
SOCIAL NETWORK ARCHITECTURES AND
APPLICATIONS

A Dissertation
Submitted to

THE TEMPLE UNIVERSITY GRADUATE BOARD

in Partial Fulfillment
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by

Huanyang Zheng
December, 2017

Examining Committee Members:

Dr. Jie Wu, Dept. of Computer and Information Sciences (Advisor)
Dr. Bo Ji, Dept. of Computer and Information Sciences
Dr. Jamie Payton, Dept. of Computer and Information Sciences
Dr. Wei-Shih Yang, Dept. of Mathematics (External reader)

ABSTRACT

SOCIAL NETWORK ARCHITECTURES AND APPLICATIONS

by

Huanyang Zheng

Rather than being randomly wired together, the components of complex network

systems are recently reported to represent a scale-free architecture, in which the

node degree distribution follows power-law. While social networks are scale-free, it

is natural to utilize their structural properties in some social network applications.

As a result, this dissertation explores social network architectures, and in turn,

leverages these architectures to facilitate some influence and information propagation

applications.

Social network architectures are analyzed in two different aspects. The first aspect

focuses on the node degree snowballing effects (i.e., degree growth effects) in social

networks, which is based on an age-sensitive preferential attachment model. The

impact of the initial links is explored, in terms of accelerating the node degree

snowballing effects. The second aspect focuses on Nested Scale-Free Architectures

(NSFAs) for social networks. The scale-free architecture is a classic concept, which

means that the node degree distribution follows the power-law distribution. ‘Nested’

indicates that the scale-free architecture is preserved when low-degree nodes and their

associated connections are iteratively removed. NSFA has a bounded hierarchy.

Based on the social network structure, this dissertation explores two influence

propagation applications for the Social Influence Maximization Problem (SIMP). The

first application is a friend recommendation strategy with the perspective of social

influence maximization. For the system provider, the objective is to recommend a

fixed number of new friends to a given user, such that the given user can maximize

ii

his/her social influence through making new friends. This problem is proved to be NP-

hard by reduction from the SIMP. A greedy friend recommendation algorithm with

an approximation ratio of 1 − e−1 is proposed. The second application studies the

SIMP with the crowd influence, which is NP-hard, monotone, non-submodular, and

inapproximable in general graphs. However, since user connections in Online Social

Networks (OSNs) are not random, approximations can be obtained by leveraging

the structural properties of OSNs. The modularity, denoted by ∆, is proposed to

measure to what degree this problem violates the submodularity. Two approximation

algorithms are proposed with ratios of 1
∆+2

and 1− e−1/(∆+1), respectively.

Beside the influence propagation applications, this dissertation further explores

three different information propagation applications. The first application is a social

network quarantine strategy, which can eliminate epidemic outbreaks with minimal

isolation costs. This problem is NP-hard. An approximation algorithm with a ratio of

2 is proposed through utilizing the problem properties of feasibility and minimality.

The second application is a rating prediction scheme, called DynFluid, based on

the fluid dynamics. DynFluid analogizes the rating reference among the users in

OSNs to the fluid flow among containers. The third application is an information

cascade prediction framework: given the social current cascade and social topology,

the number of propagated users at a future time slot is predicted. To reduce prediction

time complexities, the spatiotemporal cascade information (a larger size of data) is

decomposed to user characteristics (a smaller size of data) for subsequent predictions.

All these three applications are based on the social network structure.

Keywords: network architecture, preferential attachment, nested scale-free,

friend recommendation, social influence maximization, social network quarantine,

rating prediction, information cascade.

iii

To my beloved parents

iv

ACKNOWLEDGEMENTS

For the past several years in the Center for Networked Computing (CNC) of Temple

University CIS department, I have benefited from the collaborations with brilliant

researchers. I always enjoyed the excellent working environment and harmonious

atmosphere in this department.

This research could not have been finished without the guidance of my advisory

committee members, support from my family, and the help of friends. I would

like to express my sincere gratitude to my advisor, Dr. Jie Wu, for his selfless

help, immeasurable caring, strict guidance, and patience. He has taught me how

to think comprehensively and critically, shown me the importance of persistence and

hardworking to success, and provided me with solid supports. I take him as my role

model, and I will never forget his guidance.

I would like to thank my committee members, Dr. Bo Ji , Dr. Jamie Payton,

and Dr. Wei-Shih Yang, for their sincere help, extensive knowledge, and valuable

comments to complete this dissertation.

My special thanks go to Dr. Paul Lafollette, Dr. John Fiore, and Dr. Avinash

Srinivasan. It was my pleasure to work with them as a teaching assistant. I deeply

appreciate their help and support. I also would like to thank my lab-mates and

colleagues for the precious time that we spent together.

v

TABLE OF CONTENTS

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

LIST OF FIGURES . xi

LIST OF TABLES . xv

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Challenges . 1
1.3 Overview . 3
1.4 Contributions . 7

2. SNOWBALLING EFFECTS IN PREFERENTIAL ATTACH-
MENT: THE IMPACT OF THE INITIAL LINKS 9

2.1 Introduction . 10
2.2 Related Work . 13
2.3 Model and Problem Formulation 14

2.3.1 Preferential Attachment Model 14
2.3.2 Problem Formulation 15

2.4 Snowballing Effects . 16
2.4.1 Classic Preferential Attachment 16
2.4.2 Age Difference Domination Area 18
2.4.3 Node Degree Domination Area 19
2.4.4 Transition Area . 21

2.5 Experiments . 25
2.5.1 Accuracy Verifications on Theoretical Results 25
2.5.2 Citation Network 27
2.5.3 Online Social Network 28

2.6 Summary . 31
2.7 Appendix . 31

2.7.1 Proof of Theorem 2.1 31

vi

2.7.2 Proof of Theorem 2.2 32
2.7.3 Proof of Theorem 2.3 32
2.7.4 Proof of Theorem 2.4 33
2.7.5 Proof of Theorem 2.5 33

3. NSFA: NESTED SCALE-FREE ARCHITECTURE FOR S-
CALABLE PUBLISH/SUBSCRIBE OVER P2P NETWORK-
S . 34

3.1 Introduction . 35
3.2 Problem Statement . 38
3.3 Unstructured P2P Networks 40

3.3.1 Scale-Free Architecture 40
3.3.2 Nested Scale-Free Architecture 42
3.3.3 Verify the Existence of NSFA 47
3.3.4 Compare Hierarchies 48

3.4 Publish/Subscribe in NSFA 49
3.4.1 System Design Overview 49
3.4.2 Subscription . 51
3.4.3 Event Delivery . 52
3.4.4 Peer Arrival, Departure, and Failure 54

3.5 Related Works and Discussions 56
3.6 Experiments . 58

3.6.1 Real Data-driven Experiments 58
3.6.2 Pub/Sub System Evaluations 58

3.7 Summary . 62

4. FRIEND RECOMMENDATION IN ONLINE SOCIAL
NETWORKS: PERSPECTIVE OF SOCIAL INFLUENCE
MAXIMIZATION . 64

4.1 Introduction . 64
4.2 Related Work . 67
4.3 Preliminaries and Problem Formulation 68

4.3.1 Independent Cascade 68
4.3.2 Problem Formulation 69

4.4 Combining Friend Recommendation and
Social Influence Maximization 71
4.4.1 Friend Acceptance Probability 71
4.4.2 NP-hardness, Submodularity, and Greedy Approxi-

mation . 72
4.5 Influence Spread Computation 75

4.5.1 Classic Approaches and Their Limitations 75
4.5.2 Multipath Effect in Influence Propagations 77
4.5.3 Multipath-sensitive Influence Spread Computation . 79

vii

4.6 Experiments . 83
4.6.1 Dataset Information 83
4.6.2 Comparison Algorithms 84
4.6.3 Evaluation Results on Friend Recommendations . . 85
4.6.4 Evaluation Results on Influence Spread Computations 87

4.7 Summary . 88

5. SOCIAL INFLUENCE MAXIMIZATION IN HYPERGRAPH-
S: NON-SUBMODULARITY AND APPROXIMABILITY . 89

5.1 Introduction . 90
5.2 Related Works . 93
5.3 Model and Formulation . 94

5.3.1 Model and Notations 94
5.3.2 Independent Cascade in Hypergraphs 95
5.3.3 Problem Formulation 96

5.4 Analysis . 97
5.4.1 NP-hard and Monotone 97
5.4.2 Non-Submodular and Inapproximability 99
5.4.3 Naive Greedy . 100

5.5 Algorithms . 100
5.5.1 Modularity . 101
5.5.2 OSNs as Scale-Free Hypergraphs 101
5.5.3 Improved Greedy 104
5.5.4 Capped Greedy . 107
5.5.5 Time Complexity Reduction 111

5.6 Experiments . 112
5.6.1 Dataset Information and Statistics 112
5.6.2 Comparison Algorithm and Performance 113
5.6.3 Running Time and Complexity Reduction 115

5.7 Summary . 117

6. EFFECTIVE SOCIAL NETWORK QUARANTINE WITH
MINIMAL ISOLATION COSTS 118

6.1 Introduction . 118
6.2 Related Work . 121
6.3 Problem Formulation and Epidemic Model 122

6.3.1 Problem Formulation 122
6.3.2 Epidemic Outbreak Model 122
6.3.3 Feasibility and Minimality 125

6.4 Effective Social Network Quarantine 128
6.4.1 NP-hardness and Marginal Greedy Strategy 128
6.4.2 Homogeneous Greedy Strategy 129

6.5 Experiments . 131

viii

6.5.1 Dataset Information and Settings 131
6.5.2 Evaluation Results 133

6.6 Summary . 134

7. DYNFLUID: PREDICTING TIME-EVOLVING RATING IN
RECOMMENDATION SYSTEMS VIA FLUID DYNAMICS 136

7.1 Introduction . 136
7.2 Related Work . 140
7.3 Model and Problem Formulation 141
7.4 DynFluid: Algorithm Details 142

7.4.1 Analogy Insights . 142
7.4.2 Fluid Update Principles 144
7.4.3 Algorithm Overview and Time Complexity Analysis 147
7.4.4 Convergence Analysis 148
7.4.5 Algorithm Properties 150

7.5 Evaluations . 151
7.5.1 Basic Settings . 151
7.5.2 Comparisons with the Other Methods 153
7.5.3 The Impact of The Public Channel 156
7.5.4 The Impact of The Persistency and Persuasiveness . 157

