
Runtime Modelling for User-Centric Smart

Cyber-Physical-Human Applications

by

Lorena Castañeda Bueno

B. Systems Engineering, Universidad Icesi, Colombia, 2007

B. Telematics Engineering, Universidad Icesi, Colombia, 2007

M. Informatics and Telecommunications Management,

Universidad Icesi, Colombia, 2012

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

© Lorena Castañeda Bueno, 2017

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Runtime Modelling for User-Centric Smart

Cyber-Physical-Human Applications

Supervisory Committee:

Dr. Hausi A. Müller, Supervisor

(Department of Computer Science. University of Victoria)

Dr. Norha M. Villegas, Supervisor

(Department of Information and Communication Technologies. Universidad Icesi)

Dr. Alex Thomo, Departmental Member

(Department of Computer Science. University of Victoria)

Dr. Kin Fun Li, Outside Member

(Department of Electrical and Computer Engineering. University of Victoria)

©Lorena Castañeda Bueno, 2017

University of Victoria

iii

ABSTRACT

Cyber-Physical-Human Systems (CPHSs) are the integration, mostly focused on

the interactions, of cyber, physical and humans elements that work together towards

the achievement of the objectives of the system. Users continuously rely on CPHSs

to fulfil personal goals, thus becoming active, relevant, and necessary components of

the designed system. The gap between humans and technology is getting smaller.

Users are increasingly demanding smarter and personalized applications, capable of

understanding and acting upon changing situations. However, humans are highly

dynamic, their decisions might not always be predictable, and they expose themselves

to unforeseeable situations that might impact their interactions with their physical

and cyber elements.

The problem addressed in this dissertation is the support of CPHSs’ user-centric

requirements at runtime. Therefore, this dissertation focuses on the investigation

of runtime models and infrastructures for: (1) understanding users, their personal

goals and changing situations, (2) causally connecting the cyber, physical and human

components involved in the achievement of users’ personal goals, and (3) supporting

runtime adaptation to respond to relevant changes in the users’ situations.

Situation-awareness and runtime adaptation pose significant challenges for the en-

gineering of user-centric CPHSs. There are three challenges associated with situation-

awareness : first, the complexity and dynamism of users’ changing situations require

specifications that explicitly connect users with personal goals and relevant context.

Second, the achievement of personal goals entails comprehensive representations of

user’s tasks and sequences and measurable outcomes. Third, situation-awareness im-

plies the analysis of context towards an understanding of users’ changing conditions.

Therefore, there is a need for representations and reasoning techniques to infer emerg-

ing situations. There are three challenges associated with runtime adaptation: first,

the dynamic nature of CPHSs and users require runtime models to make explicit the

components of CPHSs and their interactions. Second, the definition of architectural

and functional requirements of CPHSs to support runtime user-centric awareness and

adaptation. Finally, the design and implementation of runtime adaptation techniques

to support dynamic changes in the specification of the CPHSs’ runtime models.

The four contributions of this dissertation add to the body of knowledge for the

development of smart applications centred around the achievement of users’ personal

goals. First, we propose a definition and architectural design for the implementation

iv

of user-centric smart cyber-physical-human applications (UCSAs). Our design pro-

poses a context-aware self-adaptive system supported by a runtime infrastructure to

manage CRUD operations. Second, we propose two models at runtime (MARTs):

(1) our Galapagos Metamodel, which defines the concepts of a UCSA; and (2)

our Galapagos Model, which supports the specification of evolving tasking goals,

personal interactions, and the relevant contexts. Third, we propose our operational

framework, which defines model equivalences between human-readable and machine-

readable, available runtime operations and semantics, to manage runtime operations

on MARTs. Finally, we propose our processing infrastructure for models at runtime

(Primor), which is a component-based system responsible for providing reading ac-

cess from software components to the MARTs, executing model-related runtime op-

erations, and managing the propagation of changes among interconnected MARTs

and their realities.

To evaluate our contributions, we conducted a literature review of models and

performed a qualitative analysis to demonstrate the novelty of our approach by com-

paring it with related approaches. We demonstrated that our models satisfy MARTs

characteristics, therefore making them proper models at runtime. Furthermore, we

performed an experimental analysis based on our case study on online grocery shop-

ping for the elderly. We focused our analysis on the runtime operations specified in the

framework as supported by the corresponding MART (accuracy and scalability), and

our infrastructure to manage runtime operation and growing MARTs (performance).

v

Contents

Table of Contents v

List of Tables ix

List of Figures x

Acknowledgements xiii

Dedication xv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement, Challenges and Research Questions 4

1.2.1 Problem Statement . 4

1.2.2 Research Challenges . 4

1.2.3 Research Questions . 6

1.3 Methodological Aspects . 6

1.3.1 Research Methodology . 6

1.3.2 Research Approach . 7

1.4 Contributions . 9

1.4.1 Publications . 11

1.5 Dissertation Outline . 13

2 Research Background 15

2.1 Cyber-Physical-Human Systems (CPHS) 17

2.1.1 Characteristics . 18

2.2 Smart Internet . 20

2.2.1 The Smart Internet Principles 20

2.2.2 Personalized Web-Tasking (PWT) 22

vi

2.2.3 Smart Internet Approaches . 22

2.3 Situation Awareness . 23

2.3.1 A Model of Situation Awareness 24

2.3.2 A Theory of Activity and Situation Awareness 26

2.4 Model At Runtime (MART) . 27

2.4.1 Definition . 27

2.4.2 Reference Models . 31

2.5 Chapter Summary . 34

3 State of the Art on Models for User-Centric CPHS 37

3.1 Methodology . 37

3.2 Findings . 40

3.2.1 Personal Goals . 41

3.2.2 Web Task . 44

3.2.3 Context . 48

3.3 Chapter Summary . 50

4 User-Centric Smart Cyber-Physical-Human Applications 51

4.1 Personal Tasking . 52

4.2 Online Grocery Shopping Case Study 54

4.3 Definition of UCSA . 56

4.4 Architectural Design of UCSA . 58

4.5 Chapter Summary . 61

5 MARTs for User-Centric Smart CPH Applications 62

5.1 Modelling Requirements . 63

5.1.1 Personal Goals . 64

5.1.2 Tasks . 66

5.1.3 Context . 68

5.2 Our Models at Runtime . 71

5.2.1 Galapagos Metamodel . 72

5.2.2 Galapagos Model . 77

5.3 Chapter Summary . 79

6 Operational Framework for Models At Runtime 81

6.1 Galapagos Metamodel . 82

vii

6.1.1 Mapping from Notation To Software Artefact 82

6.1.2 Catalogue of Operations . 84

6.1.3 Runtime Semantics . 85

6.2 Galapagos Model . 90

6.2.1 Mapping From Notation To Software Artefact 90

6.2.2 Catalogue of Operations . 92

6.2.3 Runtime Semantics . 92

6.3 Causal Links . 98

6.4 Chapter Summary . 100

7 Processing Infrastructure for Models at Runtime (PRIMOR) 102

7.1 Functionalities . 103

7.1.1 Access Manager . 104

7.1.2 Operation Manager . 104

7.2 Architectural Design and Implementation 106

7.3 Chapter Summary . 112

8 Evaluation 113

8.1 Qualitative Evaluation . 113

8.1.1 Related Approaches Comparison 113

8.2 Experimental Evaluation . 119

8.2.1 Case Scenario: Supporting Independent Living for the Elderly 120

8.2.2 Accuracy Analysis . 121

8.2.3 Scalability and Performance Analysis 131

8.3 Chapter Summary . 142

9 Summary, Discussion and Future Work 145

9.1 Dissertation Summary . 145

9.1.1 Addressed Challenges . 146

9.1.2 Contributions . 147

9.2 Limitations . 152

9.3 Future Work . 154

Glossary 157

Acronyms 159

viii

References 160

A MART Specifications 172

A.1 Galapagos Metamodel . 172

A.2 Galapagos Model . 173

B SUSGroceries Case Scenario Implementation 176

B.1 Object-Oriented Implementation of MARTs 177

B.2 SmarterContext Ontology Extension and Vocabulary 180

B.3 Personal Context Sphere Instance . 183

ix

List of Tables

Table 3.1 Modelling approaches versus modelling requirements 38

Table 6.1 Adjacency table between the elements of our MART 83

Table 6.2 Legend for column numbers in Table 6.1 84

Table 6.3 Catalogue of operations for our Galapagos Metamodel. . 85

Table 6.4 Relationships between the elements of our Galapagos Model 91

Table 6.5 Catalogue of operations for our Galapagos Model 93

Table 8.1 Mapping between related approaches and our core concept . . 114

Table 8.2 Mapping between related approaches and our task definition

modelling requirements . 116

Table 8.3 Mapping between related approaches and our task execution

modelling requirements . 117

Table 8.4 Mapping between Context modelling requirements and mod-

elling approaches . 118

Table 8.5 Accuracy Case 1: Situation-awareness 1 125

Table 8.6 Accuracy Case 2: Situation-awareness 2 127

Table 8.7 Accuracy Case 3: Context conflict 129

Table 8.8 Scalability Case: Model Instance A 133

Table 8.9 Scalability Case: Model Instance A with a new type of Node . 135

Table 8.10 Performance Case 1: CRUD operations time of execution . . 138

Table 8.11 Performance Case 2: Max, Average and Std Deviation 139

Table A.1 Galapagos Metamodel Specification 172

Table A.2 Galapagos Model Specification 173

Table B.1 Vocabulary for the grocery shopping scenario 180

Table B.2 Edel’s Persona Context Sphere 183

x

List of Figures

Figure 1.1 Research methodology . 7

Figure 1.2 Dissertation roadmap . 14

Figure 2.1 Problem statement and research background topics of this dis-

sertation . 16

Figure 2.2 Three dimensions of Cyber-Physical-Human Systems 18

Figure 2.3 Model of situation-awareness in dynamic decision mak-

ing [End95] . 25

Figure 2.4 Reflective functions scheme [BM99] 26

Figure 2.5 A Conceptual Reference Model for M@RT [BFT+14] 31

Figure 2.6 M0 Level [BFT+14] . 32

Figure 2.7 Reference Architecture for models@run.time Systems [AGJ+14] 33

Figure 3.1 Carberry ’s plan model example for Learning Course Material

using an extension of the STRIPS formalism [Car88] 41

Figure 3.2 Carberry’s Context model tree build using TRACK; a com-

ponent of the IREPS system to infer user’s underlying task-

related [Car88] . 42

Figure 3.3 Yu’s Actor-Dependency (AD) model example based on a soft-

ware project scenario [YM94] 43

Figure 3.4 Liaskos’ online shopping goal model example [LLJM11] . . . 44

Figure 3.5 Yu’s goal model set of patterns identified to incorporate vari-

ability in the form of features [YLL+08] 45

Figure 3.6 Wilson’s model of information behaviour [Wil99] 47

Figure 3.7 Villegas’ General Context (GC) module context types of the

SmarterContext approach [Vil13] 50

Figure 4.1 Conceptual elements of Personal Tasking 53

Figure 4.2 CPHS for online grocery shopping 55

xi

Figure 4.3 User-Centric Smart Application architectural design 59

Figure 5.1 Level M0 for User-Centric Smart Cyber-Physical-Human

Applications based on Bennaceur et al.’s conceptual reference

model for M@RT [BFT+14] 64

Figure 5.2 Concept of a user’s personal goal of UCSAs 65

Figure 5.3 Personal goal and measurable outcome according to our online

grocery shopping scenario . 65

Figure 5.4 Task interactions are a set of tasks and subtasks 67

Figure 5.5 Tasks for online grocery shopping 69

Figure 5.6 Context groups of interest . 69

Figure 5.7 Context examples for online grocery shopping 70

Figure 5.8 Level M1 and M2 for User-Centric Smart Cyber-Physical-

Human Applications based on Bennaceur et al.’s conceptual

reference model for M@RT [BFT+14] 72

Figure 5.9 Galapagos Metamodel 73

Figure 5.10 Simplified view of our Galapagos Metamodel to show core

concepts [CVM14c] . 74

Figure 5.11 Simplified view of our Galapagos Metamodel to show

situation-awareness components [CVM14a] 76

Figure 5.12 G-iStar notation . 77

Figure 5.13 Simplified instance of the Galapagos Model for online gro-

cery shopping . 78

Figure 6.1 Overview of our operational framework for our MARTs . . . 82

Figure 6.2 Simplified view of the Java classes used in the implementation

of our runtime semantics for our Galapagos Metamodel . 86

Figure 6.3 Sentence example for adding a new attribute to an Entity . . 87

Figure 6.4 Java code example for removing a Link from an Entity . . . 88

Figure 6.5 Java code example for updating an Entity 89

Figure 6.6 Our Galapagos Model instance graph for online grocery

shopping . 91

Figure 6.7 Simplified view of the Java classes used in the implementation

of our runtime semantics for our Galapagos Model 94

Figure 6.8 Java code example for adding a new internet task to a goal . 94

Figure 6.9 Java code example for removing an information resource . . . 96

xii

Figure 6.10 Java code example for updating the decomposition of a task . 97

Figure 6.11 Simplified view of the causal connections among elements of

our two MARTs . 99

Figure 6.12 Java implementation for causal links 100

Figure 7.1 Architectural design for the implementation of User-Centric

Smart Cyber-Physical-Human Applications (UCSAs) 103

Figure 7.2 Overview of Primor based on its responsibilities 103

Figure 7.3 UCSA Architectural design 106

Figure 7.4 Overview of the JAVA classes for the implementation of

Primor and our Galapagos Model 107

Figure 7.5 Java classes of Primor . 109

Figure 7.6 Java classes of our Operational Framework 111

Figure 8.1 Eclipse environment for our JUnit implementation 134

Figure 8.2 Plot depicting the average time for the experiments 139

Figure 8.3 Plot depicting the average time for the experiments in growing

MARTs . 140

Figure 8.4 Simplified instance of the Galapagos Model for the online

grocery shopping example (Instance B) 143

Figure 8.5 Simplified instance of the Galapagos Model for the online

grocery shopping example (Instance C) 144

Figure 9.1 This dissertation’s contributions 147

Figure B.1 SUSGroceries request services to Primor 176

Figure B.2 SUSGroceries interface to manage the grocery shopping and

user settings . 177

Figure B.3 Java classes of our Galapagos Model 178

Figure B.4 Subset of the SmarteContext ontology extension for the

online grocery shopping scenario. 182

xiii

ACKNOWLEDGEMENTS

This has been quite a journey.

Foremost, I would like to express my sincere gratitude to my supervisors, Prof.

Hausi Müller and Prof. Norha Villegas, for their continuous support, guidance, moti-

vation to carry on, and inspiration during all the time of research and writing of this

dissertation. I am grateful I had the opportunity to have you as my advisors, men-

tors and friends during this journey. The dream team. Thank you, for your insights

during our research and teaching me to find my path. Thank you for your patience,

funny moments, and showing me that one of the fulfilling sides of doing research is

doing it with friends. Thank you for always reminding me the importance to enjoy

my PhD. Thank you for all the academic and life lessons, but most of all thank you

for your friendship. You are my role models in my goal to become a supervisor some

day. I will never forget to have fun. I feel ready to rock and roll.

I would like to thank Profs. Alex Thomo and Kin Fun Li for serving on my PhD

supervisory committee and their valuable feedback on my work. I also thank Prof.

Grace Lewis for acting as the external examiner of my thesis, and Prof. Goluskin, for

serving as the chair of my final oral examination.

During my journey as a PhD student in the Rigi lab, I met people I’d like to thank.

To my first Rigi crowd, Ishita Jain, Andi Bergen, Pratik Jain, Nina Taherimahsousi,

Przemek Lach, and Ron Desmarais thank you, for your friendship, all the memories,

academic adventures and the meaningful (and meaningless) arguments. I believe

someday the Rigi lab will have the perfect layout. To the new crowd, may the

journey ahead fill you with good memories too.

Thank you, to my friends and thesis buddies, Germán Poo and Miguel Jiménez,

for coaching me the last months with a strict schedule to write this dissertation,

proofreading my chapters, and giving me advice, encourage and hope during every

written chapter. I learned to push my commits more often, not that you bugged me

about it (although you did).

I would also like to thank the faculty and administrative staff of the computer

science department, Wendy Beggs, Nancy Chan, Erin Robinson, Jen Knapp, Shanel

Higham and Kath Milinazzo. You have contributed in many aspects to the completion

of my research. Thank you for helping me throughout this journey and for taking

the time to say hi to David during our many visits. Your support has never been

unnoticed. Thank you to the faculty of the computer science department, especially

xiv

Profs. Ulrike Stege and Sudhakar Ganti, for giving me advice and offering a different

perspective on research and life.

I would like to thank the institutions that sponsored my research. This disserta-

tion was possible thanks to the funding by the University of Victoria, the National

Sciences and Engineering Research Council (NSERC) of Canada, Universidad Icesi

(Colombia), Colfuturo (Colombia), and IBM Corporation. I would like to thank

my colleagues and friends from Universidad Icesi in Colombia. In particular, Prof.

Gabriel Tamura, the first influence I had of being a researcher, I will always appreciate

his advice in academia and life. Profs. Gonzalo Ulloa and Alvaro Pachon for their

lessons and encouragement during my long academic journey since I was a young

engineering student.

I am lucky to have a group of incredible friends that are family to me and have

being there during many moments of this journey. My honorary sisters and brothers

in Canada, Colombia and Chile, especially Angela, Ingri, Maryi, Geo, Tania, Miguel,

German and Tatiana. Thank you for your support in many ways. You kept my heart

and soul connected to the world all this time.

I want to thank my family. My parents who had always supported me my whole

life, they are my original fan club, never giving up on me. My little sister who brings

joy to my life. My aunts and grandmother who send me blessings every time we

speak. Thank you, Jose, for your infrequent but lovely words, taking care of your

little brother so we could have a break, and finding the ways to help around. Thank

you, David, for being a great napper and learning to sleep through the night. You

are the best outcome of this adventure. Thank you to my extended family for driving

their support at every opportunity.1

Last, but not least, I want to thank my husband. I wish I could have one whole

chapter just for thanking him. Thank you, for always believing I could do it, for

keeping me strong, calm, and lifting me up during the difficulties of our journey.

Thank you for holding the fort, and carrying my weight so many many times.

1Le doy gracias a mi familia. Mis papás que siempre me han apoyado durante el transcurso de
mi vida, ellos son mi club de fans original, nunca perdiendo la fe en mi. Mi hermanita que siempre
trae felicidad a mi vida. Mis t́ıas y mi abuela quienes me bañan con sus bendiciones cada vez que
hablamos. Gracias Jose, por tus infrecuentes pero dulces palabras, por cuidar a tu hermanito para
que pudieramos tener un respiro, y por encontrar formas de ayudarnos. Gracia David, por ser tan
bueno para las siestas y aprender a dormir toda la noche. Tu eres el mejor resultado de esta aventura.
Gracias a mi familia extendida quienes siempre me entregaron su apoyo en toda oportunidad.

xv

DEDICATION

Para mi kokoro

Chapter 1

Introduction

1.1 Motivation

The internet is rapidly growing as a socio-technical ecosystem in which users, soft-

ware and hardware interact with each other in a complex and dynamic environ-

ment [NFG+06]. Internet’s growth has focused on adding sensors and actuators that

connected to ordinary things enable them with computational capabilities to collect

data and process information and affect things. According to the forecast released

in 2016 by IHS Markit, by 2015 the internet had an estimated 15.4 billion devices,

and is expected to increase to 30.7 billion in 2020 and 75.4 billion in 2025. Such

estimates are based on three main factors: automation (enabling devices with com-

puting capabilities through sensors, and actuators), integration (connecting devices),

and service-oriented models.1

This internet’s growth has also brought terms to describe the internet’s ecosys-

tems. Some familiar terms include Internet of Things (IoT), Web of Things, In-

dustrial Internet, and the Internet of Everything (IoE). One term that has become

mainstream is Cyber-Physical Systems (CPS)2 and Cyber-Physical-Human Systems

(CPHSs) to establish the human as an active component during cyber and physical

interactions [SSZ+16].

In this dissertation, we focus on CPHSs. First, CPS is defined by Lee et al. [Lee10]3

as:

1https://www.ihs.com/Info/0416/internet-of-things.html
2The term was first coined in 2006 by Helen Gill at the National Science Foundation in the

US. [LS15]
3http://cyberphysicalsystems.org

2

“Integrations of computation, networking, and physical processes. Embed-

ded computers and networks monitor and control the physical processes,

with feedback loops where physical processes affect computations and vice

versa.”

Later Sowe et al. described the role of humans as an active component under the

term CPHSs [SSZ+16] defined as:

“interconnected systems (computers, cyber-physical devices, and people)

talking to each other across space and time, and allowing other systems,

devices, and data streams to connect and disconnect.”

It is evident that nowadays people have an active role interacting with the com-

puting and machines towards the achievement of goals. We argue that the relevance

of CPHSs will increase over the next decade. CPHSs will become larger, more com-

plex and users will be highly involved. The gap between humans and technology is

getting smaller. Users constantly rely on their technology to fulfil personal goals.

We are in the era where users are more than providers and consumers of technology.

Users are active, relevant, and necessary components of the designed system.

However, humans are highly dynamic, their decisions might not always be pre-

dictable, and they expose themselves to unforeseeable situations that might impact

their interactions with their physical and cyber elements. With the human in the loop

as an element of a system, how can CPHSs understand and respond to the dynamic

environment introduced by them? How can CPHSs improve users’ experiences? How

can CPHSs assist users in the achievement of their personal goals? We believe there

is a need for a user-centric vision in the design of smart CPHSs.

The first motivation of this dissertation is towards empowering CPHSs with user-

centric capabilities at runtime, enabling systems to understand and reason about

users’ relevant situations that might affect its execution, while adapting themselves

under changing conditions [End95, ADB+99, CLG+09, MKS09, LGM+13]. A user-

centric capability implies that the system recognises the users as first class elements

of their interactions actively involved in the achievement of the system objectives.

More importantly, users’ changing situations affect the behaviour of the system.

Systems designed with a user-centric vision need as much information as possible

about users and their personal goals. Luckily, CPHSs are constantly generating con-

text information about the user and the execution environment [CE11, PZCG13,

3

KFM+13, CLPS11]. However, context information might be heterogeneous, dis-

tributed, and unreadable by machines. Also, users’ context is also dynamic based

on users’ changing situations.

Moreover, systems need supporting infrastructures with reasoning capabilities to

discover and analyse context, infer situations, measure the need for adaptation, and

plan activities related to the execution of such adaptations. Related approaches

for self-adaptation on CPHSs address their adaptation requirements not focused on

the users changing situations, but on solving concerns of software quality such as

performance, reliability and flexibility [MSW16]. A close approach of using self-

adaptation to react under users’ changing situations, would be in the area of system

requirements based on personal goals.

The second motivation of this dissertation deals with models at runtime

(MART s)4 and runtime infrastructures, which enables CPHSs to manage up-to-date

information about the system, environment and users, as well as to perform system’s

adaptation-related activities during execution time. More importantly, MARTs en-

able CPHSs to represent changing situations and context information while the sys-

tem executes, empowering the CPHSs to reason and adapt on runtime information.

MARTs have been the focus of research for many years, specially from the perspec-

tive of self-adaptive systems and software evolution [BBI13, BB13, BBG+13, MV13].

Since CPHSs exist in a highly dynamic and complex socio-technical environment,

these are under constant change. Runtime models are necessary to represent at vari-

ous levels of abstractions, current components, interactions, and pieces of information

of CPHSs at execution time. More importantly, Models at Runtime (MARTs) are

fundamental to support self-adaptation, which requires dynamic infrastructures to

manage system’s adaptations and propagation of changes across the models that rep-

resent the elements and interactions of CPHSs.

In conclusion, users have shown to be active elements with their daily applications,

the boundaries that separate users from their devices are rapidly fading as the com-

ponents become smarter and more knowledgeable about the users. It is pertinent

that software engineers look at the role of users as first class elements of the systems

that are being designed, going further when it comes to personalization, tailoring

applications to fit users’ dynamic lives. We envision that users will be developing

their technological presence through virtual personalities. We envision, CPHSs to be

4Also found in literature as Models@run.time, M@RT, Execution models, or Models at execution
time

4

improved with situation-aware self-adaptive system to provide users truly personal-

ized functionalities and features.

1.2 Problem Statement, Challenges and Research

Questions

As explained in the motivation, we identified two main fields of research namely user-

centric CPHSs and MARTs. In light of this, the following two main motivations drive

our research:

M1. The need for empowering CPHSs with situation awareness to understand users’

context and changing situations.

M2. The need for MARTs and runtime infrastructures to represent and manage

CPHSs dynamic requirements based on user-centric concerns and situations.

1.2.1 Problem Statement

This dissertation addresses the following research problem:

CPHSs that assist users in the achievement of personal goals require run-

time representations to understand the user’s context, personal goals and

situations. Moreover, these CPHSs require runtime adaptation capabili-

ties to regulate their requirements satisfaction under unforeseeable chang-

ing situations, particularly those associated with the users. In this regard,

for CPHSs to become user-centric and situation aware these systems need

to be enabled to: (1) understand users, their personal goals and changing

situations, (2) causally connect the cyber, physical and human compo-

nents involved in the achievement of users’ personal goals, and (3) support

runtime adaptation to respond to relevant changes in the users’ situations.

1.2.2 Research Challenges

To direct our challenges, we focus on CPHSs whose objectives are the achievement

of users’ personal goals. These CPHSs are enabled to understand users’ changing

5

situations as well as adapting at execution time when required. We posit the follow-

ing research challenges and group them into two concerns: situation awareness and

runtime adaptation.

Situation-awareness

CH1. Typical user models represent personal context. Situations are interpretations

of sensed information that can be static or dynamic. Some emerging situa-

tions might affect the users’ capability of achieving personal goals using their

applications. Situations are complex, dynamic and can mean different thing

to different users. Thus, we require specifications that explicitly connect users

with personal goals and relevant context.

CH2. For CPHSs, the achievement of users personal goals using software and hardware

technologies implies a set of ordered tasks towards an objective. Therefore,

we require a comprehensive representation of user’s tasks and sequences that

include various types of actions, services, and measurable outcomes.

CH3. Situations are the result of analysing context towards an understanding of users’

changing conditions, as these affect their capacity to fulfil personal goals. In

light of this, we require the support of representations and reasoning techniques

to infer emerging situations.

Runtime adaptation

CH4. To satisfy the dynamic nature of CPHSs, we require the definition of architec-

tural models to make explicit the components of CPHSs, which include cyber,

physical and human components, as well as their interactions and runtime adap-

tation capabilities.

CH5. To realize CPHSs oriented to the achievement of users’ personal goals, we require

the definition of architectural and functional requirements of CPHSs to support

personalization and runtime adaptation.

CH6. To support CPHSs exposed to changing conditions of the environment and

users’ situations, we expect CPHSs to respond at run time to such conditions.

Therefore, we require the definition of runtime adaptation techniques to support

dynamic changes in the specification of the CPHSs’ models.

6

1.2.3 Research Questions

The long-term goal of this research is to investigate software engineering approaches

and techniques towards runtime adaptation primarily focused on the design and im-

plementation of user-centric CPHSs. The short term goal of this dissertation is to

develop and evaluate a modelling approach and an operational framework for the

management of models at runtime for user-centric CPHSs.

Based on our research goals and challenges, we define the following four research

questions:

RQ1. What are the [runtime] requirements for the realization of User-Centric Smart

Cyber-Physical-Human Applications?

RQ2. What are the [runtime] modelling requirements to support User-Centric Smart

Cyber-Physical-Human Applications?

RQ3. What are the appropriate runtime models for the implementation of User-

Centric Smart Cyber-Physical-Human Applications?

RQ4. What are the runtime infrastructures required to process and evolve runtime

models while maintaining the causal relations among them for User-Centric

Smart Cyber-Physical-Human Applications?

1.3 Methodological Aspects

1.3.1 Research Methodology

In this research we use exploratory sequential mixed methods [Cre13] combining qual-

itative and quantitative approaches. Figure 1.1 depicts our research methodology in

two phases: First a collection and analysis of qualitative data based on a systematic

literature review [KC07]5 on modelling approaches and internet technologies that are

relevant for CPHSs that assist users’ to achieve personal goals. Second, the collec-

tion and analysis of quantitative data to support qualitative observations during the

previous phase. In this approach, quantitative data is collected through case stud-

ies [ESSD08] and controlled experiments [JCP08]. In our methodology, case studies

also provide qualitative data. For instance, a prototype implementation of our CPHSs

5This dissertation uses the concept of systematic literature review as a synonym for survey.

7

case study is used to understand the causal connection between our CPHSs models

to support runtime adaptation and situation awareness.

Figure 1.1: Research methodology

Limitations

We recognise that the research area of user-centric CPHSs is broad and complex.

This dissertation focuses on two main fields of research presented before: user-centric

CPHSs and MARTs. Thus, the scope of this dissertation is related to those research

fields. Our contributions, implementations and experiments, are focused on our re-

search areas of interest.

We identify two potential major limitations: availability of context sources, and the

size of context data. To overcome the limitation related to the availability of context

sources and required acquisition sensors, we propose to utilize the SmarterContext

monitoring infrastructure proposed by Villegas [Vil13], which provides a self-adaptive

mechanism to gather context dynamically. However, in our evaluation we have a

limited number of sensors to consume real-world context from third party applications

(e.g., social networks and e-commerce applications) and devices (i.e., mobile and

desktop). Also, we use simulation techniques for those sensors that are not readily

available for our use.

1.3.2 Research Approach

The first step in our research was to explore the current state of web automation and

personalization since the internet provides a close example for a user-centric CPHSs.

8

Personalization is a natural feature of a user-centric system. We revised academia

and industry approaches to understand techniques and proposals seeking to deliver

personalized experiences. In particular, we investigated selected approaches to gain

insight into the capabilities or intentions to understand changing situations of the

user. Later we conducted a survey on models to review related approaches to personal

internet-based tasking systems. For each approach we analysed their modelling style

and their relationship with our modelling requirements (i.e., personal goals, context

and web-tasking).

The findings of the aforementioned exploratory studies contributed to the compre-

hension of users at the centre of internet interactions, the definition of fundamental

elements of user-centric CPHSs (which assist uses in the achievement of personal

goals), and the research gaps towards building smart software capable to understand

users’ changing situations. Additionally, our findings revealed that even when there

are approaches to model relevant information for personal goals, there is a lack of

runtime support to represent execution time challenges, such as users’ situations and

goals [CVM13].

The second step was to propose our models at runtime for user-centric CPHSs.

To do this, we studied different types of models and focused on those suitable to

represent the concepts, interactions, and elements. More importantly, we focused

on software models that were capable to be represented at execution time, in a ma-

chine readable way. As a result, we defined an ontology and goal models, both of

which can be transformed into graphs, which can be read and modified by software

applications [CVM14a, CVM14b]

Third, we focused on a particular set of CPHSs that deal with runtime require-

ments and provide self-adaptive capabilities; we proposed our system architecture to

realize user-centric CPHSs [CVM14b]. Our architecture comprises four layers of inter-

action (three based on the Dynamico reference model [VTM+13], and one additional

for supporting models at runtime related activities) within five components (one of

which is the SmarterContext monitoring infrastructure by Villegas [Vil13]). We

presented a case study for online grocery shopping that included several services, and

various users affecting the personal goal of getting groceries.6 Later we extended our

scenario to be centred on people with cognitive challenges (e.g., elderly), presenting

user-centric CPHSs used to assist them into maintaining an independent life style

thereby improving their quality of life.

6www.rigiresearch.com/research/pwt/susgroceries

9

Fourth, we focused on the components of our approach responsible for supporting

activities related to MARTs. For this, we defined an operational framework com-

prised of four elements: a mapping for models at runtime (notation to artefact), a

catalogue of runtime model operations (model-generic to model-specific), the corre-

sponding runtime semantics to support model operations, and the models’ causal

connections. For this purpose, we analysed runtime software models and their cor-

responding representations as graphs, and defined levels of abstraction towards their

atomic structure of nodes and arcs. For each of the main runtime operations CRUD

(create, read, update, and delete), we defined the propagation of changes among the

models using causal connections.

Fifth, we designed and implemented Primor, our software platform responsible

for executing and managing runtime model-related operations using our aforemen-

tioned models at runtime and operational framework. As a case study, we integrated

Primor into our online grocery shopping application and run simulations in which

context information would change, thus affecting users’ situations.

Sixth, we performed a qualitative assessment in which we compared our approach

with related approaches. As a result, our approach differs from others in the capa-

bility to represent personal goals based on the measurable outcomes of the tasks of

the users, and situations based on two variables of space and time. For our quanti-

tative assessment we evaluated our models, operational framework, and Primor by

measuring (1) the accuracy of the models at runtime after the execution and prop-

agation of changes, and (2) the capability of the infrastructure to understand and

reason upon changes in the context in terms of understanding users’ situations. Our

evaluation was an iterative process in which we refined our libraries, and operations

until we reached the saturation point where both models and infrastructures behaved

as expected.

1.4 Contributions

This dissertation summarizes the four contributions of this dissertation:7

7The supporting files are available at http://www.rigiresearch.com/research/pit

10

C1: User-Centric Smart Cyber-Physical-Human Applications

We propose a definition and an architectural design for User-Centric Smart Cyber-

Physical-Human Applications (UCSAs). A UCSA is an orchestrated set of cyber,

physical, and human components (along with their interconnections) that assist users

in the fulfilment of their personal goals. A UCSA manages the smart interaction

among the components dynamically, understands and acts upon users’ changing sit-

uations, and has capabilities to evolve at runtime. There are three characteristics

that make a smart CPHSs a UCSA: (1) user awareness, which provides a sphere of

information (static and dynamic) containing users’ concerns, personal data, and re-

lations, (2) runtime modelling support, which is the capability of the UCSA to store

and manage models at runtime and (3) runtime adaptation support, which is the

capability to propagate changes across the models at runtime.

Our architectural design is based on the Dynamico reference model [VTM+13]

and comprises four software components to manage the tasks of the user towards

the fulfillment of a personal goal (the tasking knowledge infrastructure, the model

processor, the personalization engine, and the internet tasking effector), and a models

at runtime supporting infrastructure, which is responsible for the access and activities

related to the models.

C2: MARTs for User-Centric Smart CPH Applications

We define two Models at Runtime (MARTs) for User-Centric Smart Cyber-Physical-

Human Applications (UCSAs): (1) our Galapagos Metamodel, which defines

the concepts of UCSA by abstracting the three dimensions of CPHSs as well as the

smart interactions among them, and (2) our Galapagos Model, which supports the

specification of evolving tasking goals, personal interactions, and relevant contexts.

