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Humoral immunity is driven by the expansion, somatic hypermutation, and selection of B cell
clones. Each clone is the progeny of a single B cell responding to antigen, with diversified Ig re-
ceptors. The advent of next-generation sequencing technologies enables deep profiling of the Ig
repertoire. This large-scale characterization provides a window into the micro-evolutionary dynam-
ics of the adaptive immune response and has a variety of applications in basic science and clinical
studies. Clonal relationships are not directly measured, but must be computationally inferred from
these sequencing data. In this dissertation, we use a combination of human experimental and simu-
lated data to characterize the performance of hierarchical clustering-based methods for partitioning
sequences into clones. Our results suggest that hierarchical clustering using single linkage with
nucleotide Hamming distance identifies clones with high confidence and provides a fully automated
method for clonal grouping. The performance estimates we develop provide important context to
interpret clonal analysis of repertoire sequencing data and allow for rigorous testing of other clonal
grouping algorithms. We present the clonal grouping tool as well as other tools for advanced analy-
ses of large-scale Ig repertoire sequencing data through a suite of utilities, Change-O. All Change-O
tools utilize a common data format, which enables the seamless integration of multiple analyses into
a single workflow. We then apply the Change-O suite—in concert with the nucleotide coding se-
quences for WNV-specific antibodies derived from single cells—to identify expanded WNV-specific
clones in the repertoires of recently infected subjects through quantitative Ig repertoire sequencing
analysis. The method proposed in this dissertation to computationally identify B cell clones in Ig
repertoire sequencing data with high confidence is made available through the Change-O suite and

can be applied to provide insight into the dynamics of the adaptive immune response.
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Trunk length analysis of West Nile virus-specific clones in the immunoglobin
repertoire indicates unlikely previous exposure to the virus. (A) Size of
WX Vespecitic clones found in recently infected subjects. (B) Representative plot
of sequence similarity of heavy chain (same V oand J segment) identified within the
repertoire as a function of distance of the sequence from germline (x-axis) and the
corresponding “query” WNV-specific sequence (v-axis). An outlier cluster represent-
ing a putative WNV-specific clone is cireled. (C) Maximum parsimony lincage tree
for one WN\V-specific clone (MIT187). Each node represents a unique sequence. with
size representing the number of duplicate reads observed. Edge lengths correspond
to the number of mutations between sequences. Shading of the node represents the
compartment in which the sequence was found. The nodes are labeled with the iso-
tyvpes of the observed sequence (A: IgA. G: IgG. Q: WNV-specitic query sequence
from single-cell screening). (D) Plot of observed trunk lengths (nmumber of mutations
between germline and most recent common ancestor of clone). Emerging WNV-
specific clones have significantly fewer trunk mutations (Student’s t-test) compared
to size-matched clones found in the same subjects. and to expanded clones (at least
0.05% of the repertoire) from subjects who received an influenza vaccination.
Query plots of West Nile virus-specific clones found in Ig repertoire. Plots
of sequence similarity of heavy chain (same Voand J segment) identified within the
repertoire as a function of distance of the sequence from germline (x-axis) and the
corresponding WXNV-specific ~query”™ sequence (v-axis). Outlier clusters represent-
ing putative WNV-specific clones are circled. The shape of each point indicates
the isotvpe of the Ig sequence. 17420202, MIT180. and MIT187 were identified by
automated clonal grouping: MIT185 and MIT186 were identified hy manual inspection.
Lineage trees of West Nile virus-specific clones found in Ig repertoire.
Maximum parsimony lincage trees of WNV-gpecific clones. Each node represents a
unique sequence. with size correlating to number of duplicate reads observed. Edge
lengths correspond to the number of mutation between sequences (unlabeled edges
are one mutation). Shading of the node represents the compartment in which the
sequence was found. The node label determines the tvpe of sequence observed (A:

IgA. G: IgG. Q: WXV -specific query sequence from single-cell sereening). ..
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Chapter 1

Introduction

1.1 Antibodies and adaptive immunity

The immune system uses a variety of mechanisms to respond to the invasion of a foreign pathogen
into the human body. The innate arm of the immune system is responsible for immediate sensing of
infection and the body’s initial response. This initial response is essentially the same for any type
of infection and will result in the hallmark symptoms of infection: redness, swelling, soreness, and
heat. These symptoms are the result of innate immune cells being recruited to the site of infection
and releasing enzymes in an attempt to break down the pathogen. This brute force approach to
fighting infection works on a short time-scale to curb spreading of the infection, but takes a toll on
the body that is not sustainable.

The adaptive arm of the immune system works to complement the innate arm by fine-tuning
the response, which requires working on a longer time-scale. While the innate cells work in the
foreground at the site of infection, adaptive cells such as B and T cells work in the background to
adapt to the specific pathogen causing the infection. This adaptation results in cells that are highly
specialized to neutralize the pathogen more effectively and efficiently than the brute force innate
cells. While the peak of the innate response is typically around two days after infection, the peak
of the adaptive response is not until around seven days, resulting in clearing of the pathogen often
by two weeks to a month after the initial infection.

The research presented in this dissertation focuses on B cells and the antibodies they produce.

Antibodies have a Y-shaped structure consisting of two identical heavy chains and two identical



light chains. Each chain has a variable region, which comes in contact with antigen, and a constant
region, which determines the protein’s effector function. The constant region (as the name implies)
is largely consistent across antibodies and provides much of the protein’s structural stability in
addition to determining its effector function. The aptly named variable region confers specificity of
the antibody for its cognate antigen and varies widely across antibodies. The variable region consists
of four relatively conserved framework regions (FWRs) that confer structural stability and three
loops referred to as the complementarity determining regions (CDRs) at the tips of the protein that
bind directly to antigen. The CDRs determine the specificity of the antibody, particularly CDR3,

the most variable of the three regions.

1.2 What is the Ig repertoire?

Antibody formation begins with the development of B cells in the bone marrow of adults. This
development requires forming a function B cell receptor (BCR) or immunoglobulin (Ig) that when
secreted, is referred to as an antibody. In order to create a diverse antibody repertoire, we have
evolved a process of somatically recombining gene segments in a locus to form a full gene for
transcription. In the case of the heavy chain (which is most variable), this involves recombination
of one of approximately 45 variable (V). 25 diverse (D), and 6 joining (J) gene segments in the Ig
gene locus. These numbers, in addition to the segments of the light chain, yield over three million
possible Ig molecules (Munshaw & Kepler, 2010). The combinatorial diversity is compounded
by the fact that random nucleotides can be deleted or added at the junction of these segments,
increasing potential diversity to over 107 proteins (Volpe & Kepler, 2008). The region of the Ig
sequence that encompasses where the V, D, and J segments meet is by far the most variable portion
of the sequence and is referred to interchangeably as the junction or Complementarity Determining
Region 3 (CDR3) of the protein. B cells in circulation that have undergone V(D)J recombination
but have not yet encountered antigen are called naive B cells. Of the approximately two billion B
cells in the human body, the diversity has a lower bound of about two million (Boyd, Marshall,
et al., 2009) and a theoretical upper limit of ~ 10'? different receptors (Munshaw & Kepler, 2010).

Once a naive B cell encounters its cognate antigen and a second signal from another immune cell,
it becomes activated and moves towards a variety of fates. One fate is to begin a micro-evolutionary
process to adapt to the infecting pathogen in the germinal center, where the cell will undergo many

rounds of cell division (clonal expansion) to mount a response. During this expansion, the B cell



diversifies even further by replicating with a high mutation rate (approximately one point mutation
per 1000 bp per cell division (McKean et al., 1984; Kleinstein et al., 2003)), referred to as somatic
hypermutation (SHM), in the Ig gene, leading to a potential for ~ 10!? molecules (Munshaw &
Kepler, 2010). The cells with mutations that increase affinity for antigens presented during the
current infection continue this maturation process and eventually differentiate to become long-lived
memory or plasma B cells. This affinity maturation process is a form of accelerated evolution of
the initial B cell and results in a collection of descendants referred to collectively as a B cell clone.
A single B cell clone can expand during an immune response, but has been observed to be at most
0.3% of total B cells at a given time (Boyd, Marshall, et al., 2009).

This antibody response is part of what determines our ability to fight off infections and is also
what is utilized by most vaccines. Vaccines contain antigens intended to activate a B cell so it begins
affinity maturation. Once the B cell matures, it differentiates to become an antibody factory known
as a plasma cell. Plasma cells excrete the B cell receptor in large volumes as antibody. These soluble
antibodies bind the foreign antigens with their variable region and the constant region determines
the subsequent action the immune system will take. These actions range from phagocytosis and
presentation of the antigen to other immune cells to recruiting the complement system to puncture
the bacterial membrane.

The collection of circulating antibodies and B cell receptors in the body is referred to as the
Ig repertoire. This repertoire is a snapshot of antigen-inexperienced naive B cells and antigen-
experienced B cell clones that have undergone affinity maturation. The ability to profile the Ig
repertoire using next-generation sequencing technologies (as outlined in Section [.3) has many

basic science and clinical applications. some of which are discussed in Section 1. 1.

1.3 Ig repertoire sequencing technologies

Though the study of the antibodies and the response they mediate is well established, the way in
which such experiments are being conducted is changing. Earlier studies utilized traditional Sanger
sequencing of mRNA from B cells either from tissue micro-dissections or blood samples to look
at Ig molecules. yielding at most a few hundred sequences per experiment. Scientists would use
low-throughput methods to identify germline V(D)J segments, amino acids that confer specificity,
and mutations from the germline. A transition to next-generation sequencing is currently ongoing

in the field of Ig repertoire study. The ability to sample many more Ig sequences than previous



technologies enable new types of analyses and creates the need for automated tools to handle
analysis of these large datasets.

Current high-throughput sequencing technologies can sequence billions of bases per run at costs
as low as a few cents per million bases (Liu et al., 2012), enabling a more complete quantification
of an individual’s antibody-mediated response. When sequencing Ig molecules, it is necessary for
each Ig sequence to fit on a single read. The similarities between different gene segments as well as
the un-templated nature of the junction region make it impossible to map shorter reads definitively
to germline V, D, and J segments for each molecule. Furthermore, if the B cell has encountered
antigen and undergone affinity maturation, its receptor will have accumulated mutations, which
can only be identified by ensuring that the entire molecule fits on a single read.

Ig sequencing can be done using the rearranged DNA or mRNA molecules as a template (Boyd
& Joshi, 2014). The Ig region is amplified and selected using internal V primers with J primers or
constant region primers with 5' RACE (Benichou et al., 2012). In the case of 5° RACE, the Ig leader
sequence (signaling that the protein destination is the cell membrane) is also part of the amplicon.
An example amplicon is shown in Figure 1.1. This amplicon would be generated using constant
region primers for targeted 5° RACE. At the 5” end of the transcript, a homopolymeric sequence
(TS in the Figure 1.1) is added by the terminal transferase, promoting the binding of a template
switch oligonucleotide (Y. Y. Zhu et al., 2001). This oligonucleotide consists of a unique molecular
identifier (discussed further below) and an upstream primer for the subsequent PCR amplification
steps. The amplified cDNA are then sequenced by a next-generation sequencing platform.

One of the first next-generation technologies that was used for immunoglobulin sequencing was
Roche/454 pyrosequencing. Though it was slightly lower throughput than some of its competitors,
it featured longer reads (Metzker. 2010). More recently, the Illumina MiSeq platform has become
the preferred technology for immunoglobulin sequencing. MiSeq allows for paired-end reads, each of
150bp-300bp in length, which significantly lowers the error rate compared to pyrosequencing (Quail
et al., 2012). In particular, the rate of insertions and deletions is greatly decreased, as Roche/454
has 0.38 indels per 100 bases whereas MiSeq has less than 0.001 indels per 100 bases (Loman et
al., 2012). The lower error rate gives scientists greater power and certainty in attributing single
nucleotide changes from germline gene segments to SHM rather than sequencing error. MiSeq is
also much higher throughput, allowing for greater sampling of the Ig present in a biological sample.

The protocol for using this technology in Ig repertoire studies was further advanced by the
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development of unique molecular identifiers (UMIs). These are oligo-nucleotide sequences that
serve as a barcode for each mRNA molecule prior to PCR amplification (Shiroguchi et al., 2012).
This is a huge advancement for multiple reasons. First, we can compare reads that share the same
UMI to further eliminate the effect of sequencing error using the knowledge that these reads should
be identical. Second, if we see identical Ig sequences with differing UMIs, we know that these are
independent copies of mRNA molecules, allowing us a new level of quantification independent of
PCR amplification bias. The application of these advancements in technology to adaptive immune
receptor sequencing (AIRR-Seq) provides a detailed snapshot of the adaptive immune system at a

given time-point.

1.4 Applications of Ig repertoire sequencing

A large body of research has been conducted on understanding the antibody-mediated immune
response using Ig AIRR-Seq data. Several applications rely on grouping sequences into B cell
clones. B cell clones in sequencing data can be estimated by sequence similarity and shared CDR3
length. Clonal grouping enables quantification of inter-clonal diversity and provides insight into the
evolutionary dynamics underlying affinity maturation.

One application of this type of analysis is to understand how the Ig repertoire changes with
age. Older individuals have a weaker and delayed response to influenza (Y.-C. B. Wu et al., 2012;
Jiang, He, et al., 2013) and pneumococcus (Ademokun et al., 2011) vaccinations relative to younger
individuals. The overall diversity of the Ig repertoire in peripheral blood and lymph nodes is lower
in older individuals (Ademokun et al., 2011; Jiang, He, et al., 2013; Tabibian-Keissar et al., 2015),
characterized by having fewer clonal lineages. Furthermore, heavy chain CDR3s in older individuals
tend to be longer independently of clonal expansion (i.e., each B cell clone’s CDR3 length is only
counted once so a large clonal expansion with a long CDR3 cannot skew the distribution) (Y.-C. B.
Wu et al., 2012; C. Wang et al., 2014). These changes in the repertoire could explain why older
individuals are less able to mount successful immune responses and help to design more effective
vaccines for the older population.

Influenza vaccination provides a controlled system with a well-defined timeline that enables time-
course analysis of the immune response. Sampling the Ig repertoire at multiple time-points pre-
and post-vaccination provides insight into the clonal dynamics underlying the adaptive immune

response that can be correlated with measured antibody response to the vaccine. B cell clonal



expansions are observed at seven days post-vaccination (Ademokun et al., 2011; Jackson et al., 2014;
Laserson et al., 2014). These expansions are influenza-specific, allowing large-scale characterization
of receptors that bind to influenza (Moody et al., 2011; Jackson et al., 2014). Expansion of B cell
clones correlates with antibody response (Jackson et al., 2014) and is typically seen around seven
days post-vaccination (Laserson et al., 2014). Clonal expansion leads to higher diversity within the
clone, but different clones exhibit some convergence towards influenza specificity (Krause et al.,
2011). The ability to measure B cell clones during the vaccination repose has provided significant
insight into the clonal dynamics of the immune response.

In addition to characterization of repertoire-level diversity, these data enable the study of the
mutations within B cell clones. The large number of mutations that results from extensive clonal
expansion in response to influenza vaccination increases the likelihood of forming broadly neutral-
izing antibodies (bnAbs), which neutralize many strains of virus (Moody et al., 2011). Immunizing
with an older, pandemic strain of influenza that the subjects had likely not encountered previously
is more likely to lead to potential bnAbs than a seasonal vaccination (Wrammert ef al., 2011;
Cortina-Ceballos, Godoy-Lozano, TATllez-Sosa, et al., 2015). Such vaccinations also lead to similar
antibody sequences observed across different individuals indicating a possible convergent evolution
of bnAbs (Krause et al., 2011; Vollmers et al., 2013; Jackson et al., 2014). Clonal expansions result-
ing in bnAbs have also been observed in subjects infected with HIV (J. Zhu et al., 2013). Analysis
of mutations within B cell clonal expansions can inform development of new and improved vaccines
to elicit broad serological protection.

In addition to vaccination, profiling the B cell clones of the Ig repertoire provides insight into
chronic lymphocytic leukemia (CLL). Subjects with CLL have longer CDR3s in antibodies using
the VH1-69 gene segment than healthy controls (Johnson et al., 1997), which may be a predictive
marker for people who are at risk of this type of leukemia. High-throughput sequencing of subjects
with CLL uncovered that the disease is not as monoclonal as previously thought, but the dominance
of B cell clones can be polyclonal (Niklas et al., 2014). Furthermore, this dominance of a few clones
can be tracked in circulation by sequencing (Bashford-Rogers et al., 2013). Repertoire sequencing
can detect minimal residual disease with as few as 0.5 cells/ul (Boyd, Marshall, et al., 2009).
Infection with Epstein-Barr virus is correlated with persistent CLL clonal expansions (C. Wang
et al., 2014). The level of mutation of the V region of antibodies in the clonal expansions can be

used to determine prognosis (Xochelli et al., 2014). Development and application of Ig AIRR-Seq



has improved detection, diagnosis, and prognosis of CLL.

Many of the results stemming from Ig AIRR-Seq analyses involve characterizing either the
clonal diversity of the Ig repertoire, the mutational evolutionary process of affinity maturation
that occurs within a B cell clone, or both. Since clonal relationships are not directly measured
by sequencing, they must be computationally inferred from the data. Thus, clonal grouping of Ig

repertoire sequencing represents a fundamental step in the analysis pipeline.

1.5 Ig AIRR-Seq analysis

The first step in analyzing an Ig repertoire sequencing dataset is pre-processing of the raw reads.
This includes all analysis steps leading from the raw reads to full-length Ig sequences including
quality control, primer masking, annotation of reads with sequence embedded barcodes, generation
of unique molecular identifier (UMI) consensus sequences, assembly of paired-end reads, etc. These
steps are particularly difficult in the case of adaptive immune receptors because the receptors are
not encoded directly in the genome. Standard RNA and DNA sequencing pre-processing tools rely
on having a reference against which to align raw reads, so specialized software tools have been
created to pre-process AIRR-Seq data (Yaari & Kleinstein, 2015).

Once full length Ig sequences have been assembled, the next step necessary for any biological
insight from the data is to infer the V(D)J germline gene segments used to form each sequence.
This inference enables analysis of gene segment usage, clonal grouping, somatic mutations, selec-
tion pressures, etc. Tools for this inference include IMGT /HighV-QUEST (Alamyar et al., 2012),
IgBLAST (Ye et al., 2013), and SODA2 (Munshaw & Kepler, 2010), but each has limitations and
inferring the D gene in particular remains a challenge (Munshaw & Kepler, 2010). These tools
evaluate each Ig sequence individually to make a germline inference. As a way to improve and
refine the germline calls, tools like TIgGER (Gadala-Maria et al., 2015) leverage the information
in the entire dataset to identify novel germline alleles, infer the gene segment genotype, and adjust
the germline inference correspondingly.

The analysis stages following raw read processing and germline V(D)J inference are charac-
terizing the population structure of the B cell response and detailed Ig repertoire analysis (Yaari
& Kleinstein, 20135). Characterization of the B cell population structure requires identifving B
cell clones and reconstructing clonal lineages. Repertoire analysis includes calculating repertoire

diversity and identifying mutations resulting from SHM. An example workflow for Ig repertoire se-



quencing analysis is shown in Figure |.2. Partitioning Ig sequences into B cell clones is fundamental
to accomplishing these downstream analyses. There are various tools that can be used to complete
any one of these analysis steps (Yaari & Kleinstein, 2015). However, individual tools often vary
by input and output format and downloading numerous tools across different software platforms
can make the entire Ig repertoire analysis pipeline quite convoluted and difficult to implement. In
addition to creating software to calculate the various characteristics of the repertoire, there is a

need for an cohesive suite of tools to streamline the analysis pipeline.

