. The impact assess-
ment uses actual test results for a novel intrusion detection system (IDS) tailored
for industrial control systems (ICS) (Kratos) under development by root9B, LLC
[25]. The assessment assumes scenario-specific I vectors for two incident types,
irrecoverable (for which I has an extreme negative impact for missed attacks)
and recoverable (for which there are six I vectors with detection error impacts
representing different impact levels, ranging from very high to very low).

Irrecoverable incidents would have devastating effects on the enterprise
and its mission: they must be completely avoided. Even a single instance is too
many, thus ισ is the applicable measure. In contrast, recoverable incidents nega-
tively affect the end user or enterprise, but are not catastrophic. In this example,
we assume the effect is cumulative. As in the bank loan decision example, ιI is
the appropriate measure.

10.4.1 Test protocol

Kratos, root9B’s novel anomaly detector monitors eight indicators of com-
promise (IoC). One important Kratos feature is that it eases deployment and
maintenance by automatically selecting classification boundaries for each IoC.
This affects Kratos’ assessment, since impact’s dependence upon boundary can-
not be tested; test results consist solely of a JPT table reflecting results on the
test set, with ratio+ = 0.00065. Also, input complexity doesn’t allow a graphical
presentation as in Section 10.3.

Kratos was trained on actual data from a manufacturing plant in which the
Purdue Level two SCADA traffic was over MODBUS/TCP. Without changing
any Kratos algorithms, the IDS was tested on previously unseen DNP3 traffic.
Kratos’s anomaly detection algorithm exhibited exceptional robustness. In tests
of eight indicators of compromise, in a body of over three million events, Kratos
missed very few anomalies and generated no false alarms. Table 10.7 shows the
results Kratos’s poorest showing, a test where only two bytes were changed in
each target payload.
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Actual classification (ground truth)
Y Y Totals ↓

Test + : si ∈ {Z} 177 0 177
Result − : si /∈ {Z} 23 310000 310023

Totals 200 310000 310200

Table 10.7: Observed test results, organized into a joint probability table.

10.4.2 Analysis protocol

Conceptually, the four Axioms introduced in Chapter 8 confer specific in-
sights to end users. This Kratos ICS IDS test analysis is organized to illustrate
each Axiom’s contribution. Axioms One and Four and the ratio scale require-
ment from measurement theory (recapped below), allow end users to map CPD
tool test output to expected JPT category impact. This impact can be quantified
using their preferred unit of measure (assuming it is ratio scale).

Axiom 1 (Category importance) An end user efficacious summary statistic must be a
function of problem specific impact vector I = (ιT+ , ιF+ , ιF− , ιT−), where each element of
I ∈ Q.

Axiom 4 (Summary statistic value appropriateness) An end user efficacious sum-
mary statistic’s output must quantify the CPD’s impact on the end user’s characteristic
of interest.

Measurement theory. Ratio scales allow the most extensive analysis, thus end users
are best served by ratio scale summary statistics.

I use currency (United States Dollars [USD]) to quantify the CPD’s end
user impact. Although the end user in this discussion is hypothetical, often cur-
rency is used for comparison. One benefit of currency is that it is almost univer-
sally comprehensible by decision makers, regardless of their technical expertise:
hence it satisfies Axiom Four. Currency is also measured on a ratio scale, so satis-
fies the measurement theory requirement. Currency can also quantify the impact
of each CPD outcome relative to JPT category, so satisfies Axiom One.

Table 10.8 shows the I vectors for this use case. The values for each cate-
gory are based on the following scenario. These values are for illustration pur-
poses only:
Legitimate events processed as legitimate (T−): The enterprise realizes a one hundred
dollar benefit from every legitimate event.
Legitimate events processed as malicious (F+): Although there is loss incurred, the
enterprise still realizes a ninety-nine dollar benefit from every false alarm event.
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Malicious events processed as malicious (T+): The enterprise avoids the potential
negative effects, but experiences a small detection and response cost per event;
one tenth of one cent.
Malicious events processed as legitimate (F−): The enterprise realizes a cost from ev-
ery missed attack. For this use case, the specific event’s impact class is mapped
directly to the expected ιF− . High impact events generate a major loss; low impact
events generate a small reduction in per-event income. This evaluation considers
six ιF− values.

Table 10.8 summarizes the scenario impacts, with each row representing
an I vector. All JPT category impacts are the same, except F−. This would prob-
ably not be true in the field. However, this simplifies analysis with no loss of
generality.

As noted in Section 6.2 regarding the different behaviors of TAR and Fβ-
score, JPT category impact can have a dramatic effect on test results: each end
user must determine values relevant for their specific situation.

In this scenario, we assume there are a number of potential attacks, with
a range of impacts. However, the I vector presents statistical expectations, so in
the general case, there will be some degree of uncertainty associated with each
value. To illustrate end user utility, the low and medium F− impacts are upper
and lower bounds. I execute an ιF− sensitivity analysis by evaluating the bounds
plus three intermediate values.

Impact value
Impact Class ιT+ ιF+ ιF− ιT−

Low $−0.001 $99 $90.00 $100
$−0.001 $99 $0.0010 $100
$−0.001 $99 $−1.00 $100
$−0.001 $99 $−20.00 $100

Medium $−0.001 $99 $−100.00 $100
High $−0.001 $99 $−10, 000 $100

Table 10.8: Impact values used in this use case. For clarity, Impact classes are tied
to missed attacks (ιF−). All other vector values are kept constant.

The previous test demonstrates axiom compliant summary statistic incor-
poration of system characteristics into a CPD tool assessment. This quantifies its
effect on the target performance characteristic. Similarly, Axiom Two (recapped
below) allows end users to incorporate environmental characteristics into their
CPD tool assessment.

Axiom 2 (Environmental sensitivity) With a change in pdf(Y),
e.g., pdf(Y′)= ∆+pdf(Y), pdf(S)=pdf(Y)+ pdf(Y) and pdf(S′)=pdf(S)+∆, where ∆
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describes a perturbation in Y’s and S’s source population. For all boundaries within ∆,
there exists a E(SS(B)|S′))− E(SS(B)|S)) 6= 0. The same is true for a change in Y and
for any ratio+.

In this analysis and with no loss in generality, I assume that the test normal
and malicious ICS traffic samples are representative of their respective classes,
but that attack frequency (and hence, ratio+) will vary. JPT normalization com-
pensates for ratio+s for problems where it is confounding. As noted in Section
10.1, any test set is an environmental expectation, so JPT tuning allows the end
user to get a sense of the possible impact range. In my test data, ratio+ = 0.00065;
I use JPT tuning to estimate the CPD tool’s impact at five points across ratio+ ∈
[0.0001, 0.007].

In research conditions, investigators executing supervised tests will know
ground truth. However, in the field, end users will not. This greatly limits the
practitioner’s ability to compare actual with expected field results. An Axiom
Three (recapped below) compliant summary statistic enables this comparison.

Axiom 3 (CPD output basis) An end user efficacious summary statistic must be quan-
tifiable in terms relative to information known and visible to the end user: CPD output
(Z and Z).

Although both ισ and ιI are Axiom Three compliant, only ιI’s values en-
able actual vs. expected impact comparisons1, the motivation for Axiom Three.
Therefore, only ιI(Z) and ιI(Z) will be presented and discussed.