To derive our MARTs we defined the modelling requirements for UCSAs based on

our analysis on the conceptual definition of UCSA and related approaches on models

for internet tasks and user’s personal goals. As a characteristic of a MARTs these

require to be implemented in a format that can be read and accessed by software

applications. Our MARTs are available in the form of graphs.

11

C3: Operational Framework for Models At Runtime

We present our operational framework for MARTs in User-Centric Smart Cyber-

Physical-Human Applications, which for each MARTs defines the model equivalences

(human-readable to machine-readable and vice versa), available runtime operations

and semantics, and causal connections with other models.

Our framework comprises four components: (1) a notation-artefact mapping, (2)

a catalogue of operations, and (3) the runtime semantics and (4) causal connections.

The notation-artefact mapping connects every element that is in the model notation

form with its corresponding element in the software artefact form. The mapping is

the main element for the translation of the MARTs in the two ways: human read-

able and machine readable. The catalogue of runtime operations define for every

element what the limitations, restrictions, and other considerations are when per-

forming runtime operations. It is worth mentioning that although we define three

operations, the catalogue is flexible to any supported runtime operation of a MARTs.

The runtime semantics are specified in a programming language and are implemented

by smart infrastructures to execute the operations (i.e., software commands) at run-

time. Finally, the operational framework describes the causal connections between

the MARTs through the causal links component, which is shared by all MARTs.

C4: Processing Infrastructure for Models at Runtime

(PRIMOR)

We propose our Processing Infrastructure for Models at Runtime (PRIMOR) to

manage operations on MARTs for UCSA. Primor is a component of the UCSA’s

models at runtime supporting infrastructure. Primor uses the operational framework

as the knowledge base for its activities, supporting three main functionalities: (1) to

coordinate runtime operations, (2) to orchestrate the propagation of changes among

interconnected MARTs based on their causal links, and (3) to manage the MARTs

synchronization keeping correspondence between a model notation and its software

artefact. Primor is designed to the extensible to other domains.

1.4.1 Publications

� Lorena Castañeda, Norha M. Villegas, and Hausi A. Müller. Towards person-

alized web-tasking: Task simplification challenges. In Proceedings 1st Workshop

12

On Personalized Web-Tasking (PWT 2013) At Ninth IEEE World Congress On

Services (SERVICES 2013), pages 147—153. [CVM13]

� Pratik Jain, Andreas Bergen, Lorena Castañeda, and Hausi A. Müller. PAL-

Task chat: A personalized automated context aware web resources listing tool.

In Proceedings 1st Workshop On Personalized Web-Tasking (PWT 2013) At

Ninth IEEE World Congress On Services (SERVICES 2013), pages 154—157.

IEEE. [JBCM13]

� Andreas Bergen, Nina Taherimakhsousi, Pratik Jain, Lorena Castañeda,and

Hausi A. Müller. Dynamic context extraction in personal communication

applications. In Proceedings 2013 Conference Of The Center For Advanced

Studies On Collaborative Research (CASCON 2013), pages 261—273. IBM

Corporation. [BTJ+13]

� Lorena Castañeda, Norha M. Villegas, and Hausi A. Müller. Personalized

web-tasking applications: An online grocery shopping prototype. In Proceed-

ings 1st Workshop On Personalized Web-Tasking (PWT 2014) At Tenth IEEE

World Congress On Services (SERVICES 2014), pages 24—29. [CVM14b]

� Lorena Castañeda, Norha M. Villegas, and Hausi A. Müller. Self-adaptive

applications: On the development of personalized web-tasking systems. In

Proceedings ACM/IEEE 9th International Symposium On Software Engineer-

ing For Adaptive and Self-Managing Systems (SEAMS 2014), pages 49—

54. [CVM14c]

� Lorena Castañeda, Norha M. Villegas, and Hausi A. Müller. Exploiting

social context in personalized web-tasking applications. In Proceedings 2014

Conference Of The Center For Advanced Studies On Collaborative Research

(CASCON 2014), pages 134—147. IBM Corporation. [CVM14a]

� Juan C. Muñoz-Fernández, Alessia Knauss, Lorena Castañedaa, Mahdi De-

rakhshanmanesh, Robert Heinrich, Matthias Becker, Nina Taherimakhsousi:

Capturing Ambiguity in Artifacts to Support Requirements Engineering for

Self-Adaptive Systems. REFSQ Workshops 2017. [MFKC+17]

13

1.5 Dissertation Outline

The remaining chapters of this dissertation are organized as follows:

Chapter 2: Research Background—presents four research background topics

of this dissertation: (1) the smart internet which is a user-centred internet vision

based on three principles of design (a user model, a new paradigm for sessions, and

a schema of dynamic collaboration). (2) Cyber-Physical-Human Systems (CPHSs),

which is the technological domain of this research; (3) the foundational concepts

of situation awareness, which is the ability of a system to identify, understand and

reason about users’ situations, and (4) the core conceptual element of this dissertation:

Models at Runtime (MARTs), which are software artifacts that represent current

states of relevant elements and the system capable of evolving during execution time.

Chapter 3: State of the Art—presents our study of relevant approaches, fo-

cused on models, for smart internet applications. Among the variety of software

models, we study modelling approaches associated with the concerns of user-centric

CPHSs. We selected three modelling aspects that are relevant for user-centric CPHSs:

(1) personal goals, which are relevant to the user-centric vision; (2) tasking, which

are relevant to the user interactions; and (3) context, which is relevant to understand

users’ changing situations. To conduct our study, we followed a systematic literature

review (SLR) as proposed by Kitchenham et al.[KPBB+09] and analysed 24 relevant

approaches.

Chapters 4, 5, 6 and 7—present our four contributions respectively as outlined

in Section 1.4

Chapter 8: Evaluation—presents our evaluation results of this dissertation in

two parts: First, for our qualitative evaluation we present a comparison with related

approaches of models at runtime specification, and models at runtime infrastructures;

and second, for our quantitative evaluation we present our proof of concept, which

includes our case studies, software-based implementation, test scenarios, simulations,

results and findings.

Chapter 9: Summary, Conclusions and Future work—summarizes the re-

search and contributions of this dissertation, presents the conclusions and discusses

potential future work. Figure 1.2 summarizes this dissertation including the relation-

ships among research challenges, questions, goals, contributions, publications, and

evaluation methods.

14

Figure 1.2: Dissertation roadmap.
Chapters 2, 3, and 9,were excluded from this map since belong to the Background, State of the art, and Summary, Conclusions, and Future work respectively.

15

Chapter 2

Research Background

In Section 1.2 we introduced our problem statement and defined that for Cyber-

Physical-Human System (CPHS) to become user-centric and situation-aware these

systems need to be enabled to: (1) understand users, their personal goals and changing

situations, (2) causally connect the cyber, physical and human components involved

in the achievement of users’ personal goals, and (3) support runtime adaptation to

respond to relevant changes in the users’ situations. This chapter presents background

on four research topics of this dissertation relevant to our problem statement: Models

at Runtime (MARTs), Cyber-Physical-Human System (CPHS), smart internet and

situation-awareness. Figure 2.1 depicts the relation between our problem statement

and the background topics.

Models at Runtime (MARTs) constitutes the core conceptual element of this

dissertation. MARTs are software artefacts that represent current states of relevant

elements and the system, capable of evolving during runtime. MARTs enable systems

to support dynamic behaviour and runtime adaptation. On this topic, we present the

definition of the MART concept, the conceptual reference model for MART , and the

reference architecture for MART systems. Cyber-Physical-Human System (CPHS)

is the technological domain of this dissertation, which relates to the smart internet

topic providing us with a vision of user-centric applications.

16

Figure 2.1: Problem statement and research background topics of this dissertation

17

The concept of a notion of CPHS is an integration (mostly seen from their in-

teractions) of cyber, physical and human elements working together to achieve the

objectives of the system. The smart internet is a user-centred internet vision based

on three principles of design (a user model, a paradigm for sessions, and a schema

of dynamic collaboration). Since we are interested in CPHS that understand users’

changing situation, the situation-awareness topic describes the elements require to

enable systems with the ability to identify, understand and reason about users’ situ-

ations.

In our problem statement, we described a user-centric CPHS to be highly dy-

namic. To support a user-centric CPHSs’ runtime requirements, its MARTs have to

be effective representations of the elements involved in the execution of the system,

such as cyber, physical, and human components, personal goals, interactions, and the

environment. We present MARTs as the last topic of this chapter, since we aim to

converge on the importance of MARTs after introducing the other topics.

2.1 Cyber-Physical-Human Systems (CPHS)

The term cyber-physical-human systems (CPHS)1 is used to describe the integration,

mostly focused on the interactions, of cyber, physical and humans elements that work

together towards the achievement of the objectives of the system [SSZ+16, LS15].

The description of CPHS is based on the fundamental components of cyber-physical

systems (CPS) defined by Lee et al. with the addition of the human-in-the-loop

component [Lee10, LS15].

CPHS are highly dynamic and complex, as well as being subjected to certain de-

grees of unpredictable behaviour from the environment and the user. These conditions

create various challenges related to the management of CPS which might require run-

time capabilities that enable the system to detect, monitor, understand, plan, and act

upon those changes, while minimizing (and potentially eliminating) the down time of

the system. We define three dimensions of CPHS: cyber, physical and human. Each

dimension is connected to the other two through smart interactions [NCCY10b] de-

picted in Figure 2.2.

1This dissertation uses the term cyber-physical-human systems (CPHS). However most of the
research was conducted with the term cyber-physical systems (CPS) while considering the human as
a first class element. Although CPHS is a relatively new term, it embodies our vision of human-driven
CPS, and thus we adopted the term in our dissertation.

18

Figure 2.2: Three dimensions of Cyber-Physical-Human Systems

The physical dimension comprises all resources connected to the system through

sensors and actuators. The cyber dimension describes all computational, networking

and cloud infrastructures that communicate resources’ data, processes and software.

And the human dimension describes the human elements, as well as their situations

based on their goals and context. The human dimension is especially relevant for

this dissertation when CPHS’ objectives are aligned with the achievement of users’

personal goals.

2.1.1 Characteristics

The characterization of CPHS allows us to understand the application domain of this

dissertation, as well as to identify runtime challenges associated with the applications,

their environment and the users. Since CPHS is an extension of the definition of CPS,

we take Lee’s definition which is widely adopted by researchers [Lee10, SWYS11,

KM06, MMS15, SSZ+16]. We present eight characteristics as follows:

(1) Close integration of computation and physical processes. Close integration refers

to the capability of the components to communicate and exchange information.

For this purpose, a component of a CPHS must have knowledge and understand-

ing of its neighbour components. This is, awareness of the other components and

how to interact with them, as well as comprehension of how the components’

structure and services contribute to the overall goal of the system.

19

(2) Physical components have embedded software (cyber capabilities) and limited re-

sources. These capabilities can be provided by adding software that exposes

services and related information to cyber elements or wrapping already compu-

tational components with additional layers of software to provide higher level

capabilities, or attaching sensors and actuators to physical things in order to

give them a virtual presence inside the system.

(3) Large scale and distributed networks. Networks host cyber and physical com-

ponents of a CPHS. Humans interact cyber and physical resources through

networks such as the cloud. These networks are from a variety of technologies.

(4) Temporal and spacial restriction variables and multiple scales. A CPHS as a

whole, is bounded by the constraints of spatiality and real time. Even when

cyber, physical and human components as individuals, operate under different

notions (and considerations) of time and space.

(5) Dynamic configuration and organization. The integration of CPHS components

suppose a general dynamic behaviour. As a consequence, a CPHS must have

monitoring and adaptive capabilities, that will allow the system to understand

the changes of their environment, as well as to be able to adapt (autonomously

or manually) to fit new configurations.

(6) High degrees of automation and closed control loops. CPHSs include au-

tonomous components that enable parts of the system to act upon policies,

and make decisions over the normal operation of the system, often at runtime.

(7) Reliability and security are necessary. The physical and cyber worlds are not

entirely predictable therefore systems compensate with robustness. Traditional

CPS research, which is focused on embedded systems, have studied reliability

and security from the point of view of the digital components. As a principle,

engineers tackled reliability and security with predictions (considering the lim-

its of technological feasibility). However, modern CPHS research, working on

the software component, must consider that large scale, complexity, heteroge-

neous components, and dynamism of the modern CPS, will limit the prediction

capabilities, and increase the cost of robustness.

(8) Human-in-the-loop. The role of humans in CPHS is to be active elements that

can help the system achieve its goals which ultimately are people’s goals. The

20

users’ context, personal goals, and situations are relevant during the design and

execution of a CPHS.

2.2 Smart Internet

The notion of a smart internet denotes a user-centric internet in which services and

contents are dynamically and automatically composed of multiple sources to fit users’

needs [NCCY10c]. According to Ng et al., the current internet has limitations towards

the user-centric vision of their approach; those limitations are: (1) lack of integration

of web contents and services from the user’s perspective; (2) lack of individualization

to deliver content and services based on the users’ current needs and situations; (3)

the absence of server-initiated connections on behalf of users and with awareness of

their context situations; (4) lack of the notion of service level collaboration where

multiple users can work together on a service instance; and (5) lack of control by

users over web entities.

Our research addresses directly the challenges associated with the user-centric

design of the smart internet initiative, specifically characteristics (3) and (4). Since

dynamism is expected for smart internet functionalities, our research focused on mod-

els at runtime, contributes towards the creation of responsive representations and

infrastructures required to support the smart internet’s dynamic behaviour.

2.2.1 The Smart Internet Principles

The smart internet vision is based on three principles: (1) an instinctive user-model

that places the user at the centre of all web interactions; (2) a paradigm for sessions

making them situation- and user-centric; and (3) a schema of dynamic collaboration

among users [Ng10, NCCY10a, NCCY10b]. These three principles are defined as

follows:

Instinctive user model

In the smart internet, interactions are instinctive for the user. User focused design

implies three critical design considerations: First, the use of metaphors based on ob-

jects and operations from real world analogies as a mechanism to map users’ domains

and concerns in a familiar way. An example is the like Facebook’s concept used to

represent user interests and preferences. Second, the transference of content’s control

21

of the web to the user, in such a way that it is dynamic, adaptive and tailored for the

users and their multiple internet concerns and persona. For this purpose, the content

should aggregate internet resources to fit users’ purpose while adapting dynamically

to the users’ situations. Third, a compatibility with the users’ cognition in such way

that interactions are not a mental burden for the users trying to remember, resume,

and control the execution of the internet activities while trying to accomplish a goal.

The core application domain of this dissertation is smart internet systems fulfilling

users’ personal goals. Our research on situation-awareness as the identification and

representation of users’ situations contributes to this user-centric model principle.

Sessions for users and their concerns

In the smart internet, sessions derive from the perspective of users and their matters

of concern, not the server, and are not bounded by users synchronous interactions.

The two major implications are the needs for asynchronous interaction patterns (i.e.,

events and conversations) that can be shared and reused across several sites, with

persistent sessions for the users’ matters of concern. In this way, even if users switch

concerns, services, or persona, their interactions could be resumed and sometimes

executed on their behalf. This dissertation contributes on this principle by laying

the grounds for composing matters of concerns from diverse sources through the

implementation of models at runtime.

Collaborative and collective web interactions

The smart internet considers users’ social needs to resolve shared matters of concern

by supporting close collaboration. There are two implications of this principle: the

capability for users to share their matters of concern with other users; and the capa-

bility of the internet to produce information on units of matters of concern. In this

case, collaboration is augmented by harvesting data from user smart interactions,

and exploiting it as the collective intelligence of other users. For example, historical

behaviour, user ratings, reviews, and feedback. Our research contributes to the basis

of collaborative and collective interactions by representing and interconnecting user

context, personal goals, and situations through models at runtime.

22

2.2.2 Personalized Web-Tasking (PWT)

Users increasingly rely on internet applications to complete a variety of every day

tasks that used to be performed offline. For instance, gathering information on a

research topic or a personal interest, executing transactions (e.g., for performing

banking operations), and communicating with other people (e.g., through email, chat,

or social networks). In the smart internet vision, smart interactions are instinctive

web operations to assist users in the fulfilment of personal goals [NCCY10b]. Smart

interactions comprise an aggregation of resources and content delivered according to

users’ current concerns or situations. More importantly, content and services might

come from multiple sites, but presented to the user as a single unit of interaction.

In 2013, IBM launched the first workshop on Personalized Web Tasking (PWT),

to bring together initiatives based on the concept of smart interactions [MNS+13].

PWT proposes the automation of user-centric repetitive web interactions that assist

users in the fulfilment of personal goals using internet systems [CVM13, CVM14c].

In PWT, both personal goals and internet systems are affected by unpredictable

changes in user preferences, situations, system infrastructures and environments. Self-

adaptation enhanced with dynamic context monitoring is required to guarantee the

effectiveness of PWT systems that, despite context uncertainty, must guarantee the

accomplishment of personal goals and deliver pleasant user experiences.

The initial motivation of this dissertation was the realization of PWT applications

with situation-aware capabilities. Our interest concentrated on user’s identity, inter-

actions, personal goals, preferences, and context, which determine the decisions and

behaviours of the web interactions.

2.2.3 Smart Internet Approaches

The smart internet is the internet for the users. However, transforming the internet

into a user-centric model is not a trivial problem, and a clean-slate new internet is

hardly an easy solution. Research has being leaning towards collecting and analysing

information about users in an attempt to know and understand them.

The overall purpose of personalization is to tailor the applications to look and feel

according to users’ preferences and interests. Some examples include, the Android

Swype keyboard,2 an application that learns from the user’s text inputs and predicts

words to compose new phrases as the user writes on the keyboard. Other applications

2http://www.swype.com

http://www.swype.com

23

analyse the user’s behaviour to recommend personalized functionalities such as auto-

matic music players. Similarly, Amazon’s recommender system provides users with a

sense of personalization when delivering purchase suggestions based on what similar

users had purchased before.3 Google’s prediction API4 exploits knowledge about the

user to provide personalized features and can be used to develop Google applications.

There are applications to provide certain automation when performing web tasks.

For example, scripting tools to automate tasks after an event, and browser-based

applications to record and replay users’ web interactions. However, these applications

are mostly limited to register users’ web actions and inputs rather than to understand

users’ situations and the context. Despite the efforts of commercial applications to

seek automation and personalization to improve users’ experiences, they still lack

context-aware and self-adaptive capabilities to understand personal goals and be-

haviour, and adjust themselves accordingly at runtime.

In summary, academia and industry have shown significant interest in developing

smart internet approaches. These approaches have been bound to the knowledge

about users which they have been able to collect and interpret themselves. Users’

location is being extensively exploited by a variety of applications, especially to deliver

personalized functionalities. More importantly, location has being effective to infer

users’ situations. For instance if a user is located in a grocery store, it is fair to infer the

user is achieving her personal goal for grocery shopping. Similarly, location over time

has helped applications to learn about users’ habits and behaviours, making easier

to predict services they might need. This dissertation concentrates on the ability of

smart internet applications, capable of exploiting a variety of context sources in order

to understand users and their changing situations.

2.3 Situation Awareness

Socio-technical ecosystems, such as CPHSs, have to deal with highly dynamic context

and situations. The smart internet applications, which are focused on the user, require

capabilities to understand users’ personal context, and to reason about their changing

situations. One of the main challenges is situation-awareness support. It is important

to define what it means in terms of its fundamental theory. There are two fundamental

approaches: (1) the model of situation-awareness that defines the factors affecting the

3Amazon Patent: http://www.google.com/patents/US6317722
4https://developers.google.com/prediction

http://www.google.com/patents/US6317722
https://developers.google.com/prediction

24

decision-making process that seeks an understanding of a situation [End95]; and (2)

the theory of activity and situation-awareness, which provides elements from the

psychology domain that we could apply in software systems [BM99].

It is a concern of this dissertation to provision user-centric CPHS with situational-

awareness capabilities. The user is at the centre of the smart interactions, her context,

concerns, and personal goals, are aligned with the objectives of her applications. The

aforementioned model and theory of situation-awareness are the conceptual founda-

tions of this dissertation. For instance, in our domain of user-centric CPHS, activities

involve the individual’s representation at runtime, while considering herself part of

the system. More importantly, smart applications are capable to perceive relevant

context, comprehend the user’s situation, and predict how it will affect achieving her

personal goal.

2.3.1 A Model of Situation Awareness

Endsley defined situation-awareness as follows [End95]:

“Situation awareness is the perception of the elements in the envi-

ronment within a volume of time and space, the comprehension of their

meaning, and the projection of their status in the near future.”

Based on this definition, the proposed model contains factors that associated

with humans, such as expectations, goals, experience, training, or memory, might

produce different results depending on each individual, thus are considered affecting

the situation-awareness capabilities. This dissertation centres its attention towards

individual factors calling them user personal context.

Figure 2.3 depicts the model of situation-awareness by Endsley exposing the fac-

tors affecting the decision-making process. Situation awareness follows three basic

levels:

L1. Perception of the elements in the environment: The capability of identifying

status, attributes and dynamics of the relevant components of the environment.

L2. Comprehension of the current situation: The significance of the perceived el-

ements in the light of the goals of the system. Such understanding implies

that the decision maker forms a holistic image of the system comprehending

elements, events and their interactions.

25

Figure 2.3: Model of situation-awareness in dynamic decision making [End95]

L3. Projection of future status: The ability to predict future actions and states of

the elements of the system, based on the knowledge and comprehension of the

system, and the situations.

Elements, Time and Space

The understanding of the environment relies on the clear identification of the ele-

ments the system needs to perceive and understand. For this dissertation, we use

context awareness when referring to this responsibility, and use the SmarterCon-

text framework proposed by Villegas [Vil13] to support context monitoring and

modelling. Although situation-awareness refers to a point in time, the knowledge

of the system is temporal in nature, acquired over time, and taking into account

the dynamics of the situations. More importantly, situations might have the past

and future temporal aspects of the environment and their predictions. Finally, the

space determines the scope of the elements that are relevant for the situation, even

particular aspects within the elements.

26

2.3.2 A Theory of Activity and Situation Awareness

Bedny and Meister provided another definition of situation-awareness, one that in-

cludes the individuals and their goals, as well as a consideration for the dynamic

behaviour [BM99]:

“Situational awareness is the conscious dynamic reflection on the situa-

tion by an individual. It provides dynamic orientation to the situation,

the opportunity to reflect not only the past, present and future, but the po-

tential features of the situation. The dynamic reflection contains logical-

conceptual, imaginative, conscious and unconscious components which en-

ables individuals to develop mental models of external events.”

Although Bedny and Meister’s definition for situation-aware is in the domain of

psychology, we can apply elements of their theory into software systems.

In Bedny and Meister’s view, situation-awareness needs to be treated in concord

with other behavioural concepts, specifically activity which comprises relevant terms

such as goal, meaning, and sense. In fact, the basic structural components of activity

are goals, as the ideal representation of the future results of the activity. To achieve

a goal, there is a logically ordered system of actions. More importantly, an individual

may vary her behaviour over a wide range while maintaining the same goal [BM99].

In is worth noting that the relationship between Bedny and Meister’s definition of

situation-awareness and the concept of personalized web-tasking for the smart inter-

net. Bedny and Meister argue that Endsley’s definition treats the user as a box of

information, with no consideration for the decision making and execution processes.

In Bedny and Meister’s description, situational-awareness implies an important

mechanism called reflective-orientational function. Reflection is the representation

of reality, incorporating the notions of goals, significance, motives, and mental and

behaviour actions. Figure 2.4 depicts the process of reflection; the representations

are the result of the reflected object featuring the reflected system as well [BM99].

Figure 2.4: Reflective functions scheme [BM99]

In software systems dynamic reflection can be implemented through Models at

Runtime (MART), which enable systems with self-awareness capabilities.

27

2.4 Model At Runtime (MART)

Traditionally, a software model is an abstraction of a system, often associated with

design time activities such as documentation and analysis. Unfortunately, models at

design time might get lost in the documentation of the system, becoming obsolete over

time as the software and its relevant elements change. Models at runtime (MART)

provide up-to-date information about the system and its environment, and can be

manipulated and adapted at execution time [BBF09]. More importantly, MARTs are

fundamental to support dynamic reflection.

Multiple researchers have reported MART as a promising mechanism to moni-

tor and verify different aspects of the behaviour and structure of the software at

execution time. For instance, uses of MART to monitor and verify user’s chang-

ing situations [SBCC13], adaptation goals for self-adaptive systems [AP12, SZF+14],

changes in the software requirements [RCBS12], and the management of dynamic

runtime environments such as the cloud [ZCZ+13].

There is also research on using MART in self-adapting systems, including simu-

lating runtime environments, monitoring, policy checking, error handling, and sup-

porting systems adaptation requirements [MV13, SZ13]. MART implementations

have focused on different challenges: dealing with runtime concerns for complex sys-

tems [ABCF12]; and developing techniques and methods to support dynamic sys-

tems, modelling languages, and reasoning infrastructures, such as LoREM [GSB+08],

GORE [SSLRM11], and SM@RT [SHC+05].

A key aspect of a CPHS is to understand users’ changing situations, therefore by

providing and exploiting MARTs, the system is capable of representing, monitoring,

and exploiting context effectively.

2.4.1 Definition

Early definitions of the MART notion are based on the expectations on the model

during the execution of the system. First, Blair et al. defined a MART as [BBF09]:

“a causally connected self-representation of the associated system that

emphasizes the structure, behaviour, or goals of the system from a problem

space5 perspective.”

5The problem space refers to the application domain, specifically the information related to the
business logic.

28

Morin et al. then defined a MART in terms of what MART must pro-

vide [MBJ+09]:

“A MART must provide a high-level basis for reasoning efficiently

about relevant aspects of the system and its environment and offer enough

details to fully automate the dynamic adaptation process. It is possible to

make the design specifications evolve at any time, before initial deployment

or while the system is already running.”

Later, Bencomo et al. refined the previous definitions as follow [BBI13]:

“MARTs are abstract representations of a system, including its struc-

ture and behaviour, which exists in tandem with the given system during

the actual execution time of that system. Furthermore, these models should

be causally connected to the system being modelled, offering a reflective ca-

pability.”

The evolution on the definition of a MART has refined the expectations on the

model by exposing four important properties: (1) representation—a MART repre-

sents the system’s complete environment, possibly more than one MART per system;

(2) availability—a MART is accessible at runtime by the system; (3) causal connec-

tivity—a MART and the system must be causally connected; and (4) evolution—a

MART might evolve at runtime. We now elaborate the characteristics of these prop-

erties in detail.

Representation

The variety in software models responds to the necessity of representing diverse per-

spectives of the software at different levels of abstraction. Thus, structural models

describe the form and construction of the software; behavioural models describe con-

trol settings and signals of the system; sequence models describe the actors of the

system as they interact with the system; and interaction models describe the vari-

ous components of the software internal and external, their communication and data

flow. For instance, structural models include classes, components, functions or ser-

vices; behavioural models include function calls or state transitions; and sequence

models imply requests and responses. With software models, there is a possibility

to represent high- and low-levels of abstraction. This is, while some models describe

29

the interactions of the users with the system (usability models), other describe the

information as units of data used in the system (context models).

While the models described above correspond to traditional models at design time,

these can be augmented to become models at runtime. For instance, structural mod-

els with information that describe time and space constraints might represent the

evolution of the software as it changes from one version to the next. More impor-

tantly, information about external systems such as, location, services, data exchange,

authentication, and events, that interact with the system, along with time and space

information, become a representation of up-to-date interactions of the system, which

are characteristics that belong to the execution environment.

In this sense, MART representation is not bounded by the information that soft-

ware engineers conceive of the system at design time, yet they are capable of repre-

senting all elements that interact with the system, as these emerge while the system

executes.

Availability

Models at design time are used to assist the communication among people involved in

the development process such as engineers, developers, users, managers, and clients.

Most of these models are documents in a human-readable language. In contrast,

MARTs are used to assist the communication among software systems. Thus, avail-

ability implies that MART realizations have to be in a machine-readable form. Al-

though there is research to translate model-to-model and model-to-code languages6

and tools,7 these are not sufficient to create general software artefacts that can be

read and understood by software the way humans do with models at design time.

Moreover, software that can access MART , can also read, understand and perform

operations over them. For instance, reading the structural model gives the system an

understanding of its own components, where they are, and how connected they are.

Additionally, if the structure of the system changes, the model could be manipulated

by adding or removing entities, connections, attributes, or functionalities, to represent

the current structure of the system. As a consequence, MARTs become not only

6ATL (https://projects.eclipse.org/projects/modeling.mmt.atl), QVTd (https:
//projects.eclipse.org/projects/modeling.mmt.qvtd), QVTc, QVTr, QVTo (https:
//projects.eclipse.org/projects/modeling.mmt.qvt-oml)

7Epsilon (http://www.eclipse.org/epsilon), Viatra (https://eclipse.org/viatra), and
Xtend (http://www.eclipse.org/xtend)

https://projects.eclipse.org/projects/modeling.mmt.atl
https://projects.eclipse.org/projects/modeling.mmt.qvtd
https://projects.eclipse.org/projects/modeling.mmt.qvtd
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
http://www.eclipse.org/epsilon
https://eclipse.org/viatra
http://www.eclipse.org/xtend

30

elements of communication, but knowledge for the software systems helping them to

understand themselves and their own environment.

Causal connection

Models at design time are connected with the running software by the understanding

of the humans that are reading the models. As documents, models at design time

can describe model-software connections using notation or plain words. In some

cases, with the help of software tools, models can be connected—at a descriptive

level—with the code. In contrast, MARTs are causally connected. This is, that by

being software artefacts themselves MARTs are a reflection of their code. When

the code changes, the system changes and vice versa. Furthermore, MARTs might be

causally connected with other MARTs. There are three activities associated with such

reflection: (1) introspection is the ability of the system to inspect its code; (2) code

generation is the capability to generate just-in-time new code; and (3) intercession is

the ability to modify its code [AGJ+14].

Evolution

Models at design time are likely to become obsolete as the system evolves. Modern

software systems are highly dynamic, complex and exposed to unexpected changes.

MARTs are software artefacts living in the same ecosystem of the realities they are

representing. As the elements of the ecosystem evolve, MARTs are available to the

applications through software infrastructures that can read, understand, and modify

the models. More importantly, causal connections strongly link models with other

models and code, thus MARTs evolve as well.

Beyond the representations and the techniques towards evolving MARTs, the

validation and verification of the MART required to guarantee their representations

of the reality have been discussed by related approaches [CEG+14, Caz14, GBP+14,

TS14, MV13]. We recognise that the challenge of MART evolution is not trivial and

requires the representation and instrumentation of MART adaptations and causal

connections before moving to the fidelity aspects of evolution. This dissertation seeks

to contribute to the body of knowledge of MART adaptations as a step towards

trustful evolution.

31

2.4.2 Reference Models

The research of MART is interesting for the development of self-adaptive systems,

and for this dissertation. There are key components to enable self-adaptive systems

with the runtime capabilities to adapt at execution time, at different levels of the

system. In particular, there are two reference models of interest to this dissertation:

(1) the conceptual reference model of M@RT (i.e., MART) which presents a four-level

approach to describe how MARTs relate to the system and the environment [BFT+14],

and (2) the reference architecture for MART systems, which proposes a generic MART

framework that can be implemented in a variety of domains [AGJ+14].

A Conceptual Reference Model for M@RT

Bennaceur et al. proposed a conceptual M@RT reference model as MART research

framework [BFT+14] as depicted in Figure 2.5. The concepts and terminology of this

reference model applies to a variety of adaptive software systems, including open,

distributed, and embedded systems (e.g., cyber-physical systems) and cloud-based

systems.

Figure 2.5: A Conceptual Reference Model for M@RT [BFT+14]

Bennaceur et al. structured their reference model into four levels:

32

M0. This level contains the running system and the environment. Here, the sys-

tem observes and interacts with the environment. The running system consists

of two major parts: (i) the application, the one responsible for delivering the

functionality; and (ii) the runtime platform, the infrastructure in which the

application runs. When it comes to representation, it is important to note that

the running system might have adaptive capabilities contrary to the environ-

ment, to which the system has no control.

Figure 2.6: M0 Level [BFT+14]

Figure 2.6 shows a detailed view of the M0 level. The application part of the

running system comprises three sub-components: (i) the core (functional re-

quirements); (ii) the supervision (model-driven monitoring of the system and

the environment); and (iii) the adaptation (i.e., reasoning, planning and enforc-

ing adaptations on the system).

M1. This level contains the models at runtime, relations, and constrains and might

have a variety of models to represent different parts of the system, as well as

levels of abstraction. Models might be derived from other models or being

dynamically composed by models defined within M1. As mentioned in Sec-

tion 2.4.1, MARTs are causally connected with their code. In M1, models are

connected with M0 through events handled by the supervision component; and

change actions enacted by the applications component. These causal connec-

tions allow models in M1 to reflect the running system of M0.

33

M2. This level (meta models) contains the languages (i.e., syntax and semantics)

that are used to create the models in M1. The use of meta-models facilitates

the engineering reuse of model transformation techniques (e.g., transform a

model into code).

M3. This level is the meta-meta modelling, which defines the models for interop-

eration, integration and management of the models in M2 and M1. The use

of meta-meta-models eases the integration of various modelling languages and

specifications during the design of processing activities.

A Reference Architecture for Models@run.time Systems

Aßmann et al. proposed the reference architecture for MART systems depicted in

Figure 2.7, which provides a generic framework for MART that can be implemented

in a variety of domains [AGJ+14].

Figure 2.7: Reference Architecture for models@run.time Systems [AGJ+14]

It is important to note, that a MART always interfaces with the managed system,

and through it with the environment. A MART system comprises the three layers

described as follows:

34

Base Layer. In this layer are the abstractions of four specific aspects for

the system: (1) context models, which represent relevant information about the

observable state of the environment; (2) configuration models, which are rep-

resentations of the configuration of the managed system; (3) capability models,

which describe the services or features that can affect the managed system, as

well as its actuators; and (4) plan models, which describe the set of actions to

carry out adaptations on the system.

Configuration Management Layer. In this layer are the software entities of

the system that use the models at the base layer. There are three components:

(1) the reasoner, which evaluates future configurations of the system, by using

the information on the context and configuration models; (2) the analyser, which

detects if the system is no longer in compliance with the objectives, and realizes

the bridge between the MART at different levels of abstractions; and (3) the

learner (optional), which is responsible for keeping the model and the system

synchronized, as well as for detecting if the reasoner’s predictions are beneficial

in the long run.

