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Abstract

Through their connection with dark matter structures, galaxies act as tracers of the

underlying matter distribution in the Universe. Their observed spatial distribution allows

us to precisely measure large scale structure and effectively test cosmological models that

explain the content, geometry, and history of the Universe. Current observations from galaxy

surveys such as the Baryon Oscillation Spectroscopic Survey have already probed vast cosmic

volumes with millions of galaxies and ushered in an era of precision cosmology. The next

surveys will probe volumes over an order of magnitude larger. With this unprecedented

statistical power, the bottleneck of scientific discovery is in the methodology.

In this dissertation, I address major methodological challenges in constraining cosmol-

ogy with the large-scale spatial distribution of galaxies. I develop a robust framework for

treating systematic effects, which significantly bias galaxy clustering measurements. I ap-

ply new innovative approaches to probabilistic parameter inference that challenge and test

incorrect assumptions of the standard approach. Furthermore, I use precise predictions of

structure formation from cosmology and observations of galaxies during the last eight billion

years to develop detailed models of how galaxies are impacted by their host dark matter

structures. These models provide key insight into the galaxy-halo connection, which bridges

the gap between cosmology theory and observations. They also answer crucial questions

of how galaxies form and evolve. The developments in this dissertation will help unlock

the full potential of future observations and allow us to precisely test cosmological models,

General Relativity and modified gravity scenarios, and even particle physics theory beyond

the Standard Model.
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radiation domination, and ∝ a3/2 during matter domination. aeq marks mat-
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sents physical lengths of perturbations that enter the horizon during matter-

radiation equality λphys = λeq. The dot-dashed line mark perturbations that

enter the horizon during radiation domination with λphys < λeq. The dot-

ted line mark perturbations that enter the horizon during matter domination

with λphys > λeq. As described in the text, the growth of perturbations with

λphys < λeq are suppressed because they enter the horizon during the radia-

tion dominated era. The evolution of the density perturbation through these

epochs are quantified through the transfer function T (k). . . . . . . . . . . . 6
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galaxy sample using the Scoccimarro (2015) estimator. . . . . . . . . . . . . 17

1.1 Normalized galaxy redshift distribution of the Nseries (orange), QPM (blue),

and BigMultiDark (red) mock catalogs. The normalized redshift distribution

of BOSS DR12 CMASS sample galaxies is also plotted (black). Each of the

distributions were computed with a bin size of ∆z = 0.025. All of the mock

catalogs used in this work closely trace the BOSS CMASS redshift distribution. 29

1.2 Power spectrum monopole P0(k) and quadrupole |P2(k)| measurements for

the Nseries (orange), QPM (blue), and BigMultiDark (red) mock catalogs

(Section 1.3). The Pl(k) measurements for the Nseries and QPM mock cat-

alogs are averaged over the multiple mock realizations and the width of the

power spectra represents the sample variance (σl(k); Eq. 1.10) of the real-

izations. For the quadrupole, we plot the |P2(k)| instead of P2(k) because

the measurement becomes negative for k & 0.35 h/Mpc. For comparison, we

also include the monopole and quadrupole power spectra of the BOSS DR12

CMASS sample, which are calculated using the same estimator but with sta-

tistical weights described in Eq. (1.9). While fiber collisions are inevitably

included in the BOSS CMASS power spectra, they are not yet applied to the

mock catalogs power spectra measurements above. . . . . . . . . . . . . . . 32
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1.3 The fiber collision power spectrum residual, (PNN
l −P true

l ) (Section 1.4.1), for

the monopole (top), quadrupole (middle), and hexadecapole (bottom) of the

Nseries (left), QPM (middle), and BigMultiDark (right) mock catalogs. For

the Nseries and QPM mocks, we plot the sample variances σl(k) (grey shaded

region) of P true
l (k) for comparison. The power spectrum residual for the NN

method is an improvement over the residual with no correction (∆PNoW
l (k); x)

at most scales probed. However, we highlight that at k > 0.1 h/Mpc and k >

0.2 h/Mpc, for the monopole and quadrupole respectively, the residuals from

fiber collision surpass the sample variance. At smaller scales, NN method does

not sufficiently account for the effects of fiber collisions in Pl(k) measurements. 36
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1.4 Top Panel: The normalized residuals, 1−PNN
0 /P true

0 (k), of the NN method for

the Nseries (orange), QPM (blue), and BigMultiDark (red) power spectrum

monopole. We also plot the normalized sample variance σ0(k)/P0(k) (gray

shaded region) of the Nseries mocks for comparison. The QPM σ0(k)/P0(k)

is effectively the same as the Nseries σ0(k)/P0(k), so we do not included

in the figure. The comparison reveals that the effect of fiber collisions not

only biases the power spectrum beyond sample variance at k & 0.1 h/Mpc,

but that the effect increases relative to sample variance at smaller scales. At

k = 0.2 h/Mpc, the normalized residual is greater than 4 times the normalized

sample variance. Bottom Panel: We mark kχ2 where ∆χ2(kχ2) = 1 (Eq. 1.11)

for the NN method. kNN
χ2 is a conservative scale limit of the NN method. Ar-

rows above the dashed line mark kχ2 for the monopole while the arrows below

the dashed line mark kχ2 for the quadrupole. The color of the arrows indicate

the mock catalog: Nseries (orange), QPM (blue), and BigMultiDark (red).

Averaged over the three mock catalogs, we get kNN
χ2 = 0.068 and 0.17 h/Mpc.

for the monopole and quadrupole respectively. . . . . . . . . . . . . . . . . . 37

1.5 Normalized distribution of dLOS for Nseries (orange), QPM (blue), and Big-

MultiDark (green) mock catalogs. The normalized dLOS distribution of BOSS

DR12 is also plotted (black). The mock catalog distributions have bin sizes of

∆d = 0.2 Mpc, while the CMASS distribution has a bin size of ∆d = 0.5 Mpc.

The distribution extends beyond the range of the above plot to ∼ ±500 Mpc.

In the discussion of Section 1.4.2, we focus mainly on the peak of the distri-

bution at roughly −20 Mpc < dLOS < 20 Mpc. . . . . . . . . . . . . . . . . . 42
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1.6 The power spectrum residual of the line-of-sight reconstruction (LRec) method

(Section 1.4.2), ∆P` ≡ P LRec
l − P true

l , for the monopole (top) and quadrupole

(bottom) power spectra of the Nseries (left), QPM (middle), and BigMulti-

Dark (right) mock catalogs. We again plot the Nseries and QPM sample vari-

ances, σl(k). The residuals for the monopole show good agreement between

P LRec
0 and P true

0 for the entire k range. For the quadrupole, while the LOS

Reconstruction method improves the residuals compared to the NN method

at small scales (k > 0.2 h/Mpc), the residuals remain comparable to sample

variance at k = 0.2 h/Mpc. In the top panels, we include the residuals from

the fiber collision correction method of Gil-Maŕın et al. (2014) (dashed). As

the Gil-Maŕın et al. (2014) method supplements the NN method with adjust-

ments to the constant shot noise term of the estimator, it fails to correct for

the k dependence of the effect and is insufficient in accounting for fiber col-

lisions at small scales. We do not include the correction method of Beutler

et al. (2014b) because they marginalize over a constant stochasticity term in

their analysis so the effect of their correction on P (k) is not straightforward. 49
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1.7 Top Panel: The normalized residual, 1−P LRec
l /P true

l , for the Nseries (orange),

QPM (blue), and BigMultiDark (red) monopole power spectra. The normal-

ized sample variance σl/Pl(k) (gray shaded region) of the Nseries mocks is

plotted for comparison. At k = 0.1 h/Mpc, where the NN method resid-

uals exceeds sample variance, the average normalized residual for the LRec

method is 0.25% compared to 1.5% normalized sample variance. In fact, the

average residual stays below the sample variance until k = 0.53 h/Mpc. Bot-

tom Panel: We mark kLRec
χ2 for the monopole (arrows above the dashed line)

and quadrupole (arrows below the dashed line). The average kLRec
χ2 for the

mock catalogs are 0.29 and 0.14 h/Mpc for the monopole and quadrupole re-

spectively. For comparison, we mark kNN
χ2 (black) from Section 1.4.1. We also

include kχ2 of the Gil-Maŕın et al. (2014) correction method (gray) for the

monopole. The LOS reconstruction method significantly extends kχ2 beyond

that of the NN method and Gil-Maŕın et al. (2014) for l = 0. However, it

does not improve kχ2 for the quadrupole. . . . . . . . . . . . . . . . . . . . 50

1.8 1 − (1 + ξNN)/(1 + ξtrue) as a function of transverse displacement, rp, and

line-of-sight displacement π (left). The color bar represents the value of this

quantity. Note there is no detectable dependence on π. The dashed vertical

line (black) represents the constant rp = Dfc(z = 0.55) (Section 1.4.3). We

also plot 1− (1 + ξNN)/(1 + ξtrue) projected along π (right). In the left panel,

the rp = Dfc(z = 0.55) vertical line and the sharp cut-off of the contour show

good agreement with the expected characteristic scale. In the right panel,

the projected 1 − (1 + ξNN)/(1 + ξtrue) is in good agreement with fsWfc(rp).

The agreement in both panels justify the characterization of the effect of fiber

collisions on the 2PCF in Eq. (1.21). . . . . . . . . . . . . . . . . . . . . . . 55
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l − P true
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method obtained by adding Eqs. (1.26) and (1.34) (orange) for the monopole

(left) and quadrupole (right). The standard deviation of the power spectrum
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1.10 Comparison of the correlated power spectrum residuals from unreliable modes

obtained from mocks (dashed), Eq. (1.38), to the polynomial approximation

of Eq. (1.37) for l′ ≤ 18 (orange). The left and right panels correspond to

l = 0 and 2 respectively. The gray shaded region is the standard deviation

for the Nseries (PNN
l − P true

l ). We also include Eq. (1.37) evaluated only for

l′ ≤ 2 (blue). The agreement between Eq. (1.37) for l′ ≤ 2 and Eq. (1.38)

demonstrate that while higher orders of l′ are necessary to properly model

∆P
(
l k) at higher k values, for k < ktrust (0.3 h/Mpc above) l′ ≤ 2 are sufficient. 63
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Introduction

Amidst the countless stars and galaxies we observe in the Universe lie undetected struc-

tures of dark matter, orders of magnitude larger than the luminous objects they engulf.

These vast invisible structures began in the very early Universe, as quantum fluctuations in

the aftermath of the Big Bang. During the subsequent period of inflation, these primordial

fluctations were amplified by the accelerated expansion of the Universe and then propagated

through gravitational instability for billions of years.

Despite constituting most of the matter in the Universe, dark matter has yet to be

directly observed. In fact, it can only be studied through its gravitational interactions with

luminous baryons, the matter of stars, galaxies, and celestial objects that emit light. In a way,

the galaxies we observe in the cosmic volumes probed by our telescopes act as illuminated

beacons tracing the vast dark matter terrains of the Universe.

Over the past decade, spectroscopic redshift surveys like the Sloan Digital Sky Survey III

Baryon Oscillation Spectroscopic Survey (BOSS; Anderson et al. 2012; Dawson et al. 2013a)

have exploited these galactic beacons to map out cosmic structures of the Universe. Precise

measurements of distance and growth of large-scale structure (LSS) from these surveys,

provide tests of cosmological models that describe the content, geometry and history of the

Universe. The next leap in galaxy surveys will continue to expand the cosmic volumes probed

by galaxies. These observations have the potential to constrain cosmological parameters with
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unprecedented precision. In the following sections, I briefly introduce how observations from

galaxy redshift surveys can be used to test cosmological models, General Relativity, and

particle physics beyond the Standard Model.

0.1 Large Scale Structure in ΛCDM

From the early Universe, primordial quantum fluctuations grow into the large-scale struc-

tures of the Universe we observe today through gravitational instability over different epochs

of cosmic history. In this section, I briefly describe the simplified (linear) theory of this evo-

lution and explain core concepts of LSS cosmology using galaxies. Let us begin by defining

the matter overdensity field (or density fluctuation) at comoving position r:

δ(r) =
ρ(r)− ρ̄

ρ̄
, (1)

where ρ(r) is the density field and ρ̄ is the mean density. Then, in Fourier space the density

fluctuation becomes

δ(k) =

∫
d3r

(2π)3
e−ik·r δ(r), (2)

the Fourier transform of δ(r). For describing the evolution of the overdensity field, Fourier

space is often favored in the literature. The information in the overdensity field is often

quantified using its N -point statistics (Peebles, 1980a; Bernardeau et al., 2002; Dodelson,

2003). In fact, the two-point statistic is one of the most commonly used tool in large

scale structure studies. This two-point statistic, which is also referred to as the correlation

function, is defined as

ξ(r) = 〈δ(x)δ(x+ r)〉 (3)
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and in Fourier space as

〈δ(k)δ(k′)〉 = (2π)3P (k) δD(k + k′). (4)

δD is the Dirac delta function and P (k) is the two-point statistic in Fourier space – the power

spectrum. P (k) is the Fourier transform of ξ(r) and, in principle, they contain the same

information. In practice, however, analyzing ξ(r) and P (k) carry different caveats (Feldman

et al., 1994). Throughout this dissertation, I will mainly focus on the power spectrum.

Now in order to determine the evolution of the matter overdensity field (on sub-horizon

scales) consider pressureless dark matter, which consistutes most of the matter in the Uni-

verse. From the continuity, Euler, and Poisson equations

∂ρ

∂t
+∇ · ρ u = 0 (5)

∂u

∂t
+ (u · ∇) · u−∇Φ = 0 (6)

∇2Φ− 4πGρ = 0 (7)

its equation of motion can be derived

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
− 4πGρ̄ δ = 0. (8)

u is the velocity field, Φ is the gravitational potential, and a is the scale factor. For a

detailed derivation I refer readers to Peebles (1980a) and Dodelson (2003). The solution for

this second order differential equation can be written as

δ(r, t) = D(+)(t)A(r) +D(−)(t)B(r). (9)
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The density flucation has two components: a growing mode D(+) and a decaying mode D(−).

The decaying mode, as its name suggests, decreases with time and its contribution becomes

negligible in the late Universe leaving only the growing mode. To quantify the evolution of

the growing mode D(+), one commonly used quantity is the “growth rate of structure”:

f =
d ln D(+)

d ln a
. (10)

This growth rate of structure is a key quantity in LSS cosmology for testing different cos-

mological models and theories of gravity. f will be discussed further in Section 0.2.

In addition to their gravitation evolution, the density fluctuations evolve through different

epochs in cosmic history: inflation, radiation-dominated era, matter-radiation equality, and

matter-dominated era. Each of these periods leave an imprint on the evolution of δ. In

Fig. 1, I mark the eras in the early Universe and plot how the physical scale of the Universe,

represented by the Hubble radius, evolves with the scale factor a.

During inflation, the Hubble radius remains constant. Afterwards the Universe becomes

radiation dominated. Based on the Friedmann equations the Hubble radius during the

radiation dominated era is approximately ∝ a2. After a period when radiation and matter

have comparable energy densities, the Universe becomes matter dominated where the Hubble

radius is approximately ∝ a3/2. Meanwhile, the physical scale of perturbations is λphys =

λcomov a(t) and thus ∝ a(t). As Fig. 1 schematically illustrates, perturbations exit the Hubble

radius during inflation then reenter the Hubble radius later on. Depending on the physical

scale of the perturbation, it enters either during the radiation-dominated era (smaller scale)

or matter-dominated era (larger scale).

The physical scale of perturbations that enter the horizon at the time of matter-radiation

equality, where a(t) = aeq, is λeq ∼ 500 h−1Mpc. Then perturbations that enter before
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the matter-radiation equality have physical scales λphys < λeq and since they enter during

the radiation dominated era, these smaller scale perturbations are effectively frozen and

hence their growth is suppressed. On the other hand, the larger scale perturbations with

λphys > λeq enter after matter-radiation equality during the matter dominated epoch. These

perturbations do not experience the suppression of growth of the radiation dominated era.

The net effect on the overdensity as it goes through these epochs is the suppression of growth

on scales smaller than λeq, or keq in Fourier space, by a factor of ∼ k4. In practice, this scale

dependent evolution of the density fluctuation is quantified through the “transfer function”

T (k) (Eisenstein & Hu, 1998, 1999).

The density fluctuations after inflation can be summarized by the power spectrum:

Pinf(k) ∝ kns (11)

where ns, the spectral tilt of the primordial power spectrum, is measured to be ∼ 1 (Harrison,

1970; Peebles & Yu, 1970; Zeldovich, 1972; Komatsu et al., 2011). Then, the power spectrum

of the density fluctuation in the late Universe can be expressed as

P (k) ∝ kns T 2(k) D2(k). (12)

whereD(k) ≡ D(+) is the growth function from earlier this section. Through the cosmological

models and parameters, which predict T (k) and D(k), we predict the power spectrum of

the density fluctuation. Then these predictions can then be compared to measurements

made from observations in order to produce constraints on cosmological parameters, better

understand dark energy, and test theories of gravity.

Unfortunately, most of the matter in the Universe is in the form of dark matter and does

not interact with radiation, so observers cannot measure the spatial/clustering statistics
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Figure 1: Schematic diagram that illustrates the evolution of the density fluctuations in
the early Universe through inflation, radiation-dominated epoch, matter-radiation equality,
and matter-dominated epoch. The evolution of the Hubble radius (solid line) remains flat
during inflation (flat), scales by ∝ a2 during radiation domination, and ∝ a3/2 during matter
domination. aeq marks matter radiation equality. The physical lengths of three constant
comoving scales are marked by dashed, dotted, and dot-dashed lines. The dashed line
represents physical lengths of perturbations that enter the horizon during matter-radiation
equality λphys = λeq. The dot-dashed line mark perturbations that enter the horizon during
radiation domination with λphys < λeq. The dotted line mark perturbations that enter the
horizon during matter domination with λphys > λeq. As described in the text, the growth
of perturbations with λphys < λeq are suppressed because they enter the horizon during the
radiation dominated era. The evolution of the density perturbation through these epochs
are quantified through the transfer function T (k).
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of dark matter directly. Instead, we measure the clustering of galaxies or quasars, which

trace the underlying matter distribution. The smoothed galaxy/quasar density field can be

approximated by a local function of the matter density field

δg(r) = f(δ(r)). (13)

f(δ(r)) can then be expanded Taylor series (Fry & Gaztanaga, 1993):

δg(r) =
∞∑
k=0

bk
k!
δk (14)

where b0 is chosen so that 〈δg〉 = 0 and b1 is referred to as the linear bias factor. To linear

order,

Pg(k) = b2
1P (k). (15)

The primary galaxy subpopulation used in LSS studies so far are luminous red galax-

ies (Eisenstein et al., 2001; Dawson et al., 2013a). These galaxies have b1 > 1, which

makes them biased tracers of the matter distribution (Zehavi et al., 2005; Sheldon et al.,

2009; Gaztañaga et al., 2009; Zhai et al., 2016). Luminous galaxies reside in larger poten-

tial wells. The peaks of the density fluctuation have stronger clustering properties than the

overall overdensity field (Manera et al., 2010).

Based on the derivation of this section, once we have the spatial distribution of galaxies or

quasars, we can derive the clustering of the matter distribution and then infer cosmological

constraints. In practice, however, a number of factors complicate this procedure. One major

complication is redshift-space distortions, which will be discussed in the next section.
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0.2 Redshift-Space Distortions

Spectroscopic redshifts surveys, such as 2dF Galaxy Redshift Survey (Colless, 1999),

Sloan Digital Sky Survey (SDSS York et al., 2000), and BOSS, have mapped out millions of

distant galaxies. Current surveys such as Extended Baryon Oscillation Spectroscopic Survey

(eBOSS; Dawson et al. 2015), and future surveys such as the Dark Energy Survey Instrument

(DESI; Schlegel et al. 2011; Morales et al. 2012; Makarem et al. 2014) and the Subaru Prime

Focus Spectrograph (PFS; Takada et al. 2014), will continue to map out millions more. These

surveys dominate LSS studies and have/will been critical for inferring precise cosmological

constraints. As their name suggest, however, these redshift surveys do not directly measure

the actual position of galaxies. Instead they measure the angular positions (right ascension

and declination) and redshifts of galaxies.

These redshifts are a combined measurement of the recession velocities due to the expan-

sion of the Universe and the peculiar velocities of the galaxies:

zobv = ztrue +
vpec

c
. (16)

The galaxy comoving positions derived from the angular positions and redshifts are in

redshift-space and “distorted” compared to real-space comoving positions by

s = x+
vpec · n̂
H0

(17)

where n̂ is the unit vector along the line-of-sight. Thankfully, all hope is not lost.

The peculiar velocities of galaxies are directly related to the total matter distribution,

since galaxies can be thought of as test particles in a gravitational field. Using this relation,

Kaiser (1984) derived an approximation for the distortion caused by the coherent infall of
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galaxies onto overdense regions in redshift space. This redshift-space distortion (RSD), often

referred to as the Kaiser effect, causes observations of overdense regions to appear squashed

along the line of sight in redshift-space. Galaxies around an overdense region that are closest

to the observer on Earth are moving towards the center of the overdense region and away

from the observer. So in they appear farther away than their true position. Galaxies on the

other side are moving towards both the overdense region and the observer, so they appear

closer to us in redshift-space.

The relation between the overdensity field in redshift-space can be derived from the

continuity equation and the distant observer approximation,

δ(s)(k) = (1 + fµ2)δ(k). (18)

f is the growth rate of structure (Eq. 10) and µ = k · n̂/k, cosine of the angle between

k and the line-of-sight. In corporating the Kaiser effect into the galaxy bias model from

Section 0.1, the galaxy/quasar overdensity field in redshift-space becomes

δ(s)
g (k) = (b1 + fµ2)δ(k). (19)

The redshift-space power spectrum of the galaxy overdensity field can then be written as

P (s)
g (k, µ) = (b1 + fµ2)2P (k). (20)

On large scales and with small overdensities, the effect of redshift-space distoritons is well

described by the Kaiser effect. On small scales with large overdensities things get a little

more complicated.

The random peculiar velocities of galaxies in gravitationally bound structures such as
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clusters cause their position in redshift-space to be smeared out to larger scales along the

line-of-sight. This effect can easily be identified by eye in galaxy redshift maps where the

elongations of the galaxy positions along the line-of-sight resemble fingers pointing towards

the observer. Aptly this redshift-space distortion is referred to as the “fingers-of-god”. Its

impact on the power spectrum, is empirically modeled and typical quantified using an overall

exponential factor (Jackson, 1972; Scoccimarro, 2004; Taruya et al., 2010; Beutler et al.,

2016). Including both RSDs from the Kaiser effect and the fingers-of-god, the redshift-space

power spectrum is then

P (s)
g (k, µ) ≈ e−f

2σ2
vµ

2k2(b1 + fµ2)2P (k) (21)

where σv is a paramter quantifying the strength of the effect and is usually left as a free

parameter in analyses.

Eq. 21 reveals the f dependence in RSDs. RSD analyses in LSS studies exploit this de-

pendence by measuring the impact of RSDs on the power spectrum to constrain f . Consider

the Legendre expansion of P
(s)
g (k, µ),

P (s)
g (k, µ) =

∑
`=0,2,4...

L`(µ)P `
g (k). (22)

Each of power spectrum “multipole” of this expansion is then

P `
g (k) =

2`+ 1

2

1∫
−1

dµ P (s)
g (k, µ) L`(µ). (23)

The RSD factor in the power spectrum multipoles for ` = 0 (monopole) and 2 (quadrupole)
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are

P 0
g (k) = (b2

1 +
2

3
fb1 +

1

5
f 2)P (k) (24)

P 2
g (k) = (

4

3
fb1 +

4

7
f 2)P (k). (25)

For simplicity, we neglect the fingers-of-god, which does not significantly impact larger scales.

Taking the ratio of the quadrupole over the monopole,

P 2
g

P 0
g

=
4
3
fb1 + 4

7
f 2

b2
1 + 2

3
fb1 + 1

5
f 2
, (26)

we can in principle eliminate the dependence on scale and extract information on f . Of

course in practice the simplified derivations of this section break down. Instead of the simple

linear theory theoretical models I derived, models of P
(s)
g are derived using perturbation

theory and incorporate more sophisticated RSD and bias models (Bernardeau et al., 2002;

Scoccimarro, 2004; Taruya et al., 2010; Nishimichi & Taruya, 2011; Taruya et al., 2013, 2014;

Beutler et al., 2016). These models are then compared to the observed Pg multipoles from

galaxy surveys in order to derive constraints on cosmological parmaeters such as f .

0.3 Weighting Neutrinos with Galaxies

Beyond inferring the growth rate of structure, which can be used to test GR and modi-

fied gravity scenarios, galaxy clustering also provides a unique window to probe fundamental

physics beyond the standard model. In the derivations of Sections 0.1 and 0.2 we focused

on how the dark matter density fluctuations of evolves. This is an excellent approximation

because dark matter consistutes the majority of matter in the Universe. However, it neg-

elects some of the more detailed imprints on LSS from other components of matter – i.e.
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neutrinos, which oscillation and detection experiments have very convincingly (Nobel Prize

in Physics 2015) confirmed is not massless (Hu & Eisenstein, 1998; Lesgourgues & Pastor,

2012; Lesgourgues et al., 2013; Lesgourgues & Pastor, 2014).

In the very early Universe, neutrinos are relativistic and coupled to the primordial plamsa.

Later they decouple from the plasma, while they are still ultra-relativistic and redshift. At

this point, they do not contribute to the energy density of matter but instead radiation.

Eventually during matter domination era, neutrinos become non-relativistic and then con-

tribute to the matter energy density acting as “warm/hot” dark matter. After decoupling

from the primoridal plasma, neutrinos are effectively a collisionless fluid, where the indi-

vidual particles free-stream with characteristic velocities defined by their thermal velocity.

Earlier on when they are relativistic, their free-streaming scale is simply equal to the Hubble

radius. Later when they are non-relativistic, their characteristic velocity is approximately

vth ≈ 158(1 + z)

(
1eV

m

)
km s−1 (27)

and the free-streaming scale can be derived in an analogous way as the Jean’s length deriva-

tion:

λFS = 2π

√
2

3

(vth

H

)
(28)

or

kFS =
2πa

λFS

≈ 0.82

√
ΩΛ + Ωm(1 + z)3

(1 + z)2

( mν

1 eV

)
. (29)

where ΩΛ and Ωm are the current cosmological constant and matter density fractions, re-

spectively.

Neutrinos leave two main imprints on LSS. In the early Universe they contribute to the

radiation energy density but later, they contribute to the matter energy density. As described

12



in Section 0.1, matter-radiation equality marks the turning point in suppression of growth of

structure, quantified by T (k). The transition of neutrinos from radiation to matter impacts

aeq and thus impacts T (k) by shifting the turning point of the cold dark matter (CDM)

only power spectrum. Even after becoming non-relativistic, neutrinos still do not contribute

to the clustering of matter on scale smaller than kFS. The impact of this scale dependent

suppression of clustering, can be analytically estimated for the matter power spectrum (Bird

et al., 2012):

∆P

P
=
P fν 6=0 − P fν=0

P fν=0
≈ −8fν for k � kFS. (30)

where fν is the ratio of the neutrino energy density over that of matter (Ων/Ωm).

The total mass of neutrinos (Σmν) dictates the strength of these imprints and can there-

fore be constrained by the shape of the power spectrum. The same tools used for analyzing

RSDs and measuring the growth rate of structure can also be used to measure Σmν from

observations of galaxy surveys (Hu et al., 1998; Costanzi et al., 2013; Villaescusa-Navarro,

2015; Cuesta et al., 2016a). Based on forecasts, the next galaxy surveys such as DESI1

have the potential to infer the most stringent constraints on Σmν– σ∑mν ∼ 0.03 eV. Such

constraints have the potential to distinguish between the normal or invereted neutrino mass

hierarchy and reveal physics beyond the Standard Model.

0.4 Analyzing Galaxy Clustering

In the previous sections, I laid out the theoretical framework for LSS analysis using galaxy

clustering. As I alluded earlier, the models and predictions of this theoretical framework can

be compared to observations to derive constraints on parameters of interest. In this section

1DESI Final Design Report (FDR): http://desi.lbl.gov/tdr/

13

http://desi.lbl.gov/tdr/


I describe the statistical framework for comparing the theoretical models to observations

from galaxy surveys. The ultimate goal of galaxy clustering analyses is to derive probability

distributions of the cosmological parameters (e.g. f , Σmν) given the data from observations.

The standard approach to deriving this posterior probability distribution is using Bayesian

parameter inference. Based on Bayes theorem, the posterior probability distribution can be

expressed as

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (31)

D and θ refer to observations and cosmological parameters, respectively. P (D|θ), the

probability distribution function for the observation D given model parameters θ, is the

likelihood function (L). P (θ) is the prior probability distribution function. Lastly, P (D) is

the “evidence”, which for our purposes is just a normalization factor independent of θ. The

equation is more commonly simplified as

P (θ|D) ∝ P (D|θ) P (θ) (32)

posterior ∝ likelihood × prior. (33)

In the context of galaxy clustering analyses and LSS cosmology in general, the likelihood

function is typically assumed to have Gaussian function form and calculated as

P (D|θ) = L =
1

(2π)Nd/2 detC1/2
exp

[
−1

2
(D − F (θ))TC−1(D − F (θ))

]
. (34)

D is data observed and measured from galaxy surveys with dimension Nd. F (θ) is the model

prediction of the observable (e.g. P
(s)
g ) generated from cosmological parameters θ, described

in earlier sections. And C is the covariance matrix.

A number of different methods are used to estimate the covariance matrix. For instance,
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efforts to analytically estimate the covariance matrix from theory have been made in the

past (Hamilton et al., 2006; Pope & Szapudi, 2008; de Putter et al., 2012). However, non-

linear evolution, shot-noise, RSDs, and mapping between galaxies and matter complicate

accurate estimations. Jack-knife resampling (Shao & Tu, 1995), a commonly used method

in astronomy for estimating covariances directly from data have also been used. However,

the method requires a number of arbitrary choices and cannot account for fluctuations on

the scale of the survey (Norberg et al., 2009). Instead, the latest analyses estimate C from

galaxy mock catalogs generated from N -body simulations. For accurate estimation, an order

of ∼ 1000 mock galaxy catalogs are required in the analysis (Scoccimarro & Sheth, 2002; ?;

Anderson et al., 2012; Manera et al., 2013; Rodŕıguez-Torres et al., 2015; Kitaura et al., 2016;

Beutler et al., 2016) Developing fast and accurate galaxy mock catalogs for LSS analyses

has now become a subfield of its own. As an added detail, in standard analyses, in order

to account for biases in the C estimates, include a correction – the Hartlap factor – to the

covariance matrix estimate (Hartlap et al., 2007).

From D, F (θ), and C we can evalulate an estimate of the likelihood function. From the

likelihood, since the prior probability distribution is chosen a priori, the posterior probability

distribution functions of the cosmological parameters is essentially already evaluated. In

practice, the posterior distribution is not evaluated at all points in parameter space, but

rather sampled using a sampler such as a Markov Chain Monte Carlo sampler (e.g. emcee

Foreman-Mackey et al., 2013).

From the galaxy clustering analysis described in this chapter, the latest galaxy surveys

have produced some remarkable constraints on cosmological parameters. From the SDSS

and BOSS surveys, measurements of the power spectrum multipoles along with analogous

configure-space analyses have yielded a number of constraints on fσ8 (Reid et al., 2012; Oka

et al., 2014; Beutler et al., 2014b; Alam et al., 2015, 2016; Beutler et al., 2016), where σ8
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is the the rms linear fluctuation in density perturbations on scales of 8 h−1Mpc. Similar to

multipoles, power spectrum wedges have also been used, in both Fourier and configuration-

spaces, to infer fσ8 constraints (Sánchez et al., 2013; Sanchez et al., 2016; Grieb et al.,

2016). These fσ8 constraints can then be compared to cosmological predictions from Cosmic

Microwave Background (CMB) experiments such as the Wilkinson Microwave Anisotropy

Probe (Hinshaw et al., 2013) and Planck (Planck Collaboration et al., 2014a) to test ΛCDM

cosmology and General Relativity. The constraints from BOSS are generally consistent

with ΛCDM and GR over 0.2 < z < 0.75. For instance, Beutler et al. (2016) derives

fσ8 = 0.482 ± 0.053, 0.455 ± 0.050, and 0.410 ± 0.042 from BOSS for effective redshift

zeff = 0.38, 0.51, and 0.61. fσ8 constraints from galaxy power spectrum analyses have also

been combined with CMB data to constrain Σmν (Zhao et al., 2013; Beutler et al., 2014a;

Gil-Maŕın et al., 2015). Beutler et al. (2014a), from combining constraints from galaxy power

spectrum analyses with Planck CMB results, derives the upper bound Σmν< 0.51 eV.

Ongoing and future surveys, such as eBOSS, PFS, and DESI, will continue to collect

many more million redshifts and expand the probed cosmic volume by an order of magnitude.

These observations have the potential to produce cosmological parameter constraints with

unprecedented statistical precision. The main challenges for realizing their full potential are

methodological.

So far I have focused on LSS analyses using only the galaxy power spectrum – the two-

point statistic of the density fluctuations. Analyses restricted to just the two-point statistic,

however, face a number of limitations. The constraints on the growth rate of structure,

listed above, have all constrained fσ8 rather than f alone. The degeneracy between f and

σ8 cannot be broken with P (k) alone. Furthermore, the P (k) multipoles in Eq. 26 illustrate

that P (k) analyses also suffer from the degeneracy between f and bias parameters.

The bispectrum B(k1, k2, k3), the three-point statistic of density fluctuations, can be used
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Figure 2: Amplitude of the reduced galaxy bispectrum Q(k1, k2, k3) plotted as a function
of ratios k2/k1 and k3/k1, which describe the triangle configurations. The Q(k1, k2, k3) in
the left panel is calculated from a perturbation theory model while the right panel presents
Q(k1, k2, k3) of BOSS Data Release 12 CMASS galaxy sample using the Scoccimarro (2015)
estimator.
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to break the degeneracies among f , σ8, and bias parameters (Scoccimarro et al., 1998; Verde

et al., 1998; Scoccimarro, 2000, see Bernardeau et al. 2002 for a review). The dependence

on triangle configuration in B(k1, k2, k3) disentangles contributions from gravitational in-

stability versus non-linear biasing of galaxies. Without going into any further detail, in

Figure2 I present the reduced galaxy bispectrum Q(k1, k2, k3) = B(k1, k2, k3)/(P (k1)P (k2) +

P (k2)P (k3)+P (k1)P (k3)) measurement for the BOSS Data Release 12 CMASS galaxy sam-

ple (right) and a perturbation theory model (left). The BOSS Q(k1, k2, k3) is measured using

the Scoccimarro (2015) estimator. P (k) and B(k1, k2, k3) measurements from galaxy surveys

can be jointly analyzed in order to derive constraints explicitly on f .

All LSS analyses suffer from observational systematic effects. For fiber-fed multi-object

spectroscopic surveys (e.g. SDSS, BOSS, eBOSS, DESI, and PFS) these effects include varia-

tions in target selection relatd to stellar density, image depth, seeing, and other factors (Ross

et al., 2012; Anderson et al., 2012). If not accounted for fiber collisions, for instance, prevent

surveys from collecting a significant fraction redshifts due to physical constraints on the

focal plane. As I detail in Chapter 1, their impact on P (k) goes well beyond their angular

scale and restricts analysis on small scales, which have higher signal-to-noise. In addition to

diminishing the statistical power of galaxy redshift surveys, fiber collisions can also bias con-

straints on cosmological parameters. Many efforts have been made to tackle these challenges

from observational systematics (Ross et al., 2012; Guo et al., 2012a, and Chapter 1).

In Eq. 34, the likelihood function assumes a Gaussian functional form – a standard

assumption in LSS analyses. However, in detail, this assumption cannot be correct due to

nonlinear gravitational evolution and biasing (Mo & White, 1996; Somerville et al., 2001;

Casas-Miranda et al., 2002; Bernardeau et al., 2002). The likelihood also relies on the

estimated covariance matrix to capture the sample variance of the data. Besides the labor

and computational costs required to make them, simulated mock catalogs used for covariance

18



matrix estimation are inaccurate on small scales (see Heitmann et al. 2008; Chuang et al.

2015a and references therein). Furthermore, using covariance matrix estimates rather than

the “true” covariance matrix (Sellentin & Heavens, 2016) along with systematics impact the

likelihood in ways difficult to model. Fortunately, evaluating the explicit likelihood is not

necessary for inferring cosmological parameters. Likelihood-free inference techniques such

as Approximate Bayesian Computation (ABC) relax these restrictions and make inference

possible without making any assumptions on the likelihood. In Chapter 2 I combine ABC

with a Population Monte Carlo sampler and apply it in the context of LSS.

As described earlier, galaxies are biased tracers of the underlying matter distribution. For

more than a decade, halo occupation modeling has been a popular framework for connect-

ing galaxies to the dark matter structures underneath in galaxy formation and cosmology

studies (Yang et al., 2003; Tinker et al., 2005a; van den Bosch et al., 2007; Zheng et al.,

2007b; Conroy & Wechsler, 2009a; Guo et al., 2011; Leauthaud et al., 2012a; Tinker et al.,

2013; Zu & Mandelbaum, 2015). The standard halo occupation model assumes that galaxies

reside in dark mater halos and their occupation is a function of only the mass of the halo.

However, the clustering of dark matter halos depend on properties beyond their masses, such

as their assembly history. If this effect, coined halo assembly bias, propagates to galaxies, it

will induce galaxy assembly bias on standard halo occupaiton model and significantly impact

galaxy clustering analyses (Hearin et al., 2016b; Zentner et al., 2016; Vakili & Hahn, 2016).

Therefore, better understanding of the galaxy-halo connection is essential for LSS analyses.

Beyond their utility as tracers for cosmology, galaxies also pose fundamental questions

regarding how the early homogenous Universe became the heterogenous one today. Obser-

vations have now firmly established a global view of galaxy properties out to z ∼ 1 (e.g. Bell

et al., 2004; Bundy et al., 2006a; Cooper et al., 2007; Cassata et al., 2008; Blanton & Mous-

takas, 2009a; Whitaker et al., 2012; Moustakas et al., 2013, Chapter 3). Galaxies roughly
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fall into two categories: star-forming galaxies and quiescent ones with little star formation.

The star-forming population undergoes significant decline in star formation rate (SFR) over

cosmic time and significant fractions of them also rapidly “quench” their star formation

and become quiescent. The underlying drivers of this evolution, however, are not directly

revealed by observations. Cosmology, which precisely predicts the dark matter evolution,

provides a framework for answering specific and tractable questions in galaxy evolution. In

ΛCDM, structures form “hierarchically” — smaller ones form earlier and subsequently merge

to form larger ones. The galaxy population can be positioned in this framework with halo

occupation in order to constrain key elements of their evolution and better understand the

galaxy-halo connection (Wetzel et al., 2013, 2014; Tinker et al., 2016, 2017). In Chapter 4, I

use this approach to measure the timescale of star-formation quenching in central galaxies.

In this dissertation, I tackle key methodological challenges in LSS analyses with galaxy

clustering by developing methods to robustly treat systematics (Chapter 1), introducing

innovative approaches to inference in LSS studies (Chapter 2), and improving our under-

standing of the galaxy-halo connection (Chapters 3 and 4). Each Chapter contributes to

unlocking the full potential of current and future galaxy redshift surveys and will be critical

for testing cosmological models and General Relativity and constraining the total neutrino

mass.

Chapters 1 and 3 have both been refereed and published in the astronomical literature.