1.6 Motivation for this dissertation

B cells and the Ig they produce form fundamental components of the adaptive immune response.
The Ig repertoire can now be sampled at a large scale using next-generation sequencing technologies.
Once the Ig sequences are assembled, there are various features that can be ascertained in order to
draw biological meaning, such as the germline gene segments to determine where mutations have
occurred, which sequences are clonally related (i.e., originate from the same V(D)J recombination
event) to determine the size of a clone, or the corresponding distribution of mutations that shape
affinity. These features allow us to characterize selection pressures that shape Ig maturation and
to track clonal expansion and affinity maturation in a specific response to infection or vaccination.

One measurement that can be particularly important is the overall diversity of an Ig repertoire.
Diversity can be indicative of health status and is often measured after bone marrow transplants
to ensure the repertoire has been fully recovered. This property and others of interest depend on
correctly determining which sequences are the result of B cell clonal expansions during an immune
response and partitioning the repertoire accordingly. Identifying clonal groups is difficult because
the sequences will not be identical, and it is a challenge to create a distance metric that reflects
the underlying biology of accumulating mutations during affinity maturation. Manual inspection of
sequence similarity provides little insight and is not feasible with such large datasets. Developing
a computational algorithm to identify B cell clones with high confidence and creating a framework
to integrate all of the Ig repertoire analysis tools are essential steps to further B cell biology.

A brief outline of the future chapters is as follows: Chapter 2 of this dissertation outlines how hi-
erarchical clustering can identify B cell clones with high confidence in Ig AIRR-Seq data. Chapter 3
describes a framework that enables integration of several tools for Ig repertoire analysis. Chapter |

contains applications of these analysis tools to identify novel neutralizing antibodies against West
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Figure 1.2: Ig repertoire analysis workflow. An overview of the typical steps of analyzing an
Ig AIRR-Seq dataset.
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Nile virus and other research topics. The concluding Chapter 5 reviews the contribution of this
dissertation to the Ig repertoire sequencing field and future directions in which the work can be

continued.
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Chapter 2

Hierarchical clustering to identify B

cell clones in AIRR-Seq data

This chapter has also been accepted for publication as:
Gupta, N. T. et al. Hierarchical clustering can identify B cell clones with high confidence in Ig

repertoire sequencing data. Journal of Immunology Accepted (2017)

2.1 Introduction

The capacity of B cells to modify their antibodies or immunoglobulin (Ig) receptors to adapt in
response to pathogenic challenges is a key mechanism that protects us from infection. An initial
diversity of ~ 107 unique Ig molecules (Volpe & Kepler, 2008) stems from somatic recombination
of gene segments in the B cell Ig gene locus compounded by stochastic nucleotide insertions and
deletions at the junctions of these segments. Upon activation, these naive B cells diversify further
by undergoing clonal expansion with somatic hypermutation (SHM) in the Ig gene (approximately
one point mutation per 1000 bp per cell division (McKean et al., 1984; Kleinstein et al., 2003))
followed by selection for higher affinity B cells. This micro-evolutionary process known as affinity
maturation results in B cells with diversified Ig receptors that are clonal relatives of the original
activated B cell. In healthy human adults, class-switched memory B cells express Ig receptors that
are ~ 7% mutated (Y.-C. B. Wu et al., 2012). Our ability to profile this adaptive immune response

has dramatically improved through the application of next-generation sequencing, which allows for
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measurement of tens to hundreds of millions of B cell receptors (Boyd & Joshi, 2014). However, the
identification of sequences that belong to the same B cell clone in these data remains a significant
challenge (Yaari & Kleinstein, 2015).

Adaptive immune receptor repertoire sequencing (AIRR-Seq) is being widely used for both basic
science and clinical studies (J. J. a. Weinstein et al., 2009; Boyd, Marshall, et al., 2009; Benichou
et al., 2012). Statistical properties of the repertoire, such as diversity or mutational load, are being
used to gain insights into the dysregulation that occurs with aging or disease. Properly identifying
clones is central to the calculation of many of these properties. For example, clone size distributions
are the basis for several diversity measures, such as species richness, Shannon entropy, and the Gini-
Simpson index (Yaari & Kleinstein, 2015) that parallel diversity measures in ecology (Hill, 1973).
Diseases such as chronic lymphocytic leukemia are characterized by low diversity that is driven by
the dominance of a small number of clones (van Dongen et al., 2003), and repertoire sequencing
has been used to improve minimal residual disease detection for lymphoid cancers (Boyd, Marshall,
et al., 2009; Logan et al., 2011). Responses to drugs such as rituximab have also been measured by
changes in repertoire diversity in autoimmune disease (Hershberg, Meng, et al., 2014; Boletis et al.,
2009), characterizing treatment regimens that lead to successful remission or result in persistent
clonal expansions. Decreases in repertoire diversity have been associated with aging (Y.-C. B. Wu
et al., 2012; Ademokun et al., 2011; C. Wang et al., 2014). In subjects with seasonal allergies, the
IgE repertoire is the least diverse compared to other isotypes in blood and nasal biopsies, indicating
a focused immune response (Y. C. B. Wu et al., 2014).

Analysis of diversity within a clone also has several applications. Reconstruction of the B cell
clonal lineages using methods such as maximum parsimony or likelihood (Nei & Kumar, 2000) allows
tracing somatic mutations through the Ig sequences and helps in understanding the evolution of
neutralizing antibodies (J. Zhu et al., 2013; Tsioris et al., 2013). Lineage relationships have also
been used to gain insight into the mechanisms underlying isotype switching (Horns et al., 2016;
Looney et al., 2016) and to show that B cell clones in the central nervous system in subjects with
multiple sclerosis are first activated in the periphery (Stern et al., 2014). Identifying clones that
include sequences with known antigen specificities has also been used to reveal novel antigen-specific
sequences (J. Zhu et al., 2013; Jiang, He, et al., 2013). Thus, clonal partitioning of AIRR-Seq data
is central to a wide range of applications.

Despite its importance, there is no consensus on the best method for grouping Ig sequences
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into B cell clones. Most current approaches leverage the high diversity of the junction region
(i.e., where the V, D, and J gene segments join) as a “fingerprint” to identify each B cell clone
(Hershberg & Luning Prak, 2015). Since it is unlikely that two separate recombination events
would lead to identical junctions, sequences with junction regions that are “similar enough” are
determined to share a common B cell ancestor (i.e., be clonally related) rather than to have arisen
independently. Probabilistic models have been developed to calculate likelihood of sharing a B cell
ancestor and subsequently infer clonal grouping (Kepler, 2013; Ralph & Matsen, 2016). However,
these algorithms have run times that scale exponentially, which is computationally intractable for
large sequencing datasets (Ralph & Matsen, 2016). In practice, most studies cluster sequences
based on junction sequence similarity (Ademokun et al., 2011; Stern et al., 2014; Tsioris et al.,
2015; Jiang, He, et al., 2013; Chen et al., 2010; Glanville, Kuo, et al., 2011; Jiang, J. a. Weinstein,
et al., 2011).

While many clustering approaches exist, hierarchical clustering is the most widely used frame-
work for grouping clonally-related sequences. Hierarchical clustering requires a measure of dis-
tance between pairs of sequences, and a choice of linkage to define the distance between groups
of sequences. Since hierarchical clustering produces a tree defining the relationships between all
sequences, it is also necessary to specify a method to cut the hierarchy in order to identify discrete
clonal groups. In practice, most studies first split the sequences using some similarity requirement
on the germline gene segments (e.g., identical V and J gene segments, and junction length), and
then apply hierarchical clustering on the junction sequence of these smaller groups (Boyd, Mar-
shall, et al., 2009; Stern et al., 2014; Tsioris et al., 2015; Jiang, He, et al., 2013; Chen et al., 2010;
Glanville, Kuo, et al., 2011; Jiang, J. a. Weinstein, et al., 2011; Y.-C. Wu et al., 2010; Briney et al.,
2016). Several distance metrics have been proposed, including Hamming distance, which is simply
the absolute count of differences between two amino acid (Glanville, Kuo, et al., 2011; Y.-C. Wu
et al., 2010) or nucleotide (Jiang, He, et al., 2013; Jiang, J. a. Weinstein, et al., 2011) sequences,
normalized edit distance (Chen et al., 2010), and a metric that incorporates hot /cold-spot biases
in SHM targeting (Stern et al., 2014; Tsioris et al., 2015). In addition to metrics defining distance
between two sequences, linkage methods define how distance is calculated between groups of se-
quences. Different clonal grouping algorithms use single (Stern et al., 2014; Tsioris et al., 2015;
Jiang, He, et al., 2013; Jiang. J. a. Weinstein, et al., 2011). average (Chen et al., 2010), or complete

(Ademokun et al., 2011) linkage. The threshold at which the hierarchy is cut to define clusters of
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clonally related sequences has also been determined in several ways. Chen et al., 2010 propose a
fixed threshold that is manually identified based on when the rate of cluster merging events changes
for a gold standard dataset. Glanville, Kuo, et al., 2011 introduced a method based on the observed
bimodal distribution of distances from each sequence to its nearest neighbor. In this case, the first
mode is assumed to represent sequences with clonal relatives in the data (near neighbors), while the
second mode is taken to represent sequences without clonal relatives in the data (distant neighbors).
The threshold is then selected to be the value that separates the two modes of this distribution
(Jiang, He, et al., 2013; Glanville, Kuo, et al., 2011). As of yet, there has not been an in-depth
evaluation of performance of hierarchical clustering-based clonal grouping algorithms including a
comparison of the different distance and linkage methods on AIRR-Seq data.

In this paper, we carry out a comparative analysis of distance metrics and linkage methods for
hierarchical clustering-based clonal grouping. A combination of experimental and simulation-based
criteria are used to evaluate the performance of these algorithms, including estimates of specificity,
sensitivity, and positive predictive value (PPV). Overall, we find that single-linkage hierarchical
clustering with nucleotide Hamming distance has excellent performance, with specificity, sensitivity,
and PPV all over 99%. Implementations of all clonal grouping methods, along with extensive
documentation, are available through the Change-O and SHazaM packages (Gupta et al., 2015)
as part of the Immecantation tool suite (http://immcantation.readthedocs.io) for AIRR-Seq

analysis.



2.2 Materials and methods

2.2.1 Human B cell receptor repertoire sequencing data

Three B cell receptor repertoire sequencing datasets (Healthy, Dengue and WNV) were used to
measure the performance of clonal grouping methods. The “Healthy” dataset was composed of
sequences from peripheral blood mononuclear cells (PBMCs) isolated from healthy adult subjects
(n = 27) as previously described (C. Wang et al., 2014). The “Dengue” dataset was composed of
sequences from PBMCs isolated from subjects with acute Dengue infection (n = 42) as described
previously (Parameswaran et al., 2013). The “WNV” dataset was composed of sequences from
PBMCs and sorted plasma, memory, and naive B cells isolated from subjects recently infected with
WNV (n = 7) as previously described (Tsioris et al., 2015). In each case, processed sequencing
data was obtained from the authors. Germline gene segments were inferred for each sequence
by using IMGT/HighV-QUEST (Alamyar et al., 2012). The “Healthy” dataset was run through
IMGT/HighV-QUEST on December 21, 2014, “Dengue” was run through IMGT,/HighV-QUEST
March 12, 2015, and the “WNV” dataset was run through IMGT/HighV-QUEST on March 21,
2014. Sequences identified as non-functional by IMGT/HighV-QUEST were removed using the
changeo-clt toolkit version 0.2.0 (Gupta et al., 2015).

Two additional B cell receptor repertoire sequencing datasets from healthy adult subjects were
used as a source of naive B cell receptor sequences for the lineage simulations. The first was
composed of sequences from PBMCs and sorted naive B cells isolated from healthy control subjects
(n = 4) as part of a study of Myasthenia Gravis described in Vander Heiden, et al. (Submitted).
This dataset is available on SRA (Accession number: SRP081539). The second was composed of
sequences from total RNA isolated from blood samples of healthy adult subjects (n=3) as part of
an influenza vaccination study described in Laserson et al., 2014. In this case the samples, which
were originally sequenced using Roche 454, were re-sequenced using Illumina MiSeq and published
for the first time here (see details below). Identical sequences from the same sample were counted
once, but identical sequences from different samples were counted independently. This dataset is

available on SRA (BioProject ID: PRJNA349143).
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2.2.2 Library preparation and BCR sequencing of healthy subject se-

quences from Laserson et al., 2014

The blood samples collected in the influenza vaccination study by Laserson et al., 2014 were re-
sequenced using the Illumina MiSeq platform as previously described (Tsioris et al., 2015; Di Niro,
S.-J. Lee, et al., 2013). Briefly, RNA was reverse-transcribed into cDNA using a biotinylated oligo
dT primer. An adaptor sequence was added to the 3’ end of all cDNA, which contains the Illumina
P7 universal priming site and a 17-nucleotide unique molecular identifier (UMI). Products were
purified using streptavidin-coated magnetic beads followed by a primary PCR reaction using a
pool of primers targeting the IGHA, IGHD. IGHE, IGHG, IGHM, IGKC and IGLC regions. as
well as a sample-indexed Illumina P7C7 primer. The immunoglobulin-specific primers contained
tails corresponding to the Illumina P5 sequence. PCR products were then purified using AMPure
XP beads. A secondary PCR was then performed to add the Illumina C5 clustering sequence to
the end of the molecule containing the constant region. The number of secondary PCR cycles
was tailored to each sample to avoid entering plateau phase, as judged by a prior quantitative PCR
analysis. Final products were purified, quantified with Agilent Tapestation and pooled in equimolar
proportions, followed by high-throughput paired-end sequencing on the Illumina MiSeq platform.
For sequencing, the Illumina 600 cycle kit was used with the modifications that 325 cycles was used
for read 1, 6 cycles for the index reads, 300 cycles for read 2 and a 10% PhiX spike-in to increase

sequence diversity.

2.2.3 Read processing of healthy subject sequences from Laserson et al.,

2014

MiSeq reads were demultiplexed using Illumina software. Positions with less than Phred quality 5
were masked with Ns. Isotype-specific primers and unique molecular barcodes (UMI) were identified
in the amplicon and trimmed using pRESTO (Vander Heiden et al., 2014) MaskPrimers-cut. Read
1 and read 2 consensus sequences were generated separately for each mRNA from reads grouped by
UMI. which represent PCR replicates arising from a single initiating mRNA molecule. UMI read
groups were aligned with MUSCLE (Edgar, 2004). and pRESTO was used to construct a consensus
sequence using BuildConsensus, requiring > 60% of called PCR primer sequences agree for the read

group, maximum nucleotide diversity of 0.1, using majority rule on indel positions, and masking
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alignment columns with low posterior (consensus) quality. Paired end consensus sequences were then
stitched in two rounds. First, ungapped alignment of each read pair’s consensus sequence termini
was optimized using a Z-score approximation and scored with a binomial p-value as implemented
in pRESTO AssemblePairs-align. For read pairs failing to stitch this way, stitching was attempted
using the human BCR germline V exons to scaffold each read prior to stitching or gapped read-
joining, using pRESTO AssemblePairs-reference. Positions with posterior consensus quality less
than Phred 5 were masked again with Ns. All pRESTO tools used were version 0.5.1 in conjunction
with Python 3.4. Germline gene segments were inferred using IgBLAST version 1.4.0 (Ye et al.,
2013) with the IMGT/GENE-DB (Giudicelli et al., 20035) reference sequences from June 7, 2014
and output was parsed with changeo-clt (Gupta et al., 2015) MakeDb version 0.3.0. Duplicate
sequences were collapsed and only those heavy chain sequences with at least two reads supporting

the sequence were retained for further analysis.

2.2.4 Simulation of B cell clonal lineages

Each simulated clone was generated by introducing mutations into an experimentally observed
naive B cell receptor sequence according to an observed lineage tree topology (i.e., branching
pattern). Lineage tree topologies were previously derived based on sequencing data from lymph
node samples collected as part of a published study of Multiple Sclerosis (Stern et al., 2014). The
set of 7103, 4066, 8244, and 14782 lineage topologies from four subjects (referred to here as R1,
R2, R3 and R4, respectively) were each used as the basis for 10 simulations resulting in 40 total
simulated datasets. To generate a simulated dataset, the root of each lineage was randomly chosen
(without replacement) from a large pool of un-mutated sequences from healthy subjects obtained
from Vander Heiden, et al. (Submitted) and (Laserson et al., 2014) (described above). Mutations
were then added to the sequence in order to match the experimentally-observed mutation counts
of each branch in the lineage tree according to the human S5F (hS3F) targeting model (Yaari,
Vander Heiden, et al., 2013). The simulated sequences then had germline gene segments inferred
using IgBLAST version 1.4.0 (Ye et al., 2013) with the IMGT/GENE-DB (Giudicelli et al., 2005)
reference sequences from May 2, 2016 and output was parsed with changeo-clt (Gupta et al., 2015)

MakeDb version 0.3.3.
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2.2.5 Distance metrics

Hamming distance was defined as the absolute count of letter changes between nucleotide junction
sequences (ham) or amino acid junction sequences (aa). The 5-mer distance metrics were all based
on the hS5F targeting and substitution models described in (Yaari, Vander Heiden, et al., 2013),
which estimates: (1) the relative probability of a nucleotide position being targeted for somatic
mutation, and (2) the probability of mutating to each of the three other possible nucleotides, based
on the two nucleotides up- and downstream. This probability p was transformed into a distance
d using the formula: d = —logjo(p). The distance between two junction sequences was defined
to be the sum of distances between each nucleotide position. For a given mutation between two
junction sequences, the hS5F-min model took its distance to be the minimum of mutating from
nucleotide n; to 1y and from no to ny at that position. The hS5F-avg model took the distance of
the mutated position to be the average of mutating from n; to n, and from ns to n;. The human
S1F (hS1F) model is equivalent to hS5F-min , but used the human symmetric substitution matrix
based on the single mutated nucleotide described in (Yaari, Vander Heiden, et al., 2013). The m1n
model is equivalent to hS5F-min, but used the mouse symmetric substitution matrix based on the
single mutated nucleotide described in (Shapiro et al., 2003). When normalizing by length, these

distances were divided by the length of the junction region.

2.2.6 Implementation of clonal grouping algorithms

Clonal grouping algorithms were implemented and are made available in the change-o-clt toolkit
(Gupta et al., 2015) (version 0.3.1 or newer). Sequences were first grouped by shared V gene, J gene
and junction length. Within these groups of sequences, hierarchical clustering was performed using
the bygroup subcommand of DefineClones.py with the specified distance metric and linkage type.
The resulting hierarchy was then trimmed into flat clusters at a fixed threshold determined using
an automated method based on analyzing the “distance-to-nearest” profile. For each sequence, the
distance to its nearest un-identical junction was calculated using the SHazalM R package (Gupta
et al., 2015) (version 0.1.3 or newer). The ideal bandwidth for the fourth derivative kernel density
estimate of these distances was then estimated using the unbiased cross-validation method (Wand
& Jones, 1993) of the fourth derivative of the kernel density estimate (Darlington, 1970; Hansen,
2004) from the kedd R package (Guidoum, 2015) (version 1.0.3). This bandwidth was used to

calculate a binned kernel density estimate of the distances with a Gaussian kernel using the KernS-
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mooth R package (version 2.23-15). The minimum between the two modes of the resulting bimodal
distribution of distances was then calculated by finding the first value at which the first derivative
was zero while the second derivative was positive, indicating a local minimum following a local
maximum. If such a minimum were not found an error would have been returned, but this was not

the case for any of the analyses herein.