7.6 Summary . 158

8. FAST INFORMATION CASCADE PREDICTION THROUGH
SPATIOTEMPORAL DECOMPOSITIONS 159

8.1 Introduction . 160
8.2 Related Work . 164
8.3 Basic Concepts and Dataset Description 165

8.3.1 Basic Concepts . 165
8.3.2 Dataset Description 167

8.4 Tuning The Spatiotemporal Information 168
8.4.1 Mapping Process 168
8.4.2 Mapping Insights 170

8.5 Spatiotemporal Decomposition 172
8.5.1 SVD Preliminaries and Dataset Verification 172
8.5.2 Information Decomposition 173
8.5.3 SVD Insights and Personalities 174
8.5.4 Parallel SVD . 175

8.6 Information Cascade Prediction 176
8.6.1 Non-historical Prediction 176
8.6.2 Historical Prediction 180
8.6.3 Algorithm Complexities 180

8.7 Evaluation . 182
8.7.1 System Settings . 182

ix

8.7.2 Baseline Algorithms and Evaluation Metrics 183
8.7.3 Evaluation Result 185

8.8 Summary . 186

9. CONCLUSION . 187

9.1 Summary of Results . 187
9.2 Future Research . 188

PUBLICATIONS . 190

BIBLIOGRAPHY . 196

x

LIST OF FIGURES

Figure

1.1 The dissertation overview. 3

2.1 The age-sensitive preferential attachment. 11

2.2 The percolation phenomena in the age-sensitive preferential
attachment (m = 1 and t = 10). The ID of a node is its entry
time. 20

2.3 The two-stage relationship between the gain rate (rg) and the initial
rate (ri), when |(1− α)C(α, β, ξ)| ≪ 1. 24

2.4 The node degree distributions with respect to the node entry time. . 26

2.5 The node degree snowballing effects. 26

2.6 The age-sensitive preferential attachment in cit-HepPh. 28

2.7 The node degree snowballing effects in cit-HepPh. 28

2.8 The age-sensitive preferential attachment in Flickr. 29

2.9 The node degree snowballing effects in Flickr. 29

3.1 NSFA in the Gnutella dataset. 36

3.2 Difference between Algorithms 1 and 2 (indegree version). 44

3.3 NSFA verifications in unstructured P2P networks. 47

3.4 Examples of NSFA-based forests (indegree and outdegree versions). 50

3.5 An example of peer interests and the corresponding subscriptions. . 51

3.6 An illustration for the two-phase hierarchical event delivery in the
proposed pub/sub system. 52

3.7 Event routing efficiency. 59

xi

3.8 The CDF for the number of event forwardings. 60

3.9 System performance with respect to the peer churns in Gnutella. . . 61

3.10 System performance with respect to the peer failures. 62

3.11 The CDF of root peer forwardings. 63

4.1 The tradeoff in the friend recommendation strategy. 65

4.2 An example for the friend recommendation. 69

4.3 Proof of NP-hardness. 72

4.4 Proof of submodular property. 75

4.5 An example for the classic approaches and their limitations. 76

4.6 An example for the influence spread computation. 82

4.7 The evaluation results on the impact of k (the number of
recommended friends). 85

4.8 The evaluation results on the impact of v0 (normal users or popular
users). 86

4.9 Evaluations of influence spread computation methods. 88

5.1 Social influences through edges and hyperedges. 91

5.2 An example of the reachability. 96

5.3 Relationship between Si and Hi. We have Si+1 = (Si+1 \ Si) ∪ Si,
Hi+1 = (Hi+1 \ Si+1) ∪ Si+1, and Hi = (Hi \Hi+1) ∪ (Hi+1 \ Si+1) ∪ Si.105

5.4 Distribution of dv and |Mv| in three datasets. 112

5.5 Algorithm performance for SIMP in hypergraphs. 114

5.6 The impact of cap size for CG. 116

6.1 Proof of Theorem 6.3. 126

6.2 Evaluation results with respect to the isolation costs. 133

xii

7.1 An illustration for the rating of a product in Ciao. 138

7.2 An illustration of DynFluid. Each user corresponds to a container,
while the directional pipes represent the trust relationships among
users. The container ab is added to represent the public channel. . . 139

7.3 A motivational example to illustrate the analogy insights. 143

7.4 A discrete approach to compute the fluid flow. 145

7.5 The distribution of the rating scores. 152

7.6 Compare DynFluid with the other methods, in terms of RMSE. . . 153

7.7 Compare DynFluid with the other methods, in terms of F-score. . . 153

7.8 The impact of the public channel. 155

7.9 The impact of the user persistency. 156

7.10 The impact of the user persuasiveness. 157

8.1 In (a) and (c), solid directional edges among nodes (numbers inside
nodes are user IDs) represent follower-followee relationships (the
pointed node is the follower). Dashed directional edges indicate the
cascade. The label on the top of a node indicates the time when this
user starts to propagate information after having been influenced.
Node 2 is the information source. In (c), the left dark node has high
persuasiveness and receptiveness (the right one is the opposite). The
decomposition result for the cascade of the first four time slots is
shown in (d). 161

8.2 The decay pattern of nodes’ persuasiveness and receptiveness. . . . 162

8.3 Statistics of the Flickr dataset. 167

8.4 Mapping T to M through f(t) = e−t/5, where c = 1
5
= 1

τ2
. 169

8.5 Statistics on singular values of photo cascades. 170

8.6 The corresponding SVD result (U , Σ, and V) for the mapped matrix
M in Fig. 8.4(b). 171

xiii

8.7 The rank-1 approximation of the matrix M . There is a bounded
information loss from M to M1. 172

8.8 The corresponding nodes’ characteristics of Fig. 8.7. In (a),
dashed directional edges show the cascade process, while numbers
within nodes are their IDs. Labels on top of the nodes are
persuasiveness/receptiveness, which are extracted from u1 and v1 in
Fig. 8.7. The symbol *.** means needs to be predicted, the results
of which are shown in bold font in (b). 176

8.9 Three rules for non-historical predictions. 177

8.10 A case study (the same notation with Fig. 8.1). 178

8.11 Historical predictions. 178

8.12 The evaluation results. The top row shows non-historical
prediction schemes (The algorithm “User personality” is the
proposed non-historical scheme with additional considerations on
user personalities), while the bottom row consists of historical
prediction schemes. Note that the history information has included
the information on user personalities. Each of the three columns
indicates one of the three metrics (detection rate, false positive rate,
accuracy). 184

xiv

LIST OF TABLES

Table

3.1 Compare Hierarchies . 48

3.2 Comparisons among Existing Systems and Our NSFA-based System. 57

4.1 Dataset Statistics . 83

5.1 Dataset Statistics. 111

6.1 Dataset Statistics . 131

8.1 Flickr Dataset Summary . 165

8.2 Notations . 166

xv

CHAPTER 1

INTRODUCTION

1.1 Motivation

In past decades, scientists tacitly assumed components of complex network systems

(such as the society and the Internet) to be randomly wired together, which is

impractical for real networks. The small-world theory has shown that the real

networks have much larger clustering coefficients than the random networks, and

have much smaller network diameters than the grid networks. Recently, an avalanche

of research has shown that many real networks, independent of their age, function,

and scope, converge to similar architectures. These architectures are abstracted as

the scale-free network architectures, in which the node degree distribution follows

power-law. Examples of scale-free networks include social networks, citation networks,

product review networks, autonomous systems, and so on. While social networks

are generally scale-free, it is natural to utilize their structural properties in some

social network applications. As a result, this dissertation explores social network

architectures, and in turn, leverages these architectures to facilitate some influence

and information propagation applications for social networks.

1.2 Challenges

This dissertation involves numerous challenges for social network architectures.

The first challenge is to understand the social network architecture in a time-

evolving manner. Although the preferential attachment model has been proposed

1

[1] to describe the evolving behaviors of social networks, it is overly simplified. The

preferential attachment model assume that the degree growth potential of a node in

the social network only depend on the current degree of that node, i.e., independent of

other node properties. The second challenge is to further explore the social network

architecture in addition to the scale-free property [2], which means that the node

degree distribution follows power-law. Although the scale-free property has been

found for a long time, no property is found in addition to it.

The influence propagation applications are challenging. Currently, the influence

propagation model is mainly applied in the virtual marketing field. Can we apply

the influence propagation model to other fields, such as the friend recommendation?

This dissertation explores such applications in depth. One step further, almost all

influence propagation models, such as the independent cascade and linear threshold,

are submodular [3]. Submodularity means that the marginal influence gain of a

person has diminishing return effects with respect to existing people. Few results

[3] are provided when the influence propagation model even slightly violates the

submodularity. Can we explore some non-submodular models?

The information propagation applications are also challenging. This is because

there exists multiple types of information for social networks. Moreover, different type

of information has a different way of propagation. This dissertation involves three

types of information: epidemic (disease in real life or virus in computer networks),

trust (trustor-trustee relationship among people), and cascade (post or forward

information in online social network). What are the similarities and differences

among different types of information during propagations? This dissertation has

a fundamental exploration with respect to different types of information.

2

Chapter 2:

Degree snowballing effects

Chapter 3:

Nested scale-free architectures

Chapter 4:

Friend recommendation with

social influence maximization

Chapter 5:

Social crowd influence with

social influence maximization

Chapter 6:

Epidemic propagation

Chapter 7:

Trust propagation

Social Network Architectures

Influence Propagation Information Propagation

Chapter 8:

Cascade propagation

Different Propagation Model

Leverage Architectures For Applications

Figure 1.1: The dissertation overview.

1.3 Overview

The dissertation overview is shown in Fig. 1.1, which includes three parts. The first

part, which includes Chapters 2 and 3, explores social network architectures. All the

remaining chapters are social network applications that leverage these architectures

in some way. The second part, which includes Chapters 4 and 5, focuses on the

influence propagation applications with the independent cascade model. In contrast,

the third part, which includes Chapters 6, 7, and 8, focuses on the information (i.e.,

epidemic, trust, and cascade) propagation applications. Note that the second and

third parts have different types of propagation models for social networks.

Chapters 2 and 3 start with the social network architectures. Chapter 2 studies

the node degree snowballing effects (i.e., degree growth effects) in social networks

through an age-sensitive preferential attachment model. In this model, nodes are

iteratively added one by one to a growing network. Upon entering the network, each

new node connects to a suitably chosen set of existing nodes, while the attachment

3

probability for an existing node to get connected depends on both its node degree

and age difference. The impact of the initial links is explored, in terms of accelerating

the node degree snowballing effects. If a new node enters the growing network

with more initial links (a larger degree), it could attract many more links from the

later nodes, and thus, its degree snowballs faster. This dissertation finds that the

initial links are only impactful when neither the node degree nor the age difference

dominates the attachment probability. In that case, the relationship between the

ratio of the additional initial link and the gain ratio of the eventual node degree is

shown to include two stages (linear stage and diminishing return stage). Chapter

3 studies a scalable publish/subscribe system for social networks, which are shown

to have Nested Scale-Free Architectures (NSFAs). The scale-free architecture is a

classic concept, which means that the node degree distribution follows the power-

law distribution. ‘Nested’ indicates that the scale-free architecture is preserved when

low-degree nodes and their associated connections are removed. NSFA’s hierarchy

can be distributedly constructed, and has a better bound than classic hierarchies.