Chapters 2 and 4 have both been refereed and accepted to the Monthly Notices of the Royal

Astronomical Society and The Astrophysical Journal, respectively. All of these Chapters were

co-authored with collaborators but the majority of the work and writing in each Chapter is

mine. Below, I describe my contributions to each Chapter:

1. For Chapter 1, I developed the idea for the project in collaboration with Roman Scoc-

cimarro and Michael Blanton. I implemented the project with contributions from

20



Roman Scoccimarro. The project utilized simulation data from Jeremy Tinker and

Sergio Rodŕıguez-Torres. I wrote the paper with additions from Roman Scoccimarro

and edits by Michael Blanton.

2. For Chapter 2, I developed the idea for the project in collaboration with Mohammad-

javad Vakili, Andrew Hearin, and David Hogg. I implemented the project with Mo-

hammadjavad Vakili and contributions from Andrew Hearin and Kilian Walsh. The

project utilized software written by Andrew Hearin and Duncan Campell. I wrote

the paper together with Mohammadjavad Vakili with additions from Andrew Hearin,

David Hogg, and Kilian Walsh.

3. For Chapter 3, I developed the idea for the project in collaboration with Michael

Blanton. I implemented the project using catalogs constructed by John Moustakas from

observations made by the PRIMUS collaboration (Scott Burles, Alison Coil, Richard

Cool, Daniel Eisenstein, Ramin Skibba, Kenneth Wong, and Guangtun Zhu). I wrote

the paper with additions from Michael Blanton.

4. For Chapter 4, I developed the idea for the project in collaboration with Jeremy Tinker.

I implemented the project using simulation data from Andrew Wetzel. I wrote the

paper with comments and edits by Jeremy Tinker and Andrew Wetzel.
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Chapter 1

The Effect of Fiber Collisions on the

Galaxy Power Spectrum Multipoles

This Chapter is joint work with Roman Scoccimarro (NYU), Michael R. Blanton (NYU),

Jeremy L. Tinker (NYU), and Sergio Rodŕıguez-Torres (Universidad Autónoma de Madrid)

published in the Monthly Notices of the Royal Astronomical Society as Hahn et al. (2017).

1.1 Chapter Abstract

Fiber-fed multi-object spectroscopic surveys, with their ability to collect an un-

precedented number of redshifts, currently dominate large-scale structure studies. However,

physical constraints limit these surveys from successfully collecting redshifts from galaxies

too close to each other on the focal plane. This ultimately leads to significant systematic

effects on galaxy clustering measurements. Using simulated mock catalogs, we demonstrate

that fiber collisions have a significant impact on the power spectrum, P (k), monopole and

quadrupole that exceeds sample variance at scales smaller than k ∼ 0.1 h/Mpc.
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We present two methods to account for fiber collisions in the power spectrum. The

first statistically reconstructs the clustering of fiber collided galaxy pairs by modeling the

distribution of the line-of-sight displacements between them. It also properly accounts for

fiber collisions in the shot-noise correction term of the P (k) estimator. Using this method,

we recover the true P (k) monopole of the mock catalogs with residuals of < 0.5% at k =

0.3 h/Mpc and < 4% at k = 0.83 h/Mpc – a significant improvement over existing correction

methods. The quadrupole, however, does not improve significantly.

The second method models the effect of fiber collisions on the power spectrum as a

convolution with a configuration space top-hat function that depends on the physical scale

of fiber collisions. It directly computes theoretical predictions of the fiber-collided P (k)

multipoles and reduces the influence of smaller scales to a set of nuisance parameters. Using

this method, we reliably model the effect of fiber collisions on the monopole and quadrupole

down to the limiting scales of theoretical predictions. The methods we present in this paper

will allow us to robustly analyze galaxy power spectrum multipole measurements to much

smaller scales than previously possible.

1.2 Introduction

Cosmological measurements such as galaxy clustering statistics are no longer dominated

by uncertainties from statistical precision, but from systematic effects of the measurements.

This is a result of the millions of redshifts to distant galaxies that have been obtained

through redshift surveys such as the 2dF Galaxy Redshift Survey (2dFGRS; Colless 1999)

and the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (SDSS-III

BOSS; Anderson et al. 2012; Dawson et al. 2013a). Current surveys, such as the Extended

Baryon Oscillation Spectroscopic Survey (eBOSS; Dawson et al. 2015), and future surveys
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such as the Dark Energy Spectroscopic Instrument (DESI; Schlegel et al. 2011; Morales et al.

2012; Makarem et al. 2014), and the Subaru Prime Focus Spectrograph (PFS; Takada et al.

2014), will continue to collect many more million redshifts, extending our measurements to

unprecedented statistical precision. These completed and future surveys, all use and will use

fiber-fed spectrographs.

For each galaxy, a fiber is used to obtain a spectroscopic redshift. However, the physical

size of the fiber housing and other physical constraints limit how well any of these surveys

can observe close pairs of galaxies. In the SDSS, if two galaxies are located within the

fiber collision angular scale from one another on the sky, separate fibers cannot be placed

adjacently to observe them simultaneously (Yoon et al. 2008). In these situations, only a

single redshift is measured. With redshifts of galaxies in close angular proximity missing

from the sample, any clustering statistic probing these scales will be systematically affected.

As our cosmological surveys extend further to higher redshifts, the systematic effect

becomes more severe. The fiber collision angular scale corresponds to a larger comoving

scale at higher redshift, thereby affecting our measurements on larger scales. BOSS, in

particular, has an angular fiber collision scale of 62”. This corresponds to ∼ 0.43 Mpc/h

at the center of the survey’s redshift range; fiber-collided galaxies account for ∼ 5% of

the galaxy sample (Anderson et al. 2012; Reid et al. 2012; Guo et al. 2012a). While this

may seem like a relatively small fraction of redshifts, its effect on clustering measurements

such as the power spectrum and bispectrum is significant and needs to be accounted for in

order to probe mildly non-linear scales. Unfortunately, future spectroscopic surveys such as

DESI, which will use robotic fiber positioner technology, will be subject to similar effects.

In fact, based on the DESI Final Design Report1, which estimates that ∼ 6% of Luminous

Red Galaxies and > 20% of Emission-Line Galaxies will be fiber-collided, fiber collisions

1DESI Final Design Report: http://desi.lbl.gov/tdr/
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will affect a larger fraction of the target sample than in BOSS. Therefore, accounting for

the effects of fiber collisions will remain a crucial and unavoidable challenge for analyzing

clustering measurements.

To correct for fiber collisions, one common approach used in clustering measurements is

the nearest neighbor method (Zehavi et al. 2002, 2005, 2011; Berlind et al. 2006a; Anderson

et al. 2012). For fiber-collided galaxies without resolved redshifts, the method assigns the

statistical weight of the fiber-collided galaxy to its nearest angular neighbor. This provides

a reasonable correction for the fiber collision effects at scales much larger than the fiber

collision scales; however the correction falls short elsewhere. In fact, as Zehavi et al. (2005)

find, fiber collisions affect the two-point correlation function (2PCF) measurements even on

scales significantly larger than the fiber collision scale ( > 1 Mpc/h).

For power spectrum measurements in BOSS, the nearest neighbor method has recently

been supplemented with adjustments in the constant shot-noise term of the power spectrum

estimator to correct for fiber collisions (Beutler et al., 2014b; Gil-Maŕın et al., 2014, 2016a,b;

Beutler et al., 2016; Grieb et al., 2016). More specifically, methods like the one used in

Gil-Maŕın et al. (2014) obtain the value of the shot-noise term from mock catalogs and

thus rely entirely on their accuracy to correct for fiber collisions. This is concerning since,

as we shall demonstrate in detail, fiber collisions depend systematically on the small-scale

power spectrum, and mock catalogs used for large scale structure analyses are typically not

based on high resolution N-body simulations. In addition, there is no way to validate and

calibrate the shot-noise term independently for observations. A more reliable approach is to

marginalize over the value of the shot-noise term, and this is the approach that has recently

become more popular (Gil-Maŕın et al., 2016a; Beutler et al., 2016; Grieb et al., 2016; Gil-

Maŕın et al., 2016b). However, adjustments to the shot-noise term are limited to the power

spectrum monopole, since higher order multipoles do not have a shot-noise term. However,
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as we shall discuss in detail below, fiber collisions affect all multipoles in a k-dependent way,

not just adding a constant for the monopole power.

Guo et al. (2012a), focusing on SDSS-III BOSS like samples, proposed a fiber collision

correction method for the 2PCF that is able to reasonably correct for fiber collisions above

and below the collision scale. Guo et al. (2012a) estimates the total contribution of fiber-

collided galaxies to the 2PCF by examining the pair statistics in overlapping tiling regions

of the survey, where a smaller fraction of galaxies suffer from fiber collisions. Unfortunately,

applying an analogous method in Fourier space proves to be more difficult. The Guo et al.

(2012a) method in Fourier space would involve measuring the power spectra for individual

overlapping regions. Given the complex geometry of these regions, the systematic effect

introduced by the window function makes measuring the power spectrum at larger scales

intractable.

Meanwhile, galaxy redshift-space power spectrum models from perturbation theory con-

tinue to reliably model higher k in the weakly non-linear regime (Taruya et al., 2010, 2014;

Okumura et al., 2015; Beutler et al., 2016; Grieb et al., 2016; Sanchez et al., 2016). Recent

analyses of galaxy power spectrum multipoles (Beutler et al. 2014b; Gil-Maŕın et al. 2014,

2016a,b; Beutler et al. 2016; Grieb et al. 2016) use scales up to kmax = 0.15− 0.2h/Mpc for

BOSS galaxies, and this limit will for sure move towards smaller scales in upcoming analyses.

As statistical errors decrease the importance of systematics due to fiber collisions plays an

increasingly important role. The main goal of this paper is to quantify this systematic effect

for the power spectrum multipoles and to provide ways to overcome it; for this purpose we

develop two distinct approaches.

The first approach improves upon the nearest neighbor method by modeling the distribu-

tion of the line-of-sight displacement between resolved fiber collided galaxies to statistically

reconstruct the clustering of fiber-collided galaxies. This uses information on resolved fiber
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collided galaxies that is available from the data themselves (e.g. in tiling overlap regions).

The difficulty with this method is that it works statistically, i.e. we cannot reconstruct the

actual galaxy by galaxy line of sight displacement due to collisions. As a result of this, while

the method works very well to recover the true power spectrum monopole from fiber collided

galaxy catalogs, it does not work sufficiently well for the power spectrum quadrupole which

is far more sensitive to the precise structure of “fingers of god”.

The second approach addresses the shortcomings of the first one by modeling the effects

of fiber collisions on the predictions instead of trying to undo their effect on the data before

computing power spectrum statistics. It approximates the effect of fiber collisions on the

2PCF as a 2D top hat function. Then it derives the effect of fiber collisions on the galaxy

power spectrum as a convolution of the true power spectrum with the top hat function.

Therefore the theoretical predictions for the power spectrum are fiber collided and then can

be compared directly to the observed fiber collided power spectrum in clustering analyses.

This paper is organized as follows. In Section 1.3, we briefly describe the simulated mock

catalogs with realistic fiber collisions and the power spectrum estimator used throughout the

paper. We then demonstrate the impact of fiber collisions on power spectrum measurements

and how the nearest neighbor method does not adequately account for fiber collisions in

Section 1.4.1. We present our two methods of accounting for fiber collisions along with the

results for mock catalogs in Section 1.4.2 and Section 1.4.3, respectively. Finally in Section

4.8 we summarize our results and conclude.

1.3 Fiber-collided Mock catalogs

For various purposes, such as characterizing the impact of the survey window function

on statistics and estimating covariance matrices, simulated mock catalogs play a crucial role
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in interpreting clustering measurements of observed galaxies (Cole et al., 1998; Scoccimarro

& Sheth, 2002; Anderson et al., 2012; Beutler et al., 2014b; Carretero et al., 2015, also see

citations in Chuang et al. 2015b). They also provide a means of understanding systematic

effects such as fiber collisions (Guo et al. 2012a; Manera et al. 2013). Since systematic

effects can be simulated on them, they allow us to test how these effects influence clustering

measurements and devise correction methods that attempt to account for these effects.

A direct way of understanding the effects of fiber collisions on clustering statistics in

observations is to first apply fiber collisions to mock catalogs and then compare the clustering

statistics obtained from mock catalogs with and without the fiber collisions. Correction

methods for fiber collisions can then be applied to the fiber-collided mocks. The merit of

the correction method can be assessed by how successfully they reproduce the clustering

statistics of the original mock catalogs without fiber collisions. The correction method can

then be applied to the observed data with some assurance that it accounts for fiber collisions

and improves the clustering measurements.

When applying the fiber collisions to the mock catalogs, it is essential to apply them

in the same manner they affect the observations. For BOSS, galaxies within 62” are fiber-

collided (Anderson et al. 2012). In reality, this criteria is further complicated by the tiling

scheme of observing plates that create overlapping regions, which have a higher success rate

in resolving galaxy spectra within the fiber collision angular scale (Guo et al. 2012a; Reid

et al. 2012). Furthermore, fiber collisions are only one of the systematic effects that influence

BOSS data. Systematic effects include the unique geometry of the BOSS survey, the variable

completeness in different areas covered by unique sets of spectroscopic plates, and redshift

failures (Anderson et al. 2012; Ross et al. 2012).

Effects of fiber collisions must be understood and interpreted in conjunction with the

other systematic effects. Therefore, in this paper, we use Quick Particle Mesh (White et al.
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Figure 1.1: Normalized galaxy redshift distribution of the Nseries (orange), QPM (blue),
and BigMultiDark (red) mock catalogs. The normalized redshift distribution of BOSS DR12
CMASS sample galaxies is also plotted (black). Each of the distributions were computed
with a bin size of ∆z = 0.025. All of the mock catalogs used in this work closely trace the
BOSS CMASS redshift distribution.
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2014), Nseries (Tinker et al. in prep), and the BigMultiDark (Rodŕıguez-Torres et al. 2015)

mock catalogs, which have already been extensively used in interpreting clustering results

for BOSS and are generated through different prescriptions. Therefore they provide a robust

sets of data to measure the effects of fiber collisions and to test our correction methods.

The QPM mock galaxy catalogs uses a “quick particle mesh” method, which uses a

low resolution particle-mesh N-body solver, with a resolution of 2 Mpc/h, to evolve particles

within a periodic simulation volume. The particles are assigned halo masses in order to match

the halo mass function and large-scale bias of halos of high resolution simulations. Afterwards

the HOD parameterization of Tinker et al. (2012) is used to populate the halos. The mock

galaxy sample is then trimmed to the BOSS CMASS survey footprint, downsampled based

on angular sky completeness (sector completeness) and radial selection. Furthermore, QPM

mocks model the fiber collisions of the BOSS CMASS sample (62”). QPM uses the following

ΛCDM cosmology: Ωm = 0.29, ΩΛ = 0.71, σ8 = 0.8, ns = 0.97 and h = 0.7. We use

100 realizations of the QPM catalog. For a detailed description of the QPM galaxy mock

catalogs we refer readers to White et al. (2014).

Next, the Nseries mock catalogs are created from a series of high-resolution N-body

simulations. Each mock has the same angular selection function as the North Galactic Cap

region of the BOSS DR12 large-scale structure sample for CMASS galaxies (Cuesta et al.

2016b). They also reproduce the redshift distribution of the BOSS CMASS sample. The

Nseries mock catalogs are created from seven independent N-body simulations, each of the

same cosmology. Each simulation box is 2.5 Gpc/h per side with cosmology: Ωm = 0.286,

ΩΛ = 0.714, σ8 = 0.82, ns = 0.96 and h = 0.7. Out of these Nseries box simulations, the

three orthogonal projections of each box is used to create 84 mocks. Each of the cut-out

mocks is then passed through the same fiber assignment code as the actual BOSS data using

the distribution of plates in BOSS. Thus, the angular variation of fiber collisions faithfully
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reproduces that of the data, with ∼ 5% of the targets without fibers due to close neighbors

in regions of the footprint only covered by one tile.

Finally the BigMultiDark galaxy mock catalog is generated using the BigMultiDark

Planck (BigMDPL), one of the MultiDark3 N-body simulations (Klypin et al. 2014). Big-

MDPL uses a GADGET-2 code (Springel 2005) in a cubic box of 2.5 h−1Gpc sides with

38403 dark matter particles and a mass resolution of 2.4×1010h−1M�. As the name suggests,

BigMDPL uses Planck cosmological parameters in a flat ΛCDM cosmology: Ωm = 0.307,

ΩB = 0.048, Ωλ = 0.693, σ8 = 0.829, ns = 0.96 and h = 0.678.

From the BigMDPL N-body simulation, Rodŕıguez-Torres et al. (2015) uses the RockStar

(Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement) halo

finder (Behroozi et al. 2013c) to obtain a dark matter halo catalog. Afterwards, they use the

SUrvey GenerAtoR code (SUGAR) to generate a galaxy catalog from the halo catalog. SUGAR

uses halo abundance matching with an intrinsic scatter on the stellar mass function of the

Portsmouth SED-fit DR12 stellar mass catalog (Maraston et al. 2013) to populate the dark

matter halos with galaxies. Rodŕıguez-Torres et al. (2015) then model fiber collisions using

Guo et al. (2012a) in order to reproduce the effect of fiber collisions on the observed BOSS

galaxies. For any further details on the BigMultiDark galaxy mock catalog, we refer readers

to Rodŕıguez-Torres et al. (2015).

In Figure 1.1, we plot the normalized redshift distribution of the Nseries (orange), QPM

(blue), and BigMultiDark (red) mock catalogs along with the redshift distribution of the

BOSS DR12 CMASS sample galaxies. All of these mock catalogs were constructed for the

BOSS analysis and their redshift distributions closely trace the observed BOSS distribution.

31



Figure 1.2: Power spectrum monopole P0(k) and quadrupole |P2(k)| measurements for the
Nseries (orange), QPM (blue), and BigMultiDark (red) mock catalogs (Section 1.3). The
Pl(k) measurements for the Nseries and QPM mock catalogs are averaged over the multiple
mock realizations and the width of the power spectra represents the sample variance (σl(k);
Eq. 1.10) of the realizations. For the quadrupole, we plot the |P2(k)| instead of P2(k) because
the measurement becomes negative for k & 0.35 h/Mpc. For comparison, we also include
the monopole and quadrupole power spectra of the BOSS DR12 CMASS sample, which are
calculated using the same estimator but with statistical weights described in Eq. (1.9). While
fiber collisions are inevitably included in the BOSS CMASS power spectra, they are not yet
applied to the mock catalogs power spectra measurements above.
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1.3.1 Power Spectrum Estimator

In this paper, out of the many possible clustering measurements, we focus on the galaxy

power spectrum and its monopole and quadrupole in redshift space. Throughout the paper,

unless specified, when we measure the power spectrum we use the estimator described in

Scoccimarro (2015), which accounts for radial redshift space distortions (see also Bianchi

et al. 2015). In this estimator, galaxies are interpolated and Fast Fourier transformed as

discussed in Sefusatti et al. (2016). Since the algorithm is efficient, it makes power spectrum

computations for large number of mock realizations tractable.

To summarize the method, we calculate the monopole component of the power spectrum

using:

P̂0(k) =
1

I22

[∫
dΩk

4π
|F0(k)|2 −N0

]
(1.1)

where

F0(k) =

(
Ng∑
j=1

−α
Nr∑
j=1

)
wj e

ik·xj (1.2)

with normalization constant

I22 = α
Nr∑
j=1

n̄(xj)w
2
j (1.3)

and shot noise term following from the estimator is (Scoccimarro, 2015)

N0 =

(
Ng∑
j=1

+α2

Nr∑
j=1

)
w2
j , (1.4)

which represents the constant shot noise contribution to the power due to the discrete density

field of our galaxies and random catalog. Here α is the ratio of the number of galaxies (Ng)

over the number of synthetic random galaxies (Nr), n̄(x) is the mean density of the galaxies

at position x, and wj is weight of each object, which includes the minimum variance weight
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from Feldman et al. (1994):

wFKP(xj) =
1

1 + n̄(xj)P0

(1.5)

where P0 is the power spectrum amplitude at which the error is minimized. We use P0 =

20000 Mpc3/h3 for our analysis, which corresponds to k ∼ 0.1 h/Mpc. We note that the

shot noise term in Eq. (1.4) differs from the standard shot noise term from Feldman et al.

(1994). The difference between various shot noise expressions used in the literature will be

discussed in detail in Section 1.4.2.2.

For the quadrupole, we have

P̂2(k) =
5

I22

∫
dΩk

4π
F2(k)F ∗0 (k) (1.6)

where

F2(k) =
3

2
k̂ak̂bQ

ab(k)− 1

2
F0(k) (1.7)

with

Qab(k) =

(
Ng∑
j=1

−α
Nr∑
j=1

)
x̂aj x̂

b
jwj e

ik·xj (1.8)

In Figure 1.2, we plot the power spectrum monopole and quadrupole, P0(k) and |P2(k)|,

measured using Eq. (1.1) and Eq. (1.6), respectively, for the Nseries, QPM, and BigMultiDark

mock catalogs. We plot |P2(K)| because the power spectrum quadruple becomes negative for

k & 0.35 h/Mpc. P0(k) and |P2(k)| are averaged over the 84 and 100 realizations for Nseries

and QPM. We note that fiber collisions are not applied to these mock catalogs. Without

fiber collisions, the weights of the objects are equivalent to the FKP weights, wj = wj,FKP.

We also plot the P0(k) and P2(k) of the BOSS Data Release 12 CMASS data (black)

in Figure 1.2. For BOSS DR12 CMASS, systematic weights are assigned to the galaxies in

order to account for sector completeness, redshift failures, and fiber collisions. Each galaxy
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has a statistical weight determined by,

wj,tot = wj,sys(wj,rf + wj,fc − 1), (1.9)

(Anderson et al. 2012; Ross et al. 2012; Beutler et al. 2014b), which are included in the

final object weight wj along with wj,FKP. In this formula, wj,rf is a weight that accounts

for redshift failures and wj,fc is the fiber collision weight determined by the nearest angular

neighbor method, which we later discuss in Section 1.4.1. The statistical weights are also

included in α =
∑Ng

j=1wtot/Nr. We note that fiber collisions are inevitably included in the

CMASS Pl(k). However they are not yet included in the Pl(k) of the mock catalogs in Figure

1.2.

For the mock catalogs with multiple realizations (QPM and Nseries), we compute the

sample variance of the power spectrum

σl(k) =

√√√√ 1

Nmocks − 1

Nmocks∑
i=1

(P i
l (k)− 〈Pl(k)〉)2 . (1.10)

Nmock is the number of mock realizations (84 for Nseries and 100 for QPM) and P i
l (k) is the

power spectrum for each realization. σl(k) is represented in Figure 1.2 by the width of the

shaded regions.

1.4 Fiber Collision Methods

1.4.1 Nearest Angular Neighbor Method (NN)

A common approach to accounting for fiber collisions in clustering measurements has

been to use the nearest angular neighbor method (Zehavi et al. 2002, 2005; Berlind et al.
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Figure 1.3: The fiber collision power spectrum residual, (PNN
l −P true

l ) (Section 1.4.1), for the
monopole (top), quadrupole (middle), and hexadecapole (bottom) of the Nseries (left), QPM
(middle), and BigMultiDark (right) mock catalogs. For the Nseries and QPM mocks, we
plot the sample variances σl(k) (grey shaded region) of P true

l (k) for comparison. The power
spectrum residual for the NN method is an improvement over the residual with no correction
(∆PNoW

l (k); x) at most scales probed. However, we highlight that at k > 0.1 h/Mpc and
k > 0.2 h/Mpc, for the monopole and quadrupole respectively, the residuals from fiber
collision surpass the sample variance. At smaller scales, NN method does not sufficiently
account for the effects of fiber collisions in Pl(k) measurements.
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Figure 1.4: Top Panel: The normalized residuals, 1−PNN
0 /P true

0 (k), of the NN method for the
Nseries (orange), QPM (blue), and BigMultiDark (red) power spectrum monopole. We also
plot the normalized sample variance σ0(k)/P0(k) (gray shaded region) of the Nseries mocks
for comparison. The QPM σ0(k)/P0(k) is effectively the same as the Nseries σ0(k)/P0(k), so
we do not included in the figure. The comparison reveals that the effect of fiber collisions not
only biases the power spectrum beyond sample variance at k & 0.1 h/Mpc, but that the effect
increases relative to sample variance at smaller scales. At k = 0.2 h/Mpc, the normalized
residual is greater than 4 times the normalized sample variance. Bottom Panel: We mark
kχ2 where ∆χ2(kχ2) = 1 (Eq. 1.11) for the NN method. kNN

χ2 is a conservative scale limit of
the NN method. Arrows above the dashed line mark kχ2 for the monopole while the arrows
below the dashed line mark kχ2 for the quadrupole. The color of the arrows indicate the
mock catalog: Nseries (orange), QPM (blue), and BigMultiDark (red). Averaged over the
three mock catalogs, we get kNN

χ2 = 0.068 and 0.17 h/Mpc. for the monopole and quadrupole
respectively.
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2006a; Zehavi et al. 2011; Anderson et al. 2012), hereafter NN method. For galaxies without

resolved spectroscopic redshifts due to fiber collisions, the entire statistical weight of the

galaxy is assigned to its nearest angular neighbor with resolved redshift. According to

Zehavi et al. (2002), this method effectively assumes that all galaxies within the angular

fiber collision scale (< 62” for BOSS) are correlated with one another. In the context of the

halo model, the NN method assumes that galaxies within the fiber collision angular scale

reside in the same halo so displacing one of the galaxies and placing it on top of the other

does not significantly impact clustering statistics. This is a reasonable assumption for the

2PCF and the power spectrum on scales far greater than fiber collisions.

One consequence of this method is that galaxies coincidentally within the angular fiber

collision scale (hereafter referred to as “chance alignments”) are incorrectly assumed to be

gravitationally correlated and within the same halo. So when the statistical weight of the

collided galaxy is added to its nearest angular neighbor, the collided galaxy is in fact displaced

significantly from its true radial position. This displacement can even be on the scale of

the survey depth, which corresponds to ∼ 500 Mpc for BOSS. Furthermore, even for fiber

collided galaxies that reside in the same gravitationally bound structures such as groups or

clusters, up-weighting the nearest neighbor disregards the line-of-sight displacements within

these structures.

To precisely quantify the effect of fiber collisions on the power spectrum, we compare the

power spectrum measurements of the NN weighted fiber collided mock catalogs PNN
l to the

power spectrum measurements of the mock catalogs without fiber collisions, the “true” power

spectrum P true
l . Specifically, in Figure 1.3, we plot the power spectrum residual (PNN

l −P true
l )

as a function of k. The power spectrum estimators Eq. (1.1) and (1.6) are used to calculate

the monopole (top) and quadrupole (center) respectively. We include measurements of the

sample variance, σl(k), for the Nseries and QPM mock catalogs (Eq. 1.10). We also include
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the power spectrum residual ∆PNoW
l (k) = PNoW

l (k) − P true
l (k) (dashed), where PNoW

l (k) is

the power spectrum of the fiber collided mock catalogs with no NN weights, with the collided

galaxies removed from the sample. In this paper we focus on the monopole and quadrupole,

however for reference, we also include the effect of fiber collisions on the power spectrum

hexadecapole (bottom).

As both Pl(k) and σl(k) vary significantly over the probed k range, the significance of

the discrepancies between PNN
l (k) and P true

l (k) are not adequately portrayed in Figure 1.3,

especially for the monopole. Therefore, to compare PNN
0 and P true

0 over a wide k range and

to especially highlight the discrepancies at small scales, in Figure 1.4, we compare the nor-

malized monopole residuals, 1−PNN
0 /P true

0 , to the normalized sample variance, σ0(k)/P true
0 .

For the monopole, Figure 1.3 demonstrates that while the NN method (circles) provides

an overall improvement over applying no correction (crosses) at most scales, fiber collisions

still significantly bias the corrected power spectrum at all scales. The effect also has a

significant k dependence, which implies that an adjusted constant shot noise term alone

is insufficient in accounting for the deviation. Even at k ≈ 0.1 h/Mpc, the effect of fiber

collisions in the NN method alarmingly surpasses sample variance. While the amplitude of

the residual decreases as k increases, Figure 1.4 reveals that as a fraction of P true
0 (k), the

discrepancy is in fact increasing. In other words, the NN method becomes less effective at

correcting for fiber collisions on smaller scales, as expected. At the smallest scales probed

(k = 0.83 h/Mpc), the PNN
0 (k) underestimates the true power spectrum monopole by over

20%.

For the quadrupole, the NN method improves the power spectrum residuals over no

correction. However, even with the NN method, the effect of fiber collisions begins to

significantly grow at k = 0.1 h/Mpc and becomes comparable to the sample variance at

k ∼ 0.2 h/Mpc. For k > 0.2 h/Mpc, the effect continues to increase and quickly overtakes
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the decreasing sample variance. At the smallest scales measured (k = 0.83 h/Mpc) the

residual is over eight times the sample variance.

Recently power spectrum analyses have measured the power spectrum using a wide range

of k bins: for example, Anderson et al. (2012) use ∆k = 0.04 h/Mpc and Beutler et al.

(2014b) and Grieb et al. (2016) use ∆k = 0.005 h/Mpc. Here, we use ∆k = 0.01 h/Mpc,

which is within this general range, in agreement with Beutler et al. (2016) and Gil-Maŕın

et al. (2016a). Sample variance measured with larger ∆k is smaller; so a straight comparison

in Figure 1.3 between the power spectrum residuals (symbols) and the sample variance

(shaded region) has a significant dependence on the choice of ∆k. What is independent of

binning is a cumulative χ2 as a function of k, and thus we define a k scale limit kχ2 so that

∆χ2(kχ2) = 1, where

∆χ2(k′) =
∑
i,j<Nk

[
PNN
l,i − P true

l,i

]
C−1
l; i,j

[
PNN
l,j − P true

l,j

]
(1.11)

where Nk is the number of bins where k < k′ and C−1
l;i,j are the elements of the inverse

covariance matrix for P true
l (k). The elements of the covariance matrix Cl are computed as

Cl; i,j =
1

Nmocks − 1

Nmocks∑
k=1

[
P

(k)
l; i − P l; i

][
P

(k)
l; j − P l; j

]

for the Nseries and QPM mocks. For BigMD, which only has one realization, we use the

covariance matrix of the Nseries realizations. In the lower panel of Figure 1.4, we mark the

monopole and quadrupole kNN
χ2 for the mock catalogs using the NN method. Arrows above

the dashed line mark the monopole kNN
χ2 for Nseries (orange), QPM (blue) and BigMultiDark

(red) catalogs. Similarly, the arrows below the dashed line mark the quadrupole kNN
χ2 for the

mock catalogs. Averaged over the three mock catalogs, we get kNN
χ2 = 0.068 and 0.17 h/Mpc
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for the monopole and quadrupole respectively.

At k = 0.2 h/Mpc, the fiber collision residual for the monopole is over four times sample

variance with average normalized residual of 4.4% compared to the 0.9% normalized sample

variance. Moreover, we find that kχ2 = 0.068 h/Mpc, which is well below the maximum

wavenumbers used typically in analyses. For the quadrupole, the fiber collision residual is

approximately equivalent to sample variance at k = 0.2 h/Mpc and kχ2 = 0.17 h/Mpc, but

it quickly deteriorates with increasing k. Therefore for theoretical predictions that attempt

to go beyond these scales, the effects of fiber collisions undoubtedly dominate the sample

variance for both the power spectrum monopole and quadrupole and the NN method proves

to be insufficient. In order to correct for this effect, we next present our first approach: the

‘line-of-sight reconstruction’ method.

1.4.2 Line-of-Sight Reconstruction Method

1.4.2.1 Line-of-Sight Displacement of Fiber Collided Pairs

It is impossible to determine definitively from observed galaxy data whether individual

fiber collided galaxies without resolved spectroscopic redshifts are correlated or chance align-

ments. However, the line-of-sight displacement of fiber collided galaxy pairs with resolved

redshifts make it possible to model the overall impact fiber collisions have on displacing

galaxies.

For the BOSS galaxy catalog, fiber collided pairs with resolved spectroscopic redshifts are

mainly located in the overlapping regions (Section 1.3). For the simulated mock catalogs,

fiber collisions are post-processed after the galaxy positions are generated. Therefore, all

galaxies in fiber collided pairs have resolved redshifts. From these resolved redshifts we

calculate the comoving line-of-sight displacement (dLOS) by taking the difference between
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Figure 1.5: Normalized distribution of dLOS for Nseries (orange), QPM (blue), and Big-
MultiDark (green) mock catalogs. The normalized dLOS distribution of BOSS DR12 is also
plotted (black). The mock catalog distributions have bin sizes of ∆d = 0.2 Mpc, while the
CMASS distribution has a bin size of ∆d = 0.5 Mpc. The distribution extends beyond the
range of the above plot to ∼ ±500 Mpc. In the discussion of Section 1.4.2, we focus mainly
on the peak of the distribution at roughly −20 Mpc < dLOS < 20 Mpc.
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the line-of-sight comoving distance of the resolved redshifts:

dLOS = DC(z1)−DC(z2). (1.12)

DC(z) here is the line-of-sight comoving distance at z (Hogg 1999), and z1 and z2 represent

the resolved redshifts of the two galaxies in the fiber collided pair.

The normalized distributions of the calculated dLOS for all resolved fiber collided pairs are

presented in Figure 1.5 for Nseries (orange), QPM (blue), BigMultiDark (red), and BOSS

DR12 (black). The dLOS distributions for all catalogs consist of two components: a peak

roughly within the range −20 Mpc < dLOS < 20 Mpc and a flat component (hereafter

“tail” component) outside the peak that extends to dLOS ∼ ±500 Mpc. The entire range

of the distribution is not displayed in Figure 1.5. For BOSS, as mentioned above, the dLOS

distribution only reflects the dLOS values from galaxy pairs within the fiber collision angular

scale with resolved spectroscopic redshifts, mostly from overlapping regions of the survey.

Galaxies within the same halo, due to their gravitational interactions at halo-scales, are

more likely to be in close angular proximity with each other. These galaxies in over-dense

regions cause the peak in the dLOS distribution. The “tail” component consists of chance

aligned galaxy pairs that happen to be in close angular proximity in the sky.

Focusing on the peak of the distribution, we note that it closely traces a Gaussian func-

tional form. Therefore, we fit

p(dLOS) = A e−d
2
LOS/2σ

2
LOS (1.13)

for an analytic prescription of the dLOS distribution peak as a function of dLOS for each

of the mock catalogs. We list the best-fit σLOS obtained by fitting Eq. (1.13) to the dLOS

distribution peak using MPFIT (Markwardt 2009) in Table 1.1. The parameter values in
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Table 1.1: dLOS Distribution Best-fit Parameters

Catalog σLOS (Mpc) fpeak

Nseries 3.88 0.69

QPM 4.35 0.62

BigMultiDark 5.47 0.60

CMASS 6.56 0.70

Notes: Best-fit parameter σLOS (Eq. 1.13) and peak fraction fpeak (Eq. 1.14) for the dLOS

distributions in Figure 1.5.

Table 1.1 and Figure 1.5 illustrate that the dLOS distributions for the mock catalogs closely

trace the BOSS DR12 distribution, which encourages our use of these mock catalogs in our

investigation.

Using the best-fit to the peak of the dLOS distribution, we estimate the fraction of collided

pairs that are within the peak as the ratio of pairs with |dLOS| < 3σLOS over the total number

of pairs:

fpeak =

∑
|dLOS|<3σLOS

p(dLOS)

Npairs

, (1.14)

where Npairs is the total number of fiber collided pairs. fpeak roughly corresponds to the

fraction of galaxy pairs that are correlated. The fpeak values calculated for the mock catalogs

are listed in Table 1.1. They are consistent with the BOSS DR12 fpeak.

For the NN method of the previous section to be entirely correct, the dLOS distribution

in Figure 1.5 would have to be a delta function, which is clearly not the case. By simply

incorporating the peak of the dLOS distribution, we can significantly improve clustering

statistics on small scales. Rather than placing the fiber collided galaxy on top of its nearest

angular neighbor as the NN correction does, placing the fiber collided galaxy at a line-of-
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sight displacement, sampled from the peak of the dLOS distribution, away from its nearest

neighbor better reconstructs the galaxy clustering on small scales.

Only fpeak of the collided pairs should be displaced, since only fpeak of the fiber collided

pairs are correlated. Meanwhile, the other (1 − fpeak) pairs should retain their NN weights

since they are uncorrelated. Displacing these galaxies as well according to the tail piece of

the dLOS distribution is not desirable because in an object by object basis we do not know

which galaxies should actually be in the tail of the distribution, thus we will be making

large mistakes in dLOS galaxy by galaxy. In addition, it is difficult to incorporate that these

galaxies should be correlated with others and ignoring this modifies large-scale power. In our

approach, the remaining (1− fpeak) fiber collided pairs are thus kept with their NN weights,

and this is reflected in the shot noise correction of our estimator (Eq. 1.4), which in turn

makes connection to previous methods in the literature as we now discuss.

1.4.2.2 Shot Noise Corrections

Measurements of the power spectrum are made on observations of discrete distributions

of galaxies rather than continuous density fields. The discreteness contributes to the power

spectrum. In order to correct for this contribution, galaxies are assumed to be Poisson

samplings of the underlying distribution and a shot noise correction term is included in the

power spectrum estimator (Peebles, 1980b; Feldman et al., 1994).

The expectation value of the shot noise term takes the following form (Feldman et al.,

1994),

Pshot =
(1 + α)

∫
d3r n̄(r)w2(r)∫

d3r n̄2(r)w2(r)
. (1.15)

Note that for the case of uniform weights (w = const.), constant number density and no

random catalog this reduces to the standard shot-noise Poisson correction Pshot = n̄−1. In

practice the integrals in Eq. (1.15) can be written as discrete sums over the synthetic random
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catalog (Feldman et al., 1994).
∫
d3r n̄(r)... is computed as α

∑
ran .... Then the shot noise

term becomes,

PFKP
shot =

(1 + α)α
∑

random

w2
FKP(r)

α
∑

random

n̄(r) w2
FKP(r)

. (1.16)

This however, represents the expectation value of the shot noise, not the actual value (Hamil-

ton 1997) since all quantities involved are mean values (calculated through the random cat-

alog). To use the full information provided by the data, the shot noise of the galaxies should

be computed from the actual galaxy weights, not the randoms. This simply corresponds to

taking the self-pairs in the power spectrum estimator, Eq. (1.1), which leads to Eq. (1.4)

and we can rewrite here as,

PHahn+
shot =

∑
galaxy

w2
FKP(r)w2

tot(r) + α2
∑

random

w2
FKP(r)

α
∑

random

n̄(r)w2
FKP(r)

(1.17)

where α = (
∑

gal wtot)/Nr. We emphasize that this is the shot noise of the estimator. In

other words, if one takes the limit k →∞, the estimator in Eq. (1.1) will approach this value

if no shot-noise subtraction is applied. The systematic effects from completeness, redshift

failures and fiber collisions are accounted for through wtot of the observed galaxies. In our

case, wtot = wsys for the resolved fpeak fraction of galaxies that have been displaced away

from their NN positions, while wtot > wsys for the (1 − fpeak) fraction of galaxies that are

deemed to be in the tail of the LOS distribution and are described by NN weights of the

galaxies they collided with.

Recent work in the literature of power spectrum analysis modeled the effect of fiber col-

lisions by solely modifying the shot noise term for the NN method (Beutler et al., 2014b;
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Gil-Maŕın et al., 2014). This assumes that the effect of fiber collisions beyond NN weights

is to alter the large-scale effective shot noise, and therefore that only the power spectrum

monopole is affected since the quadrupole is free of shot noise. Beutler et al. (2014b) sup-

plements the NN method with a shot noise correction term given by,

PB2014
shot =

∑
galaxy

w2
FKPwtot(r)wsys(r) + α2

∑
random

w2
FKP(r)

α
∑

random

n̄ w2
FKP(r)

. (1.18)

Note that in the first term of the numerator in this equation wfc is only included in wtot as

it does not enter in wsys. We note that beyond their choice of Eq. (1.18) for the shot noise

correction term, Beutler et al. (2014b) marginalizes over a constant stochasticity term in

their analysis (see Eq. 40 in Beutler et al., 2014b). Thus, the impact of this particular choice

is not straightforward.

