
Energy Adaptive Digital Ecosystems

by

Andreas Christoph Bergen

M.Sc., Computer Science, University of Victoria, 2013

B.Sc., Computer Science, University of Victoria, 2011

B.A., Political Science and History, University of Victoria, 2007

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

c© Andreas Christoph Bergen, 2017

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Energy Adaptive Digital Ecosystems

by

Andreas Christoph Bergen

M.Sc., Computer Science, University of Victoria, 2013

B.Sc., Computer Science, University of Victoria, 2011

B.A., Political Science and History, University of Victoria, 2007

Supervisory Committee

Dr. H. A. Müller, Supervisor

(Department of Computer Science)

Dr. Y. Coady, Supervisor

(Department of Computer Science)

Dr. S. Neville, Outside Member

(Department of Electrical and Computer Engineering)

iii

ABSTRACT

Since the turn of the century, the proliferation of virtualization and cloud computing

has led to an increase in data centres and consequently an increase in power con-

sumption for computing. Today, approximately 2% of global energy consumption is

attributed to data centres alone. As a result, optimizing power usage effectiveness

in enterprise data centres has become a laudable goal and a critical requirement in

IT operations all over the world. While a significant body of research exists to mea-

sure, monitor, and control the “greenness” level of hardware components, significant

research is needed to relate hardware energy consumption to energy consumption

stemming from (software) program execution. In this dissertation, we argue that

the true energy cost of program execution must focus on the digital ecosystem within

which a particular software program is executed. We investigate the interplay between

energy consumption, task scheduling and execution decision making using dynamic

runtime models of digital ecosystems based on the execution context of software.

Single instances of software applications are no longer confined to a single de-

vice or machine. Instead software commonly interacts with resources and services

outside of its own hardware unit. The scope of this interaction defines the applica-

tion’s digital ecosystem. Smartphones interact with cloud resources; cloud resources

include databases, specialized compute or storage clouds, specialized hardware and

virtual machines (VMs). Combining processes of varying complexity with varying

resource allocations produces different energy consumption levels. The challenge is

to investigate the variability of software process orchestration based on a power con-

sumption framework to accrue and optimize energy savings in digital ecosystems.

The contributions of this dissertation include: i) an adaptive energy consumption

framework; ii) self-adaptive energy management systems based on this framework;

iii) deployment mechanisms for applications to use this framework; iv) models at

runtime models for self-adaptive energy management systems. Our ultimate goal is

to develop smart, self-adaptive, green computing techniques, such as adaptive job

scheduling and resource provisioning, to reduce overall power consumption in data

centres, on individual devices (e.g., mobile, desktop, laptop or server), and in digital

ecosystems.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Figures viii

Acknowledgements xi

Dedication xii

1 Introduction and Motivation 1

1.1 Motivating Software Energy Consumption and its Optimization . . . 2

1.2 Our Approach . 6

1.2.1 Overview of our Approach . 6

1.2.2 Evolution to Digital Ecosystems 8

1.2.3 Dimensions of Energy Consumption Research 10

1.3 Evolution of Energy Optimization . 10

1.4 Research Questions and Contributions 13

1.4.1 Exploratory Questions . 13

1.4.2 Design Questions . 14

1.5 Dissertation Outline . 14

2 Research Statement and Approach 16

2.1 Problem Statement . 16

2.2 Research Questions . 19

2.2.1 Exploratory Questions . 19

2.2.2 Design Questions . 22

2.3 Long Term Research Goal . 23

v

3 Research Background 24

3.1 Green Computing . 25

3.1.1 VM Consolidation and Heuristics 25

3.1.2 Networking Components . 27

3.1.3 Software Metering and Instrumentation 28

3.1.4 Instruction Level Analysis . 29

3.1.5 Higher Level Instruction Analysis 29

3.1.6 Energy Consumption and Markets 30

3.1.7 Forecasting Energy Consumption 31

3.1.8 Simulation versus Execution Environment 31

3.2 Software Engineering for Self-Adaptive and Self-Managing Systems . 32

3.2.1 Self-Adaptive and Self-Managing Systems 32

3.2.2 Data Science—Machine Learning and Statistical Analysis . . . 36

3.3 Control Engineering and Feedback Loops 38

3.4 Simulation, Signal Processing and Statistical Analysis 43

3.4.1 Simulating Energy Consumption in Data Centres 46

3.4.2 Signal Processing and Statistical Analysis 47

3.5 Chapter Summary . 48

4 Research Methodology 50

4.1 Process and Hypothesis Formulation 51

4.1.1 Initial Hypothesis . 51

4.1.2 Hypothesis Refinement and Iterative Approach 52

4.2 Data—Sources, Collection and Analysis 52

4.2.1 Data Sources . 53

4.2.2 Data Collection . 53

4.2.3 Data Analysis . 55

4.3 Dynamic Models at Runtime . 56

4.3.1 Model Design Process . 56

4.4 Limitations . 58

4.5 Chapter Summary . 59

5 Experiments 60

5.1 Our Approach to Energy Consumption Experiments 60

5.2 Balanced Energy Usage and Performance Optimization 63

vi

5.3 Experiments—Description and Process 63

5.3.1 Benchmarking and Automatic Profiling 64

5.3.2 Disk Benchmarks . 66

5.3.3 Memory Benchmarks . 73

5.3.4 CPU Benchmarks . 76

5.3.5 Network Benchmarks with Limitations 80

5.4 Discussion . 81

5.5 Chapter Summary . 81

6 Effects on Energy Consumption 83

6.1 Energy versus Performance—An Overview 83

6.2 Scheduling Strategies for Energy Consumption 85

6.2.1 Dynamic Strategies and Scheduling Policies 89

6.3 Machine Learning and Energy Consumption 95

6.3.1 Conducting Experiments . 98

6.3.2 Experimental Results and Discussion 100

6.3.3 Adaptive Energy Consumption 102

6.3.4 Motivation for Adaptive Solutions 102

6.3.5 Realizing Energy Adaptation in Data Centers 102

6.3.6 MIAC Deployment Architecture 103

6.4 Chapter Summary . 104

7 Valuation and Discussion of Results 106

7.1 Case Studies . 106

7.1.1 PDU . 106

7.1.2 Initial Steps . 107

7.1.3 Focussing on Finer Level Control 108

7.2 Avenues for Future Research . 110

7.2.1 Risks and Progress in PhD Studies 110

7.3 Summary . 111

8 Conclusions and Future Research 113

8.1 Summary . 113

8.2 Contributions . 115

8.3 Future Research . 118

vii

A Benchmark Sample Code 120

A.1 Sample Code to Copy File with fputs/fgets 120

A.2 Sample Code to Copy File with fputs/fgets 122

A.3 Sample Code Used to Copy File with read/write Large Buffer 123

A.4 Sample Code Used to Copy File with read/write Small Buffer 125

A.5 Script to Control CPU and Memory Benchmarks 126

A.6 Script to Control CPU . 130

A.7 Primitive Code for Memory Testing 131

A.8 Primitive Code for Memory Testing 132

A.9 Second Script for Memory Testing . 133

Bibliography 134

viii

List of Figures

Figure 1.1 Fields and topics of energy consumption research—Courtesy of

Lago et al. [77] . 11

Figure 3.1 Autonomic element with managed system and autonomic man-

ager manager featuring the MAPE-K loop with its standard

components [63,71] . 33

Figure 3.2 Autonomic computing reference architecture (ACRA) [63] . . 35

Figure 3.3 Classic control loop [57] . 38

Figure 3.4 Reference architecture for model reference adaptive control (MRAC) 42

Figure 3.5 Reference architecture for model identification adaptive control

(MIAC) . 43

Figure 3.6 DYNAMICO reference model [129] 44

Figure 3.7 Artificially generated, noisy signal to illustrate the effects of

Fourier Transform [137]. 45

Figure 3.8 The result of the Fourier Transform applied to Figure 3.7 ex-

hibiting distinct frequencies present in a seemingly noisy sig-

nal [137]. 46

Figure 3.9 Classification process stages 48

Figure 4.1 Our MAPE-K model to manage energy consumption and effect

energy optimization in data center software 57

Figure 5.1 Optimizing energy use and performance in digital ecosystems . 61

Figure 5.2 Deployment and execution cycle of automated benchmarking tool 64

Figure 5.3 Simplified hierarchy of scripts used for benchmarking on Linux

machines. Each leaf node (CPU, Memory, Disk, wget) can be

composed of multiple individual benchmarks. 66

Figure 5.4 Sample code used to copy file with fgetc/fputc 67

Figure 5.5 Sample code used to copy file with fputs/fgets 67

ix

Figure 5.6 Sample code used to copy file with read/write large buffer . . 68

Figure 5.7 Sample code used to copy file with read/write small buffer . . 68

Figure 5.8 Energy consumption for different implementations of disk I/O

for a fixed amount of time. No optimization flags were used at

compile time to produce the executables. Each function was

executed for a fixed amount of time, capturing data points as

the benchmark completes. 70

Figure 5.9 Complete copies per experiment and costs per write relative

to fgets/fputs. Read/Write achieve more completed copies and

are cheaper per write. 71

Figure 5.10 Power profile of a process dominated by memory resource uti-

lization. 74

Figure 5.11 Power profile of a process dominated by large memory resource

utilization. Memory utilization accounts for more energy con-

sumption near the beginning of the benchmark when data is

frequently loaded and changed in memory. 75

Figure 5.12 Energy consumption over 300 sample points for varying CPU

utilization between 2 and 20 cores. Energy consumption in-

creases linearly until half the cores are fully utilized. Each set

of cores is utilized consistenly for a fixed amount of time. . . . 77

Figure 5.13 Power profile of CPU-intensive benchmarks running at eight

cores with eight threads, eight cores with 16 threads, and 16

cores with 16 threads for the same workload. 78

Figure 6.1 Performance of CPU-intensive reference job on SAVI versus

GENI servers. A less performant server in terms of job duration

(SAVI), which consistently consumes less energy for the same

job. 84

Figure 6.2 Detailed statistics gathered running experiments to compare

the performance of the SAVI and GENI servers 86

Figure 6.3 Idealized illustration of the relation between energy consump-

tion and performance—while abstracted, the illustration is based

on our actual findings . 87

x

Figure 6.4 Idealised illustration of relation between energy consumption

and performance overlayed with actual measurements in data

center using server GeniRack02. We overlay actual measured

timeseries results with the idealized curve. 88

Figure 6.5 GeniRack01, GeniRack02 and GeniRack04 CPU performance

relative to energy consumption. We overlay actual measured

timeseries results with the idealized curve. 90

Figure 6.6 Comparison of CPU levels of multiple servers relative to mul-

tiple servers. The south-east corner of the plot is the ideal job

placement as it maximizes performance and minimizes energy

consumption. 91

Figure 6.7 Comparison memory and disk bandwidth levels of multiple

servers relative to their energy consumption. The south-east

corner of the plot is the ideal job placement as it maximizes

performance and minimizes energy consumption. 92

Figure 6.8 Comparison of CPU, memory and disk bandwidth levels of mul-

tiple servers. The south-east corner of the plot is the ideal job

placement as it maximizes performance and minimizes energy

consumption. 94

Figure 6.9 Classification System . 97

Figure 6.10 Experimental data over a period of four days. We run bench-

marks to test 2 to 20 CPUs at full utilization for a fixed amount

of time as well as our memory usage benchmark. The experi-

ment is run repeatedly to confirm consistency and to confirm

assumptions regarding measured energy consumption (e.g., the

other servers on the rack are not contributing to energy con-

sumption changes). 99

Figure 6.11 Classification accuracy rates for all classes corresponding to the

number of features with different thresholds. 101

xi

ACKNOWLEDGEMENTS

I would like to thank:

My family, for their support throughout my time in graduate school,

Hausi Müller, for his mentorship, guidance and support,

Yvonne Coady, for enthusiasm, support, encouragement, patience and persistence.

UVic’s EDC2 staff, without their support and willingness to allow us insights into

their metrics none of this research would have been possible. Their collaboration

allowed us to obtain very valuable real world data.

The hardest thing is to go to sleep at night, when there are

so many urgent things needing to be done. A huge gap

exists between what we know is possible with today’s

machines and what we have so far been able to finish.

Donald Knuth

xii

DEDICATION

I dedicate this dissertation to my family, friends, colleagues and supervisors who

have supported and encouraged me throughout this journey.

1

Chapter 1

Introduction and Motivation

Our ultimate goal is to develop smart, self-adaptive, green computing techniques,

such as adaptive job scheduling and resource provisioning, to reduce overall power

consumption in data centres, on individual devices (e.g., mobile, desktop, laptop or

server), and in digital ecosystems. Accordingly, with this goal in mind we address

and highlight our work from the aspect of experimental research as well as the col-

lection of results with real hardware that addresses challenges in the field of Green

Computing; further, our approach also situates this dissertation in the larger context

of future research avenues focused on CPS, IoT and smart cities.

Green computing generally refers to “the practice of using computing resources

more efficiently [or sustainably] while maintaining or increasing overall performance” [54].

This definition is intentionally very broad and includes topics such as Green IT, sup-

ply chain optimization, marketing green computing to customers, corporate emissions

and many more areas well beyond the scope of a dissertation topic. For the purpose

of this dissertation, we limit the meaning of green computing to “the practice of max-

imizing the efficient use of computing resources to minimize environmental impact”

within data centres, a definition often adopted in Computer Science and Software

Engineering research when discussing green computing [54]. Thus, for us, the term

efficient is used in the context of reducing the duration of time and/or energy con-

sumption for a given task. This definition and the findings of this dissertation apply

to servers in data centres, mobile devices and digital ecosystems.

This chapter provides motivation for our research and discusses fundamental re-

search challenges of the past, present and future in the field of green computing. This

2

field spans a wide and varied number of topics. For this dissertation, we focus on

power profiles of data centre servers, desktops, laptops and mobile devices as well

as their operations in digital ecosystems. The research in digital ecosystems closely

relates to open problems and research challenges in the areas of Internet of Things

(IoT) and smart Cyber Physical Systems (CPS).

The goal of our research is to understand how software systems consume energy

in digital ecosystems. Our contributions include a framework to characterize and

measure energy consumption, including run time models for energy optimization,

canonical use cases, as well as repeatable micro and macro benchmarks.

We now provide a brief overview of the subject domain and situate our research

and contributions in the context of previous research approaches in this field.

1.1 Motivating Software Energy Consumption and

its Optimization

While the availability of large arrays of real hardware is a practical limitation to

conduct experiments for our research, we can still tackle many open problems in the

space of green computing head-on. The main, overarching open problem is simply

how to reduce software and hardware related energy consumption and in turn energy

costs. This problem applies to single standalone and federated data centres alike.

With the continuous evolution and proliferation of digital ecosystems, the research

focus also changes continuously. We aim to provide approaches and solutions to en-

ergy consumption management that can adapt with this continuous evolution and

thus will apply to future digital ecosystems.

Cloud computing has successfully established itself as a paradigm in the comput-

ing and IT world. Compute and storage clouds are key to the exploding fields of data

science and machine learning. The clouds’ data centres provide necessary capacity in

storage, memory, network bandwidth and compute power to store and analyze data.

A large share of the energy demand of data centres is due to cooling servers; however,

the actual power demands of servers are not to be underestimated and contribute

significantly to the overall data centre’s electricity consumption [12]. Raw compute

power and the ability to store and access data, at a large scale, has a significant im-

3

pact on energy consumption of worldwide. As such, power consumption and efficacy

of power usage in enterprise data centres is a critical research area with many open

and challenging problems.

Power consumption in modern data centres has been a growing concern for enter-

prises and governments in recent years. Koomey argues that on a global scale, power

consumption of data centres amounts to approximately 2% of energy demands [75].

With continually increasing sensing and actuating capabilities as well as data collec-

tion and digital content generation (e.g., smart cities), the use of cloud, edge and

fog computing is expected to increase dramatically. Amazon engineer Hamilton em-

phasizes that power has become the most important factor for high-scale data centre

operators [53]. He further reveals that the efforts to reduce energy consumption

are made even at the costs of individual servers’ performance—servers account for

approximately 42% of energy consumption of data centres, 19% of which is direct

consumption (i.e., server hardware) and 23% stems from indirect consumption (i.e.,

cooling) [53].

Energy demands of servers can vary significantly between idle states and full

server utilization states [94]. Kansal and Zhao from Microsoft Research, in collab-

oration with Srikantaiah (Penn State), point out that even at very low utilization,

below 10%, power demands of servers can be as high as 50% of the power draw which

a server would incur at full utilization [119]. In other words, running a server at full

CPU utilization can more than double the electricity consumption compared to its

idle state. Table 1.1 illustrates this phenomenon. We see that the energy consump-

tion of an idle server is approximately half that of a server at full utilization.

To understand the impact of energy consumption and optimization within data

centres fully, one needs to be aware of the fact that a server’s electricity demands

varies significantly with the types of applications being run. We have found through

our experiments that CPU intensive applications will alter the power consumption

profile in a different way than memory intensive applications. Generally, different re-

source intensive applications will alter the power profiles of the servers on which these

applications run in different ways. Understanding the causes of these differences in

workload based energy consumption and heterogeneous hardware environments can

be beneficial for energy optimization research. This dissertation aims to fill the gaps

4

Table 1.1: Energy consumption of servers located in the UVic EDC2 data centre

confirm prior research findings

. Idle servers consume up to 50% of power.

CPU Utilization Current Consumption (abs.) Current Consumption (rel.)

“idle” (0-5%) 0.8 amps 1

25% 1.1 amps 1.37

50% 1.5 amps 1.87

75% 1.8 amps 2.25

100% 1.9 amps 2.37

5

in software energy optimization research as it relates to cloud data centres and an

increasingly connected world of digital ecosystems.

Berl et al. identify many research challenges related to cloud computing and en-

ergy consumption [20]. These challenges can be extended to the Internet of Things

(IoT), CPS and digital ecosystems which integrate cloud computing resources. These

open challenges include: energy aware scheduling in multiprocessor systems; reducing

memory energy consumption based on scheduling; the integration of scheduling tasks

with data placement; energy constraint scheduling; economic criteria; policies and

energy as criteria for job dispatch and scheduling; power minimization in wired and

wireless networks; energy considerations for the entire topology of integrated com-

ponents servicing applications and end users (including services and infrastructure

enablers); and hardware consolidations [20].

Berl et al. identify four main categories in the intersection of cloud computing

and energy consumption:

• reducing the software and hardware related energy cost of single or federated

data centres that execute ‘cloud’ applications;1

• improving load balancing and hence QoS and performance of single and feder-

ated data centres;

• reducing energy consumption due to communications;

• saving Green House Gases (GHG) and CO2 emissions resulting from data cen-

tres and networks so as to offer computing power that is environment protect-

ing/conserving.2

This dissertation addresses all four main categories identified by Berl et al. [20] as we

address these issues from the point of view of an integrated digital ecosystem.

More specifically, this dissertation provides contributions to the open challenges

of: energy constraint scheduling, policies and energy as criteria for job dispatch and

1A cloud application is a software application which is (partially, or entirely,) deployed on cloud
resources (e.g., VMs, specialized hardware, servers, CPUs).

2GHG and CO2 are difficult to measure and are outside the scope of this dissertation and, thus, will
not be addressed directly.

6

scheduling, power minimization in wired networks and energy considerations for the

entire topology of integrated components servicing applications and end users. While

we only address a selected set of the open problems within each of these domains,

this dissertation contributes approaches and solutions to each of these fields.

In particular, the contributions enable energy constraint scheduling through auto-

matic profiling of hardware and software components (cf. Section 5.3.1). Furthermore,

we demonstrate that results from our profiling work are transferable to scheduling and

placement of virtual machines in order to effect overall energy optimization (cf. Sec-

tion 6.3). Moreover, this dissertation contributes to reducing energy consumption

of software-intensive systems by providing methods and tools for energy optimiza-

tion and demonstrating their effectiveness in data centres in particular and digital

ecosystems in general.

1.2 Our Approach

This section provides a high level overview of our approach including the context

within which this research applies. The focus on data centres is in part due to the

availability and access to servers within a data centre at the University of Victoria.

It would be interesting to extend this research to digital ecosystems consisting of a

large number of mobile devices, wireless communications, sensors, actuators as well

as other IoT and CPS components connected to the internet. However, measuring

power consumption in such diverse ecosystems is challenging. Nevertheless, we hope

our findings in regard to data centres and the specific energy consumption of software

may prove interesting for emerging digital ecosystems.

1.2.1 Overview of our Approach

The main, overarching open problem in green computing is how to reduce software

and hardware related energy consumption and energy costs. This problem applies

to single standalone and federated data centres alike. There is no panacea to the

problems of energy optimization.

Measuring power in a real data centre can be accomplished in many different

ways. The most common measurement techniques are instrumentation of hardware

7

components, software analytics tools, or directly from the power sources feeding into

individual servers or entire server racks.

Power consumption can be measured and monitored along the entire multi-level

network hierarchy of an enterprise data centre—from individual core and memory

units, to servers and racks, as well as server rack power distribution units (PDU)

and uninterruptible power supplies (UPS). Power instrumentation schemes can em-

ploy direct measurement techniques by using various hardware sensors or modelling

techniques to estimate power consumption. For example, many recent processor ar-

chitectures incorporate power reducing mechanisms whereby the CPU frequency is

throttled back to reduce power consumption. Moreover, CPUs can be put into se-

lected states depending upon the load; when the CPU is idling, the frequency at which

the CPU operates is adjusted dynamically as more power is consumed at higher fre-

quencies (DVFS). Tools, such as the Unix PowerTop utility and Joulemeter,3 monitor

how programs use the CPU mode features and estimate power consumption accord-

ingly. Many servers have built-in power dashboards to monitor vital system functions

and estimate power and bandwidth consumptions.

For this dissertation, when dealing with data centres, we concentrate on energy

that is measured coming into an entire rack. This method of power consumption

measurement has many benefits. One practical benefit is that the data centre in our

use case already provides monitoring of energy consumption at the level of server rack

PDUs. Classifying a processor’s workload depending on the observed power profile

visible at a PDU is possible with this monitoring setup since all servers on one power

circuit are under our direct control. Demonstrating that the PDU is a viable point

to detect and classify software processes based on their energy consumption is one of

the contributions of this dissertation.

Having direct control over the servers within each rack allows us to reduce the

amount of noise in the measured data and subsequently we can generate more mean-

ingful measurements on which we base our analysis. Having full control of the servers

means that we control the idle times and particular workloads on these machines even

3M. Goraczko, A. Kansal, J. Liu, F. Zhao: Joulemeter—Computational Energy Measurement and
Optimization, Microsoft Research, http://research.microsoft.com/en-us/projects/joulemeter/, re-
trieved, Jan 2014.

8

to the extent of placing processes on specific cores of the CPUs. A more detailed de-

scription of our setup is provided in Sections 4.2.1 and 4.2.2.

Furthermore, using the PDU as the source of energy measurements ensures that

all measurements are a true representation of all energy consumption of a server.

Hardware sensors within individual components of the server are often unreliable due

to the tolerances with which they are built. Relying on multiple sensors inevitably

increases uncertainty by reducing the accuracy of the measurement due to compound-

ing factors. Software instrumentation either relies on individual hardware sensors or

attempts to establish a best effort estimate derivative energy consumption from other

factors. Even combining both hardware sensors and software monitoring does not

provide a holistic view of the energy consumption of a server because neither all

components nor all servers are instrumented. Using the PDU as the source of power

consumption ensures that the energy consumption of all components within a server

are accounted for and that our approach is applicable to all server types, regardless

of their individual hardware instrumentation. Consequently, using the PDU is the

correct choice for our purposes.

1.2.2 Evolution to Digital Ecosystems

Our findings from software energy measuremnts have a direct impact on digital ecosys-

tems and our findings may drive future research questions in these fields. Digital

ecosystems in the form of the Internet of Things (IoT) and smart Cyber Physical

Systems (CPS) are not solely composed of servers in data centres. Over the past

decade the proliferation of mobile devices and wireless components has accelerated

and reached unprecedented levels. At the same time, sensing, actuating, communica-

tions and computational capacities have been introduced into an increasing number

of devices, including machines (e.g., cars), households (e.g., smart fridge), and in-

frastructure (e.g., smart cities and smart buildings)—creating the IoT [48]. Digital

ecosystems emerge from the integration of these components. Different applications

require connectivity and resources from different locations and providers, thus cre-

ating unique, application specific digital ecosystems, such as Apple Home or Google

maps. The digital ecosystems created by social networks, such as Facebook, Twitter

or LinkedIn, consume enormous amounts of power. With the emergence of cognitive

9

computing, digital ecosystems around conversational agents and intelligent personal

assistants with natural language interfaces are being built to interact with people,

brands or services. Popular examples of such agents include Apple’s Siri,4 Microsoft’s

Cortana,5 Google Assistant,6 Amazon’s Alexa7 and Facebook’s Jarvis.8

The interplay among the devices and applications composing digital ecosystems is

complex. Single instances of software applications are no longer confined to a single

device or machine. Instead software commonly interacts with resources and services

outside of its own hardware unit.9 The scope of this interaction defines the applica-

tions’ digital ecosystems. Smartphones interact with cloud resources, cloud resources

include databases, specialized compute or storage services, or specialized hardware.

Components of the IoT, which includes sensors and actuators in the physical world,

interact with cloud resources for storage, analytics and decision making processes. In

such a connected and distributed environment, combining processes of varying com-

plexity with varying resource allocations (e.g., sensors, actuators, mobile devices or

servers) produces different energy consumption levels for each component. This level

of complexity provides an opportunity to investigate generic and specific optimization

strategies. Thus, we aim to minimize energy consumption in software applications.

To the extent that we are able to investigate energy consumption in mobile devices,

we rely on software sensors and instrumentation. This presents a whole new range of

challenges due to the manufacturing of the devices, the tolerances within the hardware

components, the variation between parameters, and the sheer number of different

devices. We use built-in software sensors which are gaining in popularity and are

commonly deployed on new models.

4https://www.apple.com/ca/ios/siri/
5https://www.microsoft.com/en-ca/windows/cortana
6https://assistant.google.com/
7https://developer.amazon.com/alexa
8https://www.facebook.com/notes/mark-zuckerberg/building-jarvis/10154361492931634/
9In fact, interaction of a device with the outside through networked hardware is often a requirement
even for the simplest devices and tasks. Consider when a laptop or smart phone loses the ability
to connect to a network permanently, the device is said to be “bricked” (i.e., for all intents and
purposes, the device is as useful as a brick).

10

1.2.3 Dimensions of Energy Consumption Research

Mobile devices and servers share many features—from CPUs to memory and network-

ing equipment. Fig. 1.1 highlights the different fields of interest as they pertain to

energy consumption research in the IT server world. Our research for this dissertation

falls into the illustrated categories. Existing research in these categories constitutes a

foundation for our research. In Fig. 1.1, we can identify the four main areas of energy

consumption research: Energy type, Performance/Energy context, IT Resource type

and Performance type.

Energy type is the broadest of these four fields and spans research and analysis

from machine and source code analysis at the lowest level of abstraction to general

themes of physical resources and their energy consumption (e.g., energy consump-

tion of disks, networking, and entire servers). Our research falls into this category

by directly addressing the energy impact that software components have on disks,

networking resources, and other hardware components, such as memory and CPUs.

We also measure the entire server rack’s power and isolate individual servers. As

such this research falls into the Energy type category as defined by Lago et al. [77].

Because we measure and effect energy consumption and optimization of virtual ma-

chines (VMs), CPU and memory components our work also makes contributions to

the three other categories, with an emphasis on performance, rather than the resource

type and energy context categories.

1.3 Evolution of Energy Optimization

To appreciate the contributions of this dissertation fully and to understand how this

research fits with the existing canon of energy consumption and optimization research,

this section provides overviews of the related work, previous efforts and challenges.

