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With the aim of ultimately contributing to humanitarian response to disasters and violent events,

detecting anomalies in daily human life is a crucial requirement for developing secured smart-home

and smart-communities in the context of smart cities. In early security systems, it was necessary

for a team of security experts to analyze a vast amount of surveillance data from a network of

cameras, for instance to pick out patterns of human behavior identified as potential harmful threats.

Now, however, in the big data era, online excavation and interpretation of streamed zettabyte data

requires two automated technologies: (1) intelligent models - to extract suspicious patterns and

discover latent anomalies; and, (2) agile systems - to take real-time action based on decision-

making processes. As such, the two primary contributions of this dissertation are: (1) developing

accurate intelligent models that perform much like human precision, and (2) proposing sub-systems

of smart city infrastructure that intimately incorporate these intelligent models.

For this dissertation, pattern recognition models with applications in real-time video analysis

were developed based on four computer vision tasks: (1) identity recognition, (2) object detection,

(3) gesture recognition, and (4) action recognition. Applications of these models include, but

are not limited to, recognition of: suspicious identities, active threats (life-threatening events i.e.

bomb threats, civil unrest, criminal activity, earthquakes, evacuations, fires, hazardous materials),

and suspicious packages. To perform these tasks, the intent is to have the models emulate the

processes that take place within a human brain, i.e. with a close resemblance to human neuro

processing, albeit in high-powered computational machines. Deep learning, the state-of-the-art

concept in artificial intelligence, was the developmental basis for the proposed cognitive models.
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In order to run efficiently, these computationally intensive models rely on the use of and co-

ordination between high-throughput, high-performance, and many-task (parallel-task) computing-

enabled machines that have a high level of computing performance compared to general-purpose

computers. This variety of computational resources are served at scale in a cloud system, which

serves as a central location with the core building blocks needed for compute, storage and network-

ing. Nevertheless, anomaly detection and then taking real-time actions demands a faster processing

speed than what is possible when communicating with cloud networks. It requires the use of phys-

ical infrastructure that is closer to the edge, near the source of the data (end-device); otherwise,

when the data is centrally processed and stored, there is too much bandwidth required. This edge-

computing approach helps reduce latency for critical applications, lower dependence on the cloud,

and better manage the massive deluge of data being generated. In addition, security and privacy

can also be improved with edge computing by keeping sensitive data within the end-device. In this

dissertation, these distributed and decentralized deep learning systems aimed at enabling smart

city applications –spread throughout the end-device, edge, and cloud– are designed following the

requirements of smart city infrastructure.
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Chapter 1: INTRODUCTION

The ability to efficiently and effectively perform anomaly detection (e.g. from video feeds from

a network of cameras, or social media platforms such as Facebook and Instagram) is increasingly

important, as made evident through recent real-world events (e.g. terrorist attacks on places of

mass gatherings in different countries). However, real-time anomaly detection utilizing data from

a network of cameras, such as those deployed in a smart-home or smart-communities – in the

context of smart cities – as well as from other sources, such as social media platforms, remains

a challenging task. In early security systems, it was necessary for a team of security experts to

analyze a vast amount of surveillance data – from a network of cameras. Now, however, in the big

data era, online excavation and interpretation of streamed zettabyte data requires two automated

technologies: (1) intelligent models - to extract suspicious patterns and discover latent anomalies;

and, (2) agile systems - to take real-time action based on decision-making processes. To perform

these tasks, the ideal paradigm-shifting development would be to emulate human vision and human

perception mechanisms through artificial intelligent (AI) machines.

Human vision perception is one of the most remarkable processes that has ever existed. From

sparse, noisy, hopelessly ambiguous local scene measurements our brain manages to create a co-

herent global visual experience. But, how can this task, while seemingly effortless for humans,

remain so excruciatingly difficult for a computer? AI is the science of training computers to

perform tasks that typically require human intelligence to complete. At its core is the ability for

the machine to learn how to apply logic and reason to gain an understanding from very complex

data. Simply put, the machine learns from data it receives by identifying patterns and relationships

within the data itself.
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Machine learning focuses on the construction and study of systems that can

learn from data to improve a performance function, such as optimizing the

expected reward or minimizing loss functions. The goal is to develop deep

insights from data assets faster, extract knowledge from data with greater

precision, improve the bottom line and reduce risk.

— Thompson

One of the main foundational building blocks of AI is machine learning (ML) which gives com-

puters the ability to learn and act without being explicitly programmed. ML explores the construc-

tion of algorithms that make data-driven predictions and decisions through building a model from

sample inputs. These models evolve from pattern recognition and computational learning theory.

ML has been widely employed in a range of computing tasks where modeling and programming

explicit algorithms with reliable, repeatable performance is difficult or infeasible; examples of this

include email filtering, optical character recognition (OCR), robot control, and computer vision.

The research performed for this dissertation focused on visual perception, which is the dom-

inant sense in humans and has been used from the first days of building AI machines. Human

perceptual modality of objects and the totality of a visual scene is accomplished by the coupled

mechanisms in the eyes and brain. Computer vision (CV) is an interdisciplinary science which

aims to give a similar, if not better, capability to programmable machines. It tackles the hard prob-

lems of analysis and understanding of useful information from a single image or a sequence of

images. It involves the development of a theoretical and algorithmic basis for achieving automatic

visual understanding. For this dissertation, ML algorithms were developed to enable machine per-

ception with automated anomaly detection in the context of CV. The applications of such models

are numerous and include: augmented reality, autonomous vehicles, biometrics, character recogni-

tion, forensics, facial recognition, gesture analysis, robotics, security and surveillance, and trans-

port. For example, research topics in CV which can enhance and support these visual perception

and decision-making processes are:

2



• Classification and Regression for Detection and Tracking of Human Faces in Different Poses

• Object Recognition Through Generative Model-based Approaches

• Cognitive Loop Models for Robust Environment Perception

• Automated Tasks Pipelines for Combining Generative and Discriminative Recognition

Part of the answer to the questions raised in regard to visual perception, such as "while it is

seemingly effortless for humans, why does it remain so excruciatingly difficult for a computer,"

is that humans rely on years of prior visual experience to make sense of the world, while com-

puters have to start tabula rasa. Clearly, research is needed to make progress on this severely

unconstrained problem. Viewing the CV problem from this angle makes ML a potential method

with a high probability for success, since the performance of ML methods is heavily dependent

on the choice of data representation (or features) on which they are applied. The rapidly develop-

ing field of representation learning is concerned with questions surrounding how human can best

learn meaningful and useful representations of data. For the purposes of this research, a broad

view of the field is considered and includes topics such as DL and feature learning, metric learn-

ing, compositional modeling, structured prediction, reinforcement learning, and issues regarding

large-scale learning and non-convex optimization. The range of domains to which these techniques

apply is also very broad, from vision to speech recognition, text understanding, music, and more.

The primary concern is the ability to gather enough data.

Today’s ubiquitous technologies collect data in numerous applications; for instance, social

media, the internet, surveillance systems, and other online communications all gather data from

across the world. Efficient and accurate management and interpretation of this massive amount

of information is a grand challenging in this new era of big data. Three major specifications for

defining big data, including volume, velocity and variety, force researchers to seek out innovative

approaches to collect, transfer, store and process big data. Based on trends, it is anticipated that

the volume of big data will reach the Exabyte level by 2020. The variety of data collected and

data sources are getting more complex from across the science, business and government sectors.
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Finally, the velocity of collection has rapidly increased and the previous need for batch processing

is on its way toward switching to real-time processing in the competitive marketing environment.

There are three general steps for handling big data: implementation, management and processing.

Interpretation of each of these steps can be different for different applications to reach a desired

level of system efficiency. Researchers are looking for an approach that removes the gap between

using big data for different applications and builds a bridge between implementation, management

and processing.

This dissertation is also focused on managing, processing, and interpreting video data at scale

– the next frontier for big data – with the aim of developing a data-driven perception for anomaly

detection systems. "Perception" refers to the process of becoming aware of the elements of the

environment through physical sensation, which can include sensory input from a network of cam-

eras. In order to, from an engineering perspective, contribute to humanitarian response to disasters

and violent events as well as detecting anomalies in daily human life, this dissertation seeks to

develop systems of machines that can perform automatic tasks based on capabilities found in the

human visual system. A machine can ingest massive amounts of information, extract key features,

determine a method of analysis, write the code to execute the analysis and produce intelligent out-

put, all through an automated process. Once operational, this newly developed automated process

would require minimal intervention (though substantial in influence) from its human counterparts.

In this regard, the proposed pattern recognition models were developed for real-time video

analysis applications based on four computer vision tasks: (1) identity recognition, (2) object

detection, (3) gesture recognition, and (4) action recognition. Applications of the proposed models

include, but are not limited to recognition of: suspicious identity, active threats (life-threatening

events i.e. bomb threats, civil unrest, criminal activity, earthquakes, evacuations, fires, hazardous

materials), and suspicious packages. To perform these tasks, the intent is to have the models

emulate the processes that take place within a human brain, i.e. with a close resemblance to

human neuro processing, albeit in high-powered computational machines. Deep learning, the state-

of-the-art concept in artificial intelligence, is the developmental basis for the proposed cognitive
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models. Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN) and Recurrent

Neural Networks (RNN) were leveraged to implement the novel deep learning models presented

in the papers published towards completing this dissertation. Irrespective of the type of neural

network used, all the deep learning algorithms perform sophisticated mathematical and statistical

computations.

In order to run efficiently, these computationally intensive algorithms rely on the use of and co-

ordination between high-throughput, high-performance, and many-task (parallel-task) computing-

enabled machines that have a high level of computing performance compared to general-purpose

computers. This variety of computational resources are served at scale in a cloud system, which

serves as a central location with the core building blocks needed for compute, storage and network-

ing. Nevertheless, detecting anomalies and then taking real-time action based on this detection

demands faster processing than what is possible when communicating within cloud networks. It

requires the use of physical infrastructure that is closer to the edge, near the source of the data, ver-

sus the bandwidth required when the data is centrally processed and stored. This edge-computing

approach helps reduce latency for critical applications, lower dependence on the cloud, and better

manage the massive deluge of data being generated. In addition, security and privacy can also be

improved with edge computing by keeping sensitive data within the end-device.

Hence, distributed and decentralized deep learning systems - throughout the end-device, edge,

and cloud ? have been designed following the requirements of smart city infrastructure. These

systems incorporate intimately with the proposed deep learning models for real-time data-driven

perception for anomalies on low-powered devices running at edge. Localized core building blocks

- compute, storage and networking - are devised closer to the end-device at the edge while global

building blocks are placed in the cloud. All the inference operations of the computer vision tasks

are implemented as a visual intelligent technology, referred to as ?AI embedding,? on the end-

device. By performing computer vision tasks within the end-device, AI embedding reduces the

amount of cloud resources (bandwidth, processing unit, and storage) used when compared with the

alternative of sending raw streams of video over the network. The generated private embeddings on
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individual end-devices serve as a private machine-to-machine communication (M2M) language.

Dissertation Statement: develop new intelligent, accurate deep learning models, close to hu-

man precision, for scene perception and content interpretation for anomaly detection in crowds,

and devising sub-systems of smart city infrastructure that intimately incorporates with the pro-

posed models to support real-time data-driven perception for anomalies at scale and prioritize

them, as well as, keeping the data privacy concerns.

1.1 Dissertation Contributions

The primary contributions of this dissertation are summarized in the following points:

• Proposing subjective loss function and new architecture for prediction layer in deep learning

(Chapter 2)

• Presenting a configurable, interactive, embedded system to extract object features (i.e. faces)

in crowds. The proposed system generates unique object embedding using the researcher?s

privacy-aware ResFace neural network and vectorized-l2-loss function in the training phase

(Chapter 3).

• Implementing the DNNs pipeline to extract crucial information from the scene for further

verification. Potential applications of this system include places of mass gatherings and key

(critical infrastructure) installation sites, which can be used to identify and re-identify objects

of interest (Chapter 3).

• Presenting a decentralized biometric access control system to ensure identity consistency in

cyber physical space (Chapter 4).

• Presenting a novel neural network architecture, named LSTM-ResNet, that has been de-

signed to learn the temporal dynamics of human biometrics, such as faces, for authentication

(Chapter 4).
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• Presenting a model that was designed to implement machine learning algorithms as an em-

bedded device to keep data securely decentralized on Internet of Things (IoT) devices for

real-time online and offline applications (Chapter 4).

• Introducing a Ranking Method to serve as the elastic and inelastic task scheduler to support

the heterogeneous requests and resources of machine learning applications in a multi-cloud

environment (Chapter 5).

• Proposing an intelligent decision support system for heterogeneous autonomous agents (Chap-

ter 6).
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Chapter 2: ON THE IMPORTANCE OF SUBJECTIVE LOSS FUNCTION

AND PREDICTION LAYER IN DEEP LEARNING

Deep neural networks (DNNs) are currently among the most commonly used machine learning

methods in computer vision. One of the best characteristics of these methods is their modular

design [65] – the ability to change the connectivity patterns of layers, try different activation func-

tions, inject different statistical approaches (for instance, normalization and dropout) in the net-

work and many other actions – in every aspect of deep learning networks. While the majority of

deep learning applications simply use cross-entropy and L
1

, and L
2

losses, subjective loss function

can actually result in impressive performance improvement. In addition, architecting the last layer

of DNNs, referred to as the prediction layer, according to the needs of the application increases

the discriminative power of the DNNs. This chapter aims to investigate how particular choices

of loss functions and prediction layer architecture affect deep neural networks and their learning

dynamics, as well as the robustness of various effects.

2.1 Introduction

The aspirations in computer vision (CV) tasks – for instance: object recognition, scene catego-

rization, integrative scene understanding, human motion recognition, material recognition, etc. –

is developing methods for acquiring, processing, analyzing and understanding digital images; and,

the extraction of high-dimensional data in order to produce numerical or symbolic information so

that machines can ingest massive amounts of information, extract key features, and determine a

method of analysis – all through an automated process. In CV, content perception is a challeng-

ing high-dimensional interpolation problem. It requires the extraction of a pattern to distinguish

invariants, symmetries, and diffeomorphisms. Four different types of machine learning algorithms

that address the high-dimensional interpolation problem are: supervised learning, unsupervised

learning, semisupervised learning, and reinforcement learning.

The intent of supervised learning – which the majority (about 70 percent) of machine learning
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methods refer to – is training a system with already known labeled data to predict the values

of the labels through methods like classification, regression, prediction and gradient boosting.

About 15 percent of machine learning is unsupervised learning; in this case, the system is not

told the "right answer", and the expectation from unsupervised learning algorithm is to find a

hidden structure or manifold in unlabeled data. Semisupervised learning is used for the same

applications as supervised learning, but this technique incorporates both labeled and unlabeled

data for training – typically, a small amount of labeled data with a large amount of unlabeled data.

With reinforcement learning, the algorithm discovers for itself which actions yield the greatest

rewards through trial and error. The objective is for the agent to choose actions that maximize the

expected reward over a given period of time.

Content perception is a high-dimensional interpolation problem. It requires a transformation to

low-dimensional linear projection. This type of projection requires the cultivation of data in order

to extract unseen features, and learns short and long term data dependencies. Feature representa-

tions have to decide to suppress a variation or, in contrast, maintain it. Fixed feature representations

are not agile enough to interpret natural data; but, deep contractive projection generalizes the fea-

ture transformations for natural data. For all these reasons, supervised learning was the primary

type of machine learning used in for the research performed for this dissertation.

In supervised learning, a function F (x) is approximated from q training samples {xi, f(xi

)}
i<q

,

where x is a data vector of very high dimension d(� 10

6inrealworldproblem). To reduce the di-

mension, advanced neural network architectures try to separate different values of f by applying

a low-dimensional linear projection '(x) such that if f(x) 6= f(x0
), then '(x) 6= '(x0

). To dis-

tinguish invariants, symmetries, and diffeomorphisms the strategy was to linearize the variations

of f with a first change of variable '(x) = {'
k

(x)}
kd

0 , which is also considered Deep Learn-

ing. In this regard, neural networks show the state-of-the-art performance because of their inter

network contractions. Convolutional Neural Networks are capable of extracting unseen features

and Recurrent Neural Networks enable the decision-making process based on an understanding

of previous events, and a special kind of recurrent neural network (RNN), called long short-term
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memory (LSTM), is capable of learning long-term dependencies.

One of the best characteristics of DNNs is their modular design – allowing for actions such

as changing connectivity patterns of layers, trying different activation functions, injecting different

statistical approaches (for instance, normalization and dropout) in the network and many others – in

every aspect of them as deep learning networks. While the majority of deep learning applications

simply use cross-entropy or L
1

and L
2

losses, subjective loss function can result in impressive

performance improvement. In addition, the ability to architect the last layer of DNNs, referred

to as the prediction layer, according to the needs of the application, increases the discriminative

power of the DNNs. In this chapter, through a case study, the effect of particular choices of loss

functions and prediction layer architecture on deep neural networks is reviewed, along with their

learning dynamics as well as their robustness to various effects.

2.2 Case Study on Classification Task

Deep structured learning is an emerging approach that shows non-trivial breakthroughs in many

machine learning applications. Instead of hand-crafted feature engineering, deep structured learn-

ing, also well-known as deep learning, uses a cascade of layers of nonlinear processing units (neu-

rons) to learn latent data representations which correspond to different levels of abstraction. For

example, in natural language processing (NLP), unfolded representations are used to analyze, un-

derstand, and derive meaning from human language in a smart and useful way. Tasks such as

automated summarization, entity recognition, hidden information extraction, sentiment analysis,

topic segmentation, translation, and speech recognition are objects of NLP. Potentially, customer

loyalty analysis as a multidimensional problem could n be addressed by utilizing deep learning

algorithms in NLP.

Single-question customer metrics have become popular as tools for measuring customer loy-

alty and predicting a company’s future in a single score (https://hbr.org/2012/07/th

ere-is-no-one-best-measure-o). Asking a question in the form of NPS is very spe-

cific and objective. Applying simple arithmetic on this score from the company’s customer base
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gives the customer loyalty, and allows the company to sort their customers into sets of Promoters,

Passives and Detractors. Here, we address this problem as a classification task. The difficulty is

that the problem can be classified into three major categories: Firstly, customer feedback is messy.

From the point of view of somebody who writes computer algorithms for understanding language,

text written by people in an uncontrolled environment is extremely messy. There are no regular

sentences, no attention to white space, misspellings, abbreviations, autocomplete errors, etc. Given

an open-ended question in a survey, many responders will simply write meaningless fillers like idk

(I don’t know), nothing specific, all good, yes, p, etc. Secondly, customer feedback is diverse.

There are many people who just comment on one thing, e.g. too expensive; but, just as many like

to list various aspects, e.g. a single sentence like - He made a painfully long process bearable with

regular points relating to both dealing with the company process overall (negative), the respective

customer support person (positive), and, more specifically, their communication. Customer com-

plaints are particularly lengthy with stories explaining how the company did them wrong. Finally,

customer feedback is hard to interpret due to its often subjective nature. For example, if a customer

says, "She made me feel as if she really had time for me," how would one categorize this? Even a

person reading this would spend a lot of time linking this aspect of customer service with similar

ones that may appear in the customer responses.