2.2.7 Specificity, positive predictive value, and sensitivity

Performance was characterized by considering the binary classification task of defining the relation-
ship between all pairs of sequences (s; and s2) with the same junction length. These classifications
were then pooled together for the entire dataset. If s; and sy were known to be unrelated (termed
condition negative) but were grouped into the same cluster (termed test positive), this was counted
as a false positive. If they were grouped into different clusters (termed test negative), this was a
true negative. If s; and s, were known to be related (termed condition positive) but were grouped
into different clusters, this was counted as a false negative. If they were grouped into the same
cluster, this was counted as a true positive. These relationships are outlined in Figure 2.1.

In the case of experimental data, two sequences were known to be unrelated if they were derived
from two separate individuals. Therefore, false positives were defined as sequences from different
individuals being grouped together in a clone, while true negatives were defined as sequences from
different individuals that were grouped into separate clones. Specificity was then calculated by
dividing the number of true negative classifications by the number of condition negative classifica-
tions. In other words, specificity was defined as the fraction of pairs of unrelated sequences that
were successfully inferred by the algorithm to be unrelated.

For the simulated datasets, the precise clonal membership of each sequence was known, yielding
the intuitive definition of false positive and false negative classification. Positive predictive value
(PPV) was calculated by dividing true positive classifications by test positive classifications. In other
words, PPV was the fraction of predicted clonal relationships that were actually true. Sensitivity
was calculated by dividing true positive classifications by condition positive classifications. In other
words, sensitivity was defined to be the fraction of actual clonal relationships that were successfully

inferred by the algorithm.

20



2.2.8 Shannon entropy calculation

The Shannon entropy of clonally related sequences (within clones) was calculated for true clones
having at least two members. Entropy was calculated for each of the first 24 nucleotide positions
of the junction within each clone and averaged across clones having junction length <30 nt and
51 nt. To calculate Shannon entropy of clonally unrelated sequences (between clones), the most
mutated sequence was selected from each true clone. These mutated sequences were then placed
into groups sharing the same V gene, J gene, and junction length. Groups with only one sequence
were discarded. Entropy was calculated for each of the first 24 nucleotide positions of the junction
within each group and averaged across groups having junction length <30 nt and 51 nt. Error bars
represent standard error of the mean. The calculations were made on all of the simulated datasets

pooled together.
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2.3 Results

The problem of clonal grouping takes a set of B cell receptor sequences as input and returns a
partition of that set into subsets (clonal groups) that each represent an independent clonal lineage.
Here we investigate hierarchical clustering-based algorithms which infer a dendrogram based on
pairwise sequence distances and then cut the dendrogram at a fixed distance (or “threshold”) to
predict groups of clonally-related sequences. To evaluate the performance of these clonal grouping
algorithms, we consider three metrics: specificity, sensitivity, and positive predictive value (PPV)
(Figure 2.1).

Specificity quantifies how frequently unrelated sequences are correctly separated into different
clonal groups. In most experimental datasets, the exact clonal relationships between sequences are
unknown. However, to estimate specificity we can take advantage of the fact that B cell clones
cannot span multiple individuals (by definition). Using this knowledge, specificity is defined based
on how frequently sequences from separate individuals are incorrectly inferred to be clonal relatives.
This measure is used to quantify performance on three human Ig AIRR-Seq datasets (referred to as
Healthy, Dengue, and WNV as detailed in Methods), each of which contains samples from multiple
individuals.

Sensitivity represents inclusivity of an algorithm by measuring how often clonally related se-
quences are grouped together. PPV is a complementary metric that quantifies the precision of
an algorithm by measuring how often inferred clonal relatives are truly clonally related. The cal-
culations for sensitivity and PPV require knowledge of true clonal relationships and thus cannot
be estimated from current human experimental datasets. For these measures, performance was
evaluated using 40 simulated datasets based on four experimentally observed sets of clonal lineage
structures (referred to as R1-R4 as detailed in Methods). In the following sections, we use these per-
formance metrics on the human experimental and simulation data to evaluate the choice of distance

metrics, linkage methods and threshold parameters in clustering-based clonal grouping algorithms.

2.3.1 Automated determination of clonal distance thresholds

A key step in hierarchical clustering-based clonal grouping involved choosing a threshold at which
to cut the dendrogram, thus forming discrete groups of clonally-related sequences. In previous work
(Glanville, Kuo, et al., 2011; Jiang, He, et al., 2013), this threshold has often been fixed at a single

value determined by manual inspection of a histogram of nearest-neighbor distances (the so-called
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Figure 2.1: Overview of method for calculating the performance measures: sensitivity,
PPV and specificity. Each node corresponds to a sequence whose true clonal membership is
depicted by its shading (grey or white) in all panels. True relationships (leftmost panels) are shown
as solid lines connecting pairs of clonally-related sequences (top) or unrelated sequences (bottom).
The relationships inferred by the clonal grouping algorithm (middle panels) are also defined between
pairs of sequences (dashed lines). The true and inferred edges are compared to assess performance.
Sensitivity is defined by the number of true positive edges divided by the number of true edges.
PPV is the number of true positive edges divided by the number of inferred edges. Specificity is
number of true negative edges divided by the number of true non-edges.

23



“distance-to-nearest” plot (Yaari & Kleinstein, 2015)). These histograms are typically bimodal and
the threshold is selected to separate these two modes (Figure 2.2A). This choice is motivated by
the intuition that the smaller peak represents the distance between sequences within a clone (intra-
clonal distance), while the larger peak represents the distance between sequences in different clones
(inter-clonal distance). Inspection of the nearest-neighbor distance distributions for the Healthy,
Dengue, and WNV experimental datasets used in this study showed that they are each clearly
bimodal. However, they differed in the values that best separated the two modes (Figure 2.2B).
This result indicates that the distance threshold for clonal groping is dataset-specific and must be
re-computed for each study.

Manual determination of the clustering threshold is problematic because inspecting a distribu-
tion by eye is time-consuming and imprecise. We therefore sought to develop an automated analytic
procedure for inferring the clustering threshold that mimics the widely used manual approach. Since
the histograms generated from real data are rarely smooth, we first smooth the empirical distri-
butions using a binned Gaussian kernel density estimator using a procedure that is well-suited for
bimodal distributions (Hansen, 2004) (see Methods for details). Next, we computationally deter-
mine the minimum between the two peaks of the smoothened distribution and define this value to
be the clustering threshold (Figure 2.2A). This method placed the threshold at intuitive locations
in the Healthy, Dengue and WNV experimental datasets (Figure 2.2B). This method for automated
determination of the clustering threshold enables efficient application of clonal grouping algorithms
under many parameter settings and on many different datasets.

We next applied the automated threshold to assess the performance of clonal grouping methods
on experimental and simulated datasets. Hierarchical clustering using the nucleotide-based Ham-
ming distance metric with single linkage was an effective approach. The mean specificity of the
algorithm was over 99% on experimental data (Figure 2.3A), the mean sensitivity was ~ 99% on
simulated datasets (Figure 2.3B), and PPV was over 99% on simulated datasets (Figure 2.3C).
In contrast, using amino acid-based Hamming distance — which has been used in some previous
studies (Glanville, Kuo, et al., 2011; Y.-C. Wu et al., 2010) — had significantly worse sensitivity
(Figure 2.1). One potential shortcoming of using the Hamming distance metric is that mutations
in short junctions are penalized more heavily than mutations in longer junctions. Since junction
regions vary widely in length (33-81 nucleotides, 95% range from experimental datasets) and the

clustering algorithm uses a fixed threshold. this bias could lead to suboptimal performance. In an
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Figure 2.2: Analysis of the “distance-to-nearest” neighbor plot to define the distance
threshold for partitioning clones. For each sequence, the length-normalized nucleotide Ham-
ming distance to every other sequence was calculated, and the nearest (non-zero) neighbor was
identified. (A) The histogram of nearest neighbor distances for a simulated dataset was fit using a
density estimation of the distribution (solid line), and this fitting was then used to automatically
infer a threshold that separated the two modes of the distribution (dotted vertical line). (B) Near-
est neighbor distributions were calculated for the Dengue (solid line), Healthy (dashed line), and
WNV (dotted line) experimental datasets. Inferred thresholds for each of these human data sets
are indicated by the vertical lines.
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attempt to address this issue, we and others have used a length-normalized Hamming distance met-
ric, in which Hamming distance is divided by the length of the junction. This length-normalization
had minimal effect on specificity in the experimental data (Figure 2.3A), but significantly improved
sensitivity (Figure 2.3B) and PPV (Figure 2.3C) in the simulated data (p < 1074, paired t-test).
Thus, length-normalization of the distance metric is an important step in clonal grouping algo-

rithms.
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Figure 2.3: Length normalization of the distance measure increases performance. Single
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based on the absolute Hamming distance of the junction sequences (None), or the Hamming distance
normalized by the length of the junction (Length). (A) Specificity was calculated using three human
experimental data sets (Healthy, Dengue, and WNV). Sensitivity (B) and PPV (C) were calculated
using 40 simulated datasets based on four experimentally observed sets of clonal lineage structures
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2.3.2 Single linkage has highest sensitivity with minimal compromise of

PPV

Hierarchical and other agglomerative clustering algorithms require a method for determining the
distance between two sets of points (in this case, sequences). The most common linkage methods
include single, average, and complete linkage (Jain & Dubes, 1988). Single linkage defines the inter-
set distance as the minimum distance between all pairs of points from the given sets. This generally
results in larger and more heterogeneous clusters (Jain & Dubes, 1988). Complete linkage defines
the inter-set distance as the maximum distance between all pairs of points from the given sets, and
generally results in smaller and more homogeneous clusters (Jain & Dubes, 1988). Average linkage
defines the inter-set distance as the average distance between all pairs of points from the given sets,
thus providing a compromise between single and complete linkage.

As expected, single linkage had the lowest specificity followed by average and then complete
linkage (Figure 2.5A). However, these differences were small, and specificity was over 99% in all
cases. A similar ranking was found for PPV, with complete and average linkage significantly
improving performance relative to single linkage (p < 1074, paired t-test; Figure 2.5C). Once again,
however, the absolute performance differences were small, with all three approaches exhibiting a
mean PPV of over 99%. As specificity and PPV both reflect the accuracy of clonal grouping,
we conclude that all of the linkage methods are accurate. In contrast, single linkage exhibited
significantly higher sensitivity for clonal grouping relative to both average and complete linkage
(p < 1074, paired t-test; Figure 2.5B). In this case, the sensitivity differences were large, with
single linkage having a mean sensitivity of 99%, compared with 88% for average linkage and 60% for
complete linkage. Overall, these results show that single linkage is significantly better at capturing

the breadth of true clonal relationships, with only a modest reduction in accuracy.
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Figure 2.4: Nucleotide Hamming distance performs much better than amino acid Ham-
ming distance. Single linkage hierarchical clustering was used to identify clonally-related se-
quences using absolute Hamming distance based on the nucleotide (ham) and amino acid (aa) se-
quence. (A) Specificity was calculated using three human experimental data sets (Healthy, Dengue
and WNV). Sensitivity (B) and PPV (C) were calculated using 40 simulated datasets based on four
experimentally observed sets of clonal lineage structures (R1-R4). Bars indicate mean performance.
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2.3.3 Incorporating SHM biases does not significantly improve clonal
grouping

While the Hamming distance between two sequences is quick and easy to compute, it does not
account for the intrinsic targeting and substitution biases in SHM (Yaari, Vander Heiden, et al.,
2013). It is well established that AID and the error prone DNA repair pathways that drive B cell
diversification frequently target specific DNA motifs (termed hot-spots), while others are rarely
mutated (termed cold-spots). There is also a substitution bias such that transition mutations are
significantly more frequent than transversions. Weighing all mutations equally undervalues the less
probable mutations because two sequences are less likely to be part of a clone if they differ by
mutations that occur less frequently (i.e., transversion mutations at cold-spot positions).

To test whether accounting for the intrinsic biases of somatic hypermutation could improve the
performance of clonal grouping algorithms. we implemented four previously proposed SHM models
that account for these biases in different ways (see Methods for details). The first two models (hS5F-
min and hS5F-avg) incorporate the human S5F targeting (mutability and substitution) models that
incorporate the effects of the two nucleotides up- and downstream of a mutation (Yaari, Vander
Heiden, et al., 2013). For each pair of nucleotides (n; and ns) that differ between two junctions
being compared, the hS5F-avg metric assumes that each one has an equal probability of having
been present in the most recent common ancestor. Thus. the distance is taken as the average of
mutating from n; to ny and from n, to n;. The hS5F metric assumes that the ancestral base
is the one that leads to the most likely mutation, and thus uses the minimum distance at each
nucleotide position. The second two models (hS1F and mln) ignore mutability, but account for
substitution bias using a model that depends only on the targeted base (i.e., ignoring surrounding
nucleotides). As these models are symmetric, there is no assumption of which nucleotide was
ancestral. Surprisingly, we found no significant performance differences for any of the distance
metrics in experimental (Figure 2.6A) or simulated datasets (Figure 2.6B,C). These results support
the use of the more efficient nucleotide Hamming distance metric. Overall, we find that hierarchical
clustering using length-normalized nucleotide Hamming distance with single linkage performs well,

with mean sensitivity, specificity, and PPV all over 99%.
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Figure 2.5: Single linkage clustering provides the highest sensitivity, with minimal loss of
specificity or PPV. Hierarchical clustering was used to identify clonally-related sequences using
length-normalized Hamming distance and Single (Single), Average (Avg) or Complete (Compl)
linkage. (A) Specificity was calculated using three human experimental data sets (Healthy, Dengue
and WNV). Sensitivity (B) and PPV (C) were calculated using 40 simulated datasets based on four
experimentally observed sets of clonal lineage structures (R1-R4). Bars indicate mean performance.
* p < 0.0001 by paired t-test.
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2.3.4 Sequences with short junctions have high false positive rate

We next investigated the dependence of performance on junction length to better understand the
source of errors in clonal grouping. Junction length was minimally correlated with specificity in the
experimental datasets (r = 0.1, Pearson’s correlation; Figure 2.7A). Similarly, there was no corre-
lation of junction length with sensitivity in the simulated datasets (r = 0.02, Pearson’s correlation;
Figure 2.7B). In contrast, there was a strong positive correlation of junction length with PPV in
the simulated datasets (r = 0.4, Pearson’s correlation), with mean PPV of 99.1% for sequences
with shorter junctions (junctions shorter than 30 nt represented by at least 0.001% of the sequences
in the repertoire) compared to a mean PPV of 99.8% for sequences with longer junctions (Fig-
ure 2.7C). For these sequences with shorter junction lengths, the right peak in the nearest-neighbor
distance distributions (interpreted as distances between unrelated sequences) begins to overlap the
left peak (interpreted as distances between clonally-related sequences). This pattern of decreasing
inter-clonal distances as junction lengths decrease was also apparent considering nearest-neighbors
across individuals (Figure 2.5). Thus, it appears that the distance threshold that effectively sep-
arates clonal members with longer junctions begins to group together unrelated sequences with
shorter junctions. These results raise the possibility that using a single distance threshold to sepa-
rate clonal groups may not be optimal for sequences with shorter junctions.

To determine if using multiple distance thresholds could improve performance. we assessed
precision (PPV) and recall (sensitivity) across a range of distance thresholds using sequences of
varying junction lengths. We selected the shortest junction length with at least 0.001% of total
sequences (24 nt), the overall mean junction length (51 nt), and the longest junction length with a
distinguishable spread in precision across distance thresholds (81 nt) as example junction lengths
with which to assess performance. When considering all junction lengths as one group, the auto-
mated threshold appears close to optimal in trading off between PPV and sensitivity with both
over 99% (Figure 2.9A). The same holds true when considering separately the mean and longer
junction lengths of 51 nt (Figure 2.9C) and 81 nt (Figure 2.9D) respectively. Interestingly, the
single threshold chosen on the entire data set still provided a near optimal trade-off in performance
for sequences with shorter (24 nt) junctions, although peak sensitivity was lower for some of the
simulated repertoires (Figure 2.9B). Thus, using a junction length-specific threshold is unlikely to

improve performance.
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Figure 2.6: Including hot- and cold-spot biases in the distance measure does not signifi-
cantly impact the performance of clonal grouping. Single linkage hierarchical clustering was
used to identify clonally-related sequences using length-normalized nucleotide Hamming distance
(ham), as well as other distance metrics that incorporated varying SHM biases as described in
Materials and Methods: hS5F-min, m1n, hS1F, and hS5F-avg. (A) Specificity was calculated using
three human experimental data sets (Healthy, Dengue and WNV). Sensitivity (B) and PPV (C)
were calculated using 40 simulated datasets based on four experimentally observed sets of clonal
lineage structures (R1-R4). Bars indicate mean performance.
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The inability to separate unrelated sequences with shorter junction lengths implies a lack of
diversity between clones. Indeed, sequences with short junctions had a lower nucleotide diversity
than sequence with longer junctions (Figure 2.10). In other words, unrelated sequences with short
junctions were more similar on a per nucleotide basis than unrelated sequences with longer junctions.
This difference in diversity was not spread evenly across the junction region, but only became
apparent after the first ~ 7 nt of the junction region, which are generally derived directly from the
V gene segment (Giudicelli et al., 2005). As expected, this was in contrast to nucleotide diversity
within clones, which was low across all junction lengths (Figure 2.10). Overall, these results show
that sequences with shorter junctions have a lower diversity than expected (given their length),
making it difficult to separate clonally related and unrelated sequences.

Although sequences with longer junctions can be grouped into clones with relatively high sensi-
tivity and PPV, false positive assignments are still present. One reason underlying these errors is
the use of the IGHJ6 gene, which is over-represented in false positives with junctions at least 30 nt
in length (p < 1073, Chi-squared test). The IGHJ6 gene extends an extra ten nucleotides into the
junction region relative to all other IGHJ genes (Giudicelli et al., 2005) and clones that use this J

gene would thus be more similar to each other than clones using other J genes.
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Figure 2.7: PPV is decreased among sequences with smaller junction lengths. Single link-
age hierarchical clustering was used to identify clonally-related sequences using length-normalized
nucleotide Hamming distance. (A) Specificity was calculated using three human experimental data
sets (Healthy, Dengue and WNV). Sensitivity (B) and PPV (C) were calculated using 40 simulated
datasets based on four experimentally observed sets of clonal lineage structures (R1-R4). Horizontal
dashed lines are shown at an arbitrary value in each panel to highlight trends.