Goal Management Layer. In this layer are the goal models of the system,

which are used by the reasoner to predict configurations that fulfil the specified

objectives. These goal models should be able to change over time as a result of

changes in the context or the requirements.

The architecture presented above is a reference model for MART systems which

are systems themselves. Thus, MART systems can monitor and control other MART

systems, one MART system becomes the managed system.

2.5 Chapter Summary

This chapter presented four research background topics that are relevant for this

dissertation: Cyber-Physical-Human System (CPHS) (cf. Section 2.1), Smart Inter-

net (cf. Section 2.2), Situation Awareness (cf. Section 2.3), and Model at Runtime

(MART) (cf. Section 2.4).

Figure 2.1 depicts the connection between our research background topics and

problem statement. Cyber-Physical-Human System (CPHS) is an integration of cy-

ber, physical and human elements working together to achieve the objectives of the

35

system, and constitutes the technological domain of this dissertation. CPHS com-

prises three dimensions: The physical contains the resources connected to the system;

the cyber includes software and networks; and the human includes the users’ context,

goals, and situations. The human dimension is specially relevant for this disserta-

tion, since we focus on CPHS that assist users in the achievement of personal goals.

We described eight characteristics for CPHS: (1) close integration of computation

and physical processes, (2) physical components have embedded software and lim-

ited resources, (3) large scale and distributed networking, (4) temporal and spacial

restriction variables and multiple scales, (5) dynamic configuration and organization,

(6) high degrees of automation and closed control loops, (7) reliability and security

are necessary, and (8) human in the loop.

The smart internet is a representative case of a user-centric CPHS. It features a

user-centric internet vision based on three design principles: (1) an instinctive user-

model that places the user at the centre of all web interactions; (2) a new paradigm

for sessions making them situation- and user-centric; and (3) a schema of dynamic

collaboration among users. This dissertation relates to the user-centric vision of the

smart internet which describes the desired structure and behaviour of systems that

assist users in the achievement of their personal goals.

We presented fundamental situational-awareness approaches: (1) the model of

situation-awareness that defines the factors affecting the decision-making process that

seeks an understanding of a situation; and (2) the theory of activity and situation-

awareness, which provides elements from the psychology domain that we could apply

to software systems. For our vision of user-centric CPHS, situational-awareness is

the capability of understanding users’ personal context, and to reason about their

changing situations.

Finally, we presented Model at Runtime (MART) which are software artefacts

that represent current states of relevant elements and the system, capable of evolv-

ing during execution time. MART constitutes the core conceptual element of this

dissertation. MARTs are used to represent the elements of user-centric CPHS in-

cluding cyber, physical and human components, personal goals, users’ context and

situations. Furthermore, MARTs are enabled to support adaptations, which allow

CPHS to keep updated information about the current state of their elements. We

presented two MART reference models that are of interest of this dissertation: (1)

the conceptual reference model of M@RT, which presents a four-level approach to

describe how MART relate to the system and the environment [BFT+14], and (2)

36

the reference architecture for MART systems, which proposes a generic framework of

MART that can be implemented in a variety of domains [AGJ+14].

37

Chapter 3

State of the Art on Models for

User-Centric CPHS

In Chapter 2, we presented the conceptual foundations of this dissertation and fea-

tured MART as our core conceptual topic. MARTs are used to represent elements of

user-centric CPHS, including cyber, physical and human components, personal goals,

users’ context and situations. Furthermore, MARTs are enabled to support adapta-

tions, which allow CPHS to keep updated information about the current state of their

elements. Also, MARTs are connected to the system and the environment; therefore,

the realities that MART represent are within those two groups.

This chapter presents our study of modelling approaches for user-centric CPHS.

Among the variety of software models, it is necessary to study modelling approaches

associated with concerns relevant for user-centric CPHS. We selected three modelling

aspects: (1) personal goals, which are related to the user-centric principle; (2) web

tasking, which is relevant to the definition of smart interactions; and (3) context,

which is important to understand users’ changing situations.

This chapter is divided into three parts: First, we describe the methodology of

our study and report on our findings. Second, we discuss our findings in light of our

selected modelling aspects. Finally, we summarize this chapter.

3.1 Methodology

Personal goals, web tasking and context have been addressed separately by different

authors in diverse application domains. For our study, we followed a systematic

38

literature review (SLR) as proposed by Kitchenham et al. [KPBB+09]. Following

this methodology, we searched academic publications using Google Scholar, IEEE

Explorer, ACM Digital Library, SpringerLink, Science Direct, and Elsevier. We used

the following keywords for our search strings: user model, web-task model, task model,

goal-oriented models, context model, web-service models, task execution.

We subtracted relevant literature and sources using a three-layer filter: (1) we

removed approaches that did not have the same conceptualization for our three con-

cerns; (2) we narrowed the number of sources to keep only those in reference to the

representation aspects of user, web-task, context, and user’s goals; and (3) we kept fo-

cus selecting sources that exposed clear and sufficient information about our concerns

as important elements of their approach.

As a result, we surveyed the 24 relevant approaches summarized in Table 3.1. For

each approach, this table captures a description approach and its modelling style. We

marked with an X the columns of our three concerns where the approach focuses.

Table 3.1: Modelling approaches versus modelling requirements.
Legend: G: Personal Goals, C: Context, and W: Web-tasking

Approach Description Modelling style G C W

Bolchini

[BM03]

Uses task analysis to

create a decomposition

of a task into finer

subtasks that can be

sequenced

Goal models, AWARE

goal-oriented notation

(i* framework)

X X

Brezillon

[Bré07]

A context-based graph

to represent context in

human tasks

Contextual graph

(Formalism to problem

solving)

X

Carberry

[Car88]

Representation of the

user’s plan

Formal (STRIPS) X

Carberry

[Car88]

Representation of the

user’s goal

Tree (TRACK from

IREPS system)

X X

Chopra

[CDGM10]

Service oriented

application modelling

for business-IT gap

Conceptual model X

Cui

[CLWG04]

Conceptual definition of

a web service

Conceptual model

39

Approach Description Modelling style G C W

Dix [Dix08] Data, Action and

Context, to infer and

automate user’s tasks

Personal ontology

(user’s context), HTA

(tasks)

X X

Giersich

[GFF+07]

Representation of the

tasks executed by the

user

Dynamic Bayesian

Networks (DBNs)

X

Goschnick

[GBS08]

Representation of the

tasks in video games

computer-player

interactions

Agent-Oriented (AO)

architectures

X

John

[JVM+02]

Create CPM-GOMS

models based on

hierarchical task

decomposition

Goals, Operators,

Methods, and Selection

(GOMS), Apex (A

cognitive modelling

tool)

X

Kim [KKJ13] Automatic web services

composition using Open

APIs

Ontology for Open

APIs, using RDF and

OWL

X

Klug [KK05] Using CTT describes

task states and

transitions

ConcurTaskTree (CTT) X

Liaskos

[LMSM10,

LLJM11]

Include preferences into

the goal models for

requirements

engineering

Framework (PDDL),

Goal models,

Hierarchical Task

Network (HTN)

X X

Liaskos

[LLJM11]

Graphical

representation of goals,

task, associations. A

numbered sequence of

tasks to create a path of

interactions

Graph X X

Mylopoulos

[MCY99]

Define and analyse Non-

and Functional reqs.

Goal models. AND ,

OR operators

X X

40

Approach Description Modelling style G C W

Souchon

[SLV02]

A Formal notation of a

task model to support

variations depending

con different context of

use

Formal notation of a

task, ConcurTaskTree

(CTT)

X X

Stoitsev

[SS08]

Abstraction for

high-level interactions

in BTM and

task-centric roles

Business Task

Management (BTM)

X

Thom

[TLI+11]

Version of Workflow

Activity patterns in the

BPMN

Business Process

Modelling Notation

(BPMN)

X

Villegas

[Vil13]

Representation of

dynamic context

(SmarterContext)

Ontology

X

Wilson

[Wil99]

Model of Information

Behaviour to represent

the information seeking

Model of Information

Behaviour

X X

Yu [Yu93] Representation of the

user’s interest and

intentions

Goal models X X

Yu [YM94] Actor-Dependency

model

Goal models X X X

Yu [YLL+08] Variability of the

system through the

exploitation of the OR

element in the graph

Graph X

3.2 Findings

The following sections discuss our findings based on our three concerns for user-centric

CPHS.

41

3.2.1 Personal Goals

The user model concern was been addressed for almost three decades. In 1988 Car-

berry applied a task planning system that uses information-seeking dialogues [Car88].

In her approach, a user model provides information for the system to infer the mean-

ing of a user’s plan and goals and allow a non-interrupted and robust communication.

The most important part of this model is the representation of the user’s plan and

goals as understood by the system, called by the author as the context model.

Carberry argues that the system must know about the purpose of the user and

the plans’ domain to accomplish its goal. She represents a plan using an extension of

the STRIPS formalism as a structure of applicability conditions, preconditions, body,

and effects. An agent is in charge of executing a plan. Applicability conditions and

preconditions must exist before the execution of the plan, the body contains subgoals,

and the effects are the results of the execution. Figure 3.1 depicts an example of a

planning model for a learning course material.

Learn-Materia(_agent:&PERSON, _sect:&SECTIONS, _syl:&SYLLABI)
Plan-Body:

Learn-From-Person(_agent:&PERSON, _sect:&SECTIONS, _fac:&FACULTY)
where Teaches(_fac:&FACULTY, _sect:&SECTIONS)

Learn-FromText(_agent:&PERSON, _txt:&TEXTS)
where Uses(_sect:&SECTIONS, _txt:&TEXTS)

Effects:
Learn-Material(_agent:&PERSON, _sect:&SECTIONS, _syl:&SYLLABI)

Figure 3.1: Carberry ’s plan model example for Learning Course Material using an
extension of the STRIPS formalism [Car88]

Carberry’s context model is represented by a tree, in which each node corresponds

to a goal inferred by the system, and the active path is the sequence from the root to

the current node of focus, depending on the user’s course of decisions. Each leaf in the

tree generates a new set of context, hence a new set of candidate nodes. Figure 3.2

shows an example of the context model tree for the user’s goal of getting a major in

computer science.

Goal models have been used to represent users’ interest and intentions. Tradition-

ally, goal modelling focuses mostly on expressing the steps of the process required to

achieve certain objectives. Yu et al. have focused on requirements engineering as one

domain for a user to express the intentions of the system behaviour [Yu93]. In their

first approach, Yu et al. argued the existence of dependency of agents, and defined

three types of operators for those dependencies: goal-dependency, task-dependency,

42

Obtain-Degree(IS,BA)

Satisfy-Skills (IS)

Satisfy-Language-Req (IS)

Earn-Credit (IS,FRENCH112, SPRING88, _cr2:&CREDITS)

Earn-Credit-Section (IS,FRENCH112-10-SPRING88)

* Learn-Material (IS,FRENCH112-10-SPRING88, _syl:&SYLLABI)

Sarisfy-Degree-Major (IS,BA)

Satisfy-Major (IS, CS, BA)

Earn-Credit (IS, CS180, _ss:&SEMESTERS, _cr1:&CREDITS)

Figure 3.2: Carberry’s Context model tree build using TRACK; a component of the
IREPS system to infer user’s underlying task-related [Car88]

and resource-dependency. Yu et al. proposed and fourth dependency to express the

satisfaction concerning how the goal was achieved.

Yu presented his initial approach using an extension of the Requirements Mod-

elling Language (RML) expressing a conceptual plan as a set of activities required to

achieve a goal. His approach includes the existence of relationships among a goal and

subgoals. Later, Yu and Mylopoulos proposed the Actor-Dependency (AD) model

based on nodes (actors) and links (dependencies) to represent the actuators and

their relationships in a process while achieving a goal. They extended this model to

introduce the concept of understanding the intentions behind those steps represented

as goals in the dependencies. This modelling defines relevant characteristics of both

dependencies (i.e., types and strengths) and actors (i.e., role, position, agent and

associations) [YM94].

The AD model describes for main types of dependencies: goal, soft-goal, task, and

resource,; and two types of strengths: open and critical. An actor can be either in the

role of a depender or a depdendee. Figure 3.3 depicts a graphical representation of the

AD model for a simple software project. For example between the Programmer and

the Tester actors, there are some dependencies—for instance, the task-dependency

Test [Module] implies the testing specific task links the two actors, same as the other

two resources: the test plan and the code. The Project manager has a goal dependency

with the Programmer through the goal Completed [Implementation] Similarly there

are two soft goals between them: On Schedule [Implementation] and Advancement

[Career].

We identify three dependency types that are relevant to user-centric CPHS:

(1) Goal, when a task depends on the outcome of another to fulfil its goal; (2) Task,

43

Figure 3.3: Yu’s Actor-Dependency (AD) model example based on a software project
scenario [YM94]

when a task requires another to execute one of its activities; moreover, (3) Resource,

when a task depends on the availability of resources used by another task to execute

its own.

The strength of the dependencies described in the AD model by Yu et al. [YM94]

is a concept that is useful for our modelling to measure the degree of independence

or freedom among the users’ tasks. In our scope of user-centric CPHS, these levels

of strength relate as follows: (1) open, the outcome of a task is desired by another

task but not necessary; (2) committed, a task would be affected by any failure in the

outcome of another task; and (3) critical, the task’s final outcome is seriously affected

by the execution of another task.

Mylopoulos et al. present an approach in goal models in which goals are used

to analyse and define functional and non-functional requirements [MCY99]. In their

approach, a goal is achieved when all its subgoals are satisfied. Mylopoulos et al.

44

include logical operators (AND, OR) to connect the operations in the subgoals, and

conflict analysis to control potential collisions [MCY99]. Based on this approach,

Figure 3.4 depicts a goal model for an online scenario [LLJM11]. The model shows

the different alternatives that an online shopping task has while making a purchase.

Figure 3.4: Liaskos’ online shopping goal model example [LLJM11]. The ovals represent
the goals, and the hexagons the tasks. Indices ti express the order of a task in the

sequence.

Goal models have been used to add variability to systems by exploiting the OR

part of the graph to create different sequences of execution. Yu et al. take into account

the variability of the problem to integrate it as a variability on the solution [YLL+08].

Figure 3.5 depicts a set of patterns by decomposing the possible features of the goal

model graph.

Some other authors have addressed goal-oriented modelling approaches in the

scope of requirements engineering [CDGM10, LMSM10, LLJM11, BGM09, CLG+09].

For some of these authors, requirements are an expression of the necessity of the

users according to the system’s functionality and behaviour. In other words, the

specification of the requirements is another way to express the intentions of the user.

3.2.2 Web Task

Some authors have model tasks from the point of view of the user activities, and

just a few have modelled tasks from the web interactions. In our user-centric CPHS

application domain, a web task is the integration of web-services along with the

45

Figure 3.5: Yu’s goal model set of patterns identified to incorporate variability in the
form of features [YLL+08]

interactions and sessions that achieves the users’ particular goals [CVM13]. In light

of this, we studied approaches in two areas: task models and models of web services.

Task Models

Task models represent the structure of the task, the activities that comprise the

task, and other characteristics. Task models help to collect and analyse a user’s task

activity making possible to maintain a state of each instance of execution that are

valuable in the modelling of personalized web-tasking.

In the approach by Giersich et al. [GFF+07], a task is the representation of the

activities executed by users. Their task model is a hierarchical decomposition of

an activity into individual steps of a task composing a task-tree. They use Dynamic

Bayesian Networks (DBNs) to infer actions based on data from former users’ activities.

Goschnick et al. take advantage of agent-oriented architectures into video games

given that these often need an autonomous game player (or character) to interact

with human players to achieve a goal.

Dix’s approach describes techniques to provide automated task support based on

data and action, such as waterfall, which is observe, infer and then automate; and

threading, which is sequencing a plan [Dix08]. The most relevant value of these three

approaches is the representation of automation of a future task. For this dissertation,

it is relevant for the prediction capabilities a smart internet application might have.

In Brezillon’s approach, reasoning is divided into two elements: diagnosis, which

is the analysis of the situation and its context; and action, which is the attempt to

46

realize a task. A task is considered an activity on the structure of problem solving,

and is part of a scheme to achieve a goal in a context-sensitive way. His approach

uses graphs to sequence tasks executed by the user to achieve a goal, as well as the

possible options and decisions the user has while executing the tasks [Bré07].

Klung and Kangasharju proposed a runtime task model that adapts in response

to users’ changing activities. They extended the ConcurTaskTree (CTT) notation to

allow dynamic execution of a task model. In their approach they propose four states

of the execution of a task: inactive, active, enabled, and suspended. Moreover, they

present a definition of the semantics for information exchange and rules to verify the

completeness and correctness of the model [KK05]. For this dissertation, it is relevant

how the authors incorporate the concepts of port to communicate information among

the tasks.

Souchon et al. provide a formal notation for task models, which includes the de-

pendency of the context when a task is being modelled. In their approach, they focus

on user interfaces to manage and execute a task. As in previous approaches, the task

is represented as a graph (CCT) in which nodes are the tasks (and subtasks) and the

edges are the relations among tasks as well as the sequence and dependency. Finally,

the context is denoted as a tuple of user, platform, and environment. When a task

can be associated with a different context, then the Contextual Task Model (CTM)

is denoted as a tuple of a set of task (subtasks), the root task, a set of transitions,

and a matrix of all possible contexts [SLV02]

As mentioned above, goals are identified as the intention of the user over the

system. Goal-oriented modelling gives an approach to represent those goals as a

set of tasks that are meant to be executed. Bolchini and Mylopoulos, suggest task

analysis as the execution of both task identification, which is the classification of

the task according to users’ concerns, such as fact finding, browsing or exploration;

and hierarchical task decomposition activities. As an insight for our research, their

approach uses the AWARE goal-oriented notation—an extension of the i* modelling

framework—in a website modelling scenario [BM03].

Web Services

Web services allow applications from different platforms and languages to communi-

cate through a standard interface. Despite the standardization of web services, their

dynamic composition has been a concern addressed by different approaches. Cui et

47

al. described key issues while implementing ontology modelling [CLWG04]. In their

approach, a web service is composed by a set of input and output parameters, as well

as relations between properties including semantic-equal and semi-semantic-equal. In

a recent approach, Kim et al. implemented automatic web service composition us-

ing Open APIs [KKJ13]. They use ontologies such as RDF and OWL, which have

structures for subject, property and object, to create automatic mash-up of services.

In 1999, Wilson proposed the model of information behaviour depicted in Fig-

ure 3.6 to represent the behaviour of the user while retrieving information from

different sources [Wil99]. This approach highlights important considerations while

modelling the relationship between the user, her personal goal, and the web inter-

actions. This model outlines the various areas covered by the information seeking

behaviour, which results as a consequence of the users’ need to achieve an informa-

tional goal by retrieving information from different sources and services. As a result,

the outcome can either be success or failure in terms of relevance for the user [Wil99].

Figure 3.6: Wilson’s model of information behaviour [Wil99]

This representation provides some insights related with the smart interactions

domain. For example, the user translates a need into a set of information retrieval

activities. In smart interactions, information retrieval is a specific case of a personal

goal. The failure element on the model is a dead end, in the smart internet application

interest this may result in a decision to adapt to resolve errors and achieve success.

48

Traditionally, workflows and Business Process Modelling Notation (BPMN) have

been user to represent processes and activities. These modelling approaches usually

define a sequence of steps, actors, milestones, including assessment and work products

presentation; as well as evaluation activities towards the achievement of repetitive and

ordinary task.

Stoitsev and Scheidl characterize the types of user activities as: strategic, tactical,

operational, implementation and educational [SS08]. Operational activities are those

with high predictability given that they are repetitive and ordinary. They conclude

that a task representation—considered a structure—must clearly define its subtasks,

contextual information, resource, and all elements involved in the execution of the

task.

The approach presented by Thom et al. take advantages of Workflow Activity

Patterns (WAP) representation BPMN to specify the activities in recurrent business

processes [TLI+11]. In their approach, they use workflow patterns to compose a

process model. The patterns are related with the interactions among the elements.

For example, approval patterns, define the type of roles that interact with this activity

and the frequency.

John et al. implement a modelling method to combine task decomposition and

a human resource usage [JVM+02]. The Goals, Operators, Methods and Selection

(GOMS) method is used for prediction for user tasks that are repetitive. GOMS is

used for modelling routine behaviour. In their approach, they focus on the decompo-

sition of these routine tasks as nested goals. Finally, they consider the granularity of

the iterative decomposition of the subgoals. In brief, their approach led to decompose

a task into primitive interactions of the user (such as moving mouse and simple input

of text) providing high degree of automation. Smart internet applications must con-

sider the start and end points in the tasks’ life cycle, as well as a level of granularity

in their decomposition.

3.2.3 Context

In the domain of self-adaptive software systems, context is all information that is

relevant to the system (i.e., the user, the system itself, and other systems that in-

teract with it), and all the possible states while the system is being affected by the

uncertainty of the environment [Vil13, ADB+99].

49

Previous approaches have been presented to represent and manage the user’s per-

sonal context. Golemati et al. [GKV+07] and Katifori et al. [KVD+08] have pro-

posed an ontology to profile the users in order to provide personalization on the

application of information retrieval systems. They argue the importance of modelling

the user’s context and the need of a standard ontology that can be extended to dif-

ferent applications in various domains. Their ontology is used to represent static

information. For example, (1) basic user information such as name and date of birth;

(2) physical characteristics such as eye colour, weight, and height; (3) education

background; (4) interests and activities; and (5) preferences. To represent dynamic

information, this ontology includes temporary variables permitting various instances

of the same class to exist and represent changes over time.

Villegas et al. studied similar approaches to characterize context modelling in

the scope of context-aware software systems [VM10]. Later Villegas presented the

SmarterContext ontology to represent the relevant context entities that support the

smart interactions of the user. Her ontology is extensible to any application domain

of situation-aware smart software systems. It was designed to represent dynamic and

static context. In her approach, the personal context sphere is a model that contains

the relevant information of the user according to a particular goal. Moreover, this

ontology is the only one available to specify context models [Vil13].

The main module of the SmarterContext is called the general context (GC) and

through extensibility (vertical or horizontal), it can also be specialized. This module

defines context types, and abstract and concrete properties. Moreover, this approach

uses the semantic web to manage the dynamic context. For this purpose, two tech-

nologies, the Resource Description Language (RDF) and the Ontology Web Language

(OWL) are the mechanisms implemented.

Figure 3.7 depicts the context types in the GC module. The superclass is Con-

textEntity, is defined by the OWL Scheme element Thing, and all the other entities

extend from it. As mentioned above, the GC represents abstract context informa-

tion. For example, ArtificialEntity, which derives from IndividualContext, represents

the entities that result from human actions, while HumanEntity represents the infor-

mation about a person’s characteristics, preferences, behaviour, and interactions.

50

Thing ContextEntity

TimeContext

IndividualContext

LocationContext

ActivityContext

IndefiniteTime

DefiniteTime

GroupEntity

NaturalEntity

HumanEntity

ArtificialEntity

PhysicalLocation

VirtualLocation

GeoLocation

EndPoint

is-a
is-a

is-a

is-a

is-a

is-a

is-a

is-a
is-a

is-a

is-a

is-a

is-a

is-a

is-a

Figure 3.7: Villegas’ General Context (GC) module context types of the SmarterContext
approach [Vil13]

3.3 Chapter Summary

This chapter presented our study of modelling approaches for user-centric CPHS.

Given the variety of available software models, we studied approaches associated

with concerns relevant for user-centric CPHS, namely: (1) personal goals, which

are related to the user-centric principle; (2) web tasking, which is relevant to the

smart interactions definition; and (3) context, which is important to understand users’

changing situations.

We conducted our study following a systematic literature review (SLR) proposed

by Kitchenham et al. [KPBB+09]. As a result, we surveyed 24 relevant approaches

as summarized in Table 3.1. Then, we presented our findings grouped into three

subsections based on our three concerns. Approaches, such as Yu [Yu93], Mylopou-

los [MCY99] and Liaskos [LMSM10, LLJM11], present goal models in connection with

users and tasks. More importantly, in this study, we identified the use of graphs as

software structures useful for models to be manipulated at execution time, which is

a characteristic of a MART.

51

Chapter 4

User-Centric Smart

Cyber-Physical-Human

Applications

This chapter presents our characterization and architectural design of User-Centric

Smart Cyber-Physical-Human Applications (UCSAs), our first contribution of this

dissertation.

In Chapter 2, we presented the smart internet and Cyber-Physical-Human Systems

(CPHSs), which is a user-centric internet where the users are at the centre of all their

internet interactions. In this vision, content and services are dynamically composed

based on users’ needs. A particular focus on the transformation of the internet towards

a user-centric vision is in the execution of personal tasks that assist the user in

achieving personal goals that can be personalized and automated based on the user’s

personal context. We discussed that there is a need for smarter internet applications

that can exploit and understand the context of users and their changing situations.

However, these internet applications co-exist in a socio-technical ecosystem of cyber,

physical and human components. We posit that the smart internet is a CPHS. CPHSs

add complexity to the realization of smart internet applications by adding diverse

sources of context and highly dynamic environments.

There are two research questions associated with this contribution:

RQ1. What are the [runtime] requirements for the realization of User-Centric Smart

Cyber-Physical-Human Applications?

52

RQ2. What are the [runtime] modelling requirements to support User-Centric Smart

Cyber-Physical-Human Applications?

To answer these research questions, we concentrate on the smart internet’s user-

centric vision and its modelling requirements, specifically tasks that assist users in

the achievement of personal goals.

We focus on two neglected components of CPHS: (1) humans as first class ele-

ments, in which their personal goals, interests, preferences, and interactions are at the

core of the cyber and physical elements, thus defining their objectives, behaviours,

structures and even their interconnections; and (2) the software component running

as the orchestrator of smart interactions among CPHS components and users; as well

as the responsibility of maintaining the system under changing conditions.

This chapter is organized as follows. Section 4.1 introduces personal tasking which

is the conceptual foundation of this chapter and the starting point towards the re-

alization of UCSAs. Section 4.2 presents our case study for online grocery shopping

and explains how smarter applications are needed to assist users in the achieve-

ment of their personal goals. Section 4.3 presents our definition of a User-Centric

Smart Cyber-Physical-Human Application along with its three characteristics: user

awareness, runtime modelling support, and runtime adaptation support. Section 4.4

presents our architectural design for the realization of UCSAs as self-adaptive and

context-driven systems. Finally, Section 4.5 summarizes the chapter.

4.1 Personal Tasking

Users increasingly rely on internet applications (mostly web based) to complete a

variety of every day tasks that used to be performed offline. More importantly,

users have become used to their devices, applications, and digital ecosystems, using

different mechanisms to translate their own concerns and particular personal goals

into a sequence of tasks. We define personal tasking1 as follows:

Personal Tasking is an ordered sequence of tasks that assist users in the fulfilment

of a personal goal. During personal tasking, users’ context sources are exploited

at runtime to understand changing situations and improve personalized function-

alities [CVM13, CVM14b, CVM14c].

1At the time of this research we used the term Personalized Web-Tasking (PWT) as we focused
on the web as a subset of internet applications.

53

We now describe the process and conceptual elements of personal tasking as de-

picted in Figure 4.1. First, in the box with Label 1, the user expresses a personal

goal to the system. Second, in the box with Label 2, the goal converts into one or

more sequences of tasks (i.e., S1, S2, and S3). Each sequence of tasks corresponds

to a set of subtasks (i.e., Tn where n is the number of the task in the sequence),

dependencies, and an execution plan. A subtask comprises a set of services, inputs

and outputs, prerequisites, and restrictions of the subtask. Third, in the box with

Label 3, context information from the user, environment, and system is exploited to

select one of the candidate sequences, the one that best benefits users’ interests and

preferences. Finally, in the box with Label 4, the sequence is executed on behalf of

the user while maintaining context-awareness and self-adaptive behaviour at runtime

under changing conditions.

Figure 4.1: Conceptual elements of Personal Tasking

In personal tasking, personalization implies tailoring the tasks according to users’

preferences, understanding users’ situations, and being aware of changes in the context

of the system and the environment. Exploiting personal context is not a trivial task

for a system, particularly in the case of distributed and heterogeneous context sources.

Although many applications support personalized and automatic features, the user

remains as the manager, orchestrator, and runtime supporter of her task execution.

Manual personal tasking is impractical. For instance, at some point of the execution

the user can forget the task sequence, and then spend significant time trying to recover

it. Moreover, the user might be unaware of newer and better services that may become

available to improve the task sequence, and trying to find them is time-consuming

and relies on the user’s expertise. The manual management of the composition of a

54

sequence becomes an issue, given that the user must keep track of the task life cycle

manually.

Additionally, personal tasking might require the interaction of multiple services

and applications and the user would have to control the sessions and permissions of

each web service. Finally, the user will have to deal with runtime challenges, such

as unexpected exceptions and unavailable services, whereas collaboration with other

users will depend on the user’s social networking and personal skills. In other words,

there is no straightforward way to share her tasking execution with other users who

may have the same concerns.

4.2 Online Grocery Shopping Case Study

Online grocery shopping is a suitable and interesting personal goal for our case study

since it takes place in a socio-technological ecosystem with a variety of internet ser-

vices, devices, sources of context information, and involves a diversity of users. More-

over, while grocery shopping is a mundane ordinary task it might be affected by

context changes in the user’s situations, such as, upcoming birthday celebrations,

new social connection, dietary restrictions, or sudden health conditions. All of which

might jeopardize the user’s achievement of her personal goal.

We identify four distinctive [internet] interactions that are executed by users:

(1) The user gets the shopping list, which implies logging into her preferred grocery

list service using a web browser or a mobile application.

(2) The user locates the proper stores using geo-localization services to find nearby

grocery stores that she will filter semi-automatically according to her preferences

that are already available in her social network.

(3) The user creates independent shopping lists by matching both items and stores

according to different criteria. For instance, the category best deals of the sea-

son, which implies comparing prices semi-automatically to select the best offer

according to her budget, or best reviews for both products and stores.

(4) The user proceeds with the purchase selecting one of two possible ways: if the

store provides an online purchasing service, the user can proceed with the pay-

ment and schedule the delivery; otherwise she will have to semi-automatically

plan the grocery shopping visit while taking into account different conditions

55

that can affect the pick-up process such as time, traffic, and the store’s shopping

hours.

Tasks associated with online grocery shopping are affected by the interoperation

among different web services (i.e., changes in service compositions and incompati-

bility of data), and the changes in the user’s context and situations (e.g., location,

preferences, special events, or her behaviour when browsing the internet).

CPH Components

Figure 4.2: CPHS for online grocery shopping

Our online grocery shopping scenario takes place in a diverse socio-technological

ecosystem as depicted in Figure 4.2. We distinguish three dimensions of CPHS: The

human dimension, which comprises the user’s personal goal of grocery shopping; and

relevant user’s context information, which includes knowledge of the user’s previous

grocery shopping tasks, her preferences (e.g., vegetarian, locally grown produce), her

location since she prefers to shop in grocery stores close to her home, and social

connections.

56

In the physical dimension, which comprises the resources required to achieve the

user’s personal goal, including nearby grocery stores, items, and related resources

from the user’s house.

In the cyber dimension, which comprises the computational resources involved

in the achievement of the personal goals, including the grocery stores’ own online

shopping systems, internet flyers and coupons, mobile grocery list applications, and

banking and healthcare systems, that although foreign to the personal goal, introduce

context information that affects the achievement of the user’s goal.

4.3 Definition of UCSA

We determined that there is a need for software applications capable of supporting

users’ personal tasking activities, along with situation awareness and runtime adapta-

tion. As a result, we define User-Centric Smart Cyber-Physical-Human Applications

(UCSAs) as follows:

Definition 4.1 A User-Centric Smart Cyber-Physical-Human Application

(UCSA) is an orchestrated set of cyber, physical, and human components (along

with their interconnections) that assist users in the fulfilment of their personal

goals. A UCSA manages the smart interaction among the components dynam-

ically, understands and acts upon users’ changing situations, and has system

capabilities to evolve at runtime.

It is important to clarify that not all smart CPHS applications are focused on

assisting users’ achievement of personal goals. For instance, applications whose ob-

jectives correspond to industrial processes, business workflows, or file management, do

not fall into our category of interest. We only consider applications where users’ con-

text is relevant for the fulfilment of the system’s objectives. For instance, applications

where users are system administrators, sole providers/consumers of non-user-related

information, or silent observers are not consider relevant here. To distinguish UCSA

from other CPHS applications, we add three new characteristics: user awareness,

runtime modelling support, and runtime adaptation support.

57

User Awareness

Technological evolution has transcended towards integration. From the early design

of the internet (back when it was ARPANET), we have been connecting things.

CPHS,2 represents an internet growing digital ecosystem of devices, applications and

users, connected through the internet [CE11, PZCG13, KFM+13, CLPS11] that are

constantly generating context information about the user.

In a seamless way, humans have been connecting themselves to thing, and thus

becoming part of the CPHS through their virtual persona. It is fair to say that

users can be considered either physical or cyber components. There is more about

users than what their applications and devices can contribute to their applications.

Users also have personal goals, internet interactions, social relations and activities,

interests; and more importantly, transverse personal context across unrelated systems

where users are present. Often, personal context is strongly tied to a service or

application, but in UCSA, users are enabled to move around systems using their own

information to improve their application experiences. The complexity and uncertainty

added by the users’ own dynamic situations, play a key role when addressing runtime

requirements in this dissertation.

We define that user awareness in UCSA needs an explicit identification of the

human dimension. In other words, user awareness provides a sphere of information

(static and dynamic) containing users’ concerns, personal data, and relations with

other users, that are relevant for—and during—the execution of the CPHS. More

importantly, a UCSA should recognize the user at the centre of its interactions, that

is, the personal goal of the user should be the principal objective of the system.

Runtime Modelling Support

In order to support runtime operations, a UCSA should connect (or contain) Mod-

els at Runtime (MARTs) that represent up to date information of the system and

the environment. Since UCSA require runtime execution, it is necessary to include

an infrastructures responsible to monitor, analyse, plan and adapt runtime models.

Whether the infrastructure is embedded with the system or not, its functionality

2This dissertation uses the term cyber-physical-human systems. However, conceptual foundations
come from its origins in the literature in relation with other definitions, such as industrial internet
of things, internet 4.0, web of things, internet of things, future internet and industrial internet.

58

should not interfere with the system’s primary objectives of assisting users to achieve

personal goals.