The evolution of green computing research can be broken down into several main

streams as they relate to performance, sustainably and energy consumption. These

streams are: VM consolidation and heuristics, networking components, hardware

component, software metering and instrumentation, source code analysis, energy con-

sumption and markets, forecasting and simulation.

VM consolidation and heuristics focus on minimizing operational costs within data

11

Figure 1.1: Fields and topics of energy consumption research—Courtesy of Lago et

al. [77]

.

centres. This is achieved mainly through reducing the number of physical machines

to which a VM can be deployed. The main avenues for energy savings arise due to

optimization of resource utilization, networking components, and thermal states of

physical servers and the related cooling [13]. Additionally, heuristics are involved to

provide improved strategies for VM placement. Broadly speaking, heuristics for VM

placement focus on reducing energy consumption, VM density per physical host, as

well as workload optimization [86].

Heuristics are also a major research area for improving application algorithms

on the software side, as well as Dynamic Frequency and Voltage Scaling (DFVS) on

the hardware side. Assessment and evaluation of such heuristics often leads to the

development of tool support in the form of simulation tools as well as measurement

tools [14, 23,29,30].

Networking components, external to servers such as routers, and hardware com-

ponent energy optimization is also a large field of research and commercial efforts.

Improving the energy efficiency of networking components has been shown to have

12

beneficial impacts on large sections within data centres [91]. Previous work has shown

that through optimization in networking, entire server blocks can be shut down in

data centres [91]. This type of research also blends in with research efforts involving

heuristics and physical components of data centres [135] as workload and network

traffic must be taken into account for a larger scale view when optimizing individual

components.

As highlighted in Section 1.2, source code analysis is an important research area

within green computing. For example, assembly level instructions have been profiled

for many years [93, 125, 126]. However, this type of low level analysis has recently

fallen out of favour and has been surpassed in efficacy and popularity by higher func-

tion level analysis [32,81,117].

At a much higher level of abstraction, we can identify research efforts focusing on

energy markets. This type of work spans from predicting and forecasting the future

energy consumption of data centres to the large scale of energy transportation and

source of energy generation [76, 109, 131]. While certainly interesting and relevant,

this type of analysis is beyond the scope of this dissertation.

All these remaining challenges are addressed at various levels of abstraction. Yet,

open problems remain at the levels of energy costs and consumption of wired and

wireless networks and network components; scheduling, deployment, and migration

algorithms and policies, sustainable programming language features; as well as sens-

ing, storing and analyzing energy and performance metrics.

One aspect of forecasting energy demand, at a much finer grained level, has pro-

vided some interesting advances in machine learning techniques for energy consump-

tion forecasting and software component placement within data centres [21,70]. This

type of work (i.e., machine learning and pattern recognition) is further elaborated in

Section 3.1.

In summary, the field of green computing is composed of vast sub-fields with a

rich history of research advances. Yet, many open problems and research challenges

remain. Moreover, new challenges arise regularly as technological advances change

13

the components and composition of digital ecosystems and the software that runs on

them.

1.4 Research Questions and Contributions

This section outlines the problem statements and research questions that this dis-

sertation addresses. The research questions fall into two categories: i) exploratory

questions ; and ii) design questions.

1.4.1 Exploratory Questions

R1:

What are the key resource usage factors (e.g., for CPU, memory

or networks) that contribute to the energy consumption profile of

software applications in digital ecosystems?

Contributions:

• Automated method for identifying a server’s energy consumption per

resource type and load.

• Energy consumption profiling tool for a data centre.

R2:

What is the degree to which high-level adaptations at the applica-

tion level, in terms of resource utilization and service deployment,

can be utilized to optimize the overall energy consumption of the

application’s digital ecosystem?

Contributions:

• Application specific, automated and dynamic software modification

to reduce energy consumption.

• Dynamic scheduling solution for software within data centres.

• Identification of potential energy savings specific to individual appli-

cations.

R3:

14

Does dynamic redirection of specific system calls and resource pro-

visioning requests lead to energy optimization while not negatively

impacting performance (i.e., either maintaining the same performance

level or improving the performance level)?

Contributions:

• Automatic and dynamic changes to application level interactions

with the underlying system to optimize energy consumption of soft-

ware applications.

1.4.2 Design Questions

R4:

How can we obtain, store and manage relevant contextual information

of software applications and their digital ecosystem?

Contributions:

• A contextual model to aggregate, store and analyze energy data

within a new framework for data centres with the goal of improv-

ing energy consumption of software.

R5:

To what extent is dynamic run time modification of resource allo-

cation manageable in a self-adaptive framework using models at run

time (MART) and control theory approaches?

Contributions:

• Efficacy analysis of approaches presented in this dissertation.

• Identification of promising future avenues of research.

1.5 Dissertation Outline

Chapter 1 defines the problem and scope by situating this dissertation within the

existing body of research and state of the art approaches. It also provides a high level

overview of the motivating factors that inspired this research.

15

Chapter 2 provides a detailed explanation of the research questions, problem state-

ment and approaches. Further, it introduces the reader to the contributions that this

dissertation provides to the field.

Chapter 3 provides background information on existing and current state of the

art research efforts in the field of green computing. This chapter focusses on works

relevant to computer science and software engineering, and subsequently, narrowly

defines green computing in order to establish a workable and appropriate scope for

this research. The chapter also provides context by highlighting this dissertation’s

distinguishing features and contributions to the field.

Chapter 4 presents the research methodology including an initial hypothesis, dis-

cussion of the research questions, and the iterations required to evolve the hypotheses

with the experiments and findings.

Chapter 5 provides insights into the experiments. Experiments focus on measur-

able energy consumption induced by software components and their particular use of

hardware resources. The experiments also include dynamic models, as well as sim-

ulations, and scheduling strategies to effect energy optimization within cloud data

centres.

Chapter 6 connects the experimental data with the models used in our setup. We

provide insights into the collected data and how this data can be used by others.

Chapter 7 builds on the results of Chapters 5 and 6 to provide an evaluation

of the impact of energy optimization of software components found in data centres.

In evaluating the findings, we focus on two themes: (1) to what extent can energy

consumption be measured and improved at the software level; and (2) what are the

benefits in terms of energy consumption of such approaches.

Finally, Chapter 8 concludes the dissertation and illustrates potential avenues for

future research emanating from this research.

16

Chapter 2

Research Statement and Approach

The chapter presents our research approach by relating the research questions to our

hypotheses and experiments. For each research question, we introduce the criteria

used to determine whether a research question has been answered successfully, either

confirming or refuting the research question’s hypothesis.

2.1 Problem Statement

Our research focusses on digital ecosystems as they exist in software applications

through the interplay of resource utilization including network bandwidth, latency,

storage and processing. Our primary motivation is to develop adaptive software in-

frastructure using self-adaptive systems and control technologies for the purpose of

minimizing energy consumption without compromising system performance in digital

ecosystems. In order to achieve this we need to be able to measure energy consump-

tion of a wide range of software applications effectively on a wide range of devices.

Once we are able to profile energy consumption of software we need to be able to

connect software applications and their resource usage with energy efficient hardware

on a case by case basis. Last, all this needs to be achieved dynamically in order to

be scalable and applicable to future developments in digital ecosystems.

Application adaptation goals, such as maximizing throughput and minimizing en-

ergy consumption, require applications within digital ecosystems to be self-adaptive

by following a model to control the adaptive process. Digital ecosystems are highly di-

verse and dependent on the context of the applications. Thus, a dynamic framework,

17

which adapts to the digital ecosystem, is needed to ensure adaptive behaviour not

just of individual applications, but for all components working together in a digital

ecosystem in order to achieve the selected application specific goals related to over-

all performance and energy consumption. For this research, we assume that digital

ecosystems are scalable to many servers for the multitude of data center and mobile

platforms. Scalability is a necessity in a world of rapidly evolving digital ecosystems

including IoT and CPS.

One of the major limiting factors in sustainable or green computing experiments

is invariably the availability of and access to real world digital ecosystems, including

diverse hardware and software platforms as well as performance and energy consump-

tion measures. This becomes relevant when applying one’s research to any system of

reasonable and realistic scale. Attaining full control of an entire data centre and run-

ning experimental research on its infrastructure and running applications is nearly

impossible in practice for researchers in academia. The good news is that for our

research we have full control of and access to approximately 7-9 servers in EDC2,

the University of Victoria data centre. We have two server racks which host two

different server types. This allows us to deploy our algorithms to reduce overall en-

ergy consumption on heterogeneous server hardware effectively. Using two different

server types, we are able to extrapolate the effects of our algorithm and framework

without the explicit need of simulations. Thus, our digital ecosystem is composed of

7-9 servers of types A1 and B2), two Android smartphones3 as well as three desktop

computers situated within our research lab.4

In order to evaluate energy consumption as a metric used for energy and per-

formance optimizations through scheduling decisions, we need access to high level

monitoring tools. For our data centre servers, which are representative of modern

data centres and clouds, this is possible because we have access to energy consump-

tion metrics and tools used by the data centre’s staff. We also have the ability to

measure energy consumption in desktops and smartphones through built-in instru-

1Each of our servers is equipped with two Intel R© Xeon R© Processor X5650 running at 2.67GHz.
Both processor have six cores with x2 hyperthreading and, thus, contributing a total of 24 logi-
cal processors. http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-%2812M-Cache-
2 66-GHz-6 40-GTs-Intel-QPI%29

2SAVI server
3Personal smartphones, Nexus 5, http://www.gsmarena.com/lg nexus 5-5705.php
4Intel Duo Core

18

mentation, where applicable, or more commonly through external instrumentation.

On the software side, we must analyze what is under our control. We not only

have control over the code at the programmer level, but because of WYSINWYX5 [8],

we can take advantage of available low level control available in the form of compiler

switches and system call redirection. We have control over the exact machine instruc-

tions that are generated from any given piece of software (i.e., through the compiler

or, at a more practical level, by capturing and redirecting system calls).6

Thus, to measure energy consumption, to effect change at scheduling and de-

ployment strategies in data centres, and to alter software components dynamically

at run-time, a complex body of contextual information needs to be managed. At

this level of abstraction, the framework or controlling an application must be able

to have access to a knowledge base of the energy consumption and, if chosen by the

user, produce energy efficient code in agreement with the high-level goals. Energy

efficiency ought to be optional, just like speed or size optimizations are optional in

modern compilers. For this purpose, we need to develop a framework which builds

on existing dynamic run-time models.

Energy consumption models have been used before, with limited success, at the

level of software development [55]. These models were applied exclusively at system

design time and, thus, provided a static solution which no longer satisfies the needs of

modern agile systems [10,73]. In the past, people have looked at energy consumption

of individual machine instructions [114,117,126]. These models were often generated

in advance on generic hardware and, through assumptions of general applicability

and simulations, made available to the programmer in the form of estimated energy

efficiency of the code being written. However, these are still in the early stages and

often are not very good as they assume that the target hardware is homogenuous

to (or close to) the one used for experiments. Software energy efficiency has been

investigated to provide feedback to programmers, based on models, regarding the es-

timated energy consumption of their programs [138, 139]. Their application to large

scale systems or, even small, modern applications which rely on a diverse set of dis-

5What You See Is Not What You eXecute
6We use redirection of system calls as a practical choice. Not only is this more feasible to automate,
but it is also in line with current research discouraging machine level manipulation for energy
consumption optimization.

19

tributed and heterogeneous resources, is still in its infancy.

We differ from this approach by addressing software energy optimization on real

deployed software applications at runtime which impacts, both, the software itself,

though system call redirections, as well as underlying hardware, through scheduling

decisions. What saves energy: using efficient machine instructions that do not use

a lot of energy, or ignoring the energy consumption of individual instructions and

simply aiming at the highest performance (based on throughput, latency, or other

measures) to optimize applications? Due to the increasing proliferation and rapid

development in the IoT, we need to develop an understanding of the energy con-

sumption optimization of entire digital ecosystems.

The subsequent sections discuss specific research questions addressing aspects of

the above identified research challenges of dynamic digital ecosystem management

and resource scheduling with the goal to minimize the overall energy consumption:

i) the definition and specifications of an interconnected digital ecosystem on an ap-

plication basis as well as the abilities and processes to alter the resource utilization

patterns dynamically; ii) the run-time adaptations to resource scheduling and uti-

lization with the goal of maintaining high-level performance and energy consumption

goals; and iii) the ability to use low level modifications on individual components of

an application’s digital ecosystem to affect a component’s performance and energy

dynamically at run-time.

2.2 Research Questions

This section explores our research questions which fall into two categories as men-

tioned earlier: i) exploratory questions ; and ii) design questions as outlined below.

2.2.1 Exploratory Questions

While our research focuses on energy consumption of software in data centers, we

derived the exploratory questions by studying the state of the art research in the field

of energy consumption. In this dissertation we investigate the connections between

performance and energy optimizations for software applications running on servers

20

in data centres. We conducted the state of the art research with mobile applications

and digital ecosystems, such as IoT and CPS, in mind.

R1:

What are the key resource usage factors of software applications that

contribute to the energy consumption profile of interconnected IoT and

CPS applications. What are the key resource usage factors (e.g., for CPU,

memory or networks) that contribute to the energy consumption profile

of software applications in digital ecosystems?

From our systematic literature review and our preliminary research, we conclude that

the degree to which certain software aspects contribute to an application’s energy

consumption is not entirely clear in a dynamic environment. While it is generally

known that certain resource utilizations by an application will generate a different

energy consumption profile than another resource usage pattern, many questions re-

main open. There is an insufficient understanding as to the interplay between resource

usage and its generalizability to energy consumption and the resource utilization pat-

terns across multiple devices in a digital ecosystem. Moreover, there is no accepted

research base line regarding which modifications of a software application’s behaviour

would lead to improved energy consumption metrics, such as performance metrics and

energy/power consumption measurements.

To explore this question effectively, we need to develop a method by which we

can determine the impact of a software’s resource usage on energy consumption.

Developing a tool and framework for profiling different server hardware and software

components is an appropriate method to answer this question. Analytically speaking,

we submit that to answer this question affirmatively we need to meet the following

two criteria: i) we are able to determine the dominant resource (i.e., CPU, memory,

disk, or network) used by a software application solely by analyzing its energy con-

sumption profiles; ii) we can make a reasonably accurate forecast of this software’s

energy consumption profile on a different hardware platform. As a result, we can then

pinpoint the exact servers in a data centre where software applications should run to

minimize the overall energy consumption while satisfying performance requirements.

The current lack of fundamental research to answer this question effectively leads

us to the next exploratory research question.

21

R2:

What is the degree to which high-level adaptations at the application level,

in terms of resource utilization and service deployment, can be utilized

to optimize the overall energy consumption of the application’s digital

ecosystem?

This question aims to determine the extent of possible energy consumption opti-

mizations that are possible when high level goals of the digital ecosystem are managed

by a control system at a higher level of abstraction. For example, how beneficial is

it to postpone certain types of tasks in their scheduling to take advantage of antic-

ipated changes in resource availability? Can certain computation, data storage or

acquisition be offloaded to other parts of the digital ecosystem which are more energy

efficient at these tasks in order to achieve net energy savings while maintaining overall

performance goals?

An answer to this research question must give us the ability to make decisions

on optimization strategies at runtime. Given a particular software applications and

its characteristic resource usgae patterns, how much energy is saved by moving it to

different hardware platforms and are the energy savings measurable and sufficient to

warrant necessary monitoring and analytics?

Closely related is this kind of scheduling is the adaptation of certain application

aspects at runtime. Runtime modifications of software are also attractive avenues of

research as there is an impressive body of knowledge in this field. The corresponding

research question is as follows:

R3:

Does dynamic redirection of specific system calls and resource provision-

ing requests lead to energy optimization while not negatively impacting

performance (i.e., either maintaining the same performance level or im-

proving the performance level)?

In other words, can we, within our experimental digital ecosystem at UVic, op-

timize software applications for energy consumption in such a way as to not reduce

performance. This avenue of investigation focuses on changes to the software with-

out considering changes to scheduling or deployment decisions. Considering extreme

solutions, the impact and goals are clear: not running software at all yields energy

22

savings of +100%, but a performance change of –100% does not produce any tan-

gible results. Thus, the goal is to find energy savings greater than 0% and, thus,

reducing overall energy consumption, while determining and acceptable reduction in

performance while still providing the expected results. In an ideal world, we achieve

performance improvements and accrue energy savings. In some of our experiments,

we managed to demonstrate this ideal world scenario of an increase in performance

and a decrease in energy consumption simultaneously.

2.2.2 Design Questions

Design questions are commonly used to articulate non-empirical research in software

engineering [45]. For this dissertation the design questions focus on an investigation

to manage and improve self-adaptive models and feedback systems for the purpose of

affecting the energy consumption of digital ecosystems.

The follwoing research questions frame how our findings can be applied to our

ultimate goal of developing smart, self-adaptive, green computing techniques in data

centres, on individual devices (e.g., mobile, desktop, laptop or server), and in digital

ecosystems.

As such we aim to answer the following design research questions:

R4:

How can we obtain, store and manage relevant contextual information of

software applications and their digital ecosystem?

This research question seeks to address the difficult problem of obtaining relevant con-

textual data at runtime. The problem arises because in a digital ecosystem various

actors contribute to the complexity of the problem (e.g., servers, data centre monitor-

ing infrastructure, software instrumentation, hardware instrumentation of desktops

and smartphones). We address the problem of not only obtaining, but also storing

the relevant information in a manner that lends itself to a management framework or

model. As such we investigate not only what type of information is needed, but, due

to the dynamic nature of the digital ecosystem, also at what frequency contextual

information needs to be obtained.

R5:

To what extent is dynamic runtime modification of resource allocation

23

manageable in a self-adaptive framework using models at runtime (MART)

and control theory approaches?

Managing digital ecosystems is a complex task. The number of parameters is large and

the possible configuration combinations grow exponentially. Subsequently, a metric

by which we can establish the successful answer to this research question is by judging

the resulting system on two criteria: i) system stability—a state where changes to the

system are unnecessary to achieve the system’s goal; and ii) optimization objectives—

reduction in overall energy consumption and no significant performance penalty using

the runtime model to effect changes in the digital ecosystem.

2.3 Long Term Research Goal

The long term goal of this research is to investigate innovative methods to modify

program execution and resource scheduling of applications dynamically within digital

ecosystems in order to maintain or increase performance throughput while, at the

same time, decreasing energy consumption.

Our short term goals for achieving high level goals related to energy consumption

are: (1) to identify which types of applications benefit the most from dynamic resource

scheduling within digital ecosystems; (2) to develop a framework to provide energy

consumption data dynamically; and (3) provide runtime decision making support

for applications to alter their resource usage dynamically. At the same time, the

hope is that this dissertation can also serve as a handbook for software developers

by providing useful insights, tips and practices which can increase an applications

performance while reducing its energy footprint.

24

Chapter 3

Research Background

This chapter overviews the main research foundations pertinent to the research pre-

sented in this dissertation, including research in green computing, self-adaptive and

self-managing systems as well as background on control theory, feedback loops and

signal processing needed for our research.

We illustrate high level concepts of green computing and focus on the most rele-

vant works as well as on the most recent and promising related research. Moreover,

this chapter provides insights, critiques and unresolved issues in green computing

within software engineering and computer science.

Research in green computing encompasses four main dimensions: hardware plat-

forms, software applications, instrumentation and sensors, as well as models and

simulations.

Within these dimensions, the goal is to reduce overall power consumption by

developing methods, techniques, frameworks and tools and applying them to data

centres, individual devices (i.e., mobile devices, tablet, desktop, laptop and server)

and software applications’ digital ecosystems. The ultimate goal is to develop smart,

adaptive, dynamic green computing techniques, including adaptive job scheduling,

resource provisioning, data migration and task allocation.

25

3.1 Green Computing

This section is contrasted with the relevant background work describing context and

self adaptive systems which situates the dissertation in the larger applicable context

and future research avenues. For the purpose of this dissertation, green computing

covers data centre design, algorithmic efficiency, resource allocation, virtualization,

mobile and wireless computing, and energy consumption. Within those fields we pay

particular attention to hardware components found in data centres, desktop comput-

ers and laptops. Resources, such as networking capabilities and capacities, storage,

and processing power, are at the forefront of this work as are the software applications

utilizing these resources.

3.1.1 VM Consolidation and Heuristics

Virtualization is the key technological principle that has facilitated the growing pop-

ularity of cloud, edge and fog computing in recent years. Virtualization partitions

the resources of a single server into multiple separated execution environments where

each environment is isolated from others; therefore, multiple operating systems can

run on the same hardware [11,33,92,111].

Virtual machine (VM) consolidation, in theory and practice, is closely related to

server consolidation. Server consolidation is commonly defined as “an approach to

the efficient usage of computer server resources in order to reduce the total number

of servers ... that an organization is using” [112]. VM consolidation, is crucial to

achieve server consolidation. VM consolidation refers to concentrating VMs on a re-

duced number of servers. However, VM consolidation is just one consideration (i.e.,

to move as many VMs as possible onto a single server). There are many other cru-

cial considerations to the operation of data centres and service providers, including

availability, costs of memory units within each server (this affects VM density and

availability), redundancy, risk management, scalability (scaling out vs. scaling up),

SLO/SLA, and performance [78]. Each of these considerations, in turn, has many nu-

ances that fall outside of the scope of this dissertation. However, it is important for

the reader to understand that VM consolidation is more complex than simply packing

VMs tightly onto servers. Moreover, Laverick points out that VM consolidation ra-

tios are, in fact, not key considerations for data centres [78]. Similarly, VM migration

methods also present a multitude of approaches and research avenues [89, 141]. In

26

their 2014 paper, Medina and Garcia provide a comprehensive overview of the most

common techniques used [92].

We now discuss some of the more recent, prominent and important works ad-

dressing VM consolidation. Bobroff et al. [22] developed a dynamic VM consolida-

tion algorithm with the goal to reduce both energy costs and SLA violations. Often,

energy costs and SLA violations are in direct competition: “Power management di-

rectly threatens the independence and performance isolation properties of virtualiza-

tion technologies” [99]. In order to reduce performance and SLA violations servers

have fewer VMs scheduled than they are physically able to accommodate. However,

this then requires more physical machines to host the VMs which in turn increases

energy consumption and associated costs. Bobroff et al. developed an algorithm to

simultaneously tackle both issues by addressing over-utilization and under-utilization.

Singh, like Bobroff, also an IBM engineer, continued to advance dynamic solu-

tions to reducing SLA violations and improving costs in data centres. Singh et al.’s

algorithm is inspired by multi-dimensional knapsack problems and focuses specifically

on load balancing resource requirements across multiple resource levels (i.e., storage,

network and CPU) to avoid overloaded “hotspots” in the data centre [116]. In this

algorithm, each resource component forms one dimension of the vectors used to com-

pute solutions to this type of multi-dimensional knapsack problem. Singh’s system is

reactive rather than predictive, which sets it apart from Bobroff’s work.

Beloglazov et al. [13] employ resource consolidation to minimize operational costs.

Energy savings are achieved by consolidating virtual machines based on resource uti-

lization, networking topologies and the thermal state of compute nodes. Specifically,

a simulation of heuristics is presented for resource re-allocation which resulted in

energy savings. They discuss energy saving practices, such as improving application

algorithms, energy efficient hardware, dynamic frequency and voltage scaling (DFVS)

and virtualization. Several policies are proposed to mange VM placement. Challenges

in policy implementation include the trade off between energy savings and quality of

service requirements and minimization of global power consumption. Simulation re-

sults produced savings as high as 83%. Beloglazov et al. [14,23,29,30] employ resource

provisioning algorithms in conjunction with tools like CloudSim for evaluation pur-

27

poses.

In the absence of having access to a real data centre, modelling and simulation

is a popular method to evaluate resource scheduling algorithms in combination with

energy performance. CloudSim [29, 30] is, arguably, the most popular of such tools

in academic research. The approach of using simulation to evaluate energy and cost

saving algorithms in cloud environments has been taken on by several researchers,

such as Buyya et al. who find great value in the simulation based approach for prac-

tical reasons [28,74,134].

Liang et al. [86] use a heuristic approach to solve the virtual machine management

system within their own data centre architecture. They implemented their test sys-

tem on real hardware to achieve realistic results. Their experiment resulted in 27%

savings in energy consumption. Minimization of energy costs using heuristics yields

varying results and often depends on the particular implementation, assumptions and

underlying architecture [27,144].

3.1.2 Networking Components

At a slightly higher level of abstraction, Mazzucco and Mitrani [91] investigate the

energy saving impact of distributing workloads in such a way as to facilitate shutting

down blocks consisting of multiple servers. Their results showed that such a strategy

is highly feasible under specific conditions and depends on the type of servers’ net-

work traffic. They concluded that, as long as the network traffic is not too bursty

and the load is not too large, it is possible to benefit from such a strategy.

Similarly, taking the approach of fine grained optimizations and power savings,

Widjaja et al. [135] show that depending on the type of network traffic, small sized

switches can be deployed in order to save energy costs. The authors also mention the

importance of having the ability to turn network switches off as a benefit to energy

savings depending on the type of network traffic. However, their simulations explicitly

state that quality of service (QoS) concerns are not considered and, thus, can skew

the results. In experiments like these, measuring energy consumption relies on sensor

data on individual hardware components. Savga et al. [130] provide an overview of

28

the state of the art of server hardware monitoring. In isolated experiments, data

centre network components have been shown to benefit from energy consumption

specific optimizations. In other words, unused switches would ideally consume no

power [1, 12, 56, 133]. Moreover, Jiang et al. [65] present mathematical models for

turning off excess capacities in networking equipment, but emphasize that heuristics

are needed to improve the performance of their approach. Turning off not only net-

work switches but also servers, or entire server islands in data centres is a result of

resource consolidation and has far reaching impact beyond the energy consumption

of servers as this approach also affects cooling measures [51,79].

3.1.3 Software Metering and Instrumentation

Kansal et al. [67] provide a metering method named Joulemeter, which provides

VMs with a low overhead power metering system similar in functionality to hardware

monitoring for physical machines. They experimentally determine the accuracy of

the meter by comparing the software reported energy consumption to the physical

machine’s energy consumption. The authors also address renewable energy sources

and variable data centre pricing that Joulemeter can take advantage of.

Pathak and Aggarwal demonstrate that effective instrumentation of software to

track energy consumption can take the form of monitoring the number of system

calls to the operating system [2, 39, 106] . A system call is considered an action of

the operating system to effect a change on the hardware leading to a change in en-

ergy consumption. Thus, system call changes in applications as new releases emerge

are used to predict an application’s energy consumption. Part of this dissertation is

inspired by the work of Pathak and Aggarwal. As such, we profile energy consump-

tion of system calls across multiple machines with the goal to modify specific system

calls to provide improved energy consumption for the underlying software application.

Hähnel et al. [52] investigate a finer grained power measurement technique by

taking advantage of kernel level sensor capability. Specifically, they use running av-

erage power limit (RAPL) sensors available for Intel processors. Their results proved

promising in providing finer grained power measurement support for individual in-

strumented applications.

29

3.1.4 Instruction Level Analysis

Following this trend of function level monitoring, finer grained approaches have been

proposed by Li and Tiwari [82, 127]. Energy consumption for individual assembly

language instructions was once considered a promising avenue of understanding the

overall energy consumption of software. Energy consumption for assembly language

instructions has been profiled extensively for many years [93, 125, 126]. However,

the rewards from such approaches are minimal as most instructions have common

overhead and do not vary significantly on an individual level. Thus, there is no

longer a need to investigate individual assembly level instructions [32, 114,117]. Due

to this consensus among researchers, we restrict ourselves to the level of system calls

in our research.