1Any irrecoverable event can only occur once, but ιF− is only observable after the event. For the
same reason, ισ and ισ(Z) are only calculable after the event. Since by definition, ισ is appropriate
for irrecoverable events, if such an event has occurred, then the diagnostic value of ισ and ισ(Z)
in the field to validate model assumptions and possibly optimize detector impact is vanishingly
low. The summary statistics are useful, however, as risk indicators.
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summary statistic
value

summary statistic NO GO GO
Accuracy (TAR) 0.9993 0.9999

F1-score undefined 0.9389
Youden Index undefined 0.88500

Low impact ιI (ιF− = 90.00) $99.99 $99.94
ιI (ιF− = 0.001) $99.94 $99.94
ιI (ιF− = −1.00) $99.93 $99.93
ιI (ιF− = −20.00) $99.92 $99.93

Medium impact ιI (ιF− = −100.00) $99.87 $99.93

High impact ισ (ιF− = −10, 000.00) –$4937 −$941.7

Table 10.9: The bolded values for each summary statistic indicate the decision
supported. The F1-score and Youden Index are undefined for the “NO GO” case.
However, TAR supports a “GO” decision. In contrast, the impact summary statis-
tics show that the decision is not so clear-cut. A “GO” decision is justifiable when
ιF− ≤ −20.00, but is only strongly supported for high impact events. However
deploying the IDS has a significant stabilizing effect on impact. This may be im-
portant to decision makers.

Figure 10.7: TAR suggests that
in all cases, the target system is
more effective with the classi-
fier than without.

10.4.3 Results

Table 10.9 shows the results on the raw data. To illustrate the difference
in actionable information decision makers receive when using ιI and ισ, TAR, F1-
score and Youden Index, values are calculated. Since the “NO GO” scenario has
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no test=negative output, the F1-score and Youden index are undefined2. However,
TAR supports a “GO” decision. Figure 10.7 shows TAR’s GO/NO GO results for
the five ratio+ scenarios evaluated; at all points, the “NO GO” line is below the
“GO” line, implying that deploying Kratos will reduce the incidence of malicious
events, thereby reducing their overall impact on the enterprise.

In contrast, Table 10.9 shows that the impact summary statistics only strongly
support a “GO” decision for high impact events. Figure 10.8 shows that for events
with modest impact, a “GO” decision is supported when ιF− ≤ −20.00. The de-
tector is contraindicated for lower impact events. However, the IDS does have
a strong stabilizing effect on the expected impact — which decision makers may
find appealing. These insights are not available from the commonly seen sum-
mary statistics.

Comparing the ισ values for high impact (irrecoverable) events, both deci-
sions have negative values, but the “NO GO” decision is about five times more
negative than the “GO” decision. A “GO” decision is strongly supported for high
impact (irrecoverable) events. However, the large negative value indicates that
the enterprise still has substantial residual risk; decision makers may want to
implement additional risk mitigations.

ιI also enables field practitioners to compare actual and expected results.
ιZ and ιZ show the expected per event impact of CPD output. Figures 10.9a and
10.9b show the expected impacts observable in the field. ιZ is roughly a factor
of 107 greater than ιZ. Hence, CPD test=true output is the controlling observable.
Figure 10.9b shows that CPD test=false output is ιF− invariant, but this is an ar-
tifact of the values selected (see Table 10.8); the invariance might not exist in a
real-world evaluation. Once the observed ιF− and ιI are calculated, a specific ra-
tio+ line will pass through that (ιF− , ιI) point. This is the implicit ratio+. If this
value varies unacceptably from the expected value, then the underlying CPD tool
assessment assumptions may not represent reality; further investigation could be
justified.

2This is an artifact of the “NO GO” scenario. If the alternate had even one test=positive event,
then the F1-score and Youden Index could be used for comparison.
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Figure 10.8: This fig-
ure shows ιI versus
ιF− for GO decisions
(solid lines) and
NO GO decisions
(dotted lines) under
five different ratio+
conditions. In every
case, the two lines
intersect. This indi-
cates that the “GO”
decision (deploying
Kratos ICS IDS) is
supported for events
where ιF− is negative
(left of the intersec-
tion), but not when
ιF− is positive (right
of the intersection).
The figure also
shows that with
Kratos installed, the
system’s output (as
quantified by ιI) is
more stable than
without Kratos. This
reduction in volatil-
ity may be important
to decision makers.

10.5 Example findings

Each of the examples in this chapter apply the impact summary statis-
tics. In the re-evaluation cases, impact-based test results were compared with
the original findings. The original research included both conventional and im-
pact summary statistics. In every case, end users would have benefited from the
additional insights resulting from impact-based evaluation.

In the Egyptian bank loan analysis, JPT tuning showed that the original
conclusion was incorrect. A ratio+ sensitivity analysis illustrated that an end user
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(a) Expected test=true CPD output impact (b) Expected test=false CPD output impact

Figure 10.9: Expected CPD output impact (that is, the expected impact of the
CPD’s “event is normal” and “event is anomalous” outputs) can be calculated.
End users can use the test results shown in these figures to determine if the CPD is
performing as expected. Discrepancies may be grounds for further investigation.

could estimate the expected loan decision impact. These additional insights could
improve bank loan policies.

The rheumatoid arthritis diagnostic test re-analysis puts the researcher’s
findings into an easily understood context: currency. ισ has a meaningful zero: a
correct diagnosis results in the appropriate treatment and the best quality of life
(zero negative benefits). The greater the negative value, the worse the expected
result is for patients. On the other hand, likelihood ratios do not have a meaning-
ful zero. Instead, the distance from one is important. However, the two summary
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statistics have different bounds. LR− has a upper bound of one and LR+ has an
upper bound of infinity. This makes interpretation less intuitive.

The cyber security masquerade study re-analyzed Schonlau’s data for two
users. My analysis culminated with a downselect matrix, which considered the
expected impact for both low and high risk events as well as boundary and ratio+
sensitivity. The insights gained from the impact-based analysis showed that the
two users would realize the best results from different CPD algorithms.

The industrial control system intrusion detection study showed that each
of the axioms (and the measure theory derived insight) have value to end users.
The proposed summary statistics provide end users with a richer understanding
of CPD tool effectiveness, enabling a more informed deployment decision.

In each of these examples, applying the appropriate impact summary statis-
tic generated actionable information not revealed by other summary statistics.
Hence, the theoretically derived solution holds up in real-world application.
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CHAPTER 11

USER STUDY

The initial work was inspired by anecdotal stories and informal discus-
sions with end users in cyber security. While this may be sufficient to initiate
a work such as this, the claimed utility (and significance of the contribution to
the body of knowledge) remains hypothetical until validated. Hence, when the
opportunity arose, a group of cyber security end users were surveyed. Their
response provided a qualitative means of assessing whether actual end users be-
lieved this dissertation’s outcomes would improve their CPD tool evaluations.
In conjunction with the body of research on medical practitioners mentioned in
Chapter 10.2, this study illustrates that end users see value in quantifying impact.

11.1 Study protocol

The study consisted of an initial questionnaire to evaluate the respondent’s
experience with classifier assessment and selection. This was followed by work-
ing through the ICS IDS use case in Section 10.4, then discussing the respondent’s
opinion of the proposed summary statistic’s utility.

11.2 Results

There were five participants, hence the group size was too small for a rig-
orous statistical analysis. However, three conclusions were possible:

• the more experience end users had with classifier evaluation, the less satis-
fied they were with the existing summary statistics.

• after exposure to ιI and ισ and viewing a use case applying them as well as
Accuracy, F1-score and Youden index, the respondents overwhelmingly felt
that ιI and ισ provided substantial additional actionable information.