The work described here contributes to the understanding and management of customer loy-

alty measurement by addressing all of the previously mentioned problems in customer feedback

(messiness, diversity, and interpretation) utilizing a deep learning model that is based on a con-

volutional neural network. An algorithm was used to classify the reviewers? feedback into three

categories: Promoters, Passives, and Detractors. Intrinsically, this allows one to detect the incon-

sistencies between the feedback and the score. In addition, as sub-products, the resulting outcome

can be used for auto classification of unstructured feedback and routing, as well as entity detection

of people or companies. Experiments were performed on text datasets to calculate brand NPS,

as well as disclose some additional, theoretical insights into the problem. To measure customer

loyalty, a deep learning model was developed based on a convolutional neural network. To address
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Algorithm 2.1 DeepNPS
Input: xi

r

feedback x from rth reviewer for ith item.
Output: P (y = j|xi

r

), j 2 {Promoters, Passives,Detractors}.

1. Loop (i, r) :

2. split xi

r

into sentences s
k

, k = 1, 2, 3, ...,m

3. Loop k :

4. split s
k

into word vectors V
w

, w = 1, 2, 3, ..., n

5. if the word is not recognized:

6. V
m

= word2vector(W)

7. make matrix of V
word

7! S(Vw)

8. make tensor of S(Vw) 7! T (S(Vw))

9. Loop j 2 {Promoters, Passives,Detractors} :

10. P (y = j|xi

r

) = DeepNPS(T (S(Vw)),W
j
)

11. NPS = 10⇥ {P (y = Promoter|xi

r

)� P (y = Deteractors|xi

r

)}

this problem, a novel discriminative loss function (which is not typically used for deep nets ob-

jectives) was developed that classifies a customer into one of the three categories noted previously

Promoters, Passives, and Detractors. In addition, the model can address problems in the inconsis-

tency between the feedback and the rate, and can act as an accurate classifier to extract essential

information for further analysis on customer loyalty.

2.3 Approach

A non-convex optimization problem was developed to address the multidimensional problem, ana-

lyzing customer loyalty, including a combination of behavioral and attitudinal data sources (which

are referred to here as customer feedback). To assess and enhance the reliability and accuracy of

the solution, a deep structured learning algorithm was applied on preprocessed input data. A con-

volutional neural network (CNN) with adaptive filter size was trained to make the deep learning

algorithm, named DeepNPS. Grouping from different sources such as item surveys, basic sen-
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Figure 2.1: Proposed DeepNPS architecture

tences, and words were used to gather data. In addition, Web data (such as Amazon reviews [94])

and another dataset formed from multiple websites were used to train the model and compare the

results.

The approach is presented in the form of a DeepNPS algorithm. Feedback x from rth reviewer

for ith item is split into sentences, and each sentence is split into words. Then, each word is mapped

using a pre-trained word2vec model [97]. As a result, for each feedback x, a matrix of the word

vectors for each sentence was produced, and a tensor containing all these matrixes related to this

feedback is fed to the proposed DeepNPS network.

In DeepNPS, the dataset passed through many layers including the embedding, convolutional,

max pooling and Softmax layers. The embedding layer plays a major role in gaining the accuracy

of the model. There are different profound learning models accessible for slant investigation such

as RNN, Perceptron Model, CNN, Naive Bayesian classifier and so forth. In this case, CNN was

selected as the model to be used, keeping in mind that the end goal was to understand all layers

of the CNN and that it is one of the most intense models for sentiment handling. The dataset was

bolstered into the CNN demonstrate, which had various layers to process the data and, as expected,

yield an output of three classes Promoters, Passives and Detractors.

2.4 Dataset

Web data: Amazon reviews, this dataset consisted of 18 years of Amazon reviews for 35 mil-

lion customers. Product, user information, rating, and each plaintext review were included in the

dataset. For sentiment analysis, the original dataset was obtained from Cornell University [111],
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which had a total of 10,662 lines of movie reviews. Furthermore, a second dataset was created

by merging data from IMDB, Rotten Tomatoes and various other websites [20] into one big set

containing 75,509 lines. The efficiency and accuracy of the model increased as a result of using

this combined dataset. Increasing the size of a dataset plays a vital role in determining, based on

positive or negative reviews, what are the parameters have distinguished influence on the accuracy

percentage of the method.

2.5 Deep Structured Network Architecture

To consider the hierarchical structure of language: several words make a phrase, several phrases

make a sentence and, ultimately, sentences convey information. For this task, the feedback is

broken up into sentences, then words of a sentence are extracted and presented as a vector. The

sentence is then reconstructed as a combination of these vectors and convolutional neural networks

are applied with the different filter sizes on each sentence.

2.5.1 Embedding Sentence

The first and vital layer of the proposed CNN model is the embedding layer, see figure 2.1. Param-

eters taken into consideration are vocabulary size and sequence length. Word Embedding trans-

forms the word to word vectors in the low dimensional vector space from the given input data. The

popular equations is then followed, which explains the vector transformation:

V

queen

= V

king

�V

man

+V

woman

(2.1)

and usually, in word prediction applications, is illustrated as "a king who is not a man but a woman

is queen". The vector equivalent for the known words is considered in mapping the new words.

Sentence, Si, with sequence length as n in denoted as:

Si = C �V = V1 �V2 � · · ·�Vn (2.2)
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where C � V denotes the concatenation operation on the word vectors in the sentence. All the

sentences are padded to have same length. Hence, in the further processing the vectors, equivalents

for each word are considered and trained into the model for predictions and to increase its accuracy.

2.5.2 CNN Networks

A convolutional neural network is a model that has various layers including a convolutional layer,

embedding layer, and fully connected layer. The model follows a non-static single channel wherein

the training and prediction are performed. The first layer is the embedding layer, which embeds

the input words to vectors contained in low-dimensional vector space allowing for the review of

sentences and formation of vectors for further processing. A convolution process is performed

over the word embedded vectors and a number of different filter sizes like 3 ⇥ 3, 4 ⇥ 4, and

5 ⇥ 5 to extract features. Each filter size has a number of features and the default used here was

235, which was chosen after many trial and error experiments ranging from 3 to 252 and which

can be varied accordingly. The window of the filter was applied through the ith sentence of the

review, Si, to formulate the kth feature, f
k

. The varied filter sizes yield different features that are

used to create a feature map essential for predicting the sentiment connected to the words. The

feature f
k

is calculated for the word vectors in the filter window and concatenation of the process

with different f
k

results in the feature map F. For the purposes of this research, three filter sizes in

{3⇥3, 5⇥5, 7⇥7} and k were 0, 1, or 2, respectively. By this definition, the k is called as a branch

number for the rest of the paper. The network is followed by two more general convolutional layers

for each of the branches and then an average-pooling operation is applied at the end of each layer.

Since each filter yields results with different tensor shapes and all the vital features extracted have

to be combined as a single full hot feature vector at the last layer, a dropout layer is added in each

branch to add more intelligence through the learning process for each branch (feature). This means

that each branch is strictly forced to learn independently. The final feature map is calculated as:

F = C � (conv(f
k

,C �V)) = conv(f
1

,C �V)� conv(f
2

,C �V)� conv(f
3

,C �V) (2.3)
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Figure 2.2: Illustration of the loss function.

The network is followed by two fully connected layers with the size of 120. At the end of the

process, the Softmax layer performs an element-wise operation to form the Z, which implies one

of the categories in {Promoters, Passives and Detractors}. Thus the raw scores are generated from

the vectors that yield predictions. The loss of the network is calculated using the cross-entropy loss

function that results from the errors made in the network and the accuracy using the reduce-mean

function helps one to understand the behavior of the network during training and evaluation.

2.5.3 Promoter, Passive, or Detractor

To address the deep NPS, the conventional architecture of the last layer of the CNN is changed. In-

stead of having the last layer as a classification layer, three separate discriminative variable vectors

are proposed for each category in {Promoters, Passives, and Detractors} as Wpr, Wpa, and W

de,

respectively. This leads to suppressing the linear dependency of the usual only variable vector at

the last layer. At the end of the process, multinomial logistic regression was applied for each cat-

egory independently using the softmax function. The input to the function is the result of K (here

240), distinct linear functions from the last fully connected layer. The probability for a customer

loyalty, which is the category j 2 {Promoters, Passives and Detractors} is given by:

P (y = j|x) = exp(x

T

w

j

)

P

K

k

exp(x

T

w

k

)

(2.4)

The proposed loss function is leveraged to address the non-convex optimization problem in terms

of minimizing the eucludium distance of each category with the corresponding mapping (see figure
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2.2 for the illustration of the loss function).

min

Wpr
,Wde

,Wpa

(

||yth � exp(x

T
w

pr
)

P

K

k

exp(x

T
w

pr
)

||+

||yth
+

exp(x

T
w

de
)

P

K

k

exp(x

T
w
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)

||�

||yth ⇥ exp(x

T
w
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)

P

K

k

exp(x

T
w

pa
)

||
)

(2.5)

in which yth represents the ground truth mapping {Promoters, Passives and Detractors} ! {1, 0,�1},

respectively. It is worthwhile to emphasize two clues. First, as a result of introducing three different

variable vectors, {Wpr,Wpa,Wde} to three different categories, the proposed loss function aims

to train each variable vector on the target category while keeping the distance from the other two

non-target categories. In addition, since the NPS formula focuses on the Promoters and Detractors,

W

pa is used on the optimization problem to tune and refine the CNN network intrinsically.

2.6 Experiment and Results

This model was implemented in large-scale machine learning platform, TensorFlow [1]. The CNN

model was first run with the dataset that consisted of only 10,662 lines of data and evaluated for the

same; the loss was very high and almost increased to the peak for a 10 scale. Different values for

dropout rendered different results as they impacted the training, test split, and the corresponding

loss and accuracy percentage along with the graphs were recorded. Hence, as a next trial the second

dataset was used, which had much more data to use to test and train the model (equaling almost

75,509 lines of data). Further, the same parameters were altered with different values within the

range and the corresponding values and graphs indicated a remarkable increase in accuracy and

reduction in loss.

Multiple training iterations were executed with different values, changing one parameter at a

time, altering both like drop out, number of filters and the results observed to note down the perfect

values of each parameter to find the most efficient one. The fine tuning of the parameters was key

17



Table 2.1: Accuracy percentage of the prediction

Test Class
Sample 

Examples
Accuracy Percentage

Promoters Passives Detractors

True Positive
1 98.97 92.03 99.48
2 96.83 100 97.98
3 100 90.01 98.02

False Positive
1 1.03 7.93 0.52
2 3.17 0 2.02
3 0 9.99 1.98

True 
Negative

1 0.01 0.08 0.01
2 1.08 0 0.13
3 0 0.09 0.04

False 
Negative

1 99.99 99.92 99.99
2 98.02 100 99.87
3 100 99.91 99.96

to increasing the prediction accuracy of the model. The range of the values used for each parameter

was noted down and analyzed for best results.

All these executions files were utilized to visualize the flow graph of the model using the

tensor board application. The flow graph clearly depicts the model architecture, which aids in

understanding all of the details. Nodes in the layer show the internal construction of each function

used in the network.

The accuracy for the data was calculated in two different ways; one by using the whole test data,

which was split into test and train sets, and the other by entering any random review sentence not

originally present in the dataset. The prediction was noted for every other sentence and accuracy

was calculated. This method improved the understanding and enhanced the analysis of the model

and its prediction accuracy. The test cases were formulated by checking for true positive, true

negative, false positive and false negative cases for each category in {Promoters, Passives, and

Detractors}. The negative sentence entered was given a label as [1, 0] and the positive sentence as

[0, 1] as the input data was being labeled. A table, which depicts the accuracy percentage of the

test cases, is shown below. Please note that the reported accuracy in the table is calculated based

on the number of reviewers in each category not as a whole reviewer for a sample example.
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Table 2.2: Examples of the studied feedbacks from Amazon for four selected itemsTable II. Examples of the studied feedbacks from Amazon for four selected items 

Item #1: Samsung Countertop Microwave 

Pr
om

ot
er

s I like the handle rather than push button open; the push button broke on my last microwave. Working great. No problem popping 
microwave popcorn. No smell. The instructions tell you how to turn off the beeps. The interior is easy to clean. 
Received this MW on time.  Very nice looking and would recommend. 
This is perfect for a basic microwave.  The size is nice and although it has a little less power than the one it replaces, it meets my needs 
perfectly. 

Pa
ss

iv
e I like it and the knob is pretty cool once you get used to it.  I do think its seems to be getting a little louder than when I first received it but I 

still am happy with it. 
This microwave looks nice, but it's the most user friendly. I wish the knob was able to set the time freely without pushing the "cook" button 
and then the power level. Also I wish it had a kitchen timer feature. Other than that no complaints cooks stuff really well!! 

D
et

ra
ct

or
s I'm not satisfied with this microwave, it's so noisy, takes double time that my old microwave to warm my food... light is awful inside... lots 

of little details, Samsung must keep working on making microwaves better because this model is horrible. I want to return it!! 
Glass is too dark/light inside too dim - cannot see what is happening to food. 
Used the microwave twice before it died. Returned for refund. Went to Sears bought a Kenmore. Reviews said it was a good product. It was 
loud like some reviews stated. 

Item #2: Coffeemaker Keurig15 

Pr
om

ot
er

s This is the 2nd one I'm getting. I love it!!! I am the only one who drinks coffee in the house, so no waste. I get to have a fresh hot cup when 
needed. Easy to clean and use. I would highly recommend this machine. 
I've had Keurigs before and have loved them all.  This one is simple and easy to use. And inexpensive. 
Had another one that lasted for years.  Finally given up the ghost we purchased this one.  It works better than the old one by brewing coffee 
much faster.  Happy with it. 

Pa
ss

iv
e I have to take a 1 star away for the fact that, without removing the drip tray, it doesn't really fit anything other than standard 6-8 oz cups 

(like you might find a Denny's or IHOP). I would take a 2nd star away because, although it can brew a 10 oz cup, it doesn't fit ANY of our 
insulated travel mugs. Obviously that's not Keurig's fault but it still annoys me that I have to brew into one cup and pour it into my travel 
mug.. 

D
et

ra
ct

or
s Unfortunately, it doesn't make great coffee. If you try to make a standard mug of coffee (10 oz) it'll taste watery and weak, 8oz seems to be 

the limit. When I use my own grind, it has to be fine, and I use the maximum amount of coffee the basket will hold. With commercial K-
cups I find most roasts are burnt (even those claiming 'medium roast'), presumably to try and mask the watery taste. The coffee also comes 
out warm, not hot at all, which could be the reason it's watery.  In any case I have to microwave it for at least 20 seconds to get it reasonably 
hot. So for quality of coffee, just 1 star. 

Item #3: Hero5gopro 

Pr
om

ot
er

s I previously had a gopro hero 3. I loved everything about it. After several years of camping, white water rafting, scuba diving . .. the camera 
still runs without a flaw. For the price of the new hero 5, I decided to try an upgrade. I picked one up at best buy this morning. I didn't think 
gopro could improve on what I already thought was an awesome product, but they did. Voice control works great. Waterproof without the 
case. Love it. My son is happy also since he now gets to keep my old camera. He already placed a mount on his rc truck and is out recording 
the truck from a first person view. Thank you gopro. 

Pa
ss

iv
e It came with nice packaging but screen doesn't work properly screen has black spots and dirt inside the screen it was the biggest 

disappointment for me. That was the first product that i bought from gopro company and definitely it should be the last. 
Camera is overall great everyone knows this, but one thing the camera frame is not that great. it's very hard to unlatch, not have access for 
charge port as well replacement of battery without the removal of camera from this frame. 

D
et

ra
ct

or
s Haven't used it outdoors yet because it became very hot after only a couple of minutes being turned on. 

I finally bought the hero 5 and I am thoroughly disappointed with one thing. The battery system is medieval. You have to use tools to 
remove the battery. The tab came off. In the process sd card got screwed in its socket. It's that hard. Why can't the company make simple 
clip system? Now I will return the stuff and ask for a replacement. 
Battery life is an issue and since the power-up sequence is so complex, you need to leave on standby. 

Item #3: Polaroid Snap Touch 

Pr
om

ot
er

s 

This camera was great for what my wife and I wanted to use it for. When we got married we took the camera with us to capture our special 
day. WE then used it to make a photo book of the day that we could share the moments with family. We eloped in Ireland so no one was 
there at all and we wanted to show our family what our wedding was like. 
If you are just looking for a camera with decent quality instant print photos then this is perfect otherwise dont expect premium prints. 
Certain colors such as white scenes come out looking a little streaky but most other colors come out just fine. The bluetooth feature is nice 
because u can print photos from a device so it almost acts as a mobile printer as well. 

Pa
ss

iv
e Camera works good.  Photo quality for the megapixel is so so.  Lens is small so it really holds back the quality.  Photo prints are good for 

the size.  Not sure reprints of large size would be very good.  If you want a good little camera to do quick point and print it's great.  If you 
want a digital to take family pics to keep buy a Sony with a Carl Zeiss lens.  Overall it's good just not what it could be but then it would cost 
more. 

D
et

ra
ct

or
s 

Bought this as a Christmas gift for my daughter and was never able to use because a message keeps popping up saying the door latch is not 
completely closed, when in fact it is closed. Too much time has passed and I'm unable to get any tech support from seller but am currently 
going back and forth with Polaroid directly to see if we can get this fixed. Otherwise it's a nice camera, the color isn't really a deep red it's 
more like a pastel coral color. 
The one I got must have been a factory defect. It only worked less than a few hours. I had to return it for a full refund. I'm afraid to try 
another one. 
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Figure 2.3: Illustration of the DeepNPS result to present customers’ loyalty for a sampled item

Figure 2.4: Visualizing the DeepNPS results for four item feedbacks

Table I shows the accuracy percentage of the prediction with a random review sentence inserted

for evaluation. For each case, three (3) sample examples were given. In the true positive case the

input sentences were entered with correct labels. A positive sentence was entered with [0, 1] as

the label, a negative sentence was entered with [1, 0] as the label, and the predicted result is also a

positive class. A false positive case is determined when prediction accuracy is much less when the

entered test case was positive but the predicted result was a negative class. A true negative case

is when the entered negative sentence is predicted correctly. A false negative test case is when a

negative test case was predicted as a positive test case. The accuracy percentage depicted that the

prediction is almost exact for the test cases predicted. This test case analysis helped for interpreting

more details about the behavior of the model with different data inputs.

The results of one of the case studies are presented in figures 2.3, 2.4, and 2.5 – which in

each a subsample of the 232 feedbacks for four items selected from Amazon were used. Some of

20



Figure 2.5: Visualizing the DeepNPS results for four item feedbacks

these feedbacks are listed in Table II. Following DeepNPS algorithm steps, results of the proposed

DeepNPS model based on CNN for a sampled item are depicted in figures 2.3, 2.4, and 2.5.

