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Abstract
Wahlberg, F. 2017. Interpreting the Script. Image Analysis and Machine Learning for
Quantitative Studies of Pre-modern Manuscripts. Digital Comprehensive Summaries of
Uppsala Dissertations from the Faculty of Science and Technology 1475. 95 pp. Uppsala:
Acta Universitatis Upsaliensis. ISBN 978-91-554-9814-6.

The humanities have for a long time been a collection of fields that have not gained from the
advancements in computational power, as predicted by Moore´s law.  Fields like medicine,
biology, physics, chemistry, geology and economics have all developed quantitative tools that
take advantage of the exponential increase of processing power over time.  Recent advances
in computerized pattern recognition, in combination with a rapid digitization of historical
document collections around the world, is about to change this.

The first part of this dissertation focuses on constructing a full system for finding handwritten
words in historical manuscripts. A novel segmentation algorithm is presented, capable of
finding and separating text lines in pre-modern manuscripts.  Text recognition is performed by
translating the image data of the text lines into sequences of numbers, called features. Commonly
used features are analysed and evaluated on manuscript sources from the Uppsala University
library Carolina Rediviva and the US Library of Congress.  Decoding the text in the vast number
of photographed manuscripts from our libraries makes computational linguistics and social
network analysis directly applicable to historical sources. Hence, text recognition is considered
a key technology for the future of computerized research methods in the humanities.

The second part of this thesis addresses digital palaeography, using a computers superior
capacity for endlessly performing measurements on ink stroke shapes. Objective criteria of
character shapes only partly catches what a palaeographer use for assessing similarity. The
palaeographer often gets a feel for the scribe's style.  This is, however, hard to quantify.  A
method for identifying the scribal hands of a pre-modern copy of the revelations of saint
Bridget of Sweden, using semi-supervised learning, is presented.  Methods for production year
estimation are presented and evaluated on a collection with close to 11000 medieval charters.
  The production dates are estimated using a Gaussian process, where the uncertainty is inferred
together with the most likely production year.

In summary, this dissertation presents several novel methods related to image analysis and
machine learning. In combination with recent advances of the field, they enable efficient
computational analysis of very large collections of historical documents.

Keywords: document analysis, machine learning, image analysis, digital humanities,
document dating, writer identification, text recognition
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Sammanfattning på svenska (Summary in Swedish)
Humaniora är en samling fält som inte har gagnats av de senaste decennier-
nas framsteg inom datorkraft, så som områdena medicin, biologi, fysik, kemi,
geologi eller ekonomi har. Datoriserad analys av text har haft visst genomslag,
vilket lett till fältet datorlingvistiks uppkomst. Däremot har andra typer av data
(t.ex. bilder, CT-volymer, markpenetrerande radar) sällan analyserats automa-
tiskt. På senare tid har framsteg inom datoriserad mönsterigenkänning öppnat
upp för nya möjligheter att automatisera analysen av olika typer av data och
i allt större mängder. Denna utveckling mot datorbaserade metoder för forsk-
ning inom humaniora har fått namnet digital humaniora. Varför ska då allt det
material som idag finns på museum och i bibliotek digitaliseras? Eftersom det
ger våra bevarande institutioner möjligheten att spara en digital kopia de ob-
jekt de har i sina samlingar, sker det idag på bred front. Denna digitalisering
för att bevara vårt kulturarv sker idag i hela världen.

Humaniora är ett mycket brett begrepp som ofta beskrivs som en samling
fält där det fundamentalt mänskliga studeras. Hur ska då en dator kunna bidra
i den forskningen. Grunden till detta är att människor och datorer är bra på oli-
ka typer av analys. En dator kan inte tolka vad en människa menat eller känt,
däremot är den mycket bra på att outtröttligt göra mätningar och processa sto-
ra samlingar av statistik. Hela projektet bygger därför på att göra kvantitativa
studier möjliga där ett kvalitativt tillvägagångssätt varit det rådande paradig-
met. Dessutom kan kvantitativa studier, som av materiella skäl inte kunnat
skalas upp till större samlingar, med datorns hjälp kunna greppa mer än vad
enskilda människor kan. Visionen är att det nu starkt växande området digital
humaniora kommer att utvecklas analogt med hur biologi och datavetenskap
bildade vetenskapsområdet bioinformatik. Idag är det otänkbart att inte använ-
da datorbaserade metoder inom stora delar av biologi. Det är dock en empirisk
fråga om detta är möjligt på bred front även inom humaniora.

I den här avhandlingen ligger fokus på två områden: textigenkänning och
identifiering av skrivarhänder. Textigenkänning är processen där den hand-
skrivna text som finns i digitala bilder avkodas till digital text. Detta gör tex-
ten sökbar och öppnar i förlängningen också för mer avancerad analys likt den
för sociala nätverk. Identifiering av skrivarhänder är en kartläggning av stil i
syfte att binda händer till dokument eller att uppskatta det år som ett dokument
skrevs. Idag är datering av manuskript ett mycket svårt problem där forskare i
slutändan ofta är utelämnade till textens innehåll. Datoriserad mätning av lik-
heter och trender i stil öppnar för att se vem som skrev och när detta skedde.
Detta möjliggör en kartläggning av de som stod för det skrivna ordet i historien
(här ligger fokus dock på medeltida skrifter).

Den första delen av denna avhandling fokuserar på textigenkänning av hand-
skriven text (i bemärkelsen penna i handen, ej skrivmaskin). Den grupp av me-
toder som fokuseras på avvänder en metodologi som börjar med hela bilden för
att sedan i flera olika steg bryta ned den till an hierarki av mindre bildobjekt.



Textrader isoleras från varandra (s.k. segmentering) för att sedan klippas ihop
på rad efter varandra. På så vis representeras texten som en bild av en enda
lång textrad. Denna långa rad mäts enligt ett förutbestämt schema och byter
skepnad till en lång sekvens av mätningar av textens form. Mindre delar av
denna sekvens kan nu, inte olikt DNA-analys, jämföras med hela sekvensen
för att hitta områden som liknar varandra. Dessa områden där sekvensen av
mätningar liknar varandra korresponderar mot områden som liknar varandra i
originalbildens textrader.

Olika sätt att förbättra denna avkodningsprocess har undersökts och presen-
teras nedan, och i de fem första artiklarna som inkluderas i avhandlingen. Här
presenteras också en ny metod för att hitta och separera textrader i en bild.
De metoder som utvecklats har utvärderats på material från Uppsala Univer-
sitets bibliotek och ifrån Library of Congress. Detta material är “Summula de
ministris et sacramentis ecclesiasticis” (C64) som avhandlar kyrkans göromål
under 1400-talet, heliga Birgittas uppenbarelser (C61) i en kopia från tidigt
1500-tal och en del av “George Washington Letters” som är en brevsamling
från 1754–1755.

Den andra delen av denna avhandling fokuserar på att identifiera stilen hos
skrivarhänder. Till viss del handlar det om att identifiera enskilda skrivarhän-
der i materialet C61, men till större del att identifiera tidsvarierande stildrag
för att datera manuskript. Samlingen “Svenskt Diplomatariums Huvudkarto-
tek” (SDHK) innehåller närmare 11000 digitaliserade brev från svensk me-
deltid. Dessa brev är officiell kommunikation som är daterad på dagen innan
brevet först skickades. Begreppet avsändare behöver här delas upp i katego-
rierna författare och skrivare. Under medeltiden (framför allt tidig sådan) var
det vanligt att använda sig av en skrivare även om avsändaren kunde skriva
själv. Författaren behöver alltså inte ha varit inblandad i själva skrivandet, ut-
an enbart dikterat.

Den paleografiskt relevanta bakgrunden till denna studie är att kriterier för
formen av skrivtecken endast delvis fångar vad en expert inom paleografi skul-
le använda för att bedöma likheten mellan två manuskript. När man tittar på
två manuskript kan man ofta få en känsla för stilen hos en skrivarhand, genom
att kort inspektera några enskilda sidor. Denna känsla är dock mycket svår att
kvantifiera. Hur sätts en siffra på exempelvis rundheten hos en stil? Datorns
kapacitet till att outtröttligt göra mätningar kan här utnyttjas för en sådan kvan-
tifiering.

Delvis identifieras skrivarhänder i boken C61, vilket oberoende visade sam-
ma uppsättning skrivare som den mest auktoritativa identifiering gjord av en
människa. Detta gjordes med hjälp av semi-övervakat lärande, en maskininlär-
ningsterm som betyder att hänsyn tas till struktur i datamaterialet tillsammans
med den identifiering av skrivarhänder som en människa kan ge algoritmen.
Till större del handlar den senare delen av arbetet om att identifiera produk-
tionsår för manuskript. Detta görs både med djupa neurala nätverk och med
en för hand designad egenskapsutvinning. Osäkerheten i dateringen kvantifie-



ras av en Gaussisk process i syfte att uppskatta var datorn behöver hjälp av en
människa. Den slutgiltiga dateringen rapporteras för varje undersökt brev som
en normalfördelning över tidslinjen.

I denna avhandling presenteras metodutveckling för datorstödd forskning
inom humaniora. De fält som arbetet direkt bygger på faller dock inom kate-
gorierna dokumentanalys, maskininlärning, datorseende och datoriserad bilda-
nalys.
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1. Research context

In the following chapter, the context and research questions of the work pre-
sented in this dissertation will be described. The authors personal views and
experiences of digital humanities will also be developed on. The perspective is
from a computer scientist’s (or even engineer’s), though there is no unspoken
claim of talking for all computer scientists. There are several other rather long
texts on the subject that will not be commented on, lest this turn into a book on
only the definition of digital humanities1. Lastly, at the bottom of the section,
a brief description of the capabilities of computerized image analysis and data
driven research will be presented.

1.1 Aims of this dissertation and a short project history
The research question for this dissertation is in short: Where is the state-of-the-
art in applying computerized image analysis to data relevant for any discipline
in the humanities, and how can this be used and developed further to leverage
research on Swedish pre-modern text sources?

If one were to form a dendrogram according to the themes of the presented
herein papers, the first branching would be two well separated groups. The
first, text recognition on binarized image, and the second, writer/date attribu-
tion. This split is represented by the chaptering (i.e. chapters 3 and 4). The
split also mirrors the project history and, to some extent, the development in
the field.

I came in to this project during the spring of 2011, doing small implementa-
tions of ideas as a pilot project. The aim was to strengthen a large application
for funding in handwritten text recognition. I was successful in this endeavour,
leading to that we in the summer of 2011 wrote paper I. Due to the momen-
tum shown in our group, a decision was made for a strategic investment (UFV
2011/1913) from three faculties and the vice chancellor for funding one Ph.D.
student (with supervision). I applied for this position and got it in early 2012.
My first papers in this project concern breaking down a binarized page and
performing recognition of handwritten text. This work is presented in chapter
3 and papers I-V.

In the autumn of 2012, we got a significant grant from the Swedish Science
Council (Dnr 2012-5743) with my supervisor as the principal investigator (PI).

1This, I have no doubt, will be viewed as provocative to some, and I assure the reader I am under
no illusion that this is the final word on the matter.
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This grant was mainly for handwritten text recognition and data mining on
historical sources. Due to this, the group could grow and we could welcome
two more Ph.D. students in to the project. Suddenly we went from only me
on full time to being the Handwritten Text Recognition (HTR) project, a real
research group.

In late 2013, Lasse Mårtensson, our in-house philologist, was curious about
a method for identifying scribal hands, based on extracting statistics from a full
manuscript page. This was a methodological break from what had been doing
so far. I promised to help him implement this and run it on the C61 manuscript,
assuming at the time that it would take less than three weeks of work. It not
only took longer, but redefined my research since then. This work led to paper
VI, later used in another grant application to “Riksbankens Jubileumsfond”.
In 2015, this grant was given (NHS14-2068:1) with Lasse as the PI, enabling
a continuation of the ongoing work on scribal hands. This work is presented
in chapter 4 and papers VI-IX.

At the time of writing, the international research community working on im-
age analysis on historical sources is small. However, this small community is
connected to broader communities of researchers, from philology to machine
learning. When I started working with the group, there were no big grants and
no one on full time. This has truly been a fascinating journey. In the follow-
ing chapters, I will describe my contributions, as a part of this community, to
making the humanities more digital.

1.2 Thoughts on digital humanities and imaging
The field of digital humanities (DH) has a new name but is not a new direc-
tion of research. Since the invention of computers, text processing has been an
important application. However, with the increasing computational power and
storage capacity gained over time, it is now possible to handle large collections
of images. This was impossible only 20 years ago. An important invention for
this dissertation was the charge-coupled device (CCD) in the 1960’s2. The
CCD chip (and its CMOS successor) enables the digital imaging we use today
for preserving our heritage. Libraries like that of the Vatican, and several other
large libraries, are continuing to digitizing documents in the range of petabytes
(a petabyte is one million gigabytes). All this data can then potentially be pro-
cessed as images, and not only as transcribed text. This development opens
up for new and exciting research possibilities, assuming we can find the com-
puterized methods to deal with this large amount of data. This is where DH
comes in, as the field of finding the relevant research questions and methods
to deal with such data. Going back to the example of text processing, it has

2Nobel prize in physics in 2009, http://www.nobelprize.org/nobel_prizes/physics/laureates/2009/
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been around for some time but only recently has it been used for large scale
quantitative analysis of books, as in the paper by Michel et al. (2011)3.

DH is sometimes described as the intersection between the humanities and
computer science, as illustrated in figure 1.1 as a Venn diagram. Defining what
digital humanities is (or is not) in detail is an ongoing process. Today, there is
no consensus. Some are even worried that it might just be another buzzword.
Defining a multi-disciplinary effort in an excluding way is likely divisive and
counterproductive. We do not know where the introduction of computational
capabilities in many of the disciplines concerning the fundamentally human
will lead. However, if the term is defined in an including way, several exam-
ples of research can form a foundation upon which to build.

Computer

  science
Humanities

    Digital

Humanities

Figure 1.1. A Venn diagram of the common conception that digital humanities is the
intersection of the Humanities and Computer Science.

Forty years ago, it was not evident that bioinformatics (i.e. computational
biology) would become a part of standard biological research. Today, it would
be unthinkable not to include computational research methods in the field, in
parallel to the laboratory and field work. There were two main reasons for
this inclusion of computer science, the possibility to sequence the genome and
suitable computing capacity. By a stroke of luck, the computational technology
of the day was good at matching, often very long, sequences of text data. This
was easily extended to sequences of base pairs4.

Some find it tempting to leave the collaboration part of interdisciplinary
work to experts with knowledge in computer science and some field of the
humanities, e.g. someone who is both a computer scientist and a philologist.
Though finding such people is possible (but often hard) I think the wish in it
self is a product of an anxiety about interdisciplinary work. It is hard to com-
municate for people trained in very different disciplines. Misunderstandings

3Studying 4% of all books ever printed for various purposes e.g. evolution of grammar and
epidemiology.
4The statistical models, however, is a continuing research field e.g. Bayesian hidden Markov
models etc.
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occur often and there might be large differences in methodological traditions.
However, all scientific disciplines are in motion. It can be hard to keep up with
one, let alone two, fields. Why not skip the middle man and work on trying to
understand each other? Medical doctors and physicists do it when working on
medical equipment. Bioinformaticians and computer scientists do it for anal-
ysis of proteins or RNA. If a digital humanities researcher does not work on
interdisciplinary communication, it will be very hard to produce research that
is relevant and novel in several fields at the same time. A better way of doing
it is, from my experience of our interdisciplinary research group, to just make
an effort to get to know the basics of each other’s fields.

Most of the work in this dissertation can be seen as method development.
The intention is not to solve a research task for a palaeographer. It is to for-
mulate a research question in collaboration, and add expertise from computer
science and mathematics to explore that direction.

The definition of DH as the intersection of computer science and the human-
ities, as it is illustrated by the Venn diagram in figure 1.1, is intuitive but not
without its problems. It makes poetic sense, but a lot of the research that would
be DH from the perspective of, lets say, a historian, is not computer science.
Research enabled by creating a large database of genealogical data with socio-
economic information a significant cross referencing capabilities is a clear case
of DH, though creating a database (on this scale) is not a part of computer sci-
ence research, any more than using a word processor is. Also, it is easy for
the machine learning researcher to imagine a case where specific neural net-
work architectures need to be developed for a class of data from palaeography,
though this would hardly fit under the humanities umbrella. For these reasons,
I think it is better to picture DH as is shown in the expanded Venn diagram of
figure 1.2.

Computer

  science
Humanities

    Digital

Humanities

Figure 1.2. A Venn diagram of an expanded definition of Digital Humanities, en-
compassing the definition from figure 1.1. The digital humanities bubble has been
expanded to include research that fit in one of the categories computer science or the
humanities, but not necessarily both. Also, a new part outside the two main areas are
added as a reminder that new research is, likely, yet to be found.
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In figure 1.2, the DH area is expanded to include research that is not nec-
essarily what we today would call either humanities or computer science, in
contrast to the diagram in figure 1.1. The examples of projects given above
fit this definition, and there is room for the old definition in the new. The
new area, which is neither humanities or computer science, can be projects
like large scale quantitative analysis of historical documents using yet to be
developed methods. In this hypothetical future, the computer science and, for
example, history fields would likely be expanded to include this research topic.
However, I think having some part of the expanded DH definition outside the
current definition of the fields can serve as a reminder that there are new kinds
of research out there. We should not be tempted to only see the introduction
of computational methods as a way of doing more of the same. With new
methods, it is likely that there are opportunities for completely new research.