3.1.5 Higher Level Instruction Analysis

At a more abstract level, Bunse’s work [26] shows that energy consumption can be

one metric by which an algorithm is chosen. Through the use of trend functions, he

predicts energy consumption of several algorithm implementations. This approach

conceivably lets users select a final algorithm based on chosen metrics (e.g., execution

time or energy consumption). Similarly, Li et al. [81] show the impact that com-

mon programming practices have on energy consumption in the mobile market (e.g.,

smartphones, tablets and watches), but also highlight how slight variations to, or

adaptation of, best practices can improve energy consumption.

Related to this, Corral et al. [40] focus on mobile devices and highlight that in

this context, energy consumption can be approximated based on the execution time

of individual applications, or code segments. However, we will see later that this

is primarily due to the fact that applications running on mobile devices are usually

restricted to single cores (cf. Chapter 5). Research on mobile devices’ energy con-

sumption is of great interest due to the economic implications. Applications which

require disproportionate energy consumption often fare far worse in the market place,

thus resulting in lower revenues for the developer. As such, energy consumption in

mobile devices for individual applications as well as their variation over multiple ver-

sion and release cycles is of interest to application developers as well as academic

researcher [58,59,143].

30

Energy consumption in mobile devices is also of interest to software engineering

researchers interested in best practices and coding standards as well as their impact on

energy consumption [81]. It is highlighted that best practices, as they are understood

in the software engineering community, do not always translate into energy savings

of the software to which they are applied. In fact, many so called “best practices”

have adverse effects on the energy consumption of applications running on mobile

devices. Mobile device energy research has been reviewed comprehensively by Wang

et al. [132].

3.1.6 Energy Consumption and Markets

At the large scale, Wang et al. [131] and Chiu et al. [38] discuss models incorporating

energy grid loads and data centre demands. Strategies to migrate workloads dynam-

ically based on utility calculations are proposed and simulated through the use of

models. Both research works, however also point out the complexity of reaching an

optimal state as migrating workloads based on power grid considerations can have

adverse effects on the overall system. Minimizing energy costs in a global market

can also profitably employ different energy sources and markets from which to obtain

electricity. This approach is also prominent as there is a dynamic component to the

availability and price of different energy sources over time [46,109].

Chase et al. [34] use an economics based approach to model supply and demand

using a greedy algorithm. They also describe an adaptive resource provisioning archi-

tecture useful for consolidating services. Their experiments indicated a 29% reduction

in power consumption using their solutions.

Krintz et al. [76] model how applications affect power consumption. The idea is

that the application has some control over the power they use. This research targets

mobile devices using application level observations and power consumption prediction.

Their approach avoids complex modelling by using the system as a black box as a

whole. They use several benchmarks and measure the power dissipation along several

key metrics.

31

3.1.7 Forecasting Energy Consumption

Tesauro et al. [124] have used machine learning approaches to maximize energy sav-

ings and performance. By training on data from a simple random-walk, they achieved

high-quality management polices that outperformed the best available hand-crafted

policy by over 10%. Another strategy employed by Berral for the same purpose,

used machine learning for a back-filling scheduling approach [21]. Their work focuses

on the continued satisfaction of SLA agreements with energy-aware scheduling. The

tradeoff between energy consumption and performance is addressed by Kephart [70].

Two controllers are used, in a small scale setup, to optimize the tradeoff between

energy savings and overall system performance using predefined utility functions. Us-

ing machine learning algorithms improved the coordinating without time-consuming

drawbacks to optimize the system.

Duy [44] uses a green scheduling algorithm featuring an artificial neural network

predictor for optimizing server power in the cloud to forecast energy demands. He uses

neural networks (NNs) to predict load requirements to decide whether or not to shut

down servers in the data centre. In other research, genetic algorithms are employed

to determine load, energy savings and job scheduling in data centres [108]. Many

machine learning approaches exist and compete with one another for best results as

it is still not clear which approach is best suited for this domain.

3.1.8 Simulation versus Execution Environment

Another point in favour of our approach is the work highlighted by Teodorescu and

Torrellas, who point out that even homogenous hardware is in fact heterogeneous due

to production processes [123]. In their work the authors point out that, for example,

cores vary in the amount of consumed power and supported frequencies despite being

identical [123]. Thus, dynamic analysis tools for actual hardware are far superior in

accuracy than simulations [46]. An additional point in favour of this dissertation’s

approach is the increasing trend in data centres and other computing paradigms to

favour energy consumption savings over performance [146].

32

3.2 Software Engineering for Self-Adaptive and Self-

Managing Systems

This section presents an overview of software engineering research and background for

self-adaptive and self-managing systems (cf. SEAMS software engineering research

community). The chapter also introduces machine learning research related to green

computing and self-adaptive systems. Dynamic and, in the future, self-adaptive ap-

proaches have become a necessity in today’s world of data centres for operational,

planning and energy related aspects. As MacVittie suggests, the “static, inflexible

data centre models of the past inhibit growth, promote inefficiency, and are fraught

with operational risk” [88]. Dynamic, adaptive and self-adaptive problem solving ap-

proaches provide exciting opportunities and will unlock new potentials in data centres

in the future. It is important to consider these works to gain an understanding of the

larger scale applicability and potential future directions (IoT, CPS) of our findings

which are derived from a currently existing data center.

3.2.1 Self-Adaptive and Self-Managing Systems

Self-adaptive systems (SAS) are systems that have the ability to modify their own

behaviour at run-time. Often the degree of adaptation is predetermined (e.g., switch

among a few modes). However, normally self-adaptive systems are not bound in their

runtime adaptation and can thus deal with a certain amount of uncertainty in their

environment. In this case, the self-adaptive system can alter its behaviour according

to specific contextual information which can change over time in order to achieve the

system’s goals. [128] Adaptations are separated generally into high-level or low level

goals, as well as short-term and long-term adaptations [102]. Furthermore, adapta-

tions at runtime often occur as a system “drifts away from its design-time models

[while] run-time models are kept in sync with the underlying system” [55]. Models at

runtime are further subdivided into research pertaining to architectures, objectives,

techniques and types of models; Szvetits and Zdun further categorize areas within

these categories into a total of 27 specialized areas of research [122].

In 2001 IBM began to promote the vision of autonomic computing [61]. The

seminal paper by Kephart and Chess pioneered the notion of self-managing systems,

including the famous MAPE-K loop [71]. They featured four self-* (read self-star)

33

properties: self-configuring, self-optimizing, self-healing and self-protecting. These

properties are key characteristics which set autonomic systems apart from other sys-

tems. More recently, more self-* properties have emerged and are gaining in relevance

in different autonomic frameworks [25,42] and IoT platforms [73,104].

Kephart and Chess [63, 71] introduced the key building block for self-managing

systems as depicted in Figure 3.1—an autonomic element (AE) consisting of two

components: an autonomic manager and a managed system which form a feedback

loop.

Figure 3.1: Autonomic element with managed system and autonomic manager man-

ager featuring the MAPE-K loop with its standard components [63,71]

The autonomic manager and managed system correspond to the controller and

the process, respectively, in the control loop from traditional control theory. To sep-

arate concerns, they structured the autonomic manager into four distinct phases and

34

a common knowledge base: monitor, analyzer, planner and executer. This famous

design, depicted in Figure 3.1, is now referred to as MAPE-K loop. This design has

hugely influenced academic research directions as well as industrial realizations of

self-adaptive and self-managing systems.Kephart and Chess [41, 62,96–98,128].

The MAPE-K loop contains four distinct, interconnected, phases. a) Monitor;

b) Analyzer; c) Planner;and d) Executer.

The Monitor phase continuously collects sensor data about the environment within

which the application is currently running. The filtered sensor data are then stored

in the Knowledge Base for further processing and long term storage. The Analyzer

module performs analysis tasks on the collected data and tries to recognize known

patterns and trends in order to determine whether the high level goals are currently

met, or will eventually be met in the future. The Planner module is called upon when

the Analyzer has determined that goals are no longer being met. It is the Planner

module’s job to determine the best course of action and behaviour modifications in

order to achieve the system’s goals in the short term or long term. The Executer

module is tasked to provide the required instructions for behavioural modification of

the system to the low level components through effectors or actuators. At the level of

hardware, interfacing with the real world, are sensors and effectors. Sensors provide

information to the Monitor module, while effectors carry out instructions from the

Executer phase in order to alter the system and its behaviour in accordance with its

high level goals.

The autonomic element (AE) is the conceptual architecture for an individual feed-

back loop in self-adaptive and self-managing systems. Commonly, AEs are composed

into three-level hierarchical architectures. At the lowest level, autonomic managers

(AMs) control individual resources, such as disks and CPUs. Each AM in the middle

level aims to achieve one of the self-* properties (e.g., self-configuring or self-healing).

The top level orchestrates the middle managers and determines priorities on tradeoffs

among the middle level managers when aming to achieve overall system goals.

This three-level architecture is further refined in Figure 3.2 which depicts IBM’s

original reference architecture which is referred to as autonomic computing reference

architecture (ACRA) [63]. The ACRA hierarchy is composed of five basic layers.

35

Figure 3.2: Autonomic computing reference architecture (ACRA) [63]

Conceptually at the bottom of the hierarchies one finds the managed resources

(e.g., a light-bulb, a server, a network switch, a sprinkler system, or any other re-

source in an autonomic system). Interfacing with the managed resources are touch

points, which allow for information and instruction flow between the managed re-

source and the AM. Touch points are controlled and receive instructions from the

touch point AMs. Information is analyzed and plans for decision making are formed

in accordance with relatively low level goals relevant to successfully managing the

low-level resources of the system.

Above the touch point AMs are the orchestrating AMs. This level is composed

of multiple interconnected AMs which oversee a multitude of touch point AMs. The

Monitor modules of this level retrieve sensor data from a wide range of systems. High

level goals are monitored and effected at this layer in the ACRA hierarchy. These

high-level goals are supplied by the top layer—the manual manager, which is often

36

controlled and operated by a human.

Monitoring, controlling and managing context information at runtime is a crucial

function of self-adaptive and self-managing systems. The availability of ACRA has

allowed researchers and practitioners to expand the scale of autonomous systems by

increasing automation and by continually reducing the human involvement towards

high-level goal setting. An abundance of data and new data through a continuously

increasing number of sensors (especially in the IoT domain) makes autonomous, large

scale, systems a relevant research area. Lessons from such large scale autonomous

systems apply to a variety of topics ranging from city planning to networks and data

centres. Runtime analysis of context information has received great interest from the

self-adaptive community and has been identified as an important research area in

software engineering for adaptive systems [36,103,105,120].

3.2.2 Data Science—Machine Learning and Statistical Anal-

ysis

Machine learning approaches, including Neural Networks (NN), Support Vector Ma-

chines (SVM), wavelets and Statistical Analysis, have found increasing application

in load balancing as well as resource and job scheduling in data centres. Machine

learning, in computer science, is a subfield of pattern recognition and can be defined

as follows: “Machine learning can be broadly defined as computational methods using

experience to improve performance or to make accurate predictions” [95]. Machine

learning automates analytical model build and uses algorithms that iteratively learn

from data. The goal is to find hiden insights without explicitly programming where

to look in the big sea of data. The textbook on pattern recognition by Duda et al. [43]

is a great introduction to traditional classifier training. Neural Networks (NNs) and

Support Vector Machines (SVMs) are just a few of the many machine learning topics.

Machine learning has myriad applications in forecasting, data analysis, bioinformatics

and image analysis to name but a few [90].

Recently, Aksanli investigated scheduling tasks in data centres by dynamically

forecasting the availability of green energy [3,4]. Jobs are scheduled or removed solely

based on the, real and predicted, availability of green energy (i.e., energy produced

from renewable sources). Aksanli does not seek to improve the energy efficiency of the

37

data centre’s workload, but rather promotes the notion of scheduling data centre jobs

when energy from green (renewable) sources is available regardless of the efficiency

of the underlying workloads.

Duy [44] uses a green scheduling algorithm featuring an artificial neural network

predictor for optimizing server power in the cloud to forecast energy demands. He

uses NNs to predict load requirements in order to decide whether or not to shut

down servers in the data centre. Similarly, Sharma uses genetic algorithms (GAs)

and NNs in an effort to combine dynamic voltage and frequency scaling (DVFS) and

GAs to minimize SLA violations [115]. Sharma also seeks to minimize energy con-

sumption and provides a high-level overview of some energy saving methods’ benefits

and drawbacks. Energy consumption and data centres lend themselves to a variety

of different NN approaches and variations. Foo employs evolutionary NNs due to

their speed and accuracy in their studied environment [47]. Wu et al. illustrate the

many different NNs currently being studied and deployed to place VMs in data cen-

tres [140]. They demonstrate that there are many promising avenues, which all which

can yield successful results, depending on the exact underlying problem being studied.

While NNs are only recently being used in data centres and research related to

scheduling and energy efficiency, they have been used extensively in other domains.

More commonly, NNs are being used in research involving energy consumption outside

the data centre realm. Many lessons and findings from those works can be gleaned

to help conduct analytics to optimize data centre energy consumption.

Neto et al. highlight the value of NNs when forecasting and profiling energy

consumption of entire buildings while comparing NNs and simulation based physi-

cal models [37, 100, 107]. Similarly, Amin-Naseri et al. show that NNs can be used

successfully to forecast daily peak energy loads in large systems [5, 60, 121]. They

argue that NNs perform well because traditional models are often overwhelmed by

the complexity of external variables, such as weather or climate data. Their method

allows the clustering of peak loads specific to the day of the entity that is profiled.

Related to this is the work by Li et al. in their classification of energy consumption

in energy-efficient buildings [83]. They focus on forecasting and detecting abnormal

energy consumption in buildings by recognizing and analyzing data outliers.

38

In summary, NNs are increasingly used to predict, forecast and profile energy

consumptions of myriad systems. In many areas of computer science, using NNs has

become standard practice. Most research does not focus specifically on the methods

used, but rather report on the accuracy and effectiveness of their methods. This

is because it is not yet fully understood which machine learning approach is the

most suitable for the domain of energy consumption in emerging digital ecosystems.

Furthermore, the success of a particular NN method often relies on the configuration

and fine-tuning of the NN rather than the exact NN method used.

3.3 Control Engineering and Feedback Loops

This section provides background on an engineering cornerstone—control theory and

in particular feedback loops in software engineering applications. Feedback loops

are everywhere, heavily used in engineering solutions, and are increasingly finding

their way into software engineering applications (e.g., control of web services, robots,

drones or driverless cars). Self-adaptive and self-managing systems, as discussed in

Sec. 3.2, feature feedback loops at various levels of abstraction.

Figure 3.3: Classic control loop [57]

Stability and robustness are two desired properties of control systems. Control

theory provides mathematical foundations to analyze these properties in control sys-

tems. The idea of a feedback loop is compare the measured input to the system’s

reference input. The basic components of a feedback control loop are depicted in

39

Figure 3.3. The control error is computed as the difference between the measured

inputs and the measured outputs. If the target system does not provide the desired

output, then the controller modifies the control input to alter the behaviour of the

target system towards achieving the desired goal. Disturbance input, or noise, are

often environment factors, which can alter the behaviour of the target system.

A control system must be robust, that is, the ability to function in environments

where the input variables are different than those of the ideal model. This is be-

cause the inputs to the system do not necessarily conform to the envisioned inputs

when the system was designed. Additionally, the model used by the controller may

be linearized or simplified to ease calculations, yet must be able to function in an

environment where many more variables affect the stability of the system.

The measured output is the behaviour of the system which can be measured as

a result of its activity. In other words, the system measures some variables after it

made modifications to itself with the goal of achieving stability. The reference input

is simply the desired state the system should achieve based on a measurable param-

eter. By comparing the reference input (i.e., the desired state) to the output (i.e.,

the actual state) the system can compensate, through its own action of varying the

inputs under its control (e.g., cruise control on a car: when the car approaches a

hill, the car slows down due to the hill; as a result, the cruise control compensates

by accelerating to maintain the desired speed). Most systems and control loops also

feature a transducer, which is a component that translates the output measurements

so that they can be compared to the reference inputs [57].

Control theory has produced many control schemes. Arguably the most common

control scheme is a PID (proportional, integral and derivative) controller. Depending

on the desired properties of the system, its controller will have proportional, integral

and derivative terms, which are applied to the inputs and outputs in order to maneu-

ver the system to its desired state [57]. Note that not all three PID components have

to be present in a control system; omissions of one or two components is justified for

certain applications.

The proportional component of a PID controller acts to move the system in the

general direction of the desired correction (e.g., the car on speed control is slowing

40

down, the controller effects an acceleration increase). The integral component acts in

such a way as to reject sharp/large changes in the error measurement (i.e., difference

between the observed and reference values). This is useful to ensure that temporary

steep changes do not cause incorrect or overreactions by the system (i.e., consider

a failure to receive an output value in a running system, this absence should not

cause the system to over react. The differential component dampens or smoothens

the system’s changes into a more controlled and gradual process to achieve stability.

Equation 3.1 represents the general formula for a PID controller [136]. To configure a

control system, engineers change or tune the gain terms (i.e., Kp, Ki and Kd) in this

formula.

u(t) = Kpe(t) +Ki

∫
e(t)dt+KD

d

dt
e(t) (3.1)

In our research, we we aim to optimize energy consumption by letting a controller

determine the ideal server on which a particular piece of software should run to min-

imize the consumption of energy. Aided by the fact that we have multiple types of

servers in the data centre, we need to ensure that the controller models these server

types with their different energy consumption features effectively.

For ease of design, simple control loops are always preferred. However, for large

data centres and complex digital ecosystems (e.g., IoT and CPS), addressing all the

needs and requirements with one control loop is challenging. To separate concerns,

software engineers resort to multiple control loops which are often organized hierar-

chically, as for example in the autonomic computing reference architecture (ACRA)

presented in Figure 3.2 above. In such a hierarchy, higher level controllers feed poli-

cies to lower level controllers and, thus, affect or change these lower level controllers,

which is called adaptive control. Adaptive control is eminent when system require-

ments, contextual information or optimization criteria evolve. Upon dramatic changes

in the environment of a digital ecosystem, the controller can no longer effect the de-

sired outcomes in the managed system. As a result, the control model and algorithm

have to evolve too.

Implementing control systems in software has the big advantage that the different

components (i.e., MAPE-K components and the hierarchical components (AEs) for

41

adaptive control) can be realized separately instead of realizing the entire control

system as one piece of hardware. Moreover, the controllers of lower levels in adaptive

control systems can be readily modified—not simply by adjusting gains, but rather

by modifying the models of lower level controllers (e.g., by changing variables, data

structures, function calls and entire algorithms).

To facilitate dynamic controller models, a new research area has emerged in the

software engineering community called models at runtime (MARTs). [15] Szvetits and

Zdun have conducted a comprehensive systematic literature review of MARTS [122].

They identify four main areas within MARTs: a) models, b) techniques, c) architec-

tures and d) objectives. In our research, the relevant areas of monitoring, simulation,

and adaptation belong to the MART subgroup of Objectives. Control theory, and

more specifically autonomic control loops, belong in the MART subgroup Techniques.

Furthermore, this dissertation’s use of a model-aware framework falls into the MART

category Architectures. Models and MART play a central role in self-adaptive systems

and will continue to grow in future digital ecosystems, such as IoT and CPS [80].

In our research, we develop MARTs for energy-aware infrastructure and in turn

energy-aware systems and optimizing energy consumption and system performance in

heterogeneous environments, including data centres and complex digital ecosystems.

The key goal is to manage and optimize the trade-off between the non-functional

requirements of energy consumption and system performance using adaptive control

systems using MARTs. Models to address performance and efficiency often rely on

queueing theory (for timing) [31,49], Markov models, and runtime architecture mod-

els [6,7,122]. Energy models for different types of software running on different servers

help us predict future energy consumption for different deployment configurations.

Over the years, the control community has defined several reference models for

adaptive control. The prominent models are Model reference adaptive control (MRAC) [24,

35] as depicted in Figure 3.4 and Model identification adaptive controller (MIAC) [118]

and as depicted in Figure 3.5. MRAC is also referred to as Model reference adap-

tive system (MRAS) [35]. All of these reference models are two-tier architectures

for adaptive control; the two layers correspond to the bottom two layers of the IBM

ACRA reference architecture. MRAC and MIAC differ in how the controller model

in the top level is built. For MRAC, the top controller is defined at design time often

by simulating of the underlying system. For MIAC, the top controller is computed at

42

Figure 3.4: Reference architecture for model reference adaptive control (MRAC)

runtime by observing the behaviour of the managed system below and then identify-

ing its model. Depending on the type of application, one model is more appropriate

than the other to realize the desired level of adaptivity and system behaviour.

Today, the two layers of these adaptive control architectures are typically realized

in software as autonomic elements and their controllers (i.e., models and algorithms)

as autonomic managers (i.e., MAPE-K) as depicted in Figure 3.1. Thus, the top-level

controller can adapt the individual software components that make up the controller

of the bottom-level controller.

The software engineering community and the SEAMS community in particular

have evolved the reference architectures for adaptive control emanating from the

control communities further and defined several three-tier reference architectures for

adaptive systems. One of the earliest model is the Figure 8 reference model by Oreizy

et al. [102]. Kramer and Magee gleaned ideas from the AI and robotics communities

to manage trade-offs in adaptable architectures, where the three tiers realize compo-

nent control, change management and goal management. These three layers nicely

correspond to the ACRA layers of resource control, self-* management and human

goal and trade-off management.

Villegas et al. defined the three-tier DYNAMICO reference model as depicted in

Figure 3.6 to manage control objectives and context relevance in self-adaptive soft-

ware systems [129]. The three tiers represent goals, adaptive or self-adaptive systems

and managed adaptive infrastructure. In DYNAMICO, separation of concerns goes

43

Figure 3.5: Reference architecture for model identification adaptive control (MIAC)

beyond the decoupling of adaptation mechanisms for managed systems. This archi-

tecture uses three different types of MAPE-K loops that interact among themselves to

address changes at three levels: control objectives, adaptation and monitoring. DY-

NAMICO aims to address the need in self-adaptive systems to provision the controller

with the ability to adapt to changing monitoring infrastructure, changing goals and

the dynamic contexts. High-level goals, such as energy consumption, are specified

and translated into actions through the planner and executor. The middle layer ad-

dresses the adaptation required for self-adaptive systems, following a more traditional

approach as found in control theory. The bottom layer in DYNAMICO realizes the

additional need for adapting the monitoring infrastructure. We use DYNAMICO as

a foundation for our energy-aware model and framework.

3.4 Simulation, Signal Processing and Statistical

Analysis

Due to the prohibitive costs of testing experimental scheduling research in a real data

centre, scientists and engineers employ simulations. Simulations are a cost effective

alternative to real hardware, networking, cooling, and facility expenses. Additionally,

simulations allow the experimenter to extrapolate their approaches to realistic scales

44

Figure 3.6: DYNAMICO reference model [129]

and, thus, evaluate their research more effectively.

A significant drawback to simulations, however, are the limitations in the variable

environment conditions that can be simulated, or the fidelity of the system that is

being modeled. As an experimenter, we are limited to only simulate the variables

that the simulation software is provisioned for. This severely limits the ability to

transfer the results directly to a real data centre simply because the real world is

much more complex than can be expressed in simulations. Subsequently, simulations

serve as an approximate representation of reality and all results must be considered

carefully before drawing conclusions about real world data centres.

Signal processing plays another important role; it allows us to analyze the sensor

data from hardware components. Signal processing lets us extract pertinent infor-

45

mation from seemingly noisy signals. The signals which we process may need to be

preprocessed or transformed in order to amplify or filter the pertinent information

first. We primarily use signal processing to detect patterns which will then be used

by our machine learning component for classification.

Figure 3.7: Artificially generated, noisy signal to illustrate the effects of Fourier

Transform [137].

Signals are generally divided into continuous-time signal and discrete-time signals.

Examples of continuous-time signals are voltage, current, temperature, or speed to

name a few. The main feature of these types of signals is that as time changes in

infinitesimally small increments, there is a unique value for the signal. Contrary to

this are discrete-time signals. Examples of discrete-time signals are daily minimum/-

maximum temperatures, lap times in races, or sampled continuous signals. The data

we obtain from our data centre instrumentation is in the form of discrete-time signals.

We obtain the total voltage, amperage, kW and kW/h at one minute intervals.

One such technique is demonstrated in Figure 3.7. Here a seemingly noisy signal

has been recorded and is displayed in the figure. However, applying a specific signal

processing technique referred to as Fourier Transform, Figure 3.8 shows that we can

46

extract and identify three distinct frequencies within this seemingly noisy signal.

Figure 3.8: The result of the Fourier Transform applied to Figure 3.7 exhibiting

distinct frequencies present in a seemingly noisy signal [137].

We employ such techniques in our research to identify the type of process and

resource that is generating a given energy consumption pattern.

Statistical analysis helps us to make sense of a sea of data and come up with

meaningful statements about the data collected in experiments. It supplements the

techniques we use from signal processing and machine learning.

3.4.1 Simulating Energy Consumption in Data Centres

The most relevant simulation software for data centres in academia is CloudSim [30].

CloudSim allows the user to construct a basic model of a data centre. The Java based

implementation can be extended and integrated in custom models.

While CloudSim continues to be improved upon and more features are added

constantly, the functionality of CloudSim fits specific environments. Only recently,

CloudSim added the functionality to model primitive energy consumption statistics.

47

Another related tool is Cloudanalyst [134], a tool based on CloudSim. This tool,

as its name suggests, lets the user perform certain analyses on CloudSim recorded

metrics. Cloudanalyst makes data extraction and analysis seemingly easier to perform

than using CloudSim directly—albeit this depends on the experimenter using the tool.

We use simulation only in a limited fashion. Instead of simulations, we use real

data, generated by real workloads and processes representative of real workloads, in

a real data centre. This has the advantage that we are not limited in the complexity

and number of variables composing reality that affect our measurements. Simulations

can only change, affect and measure the features which are included in the simulation

software. For us, using real data centres, our measurements are affected by a plethora

of known and unknown variables (higher fidelity), all which need to be taken into

account.

3.4.2 Signal Processing and Statistical Analysis

There is a common approach to data science involving signal processing and machine

learning as depicted in Figure 3.8 The first stage preprocesses the data including

acquisition of a signal, thresholding of the output and separating data useful for

classification from the noise. The second step in the process is the feature extrac-

tion scheme, which computes a feature vector from a regular vector. A feature is a

distinctive or characteristic measurement or structural component extracted from a

segment of a pattern. Statistical characteristics and syntactic descriptions are the

two major subdivisions of the conventional feature extraction modalities. A feature

extraction scheme is meant to choose the features which are most important for the

classification exercise. The final stage is signal classification, which can be solved by

a variety of approaches, including linear analysis, nonlinear analysis, adaptive algo-

rithms, clustering and neural networks.

Chapter 5 presents an introduction to the mathematical methods employed in our

adaptive system for classification of a process’ resource utilization based on its energy

consumption pattern.

The most important step for the classification task is extracting a suitable set of

features that has the capability to differentiate among different classes. Statistical

48

Raw Data

Feature Extraction

Classification

Output

Figure 3.9: Classification process stages

analysis is a way to generate such representations which allow us to differentiate

between classes of data within our data set. The method for feature extraction

consists of decomposing the server’s energy and power consumption data obtained

while our experiments are run.

3.5 Chapter Summary

In this chapter introduced related work and background materials essential for our

research. We covered recent advances in green computing from the high level analysis

to low level energy measurements of individual machine instructions.

This chapter also highlighted some of the main features of self-adaptive systems.

Section 3.2 connected green computing and self-adaptive systems as they are helpful

in understanding and solving the problems we are addressing in our research.