35



Junction Length 24

0214 T
0.14
- il
2 od Il--_
D
a 1
0.07 - 1
| 1
014~ 1
| 1
0214 T 1 L U U
0 10 20 30
Junction Length 39
T
014 :
| 1
z . Himl .l--__
c 9 1
3 |
O o054 \
1
014 .
1
015-'717’ 1 B I I - L
0 10 20 30
Junction Length 51
0.11 T T R i
| |
0.07 4 1
| |
>
% oo Enaull S
3
a3 1
0.04 = 1
0.07 = :
1
011 ' - - .
0 10 20 30
Junction Length 69
0.07 4 T - :
| 1
0.05+ '
| ]
! Drpanatllll [T
> 1
Z o I-ﬂ-l i
O 002+ :
| 1
0.05 = [
1
o.07 j — L ——— —
0 10 20 30

Junction Length 81

g o4 R
a

o T T T T
0 10 20 30
Hamming Distance

PR ———

o
o
]
1

B within-sample Cross-sample

Figure 2.8: Peaks in the “distance-to-nearest” neighbor distribution begin to converge
at small junction lengths. Nucleotide Hamming distance to nearest neighbor distributions
were calculated for sequences with junctions of length 24, 39, 51, 69, and 81 nucleotides from the
Healthy experimental dataset. Nearest neighbors were defined using sequences within the same
subject (dark grey bars), or by using sequences from all other subjects (light grey bars). The
single distance threshold inferred using length-normalized Hamming distance on the entire Healthy
dataset was multiplied by the corresponding junction length and shown by the dashed line in each
distribution.
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Figure 2.9: A single distance threshold is near-optimal for all junction lengths. Single
linkage hierarchical clustering with length-normalized nucleotide Hamming distance was used to
identify clonally-related sequences in 40 simulated datasets based on four experimentally observed
sets of clonal lineage structures (R1-R4). Precision-recall curves were generated by varying the
distance threshold from 0.10 to 0.20 at intervals of 0.01. The precision (PPV) and recall (sensitivity)
of each run were averaged across the ten simulations of each repertoire in (A) sequences of all lengths,
and sequences with junctions of length (B) 24, (C) 51 and (D) 81 nucleotides. The performance of
the algorithm run with the inferred threshold is shown by filled points in all panels. Insets show
the same data zoomed in on the upper right of the plot.
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Figure 2.10: Unrelated sequences with shorter junctions have lower entropy per nu-
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sequences in the given group.
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2.4 Discussion

AIRR-Seq enables large-scale characterization of the Ig repertoire with the potential for significant
basic science and clinical insights. Effective population-level analysis of these data often relies on
first identifying groups of clonally related sequences. While hierarchal clustering-based approaches
are widely applied in current studies, estimates of their performance and the tradeoffs inherent
in the choice of distance or linkage method are lacking. In this study, we carry out an in-depth
comparison of hierarchical clustering-based clonal grouping algorithms using an automated analysis
pipeline, along with experimental and simulated validation datasets. The analysis pipeline has three
stages. First, sequences are separated by V gene, J gene, and junction length. Second, sequences in
these groups are assembled into a hierarchy as defined by the distance metric and linkage method.
Finally, the hierarchy is partitioned into discrete clones at a fixed distance threshold. While previous
applications of this framework relied on a manual process to choose the distance threshold, we
minimized human imprecision by developing an automated method to select a customized threshold
for any dataset based on analysis of the “distance-to-nearest” distribution.

Quantitative evaluation of the clonal grouping methods was based on a combination of human
experimental and simulated data using the common performance measures of specificity, sensitivity
and positive predictive value (PPV) (Ralph & Matsen, 2016; Chen et al., 2010; Briney et al., 2016).
Experimental data was used to estimate specificity based on the fact that, by definition. B cell clones
cannot span different individuals. Sensitivity and related measures like PPV cannot be estimated
from human experimental data, since current approaches do not allow unequivocal identification of
members of a clone. However, some murine model systems now allow identification of individual
clones through Brainbow color labelling of individual B cells prior to affinity maturation (Tas et al.,
2016). In this study, we used simulated data — where all clonal relationships are known explicitly
— to estimate sensitivity and PPV along with specificity. Simulations have previously been used
to validate performance of a probabilistic clonal grouping algorithm (Ralph & Matsen, 2016) and
to benchmark other repertoire analysis tools (Safonova et al., 2015; Yaari, Uduman, et al., 2012).
Unlike previous approaches, our validation framework does not rely on an underlying model of clonal
expansion and affinity maturation. Rather. the lineage tree topologies are taken from experimental
datasets and are overlaid with new root sequences and somatic mutation patterns to more closely
mimic observed repertoire structures. Furthermore, sensitivity and PPV were calculated on the

dataset as a whole, which is less biased by clone size than the per-read averages calculated in
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previous studies (Ralph & Matsen, 2016).

Hierarchical clustering methods relate sequences to each other, but do not split sequences into
discrete clusters. Thus, a critical step in clonal grouping based on hierarchical clustering is de-
termining the threshold used to partition the sequences into clusters (each representing a single
clone). Previous approaches used a fixed threshold such as 80% nucleotide similarity (Jiang, J. a.
Weinstein, et al., 2011), or relied on manual inspection of the “distance-to-neares” plot to generate
a study-specific threshold (Glanville, Kuo, et al., 2011). “Distance-to-necarest” plots are generally
bimodal, with the two peaks interpreted as clonally related (small distance peak) and unrelated
(larger distance peak) sequences. Previously the clustering threshold has been determined man-
ually by looking for the distance that best separates these two peaks. However, this process is
time-consuming, can be subjective, and there are often multiple possible thresholds that provide
equivalent separation between the peaks. To minimize human bias and to enable rapid evaluation of
a range of parameter choices for this study. we developed an automated method to mimic the man-
ual approach. Other general methods that have been used for determining the number of clusters
in other types of data include the silhouette (Rousseeuw, 1987) or v-fold cross validation (Statsoft,
2013), but these require many rounds of clustering for optimization and are computationally in-
tractable for the large size of AIRR-Seq datasets. The gap statistic (Tibshirani et al., 2001) is also
not applicable since it requires a null distribution of expected within-cluster dispersion, which is
unknown and would require several assumptions to simulate for Ig sequences. Thus, the automated
threshold inference based on the “distance-to-nearest” plot proved most feasible for the data type
and is supported by biological intuition.

Hierarchical clustering is an agglomerative (or “bottom up”) method. Each sequence starts as
its own cluster, and the closest pair of clusters is merged together until all sequences are connected.
Closeness is defined by a distance metric. Many previous studies used Hamming distance (Jiang,
J. a. Weinstein, et al., 2011; Jiang, He, et al., 2013), which simply counts the number of differences
between two junction sequences. Others attempted to incorporate the intrinsic biases of somatic
hypermutation to account for the presence of hot- and cold-spots (Stern et al., 2014; Tsioris et
al., 2015). Here we found that incorporating the targeting and substitution biases of SHM into
the distance metric did not significantly improve performance compared to nucleotide Hamming
distance. It is possible that more sophisticated distance measures could play a more important

role under conditions different from those investigated here. For example, when the mutation
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frequency is low, a different metric may better capture the importance of each individual mutation in
determining the separation between clones. However, the current results suggest that the additional
assumptions and computational cost of more complex distance metrics are unlikely to provide
substantial performance improvements.

While distance is measured between pairs of individual sequences. the linkage method defines
how to calculate the closeness between clusters that contain multiple sequences. We evaluated
the tradeoffs in the most common linkage methods: single, average and complete. Single linkage
is generally considered to be the most inclusive and we found that it provides the best overall
performance with specificity, sensitivity, and PPV all over 99%. However, the appropriate choice
of linkage may depend on the biological question being addressed. Complete linkage offers a higher
PPV, but at the cost of a significant loss of sensitivity. This may be appropriate for research
questions that are highly dependent on the accuracy of calling sequences as part of the same
clone. For example, studies that attempt to link small numbers of antigen-specific sequences with
clonal relatives or establish migration patterns between compartments with infrequent overlaps
may benefit from the high confidence in each clonal connection provided by complete linkage.
Nevertheless, the high absolute performance of single linkage should be acceptable for most studies.

The specificity, sensitivity, and PPV of single linkage clustering with Hamming distance are all
over 99%. However, the errors that are made by this algorithm are not random. We found that
Ig sequences incorrectly grouped together as clonally-related had disproportionately short junction
regions (here defined as less than 30 nt). Since the V gene extends into the junction region by
approximately seven nucleotides (Giudicelli et al., 2005), a higher fraction of the nucleotides in short
junctions would be expected to have limited diversity compared with longer junctions, potentially
limiting the ability to distinguish between clones. This could be particularly problematic when using
a length normalized distance metric, which we showed was critical to achieve acceptable specificity.
However, our analysis showed that the problem went beyond the V segment constituting a higher
fraction of junction nucleotides. Clonally unrelated sequences with short junctions have less entropy
on a per nucleotide basis compared to similar sequences with longer junctions. This lack of inter-
clonal diversity could be due to a lower mutation frequency. the use of a restricted set of D genes, or
fewer untemplated nucleotide additions between the germline gene segments. However, the entropy
of clonally related sequences was comparable between short and longer junctions, suggesting that

a uniformly lower mutation frequency is not responsible for the lower diversity in short junctions.
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Current algorithms for inferring germline gene segments still struggle with inference of the D gene
(Munshaw & Kepler, 2010), making it difficult to determine if the underlying cause of low diversity
is due to D gene usage bias, fewer untemplated nucleotide additions, or another mechanism.

Despite the diversity differences between shorter and longer junctions, using a separate threshold
to partition sequences with different junction lengths did not improve performance. As precision-
recall curves showed, the single threshold selected by analyzing the entire dataset as a whole almost
always optimized the trade-off between sensitivity and PPV for all junction lengths. While a few
repertoires did have an alternate threshold with slightly improved performance, these thresholds
were not evident from the “distance-to-nearest” distributions. It is possible a method other than
hierarchical clustering could better separate clones with shorter junctions, but this would be a minor
improvement as absolute performance of the single linkage hierarchical clustering with Hamming
distance was high.

False positive clonal assignments still occur among sequences with longer junctions, but these
appear to have a different underlying cause. In this case the lack of nucleotide diversity can
be explained, at least in part, by an over-representation of the IGHJ6 gene. This gene extends
an extra ten nucleotides into the junction region (Giudicelli et al., 2005), causing sequences to
appear more similar than others using different J genes. It is possible that a separate analysis
of these sequences may improve performance. One possibility for better separating clones that
do not have sufficient diversity in the junction region is to require shared mutations in the V or
J region, although this would penalize clones that have few mutations overall. Likelihood-based
approaches, such as Cloanalyst (Kepler, 2013) or partis (Ralph & Matsen, 2016), may help to
increase confidence in clones with short junctions or those using IGHJ6, although these approaches
are too computationally intensive to use on full AIRR-Seq data sets. While it has been suggested
that partis improves performance relative to hierarchal clustering (Ralph & Matsen, 2016), this
study did not use dataset-specific distance thresholds and thus likely dramatically underestimated
the performance of the clustering-based method.

The comparative analysis presented here suggests clear tradeoffs in the choice of distance and
linkage methods. However, it is possible that different tradeoffs would become apparent in data
with different clone size distributions. mutation frequencies, etc. The simulation data used to
measure sensitivity and PPV were based on lineage tree topologies drawn from only four underlying

repertoires. The simulations also assume that Ig sequences maintain the same junction length during
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clonal evolution, an assumption that was also made in the clustering algorithm. However, recent
research indicates that a small percentage of SHM events may lead to changes in junction length
within a clone (Yeap et al., 2015). Insertions/deletions may be present in the junction due to
sequencing errors, but the inclusion of UMIs followed by computational approaches for sequencing
error-correction can reduce this impact (Yaari & Kleinstein, 2015; Shugay et al., 2014). Few
clonal grouping methods deal with junction length differences, and while these effects are also not
accounted for in the current study, their influence on performance is expected to be small. Another
possible source of bias in the performance on experimental data is the potential presence of so-called
“public clones,” or highly similar sequences across individuals. Such sequences may skew specificity
estimates that were approximated on publicly available human experimental datasets based on
the frequency of inferred groups that spanned individuals. Furthermore, this specificity measurc
depends on the frequency of highly similar sequences found across individuals, which may differ
from the frequency of highly similar sequences found within an individual by chance. Future studies
could benefit from using a larger number of AIRR-Seq datasets that span age. tissue, disease state,
etc. in addition to simulations based on a larger number of underlying experimental Ig repertoires.

In summary, computational methods for grouping Ig sequences into B cell clones is a critical part
of AIRR-seq studies, and allows for understanding the structure and affinity maturation of the Ig
repertoire. Here we developed a framework for comparative analysis of clonal grouping approaches
and determined that single linkage hierarchical clustering with length-normalized nucleotide Ham-
ming distance performs well on both human experimental and simulated datasets. This algorithm is
available as part of the Change-O and SHazaM packages (Gupta et al., 2015) in our Immecantation

tool suite (http://immcantation.readthedocs.io).
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Chapter 3

Ig AIRR-Seq Analysis Toolkit

This chapter has also been published as:
Gupta, N. T. et al. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire
sequencing data. Bioinformatics 31, 3356-3358 (2015)

My contribution to the following project includes writing code in changeo-clt and shazam and

the extensive documentation and integration for the entire Change-O workflow.

3.1 Introduction

Large-scale characterization of immunoglobulin (Ig) repertoires is now feasible due to dramatic im-
provements in high-throughput sequencing technology. Repertoire sequencing is a rapidly growing
area, with applications including: detection of minimum residual disease, prognosis following trans-
plant, monitoring vaccination responses, identification of neutralizing antibodies, and inferring B
cell trafficking (Robins. 2013; Stern et al., 2014). We previously developed the Repertoire Sequenc-
ing Toolkit (pRESTO) for producing assembled and error-corrected reads from high-throughput
lymphocyte receptor sequencing experiments (Vander Heiden et al., 2014), which may then be fed
into existing methods for alignment against V(D)J germline databases (e.g., IMGT/HighV-QUEST
(Alamyar et al., 2012), I[gBLAST (Ye et al., 2013)). However, extracting measures of biological and
clinical interest from the resulting germline annotated repertoire remains a time-consuming and
error-prone process that is often dependent upon custom analysis scripts.

Some centralized workflows are available for Ig repertoire analysis, but are limited in flexibility

of individual tasks. IGGalaxy (Moorhouse et al., 2014) parses the output of IgBLAST (Ye et
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al., 2013) and IMGT/HighV-QUEST and provides a visual report summarizing the results, but
provides limited downstream analyses. Similarly, ImmunExplorer parses INGT/HighV-QUEST
(Alamyar et al., 2012) output files and has a built-in clonality and diversity calculator with limited
parameter options and no further analyses such as mutation calling. ImmuneDiveRsity (Cortina-
Ceballos, Godoy-Lozano, Samano-Sanchez, et al., 2015) includes steps from raw read processing
to clone identification in a single executable script, but requires using the built-in IgBLAST (Ye
et al., 2013) for V(D)J germline inference and also has limited parameter options. Similar to
ImmuneDiveRsity (Cortina-Ceballos, Godoy-Lozano, Samano-Sanchez, et al., 2015), LymAnalyzer
(Y. Yu et al., 2016) includes several analysis steps from raw read processing to clone identification
and lineage trees. However, as with the other pipelines, the user has limited control over the
parameters of the underlying algorithms, it is not possible to substitute other algorithms for any
single step of the pipeline, and the output file(s) are not formatted in such a way as to easily allow
further downstream analyses. Although there is some appeal to having a single script to run a full
Ig repertoire analysis workflow, analysis tasks vary widely depending on the biological question and
experimental design at hand.

More recently, ImmuneDB (Rosenfeld et al., 2016) was released as an Ig AIRR-Seq analysis
framework consisting of Python tools that interact with IG sequences stored in a MySQL database.
ImmuneDB (Rosenfeld et al., 2016) does offer modularity, but any other tools that are used must
be configured to interact with the MySQL database for input and output. Here, we introduce
Change-0, a suite of modular Python and R (R-Core, 2015) based utilities that cover a range of
complex analysis tasks for Ig repertoire sequencing data. Change-O offers both modularity and a
centralized tab-delimited format for storing Ig sequence information that can easily be viewed with
standard spreadsheet applications and read by many programming languages including Python and

R (R-Core, 2015).
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3.2 Features

The Change-O suite is composed of four software packages: a collection of Python commandline
tools (changeo-ctl) and three separate R (R-Core, 2015) packages (alakazam, shazam, tigger)
(Table 3.1). Data is passed to Change-O utilities in the form of a tab-dclimited text file. Each
utility identifies the relevant input data based on standardized column names, and adds new columns
to the file with the output information to be carried through to the next analysis step. Change-O
provides tools to import data from the frequently used IMGT/HighV-QUEST (Alamyar et al.,
2012) tool, as well as a set of utilities to perform basic database operations, such as sorting,
filtering, and modifying annotations. The more computationally expensive components have built-
in multiprocessing support. Each utility includes detailed help documentation and optional logging
to track errors. Example workflow scripts are provided on the website, which can easily be modified
by adding, removing, or reordering analysis steps to meet different analysis goals. As detailed below,

several repertoire analyses may be carried out, depending on the nature of the study.

3.2.1 Inference of novel alleles and individual genotype

Germline segment assignment tools, such as IMGT /HighV-QUEST, work by aligning each sequence
against a database of known alleles. However, this process will fail for sequences that utilize previ-
ously undetected alleles. In this case, the sequence will be assigned to the closest known allele and
any polymorphisms will be incorrectly identified as somatic mutations. To address this problem,
the Change-O suite includes the TIgGER (Tool for Immunoglobulin Genotype Elucidation) method
(Gadala-Maria et al., 2015). TIgGER determines the complete set of variable region gene segments
carried by an individual and identifies novel alleles, yielding a repertoire of germline alleles person-
alized to an individual, and adjusts the germline variable region gene assignments based on this
individual Ig genotype. This process significantly improves the quality of germline assignments,

thus increasing the confidence of downstream analysis dependent upon mutation profiles.

3.2.2 Partitioning sequences into clonally related groups

Identifving sequences that are descended from the same B cell (clonal groups) is important to
virtually all Ig repertoire analyses. Clonal group sizes and lineage structures provide information

on the underlying response, and clonally related sequences cannot be treated independently in
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statistical analyses and models. Although the in-depth evaluation and comparison of hierarchical
clustering-based clonal grouping methods were discussed in the previous chapter proposed a high
confidence algorithm, Change-O provides several options for partitioning sequences into clones.
Users can choose between several published hierarchical clustering-based clonal grouping methods
(Ademokun et al., 2011; Chen et al., 2010; Glanville, Zhai, et al., 2009; Stern et al., 2014; Tsioris et
al., 2015) with distance metrics including Hamming distance as well as distance that employ several
published SHM hot /cold-spot targeting models (D. S. Smith et al., 1996; Yaari, Vander Heiden, et
al., 2013; Stern et al., 2014), multiple linkage methods, and a user-defined distance threshold. Users
may also specify the region of the sequence to be used to calculate distance between Ig receptors.
Change-O also includes tools to help the user determine a dataset-specific distance threshold based

on distance patterns in the repertoire (Glanville, Zhai, et al., 2009).