Meanwhile, Gil-Maŕın et al. (2014) constructs Pshot using two separate components: one

for “true pairs” and the other for “false pairs”. The shot-noise contribution to the power

from “true pairs” is the same as Eq. (1.18) while the “false pairs” shot-noise contribution is

(same as Eq. 1.17),

PFalse
shot =

∑
galaxy

w2
FKPw

2
tot(r) + α2

∑
random

w2
FKP(r)

α
∑

random

n̄ w2
FKP(r)

. (1.19)

Gil-Maŕın et al. (2014) calculates the total Pshot as the weighted combination of PTrue
shot and

PFalse
shot :

PGM2014
shot = (1− xPS)PTrue

shot + xPS P
False
shot (1.20)

In their analysis, Gil-Maŕın et al. (2014) use xPS = 0.58, which they infer by measuring the

difference between the true and the fiber-collided power spectrum monopole in the PTHalos
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galaxy mock catalogs (Manera et al. 2013). Unfortunately, since the true power spectrum is

the measurement we are trying to recover from the observations, the xPS parameter cannot

be inferred or validated from the actual BOSS observations. Moreover, one might worry

about relying PTHalos or similar methods that are not based on high resolution N-body

simulations, to extract corrections for fiber collisions that depend on small-scale power. An

extension of this approach is used in recent BOSS analyses (Beutler et al., 2016; Grieb

et al., 2016; Gil-Maŕın et al., 2016b) where Eq. (1.20) is used and is supplemented with a

marginalization over the shot noise value. However, as we discussed above, this has no effect

in the quadrupole power spectrum, which remains the same as in the NN method.

At this point it is worth casting our “line-of-sight reconstruction” (LRec) method in

similar language to the methods we just discussed. We treat the “true pairs” (what we called

peak-pairs) by displacing them according to the peak LOS distribution, which modifies all

the power spectrum multipoles, and use the NN method for the “false pairs” (pairs in the

tail of the LOS distribution). Our shot noise correction is not adjusted, rather it is the true

shot noise from the estimator. We now discuss the implementation and performance of our

LRec fiber collision method.

1.4.2.3 In Practice

We first begin with fiber collided mock catalogs with the NN fiber collision weights that

accurately simulate the effects of fiber collisions on the actual BOSS observations. From this

catalog, we construct the dLOS distribution, as described in Section 1.4.2.1 and fit for the

best-fit parameters σLOS and fpeak of Eq. (1.13).

We select fpeak of the fiber collided galaxy pairs in the catalog and designate them as

correlated pairs that lie within the peak of the dLOS distribution. We refer to these fiber

collided pairs as “peak-assigned”. At this point, each of these pairs, based on their NN

48



Figure 1.6: The power spectrum residual of the line-of-sight reconstruction (LRec) method
(Section 1.4.2), ∆P` ≡ P LRec

l −P true
l , for the monopole (top) and quadrupole (bottom) power

spectra of the Nseries (left), QPM (middle), and BigMultiDark (right) mock catalogs. We
again plot the Nseries and QPM sample variances, σl(k). The residuals for the monopole
show good agreement between P LRec

0 and P true
0 for the entire k range. For the quadrupole,

while the LOS Reconstruction method improves the residuals compared to the NN method
at small scales (k > 0.2 h/Mpc), the residuals remain comparable to sample variance at
k = 0.2 h/Mpc. In the top panels, we include the residuals from the fiber collision correction
method of Gil-Maŕın et al. (2014) (dashed). As the Gil-Maŕın et al. (2014) method supple-
ments the NN method with adjustments to the constant shot noise term of the estimator, it
fails to correct for the k dependence of the effect and is insufficient in accounting for fiber
collisions at small scales. We do not include the correction method of Beutler et al. (2014b)
because they marginalize over a constant stochasticity term in their analysis so the effect of
their correction on P (k) is not straightforward.
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Figure 1.7: Top Panel: The normalized residual, 1 − P LRec
l /P true

l , for the Nseries (orange),
QPM (blue), and BigMultiDark (red) monopole power spectra. The normalized sample
variance σl/Pl(k) (gray shaded region) of the Nseries mocks is plotted for comparison. At k =
0.1 h/Mpc, where the NN method residuals exceeds sample variance, the average normalized
residual for the LRec method is 0.25% compared to 1.5% normalized sample variance. In fact,
the average residual stays below the sample variance until k = 0.53 h/Mpc. Bottom Panel:
We mark kLRec

χ2 for the monopole (arrows above the dashed line) and quadrupole (arrows

below the dashed line). The average kLRec
χ2 for the mock catalogs are 0.29 and 0.14 h/Mpc

for the monopole and quadrupole respectively. For comparison, we mark kNN
χ2 (black) from

Section 1.4.1. We also include kχ2 of the Gil-Maŕın et al. (2014) correction method (gray)
for the monopole. The LOS reconstruction method significantly extends kχ2 beyond that of
the NN method and Gil-Maŕın et al. (2014) for l = 0. However, it does not improve kχ2 for
the quadrupole.
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weights, consist of the “nearest-neighbor” galaxy with wfc > 1 and the “collided” galaxy

with wfc = 0. We discard the collided galaxy since the redshifts of collided galaxies are not

known in actual observations.

Next for each of the nearest-neighbor galaxies in peak-assigned pairs, we place a new

galaxy with wfc = 1 at a displacement dpeak away from it along the line-of-sight but at the

same angular position. The dpeak value is sampled from a Gaussian with best-fit σLOS from

Table 1.1. The wfc of the “nearest-neighbor” galaxy is then reduced by 1. This process is

repeated, in the cases of triplets or higher with wfc > 2, until all the nearest-neighbor galaxy

in peak-assigned pairs have wfc = 1. The resulting total catalog will have fewer galaxies with

wfc > 1 compared to the initial fiber collided catalog. However, the total statistical weight

(
∑

galwtot) of the catalog, being equal to the total number of galaxies before the collisions

are applied, is conserved.

Now that we have the “LOS reconstructed” mock catalog, we measure its power spectrum

monopole and quadrupole (P LRec
l ). In Figure 1.6 we present the power spectrum residual,

(P LRec
l −P true

l ), for l = 0 and 2 of the LOS Reconstruction method power spectrum averaged

over all the available realizations. We again include the Nseries and QPM sample variance,

σl(k) (grey shaded region) for comparison. In Figure 1.7, we normalize both the residuals

and the sample variance by P true
0 to better compare P LRec

0 and P true
0 at different scales and

to highlight the small scales.

For the monopole, at the scale where PNN
0 deviates from P true

0 by more than the sample

variance (k ∼ 0.1 h/Mpc), Figure 1.6 shows that the LOS reconstructed residual is well

within the sample variance, P LRec
0 − P true

0 < 0.17σ0. Even at the smallest scales measured

for our monopole measurements (k = 0.83 h/Mpc), well beyond the scales that can be

predicted from current models based on perturbation theory, the normalized residuals for

the LOS reconstructed method remains at 3.7%. At k ∼ 0.2 h/Mpc, the average normalized
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residual is 0.19% compared to the 0.9% normalized sample variance. When we calculate the

kχ2 of the LOS reconstruction method for the three mock catalogs, as we did for the NN

method in Section 1.4.1, we get the average kLRec
χ2 = 0.29 h/Mpc for the monopole. For each

of the mocks, we mark kLRec; l=0
χ2 in the lower panel of Figure 1.7 above the dashed horizontal

line.

For the monopole, we also include residuals from the fiber collision correction method

of Gil-Maŕın et al. (2014) (dashed) in Figure 1.6. Gil-Maŕın et al. (2014) corrects for fiber

collisions by adjusting the constant shot noise term in the estimator in addition to the NN

method (Section 1.4.2.2). However, as the NN method power spectrum residuals reveal in

Figure 1.3, the effect is k dependent, especially at k > 0.1 h/Mpc. So while this correction

can reduce the residuals to within sample variance on large scales, it fails to account for

the k dependence, which quickly goes on to dominate sample variance at smaller scales,

k > 0.1 h/Mpc.

We also calculate kχ2 for the Gil-Maŕın et al. (2014) correction method using the mock

catalogs, kGM+
χ2 = 0.17 h/Mpc (gray arrow; Figure 1.7), which is significantly lower than

that of the LOS Reconstruction method. The LOS reconstruction method better accounts

for fiber collisions at all scales. Furthermore, as already discussed, the Gil-Maŕın et al.

(2014) method does not provide corrections for the power spectrum quadrupole or higher

multipoles, thus Figure 1.3 still applies for ` = 2.

We note that the correction method of Beutler et al. (2014b) is not included in Figure 1.6.

Instead of using a fixed value for the constant shot noise as Gil-Maŕın et al. (2014) does,

Beutler et al. (2014b) includes a constant ‘stochasticity term’, N , in their analysis (see Eq.

40 of Beutler et al. 2014b). This N is within the exponential factor that models the Finger-

of-God effect, so their correction is k dependent and impacts the multipoles beyond the

monopole. However because Beutler et al. (2014b) marginalizes over N , the effect of this
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correction is not straightforward. When we use the best-fit parameter values from Beutler

et al. (2014b), we find that the correction actually increases the effect of fiber collisions on

both the monopole and quadrupole. This however, neglects the impact of stochastic bias in

the P (k) model. Nevertheless, we also find that no value of N in the Beutler et al. (2014b)

correction can simultaneously account for the effect of fiber collisions in both the monopole

and quadrupole.

From Figure 1.6 we see that for the quadrupole, the LOS reconstruction method does

not sufficiently improve corrections for fiber collisions compared to the NN method. The

residuals for k > 0.2 h/Mpc are improved compared to Figure 1.3; however, they still

exceed the sample variance. Unfortunately, these improvements on small scales come at

the cost of increased residuals on large scales. In the kχ2 marked in Figure 1.7 (below the

dashed line), we see that the increased residuals at large scales actually make the average

kNN
χ2 > kLRec

χ2 = 0.14 h/Mpc for the quadrupole, although there is significant dispersion

between the different simulations with Nseries showing improvements when compared to

the NN method while the other two showing worse performance. Consequently, neither the

LOS reconstruction method nor the NN method sufficiently account for fiber collisions in

the power spectrum quadrupole.

The shortcomings of the LOS reconstruction method for the quadrupole compared to

the monopole does not come as a surprise since the quadrupole is more sensitive to getting

the correct LOS displacements galaxy by galaxy (not just statistically), as these modify the

fingers-of-god effect. In order to make further progress with this method one would have

to determine for each galaxy the most likely halo in which it lives (this could be nearby

or a distant, chance alignment), determine its velocity dispersion and then assign a LOS

displacement consistent with the dispersion and the observed LOS distribution.

Let us now discuss a few attempts that we have implemented along these lines. The first
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is incorporating more information about the fiber collided pairs in order to better classify

correlated and chance alignment pairs. For example, information about larger scale galaxy

environment in the form of the N th nearest neighbor distance (dnNN), can be included to

parameterize the σLOS and fpeak (Table 1.1) as a function of dnNN . The dnNN in this case

is the distance of the nth nearest neighbor of the nearest-neighbor galaxy within the fiber

collided pair. Another way the LOS reconstructed method can be improved is by utilizing

the photometric redshifts of the collided galaxies to improve the correlated/change alignment

pair classification.

We explored the LOS reconstructed method with both of these improvements on the

mock catalogs. We find that there is indeed a significant correlation between dnNN and the

parameters σLOS and fpeak, which can be exploited. Also, photometric redshifts assigned

to collided galaxies based on the |zspec − zphoto|/(1 + zspec) of actual BOSS photometric

redshift catalogs improves classification of correlated versus chance alignment fiber collided

pairs, as well. These improvements bring the normalized residuals of the monopole to ∼ 1%

at k = 0.83 h/Mpc. However, the improvement in the fiber collision correction for the

quadrupole is marginal; the effect of fiber collisions at k = 0.2 h/Mpc is still comparable

to the sample variance. So even with these improvements the LOS reconstructed method is

insufficient.

Furthermore, for the Nseries mocks, we find that if we use the LOS reconstructed method

with perfectly classified correlated and chance alignment pairs, the residual is roughly half

the sample variance at k ∼ 0.2 h/Mpc and greater than sample variance at k > 0.35 h/Mpc.

The displacement of the collided galaxy by dLOS sampled from Eq. (1.13) alone causes the

power spectrum quadrupole to deviate from the true value at small scales. A method such as

the LOS reconstructed method for the quadrupole would require more sophisticated modeling

of the fiber collided galaxy pairs that capture the displacements in an object by object basis.
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Figure 1.8: 1− (1 + ξNN)/(1 + ξtrue) as a function of transverse displacement, rp, and line-of-
sight displacement π (left). The color bar represents the value of this quantity. Note there
is no detectable dependence on π. The dashed vertical line (black) represents the constant
rp = Dfc(z = 0.55) (Section 1.4.3). We also plot 1 − (1 + ξNN)/(1 + ξtrue) projected along
π (right). In the left panel, the rp = Dfc(z = 0.55) vertical line and the sharp cut-off of
the contour show good agreement with the expected characteristic scale. In the right panel,
the projected 1− (1 + ξNN)/(1 + ξtrue) is in good agreement with fsWfc(rp). The agreement
in both panels justify the characterization of the effect of fiber collisions on the 2PCF in
Eq. (1.21).

As a result of the shortcomings of the LOS reconstructed method for the power spectrum

quadrupole, we now present a complementary approach in dealing with fiber collision in

power spectrum multipole analyses, which rather than attempting to correct the data before

making measurements, computes theoretical predictions of the fiber-collided power spectrum

multipoles.
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1.4.3 Effective Window Method

The LOS Reconstruction method corrects for fiber collisions in the observed galaxy po-

sitions in order to estimate the systematics-free true power spectrum. In power spectrum

analyses, this true power spectrum estimate can be compared to model power spectrum for

cosmological parameter inference. Alternatively, however, the observed fiber collided power

spectrum can be compared to the model power spectrum with the effect of fiber collisions

imposed on it. This is the approach we follow from now on.

We proceed as follows. In Section 1.4.3.1 we find that the effect of fiber collisions on

the two-point correlation function can be well approximated by a simple analytic expression.

Using this, we accurately estimate the effect of fiber collisions on the power spectrum in

Fourier space. The effect is a function of the true power spectrum and depends significantly

on the power spectrum at small scales, which cannot reliably be modeled from first principles.

As a result, in Section 1.4.3.2, we present a practical approach to circumvent this issue and

account for the effect of fiber collisions in power spectrum analyses.

1.4.3.1 In Theory

In the BOSS galaxy catalog, which spans the redshifts 0.43 < z < 0.7, the comoving

distance of the 62” fiber collision angular scale (Dfc) ranges from 0.35 Mpc to 0.52 Mpc.

Given the relatively small variation in Dfc, we assume that throughout the survey redshift

the physical scale remains constant as Dfc(z ∼ 0.55) = 0.43Mpc, at the median redshift

of the survey. If the physical scale of fiber collisions is constant, fiber collisions will affect

the two-dimensional configuration space two-point correlation function, ξ(rp, π), through its

effect on galaxy pairs with transverse separations rp < Dfc. As no pairs will be found below

this characteristic scale, ξ(rp, π) will be -1 for rp < Dfc, and note that the same is true for the

two-point function in the NN method (since small-rp pairs are collapsed into zero separation
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described by weights). On the other hand, at large scales we can approximate ξ(rp, π) by the

NN method which preserves the large-scale angular correlation function, thus the effect of

fiber collisions on ξ(rp, π) can be analytically characterized by the following relation between

the true and the NN two-point functions,

1 + ξNN(rp, π)

1 + ξtrue(rp, π)
= 1− fsWfc(rp) (1.21)

where Wfc(rp) represents the top-hat function

Wfc(rp) =

1 if rp < Dfc

0 otherwise

(1.22)

and fs represents the fraction of the survey area affected by fiber collisions. Note in Eq. (1.21)

we have assumed that we can linearly superpose the contributions to the two-point function

from regions with and without collisions, and a key property of Eq. (1.21) is that its right

hand side does not depend on π, something we test explicitly below. In the BOSS, fs is

precisely known because it corresponds to the fraction of the survey geometry that suffers

from fiber collisions. These are the regions that do not have overlapped tiling (Section 1.3).

For BOSS DR12 fs = 0.6.

We measure ξNN and ξtrue for the Nseries mock catalogs using the CUTE software (Alonso

2012), which uses the standard Landy & Szalay (1993) estimator. ξNN is calculated from

the NN fiber collided Nseries mocks while ξtrue is calculated from the Nseries mocks without

fiber collisions. Using the measured ξNN and ξtrue, we plot 1− (1 + ξNN)/(1 + ξtrue) averaged

over realizations as a function of rp and π (left) and its projection along π (right) in Figure

1.8. The dashed vertical line (black; left) marking rp = Dfs(z = 0.55) and fsWfc(rp) (black

dashed; right) are plotted for comparison. The agreement between the ξ(rp, π) contours and
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the rp = Dfc(z = 0.55) cutoff along with the agreement between the projection and fsWfc(rp)

justify our assumption of a constant physical fiber collision scale. The exact survey tiling

of the BOSS sample is imposed on the Nseries mocks, so we expect Figure 1.8 to hold for

the BOSS observations. The left panel illustrates the π-independence of the left hand side

of Eq. (1.21). The right panel demonstrates that 1− (1 + ξNN)/(1 + ξtrue) projected along π

agrees remarkably well with a top-hat function.

In principle, however, Wfc is not necessarily a top-hat function. In fact, in eBOSS, due to

the complex targeting scheme involving “knock-outs” from higher priority targeting samples,

Wfc will not be top-hat function (Zhai et al. in prep). However, these complications are not

present in our implementation of collisions; the reason for the deviations from a top-hat

function here can be thought as arising from a sum of top-hats of slightly different radii

along the line of sight (for fixed angular scale) weighted by the probability of collisions at

each depth, leading to a smoother transition than a sharp top-hat function. In principle, our

formalism can be improved by including this numerical profile rather than a top-hat, as we

shall mention below (see discussion after Eq. 1.34).

With the confirmation of Eq. (1.21), we solve for ξNN :

ξNN(rp, π) = ξtrue(rp, π)− fsWfc(rp) (1 + ξtrue(rp, π)),

(1.23)

and to get an expression for the power spectrum, we Fourier transform to get

∆P (k) ≡ PNN(k)− P true(k)

= −fsWfc(k)− fs
∫

d3q

(2π)3
P (q)Wfc(k− q).

(1.24)
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Figure 1.9: Comparison of the power spectrum residuals from NN-corrected fiber collisions
∆Pl = PNN

l −P true
l (dashed black) with the ∆Pl from the effective window method obtained

by adding Eqs. (1.26) and (1.34) (orange) for the monopole (left) and quadrupole (right).
The standard deviation of the power spectrum residual, σ∆Pl , for the Nseries mock catalogs
is shaded in gray.

We see that the effect of fiber collisions on the true power spectrum can be characterized

by two terms: Fourier transform of the top-hat function (corresponding to chance collisions)

and the power spectrum convolved with the top-hat function (corresponding to physically

correlated pairs). We refer to these two terms as ∆P uncorr and ∆P corr respectively. Note

that none of these terms is independent of k.

The first term, ∆P uncorr, can be easily obtained:

∆P uncorr = −fs Ŵfc(k) = −fs
∫
eik·r Wfc(r) d3r

= −fs 2πδD(k‖) πD
2
fc W2D(k⊥Dfc). (1.25)

where W2D(x) ≡ 2J1(x)/x is the top-hat function in 2D (a cylinder), and J1 is a Bessel
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function of the first kind and of order 1. The multipole contributions of Eq. (1.25) are then

∆P uncorr
l (k) = −fs (2l + 1)Ll(0)

(πDfc)
2

k
W2D(kDfc),

(1.26)

where Ll are the Legendre polynomials. The k−1 prefactor here, arising from the delta

function in Eq. (1.25) is an approximation for scales smaller than the survey size, since the

delta function follows from assuming we can integrate up to infinity along the line of sight

in Eq. (1.25). Equation (1.26) gives a correction that alternates in sign as a function of

multipole l. Note that since for practical purposes kDfc � 1, we can expand

∆P uncorr
l (k) = −fsπD2

fc

(2π

k

) (2l + 1)

2
Ll(0)

×
(

1− (kDfc)
2

8
+ . . .

)
, (1.27)

and for scales involved in typical analysis the first term suffices, which means that the

uncorrelated piece of fiber collisions decays as k−1 across the relevant range of scales. The

magnitude of this uncorrelated effect (chance collisions) is small, given by the effective survey

area affected by fiber collisions fsπD
2
fc times the wavelength of perturbations 2π/k.

For the correlated piece ∆P corr, we see from Eqs. (1.24) and (1.25) that we need

W2D(|k⊥ − q⊥|Dfc) for which we can use the addition theorem for 2D top-hat func-

tions (Bernardeau et al., 2002),

W2D(|k⊥ − q⊥|Dfc) =
∑
k=0

(k + 1)Uk(k̂⊥ · q̂⊥)

W
(k/2)
2D (k⊥Dfc)W

(k/2)
2D (q⊥Dfc)

(1.28)
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where the Uk’s are the Chebyshev polynomials and W
(k/2)
2D (x) ≡ 2Jk+1(x)/x. Now, again,

as we are interested in scales for which kDfc � 1 is an excellent approximation, dropping

O(k⊥Dfc)
2 we can just use the k = 0 term in this expression. This gives us W2D(|k⊥ −

q⊥|Dfc) ≈ W2D(q⊥Dfc) as expected and leads to,

∆P corr(k) ≈ −fsπD2
fc

∫
d2q⊥
(2π)2

P (k‖, q⊥)W2D(q⊥Dfc)

(1.29)

This is a simple result, showing that the correlated effect of fiber collisions is proportional to

the effective survey area affected by fiber collisions and to the integral of the power spectrum

over 2D modes perpendicular to the line of sight smoothed at the fiber collision scale. The

multipole components of Eq. (1.29) are, after expanding P (k‖, q⊥) in multipoles,

∆P corr
l (k) ≈ −fsD

2
fc

2

∞∑
l′=0

∫ ∞
0

qdqPl′(q) fll′(k, q), (1.30)

where, again neglecting O(kDfc)
2,

fll′(k, q) ≡
(2l + 1

2

)∫ min(1,q/k)

max(−1,−q/k)

dµLl(µ)Ll′(kµ/q)

× W2D(q Dfc) (1.31)

This has a simple expression for l = l′,

fll(k, q) = f∗(k, q)W2D(q Dfc)
(k<
k>

)l
(1.32)

where f∗(k, q) = q/k for q ≤ k and unity otherwise, and k> = max(k, q) and k< = min(k, q).
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On the other hand, off the diagonal we have (l 6= l′)

fll′(k, q) = f∗(k, q)W2D(q Dfc)
(2l + 1

2

)
Hl>l<

(k<
k>

)
, (1.33)

where l> = max(l, l′) and similarly l<, and Hl>l<(x) is a polynomial of degree l> which

vanishes unless l and k are both larger or smaller than l′ and q respectively. The first few

polynomials are listed in the Appendix 4.8. Since fl>l′(k < q) = fl<l′(k > q) = 0 it is

convenient to split the integrals depending on whether q is larger or smaller than k, which

leads to

∆P corr
l (k) ≈ −fsD

2
fc

2

[ ∑
l′≤l

∫ k

0

qdq Pl′(q) fll′(q ≤ k)

+
∑
l′≥l

∫ ∞
k

qdq Pl′(q) fll′(q ≥ k)

]
, (1.34)

which shows that the change of power spectrum multipole l due to correlated fiber collisions

comes from long modes of lower multipoles (l′ ≤ l) and short modes of higher multipoles

(l′ ≥ l). Going back to the results displayed in Figure 1.8, we can now formulate how our

results change if we use the observed numerical profile in the right panel of Figure 1.8 (red

line) instead of the top-hat (black dashed). One can check that to leading order in kDfc,

which is all we are using in this paper, our expression for the uncorrelated and correlated

change in power are valid as long as we replace the 2D top-hat by the numerical profile in

Eq. (1.31), and redefine the scale Dfc that appears in Eqs. (1.27) and (1.30) from the area

of the numerical profile, that is

∫
d2r⊥W2D(r⊥) ≡ πD2

fc (1.35)
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Figure 1.10: Comparison of the correlated power spectrum residuals from unreliable modes
obtained from mocks (dashed), Eq. (1.38), to the polynomial approximation of Eq. (1.37)
for l′ ≤ 18 (orange). The left and right panels correspond to l = 0 and 2 respectively. The
gray shaded region is the standard deviation for the Nseries (PNN

l − P true
l ). We also include

Eq. (1.37) evaluated only for l′ ≤ 2 (blue). The agreement between Eq. (1.37) for l′ ≤ 2 and

Eq. (1.38) demonstrate that while higher orders of l′ are necessary to properly model ∆P
(
l k)

at higher k values, for k < ktrust (0.3 h/Mpc above) l′ ≤ 2 are sufficient.
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We now proceed to testing these results, for which we need the true power spectrum

multipoles down to small scales to feed into Eq. (1.34). Unfortunately, in the nonlinear regime

the multipole expansion is not very efficient (in the sense that the amplitude of multipoles

does not decrease sharply with increasing multipole), so a large number of multipoles l′ is

required to capture the contribution from small scale modes. Measuring multipoles higher

than the hexadecapole for realistic survey geometries using our estimator becomes expensive

due to the number of Fast Fourier Transforms (FFTs) that needs to be computed, and even

for the most efficient version of the multipole estimators that requires only 7 FFTs one would

worry about increased cosmic variance (see discussion in Scoccimarro 2015).

A more efficient approach is to use the Nseries simulation boxes to test Eqs. (1.25)

and (1.34). The Nseries simulation boxes are the original simulations where the Nseries

mocks were cut out from (Section 1.3). Since the Nseries mocks are cut outs of the boxes,

discrepancies in their power spectra are caused by the BOSS survey geometry and occur

mainly at the largest scales, k < 0.05 h/Mpc (Beutler et al., 2014b; Grieb et al., 2016). At

smaller scales, the difference between the power spectrum monopole, quadrupole and hex-

adecapole of Nseries mocks versus the Nseries boxes are negligible. Therefore, we calculate

the Pl′(q) from the Nseries simulation box, using periodic boundary conditions, which only

requires one FFT and go up to q = 43.5 h/Mpc and l′ = 18 to compute the corrections

predicted by Eq. (1.34).

In Figure 1.9, we compare ∆Pl = ∆P corr
l +∆P uncorr

l calculated from the Nseries Box power

spectrum multipoles using Eqs. (1.25) and (1.34) (orange) to the Nseries mock catalogs power

spectrum residuals, ∆Pl = PNN
l − P true

l (dashed). The left panel compares the monopoles

(l = 0) while the right panel compares the quadrupoles (l = 2). We also include in the gray

shaded region, the standard deviation of Nseries mock catalogs power spectrum residuals,

σ∆Pl . For both the monopole and quadrupole, the predictions (orange) agree with the
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measured residuals from NN-corrected fiber collisions (dashed black) well within the errors

throughout the probed k range up to k = 0.83 h/Mpc. At low-k, the downturn (upturn)

in the monopole (quadrupole) is due to the contribution of the k−1 uncorrelated piece. The

overall quality of the agreement demonstrates that the effective window method can be used

to robustly estimate the effect of fiber collisions on Pl(k). Furthermore, with its excellent

performance for the quadrupole, the effective window approach provides an improvement

over the LOS reconstruction method (Section 1.4.2).

1.4.3.2 In Practice

There are, however, practical limitations to the effective window model as it described

above. The ∆P corr
l calculations in Eq. (1.34) involves integrating the power spectrum over

the q range of 0 to ∞. While this integral converges for q ≈ 10 h/Mpc for both monopole

and quadrupole, in practice one cannot compute reliably the power spectrum multipoles

down to these scales. We now discuss a way to overcome this issue.

Let ktrust represent the scale up to which we can calculate reliably power spectrum mul-

tipoles. We therefore split the second term in Eq. (1.34) into a reliable piece (integration

from k to ktrust) and an unreliable piece (integration from ktrust to ∞), so schematically

∆P corr
l = ∆P corr

l

∣∣∣∣q=ktrust
q=0

+ ∆P corr
l

∣∣∣∣q=∞
q=ktrust

. (1.36)

The first term can be reliably calculated from first principles since it involves modes from

q = 0 to q = ktrust and corresponds to the first term plus the reliable piece of the second

term in Eq. (1.34). Now, the key fact is that because the second term in Eq. (1.36) only

depends on k through fll′(q ≥ k), from Eqs. (1.32-1.33) it follows that the k-dependence of

the unreliable term is simply a polynomial in k,
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∆P corr
l

∣∣∣∣q=∞
q=ktrust

=
∑

n=0,2,4...

Cl,n k
n. (1.37)

The coefficients of the polynomial, Cl,n, are obtained by collecting powers of k from the sum

over the H-polynomial contributions to the second term in Eq. (1.34). How important are

these unreliable contributions? In order to test this, in Figure 1.10 we calculate Cl,n from

the Pl′(q) multipoles measured from the Nseries simulation boxes (blue and orange for terms

up to l′ = 2 and 18 respectively) and compare to (black dashed)

∆PNseries
l (k)−∆P uncorr

l (k)−∆P corr
l (k)

∣∣∣∣q=ktrust
q=0

(1.38)

where ∆PNseries
l is the power spectrum residual PNN

l −P true
l for the Nseries mocks (Figure 1.9).

We once again include the standard deviation of the power spectrum residual in shaded gray.

The agreement between Eq. (1.37) and Eq. (1.38) is more or less equivalent to the agreement

seen in Figure 1.9, which includes uncorrelated and reliable correlated contributions as well;

this should of course not come as a surprise.

More importantly, when we examine the contribution to ∆P corr
l |∞ktrust from each individual

l′ order term of the Eq. (1.37) polynomial, we find that the main contributors at k < ktrust ∼

0.3 h/Mpc are the l′ ≤ 2 order terms. In fact, the higher order (l′ > 2) terms of the

polynomial contribute at higher k. For instance, the l′ = 4, 6, and 8 terms only begin to

significantly contribute at scales of k > 0.3, 0.45, and 0.6 h/Mpc respectively, which is not

surprising since higher k powers come together with increasing inverse powers of q and thus

suppress the value of the coefficients that result from integrating over small-scale modes.

Hence, when we plot Eq. (1.37) for just l′ ≤ 2 (blue) in Figure 1.10, we find that it is in

good agreement with both Eq. (1.37) for l′ ≤ 18 and Eq. (1.38). We also note that for l = 2,

66



C2,l′=0 = 0 so the main contribution to ∆P corr
2 (k < ktrust)|∞ktrust comes solely from the l′ = 2

term of the polynomial.

To use the effective window method for cosmological inference, we can utilize the fact that

Eq. (1.37) with only l′ ≤ 2 terms provides an accurate estimate of the unreliable correlated

change in power (Figure 1.10). In cosmological analyses, the coefficients Cl,0 and Cl,2 can

be nuisance parameters with priors obtained from mock catalogs. More specifically, for the

quadrupole, since C2,0 = 0 only one nuisance parameter is necessary. Meanwhile for the

monopole, a constant shot noise term is typically already included as a nuisance parameter

in the analysis (Beutler et al. 2014b, 2016; Grieb et al. 2016; Gil-Maŕın et al. 2016b) so there

is also only one extra nuisance parameter for l = 0. Therefore, by adding Cl,2 as nuisance

parameters to cosmological inference analyses of the power spectrum multipoles, we can use

the effective window method to robustly marginalize over the effects of fiber collision for the

entire k range of power spectrum models based on perturbation theory.

1.5 Summary and Conclusions

Using simulated mock catalogs designed specifically for interpreting BOSS clustering

measurements with realistically imposed fiber collisions, we demonstrate that the Nearest

Neighbor method (NN), most common used for dealing with fiber collisions, is insufficient

in accounting for the effect of fiber collisions on the galaxy power spectrum monopole and

quadrupole. Although fiber collisions have little significant effect on the power spectrum

at large scales, their effect quickly overtakes sample variance on scales smaller than k ≈

0.1 h/Mpc. At k ∼ 0.3 h/Mpc fiber collisions have over a 7.3% and 73% impact on the

power spectrum monopole and quadrupole, respectively. The effect is equivalent to 7.3

and 2.5 times the sample variance of CMASS for δk ≈ 0.01 h/Mpc, leading to a binning-
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independent scale of validity of the NN method of kχ2 = 0.068 h/Mpc for the monopole

and kχ2 = 0.17 h/Mpc for the quadrupole (see bottom panel of Figure 1.7). Consequently

at these scales, measurements of the power spectrum becomes dominated by the systematic

effects of fiber collisions.

Some recent methods (Beutler et al. 2014b; Gil-Maŕın et al. 2014; Beutler et al. 2016;

Grieb et al. 2016; Gil-Maŕın et al. 2016b) have supplemented the NN method with adjust-

ments to the constant shot noise term in the power spectrum estimator. While these methods

improve the overall residual for the monopole, e.g. kχ2 = 0.17 h/Mpc for the method by

Gil-Maŕın et al. (2014), they fail to account for the k-dependence of the systematic effect

on smaller scales. Furthermore, since the quadrupole does not have a shot noise term, these

methods provide no improvements for l ≥ 2.

In this paper, we first model the distribution of the line-of-sight displacement between

fiber collided pairs using mock catalogs. From the model, we statistically reconstruct the

clustering of fiber collided galaxies that reside in the same halo. This, combined with the

actual shot noise subtraction of the power spectrum estimator that accounts for chance

alignments, leads to our LOS Reconstruction method that recovers very well the true power

spectrum monopole from fiber collided data. As an added advantage, the method only relies

on parameters (σLOS and fpeak) measured from the actual observations. This makes the

performance of the method independent from the accuracy of the mock catalogs, which are

known to be unreliable at small scales.

Using the LOS Reconstruction method, we can recover the true power spectrum monopole

to scales well beyond previous methods. The LOS Reconstruction monopole power spec-

trum residuals remain within sample variance until k ∼ 0.53 h/Mpc and kχ2 extends to

0.29 h/Mpc. However, for the power spectrum quadrupole at k = 0.2 h/Mpc, the LOS

Reconstruction method only reduces the discrepancy between the fiber collided P2(k) and
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the true P2(k) to roughly the sample variance. Therefore, the true monopole power spec-

trum estimate from the LOS reconstruction method can be compared to the systematics

free predicted power spectrum monopole to infer the cosmological parameters of interest

without biases from fiber collisions, but for the quadrupole power spectrum the method is

not a substantial improvement over previous methods. We trace this problem to the fact

that the quadrupole is more sensitive to the object by object finger of god effect, while the

LOS reconstruction works only statistically starting from the distribution of close pairs.

To improve on the LOS reconstruction results we develop the effective window method

which, rather than attempting to correct the data before making measurements, computes

theoretical predictions of the fiber-collided power spectrum multipoles. In this approach, we

approximate the effect that fiber collisions have on the two-dimensional configuration space

two-point correlation function of the NN method as a scaled top-hat function. Then the effect

of fiber collisions can be written as the sum of two contributions: 1) that of uncorrelated

chance collisions, with an amplitude proportional to the the effective survey area affected

by fiber collisions times the wavelength of perturbations, and 2) that of correlated collisions,

which is also proportional to the effective survey area affected by fiber collisions and to the

integral of the power spectrum over 2D modes perpendicular to the line of sight smoothed

at the fiber collision scale.

Using high resolution mock catalogs, we demonstrate that our analytic prescription accu-

rately models the power spectrum residuals from the NN method to within sample variance

of BOSS volumes at k < 0.83 h/Mpc for both the monopole and quadrupole when the true

power spectrum is known down to small scales from simulations, allowing to compute the

fiber-collided predictions. Since typically we do not have fast reliable ways of computing

the small scale power spectrum, we develop a practical approach when the power spectrum

predictions are reliable up to some scale ktrust. We split the contributions of the correlated
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fiber collisions effect into a piece that can be calculated reliably as it depends on large-scale

modes, and an unreliable piece that depends on modes that are not under control. We show

that the latter piece can be written as polynomials in k, and demonstrate that for scales up

to k ∼ 0.3 h/Mpc, the unreliable contribution can be accurately estimated by a quadratic

polynomial in k. In principle, this method can be applied to larger ktrust than used here as

a reasonable example (ktrust = 0.3 h/Mpc).

Therefore, using the effective window method we can model the fiber collided power spec-

trum as the systematics-free power spectrum plus three contributions due to fiber collisions:

an uncorrelated piece (independent of the model power spectrum), a calculable piece (which

involves integrating the model power spectrum over 2D long-wavelength modes perpendic-

ular to the line of sight), and an unreliable contribution that is a quadratic polynomial,

Cl,0 + Cl,2 k
2. While the precise values of Cl,n cannot be robustly predicted in practice be-

cause of its dependence on small scale power, the coefficients can be treated as nuisance

parameters in the analysis. Typically a constant shot noise term is already included as a

nuisance parameter, while the constant contribution vanishes for higher multipoles, therefore

only one extra parameter per multipole is required (the k2 corrections). For cosmological

parameter inference, the fiber collided model power spectrum can be compared directly to

the observed fiber collided power spectrum. Then by marginalizing over these free coeffi-

cients, we marginalize over the effect of small-scale power induced fiber collisions on the

power spectrum, which allows us to robustly infer the cosmological parameters of interest.

The fiber collision correction methods we present will enable us to robustly account for

the effects of fiber collisions in galaxy clustering analyses to the smallest scales allowed by

theoretical predictions. They can also be extended to future surveys such as eBOSS or any

other large fiber-fed surveys that suffer from systematic effects of fiber collisions. Our fiber

collision correction method can also be extended to higher order clustering statistics such
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as bispectrum (Hahn et al., in prep.). We will use the methods presented in this paper to

analyze the galaxy power spectrum and bispectrum multipoles in future work.
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Chapter 2

Approximate Bayesian Computation

in Large Scale Structure: constraining

the galaxy-halo connection

This Chapter is joint work with Mohammadjavad Vakili (NYU), Kilian Walsh (NYU),

Andrew P. Hearin (Yale), David W. Hogg (NYU), and Duncan Campbell (Yale) submitted

to the Monthly Notices of the Royal Astronomical Society as Hahn et al. (2017).

2.1 Chapter Abstract

Standard approaches to Bayesian parameter inference in large scale structure assume a

Gaussian functional form (chi-squared form) for the likelihood. This assumption, in detail,

cannot be correct. Likelihood free inferences such as Approximate Bayesian Computation

(ABC) relax these restrictions and make inference possible without making any assumptions

on the likelihood. Instead it relies on a forward generative model of the data and a metric
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for measuring the distance between the model and data. In this work, we demonstrate that

ABC is feasible for LSS parameter inference by using it to constrain parameters of the halo

occupation distribution (HOD) model for populating dark matter halos with galaxies.

Using specific implementation of ABC supplemented with Population Monte Carlo im-

portance sampling, a generative forward model using HOD, and a distance metric based on

galaxy number density, two-point correlation function, and galaxy group multiplicity func-

tion, we constrain the HOD parameters of mock observation generated from selected “true”

HOD parameters. The parameter constraints we obtain from ABC are consistent with the

“true” HOD parameters, demonstrating that ABC can be reliably used for parameter infer-

ence in LSS. Furthermore, we compare our ABC constraints to constraints we obtain using

a pseudo-likelihood function of Gaussian form with MCMC and find consistent HOD pa-

rameter constraints. Ultimately our results suggest that ABC can and should be applied in

parameter inference for LSS analyses.