We also gave a brief overview of control theory and feedback loops to the extent

that they are needed in this dissertation. The exact details of these fields are fas-

cinating. However, we often find ourselves in a position of employing user-friendly

implementations of feedback systems and control loops when we use standard soft-

ware tools such as Matlab.1

1http://www.mathworks.com/products/matlab

49

Finally, we provided a brief overview of the related signal processing concepts,

which help us analyze the often massive amounts of data collected from our data

centre and test servers. Similar to control and feedback systems, the most common

use of signal processing comes in the form of user-friendly software packages. Here

the deep internals of the systems are abstracted to a higher level with which we as

the experimenter can interface to get results quickly and accurately.

50

Chapter 4

Research Methodology

This chapter discusses the methodology we use to develop and answer our research

questions. We use a combination of case studies, artifact generation and prototyping

as part of our experiments in order to investigate our research questions. Additionally,

a systematic literature survey (cf. Chapter 3) provides the basis for focused research

efforts on open questions in this field. Identifying particular open questions allows us

to create targeted case studies from which we obtain data geared towards specifically

addressing these open research questions.

Keele et al. describe systematic literature studies, the method by which to con-

duct them, and the benefits and drawbacks of the different methods [69]. Yin [142]

and Easterbrook et al. [45] provide insight into the design and use of case studies.

Runeson [113] posits that case studies and empirical studies have become an accepted

method of conducting software engineering research. Thus, case studies are an ap-

proriate method to adress the research questions in our research.

Additionally, we conduct experiments to answer selected research questions. In

particular, our experiments address research questions pertaining to the identification

and isolation of resource types and their impact on energy consumption. Our findings

are used to evaluate the efficacy of our models for improving energy consumption in

digital ecosystems of interconnected applications.

51

4.1 Process and Hypothesis Formulation

This section describes the process we used in the development of our experiments,

our research hypothesis, and our problem formulation guiding this research.

4.1.1 Initial Hypothesis

A simplified expression of our research hypothesis is that energy consumption of soft-

ware varies depending on the hardware resources. Moreover, this difference can be

exploited by scheduling tasks in such a way as to gain energy savings while satisfying

performance criteria.

We developed our research hypothesis incrementally over several iterations. The

initial idea was sparked and inspired by Hindle et al.’s research in energy consump-

tion of mobile devices [58, 59]. They demonstrate that different versions of software

appear to generate different energy consumption patterns on the same device. From

this finding, the authors argue that bugs can be identified in consecutive versions of

the software. Taking this work further, Hindle and Rasmussen were able to investi-

gate the energy consumption of particular types of software running on devices [110].

In our approach, we follow more closely the work of Balasubramanian et al. who

investigate energy consumption of different resources on mobile platforms [9]. Both

approaches compare different versions of software on a single device over time.

In our research we explore the inverse of Hindle’s and Balasubramanian’s research

(i.e., multiple versions of software on a single hardware platform). We explore energy

consumption of single pieces of software on multiple devices using, nominally, identi-

cal hardware resources.

While mobile technologies and energy consumption were hot topics over the past

decade, the availability and potential scalability of data centers is now of great interest

in this line esearch. Having two fully instrumented server racks in a data center with

heterogeneous server hardware at our finger tips greatly aided us in our decision to

investigate energy consumption in data centers rather in the realm of mobile devices.

However, findings and lessons from one realm are often transferable to the other,

so the decision to chose servers instead of mobile devices is, with certain caveats,

acceptable.

52

4.1.2 Hypothesis Refinement and Iterative Approach

The first challenge in our research was to determine whether energy consumption of

software in data centers is measurable. To answer this, we contacted the University’s

data center staff. As a result, we were given access to their monitoring infrastructure

and were able to observe the energy consumption of our servers in near real time.

Once we had the ability to monitor our servers, we set out to determine (1) whether

software energy consumption can be measured; (2) whether thresholds discernible

measurements would occur; and (3) whether there were identifiable patterns that

would link energy consumption to specific software processes.

This initial phase was exploratory and involved running extreme workloads on

the servers while waiting to observe changes in energy consumption. Fortunately,

our initial intuition, that software energy consumption is measurable and detectable,

appeared to be correct through visual inspection of the data.

The second phase was to determine the detectability of energy consumption changes

when using different hardware resources. For this, we followed a similar approach of

introducing extreme workloads on the servers and identifying, visually, changes in en-

ergy consumption. This was done to establish whether this type of research is feasible

and repeatable across different servers.

Once we were satisfied that the fundamental requirements (i.e., detectability of

energy consumption changes based on resource usage over time), we developed struc-

tured, automated and repeatable test frameworks to produce energy consumption

profiles. Later these automatically produced profiles were used to automate the tasks

of identifying software processes based on energy consumption as well as their inte-

gration into our dynamic models to potentially affect resource allocations.

4.2 Data—Sources, Collection and Analysis

This section provides a brief overview of our data sources, data collection methods,

and data analysis.

53

4.2.1 Data Sources

Data is crucial for evaluating the effectiveness of new or proposed methods. In soft-

ware engineering, available sources of data range from mathematical models, simula-

tion and emulation to direct measurements and tests. Obtaining data from mathe-

matical models, simulation or emulations is generally a viable option in most cases.

The benefit of this type of approach is that we are able to scale the system in, for ex-

ample, simulations to near realistic magnitude. However, one downside, among many,

is that we are only able to approximate the conditions and complexity of reality. The

second source of data is to directly deal with real world hardware and software. A

sizable data centre is nearly impossible to come by in academia.

The Enterprise Data Center (EDC)1 at University of Victoria (UVic) provides

server and data processing capacity. The EDC2 facility can accommodate up to 1.26

mega watts of power or up to 3,000 standard servers. This facility currently hosts

many administrative servers and research computing facilities including high perfor-

mance computing nodes such as WestGrid2 and Future Internet nodes such as Global

Environment for Network Innovations (GENI)3 and NSERC Strategic Network for

Smart Applications on Virtual Infrastructure (SAVI)4. The UVic EDC2 center is de-

signed to back up systems for continuous operation 365 days a year through Uninter-

rupted Power Supply (UPS) and diesel power generation. Servers get power through

a three-phase 208V power distribution system. Each rack is connected through two

independent (on different phases) 30A breaker circuits so that servers with redundant

power supplies can benefit from the power distribution redundancy.

Furthermore, we also make use of built in reporting software and sensors which

are commonly found on modern devices (and smartphones) as well.

4.2.2 Data Collection

Power consumption can be measured and monitored along the entire multi-level hier-

archy of an enterprise data center—from individual core and memory units, to servers

and racks, as well as PDU and UPS units. Power instrumentation schemes can em-

1https://www.uvic.ca/campusplanning/completed-projects/enterprisedatacentre2/index.php
2https://www.westgrid.ca/
3http://www.geni.net/
4http://www.savinetwork.ca/

54

ploy direct measurement techniques by using various hardware sensors or modelling

techniques to estimate power. For example, many recent processor architectures in-

corporate power reducing mechanisms, whereby the CPU frequency is throttled back

to reduce power consumption. Moreover, CPUs can be put into selected states at run

time depending upon their load. Furthermore, when the CPU is idling, the frequency

at which the CPU operates is adjusted dynamically as more power is consumed at

higher frequencies.

Tools, such as the Unix PowerTop utility and Joulemeter,5 monitor how programs

use the CPU mode features and estimate power consumption accordingly. Software

designers use some of these tools when designing programs to reduce overall power

usage of their programs, though usage is not widely adopted.

Many servers have built-in power dashboards to monitor vital system functions

and to estimate power and bandwidth consumption. In the realm of cloud computing

and resource scheduling, power-aware frameworks are rapidly emerging [145]. The

fundamental premise is to provide power instrumentation and monitoring for soft-

ware systems to optimize power consumption effectively and adaptively.

When building an enterprise data center today, power utilization, consumption

and monitoring are at the forefront of the designers’ minds.6 Energy usage trends

can be determined by calculating the power usage effectiveness (PUE) of the entire

enterprise data center using UPS power consumption measurements. Arguably, the

best view of data center power consumption comes from the PDUs (power distribu-

tion units) located within the racks. Modern rack-mounted PDUs feature integrated

monitoring and control capabilities to enable continuous power monitoring. These

PDUs are further configurable to send alerts and updates to centralized management

agents for data analysis.

Our research focuses on server level power consumption to investigate how the

compute, memory, disk, and network loads affect power usage of servers from a soft-

ware standpoint. Data center utilization, in commercial settings, is typically only

5M. Goraczko, A. Kansal, J. Liu, F. Zhao: Joulemeter—Computational Energy Measurement and
Optimization, Microsoft Research, http://research.microsoft.com/en-us/projects/joulemeter/

6B. Kleyman: Why monitoring data center power consumption is vital, TechTarget,
http://searchdatacenter.techtarget.com

55

20-30% and, yet, at low (or idle) loads, the bare hardware can consume as much as

50% of the server power [12,66,94]. Thus, major power savings can be accrued if idle

servers can be switched off in data centers.

Hence, we use the built-in instrumentation of our UVic EDC2 data center to obtain

power measurements of the rack that hosts our own research servers for GENI and

SAVI network nodes. This rack, which is connected to three circuits that power the

servers in this rack, hosts five of our servers on one circuit while the other circuits are

used to power some of our other servers. For this experiment our server pack is in one

single two-phase circuit (i.e., no redundancy). Moreover, the data center provides the

capabilities to report circuit power consumption. The power measurements include

measurements and statistics on current consumption, real power usage and power

factor measurements.

4.2.3 Data Analysis

Data Analysis is conducted in various ways. On a basic level, when appropriate,

we make use of simple statistical methods (e.g., mean, median, average), assuming

Gaussian distributions for the underlying data. In cases where data cannot be fitted

into normal distributions, long tail distributions may be of use. Alternatively, since

our research is grounded in using real hardware and real software, we can resort to

employing top-level machine learning approaches to the data (or signal).

There is a common path for pattern recognition, which follows the structure laid

out in Figure 3.9. The first stage is preprocessing the data. This includes acquisition

of a signal, thresholding of the output and separating the data useful for classification

from the noise.

The second step in the process is the feature extraction scheme which helps us

distinguish between a feature vector and a regular vector. A feature is a distinctive

or characteristic measurement, transform, structural component extracted from a

segment of a pattern. Statistical characteristics and syntactic descriptions are the two

major subdivisions of the conventional feature extraction modalities. A good feature

extraction scheme is meant to choose the features or information which is the most

important for the classification problem. The final stage is pattern classification. This

56

step in Figure 3.9 can be solved by a variety of approaches: linear analysis, nonlinear

analysis, adaptive algorithms, clustering and neural networks.

The most important step for the classification task is extracting a suitable set

of features that has the capability to differentiate among different classes. As dis-

cussed, statistical analysis is a way to generate such representations. The method

for feature extraction consists of decomposing the server’s energy and power con-

sumption experimental data. Subsequent runs with different software configurations,

different hardware, different operating system constraints then offer insights into the

effectiveness of our methods to reduce energy consumption tailored specifically for

the machines at hand. This has the advantage of increased accuracy and avoids the

dangers of model risk, since our insights are dynamically generated and customized

specifically to the hardware in the data center. At the same time, our approach is

dynamic and can be applied to any server in the data center.

4.3 Dynamic Models at Runtime

This section introduces our reference model which is both based on the experimental

results and benchmarks, as well as the interactions with hardware components such

as servers and the intended scheduling model. We also introduce the models’ effects

on energy consumption as they are measured in our experimental setup in the UVic

data cente. This topic is further explored in Chapter 7.

4.3.1 Model Design Process

In order to effect energy saving changes in a data centre dynamically and automati-

cally, we need a reference model upon which a software architecture and implemen-

tation can be based. Our model is based heavily on ACRA (cf. Figure 3.2) with

internal MAPE-K components [63] and as such makes use of its conceptual compo-

nents: Monitor, Analyze, Plan and Execute. Models are the foundation for software

architectures and high-level system descriptions. Likewise, according to Bass et al.

in software engineering models are used to describe a decomposition of the different

conceptual parts that comprise the underlying system and also describes their rela-

tionships [68].

The different conceptual components in our system are partitioned into the fol-

57

Monitor Analyse

Reference
Knowledge

Base

Plan

Servers/Hardware

Sensors Software
SchedulerEnergy Consumption

Sensor Data

Figure 4.1: Our MAPE-K model to manage energy consumption and effect energy

optimization in data center software

lowing distinct categories: Servers, Resources within servers, contextual energy data,

software applications and the overall data centre.

Each of these components is a feedback loop and can be classified as a MAPE-K

model. Figure 4.1 illustrates the composition of our reference model. In this model,

sensor data (e.g., energy consumption) is delivered to the Monitor component of the

model.

The Monitor component pre-processes the data and forwards it to the Analysis

component. Alternatively, the monitor component can also function as a simple for-

warding station without preprocessing. In that case the preprocessing has to occur at

the Analysis state. At the Analysis component, the preprocessed data is incorporated

and referenced with existing data points from the Knowledge Base. The purpose of

this is to infer useful information about the energy consumption as well as resource

usage of any processes that are connected to the underlying hardware servers. It is

at this phase that power consumption and energy usage are correlated to resource

usage of software applications. To do this, we employ Neural Networks (NNs) to help

58

with the dynamic identification of energy consumption and resource usage as detailed

in Section 6.3 below. [19] This classification of processes, based primarily on energy

consumption, aims to reduce power consumption in applications’ digital ecosystems

by way of making scheduling and job placement decisions primarily on the expected

and measured changes in power consumption for particular components which in-

teract with the applications (e.g., servers, mobile network infrastructure, networking

equipment and mobile device resources).

Once a process has been identified as possessing a particular power profile and

based on the nature of its resource requirements, adaptive job placement can be

orchestrated within the application’s digital ecosystem to optimize scheduling and re-

source utilization with the goal of direct energy savings. This is done at the Planning

stage, which essentially controls the adaptation of the entire system.7 The plan-

ning, or adaptation, stage determines whether to assign a particular hardware to a

given software application. Initially, some data must be gathered on any software

application. Only after data has been gathered, through the software applications

contextual sensor data, can the planning phase make decisions about whether to

migrate the software application to another server.

4.4 Limitations

The collection of data and its evaluation is, by necessity and time constraints, limited

to a relatively small number of heterogeneous devices (i.e., the devices we can readily

access). This small number of devices (i.e., two types of servers, two types of laptops,

three types of desktops and two mobile devices) is a relatively small sample to test

our framework for generalizability across platforms. However, since these devices dif-

fer to a large degree, an argument can be made to consider success with our limited

resources to be extensible to a larger scale. This, however, is only possible if statisti-

cal rigour is observed and sufficiently large data samples are obtained to support our

findings and derived claims.

Similarly, the evaluation of our models through the use of actual measurements

is restricted by the allocated time frame within which to conduct the experiments.

7Note that by ecosystem we mean the entire data center, including software and hardware resources.

59

Statistical analysis and significance must be obtained for each case studies’ compo-

nents in order to ensure validity in the findings. However, due to the diverse nature

of the experiments, the number of runs required to obtain statistical significance in

the analysis, and thereby the required time, varied among experiments.

4.5 Chapter Summary

This chapter describes our research approach to investigating power consumption dig-

ital ecosystems. We highlight, and bring together, the components needed to answer

our research questions effectively. We use literature surveys to position our work at

the forefront with open questions in the realm of green computing and energy con-

sumption. With these literature surveys, we combine case studies, experiments on

real hardware with real software to guide our hypotheses development.

This chapter also introduces the reader to the infrastructure available to us at the

University of Victoria on which we conduct our research. The data center is described

in detail along with the servers in the server racks we can access readily.

Additionally, we position our model within the ACRA and MAPE-K reference

models. We also introduce the reader to the methods we use when analyzing the

data. Lastly, we present some of the challenges as well as limitations to our research

approach.

60

Chapter 5

Experiments

This chapter provides a detailed description of the experimental setup for our experi-

ments. We ran the experiments in a real data center using real hardware and software

applications.

5.1 Our Approach to Energy Consumption Exper-

iments

This dissertation focuses on digital ecosystems as they exist through the interplay

of resource utilization of software applications stemming from network bandwidth,

latency, storage and processing capabilities. Figure 5.1 illustrates our intended target

for performance and energy optimization. The primary interest of this work is to fo-

cus on the application of self-adaptive systems, and context-aware resource scheduling

within digital ecosystems for the purpose of conserving energy while completing the

applications tasks without a incurring performance penalties. We now provide a brief

overview of the experimental phases, milestones and challenges.

To investigate the interplay between energy consumption, hardware resource us-

age and adaptive scheduling and software applications thoroughly, we have chosen

the following practical approach. First, we needed to determine whether different

software applications exhibit measurables differences in their energy consumption.

The ability to detect different energy consumption levels and associate them with

different software applications forms the foundation of this work and, thus, was a

necessary precondition. Our first experiments focused on determining whether this

61

hypothesis holds—we can indeed differentiate between different software processes by

their energy consumption.

Once this first hypothesis had been preliminarily established as true for most

cases, our next step included to scale the experiment horizontally. This meant that

we essentially tested the hypothesis on different server hardware to ensure that it

would hold in a data center which naturally is composed of multiple types of server

hardware. Here it became evident that this task needed to be automated in order to

defend the credibility and applicability of this research to the real world data center

operators. Running single experiments once in a controlled lab setting can be done

manually, however, moving this phase of the data collection into a real data center

with multiple machines required automation. This automation setup did not exist

and is one of the contributions of our research.

Consequently, we also worked on automating the classification of software applica-

tions on the basis of their energy consumption by using a number of machine learning

techniques. Once satisfied with the results we continued to test the limits of this ap-

proach using real software processes. Following this process, we developed a method,

through simulation, that would allow us to demonstrate the scalability of our ap-

proach in a large data center and to demonstrate the potential energy optimizations.

Disk

System
to

optimize
CPU

Memory

Performance

Network

Energy

Figure 5.1: Optimizing energy use and performance in digital ecosystems

62

Establishing an automated classification method also led us to investigate whether

software applications would have to be treated as so called “black boxes” which can

only be a) run, or b) not run on a given machine. We determined that for certain types

of software applications commonly available techniques can be employed in order to

alter the resource consumption without affecting the application itself. As a result,

we identified certain types of software applications where the choice is not just limited

to a) run the application on machine A; or b) do not run the application on machine

A. For those types of application, a third option exists, namely: alter the applica-

tion’s interactions with the underlying hardware in order to optimize it for machine A.

We identified that this third option exists for a segment of software applications

that have particular resource requirements. This is possible because a software ap-

plication interacts with the operating system in order to request, use and relinquish

resources, such as memory, I/O or processor time. For a specific class of software

applications, we were able to demonstrate that altering this communication between

the software application and the operating system can have beneficial outcomes for

the servers energy consumption while at the same time improve performance of the

software application.

The software for our experiements targets specific resources within a server (e.g.,

memory, CPU, disk, network). We designed several experiments that would consume

these specific resources for a given amount of time. The exact time each test soft-

ware runs varies depending on the exact nature of the experiment. Having designed

multiple test software programs we are able to combine and chain them together to

better use the available servers and minimize the time between experiments. One

such example of chaining together mutltiple pieces of test software can be seen in

Figure 5.13. Here we chained together 3 different test software runs and present

them in one figure. When chaining test software applications together it is important

to ensure that the system had sufficient time to return to a stable state. A stable

state ensures that the starting conditions for each experiment are identical and no

external energy consumption influences the measurements (i.e., heat from previous

experiments has dissipated and fans stopped spinning). Isolation is achieved by pro-

viding enough time between experiment runs. Additionally, we will use this type of

figure frequently as it provides a large range of useful data in a concise presentation.

Included in the presentation are ampere measurements for all 3 breakers, while we

63

focus on the top/red line of the graph as this is the breaker connected to the servers

we used for the experiments. The figures also show the power consumption of the

entire rack over time. All measurements are provided by the data center directly to

us through visual dashboards and daily data dumps.

5.2 Balanced Energy Usage and Performance Op-

timization

Our approach now allows us to balance energy usage and performance. On the one

hand, we are able to treat energy constraints as yet another metric for constraint

based scheduling decisions. On the other hand, using the findings of our findings,

software tasks and processes can now be scheduled within data centers based on their

energy requirements in addition to their nominal resource requirements (e.g., CPU or

memory). This is made possible because the impact of a scheduling decision is fully

understood in our system before the decision is even made. This allows us to evaluate

the effectiveness of a scheduling decision at runtime and leads to energy optimizations

as well as (sometimes) performance optimizations.

Furthermore, this also leads to improved load balancing within the data center as

hardware can now be allocated with a different metric in mind.

The following sections describe each aspect of our approach in detail and present

our findings.

5.3 Experiments—Description and Process

The experiments and the processes used to obtain data points for the evaluation of

our approach include profiling of hardware components, such as disk, memory, CPU

and network components, in their interactions with software applications. These

components are found in data center servers, laptop and desktop computers, as well

as mobile devices.

64

5.3.1 Benchmarking and Automatic Profiling

In order to increase the usefulness, usability and impact of this work for the larger

community, we completely automated the foundational process of benchmarking in-

dividual servers for energy consumption. Automation ensures repeatability and con-

sistency among various server implementations while obtaining a similar set of data

relevant for benchmarking each server’s energy consumption characteristics.

Energy/Performance
Benchmark Database

Servers

Deploy benchmark code

Run Individual Benchmarks
Per sever

● CPU Benchmark
○ 1 - max. CPUs

● Volatile memory
● Stable memory
● Disk I/O

○ Different
system calls

● Network
○ Includes

storage on disk

Store
Benchmark
records in DB

Available to scheduling
Service

Figure 5.2: Deployment and execution cycle of automated benchmarking tool

Figure 5.2 describes the program flow of our benchmarking tool. This cycle should

be run on hardware that has not been profiled previously (e.g., a server that has been

newly placed in the data centre). Additionally, it may also be beneficial to run this

benchmarking tool repeatedly on existing hardware. Benchmarking an existing server

repeatedly can potentially be used as an early warning system for imminent hardware

65

failures or foreign, malicious software components that have infected the machine.

The process to benchmark and schedule a new piece of hardware is as follows.

First the benchmarking tool is deployed to the data centre. From there the script

(cf. Appendix A.5) is distributed automatically to individual servers. Once the script

is deployed it is automatically triggered to run via cron jobs.1 While the program

runs, it performs a sequence of different and unique benchmarks that allow us to

identify energy usage patterns in different software applications based on specific

resource requirements. The benchmark performs tests on all hardware aspects, such

as CPU, storage, network and memory. CPU tests fully load a minimum of one CPU

and a maximum of all available CPUs (cf. Appendixes A.5 and A.6). The maximum

of CPUs is defined as the maximally available number of cores on a server’s processor

chip set. Following the CPU benchmark, the tool runs various memory tests (cf.

Appendixes A.7, A.8 and A.9). In each memory test, a different amount of memory

is requested. For volatile memory tests, the contents of the memory are altered

constantly while the CPU utilization is maintained at a low and stable level in order

to eliminate contamination of the data points. Stable memory tests on the other

hand allocate memory once and then do not alter it. This variety of tests is needed

to obtain a profile of the possible energy consumption levels for different tasks. The

script also performs disk I/O tests using a multitude of system calls to effect disk I/O

operations (cf. Appendixes A.1, A.2, A.3 and A.4). Finally, network I/O operations

are intended to be benchmarked for energy consumption. Here the data obtained over

the network is either destroyed immediately, by sending it to /dev/null, or is written

to the disk to avoid cross contamination with other data points, such as storage and

CPU benchmarks.

Figure 5.3 illustrates the relationship and hierarchy between the different testing

components. This is a simplified version of the call graph, the complete version can

be found in the appendix of this document. The entire benchmarking process is con-

trolled and automated via a simple software script. Once this bash script is moved to

the server, it will call a custom Python program, which will run the CPU, memory

and storage benchmarks. The network benchmark is controlled separately through

another Bash script. We decided to use wget,2 because it is readily available as a tool

which fulfills all our needs to transfer files across a network. Thus, no extra custom

1https://en.wikipedia.org/wiki/Cron
2https://en.wikipedia.org/wiki/Wget

66

Figure 5.3: Simplified hierarchy of scripts used for benchmarking on Linux machines.

Each leaf node (CPU, Memory, Disk, wget) can be composed of multiple individual

benchmarks.

work needed to be done to encapsulate this task.

However, even though we took great care in ensuring that individual resource

components of servers are tested separately, they all are in use at any given time on

a server. None of these benchmarking operations completely isolates each resource

component (i.e., CPU, memory, disk and network are all in use simultaneously most

of the time). However, each test is designed in such a way to minimize the effect of

the non-benchmarked component (e.g., in a disk benchmark test, CPU and memory

usage are minimized, while network traffic stemming from the test is eliminated).

Minimizing non-benchmarked components in such a way is necessary and sufficient to

allow our machine learning applications to distinguish resource allocations successfully

based on their energy consumptions.

5.3.2 Disk Benchmarks

Our experimental setup for the disk I/O benchmarks is inspired by the fact that Big

Data applications read and write large amounts of data from hard drives at any given

time. Here too, altering the method in which the disk is accessed can be measured

at the PDU level. For this experiment we implement four ways in which a file can be

67

read and written to a hard drive. Two metrics are of interest here, i) the amount

of data transferred in a given time period; and ii) the energy consumption per data

transfer. The four methods tested involve the C standard library functions i) fgets

and fputs ii) fgetc and fputc iii) read and write with a large buffer size iv) read and

write with a smaller buffer size.

The functions fgets/fputs and fgetc/fputc were chosen because they are the com-

mon ways to copy files in C. For all our experiments, we used the gcc compiler version

4.9.2 (Debian 4.9.2-10).3 The read/write functions are the underlying system calls for

disk operations. Figures 5.4, 5.5, 5.6, 5.7 are snippets of sample programs that copy

data files from one location on a hard drive to another. The complete code can be

found in the appendix. These programs can be used to profile energy consumption of

disk operations in our setup.

while((ch = fgetc(source)) != EOF)

fputc(ch, target);

Figure 5.4: Sample code used to copy file with fgetc/fputc

Compiler options are routinely used to affect performance (throughput, speed,

or memory footprint) of applications. We used the compiler options to determine

whether there is an inherent benefit to common compiler options in terms of energy

efficiency differences of the resulting executables. As such, we used two compile flags

in our two experiments. First, no compiler options for optimization (i.e., -O0). Then

3https://en.wikipedia.org/wiki/GNU Compiler Collection

while((ch = fgets(line , SIZE -1, source)) != NULL) {

line[SIZE -1]=’\0’;

fputs(line , target);

}

Figure 5.5: Sample code used to copy file with fputs/fgets

68

int SIZE = 20000;

while ((n = read(f_in , line , SIZE)) != 0) {

write(f_out , line , n);

}

Figure 5.6: Sample code used to copy file with read/write large buffer

int SIZE = 8000;

while ((n = read(f_in , line , SIZE)) != 0) {

write(f_out , line , n);

}

Figure 5.7: Sample code used to copy file with read/write small buffer

69

we repeated the experiment with optimization flags for speed and size turned on (i.e.,

-O3).

Compiler optimizations are useful to study as, currently, no optimization exists

specifically to reduce the energy consumption of the resulting code. Energy con-

sumption is, if at all, only a secondary concern to priorities, such as compilation

time, speed of the resulting executable, and space/size of the resulting executable.

Often it is assumed that energy consumption and execution time are directly linked.

This is usually true, except in the case of using multiple hardware resources as well

as when using heterogeneous hardware resources.

On the one hand, the optimization flag -O0 was chosen as it is the default flag

which only aims at reducing compile time and inserting expected symbols to produce

the expected output from debugging [50]. The optimization flag -O3, on the other

hand, turns on “all optimizations specified by -O2” and 12 (twelve) further optimiza-

tions. [50] Note that -O2 includes all optimizations except those involving space-speed

tradeoffs.

