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ABSTRACT

Conventional medical imaging technologies for cancer diagnosis utilize fixed geometric

configuration of the source and the detector to image the target. In this dissertation, we hy-

pothesize that dynamic utilization of source and detector geometry will lead to better per-

formance of medical imaging devices. Interrogating a target in a three dimensional space

requires cooperation and coordination between the source and detector positions. The goal

of this dissertation is to develop a dynamic imaging method, which will improve the tumor

characterization performance, and provide a control scheme appropriate for the dynamic

interrogation. This dissertation proposes a bimodal dynamic imaging (BDI) method for

improving tumor characterization and a hybrid hierarchical statistical control scheme for

the autonomous control of the sources and detectors.

The tactile imaging sensor has high specificity but low sensitivity in tumor characteriza-

tion. The spectral sensor has high sensitivity but low specificity. The BDI system integrates

the tactile sensing and the spectral sensing modalities with the capability of dynamic po-

sitioning of the source and detector to determine the mechanical and spectral properties of

a tumor. The tactile sensing can estimate the mechanical properties of the tumor, such as

size, depth, and elastic modulus, while the spectral sensing can determine the absorption

coefficient of the tumor through diffuse optical imaging. These properties help us charac-

terize the tumor, and differentiate cancerous tissues from healthy tissues. We designed and

experimentally evaluated the BDI system for estimating the size, depth, elastic modulus,

and absorption coefficient of embedded inclusions. The system performance in character-

izing mechanical properties was then compared to that of the tactile imaging sensor. The

proposed BDI method was experimentally validated using fabricated bimodal phantom.

The experimental results showed that the tactile imaging system (TIS) estimated the tumor

phantom size with 7.23% error; BDI measured the size with 0.8% error. The TIS depth

estimation error was 41.83%; BDI reduced the depth measurement error to 20.00%. The

TIS elastic modulus estimation error was 96.80%; the BDI method showed 74.79% error.

Additionally, BDI estimated the absorption coefficient with 14%-25% estimation error.

For further improvement the system performance, this bimodal imaging system is im-
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plemented on a dual-arm robot, Baxter, where the laser source and the tactile imaging

sensors were mounted on the end-effectors. Each arm of Baxter robot has seven Degree-

of-Freedom. This provides more flexibility in terms of interrogating the target compared

to the fixed geometric configuration. We devised a hybrid statistical controller for maneu-

vering the source and the detector of the system. In this control architecture, a high-level

supervisory controller was used for the functions at a higher level for coordinating two

arms. At lower level, a full-state feedback statistical controller was used to facilitate the

minimum position variation. A linear model for the dual-arm Baxter robot was derived

for testing the proposed architecture. We performed the simulations of hybrid hierarchical

statistical controller on the Baxter model for trajectory tracking. The simulation studies

demonstrated accurate sequential task execution for the bimodal dynamic imaging system

using a hybrid hierarchical statistical control.
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CHAPTER 1

INTRODUCTION

1.1 Motivations

Overdiagnosis has been gaining attention among cancer researchers in recent years [4],

[5], [6]. Overdiagnosis is the diagnosis of a disease, which never becomes fatal during the

patient’s life-span. Because of overdiagnosis, patients go through treatments with harmful

side-effects; eventually becoming a psychological and economic burden for the patients.

Compelling evidence of overdiagnosis comes from studies of screening detected breast

cancer. There is a widespread overdiagnosis in the USA according to a study on 16 million

women across 547 US counties [7]. Previously, a 2007 study in Lancet Oncology showed

1.7% to 54% overdiagnosis in case of invasive breast cancer among woman over 50 [8]. An

Australian study suggested a minimum 30% occurrence of overdiagnosis [9]. A Norwegian

study determined the proportion as 15-25% [10]. Another study in BMJ showed that up to

33% of all screening detected cancer may overdiagnosed [11]. Therefore, physicians need

to identify consequential cancer, which is likely to progress within the patient’s lifetime to

cause harm; at the same time the inconsequential cancer should undergo ‘watchful waiting’

[12], [13]. Improving accuracy in tumor characterization can help in making the predictions

about consequential and inconsequential cancers.

Breast cancer occurs when the cells in the breast begin to grow uncontrollably. These

cells usually form a lump called a tumor or a growth. The tumor is considered cancer if the

cells invade the surrounding tissues, and spread (metastasize) to distant body parts. Early

detection of breast cancer is an important strategy in the breast cancer management. For

that, screening tests (such as yearly mammogram) are conducted to find the breast cancer

before it causes symptoms. If the screening test shows the doctors a suspicious lump or the

symptoms start to appear, more tests are required to diagnose whether it is cancer. Diag-

nostic tests (such as mammogram, breast ultrasound, biopsy) are used to find the presence

of cancer, how far it spreads, and gather more information for treatment plan. In other
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words, the tests for breast cancer diagnosis characterize tumor, and find out whether the tu-

mor is cancer. Once the breast cancer is diagnosed, further tests and exams are performed

for staging the breast cancer. Eventually, a patient goes through treatment, therapies, and

monitoring.

Imaging is an indispensable tool in breast cancer screening, diagnosis, staging, treat-

ment, and monitoring. It allows the doctors to observe the inside of breast tissues non-

invasively. This dissertation specifically focuses on the imaging techniques used for breast

cancer diagnosis. Currently, various imaging modalities are utilized for diagnosis, such

as mammography, breast ultrasound (US), and breast magnetic resonance imaging (MRI).

Mammography uses X-ray radiation to detect abnormality in tissue. Ultrasound imaging

utilizes high frequency sound wave to probe the tissue. Magnetic resonance imaging (MRI)

use high frequency radio waves on tissue under strong magnetic field. All these imaging

modalities are not without their limitations. Mammography sensitivity deteriorates for the

high grandular tissues, which is relevant to younger women. Mammography uses ionized

radiation for imaging. Ultrasound is used with mammography if further investigation on

cancer is required. Ultrasound has higher sensitivity and lower specificity than mammog-

raphy. MRI is highly sensitive among the imaging modalities. However, it has limited

specificity. Moreover, MRI is limited in use because of its high cost. Thus, there is still a

need for imaging modalities with higher sensitivity and specificity using non-ionized radi-

ation.

The conventional imaging modalities utilize stationary or fixed geometric configura-

tions of the source and detectors. In those cases, the source-detector setup is maneuvered

manually or using a gantry. For example, mammography is a two dimensional represen-

tation of a three dimensional structure. Depending on the patients’ conditions, the radi-

ologists have to take multiple views of the breast (standard and additional). The manual

handling affects the accuracy. Computed tomography uses different geometric configu-

ration, translations, and rotations of the source and the detector for improving imaging

performance. All of those configurations have fixed geometry for the source and the de-

tectors. A dynamic positioning of the source and the detectors with six degree of freedom

movement can improve the characterization accuracy. Magnetic resonance imaging also
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utilize fixed geometric configuration and rotations of the magnets and radio frequency coil.

The patients often feel claustrophobic because of MRI scanner construction. The dynamic

positioning of source-detector configuration using six-degree of freedom manipulators can

improve the convenience of imaging.

The tumor characterization is an important aspect in breast cancer diagnosis. The con-

ventional imaging modalities are sensitive to various types of biological contrast. There-

fore, a single imaging modality does not give a complete picture of breast tumor properties,

specially mechanical and spectral properties. The mechanical properties of a tumor, such

as size, depth, elastic modulus indicate the malignancy level, while the spectral properties,

absorption and reduced scattering coefficients give access to the physiological informa-

tion, such as concentration of total hemoglobin, blood oxygen saturation, lipid, and water.

Researchers have been working on two emerging modalities, tactile sensing imaging and

diffuse optical tomography, in order to estimate mechanical and spectral properties. The

advantages of these two modalities are use of non-ionized radiation and relatively low

cost (compared to MRI). Integrating these two approaches on a single dynamic positioning

system has yet to be explored. This dynamic and multimodal approach of imaging may

enhance the tumor characterization accuracy.

1.2 Background and Literature Review

In this section, we present literature review on several imaging techniques, dynamic posi-

tioning, statistical game control, tactile sensing, and diffuse optical imaging.

1.2.1 Imaging Techniques used in Breast Cancer Diagnosis

Over the past few decades, various imaging techniques have been aiding the physicians for

breast cancer diagnosis. Each of the conventional imaging techniques has its advantages

and limitations. This section reviews some of the modern imaging techniques used for

breast cancer diagnosis.
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1.2.1.1 Mammography

Mammography is the imaging technique that uses a low-dose X-ray to image the breast.

Mammography creates the X-ray image of the breast, which is called mammogram. De-

pending on the density, different parts of the breast attenuate X-ray radiation differently.

Based on that fact, the mammogram is generated. There are two types mammography:

screening mammography and diagnostic mammography [1]. The screening mammogra-

phy is targeted to the patients with no cancer symptoms. In this type of mammography,

X-ray images of each breast are taken from two different angles (four views in total). On

the other hand, in diagnostic mammography, additional views of breast are captured from

different vantage points along with four standard views. The diagnostic mammography is

targeted to the patients after suspicious results from the screening mammography. Also, the

diagnostic mammography is used for the patients who are treated before for cancer. Fig. 1.1

shows the mammography procedure. During the procedure, the breast is placed between

two glass plates and compressed. Then the X-ray image is captured. When the captured

image is stored on a film, it is called film mammography. When the captured image is

stored on a computer, it is called digital mammography. Film and digital mammography

are similar in finding cancer [14], [15], [16].

In detecting all types of invasive breast carcinomas, the sensitivity of mammography

ranges from 63% to 98% [17], [18]. For invasive lobular carcinoma, the sensitivity ranges

from 57% to 81% [19], [20], [21]. The mammographic sensitivity is inversely correlated

with the degree of fibrograndular tissue density. Therefore, false positive results are more

common for younger women due to high glandular tissues [22]. Note that false positive

results occur when mammograms appear abnormal even though there is no cancer. In the

presence of dense breast tissue, the mammographic sensitivity for the detection of invasive

tumor can be as low as 30% to 48% [23], [24]. Screening mammography is a fast procedure

(about 20 minutes) and exposes the patient to a small dose of radiation. On the other hand,

diagnostic mammography takes longer than screening mammography and the total dose of

radiation is higher than that of screening mammography [1].

Conventional film and digital mammography have some limitations. They are painful
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Figure 1.1: The breast is pressed between two plates while taking x-ray image [1].

for some women. Under compression the breast tissue may overlap and obscure the cancer-

ous tumor during mammography. Also, a mammogram is a two-dimensional image, which

may not give the full picture of the tumor. Three-dimensional mammography, also known

as digital breast tomosynthesis, overcomes the above limitation of two-dimensional mam-

mography. In tomosynthesis, multiple X-ray images are taken from different angles typi-

cally between ±30◦ [25]. Then, the images are assembled to construct a three-dimensional

image of the breast. Digital breast tomosynthesis with digital mammography has been

shown to detect more breast lesions, better classify those lesions, and generates lower

callback rates than mammography alone. The combination of tomosynthesis and digital

mammography can reduce false negatives and increase true positive rates. However, the

radiation dose in this combination is higher than standard mammography.

Another emerging mammography technique is contrast-enhanced mammography, which

uses iodine contrast agents. This technique is based on the fact that rapidly growing tumors

need increased blood supply through angiogenesis for supporting tumor growth. Equipped

with tomosynthesis, it provides a method of imaging contrast distribution in breast. The

contrast agents are administered before compression. After tomosynthesis, the images are

evaluated based on the concentrations of iodine. The hight uptake region indicates the
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active tissue growth [26].

1.2.1.2 Ultrasound

Ultrasound is one of the most commonly used diagnostic imaging methods in breast cancer.

This is also known as ultrasonography, sonography, and sonogram. This technique helps

doctors for further investigation of a tumor after mammography. It uses high frequency

sound wave to image the inside of the body from echo [1]. This method is fast (20 to

30 minutes) and does not use ionized radiation. Ultrasound is good in imaging some soft

tissues that do not show up well on X-rays. Also based on different echo pattern, it can

differentiate fluid-filled cyst and solid tumor.

An ultrasound machine uses a microphone or computer mouse shaped transducer. It

sends out the sound wave to the scanning area and picks up the echoes. These echoes are

analyzed and displayed on the screen. The newer forms of ultrasound can provide three-

dimensional images. The overall sensitivity of ultrasound in detecting invasive lobular

carcinoma is found to be 68% to 98% [27], [28], [29]. This sensitivity range cannot be

compared directly with the sensitivity of mammography, because the sensitivity study of

mammography typically includes both screening and diagnostic exams. The lower end of

the sensitivity range of ultrasound was reported in the earliest study. With the advancement

of ultrasound technology, the sensitivity improved significantly.

1.2.1.3 Breast Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is the most sensitive imaging modality compared to

mammography and ultrasound. It is utilized for cancer detection, staging, therapy response

monitoring, and biopsy guidance. It uses radio waves in the presence of strong magnetic

field for scanning the patient and then images the radio waves emitted by tissue [1]. Dif-

ferent types of tissue emit different amount of signal intensity, which helps image the areas

inside the body.

The sensitivity of breast MRI are reported from 86% to 100% [30]. However, the

high sensitivity comes at the cost of reduced specificity. Also, breast MRI can cost a lot

and can be uncomfortable for the claustrophobic patients, and inconvenient for overweight
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patients [1]. It does not expose the patient to ionized radiation. Fig. 1.2 shows the MRI

scanning procedure of a patient.

Figure 1.2: The patient lies on a table that slides into MRI machine [1].

1.2.2 Dynamic Positioning

Most of the medical imaging technology consists of either stationary source-detector setup

(Mammography) or translation and rotation of a fixed geometric source-detector setup (CT,

MRI). In surgical imaging, we found another type of dynamic positioning implemented in

mobile C-arms. Mobile C-arms are medical imaging devices based on X-ray technology

and can be used flexibly in operating rooms. The name “C-arms" is derived from the

C-shape of arm that connect X-ray source and X-ray detector as shown in Fig. 1.3. The C-

arm allows the elements connected to it move horizontally, vertically, and around the swivel

axis. This permits the imaging of the patient almost from any angle. Researchers attempted

to make C-arms a six-degree of freedom imaging system by introducing the translational

motion to the operating table [31]. As far as the author is aware, the positioning of the

source and the detectors with six degree of freedom motion is not available in the medical

imaging technology literature.
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Figure 1.3: C-arms capable of x-ray imaging used during surgery [2].

1.2.3 Statistical Game Control and Hybrid Statistical Control

The dynamic positioning of sources and detectors require coordinated control schemes.

The statistical game control is an ideal choice for this scenario because sources and detec-

tors can be viewed as multiple players. The statistical game control deals with the statistical

control of multiple players under game theoretic framework.

1.2.3.1 Game Theory

Osborne and Rubinstein defines game in [32] as, “A game is a description of strategic

interaction that includes the constraints on the actions that the players can take and the

players’ interests, but does not specify the actions that the players do take." Game theory

provides reasonable solutions to classes of games and studies their properties. Game theory

has applications in different fields of research such as, economics, biology, management,

communication networks, power systems, and control systems. The notion of games of

strategies are first found in Borel’s works in the early 1920s. Later, the modern game theory

was developed by Von Neumann and Morgenstern and published in “Theory of Games and
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Economic Behavior" in 1944 [33]. In the early 50s, differential games were developed by

Isaacs [34]. In differential games, the states of the players evolve with the change of time.

Differential games are also termed as dynamics games.

Differential games can be broadly classified into two categories: cooperative game and

non-cooperative game. In cooperative games, the players can make binding agreements

about the distribution of payoffs or about the selection of strategies, even if these agree-

ments are not specified or implied by the rules of the game [32]. Thus the players form

coalitions, and the coalitions compete with each other. Inside a coalition, the players be-

have cooperatively. On the other hand, in non-cooperative differential games, each player

acts independently, without collaboration or communication with any of the others.

In 1950 Nash proved the existence of a strategic equilibrium for non-cooperative games

which is called the “Nash equilibrium" [35]. Nash equilibrium solution is optimal to all the

players in the game, because deviations from the Nash equilibrium strategy is not profitable

for any player, while others are maintaining their equilibrium strategies. Thus, in Nash

equilibrium solution or Nash game, no single player dominates the decision making.

In some non-cooperative decision problems, one of the players has the ability to en-

force his strategy on other players. The player who possesses the powerful position is

called leader, and the other players who react rationally to the leader’s decision are called

the followers. Such games are referred to as Stackelberg games [36]. The Stackelberg

equilibrium solution was first introduced by H. Von Stackelberg [37].

1.2.3.2 Statistical Control

Stochastic differential game results from strategic interactions among players in random

dynamic system. The stochastic optimal control can be viewed as a differential game,

where a single player strives to optimize a single cost function. In stochastic differential

game, there are multiple players, each with a separate cost function to optimize.

The statistical control is a type of stochastic optimal control, where the cumulants of the

cost function are minimized. In other words, the statistical control shapes the probability

density function of the cost the cost cumulants. The statistical control has been initiated by

Sain [38–40] through the minimization of cost variance. This was later extended by Won et
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al. for higher order cumulants for a nonlinear system with nonquadratic cost functions [41].

Won and Aduba investigated the statistical control under Nash game theoretic framework,

which deals with the simultaneous optimization of cost cumulants of multiple players [42].

1.2.3.3 Stackelberg Game in Dynamic Positioning

Stackelberg equilibrium solution comes into control systems literature through the works

of Chen, Cruz, and Simaan [43–45]. For the dynamic positioning, the source can act as

a leader and the detector can act as a follower. The source optimizes the cost variance

of the target position while the detector minimizes the mean. Bagchi and Basar worked

on the minimization of cost mean for both the leader and the follower for a linear system

[46]. The minimization of leader cost variance has not been explored yet. So, we choose

the Stackelberg solution concept with statistical control theory for coordinated control of

sources and detectors in our dynamic positioning scenario.

1.2.3.4 Hierarchical Hybrid Systems and Control

Hierarchical and Hybrid systems are two different concepts, both of which are relevant

for the modern day complex systems. Hierarchical systems view the complex system as a

group of tier with different functions within and between tiers. In this way, a large, complex

system can be divided into several smaller subsystems, and become easier to be organized

and controlled. Multi-agent systems and sensor networks are examples of hierarchical

systems. On the other hand, hybrid systems have both continuous and discrete dynamics.

The combination of hierarchical and hybrid systems concept can offer an effective control

approach on a complex system compared to the stand-alone statistical control approach.

The statistical control can be applied directly to control the continuous dynamics of the

hybrid system, which may not be applicable for controlling the discrete events. The discrete

event system model is appropriate for modeling the discrete dynamics. In discrete event

systems, the state-space of a system is described by a discrete set, and state transitions are

observed at discrete points in time. An event may be viewed as a spontaneous occurrence,

which causes a transition of system from one node to another. For a detailed description on

discrete event systems, see [47].
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The hierarchical system concept has been used in discrete-time sensor based control

of robotic systems [48], flexible task execution in human-robot interaction [49], action-

intention-based grasp control [50], multiple satellite systems control [51] , and sensor net-

works [52]. The bimodal dynamic imaging system consists of continuous and discrete

dynamics. For a given reference trajectory, the low-level statistical control is sufficient

for controlling the source-detector manipulator of the system. Scanning a target in three

dimensional space using two six-degree-of-freedom manipulators will create a complex

task scenario. In that scenario, cooperation and coordination of the manipulators will be

necessary. Under that circumstances, a high-level supervisory controller with a low-level

statistical controller is more appropriate for the bimodal imaging system applications. In

this dissertation, we explore the combination of hierarchical system and hybrid system to

form a hybrid statistical controller for controlling the source-detector manipulator of the

bimodal imaging system.

1.2.4 Tactile Sensing

Now, we discuss one of the proposed imaging modalities, tactile sensing imaging. The

tactile sensing uses the fact that the cancerous tumor is stiffer than the healthy tissues [53],

[54]. The benign and malignant tumors exhibit different elastic modulus [55]. Also, the

TNM classification system, which is used to describe the stage cancer in a person, considers

the size information of tumor (T) as an important characterizing factor [56]. Therefore,

the accurate mechanical characterization of tumor is important for the cancer detection

and treatment. The breast self examination (BSE) and clinical breast examination (CBE)

are two widely used methods for the early breast cancer detection. BSE is recommended

for early detection of breast tumor, while CBE is performed by physicians or health care

providers. These two methods utilize the human palpation or tactile sensation to obtain

the qualitative interpretation of mechanical properties of the tumor. The major drawbacks

of the methods are that they are subjective and the efficiency of the methods relies on the

individual experience. Moreover, study shows that the overall sensitivity of CBE is 58.8%

and the overall specificity is 93.4% [57]. Therefore, the artificial tactile sensors, which can

give quantitative information on the mechanical properties of an object, play an important
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role for early detection of breast cancer.

The imaging technique that deals with the mechanical properties of an object is known

as mechanical imaging. They are also known as elasticity imaging or tactile sensation

imaging. The tactile sensation imaging provides important tumor information such as size,

depth, and elastic modulus. For the last two decades, various groups from Harvard Uni-

versity [58–60], Artann Laboratory [61], Temple University [62–64] have been working on

the development of tactile sensation imaging.

Harvard University researchers developed a handheld scanner consisting of distributed

pressure sensor and magnetic tracker for documenting the mechanical properties of the

palpable lumps. Wellman formulated an algorithm to create a composite tactile map and

estimated the size of the lump within 13% mean absolute error and 7.5% repeatability [59].

Galea developed an algorithm for estimating lesion modulus using finite element model,

which gave 5.4% error for physical models [60].

Artann laboratories developed a breast mechanical imaging system consisting of a

probe with a pressure sensor array, an electronic unit, and a laptop. This system was com-

mercialized under the trade name of SureTouch by a company Medical Tactile, Inc., Los

Angeles, CA. The system is shown in Fig. 1.4. The system estimated the size with a typical

relative error of 5%. The smallest inclusion it detected was of 5 mm in diameter. How-

ever, the accuracy of the result is affected by the inclusion depth inside the phantom. The

inclusion’s Young’s modulus estimation showed a relative error of 10% [61]. With this me-

chanical imaging system, they performed a statistical analysis of differentiation capability

for 147 benign and 32 malignant lesions from human patients, which revealed an average

sensitivity of 91.4% and specificity of 86.8% with a standard deviation of ±6.1% [55].

Temple University researchers have been utilizing high resolution CCD sensors to cap-

ture the tactile information. Lee and Won developed a tactile imaging system with non-

rigid pattern matching algorithm for elastic modulus estimation. The estimation error was

5.38%. This tactile imaging sensor exhibits a relatively low sensitivity (67%) for differ-

entiating malignant and benign tumours [64]. Therefore, we require to improve the tac-

tile imaging sensor performance. Integrating diffuse optical imaging approach with tactile

imaging and dynamic positioning can be key factors to improve the tactile imaging sensor
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Laptop
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Probe with 2D Pressure
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(a) Breast mechanical imager system (b) Breast mechanical imager probe

Figure 1.4: Breast Mechanical Imager (Trade name “SureTouch")

performance.

1.2.5 Diffuse Optical Imaging and Its Use in Multimodal Imaging

In order to improve the mechanical property estimation, we explored another imaging

modality called “diffuse optical imaging". Near infra-red diffuse optical imaging uses near

infra-red light source to probe tumor and captures diffuse optical information using photo

detectors. In diffuse optical tomography, the diffused light is measured to reconstruct three-

dimensional absorption and reduced scattering coefficient maps of tissue. Depending on the

wavelength range of infra red light source, these coefficients vary differently. From the ab-

sorption and reduced scattering coefficients, it is possible to reconstruct the physiological

information map of tissue such as, blood dynamics, total hemoglobin concentration, blood

oxygen saturation, concentrations of water and lipid using the well-known spectral window

shown in Fig. 1.5 [65, 66]. Cancerous tissues show increased vascularity, altered oxygen

content, and altered cellular structures at the microscopic scale [67–69]. The diffuse opti-

cal imaging can be adapted further to measure exogenous contrast agents such as dye for

improved tumor contrast [70]. This imaging modality has a potential to be instrumental in

breast cancer detection, diagnosis, and therapy monitoring [71, 72].

The diffuse optical community already explored MRI, CT, PET, and US imaging modal-

ities to combine them with diffuse optical tomography. This type of multi-modality imag-

ing improves the parameter reconstruction spatially and quantitatively.
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(a) Absorption spectra of tissue chromophores (b) Reduced scattering coefficient assuming sim-

plified Mie scattering law

Figure 1.5: Spectral window for tissue chromophores

Fusion of diffuse optical imaging with MRI is an active research field. MRI can achieve

high resolution, but suffers from low specificity [73]. Because of high resolution, this

modality is the first natural choice for combining with diffuse optical tomography. Chang

et al. used volumetric breast MRI data as a priori information for simulating a realistic

anatomical medium for diffuse optical probe [74]. He showed that in the case of limited

multiply-scattered photons, sufficient information can be gained from MRI to permit accu-

rate reconstruction of absorption coefficient map. Later, Pogue showed on two simulated

pathologies, magnetic resonance and optical measurement scheme can reconstruct the ab-

sorption coefficient map within 10% error. Also, he showed that the MRI guided diffuse

optical scheme produced absorption coefficient maps with a good contrast compared to dif-

fuse optical tomography alone [75]. Ntziachristos developed a MRI-guided diffuse optical

spectroscopy for in vivo study of breast cancer [76]. With this system, he quantified the

oxy- and deoxyhemoglobin of five malignant and nine benign breast lesions and found de-

creased oxygen saturation and higher blood concentration in malignant lesions than most

benign lesions. Brooksby investigated the optical heterogeneity reconstruction based on

MRI infra-red data [77,78]. Brooksby showed that when prior information of the structure

is used to guide NIR property estimation, root mean square (rms) image error decreases

from 58% to 26%. Thus, MRI is used to provide a priori information to diffuse optical to-

mography. However, the high magnetic field in MRI causes challenging situation to collect
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diffuse optical imaging data without interference.

Li [79] and Zhang [80] described the co-registration of the high resolution tomographic

X-ray (CT) with low resolution diffuse optical tomography. The tomographic X-ray help

labelling the tissue for diffuse optical tomography inverse problem solution. PET is another

imaging modality that can be combined with diffuse optical tomography. A non-concurrent

implementation was found in [81].

Zhu proposed the concurrent probing of tissue with ultrasound and diffuse optics for

large breasts [82–84]. He monitored the cancer treatment for six large breast carcinoma

using the localization information from the ultrasound technique and able to measure the

changes in hemoglobin distrubutions. The histologic microvessel density counts from six

tumor samples correlate to hemoglobin distributions with a correlation coefficient of 0.64.

While ultrasound provides an accurate localization, the diffuse optical tomography recon-

struction can be done in fine and coarse grid method depending on the location of the

heterogeneity.

In all of the above cases, the diffuse optical tomography uses guidance of other imag-

ing modalities to decrease the reconstruction error. In this proposal, we shall provide a

combined scheme of tactile and diffuse optical imaging in order to obtain the absorption

coefficients. In our approach, the tactile sensing provides the a priori location information

for diffuse optical system. However, our goal is to obtain the mechanical properties from

the absorption coefficient variation along the cross section of tissue. In order to achieve

that we shall introduce the dynamic positioning of source-detector.

1.3 Research Goal

The research questions investigated in this dissertation are:

• Does dynamic positioning of the source and detector of the imaging system lead to

more accurate tumor characterization?

• Can we get a more accurate tumor characterization by combining information from

two imaging modalities?
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Figure 1.6: Conceptual diagram of bimodal dynamic imaging system

The overall research goal of this dissertation is to find out whether dynamic positioning and

multimodality improve tumor characterization. To meet the research goal, three research

objectives are established.

The primary research objective is to develop a dynamic positioning method with six de-

gree of freedom motion in source-detector setup for improved tumor characterization. The

dynamic positioning method will adopt a multimodal imaging approach with two imaging

modalities to improve the tumor characterization performance. The second research ob-

jective is to develop a coordination control scheme for the source and the detector of the

bimodal dynamic imaging system. The third research objective is to develop a bimodal

dynamic imaging system prototype with six degree of freedom motion of the source and

the detector. The prototype will use two imaging modalities for estimating mechanical and

spectral properties of tumor. The mechanical and spectral properties of tumor are impor-

tant since these properties vary in case of healthy tissue and tumor (benign and malignant).

The tactile sensing imaging (also known as tactile imaging) and diffuse optical imaging are

two candidates for mechanical and spectral properties estimation. The application of the

bimodal imaging system is towards improving characterization of tumor in a non-invasive

manner. In other words, screening (tumor versus no tumor) is not the targeted use of the

bimodal imaging system. Fig. 1.6 shows a conceptual diagram of the proposed bimodal

dynamic imaging system.

Fig. 1.7 shows a setup for the bimodal dynamic imaging system implemented with

Baxter. The laser is mounted on one end-effector of the right arm. The tactile imaging

sensor is mounted on another end-effector of the left arm. A computer is utilized for image
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acquisition using the tactile imaging sensor. Another computer is utilized for maneuvering

the Baxter arms.

Tactile Imaging
System

Laser

Baxter
Workstation

TIS Workstation

Phantom

Figure 1.7: Bimodal dynamic imaging system implemented with the Baxter robot
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1.4 Contributions

The major contributions of this dissertation are as follows.

• A new bimodal dynamic imaging approach is presented for an embedded tumor char-

acterization. The bimodal dynamic imaging approach has two aspects: bimodal and

dynamic imaging. The two modalities: tactile and spectral are used in this method

for improving tumor characterization performance. The method employs dynamic

positioning of the source and the detector while interrogating a target.

• A new open-loop Stackelberg minimal cost variance control scheme is derived for

controlling the source and detector of the bimodal dynamic imaging setup with a

numerical simulation. The Stackelberg game control considers the source and the

detector maneuvering system as the leader and the follower. The proposed open-loop

Stackelberg minimal cost variance control ensures the minimized variance of the

leader cost function, while the mean of the follower cost function is being optimized.

• A new linear model is derived for a dual-arm robotic manipulator with seven degree

of freedom for each arm. The model was derived in order to be simulated with the

proposed control scheme.

• A new hybrid hierarchical statistical control scheme is presented to simulate the

motion of robotic manipulators during bimodal dynamic imaging. This controller

was applied on the linear model of the dual-arm robot Baxter in simulations. The

simulation studies show accurate sequential task execution of the bimodal dynamic

imaging system using the hybrid hierarchical statistical control scheme.
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1.6 Dissertation Outline

This dissertation proposal is composed of eight chapters. Chapter 2 presents a tactile imag-

ing sensor. The wave-optics analysis and numerical simulation are carried out to verify

the imaging principle used in building the sensor. Then, we present the mechanical prop-

erties estimation methods for measuring size, depth, and elastic modulus of an embedded

inclusion. Chapter 2 ends with the phantom validation experiment results.

Chapter 3 describes the spectral properties estimation method based on the diffuse op-

tics theory. The absorption coefficient determination method is formulated for estimating

the coefficient from the diffuse optics image collected by the charged-coupled device cam-

era. We present the results of the phantom validation experiment at the end of this chapter.

Chapter 4 presents the bimodal dynamic imaging method. By dynamic imaging, we
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mean the sensors physically moves around the target for imaging. The spectral properties

are estimated using the formula described in Chapter 3. Then, we describe the mechan-

ical parameter estimation method using the bimodal dynamic imaging. We discuss the

phantom validation experiment results. The bimodal dynamic imaging performance is then

compared to that of the tactile imaging system.

Chapter 5 discusses the Stackelberg game control strategy in order to maneuver the

source and the detector in the bimodal dynamic imaging system. Under two-player nonzero-

sum game frame work, a solution is proposed for the problem of minimizing the leader cost

variance, while the follower cost mean is optimized. The theory has been numerically sim-

ulated with a simple linear system model.

Chapter 6 derives a linearized model for a dual arm seven degree-of-freedom robot

Baxter, which will be used as test-bed for the bimodal dynamic imaging method. The

linearized model is validated with an experimental study.

Chapter 7 discusses a hybrid statistical control for the dual arm robot model. Numerical

simulations of a hybrid statistical controlled dual-arm robot are presented.

Chapter 8 presents conclusions and future research.
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CHAPTER 2

TACTILE IMAGING SENSOR

In this chapter, we describe the imaging principle of the tactile imaging sensor. The imag-

ing principal is verified using wave optics analysis and simulation. Then, we present the

overview the tactile imaging sensor. We develop the algorithm for estimating size, depth,

and elastic modulus of an embedded inclusion. Finally, we present a preliminary result in

order to validate the algorithm.

2.1 Tactile Imaging Principle

The tactile imaging sensor operates on the principle of total internal reflection. According

to Snell’s law [85], the air which surrounds the waveguide has lower refractive index than

that of the waveguide. The incident light directed into the waveguide in such a way that it is

trapped inside because of total internal reflection phenomenon. When there is no pressure

applied on the waveguide, the camera records no light information since the light is totally

internally reflected within the waveguide. The pressure applied on the waveguide makes the

trapped light scattered towards the camera. The camera captures the light information, and

the computer unit registers it in pixel information. Fig. 2.1 shows the conceptual diagram

of the sensing principle of the tactile imaging sensor.

PDMS
Probe

Object

Camera

Total internal
reflection Scattering

Tactile display

Figure 2.1: Total internal reflection occurs when the illuminated probe compresses the

object.
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2.1.1 Wave Optics Analysis

In this section, the imaging principle is analyzed using the wave optics analysis method.

Fig. 2.2 shows an optical waveguide schematic consisting of a single layer PDMS with a

glass plate layer on top. The layer 1 is PDMS with the refractive index η1 and the height

h1, and the layer 2 is borosillicate glass plate with the refractive index η2 and the height

h2. The refractive indices η0 and η3 are the refractive indices of the surrounding medium

around the waveguide. In our case, the surrounding medium is air. Hence, η0 = η3 = 1.

The waveguide layers are positioned in the order of increasing refractive index, η1 > η2 >

η3 =η0. The light propagates in z-direction, and the layers are positioned in the x-direction.

An infinite length in planar y-direction is assumed.

We begin with the Maxwell wave equation in time domain describing light propagation

in an optical waveguide [86],

∇2E − η2

c2

∂ 2E

∂ t2
= 0, (2.1)

where E is the electric field, η is the refractive index, and c is the speed of light in vacuum.

The argument for E is (x,y,z, t), which is omitted for simplification. For monochromatic

waves with frequency ω , the solution of (2.1) becomes,

E = Exyze jωt , (2.2)

Substituting (2.2) into (2.1), the spatial distribution of electric field Exyz becomes

∂ 2Exyz

∂x2
+

∂ 2Exyz

∂y2
+

∂ 2Exyz

∂ z2
+ k2

0η2Exyz = 0, (2.3)

Air

PDMS

Glassplate
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2h

0η
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3η
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x

z

Figure 2.2: Structure of waveguide
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where k0 is the wave vector in vacuum: k0 = ω/c. The waveguide is uniform in z-direction.

Therefore, the planar wave solution becomes,

E = Exye− jβ z, (2.4)

where β is the propagation constant. The plane wave solutions are independent of y-

direction, the field distribution varies only across x-direction. Then, the spatial distribution

of electric field can be written as Exy = Ex.

Further, we consider the solution for the transverse y-component of the electric field.

We assume that Ex = εx ĵ, where ĵ is the unit vector along the y-direction. Substituting (2.4)

into (2.3), we obtain

d2εx

dx2
+
(
k2

0η2 −β 2
)

εx = 0. (2.5)

The refractive indices η0, η1, η2, and η3 are for the respective regions.

d2εx

dx2
+
(
k2

0η2
0 −β 2

)
εx = 0, x < 0 (2.6)

d2εx

dx2
+
(
k2

0η2
1 −β 2

)
εx = 0, 0 < x < a1 (2.7)

d2εx

dx2
+
(
k2

0η2
2 −β 2

)
εx = 0, a1 < x < a2 (2.8)

d2εx

dx2
+
(
k2

0η2
3 −β 2

)
εx = 0. x > a2 (2.9)

Here, the regions x< 0 and x> a2 are outside the waveguide, and the regions 0< x< a1 and

a1 < x < a2 are inside the waveguide. Since no light propagates outside the waveguide, the

assumed solution in the region x < 0 and x > a2 must decay exponentially with the distance

from the surface. On the otherhand, the propagating lights in the region 0 < x < a1 and

a1 < x < a2 are oscillating, and have sinusoidal form. Then the solution of (2.5) for all the

regions are as follows:

εx = ε0eα0x, x < 0 (2.10)

εx = ε1 cos(α1x+φ1) , 0 < x < a1 (2.11)

εx = ε2 cos(α2x+φ2) , a1 < x < a2 (2.12)

εx = ε3eα3x, x > a2. (2.13)
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These solutions are with the unknown parameters such as amplitudes εi, transverse wave

vectors αi, and phases φi, i = 1,2, which are determined from the boundary conditions

by matching the fields in different regions. Substituting these solutions in (2.5) for their

respective region, we have the following relations:

−α2
i +β 2 = k2

i ε2
i , (2.14)

where i = 0,1,2,3 for the respective regions.

In order to apply the boundary conditions and match the field components, we de-

termine the magnetic field from Maxwell equation [85]. For the magnetic field H the

Maxwell equation is:

∇2H − η2

c2

∂ 2H

∂ t2
= 0. (2.15)

The solution of this equation has a similar form to the electric field with a one nonzero

component along the z-direction.

Hxyz = hxe(− jβ z+ jωt)k̂, (2.16)

where k̂ is the unit vector along z-direction. Substituting (2.4) and (2.16) into the Maxwell

equation,

�×E =−1

c
∂H

∂ t
, (2.17)

we obtain the general solution for the magnetic field, expressed through the same parame-

ters, as the electric field:

hx =−ϖα0ε0eα0x, x < 0 (2.18)

hx = ϖα1ε1 sin(α1x+φ1) , 0 < x < a1 (2.19)

hx = ϖα2ε2 sin(α2x+φ2) , a1 < x < a2 (2.20)

hx = ϖα3ε3eα3x. x > a2 (2.21)

where ϖ = jc/ω . The ratio between the field amplitude of the electric and magnetic fields,

h(x)/e(x), is called impedance. The impedance should be continuous on all boundaries at
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x = 0, x = a1, x = a2, i.e. hx = εx. Thus we have the following results.

α0 =−α1 tanφ1, x = 0 (2.22)

α1 tan(α1a1) = α2 tan(α2a1 +φ2), x = a1 (2.23)

α2 tan(α2a2 +φ2) = α3, x = a2 (2.24)

where the following substitutions must be made.

φ1 =−arctan(α0/α1), (2.25)

φ2 = arctan [(α1/α2) tan(α1a1 +φ1)]−α2a1, (2.26)

α0 = (β 2 − k2
0η2

0 )
1
2 , (2.27)

α1 = (k2
0η2

1 )−β 2)
1
2 , (2.28)

α2 = (k2
0η2

2 −β 2)
1
2 , (2.29)

α3 = (β 2 − k2
0η2

3 )
1
2 . (2.30)

The field amplitudes ε are also determined from the boundary conditions.

ε1 = ε0 cosφ1, x = 0 (2.31)

ε2 = ε1
cos(α1a1 +φ1)

cos(α2a1 +φ2)
, x = a1 (2.32)

ε3 = ε2 cos(α2a2 +φ2), x = a2 (2.33)

After substituting Eqs. (2.25)-(2.30) into (2.22) to (2.24), the only remaining variable we

have is the propagation constant β . Light is an electromagnetic wave phenomenon, where

the wave propagates in the form of two mutually coupled vector waves, an electric field

wave E and a magnetic field wave H . Thus the solutions of Eqs. (2.22)-(2.24) provide the

complete spectrum of the light propagation in the waveguide.

2.1.2 Numerical Simulations

In this section, we simulated the imaging principle using (2.22)-(2.24). We obtained the

electromagnetic wave pattern in the single layer optical waveguide and demonstrated the

total internal reflection. We also showed that if an optical waveguide is deformed by an

external force, the light is scattered and seen from the surface of an optical waveguide.
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In order to simplify the simulation, we assume the waveguide is very thin. For a few

millimeter thick waveguide, the wave can be approximated as a ray that uses the geometric

optics approximation method.
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Figure 2.3: (a) The optical waveguide, as seen from its side without deformation, the red

layer indicates PDMS. (b) The optical waveguide, as seen from its side with a deformation;

the deformation is shown by a black cone shape in top PDMS layer.

Fig. 2.3a shows an optical waveguide prior to the light injection, as seen from its side.

PDMS and glass plate layer are represented by the separate colors. The top layer here is

PDMS which is the sensing probe, and the bottom layer is glass plate. The light is injected

from the left side of the waveguide without and with deformation. The result is shown in

Fig. 2.4a and 2.4b. Once the light is injected into the waveguide, a small portion of light

diffracts away because of the discontinuity of the media, air and the waveguide. Because

of Snell’s law, the sinusoidal oscillation of the other light can be seen, and it continues to

propagate in the waveguide.

Also, the formation of tactile image was simulated. We captured the scattered light from

the top surface of the optical waveguide. Fig. 2.5a shows the result. We can verify that since

the light is completely reflected in the optical waveguide, there is no light scattering. Next,
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(a) (b)

Figure 2.4: (a) The light oscillation in the optical waveguide due to the Snell’s law; the

zoomed view shows the light is trapped inside waveguide, and no scattering occurs due to

TIR (b) The light scattering in the waveguide due to deformation; the zoomed view shows

the scattering.

we investigate the light scattering when the waveguide is deformed. In this simulation, the

waveguide is compressed with 20 mm radius tip for about 10 mm deep.
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Figure 2.5: (a) The captured image from the top surface of waveguide before deformation;

TIR occurs (b) The captured image from the top surface of waveguide after deformation.
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2.1.3 Geometric Optics Approximation

The wave optics analysis becomes too complex for the probe with few milimeter thickness

or larger. Therefore, to analyze the critical angle and acceptance angle of the light we

consider geometric optics approximation. The acceptance angle is the maximum angle

within which light is accepted for the total internal reflection. Now, the light wave is

considered as ray. This allows us to calculate the direction of the injected light into PDMS.

Considering the geometry shown in Fig. 2.6, the propagation angle γ in each layer i, i= 1,2

Air

PDMS

Glassplate
Air

1θ

2θ

0η

1η

2η

3η

290 γ
°
−

190 γ
°
−

Total internal reflection

1γ

2γ
2γ

1γ

Figure 2.6: Light propagation as a ray inside waveguide.

are bound by the following relationships because of Snell’s law,

η1sinγ1 = η0sinγ0, (2.34)

η2sinγ2 = η1sinγ1, (2.35)

η3sinγ3 = η2sinγ2. (2.36)

The total internal reflection occurs when γ0 = γ3 = 90◦ at the boundaries of air and waveg-

uide. If the light travels with angle ≥ γi in the corresponding layer, then it will be trapped

inside the layer. So the minimum propagation angle can be found from the critical angle.

The propagation angle γi and the acceptance angle θi are related by,

sinθi = ηisin(90◦ − γi) = ηicosγi =
√

η2
i −η2

i sin2γi, (2.37)



30

which gives

θi = arcsin
(√

η2
i −η2

i sin2γi

)
. (2.38)

Since etaisinγi = η0 = 1 for air, Eq. (2.39) becomes

θi = arcsin
(√

η2
i −1

)
. (2.39)

We consider the PDMS refractive index as 1.41, and obtain θ1 = 39.2◦. In our design, we

chose the light emitting diode with the spatial radiation angle less than 39.2◦.

2.2 TIS Prototype Description

The tactile imaging sensor is used to capture tactile images, force information. The sensor

consists of a sensing probe, a LED unit, and a lens-coupled CCD camera unit. The LED unit

has four white LEDs (4 × 1500 mcd) with a dimmer circuit. The LED unit illuminates the

sensing probe. A pressure on the probe causes the light inside the probe scattered towards

the CCD camera, and a tactile image is formed. The sensing probe utilizes one layer of

soft and transparent polydimethylsiloxane (PDMS) optical waveguide with dimensions of

20 mm × 23 mm × 14 mm and elastic modulus of 27.16 ± 0.57 kPa. The near infrared

CCD camera (Guppy F-044, Allied Vision Technologies, Exton, PA) with resolution 752

pixels × 480 pixels is used for capturing scattered or diffused light. An external force

gauge (Mark-10 Series 3, Mark-10, Long Island, NY) attached on the top of the camera

body measures the applied force. The range of the measured force is from 0 to 50 N with

the resolution of 10 mN. Fig. 2.7 shows the prototype design.

2.3 Mechanical Properties Estimation Algorithm

In this section, we describe the mechanical properties estimation algorithm. The properties

of interest are size, depth, and elastic modulus of the embedded inclusion.

2.3.1 Size Estimation

The TIS size estimation algorithm is based on a 3D interpolation model built using tactile

data. This model captures the dependency among applied normal force, F , number of
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Figure 2.7: Tactile imaging sensor prototype schematics

pixels on the compression-induced image, Np, and the diameter of the imaged inclusion,

l(F,Np). The tactile images were pre-processed before size estimation. We applied an

intensity based threshold which was found from the histogram distribution of the phantom

experiment data. Using the number of pixels and applied force information, we calculated

the size of the tumor region from the following model,

l = p00 + p10F + p01Np + p20F2 + p11FNp + p30F3 + p21F2Np. (2.40)

2.3.2 Depth Estimation

For the depth estimation, we used a model based on depth and minimum force required to

produce the first tactile image. This is given as follows:

b =
Fmin − c1

c2
(2.41)

where b is depth from one surface of the phantom, Fmin is the minimum force, c1 and c2

are constants determined from the experiment. Then the distance of inclusion from another

surface of the phantom can be determined as follows:

h = L− l −b, (2.42)

where L is the total phantom length and l is the estimated inclusion length.
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2.3.3 Elastic Modulus Estimation

Elastic modulus is used to describe the stiffness of an object. It is defined as the slope

of stress-strain curve in the elastic deformation region. The stress is defined as the force

per unit area. The strain is defined as the fractional change of size because of stress. To

calculate stress σi for each tactile image, the following formula is used:

σi =
Fi

Aprobe
, (2.43)

where Fi are the applied forces, i is the index of applied forces, and Aprobe is the tactile

sensor probe surface area.

To estimate the strain εi for each pair of tactile images, the following formula is used:

εi =
|Ii − Imin|

Imin
(2.44)

where Ii is the sum of pixel values of tactile image captured with i-th force and Imin is the

sum of pixel values of tactile image captured at minimum force level. Finally, the elastic

modulus is determined from the stress-strain curve.

2.4 Phantom Experiment and Results

In order to validate the TIS method, a rectangular-shape opaque phantom (90× 90× 17

mm3) with an embedded inclusion (10×10×10 mm3) was fabricated from PDMS (Poly-

dimethylsiloxane). The elastic moduli of the inclusion and the background were calculated

as 45 kPa and 355 kPa, found by using the Instron material properties testing equipment.

The diagonal length of the inclusion cube is 11.90 mm. The inclusion was embedded at 1

mm depth from one side and 6 mm depth from other side. Fig. 2.8 shows the phantom.

