
Univ
ers

ity
 of

 C
ap

e T
ow

n

APIC: A Method for Automated Pattern
Identification and Classification

by

Ryan Gavin Goss

Dissertation

submitted in fulfilment

of the requirements

for the degree

Doctor of Philosophy

in

Computer Science

at the

University of Cape Town

Supervisor: Dr. Geoff S. Nitschke

March 2017

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

APIC: A Method for Automated Pattern
Identification and Classification

by

Ryan Gavin Goss

Acknowledgements

My grateful thanks go to the following people and organisations, without

whom this dissertation would not have been possible:

First and foremost, I would like to thank the Lord Jesus Christ, who

gave me the strength to persevere, even through the hard times. I would

like to thank my wife, Kelly, and our two children, Rylee and Kayley,

for showering me with endless love, support and encouragement. To my

parents, Melvin and Julia, for all the sacrifices they made for me and for

demonstrating that we can achieve anything we set our minds to. I would like

to thank my brother, Robert, for continued encouragement and for leading

the way forward, by example, in academia. To my sister, Kym, for her

support and assistance in rendering many of the figures present in this text.

My sincerest thanks go out to my supervisor, Geoff Nitschke, who

has helped to expand my writing skills over the past few years. Neither

this dissertation, nor my previous publications would have been possible

without his constant feedback and tireless efforts. A big thank you also to

my copy-editor, Tanya Wyatt, who worked through this dissertation with

me, recommending changes to improve the overall read. To my friends and

colleagues at both my current and previous employers, for providing insights

into the real-life case studies described in this dissertation. Thank you to the

developers of the scikit-learn project (Pedregosa et al., 2011) and Google

TensorFlow (Abadi et al., 2015), whose libraries were used extensively in

this study. Finally, I would like to thank the National Research Foundation

(NRF) for funding many aspects of this dissertation.

i

Abstract

Machine Learning (ML) is a transformative technology at the forefront of

many modern research endeavours. The technology is generating a

tremendous amount of attention from researchers and practitioners,

providing new approaches to solving complex classification and regression

tasks. While concepts such as Deep Learning have existed for many years,

the computational power for realising the utility of these algorithms in

real-world applications has only recently become available. This

dissertation investigated the efficacy of a novel, general method for

deploying ML in a variety of complex tasks, where best feature selection,

data-set labelling, model definition and training processes were determined

automatically. Models were developed in an iterative fashion, evaluated

using both training and validation data sets. The proposed method was

evaluated using three distinct case studies, describing complex classification

tasks often requiring significant input from human experts.

The results achieved demonstrate that the proposed method compares

with, and often outperforms, less general, comparable methods designed

specifically for each task. Feature selection, data-set annotation, model

design and training processes were optimised by the method, where less

complex, comparatively accurate classifiers with lower dependency on

computational power and human expert intervention were produced. In

chapter 4, the proposed method demonstrated improved efficacy over

comparable systems, automatically identifying and classifying complex

application protocols traversing IP networks. In chapter 5, the proposed

method was able to discriminate between normal and anomalous traffic,

maintaining accuracy in excess of 99%, while reducing false alarms to a

mere 0.08%. Finally, in chapter 6, the proposed method discovered more

optimal classifiers than those implemented by comparable methods, with

ii

ABSTRACT iii

classification scores rivalling those achieved by state-of-the-art systems.

The findings of this research concluded that developing a fully

automated, general method, exhibiting efficacy in a wide variety of complex

classification tasks with minimal expert intervention, was possible. The

method and various artefacts produced in each case study of this

dissertation are thus significant contributions to the field of ML.

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 2

1.2 Research Problem . 3

1.3 Research Objectives . 4

1.4 Methods . 5

1.5 Contributions . 6

1.6 Overview of Dissertation . 8

1.7 Assumptions and Delineations 9

2 Foundations 10

2.1 Supervised Learning . 11

2.1.1 IP Traffic Classification 14

2.1.2 Anomaly Detection on IP networks 15

2.1.3 Handwritten Digit Recognition 16

2.2 Unsupervised Learning . 18

2.3 Evolutionary Algorithms . 20

2.3.1 Biological Inspiration 20

2.3.2 Overview of an Evolutionary Algorithm 22

2.3.3 Feature Set and Hyper-Parameter Optimisation 28

2.4 Conclusion . 32

3 Automated Pattern Identification and Classification (APIC) 33

3.1 Feature Selection . 35

3.2 Pattern Discovery . 36

iv

CONTENTS v

3.3 Classifier Production . 40

3.4 Conclusion . 46

4 IP Traffic Classification 47

4.1 IP Traffic Classification . 48

4.1.1 Classic Port Matching 49

4.1.2 Deep Packet Inspection 51

4.1.3 Statistical Analysis . 54

4.1.4 Machine Learning . 57

4.2 Task Description . 59

4.3 Feature Selection . 62

4.4 Distinguishing Application Protocols 65

4.5 Verification by Visualising Application Protocols 74

4.6 TWEANN Classifier Development 90

4.7 Accuracy Comparison . 102

4.8 Portability Comparison . 107

4.9 Automation Comparison . 110

4.10 Discussion . 112

4.10.1 Completeness . 112

4.10.2 Accuracy . 115

4.11 Conclusion . 119

5 Network Anomaly Detection 120

5.1 Information Security and Anomaly Detection 121

5.2 Distributed Denial of Service Attack (DDoS) 123

5.2.1 Classes of DDoS Attack 125

5.2.2 Identifying DDoS Attacks 128

5.2.3 Generic Architecture of DDoS Defence Systems 128

5.3 Statistical and Machine Learning-based DDoS Detection . . . 130

5.4 ISCX 2012 IDS Experiment 136

5.4.1 Experimental Data Sets 136

5.4.2 Feature Selection . 137

5.4.3 Behavioural Profiling of IP Flow Summary Data 141

5.4.4 IP Traffic Profile Classification 143

5.4.5 Classifier Evaluation 146

5.4.6 Discussion . 147

CONTENTS vi

5.5 Live Network Evaluation . 152

5.5.1 Task Description . 153

5.5.2 Data Sets . 154

5.5.3 Feature Set Selection and Normalisation 159

5.5.4 Normal Communication Profile Determination 161

5.5.5 Developing Normal Traffic Profile Classifiers 163

5.5.6 Classifier Evaluation 165

5.5.7 Discussion . 172

5.6 Conclusion . 174

6 Document Recognition: Handwritten Digits 175

6.1 Image Recognition . 176

6.1.1 Convolutional Neural Networks 177

6.2 Task Description . 180

6.3 MNIST Data Set . 181

6.3.1 Feature Selection . 181

6.3.2 Classifier (MLP) Development 187

6.3.3 Results . 191

6.4 Discussion . 193

6.5 Conclusion . 198

7 Discussion and Future Work 199

7.1 Automating Classifier Model Design 200

7.2 Case Study Analysis . 201

7.2.1 IP Traffic Classification 201

7.2.2 Network-Based Anomaly Detection (NBAD) 202

7.2.3 Handwritten Digit Recognition 204

7.3 Future Work . 205

7.4 Conclusion . 206

8 Conclusion 207

8.1 Research Contributions . 207

A Publications 210

Nomenclature

Acronyms

AI Artificial Intelligence

A field of computer science concerned with the development of

computer systems capable of mimicking tasks performed by a

human expert.

APIC Automated Pattern Identification and Classification

The method presented in this dissertation to address the

completeness and accuracy concerns of existing pattern

recognition systems.

Classifier A model for deriving an output vector from an input vector.

DDoS Distributed Denial of Service

A network attack with multiple attack vectors toward a single

target. The UDP protocol is most often used in conjunction with

spoofed source IP addresses.

DNS Domain Name Service

An application protocol used to translate a host name to an IP

address and vice-versa.

DoS Denial of Service

A network attack where an attacker attempts to deplete the

resources of a remote target, rending the target unavailable on

the network.

EA Evolutionary Algorithm

A generic optimisation algorithm inspired by biological evolution.

EAs are a component of Evolutionary Computing (EC).

EC Evolutionary Computing

A subfield of Artificial Intelligence (AI) algorithms for global

optimisation inspired by biological evolution

Flow A sequence of packet exchanges on a computer network sharing

the same five tuple of source and destination addresses, and source

and destination ports and protocol.

vii

Ground Truth A term referring to the accuracy of classification when parsing a

training set in supervised learning techniques.

Host A computer connected to a network.

IP Internet Protocol

A set of rules governing the format of data during communications

across computer networks.

IP Internet Protocol

The principal communications protocol in the Internet protocol

suite for relaying datagrams across network boundaries.

ISP Internet Service Provider

A network providing access last-mile Internet services to home

and business users.

Latency A synonym for delay, it represents the time taken for a segment

of data to arrive at the destination after transmission.

ML Machine Learning

A subfield of Computer Science (CS), providing computers the

ability to learn without being explicitly programmed.

Packet A formatted unit of data carried by packet-switched networks.

Port An application-specific construct serving as a communication

endpoint in a computer’s host operating system.

Signature A recipe for identifying a distinct application protocol on a

network.

Spoofing The act of imitating another host on a computer network,

manipulating traffic so that it appears to be sourced from a host

other than itself.

TCP Transmission Control Protocol

A stateful core protocol of the TCP/IP protocol suite.

UDP User Datagram Protocol

A stateless network communication protocol, often used for small,

latency-dependent communications such as DNS.

Zero-day Attack An attack which exploits a previously unknown vulnerability in a

computer system. Developers have therefore had “zero days” to

address the vulnerability.

viii

Symbols

k The number of clusters in a particular data set.

eps Epsilon: A parameter for clustering that specifies how close data points should

be to each other to be part of the same cluster.

minPTS Minimum Data Points: Specifies how many neighbours should be in close

proximity to be considered a cluster.

ix

Chapter 1

Introduction

Machine Learning (ML), a sub-field of Artificial Intelligence (AI) concerned

with learning from data or experience, has gained widespread adoption in

many data-driven tasks over the past decade. This can be attributed to two

main developments, namely, the abundance of data and the availability of

adequate computational power to explore it (Rogers and Girolami, 2016).

Significantly more data is collected and stored today by a variety of systems

than in previous years (Hendrickson, 2010). Owing to the size and

complexity of these data sets, useful content needs to be identified and

extracted effectively, avoiding information overload1. ML methods provide

the tools to model this high-dimensional, complex data, locating and

recommending the most relevant content. Larger data sets require more

complex models, inherently demanding significantly more computational

resources.

The amount of computational power, per dollar, has increased

exponentially over the past decade, at an estimated, average rate of around

55 percent per annum since 1940 (Nordhaus, 2001). These substantial gains

have had a profound affect on ML, allowing conventionally simple models,

such as Artificial Neural Networks (ANN), to expand in complexity and,

subsequently, their usefulness. Deep Learning (DL) networks are more

complex ANNs, consisting of multiple layers. Each of these layers provides

its own level of non-linearity, something that cannot be contained in a

single layer. Increasing model complexity for complex tasks produces more

generalised classifiers, avoiding conventional ANN pitfalls such as

1Information overload refers to overwhelming a user with too much data or information

1

over-fitting. These multiple layers subsequently allow the algorithm to more

accurately model high-level abstractions found in large, complex data sets.

The ability of ML to model high-dimensional, complex data sets makes

it attractive for a number of classification tasks. The application of this

technology in each task is, however, complicated by a number of factors -

the most prevalent being dependency on human experts for successful

implementation. Overcoming these obstacles will lead to a more pervasive

deployment of ML-based classification technologies across a broad range of

tasks in multiple domains.

1.1 Motivation

Technologies such as deep learning may allow more complex models to be

developed, however the design of these networks is still predominantly

performed by human experts, who optimise the design of each classifier

through an empirical process. The feature selection, data annotation and

classifier development tasks, for the majority of works studied in this

dissertation, are all heavily dependent on human expert contributions.

Subsequently, the classifiers produced may not be the best for a given

solution. Manual definitions often lead to overly complex classifiers, placing

unnecessary strain on computational resources or producing models that

exhibit high degrees of underfitting. Conversely, experts may develop less

complex models, where recall accuracy is high for their test data sets,

however perform poorly on previously unseen data (overfitting). In some

cases, no expert may be available to describe the problem well enough for

an ML algorithm to be useful and thus the results of the algorithm may be

inadequate.

Designing and developing models for solving complex classification tasks

is extremely difficult to accomplish manually and is often the most intensive

part of the ML integration process. Models for each classification task need

to be constructed efficiently, yet provide sufficient complexity for fair

generalisation (avoid overfitting). The number of options available during

classifier development is vast. The task of identifying the best combination

of feature vectors, neurons and hidden layers is often too large to discover

using a grid (sequential) search. Unsupervised ML algorithms that use

2

stochastic techniques to imitate natural genetic inheritance and Darwin’s

theory of survival of the fittest (observed in nature) have demonstrated

significant efficiencies for problems like these. These Evolutionary

Algorithms (EA) provide search functions that generate solutions more

efficiently than grid searches. EAs are used by algorithms, such as the

Topology and Weight Evolving Artificial Neural Networks (TWEANN), to

develop the structure of a model, including the neuron connectivity and

weight allocations at each neuron. Using Neuroevolution (NE) approaches,

such as a TWEANN, complex models may be reduced by monitoring the

fitness and complexity of models described by each candidate solution.

Research has shown that the efficacy of ML technologies in complex

classification tasks is promising, however a significant amount of manual

intervention is still required to embed these algorithms in each task. The

selection of best features to describe each data set, the annotation of each

datum according to it’s class, and the development of the best classifier to

describe each class is often controlled by human experts who have

significant experience in each respective field. Domain knowledge is

therefore key when training ML classifiers for each task. The requirement

of intervention by a domain expert for each task inhibits the pervasiveness

of ML implementation across many general classification tasks.

1.2 Research Problem

Although ML methods have demonstrated impressive results in a variety of

classification tasks, a lack of automation in feature selection, pattern

identification, and classifier development is evident. In many cases, the

structure of classifiers is defined manually, using supervised learning

techniques, trained from data sets manually created and annotated by

human experts. Each classification problem is described using a distinct

feature set, specifically engineered for the task by these experts. This

manual intervention is costly, causing delays in classifier production and

increased risk due to human error. It is apparent that a general method

needs to be devised, incorporating automated, accurate classifier production

for a variety of tasks, reducing the dependency on human experts. Tasks

such as Internet Protocol (IP) traffic classification, anomaly detection, and

3

handwritten digit identification provide good case studies for evaluating the

new method, as they are indicative of many difficult classification tasks.

These tasks, characterised by noisy, continuous data sets, are subsequently

used to demonstrate the efficacy of the proposed method across a broad

range of domains. Both accuracy (achieved by development of optimal

classifiers) and completeness (the availability of a classifier for each pattern

tested, achieved through automating existing manual processes) are

paramount to the success of these systems. The research problem

considered by this dissertation can therefore be succinctly stated as follows:

Current ML-based classification approaches require a significant

amount of complex, manual intervention from domain experts

for embedding ML in each problem. Parameters guiding these

deployments are limited to the scope programmed by these

experts. Definition of best feature sets, identification of distinct

patterns in data (annotation), and the design of optimal,

accurate models that generalise well are tasks often undertaken

by human experts. This process is pessimal, especially for

real-time classification tasks, where the effectiveness of a system

is largely dependent on the accurate identification of new

patterns in data as soon as they are detected.

1.3 Research Objectives

The primary contribution of this research is the development of a new

general method - Automated Pattern Identification and Classification

(APIC) - which reduces the manual input required from human experts to

achieve high degrees of accuracy and completeness for a variety of

classification tasks. The primary case study in this work evaluates APIC’s

ability to improve the state-of-the-art technology for a current, complex

classification task, namely IP traffic classification. According to Szabo et al.

(2007), the success of IP traffic classification systems can be measured by

two key metrics: completeness and accuracy. Completeness refers to the

availability of a signature (classifier) for each application protocol present

on the network. Accuracy refers to the number of correct matches a

signature makes and the confidence level thereof.

4

The primary research objective of this dissertation is, therefore, to

ascertain whether APIC can reduce the dependency on manual, expert

involvement currently associated with the development of classifiers for

complex classification tasks, increasing the overall completeness, accuracy

and efficiency of these classifiers compared to existing ML methods.

In support of this, the following sub-objectives were addressed:

• Determining whether APIC can automatically and accurately identify

new patterns in unlabelled, mixed, noisy data sets.

• Determining whether APIC can automatically produce customised

classifiers, where accuracy results are comparable with, or exceed,

those achieved by comparable ML methods designed by human

experts for a specific task.

• Determining whether APIC can serve as a general method, supporting

application across a broad range of problems compared to other ML

methods.

1.4 Methods

This research falls into the research field of computational learning theory

(Kearns and Vazirani, 1994), of which the use of ML to classify data is a sub-

field. In this research, the APIC method was investigated as an alternative

to human expert intervention for developing classifiers across a broad range

of classification tasks. The efficacy of the method was tested using three

distinct case studies: IP traffic classification (Chapter 4), anomaly detection

(Chapter 5) and handwritten digit recognition (Chapter 6).

The method proposed in this dissertation divided the task of classifying

data into three distinct parts. The first, an offline component, used a

Genetic Algorithm (GA) (Eiben and Smith, 2003) to automatically search

for more optimal feature sub-sets. Reducing the original feature set allowed

the method to lessen the complexity of the task, while retaining accuracy

during the classification process. The second part used clustering

algorithms (Harrington, 2012) to automatically detect distinct patterns

present in a data set described by each feature sub-set. The

hyper-parameter optimisation (Bergstra et al., 2011) of the clustering

5

process was also performed using a GA, as the use of random search has

shown significant efficiencies when compared with searching for the same by

grid search (Bergstra and Bengio, 2012). Part 3 used the clusters discovered

in part 2 as labelled training sets for producing semi-supervised classifiers

(Russell and Norvig, 2009) to identify future instances of each pattern. A

GA defines the ANN (Gurney, 2003) topology of each classifier (neuron

configuration), with a second GA optimising the weights of each

connection, forming a Topology and Weight Evolving Artificial Neural

Network (TWEANN) (Sher, 2012) classifier. The backpropagation

algorithm (Rumelhart et al., 1988) was used to further optimise the weight

values of each classifier using a gradient descent function.

The set of newly-defined classifiers (signatures) were tested and, upon

reaching a pre-defined criteria, were declared suitable for the given task. If

the evaluation criteria were not met, another feature sub-set was produced

and tested, repeating the process. The APIC method uses an ensemble of

ML algorithms (pipeline) for producing classifiers capable of identifying

both known and previously unknown patterns in mixed, noisy data sets

automatically. As the method is a pipeline, algorithm substitutions may be

made without altering the general operation of the method. For example, a

GA may be replaced by a Bayesian Optimisation (Mockus, 2012) method

for a particular task, or the clustering algorithm altered from agglomerative

to divisive in another.

1.5 Contributions

The main contribution of this dissertation is the APIC method, a

principled, general method for automated feature set optimisation, pattern

discovery, and classifier production for a variety of tasks across multiple

domains. Several experiments demonstrated application of the method for

solving current problems, including those associated with the completeness

and accuracy of IP traffic classification systems (Chapter 4), identifying

anomalies in IP traces (Chapter 5) and identification of handwritten digits

in a publicly-available data set (Chapter 6). In these case studies, both

flexibility of application and protection against innovation were tested to

ensure that the method remained robust and future-proof.

6

The experiments described in Chapter 4 demonstrated that the method

was capable of automatically producing TWEANN classifiers for identifying

IP traffic flows. Classifiers were automatically produced for each

application protocol, with no human involvement, producing a system

arguably more complete than comparable methods that rely on constant

human intervention. The accuracy achieved by these automatically

generated classifiers rivalled, and often exceeded, many comparable

systems, designed specifically for this task, for a number of tested

application protocols. Research into the application of TWEANN classifiers

for classifying IP traffic flows is also a novel contribution provided by this

work, as is automating the process of classifier development for previously

unseen application protocols. Interestingly, both completeness and accuracy

problems are not confined to the IP traffic classification domain. These

concerns are ubiquitous in many important areas, including biological

(Sakamoto et al., 2013), engineering (Darvishi et al., 2013) and earth

science (Foody, 2002) domains. The ability of APIC to act as a general

method, improving classification for a variety of tasks across multiple

disciplines is another important contribution, as most other ML-based

classification systems are designed for one specific purpose.

In Chapter 5, the efficacy of the APIC method was evaluated in the task of

Anomaly Intrusion Detection (AID), protecting computer networks against

malicious attack. The method was tested using a publicly available, pre-

labelled data set and private data sets recorded on a live enterprise network.

APIC, a general classification method, developed classifiers that resulted in

accuracies comparable with those of other ML-based systems, designed by

human experts specifically for this purpose.

Finally, in Chapter 6, the APIC method was applied to the task of

handwritten digit recognition, using a popular, publicly available data set of

handwritten digits. The APIC method was used to develop a more efficient

Convolutional Neural Network (CNN) model, where the convolutions,

kernels, pooling and classification models were determined automatically.

Results indicated that the method compared with the best systems

designed specifically for this purpose. The APIC classifiers were, however,

significantly more efficient (less complex) than these comparable methods.

The ability for APIC to form less complex models for tasks like this,

7

without suffering from overfitting, is another contribution of this research.

All three case studies demonstrated that APIC could be applied in a

broad range of classification tasks, exhibiting results that rival systems

designed specifically for each task, often with less-complex classifiers. In

each case, the APIC method operated independently of human experts,

providing significantly more automation for these tasks than had currently

been tested. The APIC method is thus the first step toward fully

automating the production of classifiers for a variety of tasks, providing

exciting avenues for future research.

1.6 Overview of Dissertation

This dissertation is divided into four parts: foundations (Chapter 2), the

method (Chapter 3), case studies (Chapters 4, 5 and 6) and conclusions

(Chapters 7 and 8).

Chapter 2 reviews the current state of ML-based classification and

supporting algorithms. Foundational information for each of the three case

studies described in this dissertation is presented throughout as additional

motivation for this research.

Chapter 3 presents the APIC method for solving challenges associated

with general classification tasks. GA-driven unsupervised learning algorithms

provide clear distinction between patterns in mixed, noisy data sets. The

method protects against innovation by automatically creating new clusters

(groups) of datum for each previously unidentified pattern. These clusters

are subsequently used to train classifiers in identifying future instances of

each pattern automatically.

Chapter 4 focuses on the application of APIC for identifying the

underlying application protocol of IP traffic flows (IP traffic classification).

The accuracy achieved by automatically identifying and producing

classifiers for six applications is tested against results achieved for the same

by other methods. Here, APIC is shown to automatically produce accurate

classifiers for each of these protocols, where the accuracy attained by each

exceeds those achieved by comparable methods. APIC also exhibits

properties that ensure a more complete system is achieved when compared

to similar systems.

8

Chapter 5 evaluates the APIC method in anomaly detection tasks.

Specifically, APIC is tested as a Network Based Anomaly Detection

(NBAD) system, evaluated using a publicly available static data set

comprised of completed, annotated IP flow records. A second test evaluates

the method for its ability to produce classifiers that profile a live,

production enterprise network, detecting Denial of Service (DoS) attacks in

near real time.

Chapter 6 demonstrates the efficacy of APIC for addressing classification

tasks outside of the IP networking domain. In this chapter, a case study is

presented that tests the ability of APIC to produce less-complex, comparably

accurate classifiers for classifying handwritten digits, compared to existing

ML-based approaches.

Chapter 7 provides a discussion on the generality of the APIC method

and the efficacy it exhibits in the three case studies presented in this

dissertation. The chapter also provides recommendations for avenues of

future research.

Chapter 8 concludes the dissertation, providing a summary of the

contributions yielded by this research.

1.7 Assumptions and Delineations

In most cases, wherever feasible, results were rounded to four decimal places.

Acronyms are defined at least once per chapter and a summarised list of those

most popular can be found in the nomenclature section. In Evolutionary

Algorithms (EA), the terms genotype, genome and chromosome are used

interchangeably. This dissertation uses the term “genotype” as the standard

way to describe a candidate solution (encoded phenotype).

9

Chapter 2

Foundations

As a branch of Artificial Intelligence (AI), Machine Learning (ML) is

concerned with the construction of systems that learn from data, adapting

to new circumstances and automatically improving with experience (Russell

and Norvig, 2009; Mitchell, 1997). These algorithms have been widely used

in a number of fields, including search engines, medical diagnoses and load

prediction (Hu and Shen, 2012). More recently, applications of ML in

Internet Protocol (IP) traffic classification, including the identification of

underlying applications and detection of anomalous traffic patterns, have

been proposed. Another area garnering widespread interest is computer

vision tasks, where ML is used to classify objects in two-dimensional

images. An ML algorithm learns using statistics, converting data into

information (Harrington, 2012). Today, time-critical information is vital to

a number of activities, where getting lost in raw data is no longer an option.

It is here that ML excels, by abstracting useful information from large data

stores (Harrington, 2012). The detection and extrapolation of patterns

within data sets is a core function of ML (Russell and Norvig, 2009).

Broadly, ML algorithms can be divided into three main types, according

to the feedback they provide. These types, described by Russell and Norvig

(2009), are supervised learning (classification), unsupervised learning

(clustering) and reinforcement learning. Supervised learning algorithms

learn from a set of pre-classified, or pre-labelled (annotated) data sets.

From these learnings models are formed describing the observations. These

models can be used to classify future, previously unseen, data samples. The

most common unsupervised learning task is clustering (Russell and Norvig,

10

2009), where the algorithm gathers data in groups, or clusters, based on

similar features without any prior knowledge or guidance. A number of

hybrid types have also emerged over the years, combining elements of both

supervised and unsupervised learning. These approaches are often referred

to as semi-supervised learning algorithms (Russell and Norvig, 2009).

The focus of this dissertation is toward automating the development of

classifiers, creating more optimal solutions for solving complex classification

problems across a broad range of tasks with little assistance from human

experts. As such, both supervised and unsupervised algorithms - the ML

types used by the proposed solution (Chapter 3) - are discussed in more detail

in the following subsections. Past works implementing these algorithms are

surveyed, pertinent to the case studies tested by this dissertation in Chapters

4, 5 and 6. This chapter focuses on ML techniques and algorithms used by

the proposed method. Additional task information, including background

and comparable works, are included in each of the respective case study

chapters. The proposed method (Chapter 3) also makes extensive use of

Evolutionary Algorithms (EA), an optimisation method, to aid discovery

of more optimal feature subsets and hyper-parameters for each algorithm.

Given the significance of EAs, these algorithms are investigated separate to

unsupervised learning in section 2.3. This section describes the composition

of EA algorithms and their current applications for evolving Artificial Neural

Network (ANN) and Deep Learning (DL) models, by a process known as

Neuroevolution (NE).

2.1 Supervised Learning

In ML, supervised learning refers to the task of inferring a function from

labelled training data (Mohri et al., 2012). The algorithms are presented

with a set of input and output pairs (x, y), x ∈ X, y ∈ Y , for which a function

f : X → Y needs to be discovered. This function may be deterministic, or

stochastic (Russell and Norvig, 2009). Where the function is deterministic,

each output is given by y = f(x). Where a stochastic function is apparent,

a conditional probability distribution function P (Y |x) is required (Russell

and Norvig, 2009). The function may determine the output as one of a

set of finite, discrete values (classification), or alternatively represent the

11

Data

Feature Processing

Data Sampling

Feature Selection Training Classification
Model

Feature
Calculation ML Training Phase Classification Model

Figure 2.1: A diagram describing the development of most supervised learning classifiers,

adapted from Hu and Shen (2012).

output as a continuous value. Where a continuous value is returned, the

learning problem is called regression (Freedman, 2009). Here, the number

represents a conditional expectation (function approximation) rather than

an exact classification.

A cost function, which implicitly contains prior knowledge regarding the

problem domain, evaluates the inferred function and, subsequently, the

mappings produced when it parses a test data set. According to Mitchell

(1997), a commonly used cost function and the function used to ascertain

the fitness of supervised learning models in this dissertation is the

Mean-Squared Error (MSE) function (equation 2.1).

MSE =

n∑
i=Y

(Yi − Ai)
2

n
(2.1)

Where n is the number of pairs in the data set, Y the desired values

(outputs or targets) and A the actual value, or output of f(x), produced.

The goal of the training process is to minimise the average MSE value of the

network for all example pairs (x, y). There are a number of methods to reduce

the cost of, or train a network, one of which is gradient descent (Snyman,

2005). Gradient descent works by incrementally changing a single element

of a solution in an attempt to produce a better solution by converging to a

local minimum.

12

Data Capture

Statistical Property
Processing

Data Acquisition

Classification
Model Result

Statistical Property
Calculation

Training Process

ML Classification
Process

Result

Optional Adaption Process

Figure 2.2: A common ML supervised learning test (evaluation) process, adapted from

Hu and Shen (2012).

The accuracy of a supervised learning algorithm for a task is dependent

on the type of problem, the learning algorithm, the specific hyper-parameters

(Bergstra and Bengio, 2012) guiding the algorithm, and the supplied training

and test data sets. Supervised learning can typically be broken into two

phases: training and testing (Hu and Shen, 2012). The training phase (Figure

2.1) extracts features from a data set, applying labels to the resulting datum.

This data is sampled and supplied to a training process, which constructs

a model for describing the data. This model can subsequently be used to

classify previously unseen datum. The testing phase (Figure 2.2) extracts

the same features from previously unseen data before submitting them for

evaluation by the classification model. In some implementations, a parallel

process is used to adapt the model in real time, much like in the training

phase (Hu and Shen, 2012).

The following subsections provide an overview of supervised learning

applications related to the three case studies evaluated in this dissertation.

These are Internet Protocol (IP) traffic classification (Chapter 4), Network

Based Anomaly Detection (NBAD; Chapter 5) and handwritten digit

recognition (Chapter 6). Additional background for each task, and further

details regarding each of these related works, is provided in the respective

case study chapters.

13

2.1.1 IP Traffic Classification

A number of supervised learning algorithms, including Naive Bayesian

(Mitchell, 1997), Decision Trees (Quinlan, 1987) and ANNs (Gurney, 2003)

have been applied to IP traffic classification tasks over the past few years

(Zhang et al., 2009a). Some of these applications include the work of

Alshammari and Zincir-Heywood (2009), where AdaBoost (Freund and

Schapire, 1995), Support Vector Machines (SVM) (Cortes and Vapnik,

1995), Naive Bayesian, Repeated Incremental Pruning to Produce Error

Reduction (RIPPER) (William et al., 1995) and C4.5 (Quinlan, 1993)

algorithms were compared for identifying Secure Shell (SSH) traffic flows

captured on the Dalhousie Campus network1. The results showed that the

C4.5 algorithm produced a superior model, with an overall accuracy of

between 83.7 percent and 97 percent. Their results also indicated that a

classifier trained on one network can be deployed on another with

reasonable success. It is noteworthy that the signature developed to

identify SSH was manually constructed and that the features and rules

employed were for detecting the SSH protocol only. According to

Alshammari and Zincir-Heywood (2009), additional work would be required

to develop a robust signature suitable for classifying other applications,

such as Skype2, in a similar manner.

Li et al. (2007) describe a method for classifying applications using SVMs

into one of seven classes, a subset of those listed in table 4.2. Using specific

statistical features, including destination ports, receive packet size variances

and window size information, their optimised method yielded an accuracy

of 96.92 percent in unbiased training and testing. For regular training with

biased prior probability, the authors achieved an overall accuracy rate of

99.4 percent. While the overall accuracy achieved was very high, the method

lacked the ability to individually classify a particular application protocol,

instead, relying on grouping these protocols into one of seven categories.

Also, the dependency on port information raises doubts in applications where

dynamic port selection is in effect.

More recently, Goss and Botha (2012) proposed a fixed set of features,

which included packet directionality, packet size and Deep Packet Inspection

1Dalhousie University, Halifax, Nova Scotia, Canada. http://www.dal.ca/
2http://www.skype.com/

14

http://www.dal.ca/
http://www.skype.com/

(DPI) information to discriminate between application protocols on a

network in real time. Datum extracted using these feature sets were

manually grouped by their application protocol, and annotated by experts.

This labelled training set was used to train ANN classifiers in recognising

future instances of each protocol. Using the defined features and a fixed

ANN structure, or model, an overall accuracy in excess of 99 percent was

recorded.

In the works discussed, an individual classifier was developed for each

application protocol. In the case of Alshammari and Zincir-Heywood (2009),

the construction of these classifiers required additional, manual development

by experts. For Goss and Botha (2012), expert involvement was required for

annotating data sets compiled by extracting specific features from recorded

flow samples. Producing signatures in this fashion is not conducive to the

completeness of an IP traffic classification system, one of two metrics, namely

accuracy and completeness, used to evaluate these systems (Szabo et al.,

2007).

2.1.2 Anomaly Detection on IP networks

It is important to identify and control anomalous traffic flows, or malicious

content traversing IP networks. For example, a common, complex

classification problem plaguing IP network administrators is the ability to

accurately and efficiently classify unsolicited email messages entering and

exiting their network. According to Goodman and Heckerman (2004),

spammers are continually updating their tactics, making it increasingly

difficult to sustain a static programmed approach to spam email detection.

In these cases, learning algorithms work best at keeping spam at bay

(Goodman and Heckerman, 2004). Androutsopoulos et al. (2000) compared

Naive Bayesian and memory-based approaches for spam filtering, finding

both methods achieved very high classification accuracy, outperforming

anti-spam keyword patterns supplied by a widely used email reader. The

findings in this work showed that it was entirely feasible to construct

learning-based filters for spam detection purposes (Androutsopoulos et al.,

2000).

Although often only mildly annoying, unsolicited email, or spam, can also

act more maliciously, wasting resources and preventing legitimate access to

15

both compute and network resources. These kinds of attacks are known as

Denial of Service (DoS) attacks - when only a single source host participates

using a single type of attack - or a Distributed Denial of Service (DDoS) -

when multiple hosts attack using many attack vectors.

Jalili et al. (2005) trained supervised ANNs for detecting DoS attacks,

where an attacker targeted a network with semi-normal packets.

Semi-normal packets are normal packets that occur either at an abnormal

rate, or contain abnormal payload content. According to (Jalili et al.,

2005), the statistical properties that a flow exhibits change under DoS or

DDoS attack, deviating from normal distribution. The method was

demonstrated capable of differentiating between normal and attack traffic

in 94.9 percent of cases.

2.1.3 Handwritten Digit Recognition

Computer vision classification tasks, such as image recognition and, more

specifically, handwritten digit recognition, deal with the extraction of high-

dimensional data from images to produce numerical or symbolic information,

representing each object for ML-based classification models. In most cases,

these methods divided the task into two main parts, namely the feature

extractor and trainable classifier. The feature extractor is rather specific

to each task and thus requires the most design effort (LeCun et al., 1998).

For the general classifier, LeCun et al. (1998) states that a large number of

commercial Optical Character Recognition (OCR) systems employ some form

of multi-layer ANN, trained using backpropagation (Rumelhart et al., 1988).

LeCun et al. (1998) tested a variety of supervised, gradient-based

methods for classifying the popular Mixed National Institute of Standards

and Technology (MNIST) data set of handwritten digits. The authors

manually configured ANN models using heuristic values for the number of

hidden layers and neurons, where the lowest classification error-rate was 1.6

percent. Using Convolutional Neural Networks (CNN), the authors

managed to reduce the error-rate to 1.1 percent. Finally, the authors tested

a boosting method that incorporates a fixed number of CNN classifiers and

uses the average classification to identify each digit. Here, the error-rate

dropped even further, to 0.7 percent.

16

Cluster B

Cluster A

Figure 2.3: Data clustering: one of the primary functions of unsupervised ML.

Ciregan et al. (2012) used CNN classifiers to redefine the state-of-the-

art technology for classifying images of the MNIST data set, achieving an

error-rate of 0.23 percent. The method, like that of LeCun et al. (1998),

uses multi-column Deep Neural Networks (MCDNN), with convolution and

pooling layers as pre-processors.

All of the supervised learning systems described used models that were

designed and developed manually by human experts. This process required

experts who were knowledgeable in each specific field. For example, an

expert on handwritten image recognition may not produce a model fit for

IP traffic classification as easily as an IP expert might. These methods also

used pre-labelled data sets, where the class of each datum was known as a

priori. Supervised learning algorithms were subsequently found to rely on

the presence of class labels (predefined outputs) for successful training.

Contrary to supervised learning algorithms, unsupervised learning can

identify similarities amongst data and produce groups, or clusters,

automatically. This clustered data could then be used as labelled training

sets for training supervised learning algorithms in cases where no experts

were available or no pre-labelled data set existed.

17

2.2 Unsupervised Learning

In supervised learning the objective of the algorithm is to identify a function

that maps inputs to a specific output, where correct values are provided by

a human expert (Alpaydin, 2014). In contrast, for unsupervised learning

there is no human expert (supervisor) nor input to output mapping. The

objective of unsupervised learning is to find regularities and infer a function

to describe these hidden structures in unlabelled data sets. Some of these

structures, or patterns, occur more regularly in the data set and it is the job

of unsupervised learning algorithms to group, or cluster, these related datum

based on their similarities (Figure 2.3). Clustering processes tag each datum

with its associated cluster identifier, automatically providing a labelled data

set that can be used to train supervised classifiers.

The ability to automatically identify patterns in data sets is important

for real-time classification tasks, such as IP traffic classification and Network

Based Anomaly Detection (NBAD), where new patterns are introduced to

networks daily. One of the greatest contributions of ML to the networking

domain is the ability to identify advanced and previously unseen application

protocols and attack traffic. Most IP traffic classification systems require a

unique signature to classify each application protocol (Goss and Nitschke,

2013a). These signatures are provided by vendors of traffic management

systems in one or more signature packs on a regular basis. The process

of creating and deploying signatures in this manner is sub-optimal, as the

development of new application protocols far exceeds signature production

by vendors. Likewise, new attacks are launched daily on public networks,

thus NBAD systems cannot wait for vendors to release signature packs before

taking action. The lack of a suitable classifier for each application protocol or

attack profile, in these applications, results in a significant volume of network

traffic remaining unclassified, or inaccurately classified, until a classifier is

made available.

A number of works, including those of Hu and Shen (2012), have

successfully used unsupervised learning to produce annotated data sets for

training supervised, or semi-supervised classifiers automatically. Most of

these systems follow the basic framework depicted in Figure 2.4.

18

Offline Training Phase Online Classification Phase

Clustering

Data Set

Feature Vector

Input Vector

Feature Vector

Clustered Data Set

Classifier Production

Feature Extraction Feature Extraction

Evaluation

Result

Figure 2.4: ML unsupervised learning framework for automatically creating labelled

data sets and training supervised learning algorithms.

The offline training phase is responsible for extracting statistical

features from a data set. These feature vectors are clustered using an

unsupervised learning algorithm. Examples of these algorithms include

Expectation Maximization (EM) (Dempster et al., 1977), Autoclass

(Cheeseman et al., 1993), k-means (MacQueen et al., 1967b), the

Hierarchical Self-Organising Map (HSOM) (Kohonen, 1990) and

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

(Ester et al., 1996). Identified clusters are used to form training data sets

for developing supervised, or semi-supervised classifiers to recognise future

instances of each cluster (pattern) in the online classification phase. The

online classification phase extracts the same statistical features from an

input vector, evaluating the new feature vector using each of the trained

models.

Successful clustering of a particular task is heavily dependent on both

the feature set describing the problem space and the hyper-parameters used

to tune, or guide the clustering algorithm. Each classification problem

addressed by ML algorithms is very different. Each problem needs to be

described to the algorithm, a task often undertaken by human experts. The

requirement for optimised feature subsets and hyper-parameters in

classification tasks is prevalent for both supervised and unsupervised

learning methods. While these parameters are often set heuristically by

experts, EAs have been demonstrated as effective optimisation methods for

a broad range of tasks.

19

2.3 Evolutionary Algorithms

Evolutionary algorithms are optimisation methods concerned with

incorporating the evolution and adaptation techniques observed in nature

into computer systems. These stochastic techniques attempt to imitate

natural genetic inheritance and Darwin’s theory of survival of the fittest

(Fogel, 1997; Schoenauer, 1997). Although they may yield very robust

solutions, evolutionary algorithms are, in reality, crude simplifications of

biology (Bäck and Schwefel, 1993) and are becoming commonplace in

solving complex real-world problems in industry, medicine and defence

(Fogel, 1997; Schoenauer, 1997). These algorithms are able to find the

global optimum of complex functions (Schoenauer, 1997), where heuristic

solutions are either not available or may lead to unsatisfactory results

(Fogel, 1997).

Optimised feature sets and hyper-parameters are essential to both the

accuracy and completeness of classification systems, especially those

operating on real-time data, where previously unseen patterns are regularly

observed. These optimisations are often performed manually by experts,

using empirical, sequential search processes until suitable results are noted.

Evolutionary algorithms are poised to improve this process, replacing

manual searches with automated feature set and hyper-parameter

optimisation processes (Bergstra et al., 2011). These hyper-parameters, or

meta-parameters, are the criterion that govern the operation of each ML

algorithm.

This section begins with a brief overview of EAs, their biological

inspiration, and a survey of their application to date in optimal feature

selection and hyper-parameter optimisation tasks.

2.3.1 Biological Inspiration

Although the terms employed in EA are synonymous with those in biology,

they are used in the spirit of analogy as the entities referred to in EA are far

more simple than their actual biological counterparts. All living organisms

consist of cells, which are comprised of one or more chromosomes, or strings

of DeoxyriboNucleic Acid (DNA) (Melanie, 1999). These chromosomes act

as a blueprint for the organism, described by a number of features, or genes.

20

Most organisms have many chromosomes present in each cell. A collection

of chromosomes is referred to as a genome. In biology, there are subtle

differences between an organism’s genome and its genotype - a term used to

describe the collective set of all genes within a particular genome. In EA

literature, however, the term genotype is synonymous with genome. The

genotype of an organism is used to form its phenotype, or implementation of

physical and mental characteristics. Examples of these characteristics include

eye colour, height and so forth.

In biology, the reproduction (or crossover) process involves both parents

contributing to the formation of a new genotype, describing an offspring.

These offspring are subject to mutation, where the values of single genes

are forced to deviate from the blueprint. These changes are often results

of copying errors (Melanie, 1999). The fitness of the resultant offspring is

a measure of the probability that the organism will live to reproduce and

therefore describes its viability amongst the population.