• the extra effort needed to define I was justified.

Respondents observed some potential impact summary statistic limita-
tions:
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• There are classifier selection considerations other than impact. Issues such as
ease-of-use and response timeliness also can sway a decision. Impact pro-
vides better insight into only one performance factor.

• The impact summary statistics are too new. The impact summary statistics may
be used in conjunction with others. That will provide different views of per-
formance and give the user community time to decide the impact summary
statistic’s value.

• Determining I will consume time. There may be occasions when, for whatever
reason, I cannot be determined. Over time, default I values may be deter-
mined for certain problem domains. However, just knowing that one factor
is missing may benefit decision makers. They will have a better sense of the
information quality upon which they are deciding.

• I quantifies statistical expectations. The entire classifier evaluation is based on
inputs that are presumed representative. The impact summary statistics do
not change that challenge. They do, however, provide the means for better
quantifying how well a classifier will satisfy their need.

• By definition, F−s are not observed, so ιF− must be imputed. Estimating ιF− is
more prone to uncertainty than quantifying ιT+ , ιF+ and ιT− , which can be
based on direct observation. However, uncertainty can be processed. The
option of ignoring the value puts the decision maker in a weaker position.

These end user comments show that the impact summary statistics are not a
panacea. When compared to the utility of other summary statistics, however, in
no case does using an impact summary statistic degrade an end user’s decision
making ability.
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CHAPTER 12

CONCLUSIONS

The purpose of this dissertation was to identify end user efficacious sum-
mary statistics for CPD evaluation. Such summary statistics, then, constitute the
target deliverable.

12.1 Key findings

A gap analysis indicated the root cause for the need was the lack of a
framework characterizing CPD problems. The first deliverable was the missing
framework. The framework consists of two factors:

Relative class size (ratio+) End user CPD problems can be partitioned into two
types. Either ratio+ is confounding or ratio+ is explanatory.

Expected impact per JPT category element Every CPD event impacts end users.
Since events can be binned into one of four types, an expected impact can
be calculated for each bin.

One obstacle to finding end user efficacious summary statistics was the
commonly held belief that useful summary statistics must be ratio+ invariant.
I determined that this belief was incorrect; JPT normalization confers ratio+ in-
variance. This breakthrough opened up the set of possible summary statistics,
making the target deliverable achievable. Hence, one key outcome was breaking
the dependence between CPD summary statistics and ratio+ invariance.

A secondary use of JPT normalization that emerged was JPT tuning. It is
possible to adjust a JPT to reflect any desired ratio+. This makes it possible for
end users with problems where ratio+ is explanatory to execute ratio+ sensitiv-
ity analyses. Thus the second outcome was introducing JPT normalization and
JPT tuning to the CPD problem domain. (JPT normalization is an established
procedure in probability, but not universally known in CPD research and devel-
opment.)

Before a summary statistic can be tested for end user efficacy, success crite-
ria must be defined. The third key outcome consists of four Axioms which an end
user efficacious summary statistic must satisfy and tying efficacy to measurement
theory, particularly scale type:
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Axiom 1 (Category importance) An end user efficacious summary statistic must be a
function of problem specific impact vector I = (ιT+ , ιF+ , ιF− , ιT−), where each element of
I ∈ Q.

Axiom 2 (Environmental sensitivity) With a change in pdf(Y),
(e.g., pdf(Y′)= ∆+pdf(Y), pdf(S))=pdf(Y)+ pdf(Y) and pdf(S′)=pdf(S)+∆), where
∆ describes a perturbation in Y’s and S’s source population, for all boundaries within ∆,
there exists a E(SS(B)|S′))− E(SS(B)|S)) 6= 0. The same is true for a change in Y and
for any ratio+.

Axiom 3 (CPD output basis) An end user efficacious summary statistic must be quan-
tifiable in terms relative to information known and visible to the end user: CPD output
(Z and Z).

Axiom 4 (Summary statistic value appropriateness) An end user efficacious sum-
mary statistic’s output must quantify the CPD’s impact on the end user’s characteristic
of interest.

Measurement theory. Ratio scales allow the most extensive analysis, thus end users
are best served by ratio scale summary statistics.

The fourth key outcome is defining two end user efficacious summary
statistics and their respective summary statistic suites:

ιI = ιT+

t+
|S| + ιF+

f+
|S| + ιF−

f−
|S| + ιT−

t−
|S| . (12.1)

ιI can also be expressed on Z and Z, the outputs actually observed by the end
user:

ιI = ιZ
|Z|
|S| + ιZ

|Z|
|S| . (12.2)

ιI is appropriate for CPD problems where ratio+ is explanatory.

ισ =
1
2

(
ιT+ t+n

|Zn|
+

ιF+ f+n

|Zn|
+

ιT− t−n

|Zn|
+

ιF− f−n

|Zn|

)
. (12.3)

ιZ =
ιT+ t+n + ιF+ f+n

|Zn|
and ιZ =

ιT− t−n + ιF− f−n

|Zn|
. (12.4)

ισ is appropriate for CPD problems where ratio+ is confounding.
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Unbiased I Biased I
ratio+ is Summary I = Summary I =

Statistic Statistic
confounding nισ (1,−1,−1, 1) nισ (ιT+ , ιF+ , ιF− , ιT−)

ROC-AUC (1, 1, 1, 1) nFβ-score (1, β2

1+β2 , 1
1+β2 , 0)

DOR\DP (1, 1, 1, 1)
nMCC (1, 1, 1, 1)

nIC (1, 1, 1, 1)
explanatory ιI (1,−1,−1, 1) ιI (ιT+ , ιF+ , ιF− , ιT−)

Fβ-score (1, β2

1+β2 , 1
1+β2 , 0)

TAR ιI |(1, 0, 0, 1)

Table 12.1: This matrix maps the summary statistics discussed to the CPD prob-
lem factors, ratio+ and impact. The summary statistic names with an “n” pre-
fix indicate these summary statistics must have JPT values normalized. J is not
listed. As a scale transformed nιI , it is not appropriate for ratio+ is confound-
ing CPD problems and since J is ratio+ invariant, it is not suitable for ratio+ is
explanatory problems.

12.2 Summary statistic selection recommendations

Given the CPD problem space factors ratio+ and impact, for which combi-
nations are the summary statistics tested valid? Table 12.1 maps summary statis-
tics to the problem space. The relationship between ιI , J and TAR means that J
and TAR are not suitable for CPD problems where ratio+ is confounding. Since
J is ratio+ invariant, it is also not suitable for CPD problems where ratio+ is ex-
planatory.

Unbiased I is actually only a specific I, so the unbiased I column in Table
12.1 can be eliminated. TAR is only suitable for one specific I and Fβ-score has a
limited I range. Taking into consideration end user efficacy, all that remain are ιI
and ισ.

Although this dissertation’s focus is end users, an end user efficacious
summary statistic, nιI |(1,−1,−1, 1), is suitable for application agnostic (TRL 3)
evaluations.

12.3 Results reporting Recommendations

Basic research is application agnostic. As such, environmental effects are
confounding. In contrast, environmental effects are explanatory for applied re-
search and field deployments. In addition to using efficacious summary statistics,
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published CPD test reports need to provide sufficient information for end users
to estimate results in their own environments. This information goes beyond
that needed by a basic researcher, so aiding end users may require intentionally
including JPTs for a range of boundaries and ratio+s.