We chose four popular implementations mentioned earlier to read and write a

2GB file. The different ways to access the disk with different system/function calls

and buffer sizes are a) fgets/fputs, b) fgetc/fputc, c) read/write with buffer size set at

20,000 bytes d) read/write with buffer size set at 8,000 bytes. We used each of these

implementations to copy the 2GB test file as often as possible in a given time frame.

A file of this size allows us to run each test for a sufficient amount of time to produce

a measurable change in the energy monitoring data. Furthermore, this was also the

largest file size that could be copied with all implementations.

Using Figure 5.8, we observe energy conserving benefits for particular implemen-

tations of disk I/O when the applications are run for fixed amounts of time. We ran

each application for the same length of time, to copy data as often as possible. Fig-

ure 5.8 shows the kW usage of 30 sample points taken for each of the implementations

during a fixed period of time. We ran each implementation for 30 minutes to copy

the file as often as possible. Thus, the 30 sample points correspond to the energy

usage averaged every minute of the 30 minute experiment. The red line indicates the

median sample value, while the thick box covers data points from the 15th to 85th

70

Figure 5.8: Energy consumption for different implementations of disk I/O for a fixed

amount of time. No optimization flags were used at compile time to produce the

executables. Each function was executed for a fixed amount of time, capturing data

points as the benchmark completes.

percentile. The thin box covers the remainder of the data excluding any outliers (if

they exist).

We observe that different implementations produce different energy usage patterns

while using an identical number of CPU resources. Differences in energy consump-

tion appear directly related to the underlying system calls. Using the tool strace4 to

capture system calls made by our applications as they access the disk, we determined

that the only significant differences are parameters of system functions write and read,

as well as the number of occurrences of these system calls. All our implementations

resulted exclusively in system calls using write and read, however fgets/fputs and

fgetc/fputc used the default 4,096 bytes as the buffer size to access the disk. System

calls resulting of implementations using read/write used the buffer sizes we specified,

4https://en.wikipedia.org/wiki/Strace

71

namely 20,000 and 8,000 bytes (arbitrarily chosen to investigate their relative impact).

Both traditional user level function calls (i.e., fputs /fgets and fputc/fgetc) result

in identical system calls. The number of these system calls varies between imple-

mentations which is the cause of the difference in the energy consumption profile. In

both cases, the buffer size of each system call corresponds to the page size of this

particular system (defined by operating system parameters). However, read/write

functions at the user level are left unaltered by the compiler; the increased buffer size

is maintained and results in fewer system calls.

Figure 5.9: Complete copies per experiment and costs per write relative to fgets/fputs.

Read/Write achieve more completed copies and are cheaper per write.

Figure 5.9 highlights the overall performance of each implementation by capturing

the overall number of file copies that were achieved within a fixed amount of time.

This figure also relates each implementation’s performance to its energy cost per disk

I/O operation.

At a high level, this figure indicates two things. First, looking at the orange

(right) column of each pair, we see that both read/write pairs outperformed their

72

counterparts using traditional user level functions. Unsurprisingly, the function with

the larger buffer size was able to copy more files than either of its competing imple-

mentations.

Second, the blue (left) columns of this figure indicate the total energy consumption

of the implementation over a period of 30 minutes. We observe that the read/write

pair used less energy in the same period of time than its competitors. This is likely

due to the fact that fewer disk access operations were performed. Compiler options,

including optimizations, do not take advantage of this readily available improvement

in performance, and neither are potential energy optimizations carried out.

Yet, there is potential for further energy consumption optimizations of software

components heavily relying on disk access. Specifically, looking at Figure 5.9 in detail,

we see that when using fgets/fputs we copied the 2GB file 58 times in the allotted

time frame. This figure serves as the baseline to assess other implementations.

Using fgetc/fputc, we completed fewer file copies in the same time frame and yet

used more energy per complete file write than fgets/fputs. In other words, we used

more energy and did less work with this implementation. This occurs despite the fact

that both implementations use the exact same system calls to achieve the task. The

frequency of these calls varies between implementations, thus resulting in different

energy consumption profiles.

Using read/write functions with a relatively large buffer size of 20,000 bytes per

I/O operation outperforms our standard implementation in terms of completed file

copies by a factor of more than 300%. Its energy consumption per write, compared

to the standard benchmark using an fgets/fputs implementation, is relatively low at

only 30%. A similar result is observed for the same implementation (using read/write)

modified to use a different buffer size of 8,000 bytes. Completed reads and writes of

the file are lower than the implementation with a larger buffer size and at the same

time the energy consumption per write is higher. This is due to the smaller buffer

size and the resulting larger amount of required system calls to transfer a file of a

given size.

The compiler does not differentiate between the implementations using fgets/f-

73

puts and fgetc/fputc. Both implementations result in similar executables producing

identical system calls which affect disk I/O operations. However, our implementa-

tion using lower level functions read/write were left unaltered by the compiler and

produced system calls with parameters that resulted in energy savings as well as

performance increases.

5.3.3 Memory Benchmarks

Applications with heavy memory requirements, as the dominant resource, produce a

different power profile than CPU-intensive or storage intensive applications. In this

section we highlight two different applications which demand different amounts of

memory. The impact of these applications from an energy consumption standpoint

varies greatly. Similar to the theme in previous sections, here too, energy measure-

ments are obtained from at the PDU level.

Figure 5.10 showcases the impact of a program that requires a maximum of ap-

proximately 10GB of memory. This program was constrained to use only one CPU.

The power profile of this application demonstrates a comparatively stable consump-

tion throughout the duration of the program’s run—a mathematical function written

in Python. It ran single threaded on one CPU for a duration of 18 minutes. Running

this program for such a sustained time with relatively large memory requirements did,

however, only produce a marginal increase in power consumption compared to CPU-

intensive applications. The increase in current averages 0.2 ampere for the duration

of the program’s lifetime and is very stable. The resulting energy increase is very

close to the energy consumption increase obtained from running one core at 100%

with very little memory usage. Memory usage, when it is barely changing and the

contents of memory are also kept relatively unchanged for the lifetime of the program,

contributes minimally to overall energy consumption.

This is juxtaposed with the power profile shown in Figure 5.11. The application

that generated this power profile is similar to the one of Figure 5.10. It also requires

large amounts of memory as the main resource constraint (i.e., approximately 30GB

of memory); additionally, the program was limited to two cores running at full uti-

lization. The program ran for over 24 hours and had varying memory requirements

throughout. Based on the observations from Section 5.3.4 the large spikes cannot

be caused by running two cores at 100% utilization and, thus, must have resulted

74

Figure 5.10: Power profile of a process dominated by memory resource utilization.

from differing memory requirements. Additionally, we find that energy consumption

increases dramatically for memory usage when memory locations are changed or up-

dated frequently, as is the case in Figure 5.11.

While this program shows a lot more variation in its power profile than the pre-

vious memory intensive application, it too exhibits long periods of stable higher than

normal power consumption. This means, while there is seemingly unpredictable power

consumption behavior in these high memory applications, they do lend themselves to

adaptive scheduling and resource provisioning.

Through our benchmarks, we have established that memory intensive applications,

such as CPU intensive applications, exhibit a visible power profile with observable

changes in the server’s power consumption. Requiring approximately 10GB of mem-

ory in our server configuration resulted in a marginal increase in power consumption

(cf. Figure 5.10). This means that from a power consumption point of view, starting

multiple processes with relatively small to medium memory footprints can be more

energy friendly than booting up a new machine for such a process. We have also

shown that the contribution of memory to the energy footprint depends heavily on

75

the frequency and quantity of updates to memory locations rather than purely on the

size of allocated memory.

Moreover, we have shown that memory intensive processes produce periods of sta-

ble energy use if memory usage remains fixed (cf. Figure 5.10). This characteristic

is observable even in the power profile of Figure 5.11 and lends itself to scheduling

decisions. If the goal is to remain below a certain value for energy consumption, we

propose that CPU or appropriate memory intensive applications can be run on the

same server without exceeding desired energy consumption thresholds by using the

power profiles as decision making guidelines. This relies on two of our confirmed find-

ings: (i) power profiles are uniquely characterizable for CPU and memory intensive

applications; (ii) there is a measurable relation between resource consumption and

energy consumption; this relation can be profiled for a given hardware configuration

and varies depending on the underlying hardware.

Figure 5.11: Power profile of a process dominated by large memory resource utiliza-

tion. Memory utilization accounts for more energy consumption near the beginning

of the benchmark when data is frequently loaded and changed in memory.

76

5.3.4 CPU Benchmarks

Our interest is in exploring the relationship between energy consumption and exe-

cution time as it relates to a multi-core system. Figure 5.12 illustrates the energy

consumption relative to the server’s idle state for the number of CPUs at full utiliza-

tion. Two CPUs at 100% utilization effectively provide twice the execution time as

a single CPU at 100%. The boxplot illustrates the result of 300 unique data points

per CPU utilization test with the indicated number of cores at 100% utilization. The

red line in the graph represents the median value of kW measurements at any given

sample point. The boxplot captures 70% of the data in its core component and the

remaining 30% in the graph’s whiskers. Outliers are represented as a red plus.

Figure 5.12 quantifies the linear relationship between adding additional cores, and

the increased available execution time, with the energy usage of a server. We observe

a steady increase of energy consumption as cores are activated from 2 to 12 cores

in this server. Adding cores in this range will result in a linear increase of energy

consumption. However, this linear increase does not continue beyond the point where

exactly half of the available cores are fully used. Once 12 cores are active, adding

more cores does not incur the expected increase in energy consumption anymore. The

growth in energy cost while adding additional work capacity is minor as can be seen

when 12 to 20 cores are active.

The change in slope gradient of energy consumption, occurs exactly when the

number of active cores is greater than half the number of overall available cores since

in our system, we have two cores located on each CPU. This profiling work was auto-

mated, non-intrusive and utilized only existing monitoring infrastructure in the data

center. Custom profiling, such as this, now allows us to draw conclusions about the

available energy optimization strategies for this particular server and can be repeated

easily for other servers in the a data center, thus adding to the utility of our approach.

Adding additional cores at 100% utilization, after the cost-to-energy breakpoint

has been reached (e.g., at 12 cores), incurs minor additional costs to the operator of

the data center. Therefore, one can establish an optimal cost-to-energy consumption

zone for each server which is specific to each server’s hardware. At this optimal cost-

to-energy consumption zone, any additional utilization will only minimally increase

cost or energy consumption (e.g., placing more processes on the same server will min-

77

Figure 5.12: Energy consumption over 300 sample points for varying CPU utilization

between 2 and 20 cores. Energy consumption increases linearly until half the cores

are fully utilized. Each set of cores is utilized consistenly for a fixed amount of time.

imally increase costs while revenue may continue to increase linearly, as can be seen

once more than 12 cores are active in Figure 5.12).

Our findings are based on data that was obtained by measuring the entire server

system at once, thereby capturing every aspect of operation during each benchmark.

This is a valuable approach as the alternative, obtaining measurements at isolated

points in the system (e.g., just at the CPU or just at the server’s fans), leaves out

other components which are not instrumented, but might have adverse effects on

energy consumption (e.g., consider increased fan activity as more cores are active).

Instead our measurement encompasses the energy consumption of the entire server

as it is measured at the PDU level of the server rack inside the data center. Hence,

it is a true measure of the entire server’s energy consumption over time.

Both, time and CPU utilization play important roles in optimization strategies

for CPU intensive applications. Figure 5.13 aims to answer the question whether jobs

with more resources take less time and, simultaneously, provide energy savings. To

78

Figure 5.13: Power profile of CPU-intensive benchmarks running at eight cores with

eight threads, eight cores with 16 threads, and 16 cores with 16 threads for the same

workload.

answer this question, we first ran a CPU-intensive benchmark on eight cores with

eight threads. Completion of this process took approximately 11 minutes and serves

as the benchmark to which the remaining configurations are compared. During this

time, the current draw increased by 0.3 amps. This was followed by an idle period

to return the system back to a stable state. Following this stable state the number

of cores for the identical workload was kept at eight threads, while the number of

cores was increased to 16. This did result in a greater ampere spike and maximum

increase. At the same time however, the duration for which the job ran was not

affected significantly. Inspecting the last visible increase in the power profile, this rise

corresponds to the same job being provisioned with 16 cores and 16 threads.

Figure 5.13 shows that when the number of resources is doubled and the total

time is reduced by half, then the power demand remains the same. This is visible

in the peaks of the first and third power profile peaks. The second power profile

peak however, indicates that the increase in available computational resources must

be managed smartly. In our use case, increasing the number of cores available to a

process did neither speed up the computation, nor did it save energy. Quite to the

79

contrary, increasing the number of available resources in such a way that the software

cannot utilize it efficiently—making 16 cores available to a process that only has eight

threads did increase the total power consumption. This is visible not only in the top

line of the graph, but also in the corresponding chart at the bottom which represents

kW consumption of the entire server rack.

Using this finding, energy wasting can be avoided. Two separate pieces of knowl-

edge need to be available to create energy savings effectively as a result of our bench-

mark: (i) knowledge about the job (i.e., eight threads, CPU-intensive); (ii) power

profiles for CPU intensive jobs on a particular hardware. Additionally, our power

profile in Figure 5.13 established a mapping between power consumption, available

resources (i.e., 8 and 16 cores) and additional information about the process (i.e.,

number of threads). Thus, in this situation where a CPU intensive, eight thread

process on 16 cores is run, power consumption can be improved without negatively

impacting the performance of the job precisely because we have power profiles of

our hardware/server configurations. To reduce power consumption, the allocated re-

sources can be safely reduced to eight cores. This strategy maintains performance

levels and improves power consumption.

To obtain all these findings, energy consumption measurements at the PDU level

were sufficient. There is no need to use instrumentation within a server, which would

provide only a fraction of the relevant information and introduce additional, com-

pounding sources of errors. The PDU provides a complete view of the energy con-

sumption of CPU dominant software applications.

Our CPU benchmark is designed to identify not only the characteristics of CPU

intensive applications on a server by server basis. Our benchmark can also provide

insights into possible modifications that can be applied at the software applications

level. Tackling code modifications at the software applications’ level allows us to

take advantage of certain hardware characteristics at run time that may increase

performance and energy consumption.

80

5.3.5 Network Benchmarks with Limitations

We envisoned networking benchmarks for our research to provide a complete view of

all available resources. However, as often is the case in experimental setups, limita-

tions are encountered that allow for only limited data collection. The University of

Victoria enforces packet/traffic shaping rules that apply to all network traffic in and

out of the university [16].

Network bandwidth is a finite resource, only allowing a maximum fixed amount of

data to be transferred at any given time. Traffic shaping, in most cases is used pru-

dently to allow research and business activities to proceed while limiting unrelated

activities such as streaming movies. In the case of UVic for example, that means

that email traffic will, in ideal circumstances, never be limited by too many people

watching Netflix.

Unfortunately, for us this means that the network traffic we use to send data

between nodes and across campus cannot be used to effect a large enough and mea-

surable change in energy consumption on the servers we can readily access. The

servers we have access to are located within the UVic network and are, thus, subject

to its network traffic rules.

We do expect to see similar differentiating characteristics on different servers as

we observed in the other resources we were able to measure. Network traffic, when

isolated does not rely heavily on CPUs. Furthermore, a plethora of network cards

and hardware exists with different performance characteristics and most likely dif-

ferent energy characteristics. While we were not able to measure this effectively, we

are confident that our hypotheses carry through to network I/O. Depending on the

software application, network traffic is closely tied to memory and/or storage. As

such, a combination of those resource and energy usage characteristics may come into

play. In the meantime, more research is needed, in a setup where this can be explored

fully.

81

5.4 Discussion

The long term goal of this research is to investigate innovative methods to modify

program execution and resource scheduling of applications dynamically within digital

ecosystems to maintain or increase performance while at the same time optimize en-

ergy usage. As it stands today, we have to be aware of—and acknowledge—internal

and external threats to validity of our experiments and the conclusions we draw from

them.

One limitation related to this long term goal stems from the fact that we only have

a limited number of different types of severs available in two different server racks.

This definitely limits our ability to demonstrate the scalability of our approach for a

realistic, large scale data center.

Furthermore, our measurements are limited to the instrumentation provided by

the data center. While this does not necessarily impact the quality of metrics, it does

impact the frequency with which individual data points are recorded. In the future,

a more frequent measurement interval, below the current one minute mark, may be

desirable.

Moreover, we are also limited in the hardware resource types which we profile,

namely CPU, memory, and storage on servers. This is due to our reliance of existing

state of the art monitoring equipment available in the UVic data center.

5.5 Chapter Summary

This chapter highlighted our experimental approach to investigate the relationship

between performance characteristics, resource usage, and energy consumption of soft-

ware applications in modern data centers. We have developed and deployed various

techniques in order to benchmark and discern the relationships between performance

and energy consumption. We have done so spanning multiple servers, and multiple

hardware components within these servers. In this chapter, we also discussed the

specific contributions that we make to the field of green computing. We published

excerpts of our experimental work and descriptions previously [17, 19] though exten-

sions and further work have been added in this dissertation. From our experiments,

82

it is relatively clear that the PDU of a server rack can indeed serve as a source of

contextual energy consumption data for certain use cases. We have demonstrated

that there is an initial indication that even the particular resource usage and resource

type can be identified through measurements at the PDU level. Furthermore, we have

demonstrated that our adaptive model has multiple data points available from our

measurements and preprocessing of data on which scheduling decisions for software

applications can be made. The appendix of this document contains source code and

scripts that we created and used in order to perform this research. They should serve

anyone interested in replicating or continuing this work further.

Chapter 5 also provide insights into the methods used throughout this work. We

explain the data collection, experiment setup and execution as well as provide detailed

software samples used to profile the servers available to us. The information provided,

along with the source code of the benchmarking and orchestration scripts, serves as

a foundation for interested readers to replicate our experiments on different server

hardware. Moreover, we connect our experimental work with the machine learning

approaches, which together form the basis of our dynamic and adaptive model to

reduce energy consumption of software applications in data centers.

83

Chapter 6

Effects on Energy Consumption

This chapter presents two closely related and interconnected aspects of our research.

First, we discusss the energy and performance data we obtained through our experi-

ments. By doing so, we can highlight the connection between performance, resource

usage and energy consumption. This allows us to demonstrate how one would use the

available information and benchmarking information obtained from our research to

schedule software applications more optimally in accordance with performance and

energy consumption. Second, we introduce the reader to our work of automated data

analysis using machine learning. We employ machine learning techniques to identify

and classify software applications’ resource usage based solely on their energy con-

sumption patterns. These patterns are hardware specific and create a form of lookup

database, which can help in software deployment decision making.

6.1 Energy versus Performance—An Overview

For our experiments, we have access to only two different server racks with two dif-

ferent server types. However, even though the server types are nominally identical

(i.e., same architecture, disks, memory provisioning), measurable differences in their

energy consumption have been identified. These measurable differences lead to an

interesting refinement in our research approach. Not only do servers with differ-

ent hardware components have different energy consumption patterns for identical

software, but also servers with identical hardware have measurably different energy

patterns (variations exist due to manufacturing processes). As mundane as this may

84

appear, it is actually quite significant. Generally, identical hardware is modeled as

having identical energy consumption, yet we demonstrate that this is clearly not the

case.

More specifically, for our experiments this means that any migration of software

jobs between the different servers will inevitably induce noticeable changes in energy

consumption as well as overall performance. By using the existing energy monitoring

setup provided by UVic EDC2 and our custom benchmarks developed in the course

of this research, we are able to quantify these differences through actual data.

min avg max 95 percentile
0

20

40

60

80

100

120

140

160

180

200

CPU Performance

SAVI vs GENI

GENI SAVI

measurements

time in ms

Figure 6.1: Performance of CPU-intensive reference job on SAVI versus GENI servers.

A less performant server in terms of job duration (SAVI), which consistently consumes

less energy for the same job.

Figure 6.1 illustrates the performance comparison when migrating CPU-intensive

jobs from our servers assigned to the GENI cluster to the SAVI cluster. We com-

pared the servers located on the SAVI rack with those located on the GENI rack.

The SAVI server requires less energy for a given job than the reference GENI server

85

in Figure 6.1, however its performance is slower and, thus, a job takes more time.

More specifically in Figure 6.1, we can see that the performance (i.e., the time it

takes for a given CPU-intensive reference job to complete) is shorter and, therefore,

better on the GENI cluster. On the GENI cluster running our CPU-heavy bench-

mark with ten threads, limited to ten specific cores on the CPU took 27.5 seconds

to complete. This included completing 10,000 request events in parallel. We observe

that the distribution of the runs is much more tightly clustered around the mean on

the GENI cluster as well. Albeit not shown in this figure, the immediate energy con-

sumption is lower and, thus, better on the SAVI cluster. The SAVI cluster uses less

energy at any given moment because less work is performed. This is due to the fact

that the SAVI cluster is only able to run on one core, despite mapping eight CPUs

to its hardware. Overall, the time it takes to complete the job on SAVI is much

longer. On SAVI the benchmark completes in a total of 658 seconds, while on GENI,

in comparison, the entire test suite completes in 275 seconds. An interesting question

arises when one takes into account the combination of performance and energy con-

sumption in order to determine which configuration is better for any given situation

(i.e., it is feasible to consider that increased energy consumption is preferable over

shorter execution times in some cases). Migrating to a slower server can in fact be

useful, especially when it saves energy. Consider the case where a software job is run

over night, starting at midnight. If the output of this job is not consumed until the

morning, when the workers/analysts return, then there is no benefit if this job finishes

within one hour and consumes a lot of energy compared to finishing within six hours

and consumes overall less energy. Context specific trade offs can potentially become

a viable scheduling and deployment strategy. Figure 6.2 provides the complete set of

metrics for this benchmark comparing the SAVI and GENI servers.

6.2 Scheduling Strategies for Energy Consumption

Based on our findings regarding energy consumption and performance of the avail-

able resource usage categories, we are able to assist in the scheduling decision making.

Figure 6.3 helps in illustrating the underlying logic of this process. In Figure 6.3 the

performance is displayed on the horizontal X axis. The further right a data point

is, the greater is the performance output of the underlying server. As more work is

86

Run f o r Geni and SAVI

GENI

Maximum prime number checked in CPU t e s t : 90000

e s t execut ion summary :

t o t a l time : 27 .5506 s

t o t a l number o f events : 10000

t o t a l time taken by event execut ion : 275.3595

per−r eque s t s t a t i s t i c s :

min : 19 .12ms

avg : 27 .54ms

max : 72 .79ms

approx . 95 p e r c e n t i l e : 39 .13ms

Threads f a i r n e s s :

events (avg/ stddev) : 1000 .0000/45 .45

execut ion time (avg/ stddev) : 27 .5359/0 .01

SAVI

Maximum prime number checked in CPU t e s t : 90000

e s t execut ion summary :

t o t a l time : 65 .8791 s

t o t a l number o f events : 10000

t o t a l time taken by event execut ion : 658.3961

per−r eque s t s t a t i s t i c s :

min : 28 .13ms

avg : 65 .84ms

max : 179 .85ms

approx . 95 p e r c e n t i l e : 99 .20ms

Threads f a i r n e s s :

events (avg/ stddev) : 1000 .0000/206 .64

execut ion time (avg/ stddev) : 65 .8396/0 .03

Figure 6.2: Detailed statistics gathered running experiments to compare the perfor-

mance of the SAVI and GENI servers

87

Idealised Relationship between Energy Efficiency and Performance

← Server 1

Server 2 ↓

G
re

at
 E

ne
rg

y
E

ffi
ci

en
cy

P
oo

r
E

ne
rg

y
E

ffi
ci

en
cy

Poor Performance Great Performance

Figure 6.3: Idealized illustration of the relation between energy consumption and

performance—while abstracted, the illustration is based on our actual findings

done on a particular server, the greater the performance. Energy usage is marked

on the vertical axis. The more energy a server uses, the further up in the figure the

data point will be. Combining these two factors we can identify, in an idealized hy-

pothetical scenario involving two servers, which server is the more optimal machine

to schedule work on. The ideal point is in the bottom right corner with maximum

performance and zero energy consumption, which is impossible to achieve. The ideal-

ized scenario highlighted in Figure 6.3 is based closer on actual observations in which,

generally, more performance is associated with more energy consumption.

Server 1, in Figure 6.3 uses a certain base amount of energy even when it is idle—

thus, the performance of overall work done is low. Conversely, Server 2 uses slightly

88

Energy Efficiency and Performance

↑ Observed Server
in data center

Idealized
Server 2 ↓

G
re

at
 E

ne
rg

y
E

ffi
ci

en
cy

P
oo

r
E

ne
rg

y
E

ffi
ci

en
cy

Poor Performance Great Performance

Figure 6.4: Idealised illustration of relation between energy consumption and perfor-

mance overlayed with actual measurements in data center using server GeniRack02.

We overlay actual measured timeseries results with the idealized curve.

more energy when idle. This discrepancy in idle energy consumption has been illus-

trated before by our own work and that of others [17,119]. Moreover, in data centers,

70 percent of servers are typically in an idle state at any given time according to Liu

et al. [85]. Using our idealized illustration scenario, when the load is increased on

these idealized servers, Figure 6.3 illustrates that not all servers behave the same in

terms of provided performance and energy consumption. While server 1 starts out at

lower energy consumption at idle than server 2, with increased load the energy usage

per unit of performance tips in favour of server 2. Using this notion as a basis, we

can identify ideal regions in this figure where both criteria, performance and energy

usage, are relatively optimal compared to other available servers (i.e., in the case of

89

Figure 6.3 there are only 2 servers to choose from).

Figure 6.3 represents the idealized scenario. Figure 6.4 overlays the idealized plot

with the actual measurements obtained from one of our servers in the form of a time

series trace. As we traverse the figure to the right, we notice that as the workload in-

creases, so does the energy consumption. The drops in energy consumption represent

times when the system was allowed to return to the idle state between experiments,

they have been included in this figure to illustrate that the system does indeed return

to an idle state and the energy consumption normalized during those periods. This

is important to ensure that a rise in energy consumption over time is not a result of

lingering side effects, such as increased heat and cooling mechanisms as the experi-

ment progresses.

We also observe that as the workload increases and performance—measured as

work done—increases, the energy consumption does not always increase at the same

rate. This is noticeable as more CPUs are brought online and confirms our earlier

findings. Ultimately, the data peaks in the observed server in our data center is of

interest as we can see that it follows roughly an idealized curve where increasing

performance usually, but not always leads to increased energy consumption.

6.2.1 Dynamic Strategies and Scheduling Policies

Figure 6.5 illustrates the available data which can be used to provide an accurate point

of view of the different server types at any point in their workload state correlated to

their energy efficiency.

To support the decision making process on where a particular software application

should run, we need to take multiple facets into account. Figure 6.5 showcases the

multi-dimensional, multi-factor data pool that is available for the decision making

process. The figure distinguishes between the available server types and their antic-

ipated as well as measured energy-to-performance ratios. Since our model is based

upon identifying the primary resource type usage of a software application, an appli-

cation will be classified as one of the four resource types visible in Figure 6.5. Further

this association occurs for each available server (in our case: two types of servers, but

in real data centers there are many more). In order to locate the ideal placement for

the software application, we aim to find a server where both, performance and energy

90

Energy Efficiency and Performance

Idealized
Server ↓

G
re

at
 E

ne
rg

y
E

ffi
ci

en
cy

P
oo

r
E

ne
rg

y
E

ffi
ci

en
cy

Poor Performance Great Performance

rack01
rack02
rack04

Figure 6.5: GeniRack01, GeniRack02 and GeniRack04 CPU performance relative to

energy consumption. We overlay actual measured timeseries results with the idealized

curve.

savings, criteria are satisfied.

Figure 6.6 illustrates the different levels of performance and energy consumption

available on our servers when considering CPUs. In this figure, we see data for three

servers, namely CPU226, CPU227 and CPU228. We measured the energy and perfor-

mance of each of these machines in an isolated setting and combined their data in

this figure for illustrative purposes. The red lines on the graph represent a desired

level of performance as well as energy consumption. This creates two interpretations

of the bottom right and bottom left quadrant that is formed by the intersecting red

lines. On the one hand, the intersection of the red lines marks the point where the

minimum performance and the maximum allowable energy consumption are reached.