In EA, the terms genotype, genome and chromosome are often used

interchangeably, referring to a candidate solution to a problem. These

candidate solutions are often stored as bit strings, where genes are either

single bits or short blocks of adjacent bits (Melanie, 1999). Other encoding

schemes include Permutation and Direct Value encoding. Permutation

encoding is typically used in ordering problems, such as the popular

Travelling Salesman Problem (TSP), where each genotype is a string of

numbers, representing a sequence. Direct value encoding is typically used in

problems where real numbers (continuous values) need to be encoded. In

direct encoding, each genotype is comprised of a string of numbers

connected to the problem. While this type of encoding is good for special

problems, it often requires the development of customized mutation and

crossover operators specific to the problem. Although the method presented

in this dissertation is capable of supporting each of these encoding

methods, the bit string method was selected for demonstration purposes to

simplify crossover and mutation operations. A customized mutation

operator was developed in Chapter 6 to demonstrate the efficacy of the

proposed method in situations where special customizations are required.

The mapping from the phenotype space to the genotype space is known

as encoding, with the inverse mapping referred to as decoding (Schoenauer,

21

1 0 0 1 1 0 1

Genotype

0 0 1

Gene

Figure 2.5: An example EA candidate solution encoded as a bit string.

1997). In this dissertation, the term genotype is used for describing a

candidate solution encoded as a bit string. The term phenotype is used to

describe the implementation (solution) described by each candidate

solution. An example of such encoding is depicted in Figure 2.5. With this

terminology in mind, the following subsection provides insight into the

operations of a typical EA.

2.3.2 Overview of an Evolutionary Algorithm

Fogel (1997) describes an EA as a search for the extrema of a functional,

considering the value of alternatives as solutions to the problem at hand. In

section 2.1, supervised learning was defined as the task of inferring a

function from labelled training data. This process is usually performed as a

sequential search, where the solution will, over time, converge to a local

minima. In section 2.2, the parameters provided to clustering algorithms

played a significant role in the results these algorithms achieved. These

hyper-parameters are often selected by experts heuristically, chosen

sequentially and tested by experimentation. Evolutionary algorithms

provide the ability to optimise both of these searches, considering alternate

solutions in parallel. These algorithms are extremely robust, exhibiting the

ability to adapt in dynamic environments. This ability is of critical

importance in practical problem solving (Fogel, 1997), such as those

considered by the case studies in this dissertation (Chapters 4, 5 and 6).

Evolutionary algorithms are also able to address problems for which there

are no human experts (Fogel, 1997). An example of a typical EA is

presented in algorithm 1.

The initial population of an EA is usually generated at random,

performed as uniformly as possible (Eiben and Schoenauer, 2002). The

22

population comprises a number of individually encoded solutions

(genotypes), where the value of genes fall within the bounds of the search

space. These candidate solutions do not necessarily have to be unique to

the population. Each candidate solution is parsed by a fitness function,

which uses an objective function to evaluate the solution. The objective

function for each task is defined as D → O, where D is the search space

and O the objective. Each candidate solution (genotype) is therefore

measured as a direct relation to its objective function value. The resulting

value is set as the fitness of the genotype, where a higher fitness score

delineates a more suitable solution than a candidate with a lower score.

The fitness function represents the push toward quality improvements

within the population, supporting the selection operator (Eiben and

Schoenauer, 2002). The design and implementation of a suitable fitness

function for each problem is therefore of critical importance.

23

/* Start with generation 0 */

set t = 0;

/* Initialise a random population of individuals */

initialisePopulation P(t);

/* Determine the fitness of the current population */

evaluatePopulation P(t);

/* Iterate until termination criterion is met */

while not terminate-condition do

/* Select sub-population for breeding */

P’(t) = selectParents P(t);

/* Breed parents using recombination (crossover) */

applyRecombination P’(t);

/* Apply genetic mutation stochastically */

applyMutation P’(t);

/* Evaluate fitness of resultant offspring */

evaluatePopulation P’(t);

/* Replace current generation with best from P’ */

P(t+1) = selectNextGeneration P’(t);

/* Increment generation count */

t += 1;

end

Algorithm 1: Example pseudo-code for an EA.

An EA executes a number of generations, evolving the population until

a termination condition is met (algorithm 1). This termination, or stopping

criteria can be a simple measure - such as the traversal of a fixed number of

generations (t) - or fitness of the best scoring solution breaching a

particular threshold. These termination conditions could also be complex -

such as a measure of the gradient gains over some number of generations -

or some measure of diversity amongst the population (Schoenauer, 1997).

At the end of each generation, a selection and replacement scheme is used

to produce a succeeding population. Here, a selection operator highlights

the best individuals within a population for the given problem.

Selection is one of the driving forces behind an EA to ensure increased

quality, while reducing genetic diversity (Eiben and Schoenauer, 2002).

Identifying the best candidates within a population ensures that resources

are concentrated on those that show the most potential. It is important to

24

A CB D E

Total Fitness ()0 T
fT

f

Result

∋

 (0,) T
f

Figure 2.6: An example of roulette wheel selection probabilities for a generation

consisting of five genotypes.

note that no new solutions are found by this operator; it simply selects the

most suitable candidate solutions, discarding those found to be less

suitable. Isolating strong candidates from weaker ones is usually

accomplished by filtering them by their fitness scores, as those with a higher

fitness have a stronger chance of selection. The genotypes of the succeeding

generation’s population can be chosen from offspring only or, alternatively,

include one or more parents from the current population, through a process

called elitism (Eiben and Smith, 2003). In either case, this process can be

deterministic or stochastic, depending on the operator (Schoenauer, 1997;

Eiben and Schoenauer, 2002). Some of the most popular selection operators

employed today include: Fitness Proportionate Selection (Mitchell, 1997),

Rank Based Selection (Mitchell, 1997), Tournament Selection (Mitchell,

1997) and Elitist Selection (Eiben and Smith, 2003).

Fitness proportionate selection, also known as roulette wheel selection,

uses the assigned fitness scores of a population to calculate and assign a

probability of selection to each genotype. The probability of selecting an

individual, i, where Fi is the fitness of the individual in the current population

and N is the number of genotypes within the population, is given by equation

2.2.

Pi =
Fi∑N
j=1 Fj

(2.2)

The result of calculating a probability of selection for each candidate with

respect to the total fitness of a population is illustrated in Figure 2.6. Here,

candidates with a higher probability occupy more space on the proverbial

“roulette wheel” and therefore have a higher chance of being selected.

25

The Rank Based Selection operator differs from fitness proportionate

selection by assigning a probability to a candidate according to their rank,

rather than their fitness. All candidates of a population are ordered by

their fitness in descending order and assigned a probability based on their

position with respect to the rest of the population.

Basing selection strategies on global, shared information about the

whole population arguably makes both fitness proportionate selection and

rank-based selection unsuitable for parallel-based EAs. To overcome this,

Tournament Selection elicits a set of k candidates from the population with

uniform probability and has them engage in a tournament. The victor of

the tournament can be chosen either deterministically - as the individual

with the highest fitness - or probabilistically, where the probability of the

individual winning is proportional to its fitness (Miller and Goldberg,

1995).

Finally, Elitist Selection, or elitism is a process that links the lifetime of

an individual genotype proportionately to its attained fitness. The result is

that suitable solutions are retained over a number of generations, rather

than being discarded immediately. When elitism is implemented, the best

candidate will be copied (unmodified) into the succeeding generation.

Depending on the configuration, more than one candidate may be copied in

this fashion. Elitism is usually implemented with another selection

operator, such as fitness proportionate selection, rank-based selection or

tournament selection (Eiben and Smith, 2003).

During the breeding process (algorithm 1) those genotypes chosen by

selection methods other than elitism, are cloned. These clones are subjected

to genetic operators, which modify the genotype in order to maintain genetic

diversity in succeeding populations. This push toward genetic diversity is in

contrast to the selection operators and ensures novel solutions are developed

and tested by the algorithm (Eiben and Schoenauer, 2002).

Genetic operators are generally classified as one of two types: Mutation

and Crossover (Recombination). Mutation operators are stochastic (Eiben

and Schoenauer, 2002), mutating or altering specific elements within the

genotype to genetically modify the offspring. The purpose of mutation

operations is to simulate transcription errors found in nature. While there

is no standard method of implementing mutation, general trends are toward

26

0 0 0 0 1 0 0 1 1 0 0 0 0

Mutate Mutate

0 0 0 1 0 0 1 1 0 0 01 1

Figure 2.7: An example of bit string mutation (flip bit).

modifying genes of a cloned genotype by a very low probability (Eiben and

Schoenauer, 2002). Bit String Mutation is one of the more popular

mutation operators applied to genotypes encoded as bit strings. These

genotypes are described by {0, 1}n, where the genotype consists of n genes

with values of 0 or 1. One popular example of a bit string mutator is Flip

Bit. This operator considers each gene (bit) independently, flipping or

inverting the value based on a specified mutation rate (probability). Figure

2.7 illustrates the concept of bit string mutation on an example genotype,

where two genes were mutated using the flip bit mutation operator.

While there are many other mutation operators available, most of those

remaining are applicable to genes represented by continuous values, integer

or floating points. This type of encoding is not implemented by the method

proposed in this dissertation and are thus not discussed here. Bäck et al.

(2000) and Deep and Mebrahtu (2011) provide further insights into these

and other genetic operators.

The purpose of crossover operators is to take two or more fit parents

and exchange their genetic material to form novel solutions. The new

offspring offer solutions that incorporate inheritance information (genetics)

from multiple parents, describing new solutions. K-point crossover is one of

the most popular operators applicable in today’s EA implementations

(Jansen, 2013).

The k-point crossover technique is applied by selecting k randomly

assigned crossover positions in the parent genotype. Offspring are created

by taking segments of each parent, alternating between the two genotypes

at each crossover point. This process, illustrated in Figure 2.8, allows one

or more crossover points to be specified, permitting parents to contribute

toward offspring at a gene, rather than segment, level (Uniform Crossover).

It is important to note that the use of crossover to form offspring may

not be applicable where the ordering of variables is important (for example,

27

1 0 0 1 1 0 1

1 1 0 0 1 0 1

Parent 1

Parent 2

0

1

1 1 0 1 1 0 1 1

1 0 0 0 1 0 1 0

Crossover

Random

Crossover Points

Figure 2.8: An example demonstrating 2-Point Binary Crossover.

the case study described in Chapter 6). For this reason, a number of EA

paradigms forgo the use of crossover operators all together, while others

consider crossover an integral variation operator (Eiben and Schoenauer,

2002).

2.3.3 Feature Set and Hyper-Parameter Optimisation

Genetic Algorithms (GAs) (Eiben and Smith, 2003) are algorithms

belonging to the EA class, which generate solutions to optimisation

problems using natural evolutionary processes. These algorithms have been

used in classification methods as optimisation techniques for a number of

problems, such as feature selection. Park et al. (2006) proposed a feature

selection algorithm which produced three kinds of classifiers: Naive

Bayesian with Kernel Estimation (NBK), Decision Tree J48 and Reduced

Error Pruning Tree (REPTree). The results obtained through

experimentation showed that classifiers based on decision trees exhibited a

higher recall and thus higher overall accuracy than the Naive Bayesian

classifiers. This outcome was echoed by Chen et al. (2008) who, using the

tabu search algorithm (Glover, 1989, 1990), demonstrated that a decision

tree-based classifier outperforms a Bayes-based classifier.

In early works, Vafaie and De Jong (1992) tested GAs against a traditional

statistical method of feature selection. Through experimentation the authors

showed that a significant reduction in the number of features required for

classifying their targets was obtainable using a GA. These reduced feature

sets simultaneously yielded higher accuracy in classification when compared

to other methods.

28

Huang and Wang (2006) proposed the use of a GA for selecting feature

subsets and parameters for use in SVMs. The de facto standard search for

hyper-parameter optimisation is an exhaustive one, often referred to as a

grid-search (Hsu et al., 2003). In this work, Huang and Wang (2006)

stressed that the kernel parameters and feature sets supplied to an

algorithm had a profound impact on classification accuracy. The objective

of this research was to simultaneously optimise both the kernel parameters

and the feature subset without decreasing the SVM classification accuracy.

Through this optimisation, the task of classification is reduced, while the

classification accuracy is retained, or possibly improved. Huang and Wang

(2006) demonstrated that, compared to a grid-search, their GA approach

was able to discover a more optimal (lower dimensional) feature set, which

resulted in improved classification accuracy and task efficiency.

An integral part of an Intrusion Detection System (IDS) is the ability

to classify IP traffic on a network. Li (2004) presents an interesting GA

approach, showcasing the use of GAs in problems within the IDS space.

Here, the author stresses that the parameters governing the operation of the

GA are crucial as they heavily influence the effectiveness of the algorithm.

Garcia-Teodoro et al. (2009) asserts the main advantage of using GAs in IDS

systems is their flexible and robust global search methods that converge to

a solution from a number of approaches without any prior knowledge of the

problem.

Goss and Nitschke (2013b) used GAs for automatically selecting

parameters for the k-means clustering algorithm in IP traffic classification

problems. In this work, the number of application protocols (or clusters, k)

present in a data set of IP flow traces was determined by a GA. Each value

of k was encoded in a bit string genotype, whereafter the clustering

algorithm was executed. Silhouette Cluster Analysis (Rousseeuw, 1987) was

used to determine the success of the clustering process and described the

fitness of each genotype. Goss and Nitschke (2013b) found that searching

for an optimal value of k was more efficient using a GA than searching for

the same using traditional, sequential (grid) searches.

The use of EAs for optimising feature sets and hyper-parameters for

complex classification tasks is still very much in its infancy. The

applications discussed in this section demonstrate the ability of GAs to find

29

more optimal feature subsets and optimised hyper-parameters for both

supervised and unsupervised algorithms. Much of the research within the

field of parameter optimisation relates to SVM algorithms, however a

number of other algorithms could also benefit. SVMs are typically easier to

implement than an ANN and require fewer hyper-parameters be tuned

before reaching a global optimum (guaranteed). ANNs, although previously

very popular, have - until recently - been the second choice for many

systems, owing to complexity of topology design, the high number of

tunable parameters, and complexities related to result interpretation.

ANNs were used in a number of approaches studied in this chapter, often

using static topologies and gradient-based weight adaptation techniques.

Neuroevolution (NE) uses EAs to search for more optimal topologies and

weight configurations for ANN classifiers. While there are many NE

algorithms, two distinctions can be used to broadly group them. The first

type are those that evolve only the weights of an ANN. These algorithms

are often referred to as Conventional Neuroevolution (CNE) (Miikkulainen,

2010) algorithms. The second type are those that evolve both the topology

and the weights, commonly referred to as Topology and Weight Evolving

Artificial Neural Networks (TWEANNs) (Sher, 2012).

Common to all EAs, solutions for NE algorithms are encoded as

genotypes, representing the design of a particular classifier, or model. These

models can be encoded using a direct or indirect encoding scheme. In direct

encoding, every neuron and connection is specified in the genotype, while

indirect encoding simply specifies how the network should be generated

(Kassahun et al., 2007). Each model described by an NE algorithm is

evaluated on some task to ascertain its fitness. Unlike supervised ANNs,

which require a training set of input and corresponding output vectors, NE

algorithms require only the ability to measure a network’s performance at

some task. ANNs have already shown great promise in classifying IP traffic

(Goss and Botha, 2012; Goss and Nitschke, 2013a,b), however the topology

of the ANNs tested was fixed for each problem (based on heuristic

configurations). Goss and Nitschke (2014) demonstrated that, by adapting

the ANN topology (hidden neuron configuration) of an IP traffic classifier,

an increase in accuracy was possible. In this work, as in that of Goss and

Botha (2012), Goss and Nitschke (2013a) and Goss and Nitschke (2013b),

30

the tuning of the topology’s weights was performed using only a

gradient-based search, which has many potential shortfalls and limited

guarantees for convergence.

Given the findings of the works discussed in this chapter, the use of GAs

for optimising feature sets and selecting parameters governing learning

algorithms show marked improvements in classification accuracy and task

efficiency. This, in theory, should improve the accuracy, completeness and

efficiency of complex classification tasks, such as IP traffic classification,

NBAD, and handwritten digit recognition. As far as could be ascertained,

the only research where EAs manipulate the structure and weights of IP

traffic classifiers was by Goss and Nitschke (2014). Here, the authors used

an EA to search for a suitable configuration of hidden layers and their

respective nodes. The results showed that an increase in accuracy was

achievable by adapting (customising) the topology of an ANN classifier for

each application protocol. A full TWEANN implementation in IP traffic

classification, where topology and weights of each classifier are determined

by an EA has, according to all literature reviewed, yet to be researched.

Furthermore, training TWEANNs for identifying anomalous network traffic

(Chapter 5) and developing more efficient (optimal), accurate CNN

classifiers for identifying handwritten digits have yet to be explored by

researchers. A general method capable of addressing each of these types of

complex classification problems, and providing increases in completeness,

accuracy or efficiency will therefore be a novel contribution to the field of

ML.

31

2.4 Conclusion

ML techniques were identified as the current state-of-the-art technologies in

a broad range of classification tasks, however many implementations still

have a strong dependency on human expert intervention for feature set

extraction and optimisation, data set annotation, and model design

processes. Inefficiencies in these areas result in less complete systems,

where overly complex classifiers predisposed to human error are

commonplace. The ability to optimise feature sets, annotate data sets and

produce optimised classifiers is synonymous with most ML classification

tasks, including IP traffic classification, anomaly detection and image

recognition. The ability to automate these processes, reducing dependency

on human experts will lead to more complete, accurate and task-efficient

systems compared to current methods.

The following chapter outlines a novel method for addressing these

deficiencies, where optimised feature selection, pattern discovery, and

optimised classifier production processes are performed automatically. The

efficacy of this new method is tested using three distinct case studies: IP

Traffic Classification (Chapter 4), Anomaly Detection (Chapter 5) and

Handwritten Digit Identification (Chapter 6).

32

Chapter 3

Automated Pattern

Identification and Classification

(APIC)

An efficient, flexible method for identifying optimised feature sets,

discovering patterns in data sets, and crafting more optimal classifiers is

required for a wide variety of classification tasks across multiple domains.

This process needs to be automated, adapting to a variety of pattern types

within a specific data set. The drive toward automation in Machine

Learning (ML) is fast becoming more prevalent in modern ML

implementations (Feurer et al., 2015), demonstrating a paradigm shift

poised to accelerate the task of data analysis in today’s modern big data

environments. Increased automation provides opportunities for non-experts

to implement ML in various applications using off the shelf software (Feurer

et al., 2015). To achieve high levels of automation, a candidate solution

should be capable of addressing each of the major components currently

associated with ML deployment, replacing human expert tasks with

methods to perform the same automatically. These major tasks have been

identified and are described in this research as Feature Selection, Pattern

Discovery (Data set Annotation) and Classifier Production (model

development). Various methods for automating each of these components

have been investigated in the publications listed in Appendix A. The

method proposed in this chapter incorporates the best solutions for each of

these works into a single ML pipeline, suitable for application in general

33

ANN
Topology developed
and tuned by GAs

Output
Predictions for classification

classes discovered in (2)

Inputs
Feature subset developed in (1)

0100010 1
0110000 1
0110010 0
1110100 0
1101000 0
1000100 1

0100010 1
0110000 1
0110010 0
1110100 0
1101000 0
1000100 1

0100010 1
0110000 1
0110010 0
1110100 0
1101000 0
1000100 1

Full-feature Data Set
Data set containing all features

(1) Feature Selection

GA
Determines best feature subset

(2) Pattern Discovery

GA
Hyper-parameter tuning

Clustering
Supplied data set is clustered

to reveal distinct patterns

(3) Classifier Production

Evaluation
Stopping criterion met?

Complete

No

Figure 3.1: A high-level view of the APIC method for automated pattern recognition

and classifier production.

classification tasks.

The goal of the Automated Pattern Identification and Classification

(APIC) general method is to identify distinct patterns in a variety of

mixed, noisy data sets, automatically producing efficient (low-complexity),

accurate classifiers for any given task. These tasks include, for example,

classifying application protocol flows traversing Internet Protocol (IP)

networks, images processed via visual sensors or voice recognition.

A method addressing these tasks should be complete, offering a classifier

for each possible pattern discovered in the data set. The accuracy of these

classifiers should be competitive, equal to, or surpassing, the accuracy

achieved by classifiers manually created by experts for the same task. A

fine balance needs to be reached when creating classifiers, ensuring the

overall completeness of the system is maintained, while ensuring a

sufficiently high degree of accuracy is achieved across these classifiers.

This chapter presents the APIC method (Figure 3.1), which improves

the completeness, accuracy and efficiency of existing classification systems.

APIC is an ML pipeline, comprised of feature selection, pattern discovery

and classifier production processes. These processes use unsupervised ML

algorithms, including Genetic Algorithms (GAs), Topology and Weight

Evolving Artificial Neural Networks (TWEANNs) and clustering

algorithms. In the sections that follow, the feature selection process

34

(Section 3.1) searches for a more optimal (reduced) feature set to describe

each data set. New patterns are automatically identified and grouped

(clustered) in these new data sets (Section 3.2). The clustered data set acts

as training sets for the development of classifiers (Section 3.3), such as

TWEANNs. These classifiers are trained to identify future instances of

each pattern in a given data set. The ability to classify new datum in this

manner is important in a number of classification tasks, including IP traffic

classification. The APIC method presents a novel approach for the

formation of classifiers for a number of complex classification tasks. The

first step in this process is to accurately describe data sets for each

problem, using optimised feature sets. The following Section describes

APIC’s approach to identifying the best features for each data set.

3.1 Feature Selection

A feature vector is an n-dimensional vector of numerical features that

describe an object. These vectors are used to train ML algorithms in

identifying future instances of an object within a mixed data set. Feature

vectors with increased dimensionality are more task intensive and incur

extra computational overheads when training ML algorithms. For this

reason, it is best to discover a more optimised feature subset for each

problem. The classification accuracy achieved using this feature subset

must equal or surpass that of the original feature set. The APIC method

reduces the task of training classifiers by removing redundant or irrelevant

features through a process of feature selection. Using a similar approach to

that of Vafaie and De Jong (1992) and Huang and Wang (2006), a GA is

used to identify near-optimal feature subsets for describing patterns in each

data set.

The APIC method encodes each feature subset genotype as a bit string,

with the number of bits equal to the dimensionality of the full feature set.

Each gene represents a particular dimension, or feature, where “1” indicates

the inclusion and “0” the exclusion from the current feature subset. For

example, consider the input data set 3.1:

35


0.8 1.2 2.3 0.3 1.1 0.2 2.1 0.3

1.2 2.3 0.3 1.1 0.1 0.0 2.1 0.4

2.0 1.2 1.3 0.0 2.1 0.6 0.9 1.4

 (3.1)

This set is comprised of three vectors (rows), described by eight features

(columns). The bit string genotype describing this data set will subsequently

be eight bits long, where the genotype 00110011 describes a feature subset

including the third, fourth, seventh and eighth features; 11001010 the first,

second, fifth and seventh features; and 11110000 the first four features.

The APIC method searches for the lowest dimensional feature subset,

where classifiers trained using the feature subset achieve performance results

that equal or exceed those of classifiers trained using the full feature set. In

this method, a low dimensional feature subset is encouraged by applying a

penalty to each genotype’s fitness, proportional to its dimensionality. This

ensures that genotypes with lower dimensionality are more favourable than

others, promoting the reduction of unnecessary features within the data.

The initial genotype population describing feature subsets is generated

with bits toggled between “1” and “0” randomly. Using these feature subsets,

the supplied data set can be partitioned, or divided, into a distinct number of

groups. Each of these groups describes a unique pattern (type of object) in

the data. A clustering process is used to group (cluster) the data, annotating

each datum with its associated cluster identifier. More information on this

process is provided in the following section.

3.2 Pattern Discovery

In certain classification tasks, labelled data sets are not readily available. In

these cases, human experts are often used to annotate each datum with its

associated class label. This process is inefficient as this manual annotation

takes a significant amount of time and is prone to error. Worse, a human

expert may not be available for annotating data sets for a particular task. In

these cases, unsupervised learning (Section 2.2) offers alternatives to manual

annotation processes.

36

Data Set
(Feature Subset) Data Clustering Genetic Algorithm

Hyper-Parameter Tuning

Evaluate

Clustered Data Set

Stop Condition

Figure 3.2: A GA-controlled clustering of data extracted using a feature subset.

The APIC method is capable of grouping feature vectors of a particular

type (pattern) using unsupervised learning algorithms, illustrated in Figure

3.1 (2). Each group, or cluster, is automatically annotated with its cluster id,

producing training sets for the production of supervised or semi-supervised

classifiers. The method allows the number of groups to be set explicitly, or to

be inferred automatically, through a discovery process. Where the number

of patterns, or targets, are not specified, the method uses algorithms such

as Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

(Ester et al., 1996) to discover these automatically. Where the number of

targets, k, are known a priori, algorithms such as k-means are used to group

datum into k clusters.

Using these algorithms, the input data described by the current feature

subset is clustered, grouping related datum. The hyper-parameters

controlling this clustering process are unique to each problem.

Accommodating for this, the APIC method uses a GA to search for

optimised values for these parameters, ensuring tighter (more optimal)

cluster formation. Figure 3.2 provides an outline of the APIC pattern

discovery process, where the hyper-parameters controlling the clustering

process are optimised automatically using a GA.

The parameters guiding the clustering process of each problem are

encoded as bit string genotypes. Where k-means partitive clustering is

used, the location of each centroid is encoded in the bit string. At this

point, each value of the feature subset is assumed to have been normalised

to a value between 0 and 1. The position of each centroid is represented as

four bits within the genotype, which reduces genotype complexity and

37

0 1

1

x

x0.8

0.1

0.60.1

x=0.1, y=0.1: 0001 0001

x=0.6, y=0.8: 1001 1100

(a) Initial Generation

0 1

1

x

x0.8

0.2

0.3 0.5

x=0.5, y=0.2: 0111 0011

x=0.3, y=0.8: 1000 1100

(b) Final Generation

Figure 3.3: A GA encodes the location of two centroids on a two dimensional lattice for

a k-means clustering problem. By tuning the locations of each centroid, the GA is able to

optimise the search process for centroid positioning. In (a), two centroids (denoted by x)

are positioned randomly on the lattice. In (b), the centroids have positioned themselves

in the centre of the two distinct patterns present in the data (the diamonds and the stars)

allows for up to 16 distinct positions in the feature space. This granularity

is sufficient for the k-means algorithm, as the centroid positions in the

feature space are fine-tuned by the k-means algorithm. Figure 3.3

illustrates the encoding of two centroids in an example two dimensional

problem. Figure 3.3a illustrates an example of a genotype from the initial

population, while Figure 3.3b demonstrates the evolution of centroids in the

final generation.

For problems where the number of clusters is unknown, algorithms such

as DBSCAN are used to infer these automatically. The DBSCAN algorithm

requires values for two hyper-parameters, namely the neighbourhood radius

size Epsilon (ε) and the minimum number of points (minPTS) per cluster.

These two parameters are each encoded as eight bit integers, concatenated

to form a complete genotype.

For all clustering algorithms, the initial population of genotypes of

hyper-parameters is generated randomly. Each genotype is evaluated by a

fitness function, which executes an instance of the clustering algorithm

configured with the decoded parameters. Each algorithm is permitted to

run until the stopping criteria is met. For the k-means algorithm, a stop

38

A CB D E

Total Fitness ()0 T
fT

f

Result

∋

 (0,) T
f

Figure 3.4: An example of roulette wheel selection probabilities for a generation

consisting of five genotypes.

will occur when no changes are made to centroid locations during a single

pass. Algorithms such as DBSCAN, for example, stop once all datum have

been passed and evaluated by the algorithm. After clustering is complete,

the resulting clustered data set is evaluated using the Silhouette Cluster

Analysis (Rousseeuw, 1987) method. The average silhouette for a clustered

data set is given by Equation 3.2.

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.2)

Where a(i) is the average measure of dissimilarity between datum i and

another datum within the same cluster, b(i) is the lowest average measure

of dissimilarity between datum i and any other cluster. The s(i) for the

clustered data set is therefore a measure of how successful the clustering

process is. These values are represented as values between -1 and 1, with a

value toward the latter signifying more appropriate (tight) clustering. Each

genotype is assigned a fitness value equal to the silhouette score achieved

post-clustering. Once all genotypes have been scored, a succeeding

population is generated for the next generation. Evolution of the successive

population is ensured by application of EA operators and processes after

each generation. First, elitism (Eiben and Smith, 2003) is applied, so that

the highest scoring genotypes are transferred directly to the next

generation’s population. Next, pairs of “parent” genotypes are selected

from the current population using roulette wheel selection (Al Jadaan et al.,

2008). This process ensures a high degree of probability for selecting fitter

39

1 0 0 1 1 0 1

1 1 0 0 1 0 1

Parent 1

Parent 2

Random
Crossover Point

0

1

1 0 0 1 1 0 1 1

1 1 0 0 1 0 1 0
Crossover

Random
Bit string Mutation

Random
Bit string Mutation

1 0 0 1 1 1 1

1 1 0 1 0 1 0

1

1

Child Genotypes

Figure 3.5: Application of EA operators on a pair of parent genotypes

parent genotypes. Where Fi is the fitness of genotype i in the current

population, the probability of selection is given by Equation 3.3.

Pi =
Fi∑N
j=1 Fj

(3.3)

Where N is the number of genotypes within the current population. The

probability of selecting a genotype based on fitness is illustrated in Figure

3.4

The pairs of parents are recombined using single-point crossover to

produce two child genotypes (Eiben and Smith, 2003). For each of these

genotypes, bit string mutation is applied to flip one bit, resulting in a

slightly altered resultant genotype. Both of these new genotypes are

subsequently added to the next generation’s population. These selection

and recombination processes, illustrated in Figures 3.4 and 3.5, respectively,

continue until the maximum number of allowed genotypes have been added

to the successive generation’s population.

Once a sufficient silhouette score has been attained for a clustered data

set, the GA is said to have converged and the best scoring solution is

forwarded to the classifier production process. A fixed number of

generations is specified as a stop condition where, if breached, the best

solution at that point is used. The following section describes the third and

final process of APIC, the development of customised classifiers.

3.3 Classifier Production

The literature studied in Chapter 2 revealed that a number of works used

human experts to develop classifiers through a manual, heuristic process.

40

Cluster Data

Genetic
Algorithm

Input Output

Weight Evolution

Backpropagation

Classifiers
Staging

Database

Stop
Genetic

Algorithm

Topology Evolution

Stop

Figure 3.6: APIC’s GA-controlled classifier production process.

These classifiers were often not general, requiring a significant amount of

customisation for each specific task. In most cases, a manually annotated

training set was required for training each classifier. Both the manual

labelling of training sets and the manual development of classifiers hinder

the scalability of these systems for complex classification tasks. The APIC

method addresses these issues, firstly by automatically distinguishing and

labelling distinct patterns in unlabelled data sets (Section 3.2) and

secondly, by automatically developing customised classifiers to identify

future instances of these patterns efficiently and accurately, illustrated in

Figure 3.1 (3). Figure 3.6 illustrates the APIC process for developing

customised classifiers for any complex classification problem.

Each classifier is customised, providing increased accuracy by adjusting

the topology of the classifier to fit each pattern. This customisation is

controlled by two GAs - the first evolves the topology and the second

determines near-optimal weights for each connection. Topology evolution

discovers the best configuration of hidden layers, neurons and node

connectivity. While the GA’s ability to provide a global search technique

often results in near-optimal solutions, it is rather inefficient in a fine-tuned

local search (Yao, 1999).

For this reason, a hybrid training approach is adopted, where the

weight-evolving GA is used to globally optimise the Artificial Neural

Network (ANN) weights, while the backpropagation algorithm (Rumelhart

et al., 1988) adapts these weights over a number of iterations in search of

41

Input Input Input Input

Output 

0 0 0 0 0 0 0 1

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0


Figure 3.7: Network topology and its associated connectivity matrix.

the best settings. The topology of the network is encoded using direct

encoding (Kassahun et al., 2007), with each genotype represented using bit

string notation. A connectivity matrix can be drawn for each genotype,

showing connections between respective nodes of the ANN (Figure 3.7).

In Figure 3.7, each row of the connectivity matrix represents a node and

its connectivity to other nodes in the network. The first row describes the

input at the bottom left of the ANN topology, which connects directly to the

output neuron (indicated by setting the eighth bit to “1”). The next row

describes input two, which connects to both node five and seven, indicated

by a “1” in columns five and seven. It is important to note that inputs do

not connect directly to one another.

Using this encoding scheme, APIC randomly generates genotypes for

the initial generation’s population, where each genotype specifies a

proposed topology for a TWEANN classifier. A second, weight-evolving GA

allocates the initial weights to each connection described by the topology

evolving GA (Figure 3.6). The weights for the network are encoded using

direct encoding, formatted in bit string notation, where each connection

weight is represented by eight bits.

Using the example in Figure 3.7, a total of eight connections are present,

therefore the genotypes of the weight-evolving GA will consist of 64 bits. The

initial population of the weight-evolving GA is generated randomly, where

each genotype specifies the weight values of each respective connection.

The newly initialised network enters a training phase, where data from

42

D

E

F

G

W

W

W

DG

EG

FG

A

B

C
WCF

Output

Feature

Feature

Feature

WAD

(2)(3)

(1)

Figure 3.8: An illustration of the backward propagation of error (backpropagation)

algorithm, where errors between target and actual outputs are used to fine-tune the weights

of an ANN.

the training set is fed through the network in random order over a number of

iterations (epochs). This process is repeated until the average Mean Squared

Error (MSE) of a particular training cycle (epoch) is sufficiently small, or

the maximum number of permissible epochs has been reached. Equation 3.4

provides the formula for calculating the average MSE of each epoch.

MSE =

n∑
i=0

(Oi − Ai)
2

n
(3.4)

Where n is the number of patterns (datum) in the training set, O the

desired value (target) and A, the actual value (output) obtained.

The backpropagation algorithm is illustrated in Figure 3.8, where outputs

generated for each datum are compared against the input’s target to establish

the error (Figure 3.8 (1)). The error for each datum is given Equation 3.5.

ErrorG = OutputG(1−OutputG)(Targeti −OutputG) (3.5)

OutputG is the output of neuron G for an input vector with target value

43

Targeti. Using this value, the algorithm adjusts the weights of each neuron

connecting to the output, depicted in Figure 3.8 (2), using Equation 3.6.

W+
FG = WFG + (ErrorG ∗OutputF) (3.6)

Where W+
FG is the new weight applied to the connection between F and

G. Equation 3.6 is used to adjust all weights connected directly to an output

neuron. The weights of neurons indirectly connected (hidden layers) also

need to be adjusted, however, as there is no target for these they cannot be

calculated directly. The targets for these neurons are “backpropagated” by

the algorithm from the output neurons. The first part of this process is to

calculate the error of the connecting neuron. This error value, for neuron F

(as an example), is given by Equation 3.7.

ErrorF = OutputF (1−OutputF)(ErrorGWFG) (3.7)

Once the error is known, the value of each hidden neuron, WCF shown

in Figure 3.8 (3), is calculated using Equation 3.6. By altering weights in

this manner, the average MSE of the network is reduced over a number

of generations. This process continues until either the average MSE of the

network is lower than a minimum set value for a complete epoch, or the

maximum number of epochs is reached. If either of these conditions is met,

the network is said to have converged.

At this point, the weight-evolving GA will ascertain the fitness of the

network (and thus the current genotype) by passing the clustered data set

through the network and recording the average MSE attained. A stop

condition is triggered if the MSE of the current network is less than a set

minimum, or the GA has executed more than a maximum number of

epochs.

Upon receiving a stop condition from the weight-evolving GA, control is

handed back to the topology-evolving GA to evaluate the best solution

provided by the weight-evolving GA. If the MSE of the best scoring

network is sufficient, or a maximum number of topology-evolving epochs

44

Input Input

Output

0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Encode

Mutate Mutate

0 0 0 1 0 0 1 1 00 0 0 1 0 0 0 0 1 0 0 0 0 01 1

Input Input

Output

Decode

Parent Phenotype Child Phenotype

Figure 3.9: An example of a topology-evolving GA, where ANNs are encoded as bit

strings. These genotypes are adapted using bit string mutation.

have been exceeded, the GA triggers a stop condition and the best scoring

network at that point is retained. This network is subsequently pushed to

the classifier staging database, where all new classifiers are collected

awaiting final evaluation.

If no stop condition is called, the topology-evolving GA (Figure 3.6)

executes variation operators to produce the next generation’s population.

Elitism is used to ensure the most fit genotypes are transferred directly to

the next generation. Unlike the feature selection GA (Section 3.1), no

cross-over operators are applied. This is because EAs, which use direct

encoding, relying on crossover operators do not perform well in searching

for near-optimal ANN architectures (Yao, 1999). Another reason is that, in

certain cases, the ANN topology encoded is complex and inverting a single

bit may render the entire topology invalid. Parent genotypes are selected

from the current generation and mutated at a set rate, adding and

removing connections between neurons (Figure 3.9).

Once all classifiers have been produced and deployed to the staging

database, the feature-selection GA’s fitness function is called to calculate

the MSE (Equation 3.4) of the collective set of new classifiers. If the

resulting threshold is below the minimum acceptable value, a stop condition

is called and the classifiers are deemed suitable for describing patterns in

the supplied data set. If no stop condition is called, the feature-selection

GA tests the next feature subset and the process repeats until the average

MSE (formula 3.4) of the staging classifiers is acceptable, or the maximum

number of feature-selection GA generations has been reached.

45

3.4 Conclusion

The task of identifying and classifying future instances of interesting

patterns in complex, mixed data sets is common to a number of scientific

domains. In most cases, a significant amount of manual effort is required by

domain experts to develop systems for each specific task. This chapter

presented APIC, a general method that reduces human involvement in the

development of classifiers for a variety of classification tasks. The method is

capable of automatically selecting and testing the best features for each

task, discovering arrangements in data sets automatically and training

customised classifiers to identify future instances of each pattern. The

method is an ML pipeline, where principle algorithms can be substituted

with alternatives that better fit each particular problem. The APIC method

is a novel contribution to automated identification and future classification

of distinct patterns within mixed, noisy data sets. The following three

chapters present case studies, where the efficacy of APIC is evaluated for

accomplishing complex classification tasks in a broad range of applications.

46

Chapter 4

IP Traffic Classification

Computer networks have grown substantially in recent years due, in part,

to the increasing global reach of the Internet, network access speeds and

content availability. The Internet - the world’s largest public-access network

- has emerged as a key enabler for business and personal communication.

The proliferation of computer users consuming Internet resources spurs the

development of numerous applications, using both client-server and

peer-to-peer (P2P) communication architectures. In most cases, these

applications are not well understood and are subsequently difficult to

control (Zhang et al., 2009a). Each application communicates using a

distinct application protocol, generating conversations that compete for

limited network resources. This competition needs to be managed to ensure

correct priority assignment of resources to each application, based on their

designated importance. Organisations, especially Internet Service Providers

(ISP), need to be aware of traffic flowing across their networks promptly,

allowing them to react quickly, thus maintaining their business goals

(Nguyen and Armitage, 2008). The classification and management of

network traffic is therefore an essential tool for network and system security

management (Zhang et al., 2013). Machine Learning (ML) (Russell and

Norvig, 2009) algorithms have been identified as the current state-of-the-art

technology for classifying Internet Protocol (IP) traffic, where supervised

and unsupervised learning methods and Evolutionary Algorithms (EA)

(Eiben and Schoenauer, 2002) have been tested for improving the

effectiveness of IP traffic classification systems.

47

This chapter evaluates the Automated Pattern Identification and

Classification (APIC) general method for improving the task of IP traffic

classification, using Topology and Weight Evolving Artificial Neural Network

(TWEANN) classifiers. During this evaluation, comparisons against

existing systems are drawn, and the results assessed. This case study

demonstrates how the task of manual feature selection, application protocol

distinction and best classifier (signature) design and production processes,

commonly executed manually by human experts, can be automated using

the APIC method. This automation expedites the development of

classifiers, leading to increased completeness compared to similar methods.

Furthermore, APIC’s ability to discover more optimal models for each

classifier produces results that rival and, in certain cases, exceed those of

comparable methods for the majority of application protocols tested.

4.1 IP Traffic Classification

Zhang et al. (2009a) states that the goal of an IP traffic classification system

is to understand the type of traffic traversing networks as it evolves in both

scope and complexity. These classification systems play an important role in

modern network and security architectures, providing an essential component

in Quality of Service (QoS), Intrusion Detection System (IDS) and Lawful

Interception (LI) services (Zhang et al., 2013; Nguyen and Armitage, 2008).

Szabo et al. (2007) asserts that the performance of an IP traffic classification

system can be measured by two metrics, namely accuracy and completeness.

The completeness of the system refers to the availability of a trained

classifier for identifying a particular application protocol. Accuracy refers to

the ability of such a classifier to precisely identify an application protocol

using the trained classifier. According to Kim et al. (2008), two common

metrics for measuring the performance accuracy of IP traffic classification

systems are overall accuracy and F-Measure.

Overall accuracy (Equation 4.1) is expressed as a ratio of the sum of

correctly classified application protocols to the sum of all samples considered.

Accuracy =
correct classifications

number of samples
(4.1)

48

F-Measure, often used in the field of information retrieval, is given by

Equation 4.2. Here, precision is the ratio of correctly identified application

protocols over all those predicted within a class and recall the ratio of

correctly identified application protocols over the ground truth of the class.

FMeasure =
2 ∗ precision ∗ recall
precision+ recall

(4.2)

It can therefore be stated that the performance accuracy of an IP traffic

classification system is directly proportionate to the number of correctly

identified application flows traversing a network. A flow is defined by a

number of successive IP packets sharing a common five-tuple of source and

destination IP addresses, source and destination ports and protocol within

a specific interval (Goss and Nitschke, 2013a; Zhang et al., 2013). These

packet exchanges can be viewed in two directions: from the source to the

destination, or from the destination to the source (Alshammari et al.,

2009b).

A unique signature is required to identify the underlying application

protocol of a flow. The term “signature” is generally used to describe a

recipe for uniquely identifying a particular application protocol or category.

These signatures are often provided by vendors of traffic management

devices in one or more signature packs; these packs need to be updated

regularly, catering to advances in application protocol development (Goss

and Nitschke, 2013a). Each vendor is responsible for the creation of their

own proprietary signature packs, compatible with their systems. As the

recipe for each signature is often a closely-guarded secret, accuracy and

performance variances between vendor equipment is not uncommon (Goss

and Nitschke, 2013a). Over the years, a number of techniques have been

proposed for the development of these signatures. The following subsections

describe these approaches, highlighting their benefits and limitations.