To provide the flexibility required by dynamic systems, UCSA’s runtime models

and infrastructures must support emerging models, operations, and connections.

Runtime Adaptation Support

A UCSA has an operational runtime constraint, that is, the system can not afford

to go offline in order to perform additional activities out of its intended functionali-

ties, such as runtime modelling tasks, and adaptations based on changing situations.

Therefore, these systems should have an infrastructure to manage the system’s adap-

tations, capable of storing past, current, and planned versions of the system, as well

as planning and executing the version change, while keeping the system working

properly.

Since runtime adaptation is not a trivial problem, this dissertation focuses on the

capability of the UCSA to propagate changes across the runtime models as a step

towards achieving runtime adaptation for CPHS [MV13].

4.4 Architectural Design of UCSA

In the vision of creating UCSA, the user’s identity, interactions, personal goals, pref-

erences, and context, determine the decisions and the behaviour of the users’ inter-

actions. For this purpose, UCSA must understand the user’s goal and represent it

as a sequence of tasks that can be improved with personalized features and executed

automatically on behalf of the user. Context- and situation-awareness are important

for UCSA to understand the various situations of the users and the relationships with

their tasks when fulfilling personal goals. More importantly, the changing nature of

users’ situations, personal goals and the context, implies that UCSA systems behave

dynamically. That is, at runtime the system is capable of understanding changes and

act upon them by adapting itself to meet new requirements.

The realization of UCSA requires the implementation of systems that act upon

unexpected context changes by adapting itself at runtime, when applicable. This

is the case of self-adaptive systems which are capable of monitoring changes in the

context and perform required adaptations themselves—structural and behavioural—

59

at execution time with the purpose of maintaining or even improving the objectives

of the system [CLG+09, MKS09, LGM+13].

Figure 4.3 depicts our architectural design for the implementation of

UCSA [CVM14c]. Our architecture is based on the Dynamico reference model

proposed by Villegas et al. [VTM+13]. Dynamico is readily applicable to the im-

plementation of UCSA by allowing the definition of architectural components that

can be extended with concepts of UCSA. Moreover, Dynamico supports the imple-

mentation of self-adaptive systems that are highly affected by changes in goals and

context situations at runtime.

Figure 4.3: User-Centric Smart Application architectural design

Our UCSA architecture implements three subsystems derived from Dynamico,

and one for the runtime models support. The subsystems derived from Dynamico

are: (1) the control objectives subsystem maintains the relevance of the system with

respect to changes in the user’s personal goals; (2) the adaptation mechanism allows

the system to act upon changes that occur either in the context or in the requirements

of the system; and (3) the monitoring infrastructure keeps track of context events that

are relevant to the execution of task sequences. The MARTs supporting infrastructure

is responsible for the access and activities related to the models at runtime which are

the main focus of this dissertation.

At the control objectives subsystem comprises the Tasking Knowledge Infrastruc-

ture. This component provides the instrumentation to express personal user goals in

60

the form of a MART. The components in this module perform two main activities:

(1) recording information from users’ internet interactions; and (2) representing this

information as an instance of a model at runtime. To record a user’s internet interac-

tions the infrastructure needs to identify, interpret and characterize internet actions

(e.g., click, selection, or inputs) and data, which implies instrumenting the browser,

devices and web sites to extract this information.

The adaptation mechanism subsystem contains three components: (1) the model

processor, (2) the personalization engine, and (3) the tasking effector.

1. The model processor translates the information gathered from the knowledge

infrastructure into a corresponding runtime model. This component might de-

termine that for one personal goal there are several instances of the model that

are candidates based on the user’s historical behaviour, social connections, and

environmental information. The model processor collects all possible instances

and delivers them to the next component for selection.

2. The personalization engine exploits users personal context to tailor the corre-

sponding model at runtime, selecting the best match based on users’ preferences

and interests. Personal context information can be either static (e.g., age or gen-

der) or dynamic (e.g., location, preferences, or social information). As a result,

this component produces one instance of the model that will best fulfil the users’

personal goals.

3. The tasking effector executes the tasking described in the corresponding model

at runtime. This component manages the life cycle execution including internet

services invocation, requests for user intervention, conflict resolution, and final

assessment of the tasking.

The monitoring infrastructure subsystem in our architecture is provided by the

SmarterContext monitoring infrastructure [Vil13] and its ontologies, which we

extended to fit our application domain.

Finally, the MARTs supporting infrastructure comprises the MARTs of the system,

and software components responsible for granting read and write capabilities to the

system over their MARTs.

61

4.5 Chapter Summary

UCSA constitutes the first contribution of this dissertation. It allows us to answer

research questions RQ1 and RQ2 (cf. Figure 1.2).

In Section 4.1, we introduced personal tasking as the sequence of tasks that assist

the user in the achievement of a personal goal. In Section 4.2, we introduced our case

study of grocery shopping—a suitable example for the realization of UCSA, since it

involves a variety of cyber, physical and human elements that add complexity to the

execution of the users’ tasking.

In Section 4.3, we defined a User-Centric Smart Cyber-Physical-Human

Application (UCSA) as an orchestrated set of cyber, physical, and human com-

ponents (along with their interconnections) that assist users in the fulfilment of their

personal goals (cf. Definition 4.1). A UCSA manages the smart interactions among

the components dynamically, understands and acts upon users’ changing situations,

and has capabilities to evolve at runtime.

We presented three characteristics for UCSA in addition to the ones of CPHS

applications: user awareness to place the user at the centre of the smart interactions

of the system, runtime modelling support to provide the system with up-to-date rep-

resentation of the system and the environment, and runtime adaptation support to

enable the system to be adapted and extended during execution time.

Finally, we propose an architectural design for UCSA as a self-adaptive context-

driven software system based on the Dynamico reference model. In our architecture,

we defined five components for UCSA: the tasking knowledge infrastructure respon-

sible to understand and represent personal goals based on the analysis of users’ task

interactions. The model processor translate the information about users’ tasking into

runtime models. The personalization engine exploits static and dynamic personal

context to tailor an appropriate task sequence. The tasking effector executes the

tasks on behalf of the user while providing runtime adaptation support. Finally, the

MARTs supporting infrastructure responsible for managing and hosting the corre-

sponding MARTs.

The next chapter presents our MARTs for UCSAs, our approach to represent the

personal tasking of the user as models at runtime that will be stored and managed

in the MARTs supporting infrastructure of the UCSA.

62

Chapter 5

Models at Runtime for

User-Centric Smart

Cyber-Physical-Human

Applications

This chapter presents our two Models at Runtime (MARTs) for User-Centric Smart

Cyber-Physical-Human Applications (UCSAs): our Galapagos Metamodel, and

our Galapagos Model, which is our second contribution of this dissertation.

In Chapter 4, we presented our definition and architectural design for UCSAs.

According to Definition 4.1, a UCSA is set of cyber, physical and human components

that assist users in the fulfilment of personal goals. More importantly, a UCSA man-

ages the smart interaction among the components dynamically, understands and acts

upon users’ changing situations, and has capabilities to evolve at runtime. In our

architectural design (cf. Section 4.4), we presented the MARTs supporting infras-

tructure component which is responsible for managing and hosting the corresponding

MARTs of UCSAs. MARTs are fundamental for UCSAs to represent and understand

users’ personal goals and changing situations at runtime.

There are two research questions associated with this contribution:

RQ2. What are the [runtime] modelling requirements to support User-Centric Smart

Cyber-Physical-Human Applications?

RQ3. What are the appropriate runtime models for the implementation of User-

Centric Smart Cyber-Physical-Human Applications?

63

To answer these research questions, we define the modelling requirements based on

the definition of UCSAs grouped into three concerns: personal goals, tasks, and con-

text. Moreover, we propose two MARTs: (1) our Galapagos Metamodel that

represents the concepts and artefacts of UCSAs, and (2) our Galapagos Model

that represents the evolving tasking goals of the user, relevant context, and smart

interactions of CPHSs.

This chapter is organized as follows. Section 5.1 presents our modelling require-

ments organised into three subsections, one for each concern: Personal goals, Tasks,

and Context. Section 5.2 presents our two MARTs—our Galapagos Metamodel

and our Galapagos Model. Finally, Section 5.3 summarizes the chapter.

5.1 Modelling Requirements

To derive proper models of User-Centric Smart Cyber-Physical-Human Applications

(UCSAs), it is important to define what are the requirements for such models. That

is, performing an analysis of the realities that need representation. According to the

conceptual reference model of M@RT proposed by Bennaceur [BFT+14] (cf. Sec-

tion 2.4.2), there are two realities: (1) the running system; and (2) the environment.

Figure 5.1 depicts our instance of the Level M0 of the conceptual reference model of

M@RT for our UCSAs’ domain.

The running system is our UCSA, which assist users in the achievement of personal

goals. The environment comprehends relevant context information associated with

the three dimensions of CPHSs—physical, cyber or human information. Since the

environment is observed by the running system, its modelling requirements must

derive from the UCSA’s point of view.

We characterize our modelling requirements and grouped them into the following

three concerns:

� Personal goals, that is, the resulting expectation of the user while performing

tasks;

� Tasking, including the sequencing and execution of the tasks and subtasks,

dependencies, inputs and activities; and

� Context, which is information relevant to the achievement of a personal goal

that is classified as personal, internal or external.

64

Figure 5.1: Level M0 for User-Centric Smart Cyber-Physical-Human Applications based
on Bennaceur et al.’s conceptual reference model for M@RT [BFT+14]

.

In this chapter, we use our scenario for online grocery shopping described in

Section 4.2 to illustrate our modelling requirements. As we mentioned before, online

grocery shopping takes place in a socio-technological ecosystem with a variety of

internet services, devices, sources of context information, and involves a diversity of

users.

5.1.1 Personal Goals

Figure 5.2 depicts a simple view of the personal goal concern of UCSAs. The starting

point is a user with a personal goal that she wants to fulfil with the assistance of

internet technologies. Her personal goal then is transformed into an ordered sequence

of task interactions involving a variety of internet services, data types, and inputs.

65

The output of the interactions is a measurable outcome, which must reflect the user’s

expectations.

Figure 5.2: Concept of a user’s personal goal of UCSAs

It is worth noting that measurable outcomes must connect with the user’s personal

goal. For instance, if the user is looking to shop for groceries, her measurable outcomes

might include her bank statement showing her grocery purchase, and her shopping

list containing fewer items (cf. Figure 5.3).

Figure 5.3: Personal goal and measurable outcome according to our online grocery
shopping scenario

Instead of focusing on the modelling requirements of expressing personal goals,

we take a different approach focusing on the modelling requirements of assessing the

achievement of personal goals. We take this approach because we want to abide by

the user-centric principle of instinctive interactions from the smart internet vision.

In most everyday internet activity, users dynamically access different services and

applications to achieve a personal goal, rather than introducing their objective into

one single software system. Therefore, we pay special attention to personal goals as

the results of a set of activities.

Accordingly, the modelling requirements for personal goals are:

� Observable result : The outcome has an identity, attributes, and possibly services

and states.

In Figure 5.3, there are two results of interest: an application with fewer items,

and grocery purchases charged to the user’s credit card. Other observable results

66

might as well be a notification, or calling an event on the user’s devices or

applications.

� Satisfaction measurements and thresholds : The observable result is evaluated

based on an acceptance analysis. Criteria have to be related to measurable

properties of the result.

For instance, the user might consider that the grocery shopping list (observable

result) is accepted when empty (measurable property), or if 80% of the items

were purchased, and thus removed from the list (threshold of acceptance). More-

over, another indicator of satisfaction might be that the total amount of money

spent on groceries is within her $200 dollars budget. The amount paid gets

measured by the charges on the user’s credit card.

� Satisfaction regulation: Rules for satisfaction measurements.

For instance, a rule might establish that being within budget is more impor-

tant than purchasing 80% of the items in the list. Therefore, even if not all

items in the list are purchased but the charges are under $200 dollars, the goal

achievement is considered a success.

� Execution regulation: Rules for executing or discarding the tasks.

For instance, buying groceries every 15th of the month, or any time during a

period of a month when a quarter of the items are on sale.

5.1.2 Tasks

A task is a composition of services, interactions and sessions. Moreover, a task can

be an ordered sequence of tasks that are executed independently [CVM13].

Task interactions define a sequence of internet tasks (cf. Figure 5.4), which include

a set of tasks, an execution plan, and a set of dependencies. Some examples of

dependencies are resources, data, authorizations, and additional information needed

during the sequence execution. Each task might contain a set of inputs and outputs,

services required, operations, and their place in the execution order.

In light of this, the modelling requirements for tasking are as follows:

� Task sequence: A structural representation of the linked tasks within the system.

67

Figure 5.4: Task interactions are a set of tasks and subtasks

Links among tasks represent how two tasks communicate with each other and

the data flow in their communication. Links provide information to about the

compatibility of two tasks.

� Inputs: Every task within the sequence must define the required input and its

data types.

An input includes data, type, and source. Input sources could be the user, other

tasks, external services, local applications. Moreover, inputs might be shared

among internet tasks of the sequence.

� Outputs: The representation of the result of the task.

� Activities: This represents the steps of the task during its execution.

Steps are specified in the form of an algorithm. This requirement include conflict

resolution and handling exceptions techniques.

� Conditions: The specification of particular considerations of the execution of

the task.

Conditions include time, frequency, and other configuration information rele-

vant to the execution.

� Information resources: This element represents either the software that is re-

sponsible for the logical processing of the information service request, or data

repositories.

Examples of information resources include files, databases, knowledge base, local

hardware sensors data, web services, functions, or other applications.

� Policies: A representation of the operational objectives of the system that

outlines the decisions of the planning and execution.

68

� Execution controller: The life cycle of the task execution.

Explicitly defines the starting an ending points of the execution, and termination

decisions (e.g., time-out).

For instance, Figure 5.5 depicts the online grocery shopping main goal, which is

achieved by a main task of shopping grocery items. This task is decomposed into other

tasks, such as (1) getting the grocery shopping list ; (2) searching and selecting proper

stores ; and (3) placing and purchasing items. However, decomposition might continue

for several levels. For example, subtask (2), which is a task as well, is decomposed

with a sequence of its own label as 2.1, 2.2, and 2.3). Every decomposition iteration

also specifies inputs, outputs and other information required in the sequencing of the

task. For example, subtask 2.2 determines that the input is the grocery items, which

comes from the previous task, and its output is a list of ranked proper stores. Then it

describes a set of operations some of which we can identify as tasks, therefore a new

iteration of decomposition.

5.1.3 Context

We need to represent context for two main reasons: First, UCSAs need to understand

context to support its situation-awareness functionalities. Context awareness allow

UCSAs to understand users, personal goals, task interactions and changing situations.

Second, the selection and execution of an appropriate task sequence to achieve a

personal goal depends on the system’s capability of understanding relevant context

at execution time.

We group context modelling requirements into three concerns: personal, internal,

and external. Figure 5.6 depicts an overview of our three groups of interest. Per-

sonal context includes users and their personal goals. Internal context includes the

information related to the system, such as the task interactions and the measurable

outcomes. External context is the environment interacting with the tasking execution

and the user during the achievement of a personal goal.

� Personal Context: relevant information from the user that affects (or is affected

by) the behaviour of the system. Personal context includes static or dynamic

user-related information, goal-oriented interactions with personal applications,

and social relations with other users in relation with the achievement of her

personal goal.

69

Figure 5.5: Tasks for online grocery shopping

Figure 5.6: Context groups of interest

� Internal context: refers to the elements within the system’s domain.

For instance, tasks sequences, execution controller, and knowledge. Knowledge

might be previous instances of tasking including their adaptations and conflict

resolution. Thus, internal context is also the past states of the system.

70

� External context: relates to internet services, applications, interactions or data

storage outside the domain of the system.

The representation of outer internet services and other applications that affect

the achievement of the personal goal. This modelling requirement includes the

state, service, and communication protocols of the external context with the

system.

Figure 5.7 depicts examples of context for our online grocery shopping scenario.

Personal context includes user’s preferences, location, applications and other settings

in relation with her personal goal. Internal context includes connections between the

grocery shopping items and the selected stores to purchase those items. The logical

relationship item-store that only exists in the domain of the system, which is used to

proceed with the purchase. External context includes the online systems of the gro-

cery stores that provide online shopping access, and online banking services to execute

payment capabilities in the grocery stores (e.g., PayPal,1 Dwolla,2 Authorize.Net3).

Figure 5.7: Context examples for online grocery shopping

We presented the modelling requirements for the realization of UCSAs based on

the analysis of the realities that need to be modelled: the running system and the

1http://www.paypal.com
2http://www.dwolla.com
3http://www.authorize.net

71

environment. We grouped our requirements into three concerns: personal goals,

tasks, and context. Before we defined our MARTs it is necessary to explore related

approaches that will meet our modelling requirements. Some elements from our

modelling requirements have been addressed separately by different authors in diverse

application domains. In Chapter 3, we presented our study of those that are highly

relevant for UCSAs concepts, analysed their compatibility, and extracted relevant

elements.

From our study, we identified that from the software models’ point of view, task

models and goal models are strongly connected, given that tasks are the activities

that the user performs to fulfil a goal. Goal models are often used to represent users’

intentions as system requirements.

From an implementation point of view, graphs are model structures that permit

the creation of sequences, easily manageable and modular, which provides flexibil-

ity to models. Graphs are employed to represent the task decisions and define the

relationships among the tasks, including dependencies and the information that is

being exchanged. Moreover, graphs are useful in representing multiple decisions or

variability on choices [BM03, LMSM10, LLJM11, LMSM11, MCY99, Yu93, YM94].

Most approaches take into account the existence of the environmental context as well

as the user’s. In terms of modelling representation, ontologies seem to be the proper

way to represent context [Dix08, SLV02, Vil13, YM94].

In summary, some of our modelling requirements have been addressed from various

approaches in other domains and applications. However, to the best of our knowl-

edge of the state of CPHSs research, there are no approaches that properly fit our

requirements. The next section presents our MARTs for UCSAs.

5.2 Our Models at Runtime

Figure 5.8 depicts our layers M1 and M2 instance of the Bennaceur’s reference model.

We propose two MARTs for UCSAs: (1) Our Galapagos Metamodel that rep-

resents the concepts and artefacts of UCSAs, and (2) our Galapagos Model that

represents the evolving tasking goals, relevant context, and smart interactions of UC-

SAs [CVM14c].

It is worth mentioning that since a property of MARTs is availability (cf. Sec-

tion 2.4) a runtime model requires to be implemented in a format that can be read

and accessed by software applications. Our MARTs are available in the form of

72

Figure 5.8: Level M1 and M2 for User-Centric Smart Cyber-Physical-Human
Applications based on Bennaceur et al.’s conceptual reference model for M@RT [BFT+14]

.

OWL2/RDF files.45 Moreover, our metamodel is applicable in different domains, such

as tasking supported by stand-alone software systems, thus supporting the growth of

the internet and satisfying the evolution property of MARTs.

5.2.1 Galapagos Metamodel

The name Galapagos for our MARTs, is inspired in the well-known

archipelago of Galápagos in the Pacific Ocean6. Our name takes from

the idea of Charles Darwin’s inspiration for his theory of evolution after

observing the living species of the archipelago. Our models, describes the

evolving tasking of the user while achieving a personal goal, based on the

changes in situations of users and the context.

4http://www.rigiresearch.com/research/pwt/pwtOntology.owl
5http://www.rigiresearch.com/research/pwt/gct-onlinegrocery.owl
6https://en.wikipedia.org/wiki/Galapagos Islands

73

Pe
rs

o
na

lG
oa

l

Ta
sk

Se
q

u
en

ce

Su
bt

as
k

O
b

se
rv

ab
le

R
es

u
lt

Sa
ti

sf
ac

ti
o

nP
ro

pe
rt

y

In
pu

t

In
fo

rm
at

io
nR

es
o

ur
ce

W
eb

Se
rv

ic
e

is
-a

Lo
ca

lR
es

o
u

rc
e

is
-a

A
ct

iv
it

y

A
lg

or
it

h
m

is
-a

O
p

er
at

io
n

is
-a

p
w

c:
W

eb
R

es
ou

rc
e

is
C

on
te

xt
En

ti
ty

Pl
an

It
em

in
t

o
rd

er
N

o

h
as

Ta
sk

 [
1

]

gc
:A

rt
if

ic
ia

lE
nt

it
y

is
C

on
te

xt
En

ti
ty

St
ri

n
g

ty
p

eV
al

u
e

d
ef

in
ed

B
y

m
ea

su
re

d
B

y

St
ri

n
g

th
re

sh
o

ld

ac
h

ie
ve

d
Th

ro
u

gh
 [

1
]

ex
ec

u
ti

o
n

Pl
an

h
as

P
re

d
ec

es
so

r

h
as

R
es

u
lt

co
nn

ec
ts

To

p
er

fo
rm

s

h
as

P
ar

am
et

er
s

gc
:A

rt
if

ic
ia

lE
nt

it
y

D
at

a

is
-a

o
bt

ai
n

ed
B

y
[1

]

C
on

d
it

io
n

co
ns

tr
ai

n
s

gc
:C

o
n

te
xt

En
ti

ty

St
ri

n
g

p
re

d
ic

at
e

ex
ec

u
ti

on
Po

lic
ie

s

is
C

on
te

xt
En

ti
ty

St
ri

n
g

n
am

eI
d

is
C

on
te

xt
En

ti
ty

C
on

te
xt

C
o

n
di

ti
o

n

is
-a

Ex
ec

u
ti

o
n

Co
n

di
ti

o
n

is
-a

O
u

tp
u

t

U
se

rI
n

pu
tis

-a

C
o

n
te

xt
In

p
u

t

is
-a

gc
:C

on
te

xt
En

ti
ty

is
C

on
te

xt
En

ti
ty

Ex
ec

u
ti

o
n

Ti
m

e
is

-a

is
-a

St
ri

n
g

d
es

cr
ip

ti
on

 [
0

..
.1

]

St
ri

n
g

Ex
p

re
ss

io
n

 [
1

]

Si
tu

at
io

n
D

at
e

D
at

e

as
so

ci
at

ed
W

it
h

In
flu

en
ce

s

va
lid

Fr
o

m

va
lid

To

gc
:L

o
ca

ti
on

C
o

nt
ex

t
gc

:lo
ca

te
dI

n
 [

1]

St
ri

n
g

d
es

cr
ip

ti
o

n
 [

0
...

1]

co
n

d
it

io
n

s

F
ig
u
re

5
.9
:
G
a
l
a
pa

g
o
s
M
e
t
a
m
o
d
e
l

74

Our first MART, depicted in Figure 5.9, defines the concepts of UCSAs by ab-

stracting the three dimensions of CPHSs as well as the smart interactions among

them. It comprises two elements: entities and links. Entities represent concepts,

which are complex objects of the problem domain. This is, cyber, physical, human,

or smart interaction. Links represent the connections between two entities composed

by a name, direction and cardinality. Name is a descriptor used to describe the type

of relation among the entities. Direction defines the dependency of one entity over

the existence of another. Cardinality determines the quantity of instances that are

expected at the end of the link.

By definition, MARTs are representations of realities that are owned and used

by the running system. The Galapagos Metamodel’s reality is the application

domain of UCSAs. In order to explain our model, we highlight two key sections from

our metamodel: (1) the core concepts and (2) the situation-awareness concepts.

Core Concepts

Figure 5.10 depicts a simplified version of our model to show selected entities and

links that are part of the core concepts of UCSAs. As mentioned above, entities

represent complex objects of the problem domain.

Figure 5.10: Simplified view of our Galapagos Metamodel to show core
concepts [CVM14c]

75

An entity represents a concept that is one of four types: cyber element, physical

element, human element, or smart interaction. Types are based on the type of concept

within the problem domain. Some types of concepts are explicit, such as PersonalGoal,

which belongs to the user (online grocery shopping), and thus is an element in the

human dimension. However, the type for other concepts might not be so obvious,

such as Task, InformationResource and TaskSequence.

The entity Task corresponds to the concept of internet task, which in UCSAs

is a functionality provided by a software application. The result of a functionality

is an output that will be used in the sequence to achieve a user’s personal goal.

Following our example, an internet task is to update the grocery shopping list, which

is a functionality provided by a shopping list application whose output is a modified

list of items. As a result, the Task entity is the concept of an internet subtask, which

is an element in the cyber dimension.

The entity InformationResource represents the concept of an information resource

and can be interpreted as a cyber element (e.g, web service) given that information

resources live as virtual objects. However, based on their nature within the problem

domain, information resources are data elements that are exchanged and stored, and

provide no functionality or logic associated. Resources are objects consumed and read

as they are, accessed through services. As a result, the entity InformationResource

represents an element of the physical dimension.

Finally, an entity for the concept of a smart interaction is the one that abstracts

the connection of two dimensions with the user-centric principle perspective. For

example, the entity TaskSequence is the concept of task sequence, which is an ordered

set of connected internet subtasks (cyber dimension) that assists users in the fulfilment

of a personal goal (human dimension). An internet task sequence is selected and

executed based on users’ personal context.

A link is a connection between two entities in our model. For example, the link

named achievedThrough connects the entities PersonalGoal and TaskSequence with

a cardinality of one. The direction of the link represents a dependency in which a

PersonalGoal relies on the existence of a TaskSequence. The cardinality means only

one TaskSequence is expected.

Cardinalities express if the connection is mandatory or optional. For example, the

cardinality [1...*] of the link measuredBy, which connects PersonalGoal and Observ-

ableResult indicates that it is required a minimum of one ObservableResult to assess

the fulfilment of a PersonalGoal. Cardinalities with zero determines that a connec-

76

tion might not exist. For instance, the cardinality [0...*] in the link hasParameters

indicates that an Activity might not have any parameters.

There are links with no cardinality that are used to connect entities with data

types. For instance, the link is-a between ObservableResult and Output determines

that the first is an entity type of the second. Similarly, other links are used to

determine data types of entity attributes. For example, the link orderNo determines

that the entity PlanItem has an attribute orderNo and it is a number.

Situation-Awareness Components

The entity Situation is the key element to support situation-awareness in User-Centric

Smart Cyber-Physical-Human Applications. It represents the concept of a situation

defined as any user event that might described in terms of two properties: time

and space. The time property comprises two data properties validFrom and validTo,

which are of type Date. The property location is defined though the link gc:locatedIn

and the entity gc:LocationContext of the SmarterContext GeneralContext ontol-

ogy proposed by Villegas [Vil13]. It is worth noting that situations can be permanent,

which means they don’t expire; and omnipresent, which means it is valid in all places

at all times (e.g., the user is vegan). Figure 5.11 presents a simplified view of our

Galapagos Metamodel to show the entities for situation-awareness support.

Figure 5.11: Simplified view of our Galapagos Metamodel to show
situation-awareness components [CVM14a]

In UCSAs, a personal goal is associated with one to many situations, and a situa-

tion influences the achievement of one to many personal goals. In our online grocery

shopping example, there is a policy requiring that the grocery stores and the user are

in the same city.

77

Through the link associatedWith [1...*] it is determined that the execution of

online grocery shopping relies on the user’s situation of being at certain location while

achieving her goal. The link influences [1...*] represents situations that influence the

execution of the personal goal. For example, if the user books a flight to another

city , the system will modify her location thus affecting the execution of her online

grocery shopping.

5.2.2 Galapagos Model

The Galapagos Model uses G-iStar, our i* extension for modelling User-Centric

Smart Cyber-Physical-Human Application. G-iStar is an adaptation of the iStar

framework elements [JHG13, DFH16] to support the specification of evolving tasking

goals, personal interactions, and the relevant contexts. In particular, we extended the

iStar atomic notions of actor, goals, task and resources, to support the specification

of tasking goals, task sequences, and relationships among goals, tasks, actors, and

resources. Figure 5.12 depicts G-iStar.

Figure 5.12: G-iStar notation

Figure 5.13 depicts a simplified instance of the Galapagos Model for our online

grocery shopping scenario. Based on the classic notation, the goal of online grocery

shopping is achieved through the execution of eight internet tasks (labelled 1 to 8).

Task 1 is to shop grocery items, which in turn is decomposed into Tasks 2, 3,

and 6: get grocery items list, search proper stores, and purchase items per store Each

one of these tasks have different compositions and connections. For example, Task

2 depends on the list of items the users wants to purchase, which is an information

resource. The access to that resource requires certain activities, such as locating the

grocery shopping list application, authenticating with the user’s credentials, reading

78

Figure 5.13: Simplified instance of the Galapagos Model for online grocery shopping

the grocery list items, and applying personalized formatting. Task 3 is part of a

decomposed task (cf. Subtask 2 in Figure 5.5) along with other on two tasks: Task 4,

which exploits personal context information to select and rank proper grocery stores,

79

and Task 5, which uses the grocery list to match appropriate stores with items on the

list. It is worth noting that Task 5 depends on the execution of Task 2 and requires

access to additional information resource from the stores to get their inventory. Task

6 is decomposed into Tasks 7 and 8. Task 7 depends on the execution of Task 3,

and requires an information resource of the store, which is the shopping cart. Task 8

accesses a shared resource, the grocery list items, and updates the list based on the

outcomes of the purchase.

Actors in our model are used to describe who is responsible for the goal, task, or

resources. Our model instance describes four actors: (1) SUSGroceries, which is our

mobile application example for online grocery shopping; (2) the user of the system;

(3) the grocery list application; and (4) the grocery store web service, which are two

external systems.

The boundaries of each actor are represented by a dashed circle. It is worth noting

that even though the user is at the centre of all this interaction, we presented the

example where it is a policy of the system that the user’s intervention is required to

execute the credit card purchase. Therefore, the user is seen as responsible for the

execution of Task 7 in our model instance, proceed with checkout.

A personal goal is fulfilled through the execution of an ordered sequence of internet

tasks, thus our model can represent the sequence as well as the dependency among

tasks, and the decomposition into subtasks. Tasks often require to access information

in the cyber or physical dimensions, represented in our model as information resources.

Our Galapagos Model provides a mechanism to represent the composition and

execution of UCSAs.

It is worth pointing out that the model described above is a simplified instance of

the MART. The complete version includes all relevant information that User-Centric

Smart Cyber-Physical-Human Applications require (cf. Appendix A). For example,

the activities of each task, the paths to access the information resources, and the

measurable outputs to determine the fulfilment of the goal.

5.3 Chapter Summary

This chapter presented our Model at Runtime (MART) for User-Centric Smart

Cyber-Physical-Human Applications (UCSAs): (1) Our Galapagos Metamodel,

which represents the concepts of UCSAs; and (2) our Galapagos Model, which

represents the evolving internet tasking goals, relevant context, and smart interac-

80

tions of CPHSs. These MARTs constitute the second contribution of this dissertation

and allow us to answer research questions RQ2, and RQ3 (cf. Figure 1.2).

First, we determined modelling requirements for UCSAs and grouped them into

three concerns: personal goals, tasks, and context. Since software models already

exist for some elements of the modelling requirements, we studied related approaches

and found that goal models are a suitable starting point to represent the application

domain of UCSAs, and graphs are fitting implementations of goal models.

Then, we presented our two MARTs. Our Galapagos Metamodel represents

the conceptual component of UCSA. We presented the core elements of the metamodel

and their relation with our application domain of UCSAs, and the situation-awareness

support by defining the entity Situation and providing it with time and space de-

scriptors. More importantly, in our Galapagos Metamodel personal goals and

situations are connected in two manners: (1) situations influencing the achievement

of personal goals, and (2) personal goals associated with situations.

Our Galapagos Model is specified using G-iStar, our extension and adaptation

of the iStar framework to support dynamic personal goals and task interactions. Our

model supports the specification of evolving tasking goals, personal interactions, and

the relevant contexts. We explained our model through the scenario of achieving a

personal goal of online grocery shopping.

MARTs are also software artefacts, the next chapter presents our operational

framework, which defines the supported runtime operations and semantics of our

MARTs and is necessary for the MARTs supporting infrastructure to effect runtime

adaptation.

81

Chapter 6

Operational Framework for

Models At Runtime

This chapter presents our operational framework for Models at Runtime (MARTs)

in User-Centric Smart Cyber-Physical-Human Applications (UCSAs), which is our

third contribution of this dissertation. Our framework defines model equivalences

between human-readable and machine-readable, available runtime operations and se-

mantics, to manage runtime operations on MARTs.

There is one research question associated with this contribution:

RQ4. What are the runtime infrastructures required to process and evolve runtime

models while maintaining the causal relations among them for User-Centric

Smart Cyber-Physical-Human Applications?

To answer this question, we define an operational framework that comprises four

components: (1) a notation-artefact mapping; (2) a catalogue of operations; (3) the

runtime semantics; and (4) causal links. The notation-artefact mapping connects

every element that is in the model notation form with its corresponding element in

the software artefact form. The mapping is the main element for the translation of

the MART in the two ways: human readable and machine readable. The catalogue

defines CRUD operations for every element of the model. It also defines restrictions,

precondition, post-activities and other considerations when performing runtime op-

erations. Although, we defined three operations, the catalogue is flexible to any sup-

ported runtime operation of a MART. Finally, the runtime semantics are specified in

a programming language and are implemented by software infrastructures to execute

the operations at execution time. A fourth component of our operational framework

82

is the causal links. This component is shared across MART in the framework and

used by software systems to propagate changes among models that are connected.

Figure 6.1 depicts our operational framework between the two views of each MART.

Figure 6.1: Overview of our operational framework for our MARTs

This chapter is organized as follows. Section 6.1 presents the mapping, catalogue

and runtime semantics for our Galapagos Metamodel. Section 6.2 presents the

mapping, catalogue and runtime semantics for our Galapagos Metamodel. Sec-

tion 6.3 presents the causal link of our two MART. Finally, Section 6.4 summarizes

the chapter.

6.1 Galapagos Metamodel

Our Galapagos Metamodel describes the conceptual elements of UCSA. As a

MART, it allows smart infrastructures to read the model and identify themselves as a

User-Centric Smart Cyber-Physical-Human Application. Since this model represents

the application domain, we envision low vulnerability to changing situations. More

importantly, we define that variations in the model might change their true nature

therefore representing a different type of system than a UCSA. As a result, the runtime

operations supported in our MARTs are limited and relatively few.

6.1.1 Mapping from Notation To Software Artefact

The first component of our operational framework is a mapping between the two

views: the MART notation and the MART software artefact (cf. Galapagos Meta-

model and graph in Figure 6.1). Our Galapagos Metamodel comprehends two

components: entities and links presented in Section 5.2.1. As a software artefact, en-

tities and links become nodes and arcs respectively. However, there are restrictions on

what and how nodes are connected. Table 6.1 presents the adjacency matrix between

83

Table 6.1: Adjacency table between the elements of our MART.