During the tactile image collection, TIS was pressed against the inclusion with 0-20 N

forces. A graphical user built in Matlab was used to capture 752×480 pixel image for each

force instance. A brightness threshold of 52 was applied on those tactile images. Then the

mechanical properties of the embedded object were determined.

We found the coefficients p00 = 4.758, p10 = 0.4975, p01 = 6.171 × 10−5, p20 =

−0.04179, p11 = −1.326× 10−6, p30 = 0.0007419 for (2.40). These coefficients were
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chosen based on the estimated depth b of 2.47 mm. Using these values, we estimated the

embedded object size as 11.04 mm. Then we estimated the depth of embedded object from

the laser side surface h as 3.49 mm.
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Table 2.1: TIS experimental results

Properties True measurement TIS estimation Error (%)

l (mm) 11.90 11.04 7.23

h (mm) 6.00 3.49 41.83

E (kPa) 355.00 11.34 96.80

In order to determine elastic modulus, we calculated stress and strain using the TIS

method. From stress-strain curve shown in Fig. 2.10, we obtained the linear regression

curve for 40% strain. The TIS elastic modulus was found to be 11.34 kPa. The size, depth

and elastic modulus estimation results are shown in Table 2.1.

Strain
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

S
tre

ss
 (k

P
a)

0

10

20

30

40
Data
Fitted curve

Figure 2.10: Stress-strain curve for TIS

2.5 Discussion

In this chapter, we present the TIS methods for determining size, depth, and elastic mod-

ulus, which are verified using a phantom experiment at the end. The experimental results
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show that the TIS method work moderately well for the size estimation with 7.23% error.

However, the depth and elastic modulus estimation showed large deviations from the true

measurement 41.83% and 96.80%, respectively. In order to improve the mechanical proper-

ties estimation performance, we propose a dynamic positioning method, which utilizes the

spectral properties and the dynamic positioning information of the inclusion. In the next

chapter, we develop a method for determining the spectral properties such as absorption

coefficient and reduced scattering coefficient of the inclusion.
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CHAPTER 3

DIFFUSE OPTICAL IMAGING

In this chapter, we develop absorption and reduced scattering coefficient determination

method using diffuse optics theory. In order to validate the method, we performed a phan-

tom experiment.

3.1 Absorption and Reduced Scattering Coefficient Determination

We consider a setup for determining the spectral properties of a turbid medium as shown

in Fig. 3.1. A continuous wave point source is located at rs,laser. We define the origin O

at the exit plane of the turbid medium. The light is incident on the surface of the phantom

(turbid medium) at position rs. Inside the medium, the propagation of light is affected

by randomized scattering event and absorption. When photons reach the exit plane of the

turbid medium at rd , they are detected by a CCD camera at rd,ccd . Next, we formulate the

absorption coefficient determination method using diffuse optics theory.

In diffuse optics theory, light radiance is a key quantity, denoted by L(r,Ω̂, t). The light

radiance is defined as the light power per unit area travelling in the Ω̂ direction at position

r and time t. This quantity is governed by the radiation transport equation (RTE), which

is a conservation equation for the radiance in each infinitesimal volume element within a

sample. Assuming a nearly isotropic light source and using a numerical method called “P1

approximation", the light radiance can be expressed in terms of photon fluence rate Φ(r, t)

and photon flux J(r, t) as

L(r,Ω̂, t) =
1

4π
Φ(r, t)+

3

4π
J(r, t)Ω̂. (3.1)

The photon fluence rate Φ(r, t), is defined as the total power per area moving radially

outward from the infinitesimal volume element at position r and time t. The photon flux

J(r, t) is defined as the power per area traveling in the Ω̂ direction at position r and time

t. Assuming isotropic sources and slow temporal variation in photon flux, the RTE can be
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raw images (right).

approximated as the photon diffusion equation (PDE) in time domain:

∇.(D(r)∇Φ(r, t))−υμaΦ(r, t)− ∂Φ(r, t)
∂ t

=−υS(r, t). (3.2)

Here, S(r, t) is the total power per volume emitted radially outward from position r and time

t, the light velocity in the medium is υ , and μa is the absorption coefficient of the medium.

The photon diffusion coefficient D(r) is defined as

D(r) =
υ

3 [μa(r)+μ ′
s(r)]

. (3.3)

Here, μ ′
s(r) is the reduced scattering coefficient. The photon diffusion model validity de-

pends on the isotropy of the light source, which requires the condition

μ ′
s(r)>> μa(r). (3.4)

The rule of thumb is μ ′
s(r)> 10μa(r). In frequency domain, the source term S(r, t) can be

divided in dc and ac parts. For the homogeneous media, (3.2) can be written in frequency

domain as follows:

(
∇2 −μ2

e
)

Φ(r) =−υ
D

S(r). (3.5)
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Here, the diffusion coefficient is assumed to be constant D(r) = D, and μe is the effective

optical attenuation coefficient, which is defined by

μ2
e =

υμa − iω
D

. (3.6)

For a continuous wave source, the angular frequency ω = 0, and (3.6) becomes

μ2
e =

υμa

D
. (3.7)

Using the condition in (3.4) and the relation in (3.3), we write (3.7) as

μ2
e ≈ 3μaμ ′

s. (3.8)

In our case, the wave is generated by a continuous wave laser source with constant power

S. We used the Dirac δ function because of the point source assumption. Then, (3.5) can

be written as:

{
∇2 −μ2

e
}

Φ(r) =−υS
D

δ (r). (3.9)

From (3.8), we see that if μe and μ ′
s are known, we can determine the absorption coefficient

μa.

In order to determine μe analytically, we need to solve (3.9). For that, we need to

find a respective Green’s function. Then this Green’s function can be used to construct

the general solution. In diffuse optical spectroscopy, the most commonly used models for

approximating tissue is a homogeneous semi-infinite medium [87]. In this geometry, a

method of images is employed to find the diffusion equation Green’s functions, subject to

extrapolated boundary condition. Fig. 3.1 shows a few important parameters regarding

the extrapolated boundary. The cylindrical coordinates are used to specify position, i.e.,

r =(ρ,y), where ρ is the lateral separation between the source and the detector. We suppose

a collimated beam is incident upon the turbid medium at rs = (ρ = 0,y = 0) , and then

consider a single normalized isotropic point source at position rs = (ρ = 0,y = y0). For a

detector at (ρ,y), the Green’s function can be written as

G0(ρ,y) =
1

4π

[
e−μer1

r1
− e−μer2

r2

]
. (3.10)
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Here, r1 is the distance between two points located on the light incident and exit surface of

the phantom or medium, and r2 is the distance between two points located at exit surface

and detector sensor. They are defined as,

r1 =
[
(y− y0)

2 +ρ2
] 1

2
, (3.11)

r2 =
[
(y+2yb + y0)

2 +ρ2
] 1

2
. (3.12)

Here, yb is the distance from the air-phantom boundary to extrapolated boundary and y0 =

1
μ ′

s
. For details about the extrapolated boundary condition, see [87].

Assuming the phantom or turbid medium is well modeled by the homogeneous semi-

infinite geometry, the fluence rate can be written as:

Φ(ρ,y) =
SυG0

D
=

Sυ
4πD

[
e−μer1

r1
− e−μer2

r2

]
. (3.13)

In case of the large source detector separation, we have ρ >> (2yb + y0). By setting y = 0,

from (3.11) we get,

r1 =
[
y2

0 +ρ2
] 1

2 = ρ
[

1+
y2

0

ρ2

] 1
2

≈ ρ
[

1+
1

2

y2
0

ρ2

]
. (3.14)

The higher order terms are neglected in the above expansion. Similarly, from (3.12), we

write

r2 =
[
(2yb + y0)

2 +ρ2
] 1

2
= ρ

[
1+

(2yb + y0)
2

ρ2

] 1
2

≈ ρ

[
1+

1

2

(2yb + y0)
2

ρ2

]
. (3.15)
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Using the relations in (3.14) and (3.15), Eq. (3.13) can be written as

Φ(ρ,y) =
Sυ

4πD

[
e(−μer1)

r1
− e(−μer2)

r2

]

= A0

⎡
⎢⎢⎣e

{
−μeρ

(
1+ 1

2

y0
2

ρ2

)}

ρ
(

1+ 1
2

y0
2

ρ2

) − e

{
−μeρ

(
1+ 1

2
(2yb+y0)

2

ρ2

)}

ρ
(

1+ 1
2
(2yb+y0)

2

ρ2

)
⎤
⎥⎥⎦

= A0
e−μeρ

ρ

⎡
⎢⎢⎣e

{
−μeρ

(
1
2

y0
2

ρ2

)}
(

1+ 1
2

y0
2

ρ2

) − e

{
−μeρ

(
1
2
(2yb+y0)

2

ρ2

)}
(

1+ 1
2
(2yb+y0)

2

ρ2

)
⎤
⎥⎥⎦

= A0
e−μeρ

ρ

[{
1− μey0

2

2ρ
+h.o.t.

}(
1− 1

2

y0
2

ρ2
+h.o.t.

)]

−A0
e−μeρ

ρ

{
1− μe(2yb + y0)

2

2ρ
+h.o.t.

}(
1− 1

2

(2yb + y0)
2

ρ2
+h.o.t.

)

≈ A0
e−μeρ

ρ

[
1− μey0

2

2ρ
− 1

2

y0
2

ρ2
+

μey0
4

4ρ3
−1

+
μe(2yb + y0)

2

2ρ
+

1

2

(2yb + y0)
2

ρ2
− μe(2yb + y0)

4

4ρ3

]
. (3.16)

Here, the constant term is written as A0 =
υS

4πD . Also, we neglect the third, fourth, seventh,

eighth terms of (3.16) because of the large source-detector separation assumptions, ρ >>

(2yb + y0) and ρ >> y0. Eq. (3.16) becomes

Φ(ρ,y)≈ A0
e−μeρ

ρ

[
μe(2yb + y0)

2

2ρ
− μey0

2

2ρ

]

= A0
e−μeρ

ρ2

[
2μe(2y0yb + y2

b)
]
. (3.17)

Now, multiplying both sides of (3.17) with ρ2 and then taking logarithm, we get

ln(ρ2Φ(ρ)) = lnA0 −μeρ + ln
[
2μe(2y0yb + y2

b)
]
. (3.18)

The last term in (3.18) is neglected, and we write

ln(ρ2Φ(ρ)) =−μeρ + lnA0 (3.19)

Eq. (3.19) shows the relationship between the fluence rate Φ(ρ) and the source-detector

pair lateral separation ρ . The negative slope of this linear relationship provides the effective
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optical attenuation coefficient which is a function of absorption and reduced scattering

coefficient. In our case, a CCD sensor is used as detector. Now, we shall establish a

relationship between the fluence rate and CCD image parameter.

Choe et al. showed for a lens-coupled CCD camera, the CCD readout is proportional to

fluence rate [88]. The proportional term accounts for the internal amplifier gain, the camera

exposure time, quantum efficiency of the detector, and the source power.

We suppose a CCD image is obtained for each source position rs. The optical signal

detected at CCD plane is read as a set of discrete points of finite size (pixel), and these

pixels form the CCD image. The position rd,CCD denotes the position on CCD detection

plane. The power, P, received by the CCD plane is related to the radiance L(rs,r,Ω̂) by:

P(rs,rd,CCD) =
∫∫
exit

plane

d2r
∫

solid
angle

dΩ̂L(rs,rd,CCD,Ω̂)TF(Ω̂)R(r,rd,CCD,Ω̂). (3.20)

The angular integral is extended over the whole half-space solid angle, and the spatial

integral is extended over the exit plane. Here, TF(Ω̂) is a Fresnel transmission factor at

the boundary, and R(r,rd,CCD,Ω̂) is a response function which provides the probability that

the light emitted from the position r in the Ω̂ direction reached the pixel centered at the

position, rd,CCD. It is assumed that the response function attains a maximum value at r = rd

for a small area of A centered on rd in the exit plane, and for Ω̂ within the numerical

aperture of the CCD detector. Otherwise, the response function is zero.

Eq. (3.20) can be evaluated using Fick’s diffusion law, which relates photon fluence

rate to photon flux,

J(r) =−D
υ

∇Φ(r). (3.21)

We applied the partial boundary condition for the radiance at the exit plane [89],

Φ(r) = 2
1+Re f f

1−Re f f

D
υ

∂Φ
∂y

, (3.22)

where Re f f is the effective reflectance at boundary, and evaluated Eq. (3.20) becomes

P(rs,rd,CCD)≈ Φ(rs,rd)Aξ (rd). (3.23)
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Here, ξ (rd) accounts for the Fresnel factor integral over the system numerical aperture and

the Vignetting effect. Hence, the CCD readout voltage, N(rs,rd,CCD), can be expressed as

N(rs,rd,CCD) = P(rs,rd,CCD)νψΔt. (3.24)

Here, ν is the quantum efficiency of the CCD system, ψ is the internal amplifier gain of

the CCD system, and Δt is the exposure time. Substituting (3.24) into (3.23), we write

N(rs,rd,CCD) = Φ(rs,rd)Aξ (rd)νψΔt. (3.25)

For a specific CCD system, the CCD readout voltage is proportional to the fluence rate,

N(rs,rd,CCD) ∝ Φ(rs,rd). (3.26)

The CCD pixel value is the digitized version of CCD analog read out voltage [90]. There-

fore, the sum of pixel values, I(rs,rd,CCD), is also proportional to the fluence rate. So, we

write

Φ(ρ) = γI(rs,rd,CCD) (3.27)

Here γ is the proportional constant term. The argument (rs,rd) is replaced by ρ . Then,

substituting Eq. (3.27) into (3.19) we obtain,

ln(ρ2I(rs,rd,CCD)) =−μeρ + c0, (3.28)

where the constant term is given by c0 = ln(A0/γ ). From (3.28) we see that the logarithmic

decay of the intensity with increasing source–detector separation can be approximated by

a line with a slope of −μe. The source-detector separation r can be computed using the

geometry of the sample of the turbid medium. The pixel intensity I(rs,rd,CCD) can be

found from the CCD camera image.

Arridge and Lionheart showed that in diffuse optical imaging experiment employing

continuous wave source, it is impossible to separate μ ′
s from μa uniquely [91]. In order

to circumvent this problem, Minagawa et al. selected the absorption coefficient of the

water from the literature for μa, then measure the scattering coefficient only by fitting the

effective attenuation coefficient μe [92]. In our case, we are interested in determining the
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absorption coefficient. We, therefore, determine the effective attenuation coefficient from

the measured light intensity by fitting, and then for a known reduced scattering coefficient,

we obtain the absorption coefficient from:

μa ≈ μ2
e

3μ ′
s
. (3.29)

Eq. (3.28) and (3.29) are two used for determining the absorption coefficient from diffuse

optics information.

3.2 Phantom Experiment and Results

In order to test the method in the above section, we performed an experiment on two phan-

toms with different absorption coefficient. The phantoms were rectangular shape with a

dimension of 90× 90× 17mm3. They were made from PDMS (Polydimethylsiloxane).

Carbon black and TiO2 were used as the absorbing and scattering agents with PDMS. The

absorption coefficient of phantom ‘a’ is 0.3 cm-1 and the coefficient of phantom ’b’ is

0.08cm-1. The reduced scattering coefficient is 6.0 cm-1. A 635 nm laser diode was used

to as near infrared light source.

We used a CCD camera as a detector because the tactile imaging sensor uses the CCD

camera. The camera was focused on a phantom surface of 90×90mm2. Then, we collected

283 diffuse optical images from phantom ‘a’ and 276 images from phantom ‘b’. We plotted

ln(r2I(r)) versus r graph, where r is the source-detector separation and I(r) is the pixel

intensity. From these plots, we found two fitted curves. Comparing the slope of the fitted

curves to (3.28), we determine the effective attenuation coefficient μe. Then, we used (3.29)

for determining the absorption coefficients. The results are listed in Table 3.1.

3.3 Discussion

The phantom experiment showed us that the CCD camera of the tactile imaging sensor

can be used to measure the spectral properties of the inclusion by utilizing the diffuse

optics theory. The μa estimation errors were found to be 68.56% for the phantom ‘a’ and

26.37% for the phantom ‘b’. The variations of the estimation errors were fairly small. This
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Table 3.1: Phantom experiment results for determining absorption coefficient

Phantom True value (cm-1) Estimated value (cm-1) Standard deviation Error (%)

a 0.30 0.5056 0.0522 68.56

b 0.08 0.0589 0.0049 26.37

showed that the method can be used for measuring the spectral properties of the inclusion

consistently. In the next chapter, we introduce the bimodal dynamic imaging method which

utilizes the spectral properties estimation method described in this chapter.



45

CHAPTER 4

BIMODAL DYNAMIC IMAGING

In this chapter, we develop a bimodal dynamic imaging method for determining mechanical

and spectral properties of embedded inclusion. The spectral properties are first estimated

using diffuse optical imaging method described in the previous chapter. Then the mechan-

ical properties are estimated using dynamic positioning imaging method which utilize the

tactile information, source-detector position information, and estimated absorption coeffi-

cients. We describe this bimodal dynamic imaging method in the next section. In order to

validate this method, we performed an experiment on a multimodal phantom.

4.1 Overview of bimodal dynamic imaging System Prototype

Fig. 4.1 shows the schematic of the system. An infrared light source is used to illuminate

a target. A 635 nm laser diode with <5 mW power is used as a light source. A tactile

imaging sensor is used as a detector. The tactile imaging sensor is used to capture tactile

images, force information, and diffuse optical images. The sensor consists of a transparent

sensing probe, a LED unit, and a lens-coupled CCD camera unit. The LED unit has four

white LEDs (4 × 1500 mcd) with a dimmer circuit. The LED unit illuminates the sensing

probe. A pressure on the probe causes the light inside the probe scattered towards the

CCD camera, and a tactile image is formed. The sensing probe utilizes one layer of soft

and transparent polydimethylsiloxane (PDMS) optical waveguide with dimensions. The

near infrared CCD camera (Guppy F-044, Allied Vision Technologies, Exton, PA) with

resolution 752 pixels × 480 pixels is used for capturing scattered or diffused light. An

external force gauge (Mark-10 Series 3, Mark-10, Long Island, NY) attached on the top of

the camera body measures the applied force. The laser diode is mounted on a mechanical

scanning platform, which includes a 2-D linear motion controller and a two-axis gimbal

(Newmark Inc., USA). The linear motion controller is used for controlling the laser position

along the parallel axis of the phantom. The two-axis gimbal is used to control the angular
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position of the laser diode with respect to the phantom.
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Figure 4.1: Bimodal dynamic imaging system schematic.

4.2 Mechanical Properties Estimation using BDI

In this section, we describe the mechanical properties estimation method using bimodal

dynamic imaging. The mechanical properties are size, depth, and elastic modulus.

4.2.1 Size

For the size estimation, the laser diode and TIS are moved in parallel simultaneously along

x-axis. The diffuse images are collected and processed. Then using eqs. (3.28) and (3.29),

the absorption coefficient is determined for each position of laser diode. After this, the

absorption coefficient versus position graph is plotted. We search the location and bound-

ary of embedded object by looking at the variation of absorption coefficient with respect

to position. The region with higher absorption coefficient value with small variation is

considered the size of embedded object, l as shown in Fig. 4.2.
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4.2.2 Depth

After the size estimation, the laser is positioned at the half-length point of the object. The

laser is then maneuvered angularly, with TIS in line of sight of the laser as shown in Fig.

4.2. The laser scanning angle, θ was measured from the current position of the laser and the

initial position of laser when the laser beam was perpendicular to the phantom. The distance

of the laser rotational axis from the phantom is denoted by d. The depth of embedded object

from one surface of phantom (on the laser side) is h, and from the other surface is b. The

initial position of laser, the current position of the laser, the half-length of embedded object

forms a triangle. From this triangle, we estimate the depth of embedded object from laser

side of the phantom as

hest =
s

tanθ
−d (4.1)

Here, s is the half-length of embedded object. For the depth estimation, the pixel intensity

versus scanning angle is plotted. Then, we determine a point Iθ on the pixel intensity graph

where the inclusion does not lie in the line-of-sight of the source and the detector. At this

point, the pixel intensity will be a few times higher (depending on phantom geometry) than

that of the initial position of the laser. The initial position corresponds to the angle 0◦ and
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the angle corresponding to the point Iθ is considered as θ . Then (4.1) is used for the depth

estimation.

4.2.3 Elastic Modulus

Elastic modulus is used to describe the stiffness of an object. It is defined as the slope

of stress-strain curve in the elastic deformation region. The stress is defined as the force

per unit area. The strain is defined as the fractional change of size because of stress. To

calculate stress σi for each tactile image, the following formula is used:

σi =
Fi

Aprobe
, (4.2)

where Fi are the applied forces, i is the index of applied forces, and Aprobe is the tactile

sensor probe surface area. After that, the sizes of inclusion are estimated from μa versus x

plot for multiple force values. Multiple force values produce multiple size estimates. The

strain is then calculated as:

εi =
|xi − xi−1|

l
, (4.3)

where xi is the estimated size from i-th force and xi−1 is the previously estimated size.

Finally, the elastic modulus is determined from the slope of stress-strain linear regression

curve for a specific strain range.

4.3 Spectral Properties Estimation using BDI

We assume that the chromophores contributing to the absorption coefficient are principally

oxyhemoglobin and deoxyhemoglobin. Then, the absorption coefficient of tissue can be

expressed as a linear combination of chromophore concentrations:

μλ
a = ελ

[HbO2]
[HbO2]+ ελ

[Hb][Hb] (4.4)

where ελ
[chromophore] is the molar extinction coefficient of a given chromophore at wave-

length λ , and [HbO2] and [Hb] are concentrations of oxygenated and deoxygenated hemoglobin.

The molar extinction coefficients ελ
[HbO2]

,ελ
[Hb] are obtained from data collected by Scot

Prahl [93].
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In our case, the BDI size experiment differentiates the tissue and tumor region, the

average absorption coefficients for 635 nm (μ635
a ) and for 808 nm (μ808

a ) are determined.

Then the chromophore concentrations are found using the following expression derived

from (4.4): ⎡
⎣[HbO2]

[Hb]

⎤
⎦=

⎡
⎣ε635

[HbO2]
ε635
[Hb]

ε808
[HbO2]

ε808
[Hb]

⎤
⎦−1⎡⎣μ635

a

μ808
a

⎤
⎦ (4.5)

We calculate two more physiological parameters, total hemoglobin concentration, T HC =

[HbO2]+[Hb] and blood oxygen saturation, StO2 = 100× [HbO2]/T HC. These parameters are

often substantially different in rapidly growing tumors; for example, high concentrations of

hemoglobin with low oxygen saturation are suggestive of rapidly growing tumors [94, 95].

4.4 Phantom Experiment

In this section, we describe the bimodal phantom that was used in our experiment.

4.4.1 Bimodal Phantom

In order to validate the BDI method, we fabricated a bimodal phantom that emulates both

mechanical and optical properties of human breast. The phantom was rectangular cube

shape with an embedded cube shape inclusion. The elastic modulus (E) of the inclusion

(tumor region) was kept higher than that of the background (tissue region) since the breast

tumor tends to be stiffer than the surrounding tissue [54]. The tissue region was fabricated

using the RTV 6136-D1 base agent (“A” component) and curing agent (“B” component)

weight ratio of 1:1.3; the tumor region had A:B weight ratio of 1:10. The elastic moduli

were determined by using the Instron material properties testing equipment. The tumor

was embedded at 6 mm depth (h) from one surface of the phantom. The scanning length

(ld) of the cube shape tumor was calculated as 11.90 mm from its diagonal length because

of its orientation as shown in Fig. 4.3. The absorption coefficient (μa) of the human breast

tissue ranges from 0.02-0.12 cm-1; for the reduced scattering coefficient (μ ′
s) the range is

6-15cm-1 [96]. In order to keep the optical coefficient values similar to the human breast

tissue, we added carbon black and titanium dioxide (TiO2) as absorbing and scattering
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agents with PDMS, following a recipe given in [97]. The coefficients were then measured

by a diffuse optical tomography instrument developed by the researchers in the University

of Pennsylvania [97]. The tumor region had higher absorption coefficient value compared

to the tissue region. The reduced scattering coefficient were kept similar for both regions

and satisfied the assumption μ ′
s >> μa. Table 4.1 lists the mechanical and optical properties

of the bimodal phantom.
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Figure 4.3: The bimodal phantom.

Table 4.1: Mechanical and optical properties of the phantom

Phantom Dimension ld h E μa μ ′
s

region (mm3) (mm) (mm) (kPa) (cm-1) (cm-1)

Tissue 90×90×17 - - 45.00 0.082 6.80

Tumor 10×10×10 11.90 6.00 355.00 0.30 6.80
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4.4.2 Experimental Procedure

During the dynamic positioning image collection, the laser was turned on, and the LED

inside TIS was turned off. The laser diode was placed at a distance of 250 mm from light

incident plane of the phantom. The phantom and the TIS were surrounded by a shielding

box. TIS was kept close to the phantom. We moved the laser and TIS in parallel along x-

axis in the same direction and by 4 mm distance. The first laser position (x,z) were on (28

mm, 34 mm) and the last laser position were (76 mm, 34 mm). The laser motion was con-

trolled by the linear motion controller while the TIS was moved manually. For each source

position, we obtained 480×480 pixel image. In the image pre-processing phase, we applied

a brightness threshold value 52. For edge smoothing, we applied the Gaussian filter (with

window of 9×9 and variance = 1) on the images. Using the filtered images, we plotted

ln(r2I(r)) versus r. From this plot, we obtained the least square regression line. Compar-

ing the slope of this regression line with the coefficient of r in (3.28), we calculated the

effective attenuation coefficient μe. For calculating the absorption coefficient μa, we used

the reduced scattering coefficient of the background region of the phantom in (3.29). For

this experiment, the absorption coefficient variation between the tumor and tissue region

with respect to the tissue region coefficient,
(
μa,inc −μa,bg

)
/μa,bg is 275%. This is much

higher than the scattering coefficient variation
(

μ ′
s,inc −μ ′

s,bg

)
/μ ′

s,bg = 11.76%. Therefore,

we assume a constant value for the reduced scattering coefficient μ ′
s = μ ′

s,bg = 6.8 cm-1.

The size experiment was followed by the depth experiment. The laser was put at the

position where the beam was incident on the center of the embedded object. This was the

initial position corresponding to 0◦. We moved the laser angularly, keeping TIS in the line-

of-sight both clockwise and anticlockwise. The laser was moved using the yaw gimbal of

a two-axis gimbal, and the TIS was moved manually. The laser was moved angularly from

0◦ to −12◦ and 0◦ to 12◦ with 1◦ increment. The distance between the laser rotation axis

and inclusion d was measured as 81 mm. The images were collected and analyzed for the

depth estimation using (4.1).

In BDI elastic modulus experiment, we collected images for horizontal position of 35

mm, 44-62 mm, and 68 mm. We used TIS and BDI size experiment results to choose these
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horizontal position ranges. For the object location and its boundary with the background,

we moved the laser source and camera at a step of 1 mm for 44-62 mm range. At each

position, we applied 0-20 N force with 1 N interval and captured the images simultaneously.

4.5 Experimental Results

In this section, we present the experimental results for the bimodal dynamic imaging ex-

periments. The first subsection shows the results from the single measurement of spectral

properties, and the second subsection shows the results from the multiple measurements of

spectral properties.

4.5.1 Mechanical and Spectral Properties Estimation from Single Measurement Ex-

periment

Here, we present the estimated mechanical and spectral properties from the single measure-

ment experiment. The desired mechanical properties are size, depth, and elastic modulus

of the tumor phantom (inclusion). The desired spectral properties are the absorption coef-

ficients of tumor (inclusion) and tissue (background) phantoms. The experimental results

of size l, depth h, elastic modulus E, average phantom background absorption coefficient

μ̄a,bg, average inclusion absorption coefficient μ̄a,inc results are listed in Table 4.2.

4.5.1.1 Size Estimation

For the BDI size estimation, we obtained μa versus x as shown in Fig. 4.4. We found the

object location between x = 48 mm to 60 mm where μa variation is less than 0.001. So, the

size was found to be 12 mm.

4.5.1.2 Depth Estimation

For depth estimation, we plotted the sum of pixel intensity against the scanning angle as

shown in Fig. 4.5. We observed that for this phantom, the pixel intensity increased at a

higher rate after the pixel intensity became approximately two times higher than the initial

position (0◦). We found two such points on the intensity graph and their horizontal axis
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Figure 4.4: Absorption coefficient versus horizontal position graph from parallel scanning.

difference was 2θ = 8◦. Therefore, we considered θ as 4◦, and calculated the depth h as

4.80 mm using (4.1).
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Figure 4.5: Integrated pixel values versus angle graph from angular scanning.
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4.5.1.3 Elastic Modulus Estimation

In order to determine elastic modulus, we calculated stress and strain using the DPSS and

TIS methods. From stress-strain curve, we obtained the linear regression curve for 40%

strain. The TIS elastic modulus was found to be 11.34 kPa, while the BDI elastic modulus

was found to be 89.48 kPa.
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Figure 4.6: Absorption coefficient versus position for different forces.

4.5.1.4 Spectral Properties Estimation

We determined the average value of absorption of the phantom background and inclusion as

0.09 cm -1 and 0.13 cm-1. We attained absorption coefficient errors of 12.50% and 56.67%

for the phantom background and inclusion.

4.5.2 Mechanical and Spectral Properties Estimation from Multiple Measurement

Experiment

Here, we present the estimated mechanical and spectral properties from the multiple mea-

surement experiment. The measurements were performed with 635 nm and 808 nm wave-

lengths of laser. Also, the absorption coefficients and average sum of pixel intensities were
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Figure 4.7: Stress-strain curve from elastic modulus experiment.

Table 4.2: Phantom experiment results for dynamic positioning and comparison with TIS

results (Single measurement)

Properties True TIS Error BDI Error

measurement estimation (%) estimation (%)

l (mm) 11.90 11.04 7.23 12.00 0.80

h (mm) 6.00 3.49 41.83 4.76 20.00

E (kPa) 355.00 11.34 96.80 89.48 74.79

μ̄a,bg (cm-1) 0.08 - - 0.09 12.50

μ̄a,inc (cm-1) 0.30 - - 0.13 56.67

measured multiple times for each position and angle. The desired mechanical properties

are size and depth of the tumor phantom (inclusion). These results can be found in Table
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Figure 4.8: Absorption coefficient versus horizontal position graph for 635 nm from paral-

lel scanning experiment.

4.3. The desired spectral properties are the absorption coefficients of tumor (inclusion) and

tissue (background) phantoms. Also, we showed how chromophore concentrations can be

determined from the absorption coefficient values. These results can be found in Table 4.4.

4.5.2.1 Size Estimation

For the BDI size estimation, we obtained μa versus x graph as shown in Fig. 4.8 for 635

nm and Fig. 5.2 for 808 nm. For each laser position, the mean value of μa with one

standard deviation was shown as errorbar. The embedded inclusion location was estimated

by observing the graph, where a sharp rise and a fall occurred. We estimated the inclusion

(tumor) location between x= 46 mm to 58 mm. For both wavelengths, the size was found

to be 12 mm.
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lel scanning experiment.

4.5.2.2 Depth Estimation

The depth of the inclusion from TIS side surface b was determined as 2.47 mm from the

tactile images. Then we estimated the depth of embedded object from the laser side surface

h as 3.49 mm.

For the BDI depth estimation, we plotted the sum of pixel intensity against the scan-

ning angle as shown in Fig. 4.10. We observed that for this phantom, the pixel intensity

increased at a higher rate after the pixel intensity became approximately two times higher

than the initial position (0◦). We found two such points on the intensity graph and their

horizontal axis difference was 2θ = 8◦. Therefore, we considered θ as 4◦, and calculated

the depth h as 4.80 mm using (4.1).
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Figure 4.10: Average of sum of pixel values versus angle graph from ten angular scanning

experiments.

Table 4.3: Mechanical properties estimation results from multiple measurement experiment

Mechanical True TIS Error BDI Error

Properties value est. (%) est. (%)

Size, ld (mm) 11.90 11.04 7.23 12.00 0.80

Depth, h (mm) 6.00 3.49 41.83 4.76 20.00

4.5.2.3 Spectral Properties Estimation

After locating the tumor (embedded inclusion) region, we calculated the average absorption

coefficients of tissue and tumor region for 635 nm and 808 nm. The tissue absorption coef-

ficients were 0.0611 cm-1 and 0.1030 cm-1 for 635 nm and 808 nm. The tumor absorption
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coefficients were 0.2506 cm-1 and 0.3421 cm-1 for 635 nm and 808 nm.

Then, we estimated the chromophore concentrations of oxygenated and deoxygenated

hemoglobins using (4.5), and finally the total hemoglobin concentration and blood oxygen

saturation. The spectral properties estimation results are listed in Table 4.4. Fig. 4.11

shows quantitative bar graphs of three physiological properties, oxygenated hemoglobin

concentration [HbO2], total hemoglobin concentration, THC, and blood oxygen saturation,

StO2. We observe an elevated level of [HbO2] and StO2 in case of tumor region compared

to tissue region of the phantom. The total hemoglobin concentration for tumor was roughly

three-fold greater than tissue. The blood oxygen saturation of tumor is slightly lower (3%)

compared to tissue.

Table 4.4: Spectral properties estimation results from multiple measurement experiment

Tissue Tumor

Spectral True Estimated Error True Estimated Error

Properties value value (%) value value (%)

μa(cm-1)@635 nm 0.082 0.061 ±0.028 25.50 0.30 0.251±0.032 16.47

μa(cm-1)@808 nm 0.082 0.103±0.002 25.55 0.30 0.342±0.027 14.03

[HbO2] (μM) - 120.031 - - 389.181 -

[Hb] (μM) - 0.351 - - 12.386 -

THC (μM) - 120.381 - - 401.566 -

StO2 (%) - 99.709 - - 96.916 -

4.6 Discussion

In this chapter, a bimodal dynamic imaging system was constructed. In order verify the per-

formance of the system, we measured the size, depth, and elastic modulus of an embedded
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inclusion inside a bimodal phantom. These measurements were compared to the TIS mea-

surements. Also, we estimated absorption coefficients and chromophore concentrations of

the tissue and tumor region of the bimodal phantom.

The experiments showed that BDI provides a better size estimation than TIS. The TIS

size estimation error was 7.23% whereas the BDI method showed 0.80% error. The BDI

size estimation was performed using 635 nm and 808 nm laser. In both cases, we found

the estimation was same. The improved result of BDI was obtained at the cost of hardware

and computation resources. For the depth estimation, the BDI method produced less error

(20.00%) compared to the TIS only method (41.83%). In case of elastic modulus measure-

ment, BDI showed 74.79% error, and TIS showed 96.80% error. The elastic modulus of

soft tissue and cancerous tumor ranges from 10 kPa to 1 MPa [54]. Because of this large

range, even with 100% elastic modulus measurement error, BDI can satisfy a resolution

requirement of 1% of the entire variation range. Similar argument was given by Egorov

and Sarvazyan in case of a large variation of elastic modulus measurement by their breast

mechanical imager [61]. Strictly speaking, both TIS and BDI methods do not consider the

effect of the soft indenter. TIS has a soft probe (indenter), so there is a mutual displace-

ment of indenter and object during compression. We assume that this error is included in

the total measurement error. The elastic modulus determined by the soft indenter of the
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bimodal imaging system may correlate to the elastic modulus obtained by compression

experiment using the instron instrument. Therefore, this data could still be useful. The

further investigation can be conducted in future. Also, in our solid phantom the harder ob-

ject (355 kPa) was embedded inside a softer background (45 kPa). Therefore, the probed

area is not homogeneous and isotropic. The probed area consisting of two different elastic

moduli lowered the effective elastic modulus of the region than that of the object. We only

considered the inclusion elastic modulus for comparison. In the BDI method, the strain

calculation is dependent on the positioning of the source and sensor. In our experimental

setup, the minimum distance travelled by the laser and the camera is 1 mm. This pose a

limitation for the strain calculation.

The accuracy of BDI method relies on the spectral property measurement of the in-

clusion and tissue background. We estimated the average absorption coefficients of tissue

region with 25% error, and tumor region with 14-16% error. Using a similar spectral prop-

erties estimation method, Minagawa et al. reported the reduced scattering coefficient μ ′
s

with deviations of 23%-34% compared to a commercial time-resolved spectroscopy instru-

ment measurement [92]. The embedded inclusion was surrounded by tissue background,

therefore, the variations of absorption coefficient values in tumor region were observed in

the BDI measurement.

The goal of determining chromophore concentrations is to verify whether BDI can dif-

ferentiate between normal tissue and tumor. BDI measurement revealed an increase in

THC for tumor compared to normal tissue. The increase in THC is associated with in-

creased angiogenesis, a correlate of malignant development [68]. The similar trend was

reported when the measurement was performed by photon migration spectroscopy [98],

MR-guided diffuse optical spectroscopy [99], diffuse optical tomography [88], and ultra-

sound guided diffuse optical tomography [100]. The blood oxygen saturation StO2 did not

show a significant difference between normal tissue and tumor. Generally, StO2 is expected

to be lower because of high oxygen demand in cancerous tumor [101]. Choe also did not

find StO2 as a significant discriminator, though Tromberg reported a lower StO2 in tumor

compared to normal tissue [98].

In this chapter, we presented a bimodal dynamic imaging system prototype with meth-
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ods to determine size, depth, and elastic modulus of an embedded inclusion. We found that

the dynamic positioning method performs better than the TIS method. In order to improve

the system performance further, an automatic control system is required for maneuvering

the source and the detector. Under this circumstance, we require to find a control scheme

which will ensure optimum performance for synchronous movement of the source and the

detector. In the next chapter, we derived a game theoretic control strategy considering two

players (the source and the detector) with asymmetric role (one player is leader, and the

other is follower).
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CHAPTER 5

OPEN-LOOP STACKELBERG STATISTICAL GAME CONTROL

In this chapter, we derive the Stackelberg solution of a two-player, nonzero-sum game,

where the leader and the follower optimizes the system performance by shaping the n-th

cumulant of their cost functions, while the follower minimizes the mean of a different cost

function. We introduce the Stackelberg statistical game theory for the automatic control

of the source and detector of the bimodal imaging system. The Stackelberg statistical

game allows sequential and hierarchical moves for the players, while optimizing the n-th

cumulant of each player’s cost function.

5.1 Application of Game Theory for Biomodal Dynamic Imaging

In this section, we introduce the game theory, different types of games and their definitions,

and discuss the application of Stackelberg equilibrium for bimodal dynamic imaging.

5.1.1 Introduction to Game Theory

Game Theory

Cooperative game
(Combinatorial game)

Non-cooperative game
(Procedural game)

Nash equilibrium
(Simultaneous move)

Stackelberg equilibrium
(Sequential move)

Figure 5.1: Game theory classification.
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Fig. 5.1 shows a classification of game theory in context of our application. Game

theory studies the mathematical model of conflict and cooperation among rational decision

makers. It can be classified into two major branches: non-cooperative game theory and co-

operative game theory. The non-cooperative game describes all the moves available to the

decision makers. By contrast, the cooperative game theory describes the possible outcomes

that results if the decision makers join together in different combinations. According to this

notion, the non-cooperative game can be called as procedural game, while the cooperative

game can be called as combinatorial game. The procedural game can have two types of

equilibriums: Nash equilibrium and Stackelberg equilibrium. In Nash equilibrium, the

decision makers act independently in a simultaneous manner, while in Stackelberg equilib-

rium, the decision makers interacts within a hierarchical structure in a sequential manner.

Before justifying the use of Stackelberg equilibrium for our application, we will go through

some preliminary materials of the game theory.

A game can be defined as a description of strategic interactions among multiple deci-

sion makers based on their interests and the constraints on their actions. The systematic

description of different outcomes, which may emerge in a family of games, is called a so-

lution. Game theory deals with the reasonable solutions of games and their properties [32].

In order to describe a game, we need to specify the following terms:

• Players (who are the decision makers?) may be interpreted as individuals or a group

of individuals who make a decision [32].

• Strategies or decision rules (how do players move?) are the options that a player

can choose. What actually will be done depends on the quantities not known yet,

and not controlled by player or decision maker. When a player has fixed strategy, he

cannot influence the course of events further. Any consequence of such a strategy,

after the unknown quantities are realized, is called actions (also called controls) of

that particular player.

• A payoff function (what motivates players?) is a numerical quantity which the play-

ers strive to minimize or maximize [32].

Equilibrium comprises the set of strategies such that every player will choose a payoff-

maximization strategy. In equilibrium state, no player can benefit from changing his or her
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strategy, while the other players keep their strategies unchanged.

A two-player game is called zero-sum game if the sum of the players’ payoff functions

is zero. If the sum is a nonzero constant, it is sometimes called constant sum. This type

of game falls under zero-sum game category, because the sum can be made zero by ap-

propriate scaling and translation. On the other hand, for a nonzero-sum game, the payoff

functions cannot be made zero by any scaling and translation.

In a finite game, the players get to pick their actions out of a finite action set. The finite

game is also known as a matrix game. If the action set is not finite, then the game is called

infinite game. A continuous-kernel game is a type of infinite game, where the action sets

and objective functions are continuous with respect to their action sets.

In a deterministic game, the players’ actions determine uniquely the outcome, whereas

in a stochastic game, at least one player’s payoff function includes an additional variable

with a known probability distribution.

In a complete information game, the description of the game (the players, the payoff

functions, and the underlying probability distribution function (if stochastic)) is common

information to all players; otherwise the game is called an incomplete information game.

A game is a static game if players have access to only the a priori information shared

by all, and none of the players has access to information on the actions of any of the other

players; otherwise we have dynamic game.

In this dissertation, we deal with differential game, a type of dynamic game, where

the states of the players evolve with time variation, and the game is typically described by

differential equations.

5.1.2 Non-cooperative and Cooperative Games

Dynamic games can be divided into two categories: non-cooperative games and coopera-

tive games. These two categories of games differ in how they formalize the interdependence

among the players.

In non-cooperative games, the players act independently; they do not communicate

formally in an effort to coordinate their actions, even though they are aware of each other’s

existence.
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On the other hand, in cooperative games (also known as coalitional games) the players

form coalitions by making agreements about the distribution of payoffs or the choice of

strategies, even if these agreements are not specified or implied by the rules of the game

[102]. In other words, cooperative game theory considers two questions:

• Which player will cooperate with whom, that is, which coalition will tend to form?

• After formation of coalition, what will be the resulting distribution of wealth to each

player?

A cooperative game is populated by a non-empty set N = {1,2, · · · ,n} of players. A

coalition is a subset of the players N. The coalitions can be denoted by C1. The grand

coalition is the set of N of all players. In a coalition, the players are committed to some

common actions. Each coalition is assigned a value of coalition, which can be divided

among the members in any way that the members of coalition choose.

The primary difference between cooperative games and non-cooperative games is

that cooperative games have a binding contract (agreement) among the players, to

which every player must adhere. There is no options for binding agreement in non-

cooperative game.

The terms ‘non-cooperative’ and ‘cooperative’ are not correlated with the degree

of cooperation among the players. Non-cooperative game can model cooperation,

while cooperative game can model competition. The non-cooperative game theory mod-

els all the moves available to the players. By contrast, the cooperative game theory abstracts

away this level of details, and discusses the outcomes that result when the players come to-

gether in different combinations. From this point of view, a non-cooperative game can be

termed as ‘procedural game’, and a cooperative game as ‘combinatorial game’ [103]. These

terms indicate the distinction between non-cooperative and cooperative game theory.

5.1.3 Nash and Stackelberg Equilibrium

In game theory, the Nash equilibrium describes the solution concept of a non-cooperative

game. Each player is assumed to know the equilibrium strategies of the other players, and

no player can benefit from changing his strategy as long as the other players keep their

strategies unchanged [35]. Such games are called Nash games. In Nash games, a single
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player cannot dominate the decision making process.

On the other hand, the Stackelberg equilibrum has the following characteristics [37]

• The players interact with each other within a hierarchical structure. Because of the

hierarchical structure, one player (designated as ‘leader’) has the ability to enforce

his strategy on the other player (designated as ‘follower’). There can be multiple

levels of hierarchy with many leaders and followers. However, for the purpose of

clarity, the discussion is limited to two players.

• The leader begins the game by announcing his strategy. The follower then executes

his policy so as to optimize the follower’s cost function. The leader assumes the

follower’s optimal response, and chooses a strategy which optimize his cost function.

Unlike Nash games, the players make their moves sequentially.

• The decision of a player can impact the other player’s cost function.

5.1.4 Justification of using Stackelberg Strategy for Our Application

For bimodal dynamic imaging, the robot manipulators for the source (laser) and detector

(camera) requires to follow a specified trajectory. The camera and the laser will be in the

line of sight with each other. The camera will track the diffused light from the laser on

a stationary target and avoid any type of collision. Under these circumstances, the game

theory can provide convenient mathematical tools for an efficient trajectory planning and

target tracking for the bimodal dynamic imaging system.

In order to model all the movements of the robot manipulators, the procedural game

model is selected. To maintain the sequential moves between the robot manipulators within

a hierarchical structure, the Stackelberg equilibrium is chosen over the Nash equilibrium.

In the Stackelberg equilibrium, the players make their moves in a sequential manner. The

hierarchical structure of players’ interaction lead one player to assume the role of a leader

and the other as a follower. The leader gets to announce his policy first and makes the first

move. The follower must act rationally and optimize his own cost function. Assuming that

the follower wiil respond optimally, the leader optimizes his cost function, and attains the

Stackelberg equilibrium solution. The hierarchical and sequential nature of players’ inter-

action make the Stackelberg equilibrium a good candidate for the bimodal dynamic imaging
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application. Additionally, the Stackelberg equilibrium ensures a reduced cost value for the

leader compared to the Nash equilibrium.

For the bimodal imaging system, we intend to use a dual arm collaborative robot called

Baxter. Human safety is the primary concern for this type of robot. A type of compliant

actuator is used in Baxter as opposed to non-compliant or stiff actuator. A stiff actuator is a

device, capable of moving to a specific position or tracking a pre-specified trajectory [104].

After reaching the specific position, it remains at that position despite the external forces

exerted on the actuator (within the force limits of the device). A compliant device, on the

other hand, permits deviation from its own equilibrium position, depending on the applied

external force. The stiff actuator is popular in industrial robotics since it improves the

precision, stability, and bandwidth of position-control. On the other hand, reducing the

stiffness of interface provides less inadvertent damage to the environment, more accurate

and stable force control, lower reflected inertia, greater shock tolerance, and the capacity

for energy storage [105,106]. Each link of Baxter is moved by a type of passive compliant

actuator called “series elastic actuator" [107–109]. The series elastic actuator includes a

spring between the motor/gearing elements and the output of the actuator [104]. The series

elastic actuator offers inherent safety, because the springs in these actuators are deformable

by human level input. This construction comes with the cost of the position accuracy of the

robot manipulator.