There has also been some talk of DH being a buzz word and hype. Assum-
ing this is the case, how to exploit the advantages while still mitigating the
detrimental effects? A related example is the multiple hype cycles that neu-
ral networks has gone though. The hypes was so strong, at some point, that
when the bubble did burst, the following years have been described as “neural
network winter”. Funder confidence was completely depleted. The recipe for
success is simple: “Do not promise anything you can not reasonably deliver!”.
This “no fun” solution might not give you funding either, in which case, the
“boom and bust“ is inevitable.

A real threat to DH projects is the difference in research cultures between
disciplines. The luxury of having a clear definition of success, as in computer
science and most often in physics, is not one that is present in, for instance,
philosophy. The double meaning of hard sciences, in the all too popular di-
chotomy of hard and soft sciences, is in some ways misleading. The hard sci-
ences might as well be the humanities or social sciences, since it does not lend
itself well to quantification. Galileo’s cannonball fell in the same way every
time he threw it, in his early work on mechanics. He was able to manipulate
something external, repeat his results many times and express themmathemat-
ically. However, the repeated experience of making sense of the world though
this kind of experimentation can easily lead to a desire to apply the same think-
ing where problems look very different. This engineering thinking is necessary
for including computer science in DH, but scepticism of the same is needed for
the inclusion of general humanities in DH.

Another aspect of the divide, described in the preceding paragraph, is the
need for (and problem with) defining a criterion for success. A discussion on
how to define the items and categories that a research project are working with,
in some data collection, is necessary. However, to a computer scientist, a long
discussion in what way some concept is problematic, might just sound like
bickering. There is a real problem of finding a common definition of the issues
at hand. If a problem can not be stated clearly, translating it into a statistical
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model (or any algorithm) is close to impossible. If a computer is going to be
involved, there needs to be a clear quantifiable goal.

A final pitfall is the problem of field specific jargon. Not terminology, that
can easily be corrected, but the use of words that convey values or belonging,
sometimes together with scientific concepts. A part of hacker culture even
had a manual for its own jargon5. The danger here is that in the process of
assimilating concepts and researchers from several fields, jargon will be mis-
interpreted and misused. We risk reinforcing already existing prejudices we
have of each other. Luckily, we only need to be generous to our co-workers
for this not to be a growing, but a diminishing, problem. In the end, we all
want to progress in expanding human knowledge.

Despite the pitfalls described above, there is now great potential to do re-
search, previously restricted to a handful of textual sources, on a large scale.
A computer can not interpret, while a human can only interpret a small part
of a large collection, due to material circumstances. This is where cross dis-
ciplinary collaboration can create something greater than the sum of its parts
by amplifying the application expert’s capabilities though the use of computa-
tional methods. Digital Humanities is this collaboration space.

1.3 Proxy research tasks
In a time of increasing automation and the threat of machines making a large
part of the labour market obsolete, it is tempting to assume that this will also
be the case in humanistic research. That digital humanities (DH) would be the
precursor to this “revolution” in science, forcing strict “physics-style” quan-
titative method on all scientific disciplines. These are nonsensical fantasies
from people who have been listening to too much marketing talk (if you ask
those who want you to invest, a technological revolution is always around the
corner). These ideas shows a fundamental lack of understanding of the scien-
tific endeavour and research including the human experience. The computer
is a fantastic achievement of human intellect and carefully crafted. However,
I think it is well worth remembering that a computer not only shares its basic
components with rocks (e.g. silicon), but it is also as dumb as one. We can
indeed craft machines capable of great feats in pattern recognition, though we
are far from the thinking machines of science fiction (yet?).

Some scepticism against DH is based on the notion that the research subject
is something “fundamentally human”. How do we get computers to help us
when they, by definition, can not? From my perspective, the answer to this
question is the concept of proxy tasks. A task that a computer can perform,
where the result is close to indistinguishable from what a human would pro-
duce. A task for the computer that can act as a proxy for the task a human

5http://jargon-file.org/
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would preform. An analogy can be made to the dishwasher. This machine and
a human achieve the same goal, yet the processes of achieving clean plates
look very different. In chapter 4, the methods from the included papers on
computerized dating of manuscripts are presented. A human can estimate the
production dates for manuscripts (if properly trained), and so can a computer.
The results are very similar, but the procedures are different. A human uses
textual clues or palaeography, a computer uses a regression in a high dimen-
sional space spanned by the output from layers of feature extractors. Both
“output” years, while using completely different means of getting there. While
it is tempting to talk about a computer as a human, we must not forget that it
is only a metaphor. The challenge for the computer scientist, is to translate a
task some human needs performed into something a machine can help with.

In this perspective, a programmer is an interpreter. The original is a clear
description of the research task, and the translation is the code. Note that the
machine never searches for a word in a text, it matches a short sequence of
binary numbers to some other longer sequence of binary numbers, given some
comparison algorithm. The challenge then for a DH researcher is to find a
similar task to the original one, that is suitable for a computer to solve while
also giving a result as similar as possible to what was sought for.

1.3.1 Imaging from a computational perspective
From the perspective of a computerized image processing pipeline, the input
data (i.e. the image) is only a grid of coloured points. The points have a spa-
tial relation on this grid. There is no prior understanding of objects, what a
colour might mean or that the image usually is a two-dimensional representa-
tion of something in three dimensions. Think of it as an image where you have
zoomed in on a detail so much it has lost its meaning. You can still see what
colours there are and how the image points are laid out beside each other, but
it does not make sense any more. The shapes have no meaning. This is what a
computer starts with.

To make sense of this data, a computer only has a limited number of op-
erations that can be performed. There is no “separate object” or “find sym-
metry” operations available, as in a human brain. A hierarchy of increasingly
complex operations is needed to make sense of the image data. The field of
computerized image analysis is concerned with developing these operations
and evaluating their use for research and industrial applications. A researcher
in computer science needs to , in a sense, master the art of building levels of
abstraction, from the data to the desired interpretation.
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1.3.2 Data driven research with large data sets
Computational power is increasing exponentially, as described by law ofMoore
et al. (1998), and so is the possibility to process large sets of data. To be able to
make sense of this data, indifferent of the type of digital data or task in mind,
new computational methods have needed (and still need) to be developed. The
traditional pipelines for data processing can not keep up. Another challenge is
that a significant portion of the data that is being created have new modalities.
Mass storage of images was impossible not that long ago, at the same time as
the image types are being expanded into for example mass acquisition of vol-
umetric (3D) data. Not only does this development require better processing,
but also new ways of making the machine understand differently structured
data than spreadsheets or text documents.

A future challenge for digital humanities is to go towards big data6. The
knowledge from analysing the structure of large data sets is something different
from the currently prevailing forms of qualitative analysis. This is a paradigm
shift in many disciplines7. However, success stories ranging from machine
translation8 to image captioning9 shows that great gains might be possible.

Computerized recognition of historical handwritten text is the key technol-
ogy that enables analysis of the full body of pre-modern text in one go. Making
it possible to study the spread of ideas across time and space in human history.
This has already been done on more modern English literature, through the use
of topic modelling for tracking themes in literature over time and space, e.g.
by Blei (2012) and Blei et al. (2003). Identifying writer styles would make it
possible to date previously undated manuscripts and track the movements of
scribes. More importantly, the spread of scribal styles indicate communication
between places at different times. Getting any certainty in these computerized
methods, however, demands huge amounts of data.

In summary, big data really refers to quantitative methods, applied on a
larger scale, where details that would be lost in smaller collections become
visible. The data driven paradigm is about focusing more on what the data
itself can show, rather than relying on theory. Thereby it reduces the risk of
reaching conclusions built on cognitive bias.

6Big data is simply a name for using large collections of data. What is considered “big” in the
concept of big data is a moving goal post relative to what has already been done in the specific
field.
7A renowned researcher in history once told me that maybe the traditional (and very successful)
methods of analysing historical data risked being fetishized and seen as the only way to do
meaningful research in the field. That a silent norm have been established in some places,
preventing computerized methods from being seen as “real” historical research.
8A machine inferring a translation and working out meanings of words from large collections
of data, without a human feeding it any set of rules on grammar, e.g. Bahdanau et al. (2014).
9Neural networks that can describe your holiday photos with coherent sentences, e.g. Karpathy
and Fei-Fei (2015).
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2. Data sets

the work presented in the dissertation has been focussed in pre-modern hand-
written sources, primarily the Swedish medieval period. This is roughly all
manuscripts produced before the year 1523 (the year of Gustav the first’s coro-
nation), though in practice the period constitutes the years 1000–1523, since
very little was written (and even less preserved) before the year 1000 in what
currently is Sweden. This data is described below together with one modern
source, the so called “George Washington” data set, which consists of 18th
century handwriting.

2.1 “Summula de ministris et sacramentis ecclesiasticis”
(C64)

The book “Summula de ministris et sacramentis ecclesiasticis”, from the col-
lections of the Uppsala University library, is a manuscript containing a hand-
book for priests of the medieval Swedish church. It was written in the 14th

century at a time when the bureaucracy of the church was almost indistinguish-
able from that of the state. Its identifier in the archives is C64, catalogued by
Andersson-Schmitt and Hedlund (1989).

The manuscript consists of 230 folios with writing on both sides. All was
written by a single hand, attributed to “Laurentius of Vaksala“ (Vaksala is
today an area of Uppsala, Sweden), in the Northern Textualis script style. Like
many manuscripts of this type, the margins are significant with prominent help
lines for text, between markings made by puncturing the page. Two spreads
can be seen in figure 2.1. Note the red initials, these mark the beginning of a
new part of the text1.

Writings in this style often have a very complex system for abbreviations.
One of the standard dictionaries of such abbreviations is the dictionary by Cap-
pelli (1928), listing thousands. This complicates the computerized decoding
of the handwritten characters since the regularities present in modern writing
are not there. The spelling can be confusing as it is and abbreviations depend
on the context of where they are found. Hence, the computer must solve a
problem of interpreting the image information and simultaneously parse the
meaning of the words.

The images were taken by the reproduction unit at the Uppsala University
library Carolina Rediviva. The photographs are large (almost 18Mpixels) with
1Incidentally, the red colouring is where the name rubric, as in heading/title, comes from.
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a very good colour quality. Only 16 spreads of the collection are available in
digital form, not enough for a text recognition research but is used in paper
II for segmentation experiments. In figure 2.1, two spreads are shown as an
example of the reproduction quality.

2.2 “The revelations of Saint Bridget of Sweden“ (C61)
The manuscript C61, catalogued by Andersson-Schmitt and Hedlund (1989),
contains book 1–8 of the revelations of Saint Bridget of Sweden (1303–1373).
It was written in old Swedish and is generally regarded a translation fromLatin.
This copy was written sometime in the beginning of the 16th century (the
Swedish medieval era ends 1523) and made into the current book format in
the 17th century by order of Johannes Loccenius. It was given to the Uppsala
University Library in 1674 by Loccenius. The script differs considerably from
C64 and is categorized as Cursiva Recentior, by the criteria set by Derolez
(2003). In general, writing from this time in Swedish did not use many abbre-
viations, as opposed to texts written in Latin. At the time, however, there was
no canonized spelling, making the choice of characters very much up to the
scribes.

The images were taken by the Uppsala University library Carolina Rediviva
with a 15 Mpixel camera. In total, there are 555 images, all are spreads with
most having text on both pages. The colour quality is good. Some examples
are shown in figure 2.2.

The variation in cursive writing (due to the quick execution) is a source of
difficulty when doing scribal attributions (i.e. determining who wrote what).
Even though more of the scribes habits show when there is little time to think
about each character, formulating a clear morphology that can be compared is
hard. The most authoritative attribution of C61 is given by Klemming (1883),
shown in table 2.1.

2.3 “Svenskt Diplomatariums Huvudkartotek” (SDHK)
The charter collection “Svenskt Diplomatariums Huvudkartotek” (SDHK) is
held by the Swedish national archive. It is a collection with almost 11000 dig-
itized medieval charters. The full collection is even larger (all is not digitized).
The charters are from the Swedish medieval period and is the largest collec-
tion of its kind in Sweden (there are some much smaller collections concerning
specific families). They are all written on parchment. Some charters are large
but most are small. A large number (slightly above 5300) are transcribed. An
estimation has been done on the scribal hands for more than that (though these
are not available in digital form, only in a printed book) byWiktorsson (2015),
who is the foremost expert on the collection. Many charters have intact sigils
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Figure 2.1. Examples of two spreads from C64 (section 2.1). Note the large margins,
symbolizing the importance of the text and the cost of production. However, the wish
to save space (parchment was expensive) sometimes led to very compressed spaces
between words (sometimes spaces are completely removed).
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Figure 2.2. Two spreads from the data material C61, pages 0–1 and 540–541 (section
2.2). The obvious difference in writer style is because several scribes worked on fin-
ishing this copy. Note the distortions of the text lines, stemming from the binding of
the book. For text recognition, these might have to be “straightened out”.
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Pages Hand Pages Hand Pages Hand
1 – 129 1 425 – 428 1 453 – 472 1
130 – 134 4 429 – 430 2 473 – 476 2
135 – 298 1 431 – 438 1 477 – 516 1
299 – 304 2 439 – 440 2 517 – 530 2
305 – 354 1 441 – 444 1 531 – 534 1
355 – 414 2 445 – 446 2 535 – 536 2
415 – 422 1 447 – 450 1 537 – 538 blank
423 – 424 2 451 – 452 2 539 – 1104 3

Table 2.1. An overview of the scribes who wrote the pages of C61 (section 2.2), as
attributed by Klemming (1883). These were attributed to 4 different scribes, on palaeo-
graphic grounds. Drawing a metaphorical line where the style difference is enough to
introduce a new scribe is very hard. Illustrating this, attributions of pages 130–133
are a matter of dispute and arguments have been put forth that scribe 1, 2, and 4 are
all the same person. In paper VI, the classification given in the table is shown to be
measurable, supporting the claims by Klemming.

attached by strips of parchment, showing the authenticity. This collection is
exemplary for a computerized study of manuscripts since all charters are dated
on the day, except for a very small undated subset. The dating was written by
the original authors and was of importance at the time due to the unreliable
mail distribution system.

The collection has been published on the web in a low resolution (with jpeg
artefacts) format, with the meta data in html2. The high resolution images
can be bought from the Swedish national archive and are in 4 Mpixel jpeg
photographs produced over the last 10 years. Most photos include a brightness
reference for calibration. Examples of 8 charters can be seen in figure 2.3. The
meta data have been harvested from the website. It includes production dates,
places from where the respective charters were sent from, transcriptions (for
some), earlier reproductions etc.

2.4 George Washington Letters
The George Washington data set, published as a data base for text recognition
by Fischer et al. (2012), is a set consisting of 20 pages from the United States
Library of Congress written by George Washington and one secretary (who
has an almost indistinguishable style of hand writing from the main author).

The images come from series 2, letterbook 1, pages 270–279 and 300–309,
written between August 11 of 1754 and December 25 of 1755. The repro-
duction is of low quality with grey scale images of less than 1 Mpixel. As
a database, the text lines and words have been segmented manually. Images
of the cropped words and lines are supplied (with normalization, a technique

2https://sok.riksarkivet.se/SDHK
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Figure 2.3. A sample of charters found in the “Svenskt Diplomatariums Huvudkar-
totek” (SHDK) collection (section 2.3). These are all medieval charters showing vary-
ing degrees of degradation.
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Figure 2.4. An example image from the Washington data set (section 2.4).

described in section 3.2.1). This is a fairly small database, but often used due
to its detailed annotation. In total, 4894 word images from 656 lines of text,
containing 1471 unique words.

The original collection can be found on the website of the United States
Library of Congress3. As an example, a cropped image from letterbook 1,
page 132, is shown in figure 2.4.

3https://memory.loc.gov/ammem/gwhtml/gwhome.html
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3. Text recognition

A common way of doing image analysis , and the methodology taught in many
basic courses, is to break down your task into independent steps in a pipe-line.
The first box, as illustrated in figure 3.1, would typically be image acquisition
followed by some pre-processing (e.g. histogram equalization), binarization
(if applicable), segmenting out the relevant parts (e.g. connected components,
watersheds), measuring the relevant parts (e.g. area or texture features) and,
finally, draw some conclusions from whatever was quantified. It can be seen
as a divide and conquering approach to image processing, breaking down the
image until the smallest interesting parts of information are identified.

Figure 3.1. A classical image analysis pipe-line for some classification problem. This
set up has, in part, been used for the work described in this section.

In the earlier part of the project, a clear pipe-line was the preferred way of
viewing text recognition. Work was put in to designing a top-down approach
where the manuscript page was broken down into smaller fragments (page
and line segmentation) on which some handwritten text recognition technique
could be applied. This can be viewed in contrast to the latter work presented
in the dissertation, focusing more on machine learning techniques with a more
integrated alternative to the pipe-line.