91

Poor Performance Great Performance

Desired Performance
and Energy Consumption
Intersection

P1

P2 P3

P4

Optimization and Scheduling Lookup for Energy and Performance

P
oo

r
E

ne
rg

y
E

ffi
ci

en
cy

G
re

at
 E

ne
rg

y
E

ffi
ci

en
cy

CPU226
CPU227
CPU228

Figure 6.6: Comparison of CPU levels of multiple servers relative to multiple servers.

The south-east corner of the plot is the ideal job placement as it maximizes perfor-

mance and minimizes energy consumption.

On the other hand, the intersection of the red lined marks the point where the max-

imum performance is reached that a customer is willing to pay for and, still, the

maximum allowable energy consumption. A server which meets the requirements for

this particular job and service level requirements will be in the bottom right quadrant

if we specify a minimum acceptable performance. Alternatively, a server will be in

the bottom left quadrant if we specify a maximum amount of performance for which

a customer is willing to pay for (i.e., more compute power comes at a higher cost).

The points P1, P2, P3 and P4 are all in proximity of the intersection of energy con-

sumption and performance specified by this example. The intersection is chosen for

illustrative purposes and represents real values in terms of CPU performance com-

92

bined with an energy requirement. We can see that P1 and P4 meet the energy

requirement, because they are below the horizontal line. P3 and P4 both meet the

performance requirement. However, only P4 meets the minimum performance and en-

ergy requirement. This means that CPU228 at P4 provides the desired minimum CPU

performance and, at the same time, uses less energy than the maximum allowable

amount. If, however, the customer is only willing to pay up to this level of perfor-

mance then P1 would be chosen on CPU228. Even though the points P1, P2, P3 and

P4 are in relative proximity to each other, which server and load is ultimately selected

depends on the customers’ criteria for selecting performance and energy consumption.

Poor Performance Great Performance

Desired Performance
andEnergy Consumption
Intersection

P1

P2

P3

Optimization and Scheduling Lookup for Energy and Performance

P
oo

r
E

ne
rg

y
E

ffi
ci

en
cy

G
re

at
 E

ne
rg

y
E

ffi
ci

en
cy

Copy226
Memory226
Copy227
Memory228
Copy228

Figure 6.7: Comparison memory and disk bandwidth levels of multiple servers rela-

tive to their energy consumption. The south-east corner of the plot is the ideal job

placement as it maximizes performance and minimizes energy consumption.

93

Figure 6.7 illustrates the different levels of performance and energy consumption

available on our servers. For this figure, we have chosen to combine memory and disk

operations as these two are often related. As in Figure 6.6 the red lines represent

the intersection of two desired service levels pertaining to performance and energy

consumption. The intersection of the red lines marks the point where the accept-

able number of disk I/O operations is performed while not exceeding the maximum

allowable energy consumption for this task. The points P1, P2 and P3 are all in

proximity of the intersection of energy consumption and performance for disk I/O.

The intersection is chosen for illustrative purposes and represents real values in terms

of I/O operations per second and data transfer requirements, all combined with an

energy requirement. We can see that P1 and P2 meet the energy requirement, be-

cause they are below the horizontal line. P3 meets the performance requirement if

we consider the vertical red line to mark the minimum acceptable performance. In

this case the customer would have to make one of two choices. One, abandoning the

energy cap requirement as P3 is above the maximum specified energy consumption.

Two, the customer can consider accepting less performance in order to stay below

the energy cap. In this case the closest points would become P1 and P2. With the

different interpretation of the vertical red line, now as the maximum performance a

customer is willing to pay for, the points P1 and P2. are available. P1 and P2 have

the same performance. Since P1 uses less energy than P2, our system would select

P1 as it is the better fit. Depending on the interpretation and presentation of the red

intersecting lines in terms of performance only, either the data center operator, the

customer, or a dynamic scheduling utility would be in a position where one of the

two criteria (i.e., performance or energy consumption) have to be compromised. If

energy consumption is a flexible criterion in this scenario, we could choose P3 as the

machine to run our disk I/O intensive job. Yet, if energy savings are more important

than performance we could now choose between either P1 and P2.

We can see from Figure 6.8 that for a given performance requirement (e.g., CPU,

disk or memory), we can identify multiple servers which satisfy both performance and

energy efficiency concerns. This figure contains data points for CPU, memory and

disk to illustrate the multitude of selections available. This figure demonstrates the

varied information regarding performance and energy consumption that is available

from even just a small number of servers. If needed, in a multi tenant scenario, an

application can be moved between any of the servers identified as satisfying the re-

94

quirements in performance, energy consumption or both. Furthermore, as the load

on these servers changes, some machines may be added, while others may be removed

from the pool of available machines for further allocations.

Poor Performance Great Performance

Optimization and Scheduling Lookup for Energy and Performance

P
oo

r
E

ne
rg

y
E

ffi
ci

en
cy

G
re

at
 E

ne
rg

y
E

ffi
ci

en
cy

CPU226
Copy226
Memory226
CPU227
Copy227
CPU228
Memory228
Copy228

Figure 6.8: Comparison of CPU, memory and disk bandwidth levels of multiple

servers. The south-east corner of the plot is the ideal job placement as it maximizes

performance and minimizes energy consumption.

With additional server types available, more measured data points would be avail-

able, consequently, the data between the two points is interpolated to provide an

estimate indication of resource and energy utilization at levels that falls between the

measured benchmark data points (e.g., energy consumption of 1.5 fully utilized CPUs

on Server 1 can only be estimated as data points only exist for 1 and 2 fully utilized

CPUs, not 1.5). Figure 6.8 shows the available servers and their underlying energy

and performance characteristics. Using this knowledge of how a server’s energy de-

95

mand will vary when resource usage changes, allows a scheduling system to determine

on which server a software application should run on based on the priority of the cri-

teria which are: performance of the dominant resource type and/or energy efficiency.

For example, an application that solely prioritizes performance in CPU would

pick the GENI server (if resources are still available), as we can see from Figure 6.1.

However, an application that deems the SAVI performance metric to be acceptable

and prioritizes energy efficiency would select SAVI servers. Accepting that these two

servers can function as extremes on their respective spectrum, we can further argue

that other server types provide measured data points between the SAVI and GENI

data points. This scenario allows scheduling decisions to act with more flexibility

and performs better regarding a best fit for performance and energy efficiency when

deciding which server to use for a given software application.

6.3 Machine Learning and Energy Consumption

Knowing the energy consumption of a software application, as shown in Section 6.2,

is a great position to be in. However, to achieve this and the ability to associate

energy consumption with the resource use of a piece of software is challenging. It

requires either monitoring access to the operating system (OS) running on a server,

or, as in our case, access to the energy consumption data of the server. Previously,

we demonstrated that we are able to identify the underlying resource type of several

software applications purely by investigating its energy consumption patterns. [19] To

classify software applications based on their energy consumption, we employ machine

learning techniques. Multiple machine learning types exist. For our experiments we

focused on two different types: Support Vector Machines (SVM) and Neural Net-

works (NN). This decision was based on the suitability and popularity of these two

methods at the current time.

Ultimately, NN was chosen over SVM. SVM relies, in its most naive form on data

that is separable. In other words, each SVM must be able to classify the data into

two distinct classes. Since we required multiple classes this required us to use multi-

ple passes since our SVM were not able to deal efficiently with the large number of

different classes simultaneously. Consequently, NN were selected, even though SVM,

96

NN and possibly other methods would theoretically yield the same accuracy.

There is a common path for pattern recognition which follows the structure laid

out in Figure 3.9. The first stage is preprocessing the data. This includes acquisition

of a signal, thresholding of the output and separating data useful for classification

from the noise (filtering).

The second step in this process is the feature extraction scheme, which is meant

to determine a feature vector from a regular vector. A feature is a distinctive or char-

acteristic measurement, transform, structural component extracted from a segment

of a pattern. Statistical characteristics and syntactic descriptions are the two major

subdivisions of the conventional feature extraction modalities. A good feature extrac-

tion scheme is meant to choose the features or information, which is most important

for the classification. The final stage is signal classification. This step in Figure 6.9

can be solved by a variety of approaches: linear analysis, nonlinear analysis, adaptive

algorithms, clustering and neural networks.

‘

This Section 6.3 presents a short review of mathematical methods employed in

our adaptive system for classification of a process’ resource utilization based on its

energy consumption pattern. We published a paper on these results the proceedings

of SEAMS 2015 [19].

The most important step for the classification task is extracting a suitable set

of features that has the capability to differentiate among different classes. Classes

are the different items or objects one wishes to differentiate between. In our case,

the classes are represented by the exact resource amount used when a given energy

consumption is measured (e.g., energy consumption X maps to a specific number of

CPUs being active, a memory intensive job, a network or disk I/O job). As discussed

in the introduction, statistical analysis is a way to generate such representations. The

method for feature extraction consists of decomposing the server’s energy and power

consumption data obtained while our experiments are run.

Then, the obtained coefficients are used to construct a matrix of dimension N×K,

where K is the number of data points and N is the number of coefficients for each

data point. The features (columns) are treated individually, dependent on their ca-

97

Figure 6.9: Classification System

pability to separate different classes. We refer to this capability as CT . Subsequently,

the detected features are ranked in descending order according to the value of CT .

We calculate the capability of features as follows. A and B refer to the two classes.

For each feature, we compute the means µa and µb, and the standard deviations σa

and σb. Then, the capability of the feature is calculated as described by Liu [84].

CT =
µa − µb√

(σ
2
a

na
) + (

σ2
b

nb
)

(6.1)

We use Formula 6.1 to assess the capability of a feature to separate different

classes, where na and nb are the number of samples in classes A and B, respectively.

Moreover, a threshold value is applied over the score of the features CT . The most

98

significant features are kept according to the applied threshold value.

The training and testing stages follow the feature extraction. These stages are

important for the accuracy of the overall system.

In the classification stage, we divided the data set into two equal-sized groups:

training and testing. The training group is used to build a cascading classifier. Con-

versely, We use the testing group to calculate the performance of the classifier after

the initial training phase. To optimize the number of features with the maximum

classification accuracy rate, the threshold value is dynamically changed and the clas-

sification is performed again using the new feature set. This process is repeated until

a classifier is found with the maximum performance and with the minimum number

of coefficients. We then use 5-fold cross validation to the optimized coefficients in

order to establish the validity of the classifier to avoid high bias or high variance (i.e.,

under-fitting or over-fitting the data). Figure 6.9 summarizes our method.

6.3.1 Conducting Experiments

Data is obtained from the PDU servicing five servers on a single rack. Our exper-

iments run and affect the energy consumption of only one server while the others

are kept idle in order to profile the energy usage pattern of each particular resource

usage. We control these five servers even to the degree where we can place processes

on particular cores of the CPU to ensure accurate resource allocation during each test.

Figure 6.10 illustrates the information that is obtained from the data center sys-

tem monitoring tools. The red line indicates the energy consumption of a single PDU

servicing five of our servers. Since one of these servers is used, while the other four

servers on the same power circuit are kept idle, the visible change in energy consump-

tion as we circulate through the tests represents the change produced by a single

server.

These data were previously investigated and labelled. The data set is selected due

to the various cases it includes. It is also used in other research which describes the

data center and measurement setup in greater detail [17]. The energy consumption

data are classified into Idle Process, 2 CPU, 4 CPU, 6 CPU, 8 CPU, 10 CPU, 12

99

Figure 6.10: Experimental data over a period of four days. We run benchmarks to

test 2 to 20 CPUs at full utilization for a fixed amount of time as well as our memory

usage benchmark. The experiment is run repeatedly to confirm consistency and to

confirm assumptions regarding measured energy consumption (e.g., the other servers

on the rack are not contributing to energy consumption changes).

CPU, 14 CPU, 16 CPU, 18 CPU, 20 CPU, Copy Process, Small Copy Process, and

Memory Volatile Process.

Once the data are cropped, statistical analysis methods are applied and the ob-

tained vectors are used to built the K ×N matrix. Then, a ranked list of features is

build based on the criteria used to assess the capability of every feature for separating

two labelled classes. Then, a dynamic threshold is applied to extract the most signif-

icant features. The energy consumption data decomposed into training and testing

data. The training data are used to build the cascade classifier, while the testing

data are used to calculate the classification accuracy rate. This method is repeated

until the algorithm reaches the best classification rate with the minimum number of

coefficients.

100

Table 6.1: Classification accuracy rates obtained through 5-fold cross-validation.
Cross-validation Idle Process 2 CPU 4 CPU 6 CPU 8 CPU 10 CPU 12 CPU 14 CPU 16 CPU 18 CPU 20 CPU Copy Process Copy Small Memory Volatile

50% no threshold 94.68 96.29 98.86 98.22 96.43 97.30 92.32 92.07 93.53 93.85 93.96 94.68 96.69 95.49

50% threshold 91.59 94.91 97.55 96.91 94.94 95.21 90.16 90.13 90.65 91.51 93.09 90.62 93.76 94.86

70% no threshold 91.07 96.25 98.00 97.40 96.16 96.27 92.5 92.44 92.3 92.99 94.21 93.77 96.2 95.39

70% threshold 90.55 95.21 97.22 96.7 95.22 95.13 91.43 92.29 90.71 91.52 93.15 91.19 93.8 94.71

80% no threshold 94.08 96.19 98.01 96.37 96.16 95.77 91.84 91.39 92.67 92.31 93.39 93.78 95.76 95.46

80% threshold 90.98 94.77 97.20 95.70 95.14 95.16 89.52 90.08 91.63 90.15 93.58 91.34 93.9 94.94

90% no threshold 91.37 96.96 97.35 96.29 94.8 94.93 92.35 93.22 92.31 92.84 93.79 93.72 95.68 95.47

90% threshold 89.16 95.52 96.92 96.04 94.25 94.84 91.3 93.25 91.43 90.78 93.02 91.49 93.77 95.32

6.3.2 Experimental Results and Discussion

This section provides a discussion of our experiments, classification method and find-

ings.

Our method can be described as follows. First, we extract statistical features to

the energy consumption data set. This operates on the raw, unmodified data. Fol-

lowing this we use the obtained information with the proposed method for feature

extraction. After suitable features have been identified by the algorithm, we proceed

to construct cascading NN and the classification accuracy rate is calculated. Figure

6.11 illustrates the performance of the cascade classifier for different classes used in

our setup.

To validate the results, the 5-fold cross validation method is applied at the opti-

mized threshold point. Classification accuracy rates are calculated using the obtained

coefficients from the applied threshold. The result of the cross validation is presented

in Table 6.1, which presents the cross-validation accuracy of each method per class.

We present two rows for each training/test split. The table presents the identification

accuracy in the cross-validation test phase for the labelled training set size. First we

present the data when there is no threshold change applied to the training phase. The

first row of the pair is the accuracy obtained in the testing phase for the associated

training set size with prior feature extraction but without dynamic threshold changes.

The second row represents the same type of data (accuracy in testing phase), except

this time the training phase was preceded by feature extraction using statistical anal-

ysis which modified the threshold for improved results.

The table shows that using more than 50% training data does not lead to in-

creased accuracy and thus is unnecessary. Increasing the training data to a size too

large beyond the optimal point leads to overfitting of the data and does not allow for

101

Figure 6.11: Classification accuracy rates for all classes corresponding to the number

of features with different thresholds.

any claims about the actual quality of the classifiers.

The proposed method proves a good capability to classify successfully between

different classes. The number of features decreases drastically with accepted classifi-

cation rates. A feature extraction method for finding the most significant features is

proposed and implemented to detect and classify energy usage patterns. The method

is based on a ranking the feature according to its capability to distinguish between

different classes. A Cascade classifier is constructed using 50% of data set and the

remaining 50% is used to calculate the classification rate. The classification accuracy

rate achieved by our method and is more than 90% accurate. For 14 different classes,

increasing the number of features resulted in a decrease in correct classification as

shown in Figure 6.11. The obtained results show the importance of the feature ex-

traction step in developing energy usage and resource utilization patterns.

102

6.3.3 Adaptive Energy Consumption

We provide a description of the proposed model and the role it takes within an adap-

tive runtime reference model. We also highlight future avenues of research.

6.3.4 Motivation for Adaptive Solutions

Modern enterprise data centers currently contribute between 1.5% and 2% to global

energy consumption and this figure is expected to increase even further in the fu-

ture [72, 75, 101]. As such, energy consumption in data centers is a top level concern

for the construction and operations of data centers. While the energy consumption

of individual servers is considerably less than that required for HVAC measures in a

data center, their effect, however, cannot be underestimated. Many research avenues

propose energy savings via improved scheduling decisions at the server level using

varying metrics.

Beloglazov et al. [13] consider resource utilization, network topologies and ther-

mal states of physical machines to effect VM consolidations. Similarly, migration of

services to the point of shutting down servers is investigated by Mazzucco and Mi-

trani [91].

We differ from these works by proposing process migration strategies at a finer

grained information level. Unlike these works, which aim to consolidate processes

on individual machines, we aim to find the best server for a process within the data

center. This ensures that the process runs without resource constraints while, at the

same time, minimizing energy usage.

6.3.5 Realizing Energy Adaptation in Data Centers

The ability to identify resource utilization of a single server accurately based on energy

consumption allows for dynamic scheduling decisions to be made. Once a particular

energy usage pattern is observed, our mechanism can identify the resource utilization

that generated this pattern. Consider that process P generates energy consumption

data E1 over a period of time. Through our classification model, we are able to iden-

103

tify this energy usage pattern as belonging to a particular class of resource utilization

U1.

Furthermore, by having profiling knowledge about other servers in the data center,

we are able to forecast the energy usage E2 of the same resource utilization U1. This

allows us to make decisions based on the energy consumption difference. If a process

is forecast to use less energy on another server while being given access to the same

resource provisioning, it should be moved to that server.

The more fine grained this profiling and forecasting knowledge is, the more advan-

tageous it will be for adaptive scheduling decisions. Conceptually, an MRAC model

approach, as depicted in Figure 3.4, would be appropriate. Existing reference models

are used to profile and predict process types and resource utilization to infer improved

scheduling policies. However, this requires a priori information about the process that

can potentially run on the server. This may or may not be possible. Therefore, we

propose to integrate our classification approach into an MIAC model, as depicted in

Figure 3.5, which continually identifies a new up-to-date reference model.

Using an MIAC model with our approach yields certain benefits. While the refer-

ence model is running to perform scheduling decisions, it can build and update new

reference models for a variety of processes.

Having profiled the process P , for example, an MIAC model can classify this

process and assign it to a certain resource usage group. Then this process can be

migrated to different servers to generate energy usage profiles dynamically for this

specific process on different server types. In this way, a knowledge base is dynamically

generated, which can be integrated into the MIAC model and subsequently used to

determine on which server any process of similar resource usage should run for im-

proved energy consumption.

6.3.6 MIAC Deployment Architecture

Considering Figure 3.5 our adaptive feature extraction and classification engine is

placed in the component labelled Proposed Model Class Identification. Input to this

104

component is proposed to take the form of energy usage data in the same format

as it was used for training our classifiers described earlier. Then, if this usage can

be attributed to a known class, a further comparison to the knowledge base occurs.

Here the model requests information about whether other servers have previously

been profiled for this type of process and if so did this process’ resource utilization

result in different energy usage patterns on different hardware. Using this knowledge,

the process is either migrated to another server with available hardware and, most

importantly, is expected to use less energy for this class of process.

Alternatively, if no such information exists, the process can be migrated au-

tonomously to other servers which fulfil the processes’ resource requirements to es-

tablish energy usage patterns dynamically. This approach would lead to the creation

of a process specific knowledge base encapsulating energy consumption and resource

utilization.

Most processes are not stable in their resource utilization and often have bursty

resource usage. Bursts are associated with a change in resource utilization (e.g., a

burst may manifest itself through increased CPU usage, or larger memory footprint

or changing network traffic). While such a burst occurs, our model will no longer

consider the process to be part of its original class. Once this bursty process is iden-

tified as belonging, even temporarily, to a different class, the model can determine

whether it should be migrated to guarantee energy efficient operations while satisfy-

ing resource guarantees.

6.4 Chapter Summary

In this chapter, we showned that we are able to identify servers for which the per-

formance and energy criteria meet a software job’s requirements. We demonstrated

that, with the help of our tool and data, one can chose the best machine on which

to run a particular software application. This is possible for CPU, memory and disk

I/O as demonstrated in Section 6.2.

Our work on machine learning helps us identify which type of application is run-

ning based purely on the underlying energy consumption. For this purpose, we tested

105

and identified machine learning methods and evaluated their accuracy for classifying

energy usage patterns on data obtained from the enterprise data center EDC2. The

accuracy of our approach is in excess of 90% for training set sizes using no more than

50% of the data.

Of the methods used, we determined via an experimental approach that feature

extraction prior to training improves accuracy in classification. The method for fea-

ture extraction chosen is statistical analysis. We make this choice due to the data’s

similarity to other domains where statistical analysis methods have been found to

perform best.

Finally, we can integrate our classification engine into the controller of an adaptive

reference model. Due to the nature of our highly dynamic classification approach, we

propose an MIAC based model to profile, identify and migrate individual processes

adaptively within the data center for maximal energy savings.

106

Chapter 7

Valuation and Discussion of

Results

This chapter discusses the findings obtained during the process of this research, in-

cluding the experiments and case studies along with their results presented in previous

chapters. We discuss selected implications of these findings as well as requisite context

to accrue energy savings when running software applications.

7.1 Case Studies

This section provides a discussion of the results from our case studies and experiments.

The experiments, results and findings are but one aspect of the contributions of this

dissertation. The other area of contributions falls into the area of software engineering,

and more precisely context management, smart systems and self-adaptive software.

The findings from our case studies can be used within these fields, in current and

future research, with the goal to reduce energy consumption in software.

In the following sections, we provide insights on what the results mean in terms

of feasibility, future research and overall impact.

7.1.1 PDU

One of the main take-aways from this research is that PDUs are indeed a viable entry

point to obtain energy consumption data of an individual server’s software processes.

This finding constitutes and important requirement for future the design of future

107

data centers and is a true contribution of this research.

A pivotal moment in this research that allowed us to proceed, was brought about

by the collaboration with the university’s data center operations staff. The staff

granted us access to their internal metrics and monitoring software. With this access,

we were able to see (nearly) live changes in energy consumption as our experiments

ran. After we established that PDUs in data centers were indeed accessible to us, our

case studies were designed to answer progressively complex research questions. The

PDU as a viable source for software energy consumption data is significant because

it is the one place that allows us, under current data center setups, to obtain energy

consumption data for entire servers. This setup is superior to using built-in sensors

as it is guaranteed to include all energy consumption. Conversely, built-in sensors

do not cover the entire server as not every component can be fitted with a sensor.

Moreover, the more sensors are used, the greater is the compounding effect of errors

and measurement tolerances. Thus, using built-in server instrumentation will not

provide a true overview of the energy consumption of the hardware.

Thus, not every component in a server is instrumented. The benefit of our approach

and arrangement is that every data center has PDUs connected to their server racks.

Consequently, we view the PDU as a readily available data source that provides a

holistic view of the energy consumption of a server. As an extension, we can scale

this to multiple PDUs not just in one data center, but in a distributed data center.

7.1.2 Initial Steps

One of the first questions that had to be answered was whether running software

applications would produce changes in energy consumption that was measurable at

the PDU level.

One of the first case studies we designed focussed on the identification and analy-

sis of the main causes of energy consumption in servers, laptops, desktops and mobile

devices. Prior research and work conducted in the Rigi lab as part indicated that

this might be a promising avenue and lead to our further experiments in the UVic

EDC2 data center. More specifically, we were interested in demonstrating if energy

consumption profiles could be tied to resource usage of software applications when

108

using PDU power measures as a data source.

Once we had established that the PDU would provide usable data for us, we re-

fined our experiments. Using the PDU to demonstrate that different resource usage

of software applications produces measurable differences in energy consumption is

another contribution of this research. Illustrating this, among others, are Figure 5.10

and Figure 5.12. These two figures demonstrate clearly that the effects of hardware

usage on energy consumption are measurable and visible. This is significant, because

it allowed us to progress in our research further and not only measure the energy

consumption of different software applications, but also attempt underlying system

modifications aimed at producing observable effects in performance and energy con-

sumption. More specifically, once we knew that we could measure how much energy a

software application requires to run, we could attempt to alter the software to achieve

better performance and/or better energy consumption patterns. In some cases, this

can be achieved successfully with minor modifications; in other cases, it requires care-

ful analysis of the underlying software to produce effective changes that do not alter

the overall side effects of the software application. As such, this avenue is promising

as a direction of future research. Our approach of relatively high level system call

redirection and modification is also in line with related works that discourages lower

level modifications at the assembly level or binary instruction level. At the same time,

our approach, however, is at a lower level than the often attempted modifications at

the software development level.

7.1.3 Focussing on Finer Level Control

Once we established that we were able to not only produce and measure different en-

ergy profiles, we needed to automate the process—automation is key for scalability.

We developed scripts and software that would collect and analyse the energy con-

sumption data. This analysis stems from our own machine learning approach using

Neural Networks. We settled on Neural Networks after also experimenting with Sup-

port Vector Machines. However, Neural Networks were easier to implement, produced

better results and were more suitable to the problem of classifying multiple categories.

With this approach, we are able to classify energy usage patterns into categories of

109

resource usage. In other words, we developed a system that is capable of correlating

energy consumption with resource usage. Given a pattern of energy consumption, we

can now attribute this energy consumption to a specific resource (e.g., memory, disk,

CPU or network). Automating this, now allows us to make deployment decisions.

From energy consumption we identify resource usage. From resource usage, we can

then identify other machines that have “better” energy profiles which represent the

server where a software application “should” run for optimal energy and performance

results.

We also explored individual resource usages further at a more fine grained level.

We investigated changes in energy consumption down to specific CPUs and proces-

sor cores. We also designed a case study to determine whether modifications at the

system call level as well as intelligent restructuring of resource requests at run time

can impact the overall energy consumption of digital ecosystems. To achieve this, we

modified applications and system calls to affect energy consumption and determine

which changes yield the greatest improvements. One such case study, where we alter

software in order to observe and measure changes in energy consumption, is show-

cased in Figure 5.8. The experiment depicted in this figure demonstrates that there

are differences not only in the type of hardware resource a software application is us-

ing, but also in the way that a particular resource is accessed. This figure shows that

system call redirection to more energy efficient system calls can yield performance

improvements.

We can take this line of research one step further and consider the conclusions

we can draw from Figure 6.8. What stands out in this figure is that there is a clear

difference in the amount of energy consumed for different hardware resources. Not

only that, but the differences between machines at different resource utilization lev-

els stand out. Consequently, it becomes evident that this information can be used

to automate scheduling and deployment decisions based on energy and performance

requirements. Moreover, the figure also clearly highlights that the largest contributor

to software energy consumption is CPU. This allows us to direct optimization efforts

towards the area in software which yields the largest energy consumption gains. Con-

trary to our approach, another important consideration is that usually in modelling

data centers identical machines are simplified to use identical amounts of energy. We

have shown that this is perhaps an over-simplification, though, since our work is new,

110

further research in this domain is needed.

Ultimately, it is important to note that none of these findings would have been

possible without the ability to use the PDU as a source of energy consumption data

for the entire server.

7.2 Avenues for Future Research

This section provides guidelines and recommendations to future researchers interested

in the intersection of green computing and software engineering. It is intended to be

a reflection of the lessons learned during the process of going through this research

program. Both the high-level and low-level insights obtained pursuing this research

topic lend themselves to recommendations for future generations, who may undertake

similar research projects.