12.4 Impact measuring process for practitioners

The value of this analysis is greatly diminished if end users cannot readily
use the results. Fortunately, using the impact summary statistics only entails four
steps:

1. Identify the expected impacts and define I. If the problem is complex, like
the intrusion detection example, then multiple Is may be needed.

2. Identify the appropriate summary statistic, ιI or ισ. Various aspects of a
complex problem may need to be addressed separately and the same sum-
mary statistic may not be appropriate for all aspects.

3. If ισ is appropriate, then use JPT tuning to compensate for the mission do-
main’s ratio+, then condition the published JPTs by Z and Z.

4. Calculate the selected summary statistic. The boundary with the JPT which
generates the best impact value is the optimum boundary. The optimum
boundary will provide the best results for the target classifier. In the exam-
ple given, the best impact is the the maximum. This, however, is problem
dependent. In some cases, the best result may be a minimum.

With these values, end users can also determine the classifier output’s boundary
sensitivity.

12.5 Future work

It seems that one research project invariably leads to other opportunities.
Potential extensions to this work include:

• In addition to CPD evaluation, other problem types can be expressed us-
ing the model illustrated in Figure 4.1. This suggests that other problems
domains may benefit from this work.

• There is a relationship between the ROC curve and impact. Does a similar
relationship exist for a CPD output conditioned “ROC-like” curve?

• The report recommendations in Section 12.3 identify necessary information.
However, researchers and end users alike may benefit from a uniform for-
mat and means of identifying useful ratio+ and boundary ranges.
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• My results show that sometimes summary statistics, including ιI and ισ can
be multi-modal. How can end users take advantage of this information?

• There are an infinite number of possible I. However, some I ranges may be
more common than others, particularly when considering single problem
domains. This information could facilitate end user efficacy.

• This study focuses on classifier evaluation. However, any decisioning sys-
tem or subsystem’s output can be expressed in a JPT, hence, the summary
statistics developed herein are potentially applicable. One field of note is
Cyber Security Econometrics. Since risk-based cyber security is gaining
traction, the impact summary statistics may be valuable.

• In this work, class samples needed to be greater than four hundred observa-
tions to benefit from the strong law of large numbers. Are there factors that
influence this sample size and can the negative effect of the law on small
sample sizes be mitigated?

• Given I and normalized JPT data, end users can calculate the expected im-
pact for both Z and Z CPD outputs for any ratio+. the reverse should also
be true: given I, normalized JPT data and the observed, expected impact for
both Z and Z CPD outputs, ratio+ can be estimated. This is a new capability.
What are its practical implications?
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APPENDIX A

RESTATING F1 IN TERMS OF JPT VALUES

As defined,

F1 = 2
(precision)(recall)
precision + recall

.

where
precision =

T+

T+ + F−
and

recall =
T+

T+ + F+
.

Substituting yields

F1 = 2
T+

T++F−
T+

T++F+
T+

T++F− + T+
T++F+

.

Multiplying and creating common denominators,

F1 =
2T2

+
(T++F−)(T++F+)

T+(T++F+)+T+(T++F−)
(T++F−)(T++F+)

.

Multiplying numerator and denominator by (T++F−)(T++F+)
T+

leaves

F1 =
2T+

2T+ + F+ + F−
=

T+

T+ + F+
2 + F−

2

.
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APPENDIX B

RESTATING DP IN TERMS OF JPT VALUES

DP =
√

3
π

(logU + logW) ,where

U =
sensitivity

1− sensitivity
,

W =
specificity

1− specificity
,

sensitivity =
T+

Y
,

1− sensitivity =
F−
Y

,

specificity =
T−
Y

and

1− specificity =
F+

Y
.

combining the logs yields

DP =
√

3
π

(log(UW)).

Then substituting for U and W,

DP =
√

3
π

(
log
(

sensitivity
1− sensitivity

specificity
1− specificity

))
.

Substituting for sensitivity and specificity,

DP =
√

3
π

log

(
T+
Y
F−
Y

T−
Y
F+
Y

)
.

Multiplying top and bottom by YY yields

DP =
√

3
π

log
(

T+T−
F−F+

)
.
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APPENDIX C

DERIVATION OF NORMALIZED MCC EQUATION

MCC, as commonly calculated,

MCC =
(T+ ∗ T−)− (F+ ∗ F−)√

Y ∗Y ∗ Z ∗ Z
, (C.1)

is not ratio+ invariant as is sometimes reported [8, 9, 12, 20, 44, 50, 31]; it must use
normalized JPT values (as in Table C.1).

Actual target classification Y Y

Test Positive T+
Y

F+
Y

Result Negative F−
Y

T−
Y

Normalized totals 1 1 2

Table C.1: The values in this JPT have been normalized.

Substituting the normalized JPT values in Equation C.1 and collecting terms,
the ratio+ invariant MCC is:

normalized MCC =
(T+ ∗ T−)− (F+ ∗ F−)√

Y ∗Y ∗ (Y ∗ T+ + Y ∗ F+) ∗ (Y ∗ T− + Y ∗ F+)
. (C.2)

Equation C.2 can be used in lieu of normalizing JPTs prior to calculating MCC.
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APPENDIX D

CREATING A SCALABLE IMPACT SUMMARY STATISTIC

Impacts are problem specific, but it is possible for I sets to differ by a mul-
tiplicative constant (e.g., I1 = (1,−2,−3, 4) and I2 = (2,−4,−6, 8)). It may be
possible for an analysis to address multiple end users by reporting results on nor-
malized Is (hereafter represented by=x, where x represents a specific normalized
I), from which end users can readily extract their relevant impact values.

Considering I1 and I2, =a = (0.25,−0.50,−0.75, 1.0). Hence, I1 = 4 ∗ =a
and I2 = 8 ∗ =a, where 4 and 8 are weights (ω) specific for end users 1 and 2.
Conveniently, if ιI and ισ are calculated using =a (i.e. ιI(=a) and ισ(=a)) instead
of user-specific I, then the impacts for suitable end users are ω multiples of ιI(=a)
and ισ(=a). Considering my two end users, ιI(1) = ω1 ∗ ιI(=a) and ισ(1) =
ω1 ∗ ισ(=a)); ιI(2) = ω2 ∗ ιI(=a) and ισ(2) = ω2 ∗ ισ(=a)).

It is possible that end users may not need exact =s, approximations may
provide acceptable accuracy. Considering the bounds on using approximations
is reserved for future work.
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APPENDIX E

ABDOU CREDIT SCORING JPTS

My re-analysis of Abdou’s results used JPT tuning to estimate ιI for the
actual test set. Two other ratio+s (ratio+ = 0.67 and ratio+ = 0.40) were estimated
to illustrate how JPT tuning can be used for sensitivity analysis. The JPTs for
WOE and GPt are shown in Tables E.1 and E.2 below. Sometimes normalized
JPTs are set such that the total test set size is two (|S| = 2). Since ιI is additive and
I want to calculate the estimated impact per loan unit, I scale the the proportions
so that the total test set size is one |S| = 1. The proportional totals line shows the
scaling factors used for each JPT. The weight of evidence (WOE)and GPt JPTs are
shown; Abdou’s other JPTs are scaled in the same manner.
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JPTs used for Abdou GPt credit scoring re-analysis
ratio+ = 1