In the following chapter, the work on the top-down approach to text recog-
nition and some context to it will be described. An exhaustive description of
the context falls outside the scope of this dissertation, though some perspective
on current trends will be included1.
1During the time I have been working on this project, Recurrent Neural Networks (RNN) have
proven themselves to be a much better approach to text recognition, than what is presented here.
In 2011–2013, this was not the consensus yet. I have heard it described as ”this is not evolution,
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3.1 Segmentation
Segmentation is, in short, the art of dividing and conquering the image. Re-
gions of interest are identified, successively breaking down the data into sep-
arable (though often overlapping) objects.

3.1.1 Pre-processing
Both the line segmentation and feature evaluation (papers I-V) require bina-
rization. This is a common, but often unnecessary, design choice. A binariza-
tion is a two class classification problem, where each pixel is set as foreground
or background. If binarization can be performed, the following segmentation
steps are considerably simplified. However, on larger materials, binarization
can be a very hard problem due to the variability of the documents. This in-
sight led to our latter work of trying to eliminate this step so that larger data
sets would be easier to handle.

Many feature extractionmethods are based on the assumption that the image
can be binarized sufficiently well. This poses obvious problems when working
with manuscripts that are almost impossible to binarize. The state-of-the-art
requiring binarization, can not even be used as a meaningful comparison with-
out a lot of work on the binarization itself, a task that is not necessarily at the
core of the project at hand2. In paper VII for example, significant work was
put into adapting the binarization proposed by Shafait et al. (2008) to SDHK,
since we used quill features (section 4.1.1) as a comparison to the proposed
method.

The result of pixel or patch based binarization methods are often broken
connected components, due to the focus on only using local information. For
the data sets C61 and C64, Otsu’s method, by Otsu (1975), with some extra
clean-up using mathematical morphology (with a structuring element looking
like a quill pen tip) was sufficient. For better performance (according to the
metrics of the DIBCO competitions for printed and handwritten text, presented
by Pratikakis et al. (2013) and Ntirogiannis et al. (2014)), something with more
of a model in the binarization can be used, such as the work by Howe (2012)
on graph cuts for finding accurate binary objects or the method proposed by
Shafait et al. (2008) found in the ocropus library3.

but a revolution” and a revolution is indeed what has taken place during the time of my PhD-
studies. RNN, well described for text recognition by Graves and Schmidhuber (2009) and for
historical text by Frinken et al. (2012), is an approach where a network is given memory by
recursively feeding the output back to the network. In parallel to its own output, a sequence of
image data containing the text line is fed to the network sequentially as the primary input. At
the time of writing, this approach wins all competitions.
2In my opinion, binarization has its place but as a research community, we must move away
from it, except in very special cases. I am glad that this, from what I hear at conferences, is not
a controversial opinion any more.
3https://github.com/tmbdev/ocropy
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3.1.2 Line segmentation
In paper II, we proposed a line segmentation method based on multiple steps
of refinement. Popular methods for text recognition often process the text on
a page as a sequence of concatenated lines. This is due to the sequential nature
of written text. In many ways the problem is processed very similar to that
of a speech recognition problem, a different but overlapping scientific com-
munity, e.g. see Jurafsky and Martin (2000). For this sequential processing
to be possible, the text lines need to be segmented so the page can be cut into
strips. Not all text recognition or word spotting is performed this way (e.g. see
work by Rusiñol et al. (2015) for descriptor based searching and by Wilkinson
and Brun (2015) for deep learning based object detection). Great overviews of
the many different techniques for segmenting handwriting can be found in the
contest reports by Gatos et al. (2011) and by Gatos et al. (2010).

The method presented in paper II was actually implemented and tested for
the data in paper I but it was only mentioned briefly. Because of the feedback
given at the Historical Image Processing workshop in Beijing in 2011, the line
segmentation method was evaluated more thoroughly and published separately
the following year. For evaluating themethod, 10 pages fromC61 (section 2.2)
and 10 pages from C64 (section 2.1) were segmented by hand4.

In short the algorithm works as follows:

1. Binarize the image using the algorithm of your choice. In papers I–II,
Otsu’s methods was used followed by a morphology step for clean-
ing up the results.

2. Estimate the text height using connected components. This was de-
fined as the median height of all bounding boxes of the connected
components. In this way, under-segmented and over-segmented
connected components were not allowed to dominate the estimate.

3. Calculate the horizontal projection profile on the middle part of a
threefold vertical split of the page.

4. Smooth the profile by convolving it using a Gaussian filter with the
standard deviation set to the text height (from step 2).

5. Identify maxima in the projection profile, this step is more robust after
preceding smoothing. The number of maxima is used as an estimate
of the number of lines on the page.

6. Calculate more projection profiles with 15 vertical splits, to get more
detail. The previous projection profile was performed on a larger
area for a more robust estimate.

7. Smooth the profiles from the 15 splits by convolving the profiles us-
ing a Gaussian filter as with the wider profile from step 4.

4Sadly, due to unclear image rights, we have not had the opportunity to release this these images
in full.
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8. Grow text line estimates based in the positions of the maxima in the
15 projection profiles, with their starting points at the maxima of the
wider profile. The estimates are grown from the middle towards the
edges by associating the maxima from adjacent splits with the lowest
vertical position difference. The lines grown using the maximamark
the positions of text lines. Correspondingly, the minima between the
line estimates make up a piece-wise linear cut for creating cropped
text line images.

9. Create a cost map as described by equation 3.1, below.
10. Create final line cuts by finding lowest cost paths between the left

and right page edges in the areas between the estimated text lines.
The shortest path was found using Dijkstra’s algorithm, allowing for
very flexible estimates.

The initial binarization of the image was performed using Otsu’s method.
This method has the useful feature of being without parameters, but is far from
the only algorithm for binarizing old handwritten data. Other techniques like
Howe (2012), with clustering improvements by Ayyalasomayajula and Brun
(2014), use much more domain specific knowledge, hence the algorithms are
better for handling domain specific noise (e.g. page bleed-through). The im-
ages of both C61 and C64 (our evaluation data sources) have good contrast and
high resolution, making Otsu’s method good enough for paper II.

Projection based methods are fairly common for finding objects in many do-
mains, likely because of the very low demands on computational powermaking
the methods usable very early in the life of the field. Some papers, like those
by Pal and Datta (2003) and by Arivazhagan et al. (2007), propose a method-
ology where semi-connected binary objects are searched for using summing
over scan lines, both similar to the method presented here.

The graph is created with each pixel as an 8-connected node. The final
weight map W is given by equation 3.1, where pixel positions are indexed
by the coordinate pair (i, j). In equation 3.1, each pixel has been given an
exclusive membership in the foreground or background set (i.e. binarization),
called F and B respectively. A distance transform is run on both foreground
and background, resulting in the distance maps Dfg and Dbf.

Wij =


2Dfg

ij , (i, j) ∈ F

1− Dbg
ij

10 , (i, j) ∈ B ∧Dbg
ij < 10

0.01, (i, j) ∈ B ∧Dbg
ij ≥ 10

(3.1)

The initial estimation, the piece-wise linear estimates using projections of
the 15 splits, can give a very good estimate of the positions of the text lines.
However, for the types of feature extraction used in papers I and III-V, clear
cut lines where each pixel can be said to belong to only one line are needed.
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This is where graph optimization comes in. Such an optimization would not
be needed if connected components did not reach over several lines. In C64,
connected components, evenwith the best of binarization algorithms, can over-
lap more than half of the page (vertically). Equation 3.1 is constructed as to
give the cut between lines some specific characteristics. It is assumed that the
connected components spanning between two adjacent text lines are of either,
touching or overlapping ink strokes. Overlapping strokes are harder to sepa-
rate due to the large overlaps, these would need a character model for better
separation. Touching ink strokes have smaller regions of overlap, making a
separation possible by finding the touching overlaps and cutting the shortest
path though the connected component. The lowest cost path is steered away
from characters to create a “buffer zone” for errors in the binarization (indif-
ferent of if the errors are from algorithm weaknesses or degradation). Where
there is overlap, the lowest cost path cuts through as few pixels as possible
while still trying to cut close to the projecting minima (i.e. between lines). An
example of the processing steps can be found in figure 3.2.

The work proposed by Avidan and Shamir (2007) on seam carving for con-
tent aware image resizing was adapted for cutting apart text lines by Asi et al.
(2011) and by Saabni and El-Sana (2011). This methods was used as a com-
parison to our own work in paper II. Since seam carving only defines one pixel
per pixel column for a separation set of pixels, the method in paper II worked
better on our sources, since cuts using a shortest path can be made around in-
terlocking shapes. Another interesting way of doing graph based separation
is the approach proposed in Fernández-Mota et al. (2014), where the back-
ground is skeletonized and the shortest path though this skeleton is used as the
cut between lines. For a more complete survey, in the papers by Likforman-
Sulem et al. (2007) and by Razaka et al. (2008) two groups have compiled
good overviews (up to the years of publishing).

3.2 Sequential features
Since text is a sequence of characters, text recognition is often set up as a se-
quence learning problem. The text lines are segmented and reassembled as
a long line of concatenated text images, along which, some statistics are ex-
tracted that form a feature sequence. This feature sequence correspond to the
appearance of the original text image5. Sequences of data are something that
has been studied for a long time in fields spanning from speech recognition to

5This is not always the case and there are for example some approaches that directly do word
spotting for whole words, as in the work by Kovalchuk et al. (2014) on creating an embed-
ding space for comparison and going for a neural network approach as by Wilkinson and Brun
(2016). At the time of writing, these kinds of approaches are the most interesting. This opinion
is supported by that more than half of the papers at the international conference for frontiers in
handwriting recognition (ICFHR) in 2016 had the word “deep” in the title.
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Figure 3.2. An example of the progression through the segmentation refinements from
section 3.1.2. From the top, the first image is the original, followed by the first projec-
tion step and the refinement from growing the lines using a more detailed projection
and finally the result of the graph based refinement step.
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Figure 3.3. Some results from paper V on query-by-example word spotting. In word
spotting, single (or short sequences of) words are sought for. The data material here
is the manuscript C61 (section 2.2). The left column shows hits for the word “att”
(Swedish for “to”, as in to do something) and the right column shows the word “och”
(Swedish for “and”).

bioinformatics, in addition to the recognition of writing. There exists a multi-
tude of methods for comparing such data, e.g. see the survey by Trentin and
Gori (2001). For less learning based approaches (as those described here), a
distance metric is defined between individual feature vectors, as opposed to
neural network based methods where the metric is learned in full. This dis-
tance metric allows for a new metric on a meta level, comparing sequences of
feature vectors. When a sequence is cut out , corrsponding to some part of the
text line, a template matching scheme can be used for comparing it to every
other position along the text lines. Likely matches are at positions where the
distance is low.

The way of finding words that is presented here is called word spotting.
Since, full recognition of historical text has proven itself to be a very hard
problem, the research challenges have been split up into full text recognition
and searching large document collections with high accuracy, i.e. spotting
interesting words. An example of the results of word spotting can be seen in
figure 3.3, showing results from paper V. Word spotting is commonly divided
into query-by-example, where an example of the search query must be selected
from the manuscript, and query-by-string, where models for the characters are
learned and used for searching. For a query-by-string approach, a model that
connects the individual characters and a text image must be learned. This is
often a more complex procedure than concatenating some example images of
characters and then running the word spotting in a query-by-example manner.
It is rarely enough to learn from single instances of characters. For good results,
the expected variation of each character needs to be present in the training data.
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3.2.1 Features for text recognition
The most common set of text recognition features are the so called Marti-
Bunke features, proposed byMarti and Bunke (2001). These are a set of statis-
tics on the shape of the foreground pixels in a sequence of pixel columns. This
is the set used in papers I-V. A so-called sliding window is run along the text
line and a feature vector is created from each small window (i.e. neighbour-
hood) at each pixel column. Some of the features are defined in relation to a
lower and upper baseline. These baselines are the common text help lines, the
standard baseline and an imaginary line limiting the height of the lower case
characters. The features are the following:

Projection profile The vertical projection of the pixel column (i.e. the sum of
foreground pixels in each column).

Upper contour The position of the foreground pixel with the highest vertical
position.

Lower contour The position of the foreground pixel with the lowest vertical
position.

Upper projection The projection profile above the upper baseline (i.e. pro-
jections of ascenders).

Lower projection The projection profile below the lower baseline (i.e. pro-
jections of descenders).

Centre of Weight Themean vertical position of all foreground pixels in a col-
umn.

Foreground/background transitions The number of transitions between the
foreground and the background in the pixel column.

Second moment The variance of the vertical positions of the foreground pix-
els in a column.

Gradient of the upper contour First derivative of the upper contour curve.
This calculation needs a window size of more than one column.

Gradient of the lower contour First derivative of the lower contour curve.
This calculation needs a window size of more than one column.

Foreground fraction The ratio of pixels belonging to the foreground, between
the upper and lower contours.

In figure 3.4, an example of feature extraction is shown (using the upper
and lower contour features). As stated in their original paper, these features
are not very robust against varying slant, skew, character size or non-smooth
baselines. This is mitigated by a pre-processing scheme, resulting in normal-
ized text line images. This normalization is in short, estimation of the slant,
estimation of the lower and upper lower baselines and, finally, warping the
whole word image to compensate for these estimated variations. The result
is a binarized image of a text line (or single word) where the base line is at
a set height in the image. More importantly, the characters have the same
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Figure 3.4. An example of feature extraction for text recognition on two instances of
the words “corpus christi” from C64 (section 2.1). The upper most images are cropped
from the original source, the middle images are the binarization and the bottom images
are the contour features. In pixel columns where there are no contours, the contour line
was interpolated linearly, as to not break the sequence.

size in all images. The slant correction can sometimes make ascenders slant
”backwards”, though the end result is still a better recognition accuracy. This
normalization is already applied to the George Washington data set (section
2.4), hence, it is used in papers III and IV.

The Marti-Bunke feature set is used extensively in the literature. A lot of
research has gone into finding other types of features. Some of the more in-
teresting are using histograms over a codebook of descriptors, proposed by
Rothacker et al. (2013), a more learning based approach like those by Doetsch
et al. (2014) and by Voigtlaender et al. (2016) or going for a HMM and neural
network hybrid as in Espana-Boquera et al. (2011). An evaluation for features
can be found in the work by Ayyalasomayajula et al. (2016). The biologically
inspired features by van der Zant et al. (2008) was another very interesting
research direction before feature learning using deep learning started to com-
pletely dominate handwritten text recognition.

3.2.2 Relative importance of feature types
TheMarti-Bunke features have been a very common choice of text recognition
features. In paper III, the relative importance of the individual Marti-Bunke
features were examined. By setting up a word spotting evaluation framework,
using the George Washington database ( section 2.4). By implementing the
word-spotting approach by Manmatha and Croft (1997) and developed fur-
ther by Rath and Manmatha (2003b) and by Rath and Manmatha (2003a), the
features could be re-weighted and a word spotting performance number asso-
ciated with every point in the weight space. This was done in order to better
understand which features contributed more to the outcome.
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In the GeorgeWashington database, 4894 cropped words belonging to 1471
word classes are given as normalized binary images. For every word, the
11 features were extracted. These feature sequences were weighted, given
a weight vector supplied for suppressing or reweighing single feature dimen-
sions. Each word pair was compared using dynamic time warping (described
below in section 3.3.1), giving a single number for the pair-wise difference.
A quadratic and symmetric matrix, with a side of 4894, was set up to contain
all the pair-wise differences between word images. Dynamic time warping
(DTW) is a way of identifying the differences between sequences, given some
feature vector distance metric, without any learning. Hence, we thought the
effects of this evaluation would be as “raw” as possible, without any learning
hiding the effects of the feature weighting.

The true positive rate (TPR), true positives from the classification as pro-
portion of ground truth positives, and false positive rate (FPR), false positives
from the classification as proportion of ground truth negatives, were calcu-
lated by classifying the cells in the word difference matrix using thresholding.
By successively relaxing the threshold, for each level (all possible threshold
levels were used) a TPR-FPR value pair was calculated. These value pairs
were ordered according to the threshold level and looked like the curves in
figure 3.5. For each weight vector, the area under the curve (AUC), based
on receiver operating characteristic, was calculated as a single number per-
formance metric. For a more thorough overview of AUC and its uses, see
Bradley (1997). In the figure, the red area under the curve is the AUC, i.e.
AUC is the red area as proportion of the unit square. The word spotting,
given the database and other design choices, can now be seen as a function
fwordspotting : [0, 1]11 ⊂ R11 → [0, 1] ⊂ R, mapping every possible weight
vector to an AUC.