7.2.1 Risks and Progress in PhD Studies

When we began this project, we knew very little about the feasibility of this research.

The primary concern was whether we would be able to obtain measurements to sup-

port the development of our experiments. While this in and of itself is a somewhat

frightening prospect, this is an intrinsic part of research and is associated with risks

involved concluding the research project. This factor is to the fact that research is

supposed to be novel and, thus, involves significant unknowns.

One of these unknowns was the availability of data points. At the beginning, it

became clear that it is incredibly important to ensure that both the sampling rate

and precision of available measurements in data centers matches the requirements

we had to make meaningful statements about green computing and software appli-

cations. For us, we were limited to one data point every minute by the design of the

data center monitoring setup. This, in turn, informed our experimental design and

resulted in experimental setups that generated enough data points. More precisely,

it also meant that our experiments could not run for less than one minute. In our

setup, we generally had experiments that ran for at least half an hour to generate

at least 30 data point. One potential problem with this arrangement is that we are

111

dependant on external groups for our success. Continued close cooperation with the

University’s data center operations team was required to obtain measurements on

an ongoing basis. This presented a risk to this research as their support could have

been withdrawn due to factors outside our control at any moment. It is important to

evaluate carefully whether such risks are worth it prior to starting the experiments

and have contingency plans ready.

Equally important is a clear understanding of what defines the successful comple-

tion of the data collection and experimental phases. To achieve this, it is important

to define a measure of success prior to beginning the experiments. This measure of

success must factor into the associated risks (e.g., loss of data sources). Collecting

as much data as possible and as quickly as possible seemed to be the best approach

considering the external risk of losing access to the data reporting tools.

Another critical recommendation is to branch out to other fields early in the

research project. It is important to not work in isolation, both in terms of collab-

orators and in terms of exposure to ideas. Existing ideas may help advance the

project to otherwise unattainable heights by applying lessons and advances to your

own research. For example, this research drew heavily from the software engineer-

ing for self-adaptive systems (SEAMS) community. It is advantageous to adapt and

acknowledge the lessons and contributions from other groups, with modifications, to

drive progress your own research program—no need to reinvent the wheel.

Finally, a more general recommendation is to be aware of the effects of your exper-

iments. One interesting questions throughout this research endeavour was to consider

how much energy each experiment requires and how much energy we would be able

to save eventually by our findings in the future. It is fun to think about these almost

paradoxical stipulations.

7.3 Summary

In this section, we revisited some of the findings from earlier chapters and put them

into perspective in terms of the overall goals of this dissertation—reduce energy con-

sumption while increasing or maintaining performance. Step by step, our research

112

progressed into more intricate details and fine grained observations and system mod-

ifications. Along with these detailed investigations we developed analysis tools that

helped us classify the changes we were observing.

At the PDU level, we are able to observe these fine grained changes to software and

their effects on energy consumption. This path of using measurements at the PDU

level along with the support software we developed is an interesting and worthwhile

avenue of green computing research.

113

Chapter 8

Conclusions and Future Research

This chapter summarizes our case study findings and outlines avenues for future

research.

8.1 Summary

In the course of this research, we conducted several experiments and developed nu-

merous software applications in support of this research and other research projects

that coincided with the main thrust of this line of work [18,64,87].

Over time, the dissertation’s topic evolved significantly. Starting with studying

related works and conducting a literature survey (cf. Chapter 3), we were able to

situate our research approach among existing efforts.

The two fundamental fingds are that (1) energy consumption patterns can be used

to identify software applications running on a server in a data center, and (2) data

from PDUs can be used to do this type of analysis and pattern recognition [17]. Using

these two aspects of our work as the building blocks for the remainder of our research,

we were able to investigate the energy consumption of software and their impact on

hardware resource usage. To facilitate this line of work, we needed to develop ana-

lytics tools that collect, sanitize, process and analyse data. In turn, we developed a

machine learning approach that works in conjunction with our profiling tools [19].

Our work was possible because we had access to energy consumption metrics of

114

servers in a real data centre. In the future, we would like to have the ability to mea-

sure energy consumption in desktops and smartphones more accurately, albeit with

more effort and resources—both financially and in terms of hardware. Within the

data center, we had control over the exact machine instruction and system call that

is generated from any given piece of software (i.e., through the compiler or redirection

and modification of system calls). This allowed us to create baselines against which

we were able to measure the impact of software changes as well as hardware changes

(cf. Chapter 5).

Another contribution is to provide the ability to actually profile and benchmark

the energy efficiency of software through the use of statistical models, frameworks

and actual measurements that are unique to each target environment, yet automated

for any number of devices. We showcase the process of utilizing case studies and

data analytics for use in our models in Chapters 4 and 5. Chapter 6 highlights, using

our data, the type of scheduling decisions one can make within our system by using

performance and energy efficiency criteria.

The software framework we used to profile and analyse servers in our data cen-

ter is another contribution which integrates existing principles with new ones into a

comprehensive unit to allow accurate information on the energy efficiency of software

on a given hardware.

We illustrate the applicability of our research findings with two scenarios. Assume

that the operator of a large data centre wishes to install new servers with several vi-

able models on the market. The main considerations are performance and energy

consumption (both direct and indirect). With the help of our profiling framework,

one can answer the question of direct energy consumption relative to performance.

Our software framework can be installed on the new hardware and it begins to per-

form software benchmarks designed to establish the energy efficiency and performance

metrics of the new hardware. Energy consumption data will be fed into models corre-

lating function calls, compile time optimizations and runtime performance to provide

a comprehensive view on the energy consumption properties of the given hardware

dependant on the type of software that is run. Using this framework, the operator will

be able to decide what hardware is effective in terms of energy consumption and per-

formance for a given workload. These insights can guide purchasing and scheduling

115

decisions. The software framework can also continually monitor the energy consump-

tion and efficiency of the software to detect potential imminent failures, malware

infections or other anomalies through the use of the energy consumption models.

While the exact categorization of energy consumption anomalies was not part of this

research, we did detect anomalies. GENI rack server 04 was approximately 20% more

energy efficient than the other two GENI rack servers despite being nominally iden-

tical.

Performing this type of analysis with our benchmarking tool is possible by using

the software excerpts provided in the appendix of this dissertation as well as through

customizations of the architecture of the scripts showcased through this work in ta-

bles and figures. The resulting framework and research findings will be of interest to

anyone who can be incentivised to reduce energy consumption of software.

Who will potentially benefit from the results of our work? First of all data cen-

tres need to consider the implications brought forward here further when considering

the type of hardware they are to buy (i.e., energy efficiency must not mean lower

performance in the traditional sense [17]). Moreover, information of the proposed

framework can be made available to clients of the data centre, who in turn can be

incentivised to create and run energy efficient software on energy efficient hardware.

Third, software developers for mobile devices care already a great deal about energy

efficiency, but little actual hard data are available and used to make decisions when

developing software. With our framework, the developer is relieved from a large

portion of the tasks needed for energy optimization by supporting the redirection

of system calls to more energy efficient servers. Lastly, through this framework and

the knowledge base contained within it, the applications themselves can apply dy-

namic decision making models for self-optimization in regard to deployment decisions.

8.2 Contributions

We are pleased to report that the research questions posed in Chapter 1 have been

answered.

R1:

116

What are the key resource usage factors of software applications that

contribute to the energy consumption profile of interconnected IoT

applications?

Contributions:

• Automated method for identifying a server’s energy consumption per

resource type and load.

• Energy consumption profiling tool for a data centre.

This was achieved and demonstrated in our publications [17, 19] and described in

Chapters 5 and 6. We have used machine learning to identify a server’s energy

consumption per resource type and load automatically as part of our energy profiling

tool. With this tool, we are also able to identify the key resource usage factors of

software applications—namely the CPU.

R2:

What is the degree to which high-level modifications at the appli-

cation level, in terms of resource utilization and service deployment,

can be utilized to optimize the overall energy consumption of the

application’s digital ecosystem?

Contributions:

• Application specific, automated and dynamic software modification

to reduce energy consumption.

• Dynamic scheduling solution for software within data centres.

• Identification of potential energy savings specific to individual appli-

cations.

We were able to identify several energy saving approaches for specific applica-

tions. For CPU-intensive applications, we were able to show that smart allocation

of resources must match the software’s capabilities (e.g., allocate CPUs according

to multi-threading requirements). Specifically, we make the case that increasing the

number of threads or CPUs for an application must be coordinated to prevent a

deterioration in performance.

R3:

117

Does dynamic redirection of specific system calls and resource pro-

visioning requests lead to energy optimization while not negatively

impacting performance (i.e., either maintaining the same performance

level or improving the performance level)?

Contributions:

• Automatic and dynamic changes to application level interactions

with the underlying system to optimize energy consumption of soft-

ware applications.

We were able to answer this research question through system call modifications for

certain applications. Our system call modifications for disk I/O-heavy operations

resulted in performance increases as well as energy usage decreases.

R4:

How can we obtain, store and manage contextual information of soft-

ware applications and their digital ecosystem?

Contributions:

• A contextual model to aggregate, store and analyze energy data

within a new framework for data centres with the goal of improv-

ing energy consumption of software.

We have introduced our model to collect, store, analyse and effect system change

with data. Our proposed model is based on dynamic reference models which cover

similar problem domains. The distinction of our model is that it is applied to energy

consumption in data centers for software energy consumption.

R5:

To what extent is dynamic runtime modification of resource allocation

manageable in a self-adaptive framework using self-adaptive models

and control theory approaches?

Contributions:

• Identification of efficacy of current approaches taken by this disser-

tation.

118

• Identification of promising future avenues of research.

Dynamic runtime modification of resources is automatable, measureable and analysable.

We have shown this in our research. However, the extent to which this can be applied

to resource allocation and software deployment decisions at a large scale remains an

open question. We were only able to apply our model at the small scale setup in the

UVic’s EDC2 data center where we controlled two server racks.

8.3 Future Research

Great research produces more questions than it answers. While answering and ad-

dressing several research questions, our research lead to the identification of further

challenges and open problems.

One open problem is to deploy our profiling software at a much larger scale. For

example, at multiple racks in the data center. Another open problem related to this

one is the improvement of our scheduling component, the component which identifies

the hardware, where a job should run after its initial profiling has been completed.

This would require more investigation into improving our models and the interaction

with existing scheduling research.

Machine learning approaches can be improved by tuning of our existing approach.

This type of future work can be geared toward improving the classification rate of

software jobs based purely on their energy consumption.

Another interesting future research avenue is to automate, at scale, the deploy-

ment of software to the correct server based on policies which interface with the

scheduling models. Ultimately, the more distinct components are brought together

the more usable and measurable the effects become. Our existing framework is de-

signed in such a way as to easily allow its integration or consumption with other

frameworks.

Finally, it is important to mention that there is more work to be done in the

realm of distributed applications. Our work, as it is, applies to the lower levels of

the distributed software scheduling and deployment hierarchy. However, it might be

119

worthwhile to investigate how data obtained from the level at which we operate, can

influence and benefit smart deployment engines of distributed digital ecosystems.

120

Appendix A

Benchmark Sample Code

A.1 Sample Code to Copy File with fputs/fgets

#include <stdio.h>

#include <stdlib.h>

int main()

{

char ch;

FILE *source , *target;

char source_file [] = "in.txt";

char target_file [] = "out.txt";

source = fopen(source_file , "r");

if(source == NULL)

{

printf("File not found %s...\n", source_file);

printf("Press any key to exit ...\n");

exit(EXIT_FAILURE);

}

target = fopen(target_file , "w");

if(target == NULL)

{

fclose(source);

printf("Cannot open file for writing %s...\n", target_file);

printf("Press any key to exit ...\n");

exit(EXIT_FAILURE);

}

while((ch = fgetc(source)) != EOF)

fputc(ch, target);

printf("File copied successfully .\n");

121

fclose(source);

fclose(target);

return 0;

}

122

A.2 Sample Code to Copy File with fputs/fgets

\lstset{language=C,

basicstyle =\ ttfamily\scriptsize ,

keywordstyle =\color{blue}\ttfamily ,

stringstyle =\color{red}\ttfamily ,

commentstyle =\color{green}\ttfamily ,

breaklines=true

}

\begin{lstlisting}

#include <stdio.h>

#include <stdlib.h>

int main()

{

char ch;

FILE *source , *target;

char source_file [] = "in.txt";

char target_file [] = "out.txt";

source = fopen(source_file , "r");

if(source == NULL)

{

printf("File not found %s...\n", source_file);

printf("Press any key to exit ...\n");

exit(EXIT_FAILURE);

}

target = fopen(target_file , "w");

if(target == NULL)

{

fclose(source);

printf("Cannot open file for writing %s...\n", target_file);

printf("Press any key to exit ...\n");

exit(EXIT_FAILURE);

}

char line [80];

int SIZE = 80;

while((ch = fgets(line , SIZE -1, source)) != NULL) {

line[SIZE -1]=’\0’;

fputs(line , target);

}

printf("File copied successfully .\n");

fclose(source);

fclose(target);

return 0;

}

123

A.3 Sample Code Used to Copy File with read-

/write Large Buffer

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define READ_NUM 20000

int main()

{

char ch;

FILE *source , *target;

char source_file [] = "in.txt";

char target_file [] = "out.txt";

source = fopen(source_file , "rb");

if(source == NULL)

{

printf("File not found %s...\n", source_file);

printf("Press any key to exit ...\n");

exit(EXIT_FAILURE);

}

int f_in = fileno(source);

target = fopen(target_file , "wb");

if(target == NULL)

{

fclose(source);

printf("Cannot open file for writing %s...\n", target_file);

printf("Press any key to exit ...\n");

exit(EXIT_FAILURE);

}

int f_out = fileno(target);

char line [READ_NUM +1];

int SIZE = READ_NUM;

int n;

while((n = read(f_in , line , SIZE)) != 0) {

write(f_out , line , n);

}

printf("File copied successfully .\n");

fclose(source);

fclose(target);

return 0;

124

}

125

A.4 Sample Code Used to Copy File with read-

/write Small Buffer

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define READ_NUM 8000

int main()

{

char ch;

FILE *source , *target;

char source_file [] = "in.txt";

char target_file [] = "out.txt";

source = fopen(source_file , "rb");

if(source == NULL)

{

printf("File not found %s...\n", source_file);

printf("Press any key to exit ...\n");

exit(EXIT_FAILURE);

}

int f_in = fileno(source);

target = fopen(target_file , "wb");

if(target == NULL)

{

fclose(source);

printf("Cannot open file for writing %s...\n", target_file);

printf("Press any key to exit ...\n");

exit(EXIT_FAILURE);

}

int f_out = fileno(target);

char line [READ_NUM +1];

int SIZE = READ_NUM;

int n;

while((n = read(f_in , line , SIZE)) != 0) {

write(f_out , line , n);

}

printf("File copied successfully .\n");

fclose(source);

fclose(target);

return 0;

}

126

A.5 Script to Control CPU and Memory Bench-

marks

#needed for logging

import inspect

import logging

#needed for starting subprocesses

import subprocess

#needed to start and stop process at correct times

import time

#needed for making a call graph

from pycallgraph import PyCallGraph

from pycallgraph.output import GraphvizOutput

SECOND = 1

MINUTE = SECOND * 0

TEST_TIME = 1 # Minute

def function_logger(file_level , console_level=None):

function_name = inspect.stack() [1][3]

logger = logging.getLogger(function_name)

logger.setLevel(logging.DEBUG) #By default , logs all messages

if console_level != None:

ch = logging.StreamHandler () #StreamHandler logs to console

ch.setLevel(console_level)

ch_format = logging.Formatter(’%(asctime)s - %(message)s’)

ch.setFormatter(ch_format)

logger.addHandler(ch)

fh = logging.FileHandler("{0}. log".format(function_name))

fh.setLevel(file_level)

fh_format = logging.Formatter(’%(asctime)s - %(lineno)d - %(levelname)-8s - %(

message)s’)

fh.setFormatter(fh_format)

logger.addHandler(fh)

return logger

def f1():

f1_logger = function_logger(logging.DEBUG , logging.ERROR)

f1_logger.debug(’debug message ’)

f1_logger.info(’info message andi’)

f1_logger.warn(’warn message ’)

f1_logger.error(’error message ’)

f1_logger.critical(’critical message ’)

127

def f2():

f2_logger = function_logger(logging.WARNING)

f2_logger.debug(’debug message ’)

f2_logger.info(’info message some info’)

f2_logger.warn(’warn message ’)

f2_logger.error(’error message ’)

f2_logger.critical(’critical message ’)

def f_idle(duration):

""" duration in minutes """

f_idle_logger = function_logger(logging.DEBUG , logging.ERROR)

f_idle_logger.info(’STARTING idle process ’)

process = subprocess.Popen (["./a.out "])

time.sleep(MINUTE * duration)

process.kill()

f_idle_logger.info(’FINISHED idle process ’)

def f_cpu(duration , cpus):

f_cpu_logger = function_logger(logging.DEBUG , logging.ERROR)

f_cpu_logger.info(’STARTING ’+str(cpus)+’CPUs process ’)

shell_script = "./test_"+str(cpus)+"_cpus.sh"

process = subprocess.Popen([shell_script])

time.sleep(MINUTE * duration)

process.kill()

subprocess.call([’killall ’, ’sysbench ’])

f_cpu_logger.info(’FINISHED ’+str(cpus)+’CPUs process ’)

def f_cp_copy(duration):

""" copies a file with fgets """

f_cp_logger = function_logger(logging.DEBUG , logging.ERROR)

f_cp_logger.info(’STARTING copy process ’ + str(duration) + ’minutes ’)

process = subprocess.Popen(["./copy.sh"])

time.sleep(MINUTE * duration)

f_cp_logger.info(’ATTEMPTING TO FINISH copy process ’)

process.kill()

f_cp_logger.info(’FINISHED copy process ’)

f_cp_logger.info(’CLEANING UP copy process ’)

process = subprocess.call(["./ clean.sh"])

def f_cp_small_copy(duration):

""" copies a file with fgets """

f_cps_logger = function_logger(logging.DEBUG , logging.ERROR)

f_cps_logger.info(’STARTING copy process ’ + str(duration) + ’minutes ’)

process = subprocess.Popen(["./ copy_small.sh"])

time.sleep(MINUTE * duration)

f_cps_logger.info(’ATTEMPTING TO FINISH copy process ’)

process.kill()

128

f_cps_logger.info(’FINISHED copy process ’)

f_cps_logger.info(’CLEANING UP copy process ’)

process = subprocess.call(["./ clean_small.sh"])

def f_mem_volatile(duration):

""" copies a file with fgets """

f_memv_logger = function_logger(logging.DEBUG , logging.ERROR)

f_memv_logger.info(’STARTING memv process ’ + str(duration) + ’minutes ’)

process = subprocess.Popen(["./a.out"])

time.sleep(MINUTE * duration)

f_memv_logger.info(’ATTEMPTING TO FINISH memv process ’)

process.kill()

f_memv_logger.info(’FINISHED memv process ’)

def main():

f_main_logger = function_logger(logging.DEBUG , logging.ERROR)

f_main_logger.info(’STARTING A NEW TEST SUITE ’)

f_main_logger.info(’STARTING f1’)

f1()

f_main_logger.info(’Finished f1’)

f_main_logger.info(’STARTING f2’)

f2()

#IDLE

f_main_logger.info(’STARTING idle process ’)

f_idle (10)

f_main_logger.info(’FINSIHED idle process ’)

#CPU4

duration = 60

max_cpu = 20 + 1 # cpus + 1 for range ()

for i in range(2, max_cpu , 2):

f_main_logger.info(’STARTING ’+str(i)+’CPU’)

f_cpu(duration , i)

f_main_logger.info(’FINISHED ’+str(i)+’CPU’)

#IDLE for an hour

f_main_logger.info(’STARTING idle process ’)

f_idle (20)

f_main_logger.info(’FINSIHED idle process ’)

#f_idle_logger.info(’STARTING idle process ’)

#COPY

cp to copy

f_main_logger.info(’STARTING copy process ’)

f_cp_copy (20)

f_main_logger.info(’FINISHED copy process ’)

cp to copy

f_main_logger.info(’STARTING copy process ’)

f_cp_copy (20)

f_main_logger.info(’FINISHED copy process ’)

cp to copy

f_main_logger.info(’STARTING copy process ’)

f_cp_copy (20)

f_main_logger.info(’FINISHED copy process ’)

129

#IDLE

#IDLE

f_main_logger.info(’STARTING idle process ’)

f_idle (20)

f_main_logger.info(’FINSIHED idle process ’)

#COPY many small files

cp -r to copy

f_main_logger.info(’STARTING copy_small process ’)

f_cp_copy (60)

f_main_logger.info(’FINISHED copy_small process ’)

#IDLE

f_main_logger.info(’STARTING mem_volatile process ’)

f_mem_volatile (60)

f_main_logger.info(’FINISHED mem_volatile process ’)

logging.shutdown ()

if __name__ == "__main__" :

MAKE_GRAPH = True

graphviz = GraphvizOutput ()

graphviz.output_file = "callgraph.png"

if MAKE_GRAPH :

with PyCallGraph(output=graphviz):

main()

else:

main()

}

130

A.6 Script to Control CPU

#!/bin/bash

while :

do

echo "starting 4 CPU test"

taskset -c 0,1,2,3 sysbench --test=cpu --num -threads =4 --cpu -max -prime =9000000

run; #should be 1 zero less to complete before time is up

sleep 1

done

}

131

A.7 Primitive Code for Memory Testing

int main() {

long size = 2294967296;

int *a = malloc ((sizeof(int))*size);

long i;

int x = 2;

while (1) {

x += 1;

for (i = 0; i < 1000; i++) {

a[i] = x+(int)i;

}

}

}

132

A.8 Primitive Code for Memory Testing

#include <unistd.h>

int main() {

long size = 2294967296;

int **a = malloc(sizeof(int)*size);

long i;

int x = 2;

while (1) {

sleep (2);

}

}

133

A.9 Second Script for Memory Testing

All other CPU benchmarks differ in the number of allowed cores and threads only.

#!/bin/bash

echo date

echo "starting memory test"

for i in {1..5}

do

stress --vm 1 --vm-bytes 1G --vm-keep --timeout 290s

sleep 10

echo "done memory test"

done

sleep 300

for i in {1..5}

do

stress --vm 1 --vm-bytes 5G --vm-keep --timeout 290s

sleep 10

echo "done memory test"

done

sleep 300

}

134

Bibliography

[1] Abts, D., Marty, M. R., Wells, P. M., Klausler, P., and Liu, H.

Energy proportional datacenter networks. ACM SIGARCH Computer Archi-

tecture News 38, 3 (2010), 338–347.

[2] Aggarwal, K., Zhang, C., Campbell, J. C., Hindle, A., and Strou-

lia, E. The power of system call traces: Predicting the software energy con-

sumption impact of changes. In Proceedings of the 24th Conference of the Center

for Advanced Studies on Collaborative Research (CASCON 2014) (2014), ACM,

pp. 219–233.

[3] Aksanli, B. Energy and Cost Efficient Data Centers. PhD thesis, University

of California, San Diego (UCSD), California, 2015.

[4] Aksanli, B., Venkatesh, J., Zhang, L., and Rosing, T. Utilizing green

energy prediction to schedule mixed batch and service jobs in data centers.

ACM SIGOPS Operating Systems Review 45, 3 (2012), 53–57.

[5] Amin-Naseri, M. R., and Soroush, A. R. Combined use of unsupervised

and supervised learning for daily peak load forecasting. Energy Conversion and

Management 49, 6 (2008), 1302–1308.

[6] Ardagna, D., Ghezzi, C., and Mirandola, R. Rethinking the use of

models in software architecture. In Quality of Software Architectures. Models

and Architectures. Springer, 2008, pp. 1–27.

[7] Aßmann, U., Götz, S., Jézéquel, J.-M., Morin, B., and Trapp, M.

A reference architecture and roadmap for Models@run.time systems. In Mod-

els@run.time, LNCS 8378. Springer, 2014, pp. 1–18.

135

[8] Balakrishnan, G., Reps, T., Melski, D., and Teitelbaum, T. WYS-

INWYX: What you see is not what you execute. In Verified Software: Theories,

Tools, Experiments. Springer, 2008, pp. 202–213.

[9] Balasubramanian, N., Balasubramanian, A., and Venkataramani,

A. Energy consumption in mobile phones: A measurement study and impli-

cations for network applications. In Proceedings of the 9th ACM SIGCOMM

Conference on Internet Measurement Conference (IMC) (2009), ACM, pp. 280–

293.

[10] Baresi, L., and Pasquale, L. Adaptive goals for self-adaptive service com-

positions. In Proceedings of the IEEE International Conference on Web Services

(ICWS 2010) (2010), IEEE, pp. 353–360.

[11] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,

A., Neugebauer, R., Pratt, I., and Warfield, A. Xen and the art of

virtualization. ACM SIGOPS Operating Systems Review 37, 5 (2003), 164–177.

[12] Barroso, L. A., and Hölzle, U. The case for energy-proportional comput-

ing. IEEE Computer 40, 12 (2007), 33–37.

[13] Beloglazov, A., and Buyya, R. Energy efficient resource management

in virtualized cloud data centers. In Proceedings of the 10th IEEE/ACM In-

ternational Conference on Cluster, Cloud and Grid Computing (CCGrid 2010)

(2010), IEEE, pp. 826–831.

[14] Beloglazov, A., and Buyya, R. Optimal online deterministic algorithms

and adaptive heuristics for energy and performance efficient dynamic consolida-

tion of virtual machines in cloud data centers. Concurrency and Computation:

Practice and Experience 24, 13 (2012), 1397–1420.

[15] Bencomo, N., France, R., Cheng, B. H. C., and Aßmann, U.

Models@run.time—Foundations, Applications and Roadmaps. LNCS 8378.

Springer, 2014.

[16] Bergen, A., Coady, Y., and McGeer, R. Client bandwidth: The for-

gotten metric of online storage providers. In Proceedings of the IEEE Pa-

cific Rim Conference onCommunications, Computers and Signal Processing

(PacRim 2011) (2011), IEEE, pp. 543–548.

136

[17] Bergen, A., Desmarais, R., Ganti, S., and Stege, U. Towards software-

adaptive green computing based on server power consumption. In Proceedings of

the 3rd International Workshop on Green and Sustainable Software (GREENS

2014) (2014), ACM, pp. 9–16.

[18] Bergen, A., Taherimakhsousi, N., Jain, P., Castañeda, L., and

Müller, H. A. Dynamic context extraction in personal communication ap-

plications. In Proceedings of the 23rd Conference of the Center for Advanced

Studies on Collaborative Research (CASCON 2013) (2013), ACM, pp. 261–273.

[19] Bergen, A., Taherimakhsousi, N., and Müller, H. A. Adaptive man-

agement of energy consumption using adaptive runtime models. In Proceedings

of the 10th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS 2015) (2015), IEEE, pp. 120–126.

[20] Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H.,

Dang, M. Q., and Pentikousis, K. Energy-efficient cloud computing. The

Computer Journal 53, 7 (2010), 1045–1051.

[21] Berral, J. L., Goiri, Í., Nou, R., Julià, F., Guitart, J., Gavaldà,

R., and Torres, J. Towards energy-aware scheduling in data centers using

machine learning. In Proceedings of the 1st International Conference on Energy-

Efficient Computing and Networking (2010), ACM, pp. 215–224.

[22] Bobroff, N., Kochut, A., and Beaty, K. Dynamic placement of virtual

machines for managing sla violations. In Proceedings of the 10th IFIP/IEEE In-

ternational Symposium on Integrated Network Management (IM 2007) (2007),

IEEE, pp. 119–128.

[23] Bohra, A. E., and Chaudhary, V. Vmeter: Power modelling for virtualized

clouds. In Proceedings of the IEEE International Symposium on Parallel &

Distributed Processing, Workshops and PhD Forum (IPDPSW 2010) (2010),

IEEE, pp. 1–8.