With a more accurate positioning of the source and the detector while capturing dif-

fused light information, the bimodal dynamic imaging system provides a better estimate of

the absorption and reduced scattering coefficients of tumor. We can see from a previous

experiment that the absorption coefficient values varied for each position (see Fig. 5.2). In

order to reduce the variations, we require to point the source and the detector at the target

with as little variation as possible. In our earlier work on controlling the two-axis gimbaled

laser targeting system, we found that the statistical controller offered a better performance

in minimizing the pointing variation [110]. Hence, we introduce the statistical control con-

cept within the Stackelberg game theoretic control framework. Our Stackelberg statistical

control scheme will allow the leader to minimize the variance of its cost function, which

reduces the pointing variation.
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Figure 5.2: Absorption coefficient versus horizontal position graph for 635 nm from paral-

lel scanning experiment (repeated from Chapter 4).

5.2 Mathematical Preliminaries for Differential Games and Stackelberg Equilibri-

ums

5.2.1 Definitions of Differential Games

In this subsection, we describe the definitions related to differential games. Differential

games discuss a class of decision problems, wherein the evolution of the state is described

by a differential equation, and the players act throughout a time interval. The formulation

of such games are given as follows [36]:

Definition 5.1. A quantitative N-person differential game of pre-specified fixed duration

considers the following (See Def. 5 in Chapter 5 in [36]):

1. An index set N = {1,2, · · · ,N} called the player’s set,

2. A time interval [0,T ] which is specified a priori and which denotes the duration of

the evolution of the game,

3. An infinite set S0 with some topological structure, called the trajectory space of

the game. The elements of S0 are denoted as {x(t),0 ≤ t ≤ T} and constitute the



70

permissible state trajectories of the game. Furthermore, for each fixed t ∈ [0,T ],

x(t) ∈ S0, where S0 is a subset of a finite-dimensional vector space.

4. An infinite set Uk with some topological structure defined for each i ∈ N. Uk is

called the control (action) space of player Pk, whose elements uk(t),0 ≤ t ≤ T are

the control functions or the controls of Pk. Furthermore, there exists a set Sk ⊆ Rmk

so that, for each fixed t ∈ [0,T ], uk(t) ∈ Sk.

5. A differential equation is given as

ẋ(t) = f (t,x(t),u1(t),u2(t), · · · ,uN(t)),x(0) = x0. (5.1)

The solution of the above differential equation describes the state trajectory of the

game corresponding to the N-tuple of control functions uk(t),0 ≤ t ≤ T and the

given initial state x0.

6. A set valued function ηk (·) defined for each k ∈ N as

ηk(t) =
{

x(s),0 ≤ s ≤ εk
t

}
, 0 ≤ ε i

t ≤ t, (5.2)

where εk
t is nondecreasing in t. ηk(t) determines the state information gained and

recalled by Pk at time t ∈ [0,T ]. Specification of ηk (·) characterizes the information

pattern (structure) of Pk. The collection of these information patterns over k ∈ N is

the information patterns or information structures of the game.

7. A sigma-field Ni
t in S0, generated for each k ∈ N by the cylinder sets x ∈ S0,x(s)∈ B,

where B is a Borel set in S0 and 0 ≤ s ≤ εt . Ni
t , t ≥ t0, is called the information field

of Pk.

8. A prespecified class Γk of mappings γi : [0T ]× S0 → Sk, with the property that

uk(t) = γk(t,x) is Ni
t -measurable (i.e. it is adapted to the information field Ni

t ).

Γk is the strategy space of Pk. Each of its elements γk is a permissible strategy for

Pk.

9. Two functionals qk : S0 → R;gi : [0,T ]× S0 × S1 × ·· ·× SN → R defined for each

i ∈ N, so that the composite functional

Lk(u1,u2, · · · ,uN) =
∫ T

0
gi(t,x(t),u1(t),u2(t), · · · ,uN(t))dt +qk(x(T )), (5.3)



71

is well defined for every u j(t) = γ j(t,x),γ j ∈ Γ j( j ∈ N). For each k ∈ N, Lk is the

cost functional of Pk in the differential game of fixed duration.

For a well-defined differential game problem, we impose additional restrictions on f

and Γ, so that the differential equation (5.1) admits a unique solution. We discuss these

restriction in Section 5.4.

Now, there are several information structures within the context of deterministic differ-

ential games.

Definition 5.2. In N-person continuous-time deterministic dynamic game of prespecified

fixed duration [0,T ], Pk’s information structure is called (See Def. 6 in Chapter 5 in [36])

1. open-loop (OL) pattern if ηk(t) = x0, t ∈ [0,T ],

2. closed-loop perfect state (CLPS) pattern if ηk(t) = x(s),0 ≤ s ≤ t, t ∈ [0,T ],

3. ε-delayed closed-loop perfect state (εDCLPS) pattern

if ηk(t) =

⎧⎪⎨
⎪⎩

ηk(t) = {x0} ,0 ≤ t ≤ ε,

{x(s),0 ≤ s ≤ t − ε} ,ε < t
, where ε > 0 is fixed.

4. memoryless perfect state (MPS) pattern if ηk(t) = {x0,x(t)}, t ∈ [0,T ],

5. feedback (perfect state) (FB) pattern if ηk(t) = {x(t)}, t ∈ [0,T ].

5.2.2 Definitions of Static Stackelberg Solution Concept

In this subsection, we describe the definitions related to Stackelberg solution concept within

the context of a two-player finite game [36]. Let Γ1 and Γ2 be the pure strategy space of

the players: the leader P1 and the follower P2. Let Jk(γ1,γ2) denote the cost incurred

to Pk corresponding to a strategy pair {γ1 ∈ Γ1,γ2 ∈ Γ2}. Then we have the following

definitions [36].

Definition 5.3. In a two-player finite game, let D2(γ1)⊂ Γ2 be the rational reaction of P2

to the strategy γ1 ∈ Γ1. The rational reaction set is then defined for each γ1 ∈ Γ1 by

D2(γ1) = {ξ ∈ Γ2 : J2(γ1,ξ )≤ J2(γ1,γ2), ∀γ2 ∈ Γ2} . (5.4)
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Definition 5.4. In a two-player finite game where P1 is the leader, a strategy γ1 ∈ Γ1 is

called a Stackelberg equilibrium strategy for the leader, if

max
γ2∈D2(γ∗1 )

J1(γ∗1 ,γ2) = min
γ1∈Γ1

max
γ2∈D2(γ1)

J1(γ1,γ2)� J∗1 , (5.5)

where J∗1 is the Stackelberg cost of the leader.

Theorem 5.1. Every two-player finite game admits a Stackelberg strategy for the leader.

Proof: The proof is given in [36].

Remark 5.1. The Stackelberg strategy for the leader does not necessarily have to be

unique. Since the Stackelberg cost of the leader is unique, nonuniqueness of the equilibrium

strategy does not create a problem in this scenario.

Remark 5.2. If D2(γ1) is a singleton (a set with exactly one element) for each γ1 ∈ Γ1,

there exists a mapping T2 : Γ1 → Γ2 such that γ2 ∈ D2(γ1) implies γ2 = T2γ1. Thus the

optimal response of the follower T2 is unique for every strategy of the leader. It leads to

the following simplified version of (5.5) in Definition 5.4:

J1(γ∗1 ,T2γ∗1 ) = min
γ1∈Γ1

J1(γ1,T2γ1)� J∗1 , (5.6)

From the follower’s point of view, the equilibrium strategy in a Stackelberg game is any

optimal response to the announced Stackelberg strategy of the leader. This can be defined

as:

Definition 5.5. If γ∗1 ∈ Γ1 is a Stackelberg strategy for the leader P1, then any element

γ∗2 ∈ R2(γ∗1 ) is an optimal strategy for the follower P2, that is in equilibrium with γ∗1 . The

strategy pair {γ∗1 ,γ
∗
2} is a Stackelberg solution for the game with P1 as the leader. The cost

pair {J1(γ∗1 ,γ
∗
2 ),J2(γ∗1 ,γ

∗
2 )} is the corresponding Stackelberg equilibrium outcome.

5.2.3 Stackelberg Stochastic Differential Game

In a two-player Stackelberg stochastic differential Game, the state evolves according to

ẋ(t) = [ f (t,x(t),u1(t),u2(t))]dt +σ(t,x)dw(t), x(t0) = x0,
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where x is state vector, u1(.),u2(.) are the control vectors for the leader and the follower,

and x0 is a deterministic initial condition. Here, dw(t) is a Gaussian random process of

dimension d with zero mean, covariance of W (t)dt. The random process is defined on a

probability space (Ω0,F ,P) where Ω0 is a non-empty set, F is a σ -algebra of Ω0, and

P is a probability measure on (Ω0,F ). Let, {Ft}0≤t≤T is the natural filtration generated

by w(t). The player 1 is the leader and the player 2 is the follower.

The cost functions are

Lk(u1,u2) = qi(x(T ))+
∫ T

0
gi(t,x(t),u1(t),u2(t))dt, k = 1,2,

where [0,T ] is the duration of the game.

Earlier we describe the continuous-time deterministic differential game on fixed dura-

tion [0,T ] and its different information structure η according to the Defs. 5 and 6 in Chapter

5 in [36]. In stochastic case, the state equation is driven by a Brownian motion. Therefore,

the players’ decisions are affected by the filtration {Ft}0≤t≤T . Thus, the notions of the

information structures are extended to stochastic settings:

• open-loop pattern if ηk(t) = {x0,Ft}, t ∈ [0,T ],

• closed-loop perfect state pattern if ηk(t) = {x(s),Ft}, 0 ≤ s ≤ t, t ∈ [0,T ],

• memoryless perfect state pattern if ηk(t) = {x0,x(t),Ft}, t ∈ [0,T ],

• feedback pattern if ηk(t) = {x(t),Ft}, t ∈ [0,T ].

5.3 Paper Summary: “Stackelberg Strategies in Linear-Quadratic Stochastic Dif-

ferential Games" (Open Loop Case)

The theory developed in this chapter is an extension of the work described in [46]. The pa-

per derives the Stackelberg solution to a two-player stochastic differential games described

by a linear state dynamics and two quadratic objective functions. The information struc-

ture of the problem is such that the players make the measurement of the initial states, that

is, the information structure is of open-loop. The players are allowed to construct their

controls using the open-loop information structure.

Following are the steps considered for determining Stackelberg strategies in linear-

quadratic stochastic differential games.
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• Step 1: Describe a two-player linear stochastic differential game.

• Step 2: Describe the quadratic objective functions of two players.

• Step 3: Assign the leadership and the followership to the players and introduce the

minimization problem. under Stackelberg framework.

• Step 4: Convert the game problem into an equivalent Stackelberg static game prob-

lem in Hilbert space using inner products and Volterra operators.

• Step 5: For a fixed leader strategy, solve the minimization problem for the follower.

• Step 6: Considering the follower solution, express the modified objective function

for the leader. The leader faces a nonstandard stochastic optimization problem.

• Step 7: Solve the nonstandard stochastic optimization problem faced by the leader.

This solution provides the Stackelberg strategy for the leader.

We put effort to use the similar symbols and notations used in the paper [46]. We use

the player indices as subscript instead of superscript as in the paper [46].

5.3.0.1 Step 1: Linear State Dynamics

The two-player continuous-time nonzero-sum game is described by a Itô sense stochastic

differential equation:

dxt = [A(t)xt +B1tu1t +B2tu2t ]dt +F(t)dWt , t ≥ t0,xt0 = x0,

where x0 is random vector with known statistics, such that E {|x0|}< ∞ and {Wt , t ≥ t0} is

an n-dimensional standard Brownian motion. A(·), B1(·), B2(·), and F(·) are appropriate

dimensional matrices with continuous entries on
[
t0, t f

]
. {u1t , t ≥ t0} and {u2t , t ≥ t0} are

r1-dimensional and r2-dimensional stochastic processes denoting the controls of the player

1 and the player 2.

The players make independent noisy measurements of the initial state x0, denoted by

yi, i = 1,2. The conditional joint distribution of (y1,y2), given x0 is a priori known. The

information available to each player is static in nature.

Let Hi, i = 1,2, denote the class of second-order stochastic processes defined on
[
t0, t f

]
,

which are yi-measurable. The strategy γi is a real Borel-measurable mapping. Let Γ be the

space of all Borel-measurable functions. Therefore, each permissible γi requires to be in
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Γi. So, γi(·,yi) is in Hi.

5.3.0.2 Step 2: Quadratic Objective Functions

The quadratic objective functions are defined as follows:

J1(γ1,γ2) = E
{

x′t f
Q1 f xt f +

∫ t f

t0

[
x′tQ1(t)xt +u′1tu1t +u′2tR(t)u2t

]
dt | uit = γi(t,yi), i = 1,2

}
,

J2(γ1,γ2) = E
{

x′t f
Q2 f xt f +

∫ t f

t0

[
x′tQ2(t)xt +u′2tu2t+

]
dt | uit = γi(t,yi), i = 1,2

}
,

where

Qi f ≥ 0, Qi(·)≥ 0, R(·)≥ 0.

5.3.0.3 Step 3: Introduction of Stackelberg Solution Concept

This paper considers player 1 as the leader and player 2 is considered as the follower. For

each γ̄1 ∈ Γ1, there exists a unique γ̄2 ∈ Γ2 that minimizes J2(γ̄1,γ2) over Γ2. This implies

the existence of a unique map T : Γ1 → Γ2 such that

J2(γ1,T γ1)≤ J2(γ1,γ2),

for all γ2 ∈ Γ2 and for every γ1 ∈ Γ1. Now, consider the minimization of the function

J1(γ1,T γ1) over Γ1. If γ1o ∈ Γ1 denote one minimizing solution; that is,

J1(γ1o,T γ1o)≤ J1(γ1,T γ1), ∀γ1 ∈ Γ1,

then, the pair (γ1o,γ2o = T γ1o) provides a Stackelberg solution for the game problem under

consideration.

5.3.0.4 Step 4: Conversion of Game Problem in Hilbert Space

This approach is identical as in [45]. The objective functions are re-expressed as follows:

J1(γ1,γ2) = 〈Q1(L1γ1(·,y1)+L2γ2(·,y2)+ r),(L1γ1(·,y1)+L2γ2(·,y2)+ r)〉 f

+ 〈γ1(·,y1),γ1(·,y1)〉1 + 〈γ2(·,y2),Rγ2(·,y2)〉2,

J2(γ1,γ2) = 〈Q2(L1γ1(·,y1)+L2γ2(·,y2)+ r),(L1γ1(·,y1)+L2γ2(·,y2)+ r)〉 f

+ 〈γ2(·,y2),γ2(·,y2)〉2.
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Following definitions are used to re-express the objective functions.

〈 u,v〉i = E
{∫ t f

t0
u′t(ω)vt(ω)dt

}
,

where {u ∈ H1}, ω ∈ Ω, with (ω,B,P) denoting underlying probability space. With

these inner products, Hi, i = 1,2 become Hilbert spaces.

〈 x,z〉 f = E
{

x′t f
(ω)zt f (ω)+

∫ t f

t0
x′t(ω)zt(ω)dt

}
,

(Qix)t =

⎧⎪⎨
⎪⎩

Qi(t)xt(ω), t0 ≤ t < t f ,

Qi f xt f (ω), t = t f .

(Liu)t(ω) =
∫ t

t0
Φ(t,s)Bi(s)uis(ω)ds,

x(t) = Φ(t, t0)x0 +
∫ t

t0
Φ(t,s)Bi(τ)ui(ω)dτ +

∫ t

t0
Φ(t,s)F(s)dW (ω),

x(t) = r(t,ω)+
∫ t

t0
Φ(t,s)Bi(τ)ui(ω)dτ.

5.3.0.5 Step 5: The Follower Solution For A Fixed Leader Strategy

For fixed γ1 ∈ Γ1, the minimization of J2(γ1,γ2) is equivalent to the control of minimizing

the problem of minimizing

J2(u2) = 〈Q2(L1γ1(·,y1)+L2u2(·,y2)+ r),(L1γ1(·,y1)+L2u2(·,y2)+ r)〉 f

+〈u2(·,y2),u2(·,y2)〉2.

for u2 ∈ H2. J2(u2) has the unique minimum

u2 =−(I +L ∗
2 Q2L2)

−1L ∗
2 Q2(L1γ1(·,y1)+ r).

Substituting the above control u2 for γ2(·,y2) in the leader objective function gives an ex-

pression, by which the existence of a unique Stackelberg solution can be guaranteed.

5.3.0.6 Step 6: The Leader Objective Function Considering The Follower’s Mini-

mized Control

This step outlines a nonstandard optimization problem faced by the leader after the fol-

lower’s minimized control. The details can be found in [111].
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For each γ1 ∈ Γ1, the control u2 ∈ H2 that minimizes J2(u2) is given by

u2t =−B2 [S2(t)E {xt |y2}+ k2t ] ,

where,

Ṡ2(t) =−A′(t)S2(t)−S2(t)A(t)−Q2(t)+S2(t)B2(t)B′
2(t)S2(t),

S2(t f ) = Q2 f ,

k̇2t =−[A′(t)−S2(t)B2(t)B′
2(t)

]
k2t −S2(t)B1(t)E {γ1(t,y1)|y2} ,

k2t f = 0.

Using the follower control expression and denoting E {γ1(t,y1)|y2} by x̂2t , we get the

following expression from the state dynamics

dx̂2t =
[
A(t)−B2(t)B′

2(t)S2(t)
]

x̂2tdt −B2(t)B′
2(t)k2tdt +B1E {γ1(t,y1)|y2}dt,

x̂2t0 = E {x2t0 |y2}= E {x0|y2} .

If et = xt − x̂2t , then

det = A(t)et +B1γ1(t,y1)dt −B1(t)E {γ1(t,y1)|y2}dt +F(t)dWt ,

with

et0 = x0 −E {x0|y2} .

In terms of the new variables x̂2t , et , and k2t , we can express the leader objective func-

tion as follows:

J1(γ1,T 1
2 γ1) = x̂′2t f

Q1 f x̂2t f + e′t f
Q1 f et f

+
∫ t f

t0

[
x̂′2tQ1(t)x̂2t + e′tQ1(t)et

]
dt

+
∫ t f

t0

[{
x̂′2(t)S2(t)k′2t

}
B2(t)R(t)B′

2(t){S2(t)x̂2t + k2t}+ γ ′1(t,y1)γ1(t,y1)
]

dt.
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5.3.0.7 Step 7: Determination of Stackelberg Strategy

Theorem 5.2. The two-person nonzero-sum stochastic differential game with static infor-

mation admits a unique Stackelberg solution. The leader’s Stackelberg strategy is given

by

γ1o(t,γ1) =−B1(t)′
[(

Ψ′(t f , t)−S2(t)F ′(t f , t)
)

Q1 f ˆ̂x21t f +Φ′(t f , t)Q1 f ê1t f

]
−B1(t)′

∫ t f

t

[(
Ψ′(σ , t)−S2(t)F ′(σ , t)

)(
Q1(σ) ˆ̂x21σ +S2(σ)ẑσ

)
+Φ′(σ , t)Q1(σ)ê1σ

]
+B′

1S2(t)
∫ t

t0

[
F(t,σ)

(
Q1(σ) ˆ̂x21σ +S2(σ)ẑσ

)−Ψ(t,σ)ẑσ
]

dσ ,

where

ẑt = B2(t)R(t)B′
2(t)

[
S2(t) ˆ̂x21t + k̂21t

]
,

and ˆ̂x21t , ê1t , k̂21t satisfy the differential equations

˙̂̂x21t =
(
A−B2(t)B′

2(t)S2(t)
)

ˆ̂x21t +B1(t)E {E {γ1o(t,y1)|y2}|y1}−B2(t)B′
2(t)k̂21t ,

˙̂e1t = Aê1t +B1(t)γ1o(t,y1)−B1(t)E {E {γ1o(t,y1)|y2}|y1} ,
˙̂k21t =−(A−S2B2(t)B′

2(t)
)

k̂21t −S2(t)B1(t)E {E {γ1o(t,y1)|y2}|y1} ,
ˆ̂x21t0 = E {E {x0|y2}|y1} ,
ê1t0 = E {x0|y1}−E {E {x0|y2}|y1} ,
k̂21t f = 0.

The corresponding unique optimal response strategy of the follower is given by

γ2o(t,γ2) =−B2 [S2(t)E {x̂2t |y2}+ k2t ] .

The relevant terms are defined in step 5 and step 6. These are stated again below for

convenience.
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ˆ̂x21t = E [x̂21t | y1] = E [E [xt | y2] | y1] ,

et = xt − x̂21t = xt −E [xt | y2] ,

k̇21t =−[A−S2B2B′
2

]
k2t −S2B1E [γ1 | y2] ,

k2t f = 0,

where xt is the state variable at time t, yi is the noisy measurement of the states by the i-th

player, and γi is the decision law (strategy) of the i-th player.

Proof:The proof is given in [46].

5.4 Open-Loop Statistical Stackelberg Problem Formulation

In this section, we formulate a two-player Stackelberg statistical game problem for a non-

linear system. We consider open-loop information structure for both players.

5.4.1 Preliminaries

We consider a two-player n-dimensional stochastic system described by a nonlinear Itô-

sense stochastic differential equation.

dx(t) = [ f (t,x(t),u1(t),u2(t))]dt +σ(t,x)dw(t), (5.7)

where t ∈ [t0, t f ] = T , x(t) ∈R
n is the state vector, x(t0) = x0 is the initial state, and x(t f ) =

x f is the final state. We denote the control of player 1 and player 2 by u1(t) and u2(t)

which are a subset of the sets of admissible control U1 ⊂ R
r1 and U2 ⊂ R

r2 . Player 1 is

denoted by P1 and player 2 is denoted by P2. Here, dw(t) is a Gaussian random process

of dimension d with zero mean, covariance of W (t)dt. The random process is defined on a

probability space (Ω0,F ,P), where Ω0 is a non-empty set, F is a σ -algebra of Ω0, and

P is a probability measure on (Ω0,F ). Let, {Ft}0≤t≤T is the natural filtration generated

by w(t).

The following conditions are sufficient for existence and uniqueness of the states x(t)

[112]. Let Q0 =
[
t0, t f

)×R
n and let Q̄0 denote the closure of Q0, where Q̄0 = T ×R

n.
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• We assume that f : Q̄0 ×U1 ×U2 → R
n is C1(Q̄0 ×U1 ×U2) and σ : Q̄0 → R

n×d is

C1(Q̄0). In other words, f and σ are defined and Borel measurable on the closure of

Q̄0.

• In addition, f and σ satisfy linear growth conditions [112]. There exists a positive

constant C such that,

‖ f (t,x(t),u1(t),u2(t))‖ ≤C(1+‖x‖+u1 +u2),

σ(t,x)≤C(1+‖x‖), (5.8)

with (t,x(t),u1(t),u2(t)) ∈ Q̄0 ×U1 ×U2 → R
n, (t,x(t)) ∈ Q̄0, and ‖.‖ is the Eu-

clidean norm. The above condition (5.8) represents the linear growth, which prevents

the state x from becoming unbounded in finite time.

• f and σ also satisfy local Lipschitz condition [112]. We assume that there exists a

constant K such that

‖[ f (t,x(t),u1(t),u2(t)]− [ f (t, x̌(t), ǔ1(t), ǔ2(t)]‖ ≤K(‖x− x̌‖+
2

∑
k=1

‖uk − ǔk‖),

‖σ(t,x)−σ(t, x̌)‖ ≤K‖x− x̌‖, (5.9)

with t ∈ T , x, x̌ ∈ R
n, and u, ǔ ∈Uk.

We consider a Stackelberg non-cooperative equilibrium solution concept, which is also

known as the Stackelberg solution concept. In this concept, one of the players is the leader,

the other one is the follower. Furthermore, it allows one of the players to have access to the

strategy of the other player. Let P1 be the leader and P2 be the follower. The convention

adopted in this chapter is that the leader P1 announces his strategy first, and the follower P2

reacts accordingly. For each of P1’s strategy, P2 will choose an optimal strategy. If this is

repeated for each of the P1’s strategies under a given information structure, then we obtain

a rational reaction set or optimal response set for P2. Minimization of the cost function

statistics over that reaction set yields the optimal strategy for P1 under the Stackelberg

solution concept [44, 45].

We assume that both the players make independent noisy measurements of the initial

state x0. We also assume that the information available to each player is static, that is, the
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conditional joint distribution of (η1,η2), given x0, is known a priori. This type of informa-

tion structure is called open-loop (OL) pattern [36, p. 212]. The information structure of

the leader is denoted by η1 = {x0,Ft}. The information structure of the follower is denoted

by η2 = {x0,u1(.),Ft} because the follower makes his decision after the leader announces

his strategy.

Let Hk, k = 1,2 denote the class of second-order stochastic processes defined on [t0, t f ]

which are ηk-measurable. Let Γk be a class of real Borel-measurable mappings γk : [t0, t f ]×
Rpk → Rrk , where pk is the dimension of ηk, and rk is the dimension of uk. Γk is the

strategy space of Pk, where the Borel-measurable functions are g : [t0, t f ]×Rpk → Rrk , with

restriction of E
{∫ t f

t0 ‖g(t,ηk)‖2
}

dt < ∞. Each of Γk’s elements γk is a permissible strategy

for Pk. So, the controllers are defined as,

uk(t) = γk(t,ηk), (5.10)

where γk(t,ηk) ∈ Hk. For ease of notation, we suppress the dependence of t and ηk in the

argument of γk. We assume that γk satisfies Lipschitz and linear growth conditions. Note

that, for each pair of elements in H1 ×H2, the stochastic differential equation (5.7) admits

a unique solution [113]. For an admissible pair of strategies (γ1 ∈ Γ1,γ2 ∈ Γ2), the cost

functions for the players are given by,

Jk(t,x(t),γk) = ψk(x(t f ))+
∫ t f

t
Lk(s,x(s),γk)ds k = 1,2, (5.11)

where Lk : Q̄0 ×Γ1 ×Γ2 → R
+ is C(Q̄0 ×Γ1 ×Γ2) and ψk : Q̄0 → R

+ is C(Q̄0) with both

satisfying polynomial growth condition,

‖Lk(t,x(t),γk)‖ ≤ c1(1+‖x‖+
2

∑
k=1

‖γk‖)c2 , (5.12)

‖ψk‖ ≤ c1(1+‖x‖)c2 , (5.13)

for constants c1 and c2. Here, Lk is the running cost and ψk is the terminal cost. These

conditions allow the mean of the cost function to be finite [114].

Definition 5.6. The i-th cost moment function Mi
k of the k-th player is defined by [40],

Mi
k (t,x,γk) = E

{
Ji

k(t,x,γk|x(t) = x
}
= Etx

{
Ji

k(t,x,γk
}
, (5.14)

where i = 1,2, . . . ,m, k = 1,2, and Etx = E {·|x(t) = x}.
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Definition 5.7. A function M : Q̄0 →R
+ is an admissible mean cost function if there exists

a strategy γk(t,x) such that

Mi
k(t,x) = Mi

k(t,x;γk), k = 1,2, i = 1,2 for t ∈ T,x ∈ R
n (5.15)

Definition 5.8. Similarly, m-th cost cumulant function V m
k (t,x) of the k-th player in relation

to the cost moment function is defined by [115],

V m
k (t,x,γk) = Mm

k (t,x)−
m−2

∑
i=0

(m−1)!

i!(m−1− i)!
Mm−1−i

k (t,x)V i+1
k (t,x), (5.16)

where k = 1,2, t ∈ T = [t0, t f ], x(t0) = x0, x(t) ∈ R
n.

Also, V m
k is the admissible m-th cost cumulant function for the k-th player related to

the moment function through the moment-cumulant relation (5.16). Here, V m
k is also called

the m-th value function for the k-th player. Note that the superscript of V m
k indicates

cumulant index and the subscript denotes the player index.

5.4.2 Problem Definition

Now, we introduce Stackelberg solution concept for the differential game under statistical

control framework. In stochastic Stackelberg game, the value function is the expected value

(first cumulant) of the cost function. In statistical control, the concept of value function

is extended, and generalized for second cumulant, third cumulant, and so on (up to m-

th cumulant). Therefore, for statistical Stackelberg game, we shall introduce the value

function used in statistical control, that is, the m-th cumulant of the cost function.

Let Γm
1 and Γm

2 be the strategy space of the players P1 and P2. The cost incurred to the

players are the value functions, that is, the m-th cost cumulants denoted by V m
1 (t,x(t),γm

1 ,γ
m
2 )

and V m
2 (t,x(t),γm

1 ,γ
m
2 ). Here, (γm

1 ,γ
m
2 ) is the strategy pair of the players P1 and P2 such

that γm
1 ∈ Γm

1 ,γ
m
2 ∈ Γm

2 . The player that selects his strategy first is called the leader, and the

player that selects his strategy second is called the follower. Unless otherwise stated, the

Stackelberg strategy will refer to the Stackelberg strategy with player P1 as the leader, and

P2 as the follower.
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Definition 5.9. For any constant policy γm
1 ∈ Γm

1 , there exists a unique mapping Tmm
2 :

Γm
1 → Γm

2 such that

V m
2 (γm

1 ,T
mm
2 γm

1 )≤V m
2 (γm

1 ,γ
m
2 ), ∀γm

2 ∈ Γm
2 , (5.17)

and every γm
1 ∈ Γm

1 .

For ease of notation, we suppress t, x(t) from the arguments of V m
2 . We shall also

suppress the superscript of γ . The mapping functions for various combinations of strategy

pair are listed in Table 5.1. Note that the first the superscript of T indicates P1’s targeted

cumulant index, and the second superscript indicates P2’s targeted cumulant index. The

subscript denotes the player index as usual.

Table 5.1: Follower’s mapping

Follower’s strategy →
Leader’s strategy γ1

2 γ2
2 γ3

2 γ4
2 · · · γm

2

↓ γ1
1 T11

2 T12
2 T13

2 T14
2 · · · T1m

2

γ2
1 T21

2 T22
2 T23

2 T24
2 · · · T2m

2

γ3
1 T31

2 T32
2 T33

2 T34
2 · · · T3m

2

γ4
1 T41

2 T42
2 T43

2 T44
2 · · · T4m

2
...

...
...

...
...

...
...

γm
1 Tm1

2 Tm2
2 Tm3

2 Tm4
2 · · · Tmm

2

The Stackelberg strategy is the optimal strategy for the leader if the follower reacts by

playing rationally. Let the graph D2 =
{
(γ1,γ2) ∈ Γm

1 ×Γm
2 : γ2 = Tmm

2 γ1

}
of the mapping

Tmm
2 is a rational reaction set of the follower. This set represents the strategy pairs in

Γm
1 ×Γm

2 , according to which the follower reacts to every strategy γ1 ∈ Γm
1 chosen by the

leader. By playing the according to the set D2, the follower is considered to be a rational

player.

We consider an open set Q⊂Q0 and let the k-th player cost cumulant functions V j
k (t,x)∈

C1,2
p (Q)∩C(Q̄) for j = 1,2, . . . ,m− 1 be admissible cumulant functions, where the set



84

C1,2
p (Q)∩C(Q̄) means that the function V j

k satisfy polynomial growth condition and is con-

tinuous in the first and second derivatives of Q, and continuous on the closure of Q. We

assume that the existence of an optimal strategy for the leader γ∗1 ∈ Γm
1 and optimal value

function V m∗
1 (t,x) ∈C1,2

p (Q)∩C(Q̄) for the leader P1.

The leader P1 first announces a constant policy. Then, the follower P2 reacts optimally

by adopting a unique strategy, which minimizes the follower m-th value function V m
2 (γ1,γ2)

over Γm
2 . Now, we consider the minimization of the m-th cumulant function of the leader

V m
1 (γ1,T

mm
2 γ1) over Γm

1 . Let γ∗1 be a minimizing solution; that is

V m
1 (γ∗1 ,T

mm
2 γ∗1 )≤V m

1 (γ1,T
mm
2 γ1) ∀γ1 ∈ Γm

1 , (5.18)

where Tmm
2 : Γm

1 → Γm
2 is a mapping for the m-th cumulant and V m

1 is m-th value function

(m-th cost cumulant) of the leader P1. Then, we call the strategy pair (γ∗1 ,γ
∗
2 ) ∈ Γm

1 ×Γm
2

the Stackelberg solution of the dynamic game problem considered above, with P1 as the

leader. Thus, the statistical game problem is to find the Stackelberg strategy pair (γ∗1 ,γ
∗
2 ) or

γ∗1 ,T
mm
2 γ∗1 which results in minimal m-th value function V m∗

1 given as

V m
1 (γ∗1 ,T

mm
2 γ∗1 ) = min

γ1∈Γm
1

V m
1 (γ1,T

mm
2 γ1)�V m∗

1 . (5.19)

Remark 5.3. Note that the optimal value function for the leader V m∗
1 (t,x) will be found with

the assumption that lower order cumulants, V j
k (t,x), are admissible for j = 1,2, . . . ,m−1.

Same goes for the follower’s m-th value function V m∗
2 (t,x) minimization. For instance, in

the second cumulant minimization for the leader, all the strategies that give a pre-specified

first cumulant are found and within this set, the optimal strategies that minimize the second

cumulant value function are found.

5.4.3 Special Case: Linear Quadratic System and Minimum Cost Variance for Leader

In this section, we formulate the above game problem for a linear system with quadratic

cost functions.

We obtain the two-player n-dimensional linear stochastic system described by an Itô-

sense stochastic differential equation by using the following relation,

f (t,x(t),uk(t)) = A(t)x(t)+B1(t)u1(t)+B2(t)u2(t), (5.20)
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to substitute f , and F(t) to substitute σ(t,x) in (5.7). The linear system is given as,

dx(t) = [A(t)x(t)+B1(t)u1(t)+B2(t)u2(t)]dt +F(t)dw(t), k = 1,2 (5.21)

where t ∈ [t0, t f ] = T , x(t) ∈R
n is the state vector, x(t0) = x0 is the initial state, and x(t f ) =

x f is the final state. We denote the control of the k-th player by uk(t) which is a subset of the

sets of admissible control Uk ⊂ R
rk , where k = 1,2. A(·), B1(·), and B2(·) are appropriate

dimension matrices with continuous entries on T . Let γ1 and γ2 be permissible strategies

belonging to permissible strategy space Γk,k = 1,2, such that the controls u1 = γ1 and

u2 = γ2.

We consider the cost functions to be quadratic. In game theory, the quadratic cost

functions are of particular interest for two reasons. First, they can be considered as the

second-order approximation to other type of nonlinear cost functions. Second, the game

problem with quadratic cost functions are analytically tractable and provides closed-form

equilibrium solutions. We use the following relations,

ψk(x(t f )) = x′(t f )Qk f x(t f ), (5.22)

Lk(s,x(s),γ1,γ2) = x′(t)Qkx(t)+ γ ′1(t)Rk1(t)γ1(t)+ γ ′2(t)Rk2(t)γ2(t), k = 1,2 (5.23)

to obtain the general quadratic cost function for P1 and P2. The quadratic cost function

can be written as,

Jk(t,x(t),γk) = x′(t f )Qk f x(t f )+
∫ t f

t0

[
x′(t)Qkx(t)+ γ ′1(t)Rk1(t)γ1(t)+ γ ′2(t)Rk2(t)γ2(t)

]
dt,

(5.24)

for k = 1,2 with prime (′) denoting transpose of a matrix, where

Qk f ≥ 0, Qk(·)≥ 0, Rk1(·)> 0, Rk2(·)> 0.

Because of the Stackelberg solution concept, the leader P1 takes into account of the

follower’s choice of strategy into his own cost function. On the other hand, the follower P2

only focuses on his own strategy. To accommodate this, we consider

R11 = I, R12 = R, R21 = O, R22 = I,
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where I is identity matrix and O is null matrix. This way, the leader cost function includes

both leader and follower strategies, while the follower cost function only depends on the

follower strategy. Now, we obtain the definition of the quadratic cost functional of P1 and

P2 as follows

J1(γ1,γ2) = x′(t f )Q1 f x(t f )+
∫ t f

t0

[
x′(t)Q1x(t)+ γ ′1(t)γ1(t)+ γ ′2(t)R(t)γ2(t)

]
dt, (5.25)

J2(γ1,γ2) = x′(t f )Q2 f x(t f )+
∫ t f

t0

[
x′(t)Q2x(t)+ γ ′2(t)γ2(t)

]
dt, (5.26)

with prime denoting transpose of a matrix, where

Q1 f ≥ 0, Q2 f ≥ 0, Q1(·)≥ 0, Q2(·)≥ 0, R(·)> 0.

We define the first and second cumulant of the cost function. The first cumulant of the

cost function for the k-th player is defined by,

V 1
k (t,x,γk) = M1

k (t,x) = Etx
{

J1
k (t,x,γk)

}
, (5.27)

and the second cumulant of the cost function for the k-th player is defined by,

V 2
k (t,x,γk) = M2

k (t,x)−
[
M1

k (t,x)
]2

= Etx
{

J2
k (t,x,γk)

}− [Etx
{

J1
k (t,x,γk)

}]2
, (5.28)

Note that the superscript of V indicates cumulant index and the subscript denotes the

player index. In minimal cost variance problem, the second cumulant or variance of the

cost function is minimized with a specified first cumulant or mean. We shall consider the

minimization of cost variance of the leader in Stackelberg minimal cost variance problem.

Now, we introduce the Stackelberg solution concept for the above linear stochastic

differential game. Let Γ2
1 be the strategy space of the leader P1 corresponding to second

cost cumulant, and Γ1
2 be the strategy space of the follower P2 corresponding to the first

cost cumulant. P1 announces a constant policy first. For every γ1 ∈ Γ2
1, the follower P2

reacts optimally by adopting a unique strategy γ2 ∈ Γ1
2, which minimizes the mean of the

follower cost function V 1
2 (γ1,γ2) over Γ1

2. This implies that there exists a unique mapping

for the first cumulant T21
2 : Γ2

1 → Γ1
2 such that

V 1
2 (γ1,T

21
1 γ1)≤V 1

2 (γ1,γ2), ∀γ2 ∈ Γ1
2. (5.29)
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We assume that the existence of an optimal strategy for the leader γ∗1 ∈ Γ2
1 and optimal

value function V 2∗
1 (t,x) ∈ C1,2

p (Q)∩C(Q̄) for the leader P1. Now, we consider the mini-

mization of the second cumulant of the cost function of the leader V 2
1 (γ1,T

21
2 γ1) over Γ2

1.

Let γ∗1 be a minimizing solution; that is

V 2
1 (γ

∗
1 ,T

21
2 γ∗1 )≤V 2

1 (γ1,T
21
2 γ1). (5.30)

Thus, the statistical game problem is to find the Stackelberg strategy pair (γ∗1 ,γ
∗
2 ) or(

γ∗1 ,T
21
2 γ∗1

)
which results in minimal second cost cumulant value function V 2∗

1 given as

V 2
1 (γ

∗
1 ,T

21
2 γ∗1 ) = min

γ1∈Γ2
1

V 2
1 (γ1,T

21
2 γ1)�V 2∗

1 . (5.31)

5.4.4 Stackelberg Minimal Cost Variance Problem Formulation

In this section, we first derive the optimal response of the follower to any announced pol-

icy of the leader. We then substitute the follower’s response into the leader’s problem to

obtain Stackelberg minimal cost variance problem. We convert the game problem into an

equivalent Stackelberg game problem in Hilbert space [46]. Hilbert space generalizes the

notion of Euclidean space. Euclidean space refers to a finite dimensional linear space with

an inner product. On the other hand, Hilbert space refers to an infinite dimensional linear

inner product space, which is complete for the norm induced by the inner product [116].

Hilbert space allows the extension of vector algebra and calculus from the two dimensional

Eucleadian plane and three dimensional space to spaces to any finite and infinite number

of dimensions.

We introduce the definition of the inner product 〈·, ·〉 on Hk through the relation,

〈 v1,v2〉k = E
{∫ t f

t0
v′1(t,ω)v2(t,ω)dt

}
(5.32)

for each pair {v1 ∈ Hk,v2 ∈ Hk}, ω ∈ Ω0, with (Ω0,F ,P) denoting the underlying proba-

bility space. Ω0 is a non-empty set, F is a σ -algebra of Ω0, and P is a probability measure

on (Ω0,F ). With these inner products Hk,k = 1,2, become Hilbert spaces.

Let us denote the completion of the space of continuous functions from
[
t0, t f

]×Ω0 by
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L2 f with the inner product

〈 x1,x2〉 f = E
{

x′1(t f ,ω)x′2(t f ,ω)+
∫ t f

t0
x′1(t,ω)x2(t,ω)dt

}
. (5.33)

Let Qk, k = 1,2 be the bounded operators mapping L2[t0, t f ]× Ω0 into itself, and Qk,

k = 1,2 are defined by,

Qkx =

⎧⎪⎨
⎪⎩

Qk(t)x(t), t0 ≤ t < t f ,

Qk f x(t f ), t = t f .

(5.34)

Then, we define Volterra operators Lk : Hk → L2[t0, t f ]×Ω0, k = 1,2, by,

(Lku)(t,ω) =
∫ t

t0
Φ(t,τ)Bk(τ)u(τ,ω)dτ. (5.35)

The state transition matrix Φ(t,τ) comes from the solution of the stochastic differential

equation (5.21):

x(t) = Φ(t, t0)x0 +
∫ t

t0
Φ(t,τ)Bk(τ)uk(ω)dτ +

∫ t

t0
Φ(t,τ)F(τ)dw(τ,ω)dτ, (5.36)

where Φ(t,τ) is the state transition matrix function satisfying

dΦ(t,τ)
dt

= A(t)Φ(t,τ), Φ(τ,τ) = I. (5.37)

Further, let r = L2 f
(
[t0, t f ]×Ω0

)
be defined by

r(t,ω) = Φ(t, t0)x0(ω)+
∫ t

t0
Φ(t,τ)F(τ)dw(τ,ω). (5.38)

Using (5.38), we write (5.36) as,

x(t) = r(t,ω)+
∫ t

t0
Φ(t,τ)Bk(τ)uk(ω)dτ. (5.39)

Then, using Volterra operators in (5.35), eq. (5.39) can be expressed as,

x(t) = r(t,ω)+L1u1(t,ω)+L2u2(t,ω). (5.40)

Then, using uk(t) = γk(t,ηk) from (5.10) in (5.40) we have,

x(t) = r(t,ω)+L1γ1(·,η1)+L2γ2(·,η2). (5.41)
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For simplification, we suppress the argument (t,ω) and (·,η1) and have

x(t) = r+L1γ1 +L2γ2. (5.42)

Thus, the expected values of the cost functions of P1 and P2 in (5.25) and (5.26) can be

written as,

E {J1(γ1,γ2)}= 〈Q1x,x〉+ 〈γ1,γ1〉+ 〈γ2,Rγ2〉, (5.43)

E {J2(γ1,γ2)}= 〈Q2x,x〉+ 〈γ2,γ2〉. (5.44)

Now, for fixed γ1 ∈ Γ1, the minimization of V 1
2 (γ1,γ2) i.e. the first cumulant of J2(γ1,γ2),

is equivalent to the control problem of minimizing,

E {J2(γ2)}= 〈Q2x,x〉+ 〈γ2,γ2〉, (5.45)

for γ2 ∈ H2 [117]. Substituting the value of x from (5.42) we write (5.45) as:

E {J2(γ2)}= 〈Q2 (r+L1γ1 +L2γ2) ,(r+L1γ1 +L2γ2)〉+ 〈γ2,γ2〉
= 〈Q2r,r〉+ 〈Q2r,L1γ1〉+ 〈Q2r,L2γ2〉+ 〈Q2L1γ1,r〉+ 〈Q2L1γ1,L1γ1〉+ 〈Q2L1γ1,L2γ2〉
+ 〈Q2L2γ2,r〉+ 〈Q2L2γ2,L1γ1〉+ 〈Q2L2γ2,L2γ2〉+ 〈γ2,γ2〉. (5.46)

Let L ∗
2 be the adjoint of the operator L2 in H2. The concept of ‘adjoint’ applies for linear

operators, which is similar to ‘transpose’ of matrices. One of the defining properties of

adjoint is:

〈x,Lkγk〉= 〈L ∗
k x,γk〉. (5.47)

Using (5.47), from (5.46) we write,

E {J2(γ2)}= 〈Q2r,r〉+ 〈L ∗
1 Q2r,γ1〉+ 〈L ∗

2 Q2r,γ2〉+ 〈Q2L1γ1,r〉+ 〈L ∗
1 Q2L1γ1,γ1〉

+ 〈L ∗
2 Q2L1γ1,γ2〉+ 〈L ∗

2 Q2r,γ2〉+ 〈L ∗
2 Q2L1γ1,γ2〉+ 〈L ∗

2 Q2L2γ2,γ2〉+ 〈γ2,γ2〉.
(5.48)

Taking the first of variation of E {J2(γ2)} with respect to γ2 and equate it to zero we have,

δE {J2(γ2)}= 〈(I +L ∗
2 Q2L2)γ2 +L ∗

2 Q2(L1γ1 + r),δγ2〉= 0. (5.49)
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This gives us the necessary condition for the minimum as:

γ2 =−(I +L ∗
2 Q2L2)

−1L ∗
2 Q2(L1γ1 + r). (5.50)

Taking the second variation of E {J2(γ2)} with respect to γ2, we have

δ 2E {J2(γ2)}= 〈(I +L ∗
2 Q2L2),δ 2γ2〉. (5.51)

Since, L2 is a Volterra operator, it is completely continuous and so is its adjoint L ∗
2 .