The error with the reported NPS is 0.16%. Figure 2.5 illustrates this comparison while down-

sampling was applied to the data for more clear visualization. In figure 2.5, the dashed line graph

depict the trends of the reported score and the diamonds depict the output of the DeepNPS model of

the feedbacks. The Green zone characterizes the promoters and the red zone reflects the detectors

scores. As figure 2.5 verifies, DeepNPS follows customer loyalty strictly. The green zone reflects

the promoters’ scores and red line illustrates the detractors’ scores.

2.7 Conclusion

The DeepNPS model is presented for analyzing customer loyalty based on customer feedback.

The deep learning network based on convolutional neural network architecture was trained using

a novel loss function to address the problem. Feedback from the promoters and detractors were

matched to 1, and -1 respectively, while passive customers were matched to 0 and used to add more

discriminative power to the network. The distinguished accuracy achievement makes DeepNPS

not only a trustworthy gage for recognizing customer loyalty, but it can also be used as an accurate

customer feedback classifier for extracting more information from the customers’ point of view.

For instance, to determine what characteristics of the product make the NPS high or low, or how a
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delivery system effects customer feedback on the item.
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Chapter 3: A PRIVACY-AWARE ARCHITECTURE AT THE EDGE FOR

AUTONOMOUS REAL-TIME IDENTITY RE-IDENTIFICATION IN

CROWDS

This chapter has been published: Miraftabzadeh, Seyed Ali, Paul Rad, Kim-Kwang Raymond

Choo, and Mo Jamshidi. "A Privacy-Aware Architecture at the Edge for Autonomous Real-Time

Identity Re-Identification in Crowds." IEEE Internet of Things Journal (2017).

The capability to perform identity re-identification in a crowd (e.g. from video feeds from a net-

work of cameras, and social media platforms such as Facebook and Instagram) efficiently and

effectively is increasingly important, as evident in recent real-world events (e.g. terrorist attacks

on places of mass gatherings in different countries). However, real-time re-identification in a net-

work of cameras, such as those deployed in a smart city, and from other sources, such as social

media platforms, remains a challenging task. In this paper, a new embedding algorithm pipeline

is presented to extract and administrate the crowd-sourced facial image features (e.g. social me-

dia platforms and multi-cameras in a dense crowd, such as a stadium or airport). The proposed

facial embedding is a privacy-aware parameterized function, which maps facial images to high-

dimensional vectors in order to facilitate the identification and tracking of individuals. In other

words, we are able to uniquely identify person(s) of interest, without the need to determine their

true identity. To extract the facial embedding information in crowds, concurrent Residual Neu-

ral Network (ResNet) embedding pipeline for each camera is proposed. Specifically, facial em-

bedding feature vectors are generated in real-time by each camera using the proposed enhanced

ResNet architecture, which is trained with vectorized-l2-loss function for face recognition. The

multivariate kernel density estimation (MKDE) matching algorithm is then applied to facial em-

bedding pipelines generated by cameras at the fog cloud for identity re-identification and security

verification. This allows us to ensure the privacy of individuals captured by the camera without
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compromising on the capability for identity re-identification. Evaluations using mixed datasets in

real-time demonstrate that our proposed approach achieves a 2.6% accuracy over other state-of-

the-art approaches.

3.1 Introduction

Accurate, efficient and automated real-time identity detection platform plays an important role

in ensuring the security and resilience of a (smart) city and her residents. The application of

identity detection to recognize and track suspicious individuals (or persons of interest) is becoming

more feasible due to the increasing deployment of surveillance cameras and increasing sources of

open/closed source intelligence (e.g. data from social networks such as Instagram, Twitter and

Facebook, as well as government systems). Computer systems interact with their environment,

such as real-time surveillance monitoring services, may operate without human supervision or

intervention. Automating identity detection necessitates top-down analysis and fusion of events

from network and system monitors to accurately detect an identity (e.g. a person of interest)

without human interaction. Interactive computing systems usually operate by modeling how their

environment is changing and may shift goals as conditions change. We posit that edge computing

can facilitate and enhance real-time decision making, since computing and storage nodes are placed

in close proximity to Internet of Things (IoT) devices or sensors. In other words, by placing the

computation power at the edge of the network helps with the physical implementation of a real-

time decision making model for detecting an identity at the right time in the right place.

Contemporary supervised machine learning methods can achieve high accuracy in identity

recognition based on facial images [135, 155], partly due to the availability of large data and

computation resources (e.g. distributed cloud systems) [85, 126]. Generally, training the super-

vised machine learning models is a time consuming process, which can range from days to even

weeks [162, 177]. Cutting edge hardware technologies such as distributed processing platform on

multiple graphics processing units (GPUs) can potentially reduce the training process to a couple

of minutes. In addition, combination of a high performance distributed machine learning platform
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with techniques, such as transfer learning, can reduce the offline training time of a pre-trained

model while enhancing the accuracy of an online trained model overtime.

However, supervised machine learning is not always a panacea to addressing the needs of

real world problems. The basic function of supervised machine learning methods is to extract

and learn complex and hidden features of the input data during the training phase. This learning

helps predicting or classifying an output for a previously unseen or unknown input. The hypothesis

behind supervised learning approaches is that the presented samples in training data are sufficiently

comprehensive to learn and address all the features required to make an appropriate inference for

any unseen sample. This is, however, not applicable in recognition tasks such as identity re-

identification in the wild, unless we have access to all possible facial features in the world. Thus,

one viable solution is a reconfigurable embedding algorithm designed to dynamically update the

parameters of a proposed machine learning architecture based on the observed facial images to

address identity re-identification.

Identity re-identification allows an individual person to be matched based on images captured

from one or more video cameras at different time instants and locations. Identity re-identification

can be categorized as a subclass of person re-identification [46]. Unlike person re-identification

(which seeks to recognize a person of interest by matching similar attributes of a person in a gallery

image or video set), identity re-identification focuses on matching facial images captured from

different cameras in different poses, illumination, and environmental variations (e.g. sunny, rainy,

foggy, and snowy weather during a day or at night). While a number of face recognition approaches

based on deep learning have been proposed in the literature [106, 135, 155, 169], they are gener-

ally far from perfection for real-word applications, especially in security verification scenarios,

as demonstrated in a recent study using the public benchmark comprising one million faces [73].

Face recognition models [135,166] are generally designed to increase identification [155] and ver-

ification [165] accuracy in large datasets. Identity re-identification narrows down the problem to

a much smaller dataset, typically a security coverage area, but with a near perfect accuracy rate.

This has applications in real-time emergencies such as trying to identify attackers in a crowd.
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Thus, embedding feature vector approaches designed for identity re-identification may not be

applicable in face recognition tasks. In addition, identity re-identification does not deal with the

challenges associated with aging facial features [90]. On the other hand, facial natural variations

such as different expressions [34], scales [61], poses [27], occlusions [170], makeups [178], and

illuminations [168], that are not usually addressed by face recognition tasks compound the chal-

lenges in identity re-identification.

In this paper, we propose a re-identification algorithm that takes into account human biometric

parameters such as facial features. The proposed algorithm is designed to facilitate surveillance

of wide areas (see Figure 3.1), such as airports [19] and sport events [175], where there are dis-

joint networks of cameras with different views. Disjoint cameras make identity re-identification

a challenging problem [110], due to changes in orientation, distance and illumination that modify

the perceived appearance of an identity across cameras. The identity re-identification algorithm

presented in this paper uses the enhanced residual network [53], ResFace, to generate facial em-

bedding information. Such embedding can be used to find an identity in the hundreds of thousands

of faces captured on surveillance cameras. We also design a vectorized-l2-loss for the embedding

system, in addition to center loss [165] to increase the discriminative ability of the residual net-

work. For optimized performance, the face detection and embedding procedure is implemented

in multiple steps in a pipeline consisting of multiple neural networks. ResFace is the last neural

network in the DNNs pipeline.

In addition, the process of the face-identification is being distributed to the camera (with an at-

tached NVIDIA Jetson TX2 embedded system), fog computing, and cloud environment. An impor-

tant feature of fog computing [39] is to provide high-quality implementation of the re-identification

and matching tasks, as well as dissemination of embedding vectors into cloud. The proposed algo-

rithm can be extended as an application to be scheduled in the cloud and implemented in hetero-

geneous cloud environment [100].

We will present related literature in the next section. In Section 3.3, we describe our proposed

approach. We then describe our training data in Section 3.4, prior to presenting the evaluation of
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Figure 3.1: Schematic illustration of the proposed face embedding algorithm for identity re-
identification using facial features.

the approach in Section 3.5. The last section concludes this paper.

3.2 Related Literature

Over the last decade, hundreds of thousands of images have been uploaded to the internet every

minute through various online social networks and photo sharing platforms. For instance, Google

reports 24 billion selfies were uploaded to Google’s Photos application in 2015, and the number of

selfies posted on Instagram increased by 900 times between 2012 and 2014 [142]. As of October

4th, 2017, the number of hours of video viewed on YouTube daily is reportedly one billion hours,

with over one billion users (https://www.youtube.com/yt/about/press/).

In supervised learning, especially for computer vision tasks, the significant volume of data

is precisely what is required in the model’s training phase. However, when dealing with such

a large training set volume, conventional machine-learning algorithms (e.g. Principal Component

Analysis - PCA, and Super Vector Machine - SVM) tend to saturate. A number of approaches have
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(a)	The	set	of		face	images	in	different	expressions	and	pose,	
increasing	yaw	angle	from	left	to	right	

(b)	The	set	of		face	images	wearing	glasses	in	different	roll	positions	the	
illumination	direction	is	coming	from	right

Figure 3.2: A set of ten images for one subject, with considerable facial feature variation.

been proposed in the literature to improve the performance of these models, such as smart biometric

identification. However, such models have shown to be sensitive to unconstrained settings (e.g.

illumination, expression, and aging) that can considerably degrade the performance of the system.

Krizhevsky et al. [76] presented a very large and deep convolutional network, AlexNet. This

provides supervised algorithms a platform to deal with large training datasets, as evidenced in

the outcome of the ImageNet competition. AlexNet has also been successfully implemented for

complex computer vision tasks, such as human pose estimation [158]. In general, deep and wide

neural networks perform significantly well under two conditions: when the volume of the training

data is immensely large, and scalable computation resources are available.

A key challenge with identity detection is the variation in pose (e.g. yaw and roll), and illumina-

tion expression – see Figure 4.2. In the past, neural networks have been applied to a large variety of

face recognition tasks, for example, face verification [22], face detection [109], and face alignment

[147]. Most of these techniques expect either a single model to learn through massive amounts

of training data, or a function that maps the input patterns into a target space and the norm of the

output would be considered as the semantic distance in the input space [22]. In the last few years,

there have been renewed interest in face recognition [92, 137, 146, 158, 160, 164, 166, 172, 174].

In [155], for example, a conventional neural network (CNN) based architecture approach by ap-

plying several locally connected layers without weight sharing was proposed. In [164], the authors
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Figure 3.3: Layered structure of an AI-Embedding camera network, where the layers are deter-
mined based on the capabilities posed by the devices, fog computing, and cloud computing.

proposed a joint identification-verification supervision function that results in discriminative fea-

tures. In [149], supervision enhancement is achieved by manipulating the standard CNN structure,

where fully connected layers and loss functions are added to each convolution layer. Investigations

were carried on the triplet loss in [135], which uses deep embedding to minimize the distance be-

tween face images of the same person while maximizing the distance of non relevant face images.

3.3 Proposed Architecture

In this section, we will describe our approach in the crowd identity re-identification tasks, namely:

face detection, face embedding, local matching, and global matching. Algorithm 1 describes the

privacy-aware embedding algorithm, and Figure 3.3 illustrates the implementation of the algo-

rithm.

The goal is defined as generating the embedding tensor E consisting of all embedding vectors
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of the captured faces. Embedding vector of a face is used for two purposes. First, it acts as the

unique identifier of a face and tracks the person if there is a match to the person(s) of interest in

ED. Second, aggregation of the embedding vectors forms the embedding tensor, which is used for

fine tuning the identification model.

The process is carried on three layers, namely: AI-embedding camera (or intelligent IoT de-

vice), edge (or fog computing), and cloud computing (as a GPU-enabled platform) – see Algorithm

1. Tasks are distributed in decentralized and centralized coupled jobs, and each layer is respon-

sible for specific jobs. However, hyper-parameters in each layer are influenced by other layers to

increase the performance.

Video streams from a camera is processed at the camera location with two jobs, namely: face

detection (fm

i

, camera m, face i), and forming the embedding vectors of the extracted faces (em
i

).

At the embedded camera, the generated embedding vectors are stored in the local cache. In the

zone within the coverage of the camera, the local matching tracks changes in the stored embed-

ding vectors, and unrecognized ones (i.e. an indication of new identity entries) are reported to the

next level at the edge. At the edge, information from multiple cameras are aggregated and corre-

sponding tensors are made (i.e. F faces tensor, and E embeddings tensor) with two jobs, namely:

preparing data for fine tuning the face identification algorithm, and locating the person of interest in

the zone area within the coverage at the edge level. The latter is facilitated using global matching.

To minimize the required computations and avoid deteriorating the already trained neural network

model, transfer learning is applied as the fine tuning strategy at the GPU-cloud enabled platform.

GPU-cloud is enabled as an on-demand provisioning computing resource, and is responsible for

the fine tuning of the identification model and updating of the running model in all connected de-

vices. Using the cloud for fine tuning allows us to meet the computational requirements to optimize

the model. In addition, transferring the model to the datacenter reduces network latency and thus,

increases performance [122, 140].

Face detection is implemented on the AI-embedding camera by leveraging the modified version

of the multi task convolutional neural network in [174]. Specifically, for face detection, the authors
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Figure 3.4: Demonstration of the pipeline at the edge and explanation of the modules functionali-
ties.

used three CNNs with different architectures and model hyper-parameters (number of hidden units,

filter size, etc) where each CNN carries out a sub-task. However, for resource constrained devices

in a typical IoT deployment, we leverage three replicas of single CNN with a shared architecture

and model hyper-parameters. The same CNN is trained for different sub-tasks and the obtained

weights for each sub-task are stored at the AI-embedding camera separately. The cascade of the

three replicas of the CNN architecture are leveraged to perform face detection. The first CNN is

MTCNN-1, and the combination of the second and the third CNN forms a network (MTCNN-2).

Thus, face detection tasks are spread through MTCNN-1 and MTCNN-2. We also include two

additional tasks to MTCNN-1, namely: event classification and image quality recognition. The

primary usage of event classification is for training.

Then, face recognition tasks are carried out using the proposed ResFace with the aim of pro-

ducing unique embedding vector per identity in all images from multiple cameras. The unique

embedding vector per identity represents the facial image(s) of the identity captured from one or

more cameras. To satisfy the “privacy-aware” functionality, the embedding vector is produced at
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the camera level and is only known by the system. From this point onwards, the system stores the

embedding vectors as the unique identifier of the faces in the crowd instead of storing entire face

images; thus, preserving the privacy of individuals. Furthermore, we present a distributed caching

system for sharing facial embedding information across multiple cameras to facilitate identity re-

identification.

3.3.1 DNN Pipeline Conducted at Cameras

The overall pipeline at the intelligent camera devices is shown in Figure 3.4. Given an image (i.e.

input of the following stages), we will extract the most critical information into the output dictio-

nary. Once this dictionary is produced, crowd recognition tasks can be easily implemented using

standard content based video retrieval (CBVR) techniques, such as those using genetic algorithm

and fuzzy logic [12].

MTCNN-1: We exploit a fully convolutional network to explore the event class (e.g. does

the scene include faces), and the report for the image ambiguity. Event class directly maps to the

final dictionary except for face validation, and image ambiguity is used for face identification and

enhances the efficiency of the training. In a real world application, the report of image ambiguity is

useful, as it can be used to inform the decision as to whether request for further image processing.

If the content of the frame includes faces, then the frame is forwarded to MTCNN-2 for multiple

faces detection task in crowd.

MTCNN-2: To obtain the facial candidate windows and the corresponding bounding boxes,

two cascaded CNNs are presented. The former provides candidates and the latter refines them and

presents the selected candidate to the face’s attribute detectors. At the end of each CNN, non-

maximum suppression is applied to merge highly overlapped candidates. The second CNN has

significant supervision with the help of facial landmarks’ positions. This approach is suggested

in [174] as well.

ResFace: We propose a deep leaning model based on residual convolution blocks for face

recognition tasks, namely: verification and identification. The characteristics of residual blocks,
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Algorithm 1 Identity Re-Identification algorithm  
Input: !" = $%, $', $(, … , $*	   
               $, video streaming on -camera 
               * number of cameras at zone . 
Output: / = 01, 02, 03, … , 04   
               / embedding tensor of the networked cameras 
               05 is the embedding matrix of the 5th camera, 5 ≤ *  
 
/7 (embedding tensor of the suspicious targets) 
at the camera level (on-board edge device): 
1:    at each zone, .: 
2:        at each camera in zone . ($5	in	!"): 
3:            <5. = =>?@7@A@?ABCD $5   ( <5. = E1, E2, E3, … ,  
                                                                            detected faces)  
4:            05. = F@G=>?@ <5

.    (05. = ℯ1, ℯ2, ℯ3, … ,  
                                                       ℯI embedding vector of EI ) 
5:            Local Matching 05

.  
6:                 if match with local cashing 
7:                     done 
8:                 else 
9:                     send E5

., ℯ5
. → next	edge	level 

            at the next edge level (fog computing): 
10:        R" = <1, <2, <3, … , <4  (tensor R" included of all faces) 
11:        /" = 01, 02, 03, … , 04   (embedding tensor /") 
12:        Loop ℯ5, ℯS	 (	ℯ5 ∈ /", and	ℯS ∈ /7 ) 
13:             Global Matching /"  
14:                 if ℯ5, ℯS  match ( look for a suspicious target ) 
15:                      trigger an action(s) 
16:                 elseif ℯ5 match global matching 
17:                        retrieve all related frames 
18:                        register ℯ5 for existing E5

. 
19:                  else (no match) 
20:                        add ℯ5 to the global cashing 
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Figure 3.5: Architecture of MTCNN-1, where Conv denotes convolution.
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Figure 3.6: Architecture of MTCNN-2, which includes two cascaded CNNs: (a) First CNN, (b)
Second CNN.

degradation and overfitting compensation, improve the learning progress. To efficiently enhance

the deeply learned features, a very deep residual architecture is leveraged. The combination of

center loss and vectorized-l2-loss (defined in Equation 3.2) also improves the discriminative power

of the model. For data augmentation, generally for face recognition tasks, the images are randomly

horizontally flipped.

3.3.2 DNN Pipeline Architecture and Training

The architecture of MTCNN-1 is depicted in Figure 3.5 and is referred to as the base MTCNN.

The network is tuned through experiments. MTCNN-2 has the same base MTCNN architecture but

in two separated CNNs, see Figure 3.6. To add more insights in MTCNN-2, the fully connected

layer is added before exploring a target’s logits. Figure 3.7 presents the results of using the face

detection model, cascade of MTCNN-1 and MTCNN-2, on a sample of pictures of a cloud captured

by CCTVs prior to the Boston Marathon tragedy in April 2013. In such incidents, face detection

and identification are indispensable parts of a person of interest identification system.