By choosing a weight vector with only 0 and 1 as values, the performance
from fully removing features can be evaluated. This is shown in table 3.1,
where results using only single features and leave-one-out validation are pre-
sented. When the weights are seen as a parameter space, with restrictions on
the weight vector w as w ∈ (0, 1)11 ⊂ R11, optimization can be used to to
maximize performance. This space was piecewise flat, due to the evaluation
depending on thresholding. Small areas within the weight space gave constant
performance, making gradient based optimization non-applicable. Hence, we
could use a sampling coordinated descent approach tomaximize the word spot-
ting performance. Some results of the optimization are shown in table 3.2.
Several runs were performed but they all looked approximately like those pre-
sented in the table. Hence, it looks like the projection based features were the
most useful for finding word matches.
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Figure 3.5. In sections 3.2.2 and 3.2.3, the word spotting evaluation is quantified us-
ing the area under the curve (AUC). By thresholding the pair-wise word differences,
a classification was made giving a true positive ratio (TPR) false positive ratio (FPR).
Successively relaxing the threshold creates curves with TPR on the y-axis and FPR on
the x-axis. AUC is shown as a red area under the lowest of the performance curves
in the plot. The other curves are examples of improved performance when using opti-
mization for finding a reweighing of the features.
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Feature Single Leave one out Leave one out
(without “lower gradient”)

Projection 0.877 0.839 0.858
Upper contour 0.853 0.840 0.859
Lower contour 0.788 0.842 0.861
Upper projection 0.871 0.840 0.856
Lower projection 0.648 0.836 0.856
Centre of weight 0.784 0.842 0.861
Background/Foreground transi. 0.802 0.843 0.863
Second moment 0.792 0.843 0.862
Upper gradient 0.794 0.841 0.867
Lower gradient 0.796 0.861 -
Foreground fraction 0.827 0.826 0.843

Table 3.1. Area under the curve (AUC) performance for word spotting on the George
Washington Letters dataset (section 2.4), for evaluating feature importance. By only
trying out one feature at a time, their respective importance for discriminating word
images can be evaluated. The effect of leaving one feature out from the full set was
also investigated by leave-one-out (LOO) validation. The right-most column shows
LOO after “lower gradient” feature was removed, the lowest scoring feature from the
middle column. Results that were better than the base line of 0.8418 are in bold font.
The full set of words for the evaluation contained 4894 elements.

Marti-Bunke features (ordered as the list in section 3.2.1) AUC
Weights 0.6 0 0 1 1 0.4 0 0 0.2 0 0.3 0.899

0.9 0 0 0.9 1 0 0 0 0.2 0 0.3 0.900
0.8 0 0.4 0.9 1 0 0 0 0.2 0 0.3 0.899

Table 3.2. Weight vectors found by coordinate descent optimization. From these
weight vectors, the features that were most important were the three projection pro-
files.
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3.2.3 Feature filtering
When working with noisy images, a very common first step is to apply some
filtering to remove noise. In paper IV, we expanded on the Marti-Bunke fea-
ture extraction approach by adding filtering to the sequence of feature vectors,
instead of applying them on the images. By adapting four types of filtering
(Gaussian, bi-lateral, median and non-local means) to the feature vector se-
quences, the performance in terms of word spotting could be increased. The
evaluation framework presented in the last section was used for evaluating the
effects of the different filters. The full set of 11 features were reduced to a
subset of 4 for this study. The features for paper IV were “Projection profile”,
“Upper contour”, ”Lower contour“ and ”Foreground/background transitions“,
as recommended by Rath and Manmatha (2003a).

The Gaussian filter
AGaussian filter is applied as a convolution on the data domain. It is aweighted
average of neighbouring data points, where the weights are taken from a Gaus-
sian kernel. Assuming neighbouring data points are similar and that the noise is
independent for each data point, the noise cancels out in the resulting weighted
average. However, this leads to smoothing of sharp differences (e.g. at edges
in an image). Because of this, the Gaussian filter is often called Gaussian
smoothing. When the Gaussian filter is applied to gray scale images, all pixel
values in some neighbourhood are considered in the convolution. For colour
images, the colour channels are treated as independent. For the feature se-
quences in paper IV, the filtering was performed per dimension. The Gaus-
sian filter have many applications for sequences in signal processing, e.g. see
Blinchikoff and Zverev (1976), very similar to what is considered here. For
the feature vector sequence Di indexed by position i, the filtered sequence D̂i

is given by:

D̂i =
1

Z

⌊N/2⌋∑
j=−⌊N/2⌋

D(i+j) exp
(
− j2

2σ2

)
(3.2)

where the normalization constant Z is given by:

Z =

⌊N/2⌋∑
j=−⌊N/2⌋

exp
(
− j2

2σ2

)
(3.3)

The width of the filter, N , gives the size of the local neighbourhood (in the
unit adjacent feature vectors) for each weighted average. The σ parameter is
the width of the Gaussian kernel, preferably much smaller than N (e.g. 4σ ≤
N ) for the convolution kernel to have Gaussian characteristics (otherwise it
will be cut off before reaching the tails of the distribution). Selected evaluation
results are shown in table 3.3.
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Filter type σ AUC
Gaussian 0.34 0.853
Gaussian 2 0.876
Gaussian 8 0.849

Table 3.3. Some word spotting results for the Gaussian filter (section 3.2.3). Numbers
in bold font indicates performance above the baseline of 0.852.

The bilateral filter
TheGaussian filter assumes that adjacent data points are similar, creating prob-
lems along image object edges and other sharp steps in the data. The bilateral
filter proposed by Tomasi and Manduchi (1998), mitigates this by adding a
data similarity component to the weighted average. Since this new compo-
nent depends on the data, the operation can no longer be implemented simply
as a convolution, increasing the computational complexity in comparison to
the Gaussian filter. However, the performance along edges is considerably
improved by only applying the smoothing on selected parts of a local neigh-
bourhood. The similarity is not defined per dimension in this implementation.
For the feature vector sequence Di indexed by position i, the filtered sequence
D̂i is given by:

D̂i =
1

Zi

⌊N/2⌋∑
j=−⌊N/2⌋

D(i+j) exp

(
− j2

2σ2
s

−
∥∥Di − D(i+j)

∥∥2
2σ2

d

)
(3.4)

where the normalization constant Zi depends on the data and is given by:

Zi =

⌊N/2⌋∑
j=−⌊N/2⌋

exp

(
− j2

2σ2
s

−
∥∥Di − D(i+j)

∥∥2
2σ2

d

)
(3.5)

The exponential function now includes two terms. In the first, the width
parameter σs is analogue to the σ in the above definition of a Gaussian filter.
The second term is the sensitivity to similarity between the data point being
processed and its neighbours. The parameter σd is the sensitivity to this data
similarity. Selected results are shown in table 3.4.

Filter type σs σd AUC
Bilateral 2 4 0.876
Bilateral 8 0.4 0.861
Bilateral 8 4 0.852

Table 3.4. Selected evaluation results for the bilateral filter (section 3.2.3). The pa-
rameter σs is the spatial standard deviation (in number of sequence positions) and σd

the standard deviation for the data similarity. Numbers in bold font indicates perfor-
mance above the baseline of 0.852.
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The non-local means filter
The non-local means filter was proposed by Buades et al. (05) and takes the bi-
lateral filter one step further. By removing the part of the weight function that
defines locality, the filtering at every point now depends on every other point
in the data. Hence, the computational complexity becomes quadratic. In some
implementations, a window is defined for the similarity comparison to limit
the data sequence, e.g. to 10% of the full data. An interpretation of this type
of filtering, is that the variation in the data is reduced by making the structure
of the variations more homogeneous. In this way, similar areas can now be
brought closer to each other in terms of feature distance. For the feature vector
sequence Di indexed by position i, the filtered sequence D̂i is given by:

D̂i =
1

Zi

∑
d∈D

d exp

(
−∥Di − d∥2

2σ2
d

)
(3.6)

where the normalization constant Zi depends on the data and is given by:

Zi =
∑
d∈D

exp

(
−∥Di − d∥2

2σ2
d

)
(3.7)

Note that d ∈ D indicates summation over all vectors in the sequence. Also,
while the sequences for the other filters are defined per word, the non-local
means filter uses all feature vectors from all words for the similarity com-
parison. The σd parameter is the standard deviation in the feature space and
represents the sensitivity to similarity.

The similarity function can be defined between single vectors, but also be-
tween several concatenated vectors. Inspired by thework of Tibell et al. (2009),
neighbouring feature vectors in a sequence can be used together in the similar-
ity calculation. Considering a small neighbourhood of feature vectors proved
to be a good strategy, but the effect of tuning its size was dwarfed by tuning
the σd parameter. Selected results are shown in table 3.5.

Filter type Neighbourhood σd AUC
Non-local means 3 4 0.913
Non-local means 1 4 0.903
Non-local means 3 0.05 0.847

Table 3.5. Selected evaluation results for the non-local means filter (section 3.2.3).
Numbers in bold font indicates performance above the baseline of 0.852.

The median filter
In image processing, the median filter can be used for removing random spikes
in the data (also called “salt and pepper” noise). The advantages to this type
of filtering is that edges are preserved at the expense of also removing sudden
spikes in the signal. A median operation on scalar values is a very simple
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operation, while the same can not be said for the median of vectors, that can
be defined in several ways. We followed the approach by Astola et al. (1990)
and Astola et al. (1988) for median filters for multi channel signals.

Depending on application, the l1 or l2 norm can be used for similarity be-
tween vectors. We implemented both, along with a dimension wise median
filter (i.e. the standard scalar median filter run on a sliding window for each
data dimension of the sequence). For the feature vector sequenceD, a replace-
ment vector index j for each processed index i is sought for. The replacement,
creating D̂i, is defined as:

D̂i = Dj (3.8)

where the replacement index j, in some index set Xi depending on i and
the neighbourhood size N such that Xi = {x|x ∈ N : i − ⌊N/2⌋ ≤ x ≤
i+ ⌊N/2⌋}, is given by:

argmin
j∈Xi

∑
k∈Xi

∥Dj − Dk∥ (3.9)

where i, j, k ∈ N and are all valid sequence indices. A more intuitive expla-
nation to this procedure is that the middle-most vector, defined by somemetric,
from a local neighbourhood replaces the vector at the index being processed.
Some selected results are shown in table 3.6.

Filter type Width AUC
Dimension wise mean 7 0.875
Dimension wise median 5 0.859
l1 vector median 3 0.8497
l2 vector median 3 0.8497

Table 3.6. Selected evaluation results for the median filter (section 3.2.3). Numbers
in bold font indicates performance above the baseline of 0.852.

In figure 3.6, the effects of filtering is shown on a single dimension of a
feature signal, as an illustration. The difference in performance between the
Gaussian and the bi-lateral filter, tables 3.3 and 3.4, are not clear. There might
be some improvement but it is hard to say from this evaluation. For the me-
dian filter, the dimension-wise filtering performed much better than the vector
based one. This might be because spiking noise in the feature signal occurs
in one dimension at a time and are obscured when the full feature set (i.e. the
whole vector) is used for calculating differences. On the other hand, is the filter
can not pick up the difference, the word spotting comparison algorithm might
not either. The non-local means filter looks like a whole new signal in the
illustration in figure 3.6, however, the increased word spotting performance,
shown in table 3.5, is clear compared to every other filter configuration.
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Figure 3.6. Examples of the original signal and filtered results, with varying parame-
ters, on small cut outs of one dimension of the feature sequences (section 3.2.3). Top:
the Gaussian filter, Upper middle: the bi-lateral filter, Lower middle: the non-local
means filter, Bottom: the vector median filter. The original signal is in blue, while
the other colours are filtering results with varying parameters. Note how the Gaussian
and bi-lateral filter smooth the signal, while the median filter only cuts some extreme
values. The red curve in the results from the non-local means filtering is very differ-
ent from the blue curve (the original signal). This is due to that the filter uses the full
feature sequence from all words to reshape the output. It looks a bit erratic but is a
homogenization of the feature sequence.
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3.3 Sequence analysis as text recognition
3.3.1 Dynamic time warping
When images of text is represented by sequences of feature vectors, a way to
compare these sequences is needed to be able to compare the text content. The
technique used in papers I–V for quantifying the similarities (or dissimilarities)
was dynamic time warping (DTW). DTW is a way of finding the minimum
number of changes that need to be performed in order to ”warp” two sequences
(possibly of different lengths) to be as similar as possible. Below, the needed
distance metrics and allowed changes to sequences will be explained, but first,
an introductory example.

To explain DTW, it is easier to start the description from its predecessor,
the concept of Levenshtein distance, proposed by Levenshtein (1966). The
Levenshtein distance is a distance metric between strings of text, more specif-
ically, the minimum number of edit operations that are needed to transform
some string A into some string B. As such, one of its uses is as a similarity
metric for spell checkers. This quantified difference between strings is sym-
metric, i.e. every minimal cost change set SA→B has a corresponding change
set SA→B with equal cost. The change set is found using dynamic program-
ming, guaranteeing the minimal cost. The edit operations are often defined as:
adding a character, removing a character, changing a character and swapping
places of two subsequent characters. The necessary set of operations are only
adding and removing characters. However, since swapping characters is such
a common spelling mistake, it might be better to allow this as a separate low
cost edit operation in a spell checker. More operations can be added if the
application demands it. Also, each edit operation can be weighted, e.g. for al-
lowing low cost changes for characters that are phonetically similar or where
the keyboard keys are close together.

In figure 3.7, an example of the Levenshtein calculation is shown. The
strings to be compared are first set up along the vertical and horizontal dimen-
sions of a table, so that every character pair have a cell in the table. The default
is that cells are filled with the number 1, in this simplified example. For all cells
where rows and columns belong to matching characters, the cell is filled with
a 0. This corresponds to the change cost, mismatch has a cost but matches do
not. The next step is to calculate the accumulated cost at each cell. Each cell
C of position i, j in the table is now used to calculated the accumulated cost in
a new table A as Ai,j = Ci,j + min(Ai,j−1, Ai−i,j , Ai−1,j−1). The value of
each cell in A, contains the minimum cost for the change set up to that point.
This accumulated cost table is shown in the middle part of figure 3.7. The last
part of the distance calculation is to find the minimum cost path through table
A. The lowest cost will always be the number in the lowest and rightmost cell.
Backtracking thoughA is performed by stepping from the last cell backwards.
Each step is always to a cell will equal or lower cost than the current. Tracking
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Figure 3.7. An example of Levenshtein distance (section 3.3.1), calculated between
the words “orders“ and the misspelling ”odrse“. Through dynamic programming, the
minimum cost of the change set needed to transform one string onto the other, can be
guaranteed. The left-most table shows the element difference cost, the middle-most
table show the accumulated cost and the right-most table shows the warping path. Note
that there are several paths with equal cost. How this should be handled is a design
choice that falls outside the method itself. However, a common way of reducing the
number of alternative paths is to add more change operations and find better difference
cost than only using 1 and 0, as in the left most table.

the lowest cost path back to the upper left corner gives the full path, with two
corresponding change sets SA→B and SB→A.

The Levenshtein distance metric between strings is extended in dynamic
timewarping (DTW) to discretely sampled continuous signals. The signals can
have more than one dimension, as the sequences of feature vectors described
above. Instead of working with discrete symbols, as in the case with text char-
acters, feature vectors take their place in the tables from the Levenshtein ex-
ample. The difference between feature vectors can be defined as binary within
some ϵ, though it makes a bit more sense to use proper distance metrics (e.g.
euclidean distance). In paper I, some variations to the standard euclidean dis-
tance were evaluated for a word spotting task. The evaluation there led to the
squared euclidean distance being used in the subsequent papers.

In papers I-V, when sequences are of equal length, the DTW difference is
defined as the accumulated squared euclidean distance at each sequence sam-
ple point. The allowed changes was skipping one sample from either sequence.
This corresponds to allowing the first sequence to be ”stretched out” to match
the second, and the second to be compressed into the first (assuming the first
sequence is shorter than the second). In algorithm 1, the warping procedure is
shown. Note that the algorithm does not return the warping change set (though
this would be an easy extension), since it is not needed. Only the minimal cost
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after warping is used to compare feature vector sequences corresponding to
word images.
Algorithm 1: An algorithm for calculating the dynamic time warping dif-
ference between two sequences u and v, of lengths n and m, in some do-
main S given some distance function d : S × S → R (section 3.3.1).
In papers I and III-V, squared euclidean distance was used. The set of
changes needed for the warping could be obtained by backtracking in D,
which is not needed for finding the DTW cost/distance.
Data: u ∈ Sn, v ∈ Sm

Result: C ∈ R
D ←− AllocateMatrix(n,m)

D[0, 0]←− 0 /* Set starting point to 0 */

for i ∈ {x ∈ Z : 0 ≤ x < n} do
for j ∈ {x ∈ Z : 0 ≤ x < m} do

D[i, j] := d(u[i], v[j]) +min(D[i− 1, j], /* insertion/deletion */
D[i, j − 1], /* deletion/insertion */
D[i− 1, j − 1]) /* match */

C ←− D[n− 1,m− 1]

Dynamic TimeWarping have been used extensively for handwriting recog-
nition in the literature, see for example Kane et al. (2001), Rath andManmatha
(2003b) and Manmatha and Croft (1997)6. In these papers, segmented words
are compared. In paper I, a way of running a fast word spotting on full lines
were presented. To do this, a word that is selected as the search template is
extended with dummy signal elements as the first and last sequence element.
The cost for ”stretching” these are set to zero. Since the warping path though
the cost matrix (the cost matrix is the name for the cost table of Levenshtein
distance in DTW) is forced from the upper left corner to the lower right cor-
ner, the optimal warping path is allowed to ignore large parts of the sequence
of a full text line. The weight calculations can also be reused to decrease the
necessary calculations. In figure 3.8, an example of this is shown as the cost
matrix in grey scale and the minimum cost path in colour. The properties of
the DTW distance still hold and the matches, between a template and a line
can be ranked according to the distance value.