3.2.3 Quantification of repertoire diversity

To assess repertoire diversity, Change-O provides an implementation of the general diversity index
(9D) proposed by Hill (Hill, 1973), which encompasses a range of diversity measures as a smooth
curve over a single varying parameter g. Special cases of this general index of diversity correspond
to the most popular diversity measures: species richness (¢ = 0), the exponential Shannon-Weiner
index (as ¢ — 1), the inverse of the Simpson index (¢ = 2), and the reciprocal abundance of the
largest clone (as ¢ — +2c). Resampling strategies are also provided to perform significance tests
and allow comparison across samples with varying sequencing depth (Y. C. B. Wu et al., 2014;

Stern et al., 2014).

3.2.4 Generation of B cell lineage trees

Lineage trees provide a means to trace the ancestral relationships of cells within a clone. This
information has been used to estimate mutation rates (Kleinstein et al., 2003), infer B cell traf-
ficking patterns (Stern et al., 2014), and to trace the accumulation of mutations that drive affinity
maturation (Y.-C. B. Wu et al., 2012; Uduman, Shlomchik, et al., 2014). Change-O provides a tool
for generating lineage trees using PHYLIP's maximum parsimony algorithm (Felsenstein J., 2005).
with modifications to meet the requirements of an Ig lineage tree (Barak et al., 2008; Stern et al..
2014). Trees may be viewed and exported into different file formats using the igraph (Csardi, 2006)

R package.
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3.2.5 Analysis of somatic hypermutation hot/cold-spot motifs

SHM is a process that operates in activated B cells, and introduces point mutations into the DNA
coding for the Ig receptor at a very high rate (=~ 1073 per base-pair per division) (McKean et al.,
1984; Kleinstein et al., 2003). Accurate background models of SHM are critical, since SHM displays
intrinsic hot/cold-spot biases (Yaari, Vander Heiden, et al., 2013). Change-O provides utilities for
estimating the mutability and substitution rates of DNA motifs from large-scale Ig sequencing data
to construct hot/cold-spot motif models, including the ability to generate models based solely on
silent mutations and thus avoid the confounding influence of selection (Yaari, Vander Heiden, et al.,
2013). These tools can be used to build models of SHM targeting, and gain insight into the relative

contributions of AID and different error-prone repair pathways in SHM.

3.2.6 Analysis of selection pressure

Change-O includes an implementation of the BASELINe (Yaari, Uduman, et al., 2012) method for
quantifying selection pressure in Ig sequences. BASELINe quantifies deviations in the frequency of
replacement mutations compared to a background model of SHM. To quantify selection, users may
use published background models (D. S. Smith et al., 1996; Yaari, Vander Heiden, et al., 2013), or

infer the background from their own data using the SHM model building tools in Change-O.
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Table 3.1: Summary of Change-O features.

Package

Analysis Tasks

changeo-clt

Parsing of V(D)J assignment output

Basic database manipulation

Multiple alignment of sequence records
Assignment of sequences into clonal groups
Calculation of CDR3 physiochemical properties

Clonal diversity analysis

alakazam . .
Lineage reconstruction
SHM hot /cold-spot modeling
shazam . . .
Quantification of selection pressure
. Inference of novel germline alleles
tigger

Construction of personalized germline repertoires
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3.3 Conclusion

Change-O is a suite of utilities implementing a wide range of B cell repertoire analysis methods.
Together these tools allow researchers to quickly implement advanced analysis pipelines for ana-
lyzing large data sets generated by repertoire sequencing experiments. A simple tab-delimited file
with standardized column names allows for communication between the utilities, and can easily
be viewed using standard spreadsheet applications. This format also allows research groups the
flexibility to incorporate other analysis tools into their in-house analysis pipelines by simply adding
additional columns of information to the central file. Change-O, along with pRESTO (Vander
Heiden et al., 2014), provide key components of an analytical ecosystem that enables sophisticated
analysis of high-throughput Ig repertoire sequencing datasets. Both are available with extensive

documentation as part of the Immcantation framework (immcantation.readthedocs.io)
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Chapter 4

Applications of clonal grouping to

WNYV infection and other diseases

This chapter has been adapted from the following publications:

e My contribution to Section 4.1 includes all of the computational analysis of the Ig sequences

obtained from both single-cell and next-generation sequencing from:

Tsioris, K., Gupta, N. T. et al. Neutralizing antibodies against West Nile virus identified
directly from human B cells by single-cell analysis and next generation sequencing. Integrative

Biology 7, 1587-1597 (2015)

e My contribution to Section 1.2 consists of computational analysis of the Ig sequences obtained

from laser capture and microdissection from:

Di Niro, R., Lee, S.-J., et al. Salmonella Infection Drives Promiscuous B Cell Activation

Followed by Extrafollicular Affinity Maturation. Immunity 43, 120-131 (2015)

e My contribution to Section 1.3 consists of computational analysis of the Ig sequences obtained

from laser capture and microdissection from:

Di Niro. R., Mesin, L., et al. High abundance of plasma cells secreting transglutaminase 2-
specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal

lesions. Nature Medicine 18 (ed Nat) 441-5 (2012)



4.1 West Nile virus

4.1.1 Introduction

West Nile virus (WNV) is a mosquito-borne, enveloped positive-strand RNA virus that can lead to
severe neurological disease. The virus belongs to the family flaviviridae, which includes yellow fever,
hepatitis C virus, and dengue viruses (Suthar et al., 2013; Colpitts et al., 2012). The emergence of
WNYV in North America was first documented in 1999 in New York, USA. WNV has now become
established throughout the USA and has spread into Canada, Mexico, and the Caribbean. Reports
from the CDC indicate infection of more than 41,000 people to date, including more than 1,700
fatalities (Montgomery & K. O. Murray, 2015). The cumulative incidence of WNV infection may
reach 3 million people (Colpitts et al., 2012; Petersen et al., 2012). Currently, there is no approved
treatment or vaccine against WNV (Suthar et al., 2013; Colpitts et al., 2012; Kyle Austin & Dowd,
2014).

Passive administration of neutralizing antibodies (NAbs) is one possible route to treat viral
infections (Marasco & Sui, 2007; Klein et al., 2013) and could have therapeutic value in the con-
text of severe flavivirus infection (de Alwis & de Silva, 2014; de Alwis, S. a. Smith, et al., 2012;
Dowd & Pierson, 2011; de Jong et al., 2014). WNV-specific NAbs have been derived by phage and
yeast display libraries from both humans and mice (Oliphant, Engle, et al., 2005; Pierson et al.,
2007; Throsby et al., 2006; Vogt et al., 2009; Gould et al., 2005). Murine antibodies have shown
potency in mouse models, but the epitopes targeted by this class of antibodies comprise only a
minor component of the neutralizing response in humans. These antibodies have limited utility
as therapeutics to date (Oliphant, Nybakken, et al., 2007). Other disadvantages of library-based
methods to derive NAbs are the random pairing of heavy- and light-chains, which obscures the
natural humoral response, involves time-consuming assays. and identifies antibodies with limited
neutralization function (Hammers & Stanley, 2014). In contrast, recent studies have identified a
large number of highly potent human immunodeficiency virus-1 (HIV-1) specific NAbs directly de-
rived from HIV-infected patients using flow cytometry to sort memory B cells (MBCs) based on
their affinity to HIV antigens (Scheid, Mouquet, Feldhahn, et al., 2009; Scheid, Mouquet, Ueber-
heide. et al., 2011). For potential vaccine strategies, WNV-specific NAbs directly derived from
humans could also reveal information about naturally targeted epitopes on the virus. NAbs, how-

ever, are only a part of the humoral iumune response to WNV. For a better understanding of



antibody-mediated mechanisms involved, such as disease outcome or persistence of antibodies and
virus (K. Murray et al., 2010), our analysis of the humoral response should span from single cells
to the level of the antibody repertoire.

In contrast to HIV or influenza, the prevalence of WNV is low and many cases are undiagnosed,
making it challenging to assemble a large WNV cohort. Despite these obstacles, we effectively
discovered and evaluated four novel NAbs against WNV directly from rare WNV-specific human B
cells isolated from a set of recently infected and post-convalescent subjects. For this purpose, we
combined microengraving (Love et al., 2006: Ogunniyi, Thomas. et al., 2014; Ogunniyi, Story, et
al., 2009), an integrated multiparameter single-cell analysis method and next-generation sequencing
(NGS). We analyzed activated memory B cells (MBCs) and antibody-secreting cells (ASCs) from
blood on a single-cell level and evaluated the relationship of the parental WNV-specific clones within
the circulating repertoire of B cells (Figure 1.1). Despite a low frequency of WNV-specific B cells
(mean <24 Ag— events per 100,000 PBMCs), these methods for integrated analysis allowed us to
obtain NAbs and enabled analysis of the humoral response to WNV on a single-cell and repertoire
level. The single-cell analysis revealed rare but persistent WNV-specific MBCs and ASCs in post-
convalescent subjects. Furthermore, the results presented here indicate that the antibody response
is independent of an asymptomatic vs. symptomatic disease outcome, as we have noted previously
(Qian et al., 2014). Using the nucleotide coding sequences for WNV specific antibodies discovered
from single cells, we also revealed expanded WNV specific clones in the repertoires of recently

infected subjects through NGS and bioinformatic analysis.
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Figure 4.1: Analysis workflow. Blood is collected from individuals with a history of infection
with WNV and PBMCs are isolated for further analysis. In parallel subject serum is analyzed
using neutralization and immunoblot assays to determine the individual’s overall response to WNV.
PBMC samples are analyzed by microengraving, an integrative single-cell analysis process. WNV-
specific antibodies are captured on a protein microarray from single antibody-secreting cells (ASCs)
and single stimulated memory B cells (MBCs). Subsequently, individual WNV-specific MBCs and
ASCs identified by microengraving are recovered and the sequences coding the variable region of the
antibody heavy and light chains of their corresponding antibodies are obtained. Paired heavy and
light chain coding sequences are used to clone the WNV-specific antibodies. The cloned antibodies
are evaluated by neutralization and immunoblot assay. In parallel, the subject antibody repertoire
is analyzed by next generation sequencing (NGS). The NGS data is processed by an integrated
bioinformatics pipeline (pRESTO and Change-O) to identify clones of WNV-specific antibodies.



4.1.2 Materials and Methods
4.1.2.1 Recruitment of human subjects and sample validation

Human subjects exhibiting various WNV infection phenotypes were recruited from a well-characterized
cohort of volunteers. Blood was obtained with written informed consent under the guidelines of the
Human Investigations Committee of Baylor College of Medicine, which approved the study. Investi-
gation of coded samples was approved by Yale University and Massachusetts Institute of Technology
in compliance with HIPAA guidelines. The diagnosis of WNV infection was determined following
CDC guidelines (Nolan et al., 2013) and subjects were stratified by CDC definitions to a severe
neuroinvasive phenotype, mild fever-only phenotype, or asymptomatic infection as described pre-
viously (Nolan et al., 2013). Infection was validated by qualitative rapid nucleic acid test at the
blood bank (cobas®TaqScreen West Nile virus Test, Roche Molecular Systems, Pleasanton, CA),
positive immunoblot as described previously (Qian et al., 2014), or IgM ELISAs. Subjects (n =
11) were 45.5% female and 90.9% white and included asymptomatic, mild, and severe subjects.
Subjects from the asymptomatic, mild, and severely infected groups were not statistically different

for age, gender, or race in this study.

4.1.2.2 Single-cell analysis by microengraving

Actively secreting and memory B cell populations in PBMC samples obtained from subjects were
analyzed by microengraving (Love et al., 2006; Ogunniyi, Thomas, et al., 2014) to determine
the distributions of secreted antibody isotypes and the frequencies of WNV E specific antibodies.
There was a range of cells from our donors with a median of 149[thin space (1/6-em)]090 antibody
secreting cells (range 51[thin space (1/6-em)|888-375[thin space (1/6-em)]028) and a median of
145|thin space (1,/6-em)|601 memory B cells (range 56|thin space (1/6-em)]862-385[thin space (1/6-
em)|436). Frozen PBMCs were thawed and maintained in complete RPMI media containing IL-6 (20
ng/mL, Peprotech) and Chk2 inhibitor IT (2 ug/mL, Sigma-Aldrich). After resting or stimulation,
cells were stained for viability (Calcein violet AM) and for expression of CD19 (Brilliant Violet ®
605). CD20 (Alexa Fluor® 488)., CD27 (PerCP-efluor® 710), CD38 (PerCP-efluor® 710) and
CD138 (APC), loaded into nanowells, then imaged on an epifluorescence microscope. Separate
microarrays were generated by sealing nanowells with capture slides functionalized with donkeyv
anti-human Ig (25 pg/mL, Jackson Immunoresearch) or WNV E protein (50 pg/mL, Aviva Systems

Biology). We used a flu specific antibody secreting cell line (X. Yu et al., 2008) to determine non-
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specific binding events for subsequent background frequency subtraction (Ogunniyi, Thomas, et al.,
2014). Isotype-specific information was obtained by staining microarrays with a panel of anti-human
IgG1, IgA, IgG3 and IgM detection antibodies (BD Biosciences and Invitrogen). Microarrays from
WNV E-coated slides were probed with mouse anti-human Igx and IgA (BD Biosciences) detection
antibodies. Microarrays were scanned on a GenePix® 4200AL Autoloader (Molecular Devices),
and median fluorescence intensities (MFIs) from bound species were extracted with GenePix®
Pro 6.0 software. Isotype-specific data was analyzed as previously described (Ogunniyi, Thomas,
et al., 2014). Antibodies were considered WNV-E specific if microarray elements were from wells
with viable, CD19-+/CD20~/- cells that also satisfied the following criteria: % saturation < 2,
signal-to-noise ratio > 1, > 40% of pixels above background +1 standard deviation, CV < 70
and background corrected MFI > 1500. A fraction of cells from such wells were recovered with
an automated micromanipulator (AVISO CellCellectorTM, ALS GmbH), and heavy and light chain
variable genes were amplified by single-cell RT-PCR (Ogunniyi, Thomas, et al., 2014). In short,
the cells were recovered using a glass capillary mounted on an automated micromanipulator and a
microscope. The glass capillary was placed over the nanowell to recover the desired MBC or ASC
by applying a vacuum. The cell was subsequently released into a well of a 96 well plate containing
water. To subsequently recover antibody heavy and light chain variable genes, a nested PCR was
performed using the primers and protocol previously published by X. Wang & Stollar, 2000. These

procedures have been described in more detail by Ogunniyi, Thomas, et al., 2014.

4.1.2.3 Expression and validation of WNYV specific antibodies

The protocols to clone. express and validate antigen specific antibodies has been previously de-
scribed (Ogunniyi, Thomas, et al., 2014; Tiller, Meffre, et al., 2008). In brief, paired heavy and
light chain coding sequences were cloned into vectors for expression as human IgG1l. We utilized
human embryonic kidney (HEK) 293 T cells (ATCC) to transiently express the cloned antibod-
ies. Antibodies in culture supernatants were evaluated for binding on a custom protein microarray
consisting of WNV E protein. Microarrays were scanned on GenePix® 4200AL and analyzed with
GenePix® Pro 6.0. Subsequently, the expressed WNV specific antibodies were evaluated by im-

munoblot and PRNT assay as described above.



4.1.2.4 Library preparation and next generation sequencing

To evaluate B cell subsets from recently infected subjects listed, fresh PBMCs were sorted to isolate
plasma cells, naive and memory B cells, and RN A was isolated for sequencing. The number of sorted
B cells from each subject was a median of 536[thin space (1/6-em)|792 (range 51|thin space (1/6-
em)|232-2[thin space (1/6-em)]108|thin space (1/6-em)]051). UID barcoded NGS libraries (Vander
Heiden et al., 2014) were prepared by AbVitro, Inc from 250 ng of the extracted RNA of both
sorted B cells as well as unsorted PBMCs. NGS libraries were subsequently sequenced at the
MIT BioMicrocenter on the Hlumina Miseq platform using the Illumina 2 x300 bp sequencing kit
according to the manufacturer specifications. PBMCs from post-convalescent subjects were directly
processed without sorting, and libraries were sequenced using the Illumina 2 x150 bp sequencing

kit.

4.1.2.5 High-throughput antibody repertoire sequence analysis

Preprocessing was carried out using pRESTO version 0.4 (http://clip.med.yale.edu/pRESTO) (Van-
der Heiden et al., 2014) and involved removing primer sequences, filtering based on sequence quality
and annotating sequences with sample information. Following preprocessing, V(D)J germline seg-
ments were determined using IMGT /HighV-QUEST (Alamyar et al., 2012). Functional V(D)J
sequences of each subject were combined with WNV-specific sequences and then Change-O (Gupta
et al., 2015) was used to divide the sequences into clonally-related groups by a two-step procedure:
(1) sequences were partitioned based on common V gene, J gene, and junction region length, and
(2) within these larger groups, sequences differing from one another by a distance of less than 0.01
were defined as clones. Distance was measured as the number of point mutations weighted by a
nucleotide substitution probability previously described (Yaari, Vander Heiden, et al., 2013). These
data will be available through controlled access from the database of Genotypes and Phenotypes
(dbGaP).

Clones for antibodies MIT185 and MIT186 as portrayed in Figure 1.6 were identified by manual
inspection of Figure 1.6. To generate Figure 1.6, for each WNV-specific query sequence, the NGS
data was filtered for sequences with the same V and J germline gene segment. For each of these
sequences, similarity to the query (y-axis) is the Needleman-Wunsch distance on the entire sequence
without end-gap penalties divided by the length of the alignment. The distance from germline (x-

axis) is the Hamming distance (with ambiguous characters not counting as a mismatch) between

~1

Ut



the sequence and its germline divided by the number of non-N nucleotides in the sequence.
The smallest observed WNV-specific clone composed 0.01% of the repertoire. Selection pressures
were quantified using BASELINe (Yaari, Uduman, et al., 2012; Uduman, Yaari, et al., 2011) with

the S5F somatic hypermutation targeting model (Yaari, Vander Heiden, et al., 2013).

4.1.2.6 Generation and analysis of lineage trees

Lineage trees were constructed for each clonal group by removing indel positions and then using
maximum parsimony with the dnapars application of PHYLIP (Felsenstein J., 2005). This was
followed by recursively replacing inferred ancestors in each tree with descendants having a Hamming
distance of zero from their inferred parent. The trunk length of a clone is defined to be the branch
length from the germline root node to the most recent common ancestor. Comparisons were made
to Ig repertoire sequencing of three individuals who received an influenza vaccination and had blood
drawn at several time-points (8 days, 2 days, and 1 hour pre-vaccination; 1 hour, 1 day, 3 days,
7 days, 2 weeks, 3 weeks, and 4 weeks post-vaccination). Clones were defined in the same way as
described above. For the vaccination data, trunk lengths were only measured for expanded clones,
or clones that at some time-point compose at least 0.05% of the Ig repertoire. Comparisons between

trunk lengths were made using a two-tailed Student’s t-test.



4.1.3 Results
4.1.3.1 Identification of study subjects with high serum neutralizing antibody titers

To examine developing humoral responses to WNV, we recruited a cohort of recently infected
subjects during the 2012 WNV outbreak in Houston, Texas (Table {.1). Blood samples were
collected at two time points, 1.9 + 0.8 months post onset (range 0.8-2.9; n=7) and 3.2 £+ 1.2 months
(range 2-4.7; n=6, one subject lost to follow-up) after infection. Both time points correspond to
samples of the recently infected period following exposure to WNV. To identify post-convalescent
subjects with high serum neutralizing antibody titers, we screened our cohort of more than 160
WNYV subjects who we have monitored since 2002 (K. O. Murray et al., 2013). We initially selected
individuals from asymptomatic and severe infection groups with a history of exposure less than 2
years after infection with WNV (total n—17, enrolled n=4). In total, we identified 11 subjects from

our cohort of varying age, gender, disease outcome, and disease stage for our study.