4.1.1 Classic Port Matching

Traditionally, signatures were reliant on information inferred from passing IP

packet headers to classify a flow. These IP headers, depicted in Figure 4.1,

were traditionally 160 bits (20 bytes) long and included routing information,

49

VERSION H. LENGTH ToS TOTAL LENGTH

IDENTIFICATION FLAGS FRAGMENT OFFSET

TIME TO LIVE (TTL) PROTOCOL HEADER CHECKSUM

32 BIT SOURCE ADDRESS

32 BIT DESTINATION ADDRESS

OPTIONS

0 4 8 16 32

Figure 4.1: Structure of an IPv4 Packet Header.

such as the sender (source) and recipient (destination) host addresses and

the IP protocol. Of these IP protocols, Transport Control Protocol (TCP)

and User Datagram Protocol (UDP) are the most popular for transporting

data across networks. Each of these protocols has a specific header format,

encapsulated within the packet’s data part. These headers contain additional

information about the flow, including the source and destination ports on

which the application is communicating.

Using a combination of the host addresses, IP protocol and ports,

network administrators build signatures to accurately identify and classify

flows as they traverse their networks. This method of traffic classification is

both effective and efficient, assuming hosts use consistent, “well-known”

TCP or UDP ports (Nguyen and Armitage, 2008). These well-known ports1

are assigned and managed by the Internet Assigned Numbers Authority

(IANA). As port and IP protocol information is configured by the two

communicating hosts, alternatives can be negotiated by either side. The

effects of dynamic port and IP protocol selection impairs the abilities of

port-based filters and restrictions (Alshammari and Zincir-Heywood, 2008).

This limitation is of increasing importance as both legitimate and devious

application developers seek to evade classification using dynamic selection

strategies (Goss and Botha, 2011). This problem is exacerbated by P2P

application protocols, which operate in a decentralised manner,

dynamically selecting the ports and protocols on which they communicate

(Auld et al., 2007). Well-known port numbers can therefore no longer be

used to reliably identify a flow’s underlying application protocol (Moore

and Papagiannaki, 2005).

1http://www.iana.org/assignments/port-numbers/

50

http://www.iana.org/assignments/port-numbers/

IP
HEADER

TCP
HEADER

GET /index.html HTTP/1.0
User-Agent: Mozilla/5.0 (Windows NT 6.3; Trident…

Source and
destination addresses

TCP Port
Information

TCP Payload

Figure 4.2: HTTP protocol match analysis.

The inefficiencies associated with classic port-based classification dictated

that industry and researchers alike consider a number of alternatives. One

such alternative gaining widespread appeal is Deep Packet Inspection (DPI).

4.1.2 Deep Packet Inspection

Deep packet inspection aims to address problems associated with

identifying an application protocol using classic port matching techniques,

by searching a packet’s payload (content) for string matches. This

inspection usually considers only the first few packets of a flow, as it is

within these initial packets that the application protocol is negotiated.

These searches are often performed using regular expressions in software, or

using specialised hardware such as a Field Programmable Gate Array

(FPGA) (Huang and Zhang, 2008). Each regular expression (signature) is

formulated for targeting a specific sequence of contextual characters or

numeric values, which are characteristic of a particular application protocol.

For example, Figure 4.2 illustrates a match analysis for the Hypertext

Transfer Protocol (HTTP).

In Figure 4.2, the IP header contains packet routing information used to

transport the packet across the network. Some of these fields (Figure 4.1)

include the sender and recipient addresses and the IP protocol. The TCP

protocol is used by HTTP and thus a TCP segment is encapsulated within

the data part of the IP packet. The TCP header contains various fields,

51

including the ports (source and destination) selected by the communicating

applications.

Dissimilar to classic port matching (Section 4.1.1), DPI is not concerned

with information in either the IP header nor the protocol header, as this

information is subject to manipulation by the communicating parties.

Instead, DPI concentrates on matching application protocol information

contained in the payload of the packet. In the HTTP example, this may be

achieved by constructing a simple regular expression, such as:

^[GET|POST] * http/[01]\.[019] [\x09-\x0d -~]

Note that the regular expression depicted here is overly simplified. In

reality, more precise patterns are required to accurately classify application

protocols. Examples of these regular expressions are available on the L7-

Filter project website2.

Network administrators perceive DPI as an essential tool since it

enables them to search payload information for predefined application

protocol signatures (Huang and Zhang, 2008). While P2P applications

elude classic port-matching techniques through dynamic port selection, Sen

et al. (2004) has shown that DPI solutions are capable of reducing false

positives and false negatives to 5 percent of the total bytes for most P2P

protocols investigated. Moore and Papagiannaki (2005) combine the use of

both classic port-matching techniques and DPI to classify network traffic.

In this work, application protocols operating on well known ports are

immediately classified. The remaining flows are passed through a DPI

engine, which examines the first kilobyte (KB) of payload data for a “well

known protocol”. Failing classification at this stage resulted in the entire

flow’s payload being inspected. The results of this work showed that up to

69 percent of the applications classified using classic port-matching

techniques were correctly identified. By examining the first KB of payload,

the accuracy increased to 79 percent. Upon inspecting the full payload, this

accuracy approached nearly 100 percent (Moore and Papagiannaki, 2005).

The tools that implement DPI have also been extensively evaluated as

of late. Bujlow et al. (2014), for example, offers an extended report on the

most popular DPI tools for traffic classification. In this work, Ipoque’s PACE

2http://l7-filter.sourceforge.net/protocols/

52

http://l7-filter.sourceforge.net/protocols/

software was shown to achieve the best results for the test data set, with

L7-Filter and Cisco NBAR performing poorly. No significant classification

differences were noted when using the full test data set, or where each flow

was truncated to include a maximum of ten packets (Bujlow et al., 2014).

While DPI has yielded a number of success stories, it is not without its

limitations. An increase in privacy concerns has labelled DPI as a

controversial topic due to it reading packet payloads (Zhang et al., 2009a;

Dorfinger, 2010). Another consideration is the high computational and

storage overhead associated with DPI (Alshammari and Zincir-Heywood,

2007). This overhead increases exponentially when interrogating every

packet traversing the network, a problem compounded as developments

toward higher-speed network connectivity continue.

To ensure completeness of an IP traffic classification system, the number

of signatures available should be at least equal to the number of application

protocols traversing the network. As the number of applications travelling

across networks increase, so the number of signatures required to classify

various protocols increases proportionately. The storage resources

consumed by these signatures will increase over time, placing increased load

on memory requirements for classification systems (Huang and Zhang,

2008). As network speeds increase, scaling problems associated with DPI

systems become apparent. For example, the Deterministic Finite Automata

(DFA) algorithm, used by many DPI systems, becomes overburdened at

high data rates (Huang and Zhang, 2008). This strain results in increased

latency due to packet queuing, degrading the overall performance of the

network (Goss and Botha, 2011). DPI systems will therefore be faced with

high-performance challenges as link rates and traffic volumes on networks

continue to increase (Huang and Zhang, 2008).

A final consideration, arguably the most significant, is that many

application protocols have begun encrypting their payload in transit

(Nascimento et al., 2013). In some cases, this encryption is imposed to

address privacy concerns associated with DPI, and in others to evade

classification by these systems. While DPI may yield excellent results for

identifying plain-text flows, encryption renders the content of packets

opaque and thus the use of DPI inept (Alshammari and Zincir-Heywood,

2008; Goss and Nitschke, 2013a). Although much early research in traffic

53

classification did not take encrypted traffic into account, a number of recent

works focus primarily on that topic (Alshammari and Zincir-Heywood,

2008). As the number of encrypted flows increase, so the dependency on

DPI wanes. The drive of application development toward encryption

prompted both industry and research communities to investigate

alternatives to DPI. This investigation gave rise to IP traffic classification

by statistical analysis.

4.1.3 Statistical Analysis

Both classic port matching and DPI techniques are limited due to their

dependence on inferred semantics of information gathered from the contents

of a packet header or payload parts. By encrypting or otherwise altering

the state of the payload, the contents thereof become opaque and are thus

no longer manageable by these systems. Application protocols are therefore

difficult to detect if the underlying payload is encrypted (Gebski et al.,

2006). A number of application protocols, such as Secure Shell (SSH) and

various Virtual Private Network (VPN) technologies make use of

encryption to secure data during transit. These opaque network flows are of

great concern to network administrators as it impairs their ability to

inspect and analyse the traffic. The problem of classifying encrypted flows

extends beyond the classification techniques already discussed and has

subsequently been the subject of much research as of late in the field of IP

traffic classification (Nguyen and Armitage, 2008; Zhang et al., 2009b;

Alshammari and Zincir-Heywood, 2008; Alshammari et al., 2009b;

Dorfinger, 2010; Goss and Nitschke, 2013a,b, 2014). In each case, the

opacity of data in transit presents as possibly the most challenging obstacle

to overcome when classifying IP traffic flows. Applications themselves do

not need to encrypt their data natively to render their data opaque in

transit. Instead, it is possible for applications to make use of VPNs, which

encapsulate their flows in an encrypted tunnel (Figure 4.3). In the case of

encrypted communications (natively or by VPN), the only remaining

discernible characteristics of the flow are statistical characteristics, or

features, such as the direction of packet flow, approximate size of packets

and the timing between packets (Gebski et al., 2006). These features are

descriptive statistics that can be calculated from one or more packet

54

VPN Tunnel

Encapsulated
Application Protocol

Plain-text
Application Protocol

Plain-text
Application Protocol

ISP Network

Host 1 Host 2

Figure 4.3: Two hosts communicating over an encrypted VPN.

exchanges of a flow (Alshammari et al., 2009b).

An assumption underlying IP traffic classification by statistical analysis

is that over a flow’s duration, certain statistical properties, such as

directionality of packet flows, size of packets and the duration of a flow, will

remain intact through encryption. These properties can therefore be used

to infer the category or, in some cases, the application protocol of

encrypted flows (Nguyen and Armitage, 2008). The accuracy of these

classifications is therefore dependent on the features selected to describe

each application protocol. A variety of feature combinations have been

proposed by researchers over the years, with a unique combination

constructed for identifying a specific application protocol. Nguyen and

Armitage (2008) provide an extensive analysis of works in IP traffic

classification through statistical analysis, with specific reference to the

features they incorporate. Some of the more popular features identified by

this work are listed in Table 4.1.

The selection of statistical features is also important in order to support

early identification, a high degree of accuracy and flexibility of application

in IP traffic classification systems. As such, certain features proposed by

researchers are not considered suitable for practical operational applications.

For example, network administrators require the ability to efficiently identify

a flow by its application protocol early in its establishment (Goss and Botha,

2011). The features selected for most operational implementations are thus

those which support real-time classification (Nguyen and Armitage, 2008).

For this reason, features such as flow duration and flow size are often

removed due to the requirement for observing the entire flow before a

55

Feature Description

Packet Direction The direction of packets within a flow (source to destination and
destination to source)

Packet Length Packet length statistics (min, max, quartiles, standard deviation)

Packet IAT Packet inter-arrival time (min, max, quartiles, standard deviation)

Flow Duration The duration of a particular flow on a network, from its start to
termination

Number of Packets The total number of packets observed for a particular flow

Table 4.1: A summary of the most popular statistical features used in IP traffic
classification, according to Nguyen and Armitage (2008).

classification is made. Latency-dependent features, such as packet

inter-arrival time (IAT), are often studied by researchers (Mcgregor et al.,

2004; Zander et al., 2005), however these features are difficult to implement

in reality. Features which rely on timing are not always feasible in

real-world operational environments as these metrics are often skewed by

QoS policies and network congestion (Goss and Botha, 2012). The features

selected by each system play a significant role in the accuracy achieved by

that system. Too few features may allow an application protocol to be

broadly classified by a specific group (Table 4.2), while too many may

impose inefficient, undue computational cycles on the classification process.

The success of a feature set for IP traffic classification is therefore a

measure of how well the set delineates a number of application protocols

while maintaining operational efficiency.

As many applications move toward encryption, the ability to identify

flows “in the dark” is especially helpful and of tremendous value to network

administrators (Wright et al., 2006). Many statistical analysis-based IP

traffic classification systems allow flows to be classified in a broad context

(Table 4.2), with few providing an in-depth, turn-key solution for individual

application identification (Wright et al., 2006).

The use of ML has been investigated recently for providing additional

granularity and increased accuracy in classifying IP traffic, using features

identified through statistical analysis.

56

Category Example Applications (protocols)

BULK FTP

DATABASE Postgres, MySQL

INTERACTIVE SSH, Telnet

MAIL IMAP, POP3, SMTP

SERVICES DNS, NTP

WWW HTTP, HTTPS

P2P BitTorrent, GnuTella

MALICIOUS Virus Attacks, DDoS

GAMES Call of Duty, World of Warcraft Online

MULTIMEDIA Flash Media, Internet TV, Radio Streaming

Table 4.2: Broad categories for application protocol classification, adapted from Moore
and Papagiannaki (2005).

4.1.4 Machine Learning

Although ML has offered promising results when classifying IP traffic,

certain limitations are still apparent. These limitations hamper both the

completeness and accuracy of IP traffic classification systems. For example,

most modern classification systems are reliant on the manual definition of

signatures for each application protocol (Section 2.1.1). These signatures

require substantial customisation by experts to accurately distinguish a

particular application protocol in a data set of recorded network traces.

Delays caused by this manual intervention directly affect the completeness

of the system. Manual definition of signatures (classifiers) and formulation

of their training sets also has an impact on the accuracy these systems

achieve. Like any classification task, human error and insufficient

knowledge of a particular problem may result in less than optimal

signatures being produced.

Unsupervised learning, with the ability to find regularities and infer a

function to describe these hidden structures in unlabelled data sets has been

tested to address these deficiencies. Mcgregor et al. (2004) published one

of the earliest works where unsupervised learning was applied in IP traffic

classification. In this work, the Expectation-Maximization (EM) (Dempster

et al., 1977) algorithm was used to group flows with similar behavioural

patterns in the same cluster. The results of this work were the grouping of

57

applications by class (Table 4.2), rather than by application protocol.

Erman et al. (2006) tested the K-means, DBSCAN and AutoClass

algorithms for clustering empirical traces from both a publicly available

data set and one recorded by the authors at the University of Calgary3.

Each data set was searched for instances of application protocols from a

predefined list. The listed application protocols included HTTP, P2P,

Simple Mail Transfer Protocol (SMTP) and Post Office Protocol version 3

(POP3). The results revealed that while AutoClass produced the highest

overall accuracy, DBSCAN showed great potential as it placed the majority

of connections in a small subset of the clusters, with an overall accuracy of

97.6 percent (Erman et al., 2006). This was likely attributed to DBSCAN’s

ability to distinguish noise within a data set, a feature lacking in both

K-means and AutoClass. Also noteworthy was an evaluation of the time

each algorithm took to complete the clustering task, concluding clusters. In

the tests conducted by Erman et al. (2006), DBSCAN clustering completed

in one minute, K-means in three minutes and finally, AutoClass in four and

a half hours. The inefficiencies experienced by the AutoClass algorithm

make it unsuitable for classifying IP traffic, as these have a direct affect on

the completeness of the classification system.

Goss and Nitschke (2013a) tested the Hierarchical Self-Organising Map

(HSOM) algorithm for differentiating between application protocols, rather

than classes, on a network. In this work, the clusters discovered were used

to form training sets for Artificial Neural Network (ANN) classifiers,

trained to identify future instances of each respective cluster. Each of the

ANNs produced scored an overall accuracy in excess of 99.35 percent, with

the exception of the HTTP classifier. Further investigation revealed that

the HTTP protocol exhibited varying packet directionality properties

during initial packet exchanges, which skewed the results. This issue speaks

to the features selected and the normalisation of each feature, rather than

the clustering algorithm. Goss and Nitschke (2013b) extended the work of

Goss and Nitschke (2013a), substituting the K-means algorithm in place of

the HSOM. Here, the K-means algorithm was found more accommodating

to the directional properties of HTTP, as the classifier achieved 99.88

percent overall accuracy.

3The University of Calgary, Calgary, Alberta, Canada. http://www.ucalgary.ca/

58

http://www.ucalgary.ca/

Internet
ADSL Network

Edge Router

Packet Trace

Recorder

User

User

User

Figure 4.4: A network tap copies flow information to a server, which records specific

trace information for each communication observed. In this experiment, the network tap

was configured to copy all packets switching through a subscriber network segment at a

large South African ISP.

The APIC method, with its ability to automate feature selection,

pattern discovery and classifier production processes is poised to address

the deficiencies apparent in modern IP traffic classification systems,

improving both the completeness and accuracy achieved by current

systems. The following section details a case study, where the APIC

method is evaluated for improving the task of IP traffic classification.

4.2 Task Description

The task of identifying an underlying application protocol in IP traffic flows is

not new. In Section 4.1, a number of works were detailed where solutions for

addressing both completeness4 and accuracy5 were investigated. In this case

study, an experiment is devised where APIC is compared to existing state-of-

the-art IP traffic classification systems. The test data set was recorded on an

Asynchronous Digital Subscriber Line (ADSL) edge router at one of South

4Completeness refers to the availability of signatures for each application protocol
5Accuracy is a measure of how correctly an underlying application protocol is identified

59

Protocol Description

SSH Secure Shell Protocol

SMTP Simple Mail Transport Protocol

POP3 Post Office Protocol

HTTP Hyper Text Transfer Protocol

HTTPS Secure Hyper Text Transfer Protocol

Bittorrent Bittorrent Peer-to-Peer Protocol

Table 4.3: A list of commonly tested application protocols in IP traffic classification
research. This list also describes the application protocol signatures produced by APIC
which are analysed in detail in the discussion part of this case study.

Africa’s premier ISP networks (Figure 4.4). All network packets switching

through this segment were copied and recorded using custom packet trace

sampling software6, where certain statistical information about each flow was

sampled and stored. The statistical properties considered in this task include

those listed in Table 4.1. These flow properties were identified in Section 4.1.3

as those considered most popular in modern IP traffic classification systems.

Table 4.3 lists a set of commonly tested application protocols, where a

number of IP traffic classification system results have been published.

These results indicate how well the classifiers of each system perform when

tested on a recorded data set. In this case study, flows are recorded and

analysed in real-time using APIC. The results achieved by the classifiers

produced in this case study using the recorded data set are comparable to

those published by similar systems for the same protocol. This comparison

establishes the effectiveness of APIC in terms of accuracy and, at the same

time, demonstrates the gains in completeness realised through the method,

confirmed by the presence of a classifier for each test protocol.

The recording process was started at midday on a normal week day,

where the presence of each protocol listed in Table 4.3 was most likely to

occur. The process was set to run for a period of one hour, the maximum

time allowed by the ISP, sampling all IP traffic flows. In total, 1,462,038

packets were observed, describing 47,607 TCP and 4070 UDP flows

respectively. Each of the application protocols listed in Table 4.3 operate

over the TCP protocol, a stateful protocol designed to ensure successful

6http://ryan.goss.co.za/download/1500-ptss.tar.gz

60

Group Dimensions Description

0 0-9 Discriminators indicating the direction of flow for the first
ten payload-bearing packets

1 10 In vs Out byte ratio

2 11-14 Log IAT (min, mean, max, stddev)

3 15-18 Payload size (min, mean, max, stddev)

4 19-24 Payload bytes

Table 4.4: Feature group breakdown, depicting the dimensions included within each
group. The feature group genotype is comprised of five bits, which are toggled to include
or exclude certain attributes.

delivery of application data. A stateful (state-based) protocol describes a

transport level protocol, where each communicating host retains the state

of the connection (a virtual circuit) for the duration of the communication,

even when no data packets are being transferred. Either of the

communicating hosts may tear down the connection, dropping the

connection at both ends. Data transactions over a stateful protocol, in

contrast to a stateless protocol, are easily tracked by IP traffic classification

systems, allowing greater control over data exchanges between hosts. As

each of the application protocols considered in this case study operate over

the stateful TCP protocol, only data exchanges operating over this protocol

were sampled and recorded for this experiment.

APIC’s suitability for the task of IP traffic classification is measured by

two distinct objectives - accuracy and completeness. To demonstrate

increased completeness, most manual processes should be removed from the

task of classifier creation. For APIC to succeed in this, it must demonstrate

a process to automate both feature selection and application protocol

discovery tasks, ones commonly performed manually in existing systems by

human experts.

The following section details the feature selection process APIC employs

to automatically determine the most suitable features for describing

application protocols within a recorded flow data set.

61

{
 "Dir": 1,
 "Dir2": 0,
 "Dir3": 1,
 "Dir4": 0,
 "Dir5": 0,
 "Dir6": 0,
 "Dir7": 1,
 "Dir8": 0,
 "Dir9": 1,
 "Dir10": 0,
 "ByteRatio": 0.594988344988,
 "LogIATMin": -3.16787857096,
 "LogIATMean":-0.141905890926,
 "LogIATMax":0.899455358536,
 "LogIATStdDev": 1.21841093522,
 "PayloadMin": 16,
 "PayloadMean": 273.7,
 "PayloadMax": 840,
 "PayloadStdDev":326.250839079,
 "Byte1": 83,
 "Byte2": 83,
 "Byte3": 72,
 "Byte4": 83,
 "Byte5": 83,
 "Byte6": 72
}

Figure 4.5: A JavaScript Object Notation (JSON) representation of a vector describing

a flow observed during recording.

4.3 Feature Selection

The features incorporated in the experiments that follow were, according to

Nguyen and Armitage (2008), those commonly used in modern IP traffic

classification research. These features, identified in Section 4.1.3, include the

directionality of flow for the first ten payload-bearing packets, the inbound

versus outbound payload size (byte) ratio, log outputs for various packet inter-

arrival times, payload size statistics and, finally, the first three bytes of data

inferred from the first payload-bearing packet in each direction. In total,

25 features were recorded for every TCP flow observed during the recording

process.

A vector with a length of 25 was subsequently created in memory to

store the metrics of each flow trace. Each dimension represents the value of

a particular feature recorded for the flow. An example of one such recorded

flow described by its statistical features is represented as JSON in Figure 4.5.

A bit string feature genotype with 25 genes was created to represent

each feature subset, where 1 denoted the inclusion of a particular feature

and 0 an exclusion. To ensure these features were toggled on and off as

a group, and not individually, a five-dimension feature group genotype was

created. Each bit of this genotype represented one of the five discriminator

groups comprising the feature vector. These five groups, the span of their

62

0 0 0

Feature Group

0 0 0 0 0 0 0 0 1 1 111101 11 1 1 1 1 1 1 1

1 1

Feature Genotype

Figure 4.6: The APIC GA toggles bits in a feature group binary string, which in turn

expands to form a feature subset genotype. In this example, feature group options 1 and

5 marked as included, whilst options 2,3 and 4 are not. All features are expanded, where

those marked for inclusion are set to “1”, whilst those excluded are marked with a “0”.

dimensions, and a brief description are listed in Table 4.4. Using a feature

group allowed APIC to toggle between discriminators for inclusion (as a

group) in each feature subset during the feature selection search process.

63

Group Emin Emax

0 0 1

1 0 1

2 -5 5

3 0 1500

4 0 256

Table 4.5: Heuristic values of Emin and Emax for each dimension. These values were
derived by observing the minimum and maximum values of each dimension within the
recorded data set for a particular feature group.

APIC uses a bit string to determine inclusion of each group in a feature

subset (Section 3.1). A “1” at position 0 in the feature group expands to

include the first ten discriminators in the feature genotype. A “0” at position

0 of the feature group genotype will mark the first ten features as excluded.

An example of this expansion is illustrated in Figure 4.6, where the feature

subset includes the directions of the first ten payload-bearing packets and the

first three bytes of payload in each direction of flow. By simply modifying

the bit string of the feature group genotype, the APIC method was able

to manipulate discriminators that were included for determining application

protocols in the recorded data set.

The objective of APIC in this task was to produce optimised TWEANN

classifiers, each trained to identify a specific application protocol. The APIC

feature selection process itself does not prepare the recorded data for training

these models. The clustering algorithms used by APIC rely on Euclidean

distance to determine cluster association. To ensure each feature contributed

fairly toward this calculation, each was normalised to values between 0 and

1 using standard min-max normalisation (Equation 4.3):

Normalised(i) =
i− Emin

Emax − Emin

(4.3)

Where Emin is the minimum value of the dimension, Emax the maximum

value and i the value to be normalised. The heuristic values applied to

each feature group in respect of Emin and Emax for the task of IP traffic

classification are listed in Table 4.5.

64

4.4 Distinguishing Application Protocols

Using the normalised data set, the APIC method searched for distinct

application protocols, using feature subsets determined by a GA (Figure

4.7). In this case study, five basic feature groups were considered, consisting

of the most common features studied in today’s IP traffic classification

systems. A sequential search for an optimal feature subset within these

groups would require a mere 32 tests to consider every possible combination

of a five-bit binary feature group (25 = 32). For the sake of homogeneity, a

GA was used in this experiment to identify the most optimal feature set as

in a real world context, the number of feature groups may scale far beyond

this. For example, VISA’s latest fraud detection system, Visa Advanced

Authorization (VAA)7, considers more than 500 features per transaction. In

these cases, sequential search for best feature sets is not efficient. The

APIC method, as a general method, needs to support feature selection

across many tasks, where many features may be available for consideration.

A GA was identified as a sound choice, using a stochastic search technique

instead of sequential one to more efficiently identify suitable feature subsets

for a variety of problems.

The APIC feature search GA was configured to traverse a maximum of

64 generations - twice the number of iterations required to find the best

feature subset by grid-search. This value was set high for the purposes of

monitoring successful convergence during the experiment. According to Ferri

et al. (2000), a GA is an ideal choice for locating optimal features in high-

dimensional search space, compared to an enumerative search for the same.

A GA-controlled hyper-parameter search was used to select more optimal

hyper-parameters for guiding each clustering process. This process (Section

3.2) was required to distinguish between unique application protocols present

in the recorded data set. It is paramount to ensure that optimised clustering

occurs, as the clustered data sets are used to train TWEANN classifiers to

identify future instances of each identified application protocol.

As the number of application protocols (clusters) present within the

recorded data set was unknown, the Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) clustering algorithm was chosen to

7http://www.visa.com/visariskproducts/

65

Genetic
Algorithm

0 0 0

Fe
at

ur
e

G
ro

up
s

0 0 0 0 0 0 0 0 1 1 111101 11 1 1 1 1 1 1 1

1 1

Fe
at

ur
e

G
en

ot
yp

es

1 0 0 0 0 1 1 1 1 1 111110 00 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1 111101 11 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 0 0 000011 11 1 1 1 1 1 1 1

1 0 10 1

1 0 01 1

0 1 11 0

Hyper-parameter Search
and

Data Clustering

Classifier Production

Results

Figure 4.7: The feature selection GA builds a population of feature group genotypes.

Each of these genotypes is expanded to include all features represented for each of the

groups. These genotypes ultimately determine which features are included in the hyper-

parameter search and data clustering process. The resultant clustered data set is used

to create TWEANN classifiers, where the average classifier test score is fed back to the

feature selection GA as a fitness score. The highest scoring classifier group is returned as

a result of this process.

determine this automatically. The algorithm was controlled by two

hyper-parameters, namely eps and minPTS. To ensure most optimal

clustering occurs, these hyper-parameters should be carefully chosen.

The selection of eps and minPTS parameters is often a manual,

heuristic task. An expert will often test a number of combinations until a

satisfactory result is achieved. Such manual parameter tuning is not

conducive to ensuring a complete classification system, which can only be

achieved through full automation. For this reason, a second GA was

configured to search for the most optimal set of eps and minPTS values for

each feature subset tested.

Each candidate solution was encoded as a bit string for consideration by

the GA. The number of bits in the bit string (genotype) is dependent on the

66

0

200

400

600

800

1000

1200

1400

1600

0 0.4 0.8 1.2 1.6 2

F
re

q
u

e
n

c
y

KNN Distance

Figure 4.8: A k-nearest neighbour (k-NN or KNN) histogram with the distance between

each flow describing vector and its nearest neighbour recorded on the x-axis. The y access

tallies the total number of flow vectors whose distance to their nearest neighbour was

within the specific range on the x axis. According to Goss and Nitschke (2014), a suitable

value for eps can be determined by noting the value on the x access at the knee of the

graph. In this example, the knee is observed at a x axis value of approximately 0.15.

range of values for each parameter. Goss and Nitschke (2014) implemented

the DBSCAN algorithm for the purpose of clustering application protocol

flow vectors. In this work, the value of eps was determined by plotting the

distance from each vector to its nearest neighbour on a k-nearest neighbour

(k-NN) histogram and setting eps to the value at the knee of the graph.

Goss and Nitschke (2014) assert that the value at the knee of the graph is

the most likely location for optimum eps; the point at which the distance

between neighbours increases exponentially, due to the presence of outliers

(noise).

The k-NN histogram depicting the proximity of nearest neighbours for

the normalised, recorded data set of this case study is shown in Figure 4.8.

The knee of the graph (Figure 4.8) is visible at approximately 0.15 on the x

axis. The maximum k-nn value noted was 1.6, with only a few flow vectors

67

1 10 1 0 1Encoded 1 10 1

Factor Real Number

Decoded
R_max = 15
R_cur = 13
D = 46

eps = 15/(13*46)
= 0.02508361204

Figure 4.9: An example of eps encoded as a bit string. The first six bits represent the

division factor (46), with the remaining bits representing the current real number value

(13) and the maximum possible real number value (15). By applying Equation 4.4, the

decoded value of eps is 0.0251.

contributing to this count. The range for consideration in determining eps

was subsequently set to 0.0158<= eps <= 15, covering the full range of k-NN

values. This scope was considered to demonstrate that the most optimum

eps could be found at the knee of a graph. A custom encoding scheme

was devised to represent this range within a ten-bit string. The last four

bits of the string represent a real number in binary form. This number is

multiplied by a factor, determined by the value of the first six bits. The

result is divided into the maximum value of the four bits representing the

real number (1111 = 24− 1, or 15). The value of eps was decoded from each

genotype using Equation 4.4:

eps =
Rmax

Rcur ∗D
(4.4)

Where Rmax is the maximum value attainable using the last four bits of

the genotype, Rcur is the current value for the same bits and D the decimal

value of the first six bits. An example of eps in both its encoded and decoded

form is shown in Figure 4.9. According to Goss and Nitschke (2014), the

search space for minPTS can be determined by Equation 4.5:

D + 1 ≤ minPTS ≤
(
|db|
2

)
(4.5)

where the lower range of minPTS is greater than or equal to the number of

68

dimensions of the flow vector, D, plus one. The upper-most value of minPTS

is set to half the magnitude of the recorded flow vector recorded data set, db.

It is difficult to determine the lower and upper limits of minPTS definitively,

without prior insight into the source data set. For this reason, the upper and

lower bounds of minPTS in this case study were set using these rule-of-

thumb methods. By selecting a range of minPTS values using Equation

4.5, the majority of cases will be adequately covered, avoiding pitfalls such

as convergence to a single cluster, or the total number of clusters produced

being equal to the number of input vectors supplied.

Although 47,607 TCP flows were recorded, only 31,102 were observed

from their start, a requirement for accurately determining the directionality

of a flow (Goss and Botha, 2011). A genotype encoding the full range of

minPTS for a complete feature set is represented in Figure 4.10. Where the

result of minPTS is less than D+1, a value of D+1 was used as a substitute.

This ensures the lower bounds of minPTS is fixed at D + 1. An example

complete genotype used to find the best value for minPTS in a twenty-five

dimensional data set is illustrated in Figure 4.11.

69

1 10 1 0 1Encoded 1 10 1

Multiplication Factor Real Number

Decoded
M = 58

R = 237

minPTS = 58*237

= 13,746

1 01 1

Figure 4.10: An example of minPTS encoded as a bit string for a full feature set. The

first six bits represent the multiplication factor (58), with the remaining bits representing

the current real number value (237). The value of minPTS encoded on this genotype is the

product of the multiplication factor and real number. In this example, minPTS = 13, 746.

1 10 1 0 11 10 1

Multiplication Factor Real Number

M = 58

R = 237

minPTS = 58*237

= 13,746

1 01 11 10 1 0 1Encoded 1 10 1

Division Factor Real Number

Decoded
R_max = 15

R_cur = 13

D = 46

eps = 15/(13*46)

= 0.02508361204

eps minPTS

Figure 4.11: A genotype showing an encoded solution for eps and minPTS values for a

full feature set, comprising twenty-five dimensions and 32,000 records.

For each new feature subset considered by the hyper-parameter GA, the

bits allocated for representing both eps and minPTS values were derived

automatically by APIC, using the encoding process described in Section 4.4,

Equations 4.4 and 4.5. The initial population of hyper-parameter genotypes

was created with bits set at random. The GA parameters governing both

feature subset and hyper-parameter searches are outlined in Table 4.6.

The selection of good parameters to govern a GA improve both

computation time and solution accuracy, for example, the population size

significantly effects the quality of solutions that a GA evolves (Roeva et al.,

2013). Roeva et al. (2013) found that, when identifying model parameters

using a GA, smaller populations result in lower accuracy and that by

increasing the population size, an increase in solution accuracy was

achievable. They also found that, beyond a certain point, a larger

population did little to increase the solution accuracy.

70

Genetic Algorithm Population
Size

Maximum
Generations

Mutation
Rate

Crossover
Rate

Feature Subset Search 64 64 0.1 0.5

Hyper-parameter Search 100 100 0.1 0.5

Table 4.6: Parameter values configured for each GA.

A larger population did, however, increase the computational resource

requirements for completing the search. Roeva et al. (2013) found in their

research that an optimal population size of 100 achieved the most accurate

solutions. The hyper-parameter search method of APIC is very similar to

the model parameter identification methods described by Roeva et al.

(2013). Noting these observations, the population size for the APIC

hyper-parameter search was set to a value of 100.

Using the configured search parameters (Table 4.6), the APIC feature

discovery (Section 3.1) and pattern discovery (Section 3.2) processes were

started. For each genotype in the feature subset search population, a hyper-

parameter search process was executed to find optimal values for guiding

the clustering process. These hyper-parameters included both the eps and

minPTS parameters. Values for each of these parameters were decoded and

a DBSCAN clustering process run for each genotype of the current hyper-

parameter search population.

The resulting clustered data set was evaluated using the silhouette cluster

evaluation method (Equation 3.2), scored within a range −1 <= score <= 1,

where a score closest to 1 (indicative of most optimal clustering) is more

favourable. The scores for each genotype were converted to values between

0 and 1, using a sigmoid logistic function:

f(x) =
1

1 + ex
(4.6)

Where e is the natural logarithm base and x the value being regressed to

a value between 0 and 1. A plot illustrating this conversion is illustrated in

Figure 4.12.

71

Figure 4.12: Logistic function for calculating hyper-parameter genotype fitness from

silhouette clustering score.

0 0 1

Best Feature Group

0 0 0 0 0 1 1 1 1 1 111111 11 1 1 1 1 1 1 1

1 1

Best Feature Subset Genotype

Figure 4.13: The best scoring feature group expanded to highlight the best feature subset

for the recorded data set.

All search processes were executed in parallel, where hyper-parameter

searches were chained as sub-tasks of feature subset searches. Parallel

execution of tasks ensured optimal use of available host resources8.

The APIC algorithm was executed and allowed to run all generations

for each search task. This was to provide evidence that the algorithm did

converge at a particular point. In a production deployment, where the APIC

method is processing real-world data, additional stopping conditions may be

included to conserve computational time and expense when distinguishing

application protocols. These stopping conditions may include the observation

of simple heuristic values, such as an acceptable fitness level achieved by a

particular feature subset.

8A single execution was assigned to each Central Processing Unit (CPU) core of the

host machine running the test. In total, 24 cores were available to the APIC algorithm.

72

Generation eps minPTS

23 0.1039 152

Table 4.7: Hyper-parameters (from GA search), resulting in optimal clustering

After all generations had concluded, analysis of the results showed that

the best configuration was identified at generation four. The best scoring

feature subset genotype (Figure 4.13) was used to extract features from the

recorded data set for clustering by the DBSCAN algorithm. The highest

scoring hyper-parameter search revealed that the best values of eps and

minPTS were 0.1039 and 152 respectively, found at generation 23 (Table

4.7). The output of the hyper-parameter search process for the winning

feature subset genotype was recorded. Each of the hyper-parameter

genotypes considered were decoded and their eps and minPTS values

plotted on a three-dimensional scatter graph along with their associated

fitness (Figure 4.14).

Of the clusters formed by the DBSCAN algorithm, those that represent

the focus application protocols (Table 4.3) were deemed most important for

this experiment. A sample trace of each application protocol was identified by

a human expert9 and assigned cluster membership within the clustered data

set, using silhouette cluster comparison. By determining the best s(i) value

for each annotated trace, the best-fit cluster was identified and annotated

with the name of the application protocol assigned to the new member.

The following section provides additional evidence that the clusters

identified are accurate representations of each application protocol.

9A qualified computer network expert with experience identifying application protocols

from raw traces

73

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

100

200

300

400

500

600

700

800

900

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fitness

EPS

minPTS

Fitness

Figure 4.14: A 3D scatter graph depicting the decoded genotypes considered when

searching for optimal hyper-parameters for the best scoring feature subset. The best

scoring feature subset where hyper-parameter values decoded from the genotype resulted

in the most optimal clustered data set. The chart density increased toward eps value 0.1

and minPTS value 152, which ultimately produced the best fitness score.

4.5 Verification by Visualising Application

Protocols

The potentially high multi-dimensionality of datum clustered by APIC make

identified clusters very difficult to express and verify statistically. Radar

charts, or star charts (Chambers et al., 1983), simplify the representation

of this multi-dimensional data, by expressing each as a spoke on a two-

dimensional radial map. These charts make it easier for human experts to

identify outliers by visual comparison of similar, clustered datum. The chart

plots values of each dimension along a separate axis (spoke) that starts in the

centre of the chart (minimum value) and ends on the outer ring (maximum

value). As each dimension of the data considered by APIC was normalised to

a value between 0 and 1, it follows that the minimum values for each spoke

of the radar charts drawn for this data will range between 0 and 1. As APIC

found 20 attributes sufficient for describing application protocols in this case

study, it follows that each radar chart is comprised of 20 spokes.

Radar charts were plotted for each focus application protocol, assisting

experts with the verification of dynamically discovered clusters (Section 4.4).

In this experiment, the chart included a value for each of the 20 features of

74

the feature subset search genotype (Figure 4.13). Multiple colours indicate

diversity within each clustered data set. From the radar patterns of the POP3

(Figure 4.15), SMTP (Figure 4.16), HTTP (Figure 4.17), HTTPS (Figure

4.18), SSH (Figure 4.19) and Bittorrent (Figure 4.20) application protocols,

diversity between feature patterns and values are visible. Furthermore, the

close proximity and pattern conformance displayed by each of the colours

on the charts indicates tight (optimal) clustering was achieved. Optimal

clustering refers to the best possible grouping of datum, where the least

possible average distance between datum in a cluster and the highest average

distance between clusters is achieved.

Figures 4.15 through 4.20 represent each of the respective test

application protocols. The colours on each chart illustrate the effectiveness

of the clustering process which, when plotted on a radar chart, indicate

distinct patterns for each application protocol. While some patterns appear

similar, there are subtle (at times, significant) differences. These variations

were detected by the APIC pattern discovery process (Section 3.2), which

separated them into distinct clusters. For example, while the POP3 (Figure

4.15) and SMTP (Figure 4.16) application protocols appear similar,

attribute 14 is far more pronounced in SMTP than in POP3. Likewise,

although HTTP (Figure 4.17) and HTTPS (Figure 4.18) are similar

application protocols, there is a clear distinction between the statistical

properties of the two. The HTTP protocol exhibits high values for the

11th, 13th and 14th attributes, while HTTPS only the 14th. This contrast

is due to the presence of Transport Layer Security (TLS), which encrypts

the data exchanges of HTTPS. Although SSH (Figure 4.19) also uses TLS,

attributes 16 through 20 differ significantly from those of HTTPS. These

attributes act as a differentiator between the protocols.

75

Figure 4.15: A radar chart plotting random datum samples of the cluster known to

describe the Post Office Protocol version 3 (POP3) application protocol. This protocol

is used by email clients to retrieve user email from a remote mail server. In this chart,

values represented on each spoke show subtle variations in dimensions 12 through 20.

76

Figure 4.16: A radar chart plotting random datum samples of the cluster known to

describe the SMTP application protocol. This protocol is used by email clients to send

messages to a remote email server and for inter-mail server message exchange. The features

indicating directionality of packet flow, 1 through 10, show consistency amongst the

randomly selected flow samples. This is characteristic of SMTP, an application protocol

comprising very structured message exchanges.

77

Figure 4.17: A radar chart plotting random datum samples of the cluster known to

describe the HTTP application protocol. This protocol is one of the most common

application protocols, used to retrieve and publish content on the World Wide Web

(WWW). Dissimilar to the POP3 (Figure 4.15) and SMTP (Figure 4.16) charts, the

diversity amongst random data samples within the HTTP clustered data set is more

apparent. This is because the HTTP protocol is less predictable in terms of data exchange

than both the POP3 and SMTP protocols.
78

Figure 4.18: A radar chart plotting random datum samples of the cluster known to

describe the HTTPS application protocol. This protocol is used to perform the same

tasks as HTTP, but over a secure connection. Although the HTTPS application protocol

is effectively the HTTP protocol operating over an encrypted, TLS tunnel, there are

substantial differences in the values recorded for each feature. This is because the TLS

tunnel set-up occurs ahead of application protocol data exchange.

79

Figure 4.19: A radar chart plotting random datum samples of the cluster known to

describe the SSH application protocol. This application protocol is most often used by

administrators to interact with remote systems, issuing commands and retrieving files.

The SSH application protocol, similar to HTTPS (Figure 4.18), uses TLS to secure its

communications. Although both use TLS, distinctions in the feature values extracted for

each application flow are apparent.

80

Figure 4.20: A radar chart plotting random datum samples of the cluster known

to describe the unencrypted Bittorrent application protocol. This P2P communication

protocol, used for efficient file transfer amongst network hosts, does not rely on client-

server connectivity, nor static ports for data exchange. These attributes make it difficult to

detect and manage. The APIC algorithm was able to identify flow traces of the application

protocol, which uses distinct packet exchanges to establish each session.

81

In addition to representing clusters using a radar chart, other methods

of confirming successful clustering of application protocol via visual aid

have been researched in recent years. Mcgregor et al. (2004) examined plots

of packet size against packet IAT for flows of particular application

protocols. In this work, the authors observed a number of characteristic

shapes, which were indicative of the underlying application protocol. Using

a similar methodology, the full trace for each cluster’s members were

analysed, with the payload size plotted against the value of log(IAT) for

each. The advantage of plotting the log value of IAT is that it allows one to

readily identify features in the data that would not easily be seen if both

payload size and IAT had been plotted linearly.