By leveraging the NSFA’s hierarchy, the proposed publish/subscribe system achieves

a competitive tradeoff among the event routing efficiency, system robustness, and

overhead. For a network with |V | nodes, the number of routing hops for the event

deliveries in the proposed system is expected to be O(ln ln |V |). For the topological

information, each node only needs to maintain an overhead with a constant size, O(1).

Node arrival, departure, and failure can be handled within a message complexity of

O(ln ln |V |).

Chapters 4 and 5 focus on the influence propagation applications for the Social

Influence Maximization Problem (SIMP), which is one of the most fundamental

problems for social networks. The SIMP aims to select k initially-influenced seed

users to maximize the number of eventually-influenced users. Under the independent

cascade model, the SIMP has been proved to be NP-hard, monotone, and submodular.

4

Therefore, a naive greedy algorithm that maximizes the marginal gain obtains an

approximation ratio of 1−e−1. Chapter 4 proposes a friend recommendation strategy

with the perspective of social influence maximization. In online social networks,

sometimes people make new friends to maximize their social influences. For example,

business page owners on Facebook want to influence as many people as possible for

commercial advantages. For the system provider, the objective is to recommend a

fixed number of new friends to a given user, such that the given user can maximize

his/her social influence through making new friends. This problem is proved to be NP-

hard by reduction from the SIMP. A greedy friend recommendation algorithm with

an approximation ratio of 1 − e−1 is proposed, based on the submodular property.

It involves a sub-problem of computing the influence spread. Through utilizing the

social network structure, a novel method is proposed to solve this sub-problem with a

tradeoff between the accuracy and the time complexity. Chapter 5 extends the SIMP

by considering the crowd influence. This is because the crowd influence surpasses

the combination of the independent influence from each person in the crowd. This

problem is proved to be NP-hard and monotone, but not submodular. It is proved

to be inapproximable within a ratio of |V |ǫ−1 for any ǫ > 0 in general graphs.

However, since user connections in Online Social Networks (OSNs) are not random,

approximations can be obtained by leveraging the structural properties of OSNs.

The modularity, denoted by ∆, is proposed to measure to what degree this problem

violates the submodularity. Two approximation algorithms are proposed with ratios

of 1
∆+2

and 1− e−1/(∆+1), respectively.

Chapters 6, 7, and 8 focus on the information propagation applications, in terms of

the epidemic propagation, trust propagation, and cascade propagation, respectively.

Chapter 6 describes a social network quarantine application for diseases. Note that

the notion of diseases has been extended from real human diseases to general epidemic

information propagations, such as the rumors in distributed systems. Controlling the

5

spread of a disease is usually done through quarantine, where people that have, or

are suspected to have, a disease are isolated from having interactions with others.

As a tradeoff, normal human interactions are inevitably degraded by the quarantine.

Therefore, a robust quarantine strategy that can eliminate epidemic outbreaks with

minimal isolation costs. This problem is shown to be NP-hard. A bounded algorithm

with an approximation ratio of 2 is proposed, through utilizing the feasibility and

minimality properties. Chapter 7 describes a rating prediction application for OSNs

through trust propagations. In trust-based recommendation systems, if a user is

predicted to have a high rating of a product, then this product is recommended to

that user for shopping potential. Therefore, rating predictions are critical for qualified

recommendations. Based on the fluid dynamics theory, a novel rating prediction

scheme called DynFluid is proposed. The key observation is that the rating of a user

depends on his/her user experience, as well as the ratings of other users. For example,

users may refer to friends’ ratings upon rating a product, themselves. DynFluid

analogizes the rating reference among the users to the fluid flow among containers:

each user is represented by a container; the rating of a user is mapped to be the fluid

temperature in the corresponding container. Two user characteristics, persistency and

persuasiveness, are also incorporated into DynFluid. Chapter 8 describes a cascade

prediction application for OSNs. Information cascades occur when people observe

the actions of others (followees) and then make the same choices that the others have

made (followers). Cascade predictions are important, since they can detect and help

resist bad cascades. This dissertation focuses on photo cascade predictions in Flickr:

given the current cascade and social topology, we want to predict the number of

propagated users at a future time slot. Information cascades include a large amount

of data that crosses both space and time. To reduce prediction time complexities, the

idea is to decompose the spatiotemporal cascade information (a larger size of data)

to user characteristics (a smaller size of data) for subsequent predictions. Space and

6

time matrices are introduced to record the cascade information. This dissertation

introduces a set of new notions, persuasiveness and receptiveness (represented as

two vectors for complexity reduction), to capture characteristics of followees and

followers. Persuasiveness includes followees’ abilities to propagate information, while

receptiveness includes followers’ willingness to accept information. A three-stage

parallel prediction scheme is proposed as follows. (1) We map the spatiotemporal

cascade information to a weighted matrix, in which the weights of space and time

information are tuned. (2) Singular value decomposition is used to extract nodes’

persuasiveness and receptiveness from the weighted matrix. (3) Predictions are

conducted based on nodes’ persuasiveness and receptiveness.

1.4 Contributions

The contributions of this dissertation can be summarized as follows:

• The node degree snowballing effects in social networks are analyzed based on

an age-sensitive preferential attachment model. The impact of the initial links

is explored in terms of the node degree snowballing effects.

• Nested Scale-Free Architectures (NSFAs) are proposed for scale-free social

networks. Nested indicates that the scale-free architecture is preserved when

low-degree nodes and their associated connections are iteratively removed.

• A friend recommendation strategy with the perspective of social influence

maximization is proposed. A greedy friend recommendation algorithm with

an approximation ratio of 1− e−1 is proposed.

• The SIMP with the crowd influence is studied and is proved to be NP-hard,

monotone, non-submodular, and inapproximable in general graphs. However,

since OSNs are not general graphs, two approximation algorithms are proposed.

7

• The problem of eliminating epidemic outbreaks with minimal isolation costs is

explored. It is proved to be NP-hard. A social network quarantine algorithm is

proposed with an approximation ratio of 2.

• A rating prediction scheme, called DynFluid, is proposed based on the fluid

dynamics. DynFluid analogizes the rating reference among the users in OSNs

to the fluid flow among containers.

• A cascade prediction framework is proposed for OSNs. To reduce the time

complexity, the spatiotemporal cascade information (a larger size of data) is

decomposed to user characteristics (a smaller size of data).

8

CHAPTER 2

SNOWBALLING EFFECTS IN

PREFERENTIAL ATTACHMENT: THE

IMPACT OF THE INITIAL LINKS

Chapters 2 and 3 focus on the social network architectures. More specifically, this

chapter studies the node degree snowballing effects (i.e., degree growth effects) in the

age-sensitive preferential attachment model, where nodes are iteratively added one by

one to a growing network. Upon entering the network, each new node connects to a

suitably chosen set of existing nodes, while the attachment probability for an existing

node to get connected depends on both its node degree and age difference. We are

interested in accelerating the node degree snowballing effects through the impact of

the initial links. If a new node enters the growing network with more initial links

(a larger degree), it could attract many more links from the later nodes, and thus,

its degree snowballs faster. We find that the initial links are only impactful when

neither the node degree nor the age difference dominates the attachment probability.

In that case, the relationship between the ratio of the additional initial link and the

gain ratio of the eventual node degree is shown to include two stages (linear stage

and diminishing return stage). Applications of our work involve citation networks and

online social networks. For example, in citation networks, we answer the question that

whether an author can attract additional citations through self-citations. Finally, real

data-driven experiments verify the accuracies of our results, which cast some new light

in real-world growing networks.

9

2.1 Introduction

One of the most impressive recent discoveries in the field of network evolution

is the observation that a number of large growing networks are scale-free [1, 4, 2].

Their key feature is that the node degree distributions have a power-law form [5, 6].

Typical scale-free networks include the citation networks, the online social networks,

the World Wide Web, and so on. The preferential attachment model is one of the

most acknowledged models for explaining the formation of scale-free networks [7]. In

this model, nodes are iteratively added one by one to a growing network (one new

node per time unit). Upon entering the network, each new node connects to a suitably

chosen set of existing nodes, while the attachment probability for an existing node

to get connected is proportional to its degree. Therefore, the existing node with a

large degree is preferentially attached, resulting in the degree snowballing effect (i.e.,

degree growth effect), in which the rich get richer.

We are interested in accelerating such degree snowballing effects through the

impact of the initial links. The initial links of a node are the links set by that node

at the time when it enters the growing network. If a new node enters the growing

network with more initial links, it could attract many more links from the later nodes,

and thus its degree snowballs faster. While the impact of the initial links remains

unexplored, it has important applications as follows. (1) In citation networks, we are

more likely to cite papers with high citations than that with low citations. Then, if

an author cites his/her own papers (self-citation), is it possible for the papers of this

author to gain extra citations at a later time by the snowballing effect? (2) In online

social networks such as Facebook and Twitter, business pages want to attract more

followers, as to propagate the product information for sales. Then, if a business page

makes an advertisement (e.g., Facebook page promotion [8]), how many additional

followers can this business page attract at a later time by the snowballing effect? The

10

α

β

Figure 2.1: The age-sensitive preferential attachment.

impact of the initial links is explored in our study, which is critical for the development

of the network science.

To be more realistic, here we study the degree snowballing effects in age-sensitive

preferential attachment models, where the attachment probability is age-sensitive [9].

For example, in citation networks, we prefer to cite recent papers more than old

papers. Specifically, we consider that the attachment probability for an existing node

to get connected is proportional to dα ·∆t−β. Here, d is the degree of the existing node,

while ∆t is the age difference (also entry time difference) between the new node and

the existing node. α and β (α > 0 and β > 0) are parameters obtained by existing

estimators [10]. The age-sensitive model can reduce to the classic model when α = 1

and β = 0. Then, in terms of the attachment probability, there exists a tradeoff

between the attractiveness brought by the node degree and the repulsiveness brought

by the age difference. Although older nodes have larger degrees, they may not attract

more links from the new nodes, due to the larger age difference. An example is shown

in Fig. 2.1, where the nodes enter the growing network one by one (following their

IDs). Upon entering the network, the node connects to existing nodes according to

the node degree and the age difference. It can be seen that the resulting network

structure of the age-sensitive preferential attachment model depends on α and β (age

difference domination area, transition area, and node degree domination area).