2.2 Introduction

Cosmology was revolutionized in the 1990s with the introduction of likelihoods—proba-

bilities for the data given the theoretical model—for combining data from different surveys

and performing principled inferences of the cosmological parameters (White & Scott 1996;

Riess et al. 1998). Nowhere has this been more true than in cosmic microwave background

(CMB) studies, where it is nearly possible to analytically evaluate a likelihood function that

involves no (or minimal) approximations (Oh et al. 1999, Wandelt et al. 2004, Eriksen et al.

2004, Planck Collaboration et al. 2014b, 2015a).

Fundamentally, the tractability of likelihood functions in cosmology flows from the fact

that the initial conditions are exceedingly close to Gaussian in form (Planck Collaboration
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et al. 2015b,c), and that many sources of measurement noise are also Gaussian (Knox 1995;

Leach et al. 2008). Likelihood functions are easier to write down and evaluate when things

are closer to Gaussian, so at large scales and in the early universe. Hence likelihood analyses

are ideally suitable for CMB data.

In large-scale structure (LSS) with galaxies, quasars, and quasar absorption systems as

tracers, formed through nonlinear gravitational evolution and biasing, the likelihood cannot

be Gaussian. Even if the initial conditions are perfectly Gaussian, the growth of structure

creates non-linearities which are non-Gaussian (see Bernardeau et al. 2002 for a comprehen-

sive review). Galaxies form within the density field in some complex manner that is modeled

only effectively (Dressler 1980; Kaiser 1984; Santiago & Strauss 1992; Steidel et al. 1998; see

Somerville & Davé 2015 for a recent review). Even if the galaxies were a Poisson sampling

of the density field, which they are not (Mo & White 1996; Somerville et al. 2001; Casas-

Miranda et al. 2002), it would be tremendously difficult to write down even an approximate

likelihood function (Ata et al. 2015).

The standard approach makes the strong assumption that the likelihood function for the

data can be approximated by a pseudo-likelihood function that is a Gaussian probability

density in the space of the two-point correlation function estimate. It is also typically

limited to (density and) two-point correlation function (2PCF) measurements, assuming that

these measurements constitute sufficient statistics for the cosmological parameters. As Hogg

(in preparation) demonstrates, the assumption of a Gaussian pseudo-likelihood function

cannot be correct (in detail) at any scale, since a correlation function, being related to the

variance of a continuous field, must satisfy non-trivial positive-definiteness requirements.

These requirements truncate function space such that the likelihood in that function space

could never be Gaussian. The failure of this assumption becomes more relevant as the

correlation function becomes better measured, so it is particularly critical on intermediate
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scales, where neither shot noise nor cosmic variance significantly influence the measurement.

Fortunately, these assumptions are not required for cosmological inferences, because high-

precision cosmological simulations can be used to directly calculate LSS observables. There-

fore, we can simulate not just the one- or two-point statistics of the galaxies, but also any

higher order statistics that might provide additional constraining power on a model. In

principle, there is therefore no strict need to rely on these common but specious analy-

sis assumptions as it is possible to calculate a likelihood function directly from simulation

outputs.

Of course, any naive approach to sufficiently simulating the data would be ruinously

expensive. Fortunately, there are principled, (relatively) efficient methods for minimizing

computation and delivering correct posterior inferences, using only a data simulator and some

choices about statistics. In the present work, we use Approximate Bayesian Computation—

ABC—which provides a rejection sampling framework (Pritchard et al. 1999) that relaxes

the assumptions of the traditional approach.

ABC approximates the posterior probability distribution function (model given the data)

by drawing proposals from the prior over the model parameters, simulating the data from the

proposals using a forward generative model, and then rejecting the proposals that are beyond

a certain threshold “distance” from the data, based on summary statistics of the data. In

practice, ABC is used in conjunction with a more efficient sampling operation like Population

Monte Carlo (PMC; Del Moral et al. 2006). PMC initially rejects the proposals from the

prior with a relatively large “distance” threshold. In subsequent steps, the threshold is

updated adaptively, and samples from the proposals that have passed the previous iteration

are subjected to the new, more stringent, threshold criterion (Beaumont et al. 2009). In

principle, the distance metric can be any positive definite function that compares various

summary statistics between the data and the simulation.
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In the context of astronomy, this approach has been used in a wide range of topics

including image simulation calibration for wide field surveys (Akeret et al. 2015a), the study

of the morphological properties of galaxies at high redshifts (Cameron & Pettitt 2012a),

stellar initial mass function modeling (Cisewski et al. in preparation), and cosmological

inference with with weak-lensing peak counts (Lin & Kilbinger 2015a; Lin et al. 2016a),

Type Ia Supernovae (Weyant et al. 2013a), and galaxy cluster number counts (Ishida et al.

2015a).

In order to demonstrate that ABC can be tractably applied to parameter estimation

in contemporary LSS analyses, we narrow our focus to inferring the parameters of a Halo

Occupation Distribution (HOD) model. The foundation of HOD predictions is the halo

model of LSS, that is, collapsed dark matter halos are biased tracers of the underlying

cosmic density field (Press & Schechter 1974; Bond et al. 1991; Cooray & Sheth 2002).

The HOD specifies how the dark matter halos are populated with galaxies by modeling the

probability that a given halo hosts N galaxies subject to some observational selection criteria

(Lemson & Kauffmann 1999; Seljak 2000; Scoccimarro et al. 2001; Berlind & Weinberg 2002;

Zheng et al. 2005a). This statistical prescription for connecting galaxies to halos has been

remarkably successful in reproducing the galaxy clustering, galaxy–galaxy lensing, and other

observational statistics (Rodŕıguez-Torres et al. 2015; Miyatake et al. 2015), and is a useful

framework for constraining cosmological parameters (van den Bosch et al. 2003; Tinker et al.

2005b; Cacciato et al. 2013; More et al. 2013) as well as galaxy evolution models (Conroy &

Wechsler 2009b; Tinker et al. 2011; Leauthaud et al. 2012b; Behroozi et al. 2013a; Tinker

et al. 2013, Walsh et al. in preparation).

More specifically, we limit our scope to a likelihood analysis of HOD model parameter

space, keeping cosmology fixed. We forward model galaxy survey data by populating pre-

built dark matter halo catalogs obtained from high resolution N-body simulations (Klypin
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et al. 2011; Riebe et al. 2011) using Halotools1 (Hearin et al. 2016a), an open-source package

for modeling the galaxy-halo connection. Equipped with the forward model, we use summary

statistics such as number density, two-point correlation function, galaxy group multiplicity

function (GMF) to infer HOD parameters using ABC.

In Section 2.3 we discuss the algorithm of the ABC-PMC prescription we use in our

analyses. This includes the sampling method itself, the HOD forward model, and the com-

putation of summary statistics. Then in Section 2.4.1, we discuss the mock galaxy catalog,

which we treat as observation. With the specific choices of ABC-PMC ingredients, which we

describe in Section 2.4.2, in Section 2.4.3 we present the results of our parameter inference

using two sets of summary statistics, number density and 2PCF and number density and

GMF. We also include in our results, analogous parameter constraints from the standard

MCMC approach, which we compare to ABC results in detail, Section 2.4.4. Finally, we

discuss and conclude in Section 4.7.

2.3 Methods

2.3.1 Approximate Bayesian Computation

ABC is based on rejection sampling, so we begin this section with a brief overview of

rejection sampling. Broadly speaking, rejection sampling is a Monte Carlo method used

to draw samples from a probability distribution, f(α), which is difficult to directly sample.

The strategy is to draw samples from an instrumental distribution g(α) that satisfies the

condition f(α) < Mg(α) for all α, where M > 1 is some scalar multiplier. The purpose of

the instrumental distribution g(α) is that it is easier to sample than f(α) (see Bishop 2007

1http://halotools.readthedocs.org
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and refernces therein).

In the context of simulation-based inference, the ultimate goal is to sample from the

joint probability of a simulation X and parameters ~θ given observed data D, the posterior

probability distribution. From Bayes rule this posterior distribution can be written as

p(~θ,X|D) =
p(D|X)p(X|~θ)π(~θ)

Z
(2.1)

where π(~θ) is the prior distribution over the parameters of interest and Z is the evidence,

Z =

∫
d~θ dX p(D|X)p(X|~θ)π(~θ), (2.2)

where the domain of the integral is all possible values of X and ~θ. Since p(~θ,X|D) cannot

be directly sampled, we use rejection sampling with instrumental distribution

q(~θ,X) = p(X|~θ)π(~θ) (2.3)

and the choice of

M =
max p(D|X)

Z
> 1. (2.4)

Note that we do not ever need to know Z. The choices of q(~θ,X) and M satisfy the condition

p(~θ,X|D) < Mq(~θ,X) (2.5)

so we can sample p(~θ,X|D) by drawing ~θ,X from q(~θ,X). In practice, this is done by first

drawing ~θ from the prior π(~θ) and then generating a simulation X = f(~θ) via the forward

78



model. Then ~θ,X is accepted if

p(~θ,X|D)

Mq(~θ,X)
=

p(D|X)

max p(D|X)
> u (2.6)

where u is drawn from Uniform[0, 1]. By repeating this rejection sampling process, we sample

the distribution p(~θ,X|D) with the set of ~θ and X that are accepted.

At this stage, ABC distinguishes itself by postulating that p(D|X), the probability of

observing data D given simulation X (not the likelihood), is proportional to the probability

of the distance between the data and the simulation X being less than an arbitrarily small

threshold ε

p(D|X) ∝ p(ρ(D,X) < ε) (2.7)

where ρ(D,X) is the distance between the data D and simulation X. Eq. 2.7 along with the

rejection sampling acceptance criteria (Eq. 2.6), leads to the acceptance criteria for ABC: ~θ

is accepted if ρ(D,X) < ε.

The distance function is a positive definite function that measures the closeness of the

data and the simulation. The distance can be a vector with multiple components where

each component is a distance between a single summary statistic of the data and that of

the simulation. In that case, the threshold ε in Eq. 2.7 will also be a vector with the same

dimensions. ~θ is accepted if the distance vector is less than the threshold vector for every

component.

The ABC procedure begins, in the same fashion as rejection sampling, by drawing ~θ from

the prior distribution π(~θ). The simulation is generated from ~θ using the forward model,

X = f(~θ). Then the distance between the data and simulation, ~ρ(D,X), is calculated and

compared to ~ε. If ~ρ(D,X) < ~ε, ~θ is accepted. This process is repeated until we are left with

a sample of ~θ that all satisfy the distance criteria. This final ensemble approximates the
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posterior probability distribution p(~θ,X|D).

As it is stated, the ABC method poses some practical challenges. If the threshold ε is ar-

bitrarily large, the algorithm essentially samples from the prior π(~θ). Therefore a sufficiently

small threshold is necessary to sample from the posterior probability distribution. However,

an appropriate value for the threshold is not known a priori. Yet, even if an appropriate

threshold is selected, a small threshold requires the entire process to be repeated for many

draws of ~θ from π(~θ) until a sufficient sample is acquired. This often presents computation

challenges.

We overcome some of the challenges posed by the above ABC method by using a Popula-

tion Monte Carlo (PMC) algorithm as our sampling technique. PMC is an iterative method

that performs rejection sampling over a sequence of ~θ distributions ({p1(~θ), ..., pT (~θ)} for T

iterations), with a distance threshold that decreases at each iteration of the sequence.

As illustrated in Algorithm 1, for the first iteration t = 1, we begin with an arbitrarily

large distance threshold ε1. We draw ~θ (hereafter referred to as particles) from the prior dis-

tribution π(~θ). We forward model the simulation X = f(~θ), calculate the distance ρ(D,X),

compare this distance to ε1, and then accept or reject the ~θ draw. Because we set ε1 arbi-

trarily large, the particles essentially sample the prior distribution. This process is repeated

until we accept N particles. We then assign equal weights to the N particles: wi1 = 1/N .

For subsequent iterations (t > 1) the distance threshold is set such that εi,t < εi,t−1 for

all components i. Although there is no general prescription, the distance threshold εi,t can

be assigned based on the empirical distribution of the accepted distances of the previous

iteration, t− 1. In Weyant et al. 2013a, for instance, the threshold of the second iteration is

set to the 25th percentile of the distances in the first iterations; afterwards in the subsequent

iterations, t, εt is set to the 50th percentile of the distances in the previous t − 1 iteration.

Alternatively, Lin & Kilbinger 2015a set εt to the median of the distances from the previous
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Algorithm 1 The procedure for ABC-PMC

1: if t = 1 : then
2: for i = 1, ..., N do
3: // This loop can now be done in parallel for all i
4: while ρ(X,D) > εt do

5: ~θ∗t ← π(~θ)

6: X = f(~θ∗t )
7: end while
8: ~θ

(i)
t ← ~θ∗t

9: w
(i)
t ← 1/N

10: end for
11: end if
12: if t = 2, ..., T : then
13: for i = 1, ..., N do
14: // This loop can now be done in parallel for all i
15: while ρ(X,D) > εt do

16: Draw ~θ∗t from {~θt−1} with probabilities {wt−1}
17: ~θ∗t ← K(~θ∗t , .)

18: X = f(~θ∗t )
19: end while
20: ~θ

(i)
t ← ~θ∗t

21: w
(i)
t ← π(~θ

(i)
t )/

( N∑
j=1

w
(i)
t−1K(~θ

(j)
t−1,

~θ
(i)
t )
)

22: end for
23: end if
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iteration. In Section 2.4, we describe our prescription for the distance threshold, which

follows Lin & Kilbinger 2015a.

Once εt is set, we draw a particle from the previous weighted set of particles ~θt−1. This

particle is perturbed by a kernel, set to the covariance of ~θt−1. Then once again, we generate

a simulation by forward modeling X = f(~θi), calculate the distance ρ(X,D), and compare

the distance to the new distance threshold (εt) in order to accept or reject the particle. This

process is repeated until we assemble a new set of N particles ~θt. We then update the particle

weights according to the kernel, the prior distribution, and the previous set of weights, as

described in Algorithm 1. The entire procedure is then repeated for the next iteration, t+ 1.

There are a number of ways to specify the perturbation kernel in the ABC-PMC al-

gorithm. A widely used technique is to define the perturbation kernel as a multivariate

Gaussian centered on the weighted mean of the particle population with a covariance matrix

set to the covariance of the particle population. This perturbation kernel is often called

the global multivariate Gaussian kernel. For a thorough discussion of various schemes for

specifying the perturbation kernel, we refer the reader to Filippi et al. 2011.

The iterations continue in the ABC-PMC algorithm until convergence is confirmed. One

way to ensure convergence is to impose a threshold for the acceptance ratio, which is mea-

sured in each iteration. The acceptance ratio is the ratio of the number of proposals accepted

by the distance threshold, to the full number of proposed particles at every step. Once the

acceptance ratio for an iteration falls below the imposed threshold, the algorithm has con-

verged and is suspended. Another way to ensure convergence is by monitoring the fractional

change in the distance threshold (εt/εt−1−1) after each iteration. When the fractional change

becomes smaller than some specified tolerance level, the algorithm has reached convergence.

Another convergence criteria, is through the derived uncertainties of the inferred parameters

measured after each iteration. When the uncertainties stabilize and show negligible vari-
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ations, convergence is ensured. In Section 2.4.2 we detail the specific convergence criteria

used in our analysis.

2.3.2 Forward model

2.3.2.1 Halo Occupation Modeling

ABC requires a forward generative model. In large scale structure studies, this implies a

model that is able to generate a galaxy catalog. We then calculate and compare summary

statistics of the data and model catalog in an identical fashion In this section, we describe the

forward generative model we use within the framework of the halo occupation distribution.

The assumption that galaxies reside in dark matter halos is the bedrock underlying all

contemporary theoretical predictions for galaxy clustering. The Halo Occupation Distribu-

tion (HOD) is one of the most widely used approaches to characterizing this galaxy-halo

connection. The central quantity in the HOD is p(Ng|Mh), the probability that a halo of

mass Mh hosts Ng galaxies.

The most common technical methods for estimating the theoretical galaxy 2PCF utilize

the first two moments of P , which contain the necessary information to calculate the one-

and two-halo terms of the galaxy correlation function:

1 + ξ1h
gg (r) ' 1

4πr2n̄2
g

∫
dMh

dn

dMh

Ξgg(r|Mh)× 〈Ng(Ng − 1)|Mh〉 , (2.8)

and

ξ2h
gg (r) ' ξmm(r)

[
1

n̄g

∫
dMh

dn

dMh

〈Ng|Mh〉 bh(Mh)

]2

(2.9)
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In Eqs. (2.8) and (2.9), n̄g is the galaxy number density, dn/ dMh is the halo mass function,

the spatial bias of dark matter halos is bh(Mh), and ξmm is the correlation function of dark

matter. If we represent the spherically symmetric intra-halo distribution of galaxies by a

unit-normalized ng(r), then the quantity Ξgg(r) appearing in the above two equations is

the convolution of ng(r) with itself. These fitting functions are calibrated using N -body

simulations.

Fitting function techniques, however, require many simplifying assumptions. For exam-

ple, Eqs. (2.8) and (2.9) assume that the galaxy distribution within a halo is spherically

symmetric. These equations also face well-known difficulties of properly treating halo exclu-

sion and scale-dependent bias, which results in additional inaccuracies commonly exceeding

the 10% level (van den Bosch et al. 2013). Direct emulation methods have made signifi-

cant improvements in precision and accuracy in recent years (Heitmann et al. 2009, 2010);

however, a labor- and computation-intensive interpolation exercise must be carried out each

time any alternative statistic is explored, which is one of the goals of the present work.

To address these problems, throughout this paper we make no appeal to fitting functions

or emulators. Instead, we use the Halotools package to populate dark matter halos with

mock galaxies and then calculate our summary statistics directly on the resulting galaxy

catalog with the same estimators that are used on observational data (Hearin et al. 2016a).

Additionally, through our forward modeling approaching, we are able to explore observables

beyond the 2PCF, such as the group multiplicity function, for which there is no available

fitting function. This framework allows us to use group multiplicity function for providing

quantitative constraints on the galaxy-halo connection. In the following section, we will show

that using this observable, we can obtain constraints on the HOD parameters comparable

to those found from the 2PCF measurements.

For the fiducial HOD used throughout this paper, we use the model described in Zheng
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et al. 2007a. The occupation statistics of central galaxies follow a nearest-integer distribution

with first moment given by

〈Ncen〉 =
1

2

[
1 + erf

(
logM − logMmin

σlogM

)]
. (2.10)

Satellite occupation is governed by a Poisson distribution with the mean given by

〈Nsat〉 = 〈Ncen〉
(
M −M0

M1

)α
. (2.11)

We assume that central galaxies are seated at the exact center of the host dark matter

halo and are at rest with respect to the halo velocity, defined according to Rockstar halo

finder (Behroozi et al. (2013d)) as the mean velocity of the inner 10% of particles in the

halo. Satellite galaxies are confined to reside within the virial radius following an NFW

spatial profile (Navarro et al. 2004) with a concentration parameter given by the c(M)

relation (Dutton & Macciò 2014). The peculiar velocity of satellites with respect to their

host halo is calculated according to the solution of the Jeans equation of an NFW profile

(More et al. 2009a). We refer the reader to Hearin et al. (2016b), Hearin et al. (2016a), and

http://halotools.readthedocs.io for further details.

For the halo catalog of our forward model, we use the publicly available Rockstar

(Behroozi et al. 2013d) halo catalogs of the MultiDark cosmological N -body simulation

(Riebe et al. 2011).2 MultiDark is a collision-less dark-matter only N -body simulation.

The ΛCDM cosmological parameters of MultiDark are Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.042,

ns = 0.95, σ8 = 0.82, and h = 0.7. The gravity solver used in the N -body simulation is

the Adaptive Refinement Tree code (ART; Kravtsov et al. 1997) run on 20483 particles in

2In particular, we use the halotools alpha version2 version of this catalog, made publicly available as
part of Halotools.
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a 1 h−1Gpc periodic box. MultiDark particles have a mass of mp ' 8.72× 108 h−1M�; the

force resolution of the simulation is ε ' 7h−1 kpc.

One key detail of our forward generative model is that when we populate the MultiDark

halos with galaxies, we do not populate the entire simulation volume. Rather, we divide

the volume into a grid of 125 cubic subvolumes, each with side lengths of 200 h−1Mpc.

We refer to these subvolumes as {BOX1, ..., BOX125}. The first subvolume is reserved to

generate the mock observations which we describe in Section 2.4.1. When we simulate a

galaxy catalog for a given ~θ in parameter space, we randomly select one of the subvolumes

from {BOX2, ..., BOX125} and then populate the halos within this subvolume with galaxies.

We implement this procedure to account for sample variance within our forward generative

model.

2.3.3 Summary Statistics

One of the key ingredients for parameter inference using ABC, is the distance metric

between the data and the simulations. In essence, it quantifies how close the simulation is

to reproducing the data. The data and simulation in our scenario (the HOD framework) are

galaxy populations and their positions. A direct comparison, which would involve comparing

the actual galaxy positions of the populations, proves to be difficult. Instead, a set of statis-

tical summaries are used to encapsulate the information of the data and simulations. These

quantities should sufficiently describe the information of the data and simulations while

providing the convenience for comparison. For the positions of galaxies, sensible summary

statistics, which we later use in our analysis, include

• Galaxy number density, n̄g: the comoving number density of galaxies computed by

dividing the comoving volume of the sample from the total number of galaxies. n̄g is

measured in units of (Mpc/h)−3.
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• Galaxy two-point correlation function, ξgg(r): a measurement of the excess probability

of finding a galaxy pair with separation r over an random distribution. To compute

ξgg(rr) in our analysis, for computational reasons, we use the Natural estimator (Pee-

bles 1980a):

ξ(r) =
DD

RR
− 1, (2.12)

where DD and RR refer to counts of data-data and random-random pairs.

• Galaxy group multiplicity function, ζg(N): the number density of galaxy groups in bins

of group richness N where group richness is the number of galaxies within a galaxy

group. We rely on a Friends-of-Friends (hereafter FoF) group-finder algorithm (Davis

et al. 1985a) to identify galaxy groups in our galaxy samples. That is, if the separation

of a galaxy pair is smaller than a specified linking length, the two galaxies are assigned

to the same group. The FoF group-finder has been used to identify and analyze the

galaxy groups in the SDSS main galaxy sample (Berlind et al. (2006b)). For details

regarding the group finding algorithm, we refer readers to Davis et al. (1985a).

In this study we set the linking length to be 0.25 times the mean separation of galaxies

which is given by n̄
−1/3
g . Once the galaxy groups are identified, we bin them into bins

of group richness. The total number of groups in each bin is divided by the comoving

volume to get ζg(N) — in units of (Mpc/h)−3.

2.4 ABC at work

With the methodology and the key components of ABC explained above, here we set

out to demonstrate how ABC can be used to constrain HOD parameters. We start, in

Section 2.4.1 by creating our “observation”. We select a set of HOD parameters which we
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Figure 2.1: The two-point correlation function ξgg(r) (left) and group multiplicity function
ζg(N) (right) summary statistics of the mock observations generated from the “true” HOD
parameters described in Section 2.4.1. The width of the shaded region corresponds to the
square root of the covariance matrix diagonal elements (Eq. 2.14). In our ABC analysis, we
treat the ξgg(r) and ζg(N) above as the summary statistics of the observation.
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Figure 2.2: We demonstrate the evolution of the ABC particles, ~θt, over iterations t = 1
to 9 in the logMmin and logM1 parameter space. n̄ and ζg(N) are used as observables
for the above results. For reference, in each panel, we include the “true” HOD parameters
(black star) listed in Section 2.4.1. The initial distance threshold, ~ε1 = [∞,∞] at t = 1 (top

left) so the ~θ1 spans the entire range of the prior distribution, which is also the range of the

panels. We see for t < 5, the parameter space occupied by the ABC ~θt shrinks dramatically.
Eventually when the algorithm converges, t > 7, the parameter space occupied by ~θt no
longer shrinks and their distributions represent the posterior distribution of the parameters.
At t = 9, the final iteration, the ABC algorithm has converged and we find that ~θtrue lies
safely within the 68% confidence region.
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deem as the “true” parameters and run it through our forward model producing a catalog of

galaxy positions which we treat as our observation. Then, in Section 2.4.2, we explain the

distance metric and other specific choices we make for the ABC-PMC algorithm. Ultimately,

we demonstrate the use of ABC in LSS, in Section 2.4.3, where we present the parameter

constraints we get from our ABC analyses. Lastly, in order to both assess the quality of the

ABC-PMC parameter inference and also discuss the assumptions of the standard Gaussian

likelihood approach, we compare the ABC-PMC results to parameter constraints using the

standard approach in Section 2.4.4.

2.4.1 Mock Observations

In generating our “observations”, and more generally for our forward model, we adopt

the HOD model from Zheng et al. (2007a) where the expected number of galaxies populating

a dark matter halo is governed by Eqs (2.10) and (2.11). For the parameters of the model

used to generate the fiducial mock observations, we choose the Zheng et al. (2007a) best-fit

HOD parameters for the SDSS main galaxy sample with a luminosity threshold Mr = −21:

logMmin σlogM logM0 logM1 α

12.79 0.39 11.92 13.94 1.15

Since these parameters are used to generate the mock observation, they are the parameters

that we ultimately want to recover from our parameter inference. We refer to them as the

true HOD parameters. Plugging them into our forward model (Section 2.3.2), we generate

a catalog of galaxy positions.

For our summary statistics of the catalogs we use: the mean number density n̄g, the

galaxy two-point correlation function ξgg(r), and the group multiplicity function ζg(N). Our

mock observation catalog has n̄g = 9.28875× 10−4 h−3Mpc3 and in Figure 2.1 we plot ξgg(r)
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(left panel) and ζg(N) (right panel). The width of the shaded region represent the square

root of the diagonal elements of the summary statistic covariance matrix, which is computed

as we describe below.

We calculate ξgg using the natural estimator (Section 2.3.3) with fifteen radial bins. The

edges of the first radial bin are 0.15 and 0.5 h−1Mpc. The bin edges for the next 14 bins are

logarithmically-spaced between 0.5 and 20 h−1Mpc. We compute the ζg(N) as described in

Section 2.3.3 with nine richness bins where the bin edges are logarithmically-spaced between

3 and 20. To calculate the covariance matrix, we first run the forward model using the true

HOD parameters for all 125 halo catalog subvolumes: {BOX1, ..., BOX125}. We compute the

summary statistics of each subvolume galaxy sample k:

x(k) = [n̄g, ξgg, ζg], (2.13)

Then we compute the covariance matrix as

Csample
i,j =

1

Nmocks − 1

Nmocks∑
k=1

[
x

(k)
i − xi

][
x

(k)
j − xj

]
, (2.14)

where xi =
1

Nmocks

Nmocks∑
k=1

x
(k)
i . (2.15)

Throughout our ABC-PMC analysis, we treat the n̄g, ξgg(r), and ζg(N) we describe in

this section as if they were the summary statistics of actual observations. However, we

benefit from the fact that these observables are generated from mock observations using the

true HOD parameters of our choice: we can use the true HOD parameters to assess the

quality of the parameter constraints we obtain from ABC-PMC.
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Figure 2.3: We illustrate the convergence of the ABC algorithm through the evolution of the
ABC particle distribution as a function of iteration for parameters logMmin (left), α (center),
and logM1 (right). The top panel corresponds our ABC results using the observables
(n̄, ζg(N)), while the lower panel plots corresponds to the ABC results using (n̄, ξgg(r)). The
distributions of parameters show no significant change after t > 7, which suggests that the
ABC algorithm has converged.
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2.4.2 ABC-PMC Design

In Section 4.6.1, we describe the key components of the ABC algorithm we use in our

analysis. Now, we describe the more specific choices we make within the algorithm: the

distance metric, the choice of priors, the distance threshold, and the convergence criteria. So

far we have described three summary statistics: n̄g, ξgg(r), and ζg(N). In order to explore the

detailed differences in the ABC-PMC parameter constraints based on our choice of summary

statistics, we run our analysis for two sets of observables: (n̄g, ξgg) and (n̄g, ζg).

For both analyses, we use a multi-component distance (Silk et al. 2012, Cisewsky et al

in preparation). Each summary statistic has a distance associated to it: ρn, ρξ, and ρζ . We

calculate each of these distance components as,

ρn =

(
n̄d

g − n̄m
g

)2

σ2
n

, (2.16)

ρξ =
∑
k

[
ξd

gg(rk)− ξm
gg(rk)

]2
σ2
ξ,k

, (2.17)

ρζ =
∑
k

[
ζd

g (Nk)− ζm
g (Nk)

]2
σ2
ζ,k

. (2.18)

The superscripts d and m denote the data and model respectively. The data, are the ob-

servables calculated from the mock observation (Section 2.4.1). σ2
n, σ2

ξ,k, and σ2
ζ,k are not

the diagonal elements of the covariance matrix (2.14). Instead, they are diagonal elements

of the covariance matrix CABC.

We construct CABC by populating the entire MultiDark halo catalogs 125 times repeat-

edly, calculating n̄g, ξgg, and ζg for each realization, and then computing the covariance

associated with these observables across all realizations. We highlight that CABC differs

from Eq. 2.14, in that it does not populate the 125 subvolumes but the entire MultiDark

simulation and therefore does not incorporate sample variance. The ABC-PMC analysis
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instead accounts for the sample variance through the forward generative model, which pop-

ulates the subvolumes in the same manner as the observations. We use σ2
n, σ2

ξ,k, and σ2
ζ,k

to ensure that the distance is not biased to variations of observables on specific radial or

richness bin.

For our ABC-PMC analysis using the observables n̄g and ξgg, our distance metric ~ρ =

[ρn, ρξ] while the distance metric for the ABC-PMC analysis using the observables n̄g and ζg,

is ~ρ = [ρn, ρζ ]. To avoid any complications from the choice for our prior, we select uniform

priors over all parameters aside from the scatter parameter σlog M , for which we choose a

log-uniform prior. We list the range of our prior distributions in Table 2.1.

With the distances and priors specified, we now describe the distance thresholds and the

convergence criteria we impose in our analyses. For the initial iteration, we set distance

thresholds for each distance component to ∞. This means, that the initial pool ~θ1 is simply

sampled from the prior distribution we specify above. After the initial iteration, the distance

threshold is adaptively lowered in subsequent iterations. More specifically, we follow the

choice of Lin & Kilbinger (2015a) and set the distance threshold ~εt to the median of ~ρt−1,

the multi-component distance of the previous iteration of particles (~θt−1).

The distance threshold ~εt will progressively decrease. Eventually after a sufficient number

of iterations, the region of parameter space occupied by ~θt will remain unchanged. As this

happens, the acceptance ratio begins to fall significantly. When the acceptance ratio drops

below 0.001, our acceptance ratio threshold of choice, we deem the ABC-PMC algorithm

as converged. In addition to the acceptance ratio threshold we impose, we also ensure that

distribution of the parameters converges – another sign that the algorithm has converged.

Next, we present the results of our ABC-PMC analyses using the sets of observables (n̄g,

ξgg) and (n̄g, ζg).
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Table 2.1: Prior Specifications: The prior probability distribution and its range for each
of the Zheng et al. (2007a) HOD parameters. All mass parameters are in unit of h−1M�

HOD Parameter Prior Range
α Uniform [0.8, 1.3]
σlog M Log-Uniform [0.1, 0.7]
logM0 Uniform [10.0, 13.0]
logMmin Uniform [11.02, 13.02]
logM1 Uniform [13.0, 14.0]

2.4.3 Results: ABC

We describe the ABC algorithm in Section 4.6.1 and list the particular choices we make in

the implementation in the previous section. Finally, we demonstrate how the ABC algorithm

produces parameter constraints and present the results of our ABC analysis – the parameter

constraints for the Zheng et al. (2007a) HOD model.

We begin with a qualitative demonstration of the ABC algorithm in Figure 2.2, where

we plot the evolution of the ABC ~θt over the iterations t = 1 to 9, in the parameter space

of [logM1, logMmin]. The ABC procedure we plot in Figure 2.2 uses n̄ and ζg(N) for

observables, but the overall evolution is the same when we use n̄ and ξgg(r). The darker and

lighter contours represent the 68% and 95% confident regions of the posterior distribution

over ~θt. For reference, we also plot the “true” HOD parameter ~θtrue (black star) in each of

the panels. The parameter ranges of the panels are equivalent to the ranges of the prior

probabilities we specify in Table 2.1.

For t = 1, the initial pool (top left), the distance threshold ~ε1 = [∞,∞], so ~θ1 uniformly

samples the prior probability over the parameters. At each subsequent iteration, the thresh-

old is lowered (Section 2.4), so for t < 6 panels, we note that the parameter spaced occupied

by ~θt dramatically shrinks. Eventually when the algorithm begins to converge, t > 7, the

contours enclosing the 68% and 95% confidence interval stabilize. At the final iteration t = 9

(bottom right), the algorithm has converged and we find that ~θtrue lies within the 68% con-
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fidence interval of the ~θt=9 particle distribution. This ~θt distribution at the final iteration

represents the posterior distribution of the parameters.

To better illustrate the criteria for convergence, in Figure 2.3, we plot the evolution of

the ~θt distribution as a function of iteration for parameters logMmin (left), α (center), and

logM1 (right). The darker and lighter shaded regions correspond to the 68% and 95%

confidence levels of the ~θt distributions. The top panels correspond to our ABC results

using (n̄, ζg) as observables and the bottom panels correspond to our results using (n̄, ξgg).

For each of the parameters in both top and bottom panels, we find that the distribution

does not evolve significantly for t > 7. At this point additional iterations in our ABC

algorithm will neither impact the distance threshold ~εt nor the posterior distribution of ~θt.

We also emphasize that the convergence of the parameter distributions coincides with when

the acceptance ratio, discussed in Section 2.4.2, crosses the predetermined shut-off value of

0.001. Based on these criteria, our ABC results for both (n̄, ζg) and (n̄, ξgg) observables have

converged.

We present the parameter constraints from the converged ABC analysis in Figure 2.4

and Figure 2.5. Figure 2.4 shows the parameter constraints using n̄ and ξgg(r) while Figure

2.5 plots the constraints using n̄ and ζg(N). For both figures, the diagonal panels plot the

posterior distribution of the HOD parameters with vertical dashed lines marking the 50%

(median) and 68% confidence intervals. The off-diagonal panels plot the degeneracy between

parameter pairs. To determine the accuracy of our ABC parameter constraints, we plot the

“true” HOD parameters (black) in each of the panels. For both sets of observables, our

ABC constraints are consistent with the “true” HOD parameters. For logM0, log σlogM ,

and α, the true parameter values lie near the center of the 68% confidence interval. For the

other parameter, which have much tighter constraints, the true parameters lie within the

68% confidence interval.
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To further test the ABC results, in Figure 2.6, we compare ξgg(r) (left) and ζg(N) (right)

of the mock observations from Section 2.4.1 to the predictions of the ABC posterior distri-

bution (shaded). The error bars of the mock observations represent the square root of the

diagonal elements of the covariance matrix (Eq. 2.14) while the darker and lighter shaded

regions represent the 68% and 95% confidence regions of the ABC posterior predictions. In

the lower panels, we plot the ratio of the ABC posterior prediction ξgg(r) and ζg(N) over

the mock observation ξobvs
gg (r) and ζobvs

g (N). Overall, the ratio of the 68% confidence region

of ABC posterior predictions is consistent with unity throughout the r and N range. We

observe slight deviations in the ξgg ratio for r > 5 Mpc/h; however, any deviation is within

the uncertainties of the mock observations. Therefore, the observables drawn from the ABC

posterior distributions are in good agreement with the observables of the mock observation.

The ABC results we obtain using the algorithm of Section 4.6.1 with the choices of Section

2.4.2 produce parameter constraints that are consistent with the “true” HOD parameters

(Figures 2.4 and 2.5). They also produce observables ξgg(r) and ζg(N) that are consistent

with ξobvs
gg and ζobvs

g . Thus, through ABC we are able to produce consistent parameter

constraints. More importantly, we demonstrate that ABC is feasible for parameter inference

in large scale structure.

2.4.4 Comparison to the Gaussian Pseudo - Likelihood MCMC

Analysis

In order to assess the quality of the parameter inference described in the previous section,

we compare the ABC-PMC results with the HOD parameter constraints from assuming a

Gaussian likelihood function. The model used for the Gaussian likelihood analysis is different

than the forward generative model adopted for the ABC-PMC algorithm, to be consistent

with the standard approach.
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In the ABC analysis, the model accounts for sample variance by randomly sampling

a subvolume to be populated with galaxies. Instead, in the Gaussian pseudo-likelihood

analysis, the covariance matrix is assumed to capture the uncertainties from sample variance.

Hence, in the model for the Gaussian pseudo-likelihood analysis, we populate halos of the

entire MultiDark simulation rather than a subvolume. We describe the Gaussian pseudo-

likelihood analysis below.

To write down the Gaussian pseudo-likelihood, we first introduce the vector x: a com-

bination of the summary statistics (observables) for a galaxy catalog. When we use n̄g and

ξgg(r) as observables in the analysis: x = [n̄g, ξgg]; when we use n̄g and ζg(N) as observables

in the analysis: x = [n̄g, ζg]. Based on this notation, we can write pseudo-likelihood function

as

−2 lnL(θ|d) = ∆xT Ĉ−1∆x + ln
[
(2π)ddet(C)

]
, (2.19)

where

∆x = [xobs − xmod], (2.20)

the difference between xobs, measured from the mock observation, and xmod(θ) measured from

the mock catalog generated from the model with parameters θ . d here is the dimension of

x (for x = [n̄g, ξgg], d = 13; for x = [n̄g, ζg], d = 10). Ĉ−1 is the inverse covariance matrix,

which we estimate following Hartlap et al. (2007):

Ĉ−1 =
Nmocks − d− 1

Nmocks − 1
Ĉ−1. (2.21)

Ĉ is the estimated covariance matrix, calculated using the corresponding x block of the
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covariance matrix from Eq. 2.14, and Nmock is the number of mocks used for the estimation

(Nmock = 124; see Section 2.4.1). We note that in Ĉ the dependence on the HOD parameters

is neglected, so the second term in the expression of Eq. 2.19 can be neglected. Finally, using

this pseudo-likelihood, we sample from the posterior distribution given the prior distribution

using the MCMC sampler emcee (Foreman-Mackey et al. 2013).

In Figures 2.7 and 2.8, we compare the results from ABC-PMC and Gaussian pseudo-

likelihood MCMC analyses using [n̄g, ξgg] and [n̄g, ζg] as observables, respectively. The top

panels in each figure compares the marginalized posterior PDFs for three parameters of the

HOD model: {logMmin, α, logM1}. The lower panels in each figure compares the 68% and

95% confidence intervals of the constraints derived from the two inference methods as a box

plot. The “true” HOD parameters are marked by vertical dashed lines in each panel.

In both Figures 2.7 and 2.8, the marginalized posteriors for each of the parameters from

both inference methods are comparable and consistent with the “true” HOD parameters.

However, we note that there are minor discrepancies between the maringalized posterior

distributions. In particular, the distribution for α derived from ABC-PMC is less biased

than the α constraints from the Gaussian pseudo-likelihood approach.

In Figures 2.9 and 2.10, we plot the contours enclosing the 68% and 95% confidence

regions of the posterior probabilities of the two methods using [n̄g, ξgg] and [n̄g, ζg] as observ-

ables respectively. In both figures, we mark the “true” HOD parameters (black star). The

overall shape of the contours are in agreement with each other. However, we note that the

contours for the ABC-PMC method are more extended along α.

Overall, the HOD parameter constraints from ABC-PMC are consistent with those from

the Gaussian pseudo-likelihood MCMC method; however, using ABC-PMC has a number

of advantages. For instance, ABC-PMC utilizes a forward generative model. Our forward

generative model accounts for sample variance. On the other hand, the Gaussian pseudo-
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likelihood approach, as mentioned earlier this section, does not account for sample variance

in the model and relies on the covariance matrix estimate to capture the sample variance of

the data.