The experimental results show that the face detection model, as the pre-requirement, has high

accuracy even when target facial images are in different poses (e.g. yaws and rolls). The illustrated

34



limitations in applying the model on a single frame could be improved when the model has been

applied on a set of coming frames. This improvement has significant effects on the next step in face

recognition and then re-identification of an individual based on a person’s facial images captured

from a camera(s) in different conditions.

For face recognition tasks, we use rigid residual comparison [53] – see Figure 3.8. Each resid-

ual units start with the filter-expansion layer (1 ⇥ 1 convolution), which is used for scaling up the

dimensionality to match the depth of the outputs of the residual branch and the identity mapping

branch. This is required to compensate for the dimensionality mismatch induced by the residual

unit. So, not only the feature map size of the identity mapping branch is affected, but also the input

of the residual units is manipulated to be trained in the plain network. This minor modification

allows us to add the feature-extraction functionality to the filter-expansion layer without incurring

additional computational cost.

Several versions of residual units are studied, and only one of them is detailed here. Each

residual branch consists of three convolution layers, namely: two filter-expansion layers (1 ⇥ 1

convolution) with valid zero-padding, and one middleware 3⇥ 3 convolution layer also with zero-

padding. All intra-convolutional layers, convolutions inside the residual unit, are followed by

ReLU as the activation layer. The convolutional layers mostly have 1 ⇥ 1 filters as the sharp

discriminators. The network ends with a global average pooling layer and N � ways (N denotes

the number of layers) fully-connected layers. Figure 3.9 presents the ResFace architecture and a

sample set of the embedding vectors.

3.3.3 DNN Pipeline Learning Objects and Optimization

To train our DNNs, the combination of multi tasks using l2-loss function is used. For the tasks

in {’face classification’, ’bounding box regression’, ’facial landmark localization’}, we formulate

the learning object as the l2-loss function (Euclidean loss) [65] of the targets. L2 loss function
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minimizes the squared differences between the estimated and existing target values:

Ltarget

batch

= � 1

N

N

X

i

||ŷdet
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For each sample n, ŷdet
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is the ground-truth label, and p(y
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) is the probability of the target task

produced by the network. Also, ŷ
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is the ground-truth label, and N is the number of examples in

the batch.

Furthermore, for face identification (i.e. not verification), we propose the rigid vectorized-l2-

loss. This is the cross entropy on the embedding vector of the target class and the corresponding

ground truth labels in the same class and other classes. For each sample n in N , we have:
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In the above equation, E denotes the embedding size. The first term is the conventional cross

entropy, designed to minimize the distance between the predicted embedding vector of sample n

and the ground truth of sample n. It can be interpreted as the inter class learning. The function

of the second term is to maximize the distance between the elements of the embedding vector of

sample n belonging to a specific class and other samples belonging to other classes in the same

batch. It can be interpreted as the intra-class learning.

The combination of the center loss [165], shown by Equation (3.3), with the proposed vectorized-

l2-loss, increases the identity mapping into the embedding. While center loss attempts to find the

central point for each class, vectorized-l2-loss adds the additional force on the hyper plane to locate

the global minimum.
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In the above equation, c
i

denotes the y
i

th class center of the deep features.

3.3.4 Private Aware Local and Global Distributed Matching

Distributed local matching is carried out in parallel at each camera. The same matching algorithm

is conducted at the fog for all collected data from all cameras at the common zone.

The embedding values of the ResNet output are represented in an n-dimensional vector, where

n denotes the number of features extracted from the facial image. Due to the environmental noise

and different face poses, feature values for an identity are not always deterministic and may vary

among captured images. For this reason, multivariate kernel density estimation (MKDE) [13] is

used as the stochastic model to incorporate possibilities of embedding vector variations. Given a

set of feature vectors e
i

, we have:

e
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In the above equation, the probability of obtaining an embedding vector z with the same compo-

nents e
i

is defined by p̂(z), where N
e

is the size of the embedding vector, (.) denotes the applied

Gaussian kernel on all embedding vectors, and �
j

is the standard deviation of the kernels obtained

from the empirical results. Kullback-Leibler [79] is defined as the robust and discriminative dis-

tance function:

D
KL

= (p̂(zt+1

)|p̂(zt

) =

X

p̂z
t · log p̂(zt

)

p̂(et+1

)

, (3.6)

where p̂(zt

) denotes the observed embedding vector z corresponding to an identity at time t. Max-

imum D
KL

is considered to be the tracking of the same identity.
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Figure 3.7: Detected 474 out of 523 counted faces in a crowd scene, where the faces are in different
poses captured in different resolutions

.
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Figure 3.9: ResFace architecture of face recognition.

3.4 Training Data

We collected crowd data from various sources, including images from the web, the WIDER FACE

[171], the FacrScrub [108], and the Labeled Faces in the Wild (LFW) [84]. A total of 152,366

images with more than unconstrained 514566 faces were studied. For crowd event categorization,

WIDER FACE with 61 classes was used, while for other crowd recognition, the combination of

all datasets were considered. Figure 3.12 presents the samples of the studied datasets, and paired

similar faces can be either from the same dataset or multiple datasets.

39



3.5 Evaluation

In this section, we describe our evaluation of the proposed re-identification algorithm on face

recognition and video benchmarks in an unconstrained environment.

3.5.1 ResFace Experiments

The experiments involve classifying of facial camera images of various people with varying ex-

pression and poses. There is also variation in the person, such as clothing worn by the person, and

position of the person’s face within the image or video frame. Using our proposed approach, a

variety of targets can be learned. For example, given a face image as input, ResFace can be trained

to output the identity of the person, the direction of the face, the gender of the person, and whether

or not the face has occlusion.

Experiments on the mixed of datasets: We selected the LFW dataset as the first benchmark,

which is widely used by other state-of-the-arts models in the literature. A comparative summary

of the evaluations is presented in Table 3.1.

For the second benchmark, we used a mixed pool of the aforementioned datasets. We presented

the results of three existing well trained state-of-the-arts models and three versions of ResFace

(i.e. A, B, and C) implementing the residual blocks in Figure 3.8. Findings from our evalua-

tions demonstrated that although significant achievements are obtained on specific dataset such as

LFW, the performance of existing models degrades on the mixed dataset. A combination of the

vectorized-l2-loss and center loss resolves this problem by increasing the discriminative power of

the ResFace with a 2.6% increase in the recognition task accuracy on the mixed dataset.

Class Samples Dependency: Subsets of LFW and FaseScrub were selected, as shown in Table

3.2. Seventy percent of each subset was used for training and the remaining was allocated for

evaluation. We observed that the model does not strictly rely on the number of images per person.

Probing and Memorizing Features: To explore how the model probes the features for a given

example and to emphasize the discrimination potential of the model, a poor grayscale face image

was selected. As demonstrated by the findings of the evaluations, the same logic can be extended
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Table 3.1: Verification performance of different methods on LFW and mixed dataset. ResFace-C-
1 was trained using center loss, and ResFace-C-2 was trained using vectorized-l2-loss and center
loss.

METHOD ACC. ON
LFW

ACC. ON MIXED
DATASET

FACENET 99.5± 0.2 73.7± 0.2
DEEPFACE 97.4± 0.2 72.0± 0.6
RESNET-101 89.2± 0.4 70.8± 0.3
VGG-FACE 97.3± 0.1 71.3± 0.6
RESFACE-A 84.2± 0.3 70.1± 0.6
RESFACE-B 89.7± 0.2 71.0± 0.6
RESFACE-C 91.3± 0.2 71.2± 0.6
RESFACE-C-1 98.3± 0.9 74.3± 0.3
RESFACE-C-2 99.3± 0.9 76.3± 0.3

to other image types, unconstrainted color images, and aligned deep funnel images. Figure 3.10

illustrates the tracking of the activation layers for a sample. From the observation, it is clear that

ResFace memorizes the face area and extracts a collection of the face features.

Pose-Aware Recognition: ResFace was used to learn discriminative representations of the

different face poses. The model was trained considering random data augmentation, namely:

horizontally flipped and 30 degree rotation without normalizing images to a single frontal pose.

According to findings presented in Figure 3.12, we had some false detection and correct ones in

different poses, yaws and rolls of the faces.

Resolution Limitations: To investigate the minimum facial image resolution in a terms of

pixels, face images with resolutions of {250⇥ 250, 120⇥ 128, 60⇥ 64, 30⇥ 32} were used from

the Web-Collected training data. Test epochs comprise subsets of the MegaFace [73], and collected

private dataset. The results shown in Figure 3.11 indicate that 30 ⇥ 32 facial image size conveys

enough information for targeted facial recognition tasks.

3.5.2 Testing on the DNN Pipeline Constructed at Cameras

The proposed algorithm was implemented following the layered structure, presented in Figure

3.3. The experiment was conducted using a 2k high resolution camera with 20 fps and NVIDIA
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Table 3.2: Dependency of the proposed residual model on sample numbers.

min

#images

person

max

#images

person

ACCURACY ON LFW
14 25 79.91± 0.2
20 34 85.43± 0.2
32 51 90.20± 0.4
45 75 93.27± 0.1
14 75 87.22± 0.3

Figure 3.10: Feature extraction and show case memory of the activation layer in ResFace.

Table 3.3: Verification performance of different methods on LFW and mixed dataset.

FACE RECOGNITIONS TASKS ACCURACY

VERIFICATION 99.5± 0.2
IDENTIFICATION 97.4± 0.2
POSE+DIRECTION+IDENTIFICATION 89.2± 0.4

Jetson TX2 as the embedded system at the camera. After applying MTCNN-1 and predefined

target, we proceeded to face extraction. From the detected frames, faces were extracted and fed

to MTCNN-2 for face detection and alignment. In the next step, ResFace maps the faces to the

embedding for further face recognition tasks (i.e. identification and re-identification) in multi

cameras system. After face detection, the frames were sent to the pipeline for more processing (i.e.

pre-preparation of the data, face alignment, flipping the images, and illumination enhancement).

Pre-trained residual blocks were fed by the sifted data. On average, three people were present in

each frame or image. The video recordings were about one minute long, with 20 fps. The recording

environment also varied.
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Figure 3.11: Training and testing accuracy on different sizes of input images.
.

Table 3.4 presents the process time of the local identity re-identification matching algorithm,

namely: face detection and re-identification (re-identification points to two tasks face embedding

and local matching). In our evaluations, a number of faces in a frame is increased to study the

processing time of the algorithm. As reported in Table 3.4, the processing time for face detection

is stable while the number of detected faces increases to 200 faces per frame. In addition, the

processing time of the re-identification stage is a fraction of the processing time for the local

identity re-identification matching algorithm. In other words, decreasing the required processing

time of the detection stage to less than a millisecond can result in less than a millisecond identity

re-identification algorithm at the camera level; thus, viable for real world implementation.

In Figure 3.13, we have a visual observation of the facial embedding vectors for 75 identities

in different poses, illuminations, expressions, and with or without occlusions. A 2D t-distributed

stochastic neighbor embedding method was then used to illustrate facial embedding vectors of a set

of sample identities, 128 element for each face, prior to applying the local matching. As shown in

Figure 3.13, different face images of a person were clustered accurately. In other words, embedding

vectors are minimizing intra-class variations while discriminating inter-class similarities.

43



(a)

(b)

Figure 3.12: Example detections by ResFace in different poses, yaws, and rolls. (a) Correct
recognitions. (b) False recognitions

3.6 Conclusion

Increasingly, computing systems that interact with their environment, such as real-time surveil-

lance monitoring service and driverless vehicles, may need to operate autonomously (i.e. without

or with minimal human interaction). Such systems can be found in both civilian (e.g. smart cities

and Internet of Vehicles) and military settings (e.g. Internet of Battlefield Things or Internet of

Military Things).

In this paper, we presented a configurable interactive embedding system to extract the facial
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Figure 3.13: A 2-dimensional illustration of the embedding vectors using stochastic neighbor
embedding for 75 identities in different poses, illuminations, and expressions.

image features in crowds. The proposed system generates unique facial embedding per person

using our privacy-aware ResFace neural network and vectorized-l2-loss function in the training

phase. Edge computing is then utilized to facilitate or expedite real-time decision making. Fur-

thermore, the multivariate kernel density estimation (MKDE) matching algorithm is applied to

facial embedding pipelines generated by cameras at the edge for identity re-identification as well

as security verification tasks. We address potential performance degradation issues associated with

face recognition networks by parallelizing and moving the computation to each camera. In ad-

dition, we implemented the DNNs pipeline to extract crucial information of the scene for further

verification. Potential applications of this system includes places of mass gatherings and key (criti-

cal infrastructure) installation sites, which can be used to identify and re-identify persons of interest

in a crowd. For example, a person of interest (e.g. suspected suicide bomber) may be carrying a

backpack (with a homemade improvised explosive device) in images captured by one camera. The

person of interest then placed the backpack in a location where the explosion of the improvised

explosive devices is likely to cause the maximum impact, and threw the jacket in a trashbin. In

other words, this person may no longer be carrying a backpack or wearing the jacket, and may even
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Table 3.4: Processing time of the detection and re-identification tasks at the AI-Embedding camera
(in milliseconds).

# OF FACES
IN A FRAME

DETECTION IN
MILLISECONDS

RE-IDENTIFICATION IN
MILLISECONDS

1-10 7.99± 0.23 0.27± 0.05
12-20 7.91± 0.28 0.27± 0.07
21-30 8.06± 0.31 0.26± 0.08
31-40 8.08± 0.24 0.28± 0.06
41-50 8.12± 0.26 0.29± 0.09
51-75 8.11± 0.17 0.27± 0.07
76-100 8.12± 0.27 0.29± 0.08
101-200 9.23± 0.34 0.31± 0.11

sport a different hairstyle (e.g. wearing hair wig). The proposed system will be able to identify

this person as the same individual.

Future work includes integrating big forensic data reduction and management techniques such

as those proposed in [116, 117] in future design of the system, to facilitate timely pinpointing of

relevant evidence and intelligence from heterogeneous distributed systems.
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Chapter 4: TEMPORAL FACE EMBEDDING AS BIOMETRIC

TOKENIZATION FOR DECENTRALIZED IOT

This chapter is submitted to be published: Miraftabzadeh, Seyed Ali, Paul Rad, and Mo Jamshidi.

"Temporal Face Embedding as Biometric Tokenization for Decentralized IoT." In Machine Learn-

ing and Applications (ICMLA), 2017 16th IEEE International Conference (2017).

With IoT proliferation, a decentralized biometric access control system is crucial to ensure the

identity consistency in cyber physical space. In this paper, a biometric secure modality is pro-

posed based on temporal domain that is often available in IoT systems. A novel neural network

architecture, named LSTM-ResNet, is designed to learn the temporal dynamics of human biomet-

rics such as face for authentication. The model is designed to implement as a device-embedded

temporal face embedding as biometric tokenization to keep data securely decentralized on IoT de-

vices for real-time on-line and off-line identification. The combined novel temporal face embed-

ding, LSTM-ResNet and decentralized embedded IoT approaches prevent tampering and spoofing

unauthorized access. The preliminary results are promising for decentralized biometrics IoT and

motivate future work in this area.

4.1 Introduction

From a system-level perspective, the IoT authentication can be looked at as a highly dynamic

and heterogeneously distributed networked system, composed of a very large number of smart

objects producing and consuming information. For instance, mobile communications security,

smart vehicles, door locks, connected homes, medical devices and critical infrastructure all part

of a growing world of IoT devices. For these devices, an automated recognition of authorized

individuals poses a serious technical challenge which needs to be addressed. Such a system should

be convenient and guarantees the specific level of accuracy as well as keeping the individuals’ data
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safe from hackers. These requirements necessitate changes in conventional security modalities

methods, and in implementing authentication systems and algorithms.

Security modalities are classified into three categories: (1) possession, what we have as an au-

thentication tools: e.g. key, RFID or ID card. (2) cryptographic, knowledge base authentication:

e.g. PIN, password, challenge-response answers like as parents maiden name. (3) biometrics: e.g.

fingerprint, face, iris, etc. Obviously, possession base methods are in contrast with the easygoing

usage of IoT devices and are not always applicable. IoT authentication requires automated recog-

nition of individuals in many smart connected devices continuously which causes cryptographic

methods not enforceable as primary secure modality. However, knowledge base methods can be

incorporated in two-factor authentication for some cases through the secure sockets layer protocol.

Due to the IoT requirements, biometric is a preliminary candidate to address the issues. Biometrics

focus on evaluation, comparison, and statistical analysis of people characteristics. It falls into three

main classes: physiological which are related to the shape and size of the body, examples include

face. Behavioral which are related to the change in human behavior over time, for instance gait (the

way one walks), rhythm of typing keys. Combination of both which includes both traits, where the

traits are depending upon physical as well as behavioral changes, for example, voice recognition.

It depends on health, size, and shape of vocal cord, nasal cavities, mouth cavity, shape of lips,

etc. and the emotional status, age, illness (behavior) of a person. A secure and dynamic biometric

modality is proposed based on physical and behavioral changes of facial images over time. The

proposed method is different from common face recognition models designed for identification

and verification tasks in main viewpoints. The face recognition task can be done in a number of

various ways, such as by capturing a facial image using an optical camera (in the visible spectrum)

or by processing the facial heat emission captured by an infrared camera. In the visible spectrum,

face recognition tasks focus on modeling features from the central portion of the facial images that

do not change over time while avoiding superficial features such as facial expressions or hair. Face

recognition models are generally designed to increase identification and verification accuracy in

large datasets. However, proposed model relies on dynamic physical and behavioral characteristics
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Figure 4.1: Centralized authentication and overview of proposed decentralized authentication.

of a person facial images over time. It process the central portion of the person facial images in

a sequence of frames coming from one or multiple cameras. It considers the face variations in

different expressions in an uncontrolled environment, and focuses on an application for a typical

security coverage area with a near perfect accuracy rate. Notwithstanding, the proposed model can

be extended for smart city as a distributed model.

A centralized biometric system is essentially a pattern recognition process in which (i) a raw

data from an individual is acquired, (ii) a notable feature set from the raw data are extracted, (iii)

and then new extracted feature set is evaluated against the feature sets stored in the database, (iv)

finally a command to execute an action according to the result of the comparison is transmitted by

a center located not at the IoT device. The similar process is applied for other secure modalities
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Figure 4.2: Possibility variation of an individual’s facial images for the authentication task

as well, see figure 4.1a. To maintain privacy and eliminate the inconvenience of storing sensitive

biometric data, the proposed model is implemented as a device-embedded biometric authentication

system, see figure 4.1b.

Device-embedded biometric authentication keeps data securely decentralized on local IoT de-

vices and safe from hackers. In addition, it improves the security of endpoint IoT devices; all

the process, feature extraction and comparison software built into the IoT device itself. Since the

device essentially belongs to a person or specific group of people, the typical usage is a one-to-

one comparison of a probe biometric sample against the group biometric reference stored on the

device, see figure refdecentralized.