11

The snowballing effects in age-sensitive preferential attachment models are more

intriguing and challenging. With respect to α and β, how does the impact of the

initial links vary? Since those three areas in Fig. 2.1 result in different network

structures, the impact of the initial links should be qualitatively different. Moreover,

is the amount of the initial links important? While a small amount of the initial links

leads to a limited change, a large amount of the initial links may lead to a big change.

Our results and contributions are summarized as follows:

• Percolation phenomena are found in the age-sensitive preferential attachment

models. Boundaries 1 and 2 in Fig. 2.1 are α = β+1.5 and α = β, respectively.

We show that the initial links are not impactful in the node degree domination

area and the age difference domination area.

• We show that the initial links are only impactful in the transition area of

β ≤ α ≤ β + 1.5. In that case, the impact of the initial links is found to have

two stages (linear stage and diminishing return stage). We further show that

the initial links are most impactful, when the corresponding growing network

lies in the “middle” of the transition area.

• Accuracies of our theoretical results are verified. The degree snowballing effects

are observed in the real-world citation network and online social network.

The remainder of this chapter is organized as follows. Section 2.2 is the related

work. In Section 2.3, we set up the model and formulate the problem. In Section 2.4,

the impact of the initial links is analyzed. Section 2.5 includes the experiments.

Section 2.6 shows the conclusion. Proofs are presented in the Appendix.

12

2.2 Related Work

The classic preferential attachment model was proposed in [11] with a well-studied

body of knowledge in the network science. The aging effects have been observed. For

example, Wang et al. [12] studied the predictability of the citation patterns with

respect to different time slots. Zhao et al. [13] explored the multi-scale dynamics

of time-sensitive information propagations. Authors in [9, 14] studied the scale-

free properties in the age-sensitive preferential attachment models, in terms of the

degree distributions and the clustering properties. The aging effects are preliminarily

explored in the citation networks [15], and then are found in the online social networks

[16], the World Wide Web [17], the recommendation systems [18], and so on. These

works mainly focus on the scale-free properties, where the node degree distribution

follows power-law form. In contrast, we explore the degree snowballing effects in

growing networks, which are completely novel.

The other existing findings that are highly related to the snowballing effects

include the rich-get-richer phenomenon, the “Matthew effect” [19], and the cumulative

advantage [20]. Although they have been empirically confirmed for a long time

with respect to the economic market, quantitative studies have not been conducted

for the citation networks and the online social networks. For example, Kumar et

al. [21] studied the equilibrium states of two-sided market evolution through an

empirical analysis on the cumulative capital advantage. Braha et al. [22] simulated

the corporate competition in the preferential attachment model with respect to the

snowball effect. Kas et al. [23] studied the structures and statistics of citation

networks. However, they did not consider the impact of the initial links, which is

explored in this chapter.

13

2.3 Model and Problem Formulation

2.3.1 Preferential Attachment Model

In the preferential attachment model [7], nodes are iteratively added one by one

to a growing network (one new node per time unit). The node added at the time s is

denoted as Ns, while the current time is denoted as t (t ≥ s). The age of a node is its

existing time in the growing network, i.e., the age of the nodeNs is t−s. Upon entering

the network, each new node connects to a suitably chosen set of existing nodes, while

the attachment probability for an existing node to get connected is proportional to

dα · ∆t−β. Here, d is the degree of the existing node, while ∆t is the age difference

(also entry time difference) between the new node and the existing node. α and β

(α > 0 and β > 0) are parameters obtained by existing estimators [10]. The initial

links of a node are the links set by that node at the time when it enters the growing

network. We assume that each new node sets m new links to the existing nodes.

The links are directional, while the node degree is the summation of its in-degree and

out-degree. Let d(s, t) denote the expected degree of the node s at the time t (t ≥ s),

while the initialization condition is d(s, s) = m.

Since an existing node will get attached by later nodes, the degree of an existing

node snowballs with respect to the time. However, in terms of the snowballing speed,

there exists a tradeoff between the attractiveness brought by the node degree (with

a larger α being more attractive) and the repulsiveness brought by the age difference

(with a larger β being more repulsive). Although older nodes have larger degrees,

they may not attract more links from the new nodes, due to the larger age differences.

As previously shown in Fig. 2.1, the resulting network structure of the age-sensitive

preferential attachment model depends on α and β (age difference domination area,

transition area, and node degree domination area).

14

2.3.2 Problem Formulation

This chapter studies the impact of the initial links in the age-sensitive preferential

attachment models. While a normal node enters the growing network with only

m links, we focus on a particular node that enters the network with additional m′

links (m + m′ links in total), as to observe the impact of the initial links. Since a

larger degree means a larger attachment probability, the additional initial links can

accelerate the degree snowballing effects for the nodes in the growing network. Our

study has important applications as follows.

• In citation networks, we are more likely to cite papers with a high number

citations than that with a low number of citations. Then, if an author cites

his/her own papers (self-citation), is it possible for the papers of this author to

gain extra citations at a later time? In this scenario, m and m′ represent the

average paper citations and the number of self-citations, respectively.

• In online social networks such as Facebook and Twitter, business pages want to

attract more followers, as to propagate the product information for sales. Then,

if a business page makes an advertisement (e.g., Facebook page promotion [8]),

how many additional followers can this business page attract at a later time by

the snowballing effect? Here, m′ can be interpreted as the number of followers

attracted by the advertisement.

For the simplicity of the following analysis, we define the initial rate (ri) as the ratio

of the additional initial links to the normal initial links (i.e., ri = m′/m). A larger

initial rate means that the corresponding node has a larger initial degree.

If the node Ns enters the network with an additional m′ links, then we use d′(s, t)

to denote its expected degree at the time t (t ≥ s). Its initialization condition is

d′(s, s) = m+m′. We are interested in the ratio of the node degree gain brought by

the additional initial links, which is defined as the gain rate (denoted by rg). In other

15

words, we have:

rg =
d′(s, t)− d(s, t)

d(s, t)
(2.3-1)

The objective of this chapter is to study the relationship between the initial rate

and the gain rate, which represents the impact of the initial links in the growing

networks. A larger initial rate should bring a non-smaller gain rate. We also want

to study how this relationship changes with respect to the parameters α, β, s, and t.

Note that, α and β indicate the attractiveness brought by the node degree and the

repulsiveness brought by the age difference, respectively. Therefore, the values of α

and β are also important for the initial links to be impactful in the corresponding

growing network. Meanwhile, s indicates the time for introducing the additional

initial links. Our analyses are shown in the next section.

2.4 Snowballing Effects

This section studies the relationship between the initial rate and the gain rate, as

to understand the impact of the initial links. First, we review the classic preferential

attachment model. Then, we look into the snowballing effects within the node degree

domination area and the age difference domination area of the age-sensitive model,

respectively. Finally, we show the snowballing effects within the transition area.

2.4.1 Classic Preferential Attachment

In the classic preferential attachment model [7], the attachment probability for

an existing node to get connected is only proportional to its degree (α = 1 and

β = 0). Let us start with the case for a normal node that enters the network with m

links. Then, when a new node enters the network at the time t + 1, the attachment

16

probability for the node Ns to get connected is:

d(s, t)
∑t

s=1 d(s, t)
=
d(s, t)

2mt
(2.4-2)

The denominator
∑t

s=1 d(s, t) is the total degree, which is the normalization factor

in Eq. 2.4-2. The total degree is 2mt, since there are t nodes in the network and each

node has brought m links. We assume that the attachment processes for the m links

are independent of each other, and thus the expected degree gain of the node Ns is

m× d(s,t)
2mt

= d(s,t)
2t

. In other words, we have the following equation:

d(s, t+ 1) = d(s, t) +m× d(s, t)

2mt
=

2t+ 1

2t
d(s, t) (2.4-3)

If we do the recursion in Eq. 2.4-3, then we can get:

d(s, t) =
2t− 1

2t− 2
× 2t− 3

2t− 4
× · · · × 2s+ 1

2s
× d(s, s)

= exp
{

ln
2t− 1

2t− 2
+ · · ·+ ln

2s+ 1

2s

}

× d(s, s)

≈ exp
{ 1

2t− 2
+ · · ·+ 1

2s

}

× d(s, s)

≈ exp
{1

2
ln
t

s

}

× d(s, s) = m

√

t

s
(2.4-4)

In Eq. 2.4-4, we have used the approximations of ln 2s+1
2s
≈ 1

2s
and

∑t−1
x=s

1
2x
≈

∫ t

s
1
2x
dx.

Eq. 2.4-4 implies that the node degree has a square-root growth with respect to the

ratio of the current time to the node entry time. Similar to Eq. 2.4-4, if the node Ns

enters the network with an additional m′ links, we can get:

d′(s, t) ≈ exp
{1

2
ln
t

s

}

× d′(s, s) = (m+m′)

√

t

s
(2.4-5)

Eqs. 2.4-4 and 2.4-5 mean that the gain rate equals the initial rate (i.e., rg = ri) in

the classic preferential attachment model. Here we have assumed that the number

17

of additional initial links is small (i.e., m′ ≪ 2mt). However, the relationship of

rg = ri is uncommon in real-world growing networks, since the prerequisite that the

attachment probability is only proportional to the degree may not be true.

In the following three subsections, we will discuss the snowballing effects in the

age-sensitive preferential attachment model, where the attachment probability is

determined by both the node degree and the age difference. As previously mentioned,

the attachment probability is proportional to dα · ∆t−β. The tradeoff between the

attractiveness brought by the node degree and the repulsiveness brought by the age

difference divides the resulting network structure into three areas (age difference

domination area, node degree domination area, and transition area). Each of the

three following subsections corresponds to one of those three areas.

2.4.2 Age Difference Domination Area

This subsection studies the snowballing effects in the age-sensitive preferential

attachment model, in which the age difference dominates the attachment probability.

In other words, the attractiveness brought by the node degree is much smaller than

the repulsiveness brought by the age difference. To study the snowballing effects, we

first need to clarify the boundary of this area, as shown in the following theorem:

Theorem 2.1. When α < β, the first node will attract a finite number of links, with

respect to the network growth.