Actual classification
Good risk bad risk

Loan make loan 0.4724 0.2024
decision deny loan 0.0276 0.2976

Proportional totals 0.5000 0.5000 1

ratio+ = 0.67
Actual classification

Good risk bad risk
Loan make loan 0.5669 0.1619

decision deny loan 0.0331 0.2381
Proportional totals 0.6000 0.4000 1

ratio+ = 0.48
Actual classification

Good risk bad risk
Loan make loan 0.6361 0.1323

decision deny loan 0.0371 0.1945
Proportional totals 0.6732 0.3268 1

ratio+ = 0.40
Actual classification

Good risk bad risk
Loan make loan 0.6749 0.1156

decision deny loan 0.0394 0.1701
Proportional totals 0.7143 0.2857 1

Table E.1: Four GPt JPTs tuned for ratio+ used to illustrate how the proposed
summary statistic (ιI) enables sensitivity testing.
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JPTs used for Abdou WOET2 credit scoring re-analysis
ratio+ = 1

Actual classification
Good risk bad risk

Loan make loan 0.3603 0.1389
decision deny loan 0.1397 0.3611

Proportional totals 0.5000 0.5000 1

ratio+ = 0.67
Actual classification

Good risk bad risk
Loan make loan 0.4324 0.1111

decision deny loan 0.1676 0.2889
Proportional totals 0.6000 0.4000 1

ratio+ = 0.48
Actual classification

Good risk bad risk
Loan make loan 0.4869 0.0901

decision deny loan 0.1888 0.2342
Proportional totals 0.6757 0.3243 1

ratio+ = 0.40
Actual classification

Good risk bad risk
Loan make loan 0.6749 0.1156

decision deny loan 0.0394 0.1701
Proportional totals 0.7143 0.2857 1

Table E.2: Four WOE JPTs tuned for ratio+ used to illustrate how the proposed
summary statistic (ιI) enables sensitivity testing.
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APPENDIX F

MAPPING STAKEHOLDER NEEDS TO RELEVANT
SUMMARY STATISTIC VARIABLES

Over time, useful technical concepts evolve into useful tools and project
underwriters shift from basic researchers to developers and end users. To man-
age technology development and product acquisition risk, NASA developed an
assessment framework, based on a nine level “technical readiness” (TRL) scale.
TRL has been subsequently adopted by the US Department of Defense (DoD)
[22, 56]. As technology development programs progress, project underwriters
will want to assess technical maturity. DoD’s protocol specifies integrated project
review (IPR) teams for these assessments. This work has shown that summary
statistics relevant for basic research may not be relevant for end users. This Chap-
ter maps CPD technology maturity to relevant summary statistics, ultimately
making recommendations regarding TRL level and appropriate summary statis-
tics.

F.1 Related figures of merit

Sequentially staged maturity modeling, the basis upon which technology
readiness levels may have been based, was originally published by Crosby in
1979 [19]. TRL’s use by NASA was first reported in 1989 [72]. TRL brought
structure to a process that, hitherto, had been ad hoc, based on intuition and
experience. TRL provided a problem domain independent frame of reference for
assessing technology maturity. Although a major improvement in technical inno-
vation management, TRL is not a complete solution and has spawned a number
of enhancements.

One difficulty, whenever a complex analysis is condensed into a single
value, is that information is lost. To more closely match TRL to program manage-
ment needs, readiness level development continues [28, 55, 56, 76, 87].

Marketing research considers a seemingly similar concept, technology ac-
ceptance. In contrast to technology maturity’s utility emphasis, technology ac-
ceptance heavily emphasizes human response. Each of the technology acceptance
assessment schemes include technology utility (or perceived utility), but human
factors dominate the model [33, 51, 13, 91].
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Applicability of the two assessment types may be tied to the related prob-
lem’s risk. If a sub-optimal solution can result in a critically unacceptable stake-
holder state (lead to a crisis), then a TRL-based assessment may be appropriate.
If a sub-optimal solution cannot lead to a crisis, or a substantial negative impact
on stakeholders, then technology acceptance may be the appropriate approach. I
focus on the first scenario, not the second.

Although each of the TRL-based assessment scales mentioned is in some
way unique, I focus on one similarity; the effectiveness of the technology’s core
capability must be tracked. My interest is CPD tools, hence, I discuss the need
using software TRL [87].

F.2 CPD stakeholders, TRL and summary statistic variables

The DoD [22], defines nine TRL levels. The initial TRL (TRL 1) is achieved
when basic principals have been identified, but methods and uses have not; a
fully mature technology (TRL 9) has been deployed and has proven operational
capabilities. Along the path from TRL 1 to TRL 9, stakeholders and stakeholder
interests (and thus IPR perspectives) change. This dissertation considers sum-
mary statistic efficacy for the various stakeholders, mapping summary statistic
efficacy to TRL level.

In this section, I consider the characteristics of the seven CPD tool evalua-
tion summary statistics mentioned in Chapter 5 and the two summary statistics I
introduced in Chapter 9 and map them to the software TRL scale [87].

Qualitative core concept development At inception, a novel idea may not be
well defined, or perhaps even clearly understood. Without a clear under-
standing, quantitative testing has little value; evaluations are qualitative.
TRL 1 and TRL 2 recognize these early stages:

TRL 1 Basic principles observed and reported
TRL 2 Technology concept and/or expression formulated

TRL 1 and TRL 2 are qualitative, hence, no summary statistics are relevant.

Quantitative core concept development In initial CPD concept testing, the pri-
mary audience is basic researchers. As a concept CPD’s capabilities are re-
fined, applied researchers become interested in testing CPD tools against
specific problems. An effective concept CPD will ultimately gain the atten-
tion of developers and end users, who are interested in estimating results in
actual deployments. TRL 3, 4 and 5 can be mapped to these three groups.

TRL 3 — Environment agnostic: Analytical and experimental critical func-
tion and/or characteristic proof of concept.
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At this level, focus is on CPD algorithm function. Because of the nature
of the process, environmental effects cannot be avoided, but environ-
mental bias can, by specifying ratio+ invariance and unbiased I. Of the
summary statistics reviewed, ROC-AUC, J and DOR/DP are ratio+ in-
variant, so meet the ratio+ requirement. After JPT normalization, MCC
and IC are also ratio+ invariant and have an unbiased I.
TAR = ιI , but with I = (1, 0, 0, 1), thus is inherently biased. The
same is true of Fβ-score. Regardless of β chosen, I is biased (I =
(1, 1/(1 + β2), β2/(1 + β2), 0)). Fβ-score and TAR are unsuitable for
TRL 3 evaluations. Unfortunately, ROC-AUC, J, DOR/DP, TAR, MCC
and IC are measured on ordinal, rather than ratio scales, so valid anal-
yses are limited; ratio scale summary statistics are better [36].
The summary statistic ιI introduced in Chapter 9, when applied to nor-
malized JPTs and with I = (1,−1,−1, 1) is unbiased and is measured
on a ratio scale, so does not suffer the analysis limitations of the other
summary statistics reviewed. A second summary statistic also intro-
duced in Chapter 9, ισ, is conditioned on CPD algorithm output (Z
and Z), this conditioning is useful for end users, but TRL 3 studies are
end user agnostic, so the additional operation makes ισ unsuitable for
TRL 3 evaluation.
In summary,
Invalid summary statistics: Fβ-score, TAR (inherent I bias) and ισ (un-

necessary JPT conditioning)
Limited summary statistics: ROC-AUC, J, DOR/DP, MCC and IC (mea-

sured on ordinal scales)
Unlimited summary statistic: ιI (with I = (1,−1,−1, 1) on normal-

ized JPT; measured on a ratio scale)
TRL 4 — Environment perceived: Module and/or subsystem validation in