Entity 1 3 7 9 10 11 12 14 16 17 18 19 20
Activity - - - - L - - - L - - - -
Algorithm U - - - - - - - - - - - -
Context Condition - U - - - - - - - - - - -
Context Input - - - - L - - - - - - - -
Data - - - L - - - - - - - - -
Execution Condition - L - - - - - - - - - - -
Execution Time - - L - - - - - - - - - -
Input - - - L - - - - - - - - -
Internet Subtask L L - L - - - - - - - - -
Internet Task Sequence - L - - - - - - - - L - -
Local Resource - - - U - - - - - - - - -
Observable Result - - - - - - - - L - - L -
Operations U - - - - - - - - - - - -
Personal Goal - - - - - - L L - - - - L
Plan Item - - - - - L - - - - L - -
Situation - L - - - - - - - L - - -
User Input - - - - U - - - - - - - -
Web Service - - - U - - - - - - - - -

LEGEND: Column numbers correspond to the Entities listed in Table 6.2.
Entities that are not connected have been omitted from this table.

the nodes. Rows determine the node of origin and columns the target. Arcs contain

a locked attribute, which has values true or false. In our table is marked as L or U,

for locked and unlocked respectively. Dash values indicate that the two nodes cannot

be linked. When the locked attribute is true, it means that the entity is mandatory

for the ontology and is not allowed to change at execution time.

For example, the row-column pair (4,3) corresponds to the relation between a

Context Condition (row 4) and a Condition (column 3). The locked attribute is false

(value U in the table), which determines that the entity ContextCondition can be

modified or removed from the model. Possible modifications include replacing it with

another context entity from the SmarterContext ontology or another entity in

compliance with the conceptual definition of UCSA.

In contrast, the pair (17,14) that corresponds to the relation definedBy between

Personal Goal and Observable Result, has a value of true for the attribute locked.

It is clear that the relationship between this two elements should not be exposed to

runtime modifications because it belongs to the core concepts of UCSA.

84

1 Activity 12 Internet Task Sequence
2 Algorithm 13 Local Resource
3 Condition 14 Observable Result
4 Context Condition 15 Operations
5 Context Input 16 Output
6 Data 17 Personal Goal
7 Execution Condition 18 Plan Item
8 Execution Time 19 Satisfaction Property
9 Information Resource 20 Situation
10 Input 21 User Input
11 Internet Subtask 22 Web Service

Table 6.2: Legend for column numbers in Table 6.1

6.1.2 Catalogue of Operations

Our ontology describes the conceptual definition of UCSA. We anticipate that there

will no be new entities or links into the ontology at execution time. Likewise entity

deletion is not considered in our catalogue. We take this assumption on the basis

that our ontology defines the nature of a software application and major modifica-

tions produced by adding or deleting entities and links will generate a new definition

for a new type of application. As a result, our catalogue defines operations for un-

restricted objects, that is, updating, adding or deleting attributes of entities and

links. Table 6.3 presents a summarized view of the catalogue of operations for our

Galapagos Metamodel. Unspecified Entities imply that there are not supported

operations. There are three types of operational behaviours described in Table 6.3:

(1) Yes, which defines that the pair Element-Operation is allowed with no restric-

tions. For example the pair All-Add defines that for all the entities and links of

the ontology, it is allowed to add descriptive attributes. (2) No, defines that the

pair Element-Operation is not allowed with no exception. For example, the pair All-

Update defines that it is not allowed to update any attributes that is locked. (3) With

validation (W-Val), defines that the operations require validation (policy based or

human intervention) before executing the operation. For example, the pair Activity-

Add defines that an Activity can be added to the ontology with a validation of its

relationship with the other entities it will be connected.

85

Table 6.3: Catalogue of operations for our Galapagos Metamodel.

Element-
Operation

Add Delete Update

All Yes Descriptive
attributes

W-Val: Descriptive
attributes. No: Locked
attributes

Yes: Descriptive
attributes. No: Locked
attributes. W-Val:
cardinality if unlocked

Activity,
Condition,
Execution
Condition,
Information
Resource,
Input

W-Val: Type of
relationship with the
origin/target Element

W-Val: Type of
relationship with the
origin/target Element

W-Val: Type of
relationship with the
origin/target Element

6.1.3 Runtime Semantics

The last element of the framework is a definition of runtime semantics for the oper-

ations described in the catalogue. The runtime semantics of a MART comprise two

elements: (1) Sentences, which specify patterns used by software systems to validate

the correctness of requests for operations, and invoke the corresponding code func-

tions; and (2) Code, which is the implementation of the operations described in the

catalogue.

The sentences expressed with our semantics have the following structures: (1)

action-object-object, and (2) action-object. An action is one of the CRUD operations.

The object at the end refers to the target subject of the change. The object in the

middle of (1) is the one carrying the action. If there is one object, it means it is both

carrier and target.

We use Java to specify our semantics, using objects to translate our concepts,

and function calls to represent the operations. We chose Java because it allows the

implementation of conditions and loops giving flexibility to our semantics. Moreover,

Java is a well-known language in the domain of software models, there are various

modelling implementations and tools supported by Java, such as the Eclipse Modelling

Framework (EMF),1 and IntelliJ IDEA.2 Java allows our framework to be extensible

and implemented by other applications fairly easily.

As described in the catalogue, runtime operations are supported as a pair Element-

Operation. To explain our semantics, we present three examples of Element-Operation

1http://www.eclipse.org/modeling/emf
2https://www.jetbrains.com/idea

86

pairs. We selected three elements: two entities PersonalGoal and Situation; and the

link associatedWith. Figure 6.2 presents a simplified view of the classes, we use for

the specification of our runtime semantics.3

Figure 6.2: Simplified view of the Java classes used in the implementation of our
runtime semantics for our Galapagos Metamodel

We created three main classes: Entity, Link and Attribute. These classes de-

scribe the main elements in the ontology, and every entity in our model is a specialized

version of the three. For instance, the classes PersonalGoal and Situation are spe-

cific versions of Entity.

Element-Add

Figure 6.3 depicts the sentence of adding a new attribute to the entity Situation.

Source Code 6.1 depicts a simplified view of the Java code for this sentence. Ac-

cording to our catalogue of operations, it is allowed to add descriptive attributes

for all entities. For this action, our semantic follows the sentence structure action-

object-object. The corresponding method is +add(nElem):boolean, which has for

parameter the new element and returns a boolean true or false if the operation is

3The complete implementation contains classes for all entities and links of the Galapagos Meta-
model. Available at http://rigiresearch.com/research/pit

87

successful or not respectively. Since the target is an object of Situation, the method

gets called from its instance.

Figure 6.3: Sentence example for adding a new attribute to an Entity

Source Code 6.1: Java code example for adding a new attribute to an Entity

1 public class Entity{

2 public boolean add(nElem) throws EntityException ,

RuntimeException{

3 if(isValid(’add’,nElem)){

4 if(nElem instanceOf Attribute){

5 this.attributes.push(nElem);

6 return true;

7 }

8 /* ... */

9 }else

10 return false;

11 }

12

13 private boolean isValid(action ,element) throws

ValidationException , RuntimeException{

14 if(this.locked) return false;

15 switch(action){

16 case ’add’ :

17 //All entities can add descriptive attributes

18 if(element instanceOf Attribute){

19 return true;

20

21 }

22 /* ... */

23 }

24 }

88

The method +add() calls -isValid() in the same class. The validations within

the method follows the restrictions described in our catalogue of operations. First, it

evaluates if the entity allows changes. If it is locked the method returns false, and the

addition does not take place. On the contrary, if the entity is unlocked, it proceeds

to validate the operation based on the action and element’s type. In this example,

returns true for the action add with an object type Attribute. As a result, the

method proceeds to append the new element in the array of attributes of the object

Situation.

Element-Delete

Figure 6.4 depicts the sentence of attempting to delete the link associatedWith

from the entity PersonalGoal. Source Code 6.2 depicts a simplified view of the

Java code for this sentence. In this case, the method +del(nElem):boolean calls

-isValid(action,element):boolean in which case returns false, given that the link

AssociatedWith is locked for changes according our table of relations Table 6.1.

Figure 6.4: Java code example for removing a Link from an Entity

Source Code 6.2: Java code example ffor removing a Link from an Entity

1 public class Entity{

2 public boolean delete(nElem)

3 throws EntityException , RuntimeException{

4 if(isValid(’delete ’,nElem)){

5 /* ... */

6 }else

7 return false;

8 }

9

10 private boolean isValid(action ,element)

11 throws ValidationException , RuntimeException{

12 if(this.locked) return false;

13 switch(action){

89

14 case ’delete ’ :

15 // Attributes might be deleted (validate)

16 if(element instanceOf Attribute){

17 return validate(action ,elem ,this);

18 }

19 /* ... */

20 }

21 }

22 }

Element-Update

Figure 6.5 depicts the sentence of updating the entity Situation. Source Code 6.3

depicts a simplified view of the Java code for this sentence. Based on our

restrictions, entities can only update their attributes. Therefore, the method

+update(nElem):boolean only updates the array of attributes, ignoring other el-

ements of nElem that might be different from the original.

Figure 6.5: Java code example for updating an Entity

Source Code 6.3: Java code example for updating an Entity

1 public class Entity{

2 public boolean update(nElem)

3 throws EntityException , RuntimeException{

4 if(isValid(’update ’,nElem)){

5 for(i in this.attributes){

6 if(!this.attributes[i]. isLocked ()

7 && this.attributes[i]. equal(nElem.attribute)){

8 this.attributes[i] = nElem.attributes[i];

9 return true;

10 }

11 }

12 /* ... */

90

13 }else

14 return false;

15 }

16

17 private boolean isValid(action ,element)

18 throws ValidationException , RuntimeException{

19 if(this.locked) return false;

20 switch(action){

21 case ’update ’ :

22 //All entities can update unlocked attributes

23 if(element instanceOf Entity){

24 return true;

25 }

26 /* ... */

27 }

28 }

29 }

6.2 Galapagos Model

6.2.1 Mapping From Notation To Software Artefact

To transform from our goal model specification into a graph implementation (nodes

and arcs) and vice versa, our operational framework implements a mapping of ele-

ments grouped into two concerns: components and relationships.

� Components: Objects, such as goal, task, resource, and actor are represented

as nodes. Connectors, such as achieve, decompose, depend, and responsible are

represented as arcs. Figure 6.6 presents the graph view of our MARTs instance

for the online grocery shopping example depicted in Figure 5.13.

� Relationships: Table 6.4 presents the relationships between all four mode

types. Every relationship is described based on the possible connection type. A

row represents the node of origin and a column the target node.

A Goal has only an origin relation with other goals in the form of dependency or

decomposition. That is, a goal depends on the fulfilment of another separated

goal, or the goal has subgoals. In the same way, a task has an origin relation

with other tasks. A task has an achievement relation to a goal. At a minimum

91

Figure 6.6: Our Galapagos Model instance graph for online grocery shopping

one task is required to fulfil one goal. A resource has only dependency relations

with tasks or other resources. Because the relationship with an actor defines

responsibility, an actor is a target responsible for a a goal, task or resource. No

relationships are originating from an actor.

Table 6.4: Relationships between the elements of our Galapagos Model. LEGEND:
achievement (a), dependency (dp), decomposition (dc), and responsibility (r)

Goal Task Resource Actor

Goal dc, dp - - -
Task a dc, dp dp -

Resource - - dp -
Actor r r r -

92

6.2.2 Catalogue of Operations

Table 6.5 summarizes the conditions or the runtime operations on the elements of

the Galapagos Model. There are four types of operation behaviours described in

this table: (1) Yes, which defines that the pair Element-Operation is allowed with no

restrictions. For example, for the pair Connector-Update it is allowed to for any con-

nection to update its target element. (2) No, defines that the pair Element-Operation

is not allowed without exception. For example, the pair All-Delete describes that it is

not allowed to delete locked attributes. (3) With validation (W-Val), defines that the

operations require validation (policy based or human intervention) before executing

the operation. For example, the pair Goal-Update, defines that to update a goal is

necessary to validate the task sequence, measure outcomes and execution conditions.

(4) Precondition (PRE), defines activities that need to be executed before the oper-

ation. For example, the pair Task-Add defines that to add a Task is necessary that

a Goal or Task is defined as parent. (5) Post activity (POST), defines activities that

need to be executed after the main operation. For example, the pair (Goal-Delete)

defines that after removing a goal there should be an activity to remove children

elements. Moreover, our catalogue uses the logical operations AND and OR.

6.2.3 Runtime Semantics

The sentences expressed with our semantics have the following structures: (1) action-

object-object, and (2) action-object. Action and object have the same meanings as

the semantics for our Galapagos Metamodel. Likewise, we use Java to specify

our semantics using objects to translate elements, and function calls to represent

operations.

As described in the catalogue, runtime operations are supported in a pair Element-

Operation. To explain our semantics, we present three examples of Element-Operation

pairs. We selected three elements namely Goal, Task, and Information Resource; and

the connector Decomposition.

Figure 6.7 presents a simplified view of the classes, we use for the specification

of our runtime semantics for our example. We define three main classes: Element,

Connector, and Attribute. These are used to describe the main elements in the

Galapagos Model, and every component in our model is a specialized version of

these three. For instance, the classes Goal, Task, InformationResource are special-

ized versions of Element.

93

Table 6.5: Catalogue of operations for our Galapagos Model

Element-
Operation

Add Delete Update

All PRE: all required
attributes

No: Locked attributes No: Locked attributes

Goal PRE-Optional: Parent
Goal (for subgoals)

No: Other goals have
dependency relations
with the goal. POST:
waterfall removal of the
branches based on the
connectors: achievement
and decomposition

W-Val: task sequences,
measure outcomes,
execution conditions

Task PRE: Parent (goal OR
task)

No: if there are
dependency relations to
the task. W-Val: if the
task has children

W-Val: task sequence

Information
Resource

PRE: Dependency
relation (task OR actor
OR resource)

W-Val: if there are
dependency relations to
the resource

Actor PRE: Element of
responsibility (goal OR
task OR resource)

No: if the actor is
responsible for a goal.
W-Val: If there are
responsibility relations
from the actor

W-Val: if the actor is
responsible for a goal

Connectors PRE: between two
compatible elements

PRE: validate branch
removal AND prepare
branch for removal.
POST: Remove orphan
branch

No: Origin element. Yes:
Target element. PRE:
Validate compatibility
and new branch
composition

Element-Add

Figure 6.8 depicts the sentence of adding a new internet task attribute to a goal.

Source Code 6.4 depicts a simplified view of the Java code for this sentence. It is

worth mentioning that our example is a simplified version of our Java code. The

complete implementation includes private and public methods required to support

the entire operations as defined in our catalogue.

The method +add(nElem):boolean verifies that the element is valid for the op-

eration calling the private method -isValid(action,element):boolean. Based on

our catalogue this method makes sure all required attributes are not null. When the

operation is valid, the add method verifies the type of element being added. In this

case, we are adding an Task and based on our catalogue a new task requires a parent,

either a goal or another task. If it is a goal (as in this example) it verifies if there is

a sequence associated with the achievement of a goal. If this is the first task then it

94

Figure 6.7: Simplified view of the Java classes used in the implementation of our
runtime semantics for our Galapagos Model

becomes the first element in the sequence. Otherwise starts to search its parent by

calling the private method -getTask(taskName):Task.

Figure 6.8: Java code example for adding a new internet task to a goal

Source Code 6.4: Java code example for adding a new internet task to a goal

1 public class Element{

2 public boolean add(nElem)

3 throws ElementException , RuntimeException{

4 if(isValid(’add’,nElem)){

5 if(nElem instanceOf Task

6 && this instanceOf Goal){

95

7 if(this.taskSequeces [0]== null){

8 this.taskSequeces [0] = nElem;

9 return true;

10 }else{

11 Task parent =

this.taskSequeces [0]. getTask(nElem.parent.name);

12 nElem.setParent(parent);

13 nElem.parent.updateChildren(nElem);

14 nElem.updateChildren ();

15 return true;

16 }

17 }

18 }

19 /* ... */

20 return false;

21 }

22

23 private boolean getTask(taskName)

24 throws ElementException , RuntimeException{

25 Task initTask = null;

26 if(this instanceOf Goal){

27 return taskSequences [0]. getTask(taskName);

28 }

29 if(this instanceOf Task){

30 if(this.name.equals(taskName)) return this;

31 else

32 if(this.children.length ==0) return null;

33 else

34 for (i in this.children){

35 initTask = this.children[i]. getTask(taskName);

36 if(initTask != null) return initTask;

37 }

38 }

39 return initiTask;

40 }

41 }

Element-Delete

Figure 6.9 depicts the sentence for removing an information resource from the model.

Source Code 6.5 depicts a simplified view of the Java code for this sentence.

96

The sentence follows the structure action-object, which implies the action is to be

performed over the object as an element and a target as well.

The method +delete(nEleme):boolean validates if the element is valid to be

removed. Based on the type of element the method validates restrictions as described

in our catalogue of operations. As an InformationResource instance, it validates

if the resource has associated dependencies. If true, it verifies the policies to delete

them. For example, in case two the policy indicates a waterfall delete, this is, to

remove all connected dependencies (and elements if unlocked). Waterfall starts with

the main goal.

Figure 6.9: Java code example for removing an information resource

Source Code 6.5: Java code example for removing an information resource

1 public class Element{

2 public boolean delete(nElem)

3 throws ElementException , RuntimeException{

4 if(isValid(’delete ’,nElem)){

5 if(this instanceOf InformationResource)}

6 if(nElem.hasDependencies ()){

7 switch(nElem.verifyDeletePolicy ()){

8 case 1: //can not delete if dependencies

9 return false;

10 case 2: // waterfall delete

11 Goal mainGoal = findGoal(this);

12 return mainGoal.waterfallDelete(nElem);

13 default: return false;

14 }

15 }else{

16 Goal mainGoal = findGoal(this);

17 return mainGoal.waterfallDelete(nElem);

18 }

97

19 }

20 }

21 /* ...*/

22 return false;

23 }

24 }

Element-Update

Figure 6.10 depicts the sentence for updating the decomposition of a task. Source

Code 6.6 depicts a simplified view of the Java code for this sentence.

In this case, an internet task will have a new decomposition of subtasks. The

element Decomposition contains two objects of the same type (i.e., Task) for origin

and target. The origin will contain one internet task, the one to be decomposed. The

target contains a set of subtasks. The method +update(nElem):boolean verifies the

operation and performs the validations based on the type of element in accordance to

our catalogue of operations. In a decomposition, it is important to validate that the

new sequence will continue to provide the outputs required by the main task that is

being decomposed. The method -verifyAlterSequence(Task[]):int verifies that

the output requirement of the task corresponds to the output of the various subtasks

in the decomposition. If the new decomposition is compatible, the children become

the set of Task in the Decomposition target property.

Figure 6.10: Java code example for updating the decomposition of a task

Source Code 6.6: Java code example for updating the decomposition of a task

1 public class Element{

2 public boolean delete(nElem)

3 throws ElementException , RuntimeException{

4 if(isValid(’update ’,nElem)){

5 if(nElem instanceOf Connector && nElem.origin instanceOf

Task)}

98

6 Task origin = findTask(nElem.origin.name);

7 switch(origin.verifyAlterSequence(nElem.target.children)){

8 case 1: // not compatible

9 return false;

10 case 2: // compatible

11 origin.children = nElem.target.children;

12 return true;

13 default: return false;

14 }

15 }

16 }

17 /* ...*/

18 return false;

19 }

20 }

6.3 Causal Links

The last component of our operational framework is the causal links. A causal link

connects two MARTs that will be affected in the case where one of them changes.

Causal links are used by the MART management infrastructure to propagate changes.

There are two types of causal links: (1) vertical link, which connects MARTs at

the same level of abstraction; and (2) horizontal link, which connects MARTs across

different levels of abstraction.

In our approach, our MARTs are connected horizontally, since our Galapagos

Metamodel defines the concepts of UCSA, and the Galapagos Model defines

the users’ tasking and changing situations. More importantly, we only specify causal

links in one direction. Only changes in the Galapagos Metamodel effect changes

in the Galapagos Model, but not vice versa. This is because the Galapagos

Metamodel defines the meaning of the elements in the Galapagos Model.

Figure 6.11 depicts a simplified view of some of the elements that connect to

each other in our two MARTs. For example in both MARTs there is an element to

represent personal goals, which implies that the entity Personal Goal and the element

Personal Goal are connected. Changes in the Galapagos Metamodel ensure that

the definition of a personal goal will impact the definition of the personal goal in the

Galapagos Model. Similarly with the concept of task. Causal links can be from

entity-to-element, or from entity-to-attribute. For instance, the entity Plan Item is

99

connected to the number attribute of the task. Other connections, not depicted in

the figure, include those between links and connectors. Since these connections derive

form the manipulation of entities, we consider them part of a primary change of an

entity.

Figure 6.11: Simplified view of the causal connections among elements of our two
MARTs

Figure 6.12 depicts a simplified view of our Java implementation for causal

links. We have three packages, com.rigiresearch.lcastane.mart.ontology

and com.rigiresearch.lcastane.mart.goal contain the definition of

the software artefacts of our MARTs and runtime semantics described

before in Sections 6.1.3 and 6.2.3, respectively. The third package

com.rigiresearch.lcastane.mart.causallink contains one main class

CausalLink that defines the origin and target MART (ontology and Galapa-

gos Models respectively) and the type of link (vertical or horizontal).

There is one public operation, +registerLink(origin,target,links[]), which

is used to register the changes one element effects over another. The runtime semantics

100

described in the MARTs are used in this method to add, modify or delete elements

in the model as a result of a change.

Figure 6.12: Java implementation for causal links

6.4 Chapter Summary

This chapter presented our operational framework for MARTs used to manage run-

time operations and translation between a MARTs notation and its corresponding

software artefact form. Our framework constitutes the third contribution of this

dissertation, and allows us to answer research question RQ4 (cf. Figure 1.2).

Our operational framework comprises four components: (1) a notation-artefact

mapping between the MART human-readable and machine-readable views; (2) a

catalogue of operations that describes the considerations and restrictions of every

element in the model for runtime CRUD operations; (3) the runtime semantics to

execute the operations in the MARTs. In both cases, we use Java to define our

runtime semantics. ; and (4)the causal links component, which is shared among the

MART and describes causal connections among MARTs.

Now that we have defined MART and their operational framework, the next

chapter presents our Primor, which is a component of the MART supporting in-

101

frastructure that is responsible for orchestrating and managing runtime requests for

operations.

102

Chapter 7

Processing Infrastructure for

Models at Runtime (PRIMOR)

Primor in Spanish translates to

the skill, care and delicacy when

doing or saying a thing.

This chapter presents our Processing Infrastructure for Models at Runtime

(PRIMOR), which is our fourth contribution of the dissertation. There is one re-

search question associated with this contribution:

RQ4. What are the runtime infrastructures required to process and evolve runtime

models while maintaining the causal relations among them for User-Centric

Smart Cyber-Physical-Human Applications?

To answer this question, we define Primor, which is our infrastructure responsi-

ble for managing MARTs’ CRUD operations. Primor’s main functionalities are:

(1) providing reading access from software components to the MARTs; (2) executing

model-related runtime operations; and (3) propagating changes among interconnected

MARTs and their realities. Primor is a component-based system, implemented in

Java, and designed to be extensible to other domains.

In Chapter 4, we presented the components of the UCSA architectural design. The

MARTs supporting infrastructure component is responsible for hosting and managing

MARTs through two components: (1) Primor and (2) the MART repository (cf.

103

Figure 7.1). The repository contains the models and their operational framework

presented in Chapters 5 and 6, respectively.

Figure 7.1: Architectural design for the implementation of
User-Centric Smart Cyber-Physical-Human Applications (UCSAs)

This chapter is organized as follows. Section 7.1 describes the functionalities of

Primor. Section 7.2 describes the architecture and Java implementation of Primor.

Finally, Section 7.3 summarizes the chapter.

7.1 Functionalities

Primor receives two types of requests: Access Requests and Adaptation Requests,

which are handled by two Primor components: the Access Manager and the Opera-

tion Manager, respectively. Figure 7.2 presents an overview of these components and

their interactions.

Figure 7.2: Overview of Primor based on its responsibilities

104

7.1.1 Access Manager

An Access Request seeks reading capabilities from authorized components to specific

MARTs. For example, Source Code 7.1 depicts an Access Request arriving from an

external component (e.g., the Tasking effector component in Figure 7.1) requesting

an instance of the Galapagos Model. The Access Request contains one argument,

which is an object type UCSAGoal, which is a MART identified with id=1. The Access

Manager component replies to an Access Request with a reference to the software

artefact of the corresponding MART.

Source Code 7.1: Access request example received by Primor

1 request.type.ACCESS(UCSAGoal.id(1))

7.1.2 Operation Manager

An Adaptation Request seeks writing capabilities to execute a CRUD operation on

the MARTs. For example, Source Code 7.2 depicts an Adaptation Request from the

Personalization Engine, which contains two arguments: a MART and a Sentence.

This request is received and handled by the Operation Manager.

Source Code 7.2: Adaptation request example received by Primor based on the

example of Figure 6.8

1 request.type.ADAPTATION(

2 UCSAGoalGoal.id(1), // a reference to the targeted MART

3 new Sentence(// a sentence with action and objects

4 Sentence.action.ADD ,

5 new Task (...),

6 new Goal().id(0)

7)

8)

Handling the Adaptation Request consists of four activities: (1) operation identi-

fication, (2) causal link analysis, (3) operations planning, execution and assurance,

and (4) MART’s deployment.

Operation Identification

First, the Operation Manager analyses the Sentence in the Adaptation Request based

on the operational framework of the MART. In Source Code 7.2, the MART is an

105

object type UCSAGoal identified with id=1, which is an instance of the Galapagos

Model. From our operational framework, we identify that there are two supported

sentence structures for this MART: action-object-object and action-object (cf. Sec-

tion 6.2). The Sentence in Source Code 7.2 follows the action-object-object structure.

The action is an adding operation, where the first object (element) is a Task and the

second object (target) is a Goal identified with id=0.

Causal Links Analysis

Second, the Operation Manager prepares the propagation of changes by analysing the

causal links of the MART and creating new sentences for the additional operations.

There are two types of change propagation: internal and external.

� Internal propagation occurs when an operation on the MART triggers a set

of additional changes in other parts of the same model, either to fit the re-

quested change or as a consequence of the operation. The operational frame-

work specifies internal propagation under preconditions (PRE) and postcondi-

tions (POST), which are in the runtime semantics.

� External propagation occurs in two modes: (1) model-to-model, which implies

that changes on a MART affect other MARTs; and (2) model-to-system, which

implies that changes on a MART affect the structure or behaviour of a system.

In both cases, the operational framework specifies the respective connections

through causal links.

Operations Planning, Execution and Assurance

Third, the Operation Manager composes an execution plan, coordinates its execution,

and controls runtime exceptions by taking corrective or informative actions. These

actions are based on policies and might include to roll-back changes on previous

MARTs, try alternative operations, continue with the propagation of changes, or

notify the external systems about the modification. More importantly, the Operation

Manager is responsible for executing assurance activities while the MARTs (and their

realities) are being modified to guarantee that the overall system remains truthful.

106

MARTs’ Deployment

Finally, the Operation Manager deploys the new versions of the MARTs in the repos-

itory, and guarantees both views (notation and software artefact) remain truthful to

each other by synchronizing them. That is, software systems and humans have access

to the same information of the running system at the same time. To execute de-

ployment and synchronization, the Operation Manager uses the mapping of elements

specified in the operational framework.

7.2 Architectural Design and Implementation

Figure 7.3 depicts the complete architectural design of UCSAs.

Figure 7.3: UCSA Architectural design

In our implementation, we chose Java since it allows our infrastruc-

ture to be extensible and implemented by other applications fairly eas-

ily. Figure 7.4 provides a closer look into the classes of Primor

(com.rigiresearch.lcastane.primor) and our implementation of the Galapagos

Model as a graph (com.rigiresearch.lcastane.mart.goalsmodel) and our oper-

ational framework (com.rigiresearch.lcastane.mart.framework).

The interface Manager exposes the services of Primor to external systems through

public methods, and is implemented with the class ManagerIml. The method

+registerModel(MART) allows systems and humans to add a MART into the sys-

tem’s repository. The parameter is a MART, which can be either a Notation or an

107

Figure 7.4: Overview of the JAVA classes for the implementation of
Primor and our Galapagos Model

Artefact. For example, a software engineer who specifies a model using a modelling

tool, registers the model instance as a notation. In the same way, components re-

sponsible for analysing systems and inferring models, such as the Internet Tasking

Knowledge Infrastructure, register the model instance as an artefact. Registering a

MART includes the operational framework that supports runtime operations in the

model.

The method +executeSentence() allows systems to request the execution of op-

erations on a MART. As mentioned before, MARTs use sentences implemented with

108

runtime semantics. Primor receives a Sentence and applies it to the correspond-

ing MART invoking the -applyOperation() method from the Artefact class. It is

worth mentioning that Primor does not support operations over notation views of

the model, since we do not consider notations to be machine-readable.

The method +modelArtefact() returns the artefact view of a MART. Systems

might request the artefact to perform their functional activities. For instance, the

Personalization Engine and the Internet Tasking Effector components of a UCSA

need an instance of the Galapagos Model to analyse personalized features and to

execute the internet tasking, respectively. In both cases, the components need the

graph view, which is the software artefact a system can understand. Similarly, the

+modelNotation() method returns the notation view of a model. For instance, a

software engineer who wants to see the current state of the system might request the

notation view and import the model into a modelling tool.

The method -synchronise(MART) is a private method, and its responsibility is

to perform model synchronisation on the views of a MART. Finally, the method

+propagate() receives for parameter a MART, an Operation and a set of Object

that represent the operands. This private method is used by Primor to manage the

propagation of changes based on the causal links of a MART.

In our approach, the Galapagos Model is a graph in its artefact form repre-

sented by the UCSAGoalGraph class. The UCSAGoalGraph is composed by nodes, arcs

and operations represented by the classes Node, Arc and Operation, respectively.

This class contains the operational behaviour of our Galapagos Model according

to our catalogue of operations described in Section 6.2.

Additional classes, not depicted in Figure 7.4, represent elements of the model

providing specialised nodes. For example, the Goal<Node> class contains attributes

that represent measurable outcomes and execution conditions, the Task<Node> con-

tains attributes to represent their number in the sequence of tasks, and other control

attributes, such as termination and validation flags. The class Resource<Node> con-

tains attributes for the location path of the resource, authorization mechanisms, and

credentials when required, and the class Actor<Node> defines attributes, such as type

of actor, virtual identification and location, and a list of permissions of the actor over

tasks, resources and goals.

Figure 7.5 depicts another view of the Java classes of our implementation of

Primor. The class ManagerIml is an instance of the interface Manager, which defines

the services of Primor presented in the architectural design. In our implementation

109

we created Primor as a service to be deployed in the cloud and that can be called

by the UCSA to manage CRUD operations on MARTs. The class Application is

the executable class of Primor that deploys the service.

Figure 7.5: Java classes of Primor

Source Code 7.3 presents a section of the implementation of the class ManagerIml.

Line 6 shows the attribute models, which represents the repository of MART

as a Map in which the key is a String and the value is a MART. Line 15

shows the method executeSentence(), which receives the MART identifier and

the object Sentence. There are two exceptions that can be launched from

this method: ValidationException, which is propagated from the MART; and

ModelNotFoundException, which is launched by the method when there is no MART

with the identifier sent in the parameter. Lines 19 to 21 apply the Sentence if the

MART exists, by calling the artefact (i.e., graph) of the MART from the repository

(i.e., models Map).

Source Code 7.3: Implementation of the method executeSentence

110

1 public final class ManagerIml implements Manager , Serializable {

2 /**

3 * The model repository.

4 */

5 private final Map <String , MART <?, ?>> models;

6

7 /*

8 * (non -Javadoc)

9 * @see com.rigiresearch.lcastane.primor.Manager

10 * #executeSentence(java.lang.String ,

11 * com.rigiresearch.lcastane.framework.Sentence)

12 */

13 @Override

14 public void executeSentence(final String identifier ,

15 final Sentence sentence)

16 throws ValidationException , ModelNotFoundException {

17 if (this.models.containsKey(identifier)) {

18 this.models.get(identifier)

19 .artefact ()

20 .apply(sentence);

21 } else {

22 throw new ModelNotFoundException(

23 String.format(

24 "Model %s not found",

25 identifier

26)

27);

28 }

29 }

30 }

Figure 7.6 depicts some classes of the implementation of our operational frame-

work, our MART and Primor.

111

Figure 7.6: Java classes of our Operational Framework

112

7.3 Chapter Summary

This chapter presented the Processing Infrastructure for Models at Runtime

(PRIMOR), which is our infrastructure to manage runtime operations on Model

at Runtime (MART). Primor constitutes the fourth and last contribution of this

dissertation and allows us to answer research question RQ4 (cf. Figure 1.2).

Primor manages runtime operations for our two MARTs (cf. Chapter 5): our

Galapagos Metamodel and our Galapagos Model. Primor’s main function-

alities are: (1) providing reading access from software components to the MARTs,

(2) executing model-related runtime operations, and (3) propagating changes among

interconnected MARTs and their realities.

Primor receives two types of requests: an Access Request and an Adaptation

Request. An Access Request asks for reading capabilities on MARTs, which is han-

dled by the Access Manager component. An Adaptation Request asks the execution

of changes on the MARTs, which is handled by the Operation Manager component.

Handling the Adaptation Request consists in four activities: (1) operation identifi-

cation, (2) causal link analysis, (3) operations plan, execution and assurance, and

(4) MART’s deployment. Primor is a component-based system, implemented in

Java, and designed to the extensible to other domains.

The next chapter of this dissertation presents the evaluation of our contributions

in two parts: First, a qualitative evaluation of our modelling approaches compared

with related approaches; and second, a quantitative evaluation based on controlled

experiments.

113

Chapter 8

Evaluation

This chapter presents the evaluation of the contributions of this dissertation. Sec-

tion 8.1 presents the qualitative analysis for our second contribution, our Galapagos

Metamodel and our Galapagos Model. Through this qualitative analysis, we

demonstrate the novelty of our approach by comparing it with related approaches.