Accurate estimation of the covariance matrix in LSS, however, faces a number of chal-

lenges. It is both labor and computationally expensive and dependent on the accuracy of

simulated mock catalogs, known to be unreliable on small scales (see Heitmann et al. 2008;

Chuang et al. 2015a and references therein). In fact, as Sellentin & Heavens (2016) points

out, using estimates of the covariance matrix in the Gaussian psuedo-likelihood approach

become further problematic. Even when inferring parameters from a Gaussian-distributed

data set, using covariance matrix estimates rather than the true covariance matrix leads to a

likelihood function that is no longer Gaussian. ABC-PMC does not depend on a covariance

matrix estimate; hence, it does not face these problems.

In addition to not requiring accurate covariance matrix estimates, forward models of the

ABC-PMC method, in principle, also have the advantage that they can account for sources

of systematic uncertainties that affect observations. All observations suffer from significant

systematic effects which are often difficult to correct. For instance, in SDSS-III BOSS (Daw-

son et al., 2013b), fiber collisions and redshift failures siginifcantly bias measurements and

analysis of observables such as ξgg or the galaxy powerspectrum (Ross et al., 2012; Guo et al.,

2012b; Hahn et al., 2017). In parameter inference, these systematics can affect the likelihood,

and thus any analysis that requires writing down the likelihood, in unknown ways. With a

forward generative model of the ABC-PMC method, the systematics can be simulated and

marginalized out to achieve unbiased constraints.

Furthermore, ABC-PMC – unlike the Gaussian pseudo-likelihood approach – is agnostic

about the functional form of the underlying distribution of the summary statistics (e.g. ξgg

and ζg). As we explain throughout the paper, the likelihood function in LSS cannot be

100



Gaussian. For ξgg, the correlation function must satisfy non-trivial positive-definiteness

requirements and hence the Gaussian pseudo-likelihood function assumption is not correct

in detail. In the case of ζg(N), assuming a Gaussian functional form for the likelihood,

which in reality is more likely Poisson, misrepresents the true likelihood function. In fact,

this incorrect likelihood, may explain why the constraints on α are less biased for the ABC-

PMC analysis than the Gaussian-likelihood analysis in 2.10.

Although in our comparison using simple mock observations, we find generally consis-

tent parameter constraints from both the ABC-PMC analysis and the standard Gaussian

pseudo-likelihood analysis, more realistic scenarios present many factors that can generate

inconsistencies. Consider a typical galaxy catalog from LSS observations. These catalogs

consist of objects with different data qualities, signal-to-noise ratios, and systematic effects.

For example, catalogs are often incomplete beyond some luminosity/redshift or have some

threshold signal-to-noise ratio cut imposed on them.

These selection effects, coupled with the systematic effects earlier this section, make

correctly predicting the likelihood intractable. In the standard Gaussian pseudo-likelihood

analysis, and other analysis that require writing down a likelihood function, these effects can

significantly bias the inferred parameter constraints. In these situations, employing ABC

equipped with a generative forward model that incorproates selection and systematic effects

may produce less biased parameter constraints.

Despite the advantages of ABC, one obstactle for adopting it to parameter inference

has been the computational costs of generative forward models, a key element of ABC. By

combining ABC with the PMC sampling method, however, ABC-PMC efficiently converges

to give reliable posterior parameter constraints. In fact, in our analysis, the total computa-

tional resources required for the ABC-PMC analysis were comparable to the computational

resources used for the Gaussian pseudo-likelihood analysis with MCMC sampling.
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Applying ABC-PMC beyond the analysis in this work, to broader LSS analyses imposes

some caveats. In this work, we focus on the galaxy-halo connection, so our generative forward

model populates halos with galaxies. LSS analyses for inferring cosmological parameters

would require generating halos by running cosmological simulations. The forward models also

need to accurately model the observation systematic effects of the latest observations. Hence,

accurate generative forward models in LSS analyses demand improvements in simulations and

significant computational resources in order to infer unbiased parameter constraints. Recent

cosmology simulations show promising improvements in both accuracy and speed (e.g. Feng

et al., 2016). Such developements will be crucial for applying ABC-PMC to broader LSS

analyses and exploiting the significant advantages that ABC-PMC offers.

2.5 Summary and Conclusion

Approximate Bayesian Computation, ABC, is a generative, simulation-based inference

that can deliver correct parameter estimation with appropriate choices for its design. It has

the advantage over the standard approach in that it does not require explicit knowledge of

the likelihood function. It only relies on the ability to simulate the observed data, accounting

for the uncertainties associated with observation and on specifying a metric for the distance

between the observed data and simulation. When the specification of the likelihood func-

tion proves to be challenging or when the true underlying distribution of the observable is

unknown, ABC provides a promising alternative for inference.

The standard approach to large scale structure studies relies on the assumption that

the likelihood function for the observables – often two-point correlation function – given

the model has a Gaussian functional form. In other words, it assumes that the statistical

summaries are Gaussian distributed. In principle to rigorously test such an assumption,
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a large number of realistic simulations would need to be generated in order to examine

the actual distribution of the observables. This process, however, is prohibitively—both

labor and computationally —expensive. Therefore, our assumption of a Gaussian likelihood

function remains largely unconfirmed and so unknown. Fortunately, the framework of ABC

permits us to bypass any assumptions regarding the distribution of observables. Through

ABC, we can provide constraints for our models without making the unexamined assumption

of Gaussianity.

With the ultimate goal of demonstrating that ABC is feasible for LSS studies, we use

it to constrain parameters of the halo occupation distribution, which dictates the galaxy-

halo connection. We begin by constructing a mock observation of galaxy distribution with a

chosen set of “true” HOD model parameters. Then we attempt to constrain these parameters

using ABC. More specifically, in this paper:

• We provide an explanation of the ABC algorithm and present how Population Monte

Carlo can be utilized to efficiently reach convergence and estimate the posterior dis-

tributions of model parameters. We use this ABC-PMC algorithm with a generative

forward model built with Halotools, a software package for creating catalogs of galaxy

positions based on models of the galaxy-halo connection such as the HOD.

• We choose n̄g, ξgg and ζg as observables and summary statistics of the galaxy position

catalogs. And for our ABC-PMC algorithm, we specify a multi-component distance

metric, uniform priors, a median threshold implementation, and an acceptance rate-

based convergence criterion.

• From our specific ABC-PMC method, we obtain parameter constraints that are consis-

tent with the “true” HOD parameters of our mock observations. Hence we demonstrate

that ABC-PMC can be used for parameter inference in LSS studies.
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• We compare our ABC-PMC parameter constraints to constraints using the standard

Gaussian-likelihood MCMC analysis. The constraints we get from both methods are

comparable in accuracy and precision. However, for our analysis using n̄g and ζg in

particular, we obtain less biased posterior distributions when comparing to the “true”

HOD parameters.

Based on our results, we conclude that ABC-PMC is able to consistently infer parame-

ters in the context of LSS. We also find that the computation required for our ABC-PMC

and standard Gaussian-likelihood analyses are comparable. Therefore, with the statistical

advantages that ABC offers, we present ABC-PMC as an improved alternative for parameter

inference.
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Figure 2.4: We present the constraints on the Zheng et al. (2007a) HOD model parameters
obtained from our ABC-PMC analysis using n̄ and ξgg(r) as observables. The diagonal panels
plot the posterior distribution of each HOD parameter with vertical dashed lines marking
the 50% quantile and 68% confidence intervals of the distribution. The off-diagonal panels
plot the degeneracies between parameter pairs. The range of each panel corresponds to the
range of our prior choice. The “true” HOD parameters, listed in Section 2.4.1, are also
plotted in each of the panels (black). For logM0, α, and σlogM , the “true” parameter values
lie near the center of the 68% confidence interval of the posterior distribution. For logM1

and logMmin, which have tight constraints, the “true” values lie within the 68% confidence
interval. Ultimately, the ABC parameter constraints we obtain in our analysis are consistent
with the “true” HOD parameters.
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Figure 2.5: Same as Figure 2.4 but for our ABC analysis using n̄ and ζg(N) as observables.
The ABC parameter constraints we obtain are consistent with the “true” HOD parameters.
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Figure 2.6: We compare the ABC-PMC posterior prediction for the observables ξgg(r) (left)
and ζg(N) (right) (orange; Section 2.4.3) to ξgg(r) and ζg(N) of the mock observation (black)
in the top panels. In the lower panels, we plot the ratio between the ABC-PMC posterior
predictions for ξgg and ζg to the mock observation ξobvs

gg and ζobvs
g . The darker and lighter

shaded regions represent the 68% and 95% confidence regions of the posterior predictions,
respectively. The error-bars represent the square root of the diagonal elements of the error
covariance matrix (equation 2.14) of the mock observations. Overall, the observables drawn
from the ABC-PMC posteriors are in good agreement with ξgg and ζg of the mock observa-
tions. The lower panels demonstrate that for both observables, the error-bars of the mock
observations lie within the 68% confidence interval of the ABC-PMC posterior predictions.
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PDFs over the parameters. In the bottom panels, we include box plots marking the confidence
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methods are consistent with each other. The ABC-PMC and Gaussian pseudo-likelihood
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α is slightly less biased and has slightly larger uncertainty then the constraint from Gaussian
pseudo-likelihood analysis.

109



0

1

2

3

4

5

6

7

8

9

12.5 12.6 12.7 12.8 12.9 13.0

logMmin

MCMC

ABC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.9 1.0 1.1 1.2 1.3 1.4

α

0

1

2

3

4

5

6

7

LGauss
MCMC
ABC-PMC

13.6 13.8 14.0 14.2 14.4

logM1

Figure 2.8: Same as Figure 2.7, but both the ABC-PMC analysis and the Gaussian pseudo-
likelihood MCMC analysis use n̄g and ζg(N) as observables. Both methods derive constraints
consistent with the “true” HOD parameters and infer the region of allowed values to similar
precision. We note that the MCMC constraint on α is slightly more biased compared to
ABC-PMC estimate. This discrepancy may stem from the fact that the use of Gaussian
pseudo-likelihood and its associated assumptions is more spurious when modeling the group
multiplicity function.
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Figure 2.10: Same as Figure 2.9, but using n̄g and ζg(N) as observables. Again, the con-
fidence regions derived from both methods are consistent with the “true” HOD parameters
used to generate the mock observations. The confidence region of α from the Gaussian
pseudo-likelood method is biased compared to the ABC-PMC contours. This may be due
to the fact that the true likelihood function that describes ζg(N) deviates significantly from
the assumed Gaussian functional form.
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Chapter 3

PRIMUS: Effects of Galaxy

Environment on the Quiescent

Fraction Evolution at z< 0.8

This Chapter is joint work with Michael R. Blanton (NYU), John Moustakas (Siena Col-

lege), Alison L. Coil (UCSD), Richard J. Cool (University of Arizona), Daniel J. Eisenstein

(Harvard), Ramin A. Skibb (UCSD), Kenneth C. Wong (University of Arizona), and Guang-

tun Zhu (Johns Hopkins Unviersity) published in The Astrophysical Jounral as Hahn et al.

(2015).

3.1 Chapter Abstract

We investigate the effects of galaxy environment on the evolution of the quiescent fraction

(fQ) from z = 0.8 to 0.0 using spectroscopic redshifts and multi-wavelength imaging data

from the PRIsm MUlti-object Survey (PRIMUS) and the Sloan Digitial Sky Survey (SDSS).
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Our stellar mass limited galaxy sample consists of ∼ 14, 000 PRIMUS galaxies within z =

0.2 − 0.8 and ∼ 64, 000 SDSS galaxies within z = 0.05 − 0.12. We classify the galaxies as

quiescent or star-forming based on an evolving specific star formation cut, and as low or high

density environments based on fixed cylindrical aperture environment measurements on a

volume-limited environment defining population. For quiescent and star-forming galaxies in

low or high density environments, we examine the evolution of their stellar mass function

(SMF). Then using the SMFs we compute fQ(M∗) and quantify its evolution within our

redshift range. We find that the quiescent fraction is higher at higher masses and in denser

environments. The quiescent fraction rises with cosmic time for all masses and environments.

At a fiducial mass of 1010.5M�, from z ∼ 0.7 to 0.1, the quiescent fraction rises by 15% at

the lowest environments and by 25% at the highest environments we measure. These results

suggest that for a minority of galaxies their cessation of star formation is due to external

influences on them. In other words, in the recent Universe a substantial fraction of the

galaxies that cease forming stars do so due to internal processes.

3.2 Introduction

Galaxies, in their detailed properties, carry the imprints of their surroundings, with

a strong dependence of the quiescent fraction of galaxies on their local environment (e.g.

Hubble 1936a; Oemler 1974; Dressler 1980; Hermit et al. 1996; Guzzo et al. 1997; for a recent

review see Blanton & Moustakas 2009b). The strength of this dependence is itself a strongly

decreasing function of galaxy stellar mass; at the extreme, the lowest mass (< 109 M�)

galaxies end their star formation only in dense regions, and never in isolation (Geha et al.

2012a). These effects also vary with redshift at least in the densest clusters, as observed

in the changing fraction of late-type spirals relative to the field, found in studies of the
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morphology-density relation (Dressler 1984; Fasano et al. 2000; Smith et al. 2005; Desai

et al. 2007). Clearly understanding the properties of galaxies in the present-day universe

requires a careful investigation of the role of environment, and how that role changes over

time.

Nevertheless, the evolution of the role of environment is a relatively subtle effect and

must be interpreted within the context of the evolving galaxy population. For instance,

the most dramatic change in galaxy properties during the past eight billion years has been

the remarkable decline in the star-formation rate of galaxies in the Universe (Hopkins &

Beacom 2006a). This decline appears dominated by decreases in the rates of star-formation

of individual galaxies (Noeske et al. 2007). There is evidence that a large fraction of the

decline is associated with strongly infrared-emitting starbursts (Bell et al. 2005; Magnelli

et al. 2009). As Cooper et al. (2008) and others have pointed out, because the environmental

dependence of total star-formation rates at fixed redshift is relatively small, environmental

effects are unlikely to cause the overall star-formation rate decline.

During this period, the major classes of galaxies that we observe today have already been

firmly in place (Bundy et al. 2006b; Borch et al. 2006a; Taylor et al. 2009; Moustakas et al.

2013). Though not as dramatic as the history of galaxies prior to z ∼ 1, detailed observations

of the stellar mass function find significant evolution of the galaxy population with the decline

in the number density of massive star-forming galaxies accompanied by an increase in the

number density of quiescent galaxies (Blanton 2006; Bundy et al. 2006b; Borch et al. 2006a;

Moustakas et al. 2013). Moustakas et al. (2013), for instance, find that since z ∼ 1.0 the

∼ 50% decline in the number density of massive star-forming galaxies (M∗ > 1011M�) is

complemented by the rise in number density of intermediate-mass quiescent galaxies (M∗ ≈

109.5 − 1010M�), by a factor of 2 − 3, and massive quiescent galaxies (M∗ > 1011M� ),

by ∼ 20%. On the color-magnitude diagram, this corresponds to the doubling of the red
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sequence over this period (Bell et al. 2004; Borch et al. 2006a; Faber et al. 2007). These

changes in galaxy population are likely a result of physical processes that cause the cessation

of star-formation in star-forming galaxies.

Of the numerous mechanisms that have been proposed to explain this cessation, fa-

vored models suggest that internal processes such as supernovae or active galactic nuclei

heat the gas within the galaxy, which consequently suppresses the cold gas supply used for

star-formation (Kereš et al. 2005; Croton et al. 2006; Dekel & Birnboim 2008). Other mod-

els propose that environment dependent external processes such as ram-pressure stripping

(Gunn & Gott 1972; Bekki 2009), strangulation (Larson et al. 1980; Balogh et al. 2000), or

harassment (Moore et al. 1998) contribute to the cessation.

Observations such as Weinmann et al. (2006) and Peng et al. (2010) credit some of these

proposed internal processes for the cessation of star-formation, especially in massive galaxies.

Meanwhile, observations of galaxy properties such as color and morphology correlating with

environment suggest that environment may play a role in ceasing star-formation (Blanton &

Moustakas 2009b and references therein). However, it remains to be determined whether the

environmental trends in galaxy properties reflect the direct effect of external environment

on the galaxies’ evolution (e.g. ram pressure, tidal forces, mergers) or reflect statistical

differences in the histories of galaxies in different environments (e.g. an earlier formation

time in dense regions).

In this paper we take the most straightforward investigation by directly determining the

star-forming properties of galaxies as a function of environment, stellar mass and redshift in

a single, consistently analyzed data set. This analysis can reveal how galaxies end their star

formation over time, quantitatively establish the contribution of environmental effects to the

overall trends, and reveal whether those trends happen equally in all environments. However,

such an analysis has not been done previously due to the lack of sufficiently large samples.
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In this paper, we apply this approach using the PRIism MUlti-object Survey (PRIMUS;

Coil et al. 2011, Cool et al. 2013), the largest available redshift survey covering the epochs

between 0 < z < 1.

In Section 3.3 we present a brief description of the PRIMUS and SDSS data, our mass

complete sample construction, and galaxy environment measurements. After dividing our

galaxy sample into subsamples of star-forming or quiescent and high or low density en-

vironments, we compute and examine the evolution of the stellar mass functions for our

subsamples in Section 3.4. In Section 3.5, we calculate the quiescent fraction, analyze the

evolution of the quiescent fraction, quantify the effects of environment on the quiescent frac-

tion evolution, and discuss the implications of our quiescent fraction results on the cessation

of star-formation in galaxies. Finally in Section 4.8 we summarize our results.

Throughout the paper we assume a cosmology with Ωm = 0.3,ΩΛ = 0.7, and H0 =

70 km s−1Mpc−1. All magnitudes are AB-relative.

3.3 Sample Selection

We are interested in quantifying the effects of galaxy environment on the evolution of the

quiescent fraction over the redshift range 0 < z < 1. For our analysis, we require a sample

with sufficient depth and high quality spectroscopic redshift to probe the redshift range

and to robustly measure galaxy environment. PRIMUS with its ∼ 120, 000 spectroscopic

redshifts provides a large data set at intermediate redshifts for our analysis. In addition, we

anchor our analysis with a low redshift sample derived from the Sloan Digital Sky Survey

(York et al. 2000).

In Section 3.3.1 and Section 4.3 we provide a brief summary of the PRIMUS and SDSS

data used for our sample selection. In Section 3.3.3 we define our stellar mass complete galaxy
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Figure 3.1: Absolute magnitude Mr versus redshift for our mass complete galaxy sample
(black squares) with the Environment Defining Population (red circles) plotted on top. Both
samples are divided into redshift bins: z = 0.05 − 0.12, 0.2 − 0.4, 0.4 − 0.6, and 0.6 − 0.8
(panels left to right). The lowest redshift bin (z ≈ 0.05 − 0.12; leftmost panel) contain our
galaxy sample and EDP selected from SDSS. The rest contain galaxies and EDP selected
from PRIMUS. The redshift limits for the lowest redshift bin are empirically selected based
on the bright and faint limits of SDSS galaxies. Stellar mass completeness limits, described
in Section 3.3.3, are imposed on the galaxy population. Meanwhile, Mr limits are applied to
the EDP such that the number density in each panel are equivalent (Section 3.3.5).

sample. Then, in Section 3.3.4, we classify the sample galaxies as quiescent or star-forming.

We calculate the environment using a volume-limited Environment Defining Population in

Section 3.3.5. Finally, in Section 3.3.6, we account for edge effects in the surveys.

3.3.1 PRIMUS

At intermediate redshifts we use multiwavelength imaging and spectroscopic redshifts

from PRIMUS, a faint galaxy survey with ∼ 120, 000 redshifts (σz/(1 + z) ≈ 0.5%) within

the range z ≈ 0 − 1.2. The survey was conducted using the IMACS spectrograph on the

Magellan I Baade 6.5-m telescope with a slitmask and low dispersion prism. For details on
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the PRIMUS observation methods such as survey design, targeting, and data summary, we

refer readers to Coil et al. (2011). For details on redshift fitting, redshift precision and survey

completeness we refer readers to Cool et al. (2013).

While the PRIMUS survey targeted seven distinct extragalactic deep fields for a total of

∼ 9 deg2, we restrict our sample to five fields that have GALEX and Spitzer/IRAC imaging

for a total of ∼ 5.5 deg2 (similar to the sample selection in Moustakas et al. 2013). Four of

these fields are a part of the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE1): the

European Large Area ISO Survey - South 1 field (ELAIS-S12), the Chandra Deep Field South

SWIRE field (CDFS), and the XMM Large Scale Structure Survey field (XMM-LSS). The

XMM-LSS consists of two separate but spatially adjacent fields: the Subaru/XMM-Newton

DEEP Survey field (XMM-SXDS3) and the Canadian-France-Hawaii Telescope Legacy Sur-

vey field (XMM-CFHTLS4). Our fifth and final field is the Cosmic Evolution Survey (COS-

MOS5) field. For all of our fields we have near-UV (NUV) and far-UV (FUV) photometry

from the GALEX Deep Imaging Survey (DIS; Martin et al. 2005; Morrissey et al. 2005) as well

as ground-based optical and Spitzer/IRAC mid-infrared photometric catalogs. Moustakas

et al. (2013) provides detailed descriptions of integrated flux calculations in the photometric

bands for each of our fields. Furthermore, we derive the K-corrections from the photometry

using K-correct (v4.2; Blanton & Roweis 2007).

Finally, using the spectroscopic redshift and broad wavelength photometry we apply

iSEDfit, a Bayesian SED modeling code, to calculate stellar masses and star formation

rates (SFRs) for our sample galaxies (Moustakas et al. 2013). iSEDfit uses the redshift and

the observed photometry of the galaxies to determine the statistical likelihood of a large

1http://swire.ipac.caltech.edu/swire/swire.html
2http://dipastro.pd.astro.it/esis
3http://www.naoj.org/cience/SubaruProject/SDS
4http://www.cfht.hawaii.edu/Science/CFHLS
5http://cosmos.astro.caltech.edu
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ensemble of generated model SEDs. The model SEDs are generated using Flexible Stellar

Population Synthesis (FSPS) models (Conroy & Gunn 2010) based on the Chabrier (2003)

IMF, along with a time dependent dust attenuation curve of Charlot & Fall (2000) and other

prior parameters discussed in Section 4.1 and Appendix A of Moustakas et al. (2013). For

details on the effects of prior parameter choices of iSEDfit on physical properties of galaxies

we refer readers to the Appendix of Moustakas et al. (2013). For the observed photometry,

we use the GALEX FUV and NUV, the two shortest IRAC bands at 3.6 and 4.5µm (the two

longer-wavelength IRAC channels are excluded because iSEDfit does not model hot dust or

polycyclic aromatic hydrocarbons emission lines), and the optical bands.

3.3.2 SDSS-GALEX

At low redshifts, we use spectroscopic redshifts and ugriz photometry from the SDSS

Data Release 7 (DR7; Abazajian et al. 2009). More specifically we select galaxies from the

New York University Value-Added Galaxy Catalog (hereafter VAGC) that satisfy the main

sample criterion and have galaxy extinction corrected Petrosian magnitudes 14.5 < r < 17.6

and spectroscopic redshifts within 0.01 < z < 0.2 (Blanton et al. 2005b). We further restrict

the VAGC sample to only galaxies with medium depth observations with total exposure time

greater than 1 ks from GALEX Release 6. This leaves 167, 727 galaxies.

Next, we use the MAST/CasJobs6 interface and a 4′′ diameter search radius, to obtain the

NUV and FUV photometry for the SDSS-GALEX galaxies. For optical photometry, we use

the ugriz bands from the SDSS model magnitudes scaled to the r-band cmodel magnitude.

These photometric bands are then supplemented with integrated JHKs magnitudes from the

2MASS Extended Source Catalog (XSC; Jarrett et al. 2000) and with photometry at 3.4 and

6http://galex.stsci.edu/casjobs
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4.6µm from the WISE All-Sky Data Release7. Further details regarding the SDSS-GALEX

sample photometry can be found in Section 2.4 of Moustakas et al. (2013). As previously

done on the PRIMUS data in Section 3.3.1, we use iSEDfit to obtain the stellar masses and

star formation rates for the SDSS-GALEX sample.

The SDSS-GALEX data discussed above is derived from the NYU-VAGC based on SDSS

Data Release 7, using the standard SDSS photometric measurements. Several investigators

have found that the background subtraction techniques used in the standard photometric

catalogs introduce a size dependent bias in the galaxy fluxes and consequently stellar masses

(West 2005; Blanton et al. 2005a; Lauer et al. 2007; Bernardi et al. 2007; Hyde & Bernardi

2009; West et al. 2010).

In order to quantify the effects of these photometric underestimations in our analysis, we

tried replacing our SDSS fluxes in the ugriz band with ugriz fluxes from the NASA-Sloan

Atlas (NSA) catalog, which incorporate the improved background subtraction presented

in Blanton et al. (2011) and uses single-Seric fit fluxes rather than the standard SDSS

cmodel fluxes. Using the ratio of the luminosity derived from the improved photometry over

the luminosity derived from the standard NYU-VAGC photometry, we apply a preliminary

correction to the stellar mass values obtained from iSEDfit assuming a consistent mass-to-

light ratio. This mass correction leads to a significant increase in the stellar mass function

forM > 1011M�; however, the effect of the mass correction was negligible for the quiescent

fraction evolution results. As a result, for the results presented here we use the standard

SDSS fluxes and we do not discuss the issues with photometric measurements any further

in this paper. We note that a thorough investigation of these issues to understand their

effect on the stellar mass function requires a reanalysis of both the SDSS photometry and

the deeper photometry used for PRIMUS targeting.

7http://wise2.ipac.caltech.edu/docs/release/allsky
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Table 3.1: Galaxy Subsamples

nenv Ngal Mlim

Quiescent Star-Forming Quiescent Star-Forming
0.05 < z < 0.12 nenv = 0.0 6533 7508 1010.2M� 1010.2M�

nenv > 3.0 14673 9717
Mr,lim = −20.95 all 33553 29864

0.2 < z < 0.4 nenv = 0.0 363 1231 109.8M� 109.8M�
nenv > 3.0 379 756

Mr,lim = −21.03 all 1086 2879
0.4 < z < 0.6 nenv = 0.0 536 1498 1010.3M� 1010.3M�

nenv > 3.0 490 854
Mr,lim = −20.98 all 1560 3577

0.6 < z < 0.8 nenv = 0.0 567 1254 1010.7M� 1010.6M�
nenv > 3.0 498 671

Mr,lim = −20.97 all 1668 2964
Total 77151

Notes: Number of galaxies (Ngal) in the mass complete subsamples within the edges of
the survey (Section 3.3). The subsamples are classified based on environment (nenv) and
star formation rate (star-forming or quiescent). The lowest redshift bin is derived from
SDSS; the rest are from PRIMUS. We also list the stellar mass completeness limit,Mlim, for
our sample along with the r-band absolute magnitude limits, Mr,lim, for the Environment
Defining Population.
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3.3.3 Stellar Mass Complete Galaxy Sample

From the low redshift SDSS-GALEX and intermediate redshift PRIMUS data we define

our mass complete galaxy sample. We begin by imposing the parent sample selection criteria

from Moustakas et al. (2013). More specifically, we take the statistically complete primary

sample from the PRIMUS data (Coil et al. 2011) and impose magnitude limits on optical

selection bands as specified in Moustakas et al. (2013) Table 1. These limits are in different

optical selection bands and have distinct values for the five PRIMUS target fields. We

then exclude stars and broad-line AGN to only select objects spectroscopically classified as

galaxies, with high-quality spectroscopic redshifts (Q ≥ 3). Lastly, we impose a redshift

range of 0.2 < z < 0.8 for the PRIMUS galaxy sample, where z > 0.2 is selected due to

limitations from sample variance and z < 0.8 is selected due to the lack of sufficient statistics

in subsamples defined below.

For the PRIMUS objects that meet the above criteria, we assign statistical weights (de-

scribed in Coil et al. 2011 and Cool et al. 2013) in order to correct for targeting incompleteness

and redshift failures. The statistical weight, wi, for each galaxy is given by

wi = (ftarget × fcollision × fsuccess)
−1, (3.1)

as in Equation (1) in Moustakas et al. (2013).

Since we are ultimately interested in a mass complete galaxy sample to derive SMFs

and QFs, next we impose stellar mass completeness limits to our galaxy sample. Stellar

mass completeness limits for a magnitude-limited survey such as PRIMUS are functions of

redshift, the apparent magnitude limit of the survey, and the typical stellar mass-to-light ratio

of galaxies near the flux limit. We use the same procedure as Moustakas et al. (2013), which

follows Pozzetti et al. (2010), to empircally determine the stellar mass completeness limits.
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For each of the target galaxies we computeMlim using log Mlim = log M+ 0.4 (m−mlim),

whereM is the stellar mass of the galaxy inM�,Mlim is the stellar mass of each galaxy if its

magnitude was equal to the survey magnitude limit, m is the observed apparent magnitude

in the selection band, and mlim is the magnitude limit for our five fields. We construct

a cumulative distribution of Mlim for the 15% faintest galaxies in ∆z = 0.04 bins. In

each of these redshift bins, we calculate the minimum stellar mass that includes 95% of the

galaxies. Separately for quiescent and star-forming galaxies, we fit quadratic polynomials

to the minimum stellar masses versus redshift (star-forming or quiescent classification is

described in the following section). Finally, we use the polynomials to obtain the minimum

stellar masses at the center of redshift bins, 0.2−0.4, 0.4−0.6, and 0.6−0.8, which are then

used as PRIMUS stellar mass completeness limits.

For the low redshift portion of our galaxy sample, we start by limiting the SDSS-GALEX

data to objects within 0.05 < z < 0.12, a redshift range later imposed on the volume-limited

Environment Defining Population (Section 3.3.5). To account for the targeting incomplete-

ness of the SDSS-GALEX sample, we use the statistical weight estimates provided by the

NYU-VAGC catalog. Furthermore, we determine a uniform stellar mass completeness limit

of 1010.2M� above the stellar mass-to-light ratio completeness limit of the SDSS-GALEX

data within the imposed redshift limits (Blanton et al. 2005a; Baldry et al. 2008; Moustakas

et al. 2013). We then apply this mass limit in order to obtain our mass-complete galaxy

sample at low redshift.

We now have a stellar mass complete sample derived from SDSS-GALEX and PRIMUS

data. Since our sample is derived from two different surveys, we account for the disparity

in the redshift uncertainty. While PRIMUS provides a large number of redshifts out to

z = 1, due to its use of a low dispersion prism, the redshift uncertainties are significantly

larger (σz/(1 + z) ≈ 0.5%) than the uncertainties of the SDSS redshifts. In order to have
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comparable environment measures throughout our redshift range, we apply PRIMUS redshift

uncertainties to our galaxy sample selected from SDSS-GALEX. For each SDSS-GALEX

galaxy, we adjust its redshift by randomly sampling a Gaussian distribution with standard

deviation σ = 0.005(1 + zSDSS), where zSDSS is the SDSS redshift of the galaxy.

3.3.4 Classifying Quiescent and Star-Forming Galaxies

We now classify our mass complete galaxy sample into quiescent or star-forming using an

evolving cut based on specific star-formation rate utilized in Moustakas et al. (2013) Section

3.2. This classification method uses the star-forming (SF) sequence, which is the correlation

between star-formation rate (SFR) and stellar mass in star-forming galaxies observed at

least until z ∼ 2 (Noeske et al. 2007; Williams et al. 2009; Karim et al. 2011). The PRIMUS

sample displays a well-defined SF sequence within the redshift range of our galaxy sample.

Using the power-law slope for the SF sequence from Salim et al. (2007) (SFR ∝M0.65) and

the minimum of the quiescent/star-forming bimodality, determined empirically, we obtain

the following equation to classify the target galaxies (Equation 2 in Moustakas et al. 2013):

log(SFRmin) = −0.49 + 0.64log(M− 10) + 1.07(z − 0.1), (3.2)

where M is the stellar mass of the galaxy. If the target galaxy SFR and stellar mass lie

above Equation 3.2 we classify it as star-forming; if below, as quiescent (Moustakas et al.

2013 Figure 1.).

3.3.5 Galaxy Environment

We define the environment of a galaxy as the number of neighboring Environment Defin-

ing Population galaxies (defined below) within a fixed aperture centered around it. We
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Figure 3.2: Normalized distribution of environment measurements (nenv) for our mass com-
plete galaxy sample within the survey edges. A fixed cylindrical aperture of Rap = 2.5 Mpc
and Hap = 35 Mpc is used to measure environment. The star-forming galaxies contribution
to the distribution is colored in blue and diagonally patterned. The contribution from qui-
escent galaxies is colored in red. Galaxies with nenv = 0.0 are in low density environments
and galaxies with nenv > 3.0 are in high density environment. We note that the significant
difference among the SDSS distribution and the PRIMUS distributions above is due to the
different stellar mass completeness limits imposed on each redshift bin of our galaxy sample.
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use fixed aperture measurements in order to quantify galaxy environment with an aperture

sufficiently large to encompass massive halos (Muldrew et al. 2012; Skibba et al. 2013).

For our aperture, we use a cylinder of dimensions: Rap = 2.5 Mpc and Hap = 35 Mpc.

We note that Hap is the full height of the cylinder and Rap and Hap are comoving distances.

We use a cylindrical aperture to account for the PRIMUS redshift errors and redshift space

distortions (i.e. “Finger of God” effect). As Cooper et al. (2005) and Gallazzi et al. (2009)

find, ±1000 km s−1 optimally reduces the effects of redshift space distortions. The PRIMUS

redshift uncertainty at z ∼ 0.7 corresponds to σz < 0.01, so our choice of 35 Mpc for

the aperture height accounts for both of these effects. Our choice of cylinder radius was

motivated by scale dependence analyses in the literature (Blanton 2006; Wilman et al. 2010;

Muldrew et al. 2012), which suggest that galactic properties such as color and quiescent

fractions are most strongly dependent on scales < 2 Mpc, around the host dark matter halo

sizes.

Before we measure the environment for our galaxy sample, we first construct a volume

limited Environment Defining Population (EDP) with absolute magnitude cut-offs (Mr) in

redshift bins with ∆z ∼ 0.2. The Mr cut-offs for the EDP are selected such that the

cumulative number density over Mr for all redshift bins are equal. We make this choice in

order to construct an EDP that contains similar galaxy populations through the redshift

range (i.e. accounts for the progenitor bias). In their analysis of this method, Behroozi

et al. (2013c) and Leja et al. (2013) find that although it does not precisely account for

the scatter in mass accretion or galaxy-galaxy mergers, it provides a reasonable means to

compare galaxy populations over a wide range of cosmic time.

In constructing the PRIMUS EDP we use the same PRIMUS data used to select our

galaxy sample (described in Section 3.3.3). We again restrict the PRIMUS galaxies to

0.2 < z < 0.8 and divide them into bins of ∆z = 0.2. Before we consider the cumulative
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number densities in the redshift bins, we first determine the Mr limit for the highest redshift

bin (z = 0.6 − 0.8) by examining the Mr distribution with bin size ∆Mr = 0.25 and select

Mr,lim near the peak of the distribution where bins with Mr > Mr,lim have fewer galaxies

than the bin at Mr,lim. We conservatively choose Mr,lim(0.6 < z < 0.8) to be Mr = −20.97.

Then for the lower redshift bins, we impose absolute magnitude limits (Mr,lim) such that

the cumulative number density, calculated with the galaxy statistical weights, of the bin

ordered by Mr is equal to the cumulative number density of the highest redshift bin with

Mr,lim(0.6 < z < 0.8) = −20.97.

For the SDSS EDP, we do not use the SDSS-GALEX parent data, which is limited to the

combined angular selection window of the VAGC and GALEX (Section 4.3). Instead, since

FUV, NUV values are not necessary for the EDP, we extend the parent data of the SDSS

EDP to the entire NYU-VAGC, including galaxies outside of the GALEX window function.

Furthermore, we impose a redshift range of 0.05 − 0.12 on the SDSS EDP. This redshift

range was determined to account for the lack of faint galaxies at z ∼ 0.2 and the lack of

bright galaxies at z ∼ 0.01 in the VAGC. As with the PRIMUS redshift bins, we determine

the SDSS EDP Mr,lim by matching the cumulative number density of the highest redshift

bin. For redshift bins z = 0.05− 0.12, 0.2− 0.4, 0.4− 0.6, 0.6− 0.8 we get Mr,lim = −20.95,

−21.03, −20.98 and −20.97, respectively. These absolute magnitude limits are illustrated

in Figure 3.1, where we present the absolute magnitude (Mr) versus redshift for the galaxy

sample (black squares) ad the EDP (red circles). The left-most panel corresponds to the

samples derived from the SDSS-GALEX data while the rest correspond to samples derived

from the PRIMUS data divided in bins with ∆z ∼ 0.2. Figure 3.1 shows clear Mr cutoffs in

the Mr distribution versus redshift for the EDP on top of our galaxy sample.

For our SDSS-GALEX galaxy sample, in Section 3.3.3, we apply PRIMUS redshift errors

in order to establish a consistent measurement of environment throughout our redshift range.
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We appropriately apply equivalent redshift adjustments for the SDSS EDP. For the SDSS

EDP galaxies that are also contained within the SDSS-GALEX sample, we adjust the redshift

by an identical amount. For the rest, we apply the same redshift adjustment procedure

described in Section 3.3.3 in order to obtain PRIMUS level redshift uncertainties.

Finally, we measure the environment for each galaxy in our galaxy sample by counting the

number of EDP galaxies, nenv, with RA, Dec, and z within our cylindrical aperture centered

around it. nenv accounts for the statistical weights of the EDP galaxies. For our galaxy

sample, the expected nenv given the uniform number density in each of our EDP redshift

bin and volume of our cylindrical aperture is 〈nenv〉 = 1.3. Once we obtain environment

measurements for all the galaxies in our galaxy sample, we classify galaxies with nenv = 0.0

to be in “low” environment densities and galaxies with nenv > 3 to be in “high” environment

densities. The high environment cutoff was selected in order to reduce contamination from

galaxies in low environment densities while maintaining sufficient statistics. In Section 3.5.2

we will also explore higher density cutoffs for nenv.

The analysis we describe below uses a fixed cylindrical aperture with dimensions Rap =

2.5 Mpc and Hap = 35 Mpc to measure environment. The same analysis was extended

for varying aperture dimensions Rap = 1.5, 2.5, 3.0 Mpc and Hap = 35, 70 Mpc with

adjusted environment classifications. The results obtained from using different apertures

and environment classifications are qualitatively consistent with the results presented below.

3.3.6 Edge Effects

One of the challenges in obtaining accurate galaxy environments using a fixed aperture

method is accounting for the edges of the survey. For galaxies located near the edge of the

survey, part of the fixed aperture encompassing it will lie outside the survey regions. In this

scenario, nenv only reflects the fraction of the environment within the survey geometry.
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To account for these edge effects, we use a Monte Carlo method to impose edge cutoffs

on our galaxy sample. First, using ransack from Swanson et al. (2008), we construct a

random sample of Nransack = 1, 000, 000 points with RA and Dec randomly selected within

the window function of the EDP (SDSS EDP and PRIMUS EDP separately). We then

compute the angular separation, θi,ap that corresponds to Rap (Section 3.3.5) at the redshift

of each sample galaxy i. For each sample galaxy we count the number of ransack points

within θi,ap of the galaxy: ni,ransack. Afterwards, we compare ni,ransack to the expected value

computed from the angular area of the environment defining aperture and the EDP window

function:

〈nransack〉i =
Nransack

AEDP

× πθ2
i,ap × fthresh. (3.3)

AEDP is the total angular area of the EDP window function and fthresh is the fractional

threshold for the edge effect cut-off. For Rap = 2.5 Mpc, we use fthresh = 0.75. If ni,ransack >

〈nransack〉i then galaxy i remains in our sample; otherwise, it is discarded. Once the edge

effect cuts are applied, we are left with the final galaxy sample. For our SDSS-GALEX

galaxy sample, ∼ 12% of galaxies are removed from the edge effect cuts. For our PRIMUS

galaxy sample, ∼ 40% of galaxies are removed from the edge effect cuts.