A heat-map was created for each application protocol considered in this

chapter. Using the clustered datum associated with each of these

application protocols, the recorded payload size and log(IAT) values for

each were plotted, illustrating packet size diversity in each direction over

time. This chart, according to Mcgregor et al. (2004), provides a visual

representation, which can be used to identify or verify the application

protocol. The sign bit of the packet size was used to indicate flow direction,

where a positive value indicates packet flow in the direction of the initial

synchronise (SYN) packet, a flag set by the host originating the flow.

Negative values were used to indicate packet flow in the reverse direction.

For each figure, the first heat-map represents the data clustered by APIC

for the protocol. Below each of these, a heat-map plotted using traces

manually annotated by experts10 of the same protocol is shown. The colour

of each pixel is indicative of packet density at the given size and time.

Brighter areas indicate a high concentration of packets, with darker colours

indicating very few packets observed. Heat-maps for SSH (Figure 4.21),

HTTP (Figure 4.22), HTTPS (Figure 4.23), POP3 (Figure 4.24), SMTP

(Figure 4.25) and Bittorrent (Figure 4.26) protocols are shown below for

visual analysis.

The heat-map describing APIC clustered data for the HTTP protocol

(Figure 4.22) shows the highest density of packets is toward the host that

initiated the flow. In this case, the majority of packet size observations are

10A qualified computer network expert with experience identifying application protocols

from raw traces

82

centred where payload sizes equal the standard ethernet Maximum Transfer

Unit (MTU) value of 1500. For HTTPs (Figure 4.23), the same observation

is apparent, where the majority of packet density is observed toward the

host that initiated the flow. Unlike HTTP, there is an apparent increase in

packet density spread in both directions. This is attributed to the additional

security exchanges HTTPS performs to secure the transit of data. The POP3

protocol (Figure 4.24) exhibits very small packet sizes toward the server, with

the majority of packet size density observed toward the host that initiated

the flow. This is expected, as POP3 is an inbound mail exchange protocol,

designed for consuming email messages from remote mail servers. The SMTP

protocol (Figure 4.25), on the other hand, exhibits the majority of packet size

density in the direction from the host initiating the flow to the remote host.

This is again expected, as SMTP is an outbound mail exchange protocol,

used by mail clients to transmit local email messages to a remote server.

83

SSH

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 10

 20

 30

 40

 50

 60

D
en

si
ty

(a) APIC clustered data set

SSH

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 2

 4

 6

 8

 10

 12
D

en
si

ty

(b) Expert annotated data set

Figure 4.21: Heat-maps showing payload size against log(IAT) values for the SSH

application protocol.

84

HTTP

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 200

 400

 600

 800

 1000

 1200

D
en

si
ty

(a) APIC clustered data set

HTTP

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 100

 200

 300

 400

 500

 600

 700

 800

D
en

si
ty

(b) Expert annotated data set

Figure 4.22: Heat-maps showing payload size against log(IAT) values for the HTTP

application protocol.

85

HTTPS

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

D
en

si
ty

(a) APIC clustered data set

HTTPS

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

D
en

si
ty

(b) Expert annotated data set

Figure 4.23: Heat-maps showing payload size against log(IAT) values for the HTTPS

application protocol.

86

POP3

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 50

 100

 150

 200

 250

D
en

si
ty

(a) APIC clustered data set

POP3

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 20

 40

 60

 80

 100

 120

 140

 160

D
en

si
ty

(b) Expert annotated data set

Figure 4.24: Heat-maps showing payload size against log(IAT) values for the POP3

application protocol.

87

SMTP

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 500

 1000

 1500

 2000

 2500

 3000

D
en

si
ty

(a) APIC clustered data set

SMTP

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 100

 200

 300

 400

 500

 600

 700

D
en

si
ty

(b) Expert annotated data set

Figure 4.25: Heat-maps showing payload size against log(IAT) values for the SMTP

application protocol.

88

Bittorrent

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 50

 100

 150

 200

 250

 300

 350

 400

D
en

si
ty

(a) APIC clustered data set

Bittorrent

-10 -5 0 5 10

log(IAT)

-1500

-1000

-500

 0

 500

 1000

 1500

P
ay

lo
ad

 S
iz

e

 0

 10

 20

 30

 40

 50

 60

 70

 80
D

en
si

ty

(b) Expert annotated data set

Figure 4.26: Heat-maps showing payload size against log(IAT) values for the

unencrypted Bittorrent application protocol.

89

Distinguishing application protocols automatically is the first step

toward a fully automated IP classification system. The ability to remove

manual tasks, including feature selection and data set annotation, is

important for promoting increased completeness compared to existing,

state-of-the-art systems. Another task highlighted in Chapter 2 where a

significant amount of manual intervention is required, is the development of

classifiers to identify future instances of each application protocol described

by the automatically-annotated data sets.

4.6 TWEANN Classifier Development

It has already been established that a significant amount of time is spent by

experts in developing accurate, customised classifiers for identifying specific

application protocols. The first step is to annotate the data sets (Section

4.4), followed by manually developing a classifier to uniquely identify each

protocol. These manual processes reduce the completeness of the system

and are prone to mistakes - mostly human error. Section 4.1 reviewed a

number of IP traffic classification methods, all of which relied on manual

intervention for classifier topology definition. These classifiers were

constructed using heuristics identified by experts as most optimal for

classifying each application protocol.

Unlike the classification systems studied in Section 4.1, APIC

automatically develops custom classifiers for each application protocol it

discovers (Section 3.3). For this case study, APIC uses TWEANN models,

fine-tuned with backpropagation. TWEANN parameters, including the

number of neurons, connections and weights, are determined automatically

using the TWEANN’s artificial evolution process. The average recall score

achieved by the classifiers for each feature subset defines the fitness score

for the genotypes tested, where genotypes encode the connection weights

and neuronal connectivity of the TWEANNs. If a classifier’s results surpass

a predetermined score, or if the maximum number of generations is reached

for the feature subset selection GA, the last set of classifiers produced is

deemed the most suitable for classifying the recorded data set.

90

In Goss and Botha (2012), where the same focus application protocols

were tested, the neuron count for each classifier trained was statically set to

twice the number of features considered. These neurons were split between

the input layer and a single hidden layer, which converged on a single

output neuron. Drawing inspiration from this configuration, the maximum

number of neurons permitted for each topology developed in this case study

was equal to twice the number of features included in the current feature

genotype. The search space for the number of neurons considered by the

topology evolving GA was therefore limited to fn + 1 ≤ neurons ≤ fn ∗ 2,

where fn denotes the number of features represented in the feature subset

genotype. For example, a feature subset genotype with a magnitude of ten

would generate topologies with 11 to 15 neurons. Goss and Botha (2012)

found that increasing the number of neurons beyond this value proved to

increase task load significantly, where more CPU time was required to train

the network due to increased computational complexity, while only a

marginal, disproportionate increase in accuracy was noted.

Operating within these parameters, a topology-evolving GA determined

the number of neurons and neuronal connectivity for each ANN classifier.

The weights for each connection were determined using a second,

weight-evolving GA. These weights were fine-tuned using the standard error

backpropagation algorithm (Rumelhart et al., 1988), which affords APIC

additional efficiencies when searching for more optimal weight

configurations. Here, the GA prevents the backpropagation algorithm from

getting stuck in the local minima, a problem often associated with the

algorithm (Sher, 2010). As per Goss and Botha (2012), the total number of

training iterations (epochs) for the backpropagation algorithm was set to a

heuristic value of 1,000. A static value for the number of epochs allows each

topology to be tested fairly, providing a strong comparative base for

accurately reflecting and comparing the number of epochs required for

convergence.

The best scoring clustered data set from Section 4.4 was found using a

data set consisting of 20 features. A new TWEANN classifier was constructed

and trained for each identified cluster. The training set for each cluster was

automatically annotated, where datum that were members of the cluster

being identified were labelled with “1”, while datum external to the cluster

91

were labelled with a “0”. In this case study, TWEANN classifiers were

developed to identify each of the six focus application protocols (Table 4.3).

The best classifier topology and it’s associated score was recorded for each

application protocol.

These scores are the average scores achieved when training a classifier

using five-fold cross-validation. For each fold, an 80/20 rule was applied

(Fan et al., 2008), where 80 percent of the data set was allocated to the

training set and 20 percent to the test set.

92

��

���

���������

���

��������

��

���

��������

��������

���
��������

��

��������

��

��������

���

���������

��

��������

��

��������

��������

��

��������

��������

���������

��

��������

��������

���

��������

��

���������

��������

���������

��������

���������

��

��������

��������

��������

���

��������

��������

��������

��������

���������

���

��������

���������

���������

���

��������

���������

���������

���

��������

���������

���

��������

��������

��������

���������

��������

���

��������

��������

���������

���������

���

��������

��������

���

���������

��������

���������

���

��������

���������

���

��������

���������

��������

��������

��������

���������

���������

��������

���������

��������

��������

����������

����������

����������

Figure 4.27: The topology of the TWEANN best matching the SSH protocol. Using this

topology, an average recall score of 99.7928 percent was achieved. The topology includes

20 input (n0 to n19), and five hidden (n20 to n24), neurons plus one output neuron (n25).

93

The cluster describing the SSH protocol was best recalled by the

topology illustrated in Figure 4.27. This topology scored an average of

99.7928 percent when parsing the training set. The topology consisted of

twenty input neurons (one for each feature) and five hidden neurons. These

hidden neurons were connected to both each other, the input neurons, and

the single output neuron. A number of the input neurons were also mapped

directly to the output neuron. The connectivity between each neuron was

determined as the best architecture by the topology-evolving GA.

The cluster describing the SMTP protocol was best matched using a

topology illustrated in Figure 4.28. Here, all 20 inputs are also connected

through five hidden neurons and directly to the output neuron. Through

this topology, an average recall score of 99.9413 percent was realised when

parsing the test set at each fold.

94

��

���

��������

���

���������

���

��������

���

��������

��

���

��������

��������

��������

���������

��

����������

��������

��������

��

���

���������

���������

��������

��������

��

��������

���������

��

��������

��

��������

��������

��������

��������

��

��������

��

��������

���������

���

��������

���

��������

���

���������

��������

���������

��������

��� ���������

��������

��������

��������

��������

���

���������

��������

���

��������

��������

���������

���

��������

��������

���

��������

��������

��������

���������

���

��������

���

��������

��������

��������

���������

���������

���������

��������

���������

��������

��������

��������
��������

���������

���������

Figure 4.28: The topology of the TWEANN best matching the SMTP protocol. Using

this topology, an average recall score of 99.9413 percent was achieved. The topology

includes 20 input neurons (n0 to n19), five hidden neurons (n20 to n24) and a single

output neuron (n25).

95

��

���

��������

���

��������

���

��������

��

��������

��

���������

��������

���

��������

��

���������

���������

��

��������

���������

�� ��������

���������

���������

��

���������

���������

��

��������

��������

��������

��

��������

��������

��
��������

��������

��������

���
���������

���

��������

���

���������

��������

���

���������

���������

���

��������

���

���������

��������

���

��������

���������

��������

���

���������

���������

���

��������

���

��������

��������

��������

��������

���������

��������

����������

Figure 4.29: The topology of the TWEANN best matching the POP3 protocol. Using

this topology, an average recall score of 99.8391 percent was achieved. The topology

includes 20 input neurons (n0 to n19), three hidden neurons (n20 to n22) and a single

output neuron (n23).

96

The topology best matching the POP3 protocol is illustrated in Figure

4.29. This classifier, comprised of twenty input, three hidden and one output

neuron, achieved an average recall score of 99.8391 percent.

The HTTP protocol, the foundation of communication for the WWW is

a distributed, collaborative, hypermedia data transport protocol. The

clustered data describing the HTTP application protocol was best

described using the topology illustrated in Figure 4.30. The average recall

score achieved by this network was 99.8383 percent.

97

��

���

���������

��

���

��������

���

���������

��
�������� ���������

��
��������

��

��������

��
���������

�� ��������

��������

���������

��

��������

��

��������

���������

���������

��

��������

���

��������
��������

��� ��������

���������

���

��������

���

��������

���

��������

���

��������

���

���������

���
��������

���������

��������

��� ��������

���������

��� ��������

���������

���������

���������

Figure 4.30: The topology of the TWEANN best matching the HTTP protocol. Using

this topology, an average recall score of 99.8383 percent was achieved. The topology

includes 20 input neurons (n0 to n19), two hidden neurons (n20 and n21) and a single

output neuron (n22).

98

��

���

���������

��

���

���������

��

��������

��

���������

��

���

��������

���������

��

��������

��

��������

��

��������

��

��������

��������

��

���������

���
��������

���

���������

���������

��������

���

���������

���������

��������

���

��������

���

��������

���������

���
���������

���
��������

��� ��������

���

��������

��������

���

���������

��������

���������

���������

Figure 4.31: The topology of the TWEANN best matching the HTTPS protocol. Using

this topology, an average recall score of 99.9159 percent was achieved. The topology

includes 20 input neurons (n0 to n19), two hidden neurons (n20 and n21) and a single

output neuron (n22).

99

The HTTPS protocol is not a protocol in its own right, but rather the

HTTP protocol operating on top of the Secure Sockets Layer (SSL) or TLS

protocol. The best matching topology HTTPS is illustrated in 4.31, where

the average recall achieved was 99.9159 percent.

Finally, the topology of the TWEANN classifier best matching the

unencrypted Bittorrent protocol is illustrated in Figure 4.32. This classifier

achieved an average recall score of 99.5700 percent, using a single hidden

neuron. Twelve of the 20 input neurons were connected to the output

neuron through the hidden neuron, with the remainder connecting to the

output neuron directly. Seven of the inputs were connected to the output

neuron both directly and indirectly through the hidden neuron.

100

��
�����������

���

���������

��

���������

��������

��

���������

��

��������

��

����������

��

��������

��

���������

��

��������

��������

��

���������

��

���������

���
��������

���

��������

���������

���

��������

���

��������

���������

���

��������

���
���������

���

���������

���

��������

���������

���

��������

��������

���

���������

����������

Figure 4.32: The topology of the TWEANN best matching the Bittorrent protocol.

Using this topology, an average recall score of 99.5700 percent was achieved. The topology

includes 20 inputs (n0 to n19) plus a single hidden (n20), and a single output neuron (n21).

101

4.7 Accuracy Comparison

It is important to quantify the results achieved in Section 4.6 by comparing

them with successes of similar systems. Table 4.8 outlines results achieved

by comparative systems over the past decade, where the same application

protocols as those investigated in this case study were tested. The table

highlights best scores achieved by each method for the focus application

protocols considered in this case study. This section discusses each of these

systems, providing insight into the techniques employed and the accuracy

achieved for each tested application protocol.

Bernaille et al. (2006) proposes a two-phase model for classifying IP

traffic. The first phase, the training phase, involves clustering recorded

TCP traces of target applications. The authors test three popular

clustering algorithms: K-means (MacQueen et al., 1967a), Gaussian

Mixture Model (GMM) (Lindsay, 1995) and spectral on Hidden Markov

Model (HMMs)(Baum and Petrie, 1966).

These algorithms are used to identify the number of distinct application

protocols present in a supplied data set. For successful clustering, the

authors stress that a number of requirements must be met. First, traces for

each of the target application protocols must be contained in the data set,

with a minimum number of samples present for each. The APIC method, in

contrast, does not require any manual intervention for ensuring successful

classifier creation (Section 4.6), a process that would otherwise hamper the

completeness of the system. The APIC method, instead, retains smaller

clustered datum for inclusion in future discovery processes, where these

clusters may grow over time to a sufficient size. Bernaille et al. (2006)

states that the number of samples for each application protocol should be

of similar magnitude, so as not to bias the clustering process. The authors

furthermore require manually annotated example traces of each application

protocol for calibrating the clustering process. For the purposes of their

research, the authors generated these examples using a commercial IP

traffic classification system. The APIC method has no such requirement,

relying on ML techniques to tune the clustering parameters adequately,

accurately segregating each distinct application protocol automatically.

The results achieved by Bernaille et al. (2006) for each application protocol

102

P
O

P
3

S
M

T
P

H
T

T
P

H
T

T
P

S

S
S

H

B
it

to
rr

e
n
t

Bernaille et al. (2006) 99.70% 98.50% 99.00% 99.10% 93.80% N/A

Alshammari et al. (2009a) N/A N/A N/A N/A 99.50% N/A

Maiolini et al. (2009) 95.70% N/A 99.50% N/A 99.30% N/A

Gargiulo et al. (2009) 99.83% 99.54% 99.29% N/A N/A N/A

De Donato et al. (2014) 100.00% 96.00% 99.60% 99.10% N/A 98.90%

Bujlow et al. (2015) 100.00% 100.00% 99.80% N/A 94.19% 99.87%

APIC 99.84% 99.94% 99.84% 99.92% 99.80% 99.57%

Table 4.8: A list of comparable research into IP traffic classification over the past
decade. These works are those where classifiers identifying the same application protocols
considered by this case study were tested. The table includes the application protocol and
best score achieved.

using the aforementioned requirements are presented in Table 4.8. The

values represent the best noted classification scores across all tests for each

application protocol. In their results, the authors show the highest average,

combined score achieved was 98.7 percent, when considering all application

protocols. The authors failed to include testing of peer-to-peer application

protocols, including Bittorrent. The method proposed by Bernaille et al.

(2006) was not easily re-implemented for testing the Bittorrent application

protocol, as both the data sets and commercial classification software used

were not readily available. Alshammari et al. (2009a) used two data sets

to train an SSH classifier. The first data set was labelled using a

commercial classification tool, where a DPI system scanned for known

signatures. The SSH protocol is easily identified using DPI, as the first few

bytes of the application protocol are exchanged in plain-text. The second

data set was labelled using a port-based classification method. Alshammari

et al. (2009a) used balanced samples of SSH and non-SSH flows to

represent a subset of the original data sets. The authors argue that a

balanced subset of data improves the performance of the resulting models

when compared to those trained using the full data set. In total, 500,000

packets were considered, including TCP control traffic. As the APIC

method considers only payload-bearing packets, it requires less packets for

103

processing the same flow traces, making it arguably more efficient.

Alshammari et al. (2009a) trained three classifiers, using C4.5, AdaBoost

and Team-based Genetic Programming algorithms, using the pre-labelled,

sampled data sets. These classifiers were trained to identify only the SSH

protocol using packet header statistics. Basing IP traffic classification on

header information was found in Section 4.1 to be unreliable as header

information is easily manipulated by the two communicating hosts (Moore

and Papagiannaki, 2005; Auld et al., 2007). For this reason, the APIC

method makes determinations without this data, focusing rather on

statistical information that describes application protocols independent of

the environment it traverses. Alshammari et al. (2009a) also states that

manual intervention and further research is required to evaluate the

proposed method for classifying application protocols, other than SSH. The

method proposed by Alshammari et al. (2009a) is therefore only suitable

for classifying the SSH application protocol, which greatly impairs its

effectiveness in the general field of IP traffic classification. Due to the

specific focus on SSH, the method proposed by Alshammari et al. (2009a)

was not re-implemented to determine its effectiveness in classifying the

other test application protocols listed in Table 4.8. Although the method

focused solely on the SSH protocol, the results achieved show that the

method has merit and provides noteworthy contributions. For example, the

authors found C4.5 as the best performer for classifying both in-class (SSH)

and out-of-class (non-SSH) samples. Using this method, a best score of 99.5

percent was observed when recalling training set data. In contrast, a 91.3

percent score was achieved when the classifier was tested against previously

unseen samples from the original data set. In this case study, APIC was

found to exhibit significantly higher success classifying unseen samples of

the SSH protocol, realising scores in excess of 99 percent accuracy, using a

method developed to identify a broad range of application protocols.

Maiolini et al. (2009) recorded network packet traces using a mirrored

port on their LAN switch. Unlike Alshammari et al. (2009a), TCP control

messages were removed through pre-processing methods which, according

to the authors, results in a higher degree of accuracy. Not dissimilar to

APIC, the method proposed by Maiolini et al. (2009) used min-max

normalisation to standardise each dimension of the recorded data set. The

104

authors used heuristic values to calibrate each dimension of the input

vector, which included the directionality of packet flow, packet size values

and absolute times. The authors used a cross-validation method to

determine the number of clusters, k, within the recorded data set. Using

the described method, a best average score of 95.43 percent was realised

across all classifiers. Lacking access to the recorded data set, which the

authors state was artificially created on a university network and at a

private home, the method was unable to be re-implemented. As the authors

focus was on the identification of the SSH protocol from other protocols,

they failed to record the scores achieved by the classifier describing SMTP,

HTTPS and Bittorrent. It is unknown if these protocols were not

discovered during the testing, or if the artificial data set production process

simply did not cater to them. Artificial data sets remove many of the

variables introduced in real-world IP network traffic, such as latency

variances caused by congestion and QoS implementations on ISP networks.

It is therefore assumed that the results published are higher than the

results that would be achieved using data sets captured in a real-world

environment, such as those recorded for testing APIC.

Gargiulo et al. (2009) use attributes inferred from the first four

payload-bearing packet exchanges to classify each flow. The authors use the

destination port number of the flow, combined with the directionality and

size of these first four packets. The classification method described by

Gargiulo et al. (2009) consists of three stages. Stage one guesses the

application protocol using the destination port read from flow packet

headers. Stage two determines the pattern of bits showing directionality for

each flow over the first four packets, where a ”0” indicates the packet was

sent from server to the client and a ”1”, the reverse. The authors assert the

distribution of flow directionality patterns across the 16 available patterns

(24) provides sufficient evidence as to whether the application protocol is,

in fact, that which was determined using the port number. Finally, a third

stage uses a decision tree to parse packet size statistics from the first four

payload-bearing packets. Based on the scores generated by each of the

classifiers, a probability is provided as to which application protocol the

flow presents. While the average, combined score for all classifiers was not

provided, the individual scores presented in Table 4.8 provide sufficient

105

evidence that high degrees of accuracy are achievable using the proposed

method. As part of the method is dependent on packet header information

(port), it is possible that the reliability of the method may be called into

question in real-world operation, where packet header information is

manipulated by end hosts. The APIC method does not suffer this risk, as

the attributes considered explicitly exclude those that may be manipulated

by the communicating hosts. De Donato et al. (2014) present an

open-source tool for traffic classification, the Traffic Identification Engine

(TIE). This engine uses a number of techniques to classify traffic, including:

J48 Decision Trees, K-nearest Neighbour, Random Tree, Ripper, Multilayer

Perceptron, Naive Bayes (Russell and Norvig, 2009), Portload (a custom

DPI engine) and, finally, classic port-based classification.

Table 4.8 highlights the best results achieved by this method, when each

technique (algorithm) was tested individually using network trace data

collected at the University of Napoli, Italy. Each classification technique is

loaded as a separate plug-in to the system, which supports a number of

methods for training classifiers. In each case, the training is provided

through a supervised learning approach, using pre-labelled training sets.

The authors cite results for all but one of the test application protocols

considered by this case study, namely SSH. The TIE engine was not

implemented for generating a result for SSH in this case study, owing to

tight time constraints.

Bujlow et al. (2015) reviews seven of the most popular DPI-based IP

traffic classification systems. These systems include PACE 11, OpenDPI 12,

nDPI 13, L7-filter 14, Libprotoident 15 and Cisco NBAR 16. The results in

Table 4.8 are the highest observed using any of these systems. The authors

emphasise that the signatures used in each of these systems must be well

defined (manually) and then kept up-to-date. This is contrary to operating

the APIC method, where classifiers are updated and replaced

automatically. Continuous evolution of classifiers is required to maintain

11http://www.ipoque.com/products/pace
12http://www.opendpi.org/
13http://www.ntop.org/products/deep-packet-inspection/ndpi/
14http://l7-filter.sourceforge.net/
15http://research.wand.net.nz/software/libprotoident.php
16http://www.cisco.com/c/en/us/products/ios-nx-os-software/network-based-

application-recognition-nbar/index.html

106

accuracy as the application protocol itself also evolves. To test each of

these systems concurrently, Bujlow et al. (2015) designed their own

traffic-replay system. This system is said capable of reading and replaying

packet captures (network trace files) through each of the seven IP traffic

classification systems. Here the timing associated with each packet is also

maintained. The classification results of each replay event was logged, along

with the name of the application. The name of each application protocol

was inferred from the pre-labelled test data set. The authors assert, as is

apparent from the results in Table 4.8, that most traditional application

protocols are generally well detected. Due to the lack of access to the test

data set and the traffic replay agent, the experiment could not be

re-implemented in this case study to ascertain the effectiveness of DPI in

classifying the HTTPS application protocol.

Although the accuracy achieved by the classifiers listed in Table 4.8, for

the most part, exceed 95 percent, it is important to consider the effect

portability has on their accuracy. A classifier should be portable, retaining

a high degree of accuracy when deployed on networks other than where it

was trained. The scores presented in Table 4.8 are those achieved when

classifiers were tested against data sets recorded on the same network from

which their training sets were derived.

The following section argues for portability as a new metric for measuring

the success of IP traffic classification systems. The following section discusses

each of the methods listed in Table 4.8 based on this new metric.

4.8 Portability Comparison

It has already been explained that the completeness of an IP traffic

classification system relies heavily on the portability of classifiers. While it

is often possible to manually train models for each network, classifier

portability ensures consistency in recognising each application protocol

across multiple networks. Commercial system IP classification vendors, for

example, need to ensure that the classifiers they produce are effective on all

customer networks. It is impractical for these vendors to develop custom

application protocol classifiers for each of these networks. In Section 4.1, it

was argued that specific features considered by a number of systems do not

107

P
K

T
IA

T

P
K

T
S

iz
e

P
K

T
H

e
a
d

e
r

P
K

T
D

ir
e
c
ti

o
n

P
a
y
lo

a
d

Bernaille et al. (2006) M M

Alshammari et al. (2009a) M M M

Maiolini et al. (2009) M M

Gargiulo et al. (2009) M M M

De Donato et al. (2014) O O O O O

Bujlow et al. (2015) M

APIC O O O O O

Table 4.9: A high-level view of features used by each of the comparative systems
considered in this case study. Based on the investigations concluded in Section 4.1, many
of the feature groups listed in this table are not conducive to the production of portable
classifiers. In this table, an “M” denotes a mandatory feature while an “O”, one that is
optional. Finally, no character for a particular feature group indicates that the feature is
not considered or supported by the method.

promote portability, due to their dependence on network-specific metrics,

such as latency. This section compares these findings with the features and

methods selected by the focus systems listed in Table 4.8.

Table 4.9 lists each of these systems, broadly grouping the features each

considers into a high-level class. Here, an “M” denotes at least one feature of

the class that is mandatory (required by the system), while an “O” dictates

the features that are optional. Each of these feature classes, or categories,

are discussed below with specific reference to their support of portability.

Packet Inter-arrival Time (PKT IAT) is a metric inferred by classification

systems by calculating the time difference of arrival (TDoA) between packet

exchanges of a flow. Although expressing these metrics as a ratio may provide

similar results on a single network, the same application protocol may exhibit

a completely different pattern on another. Features that rely on timing are

not always feasible in real-world operational environments as this information

is often skewed by QoS policies and network congestion (Goss and Botha,

2012). Alshammari et al. (2009a) required the PKT IAT attribute for their

method, acknowledging that their proposed method was not portable.

The size of the first few packets of a flow (PKT Size) is used by a

108

number of systems, including Bernaille et al. (2006), Alshammari et al.

(2009a), Gargiulo et al. (2009) and APIC. Section 4.1 affirms that the size

of the first few payload-bearing packets remains constant for each

application, as these packets are responsible for application protocol

establishment. After the application protocol has been established, data

exchange begins, where packet sizes will vary. For this reason, most systems

consider size metrics for only the first few packets of a flow. Features

describing the size of the first payload-bearing packets are therefore

considered portable and support the portability of classifiers that include

them.

Packet header (PKT Header) information, including TCP port and

protocol information, is easily manipulated by the communicating hosts.

While the IANA assign well-known ports to most applications, devious

application protocols are capable of communicating on any port. Classic

port-based application protocol identification has subsequently become

increasingly redundant in modern networks, as discussed in Section 4.1.

Alshammari et al. (2009a) and Gargiulo et al. (2009) both use packet

header information to infer application protocol type from flows. As this

information may have been manipulated by the communicating hosts, there

is no guarantee that the results they achieved in Table 4.8 would perform as

well in a less controlled environment. This, according to the published

results, remains largely untested (Alshammari et al., 2009a; Gargiulo et al.,

2009).

The directionality of packet flow (PKT Direction) is a feature

considered mandatory by Gargiulo et al. (2009). Not dissimilar to the PKT

Size attribute, the direction of the first few payload-bearing packets of a

flow remains constant during application protocol initialisation. This

attribute is therefore considered portable as it is fixed per protocol and is

not influenced by network variables such as latency and congestion.

Finally, payload inspection or DPI is an extremely accurate, portable

method of classifying plain-text application protocols. The classifier uses

predefined regular expressions to match specific byte strings exchanged

between communicating hosts during the initial application protocol

establishment. These methods have recently, however, been subjected to a

number of privacy concerns as the classifier requires access to sensitive user

109

data. Furthermore, these classifiers are only capable of classifying

application protocols where the byte exchanges are exposed as plain text.

An encrypted, or otherwise opaque, application protocol string renders the

classifier inept.

Based on these findings, the only systems whose methods support

portability are those proposed by Bernaille et al. (2006), De Donato et al.

(2014), Bujlow et al. (2015) and APIC.

Both accuracy and completeness were identified as important metrics

for evaluating IP traffic classification systems. This chapter also introduced

a third metric - portability. Portability provides reuse of classifiers across

networks, ensuring consistent classification accuracy for each application

protocol. This increases the completeness of a system, as application

protocol classifiers developed on one system can be shared with other,

disparate systems. Achieving a high level of accuracy and completeness has

already been argued as heavily dependent on the level of automation the

method exhibits. The following section provides a comparison of the level

of automation offered by each method in Table 4.8.

4.9 Automation Comparison

The level of automation achieved by an IP traffic classification system has a

profound effect on the completeness of the system. Systems exhibiting higher

degrees of automation can efficiently produce classifiers for identifying new

application protocols as they present on a network. Table 4.10 presents a

number of categories in which automation could be achieved in this task,

providing a measure for each of the comparative systems discussed in this

case study.

Each of the comparative systems listed in Table 4.10 requires annotated

data sets for training, or otherwise tuning, their classifier creation processes.

This dependency on the supply of manually annotated data sets severely

reduces the completeness of these systems, as new classifiers may only be

defined once an expert has supplied the training data. The APIC method is

the only system in this list that did not require a manually annotated data

set for producing accurate classifiers.

The Protocol discovery category describes the ability of the IP traffic

110

D
a
ta

S
e
t

A
n

n
o
ta

ti
o
n

P
ro

to
c
o
l

D
is

c
o
v
e
ry

C
la

ss
ifi

e
r

P
ro

d
u

c
ti

o
n

Bernaille et al. (2006) X

Alshammari et al. (2009a)

Maiolini et al. (2009) X

Gargiulo et al. (2009)

De Donato et al. (2014)

Bujlow et al. (2015)

APIC X X X

Table 4.10: A list of comparative systems and the degree to which each demonstrates
automation. An “X” indicates that the system achieves automation for the respective
category. In this table, only APIC achieves automation for each of the specified categories.

classification system to automatically aggregate and segregate application

protocol traces from mixed, noisy data sets of network flow traces.

Bernaille et al. (2006), like Maiolini et al. (2009), use clustering techniques

to identify and group related flow trace datum within a supplied data set.

While Bernaille et al. (2006) used clustering to group application protocol

traces, full automation was not achieved as annotated data sets were

required for tuning the clustering process. The method proposed by

Maiolini et al. (2009) also depended on the supply of manually labelled

data sets as input to their clustering process. The APIC method was the

only system that was able to discriminate between application protocol

traces automatically, without depending on manually annotated data sets.

Finally, the only method that concentrated on automatically creating a

distinct, custom classifier for identifying each application protocol identified,

was APIC. Bujlow et al. (2015) required that a unique classifier be manually

defined by experts using regular expressions for each plain-text application

protocol on the network. De Donato et al. (2014) provided an engine for

defining and training classifiers, however this process was executed manually.

The method provides a mechanism for supervised training, where the supply

111

of manually annotated data sets for each application protocol was required.

4.10 Discussion

The case study described in this chapter highlighted the contribution of the

APIC method in that, although a general method, it automatically created

classifiers to identify previously unseen application protocols on an IP

network with a high degree of accuracy when compared to similar systems

designed manually, specifically for this task. While accuracy is an

important metric for IP traffic classification systems, completeness - or the

availability of classifiers - is equally important. The ability to automatically

create new, portable and accurate classifiers for identifying each application

protocol traversing a network is important for supporting both the

completeness and accuracy of an IP traffic classification system. In this

case study, APIC was demonstrated to excel in both of these areas. The

following subsections provide highlights of this success, supporting the first

two objectives of this dissertation (Section 1.3).

4.10.1 Completeness

The APIC method was shown capable of automatically selecting the best

feature subset (verified by a manual, exhaustive search of the feature space),

identifying distinct patterns in this data set and defining customised, highly

accurate classifiers to identify future instances of each pattern. Optimisation

of the feature set, by pruning irrelevant and redundant features, reduces the

complexity of classification tasks, drastically improving task efficiency (Dash

and Liu, 1997). In addition to feature pruning, APIC used GAs to find the

best hyper-parameters for clustering these feature subsets, grouping network

flows by their respective application protocol. Providing optimisation here

supported the clustering process by increasing diversity between clusters,

while ensuring that datum within the same cluster were more closely related.

This is unlike the clustering process described by Bernaille et al. (2006)

and Maiolini et al. (2009), where manually labelled data sets were required

for tuning the clustering process. In Section 4.9, APIC was found to be

the only method capable of producing its own labelled training data. After

the clustering process was complete, the APIC method labelled each of the

112

clustered datum with their respective cluster identifier. This automatically-

labelled clustered data formed the training sets for the TWEANN semi-

supervised learning, hybrid development process. These TWEANN classifiers

were trained to identify future instances of each cluster (application protocol).

A unique TWEANN classifier was automatically produced by APIC for

each of the identified application protocols, using the labelled data set.

Unlike conventional ANNs, a TWEANN classifier allowed the topology of

each classifier to be modelled in a way that best described the application

protocol. This customisation produced highly accurate classifiers, capable

of identifying all tested application protocols with a confidence score17

exceeding 99 percent. In Section 4.8, the features selected by the APIC

method were found to support portability, therefore TWEANNs produced

using these features were also inherently portable.

Any unidentified flows were recorded and appended to a new data set,

which was periodically parsed by APIC in search of new application

protocols (Figure 4.33). TWEANN classifiers trained for each

newly-discovered application protocol were automatically fed back to the

classification engine (Figure 4.33) for identifying future instances of the

application protocol. The automatic creation of signatures in this way

ensured that the classification system was always up-to-date, with

classifiers readily available at the first sign of a new application protocol.

As application protocols evolved and evaded existing classifiers, new

classifiers were produced and fed back into the classification system.

The automated production of accurate, portable classifiers for

identifying application protocols across disparate network deployments is

one of the main contributions of the APIC method in the field of IP traffic

classification. The ML processes adopted by APIC for the production of

these classifiers required no human intervention, improving on the

state-of-the-art technique, where it was found - in Section 4.9 - that the

majority of classifier training and definition processes still require manual

interaction by human experts. The manual definition of classifiers limits

completeness, a problem APIC overcame by applying ML techniques. The

APIC method, with its automated classifier development and replacement

17A confidence score is the level of certainty, or probability, that the subject datum is

correctly matched by a specific ANN

113

Unknown
IP Traffic
Traces

Mark FlowClassifier
Match?

APIC

No

Yes

New
Classifiers

Classification Engine

Training Engine

LINUX KERNEL

Figure 4.33: Any flow not identified by APIC classifiers was recorded. These recordings

were parsed by APIC periodically, while searching for new application protocols. Any

new TWEANN classifiers produced by APIC were fed back into the classification engine

to identify future instances of the same application protocol.

mechanisms, demonstrated a higher degree of completeness compared to

conventional IP traffic classification systems which depend on human

experts employed by the vendor to release new classifiers periodically

through software updates. Instead, APIC fostered a self-sustaining IP

traffic classification ecosystem, where new application protocols were

automatically discovered and new classifiers introduced on the network in

near real-time.

This supports the first objective of this dissertation (Section 1.3), in which

the hypothesis regarding whether the APIC method could automatically and

accurately identify new patterns in unlabelled, mixed, noisy data sets (such

as those describing IP traffic flows) was found to be true. The following

subsection focuses on the formation of, and the accuracy achieved by, the

TWEANN classifiers produced in this case study.

114

4.10.2 Accuracy

The second metric most often associated with measuring the success of an

IP traffic classification is accuracy. While an IP traffic classification system

should be complete, the available classifiers should be capable of identifying

previously observed (learned) application protocols with a high degree of

accuracy. This subsection describes the formation of classifiers and the

accuracy each achieved for the focus application protocols considered in

this case study. To challenge the state-of-the-art method of IP traffic

classification, the classifiers produced by APIC should produce task

performance results that surpass, or are comparable to, existing systems.

The best scoring feature subset discovered by APIC in this case study

consisted of 20 features, where the remaining five were discarded as

insignificant or irrelevant. Of the 20 features, ten were payload-bearing

packet directionality indicators, six were initial payload bytes and the

remaining four were payload size statistics. These features are comparable

to those manually selected by Goss and Botha (2012) and all supported

portability, as described in Section 4.8. While Goss and Botha (2012) used

payload size information of the first four payload-bearing packets, APIC

used the mean, min, max and standard deviation values recorded for the

first ten payload-bearing packets. The APIC method ruled out the

inclusion of the inbound versus outbound byte ratio and packet IAT. The

packet IAT metric was also excluded by Goss and Botha (2012), due to

external skewing by QoS policies and network congestion. Removing the

dependency on network conditions affords classifiers portability to networks

other than where they were produced.

The application protocols tested in this case study included those that

transport their payload data in plain text, and those obfuscating their

payload data through encryption. In addition to payload obfuscation, the

application protocols tested included those that operate using client-server

connectivity architectures and those adopting the emergent peer-to-peer

connectivity model. This case study, therefore, focused specifically on six

popular application protocols, namely SMTP, POP3, HTTP, HTTPS, SSH

and Bittorrent. These application protocols were chosen due to their

diversity and the number of comparable works available where the same

application protocols were tested. Table 4.11 provides information about

115

Protocol Payload Connectivity Model

SSH Encrypted Client-server

SMTP Plain-text Client-server

POP3 Plain-text Client-server

HTTP Plain-text Client-server

HTTPS Encrypted Client-server

Bittorrent Plain-text Peer-to-peer

Table 4.11: A list of test protocols considered in this case study, along with their payload
obfuscation and connectivity model information.

each of these protocols, with specific reference to payload obfuscation and

connectivity models. It is important to note that certain protocols, such as

Bittorrent, operate using both plain text and encrypted communications.

In this case, each would be described by a distinct TWEANN classifier.

The application protocols chosen for accuracy comparison in this case study

were those of similar works with already-published results. These

application protocols, listed in Table 4.11, are common to many public

networks and are thus the focus of many IP classification system tests. The

specific works chosen for comparison in this case study (Table 4.8) were the

most commonly cited of these works, published over the last decade.

The APIC method created a TWEANN classifier for each of the six

considered application protocols listed in Table 4.11. The topology of the

network, including the number of neurons and their neuronal connectivity

was evolved to an optimal structure using a GA. A second GA was used to

evolve the weights of each network, providing increased efficiencies

compared to a local search for optimal weights from random weights

adjusted by the backpropagation algorithm. Instead, the GA calculated

near optimal initial weights, which the backpropagation algorithm

fine-tuned, achieving convergence on a satisfactory local maximum. While

1000 training iterations were afforded to the backpropagation algorithm, in

each case the algorithm achieved convergence almost immediately, as

illustrated in Figure 4.34. Here, a sharp decline in the output deltas during

training is observed almost immediately. This sharp decline is a testament

to the efficiencies gained through initial weight selection by a GA, prior to

being parsed by the backpropagation algorithm.

116

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 5 10 15 20 25 30 35 40 45 50

D
el

ta

Epochs

Convergence

Min
Avg
Max

Figure 4.34: The convergence graph for the backpropagation algorithm executed on the

topology illustrated in Figure 4.28. The graph has been zoomed to include data for the

first 50 epochs only. The steep drop in delta over a short number of training epochs (less

than ten) is testament to the success of APICs weight-adjusting GA.

Section 4.7 compared six similar systems to the accuracy results

achieved by the APIC method. While many reported remarkably high

accuracy, there were a number of caveats accompanying the published

results. For example, the results published for the classifiers tested by

Bernaille et al. (2006) were only achievable using their cluster and

port-labelling heuristic, where an application’s “standard port” was

assigned to each cluster. The authors argued that this attribute greatly

improved the accuracy achieved by their system, which was evident in their

results. This finding is contrary to findings in Section 4.1.1, where the use

of standard ports to identify application protocols was found redundant

and prone to error. While Bernaille et al. (2006) stated that port numbers

were only used “when meaningful”, they agreed that the applicability of

port-based classification was becoming increasingly limited due to dynamic

port selection strategies.

117

Alshammari et al. (2009a) assert that an assumption is made, whereby

all application protocols are adhering to IANA-assigned application ports.

Section 4.1.1 concluded that current trends show that an increasing number

of application protocols select port numbers at random, or elect to operate

on well-known ports to confuse and evade traffic shapers and firewalls. This,

along with latency-sensitive metrics considered by the method, brings into

question the ability of the classifiers to produce high degrees of accuracy when

ported to networks other than where the initial training set was recorded.

Alshammari et al. (2009a) also recognise this in their publication, stating

that tests showed that the classifiers performed poorly when deployed on

other networks.

The DPI-based classifiers produced by Bujlow et al. (2015) produced

exceptionally high accuracy scores for many application protocols, however

all of these classifiers were created manually using regular expressions to

match plain-text application protocols. This was demonstrated by Bujlow

et al. (2015) attempting to classify encrypted bittorrent, where only 78.68

percent accuracy was realised. This is in accordance with the findings of

Section 4.1.2, where DPI-based approaches were deemed extremely

successful for identifying plain-text flows, however are rendered inept when

packet payload is rendered opaque. This observation is of increasing

importance, especially as the trend for application protocol developers to

use encryption, prevails.

The best scoring topology for each of the six application protocols

produced by APIC tracked in this experiment was illustrated in Section 4.6.