Section 8.2 presents the experimental analysis of our four contributions: our def-

inition and an architectural design for User-Centric Smart Cyber-Physical-Human

Applications (UCSAs); our two MARTs as software artefacts; our operational frame-

work; and our Processing Infrastructure for Models at Runtime (PRIMOR). For our

experimental analysis, we evaluated our design and implementation in terms of three

quality attributes: accuracy, scalability, and performance [Gor11]. The experimental

results of this analysis demonstrate the applicability of our MARTs and Primor.

Finally, Section 8.3 summarizes the chapter.

8.1 Qualitative Evaluation

8.1.1 Related Approaches Comparison

Chapters 5 and 3, described the modelling requirements for the implementation of

user-centric web-tasking cyber-physical-human systems, and reviewed approaches in

the scope of modelling some of the concerns associated with our requirements respec-

tively. This section presents a comparison of our approach with related works based

on a qualitative assessment of our modelling requirements. For each approach, we

characterize the way authors represent our requirements and discuss how these align

with our approach.

114

Personal Goals and Task Interactions

Table 8.1 summarizes approaches related to two of our core concepts: personal goals

and task interactions. Users achieve personal goals through the execution of task

interactions, that are ordered in a logical sequence. Our study of related approaches

provides evidence that goal models are often used to represent user’s intentions and

graphs are useful to represent multiple decisions or variability on choices. Moreover,

interactions are represented in the form of a sequence of decisions using ordered

activities.

Our approach differentiates from others in the way we represent the achievement

of a goal. As mentioned in Chapter 5, we focus on the results of the tasks and consider

outputs as the measurable outcomes of the goal.

In our MARTs, the concept of a personal goal contains more than the sequence of

the tasks, by including the specification on how to assess the execution and achieve-

ment of the goal. The assessment is made through the specification of observable

results and satisfaction measurements and thresholds, which defines the achievement

of a goal based on the output of the tasks. Additionally, our specification includes

regulation information, such as satisfaction and execution rules, which allow infras-

tructures to manage and control the execution of a task sequence.

Table 8.1: Mapping between related approaches and two of our core concepts: personal
goals and task interactions

Approach
Core Concepts

Personal goals Task interactions

Bolchini

[BM03]

Uses the user’s goal and the

stakeholders preferences to

analyse the task

Carberry

[Car88]

Structure of conditions, body

and effects.

Carberry

[Car88]

A node is a goal inferred by the

system

The active path corresponds to

the user’s decisions

Chopra

[CDGM10]

Uses goals (TROPOS

methodology) to specify a user

Goschnick

[GBS08]

Hierarchical task model for

goals and subtasks

115

Approach
Core Concepts

Personal goals Task interactions

Liaskos

[LMSM10,

LLJM11]

AND/OR decompositions to

represent alternatives

Liaskos

[LLJM11]

Goal (ovals), Hexagons (task),

arcs (relationship)

A numbered sequence of tasks

to create a path of interactions

Mylopoulos

[MCY99]

Goals and subgoals (tasks)

Wilson

[Wil99]

The goal is an information

seeking achievement

Yu [Yu93] Goal dependencies AND

satisfaction

Yu [YM94] Goal Dependency strength and

type

Tasks

Concerning the modelling requirements for tasks, we grouped related approaches into

two groups: task definition, and task execution. First, Table 8.2 summarizes ap-

proaches related to the definition of a task. In this table, approaches are compared to

some of our modelling requirements for personal tasks: inputs, outputs, activities, and

resources. Tasks and goals are strongly connected since tasks are the activities that

the user performs to fulfil a goal. Most of the studied approaches focus on represent-

ing the activities of a task. Second, Table 8.3 summarizes approaches related to the

execution of a task. In this table, approaches are compared to some of our modelling

requirements: task sequence and execution controller. Some approaches implement

hierarchical models (e.g., graphs and workflows) to provide an ordered structure of

task sequences.

Our approach differentiates from others in the way we specify explicit informa-

tion about the execution of a task. Our MARTs represent preconditions, which are

implemented as validations prior the execution of the task. Moreover, our models

support the specification of pre- and post-activities regarding the sequencing of a par-

ticular task with others and using logical operators to create alternative or parallel

116

executions. Finally, our MARTs specify policies to regulate the task execution and

to guide runtime infrastructures with decision making processes.

Table 8.2: Mapping between related approaches and some of our task definition
modelling requirements: inputs, outputs, activities and resources.

Approach
Task definition modelling requirements

Inputs/Outputs Activities Resources

Bolchini

[BM03]

Task analysis,

identification and

decomposition

Brezillon

[Bré07]

Task model to

describe the actions

in a degree of

generality

Cui

[CLWG04]

Inputs and outputs

as parameters

A web service is a

composition of input

and output

parameters

Giersich

[GFF+07]

Task tree to

represent the

activities

Klug [KK05] The information

exchange is specified

in the task model

(exchanged through

ports)

Souchon

[SLV02]

Nodes of the graph

are tasks (subtasks)

activities. Edges are

the relationship

Stoitsev

[SS08]

Types of tasks

(activities):

strategical, tactical

and operational TO

interaction features

117

Approach
Task modelling requirements

Inputs/Outputs Activities Resources

Yu [Yu93] Task dependencies Resource

Dependencies

Yu [YM94] Task Dependency

(strength and type)

Resource

Dependency

(strength and type)

Table 8.3: Mapping between related approaches and some our task execution modelling
requirements: sequence and execution controller

Approach
Task execution modelling requirements

Task sequence Execution controller

Bolchini

[BM03]

Hierarchical task decomposition

activities

Brezillon

[Bré07]

The graph connects the tasks

Dix [Dix08] Hierarchical Task Analysis

(HTA), to create sequences of

tasks in the form o a Plan

Giersich

[GFF+07]

Hierarchical decomposition of an

activity into individual steps of a

task

John

[JVM+02]

Model human behaviour in

complex dynamic tasks

Klug [KK05] Includes mechanisms to support

correctness and completeness

while executing a sequence of

tasks

Liaskos

[LMSM10,

LLJM11]

The order of the execution tasks

are relevant

Mylopoulos

[MCY99]

AND, OR operators to connect

the subgoals

Conflict analysis to control

potential collisions

118

Approach
Task execution requirements

Task sequence Execution controller

Souchon

[SLV02]

A direct graph that connects a

set of task (subtasks) with a root

and a set of transitions

Thom

[TLI+11]

BPMN to design the execution of

activities

Wilson

[Wil99]

The model describes the various

elements that take place while

seeking information

Yu

[YLL+08]

Alternate sequences of the

solution

Context

Concerning the modelling requirements for context, we focused on related approaches

that specifically represent internal, external, or personal context. More importantly,

we focused on representations of context that consider some of its dynamic nature

since our applications exist in a highly-dynamic socio-technological environment. Ta-

ble 8.4 summarizes approaches related to context modelling.

Villegas’ personal context sphere provides a repository to store, share, and infer

dynamic information about users, their preferences and interactions [Vil13]. For our

approach, we use Villegas’ smarter context ontology to represent context by extending

her ontology for the grocery shopping domain.

Our approach differentiates from others in the way our MARTs represent situa-

tions explicitly as pieces of information that connect the user with the achievement of

a personal goal. Situations are the result of analysing personal context information,

as it affects a goal the user intends to achieve.

Table 8.4: Mapping between Context modelling requirements and modelling approaches

Approach
Context modelling requirements

Internal External Personal context

119

Dix

[Dix08]

“Data-detectors” in the

form of textual analysis

to detect key terms

Personal Ontology to

model static context

information

Souchon

[SLV02]

Context considers: user, platform and environment

Villegas

[Vil13]

Context Entities represent

contextual information in the form

of RDF graphs, which support

dynamic behaviour.

The Personal Context

Sphere (PCS) is a

repository of the user’s

information and

preferences. The PCS is

controlled by the user.

Yu [YM94] The user is an actor,

which comprises a role,

position, agent, and

associations

In this section, we assessed our models according to related approaches in order

to highlight how our approach differs. More importantly, given the dynamic nature

of our application domain, we add the value of our models through their runtime ca-

pabilities. In Chapter 2, we introduced MARTs as having four major characteristics:

representation, availability, causal connection, and evolution.

Throughout this dissertation, we have demonstrated that our models satisfy

MARTs characteristics, therefore making them proper models at runtime. We have

presented that our models: (1) satisfy the representation of users’ task interactions

that lead to the achievement of a particular personal goal; (2) are available to software

systems; (3) maintain a connection with their reality (i.e., users’ personal tasking and

goals); and (4) are capable to evolve at execution time.

8.2 Experimental Evaluation

To demonstrate the feasibility of our contributions, we instantiated our MARTs, and

implemented Primor for our online grocery shopping scenario. The details of our

120

implementation are described in Appendix B. For the experimental analysis, we ran

a set of experiments in terms of three quality attributes [Gor11]:

� Accuracy of the MART: assessed as the capability of our models to support the

representation of relevant changes in the context.

� Scalability of the infrastructure: assessed as the capability of our framework to

support growing models and new operations.

� Performance of the infrastructure: assessed as the time it takes to our infras-

tructure to perform CRUD operations on MARTs.

The following section introduces Edel, our UCSA’s user for the scenario of online

grocery shopping (cf. Section 4.2) in our experimental evaluation.

8.2.1 Case Scenario: Supporting Independent Living for the

Elderly

Edel is an 85-year-old woman living in the city of Victoria. She lives by herself, and it

is her wish and those in her family, to maintain her current living situation as long as

possible. However, Edel’s age comes with some cognitive challenges, such as memory

loss, reduced processing speed, and decreased motivation for doing ordinary tasks.

Maintaining her independent living is highly essential for Edel and all her family,

mainly because of a present genetic heritage of Alzheimer’s disease.

One of the activities that satisfy Edel’s independence is her grocery shopping.

Although Edel enjoys her trips to the grocery store, she has encountered some frus-

trating situations. A few times, her grocery shopping has been more than she could

carry. Since she doesn’t drive, her preferred stores are within walking distance from

her home, thus complicating her way back. One time she had to take a taxi, which

put her out of her budget. Another time she made several trips from her home to the

store, which made her extremely tired with joint and muscle pain. Many times Edel

misses on some good grocery deals because she has to choose one grocery store for

her shopping. Making trips to different stores or in different days is not a possibility

for Edel. A recurrent frustration occurs when she comes home to find out she forgot

to buy something, or that an element in her kitchen needed replacement because it

expired. In some cases, the option of waiting for the next grocery shopping is not

possible, and Edel ends up making another trip to the grocery store. Finally, every

121

time she has to get cleaning-related products, which are often bulky or heavy, she

relies on her son to drive her to the grocery store. One time he was out of town for

three weeks, thus affecting her grocery shopping activity.

One way to help Edel to reduce her frustrations would be to hire someone to

do the grocery shopping for her, but that would have a negative impact on her

independent living. To improve Edel’s quality of life by supporting her independent

living, she uses SUSGroceries, our UCSA to assist her in the achievement of her

grocery shopping goal. SUSGroceries for Edel is possible since, despite her age, Edel

is not foreign to technology. Edel’s son and granddaughter had instrumented her home

with sensors and actuators to collect various kinds of information, some connected to

SUSGroceries. Edel’s primary interface with SUSGroceries is her smartphone, which

she always carries with her. Through her smartphone, she provides all sort of personal

context information including preferences and location.

SUSGroceries collects information about Edel. For instance, her instrumented

kitchen—smart camera on her fridge and intelligent mats on her pantry—is used to

populate her grocery shopping list; her calendar and social connections are used to

prepare the grocery shopping for food-related events; her location is used to track

her in her preferred stores and to collect store-related information, such as deals and

discounts. More importantly, SUSGroceries understands that Edel likes to visit the

grocery store to get some of her groceries herself. Therefore, SUSGroceries assists

her grocery shopping by suggesting her items she can get in the store to carry home

comfortably, while effecting online grocery shopping for the remaining items to com-

plement Edel’s achievement of her personal goal.

8.2.2 Accuracy Analysis

To evaluate accuracy, our experiments involve having changes in the personal context

as these reflect situations that might affect the execution of the tasking. The objective

of this analysis is to assess the capability of our Galapagos Model of representing

at runtime, the user’s tasking and situations, as these change during the execution of

the system. We focus on two variables of the user: location and preferences, which are

representative pieces of context information that affect the achievement of personal

goals.

Since location and preferences are general concepts of context, we focus on sub

types as follows:

122

� Location: We experimented with three types of location that might affect the

achievement of the online grocery shopping goal. In this case, new locations

were (1) within the original location’s radius; (2) outside the original location’s

radius; and (3) with no grocery stores within its new radius.

� Preferences: We experimented with three categories of preferences: (1) stores,

(2) payment method, and (3) types of food.

It is worth noting, that our representation of preferences follow the Smarter-

Context personal context sphere (PCS) structure by Villegas [Vil13]. Ta-

ble B.2 presents the PCS for the user Edel in this case scenario.

Analysis Process

For this analysis, we assumed that all changes in the user’s location are permanent;

and the user has authorized the system to effect changes in the model when the option

becomes available. Moreover, we assumed that all changes in preferences are dynamic

and can occur while the system is executing, and that all the preferences will modify

the corresponding MART instance. We use functions in SUSGroceries to simulate

external sensors changing the user’s preferences.

Our analysis was conducted following four steps:

1. Identification of model elements: First, we identified the elements in the

models that are affected by the context of location and preference. Accord-

ing to our Galapagos Metamodel, location—represented by the context

entity gc:LocationContext from the SmarterContext ontology—is asso-

ciated with the concepts of Situation and InformationResource. Conse-

quently, our Galapagos Model represents location in the concepts of Actor

and InformationResource (cf. Appendix A). For the preference context infor-

mation, we focused on the three categories we wanted to examine. We identified

that stores are the concept of Actor and InformationResource; form of pur-

chase affect the concepts of Task as well as the execution policies ; and types of

food affect the concept of Task.

2. Identification of policies Second, we identified the policies that describe loca-

tion and preferences as relevant pieces of context. According to our Galapagos

Metamodel, policies are a type of Condition associated with the concepts of

TaskSequence, Task/Subtask and Situation. Consequently, our Galapagos

123

Model represents policies as attributes of Goal, Task, and Actor. by the

simulated changes in the context of the user.

3. Experimental plan: Third, we planned the scenarios in which the location

and preferences variables would change, and predicted the resulting model in-

stance based on the information available to our system SUSGroceries. Since

our infrastructure does not support inference mechanisms, we defined alterna-

tive paths, and existing variability points based on our scenarios. To recreate

the runtime environment of the system, we used time delays in the software

component responsible to execute the personal tasking.

4. Observation of the model instance: Finally, after running the experiments,

we observed the console output of the experiments to follow the execution of the

CRUD operations, and the resulting model instance. As a result, we compared

the predicted model instances after changes with the model instance that should

be affected by changes in the aforementioned context variables, and predicted

the model instance outcome.

Tests and Results

In this section, we present three cases where context changes impact the user’s sit-

uations that are relevant for the achievement of her personal goal. We present our

results using our reporting pattern, which comprises the following sections:

� Description: Provides a synopsis of what the test is about.

� Context change: Describes the piece of context information that will have the

change in this test.

� Context source: Describes the source that contains the pieces of context infor-

mation and reports the context change.

� Type of experiment : Defines whether the test is a situation-awareness test, or

a CRUD operation test.

� Related policies : Defines which policies in the objectives manager component

are affected by this context change.

� Effect : Presents the designed functions to manage the change context event

124

� Expected results : Describes the expected results

� Test results : Presents the console output from the applications and services

involved: SUSGroceries, Primor, and JUnit. The lines in the console in-

clude the following elements: (1) the action occurring in the system (i.e., GET

message, context or model CHANGE, SEND message, display INFO); (2) the

data information, such as the context changed, the message received or sent, or

the change that took effect;

Our reporting pattern follows the essential elements of a pattern described by Gamma

et al: (1) a name to describe the problem, (2) the problem and its context, (3) the solu-

tion in terms of the essential elements, and . (4) the results and trade-offs [GHJV95].

More importantly, our reporting pattern provides a mechanism to easily plan and

compare other tests and evaluations of our infrastructure.

Case 1. Location: We modified a variable in SUSGroceries to determine a new

set of coordinates for the preferred location of the user. The scenario is described as

following:

Edel, our online grocery shopper, is interested in grocery stores within a

radius of 10 km around her preferred location. As a consequence there

is a task associated with her personal goal of grocery shopping, to select

grocery stores that offer online shopping within the specified radius. To

be closer to her son, Edel changed her residency to a building in the same

neighbourhood, which is 15 km from her previous home. A change in

Edel’s location should reflect on the change of the selection of available

stores within her specified radius.

Table 8.5 summarizes the results of this test. As an expected result, our MART

was able to support the representation of location as a piece of context information and

the modification caused by the user’s change in location. Through policies, changes

were propagated in the model to other parts of the MART instance, such as the

information about the location of the Actor that represents the user; the addition

of new elements Resource to represent new grocery stores within the new radius;

and the deletion of one element Resource that is no longer in compliance with the

execution policies since it is outside the radius.

125

Table 8.5: Accuracy Case 1: Situation-awareness based on a change of the user’s location

Description: A change in the location of the user creates a change in the user’s

situation

Context Change: Location (nLocat)

Context Source: Sensor (SUSGroceries)

Type of

experiment :

Situation-awareness

Related Policies: sameAs(location, Actor(User), Actor(Store))

Effect: flag(Node.class, Actor(Store), Context(location))

policy(Context(location), discardTasking)

policy(Context(location), executeTasking)

change(User.location,nLocat)

change(User.preferences.Store,(nLocat, settings.radius))

verify(Goal.executionPolicies)

Expected Result: 1. Change in the user’s location setting

2. Change in the user’s preferred stores adding others nearby on a

radius of 10 km around the new location

3. Include the new stores in the tasking

Test Results:

[SUSGroceries]
> [Change] [Edel:User:Actor] : Location[lat,long] -->

[48.453844, -123.401481]

> [Change] [Edel:User:Actor] :

Preferences.Store[lat,long,radius(mt)] --> [48.453844,

-123.401481, 1000]

> [Send] [Primor.Request.Access] : ucsa.goals.id(1)

> [Action] Executing tasking. Personal goal -->

[ucsa.goals.mainGoal["G grocery shopping"]]

> [Send] [Primor.Request.Adaptation] :

ucsa.goals.id(1), Sentence[ADD, Resource("R store5"),

Task("T match items")]

> [Send] [Primor.Request.Adaptation] :

ucsa.goals.id(1), Sentence[ADD, Resource("R store6"),

Task("T match items")]

126

> [Send] [Primor.Request.Adaptation] :

ucsa.goals.id(1), Sentence[DELETE, Resource("R store3")]

[PRIMOR] > [Get] [Request.Access.SUSGroceries] : [RETURN]

ucsa.goals.id(1)

> [Get] [Request.Adaptation.SUSGroceries] : [Execute]

ucsa.goals.id(1), Sentence[ADD, Resource("R store5"),

Task("T match items")]

> [Get] [Request.Adaptation.SUSGroceries] : [Execute]

ucsa.goals.id(1), Sentence[ADD, Resource("R store6"),

Task("T match items")]

> [Get] [Request.Adaptation.SUSGroceries] : [Execute]

ucsa.goals.id(1), Sentence[DELETE, Resource("R store3")]

> [Info] ucsa.goals.id(1) CHANGED : [ADD] 2 Nodes, 2

Arcs - [DELETE] 1 Nodes, 2 Arcs - [UPDATE] 0 Nodes, 0

Arcs

Case 2: Preference We modified a variable in the user’s personal context sphere

replacing the entry for Homogenized Milk (cf. Line 6 in Table B.2) with a new one

for Soy Milk instead. SUSGroceries employs user’s preferences to determine the

personalization of the user’s tasking, in this case affecting those tasks related to a

change in food type. The scenario is described as follows:

During Edel’s recent visit to the doctor, her physician determined she

should remove lactose-based elements from her diet and replace them

with a base of almond or soy instead. As a consequence, her health-

care information, which is connected to her her personal context sphere

by a third-party system, gets updated with this new dietary information.

SUSGroceries realizes there is a change in the user’s personal context.

Moreover, such a change is relevant to the fulfilment of the user’s goal

of grocery shopping. As a result, the change on Edel’s food preference

implies reviewing her grocery shopping list and an addition of a new task

to find lactose alternatives.

Table 8.6 summarizes the results of this test. As an expected result, the task-

ing of the user requires the addition of a new Task to filter the grocery items and

127

discard those no longer permitted. During our test the preference change raised the

affected model entities and policies to prepare for the change. Based on the policies

the system acted accordingly—adding a new Task to the MART instance to accom-

modate the new situation of the user. Although another solution would have been to

update the grocery list through external services and not though our MART—our ap-

proach supports adapting the user’s tasking by exploiting knowledge autonomously.

As mentioned before, so far our infrastructure does not support inference mecha-

nisms. Therefore, the Tasks "T filterItems" and "T findLactoseAlter" for our

scenario originally belonged to other instances of internet tasking that we stored in a

knowledge repository. Our MART is capable of introducing shared tasks in order to

compose new sequences.

Table 8.6: Accuracy Case 2: Situation-awareness based on a healthcare event related to
the user’s dietary restrictions

Description: An event in the user’s healthcare system creates a change in the

user’s situation related to her eating restrictions

Context Change: Food flag (foodType).

Context Source: Healthcare System Sensor (Simulation)

Type of

experiment :

Situation-awareness

Related Policies: relatedContext(flag.food, Goal("G grocery shopping"))

Effect: flag(Goal.class, flag.food.type, Context(foodType))

policy(Context(foodType), updateTasking)

change(Goal.sequence, nTask)

verify(Goal.executionPolicies)

Expected Result: 1. Add an execution policy to discard grocery items in compliance

with the user dietary restrictions

2. Add a new task

Test Results:

[SUSGroceries]
> [Send] [Primor.Request.Access] : ucsa.goals.id(1)

> [Send] [Primor.Request.Adaptation] :

ucsa.goals.id(1), Sentence[ADD, Task("T filterItems"),

Task("T getGroceryList")]

128

> [Send] [Primor.Request.Adaptation] :

ucsa.goals.id(1), Sentence[ADD,

Task("T findLactoseAlter"), Task("T filterItems")]

[PRIMOR] > [Get] [Request.Access.SUSGroceries] : [RETURN]

ucsa.goals.id(1)

> [Get] [Request.Adaptation.SUSGroceries] : [Execute]

ucsa.goals.id(1), Sentence[ADD, Task("T filterItems"),

Task("T getGroceryList")]

> [Get] [Request.Adaptation.SUSGroceries] : [Execute]

ucsa.goals.id(1), Sentence[ADD,

Task("T findLactoseAlter"), Task("T filterItems")]

> [Info] ucsa.goals.id(1) CHANGED : [ADD] 2 Nodes, 2

Arcs - [DELETE] 0 Nodes, 0 Arcs - [UPDATE] 0 Nodes, 0

Arcs

Case 3: Preference Our third case focused on a combination of two preferences :

payment method and specific grocery stores. The goal of this test is to analyse the

capability of our model to represent the user’s tasking when there are two changes.

Moreover, we want to analyse the capability of our models to represent the information

necessary to resolve conflicts driven by changes that contradict each other. Here is

our example scenario for Case 3:

Edel defined three grocery stores and one payment method in her personal

context sphere. She wants to add a fourth grocery store and update her

credit card information to set a new payment method for her groceries.

This change presents two situations that invalidate the achievement of

Edel’s grocery shopping goal. First, the new grocery store is not within

the specified 10 km radius of her location, and second the new credit card

information is not accepted by the three current stores.

Table 8.7 summarizes the results of this test. As an expected result, the model

instance was able to represent information to support conflict resolution through the

concept of policies. According to our Galapagos Model , policies are present in

the concepts of Goal and Task. During our experiment, policies are described with a

129

weight, which is a number that represents the priority level when an execution con-

flict arises. Policies also contain flags which represent alternative executions when the

Task can’t be executed. Although flags are customizable in the model instance, the

two shown in the test case are: Human in the loop (HIL), which implies request-

ing for human intervention to solve the conflict; Replacement (REP), which implies

requesting the inference engine to find an alternative Task as a replacement.

Table 8.7: Accuracy Case 3: Conflict resolution based on two context changes that
invalidate the achievement of the personal goal

Description: The user registers a new preferred grocery store and a new form of

payment.

Context Change: Store flag (nStore). Payment flag (nCreditCard).

Context Source: Personal Context Sphere (Local XML File)

Type of

experiment :

Conflict resolution

Related Policies: relatedContext(flag.Store, Task("Search Stores"))

relatedContext(flag.Payment, Task("Search Stores"))

relatedContext(flag.Payment, Task("Proceed Checkout"))

sameAs(location, Actor(User), Actor(Store))

sameAs(payment.type, Actor(Store),

Resource(nCreditCard.type)

policy(Goal.execution.priority,

Goal("G grocery shopping")) policy(Task.execution,

Task("Search Stores")) policy(Task.execution,

Task("Proceed Checkout"))

Effect: execute(Task.class, searchStores) ---> Conflict (1)

execute(Task.class, proceedCheckout) ---> Conflict (3)

execute(Goal.class, validateTaskSequence) ---> Invalid

Expected Result: 1. The task sequence validation must show it is not possible to

fulfil the goal

2. Display available information required to solve the conflict

Test Results:

[SUSGroceries]
> [Change] [Edel:User:Actor] :

Preferences.Resource.Payment --> nCreditCard

130

> [Change] [Edel:User:Actor] : Preferences.Store -->

nStore

> [Send] [Primor.Request.Access] : ucsa.goals.id(1)

> [Send] [Primor.Request.Assessment] :

ucsa.goals.id(1), execute(Validation.Type.Policy,

ucsa.goals.mainGoal["G grocery shopping"])

> [Get] [Primor.Error] : Message --> ‘‘The goal cannot

be achieved. Sequence execution incomplete (Thrown by

Task.proceedCheckout(paymentInvalidException)).

Possible Sequences (1). Conflicts reported (4).’’

[PRIMOR] > [Get] [Request.Access.SUSGroceries] : [RETURN]

ucsa.goals.id(1)

> [Get] [Request.Assessment.SUSGroceries] : [Execute]

ucsa.goals.id(1), Validate(Validation.Type.Policy,

Goal("G grocery shopping"))

> [Conflict] [policy] : ucsa.resources.store(1).payment

!=== user.payment.2 --> Flag.REP

> [Conflict] [policy] : ucsa.resources.store(2).payment

!=== user.payment.2 --> Flag.REP

> [Conflict] [policy] : ucsa.resources.store(3).payment

!=== user.payment.2 --> Flag.REP

> [Info] [Relevant context ignored by policy] :

>> User.Preferences.Store(4) by policy(sameAs

(location,Store,User))

> [Conflict] [sameAs] :

ucsa.resources.store(4).location !=== user.location -->

Flag.HIL

> [Send] [Error] : : Message --> T̈he goal cannot be

achieved. Sequence execution incomplete (Thrown by

Task.proceedCheckout(paymentInvalidException)).

Possible Sequences (1). Conflicts reported (4).¨

> [Info] ucsa.goals.id(1) CHANGED : [ADD] 0 Nodes, 0

Arcs - [DELETE] 0 Nodes, 0 Arcs - [UPDATE] 0 Nodes, 0

Arcs

131

8.2.3 Scalability and Performance Analysis

We recognise that MARTs for our online grocery shopping case scenario are likely to

be small (i.e., graphs around 100 nodes), which makes scalability and performance

no much of a concern. However, UCSAs can be extended to other applications with

bigger MARTs, such as smart cities. Intelligent traffic control is a case in the smart

cities domain, which is characterized for its highly dynamic socio-technical ecosystem

with automotive elements, pedestrians, environmental conditions, and unexpected

road situations. Elements of the intelligent traffic control system comprise their own

group of sensors, whether it is a car or a person, context information moves along

the traffic lines from one sensor to another, thus affecting the representation of the

current state. MARTs are proper representations for the realization of intelligent

traffic control CPHSs, resulting in graphs that might be in the order of thousands of

nodes and arcs. Given the possibility of a scenario with bigger MARTs, we analysed

the capability of Primor to support growing models and CRUD operations efficiently.

For the evaluation of the scalability and performance of Primor, we used a va-

riety of JUnit tests and adaptation requests sent from SUSGroceries to execute

CRUD operations. We analysed the results of Primor after their execution to assess

Primor’s capacity of understanding, translating and applying CRUD operations, as

well as to manage exceptions during the execution of the user’s tasking.

Analysis Process

Our analysis was conducted following four steps:

1. Creation of valid instances of our Galapagos Model: We created two

additional instances of our MART as depicted in Figures 8.4 and 8.5 as the

base graphs for our evaluation. As a result, we have three available instances of

the same MART as input data to increment the variability of our tests, and to

reduce the bias of our experiments. Each of these three instances represents a

valid sequence to achieve the same personal goal. The variability of the sequence

is determined by the preferences of the user.

2. Plan the growth of the MARTs instances: We created dummy elements

for Goal, Task, Resource and Actor, with the purpose of generating bigger

132

and more complex Galapagos Model types of graphs. We included a single

activity in each dummy task with a time delay to simulate the time a task will

take to be completed. We set the time to be a random number between 1 and 10,

following the three limits for response time proposed by Nielsen [Nie93]. Since

our scenario takes place on the internet, we take Nielsen’s approach assuming

that most web services are likely to follow this range.

3. Experimental plan: We defined fifteen types of unit tests described

with the following sentences: (1) Delete-Goal, (2) Add-Goal-Goal, (3) Add-

Task-Goal, (4) Add-Task-Task, (5) Add-Resource-Task, (6) Add-Actor-Goal,

(7) Add-Actor-Task, (8) Update-Goal, (9) Update-Task, (10) Update-Actor,

(11) Update-Resource, (12) Delete-Goal, (13) Delete-Task, (14) Delete-Actor,

and (15) Delete-Resource. For the ADD operation, we generated a dummy el-

ement with a numeric id for identification. For the DELETE and UPDATE

operations, we used existing elements.

4. Observing results: For each test, we focused on the expected result and the

time it took Primor to effect such change. In addition, we examined whether

the resulting operation was an expected operation.

It is worth noting that during this analysis, we did not evaluate the time the

infrastructure might spend in conflict resolution since it requires additional inference

capabilities not currently supported by Primor.

Tests and Results

In these tests, we evaluated the capability of Primor to handle CRUD operations.

Moreover, we evaluated the robustness of our operational framework in terms of the

specification and runtime semantics of the MART supported operations. These tests

were used in the refinement process of our operational framework and the function-

alities of Primor.

Scalability In this analysis, scalability refers to the capability of our framework to

support growing models and new operations. For this test, we added elements to the

model with the following distribution:

� Goal : 10%

133

� Task : 50%

� Resource : 20%

� Actor : 20%

� Dependency : 20%

Other concepts, such as Decomposition, Achievement and Responsibility are

consequence of the addition of their corresponding nodes, therefore the elements are

created in the same distribution following the rules of the model.

We ran the experiment 100 times using JUnit for each of our instances, for a total

of 300 iterations. We used the console standard output to analyse the resulting models

and to keep track of the changes as these occur. Figure 8.1 depicts a screenshot of our

unit test environment using JUnit, showing an example of our JUnit test to execute

a CRUD operation of adding a Task.1

Since we created random connections among the elements of the graph, every

execution of the test presented different graph topographies. Table 8.8 presents an

example of the model instance growth used in our test.

Table 8.8: Scalability Case: Model Instance A

Base (B) B+10 B+100 B+1000 B+5000

Nodes

Goals 1 1 8 87 445

Task 8 12 57 507 2507

Actors 1 2 12 200 1000

Resources 1 2 20 200 1000

Total: 11 17 97 994 4952

Arcs

Decomposition 8 12 57 507 2507

Achievement 1 1 7 63 200

Dependency 5 8 44 404 2004

Responsibility 5 5 5 5 5

Total: 19 26 113 979 4716

1The complete implementation of our tests are available through the project’s repository in
http://www.rigireserch.com/research/pit

http://www.rigireserch.com/research/pit

134

Figure 8.1: Eclipse environment for our JUnit implementation

The goal of our analysis was to assess the capability of the framework to support

the growth of the model with new elements and operations. As mentioned before,

our running infrastructure Primor employs the runtime semantics described in the

operational framework to effect such modification.

The following step in our test was to create a new type of Node called MiniTask

and run the experiments again. Table 8.9 presents a summary of the experiment for

the model instance with the new type of node. In comparison, both the infrastructure

and the model were able to support the creation of a new element in the model

and execute the CRUD operations. By comparing both tables, we conclude that the

distribution of the nodes was affected, since the new node had to share its distribution

with her parent node (i.e., Task).

135

Table 8.9: Scalability Case: Model Instance A with a new type of Node

Base (B) B+10 B+100 B+1000 B+5000

Nodes

Goals 1 1 8 87 445

MiniTask 8 8 39 407 2007

Task 8 8 30 303 1507

Actors 3 3 3 3 3

Resources 1 2 20 200 1000

Arcs

Decomposition 8 11 47 407 2007

Achievement 1 1 1 1 1

Dependency 5 8 44 404 2004

Responsibility 5 5 5 5 5

Although the test shows that the model is capable of growing in terms of adding

new elements at execution time (both existing and new concepts), the elements need

to be defined in the Galapagos Model. Growing the model from the concep-

tual point of view, implies modifications to the operational framework to define the

mapping between the notation and the artefact, as well as the definition of the run-

time semantics. Our infrastructure is designed in terms of a multilayer-definition of

Java classes and interfaces, which allows to work at different levels of abstraction of

the model. As a result, a model is capable of propagating changes to its layers of

abstraction with our design.

Performance With the previous analysis, we assessed that the model instance, and

the infrastructure support growing models. However, the main challenge for this anal-

ysis was to recreate the runtime environment and analyse how the CRUD operations

are affected by the size of the model and the complexity of the operations. To recre-

ate the runtime scenario, we created a function in SUSGroceries to schedule five

CRUD operation requests to Primor, scheduled every 0.01 ms. At the same time,

we run a separated process to request the growth of the model in Primor using the

environment for our scalability analysis.

136

Source Code 8.1 depicts simplified sections of the five CRUD operations we used

in the performance test: (1) add Task, (2) add Decomposition, (3) add Resource,

(4) delete Task, and (5) add Goal. We selected these five from our catalogue of

operations to be the ones with more time consuming activities, such as validations,

preconditions, or postconditions that might affect the performance of Primor.