In the visible spectrum, several approaches to modeling facial images are Local Feature Analy-

sis, Elastic Graph Theory, Principal Component Analysis, Multi-Resolution Analysis, and Neural

Networks. The authentication problem can be translated to a binary classification problem, giving

input faces the answer is yes or no for each face. A new neural network architecture is proposed to

learn temporal features captured from a sequence of frames to classify faces’ dynamic structure.

The network learns a global interpretation of a face’ temporal evolution over time from a camera

or a groups of cameras. The network, consist two sub-networks: RNN-LSTM and ResNet.

To learn hidden patterns in time sequence, the proposed architecture drives a benefit from
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a recurrent neural network (RNN) with Long Short Term Memory (LSTM) units. RNN has a

drawback of vanishing and exploding gradients called Vanishing Gradient Problem, which makes

it inefficient for discovering long-term temporal relationships from the input sequences. Thus,

the RNN is implemented by leveraging enabled memory LSTM units to store the information for

long-term temporal learning. To extract dynamic facial features, residual neural network, ResNet,

is exploited as a discriminative learning neural network which also addresses the vanishing gradient

problem in the optimization phase. For each coming frame, one LSTM unit stack above ResNet as

a top layer before the final softmax layer. Therefore, the architecture leverages the local and dense

property from residual operation and learn long-term temporal structure by supplying information

in each LSTM units. Our contributions can be summarized as follows:

1. A biometric secure modality is proposed based on person dynamic facial features changes

over time instead of face recognition task for authentication.

2. Novel LSTM-ResNet architecture is leveraged to learn the long-term temporal structure from

a sequence of frames captured by a camera(s), and then classifying faces’ dynamic structure

for authentication task.

3. The model is designed to implement as a device-embedded biometric authentication to keep

data securely decentralized on local devices and safe from hackers. In addition, preserve

users privacy and eliminate the inconvenience of storing sensitive biometric data.

4.2 Related Works

Face identification is turning into a vital research subject, because of its extensive variety of con-

ceivable applications, similar to security get to control, demonstrate based video coding, content-

based video ordering, or propelled human and PC collaboration. It is additionally a required

preparatory stride to face acknowledgment and appearance examination.

Various methodologies for face identification have been proposed in the most recent decade,

a significant number of them depicted and analyzed in two intriguing late reviews by Learned-
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Miller [83], and Zhang et al. [173]. Most face identification techniques depend on neighbourhood

facial element recognition and order utilizing factual and geometric models of the human face. Low

level investigation initially manages the division of visual components utilizing picture properties,

for example, edges, force, shading, movement, or summed up measures. Different methodologies

depend on format coordinating where a few relationship layouts are utilized to identify nearby

sub features, considered as inflexible in appearance (eigen features) or deformable. At that point,

visual elements are composed into a more worldwide idea of face through facial component and

heavenly body investigation utilizing face geometry imperatives.

The principle downside of highlight based methodologies is that either minimal worldwide

requirements are connected on the face layout or removed components are essentially impacted

by impediments, and changes in face look and perspective. With a specific end goal to deal with

troublesome situations where various appearances of changed sizes and postures must be recog-

nized in vigorously jumbled foundations, some propelled picture based example acknowledgment

methods have been produced. They keep away from the particular and conceivably off base face

displaying by picking up fundamental tenets contained in very factor confront designs from vast

preparing sets of face illustrations. They have ended up being exceptionally tolerant to commotion

and twists influencing the face designs.

In [33], Erkin et al. used the standard Eigen faces recognition algorithm in order to create

the first privacy-preserving biometric face recognition protocol. The protocol is a secure two-

party computation protocol which allows only the inquiring side (client) to see the matching value.

Hence, only a client is interested in determining whether it has any image in common with server’s

database, without worrying about the leakage of unnecessary information. The Euclidean distance

between the face image feature vectors from the client and server’s face image database is com-

puted. The facial image data record that has the smallest distance to the client’s input biometric

data is returned. An additive homomorphic encryption (AH-Enc) scheme is used on the data ex-

changed. Only the data exchanged during execution of the protocol are encrypted. However, the

data on the server is not encrypted, and so, the server is aware of its biometric database.
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A privacy-preserving biometric identification protocol was developed by Blanton and Gasti in

2011 [175]. This protocol used iris codes based on Hamming distance. AH-Enc and garbled

circuits were also used with this protocol. The iris reading of the client is compared with an iris

image in the database managed by the server. The client is made aware of the comparison results

and every record in the database of server, but the contents of the server are not disclosed to the

client.

Later, in 2012, a secure outsourcing approach developed by Blanton and Aliasgari [14] out-

sourced the computations of iris biometric comparison with data records. Two protocols were put

forward; single-server setting and multiple-server setting. The first protocol utilizes a predicated-

encryption scheme, where the server performs non-interactive computations. The homomorphic

encryption is more secure than the predicate encryption. This is why the protocol presents a more

secure biometric system, with greater privacy protection. In their work, the protocol is dependent

on at least three independent servers. Another drawback is that, at the end of the protocol exe-

cution, the server detects which encrypted biometric data record matches the client’s input. This

access pattern leakage can breach the security guarantee of the underlying encryption scheme. our

scheme does not disclose any information; therefore, it offers the same security protection as the

encryption scheme used to encrypt the outsourced biometric image.

4.3 Method

To include all the facial image variations, see figure 4.2, a sequence of video frames (c
1

, c
2

, ..., c
n

)

is considered as an input and the output of the network is a binary number y authorizing the user in

multiple devices connected to the IoT, see figure 4.3. We propose a residual network with a LSTM

layer on top of that to extract intra-class similarity and inter-class discriminatory of captured facial

images from different video frames; in other words, the conditional probability of the output,

p(y|(c
1

, c
2

, ..., c
n

)).
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4.3.1 Extract Temporal Features as an Embedding Vector

Temporal feature of a facial image in a frame is presented as an embedding vector. The embedding

vector per identity is constructed through the residual network architecture consisting residual

blocks. The general form of each block can be formulated as:

y
l

= h(x
l

) + F (x
l

, (W
r

, b
r

)

l

)

x
(l+1)

= f(y
l

)

(4.1)

where x
l

and x
l+1

are input and output of the lth unit, h is a forward function of the plain unit, F is a

residual function and r stands for the number of repeated convolution layer in the residual function,

and f is a differentiable threshold function. Figure 4.5 (b) demonstrates an example of the general

form of the residual unit. The initial idea of ResNet is to achieve additive residual function F with

respect to h(x
l

) and facilitates minimizing the loss function. In this regards, [53, 54] emphasize

on the importance of the identity mapping, h(x
l

) = x
l

, so in the general formula we denote on r

to represent the repetition times of the convolutional layers in residual branch and we follow the

identity mapping for the plain branch. In residual block, the other noteworthy nob is differentiable

threshold function. If f is also considered identify mapping, for any deeper unit L and shallower

unit l:

x
L

= x
l

+

L�1

X

i=l

F (x
i

, (W
r

, b
r

)

i

) (4.2)

This assumption turns the matrix-vector products, say:

x
L

=

L�1

Y

i=0

W
i

x
0

, b
i

= 0 (4.3)
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Figure 4.3: LSTM-ResNet architecture unrolled in time for m cameras and n frames, n > m.

to the summation of the outputs of all preceding residual functions (plus x
0

) [54], and consequently

clean backpropagation formula:
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one of the most interesting properties of this architecture is reducing the probability for the gradient

to be canceled out. Refer back to the general form of the residual units, there are other residual

units with the properties of increasing dimensions and reducing feature map sizes [53,152] by using

the conventional activation function, Rectified Linear Unit (ReLU), as the differentiable threshold

function:
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(4.5)
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Figure 4.4: Illustration of mapping facial images captured from different cameras to the embed-
ding vectors

The last residual block maps a facial image into the embedding vector. Figure 4.4 illustrates

such a mapping for different facial images captured from a camera(s) in different angles and time

windows.

4.3.2 Exploring Temporal Relation in a Sequence of Embeddings

The output of the embedding vector is feed to the LSTM unit which is the modified version de-

scribed in [41]. LSTM units [56] have the ability to learn long range dependency from the input

sequences. At the time step t, the behavior between input(x
t

), output(h
t

), and internal state is

controlled through three gates. For each unit c
t

stores the internal state and three gates are input

gate(i
t

), output gate(o
t

), and forget gate(f
t

). where W and b are model parameters, � is sigmoid

function and g
t

is the non-linear transformation of inputs, see Figure 4.6. To capture the temporal

relation from the video frames sequence which is importance for identity authentication, outputs

and cell memories from last time step are connected to the three gates through defined dot products

in:

i
t

= �(W
xi

x
t

+W
hi

h
t�1

+W
ci

c
t�1

+ b
i

) (4.6)

f
t

= �(W
xf

x
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+W
hf

h
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+W
cf

c
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+ b
f

) (4.7)
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g
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= PReLU(W
xg
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) (4.9)

c
t

= f
t

� c
t�1

+ i
t

� g
t

(4.10)

h
t

= o
t

� PReLU(c
t

) (4.11)

inputs of the three gates consist of the current time step of the input and last time step of the output

and internal memory. The cell memory is updates as a result of the combination of input gate(i
t

)

and forget gate(f
t

), Equation 4.10. The influence of the input in the internal state is controlled by

input gate and forget gate takes the control over the contribution of the last internal state to the

current internal state.

4.3.3 Architecture

In general, the experiment results show combination of residual architecture and embedding ad-

dress the over-fitting and degradation problems. The augmented LSTM units with PReLU can

learn the fine distinction between sequences of nonlinear periodic embeddings patterns without

external resets or teacher forcing.

The implementation for residual network follows the practice in [53, 54]. To address the dif-

ferent scales of the facial images, a pyramid scale of each sample is crated the face images with a

resolution in {250⇥ 250, 120⇥ 128, 60⇥ 64, 30⇥ 32} are used and he maximum mini-batch sizes

are {32, 64, 128, 128, 324} respectively.

4.4 Training Methodology

The LSTM_ResNet model is implemented and optimized by using TensorFlow, the open-source

software library for machine intelligence [1]. The residual network and LSTM units are trained

separately on advanced NVIDIA Tesla P100 GPUs with 5.3 TeraFLOPS built for data center. The

test is carried on embedded system, NVIDIA Jetson TX2.
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Figure 4.5: Left: (a) General form description of the residual unit. Right: (b) illustration of
the residual unit including: residual branch consists of two convolution layers each following by
pooling and Batch Normalization at the end, and plain branch with two convolution layers follow
by the pooling.

Different residual network architectures are trained from scratch while sharing almost the same

optimization strategy and parameters. In the training phase, precise investigation of the effects of

different stochastic gradient descent (SGD) algorithms are conduced: Adaptive Subgradient [29],

RMSProp [156], Adam [75], and Momentum [151]. It is observed that Adam optimization algo-

rithm outperforms the other methods because of the bias-correction characteristic of the algorithm.

The best performance were achieved with �
1

= 0.96, �
2

= 0.9, and ✏ = 91. For several epoch

iterations the learning rate is set to 0.001 and it is reduced by a factor of 10 to stabilize the opti-

mization. L2�norm with a weight decay of 0.1 is applied as an artificial constraint to implicitly

reduce the number of free parameters and not to make the network difficult to optimize. Since the

network is trained for the specific group of authorized users, it is avoid to exploit dropout as the

regularization method.

LSTM units are trained following the practice in [41] using stochastic gradient decent (SGD)

and a momentum of 0.9 with the truncated BPTT. To capable LSTM to learn bridging minimal

time lags, the gradient is truncated where the performance degradation is observed.
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Figure 4.6: LSTM unit illustration. Each circle with a curve means a non-linear transformation.
Circle with a dot is element-wise product operation. Square with a plus sign is element-wise plus
operation. The dashed arrow means connection from the last time step.

4.5 Experiment

The residual network is trained using FaceScrub dataset [108] which is one of the most accurate

face datasets in terms of duplicated, mislabeled, and morphed faces. It comprises a total of 106,863

facial images of 530 celebrities (male and female), with about 200 images per person. As such,

it is one of the largest public face databases, with an average of 2.15 images per person. Images

are collected from Internet and are taken in uncontrolled conditions (real-world situations). To

maximize the usage of the dataset, it is splitted into seven folds; five folds for training, one fold

for validation, and two folds for testing. Note that there is no common subjects in the folds. To

prevent the unbalance problem, it is tried to make an even ratio of image per person in each fold.

The LSTM units of the LSTM-ResNet model are trained using YTF dataset [166], with no

people overlapping with FaceScrub. YTF dataset consists a large variations in pose, expression

and illuminations for 1,595 recorded different identities in 3,425 videos (in average 2.15 videos

per person). The dataset is made up of divers video durations, 48 frames to 6,070 (in average 181.3

frames per video).
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Table 4.1: Different architecture for applied residual network for LSTM-ResNet. Building blocks
are shown in brackets, with the numbers of blocks stacked.

Layer name ResNet-A ResNet-B ResNet-C

conv_0 7⇥ 7, 64 stride 2

conv_1 7⇥ 7, 128 stride 1

block_0

2

4

1⇥ 1, 32
3⇥ 3, 32
1⇥ 1, 32

3

5⇥ 3

⇥

1⇥ 1, 32
⇤

⇥ 1

2

4

1⇥ 1, 32
3⇥ 3, 32
1⇥ 1, 32

3

5⇥ 3

⇥

1⇥ 1, 32
⇤

⇥ 1

2

4

1⇥ 1, 32
3⇥ 3, 32
1⇥ 1, 32

3

5⇥ 3

⇥

1⇥ 1, 32
⇤

⇥ 1

block_1

2

4

1⇥ 1, 32
3⇥ 3, 32
1⇥ 1, 32

3

5⇥ 3

⇥

1⇥ 1, 32
⇤

⇥ 1

2

4

1⇥ 1, 32
3⇥ 3, 32
1⇥ 1, 32

3

5⇥ 3

⇥

1⇥ 1, 32
⇤

⇥ 1

2

4

1⇥ 1, 32
3⇥ 3, 32
1⇥ 1, 32

3

5⇥ 3

⇥

1⇥ 1, 32
⇤

⇥ 1

block_2

2

4

1⇥ 1, 32
3⇥ 3, 32
1⇥ 1, 32

3

5⇥ 3

⇥

1⇥ 1, 32
⇤

⇥ 1

2

4

1⇥ 1, 32
3⇥ 3, 32
1⇥ 1, 32

3

5⇥ 3

⇥

1⇥ 1, 32
⇤

⇥ 1

�

block_3

2

6

6

4

1⇥ 1, 32

3⇥ 3, 32

1⇥ 1, 32

3

7

7

5

⇥ 3 � �

Embedding Average pool, 128� d fc, softmax

The facial data in the images and the videos varies in size and length, and contains a lot of

background noises. To make them ready for LSTM-ResNet model to train, face detection and

alignment are the primary steps. Multitask convolutional neural network proposed in [174] is

applied on both datasets for the experiment. Cases in which the algorithm fail to detect face

locations are eliminated from the experiment process. For data augmentation in the training phase,

after cropping face locations images are randomly horizontally flipped, rotated {3�, 5�, 7�, or 10�},

and brightness and contrast of the images are manipulated.

4.5.1 Model Details and Results

Three types of residual network architecture are explored, see Table 1. Their practical differences

lie in the variation in the number of residual blocks and consequently FLOPS. Depending on
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(a) Training accuracy (b) Learning rate

Figure 4.7: Classification results for training different ResNet architectures on FaceScrub. The
deeper network has better training accuracy, and thus training error.

the application, the best model may be different. A model running at the embedded system as

the edge device can have many parameters and handle more computation per second, where as

the model running on a mobile phone has restrictions in a term of memory capacity and device

battery life. Suggested approach in [91] is followed and feature extraction is performed by adding

1⇥ 1⇥ d convolutional layers rather than playing with different filter sizes. Dimension matching

in connections is performed by the sole convolutional layer at the end of each block except the last

one connected to the embedding.

On the FaceScrub dataset, the residual networks are trained to learn a feature mapping from fa-

cial images to a feature vectors in a compact euclidean space in which L2�norm distances present

the similarity of faces [135]. To address hard samples problem [135], the residual networks su-

pervised by center loss are trained and optimized by standard stochastic gradient descent instead

of the original triplet loss function for such an embedding system. All residual architectures are

trained with previously described folds, the average loss of a validation fold in multiple experi-

ments is used to tune the models parameters. The best parameter is exploited to retrain models on

the whole training folds and then the final result is reported on the fold test. Figure 4.7a shows

the classification accuracy obtained from the training on different permutations of the five train-

ing folds. The deeper residual architecture, ResNet-A, was training much faster, see figure 4.7b.
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Figure 4.8: Sparsity illustrations of the activation function at the end of each residual block for
ResNet-A architecture.

The experiment illustrates the deeper network has better training accuracy, and thus training error.

The proposed network is explored and examined with multiple probes to monitor the bias-variance

trade-off of the weight vectors, in the training phase. To increase the algorithm performance, the

hyper-parameters are fined and tuned to achieve a balance between bias and variance. In turn, the

algorithm utilize all variables to learn fair assumptions about the form of the target function while

suggesting small changes to the estimate of the target function, see figure 4.8 showing sparsity of

the activation layer at the end of each residual block. Table 4.2 presents some comparisons be-

tween various versions of residual networks for top-1 error and top-5 error on validation fold and

test fold. These major observations affirm ResNet-A reduces the top-1 error by 2.68%, which is

a result from the successfully reduced learning error in the training phase, see figure 4.7b. This

comparison verifies the effectiveness of residual learning on extremely deep systems. Figure 4.9
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Table 4.2: Error rates (%) of single-model results on the FaceScrub validation fold and test fold.

Model
Validation Fold Test Fold

top-1 error top-5 error top-1 error top-5 error

ResNet-C 17.81 5.22 18.03 3.01

ResNet-B 15.37 3.12 16.36 1.88

ResNet-A 15.13 1.97 16.12 1.23

Figure 4.9: Sparsity illustrations of the activation function at the end of each residual block for
ResNet-A architecture.

illustrates a classification result of the 128�d embedding for ResNet-A architecture after applying

2D principal component analysis.

The basic result of the LSTM-ResNet architecture on YTF dataset is summarized in table 4.3.

The result indicates that LSTM-ResNet architecture can learn a discriminant representation of the

input facial images over a sequence of frames. Two protocols are introduced in table 4.3, large pro-

tocol which indicates that the related method is trained using large datasets in sophisticated efforts,
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Table 4.3: Performance of different methods on YTF datasets.