Here, the best scoring classifiers all scored in excess of 99 percent. While

these results are comparable to those in Section 4.7 and Section 4.1, it is

important to remember that these results were achieved autonomously,

without the aid of a human expert. Where the comparable works used

manual processes to annotate data sets and create classifiers, APIC was

able to perform these tasks automatically using ML techniques.

Furthermore, the classifiers produced by APIC were found to be portable.

Both the automation of classifier creation and portability of these classifiers

increases the completeness of IP traffic classification systems. A more

complete system results in less “unknown” IP traffic flows, increasing the

control administrators have over their network. In addition to being

118

complete, an IP traffic classification system should also be accurate. In this

case study, APIC was found capable of producing classifiers that rivalled

those of comparative systems, designed manually by experts over the past

decade. These results are summarised in Table 4.8.

4.11 Conclusion

This chapter presented a case study describing the efficacy of the APIC

general method for the task of IP traffic classification. In this case study,

APIC demonstrated the ability to automate feature selection, application

protocol identification and classifier production processes, increasing the

overall completeness of IP traffic classification systems. The ability to select

an optimal feature subset, identify patterns within a mixed, noisy data set

and automatically produce portable, accurate classifiers for IP traffic

classification tasks are each contributions to the field of IP traffic

classification. Furthermore, the use of TWEANN models to classify IP

traffic is also a novel approach and a further contribution of this

dissertation. The ability of APIC to automatically and accurately identify

new patterns in unlabelled, mixed, noisy data sets, producing classifiers for

identifying future instances of each pattern, supports the research

objectives defined in Section 1.3.

The following chapters explore the application of the APIC method in

a more general sense, across a variety of classification problems in a broad

range of tasks. Successfully demonstrating this property satisfies the third

and final objective of this dissertation - to demonstrate APIC’s value as a

general, broadly-applicable method for most classification tasks.

119

Chapter 5

Network Anomaly Detection

Protecting a computer network against unlawful intrusion, or against

otherwise malicious attacks, is important. This is becoming more relevant,

especially as these networks expand their reach by connecting to public

networks, such as the Internet. The Internet was designed with minimal

processing and best-effort packet switching in mind, forwarding both safe

and malicious packets (Bhuyan et al., 2013). This seemingly unregulated

network provides a multitude of opportunities for cyber attackers,

motivated by a number of factors, including revenge1, prestige2, politics3

and money4.

Intrusion Detection Systems (IDS) are tools designed to thwart these

attacks, both pro-actively and reactively. These systems have become

fundamental components of computer security architecture (Juma et al.,

2014), identifying vulnerabilities and mitigating attacks against the

networks they protect. IDSs can be divided into two main categories:

Misuse Intrusion Detection (MID) and Anomaly Intrusion Detection

(AID). Misuse detection is based on prior knowledge of an attack signature

and the application of classifiers to identify instances of these attacks using

pattern recognition Machine Learning (ML) algorithms. This category of

IDS is akin to Internet Protocol (IP) traffic classification (Zhang et al.,

2009a) and anti-virus (Szor, 2005) systems. In contrast, anomaly detection

identifies any network activity deviating from normal trends as a possible

1https://goo.gl/rCJqJq
2https://goo.gl/0wEwDf
3https://goo.gl/kwc7nH
4https://goo.gl/x59waE

120

https://goo.gl/rCJqJq
https://goo.gl/0wEwDf
https://goo.gl/kwc7nH
https://goo.gl/x59waE

intrusion. While MID systems have shown favourable results, regrettably,

AID systems are often plagued by high rates of false alarms (Tsai and Lin,

2010).

Chapter 4 demonstrated the capabilities of the APIC method as an IP

traffic classification system, where it was found to exhibit properties for

increased completeness, accuracy and portability when compared to similar

systems. The method has, therefore, already been demonstrated as suitable

for application as a MID system. This chapter presents a case study that

evaluates the efficacy of the APIC general method as an AID system, first

using the pre-labelled Information Security Centre of Excellence (ISCX)

IDS 2012 public data set5 (Section 5.4), followed by an evaluation using a

private data set comprised of Cisco netflow traces, reported by the edge

router of an enterprise network (Section 5.5). The first test demonstrates

the efficacy of the APIC method compared to similar systems, while the

second test evaluates application of the method in a real-world setting. A

successful demonstration in both of these areas provides evidence that the

APIC method can be applied in a broad range of network classification

tasks, including MID and AID tasks, supporting the third and final

objective of this dissertation (Section 1.3).

The following sections provide a brief background on information security

and anomaly detection, with specific reference to the type of anomalous traffic

tested in the case study.

5.1 Information Security and Anomaly

Detection

It has already been established that a computer network should be

protected to ensure the Confidentiality, Integrity and Availability (CIA) of

an organisation’s data is maintained. Often referred to as the CIA triad

(Greene, 2006), these elements serve as a guideline for security policy

development within an organisation. An attack against any of these

elements, illustrated in Figure 5.1, is an attack on the information security

of the organisation. The protection of an organisation’s data is critical as it

5http://www.unb.ca/research/iscx/dataset/

121

http://www.unb.ca/research/iscx/dataset/

Figure 5.1: The confidentiality, integrity and availability elements comprising the CIA

triad. A breach of any element may compromise the security of the data of an information

security system. Adapted from Gregory (2014).

is often viewed as the organisation’s greatest asset (Redman, 2008).

Safeguarding the data by protecting the CIA elements is therefore akin to

protecting the tangible assets of the company.

Within a computer network context, an AID system is more commonly

referred to as a Network Behaviour Anomaly Detection (NBAD) system.

These systems are one approach to detecting attacks that threaten the

information security of an organisation. This approach is often viewed as

complimentary to systems that detect network threats using a

signature-based approach, such as those reviewed by Liao et al. (2013). The

NBAD system monitors the network for any event or trend that could

indicate the presence of a threat. For these systems to be effective, a

baseline of normal network or user behaviour must first be observed over a

sustained period. Once the initial network profile has been defined, any

deviation from normal operating parameters will result in an anomalous

traffic flag being raised. Anomaly detection is not limited to computer

networks, having already been applied in a number of domains including

intrusion detection (Garcia-Teodoro et al., 2009), fraud detection (Phua

et al., 2010), fault detection (Idé and Kashima, 2004), system health

monitoring (Niu et al., 2011) and event detection in sensor networks (Zhang

et al., 2010). Anomalies may be introduced in data sets for a variety of

reasons, including malicious activity, such as credit card fraud,

122

Handler

Handler

Zombie

Zombie

Zombie

Zombie

Victim

Legitimate

User
Legitimate

User

Legitimate

User

Attacker

Figure 5.2: An illustration, adapted from Bhaya and Manaa (2014), depicting the typical

Distributed Denial of Service (DDoS) attack model. An attacker sends an attack command

to a number of handlers, who forward the command to zombie attackers. These in turn

send malicious packets to the victim, quickly overwhelming their resources, thus preventing

access for legitimate users.

cyber-intrusion, terrorist activity or the breakdown of a system (Chandola

et al., 2009). While this chapter demonstrates application of the APIC

method as an NBAD system, the methods discussed support

implementation in many of these other domains as well.

An attack commonly considered by NBAD systems, due to their

abounding presence on today’s public networks, is the Distributed Denial of

Service (DDoS) attack. The following section details this type of attack,

describing it’s many forms and effects on computer network infrastructure.

5.2 Distributed Denial of Service Attack

(DDoS)

In a DDoS attack (illustrated in Figure 5.2), an attacker commands a

number of handlers to orchestrate an attack directed at a specific victim.

These handlers are often compromised host machines, where the operator

(user) is often unaware that their machine is participating in these attacks.

123

Figure 5.3: An example DDoS packet, showing a stateless packet (IP protocol) with a

payload consisting of repeated hexadecimal characters, representing the ASCII “A” letter

(0x41). The payload size is 1480 which, when added to the IP header, makes the packet -

at 1500 bytes in size - the Maximum Transfer Unit (MTU) for standard ethernet networks.

The handler machines forward the attack instructions, including the

victim’s information, to a number of zombies. These zombies are

compromised host machines, responsible for crafting and forwarding attack

messages. By using multiple attack sources (zombies), the power of the

DDoS attack is amplified, increasing solution complexity needed for defence

(Peng et al., 2007). A typical DDoS attack involves flooding a victim with

a large volume of stateless protocol messages, such as User Datagram

Protocol (UDP), IP or Internet Control Message Protocol (ICMP) packets.

These packets are often spoofed6, masking the true identity of the zombie.

The attack packet (Figure 5.3) contains meaningless, often repetitive

payload data, where the size of the packet is often the maximum allowed by

an ethernet frame. Sending large payloads reduces the number of packets

required to overwhelm the victim’s network and system resources in a short

amount of time. This type of attack prevents legitimate network

communications from reaching the victim, reducing the availability of data,

one of the critical elements described by the CIA triad. The attack operates

on the premise that it is easier for hosts to generate requests than it is for a

server to check the validity of these requests. This makes it difficult to

protect the server from malicious requests, designed to waste resources

(Peng et al., 2007).

The impact arising from DDoS attacks range from mild user annoyances

to substantial financial losses for companies who rely on network access to

operate (Peng et al., 2007). These companies include online retailers

(e-commerce), banking institutions and postal services. It is therefore

6IP spoofing is the creation of an IP packet using a forged source address in an effort

to conceal the true identity of the sending party.

124

crucial that these attacks be deterred, or otherwise mitigated to avoid

associated damages. According to Belson (2015), the second quarter of

2015 saw a 132.43 percent increase in the number of DDoS attacks

compared to the same time in 2014, with the average lifespan of an attack

lasting 18.99 percent longer. More than half of the DDoS attacks noted

were multi-vector attacks, where two or more assaults were launched at the

victim simultaneously (Belson, 2015). These multi-vector attacks were used

to generate large-scale assaults, reaching peak traffic rates in excess of 100

gigabits per second. With the wide variety of systems now connected to the

Internet, such DDoS attacks may be extremely harmful, even

life-threatening. It is therefore crucial to discourage or mitigate the effects

these attacks have on computer networks (Peng et al., 2007).

5.2.1 Classes of DDoS Attack

DDoS attacks are realised in a number of forms, or types. These attack

types are commonly divided into four categories: TCP Connection Attacks,

Volumetric Attacks, Fragmentation Attacks and Application Attacks. This

section describes each of these attacks, their intent, and their possible effects

if the network is not adequately protected.

5.2.1.1 TCP Connection Attacks

A TCP connection-based attack focuses on occupying a significant number

of connections at the victim, consuming all available connection resources

on infrastructure equipment, such as traffic load-balancers (Bourke, 2001),

firewalls (Stewart, 2013) and application servers (Leander, 2000). Although

many of these devices are designed to handle scale, they are often no match

for a sizeable DDoS attack. A common attack in this category is the TCP

SYN flood attack, which exploits a weakness in the TCP protocol’s

three-way handshake (Figure 5.4). Normally, a client device will send a

synchronise (SYN) packet to a host device, initiating a TCP flow. The host

will respond with an acknowledge (ACK) for the original SYN packet and a

new SYN message. The host then waits until the client sends an ACK

message, after which the data channel is open and the hosts exchange data

packets. In the case of a SYN flood attack, the client (a zombie) sends a

125

Host
Device

SYN X

SYN Y, ACK X+1

ACK Y+1

Data

Client
Device

(a) Normal TCP three-way handshake

Host
Device

SYN X

SYN Y, ACK X+1
SYN Z

SYN Z, ACK A+1
SYN B

SYN C, ACK B+1
SYN D

SYN E, ACK D+1

Client
Device

(b) SYN Flood

Figure 5.4: A normal TCP connection setup (three-way handshake) is depicted in (a),

where the three-way handshake is successfully completed, resulting in an open data channel

between the communicating hosts. Figure (b) shows a SYN flood, where SYN+ACK

responses from the host are ignored by the client device. The victim (host device) leaves

the connection open until an ACK is received from the client, an unlikely event as the

SYN packet is often spoofed.

number of SYN packets to a host (the victim), often using a spoofed source

address. The host will respond to these requests with a SYN+ACK

response and will wait for the client to respond. The zombie never responds

to the message from the host, but rather sends additional SYN messages,

resulting in further connection resources being consumed at the host. The

host will often continue to accept new connections, binding resources until

no new connections are possible, ultimately resulting in a loss of service.

5.2.1.2 Volumetric Attacks

Volumetric attacks focus on consuming all available bandwidth, causing

congestion either within the target or service, or between the target and the

rest of the network. Volumetric-based attacks are often easier to detect

than other DDoS attacks, due to their size and collateral damage

(downtime, lost contracts, data loss). In these attacks, the zombie hosts

craft packets using a number of protocols, loading the payload with random

data until the maximum packet size is reached. These packets do not need

to contain valid payload data, other than the target host’s IP address

information. The damage inflicted by this attack is caused by the transfer

of the large packets, which often overwhelm the limited network resources

of the target.

Examples of this attack include UDP Floods, where unsolicited packets

126

are sent to a target using the UDP, session-less transport protocol. Unlike

the TCP protocol, UDP does not require a connection be established prior

to data transfer. The attack involves sending a number of UDP packets

to random ports on the victim, causing the host to repeatedly look up an

application binding to that port. When no matching application is found, the

host generates an ICMP “Destination Unreachable” message to the spoofed

IP. This attack consumes host resources and often leads to inaccessibility of

the victim. Another similar attack is the ICMP flood. This attack sends

ICMP echo requests (ping) to a host, as fast as possible without waiting

for a response. As hosts are often configured to respond to ping requests,

this attack often consumes both ingress and egress bandwidth on a victim’s

network, resulting in a significant slowdown of legitimate communications.

5.2.1.3 Fragmentation Attacks

The largest IP packet allowed on a network is 65,535 bytes (including the

IP header), however layer 2 protocols, such as ethernet, often impose a

MTU size of 1500 bytes. To send a single packet that exceeds this size, it is

necessary for the sending party to fragment the original message, breaking

it up into multiple messages. The recipient needs to receive each of these

fragmented messages to reassemble and process the complete message. In a

fragmentation attack, the zombie hosts send so many fragmented packets

that the host is quickly overwhelmed and is unable to reassemble the

streams. Other examples include the Ping of Death (PoD), where the

zombie constructs fragmented packets maliciously, such that the recipient

assembles a packet that exceeds 65,535 bytes. This often leads to buffer

overflow issues, causing a loss of service for legitimate traffic.

5.2.1.4 Application Attacks

Certain DDoS attacks operate more conspicuously than others. Application

attacks often involve very few packets, where the message contained in the

payload is specifically designed to overwhelm a target application. In this

type of attack, only the targeted application is affected, while the other

ports and network traffic remain available. Slowloris7 is an example of an

7https://www.incapsula.com/ddos/attack-glossary/slowloris.html

127

https://www.incapsula.com/ddos/attack-glossary/slowloris.html

application attack, enabling a single host to bring down a web server with

minimal bandwidth and nominal impact (if any) to other applications. The

attacking host opens a number of connections to a remote web server. A

partial request is sent to each of these connections periodically, ensuring

that the web server keeps them open. A complete request is never sent, thus

the web server continues to wait, holding these connections open. These

open connections fill the maximum concurrent connections pool, resulting in

service unavailability.

5.2.2 Identifying DDoS Attacks

A number of attacks, such as volumetric-based attacks, are fairly easy to

identify due to the high data or packet volumes they generate. Others that

operate more discreetly, such as application attacks, are more difficult to

detect. To identify these attacks, NBAD systems commonly use time series

data to learn normal operating values for a range of data points (attributes

or features) in specific windows (time frames). Data points that have a

low probability of being generated from the normal distribution are flagged

as potential anomalies (Chandola et al., 2009). An example of anomalies

(outliers) in a two dimensional data set is illustrated in Figure 5.5. In this

illustration, the data points A1 and A2, are sufficiently far from the normal

data sets (N1 and N2) to be flagged as anomalies.

5.2.3 Generic Architecture of DDoS Defence Systems

NBAD systems are deployed in a number of network locations, based on their

architecture. These include victim-end, source-end and intermediate network

locations (Mirković et al., 2003). Victim-end NBAD systems are deployed on

a network to protect and warn the operator of imminent, or current, inbound

attacks. The architecture of source-end NBAD systems is similar to victim-

end detection system architecture. In a source-end configuration, the network

operator deploys an NBAD system to detect hosts on their network who

participate in zombie-like activity, flooding the network with packets in an

outbound (egress) direction. Bhuyan et al. (2013) emphasises that stopping a

DDoS attack at the source is the best possible defence against a DDoS attack.

This, however, is not feasible in free-for-all public network architectures, such

128

N2
N1

A2

A1

Figure 5.5: A two-dimensional representation of a data set where anomalies (Ax) and

normal data points (Nx) are clearly differentiable. Data sets considered by NBAD systems

are often multi-dimensional, extending beyond two dimensions.

as the Internet. Source-end detection would not only prevent the occurrence

of flooding at the victim side, but also across the intermediate networks

between the source and the victim. Intermediate defence systems balance the

trade-offs between detection accuracy and bandwidth consumption. These

systems monitor traffic profiles as packets transit the network, and compare

them to previously observed patterns. They consider information shared by a

number of routers on the network before deciding whether a particular traffic

flow is an attack. Similar to a source-end detection system, if an attack is

identified, a rate-limit is imposed to reduce the load imposed on the victim.

Due to the collaboration of neighbouring routers, tracing back the source of

an attack is simplified (Bhuyan et al., 2013).

ML paradigms, including supervised and unsupervised learning

algorithms, are increasingly used in DDoS attack detection due to their

ability to distinguish normal and attack traffic accurately and

automatically (Bhuyan et al., 2013). These learning algorithms are tolerant

to imprecision and uncertainty, factors for consideration when observing

real-world network traffic. Using features extracted from temporal data sets

describing network traffic, ML-based systems can learn to detect attacks

and, in certain cases, prevent them.

129

The following section details a number of recent advances in statistical

and ML-based approaches to DDoS detection, the evaluation methodologies

employed to test these systems and the results achieved.

5.3 Statistical and Machine Learning-based

DDoS Detection

ML is poised as an effective DDoS detection and mitigation tool, due to its

ability to learn and make predictions on previously unseen data. Many ML-

based approaches have been tested, using both supervised and unsupervised

approaches. Supervised ML learning approaches are the most prevalent in

recent DDoS detection systems, leveraging statistical features of flows to

identify anomalous traffic on the network.

Chen (2009) investigated a statistical model, where the inbound

Synchronise Arrival Rate (SAR) was compared to the normal distribution

of traffic flows originating on the Internet toward their campus network.

The method identified an attack using a two-step process. First, the

current SAR was compared with the normal, expected SAR distribution. If

no significant difference was noted, the ratio of Synchronize (SYN) and

ACK packets was checked against the normal distribution. Chen (2009)

stated that the method incurred low computational overhead as it simply

counted the SYN and ACK packets received, without storing or tracking

the entire three-way handshake. The efficacy of the method was tested and

validated through experimental simulations, where results against a private

data set indicated that a low false positive and false negative rate was

achieved with short detection times. According to Chen (2009), the method

was capable of detecting even subtle attacks as the SAR and SYN-to-ACK

ratio deviate from the norm. While Chen (2009) failed to provide a

summary of accuracy achieved for their method, the results published

showed reduced computational complexity compared to two similar

methods. These methods are the SYN arrival method, where a heuristic

threshold is configured for SYN packet counts over set intervals and the

SYN-FIN method, where TCP flags for the entire flow are monitored. The

ability for the method to detect both high and low bandwidth DDoS

130

Feature Description

NICMP Percentage of ICMP packets

NUDP Percentage of UDP packets

NTCP Percentage of TCP packets

NTCPSY N Percentage of SY N flags in TCP packets

NTCPSY NACK Percentage of SY N + ACK flags in TCP packets

NTCPACK Percentage of ACK flags in TCP packets

AAVGHEADER The average size of packet headers

AAVGDATASIZE The average size of data packets

Table 5.1: Features extracted from flows between time intervals, used to construct the
neural network input data in the method proposed by Jalili et al. (2005).

attacks make it suitable for identifying TCP Connection Attacks (Section

5.2.1.1), which is critical as TCP is the most important traffic on the

Internet, targeted by 90 percent of DDoS attacks (Moore et al., 2006).

Jalili et al. (2005) trained supervised Artificial Neural Networks (ANN)

for detecting flooding attacks, where an attacker targets a network with

semi-normal packets. Semi-normal packets are correctly formed data

packets exchanged within a flow, occurring at an abnormal rate or

containing abnormal payload. The statistical features a flow exhibits

change under DDoS attack, deviating from the normal distribution of

features (Jalili et al., 2005). Jalili et al. (2005) also stated that these

features are time-based and may exhibit divergent profiles at different

times, such as day and night. For this reason, Jalili et al. (2005) divided the

provided normal and attack traffic samples into minor time intervals,

forming temporal data sets. These data sets included all packets and their

associated timestamps. The statistical features extracted from these traces

form the training data for a pre-processor neural network. The authors

implemented this ANN for DDoS detection in conjunction with their

Unsupervised Neural Network based Intrusion Detector (UNNID) method

(Amini and Jalili, 2004), a method that implements Adaptive Resonance

Theory (ART)(Grossberg, 2013). Combined, these methods form the the

Statistical Pre-Processor and Unsupervised Neural Network-based Intrusion

Detector (SPUNNID) method. The features used by Jalili et al. (2005) to

describe flows at each interval are listed in Table 5.1. To evaluate the

131

Feature Description

Time Time the connection was first observed (start time)

SrcIP Source IP address of the flow

DstIP Destination IP address of the flow

SrcPort Source port of the flow

DstPort Destination port of the flow

Protocol IP protocol of the flow

Table 5.2: Features extracted from the public, anomymous data sets used by the DDoS
detection method proposed by Bhaya and Manaa (2014).

method, the authors recorded real network traffic, which they replayed in a

simulated environment while DDoS traffic was introduced by a traffic

generator. Evaluation results revealed that with a time interval not

exceeding two minutes, the method was able to differentiate between

normal and attack traffic in 94.9 percent of the cases.

Bhaya and Manaa (2014) asserted that data mining techniques (Witten

and Frank, 2005) were capable of successfully distinguishing normal traffic

from attack traffic with good accuracy. The authors proposed a hybrid

approach for detecting and analysing DDoS attacks in real world traffic,

tested using the CAIDA UCSD “DDoS Attack 2007” data set8 for attack

traffic and traces from the CAIDA Anonymized Internet Traces 2008 data

set9 for normal traffic. The data sets contained anonymised flow traces,

where the payload of each packet had been removed. The method proposed

by Bhaya and Manaa (2014) used attributes inferred from IP packet

headers only. These attributes are described in Table 5.2. The authors

extracted 2,000,000 packets from each data set and, using Shannon’s

Entropy (Shannon, 2001) and min-max normalisation, transformed the data

to suitable input vectors for their k-means clustering algorithm.

8http://www.caida.org/data/passive/ddos-20070804_dataset.xml
9http://www.caida.org/data/passive/passive_2008_dataset.xml

132

http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/passive_2008_dataset.xml

actual
value

Prediction outcome

p n total

p′ True
Positive

False
Negative

P′

n′ False
Positive

True
Negative

N′

total P N

Table 5.3: A confusion matrix for DDoS detection, where True Positive denotes the
number of packets correctly identified as malicious, False Positive where normal traffic is
incorrectly identified as malicious (attack), False Negative when attack traffic is incorrectly
identified as normal traffic and True Negative when normal traffic is correctly identified.

Bhaya and Manaa (2014) evaluated the success of their method using a

confusion matrix (Stehman, 1997) (Table 5.3), where success was determined

by Equations 5.1, 5.2 and 5.3.

accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

detectionrate =
TP

TP + FP
(5.2)

falsealarm =
FP

FP + TN
(5.3)

The results published by Bhaya and Manaa (2014) show their

centroid-based rules method achieved better results than a simple

centroid-based method (Oh and Lee, 2003). Testing showed that an

accuracy of 99.77 percent was possible using the centroid-based rules

method on the CAIDA data set, whereas the comparable centroid-based

method achieved 97.67 percent.

Yassin et al. (2013) proposed a hybrid machine-learning approach to

anomaly detection on networks using K-means Clustering (KMC) and

Näıve Bayes Classifier (NBC), called “KMC+NBC”. The authors argued

that NBC alone produced a high percentage false alarm rate, whereas when

combined with KMC, the same accuracy and detection rates are noted,

133

with a significantly reduced false alarm rate. The authors evaluated their

method using the ISCX 2012 benchmark data set, containing over 1,512,000

packets, describing network traffic for a seven-day period by 20 distinct

attributes (Table 5.4). More information about this data set is available in

Shiravi et al. (2012). Yassin et al. (2013) showed that, with the

KMC+NBC method, 99 percent accuracy and 98.8 percent detection rate

was achievable, compared to NBC alone, which scored 88.2 percent and

85.0 percent respectively.

Juma et al. (2014) extended the work of Yassin et al. (2013), replacing

the K-means and NBC algorithms with X-means clustering (Pelleg et al.,

2000) and Random Forest Classifier (Ho, 1995) respectively. Juma et al.

(2014) stated that the configuration was better suited to reducing false

alarms, compared to similar methods. The method also used the ISCX

2012 IDS data set during evaluation, where average accuracy scores reached

99.96 percent, with detection rates of 99.99 percent, whilst maintaining

false alarm rates of 0.02 percent. Yassin et al. (2013) and Juma et al.

(2014) demonstrated that instituting clustering algorithms such as K-means

and X-means, as first-phase classifiers, greatly enhanced accuracy and

detection rates of anomalous traffic in IP flow trace data sets, while

reducing the number of false positives.

The APIC method adopts a similar architecture, where an EA guides a

clustering algorithm using descriptive feature sets, prior to producing unique

classifiers to identify future instances of each cluster. The following section

describes experiments where the tests devised by Yassin et al. (2013) and

Juma et al. (2014) were implemented using the APIC method.

134

Feature Description Data Type

appName The name of the application protocol String

totalSourceBytes Total bytes from the source Integer

totalDestinationBytes Total bytes from the destination Integer

totalSourcePackets Total packets from the source Integer

totalDestinationPackets Total packets from the destination Integer

sourcePayloadAsBase64 First source packet payload (Base64
Encoded)

String

sourcePayloadAsUTF First source packet payload (UTF
Encoded)

String

destinationPayloadAsBase64 First destination packet payload
(Base64 Encoded)

String

destinationPayloadAsUTF First destination packet payload (UTF
Encoded)

String

direction Direction of flow String

sourceTCPFlags TCP flags observed in source packets String

destinationTCPFlags TCP flags observed in destination
packets

String

source Source IP address String

protocolName Transport layer protocol String

sourcePort Source port of the flow Integer

destination Destination IP address String

destinationPort Destination port of the flow Integer

startDateT ime Start time of the flow Integer

endDateT ime End time of the flow Integer

tag Indicator of “normal” or “attack”
traffic

String

Table 5.4: Features included in the ISCX 2012 IDS labelled data set.

135

5.4 ISCX 2012 IDS Experiment

This section details experiments where the APIC method was evaluated as

a victim-end NBAD system using the pre-labelled ISCX 2012 IDS data set.

The experiments follow the design set forth by Yassin et al. (2013) and Juma

et al. (2014), where a subset of the ISCX 2012 IDS data set was used to

evaluate their methods. These authors extracted IP flow information for a

specific target host, where normal and attack samples were evaluated using

their methods. Yassin et al. (2013) and Juma et al. (2014) divided samples

into training and testing data sets, where the former were used to train ML

algorithms to identify future instances of “normal” and “attack” flows. These

included combinations of K-means and X-means clustering, Näıve Bayes and

Random Forest (RF) classifiers. The trained systems were evaluated using

previously unseen IP flow samples from the testing data set, extracted from

the ISCX 2012 IDS data set.

Using the same target host as Yassin et al. (2013) and Juma et al.

(2014) provides a good basis for comparing the efficacy of the APIC

method against these methods. As many of the implementation details

were omitted by Yassin et al. (2013) and Juma et al. (2014), a number of

variations to the original experiments may be observed in those described

in this section. The following subsections detail the implementation of each

experiment using the APIC method. Each subsection highlights any

deviations from the experiments conducted by Yassin et al. (2013) and

Juma et al. (2014). The section ends with a discussion of the results, which

indicate that the APIC method is suitable for application as a victim-end

NBAD system, accurately identifying anomalous activity in data sets

containing complete flow information.

5.4.1 Experimental Data Sets

The experiments conducted by Yassin et al. (2013) and Juma et al. (2014)

used the ISCX 2012 IDS data set (Shiravi et al., 2012) as a benchmark

for testing their respective KMC+NBC and XM-RF methods. The data set

contains almost 1,512,000 packets, describing complete IP flows recorded over

a period of seven days. The data set contains labelled records, where each

flow is described by 20 features (Table 5.4), tagged as “normal” or “attack”.

136

Training Data Testing Data

Normal Attack Normal Attack

Day 1 0 0 147 0

Day 2 22,612 0 0 0

Day 3 16,260 1,973 0 0

Day 4 0 0 19,115 37,159

Day 5 22,879 0 0 0

Day 6 13,621 181 0 0

Total 77,526 56,421

Table 5.5: The partitioning of complete IP flow traces into training and testing data sets
for the selected host. The six days encompass the entire ISCX data set. Flows for day
two, three, five and six are assigned to the training data set, while those recorded on the
first and fourth days are assigned to the testing data set. The days chosen and data set
split were performed in accordance with Yassin et al. (2013) and Juma et al. (2014)

Yassin et al. (2013) and Juma et al. (2014) reduced the complexity of the

task by testing flows destined for a single target host in the data set. The

daily traffic flows for the selected host were divided into training and testing

data sets. Table 5.5 outlines the composition of each of these data sets, where

the training data set comprised 77,526 flow samples and the testing data set

56,421 samples. These samples contain summary information describing web,

Electronic Mail (E-Mail), Domain Name Services (DNS) and Secure Shell

(SSH) flows - services running on the target host.

5.4.2 Feature Selection

Many details of the experiments conducted by Yassin et al. (2013) and

Juma et al. (2014) are absent in their publications. These details include

the features that were included as inputs to their clustering algorithms, how

these features were encoded, and the normalisation technique applied to

each feature. After an initial manual pruning of the ISCX 2012 IDS

features, the remaining, compatible features included in this experiment

were automatically determined by the APIC method, using the feature

selection process described in Section 3.1.

137

Feature Encoding Example

appName Application name translated to well-
known application port

HTTP = 80

totalSourceBytes Unchanged 432

totalDestinationBytes Unchanged 121

totalSourcePackets Unchanged 20

totalDestinationPackets Unchanged 3

direction L2L = 0, R2L = 1, L2R = 2, R2R = 3 1

sourceTCPFlags Boolean indicating inclusion of each
flag: S,F,R,P,A

1, 0, 0, 0, 1 for
SYN/ACK

destinationTCPFlags Boolean indicating inclusion of each
flag: S,F,R,P,A

1, 0, 0, 0, 0 for SYN

protocolName Translate name to known protocol
number

tcp=6

sourcePort Unchanged 1025

destinationPort Unchanged 80

Table 5.6: Feature set considered by the APIC experiments. These features were chosen
from the original 20 features of the ISCX 2012 IDS data set.

The ISCX 2012 IDS data set describes complete flows using features listed

in Table 5.4. Of these features, only those offering statistical significance to

the problem were included for consideration by the APIC method. These

are features that enable the method to classify each flow as either normal,

or an attack. The final list of features, their encoding scheme and example

translations provided to the APIC method are described in Table 5.6.

A number of the original 20 features were excluded from the APIC data

sets. These included the sourcePayloadAsBase64, sourcePayloadAsUTF,

destinationPayloadAsBase64 and destinationPayloadAsUTF features.

These features were excluded as APIC relies on normalised input datum,

where a feature value range between zero and one is expected. It was

deemed unfeasible to encode each of these variable length strings as

features in the required format. The source and destination features were

also excluded, as directionality information was already provided through

the direction feature and IP address encoding presents a similar challenge

to variable length string encoding. The startDateTime and endDateTime

attributes were also stripped, as the data set provided to APIC was without

temporal knowledge.

138

The remaining 11 features were those suitable for encoding in the

required format. The appName feature was encoded by substituting the

well-known port for the application. The totalSourceBytes,

totalDestinationBytes, totalSourcePackets, totalDestinationPackets,

sourcePort and destinationPort remained unchanged as integer values can

be reduced to a value between zero and one using a normalisation function.

The string value describing the direction feature was encoded by

substituting an integer value for each of the four known directions, using

values from zero to three. Both the sourceTCPFlags and

destinationTCPFlags features were represented by five bits, where

observation of a particular flag would set the value of the bit at that

location to “1”, whilst an absence of the flag was represented by “0”.

Finally, the protocolName feature was encoded by translating the string

name of the protocol to its protocol number. In total, 19 features were

provided to the APIC method for describing the training and testing data

sets.

Each of the 19 features considered by APIC were normalised using the

min-max normalisation function (Equation 4.3). This function requires a

bounded value range for calculating the normalised value. The low-end and

high-end values for each of the features were chosen heuristically, by noting

the lowest and highest values for each feature in the sample data sets. The

inputs to the min-max normalisation function for each feature are listed in

Table 5.7.

The normalised training data set comprising all 19 features was passed to

the APIC method, where feature selection genotypes were generated, each 19

bits long (Table 5.8). Each bit represented the inclusion of a specific feature

during the clustering process. The feature selection process implemented by

the APIC method is described in Section 3.1. The values used to configure

the feature selection GA are listed in Table 5.8.

139

Feature Emin Emax

appName 0 200

totalSourceBytes 64 7,755

totalDestinationBytes 0 313,248

totalSourcePackets 0 100

totalDestinationPackets 0 256

direction 0 3

sourceTCPFlag-S 0 1

sourceTCPFlag-F 0 1

sourceTCPFlag-R 0 1

sourceTCPFlag-P 0 1

sourceTCPFlag-A 0 1

destinationTCPFlag-S 0 1

destinationTCPFlag-F 0 1

destinationTCPFlag-R 0 1

destinationTCPFlag-P 0 1

destinationTCPFlag-A 0 1

protocolName 0 20

sourcePort 1000 60,610

destinationPort 0 200

Table 5.7: The bounded number ranges serving as inputs to the min-max normalisation
function for each feature.

Genetic
Algorithm

Population
Size

Maximum
Generations

Mutation
Rate

Crossover
Rate

Genotype
Length

Feature 32 100 0.1 0.5 19

Hyper-param 100 100 0.1 0.5 16

Table 5.8: A table describing the algorithmic parameters configured for each of the two
GAs used by APIC: the first GA searches for an optimal feature subset (Section 3.1), the
second optimal hyper-parameters to control the pattern discovery process (Section 3.2).

140

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
er
ag
e	D

ist
an
ce

Cluster

Figure 5.6: A histogram comparing the average distance between datum in each cluster,

calculated using the silhouette clustering method (Equation 3.2). Low average distances

provide evidence of successful, tight clustering by the GA-controlled DBSCAN algorithm.

The maximum value for the Y axis is determined by n∗1, where n is the number of features

considered during the clustering process and 1 the highest value possible for the normalised

feature. The chart includes the standard deviation of average distances between clusters.

5.4.3 Behavioural Profiling of IP Flow Summary Data

Each feature set genotype was tested by clustering the training data set,

described by the 19 normalised features (Table 5.7). The minPTS and eps

parameters for each Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) execution were tuned using a hyper-parameter search

GA (Section 3.2). These hyper-parameters are the tunable parameters

provided to learning algorithms to guide their execution (Bergstra and

Bengio, 2012). The parameters guiding this process are listed in Table 5.8.

The automated generation of optimal hyper-parameters for guiding the

APIC method’s clustering algorithms is described in Section 3.2.

After executing the APIC method, the best feature set was found to

include 18 features, where only the appName feature was excluded. The

tag label for each datum of the training set was excluded, preventing the

APIC clustering process (Section 3.2) from forming an unfair bias using

pre-labelled datum. The best scoring feature set genotype identified 15

clusters, with an average distance of 0.043 observed between datum of the

same cluster. Figure 5.6 depicts the average distance between datum in

each cluster. After an extensive search process - over 100 generations - the

hyper-parameter optimisation concluded with optimal parameters of

eps = 0.09 and minPTS = 205. An initial verification of the clustered data

141

Cluster Average Distance Attack Tag Normal Tag

1 0.057 0% 100%

2 0.029 0% 100%

3 0.028 0% 100%

4 0.034 0% 100%

5 0.047 0% 100%

6 0.059 0% 100%

7 0.030 0% 100%

8 0.025 0% 100%

9 0.059 0% 100%

10 0.012 0% 100%

11 0.044 0% 100%

12 0.076 100% 0%

13 0.069 100% 0%

14 0.052 100% 0%

15 0.020 100% 0%

Average 0.043

Table 5.9: A list showing the average distance between datum and the distribution of
the ISCX “tag”, or label, for datum in the cluster. The tag distribution indicates how
many datum were tagged as “normal” and how many were “attack” in each cluster.

set was performed, comparing the distribution of tags of each datum within

the cluster. The average distance and tag distributions for each of the 15

clusters are listed in Table 5.9.

Although the “tag” flow label feature was excluded from the clustering

process, post-cluster verification of datum tags showed each cluster

distinctly described either an attack, or normal traffic. The APIC

clustering methods were therefore able to correctly distinguish normal from

attack flow behaviours using an unlabelled data set. The APIC clustering

method did, however, fail to associate 2.7 percent (2,093 flow samples) of

the training data set with a cluster. Manual verification of these

unclassified samples revealed that all were tagged as normal traffic flows in

the ISCX data set.

Each of the identified flow behaviour classes (clusters) were used to form

training sets for developing Topology and Weight Evolving Artificial Neural

Network (TWEANN) classifiers to identify future instances of each class.

142

Parameter Value

maxNeurons 30

learningRate 1.0

momentum 0.5

populationSize 10

maxGenerations 100

trainingIterations 1,000

Table 5.10: A list of parameters and their associated values supplied to the APIC
TWEANN creation process (Section 3.3).

The following subsection details the creation and composition of each of

these TWEANN classifiers.

5.4.4 IP Traffic Profile Classification

The best scoring clustered data set was used to create TWEANN classifiers

to identify future instances of each IP flow class. Using the method

described in Section 3.3, a custom TWEANN classifier was produced for

each identified cluster. The parameters guiding the TWEANN creation

process are summarised in Table 5.10.

These parameters were chosen heuristically, based on previous

experience working with similar data sets. The maximum number of

neurons for the TWEANN topology, including the inputs and output, was

limited to 30. The learning rate and momentum values were set to 1.0 and

0.5 respectively. The GA’s population size was set to 10, where a maximum

number of 100 generations was allowed. This rather small number of

generations is reasonable as, in previous tests, the best scoring TWEANN

topology was discovered at generations earlier than 25. Finally, the

backpropagation algorithm (Rumelhart et al., 1988) was limited to a

maximum of 1,000 training iterations for fine-tuning the weights after the

GA had chosen the best neuron structure and weight values. The

backpropagation algorithm was used to fine-tune the weights found by the

GA since, although the GA’s ability to provide a global search technique

results in near-optimal solutions, it is rather inefficient at fine-tuned local

search (Yao, 1999). A hybrid training approach was therefore adopted,

143

CID Topology TP FP TN FN Normal Attack Score

1 18 - 2 - 1 6,999 0 70,527 0 6,999 0 99.63%

2 18 - 6 - 1 7,054 0 70,469 3 7,054 0 99.28%

3 18 - 3 - 1 9,690 0 67,836 0 9,690 0 99.83%

4 18 - 4 - 1 3,153 0 74,373 0 3,153 0 99.26%

5 18 - 0 - 1 3,876 0 73,650 0 3,876 0 99.34%

6 18 - 1 - 1 3,643 0 73,800 83 3,643 0 99.01%

7 18 - 2 - 1 4,275 0 73,251 0 4,275 0 99.61%

8 18 - 2 - 1 3,078 0 74,448 0 3,078 0 99.24%

9 18 - 9 - 1 2,447 0 75,045 34 2,447 0 99.56%

10 18 - 0 - 1 3,599 0 73,967 0 3,599 0 99.26%

11 18 - 1 - 1 3,599 0 73,820 147 3,599 0 99.45%

12 18 - 6 - 1 1,173 0 76,353 0 0 1,173 99.93%

13 18 - 3 - 1 281 39 77,206 0 0 281 98.96%

14 18 - 2 - 1 322 0 77,204 0 0 322 99.73%

15 18 - 4 - 1 378 0 77,148 0 0 378 99.66%

Result 53,567 39 1,109,097 267 51,413 2,154 99.45%

Table 5.11: A list of the identified clusters along with the best scoring TWEANN
topology, the True Positive (TP), False Positive (FP), True Negative (TN) and False
Negative (FN) values achieved during recall of the training data set. The “Normal” and
“Attack” columns tally the number of normal and attack tags of the datum the TWEANN
was trained to identify. Finally, the average score achieved by recalling the training set
for each cluster is also listed.

using a weight-evolving GA to globally optimise the ANN weights, whose

weights were fine-tuned using the backpropagation algorithm.

Information regarding each of the best scoring TWEANN classifiers for

each cluster is listed in Table 5.11. The “normal” and “attack” columns

indicate that clusters one through 11 were trained to detect normal flows,

while clusters 12 through 15 detect attacks. The combined confusion matrix

for the recall tests, post training, are depicted in Table 5.12. The accuracy,

detection and false positive rates for the APIC method and comparable works

are outlined in Table 5.13.

144

actual
value

Prediction outcome

p n

p′ 53,567 267 P′

n′ 39 1,109,097 N′

P N

Table 5.12: A confusion matrix for the APIC training set recall tests. The True Negative
count is substantially high due to the way the TWEANN training set is created, where any
datum external to the cluster being trained is marked with a “0”. The True Positive count
includes all datum that were part of a cluster (cluster membership is mutually exclusive).

Method Accuracy Detection False Alarms

NBC (Yassin et al., 2013) 82.800% 13.800% 17.600%

KMC+NBC (Yassin et al., 2013) 99.800% 95.400% 0.130%

RF (Juma et al., 2014) 99.990% 99.810% 0.010%

XM-RF (Juma et al., 2014) 99.990% 99.950% 0.000%

APIC 99.970% 99.920% 0.004%

Table 5.13: The results of training set recall tests by comparable NBAD systems. The
accuracy, detection and false positive rates are calculated using Equations 5.1, 5.2 and 5.3.

After the TWEANN development process was concluded, an average

recall score of 99.45 percent was recorded for the classifiers (Table 5.11).