The cost matrix is expensive to calculate in full. However, restricting the
warping as to not allow matches between signal samples with a large time
difference can be beneficial to the matching and reduces the number of calcu-
lations. This is achieved by limiting the distance of the warping paths from
the diagonal of the cost matrix. The matrix is not calculated in full, only the
6There aremany other uses for sequence alignment that I do not present here. Amore unexpected
application is aligning 3D images of colons for surgery preparation ”fly though”, proposed by
Nain et al. (2002).
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Figure 3.8. An example of a warping path “cutting” though a full text line, using
dynamic time warping (section 3.3.1). The cost matrix, i.e. element wise differences
between feature vectors, is shown in gray scale in the background with the warping
path in colour.

A

B

A

B

Figure 3.9. An illustration of the Sakoe-Chiba restrictions to the cost matrix using in
dynamic time warping. To the right is the diagonal shape, allowing for a constant limit
on the warping. To the left is the diamond shape, allowing for a higher warping in the
middle of the sequences than in the beginning and end parts (section 3.3.1).

extended diagonal, as proposed by Sakoe and Chiba (1978). A variant of this
restriction is the diamond shape, where the allowed warping is higher half way
along the signals than in the beginning and end parts. Another is the diagonal
shape, where warping is restricted by using a constant breadth of the extended
diagonal. An illustration for which parts of the cost matrix that are calculated
using the diagonal and diamond shapes are shown in figure 3.9. A lower cost
match might be possible if a full warping would be allowed, the authors argue
that this is a pathological warping and should not be allowed.

In the full line DTW word spotting of paper I, this restriction to the cost
matrix can only be used in the beginning and end of the line. Hence, the savings
from any restriction shape was very limited. In papers III and IV, however, the
word wise matching approach proposed by Manmatha and Croft (1997), was
used and the savings to computational power were considerable.

As is shown in algorithm 1, the implementation of DTW is straight forward
and there is no need for a deeper understanding of the mathematics. As this is
a great strength of this method, considering its usefulness, it is also its weak-
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ness. No need for learning also means that there is no adaptation to the data,
more than that design choice in the allowed set of changes and distance metric.
Considerable work has been put into finding better distance metrics for word
spotting application, for an overview see (Haji, 2012), though it falls short
compared to more learning based approaches, as hidden Markov models (de-
scribed below). However, for the applications presented in papers I, III and V,
adaptation to the data was undesirable. Both the evaluation of theMarti-Bunke
feature and filtering techniques demanded a more raw use of matching. Us-
ing a more learning based approach in these scenarios would make controlling
which factors affected the end results much harder.

3.3.2 Hidden Markov models
A very popular technique for modelling sequences, in fields as diverse as
speech recognition to genetics, is the Hidden Markov Model (HMM)7. The
observed sequential data is modelled as if it was generated by some unob-
servable state machine with a data emitter attached to each state. The model
parameters are probabilities for transitioning from each state to any other as
a transition matrix, state initial probabilities and the data emitter distributions
connected to each state (emitting observable data). The emission distribution
can be of any form that fits the domain of the observed data (e.g. multinomial
or Gaussian). Since the states can not be observed directly, there is no way
of knowing, at any given point, from which state an observation is emitted.
In fact, there is no limit to how similar emission distributions from different
states can be. Sometimes it is even beneficial to tie them together, making two
emission distributions have the same model parameters. Hence, two models
that emit the same data sequences, can look very different in the hidden state
space. For the many variations and implementation details, see the excellent
tutorial by Rabiner (1989).

In the case of character recognition, it is common to choose a fixed topology
before training the model, e.g. see the survey by Plötz and Fink (2009). In this
way, some domain specific knowledge is encoded through model restrictions.
In figure 3.10, an example of an HMM for a single character is shown. This is
a so called character HMM, as in the work by Fischer et al. (2011) and Fischer
et al. (2012). A character HMM is a way of modelling every single character
using a common state space template. This template is then copied and each
one trained to fit a specific character that is present in the training data set.
The model shown in the figure is one instance of this template. The circles
marked S1..S7 are the hidden states. From these, arrows go to other states,
7At the time papers I-V were written, HMMs for handwriting recognition were still considered
a state-of-the-art method. Though I started working on writer identification techniques (next
chapter) before getting around to publish on HMMs, I would still like to publish the 6 months
worth of HMM code that lives in a dark corner of my hard-drive (assuming that the gods of
funding are willing).
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S1 S2 S3 S4 S5 S6 S7

Y1 Y2 Y4Y3 Y5 Y6 Y7

O1 O2

Figure 3.10. An illustration of a so called character Hidden Markov Model. The cir-
cles marked S1..S7 are the hidden states, the rectangles marked Y 1..Y 7 are emission
distributions and the rhombi marked O1, O2 are the observations. In this example,
the modelled character is an upper case “H”. A sliding window over “H” only gives
two types of pixel columns and is symmetric, leading to only two types of observa-
tions even though there are seven emission distributions. A more detailed description
is found in section 3.3.2.

specifically the two following. Also, a self transition is allowed, i.e. staying in
a state. This type of constraints, not allowing “backward” transitions, is called
a Bakis topology. When the transition probabilities (for the allowed transi-
tions) are learned from data, this topology allows for contracting the length
of a likely path of state transitions between S1 and S7 from six to three (i.e.
the state sequence S1, S3, S5, S7). In this way, longer and shorter characters
can be modelled using the same template. The squares marked Y 1..Y 7 are the
emission distributions. These might be Gaussian mixtures for some feature set
(e.g. Marti-Bunke features as described above), multinomial distributions for
some codebook or some other, more or less, exotic distribution. The observa-
tions, rhombi markedO1, O2, are in this example from a sliding window going
over the character “H”. Hence, the observed data is symmetric and with only
two different outputs. This example shows how different the observations can
be from the underlying state machine progression.

An HMM is usually trained using an algorithm called the Baum-Welch al-
gorithm. This algorithm is an instance of expectation maximization (EM), but
under another name since EM is a generalization of this algorithm and several
others. As such, the emissions are locked while tuning the transitions, before
locking the transitions and tuning the emissions, see Rabiner (1989). A great
advantage over the DTW approach, described above, is that emissions, tran-
sitions and topology can be learned from data, giving flexibility within strong
constraints.

When the HMM is trained, the most likely state sequence, given some ob-
servations, can be found using the Viterbi algorithm. This is how the most
likely character sequence, given the data, is decoded. The Viterbi algorithm
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is an instance of dynamic programming and can be used due to the Markov
property of the state space, illustrated in equation 3.10.

p(sn|sn−1, sn−2, . . . , s0) = p(sn|sn−1) (3.10)

The Markov property, equation 3.10, states that the probability of being in
any state, at position n in the data sequence, only depends on the preceding
state. The HMM is described as “without memory”, the future state progres-
sion only depends on the present. This makes decoding using dynamic pro-
gramming possible, in this case the Viterbi algorithm, making decoding much
easier and faster than would otherwise be possible. However, it also intro-
duces a problem with an exponential decay in the probability of staying in any
particular state. The probability of stayingm time steps in one node with self
transition probability p(sn|sn) < 1 is p(sn|sn)m.

An alternative approach to fixing the topology is to put a prior on the transi-
tion matrix. This process, described by Huang et al. (2001), makes it possible
to suppress some transitions instead making a binary choice on if a particular
transition is allowed or not. However, there are some papers casting doubt
on the importance of choosing a good topology. Work by Van Oosten and
Schomaker (2014) show that in many instances, the topology does not matter
much for the performance of the HMM model.
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4. Identifying writer hands and production
dates

The methodology of the work laid out in chapter 3 was based on a hierarchy
of methods. For instance, page and line segmentation were prerequisites to the
text recognition. In this chapter, methods will be described where information
is extracted from a manuscript page as a whole. In particular, these methods
will bypass line segmentation. These global methods are used for identifying
writers and estimating production dates of pre-modern texts in large document
collections. The following chapter will cover the work of papers VI-IX.

Segmentation methods (i.e. breaking a page down into a set of classes of
objects) are often very hard to develop for large sets of data. Most of the vari-
ation in the images needs to be taken into account for a result that is successful
on more than a small set used in the development. This demands a very flex-
ible segmentation method or a very homogeneous data collection. An almost
impossible requirement for real data. There are many potential ways of get-
ting around this problem, e.g. learning a flexible model, several specialized
systems for one data set or simply relaxing the demands on segmentation, and
compensating elsewhere. In paper VI, binarization (i.e. the process of separat-
ing foreground from background) was used to find the ink strokes. Statistics on
these ink strokes were used as features for separating scribal hands (i.e. writer
identification). Evaluation was performed on a homogeneous data set, C61
(section 2.2). In papers VII-IX, the segmentation problem is largely avoided
by introducing a sampling mechanism based on edge detection. This approach
made it possible to perform feature extraction on a large dataset with varying
contrast, light conditions and several types of degradations (the SHDK data
set, section 2.3).

Binarization is an ongoing story in the document analysis community, many
times seen as a solved issue but always re-opened as new data sets become
available to the community. An important part of the novelty presented in
papers VII-IX, is that the parts of the problem usually solved by segmentation,
are pushed onto lower level stroke detection and feature selection. The number
of features extracted was let to be very high, leaving sorting the good from the
bad to a learning step (i.e. a Gaussian process).

The writer identification task is all about finding some distance metric be-
tween scribal hands, making clustering of similar hands possible. The estima-
tion of production dates is the corresponding regression problem to this writer
classification. Here, the aim is to quantify the aspect of a page for discriminat-
ing between writer styles. The aspect here is a term from palaeography for the
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overall impression of a page, something there is currently no successful way
of quantifying more objectively. Instead, the shapes of specific characters are
used as criteria for discriminating in a quantitative way, e.g. the criteria sum-
marized by Derolez (2003). Solving this problem using a computer requires
the characters to be found and, in the worst case, the whole text transcription
problem needs to be solved. Text recognition is sometimes said to be solved,
a half truth. Assuming the text is scanned, black on white, 12 pt text in the
Arial font without degradations, it is a solved problem. In all other cases your
mileage may vary. Automatic transcription of pre-modern manuscripts can
only be performed, with any real accuracy, on very few texts. Then, focussing
on the page as a whole, effectively avoiding the transcription problem, makes
analysis possible on more manuscripts. However, this is not a generally ac-
cepted way of doing studies in palaeography, opening up for a whole new
realm of pedagogical challenges.

In philology, there is a long tradition of performing writer identification.
Sometimes the, perhaps more correct term, scribal attribution is used. Writers
have not identified themselves, but text is attributed to a scribal hand without
saying anything about the person connected to said hand1. Common criteria are
orthography, language forms and palaeography, as explained by Mårtensson
(2011). Palaeography is described as the central tool for scribal attribution, the
others as complementary. However, defining formal criteria for shape is hard,
leading to disagreement on criteria, let alone attribution. Another problem is
the variation in one hand. A formal style with little variation in shape between
different instances of characters, is preferable to informal writing where the
scribe might not have put as much work into uniformity and readability of
the text. These conditions demand different methodologies when approach-
ing different manuscript styles, even if the writer is the same. For Nordic me-
dievalmaterial, the criteria compiled byÅström (2003) are a source of common
ground for researchers. However, Åström is negative to only using palaeo-
graphical criteria for attribution, emphasizing the value of also using language
forms, orthography, manuscript or paper quality, watermarks etc. These cri-
teria are often too vague for doing a production date estimation, with any cer-
tainty. This is where computerized methods come in, with their capability to
measure small variances in the ink strokes exactly, without tiring.

Computational methods have been used for some time for identifying scibal
hands, e.g. by Ciula (2005) for analysing formal script in the context of digital
humanities. The base in their method was that of creating average letter forms,
and similar work has been done before the dominance of computers, e.g. by
Gilissen (1973). For forensic writer identification, systems have been assisting
in finding matching hands in databases (thereby reducing the need for human

1It is important to note that for pre-modern text, the person signing the text might not be the
scribe. It was not uncommon to dictate to a scribe, even for an educated person that could
potentially write their own text.
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labour), e.g. in a system proposed by Greening et al. (1995), built on criteria
for cursive writing by Eldridge et al. (1984). They clustered writers by finding
regularities within a scribal hand by looking at, amongmany other features, the
relative difference between minims and ascenders in the script, and the angles
with which diacritic signs attach to ascenders. For a good overview of the
field, the survey by Franke and Srihari (2008). In the document analysis sub-
field of computer science, there is a tradition for feature extraction where an
image is binarized and connected components are measured (with significant
methodological variation). The quill features, described and used below, fits
well with this tradition.

Significant work exist in the literature on how to hand-craft a good feature
set for writer identification and production year estimation. A good feature
should catch the relevant variance in a scribal hand while ignoring standard
properties of writing. Classification and regression is often performed using
support vector machines, or other non-linear kernel method,for finding a good
separation2. The feature can be explicit in what is sought for, e.g. as by Bulacu
and Schomaker (2007) with the Hinge feature for writer identification or the
work by He et al. (2016c) on estimating production years. In contrast, the bag-
of-features approach, feature extraction is made in a much less structured way.
This approach, pioneered by Li and Perona (2005) for images, the relevant fea-
tures are learned from a representation of the image data that is geometrically
unstructured and does not take as much less time to engineer. Both approaches
have been used in papers VI-IX.

4.1 Features and distance metrics
The purpose of feature extraction is to quantify something in an image that
give similar values for similar images. Below, the similarities sought for are
writer hand characteristics.

4.1.1 Quill based features
The quill feature, proposed and developed by Brink (2011) and Brink et al.
(2012), is a way of quantifying the angle of pen strokes in a page. This type of
feature comes from a long standing tradition in image analysis of measuring
the shape of distinct objects in a binary image, see for instance Schomaker
and Bulacu (2004). A standard way of constructing this type of pipeline is the
following:

2Some also try to make the features linearly separable.
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1. Binarize the image, e.g. according to Otsu (1975)
2. Find each connected component
3. Extract statistics on the object borders (e.g. chain codes) and/or shape

(e.g. moments).
4. Collect the measurements from all sample points, from all connected

components, into a histogram with some predefined number of bins
(to get smooth transitions between bins, interpolation can be used).

The resulting histogram is used as a feature vector for describing a page.
Comparing histograms is not an exact science. Euclidean distance can be used
(as by He et al. (2016d)), though in a probability density the relevant informa-
tion can often be found in the subtle differences. In section 4.1.4, some other
distance metrics that are more suitable for a space of probability densities are
described . The shape information deemed relevant in the quill feature is the
joint distribution over width and angle of the pen stroke, working from the fact
that the quill pen (used throughout the medieval era) has a distinctive angle
of the tip. The process of creating a quill feature histogram is described in
algorithm 2.

In algorithm 2, the boundaries of the connected components from a bina-
rized image are traversed clockwise. At each point, the local boundary angle ϕ
is estimated together with the maximal length w of a Bresenham line perpen-
dicular to the ϕ angle though the character. In this way, each boundary point
is associated with a feature point that is the pair of angle and width estimates
(ϕ,w). All these pairs are collected as a histogram. The end results is a two
dimensional histogram, with p number of bins for w and q number of bins for
ϕ, that can be flattened to a feature vector of dimensionality p × q. This fea-
ture vector, associated with a page, can now be compared using any divergence
metric between discrete distributions, giving a metric of dissimilarity between
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pages. Euclidean distance gives reasonable performance with this procedure,
though in the original paper by Brink, they used χ2-distance.
Algorithm 2: The feature extraction process for the quill feature (section
4.1.1).
Data: I: image, p: integer number of widths bins, q: integer number of

angle bins, l: integer leg length
Result: H: Histogram of the joint distribution over pen angle and stroke

width, where H ∈ Rp×q

S ←− ∅
J ←− Preprocessing(Otsu(I))
C ←− SetOfConnectedComponents(J)
for c ∈ C do

b←− OrderedBoundry(c)
for i ∈ {x : x ∈ Z ∧ 0 ≤ x < len(b))} do

ϕ1 ←− angle(b[(i− l)% len(b)], b[i])
ϕ2 ←− angle(b[i], b[(i+ l) % len(b)])
if |ϕ1 + ϕ2| < π then

ϕ←− (ϕ1 + ϕ2)/2
else

ϕ←− (ϕ1 + ϕ2)/2 + π

(x, y)←− b[i]
x̂←− x+ p · cos(ϕ+ 1.5π)
ŷ ←− y + p · sin(ϕ+ 1.5π)
w ←− BresenhamRaycast(x, y, x̂, ŷ)
S ←− S ∪ {(ϕ,w)}

// If curvature is needed, calculate it here
H ←− HistogramFromCoordinateSet(S, p, q)

In paper VI, we extended the quill feature by adding local curvature to each
sample point on the connected component. Now the histogram is in three di-
mensions and the number of bins p × q × r, where r is the number of bins in
the curvature. The curvature is estimated by convolving the estimated angles
at each boundary point with a differentiating mask, inspired by finite differ-
ence methods. We have presented this type of feature approach, together with
a discussion on its potential impact on digital palaeography, for an audience of
humanist researchers in Mårtensson et al. (2015).

4.1.2 Sets of image patches as features
In the following section, the process from papers VII and VIII of using sets of
image patches as features, will be described. The process is as follows:
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1. Identify the boundaries of ink strokes (i.e. the edges).
2. Sample patches at ink stroke boundaries for all images.
3. Cluster patches using a shape sensitive metric.
4. Find the proportions of patches most similar to each cluster centre,

for each image.

The result is a bag-of-features type vector, representing each page in some
collection. These vectors are used for classification or regression (as in papers
VII and VIII for estimating the production date).