[24] Brun, Y., Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H.,

Litoiu, M., Müller, H., Pezzè, M., and Shaw, M. Engineering Self-

Adaptive Systems Through Feedback Loops. In Software Engineering for Self-

Adaptive Systems. Springer, 2009, pp. 48–70.

137

[25] Bruneo, D., Longo, F., Ghosh, R., Scarpa, M., Puliafito, A., and

Trivedi, K. S. Analytical modeling of reactive autonomic management tech-

niques in iaas clouds. In Proceedings of the IEEE 8th International Conference

on Cloud Computing (CLOUD 2015) (2015), IEEE, pp. 797–804.

[26] Bunse, C., Höpfner, H., Roychoudhury, S., and Mansour, E. Choos-

ing the ”best” sorting algorithm for optimal energy consumption. In Proceed-

ings of the 4th International Conference on Software and Data Technologies

(ICSOFT 2009) (2009), pp. 199–206.

[27] Buyya, R., Beloglazov, A., and Abawajy, J. Energy-efficient man-

agement of data center resources for cloud computing: A vision, architectural

elements, and open challenges. arXiv preprint arXiv:1006.0308 (2010).

[28] Buyya, R., Ranjan, R., and Calheiros, R. N. Modeling and simulation of

scalable cloud computing environments and the CloudSim toolkit: Challenges

and opportunities. In Proceedings of the ACM/IEEE International Conference

on High Performance Computing & Simulation (HPCS 2009) (2009), IEEE,

pp. 1–11.

[29] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A.,

and Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms.

Software: Practice and Experience 41, 1 (2011), 23–50.

[30] Calheiros, R. N., Ranjan, R., De Rose, C. A., and Buyya, R.

CloudSim: A novel framework for modeling and simulation of cloud computing

infrastructures and services. arXiv preprint arXiv:0903.2525 (2009).

[31] Caporuscio, M., Di Marco, A., and Inverardi, P. Model-based system

reconfiguration for dynamic performance management. Journal of Systems and

Software (JSS) 80, 4 (2007), 455–473.

[32] Chakrabarti, C., and Gaitonde, D. Instruction level power model of mi-

crocontrollers. In Proceedings of the IEEE International Symposium on Circuits

and Systems (ISCAS 1999) (1999), IEEE, pp. 76–79.

[33] Changarti, P. Xen Virtualization: A Practical Handbook. Packt Publishing

Ltd., 2007.

138

[34] Chase, J. S., Anderson, D. C., Thakar, P. N., Vahdat, A. M., and

Doyle, R. P. Managing energy and server resources in hosting centers. ACM

SIGOPS Operating Systems Review 35, 5 (2001), 103–116.

[35] Cheng, B. H., De Lemos, R., Giese, H., Inverardi, P., and Magee,

J. Software Engineering for Self-Adaptive Systems. LNCS 5525. Springer, 2009.

[36] Cheng, B. H., Lemos, R., Giese, H., Inverardi, P., Magee, J.,

Andersson, J., Becker, B., Bencomo, N., Brun, Y., Cukic, B.,

Marzo Serugendo, G., Dustdar, S., Finkelstein, A., Gacek, C.,

Geihs, K., Grassi, V., Karsai, G., Kienle, H. M., Kramer, J., Litoiu,

M., Malek, S., Mirandola, R., Müller, H. A., Park, S., Shaw, M.,

Tichy, M., Tivoli, M., Weyns, D., and Whittle, J. Software Engineer-

ing for Self-Adaptive Systems: A Research Roadmap. In Software Engineering

for Self-Adaptive Systems, LNCS 5525. Springer, 2009, pp. 1–26.

[37] Chitsaz, H., Shaker, H., Zareipour, H., Wood, D., and Amjady, N.

Short-term electricity load forecasting of buildings in microgrids. Energy and

Buildings 99 (2015), 50–60.

[38] Chiu, D., Stewart, C., and McManus, B. Electric grid balancing through

lowcost workload migration. ACM SIGMETRICS Performance Evaluation Re-

view 40, 3 (2012), 48–52.

[39] Chowdhury, S. A., Kumar, L. N., Imam, M. T., Jabbar, M. S. M.,

Sapra, V., Aggarwal, K., Hindle, A., and Greiner, R. A system-call

based model of software energy consumption without hardware instrumenta-

tion. In Proceedings of the Sixth International Green Computing Conference

and Sustainable Computing Conference (IGSC 2015) (2015), IEEE, pp. 1–6.

[40] Corral, L., Georgiev, A. B., Sillitti, A., and Succi, G. Can exe-

cution time describe accurately the energy consumption of mobile apps? An

experiment in Android. In Proceedings of the 3rd International Workshop on

Green and Sustainable Software (GREENS 2014) (2014), ACM, pp. 31–37.

[41] Desmarais, R. J. Adaptive Solutions to Resource Provisioning and Task Al-

location Problems for Cloud Computing. PhD Thesis, Department of Computer

Science, University of Victoria, 2013.

139

[42] Dinita, R.-I., Wilson, G., Winckles, A., Cirstea, M., and Rowsell,

T. A novel autonomous management distributed system for cloud comput-

ing environments. In Proceedings of the 39th Annual Conference of the IEEE

Industrial Electronics Society (IECON 2013) (2013), IEEE, pp. 5620–5625.

[43] Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classification. John

Wiley & Sons, 2012.

[44] Duy, T. V. T., Sato, Y., and Inoguchi, Y. Performance evaluation

of a green scheduling algorithm for energy savings in cloud computing. In

Proceedings of the IEEE International Symposium on Parallel & Distributed

Processing—Workshops and PhD Forum (IPDPSW) (2010), IEEE, pp. 1–8.

[45] Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. Selecting

empirical methods for software engineering research. In Guide to Advanced

Empirical Software Engineering. Springer, 2008, pp. 285–311.

[46] Fan, X., Weber, W.-D., and Barroso, L. A. Power provisioning for a

warehouse-sized computer. In ACM SIGARCH Computer Architecture News

(2007), vol. 35, ACM, pp. 13–23.

[47] Foo, Y. W., Goh, C., Lim, H. C., Zhan, Z.-H., and Li, Y. Evolutionary

neural network based energy consumption forecast for cloud computing. In

Proceedings of the International Conference on Cloud Computing Research and

Innovation (ICCCRI 2015) (2015), pp. 53–64.

[48] Friess, P. Internet of Things: Converging Technologies for Smart Environ-

ments and Integrated Ecosystems. River Publishers, 2013.

[49] Ghezzi, C., and Tamburrelli, G. Predicting performance properties for

open systems with KAMI. In Architectures for Adaptive Software Systems.

Springer, 2009, pp. 70–85.

[50] GNU. Optimize options for GCC. https://gcc.gnu.org/onlinedocs/gcc/

Optimize-Options.html. [Online, last accessed May 2017].

[51] Goiri, I., Julia, F., Nou, R., Berral, J. L., Guitart, J., and Tor-

res, J. Energy-aware scheduling in virtualized datacenters. In Proceedings of

the IEEE International Conference on Cluster Computing (CLUSTER 2010)

(2010), IEEE, pp. 58–67.

140

[52] Hähnel, M., Döbel, B., Völp, M., and Härtig, H. Measuring energy

consumption for short code paths using RAPL. ACM SIGMETRICS Perfor-

mance Evaluation Review 40, 3 (2012), 13–17.

[53] Hamilton, J. Cooperative expendable micro-slice servers (CEMS): low cost,

low power servers for internet-scale services. In Proceedings of the Conference

on Innovative Data Systems Research (CIDR 2009) (2009), pp. 1–8.

[54] Harmon, R. R., and Auseklis, N. Sustainable it services: Assessing the

impact of green computing practices. In Proceedings of the Portland Inter-

national Conference on Management of Engineering & Technology (PICMET

2009) (2009), IEEE, pp. 1707–1717.

[55] Heinrich, R. Architectural run-time models for performance and privacy anal-

ysis in dynamic cloud applications. ACM SIGMETRICS Performance Evalua-

tion Review 43, 4 (2016), 13–22.

[56] Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y.,

Sharma, P., Banerjee, S., and McKeown, N. ElasticTree: Saving en-

ergy in data center networks. In Networked Systems Design and Implementation

(2010), vol. 10, pp. 249–264.

[57] Hellerstein, J. L., Diao, Y., Parekh, S., and Tilbury, D. M. Feedback

Control of Computing Systems. John Wiley & Sons, 2004.

[58] Hindle, A. Green mining: A methodology of relating software change to power

consumption. In Proceedings of the 9th IEEE Working Conference on Mining

Software Repositories (MSR 2012) (2012), IEEE, pp. 78–87.

[59] Hindle, A., Wilson, A., Rasmussen, K., Barlow, E. J., Campbell,

J. C., and Romansky, S. GreenMiner: A hardware based mining soft-

ware repositories software energy consumption framework. In Proceedings of

the 11th Working Conference on Mining Software Repositories (MSR 2014)

(2014), ACM, pp. 12–21.

[60] Hong, W.-C. Electric load forecasting by support vector model. Applied

Mathematical Modelling 33, 5 (2009), 2444–2454.

141

[61] Horn, P. Autonomic Computing: IBM’s perspective on the state of

information technology. http://people.scs.carleton.ca/~soma/biosec/

readings/autonomic_computing.pdf, Oct. 2001. [Online, last accessed May

2017].

[62] Huebscher, M. C., and Mccann, J. A. A Survey of Autonomic Computing:

Degrees, Models, and Applications. ACM Compututing Surveys 40, 3 (2008),

1–28.

[63] IBM. An architectural blueprint for autonomic computing. http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.183.5437&

rep=rep1&type=pdf, June 2006. [Online, last accessed May 2017].

[64] Jain, P., Bergen, A., Castaneda, L., and Müller, H. A. PALTask

Chat: A personalized automated context aware web resources listing tool. In

Proceedings of the IEEE Ninth World Congress on Services (SERVICES 2013)

(2013), IEEE, pp. 154–157.

[65] Jiang, H.-P., Chuck, D., and Chen, W.-M. Energy-aware data center

networks. Journal of Network and Computer Applications (2016), 80–89.

[66] Kansal, A., and Zhao, F. Fine-grained energy profiling for power-aware

application design. Newsletter ACM SIGMETRICS Performance Evaluation

Review 36, 2 (2008), 26–31.

[67] Kansal, A., Zhao, F., Liu, J., Kothari, N., and Bhattacharya, A. A.

Virtual machine power metering and provisioning. In Proceedings of the 1st

ACM Symposium on Cloud Computing (SoCC 2010) (2010), ACM, pp. 39–50.

[68] Kazman, R., Bass, L., Klein, M., Lattanze, T., and Northrop, L.

A basis for analyzing software architecture analysis methods. Software Quality

Journal 13, 4 (2005), 329–355.

[69] Keele, S. Guidelines for performing systematic literature reviews in software

engineering. Tech. rep., EBSE-2007-01, 2007.

[70] Kephart, J. O., Chan, H., Das, R., Levine, D. W., Tesauro, G.,

Rawson III, F. L., and Lefurgy, C. Coordinating multiple autonomic

managers to achieve specified power-performance tradeoffs. In Proceedings of the

142

IEEE International Conference on Autonomic Computing (ICAC 2007) (2007),

pp. 145–154.

[71] Kephart, J. O., and Chess, D. M. The vision of autonomic computing.

IEEE Computer 36, 1 (2003), 41–50.

[72] Kim, J. H., and Lee, M. J. Green IT: Technologies and Applications.

Springer, 2011.

[73] Kim, Y.-J., Seok, J.-S., Lee, M. S., Kim, J.-S., and Jung, Y. Design of

self-adaptive system observation overInternet of Things. Advanced Science and

Technology Letters (ASTL) 117 (2015), 165–171.

[74] Kliazovich, D., Bouvry, P., and Khan, S. U. GreenCloud: A packet-

level simulator of energy-aware cloud computing data centers. The Journal of

Supercomputing 62, 3 (2012), 1263–1283.

[75] Koomey, J. G. Growth in data center electricity use 2006 to 2010: Analytics

press report at the request of The New York Times. In The New York Times.

2011.

[76] Krintz, C., Wen, Y., and Wolski, R. Predicting program power con-

sumption. Tech. rep., University of Santa Barbara (UCSB), California, 2002.

[77] Lago, P., Gu, Q., Bozzelli, P., et al. A systematic literature review of

green software metrics. Tech. rep., Vreije Universiteit, The Netherlands, 2014.

[78] Laverick, M. Virtual machine (VM) consolidation ratios not the key to

the virtual data centre. http://www.computerweekly.com/news/1380058/

VM-consolidation-ratios-not-key-to-virtual-data-centre, 2010. [On-

line, last accessed May 2017].

[79] Le, K., Bianchini, R., Zhang, J., Jaluria, Y., Meng, J., and Nguyen,

T. D. Reducing electricity cost through virtual machine placement in high

performance computing clouds. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis (SC 2011)

(2011), ACM, pp. 22:1–22:12.

[80] Lee, E. A. The past, present and future of cyber-physical systems: A focus

on models. Sensors 15, 3 (2015), 4837–4869.

143

[81] Li, D., and Halfond, W. G. J. An investigation into energy-saving pro-

gramming practices for android smartphone app development. In Proceedings of

the 3rd International Workshop on Green and Sustainable Software (GREENS

2014) (2014), IEEE, pp. 46–53.

[82] Li, D., Hao, S., Gui, J., and Halfond, W. G. J. An empirical study of

the energy consumption of android applications. In Proceedings of the IEEE In-

ternational Conference onSoftware Maintenance and Evolution (ICSME 2014)

(2014), IEEE, pp. 121–130.

[83] Li, X., Bowers, C. P., and Schnier, T. Classification of energy con-

sumption in buildings with outlier detection. IEEE Transactions on Industrial

Electronics 57, 11 (2010), 3639–3644.

[84] Liu, H., Li, J., and Wong, L. A comparative study on feature selection and

classification methods using gene expression profiles and proteomic patterns.

Genome Informatics Series (2002), 51–60.

[85] Liu, J., Zhao, F., Liu, X., and He, W. Challenges towards elastic power

management in internet data centers. In Proceedings of the 29th IEEE Interna-

tional Conference on Distributed Computing Systems Workshops (ICDCS 2009)

(2009), IEEE, pp. 65–72.

[86] Liu, L., Wang, H., Liu, X., Jin, X., He, W. B., Wang, Q. B., and

Chen, Y. Greencloud: a new architecture for green data center. In Proceedings

of the 6th International Conference Industry Session on Autonomic Computing

and Communications Industry Session (2009), ACM, pp. 29–38.

[87] MacLeod, L., Storey, M.-A., and Bergen, A. Code, camera, ac-

tion: How software developers document and share program knowledge using

YouTube. In Proceedings of the IEEE 23rd International Conference on Pro-

gram Comprehension (ICPC 2015) (2015), IEEE, pp. 104–114.

[88] MacVittie, L. The dynamic data center: Cloud’s over-

looked little brother. https://devcentral.f5.com/articles/

the-dynamic-data-center-clouds-overlooked-little-brother, 2012.

[Online, last accessed May 2017].

144

[89] Mao, M., and Humphrey, M. Auto-scaling to minimize cost and meet

application deadlines in cloud workflows. In High Performance Computing,

Networking, Storage and Analysis (SC), 2011 (2011), IEEE, pp. 1–12.

[90] Maren, A. J., Harston, C. T., and Pap, R. M. Handbook of Neural

Computing Applications. Academic Press, 2014.

[91] Mazzucco, M., and Mitrani, I. Empirical evaluation of power saving

policies for data centers. ACM SIGMETRICS Performance Evaluation Review

40, 3 (2012), 18–22.

[92] Medina, V., and Garćıa, J. M. A survey of migration mechanisms of

virtual machines. ACM Computing Surveys (CSUR) 46, 3 (2014), 30.

[93] Mehta, H., Owens, R. M., Irwin, M. J., Chen, R., and Ghosh, D.

Techniques for low energy software. In Proceedings of the International Sym-

posium on Low Power Electronics and Design (ISLPED 1997) (1997), ACM,

pp. 72–75.

[94] Meisner, D., Gold, B. T., and Wenisch, T. F. Powernap: Eliminating

server idle power. In Proceedings 14th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS

2009) (2009), pp. 205–216.

[95] Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of Ma-

chine Learning. MIT press, 2012.

[96] Müller, H. A., Kienle, H. M., and Stege, U. Autonomic Comput-

ing: Now You See It, Now You Don’t. design and evolution of autonomic soft-

ware systems. In International Summer School on Software Engineering (ISSE)

2006–2008, LNCS 5413. Springer, 2009, pp. 32–54.

[97] Müller, H. A., Pezzè, M., and Shaw, M. Visibility of Control in

Adaptive Systems. Proceedings 2nd International Workshop on Ultra-Large-

Scalesoftware-Intensive Systems ULSSIS 2008 (2008), 23–26.

[98] Müller, H. A., and Villegas, N. Runtime Evolution of Highly Dynamic

Software. In Evolving Software Systems. Springer, 2013, pp. 229–264.

145

[99] Nathuji, R., and Schwan, K. Virtualpower: Coordinated power manage-

ment in virtualized enterprise systems. In ACM SIGOPS Operating Systems

Review (2007), vol. 41, ACM, pp. 265–278.

[100] Neto, A. H., and Fiorelli, F. A. S. Comparison between detailed model

simulation and artificial neural network for forecasting building energy con-

sumption. Energy and Buildings 40, 12 (2008), 2169–2176.

[101] Niles, S., and Donovan, P. Virtualization and cloud computing: Optimized

power, cooling, and management maximizes benefits. Tech. Rep. White Paper

118 Revision 4, 2008.

[102] Oreizy, P., Medvidovic, N., and Taylor, R. N. Runtime software

adaptation: Framework, approaches, and styles. In Companion of the 30th

ACM/IEEE International Conference on Software Engineering (ICSE 2008)

(2008), ACM, pp. 899–910.

[103] Parashar, M., and Hariri, S. Autonomic computing: An overview. In

Unconventional Programming Paradigms. Springer, 2005, pp. 257–269.

[104] Park, S., and Song, J. Self-adaptive middleware framework for Internet

of Things. In Proceedings of the 4th IEEE Global Conference on Consumer

Electronics (GCCE 2015) (2015), IEEE, pp. 81–82.

[105] Parunak, H. V. D., and Brueckner, S. A. Software engineering for

self-organizing systems. The Knowledge Engineering Review: Challenges in

Agent-Oriented Software Engineering 30, 4 (2011), 419–434.

[106] Pathak, A., Hu, Y. C., Zhang, M., Bahl, P., and Wang, Y.-M. Fine-

grained power modeling for smartphones using system call tracing. In Pro-

ceedings of the Sixth Conference on Computer Systems (EuroSys 2011 (2011),

ACM, pp. 153–168.

[107] Platon, R., Dehkordi, V. R., and Martel, J. Hourly prediction of a

building’s electricity consumption using case-based reasoning, artificial neural

networks and principal component analysis. Energy and Buildings 92 (2015),

10–18.

146

[108] Quang-Hung, N., Nien, P. D., Nam, N. H., Tuong, N. H., and Thoai,

N. A genetic algorithm for power-aware virtual machine allocation in private

cloud. In Information and Communication Technology. Springer, 2013, pp. 183–

191.

[109] Rao, L., Liu, X., Xie, L., and Liu, W. Minimizing electricity cost: opti-

mization of distributed internet data centers in a multi-electricity-market envi-

ronment. In Proceedings of the IEEE Conference on Computer Communications

(INFOCOM 2010) (2010), IEEE, pp. 1–9.

[110] Rasmussen, K., Wilson, A., and Hindle, A. Green mining: energy con-

sumption of advertisement blocking methods. In Proceedings of the 3rd Interna-

tional Workshop on Green and Sustainable Software (GREENS 2014) (2014),

ACM, pp. 38–45.

[111] Rosenblum, M. The reincarnation of virtual machines. ACM Queue 2, 5

(2004), 34:1–34:7.

[112] Rouse, M. Definition server consolidation. http://searchdatacenter.

techtarget.com/definition/server-consolidation, 2007. [Online, last ac-

cessed May 2017].

[113] Runeson, P., and Höst, M. Guidelines for conducting and reporting case

study research in software engineering. Empirical software engineering 14, 2

(2009), 131–164.

[114] Russell, J. T., and Jacome, M. F. Software power estimation and op-

timization for high performance, 32-bit embedded processors. In Proceedings

of the International Conference on Computer Design: VLSI in Computers and

Processors (ICCD 1998) (1998), IEEE, pp. 328–333.

[115] Sharma, N. K., and Reddy, G. Novel energy efficient virtual machine

allocation at data center using genetic algorithm. In Proceedings of the 3rd

International Conference onSignal Processing, Communication and Networking

(ICSCN 2015) (2015), IEEE, pp. 1–6.

[116] Singh, A., Korupolu, M., and Mohapatra, D. Server-storage virtual-

ization: integration and load balancing in data centers. In Proceedings of the

ACM/IEEE Conference on Supercomputing (SC 2008) (2008), IEEE, p. 53.

147

[117] Sinha, A., and Chandrakasan, A. P. Jouletrack: a web based tool for

software energy profiling. In Proceedings of the 38th Annual Design Automation

Conference (DAC 2001) (2001), ACM, pp. 220–225.

[118] Söderström, T., and Stoica, P. System Identification. Prentice-Hall, 1988.

[119] Srikantaiah, S., Kansal, A., and Zhao, F. Energy aware consolidation for

cloud computing. In Proceedings of the Conference on Power Aware Computing

and Systems (HotPower 2008) (2008), USENIX, pp. 1–5.

[120] Sterritt, R., and Bustard, D. Towards an autonomic computing environ-

ment. In 2012 23rd International Workshop on Database and Expert Systems

Applications (2003), IEEE, pp. 699–699.

[121] Suganthi, L., and Samuel, A. A. Energy models for demand forecastinga

review. Renewable and Sustainable Energy Reviews 16, 2 (2012), 1223–1240.

[122] Szvetits, M., and Zdun, U. Systematic literature review of the objectives,

techniques, kinds, and architectures of models at runtime. Software & Systems

Modeling 15, 1 (2013), 1–39.

[123] Teodorescu, R., and Torrellas, J. Variation-aware application schedul-

ing and power management for chip multiprocessors. In ACM SIGARCH Com-

puter Architecture News (2008), vol. 36, IEEE, pp. 363–374.

[124] Tesauro, G., Das, R., Chan, H., Kephart, J., Levine, D., Rawson,

F., and Lefurgy, C. Managing power consumption and performance of

computing systems using reinforcement learning. In Proceedings of the 20th In-

ternational Conference on Neural Information Processing Systems (NIPS 2007)

(2007), ACM, pp. 1497–1504.

[125] Tiwari, V., Malik, S., and Wolfe, A. Compilation techniques for low

energy: An overview. In Proceedings of the IEEE Symposium on Low Power

Electronics (ISLPED 1994) (1994), IEEE, pp. 38–39.

[126] Tiwari, V., Malik, S., and Wolfe, A. Power analysis of embedded soft-

ware: a first step towards software power minimization. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems 2, 4 (1994), 437–445.

148

[127] Tiwari, V., Malik, S., Wolfe, A., and Lee, M. T.-C. Instruction level

power analysis and optimization of software. In Technologies for Wireless Com-

puting. Springer, 1996, pp. 139–154.

[128] Villegas, N. M. Context Management and Self-Adaptivity for Situation-

Aware Smart Software Systems. PhD Thesis, Department of Computer Science,

University of Victoria, 2013.

[129] Villegas, N. M., Tamura, G., Müller, H. A., Duchien, L., and

Casallas, R. DYNAMICO: A reference model for governing control ob-

jectives and context relevance in self-adaptive software systems. In Software

Engineering for Self-Adaptive Systems II. Springer, 2013, pp. 265–293.

[130] Waltsgott, J., Götz, S., Fritzsche, R., Cech, S., and Wilke, C.

State of the art: Hardware energy management. Tech. Rep. TUD-FI-11-06,

Technische Universität Dresden, 2011.

[131] Wang, H., Huang, J., Lin, X., and Mohsenian-Rad, H. Exploring

smart grid and data center interactions for electric power load balancing. ACM

SIGMETRICS Performance Evaluation Review 41, 3 (2013), 89–94.

[132] Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., and Kwon, T. T. A

survey of green mobile networks: Opportunities and challenges. Mobile Net-

works and Applications 17, 1 (2012), 4–20.

[133] Wang, X., Yao, Y., Wang, X., Lu, K., and Cao, Q. Carpo: Correlation-

aware power optimization in data center networks. In Proceedings of the IEEE

Conference on Computer Communications (INFOCOM 2012) (2012), IEEE,

pp. 1125–1133.

[134] Wickremasinghe, B., Calheiros, R. N., and Buyya, R. Cloudanalyst:

A CloudSim-based visual modeller for analysing cloud computing environments

and applications. In Proceedings of the 24th IEEE International Conference

onAdvanced Information Networking and Applications (AINA 2010) (2010),

IEEE, pp. 446–452.

[135] Widjaja, I., Walid, A., Luo, Y., Xu, Y., and Chao, H. J. Switch siz-

ing for energy-efficient datacenter networks. ACM SIGMETRICS Performance

Evaluation Review 41, 3 (2013), 98–100.

149

[136] Wikipedia. Control Theory; last accessed April 2016. https://en.

wikipedia.org/wiki/Control_theory. [Online, last accessed May 2017].

[137] Wikipedia. Signal Processing; last accessed April 2016. https://en.

wikipedia.org/wiki/Signal_processing. [Online, last accessed May 2017].

[138] Wilke, C., Götz, S., Cech, S., Waltsgott, J., and Fritzsche., R.

Aspects of softwares energy consumption. Tech. Rep. TUD-FI-11-04, Technische

Universität Dresden, 2011.

[139] Wilke, C., Götz, S., Reimann, J., and Aßmann, U. Towards model-

based energy testing. In Model Driven Engineering Languages and Systems

(MODELS 2011) (2011), J. Whittle, T. Clark, and T. Kühne, Eds., LNCS

6981, Springer, pp. 480–489.

[140] Wu, W., Du, W., Zhou, H., Zhong, J., and Guo, Z. An optimization

model on virtual machines allocation based on radial basis function neural net-

works. International Journal of Hybrid Information Technology 8, 6 (2015),

299–308.

[141] Yazir, Y. O., Matthews, C., Farahbod, R., Neville, S., Guitouni,

A., Ganti, S., and Coady, Y. Dynamic resource allocation in computing

clouds using distributed multiple criteria decision analysis. In Cloud Computing

(CLOUD), 2010 (2010), IEEE, pp. 91–98.

[142] Yin, R. K. Case Study Research: Design and Methods. Sage Publications,

2013.

[143] Zhang, C., Hindle, A., and German, D. M. The impact of user choice

on energy consumption. IEEE Software 31, 3 (2014), 69–75.

[144] Zhang, Q., Zhu, Q., and Boutaba, R. Dynamic resource allocation for

spot markets in cloud computing environments. In Proceedings of the Fourth

IEEE International Conference on Utility and Cloud Computing (UCC 2011)

(2011), IEEE, pp. 178–185.

[145] Zhang, Z., Guan, Q., and Fu, S. An adaptive power management frame-

work for autonomic resource configuration in cloud computing infrastructures.

In Proceedings of the 31st IEEE International Performance Computing and

Communications Conference (IPCCC 2012) (2012), IEEE, pp. 51–60.

150

[146] Zhuravlev, S., Saez, J. C., Blagodurov, S., Fedorova, A., and Pri-

eto, M. Survey of energy-cognizant scheduling techniques. IEEE Transactions

on Parallel and Distributed Systems 24, 7 (2013), 1447–1464.