4.1.3.2 West Nile virus neutralizing antibodies identified by single-cell analysis

Using microengraving (Ogunniyi, Thomas, et al., 2014; Ogunniyi, Story, et al., 2009) (Figure 1.1),
we recovered more than 90 WNV-specific single MBCs and ASCs, 31 of which had both heavy (Ta-
ble 1.2)and light chains (Table 1.3). From those cells, we recovered 19 antibody-coding sequences
where both heavy (V1, V3, V4 V region family) and light (V1, V2, V3 V region family) chains were
present after PCR amplification. These 19 paired antibody-coding sequences were used for cloning
and further evaluation (Table I.1). We found no significant difference (p<0.05) in the amount of
selection pressure between MBCs and ASCs by analyzing the mutations in the complementarity-
determining (CDR) and framework (FWR) regions (Yaari, Uduman, et al., 2012). Of the 19
recovered antibodies, twelve expressed with sufficient amounts of protein for further evaluation by
immunoblot, plaque reduction neutralization assay (PRNT), and protein binding assays to deter-
mine their relative affinities (Table 1.5). As controls, we used serum from WNV positive (HS+)
and WNV negative (HS-) subjects, and an antibody (2G12) with known affinity to HIV-1. Of the
WNV-specific antibodies, five were from post-convalescent and seven from recently infected sub-
jects. Three expressed antibodies showed reactivity to WNV envelope (E) protein by immunoblot.
and four also showed efficient neutralization of WNV'. Interestingly, three of the neutralizing anti-
bodies did not show reactivity to WNV E protein by immunoblot, suggesting that they recognize

conformation-dependent epitopes. Antibody MIT89 was positive both by immunoblot and PRNT.
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Furthermore, we observed a positive trend between the relative antibody affinities for WNV E
protein and WNV neutralization. All neutralizing antibodies were recovered exclusively from post-

convalescent subjects.

4.1.3.3 Next generation sequencing of B cell repertoires reveals clonal expansion in

individuals recently infected with West Nile virus

To gain a better understanding of the overall variance among the B cells in circulation, we sequenced
the B cell heavy chains from PBMCs, naive, and memory B cell populations of seven recently
infected subjects (Table 1.6). The distributions of isotypes determined by NGS of PBMCs and
MBCs showed no significant differences between asymptomatic and symptomatic recently infected
subjects, confirming the results measured from individual cells by microengraving (Figure 1.2). The
distribution of clone sizes in the sequencing data are shown for each subject in Figure 1.3. The
degree of mutation in the sequences from recently infected subjects is shown in Figure 1.1. To
identify WNV-specific clones in the repertoire, the individual WXV-specific antibody sequences
obtained by the single-cell analysis (“queries”) were combined with the NGS data and groups of
clonally-related sequences were automatically identified using Change-O as described in methods
(Gupta et al., 2015). This method identified three expanded clones that included one of the query
sequences. To identify additional WNV-specific clones, the sequences from the NGS were plotted
based on their level of mutation and similarity to each of the query antibody sequences (Figures 1.5
& 1.G). The three WNV-specific clones were clearly identifiable as outlier groups of sequences with
higher similarity to the queried WNV-specific antibody sequences compared to other sequences
with a similar level of mutation (Figures 1.5B & 1.6). In addition, manual inspection of these
plots identified two additional WNV-specific clones. The WNV-specific clones showed evidence of
expansion, and sequences were found both among PBMCs and memory B cells with both IgA and
IgG isotypes. Overall, five WNV-specific clones were identified through integration of the single-cell
analysis and NGS data.

Since WNV is a recent pathogen to North America, the WNV-specific clones we identified are
likely a result of a primary immune response originating from naive B cells, rather than a recall
response from memory B cells. Therefore, we hyvpothesized that the WNV-specific clonal expansion
we observed would have initiated from less affinity-matured cells than those that generate antigen-

specific clones after a recall response to re-occurring infections or vaccinations to viruses such as
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Figure 4.2: No difference in isotype distribution between asymptomatic and symp-
tomatic recently infected subjects. Distribution of isotypes from PBMCs (upper) and Memory
B cells (lower) NGS Ig sequencing by subject.
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Distribution of clone percentage within Subject
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Figure 4.3: Distribution of antibody repertoire clone sizes. Histogram of clone sizes normal-
ized by sequencing depth in each subject, dotted line shows median of distribution.
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Distribution of Mutations from Clone
Germline Assignment by Subject
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Figure 4.4: Distribution of antibody repertoire mutation levels. Histogram of mutation
levels (V segment up to start of CDR3) from the germline sequence of each clone in Ig sequences,
dotted line shows median of distribution.
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Figure 4.5: Trunk length analysis of West Nile virus-specific clones in the immunoglobin
repertoire indicates unlikely previous exposure to the virus. (A) Size of WNV-specific
clones found in recently infected subjects. (B) Representative plot of sequence similarity of heavy
chain (same V and J segment) identified within the repertoire as a function of distance of the
sequence from germline (x-axis) and the corresponding “query” WNV-specific sequence (y-axis).
An outlier cluster representing a putative WNV-specific clone is circled. (C) Maximum parsimony
lineage tree for one WNV-specific clone (MIT187). Each node represents a unique sequence, with
size representing the number of duplicate reads observed. Edge lengths correspond to the number
of mutations between sequences. Shading of the node represents the compartment in which the
sequence was found. The nodes are labeled with the isotypes of the observed sequence (A: IgA, G:
IgG, Q: WNV-specific query sequence from single-cell screening). (D) Plot of observed trunk lengths
(number of mutations between germline and most recent common ancestor of clone). Emerging
WNV-specific clones have significantly fewer trunk mutations (Student’s t-test) compared to size-
matched clones found in the same subjects, and to expanded clones (at least 0.05% of the repertoire)
from subjects who received an influenza vaccination.
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influenza. To investigate this hypothesis, we approximated the sequence of the initiating B cell for
each clone as the most recent common ancestor in a maximum parsimony lineage tree (Figures 1.5C
& 1.7). Maximum parsimony lineage trees minimize the number of mutation events in each clone
and infer sequences that may have existed between observed antibodies and the germline sequence.
The trunk length of the lineage tree (e.g., the number of mutations in the most recent common
ancestor compared with the germline sequence) approximates the maturation state of the initiating
B cell for each clone.

In comparison to other similarly sized B cell clones in the recently infected WNV subjects, the
trunks in WNV-specific clones had significantly (p < 0.05) fewer mutations (Figure 1.5D). It is
possible, however, that some of the similarly-sized clones in this cohort are WNV-specific, which
could confound the comparison. To address this issue, we also compared the trunk lengths in
WNV-specific clones with expanded (at least 0.05% of the repertoire) clonal lineages from three
responses following influenza vaccination, obtained from publicly available data 35. We found that
the WNV-specific clones once again had trunks that were significantly (p < 0.03) less mutated than
those found from the influenza response. The close mutational distance of sequences that give rise to
WNV-specific B cell clones to their respective germlines supports our hypothesis that these subjects
have not previously been exposed to WNV and have experienced primary affinity maturation rather
than a recall response. In the case of two clones (MIT187 and MIT180) (Figure 1.7), the query
sequence was not a terminal leaf; other sequences with additional mutations were observed in the
lineage tree. Antibodies both more and less mutated than the query sequences could also show high
affinity and neutralizing activity to WNV. This general approach of using specific antibodies found
by microengraving as query sequences to reveal similar antibodies at the repertoire level could have
wide applications for a larger scale search for therapeutic neutralizing antibodies specific to many

other diseases.
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Figure 4.6: Query plots of West Nile virus-specific clones found in Ig repertoire. Plots
of sequence similarity of heavy chain (same V and J segment) identified within the repertoire as
a function of distance of the sequence from germline (x-axis) and the corresponding WNV-specific
“query” sequence (y-axis). Outlier clusters representing putative WNV-specific clones are circled.
The shape of each point indicates the isotype of the Ig sequence. 17420202, MIT180, and MIT187
were identified by automated clonal grouping; MIT185 and MIT186 were identified by manual
inspection.
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with size correlating to number of duplicate reads observed. Edge lengths correspond to the number
of mutation between sequences (unlabeled edges are one mutation). Shading of the node represents
the compartment in which the sequence was found. The node label determines the type of sequence
observed (A: IgA, G: IgG, Q: WNV-specific query sequence from single-cell screening).
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4.1.4 Discussion

In this study, we analyzed PBMCs from individuals with recent or post-convalescent WNV infec-
tions. We effectively identified WNV-specific antibodies by single-cell analysis. We next cloned
and expressed the antibodies identified by single-cell analysis and performed PRNT, to identify
WNV-specific NAbs. Four of the NAbs identified also showed high affinity to WNV E protein as
determined by protein microarray. In contrast, only one NAb was also positive in the immunoblot
assay. These results may indicate that three of the discovered NAbs recognize conformation de-
pendent epitopes on the WNV E protein that could have been denatured during the immunoblot
assay 36. Similarly, antibodies to the related Flavivirus family member dengue virus, a quaternary
epitope was required for neutralization of the virus (de Alwis, S. a. Smith, et al., 2012), indicating
that denaturing of the higher order antibody protein structure could result in a loss of function. We
also observed that neutralizing activity was positively corrclated with increased antibody affinity
to WNV E protein. This trend suggests that the development of NAbs in WNV infection requires
a high degree of affinity maturation. In support of this hypothesis, we found NAbs exclusively in
the post-convalescent subjects, which could indicate that the detected antibodies developed later
during the course of infection, and that they require a prolonged exposure to antigen to promote
affinity maturation. Chronic or repcated exposure to viral antigens such as HIV-1 can elicit affinity
maturation beyond the degree observed here (Scheid, Mouquet, Feldhahn, et al., 2009).

In contrast to previously identified NAbs derived using murine phage and yeast display libraries
(Oliphant, Engle, et al., 2005; Pierson et al., 2007: Throsby et al., 2006; Vogt et al., 2009; Gould
et al., 2005), the antibodies here were directly derived from human B cells obtained from individ-
uals previously infected with WNV. These antibodies therefore reflect the natural selection and
maturation of WNV-specific NAbs in humans. The challenge here exists in identifying the rare B
cells producing NAbs. For instance, in infections with the dengue virus, a related flavivirus, only a
small fraction of the antibodies expressed strongly neutralized the virus (de Alwis & de Silva. 2014)
although recent studies have identified an epitope that may be relevant for effective neutralization
(Dejnirattisai et al., 2014). This outcome highlights the importance of utilizing single-cell analysis
methods to identify rare B cells of interest. Future studies should further elucidate the epitopes and
mechanisms of action of the NAbs identified here. In addition, developing and validating a small
animal model and testing these antibodies could provide evidence for potential therapeutic use.

Though previous longitudinal studies of the immune response to influenza vaccination indicate
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that clonal expansion occurs seven days post-vaccination (Laserson et al., 2014; Jiang, He, et al.,
2013; Vollmers et al., 2013), the recently infected subjects in this study had been infected with
WNV at least four weeks prior to the first blood draw. The expansion of WNV-specific clones in
comparison with post-convalescent subjects exposed to WNV years prior to sampling implies that
the antibody-mediated response may persist longer than in the case of other infections or vaccines.
Chronic infections have been shown to lead to expanded B cell clones in the case of cytomegalovirus
(CMV) or clones with higher levels of mutations in the case of Epstein-Barr virus (EBV) (C. Wang
et al., 2014).

In summary, we effectively identified novel human-derived NAbs and analyzed the humoral
response to WNV infection by integrating single-cell analysis, repertoire next generation sequencing,
and conventional methods. Detecting persistent antigen-specific MBCs and ASCs in the periphery
of post-convalescent subjects can reveal the origin of these antibodies and potentially provide clues
about the persistence of WXV in the body. We believe that WNV provides an excellent model to
examine primary naive responses of human B cells, given the disease’s well-defined clinical history
for the onset of infection, the low occurrence of infection by this or others flaviviruses (e.g., dengue)
in North America, which allows the characterization of naive responses to a recently introduced
pathogen with unlikely re-exposure. Our results comparing the distances of inferred clonal founder
cells from their respective germlines support the hypothesis that WNV-specific antibodies develop
from naive B cells during a primary infection, rather than a recall response from an affinity matured
memory B cells. These results highlight the importance of analyzing the immune response to
infection with integrated single-cell data, serum analysis, and whole repertoire analysis. These
methods to analyze the humoral response can also be applied to other infectious diseases research

and in vaccine trials.

4.2 Salmonella

4.2.1 Introduction

The immune response to microorganisms is an interplay between aspects of innate and adaptive
immunity. Successful pathogens often have multiple mechanisms to evade or subvert the immune
response. Furthermore, pathogens contain molecular patterns that stimulate a wide variety of innate

immune pattern-recognition receptors, whether expressed on innate cells such as macrophages,



dendritic cells (DCs), or on adaptive cells such as B lymphocytes. These pathways and innate
receptor ligands in turn shape adaptive immunity.

Currently, our knowledge of B cell responses is mostly based on artificial systems that lack
these natural innate immune cues. Instead, they use non-replicating antigens given in adjuvant.
The “canonical” response described in these models includes a rapid transient extrafollicular (EF)
plasmablast (PB) response followed by germinal center (GC) appearance (Shlomchik & Weisel,
2012). While some pathogen responses follow this progression (e.g., the response to influenza (Coro
et al.. 2006; Moyron-Quiroz et al., 2004; Onodera et al., 2012; Rothaecusler & Baumgarth, 2010)),
there is increasing evidence that in many other infections this is not the case. During Ehrlichia muris
infection splenic GC formation is suppressed (Racine et al., 2010). Similarly, Borrelia burgdorferi
interferes with the B cell response by affecting its quality and kinetics, delaying GC appearance and
instead stimulating immunoglobulin M (IgM) antibody-forming cells (AFCs) (Hastey et al., 2012).

Though the immune response to Salmonella enterica serovar Typhimurium (STm), a facultative
intracellular gram negative bacterium, is relatively well studied (Dougan et al., 2011). information
on the B cell response is limited. This is a major omission, considering that STm is a clinically
relevant microorganism and that live attenuated strains have been proposed and are in phase I
clinical trials as vectors for vaccines (Kong et al., 2012). Furthermore, STm and related serovars
are a major cause of infectious diarrhea in the developed world and they are also responsible for
serious disseminated infections in Africa and Asia. It is highly homologous to Salmonella Typhi.
and considered a murine model for the study of this pervasive human pathogen. The B cell response
to STm can be protective in both mice and humans, via antibodies or other mechanisms (Nanton
et al., 2012).

STm induces a massive extrafollicular AFC response in the spleen, while GC formation is greatly
delayed (Cunningham et al., 2007). Both T-dependent (TD) and T-independent (TI) components
contribute to the response (Gil-Cruz et al., 2009). The mechanisms that shape this type of B cell
response remain to be elucidated, whereas parameters of virulence and protection have received
greater attention. Deletion of the signaling adaptor MyD88 appeared to favor, rather than inhibit,
STm virulence (Arpaia et al., 2011; Barr et al., 2010; Neves et al., 2010).

A number of studies have addressed the targets of the B cell response. yet overall these remain
poorly defined. LPS, outer membrane proteins (OMPs) and possibly flagellin are identified as

primary Ags of the switched Ab response (Bobat et al., 2011; Calderon et al., 1986; Cunningham
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et al., 2007; Ortiz et al., 1989; Singh et al., 1992). Recently, some of the authors of the present work
have screened immune sera on antigen (Ag) microarrays, thus identifying antibody (Ab) signatures
of human and murine Salmonellosis (S. Lee et al., 2012). Serum signatures can partly describe the
status of the Ab response, but they do not reveal its ontogeny; moreover, serum Ab profiles might
be discordant with memory or effector cell specificities (Guan et al., 2009). Knowing antigenic
targets is certainly important for vaccine design, yet further research is necessary to understand
the underlying mechanisms of response and protection; for instance, to explain why vaccines to
Salmonella have only moderate, transient efficacy (McGregor et al., 2013).

Here we focused both on defining the specificities of the B cell response and addressing why
it follows an extrafollicular pathway rather than a GC one. Our initial hypothesis was that the
massive plasmablast response was polyclonal and non-specific, owing to innate immune receptor
stimulation of B cells. Initial evidence indicated that the response was apparently non-specific.
However, a series of experiments using a variety of approaches ultimately revealed a process in which
very low affinity, yet specific, B cells — found at unexpectedly high precursor frequency — join the
initial proliferative plasmablast response, and in the absence of developed GCs eventually acquired
somatic mutations which in turn led to sufficient affinity maturation for the ultimate detection
of conventional “specificity” for the immunizing bacteria. These results reveal an unappreciated
pathway of response to a gram-negative bacterial pathogen and in addition lead to a revised view

of the nature of clonal selection, specificity, affinity, and humoral immune response evolution.
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4.2.2 Materials and methods
4.2.2.1 Mouse strains

The following mice strains were used: wild type C57Bl/6J and BALB/c (NCI or Jackson Labo-
ratories); MyD88-/- BALB/c (Adachi et al., 1998) or MyD88-/- C57Bl/6 (from Drs. Bockenstedt
and Goldstein at Yale University); IL-1R-/- C57Bl/6 (from Dr. Flavell at Yale University); Tlr2-
/- Tlrd- /- nrampwt C57Bl/6 and nrampwt C57Bl/6 (from Dr. Barton at UCSF); asc -/- Balb/c
(Sutterwala et al., 2006); TIr9-/- C57Bl/6 (Hemmi et al., 2000); TCR3-/- C57Bl/6 (Jackson Lab-
oratories); Vk8R~/+ and Jx-/- BALB/c. B1-8+/+ and B1-8+/+ Jk-/- C57Bl/6 (Sonoda et al.,

1997).

4.2.2.2 Mice, bacteria, and infection procedures

The mice strains used in this study were bred under specific pathogen free conditions in the animal
facility at Yale University. The AroA- attenuated Salmonella Typhimurium strain SL3261 (Hoiseth
& Stocker, 1981) was kindly provided by Roy Curtiss III, Arizona State University. For infection,
105 bacteria (unless otherwise specified) in PBS were injected i.p.. The bacterial burden was
assessed by plating serial dilutions of tissue homogenates, prepared by 1lmm-beads disruption in a
FastPrep-24 instrument (MP Biomedicals). All mouse work was according to protocols approved

by the Yale Institutional Animal Care and Use Committee.