Working form the hypothesis that the ink strokes are the interesting parts of a
manuscript, the edges of the strokes were extracted. Others have chosen a sim-
ilar approach but extracted the skeleton of the ink stroke instead of the edges,
e.g. Christlein et al. (2015) and He and Schomaker (2015). Since the method
for manuscript dating presented here is evaluated on the database ”Svenskt
diplomatariums Huvudkartotek” (SDHK, section 2.3) some special challenges
with degradations had to be tackled. Even identifying full ink strokes was
a problem in many of the charters and hence, our approach could not rely
on binarization (usually a prerequisite to finding the skeleton). Building the
method on edge detection, lets us extract data from more damaged parts of
the manuscripts. This approach was loosely inspired by the state-of-the-art
binarization method proposed by Howe (2012). There, the author uses edge
detection together with a graph cut to find the foreground.

Canny edge detection, proposed by Canny (1986), was used for edge de-
tection of the ink strokes. This algorithm is well tested and understood, but
requires threshold parameters. The parameters correspond to a level of gradi-
ent magnitude, extracted from the image using Sobel filters and l2-norm, above
which all pixels are edge candidates and a second threshold, below which, pix-
els are not edge pixels. In the magnitude range between the thresholds, ridges
that connect pixels above the higher threshold are defined as edges. The thresh-
olds can be set manually, assuming a smaller data set with little variance in
contrast. This is, however, not the case with SDHK. Instead, we developed
a statistical model for adapting the threshold to each charter. After the image
gradient magnitudes was extracted (in the same way as Canny), a Gaussian
mixture model (equation 4.1) was trained to fit the distribution over gradient
magnitudes. The thresholds for the Canny edge detection algorithm were set
relative to the structure identified by the mixture model. Effectively adapting
the thresholds to the light level, contrast and level of degradations of each in-
dividual charter. The thresholds Tlow and Thigh were defined as is shown in
equations 4.3 and 4.2.

p(x) = ω1N (x | µ1, σ
2
1) + ω2N (x | µ2, σ

2
2) (4.1)
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ω1N (Tlow | µ1, σ
2
1) = ω2N (Tlow | µ2, σ

2
2) (4.2)

Thigh = max (µ1, µ2) (4.3)

Assuming the lower mixture component would converge to the spike in
lower magnitudes, corresponding to colour-wise flat areas, the higher mixture
component would fit the higher values, corresponding to areas with edges. The
lower threshold was then set as the point at which the probability of a magni-
tude belonging to either mixture was equal (i.e. the point of transition between
background and higher edge magnitudes). The higher threshold is set as the
mean of the higher mixture component, hence, it is assumed to be part of some
ink stroke edge. This approach did not only extract edges along ink strokes,
but would also often find edges on sigils and manuscript edges.

To mitigate the problem of non-stroke edges, the Stroke Width Transform
(SWT)was used for de-noising the edge traced images. The SWT, proposed by
Epshtein et al. (2010), was originally developed for text detection in video. The
transform finds, for every pixel in an image, how far away the corresponding
other side of a potential character edge is, assuming that the current pixel is a
character edge pixel and looking in the direction of the gradient. Adapted to the
problem here, this means that for each potential edge pixel, given by the edge
detection, the distance to the corresponding other side of the ink stroke was
measured. The distance is only defined if two edges can be bound together by
a line that is approximately perpendicular to both edges (±π

6 ). This procedure
removed edge pixels on the charter’s boundary, stemming from colour change
found at the parchment’s physical edge. After this de-noising, character ink
edges and some noise coming from the sigils remain. The SWT procedure is
illustrated in figure 4.1.

In papers VII and VIII, the stroke image was cut up into all possible patches
with a centre pixel on a stroke edge. To cluster this cloud of patches, some dis-
tance metric was needed that took shape into account. Hence, a standard met-
ric like Euclidean or divergence metrics were unsuitable. The shape context
descriptor was proposed by Belongie et al. (2002), and describes pixels sur-
rounding a point as probability distribution (i.e. histogram). This was meant
as a key point descriptor but can just as well be used as a distance metric be-
tween patches of semi binary data (the patches only have none-zero values
along edges but the values can be an intensity).

The shape context is a two dimensional histogram of the coordinates of
none-zero pixels in a small area, transformed into a log-polar space. For each
image patch s ∈ RN×N , coordinate triplets are extracted for each none-zero
pixel as (xi, yi, Ii) ∈ S, where xi, yi are positions relative to the center, Ii
is an intensity and S is the set of triplets for the patch s. The positions xi, yi
are then transformed into log-polar coordinates as θi = atan2(yi, xi) and ri =
log
√

x2i + y2i . The new triplet (θi, ri, Ii) ∈ S∗ is aggregated into a histogram
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Figure 4.1. Left: An example of the Stroke Width Transform, where a line is traced
over the image from one edge to another, approximately opposite, edge. Right: An
example of collecting stroke edges into a log-polar shape context histogram, used for
comparing patches.

H ∈ Rp×q, weighted by Ii and using bi-linear interpolation. Here, q is the
number of angle bins p log radius bins and N the patch side length. Flatten-
ing this histogram gives a feature vector, making a shape sensitive comparison
between patches possible. This procedure is illustrated in figure 4.1. For the
implementation used in papers VII and VIII, the intensity Ii is an edge magni-
tude. To make the patch distance rotationally invariant, the gradient direction
(from the original image) of the patch’s centre pixel was subtracted from each
θi in S∗. This is very convenient when all images in a collection can not be
guaranteed to have the same orientation. Note that the logarithm makes the
histogram have more weight for pixels closer to the centre of the patch, giving
the shape sensitive distance metric some scale insensitivity.

With this patch based approach so far, each document/page can be repre-
sented using a p × q dimensional point cloud. Not a very convenient, and
memory intensive format. The bag-of-features representation is a way of ag-
gregating such point clouds of feature descriptors by clustering and only saving
cluster membership. First used in computational linguistics as bag-of-words
and later adapted to image data by Li and Perona (2005), only the proportions of
cluster memberships are stored. Hence, for geometrically unstructured patches
the positions of the extracted points in the original image are forgotten. This
has proven to be a very successful approach, though unintuitive (why would
location not be important). A common way of achieving a bag-of-features is
the following:
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1. Extract a set of features from each image (or image patch). This can
be any feature relevant to the problem.

2. Cluster the feature vectors, e.g. using k-means, agglomerative cluster-
ing etc.

3. Calculate the proportions of feature vectors belonging to each cluster
(called a bag). The probability of finding a vector belonging to each
cluster center is used as the new bag-of-feature type feature vector.

A crude but effective way is to use k-means clustering, proposed by Mac-
queen (1967)3, for clustering and then have a set of feature vectors split into
crisp partitions belonging to the clusters4. A more soft way can be to fit a
Gaussian mixture model (GMM) to the feature set and then use the mixture
weights as the new feature. In this way, a single item in the set of feature
vectors can belong to multiple clusters. Variants of this GMM are sometimes
called GMM super-vectors, e.g. by Campbell et al. (2006) and by You et al.
(2009) for speaker recognition and verification.

As a clustering algorithm for bag-of-feature representations, the k-means is
simple but usually gives good results. To be able to do a clustering fast we used
a mini-batched version of the k-means algorithm proposed by Sculley (2010).
This made it possible to perform multiple experiments, varying the number of
clusters with reasonable time complexity. In paper VII, we show that using an
ensemble of estimators, varying the number of clusters in the bag-of-features,
improved results. Using several clusterings makes it possible to create a more
rich codebook where combinations of entries represent parts of clusters in the
original clustering.

4.1.3 Text features for transcribed documents
In paper VIII, text based features were used. Inspired by the mixture of modal-
ities used by Li et al. (2015), the work on historical sources by Pettersson et al.
(2014) and by Piotrowski (2012) and, lastly, that the SDHK (section 2.3) col-
lection had 5000+ charters transcribed, adding a modality of data seemed as an
interesting challenge. The hope was that the estimators based on transcribed
text and the image estimators, would compensate for each others shortcomings.
This turned out to be the case, a short comparison of dating methods can be
found in section 4.3. However, the dating estimators, based on text data and an
ensemble of Gaussian processes, was good enough to stand on its own. In the
paper, we speculate that the sounds of old Swedish were changing a lot during

3The k-means algorithm is often confused, as is well known by now in the document analysis
community, with the algorithm formulation used by Lloyd (1982).
4This approach is very similar to the “shapeme” proposed by Mori et al. (2005), later used by
Rusiñol and Lladós (2010) for a fast way of searching a set of company logos.
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the time period our data comes from, making a case for that spelling changes
in the Latin alphabet were reasonable to expect. However, the performance on
church Latin is very similar to the performance on old Swedish, as shown in
paper VIII.

The features for dating based on text were bag-of-features of n-grams. In
the work by Cavnar et al. (1994), a bag-of-features representation of n-grams is
used for classifying texts in a heterogeneous corpus. An n-gram is sequence of
n number of characters. The n-grams of a text are all the possible, unique and
overlapping, sequences of characters, of length n, that can be found. Making
statistics of howmany n-grams and normalizing the sum to 1, with a predefined
n, was used as the final feature vector. In paperVIII,n = 1, 2, 3were used. For
a common reference frame, all possible n-grams were extracted from the full
collection of transcriptions, instead of using all theoretically possible n-grams
(a huge space). To reduce the dimensionality of 3-grams, from about 40000,
two dimensionality reductions using principal component analysis were run
with 500 and 1000 components, respectively, for details on such a procedure
see Jolliffe (2002). In the end, the text based ensemble of estimators performed
on par with the image based ensemble estimators, where the text based en-
semble consisted of four estimators with different design parameters (1-gram,
2-gram, 3-gram with a 500 component PCA, 3-gram with a 1000 component
PCA).

4.1.4 Divergence and distance
What is distance? Usually we think of Euclidean distance, as in equation 4.4.
In a flat world, this is the distance a bird flies or the length of a straight line from
point A to point B. This notion of distance, however, can be a bit misleading.
In the real world, a bird can not fly in a “straight” line for very long. The
length of a line drawn for the bird’s flight must, for longer distances, have the
same curvature as the earth’s surface. Analogously, the concept of distance
can be extended to statistics collected from manuscripts on the scribal hands.
Then the technical term is divergence between discrete statistical distributions
(e.g. quill features, bag-of-features vectors). Here, however, the equations are
less intuitive compared to the Euclidean distance as it is presented in equation
4.4. In the following equations in this section, distance/divergence will be
calculated between vectors u, v ∈ Rn

DEuclidean(v,u) =
n∑

i=1

(vi − ui)2 (4.4)

In paper VI, we compared several divergence metrics for finding the “dis-
tance“ between manuscript pages. We experimentally verified that Euclidean
distance did not make a good metric for the examined distributions. In the
work by Brink et al. (2012) and by Schomaker and Bulacu (2004), the χ2 met-

65



ric (equation 4.5) was used because of its property to amplify the effect of
areas with small differences. This is likely the reason for its relative success
compared to Euclidean distance where smaller differences are “drowned out”
by the larger. In effect, Euclidean focuses on large differences and χ2 on the
subtle ones.

Dχ2(v,u) =
n∑

i=1

(vi − ui)2

vi + ui
(4.5)

In our paper, we evaluated two more metrics between discrete distributions.
With inspiration from the excellent survey by Cha (2007), we looked at an
additive symmetric χ2 (equation 4.6). The name “additive symmetric“ comes
from the way two Person χ2 non-symmetric divergence functions are added
together to create a symmetric function. If the same procedure is performed
on two Kullback-Leibler divergences (D(a, b)+D(b, a)), the result is the Jef-
frey’s divergence (equation 4.7).

DAddSumχ2(v,u) =
n∑

i=1

(vi − ui)2(vi + ui)
viui

(4.6)

DJeffreys(v,u) =
n∑

i=1

(vi − ui)ln
vi
ui

(4.7)

The Euclidean distance consistently showed lower evaluation results than
the χ2 and Jeffrey’s divergence metrics, on the problem explored in paper VI.
This is somewhat surprising since Euclidean distance is so commonly used.
This might have been the most important point in the paper, that the methods
we were using had a built in assumption of Euclidean space, even though that
design choice could be detrimental to the task.

4.2 Assigning labels to the data
Most learning approaches utilize an unsupervised or supervised strategy. Su-
pervised learning uses labelled data as input for finding a mapping between a
data space and some target space. The target space will be categorical if the
labels are such, or it can be any other domain as long as it is of the same type
as the labels themselves. This can be performed for both classification and re-
gression tasks. By contrast, unsupervised learning aims to find some structure
in the data without labels revealing any of this structure. This is usually per-
formed by assuming some abstract structure in the data and then trying to find
a model of the data that fits into these assumptions. For example, a Gaussian
mixture model (GMM) for clustering assumes that the data can be seen as gen-
erated from a finite number of Gaussian distributions. The number of mixtures
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and constraints on the covariance matrix (e.g. diagonal) are design choices. A
GMMmight not be the best model for the data, but after training the GMMwill
fit the data with as high a likelihood as possible (assuming successful training).

A mix of supervised and unsupervised learning is called semi-supervised
learning, and as the name implies, only some of the data points come with la-
bels. This makes it possible to mix the approaches and find only the subspace
of solutions allowed by both the supervised and unsupervised sub-problems.
An advantage being that the supervised problem can take advantage of struc-
ture that is in the data without explicitly knowing the training labels. The many
types of semi-supervised learning available in the literature is excellently pre-
sented by Zhu (2005b) and Zhu (2005a). For the task of writer identification,
semi-supervised learning have successfully been employed by Ball and Srihari
(2009) and by Porwal and Govindaraju (2013) for writer identification. For
an overview of other types of successful writer identification techniques, see
the conference competition reports by (Louloudis et al., 2012) and (Louloudis
et al., 2013).

4.2.1 Semi-supervised learning on graphs
In paper VI, a semi-supervised label propagation approach was used on a graph
for writer clustering inspired by Zhu (2005a). Every node in the graph was
connected to a page in a medieval book (C61, the revelations of Saint Brid-
get, section 2.2). All edge weights was defined as the divergence between
the respective nodes’ feature histograms, weighted by a Gaussian PDF5. On
this graph, labelled samples could propagate their labels. Distance/cost on the
graph was defined as additive edge weights, giving a label propagation with
clear parallels to Dijkstra’s algorithm for shortest path. Each unlabelled node
was assigned the label of the labelled node with the minimum accumulated
divergence over the graph.

In algorithm 3, the label propagation procedure for paper VI is shown. Each
page in C61 was modelled as a vertex with a feature histogram associated with
it. In the paper, the quill feature and the extended quill curvature feature was
used to characterize the manuscript page. Several divergence metric were also
examined. Some extra non-linearity was introduced in the form of a weighting
of the divergences (i.e. edge weights), depending on the design parameter σ.