Method Protocol Acc. on YTF

DeepFace [155] Large 91.4%

FaceNet [135] Large 95.1%

Deep FR [112] Large 97.3%

ResNet-A Small 84.4%

LSTM-ResNet-A Small 94.7%

and small protocol indicating that small training dataset is used for the related method. Note that

the proposed approach focuses on small protocol rather than the large one. The methods which are

trained in large datasets show decent results in face recognition task on YTF. Significantly, the pro-

posed LSTM-ResNet method exhibits analogous results. Note that face recognition methods try to

recognize an individual on an image correctly, but LSTM-ResNet tries to recognize an individual

on a sequence of frames recorded the person. The best obtained accuracy of ResNet-A architec-

ture by itself is 84.4%, and 94.7% accuracy for LSTM-ResNet-A architecture, which is a notable

improvement compared to the ResNet-A. By learning temporal features from input sequences, the

LSTM-ResNet-A model performs superior than general residual neural network and analogously

to sophisticated architectures trained on large datasets.

4.6 Conclusion

A biometric secure modality is proposed to recognize an individual. The model performs base on

the temporal extracted person facial feature changes over time. A neural network based architec-

ture is proposed, named LSTM-ResNet, to make a precise recognition task. LSTM-ResNet model

leverages cascaded residual neural network blocks to extract the temporal facial feature and map

them into the embedding vector; each embedding vector presents a sole person in a frame. Then for

each individual related embedding vectors are fed into LSTM units to learn the long-term temporal

structure from a sequence of frames captured by a camera(s), and then perform the recognition

task. The model shows decent results comparing with sophisticated models, although it is trained
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in small dataset. The model is designed to implement as a device-embedded biometric authenti-

cation to keep data securely decentralized on local devices and safe from hackers. In addition, the

decentralized model preserves users privacy and eliminate the inconvenience of storing sensitive

biometric data.
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Chapter 5: DISTRIBUTED ALGORITHM WITH INHERENT

INTELLIGENCE FOR MULTI-CLOUD RESOURCE PROVISIONING

This chapter has been published: Miraftabzadeh, Seyed Ali, Paul Rad, and Mo Jamshidi. "Dis-

tributed Algorithm with Inherent Intelligence for Multi-cloud Resource Provisioning." In Intel-

ligent Decision Support Systems for Sustainable Computing, pp. 77-99. Springer International

Publishing, 2017.

5.1 Introduction

According to a forecast from International Data Corporation (IDC) (http://www.idc.com/)

the worldwide spending on public cloud services is expected to surpass $107 billion in 2017 [157].

Among different forms of delivering cloud services, IDC recognized the Infrastructure as a Service

(IaaS) model as one of the fastest growing categories with compound annual growth rate of 27.2%.

IaaS is a promising solution for enabling on-demand access to an elastic pool of configurable and

virtual computational services (e.g., computing power, storage, and networks) in a pay-as-you-go

manner. IaaS providers offer computational services in the form of Virtual Machine (VM) with

specific resource characteristics such as computing power, memory, disk space and networking

bandwidth along with types of operating systems and installed applications. Despite traditional

distributed computing systems such as Grid [37], cloud computing focuses on the monetary focal

point while promising flexibility and high performance for users and cost-efficiency for operators.

Furthermore, taking advantage of the virtualization technology gains more resource utilization and

Return On Investment (ROI) [9].

In addition, cloud computing is increasing its penetration among industry, research institutes,

and universities across applications. An increasing amount of computing is now performed on

public clouds, such as Amazon EC2, Windows Azure, Rackspace, and Google Compute Engine or
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on private clouds hosted by enterprise using open source OpenStack software. In addition, numbers

of cloud computing research test beds and production sites such as Chameleon or JetStream have

been supported by National Science Foundation (NSF) to support academic research.

As a drastic increment of the customers, a variety of requested types and emerging cloud com-

puting providers profit maximization for customers and providers becomes a more entangled prob-

lem in terms of minimizing the cost using resource management [9, 121, 122, 141], performance

improvement in networking and applications [104,120], maximizing request revenue by providing

multi price services [45], market segmentation [163] and prognostication the demands [176].

Considering the natural perishable characteristic of the cloud resources produces a primary con-

clusion to maximize the resource utilization and to avoid wasting the non-storable cloud resources.

On the other hand, honoring the associated Service Level Agreement (SLA) which guarantees the

certain level of Quality of Service (QoS) imposes another robust constraint and increases the com-

plexity of the problem. A topic of recent interest, the federated cloud and multi-cloud deployment,

allows different cloud providers to share resources for increased scalability and reliability. The aim

of the Multi-Clouds is to integrate resources from different providers in a way that access to the

resources is transparent to users and cost can be reduced [96]. Furthermore, the Multi-Clouds is

a possible mechanism for maximizing a provider profits by leasing part of the available resources

in the pool computing center for the requested bids by other providers [32, 96, 128]. So the Multi-

Clouds implicitly maximizes the resource utilization while keeping the required QoS.

Maximizing the resource utilization requires the resource allocation decision which involves

determining what, how many, where, and when to make the resource available to the user [87].

Typically, users choose the type and amount of the cloud resources and providers place the petition

for specific ones onto nodes in their datacenter. Running the application efficiently entails matching

the type of the resources and the workload characteristics. In addition, the amount should be

sufficient to meet the indicated constraints in SLA. In a pay-as-you-go environment like the cloud

where users can request or return resources dynamically, time scheduling such as an adjustment

is also important to consider. To maximize resource utilization, the job scheduler is responsible
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for allocating desired resources to an individual job and in parallel it should be guaranteed that

each job is given an adequate amount of resources, or its fair share. Such a scheduling decision

becomes more complex in the cloud computing as a heterogeneous environment with two players:

cloud providers and cloud users. On one side, there are the users who have fluctuating loads

with a variety of applications and requests. On the other side, consolidated cloud environments

are likely to be constructed from a variety of machine classes, representing different options in

configuring computing power, memory and storage [125]. The Multi-Clouds is an exceedingly

multi-parts heterogeneous system as a result of sharing diversity sets of datacenters in terms of

technical performance and monetary strategies.

Mathematical interpretation of effectively allocating resources in the Multi-Clouds is a multi-

dimensional self-optimization problem in distributed autonomic computing systems. As a bridge

between providers and users, utility functions have very smart theoretical properties and their use

in practical autonomic computing systems started to explore in [17] and [72]. Utility functions

can enable a collection of autonomic elements to continually optimize the use of computational

resources in a dynamic, heterogeneous environment [161].

There are a lot of works that have been done for two major cloud platform advantages: produc-

ing the flexible available resources and minimizing the cost of the datacenters [7,8,49]. Neverthe-

less, relatively less work has been done on the cloud provider sideway to maximize revenue and

diminish cost of services. In this paper, based on the Sigmoidal and Logarithmic utility functions

the proposed algorithm guaranteed the dynamic and scalable job scheduling in the heterogeneous

Multi-Clouds environment for the most flourishing cloud service, IaaS. In parallel, the algorithm

guaranteed the minimal management effort or service providers? interaction. The algorithm can

rapidly provide and release Multi-Clouds pool resources at once period of processing decision.
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5.2 Background in Resource Management in Cloud Computing and Grid

Computing

This section describes the resource management found in Grids and Clouds, covering topics such

as the compute model, data model, virtualization, monitoring, and provenance. These topics are

extremely important to understand the main challenges that both Grids and Clouds face today, and

will have to overcome in the future [38]:

5.2.1 Compute Model

Most Grids use a batch-scheduled compute model, in which a local resource manager (LRM),

such as PBS, Condor, SGE manages the compute resources for a Grid site, and users submit batch

jobs (via GRAM) to request some resources for some time. Many Grids have policies in place

that enforce these batch jobs to identify the user and credentials under which the job will run

for accounting and security purposes, the number of processors needed, and the duration of the

allocation. For example, a job could say, stage in the input data from a URL to the local storage, run

the application for 60 minutes on 100 processors, and stage out the results to some FTP server. The

job would wait in the LRM?s wait queue until the 100 processors were available for 60 minutes, at

which point the 100 processors would be allocated and dedicated to the application for the duration

of the job. Due to the expensive scheduling decisions, data staging in and out, and potentially long

queue times, many Grids don?t natively support interactive applications; although there are efforts

in the Grid community to enable lower latencies to resources via multi-level scheduling, to allow

applications with many short-running tasks to execute efficiently on Grids [123].

Cloud Computing compute model will likely look very different, with resources in the Cloud

being shared by all users at the same time (in contrast to dedicated resources governed by a queuing

system). This should allow latency sensitive applications to operate natively on Clouds, although

ensuring a good enough level of QoS is being delivered to the end users will not be trivial, and

will likely be one of the major challenges for Cloud Computing as the Clouds grow in scale, and
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number of users.

UberCloud is the community and marketplace platform to discover, try, and buy computing

resources. This platform has explored the roadblocks of Cloud Computing with a crowd-sourcing

approach. In mid 2014, more than 60 cloud resource providers and 80+ software providers joined

the UberCloud, to provide free computing cycles to experimental projects, and commercial com-

puting cycles to business. During the Computing Insight UK 2015, the UberCloud and ClusterVi-

sion, jointly presented Docker based HPC cloud stack. They showed that capability of Trinity in

managing UberCloud highly optimized application containers [40].

Cloud Services Brokerage offers three capabilities: Cloud Service Intermediation, Aggrega-

tion, and Cloud Service Arbitrage. STRATOS which facilitates the management by using ele-

ments/services sourced on the fly from multiple providers is proposed in [113]. Houidi et all

present the algorithm to split the user requests while certify provisioning from multiple cloud and

the same algorithm is settled to resourcefully split the cloud requests among the multiple cloud

platforms with the intention of decreasing the cost for customers [58]. The other type of broker, a

cloud aggregator, may benefit from charging a premium for providing more than a straightforward

resale agreement.

5.3 Resource Management and Upcoming Challenge

Two main stakeholders in cloud computing, providers which are serving cloud services and cus-

tomers which are client or consumers of the produced services, have their own inevitable momen-

tous operative influence to make the cloud environment as a heterogeneous system. Particularly,

heterogeneous cloud computing datacenter is considered in this section to overcome the resource

management problems in multi-cloud.
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Figure 5.1: Illustration of Ranking Method.

Collaboration across the clouds requires strapping monitoring and management mechanism

which are the key components for provisioning, scheduling and failure management [36]. Effi-

ciently provisioning computing resources in a pool of heterogeneous datacenters has been done by

the proposing Ranking Method. Producing a dynamic sequence of the available resources based

on the hierarchical characteristics of the cloud providers is the first step of the proposed algorithm.

The dynamic sequence could be matched with dynamic pricing which it has been acknowledged by

the literature [96, 167]. Since then the model could be considered as one of the dominant methods

to maximize the request revenue and consequently get the most out of the resource utilization. The

dynamic pricing can be explored by using intermediate parameter as Bids between customers and

cloud providers. In addition, the Ranking Method can be administrated based on most instanta-

neous parameters, in [150] more detail for effective parameters are described. Figure 5.1 illustrates

the high level topology of the Ranked system. The Ranked System can have been embedded on

cloud embodiment or it can function as an independent scheduler system. It consists of Ranked

Method and Ranked Method consists of Ranked Scheduler. The Ranked system communicates not
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Figure 5.2: Distributed scheduling system components.

only to cloud providers directly but also to other types of cloud topologies such as Multi-Clouds

directly or in directly and monitor and control ongoing processes.

Distributed scheduling system consists four major components, see figure 5.2. Following the

API, user interface communicates with the Ranked System distributed in Configuration Database,

Scheduling Algorithm, and Operation Database. Configuration Database feeds the Scheduling Al-

gorithm with the assigned utility functions. Using intelligent forecasting, utility functions describe

the requested services while considering the providers? concerns; for instance, maximizing the re-

source allocation while minimizing the power consumption. Operation Database applies the final

decision of the Scheduling Algorithm and inspects online activities of consumers and providers;

the aim of the latter task is for real time notification for the Scheduling Algorithm.
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Ranked System follows the following clues:

• similar instances of different providers are situated in the same group (which is named

clutch)

• initially top ranked instances have the uppermost slots and bottom ranked instances have the

lowermost slots

• for customer satisfaction, evaluation of the requested service is placed in a specific group

based on the lowest and highest requested instances; interpolation and other methods can be

used

• before fully occupied resources, top ranked instances are allocated to the corresponding

request

• after fully occupied resources, top ranked instances may not be allocated for the request but

another ranked instance in a same clutch has more opportunity to be allocated to the task.

This action strictly depends on the assigned utility function to the request.

• transcendent ranked instances ameliorate customer satisfactions for the assigned service

• transcendent ranked instances are unintended to be occupied if the number of demand in-

creases

• inferior ranked instances keep the request revenue in order to maximize the cloud revenue

• instances in a same clutch can be reshuffled to maximize the resource utilization if there is

profit for the corresponding providers

• hedging from clutch to the adjacent clutch is possible in a case of resource shrinking and

strictly depends on the utility function

• each clutch could include different providers
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Figure 5.3: Detailed Rank System Architeccture.

Details of Ranked system architecture are depicted in figure 5.3. Web Application and API is

the gate for managing applications, services, clouds; it supports Rest based API alongside any

other types of input which can be done through User Interface. Configurable management is the

manager of models, assemblies, environment; it matches the demands from the consumers to the

user profile. Ranked Method is responsible for creating scheduling design and deploy the design;

more explanation is provided in the following paragraph. Heuristic Evaluation which is responsi-

ble of comparing deployed design to planned design, consumers activities and consumers updates.

Messenger Dispatcher provides the details monitoring facilities for User Interface with the metrics

data. Elastic-Search Service records all deployments, thread, dataflow, task mapping, assemblies,
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Figure 5.4: Illustration of the utility functions and application in Ranked System.

and environments. The attached engine to it provides log analytics, real-time application monitor-

ing, and click stream analytics. Publisher tracks the Ranked Method and post the design on the

massage bus. Auxiliary Service helps implementing policies and costs models. Real time storage

of the metrics data which are provided by Collector, is a database having the features such as scal-

ability and high availability without compromising performance. Internal communication between

the components is carried on by Message bus. Controller is responsible for distributing action or-

ders. Functionality of the collector includes metrics data from instances for any event. multi-cloud

contains an Inductor and the pool of shared. Inductor receives the design and deploy the actions

and post the results message to the system. It is responsible for executing steps in implementation,

gather the queue of clouds specifications, and make the reaction queue and report it to controller.

5.3.1 Utility Functions in Ranked System

In this section a scenario is studied to clarify how the proposed algorithm gets advantage of the

sigmoidal utility function; the concept can be extended to logarithmic function which we use for

elastic tasks. Figure 5.4 illustrates four clutches in which five providers make a pool of ranked
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instances as small, medium, large and extensive large. Six unalike sigmoidal utility functions

corresponding to the six types of customers or services are shown in Figure 5.4. Utility functions 1

and 2 belong to the small clutch in which provider number 5 (P5) has the highest priority to serve

any request in the clutch. In this clutch customers who are assigned to utility function 2, rather

than 1, has more chance to take the better service based on the chosen ranked parameter.

However, utility function 1 gets services simultaneously from P5 if enough resources are avail-

able in the Multi-Clouds. By increasing demands and reducing the number of free instances, the

chance of getting services from inferior provider increases. The Ranking Method tries to provi-

sion resources for all of types of the customers. However, by increasing the number of requests

for a specific provider or clutch, based on the Service Level Agreement (SLA), three scenarios

are likely to be happened. First, pass the customer to the lowermost neighbor provider or lower

ranked provider. Chosen desired sigmoidal function by the customers carries on this scenario au-

tomatically. Second, the customer may lose allocated instances if it does not satisfy the provider

proposed conditions such as raising the price. This scenario can be implemented by control the

whole number of available resources, (V � z), in each processing period. Finally, the customer

accepts the proposed condition and the allocated instances are remained to serve the customer.

Utility function 3 describes the only service in the medium clutch. It spread over the whole clutch

from P1 to P5; so each of the serving providers can provision the customer.

For large clutch only utility function 4 is presenting services but it spreads not only in large

clutch but also from small clutch to extensive large clutch. Consequently, customers in this utility

function have a potential to get serve in a variety clutches; the customers have a chance to have an

experience in extensive large clutch when enough pooled resources are available. Apparently, it is

not a case when Multi-Clouds has an experience in high amount request.

This types of utility function expansively helps a lot to maximize the revenue of the requests

by providing motivation such as paying less for this types of functions. Finally, in extensive clutch

two types of utility functions are managing the requests revenue and resources of the providers.

As it is illustrated utility function 5 has the sharpest slop in this simplified properties illustration
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of Ranking Method. This types of utility function can be fixed in a specific provider with two

applications: first, serves a customer by a specific ranked or no ranked properties over a time. Next,

fixed the instance of the provider for a service after the customer accepts the dynamic conditions

of the provider such as dynamic pricing.

Figure 5.5. shows how clutches are formed in the Ranked Method. Monitoring delivers the

specifications of the cloud providers to categorize the instances based on VDs properties, for ex-

ample Computational power, Memory Size, and Hard Drive capacity. To this point it is refer to

collecting the information. After the collecting process the selection process is established. Dy-

namic and static parameters are observed to weight instances and assigned best matched utility

function. Dynamic parameters could be any variables which may vary; such as measurement unit,

occupation percentage of a cloud provider, networking parameters, elastic resources. Static param-

eter such as: service type, security, Quality of Service (QoS), pricing unit, instances size, operating

system, pricing sensitivity to regions, subcontractor, and many other.

In addition, figure 5.5 illustrates the weighting, indexing, and ranking steps. It is based on

statistics and predictions. Predicting the variation is not limited to the cloud providers side, it is

connected to the user data also. Indexing steps uses the activity and history of the cloud providers

and customers to predict the workload. Machine Learning algorithms and other methods can be

used in this steps. The weighting phase monitors the system continuously. However, indexing

phase is one-time decision; it is carried on in every specific period of time. Finally, a queue is

generated to make the ranked instances using the result of weighting and indexing phases.

So far, it is described that how the Ranking Method provides flexibility to serve the customers

dynamically, by applying some principle conditions in the SLA to match the customer requests and

utility functions. Maximizing the profits of the cloud providers, as one of the primary goals of the

Multi-Clouds, makes the Ranking Method as a method to potentiate the dynamic pricing conditions

in the SLA. In the next step mathematical formulation would be studied and the Ranking Method

is presented as the distributed algorithm in the Multi-Clouds.
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Figure 5.5: General view of ranking steps.
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5.4 Mathematical Formulation of the Algorithm

In this section, we will present design and implementation of the distributed algorithm of optimized

controller for resource allocation of elastic and inelastic traffic using logarithmic and sigmoidal-

like utility functions. This algorithm is based on the utility proportional policy to maximize the

requests revenue where the fairness among users is in utility percentage and describes the user

gratification with the service of the corresponding bid. Furthermore, this algorithm precisely pro-

vides information of the available resources and distributes them among the users. It could be

implemented as a part of the cloud service brokerage or as a separate unit in cloud computing

architecture of IaaS.

Mathematical formulation of the algorithm includes Sigmoidal [88] and Logarithmic [159]

utility functions which have had applications in resource scheduling. These are used as gauges

for dynamically resources allocation such that predefined required constrains by SLA are satisfied

and cloud providers get the benefit of using all their available resources and minimizes the oper-

ating costs. Virtual data center (vDC) is considered as the resource unit; however, the approach

can straightforwardly be extended to consider a variety kinds of instances which include different

amount of compute, memory, storage and bandwidth resources.