The proof of Theorem 2.1 is shown in Appendix 2.7.1. The basic idea of the proof

is to show that, when α < β, the first node is much less attractive than a younger node

for a new node to attach. The insight behind Theorem 2.1 is that the age difference

dominates the attachment probability, where the new nodes are more intended to link

to the younger nodes. At this time, even if an old node has a very high degree, it

will not be further attached to by the new nodes. The resulting network structure

18

for this case is illustrated in Fig. 2.2(a), where the nodes connect to each other one

by one following their entry times. As for the snowballing effects, we have:

Theorem 2.2. When α < β, for the node Ns that enters the growing network at the

time s, it needs at least Ω((t− s)β/α) additional initial links to keep its attractiveness

for nodes that enter the growing network at the time t.

The proof of Theorem 2.2 is shown in Appendix 2.7.2. The basic idea of the proof

is to show that, when α < β, the node Ns needs many additional initial links to

resist the dominated repulsiveness brought by the age difference. The insight behind

Theorem 2.2 is that the initial links in the growing network with α < β are not

impactful, since the initial links are wasted on resisting the dominated aging effects.

In other words, the gain rate is close to zero, unless we have a very large initial rate

(basically impossible for real-world growing networks).

2.4.3 Node Degree Domination Area

This subsection studies the snowballing effects in the age-sensitive preferential

attachment model, in which the node degree dominates the attachment probability.

In other words, the attractiveness brought by the node degree is much larger than

the repulsiveness brought by the age difference. Similarly, we first need to clarify the

boundary of this area, as shown in the following theorem:

Theorem 2.3. When α > β + 1.5, the first node will attract an infinite number of

links, with respect to the network growth. The first node N1 has a degree of Θ(t).

The proof of Theorem 2.3 is shown in Appendix 2.7.3. The basic idea of the proof

is to show that, when α > β + 1.5, the first node is much more attractive than the

remaining nodes for a new node to attach. The insight behind Theorem 2.3 is that the

degree dominates the attachment probability, where the new nodes are more likely to

attach to the oldest node. At this time, younger nodes will not be further attached

19

(a) α < β (b) β ≤ α ≤ β + 1.5 (c) α > β + 1.5

Figure 2.2: The percolation phenomena in the age-sensitive preferential attachment
(m = 1 and t = 10). The ID of a node is its entry time.

by the new nodes, while the first node has a degree of Θ(t). In other words, the first

node monopolizes the majority of the links. The resulting network structure for this

case is illustrated in Fig. 2.2(c). Note that, the classic model with α = 1 and β = 0

lies under the boundary of α = β+1.5, which has a qualitative difference with models

in the node degree domination area. The first node only has a degree of Θ(
√
t) when

α = 1 and β = 0. As for the snowballing effects, we have:

Theorem 2.4. When α > β+1.5, for the node Ns that enters the growing network at

the time s, it needs at least Ω(sα−β) additional initial links to keep its attractiveness

for later nodes.

The proof of Theorem 2.4 is shown in Appendix 2.7.4. The basic idea of the proof

is to show that, when α > β+1.5, the node Ns needs many additional initial links to

compete with the node N1, in terms of attracting the new attachments. Theorem 2.3

states that the first node N1 has a degree of Θ(s) at the time s. The insight behind

Theorem 2.4 is that a large number of additional initial links is needed to break the

link monopoly of the node N1. In other words, the gain rate is also close to zero,

unless a very large initial rate is used. Therefore, the initial links in the growing

network with α > β + 1.5 are not impactful on the eventual node degree, the result

of which is similar to that for the age difference domination area.

20

2.4.4 Transition Area

In the previous two subsections, Theorems 2.1 and 2.3 show that α = β and

α = β + 1.5 are two boundaries for the percolation phenomena in the age-sensitive

preferential attachment models. When α < β or α > β + 1.5, the resulting network

structure turns out to be simplex. The resulting network structure for the transition

area of β ≤ α ≤ β + 1.5 is more complex. An example for the transition area is

illustrated in Fig. 2.2(b). Meanwhile, Theorems 2.2 and 2.4 show that the initial

links are not impactful in the age difference domination area and the node degree

domination area, since the initial links are wasted to resist the dominated power.

This subsection discusses the snowballing effects in the transition area of β ≤ α ≤

β + 1.5, based on [9]. Let us start with the case for a normal node that enters the

network with m links. Similar to Eq. 2.4-3, we have:

d(s, t+ 1) = d(s, t) +m× d(s, t)α(t− s)−β
∑t

s=1 d(s, t)
α(t− s)−β

(2.4-6)

When α = 1 and β = 0, Eq. 2.4-6 is reduced to Eq. 2.4-3 (the classic model). Eq. 2.4-6

can also be written in the continuous form:

∂d(s, t)

∂t
= m× d(s, t)α(t− s)−β

∫ t

1
d(s, t)α(t− s)−βds

(2.4-7)

Since Eq. 2.4-7 is very complex, we consider the node degree to be scaling (d(s, t) ≡

d(s/t)) [9]. In other words, the node degree is considered as a function of s/t . For

notation simplicity, we set ξ = s/t. Then, Eq. 2.4-7 can be rewritten as:

1

d(ξ)α
× dd(ξ)

dξ
=

−1
ξ(1− ξ)β

m
∫ 1

0
d(ξ)α(1− ξ)−βdξ

(2.4-8)

21

If we do the integral in Eq. 2.4-8, we can get:

d(ξ)1−α − d(1)1−α

1− α
=

m
∫ ξ

1
−1

ξ(1−ξ)β
dξ

∫ 1

0
d(ξ)α(1− ξ)−βdξ

(2.4-9)

When α → 1 and β = 0, Eq. 2.4-9 reduces to ln d(ξ)
d(1)

= −1
2
ln ξ that is consistent

with Eq. 2.4-4, i.e., d(s, t) = m
√

t/s. This is because d(ξ)1−α ≈ e(1−α) ln d(ξ) ≈

1 + (1− α) ln d(ξ), when α→ 1. The result in Eq. 2.4-9 can be rewritten as:

d(ξ) =

[

m1−α +
(1− α)m

∫ ξ

1
−1

ξ(1−ξ)β
dξ

∫ 1

0
d(ξ)α(1− ξ)−βdξ

]
1

1−α

≈ m× [1 + (1− α)C(α, β, ξ)]
1

1−α (2.4-10)

Eq. 2.4-10 is approximated by using d(ξ) = mξ−1/2 to calculate the normalization

factor. This approximation is feasible, since it can represent the degree distribution

in the transition area. Meanwhile, the C(α, β, ξ) in Eq. 2.4-10 is:

C(α, β, ξ) =

∫ ξ

1
−1

ξ(1−ξ)β
dξ

∫ 1

0
ξ−α/2(1− ξ)−βdξ

(2.4-11)

Similar to Eq. 2.4-10, if the node Ns enters the network with m′ additional links,

then we can get:

d′(ξ) =

[

(m+m′)1−α +
m

∫ ξ

1
−1

ξ(1−ξ)β
dξ

∫ 1

0
d(ξ)α(1− ξ)−βdξ

]
1

1−α

≈ m× [(1 +
m′

m
)1−α + (1− α)C(α, β, ξ)]

1
1−α (2.4-12)

In Eq. 2.4-12, we have assumed that m′ is small enough with respect to the

normalization factor of
∫ 1

0
d(ξ)α(1 − ξ)−βdξ. Combining Eqs. 2.4-10, 2.4-11, and

22

2.4-12, the relationship between the initial rate and the gain rate can be obtained:

rg =

[

(1+ri)
1−α+(1−α)C(α, β, ξ)

1 + (1−α)C(α, β, ξ)

]
1

1−α

− 1 (2.4-13)

Note that, C(α, β, ξ) can be regarded as a constant with respect to ri. Meanwhile, we

have C(1, 0, ξ) = 1
2
ln ξ. Further analysis on Eq. 2.4-13 shows the following theorem:

Theorem 2.5. When |(1 − α)C(α, β, ξ)| ≫ 1, the gain rate is close to zero (i.e.,

rg ≈ 0). When |(1 − α)C(α, β, ξ)| ≪ 1, the relationship between the initial rate and

the gain rate satisfies rg ≈ (1 + ri)e
−C(α,β,ξ) − 1.

The proof of Theorem 2.5 is shown in Appendix 2.7.5. Theorem 2.5 shows three

intriguing properties for the impact of the initial links, while the first property is that

there is a prerequisite for the initial links to be impactful. This threshold results from

the fact that either the dominated attractiveness brought by the node degree or the

dominated repulsiveness brought by the age difference can weaken the impact of the

initial links. This is similar to the case in the node degree domination area or the age

difference domination area. If this threshold is satisfied, then the gain rate increases

linearly with respect to the initial rate. However, note that Theorem 2.5 is derived

under the assumption thatm′ is small enough with respect to the normalization factor

in Eq. 2.4-7. If the initial rate is very large (ri ∈ Ω(
∫ 1

0
ξ−α/2(1 − ξ)−βdξ)), the gain

rate has a diminishing return effect with respect to the initial rate. This is because the

total links in the network are limited: A node cannot attract more than 2mt links,

no matter how many additional initial links are given. Therefore, the relationship

between rg and ri has two stages as shown in Fig. 2.3 (denoted as the linear stage

and the diminishing return stage).

The second property revealed by Eq. 2.4-13 is that the initial links are most

impactful when the attractiveness brought by the node degree and the repulsiveness

brought by the age difference cancel each other out. This is because the threshold of

23

∫ ε-α/2(1- ε)1-βdε

linear

stage

rg

ri

diminishing

return stage

Figure 2.3: The two-stage relationship between the gain rate (rg) and the initial rate
(ri), when |(1− α)C(α, β, ξ)| ≪ 1.

|(1−α)C(α, β, ξ)| will be small in such a case. The first node will not monopolize the

majority of the links, while the aging effect will not prevent the new entering node

from connecting to old nodes. The links from new entering nodes in the growing

network will evenly connect to both the old and the young nodes. Actually, the

classic model with α = 1 and β = 0 is such a case (as previously shown in Eq. 2.4-5),

where the gain rate is strictly linear with respect to the initial rate. This is because

the threshold of |(1 − α)C(α, β, ξ)| becomes zero for α = 1 and β = 0. Moreover,

this threshold can be used to estimate whether the initial links are impactful in the

corresponding growing network or not. The initial links are most impactful, when

the corresponding growing network lies in the “middle” of the transition area.

The third property revealed by Eq. 2.4-13 is on the impact of the time period. Note

that −C(α, β, ξ) decreases monotonously with respect to ξ (ξ = s/t). Meanwhile, the

slope of the linear stage is approximately e−C(α,β,ξ) (a smaller ξ brings a larger slope).

The insight is that the initial links become more impactful with respect to a longer

time period (the snowballing effect becomes more significant). Further explorations

on the relationship between C(α, β, ξ) and ξ (representing the impact of the time)

will be our future work.