5The parallels to kernel methods are ever present.
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This parameters was estimated using leave one out cross validation, on the
training set.
Algorithm 3: A slightly modified Dijkstra’s algorithm for propagating
class membership, from some seed vertices, on a graph (section 4.2.1).
This algorithm was used in paper VI for semi-supervised labelling of writ-
ers.
Data: V : A set of vertices (each with an associated feature vector),
S: A set of labelled (as categorical class memberships) vertices,
σ: A parameter for the Gaussian weighting of feature differences,
d(·, ·): A distance function between feature vectors
Result: C: The set of categorical class membership for each vertex
/* Initialize the sets making up the graph G =

(V, E, C, D) */
for v1 ∈ V do

D[v1]←−∞ /* Seed dissimilarity cost */
C[v1]←− None /* Class memberships */
for v2 ∈ V do

if v1 ̸= v2 then
/* Edge costs */

E[v1, v2]←− 1− exp
(
−d(featureOf(v1),featureOf(v2))2

2σ2

)
/* Set up the seed points and add all vertices

to Q */
Q←− copy(V )
for v ∈ S do

D[v]←− 0
C[v]←− S[v]

while |Q| > 0 do
u = argmin

v∈Q
D[v]

for v ∈ neighboursOf(u) do
n←− D[u] + E(u, v)
if n < D[v] then

D[v]←− n
C[v]←− C[u]

Q.removeV ertex(u)

A comparison of the classification procedures can be seen in figures 4.2
(nearest neighbour) and 4.3 (semi-supervised learning). In the case of nearest
neighbour classification, the distance to the labelled data points is measured
for every unlabelled data points. The label of the nearest labelled data point is
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Figure 4.2. An example of label attribution (classification) using nearest neighbour.
The darker nodes on each side are the labelled samples for the red and green classes.
Distances to a labelled node is shown as numbers inside each node. The unlabelled
samples get the label of the closest labelled sample. In this model, the structure of
elongated clusters can not be taken into account, such as pages with small successive
changes. Compare to figure 4.3 for a semi-supervised learning classification.
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Figure 4.3. An example of label propagation using semi-supervised learning. The
darker nodes on each side are the labelled samples for the red and green classes. Dis-
tances to a labelled node is shown as numbers inside each node. The distance between
nodes are defined along the graph, with the edge weights shown beside each connec-
tion between nodes (i.e. the edges). Neighbouring nodes with very small changes
are classified as one cluster, indifferent of their pair-wise distances from the labelled
nodes. Compare to figure 4.2 for a nearest neighbour classification.
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Quill Quill-Curvature
Original Registration Original Registration

1-top 100% 100% 100% 100%
Hard 5-top 98% 99% 99% 99%
Hard 10-top 94% 97% 97% 99%
AUC kNN 98.5 99.0 98.9 99.2
AUC SSL 98.7 99.1 98.9 99.2
kNN data for 99% precision 19.4% 9.3% 12.1% 6.8%
SSL data for 99% precision 17.3% 6.8% 11.3% 6.0%

Table 4.1. Selected results comparing nearest neighbour (kNN) classification and
semi-supervised (SSL) classification from paper VI. Quill feature is the original pro-
posed by Brink et al. (2012) and quill-curvature is proposed in paper VI. Also, the
registration scheme (”registration”), proposed in paper VI, is compared to not using
registration (”original”). Hard n-top results when using a nearest neighbour classi-
fier and χ2-dissimilarity. An explanation for the AUC evaluation metric can be found
above in section 3.2.2. In the last two rows, the ratio of training data needed for a
precision of 99% is shown (note figures in bold font). The proposed improvements
from paper VI, primarily reduces the need for labelled data. For historical sources,
labelled data is expensive since it demands a very high level of domain knowledge.

chosen as the class of each unlabelled point. The distance metric is arbitrary
and should be chosen as one that fits the data type. In figure 4.2, the distance
to the two labelled data points , shown in a darker shade of red and green,
are written inside the lighter coloured circles. A problem with this methods
for writer identification is that the style of a writer will have small changes
between every data point, which in this case are pages. The style of a scribal
hand will depend most on who the writer is but also in fatigue, light in the
scriptorium, degradation of the pen tip etc. In the feature space, this translates
to that distance to a labelled sample is not the only criterion for classification
that is relevant. Some way of letting data point very close to each other be
considered together is needed. In figure 4.3, the labels of the labelled data
points (i.e. the training set) are propagated to the surrounding data points by
algorithm 3. The distance to the closest labelled data point is defined as the
accumulative cost of the lowest cost path to the data point. The numbers inside
the circles are these distances and each connection between circles has the cost
of propagating through that edge. The colouring of the circles in the figure
now show how two clusters of writers take closeness of unlabelled data points
into account. This approach is an example of semi-supervised learning, as
described above. Some results from the evaluation in paper VI is shown in
table 4.1. The major improvement, from using a semi-supervised approach
with curvature added to the quill feature, was that the ratio of labelled data
could be lowered by a factor of three. Labelling data is expensive, hence, for
the same labour cost, three times as many books can be precessed.
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4.2.2 Gaussian process regression
For the dating application, some way of mapping points in a feature space to
a time-line was needed. This is a classic regression problem. In the literature,
support vector regression (SVR) has been used for age estimation of humans
by Guo et al. (2008), with method development by Zhang et al. (2006), and
adapted to documents by He et al. (2014b). Training an SVR estimator is fast,
allows for a large number of training data points and is non-linear through the
use of kernel functions. However, SVR does not easily allow for quantifying
the uncertainty of the estimation. The distance from a regression line has no
obvious interpretation. In a Gaussian Process (GP), where the target space
consists of Gaussian variables, this distance from a decision boundary has a
likelihood interpretation. The maximum a posteriori (MAP) estimate gives
the same information as using an SVR, but the standard deviation of the output
variable can have years as its unit.

When training an estimator, certain care has to go into the design method-
ology to not create an estimator suffering from over learning. This happens
when the estimator becomes too specialized and loses its capacity to generalize
to other data in the same problem domain. How the generalization properties
should look to best suit the given problem is in most cases unknown. Hence,
the capacity to generalize needs to be tested on available data. A common
approach is to split the data into three non-overlapping sets for training, vali-
dation and testing. The training set is used to train or tune the estimator, the
validation set for model selection and the test set for estimating the expected
performance on an unseen set of data. Note that this procedure assumes that
the data set catches the variance of the problem, which is not always the case as
illustrated by Torralba and Efros (2011). GP regression is no exception to con-
cerns about over learning. However, estimating a distribution over the model
parameters mitigates this problem somewhat. In fact, a GP does not necessar-
ily use any parameters in a traditional sense but uses all the training data as a
part of the model. This approach stands in contrast to for example SVM and
CNN approaches that use the data for training parameters and then forgets it.

Definition, and a prediction
AGaussian Process (GP) (Rasmussen, 2006; Bishop, 2006) is a set of stochas-
tic variables {Xs : s ∈ S}, indexed by some set S, that are jointly Gaussian
(i.e. a vector (Xs1 , ..., Xsn)

T is a multi-variate Gaussian distribution). This
can be written as X ∼ GP(m(·), k(·, ·)), where the mean function m(·) and
covariance function k(·, ·) define the behaviour of the GP. Often, the mean of
all variables Xs is assumed to be zero, leading to the very convenient prop-
erty that the GP is completely defined only by the covariance function k(·, ·).
However, it is not obvious from this definition how to use a GP for predictions.
Given some training set D = {(xi, ti)}N1 , a partitioned Gaussian distribution
can be constructed, where an unknown partition (the points to predict) can be

71



conditioned on a known part (the training data). The relations between the
feature space points of training data and the points to estimate, is given by the
covariance function k(·, ·). The values of the know partition are given by the
target variables of D. Note that k(·, ·) can, but does not have to, be the “stan-
dard” covariance function k(x, x′) = xTx′. For this example, let the partition
look like:

µ =

(
µa

µb

)
(4.8)

Σ =

(
Σaa Σba

Σab Σbb

)
(4.9)

In this partition, Σbb is given by k(xi, xj) and µb = t, where xi and t is
from the training data D. A new set of feature space points x∗ are defined for
where in the feature space to predict, giving Σaa, Σab and Σba. The relations
between the partitioned Gaussian above and the predictions for the conditional
Gaussian, µa|b and Σa|b, are given by:

µa|b = µa +Σab

(
Σbb + σ2I

)−1
(t− µb) (4.10)

Σa|b =
(
Σaa + σ2I

)
−Σab

(
Σbb + σ2I

)
Σba (4.11)

The derivations of these equations, 4.10 and 4.11, follow from the quadratic
form of a Gaussian (using the given partitions). The quantity σ comes from
a prior on the model noise (it can be thought of as the standard deviation of
the measurement noise). In a GP, the variables are jointly Gaussian. Hence, a
prediction can be seen as a draw from a Gaussian with zero mean, a covariance
matrix given by k(·, ·), conditioned on the given data. Note that µa|b andΣa|b
describe the conditional distributions, not a draw.

Relation to linear regression
Another way of showing the relevance of a GP for the date estimation applica-
tion is the following. Equation 4.12 shows a basic regression problem 6. It is
a mapping from some domain to a continuous surface (or line) in some other
domain. In the case of manuscript dating, this is what is needed to map some
vector of feature values to a time line. Some noise ϵ is added, to model the er-
rors in the regression. In equation 4.13 , the regression function f : Rn → Rm

is what we want to estimate (a mapping from an n dimensional space to anm
dimensional space). The training data is defined as above, D = {(xi, ti)}N1 ,
where xi is the input data and ti is the target (i.e. the desired return data from
f given xi as input). In the following derivation, n > 1 and m = 1. Also,
the function ϕ is added in f as an arbitrary feature transformation on the input

6Gaussian process regression is sometimes called Kriging.
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data. This function will later be used to show how kernel functions can be used
with Gaussian Processes.

ti = f(xi) + ϵ (4.12)

f(xi) = ϕ(xi)Tw (4.13)

If the values of w would be determined by least squares and Gaussian noise
is assumed for ϵ, this would be ordinary linear regression. The key step for GP
regression, following the reasoning by Rasmussen (2006), is to assume that
both ϵ and w are drawn from Gaussian distributions, where Σ ∈ Rn×n and
σ ∈ R.

ϵ ∼ N (0, σ2) (4.14)

w ∼ N (0,Σ) (4.15)

This makes it possible to set up Bayes’ law to get a probability distribution
overw, given the data. In the following derivation,Φwill be used as the design
matrix for all ϕ(xi), ϕi as short hand for ϕ(xi) and t for all ti. The expression
for p(w|Φ, t) looks as follows:

p(w|Φ, t) =
p(t|Φ,w)p(w)

p(t|Φ)
(4.16)

The expression for the prior on p(w) (follows from equation 4.15) is given
by:

p(w) =
1√

(2π)n|Σ|
exp

(
−1

2
wTΣ−1w

)
(4.17)

Since the data is assumed to be independent, it can be evaluated point wise.
Note that σ is the standard deviation of the measurement noise (from equation
4.14). The likelihood of t, givenΦ and w, is given by (whereN is the number
of points in D):

p(t|Φ,w) =
N∏
i=0

p(ti|ϕi,w)

=

N∏
i=0

1√
2πσ2

exp
(
(ti − ϕT

iw)2

2σ2

)

=
1

(2πσ2)N/2
exp

(
−
∣∣t−ΦTw

∣∣2
2σ2

)
= N (ΦTw, Iσ2)

(4.18)
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Since the numerator is a multiplication between two Gaussian distributions,
only the quadratic forms need to be combined. Also, the denominator will only
add a normalization for the expression in the numerator. Working from this,
the following equation only contains the relevant parts.

p(w|Φ, t) ∝ exp
(
− 1

2σ2

(
t−ΦTw

) (
t−ΦTw

))
exp

(
−1

2
wTΣ−1w

)
∝ exp

(
−1

2
(w− µ)Λ (w− µ)

)
(4.19)

, where:

µ = σ−2Λ−1Φt (4.20)

Λ = σ−2ΦΦT +Σ−1 (4.21)

Above, µ ∈ Rn and Λ ∈ Rn×n are the sufficient statistics. Now the distri-
bution of w given Φ and t is:

w|Φ, t ∼ N (µ,Λ−1) (4.22)

For some new pointϕ∗, the predictive distribution can be found bymarginal-
izing the weight vector w as

∫
p(f∗|ϕ∗,w)p(w|Φ, t)dw, giving the following:

f∗|ϕ∗,Φ, t ∼ N (ϕT
∗µ,ϕ

T
∗Λ

−1ϕ∗) (4.23)

The inverse in the above expression is of a n × n matrix. If n < N (i.e.
the feature space dimensionality is lower than the number of data points), a
common re-parametrization is:

f∗|ϕ∗,Φ, t ∼ N (ϕT
∗ΣΦ

(
ΦTΣΦ+ σI

)−1 t,

ϕT
∗Σϕ∗ + ϕT

∗ΣΦ
(
ΦTΣΦ+ σI

)−1
ΦTΣϕ∗)

(4.24)

Note the similarities between equation 4.24 and equations 4.10 and 4.11
from the initial example of prediction (remember that the mean is assumed to
be zero).

Non-linearity through kernels
In equation 4.24, the feature data only enters into the equation by scalar prod-
ucts (this is even more clear in equations 4.10 and 4.11) . Hence, the “kernel
trick” can be used for non-linear feature transformations. Using a kernel can
be seen as a projection of the data to a high (even infinite) dimensional feature
space, where linear separations/relations can be found. Projecting the data
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back brings the linear relations back into the current data space. What kind of
non-linearities that can be found in the high dimensional space is a property of
the chosen kernel function (i.e. getting non-linearity into a model brings out a
new model parameter for kernel selection).

One of themost common kernels is theGaussian radial basis function (RBF).
It is sometimes referred to as a Gaussian kernel, because of the similarities to
a Gaussian PDF with the standard deviation σ, excluding the normalization
constant:

k(xi, xj) = exp
(
−|xi − xj |2

2σ2

)
(4.25)

In the RBF above, there is no reason (other than simplicity) why the scale
parameter σ should be the same for all data dimensions (Neal, 1996). Hav-
ing a different noise magnitude for each data dimension is equivalent to scal-
ing/stretching of the data space. To some extent, this can even be seen as fea-
ture selection, since a very high noise parameter can almost completely reduce
the influence of some data dimension.

k(xi, xj) = σ2 exp

− n∑
k=0

(
x
(k)
i − x

(k)
i

)2
2ν2k

 (4.26)

The free variables of the kernel function are called hyper-parameters. They
are often denoted as the hyper-parameter vector θ, a concatenation of all model
parameters.

Model evidence and selection
Going back to the reasoning that gave rise to equation 4.10 and 4.11, the like-
lihood of some set of hyper-parameters is given by the likelihood of drawing
the target variables from the GP model. That is:

t ∼ N (0,K) (4.27)

In this expression, the elements of the covariance matrix K are given by
Kij = k(xi, xj). The covariance function is here exemplified by a RBF-ARD
kernel with a noise parameter added to the diagonal using the Kronecker delta
function. In the last subsection, the kernel parameters (i.e. the model hyper-
parameters) had different names while here they are all concatenated into a
vector θ. The dimensionality of the data is n and x(k)i is the kth element of the
ith data vector.

k(xi, xj) = θn exp

(
−1

2

n∑
k=0

θk

(
x(k)i − x(k)j

)2)
+ δijθ(n+1) (4.28)

75



A restriction on the hyper-parameters is enforced as ∀i : θi > 0 for this
to be a valid kernel. Working from this, inference in the model entails finding
the hyper-parameter vector that maximizes the likelihood of drawing the target
values from the GP. That is:

argmax
θ

p(t|θ,X) (4.29)

This maximization is usually achieved by gradient based optimization. The
problem is non-convex, which can be somewhat mitigated by random restarts.
This adds to the danger of over learning, so elegantly avoided by having a
distribution instead of a fixed regression weight vector above. The objective
function for the optimization is the likelihood of drawing t. The likelihood
function and its logarithm for equation 4.27 are given by:

p(t|θ,X) = 1

(2π|K|)N/2
exp

(
−1

2
tTK−1t

)
(4.30)

log(p(t|θ,X)) = −1

2
log(|K|)− N

2
log(2π)− 1

2
tTK−1t. (4.31)

The derivative, with respect to the hyper-parameters, of the log likelihood
function is then given by:

∂

∂θ
log (p(t|θ,X)) = −1

2
Tr
(
K−1∂K

∂θi

)
+

1

2
tTK−1∂K

∂θi
K−1t (4.32)

Everything needed for a gradient based optimizationmethod is now in place.
Note that using an ARD kernel can lead to some dimensions of the data being
suppressed (assuming this suppression helps maximizing the likelihood). If
the effect of some data dimension on the regression result is negligible after
maximization, this can be viewed as a form of feature selection. This is a great
strength of this method of regression, since feature weighting/selection can
be performed as a part of the inference, and not as a separate step before the
regression.

Larger data sets are becoming the norm, even for historical material. In pa-
per IX, our training set was in the thousands. This becomes a problem with the
inference described above, since that equation 4.32 contains an inverse of the
covariance matrix. The inverse comes from evaluating the likelihood, shown
in equation 4.31, so there seems to be no way around a cubic complexity of
the inference algorithm. Considering that any inference algorithm might re-
quire hundreds of iterations, a computational complexity of O(n3) (where n
is the number of data points in the training set) is way too much. A way of
getting around this problem is using a so called sparse formulation of the GP.
For many types of sparse formulations of GPs see the survey by Quinonero-
Candela and Rasmussen (2005). In paper IX, a formulation using inducing
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points were used. The inducing points are points in the same space as spanned
by the training data that acts as replacements for the actual training data, in
some aspects. All training data is included in the inference, but the full calcula-
tions are only performed for the inducing points. This leads to a computational
complexity of O(nm2), wherem is the number of inducing points. An added
bonus is that this formulation also impacts the memory complexity, reducing
it from O(n2) to O(mn).

4.2.3 Deep learning
Artificial neural networks is not a new idea and have enjoyed periods of popu-
larity in the past. However, it is only lately that the algorithms and computing
power for a higher number of layers in the networks have been available, realiz-
ing some of the promises of earlier days7. State-of-the-art results are achieved
in tasks like image classification (e.g. by Krizhevsky et al. (2012)) object de-
tection (e.g. by Ren et al. (2015) and He et al. (2015a)), semantic segmentation
(e.g. by Lin et al. (2015) together with conditional random fields) and word
spotting (e.g. Wilkinson and Brun (2016)).

The basic idea of how a neural network is implemented is to stack many dif-
ferentiable (at least approximately so) linear and non-linear transformations on
top of each other. The differentiability of this pipeline (using the chain rule)
makes it possible to optimize the function parameters to minimize some differ-
entiable loss function. A simplified way of illustrating the process is shown in
equation 4.33, where the loss function L encapsulates all other functions and
f1 is fed the image data.

L ◦ fn ◦ fn−1 ◦ fn−2 ◦ . . . ◦ f3 ◦ f2 ◦ f1 (4.33)
The function L is the loss function. This function has to be a differen-

tiable error metric, for comparing target variables with data. For the rest of
the pipeline, functions performing linear transformations are paired with non-
linear functions. The order and types of the functions used, is called the net-
work architecture. Each transformation function is called a layer, due to their
sequential nature. It is important to note that the data flow can split and merge
between the input and the loss function, allowing for parallel specializations
instead of one-type-fits-all architectures.

Common building blocks include:

Linear transformation Simple transformations, often formulated as matrix
multiplications (e.g. fully connected layers) or convolutions. This type
of layer often rescales the data. If the input is a grey scale image of
128 × 128, the output when using 16 convolution masks and a stride of

7Deep neural networks have really taken off during the time of my PhD-studies and at present,
there is no real excuse for any image analysis group to not look at the very impressive results.
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2 is 64 × 64 × 16. The stride of a convolution is the number of steps
between samples.