Besides, Q2 is a bounded operator. Therefore, the operator (I +L ∗Q2L ) is strongly

positive and has bounded inverse, for which (5.45) has a unique minimum

γ2 =−(I +L ∗
2 Q2L2)

−1L ∗
2 Q2(L1γ1 + r). (5.52)

Let us define M2 = (I +L ∗
2 Q2L2)

−1, then (5.52) becomes,

γ2 =−M2L
∗

2 Q2(L1γ1 + r). (5.53)

Also,

M∗
2 =

{
(I +L ∗

2 Q2L2)
−1
}∗

= {(I +L ∗
2 Q2L2)

∗}−1

= {I +(L ∗
2 Q2L2)

∗}−1

= (I +L ∗
2 Q2L2)

−1

= M2. (5.54)

Now,

E {J1}= 〈Q1x,x〉+ 〈γ1,γ1〉+ 〈γ2,Rγ2〉, (5.55)

Then, we substitute the value of x from (5.42) and the expression for γ2 from (5.53) in
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(5.55). The first term is as follows:

〈Q1x,x〉= 〈Q1(r+L1γ1 +L2γ2),(r+L1γ1 +L2γ2)〉
= 〈Q1r,r〉+ 〈γ1,L

∗
1 Q1L1γ1〉+ 〈γ2,L

∗
2 Q1L2γ2〉+2〈γ1,L

∗
1 Q1r〉+2〈γ2,L

∗
2 Q1r〉

+2〈γ1,L
∗

1 Q1L2γ2〉
= 〈Q1r,r〉+ 〈γ1,L

∗
1 Q1L1γ1〉+ 〈{−M2L

∗
2 Q2(L1γ1 + r)} ,L ∗

2 Q1L2 {−M2L
∗

2 Q2(L1γ1 + r)}〉
+2〈γ1,L

∗
1 Q1r〉+2〈{−M2L

∗
2 Q2(L1γ1 + r)} ,L ∗

2 Q1r〉+2〈γ1,L
∗

1 Q1L2 {−M2L
∗

2 Q2(L1γ1 + r)}〉
= 〈r,Q1r〉+ 〈γ1,L

∗
1 Q1L1γ1〉+ 〈γ1,L

∗
1 Q2L2M2L

∗
2 Q1L2M2L

∗
2 Q2L1γ1〉

+ 〈r,Q2L2M2L
∗

2 Q1L2M2L
∗

2 Q2r〉+2〈γ1,L
∗

1 Q2L2M2L
∗

2 Q1L2M2L
∗

2 Q2r〉+2〈γ1,L
∗

1 Q1r〉
−2〈γ1,L

∗
1 Q2L2M2L

∗
2 Q1r〉−2〈r,Q2L2M2L

∗
2 Q1r〉−2〈γ1,L

∗
1 Q1L2M2L

∗
2 Q2L1γ1〉

−2〈γ1,L
∗

1 Q1L2M2L
∗

2 Q2r〉. (5.56)

The third term is as follows:

〈γ2,Rγ2〉= 〈{−M2L
∗

2 Q2(L1γ1 + r)} ,R{−M2L
∗

2 Q2(L1γ1 + r)}〉
= 〈γ1,L

∗
1 Q2L2M2RM2L

∗
2 Q2L1γ1〉+ 〈r,Q2L2M2RM2L

∗
2 Q2r〉

+2〈γ1,L
∗

1 Q2L2M2RM2L
∗

2 Q2r〉. (5.57)

Then,

E {J1}= 〈r,Q1r〉+ 〈γ1,L
∗

1 Q1L1γ1〉+ 〈γ1,L
∗

1 Q2L2M2L
∗

2 Q1L2M2L
∗

2 Q2L1γ1〉
+ 〈r,Q2L2M2L

∗
2 Q1L2M2L

∗
2 Q2r〉+2〈γ1,L

∗
1 Q2L2M2L

∗
2 Q1L2M2L

∗
2 Q2r〉+2〈γ1,L

∗
1 Q1r〉

−2〈γ1,L
∗

1 Q2L2M2L
∗

2 Q1r〉−2〈r,Q2L2M2L
∗

2 Q1r〉−2〈γ1,L
∗

1 Q1L2M2L
∗

2 Q2L1γ1〉
−2〈γ1,L

∗
1 Q1L2M2L

∗
2 Q2r〉+ 〈γ1,γ1〉+ 〈γ1,L

∗
1 Q2L2M2RM2L

∗
2 Q2L1γ1〉+

〈r,Q2L2M2RM2L
∗

2 Q2r〉+2〈γ1,L
∗

1 Q2L2M2RM2L
∗

2 Q2r〉. (5.58)

After rearranging terms and substituting M2, we get

E {J1}= 〈Q1x,x〉+ 〈γ1,γ1〉+ 〈[−(I +L ∗
2 Q2L2)

−1L ∗
2 Q2(L1γ1 + r)

]
,

R
[−(I +L ∗

2 Q2L2)
−1L ∗

2 Q2(L1γ1 + r)
]〉,

= 〈γ1,(I + R̃)γ1〉+2〈γ1,L̃
∗

1 Q1r̃〉+ 〈L ∗
1 Q2L2(I +L ∗

2 Q2L2)
−1R

(I +L ∗
2 Q2L2)

−1L ∗
2 Q2r〉+ J10, (5.59)
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where

R̃ = L̃ ∗
1 Q1L̃1 + L̃ ∗

1 Q2L̃2(I +L ∗
2 Q2L2)

−1R(I +L ∗
2 Q2L2)

−1L ∗
2 Q2L1, (5.60)

L̃1 = L1 −L2(I +L ∗
2 Q2L2)

−1L ∗
2 Q2L1, (5.61)

r̃ = (I −L2(I +L ∗
2 Q2L2)

−1L ∗
2 Q2)r. (5.62)

J10 consists of the terms that are independent of γ1 and L̃ ∗
1 is the adjoint of L̃1. Since

(I +L ∗
2 Q2L2)

−1 is strongly positive, and has a bounded inverse, taking variations with

respect to γ1, it can be shown that there exists a unique γ∗1 for which E {J1} has a minimum.

In order to express the control strategy of the follower in terms of the input matrices

and the transition matrices, we need to determine the adjoint of L1 and L2. Let, the inner

product Lkuk be an arbitrary vector, that is

Lkuk(t,ω) =
[
ν(t,ω) ν(t f ,ω)

]′
. (5.63)

Then we write,

〈νk,Lkuk〉

= E
{∫ t f

t0
ν ′

k(t)
∫ t

t0
Φ(t,τ)Bk(τ)uk(τ,ω)dτdt +νk(t f ,ω)

∫ t f

t0
Φ(t f ,τ)Bk(τ)uk(τ,ω)dτ

}

= E
{∫ t f

t0
u′k(τ,ω)B′

k(τ)
∫ t f

t
Φ′(t,τ)νk(t)dtdτ +νk(t f ,ω)

∫ t f

t0
u′k(τ,ω)B′

k(τ)Φ
′(t f ,τ)

×Bk(τ)νk(t f ,ω)dτ
}
. (5.64)

Then, we find the adjoint of Lk is as follows:

L ∗
k νk = B′

k(t)
∫ t f

t
Φ′(s, t)E {νk(s,ω)|σk}ds+B′

k(t)Φ
′(t f , t)E

{
νk(t f ,ω)|σk

}
. (5.65)

where σk indicates the sigma-algebra generated by the player information set of Pk.

Using (5.65) in (5.52) we obtain,

γ2(t) =−B′
2(t) [S2(t)E {x(t)|η2}+κ2(t)] , (5.66)
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where,

Ṡ2(t) =−A′(t)S2(t)−S2(t)A(t)−Q2(t)+S2(t)B2(t)B′
2(t)S2(t), (5.67)

S2(t f ) = Q2 f , (5.68)

κ̇2(t) =−[A′(t)−S2(t)B2(t)B′
2(t)

]
κ2(t)−S2(t)B1(t)E {γ1(t,η1)|η2} , (5.69)

κ2(t f ) = 0. (5.70)

The detail derivation of (5.67)-(5.70) can be found in [111], [117].

Let us denote E {x|η2} by x̂2(t). Then,

dx̂2(t) =
[
A(t)−B2(t)B′

2(t)S2(t)
]

x̂2(t)dt −B2(t)B′
2(t)κ2(t)dt +B1E {γ1(t,η1)|η2}dt,

(5.71)

x̂2(t0) = E {x(t0)|η2}= E {x0|η2} . (5.72)

Furthermore, if ξ (t) = x(t)− x̂2(t), then

dξ (t) = A(t)ξ (t)+B1γ1(t)dt −B1(t)E {γ1(t)|η2}dt +F(t)dw(t), ξt0 = x0 −E {x0|η2} .
(5.73)

Note that at this point of derivation we are dealing with a different state dynamics (5.73)

than in (5.21)

dx(t) = [A(t)x(t)+B1(x)u1(t)+B2(x)u2(t)]dt +F(t)dw(t), x(t0) = x0. (5.74)

Now, in terms of the newly introduced variables x̂2(t), ξ (t), and κ(t), we can express

J1(γ1,T
21
2 γ1) = x̂′2(t f )Q1 f x̂2(t f )+ξ ′(t f )Q1 f ξ (t f )

+
∫ t f

t0

[
x̂′2(t)Q1(t)x̂2(t)+ξ ′(t)Q1ξ (t)

]
dt

+
∫ t f

t0

[{
x̂′2(t)S2(t)κ ′

2(t)
}

B2(t)R(t)B′
2(t){S2(t)x̂2(t)+κ2(t)}+ γ ′1(t,η1)γ1(t,η1)

]
dt.

(5.75)

Thus, the statistical game problem is to determine the strategy γ∗1 (t) of the leader to mini-

mize

Var
{

J1(γ1,T
21
2 γ1)

}
= E

{
J1(γ1,T

21
2 γ1)−E

{
J1(γ1,T

21
2 γ1)

}}2
, (5.76)
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with the constraints,

E
{

J1(γ1,T
21
2 γ1)

}
= M, (5.77)

M is bounded below by the positive solution of the optimal E
{

J1(γ1,T 21
2 γ1)

}
. Here, we

assume that the follower P2 minimizes the mean of his cost function. In the earlier work,

Bagchi and Başar [46] obtained the strategy for the leader to minimize E
{

J1(γ1,T
11
2 γ1)

}
.

5.4.5 Digression: Solution of A Special Open Loop MCV Control Problem

In this section, we derive a minimal cost variance control strategy for a special stochastic

system. This is a special case, where the expected value of control input is considered in

the stochastic system equation. The solution of this optimization problem will be used in

the later section to derive the Stackelberg strategies.

Lemma 5.1. We consider a problem of choosing a control strategy γ to minimize the vari-

ance of a quadratic cost function, Var{J(γ)} such that the cost function is:

J(γ) = x′(t f )Q f x(t f )+
∫ t f

t0
[x′(t)Q(t)x(t)+ γ ′(t)R(t)γ(t)]dt, (5.78)

with the constraint that the mean of the cost function E {J(γ)}=M, where M is bounded by

the positive solution of the optimal E {J(γ)}. Q(t), Q f , and R(t) are positive semi-definite

matrices.

Also, we consider a stochastic system described by:

dx(t) = [A(t)x(t)+B(t)γ(t,η)]dt +C(t)E {γ(t,η) | φ}dt +dθ(t), (5.79)

where the state x(t) is a n-tuple vector, the observation η is a p-tuple vector, and φ is q-

tuple random vector. The admissible control γ is such that γ : [t0, t f ]×R
p → R

m, and γ is

defined over Γ, where Γ is a linear vector space. The Brownian motion θ(t) is a n-tuple

vector with zero mean and covariance Θ(t). We also assume that this noise process is

independent of the initial state x(t0). This gives us:

E {θ(t)}= 0,

E
{

θ(t)θ ′(t)
}
= Θ(t)δ (t − τ).
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A, B, and C are appropriate dimension matrices.

A control strategy γ ∈ Γ provides a minimizing solution to the stochastic optimal control

problem if it satisfies the following equations:

γ∗(t) =− 1

2μ
R−1(t)B′(t)ρ(t), (5.80)

if it satisfies the differential equations

dz(t) = A(t)z(t)dt − 1

2μ
B(t)R−1(t)B′(t)ρ(t)dt, (5.81)

dρ(t) =−A′(t)ρ(t)dt −2μQ(t)z(t)dt −8Q(t)υ(t)dt, (5.82)

dυ(t) = A(t)υ(t)dt +
[
C(t)E

{
E {γ(t,η)}E

{
γ ′(t,η)

}}
C′(t)+Θ

]
ϕ(t)dt, (5.83)

dϕ(t) =−A′(t)ϕ(t)dt −Q(t)z(t)dt. (5.84)

with the boundary conditions

z(t0) = x0, (5.85)

ρ(t f ) = 2μQ f z(t f )+8Q f υ(t f ), (5.86)

υ(t0) = 0, (5.87)

ϕ(t f ) = Q f z(t f ). (5.88)

Proof. We consider a stochastic system described by the following stochastic differential

equation,

dx(t) = [A(t)x(t)+B(t)γ(t,η)]dt +C(t)E {γ(t,η) | φ}dt +dθ(t), (5.89)

with the quadratic cost function

J(γ) = x′(t f )Q f x(t f )+
∫ t f

t0
[x′(t)Q(t)x(t)+ γ ′(t)R(t)γ(t)]dt. (5.90)

Our problem is to determine γ ∈ Γ for which the variance of the cost function Var{J(γ)}
attains a minimum with the constraint that the mean of the cost function E {J(γ)} = M,

where M is a constant.

We decompose the state x(t) into two parts z(t) and w(t), where z(t) is deterministic

and w(t) is stochastic.

x(t) = z(t)+w(t), (5.91)



96

These z(t) and w(t) are defined by,

dz(t) = [A(t)z(t)+B(t)γ(t)]dt, z(t0) = x0, (5.92)

dw(t) = A(t)dw(t)+C(t)E {γ(t,η)|ψ}dt +dθ(t) w(t0) = 0, (5.93)

where the mean and covariance of w(t) is defined by,

E {w(t)}= 0, (5.94)

E
{

w(t)w′(t)
}
= W (t)δ (t − τ). (5.95)

Therefore, z(t) is the expected value of x(t).

First, we determine the mean of the cost function in terms of z(t) and w(t). Let us

calculate some necessary product terms which we need repeatedly. We start with

x′(t)Q(t)x(t)

= (z(t)+w(t))′Q(t)(z(t)+w(t)),

= z′(t)Q(t)z(t)+ z′(t)Q(t)w(t)+w′(t)Q(t)z(t)+w′(t)Q(t)w(t). (5.96)

Taking expectation on (5.96) we have,

E
{

x′(t)Q(t)x(t)
}

= E
{

z′(t)Q(t)z(t)+ z′(t)Q(t)w(t)+w′(t)Q(t)z(t)+w′(t)Q(t)w(t)
}
,

= E
{

z′(t)Q(t)z(t)
}
+ z′(t)Q(t)E {w(t)}+E

{
w′(t)

}
Q(t)z(t)+E

{
w′(t)Q(t)w(t)

}
,

= E
{

z′(t)Q(t)z(t)
}
+E

{
w′(t)Q(t)w(t)

}
, (using (5.94)) (5.97)

Similarly,

x′(t f )Q f x(t f )

= (z(t f )+w(t f ))
′Q f (z(t f )+w(t f )),

= z′(t f )Q f z(t f )+ z′(t f )Q f w(t f )+w′(t f )Q f z(t f )+w′(t f )Q f w(t f ), (5.98)
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and

E
{

x′(t f )Q f x(t f )
}

= E
{

z′(t f )Q f z(t f )+ z′(t f )Q f w(t f )+w′(t f )Q f z(t f )+w′(t f )Q f w(t f )
}
,

= E
{

z′(t f )Q f z(t f )
}
+ z′(t f )Q f E

{
w(t f )

}
+E

{
w′(t f )

}
Q f z(t f )+E

{
w′(t f )Q f w(t f )

}
,

= E
{

z′(t f )Q f z(t f )
}
+E

{
w′(t f )Q f w(t f )

}
. (5.99)

Now, taking expectation on (5.90), we have

E {J}= E
{

x′(t f )Q f x(t f )+
∫ t f

t0

{
x′(t)Q(t)x(t)+ γ ′(t)R(t)γ(t)

}
dt
}
,

= E
{

x′(t f )Q f x(t f )
}
+E

{∫ t f

t0
x′(t)Q(t)x(t)dt

}
+E

{∫ t f

t0
γ ′(t)Q(t)γ(t)dt

}
,

= E
{

z′(t f )Q f z(t f )
}
+E

{
w′(t f )Q f w(t f )

}
+E

{∫ t f

t0
z′(t)Q(t)z(t)dt

}

+E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}
+
∫ t f

t0
γ ′(t)R(t)γ(t)dt,

= z′(t f )Q f z(t f )+
∫ t f

t0

{
z′(t)Q(t)z(t)+ γ ′(t)R(t)γ(t)

}
dt

+E
{

w′(t f )Q f w(t f )
}
+E

{∫ t f

t0
w′(t)Q(t)w(t)dt

}
,

= z′(t f )Q f z(t f )+
∫ t f

t0

{
z′(t)Q(t)z(t)+ γ ′(t)R(t)γ(t)

}
dt +E {α} , (5.100)

where

α = w′(t f )Q f w(t f )+
∫ t f

t0
w′(t)Q(t)w(t)dt. (5.101)

In order to determine the variance of the cost function, we use the following expression,

Var{J}= E
{

J2
}−{E {J}}2 . (5.102)
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We determine {E {J}}2 as follows:

{E {J}}2

=

{
z′(t f )Q f z(t f )+

∫ t f

t0

{
z′(t)Q(t)z(t)+ γ ′(t)R(t)γ(t)

}
dt +E

{
w′(t f )Q f w(t f )

}
+E

{∫ t f

t0
w′(t)Q(t)w(t)dt

}}2

= {z′(t f )Q f z(t f ){z′(t f )Q f z(t f )+
∫ t f

t0

∫ t f

t0
z′(t)Q(t)z(t)z′(s)Q(s)z(s)dsdt

+
∫ t f

t0

∫ t f

t0
γ ′(t)R(t)γ(t)γ ′(s)R(s)γ(s)dt +E

{
w′(t f )Q f w(t f )

}
E
{

w′(t f )Q f w(t f )
}

+E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}
E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}
+2z′(t f )Q f z(t f )

∫ t f

t0
z′(t)Q(t)z(t)dt

+2

∫ t f

t0
z′(t)Q(t)z(t)dt

∫ t f

t0
γ ′(s)R(s)γ(s)ds+2

∫ t f

t0
γ ′(t)R(t)γ(t)dtE

{
w′(t f )Q f w(t f )

}
+2E

{
w′(t f )Q f w(t f )

}
E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}
+2z′(t f )Q f z(t f )

∫ t f

t0
γ ′(t)R(t)γ(t)dt

+2z′(t f )Q f z(t f )E
{

w′(t f )Q f w(t f )
}
+2z′(t f )Q f z(t f )E

{∫ t f

t0
w′(t)Q(t)w(t)dt

}

+2

∫ t f

t0
z′(t)Q(t)z(t)dtE

{
w′(t f )Q f w(t f )

}
+2

∫ t f

t0
z′(t)Q(t)z(t)dtE

{∫ t f

t0
w′(t)Q(t)w(t)dt

}

+2

∫ t f

t0
γ ′(t)R(t)γ(t)dtE

{∫ t f

t0
w′(t)Q(t)w(t)dt

}
. (5.103)

Next, we determine J2 and the second moment of the cost function E[J2].

J2 =

{
x′(t f )Q f x(t f )+

∫ t f

t0
[x′(t)Q(t)x(t)+ γ ′(t)R(t)γ(t)]dt

}2

= x′(t f )Q f x(t f )x′(t f )Q f x(t f )

+
∫ t f

t0
[x′(t)Q(t)x(t)+ γ ′(t)R(t)γ(t)]dt

∫ t f

t0
[x′(s)Q(s)x(s)+ γ ′(s)R(s)γ(s)]ds

+2x′(t f )Q f x(t f )
∫ t f

t0
[x′(t)Q(t)x(t)+ γ ′(t)R(t)γ(t)]dt

= Js1 + Js2 + Js3 (5.104)
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By expanding the first term of (5.104), we have

Js1 = x′(t f )Q f x(t f )x′(t f )Q f x(t f )

=
{

z′(t f )Q f z(t f )+ z′(t f )Q f w(t f )+w′(t f )Q f z(t f )+w′(t f )Q f w(t f )
}

{
(z′(t f )Q f z(t f )+ z′(t f )Q f w(t f )+w′(t f )Q f z(t f )+w′(t f )Q f w(t f )

}
= z′(t f )Q f z(t f )z′(t f )Q f z(t f )+ z′(t f )Q f z(t f )z′(t f )Q f w(t f )+ z′(t f )Q f z(t f )w′(t f )Q f z(t f )

+ z′(t f )Q f z(t f )w′(t f )Q f (t f )w(t f )+ z′(t f )Q f w(t f )z′(t f )Q f z(t f )

+ z′(t f )Q f w(t f )z′(t f )Q f w(t f )+ z′(t f )Q f w(t f )w′(t f )Q f z(t f )

+ z′(t f )Q f w(t f )w′(t f )Q f w(t f )+w′(t f )Q f z(t f )z′(t f )Q f z(t f )

+w′(t f )Q f z(t f )z′(t f )Q f w(t f )+w′(t f )Q f z(t f )w′(t f )Q f z(t f )

+w′(t f )Q f z(t f )w′(t f )Q f w(t f )+w′(t f )Q f w(t f )z′(t f )Q f z(t f )

+w′(t f )Q f w(t f )z′(t f )Q f w(t f )+w′(t f )Q f w(t f )w′(t f )Q f z(t f )

+w′(t f )Q f w(t f )w′(t f )Q f w(t f ). (5.105)

Taking expectation on (5.105), we have,

E {Js1}= E
{

z′(t f )Q f z(t f )z′(t f )Q f z(t f )
}
+E

{
z′(t f )Q f w(t f )z′(t f )Q f w(t f )

}
+E

{
w′(t f )Q f z(t f )w′(t f )Q f z(t f )

}
+E

{
w′(t f )Q f w(t f )w′(t f )Q f w(t f )

}
(5.106)

+2E
{

z′(t f )Q f z(t f )w′(t f )Q f w(t f )
}
+2E

{
z′(t f )Q f w(t f )w′(t f )Q f z(t f )

}
. (5.107)

The second term of (5.104) gives,

Js2 =
∫ t f

t0
[x′(t)Q(t)x(t)+ γ ′(t)R(t)γ(t)]dt

∫ t f

t0
[x′(s)Q(s)x(s)+ γ ′(s)R(s)γ(s)]ds,

=
∫ t f

t0

∫ t f

t0
x′(t)Q(t)x(t)x′(s)Q(s)x(s)dsdt +

∫ t f

t0

∫ t f

t0
γ ′(t)R(t)γ(t)γ ′(s)R(s)γ(s)dsdt

+2

∫ t f

t0

∫ t f

t0
x′(t)Q(t)x(t)γ ′(s)R(s)γ(s)dsdt. (5.108)
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Taking expectation on (5.108), we have

E {Js2}

=E
{∫ t f

t0

∫ t f

t0
x′(t)Q(t)x(t)x′(s)Q(s)x(s)dsdt +

∫ t f

t0

∫ t f

t0
γ ′(t)R(t)γ(t)γ ′(s)R(s)γ(s)dsdt

}

+2E
{∫ t f

t0

∫ t f

t0
x′(t)Q(t)x(t)γ ′(s)R(s)γ(s)dsdt

}
= E[

∫ t f

t0

∫ t f

t0
[z′(t)Q(t)z(t)z′(t)Q(t)z(t)+ z′(t)Q(t)z(t)z′(t)Q(t)w(t)+ z′(t)Q(t)z(t)w′(t)Q(t)z(t)

+ z′(t)Q(t)z(t)w′(t)Q(t)w(t)+ z′(t)Q(t)w(t)z′(t)Q(t)z(t)+ z′(t)Q(t)w(t)z′(t)Q(t)w(t)

+ z′(t)Q(t)w(t)w′(t)Q(t)z(t)+ z′(t)Q(t)w(t)w′(t)Q(t)w(t)+w′(t)Q(t)z(t)z′(t)Q(t)z(t)

+w′(t)Q(t)z(t)z′(t)Q(t)w(t)+w′(t)Q(t)z(t)w′(t)Q(t)z(t)+w′(t)Q(t)z(t)w′(t)Q(t)w(t)

+w′(t)Q(t)w(t)z′(t)Q(t)z(t)+w′(t)Q(t)w(t)z′(t)Q(t)w(t)+w′(t)Q(t)w(t)w′(t)Q(t)z(t)

+w′(t)Q(t)w(t)w′(s)Q(s)w(s)]dsdt]+
∫ t f

t0

∫ t f

t0
γ ′(t)Q(t)γ(t)γ ′(s)R(s)γ(s)dsdt

+2

∫ t f

t0

∫ t f

t0
γ ′(s)R(s)γ(s)E[z′(t)Q(t)z(t)dsdt]+2

∫ t f

t0

∫ t f

t0
γ ′(s)R(s)γ(s)E[w′(s)Q(s)w(s)]dsdt,

= E
{∫ t f

t0

∫ t f

t0
z′(t)Q(t)z(t)z′(s)Q(s)z(s)dsdt

}
+E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)z′(s)Q(s)w(s)dsdt

}

+E
{∫ t f

t0

∫ t f

t0
w′(t)Q(t)z(t)w′(s)Q(s)z(s)dsdt

}
+E

{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)w′(s)Q(s)w(s)dsdt

}

+2E
{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)w′(t)Q(t)z(t)dsdt

}
+2E

{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)z′(s)Q(s)z(s)dsdt

}

+
∫ t f

t0

∫ t f

t0
γ ′(t)Q(t)γ(t)γ ′(s)R(s)γ(s)dsdt +2E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)z(t)γ ′(s)R(s)γ(s)dsdt

}

+2E
{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)γ ′(s)R(s)γ(s)dsdt

}
. (5.109)

The third term of (5.104) gives,

Js3 = 2x′(t f )Q f x(t f )
∫ t f

t0
[x′(t)Q(t)x(t)+ γ ′(t)R(t)γ(t)]dt,

= 2x′(t f )Q f x(t f )
∫ t f

t0
x′(t)Q(t)x(t)dt +2x′(t f )Q f x(t f )

∫ t f

t0
γ ′(t)R(t)γ(t)dt,

= 2[z′(t f )Q f z(t f )+ z′(t f )Q f w(t f )+w′(t f )Q f z(t f )+w′(t f )Q f w(t f )]

.
∫ t f

t0
[z′(t)Q(t)z(t)+ z′(t)Q(t)w(t)+w′(t)Q(t)z(t)+w′(t)Q(t)w(t)]dt

+2[z′(t f )Q f z(t f )+ z′(t f )Q f w(t f )+w′(t f )Q f z(t f )+w′(t f )Q f w(t f )] (5.110)

×
∫ t f

t0
γ ′(t)R(t)γ(t)dt. (5.111)
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Taking expectation on (5.111), we have

E {Js3}= E
{

2[z′(t f )Q f z(t f )+ z′(t f )Q f w(t f )+w′(t f )Q f z(t f )+w′(t f )Q f w(t f )
}

.
∫ t f

t0
[z′(t)Q(t)z(t)+ z′(t)Q(t)w(t)+w′(t)Q(t)z(t)+w′(t)Q(t)w(t)]

+E
{

2[z′(t f )Q f z(t f )+ z′(t f )Q f w(t f )+w′(t f )Q f z(t f )+w′(t f )Q f w(t f )
}

.
∫ t f

t0
γ ′(t)R(t)γ(t)dt],

= 2E[z′(t f )Q f z(t f )
∫ t

t0
z′(t)Q(t)z(t)dt + z′(t f )Q f z(t f )

∫ t f

t0
z′(t)Q(t)w(t)dt

+ z′(t f )Q f z(t f )
∫ t f

t0
w′(t)Q(t)z(t)dt + z′(t f )Q f z(t f )

∫ t f

t0
w′(t)Q(t)w(t)dt

+ z′(t f )Q f w(t f )
∫ t f

t0
z′(t)Q(t)z(t)+ z′(t f )Q f w(t f )

∫ t f

t0
z′(t)Q(t)w(t)dt

+ z′(t f )Q f w(t f )
∫ t f

t0
w′(t)Q(t)z(t)dt + z′(t f )Q f w(t f )

∫ t f

t0
w′(t)Q(t)w(t)dt

+w′(t f )Q f z(t f )
∫ t f

t0
z′(t)Q(t)z(t)dt +w′(t f )Q f z(t f )

∫ t f

t0
z′(t)Q(t)w(t)dt

+w′(t f )Q f z(t f )
∫ t f

t0
w′(t)Q(t)z(t)dt +w′(t f )Q f z(t f )

∫ t f

t0
w′(t)Q(t)w(t)dt

+w′(t f )Q f w(t f )
∫ t f

t0
z′(t)Q(t)z(t)dt +w′(t f )Q f w(t f )

∫ t f

t0
z′(t)Q(t)w(t)dt

+w′(t f )Q f w(t f )
∫ t f

t0
w′(t)Q(t)z(t)dt +w′(t f )Q f w(t f )

∫ t f

t0
w′(t)Q(t)w(t)dt]

+2E[z′(t f )Q f z(t f )+w′(t f )Q f w(t f )]
∫ t f

t0
γ ′(t)R(t)γ(t)dt,

= 2E
{

z′(t f )Q f z(t f )
∫ t f

t0
z′(t)Q(t)z(t)dt

}
+2E

{
z′(t f )Q f z(t f )

∫ t f

t0
w′(t)Q(t)w(t)dt

}

+2E
{

z′(t f )Q f w(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
z′(t f )Q f w(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}

+2E
{

w′(t f )Q f z(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
w′(t f )Q f z(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}

+2E
{

w′(t f )Q f w(t f )
∫ t f

t0
z′(t)Q(t)z(t)dt

}
+2E

{
w′(t f )Q f w(t f )

∫ t f

t0
w′(t)Q(t)w(t)dt

}

+2E
{

z′(t f )Q f z(t f )
∫ t f

t0
γ ′(t)R(t)γ(t)dt

}
+2E

{
w′(t f )Q f w(t f )

∫ t f

t0
γ ′(t)R(t)γ(t)dt

}
.

(5.112)
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Combining (5.107), (5.109), and (5.112) we have

E
{

J2
}
= E {Js1}+E {Js2}+E {Js3} ,

= E
{

z′(t f )Q f z(t f )z′(t f )Q f z(t f )
}
+E

{
z′(t f )Q f w(t f )z′(t f )Q f w(t f )

}
+E

{
w′(t f )Q f z(t f )w′(t f )Q f z(t f )

}
+E

{
w′(t f )Q f w(t f )w′(t f )Q f w(t f )

}
+2E

{
z′(t f )Q f z(t f )w′(t f )Q f w(t f )

}
+2E

{
z′(t f )Q f w(t f )w′(t f )Q f z(t f )

}
+E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)z(t)z′(t)Q(t)z(t)dsdt

}
+E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)z′(s)Q(s)w(s)dsdt

}

+E
{∫ t f

t0

∫ t f

t0
w′(t)Q(t)z(t)w′(s)Q(s)z(s)dsdt

}
+E

{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)w′(s)Q(s)w(s)dsdt

}

+2E
{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)w′(t)Q(t)z(t)dsdt

}
+2E

{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)z′(t)Q(t)z(t)dsdt

}

+
∫ t f

t0

∫ t f

t0
γ ′(t)Q(t)γ(t)γ ′(s)R(s)γ(s)dsdt +2E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)z(t)γ ′(s)R(s)γ(s)dsdt

}

+2E
{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)γ ′(s)R(s)γ(s)dsdt

}

+2E
{

z′(t f )Q f z(t f )
∫ t f

t0
z′(t)Q(t)z(t)dt

}
+2E

{
z′(t f )Q f z(t f )

∫ t f

t0
w′(t)Q(t)w(t)dt

}

+2E
{

z′(t f )Q f w(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
z′(t f )Q f w(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}

+2E
{

w′(t f )Q f z(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
w′(t f )Q f z(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}

+2E
{

w′(t f )Q f w(t f )
∫ t f

t0
z′(t)Q(t)z(t)dt

}
+2E

{
w′(t f )Q f w(t f )

∫ t f

t0
w′(t)Q(t)w(t)dt

}

+2E
{

z′(t f )Q f z(t f )
∫ t f

t0
γ ′(t)R(t)γ(t)dt

}
+2E

{
w′(t f )Q f w(t f )

∫ t f

t0
γ ′(t)R(t)γ(t)dt

}
. (5.113)



103

Substituting (5.113) and (5.103) in (5.102), we have

Var{J}= E
{

z′(t f )Q f z(t f )z′(t f )Q f z(t f )
}
+E

{
z′(t f )Q f w(t f )z′(t f )Q f w(t f )

}
+E

{
w′(t f )Q f z(t f )w′(t f )Q f z(t f )

}
+E

{
w′(t f )Q f w(t f )w′(t f )Q f w(t f )

}
+2E

{
z′(t f )Q f z(t f )w′(t f )Q f w(t f )

}
+2E

{
z′(t f )Q f w(t f )w′(t f )Q f z(t f )

}
+E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)z(t)z′(s)Q(s)z(s)dsdt

}
+E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)z′(s)Q(s)w(s)dsdt

}

+E
{∫ t f

t0

∫ t f

t0
w′(t)Q(t)z(t)w′(s)Q(s)z(s)dsdt

}
+E

{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)w′(s)Q(s)w(s)dsdt

}

+2E
{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)w′(t)Q(t)z(t)dsdt

}
+2E

{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)z′(s)Q(s)z(s)dsdt

}

+
∫ t f

t0

∫ t f

t0
γ ′(t)Q(t)γ(t)γ ′(s)R(s)γ(s)dsdt +2E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)z(t)γ ′(s)R(s)γ(s)dsdt

}

+2E
{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)γ ′(s)R(s)γ(s)dsdt

}

+2E
{

z′(t f )Q f z(t f )
∫ t f

t0
z′(t)Q(t)z(t)dt

}
+2E

{
z′(t f )Q f z(t f )

∫ t f

t0
w′(t)Q(t)w(t)dt

}

+2E
{

z′(t f )Q f w(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
z′(t f )Q f w(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}

+2E
{

w′(t f )Q f z(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
w′(t f )Q f z(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}

+2E
{

w′(t f )Q f w(t f )
∫ t f

t0
z′(t)Q(t)z(t)dt

}
+2E

{
w′(t f )Q f w(t f )

∫ t f

t0
w′(t)Q(t)w(t)dt

}

+2E
{

z′(t f )Q f z(t f )
∫ t f

t0
γ ′(t)R(t)γ(t)dt

}
+2E

{
w′(t f )Q f w(t f )

∫ t f

t0
γ ′(t)R(t)γ(t)dt

}
− z′(t f )Q f z(t f )z′(t f )Q f z(t f )−

∫ t f

t0

∫ t f

t0
z′(t)Q(t)z(t)z′(s)Q(s)z(s)dsdt

−
∫ t f

t0

∫ t f

t0
γ ′(t)R(t)γ(t)γ ′(s)R(s)γ(s)dt −E

{
w′(t f )Q f w(t f )

}
E
{

w′(t f )Q f w(t f )
}

−E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}
E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}
−2z′(t f )Q f z(t f )

∫ t f

t0
z′(t)Q(t)z(t)dt

−2

∫ t f

t0
z′(t)Q(t)z(t)dt

∫ t f

t0
γ ′(s)R(s)γ(s)ds−2

∫ t f

t0
γ ′(t)R(t)γ(t)dtE

{
w′(t f )Q f w(t f )

}
−2E

{
w′(t f )Q f w(t f )

}
E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}
−2z′(t f )Q f z(t f )

∫ t f

t0
γ ′(t)R(t)γ(t)dt

−2z′(t f )Q f z(t f )E
{

w′(t f )Q f w(t f )
}−2z′(t f )Q f z(t f )E

{∫ t f

t0
w′(t)Q(t)w(t)dt

}

−2

∫ t f

t0
z′(t)Q(t)z(t)dtE

{
w′(t f )Q f w(t f )

}−2

∫ t f

t0
z′(t)Q(t)z(t)dtE

{∫ t f

t0
w′(t)Q(t)w(t)dt

}

−2

∫ t f

t0
γ ′(t)R(t)γ(t)dtE

{∫ t f

t0
w′(t)Q(t)w(t)dt

}
(5.114)
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Var{J}= E
{

z′(t f )Q f w(t f )z′(t f )Q f w(t f )
}
+E

{
w′(t f )Q f z(t f )w′(t f )Q f z(t f )

}
+2E

{
z′(t f )Q f w(t f )w′(t f )Q f z(t f )

}
+E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)z′(t)Q(t)w(t)dsdt

}

+E
{∫ t f

t0

∫ t f

t0
w′(t)Q(t)z(t)w′(t)Q(t)z(t)dsdt

}
+2E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)w′(t)Q(t)z(t)dsdt

}

+2E
{

z′(t f )Q f w(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
z′(t f )Q f w(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}

+2E
{

w′(t f )Q f z(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
w′(t f )Q f z(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}

+E
{

w′(t f )Q f w(t f )w′(t f )Q f w(t f )
}
+E

{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)w′(s)Q(s)w(s)dsdt

}

+2E
{

w′(t f )Q f w(t f )w′(t f )Q f w(t f )
∫ t f

t0
w′(t)Q(t)w(t)dt

}

−E
{

w′(t f )Q f w(t f )
}

E
{

w′(t f )Q f w(t f )
}−E

{∫ t f

t0
w′(t)Q(t)w(t)dt

}
E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}

−2E
{

w′(t f )Q f w(t f )
}

E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}
. (5.115)

Now, we determine the variance of α . From (5.101), we write

E {α}= E
{

w′(t f )Q f w(t f )
}
+E

{∫ t f

t0
w′(t)Q(t)w(t)dt

}
. (5.116)

In order to determine the variance of α , we first evaluate (E {α})2 and E
{

α2
}

.

E {α}2 = E
{

w′(t f )Q f w(t f )
}
+E

{∫ t f

t0
w′(t)Q(t)w(t)dt

}

.E
{

w′(t f )Q f w(t f )
}
+E

{∫ t f

t0
w′(t)Q(t)w(t)dt

}

= E
{

w′(t f )Q f w(t f )
}

E
{

w′(t f )Q f w(t f )
}
+E

{∫ t f

t0
w′(t)Q(t)w(t)dt

}
E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}

+2E
{

w′(t f )Q f w(t f )
}

E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}
, (5.117)

and

E
{

α2
}
= E

{
w′(t f )Q f w(t f )w′(t f )Q f w(t f )

}
+E

{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)w′(s)Q(s)w(s)dsdt

}

+2E
{

w′(t f )Q f w(t f )w′(t f )Q f w(t f )
∫ t f

t0
w′(t)Q(t)w(t)dt

}
. (5.118)
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Var{α}= E
{

α2
}− (E {α})2

= E
{

w′(t f )Q f w(t f )w′(t f )Q f w(t f )
}
+E

{∫ t f

t0

∫ t f

t0
w′(t)Q(t)w(t)w′(s)Q(s)w(s)dsdt

}

+2E
{

w′(t f )Q f w(t f )w′(t f )Q f w(t f )
∫ t f

t0
w′(t)Q(t)w(t)dt

}

−E
{

w′(t f )Q f w(t f )
}

E
{

w′(t f )Q f w(t f )
}−E

{∫ t f

t0
w′(t)Q(t)w(t)dt

}

.E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}
−2E

{
w′(t f )Q f w(t f )

}
E
{∫ t f

t0
w′(t)Q(t)w(t)dt

}
. (5.119)

Substituting the expression for the variance α from (5.119) into (5.115) we obtain

Var{J}
= E

{
z′(t f )Q f w(t f )z′(t f )Q f w(t f )

}
+E

{
w′(t f )Q f z(t f )w′(t f )Q f z(t f )

}
+2E

{
z′(t f )Q f w(t f )w′(t f )Q f z(t f )

}
+E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)z′(s)Q(s)w(s)dsdt

}

+E
{∫ t f

t0

∫ t f

t0
w′(t)Q(t)z(t)w′(s)Q(s)z(s)dsdt

}
+2E

{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)w′(s)Q(s)z(s)dsdt

}

+2E
{

z′(t f )Q f w(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
z′(t f )Q f w(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}

+2E
{

w′(t f )Q f z(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
w′(t f )Q f z(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}
+Var{α} .

(5.120)

Eq. (5.120) has three types of terms apart from Var{α}: product terms without any

integrand (first three terms), product terms with a single integrand (fourth, fifth, and sixth

terms), and product terms with a double integrand (seventh, eighth, ninth, and tenth terms).

For the first three terms we write,

Var{J}1 = E
{

z′(t f )Q f w(t f )z′(t f )Q f w(t f )
}
+E

{
w′(t f )Q f z(t f )w′(t f )Q f z(t f )

}
+2E

{
z′(t f )Q f w(t f )w′(t f )Q f z(t f )

}
= E

{
aa+a′a′+2aa′

}
, (Let a = z′(t f )Q f w(t f ), then a′ = w′(t f )Q f z(t f ) )

= 4E
{

aa′
}

= 4E
{

z′(t f )Q f w(t f )w′(t f )Q f z(t f )
}

= 4z′(t f )Q f w(t f )E
{

w(t f )w′(t f )
}

Q f z(t f ). (5.121)
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For the fourth, fifth, and sixth terms, we write

Var{J}2 = E
{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)z′(s)Q(s)w(s)dsdt

}

+E
{∫ t f

t0

∫ t f

t0
w′(t)Q(t)z(t)w′(s)Q(s)z(s)dsdt

}

+2E
{∫ t f

t0

∫ t f

t0
z′(t)Q(t)w(t)w′(s)Q(s)z(s)dsdt

}

= E
{∫ t f

t0

∫ t f

t0
(aa+a′a′+2aa′)dsdt

}
; (a = z′(t)Q(t)w(t))

= 4E
{∫ t f

t0

∫ t f

t0
(aa′dsdt)

}
= 4

∫ t f

t0

∫ t f

t0
z′(t)Q(t)E

{
w(t)w′(s)

}
Q(s)z(s)dsdt. (5.122)

For the seventh, eighth, ninth and tenth terms, we write

Var{J}3

= 2E
{

z′(t f )Q f w(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
z′(t f )Q f w(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}

+2E
{

w′(t f )Q f z(t f )
∫ t f

t0
z′(t)Q(t)w(t)dt

}
+2E

{
w′(t f )Q f z(t f )

∫ t f

t0
w′(t)Q(t)z(t)dt

}
= 2E

{
a′b′+a′b+ab′+ab

}
; (Let a = w′(t f )Q f z(t f ),b =

∫ t f
t0 w′(t)Q(t)z(t)dt)

= 8E
{

a′b
}

= 8E
{

z′(t f )Q f w(t f )
∫ t f

t0
w′(t)Q(t)z(t)dt

}

= 8z′(t f )Q f E
{

w(t f )
∫ t f

t0
w′(t)Q(t)z(t)dt

}
. (5.123)

From (5.120), we have the following expression for the variance of cost using the expres-

sions in (5.121), (5.122), and (5.123),

Var{J}= 4z′(t f )Q f E
{

w(t f )w′(t f )
}

Q f z(t f )

+4

∫ t f

t0

∫ t f

t0
z′(t)Q(t)E

{
w(t)w′(s)

}
Q(s)z(s)dsdt

+8z′(t f )Q f E
{

w(t f )
∫ t f

t0
w′(t)Q(t)z(t)dt

}
+Var{α} . (5.124)

Now, we express E {w(t)w′(s)}, E
{

w(t f )w′(t f )
}

, E
{

w(t f )
∫ t f

t0 w′(t)Q(t)z(t)dt
}

in terms

of the state transition matrix and covariance matrix. The state equation for w(t) is stated as
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(in (5.93)),

dw(t) = A(t)dw(t)+C(t)E {γ(t,η)|ψ}dt +dθ(t) w(t0) = 0,

can be expressed as,

w(t) = Φ(t, t0)w(t0)+
∫ t f

t0
Φ(t,τ)C(τ)E {γ(τ)|ψ}dτ +

∫ t f

t0
Φ(t,τ)θ(τ)dτ. (5.125)

where, Φ(t,τ) is the transition matrix. Then

w(t)w′(s) =
[

Φ(t, t0)w(t0)+
∫ t f

t0
Φ(t,τ1)C(τ1)E {γ(τ1)|ψ}dτ1 +

∫ t f

t0
Φ(t,τ1)θ(τ1)dτ1

]

.

[
Φ(s, t0)w(t0)+

∫ t f

t0
Φ(s,τ2)C(τ2)E {γ(τ2)|ψ}dτ2 +

∫ t f

t0
Φ(s,τ2)θ(τ2)dτ2

]′
=
∫ t f

t0

∫ t f

t0
Φ(t,τ1)C(τ1)E {γ(τ1)|ψ}E

{
γ ′(τ2)|ψ

}
C′(τ2)Φ′(s,τ2)dτ2dτ1

+
∫ t f

t0

∫ t f

t0
Φ(t,τ1)C(τ1)E {γ(τ1)|ψ}θ ′(τ2)Φ′(s,τ2)dτ2dτ1

+
∫ t f

t0

∫ t f

t0
Φ(t,τ1)θ(τ1)E

{
γ ′(τ2)|ψ

}
C′(τ2)Φ′(s,τ2)dτ2dτ1

+
∫ t f

t0

∫ t f

t0
Φ(t,τ1)θ(τ1)θ ′(τ2)Φ′(s,τ2)dτ2dτ1. w(t0) = 0 (5.126)
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Taking expectation of (5.126), we obtain

E
{

w(t)w′(s)
}

= E
{∫ t f

t0

∫ t f

t0
Φ(t,τ1)C(τ1)E {γ(τ1)|ψ}E

{
γ ′(τ2)|ψ

}
C′(τ2)Φ′(s,τ2)dτ2dτ1

}

+E
{∫ t f

t0

∫ t f

t0
Φ(t,τ1)C(τ1)E {γ(τ1)|ψ}θ ′(τ2)Φ′(s,τ2)dτ2dτ1

}

+E
{∫ t f

t0

∫ t f

t0
Φ(t,τ1)θ(τ1)E

{
γ ′(τ2)|ψ

}
C′(τ2)Φ′(s,τ2)dτ2dτ1

}

+E
{∫ t f

t0

∫ t f

t0
Φ(t,τ1)θ(τ1)θ ′(τ2)Φ′(s,τ2)dτ2dτ1

}
=
∫ t f

t0

∫ t f

t0
Φ(t,τ1)C(τ1)E

{
E {γ(τ1)|ψ}E

{
γ ′(τ2)|ψ

}}
C′(τ2)Φ′(s,τ2)dτ2dτ1

+
∫ t f

t0

∫ t f

t0
Φ(t,τ1)C(τ1)E

{
E {γ(τ1)|ψ}θ ′(τ2)

}
Φ′(s,τ2)dτ2dτ1

+
∫ t f

t0

∫ t f

t0
Φ(t,τ1)E

{
θ(τ1)E

{
γ ′(τ2)|ψ

}}
C′(τ2)Φ′(s,τ2)dτ2dτ1

+
∫ t f

t0

∫ t f

t0
Φ(t,τ1)E

{
θ(τ1)θ ′(τ2)

}
Φ′(s,τ2)dτ2dτ1

=
∫ t f

t0

∫ t f

t0
Φ(t,τ1)C(τ1)E

{
E {γ(τ1)|ψ}E

{
γ ′(τ2)|ψ

}}
C′(τ2)Φ′(s,τ2)dτ2dτ1

+
∫ t f

t0

∫ t f

t0
Φ(t,τ1)Θ(t)δ (t − τ)Φ′(s,τ2)dτ2dτ1

=
∫ t f

t0

∫ t f

t0
Φ(t,τ1)C(τ1)E

{
E {γ(τ1)|ψ}E

{
γ ′(τ2)|ψ

}}
C′(τ2)Φ′(s,τ2)dτ2dτ1

+
∫ min(t,s)

t0
Φ(t,τ1)Θ(t)Φ′(s,τ2)dτ2

=W (t,s). (5.127)

Similarly,

E
{

w(t f )w′(t f )
}

=
∫ t f

t0

∫ t f

t0
Φ(t f ,τ1)C(τ1)E

{
E {γ(τ1)|ψ}E

{
γ ′(τ2)|ψ

}}
C′(τ2)Φ′(t f ,τ2)dτ2dτ1

+
∫ min(t,s)

t0
Φ(t f ,τ1)Θ(t)Φ′(t f ,τ2)dτ2

=W (t f , t f ). (5.128)
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E
{

w(t f )
∫ t f

t0
w′(t)Q(t)z(t)dt

}

= E
{[∫ t f

t0
Φ(t f ,τ1)C(τ1)E {γ(τ1)|ψ}dτ1 +

∫ t f

t0
Φ(t f ,τ1)θ(τ1)dτ1

]

.
∫ t f

t0

[∫ t f

t0
Φ(t,τ1)C(τ1)E {γ(τ1)|ψ}dτ1 +

∫ t f

t0
Φ(t,τ1)θ(τ1)dτ1

]′
Q(t)z(t)dt

}

= E
{∫ t f

t0
Φ(t f ,τ1)C(τ1)E {γ(τ1)|ψ}dτ1

.
∫ t f

t0

[∫ t f

t0
Φ(t,τ1)C(τ1)E {γ(τ1)|ψ}dτ1 +

∫ t f

t0
Φ(t,τ1)θ(τ1)dτ1

]′
Q(t)z(t)dt

}

+E
{∫ t f

t0
Φ(t f ,τ1)θ(τ1)dτ1

.
∫ t f

t0

[∫ t f

t0
Φ(t,τ1)C(τ1)E {γ(τ1)|ψ}dτ1 +

∫ t f

t0
Φ(t,τ1)θ(τ1)dτ1

]′
Q(t)z(t)dt

}

=
∫ t f

t0
Φ(t f ,τ1)C(τ1)E

{
E {γ(τ1)|ψ}

∫ t f

t0

∫ t f

t0
E
{

γ ′(τ2)|ψ
}

C′(τ2)Φ′(t,τ2)Q(t)z(t)dτ2dτ1dt
}

+
∫ t f

t0
Φ(t f ,τ1)E

{
θ(τ1)

∫ t f

t0

∫ t f

t0
θ ′(τ2)Φ′(t,τ2)Q(t)z(t)dτ2dτ1dt

}

=
∫ t f

t0
Φ(t f ,τ1)C(τ1)E

{
E {γ(τ1)|ψ}

∫ t f

t0

∫ t f

t0
E
{

γ ′(τ2)|ψ
}

C′(τ2)Φ′(t,τ2)Q(t)z(t)dτ2dτ1dt
}

+
∫ t f

t0
Φ(t f ,τ1)

∫ t f

t0
ΘΦ′(t,τ2)Q(t)z(t)dτ2dt

=
∫ t f

t0
W (t f , t)Q(t)z(t)dt. (5.129)

Using (5.127), (5.128), and (5.129) in (5.124) we have,

Var{J}= 4z′(t f )Q fW (t f , t f )Q f z(t f )+4

∫ t f

t0

∫ t f

t0
z′(t)Q(t)W (t,s)Q(s)z(s)dsdt

+8z′(t f )Q f

∫ t f

t0
W (t f , t)Q(t)z(t)dt +Var{α} . (5.130)

Let us repeat our goal in this section. We intend to minimize the variance of the cost

function, Var{α} stated in (5.130) keeping the mean of the cost function, E {α} equal to

some M. The constraint stated in (5.92) is dz(t) = [A(t)z(t) +B(t)γ(t)]dt, z(t0) = x0.