The vDC allocated by controller to the kth service is given by v
k

. Presumption of the algorithm

is suitable utility function is assigned to the service by using techniques such as interpolation,

statistic methods or others. Our objective is to determine vDC that the scheduler should allocate to

the specific customer. For this optimization problem we are looking for the strictly concave utility

functions that satisfies the following properties:

(a) U
k

(v
k

) is an increasing function of v
k

.

(b) U(0) = 0 and U(1) = 1.

(c) U
k

(v
k

) is twice continuously differentiable in v
k

.

(d) U
k

is (a) bounded above.
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Note that typically, most utility functions in current networks can be represented by three types of

functions:

⌅ Sigmoidal-like

⌅ Strictly concave function

⌅ Strictly convex function

Next, let us consider two major type of tasks: Sigmoidal-like Tasks and Logarithmic Tasks.

Sigmoidal-like Tasks

First type refers to the task that requires the specific amount of resources which are requested by the

service. The characteristic of the requested pay-as-you-go service match to the suitable sigmoidal

function. Usually, inelastic tasks can be defined by sigmoidal function. It can be expressed as:

U
k

(v
k

) = c
k

(

1

1 + exp(�a
k

(v
k

� b
k

))

� d
k

) (5.1)

to satisfy all the required properties it is enough to have c
k

=

1+exp(akbk)

exp(akbk)
and d

k

=

1

1+exp(akbk)
.

By choices a
k

and b
k

describe the utility function of the kth user. For example, by choosing

a = 5 and b = 10 a good approximation for a step function can be obtained which explains

the fixed usage of the allocated resources; for instance, users with the specific requirement of the

resources. Normalized sigmoidal-like utility function with a = 0.5 and b = 20 is another example

for representation of the adaptive real-time application.

Logarithmic Task

It is desired to use all resources in a pool of vDCs as much as possible. In a case of temporary

real-time services, the same as spot instances, normalized logarithmic utility function describes the

good description. It is referred to the mission of which a minimum number of resources are needed

and it has a desire to occupy more resources in a case of availability. Mathematical expression of
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Figure 5.6: Samples of Sigmoidal and Logarithmic functions.

the function is as:

U
k

(v
k

) =

log (1 +m
k

v
k

)

log (1 +m
k

v
m

ax)
(5.2)

where v
m

ax is the point in which the task occupies all available resources as same as what is

mentioned in the SLA. For example, if the user is fully satisfied by 30 vDCs, v
m

ax, should be set

to . Any allocated vDCs less than 30 leads to the minus satisfaction but it does not mean user is

loss its performance since the performance is based on the required resources for doing the specific

job. It means if the user is using all 30 vDCs there is no request issues from the user for share the

resources to others. But if the user is not fully using allocated resources and it is confirmed by the

monitoring and negotiation process then the user can share the resources by management process.

In such a case the customer and the provider get the advantage simultaneously. In 5.2, m
k

is the

rate of is the rate of increasing utility percentage with the allocated rate v
k

.

Both function types are satisfied the constraints as in (a) to (d). In figure 5.6 the normalized

sigmoidal-like and Logarithmic examples of utility functions are shown.

To maximize the resource allocation based on the utility function the objective function is
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defined as follow:

max

v

M

Y

k=1

U
i

(v
i

)

Subject to
M

X

k=1

v
k

 R {v
k

� 0 and i = 1, 2, ...,M}

(5.3)

where v = v
1

, v
2

, v
3

, ..., v
k

and is the number of the requests. This formulation ensures non-zero

resource provisioning for customers while guarantees minimum predefined constraints are met.

Furthermore, using Sigmoidal function leads to the more resource allocation for corresponding

tasks when the specific amount of resources is required.

Now we do have an optimization problem for proportional resource allocation based on the

utility functions [32]. Prove of existence of the global optimal solution for (5.3) is straightforward.

Since (5.3) is a convex optimization problem a unique trace-back global optimal solution is exists

for the problem.

Objective function of max

v

Q

M

k=1

U
i

(v
i

) is equivalent to max

v

Q

M

k=1

log(U
i

(v
i

)) and for both

applied functions, Sigmoidal and Logarithmic:

d

dv
i

logU
i

(v
k

) > 0

d2

dv2
i

logU
i

(v
k

) < 0

(5.4)

So both functions are strictly concave natural logarithms. Therefore, the optimization problem is a

convex optimization problem and there exist the unique trace-back global optimal solution [33].

5.4.1 Dynamic Distributed Resource Provisioning Approach

To make the optimization problem as the negotiated process for provision resources dynamically,

based on demand and supply, this paper gets advantage from the dual problem to distribute the

optimization problem among the Multi-Clouds stakeholders. In communication network it has
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been done similarly in [34], [35], [32] by defining the Lagrangian function as:

L(v, p) =

M

X

k=1

log(U
k

(v
k

))� p(
M

X

k�1

v
k

+ z �R)

=

M

X

k=1

(log(U
k

(v
k

))� pv
k

) + p(R� z)

=

M

X

k=1

L
k

(v
k

, p) + p(R� z)

(5.5)

where z � 0 is the slack variable (we discuss in more detail about the slack variable later) and is

Lagrange multiplier or the dark price which is the intermediate parameter in negotiation between

the Multi-Clouds and customers. To match the ranked instances by Ranking Method which is

proposed in the paper, dark price is weighted by the ranked order which is called bid in the paper.

Bidding strategy attracts a lot of researcher especially for spot instances [36], [37]. By assigning a

set of utility functions not only spot instances but also other tasks can be evaluated simultaneously

to make the decision for resources provisioning in the Multi-Clouds.

Satisfying the simultaneous scheduling for multi types of tasks kth the bid for the instance can

be given by w
k

= pr
k

. Subsequently, the dual problem objective function can be written as:

D(p) = max

v

L(v, p) (5.6)

and the dual problem is given by

min

p

D(p)

Subject top � 0

(5.7)

to find the optimal answer driving a derivation of the new optimization problem leads to the inter-

esting formulation for dark price by using
P

M

K=1

W
k

= p
P

M

K=1

r
k

and solving the equation for p
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as :
@D(p)

@p
= R�

M

X

k=1

v
k

� z = 0

p =

P

M

i=1

w
i

R� z

(5.8)

latest equation entails critical information to optimize the problem for p:

⌅ Summation of the bids (from all requests)

⌅ Available Instances (all the active resources)

which both of them are available in the centralized node, monitoring and negotiation process. On

the other hand since the is separable in we can rewrite the equation as:

max

v

M

X

k=1

(log(U
k

(r
k

))� pv
k

) =

M

X

k=1

max

rk

(log(U
k

(r
k

))� pv
k

)

(5.9)

which implies, the optimization problem can be solved for each utility function separately:

max

vk

(log(U
k

(v
k

))� pv
k

)

Subject to p � 0, v
k

� i = 1, 2, ...,M

(5.10)

Equation 5.7 and 5.10 distribute the optimization problem 5.3 into two parts. Equation 5.7 is in

quest of the dark price which requires supply and demands information and can be considered to

be solved in the Multi-Clouds. Equation (5.10) which separately maximizes provisioning of the

resources for each utility function and it can be counted up as a customer?s attorney. Between these

two optimization problems dark price is an intermediate parameter to moderate the criteria for both

sides. Establish an iterative process to drawn out the settle down point in which stakeholders get

the mutual advantage is the chosen approach of the algorithm. The mutual proliferation leads

to the maximization of the request revenue and utilization of the pooled vDCs in Multi-Clouds

environment.
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5.4.2 Proposed Algorithm for Resource Scheduling

So far, the reasons and requirements for implementation of the expedient scheduling algorithm

have been studied in various aspects. Putting together all the described aspects of the proposed

algorithm has been projected in two mutually joint algorithms, Back shown in Algorithm (1) and

Feed in Algorithm (2). In this section terms explanation and mathematical formulation of the

algorithms have been described. Dark Price is considered as the iterative parameter between Back-

Algorithm which is the customers attorney and Feed-Algorithm which is the multi-cloud lawyer.

Feedback process will continue to settle down in profitable point for customers and providers in

the pool of vDCs. Each active tasks send the initial bid to the broker. The broker makes a decision

based on the difference of two consequent bids per task with the pre-specified gage as �. If the

absolute difference gets greater than � the broker specify the new shadow price based on the utility

function type. Each user receives the shadow price and solve its own optimization problem v
k

(n) =

max

vk

(log(U
k

(v
k

))� p v
k

) for v
k

which is used to calculate the new bid w
k

(n) = p(n) · r
k

(n). The

broker collects all the bids sequentially and the process would be repeated until |w
k

(n)�w
k

(n�1)|

gets less than the pre-specified threshold � The Back and Feed are the same as UE and eNodeB

algorithm in [32] There are modifications which are applied in the algorithm to match them with

Ranked Method. Scaling factor as (V � z) to make the algorithm as an applicable process in the

proposed Ranked Method. In the following chapter simulation results declare the convergence of

the algorithm in scale which is the requirement of the sustainable computing.

5.4.3 Simulation Results

Ranking method is applied to the variety sets of utility functions. Convergence of the proposed

algorithm is acknowledged by the simulation. In the simulations, to show the generality of the

algorithm, it is supposed that instances of the providers are ranked from 1 to 100 which they are

included in four clutches with the same size. So one can interpret each number to the instances

with the specific parameters. In the first simulation, six utility functions corresponding to sig-

moidal functions in figure 5.7. are simulated. Through classification of the instances it is assumed
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Algorithm 5.1 Back (kthUtilityFunction)

1. Initial its bid as w
k

(1) to Feed

2. Loop:

Received shadow price p(n) from the Feed

if STOP from Feed then
Calculate allocated rate vopt

n

=

wk(n)

p(n)

STOP

3. else:

Solve v
k

(n) = max

vk

(log(U
k

(v
k

))� p v
k

)

Send new bid w
k

(n) to Feed-Algorithm

4. endif

Algorithm 5.2 Feed

1. Loop:

input (V � z) and scale the functions by (V � z)�1

if kth utility function is activated

– receive bids w
k

(n) from Back-Algorithm { Assert w
k

(0) = 0 }

elsif |w
k

(n)� w
k

(n� 1)| < �8 then

– allocate rates vopt
k

=

wk(n)

p(n)

to kth utility function
– STOP

else:

– Based on the specific group for p
k

:

⇤ calculate p(n) =
PM

k=1 wk(n)

V�z

– Send new shadow price based on the users category

endif:

2. end Loop
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almost the same instances are put to the same clutch and for clearly illustrate of the algorithm only

computing power is studied as the gauge to make distinguish between the instances. However, the

algorithm has the potential to study all the instances properties such as computing power, memory,

disk space and networking bandwidth factors at one simulation. In this case the classification meth-

ods should be used to weight the gauge. In the first simulation the computing power is used as the

weighted parameter to provide the gauge. The necessitated manipulation to the algorithm is related

to the (V � z) as the maximum available resources. The pool of resources in vDC of the Multi-

Clouds is the other explanation of the (V � z) manipulation. In the algorithm V is the maximum

number of resources and is the reserved resources for the specific tasks or customers. Since by

increasing (V � z) just the scaling of the functions are varied, the convergence of the optimization

problem is not denied. The manipulation which is used for this simulation is as follow:

(V � z) =
I

X

i=1

N

X

n

C
i,n

P n

i

(5.11)

in which I is the maximum number of providers, is the maximum number of the clutches C
i,n

is

coefficient for the the provider in the the clutch and P n

i

is the corresponding provider advantageous

over other providers in the lucrative specification terms. The scaling factor is (V � z)�1 for all

the functions. In the first simulation P n

i

= 1 which indicates similarity in the performance of the

providers and C
i,n

= b
i,n

. Figure 5.7 describes the convergence of the algorithms by weighting

the ranked clutches in the x axis and scaling all the functions based on the available calculated

resources. (V � z) = 240 is considered with the iterations n = 20. The rates of different functions

with the number of iteration are illustrated in 5.7. After giving enough iterations the algorithm

is settle down for the sigmoidal functions as 13, 21, 38, 6, 89, and 76 correspondingly. This

simulation shows for the 4

th sigmoidal function the allocated instances is placed in the lowest

clutch. It means the algorithm provides the lowest priority for the 4

th

function since the 4

th

(with

↵ = 0.12) is spread throughout the operating boundaries.

In the second case the available resources are decreased to (V�z) = 100. From the suimulation

results in figure 5.8 and referring to figure 5.4 it can be understood sigmoidal function number 5
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Figure 5.7: Allocated ranked providers convergence P
i

(n) with number of iterations for (V �z) =
240.

Figure 5.8: Allocated ranked providers convergence P
i

(n) with number of iterations for (V �z) =
100.
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is satisfied with the appropriate instances which is matched with its request. However sigmoidal

function number 6 is not confined in its primary clutch and it is downgraded to the small clutch.

The reason for that is sigmoidal function number 6 has the value as 0.25 which spreads the function

outside of its primary clutch despite of the sigmoidal function number 5 with the value as 1 which

is strictly confined the sigmoidal function in its primary clutch. The same reason is applied for

function number 4. Since it spreads widely throughout the operating boundaries it gets even less

ranked instance than function number 1, 2 and 3. Finally, sigmoidal functions 1 and 2 get the same

instances which means low ranked clutch has the opportunely to serve more customers. It means in

a case of having higher requests than the available resources, petitions for the low ranked clutches

arise dramatically.

In multi-cloud this is the situation which competition between the providers arises to serve

more number of customers by offering lower size of instances. Actually when there are enough

available resources the algorithm provides the customers by the highest performance resources

based on their desired utility functions. However, when the requests are getting higher than the

available resources, based on the customers chosen model, customers with bounded utility func-

tions maintain their primary resources with the small variation but the allocated resources for other

types of functions are varied to satisfy each chosen model by the customers. In figure 5.9 The

steady state rate of different sigmoidal functions with different (V � z) has been illustrated. As

mentioned before monitoring system in parallel with brokering strategies control the situation and

decide the final decision. Study the utility function number 4 and 6 is interesting. Since the

requested resources by this functions have not been satisfied until the rest functions reach their

corresponding requested resources.

5.4.4 1.1 Implementation of Spot Instances with the Logarithmic Function

The distributed algorithm has the interesting application in spot instances pricing model to control

the resource allocation. Spot instances is following the method which impose dynamic price based

on supply and demand. Since maximizing revenue of requests is one of the Multi-Clouds aims, a
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dynamic resource allocation has been simulated.

Figure 5.10 shows the sigmoidal and logarithmic functions with their characteristics which are

used as reference for 5.11 and 5.12. Figure 5.11 illustrates the distributed algorithm gives the

sigmoidal functions higher priority than the logarithmic function. This is because, the algorithm

starts giving the resources to the logarithmic functions after the steady state rate of all the sigmoidal

functions exceed their corresponding inflection points. Furthermore, the majority of resources are

allocated to the tasks with sigmoidal functions.

To illustrates the application of logarithmic functions for spot instances 5.12 describes the

characteristic of the algorithm; the allocation of resources for logarithmic functions have been

carried on when the available resources are more than the summation of the inflection points. This

feature of the algorithms has the potential to use as the spot instances dynamic model.

In the case of the available provider with the specific feature, the instances can be provisioned

to the customer of the spot instances and when there is a request of permanent use of the resources

on the other specific conditions the spot is return back to the system as the available resource.
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Figure 5.9: Allocated ranked providers for 100  (V � z)  300.

Figure 5.10: Illustration of the sigmoidal and the logarithmic utility functions.
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Figure 5.11: Allocated ranked providers convergence P
i

(n) sigmoidal and logarithmic functions
for (V � z) = 500.

Figure 5.12: Allocated ranked providers convergence P
i

(n) sigmoidal and logarithmic functions
for 220  (V � z)  500.

92



5.5 Conclusion

The Ranking Method has been introduced as the elastic and inelastic tasks scheduler to support

the heterogeneous requests and resources in multi-cloud environment. The convergence of the

algorithm is studied by simulation for a variety sets of the sigmoidal and logarithmic functions

while computations are spread over two mutually joint algorithms, Back algorithm (customers

attorney) and Feed algorithm (multi-cloud lawyer). Sigmoidal function has been used to make

a balance between requests and resources while always SLA requirements are guaranteed. To

maximize the usage revenue, in a pool of resources, the combination of logarithmic and sigmoidal

functions has been proposed to support the spot instances for the elastic tasks while guaranteed the

sigmoidal functions always have the priority; which means the algorithm support the elastic and

inelastic applications simultaneously. In addition, demonstration of the Ranked method elucidates

the capabilities to handle the dynamic resource provisioning in scale in multi-cloud system. The

substantial Ranked system is proposed to support the Ranked method in the heterogeneous multi-

cloud environment. One of the main limitation in scheduling algorithm is the delay response of the

system which is strongly suggested for the future research for the Ranked system.
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Chapter 6: INTELLIGENT DECISION SUPPORT SYSTEMS FOR

HETEROGENEOUS AUTONOMOUS AGENTS

This chapter has been published with modifications: Miraftabzadeh, Seyed Ali, Nicolas Gallardo,

Nicholas Gamez, Karthikpai Haradi, Abhijith R. Puthussery, Paul Rad, and Mo Jamshidi. "Cloud

robotics: A software architecture: For heterogeneous large-scale autonomous robots." In World

Automation Congress (WAC), 2016, pp. 1-6. IEEE, 2016.

In this chapter, we propose an intelligent decision support system which Includes three subsys-

tems in a cloud environment: Middleware Subsystem, Background Tasks Subsystem, and Control

Subsystem. The architecture invokes cloud technologies such as cloud computing, cloud storage,

and other networking platforms arranged to provide assistance with congregated infrastructure and

shared services for robotics, such as a Robotic Operating System (ROS). Since work is looking for

a reliable, scalable, and distributed system for the heterogeneous large-scale autonomous agents,

Infrastructure as a Service (IaaS) is chosen among the cloud services. Three major tasks can be

handled by the proposed software architecture: Computing, Storage, and Networking. Hadoop–

MapReduce provides the appropriate framework in the cloud environment to process and handle

these tasks.

6.1 Introduction

Robotic services are systems, devices, and robots with three functions: sensation, actuation, and

control [67]. Providing robotic services to support intelligent artificial activities through socially

conscious interactive behaviors is an emerging topic in robotics research to support, for instance,

daily human activities [35] and IBM Smarter Cities http://www.ibm.com/smarterplane

t/us/en/smarter_cities/overview/. To achieve this, robotic technologies can be inte-

grated with advanced networking technologies [31] to foster the emergence of networked robotics.
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A networked robotic system allows for communication between a group of robotic devices that

are connected via a wired and/or wireless communication network http://www-users.cs.

umn.edu/~isler/tc/. Networked robotics, especially a multi-robot system, distribute the

workload of sensing, actuating, communication, control, and computation among a group of par-

ticipating robots. These systems have been put in place with great success for industrial applica-

tions, intelligent transportation systems, and security applications. However, the advancement of

networked robotics is restricted by resource, information, and communication constraints inherent

in the existing framework [60]. These drawbacks are especially significant for mobile robotics

networks, and may lead to severe performance degradation.