Source Code 8.1: Simplified view of the source code for the five CRUD requests sent

from SUSGroceries for this experiment

1

2 public final void CRUD1(){

3 this.primor.sendRequest(

4 request.type.ADAPTATION(

5 manager.modelArtefact(modelId),

6 new Sentence(

7 GoalsModelOp.ADD_TASK ,

8 new Task("T_print_receipt", "Print receipt"),

9 new WildcardNode(Task.class , "T_proceed_checkout")

10)

11)

12);

13 }

14

15 public final void CRUD2(){

16 this.primor.sendRequest(

17 request.type.ADAPTATION(

18 manager.modelArtefact(modelId),

19 new Sentence(

20 GoalsModelOp.ADD_DECOMPOSITION ,

21 new WildcardNode(Task.class , "T_proceed_checkout"),

22 new WildcardNode(Task.class , "T_print_receipt")

23)

24)

25);

26 }

27

28 public final void CRUD3(){

29 this.primor.sendRequest(

30 request.type.ADAPTATION(

31 manager.modelArtefact(modelId),

32 new Sentence(

33 GoalsModelOp.ADD_RESOURCE ,

137

34 new Resource(

35 "R_printer_1",

36 "Printer",

37 new URL("http :// localhost/printer1"),

38 "printer",

39 false

40),

41 new WildcardNode(Task.class ,"T_print_receipt")

42)

43)

44);

45 }

46

47 public final void CRUD4(){

48 this.primor.sendRequest(

49 request.type.ADAPTATION(

50 manager.modelArtefact(modelId),

51 new Sentence(

52 GoalsModelOp.DELETE_TASK ,

53 new WildcardNode(Task.class , "T_print_receipt")

54)

55)

56);

57 }

58

59

60 public final void CRUD5(){

61 this.primor.sendRequest(

62 request.type.ADAPTATION(

63 manager.modelArtefact(modelId),

64 new Sentence(

65 GoalsModelOp.ADD_GOAL ,

66 new Goal(

67 "G_unvalidGoal",

68 "this should not be added"

69)

70)

71)

72);

73 }

138

We ran our scenario 100 times to collect a significant amount of samples, and then

we ran the scenario 900 more times in sets of 10. We decided to stop in 1,000 total of

executions since the executions were not presenting significant changes in the results.

Table 8.10 presents a summary of maximum time execution, average and standard

deviation for our 1,000 executions per model instances (i.e., A, B and C) for each one

of our operations. We used these results for the next comparisons combining CRUD

operations and model growth. Our three instances are different in their composition

(i.e., their tasks , but similar in their size (i.e., the number of nodes and arcs in the

graph). There is not much difference in the results of the test, therefore, we need to

test Primor by incrementing the complexity of the connection and the size of the

models. Figure 8.2

Table 8.10: Performance Case 1: CRUD operations time of execution on the model
instances A, B, C for the base size (no growth). Time measured in seconds

CRUD 1 CRUD 2 CRUD 3 CRUD 4 CRUD 5

Instance A

Max 21.00 19.00 23.00 38.00 13.00

Average 3.71 3.84 6.35 11.28 2.17

StdDev 0.004 0.004 0.005 0.006 0.003

Instance B

Max 65.00 26.00 47.00 95.00 31.00

Average 4.41 4.42 6.23 13.33 2.68

StdDev 0.007 0.005 0.006 0.012 0.004

Instance C

Max 32.00 23.00 23.00 36.00 12.00

Average 3.88 3.74 6.35 13.61 2.28

StdDev 0.004 0.003 0.004 0.007 0.002

For this experiment, we ran the test 1,000 times with the aid of JUnit. Every

test executed five CRUD operations and a growth request (B+10, B+100, B+1000,

B+5000). A total of 4,000 experiments were executed for every model instance (three

model instances). Table 8.11 presents a summary of the results of this experiment in

terms of the maximum values, average and standard deviation for the experiments on

139

Figure 8.2: Plot depicting the average time for the experiments

one base model instance (i.e., Instance A). As expected, the time it takes Primor to

execute CRUD operation becomes bigger as the graph grows in size and complexity.

Since the operations were the same in every test, we selected the five CRUD operations

with more validation rules according to our operational framework. Our underlying

assumption is that validations take longer, therefore the CRUD operation execution

time might be bigger. Figure 8.3 depicts the average time for the experiments showing

a linear behaviour.

Table 8.11: Performance Case 2: Maximum time, Average and Standard Deviation.
The base is Model Instance A

CRUD 1 CRUD 2 CRUD 3 CRUD 4 CRUD 5

Average

B+10 1.733 1.74 3.228 6.907 1.121

B+100 2.546 2.545 4.831 11.473 0.911

B+1,000 12.628 12.458 24.532 61.54 0.791

B+5000 60.509 60.243 119.629 303.562 0.934

140

CRUD 1 CRUD 2 CRUD 3 CRUD 4 CRUD 5

Standard Deviation

B+10 1.81 2.13 3.21 5.82 1.92

B+100 3.68 2.87 6.57 12.52 0.67

B+1,000 2.24 2.06 2.81 6.93 1.54

B+5,000 15.71 14.70 24.78 53.64 0.71

Max (seconds)

B+10 20 36 37 89 42

B+100 50 31 27 82 18

B+1,000 68 49 144 314 11

B+5,000 316 163 272 752 10

Figure 8.3: Plot depicting the average time for the experiments in growing MARTs

In terms of performance of the infrastructure, we assessed the time that our in-

frastructure takes to perform CRUD operations on MARTs. Our scenario with the

biggest graph was the one with a maximum of 5,000 nodes and approximately 3,000

141

arcs (B+5,000). CRUD 4, which is the operation to delete a Task, takes an average

of 304 seconds to be executed. However, with a standard distribution of 53.64, the

results of this test show that the data points are widely distributed.

We attribute the time of execution to various factors:

� Size: The size of the graph affects the time due to the process it takes to

find the place to insert a new element (node or arc). We use the Breadth-first

search (BFS) algorithm for traversing the graph and follow an Object-Oriented

paradigm implementation.

� Validation: Some of our model validations include the verification of the task

sequence in terms of the accomplishment of the specified goal. Assurance is

highly valued in the research area of Models at Runtime. In our contribution,

our operational framework, lays the structure for the definition of validation

rules applied to CRUD operations, and policies associated with the execution of

the personal tasking. However, the process of validation increases the processing

time of the CRUD operations. The alternative we implemented to reduce this

time was the use of separate agents to execute the validation as a mechanism to

support parallel processing. Given the main focus of this dissertation, we did not

implement extensive tests with our agents. However, our infrastructure design

is meant to be extended in other applications scenarios focused on assurance.

Given that CRUD 4 is an operation on a Task, by our Galapagos Model we can

foresee that removing a Task implies a set of validations and conditions that are more

extensive compared with the other elements in the MART.

In contrast, CRUD 5 in B+5,000, which is the operation to add a Goal presents a

standard deviation significantly smaller. The reason lies in the nature of a Goal in the

definition of the Galapagos Metamodel. Since a Goal usually is at the beginning

of the graph and their validations to add are significant but few, the operation is

executed efficiently.

It is worth noting that the standard distributions for B+10, B+100 and B+1,000

are relatively small. Based on the premise that our Galapagos Model represents

the tasking of the user, we can predict that a tasking of 1,000 nodes (approximately

500 might be Task) is a rare case scenario for a personal task. In this scenario, CRUD

4 took an average of 61 seconds. Based on the experiences during the course of this

research, a personal tasking of the user is probably modelled with a B+100 type of

graph size. In this case, CRUD 4 took an average of 11 seconds. That being said, we

142

conclude that our model, operational framework, and infrastructure, are capable to

support growing models and CRUD operations at execution time with a performance

close to the upper limits for response time proposed by Nielsen of 10 seconds [Nie93].

8.3 Chapter Summary

This chapter presented the evaluation of the contributions of this dissertation. First,

we presented a qualitative analysis to demonstrate the novelty of our MARTs by

comparing it with related approaches. As a result, we concluded that our models

represent the dynamic nature of CPHSs while making users the principal element

during the execution of their tasking. More importantly, our models as runtime

models provide capabilities to evolve at execution time, which contributes to the

growing socio-technical ecosystem of CPHSs.

Second, we presented an experimental analysis to demonstrate the applicability

of our MARTs and Primor. We conducted several experiments and scenarios to

analyse our contributions in terms of three quality attributes: accuracy, scalability,

and performance [Gor11]. The experimental results of this analysis provides evidence

that our MARTs are capable of representing changing user situations, dynamic tasking

and the achievement of a personal goal. Moreover, our operational framework and

infrastructure (i.e., Primor) support the growth of MARTs during execution time,

and are designed to be extended to other MARTs and application domains given its

modular and flexible design.

The next chapter of this dissertation summarizes the research and contributions

of this dissertation, presents the conclusions and discusses potential future work.

143

Figure 8.4: Simplified instance of the Galapagos Model for the online grocery
shopping example (Instance B)

144

Figure 8.5: Simplified instance of the Galapagos Model for the online grocery
shopping example (Instance C)

145

Chapter 9

Summary, Discussion and Future

Work

This chapter summarizes this dissertation by revisiting our research challenges, goals

and contributions. We also point our selected limitations in the realization of

runtime models and infrastructures for User-Centric Smart Cyber-Physical-Human

Applications (UCSAs), as well as in the application of Primor in other domains.

Finally, this chapter concludes this dissertation with a discussion of future work.

9.1 Dissertation Summary

Cyber-Physical-Human Systems (CPHSs) integrate cyber, physical, and human com-

ponents to work together towards the achievement of the objectives of the sys-

tem [SSZ+16]. CPHSs will become larger, more complex and users will be deeply

involved. Users constantly rely on their technology to fulfil personal goals, thus be-

coming active, relevant, and necessary components of the designed system.

However, humans are highly dynamic, their decisions might not always be pre-

dictable, and they expose themselves to unforeseeable situations that might impact

their interactions with their physical and cyber elements. With the human in the

loop, CPHSs need to understand and respond to the dynamic environment intro-

duced by users, while assisting them in the achievement of their personal goals. The

design of smart CPHSs requires a user-centric vision and runtime adaptation capa-

bilities. Models at Runtime (MARTs) are up-to-date representations of the system,

environment and users. MARTs enable CPHSs to represent changing situations and

146

context information while the system executes, empowering the CPHSs to reason and

adapt on runtime information.

The two motivations that drove this research concerns the need for (1) empower-

ing CPHSs with situation-awareness to understand users’ context and changing situ-

ations; and (2) runtime models and infrastructures to represent and manage CPHSs

dynamic requirements based on user-centric concerns and situations.

The research problem addressed in this dissertation was to investigate how to

design runtime models and infrastructures to support CPHSs’ user-centric require-

ments, such as (1) understanding users, their personal goals and changing situations,

(2) causally connecting the cyber, physical and human components involved in the

achievement of users’ personal goals, and (3) supporting runtime adaptation to re-

spond to relevant changes in the users’ situations.

9.1.1 Addressed Challenges

We classified our research challenges into two groups: situation-awareness and run-

time adaptation. The challenges that we addressed in this dissertation are summarized

as follows:

Situation-awareness

CH1. Specifications that explicitly connect users with personal goals and relevant

context.

CH2. Comprehensive representations of user’s tasks and sequences and measurable

outcomes.

CH3. Representations and reasoning techniques to infer emerging situations.

Runtime adaptation

CH4. Runtime models to make explicit the components of CPHSs and their interac-

tions.

CH5. Architectural and functional requirements of CPHSs to support runtime user-

centric awareness and adaptation.

CH6. Runtime adaptation techniques to support dynamic changes in the specification

of the CPHSs’ runtime models.

147

Figure 9.1: This dissertation’s contributions

9.1.2 Contributions

This section summarizes our contributions. Figure 9.1 depicts our contributions in re-

lation with each other through the architecture of User-Centric Smart Cyber-Physical-

Human Applications (UCSAs). Contribution C1 corresponds to our characterization

and architectural design of UCSAs, a set of cyber, physical and human components

that assist users in the fulfilment of personal goals. Contributions C2 and C3 consti-

tute our MART (i.e., Galapagos Metamodel and Galapagos Model), and their

operational framework, which defines UCSAs’ runtime representations and CRUD

operations. Finally, contribution C4 is our Processing Infrastructure for Models at

Runtime (PRIMOR), which is responsible for controlling the access to the MARTs

and managing their CRUD operations.

C1: User-Centric Smart Cyber-Physical-Human Applications

We focused on two major components of CPHSs: (1) humans as first class elements,

which define the system’s objectives to be the achievement of users’ personal goals

while exploiting personal context; and (2) the software component that is responsible

148

for the orchestration of the cyber, physical and human components of the system,

as well the adaptation requirements under changing conditions. With growing socio-

technical ecosystems and the need for smarter internet applications, we defined User-

Centric Smart Cyber-Physical-Human Applications (UCSAs) (cf. Definition 4.1) as

follows:

a UCSA as an orchestrated set of cyber, physical, and human components

(along with their interconnections) that assist users in the fulfilment of

their personal goals. A UCSA manages the smart interaction among the

components dynamically, understands and acts upon users’ changing sit-

uations, and has capabilities to evolve at runtime.

UCSAs’ are characterized by: (1) user awareness, which is the explicit identifica-

tion of the human dimension as a sphere of information containing users’ concerns

and personal data; (2) runtime modelling support, which is the capability of the UCSA

to store and manage runtime models; and (3) runtime adaptation support, which is

the capability to propagate changes across the models at runtime.

Our architectural design for UCSAs (cf. Figure 9.1) defines a self-adaptive context

driven software system based on the Dynamico reference model [VTM+13]. We de-

fined five components for UCSAs: (1) the tasking knowledge infrastructure responsible

for understanding and representing personal goals based on the analysis of users’ task

interactions; (2) the model processor, in charge of translating the information about

users’ tasking into runtime models; (3) the personalization engine exploits static and

dynamic personal context to tailor an appropriate task sequence; (4) the tasking effec-

tor that executes the tasks on behalf of the user while providing runtime adaptation

support and (5) the MARTs supporting infrastructure responsible for managing and

hosting the corresponding MARTs.

C2: MARTs for User-Centric Smart CPH Applications

A UCSA manages the smart interactions among the cyber, physical and human com-

ponents dynamically and acts upon users’ changing situations by evolving at runtime.

Models at Runtime (MARTs) are fundamental for UCSAs to represent and under-

stand users’ personal goals and changing situations at runtime.

We define two MARTs for User-Centric Smart Cyber-Physical-Human

Applications (UCSAs): (1) our Galapagos Metamodel, and (2) our Galapagos

Model.

149

First, our Galapagos Metamodel defines the concepts of UCSA by abstracting

the three dimensions of CPHSs as well as the smart interactions among them. Our

Galapagos Metamodel represents situation-awareness components through the

Situation entity, and time and space descriptors. More importantly, in our Gala-

pagos Metamodel, personal goals and situations are connected in two manners:

(1) situations influencing the achievement of personal goals, and (2) personal goals

associated with situations.

Second, our Galapagos Model is specified using G-iStar, our extension and

adaptation of the iStar framework to support dynamic personal goals and task in-

teractions. Our model supports the specification of evolving tasking goals, personal

interactions, and the relevant contexts. In particular, we extended the iStar atomic

notions of actor, goals, task and resources, to support the specification of tasking

goals, task sequences, and relationships among goals, tasks, actors, and resources.

Our Galapagos Model provides the representation of a personal goal that is ful-

filled through the execution of an ordered sequence of internet tasks. Moreover, our

model can represent the sequence as well as the dependency among tasks, and the

decomposition into subtasks. Tasks often require to access information in the cyber or

physical dimensions, represented in our model as information resources. Our Gala-

pagos Model provides a mechanism to represent the composition and execution of

UCSAs.

For the evaluation of this contribution, we performed a qualitative analysis to

demonstrate the novelty of our approach by comparing it with related approaches.

Throughout this dissertation, we demonstrated that our models satisfy MARTs char-

acteristics, therefore making them proper models at runtime. Therefore, our models:

(1) satisfy the representation of users’ task interactions that lead to the achievement

of a particular personal goal; (2) are available to software systems; (3) maintain a

connection with their reality (i.e., users’ personal tasking and goals); and (4) are

capable to evolve at execution time.

In addition, we instanced our Galapagos Model to evaluate its feasibility dur-

ing the implementation of our online grocery shopping scenario. During this part of

the evaluation, we analysed the accuracy of our MARTs, assessed through the capa-

bility of our models to support the representation of relevant changes in the context.

During our experiments, we modified two pieces of context information about the user:

location and preference. According to our results, our MART is capable to support

the representation of changing context based on the users’ personal situations.

150

C3: Operational Framework for Models At Runtime

As part of the runtime realization of MARTs, we specified runtime operations that

are supported by the model. We defined that such information must exist in the oper-

ational framework of the MART. Our framework defines model equivalences between

human-readable and machine-readable, available runtime operations and semantics,

to manage runtime operations on MARTs. Our operational framework comprises four

components: (1) a notation-artefact mapping between the MART human-readable

and machine-readable views; (2) a catalogue of operations that describes the consid-

erations and restrictions of every element in the model for runtime CRUD operations;

(3) the runtime semantics to execute the operations in the MARTs; and (4) the causal

links component, which is shared among the MARTs and describes causal connections

among them.

The mapping is the main element for the translation of the MARTs in the two

ways: human readable and machine readable. The catalogue of runtime operations de-

fines for every element what the limitations, restrictions, and other considerations are

when performing runtime operations. We defined three operations, however the cat-

alogue is flexible in that it can adapt to any supported runtime operation of MARTs.

The runtime semantics are specified in a programming language and are implemented

by the smart infrastructure to execute its operations (i.e., software commands) at run-

time. Finally, the operational framework describes the causal connections between

the MARTs through the causal links component, which is shared by all MARTs.

For the evaluation of this contribution, we performed an experimental analysis

focused on the runtime operations specified in the framework as supported by the

corresponding MART. During this part of the evaluation, we analysed the scalabil-

ity of our approach, assessed as the capability of our framework to support growing

models and new operations. During our experiments, we executed a diversity of

CRUD operations and analysed the capability of the framework to support the cor-

responding specifications based on the runtime semantics available for the MART.

Our framework showed to be sufficient to execute basic CRUD operations based on

the catalogue of operations. More importantly, its design facilitates the process of

including new operations and semantics for other application domains.

151

C4: Processing Infrastructure for Models at Runtime

(PRIMOR)

Our last contribution is our Processing Infrastructure for Models at Runtime

(PRIMOR) to manage operations on MARTs for UCSA. Primor is a component of

the UCSA’s models at runtime supporting infrastructure. More importantly, Primor

is a component-based system designed to be extensible to other domains.

Primor manages runtime operations for our two MARTs: the Galapagos

Metamodel and the Galapagos Model. Primor’s services are to provide read-

ing access from software components to the MARTs, execute model-related runtime

operations, and manage the propagation of changes among interconnected MARTs

and their realities. For these purposes, Primor receives two types of requests: an

Access Request and an Adaptation Request. An Access Request asks for reading capa-

bilities on MARTs, which is handled by the Access Manager component. An Adap-

tation Request asks the execution of changes on the MARTs, which is handled by the

Operation Manager component.

Handling the Adaptation Request consists of four activities executed by the Opera-

tion Manager : (1) operation identification, which analyses the Sentence in the Adap-

tation Request based on the operational framework of the MART; then (2) causal

link analysis, which prepares the internal and external propagation of changes by

analysing the causal links of the MART and creating new sentences for the addi-

tional operations; (3) operations plan, execution and assurance, which composes an

execution plan, coordinates its execution, and controls runtime exceptions by taking

corrective or informative actions; and (4) MARTs’ deployment, which deploys the

new versions of the MARTs in the repository, and guarantees both views (notation

and software artefact) remain truthful to each other.

For the evaluation of this contribution, we performed an experimental analysis

focused performance of our infrastructure, assessed as the time it takes our infras-

tructure to perform CRUD operations on MARTs. More importantly, we used the

capabilities of our operational framework to produce growing instances of our Gala-

pagos Model to analyse how the size of the model would affect the performance

of Primor when executing CRUD operations. In addition, we defined five CRUD

operations that would represent different expected behaviours in our experiments to

increase the degree of variability. The results of our experiments demonstrated the

152

practical feasibility of Primor to manage CRUD operations and growing MARTs

with an acceptable performance with some opportunities for improvement.

9.2 Limitations

This section discusses the aspects that may constitute limitations on the applications

of our MARTs and Primor to an actual setting in the short-term. Most of these

limitations are in the concept of the socio-technological ecosystem described in this

dissertation. Nevertheless, we present these limitations as opportunities for future

research and collaborative work.

Availability of Context Sources to “Get to Know” the User

To represent user’s personal goals, tasking and changing situations effectively, UCSAs

need to access relevant information about users to understand them. The knowledge

tasking infrastructure component of the UCSA’s architectural design is responsible

for this specific task. Unfortunately, the current configuration of CPHSs limits the

operation of this component.

There are several aspects regarding the availability of the context sources that

need to be solved to realize the full potential UCSAs. Ordinarily, current systems

do not expose themselves to third-party applications to collect information they have

already gathered about the user. The reasons behind this behaviour are mostly

commercial. Most software and service companies are competing to get to know the

user and provide a better-personalized experience through their applications, thus,

marketing themselves as providers of personalized. Over time, users find themselves

invested in applications where they have already provided much information, thus

making it very difficult for them to move to a new and probably better service. The

decision lies between staying with the service that already knows them, or starting

all over again with a risk of future disappointment if the service does not meet users’

expectations.

The implementation of UCSAs removes that concern from the users and software

providers, given that the personal information travels with the user. UCSAs can focus

on mechanisms and innovative ways to exploit personal context, understand the user,

and enhance the experience of the user by connecting services and applications inside

and outside their personal sphere. More importantly, our current socio-technical

153

ecosystem is quickly moving towards a technological platform where applications need

to cooperate to meet users services demands. Application who have already made it

through the integration of services and applications have succeeded to gain popularity

among users.

Even when applications decide to cooperate, there is the issue of interoperability.

To be able to share information, the transmission mechanisms and the format of the

data needs to be compatible with the systems. Our UCSAs propose the use of MARTs,

which are representations at different levels of abstraction, one of which might be the

data specification about the format and the transmission. MARTs can become a

language that systems speak, since these dynamic models exist at execution time,

are available to software systems, and can evolve at runtime. With the limitation

of available context information to understand the user, this dissertation focused on

the implementation of MARTs to prepare CPHSs for the moment in time where

cooperating and sharing will no longer be an issue.

Growing Size of Context Data Results in Complex MARTs

Representing information at execution time is effective using MARTs. However, the

rapid growth of context information implies that the MARTs also increase their size

and complexity. UCSAs rely on MARTs to represent the evolving task of users

to achieve a personal goal. The information that represents all the tasks, policies,

resources, sequences, and personal preferences of the user, need to be defined inside

the instance of the model. Thus, the MART represents all the necessary information

for the UCSA to execute the tasking on behalf of the user. Although MARTs can

support the representation, the growth of the context data incurs in limitation for the

techniques, methods and time required to execute important tasks of the MARTs,

such as discovering information, verification and validation of the task sequence, and

assurance of the adaptations requirements. Even ordinary tasks like searching for an

element in the model or making any modification to the model’s structure becomes

an issue when the MART is big and complex.

Privacy and Confidentiality

The user-centric vision of UCSAs relies on the capability to understand users and

exploit the personal context, specifically their internet interactions and preferences.

A major concern from the perspective of users is privacy and confidentiality when it

154

comes to systems trying to know users. The core principle of UCSAs is that users own

and control their personal information through the implementation of the Personal

Context Sphere (PCS) proposed by Villegas [Vil13]. Moreover, since UCSAs live in

the domain of the user, they work towards the assistance of helping users achieve

personal goals by using the information that users have authorized UCSAs to use.

The implementation of UCSAs in the short-term is possible with single repositories

of personal context in compliance with the PCS structure. Agents that act as PCS

collectors and managers can be created on the users’ cloud profile the same way

internet identities, such as email currently work.

9.3 Future Work

This dissertation concludes with a presentation of selected future work opportunities

emerging from our research.

Tasking Knowledge Global Repository

UCSAs are applications that assist users in the achievement of personal goals. For

many cases, personal goals and tasks are common among users. We are interested in

creating a shared repository in the cloud for personal goals and tasks where UCSAs

can access a knowledge base to compose task sequences. With the implementation of

MARTs, goals and tasks become pieces of information that can be understood, shared

and reused from different UCSAs. This repository might be useful for discovering new

sequences of tasks that achieve a personal goal, alternative tasks to improve a current

sequence or publish updated services that might impact users’ situations.

Since the personal information, what makes the execution of the UCSA unique,

resides on the side of the user, there is no risk of sharing personal information in this

repository. In a way, this repository would improve users’ achievements of personal

goals by having access to the knowledge of how other users with similar interests

achieve the same goal. Just like humans do in their daily lives.

Personal Context Sphere Agents in the Cloud

We have mentioned before that the current socio-technical ecosystem is a platform

where personal information is constantly exchanged. We are interested in the devel-

opment of Personal Context Sphere Agents (PCSAs), which are smart virtual sensors

155

that live in the cloud and assist users in the composition of their personal context

sphere (PCS) by collecting and representing personal context information. These

agents record users’ preference, interactions and relevant context, and store them in

MARTs.

Since PCSAs are smart virtual sensors some research challenges include the inves-

tigation of non-intrusive mechanisms to collect information, privacy and security as-

surances, and communication interfaces to connect PCSAs with services, applications,

and UCSAs. A UCSA communicates with a user’s PCSA to understand her prefer-

ences and exploit personal information to improve the personalization of her tasking.

Situation-Awareness and Internet Personalities

Situation-awareness is the understanding of users’ changing situations based on the

analysis of the personal context. Personal goals can be associated with the various

personalities of users while interacting with their UCSAs. In other words, users’

situations depend on users’ personalities while achieving personal goals. For example,

the achievement of the grocery shopping goal is different for the same user when

executing the task as a family member or as an employee in charge of an office

social event. UCSAs are viable implementations for various domains where users’

personal goals are the objective of the system, such as e-commerce, healthcare or

transportation.

Since UCSAs assist users in the achievement of their goals, adding capabilities

to the personalization engine component to differentiate the personalities executing

the task might enhance the degree of task personalization. More importantly, it can

create personal context sub-spheres associated with the users’ personalities that can

be updated independently.

PRIMOR for Smart Systems Deployment

We designed and implemented Primor to process CRUD operations in MARTs in-

dependently of the application domain. Primor can be implemented in software

engineering approaches using MARTs, such as systems’ deployment, software devel-

opment environments, or technical training. For example, the realization of smart

applications deployment might use MARTs to define high-level configurations of the

target deployment environment and procedures. Current deployment design-time

specifications use UML, informal diagrams, or textual models. However, self-adaptive

156

systems, the dynamic nature of the cloud and unexpected changes in the network,

modify the execution environment dynamically. As a result, traditional deployment

specifications become obsolete. With Primor, changes in the deployment environ-

ment, specified as high-level MARTs, and through their causal connection, are prop-

agated among the levels of abstraction, thus adapting the MARTs at execution time

maintaining the information updated. Similarly, changes in the deployment specified

in the MARTs, which will be taken by smart infrastructures to deploy a system.

Software Engineering in CPHSs and Models at Runtime

As discussed by Lee [LS15], the CPS term differentiates from others in the sense that,

unlike others, CPS is foundational and does not depend on an implementation ap-

proach, nor to a particular application. CPHSs adds the human component and the

uncertainty that users’ changing situations introduce to the system. CPHSs’ research

focuses on the intellectual challenges that arise when the cyber, physical and human

worlds coexist. As described in Lee’s definition, the development of CPSs (there-

fore CPHSs) requires an understanding of the interaction of the elements within the

system. No doubt users will continue to demand integrated services, personalized

features, and rely on their technology to achieve personal goals. Consequently, un-

derstanding and designing for uncertainty continue to be a milestone for software

engineers that will remain relevant for the upcoming waves of technological changes.

Traditional software development takes into account all known information about

the future system and its environments, such as components, interactions, data, users

(and other stakeholders) and processes. However, unforeseeable changes in the users

and the environment that affect the CPHSs applications described in this dissertation

demonstrates a need for new paradigms of software engineering. Modern software

development methods might have to consider execution time and all the uncertainty

that will appear in the future production environment, to enable systems to remain

available and relevant even when unexpected changes occur.

As uncertainty is unforeseeable, and predicting it opposes its reason to be, prepar-

ing software applications to deal with runtime uncertainty needs to enable the system

with mechanisms to be aware, represent, understand, and act upon unknown situa-

tions that might affect its execution. In other words, systems should be aware and

capable to not ignore unknown events and information before assessing them as ir-

relevant.

157

Glossary

Causal Links Connections between two MARTs that will be affected in the case

where one of them changes. Causal links are used by the MART management

infrastructure to propagate changes.

Cyber-Physical-Human System (CPHS) The integration, mostly focused on

the interactions, of cyber, physical and humans elements that work together

towards the achievement of the objectives of the system [SSZ+16, LS15].

Galapagos Model Our MART to represent users’ evolving tasking goals, personal

interactions, and the relevant contexts. It is specified using the G-iStar nota-

tion, our i* extension for modelling UCSAs. [CVM14c].

Galapagos Metamodel Our MART that defines the concepts of UCSAs by ab-

stracting the three dimensions of CPHSs as well as the smart interactions among

them [CVM14c].

Models at Runtime (MARTs) Up-to-date representations about the system

and its environment that can be manipulated and adapted at execution

time [BBF09]. Also found in literature as Models@run.time, M@RT, Execu-

tion models, or Models at execution time.

Operational Framework Our framework defines model equivalences between

human-readable and machine-readable, available runtime operations and se-

mantics, to manage runtime operations on MARTs.

Personal Tasking An ordered sequence of tasks that assist users in the fulfilment

of a personal goal. During personal tasking, users’ context sources are exploited

at runtime to understand changing situations and improve personalized func-

tionalities [CVM13, CVM14b, CVM14c].

158

Processing Infrastructure for Models at Runtime (PRIMOR) Our infras-

tructure responsible for managing CRUD operations on MARTs. It is designed

as a component-based system, implemented in Java, and designed to be

extensible to other domains..

Runtime adaptation System’s capability of performing adaptations to regulate

their requirements satisfaction under changing conditions.

Situation-aware self-adaptive system A software system able to understand its

environment to adapt itself with the goal of addressing changing requirements

and context situations [Vil13].

Smart internet A new generation of the internet where web entities, represented

by online services and content, are discovered, aggregated and delivered dy-

namically, automatically, and interactively according to users’ needs and situa-

tions [NCCY10a].

User-Centric Smart Cyber-Physical-Human Application An orchestrated

set of cyber, physical, and human components (along with their intercon-

nections) that assist users in the fulfilment of their personal goals. A UCSA

manages the smart interaction among the components dynamically, under-

stands and acts upon users’ changing situations, and has system capabilities to

evolve at runtime.

User-centric vision Services and contents are dynamically and automatically com-

posed of multiple sources to fit users’ needs [NCCY10c].

159

Acronyms

CPHS Cyber-Physical-Human System.

MART Model at Runtime.

PRIMOR Processing Infrastructure for Models at Runtime.

UCSA User-Centric Smart Cyber-Physical-Human Application.

160

References1

[ABCF12] U. Aßmann, N. Bencomo, B. H. C. Cheng, and R. B. France. Mod-

els@run.time (Dagstuhl Seminar 11481). Dagstuhl Reports, 1(11):91–

123, 2012. 27

[ADB+99] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and

P. Steggles. Towards A Better Understanding of Context and Context-

Awareness. In Proceedings 1st International Symposium on Handheld

and Ubiquitous Computing (HUC 1999), pages 304–307. Springer, 1999.

2, 48

[AGJ+14] U. Aßmann, S. Götz, J.-M. Jézéquel, B. Morin, and M. Trapp. A refer-

ence architecture and roadmap for Models@run.time systems. In Mod-

els@run.time, pages 1–18. Springer, 2014. x, 30, 31, 33, 36

[AP12] G. H. Alférez and V. Pelechano. Dynamic Evolution of Context-

Aware Systems with Models at Runtime. In Proceedings 15th Interna-

tional Conference on Model Driven Engineering Languages and Systems

(MODELS 2012), volume 7590 of Lecture Notes in Computer Science,

pages 70–86. Springer, 2012. 27

[BB13] N. Bencomo and A. Belaggoun. Supporting Decision-Making for Self-

Adaptive Systems: From Goal Models to Dynamic Decision Networks.

In Requirements Engineering: Foundation for Software Quality, volume

7830 of Lecture Notes in Computer Science, pages 221–236. Springer,

2013. 3

[BBF09] G. Blair, N. Bencomo, and R. B. France. Models@Run.Time. IEEE

Computer, 42(10):22–27, 2009. 27, 157

1The numbers at the end of each bibliography item are the backward references to the pages
where it was cited.

161

[BBG+13] N. Bencomo, A. Bennaceur, P. Grace, G. Blair, and V. Issarny. The

Role of Models@Run.Time in Supporting On-The-Fly Interoperability.

Computing, 95(3):167–190, 2013. 3

[BBI13] N. Bencomo, A. Belaggoun, and V. Issarny. Dynamic Decision Networks

for Decision-making in Self-adaptive Systems: A Case Study. In Pro-

ceedings of the 8th ACM/IEEE International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS 2013),

pages 113–122. IEEE, 2013. 3, 28

[BFT+14] A. Bennaceur, R. France, G. Tamburrelli, T. Vogel, P. J. Mosterman,

W. Cazzola, F. M. Costa, A. Pierantonio, M. Tichy, and M. Akşit. Mech-

anisms for leveraging models at runtime in self-adaptive software. In

Models@run.time, pages 19–46. Springer, 2014. x, xi, 31, 32, 35, 63, 64,

72

[BGM09] V. Bryl, P. Giorgini, and J. Mylopoulos. Designing Socio-Technical Sys-

tems: From Stakeholder Goals To Social Networks. Requirements Engi-

neering, 14(1):47–70, 2009. 44

[BM99] G. Bedny and D. Meister. Theory of Activity and Situation Awareness.

International Journal of Cognitive Ergonomics, 3(1):63–72, 1999. x, 24,

26

[BM03] D. Bolchini and J. Mylopoulos. From Task-Oriented To Goal-Oriented

Web Requirements Analysis. In Proceedings 4th IEEE International

Conference on Web Information Systems Engineering, pages 166–175.