To put this minimization problem in the framework of calculus of variations, we define an

augmented cost function,

Ṽ (γ) =Var{J}+μ [E {J}−M]+
∫ t f

t0
〈{A(t)z(t)+B(t)γ(t)− ż(t)} ,ρ(t)〉, (5.131)

where μ is a Lagrange multiplier and ρ(t) is a costate variable.
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Now using Eqs. (5.100) and (5.130), Eq. (5.131) can be written as,

Ṽ (γ) = 4z′(t f )Q fW (t f , t f )Q f z(t f )+4

∫ t f

t0

∫ t f

t0
z′(t)Q(t)W (t,s)Q(s)z(s)dsdt

+8z′(t f )Q f

∫ t f

t0
W (t f , t)Q(t)z(t)dt +Kv +μ

[
z′(t f )Q f z(t f )+

∫ t f

t0
[z′(t)Q(t)z(t)+ γ ′(t)R(t)γ(t)]dt

]
+μ [Km −M]+

∫ t f

t0
〈{A(t)z(t)+B(t)γ(t)− ż(t)} ,ρ(t)〉

= 8z′(t f )Q f

∫ t f

t0
W (t f , t)Q(t)z(t)dt +4

∫ t f

t0

∫ t f

t0
z′(t)Q(t)W (t,s)Q(s)z(s)dsdt

+μ
∫ t f

t0
z′(t)Q(t)z(t)dt +μ

∫ t f

t0
γ ′(t)R(t)γ(t)dt +Kv +μ(Km −M)+

+
∫ t f

t0
〈{A(t)z(t)+B(t)γ(t)− ż(t)} ,ρ(t)〉+4z′(t f )Q fW (t f , t f )Q f z(t f )+μz′(t f )Q f z(t f ). (5.132)

where we denote the mean and variance of α by Km = E {α} and Kv =Var{α}.
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Taking the first variation of Ṽ (γ) we have,

δṼ (γ) = 8

∫ t f

t0
〈Q′(t)W ′(t f , t)Q′

f z(t f ),δ z(t)〉dt +8

∫ t f

t0
〈Q fW (t f , t)Q(t)z(t),δ z(t f )〉dt

+4

∫ t f

t0
〈
(∫ t f

t0
Q(t)W (t,s)Q(s)z(s)ds

)
,δ z(t)〉dt +4

∫ t f

t0
〈
(∫ t f

t0
Q′(s)W ′(s, t)Q′(t)z(t)dt

)
,

δ z(s)〉ds+2μ
∫ t f

t0
〈Q(t)z(t),δ z(t)〉dt +2μ

∫ t f

t0
〈R(t)γ(t),δγ(t)〉dt

+
∫ t f

t0
〈A(t)′(t)ρ(t),δ z(t)〉dt +

∫ t f

t0
〈B′(t)ρ(t),δγ(t)〉dt −〈ρ(t f ),δ z(t f )〉

+
∫ t f

t0
〈ρ̇(t),δ z(t)〉+8〈Q fW (t f , t f )Q f z(t f ),δ z(t f )〉+2μ〈Q f z(t f ),δ z(t f )〉

= 8

∫ t f

t0
〈Q′(t)W ′(t f , t)Q′

f z(t f ),δ z(t)〉dt +8

∫ t f

t0
〈Q fW (t f , t)Q(t)z(t),δ z(t f )〉dt+

+4

∫ t f

t0
〈
(∫ t f

t0
Q(t)W (t,s)Q(s)z(s)ds

)
,δ z(t)〉dt +4

∫ t f

t0
〈
(∫ t f

t0
Q′(s)W ′(s, t)Q′(t)z(t)dt

)
,

δ z(s)〉ds+2μ
∫ t f

t0
〈Q(t)z(t),δ z(t)〉dt +2μ

∫ t f

t0
〈R(t)γ(t),δγ(t)〉dt

+

[
〈z(t),ρ(t)〉

∣∣∣∣∣
t f

t0

−
∫ t f

t0
〈z(t), ρ̇(t)〉dt

]
+
∫ t f

t0
〈A(t)′(t)ρ(t),δ z(t)〉dt +

∫ t f

t0
〈B′(t)ρ(t),δγ(t)〉dt

−〈ρ(t f ),δ z(t f )〉+
∫ t f

t0
〈ρ̇(t),δ z(t)〉+8〈Q fW (t f , t f )Q f z(t f ),δ z(t f )〉+2μ〈Q f z(t f ),δ z(t f )〉

= 8

∫ t f

t0
〈Q′(t)W ′(t f , t)Q′

f z(t f ),δ z(t)〉dt +8

∫ t f

t0
〈Q fW (t f , t)Q(t)z(t),δ z(t f )〉dt

+4

∫ t f

t0
〈
(∫ t f

t0
Q(t)W (t,s)Q(s)z(s)ds

)
,δ z(t)〉dt +4

∫ t f

t0
〈
(∫ t f

t0
Q′(s)W ′(s, t)Q′(t)z(t)dt

)
,

δ z(s)〉ds+2μ
∫ t f

t0
〈Q(t)z(t),δ z(t)〉dt +2μ

∫ t f

t0
〈R(t)γ(t),δγ(t)〉dt

+

[
〈z(t f ),ρ(t f )〉−〈z(t0),ρ(t0)〉−

∫ t f

t0
〈z(t), ρ̇(t)〉dt

]
+
∫ t f

t0
〈A(t)′(t)ρ(t),δ z(t)〉dt

+
∫ t f

t0
〈B′(t)ρ(t),δγ(t)〉dt −〈ρ(t f ),δ z(t f )〉+

∫ t f

t0
〈ρ̇(t),δ z(t)〉

+8〈Q fW (t f , t f )Q f z(t f ),δ z(t f )〉+2μ〈Q f z(t f ),δ z(t f )〉

= 8

∫ t f

t0
〈Q′(t)W ′(t f , t)Q′

f z(t f ),δ z(t)〉dt +8

∫ t f

t0
〈Q fW (t f , t)Q(t)z(t),δ z(t f )〉dt

+4

∫ t f

t0
〈
(∫ t f

t0
Q(t)W (t,s)Q(s)z(s)ds

)
,δ z(t)〉dt +4

∫ t f

t0
〈
(∫ t f

t0
Q′(s)W ′(s, t)Q′(t)z(t)dt

)
,

δ z(s)〉ds+2μ
∫ t f

t0
〈Q(t)z(t),δ z(t)〉dt +2μ

∫ t f

t0
〈R(t)γ(t),δγ(t)〉dt

+

[
〈z(t f ),ρ(t f )〉−

∫ t f

t0
〈z(t), ρ̇(t)〉dt

]
+
∫ t f

t0
〈A(t)′(t)ρ(t),δ z(t)〉dt +

∫ t f

t0
〈B′(t)ρ(t),δγ(t)〉dt

−〈ρ(t f ),δ z(t f )〉+
∫ t f

t0
〈ρ̇(t),δ z(t)〉+8〈Q fW (t f , t f )Q f z(t f ),δ z(t f )〉+2μ〈Q f z(t f ),δ z(t f )〉.

(5.133)
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In order for γ to be minimum, it is necessary that δṼ (γ) = 0. This gives us the necessary

conditions with the following three equations:

2μ
∫ t f

t0
〈R(t)γ(t),δγ(t)〉dt +

∫ t f

t0
〈B′(t)ρ(t),δγ(t)〉dt = 0

γ(t) =− 1

2μ
R−1(t)B′(t)ρ(t), (5.134)

8

∫ t f

t0
〈Q′(t)W ′(t f , t)Q′

f z(t f ),δ z(t)〉dt +8

∫ t f

t0
〈
(∫ t f

t0
Q(t)W (t,s)Q(s)z(s)ds

)
,δ z(t)〉dt

+2μ
∫ t f

t0
〈Q(t)z(t),δ z(t)〉dt +

∫ t f

t0
〈A(t)′(t)ρ(t),δ z(t)〉dt +

∫ t f

t0
〈ρ̇(t),δ z(t)〉= 0

− ρ̇(t) = 8Q(t)W (t f , t)Q f z(t f )+8

∫ t f

t0
Q(t)W (t,s)Q(s)z(s)ds+2μQ(t)z(t)+A(t)′(t)ρ(t),

(5.135)

8

∫ t f

t0
〈Q fW (t f , t)Q(t)z(t),δ z(t f )〉dt + 〈ρ(t f ),δ z(t f )〉

+8〈Q fW (t f , t f )Q f z(t f ),δ z(t f )〉+2μ〈Q f z(t f ),δ z(t f )〉= 0

ρ(t f ) = 8

∫ t f

t0
Q fW (t f , t)Q(t)z(t)dt +8Q fW (t f , t f )Q f z(t f )+2μQ f z(t f ). (5.136)

Now, taking the second variation of Ṽ (γ), we have,

δ 2Ṽ (γ) = 4

∫ t f

t0
〈Q′(t)W ′(t f , t)Q′

f z(t f )δ z(t f ),δ z(t)〉dt +4

∫ t f

t0
〈Q fW (t f , t)Q(t)δ z(t),δ z(t f )〉dt

+2

∫ t f

t0
〈
(∫ t f

t0
Q(t)W (t,s)Q(s)δ z(s)ds

)
,δ z(t)〉dt +2

∫ t f

t0
〈
(∫ t f

t0
Q′(s)W ′(s, t)Q′(t)δ z(t)dt

)
,

δ z(s)〉ds+μ
∫ t f

t0
〈Q(t)δ z(t),δ z(t)〉dt +μ

∫ t f

t0
〈R(t)δγ(t),δγ(t)〉dt

+4〈Q fW (t f , t f )Q f δ z(t f ),δ z(t f )〉+μ〈Q f δ z(t f ),δ z(t f )〉. (5.137)

Now, letting μ positive guarantees a minimum solution by ensuring δ 2Ṽ (γ) > 0. Eq.

(5.137) gives the sufficient condition.

Here, the control strategy is a function of the costate variable which is dependent on

the state variable. This makes the numerical evaluation of the control complex. In order to
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circumvent the complexity, let us introduce two new variables υ and ϕ by an extension of

the method of Baggeroer [118]:

υ(t) =W (t, t f )Q f z(t f )+
∫ t f

t0
W (t,s)Q(t)z(s)ds, (5.138)

ϕ(t) =W (t f , t)Q f z(t f )+
∫ t f

t0
Φ(s, t)Q(t)z(s)ds. (5.139)

In terms of these two new variables, (5.135) becomes,

dρ(t) =−A′(t)ρ(t)dt −2μQ(t)z(t)dt −8Q(t)υ(t)dt. (5.140)

By taking derivatives of (5.138) and (5.139) gives,

dυ(t) = A(t)υ(t)dt +
[
C(t)E

{
E {γ(t,η)}E

{
γ ′(t,η)

}}
C′(t)+Θ

]
ϕ(t)dt, (5.141)

ϕ̇(t) =−A′(t)ϕ(t)−Q(t)z(t). (5.142)

with an initial condition υ(t0) = 0 and a terminal condition ϕ(t f ) = Q f z(t f ). Also, (5.136)

becomes,

ρ(t f ) = 2μQ f z(t f )+8Q f υ(t f ). (5.143)

Hence, (5.134) gives the control strategy for the stated problem in this section, if it satisfies

the differential equations found from (5.92), (5.135), (5.140), and (5.140):

dz(t) = A(t)z(t)dt − 1

2μ
B(t)R−1(t)B′(t)ρ(t)dt, (5.144)

dρ(t) =−A′(t)ρ(t)dt −2μQ(t)z(t)dt −8Q(t)υ(t)dt, (5.145)

dυ(t) = A(t)υ(t)dt +
[
C(t)E

{
E {γ(t,η)}E

{
γ ′(t,η)

}}
C′(t)+Θ

]
ϕ(t)dt, (5.146)

dϕ(t) =−A′(t)ϕ(t)dt −Q(t)z(t)dt. (5.147)

with the boundary conditions

z(t0) = x0, (5.148)

ρ(t f ) = 2μQ f z(t f )+8Q f υ(t f ), (5.149)

υ(t0) = 0, (5.150)

ϕ(t f ) = Q f z(t f ). (5.151)
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5.5 Determination of Stackelberg Strategies

In this section, we determine the Stackelberg strategies for the minimal cost variance prob-

lem of a linear quadratic stochastic system derived in Section 5.4.4. We use Lemma 5.1 in

Section 5.4.5 for solving our minimal cost variance problem. Note that after incorporating

the follower’s optimal control into the original linear stochastic system, the state variables

are changed. Now the state variables are denoted by x(t) = [ x̂2(t) ξ (t) κ2(t). ]
′ The state vari-

ables are described later in the proof. Accordingly, we used the ‘bar’ notation like x for the

appropriate symbols.

Theorem 5.3. The two-player nonzero-sum stochastic differential game with static infor-

mation, as formulated in Section 5.4.4 admits a Stackelberg solution with P1 as the leader

P1 with the cost function:

J1(γ1,T
21
2 γ1) = x′f Q1 f x f +

∫ t f

t0

[
x′(t)Q(t)x(t)+ γ ′1(t)γ1(t)

]
dt, (5.152)

The Stackelberg statistical game problem is to minimize the variance of the cost function

Var
{

J1(γ1,T
21
2 γ1)

}
while keeping E

{
J1(γ1,T

21
2 γ1)

}
= M, where M is an arbitrary con-

stant, and which is subject to the state dynamics

dx(t) = [A(t)x(t)+B(t)γ1(t)+C(t)E {γ1(t)|η2}]+F(t)dw(t), (5.153)

where the definitions of x,A,B,C,F ,Q(t),Q1 f ,Q2 f are given inside the proof.

Then, the Stackelberg strategy γ1 ∈ Γ2
1 of the leader is given by

γ∗1 (t,η1) =− 1

2μ
B′(t)ρ(t), (5.154)

if it satisfies the differential equations

dz(t) = A(t)z(t)dt − 1

μ
B(t)B′(t)ρ(t)dt, (5.155)

dρ(t) =−A′(t)ρ(t)dt −2μQ1(t)z(t)dt −8Q1(t)υ(t)dt, (5.156)

dυ(t) = A(t)υ(t)dt +
[
C(t)E

{
E {γ1(t)|η2)}E

{
γ ′1(t)|η2)

}}
C′(t)+Θ

]
ϕ(t)dt, (5.157)

dϕ(t) =−A′(t)ϕ(t)−Q1(t)z(t). (5.158)
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with the boundary conditions

z(t0) = x0, (5.159)

ρ(t f ) = 2μQ1 f z(t f )+8Q1 f υ(t f ), (5.160)

υ(t0) = 0, (5.161)

ϕ(t f ) = Q1 f z(t f ). (5.162)

Furthermore, the corresponding optimal response strategy of the follower P2 is given

by,

γ∗2 (t,η2) =−B′
2(t) [S2(t)E {x(t)|η2}+κ2(t)] . (5.163)

where,

Ṡ2(t) =−A′(t)S2(t)−S2(t)A(t)−Q2(t)+S2(t)B2(t)B′
2(t)S2(t), (5.164)

S2(t f ) = Q2 f , (5.165)

κ̇2(t) =−[A′(t)−S2(t)B2(t)B′
2(t)

]
κ2(t)−S2(t)B1(t)E {γ1(t,η1)|η2} , (5.166)

κ2(t f ) = 0. (5.167)

Let us denote E {x|η2} by x̂2(t). Then,

dx̂2(t) =
[
A(t)−B2(t)B′

2(t)S2(t)
]

x̂2(t)dt −B2(t)B′
2(t)κ2(t)dt +B1E {γ1(t,η1)|η2}dt,

(5.168)

x̂2(t0) = E {x(t0)|η2}= E {x0|η2} . (5.169)

Proof. We return to our original problem stated at the end of Section 5.4.4. We intend to

minimize Var{J1} where,

J1(γ1,T
21
2 γ1) = x̂′2(t f )Q1 f x̂2(t f )+ξ ′(t f )Q1 f ξ (t f )

+
∫ t f

t0

[
x̂′2(t)Q1(t)x̂2(t)+ξ ′(t)Q1ξ (t)

]
dt

+
∫ t f

t0

[{
x̂′2(t)S2(t)κ ′

2(t)
}

B2(t)R(t)B′
2(t){S2(t)x̂2(t)+κ2(t)}+ γ ′1(t)γ1(t)

]
dt (5.170)

with subject to the constraints,

E {J1}= M, (5.171)



116

dx̂2(t) =
[
A(t)−B2(t)B′

2(t)S2(t)
]

x̂2(t)dt −B2(t)B′
2(t)κ2(t)dt +B1E {γ1(t,η1)|η2}dt,

(5.172)

x̂2(t0) = E {x(t0)|η2}= E {x0|η2} . (5.173)

dξ (t) = A(t)ξ (t)+B1γ1(t)dt −B1(t)E {γ1(t)|η2}dt +σ(t)dw(t), (5.174)

ξt0 = x0 −E {x0|η2} . (5.175)

κ̇2(t) =−[A′(t)−S2(t)B2(t)B′
2(t)

]
κ2(t)−S2(t)B1(t)E {γ1(t,η1)|η2} , (5.176)

κ2(t f ) = 0 (5.177)

Ṡ2(t) =−A′(t)S2(t)−S2(t)A(t)−Q2(t)+S2(t)B2(t)B′
2(t)S2(t), (5.178)

S2(t f ) = Q2 f , (5.179)

We define the new state vector,

x(t) =
[
x̂2(t) ξ (t) κ2(t)

]′
(5.180)

and the matrices,

A(t) =

⎡
⎢⎢⎢⎣

A(t)−B2(t)B′
2(t)S2(t) 0 −B2(t)B′

2(t)

0 A(t) 0

0 0 − [A′(t)−S2(t)B2(t)B′
2(t)]

⎤
⎥⎥⎥⎦ , (5.181)

B(t) =
[
0 B1(t) 0

]′
, (5.182)

C(t) =
[
B1(t) −B1(t) −S2(t)B1(t)

]′
, (5.183)

F(t) =
[
0 F(t) 0

]′
, (5.184)

Q1 f =

⎡
⎢⎢⎢⎣

Q1 f 0 0

0 Q1 f 0

0 0 0]

⎤
⎥⎥⎥⎦ , (5.185)
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Q1 =

⎡
⎢⎢⎢⎣

Q1(t)−S2(t)B2(t)R(t)B′
2(t)S2(t) 0 −S2(t)B2(t)R(t)B′

2(t)

0 Q1(t) 0

B2(t)R(t)B′
2(t)S2(t) 0 B2(t)R(t)B′

2(t)

⎤
⎥⎥⎥⎦ (5.186)

Then, we have the following cost function for the leader P1:

J1(γ1,T
21
2 γ1) = x′f Q1 f x f +

∫ t f

t0

[
x′(t)Q(t)x(t)+ γ ′1(t)γ1(t)

]
dt (5.187)

We shall minimize Var
{

J1(γ1,T
21
2 γ1)

}
while keeping E

{
J1(γ1,T

21
2 γ1)

}
= M, where M is

an arbitrary constant, and which is subject to the state dynamics,

dx(t) = [A(t)x(t)+B(t)γ1(t)+C(t)E {γ1(t)|η2}]dt +F(t)dw(t), (5.188)

where x̂2(t0), ξ (t0) and κ2(t f ) are given. Then, from Lemma 5.1 we identify γ(t) with

γ1(t,η1), η with η1, ψ with η2, and consider R(t) as identity matrix. We rewrite the

equations (5.138) and (5.139) as follows

υ(t) =W (t, t f )Q1 f z(t f )+
∫ t f

t0
W (t,s)Q1(t)z(s)ds, (5.189)

ϕ(t) =W (t f , t)Q1 f z(t f )+
∫ t f

t0
Φ(s, t)Q1(t)z(s)ds, (5.190)

with

z(t) = E {x(t)} , z(t0) = x0 =
[
x̂2(t0) ξ (t0) κ2(t0)

]′
. (5.191)

W (t,s) =
∫ t f

t0

∫ t f

t0
Φ(t,τ1)C(τ1)E

{
E {γ1(τ1,η1)|η2}E

{
γ ′1(τ2)|η2

}}
C′(τ2)Φ′(s,τ2)dτ2dτ1

+
∫ min(t,s)

t0
Φ(t,τ1)Θ(t)Φ′(s,τ2)dτ2 (5.192)

W (t f , t f ) =
∫ t f

t0

∫ t f

t0
Φ(t f ,τ1)C(τ1)E

{
E {γ1(τ1,η1)|η2}E

{
γ ′1(τ2)|ψ

}}
C′(τ2)Φ′(t f ,τ2)dτ2dτ1

+
∫ t f

t0
Φ(t f ,τ1)Θ(t)Φ′(t f ,τ2)dτ2 (5.193)∫ t f

t0
W (t f , t)Q1(t)z(t)dt

=
∫ t f

t0
Φ(t f ,τ1)C(τ1)E

{
E {γ1(τ1,η1)|η2}

∫ t f

t0

∫ t f

t0
E
{

γ ′1(τ2)|η2

}
C′(τ2)Φ′(t,τ2)Q1(t)z(t)dτ2dτ1dt

}
+
∫ t f

t0
Φ(t f ,τ1)

∫ t f

t0
ΘΦ′(t,τ2)Q1(t)z(t)dτ2dt. (5.194)
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Now, according to Lemma 5.1, the control strategy of the leader is as follows:

γ∗1 (t,η1) =− 1

2μ
B′(t)ρ(t), (5.195)

if it satisfies the differential equations

dz(t) = A(t)z(t)dt − 1

2μ
B(t)B′(t)ρ(t)dt, (5.196)

dρ(t) =−A′(t)ρ(t)−2μQ1(t)z(t)dt −8Q1(t)υ(t)dt, (5.197)

dυ(t) = A(t)υ(t)dt +
[
C(t)E

{
E {γ1(t)|η2)}E

{
γ ′1(t)|η2)

}}
C′(t)+Θ

]
ϕ(t)dt, (5.198)

dϕ(t) =−A′(t)ϕ(t)dt −Q1(t)z(t)dt. (5.199)

with the boundary conditions

z(t0) = x0, (5.200)

ρ(t f ) = 2μQ1 f z(t f )+8Q1 f υ(t f ), (5.201)

υ(t0) = 0, (5.202)

ϕ(t f ) = Q1 f z(t f ). (5.203)

Furthermore, the corresponding optimal response strategy of the follower is given by

γ∗2 (t,η2) =−B′
2(t) [S2(t)E {x(t)|η2}+κ2(t)] . (5.204)

where,

Ṡ2(t) =−A′(t)S2(t)−S2(t)A(t)−Q2(t)+S2(t)B2(t)B′
2(t)S2(t), (5.205)

S2(t f ) = Q2 f , (5.206)

κ̇2(t) =−[A′(t)−S2(t)B2(t)B′
2(t)

]
κ2(t)−S2(t)B1(t)E {γ1(t,η1)|η2} , (5.207)

κ2(t f ) = 0. (5.208)

Hence, (γ∗1 (t,η1),γ∗2 (t,η2)) is the Stackelberg strategy pair for the above Stackelberg

statistical game.
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5.6 Numerical Simulation of Stackelberg Statistical Controller

We consider a linear stochastic system described in [39], and modify it into a two-player

linear stochastic system as follows

dx(t) = Ax(t)+B1u1(t)+B2u2(t)+Fdw(t), x(t0) = x0, (5.209)

where A=

⎡
⎣−1 1

0 −1

⎤
⎦, B1 =

⎡
⎣1

0

⎤
⎦, B2 =

⎡
⎣1

0

⎤
⎦, F =

⎡
⎣1

1

⎤
⎦. with the initial condition x= [4 3]′

and noise covariance E {dwdw′} = 0.5. Let γ1 and γ2 be permissible strategies belonging

to permissible strategy space Γk,k = 1,2, such that the controls u1 = γ1 and u2 = γ2.

The cost functions for player 1 and player 2 are

J1 = x′(t f )Q1 f x(t f )+
∫ t f

t0

[
x′(t)Q1x(t)+ γ ′1(t)R11(t)γ1(t)+ γ ′2(t)R12(t)γ2(t)

]
dt

J2 = x′(t f )Q2 f x(t f )+
∫ t f

t0

[
x′(t)Q2x(t)+ γ ′1(t)R21(t)γ1(t)+ γ ′2(t)R22(t)γ2(t)

]
dt

The performance-measure weightings are

Q1 f =

⎡
⎣0 0

0 0

⎤
⎦, Q1 =

⎡
⎣1 0

0 1

⎤
⎦, Q2 f =

⎡
⎣0 0

0 0

⎤
⎦, Q2 =

⎡
⎣1 0

0 1

⎤
⎦, R11 = I, R12 = I,

R21 = O, R22 = I.

Assuming the expected value of leader control E {γ1 | η2} = 0.1, we determine the

Stackelberg control for the follower from Eqs. (5.204)-(5.208). The leader accounts the

follower’s response, which modifies the system considered by the leader to a new system

of equations

dx(t) = [A(t)x(t)+B(t)γ1(t)+C(t)E {γ1(t)|η2}]dt +F(t)dw(t), (5.210)

where A, B, C, and F can be determined from Eqs. (5.181), (5.182), (5.183), and (5.184).

The cost function for the leader becomes

J1 = x′f Q1 f x f +
∫ t f

t0

[
x′(t)Q1(t)x(t)+ γ ′1(t)γ1(t)

]
dt (5.211)

where Q1 and Q1 f can be determined from (5.186) and (5.185).
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Assuming E {E {γ1(t)|η2)}E {γ ′1(t)|η2)}}= 0.1 and Θ = 0.5, we determine the Stack-

elberg control for the leader from Eqs. (5.195)-(5.203). In the simulation, the Lagrange

multiplier μ was varied from 0.1 to 1.0. As the value of multiplier μ increases, the mean

constraint gets emphasis as well as mean variance. Therefore, we observer some common

characteristics to the state and control trajectories. For obtaining the state and control tra-

jectories, we repeated the simulation 100 times with 100 different noise and recorded the

average values. Running simulation multiple times with multiple noise reduce the deter-

ministic characteristic from the system.
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Figure 5.3: Player 1 (leader) control.

Fig. 5.3 shows the control action for the leader for varying μ . As the multiplier μ

increases, the control action becomes smaller in value. Fig. 5.4 shows the control action

for the follower, which look similar for all μ . The follower control action is independent

of the value of μ . The variation occurs because of repetition of simulation with different

random number seeds for noise generation. Figs. 5.5 and 5.6 show the mean and variance

of the cost function for the leader. For the leader, we aim to minimize the variance of the

leader cost function. Note that, as μ increase, the mean and the variance of the leader

cost function decreases at first, and then increase. From the figures, we can determine an
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Figure 5.4: Player 2 (Follower) control.
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Figure 5.5: Mean of the leader cost function.
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Figure 5.6: Variance of the leader cost function.
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Figure 5.7: State 1 trajectories.
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Figure 5.8: State 2 trajectories.

5.7 Review on Closed-loop Stackelberg Solutions of Differential Games

In two-player dynamic Stackelberg games, the decision depends on the type of informa-

tion set the players have access to at any given time. When the leader has access to the

closed-loop perfect state information, it leads to two types of equilibria – global Stackel-

berg solutions and feedback Stackelberg solutions.

The term ‘global’ indicates that the leader has a global advantage over the follower. In

case feedback Stackelberg solutions, the continuous-time problem is viewed as the limit of

discrete-time game, where the number of stages becomes unbounded in a finite interval.

Then, the leader has stagewise or instantaneous advantage over the follower. In closed-

loop paradigm, the follower may fail to attain the optimal response, because the leader’s

announced strategy comes with the memory of the state. Two approaches are considered to

by-pass this problem: the team approach and the maximum principle approach.

In the team approach, the leader minimizes his cost function over the controls of the

leader and the follower [119]. This gives a lower bound on the cost function and the team

strategies for both players. Then, the leader attempts to find a closed-loop strategy so that
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the follower’s optimal response and the state trajectory coincide with the team strategy and

team optimal trajectory.

In the maximum principle approach, the leader’s strategy depends only on the initial

and current states, and the leader solves a non-classical control problem [120]. Note that

the follower’s adjoint equation involves the derivative of the leader’s strategy with respect

to the state. Thus, after incorporating the follower’s adjoint variable as augmented state,

the leader faces a non-classical control problem, where both the control and its derivative

appear in the controlled forward-backward ordinary differential equation [121].

In order to obtain the necessary conditions satisfied by the leader’s optimal strategy, two

approaches are considered by Papavassilopoulos and Cruz [122]. In the first approach, the

variational techniques can be applied to the state system with mixed boundary conditions.

In the second approach, an equivalent relationship is established between non-classical and

classical problems. The second approach yields that the optimal strategy can be found in

the space of affine functions.

Formally, in the second approach, the derivative of the control is considered as another

new control variable, and a new classical control problem is formulated. Then, the equiv-

alence between this new classical control problem and the original non-classical control

problem is established. In the second approach, using Hamilton-Jacobi-Bellman equation

yields a value function that depends on the whole function of the control. It becomes impos-

sible for the leader to apply dynamic programming for his optimal strategy. Therefore, the

maximum principle approach is considered more appropriate for closed-loop Stackelberg

games [120].

The above discussion applies to the deterministic Stackelberg games. The stochastic

formulation involves white noise terms. Therefore, the difficulty arises for Stackelberg

game study under closed-loop information structure, because the the follower reaction may

not be determined explicitly if the leader’s strategy depends on the whole history of state.

If the leader’s strategy is restricted such that the leader’s strategy depends only on the

current state, then there is a way to solve the problem outlined by Papavassilopoulos and

Cruz [122]. In the Stochastic Stackelberg game, the leader faces an optimal control prob-

lem in which there is a state equation consists of a stochastic differential equation and a



125

backward stochastic differential equation. Those equations feature leader’s control u1 and

its derivative ∂u1
∂x . This gives rise to a difficult non-standard control problem. Using max-

imum principle approach, Bensoussan, Chen, and Shethi were able to prove the necessary

condition and obtain the closed-loop Stackelberg solution [120]. They imposed a priori

bounds on the derivative of the leader’s control to keep the Hamiltonian finite. Since the

derivative appears as part of the coefficient in the adjoint equation, its boundedness implies

the well-posedness of the leader’s problem when affine strategies are adopted. Bensous-

san, Chen, and Shethi demonstrated the solution strategy with a one-dimensional linear

quadratic game. However, the authors left the issue of the existence of the solution for

future.

5.8 Discussion

In this chapter, the Stackelberg solution of two-player game was derived, where the leader is

interested in optimizing the second cumulant of the cost function. The information patterns

for both players are open-loop. Previously, Bagchi and Başar derived the Stackelberg solu-

tion of two player for open-loop linear quadratic Gaussian (LQG) control case [46]. Here,

their work has been extended by deriving the open-loop minimal cost variance (MCV)

Stackelberg solution. We presented a numerical simulation of a simple linear system using

the developed open-loop MCV Stackelberg strategy. The next step of the Stackelberg the-

ory development is solution of the Stackelberg game under closed-loop Stackelberg game,

which would be more appropriate for the control of source and detector for the bimodal

dynamic imaging.
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CHAPTER 6

MODELING OF ROBOTIC MANIPULATOR

For automatic control of the bimodal imaging system, we intend to use a dual arm robot,

“Baxter”. It is necessary to simulate the controller of a robot manipulator model before

implementation. To simulate the controller, we require a mathematical model of the robot

manipulator. We derive a non-linear mathematical model of n-link robot manipulator using

Lagrange-Euler equations. Then we obtain a non-linear mathematical model of the Baxter

robot. The perturbed linearized model is derived from the non-linear model using Taylor

series approximation. We present the numerical simulations and experimental validation

results for the linearized model of Baxter.

6.1 Robot Manipulator Model

6.1.1 Robot Manipulator Representation

For modeling, we consult these references [123], [124], [125], [126]. This section discusses

the preliminary material required for a robot manipulator model.

6.1.1.1 Robot Manipulator Components and Geometries

Robot manipulators are composed of a set of bodies, called links, connected by joints into

a kinematic chain. Robot manipulators are also known as “robot arms" in the literature. The

motion in the robot manipulators occurs in the joints (analogous to human wrist and elbow);

the links are of fixed construction (analogous to human forearms). The joints are typically

rotary (revolute) and linear (prismatic). The revolute joints are hinges that allows relative

rotation between two links. The prismatic joints allows relative linear motion between

two links. The joints of most common robots are revolute. Fig. 6.1 shows revolute and

prismatic joint types.

Each joint provides one degree-of-freedom (DOF) for the robot manipulator, either

translational or rotational. In order to reach every point of its work environment with
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Revolute joint Prismatic joint

Figure 6.1: Type of joints.

arbitrary orientation, a robot manipulator requires to possess at least six joints. Six joints

provide six independent DOF: three for position, and three for orientation.

6.1.1.2 Joint Variables, Homogeneous Transformation, and Arm T Matrices

Since each joint connects two links, a robot manipulator with n joints has n+1 links. For

a manipulator, the joints are numbered from 1 to n, and the links are numbered from 0 to

n [126]. Link 0 is the base of the manipulator, and link n holds the end-effector or tool.

By this convention, joint i connects link i−1 and link i.

A link can be described by two parameters, its length, ai, and its twist, αi. A joint can

be specified by two parameters: the joint angle, θi, and the link offset, di. The joint angle,

θi, is the rotation of one link with respect to the next about the joint axis. The link offset,

di denotes the distance from one link coordinate frame to the next along the joint axis. The

i-th joint is associated with a joint variable, denoted by qi. In the case of revolute joint, the

joint angle is the joint variable. In the case of prismatic joint, the link offset is the joint

variable. This means

qi =

⎧⎪⎨
⎪⎩

θi, joint i is revolute

di, joint i is prismatic.

(6.1)

For an n-link robot, the generalized joint coordinates q is called the joint space. For

the common case of an all-revolute robot, the joint coordinates are referred to as joint an-

gles [126]. The joint coordinates are also referred to as the pose of the manipulator, which

is not same as the pose of the end-effector. Fig. 6.2 shows a rigid object S to which a coor-
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Figure 6.2: Coordinate frame attached to a rigid body.

dinate frame o1x1y1z1 is attached. The position and orientation of the point p on the rigid

body can be expressed with respect to the frame o0x0y0z0 using a transformation matrix.

In general, the position and orientation of i-th coordinate frame oixiyizi can be expressed

with respect to (i−1)-th coordinate frame oi−1xi−1yi−1zi−1 using a transformation matrix,

Ai. The transformation matrix, Ai, a function of the joint variable qi, varies as the robot

configuration changes. Each homogeneous transformation matrix Ai is of the form,

Ai = Ai(qi) =

⎡
⎣Ri−1

i pi

0 1

⎤
⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦=

⎡
⎣n s a p

0 0 0 1

⎤
⎦ , (6.2)

where Ri−1
i is an orthogonal rotation matrix and pi = [px py pz]

′ is a translation vector. The

vector n = [nx ny nz]
′ is represent the direction of x1 in the o0x0y0z0 system, s = [sx sy sz]

′

represents the direction of y1, and a = [ax ay az]
′ represents the direction of z1. The vector

d = [dx dy dz]
′ represents the vector from the origin o0 to the origin o1 expressed in the

frame o0x0y0z0.
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6.1.1.3 Denavit-Hertenberg Notation

Denavit-Hertenverg (D-H) notation is a systematic way to describe the geometry of a robot

manipulator made of serial chains of links and joints. The notation was proposed by De-

navit and Hartenberg in 1955 [126].

xi-1

di

i
�

zi-1

yi-1
oi-1

xi

zi yi

i
�

joint i

link i-1
link i

joint i+1

ai

oi

Coordinate frame oi-1xi-1yi-1zi-1

Coordinate frame oixiyizi

Figure 6.3: D-H parameters.

Fig. 6.3 illustrates D-H notation. The joint i connects link (i− 1) and link i. The

frame oi−1xi−1yi−1zi−1 is attached to one end of link i. The axis of joint i is aligned with

the zi−1-axis. The frame oixiyizi is attached to the other end of link i. The axis of joint

(i+ 1) is aligned with the zi-axis. These link and joint parameters are expressed using

four parameters defined in D-H convention. The four parameters are joint angle, θi, link

offset, di, link length, ai, and link twist, αi. Their definitions are listed in Table 6.1. In

D-H convention, each homogeneous transformation Ai is defined as a product of four basic
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Table 6.1: D-H parameters

D-H parameter Symbol Definition

Joint angle qi the angle between the xi−1 and xi axes about the zi−1 axes.

Revolute joint variable

Link offset di the distance from the origin oi−1 of frame oixiyizi to the xi axis

along the zi−1 axis

Link length ai the distance between the zi−1- and zi-axes along the xi-axis

Link twist αi the angle from the zi−1-axis to the zi-axis about the xi-axis

transformations,

Ai =Rotz,θiTransz,diTransx,aiRotx,αi ,

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cosθi −sinθi 0 0

sinθi cosθi 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 cosαi −sinαi 0

0 sinαi cosαi 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ . (6.3)

6.1.1.4 Forward and Inverse Kinematics and Dynamics

The pose of the end-effector consist of the position and the orientation of the end-effector.

The pose of the end-effector has six DOF - three in translation and three in rotation. The

forward kinematics problem for robot manipulators is: given the joint angles, find the pose

of the end-effector expressed in the base frame. The inverse kinematics problem for robot

manipulators is: given the pose of the end-effector expressed in the base frame, determine
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the joint angles. The forward dynamics problem for robot manipulator is: given the joint

torque, determine the motion of the robot manipulator. The inverse dynamics problem for

robot manipulators is: given the pose, velocity, and acceleration, compute the required

joint torques. In the following section, we use the Euler-Lagrange equation of motion to

compute the inverse dynamics of n-link robot manipulators.

6.1.2 Mathematical Modeling of n-Link Robot Manipulators

In this section, we derive a differential equation for a n-link robot manipulator using Euler-

Lagrange equation of motion.

6.1.3 Euler-Lagrange Equation of Motion

The Euler-Lagrange equation of motion for a system is given by [125]

d
dt

∂L
∂ q̇

− ∂L
∂q

= τ, (6.4)

where q is an n-vector of generalized coordinates qi, q̇ is an n-vector of joint velocity q̇i,

τ is an n-vector of generalized forces τi, and Lagrangian L is the difference between the

kinetic and potential energies. In our case, q is the joint variable vector. Then, τττ is a

n-vector of torques and forces.

6.1.4 Joint Velocities of n-Link Robot Manipulators

We consider a coordinate frame that is attached to each link of the robot. In particular, link

i is attached to the frame oixiyizi. This implies that the coordinates of each point on link i

are constant if expressed in the i-th coordinate frame oixiyizi. When joint i is actuated, link

i with its attached frame oixiyizi experience motion. The frame o0x0y0z0, attached to the

robot base, is referred to as the inertial frame.

In order to obtain the coordinates of a point in i-th frame in terms of j-th frame, a
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Figure 6.4: Coordinate frames for robot manipulator.

transformation matrix T j
i is used, which is defined by

T j
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A j+1A j+2 · · ·Ai−1Ai, i > j

I, i = j

(T j
i )

−1, i < j

, (6.5)

where I is an identity matrix. Then, given the coordinates ri
i = [xi yi zi 1]′ of a point in the

i-th frame, the coordinates of the same point in the base frame are given by,

r0
i = T 0

i ri
i = (A1A2 · · ·Ai)ri

i =
(
T 0

1 T 1
2 · · ·T i−1

i
)

ri
i. (6.6)

Let ri
i be the coordinates of a point on link i with respect to frame i. This point can be

expressed in the base frame as

ri
0 =

(
T 0

1 T 1
2 · · ·T i−1

i
)

ri
i, (6.7)

where T i−1
i is the 4× 4 homogeneous transformation defined in (6.5). Here, T i−1

i is a
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function of joint variable qi. Now, we write the velocity of the point in the base frame as

vi =
dr0

i
dt

=
d
dt

(
T 0

1 T 1
2 · · ·T i−1

i
)

ri
i

= Ṫ 0
1 T 1

2 · · ·T i−1
i ri

i +T 0
1 Ṫ 1

2 · · ·T i−1
i ri

i + · · ·+T 0
1 T 1

2 · · · Ṫ i−1
i ri

i +T 0
i ṙi

i

=

(
i

∑
j=1

∂T 0
i

∂q j

∂q j

∂ t

)
ri

i;
(
velocity of ri

i expressed in i-th frame is zero, ṙi
i = 0

)
.

(6.8)

Now,
∂T 0

i
∂q j

can be calculated using a matrix Wi, which will be stated below. Using (6.6)

we get T i−1
i = Ai, and then using (6.3) we write

T i−1
i = Ai =

⎡
⎢⎢⎢⎢⎢⎢⎣

cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ . (6.9)

Differentiating (6.9) with respect to qi = θi, we have

∂T i−1
i

∂qi
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−sinθi −cosθi cosαi cosθi sinαi −ai sinθi

cosθi −sinθi cosαi −sinθi sinαi ai cosθi

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

=WiT 0
i , (6.10)

where

Wi =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ; i = 1,2, · · · ,n, applicable for revolute joint. (6.11)



134

Now, we express the effect of the motion of joint j on all the points on link i using

∂T 0
i

∂q j
=

⎧⎪⎨
⎪⎩

T 0
1 T 1

2 · · ·T j−2
j−1 WjT

j−1
j · · ·T i−1

i , for i ≥ j

0, for i < j
(6.12)

for i = 1,2, · · · ,n, and

Ui j ≡ ∂T 0
i

∂q j
=

⎧⎪⎨
⎪⎩

T 0
j−1WjT

j−1
i , for i ≥ j

0, for i < j
. (6.13)

Using the relation in (6.13), we rewrite (6.8) as

vi =

(
i

∑
j=1

∂T 0
i

∂q j

∂q j

∂ t

)
ri

i =

(
i

∑
j=1

Ui jq̇ j

)
ri

i. (6.14)

Note that the partial derivative of T i−1
i with respect to qi results into a matrix that

does not preserve the structure of a homogeneous coordinate transformation matrix. For a

revolute joint, the effect of pre-multiplying T i−1
i by Wi is equivalent to interchanging the

elements of the first two rows of T i−1
i , then negating all the elements of the first row, and

finally zeroing out all the elements of the third and fourth row.

Now, we need to find the interaction effects of the motion of joint j and joint k on all

the points on link i as

∂Ui j

∂qk
≡Ui jk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T 0
j−1WjT

j−1
k−1 WkT k−1

i , for i ≥ k ≥ j

T 0
k−1WkT k−1

j−1 WjT
j−1

i , for i ≥ j ≥ k

0, for i < j or i < k

. (6.15)



135

6.1.5 Kinetic Energy of n-Link Robot Manipulators

Let dm be an infinitesimal mass at ri
i with a velocity of v =

[
v2

x v2
y v2

z
]′

. The differential

kinetic energy of the mass is

dKi =
1

2

(
v2

x + v2
y + v2

z
)

dm,

=
1

2
Tr
(
v′v
)

dm,

=
1

2
Tr
(
vv′
)

dm,

=
1

2
Tr

([(
i

∑
j=1

Ui jq̇ j

)
ri

i

][(
i

∑
k=1

Uikq̇k

)
ri

i

]′)
dm,

=
1

2
Tr

(
i

∑
j=1

i

∑
k=1

Ui jri
ir

i′
i U ′

ikq̇ jq̇k

)
dm,

=
1

2
Tr

(
i

∑
j=1

i

∑
k=1

Ui j

(
ri

idmri′
i

)
U ′

ikq̇ jq̇k

)
, (6.16)

where Ii is the 4×4 pseudo-inertia matrix defined as

Ii = ri
idmri′

i ,

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∫
x2

i dm
∫

yixidm
∫

zixidm
∫

xidm∫
xiyidm

∫
y2

i dm
∫

ziyidm
∫

yidm∫
xizidm

∫
yizidm

∫
z2

i dm
∫

zidm∫
xidm

∫
yidm

∫
zidm

∫
dm

⎤
⎥⎥⎥⎥⎥⎥⎦ , (6.17)

assuming r̄i
i = [x̄i ȳiz̄i 1]′ be the coordinates of the center of mass for dm in frame i. Here,

Ii is the constant matrix depending on the geometry and mass distribution of link i. This

inertia tensor can be expressed in an alternative form. In terms of the link i, moments of

inertia are defined as

Ixx =
∫ (

y2 + z2
)

dm,

Iyy =
∫ (

x2 + z2
)

dm,

Izz =
∫ (

x2 + y2
)

dm,
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cross-products of inertia

Ixy =
∫

xydm,

Ixz =
∫

xzdm,

Iyz =
∫

yzdm,

and first moments

mx̄ =
∫

xdm,

mȳ =
∫

ydm,

mz̄ =
∫

zdm,

with m the total mass of link i, and r̄i
i = [x̄i ȳiz̄i 1]′ be the center of gravity of link i. Now

we rewrite the inertia tensor as

Ii =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Ixx+Iyy+Izz
2 Ixy Ixz mx̄i

Ixy
Ixx−Iyy+Izz

2 Iyz mȳi

Ixy Iyz
Ixx+Iyy−Izz

2 mz̄i

mx̄i mȳi mz̄i m

⎤
⎥⎥⎥⎥⎥⎥⎦ . (6.18)

These quantities can be computed from the manufacturer’s specifications.