In Figure 3.2 we present the distribution of environment measurements (nenv) for our

final galaxy sample in redshift bins: z = 0.05− 0.12, 0.2− 0.4, 0.4− 0.6, and 0.6− 0.8. The

quiescent galaxy contributions are colored in red while the star-forming galaxy contributions

are colored in blue and patterned. We classify galaxies with nenv = 0.0 to be in low density

environments and galaxies with nenv > 3.0 to be in high density environments.

Although we imposed PRIMUS redshift errors on our SDSS galaxies to consistently mea-

sure environment throughout our entire sample, we note a significant discrepancy between

the nenv distributions of the SDSS and PRIMUS samples. For example, in each of the

PRIMUS redshift bins, ∼ 40% of galaxies in the redshift bin are in low density environments
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and roughly 30% are in high density environments. In contrast, in the SDSS redshift bin,

∼ 20% of galaxies in the redshift bin are in low density environments and ∼ 35% are in high

density environments. We remind the reader that this is mainly due to the varying stellar

mass-completeness limits imposed on our galaxy sample for each redshift bins and does not

affect our results.

3.4 Results: Stellar Mass Function

Our galaxy sample has so far been classified into quiescent or star-forming and low or high

density environments. We further divide these subsamples into redshift bins: 0.05 − 0.12,

0.2−0.4, 0.4−0.6, and 0.6−0.8 for a total of 16 subsamples. In Section 3.4.1, we calculate the

SMF for each of these subsamples. Then we examine the evolution of active and quiescent

subsample SMFs in different environments in Section 3.4.2.

3.4.1 Stellar Mass Function Calculations

To calculate the SMFs we employ a non-parametric 1/Vmax estimator commonly used for

galaxy luminosity functions and stellar mass functions in order to account for Malmquist

bias, as done in Moustakas et al. (2013) and discussed in the review Johnston (2011). The

differential SMF is given by the following equation:

Φ(logM)∆(logM) =
N∑
i=1

wi
Vmax,avail,i

. (3.4)

wi is the statistical weight of galaxy i and Φ(logM)∆(logM) is the number of galaxies

(N) per unit volume within the stellar mass range [logM, logM+ ∆(logM)]. The equation

above is the same as Equation 3 in Moustakas et al. (2013) except that we use Vmax,avail
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Figure 3.3: Evolution of stellar mass functions of star-forming (top) and quiescent (bottom)
galaxies in low (left) and high (right) density environments throughout the redshift range
z = 0–0.8. The environment of each galaxy was calculated using a cylindrical aperture size
of R = 2.5 Mpc and H = 35 Mpc and classified as low environment when nenv = 0.0 and as
high environment when nenv > 3.0. The SMFs use mass bins of width ∆log(M/M�) = 0.2.
In each panel we use shades of blue (star-forming) and orange (quiescent) to represent the
SMF at different redshift, higher redshifts being progressively lighter.
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instead than Vmax, to account for the edge effects of the survey discussed in Section 3.3.6.

Vmax,i is the maximum cosmological volume where it is possible to observe galaxy i

given the apparent magnitude limits of the survey. However in Section 3.3.6 we remove

galaxies that lie on the survey edges from our sample. In doing so, we reduce the maximum

cosmological volume where a galaxy can be observed, thereby reducing the fraction of Vmax,i

that is actually available in the sample. We introduce the term Vmax,avail,i to express the

maximum volume accounting for the survey edge effects.

To calculate Vmax,avail,i, we use a similar Monte Carlo method as the edge effect cutoffs in

Section 3.3.6. First, we generate a sample of points with random RA, Dec within the window

function of our galaxy sample (SDSS-GALEX window function and the five PRIMUS fields)

and random z within the redshift range. These points are not to be confused with the

ransack sample in Section 3.3.6. We apply the edge effect cuts on these random points as

we did for our galaxy sample using the same method as in Section 3.3.6. Within redshift

bins of ∆z ∼ 0.01, we calculate the fraction of the random points that remain in the bin

after the edge effect cuts over the total number of random points in the bin: fedge. We then

apply this factor to compute Vmax,avail = Vmax× fedge. The Vmax values in the equation above

are computed following the method described in Moustakas et al. (2013) Section 4.2 with

the same redshift-dependent K-correction from the observed SED and luminosity evolution

model.

To calculate the uncertainty of the SMFs from the sample variance, we use a standard

jackknife technique (following Moustakas et al. 2013). For the PRIMUS galaxies, we calculate

SMFs after excluding one of the five target fields at a time. For the SDSS target galaxies

we divide the field into a 12 × 9 rectangular RA and Dec grid and calculate the SMFs after
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excluding one grid at a time. From the calculated SMFs we calculate the uncertainty:

σj =

√√√√N − 1

N

M∑
k=1

(Φj
k − 〈Φj〉)2 (3.5)

N in this equation is the number of jackknife SMFs in the stellar mass bin. 〈Φj〉 is the mean

number density of galaxies in each stellar mass bin for all of the jackknife Φjs.

3.4.2 Evolution of the Stellar Mass Function in Different Environ-

ments

In Figure 3.3, we present the SMFs of the quiescent/star-forming (orange/blue, bot-

tom/top panels) and high/low density environment (left/right panels) subsamples. The

redshift evolution of the SMFs in each of these panels are indicated by a darker shade for

lower redshift bins. The width of the SMFs represent the sample variance uncertainties

derived in Section 3.4.1.

While a detailed comparison of the SMFs in each panel for different epochs is complicated

by the different stellar mass completeness limits, we present some notable trends in each

panel. In panel (a), star-forming galaxies in low density environments, we find a significant

decrease in the high mass end of the SMF (M > 1010.75M�) over cosmic time. Meanwhile

at lower masses (M < 1010.5M�), we observe no noticeable trend in the SMF. In panel

(b), star-forming galaxies in high density environments, we do not observe any clear trends

above the knee of the SMF (M∼ 1010.7M�) but an increase in SMF below the knee. For the

quiescent population in low density environment, panel (c), we observe a potential decrease

at higher masses (M > 1010.7M�). Lastly for the quiescent population in high density

environments, panel (d), we find significant increase in Φ for lower masses but little trend at
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Figure 3.4: Evolution of the quiescent fraction fQ for galaxies in low (left) and high (right)
density environments for z < 0.8. fQs were calculated using the SMFs in Figure 3.3, as
described in Section 3.5.1. Darker shading indicates lower redshift and the width represents
the standard jackknife uncertainty.

higher masses.

Observing the evolutionary trends in SMF for each of these sub-populations provides

a narrative of the different galaxy evolutionary tracks involving environment and the end

of star formation. For example, the decrease in the massive star-forming galaxies in low

density environments over cosmic time can be attributed to the transition of those galaxies

to any of the other panels. The star-forming galaxies in low density environments that have

ended star formation over time are possibly responsible for the increase of the quiescent,

low density environment SMF over time. The star-forming galaxies that fall into higher

density environments explain the increase in the star-forming high density environment SMF
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below the knee. Finally, star-forming galaxies in high density environments that have ended

their star-formation, quiescent galaxies that have transitioned from low to high density

environments, and star-forming galaxies in low density environments that end their star-

formation while infalling to high density environments all contribute to the overall increase

of the high environment quiescent SMF.

In addition to the evolution over cosmic time, we observe noticeable trends when we

compare the SMFs for star-forming and quiescent galaxies between the two environments.

Comparison of the SMFs in low versus high density environments reveal a noticeable relation

between mass and density, with SMFs in high density environments having more massive

galaxies, especially evident in our lowest redshift bin. We further confirm this trend when

we compare the median mass between the two environments to find that the median mass

for galaxies in high density environments is significantly greater than in low density envi-

ronments. The relationship between mass and environment observed in our SMFs reflects

the well-established mass-density relation and observed mass segregation with environment

in the literature (Norberg et al. 2002; Zehavi et al. 2002; Blanton et al. 2005a; Bundy et al.

2006b; Scodeggio et al. 2009; Bolzonella et al. 2010).

While our mass complete subsample coupled with robust environment measurements

allows us to compare SMF evolution for each of our subsamples out to z = 0.8, we caution

readers regarding the photometric biases affecting the SDSS imaging (and perhaps the other

imaging sources) and reserve detailed analysis of the SMFs for future investigation.

3.5 Results: Quiescent Fraction

The SMFs calculated in the previous section illustrate the stellar mass distribution of

our galaxy population and its evolution over cosmic time. In this section, using the SMFs of
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our subsamples, we compare the quiescent and the star-forming populations by calculating

the fraction of galaxies that have ended their star-formation, the quiescent fraction.

While the fractional relation of the star-forming and quiescent populations has been

investigated in the past, with limited statistics, disentangling the environmental effects from

underlying correlations among observable galaxy properties such as the color-mass or mass-

density relations (Cooper et al. 2010) remains a challenge. With the better statistics available

from SDSS and PRIMUS, we evaluate the quiescent fraction in bins of stellar mass, redshift,

and environment in Section 3.5.1. By analyzing the quiescent fraction with respect to these

properties, in Section 3.5.2 we explicitly compare the quiescent fraction evolution in low and

high density environments. Our comparison reveal the subtle environmental effects on the

quiescent fraction evolution. Furthermore, by quantifying this environmental effect, we are

able constrain the role of environmental effects on how galaxies end their star formation.

3.5.1 Evolution of the Quiescent Fraction

From the SMF number densities (Φ) computed in the previous section, the quiescent

fraction is computed as follows,

fQ(M∗, z) =
ΦQ

ΦSF + ΦQ

. (3.6)

ΦQ and ΦSF are the total number of galaxies per unit volume in stellar mass bin of

∆(logM) = 0.20 dex for the quiescent and star-forming subsamples, respectively (Equa-

tion 3.4). We compute fQ for high and low density environments for all redshift bins as

plotted in Figure 3.4, which shows the evolution of fQ for high (right panel) and low (left

panel) density environments. As in Figure 3.3, the evolution of the quiescent fraction over

cosmic time is represented in the shading (darker with lower redshift) and the uncertainty is
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represented by the width. For the uncertainty in the quiescent fraction, we use the standard

jackknife technique, following the same steps as for the SMF uncertainty in Section 3.4.1.

Most noticeably in Figure 3.4, we find fQ increases monotonically as a function of mass

at all redshifts and environments. In other words, for galaxies in any environment since

z ∼ 0.8, galaxies with higher masses are more likely to have ceased their star-formation.

With the roughly linear correlation between galaxy SFR to galaxy color and morphology, we

find that this trend reflects the well established color-mass and morphology-mass relations:

more massive galaxies are more likely to be red or early-type (Blanton & Moustakas 2009b).

Focusing on the redshift evolution of fQ, we find that for both environments fQ increases

as redshift decreases. For high density environments, this is analogous to the Butcher-Oemler

Effect (Butcher & Oemler 1984), which states that galaxy populations in groups or clusters

have higher fblue (lower fQ) at higher redshift. This evolution occurs with roughly the same

amplitude in low environments as well.

In addition, when we compare the stellar masses at which fQ = 0.5 for each subsample,

the so-calledM50−50, we find that this quantity decreases over cosmic time. This corresponds

to the well-known mass-downsizing pattern found by previous investigators (e.g. Bundy

et al. 2006b). Furthermore, the mass-downsizing trend observed in each of our environment

subsample is qualitatively consistent with the trend observed in zCOSMOS Redshift Survey

for isolated and group galaxies (Iovino et al. 2010).

Finally, we compare between our low and high density environment fQs at each redshift

bin interval. For our lowest redshift bin, we find that fQ at low density environments ranges

from ∼ 0.4 to ∼ 0.9 for 1010.2M� <M∗ < 1011.5M�. Over the same mass range, fQ at high

density environment ranges from ∼ 0.55 to ∼ 0.9. For our SDSS sample, fQ in high density

environments is notably higher.

For our PRIMUS sample at z ∼ 0.3, over 109.5M� < M∗ < 1011M� fQ ranges from
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∼ 0.2 to ∼ 0.65 for low density environment, while at high density environment fQ ranges

from ∼ 0.2 to ∼ 0.8. Similarly, at z ∼ 0.5, over 1010M� < M∗ < 1011.2M� fQ ranges

from ∼ 0.3 to ∼ 0.6 for low density environment and fQ ranges from ∼ 0.3 to ∼ 0.7 for

high density environments. Finally in our highest redshift bin z ∼ 0.7, over the mass range

1010.5M� <M∗ < 1011.5M�, fQ ranges from ∼ 0.35 to ∼ 0.6 for low density and ∼ 0.45

to ∼ 0.8 for high density. For the entire redshift range of our sample, fQ in high density

environment is higher than fQ in low density environments.

We note that forM∗ < 1010M� at z ∼ 0.3, we find no significant difference between fQ in

low and high density environments. Similar quiescent/red fraction studies (e.g. Baldry et al.

2006; Cucciati et al. 2010) find, at these redshifts and mass range, a greater environment

dependence in fQ. Our classification of star-forming/quiescent galaxies may contribute to

this discrepancy with other quiescent fraction studies. We also note that forM∗ < 1010M�

at z ∼ 0.3, only three of the five PRIMUS fields used in our analysis (XMM-SXDS, XMM-

CFHTLS, and COSMOS; see Section 3.3.1) contribute galaxies to our sample. As a result

our jack-knife method, which calculates uncertainty by excluding one PRIMUS field at a

time, may underestimate the uncertainty thereby making an accurate comparison difficult

at low masses. For our analysis, we focus on M∗ > 1010M�.

While there is a significant difference in fQ between the environments, since the differ-

ence is observed from our highest redshift bin, it is not necessarily a result of environment

dependent mechanisms for ending star formation. In order to isolate any environmental de-

pendence, in the following section we quantitatively compare the evolution of the quiescent

fraction between the different environments.
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Figure 3.5: The evolution of the quiescent fraction at fiducial mass, fQ(Mfid), for low (blue)
and high (red) density environments within the redshift range z = 0.0 − 0.8. We present
the fQ(Mfid) evolution for Mfid = 1010.5M� (solid fill) and 1011M� (patterned fill) with
the uncertainty of the best-fit parameter b in Equation 3.7 represented by the width of the
line. While the high density fQ(Mfid) is greater than low density environment fQ(Mfid)
over the entire redshift range of our sample, there is a significant increase in fQ(Mfid) over
cosmic time for both environments. For the environment cut-offs (nenv = 0.0 for low and
nenv > 3.0 for high), there is no significant difference in the slope of the evolution between
the environments. 139



Table 3.2: Best Fit Parameters for fQ(M∗) Fit

z1 < z < z2 Environment a b
0.05 < z < 0.12 nenv = 0.0 0.410± 0.018 0.469± 0.007

nenv > 3.0 0.270± 0.016 0.620± 0.008

0.2 < z < 0.4 nenv = 0.0 0.340± 0.032 0.432± 0.015
nenv > 3.0 0.432± 0.018 0.544± 0.010

0.4 < z < 0.6 nenv = 0.0 0.263± 0.038 0.381± 0.018
nenv > 3.0 0.289± 0.018 0.446± 0.013

0.6 < z < 0.8 nenv = 0.0 0.284± 0.036 0.352± 0.019
nenv > 3.0 0.468± 0.065 0.429± 0.023

Notes: Best fit parameters in Equation 3.7 for each subsample fQ(M∗) in Figure 3.4 for
Mfid = 1010.5M�.

3.5.2 Environmental Effects on the Quiescent Fraction Evolution

In order to more quantitatively compare the fQ evolution for different epochs and en-

vironments, we fit fQ for each subsample to a power-law parameterization as a function of

stellar mass,

fQ(M∗) = a log

(
M∗

Mfid

)
+ b, (3.7)

where a and b are best-fit parameters using MPFIT (Markwardt 2009) and Mfid repre-

sents the empirically selected fiducial mass within the stellar mass limits where there is a

sufficiently large number of galaxies. We primarily focus on Mfid = 1010.5M�.

In Figure 3.5 we present the evolution of fQ(Mfid) from z ∼ 0.7 to ∼ 0.1 at low (blue)

and high (red) density environments forMfid = 1010.5M� (solid fill) and 1011M� (pattern

fill). The width of the evolution represents the uncertainty derived from MPFIT. As noted

earlier in Section 3.5.1, fQ in high density environments is significantly greater than fQ in
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low density environments for both fiducial mass choices. Throughout our sample’s redshift

range fQ(Mfid)high − fQ(Mfid)low ∼ 0.1.

In addition, the fQ(Mfid) evolution illustrates that the quiescent fraction in low den-

sity environment increases over cosmic time: fQ(Mfid, z ∼ 0.1) − fQ(Mfid, z ∼ 0.7) ∼ 0.1.

This significant quiescent fraction evolution for low density environments suggests that in-

ternal mechanisms, independent of environment, are responsible for a significant amount of

star-formation cessation. Meanwhile, the fQ(Mfid) evolution in high density environment

(fQ(Mfid, z ∼ 0.1)− fQ(Mfid, z ∼ 0.7) ∼ 0.12) shows little additional evolution.

When we increase our choice ofMfid to 1011M�, aside from an overall shift in fQ(Mfid)

by ∼ 0.2, we observe the same evolutionary trends. fQ(Mfid = 1011M�) for both low and

high density environments each increase by ∼ 0.2 from at all redshifts we study. Increasing

the fiducial mass to 1011M� does not significantly alter the evolutionary trends in either

environment. Although the varying stellar mass completeness at each redshift bin limits the

masses we probe for the fQ evolution, our fQ evolution exhibits little mass dependence.

However, the uncertainties in the PRIMUS redshifts may contaminate our fixed aperture

measurements of galaxy environment. Consequently, we consider in Figure 3.6 more stringent

high density environment classifications, extending the cut off to nenv > 5 and 7 (specified

in the top right legend and represented by the color of the shading). Aside from the increase

in uncertainties that accompany the decrease in sample size of the purer high environment

sample, we find an extension of the fQ difference between the environments we stated earlier.

A more stringent high environment classification significantly increases the overall fQ(Mfid),

which rises monotonically with the nenv limit.

More importantly, a purer high environment classification reveals a more significant en-

vironment dependence on the fQ evolution. While the difference between the fQ evolu-

tion in low and high density environment is negligible for the nenv > 3 cut-off, there is
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a notable difference in fQ evolution between our highest cut-off nenv > 7 and our low

density environment. fQ(Mfid, z ∼ 0.1) − fQ(Mfid, z ∼ 0.7) ∼ 0.25 for nenv > 7 versus

fQ(Mfid, z ∼ 0.1) − fQ(Mfid, z ∼ 0.7) ∼ 0.1 for low density environment. In addition

to the environment independent internal mechanisms that can explain the fQ evolution in

low density environments, there may be other environment dependent mechanisms that can

account for the moderate environment dependence of the fQ evolution. Our measured dif-

ference in the fQ evolution between environments provides an important constraint for any

environmental models for ending star formation.

3.5.3 Comparison to Literature

Although a direct comparison with other results is difficult due to our sample specific

methodology, a number of results from the literature have investigated the quiescent fraction

in comparable fashions. In this section we compare our fQ results from above to a number

of these results, specifically from SDSS and zCOSMOS, with similarly defined samples and

analogous environment classifications.

In Figure 3.6, we plot best-fit parameterization of fred for high and low density envi-

ronment from SDSS (panel a), zCOSMOS (panel b), and Peng et al. (2010) (filled square;

panel d) from both surveys. From Iovino et al. (2010) (empty square; panel b), we calculate

fred = 1 − fblue using the best-fit fblue from the mass bin M = 1010.3 − 1010.8M�. From

Kovač et al. (2014) (triangle; panel b) we plot an estimated fQ by applying the residual be-

tween SFR based and color based galaxy classifications to the best-fit fred atM = 1010.5M�

for low (δ = 0.0) and high density environments (δ = 1.5). Similarly, from Baldry et al.

(2006) (diamond; panel a) we plot fQ derived from the best-fit fred at M = 1010.5M� for

low (δ = 0.0) and high density environment (δ = 1.0). For Geha et al. (2012a) (cross;

panel a), we plot fQ for their isolated galaxy sample in their mass bin closest to 1010.5M�,
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Figure 3.6: fQ(Mfid = 1010.5M�) evolution compared to fred(M∗ ∼ 1010.5 M�) in the
literature: Baldry et al. (2006) (diamond) and Geha et al. (2012a) (cross) from SDSS (panel
a), Iovino et al. (2010) (empty square) and Kovač et al. (2014) (triangle) from zCOSMOS
(panel b), and Peng et al. (2010) from both SDSS and zCOSMOS (panel c). The fred values
from Iovino et al. (2010), Kovač et al. (2014), Baldry et al. (2006), and Peng et al. (2010)
are calculated from the best-fit parameterizations presented in the respective works. High
density environment is represented in red and low density environment is represented in blue.
The fQ value from Geha et al. (2012a) is the fQ value at M = 1010.55M�. Uncertainties in
the Iovino et al. (2010) best-fit fred is omitted due to insufficient information on the cross
correlation terms of the fit parameters. For Kovač et al. (2014) we apply the offset between
the color-based and SFR-based galaxy classification in order to plot the fQ estimates. We
also plot the fQ(Mfid = 1010.5M�) evolution of our sample with varying environment cut-offs
specified on the top right. As in Figure 3.5 the width of the fQ(Mfid = 1010.5M�) evolution
represent the uncertainty in the best-fit parameters of Equation 3.7.
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M = 1010.55M�. Finally for Peng et al. (2010) (square; panel c), we plot the parameterized

fred at M = 1010.5M� using their best-fit parameters for low (δ = 0.0) and high (δ = 1.4)

density environments.

For our lowest redshift bin SDSS sample, we find that our fQ for low and high envi-

ronments are consistent with other SDSS fQ (or fred) measurements as a function of envi-

ronment. For example, Baldry et al. (2006) uses projected neighbor density environment

measures (log Σ) to obtain fQ(M) for a range of environmental densities. Although the

different environment measurements make direct comparisons difficult, in their correspond-

ing higher environments (log Σ > 0.2 in Baldry et al. 2006) fQ(M ∼ 1010.2M�) ∼ 0.6 and

fQ(M ∼ 1011.5M�) ∼ 0.9, which is in agreement with our high density environment. Like-

wise, for lower environments (log Σ < −0.4 in Baldry et al. 2006) fQ(M∼ 1010.2M�) ∼ 0.4

and fQ(M∼ 1011.5M�) ∼ 0.8, which also agree with our low density environment fQ. The

Baldry et al. (2006) points (diamond) in Figure 3.6 reflect this agreement.

More recently, Tinker et al. (2011), using a group-finding algorithm on the SDSS DR7,

presents the relationship between fQ and overdensity for galaxies within the mass range

log M = [9.8, 10.1]. The Tinker et al. (2011) fQ at the lowest and highest overdensities,

fQ ∼ 0.4 and fQ ∼ 0.6 respectively, are consistent with our fQ for low and high density

environment at the lower mass limit (logM∼ 10.2).

A modified Tinker et al. (2011) sample is used in Geha et al. (2012a) to obtain fQ for

isolated galaxies over a wider mass range (107.4M� to 1011.2M�). Although Geha et al.

(2012a) probe a slightly lower redshift range (z ≤ 0.06), their fQ is consistent with our low

density sample. Within the overlapping mass range, at the low mass end Geha et al. (2012a)

find fQ(M∗ ∼ 1010.2M�) ∼ 0.3 and at the high mass end they find fQ(M∗ ∼ 1011.2M�) ∼

0.8. Both of these values agree with our lowest redshift fQ results in low density environment.

Figure 3.6 illustrates the fQ agreement for M∗ = 1010.5M�.
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For z > 0.2, we compare our PRIMUS fQ results to the fred (or 1−fblue) results from the

zCOSMOS Redshift Survey (Iovino et al. 2010; Kovač et al. 2014), which covers a similar

redshift range as PRIMUS. Iovino et al. (2010), and Kovač et al. (2014) using a mass-

complete galaxy sample derived from zCOSMOS and a group catalog, 3D local density

contrast, and overdensity environment measurements, respectively, compare fred with respect

to environment. The fblue for group and isolated galaxies from Iovino et al. (2010) are

generally inconsistent with our 1− fQ for high and low density environments.

Similarly, fred for high and low overdensities in Kovač et al. (2014) are greater overall than

the PRIMUS fQ values in high and low density environments. However, Kovač et al. (2014)

points out that there is a significant difference between classifying the quiescent population

using color and SFR due to dust-reddening in star-forming galaxies. For their lower redshift

bin (0.1 < z < 0.4) Kovač et al. (2014) find that their fQ defined by color is greater than

fQ defined by SFR by roughly 0.2. While for their higher redshift bin (0.4 < z < 0.7) the

difference is 0.15− 0.19. Although Kovač et al. (2014) does not elaborate on how the galaxy

classification discrepancy applies to the different environments, if we simply account for the

difference uniformly for fred at all environments, the Kovač et al. (2014) results in their lower

redshift bin are roughly consistent with our fQ at high and low density environments. Even

accounting for the dust-reddening of fred, Kovač et al. (2014) finds a significantly higher fQ

in their higher redshift bin.

In Figure 3.4, the fQ evolution with respect to mass reveals, qualitatively, little mass

dependence in the evolution. Moreover, in Figure 3.5, we illustrated that adjusting the

fiducial mass only shifted the overall fQ(Mfid), but did not change the fQ evolutionary trend.

The consistency in the fQ evolutionary trends over change in fiducial mass suggests that fQ

evolution exhibit little mass dependence within the mass range probed in our analysis. In

contrast to the weak mass dependence we observe in our results, Iovino et al. (2010) find
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significantly different fQ evolution at M ∼ 1011M� and M ∼ 1010.5M�, for both group

and isolated galaxies. In fact at their highest mass bin (1010.9 − 1011.4M�), Iovino et al.

(2010) find no evolution for both environments: constant fblue ∼ 0.1 over z = 0.3 − 0.8 for

both group and isolated galaxy populations.

Meanwhile in their mass bin most comparable to Mfid ∼ 1010.5M� (1010.3M� −

1010.8M�), Iovino et al. (2010) finds that fblue evolves by ∼ 0.1 from z = 0.5 to 0.25

for group galaxies and by ∼ 0.3 from z = 0.55 to 0.3 for isolated galaxies as presented in

panel (b) of Figure 3.6. Altogether, with mass bins beyond the fiducial masses we explore,

Iovino et al. (2010) find a strong mass dependence with fQ evolving significantly more in

lower mass bins. While our sample from PRIMUS provides larger statistics than zCOSMOS,

the mass-completeness limits we impose on our sample limits the mass range we probe (e.g.

M > 1010.5M� for our z ∼ 0.7 bin). Consequently our results cannot rule out mass depen-

dence in the fQ evolution at lower masses.

In Figure 3.5 and Figure 3.6 we quantified that throughout our redshift range, high density

environments have a significantly greater fQ(Mfid) than the low density environments. This

finding is in agreement with the zCOSMOS results from Cucciati et al. (2010) and Kovač

et al. (2014). As illustrated in panel (b) of Figure 3.6, Kovač et al. (2014) finds fQ in high

density environment significantly greater than fQ at low density environment. Moreover,

since galaxy color serves as a proxy for SFR, our results support the existence of the color-

density relation (Cucciati et al. 2010; Cooper et al. 2010) and is not consistent with the

color-density relation being merely a reflection of the mass-density relationship, as Scodeggio

et al. (2009) suggest it is based on the Vimos VLT Deep Survey (0.2 < z < 1.4).

In Section 3.5.2, we showed that fQ in low density environments evolves over cosmic time.

From this trend we deduce that internal, environment independent, mechanisms contribute

to ending star-formation in galaxy evolution. Iovino et al. (2010) from zCOSMOS, plotted in
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Figure 3.6 panel (b), also find that fQ in low density environment increases with decreasing

redshift. On the other hand Kovač et al. (2014), also from zCOSMOS, presents that fQ

in low density environment decreases over cosmic time. While the uncertainties for the

parameterized fQ are not listed, and thus not shown in Figure 3.6, once they are accounted

for, Kovač et al. (2014) find no significant fQ evolution over cosmic time. However, once we

account for the dust-reddening of the fred, we find a more significant decrease over cosmic

time (Figure 3.6 panel b).

Furthermore, in Section 3.5.2, our comparison of the fQ evolution between the lowest

density environment and the highest density environment revealed a modicum of evidence for

the existence of environment dependent mechanisms. The same comparison with zCOSMOS

results (Iovino et al. 2010; Kovač et al. 2014) present trends inconsistent with our findings.

First, comparing the high (red) and low (blue) density environments for Iovino et al. (2010) in

Figure 3.6 shows that there are indeed pronounced discrepancies between the fQ evolution

in different environments. Group galaxies in Iovino et al. (2010) have higher overall fQ

than isolated galaxies. However, unlike our results, which find a greater fQ evolution at

higher density environments, fQ in Iovino et al. (2010) shows the opposite environment

dependence that there is a significantly greater fQ evolution for isolated galaxies. Once the

large uncertainties in the fQ fit are taken into account, Iovino et al. (2010) state that the fQ

is difficult to measure from their sample.

Next, Kovač et al. (2014) also find that overall fQ is greater in high density than in

low density environments. Like their low density environment fQ evolution, fQ in high

density environment decreases over cosmic time between their two redshift bins. Although

the decrease in fQ over cosmic time conflicts with our results, Kovač et al. (2014) finds

a greater (less negative) fQ evolution in high density environments relative to low density

environments, suggesting an environment dependence that is in the same direction as our
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results. We note that the negative slopes of the fQ evolution in both environments are

enhanced in Figure 3.6 due to the dust-reddening correction we impose to the Kovač et al.

(2014) fred results.

Due to the redshift uncertainties in PRIMUS, our galaxy environment measures are

more susceptible to contamination. As discussed in Coil et al. (2011) and Cool et al. (2013),

PRIMUS has redshift success rate of > 75%; in comparison, zCOSMOS has 88% redshift

completeness for the entire sample and 95% complete within the redshift range 0.5 < z < 0.8

(Lilly et al. 2009). Although the zCOSMOS survey provides more precise spectroscopic

redshifts, PRIMUS has higher overall completeness due to its high targeting fraction of

∼ 80%. zCOSMOS has a spatial sampling rate of ∼ 30 − 50% and a overall completeness

rate of 48− 52% (Knobel et al. 2012). Our sample also provides larger statistics and covers

a larger portion of the sky. Our SDSS-GALEX sample covers 2, 505 deg2. More comparably,

our PRIMUS sample covers 5.5 deg2, over 3 times the sky coverage of zCOSMOS (1.7 deg2).

Furthermore, our PRIMUS sample is constructed from five independent fields which allows

us to significantly reduce the effects of cosmic variance.

As listed in Table 3.1, after our edge effect cuts and stellar mass completeness limits, our

sample consists of 13, 734 galaxies from PRIMUS over 0.2 < z < 0.8 and 63, 417 galaxies

from SDSS over 0.05 < z < 0.12. Meanwhile, Iovino et al. (2010) has 914 galaxies with

M > 1010.3M� over 0.1 < z < 0.6 and 1033 galaxies withM > 1010.6M� over 0.1 < z < 0.8.

For the actual sample used to obtain the best-fit fQ values in Figure 3.6 Iovino et al. (2010)

has 617 galaxies. In comparison, our PRIMUS sample alone contains > 20 times the number

of galaxies. While there is a considerable difference in the overall fQ between our results

and those of Iovino et al. (2010), the use of different methodologies, particularly for galaxy

classification and environment measurements, make such comparisons ambiguous. On the

other hand, the discrepancies in the fQ evolutionary trends with our results may be explained
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by the limited statistics in the Iovino et al. (2010) sample.

The more recent Kovač et al. (2014) provides larger statistics with 2, 340 galaxies in

their lower redshift bin (0.1 < z < 0.4) and 2, 448 galaxies in their higher redshift bin

(0.4 < z < 0.7). Although their sample is smaller than the PRIMUS sample, which contains

over twice times the number of galaxies, the Kovač et al. (2014) sample provides a more

stable comparison. Once their results are adjusted for the dust-reddening, we find that their

overall fQ is more or less consistent with our overall fQ. However, it is difficult to explain the

significant discrepancies in the fQ evolutionary trends. The significant overdenities observed

in the COSMOS field at z ∼ 0.35 and z ∼ 0.7 (Lilly et al. 2009; Kovač et al. 2010) may

have a significant effect on the zCOSMOS results and offer a possible explanation for the

discrepancies.

3.6 Summary and Discussion

Using a stellar mass complete galaxy sample derived from SDSS and PRIMUS accompa-

nied by a consistently measured galaxy environment from robust spectroscopic redshifts, we

measure the stellar mass functions for star-forming and quiescent galaxies in low and high

density environments over the redshift range 0.05 < z < 0.8. From these stellar mass func-

tions, we compare the proportion of galaxies that have ended their star-formation within the

subsamples by computing the quiescent fraction for each of them. In order to better quan-

tify the evolution of the quiescent fraction over cosmic time, we fit our quiescent fraction

anchored at a fiducial mass.

From our analyses we find the following notable results. The first three demonstrate that

previous findings that are well known in the local universe are applicable out to z ∼ 0.7. The

last two are consistent with the findings of Peng et al. (2010) but provide increased detail
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on the environmental dependence of galaxy evolution:

1. From the SMFs, we find that the galaxy population in high density environments,

both star-forming and quiescent, have a higher median mass, thus confirming the

mass-density relation and mass-segregation in different environments throughout our

sample’s redshift range.

2. For all subsamples, fQ increases monotonically with galaxy stellar mass, showing a clear

mass dependence and reflecting the well-established color-mass and morphology-mass

relations.

3. We illustrate that fQ in high density environments is greater than fQ in low density

environments forM∼ 1010.5−1011M� and out to redshift z ∼ 0.7. This result reflects

the well known trend that galaxies in high density environment are statistically redder,

have lower SFRs, and are more massive.

4. fQ increases significantly with redshift for both low and high density environments. For

high density environment, this trend is the Butcher-Oemler effect. Furthermore, the

fQ evolution in low density environment suggest the existence of internal environment-

independent mechanisms for ending star formation.

5. Comparison of the fQ(Mfid) evolution for a range of environment classifications reveals

that the since z = 0.8, fQ has evolved by a greater amount in the highest density envi-

ronments. For our purest high environment sample (nenv > 7), the total fQ evolution

is ∼ 0.1 greater than the total fQ evolution in low density environment, revealing a

moderate dependence on environment.

Many physical mechanisms have been proposed to explain the cessation of star-formation

observed in many galaxies. Recently star-formation cessation has often been classified into
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internal or external mechanisms, and sometimes more specifically into mass-dependent and

environment-dependent mechanisms (Baldry et al. 2006; Peng et al. 2010). The significant

redshift evolution of the fQ in low density environments confirms the existence of internal

mechanisms that end star-forming in galaxies.

Furthermore, the greater fQ evolution in the highest density environment relative to low

density environments suggests that in addition to the internal mechanisms, in high density

environments such as groups and clusters, environment-dependent effects may also contribute

to the end of star-formation. Our results do not specifically shed light on which mechanisms

(e.g. strangulation, ram-pressure stripping, etc.) occur in high density environments. Not

to mention, the mechanism could yet be indirect; for example, the galaxies in higher density

environments could end star-formation primarily due internal processes, which affect the

galaxies that end up in groups and clusters more greatly. Nevertheless, our results impose

important constraints on the total possible contribution of environment dependent mecha-

nisms that models must satisfy, providing a limit on the role of environment in ending star

formation in galaxies.
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Chapter 4

Star Formation Quenching Timescale

of Central Galaxies in a Hierarchical

Universe

This Chapter is joint work with Jeremy L. Tinker (NYU) and Andrew Wetzel (UC Davis)

submitted to The Astrophysical Journal as Hahn et al. (2017).

4.1 Chapter Abstract

Central galaxies make up the majority of the galaxy population, including the majority

of the quiescent population at M∗ > 1010M�. Thus, the mechanism(s) responsible for

quenching central galaxies plays a crucial role in galaxy evolution as whole. We combine

a high resolution cosmological N -body simulation with observed evolutionary trends of the

“star formation main sequence,” quiescent fraction, and stellar mass function at z < 1 to

construct a model that statistically tracks the star formation histories and quenching of
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central galaxies. Comparing this model to the distribution of central galaxy star formation

rates in a group catalog of the SDSS Data Release 7, we constrain the timescales over which

physical processes cease star formation in central galaxies. Over the stellar mass range 109.5

to 1011M� we infer quenching e-folding times that span 1.5 to 0.5 Gyr with more massive

central galaxies quenching faster. For M∗ = 1010.5M�, this implies a total migration time

of ∼ 4 Gyrs from the star formation main sequence to quiescence. Compared to satellites,

central galaxies take ∼ 2 Gyrs longer to quench their star formation, suggesting that different

mechanisms are responsible for quenching centrals versus satellites. Finally, the central

galaxy quenching timescale we infer provides key constraints for proposed star formation

quenching mechanisms. Our timescale is generally consistent with gas depletion timescales

predicted by quenching through strangulation. However, the exact physical mechanism(s)

responsible for this still remain unclear.

4.2 Introduction

Observations of galaxies using large galaxy surveys such as the Sloan Digital Sky Survey

(SDSS; York et al. 2000), Cosmic Evolution Survey (COSMOS; Scoville et al. 2007), and

the PRIsm MUlti-object Survey (PRIMUS; Coil et al. 2011; Cool et al. 2013) have firmly

established a global view of galaxy properties out to z ∼ 1. Galaxies are broadly divided

into two main classes: star forming and quiescent. Star forming galaxies are blue in color,

forming stars, and typically disk-like in morphology. Meanwhile quiescent galaxies are red in

color, have little to no star formation, and typically have elliptical morphologies (Kauffmann

et al. 2003; Blanton et al. 2003; Baldry et al. 2006; Wyder et al. 2007; Moustakas et al. 2013;

for a recent review see Blanton & Moustakas 2009a).

Over the period z < 1, detailed observations of the stellar mass functions (SMF) reveal
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a significant decline in the number density of massive star forming galaxies accompanied by

an increase in the number density of quiescent galaxies (Blanton et al. 2006; Borch et al.

2006b; Bundy et al. 2006a; Moustakas et al. 2013). The growth of the quiescent fraction with

cosmic time also reflects this change in galaxy population (Peng et al. 2010; Tinker et al.

2013; Hahn et al. 2015). Imprints of galaxy environment on the quiescent fraction (Hubble

1936b; Oemler 1974; Dressler 1980; Hermit et al. 1996; for a recent review see Blanton &

Moustakas 2009a) suggest that there is a significant correlation between environment and

the cessation of star formation. In comparison to the field, high density environments have a

higher quiescent fraction. However, observations find quiescent galaxies in the field (Baldry

et al. 2006; Tinker et al. 2011; Geha et al. 2012b), at least for galaxies with stellar mass

down to 109M� (Geha et al. 2012b), and as Hahn et al. (2015) finds using PRIMUS, the

quiescent fraction in both high density environments and the field increase significantly over

time.

Furthermore, galaxy environment is a subjective and heterogeneously defined quantity in

the literature (Muldrew et al. 2012). It can, however, be more objectively determined within

the halo occupation context, which labels galaxies as ‘centrals’ and ‘satellites’ (Zheng et al.

2005b; Weinmann et al. 2006; Blanton & Berlind 2007; Tinker et al. 2011). Central galaxies

reside at the core of their host halos while satellite galaxies orbit around. During their

infall, satellite galaxies are likely to experience environmentally driven mechanisms such as

ram pressure stripping (Gunn & Gott 1972; Bekki 2009), strangulation (Larson et al. 1980;

Balogh et al. 2000), or harassment (Moore et al. 1998).