a laboratory environment.
At this level, focus is on defined problem domain(s). Regardless of
problem domain, JPT category impact (I) is important. However, I
cannot be as precisely defined as for a specific deployment
(I = ([P, P′], [Q, Q′], [R, R′], [S, S′]), where the capitalized range bound-
aries represent domain specific bounds). ROC-AUC, J, DOR/DP, MCC
and IC have implicitly fixed I = (1, 1, 1, 1), TAR has implicitly fixed
I = (1, 0, 0, 1), so these have little value for TRL 4 evaluations. Only
Fβ-score, ισ and ιI have a variable I. Of these three I sensitive sum-
mary statistics, Fβ-score’s I only has one degree of freedom (β): there
are some domains where it is not useful. Also, Fβ-score is measured on
ordinal, rather than a ratio scale, so valid analyses are limited. Of the
summary statistics reviewed, only ισ and ιI are valid for all I.
Problem domains are partitioned into two types; those where environ-
mental ratio+ is confounding (ratio+ = 1) and those where environ-
mental ratio+ is important (ratio+ = [N, N′]). ισ is tailored for ratio+
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is important problem domains, ιI is tailored for ratio+ is confounding
problem domains.
In summary,
Not I-tunable, ordinal scale summary statistics: ROC-AUC, J, TAR,

DOR/DP, MCC and IC
Limited I-tunable, ordinal scale summary statistic: Fβ-score
Unlimited I-tunable, ratio scale summary statistics: ισ (ratio+ is im-

portant problem domains), ιI (ratio+ is confounding problem do-
mains)

TRL 5 — Environment defined: Module and/or subsystem validation in a
relevant environment
At this level, focus is on a specific deployment, rather than a problem
domain. As such, I and ratio+ (if important) can be more narrowly
defined: I = ([p, p′], [q, q′], [r, r′], [s, s′]) and ratio+ = [n, n′]. Lower
case range boundaries represent deployment specific bounds. Prob-
lem knowledge is greater than for TRL 4 evaluations, otherwise the
evaluation criteria are the same. Hence, the TRL 4 summary statistic
conclusion applies for TRL 5 evaluations:
Not I-tunable, ordinal scale summary statistics: ROC-AUC, J, TAR,

DOR/DP, MCC and IC
Limited I-tunable, ordinal scale summary statistic: Fβ-score
Unlimited I-tunable, ratio scale summary statistics: ισ (ratio+ is im-

portant problem domains), ιI (ratio+ is confounding problem do-
mains)

Peripheral feature development Rarely can a deployable, effective CPD tool ex-
hibit solely the core capability. End users will need additional features for
effective field operation. Such features include a user interface, error man-
agement and cyber security. These features are independent of the envi-
ronment within which the tool will be deployed. Thus, the discussion and
evaluation for TRL 4 applies for TRL 6 through TRL 9.

TRL 6 Module and/or subsystem validation in a relevant end-to-end envi-
ronment

TRL 7 System prototype demonstration in an operational high fidelity en-
vironment

TRL 8 Actual system completed and mission qualified through test and
demonstration in an operational environment

TRL 9 Actual system proven through successful, mission-proven opera-
tional capabilities
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F.3 Summary statistic recommendations

The software TRL, as defined by the DoD, has nine milestones. Of these,
TRL 1 and TRL 2 are CPD algorithm evaluation precursors. TRL 3, TRL 4 and TRL
5 vary in their CPD algorithm’s core capability evaluation; TRL 6 through TRL 9
focus on peripheral deployment issues. My interest is an IPR efficacious evalua-
tion of a CPD algorithm’s core capability, the focus of TRL 3, TRL 4 and TRL 5.
Of these, TRL 4 and TRL 5 vary by the extent of environmental knowledge — the
accuracy and precision with which ratio+ and I can be specified. Regarding sum-
mary statistic selection, the appropriate summary statistic characteristics change
between TRL 3 and TRL 4. A TRL 3 evaluation is intended to quantify results for
researchers requiring application and environmental invariance. TRL 4 and TRL
5 evaluations are intended to quantify results for applied researchers and end
users, both of whom are affected by environmental effects. Table F.1 summarizes
this dissertation’s findings.

The key requirement for TRL 3 evaluation is that the summary statistic be
unbiased, both with regard to I and ratio+. Two summary statistics are invalid be-
cause they are inherently biased, TAR and Fβ-score. Although otherwise suitable,
ισ incorporates JPT conditioning unnecessary for TRL 3 studies, so is excluded;
the other six summary statistics reviewed are either inherently unbiased, or un-
biased on normalized JPTs. ROC-AUC, J, DOR/DP, MCC and IC are all measured
on ordinal scales, so are limited. ιI includes JPT category impacts; potential bias
is avoided by normalizing JPTs and using I = (1,−1,−1, 1) — impacts for correct
and incorrect CPD algorithm output are equally scaled and oppositely signed. It
also has the advantage of being measured on a ratio scale. Ratio scale summary
statistics do not have any limitations on valid statistical analyses. Hence, ιI is the
best TRL 3 summary statistic considered.

TRL 4 and TRL 5 CPD tool studies factor in problem distinctives and en-
vironmental factors. Fβ-score is suitable for “ratio+ is important” domains where
I = (1, 1/(1 + β2), β2/(1 + β2), 0)) is valid, but is still limited by not being mea-
sured on a ratio scale. ιI is suitable for all “ratio+ is important” end user problem

Summary statistic
Criterion ιI ισ TAR Fβ-score J MCC IC DOR AUC
TRL 3 Yes No No No Yes Yes Yes Yes Yes
TRL ≥4 Yes Yes Limited Limited No No No No No
Ratio scale Yes Yes Yes No No No No No No

Table F.1: Summary statistic applicability: In contrast to the other summary statis-
tics considered, ιI addresses the user’s needs for all three relevant TRL (TRL 3 for
basic research, TRL 4 and TRL 5 for ratio+ sensitive problems). For TRL≥ 4, ιI
and ισ (for ratio+ invariant problems) address end user’s needs. The ι summary
statistics are also the only ratio scale summary statistics.
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domains and basic research, ισ is suitable for “ratio+ is confounding” end user
problem domains. Further, both ισ and ιI are measured on ratio scales, so all sta-
tistical analyses are valid. Hence, ισ and ιI are the best TRL 4 and TRL 5 summary
statistics considered.

Because TRL 6 through TRL 9 do not develop a CPD tool’s core capabili-
ties, ισ and ιI are the best summary statistics for any TRL ≥ 4.
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APPENDIX G

PUBLISHER TERMS OF SERVICE

G.1 Crosstalk Magazine

ISSN 2160-1577 (print); ISSN 2160-1593 (online). Copyrights on all CrossTalk
articles are owned by each article’s respective author(s). CrossTalk is not respon-
sible for maintaining external URLs referenced in its articles and cannot guaran-
tee external links will continue to be live and/or accurate over time. The appear-
ance of external hyperlinks does not constitute endorsement by the U.S. Air Force
of this website or the information, products, or services contained therein. The
U.S. Air Force does not exercise any editorial control over the information you
may find at these locations. Such links are provided consistent with the stated
purpose for this publication.

G.2 Hindawi Publishing

Terms of Service
Updated: March 02, 2017

G.2.1 Introduction

These terms of service (Terms) together with our Privacy Policy
(https://www.hindawi.com/privacy/) set out the basis on which you may browse
and use our website, available at https://www.hindawi.com and its subdomains
and any services offered through it, including the Manuscript Tracking System
(MTS) (collectively, the Site).