Now, the total kinetic energy of an n-link manipulator can be written as

K =
n

∑
i=1

Ki =
1

2

n

∑
i=1

Tr

[
i

∑
j=1

i

∑
k=1

Ui jIiU ′
ikq̇ jq̇k

]
,

=
1

2

n

∑
i=1

i

∑
j=1

i

∑
k=1

[
Tr
(
Ui jIiU ′

ik
)

q̇ jq̇k
]
. (6.19)

Since Ui j = 0 for j > i, we can replace the upper summation limit by n in (6.19). Thus, we

write the total kinetic energy

K =
n

∑
i=1

Ki =
1

2

n

∑
i=1

1

2
Tr

[
i

∑
j=1

i

∑
k=1

Ui jIiU ′
ikq̇ jq̇k

]
,

=
1

2

n

∑
i=1

n

∑
j=1

n

∑
k=1

[
Tr
(
Ui jIiU ′

ik
)

q̇ jq̇k
]
. (6.20)
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6.1.6 Potential Energy of n-Link Robot Manipulators

Now, we obtain the total potential energy for an n-link manipulator. Let, mi be a mass and

ir̄ be a center of gravity of link i in frame i. Then, the potential energy of the link is

Pi =−migT 0
i r̄i

i, (6.21)

where the gravity vector g = [gx gy gz 0] = [0 0 −9.81 0] with units of m/s2, and with the

assumption that the manipulator is level at sea level, and the base z axis is directed vertically

upward.

The total potential energy, therefore, is

P =−
n

∑
i=1

migT 0
i r̄i

i. (6.22)

6.1.7 Derivation of n-Link Robot Manipulator Dynamical Equation

The Lagrangian for the n-link robot manipulator can be written using (6.20) and (6.22)

L = K −P =
1

2

n

∑
i=1

n

∑
j=1

n

∑
k=1

[
Tr
(
Ui jIiU ′

ik
)

q̇ jq̇k
]
+mig′T 0

i r̄i
i. (6.23)

The terms required in Euler-Lagrangian equation (6.4) are

∂L
∂ q̇k

=
∂K
∂ q̇k

=
n

∑
j=1

n

∑
i=1

[
Tr
(
UikIiU ′

ik
)

q̇ j
]
, (6.24)

d
dt

(
∂L
∂ q̇k

)
=

n

∑
j=1

n

∑
i=1

[
Tr
(
Ui jIiU ′

ik
)

q̈ j
]
+

n

∑
i=1

n

∑
j=1

n

∑
i=1

[
Tr

{
∂

∂qi

(
Ui jIiU ′

ik
)}]

q̇iq̇ j,

=
n

∑
j=1

n

∑
i=1

[
Tr
(
Ui jIiU ′

ik
)

q̈ j
]
+

1

2

n

∑
i=1

n

∑
j=1

n

∑
i=1

[
Tr

{
∂

∂qi

(
Ui jIiU ′

ik
)}]

q̇iq̇ j

+
1

2

n

∑
i=1

n

∑
j=1

n

∑
j=1

[
Tr

{
∂

∂q j

(
UjkI jU ′

ji
)}]

q̇iq̇ j, (6.25)

where the second term on the first line is split by interchanging the order of summation and

taking advantage of symmetry.

∂L
∂qk

=
1

2

n

∑
i=1

n

∑
j=1

n

∑
k=1

[
Tr

{
∂

∂qk

(
Uk jIkU ′

ki
)}]

q̇kq̇m −
n

∑
j=i

m jgUjir̄
j
j (6.26)
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Then, the dynamical equation for an n-link robot manipulators can be written using the

Euler-Lagrangian equation (6.4) d
dt

∂L
∂ q̇k

− ∂L
∂qk

= τk, and then using expression from (6.25)

and (6.26)

n

∑
j=1

n

∑
i=1

[
Tr
(
Ui jIiU ′

ik
)

q̈ j
]
+

1

2

n

∑
i=1

n

∑
j=1

n

∑
i=1

[
Tr

{
∂

∂qi

(
Ui jIiU ′

ik
)}]

q̇iq̇ j (6.27)

+
1

2

n

∑
i=1

n

∑
j=1

n

∑
j=1

[
Tr

{
∂

∂q j

(
UjkI jU ′

ji
)}]

q̇iq̇ j − 1

2

n

∑
i=1

n

∑
j=1

n

∑
k=1

[
Tr

{
∂

∂qk

(
Uk jIkU ′

ki
)}]

q̇kq̇m

+
n

∑
j=i

m jg′Ujir̄
j
j = τk

=
n

∑
j=1

n

∑
i=1

[
Tr
(
Ui jIiU ′

ik
)

q̈ j
]
+

1

2

n

∑
i=1

n

∑
j=1

[
∂

∂qi

{
n

∑
i=1

Tr
(
Ui jIiU ′

ik
)}

+
∂

∂q j

{
n

∑
j=1

Tr
(
UjkI jU ′

ji
)}− ∂

∂qk

{
n

∑
k=1

Tr
(
Uk jIkU ′

ki
)}]

q̇iq̇ j

+
n

∑
j=i

m jgUjir̄
j
j = τk. (6.28)

We write the Euler-Lagrange equation in (6.28) as

n

∑
j=1

Mk jq̈ j +
n

∑
i=1

n

∑
j=1

Vi jkq̇iq̇ j +Gi = τk, k = 1,2, · · · ,n . (6.29)

In matrix form, (6.29) can be written as

M(q)q̈+V(q, q̇)+G(q) = τττ , (6.30)

where

τττ is an n×1 generalized torque vector applied at joints 1,2, · · · ,n, and can be expressed

as,

τ =
[
τ1 τ2 · · ·τn

]′
. (6.31)

q is an n×1 vector of joint variables of the robot arm, and can be expressed as,

q =
[
q1 q2 · · ·qn

]′
. (6.32)

q̇ is an n×1 vector of joint velocity of the robot arm, and can be expressed as,

q̇ =
[
q̇1 q̇2 · · · q̇n

]′
. (6.33)
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q̈ is an n×1 vector of joint acceleration of the robot arm, and can be expressed as,

q̈ =
[
q̈1 q̈2 · · · q̈n

]′
. (6.34)

M is an n×n symmetric generalized inertia matrix, whose elements are

Mk j =
n

∑
i=max(k, j)

Tr
(
Ui jIiU ′

ik
)
, k, j = 1,2, · · · ,n. (6.35)

Ui j and Uik are the product terms of transformation matrices defined in Eq. (6.13). V is an

n×1 nonlinear Coriolis and centrifugal force vector, whose elements are

V =
[
V1 V2 · · ·Vn

]′
. (6.36)

where

Vi =
n

∑
i=1

n

∑
j=1

Vi jkq̇iq̇ j (6.37)

and

Vi jk =
1

2

[
∂

∂qi

{
n

∑
i=1

Tr
(
Ui jIiU ′

ik
)}

+
∂

∂q j

{
n

∑
j=1

Tr
(
UjkI jU ′

ji
)}− ∂

∂qk

{
n

∑
k=1

Tr
(
Uk jIkU ′

ki
)}]

.

(6.38)

Eq. (6.38) can be rewritten as,

Vi jk =
n

∑
m=max(i, j,k)

Tr
(
Um jkImU ′

mi
)
. (6.39)

Vi jk is known as Christoffel symbols of the first kind.

G is an n gravity loading force vector, whose elements are

G =
[
G1 G2 · · ·Gn

]′
(6.40)

where

Gi =
n

∑
j=i

m jgUjir̄
j
j . (6.41)

Here the gravity vector is indicated by g = [gx gy gz 0] = [0 0 −9.81 0] for mass m j with

the centers of gravity vector r̄ j
j =

[
x̄ j ȳ jz̄ j 1

]′
.

Eq. (6.30) describes the robot manipulator rigid-body dynamics. The equation is also

known as the inverse dynamics since given the pose, velocity, and accelerations it computes

the required joint forces or torques.
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6.2 Mathematical Modeling of Baxter Robot

The Baxter robot has seven links. Following the non-linear model of n-link robot in (6.30),

we write the model for one manipulator or arm of Baxter robot

M(q)q̈+V(q, q̇)+G(q) = τττ. (6.42)

where the symmetric generalized inertia matrix is denoted by M, Coriolis and centrifugal

force vector by V, gravity loading force vector by G, joint variable vector by q, and torque

vector by τττ . Next, we obtain the expressions for M, V, and G in terms of transformation

matrices.

6.2.1 Generalized Inertia Matrix M

Here, we express M in terms of the transformation matrices.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 M15 M16 M17

M12 M22 M23 M24 M25 M26 M27

M13 M23 M33 M34 M35 M36 M37

M14 M24 M34 M44 M45 M46 M47

M15 M25 M35 M45 M55 M56 M57

M16 M26 M36 M46 M56 M66 M67

M17 M27 M37 M47 M57 M67 M77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.43)

The elements of M can be written according to the expression in (6.35). Note that Ui j is the

product terms of transformation matrices defined in Eq. (6.13), and Ii is the pseudo-inertia

matrix. Now, we write the expression for each element in (6.43).
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M11 = Tr(U11I1U ′
11)+Tr(U21I2U ′

21)+Tr(U31I3U ′
31)+Tr(U41I4U ′

41)+Tr(U51I5U ′
51)

+Tr(U61I6U ′
61)+Tr(U71I7U ′

71),

M12 = Tr(U22I2U ′
21)+Tr(U32I3U ′

31)+Tr(U42I4U ′
41)+Tr(U52I5U ′

51)+Tr(U62I6U ′
61)

+Tr(U72I7U ′
71),

M13 = Tr(U33I3U ′
31)+Tr(U43I4U ′

41)+Tr(U53I5U ′
51)+Tr(U63I6U ′

61)+Tr(U73I7U ′
71),

M14 = Tr(U44I4U ′
41)+Tr(U54I5U ′

51)+Tr(U64I6U ′
61)+Tr(U74I7U ′

71),

M15 = Tr(U55I5U ′
51)+Tr(U65I6U ′

61)+Tr(U75I7U ′
71),

M16 = Tr(U66I6U ′
61)+Tr(U76I7U ′

71),

M17 = Tr(U77I7U ′
71),

M22 = Tr(U22I2U ′
22)+Tr(U32I3U ′

32)+Tr(U42I4U ′
42)+Tr(U52I5U ′

52)

+Tr(U62I6U ′
62)+Tr(U72I7U ′

72),

M23 = Tr(U33I3U ′
33)+Tr(U43I4U ′

43)+Tr(U53I5U ′
53)+Tr(U63I6U ′

63)+Tr(U73I7U ′
73),

M24 = Tr(U44I4U ′
42)+Tr(U54I5U ′

52)+Tr(U64I6U ′
62)+Tr(U74I7U ′

72),

M25 = Tr(U55I5U ′
52)+Tr(U65I6U ′

62)+Tr(U75I7U ′
72),

M26 = Tr(U66I6U ′
62)+Tr(U76I7U ′

72),

M27 = Tr(U77I7U ′
72),

M33 = Tr(U33I3U ′
33)+Tr(U43I4U ′

43)+Tr(U53I5U ′
53)+Tr(U63I6U ′

63)+Tr(U73I7U ′
73),

M34 = Tr(U44I4U ′
43)+Tr(U54I5U ′

53)+Tr(U64I6U ′
63)+Tr(U74I7U ′

73),

M35 = Tr(U55I5U ′
53)+Tr(U65I6U ′

63)+Tr(U75I7U ′
73),

M36 = Tr(U66I6U ′
63)+Tr(U76I7U ′

73),

M37 = Tr(U77I7U ′
73),
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M44 = Tr(U44I4U ′
44)+Tr(U54I5U ′

54)+Tr(U64I6U ′
64)+Tr(U74I7U ′

74),

M45 = Tr(U55I5U ′
54)+Tr(U65I6U ′

64)+Tr(U75I7U ′
74),

M46 = Tr(U66I6U ′
64)+Tr(U76I7U ′

74),

M47 = Tr(U77I7U ′
74),

M55 = Tr(U55I5U ′
55)+Tr(U65I6U ′

65)+Tr(U75I7U ′
75),

M56 = Tr(U66I6U ′
65)+Tr(U76I7U ′

75),

M57 = Tr(U77I7U ′
75),

M66 = Tr(U66I6U ′
66)+Tr(U76I7U ′

76),

M67 = Tr(U77I7U ′
76),

M77 = Tr(U77I7U ′
77).

Here Ui j is defined as in (6.13),

Ui j ≡ ∂T 0
i

∂qi
=

⎧⎪⎨
⎪⎩

T 0
j−1WjT

j−1
i , for i ≥ j

0, for i < j
. (6.44)

U11 = T 0
0 W1T 0

1 ,

U21 = T 0
0 W1T 0

2 ,

U22 = T 0
1 W2T 1

2 ,

U31 = T 0
0 W1T 0

2 ,

U32 = T 0
1 W2T 1

2 ,

U33 = T 0
2 W3T 2

3 ,

U41 = T 0
0 W1T 0

4 ,

U42 = T 0
1 W2T 1

4 ,

U43 = T 0
2 W3T 2

4 ,

U44 = T 0
3 W4T 3

4 ,
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U51 = T 0
0 W1T 0

5 ,

U52 = T 0
1 W2T 1

5 ,

U53 = T 0
2 W3T 2

5 ,

U54 = T 0
3 W4T 3

5 ,

U55 = T 0
4 W5T 4

5 ,

U61 = T 0
0 W1T 0

6 ,

U62 = T 0
1 W2T 1

6 ,

U63 = T 0
2 W3T 2

6 ,

U64 = T 0
3 W4T 3

6 ,

U65 = T 0
4 W5T 4

6 ,

U66 = T 0
5 W6T 5

6 ,

U71 = T 0
0 W1T 0

7 ,

U72 = T 0
1 W2T 1

7 ,

U73 = T 0
2 W3T 2

7 ,

U74 = T 0
3 W4T 3

7 ,

U75 = T 0
4 W5T 4

7 ,

U76 = T 0
5 W6T 5

7 ,

U77 = T 0
6 W6T 6

7 .

U12 =U13 =U14 =U15 =U16 =U17 =U23 =U24 =U25 =U26 =U27 =U34 =U35 =U36

=U37 =U45 =U46 =U47 =U56 =U57 =U67 = 0.
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The pseudo-inertia matrices are computed from (6.18)

Ii =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Ixxi+Iyyi+Izzi
2 Ixyi Ixzi mx̄i

Ixyi
Ixxi−Iyyi+Izzi

2 Iyzi mȳi

Ixyi Iyzi
Ixxi+Iyyi−Izzi

2 mz̄i

mx̄i mȳi mz̄i m

⎤
⎥⎥⎥⎥⎥⎥⎦ . (6.45)

The homogeneous transformation matrices are computed from (6.5) and (6.9), which

are stated as follows.

T j
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A j+1A j+2 · · ·Ai−1Ai, i > j

I, i = j

(T j
i )

−1, i < j

. (6.46)

T i−1
i = Ai =

⎡
⎢⎢⎢⎢⎢⎢⎣

cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ (6.47)

The following relationship are also necessary.

T 0
2 = T 0

1 T 1
2 ,

T 0
3 = T 0

1 T 1
2 T 2

3 ,

T 0
4 = T 0

1 T 1
2 T 2

3 T 3
4 ,

T 0
5 = T 0

1 T 1
2 T 2

3 T 3
4 T 4

5 ,

T 0
6 = T 0

1 T 1
2 T 2

3 T 3
4 T 4

5 T 5
6 ,

T 0
7 = T 0

1 T 1
2 T 2

3 T 3
4 T 4

5 T 5
6 T 6

7 .

6.2.2 Coriolis and Centrifugal Force Vector V

From (6.36) and (6.37), we write the Coriolis and Centrifugal vector

Vi = q̇′Vi,hq̇, (6.48)
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q̇(t) =
[
q̇1(t) q̇2(t) q̇3(t) q̇4(t) q̇5(t) q̇6(t) q̇7(t)

]′
, (6.49)

and

V(q, q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2

V3

V4

V5

V6

V7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇′V1,hq̇

q̇′V2,hq̇

q̇′V3,hq̇

q̇′V4,hq̇

q̇′V5,hq̇

q̇′V6,hq̇

q̇′V7,hq̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.50)

where V1,h,V2,h, · · ·V7,h constitute a vector of matrices. Note that q̇′ is 1× 7 vector, Vi,h

is a 7× 7 matrix, and q̇ is a 7× 1 vector. The product of these three terms give Vi, which

is 1× 1. The elements of those matrices are defined by the expression given in (6.41). In

general, we can express Vi,h as follows, where h represents 11, 12, 13, 14, 15, 16, 17, 22,

23, 24, 25, 26, 27, 33, 34, 35, 36, 37, 44, 45, 46, 47, 55, 56, 57, 66, 67, and 77.

Vi,h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vi11 Vi12 Vi13 Vi14 Vi15 Vi16 Vi17

Vi12 Vi22 Vi23 Vi24 Vi25 Vi26 Vi27

Vi13 Vi23 Vi33 Vi34 Vi35 Vi36 Vi37

Vi14 Vi24 Vi34 Vi44 Vi45 Vi46 Vi47

Vi15 Vi25 Vi35 Vi45 Vi55 Vi56 Vi57

Vi16 Vi26 Vi36 Vi46 Vi56 Vi66 Vi67

Vi17 Vi27 Vi37 Vi47 Vi57 Vi67 Vi77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1,2, · · · ,7. (6.51)
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The elements of V1,h are

V111 = Tr(U111I1U ′
11)+Tr(U211I2U ′

21)+Tr(U311I3U ′
31)+Tr(U411I4U ′

41)+Tr(U511I5U ′
51)

+Tr(U611I6U ′
61)+Tr(U711I7U ′

71)

V112 = Tr(U212I2U ′
21)+Tr(U312I3U ′

31)+Tr(U412I4U ′
41)+Tr(U512I5U ′

51)+Tr(U612I6U ′
61)

+Tr(U712I7U ′
71)

V113 = Tr(U313I3U ′
31)+Tr(U413I4U ′

41)+Tr(U513I5U ′
51)+Tr(U613I6U ′

61)+Tr(U713I7U ′
71)

V114 = Tr(U414I4U ′
41)+Tr(U514I5U ′

51)+Tr(U614I6U ′
61)+Tr(U714I7U ′

71)

V115 = Tr(U515I5U ′
51)+Tr(U615I6U ′

61)+Tr(U715I7U ′
71)

V116 = Tr(U616I6U ′
61)+Tr(U716I7U ′

71)

V117 = Tr(U717I7U ′
71)

V122 = Tr(U222I2U ′
21)+Tr(U322I3U ′

31)+Tr(U422I4U ′
41)+Tr(U522I5U ′

51)+Tr(U622I6U ′
61)

+Tr(U722I7U ′
71),

V123 = Tr(U323I3U ′
31)+Tr(U423I4U ′

41)+Tr(U523I5U ′
51)+Tr(U623I6U ′

61)+Tr(U723I7U ′
71),

V124 = Tr(U424I4U ′
41)+Tr(U524I5U ′

51)+Tr(U624I6U ′
61)+Tr(U724I7U ′

71),

V125 = Tr(U525I5U ′
51)+Tr(U625I6U ′

61)+Tr(U725I7U ′
71),

V126 = Tr(U626I6U ′
61)+Tr(U726I7U ′

71),

V127 = Tr(U727I7U ′
71),

V133 = Tr(U333I3U ′
31)+Tr(U433I4U ′

41)+Tr(U533I5U ′
51)+Tr(U633I6U ′

61)+Tr(U733I7U ′
71),

V134 = Tr(U434I4U ′
41)+Tr(U534I5U ′

51)+Tr(U634I6U ′
61)+Tr(U734I7U ′

71),

V135 = Tr(U535I5U ′
51)+Tr(U635I6U ′

61)+Tr(U735I7U ′
71),

V136 = Tr(U636I6U ′
61)+Tr(U736I7U ′

71),

V137 = Tr(U736I7U ′
71),
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V144 = Tr(U444I4U ′
41)+Tr(U544I5U ′

51)+Tr(U644I6U ′
61)+Tr(U744I7U ′

71),

V145 = Tr(U545I5U ′
51)+Tr(U645I6U ′

61)+Tr(U745I7U ′
71),

V146 = Tr(U646I6U ′
61)+Tr(U746I7U ′

71),

V147 = Tr(U747I7U ′
71),

V155 = Tr(U555I5U ′
51)+Tr(U655I6U ′

61)+Tr(U755I7U ′
71),

V156 = Tr(U656I6U ′
61)+Tr(U756I7U ′

71),

V157 = Tr(U757I7U ′
71),

V166 = Tr(U666I6U ′
61)+Tr(U766I7U ′

71),

V167 = Tr(U767I7U ′
71),

V177 = Tr(U777I7U ′
71).

V211 = Tr(U211I2U ′
22)+Tr(U311I3U ′

32)+Tr(U411I4U ′
42)+Tr(U511I5U ′

52)+Tr(U611I6U ′
62)

+Tr(U711I7U ′
72)

V212 = Tr(U212I2U ′
22)+Tr(U312I3U ′

32)+Tr(U412I4U ′
42)+Tr(U512I5U ′

52)+Tr(U612I6U ′
62)

+Tr(U712I7U ′
72)

V213 = Tr(U313I3U ′
32)+Tr(U413I4U ′

42)+Tr(U513I5U ′
52)+Tr(U613I6U ′

62)+Tr(U713I7U ′
72)

V214 = Tr(U414I4U ′
42)+Tr(U514I5U ′

52)+Tr(U614I6U ′
62)+Tr(U714I7U ′

72)

V215 = Tr(U515I5U ′
52)+Tr(U615I6U ′

62)+Tr(U715I7U ′
72)

V216 = Tr(U616I6U ′
62)+Tr(U716I7U ′

72)

V217 = Tr(U717I7U ′
72),
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V222 = Tr(U222I2U ′
22)+Tr(U322I3U ′

32)+Tr(U422I4U ′
42)+Tr(U522I5U ′

21)+Tr(U622I6U ′
62)

+Tr(U722I7U ′
72),

V223 = Tr(U323I3U ′
32)+Tr(U423I4U ′

42)+Tr(U523I5U ′
21)+Tr(U623I6U ′

62)+Tr(U723I7U ′
72),

V224 = Tr(U424I4U ′
42)+Tr(U524I5U ′

21)+Tr(U624I6U ′
62)+Tr(U724I7U ′

72),

V225 = Tr(U525I5U ′
21)+Tr(U625I6U ′

62)+Tr(U725I7U ′
72),

V226 = Tr(U626I6U ′
62)+Tr(U726I7U ′

72),

V227 = Tr(U726I7U ′
72),

V233 = Tr(U333I3U ′
32)+Tr(U433I4U ′

42)+Tr(U533I5U ′
52)+Tr(U633I6U ′

62)+Tr(U733I7U ′
72),

V234 = Tr(U434I4U ′
42)+Tr(U534I5U ′

52)+Tr(U634I6U ′
62)+Tr(U734I7U ′

72),

V235 = Tr(U535I5U ′
52)+Tr(U635I6U ′

62)+Tr(U735I7U ′
72),

V236 = Tr(U636I6U ′
62)+Tr(U736I7U ′

72),

V237 = Tr(U737I7U ′
72),

V244 = Tr(U444I4U ′
44)+Tr(U544I5U ′

54)+Tr(U644I6U ′
64)+Tr(U744I7U ′

74),

V245 = Tr(U545I5U ′
54)+Tr(U645I6U ′

64)+Tr(U745I7U ′
74),

V246 = Tr(U646I6U ′
64)+Tr(U746I7U ′

74),

V247 = Tr(U747I7U ′
74),

V255 = Tr(U555I5U ′
52)+Tr(U655I6U ′

62)+Tr(U755I7U ′
72),

V256 = Tr(U656I6U ′
62)+Tr(U756I7U ′

72),

V257 = Tr(U757I7U ′
72),

V266 = Tr(U666I6U ′
62)+Tr(U766I7U ′

72),

V267 = Tr(U767I7U ′
72),

V277 = Tr(U777I7U ′
72),
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V311 = Tr(U311I3U ′
33)+Tr(U411I4U ′

43)+Tr(U511I5U ′
53)+Tr(U611I6U ′

63)+Tr(U711I7U ′
73),

V312 = Tr(U312I3U ′
33)+Tr(U412I4U ′

43)+Tr(U512I5U ′
53)+Tr(U612I6U ′

63)+Tr(U712I7U ′
73),

V313 = Tr(U313I3U ′
33)+Tr(U413I4U ′

43)+Tr(U513I5U ′
53)+Tr(U613I6U ′

63)+Tr(U713I7U ′
73),

V314 = Tr(U414I4U ′
43)+Tr(U514I5U ′

53)+Tr(U614I6U ′
63)+Tr(U714I7U ′

73),

V315 = Tr(U515I5U ′
53)+Tr(U615I6U ′

63)+Tr(U715I7U ′
73),

V316 = Tr(U616I6U ′
63)+Tr(U716I7U ′

73),

V317 = Tr(U716I7U ′
73),

V322 = Tr(U322I3U ′
33)+Tr(U422I4U ′

43)+Tr(U522I5U ′
53)+Tr(U622I6U ′

63)+Tr(U722I7U ′
73),

V323 = Tr(U323I3U ′
33)+Tr(U423I4U ′

43)+Tr(U523I5U ′
53)+Tr(U623I6U ′

63)+Tr(U723I7U ′
73),

V324 = Tr(U424I4U ′
43)+Tr(U524I5U ′

53)+Tr(U624I6U ′
63)+Tr(U724I7U ′

73),

V325 = Tr(U525I5U ′
53)+Tr(U625I6U ′

63)+Tr(U725I7U ′
73),

V326 = Tr(U626I6U ′
63)+Tr(U726I7U ′

73),

V327 = Tr(U726I7U ′
73),

V333 = Tr(U333I3U ′
33)+Tr(U433I4U ′

43)+Tr(U533I5U ′
53)+Tr(U633I6U ′

63)+Tr(U733I7U ′
73),

V334 = Tr(U434I4U ′
43)+Tr(U534I5U ′

53)+Tr(U634I6U ′
63)+Tr(U734I7U ′

73),

V335 = Tr(U535I5U ′
53)+Tr(U635I6U ′

63)+Tr(U735I7U ′
73),

V336 = Tr(U636I6U ′
63)+Tr(U736I7U ′

73),

V337 = Tr(U737I7U ′
73),

V344 = Tr(U444I4U ′
43)+Tr(U544I5U ′

53)+Tr(U644I6U ′
63)+Tr(U744I7U ′

73),

V345 = Tr(U545I5U ′
53)+Tr(U645I6U ′

63)+Tr(U745I7U ′
73),

V346 = Tr(U646I6U ′
63)+Tr(U746I7U ′

73),

V347 = Tr(U747I7U ′
73),

V355 = Tr(U555I5U ′
53)+Tr(U655I6U ′

63)+Tr(U755I7U ′
73),

V356 = Tr(U656I6U ′
63)+Tr(U756I7U ′

73),

V357 = Tr(U757I7U ′
73),
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V366 = Tr(U666I6U ′
63)+Tr(U766I7U ′

73),

V367 = Tr(U767I7U ′
73),

V377 = Tr(U777I7U ′
73).

V411 = Tr(U411I4U ′
44)+Tr(U511I5U ′

54)+Tr(U611I6U ′
64)+Tr(U711I7U ′

74),

V412 = Tr(U412I4U ′
44)+Tr(U512I5U ′

54)+Tr(U612I6U ′
64)+Tr(U712I7U ′

74),

V413 = Tr(U413I4U ′
44)+Tr(U513I5U ′

54)+Tr(U613I6U ′
64)+Tr(U713I7U ′

74),

V414 = Tr(U414I4U ′
44)+Tr(U514I5U ′

54)+Tr(U614I6U ′
64)+Tr(U714I7U ′

74),

V415 = Tr(U515I5U ′
54)+Tr(U615I6U ′

64)+Tr(U715I7U ′
74),

V416 = Tr(U616I6U ′
64)+Tr(U716I7U ′

74),

V417 = Tr(U717I7U ′
74),

V422 = Tr(U422I4U ′
44)+Tr(U522I5U ′

54)+Tr(U622I6U ′
64)+Tr(U722I7U ′

74),

V423 = Tr(U423I4U ′
44)+Tr(U523I5U ′

54)+Tr(U623I6U ′
64)+Tr(U723I7U ′

74),

V424 = Tr(U424I4U ′
44)+Tr(U524I5U ′

54)+Tr(U624I6U ′
64)+Tr(U724I7U ′

74),

V425 = Tr(U525I5U ′
54)+Tr(U625I6U ′

64)+Tr(U725I7U ′
74),

V426 = Tr(U626I6U ′
64)+Tr(U726I7U ′

74),

V427 = Tr(U727I7U ′
74),

V433 = Tr(U433I4U ′
44)+Tr(U533I5U ′

54)+Tr(U633I6U ′
64)+Tr(U733I7U ′

74),

V434 = Tr(U434I4U ′
44)+Tr(U534I5U ′

54)+Tr(U634I6U ′
64)+Tr(U734I7U ′

74),

V435 = Tr(U535I5U ′
54)+Tr(U635I6U ′

64)+Tr(U735I7U ′
74),

V436 = Tr(U636I6U ′
64)+Tr(U736I7U ′

74),

V437 = Tr(U737I7U ′
74),
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V444 = Tr(U444I4U ′
44)+Tr(U544I5U ′

54)+Tr(U644I6U ′
64)+Tr(U744I7U ′

74),

V445 = Tr(U545I5U ′
54)+Tr(U645I6U ′

64)+Tr(U745I7U ′
74),

V446 = Tr(U646I6U ′
64)+Tr(U746I7U ′

74),

V447 = Tr(U747I7U ′
74),

V455 = Tr(U555I5U ′
54)+Tr(U655I6U ′

64)+Tr(U755I7U ′
74),

V456 = Tr(U656I6U ′
64)+Tr(U756I7U ′

74),

V457 = Tr(U757I7U ′
74),

V466 = Tr(U666I6U ′
64)+Tr(U766I7U ′

74),

V467 = Tr(U767I7U ′
74),

V477 = Tr(U777I7U ′
74).

V511 = Tr(U511I5U ′
55)+Tr(U611I6U ′

65)+Tr(U711I7U ′
75),

V512 = Tr(U512I5U ′
55)+Tr(U612I6U ′

65)+Tr(U712I7U ′
75),

V513 = Tr(U513I5U ′
55)+Tr(U613I6U ′

65)+Tr(U713I7U ′
75),

V514 = Tr(U514I5U ′
55)+Tr(U614I6U ′

65)+Tr(U714I7U ′
75),

V515 = Tr(U515I5U ′
55)+Tr(U615I6U ′

65)+Tr(U715I7U ′
75),

V516 = Tr(U616I6U ′
65)+Tr(U715I7U ′

75),

V517 = Tr(U717I7U ′
75),

V522 = Tr(U522I5U ′
55)+Tr(U622I6U ′

65)+Tr(U722I7U ′
75),

V523 = Tr(U523I5U ′
55)+Tr(U623I6U ′

65)+Tr(U723I7U ′
75),

V524 = Tr(U524I5U ′
55)+Tr(U624I6U ′

65)+Tr(U724I7U ′
75),

V525 = Tr(U525I5U ′
55)+Tr(U625I6U ′

65)+Tr(U725I7U ′
75),

V526 = Tr(U626I6U ′
65)+Tr(U725I7U ′

75),

V527 = Tr(U727I7U ′
75),
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V533 = Tr(U533I5U ′
55)+Tr(U633I6U ′

65)+Tr(U733I7U ′
75),

V534 = Tr(U534I5U ′
55)+Tr(U634I6U ′

65)+Tr(U734I7U ′
75),

V535 = Tr(U535I5U ′
55)+Tr(U635I6U ′

65)+Tr(U735I7U ′
75),

V536 = Tr(U636I6U ′
65)+Tr(U735I7U ′

75),

V537 = Tr(U737I7U ′
75),

V544 = Tr(U544I5U ′
55)+Tr(U644I6U ′

65)+Tr(U744I7U ′
75),

V545 = Tr(U545I5U ′
55)+Tr(U645I6U ′

65)+Tr(U745I7U ′
75),

V546 = Tr(U646I6U ′
65)+Tr(U745I7U ′

75),

V547 = Tr(U747I7U ′
75),

V555 = Tr(U555I5U ′
55)+Tr(U655I6U ′

65)+Tr(U755I7U ′
75),

V556 = Tr(U656I6U ′
65)+Tr(U755I7U ′

75),

V557 = Tr(U757I7U ′
75),

V566 = Tr(U666I6U ′
65)+Tr(U765I7U ′

75),

V567 = Tr(U767I7U ′
75),

V577 = Tr(U777I7U ′
75),

V611 = Tr(U611I6U ′
66)+Tr(U711I7U ′

76),

V612 = Tr(U612I6U ′
66)+Tr(U712I7U ′

76),

V613 = Tr(U613I6U ′
66)+Tr(U713I7U ′

76),

V614 = Tr(U614I6U ′
66)+Tr(U714I7U ′

76),

V615 = Tr(U615I6U ′
66)+Tr(U715I7U ′

76),

V616 = Tr(U616I6U ′
66)+Tr(U716I7U ′

76),

V617 = Tr(U717I7U ′
76),
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V622 = Tr(U622I6U ′
66)+Tr(U722I7U ′

76),

V623 = Tr(U623I6U ′
66)+Tr(U723I7U ′

76),

V624 = Tr(U624I6U ′
66)+Tr(U724I7U ′

76),

V625 = Tr(U625I6U ′
66)+Tr(U725I7U ′

76),

V626 = Tr(U626I6U ′
66)+Tr(U726I7U ′

76),

V627 = Tr(U727I7U ′
76),

V633 = Tr(U633I6U ′
66)+Tr(U733I7U ′

76),

V634 = Tr(U634I6U ′
66)+Tr(U734I7U ′

76),

V635 = Tr(U635I6U ′
66)+Tr(U735I7U ′

76),

V636 = Tr(U636I6U ′
66)+Tr(U736I7U ′

76),

V637 = Tr(U737I7U ′
76),

V644 = Tr(U644I6U ′
66)+Tr(U744I7U ′

76),

V645 = Tr(U645I6U ′
66)+Tr(U745I7U ′

76),

V646 = Tr(U646I6U ′
66)+Tr(U746I7U ′

76),

V647 = Tr(U747I7U ′
76),

V655 = Tr(U655I6U ′
66)+Tr(U755I7U ′

76),

V656 = Tr(U656I6U ′
66)+Tr(U756I7U ′

76),

V657 = Tr(U757I7U ′
76),

V666 = Tr(U666I6U ′
66)+Tr(U766I7U ′

76),

V667 = Tr(U767I7U ′
76),

V677 = Tr(U777I7U ′
76),
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V711 = Tr(U711I7U ′
77),

V712 = Tr(U712I7U ′
77),

V713 = Tr(U713I7U ′
77),

V714 = Tr(U714I7U ′
77),

V715 = Tr(U715I7U ′
77),

V716 = Tr(U716I7U ′
77),

V717 = Tr(U717I7U ′
77),

V722 = Tr(U722I7U ′
77),

V723 = Tr(U723I7U ′
77),

V724 = Tr(U724I7U ′
77),

V725 = Tr(U725I7U ′
77),

V726 = Tr(U726I7U ′
77),

V727 = Tr(U727I7U ′
77),

V733 = Tr(U733I7U ′
77),

V734 = Tr(U734I7U ′
77),

V735 = Tr(U735I7U ′
77),

V736 = Tr(U736I7U ′
77),

V737 = Tr(U737I7U ′
77),

V744 = Tr(U744I7U ′
77),

V745 = Tr(U745I7U ′
77),

V746 = Tr(U746I7U ′
77),

V747 = Tr(U747I7U ′
77),

V755 = Tr(U755I7U ′
77),

V756 = Tr(U756I7U ′
77),

V757 = Tr(U757I7U ′
77),
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V766 = Tr(U766I7U ′
77),

V767 = Tr(U767I7U ′
77),

V777 = Tr(U777I7U ′
77).

Here Ui jk is defined as in (6.15)

∂Ui j

∂qk
≡Ui jk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T 0
j−1WjT

j−1
k−1 WkT k−1

i , for i ≥ k ≥ j

T 0
k−1WkT k−1

j−1 WjT
j−1

i , for i ≥ j ≥ k

0, for i < j or i < k

. (6.52)

U111 = T 0
0 W1T 0

0 W1T 0
1 ,

U222 = T 0
1 W2T 1

1 W2T 1
2 ,

U333 = T 0
2 W3T 2

2 W3T 2
3 ,

U444 = T 0
3 W4T 3

3 W4T 3
4 ,

U555 = T 0
4 W5T 4

4 W5T 4
5 ,

U666 = T 0
5 W6T 5

5 W6T 5
6 ,

U777 = T 0
6 W7T 6

6 W7T 6
7 .

U211 = T 0
0 W1T 0

0 W1T 0
2 ,

U221 = T 0
0 W1T 0

1 W2T 1
2 =U212,

U222 = T 0
1 W2T 1

1 W2T 1
2 .
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U311 = T 0
0 W1T 0

1 W2T 1
3 ,

U321 = T 0
0 W1T 0

1 W2T 1
3 =U312,

U322 = T 0
1 W2T 0

1 W2T 1
3 ,

U331 = T 0
0 W1T 0

2 W3T 2
3 =U313,

U332 = T 0
1 W2T 0

2 W3T 2
3 =U323,

U333 = T 0
2 W3T 2

2 W3T 2
3 .

U411 = T 0
0 W1T 0

0 W1T 0
4 ,

U421 = T 0
0 W1T 0

1 W2T 1
4 =U412,

U422 = T 0
1 W2T 1

1 W2T 1
4 ,

U431 = T 0
0 W1T 0

2 W3T 2
4 =U413,

U432 = T 0
1 W2T 1

2 W3T 2
4 =U423,

U433 = T 0
2 W3T 2

2 W3T 2
4 ,

U441 = T 0
0 W1T 0

3 W4T 3
4 =U414,

U442 = T 0
1 W2T 1

3 W4T 3
4 =U424,

U443 = T 0
2 W3T 2

3 W4T 3
4 =U434,

U444 = T 0
3 W4T 3

3 W4T 3
4 ,
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U511 = T 0
0 W1T 0

0 W1T 0
5 ,

U521 = T 0
0 W1T 0

1 W2T 1
5 =U512,

U522 = T 0
1 W2T 1

1 W2T 1
5 ,

U531 = T 0
0 W1T 0

2 W3T 2
5 =U513,

U532 = T 0
1 W2T 1

2 W3T 2
5 =U523,

U533 = T 0
2 W3T 2

2 W3T 2
5 ,

U541 = T 0
0 W1T 0

3 W4T 3
5 =U514,

U542 = T 0
1 W2T 1

3 W4T 3
5 =U524,

U543 = T 0
2 W3T 2

3 W4T 3
5 =U534,

U544 = T 0
3 W4T 3

3 W4T 3
5 ,

U551 = T 0
0 W1T 0

4 W5T 4
5 =U515,

U552 = T 0
1 W2T 1

4 W5T 4
5 =U525,

U553 = T 0
2 W3T 2

4 W5T 4
5 =U535,

U554 = T 0
3 W4T 3

4 W5T 4
5 =U545,

U555 = T 0
4 W5T 4

4 W5T 4
5
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U611 = T 0
0 W1T 0

0 W1T 0
6 ,

U621 = T 0
0 W1T 0

1 W2T 1
6 =U612,

U622 = T 0
1 W2T 1

1 W2T 1
6 ,

U631 = T 0
0 W1T 0

2 W3T 2
6 =U613,

U632 = T 0
1 W2T 1

2 W3T 2
6 =U623,

U633 = T 0
2 W3T 2

2 W3T 2
6 ,

U641 = T 0
0 W1T 0

3 W4T 3
6 =U614,

U642 = T 0
1 W2T 1

3 W4T 3
6 =U624,

U643 = T 0
2 W3T 2

3 W4T 3
6 =U634,

U644 = T 0
3 W4T 3

3 W4T 3
6 ,

U651 = T 0
0 W1T 0

4 W5T 4
6 =U615,

U652 = T 0
1 W2T 1

4 W5T 4
6 =U625,

U653 = T 0
2 W3T 2

4 W5T 4
6 =U635,

U654 = T 0
3 W4T 3

4 W5T 4
6 =U645,

U655 = T 0
4 W5T 4

4 W5T 4
6 ,

U661 = T 0
0 W1T 0

5 W6T 5
6 =U616,

U662 = T 0
1 W2T 1

5 W6T 5
6 =U626,

U663 = T 0
2 W3T 2

5 W6T 5
6 =U636,

U664 = T 0
3 W4T 3

5 W6T 5
6 =U646,

U665 = T 0
4 W5T 4

5 W6T 5
6 =U656,

U666 = T 0
5 W6T 5

5 W6T 5
6 ,
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U711 = T 0
0 W1T 0

0 W1T 0
7 ,

U721 = T 0
0 W1T 0

1 W2T 1
7 =U712,

U722 = T 0
1 W2T 1

1 W2T 1
7 ,

U731 = T 0
0 W1T 0

2 W3T 2
7 =U713,

U732 = T 0
1 W2T 1

2 W3T 2
7 =U723,

U733 = T 0
2 W3T 2

2 W3T 2
7 ,

U741 = T 0
0 W1T 0

3 W4T 3
7 =U714,

U742 = T 0
1 W2T 1

3 W4T 3
7 =U724,

U743 = T 0
2 W3T 2

3 W4T 3
7 =U734,

U744 = T 0
3 W4T 3

3 W4T 3
7 ,

U751 = T 0
0 W1T 0

4 W5T 4
7 =U715,

U752 = T 0
1 W2T 1

4 W5T 4
7 =U725,

U753 = T 0
2 W3T 2

4 W5T 4
7 =U735,

U754 = T 0
3 W4T 3

4 W5T 4
7 =U745,

U755 = T 0
4 W5T 4

4 W5T 4
7 ,

U761 = T 0
0 W1T 0

5 W6T 5
7 =U716,

U762 = T 0
1 W2T 1

5 W6T 5
7 =U726,

U763 = T 0
2 W3T 2

5 W6T 5
7 =U736,

U764 = T 0
3 W4T 3

5 W6T 5
7 =U746,

U765 = T 0
4 W5T 4

5 W6T 5
7 =U756,

U766 = T 0
5 W6T 5

5 W6T 5
7 ,
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U771 = T 0
0 W1T 0

6 W7T 6
7 =U717,

U772 = T 0
1 W2T 1

6 W7T 6
7 =U727,

U773 = T 0
2 W3T 2

6 W7T 6
7 =U737,

U774 = T 0
3 W4T 3

6 W7T 6
7 =U747,

U775 = T 0
4 W5T 4

6 W7T 6
7 =U757,

U776 = T 0
5 W6T 5

6 W7T 6
7 =U767,

U777 = T 0
6 W7T 6

6 W7T 6
7

6.2.3 Gravity Loading Force Vector G

The gravity vector can be shown as

G(θ) =
[
G1 G2 G3 G4 G5 G6 G7

]
, (6.53)

where

G1 =−
(

m1gU11r̄1
1 +m2gU21r̄2

2 +m3gU31r̄3
3 +m4gU41r̄4

4 +m5gU51r̄5
5 +m6gU61r̄6

6 +m7gU71r̄7
7

)
,

G2 =−
(

m2gU22r̄2
2 +m3gU32r̄3

3 +m4gU42r̄4
4 +m5gU52r̄5

5 +m6gU62r̄6
6 +m7gU72r̄7

7

)
,

G3 =−
(

m3gU32r̄3
3 +m4gU42r̄4

4 +m5gU52r̄5
5 +m6gU62r̄6

6 +m7gU72r̄7
7

)
,

G4 =−
(

m4gU44r̄4
4 +m5gU54r̄5

5 +m6gU64r̄6
6 +m7gU74r̄7

7

)
,

G5 =−
(

m5gU55r̄5
5 +m6gU65r̄6

6 +m7gU75r̄7
7

)
,

G6 =−
(

m6gU66r̄6
6 +m7gU76r̄7

7

)
,

G7 =−m7gU77r̄7
7. (6.54)

6.3 Linearized Dynamics of Baxter Robot

In this section, we derive a linearized perturbed model for Baxter robot. We consider an

n-link robot with the initial control torque vector τ̂ττ is related to the initial joint position,

velocity, and acceleration vectors q̂, ˆ̇q, and ˆ̈q by

M(q̂) ˆ̈q+V(q̂, ˆ̇q)+G(q) = τ̂ττ. (6.55)
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We suppose that the operating point corresponding to the initial condition of the robot is

denoted by Q0 =
(
q̂, ˆ̇q,τττ

)
. Also, we suppose that the control torque vector is perturbed

with a small variation of Δτττ , that is, τττ = τ̂ττ +Δτττ . The resulting perturbation in the joint

variables are Δq, Δq̇, and Δq̈, that is, q = q̂+Δq, q̇ = ˆ̇q+Δq̇, and q̈ = ˆ̈q+Δq̈. From the

nonlinear robot model described in (6.42), we write

M(q̂+Δq)( ˆ̈q+Δq̈)+V(q̂+Δq, ˆ̇q+Δq̇)+G(q) = ˆτττ +Δτττ. (6.56)

Expanding the vectors V and G we obtain

V(q̂+Δq, ˆ̇q+Δq̇) = V(q̂, ˆ̇q)+
[

∂V
∂q

]
Q0

Δq+

[
∂V
∂ q̇

]
Q0

Δq̇+ · · · (6.57)

G(q̂+Δq) = G(q̂)+
[

∂G
∂q

]
Q0

Δq+ · · · , (6.58)

where
[

∂V
∂q

]
,
[

∂V
∂ q̇

]
, and

[
∂G
∂q

]
are n×n matrices whose (i, j)-th elements are

[
∂V
∂q

]
i j
=

[
∂Vi

∂q j

]
,[

∂V
∂ q̇

]
i j
=

[
∂Vi

∂ q̇ j

]
,[

∂G
∂q

]
i j
=

[
∂Gi

∂q j

]
.