While the training set recall test demonstrated good results, it was

important to evaluate each of the classifiers using previously unseen data.

The following section tests the newly-trained TWEANN classifiers against

the sample testing data set, comprised of 56,421 IP flow traces (Table 5.5).

145

actual
value

Prediction outcome

p n

p′ 36,878 281 P′

n′ 15 19,247 N′

P N

Table 5.14: A confusion matrix for the testing set parsed through the trained TWEANN
classifiers. A total of 36,878 samples were correctly identified as attacks (TP), with 19,247
samples correctly identified as normal traffic (TN). A total of 281 attacks were incorrectly
marked as normal traffic (FN), with 15 normal samples erroneously marked as attacks.

5.4.5 Classifier Evaluation

A test data set was created using the 19,262 normal and 37,159 attack

traces extracted from the filtered data set (Table 5.5). The data set was

normalised using the same limits applied to the training data set (Table

5.7). Each datum of the testing set was passed through each of the 15

classifiers, where it was marked as either a normal or attack flow, based on

the best scoring classifier. A probability score in excess of 95 percent

describes a positive match, with anything below that value describing a

mismatch. Datum generating a positive match by TWEANNs trained to

identify clusters one through 11 were marked as normal, while those

positively matched by classifiers 12 through 15, an attack. As the purpose

of NBAD systems is to identify anomalous traffic, any datum not explicitly

marked as an attack by clusters 12 through 15, or normal flows by

classifiers one through eleven, were implicitly marked as normal.

The results of parsing each of the testing datum through the 15 classifiers

are described using the confusion matrix in Table 5.14. The True Positive

(TP) tally denotes all flows marked by clusters 12 through 15 as a positive

attack, corroborated by the tags read from the ISCX 2012 data set.

146

Method Data set Accuracy Detection False

NBC (Yassin et al., 2013) ISCX2012 88.20% 85.00% 33.70%

KMC+NBC (Yassin et al., 2013) ISCX2012 99.00% 98.80% 2.2%

XM-1R (Juma et al., 2014) ISCX2012 93.68% 95.20% 9.26%

RF (Juma et al., 2014) ISCX2012 99.91% 99.94% 0.11%

XM-RF (Juma et al., 2014) ISCX2012 99.96% 99.99% 0.02%

APIC ISCX2012 99.48% 99.99% 0.08%

Table 5.15: The results of comparable NBAD systems, reporting their accuracy, detection
and false positive rates tested using the pre-labelled ISCX data set.

The True Negative (TN) count tallies all occurrences where an IP flow,

marked “normal” in the ISCX 2012 data set, was not positively identified as

an attack by the APIC method. The False Positive (FP) reading counts all

instances where ISCX 2012 “normal” tagged traffic was incorrectly marked

as an attack by the APIC method. Finally, the False Negative (FN) count

shows all ISCX 2012 “attack” flows that were marked “normal” by the APIC

method. Using Equations 5.1, 5.2 and 5.3, the accuracy, detection rate and

false alarm rate for the testing set was calculated. The results of these

calculations are shown alongside comparable NBAD systems in Table 5.15.

5.4.6 Discussion

The ISCX 2012 data set is comprised of complete flow traces, annotated

as “attack” or “normal” traffic by a commercial classification system. The

data set serves as a reference for many works, whose results are compared

against those achieved by the experiments of this chapter, in Table 5.15. In

these results, the APIC method is shown to exceed those of many works,

and remain comparable with the rest. The experiments described in this

section highlight the success APIC achieved as a victim-end NBAD system.

While accuracy and detection rates are important aspects of these systems,

many score well yet suffer a high number of false alarms (Tsai and Lin, 2010;

Muda et al., 2011). For APIC to succeed as a victim-end NBAD system,

it should exhibit high accuracy and detection rates, while maintaining a

low false alarm rate. The experiments in this section compare the results

APIC achieved using IP flow samples extracted from the ISCX 2012 IDS

pre-labelled data set with comparable research using the same data set. The

147

results achieved by each of these methods are listed in Table 5.15. The APIC

experiments were modelled around those conducted by Yassin et al. (2013)

and Juma et al. (2014), using the ISCX 2012 IDS data set (Section 5.4).

The discussion that follows subsequently, focuses on the experimental results

achieved by these methods, using the ISCX 2012 IDS data set.

5.4.6.1 Data Sets

The ISCX 2012 IDS data set does not offer ready-made training and testing

data sets. To reduce the complexity of the classification task, Yassin et al.

(2013) and Juma et al. (2014) proposed extracting flows destined for a

particular target host to build their data sets. The extracted flow

information was then partitioned into training and testing data sets (Table

5.5). The experiment described in this section selected 75,372 normal and

2,154 attack flow vectors from day one, two, three, five and six of the

filtered data set. The testing data set was comprised of 19,262 normal

traces and 37,159 attack traces from day four of the same data set. The

purpose of reducing the size of the original ISCX data set was to lower the

complexity of the task and, subsequently, the computational resources

required for execution.

5.4.6.2 Feature Set

Little guidance was offered by Yassin et al. (2013) and Juma et al. (2014)

regarding which ISCX 2012 IDS features were included in their methods.

Furthermore, no information regarding the normalisation process or value

range for each dimension of these features were discussed. The features

considered and the encoding methods implemented to convert them to values

suitable for clustering are therefore expected to differ significantly between

APIC and these comparable methods.

The original 20 features from the ISCX 2012 IDS data set were pruned,

where the sourcePayloadAsBase64, sourcePayloadAsUTF,

destinationPayloadAsBase64, destinationPayloadAsUTF, source and

destination features were removed. This was due to complexities realised

when encoding variable length string features as inputs for unsupervised

learning algorithms, such as K-means and DBSCAN. The source and

destination flag features were converted from variable length string values

148

to five separate features, each one bit in length. A “1” value at each

location signals the inclusion of a particular flag with a “0”, the exclusion

thereof. A summary list of the features considered by APIC and the ranges

supplied to the min-max normalisation function are shown in Table 5.7. An

interesting observation is that, of the 19 features presented to APIC, only

the appName feature was excluded from the best scoring feature subset. It

is surmised that the method found this attribute redundant, due the

presence of the dstPort feature, which contained values equal to appName.

5.4.6.3 Training Set Clustering

Yassin et al. (2013) and Juma et al. (2014) implemented a hybrid learning

approach, not dissimilar to APIC, to identify anomalous traffic in the ISCX

2012 IDS data set. The pre-classification module, described by Yassin et al.

(2013), used K-means clustering to partition the data set into three distinct

clusters. Juma et al. (2014) substituted an enhanced version of K-means

- X-means - as the pre-classification clustering algorithm. The X-means

algorithm initially started with three clusters, however the algorithm has

the ability to split clusters until more favourable results are achieved. The

APIC method uses the DBSCAN algorithm, where a GA evolves the hyper-

parameters governing the search. Using DBSCAN, the number of clusters,

K, is not required prior to execution of the algorithm.

The K-means clustering algorithm is known to form convex cluster shapes

and does not perform well where non-convex cluster shapes are required. This

clustering method also requires that all datum be joined to a cluster. The

clustered datum gather around a central point (centroid), which is prone

to being drawn toward outlier datum. This shifting of the centroid causes

the average distance between datum in the cluster to increase, resulting in

loose, less accurate clustering. The only input required for this algorithm is

a value for K - the number of clusters to form. Both Yassin et al. (2013) and

Juma et al. (2014) used a value of three (K = 3) as input to the clustering

algorithm.

149

In contrast, the DBSCAN algorithm is capable of finding

arbitrary-shaped, non-convex clusters. The algorithm does not align cluster

datum around a centroid and is capable of discarding outliers. The APIC

method uses a GA to evolve hyper-parameters for the DBSCAN algorithm,

allowing it to automatically discern the number of clusters in the data set.

The algorithm discovered 15 clusters, where an average distance of 0.043

between datum (Table 5.9) was observed. Unfortunately, the average

distance within clusters produced by Yassin et al. (2013) and Juma et al.

(2014) were not reported. While the APIC DBSCAN implementation failed

to associate 2.7 percent (2,093 flows) with a cluster, each of these flows

were tagged as “normal” flows and thus did not affect the accuracy or

detection rates attained by APIC.

The resultant, best scoring clustered data set from APIC was evaluated

by restoring the original tags from the ISCX 2012 IDS data set on each

cluster member. It was observed that all members of each of the 15 clusters

shared the same tag, either “normal” or “attack”. This provides evidence

that the APIC clustering process correctly profiled and grouped (clustered)

the datum according to their behaviour. Not only did APIC correctly group

normal and attack datum, but unlike Yassin et al. (2013) and Juma et al.

(2014), it also provided enhanced visibility into the different types of attacks

destined for the target host. According to the clustered data set, a total of

four distinct attack profiles (clusters 12 through 15) were identified in the

training set. Each of the clusters discovered by APIC were used to train

TWEANN classifiers to identify future instances of each attack.

5.4.6.4 TWEANN Classifier Production

TWEANN classifiers were trained to identify each of the 15 clusters,

reconfiguring their topology to achieve best recall scores over each

successive epoch. The results of this training are depicted by the confusion

matrix in Table 5.12. As a result, 99.97 percent accuracy, 99.85 percent

detection and 0.01 percent false positive rates were achieved using the

training set. By comparison, the NBC method and enhanced KMC+NBC

methods, tested by Yassin et al. (2013) scored accuracy 82.8 percent,

detection 13.8 percent, false alarm 17.6 percent and accuracy 99.8 percent,

detection 95.4 percent, false alarm 0.13 percent rates respectively. Juma

150

et al. (2014) reported that the training set scores of the XM-RF method

were accuracy rate 99.99 percent, detection rate 99.95 percent and false

positive rate 0.00 percent. Overall, the APIC method beat all but the

results reported by the XM-RF method in the training set recall tests. The

scores achieved by each of these methods are summarised in Table 5.13.

5.4.6.5 TWEANN Classifier Testing

Testing the classifiers produced by APIC using the testing data set, yielded

results represented in Table 5.15. Here, 99.48 percent accuracy, 99.99 percent

detection and 0.08 percent false positive rates were noted. By comparison,

the KMC+NBC testing data set recall by Yassin et al. (2013) resulted in an

accuracy score of 99.00 percent a detection rate of 98.80 percent and a false

alarm rate of 2.2 percent. When parsing the testing data set, the XM-RF

method, described by Juma et al. (2014), resulted in an accuracy score of

99.96 percent a detection rate of 99.99 percent, with a false alarm rate of

0.02 percent. These results are summarised in Table 5.15.

Once more, APIC scored higher than comparable systems, except the

XM-RF method described by Juma et al. (2014). The XM-RF method

scored 0.48 percent higher accuracy than APIC, with equal detection rates

and 0.06 percent lower false positives. These variances are not substantial,

especially when accounting for differences in experiment implementation for

each system. Furthermore, it is important to note that the XM-RF method

was designed specifically as an NBAD method, while APIC is a generic,

versatile method for pattern identification and classification for a broad

range of tasks.

In summary, the APIC method was tested against comparable methods,

using the same static, pre-recorded data set. The results showed that the

APIC method performed favourably, achieving outcomes similar to those

described by Yassin et al. (2013) and Juma et al. (2014). While this

experiment yielded truths regarding the performance of APIC classifiers

compared to similar works on static data sets, in reality, NBAD systems are

required to detect anomalous traffic in near real-time on live computer

networks. The following section describes an experiment that demonstrates

the efficacy of the method for identifying anomalous traffic on a live

network.

151

5.5 Live Network Evaluation

This section describes experiments where the APIC method was evaluated

as both a victim-end and source-end NBAD system on an enterprise

network. The experiments conducted in Section 5.4 compared APIC

against methods using pre-labelled, public data sets. The APIC method

yielded comparable task performance to related methods in this area,

however this kind of analysis is not a true reflection of how well systems

perform as real-world NBAD systems. While network administrators may

require retrospective analysis of recorded data sets containing complete,

summarised flow records, more often their requirements are to identify and

mitigate the impact of attacks as they occur on live networks.

A number of methods exist for sampling and extracting live flow records

from a network router. Some of these include Simple Network Management

Protocol (SNMP), network taps (traffic mirroring) and Cisco’s Netflow

protocol. The former two methods incur significant computational overhead

on both the router and the collector and thus do not scale well on today’s

high-speed computer networks. The Netflow protocol (Hofstede et al.,

2014) offers a viable alternative to these methods, exporting summarised

flow statistics from the router to a Netflow data aggregation point. Due to

its low computational overhead, the protocol has gained wide-spread

adoption and is included by a number of high-end, carrier-grade router

manufacturers, such as Cisco10 and Juniper11 as well as less expensive,

small- to medium-size enterprise router manufacturers, like Mikrotik12.

The objective of this case study is to demonstrate that, using only

sampled Netflow records, the APIC method can profile normal host

communications, identifying anomalous traffic almost immediately as flow

information is reported by the edge router. A successful demonstration

provides further evidence that the APIC method is capable of addressing

many complex classification problems over a broad range of domains.

10http://www.cisco.com
11http://www.juniper.com/
12http://www.mikrotik.com/

152

http://www.cisco.com
http://www.juniper.com/
http://www.mikrotik.com/

5.5.1 Task Description

Using an ML method to detect network anomalies using real-time data is

not new. A number of methods have been proposed specifically for this

task, some of which are described in Section 5.3. The purpose of the

experiments conducted in this section was to ascertain whether the efficacy

of the APIC general method extends to the identification and classification

of abnormal host communications on a live network. The results obtained

through these experiments were compared to those achieved by methods

designed specifically for this task. In this case study, the APIC method was

deployed as both a victim-end and source-end system, with the intention of

identifying attacks from the Internet toward internal hosts and also attacks

derived from internal hosts toward external (Internet) hosts.

An enterprise network with approximately 80 active user devices was

selected to produce a live, private data set of summarised network host

communications. According to Bhuyan et al. (2013), testing against a

private data set is the best approach for evaluating an NBAD system. The

private data set was used by APIC to profile “normal” host

communications on the network. According to Jalili et al. (2005), a single

network may exhibit various profiles over different periods of each day. For

this reason, it is important to factor the time, or time-slot, of the day when

profiling host communications. The APIC method used the heuristic value

of five minutes, dividing each day’s flow records into 720 distinct, five

minute time-slots.

The Netflow protocol was used to construct a private data set of live

flow data. The protocol exported all active flows traversing the router at a

particular time to one or more Netflow data collector services, or targets. A

custom Netflow collector13 was used to receive and store flow information. As

the Netflow protocol summarised flows at the IP layer, it did not include any

layer 2 (Ethernet) headers, nor payload (application layer) information. It

therefore follows that fragmentation attacks (Section 5.2.1.3) and application

attacks (Section 5.2.1.4) were excluded from this case study.

Using the recorded data, the APIC method was able to accurately detect

simulated instances of both TCP connection (Section 5.2.1.1) and volumetric

13Developed by Ryan Goss, available at: https://goo.gl/Ck0ZGk

153

https://goo.gl/Ck0ZGk

Parameter Description Value

Interfaces Ingress network interfaces with flow
tracking enabled

ether-wan;
ether-lan

Cache Entries Maximum number of flows tracked
simultaneously by the router

4,000

Active T/O Maximum lifetime of a flow 30 minutes

Inactive T/O Maximum idle time for an active flow 15 seconds

Target IP Address of the Netflow collector 192.168.10.5

Port UDP Port on which the Netflow collector
is bound

9992

Version Netflow protocol version to export 9

v9 Template Refresh Number of packets before the v9 template
is resent to the Netflow collector

20

v9 Template Timeout Maximum wait time before sending
template

1800

Table 5.16: Netflow parameters configured on the edge router of the chosen enterprise
network. The ether-wan interface records ingress flow information from the Internet, while
ether-lan tracks ingress flows from the LAN toward Internet-based hosts. Pairing these
flow records provides bi-directional flow information, from which features for the APIC
method are derived.

(Section 5.2.1.2) attacks on the network. The following sections provide

insight into the design and execution of the experiments used to determine

the efficacy of the APIC method as both a victim-end and source-end, NBAD

system for live IP networks.

5.5.2 Data Sets

The edge router of an enterprise network was configured to report IP flow

statistics, using version 9 of the Netflow protocol, to a server running the

Netflow collector software. The values assigned to each configuration

parameter on the router are outlined in Table 5.16.

The flow samples reported by the router included all attributes listed

in Table 5.17. The Netflow collector recorded flow samples for a period of

seven days during a normal work week, from Monday morning 00h00 to the

same time the following week. The flow records provided by the router were

unidirectional, where separate entries for requests (source host to destination

host) and responses (destination host to source host) are recorded.

154

Feature Description

Timestamp An integer time value (epoch) reported by the router

Protocol An integer value representing the transport layer protocol of the flow

ToS The Type of Service (ToS) bits set in the flow

SY N An indication if a SYN flag was observed for the flow

ACK An indication if an ACK flag was set for the flow

Exporter The router’s IP address, encoded as a 32-bit integer

SRC The source IP address of the flow, encoded as a 32-bit integer

DST The destination IP address of the flow, encoded as a 32-bit integer

sPort The source port of the flow

dPort The destination port of the flow

Packets Total packets switched during the current reporting period

Octets Total bytes switched during the current reporting period

IfIn Inbound interface of the flow

IfOut Outbound interface of the flow

Table 5.17: Features included in each flow record reported by the router. Netflow version
9 is template based, meaning the features used to described each flow may be customised
on the router. The features listed in this table describe the default flow template defined
on the test router.

Related flow samples were combined and aggregated into a single entry

per host for each time-slot. Both internal and external hosts were aggregated,

as the objective of this case study was to evaluate the APIC method as both a

victim-end and source-end NBAD system. The aggregate features, calculated

for each active host per time-slot, are outlined in Table 5.18.

155

Feature Description

timeslot The five-minute time-slot associated with this record
Example: 2016-01-01 00:05:00

host The IP address of the summarised host
Example: 192.168.10.245

outTotalF lows The total number of flows from this host toward others

inTotalF lows The total number of flows toward this host from others

outICMPFlows The total number of ICMP flows from this host toward others

inICMPFlows The total number of ICMP flows toward this host from others

outTCPFlows The total number of TCP flows from this host toward others

inTCPFlows The total number of TCP flows toward this host from others

outUDPFlows The total number of UDP flows from this host toward others

inUDPFlows The total number of UDP flows toward this host from others

outSY N The total number of flows with TCP SYN flag set from this host
toward others

inSY N The total number of flows with TCP SYN flag set from others
toward this host

outACK The total number of flows with TCP ACK flag set from this host
toward others

inACK The total number of flows with TCP ACK flag set from others
toward this host

outTotalPackets The total number of packets sent by this host to others

inTotalPackets The total number of packets sent by others toward this host

outICMPPackets The total number of ICMP packets sent by this host to others

inICMPPackets The total number of ICMP packets sent by others toward this
host

outTCPPackets The total number of TCP packets sent by this host to others

inTCPPackets The total number of TCP packets sent by others toward this host

outUDPPackets The total number of UDP packets sent by this host to others

inUDPPackets The total number of UDP packets sent by others toward this host

outBytes The total number of bytes (octets) sent by this host to others

inBytes The total number of bytes (octets) received by this host from
others

dstHosts The number of unique hosts this host sent packets toward

srcHosts The number of unique hosts sending packets toward this host

Table 5.18: Features used to describe the communications of each host on the network.
A unique record was created for each host at every time-slot it was observed.

156

Figure 5.7: Total number of flows recorded per five-minute time-slot during the seven-day

observation period.

Feature Description

rOutTotalPkts The ratio of total outbound packets to total inbound packets

rInTotalPkts The ratio of total inbound packets to total outbound packets

rOutICMPPkts The ratio of ICMP outbound packets to ICMP inbound packets

rInICMPPkts The ratio of ICMP inbound packets to ICMP outbound packets

icmpOutPerc Outbound ICMP packets as a percentage of total outbound
packets

icmpInPerc Inbound ICMP packets as a percentage of total inbound packets

rOutTCPPkts The ratio of TCP outbound packets to TCP inbound packets

rInTCPPkts The ratio of TCP inbound packets to TCP outbound packets

tcpOutPerc Outbound TCP packets as a percentage of total outbound packets

tcpInPerc Inbound TCP packets as a percentage of total inbound packets

rOutUDPPkts The ratio of UDP outbound packets to UDP inbound packets

rInUDPPkts The ratio of UDP inbound packets to UDP outbound packets

udpOutPerc Outbound UDP packets as a percentage of total outbound packets

udpInPerc Inbound UDP packets as a percentage of total inbound packets

rOutBytes The ratio of total outbound bytes to inbound bytes

rInBytes The ratio of total inbound bytes to outbound bytes

rOutSY N The ratio of outbound flows with SYN TCP flag set to inbound
flows with ACK TCP flag set

rInSY N The ratio of inbound flows toward this host with SYN TCP flag
set to outbound flows with ACK TCP flag set

rDstHosts The ratio of unique hosts outbound flows were directed to against
the number of flows inbound from unique hosts

rSrcHosts The ratio of unique hosts inbound flows directed to the host
against the number of flows outbound from the host

Table 5.19: Statistical features derived from the aggregated flow records, used to describe
and profile host communications on the network. The features listed were included in the
full feature set provided to the APIC method.

157

Day Training Data Testing Data

Monday 116,938 29,234

Tuesday 80,068 20,017

Wednesday 80,989 20,247

Thursday 71,085 17,771

Friday 75,930 18,983

Saturday 81,282 20,321

Sunday 110,227 27,557

Total 616,519 154,130

Table 5.20: Netflow experiment training and test data sets. Each count represents
normal, individual host communication profiles summarised per timeslot.

A plot of the total number of aggregate flows recorded per time-slot, for

the seven-day observation period, is shown in Figure 5.7. These aggregated

records were used to produce statistical features, describing the

communication profile of each host to the APIC method. These features

are catalogued in Table 5.19.

In total, 96 internal and 62,889 external hosts were observed

communicating through the router over the seven-day period. These

communications generated 4,578,500 flow entries, all of which were

aggregated, transformed and summarised per time-slot using the features

described in Table 5.19. A plot showing the average value for each of these

statistical features per time-slot is provided in Figure 5.8. A total of

770,649 host communication profiles were generated using the recorded flow

data set. These temporal host profiles were divided into both training and

testing data sets. For each time-slot, 80 percent of the recorded flows were

randomly selected and moved to the training set, with the remaining 20

percent assigned to the testing set. The distribution of training and testing

datum, per day, is listed in Table 5.20.

158

Figure 5.8: A plot describing the distribution of the average value for each statistical

feature (Table 5.19) for each timeslot recorded over the seven-day period.

5.5.3 Feature Set Selection and Normalisation

The features chosen to represent each host communication profile per

time-slot (Table 5.19) were based on known attack profiles for both TCP

connection and Volumetric attacks (Section 5.2.1.2). Expressing data

exchanges between source and destination hosts as a ratio allowed a

distribution profile to be realised - one that is retained through varying

network load. A significant ratio skew in either direction (higher or lower)

was indicative of anomalous traffic, potentially an attack.

For example, the average rOutSY N ratio recorded for a single source

host communicating with a single destination host using the TCP protocol

was maintained, even as the source initiated similar, valid TCP connections

to other remote hosts concurrently. A higher than normal rOutSY N ratio

indicated that the source host was initiating a significant volume of

unanswered TCP connections, potentially acting as a DDoS zombie. A high

rInSY N ratio coupled with a high rSrcHosts ratio may indicate that the

host is the target of a TCP connection attack. These features are adapted

from those proposed by Chen (2009) to discern TCP connection attacks

using their statistical method.

A higher than normal value for rSrcHosts coupled with a higher than

normal rInBytes ratio may indicate that the host is the target of a volumetric

attack. It follows that a host with a low rDstHosts ratio, accompanied by

a high rOutBytes ratio may indicate that the host is participating in a

volumetric attack. Flooding attacks may be identified toward a host when a

159

high rSrcHosts ratio is accompanied by a high udpInPerc or icmpInPerc

ratio. Similarly, a low rDstHosts ratio coupled with a high udpOutPerc or

icmpOutPerc ratio may indicate that the host is participating as a zombie

in a flooding attack.

The variety of combinations used to describe normal traffic and,

subsequently, to identify anomalous traffic is vast. An assumption of this

experiment was that no attacks were active during the seven-day recording

period. As attack traffic was not present on the network, it could not be

included in the initial training set. The APIC method’s clustering

algorithm was therefore used to distinguish and group a variety of normal

traffic profiles. Any future flow samples that fall outside of these groups

would be deemed anomalous. The full complement of features was

considered during this experiment, ensuring that a full profile for each host

communication was constructed. All features listed in Table 5.19 were

subsequently used to describe each flow for the training and testing

processes.

The mean average for each statistical feature (Figure 5.8) remained

constant throughout the seven-day recording process, with the highest

recorded standard score reaching a value of 1.7. A standard score, more

commonly referred to as a z-score (Rubin, 2012), is the number of standard

deviations a value is from the mean average for that distribution. It is

argued that any z-score value in excess of three is indicative of an

anomalous traffic flow. It is further argued that beyond a certain point,

specifically a z-score of five, the value may be transformed to a value

corresponding to a z-score of five without impacting the anomalous traffic

assessment. These arguments form the basis for the upper bounds of the

min-max normalization method (Equation 4.3), used to normalise each of

the feature dimensions in this case study. The minimum bound of each

feature was set to the minimum value observed during the recording period,

with the maximum bound set to the value corresponding to a z-score of five

for each dimension. Each of the features, along with their derived bounds

for the min-max normalisation method, are listed in Table 5.21.

160

Feature Emin Emax

rOutTotalPkts 0 364

rInTotalPkts 0 341

rOutICMPPkts 0 216

rInICMPPkts 0 4

icmpOutPerc 0 4

icmpInPerc 0 4

rOutTCPPkts 0 380

rInTCPPkts 0 313

tcpOutPerc 0 4

tcpInPerc 0 4

rOutUDPPkts 0 392

rInUDPPkts 0 352

udpOutPerc 0 4

udpInPerc 0 4

rOutBytes 0 399

rInBytes 0 383

rOutSY N 0 99

rInSY N 0 292

rDstHosts 0 40

rSrcHosts 0 16

Table 5.21: Each feature used to describe a host communication record was normalised
using the min-max normalisation function. The parameters guiding the Emin and Emax

bounds were determined by observing the lowest and highest values for each of the features
over the seven-day period. These bounds were recorded and are listed in this table.

5.5.4 Normal Communication Profile Determination

All 616,519 normal records from the training set were clustered using the

DBSCAN method, using the APIC pattern discovery process (Section 3.2).

The minPTS and eps parameters used to guide the clustering process were

controlled by a hyper-parameter search GA, which tuned the values until

the most optimal clustered data set was found. For the purposes of these

experiments, a more optimal clustered data set is one where the average

silhouette evaluation (Equation 3.2) approaches a value of “1”. The GA

parameters used to control this search process are listed in Table 5.22.

161

Figure 5.9: A histogram comparing the average distances between datum of each of

the nine clusters discovered by the APIC clustering method. A low average distance

between datum in each cluster provides evidence of successful, tight clustering by the

GA-controlled DBSCAN algorithm. The chart includes the standard deviation of average

distances between clusters.

Genetic Algorithm Population
Size

Maximum
Generations

Mutation
Rate

Crossover
Rate

Hyper-parameter Search 100 100 0.2 0.4

Table 5.22: Hyper-parameter search GA parameters. This GA was used to find the best
combination of minPTS and eps parameters, resulting in the most optimal clustering
process. The search process for determining the best hyper-parameters for guiding the
APIC method’s clustering algorithm is detailed in Section 3.2.

As the feature set was fixed, only a single GA was required for this

experiment. The GA found the best clustered data set at generation 14,

where silhouette evaluation revealed a best score of 0.89. The resultant

data set was comprised of nine clusters, where the distance between cluster

members ranged from 0.0001 to 0.006, with an average distance of 0.002.

The average distance between member datum of each cluster is represented

as a histogram in Figure 5.9. The histogram indicates that small average

distances are exhibited by datum of the same cluster, an indication that the

clustering process concluded successfully. The best clustered data set was

achieved using hyper-parameters minPTS = 1310 and eps = 0.04,

discovered by the GA. The DBSCAN clustering process did, however, fail

to associate 0.12 percent (740) host profile records with a cluster.

Each of the nine clusters, describing nine distinct normal communication

profiles, was used to train TWEANN classifiers to identify future instances

162

Parameter Value

maxNeurons 40

learningRate 1.0

momentum 0.5

populationSize 10

maxGenerations 100

trainingIterations 1,000

Table 5.23: The parameter values supplied to the APIC TWEANN creation process
(Section 3.3) for the Netflow live data experiment. The learningRate and momentum
parameters are used in the backpropagation algorithm.

of each normal traffic profile. The following subsection details the creation,

training and testing of these classifiers using the APIC classifier production

process (Section 3.3).

5.5.5 Developing Normal Traffic Profile Classifiers

The APIC method is capable of producing optimised models for classifying

various patterns in mixed, noisy data sets. In this case study, the APIC

classifier production process (Section 3.3) was used to train TWEANN

classifiers for identifying future instances of each cluster, each describing a

normal host communication profile. Contrary to anomalous or abnormal

communications, normal host communications are flows traversing the

network that exhibit expected patterns. The APIC method uses GAs to

optimise both the topology of the model and the weights for each neuron

connection, prior to using the backpropagation algorithm (Rumelhart et al.,

1988) for fine-tuning the model.

The parameters guiding the TWEANN creation process in this

experiment were chosen heuristically, based on previous experience. A

maximum of 40 neurons were allowed per TWEANN, including the inputs

and output. This value is double the number of input features. A learning

rate of 1.0 was provided, along with a momentum value configured at 0.5.

A GA population size of ten was chosen, with a maximum of 100

generations permitted. A low population size is suitable in this

semi-supervised training process, as the weight values determined by the

GA are further fine-tuned by the backpropagation algorithm. Only the

163

Cluster Topology TP FP TN FN Score

1 20 - 2 - 1 17,508 5 615,774 1 98.93%

2 20 - 4 - 1 124,709 2 615,777 1 99.62%

3 20 - 0 - 1 123,021 3 615,776 0 97.77%

4 20 - 3 - 1 115,241 1 615,778 0 99.84%

5 20 - 2 - 1 76,229 1 615,778 0 99.91%

6 20 - 4 - 1 69,127 6 615,771 0 98.71%

7 20 - 2 - 1 54,273 2 615,777 0 99.94%

8 20 - 1 - 1 19,226 3 615,776 6 98.49%

9 20 - 1 - 1 16,437 4 615,775 0 99.86%

Result 615,771 27 5,541,982 8 99.34%

Table 5.24: A list of the identified clusters along with the best scoring TWEANN
topology, the TP, FP, TN and FN values achieved during recall of the training data
set. The score field indicates the average probability achieved by each classifier during the
recall test.

topology and initial weight vectors are determined by each genotype. The

backpropagation algorithm was set to run for 1,000 iterations, fine-tuning

the weights of each network after initial GA weight selection concluded.

These parameters are summarised in Table 5.23.

The training data set for each cluster was comprised of the cluster’s

member datum, marked as “1”, and datum from all other clusters, marked

as “0”. With this annotation, the classifiers learnt to distinguish between

normal traffic profiles discovered during the clustering process. It is

important for the TWEANN classifier training process to include samples

of both matching (normal) and non-matching (anomalous) traffic flow

samples. Simulated anomalous flow samples were generated by selecting

random feature values, where values achieving z-scores in excess of 3 were

chosen. These flow samples undoubtedly describe anomalous traffic for the

profiled network, as the magnitude of their features exceed the mean

average value of normal traffic flows observed over the period of one week

by more than three standard deviations. These records provide the training

process with samples indicative of anomalous (attack) traffic profiles. The

total number of anomalous flow samples generated for each cluster was

equal to the number of normal member datum for each cluster.

164

actual
value

Prediction outcome

p n

p′ 615,771 8 P′

n′ 27 5,541,982 N′

P N

Table 5.25: A confusion matrix for the training set parsed through the trained
TWEANN classifiers. A total of 615,771 samples were correctly identified as normal
traffic profiles (TP), with 5,541,982 samples correctly identified as belonging to another
cluster (anomalous according to the classifier being tested) (TN). A total of 27 were
incorrectly marked as belonging to this cluster (FP), with eight normal traffic profile
samples erroneously marked as external to this classifier (FN).

A recall test was executed on each TWEANN classifier post its creation,

confirming its ability to correctly identify previously seen data. The topology

of each classifier, along with its recall scores for the previously seen training

set, are listed in Table 5.24. These values are represented as a confusion

matrix in Table 5.25. The accuracy, detection rate and false positive rates

for the training set recall tests were calculated using Equations 5.1, 5.2 and

5.3 respectively. The accuracy of the recall test was 99.99 percent, with a

detection rate of 99.99 percent and a false alarm rate of 4.87E-06 percent.

5.5.6 Classifier Evaluation

The training set recall test results in subsection 5.5.5 demonstrated that the

TWEANN classifiers were able to accurately identify instances of previously

seen, normal network traffic. In this subsection, the test data set (Section

5.5.2), containing previously unseen flow records derived from the seven-day

recordings was evaluated using the TWEANN classifiers. Following this, an

additional 24 hours of Netflow data was recorded, where all traffic flows were

assumed to be of a normal nature. It was anticipated that the TWEANN

classifiers would score normal traffic with high scores, in excess of 90 percent,

while scoring the anomalous flows with much lower scores.

165

actual
value

Prediction outcome

p n

p′ 154,022 20 P′

n′ 108 1,387,150 N′

P N

Table 5.26: A confusion matrix depicting the evaluation results concluded by the nine
TWEANN classifiers on the previously unseen test data set.

The nine TWEANN classifiers were used to evaluate the 154,130 assumed

normal flow records of the test data set. The results achieved by the classifiers

are summarised in Table 5.26, where 99.99 percent accuracy, 99.93 percent

detection rate and 0.001 percent false positive rates were realised. While

these were previously unseen flow samples, they were recorded at the same

time as the training set.

Ensuring a greater diversity for evaluation purposes, the Netflow collector

was once more configured to record flow data for a period of 24 hours on a

normal week day, from midnight on Monday through to midnight of the

following day. Figure 5.10 plots the total aggregate flows recorded during

this period, for each time-slot, where a total of 100,085 flow samples were

recorded. The statistical features listed in Table 5.19 were extracted for each

aggregated flow, forming a new data set comprised of previously unseen data.

The features were normalised using the bounds described in Table 5.21 and

evaluated by each of the nine TWEANN classifiers. The testing once more

operated under the assumption that the recorded flow samples consisted of

only normal traffic flows. The results of this evaluation process revealed

that 100,053 of the flow samples were marked as normal traffic, where a

certainty score exceeding 90 percent triggered the flow sample to be marked

as “normal”. Only 32 of the flows considered were scored below 90 percent by

all classifiers, resulting in a false positive “anomalous” mark being applied.

166

0

100

200

300

400

500

600

700

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277

F
lo

w
s

Timeslot

24 Hour Evaluation

Figure 5.10: A chart describing total aggregated flow records observed over a 24-hour

period during classifier evaluation. The aggregated flows are counted for each five-minute

time-slot - 286 in total.

A controlled DDoS test was devised to test the classifier’s ability to detect

anomalous traffic flows on the network. A secondary network interface on

the edge router was connected to a new Virtual Local Area Network (VLAN)

on the corporate managed switch. A new private IP prefix was assigned to

the interface, with a default class C scope14. This design allows simulated

DDoS attacks to be sent to fictitious host addresses on the dedicated network

prefix without routing the attacks to the Internet or legitimate hosts on

the network. Directing the attack through the edge router ensures Netflow

records are generated and forwarded to the APIC classifiers.

Two distinct attack simulations were crafted toward a fictitious host on

the new VLAN from within the corporate Local Area Network (LAN). The

first initiated TCP connections toward the new VLAN at a rapid rate,

simulating a TCP connection attack. The attack targeted a single

destination host, using the TCP protocol across a number of destination

ports. The attack ran for a total of 15 minutes, after which the recorded

flows were added to the “normal” data set between time-slots 46 through

48. In total, 2,795 anomalous flows were introduced and reported by the

Netflow collector during this time, in addition to the 805 normal flows

already reported. The attack flows were easy to manually identify and

verify in the recorded data set using the destination host address as the key.

The APIC method was successfully able to classify all 805 flows as

14A class C IP prefix scope contains 256 IP addresses: 254 are usable for host addressing.

167

Figure 5.11: A chart showing both the total number of flows recorded during the

evaluation window, and the simulated TCP connection attack traffic flows. Both normal

(solid line) and anomalous (long-dash line) traffic are shown, as detected by the classifiers.

“normal”, with an average probability score of 96.91 percent. The APIC

method also successfully scored 2,790 flows as anomalous, where the highest

probability score achieved for these flows, by any classifier, was 38.19

percent. A total of five anomalous flows were erroneously marked as normal

by the classifiers. These test results are displayed as a confusion matrix in

Table 5.27. The accuracy, detection rate and false positive rates were

calculated using Equations 5.1, 5.2 and 5.3 as 99.86 percent, with a

detection rate of 100 percent and false alarm rate of 0.18 percent.

The second attack simulation consisted of two attacks, designed to test

each classifier’s ability to detect volumetric attacks. In these tests, UDP

packets were crafted with a payload consisting of 1480 bytes of ASCII “A”

characters. These packets were sent at a high rate to a single destination

host on the attack VLAN, to 30 distinct destination ports. Unlike the TCP

connection attack, a significant number of new flows was not generated, as

only 30 flows were observed and reported by the router’s Netflow exporter

per time-slot. Although the average number of flows did not increase

significantly over each attack period, the udpOutPerc and rOutUDPPkts

features increased significantly during these times (Figure 5.12b). The

ICMP features (Figure 5.12a) during this time showed little change,

however a distinct drop in the tcpOutPerc feature is noted in Figure 5.12c.

Finally, the rOutTotalPkts feature (Figured 5.12d) shows a distinct

increase in ratio, while the remainder of the general flow features remain

constant.

168

actual
value

Prediction outcome

p n

p′ 805 0 P′

n′ 5 2,790 N′

P N

Table 5.27: A confusion matrix for the live TCP connection attack test evaluated by the
trained TWEANN classifiers. A total of 805 samples were correctly identified as normal
traffic profiles (TP), with 2,790 samples correctly identified as anomalous (TN). A total
of five flow samples were incorrectly marked as normal traffic (FP), with no normal traffic
profile samples erroneously marked as anomalous (FN).

Each attack lasted no longer than 20 minutes, covering four time-slots.

For each time-slot, a total of 30 attack flows were maintained, ensuring a

consistent volumetric attack over the 20-minute period. The flows observed

for each time-slot, along with the average probability score provided by the

APIC classifiers, are outlined in Table 5.28.

169

(a) Internet Control Message Protocol (ICMP) Features

(b) User Datagram Protocol (UDP) Features

(c) Transport Control Protocol (TCP) Features

(d) General Features

Figure 5.12: Charts depicting the skewing of flow features observed during a simulated

volumetric attack toward a host on the attack VLAN.

170

Timeslot Normal Normal Score Anomalous Normal Score

03:05 366 97.24% 29 25.04%

03:10 258 99.01% 30 12.20%

03:15 354 98.97% 30 6.10%

03:20 399 99.20% 30 7.89%

19:00 276 99.44% 30 8.03%

19:05 416 99.05% 30 11.23%

19:10 459 96.50% 28 21.40%

19:15 376 98.80% 30 11.21%

Table 5.28: Results of the live volumetric anomalous flow test. The results show a
high degree of probability (in excess of 95 percent) is achieved detecting normal traffic
flows, while anomalous flows scored far below the 90 percent certainty mark. These scores
indicate that the APIC classifiers were able to accurately discern normal traffic flows from
volumetric attack flows using Netflow flow records.

actual
value

Prediction outcome

p n

p′ 2,901 0 P′

n′ 3 237 N′

P N

Table 5.29: A confusion matrix for the volumetric attack test evaluated by the trained
TWEANN classifiers. A total of 2,901 samples were correctly identified as normal traffic
profiles (TP), with 237 samples correctly identified as anomalous (TN). A total of three
flow samples were incorrectly marked as normal traffic (FP), with no normal traffic profile
samples errantly marked as anomalous (FN).

The results of this test were used to produce a confusion matrix (Table

5.29), where accuracy, detection and false positive rates were calculated as

99.90 percent, 99.89 percent and 0.096 percent respectively.

171

5.5.7 Discussion

The experiments conducted in this section demonstrate the efficacy of APIC

in identifying anomalous (attack) traffic flows on a live network, where the

normal network traffic has been profiled and learnt. The accuracy, detection

and false positive scores achieved in each of the experiments conducted in

this section indicate that the classifiers were able to accurately discriminate

between normal and anomalous traffic flows.

The clustering process described in Section 5.5.4 failed to associate 0.12

percent (740) host profile records with any of the nine discovered clusters.

It was later determined, through manual tracing, that this traffic was

anomalous. An IP-enabled network camera was found to be sending an

excessive number of unidirectional ICMP flows egress toward the Internet.

The assumption that all recorded flows were normal was based on the

commercial IDS and firewall on site not reporting any anomalous attack

traffic during the seven-day recording period. The misclassified flow entries

in Section 5.5.5 (highlighted in Table 5.25) were also manually traced,

where it was determined that the false positive (FP) datum were marked as

normal flow entries by another cluster. The close distance relationship

between cluster datum caused false positives at the clustering level, but did

not hamper detection of these flows as normal traffic by the system as a

whole.

Bhuyan et al. (2013) asserted that it was better to stop a network attack

at the source, rather than on the victim-end. This is because it prevents

wasting of resources across the intermediary networks it traverses en route to

the destination. Furthermore, once a flooding attack has entered the target’s

network, inhibiting the traffic at that point will not free the resources already

consumed on their external network connectivity. Stopping an attack at the

source, or close to the source, is not always possible, as it requires NBAD

systems at each network egress point. By receiving Netflow records from

multiple edge routers, the APIC method is ideally positioned to address

this problem, providing a normal traffic profiling service for these networks,

analysing and classifying all traffic flows traversing edge routers in an efficient

and effective manner.