The Site is owned and operated by Hindawi Limited, a company regis-
tered in England and Wales with registered no. 08671628 and registered address
at Hindawi Ltd., Adam House, Third Floor, 1 Fitzroy Square, London W1T 5HF,
UK (we, us or our).

Your use of the Site will be governed by these Terms which serve as a
legal contract between us and you. By browsing or using the Site and/or any
services, content, or materials made available through the Site, you are agreeing
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to be legally bound by the Terms and our Privacy Policy
(https://www.hindawi.com/privacy/).

You may access the Site as an unregistered user but will need to register
with us for an account (MTS Account) in order to submit, edit, or review any ar-
ticles intended for publication in one of our journals. Any submissions, edits, in-
formation, or data (in any form) you make via your MTS Account including with-
out limitation uploading of any articles or edits to articles are described in these
Terms as your Contribution. In addition to these Terms, you acknowledge and
agree that you will comply with any Author Guidelines, Editorial Workflows,
Publication Ethics, or other policies applicable to the journal(s) you contribute to
via your MTS Account (Policies).

In these terms Intellectual Property Rights means any patents, registered
and unregistered trade-marks and service marks, domain names, registered de-
signs and design rights, copyright (including such rights in computer software
and databases), database rights and moral rights (in each case for the full period
thereof and extensions, revivals, and renewals thereof), applications for the fore-
going and the right to apply for any of the foregoing anywhere in the world, and
all similar rights anywhere in the world including those subsisting in inventions,
designs, drawings, and computer programs.

We may revise the Terms at any time by amending this page. Your use
of the Site will be subject to the most recent version of the Terms available on
the Site. We recommend that you read through the Terms available on the Site
regularly so that you can be sure that you are aware of any changes that may
apply to you. General Availability of the Site

We do not guarantee that the Site, or any content on it, including the MTS,
will always be available, uninterrupted, up to date, or otherwise free from errors,
omissions, bugs, or viruses.

Access to the Site is permitted on a temporary and as-is basis. We may
suspend, withdraw, discontinue, or change all or any part of the Site without
notice. We will not be liable to you if for any reason our site is unavailable at any
time or for any period.

You are responsible for regularly creating backup copies of your Contribu-
tion.

You are responsible for your access to the Site, including:

• ensuring that all persons who access the Site through your internet connec-
tion are aware of these Terms and other applicable terms and conditions,
and that they comply with them; and

• that your internet enabled device and telecommunications systems carry
the appropriate anti-virus software necessary to minimise the risk of any
harmful viruses infecting your internet enabled device.
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G.2.2 General Conduct

At all times when using or accessing the Site you represent, warrant and
undertake that you will:

• not breach any applicable laws, statutes, rules, regulations, guidelines, di-
rectives, and codes;

• not use the Site to seek or offer any goods or services;

• if you are a MTS Account holder, respond promptly to communications
from us or any other MTS Account holder;

• not publish, post, upload, store, distribute, or disseminate anything which
solicits or harvests another users password or other account information;

• not reverse engineer, decompile, disassemble, or otherwise attempt to ob-
tain the Sites source code;

• not misuse the Site by knowingly introducing viruses, Trojans, worms, logic
bombs, third-party or external links, or other malicious or harmful material;

• not attempt to gain unauthorised access to the Site, the server on which the
Site is stored or any server, computer, or database connected to the Site;

• not attack the Site via a denial of service attack or a distributed denial-of-
service attack; and

• comply with the Policies and all reasonable instructions given by us from
time to time.

A failure to comply with our conduct expectations set out above, or any
other part of these Terms, all of which we reserve the right to determine in our
sole discretion, may result in the:

• suspension or termination of your MTS Account;

• deletion of your Contribution; and/or

• suspension or termination of your right to use the Site.

The actions above shall be without prejudice to any other rights or reme-
dies which may be available to us. Your MTS Account

You must ensure that the information you provide during your registra-
tion is complete, accurate, and kept up to date. Your MTS Account is personal to
you.

We reserve the right to validate the account information supplied at any
time.
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Once registered, it is your responsibility to keep your password and any
other security information confidential. We will be entitled to assume that any
person that logs into or uses your MTS Account is you. You must notify us im-
mediately at hindawi@hindawi.com if you know or suspect that anyone other
than you has had access to or knows your password. Intellectual Property Rights
and Confidentiality

With the exception of articles published on our Site marked Open Access,
which may be used in accordance with the terms of the licenses described in the
Publication of Contributions section below, for all other pages of the site:

• all Intellectual Property Rights in the Site are owned, and will remain owned,
by us or our licensors at all times. You may not copy or use any part of the
Site other than as expressly permitted by the Terms; and

• you may print off one copy, and may download extracts, of any page(s)
from the Site for your personal use and link to the Site as permitted under
the Linking to Hindawi section below.

If you are a MTS Account holder you may deal with any Contribution in
accordance with these Terms, our Policies, and our instructions to you.

You acknowledge and agree that articles (including all drafts, notes, and
preparatory material and/or other Contributions related to the article) prior to
first publication are highly confidential (Confidential Information). You warrant
and agree that you will (a) hold all Confidential Information at all times under
conditions of secrecy and will take all reasonable steps to preserve its confiden-
tiality; (b) use Confidential Information solely for the purpose of performing any
services authorised by us and for no other purpose whatsoever; and (c) not dis-
close Confidential Information to any third party or use it for the benefit of any
third party other than as permitted by us (which may only be given on obtaining
undertakings similar to those in this paragraph from such parties).

Prior to publication of your Contribution on the licence terms set out in
the Publication of Contributions section below, you grant, and you represent and
warrant, that you have the right to grant to us a non-exclusive, irrevocable, per-
petual, transferable, sub-licensable, worldwide, royalty-free licence to publicly
perform, copy, reproduce, display, make available, communicate to the public,
modify, edit, manage, distribute, store, and publish any and all of your Contri-
bution in print and electronic form, including on the MTS in order to prepare an
article for publication in our journal(s). Publication of Contributions (Articles)

You acknowledge and agree that, if and once editorially accepted for pub-
lication, your Contribution shall be published by us under the Creative Commons
Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/) and any
data relating to the article (including without limitation any reference lists) is dis-
tributed pursuant to the Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/).
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For the avoidance of doubt, you shall retain the non-exclusive right to pub-
lish or otherwise use your Contribution and shall be the Licensor of the Licensed
Material for the purposes of the Creative Commons Attribution 4.0 Licence and
Creative Commons Public Domain Dedication waiver.

If we consider that the copyright in your Contribution has been or is likely
to be infringed, we shall be entitled (on giving notice where possible to you)
to take such steps to deal with the matter as we may consider appropriate. You
undertake not to do anything which may compromise or prejudice our conduct of
such claim and we shall be entitled on giving notice to you to use your name and
the name of any other co-author as a party to such proceedings and to control,
settle, or compromise such proceedings as we see fit. You shall (and shall procure
that any other co-authors shall) co-operate with and give all reasonable assistance
to us in the conduct of such claim. After deduction of our costs in connection with
such claim, half of any profits or damages which may be received in respect of
any infringement of the copyright shall be retained by us with the remainder
shared equally among you and any co-authors.

We reserve the right to refuse to publish any article or other Contribution
for any reason.