We approximated the infinite series in (6.58) using the first order term only. We also assume

M(q̂+Δq)≈ M(q̂). Then from (6.56) we can write

M( ˆ̈q)+ApΔq̈+V(q̂, ˆ̇q)+Cp1Δq+BpΔq̇+G(q̂)+Cp2Δq = τ̂ττ +Δτττ, (6.59)

where Ap, Bp, Cp1, and Cp2 are defined as

Ap = [M]Qo
, Bp =

[
∂V
∂ q̇

]
Qo

, Cp1 =

[
∂V
∂q

]
Qo

, Cp2 =

[
∂G
∂q

]
Qo

. (6.60)

Now, substituting (6.56) into (6.59), we obtain

ApΔq̈+BpΔq̇+G(q̂)+
(
Cp1 +Cp2

)
Δq = Δτττ. (6.61)

Equation (6.61) is incremental linearized model of the non-linear robot dynamics for small

perturbations about the operating point Qo. This state-space representation of (6.61) can
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be written as ⎡
⎣Δq̇

Δq̈

⎤
⎦=

⎡
⎣ 0n×n In×n

−A−1
p (Cp1 +Cp2) −A−1

p Bp

⎤
⎦
⎡
⎣Δq

Δq̇

⎤
⎦+

⎡
⎣0n×n

A−1
p

⎤
⎦Δτττ. (6.62)

The above state-space model is of order 2n with the 2n×1 incremental state vector [Δq Δq̇]′,

and the n×1 incremental control vector Δτττ , and the n×1 incremental output vector Δq.

Now, each manipulator of Baxter has seven DOF. Following the example in (6.62), we

write a linearized dynamics of the left manipulator of Baxter as follows:

⎡
⎣Δq̇l

Δq̈l

⎤
⎦

︸ ︷︷ ︸
14×1

=

Al︷ ︸︸ ︷⎡
⎣ 07×7 I7×7

−A−1
pl (Cpl1 +Cpl2) −A−1

pl Bpl

⎤
⎦

︸ ︷︷ ︸
14×14

⎡
⎣Δql

Δq̇l

⎤
⎦

︸ ︷︷ ︸
14×1

+

Bl︷ ︸︸ ︷⎡
⎣07×7

A−1
pl

⎤
⎦

︸ ︷︷ ︸
14×7

Δτττ︸︷︷︸
7×1

. (6.63)

we write a linearized dynamics of the right manipulator of Baxter as follows:

⎡
⎣Δq̇r

Δq̈r

⎤
⎦

︸ ︷︷ ︸
14×1

=

Ar︷ ︸︸ ︷⎡
⎣ 07×7 I7×7

−A−1
pr (Cpr1 +Cpr2) −A−1

pr Bpr

⎤
⎦

︸ ︷︷ ︸
14×14

⎡
⎣Δqr

Δq̇r

⎤
⎦

︸ ︷︷ ︸
14×1

+

Br︷ ︸︸ ︷⎡
⎣07×7

A−1
pr

⎤
⎦

︸ ︷︷ ︸
14×7

Δτττ︸︷︷︸
7×1

. (6.64)

Note that ‘l’ and ‘r’ denote the left and right manipulator, respectively.

For determining Ap, we evaluate M in (6.43) at an operating condition Qo.

For determining Bp, we first obtain ∂V
∂ q̇ , and then evaluate the obtained term at Q0. Here

we show obtaining the partial derivative from (6.50).

∂V
∂ q̇

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂V1
∂ q̇1

∂V1
∂ q̇2

∂V1
∂ q̇3

∂V1
∂ q̇4

∂V1
∂ q̇5

∂V1
∂ q̇6

∂V1
∂ q̇7

∂V2
∂ q̇1

∂V2
∂ q̇2

∂V2
∂ q̇3

∂V2
∂ q̇4

∂V2
∂ q̇5

∂V2
∂ q̇6

∂V2
∂ q̇7

∂V3

∂ q̇1

∂V3

∂ q̇2

∂V3

∂ q̇3

∂V3

∂ q̇4

∂V3

∂ q̇5

∂V3

∂ q̇6

∂V3

∂ q̇7

∂V4
∂ q̇1

∂V4
∂ q̇2

∂V4
∂ q̇3

∂V4
∂ q̇4

∂V4
∂ q̇5

∂V4
∂ q̇6

∂V4
∂ q̇7

∂V5

∂ q̇1

∂V5

∂ q̇2

∂V5

∂ q̇3

∂V5

∂ q̇4

∂V5

∂ q̇5

∂V5

∂ q̇6

∂V5

∂ q̇7

∂V6

∂ q̇1

∂V6

∂ q̇2

∂V6

∂ q̇3

∂V6

∂ q̇4

∂V6

∂ q̇5

∂V6

∂ q̇6

∂V6

∂ q̇7

∂V7
∂ q̇1

∂V7
∂ q̇2

∂V7
∂ q̇3

∂V7
∂ q̇4

∂V7
∂ q̇5

∂V7
∂ q̇6

∂V7
∂ q̇7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.65)
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For determining Cp1, we first obtain ∂V
∂q , and then evaluate the obtained term at Q0.

Here we show obtaining the partial derivative.

∂V
∂q

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂V1
∂q1

∂V1
∂q2

∂V1
∂q3

∂V1
∂q4

∂V1
∂q5

∂V1
∂q6

∂V1
∂q7

∂V2
∂q1

∂V2
∂q2

∂V2
∂q3

∂V2
∂q4

∂V2
∂q5

∂V2
∂q6

∂V2
∂q7

∂V3

∂q1

∂V3

∂q2

∂V3

∂q3

∂V3

∂q4

∂V3

∂q5

∂V3

∂q6

∂V3

∂q7

∂V4
∂q1

∂V4
∂q2

∂V4
∂q3

∂V4
∂q4

∂V4
∂q5

∂V4
∂q6

∂V4
∂q7

∂V5

∂q1

∂V5

∂q2

∂V5

∂q3

∂V5

∂q4

∂V5

∂q5

∂V5

∂q6

∂V5

∂q7

∂V6

∂q1

∂V6

∂q2

∂V6

∂q3

∂V6

∂q4

∂V6

∂q5

∂V6

∂q6

∂V6

∂q7

∂V7
∂q1

∂V7
∂q2

∂V7
∂q3

∂V7
∂q4

∂V7
∂q5

∂V7
∂q6

∂V7
∂q7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.66)

Note that

V(q, q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2

V3

V4

V5

V6

V7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇′V1,hq̇

q̇′V2,hq̇

q̇′V3,hq̇

q̇′V4,hq̇

q̇′V5,hq̇

q̇′V6,hq̇

q̇′V7,hq̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.67)

Note that q̇′ is 1× 7 vector, Vi,h is a 7× 7 matrix, and q̇ is a 7× 1 vector. The product of

these three terms give Vi, which is 1×1. The elements of those matrices are defined by the

expression given in (6.41). In general, we can express Vi,h as follows, where h represents

11, 12, 13, 14, 15, 16, 17, 22, 23, 24, 25, 26, 27, 33, 34, 35, 36, 37, 44, 45, 46, 47, 55, 56,

57, 66, 67, and 77.



164

Vi,h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vi11 Vi12 Vi13 Vi14 Vi15 Vi16 Vi17

Vi12 Vi22 Vi23 Vi24 Vi25 Vi26 Vi27

Vi13 Vi23 Vi33 Vi34 Vi35 Vi36 Vi37

Vi14 Vi24 Vi34 Vi44 Vi45 Vi46 Vi47

Vi15 Vi25 Vi35 Vi45 Vi55 Vi56 Vi57

Vi16 Vi26 Vi36 Vi46 Vi56 Vi66 Vi67

Vi17 Vi27 Vi37 Vi47 Vi57 Vi67 Vi77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1,2, · · · ,7. (6.68)

Therefore, we need to determine ∂Vi
∂ql

= q̇′ ∂Vi,h
∂ql

q̇.

The following relationship will be required to determine ∂Vi
∂ql

.

∂Ui jk

∂ql
≡Ui jkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T 0
l−1WlT l−1

k−1WkT j−1
k−1 WjT

j−1
i , for i ≥ j ≥ k ≥ l

T 0
l−1WlT

j−1
l−1 WjT

j−1
k−1 WkT k−1

i , for i ≥ k ≥ j ≥ l

T 0
k−1WkT k−1

l−1 WjT l−1
j−1WjT

j−1
i , for i ≥ j ≥ l ≥ k

T 0
j−1WjT

j−1
l−1 WlT l−1

k−1WkT k−1
i , for i ≥ k ≥ l ≥ j

0, for i < j or i < k i < l

.

(6.69)

For determining Cp2, we first obtain ∂G
∂q , and then evaluate the obtained term at Q0.

Here we show obtaining the partial derivative.

∂G
∂q

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂G1
∂q1

∂G1
∂q2

∂G1
∂q3

∂G1
∂q4

∂G1
∂q5

∂G1
∂q6

∂G1
∂q7

∂G2
∂q1

∂G2
∂q2

∂G2
∂q3

∂G2
∂q4

∂G2
∂q5

∂G2
∂q6

∂G2
∂q7

∂G3

∂q1

∂G3

∂q2

∂G3

∂q3

∂G3

∂q4

∂G3

∂q5

∂G3

∂q6

∂G3

∂q7

∂G4
∂q1

∂G4
∂q2

∂G4
∂q3

∂G4
∂q4

∂G4
∂q5

∂G4
∂q6

∂G4
∂q7

∂G5

∂q1

∂G5

∂q2

∂G5

∂q3

∂G5

∂q4

∂G5

∂q5

∂G5

∂q6

∂G5

∂q7

∂G6

∂q1

∂G6

∂q2

∂G6

∂q3

∂G6

∂q4

∂G6

∂q5

∂G6

∂q6

∂G6

∂q7

∂G7
∂q1

∂G7
∂q2

∂G7
∂q3

∂G7
∂q4

∂G7
∂q5

∂G7
∂q6

∂G7
∂q7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.70)

G1 =−
(

m1gU11r̄1
1 +m2gU21r̄2

2 +m3gU31r̄3
3 +m4gU41r̄4

4 +m5gU51r̄5
5 +m6gU61r̄6

6 +m7gU71r̄7
7

)
,
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∂G1

∂q1
=−

(
m1gU111r̄1

1 +m2gU211r̄2
2 +m3gU311r̄3

3 +m4gU411r̄4
4 +m5gU511r̄5

5 +m6gU611r̄6
6

+m7gU711r̄7
7

)
,

∂G1

∂q2
=−

(
m2gU212r̄2

2 +m3gU312r̄3
3 +m4gU412r̄4

4 +m5gU512r̄5
5 +m6gU612r̄6

6 +m7gU712r̄7
7

)
,

∂G1

∂q3
=−

(
m3gU313r̄3

3 +m4gU413r̄4
4 +m5gU513r̄5

5 +m6gU613r̄6
6 +m7gU713r̄7

7

)
,

∂G1

∂q4
=−

(
m4gU414r̄4

4 +m5gU514r̄5
5 +m6gU614r̄6

6 +m7gU714r̄7
7

)
,

∂G1

∂q5
=−

(
m5gU515r̄5

5 +m6gU615r̄6
6 +m7gU715r̄7

7

)
,

∂G1

∂q6
=−

(
m6gU616r̄6

6 +m7gU716r̄7
7

)
,

∂G1

∂q7
=−m7gU717r̄7

7,

G2 =−
(

m2gU22r̄2
2 +m3gU32r̄3

3 +m4gU42r̄4
4 +m5gU52r̄5

5 +m6gU62r̄6
6 +m7gU72r̄7

7

)
,

∂G2

∂q1
=−

(
m2gU221r̄2

2 +m3gU321r̄3
3 +m4gU421r̄4

4 +m5gU521r̄5
5 +m6gU621r̄6

6 +m7gU721r̄7
7

)
,

∂G2

∂q2
=−

(
m2gU222r̄2

2 +m3gU322r̄3
3 +m4gU422r̄4

4 +m5gU522r̄5
5 +m6gU622r̄6

6 +m7gU722r̄7
7

)
,

∂G2

∂q3
=−

(
m3gU323r̄3

3 +m4gU423r̄4
4 +m5gU523r̄5

5 +m6gU623r̄6
6 +m7gU723r̄7

7

)
,

∂G2

∂q4
=−

(
m4gU424r̄4

4 +m5gU524r̄5
5 +m6gU624r̄6

6 +m7gU724r̄7
7

)
,

∂G2

∂q5
=−

(
m5gU525r̄5

5 +m6gU626r̄6
6 +m7gU726r̄7

7

)
,

∂G2

∂q6
=−

(
m6gU626r̄6

6 +m7gU726r̄7
7

)
,

∂G2

∂q7
=−(m7gU721r̄7

7

)
,
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G3 =−
(

m3gU32r̄3
3 +m4gU42r̄4

4 +m5gU52r̄5
5 +m6gU62r̄6

6 +m7gU72r̄7
7

)
,

∂G3

∂q1
=−

(
m3gU321r̄3

3 +m4gU421r̄4
4 +m5gU521r̄5

5 +m6gU621r̄6
6 +m7gU721r̄7

7

)
,

∂G3

∂q2
=−

(
m3gU322r̄3

3 +m4gU422r̄4
4 +m5gU522r̄5

5 +m6gU622r̄6
6 +m7gU722r̄7

7

)
,

∂G3

∂q3
=−

(
m3gU323r̄3

3 +m4gU423r̄4
4 +m5gU523r̄5

5 +m6gU623r̄6
6 +m7gU723r̄7

7

)
,

∂G3

∂q4
=−

(
m4gU424r̄4

4 +m5gU524r̄5
5 +m6gU624r̄6

6 +m7gU724r̄7
7

)
,

∂G3

∂q5
=−

(
m5gU525r̄5

5 +m6gU625r̄6
6 +m7gU725r̄7

7

)
,

∂G3

∂q6
=−

(
m6gU626r̄6

6 +m7gU726r̄7
7

)
,

∂G3

∂q7
=−m7gU727r̄7

7,

G4 =−
(

m4gU44r̄4
4 +m5gU54r̄5

5 +m6gU64r̄6
6 +m7gU74r̄7

7

)
,

∂G4

∂q1
=−

(
m4gU441r̄4

4 +m5gU541r̄5
5 +m6gU641r̄6

6 +m7gU741r̄7
7

)
,

∂G4

∂q2
=−

(
m4gU442r̄4

4 +m5gU542r̄5
5 +m6gU642r̄6

6 +m7gU742r̄7
7

)
,

∂G4

∂q3
=−

(
m4gU443r̄4

4 +m5gU543r̄5
5 +m6gU643r̄6

6 +m7gU743r̄7
7

)
,

∂G4

∂q4
=−

(
m4gU444r̄4

4 +m5gU544r̄5
5 +m6gU644r̄6

6 +m7gU744r̄7
7

)
,

∂G4

∂q5
=−

(
m5gU545r̄5

5 +m6gU645r̄6
6 +m7gU745r̄7

7

)
,

∂G4

∂q6
=−

(
m6gU646r̄6

6 +m7gU746r̄7
7

)
,

∂G4

∂q7
=−m7gU747r̄7

7,
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G5 =−
(

m5gU55r̄5
5 +m6gU65r̄6

6 +m7gU75r̄7
7

)
,

∂G5

∂q1
=−

(
m5gU551r̄5

5 +m6gU651r̄6
6 +m7gU751r̄7

7

)
,

∂G5

∂q2
=−

(
m5gU552r̄5

5 +m6gU652r̄6
6 +m7gU752r̄7

7

)
,

∂G5

∂q3
=−

(
m5gU553r̄5

5 +m6gU653r̄6
6 +m7gU753r̄7

7

)
,

∂G5

∂q4
=−

(
m5gU554r̄5

5 +m6gU654r̄6
6 +m7gU754r̄7

7

)
,

∂G5

∂q5
=−

(
m5gU555r̄5

5 +m6gU655r̄6
6 +m7gU755r̄7

7

)
,

∂G5

∂q6
=−

(
m6gU656r̄6

6 +m7gU756r̄7
7

)
,

∂G5

∂q7
=−m7gU757r̄7

7,

G6 =−
(

m6gU66r̄6
6 +m7gU76r̄7

7

)
,

∂G6

∂q1
=−

(
m6gU661r̄6

6 +m7gU761r̄7
7

)
,

∂G6

∂q2
=−

(
m6gU662r̄6

6 +m7gU762r̄7
7

)
,

∂G6

∂q3
=−

(
m6gU663r̄6

6 +m7gU763r̄7
7

)
,

∂G6

∂q4
=−

(
m6gU664r̄6

6 +m7gU764r̄7
7

)
,

∂G6

∂q5
=−

(
m6gU665r̄6

6 +m7gU765r̄7
7

)
,

∂G6

∂q6
=−

(
m6gU666r̄6

6 +m7gU766r̄7
7

)
,

∂G6

∂q7
=−m7gU767r̄7

7,
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G7 =−m7gU77r̄7
7.

∂G7

∂q1
=−m7gU771r̄7

7,

∂G7

∂q2
=−m7gU772r̄7

7,

∂G7

∂q3
=−m7gU773r̄7

7,

∂G7

∂q4
=−m7gU774r̄7

7,

∂G7

∂q5
=−m7gU775r̄7

7,

∂G7

∂q6
=−m7gU776r̄7

7,

∂G7

∂q7
=−m7gU777r̄7

7,

6.4 Numerical Simulations and Validations of Baxter Linearized Model

In this section, we study the dynamic response of the Baxter linearized model derived in

the earlier section, and present an experimental validation study.

6.4.1 Baxter Physical Parameters

The physical parameters of Baxter can be retrieved from a URDF (Unified Robot Descrip-

tion Format) file. The file consists of a series of frames and transformation description

between frames with the kinematic information of the robot. The detail of the file is given

in Appendix A.

Baxter robot has been developed by Rethink Robotics Inc. Baxter has two seven degree-

of-freedom arms. The arm joints are named as: S0 (shoulder roll), S1 (shoulder pitch), E0

(elbow roll), E1 (elbow pitch), W0 (wrist roll), W1 (wrist pitch), W2 (wrist roll). Fig. 6.5
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Figure 6.5: Baxter joint names (left arm).

Figure 6.6: Baxter link lengths (left arm).
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Table 6.2: D-H parameters of Baxter robot links from URDF file [3]

Link Joint angle Link offset Link length Link Twist

i q d (m) a (m) α (rad)

1 q1 0.2703 0.069 −π
2

2 q2 0 0 +π
2

3 q3 0.3644 0.069 −π
2

4 q4 0 0 +π
2

5 q5 0.3743 0.01 −π
2

6 q6 0 0 +π
2

7 q7 0.2295 0 0

shows the joint names and Fig. 6.6 shows the link length of left arm. The right arm joints

are named with a similar convention.

Table 6.2 shows the D-H parameters for Baxter. Table 6.3 shows the centers of gravity

and masses for the Baxter links. Table 6.4 shows moments of inertia for the Baxter links.

Table 6.5 shows cross-products of inertia for the Baxter links.
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Table 6.3: The centers of gravity and masses of Baxter robot links [3]

Link x̄ (m) ȳ (m) z̄ (m) m (kg)

1 -0.051170 0.079080 0.000859 5.700440

2 0.002690 -0.005290 0.068449 3.226980

3 -0.071760 0.081490 0.001319 4.312720

4 0.001590 -0.011170 0.026179 2.072060

5 -0.011679 0.13111 0.004599 2.246650

6 0.006970 0.005999 0.060480 1.609790

7 0.005137 0.000957 -0.066823 0.542180

Table 6.4: Moment of inertia elements of Baxter robot links (unit: kgm2) [3]

Link Ixx Iyy Izz

1 0.047091 0.035959 0.037669

2 0.027885 0.020787 0.011752

3 0.026617 0.012480 0.028443

4 0.013182 0.009268 0.007116

5 0.016677 0.003746 0.016754

6 0.007005 0.005527 0.003876

7 0.000816 0.000873 0.003876
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Table 6.5: Cross-product of inertia elements of Baxter robot links(unit: kgm2) [3]

Link Ixy Iyz Ixz

1 -0.006149 -0.000781 0.000128

2 -0.000188 0.002077 -0.000300

3 -0.003921 -0.001084 0.000293

4 -0.000197 0.000745 0.000360

5 -0.000186 0.000647 0.000184

6 0.000153 -0.000211 -0.000444

7 0.000128 0.000106 0.000189

6.4.2 Dynamic Response and Stability of Linearized Model

Let the operating point of the robot be

Qo = [q1o q2o q3o q4o q5o q6o q7o q̇1o q̇2o q̇3o q̇4o q̇5o q̇6o q̇7o ]
′,

= [−0.3137 −0.5492 −1.1950 1.5842 1.0051 1.2513 0.6604 0 0 0 0 0 0 0 ]′,

corresponding to one “dexterous" configuration of Baxter’s left arm shown in Fig. 6.7. The

joint angles of the operating point cause an initial pose of the end-effector that is suitable

for the parallel or angular scanning experiment of the bimodal dynamic imaging system.

The joint velocities of the operating are considered zero to capture the dynamics where the

joints start to move from a stand-still position.

The submatrices in the linearized state-space model (6.63) evaluated at the operating

point are

A−1
p =

⎡
⎢⎢⎣

−0.2525 1.2359 −1.3411 0.2171 −0.6623 −1.8760 −0.7642
1.2359 −0.0965 −1.5473 0.1687 −0.3324 0.1499 −0.1311
−1.3411 −1.5473 15.137 0.1357 8.8677 16.7180 7.3466
0.2171 0.1687 0.1357 4.3447 8.6417 5.4724 4.0161
−0.6623 −0.3324 8.8677 8.6417 94.2320 18.7970 13.8300
−1.8760 0.1499 16.7180 5.4724 18.7970 79.1160 46.2780
−0.76416 −0.1311 7.3466 4.0161 13.8300 46.2780 1847.9

⎤
⎥⎥⎦,
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Figure 6.7: Dexterous pose of Baxter’s left arm for a parallel scanning experiment
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Bp = 07×7,

Cp1 = 07×7,

Cp2 =

⎡
⎢⎢⎣

0 −7.6493 0 0 0.0102 0 0
−7.6493 −21.607 5.3508 5.1614 −1.2548 −1.1767 0
−7.6493 −19.439 5.3508 5.1614 −0.5213 −1.1767 −0.0035

0 5.1614 0.1947 6.5152 −0.9189 −0.44536 −0.0194
0.01019 −0.5213 −0.0408 −0.9189 0.1543 −0.48784 0.0078

0 −1.1767 0.0399 −0.4454 −0.4878 −1.322 0.0059
0 −0.00351 −0.0013 −0.0194 0.0078 0.0059444 −0.0204

⎤
⎥⎥⎦.

Then, the linearized state-space model of one arm of the Baxter robot for perturbations

about the operating point is found by plugging in the submatrices computed above into

(6.63).

The eigenvalues of the system in (6.63) evaluated at the operating points are ±11.6877,

±8.5541i, ±6.1040, ±5.0821i, ±4.0967i, ±2.1849, ±0.3842. Since there are eigenvalues

with positive real parts, the system is not stable. The number of uncontrollable states is

2. The number of unobservable state is zero. The time responses of seven joint positions

to a small perturbation (1 μN) are shown in Fig. 6.8, exhibiting unstable behavior of the

system. The initial investigation of the Baxter linearized model indicates that the robot is

an unstable system at the operating point Qo.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t (s)

-2

0

2

4

6

q 
(r

ad
)

1024

q1
q2
q3
q4
q5
q6
q7

Figure 6.8: Time responses of the joint positions from the Baxter linearized model for 1

μN torque
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6.4.3 Robot Stabilization and Regulation

In order to stabilize and regulate the robot model, we used seven Proportional-Integral-

Derivative (PID) controller with a low-pass filter for seven joints. The PID controller with

a low-pass filter has the form of

kp + ki
1

s
+ kd

N
1+N 1

s

where kp is the proportional gain, ki is the integral gain, kd is the derivative gain, and N is

the filter coefficient. Note that the derivative gain is multiplied with the low-pass filter.

The parameters of the PID controller were tuned using Matlab’s pidtuner function.

Table 6.6 shows the tuned parameter values.

Table 6.6: PID controller parameters

Joint kp ki (m) kd N

1 156.8636 529.3146 90.8136 355.4528

2 100.2464 459.1323 31.6649 291.3696

3 86.5436 436.9163 24.6351 454.3801

4 4.4047 28.1636 2.8559 238.7716

5 26.9042 621.3653 23.4639 298.6593

6 8.7855 652.8582 93.9565 295.7826

7 −1.2844 628.0802 5.4983 322.7994

The eigenvalues of the closed-loop PID-controlled system are −161.55±51042i, −149.15±
16956i, −157.49 ± 12431i, −166.39 ± 4845.3i, −237.7 ± 1918.2i, −248.14 ± 19.926i,

−3.6076±11.039i, −0.04849±10.692i, −0.58862±5.4092i, −0.78861±5.0006i, −0.86326,

−1.5166±3.349i, −0.074851±2.6545i, −0.64799±2.0434i, −0.95214. The real part of

the eigenvalues of the system is negative. Therefore, the PID controller is adequate to

stabilize the robot linearized dynamics.
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In order to test the Baxter linearized model’s regulatory capability, i.e. the ability track

or follow a reference command, we applied a step command of 0.1754 radian (10 degree)

for each joint to the PID-controlled linearized model. All the joints reached the joint angle

of 0.1754 radian (10 degree) and oscillate around 0.1754 radian (10 degree). Fig. 6.9 the

simulation diagram. Figs. 6.15-6.16 show the time responses of the joint angles. For the

first five joints, the robot achieved a satisfactory level of steady-state regulation for the

step commands. For joints 6 and 7, we observed sustained oscillations around the step

commands.

Figure 6.9: Step command tracking simulation diagram

0 1 2 3 4 5 6 7 8 9
t (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

q 1 (r
ad

)

Ref q1

Model q1

Figure 6.10: Step command tracking for Joint 1
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Figure 6.11: Step command tracking for Joint 2
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Figure 6.12: Step command tracking for Joint 3
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Figure 6.13: Step command tracking for Joint 4
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Figure 6.14: Step command tracking for Joint 5
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Figure 6.15: Step command tracking for Joint 6
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6.4.4 Experimental Validation Study

We performed a validation study for the PID-controlled linearized model. The validation

study workflow is shown in Fig. 6.17. In the study, the left manipulator of Baxter was

driven along a straight line trajectory from one point (x = 0.657 m, y = 0.103 m, z = 0.038

m) to another point (x = 0.76 m, y = 0.103 m, z = 0.038 m) in Cartesian space. We employed

an inverse kinematic solver to generate the reference joint angles which were fed to a PID

position controller. From the Baxter robot, we collected reference joint angles and output

joint angles.

Trajectory 
Generator

Inverse 
Kinematics 

Solver

PID 
Controller
(embedded 
in Robot)

Linearized 
Model

Tracking Error 
Analysis

Baxter 
Robot Arm

PID 
Controller 
(simulated)

End-effector 
pose

Reference 
joint angle Joint torque Joint angle 

(experimental)

 Joint angle 
(simulated)

Joint torque

Hardware

Software

Figure 6.17: Validation study workflow

The collected reference joint angles were fed into the simulated PID-controlled Baxter

model. The simulation diagram is shown in Fig. 6.18.

The tracking performance of the Baxter robot and the linearized model was evaluated

by root mean squared error (RMSE) between the reference joint angles and the output joint

angles. Table 6.7 shows the tracking error for seven joints. Based on the error, the Baxter

robot performed better than the model. Figs. 6.19-6.25 shows joint trajectory tracking the

Baxter robot and model. From the plots, we notice that until 3 to 4 seconds, the model

shows overshoot characteristic, which contributed to the large tracking error. After 5 sec-

onds, the model tracking performance was as good as the Baxter robot.
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Figure 6.18: Trajectory tracking simulation diagram
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Figure 6.19: Trajectory tracking for Joint 1
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Figure 6.20: Trajectory tracking for Joint 2
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Figure 6.21: Trajectory tracking for Joint 3
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Figure 6.22: Trajectory tracking for Joint 4
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Figure 6.23: Trajectory tracking for Joint 5
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Figure 6.24: Trajectory tracking for Joint 6
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Table 6.7: RMS Tracking Error of Joint Angles

Joint Baxter (rad) Linear Model (rad)

1 0.0056 0.0257

2 0.0060 0.0394

3 0.0040 0.0355

4 0.0077 0.1548

5 0.0020 0.0246

6 0.0066 0.0103

7 0.0072 0.0193

6.5 Discussion

In this chapter, we derived a linearized model for the dual arm Baxter robot from the

Lagrange-Euler equation of motion. Then we presented numerical simulation of the model,

and validated with the data found from the real Baxter robot. The validation study shows

that the developed model can represent the real Baxter robot. Next, we discuss a hybrid

statistical control approach to control this robot manipulator model.
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CHAPTER 7

FEEDBACK CONTROL OF ROBOTIC MANIPULATORS:

HYBRID HIERARCHICAL STATISTICAL CONTROL

In this chapter, we present a hybrid hierarchical statistical control approach for robotic ma-

nipulators. For the bimodal dynamic imaging system, these robotic manipulators are uti-

lized to move the source and the detector. The bimodal dynamic imaging system contains

both the continuous and discrete dynamics. Therefore, only statistical control is not suffi-

cient to model the system dynamics. We consider the bimodal dynamic imaging system as

a hybrid system. In this chapter, first we utilized a full-state feedback statistical controller

to minimize the joint angle variations of the previously developed single robot manipu-

lator model of Baxter. Then, we considered two such statistical-controlled manipulators

as agents and developed a supervisory controller for coordination between the manipula-

tors. The feasibility of the hybrid hierarchical statistical controller is demonstrated with

numerical simulations.

7.1 Statistical Control

In this section, we simulated a single robot manipulator using the statistical controller. In

statistical control paradigm, the cumulants of the cost function of the stochastic system is

minimized. In our case, we intend to minimize the joint angle variation so that the end-

effector pose is less affected. The less variation will ensure that the laser and the camera

will be in line-of-sight during image acquisition for the bimodal imaging experiment. In

this section, we selected the optimum design parameter for the statistical controller through

numerical simulations.

7.2 Full-state Feedback Statistical Controller

In statistical control paradigm, because of the presence of the Gaussian white noise, the cost

function becomes random. Therefore, the cumulants of the cost function of the stochastic
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system is minimized. In our case, we intend to minimize the joint angle variation so that

the end-effector pose is less affected. The less variation will ensure that the laser and the

camera will be in line-of-sight during image acquisition for the bimodal imaging experi-

ment. We utilize the full-state feedback statistical control, because Baxter has sensors to

measure the joint angles, joint velocity, torque, and end-effector pose.

7.2.1 Statistical Control Preliminaries

We consider a stochastic linear time invariant dynamic system modelled on [t0, t f ]. The

dynamic process model is given by,

dx(t) = Ax(t)dt +Bu(t)dt +Fdw(t),

x(t0) = x0, t ∈ [t0, tF ] (7.1)

where x(t) ∈ R
n is an n-dimensional state vector at time t, u(t) ∈ R

m is an m-dimensional

control vector at time t, x0 is the initial condition. A ∈ R
n×n, B ∈ R

n×m, and F ∈ R
n×p

are matrices of appropriate order. Here, dw(t) is a Gaussian random process of dimension

p with zero mean, covariance of W (t)dt. The random process is defined on a probability

space (Ω0,F ,P) where Ω0 is a non-empty set, F is a σ -algebra of Ω0, and P is a

probability measure on (Ω0,F). Also, we consider the output equation:

y(t) =Cx(t)+Du(t), (7.2)

where, C and D are matrices of appropriate order.

The quadratic random cost for the linear stochastic system is

J = x′(tF)QFx(tF)+
∫ tF

t

[
x′(τ)Qx(τ)+u′(τ)Ru(τ)dτ

]
, (7.3)

where the state weighting symmetric matrix Q ∈R
n×n is positive semi-definite, the control

effort weighting symmetric matrix R ∈ R
m×m is positive definite, and the terminal penalty

weighting symmetric matrix QF ∈ R
n×n is positive semi-definite.

The statistical control problem is to determine a control law such that the n-th cost

cumulant of the cost function in (7.3) is minimized, while keeping the rest of the (n−1)-th

cumulants at pre-specified levels.
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7.2.2 Statistical Control Law

In this paper, we utilize the statistical control that minimizes the second cumulant of the

cost function for a fixed first cumulant. The second cumulant is the variance of the cost

function, while the first cumulant is the mean of the cost function. In case of the second

cost cumulant minimization, the full-state-feedback linear statistical control law has the

form [40],

u(t) =−R−1B′(M + γV )x(t) =−Kstatx(t), (7.4)

where the positive semi-definite M and V are solutions of the coupled algebraic Riccati

equations:

A′M +M A+Q−M BR−1B′M

+ γ2V BR−1B′V = 0, (7.5)

4M FWFT M +A′V +V A−M BR−1B′V

−V BR−1B′M −2γV BR−1B′V = 0, (7.6)

with the boundary conditions M (tF) = QF and V (tF) = 0 for a suitable Lagrange multi-

plier γ . We assume that R > 0, (A,B) is stabilizable, and (
√

Q,A) is detectable. In case of

γ = 0, the above-mentioned statistical control law becomes

u(t) =−R−1B′M x(t), (7.7)

where M is the solution of the following Riccati equation:

A′M +M A+Q−M BR−1B′M = 0, (7.8)

with the boundary condition M (tF) = QF .

Note that the statistical control with nonzero γ is known as ‘Minimum Cost Variance’

control, and the statistical control with γ = 0 is known as ‘Linear Quadratic Gaussian’

control.
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For implementing the statistical control for non-zero reference tracking, we use the

internal model principle to find a feedforward gain for a reference input [127]. The control

law is rewritten as:

u =−Kstatx+ N̄r, (7.9)

where

N̄ = Nu +KstatNx (7.10)

is the feedforward controller gain. Note that we first design a state feedback gain Kstat

using statistical control method such that A−BKstat is stable. Then, to obtain the values of

Nx and Nu, we solve ⎡
⎣A B

C D

⎤
⎦
⎡
⎣Nx

Nu

⎤
⎦=

⎡
⎣0

I

⎤
⎦ .

This feedforward control method is applicable for a slowly varying reference input.

7.2.3 Statistical Control Simulation of a Single Robot Manipulator

7.2.3.1 Simulation Parameters

The linearized state-space model of one arm of the Baxter robot for perturbations about

the operating point is found from Eq. (6.63) using the operating point for joint angles

[0,0.7854,1.5708,0,0.7854,0] and joint velocities [0,0,0,0,0,0,0,0]′. The system is found

controllable and observable. The eigenvalues of the system are ±11.58i, ±9.40, ±7.52,

±6.59, ±5.22, −0.62± 0.66i, and 0.62± 0.66i. In order to make the linear state-space

model stochastic, we incorporate a zero-mean Gaussian white noise term dw with a co-

variance W in the model. Therefore, from the linear model of Eq. (6.63), we write the

stochastic linear model for the left robot manipulator in this form:

dxl(t) = Alxl(t)dt +Blul(t)dt +Fldwl(t), xl(t0) = xl0, t ∈ [t0, tF ].

For set-point tracking we used the following diagram (Fig. 7.1) for simulation,

The initial joint angles are [−0.3927,−1.1781,−1.9635,1.1781,1.1781,0.3927,0.3927]′

and the reference joint angles are [0,0.7854,1.5708,0,0.7854,0,0]′.
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Figure 7.1: Set-point tracking with statistical control simulation diagram

Figs. 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7 show the time response of the joint angle and

end-effector position and error, and end-effector orientation and error with the statistical

controller of γ = 0.
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Figure 7.2: Joint angle tracking with statistical control γ = 0

7.2.3.2 Statistical Design Parameter Selection

In order to obtain the suitable statistical design parameter γ , we investigated the joint angle

tracking, and end-effector position and orientation tracking error. We used the following

two performance metrics to choose γ
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Figure 7.3: Joint angle tracking error with statistical control γ = 0
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Figure 7.4: End-effector position tracking with statistical control γ = 0
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Figure 7.5: End-effector position tracking error with statistical control γ = 0
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Figure 7.6: End-effector orientation tracking with statistical control γ = 0
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Figure 7.7: End-effector orientation tracking error with statistical control γ = 0

• Tracking error and root-mean-squared tracking error: The tracking error is the dif-

ference between the set-points and the outputs. The root mean squared tracking error

is defined in (7.11):

με =

√
∑

t=t f
t=0 ε2(t)

Nε
,

where με is the root mean squared tracking error, ε is the error between the set-point

and the current output value, Nε is the number of samples.

• Standard deviation of tracking error : The standard deviation of the tracking error

indicates the variation of the error from the mean error value. This is defined as:

σε =

√
∑

t=t f
t=0 (ε(t)−μ)2

Nε −1
. (7.11)

This formula is also referred as the corrected sample standard deviation. We are

interested about the steady-state pointing performance of the system. Therefore, we

calculated these metrics on the steady-state part of the joint angle and end-effector

pose response.
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In our simulation, we varied γ from 0 to 1 with 0.1 interval. For each γ we ran the

simulation 100 times. Each time a randomized seed was used to generate Gaussian white

noise. The simulation duration was 10 seconds. Finally, we averaged the response. In this

manner, we ensured the stochastic nature of the simulation. We calculated the root-mean-

squared tracking error and standard deviation based on the response from t = 3s.

Figs. 7.8 and 7.9 show the joint angle tracking error and error variation with the varying

γ . Figs. 7.10 and 7.11 show the end-effector position tracking error and error variation with

the varying γ . Figs. 7.12 and 7.13 show the end-effector orientation tracking error and error

variation with the varying γ .
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Figure 7.8: Joint angle tracking error versus γ

Table 7.1 shows tracking performance for γ = 0, 0.3, and 0.9. We observe that the

γ = 0.3 and γ = 0.9 show better performance compared to γ = 0 case. γ = 0.3 produced the

minimum tracking error in all cases (joint angles and end-effector pose). γ = 0.9 produced

the minimum tracking error variation. Our control goal is to minimize the variation in the

joint angle error, consequently, end-effector pose error. Therefore, we choose γ = 0.9 as
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Figure 7.9: Joint angle tracking error variation versus γ
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Figure 7.10: End-effector position tracking error versus γ
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Figure 7.11: End-effector position tracking error variation versus γ
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Figure 7.12: End-effector orientation tracking error versus γ
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Figure 7.13: End-effector orientation tracking error variation versus γ

Table 7.1: Root-mean-squared tracking error (μ) and error variation (σ ) results

γ = 0 γ = 0.3 γ = 0.9

Parameters μ σ μ σ μ σ

Joint angle (rad) 0.02 0.0071 0.0126 0.0043 0.0139 0.004

End-effector position (mm) 14.25 7.865 8.86 4.63 4.31 4.2506

End-effector orientation (deg) 1.32 0.7372 0.84 0.45 0.92 0.42
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the best design parameter value for the statistical control of the left arm of Baxter robot.

7.2.3.3 Statistical Controller Simulation

Figs. 7.14, 7.15, 7.16, 7.17, 7.18 and 7.19 show the time response of the joint angle and

end-effector position and error, and end-effector orientation and error with the statistical

controller of γ = 0.9. The parameter γ = 0.9 yielded better tracking error variation for the

end-effector position. Therefore, we selected γ = 0.9 as the design parameter value for our

statistical controllers.
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Figure 7.14: Joint angle tracking with statistical control γ = 0.9

7.3 Hybrid Hierarchical Statistical Control Architecture

We propose a system architecture for controlling the source and detector motion of Baxter

robot arms for scanning the target. Fig. 7.20 shows the hierarchical hybrid agent con-

trol system architecture. The system consists of two tiers. The top tier is the supervisory

controller, and the bottom tier component is called the agent. The supervisory controller
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Figure 7.15: Joint angle tracking error with statistical control γ = 0.9
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Figure 7.16: End-effector position tracking with statistical control γ = 0.9
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Figure 7.17: End-effector position tracking error with statistical control γ = 0.9
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Figure 7.18: End-effector orientation tracking with statistical control γ = 0.9
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Figure 7.19: End-effector orientation tracking error with statistical control γ = 0.9

generates commands for scanning, monitors the status of agents, and coordinates between

them. The two arms of Baxter can be considered as agents. They are equipped with ac-

tuators and sensors to complete required scanning tasks and inform the status of the tasks

to the supervisory controllers. In short, the supervisory controller can be considered as

high-level controller, whereas at the agent-level there can be low-level controller such as

PID controller, LQG controller, and statistical controller.

7.3.1 Hybrid Automaton

The proposed hybrid hierarchical system includes both the continuous and discrete dynam-

ics. The continuous dynamics work in the bottom tier, which include the joint control. In

our system, statistical controllers are used for the joint control. On the other hand, the su-

pervisory controller includes discrete dynamics. Because of the presence of both discrete

and continuous dynamics, the system can be viewed as hybrid systems.

We use the definitions of hybrid automatons given in [128]. A hybrid automaton H can
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Figure 7.20: Hierarchical hybrid agent control system architecture for a dual arm robot

assisted bimodal dynamic imaging system

be described mathematically as

H = (S,X ,Σin,Σout ,U, f , Init,D,E,G,R), where

S is the set of discrete states where the system is allowed to exist. X is the set that

represents all of the continuous variables, possible in each of the states of S. The vector

field, f , consists of time dependent functions such as differential equations that describe

the time evolution of the variables in X . T X denotes the tangent bundle of X . The initial

states are the initial values of the continuous variables. D contains the range where each

continuous variable and discrete event that are allowed to exist. P(X) denotes the set of all

subsets of X . Σin and Σout denote the set of all discrete inputs and discrete outputs. The

set of edges, E , describe what transitions are allowed to occur between states. The guard

conditions, G, describe the events that must occur for a transition to take place. Finally, the

reset map, R, is the set of conditions that cause the system to enter its initial state.

7.3.2 Supervisory Controller Model

The supervisory controller functions are as follows:

1. To generate and send commands to agents. In this case, the agents are the two robot

arms or robot manipulators.
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S Finite set of discrete states of H,

X Finite set of continuous variables,

Σin Finite set of discrete input variables,

Σout Finite set of discrete output variables,

U Set of the continuous input variables,

f : S×X → T X Continuous flow vector in discrete state,

Init ⊆ S×X Set of initial states

D : S → P(X) Domain

E ⊆ S×S Set of edges

G : E ⊆ P(X) Guard condition

R : E ×S×Σin → P(X) Reset map

2. To schedule the scanning task command to control the agents.

3. To facilitate coordination between the agents so that they can act cooperatively.

4. To ensure safety in case of unexpected situations.

Supervisory controller automaton is modeled using discrete event systems. In our case,

the supervisory controller is designed to execute its tasks sequentially. There are five dis-

crete nodes, which constitute the discrete set S = {s1,s2,s3,s4,s5}. Each nodes are defined

as follows:

• Idle Node (s1). In this node, the supervisory controller waits for the PowerON mes-

sage from the operator. If the PowerON message is generated, the system jumps from

node s1 to node s2. In the case, when the supervisory controller gets UnexAg1Status

= 1 or UnexAg2Status = 1 message from node s5 or ScanCountFinish = 1 from node

s2, it sends the PowerOFF message to the operator.

• Agent Scheduler Node (s2). In this node, the supervisory controller assigns the

scanning task to Agent 1 and Agent 2 sequentially and checks for the scanning task

status. If the scan count matches a pre-specified number, the system jumps from s2

to s1. Agent 1 sends back a scheduling success message via Ag1ScheduleFinish tag

with 1 upon successful reception. Then the supervisory controller starts calculating

task start and end time. The supervisory controller then jumps to s3 to control Agent
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1 to perform the task with a message tag Ag1Active=1. After a pre-specified time

interval, the controller jumps back from s3. The controller then jumps to s4 with

a message tag Ag2Active=1. The controller does the scheduling and time interval

calculation for s4. The scan count is incremented by 1 if Agent 2 sends back AgTask-

Finish = 1 tag. This sequence of jumping goes on until the scan is complete and s2

generates a tag ScanCountFinish = 1.

• AgentManeuver Node (s3 and s4). In these nodes, the supervisory controller sends

the control signal to permit pre-specified reference trajectory to the corresponding

agent at the calculated task start time. The the supervisory controller will standby in

s3 or s4 to wait for the task status feedback from Agent 1 or 2. After the supervisory

controller receives the feedback, or if a TimeOut event is triggered, it will jump from

s3 to s2 or from s4 to s2. The scanning task includes positioning of the robot arm

joints at the desired position and capturing images. If the scheduled scanning task

has been successfully performed by an agent, a feedback tag AgTaskFinish = 1 is

sent from the bottom tier to the top tier, and the supervisory controller jumps back to

s2.

• UnexpectedStatusCheck Node (s5). In this node, the supervisory controller mon-

itors for any unexpected situation. The unexpected situations can occur in different

scenarios such as there is collision between the arms, there exist out of reach joint

limit, or the operator is not satisfied with the scanning performance during the scan-

ning. The generated message tag is UnexAg1tatus or UnexAg2tatus. If the tag is 1,

the supervisory controller falls back to node s1.

The finite set of continuous variable for the agent system is defined as

X = {q1,q2,q3,q4,q5,q6,q7}, where qi, i = 1,2, · · · ,7 represents the joint angles of the

robot arm. The continuous dynamics include the stochastic model of the robot arm with

the state feedback statistical controller.
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The finite set of discrete events has the input and output events. It can be represented

as follows.

Σin ={PowerON,AgkTaskStatus,

ScanCountFinish,UnexAgkStatus};

Σout = {AgkTaskCMD} ;

Note that Agk denote Ag1 and Ag2. The discrete transitions in the system are:

E ={(s1,s2) ,(s2,s1) ,(s2,s3) ,(s3,s2) ,

(s2,s4) ,(s4,s2) ,(s3,s5) ,(s4,s5) ,(s5,s1)}

The guard conditions are defined as:

⎡
⎢⎢⎢⎢⎣

G1
G2
G3
G4
G5
G6
G7
G8
G9

⎤
⎥⎥⎥⎥⎦=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(s1,s2)⇒{PowerON �=∅}
(s2,s1)⇒{ScanCountFinish=1}
(s2,s3)⇒{(Ag1Active=1)∧(ScanCountFinish=0)}
(s3,s2)⇒{Ag1TaskFinish=1}
(s2,s4)⇒{(Ag2Active=1)∧(ScanCountFinish=0)}
(s4,s2)⇒{Ag2TaskFinish=1}
(s3,s5)⇒{UnexAg1Status=1}
(s4,s5)⇒{UnexAg2Status=1}
(s5,s1)⇒{(UnexAg1Status=1)∨(UnexAg2Stat=1)}

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

The state transition diagram for the supervisory controller (top tier) is given in Fig. 7.21.