Networked robotics serves as a stepping stone [60] towards cloud robotics. For instance, cloud-

enabled network robotics leverages emerging cloud computing technologies to enhance networked

robotics, removing analytical duties off the robot.

The design objective is to overcome the limitations of networked robotics using elastic re-

sources provisioned by an ever-present cloud infrastructure. Cloud computing uses a sophisticated

networked ecosystem but presents a clear, concise interface to extend the capabilities of networked

robotics.

In 2010, Kuffiner J. J. penned the term "Cloud Robotics" and described a number of potential

advantages over conventional robotics [78]. Cloud robotics is an emerging field of robotics em-

bedded in cloud computing, cloud storage and cloud networking. While providing the advantage

of powerful computational, storage, and communications resources of modern data centers, they

also allow robots to benefit from the platform, which includes infrastructure and shared services.

Robots connected through the cloud platform can access services running on remote servers. Fur-

thermore, one byproduct of cloud robotics is the allocation of background tasks, or services not

related to the core function of the robot, to the cloud platform; for example, Big Data manage-

ment and implementation of advanced Machine Learning algorithms [42, 69] and heavy image

enhancement algorithms [6, 129] or software [43]. The National Institute of Standards and Tech-

nology (NIST) definition of cloud computing [95] enables remarkable elasticity in designing and
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Figure 6.1: Architecture of the proposed framework to host applications in cloud.

implementing new applications for networked robotics.

Several researchers have begun to study the architecture of cloud technologies in robotic ap-

plications. For instance, a research group at Singapore ASORO laboratory announced a software

framework that merges the scalability and parallelism advantages of cloud computing with large-

scale environments of robots. The system is implemented through Hadoop clusters and ROS com-

munication networks [4]. The DustBot project [132] is an example of such a sophisticated network

within a robotic system. In this work, two types of robots perform cooperative tasks while bene-

fitting from the use of an external sensory system. Two tasks have been implemented within the

system: garbage collection and street cleaning (sweeping). Z. Du et. al. [28] introduced the con-

cept of Robot as a Service and the initial Robot Cloud Center system. To the best of our knowledge,

substantial works have only a few distinct design directions and implementations, especially in the

area of cloud robotics, that utilize emerging advanced technologies in the cloud research area, such

as OpenStack https://www.openstack.org and Docker https://www.docker.com.

The major aspect of the research presented here expounds on the creation of a software archi-
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tecture that will enable large-scale systems of autonomous agents, including robots, in a hetero-

geneous environment, publishing sensor data throughout the cloud and also capturing data for on

demand processing and post processing for computationally intense algorithms. The information

flows from robots to instances within the cloud servers and back to the robots after analytical work

is performed in the cloud. This architecture includes the advantage of ROS handling the modu-

lar communication mechanism among the nodes. More specifically, ROS provides the distributed

communication for not only the multi-types of robots but also for the cloud servers. The elastic

properties of a cloud environment have the potential to provide a scalable system. IaaS provides

the governor of the software and hardware, which are needed for this scalable system. OpenStack

accomplishes the management of the provisioning for the resources in the cloud environment. In

the proposed architecture, Hadoop is used as the powerful cloud-based data management tool that

serves to store the sensor data.

The rest of this chapter is organized as follows. First, we outline various applications of the

concepts required for cloud robotics and how cloud computing can overcome critical challenges in

large-scale robotics. We will also categorize the robots’ tasks in order to get the most benefit from

the cloud. Next, we describe the proposed cloud robotics architecture, and elaborate on three key

enabling subsystems. Then, we present the implementation of the system, including two types of

robots, the Kobuki turtlebot 2 as a ground robot and the Parrot Bebop as an aerial robot. We address

technical challenges in designing and operating these cloud robotics architectures. In section five

the advantages of the proposed software architecture for cooperative robotics are described in

detail, focusing on the use of OpenStack. Finally, we conclude and summarize this chapter.

6.2 Cloud Functionality and the Robots Tasks

Networked robotics, like standalone robots, express intrinsic native constraints. For instance,

robots have smaller computer architecture for mobile purposes leading to inadequate computing

capability, since all computations must be conducted onboard the robots. Data access is also con-

strained to the limited storage of the network. Fast-developing wireless communications and recent
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cloud computing technologies can be utilized to overcome some of these restrictions through the

concept of cloud robotics. This creates a computationally more intelligent, well-organized and less

expensive robotic network. To create this network, important robotic tasks are categorized based

on the types of cloud resources needed. Examples of robotic tasks include: obstacle avoidance,

vision processing, localization, path planning and environment mapping. From a practical point

of view, having all tasks performed by multi agents or swarms of robots imposes significant down

sides such: dedicated power supplies, good shock protection for hard disk, cost limitations, dupli-

cation and redundancy efforts, and solving networking problems. Cloud environments overcome

these unnecessary and inefficient concerns by shifting the paradigm of computing resources off the

physical robots. In this platform, we propose an infrastructure that includes computing, storage

and a network in the datacenter. To break down the objects, we categorized these tasks as follows:

⌅ The computing resources (VM or vDC) allocated for each agent

⌅ Storage resources for Data Analytic research activities (vSLAM, world-maps, etc.)

⌅ Network resources for swarm performing cooperative missions (shared information)

By utilizing this order of tasks, each node of the system is treated with respect to all three

aspects: computation, storage, and networking. The next section includes a description of the

proposed architecture, which was developed to handle all the aforementioned tasks simultaneously.

6.3 Proposed Software Architecture

A cloud-based architecture for large-scale autonomous robots has been proposed in figure 6.1. The

architecture consists of three subsystems: (1) Middleware Subsystem, which can be counted as

the main carrier for the platform; (2) Background Tasks Subsystem, which is the framework for

batch processing including, software packages; and, (3) Control Subsystem, which is the brain of

the platform. However, the subsystems are ordered horizontally, and the computation, storage, and

networking tasks are processed vertically. Serialization of the three latter functions is processed

in the following order: Networking, Storage, and Computation. The order of the storage and
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Figure 6.2: Illustration of the ROS messaging in the platform.

computation tasks is debatable, however, we suggest storage come first, since provisioning the

control resources is more valuable for intense computational tasks. In the next three sections of

this chapter, we will dive into the details of the subsystems:

6.3.1 Middleware Subsystem

The first subsystem provides the compatibility between robots and protocols of the communication

networks. This subsystem is implemented at the lowest level of the system, connecting the robots

and the cloud platform with bidirectional communication. In addition, the middleware subsystem

provides all nodes of the platform with the ability to access all types of sensor data. To do so,

ROS plays a large role in the first layer of our system. Figure 6.2 illustrates data communication

network in the proposed system. Our proposed system requires a reliable communication network

that allows many agents to pass information back and forth to each other quickly and easily. ROS

uses a data passing model based on the publisher-subscriber relationship. This relationship makes

sending and receiving data intuitive for the software developers writing programs in ROS.

For example, if program A requires information from program B, program B would publish this
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data to the ROS master node, while program A would subscribe to the data and retrieve it when

available from the ROS master node. This is a direct reason for ROS’s modularity and immunity to

dynamic network infrastructure, where communication reliability is poor or intermittent. ROS is

able to handle these situations because it is made up of many functional nodes, or a set of processes

that are publishing and subscribing to the ROS master node. Each node is only responsible for a

certain task, which correlates to the developer’s choice of responsibilities for each node. Conse-

quently, if each node’s functionality is a small enough portion of the whole, the loss of one or two

nodes only effects a small portion of the system’s functional processes and will not degrade the

entire system to failure, increasing its robustness. However, ROS is a common language among

multi robots, effectively used by/for critical resources among threads [22], [23] which can control

the transient behaviors of the systems.

ROS MULTIMASTER-FKIE: Furthering communication reliability is an ROS package named

MULTIMASTER-FKIE. This package allows more that one ROS Master Node to be run within the

same ROS network. It works by syncing each ROS Master to a heartbeat. The heartbeat allows the

system to know when an ROS Master has dropped from the network, and waits for the heartbeat

to show up again. This idea is similar to separating the system out into nodes; the more you break

your system up, the more resilient it becomes. Using ROS MULTIMASTER-FKIE gives software

developers an easy way to add robustness to the system.

6.3.2 Background Tasks Subsystem

This subsystem provides the framework for performing/conducting the batch processing from a

software point of view, including programming language, packages and libraries. The goal of

this subsystem is to feed the control subsystem with required data. Handling the information is

carried on in this stage. Hence, powerful programming enriches the system with less bugs and

faster processing time. The useful programming languages in this area are Python, C++ and Java.

And, among them, Python is more common these days because of its power and free libraries

and packages such as Anaconda. Anaconda includes Python, SciPy, NumPy, Pandas, IPython,
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Matplotlib, Numba, Blaze and Boken, all useful for computation and mathematical programming.

Furthermore, the Hadoop Map/Reduce framework for conducting/performing the batch processing

of sensor data is efficient for data storage and processing in this step. We describe the Hadoop-

MapReduce implementation later in this chapter.

6.3.3 Control Subsystem

The final subsystem is for controlling the three aforementioned tasks: Computation, Storage and

Networking. IaaS is chosen for the cloud service since we want to take advantage of scalable hard-

ware and software for managing our hardware based on the required computational needs. Hadoop

is installed on top of the platform to capture the data and podcast it for the appropriate agent. A

Hadoop Distributed File System (HDFS) provides the powerful capability needed to handle the

huge amount of information that has been acquired and store it in the proposed platform. HDFS

also allows the use of Google’s map-reduce algorithm to search and find the specific data needed.

The architecture gets the advantage of the Hadoop framework, which allows for the distributed

processing of large data sets across clusters of agents using simple programming models. It is de-

signed to scale up from single servers to thousands of machines, each offering local computation

and storage). Rather than rely on hardware to deliver high-availability, the library itself is designed

to detect and handle failures at the application layer, so delivering a highly-available service on top

of a cluster of agents is able to be directly monitored in the third subsystem.

6.4 Implementation

6.4.1 Connecting Multiple agents (Kobuki and Bebop)

ROS is an open source software developing platform for any robotic system. ROS includes many

powerful packages, functionality wise, which are available for free and legal to use as the developer

chooses. With that, the Kobuki ROS package and Bebop ROS driver were used in order to operate

each agent in ROS. These packages output data topics pertaining to the agents’ angular velocities,

linear velocities, camera data, control topics, and many other state topics. This data is then used
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to perform various co-operative tasks. The Kobuki agents along with the Bebop drones use Wi-

Fi communication and a network router to achieve bi-directional sharing of data. Utilizing ROS

multimaster fkie, each agent is made an a ROS Master, allowing for each robot to pass in and out

of the Wi-Fi communication network without fatal communication or system errors.

6.4.2 Connecting Each Agent to the Cloud Using ROS

The final piece of the network layer for the system is the communication between each agent

and the cloud. Each Kobuki relies on an ODroid microprocessor that runs Samsung Exynos5422

Cortex-A15 2Ghz and Cortex-A7 Octa core CPUs with 2 Gigs of RAM. This microprocessor runs

an Android version of Linux and is, essentially, a credit card sized Linux computer. Despite its

impressive specifications, the ODroid falls short with computationally heavy functionality, such as

Simultaneous Localization and Mapping (SLAM). To solve this issue a cluster of servers running

the OpenStack cloud computing software are used in order to perform the necessary resource

demanding functions such as image processing with SLAM. OpenStack cloud computing software

adds dynamic resource scheduling functionality to the servers. This means processing resources

such as hard disk space and RAM can be allocated in real time according to the demands on the

server cluster. By doing this, resources become elastic and power is saved by sending unused

servers into low power mode when they are not being used. OpenStack allows the user to create

an instance, which is a virtual machine that has a certain allocation of RAM and hard disk space,

and allocate a floating IP address to the instance. Each agent is wirelessly connected to the cloud

through a wireless router, allowing bi-directional communication. With all of the agents on the

same network, ROS is able to pass agent data to the cloud by using the instance floating IP.

6.4.3 Hadoop and ROS Interaction

The robotic agents each publish their own image topics consisting of the video feed. The images

are collected and published as a topic in the ROS network. The Hadoop cluster and the robots, land

and air, are connected through this ROS network allowing the transfer of topics from robots to the
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Figure 6.3: Illustration of the ROS messaging in the platform.

cloud Hadoop cluster. A collection of images are aggregated to create one file to be sent into the

HDFS. The library HIPI, Hadoop image processing interface, allows for images to be concatenated

into one file for the Hadoop distributed filesystem, HDFS, and the created image bundles can be

manipulated by OpenCV a popular image processing library. OpenCV is first used to convert

the ROS images into a format that can be modified by a script. Next, the OpenCV software can

perform modifications to the image, such as drawing on the image, given its pixel location. This

can be used to identify obstacles or other irregularities the robots may see. The master node of

the Hadoop cluster, or the name-node, has a process called the JobTracker which handles the jobs

reqauested by the user. This job tracker assigns the map and/or relays tasks to other nodes, mainly

data nodes, for execution. Another process, the TaskTracker, is running on the corresponding data

nodes of the cluster. The TaskTracker executes the map or reduce algorithm. Once finished, the

TaskTracker sends the status back to the JobTracker. The cluster name-node then sends the job

of mapping the input files into {key:value} pairs, which is then output into the HDFS from the

data-node.
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6.4.4 Storing Images

Since we want the majority of data processing off the robots, we add the HIPI (HIPI-Hadoo

phttp://hipi.cs.virginia.edu/) software to the cloud instances. Therefore, the datan-

odes are running their own small ROS program saving images onto a folder located within the

datanode. Once a request is received to map the images from the JobTracker, an HIPI program

will create the bundled images file and run the mapper as well. The results are added to the HDFS

creating a set of images which can be manipulated and analyzed with openCV.

6.5 Software Architecture and Cooperative Robotics

Two hot issues in cooperative robotics are (1) reliable networked robotic systems and (2) formal

models and methods for cooperative tasks. Cooperative robotics requires data sharing, coopera-

tive perception, and collective intelligence. While networked robotics suffer from resource, infor-

mation, learning, and communication constraints, the proposed architecture has the advantage of

OpenStack-Nova, which has a strong networked ecosystem for provisioning elastic computational

and storage resources. OpenStack-Neutron serves as a heavy-duty networking tool for handling

the communication among the systems and, to finally overcome associated security challenges, by

persistently controlling the virtual machines (VM).

The proposed platform consists of the coupled system comprised of the OpenStack and Hadoop,

refer to figure 6.1 for the illustration. OpenStack functions as the shared data center that can be

controlled through the dashboard as a user interface. In addition, the decision to offload a spe-

cific task requires a unified framework that can handle a list of complex issues. This important

task is handled by a Hadoop-MapReduce system. First, the offloading strategy should consider

various factors, including the amount of data exchanged, and the delay deadline to complete the

task. Second, the decision should also consider whether it is more advantageous to execute the

task within the group of networked robots hardware, given the presence of cloud resources and

computation requirements. Finally, given a pool of cloud resources spread across different data

centers, it is a challenge to allocate virtual machines optimally to execute the offloaded task and to
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Figure 6.4: Illustration of the Software Architecture for implementing the Cooperative Robots on
OpenStack.

manage live VM migrations. The other services by OpenStack facilitate solving the problem. For

instance, Glance holds the created disk images, allowing for quick provisioning of new instances

with all the required software in the saved images. Keystone serves as an access point for the other

OpenStack services with authentication and authorization between the endpoints of each service.

Swift implements a RESTful API to send commands for storing and receiving data from the Open-

Stack through HTTP requests. The illustration of this software architecture for cooperative robots

is depicted in figure 6.4.

To overcome the communication challenge, the choice of standalone or cloud execution de-

pends on the sensitivity to delay of the task. The communication delay introduced in sending the

computation request to the cloud has to be factored into each decision. Packet delivery failures

and communication outages are inherent in any wireless communication system. The additional

increase in failure rate depends on the network topology. The use of the IaaS cloud as a super node

in the network effectively controls this rate.
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Trust and security issues are major considerations in cloud robotics. The VM environment

must be secure from outside interference. A malicious VM can subtly sabotage an important task

without the robot being aware of the damage. A robot needs to trust the VM is not compromised

in order to launch task delegation on a public cloud, especially when the computation and network

traffic have monetary costs. The computing environments in the cloud should be verified by a user

or a trusted party. Confidential data may be stored in public cloud storage systems, while logically

private to cloned devices. Therefore, strong integrity and confidentiality protection are needed to

secure application data.

All the aforementioned capabilities make a system, consisting of a multitude of networked

robots and other devices, which, as a whole, is capable of interacting with the environment through

the use of perception and action for the performance of tasks. Furthermore, two current technolo-

gies for cooperation of robots, localization and learning, have shown an ability to be implemented

in the software architecture.

Localization for mobile robots is a basic requirement, when it comes to cooperative spatial

perception [3]. Meanwhile, the localization problem is predominantly addressed together with

mapping, which leads to the paradigm of Simultaneous Localization and Mapping (SLAM) [10].

Most current approaches to SLAM are based on probabilistic (Bayesian) approaches, typically

employing Kalman filter methods, particle filters, or expectation maximization techniques. While

SLAM is well established for 2D mapping by single land robots, multi-robot mapping is considered

to be a very important, but also still largely an open problem. In a cooperative robotics context,

Petri nets have been used for modeling multi-robot plans, and a multi-robot coordination algorithm

for environment exploration.

Learning can be successfully applied in behavior-based systems to adapt task assignment in

heterogeneous robot teams, dealing with individual robot capabilities that change over time. Un-

supervised learning methods, such as evolutionary algorithms, are popular for multi-robot task

optimization.

Having the capacity to implement both localization and learning technologies enriches the soft-
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ware architecture to implement formal models and methods for cooperative robots. These methods

include, but are not limited to: logic-based knowledge representation and planning, decentralized

decision-making, graph-based control methods, game theory, Bayesian networks, discrete and hy-

brid system models, or models of natural systems applicable to robotics. Therewith, the venue is

provided for hosting the cooperative planning and execution, cooperative perception, and cooper-

ative learning and evaluation.

6.6 Conclusion

A software architecture in a cloud environment consisting of three subsystems has been proposed.

It has been implemented on an IaaS platform using OpenStack to add scalability to the system. By

using ROS Multimaster FKIE the distributed platform can correctly serve a heterogeneous large-

scale swarm of autonomous robots that have encountered serious problems, for instance if a robot

agent loses communication. Introducing any type of robot just entails installing the related package

onto the robot and network. Finally, with the advantage of Hadoop, data storage is carried out in

a series of packages, allowing for large-scale processing of the massive amount of data received

from the robotic agents. The proposed architecture is reliable, scalable, and powerful in the three

functions discussed: Computing, Storage, and Networking. Hadoop–MapReduce provides the

appropriate framework in cloud to process and handle these tasks. Finally, the advantages of the

proposed software architecture for cooperative robotics with an authentic shared data center for

communication and a trustworthy platform have been presented.
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