According to Jalili et al. (2005), a single network may exhibit various

profiles over different periods of each day. The recommendation was that all

172

Method Data Set Accuracy Detection False
Positive

APIC Private
Train

99.99% 99.99% 4.87E-06%

APIC Private Test 99.90% 99.89% 0.096%

Chen (2009) Private 96.00% 99.99% 5-7%

Jalili et al. (2005) Private 94.90% 94.90% 2-5%

Bhaya and Manaa (2014) CBR Train 99.93% 99.92% 0.09%

Bhaya and Manaa (2014) CBR Test 99.77% 99.53% 0.46%

Bhaya and Manaa (2014) CB Train 99.93% 99.91% 0.09%

Bhaya and Manaa (2014) CB Test 97.67% 96.63% 3.23%

Table 5.30: A comparison of accuracy, detection and false alarm rates achieved by
comparable, specifically crafted methods against those achieved by the generic APIC
method during the testing process.

flow datum should be tested against baseline flows captured during the same

time-slot. The experiments conducted in this section found that the average

flow feature ratios remained consistent across various times of the day and

days of the week, as demonstrated in Figure 5.8. While it is important to

aggregate flows using fixed time-slots, these experiments provide evidence

that factoring the time-slot itself into the evaluation process (as a feature,

for example) when using the APIC method, was not required.

The simulated attacks executed in this section demonstrated the ability

of APIC to profile source-end traffic, as it originated from the LAN. It is

also argued, however, that the method will be equally effective classifying

attack traffic ingress on the Wide Area Network (WAN) interface, as all

communicating hosts ingress on this interface are also profiled in the same

manner as those originating on the LAN. The APIC method is thus capable

of acting as a victim-end and source-end NBAD system, identifying attack

flows in near real-time and, according to the summarised results in Table

5.30, at least as accurately as comparable systems designed specifically for

this purpose. The results highlight the possibilities for early detection of

anomalous traffic using Netflow records exported from edge routers in

real-time. The experiments demonstrate that the Netflow protocol provides

adequate statistical data from which flow profiles can be derived, while

placing near negligible additional load on the edge router.

173

5.6 Conclusion

This chapter presented a case study in which the efficacy of the APIC

method was evaluated in the task of Anomaly Intrusion Detection (AID).

Specifically, the method was tested as both a victim-end and source-end

NBAD system, using both publicly available, pre-labelled static data sets

and private data sets, recorded on a live enterprise network. The results

achieved by the experiments conducted in this chapter indicate that the

APIC general method achieves accuracy, detection and false positive rates

that are comparable with, and often exceed, results produced by methods

designed specifically for this purpose. The automated compilation of

feature sets describing host communication profiles and the use of

TWEANN classifiers to classify anomalous traffic on computer networks is

a unique contribution of this research.

174

Chapter 6

Document Recognition:

Handwritten Digits

Machine learning (ML) has, in recent years, played a significant role in

computer vision tasks, including image recognition, video analysis and even

playing complex games - defeating human experts at games such as Go1.

According to LeCun et al. (1998), better pattern recognition systems can

be built by relying on automatic learning and removing hand-designed

heuristics. This ideal is shared with those of the APIC method, where

previous manual feature selection, model development and hyper-parameter

tuning processes are replaced by fully autonomous ML methods.

This chapter explores the efficacy of APIC in the task of handwritten

character recognition. Using the popular Mixed National Institute of

Standards and Technology (MNIST)2 data set, the method automatically

extracts features and produces an accurate classifier for a data set of

handwritten numbers provided by over 500 contributors. The current

state-of-the-art classifier for this data set is modelled manually by human

experts and achieves an error score of 0.23 percent (Ciregan et al., 2012).

The objective of this chapter is to demonstrate that APIC is capable of

designing less complex classifiers automatically, while maintaining test set

recall rates that are comparable with existing, manually-created systems.

The ability of APIC to achieve this objective provides evidence of its

efficacy as a general method for developing classifiers for a variety of tasks.

1https://en.wikipedia.org/wiki/Go_(game)
2http://yann.lecun.com/exdb/mnist/

175

https://en.wikipedia.org/wiki/Go_(game)
http://yann.lecun.com/exdb/mnist/

The empirical test devised in this chapter demonstrates that, by including

additional distortions or scaled samples of the original MNIST training

data set, the APIC method is capable of producing models that classify

handwritten characters with competitive degrees of accuracy (Table 6.5).

The following sections provide background on image and, specifically,

handwritten character-recognition techniques. An experiment follows, in

which APIC is evaluated for its ability to construct less complex models for

handwritten character-recognition tasks.

6.1 Image Recognition

Many new methods have been proposed lately for enhancing computer

vision. In most cases, these methods divide the task into two main parts,

namely the feature extractor and the trainable classifier. The feature

extractor is rather specific to each task and thus requires the most design

effort (LeCun et al., 1998). This process is responsible for extracting and

encoding information about each problem as low-dimensional vectors,

suitable for an ML classifier. Feature vectors should be representative of

each pattern in the data set, providing a tolerance for transformation,

translation and distortion of patterns within the input space. While the

features extracted are specific to each task, the classifier is often more

general and trainable. According to LeCun et al. (1998), a large number of

commercial Optical Character Recognition (OCR) systems use some form of

multi-layer Artificial Neural Network (ANN) (Gurney, 2003) trained using

backpropagation (Rumelhart et al., 1988).

Over the years, a number of methods have been proposed and tested for

recognising images, or objects, in an image. These include linear classifiers,

K-nearest Neighbour (KNN), Boosted Stumps (Reyzin and Schapire, 2006),

Non-Linear Classifiers, Support Vector Machines (SVM), ANNs and

Convolutional Neural Networks (CNN). According to LeCun et al. (1998)

and demonstrated by Ciregan et al. (2012), CNNs designed specifically to

deal with the variability of 2D shapes outperform all other techniques for

identifying handwritten digits.

176

Figure 6.1: An example CNN, where each image (32x32 pixels) is presented to the first

convolutional layer (layer 1), comprised of four 2-dimensional (26x26) feature vectors.

Each feature vector is sub-sampled, or pooled by the four feature maps (16x16), before

passing to a second layer of convolution feature maps (layer 3). The outputs of layer 3

are pooled by four additional feature maps, with a spacial neighbourhood of 6x6. The

results of this final pooling process are passed to a fully-connected, MLP network. The

outputs of the trained MLP network indicate the probability of the input image matching

a particular class. In this case, the classifier identifies the image as class one, with 94

percent probability.

6.1.1 Convolutional Neural Networks

CNNs are a special type of feed-forward ANN, inspired by the organisation of

the visual cortex in animals and are comprised of multiple layers of neurons

that have tunable weights and biases. Contrary to most other classifiers,

CNNs make an explicit assumption that the inputs to the network are images,

allowing them to encode certain properties, or features, into the model. CNNs

are comprised of three types of layers, namely Convolutional Layer, Pooling

Layer and Fully-Connected Layer (Figure 6.1). The convolution and pooling

layers may be repeated, where the output of the final pooling process is passed

as input to the fully-connected network. CNNs are particularly successful at

classifying images as they use special kernels designed to extract important

features from an image, known as convolutions. These features are resilient,

often impervious to transformations, translations or distortion. The ability

for CNNs to extract valuable features from images, instead of treating them

as a whole, allows CNNs to outperform conventional multi-layer perceptron

(MLP) models.

Feature maps for each convolutional layer are constructed by translating

specific kernels, or filters, over output from the previous layer. In the case of

the first convolutional layer, this output is typically the set of image samples.

177

INPUT LAYER
(32,32)pixels

LAYERO
INPUT

FEATURE MAPS

ij~~',,I ;: q~ .. :.I -~,//···-----------~~~::::~:~:
• ······:::llJ6...J ··:::::::::ijtj···-... _D CLASS 3 (0.07)

······ • ·········· ·········-... ············

LAYER 1
CONVOLUTION

LAYER2
POOLING

LAYER 3
CONVOLUTION

LAYER4
POOLING

Fully Connected Multilayer
Perceptron (MLP) Network

OUTPUTS

1 1 1 0 0
0
0 0

1 1
1

1
1 1

0

0 0
0 0 0

011
1 1

1 0 1
1

1 1
0 0

0

4 3 4
2
2 3

4 3
4

Feature Map Kernel Feature Map

Input Convolution Output

Size: 3x3
Stride: 1

Size: 5x5 Size: 3x3

(a) An example kernel being translated, with a stride of 1, over an input

to produce a feature map.

6 8
9 7

Feature Map Feature Map

Input Output

Size: 4x4 Size: 2x2

1 1 3 4
5
4 9

6 7
7

8
1

1 3 54

Max Pooling

Neighbourhood: 2x2
Stride: 2

(b) An example of pooling, or down-sampling, used to reduce the values

of a feature map and improve generalisation of the model.

Figure 6.2: Examples of convolution and pooling processes, integral components of the

feature extraction process.

The kernel of each feature map is often chosen by an expert, based on

the data set, using a heuristic approach. The kernel is translated across the

input matrix, where the amount of overlap and the degree of translation is

determined by the kernel stride parameter. Feature map values are derived

by translating the associated kernel through the input (an image or feature

map from a previous layer), calculating the weighted sum (Evangelos, 2000)

at each location. This process is illustrated in Figure 6.2a. The number of

feature maps configured for each layer is another parameter often determined

by human experts through heuristic approaches.

178

Each feature map is reduced using a form of down-sampling, mitigating

the effect of inadvertent translation and distortion of objects within images.

This down-sampling, or pooling (Graham, 2014), improves the generalisation

capabilities of the CNN, by averaging the results of specific regions within a

feature map. The pooling layer produces new feature maps by translating a

matrix, with a predefined spacial neighbourhood (receptive area) and stride,

through each feature map of the preceding layer. There are many functions

used to implement pooling, where the most common is max pooling (Graham,

2014). In max pooling, the value of each location is the largest value within

the spacial neighbourhood of the pool at that position (Figure 6.2b).

The final pooling layer of a CNN connects directly to an MLP, expressing

datum as single-dimensional input vectors. The number of hidden layers

and neurons for each MLP is configured by human experts, based on the

requirements for each classification task. The number of outputs present on

a CNN matches the number of categories in the labelled training set. Each

output neuron provides a value during recall, indicating the probability of

an image matching a specific class (Figure 6.1).

The challenge of producing successful CNN classifiers is finding the best

configuration for convolution and pooling layers, including the number of

feature maps, kernel design and translation stride for each convolution layer

and the spacial neighbourhood and stride for each pooling layer.

Furthermore, it is necessary to consider the MLP topology design for each

task. Typically, these parameters are determined by human experts,

through empirical methods, for each task. This requires expert knowledge

of both the problem domain and optimal CNN architecture design. Human

designed models are often overly complex, requiring significant compute

power to process large data sets. The APIC method, already successful at

automatically producing efficient, accurate classifiers for Internet Protocol

(IP) traffic classification (Chapter 4) and Network Based Anomaly

Detection (NBAD) (Chapter 5) tasks, is a viable alternative to human

expert customisation of CNNs for image recognition applications. The

following sections provide an empirical evaluation of APIC as a suitable

candidate for this task.

179

Figure 6.3: Example images retrieved from the MNIST training data set. Five samples

of each digit are provided, showing diversity amongst the digits of the same type, and of

others. The top four images of each column represent random, individual samples of the

digit, while the bottom image shows the mean average of all samples of each digit in the

MNIST training set.

6.2 Task Description

The current state-of-the-art method for classifying the MNIST data set was

recently proposed by Ciregan et al. (2012), who recorded an error-rate of 0.23

percent. This result is close to the 0.2 percent error-rate expected of humans

(LeCun et al., 1995). Some of the 23 misclassified samples were incorrectly

labelled in the data set, while others contained random strokes appearing

midway through images. To date, most works achieve error rates between

0.23 percent and 8 percent (Section 6.4). The objective of this case study

was to determine if, when using APIC, similar error-rates could be realised

when classifying the MNIST data set using a less complex CNN classifier,

developed automatically by the method.

To succeed at this task, the method should automate the feature selection

(feature extraction) and classifier development processes of a CNN, providing

a topology that accurately classifies a data set with an error rate comparable

with similar systems designed by human experts. The following subsections

provide details of an experiment where the efficacy of APIC is tested using

the MNIST data set.

180

6.3 MNIST Data Set

The MNIST data set (LeCun et al., 1998) contains handwritten samples

of single-digit decimal numbers, ranging from nought to nine. The data

set is divided into a training and testing set comprising 60,000 and 10,000

samples respectively. Each sample has been normalised by scaling the width

and height to 20x20 pixels, while preserving the aspect ratio. The result

is centred on a 28x28 pixel canvas, where the centre of the handwritten

character image aligns with that of the larger 28x28 base image (Figure

6.3). Many image-recognition systems have used the MNIST data set for

evaluating their methods. Some of these are discussed in Section 6.4.

As a significant contributor to the field of image and, more specifically,

handwritten image classification, the APIC method should demonstrate

production of automated classifiers (CNN) that produce error rates rivalling

those of similar works, compiled empirically by human experts.

Demonstrating the ability for a classifier to achieve competitive results

without human intervention allows more efficient feature extraction process

definition when developing a CNN. This allows CNNs to be applied more

broadly across many image-recognition tasks, without first seeking the

input of a human expert.

The first step in this development is for APIC to automatically determine

the best features to extract from images for a particular classification task.

The following subsection details how the APIC feature selection (Section 3.1)

process was applied to achieve this.

6.3.1 Feature Selection

The accuracy achieved by image-recognition systems, much like any

classification system, is highly dependent on appropriate features that best

describe the problem space (LeCun et al., 1998). While CNNs are capable

of extracting valuable features from images (Figure 6.2a) and reducing

them through pooling operations (Figure 6.2b) to improve generalisation of

the model, the design of the classifier is often determined empirically for

each task by human experts. Choices concerning how many convolution

and pooling layers to include, the kernel sizes, values and strides, and the

MLP topology is ultimately decided this way. This is apparent in many

181

Feature Bits Min Max

conv layers 3 1 7

fm count 3 1 7

fm stride 3 1 7

fm magnitude 3 2 7

fm matrix fm magnitude2 N/A N/A

pool size 3 2 7

pool stride 3 1 7

Table 6.1: Parameters for defining the configuration of the convolution and pooling layers
in an APIC-tuned CNN classifier. The value of each parameter is encoded as a bit string
and concatenated to form a variable-length genotype.

systems tested against the MNIST data set (Section 6.4).

The APIC feature selection process (Section 3.1) is well suited for

determining the best feature sets for a variety of classification problems.

The process can adapt to design and optimise the configuration of

convolution and pooling layers for a CNN classifier, as demonstrated in this

case study. First, the APIC method divides the CNN design process into

two related search problems: the search for an optimal convolution and

pooling configuration specific to the task (feature selection), and designing

the topology of a more general, fully-connected MLP model for classifying

them (classifier (MLP) development).

For this case study, the feature selection process used a Genetic

Algorithm (GA) with variable-length genotypes to describe configurations

of the convolution and pooling layers. The parameters governing the design

of each configuration (Table 6.1) were encoded as bit strings and joined to

form a complete genotype. The range for each parameter was determined

heuristically, based on estimated requirements for classifying MNIST

images and empirical testing of APIC on an MNIST training data subset.

Each genotype was formed, or compiled, using algorithm 2.

182

1 1 1 0 1 0 0 1 1 1 011010 10 0 0 1 0 1 0 0

1

2

Layers
Layer 1

FM Count

Layer 1
FM 1 Stride

Layer 1
FM 1 Magnitude

Layer 1
FM 1 Kernel

1 0 1
0 1 0
1 0 1

1 0

Layer 1
Pool 1 Size

Layer 1
Pool 1 Stride

7x7

Total Layers:

FM Count: 1
FM1 Stride:

3FM1 Magnitude:

FM1 Kernel: Pool1 Size:
2Pool1 Stride:

Layer 1

Figure 6.4: A convolution and pooling configuration encoded as an APIC feature

selection genotype. The genotype describes a single convolution and pooling layer with a

single feature map. The feature map’s configuration is 3x3, with a stride of 2. The feature

map’s kernel is encoded in 9 bits (3x3). The kernel is followed by the size of the single

pool (7x7) with a stride value of 2.

genotype = as bits(layer count)

foreach layer in layers do
genotype += as bits(layer.fm count)

foreach feature map in layer.feature maps do
genotype += as bits(feature map.stride)

genotype += as bits(feature map.magnitude)

genotype += as bits(feature map.get as bitstring())

end

foreach pool in layer.pools do
genotype += as bits(pool.size)

genotype += as bits(pool.stride)

end

end

Algorithm 2: Pseudo-code outlining the compilation process for encoding

a CNN feature extraction configuration as a bit string for the APIC feature

selection process (Section 3.1).

An example genotype describing a configuration with a single layer of

convolution and pooling, with a single feature map and single pool is

illustrated in Figure 6.4. The variable number of layers, feature maps and

pools encoded makes it inefficient to encode each configuration as a

fixed-length genotype. Instead, the size of each genotype is determined

dynamically, where the number of genes is directly proportional to the size

of the configuration being encoded.

183

Parameter Description Value

max population Maximum number of genotypes per generation 100

elitism Number of best genotypes transferred to next population 10

max generations Maximum number of generations to traverse 100

mutation rate Mutation rate applied when breeding next generation 0.1

crossover rate Crossover rate applied when breeding next generation N/A

Table 6.2: GA parameters used to control the feature selection (convolution and pooling
configuration) search process.

Genotypes with random values were generated for the initial population,

where the number of layers, feature maps per layer, kernel size, stride and

values were selected at random, within the bounds listed in Table 6.1. The

parameters guiding GA execution are listed in Table 6.2. All non-elite

genotypes were evaluated at each generation, where successful

configurations were used to train MLPs, where the best topology was found

by a second GA (Section 6.3.2). Configurations were marked as successful if

no errors were raised when extracting features from the MNIST training

data set, according to the convolution and pooling configuration described

by the genotype. Unsuccessful configurations, such as a multi-layer

configuration, where a particular pool’s spacial neighbourhood exceeds the

dimensions of the source feature map, are marked with a fitness score of -1.

Outputs derived from genotypes whose configuration successfully extracted

features from all images were used to train MLPs (Section 6.3.2), where the

recall score of the best scoring classifier was used as the fitness score for the

feature extraction genotype. The topology of the best scoring MLP was

recorded and stored with each genotype.

After scoring each genotype of the population, the highest achieving

(most elite) genotypes were identified and, together with their existing

MLP solution, transferred directly to the population of the succeeding

generation. Per generation, ten of fittest genotypes were transferred to the

subsequent population. This is an heuristic value, based on past experience

with populations up to 100 total genotypes. The remainder of the new

population was developed by selecting existing genotypes from the current

generation, using roulette wheel selection (Al Jadaan et al., 2008), altered

by application of a custom bit string mutation algorithm, using the

184

configured mutation rate of 0.1. This heuristic, low value was chosen to

prevent the GA from converging too quickly, which may cause the

algorithm to converge on a local minima, ultimately representing an

inadequate solution to the problem. Simply inverting the value of a

particular bit, a common practice when applying bit string mutation, is not

suitable for the bit strings in this experiment, as it may render an invalid

configuration (corrupt genotype). Instead, a specialised mutation function

was developed specifically for this task (algorithm 3), allowing the mutation

operation to modify any of the encoded configuration parameters

independently.

185

topology = get from bitstring(genotype)

/* Mutate the number of layers */

if rand float() > mutation rate then

/* Generate number of layers */

new layers = random int(low=min layers, high=max layers+1)

/* Generate new and remove old layers */

topology.reshape layers(new layers)

end

/* Manipulate each layer */

foreach layer in topology.layers do

/* Mutate the number of feature maps */

if rand float() > mutation rate then
new fms = random int(low=min fms, high=max fms+1)

/* Add or remove FMs to this layer as dictated by new fms */

layer.reshape fms()

end

/* Mutate the values of kernels */

foreach kernel in layer.kernels do

/* Mutate neighbourhood size */

if rand float() > mutation rate then
kernel.random resize()

end

/* Mutate kernel stride */

if rand float() > mutation rate then
kernel.random stride()

end

/* Mutate kernel values */

foreach bit in kernel do

if rand float() > mutation rate then
bit.invert()

end

end

end

end

186

/* Mutate the number of pools */

if rand float() > mutation rate then
new pools = random int(low=min pools, high=max pools+1)

/* Add or remove pools to this layer as dictated by new pools */

layer.reshape pools()

end

foreach pool in layer.pools do

/* Mutate spacial neighbourhood size */

if rand float() > mutation rate then
pool.random resize()

end

/* Mutate pool stride */

if rand float() > mutation rate then
pool.random stride()

end

end

return compile genotype(topology)

Algorithm 3: Pseudo-code demonstrating the mutation process,

developed specifically for this case study, executed on each new genotype

of the successive generation.

While it is possible to implement a custom crossover mutation function

in a similar fashion, the potential gain realised from this process was

deemed insignificant compared to the complexities related to ensuring the

encoded configuration remained valid after mutation. The search for the

best configuration continues until max generations is reached (Table 6.2),

or another predefined stop condition is triggered (algorithm 1). For this

experiment, the search process was permitted to continue until

max generations was reached.

6.3.2 Classifier (MLP) Development

The genotypes produced in Section 6.3.1 were used to extract features from

the MNIST training data set. Prior to any convolution or pooling

operations, each MNIST sample image was resized (normalised) to a 20x20

pixel size image in accordance with Ciregan et al. (2012). Each image was

duplicated four times, where the first copy was resized to 10x10 pixels. The

images of the second copy were resized to 14x14 pixels. Both of these

images were then up-scaled to 20x20 pixels. This resizing process was

187

6x6 pixels
(up-scaled)

8x8 pixels
(up-scaled)

10x10 pixels
(up-scaled)

14x14 pixels
(up-scaled)

20x20 pixels
(resized)

Figure 6.5: Each MNIST sample is down-scaled to a 20x20 image pixel. The original

MNIST training data set is duplicated twice, where samples of the first copy are resized to

14x14 images, whereafter they are up-scaled to 20x20 images. The second copy is reduced

to 10x10 size, before being up-scaled to 20x20. This process increases the distortion of

the data set, while preserving the label for each sample. Reducing images below 8x8 size

reduces the image quality to a state where the original handwritten digit is difficult even

for humans to identify.

designed to increase generality of the total training set, by distorting the

original images through sampling and up-scaling, while retaining the

original classification label. Early testing revealed that resizing sample

images below 10x10 pixels caused distortions that were too significant after

up-scaling the image to its original 20x20 pixels size (Figure 6.5). Each

image in the third and fourth data sets were rotated around the image

centre five degrees clockwise and five degrees anti-clockwise, respectively.

This rotation provided a final perspective for the classifier, improving

generalisation and providing better classification accuracy. The third and

fourth data sets were chosen for this process as a suitable level of distortion

was already applied. Five degrees was a heuristic value, used in order to

allow additional perspectives of the images to be presented to the classifier

during the training process.

A second GA was configured to search for the best fully-connected MLP

classifier topology for the CNN network. The 300,000 sample training data

set was used to train each candidate MLP classifier designed by this GA.

The focus of the MLP GA was on identifying the best scoring MLP topology

for each feature extraction genotype, using the APIC classifier production

process described in Section 3.3. The GA encodes the MLP topology and

training parameters (Table 6.3) as bit string genotypes.

188

1 1 1 0 0 0 0 0 1 0 010010 10 0 0 1 0 1 0 0

0.0004198152813

Alpha Layers
Total Count

0 1

Alpha : Layer 1 Neurons: 3

0

Neurons
Layer 1

Neurons
Layer 2

2Total Layers: Layer 2 Neurons: 2

(a)

Fully-connected MLP
Topology described by MLP

Genotype

Outputs
One per classification class,

dictated by problem

Inputs
Results of final pooling layer

(b)

Figure 6.6: An example showing how an MLP topology is encoded as a bit string

genotype using APIC. The variable-length encoded genotype (a) represents a fully-

connected MLP classifier (b).

These genotypes are variable in length, where magnitude is proportional

to the number of hidden layers present in the MLP topology. An example

MLP topology, encoded as a variable-length genotype, is illustrated in

Figure 6.6. The example genotype describes a two-layer fully-connected

MLP, where layer one contains three neurons and layer two contains two

neurons. The alpha value is derived by dividing the decimal representation

of the 14 bit alpha bit string into one. Figure 6.6 illustrates the

implementation of the encoded topology, where the magnitude of the input

vector is determined by the output produced by the convolution and

pooling configuration (Section 6.3.1) and the number of outputs by the

number of classes of the problem. The parameters used to control the GA

for training each MLP in this experiment are listed in Table 6.4.

189

Feature Bits Min Max

alpha 14 1 16383

layers 4 1 15

neurons 5 1 31

Table 6.3: Parameters for defining the configuration of each MLP. The value of each
parameter is encoded as a bit string and concatenated to form a variable-length genotype.

Parameter Description Value

max population Maximum number of genotypes per generation 100

elitism Number of best genotypes transferred to next population 10

max generations Maximum number of generations to traverse 1000

mutation rate Mutation rate applied when breeding next generation 0.1

crossover rate Crossover rate applied when breeding next generation N/A

train iterations Training iterations for the backpropagation algorithm 10,000

Table 6.4: GA parameters used to control the feature selection (convolution and pooling
configuration) search process.

The weights of each MLP topology were randomly selected, prior to

tuning by the APIC classifier production process (Section 3.3). The

training process loaded all 300,000 MNIST training samples, including

distortions and rotations, extracting features for each genotype produced by

the feature selection process (Section 6.3.1). The backpropagation

algorithm was used to tune the weights of the classifier over a maximum of

10,000 iterations (train iterations, Table 6.4). This value was chosen

heuristically, based on observations noted when training MLPs within a

CNN on similar data sets. A recall test was performed on each trained

MLP classifier, where the full MNIST test data set, comprising 10,000

previously unseen, labelled samples, was subjected to the feature extraction

process and evaluated by the MLP. The best scoring MLP topology,

determined by the recall accuracy of the MNIST test data set, was returned

and used as the fitness score for each feature extraction genotype produced

in Section 6.3.1.

190

Figure 6.7: Results of the APIC feature extraction search process. The chart includes

results for the first 20 generations as no improvements were observed after generation 13.

Outputs
10 outputs, 1 per
handwritten digit

Input
300,000 Samples (Training)

100,000 Samples (Test)

MLP Layer 2
23 Neurons

MLP Layer 1
17 Neurons

Fully-connected MLP

MLP Layer 0
Input Layer

Feature Extraction Process

Convolution and Pooling
4 Feature maps

Convolution and Pooling
3 Feature maps

DIGIT

Figure 6.8: Best scoring CNN topology designed by APIC.

The best scoring feature extraction genotype and its associated

convolution and pooling architecture, along with the best scoring MLP

topology produced by this genotype, were combined to form the best

scoring CNN produced by the APIC method for the MNIST data set using

the parameters listed in Tables 6.1 and 6.3. The following subsection details

the results achieved by the APIC method after the experiment concluded.

6.3.3 Results

The APIC method produced a top scoring CNN topology, reaching an

accuracy rate of 98.86 percent (1.14 percent error rate). This was achieved

by extracting features from the 300,000 MNIST training set samples

(60,000 original, 120,000 resized and up-scaled samples, and 120,000 rotated

samples) and following the steps outlined in Section 6.3.1 and 6.3.2.

191


0 1 0

1 1 1

1 1 0


(a) Layer 1: Kernel 1

Stride 2


0 0 1

0 1 0

1 1 1


(b) Layer 1: Kernel 2

Stride 3
0 1 0

1 1 1

1 1 0


(c) Layer 1: Kernel 3

Stride 2


0 1 0

1 1 1

1 1 0


(d) Layer 1: Kernel 4

Stride 2

1 0 0 0

0 0 0 1

0 1 1 1

0 1 0 0


(e) Layer 2: Kernel 1

Stride 1

0 1

1 0


(f) Layer 2: Kernel 2

Stride 1

0 0

0 1


(g) Layer 2: Kernel 3

Stride 1

Figure 6.9: A depiction of the seven kernels chosen by APIC for the feature extraction

layer and their associated strides. The first four were assigned to the first convolution

layer, with the last three forming the second convolution layer.

192

The best scoring feature extraction configuration was discovered at

generation 13. The scores achieved by the feature extraction search process

at each generation are shown in Figure 6.7. The best scoring feature

extraction configuration included two convolution and pooling layers,

illustrated in Figure 6.8. The best scoring MLP for this configuration

consisted of two hidden layers and 40 total hidden neurons (Figure 6.8).

The kernel matrices for each convolution layer are shown in Figure 6.9.

A pooling process was executed for each convolution layer of the

best-scoring CNN. Layer 1 used four pools, with spacial neighbourhood

(receptive area) and strides set to 3x3 stride 2, 3x3 stride 3, 3x3 stride 2

and 3x3 stride 2 respectively. Layer 2 included three pools, with

configuration 4x4 stride 1, 2x2 stride 1 and 2x2 stride 1 respectively. The

best-scoring MLP configuration was found with two hidden layers, with

layer 1 and layer 2 consisting of 17 and 23 neurons respectively. The alpha

value for the MLP was identified during the search process as 1/16026 or

6.2398e-5. The alpha value is used for regularisation, aiding to avoid

overfitting by penalising weights with large magnitudes.

6.4 Discussion

Many approaches for handwritten digit identification have been published

over recent years. The following section outlines a few approaches tested

using the MNIST data set. Some of these approaches perform poorly,

resulting in high error rates, while others define the state-of-the-art

technique for classifying the data set. One clear observation is that

methods achieving low error rates often exhibit complex models consisting

of hundreds of feature maps (for CNNs) and hundreds of neurons (for

ANN/MLPs). A summarised list of each method discussed, and their

respective error rates, is recorded in Table 6.5.

LeCun et al. (1998) tested a variety of gradient-based methods for

classifying the MNIST data set, including linear classifiers, K-nearest

neighbour, Principle Component Analysis (PCA), Radial Basis Function

(RBF), SVMs, ANNs and CNNs. For the purposes of this discussion, the

focus is on the approaches and results achieved by the authors for their

experiments on ANN and CNN classifiers. LeCun et al. (1998) produced

193

Method Description Error-rate

LeCun et al. (1998) ANN Classifiers 1.6% - 4.7%

LeCun et al. (1998) CNN Classifiers 0.7% - 1.7%

Ciregan et al. (2012) CNN (Multi-column Deep Learning) 0.23%

Makhzani et al. (2015) Semi-supervised AAE 0.85%

Makhzani et al. (2015) Unsupervised AAE (16/30 Clusters) 9.55%/4.10%

Mohapatra et al. (2015) CDCST Approach 1.2%

APIC Automated CNN development 1.14%

Table 6.5: A list of recent competitive results for classifying the MNIST database of
handwritten digits, ordered by date of publication.

multi-layer ANN topologies, experimenting with the number of hidden

layers and neurons. The first test, on an ANN with a single hidden layer

and 300 hidden neurons, resulted in an error-rate of 4.7 percent. This

error-rate was improved to 4.5 percent, by increasing the number of hidden

neurons to 1,000. Growing the training set by including distortions of the

original images reduced the error rates of the 300 and 1,000 neuron

networks by 3.6 percent and 3.8 percent respectively. The most significant

impact on the error rate was achieved when slanted, or rotated, training

images were used. Including these samples, the error rate for the 300

neuron network was reduced to 1.6 percent. The authors also found that,

by expanding the network to two hidden layers and adding additional

neurons per layer (300 and 100 respectively), only marginal improvements

were observed, achieving 3.05 percent error-rate.

LeCun et al. (1998) expanded their ANN search to include defining CNN

classifiers for the same task. For the first test, samples from the MNIST

training data set were down-sampled to 16x16 pixels and centred in the

28x28 input layer. The authors did not go into detail on their design of

the convolution and pooling layers for this classifier, however they stated

that the classifier achieved an error-rate of 1.7 percent during test data set

recall. These results led the authors to experiment with larger convolutional

networks. The authors tested a network, LeNet-4, which contained four first-

level feature maps, connected to eight sub-sampling (pooling) maps, followed

by 16 feature maps and another 16 pooling maps. The results were passed

through a single-layer MLP with 120 neurons, which achieved an error-rate of

194

1.1 percent. The authors next developed LeNet-5, by combining or boosting

(Drucker et al., 1993) three LeNet-4 networks, training and operating them

in an ensemble fashion. An error-rate of 0.7 percent was observed, the best

of all classifiers tested by the authors (LeCun et al., 1998).

The method proposed by Ciregan et al. (2012) represents the current

state-of-the-art technique for classifying images of the MNIST data set. The

authors achieved an error-rate of 0.23 percent, producing the best scoring

classifier for this data set to date. The method, like LeNet-5 (LeCun et al.,

1998), uses multi-column Deep Neural Networks (MCDNN), with convolution

and pooling layers as pre-processors. The authors normalised the MNIST

training data set to 20x20 pixel images, from which six additional data sets

were created with sizes 10x10, 12x12, 14x14, 16x16 and 18x18 pixels. The

authors asserted that reducing the size of the images was akin to observing

the same image from different angles and perspectives. The authors trained

five CNNs for each data set, resulting in 35 total columns for the classifier.

Samples from the data sets were distorted at each of the 800 epochs, where

a learning rate decay of 0.993 was applied. This reduced the learning rate

over the training process from 0.001 (initial) to 0.00003. The results of all

five CNNs were combined, producing the final classification result.

Makhzani et al. (2015) proposed the use of the Adversarial Autoencoder

(AAE), an Autoencoder (AE) (Bengio et al., 2009) that maps an AE output

distribution q(z|x) to an arbitrary prior distribution p(z) using adversarial

training, rather than traditional variational inference. Using this method, a

batch of inputs were encoded and decoded by the AE, which was updated

based on the standard reconstruction loss between input and expected

output. A second batch of inputs was transformed by the AE encoder, after

which they were joined with samples from the prior distribution p(z). The

discriminator was updated, based on its ability to separate samples

generated by the AE and those of p(z). Finally, a batch of inputs was

transformed by the AE encoder and passed to the discriminator for

evaluation. The discriminator predicted the source of the data, after which

the AE encoder was updated. The reconstruction loss of the AE continued

to decline, as did the adversarial loss, until such time as improvements in

the discriminator, and that of the generator, caused the network to

converge. The authors recorded an error-rate of 0.85 percent when

195

executing an AAE in a semi-supervised learning configuration. In this test

generated, unlabelled samples were used to supplement labelled samples

when developing the classifier. Finally, the authors removed labels

altogether, testing an unsupervised model that resulted in error-rates of

9.55 percent and 4.10 percent for 16 and 30 clusters, respectively.

Mohapatra et al. (2015) proposed the Discrete Cosine S-Transform

(DCST) method for classifying the MNIST data set. The authors removed

the boundary pixels of each 28x28 pixel MNIST sample, by reducing each

to 20x20 pixels. The authors used DCST to perform the feature extraction

process for each image, resulting in a feature length of 400. These features

were used to train an MLP classifier with 400 input neurons, ten output

neurons and a single hidden layer. Unfortunately the authors failed to state

how many neurons were present in the hidden layer, only stating that they

were “appositely fixed”. The authors also considered only 10,000 of the

70,000 available samples from the MNIST data set in their experiment.

Using this data subset, they achieved an error-rate of 1.2 percent during

their recall tests.

Application of the APIC method for classifying the MNIST data set,

described in Section 6.3, automatically generated best scoring CNN designs

within the parameters listed in Tables 6.1 and 6.3. The most elite (highest

scoring) genotype from the feature extraction GA defined a CNN classifier

that achieved 98.86 percent recall rate (1.14 percent error rate) when

evaluated on the full MNIST data set. This value is comparable with the

ANN and CNN results of LeCun et al. (1998), where the authors achieved

error-rates between 0.7 percent and 4.7 percent, using complex topologies

consisting of many neurons and feature maps. The recall and error rate

achieved by the less-complex, APIC-generated CNN classifier rivalled those

achieved by semi-supervised and unsupervised AAE, tested by Makhzani

et al. (2015). The scores achieved by the APIC-generated CNN also

compare against those of Mohapatra et al. (2015), where 1.2 percent recall

rate was achieved when testing on the full MNIST data set.

While the results produced by the APIC classifier are competitive, the

most noteworthy contribution of APIC to this task is the ability to

generate less complex models for classifying data. These less complex

models were demonstrated to achieve results comparable with more

196

complex, manually-defined classifiers. Complexity, in this case, is measured

by the number of hidden layers and hidden neurons required by the MLP to

achieve a model capable of generalising well, where models comprised of

less neurons and layers are considered of lower complexity (Kon and

Plaskota, 2006). For CNN classifiers, complexity extends to include the

composition of the feature extraction layers, where less convolutional layers

and feature maps of lower dimensions are considered less complex. The

complexity of the classifiers produced by APIC was controlled by strict

parameters (Tables 6.1 and 6.3), forcing the method to search for best

feature extraction configurations, including kernel designs, to improve

classification scores. An explanation for how the number of feature maps,

kernels (filters) and pooling operations were chosen was excluded from all of

the comparable CNN approaches discussed in this section. After reviewing

all available information, this section concludes that these configurations

were derived heuristically. There is no evidence to suggest significant effort

was invested in optimising these configurations to improve task

performance, an issue plaguing many systems evaluating MNIST and data

sets of similar size (Kumar et al., 2010; Mohapatra et al., 2015). The APIC

method demonstrated that competitive results could be achieved using far

less complex models. The model achieved competitive results using seven

feature maps and 40 neurons, while LeCun et al. (1998) used 20 feature

maps and 120 neurons for LeNet-4 and Ciregan et al. (2012) used 820

feature maps and 150 neurons for each DNN of MCDNN. Although the

accuracy results achieved by the best scoring APIC classifier failed to

challenge the current state-of-the-art design (Ciregan et al., 2012), they

provided evidence to suggest that simplified models could be developed to

achieve similar results to those of the 35 DNNs developed as part of the

MCDNN classifier.

The MCDNN developed by Ciregan et al. (2012) is effectively 35 DNN

classifiers working together to classify data samples. The same boosting

approach was tested by LeCun et al. (1998), where the results of three

classifiers were used to decide the classification result. LeCun et al. (1998)

observed the best results of all classifiers using this strategy. The APIC

method, as part of the feature extraction process, developed a population of

suitable CNN candidates, of which ten were the most elite (best-scoring). It

197

is possible that by utilising a combination of these best-scoring CNN

classifiers, the recall and error rates achieved by APIC at this task could be

improved further. This evaluation, however, falls outside of the objectives

of this chapter and will subsequently be evaluated in future research.

6.5 Conclusion

The objective of this case study was to demonstrate that, by applying

methods like APIC, the complexity of image-recognition classifier models

could be reduced, while maintaining competitive recall and error rates.

This process was demonstrated using the full MNIST data set, where

previously unseen handwritten digits were identified with an accuracy rate

of 98.86 percent (1.14 percent error rate) using a single CNN classifier. This

chapter found that accurate, low-complexity CNN models can be produced

by paying attention to the optimisation of the feature extraction process.

Using the APIC automated feature selection (Section 3.1) and classifier

production (Section 3.3) processes, comparably accurate, less-complex CNN

classifiers could be produced, where recall and error rates rivalled those of

more complex, manually-defined classifiers.

Less complex models increase the reach of classification algorithms,

especially in situations where computational overhead is critical, such as in

embedded systems. As the increase in compute power continues to expand,

the range of APIC-operating parameters can also be expanded, allowing the

method to explore and test more complex classifiers. This, coupled with a

boosting strategy positions APIC as a method that can produce classifiers

that challenge state-of-the-art techniques for image recognition and similar

classification tasks.

198

Chapter 7

Discussion and Future Work

Automated Pattern Identification and Classification (APIC) is a principled

Machine Learning (ML) pipeline method that aims to automate many of

the manual tasks currently associated with ML model development. During

this process, efficient model phenotypes are discovered, which generalise

well compared to topologies constructed manually by human experts. More

efficient models lead to significant performance gains and reduce the chance

of overfitting. Intuitively, overfitting occurs when the model fits the

problem too well, often due to an overly complex model definition.

Likewise, an underfitting situation occurs when the underlying trends of the

data are unable to be captured, often due to an overly simplified model

design. The APIC method prevents both of these situations by evolving

models over a number of generations, evaluating each phenotype using

previously unseen data. APIC is a general method, with efficacy extending

beyond a single domain into a broad range of complex classification tasks,

characterised by noisy, mixed data sets consisting of either static or

streaming data.

This chapter begins with a general discussion of APIC’s approach to

reducing dependency on human experts for implementing ML technologies

in a variety of complex classification tasks, improving accuracy, completeness,

efficiency (performance) and generalisation compared to similar systems. The

discussion focuses on implementation of the method in three complex tasks:

the first two describe related tasks in the network domain, with the third

a distinct task in the domain of computer vision. Successful application of

the method in each of these tasks demonstrates the efficacy of APIC as a

199

general method for a broad range of classification tasks. The remainder of

the chapter provides areas of future work, where additional research can be

applied to further enhance the APIC method.

7.1 Automating Classifier Model Design

The APIC method provides several advances for implementing ML in many

complex classification tasks. Although algorithms, such as Artificial Neural

Networks (ANN), have proven effective in solving complex tasks, the design

of a suitable model architecture can be challenging, even for human

experts. Using a Neuroevolutionary (NE) approach, many of the human

design requirements associated with implementing ML technologies in these

areas are removed. This leads to a more pervasive deployment of ML

technologies, especially in instances where no human experts are available,

or where complexity of the task dictates that manual designs are not

feasible. This is especially true for evolving data, where new patterns are

frequently introduced, such as in real-time streaming data sets. In these

cases, it is neither feasible nor cost effective for human experts to monitor

and update classifiers manually.

Incorporating feature selection (Section 3.1), pattern discovery (Section

3.2) and classifier production (Section 3.3) tasks into a single pipeline

method allows all aspects of a classification task to be tracked and tuned

holistically by the APIC method. Rigorous self-evaluation of each model,

automatically designed to classify identified patterns using optimised

feature subsets discovered by the method and tested by cross-validation

using previously unseen sample data, promotes the development of efficient,

high-performance models that generalise well. The results achieved by these

models are automatically improved using Evolutionary Algorithms (EA),

which encode candidate solutions as bit strings. While candidate solutions,

in this dissertation, were provided by EAs, it is possible to substitute

alternative optimisation methods for each task. Likewise, alternative

algorithms may be implemented in each process of the pipeline method, as

the situation dictates. More detail on the topic of algorithm substitution is

provided in Section 7.3.

200

In this dissertation, three complex classification tasks were chosen to

demonstrate efficacy of the APIC method. Successful application of the

method in these tasks demonstrates that it is broadly applicable, achieving

accuracy, detection and error rates comparable with methods designed

specifically for each task, with less human expert design input. The

advantages provided by APIC do not imply that these classifiers will always

outperform those manually developed for a particular task. Instead, the

high-level objective of each case study was to demonstrate that even today,

complex hand-designed classifiers could be replaced by high-performance

models that achieve at least comparable accuracy, automatically. The

following section provides a general discussion regarding the application

and benefits of APIC for each case study considered in this dissertation.