7.3.3 Agent Model

The agent functions are as follows:

1. To receive reference trajectory commands from the supervisory controller.

2. To perform the joint maneuver so that the poses of the two end-effector are in line-

of-sight.

3. To send the task status feedback to the supervisory controller to notify the task

success.

• Idle node (s1). In this node, the agent is at the initial position with the initial pose.

The agent waits for the AgentTaskCMD from the supervisory controller to check if

the joint maneuver is required. After receiving AgentTaskCMD, the agent jumps to

node s2.
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Figure 7.21: State transition diagram for supervisory controller

• Joint maneuver node (s2). In this node, the agent changes its joint angles to the ref-

erence joint angles. If there are differences between the current and reference joint

angles, then the agent adjusts its joint angles by applying required torque input. At

this stage, a statistical controller is used to generate the required torque. If the dif-

ferences between the current and reference joint angles are below certain thresholds,

the agent jumps to node s3.

• Agent task status node (s3). In this node, the agent operates at the target joint angles

with specified margins. The agent checks for the completion of the task assigned by

the supervisory controller. The agent sends back a AgentkTaskFinish tag to the top

tier to indicate that the joint maneuver is successful. If any unexpected situation

occurs during the maneuver, the agent generates UnexAgkStatus tag to inform the

top tier. Here k denotes 1 or 2.

The finite set of continuous variable for the agent system is defined as X = {q1,q2,q3,q4,q5,q6,q7},

where qi, i = 1,2, · · · ,7 represents the joint angles of the robot arm. The continuous dy-

namics include the stochastic model of the robot arm with the state feedback statistical

controller.
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Figure 7.22: State transition diagram for agents

The finite set of discrete events has the input and output events. It can be represented

as follows.

Σin = {AgentkTaskCMD} ;

Σout = {AgkTaskFinish,UnexAgkStatus} ;

Note that Agentk denote Agent1 and Agent2, and Agk denote Ag1 and Ag2. Initial condi-

tions enforced on the system are:

Init = {qi = qi0} ; i = 1,2, · · · ,7

The discrete transitions in the system are:

E = {(s1,s2) ,(s2,s3) ,(s3,s1)}

The guard conditions are defined as:[
G1
G2
G3

]
=

{
(s1,s2) ⇒ {AgentkTaskCMD�=∅}
(s2,s3) ⇒ {Jointangledi f f<threshold}
(s3,s1) ⇒ {(AgkTaskFinish=1)∨(UnexAgkStatus=1)}

}
.

The state transition diagram for the agents (bottom tier) is given in Fig. 7.22.

7.3.4 Hierarchical Hybrid System Simulation

We simulated a scenario of parallel scanning with the bimodal imaging system using the

hybrid hierarchical system concept. In this scenario, Agent 1 is the right arm of Baxter
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mounted with a laser. Agent 2 is the left arm of Baxter mounted with a tactile imaging

system. In the hybrid hierarchical controller paradigm, Agent 1 should follow a reference

trajectory required for a parallel scanning, and Agent 2 should follow the trajectory of

Agent 1. Fig. 7.23 shows the proposed bimodal dynamic imaging system implemented

with Baxter.

Tactile Imaging
System

Laser

Baxter
Workstation

TIS Workstation

Phantom

Figure 7.23: Bimodal dynamic imaging system implemented with the Baxter robot

Fig. 7.24 shows the simulation diagram for the hierarchical hybrid controller for the

bimodal dynamic imaging system. In the top tier, a supervisory controller is in operation,

while in the bottom tier, two statistical controllers are in operation for each robot arm.

Fig. 7.25 shows the block diagram for hybrid hierarchical statistical controller. In

the top tier, a supervisory controller is in operation, while in the bottom tier, two feedback

statistical controllers are in operation for each robot arm. Also, two feedforward controllers

are used to follow the set-point tracking.

Fig. 7.26 shows a simplified diagram showing the positive x-, y-, and z-axes.

We built a testbed for the bimodal imaging system using Baxter with a laser and a
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tactile imaging sensor mounted in the end-effector. Then, we maneuvered the end-effector

along a linear trajectory and captured images at 15 positions. We collected the joint angles,

velocities, torques, and end-effector pose. Then, we fed these reference joint trajectories

for the simulation. This simulation was repeated 20 times with 20 different Gaussian white

noise. The simulation was implemented using Matlab, Simulink, and Stateflow toolboxes.

Figs. 7.27 shows the trajectory tracking of Agent 1 and Agent 2. The initial position of

Agent 1 was (554.80 mm, −84.80 mm, 100.40 mm), and Agent 2 had the initial position

of (603.60 mm, 197.20 mm, 74.20 mm). At first, Agent 1 became active, and during

initial transition period it reached a peak position of (827.10 mm, 8.56 mm, 296.50 mm)

within t=1s. At t=2s, it reached a steady-state value of (669.8 mm, −77.30 mm, 171.10

mm). At t=8s, Agent 2 became active, and during initial transition period it reached a

peak position of (939.90 mm, 1169.00 mm, 414.50 mm) within t=9s. At t=10s, Agent 2

reached a steady-state position of (655.30, 76.90, 155.10). When both the agents reached

steady-state positions, the system started acquiring images. At t=16s, Agent 1 switched to

a new position after being provided with the new reference position. This movement was

repeated until 112s. The final positions of Agent 1 and Agent 2 were (618.80 mm, −78.30

mm, 150.20 mm) and (631.20 mm, 73.80 mm, 153.50 mm). Fig. 7.28 shows the trajectory

tracking error of Agent 1 and Agent 2. We took a close-up look from t=17s to t=24s for

all axes, and noticed that the tracking error did not settle to zero, rather oscillated around

zero. This was because of the presence of the Gaussian white noise in the system. We

observed the largest error for both agents when they became active initially. We measured

the mean and standard deviation of the trajectory tracking error after both agents reached

the steady-state values after t=10s until t=112s. Agent 1 tracking error (mean±standard

deviation) was 1.49± 0.86 mm, and Agent 2 tracking error was 1.50± 0.86 mm.

Note that the experiment for collecting reference joint angles took 112 seconds. The

images were taken at 15 positions. The length of the line being scanned was 30 mm. There-

fore, for scanning a 30 mm × 30 mm area, it would take about 30-35 minutes. The robot

arm travelling time between two adjacent positions was kept around 8 seconds considering

the images would be captured manually. This time can be reduced if the image collection

could be made automatic.
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7.4 Discussion

This chapter presented a hybrid hierarchical statistical control architecture for the automatic

sequential task execution for a bimodal dynamic imaging system, which is intended to be

implemented on a dual-arm robot called ‘Baxter’. A full-state feedback controller was

designed to control each arm at the lower level with minimum position variation. At the

higher level, a supervisory controller was used to coordinate the sequential task. These

simulation results demonstrated that the developed hybrid hierarchical model can maintain

the linear trajectories under a high-level supervisory controller and a low level statistical

controller with about 2 mm tracking error variation. In the next chapter, we present the

dissertation conclusions and future works.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

8.1 Conclusions

In this dissertation, a bimodal dynamic imaging system and associated hybrid statistical

controller were designed and evaluated for estimating mechanical and spectral properties

of the tumor. The main focus of this dissertation was on improving breast tumor charac-

terization by taking advantage of multimodality and dynamic motion of the source and the

detector. We consider on improving mechanical and spectral properties estimation, specif-

ically the size, depth, elastic modulus, and absorption coefficients measurement of tumors.

In Chapter 1, we presented the background and literature review on imaging techniques

used in breast cancer diagnosis, followed by the discussion on dynamic positioning of

the source and detector. We discussed the statistical game control and hybrid hierarchical

statistical control approaches for dynamic positioning of the source-detector. Then, we

discussed the tactile sensing and diffuse optical imaging, which are the two modalities

utilized in the bimodal dynamic imaging system. We stated the research goals of this

dissertation, the proposed prototype overview, the contributions of the dissertation, and the

outline of the dissertation.

In Chapter 2, we presented the wave-optics analysis and numerical simulation for the

verification of the imaging principle used in building the tactile sensor. Then, a phantom

experimental validation study is carried out for the mechanical properties estimation meth-

ods for measuring size, depth, and elastic modulus of an embedded inclusion. The chapter

ends with the results from the phantom experiments. The experimental results showed size,

depth, and elastic modulus estimation using tactile imaging system method with 7.23%,

41.83%, and 96.80% errors. This estimation performance can be improved using dynamic

positioning of the source-detector setup.

In Chapter 3, we derived a spectral properties estimation method based on the diffuse

optics theory. The method is specifically devised for estimating the coefficient from the
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diffuse optics image collected by the CCD camera. The desired spectral property in this

dissertation is absorption coefficient. The phantom experiment results for validating the

spectral properties estimation method were presented. The results demonstrated the fea-

sibility of using a CCD camera as a detector for measuring absorption coefficients of two

phantoms with 68.75% and 26.37% errors.

Chapter 4, we presented the new bimodal dynamic imaging method. We validated the

method by a bimodal tissue phantom with an embedded inclusion of known mechanical

and spectral properties. The mechanical properties measured with the bimodal dynamic

imaging method was compared to the TIS measurements. This new method improved the

size, depth, and elastic modulus estimation errors by 6.43%, 21.83%, and 22.01%, com-

pared to the TIS method. We demonstrated that the bimodal dynamic imaging method can

be extended to determine chromophore concentrations using the lasers of multiple wave-

lengths.

In Chapter 5, we formulated an open-loop Stackelberg game control problem targeted to

maneuver the source and the detector in the bimodal dynamic imaging system. Under two-

player nonzero-sum game frame work, a solution is derived for the problem of minimizing

the leader cost variance, while the follower cost mean is minimized. We simulated the

open-loop Stackelberg minimal cost variance controller with a simple linear system model.

In Chapter 6, we derived a linearized model for a dual arm seven degree-of-freedom

robot Baxter. This robot will be used as test-bed for the bimodal dynamic imaging method

in conjunction of the hybrid statistical controller. We validated the linearized model with

an experimental study. The validation study showed that the tracking performance of the

linear model was as good as the Baxter robot.

Chapter 7 discussed a hybrid hierarchical statistical control approach for the bimodal

dynamic imaging. We provided numerical simulations of a hybrid statistical controlled

dual-arm robot used for bimodal dynamic imaging. The simulation studies showed about 2

mm tracking error margin for both robot arms under hybrid hierarchical statistical control

framework.
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8.2 Future Works

The works presented in this dissertation is the initial step towards developing a bimodal

dynamic imaging for improved tumor characterization with the application of hybrid hier-

archical statistical control. Here are some future works.

Our bimodal phantom is not biological, therefore, the accurate estimation of physio-

logical parameters is out of scope of this paper. In order to obtain accurate physiological

parameter measurements, the number of wavelengths should be increased, and the mea-

surement should be performed on blood phantom and in-vivo patients.

The background light and drifting of light sources are two sources of spectral properties

measurement error. We performed our bimodal dynamic imaging experiment in a relatively

dark room to minimize the light disturbance. The drifting occurred when the camera cap-

tures unnecessary light. In order to prevent that the precise positioning of the laser source

and detector is required. In the future, both the source and detector will be mounted on the

mechanical scanning platform capable of precise positioning.

The feasibility of using the hybrid hierarchical statistical control for the automatic con-

trol of the bimodal dynamic imaging system requires experimental validation. The sta-

tistical controller has to be validated for each arm of the dual-arm Baxter robot. Next, the

complete bimodal imaging process needs to be tested with the hybrid hierarchical statistical

controller.

Another attractive control scheme for the automatic control of the bimodal dynamic

imaging is open-loop Stackelberg minimal control variance control. This controller needs

to be validated using simulation and experimental studies. However, the closed-loop Stack-

elberg statistical control is more appropriate for the bimodal dynamic imaging system. Ex-

tending the theory of Stackelberg statistical control for closed-loop systems is challenging

and reserved for future works.
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[111] A. Bagchi and T. Başar, “Team decision theory for linear continuous-time systems,”

Dep. Applied Math., Twente Univ. of Technol., Enschede, The Netherlands, Tech.

Rep. Memo 274, 1979.

[112] L. Arnold, Stochastic Differential Equations: Theory and Applications. New York,

NY: John Wiley & Sons Inc., 1974.

[113] W. H. Fleming and M. Nisio, “On the existence of optimal stochastic controls,”

Journal of Mathematics and Mechanics, vol. 15, pp. 777–794, 1966.

[114] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control.
New York, NY: Springer-Verlag, 1975.

[115] P. J. Smith, “A Recursive Formulation of the Old Problem of Obtaining Moments

from Cumulants and Vice Versa,” The American Statistician, vol. 49, no. 2, pp. 217–

219, 1995.

[116] E. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration,
and Hilbert Spaces. Princeton University Press, 2009. [Online]. Available:

https://books.google.com/books?id=2Sg3Vug65AsC

[117] A. Bagchi and T. Başar, “Team decision theory for linear continuous-time systems,”

Automatic Control, IEEE Transactions on, vol. 25, no. 6, pp. 1154–1161, Dec 1980.

[118] A. Baggeroer, “A state-variable approach to the solution of fredholm integral equa-

tions,” IEEE Transactions on Information Theory, vol. 15, no. 5, pp. 557–570, Sep

1969.
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APPENDIX A

OPERATING BAXTER

A.1 Baxter Hardware

Baxter Robot

Baxter is a dual arm robot. Each of its arms has seven degrees of freedom. At every

joint, Baxter has force, position, and torque sensing capability. It has one camera on its

head-mounted display, and two cameras on its arms.

Figs. A.1 and A.3 show the front and back views of Baxter. Fig. A.2 shows the

condition rings status meaning. Fig. A.4 shows the connectivity of Baxter of hardware.

Figure A.1: Front view of Baxter

A.2 Specification of joint angles

Fig. A.5 shows the bend joints and Table A.1 their values.

Fig. A.6 shows the bend joints and Table A.2 their values.
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Figure A.2: Baxter LED indicator meaning

Figure A.3: Back view of Baxter

Table A.1: Bend joints range table

Joint Min limit (◦) Max limit Range Min limit (rad) Max limit Range

S1 −123 +60 183 −2.147 +.047 3.194

E1 −2.864 +150 153 −0.05 +2.618 2.67

W1 −90 +120 210 −1.5707 +2.094 3.6647
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Figure A.4: Baxter connectivity

Figure A.5: Baxter range of motion - bend joints (left arm).

Table A.2: Twist joints range table

Joint Min limit (◦) Max limit Range Min limit (rad) Max limit Range

S0 −97.494 +97.494 194.998 −1.7016 +1.7016 3.4033

E0 −174.987 +174.987 349.979 −3.0541 +3.0541 6.1083

W0 −175.25 +175.25 350.5 −3.059 +3.059 6.117

W2 −175.25 +175.25 350.5 −3.059 +3.059 6.117
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Figure A.6: Baxter range of motion - twist joints (left arm).

Working with Baxter

1. Make sure the following before powering up Baxter:

a. the workstation is connected to Baxter with an Ethernet cable,

b. the emergency stop button is connected to Baxter,

c. Baxter and the workstation are connected to power outlet of 120V AC.

2. Run the workstation. Wait until Ubuntu login page comes and asks for password.

The login password is ***. Ubuntu is installed in the workstation with ROS (robotic

operating system) packages. To learn how the workstation setup is done, visit

this page: http://sdk.rethinkrobotics.com/wiki/Workstation_Setup or,

watch this tutorial video: https://youtu.be/2QfP4qY_7_c
3. Press the power button of Baxter located at the back. Wait until the condition ring

in Baxter’s head is green, the attention ring blinks orange, and the display shows

“baxter Research Robot”.

4. Currently, Baxter is connected directly to the workstation by an Ethernet cable.

If the network configuration needs to be changed in future (example, Baxter can

be connected to the workstation through a router), visit this page: http://sdk.
rethinkrobotics.com/wiki/Networking. For current networking setup, com-

plete the Avahi configuration steps:

a. Disable Wi-fi and networking from the top-right of the desktop. Make sure En-

able Wi-fi and Enable Networking are unchecked.

b. Open a new terminal in the workstation by pressing Ctrl+Alt+T. The ethernet
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connection to the robot is on eth0. Check the status of eth0

cwon@baxterws: ~$ ifconfig eth0

You should not see any IP addresses under inet.

c. Use Avahi to designate an IP address to eth0 (do not close the terminal after

running avahi-autoipd):

cwon@baxterws: ~$ sudo avahi-autoipd eth0

You will be asked password for username: ****. Type the password: ****.

d. Make sure an IP address is successfully claimed.

cwon@baxterws: ~$

Found user ’avahi-autoipd’ (UID 105) and group ’avahi-autoipd’

(GID 113).

Successfully called chroot().

Successfully dropped root privileges.

Starting with address 169.254.10.30

Callout BIND, address 169.254.10.30 on interface eth0

Successfully claimed IP address 169.254.10.30

Keep this Terminal running in the background.

5. Open another terminal. Initialize by running baxter.sh script and verify SDK envi-

ronment. The commands with the outputs are as follows:

cwon@baxterws:~$ cd ~/ros_ws

cwon@baxterws:~/ros_ws$ . baxter.sh

View and validate your ROS environment:

[baxter - http://011508P0028.local:11311]

cwon@baxterws:~/ros_ws$ env | grep ROS

ROS_ROOT=/opt/ros/indigo/share/ros

ROS_PACKAGE_PATH=/home/cwon/ros_ws/src:

/opt/ros/indigo/share:/opt/ros/indigo/stacks

ROS_MASTER_URI=http://011508P0028.local:11311

ROS_HOSTNAME=csnapbaxterworkstation.local

ROSLISP_PACKAGE_DIRECTORIES=/home/cwon/ros_ws/devel/share/common-lisp

__ROS_PROMPT=1

ROS_DISTRO=indigo

ROS_ETC_DIR=/opt/ros/indigo/etc/ros

6. Verify communication to and from Baxter and our development workstation. Find

Baxter hostname and verify ROS master ping. at the start of every command to keep

it simple.



233

$ env | grep ROS_MASTER_URI

ROS_MASTER_URI=http://011508P0028.local:11311

$ ping 011508P0028.local

PING 011508P0028.local (169.254.12.81) 56(84) bytes of data.

64 bytes from 011508P0028.local (169.254.12.81):

icmp_seq=1 ttl=64 time=0.369 ms

64 bytes from 011508P0028.local (169.254.12.81):

icmp_seq=2 ttl=64 time=0.176 ms

64 bytes from 011508P0028.local (169.254.12.81):

icmp_seq=3 ttl=64 time=0.305 ms

64 bytes from 011508P0028.local (169.254.12.81):

icmp_seq=4 ttl=64 time=0.173 ms

64 bytes from 011508P0028.local (169.254.12.81):

icmp_seq=5 ttl=64 time=0.167 ms

64 bytes from 011508P0028.local (169.254.12.81):

icmp_seq=6 ttl=64 time=0.184 ms

^C

--- 011508P0028.local ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 4999ms

rtt min/avg/max/mdev = 0.167/0.229/0.369/0.078 ms

7. Verify workstation ping. Now we will SSH to Baxter and verify communication

from Baxter to the workstation. The SSH password is rethink.

[baxter - http://011508P0028.local:11311]

cwon@baxterws:~/ros_ws$ env | grep ROS_HOSTNAME

ROS_HOSTNAME=csnapbaxterworkstation.local

ssh ruser@011508P0028.local

#Password: rethink

ruser@011508P0028 ~ $ ping csnapbaxterworkstation.local

PING csnapbaxterworkstation.local (169.254.10.130) 56(84)

bytes of data.

64 bytes from csnapbaxterworkstation.local (169.254.10.130):

icmp_seq=1 ttl=64 time=0.278 ms

64 bytes from csnapbaxterworkstation.local (169.254.10.130):

icmp_seq=2 ttl=64 time=0.213 ms

64 bytes from csnapbaxterworkstation.local (169.254.10.130):

icmp_seq=3 ttl=64 time=0.282 ms

64 bytes from csnapbaxterworkstation.local (169.254.10.130):

icmp_seq=4 ttl=64 time=0.284 ms

64 bytes from csnapbaxterworkstation.local (169.254.10.130):

icmp_seq=5 ttl=64 time=0.240 ms

64 bytes from csnapbaxterworkstation.local (169.254.10.130):

icmp_seq=6 ttl=64 time=0.248 ms
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^C

--- csnapbaxterworkstation.local ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 4999ms

rtt min/avg/max/mdev = 0.213/0.257/0.284/0.030 ms

ruser@011508P0028 ~ $ exit

Connection to 011508p0028.local closed.

8. Baxter must be enabled in order to actively command any of the motors. Enable the

robot:

$ rosrun baxter_tools enable_robot.py -e

[INFO] [WallTime: 1459114148.773143] Robot Enabled

Remember the command to disable the robot (do not execute)

$ rosrun baxter_tools enable_robot.py -d

Baxter will now be enabled. The joints will be powered, and Baxter will hold his

current joint positions with in a position control loop.

9. Assuming the Baxter arms are tucked, we shall execute the command for untucking

the arms:

$ rosrun baxter_tools tuck_arms.py -u

[INFO] [WallTime: 1459114811.052979] Untucking arms

[INFO] [WallTime: 1459114811.202719] Moving head to neutral position

[INFO] [WallTime: 1459114811.202930] Untucking: One or more arms

Tucked; Disabling Collision Avoidance and untucking.

[INFO] [WallTime: 1459114819.040865] Finished tuck

10. Run an example program provided by Rethink Robotics.

$ rosrun baxter_examples joint_velocity_wobbler.py

Initializing node...

Getting robot state...

Enabling robot...

[INFO] [WallTime: 1459114651.749367] Robot Enabled

Moving to neutral pose...

Wobbling. Press Ctrl-C to stop...

This example will move the arms to a neutral position, enter into velocity control

mode, moving each joint through a random sinusoidal motion.

11. At the end of your experiment, tuck the arms of Baxter using this command:
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[baxter - http://011508P0028.local:11311]

cwon@baxterws:~/ros_ws$ rosrun baxter_tools tuck_arms.py -t

12. Turn off the power of Baxter.

A.3 Parallel Scan Procedure

1. Power up Baxter and complete the steps 1-4 in “working with Baxter” section. This

will establish the communication between the Baxter and the workstation.

2. Baxter must be enabled from another terminal in order to actively command any of

the motors. Enable the robot:

$ rosrun baxter_tools enable_robot.py -e

[INFO] [WallTime: 1459114148.773143] Robot Enabled

3. For parallel scan procedure, two python scripts are necessary. par2d_v2.py and

tf.py. Execute “python par2d_v2.py” in the terminal. The file “tf.py” should be in

the same directory with “python par2d_v2.py”. The “tf.py” is used for converting

quaternion parameters to euler angles. The “tf.py” is written by people from ROS

community. The python script “par2d_v2.py” is written by CSNAP researchers.

4. Following is the code inside par2d_v2.py. This script makes the arms do 15 line

scan. In each scan line, the arm pauses at 15 positions for 6 seconds for captur-

ing images. So this script is ready for taking 15x15=225 images from 225 points.

In the script, inside parallel_move function, the arms are given initial positions

(left_point_x, left_point_y, left_point_z, right_point_x, right_point_y,

right_point_z), interval between each position (x0linc,y0linc,z0linc,x0rinc,y0rinc,

z0rinc), and the number of line scan (zlooprange), the number of scan in each line

scan (xloopscan).

#par2d_v2.py

#!/usr/bin/env python

from __future__ import division, print_function

import math

import datetime

import tf

import numpy

import time

import doctest

import random # used in doctests

import argparse

import sys

import rospy

import baxter_interface

from geometry_msgs.msg import (

PoseStamped,
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Pose,

Point,

Quaternion,

)

from std_msgs.msg import Header

from baxter_core_msgs.srv import (

SolvePositionIK,

SolvePositionIKRequest,

)

__version__ = ’2015.07.18’

__docformat__ = ’restructuredtext en’

__all__ = ()

#from printstate2file import print_states

# create an instance of baxter_interface’s Limb class

def get_joint_angles(limb,Px,Py,Pz,Qx,Qy,Qz,Qw):

rospy.init_node("rsdk_ik_service_client")

ns = "ExternalTools/"+limb+"/PositionKinematicsNode/IKService"

iksvc = rospy.ServiceProxy(ns, SolvePositionIK)

ikreq = SolvePositionIKRequest()

hdr = Header(stamp=rospy.Time.now(), frame_id=’base’)

poses = {

’left’: PoseStamped(

header=hdr,

pose=Pose(

position=Point(

x = Px, #original val: 0.657579481614,

y = Py, #original val: 0.851981417433,

z = Pz, #original val: 0.0388352386502,

),

orientation=Quaternion(

x = Qx, #original val: -0.366894936773,

y = Qy, #original val: 0.885980397775,

z = Qz, #original val: 0.108155782462,

w = Qw, #original val: 0.262162481772,

),

),

),

’right’: PoseStamped(

header=hdr,

pose=Pose(

position=Point(

x=Px, #original val: 0.656982770038,

y=Py, #original val: -0.852598021641,

z=Pz, #original val: 0.0388609422173,
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),

orientation=Quaternion(

x=Qx, #original val: 0.367048116303,

y=Qy, #original val: 0.885911751787,

z=Qz, #original val: -0.108908281936,

w=Qw, #original val: 0.261868353356,

),

),

),

}

#print (poses)

ikreq.pose_stamp.append(poses[limb])

try:

rospy.wait_for_service(ns, 5.0)

resp = iksvc(ikreq)

except (rospy.ServiceException, rospy.ROSException), e:

rospy.logerr("Service call failed: %s" % (e,))

return 1

if (resp.isValid[0]):

print("SUCCESS - Valid Joint Solution Found:")

# Format solution into Limb API-compatible dictionary

limb_joints = dict(zip(resp.joints[0].name, \

resp.joints[0].position))

#print limb_joints

#if limb == ’left’:

# limb_left = baxter_interface.Limb(’left’)

# limb_left.move_to_joint_positions(limb_joints)

#if limb == ’right’:

# limb_right = baxter_interface.Limb(’right’)

# limb_right.move_to_joint_positions(limb_joints)

return (limb_joints)

else:

print("INVALID POSE - No Valid Joint Solution Found.")

return 0

def parallel_move():

# initialize laser (RIGHT) arm position at (xr0, yr0, zr0)

# initialize TIS (LEFT) arm position at (xl0, yl0, zl0)

# initial position adjustment parameters

z0rinc = 0.000

z0linc = 0.01
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x0rinc = -0.014

x0linc = -0.0

# specify step interval in meter

zrinc = 0.002

zlinc = 0.002

xrinc = 0.002

xlinc = 0.002

# for laser 800nm

right_point_x=0.657

# for laser 600nm

#right_point_x=0.657 + x0rinc

right_point_y=-0.170

right_point_z=0.038 + z0rinc

left_point_x=0.657

left_point_y=0.0685

left_point_z=0.038 + z0linc

# initialize right and left arm orientation

right_yaw=-0.5*math.pi

right_pitch=0

right_roll=0

left_yaw=0.5*math.pi

left_pitch=0

left_roll=0

change_angle=0

initial_xr=right_point_x

initial_xl=left_point_x

# increment in z-direction (away from the robot towards the viewer)

zlooprange = 15

xlooprange = 15

for inter_z in range(zlooprange):

right_point_x=initial_xr

left_point_x=initial_xl
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right_point_z=right_point_z-zrinc

left_point_z=left_point_z-zlinc

print ("z level: "+str(inter_z))

for inter_x in range(xlooprange):

right_point_x=right_point_x-xrinc

left_point_x=left_point_x-xlinc

#left_pitch=left_pitch+0.1

right_q=tf.quaternion_from_euler(right_yaw,right_pitch,\

right_roll,’sxyz’)

left_q=tf.quaternion_from_euler(left_yaw,left_pitch,\

left_roll,’sxyz’)

#print (’the rotation xyz is ’)

#print(left_q)

right_x_rotation=right_q[0]

right_y_rotation=right_q[1]

right_z_rotation=right_q[2]

right_w_rotation=right_q[3]

left_x_rotation=left_q[0]

left_y_rotation=left_q[1]

left_z_rotation=left_q[2]

left_w_rotation=left_q[3]

# use inverse kinematics solver to obtain joint angles

# given end-effector pose (quaternion)

joint_angler_input=get_joint_angles(’right’,\

right_point_x,right_point_y,right_point_z,\

right_x_rotation,right_y_rotation,\

right_z_rotation,right_w_rotation)

limb_right = baxter_interface.Limb(’right’)

limb_right.move_to_joint_positions(joint_angler_input)

print ("right_done: "+str(inter_x))

joint_anglel_input=get_joint_angles(’left’,\

left_point_x,left_point_y,left_point_z,left_x_rotation,\

left_y_rotation,left_z_rotation,left_w_rotation)
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limb_left = baxter_interface.Limb(’left’)

limb_left.move_to_joint_positions(joint_anglel_input)

print ("left_done: "+str(inter_x))

# write joint parameter measurement into a file

f=open(’parallel_2d_test12.txt’,’a+’)

angles_right = limb_right.joint_angles()

velocities_right = limb_right.joint_velocities()

efforts_right = limb_right.joint_efforts()

endpointpose_right = limb_right.endpoint_pose()

angles_left = limb_left.joint_angles()

velocities_left = limb_left.joint_velocities()

efforts_left = limb_left.joint_efforts()

endpointpose_left = limb_left.endpoint_pose()

timestamp = str(datetime.datetime.now())

inputangler = str(joint_angler_input.values())

angler = str(angles_right.values())

velocityr = str(velocities_right.values())

torquer = str(efforts_right.values())

endposer = str(endpointpose_right.values())

inputanglel = str(joint_anglel_input.values())

anglel = str(angles_left.values())

velocityl = str(velocities_left.values())

torquel = str(efforts_left.values())

endposel = str(endpointpose_left.values())

f.write(timestamp +’ ’)

f.write(inputangler + ’ ’)

f.write(angler + ’ ’)

f.write(velocityr + ’ ’)

f.write(torquer + ’ ’)

f.write(endposer + ’ ’)

f.write(inputanglel + ’ ’)

f.write(anglel + ’ ’)

f.write(velocityl + ’ ’)

f.write(torquel + ’ ’)

f.write(endposel + ’\n’)
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pause_time=6

print ("All_done: "+str(inter_x)+’ pause for ’\

+str(pause_time))

time.sleep(pause_time)

return 0

if __name__ == "__main__":

parallel_move()

5. After finishing the scan, disable the robot, and shut the power down.

A.4 Angular Scan Procedure

1. Enable the robot as done in parallel scan procedure. Following is the ang2d_v1.py
script for the moving the robot arms in an angular fashion. The increment of angle

is 1 degree. The laser and the tactile imaging sensor should be in line of sight while

scanning the target.

#ang2d_v1.py
#!/usr/bin/env python
from __future__ import division, print_function

import math
import datetime
import tf
import numpy
import time
import doctest
import random # used in doctests
import argparse
import sys
import rospy
import baxter_interface
from geometry_msgs.msg import (

PoseStamped,
Pose,
Point,
Quaternion,

)
from std_msgs.msg import Header
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from baxter_core_msgs.srv import (
SolvePositionIK,
SolvePositionIKRequest,

)
__version__ = ’2015.07.18’
__docformat__ = ’restructuredtext en’
__all__ = ()
’’’
limbs = (’left’, ’right’)
arms = {

’left’: baxter_interface.Limb(’left’),
’right’: baxter_interface.Limb(’right’),
}

’’’
#from printstate2file import print_states

# create an instance of baxter_interface’s Limb class

def get_joint_angles(limb,Px,Py,Pz,Qx,Qy,Qz,Qw):

rospy.init_node("rsdk_ik_service_client")
ns = "ExternalTools/" + limb + \
"/PositionKinematicsNode/IKService"
iksvc = rospy.ServiceProxy(ns, SolvePositionIK)
ikreq = SolvePositionIKRequest()
hdr = Header(stamp=rospy.Time.now(), frame_id=’base’)
poses = {
’left’: PoseStamped(

header=hdr,
pose=Pose(

position=Point(
x = Px, #original val: 0.657579481614,
y = Py, #original val: 0.851981417433,
z = Pz, #original val: 0.0388352386502,

),
orientation=Quaternion(

x = Qx, #original val: -0.366894936773,
y = Qy, #original val: 0.885980397775,
z = Qz, #original val: 0.108155782462,
w = Qw, #original val: 0.262162481772,

),
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),
),
’right’: PoseStamped(

header=hdr,
pose=Pose(

position=Point(
x=Px, #original val: 0.656982770038,
y=Py, #original val: -0.852598021641,
z=Pz, #original val: 0.0388609422173,

),
orientation=Quaternion(

x=Qx, #original val: 0.367048116303,
y=Qy, #original val: 0.885911751787,
z=Qz, #original val: -0.108908281936,
w=Qw, #original val: 0.261868353356,

),
),

),
}

#print (poses)
ikreq.pose_stamp.append(poses[limb])

try:
rospy.wait_for_service(ns, 5.0)
resp = iksvc(ikreq)

except (rospy.ServiceException, rospy.ROSException), e:
rospy.logerr("Service call failed: %s" % (e,))
return 1

if (resp.isValid[0]):
print("SUCCESS - Valid Joint Solution Found:")
# Format solution into Limb API-compatible dictionary
limb_joints = dict(zip(resp.joints[0].name, \
resp.joints[0].position))
#print limb_joints
#if limb == ’left’:
# limb_left = baxter_interface.Limb(’left’)
# limb_left.move_to_joint_positions(limb_joints)
#if limb == ’right’:
# limb_right = baxter_interface.Limb(’right’)
# limb_right.move_to_joint_positions(limb_joints)
return (limb_joints)
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else:
print("INVALID POSE - No Valid Joint Solution Found.")

return 0

def angular_move():

# another way for initial angle
left_yaw=0.5*math.pi
left_pitch=0
left_roll=0
right_yaw=-0.5*math.pi
right_pitch=0
right_roll=0
change_angle=0

#
intial_left_yaw=left_yaw
intial_right_yaw=right_yaw
#phantom width

distance_a=0.27
#distance from cam to edge of phantom
distance_b=0.005
#distance from laser to edge of phantom
distance_c=0.081

#position of left gripper
distance_d=0.090
#didnt use it
distance_e=0.040
# length of TIS camera
distance_h=0.1
# didnt use it
distance_g=0.094
#length of laser
distance_l=0.150
#distance from robot origin to nearest edge of phantom.
distance_i=0.7
R2=0.5*distance_l+distance_c+distance_a+distance_b \
+0.5*distance_h
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#initial position5
left_point_x=distance_i+0.5*distance_d
left_point_y= distance_b+0.5*distance_a+0.5*distance_h
left_point_z=0.01
right_point_x=left_point_x
right_point_z=left_point_z
right_point_y=-(distance_c+0.5*distance_a+0.5*distance_l)

for inter in range(10):

left_q=tf.quaternion_from_euler(left_yaw,left_pitch,\
left_roll,’sxyz’)
right_q=tf.quaternion_from_euler(right_yaw,right_pitch,\
right_roll,’sxyz’)

left_x_rotation=left_q[0]
left_y_rotation=left_q[1]
left_z_rotation=left_q[2]
left_w_rotation=left_q[3]
joint_anglel_input=get_joint_angles(’left’,left_point_x,\
left_point_y,left_point_z,left_x_rotation,\
left_y_rotation,left_z_rotation,left_w_rotation)
limb_left = baxter_interface.Limb(’left’)
limb_left.move_to_joint_positions(joint_anglel_input)
print ("left_done: "+str(inter))

right_x_rotation=right_q[0]
right_y_rotation=right_q[1]
right_z_rotation=right_q[2]
right_w_rotation=right_q[3]
joint_angler_input=get_joint_angles(’right’,right_point_x,\
right_point_y,right_point_z,right_x_rotation, \
right_y_rotation,right_z_rotation,right_w_rotation)
limb_right = baxter_interface.Limb(’right’)
limb_right.move_to_joint_positions(joint_angler_input)
print ("right_done: "+str(inter))

pause_time=5
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print("All_done:"+str(inter)+’ pause for ’+str(pause_time))
time.sleep(pause_time)

angleinc=1
change_angle+=math.radians(angleinc)
left_yaw=change_angle+intial_left_yaw
right_yaw=change_angle+intial_right_yaw

left_point_x=left_point_x-R2*math.sin(change_angle)
left_point_y=R2*math.cos(change_angle)\
-(distance_c+0.5*distance_a+0.5*distance_l)

return 0

if __name__ == "__main__":

angular_move()

2. After finishing the scan, disable the robot, and shut the power down.

A.5 Baxter support

Join the google group of Baxter Research Robot Community https://groups.google.
com/a/rethinkrobotics.com/forum/#!forum/brr-users In order to join you can send

request to imcmahon@rethinkrobotics.com introducing yourself. You can discuss your

issue in this group.

A.6 Useful Suggestions from Baxter Community

Baxter wiki: Baxterwiki:sdk.rethinkrobotics.com/wiki/Getting_Started.

You should understand how to write a ROS publisher and subscriber, what those are,

and how they relate to the robot. You should also learn what a topic is and how to figure

out which ROS topics are being published. http://wiki.ros.org/ROS/Tutorials
If you do not know much about Git, you may also want to learn the basics (not neces-

sary, but helpful for understanding what’s going on): https://try.github.io/levels/
1/challenges/1

There is also documentation for Gazebo simulator available on the Gazebo website,

though you probably do not need this information. http://gazebosim.org/tutorials
Some (non-robotics) Python tutorials that may be helpful in getting you started (Baxter

currently use Python version 2.7): http://hetland.org/writing/instant-hacking.
html http://www.alan-g.me.uk/tutor/index.htm http://thepythonguru.com/
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The Baxter SDK uses ROS and Python for communication with the robot. While know-

ing ROS is not strictly necessary for using Baxter, having a basic understanding of the Pub-

lisher/Subscriber message passing framework it uses is certainly helpful. Check out this

high level explanation from robohub:

http://robohub.org/ros-101-intro-to-the-robot-operating-system/
and creating a simple ROS-python Publisher and Subscriber: click here.

For a more advanced understanding of ROS and python (rospy) see these explanations:

http://wiki.ros.org/rospy/Overview
Take a read through the Baxter SDK Examples section of the wiki: http://sdk.

rethinkrobotics.com/wiki/Examples You can then click through each of the exam-

ples there, and then proceed to the Code Walkthroughs section in each. For instance, here’s

the Wobbler Code Walkthrough: http://sdk.rethinkrobotics.com/wiki/Wobbler_
-_Code_Walkthrough.

There you will find what is happening inside the code to cause the arms to move. As
for a direct answer to your question about which files to change to modify the behavior of
Baxter, see this directory structure of the baxter_ examples git repository:
https://github.com/RethinkRobotics/baxter_examples/blob/master/README.rst

The file you will need to modify to change the Velocity Wobbler example is:

$ gedit ~/ros_ws/src/baxter_examples/scripts/joint_velocity_wobbler.py



248

APPENDIX B

BIMODAL OPTO-MECHANICAL PHANTOM PREPARATION
PROCEDURE

This chapter describes the procedure for preparing a bimodal opto-mechanical phantom.

B.1 Materials

Table B.1 lists the tools required for the phantom preparation.

Table B.1: List of required tools

Item Operating range Quantity

Precise scale 0.0001 g 1

Bath sonicator with a clamp n/a 1

Vacuum desiccator 65 liters in volume 1

Heat plate 50-100◦C 1

Phantom mold (Pyrex glass storage container with a lid) 11 cup 3

Sample mold (plastic box) 10×10× 14 cm 3

Measurement containers n/a 6

Vial or plastic container with cap (sonication) 500 ml 3

Glass beaker 500 ml 2

Glass beaker 40 ml 1

Glass mixing rod n/a 1

Plastic bowl 5 L 1

Spatula or plastic spoon n/a 2

Paper towels n/a 1

Isopropyl Alcohol (for cleanup) 200 ml 1

The phantom mold is a pyrex container with an 11-cup rectangle unit with plastic cover. The

dimension is 26.5×21.5×16.5 cm3.

B.2 Target Mechanical and Optical Properties

Table B.2 lists the target mechanical and optical properties of the phantom. Polydimethylsiloxane

(PDMS) was used for phantom preparation. PDMS is prepared from component materials RTV

6136-D1. For the target elastic modulus values of 23 kPa and 355 kPa, the base (agent A) and

curing agents (agent B) were mixed in the ratio of 1:1.3 and 1:10.
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Table B.2: Target mechanical and optical properties of the phantom

Phantom Dimension ld h E μa μ ′
s

region (mm3) (mm) (mm) (kPa) (cm-1) (cm-1)

Tissue 90×90×17 - - 23.00 0.05 8.0

Tumor 10×10×10 11.90 6.00 355.00 0.20 8.0

Optical properties were varied by adding scattering and absorbing components to PDMS mix-

ture (to curing agent B). Table B.3 lists the amount of components for the required optical properties

of the phantom.

Table B.3: Amount of the components for the required optical properties of the phantom

μa, cm-1 μ ′
s, cm-1 Total volume, ml Carbon black, mg (approximate) TiO2, g

0.05 8 2400 0.034 5.585

0.20 8 2500 0.140 5.818

B.3 Instructions for Tumor Phantom Preparation Procedure

1. Mark the Pyrex mold with a horizontal line 6 cm from the bottom (take into consideration

the thickness of the glass).

2. Mark a plastic container (10×10×14 cm3) with a horizontal line 2 cm from the bottom.

3. Mark a tumor mold (50 ml beaker) with 1cm horizontal line form the bottom.

4. In a 500 ml vial, put 300 ml of RTV6136-D1 curing agent B.

5. Measure 0.140 g of carbon black using a precise weight.

6. Measure 5.818 g of TiO2 using a precise weight.

7. Add measured quantities of carbon black and TiO2 to the vial with RTV6136-D1 curing

agent B

8. Mix thoroughly for 5 min.

9. Pour mixture to the plastic vial (500 ml). Do not close the cap very tightly.

10. Ice bath sonicate the vial with mixture for 1 hour. For the ice bath, put ice cubes in the

sonicator because RTV6136-D1 has flash point at 177 ◦C (351 ◦F). Sonication will break

lumped together particles. Mix the mixture several times during sonication.

11. Add sonicated mixture from the vial to 5 L bowl.

12. In a 5 l bowl measure ((2500ml/11*10) - 300 ml) = 1972.7ml of RTV6136-D1 agent B

13. Mix thoroughly for 5 min. Do not do it fast to prevent extra bubbles.

14. Sequentially add (2500ml/11*1) = 227.3 ml of RTV6136-D1 base agent A.

15. Mix thoroughly the mixture in the beaker (200-300 strokes). Do not mix it fast to prevent

extra bubbles.

16. Pour into a phantom mold up to a mark of 6 cm.
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17. Pour into a sample mold up to a mark of 2 cm.

18. Pour into a tumor mold up to 1 cm mark.

19. Place molds into a vacuum desiccator to pump out the bubbles. Use medium vacuum pres-

sure until no bubbles formed.

20. Place a small tumor mold (glass) on a heat plate (setting 2 (80 ◦C) for 370 Hotplate/Stirrer

from VWR Scientific Products) for 30 min. Remove it.

21. Place the glass mold on a heat plate (setting 2 (80 ◦C) for 370 Hotplate/Stirrer from VWR

Scientific Products) for 1 hr. Remove it.

22. Meanwhile clean used bowl and beakers with paper towels and alcohol spray.

23. PDMS will be completely ready in 1 day.

B.4 Instructions for Tissue with Tumor Phantom Preparation Procedure

1. Mark a plastic container (10×10×14 cm3) with a horizontal line 2cm from the bottom.

2. Mark the Pyrex mold with horizontal lines 2.5 and 6 cm from the bottom (take into consid-

eration the thickness of the glass).

3. In a 500 ml vial, put 300 ml of RTV6136-D1 curing agent B.

4. Measure 0.034 g of carbon black using a precise weight.

5. Measure 5.585 g of TiO2 using a precise weight.

6. Add measured quantities of carbon black and TiO2 to the vial with RTV6136-D1 curing

agent B.

7. Mix thoroughly for 5 min.

8. Pour mixture to the plastic vial (500 ml). Do not close the cap very tightly.

9. Ice bath sonicate the vial with mixture for 1 hour. For the ice bath, put ice cubes in the

sonicator because RTV6136-D1 has flash point at 177 ◦C (351 ◦F). Sonication will break

lumped together particles. Mix the mixture several times during sonication. Bottom layer

(42% of 2250ml = 945ml)

10. In a 5 l bowl measure (300*.42) = 126 ml from sonicated vial.

11. ((945*1.3/2.3)-126 = 534.13-126) = 408.13 ml of RTV6136-D1 agent B.

12. Add sonicated mixture from the vial.

13. Sequentially add 410.87 ml of RTV6136-D1 base agent A.

14. Mix thoroughly the mixture in the beaker (approximately 200 strokes). Do not mix it fast to

prevent extra bubbles.

15. Pour into a phantom mold up to 2.5 cm mark.

16. Place molds into a vacuum desiccator to pump out the bubbles. Use medium vacuum pres-

sure until no bubbles formed.

17. Place the glass mold on a heat plate (setting 2 (80◦C) for 370 Hotplate/Stirrer from VWR

Scientific Products) for 30 min.

18. Meanwhile clean used bowl and beakers with paper towels and alcohol spray.

19. When bottom layer is semi-cured, place a 1cm3 tumor. Then, the top layer (rest of 2400 ml

= 1455 ml) is prepared.

20. In a 5 l bowl measure (300*.58) = 174 ml from sonicated vial.

21. ((1455*1.3/2.3)-174 = 822.4-174) = 648.4 ml of RTV6136-D1 agent B.

22. Sequentially add 632.61 ml of RTV6136-D1 base agent A.

23. Mix thoroughly the mixture in the beaker (approximately 200 strokes). Do not mix it fast to

prevent extra bubbles.

24. Pour into the phantom mold up to a mark of 6 cm.
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25. Place molds into a vacuum desiccator to pump out the bubbles. Use medium vacuum pres-

sure until no bubbles formed.

26. Place the glass mold on a heat plate (setting 2 (80◦C) for 370 Hotplate/Stirrer from VWR

Scientific Products) for 45 min.

27. Meanwhile clean used bowl and beakers with paper towels and alcohol spray.

28. PDMS will be completely ready in 1 day.

After preparing the phantom, we measured the elastic moduli using Instron and the absorption

and reduced scattering coefficients using diffuse optical spectroscopy instrument. Table B.4 lists the

measured mechanical and optical properties of the phantom.

Table B.4: Measured mechanical and optical properties of the phantom

Phantom Dimension ld h E μa μ ′
s

region (mm3) (mm) (mm) (kPa) (cm-1) (cm-1)

Tissue 90×90×17 - - 45.00 0.082 6.8

Tumor 10×10×10 11.90 6.00 355.00 0.30 6.8