By submitting or making a Contribution (including without limitation all
tables, abstracts, illustrations, data, diagrams, and other materials accompanying
the text of the Contribution) for the purposes of publication by us you represent
and warrant that:

• you are the sole author of the Contribution, or, if not, you have been autho-
rised by and have the full permission, licence, and consent of all co-authors
to submit the Contribution;

• you are legally able and entitled to submit the Contribution and authorise
us to publish the Contribution in accordance with the terms this section;

• the Contribution is original, has not already been published in any other
form or is not currently under consideration for publication by another jour-
nal;

• you have obtained all necessary permissions and licences for any third-
party material, data, or code contained in the

•

• Contribution (including without limitation all illustrations, charts, photographs,
maps, or other material) and the

•

• Contribution does not infringe any copyright, trade mark right, or any other
rights of any third party;

• you have disclosed to us in accordance with any Policies all potential con-
flicts of interest, including without limitation,
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• personal or political interests, commercial associations, or financial interests
held by you and any co-authors;

• nothing in the Contribution has been obtained in contempt of court or any
violation of the Interception of Communications Act 1985, the Data Protec-
tion Act 1998 or the Official Secrets Act 1989 or any other analogous foreign
legislation;

• nothing in the Contribution contains any information that may violate the
State Secrets Laws of the Peoples Republic of China (PRC), including (a)
any information that has a vital bearing on Chinese state security and na-
tional interests; (b) any information defined as a State Secret under the
PRC law, or (c) any classified information belonging to governmental au-
thorities of the Peoples Republic of China, including government agencies,
quasi-government agencies, public institutions, or state-owned enterprises
(together the State Secret Laws). For the purposes of PRC law and these
Terms State Secrets shall include, but not be limited to: (i) unpublished in-
formation concerning major policy decisions on Chinese State affairs; (ii)
confidential information concerning national defense and the activities of
the armed forces; (iii) confidential information concerning national diplo-
matic policies and activities; (iv) confidential information concerning na-
tional economic and social development; (v) matters concerning classified
science and technology; and (vi) unpublished Chinese State security mat-
ters and non-public information about the on-going investigation of crimi-
nal offenses.

• the Contribution contains nothing that is unlawful, defamatory, legally priv-
ileged, or which would, if published, constitute a breach of contract, or of
confidentiality, or breach of privacy;

• no advice, recipe, formula, or instruction in the Contribution will if fol-
lowed or implemented by any person cause loss, damage, or injury to them
or any other person;

• any research conducted for the Contribution has been conducted in accor-
dance with applicable laws, regulations and codes of practice;

• you have adhered to the Policies in your preparation and submission of the
Contribution; and due care, diligence, and all other requisite investigations
were carried out in the preparation of the Contribution to ensure its

• accuracy and all statements contained in it purporting to be factual are true
and correct.

G.2.3 Article Processing Charges

Publication of an article with us requires payment of a non-refundable
article processing charge in accordance with the applicable Article Processing
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Charges Policy
(for example, https://www.hindawi.com/journals/aaa/apc/) (APC).

In the event an article is accepted for publication, the author originally
submitting the article intended for publication (whether for himself/herself or on
behalf of a group of authors or an institution) will be invoiced for the applicable
APC. Payments of APCs must be made in the period stipulated on our invoice.
Payments must be made in full via our third-party payment service provider and
in accordance with such providers terms of service. Payment by any other means
is permitted only in our sole discretion.

You acknowledge and agree that payment of an APC does not guarantee
publication of an article. Reporting

You acknowledge that, other than for the purposes of verifying MTS Ac-
count registrations and article submissions in accordance with the Policies, we do
not actively monitor Contributions and/or any of the other content that is made
available on the Site.

If you believe that any part of the Site:

• infringes your Intellectual Property Rights or other proprietary rights;

• is defamatory to you; and/or

• is otherwise in breach of these Terms,

please notify us by writing to us at hindawi@hindawi.com.

G.2.4 Third-Party Links and Resources

The Site may contain links to other sites and resources. These links are
provided for your information only and we make no warranties or representa-
tions whatsoever about any third-party websites which you may access through
the Site. We assume no responsibility for the content of sites linked to on the Site.
We will not be liable for any loss or damage that may arise from your use of any
such third-party sites.

Third-party websites are in no way approved, vetted, checked or endorsed
by us and you agree that we shall not be responsible or in any way liable for the
content, accuracy, compliance with relevant laws, or accessibility or any informa-
tion, data, advice, or statements, or for the quality of any products or services
available on such sites. Links do not necessarily imply that we are or that the Site
is affiliated to or associated with such third-party sites. If you decide to visit any
other site, you do so at your own risk. In addition, use of any other site may be
subject to your acceptance of additional terms and conditions which we suggest
you read carefully before proceeding. Linking to Hindawi
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You may link to the Site provided you do so in a way that is fair and legal
and does not damage our reputation or take advantage of it. However, you must
not suggest any form of association, approval, or endorsement on our part where
none exists and you must not establish a link to the Site in any site that is not
owned by you.

The Site must not be framed on any other site.
You may link to any part of the Site but we reserve the right to withdraw

linking permission without notice. Data Protection
Please refer to our Privacy Policy (https://www.hindawi.com/privacy/),

for details of how personally identifiable information is collected by us and may
be processed or shared with others. Our Liability

Nothing in these Terms excludes or limits our liability for anything that
cannot be excluded or limited by law.

To the extent permitted by law, we exclude all conditions, warranties, rep-
resentations, or other terms which may apply to the Site or any content made
available on it, whether express or implied.

Subject to this section, you agree that we will not be liable for any loss
or damage, (whether direct or indirect or arising under contract, tort (including
negligence), breach of statutory duty, or otherwise) even if foreseeable, arising
under or in connection with any:

• use of, availability of, or inability to use the Site; or

• use of or reliance on any content displayed on the Site.

Without limiting the effect of the paragraph above, due to the inherent
risks of using the Internet, we cannot be liable for any damage to, or viruses that
may infect, your internet enabled device or any other property when you are us-
ing the Site. The uploading, posting, downloading, or accessing of any content
(including Contributions), material, and/or other information made available by
the Site is done at your own discretion and risk and with your agreement that you
will be solely responsible for any damage to your device or loss of data that re-
sults from the downloading or acquisition of any such content, material, and/or
information.

You agree to indemnify us against any claims, liabilities, losses, damages,
expenses, or legal proceedings arising out of:

• your use of the Site;

• your Contribution (including any articles);

• any breach or alleged breach of your warranties describe in the section Pub-
lication of Contributions above; or

• your failure to comply with these Terms.
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G.2.5 General

Any failure or delay by us to enforce any of our rights under these Terms
will not be taken as or deemed to be a waiver of that or any other right unless we
acknowledge and agree to such a waiver in writing.

These Terms are not intended to be for the benefit of, nor exercisable by,
any person who is not a party to these Terms.

If a court deems any part of the terms set out in these Terms to be invalid,
illegal or unenforceable, the remainder of the terms will remain unaffected.

These Terms and our Privacy Policy (https://www.hindawi.com/privacy/)
set out the full extent of our obligations and liabilities concerning the Site and re-
place any previous agreements and understandings between us and you.

We may assign our rights under this agreement and transfer our obliga-
tions under this agreement in our sole discretion by providing notice to you via
the email address that you provide to us or by notifying you on our site.

These Terms, their subject matter and formation (and any non-contractual
disputes or claims arising out of or in connection with these Terms), are governed
and construed in accordance with English law. You and we both agree that the
courts of England and Wales will have exclusive jurisdiction.
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