7.2 Case Study Analysis

Three current, complex classification tasks were chosen as case studies to

demonstrate the efficacy of the APIC method across a broad range of

classification problems. The first was Internet Protocol (IP) traffic

classification (Chapter 4), a task characterised by low degrees of

completeness, owing to manual design processes often associated with IP

traffic classification systems. APIC was also applied to a related task,

Network-Based Anomaly Detection (NBAD), in Chapter 5, where the

method was tested as a viable victim-end and source-end solution,

classifying anomalous traffic early and accurately. Finally, Chapter 6 tested

APIC for automatically developing more efficient (higher-performance)

models for classifying images as accurately as more complex models,

designed by human experts.

The following subsections discuss the benefits arising for each task

through application of the APIC method.

7.2.1 IP Traffic Classification

The goal of an IP traffic classification system is to understand the type of

traffic traversing networks as it evolves in both scope and complexity (Zhang

et al., 2009a). The evolution of application protocols traversing IP networks

201

presents a significant problem for vendors, as unique signatures are required

to classify instances of each application protocol to maintain completeness

of the system. Completeness and accuracy are, according to Szabo et al.

(2007), two performance metrics often used to evaluate IP traffic classification

systems.

In Chapter 4, most classifiers for modern IP traffic classification systems

were found to be designed by human experts. This process introduced

delays and risk of error during signature development, reducing both the

completeness and accuracy of the system. The APIC method, in contrast,

demonstrated that higher degrees of completeness were achievable by

identifying new application protocols in streaming, mixed, noisy data sets,

producing efficient and accurate classifiers to identify future instances of

each automatically. The case study demonstrated that using APIC, a

self-sustaining classification framework that protects against innovation,

remaining up-to-date and relevant, was achievable. APIC’s ability to

automatically identify new application protocols in a constantly evolving

data set demonstrated that automatic, accurate identification of new

patterns in unlabelled, mixed, noisy data sets was possible using a general

ML pipeline method. Furthermore, APIC automatically produced and

evolved customised classifiers, where accuracy results were comparable

with, and often exceeded, those achieved by more complex classifiers,

manually designed by human experts. Both of these findings support the

objectives of this dissertation, set out in Section 1.3, providing evidence

that ML-based pipeline methods, such as APIC, are poised to challenge

state-of-the-art IP traffic classification systems in completeness and

accuracy.

7.2.2 Network-Based Anomaly Detection (NBAD)

NBAD is a task closely related to IP traffic classification, where anomalous

traffic flows on an IP network need to be identified and managed. APIC was

tested as a viable candidate for this task in Chapter 5, where the method

was found capable of discriminating between normal and attack (anomalous)

traffic in both static and live data sets.

According to Tsai and Lin (2010), IP-based anomaly detection systems

are often plagued with high rates of false alarms. The case study presented

202

in Chapter 5 showed that using APIC, false alarm rates were reduced to

0.08 percent, while maintaining accuracy and detection rates of 99.48

percent and 99.99 percent on a publicly-available, static data set.

Comparably, the best scoring, manually-designed system constructed

specifically for this task achieved accuracy, detection and false alarm rates

of 99.96, 99.99 and 0.02 percent, respectively. These results showed that the

APIC method was capable of automatically evolving efficient classifiers

where accuracy, detection and false positive rates rivalled those of the best

scoring classifier, designed specifically for this task by human experts. The

remaining six comparable works achieved false alarms significantly greater

than APIC, between 2.2 percent and 33.70 percent. Most noteworthy, the

results achieved by APIC were achieved with very little human-design input

compared to the other systems. Furthermore, the APIC method was

designed as a broadly applicable, general method capable of exhibiting

efficacy in a wide range of classification tasks, while the comparable

methods were designed specifically for the purpose of discriminating

between normal and attack flows in a static data set.

The second part of Chapter 5 evaluated the efficacy of APIC in profiling

and detecting anomalies on a live enterprise network. Using statistics

inferred from Netflow data records, the method was found capable of

detecting anomalous (attack) traffic flows with accuracy, detection and false

alarm rates of 99.90 percent, 99.89 percent and 0.096 percent, respectively.

The accuracy and detection rates achieved by APIC exceeded those of

comparable systems (Table 5.30), while the false alarm rate matched those

of the best scoring methods.

The experiments performed in Chapter 5 provide further evidence to

support the research objectives of this dissertation (Section 1.3),

demonstrating the efficacy of APIC in a broad range of tasks. Interestingly,

anomaly detection is not limited to computer networks, having already

been applied in a number of domains, including intrusion detection

(Garcia-Teodoro et al., 2009), fraud detection (Phua et al., 2010), fault

detection (Idé and Kashima, 2004), system health monitoring (Niu et al.,

2011) and event detection in sensor networks (Zhang et al., 2010). The

design of APIC allows it to extend beyond anomaly detection in IP

networks, where application in other domains is the subject of future work.

203

7.2.3 Handwritten Digit Recognition

The final case study of this dissertation was chosen to demonstrate the broad

applicability of the APIC method. For this, the method was tested in the

domain of Computer Vision (CV), a discipline attempting to analyse and

understand scenes of the real world (Klette, 2014). Specifically, the task of

handwritten digit recognition was chosen, where the APIC method evolved

less-complex (higher-performance) image recognition classifiers to identify

handwritten digits using the popular MNIST data set.

In Chapter 6, the APIC method developed Convolutional Neural

Network (CNN) topologies to recognise instances of previously unseen

handwritten digits from the MNIST data set. Comparable methods,

including the current state-of-the-art method for MNIST classification, used

complex models designed by human experts. These manually-designed

models used heuristic values for the feature extraction and classification

model architecture, resulting in complex, computationally-expensive

classifiers. The APIC method was shown to improve the efficiency

(performance) of classifiers for this task, by determining a more efficient

feature extraction process and Multi-layer Perceptron (MLP) architecture

through evolutionary processes.

This case study demonstrated that APIC was both capable of

developing classifiers across a broad range of tasks across multiple domains,

and able to evolve more than Topology and Weight Evolving Neural

Network (TWEANN) classifiers, tested in Chapters 4 and 5. Using novel,

intuitive mutation functions (algorithm 3), candidate solutions of variable

complexity were evolved automatically. The accuracy achieved by the best

scoring CNN rivalled scores of comparable methods, using a more efficient

classifier. This was possible as APIC not only developed an optimised MLP

classifier (Section 3.3), but also searched for the best kernel matrices and

convolution design for the feature extraction component. This process was

performed using the APIC feature selection process (Section 3.1), controlled

by EAs. Kernel selection, according to Huang and Wang (2006), has a

profound impact on accuracy achieved by classifiers. Contrary to similar

methods, where human experts used heuristic values to develop complex

models, the APIC method focused on selecting the best kernel parameters

and features to describe each image, leading to more efficient

204

representations, resulting in less-complex classifiers that performed well

compared to the more complex, manually-designed classifiers. The

state-of-the-art method for identifying digits in the MNIST data set used a

boosting strategy, incorporating the results of multiple complex classifiers

to make a classification determination. This boosting strategy, and the

development of a classifier ensemble could also benefit solutions provided by

APIC. The implementation of a boosting strategy for APIC-evolved

classifiers will be investigated in future works.

7.3 Future Work

The APIC general method has already demonstrated efficacy in a broad

range of tasks, across a variety of domains. In addition to IP traffic

classification (Chapter 4), NBAD (Chapter 5) and handwritten digit

recognition (Chapter 6), many other tasks exist that will benefit from

automated phenotype development using ML-based pipeline methods, such

as APIC. These classification tasks include those associated with education,

finance, medical and other technology fields.

The APIC method was designed as an ML pipeline method, specifically

for removing dependence on human experts, improving the application of

ML-based classification in a broad range of tasks. The method is modular,

where specific algorithms may be substituted with others as the task

dictates. For example, Bayesian Optimisation algorithms may be

substituted in favour of EAs, or Support Vector Machines (SVM) may be

substituted as the classifier model, instead of an MLP or TWEANN. The

possibilities for these substitutions are vast, where further research is

required to ascertain the benefits arising from these in various classification

tasks. Another area of research might be to automatically evaluate

algorithm substitutions, further reducing human-design input when

implementing APIC in each task.

As the availability of compute power continues to increase, so the search

space provided to APIC for each task can also be increased. This could be

simply adjusting the search space of each algorithm, or alternatively,

through a “complexification” (Stanley and Miikkulainen, 2002) process,

where simplistic networks are expanded until a better-performing, more

205

complex network is discovered. The implication of such processes has yet to

be tested and is subsequently subject to future work.

Finally, the concept of “boosting”, where classifier ensembles are

assembled to make a classification, is an interesting direction for the future

of APIC. In this dissertation, the best performing classifier was used to

make a classification determination, however the final population of each

classifier production process (Section 3.3) contains a number of high-scoring

candidate solutions. By including more of these models when classifying

datum, additional aspects will be considered, leading to a classification

process that generalises well. A boosting strategy using candidate solutions

evolved by APIC has yet to be tested and will subsequently also be the

subject of future research.

7.4 Conclusion

The APIC method has shown promise in a broad range of classification

tasks, removing the dependency on human-design input in both related and

disparate domains. None of the similar methods considered in this

dissertation demonstrated the same degree of automation, nor were they

capable of extending efficacy beyond the task for which they were originally

designed. The APIC method was demonstrated to automatically perform

feature selection, pattern identification and classifier production (model

development) tasks, producing high-performing, accurate classifiers

protected from innovation. Although in this dissertation, APIC was used to

evolve ANN-based models, it is a general method that is suitable for

evolving almost any structured classifier. It is anticipated that through

future research, more automation - including the selection of algorithmic

components for each task and the development of boosting models - will

further increase the benefits already enjoyed by application of the method.

206

Chapter 8

Conclusion

In this dissertation, the Automated Pattern Identification and Classification

(APIC) method for automatically evolving high-performance classifiers to

solve complex classification problems was presented and evaluated. This

chapter summarises the contributions of the dissertation, providing evidence

that the APIC method improves the efficiency, accuracy, completeness and

pervasiveness of Machine Learning (ML) in a broad range of classification

tasks.

8.1 Research Contributions

A number of artefacts were produced in this dissertation - the most

significant being a new method for automatically developing

high-performance, accurate classifiers for a broad range of applications in a

diverse set of scientific domains. The method promotes reducing the human

input required to develop classifiers for each task, by incorporating feature

selection, pattern identification and classifier production processes into a

single ML-pipeline method. The combination of each of these processes into

a single, general method is a novel contribution of this dissertation. The

ability of the method to evolve its own classifiers protects against

innovation, remaining effective by developing new classifiers automatically

as new patterns are first detected.

The ability to automatically develop accurate, portable classifiers is a

major contribution to the field of Internet Protocol (IP) traffic classification,

where most other classification systems were shown in Chapter 4 to be heavily

207

dependent on human-design input. The APIC method allowed new classifiers

to be developed and deployed in near real-time, providing a classification

system that surpasses other comparable systems in completeness. The ability

to select an optimal feature subset, identify patterns in a mixed, noisy data

set and automatically produce portable, accurate classifiers for IP traffic

classification tasks are each contributions to the field of IP networking. The

application of Topology and Weight Evolving Neural Networks (TWEANN)

networks as IP traffic classifiers is another novel contribution of this research.

In Chapter 5, APIC’s efficacy as a Network-Based Anomaly Detection

(NBAD) system was tested, where the method showed great promise

detecting anomalous (attack) traffic in both static and dynamic (live) data

sets. For these tasks, APIC evolved custom TWEANN classifiers, whose

application in NBAD systems is also a unique contribution of this research.

A single method capable of both identifying underlying application

protocols in IP traffic and the detecting of anomalous (attack) traffic in IP

flows is an important contribution to the field of IP networking, promoting

increased control of today’s complex, evolving networks. Only the APIC

method was found capable of generalising between both of these tasks

without requiring substantial core changes or significant design input by

human experts.

Not only did the APIC method demonstrate efficacy by extending

beyond a single task in the IP networking domain, but it also demonstrated

the capability of addressing complex classification tasks in the diverse

domain of computer vision. In Chapter 6, the method evolved both the

feature extraction and classifier components of Convolutional Neural

Network (CNN) classifiers, demonstrating that more efficient

(higher-performance) classifiers were achievable by increasing focus on the

features selected for these tasks. Using novel mutation processes (algorithm

3), the complexity of each CNN phenotype was adjusted automatically,

until the best scoring classifier combination was found. This is contrary to

comparative methods, where the structure of each phenotype was

configured heuristically using substantially more complex designs. Both the

custom mutation processes and evolutionary processes implemented by

APIC are novel contributions of this dissertation.

208

The APIC method is an important contribution toward the automated

development of efficient, accurate classifiers for addressing a broad range

of classification tasks, as it makes no assumptions regarding the provided

inputs (feature set) or the final phenotype (solution). Instead, the method

automatically discovers the best feature set, identifies distinct patterns within

the data set and develops optimised models in unison to determine the best

configuration for each of these processes. APIC can, therefore, be generalised

to develop solutions for a broad range of current and future classification

tasks with little human-design input compared to current methods. The

APIC method is thus a general methodology for automatically developing

efficient and accurate classifiers for complex classification tasks in a variety

of domains, characterised by mixed, noisy data sets.

209

Appendix A

Publications

This section provides a list of publications that were contributed to the

scientific community in support of the method proposed by this

dissertation.

R.G. Goss and G.S. Nitschke. Automated Pattern Identification

and Classification: Anomaly Detection Case Study. In

Proceedings of the Genetic and Evolutionary Computation

Conference Companion (GECCO ’17). ACM, New York, NY,

USA, 59-60, 2017

A short paper highlighting the results achieved by APIC in the task of

anomaly detection on IP networks (Chapter 5).

R.G. Goss and G.S. Nitschke, Automating Network Protocol

Identification, in Biju, I and Nauman, I. Case Studies in

Intelligent Computing Achievements and Trends, 109-123, Taylor

and Francis, 2014

A book chapter presenting a completely automated pipeline method,

referred to herein as the DPCS method, and it’s success in automating IP

traffic classification. The DPCS method was later rebranded as APIC, after

successful testing in more general contexts (outside of IP traffic

classification).

210

R.G. Goss and G.S. Nitschke, Network Protocol Identification

Ensemble with EA Optimization, in Proceedings of the Fifteenth

Annual Conference Companion on Genetic and Evolutionary

Computation Conference Companion, 1735-1736, ACM, 2013

A paper describing the application of GAs for automatically finding the

most optimal hyper-parameters for tuning the k-means clustering

algorithm. The identified clusters are used as annotated data sets for

training ANN classifiers to identify future instances of each protocol.

R.G. Goss and G.S.Nitschke, Automated Network Application

Classification : A Competitive Learning Approach, in

Proceedings of the 2013 IEEE Symposium Series on

Computational Intelligence for Communication Systems and

Networks, 45-52, IEEE, 2013

A paper describing the application of a hierarchical self-organising map to

cluster and automatically annotate IP traffic flows.

R.G. Goss and R.A. Botha, Establishing Discernible Flow

Characteristics for Accurate, Real-Time Network Protocol

Identification, in Proceedings of the 2012 9th International

Network Conference, 25-34, 2012

A paper exploring the combination of two previously distinct approaches to

IP traffic classification: Statistical Analysis and Deep Packet Inspection.

Experimentation demonstrated classification accuracy of trained models is

improved by combining features of each into a single training set.

211

R.G. Goss and R.A. Botha, Traffic Management in Next

Generation Service Provider Networks Are we there yet?, in

Proceedings of the 2011 IEEE Information Security South Africa

Conference, 2011

This paper evaluated the current state of IP traffic classification in next

generation service provider networks, justifying the requirement for more

accurate, automated approaches for tracking and managing data exchanges.

R.G. Goss and R.A. Botha, Deep Packet Inspection Fear of the

Unknown, in Proceedings of the 2010 IEEE Information Security

South Africa Conference, 2010

A paper establishing the effectiveness and limitations of Deep Packet

Inspection, a technique that, at the time of publication, was the most

progressive traffic management technique deployed by Internet service

providers.

212

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,

P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-

scale machine learning on heterogeneous systems, 2015. URL http:

//tensorflow.org/. Software available from tensorflow.org.

O. Al Jadaan, L. Rajamani, and C. Rao. Improved selection operator for ga.

Journal of Theoretical & Applied Information Technology, 4(4), 2008.

E. Alpaydin. Introduction to machine learning. MIT press, 2014.

R. Alshammari and A. Zincir-Heywood. A flow based approach for ssh

traffic detection. In Proceedings of the IEEE International Conference on

System, Man and Cybernetics, pages 296–301, Montreal, Que, 2007. IEEE

Computer Society.

R. Alshammari and A. Zincir-Heywood. Investigating two different

approaches for encrypted traffic classification. In Sixth Annual Conference

on Privacy, Security and Trust, pages 156 – 166. IEEE Computer Society,

2008.

R. Alshammari and A. Zincir-Heywood. Machine learning based encrypted

traffic classification: Identifying ssh and skype. In Computational

Intelligence for Security and Defence Applications, pages 1–8. IEEE,

CISDA, 2009.

213

http://tensorflow.org/
http://tensorflow.org/

R. Alshammari, P. I. Lichodzijewski, M. Heywood, and A. N. Zincir-

Heywood. Classifying ssh encrypted traffic with minimum packet

header features using genetic programming. In Proceedings of the 11th

Annual Conference Companion on Genetic and Evolutionary Computation

Conference: Late Breaking Papers, pages 2539–2546. ACM, 2009a.

R. Alshammari, A. Zincir-Heywood, and A. Farrag. Performance comparison

of four rule sets: An example for encrypted traffic classification. In World

Congress on Privacy, Security, Trust and the Management of e-Business,

pages 21–28. The IEEE Computer Society, 2009b.

M. Amini and R. Jalili. Network-based intrusion detection using

unsupervised adaptive resonance theory (art). In Proceedings of the 4th

Conference on Engineering of Intelligent Systems (EIS 2004), Madeira,

Portugal, 2004.

I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C. D.

Spyropoulos, and P. Stamatopoulos. Learning to filter spam e-mail: A

comparison of a naive bayesian and a memory-based approach. arXiv

preprint cs/0009009, 2000.

T. Auld, A. Moore, and S. Gull. Bayesian neural networks for internet traffic

classification. IEEE Transactions on Neural Networks, 18(1), January

2007.

T. Bäck and H.-P. Schwefel. An overview of evolutionary algorithms for

parameter optimization. Evolutionary computation, 1(1):1–23, 1993.

T. Bäck, D. B. Fogel, and Z. Michalewicz. Evolutionary computation 1: Basic

algorithms and operators, volume 1. CRC Press, 2000.

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of

finite state markov chains. The annals of mathematical statistics, 37(6):

1554–1563, 1966.

D. Belson. Akamai’s state of the internet q2 2015. 2015.

URL https://www.stateoftheinternet.com/downloads/pdfs/

2015-cloud-security-report-q2.pdf.

214

https://www.stateoftheinternet.com/downloads/pdfs/2015-cloud-security-report-q2.pdf
https://www.stateoftheinternet.com/downloads/pdfs/2015-cloud-security-report-q2.pdf

Y. Bengio et al. Learning deep architectures for ai. Foundations and trends R©
in Machine Learning, 2(1):1–127, 2009.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.

The Journal of Machine Learning Research, 13:281–305, 2012.

J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, et al. Algorithms for hyper-

parameter optimization. In NIPS, volume 24, pages 2546–2554, 2011.

L. Bernaille, R. Teixeira, and K. Salamatian. Early application identification.

In Proceedings of the 2006 ACM CoNEXT Conference, page 6. ACM, 2006.

W. Bhaya and M. E. Manaa. A proactive ddos attack detection

approach using data mining cluster analysis. Journal of Next Generation

Information Technology, 5(4):36, 2014.

M. H. Bhuyan, H. J. Kashyap, D. K. Bhattacharyya, and J. K. Kalita.

Detecting distributed denial of service attacks: methods, tools and future

directions. The Computer Journal, page bxt031, 2013.

T. Bourke. Server load balancing. ” O’Reilly Media, Inc.”, 2001.

T. Bujlow, V. Carela-Español, and P. Barlet-Ros. Extended independent

comparison of popular deep packet inspection (dpi) tools for traffic

classification. Technical report, Universitat Politècnica de Catalunya, 2014.

T. Bujlow, V. Carela-Español, and P. Barlet-Ros. Independent comparison

of popular dpi tools for traffic classification. Computer Networks, 76:75–89,

2015.

J. Chambers, W. Cleveland, B. Kleiner, and P. Tukey. Graphical methods

for data analysis. wadsworth int’l. Group, Belmont, CA, 1983.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.

ACM computing surveys (CSUR), 41(3):15, 2009.

P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman.

Autoclass: a bayesian classification system. In Readings in knowledge

acquisition and learning, pages 431–441. Morgan Kaufmann Publishers

Inc., 1993.

215

C.-L. Chen. A new detection method for distributed denial-of-service attack

traffic based on statistical test. Journel of Universal Computer Science,

15(2):488–504, 2009.

Y. Chen, L. Dai, and X.-Q. Cheng. Gats-c4. 5: an algorithm for

optimizing features in flow classification. In Consumer Communications

and Networking Conference, 2008. CCNC 2008. 5th IEEE, pages 466–470.

IEEE, 2008.

D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural

networks for image classification. In Computer Vision and Pattern

Recognition (CVPR), 2012 IEEE Conference on, pages 3642–3649. IEEE,

2012.

C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20

(3):273–297, 1995.

S. Darvishi, M. C. Ridding, D. Abbott, and M. Baumert. Investigation

of the trade-off between time window length, classifier update rate

and classification accuracy for restorative brain-computer interfaces. In

Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual

International Conference of the IEEE, pages 1567–1570. IEEE, 2013.

M. Dash and H. Liu. Feature selection for classification. Intelligent data

analysis, 1(1):131–156, 1997.

W. De Donato, A. Pescape, and A. Dainotti. Traffic identification engine: an

open platform for traffic classification. Network, IEEE, 28(2):56–64, 2014.

K. Deep and H. Mebrahtu. Combined mutation operators of genetic

algorithm for the travelling salesman problem. International Journal of

Combinatorial Optimization Problems & Informatics, 2(3), 2011.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society, Series

B (Methodological), pages 1–38, 1977.

P. Dorfinger. Real-time detection of encrypted traffic based on entropy

estimation. Master’s thesis, Salzburg University of Applied Sciences,

August 2010.

216

H. Drucker, R. Schapire, and P. Simard. Improving performance in neural

networks using a boosting algorithm. Advances in neural information

processing systems, pages 42–42, 1993.

A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer,

2003. ISBN 3540401849.

A. E. Eiben and M. Schoenauer. Evolutionary computing. Information

Processing Letters, 82(1):1–6, 2002.

J. Erman, M. Arlitt, and A. Mahanti. Traffic classification using clustering

algorithms. In Proceedings of the 2006 SIGCOMM workshop on Mining

network data, pages 281–286. ACM, 2006.

M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. In Knowledge

Discovery in Databases, volume 96, pages 226–231, 1996.

T. Evangelos. Multi-criteria decision making methods: a comparative study.

Netherland: Kluwer Academic Publication, 2000.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear:

A library for large linear classification. Journal of machine learning

research, 9(Aug):1871–1874, 2008.

F. Ferri, J. Inesta, A. Amin, and P. Pudil. Advances in Pattern Recognition:

Joint IAPR International Workshops SSPR 2000 and SPR 2000 Alicante,

Spain, August 30 - September 1, 2000 Proceedings. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2000. ISBN 9783540679462.

URL https://books.google.co.za/books?id=6HhD5ZX990QC.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and

F. Hutter. Efficient and robust automated machine learning. In Advances

in Neural Information Processing Systems, pages 2962–2970, 2015.

D. B. Fogel. The advantages of evolutionary computation. In BCEC, pages

1–11. Citeseer, 1997.

G. M. Foody. Status of land cover classification accuracy assessment. Remote

sensing of environment, 80(1):185–201, 2002.

217

https://books.google.co.za/books?id=6HhD5ZX990QC

D. Freedman. Statistical models: theory and practice. cambridge university

press, 2009.

Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-

line learning and an application to boosting. In Computational Learning

Theory, pages 23–37. Springer, Berlin Heidelberg, 1995.

P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez.

Anomaly-based network intrusion detection: Techniques, systems and

challenges. computers & security, 28(1):18–28, 2009.

F. Gargiulo, L. Kuncheva, and C. Sansone. Network protocol verification

by a classifier selection ensemble. In Multiple Classifier Systems, pages

314–323. Springer-Verlag, Berlin, Heidelberg, 2009.

M. Gebski, A. Penev, and R. Wong. Protocol identification of encrypted

network traffic. In Proceedings of the 2006 IEEE/WIC/ACM International

Conference on Web Intelligence, pages 957–960. IEEE Computer Society,

2006.

F. Glover. Tabu search-part i. ORSA Journal on computing, 1(3):190–206,

1989.

F. Glover. Tabu searchpart ii. ORSA Journal on computing, 2(1):4–32, 1990.

J. Goodman and D. Heckerman. Fighting spam with statistics. Significance,

1(2):69–72, 2004.

R. Goss and R. Botha. Traffic flow management in next generation service

provider networks are we there yet? In Information Security South Africa

(ISSA), 2011, pages 1–6. IEEE, 2011.

R. Goss and R. Botha. Establishing discernible flow characteristics for

accurate, real-time network protocol identification. In Proceedings of the

2012 International Network Conference (INC2012), pages 25–34, 2012.

R. Goss and G. Nitschke. Automated network application classification: A

competitive learning approach. In In Proceedings of the IEEE Symposium

Series on Computational Intelligence (IEEE SSCI 2013), 2013a.

218

R. Goss and G. Nitschke. Network protocol identification ensemble with

ea optimization. In In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO2013), 2013b.

R. Goss and G. Nitschke. Automating network protocol identification. In

B. Issac and N. Israr, editors, Case Studies in Intelligent Computing:

Achievements and Trends. CRC Press, Cleveland, Ohio, 2014.

B. Graham. Fractional max-pooling. CoRR, abs/1412.6071, 2014. URL

http://arxiv.org/abs/1412.6071.

S. S. Greene. Security policies and procedures. New Jersey: Pearson

Education, 2006.

P. Gregory. CISSP guide to security essentials. Cengage Learning, 2014.

S. Grossberg. Adaptive resonance theory: How a brain learns to consciously

attend, learn, and recognize a changing world. Neural Networks, 37:1–47,

2013.

K. Gurney. An introduction to neural networks. CRC press, 2003.

P. Harrington. Machine Learning in Action. Manning Publications Co., 2012.

S. Hendrickson. Getting started with hadoop with amazons elastic

mapreduce. EMR, (1/43), 2010.

T. K. Ho. Random decision forests. In Document Analysis and Recognition,

1995., Proceedings of the Third International Conference on, volume 1,

pages 278–282. IEEE, 1995.

R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and

A. Pras. Flow monitoring explained: From packet capture to data analysis

with netflow and ipfix. Communications Surveys & Tutorials, IEEE, 16

(4):2037–2064, 2014.

C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al. A practical guide to support vector

classification. Technical report, 2003. URL http://www.csie.ntu.edu.

tw/~cjlin/papers/guide/guide.pdf.

219

http://arxiv.org/abs/1412.6071
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

B. Hu and Y. Shen. Machine learning based network traffic classification: A

survey. Journal of Information and Computational Science, 9(11):3161–

3170, October 2012.

C.-L. Huang and C.-J. Wang. A ga-based feature selection and

parameters optimization for support vector machines. Expert Systems with

applications, 31(2):231–240, 2006.

K. Huang and D. Zhang. A byte-filtered string matching algorithm for fast

deep packet inspection. In The Nineth International Conference for Young

Computer Scientists, pages 2073 – 2078. IEEE Computer Society, 2008.

T. Idé and H. Kashima. Eigenspace-based anomaly detection in computer

systems. In Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 440–449. ACM,

2004.

R. Jalili, F. Imani-Mehr, M. Amini, and H. R. Shahriari. Detection of

distributed denial of service attacks using statistical pre-processor and

unsupervised neural networks. In Information Security Practice and

Experience, pages 192–203. Springer, 2005.

T. Jansen. Analyzing Evolutionary Algorithms: The Computer Science

Perspective. Springer, 2013.

S. Juma, Z. Muda, and W. Yassin. Reducing false alarm using hybrid

intrusion detection based on x-means clustering and random forest

classification. Journal of Theoretical & Applied Information Technology,

68(2), 2014.

Y. Kassahun, M. Edgington, J. H. Metzen, G. Sommer, and F. Kirchner.

A common genetic encoding for both direct and indirect encodings of

networks. In Proceedings of the 9th annual conference on Genetic and

evolutionary computation, pages 1029–1036. ACM, 2007.

M. J. Kearns and U. V. Vazirani. An introduction to computational learning

theory. MIT Press, Cambridge, MA, USA, 1994. ISBN 0-262-11193-4.

H. Kim, K. C. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee.

Internet traffic classification demystified: myths, caveats, and the best

220

practices. In Proceedings of the 2008 ACM CoNEXT conference, page 11.

ACM, 2008.

R. Klette. Concise computer vision. Springer, 2014.

T. Kohonen. The self-organizing map. In Proceedings of the IEEE, volume 78,

pages 1464–1480, 1990.

M. A. Kon and L. Plaskota. Complexity of predictive neural networks. In

Unifying Themes in Complex Systems, pages 181–191. Springer, 2006.

V. V. Kumar, A. Srikrishna, B. R. Babu, and M. R. Mani. Classification

and recognition of handwritten digits by using mathematical morphology.

Sadhana, 35(4):419–426, 2010.

R. Leander. Building application servers. Number 21. Cambridge University

Press, 2000.

Y. LeCun, L. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker,

I. Guyon, U. Muller, E. Sackinger, P. Simard, et al. Learning algorithms

for classification: A comparison on handwritten digit recognition. Neural

networks: the statistical mechanics perspective, 261:276, 1995.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

W. Li. Using genetic algorithm for network intrusion detection. Proceedings

of the United States Department of Energy Cyber Security Group, pages

1–8, 2004.

Z. Li, R. Yuan, and X. Guan. Accurate classification of the internet traffic

based on the svm method. In Communications, 2007. ICC’07. IEEE

International Conference on, pages 1373–1378. IEEE, 2007.

H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung. Intrusion detection

system: A comprehensive review. Journal of Network and Computer

Applications, 36(1):16–24, 2013.

221

B. G. Lindsay. Mixture models: theory, geometry and applications. In NSF-

CBMS regional conference series in probability and statistics, pages i–163.

JSTOR, 1995.

J. MacQueen et al. Some methods for classification and analysis of

multivariate observations. In Proceedings of the fifth Berkeley symposium

on mathematical statistics and probability, volume 1, page 14. California,

USA, 1967a.

J. MacQueen et al. Some methods for classification and analysis of

multivariate observations. In Proceedings of the fifth Berkeley symposium

on mathematical statistics and probability, volume 1, page 14. California,

USA, 1967b.

G. Maiolini, A. Baiocchi, A. Iacovazzi, and A. Rizzi. Real time identification

of ssh encrypted application flows by using cluster analysis techniques. In

NETWORKING 2009, pages 182–194. Springer, 2009.

A. Makhzani, J. Shlens, N. Jaitly, and I. J. Goodfellow. Adversarial

autoencoders. CoRR, abs/1511.05644, 2015.

A. Mcgregor, M. Hall, P. Lorier, and J. Brunskill. Flow clustering using

machine learning techniques. Passive and Active Network Measurement,

pages 205–214, 2004.

M. Melanie. An introduction to genetic algorithms. 1999.

R. Miikkulainen. Evolving neural networks. In Proceedings of the 12th

annual conference companion on Genetic and evolutionary computation,

pages 2441–2460. ACM, 2010.

B. L. Miller and D. E. Goldberg. Genetic algorithms, tournament selection,

and the effects of noise. Complex Systems, 9:193–212, 1995.

J. Mirković, G. Prier, and P. Reiher. Source-end ddos defense. In Network

Computing and Applications, 2003. NCA 2003. Second IEEE International

Symposium on, pages 171–178. IEEE, 2003.

T. Mitchell. Machine Learning. McGraw Hill, 1997.

222

J. Mockus. Bayesian approach to global optimization: theory and

applications, volume 37. Springer Science & Business Media, 2012.

R. K. Mohapatra, B. Majhi, and S. K. Jena. Classification performance

analysis of mnist dataset utilizing a multi-resolution technique. In

Computing, Communication and Security (ICCCS), 2015 International

Conference on, pages 1–5. IEEE, 2015.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine

learning. MIT Press, 2012.

A. Moore and K. Papagiannaki. Toward the accurate identification of network

applications. In Passive and Active Network Measurement, volume 3431,

pages 41–54. Springer, 2005.

D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage. Inferring

internet denial-of-service activity. ACM Transactions on Computer

Systems (TOCS), 24(2):115–139, 2006.

Z. Muda, W. Yassin, M. N. Sulaiman, and N. I. Udzir. Intrusion detection

based on k-means clustering and oner classification. In Information

Assurance and Security (IAS), 2011 7th International Conference on,

pages 192–197. IEEE, 2011.

Z. Nascimento, D. Sadok, and S. Fernandes. A hybrid model for network

traffic identification based on association rules and self-organizing maps

(som). In The Nineth International Conference on Networking and Services

(ICNS2013), pages 213–219, 2013.

T. Nguyen and G. Armitage. A survey of techniques for internet traffic

classification using machine learning. IEEE Communications Surveys &

Tutorials, 10(4):56–76, 2008.

G. Niu, S. Singh, S. W. Holland, and M. Pecht. Health monitoring of

electronic products based on mahalanobis distance and weibull decision

metrics. Microelectronics Reliability, 51(2):279–284, 2011.

W. D. Nordhaus. The progress of computing. 2001.

S. H. Oh and W. S. Lee. An anomaly intrusion detection method by clustering

normal user behavior. Computers & Security, 22(7):596–612, 2003.

223

J. Park, H.-R. Tyan, and C.-C. Kuo. Ga-based internet traffic classification

technique for qos provisioning. In Intelligent Information Hiding

and Multimedia Signal Processing, 2006. IIH-MSP’06. International

Conference on, pages 251–254. IEEE, 2006.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.

Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12:2825–2830, 2011.

D. Pelleg, A. W. Moore, et al. X-means: Extending k-means with efficient

estimation of the number of clusters. In ICML, pages 727–734, 2000.

T. Peng, C. Leckie, and K. Ramamohanarao. Survey of network-based

defense mechanisms countering the dos and ddos problems. ACM

Computing Surveys (CSUR), 39(1):3, 2007.

C. Phua, V. Lee, K. Smith, and R. Gayler. A comprehensive survey of data

mining-based fraud detection research. arXiv preprint arXiv:1009.6119,

2010.

J. Quinlan. C4. 5: Programs for machine learning. Morgan Kaufmann Series

in Machine Learning, 1993.

J. R. Quinlan. Simplifying decision trees. International journal of man-

machine studies, 27(3):221–234, 1987.

T. C. Redman. Data driven: profiting from your most important business

asset. Harvard Business Press, 2008.

L. Reyzin and R. E. Schapire. How boosting the margin can also boost

classifier complexity. In Proceedings of the 23rd international conference

on Machine learning, pages 753–760. ACM, 2006.

O. Roeva, S. Fidanova, and M. Paprzycki. Influence of the population size on

the genetic algorithm performance in case of cultivation process modelling.

In Computer Science and Information Systems (FedCSIS), 2013 Federated

Conference on, pages 371–376. IEEE, 2013.

224

S. Rogers and M. Girolami. A first course in machine learning. CRC Press,

2016.

P. Rousseeuw. Silhouettes: A graphical aid to the interpretation and

valudation of cluster analysis. Journal of Computational and Applied

Mathematics, 20:53–65, 1987.

A. Rubin. Statistics for evidence-based practice and evaluation. Cengage

Learning, 2012.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations

by back-propagating errors. MIT Press, Cambridge, MA, USA, 1988.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2009.

M. Sakamoto, T. D. Marcotte, A. Umlauf, D. Franklin Jr, R. K. Heaton,

R. J. Ellis, S. Letendre, T. Alexander, J. McCutchan, E. E. Morgan,

et al. Concurrent classification accuracy of the hiv dementia scale for

hiv-associated neurocognitive disorders in the charter cohort. Journal of

acquired immune deficiency syndromes (1999), 62(1):36–42, 2013.

M. Schoenauer. Evolutionary computation published in control and

cybernetics 26 (3) pp 307-338 marc schoenauer* and zbigniew

michalewiczu. Control and Cybernetics, 26(3):307–338, 1997.

S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in-network

identification of p2p traffic using application signatures. In Proceedings

of the 13th international conference on World Wide Web, pages 512–521.

ACM, 2004.

C. E. Shannon. A mathematical theory of communication. ACM

SIGMOBILE Mobile Computing and Communications Review, 5(1):3–55,

2001.

G. I. Sher. Discover & explore neural network (dxnn) platform, a modular

tweann. arXiv preprint arXiv:1008.2412, 2010.

G. I. Sher. Handbook of neuroevolution through erlang. Springer, 2012.

225

A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani. Toward developing

a systematic approach to generate benchmark datasets for intrusion

detection. Computers & Security, 31(3):357–374, 2012.

J. Snyman. Practical mathematical optimization: an introduction to basic

optimization theory and classical and new gradient-based algorithms,

volume 97. Springer, 2005.

K. O. Stanley and R. Miikkulainen. Evolving neural networks through

augmenting topologies. Evolutionary computation, 10(2):99–127, 2002.

S. V. Stehman. Selecting and interpreting measures of thematic classification

accuracy. Remote sensing of Environment, 62(1):77–89, 1997.

J. M. Stewart. Network Security, Firewalls and VPNs. Jones & Bartlett

Publishers, 2013.

G. Szabo, I. Szabo, and D. Orincsay. Accurate traffic classification. In IEEE

International Symposium on a World of Wireless, Mobile and Multimedia

Networks, pages 1–8. IEEE, June 2007.

P. Szor. The art of computer virus research and defense. Pearson Education,

2005.

C.-F. Tsai and C.-Y. Lin. A triangle area based nearest neighbors approach

to intrusion detection. Pattern Recognition, 43(1):222–229, 2010.

H. Vafaie and K. De Jong. Genetic algorithms as a tool for feature selection

in machine learning. In Tools with Artificial Intelligence, 1992. TAI’92,

Proceedings., Fourth International Conference on, pages 200–203. IEEE,

1992.

C. William et al. Fast effective rule induction. In Twelfth International

Conference on Machine Learning, pages 115–123, 1995.

I. H. Witten and E. Frank. Data Mining: Practical machine learning tools

and techniques. Morgan Kaufmann, 2005.

C. V. Wright, F. Monrose, and G. M. Masson. On inferring application

protocol behaviors in encrypted network traffic. Journal of Machine

Learning Research, 7:2745–2769, 2006.

226

X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):

1423–1447, 1999.

W. Yassin, N. I. Udzir, Z. Muda, and M. N. Sulaiman. Anomaly-

based intrusion detection through k-means clustering and naives bayes

classification. In Proceedings of the 4th International Conference on

Computing and Informatics (ICOCI), Sarawak, Malaysia, pages 298–303,

2013.

S. Zander, T. Nguyen, and G. Armitage. Automated traffic classification

and application identification using machine learning. In Local Computer

Networks, 2005. 30th Anniversary. The IEEE Conference on, pages 250–

257. IEEE, 2005.

J. Zhang, C. Chen, Y. Xiang, W. Zhou, and A. Vasilakos. An

effective network traffic classification method with unknown flow detection.

Transactions on Network and Service Management, 10(2), June 2013.

M. Zhang, W. John, K. Claffy, and N. Brownlee. State of the art in traffic

classification: A research review. In PAM Student Workshop, 2009a.

Y. Zhang, Z. Li, S. Mei, and C. Fu. Session-based tunnel scheduling model

in multi-link aggregate IPSec VPN. In Third International Conference on

Multimedia and Ubiquitous Engineering, 2009b.

Y. Zhang, N. Meratnia, and P. Havinga. Outlier detection techniques for

wireless sensor networks: A survey. Communications Surveys & Tutorials,

IEEE, 12(2):159–170, 2010.

227

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Research Problem
	Research Objectives
	Methods
	Contributions
	Overview of Dissertation
	Assumptions and Delineations

	Foundations
	Supervised Learning
	IP Traffic Classification
	Anomaly Detection on IP networks
	Handwritten Digit Recognition

	Unsupervised Learning
	Evolutionary Algorithms
	Biological Inspiration
	Overview of an Evolutionary Algorithm
	Feature Set and Hyper-Parameter Optimisation

	Conclusion

	Automated Pattern Identification and Classification (APIC)
	Feature Selection
	Pattern Discovery
	Classifier Production
	Conclusion

	IP Traffic Classification
	IP Traffic Classification
	Classic Port Matching
	Deep Packet Inspection
	Statistical Analysis
	Machine Learning

	Task Description
	Feature Selection
	Distinguishing Application Protocols
	Verification by Visualising Application Protocols
	TWEANN Classifier Development
	Accuracy Comparison
	Portability Comparison
	Automation Comparison
	Discussion
	Completeness
	Accuracy

	Conclusion

	Network Anomaly Detection
	Information Security and Anomaly Detection
	Distributed Denial of Service Attack (DDoS)
	Classes of DDoS Attack
	Identifying DDoS Attacks
	Generic Architecture of DDoS Defence Systems

	Statistical and Machine Learning-based DDoS Detection
	ISCX 2012 IDS Experiment
	Experimental Data Sets
	Feature Selection
	Behavioural Profiling of IP Flow Summary Data
	IP Traffic Profile Classification
	Classifier Evaluation
	Discussion

	Live Network Evaluation
	Task Description
	Data Sets
	Feature Set Selection and Normalisation
	Normal Communication Profile Determination
	Developing Normal Traffic Profile Classifiers
	Classifier Evaluation
	Discussion

	Conclusion

	Document Recognition: Handwritten Digits
	Image Recognition
	Convolutional Neural Networks

	Task Description
	MNIST Data Set
	Feature Selection
	Classifier (MLP) Development
	Results

	Discussion
	Conclusion

	Discussion and Future Work
	Automating Classifier Model Design
	Case Study Analysis
	IP Traffic Classification
	Network-Based Anomaly Detection (NBAD)
	Handwritten Digit Recognition

	Future Work
	Conclusion

	Conclusion
	Research Contributions

	Publications