Activation function Step functions introducing non-linearity through thresh-
olding or squishing input values (e.g. sigmoid, tanh, ReLU etc). The
non-smoothness of the functions can make differentiation a problem. Ei-
ther, the function itself is smooth and approximates a step function or the
derivative is approximated.

Pooling An operation combining several elements of the input data giving a
reduced output dimensionality, e.g. the maximum or average of small
neighbourhoods of the input. Pooling can also be used to change the di-
mensionality of the output arbitrarily compared to the input, or allowing
arbitrary input dimensionality as proposed by He et al. (2014a).

Normalization To either force the layer output to some form (e.g. softmax
for categorical data) or batch normalization (to mitigate problems with
vanishing gradients in very deep architectures, as proposed by Ioffe and
Szegedy (2015))

Loss function A function introducing an objective to minimize. This is the
error measuring function encapsulating the full pipeline of layers. The
loss can be categorical (e.g. for classification through the use of softmax)
or continuous (e.g. mean square error, used in paper IX).

The standard way of training a network is the backpropagation algorithm .
In this, the data is fed to the network, resulting in some error (as measured by
the loss function). Gradient information is then propagated back through the
network, enabling the calculation of the gradient for all parameters in the net-
work. However, this method is subject to practical problems like a vanishing
or exploding gradient, e.g. due to the difficulty in differentiating the activa-
tion/step functions. Significant work go into handcrafting a good neural net-
work pipeline. Though methods are being developed to learn architectures, as
well as the network parameters, e.g. see Baker et al. (2016). A very important
innovation for deeper models has been better training algorithms. For paper
IX, we used a methods called ADAM, proposed by Kingma and Ba (2014) ,
for improving the training beyond the backpropagation with gradient descent
algorithm.

At the time of writing, deep architectures are becoming the norm in docu-
ment analysis applications8. For estimating the production date of historical
material using neural networks, the only work so far is proposed in paper IX
for handwritten material, and the work by Li et al. (2015) for printed material
(post 16th century). Our model for dating was pre-trained on the ImageNet
dataset (120000 iterations) as an initialization. We did this for the network to
take on characteristics important for image classification and reduce the need
for taking training data out of our data set. The network used in paper IX for

8With the exception of forensic writer identification on small data sets, so far.
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Layer type Kernel size/stride Output size
Convolution 7× 7 / 2 112× 112× 64
Max pool 3× 3 / 2 56× 56× 64

Convolution 3× 3 / 1 56× 56× 192
Max pool 3× 3 / 2 28× 28× 192

Inception(3a) 28× 28× 256
Inception(3b) 28× 28× 320
Inception(3c) stride 2 28× 28× 576
Inception(4a) 14× 14× 576
Inception(4b) 14× 14× 576
Inception(4c) 14× 14× 576
Inception(4d) 14× 14× 576
Inception(4e) stride 2 14× 14× 1024
Inception(5a) 7× 7× 1024
Inception(5b) 7× 7× 1024
Average pool 7× 7 / 1 1× 1× 1024
Fully connected 1

Table 4.2. An overview of the modified GoogLeNet architecture, originally proposed
by Szegedy et al. (2014), for performing production date estimation in paper IX on the
manuscript collection SDHK (sections 2.3 and 4.2.3).

dating was based on the GoogLeNet architecture, proposed by Szegedy et al.
(2014). The architecture from our paper is detailed in table 4.2.

Besides using amodifiedGoogLeNet for dating, we also evaluated a slightly
older architecture called AlexNet, proposed by Krizhevsky et al. (2012), with
reasonable results. However, switching to GoogLeNet cut the MSE evaluation
score in half.In papers by Huang and LeCun (2006) and by Tang (2013), the
authors used support vector machines together with convolutional neural net-
works. This work inspired us to use deep networks for feature learning together
with both support vector regression (SVR) and Gaussian process regression in
paper IX. The SVR did not increase performance compared to using only the
neural network. TheGaussian process, however, couldmake improvements on
the production date estimation when using smaller sets of training data. Some
results from paper IX, with performance numbers, are presented in section 4.3.

4.3 Production date estimation performance
A comparison of the production date estimation results from papers VII–IX,
can be found in table 4.3. This is a sample of results from their respective
papers. The Gaussian process (GP) based estimator with a bag-of-features
from paper VII is the first, showing that this task can be performed. After its
presentation, inspired by the work at Google for dating modern printed text by
Li et al. (2015), the method was extended to include transcription data. Also,
to mitigate the effect of a particular choice of design parameters, an ensamble
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of estimators was used. It was observed that the set of estimation outliers for
one GP did not necessarily overlap with those of another GP estimator. In
paper VIII, the ensemble of GPs was trained on different clustering for the
bag-of-features code book to mitigate the effect of hyper-parameter and design
parameter settings.

From the results presented in table 4.3, it is clear that the deep neural net-
work (DNN) approach is successful, but needs more training data than the
hand-crafted features with a GP does. However, there is room for a more
thorough study, since several techniques for reducing the need for training
data have not been systematically explored, e.g. synthetic data, augmentation
etc. An important results is how using different network architectures changed
evaluation results, with our reduced GoogLeNet reaching half the MSE as we
did with AlexNet. The improvement from using more training data for the
DNN leveled out when using more than 20% of the collection, while the GP
leveled out slightly below 10%. The strength of the DNN is the flexible feature
learning, while the GP excels in generalizing from small sets of data. A logical
next step would be to integrate the two approaches more as it is unlikely that
the best possible feature model is found by hand-crafting9.

During the last couple of years, we have been two groups working on pro-
duction data estimation. The work proposed in papers (He and Schomaker,
2014; He et al., 2015b; He and Schomaker, 2016b; He et al., 2016b,e; He and
Schomaker, 2016a; He et al., 2016a; He and Schomaker, 2017b,a), have been
very successful at estimating the production dates of a medieval charter col-
lection from several cities in the Netherlands. Their data set Medieval Palaeo-
graphic Scale10 (MPS), was recently released publicly. Since neither we nor
them have been able to release our data sets publicly earlier, there is no fair
comparison between the methods proposed in our production of papers, yet.

9Though in some ways, writer identification has proven to be an easy problem. Several hand-
crafted feature sets can be found in the literature that are both descriptive and linearly separable
in a standard euclidean space. However, there is little works, so far, on big data collections for
writer identification or dating. So far, the study in paper IX is probably the one with the largest
handwriting collection used for evaluation.
10http://www.ai.rug.nl/ lambert/MPS/
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Data Training
Estimator Paper type set ratio P25 P50 P75 MSE
GP VII Low 5% 7.9 18.3 36.8 1389
GP ensemble VIII Low 6% 8 17 30 810
GP ensemble VIII Low+text 7% 6 12 22 462
DNN IX High 10% 5.9 12.7 23.3 645
DNN + GP IX High 10% 5.9 13.0 23.7 640
DNN + Sparse GP IX High 10% 5.1 11.1 20.7 550
DNN + Global SVR IX High 10% 8.2 17.9 31.8 905
DNN + Local SVR IX High 10% 6.7 16.4 33.0 940
DNN IX High 20% 4.6 10.0 18.5 469
DNN IX High 30% 4.7 10.3 19.0 494
DNN IX High 40% 4.5 10.2 19.0 485
DNN IX High 50% 4.4 10.0 18.5 469
DNN IX High 60% 4.9 10.7 20.1 505
DNN (AlexNet) IX High 60% - - - 840

Table 4.3. Selected evaluation results for the production date estimation in papers
VII-IX, sorted by training set size. Noteworthy better results are in bold. The metrics
presented are the 25th (P25), 50th (P50) and 75th (P75) percentiles of the absolute
error together with the mean square error (MSE). The size of the training set is given
as percent of the full set (i.e. 10992 charters). The label DNN (deep neural network)
are results using a modified GoogleNet, with the exception of one entry where AlexNet
is specified. The data set was SDHK (section 2.3) for all evaluations. The collection
comes in two versions, low resolution (1,5 Mpixel) and high resolution (4 Mpixel),
as specified in the table. Note that the approaches from the earlier papers are using
the low resolution images, making a direct comparison to the DNN approach unfair.
However, the results show that all methods perform well on the given data.
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5. Looking forward

5.1 Paper overview
Here follows an overview of the papers included in this dissertation. Each pa-
per is summarized, with their respective major contributions to the field in ital-
ics. The Roman numerals match those used in the “list of papers” and through-
out the text. Explanations for the data set abbreviations are found in chapter 2.
For a summary of who contributed to the different parts of the papers, see the
“Summary of contributions” at the top of the dissertation.

Paper I
In this paper, a full pipeline for query-by-example word spottingwas presented.
The input was images of book spreads, using a automatic full segmentation and
the possibility to do fast searching using dynamic time warping for a template
on full text lines, without word segmentation. The word spotting was evaluated
on the new C64 and C61 data sets.

Paper II
In this paper, the novel line segmentation algorithm (splitting a page image into
smaller crops, one for each text line) from paper I was presented in detail and
evaluated. The algorithm estimated the line segments using a projection based
method and refined the estimates in several steps. The last step was based on a
lowest cost path finding, given a penalty function, giving cut-outs of irregular
shapes. The method was compared to a similar state-of-the-art approach using
hand segmented pages from the manuscripts C61 and C64 (20 pages each).
The proposed method showed improved capabilities of cutting apart lines with
ambiguous overlaps. Previous methods had a tendency to arbitrarily cut apart
connected components spanning several text lines.

Paper III
In this paper, an evaluation of the relative importance of the Marti-Bunke fea-
tureswas performed for word spotting, on the Washington database. Dynamic
time warping was used for the experiment since the standard HMMapproaches
learn a weighting of the features. In conclusion, vertical projection of the
foreground pixels was shown to be the most important, while lower gradient
showed very little importance. Recognition accuracy increased by removing
some of the 11 features in the standard set. Also, the heuristic pruning pre-
sented in the cited literature was shown to be unnecessary, increasing errors.
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Paper IV
The standard features explored in paper III were shown to be noisy, based on
a qualitative analysis. Inspiration form signal processing led to the hypothesis
that feature sequence noise could be filtered out. The main contribution of this
paper was to evaluate Gaussian, median, bilateral and non-local means filter-
ing on the sequence of feature vectors extracted form a text line for recognition.
The non-local means filter increased performance the most.

Paper V
In this paper, the work of the preceding papers was presented for humanist
researchers. As a case study of the power of word spotting, words like ”och”
and ”att” were searched for. These words are very common and show the
variability of the scribe’s hand even within a single page.

Paper VI
This paper presented an examination of computerized writer identification in
comparison to human estimation of scribal hands. Thewriter feature was based
on the quill feature (used as a comparison) but extended with curvature as a
third dimension to the feature histogram. We presented a simple and fast clas-
sification approach based on semi-supervised learning to propagate labels in
a point cloud of discrete probability densities. Several distance/divergence
metrics were evaluated (euclidean, χ2, additive-χ2 and Jeffreys) for use in the
relation graph for classification. Also, ways for extending the feature extrac-
tion scheme for scale and rotation invariance were developed both for lines
and whole pages. The evaluation on C61 showed a result very similar to that
of a human, indicating that the feature approach was reliable from a palaeo-
graphic perspective. With novel feature extensions, the needed training data
(always very expensive and hard to get) was reduced by approximately 70%.

Paper VII
In this paper, a novel approach to manuscript dating was proposed based on
clouds of image patches. Instead of explicitly deciding what was interesting
along an ink stroke, patches were samples along the edges. Using the shape
context descriptor as a differencemetric between patches, clusters were formed
and a bag-of-features representation was created. The clusters were created us-
ing unsupervised training, opening for using more data in the feature learning
than in the ensuing regression.

In the document analysis community, Bayesian non-parametric methods
have, so far, rarely been used. The regression in this paper for mapping the
feature vectors onto a time-line is performed using a Gaussian process. The
new data set SDHK, containing close to 11000 manuscript images, was used
for performance evaluation, showing a final estimation on-par with a human
expert.
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Paper VIII
This paper proposes extensions to the dating techniques presented in paper VII,
with improved performance and ability to use text data. The estimation accu-
racy (in terms of years) was improved by training multiple Gaussian process
regression estimators using a varying number of clusters in the bag-of-features
representation of the underlying ink stroke shapes. Since the output of the
regressions are Gaussian distributions over the time-line they already have in-
formation of uncertainty included and are therefore easy to combine. For the
transcriptions, an n-gram based feature set for text was presented. The final
results was an ensemble of estimators than halved the MSE, compared to paper
VII.

Paper IX
For this paper, a deep neural network was used for estimating the produc-
tion dates of manuscripts. In the literature, the performance of neural net-
works have been improved using support vector machines, for some tasks. In
the paper, the network was trained to do date estimations on its own but also
used as a neural network feature extractor, with a Gaussian process or sup-
port vector machine performing the production date estimation. The more big
data friendly sparse Gaussian process formulation with a smaller set of points
as stand-ins for the data was also examined. In the end, the neural network
achieved state-of-the-art performance for higher numbers of training exam-
ples while the Gaussian process could improve the performance for limited
amounts of training data.

5.2 Research potential in mapping SDHK
Having a metric of similarity between documents would be of tremendous help
in interpreting the traces of the scribes in any collection. For the case of the
SDHK charter collection (section 2.3), it could give us a map of the places of
work andmovements of the scribes inmedieval Sweden. Today, we only know
a few of the scribes by name, and can safely conclude (on palaeographic cri-
teria) that small sets of manuscripts belong to single scribes. What we can not
do, using only human labour, is to form reasonable hypothesises on influences
between places or groups of scribes. The exciting research question touched
upon in the second part of the dissertation is: how can we look “behind” the
surface of the manuscript and see the scribe?

The next step for this line of research is to identify writer hands on a larger
scale. The data available can be used for training, however, that is unlikely to
be sufficient for good accuracy. For writer identification, the production dates
could be used for weak learning, where the labels are not fully known. The
inference can be constrained by defining charters separated sufficiently in time
or space as different, on a sliding scale. Adding semi-supervised learning have
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been beneficial in this type of problem before, like in paper VI. Another type
of research that could be performed is exemplified by Thorpe and Alty (2015),
where neurological disorders are studied using handwriting. The variations of
the handwriting have a lot of information encoded. The problem is to decode
it.

5.3 Writer identification
Anatural extension to thework presented here concerning dating ofmanuscripts,
is to change the regression to a classification and do writer identification. The
supervised learning writer identification problem, is in essence trying to find a
clustering corresponding to writing styles. However, it can also concern find-
ing a distance metric between writer hands. This metric is learned on one set
of writer hands and generalized to a disjunct set of writers hands. One such
database is the CVL database, presented by Kleber et al. (2013), consisting of
311 writers contribution 5 or 7 pages each.

A kernel can be interpreted as a projection to a higher dimensional feature
space where a linear separation between classes can be found. Working from
this intuition, initial results indicate that a kernel can be learned for a classi-
fication task, where that covariance between points in the feature space can
be interpreted as similarities in writing style (given some feature set). By
adding a step function to the regression output of the Gaussian process (GP)
as ti = σ(fGP(xi)) (following the notation in section 4.2.2) , the GP can be
extended to solve this classification task.

Setting up aGP classification for amulti-class problem required some tweak-
ing of the inference algorithm, but that is a story for a future paper. This ap-
proach looks promising and preliminary accuracy is around 80% for the 1-top
measure commonly used in writer identification. This accuracy is achieved
without tuning the feature extraction or attention mechanism to modern mate-
rial. It is also, like our earlier work on dating, insensitive to scale differences
and rotational invariant, properties that modern writer identification feature
should have. It is not unlikely that the performance could be pushed higher if
well-known features, like character slant, could be taken into account.

5.4 Big data and data driven research in digital
humanities

With small and large libraries around the world taking digital photographing to
heart, the accessible data will likely continue to increase exponentially. A lot of
thework in document analysis have so far been restricted to smaller collections.
This begs the question: How will the methods scale? This is of course an
empirical question and something I can only speculate about. However, for
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document analysis in the future, I think bigger collections should be the focus
in method development (except for studies in very special circumstances, like
very important texts, e.g. the Dead Sea scrolls, or uniquely obscure material).

As of yet, the reason why neural networks are so successful is an open ques-
tion. Is is because of the number of parameters? Capability to learn from
huge numbers of data? The GPU friendly formulation, making more and bet-
ter training possible? Likely it is all three. In the future, we will need ways of
encoding structure that is known to us into whatever machine learning model
that is used in the digital humanities. The fields where DH can make an impact
are far from new and a lot is already known. Methods need to be developed
where the knowledge of a domain expert can be encoded while still retaining
sufficient flexibility.

The reason why statistical models learned from data are rarely used in the
humanities is not a lack of interest, it is that these methods have not proven
useful yet due to the complexity of the tasks. With the developments in data
collection and machine learning, we have an opportunity to see if this can be
a thing of the past, or if it is still too hard to do.

The techniques and studies presented in this dissertation is an argument for
that there is a lot left to be done. However, the future is bright when it comes to
doing new, previously impossible, research in many fields of the humanities.
I envision a future where applying for money to build a computer cluster will
be as uncontroversial in literary science as it is in computer science. However,
a word of warning, if fantastic promises never reach realization funding will
disappear, indifferent of how good the actual results were.
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