IEEE, 2003. 38, 46, 71, 114, 116, 117

[Bré07] P. Brézillon. Context Modeling: Task Model and Practice Model. In

Modeling and Using Context, volume 4635 of Lecture Notes in Computer

Science, pages 122–135. Springer, 2007. 38, 46, 116, 117

[BTJ+13] A. Bergen, N. Taherimakhsousi, P. Jain, L. Castañeda, and H. A. Müller.

Dynamic Context Extraction in Personal Communication Applications.

In Proceedings Conference of The Center for Advanced Studies on Col-

laborative Research (CASCON 2013), pages 261–273. ACM, 2013. 12

162

[Car88] S. Carberry. Modeling The User’s Plans and Goals. Computing Linguis-

tic, 14(3):23–37, 1988. x, 38, 41, 42, 114

[Caz14] W. Cazzola. Evolution as Reflections on the Design. In Mod-

els@run.time, pages 259–278. Springer, 2014. 30

[CDGM10] A. K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Modeling and

Reasoning About Service-Oriented Applications Via Goals and Commit-

ments. In Proceedings 22nd International Conference on Advanced In-

formation Systems Engineering (CAISE 2010), pages 113–128. Springer,

2010. 38, 44, 114

[CE11] L. Coetzee and J. Eksteen. The Internet of Things - Promise for The

Future? An Introduction. In IST-Africa Conference Proceedings, pages

1–9. IEEE, 2011. 3, 57

[CEG+14] B. H. Cheng, K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. A.

Müller, P. Pelliccione, A. Perini, N. A. Qureshi, B. Rumpe, D. Schneider,

F. Trollmann, and N. M. Villegas. Using Models at Runtime to Address

Assurance for Self-Adaptive Systems. In Models@run.time, volume 8378

of Lecture Notes in Computer Science, pages 101–136. Springer, 2014.

30

[CLG+09] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Anders-

son, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo,

S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Kar-

sai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,

H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and

J. Whittle. Software Engineering for Self-Adaptive Systems: A Research

Roadmap. In Software Engineering for Self-Adaptive Systems, volume

5525 of Lecture Notes in Computer Science, pages 1–26. Springer, 2009.

2, 44, 59

[CLPS11] L. Console, I. Lombardi, C. Picardi, and R. Simeoni. Toward A Social

Web of Intelligent Things. AI Communications, 24(3):265–279, 2011. 3,

57

163

[CLWG04] J. Cui, J. Liu, Y. Wu, and N. Gu. An Ontology Modeling Method in

Semantic Composition of Web Services. In Proceedings IEEE Interna-

tional Conference on E-Commerce Technology for Dynamic E-Business

(CEC-EAST 2004), pages 270–273. IEEE, 2004. 38, 47, 116

[Cre13] J. W. Creswell. Research Design: Qualitative, Quantitative, and Mixed

Methods Approaches. SAGE Publications, 2013. 6

[CVM13] L. Castañeda, N. M. Villegas, and H. A. Müller. Towards Personalized

Web-Tasking: Task Simplification Challenges. In Proceedings 1st Work-

shop on Personalized Web-Tasking (PWT 2013) At Ninth IEEE World

Congress on Services (SERVICES 2013), pages 147–153, 2013. 8, 12,

22, 45, 52, 66, 157

[CVM14a] L. Castañeda, N. M. Villegas, and H. A. Müller. Exploiting Social Con-

text in Personalized Web-Tasking Applications. In Proceedings 2014

Conference of The Center for Advanced Studies on Collaborative Re-

search (CASCON 2014), pages 134–147. ACM, 2014. xi, 8, 12, 76

[CVM14b] L. Castañeda, N. M. Villegas, and H. A. Müller. Personalized Web-

Tasking Applications: An Online Grocery Shopping Prototype. In Pro-

ceedings 1st Workshop on Personalized Web-Tasking (PWT 2014) At

Tenth IEEE World Congress on Services (SERVICES 2014), pages 24–

29, 2014. 8, 12, 52, 157

[CVM14c] L. Castañeda, N. M. Villegas, and H. A. Müller. Self-Adaptive

Applications: on The Development of Personalized Web-Tasking Sys-

tems. In Proceedings ACM/IEEE 9th International Symposium on Soft-

ware Engineering for Adaptive and Self-Managing Systems (SEAMS

2014), pages 49–54, 2014. xi, 12, 22, 52, 59, 71, 74, 157

[DFH16] F. Dalpiaz, X. Franch, and J. Horkoff. iStar 2.0 Language Guide. arXiv

preprint arXiv:1605.07767, 2016. 77

[Dix08] A. Dix. Tasks = data + action + context: Automated task assis-

tance through data-oriented analysis. In Proceedings 2nd Conference

on Human-Centered Software Engineering and 7th International Work-

shop on Task Models and Diagrams, (HCSE-TAMODIA 2008), pages

1–13. Springer, 2008. 39, 45, 71, 117, 119

164

[End95] M. R. Endsley. Toward A Theory of Situation Awareness in Dynamic

Systems: Situation Awareness. Human Factors, 37(1):32–64, 1995. x, 2,

24, 25

[ESSD08] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting Em-

pirical Methods for Software Engineering Research. In Guide To Ad-

vanced Empirical Software Engineering, pages 285–311. Springer, 2008.

6

[GBP+14] H. Giese, N. Bencomo, L. Pasquale, A. J. Ramirez, P. Inverardi,

S. Wätzoldt, and S. Clarke. Living with uncertainty in the age of runtime

models. In Models@run.time, pages 47–100. Springer, 2014. 30

[GBS08] S. Goschnick, S. Balbo, and L. Sonenberg. From Task To Agent-

Oriented Meta-Models, and Back Again. In Proceedings 2nd Conference

on Human-Centered Software Engineering and 7th International Work-

shop on Task Models and Diagrams (HCSE-TAMODIA 2008), pages

41–57. Springer, 2008. 39, 114

[GFF+07] M. Giersich, P. Forbrig, G. Fuchs, T. Kirste, D. Reichart, and H. Schu-

mann. Towards An Integrated Approach for Task Modeling and Human

Behavior Recognition. In Proceedings 12th International Conference on

Human-Computer Interaction: Interaction, Design and Usability (HCI

2007), pages 1109–1118. Springer, 2007. 39, 45, 116, 117

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-oriented Software. Addison-Wesley, 1995.

124

[GKV+07] M. Golemati, A. Katifori, C. Vassilakis, G. Lepouras, and C. Halatsis.

Creating An Ontology for The User Profile: Method and Applications.

In Proceedings 1st International Conference on Research Challenges in

Information Science, (RCIS 2007), pages 407–412, 2007. 49

[Gor11] I. Gorton. Software Quality Attributes, pages 23–38. Springer, Berlin,

Heidelberg, 2011. 113, 120, 142

[GSB+08] H. Goldsby, P. Sawyer, N. Bencomo, B. Cheng, and D. Hughes. Goal-

Based Modeling of Dynamically Adaptive System Requirements. In 15th

165

IEEE Annual International Conference and Workshop on Engineering

of Computer Based Systems (ECBS 2008), pages 36–45. IEEE, 2008. 27

[JBCM13] P. Jain, A. Bergen, L. Castañeda, and H. A. Müller. PALTask chat:

A personalized automated context aware web resources listing tool. In

Proceedings 1st Workshop on Personalized Web-Tasking (PWT 2013)

At Ninth IEEE World Congress on Services (SERVICES 2013), pages

154–157. IEEE, 2013. 12

[JCP08] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting Experiments in

Software Engineering. In Guide To Advanced Empirical Software Engi-

neering, pages 201–228. Springer, 2008. 6

[JHG13] E. Y. Jennifer Horkoff and G. Grau. IStar Guide. Online:

http://istar.rwth-aachen.de/tiki-index.php?page=istarquickguide. Oct.

2013, 2013. 77

[JVM+02] B. John, A. Vera, M. Matessa, M. Freed, and R. Remington. Automating

CPM-GOMS. In Proceedings SIGCHI Conference on Human Factors in

Computing Systems, (CHI 2002), pages 147–154, 2002. 39, 48, 117

[KC07] B. Kitchenham and S. Charters. Guidelines for Performing Systematic

Literature Reviews in Software Engineering. Technical Report EBSE

2007-001, Keele University and Durham University Joint Report, 2007.

6

[KFM+13] K. Kenda, C. Fortuna, A. Moraru, D. Mladenić, B. Fortuna, and M. Gro-

belnik. Mashups for The Web of Things. In B. Endres-Niggemeyer,

editor, Semantic Mashups, pages 145–169. Springer, 2013. 3, 57

[KK05] T. Klug and J. Kangasharju. Executable Task Models. In Proceedings

4th International Workshop on Task Models and Diagrams (TAMODIA

2005), pages 119–122. ACM, 2005. 39, 46, 116, 117

[KKJ13] H. Kim, S. I. Kim, and W. Jung. Ontology Modelling for REST Open

Apis and Web Service Mash-Up Method. In Proceedings 2013 Inter-

national Conference on Information Networking (ICOIN 2013), pages

523–528. IEEE Computer Society, 2013. 39, 47

166

[KM06] S. K. Khaitan and J. D. McCalley. Design Techniques and Applications

of Cyberphysical Systems: A Survey. IEEE Systems Journal, 9(2):350–

365, 2015-06. 18

[KPBB+09] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and

S. Linkman. Systematic Literature Reviews in Software Engineering -

A Systematic Literature Review. Information and Software Technology,

51(1):7–15, 2009. 13, 38, 50

[KVD+08] A. Katifori, C. Vassilakis, I. Daradimos, G. Lepouras, Y. Ioannidis,

A. Dix, A. Poggi, and T. Catarci. Personal Ontology Creation and

Visualization for A Personal Interaction Management System. In Pro-

ceedings of Personal Information Management Workshop, (CHI 2008),

2008. 49

[Lee10] E. A. Lee. CPS Foundations. In Proceedings of the 47th Design Au-

tomation Conference (DAC 2010, pages 737–742, New York, NY, USA,

2010. ACM. 1, 17, 18

[LGM+13] R. Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,

B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel, D. Weyns, L. Baresi,

B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar,

G. Engels, K. Geihs, K. M. GÖschka, A. Gorla, V. Grassi, P. Inverardi,

G. Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii,

R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. PezzÈ, C. Prehofer,

W. SchÄfer, R. Schlichting, D. B. Smith, J. A. P. Sousa, L. Tahvil-

dari, K. Wong, and J. Wuttke. Software Engineering for Self-Adaptive

Systems: A Second Research Roadmap. In Software Engineering for

Self-Adaptive Systems II, volume 7475 of Lecture Notes in Computer

Science, pages 1–32. Springer, 2013. 2, 59

[LLJM11] S. Liaskos, M. Litoiu, M. D. Jungblut, and J. Mylopoulos. Goal-Based

Behavioral Customization of Information Systems. In Proceedings 23rd

International Conference on Advanced Information Systems Engineering

(CAISE 2011), pages 77–92. Springer, 2011. x, 39, 44, 50, 71, 115, 117

[LMSM10] S. Liaskos, S. A. Mcilraith, S. Sohrabi, and J. Mylopoulos. Integrating

Preferences Into Goal Models for Requirements Engineering. In Pro-

167

ceedings 18th IEEE International, Requirements Engineering Conference

(RE 2010), pages 135–144, 2010. 39, 44, 50, 71, 115, 117

[LMSM11] S. Liaskos, S. A. Mcilraith, S. Sohrabi, and J. Mylopoulos. Representing

and Reasoning About Preferences in Requirements Engineering. Re-

quirements Engineering, 16(3):227–249, 2011. 71

[LS15] E. A. Lee and S. A. Seshia. Introduction to Embedded Systems, A Cyber-

Physical Systems Approach, Second Edition. LeeSeshia.org, 2015. 1, 17,

156, 157

[MBJ+09] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg. Mod-

els@Run.Time To Support Dynamic Adaptation. IEEE Computer,

42(10):44–51, 2009. 28

[MCY99] J. Mylopoulos, L. Chung, and E. Yu. From Object-Oriented To

Goal-Oriented Requirements Analysis. Communications of the ACM,

42(1):31–37, 1999. 39, 43, 44, 50, 71, 115, 117

[MFKC+17] J. Muñoz-Fernández, A. Knauss, L. Castañeda, M. Derakhshanmanesh,

R. Heinrich, M. Becker, and N. Taherimakhsousi. Capturing Ambigu-

ity in Artifacts to Support Requirements Engineering for Self-Adaptive

Systems. In RESACS: 3rd International Workshop on Requirements

Engineering for Self-Adaptive & Cyber Physical System, 2017. 12

[MKS09] H. A. Müller, H. M. Kienle, and U. Stege. Autonomic Computing:

Now You See It, Now You Don’t. Design and Evolution of Autonomic

Software Systems. In Lecture Notes in Computer Science, volume 5413,

pages 32–54. Springer, 2009. 2, 59

[MMS15] I. Malavolta, H. Muccini, and M. Sharaf. A Preliminary Study on Ar-

chitecting Cyber-Physical Systems. In Proceedings of the 2015 European

Conference on Software Architecture Workshops (ECSAW 2015), pages

20:1–20:6, New York, NY, USA, 2015. ACM. 18

[MNS+13] H. A. Müller, J. Ng, E. Stroulia, K. Kontogiannis, N. M. Villegas, and

D. Lau. Personalized Web-Tasking Workshop Organizers’ Message. In

Proceedings 1st Workshop on Personalized Web-Tasking (PWT 2013) at

168

Ninth IEEE World Congress on Services (SERVICES 2013), page xvii,

2013. 22

[MSW16] H. Muccini, M. Sharaf, and D. Weyns. Self-adaptation for Cyber-

physical Systems: A Systematic Literature Review. In Proceedings of

the 11th International Symposium on Software Engineering for Adap-

tive and Self-Managing Systems, SEAMS 2016, pages 75–81, New York,

NY, USA, 2016. ACM. 3

[MV13] H. Müller and N. Villegas. Runtime Evolution of Highly Dynamic Soft-

ware. In Evolving Software Systems, pages 229–264. Springer, 2013. 3,

27, 30, 58

[NCCY10a] J. W. Ng, M. Chignell, J. R. Cordy, and Y. Yesha. Overview of The

Smart Internet. In The Smart Internet, pages 49–56. Springer, 2010. 20,

158

[NCCY10b] J. W. Ng, M. Chignell, J. R. Cordy, and Y. Yesha. Smart Interactions.

In The Smart Internet, pages 59–64. Springer, 2010. 17, 20, 22

[NCCY10c] J. W. Ng, M. Chignell, J. R. Cordy, and Y. Yesha. The Smart Internet.

Springer, 2010. 20, 158

[NFG+06] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,

T. Longstaff, R. Kazman, M. Klein, D. Schmidtd, K. Sulli-

van, and K. Wallnau. Ultra-Large-Scale Systems: The Soft-

ware Challenge of The Future. Carnegie Mellon University, 2006.

http://www..Sei.Cmu.Edu/Uls/. Published: June 2006. (Accessed: May

2013). 1

[Ng10] J. W. Ng. The Personal Web: Smart Internet for Me. In Proceedings

2010 Conference of The Center for Advanced Studies on Collaborative

Research (CASCON 2010), pages 330–344. ACM, 2010. 20

[Nie93] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1993. 132, 142

[PZCG13] C. Perera, A. B. Zaslavsky, P. Christen, and D. Georgakopoulos. Con-

text Aware Computing for The Internet of Things: A Survey. IEEE

Communications Surveys & Tutorials, 16(1):414–454, 2013. 3, 57

169

[RCBS12] A. J. Ramirez, B. H. Cheng, N. Bencomo, and P. Sawyer. Relaxing

Claims: Coping with Uncertainty While Evaluating Assumptions at Run

Time. In Model Driven Engineering Languages and Systems, volume

7590 of Lecture Notes in Computer Science, pages 53–69. Springer, 2012.

27

[SBCC13] H. Song, S. Barrett, A. Clarke, and S. Clarke. Self-adaptation with

End-User Preferences: Using Run-Time Models and Constraint Solving.

In Model-Driven Engineering Languages and Systems, volume 8107 of

Lecture Notes in Computer Science, pages 555–571. Springer, 2013. 27

[SHC+05] H. Song, G. Huang, F. Chauvel, Y. Sun, and H. Mei. SM@RT: repre-

senting run-time system data as MOF-compliant models. In Proceedings

32nd International Conference on Software Engineering, volume 2, pages

303–304. ACM/IEEE, 2010-05. 27

[SLV02] N. Souchon, Q. Limbourg, and J. Vanderdonkt. Task Modelling in Mul-

tiple Contexts of Use. In Proceedings 9th International Workshop on

Interactive Systems: Design, Specification, and Verification (DSV-IS

2002), pages 59–73. Springer, 2002. 40, 46, 71, 116, 118, 119

[SS08] T. Stoitsev and S. Scheidl. A Method for Modeling Interactions on Task

Representations in Business Task Management Systems. In Engineering

Interactive Systems, volume 5247 of Lecture Notes in Computer Science,

pages 84–97. Springer, 2008. 40, 48, 116

[SSLRM11] V. E. Silva Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos.

Awareness Requirements for Adaptive Systems. In Proceedings of the

6th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems, (SEAMS 2011), pages 60–69. ACM, 2011. 27

[SSZ+16] S. K. Sowe, E. Simmon, K. Zettsu, F. de Vaulx, and I. Bojanova. Cyber-

Physical-Human Systems: Putting People in the Loop. IT Professional,

18(1):10–13, Jan 2016. 1, 2, 17, 18, 145, 157

[SWYS11] J. Shi, J. Wan, H. Yan, and H. Suo. A survey of Cyber-Physical Sys-

tems. In 2011 International Conference on Wireless Communications

and Signal Processing (WCSP), pages 1–6, 2011. 18

170

[SZ13] M. Szvetits and U. Zdun. Systematic literature review of the objectives,

techniques, kinds, and architectures of models at runtime. Software &

Systems Modeling, pages 1–39, 2013. 27

[SZF+14] H. Song, X. Zhang, N. Ferry, F. Chauvel, A. Solberg, and G. Huang.

Modelling Adaptation Policies as Domain-Specific Constraints. In

Model-Driven Engineering Languages and Systems, volume 8767 of Lec-

ture Notes in Computer Science, pages 269–285. Springer, 2014. 27

[TLI+11] L. H. Thom, I. M. Lazarte, C. Iochpe, L.-M. Priego, C. Verdier,

O. Chiotti, and P. D. Villarreal. on the Capabilities of BPMN for Work-

flow Activity Patterns Representation. In Business Process Model and

Notation, volume 95 of Lecture Notes in Business Information Process-

ing, pages 172–177. Springer, 2011. 40, 48, 118

[TS14] M. Trapp and D. Schneider. Safety assurance of open adaptive systems–a

survey. In Models@run.time, pages 279–318. Springer, 2014. 30

[Vil13] N. M. Villegas. Context Management and Self-Adaptivity for Situation-

Aware Smart Software Systems. PhD Thesis, Department of Computer

Science, University of Victoria, 2013. x, 7, 8, 25, 40, 48, 49, 50, 60, 71,

76, 118, 119, 122, 154, 158, 180, 183

[VM10] N. M. Villegas and H. A. Müller. Managing Dynamic Context To Op-

timize Smart Interactions and Services. In The Smart Internet, volume

6400 of Lecture Notes in Computer Science, pages 289–318. Springer,

2010. 49

[VTM+13] N. M. Villegas, G. Tamura, H. A. Müller, L. Duchien, and R. Casallas.

DYNAMICO: A reference model for governing control objectives and

context relevance in self-adaptive software systems. In Software Engi-

neering for Self-Adaptive Systems II, volume 7475 of Lecture Notes in

Computer Science, pages 265–293. Springer, 2013. 8, 10, 59, 148

[Wil99] T. D. Wilson. Models in Information Behaviour Research. Journal of

Documentation, 55(3):249–270, 1999. x, 40, 47, 115, 118

[YLL+08] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J. C. S. P. Leite.

From Goals To High-Variability Software Design. In Proceedings 17th

171

International Conference on Foundations of Intelligent Systems (ISMIS

2008), pages 1–16. Springer, 2008. x, 40, 44, 45, 118

[YM94] E. Yu and J. Mylopoulos. Understanding ”Why” in Software Process

Modelling, Analysis, and Design. In Proceedings 16th International Con-

ference on Software Engineering (ICSE 1994), pages 159–168. IEEE

Computer Society Press, 1994. x, 40, 42, 43, 71, 115, 117, 119

[Yu93] E. Yu. Modeling Organizations for Information Systems Requirements

Engineering. In Proceedings IEEE International Symposium on Require-

ments Engineering (RE 1993), pages 34–41, 1993. 40, 41, 50, 71, 115,

117

[ZCZ+13] X. Zhang, X. Chen, Y. Zhang, Y. Wu, W. Yao, G. Huang, and Q. Lin.

Runtime Model Based Management of Diverse Cloud Resources. In

Model-Driven Engineering Languages and Systems, volume 8107 of Lec-

ture Notes in Computer Science, pages 572–588. Springer, 2013. 27

172

Appendix A

MART Specifications

This appendix presents the specification of our two Models at Runtime (MARTs)

for User-Centric Smart Cyber-Physical-Human Applications (UCSAs).

A.1 Galapagos Metamodel

Table A.1: Galapagos Metamodel Specification

Entity

Attribute Type Description

All Entities

name [unique] String Identifier of the element. It is unique for the model

instance.

description

[required]

String Long name given to the element. Used in the no-

tation form as the name.

locked

[required]

Boolean Defines if the element is locked for modification.

(Default: false)

Situation

validFrom Date Defines the starting time of the Situation.

validTo Date Defines the starting time of the Situation.

Plan Item

173

Entity

Attribute Type Description

orderNo Int Defines the number in the sequence of items to be

executed in the plan.

Condition

predicate String Describes the condition as a predicate string.

Satisfaction Property

threshold String Describes a threshold for the Satisfaction

Property.

Activity

expression String Describes the set of instructions to describe activi-

ties

Data

typeValue String Determines the data type for the Data

A.2 Galapagos Model

Table A.2: Galapagos Model Specification

Element

Attribute Type Description

All Elements

Name [unique] String Identifier of the element. It is unique for the model

instance.

Description

[required]

String Long name given to the element. Used in the no-

tation form as the name.

Locked

[required]

Boolean Defines if the element is locked for modification.

(Default: false)

174

Element

Attribute Type Description

Goal

Subgoals Array List of Goal. Refers to a decomposition relation.

Task

Sequences

[required]

Array List of root tasks that denote the sequence (or

sequences).

Measurable

Outcomes

[required]

Array Each position of the array contains the following

information: Information Resource, validation

rules, and threshold of acceptance

Execution

Conditions

[required]

Array Defines policies for the execution of the task se-

quence.

Task

Sequence

Number

Int Number in the sequence of execution

Preconditions Array Set of rules that need to be valid all the time.

Postconditions Array Set of activities that need to be executed after the

Task changes.

Inputs Array Set of information required as input for the execu-

tion of the task.

Outputs Array Set of Information Resource resulting after the

execution of the task.

Children Array List of Task. Refers to a decomposition relation.

Dependences Array List of Task, Goal, or Information Resource that

the Task depends on.

Execution

Date

String,

Object

Defines the time dimension for the execu-

tion of the Task. Values: withGoal, auto,

specific(Date), withSequence.

Execution Poli-

cies

Array Defines specific policies for execution of the task.

175

Element

Attribute Type Description

Execution

Constrains

Array Defines specific constrains for execution of the task.

Operation

Type

String,

Object

Defines how the execution starts. Val-

ues: withGoal, auto, specific(Date),

withSequence.

Termination String,

Object

Defines how the Task ends. Values: withGoal,

auto, specific(Date), withSequence,

timeout(milliseconds).

Activities Array

Information Resource

Type String Defines the type of Resource. Values: webservice,

app, file, database, event, message,

unspecified.

Location String Location of the resource (URI, path).

Resource name String Name of the resource in location.

Authorization

request

Boolean Defines whether the resource requires authorization

to access. (Default: false)

Credential Object Defines an object that contains the credentials for

authentication to access the resource.

Actor

Location String Defines the locations of the Actor

Authorization

level

String Defines the level of authority regarding its respon-

sibility

Situation poli-

cies

Array Defines conditions and policies associated with sit-

uations of the user and relevant goals

176

Appendix B

SUSGroceries Case Scenario

Implementation

SUSGroceries is our User-Centric Smart Cyber-Physical-Human Application client

to manage the personal tasking of the user that achieves an online grocery shopping

goal. Figure B.1 depicts the overview of SUSGroceries and Primor. As the client

application, SUSGroceries interacts with the supporting infrastructure, which is a

service in the cloud, to request access and adaptations to the MARTs.

Figure B.1: SUSGroceries request services to Primor

177

SUSGroceries is a mobile application that manages the grocery list as well as

general settings of the user. We use SUSGroceries to simulate context information

such as location and user preferences. Figure B.2 shows two screen shots of the mobile

application. The left of the figure shows the grocery list, which is a set of items

that have been added. In our implementation we simulated sensors and actuators

of an instrumented home that populates the list. The right of the figure shows the

application settings, which allows to specify some information about the personal

tasking including budget, recurrence of the task and enable/disable location.

Figure B.2: SUSGroceries interface to manage the grocery shopping and user settings

B.1 Object-Oriented Implementation of MARTs

We follow the object-oriented paradigm for our implementation to provide the ad-

vantages of modularity and reusability. Figure B.3 depicts the classes for our im-

plementation of MARTs as graphs. The class GoalsModel implements the interface

MART. a MART contains an artefact, which in the case of our model corresponds to

a graph. Therefore, the class UCSAGoalGraph implements the interface Artefact

178

and contains an object Graph. Since MARTs define a set of operations, the class

AbstractOperation defines the set of supported operations of the MART listed in

an enumerator object named GoalsModelOp. For this implementation we defined a

selection of operations supported by our model, including ADD GOAL, DELETE TASK,

and UPDATE GOAL.

Figure B.3: Java classes of our Galapagos Model

We based our implementation in the example presented in Chapter 5 (cf. Fig-

ures 5.13),. Source Code B.1 depicts a simplified view of the code that creates the

graph based on the model specified with our notation. For our implementation, we

simulated the translation of a notation into Java classes. In Line 3 the object type

UCSAGoalGraph is initialise, which will contain nodes and arcs based on the MART

specification. Lines 5 to 17 present examples of creating Node objects, such as Goal,

Actor, Task, and Resource. Lines 20 to 31 present examples of adding the nodes to

the graph and creating the arcs based on the relations. It is important to notice that

the creation of the graph is made using the operational framework using sentences.

For instance, Line 20 adds a goal to the graph by applying the operation ADD GOAL de-

fined in the operational framework through the enumeration GoalsModelOp. Line 23

creates the connection of responsibility between SUSGroceries which is an Actor

179

and the main goal. Lines 26 and 27 add the first Task of the model and the relation

between the Task and the Goal is an achievement connection. Finally, Lines 31 and

31 create a relation between two elements Task through a relation of decomposition.

Source Code B.1: Simplified view of the MART instance of the Galapagos Model

depicted in Figure 6.8

1 public static UCSAGoalGraph artefact () throws

ValidationException {

2

3 final UCSAGoalGraph graph = new UCSAGoalGraph ();

4

5 Goal goal = new Goal("G_grocery_shopping", "Online grocery

shopping");

6 Actor SUSGroceries = new Actor("A_SUSGroceries",

"SUSGroceries");

7 Task shopGroceryTask = new Task("T_shop_grocery_task", "Shop

grocery task");

8 Resource listItemsResource = null;

9 try {

10 listItemsResource = new Resource(

11 "R_list_items",

12 "WebService",

13 new URL("http :// primor/list"),

14 "list",

15 true

16);

17 } catch (MalformedURLException e) {}

18

19 // Online Grocery Shopping

20 graph.apply(new Sentence(GoalsModelOp.ADD_GOAL , goal));

21

22 // SUSGroceries , SUSGroceries --r--> Online Grocery Shopping

23 graph.apply(new Sentence(GoalsModelOp.ADD_ACTOR , SUSGroceries ,

goal));

24

25 // Shop Grocery Task , Shop Grocery Task --a--> Online Grocery

Shopping

26 graph.apply(new Sentence(GoalsModelOp.ADD_TASK ,

shopGroceryTask , goal));

27 graph.apply(new Sentence(GoalsModelOp.ADD_ACHIEVEMENT ,

shopGroceryTask , goal));

28

180

29 // Get grocery items list , Shop grocery task --dc --> Get

grocery items list

30 graph.apply(new Sentence(GoalsModelOp.ADD_TASK ,

groceryListTask , shopGroceryTask));

31 graph.apply(new Sentence(GoalsModelOp.ADD_DECOMPOSITION ,

shopGroceryTask , groceryListTask));

32

33 /*...*/

34

35 return graph;

36 }

B.2 SmarterContext Ontology Extension and Vo-

cabulary

We use the Context Ontology by Villegas [Vil13] with the following extension in

the Shopping Ontology. We added the class Grocery and its subclasses depicted in

Figure B.4.

We use OWL (Web Ontology Language) to represent the ontology for the con-

text model. Specifically, we use the RDF (Resource Description Framework) Schema

(RDFS) triples denote subject-predicate-object expressions. The subject defines a

resource, the predicate denotes aspects of the resource as well as the relationship

between the subject and the object.

Table B.1: Vocabulary for the grocery shopping scenario

Class Vocabulary

Vegetable Fruits Tomato, Orange, Strawberry, Celery, Lettuce, Potato

Beverages Coffee, Tea, Juice, Soda,

Bread Bakery Tortilla, Bagel, Bread

Canned Jarred Ketchup, Spaghetti Sauce, Beans

Dairy Eggs, Milk, Cheeses, Butter

Frozen Waffles, Ice Cream, Meals, Vegetables

Meat Lunch Meat, Poultry, Beef, Pork, Fish

Cleaners All Purpose, Laundry Soap, Dishwasher, Hands soap

181

Paper Paper Towels, Toilet Paper, Sandwich Bags, Aluminum Foil

Personal Shampoo, Soap, Shaving Cream, Hand Lotion

Baby Baby Food, Diapers, Powder, Wet Wipes

182

Dairy

Figure B.4: Subset of the SmarteContext ontology extension for the online grocery shopping scenario.

183

B.3 Personal Context Sphere Instance

This section presents a a simplified PCS for user Edel in our online grocery shopping

case study following the PCS definition by Villegas [Vil13]. Each triple in Table B.2

below represents an RDF statement, contextual facts in SmarterContext, defined

by a subject, a predicate, and an object.

Table B.2: RDF triples that define the personal context sphere for user Edel

Subject Predicate Object

1 geo:Victoria rdf:type gc:GeoLocation

2 http://www.walmart.ca/en rdf:type pwc:PWESite

3 https://shop.saveonfoods.com rdf:type pwc:PWESite

4 https://www.thriftyfoods.com rdf:type pwc:PWESite

5 Activia Yogurt rdf:type shopping:Dairy

Category

6 Homogenized Milk rdf:type shopping:dairy

Category

7 Roma Tomatoes rdf:type shopping:VegetablesFruits

Category

8 Salmon rdf:type shopping:Meat

Category

9 CAD rdf:type shopping:Currency

Category

10 Week night rdf:type shopping:DeliveryMethod

Category

11 VISA**1100 rdf:type shopping:PaymentMethod

Category

12 edel.rdf#edel pwc:isInterestedIn deals:Produce &

Dairy

13 edel.rdf#edel pwc:hasIntegrated http://www.walmart.ca/en

184

14 edel.rdf#edel pwc:hasIntegrated https://shop.saveonfoods.co

15 edel.rdf#edel pwc:hasIntegrated https://www.thriftyfoods.com

16 http://www.walmart.ca/ena gc:locatedIn geo:Victoria

17 https://shop.saveonfoods.co gc:locatedIn geo:Victoria

18 https://www.thriftyfoods.com gc:locatedIn geo:Victoria

19 edel.rdf#edel shopping:toBuy shopping:Grocery

Category

20 edel.rdf#edel gc:locatedIn geo:Victoria

21 edel.rdf#edel rdf:type pwc:User

22 edel.rdf#edel pwc:likes https://www.thriftyfoods.com

185

I wanted to push the boundaries of knowledge.

Here is my push, might not be the last.

	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Problem Statement, Challenges and Research Questions
	Problem Statement
	Research Challenges
	Research Questions

	Methodological Aspects
	Research Methodology
	Research Approach

	Contributions
	Publications

	Dissertation Outline

	Research Background
	Cyber-Physical-Human Systems (CPHS)
	Characteristics

	Smart Internet
	The Smart Internet Principles
	Personalized Web-Tasking (PWT)
	Smart Internet Approaches

	Situation Awareness
	A Model of Situation Awareness
	A Theory of Activity and Situation Awareness

	Model At Runtime (MART)
	Definition
	Reference Models

	Chapter Summary

	State of the Art on Models for User-Centric CPHS
	Methodology
	Findings
	Personal Goals
	Web Task
	Context

	Chapter Summary

	User-Centric Smart Cyber-Physical-Human Applications
	Personal Tasking
	Online Grocery Shopping Case Study
	Definition of UCSA
	Architectural Design of UCSA
	Chapter Summary

	MARTs for User-Centric Smart CPH Applications
	Modelling Requirements
	Personal Goals
	Tasks
	Context

	Our Models at Runtime
	Galapagos Metamodel
	Galapagos Model

	Chapter Summary

	Operational Framework for Models At Runtime
	Galapagos Metamodel
	Mapping from Notation To Software Artefact
	Catalogue of Operations
	Runtime Semantics

	Galapagos Model
	Mapping From Notation To Software Artefact
	Catalogue of Operations
	Runtime Semantics

	Causal Links
	Chapter Summary

	Processing Infrastructure for Models at Runtime (PRIMOR)
	Functionalities
	Access Manager
	Operation Manager

	Architectural Design and Implementation
	Chapter Summary

	Evaluation
	Qualitative Evaluation
	Related Approaches Comparison

	Experimental Evaluation
	Case Scenario: Supporting Independent Living for the Elderly
	Accuracy Analysis
	Scalability and Performance Analysis

	Chapter Summary

	Summary, Discussion and Future Work
	Dissertation Summary
	Addressed Challenges
	Contributions

	Limitations
	Future Work

	Glossary
	Acronyms
	References
	MART Specifications
	Galapagos Metamodel
	Galapagos Model

	SUSGroceries Case Scenario Implementation
	Object-Oriented Implementation of MARTs
	SmarterContext Ontology Extension and Vocabulary
	Personal Context Sphere Instance