24

2.5 Experiments

This section first sets up the age-sensitive preferential attachment model to verify

the accuracies of our theoretical results. Then, the snowballing effects are studied

in several real-network datasets. The experimental results are shown from different

perspectives to provide insightful conclusions.

2.5.1 Accuracy Verifications on Theoretical Results

This subsection verifies the accuracy of our theoretical results for the age-

sensitive preferential attachment model, which has a duration of 1,000 time slots

(i.e., t =1,000). Upon each time slot, one new node will enter the network with 10

new connections to the existing nodes (i.e., m = 10). First, we check the expected

node degree distributions with respect to the node entry time s. The results, which

are averaged over 1,000 times, are shown in Fig. 2.4 as a log-log plot. Figs. 2.4(a)

and 2.4(b) show two scenarios with different values of α and β. It can be seen that,

when α = β + 1.5, the first node attracts almost all the new links from the later

nodes (there are m × t =10,000 links in total). At this time, the expected node

degree decays quickly with respect to the node entry time, due to the overpowered

attractiveness brought by the node degree. On the other hand, when α = β, all the

nodes tend to have a degree of O(m), since the overpowered repulsiveness brought

by the age difference only enables new nodes to connect to the most recent nodes. It

can also be seen that, when neither the node degree nor the age difference dominates

the attachment probability (β ≤ α ≤ β + 1.5), the resulting network structure is

more complex, due to the fact that the new nodes will connect to both old and young

existing nodes. The experiment verifies the existence of the percolation phenomena

in the age-sensitive preferential attachment model.

The snowballing effects in the transition area are also experimentally studied.

25

α = 1.5, β = 0.0

α = 1.0, β = 0.0

α = 1.0, β = 1.0

(a) Scenario 1.

α = 2.5, β = 1.0

α = 1.5, β = 1.0

α = 1.5, β = 1.5

(b) Scenario 2.

Figure 2.4: The node degree distributions with respect to the node entry time.

α = 3.0, β = 2.5

α = 2.5, β = 2.0

α = 2.0, β = 1.5

(a) s/t = 0.5.

s/t = 0.25
s/t = 0.5
s/t = 0.75

(b) α = 2.5, β = 2.0.

Figure 2.5: The node degree snowballing effects.

Fig. 2.5(a) shows the relationship between the initial rate and the gain rate for the

node that enters the network at the 500th time slot (i.e., s/t = 0.5), under three

different settings of α and β. Each of the curves in Fig. 2.5(a) clearly has two stages

(linear stage and diminishing return stage) as previously analyzed. Then, Fig. 2.5(b)

shows the impact of the time, under α = 2.5 and β = 2.0. It can be seen that

a smaller s/t leads to a larger gain rate, since more nodes will enter the network

after the node Ns. These experimental results confirm that our theoretical results in

Eq. 2.4-13 are accurate. In the following two subsections, we will further verify the

node degree snowballing effects in real data-driven experiments (the citation network

and the online social network).

26

2.5.2 Citation Network

This subsection conducts real data-driven experiments to verify the snowballing

effects in citation networks. Citation networks are classic growing networks, where

papers serve as nodes in the network. New papers enter the network as time goes

by. If a paper i cites a paper j, then the network contains a directed link from i

to j. It is common sense that authors generally prefer to cite papers with a high

number of citations (compared to papers with a low number of citations), as well as

recent papers (compared to old papers). Currently, it is well-known that the classic

preferential attachment model can explain the formation of citation networks [7].

Our experiments use the real dataset [24] of the Arxiv high energy physics

phenomenology citation network (denoted as cit-HepPh). This dataset covers the

papers published over the period from January 1993 to April 2003. 34,546 papers

(nodes) and 421,578 citations (links) are involved in this dataset. On average, a

new paper enters the growing network every 0.12 days (i.e., the time unit for adding

one new node to the growing network). The relationships between the attachment

probability and the node degree (or age difference) are shown in Fig. 2.6. It verifies

the feasibility of the assumption that the attachment probability is proportional to

dα · ∆t−β. Then, we use the maximum likelihood to estimate the exponents α and

β in the attachment probability. On average, we get α = 0.91 and β = 1.2 × 10−3

as the exponents in the attachment probability. β is small, due to the ground truth

that we sometimes cite a paper from 10 years ago (more than 30,000 time units).

To study the snowballing effects, papers published in the years 1995 and 1998

are analyzed. If a paper has more than an average number of citations in its first

publication year, the additional portion is regarded as its initial rate. The final

number of citations of that paper (in the year 2003) and the average number of

citations are used to calculate the gain rate of that paper. The result is shown in

27

[0,
20
)

[20
,40

)

[40
,60

)

[60
,80

)

[80
,10

0)

[10
0,1

20
)

[12
0,1

40
)

[14
0,1

60
)

(a) The relationship between attachment
probability and node degree.

(b) The relationship between attachment
probability and age difference.

Figure 2.6: The age-sensitive preferential attachment in cit-HepPh.

(a) Papers published in 1995. (b) Papers published in 1998.

Figure 2.7: The node degree snowballing effects in cit-HepPh.

Fig. 2.7, where we have α = 0.91 and β = 1.2 × 10−3. It can be seen that the

relationship between the initial rate and the gain rate has two stages in Fig. 2.7 (i.e.,

real data result). It is consistent with Eq. 2.4-13, which is denoted as the theoretical

result in Fig. 2.7. It can also be seen that, the initial links are more impactful for

earlier papers. For the same initial rates, papers published in 1995 have higher gain

rates than did those in 1998.

2.5.3 Online Social Network

This subsection conducts real data-driven experiments to verify the snowballing

effects in the online social networks, which are platforms for users to build social

28

[0,
20
)

[20
,40

)

[40
,60

)

[60
,80

)

[80
,10

0)

[10
0,1

20
)

[12
0,1

40
)

[14
0,1

60
)

(a) The relationship between attachment
probability and node degree.

(b) The relationship between attachment
probability and age difference.

Figure 2.8: The age-sensitive preferential attachment in Flickr.

(a) Users entered on Monday. (b) Users entered on Wednesday.

Figure 2.9: The node degree snowballing effects in Flickr.

relations among other users. Users in the network share news, stories, and photos

with each other. Social network sites are web-based services that allow individuals

to create a public profile, to create a list of users with whom to share connections,

and view and cross the connections within the system. Online social networks are

growing networks, where users (i.e. nodes) enter the network one by one. If a new

user i follows an existing user j, then the network contains a directed link from i

to j. Users are more likely to follow popular users with high degrees, as well as

contemporary users with smaller age differences. It is well-known that the classic

preferential attachment model can also be applied to the online social networks [7].

In the experiments, we use the Flickr dataset [25]. Flickr is an online social network

29

for sharing photos. Key features of Flickr not initially present are tags, marking

photos as favorites, group photo pools, and interestingness, for which a patent is

pending. This dataset covers all new users in the period from November 2006 to

May 2007, including 167,527 users (nodes) and 526,874 follower-followee relationships

(links). On average, a new user enters the growing network every 0.04 days (i.e., the

time unit for adding one new node to the growing network). The relationships between

the attachment probability and the node degree (or age difference) are shown in Fig.

2.8. It again verifies the feasibility of the assumption that the attachment probability

is proportional to dα ·∆t−β. We also use the maximum likelihood to estimate α and

β. On average, it turns out that we have α = 0.89 and β = 1.3×10−4 in this dataset.

Note that β is also small in this dataset, due to the ground truth that new users

sometimes follow old users (one month is about 750 time units).

To study the snowballing effects, we focus on the users who entered the network

in the first week of April. These users are selected, since they have complete records

in the dataset (while the records of some other users may be missing). If a user

has above average connections in his/her first day, the additional portion is regarded

as its initial rate. Meanwhile, the final number of connections of that user (at the

end of this week) and the average number of connections are used to calculate the

gain rate of that user. The result is shown in Fig. 2.9, where we have α = 0.89 and

β = 1.3 × 10−4. It can be seen that the relationship between the initial rate and

the gain rate should also have two stages, as shown in Fig. 2.9 (i.e., real data result).

Although our theoretical result in Eq. 2.4-13 has a little overestimation in Fig. 2.9(b),

it is basically accurate for this dataset. The initial links are also more impactful for

earlier users in this dataset. For the same initial rates, users who entered on Monday

have higher gain rates than do those who entered on Wednesday.

30

2.6 Summary

This chapter studies the node degree snowballing effects in the age-sensitive

preferential attachment model, where the attachment probability depends on both

the node degree and the age difference. We are interested in accelerating such degree

snowballing effects through the impact of the initial links. Our study answers the

question ‘how many additional citations can an author obtain through self-citations?’

The percolation phenomena are found in the age-sensitive preferential attachment

model: the initial links are only impactful in the transition area, where neither the

node degree nor the age difference dominates the attachment probability. In that

case, we show that the relationship between the initial rate and the gain rate has

two stages (linear stage and diminishing return stage). Real data-driven experiments

in the citation network and the online social network verify the accuracies of our

theoretical results, which cast some new light on the impact of the initial links in

real-world growing networks.

2.7 Appendix

2.7.1 Proof of Theorem 2.1

The basic idea of the proof is that, when the node Nt+1 enters the network, its

probability of linking to the node N1 is definitely smaller than that to the node Nt.

The key observation is thatN1 has at mostmt links at the time t (i.e., it attracts all the

links of the later nodes). While the linking probability from Nt+1 to Nt is proportional

to dα ·∆t−β = mα, the linking probability from Nt+1 to N1 is asymptotically bounded

by dα · ∆t−β = (mt)α · t−β = mα · tα−β. If α < β, then Nt+1 is much more likely to

link to Nt, instead of N1 (mα ≫ mα · tα−β when t is large). This implies that N1 is

no longer able to attract new links. N1 attracts a finite number of links.

31

2.7.2 Proof of Theorem 2.2

The basic idea of the proof is that, when α < β, the node Ns needs Ω((t− s)β/α)

additional links to resist the dominated repulsiveness brought by the age difference.

The key observation is that the node Ns can attract more links if we ignore the

existences of all the nodes older than Ns. In other words, the upper bound for

the degree of the node Ns is the case, where it is regarded as the first node in the

growing network. Similar to the proof of Theorem 2.1, let us focus on the attachment

probability for the node that enters the growing network at the time t. While the

linking probability from Nt to Nt−1 is proportional to dα · ∆t−β = mα, the linking

probability from Nt to Ns is at most proportional to dα ·∆t−β = dα ·(t−s)−β. To keep

the attractiveness of the node Ns, its degree should be larger than m(t− s)β/α, which

can only be brought by its additional initial links. Therefore, at least Ω((t − s)β/α)

additional links are needed.