4.2.2.3 Laser capture and microdissection

7 pum spleen sections were prepared from OCT-frozen tissues on the membrane-coated PEN slides
(Leica). To detect plasmablast patches, slides were blocked with 10% FCS and 0.1% BSA in PBS
and immunohistochemistry was performed using a rat anti-CD138-biotin antibody, followed by a
goat antirat-biotin antibody, and then HRP-conjugated streptavidin. To detect GC-like structures,
slides were blocked with 10% rat serum, 1% BSA and 0.05% Tween-20, and the following antibodies
were used: PNA-biotin followed by AP-conjugated streptavidin (Southern Biotech), and anti-IgD-
FITC followed by HRP-conjugated anti-FITC (Millipore). The slides were developed with 3-amino-
9-ethylcarbazole or Fast Blue BB base solution (HRP and AP, respectively), washed extensively in
water to remove salt. and allowed to dry until dissected. Microdissections were performed using a
Leica LMD6500 instrument equipped with an optical microscope. Dissected patches were collected

in the cap of PCR microtubes in 10ul of digestion buffer (50mM Tris-HCl, 50mM KCl, 0.63mM
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EDTA, 0.22% Igepal, 0.22% Tween20, 0.8mg/ml proteinase K). Patches were digested at 55°C for
two hours, then at 90°C for 5 minutes, and used for PCR amplification of antibody genes.
Amplification of antibody genes by PCR was done as follows. A primary PCR was performed
by adding 40ul of PCR reaction mix, which used the high fidelity Pfu Ultra II Fusion polymerase
(Agilent). A second, nested PCR was performed in 50ul using 0.5ul of the primary PCR as tem-
plate. The following primers were used: for the primary PCR, a shorter version of the 5 MsVHE
primer described in (Tiller, Busse, et al., 2009), called 5> MsVHE-short (5- GGGAATTCGAG-
GTGCAGCTGCAG -37), was used together with a mix of 4 antisense primers mapping in the JH
region (3’ Sall P-mmJHO01,/02/03,04) as reported in (Tiller et al., 2009). For the nested PCR, the full-
length sense primer 5° MsVHE was used together with a mix of 4 nested JH antisense primers that
were newly designed: 5- TGGTCCCTGTGCCCCAGACATCG -3’, 5- GTGGTGCCTTGGCC-
CCAGTAGTC -3, 5- AGAGTCCCTTGGCCCCAGTAAGC -3" and 5- GAGGTTCCTTGACC-
CCAGTAGTC -3'. The resulting PCR products were cloned and sequenced using the Zero Blunt

TOPO PCR Cloning kit for sequencing (Life Technologies) per the manufacturer’s protocol.

4.2.2.4 Analysis of microdissected sequences

Raw reads were filtered in several steps to identify and remove low quality sequences. Conservative
thresholds were applied in all cases, to increase the reliability of mutation calls, at the potential
expense of excluding some real mutations. Preprocessing was carried out using pRESTO (Vander

Heiden et al., 2014). as follows:
1. Reads with a mean Phred quality score below 20 were removed.

2. Reads without valid constant region primer or template switch sequences were removed, with
a maximum primer match error rate of 0.2 and a maximum template switch error rate of 0.5.
Both template switch additions and constant region primer sequences were deleted from the

reads. The isotype of each read was assigned according to its constant region primer match.

3. Reads with identical unique molecule identifiers (UIDs) were collapsed into a single consensus
sequence for each UID. UID read groups with nucleotide diversity scores (Nei & Li, 1979)
exceeding 0.1 or majority isotype frequency under 0.6 were discarded. In cases where multiple
isotypes were identified in a single UID read group, the consensus sequence was based only

upon the subset of reads in the UID read group assigned to the majority isotype.



4. UID consensus sequence mate-pairs were then assembled into full length Ig sequences with a

maximum allowed error rate of 0.3 and p-value threshold of 0.01.

5. Duplicate full length sequences were discarded, with the exception that duplicate sequences
derived from different biological samples and/or assigned to different isotypes were retained.
Each sequence was assigned an mRNA copy number value based on the total number of
UIDs having an identical sequence. Following preprocessing, V(D)J germline segments were

assigned using IMGT /HighV-QUEST (Alamyar et al., 2012).
Post-processing of IMGT /HighV-QUEST output and clonal grouping was performed as follows:
1. Non-functional sequences were removed from further analysis.

2. Functional V(D)J sequences were assigned into clonal groups by first partitioning sequences
based on common IGHV gene, IGHJ gene, and junction region length. Within these larger
groups, sequences differing from one another by a weighted distance of less than 3 within the
junction region were defined as clones. Distance was measured as the number of point mu-
tations weighted by a symmetric version of the nucleotide substitution probability previously
described (D. S. Smith et al., 1996). A distance of 3 corresponds to three transition mutations

or one of the least likely mutations.

3. Lineage trees were constructed for each clonal group via maximum parsimony using the dna-

pars application of PHYLIP (Felsenstein J., 2005).

4. Inferred ancestors in each tree were recursively replaced with descendants having the same

sequence as their inferred parent.
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4.2.3 SHM takes place in follicles and at extrafollicular sites

Given evidence for extensive SHM, it was compelling to investigate where it takes place. The
appearance of specific AFC occurring prior to GC formation would be consistent with extra-GC
SHM and Ag-driven affinity maturation. Although SHM does not canonically happen at EF sites,
it does occur in murine spleen in the autoimmune setting (William et al., 2002), showing that
GCs are not strictly necessary for this process; however, a physiological counterpart to extra-
GC mutation has to date not been revealed in a murine pathogen-specific response. The rapid
appearance of isotype-switched plasmablasts post-infection shows that activation-induced cytidine
deaminase (AID) is activated very early in the response among extrafollicular B cells, making it
plausible to think that SHM could also be occurring.

To resolve this, we first searched for GC-like structures that might have been an alternative site
for SHM. The apparent contrast between the lack of GCs as assessed by immunofluorescence and
the flow cytometric detection of cells with a GC phenotype, the frequencies of which admittedly
did not rise above baseline until day 22, could be reconciled by the finding, starting 3 weeks after
infection, of scattered small PNA-positive cell aggregates in some sections. The cells in these small
clusters expressed the PNA target weakly, as they were only found by overexposing PNA; they
also expressed low, but detectable, amounts of the GC marker Bcl6. These clusters, which we
refer to as “GC-like,” were found at an atypical site — the interface between the B and T cell
zones — and did not appear to develop past this stage into proper GCs for the duration of our
studies, up to 6 weeks after infection. A similar response was observed in BALB/c mice, with
lack of proper GCs and a remarkable EF plasmablast response. Together these data suggest that
GCs could potentially form at late time points, but do not mature. We considered whether innate
immune signals in this context could in fact suppress GC formation. Indeed, when BALB/c¢ mice
deficient, for MyD88 were infected, fully developed GCs were observed as early as 10 days after
infection, accompanied by EF plasmablasts, and were more numerous by day 15. However, this was
not observed in C57BL/6 MyD88-deficient animals, indicating that additional factors may suppress
GC formation in a strain-specific manner.

To address whether SHM takes place in “GC-like” structures and/or at EF sites, we performed
laser capture microdissection (LCM) and V region sequencing of both structures (example, Fig-
ure 1.~A) at 3 weeks post-infection. Picks comprised 20 to 30 cells and in the case of plasmablasts,

whenever possible, the same patches were taken from two or three consecutive slides. We dissected
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both adjacent and distant patches (Table 1.7). 14 plasmablast picks yielded a PCR product that
was then cloned, followed by sequencing of V gene inserts in multiple colonies derived from each
product. 79% of the unique sequences obtained showed some somatic mutations, averaging 3.2
mutations per mutated sequence (Tables 1.~ and 1.9). When clonally related sequences (with the
same VDJ rearrangement) were found, then a lineage tree was built that describes the evolution
of the clone. 11 of 14 picks gave clones to generate lineage trees. Such trees demonstrate that
ongoing V region diversification was taking place among the few cells captured in each such mi-
crodissected patch. Figure |.~B-D shows representative trees (see also Figure 1.9); in some cases
(Figure 1.5B,C) the trees were fairly simple, with two or three clonally related sequences that were
exclusively derived from the same pick. In other cases, there was higher complexity, with sequences
from different, though adjacent, picks (Figure 4.8D).

The mutations observed in the lineage trees were authentic and not a result of PCR error: the
rates are far higher than that expected from PCR error using high-fidelity polvmerases (William
et al., 2002). Moreover, the presence of shared mutations is not expected from PCR error. but is
expected from clonal expansion and selection of authentic SHM. The isolation of the same mutation
from different picks of the same geographic patch (i.e., taken from different serial sections), and
hence different PCR amplifications fully excludes PCR error as the explanation. Rather, when
one considers that it takes only 4 divisions to create a cluster of 16 cells, and that SHM in GCs
introduces about 0.25 mutations/V region/division, then the extent of mutation is consistent with
this high rate, as there should be roughly 1 difference between each sequence (Kleinstein et al.,
2003). In parallel, we dissected and sequenced some of the GC-like structures. A similar degree of
SHM was observed in these structures, with 70% of the sequences being mutated with an average
of 2.3 mutations per mutated sequence (Table {.~). Overall, these data show that there is robust
diversification through SHM, and as extensively shown and discussed below, that this is likely to

occur locally and determine affinity maturation.
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B clones C clones

glaa>t
(Qas>H)

194>t
(T65>1)

D clone 16
al2ée>g
c198>g|(N66>K) ¢194>g (T65>S)
g338>c((5112.2>T) t237>a
al193>c (T65>P) 1262>c(Y88>H)
g221>a (G74>D) a269>t (Q90>H)
€271>t (L91>F) t336>a (S111.1>R)
t243>a|(D81>E)
g335>c
(S111.1>T) c213>a
(F71>L)
a332>t
(Y110>F)

Figure 4.8: Ongoing SHM Takes Place in Plasmablast Patches. (A) Example of a plas-
mablast patch pick by laser capture and microdissection (LCM); the same patch is shown before
and after the pick. The black line indicates the area of ~ 20 cells that was dissected. The plas-
mablast patches are identified with anti-CD138 staining by immunohistochemistry. (B-D) Examples
of three clonal trees of different complexity derived from the analysis of the Ab gene sequences ob-
tained by LCM. The size of each node indicates the number of identical sequences found. In (D),
a more complex tree is shown that was composed of sequences that derived from several nearby
picks; different colors of the nodes denote different, but adjacent, picks from which the sequence
was derived, while the number within the node indicates in how many serial slides (always from
the same patch) the same sequence was found. The gray circle indicates an inferred intermediate.
The position of the mutated nucleotides and aminoacids (in the case of replacement mutations) are
shown along the branches. See also Figure 4.9 and Tables 4.7, 4.8, and 4.9.
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t189>c a235>g (T79>A)

a107>g (N36>S)
g129>a

a184>g (N62>D)
a295>t (T99>S)
a308>t (Y103>F

g221>a G74>D t45>¢c

g42>t (K14>N)

clone 20 clone 15 clone 10
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g292>a
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Figure 4.9: Clonal lineage trees. Additional trees generated from data obtained from laser
capture and microdissection. See Tables 4.7, S3 and S4 for additional details. The size of the node
is representative of the number of identical sequences that were obtained, which are also shown by
the number inside each node
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Table 4.7: Summary of the picks from which sequences were obtained.

Mouse 1 Mouse 2

Plasmablast A B (adjacent C (adjacent | Consecutive D E F
Patches to C) to B) Slide

1 2 3 1 6
Pick # 7 8 9 #2 10 11

13 14 15 #3 16 17
"GCdke” G0y Ge2 GC 3 GC 4
structures
Pick # 19 20 21 22




Table 4.8: Summary of the data obtained from experiments with laser capture and mi-
crodissection. For GC-like structures, a total of 4 picks yielded sequences: 20 unique sequences,
14 mutated sequences with a total of 33 mutations, for an average of 1.6 mutation/sequence or 2.3
mutations/mutated sequence. For plasmablast patches, 14 picks yielded 38 unique sequences, 30
mutated sequences with 95 mutations, for an average of 2.5 mutation/sequence or 3.2 mutations/-
mutated sequence.

Mouse 1, clones from “GC-like” structures; 15 unique sequences

Clone GC-like Pick # Uniq V-gene J-gene Junction # Uniq Avg
seqs Length muts muts
2 GC 2 20 1 IGHV14-2*01 IGHJ2*01 27 1 1
3 GC 2 20 1 IGHV14-4*01 IGHJ2*01 42 0 0
4 GC 3 21 1 IGHV1-26*01 IGHJ2*01 42 1 1
6 GC 1 19 2 IGHV14-3*01 IGHJ1*03 48 5 2.5
9 GC 1 19 2 IGHV14-4*01 IGHJ3*01 42 2 1.5
12 GC 3 21 2 IGHV1-66*01 IGHJ2*01 39 1 0.5
13 GC1 19 2 IGHV1-80*01 IGHJ3*01 42 2 1.5
17 GC 3 21 1 IGHV1-81*01 IGHJ2*01 45 0 0
18 GC 3 21 1 IGHV14-1*01 IGHJ2*01 51 0 0
19 GC 3 21 1 IGHV14-4*%01 IGHJ2*01 54 0 0
21 GC 3 21 1 IGHV14-4*%01 IGHJ3*01 21 0 0
Mouse 1, clones from plasmablast patches; 19 unique sequences
Clone Patch Pick # Uniq V-gene J-gene Junction # Uniq Avg
seqs Length muts muts
5 A 13 3 IGHV14-2*01 IGHJ2*01 42 2 0.7
14 A 1/13 1 IGHV1-81*01 IGHJ2*01 36 2 2
15 A 7 3 IGHV1-82*01 IGHJ2*01 36 4 1.3
16 B/C 2/3/8/9/14/15 10 IGHV1-9*01 IGHJ4*01 54 20 4.7
24 C 15 1 IGHV14-3*01 IGHJ2*01 45 0 0
25 C 3 1 IGHV1-19*01 IGHJ2*01 39 0 0
Mouse 2, clones from “GC-like” structures; 5 unique sequences
Clone GC-like Pick # Uniq V-gene J-gene Junction # Uniq Avg
seqs Length muts muts
20 GC 4 22 3 IGHV1-81*01 IGHJ2*01 36 5 3.7
22 GC 4 22 1 IGHV1-4*01 IGHJ2*01 27 4 4
23 GC 4 22 1 IGHV1-85*01 IGHJ4*01 45 2 2
Mouse 2, clones from plasmablast patches; 19 unique sequences
Clone Patch Pick # Uniq V-gene J-gene Junction # Uniq Avg
seqs Length muts muts
1 E 17 4 IGHV14-1*01 IGHJ2*01 33 5 2
7 D 10 1 IGHV1-19*01 IGHJ2*01 39 1 1
8 E 11 2 IGHV14-4*%01 IGHJ2*01 27 1 0.5
10 E 11 2 IGHV1-9*01 IGHJ4*01 54 3 2.5
11 D 16 4 IGHV1-62-2*01 IGHJ2*01 51 8 1.8
26 D 16 1 IGHV14-1%01 IGHJ2*01 48 2 2
28 E 17 1 IGHV14-1*01 IGHJ2*03 33 1 1
29 E 17 1 IGHV14-1*01 IGHJ3*01 33 0 0
30 E 11 1 IGHV14-4*01 IGHJI2*03 27 0 0
31 E 11 1 IGHV14-4*01 IGHJ4*01 54 10 10
32 F 6 1 IGHV1-82*01 IGHJ2*01 33 0 0
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Table 4.9: Summary of the data obtained from experiments with laser capture and
microdissection. LCM data as in Table 1.X, displayed according to the pick from which the
sequences were obtained.

Mouse 1, clones from “GC-like” structures; 15 unique sequences

Pick Clone V-gene J-gene Junction
Length
6 IGHV14-3*01 IGHJ1*03 48
19 9 IGHV14-4*01 IGHI3*01 42
13 IGHV1-80*01 IGHJ3*01 42
20 2 IGHV14-2*01 IGHI2*01 27
3 IGHV14-4*01 IGHJ2*01 42
4 IGHV1-26*01 IGHJ2*01 42
12 IGHV1-66*01 IGHJ2*01 39
91 17 IGHV1-81*01 IGHJ2*01 45
18 IGHV14-1*01 IGHJ2*01 51
19 IGHV14-4*01 IGHJ2*01 54
21 IGHV14-4*01 IGHJ3*01 21
Mouse 1, clones from plasmablast patches; 19 unique sequences
Pick Clone V-gene J-gene Junction
Length
1 14 IGHV1-81*01 IGHJ2*01 36
2 16 IGHV1-9*01 IGHJ4*01 54
3 16 IGHV1-9*01 IGHJ4*01 54
25 IGHV1-19*01 IGHJ2*01 39
7 15 IGHV1-82*01 IGHJ2*01 36
8 16 IGHV1-9*01 IGHJ4*01 54
9 16 IGHV1-9*01 IGHJ4*01 54
13 ) IGHV14-2*01 IGHJ2*01 42
14 IGHV1-81*01 IGHJ2*01 36
14 16 IGHV1-9*01 IGHJ4*01 54
15 24 IGHV14-3*01 IGHJ2*01 45
16 IGHV1-9*%01 IGHJ4*01 54
Mouse 2, clones from “GC-like” structures; 5 unique sequences
Pick Clone V-gene J-gene Junction
Length
20 IGHV1-81*01 IGHJ2*01 36
22 22 IGHV1-4*01 IGHJ2*01 27
23 IGHV1-85*%01 IGHJ4*01 45
Mouse 2, clones from plasmablast patches; 19 unique sequences
Pick Clone V-gene J-gene Junction
Length
6 32 IGHV1-82*01 IGHJ2*01 33
10 7 IGHV1-19*01 IGHJ2*01 39
8 IGHV14-4*%01 IGHJ2*01 27
1 10 IGHV1-9*01 IGHJ4*01 54
30 IGHV14-4*01 IGHJ2*03 27
31 IGHV14-4*01 IGHJ4*01 54
16 11 IGHV1-62-2*01 IGHJ2*01 51
26 IGHV14-1*01 IGHJ2*01 48
1 IGHV14-1*01 IGHJ2*01 33
17 28 IGHV14-1*01 IGHJ2*03 33
29 IGHV14-1*01 IGHJ3*01 33




4.3 Celiac disease

4.3.1 Introduction

Celiac disease (CD) is a multifactorial disorder characterized by an intestinal inflammatory response
to ingested cereal gluten proteins (Sollid, 2000). The human leukocyte antigen association and the
central role of CD4-+ T cells in the pathogenesis are thoroughly investigated (Jabri & Sollid, 2006).
T cells of the lesion recognize gluten peptides that are deamidated in vivo by the enzyme transg-
lutaminase 2 (TG2) (Molberg et al., 1998; Wal et al., 2016). Notably, the great majority of CD
patients develop an autoantibody response, with TG2 itself being the main autoantigen (Dieterich
et al., 1997). It is not known whether these antibodies have a role in the pathophysiology of CD,
yet anti-TG2 immunoglobulin A (IgA) antibodies are increasingly used as diagnostic tool (Rostom
et al., 2005) and in the follow-up of the treatment, as upon commencement of a gluten-free diet
(GFD) autoantibodies disappear from serum within months (Sugai et al., 2010). Anti-TG2 anti-
bodies are produced by plasma cells (PCs) localized in the lamina propria of the intestinal mucosa
(Marzari et al., 2001; Picarelli et al., 1996; Di Niro, Mesin, et al., 2012), but PCs localized else-
where may also contribute to the antibody production. Korponay-Szabo et al., 2004 developed a
double-color immunofluorescence method that allowed visualizing antibody deposits in correspon-
dence with the subepithelial TG2 layer in the small intestine, as well as in other tissues. This
method builds on colocalization between IgA and the TG2 protein, the latter usually identified by
means of the CUB7402 murine monoclonal antibody. Importantly, this has been proposed as a
tool for early diagnosisl2 on affected individuals without signs of villous atrophy (Kaukinen et al.,
2005; Tosco et al., 2008) or with negative/borderline serology (Salmi et al., 2006). Recently, we
reported a flow cytometry-based method to describe and enumerate TG2-specific PCs from freshly
obtained biopsies of the small intestine of CD patients (Di Niro, Mesin, et al., 2012). We found
that in untreated CD patients the frequency of these cells was exceptionally high, and that they
produced antibodies with limited somatic hypermutation but nonetheless reasonable affinity. In
the same work we reported an immunofluorescence-based method to visualize TG2-specific PCs on
cryvosections. As this material can be stored for prolonged periods of time and requires relatively
little amount of specimen, studies on cryosections provide a simple yet very valid alternative for
the analysis of intestinal humoral responses. Even though significant discoveries of the anti-TG2

antibody response have been done, its importance in the diagnostic workup of CD and the unknown
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role in the pathogenesis of the disease suggest that more research on this topic is necessary. In this
work, we expand our previous findings on the intestinal anti-T'G2 response by investigating and
describing the location of TG2-specific PCs and antibodies, the phenotype of these cells as well as
the niche supporting them, and the kinetics of their disappearance upon commencement of a GFD,
and we discuss a mechanism for a possible pathogenic involvement. Our findings provide a new
tool to analyze the antibody response in CD and in general the specificity of antibody responses

directly in affected tissues.