Central galaxies, within this context, are thought to cease their star formation through

internal processes – numerous mechanisms have been proposed and demonstrated on semi-

analytic models (SAMs) and hydrodynamic simulations. One common proposal explains

that hot gaseous coronae form in halos with masses above ∼ 1012M� via virial shocks, which
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starve galaxies of cool gas required to fuel star formation (Birnboim & Dekel 2003; Kereš

et al. 2005; Croton et al. 2006; Cattaneo et al. 2006; Dekel & Birnboim 2006). Other have

proposed galaxy merger induced starbursts and subsequent supermassive blackhole growth as

possible mechanisms (Springel et al. 2005; Di Matteo et al. 2005; Hopkins & Beacom 2006b;

Hopkins et al. 2008a,b). Feedback from accreting active galactic nuclei (AGN) has also been

suggested to contribute to quenching (sometimes in conjunction with other mechanisms;

Croton et al. 2006; Cattaneo et al. 2006; Gabor et al. 2011); so has internal morphological

instabilities in the galactic disk or bar (Cole et al. 2000; Martig et al. 2009). With so many

proposed mechanisms available, observational constraints are critical to test them.

Several works have utilized the observed global trends of galaxy populations in order to

construct empirical models for galaxy star formation histories and quenching (e.g. Wetzel

et al. 2013; Schawinski et al. 2014; Smethurst et al. 2015). Central galaxies constitute over

70% of the M∗ > 109.7M� galaxy population at z = 0. Moreover, the majority of the

quiescent population at M∗ > 1010M� become quiescent as centrals (Wetzel et al. 2013).

The quenching of central galaxies plays a critical role in the evolution of massive galaxies. In

this paper, we take a similar approach as Wetzel et al. (2013) but for central galaxies. Wetzel

et al. (2013) quantify the star formation histories and quenching timescales in a statistical

and empirical manner. Then using the observed SSFR distribution of satellite galaxies, they

constrain the quenching timescale of satellites and illustrate the success of a “delay-then-

rapid” quenching model, where a satellite begins to quench rapidly only after a significant

delay time after it infalls onto its central halo.

Extending to centrals, we use the global trends of the central galaxy population at z < 1 in

order to construct a similarly statistical and empirical model for the star formation histories

of central galaxies. While the initial conditions of the satellite galaxies in Wetzel et al. (2013)

(at the times of their infall) are taken from observed trends of the central galaxy population,
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our model for central galaxies must actually reproduce all of the multifaceted observations.

This requires us to construct a more comprehensive model that marries all the significant

observational trends. Then by comparing the mock catalogs generated using our model to

observations, we constrain the star formation histories and quenching timescales of central

galaxies. Quantifying the timescales of the physical mechanisms that quench star formation,

not only gives us a means for discerning the numerous different proposed mechanisms, but

it also provides important insights into the overall evolution of galaxies.

We begin first in §4.3 by describing the observed central galaxy catalog at z ≈ 0 that we

construct from SDSS Data Release 7. Next, we describe the cosmological N -body simulation

used to create a central galaxy mock catalog in §4.4. We then develop parameterizations of

the observed global trends of the galaxy population and describe how we incorporate them

into the mock catalog in §4.5. In §4.6, we describe how we use our model and the observed

central galaxy catalog in order to infer the quenching timescale of central galaxies. Finally

in §4.7 and §4.8 we discuss the implications of our results and summarize them.

4.3 Central Galaxies of SDSS DR7

We start by selecting a volume-limited sample of galaxies with Mr−5 log(h) < −18 from

the NYU Value-Added Galaxy Catalog (VAGC; Blanton et al. 2005b) of the Sloan Digital

Sky Survey Data Release 7 (Abazajian et al. 2009) at redshift z ≈ 0.04 following the sample

selection of Tinker et al. (2011). The galaxy stellar masses are estimated using the kcorrect

code (Blanton & Roweis 2007) assuming a Chabrier (2003) initial mass function (IMF). For

measurement of galaxy star-formation, we use the specific star formation rate (SSFR) from

the current release of Brinchmann et al. (2004) 1. Generally, SSFRs & 10−11yr−1 are derived

1http://www.mpa-garching.mpg.de/SDSS/DR7/
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from Hα emissions, 10−11 & SSFRs & 10−12yr−1 are derived from a combination of emission

lines, and SSFRs . 10−12yr−1 are mainly based on Dn4000 (see discussion in Wetzel et al.

2013). The spectroscopically derived SSFRs, which accounts for dust-reddening, allow us to

make more accurate distinctions between star-forming and quiescent galaxies than simple

color cuts. We note that SSFRs . 10−12yr−1 should only be considered upper limits to the

true value (Salim et al. 2007).

Next, we identify the central galaxies using the halo-based group-finding algorithm from

Tinker et al. (2011). For a detailed description we refer readers to Tinker et al. (2011);

Wetzel et al. (2012, 2013, 2014), and Tinker et al. (2016). The most massive galaxy of

the group is the ‘central’ galaxy and the rest are ‘satellite’ galaxies. In any group finding

algorithm there are misassignments due to projection effects and redshift space distortions.

Campbell et al. (2015), quantify both the purity and completeness of centrals identified using

this group-finding algorithm at ∼ 80%. More importantly, they find that the algorithm can

robustly identify red and blue centrals and satellites as a function of stellar mass and yield a

nearly unbiased central red fraction, which is the key statistic relevant to our analysis here.

4.4 Simulated Central Galaxy Catalog

If we are to understand how central galaxies and their star formation evolve, we require

simulations over a wide redshift range that allows us to examine and track central galaxies

within the heirarchical growth of their host halos. To do this robustly, we require a cosmo-

logical N-body simulation that accounts for the complex dynamical processes that govern

galaxy host halos. In this paper, we use the dissipationless, N-body simulation from Wetzel

et al. (2013) generated using the White (2002) TreePM code with flat, ΛCDM cosmology:

Ωm = 0.274, Ωb = 0.0457, h = 0.7, n = 0.95, and σ8 = 0.8. 20483 particles are evolved
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in a 250 Mpc/h box with particle mass of 1.98 × 108M� and with a Plummer equivalent

smoothing of 2.5 kpc/h. The initial conditions of the simulation at z = 150 are generated

using second-order Lagrangian Perturbation Theory. We refer readers to Wetzel et al. (2013)

and Wetzel et al. (2014) for a more detailed description of the simulation.

From the TreePM simulation, Wetzel et al. (2013) identify ‘host halos’ using the Friends-

of-Friends (FoF) algorithm of Davis et al. (1985b) with linking length b = 0.168 times

the mean inter-particle spacing. This groups the simulation particles bound by an isodensity

contour of ∼ 100× the mean matter density. Within the identified host halos, the simulation

identifies ‘subhalos’ as overdensities in phase space through a 6-dimensional FoF algorithm

(White et al. 2010). Wetzel et al. (2013) then track the host halos and subhalos across the

simulation outputs in order to build merger trees. Next, Wetzel et al. (2013) designate the

most massive subhalo in a newly-formed host halo at a given simulation out as the ‘central’

subhalo. A subhalo remains central until it falls into a more massive host halo, at which

point it becomes a ‘satellite’ subhalo. Each subhalo is also assigned a maximum mass Mpeak,

the maximum host halo mass the subhalo has had in its history.

Using the Wetzel et al. (2013) simulation, we obtain a galaxy catalog from the subhalo

catalog by assuming that galaxies reside at the centers of the subhalos and through subhalo

abundance matching (SHAM; Vale & Ostriker 2006; Conroy et al. 2006; Yang et al. 2009;

Wetzel et al. 2012; Leja et al. 2013; Wetzel et al. 2013, 2014) to assign them stellar masses.

SHAM assumes a one-to-one mapping that preserves the rank ordering between subhalo

Mpeak and stellar mass,M∗ of its galaxy: n(> Mpeak) = n(>M∗). Through SHAM, we can

assign galaxy stellar masses to subhalos based on observed stellar mass function (SMF) at

the redshifts of the simulation outputs. Galaxy stellar masses are assigned independently at

each snapshot. This allows us to not only track the history of the subhalo, but also track

the evolution of galaxy stellar masses through their SHAM stellar masses at each snapshot.
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Figure 4.1: The stellar mass function (SMF) that we use in our subhalo abundance matching
(SHAM) prescription to construct galaxy catalogs from the Wetzel et al. (2013) TreePM

simulation (§4.4). For our fiducial SMF (solid), we use the Li & White (2009) SMF at
z = 0.05 and interpolate between the Li & White (2009) SMF and the Marchesini et al. (2009)
z = 1.6 SMF for z > 0.05. To illustrate the evolution, we plot the SMF at z = 0.05, 0.5,
and 0.9. We also plot a SMF parameterization using an “extreme” model of SMF evolution
(dashed-dotted), in which the amplitude of the SMF at z = 1.2 is half the amplitude of the
fiducial SMF. We later use this extreme model to ensure that the results in this work remain
robust over different degrees of SMF evolution at z > 0.05.
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Figure 4.2: The quiescent fraction of central galaxies, f cen
Q , at z < 1 in different stellar mass

bins. We compare our parameterzation of f cen
Q (Eq. 4.2) using the best-fit parameter values

listed in Table 4.1 (dashed) to the f cen
Q measurements from Tinker et al. (2013) (scatter).

For our parameterization, we fit f cen
Q at z = 0. using central galaxies of the SDSS DR7 group

catalog and fit α(M∗), which dictates the redshift dependence, from the redshift evolution
of the Tinker et al. (2013) measurements.
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For our SHAM prescription, we use the SMF of Li & White (2009) at the lowest redshift

z = 0.05. Li & White (2009) is based on the same SDSS NYU-VAGC sample as the SDSS

DR7 group catalog we describe in §4.3. At higher redshifts, we interpolate between the

Li & White (2009) SMF and the Marchesini et al. (2009) SMF at z = 1.6 to obtain the

SMF at the simulation output redshifts. This produces SMFs that increase significantly and

monotonically over z < 1 forM∗ < 1011M� but insignificantly forM∗ > 1011M�. We choose

the Marchesini et al. (2009) SMF, amongst others, because it produces interpolated SMFs

that monotonically increase at z < 1. At z ∼ 1, the interpolated SMF we use is consistent

(within the 1σ uncertainties) with more recent measurements from Muzzin et al. (2013) and

Ilbert et al. (2013).

In Figure 4.1, we illustrate the evolution of the SMFs that we use for our SHAM pre-

scription (solid) for z = 0.05, 0.5, and 0.9. Recently, using PRIMUS, Moustakas et al. (2013)

found little evolution in the SMF for z < 1 at all mass ranges. Although previous works

such as Bundy et al. (2006a) find otherwise. To ensure that our results do not depend on our

choice of the SMFs, later in §4.6.2, we repeat our analysis using SMFs with no evolution (i.e.

Li & White 2009 SMF throughout 0 < z < 1) and with “extreme” evolution for z > 0.05

(dash-dotted in Figure 4.1), in which the amplitude of the SMF at z = 1.2 is approximately

half the amplitude of the fiducial SMF at z = 1.2. Furthermore, while the simplest version of

SHAM assumes a one-to-one correspondence between Mpeak and M∗, observations suggest

that there is a scatter of ∼ 0.2 dex in this relation (Zheng et al. 2007b; Yang et al. 2008;

More et al. 2009b; Gu et al. 2016). Hence, we apply a 0.2 dex log-normal scatter in M∗ at

fixed Mpeak in our SHAM prescription at each snapshot independently.

So far, we have subhalos populated with galaxies and their stellar mass at each of the

15 simulation outputs spanning the redshift 0.05 < z < 1. For our sample, we restrict

ourselves to galaxies classified as centrals by the simulation. And also to ones that are
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in both the z ∼ 0.05 and z ∼ 1 snapshots. This removes < 3% of central galaxies with

M∗ > 109.5 M� in the z ∼ 0.05 snapshot. Our sample inevitably includes “back splash” or

“ejected” satellite galaxies (Wetzel et al., 2014), misclassified as centrals. Excluding these

galaxies, however, has a negligible impact on our results. We also note that while we do

not have an explicit prescription for stellar mass growth from mergers, based on SHAM,

the stellar mass growth traces the merger induced subhalo growth. As we discuss later in

detail, mounting evidence disfavor merger driven quenching as the trigger of star formation

quenching, so our treatment of mergers do not impact our quenching timescale results. In

summary, we construct from our simulation a catalog of central galaxies whose stellar mass

and halo mass is traced through the redshift range 0.05 < z < 1.

4.5 Star Formation in Central Galaxies

The TreePM simulation (§4.4) provides a framework to examine the evolution of central

galaxies within the ΛCDM hierarchical structure formation of the Universe. In order to

determine the quenching timescale of central galaxies, we incorporate the evolution of star-

formation within this framework so that the star formation of the simulated central galaxies

reproduce observed trends. More specifically, we implement star formation in central galaxies

to reproduce the observed evolution of the quiescent fraction and star-forming main sequence.

We begin in §4.5.1 by describing our paramertization of the observed quiescent fraction

and SFMS evolutionary trends at z < 1. Afterwards, we describe the initial SFR assignment

of the central galaxies in the simulation at the z = 1 snapshot in §4.5.2. Then in §4.5.3 we

describe how our model evolves the SFRs and quenches these central galaxies.

163



4.5.1 Observations

With galaxy surveys like the SDSS, COSMOS, and PRIMUS, observations have firmly

established that for z < 2, galactic properties such as color and star formation rate (SFR)

have a bimodal distribution (Baldry et al. 2006; Cooper et al. 2007; Blanton & Moustakas

2009a; Moustakas et al. 2013). As mentioned above, the two main components of this distri-

bution are quiescent galaxies with little star formation, which are redder, more massive, and

reside in denser environments and star forming galaxies, which are bluer, less massive and

more often found in the field. Since this bimodality is most likely a result of star formation

being quenched in galaxies, measurements of the quiescent fraction fQ, the fraction of qui-

escent galaxies in a population, is often used to indicate the overall star-forming property of

galaxy populations (Baldry et al. 2006; Drory et al. 2009; Cooper et al. 2010; Iovino et al.

2010; Peng et al. 2010; Geha et al. 2012b; Kovač et al. 2014; Hahn et al. 2015).

For z < 1, observations find that the overall quiescent fraction increases as a function of

stellar mass and with lower redshift (Drory et al. 2009; Iovino et al. 2010; Peng et al. 2010;

Kovač et al. 2014; Hahn et al. 2015). In Wetzel et al. (2013), they quantify this mass and

redshift dependence of the quiescent fraction through the parameterization, fQ(M∗, z) =

A(M∗)× (1 + z)α(M∗), with A(M∗) and α(M∗) fit from the quiescent fractions of the SDSS

DR 7 catalog and the COSMOS survey at z < 1 (Drory et al. 2009), respectively. However,

the quiescent fraction evolution is not universal over all environments (Hahn et al. 2015).

More specifically, Tinker & Wetzel (2010) and Tinker et al. (2013) find distinct quiescent

fraction evolutions for central and satellite galaxies.

We focus solely on the central galaxy quiescent fraction. We use the same parameteriza-

tion as the overall quiescent fraction parameterization in Wetzel et al. (2013):

f cen
Q (M∗, z) = f cen

Q (M∗, z = 0)× (1 + z)α(M∗) (4.1)

164



where

f cen
Q (M∗, z = 0.) = A0 + A1 logM∗, (4.2)

is fit to the f cen
Q measured from SDSS DR7 group catalog central galaxies (§4.3) using a

SFR −M∗ classification later described in § 4.6.1 (Eq. 4.18). α(M∗), which dictates the

redshift dependence of Eq. 4.1, is fit using the redshift dependence of f cen
Q measurements

from Tinker et al. (2013), derived from observations of the SMF, galaxy clustering, and

galaxy-galaxy lensing within the COSMOS survey, in bins of width ∆ logM∗ = 0.5 dex.

In Table 4.1, we list the best fit values for the parameters in Eq. 4.1 and in Figure 4.2 we

compare our parameterization to the Tinker et al. (2013) measurements.

We note that Tinker et al. (2013) classifies galaxies as star-forming or quiescent based on

a (NUV −R)− (R− J) color-color cut from Bundy et al. (2010) rather than a SFR−M∗

classification such as Eq. 4.18. In Appendix 4.8 we confirm that for the SDSS DR7 group

catalog, fQ calculated using an (NUV −R)− (R− J) color-color classification is consistent

with fQ calculated using a SFR−M∗ classification.

Observations of galaxy populations also find a tight correlation between the SFRs of

star-forming galaxies and their stellar masses, which is referred to in the literature as the

“star formation main sequence” (SFMS; Noeske et al. 2007; Oliver et al. 2010; Karim et al.

2011; Moustakas et al. 2013). Star-forming galaxies with higher stellar masses have higher

SFRs. Roughly, this mass dependence can be characterized by a power law, SFR ∝ Mβ

and for a given stellar mass, SFRs follows a log-normal distribution (Noeske et al. 2007; Lee

et al. 2015). Over cosmic time, this tight correlation decreases in SFR but has a constant

scatter with σlog SFR ∼ 0.3 dex (Noeske et al. 2007; Elbaz et al. 2007; Daddi et al. 2007; Salim

et al. 2007; Whitaker et al. 2012; Lee et al. 2015), In fact this decline SFR of star-forming

galaxies in the SFMS is likely responsible for the remarkable decline of star formation in the

Universe (Hopkins & Beacom 2006b; Behroozi et al. 2013b; Madau & Dickinson 2014).
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Following the typical power-law parameterization of the SFMS, we construct a flexible

parameterization that depends on mass and redshift. For a given stellar mass and redshift,

the mean SFR of the SFMS is given by

SFRMS(M∗, z) = ASDSS

(
M∗

1010.5M�

)βM
10βz(z−0.05). (4.3)

ASDSS is the SFR of the SFMS for the SDSS group catalog atM∗ = 1010.5M�. We determine

βM from fitting Eq. 4.3 to the SFMS of the SDSS group catalog (z = 0.05). Then we

determine βz such that the redshift dependence of our estimate of cosmic star formation

rate,

ρSFR(z) ∝
∫ (

1− f cen
Q

)
SFRMS(M, z)Φ(M, z) dM, (4.4)

is consistent with the redshift dependence of the cosmic star formation rate observations at

z < 1 (Behroozi et al. 2013b). Φ(M, z) and f cen
Q in Eq. 4.4, are the SMF used in the SHAM

procedure (§4.4) and the central galaxy quiescent fraction (Eq. 4.1). This agreement in

redshift dependence ensures the observational consistency between the SMF and the cosmic

star formation density evolution, which Behroozi et al. (2013b) find. We list the best fit

values to ASDSS, βM, and βz in Table 4.1. Our βM and βz values are consistent with similar

parameterizations in the literature (Salim et al. 2007; Moustakas et al. 2013; Lee et al. 2015).

4.5.2 Assigning Star Formation Rates

The first output of the TreePM simulation that we utilize is at zinitial = 1.08. We designate

the central galaxies of this snapshot as quenching, star-forming or quiescent and assign SFRs

to them as the initial conditions of our model. The SFR assignment are based on the observed

galaxy bimodality, the SFMS, and quiescent fraction at zinitial as we detail below.

First, we classify a fraction of the central galaxies as “quenching” galaxies – galaxies
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Figure 4.3: Schematic diagram that illustrate the star formation evolution of central galaxies
in our model (§4.5.3). We plot SFR as a function of tcosmic for a star forming galaxy (blue
dashed), a star-forming galaxy that quenches at tQ,start = 9 Gyr (green) and mark the general
region of quiescent galaxies (orange). Central galaxies while they are star-forming have SFRs
that evolve with the SFMS, which decreases with cosmic time. When star-forming central
galaxies quench, their SFR decreases exponentially with tcosmic. The quenching timescale,
τ cen

Q , we constrain in our analysis dictates how rapidly these galaxies quench based on Eq.
4.8. For comparison we also plot the SFR evolution of a satellite with the same mass using
the Wetzel et al. (2013) quenching timescales (red dashed).
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that reside in the green valley, which are in the transitional state of becoming quiescent

from star-forming. Current observations do not provide strong constraints on the fraction of

galaxies “quenching” at z ∼ 1. So, we use a flexible and mass dependent prescription

fGV (M∗) = AGV (log M∗ − 10.5) + δGV (4.5)

and marginalize over the nuisance parameters, AGV and δGV , in our analysis. For these

designated quenching central galaxies, we assign SFRs by uniformly sampling between the

average SFR of the SFMS (Eq. 4.3) at zinitial and SFRQ(M∗), the SFR of the quiescent peak

of the SDSS central galaxy SSFR distribution, which we later detail in this section.

Next, we classify the remaining 1−fGV of the galaxy population as either star-forming or

quiescent to match f cen
Q (z = zinitial). Galaxies classified as star-forming, are assigned SFRs

based on the log normal SFR distribution of the SFMS at zinitial with scatter σlog SFR ∼ 0.3

(§4.5.1):

log SFRinit
SF = N (log SFRMS (M∗, zinitial), 0.3) . (4.6)

where N represents a Gaussian. Galaxies classified as quiescent are assigned SFRs based on

a log-normal distribution centered about SFRQ,init with scatter σQ
log SFR:

log SFRinit
Q = N (SFRQ,init, σ

Q
log SFR) (4.7)

Both SFRQ,init and σQ
log SFR are determined empirically from the quiescent peak SSFR in

the SDSS central galaxy SSFR distribution: SFRQ,init = 0.4 (logM∗ − 10.5) − 1.73 and

σQ
log SFR = 0.18. Our aim is solely to empirically reproduce the quiescent peak because the

SSFR measurements are largely upper limits, so the peak itself is nonphysical (§4.3).
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4.5.3 Star Formation Evolution

Starting from the initial SFRs of the central galaxies that we just assigned, next, we

evolve the SFRs in order to reproduce the observed evolution of the quiescent fraction and

the SFMS (§4.5.1). The central galaxies in our simulation evolve their SFRs as star-forming

galaxies, quiescent galaxies and quench their star-formation. With the focus of this work

on the quenching timescale of central galaxies, we first discuss how we evolve the SFRs of

central galaxies that quench within our simulation. Then we discuss how we evolve the

SFRs of central galaxies while they are star-forming and after they have quenched their star

formation.

Once a galaxy begins to quench its star formation, its SFR decreases and, on the SFR-

M∗ relation, it migrates from the SFMS to the quenched sequence. We designate the time

when a galaxy starts to quench as tQ,start and model its decline in SFR exponentially with a

characteristic e-folding time τ cen
Q , which we refer to as the “central quenching timescale”:

SFRQuenching(t) = SFRSF(t)× exp

(
−t− tQ,start

τ cen
Q

)
. (4.8)

SFRSF represents the SFR of a star-forming central galaxy, which we define later, and τ cen
Q

characterizes how long quenching mechanism(s) take(s) to cease star-formation in a central

galaxy. In order to determine whether this timescale depends on the stellar mass of the

galaxy, we include a mass dependence:

τ cen
Q (M∗) = Aτ (log M∗ − 11.1) + δτ . (4.9)

In addition to the SFR evolution after they begin to quench, our model must also quantify

when and how many star-forming centrals quench from zinitial.
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For satellite galaxies, the moment they start quenching can be related to the moment

when their host halo is accreted into the central galaxy’s host halo via a time delay of several

Gyrs (Wetzel et al. 2013). However, for central galaxies, the time when they start to quench

is likely characterized by more complex and stochastic mechanisms such as gas depletion from

strangulation (Peng et al. 2015), hot gas quenching (Gabor et al. 2010; Gabor & Davé 2012,

2015) or the onset of AGN activity. Fortunately, using the evolution of the quiescent fraction,

we can statistically model the number of star-forming centrals that quenches throughout the

simulation. We use a Monte Carlo prescription that utilizes a “quenching probability” (PQ)

to determine which star-forming centrals to quench and when to quench them. We define

PQ(M∗, ti) to be the probability that a star-forming central of stellar mass M∗ begins to

quench some time between ti and ti+1.

In the fiducial case where quenching happens instantaneously and the time evolution of

the stellar mass function is negligible, the quenching probability is given directly by the

derivative of the quiescent fraction over time:

P fid
Q (M, ti) =

ti+1 − ti
1− fQ(M, ti)

dfQ

dt
. (4.10)

However, to account for the SMF evolution, we introduce a correction to Eq. 4.10:

∆PQ(M, ti) =
Ntot(M, ti+1)−Ntot(M, ti)

NSF (M, ti)
fQ(M, ti+1). (4.11)

Furthermore, star-forming galaxies do not quench instantaneously. This implies that some

galaxies can begin their quenching but still have high enough SFRs to be misclassified as

star-forming causing a discrepancy between when star-forming galaxies start quenching to

when they become classified as quiescent. This discrepancy depends on the SFRs of the

quenching galaxies and the timescales of the quenching mechanism. Our ultimate goal is to
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characterize this timescale and its dependence on stellar mass, so any strong assumptions

may bias our results. Therefore, we include a flexible mass dependent factor parameterized

by APQ and δPQ to the quenching probability prescription:

fPQ(M) = APQ(logM− 10.5) + δPQ . (4.12)

By including this term to the quenching probability, we treat APQ and δPQ as nuisance

parameters, which mitigate any biases. Combined, the quenching probability we use is

PQ,i(M) = fPQ

(
P fid
Q,i + ∆PQ,i

)
. (4.13)

Later in §4.6.2 we discuss the potential impact of our quenching probability parameterization

on our results. In practice, at each simulation output snapshot ti, a number of star-forming

central galaxies are selected to start quenching based on their assigned quenching probabil-

ities. We note that our quenching probability prescription quenches star-forming galaxies

anywhere on the SFMS.

For quenching galaxies before they begin the quenching process and for star-forming

galaxies that remain star-forming throughout, their star formation histories are dictated by

the evolution of the SFMS. Therefore, we model the star formation evolution of star-forming

central galaxies to statistically trace the redshift and mass dependence of the SFMS. Recall

that the stellar masses of the central galaxies evolve independently from their star formation

histories. Through our SHAM prescription, the stellar mass growth traces the mass accretion

of its host subhalo (§ 4.4). Then, for a star-forming central with initial stellar mass M0 at

zinitial that evolves toM at z to remain on the SFMS, based on Eq. (4.3), the SFR at zinitial
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must evolve by the following factor

fMS =

(
M
M0

)βM
× 10βz(z−z0) (4.14)

where βM and βz are the fixed parameters that characterize the mass and redshift dependence

of the SFMS (§ 4.5.1 and Table 4.1). So while central galaxies with SFR0 at zinitial remain

star-forming they have,

SFRSF = fMS × SFR0. (4.15)

This way, star-forming galaxies follow the observed redshift evolution and mass dependence

of the SFMS. Furthermore, since our prescription keeps the relative positions in SFR from

SFRMS constant, it preserve the SFR scatter of the SFMS – matching observations.

Of course, in reality, the SFHs of star-forming central galaxies do not strictly follow a

simple parameterization of the SFMS evolution. The stellar mass growth of the star-forming

centrals is not only related to the growth of its host subhalo, as our SHAM prescription

assumes, but also linked to their SFHs. Observations, however, suggest a non-trivial con-

nection between stellar mass growth, SFH, and host subhalo growth. For instance, if we

estimate the stellar masses of star forming galaxy by integrating SFRs over time, then the

stellar mass growth of star-forming galaxies with the same initial stellar mass but different

SFR on the SFMS, would diverge over time and the final stellar masses will be significantly

different. In that case, it would be difficult to preserve the SFR scatter in SFMS along

with its log-normal characteristic. Alternatively, if independent of subhalo growth, the SFH

linked stellar mass growth would cause the stellar mass growth for fixed halo mass to di-

verge. This would violate the observed scatter in the Stellar Mass to Halo Mass (SMHM)

relation (Leauthaud et al., 2012a; Tinker et al., 2013; Zu & Mandelbaum, 2015; Gu et al.,

2016). Clearly a mechanism such as a “star formation duty cycle” is required to consolidate
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observations of the SMHM and the SFMS. For the scope of this paper, however, we find that

our above prescription of statistically evolving the SFRs of star-forming galaxies is sufficient

and incorporating stellar mass growth through integrated SFR with a stochastic star forming

duty cycle, does not significant impact the constraints on the quenching timescales. We will

investigate star formation duty cycle in star-forming central galaxies and the link between

stellar mass growth, host halo growth and SFH in Hahn et al. in prep.

Lastly, central galaxies that are quiescent at zinitial or become quiescent during the simula-

tion remain quiescent. Their SFR evolution is determined only to empirically reproduce the

quiescent peak of the SSFR distribution at z = 0.05, similar to the initial SFR assignment

in §4.5.2. For galaxies that are quiescent at zinitial, we evolve the SFRs in order to conserve

the SSFRs throughout the simulation: SSFRQ = SSFR0, the initial SSFR at zinitial. Then,

SFRQ = SSFR0 ×M∗ (4.16)

where M∗ is stellar mass at the simulation outputs derived from SHAM.

For galaxies that start off as star-forming at zinitial and quench during the simulation,

based on Eq. 4.8 their SFRs can decrease enough so that their SSFRs fall below the SSFR

upper bounds of the Brinchmann et al. (2004) SSFR measurements. When we later compare

the SSFR distributions of our model to the SDSS DR7 central galaxy catalog, the quenching

galaxies with SSFRs below the SSFR bounds will spuriously cause discrepancies in the

comparison. To prevent this, we impose a final quenched SSFR, based the quiescent peak

of the observed SSFR distribution, for each galaxy when it begins to quench. Therefore, in

our model, SFR of quenching galaxies only decreases until an assigned final quenched SSFR.

Afterwards, their SFRs are evolved to conserve the SSFR (Eq. 4.16).

Figure 4.3 qualitatively illustrates the SFR evolution of star-forming (blue dashed),
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quenching (green solid), and quiescent (orange) central galaxies as a function of cosmic

time throughout the simulation. The SFR of star-forming galaxies reflects the SFR evo-

lution of the SFMS which decreases with time. The quenching galaxy starts to quench at

tQ,start = 9 Gyr. Its departure from the SFMS is clearly illustrated at tcosmic > 9 Gyr. The

slope of its SFR decline is dictated by the quenching timescale. Since the lower bound of the

SSFR in the SDSS group catalog does not have any physical significance, we broadly mark

the region with log SSFR < log SSFRQ + σQ
log SFR as quiescent in Figure 4.3.

More quantitatively, in the top panel of Figure 4.4 we present the evolution of the SSFR

distribution in our model (for a reasonable set of model parameter values) to illustrate how

we track the star formation of central galaxies from z ∼ 1. For this particular set of model

parameter values, fGV ∼ 0 within the stellar mass bin. We plot the SSFR distribution for

central galaxies in the stellar mass range [1010.1M�, 1010.5M�] for a number of simulation

output snapshots in the redshift range 0 < z < 1 (top; darker with time). It demonstrates

how our model reproduces the observed evolution of the SFMS and quiescent fraction. With

time, the star-forming peak of the SSFR distribution decreases in SSFR tracing the SFMS

evolution. The amplitude of the star-forming peak also decreases and is accompanied by the

growth of the quiescent peak, reflecting the quiescent fraction evolution and the lower bound

of SSFR measurements we impose.

In the bottom panel, we compare the SSFR distribution of our model at z = 0.05 using

a relatively shorter (dashed) and longer (dotted) quenching timescale than in the top panel

(solid). The quenching timescale (parameterized by Aτ and δτ in Eq. 4.9) dictates how long

quenching central galaxies take to migrate from the SFMS to quiescence. The comparison

illustrates that the length of the quenching timescale is reflected in the “height” of the

SSFR distribution green valley. Longer quenching timescales, result in a higher green valley.

Shorter quenching timescales, result in a lower one.
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Table 4.1: Parameterizations in the Central Galaxy SFH Model with Fixed Parameters

Parameter Value

Central Galaxy Quiescent Fraction (Eq. 4.1)
f cen

Q (M∗, z) = f cen
Q (M∗, z = 0)× (1 + z)α(M∗)

= (A0 + A1 logM∗)× (1 + z)α(M∗)

A0 −6.04
A1 0.64

−2.57 M∗ ∈ [109.5 − 1010M�]
−2.52 M∗ ∈ [1010 − 1010.5M�]

α(M∗) −1.47 M∗ ∈ [1010.5 − 1011M�]
−0.55 M∗ ∈ [1011 − 1011.5M�]
−0.12 M∗ ∈ [1011.5 − 1012M�]

SFMS SFR z and M∗ Dependence (Eq. 4.3)

SFRMS = ASDSS

(
M∗

1010.5M�

)βM
10βz(z−0.05)

ASDSS 10−0.11 M�/yr
βM 0.53
βz 1.1

We list the parameters and their best-fit values for the central galaxy quiescent fraction
(Eq. 4.1) and SFMS SFR redshift and stellar mass dependence (Eq. 4.3) parameterizations.
f cen

Q (z = 0) is fit using the central galaxies of the SDSS DR7 group catalog and the redshift

dependence is fit using f cen
Q measurements from Tinker et al. (2013). Similarly, SFRMS(z =

0.05) is fit using the group catalog while the redshift dependence paramerization is fit to
reproduce the redshift dependence of the Behroozi et al. (2013b) cosmic star formation at
z < 1.
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Figure 4.4: Top: The evolution of the SSFR distribution in our model (§4.5.2) for a
reasonable set of parameter values. The model evolves the SFR of central galaxies from z ∼ 1
(light) to 0.05 (dark) while reproducing the observed SFMS and quiescent fraction evolutions.
The shift in the star forming peak of the SSFR distribution from z = 1, reflects the overall
decline in SFR of the SFMS over time. The quiescent fraction evolution is reflected in the
growth of the quiescent peak accompanied by the decline of the star-forming peak. Bottom:
Comparison of the SSFR distribution at z = 0.05 using a relatively shorter (dashed) and
longer (dotted) quenching timescale than the above panel (solid). The quenching timescale
(parameterized by Aτ and δτ ), dictates how long quenching central galaxies spend in between
the peaks. This is ultimately reflected in the height of the green valley. For longer quenching
timescales, the height of the SSFR distribution green valley will higher. For shorter quenching
timescales, it will lower.
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Figure 4.5: We present the constraints we obtain for our model parameters using ABC-
PMC. The diagonal panels plot posterior distributions of each of our model parameters,
while the off-diagonal panels plot the degeneracies of parameter pairs. For each of the
posterior distributions, we mark the 68% confidence interval (vertical dashed lines). We also
mark the median of the posterior distributions in all the panels in black.
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Table 4.2: Parameterizations in the Central Galaxy SFH Model with Free Parameters

Quantity Description Parameter Prior

τ cen
Q = Central Quenching Timescale Aτ [−1.5, 0.5]
Aτ (log M∗ − 11.1) + δτ in Gyrs (Eq. 4.9) δτ [0.01, 1.5]

fGV = Initial z ≈ 1 Green Valley AGV [0., 1.]
AGV (log M∗ − 10.5) + δGV Fraction (Eq. 4.5) δGV [−0.4, 0.6]

fPQ = Quenching Probability APQ [−5., 0.]
APQ(logM∗ − 10.5) + δPQ Factor (Eq. 4.12) δτ [0.5, 2.5]

We list the parameterizations of the quenching timescale (Eq. 4.9), the initial z ≈ 1 green
valley fraction (Eq. 4.5), and the quenching probability factor (Eq.4.12) that we use in our
model (§4.5). In our Approximate Bayesian Computation parameter inference, we constrain
the parameters listed in the four column. For the prior probability distributions of these
parameters, we use uniform priors with the ranges listed in the last column. We note that
while we allow δGV < 0 due to the mass dependence of fGV , fGV can only be non-negative
in our model.

Figure 4.6: Comparison between the SSFR distribution calculated using the median of the
ABC posterior distribution as the set of model parameters (orange) and the SSFR distribu-
tion of the SDSS DR7 central galaxies (black dash). The SSFR distribution from the median
of the ABC posterior show good overall agreement. The distributions are especially consis-
tent in the transition (green valley) regions, which are dictated by the quenching timescale
parameters.
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Figure 4.7: Quenching timescale, τ cen
Q , of central galaxies (red) as a function of stellar mass.

We plot τ cen
Q of the median parameter values of the ABC posterior distributions (red points)

along with τ cen
Q drawn from the final iteration ABC parameter pool (faint red lines). For

comparison, we also plot the satellite quenching timescale of Wetzel et al. (2014) (black
dashed). The constraints we get for quenching timescale of central galaxies reveal that
central galaxies have a significantly longer quenching timescale than satellite galaxies.
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Figure 4.8: The SSFR distribution generated from the median values of the parameter
constraints obtained from our analysis using Wetzel et al. (2013) satellite quenching timescale
as the quenching timescale of our central galaxies (red) in four stellar mass bins. In each
panel, we reproduce the quiescent fraction of the SDSS DR7 central galaxies; however,
comparison to the SSFR distribution of the SDSS DR7 centrals (black dash) find significant
discrepancies in each of the bins. The SSFR distribution using satellite quenching timescale
have much shallower green valley regions as a result of galaxies quenching much faster with
satellite quenching timescale. This disagreement of model predictions for satellites applied to
observations of centrals clearly demonstrates that centrals require longer quenching timescales
than satellites.
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Figure 4.9: Central galaxy quenching timescales (τ cen
Q ) derived from using SMF prescriptions

with no SMF evolution (green) and with extreme SMF evolution (red) in our analysis. For
comparison we include the satellite galaxy quenching timescale from Wetzel et al. (2013) and
τ cen

Q we obtain using our fiducial SMF prescription. Even extreme choices for the SMF evo-
lution is insufficient to account for the significant difference between the central and satellite
quenching timescales. The different SMF evolution mainly impacts the mass dependence,
not the amplitude of τ cen

Q .
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4.6 Results

Now that we have a model for evolving star formation in central galaxies, in this section,

we constrain the parameters of the model.

4.6.1 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is a generative, simulation-based inference

for robust parameter estimation. It has the advantage over standard approaches for parame-

ter inference in that it does not require explicit knowledge of the likelihood function. It only

relies on a simulation of observed data and on a metric for the distance between the observed

data and simulation. It has already been effectively used for astronomy and cosmology in

the literature (Cameron & Pettitt 2012b; Weyant et al. 2013b; Akeret et al. 2015b; Ishida

et al. 2015b; Lin & Kilbinger 2015b; Lin et al. 2016b; Hahn et al. 2016, and Cisewski et

al. in prep.), spanning a wide range of topics. For our purposes, which is to constrain the

quenching timescale parameters, we use the observed SSFR distribution and quiescent frac-

tion. ABC provides an ideal framework for parameter inference without having to specify

the explicit likelihood of these observables. In practice, we use ABC in conjunction with the

efficient Population Monte Carlo (PMC) importance sampling (Ishida et al. 2015b; Hahn

et al. 2016).

ABC requires a number of specific choices for implementation: a simulation of the data,

a set of prior probability distributions for the model parameters, and a distance metric to

compare the “closeness” of the simulation to the data. In §4.5, we described our model for

the star formation evolution of central galaxies. The parameters of our model, which we

constrain in our ABC analysis are listed in Table 4.2. For the prior probability distributions

of the simulation parameters, {AGV, δGV, APQ , δPQ , Aτ , δτ}, we choose uniform priors with
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conservative ranges also listed in Table 4.2.

The distance metric in ABC parameter estimation is — in principle — a positive definite

function that compares various summary statistics between the data and the simulation. It

can be a vector with multiple components where each component is a distance between one

particular summary statistic of the data and that of the simulation. For our case, the sum-

mary statistics we use for our distance metric are the observables we seek to reproduce with

our model: the quiescent fraction evolution and SDSS DR7 central galaxy SSFR distribution.

Therefore, we use a two component distance metric, ~ρ = [ρQF, ρSSFR].