2.7.3 Proof of Theorem 2.3

By induction, we now prove that, when α > β + 1.5, the node N1 has a degree of

at least c · t at the time t. Here, c is a certain constant. This declaration is true, when

t = 1. Suppose this declaration holds when t = T , and then the node NT+1 enters the

growing network. Note that, the linking probability from NT+1 to N1 is proportional

to dα ·∆t−β ≥ cα ·T α−β. Meanwhile, the linking probability from NT+1 to all the other

nodes (i.e., N2, N3, ..., NT) is at most proportional to (2m−c)α ·
∫ T−1

1
∆t−βd∆t. This

upper bound is obtained by using the average degree of (2m− c) to approximate this

linking probability, since older nodes should have larger degrees than younger nodes.

When β ≥ 0, we have
∫ T−1

1
∆t−βd∆t < T . Therefore, the condition of α > β + 1.5

indicates T α−β ≫ T , meaning the node N1 attracts the most links of the node NT+1.

If we set c ≤ m/2, then the node N1 has a degree of at least c ·(T+1), when t = T+1.

32

By induction, the node N1 has a degree of at least c ·t at the time t, when α > β+1.5.

2.7.4 Proof of Theorem 2.4

When α > β + 1.5, Theorem 2.3 states that the first node N1 has a degree of

Θ(s), when the node Ns enters the growing network at the time s. Since N1 has a

very large degree, Ns needs some additional initial links to compete with N1 in the

following attachment process. Let us consider the case when the node Ns+1 enters the

network at the time s+1. The linking probability from Ns+1 to N1 is proportional to

dα ·∆t−β ∈ Θ(sα−β). Therefore, the node Ns needs at least Ω(s
α−β) additional initial

links to break the link monopoly of N1. Otherwise, Ns cannot attract the new links.

2.7.5 Proof of Theorem 2.5

When |(1− α)C(α, β, ξ)| ≫ 1, Eq. 2.4-13 can be rewritten as:

rg =

[

(1 + ri)
1−α + (1− α)C(α, β, ξ)

1 + (1− α)C(α, β, ξ)

]
1

1−α

− 1

≈
[

(1− α)C(α, β, ξ)

(1− α)C(α, β, ξ)

]
1

1−α

− 1 = 1− 1 = 0 (2.7-14)

When |(1− α)C(α, β, ξ)| ≪ 1, Eq. 2.4-13 can be rewritten as:

rg =

[

(1 + ri)
1−α + (1− α)C(α, β, ξ)

1 + (1− α)C(α, β, ξ)

]
1

1−α

− 1 ≈
[

(1 + ri)
1−α

1 + (1− α)C(α, β, ξ)

]
1

1−α

− 1

≈
[

(1 + ri)
1−α

e(1−α)C(α,β,ξ)

]
1

1−α

− 1 = (1 + ri)e
−C(α,β,ξ) − 1 (2.7-15)

The above two equations complete the proof of Theorem 2.5.

33

CHAPTER 3

NSFA: NESTED SCALE-FREE

ARCHITECTURE FOR SCALABLE

PUBLISH/SUBSCRIBE OVER P2P

NETWORKS

Chapters 2 and 3 focus on the social network architectures. More specifically, this

chapter proposes a publish/subscribe system based on unstructured P2P networks,

which are used for content distributions in online social networks. The network is

shown to have Nested Scale-Free Architectures (NSFAs). The scale-free architecture

is a classic concept, which means that the peer degree distribution follows power-

law. ‘Nested’ indicates that the scale-free architecture is preserved when low-degree

peers and their associated connections are removed. We find that NSFA’s hierarchy

can be distributedly constructed, and has a better bound than classic hierarchies. By

leveraging the NSFA’s hierarchy, our publish/subscribe system achieves a competitive

tradeoff among the event routing efficiency, system robustness, and overhead. For an

unstructured P2P network with |V | peers, the number of routing hops for the event

deliveries in our system is expected to be O(ln ln |V |). For the topological information,

each peer only needs to maintain an overhead with a constant size, O(1). Peer arrival,

departure, and failure can be handled within a message complexity of O(ln ln |V |).

Finally, real data-driven experiments demonstrate the efficiency and effectiveness of

the NSFA-based publish/subscribe system.

34

3.1 Introduction

Publish/Subscribe (pub/sub) systems are appealing abstractions for the Content

Delivery Networks (CDNs). A pub/sub system involves three roles: subscribers,

publishers, and brokers. Subscribers express their interests through subscriptions

with the system, in order to receive events matching their subscriptions. Events are

issued by publishers and are delivered to subscribers via brokers. Real-world pub/sub

system applications include Yahoo Message Broker [26] which is integrated with web

applications, Global Data Synchronization Network [27] that exchanges supply chain

information among retailers, and SuperMontage [28] that disseminates financial data

and orders among traders.

Most existing large-scale pub/sub systems are implemented as overlay networks

on the Internet. They require hundreds of servers placed at strategic points across

the globe to handle the load, as well as trained professionals to monitor these

servers. For example, the infrastructure of Akamai’s pub/sub system includes 56,000

dedicated servers among 950 networks in 70 countries [28]. However, such expensive

infrastructure costs are not always feasible for many large corporations. Moreover,

the scalabilities of these systems are inherently questionable, because all the events

are handled on given servers in a centralized manner. As a result, building pub/sub

systems on Peer-to-Peer (P2P) networks becomes an alternative option [29]. P2P

networks are inexpensive and highly scalable, since all the peers contribute their

machines to distributedly increase the computational and storage resources. In P2P-

based pub/sub systems, peers are used to not only store events, but also route events

to other peers with matching subscriptions.

P2P networks can be roughly classified as unstructured and structured.

Unstructured P2P networks, such as Gnutella, Kazaa, and Bitcoin, are formed

by peers that “randomly” connect to each other. Since there is not a globally-

35

(a) P2P network with all peers. (b) Top 50% peers.

Figure 3.1: NSFA in the Gnutella dataset.

imposed structure on peers, unstructured P2P-based pub/sub systems have very low

construction overheads and are highly robust in terms of frequent churns (peer arrivals

and departures). However, routing events from publishers to subscribers becomes

extremely inefficient due to the lack of structure. For example, Sub-2-Sub [30] uses

a flooding-based routing strategy that leads to a high amount of network traffic.

For another example, SIENA [31] cannot provide a bounded routing performance,

in terms of the routing hops and overheads. On the other hand, structured P2P

networks, such as Chord, P-Grid, and Pastry, organize peers into specific topologies

through Distributed Hash Tables (DHTs), and thus enable high-performance routings

for pub/sub systems. However, as a tradeoff, structured P2P-based pub/sub systems

have considerable construction overheads and are vulnerable to churns, due to the

maintenance of large-size DHTs. For example, handling one peer churn in Terpstra

[32] and PastryStrings [33] takes logarithmic messages with respect to the number of

peers in the system.

Recent advances in network science show that peer connections in unstructured

P2P networks are not truly random [34]. We propose that they share a Nested

Scale-Free Architecture (NSFA). The scale-free architecture is a classic concept [34],

36

meaning that the peer degree distribution follows power-law. In such an architecture,

a majority of the periphery peers are inactive with a small number of connections,

while a minority of the core peers are active with a large number of connections.

‘Nested’ indicates that the scale-free architecture is preserved, when low-degree peers

and their associated connections are removed. An example is shown in Fig. 3.1, where

peers with more connections are shown as larger nodes. Fig. 3.1(a) depicts the largest

strongly connected component formed by peers whose IDs are smaller than 500 in

the Gnutella dataset [35]. It is scale-free. Then, we iteratively remove the peer with

the smallest number of connections, until half of the peers remain. Fig. 3.1(b) shows

the resulting network, which maintains scale-free by the nested property. We find

that NSFA’s hierarchy can be distributedly constructed, and has a better bound than

classic hierarchies [36, 37, 38, 39, 40]. For an unstructured P2P network with |V |

peers, the number of hierarchical levels in NSFA can be bounded by Θ(ln |V |).

By leveraging the NSFA’s hierarchy, this chapter proposes a novel distributed

pub/sub system for unstructured P2P networks. While our system has very low

construction overhead and is highly robust, its event routing efficiency is competitive

with those in structured P2P-based pub/sub systems. Our event routing is

hierarchical, and has two phases: the publisher first uploads the event to the network

core, which in turn downloads the event to the subscriber. For an unstructured

P2P network with |V | peers, the number of routing hops can be O(ln ln |V |) in our

approach. Moreover, instead of using costly DHTs whose sizes scale up with the

number of peers, each peer in the proposed system only needs to keep a constant-size

overhead as the topological information to handle event routings and peer churns.

Peer arrival, departure, and failure can be handled within a message complexity of

O(ln ln |V |). Our pub/sub system outperforms classic systems, in terms of better

bounds of asymptotic performances.

Our main contributions are summarized as follows:

37

• We address a novel architecture of NSFA in unstructured P2P networks. A

distributed labeling scheme is proposed to determine the hierarchical levels in

NSFA.

• Based on NSFA’s hierarchy, we propose a novel pub/sub system, which has low

construction overhead, is highly robust in terms of peer churns, and is efficient

for event routings. Our system performance is well-bounded.

• The state-of-the-art pub/sub systems over P2P networks are surveyed in a

comparative manner with the proposed work, in terms of the event routing

efficiency, system robustness, and overhead.

• Extensive real data-driven experiments on Gnutella and Bitcoin are conducted

to evaluate the proposed pub/sub system. Experimental results are shown from

different perspectives to provide insightful conclusions.

The remainder of this chapter is organized as follows. Section 3.2 formulates the

problem. Section 3.3 presents the NSFA and its hierarchy. Section 3.4 describes the

pub/sub system. Section 3.5 surveys the related works in a comparative manner with

the proposed pub/sub system. Section 3.6 includes experiments. Finally, Section 3.7

concludes this chapter.

3.2 Problem Statement

The objective of this chapter is to build an advanced content-based pub/sub system

for unstructured P2P networks. An unstructured P2P network is modeled by a

directed graph G = (V,E), where V is a set of peers (nodes), and E ⊆ V 2 is a set

of directed connections among the peers (directed edges). The numbers of incoming

and outgoing connections held by a peer are denoted as its indegree and outdegree,

respectively. Each peer may publish events, which are conjunctions of attribute-value

38

pairs. For example, {(temperature, 30), (precipitation, 20)} is an event describing

the weather conditions. Each peer has its own interests. Peers express their interests

through subscriptions with the system, in order to receive interested events matching

their subscriptions. Subscriptions are conjunctions of attribute-operator-value tuples.