89



4.3.2 Materials and methods
4.3.2.1 Patient material

Adult CD patients were diagnosed according to standard criteria, including human leukocyte anti-
gen genotyping, anti-TG2 serum titer, and histological analysis of small intestinal biopsy (AGA
Institute, 2006). The same criteria were used to exclude CD diagnosis in controls. Ethical approval
for study of Norwegian subjects was obtained from the Regional Ethics Committee in South-Eastern
Norway (project S-97201). Each study subject gave written informed consent. Duodenal biopsy
specimens were obtained by gastroduodenoscopy. Tissue sections of biopsies of seven CD patients
with active disease, from three CD patients treated with a GFD and two healthy control subjects
were studied. In addition, biopsies from five untreated CD patients and five healthy controls were
processed and used for flow cytometry analysis and PCs of biopsies from two untreated CD patients
were processed for high-throughput sequencing. Ethical approval for study of the Finnish subjects
was obtained from the Ethics Committee of Tampere University Hospital, and each subject provided
written informed consent. Samples from 15 CD patients and 4 nonceliac controls suffering from
dyspepsia were studied. From these subjects small-bowel mucosal biopsies were taken either with
an adult-size Watson capsule from the proximal jejunum or upon endoscopy with forceps from the
distal duodenum. For each subject, part of the samples were snap-frozen and embedded in optimal
cutting temperature compound (OCT, Tissue-Tec, Miles, Elkhart, IN) for storing at -70°C. whereas
the rest of the biopsy specimens were paraffin embedded. Serum IgA class antibodies against TG2
were detected by enzyme-linked immunosorbent assay using human recombinant TG2 as antigen,

with a cutoff line of 5.0 U/ml (Celikey, Phadia, Freiburg, Germany).

4.3.2.2 Immunohistochemistry and laser capture and microdissection

For laser capture and microdissection, 7 um thick cryosections from specimens of patients were cut
on 2 um PEN-membrane slides (Leica, Buffalo Grove, IL). Sections were fixed in acetone for 10 min
and stored at -80°C. For laser capture and microdissection, a Leica LMD6500 instrument equipped
with an optical microscope was used, and sections were therefore stained by immunohistochemistry.
Briefly, slides were thawed and rinsed in PBS. Primary reagents (mouse anti-CD138 or recombinant
human biotinvlated TG2 produced in E. coli) were diluted in 1% bovine serum albumin in PBS
and added to the slide for 45 min at RT in a moist chamber. Slides were extensively rinsed

and secondary reagents (goat anti-mouse IgG-HRP, 1:500, Santa Cruz (Dallas, TX), or SA-HRP,
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1:500, Southern Biotech) in 1% bovine serum albumin in PBS were added for 30 min at RT.
After extensive washing with PBS, development was performed by adding 3-amino-9-ethylcarbazole
substrate (Sigma, St Louis, MO) and incubating for 2 to 20 min until proper development occurred.
Slides were carefully washed with water to remove all salts, dried at RT, and then stored at 4°C
until necessary. Dissections were performed in the caps of 0.5 ml tubes, to which 10 ul of digestion
buffer (50 mm Tris-HCl, 50 mm KCI, 0.63 mm EDTA, 0.22% Igepal, 0.22% Tween-20, and 0.8
mg/ml proteinase K) were added. After dissection of plasma cell patches in the caps, these were
closed and the tubes spinned. The samples were added with a drop of mineral oil, digested at 55°C
for 2 h, followed by inactivation of proteinase K at 90°C for 5 min, and used for PCR amplification

of antibody genes directly from genomic DNA.

4.3.2.3 PCR and analysis of sequences from plasma cell picks

A seminested PCR was performed in 50 ul using the high-fidelity PfuTurbo DNA polymerase
enzyme (Agilent, Santa Clara, CA) as per the manufacturer’s instructions. Primers used in the
primary and secondary PCRs were as described by Kuppers, 2004. The VH1, VH3, and VH5
primers were used as a mix in the primary PCR, and individually in the secondary PCR. Antisense
primers in the J regions were used as originally described in the protocol (Kuppers, 2004). PCR
products were purified and cloned in the Zero Blunt TOPO PCR cloning kit for sequencing (Life
Technologies) as per the manufacturer’s instructions, and individual colonies were sequenced at the
Keck DNA sequencing facility at Yale.

Analysis of the sequences was performed as follows: preprocessing was carried out using pRESTO
(Vander Heiden et al., 2014) as previously described (Stern et al.. 2014). V(D)J germline segments
were determined using IMGT /HighV-QUEST (Alamyar et al., 2012) and divided into clonally re-
lated groups based on common V gene, J gene, and junction region length as previously described
(Stern et al., 2014). Lineage trees were constructed for each clonal group with the dnapars appli-

cation of PHYLIP (Felsenstein J., 2005).
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4.3.3 Analysis of PCs dissemination in the gut mucosa by laser capture

and microdissection

To investigate whether intestinal PC populations expand locally or at a distant site, we performed
laser capture and microdissection followed by sequencing of immunoglobulin heavy chain variable
(IGHV) genes on patches with such cells from intestinal biopsies of CD patients. To this end,
we adapted a published set of primers for a seminested PCR of antibody genes on genomic DNA.
Because of the available microscope configuration, the procedure was optimal for dissecting sections
stained by immunohistochemistry under transmitted light. Preliminary experiments indicated that
staining for the CD138 marker was optimal under these conditions, and we used this marker to stain
sections from samples known to have high frequency of TG2-specific PCs. We dissected patches
comprising 20 to 30 PCs (an example is shown in Figure 4.10a) from one patient with active CD. In
order to increase the variability of the analysis, the same patch was picked from three consecutive
slides. We amplified genomic DNA and obtained a PCR product from all of the picks, and built and
sequenced libraries. Importantly, several IGHV-5 sequences with few or no mutations were found;
IGHV-5 genes had on average 2.2 mutations (n=9) as compared with other genes that averaged
11.4 mutations/sequence (n1=33). Although not a formal demonstration, this strongly suggests
specificity for TG2 of some of the dissected cells; in fact, as us and others have reported (Di Niro,
Mesin, et al., 2012; Benckert et al., 2011) IGHV-5 genes with low degree of somatic hypermutation
are otherwise rare among the intestinal PC compartment.

Interestingly. in some cases clonal sequences were found that showed shared and unique muta-
tions, thus raising the possibility that such clones mutate and evolve locally. We further extended
our analysis and compared sequences found in different patches that were sampled from an addi-
tional patient with an active disease. We dissected four PC patches (named A, B, C, and D) that
were not adjacent to each other. The same patch was dissected from several consecutive slides. Li-
braries were obtained from 14 picks, yielding 53 unique sequences representing 26 different clones;
18 were represented by one single sequence and 8 by 2 or more and allowed us to build lineage
trees. Table 1.10 provides a summary of the eight clonal trees that were built with sequences from
this patient: whereas a few simple trees could be built from clonal sequences that were found only
within one of the patches (example in Figure {.10b, with sequences derived from one single patch,
clone ID 23 according to Table |.10), in many other cases larger trees could be built where several

different patches contributed clones (example in Figure [.10c, with sequences from three different
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patches, clone ID 22 according to Table | 10).
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Basal --> apical (lumen)
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Color legend:
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Figure 4.10: Laser capture and microdissection (LCM) of plasma cell patches rich in
transglutaminase 2 (TG2)-specific ones. Sequences are obtained from PCR performed on
genomic DNA from dissected patches in the lamina propria. (a) Example of a pick comprising 20
plasma cells. (b, ¢) Examples of clonal trees built from clonally related sequences derived from
the same patch ((b) clone ID 23 fromgod my e Table 1) or from three different patches ((c) clone
ID 22 from Table 1) of the same patient. Data are summarized in Table 4.10. The letter inside
the node indicates the patch from which the sequence comes, whereas different colors indicate
sequences derived from different, consecutive cryosections. The number next to the line connecting
the inferred sequence (gray node) and actual observed sequences (colored nodes) represents the
number of mutations by which the two connected nodes differ.
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Chapter 5

Conclusions and Future Directions

5.1 Summary

Humoral immunity is driven by the expansion, somatic hypermutation, and selection of B cell
clones. Each clone consists of the descendants of a single B cell that responded to antigen, with Ig
receptors that are diversified due to SHM. The collection of naive B cells and mature clones can
now be profiled using next-generation sequencing technologies. This large-scale characterization
provides a window into the micro-evolutionary dynamics of the adaptive immune response and has
a varicty of applications in basic science and clinical studies. Measurements from the repertoire
such as diversity or mutational load can provide insight into the dysregulation that occurs with
aging or disease, identify mutation patterns that lead to broadly neutralizing antibodies, and pre-
dict successful response to vaccination. Clonal relationships are not directly measured, but must be
computationally inferred from these sequencing data. While several hierarchical clustering-based
methods have been proposed, they vary in distance and linkage methods and have not yet been rig-
orously compared. In Chapter 2 we used a combination of human experimental and simulated data
to characterize the performance of hierarchical clustering-based methods for partitioning sequences
into clones. We found that single linkage clustering has high performance, with sensitivity and
positive predictive value (PPV) both over 99%, whereas other linkages result in a significant loss
of sensitivity. Surprisingly, distance metrics that incorporate the biases of somatic hypermutation
did not outperform simple Hamming distance. Although errors were more likely in sequences with

short junctions, using the entire dataset to choose a single distance threshold for clustering was
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near optimal. Our results suggest that hierarchical clustering using single linkage with nucleotide
Hamming distance identifies clones with high confidence and provides a fully automated method for
clonal grouping. The performance estimates we developed provide important context to interpret
clonal analysis of repertoire sequencing data and allow for rigorous testing of other clonal grouping
algorithms.

There are scveral other downstream Ig repertoire analyses in addition to grouping clonally
related sequences, such as reconstructing B cell lineages, calculating repertoire diversity, identifying
somatic hypermutations, and quantifying selection pressures. Various tools can be used to complete
any one of these analysis steps (Yaari & Kleinstein, 2015), but cobbling together separate tools with
differing input and output formats into a workflow can present difficulties. In addition to creating
software to calculate the various characteristics of the repertoire, there is a need for an cohesive suite
of tools that uses a standardized data format to streamline the analysis pipeline. In Chapter 3 we
presented a suite of utilities, Change-O. which provides tools for advanced analyses of large-scale Ig
repertoire sequencing data. Change-O includes tools for determining the complete set of Ig variable
region gene segment alleles carried by an individual (including novel alleles), partitioning of Ig
sequences into clonal populations, creating lineage trees, inferring somatic hypermutation targeting
models, measuring repertoire diversity, quantifying selection pressure, and calculating sequence
chemical properties. All Change-O tools utilize a common data format, which enables the seamless
integration of multiple analyses into a single workflow. Change-O, in addition to the pre-processing
suite pRESTO, is freely available for non-commercial use as part of the Immcantation framework
(immcantation.readthedocs.io).

The Change-O tools, particularly clonal grouping, can be applied in many ways to gain biolog-
ical insight, examples of which were presented in Chapter . In Section [.1, we studied a cohort of
subjects infected with West Nile virus (WNV), an emerging mosquito-borne disease that can lead
to severe neurological illness and currently has no available treatment or vaccine. We used microen-
graving, an integrated single-cell assay, to analyze recently infected and post-convalescent subjects
and efficiently identified four novel WNV neutralizing antibodies. We also assessed the humoral
response to WNV on a single-cell and repertoire level by integrating AIRR-Seq into our analysis.
Using the nucleotide coding sequences for WNV-specific antibodies derived from single cells. we re-
vealed the ontogeny of expanded WNYV-specific clones in the repertoires of recently infected subjects

through quantitative AIRR-Seq analysis. This analysis also indicated that the humoral response
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to WNV did not depend on an anamnestic response, due to an unlikely previous exposure to the
virus. This innovative and integrative approach to analyze the evolution of neutralizing antibodies
from natural infection on a single-cell and repertoire level can also be applied to vaccine studies,
and could aid the development of therapeutic antibodies and our understanding of other infectious
diseases.

In addition to a combination approach to identify novel neutralizing antibodies, in Sections 1.2
and 1.3 we explore implications of identifying clonal expansions from laser capture and microdis-
section of different tissue sites. The traditional understanding of the B cell response includes
a rapid transient extrafollicular plasmablast response followed by formation of germinal centers,
wherein aflinity maturation occurs (Shlomchik & Weisel, 2012). The B cell response to Salmonella
typhimurium occurs massively at extrafollicular sites, without notable germinal centers. In Sec-
tion 1.2 we used laser microdissection and Ig sequencing to show that SHM occurred efficiently at
extrafollicular sites leading to affinity maturation that in turn led to detectable STm Ag-binding.
These results suggest a revised vision of how clonal selection and affinity maturation operate in
response to Salmonella. Clonal selection initially is promiscuous, activating cells with virtually un-
detectable affinity, yet SHM and selection occur during the extrafollicular response yielding higher
affinity, detectable antibodies. Localized dissection can also provide insight into diseases that affect
mucosa, such as celiac disease, which is characterized by autoantibodies to transglutaminase 2 in
gut mucosal tissue. In Section 1.3, we used laser microdissection of plasma cell patches followed by
Ig sequencing to identify clonally related sequences across several sites, indicating that intestinal
plasma cell populations expand in distinct areas of the mucosa. These results shed new light on
the processes underlying the B-cell response in celiac disease.

This dissertation has not only proposed and made available tools for streamlined AIRR-Seq
analysis, but has applied these tools to gain meaningful biological insight into a variety of disease

contexts.

5.2 Future Directions

Significant progress has been made in the development of AIRR-Seq in the past decade, but the
field is still burgeoning, both in experimental protocols and creation of new and improved analysis
tools. Currently, typical analysis workflows consist of a series of linear steps as seen in Figure 1.2.

Some of the earlier steps could benefit from the knowledge resulting from later steps to improve
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performance. Inference of the V(D)J germline alleles is one of the first steps after pre-processing of
the raw sequencing reads. Inferences made by commonly used tools such as IgBLAST (Ye et al.,
2013) or IMGT/HighV-QUEST (Alamyar et al., 2012) are computed based on alignment results of
each sequence individually. However, knowledge of clonal groups in the data could help to improve
alignment, as clonally related sequences would share the same germline V(D)J alleles. An initial
rough prediction of germline genes — not necessarily even alleles — would be enough to group
the sequences into B cell clones. A multiple alignment of clonal relatives with the germline alleles
would lead to a more informed prediction than considering each sequence individually. In addition,
the most recent common ancestor of the clonal lineage could be a better estimate of the unmutated
Ig sequence originating the lineage than any of the observed sequences. This sequence, which can
be statistically inferred (Kepler, 2013), could improve germline inference even further. Using more
biological knowledge could lead to more confident D allele calls, which are currently difficult to infer
accurately (Munshaw & Kepler, 2010). Improved D calls would enable better characterization of
the CDR3 region such as which nucleotides stem from the N/P untemplated additions vs. the D
gene. This additional knowledge could help in furthering understanding the formation of successful
neutralizing antibodies.

Although Chapter 2 demonstrated that clustering can group clonally related Ig sequences with
high confidence, it still calls thousands of erroneous clonal relationships in a typical dataset that can
be corrected. Hierarchical clustering-based clonal grouping fails more frequently on Ig sequences
with short junctions. Probabilistic models, while too computationally intensive to be feasible on
entire AIRR-Seq datasets, may be able to improve performance on these short junctions. A hybrid
approach combining clustering and probabilistic inference could improve clonal grouping perfor-
mance relative to either approach alone. The hierarchical clustering-based clonal grouping algo-
rithm outlined in Chapter 2 uses nucleotide Hamming distance metric between junctions, which
assumes that all clonally related junctions are the same length. Recent research indicates that in a
small percentage of cases, SHM may lead to insertions or deletions in the junction within a B cell
clone (Yeap et al., 2015). This and the possibility of sequencing errors should be taken into consid-
eration to improve clonal grouping. A distance metric that allows for varving junction lengths such
as Levenshtein distance may improve performance in these situations. This may be particularly
relevant when using sequencing protocols that are known to have errors in the form of indels.

In addition to algorithmic refinements to clonal grouping, evaluation of performance can also
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be improved. The simulated datasets used to evaluate sensitivity and PPV of clonal grouping in
Chapter 2 were based on a limited number of underlying repertoire structures. The simulations also
assume that Ig sequences maintain the same junction length during clonal evolution, which is not
always the case (Yeap et al., 2015). Recent advancements in experimental protocols enable labeling
of individual B cells and tracking of clonal lineages (Tas et al., 2016). The labeled clones can be
isolated and sequenced to provide experimental gold standard datasets in which clonal relationships
are known @ priori. The datasets could then be used to evaluate performance of clonal grouping
algorithms while avoiding the assumptions underlying simulations.

There is also untapped potential in biological application of these clonal grouping methods.
Vaccination provides a unique opportunity for studying the immune response as the timeline is well-
controlled and peak antibody response is known to be approximately seven days post-vaccination.
Many studies of influenza vaccination have characterized changes in the Ig repertoire throughout
the adaptive response (Y.-C. B. Wu et al., 2012; Jiang, He. et al., 2013; Vollmers et al., 2013;
Laserson et al., 2014; Jackson et al., 2014). The assumption is often made that measurable clonal
expansions from day seven samples represent influenza-specific clones (Laserson et al., 2014), but
has not yet been verified experimentally. It is also established that influenza vaccination has lower
efficacy in older individuals (Sasaki et al., 2011). Previous studies have noted that older adults
have fewer lineages that are more mutated relative to younger adults in response to vaccination
(Jiang, He, et al., 2013), however no such comparison has been made at the level of B cell clones.
Comparison of mutation patters within expanded influenza-specific clones between responders and

non-responders could provide insight into what contributes to a successful vaccination response.
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