We calculate the first component, ρQF, so that our model best reproduces the quiescent

fraction at multiple snapshots:

ρQF =
∑
M

∑
z′∈{z}

(
f cen

Q (M, z′)− fmodel
Q (M, z′)

)2
(4.17)

where {z} = {0.05, 0.16, 0.34, and 1.08} and f cen
Q is the parameterization of the observed

quiescent fraction (Eq. 4.1). For fmodel
Q rather than using the evolutionary stages of the sim-

ulation central galaxies in the model, we measure it using the same SFR−M∗ classification

used for deriving f cen
Q in Eq. 4.1 and 4.2. The SFR−M∗ cut in this classification is derived

from the slope of the SFMS relation (Eq. 4.3):

log SFRcut = log SFRMS − 0.9. (4.18)

If a galaxy SFR is less than SFRcut, then it is classified as quiescent; otherwise, as star-

forming. This classification is analogous to the quiescent/star-forming classification of Mous-

takas et al. (2013), which also utilizes the slope of the SFMS. By measuring the quiescent

fraction of the simulation we are more consistent with observations, which have no way of

knowing the evolutionary stage of galaxies beyond their SFR and M∗.
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Our redshift choices for Eq. 4.17 is primarily motivated to ensure that our model agrees

with the observed quiescent fraction throughout the lower redshifts (z < 0.5). By incorpo-

rating the z′ < 0.5 contributions, we constrain APQ
and τPQ

, which dictate the quenching

probabilities. zinitial = 1.08 is also included to ensure that our initial conditions are consistent

with observations.

The second component of our distance metric compares the SSFR distribution of the

SDSS DR7 central galaxies to that of our model. More specifically,

ρSSFR =
∑
SSFR

(
P (SSFR)SDSS − P (SSFR)model

)2
. (4.19)

As we discuss in § 4.5.3, the quenching timescale parameters leave an imprint on the SSFR

distribution. So ρSSFR successfully serves to constrain Aτ and δτ .

We note that the low SSFR end of P (SSFR)SDSS is impacted by the fact that the SSFR .

10−12 yr−1 from Brinchmann et al. (2004) are upper bounds (§ 4.3). ρSSFR, however, does

not account for this effect. Instead, as we describe in § 4.5.3, we include this effect in our

model when dealing with quiescent and quenching galaxies. Therefore, we do not expect the

low SSFRs in Brinchmann et al. (2004) to significantly impact the constraints on Aτ and δτ .

Beyond our choice of distance metric, we strictly follow the ABC-PMC implementation

of Hahn et al. (2016). For aficionados, we use a median distance threshold after each itera-

tion of the PMC and declare convergence when the acceptance ratio falls below 1%. Once

converged, the ABC algorithm produces parameter distributions that generate models with

quiescent fractions and SSFR distributions close to observations. Moreover, these parameter

distributions predict the posterior distributions of the parameters. For further details, we

refer readers to Hahn et al. (2016).
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4.6.2 Central Galaxy Quenching Timescale

We present the central galaxy quenching timescale constraints we obtain using ABC

(§4.6.1), in Figure 4.5. The diagonal panels of the figure plot the posterior distribution

of each of our model parameters with vertical dashed lines marking the median and the

68% confidence interval. The off-diagonal panels plot the degeneracies between parameter

pairs. We also mark the median of the posterior distribution for each of the parameters

(black). The off-diagonal panels illustrate that the initial green valley parameters are not

degenerate with the other parameters. Galaxies that are initially in the green valley quickly

evolve out of it, so the green valley prescription is mainly constrained by the quiescent

fraction at zinitial. Furthermore, the off-diagonal panels that plot the degeneracies between

the quenching probability parameters and the quenching timescale parameters exhibit ex-

pected correlation between the parameters: the longer the quenching timescale the larger

the quenching probability correction factor (fPQ).

We compare the SSFR distribution generated from our model using the median model

parameter values of the posterior distribution (orange) to the SSFR distribution of the

SDSS DR7 central galaxy catalog (black dashed), in Figure 4.6. The SSFR distribution are

computed for four stellar mass bins. We find good agreement between the SSFR distributions

in each of the bins. More importantly, the model with parameters values from the posterior

distribution is able to successfully reproduce the height of the green valley.

In Figure 4.7, we plot the central galaxy quenching timescale τ cen
Q (M) corresponding to

the median parameter values of the posterior (red points) and compare it to the satellite

quenching timescale in Wetzel et al. (2013). We also plot τ cen
Q (M) for Aτ and δτ of the final

iteration ABC parameter pool (light red lines) and error bars on median τ cen
Q to represent

the 1-sigma values in stellar mass bins of width ∆ logM = 0.25 dex. The model used in

Wetzel et al. (2013) to infer the satellite quenching timescale has notable difference from
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our model. However, an analogous analysis reproduces an equivalent satellite quenching

timescale. The comparison of the quenching timescales reveal that both timescales exhibit

significant mass dependence, which curiously appear to have similar slopes. The similarity,

however, is difficulty to precisely quantify because of the uncertainties in both timescales.

The comparison, above all, illustrates that the quenching timescale of central galaxies is

significantly longer than the quenching timescale of satellites.

To determine whether our constraints on the central galaxy timescale are robust, we

carry out a similar analysis where we fix the quenching timescale parameters to the satellite

quenching timescale of Wetzel et al. (2013). Then we use ABC-PMC with Eq. 4.17 as the

distance metric to constrain the parameters AGV, δGV, APQ , and δPQ . In Figure 4.8, we plot

the SSFR distribution generated from median parameter values of the parameter constraints

and compare it to the SSFR distribution of the SDSS DR7 central galaxies. At all stellar

mass bins, while the quiescent fraction is generally reproduced, the height of the green valley

for the model using satellite quenching timescale is significantly lower than the green valley

of the SDSS DR7 centrals. Therefore, a longer quenching timescale is necessary to reproduce

the height of green valley for central galaxies.

In addition to the quenching timescale constraints, the posterior probability distributions

of our model parameters in Figure 4.5, also produce constraints for the quenching probability

(Eq. 4.13). Recent works such as Moustakas et al. (2013) and Lian et al. (2016) have

published measurements of a comparable quantity: the quenching rate. At 0.02 < z < 0.05

and in three mass bins between 1010 and 1010.6 M�, Lian et al. (2016) measures quenching

rates of 19, 25, and 33%/Gyr. Similarly, Moustakas et al. (2013) measures the quenching

rate for four stellar mass between 109.5 and 1011.5 M� out to z ∼ 0.8. At z > 0.2, the

Moustakas et al. (2013) quenching rates range between 1−12%/Gyr. These quenching rates

are generally in good agreement with the PQ from our constraints.
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We refrain from a more detailed comparison due to a number of underlying differences

between the quenching rates in the literature and our PQ. For instance, these quenching

rates are derived for the entire galaxy population and not the central galaxy population.

Furthermore, our PQ describes the probability that a star-forming central galaxy begins to

quench, not the rate at which star-forming galaxies become quiescent. We also note that

PQ is dictated by the SMF and quiescent fraction evolution, so a detailed comparison would

require a detailed comparison of the different SMF and quiescent fraction evolutions.

In our model, we obtain stellar masses of central galaxies from the SHAM prescription

of host subhalos. As a result, the stellar mass evolution of our central galaxies is sensitive to

the SMF and its evolution. In our SHAM procedure, we formulate the SMF based on Li &

White (2009) and Marchesini et al. (2009), which evolves significantly forM < 1011M� over

z < 1. SMF measurements from PRIMUS for z < 1 in Moustakas et al. (2013), however,

fail to find such significant SMF evolution. To confirm whether or not our central quenching

timescale constraint remains robust over different degrees of SMF evolution, we test our

results with two extreme models of SMF evolution (included in Figure 4.1): (1) a model in

which the SMF does not evolve with time, and (2) a model in which the SMF at z = 1.2 is

roughly half of our fiducial SMF at z = 1.2. We plot the results in Figure 4.9. We plot the

τ cen
Q (M) of the median posterior parameter values from our analysis using extreme models

of SMF evolution. While the SMF evolution impacts the mass dependence, τ cen
Q (M) remains

significantly longer than the quenching timescale of satellites.

We also repeat the analysis for different parameterizations of f cen
Q ; more specifically, the

two f cen
Q parameterization in Wetzel et al. (2013). Regardless of the f cen

Q parameteriza-

tion, we find that τ cen
Q (M) is greater than the satellite quenching timescale. We conclude

that our central quenching timescale results are robust over the specific choices we make in

implementing our model.
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4.7 Discussion

4.7.1 Central versus Satellite Quenching

One key result of the central galaxy quenching timescales we infer is its difference with the

satellite galaxy quenching timescale from Wetzel et al. (2013). For the entire stellar masses

range probed, the quenching timescale of central galaxies is ∼ 0.5 Gyr longer than that of

satellite galaxies. This corresponds to central galaxies taking approximately ∼ 2 Gyrs longer

than satellite galaxies to transition from the SFMS to the quiescent peak. Moreover, this

difference suggests that quenching mechanisms responsible for the cessation of star formation

in central galaxies are different from the ones in satellite galaxies.

At a glance, this difference in central and satellite quenching timescale is rather unex-

pected since the SSFR distribution of central (blue) and satellite (orange) galaxies of the

SDSS DR7 Group Catalog in Figure 4.10, show remarkably similar green valley heights.

However, the similarity in green valley height is not determined by the quenching timescale

alone. It reflects the combination of quenching timescale and the rate that star-forming

galaxies transition to quenching. Since the satellite quenching timescale is shorter than that

of centrals, star-forming satellites transition to quenching at a higher rate than star-forming

centrals at z = 0. The difference in this transition rate is even higher than what the quench-

ing timescale reflects because tidal disruption and mergers preferentially destroy quiescent

satellite galaxies.

The implication that satellites and centrals have different quenching mechanisms is

broadly consistent with the currently favored dichotomy of quenching mechanisms: satellite

galaxies undergo environmental quenching while central galaxies undergo internal quenching.

It is also consistent with the significant difference in the structural properties of quiescent

satellites versus centrals (Woo et al., 2016), which also suggests different physical pathways

188



for quenching satellites versus centrals. Furthermore, it explains the environment depen-

dence in the quiescent fraction evolution in recent observations (Hahn et al. 2015; Darvish

et al. 2016). Both central and satellite quenching contribute in high density environments

while only central quenching contributes in the field causing the quiescent fraction to increase

more significantly in high density environments.

Additionally, combined with the Wetzel et al. (2013) result that atM∗ > 1010M� central

galaxy quenching is the dominant contributor to the growth of the quiescent population, we

can also characterize mass regimes where environmental or internal quenching mechanisms

dominate, similar to Peng et al. (2010). BelowM∗ < 109M�, satellite quenching is the only

mechanism (Geha et al., 2012b) and internal quenching is ineffective. Until M∗ < 1010M�,

environmental quenching continues to be the dominant mechanism. At M∗ > 1010M�

internal quenching dominates.

4.7.2 Quenching Star Formation in Central Galaxies

Numerous physical processes have been proposed in the literature to explain the quench-

ing of star formation. Observations, however, have yet to identify the primary driver of

quenching or consistently narrowing down proposed mechanisms. The quenching timescale

we derive for central galaxies provides a key constraint for any of the proposed mechanisms.

Only processes that agree with our central galaxy quenching timescales, can be the main

driver for quenching star formation in central galaxies.

Merger driven quenching has often been proposed as a driving mechanism of star for-

mation quenching (Springel et al. 2005; Hopkins et al. 2006, 2008a,b). In this proposed

mechanism, quenching is typically driven by gas-rich galaxy mergers which induce starburst

and rapid black hole growth. Cosmological hydrodynamics simulations that examine merg-

ers, however, conclude that quenching from mergers alone cannot produce a realistic red
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Figure 4.10: SSFR distributions of the central galaxies versus the satellite galaxies in the
SDSS DR7 Group Catalog with stellar mass between 1010.1 and 1010.5M�. Both SSFR distri-
butions have similar green valley heights (green shaded region). Since central galaxies have
significantly longer quenching timescales, satellite galaxies have a higher rate of transitioning
from star-forming to quenching than central galaxies.
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Figure 4.11: Comparison of the central galaxy quenching migration time estimate we infer,
(tcen

mig; orange) with quenching time estimates for gas depletion absent accretion (strangu-
lation) and morphological quenching. The width represents the 68 % confidence region
propagated from the posterior distributions of the τ cen

Q parameters. For strangulation, we
include the gas depletion time at z = 0.2 derived from the star formation efficiency esti-
mates in Popping et al. (2015) (blue dash-dotted). The surrounding blue shaded region
plots the range of gas depletion times at z = 0.15 (longer) to 0.25 (shorter). We also include
the quenching migration time inferred from the Peng et al. (2015) gas regulation model
(dashed). For morphological quenching we plot the quenching times taken from the star
formation histories of the simulated galaxy in Martig et al. (2009) (star). We also include
the quenching times of the Milky Way in Haywood et al. (2016) (triangle). The quenching
timescale of strangulation exhibit a similar stellar mass dependence and is generally con-
sistent with our central quenching timescales. Although its feasibility for a wider galaxy
population is unexplored, the quenching timescale from morphological quenching is in good
agreement with our timescale.
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sequence (Gabor et al. 2010, 2011. Gabor et al. (2011) used an on-the-fly prescription to

identify mergers and halos in order to test different prescriptions for quenching star forma-

tion. In addition to failing to produce a realistic red sequence, they find that mergers cannot

sustain quiescence due to gas accretion from the inter-galactic medium, which refuels star

formation after 1 − 2 Gyr. The major mergers examined in the four high resolution zoom

in cosmological hydrodynamic simulation of Sparre & Springel (2016) also fail to sustain

quiescence after 1− 2 Gyr (Sparre et al. in prep.).

AGN feedback has also been proposed as a quenching mechanism (Kauffmann & Haehnelt

2000; Croton et al. 2006; Hopkins et al. 2008a; van de Voort et al. 2011), sometimes in

conjunction with mergers as a way to sustain quiescence or on its own. The feedback of the

AGN deposit sufficient energy, which subsequently prevents additional gas from cooling. A

number of more recent works have, however, cast doubt on the role of the AGN in quenching.

Mendel et al. (2013), identified quenched galaxies, with selection criteria analogous to the

selection of post-starburst galaxies, in the SDSS DR7 sample and found no excess of optical

AGN in them, suggesting that AGN do not have defining role in quenching. Gabor &

Bournaud (2014) further argue against AGN quenching by examining gas-rich, isolated disk

galaxies in a suite of high resolution simulations where they find that the AGN outflows

have little impact on the gas reservoir in the galaxy disk and furthermore fail to prevent gas

inflow from the intergalactic medium. Yesuf et al. (2014) examined post-starburst galaxies

transitioning from the blue cloud to the red sequence to find a significant time delay between

the AGN activity and starburst phase, which suggests that AGN do not play a primary role

in triggering quenching. AGN may yet be responsible for quenching in conjunction with

other mechanisms or have a role in sustaining quiescence.

Besides mergers and AGN driven processes, another class of proposed mechanisms in-

volves some process(es) that restrict the inflow of cold gas – strangulation. With little inflow
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of cold gas, the galaxy quenches as it depletes its cold gas reservoir. One mechanism that

has been proposed to prevent cold gas accretion is loosely referred to as “halo quenching”.

A hot gaseous coronae, which form in halos with masses above ∼ 1012M� via virial shocks,

starves galaxies of cold gas for star formation (Birnboim & Dekel 2003; Kereš et al. 2005;

Cattaneo et al. 2006; Dekel & Birnboim 2006; Birnboim et al. 2007; Gabor & Davé 2012,

2015). For these sorts of mechanisms, the quenching timescale is linked to the time it takes

for the galaxy to deplete its cold gas reservoir – the gas depletion timescale.

In principle, the gas depletion time can be estimated from measurements of the total

gas mass or gas fraction. In Popping et al. (2015), for instance, they derive “star formation

efficiency” (SFE; inverse of the gas depletion time) by dividing the SFR of the SFMS by

the total galaxy gas mass that they infer from their semi-empirical model. These sorts of

gas depletion time estimates, however, have significant redshift dependence because the gas

fraction of galaxies do not evolve significantly over z < 1 (Stewart et al. 2009; Santini et al.

2014; Popping et al. 2015).

Nevertheless, in Figure 4.11 we estimate the central quenching migration time (tcen
mig;

orange) – the time it takes central galaxies to migrate from the SFMS to quiescent estimated

from our τ cen
Q – to the gas depletion times derived from the Popping et al. (2015) SFEs (blue).

For tcen
mig, we compute the time it takes a quenching galaxy to transition from the SFMS to the

quiescent peak of the SFR distribution at z = 0.2. We compute tcen
mig at z = 0.2 because this

is approximately when the z ≈ 0 green valley galaxies would have started quenching. For

the gas depletion time, we invert the SFE at z = 0.2, interpolated between the z = 0. and

z = 0.5 Popping et al. (2015) SFEs (blue dot-dashed). The surrounding blue shaded region

marks the range of gas depletion times from z = 0.15 (longer) to 0.25 (shorter) to illustrate

the significant redshift dependence. We also note that over the redshift range z = 0.5 to 0.,

at M = 1010M�, the Popping et al. (2015) gas depletion time varies from ∼ 2.5 to 7 Gyrs.
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The tcen
mig and gas depletion time in Figure 4.11 are generally in agreement with each other

and exhibit similar mass dependence.

Beyond the estimates of gas depletion times from gas mass, recently Peng et al. (2015),

using a gas regulation model (e.g. Lilly et al. 2013; Peng & Maiolino 2014), explored the

impact that different quenching mechanisms have on the stellar metallicity of local galaxies

from the SDSS DR7 sample. To reproduce the stellar metallicity difference between quiescent

and star forming galaxies in their galaxy sample, they conclude that the primary mechanism

for quenching is gas depletion absent accretion and it has a typical quenching migration

time of tmig ∼ 4 Gyr for M < 1011M�. We infer the quenching migration time from Figure

2 of Peng et al. (2015) and include it in Figure 4.11 (dashed). The Peng et al. (2015)

migration time exhibits a similar mass dependence as our central quenching migration time.

Furthermore, although slightly shorter at M > 5 × 1010M�, the migration time is broadly

consistent with our central quenching migration time.

Overall, our tcen
mig is consistent with the migration time estimates of gas depletion mech-

anisms. In other words, our central galaxy quenching timescale is consistent with the

timescales predicted by gas depletion absent accretion. One currently favored model for

halting cold gas accretion – halo quenching – quenches galaxies that inhabit host halos with

masses greater than some threshold ∼ 1012M�. Based on SHAM, this halo mass threshold

corresponds to stellar masses of ∼ 1010.25M�. Yet, a significant fraction of the SDSS central

galaxy population with stellar masses < 1010.25M� are quiescent. While, scatter in the halo

mass threshold and the stellar mass to halo mass relation, combined, may help resolve this

tension, halo quenching faces a number of other challenges. For instance, the predictions

of halo quenching models are difficult to reconcile with the observed scatter in the stellar

mass to halo mass relation (Tinker 2016). Furthermore, models that rely only on such halo

quenching still must account for the hot gas in the inner region of the halo, which, because of
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its high density, often has short cooling times of just 1− 2 Gyr. Of course, the challenges of

halo quenching does not rule out quenching from gas depletion absent accretion since other

mechanisms may also prevent cold gas from accreting onto the central galaxy

Finally, morphological quenching has also been proposed as a mechanism responsible for

quenching star formation. In the mechanism proposed by Martig et al. (2009), for instance,

star formation in galactic disks are quenched once the galactic disks become dominated by

a stellar bulge. This stabilizes the disk from fragmenting into bound, star forming clumps.

In a cosmological zoom-in simulation of a ∼ 2 × 1011M� galaxy selected to examine such

a mechanism, Martig et al. (2009) finds that the galaxy quenches its star formation from

∼ 10 M�yr−1 to ∼ 1.5 M�yr−1 in ∼ 2.5 Gyr during the morphological quenching phase. A

M ∼ 2 × 1011M� galaxy with t̂Q ∼ 2.5 Gyr (star; Figure 4.11) is in good agreement with

t̂cen
Q . Despite this agreement, morphological quenching faces a number of challenges. There is

little evidence from modern cosmological hydrodynamic simulations that suggest that mor-

phological quenching can drive anything beyond short timescale fluctuations in gas fueling

and SFR. Furthermore, proposed morphological quenching mechanisms face the “cooling

flow problem” where they fail to prevent gas cooling onto a galaxy. Without addressing this

issue, proposed morphological quenching mechanisms cannot maintain quiescence.

Our own Milky Way galaxy, as Haywood et al. (2016) finds, after forming its bar un-

dergoes quenching. In the star formation history of the Milky Way that Haywood et al.

(2016) recovers, the SFR of the Milky Way decreases by an order of magnitude over the

span of roughly 1.5 Gyr. Converting to t̂Q in a similar fashion as our t̂cen
Q estimates and

assuming a Milky Way stellar mass of ∼ 6 × 1010M� (Licquia & Newman 2015; Haywood

et al. 2016), we find remarkable agreement with our t̂cen
Q (Figure 4.11). Motivated by the

contemporaneous formation of the bar with quenching, Haywood et al. (2016) suggest a

bar driven (morphological) quenching mechanism that inhibits gas accretion through high
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level turbulence supported pressure that is generated from the shearing of the gaseous disk.

Although, this proposal may resolve the cooling-flow problem, their arguments for the mech-

anism are qualitative and thus require more detailed investigation. Admittedly, however,

this particular comparison is hastily made since quenching event occurs beyond the redshift

probed by our simulation at 1 < z < 2. Furthermore, after dramatic quenching episode,

based on the star formation history that Haywood et al. (2016) recovers, the Milky Way

resumes star formation at a much lower level.

The central quenching timescale we infer from our analysis provides key insight into the

physical processes responsible for quenching star formation. It offers a means of assess-

ing the feasibility of numerous quenching mechanisms, which operate on distinct timescale.

Based on the latest models and simulations, merger driven quenching has fallen out of favor

and AGN alone seem insufficient in triggering quenching. Mechanisms that halt cold gas

accretion, such as halo quenching, predict quenching times generally consistent with our

estimates from the central quenching timescale we derive. However, it fails to explain the

significant low mass quiescent population of central galaxies. Morphological quenching, with

its agreement in quenching time, may be a key physical mechanism in quenching star forma-

tion. However, more evidence is required that it can address the cooling flow problem and

maintain quiescence. Furthermore, its role in the overall quenching of galaxy populations –

not just single simulated galaxies – still remains to be explored.

4.8 Summary

Understanding the physical mechanisms responsible for quenching star formation in

galaxies has been a long standing challenge for hierarchical galaxy formation models. Fol-

lowing the success of Wetzel et al. (2013) in constraining the quenching timescales of satellite
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galaxies, in this work, we focus on star formation quenching in central galaxies with a similar

approach. Using a high resolution N -body simulation in conjunction with observations of

the SMF, SFMS, and quiescent fraction at z < 1, we construct a model that statistically

tracks the star formation histories of central galaxies. The free parameters of our model

dictate the height of the green valley at the initial redshift, the correction to the quenching

probability, and most importantly, the quenching timescale of central galaxies,

Using ABC-PMC with our model, we infer parameter constraints that best reproduce

the observations of the central galaxy SSFR distribution from the SDSS DR7 Group Catalog

and the central galaxy quiescent fraction evolution. From the parameter constraints of our

model, we find the following results:

1. The quenching timescale of central galaxies exhibit a significant mass dependence:

more massive central galaxies have shorter quenching timescales. Over the stellar

mass range M = 109.5 − 1011.5M�, τ cen
Q ∼ 1.2 − 0.5 Gyr. Based on these timescales,

central galaxies take roughly 2 to 5 Gyrs to traverse the green valley.

2. The quenching timescale of central galaxies is significantly longer than the quenching

timescale of satellite galaxies. This result is robust for extreme prescriptions of the

SMF evolution in our simulation and even for different parameterizations of the central

quiescent fraction.

3. The difference in quenching timescales of satellite and centrals suggest that different

physical mechanisms are primary drivers of star formation quenching in satellites versus

centrals. Satellite galaxies experience external “environment quenching” while central

galaxies experience internal “self quenching”.

4. We compare the central quenching timescales we infer to the gas depletion timescales

predicted by quenching through strangulation and find broad agreement. We also find
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good agreement with morphological quenching; however, its feasibility in maintaining

quiescent and for a wider galaxy population remains to be explored.

Ultimately, the central galaxy quenching timescale we obtain in our analysis provides a

crucial constraint for any proposed mechanism for star formation quenching.

One key component of our simulation is the use of SHAM to track evolution of stellar

masses of central galaxies. As mentioned above, the central galaxy quenching timescale

results we obtain remain unchanged if we use stellar mass growth from integrated SFR.

However, the use of SHAM stellar masses neglects the connection between stellar mass growth

and star formation history. To incorporate integrated SFR galaxy stellar mass growth in our

simulation, however, a better understanding of the detailed relationship among stellar mass

growth, host halo growth, and the observed stellar mass to halo mass relation is required.

We will explore this in future work.
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Conclusion

Over the next decade future surveys, namely eBOSS and DESI, will expand the cos-

mic volumes probed with redshifts by an order of magnitude. They have the potential to

measure the growth of structure and constrain cosmological parameters with unprecedented

precision. The main challenges for realizing their full statistical power are methodological.

The frameworks I present in this dissertation – robust treatment of systematics, innovative

approaches to accurate inference, and improved models of the galaxy-halo connection – can

be extended to these future surveys and used to tackle key methodological challenges.

For instance, observational systematics such as fiber collisions will continue to impact

galaxy clusteing analyses of eBOSS and DESI, which will utilize fiber-fed spectrographs. As

described in Chapter 1, due to the impact that fiber collisions have on small scales, much of

the statistical gains from eBOSS and DESI will be wasted if they are not properly account

for in analyses. In fact, in eBOSS and DESI the systematics will be more complicated with

multiple classes of target objects and automated fiber positioning (Cahn et al., 2015; Dawson

et al., 2015). But the methods from Chapter 1 can be extended to both surveys.

Furthermore, in Chapter 2, we revealed deviations between the ABC posterior probabil-

ity distribution and the standard Gaussian pseudo-likelihood approach to inference – even

in the narrower context of halo occupation modeling. Yet there have not been direct investi-

gations on the impact of the standard assumptions on more general cosmological parameter
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constraints. With the increased statistical power of future surveys, quantifying the impact

of these assumptions in our inference is critical for unbiased constraints. While tractability

of forward modeling the data has been an obstacle for adopting ABC, new models aimed at

the next galaxy surveys, are making promising strides.

Finally, as we describe in Chapter 3, observations of galaxies have firmly established

a global view of galaxy properties out to z∼1. As in Chapter 4, precise predictions of

hierarchical growth of structure from ΛCDM can be used to constrain key elements of galaxy

evolution in a data-driven and statistical fashion. The introduction of Integral Field Unit

observations (e.g. MaNGA) and larger galaxy samples (e.g. DESI Bright Galaxy Survey)

offer exciting opportunities to extend the works of Chapters 3 and 4 and construct better

models of the galaxy-halo connection.

Each aspect of my dissertation will be instrumental for exploiting the full potential of

future surveys and making more precise measurements of the growth rate of structure, the

cosmological parameters, and thus tests of General Relativity and modified gravity scenarios.

Furthermore, galaxy clustering also provides a unique window to probe fundamental physics

— i.e. the total neutrino mass (Σmν). Extending the methods from my dissertation to

future surveys will allow us to better measure the imprints of neutrinos on LSS and produce

tigher constraints on Σmν . A tighter upper limit on Σmν is essential to distinguish between

the neutrino mass hierarchies and will provide an important input for particle physics theory

beyond the Standard Model.
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Appendix A

Effective Window Method

Polynomials

For reference, here we list the first few polynomials Hl>l<(x) from Eq. (1.33)

H20(x) = x2 − 1, (20)

H40(x) =
7

4
x4 − 5

2
x2 +

3

4
, (21)

H42(x) = x4 − x2, (22)

H60(x) =
33

8
x6 − 63

8
x4 +

35

8
x2 − 5

8
, (23)

H62(x) =
11

4
x6 − 9

2
x4 +

7

4
x2, (24)

H64(x) = x6 − x4 (25)
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Appendix B

Indicators of Star Formation

In order to measure star formation in galaxies of the SDSS DR7 group catalog, we use

specific star formation rates (SSFR) derived in Brinchmann et al. (2004) (briefly described in

§ 4.3). These SSFR are measured from Hα emission lines, andDn4000 for SSFRs& 10−12yr−1.

While no SFR indicator provides the panacea for uncertainties in measuring star formation

in galaxies, a number of caveats must be addressed for the Brinchmann et al. (2004) SSFR.

SSFRs derived from Hα probe star formation on a ∼ 10 Myr timescale, which makes them

sensitive to short term varations in the galaxies’ star formation histories (Kennicutt & Evans,

2012). Furthermore, the spectroscopically derived Brinchmann et al. (2004) SSFRs also

rely on aperture corrections, which may introduce further uncertainties. In this section,

we demonstrate, by comparing to another SFR indicator, that our specific choice of SFR

indicator does not significant impact the central galaxy quenching timescale.

In Moustakas et al. (2013) (hereafter M2013), for their lowest redshift galaxy sample,

they construct a catalog derived from the SDSS DR7 VAGC. They supplement the optical

photometry from SDSS DR7 with UV photometry from GALEX, integrated J H Ks magni-

tudes from 2MASS Extended Source Catalog, and integrated photometry at 3.4 and 4.6µm
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from the WISE All-Sky Data Release2. Then to derive galaxy properties such as M∗ and

SFR, they use iSEDfit – a Bayesian SED modeling code. By including UV photometry

from GALEX, the SFRs from the M2013 catalog traces star formation over ∼ 10− 100 Myr

timescales and is not dominated by short term variations. Furthermore, as these SFRs are

derived from photometry, they do not require any aperture correction.

Galaxies that are in both the SDSS DR7 group catalog and M2013 catalog, provide a

convenient galaxies sample to compare the distinct SFR indicators. In Figure 12, we compare

the SSFR distributions of this subsample, calculated using SSFRs from the SDSS DR7 group

catalog (black dashed) versus M2013 (orange): P (SSFRgroup) versus P (SSFRM2013). Before

comparing the P (SSFR)s, we note that the SSFRs from M2013 are not subject to the

Brinchmann et al. (2004) SSFR upper bounds for low star-forming galaxies (see § 4.3). That

is, the M2013 SSFRs can extend below 10−13 yr−1. For a meaningful comparison, however,

we impose similar SSFR bounds to reproduce the P (SSFRgroup) quiescent peak. We also note

that due to the M2013 bright magnitude limit, the M2013 sample does not contain a large

number of galaxies within the group catalog’s z range at higher mass bins. Furthermore, for

both distributions, the galaxies are binned based on the group catalogM∗ so that the same

galaxies are examined in each bin. This binning does not have a significant impact on the

comparision because the group catalog M∗ and M2013 M∗ are tightly correlated.

There are some minor discrepancies between the SSFR distributions, such as the position

of the star-forming peak in the lowest mass bin. While this is caused by small differences

in the slopes of the SFMS between the M2013 sample and the group catalog, the star-

forming peaks in the higher mass bins are in good agreement. So for the M∗ probed by

our analysis, this discrepancy does not have a significant impact. Overall, however, the

P (SSFR)s are in good agreement with one another. Furthermore, we find that the heights of

2http://wise2.ipac.caltech.edu/docs/release/allsky
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Figure 12: Comparison of the SSFR distribution calculated using SSFRs from the SDSS
DR7 group catalog (black dashed) versus Moustakas et al. (2013) (orange) for galaxies that
are in both the SDSS DR7 group catalog and the Moustakas et al. (2013) sample z ∼ 0.1
bin: P (SSFRgroup) versus P (SSFRM2013). Galaxies are binned based on the group catalog
M∗ for both distributions so that the same galaxies are examined in each bin. We impose
SSFR bounds on P (SSFRM2013) for low SSFRs to reproduce the P (SSFRgroup) quiescent
peak (§ 4.3). We note that the M2013 sample does not contain a large number of galaxies
within the group catalog’s z range at higher mass bins due its bright magnitude limit. We
find good overall agremeent between P (SSFRgroup) and P (SSFRM2013). Furthermore, they
have consistent green valley heights, which is the main feature of P (SSFR) critical for
constraining the central quenching timescale.

the green valley in both distributions, the main feature of P (SSFR) critical for constraining

the central quenching timescale, are also in good agreement. Therefore, we conclude that

the Brinchmann et al. (2004) SFRs do not significantly impact the quenching timescale and

the results of this work.
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Appendix C

Star-forming/Quiescent Classifications

In our parameterization of the observed f cen
Q in Eqs. 4.1 and 4.2, we derive the best-fit

values for the parameters A0 and A1 by fitting f cen
Q measured in the SDSS DR7 group catalog.

The SDSS DR7 group catalog f cen
Q is derived using a SFR −M∗ cut specified in Eq. 4.18.

For α(M∗), the parameter that dictates the f cen
Q redshift dependence, however, the best-fit

value is derived from fitting Tinker et al. (2013) f cen
Q measurements of the COSMOS survey.

These f cen
Q measurements use (NUV − R) − (R − J) color-color cuts described in Bundy

et al. (2010) for the star-forming/quiescent classification. In this section, we demonstrate

the consistency between the SDSS DR7 group catalog f cen
Q , using a SFR−M∗ cut, and the

Tinker et al. (2013) f cen
Q , using a (NUV −R)− (R− J) color-color cut.

For the galaxies in our SDSS DR7 group catalog, we construct a catalog with UV, op-

tical, and infrared photometry. For UV and optical, we obtain GALEX and SDSS pho-

tometry from the NASA-Sloan Atlas3. For infrared, we use photometry from the 2MASS

all-sky map (Cutri, 2000). We then determine the FUV,NUV , u, g, r, i, z, J,H,Ks band

3http://www.nsatlas.org/
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K-corrections and absolute magnitudes for the galaxies using K− correct4 (v4.2 Blanton

& Roweis, 2007).

Using these absolute magntidues, in Figure 13, we plot (NUV −R)− (R−J) color-color

relation for the SDSS DR7 group catalog (black). We highlight the galaxies in the sample

that are classified as quiescent using the SFR−M∗ cut in orange. Furthermore, we plot the

color-color cuts from Bundy et al. (2010) (blue dash-dotted and red dashed lines). Galaxies

that lie above both color-color cuts, are classified as quiescent in the (NUV −R)− (R− J)

classification.

The horizontal color-color cut (blue dash-dotted) is evaluated using the Bundy et al.

(2010) parameterization, at z ∼ 0.0. The diagonal cut (red dashed) in Bundy et al. (2010) is,

however, parameterized using coefficients determined by inspection of redshift bins. There-

fore, for the SDSS DR7 group catalog, we extrapolate the coefficients from the COSMOS

z ∼ 0.3, 0.7 bins. We note that using the coefficients from the lowest COSMOS redshift bin

(z ∼ 0.3) instead of extrapolating to z ∼ 0.0, does not significantly impact the comparison

in this section.

Comparison of the quiescent galaxies classified with SFR−M∗ with the color-color cuts in

Figure 13 find that the two classifications are generally consistent. To further test whether

the different classifications can impact quiescent fraction parameterization, in Figure 14,

we compare the the quiescent fractions derived from them for the SDSS DR7 group catalog:

fSFR−M∗Q (black) versus f color
Q (orange). Throughout the mass range of the catalog, fSFR−M∗Q

and f color
Q are consistent with each other. Therefore, the f cen

Q (M∗, z) parameterization derived

from measurements of SDSS DR 7 group catalog and Tinker et al. (2013) (Eq. 4.1) does not

affect the results of this work.

4http://howdy.physics.nyu.edu/index.php/Kcorrect
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Figure 13: The (NUV − R) − (R − J) color-color relation for the SDSS DR7 group cata-
log (black) calculated from photometry compiled from GALEX, SDSS, and 2MASS (§ 4.8).
Galaxies classified as quiescent using the SFR−M∗ cut are highlighted (orange). Further-
more, we plot the color-color cuts from Bundy et al. (2010) that describe the classification of
star-forming/quiescent galaxies in Tinker et al. (2013). We note that the quiescent galaxies
classified using the SFR −M∗ cut are generally consistent with the Bundy et al. (2010)
color-color cuts.
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Figure 14: Comparison of the SDSS DR7 group catalog fQ(M∗) measured using the SFR−
M∗ versus the (NUV − R) − (R − J) color-color classifications. The fQs measured using
the two different classification methods are consistent with each other. This consistency
illustrates that the f cen

Q (M∗, z) parameterization derived from measurements of SDSS DR 7
group catalog and Tinker et al. (2013) does not affect the results of this work.
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Woo, J., Carollo, C. M., Faber, S. M., Dekel, A., & Tacchella, S. 2016, ArXiv e-prints,

arXiv:1607.06091

Wyder, T. K., Martin, D. C., Schiminovich, D., et al. 2007, ApJS, 173, 293

Yang, X., Mo, H. J., & van den Bosch, F. C. 2003, MNRAS, 339, 1057

—. 2008, ApJ, 676, 248

—. 2009, ApJ, 693, 830

Yesuf, H. M., Faber, S. M., Trump, J. R., et al. 2014, ApJ, 792, 84

Yoon, J. H., Schawinski, K., Sheen, Y.-K., Ree, C. H., & Yi, S. K. 2008, ApJS, 176, 414

York, D. G., Adelman, J., Anderson, Jr., J. E., et al. 2000, AJ, 120, 1579

Zehavi, I., Blanton, M. R., Frieman, J. A., et al. 2002, ApJ, 571, 172

Zehavi, I., et al. 2002, ApJ, 571, 172

228



Zehavi, I., Zheng, Z., Weinberg, D. H., et al. 2005, ApJ, 630, 1

—. 2011, ApJ, 736, 59

Zeldovich, Y. B. 1972, MNRAS, 160, 1P

Zentner, A. R., Hearin, A., van den Bosch, F. C., Lange, J. U., & Villarreal, A. 2016, ArXiv

e-prints, arXiv:1606.07817

Zhai, Z., Tinker, J. L., Hahn, C., et al. 2016, ArXiv e-prints, arXiv:1607.05383

Zhao, G.-B., Saito, S., Percival, W. J., et al. 2013, MNRAS, 436, 2038

Zheng, Z., Coil, A. L., & Zehavi, I. 2007a, ApJ, 667, 760

—. 2007b, ApJ, 667, 760

Zheng, Z., Berlind, A. A., Weinberg, D. H., et al. 2005a, ApJ, 633, 791

—. 2005b, ApJ, 633, 791

Zu, Y., & Mandelbaum, R. 2015, MNRAS, 454, 1161

229


	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Large Scale Structure in CDM
	Redshift-Space Distortions
	Weighting Neutrinos with Galaxies
	Analyzing Galaxy Clustering

	The Effect of Fiber Collisions on the Galaxy Power Spectrum Multipoles 
	Chapter Abstract
	Introduction
	Fiber-collided Mock catalogs
	Fiber Collision Methods
	Summary and Conclusions

	Approximate Bayesian Computation in Large Scale Structure: constraining the galaxy-halo connection 
	Chapter Abstract
	Introduction
	Methods
	ABC at work
	Summary and Conclusion

	PRIMUS: Effects of Galaxy Environment on the Quiescent Fraction Evolution at z<0.8 
	Chapter Abstract
	Introduction
	Sample Selection
	Results: Stellar Mass Function
	Results: Quiescent Fraction
	Summary and Discussion

	Star Formation Quenching Timescale of Central Galaxies in a Hierarchical Universe 
	Chapter Abstract
	Introduction
	Central Galaxies of SDSS DR7
	Simulated Central Galaxy Catalog
	Star Formation in Central Galaxies
	Results
	Discussion
	Summary

	Conclusion
	Appendices
	Bibliography