For example, {(temperature, <, 40), (precipitation, >, 10)} could be one subscription

of a peer. A peer may have multiple subscriptions. A subscription matches an event

if all the operators in this subscription are satisfied using the corresponding attributes

and values of that event. Peers can also route events to other peers. Each peer can be

a publisher, a subscriber, a broker, or an arbitrary combination of these three roles.

To evaluate the system performance, we focus on three metrics: event routing

efficiency, robustness, and overhead. Event routing efficiency refers to the number of

routing hops in event deliveries. Robustness refers to the number of messages used

by the system to deal with peer arrivals, departures, and failures. Overhead refers

to each peer’s storage consumption on the topological information for event routings,

peer churns, and peer failures. Classic unstructured P2P-based pub/sub systems are

highly robust and have low overheads, but sacrifice routing efficiency due to the lack

of structure. On the contrary, classic structured P2P-based pub/sub systems have

a high routing efficiency, but perform poorly in terms of robustness and overhead.

This is because they need to maintain large-size DHTs as the topological information.

By contrast, our system obtains well-bounded results on all these three metrics by

leveraging the NSFA of unstructured P2P networks.

We use a hierarchical approach. We start with the inherent hierarchy in

unstructured P2P networks (the NSFA’s hierachy in Section 3.3). The hierarchical

level of each peer is determined. Based on the NSFA’s hierarchy, our pub/sub system

is described (Section 3.4). Then, a comparative survey of related works is given on

their asymptotic performances (Section 3.5). Our system has a better bound than

classic approaches.

39

3.3 Unstructured P2P Networks

3.3.1 Scale-Free Architecture

A P2P network is a distributed application that partitions tasks or work loads

between peers. They can be roughly classified as unstructured (Gnutella, Kazaa,

and Bitcoin) and structured (Chord, P-Grid, and Pastry), depending on whether

particular topologies are specified or not by design. In previous decades, peers in

unstructured P2P networks were considered to be “randomly” connected to each

other. However, recent advances in network science show that peer connections are

not truly random [34]. Bulut et al. [4] showed that unstructured P2P networks have

the Scale-Free Architecture (SFA):

Definition 3.1. A network (i.e., G) satisfies SFA, if its node degree distribution

follows power-law.

Since P2P networks are directional, the degree could be either indegree or

outdegree. Let Pd denote the fraction of peers with a degree of d, the power-law

means that:

Pd =
α− 1

dmin

·
(d

dmin

)−α

(3.3-1)

Here, α is a constant parameter ranging from 2 to 3 [34]. dmin is also a constant

parameter from where the power-law degree distribution holds. Eq. 3.3-1 indicates

that majority peers hold only a few connections, while minority peers hold lots of

connections. Consequently, SFA can produce the following network hierarchy by

degree rankings:

Definition 3.2. SFA’s network hierarchy is defined by ranking hierarchical levels

based on peer degrees. Peers with smaller degrees have lower hierarchical levels.

Algorithm 1 is proposed as a distributed labeling scheme that determines peers’

40

Algorithm 1 Distributed labeling scheme for SFA

Input: The peer v and its neighbors.
Output: The hierarchical level of v in SFA.

1: Initialize v as unlabeled.
2: repeat in a round-by-round manner do
3: if v has the smallest degree (including the tie) among all its unlabeled neighbors

then
4: Set v’s label to be the largest label among its labeled neighbors plus one (in

the event that v does not have a labeled neighbor, v’s label is one).
5: return v’s label as its hierarchical level.

hierarchical levels in SFA. It works through synchronous peer iterations (a round-by-

round manner in line 2). The label of a peer indicates its hierarchical level. Since

unstructured P2P networks are directional, Algorithm 1 has an indegree version and

an outdegree version, depending on the degree used in it. For indegree and outdegree

versions, the neighbors in Algorithm 1 (lines 3 and 4) refer to the incoming and

outgoing neighbors, respectively.

SFA’s hierarchy has been widely acknowledged in many existing works [36, 37, 38,

39, 40]. One of the most famous example includes BubbleRap [37], which presents

a routing scheme for delay tolerant networks with social features. A message in

BubbleRap is iteratively forwarded to nodes with larger degrees to seek the message

destination. However, the number of routing hops in BubbleRap is not well-bounded

even if the network satisfies SFA. The number of hierarchical levels in SFA could be

Θ(|V |), where |V | is the number of nodes in the network [40]. As a result, hierarchical

routings in SFA may perform poorly under certain scenarios. On the other hand, SFA

is not sufficient to describe the ad-hoc nature of unstructured P2P networks, where

peers arrive and depart dynamically. Further explorations are conducted.

41

Algorithm 2 Distributed labeling scheme for NSFA

Input: The peer v and its neighbors.
Output: The hierarchical level of v in NSFA.

Same as Algorithm 1, except the subtle change on the if statement in line 3: if v has
the smallest effective degree (including the tie) among all its unlabeled neighbors

3.3.2 Nested Scale-Free Architecture

Differing from structured P2P networks that have specified topologies by design,

unstructured P2P networks are formed by peers that arrive and depart dynamically.

When new peers arrive, they connect to existing peers as new peripheries of the

existing network. Such time-evolving peer dynamics create an onion-like architecture,

which is defined as the NSFA:

Definition 3.3. Let Gs denote the set of subgraphs generated by iteratively removing

the lowest-degree node and its connections in a network, G. We claim that G satisfies

NSFA, if (i) G and all the subgraphs in Gs satisfy SFA, and (ii) the standard deviation

of their power-law exponents, α, is o(1).

An intuitive explanation of NSFA is that, G satisfies NSFA, if it satisfies SFA and

its power-law exponent (i.e., α in Eq. 3.3-1) has a limited variation when the current

lowest-degree node in G is iteratively removed. Subgraphs in Gs, which are overly

small to depict SFA, can be ignored by setting up a threshold. Clearly, NSFA is a

“nested” extension of SFA. We claim that unstructured P2P networks satisfy NSFA

(verified later). NSFA is our novel contribution, and is the key idea of this chapter.

NSFA produces the following network hierarchy:

Definition 3.4. NSFA’s network hierarchy is defined by ranking hierarchical levels

by iteratively removing the set of peers that have the lowest degrees among their

neighbors. Peers that are removed earlier have lower hierarchical levels.

The difference between Definitions 3.3 and 3.4 is that NSFA’s hierarchy is defined

by removing all the local lowest-degree peers in one iteration, while NSFA is defined

42

by removing the global lowest-degree peer in one iteration. Clearly, through local

approximations, NSFA’s hierarchy can reveal the structural properties of networks

that satisfy NSFA. Algorithm 2 is proposed as a distributed labeling scheme to

determine peers’ hierarchical levels in NSFA. It involves the following concept: the

effective degree of a peer is defined as its number of connections to its unlabeled

neighbors. Algorithm 2 also works through synchronous peer iterations (round-by-

round manner in line 2). The label of a peer indicates its hierarchical level. The

only difference between Algorithms 1 and 2 is line 3 (the if statement), which shows

the prerequisite for the peer labeling. However, it leads to a fundamental insight

difference: Algorithm 2 can reveal the nested property, while Algorithm 1 cannot

reveal this property. This is because labeling peers in a round of Algorithm 2 is

essentially peeling off the current outermost layer of the onion-like network. Once

a peer labels itself, its connections are no longer counted in the effective degrees of

unlabeled peers. Peers are iteratively peeled off by the labeling process to reveal the

onion-like architecture.

To better illustrate the differences between Algorithms 1 and 2, an example of

their indegree versions is shown in Fig. 3.2. A node represents a peer. The numbers

within the nodes are their hierarchical levels. Directed arrows are directed connections

among peers. In Fig. 3.2, the two peers with the largest indegrees have the maximal

hierarchical level in Algorithm 1, but they do not have the maximal hierarchical level

in Algorithm 2. This is because their connections are peeled off in the first round.

Each round of Algorithm 2 peels off the outermost layer of the onion-like network,

which is composed of the remaining unlabeled peers. Our next claim is that, as the

most important property and the greatest advantage of NSFA, the expected number

of rounds for Algorithm 2 to terminate is bounded:

Theorem 3.5. Suppose an unstructured P2P network has |V | peers and satisfies

NSFA. Then, Algorithm 2 is expected to terminate within Θ(ln |V |) rounds of

43

Algorithm 2

Algorithm 1

peel

off

3rd round2nd round

1st round: they are identical

peel off the outermost layer

peel off the outermost layer

1 1 1 1 1 1

1 1 1 1 1 1

2

1 1 1 1 1 1

2

1 1 1

2

1 1 1

3

2

1 1 1

3

1 1 1

2

3

1 1 1

2

1 1 1
peel

off

nested property

Figure 3.2: Difference between Algorithms 1 and 2 (indegree version).

synchronous peer iterations. The maximal peer label is also Θ(ln |V |).

Proof: The key idea is to show that a constant percentage of unlabeled peers are

expected to label themselves in each round of Algorithm 2. We start with the upper

bound. Initially, all the peers are unlabeled. Let us consider the probability that an

arbitrary peer (say v) labels itself. Suppose v’s degree is dv. Based on Eq. 3.3-1, the

probability that a neighbor of v has a higher degree than v is:

∫ ∞

dv

α− 1

dmin

·
(d

dmin

)−α

dd =
(dv
dmin

)1−α

(3.3-2)

The node v labels itself when all of its dv neighbors have larger effective degrees

than v. Since all peers are initially unlabeled, the probability that v labels itself

is (dv/dmin)
(1−α)×dv . Therefore, the expected percentage of peers that will label

44

themselves in the first round of Algorithm 2 is:

∫ ∞

dmin

(dv
dmin

)(1−α)×dv
· α− 1

dmin

·
(dv
dmin

)−α

ddv

>

∫ 2dmin

dmin

(dv
dmin

)(1−α)×dv
· α− 1

dmin

·
(dv
dmin

)−α

ddv

>

∫ 2dmin

dmin

(dv
dmin

)(1−α)×2dmin

· α− 1

dmin

·
(dv
dmin

)−α

ddv

=
1

2dmin + 1

[

1− 1

2(α−1)(2dmin+1)

]

= c (3.3-3)

Let c denote the result in Eq. 3.3-3. Note that α is a constant that ranges from 2 to

3 [34]. dmin is also a constant parameter. Therefore, c is a positive constant, meaning

that more than a constant percentage of unlabeled peers will label themselves in the

first round of Algorithm 2. Then, in the second round, these labeled peers are peeled

from the remaining network. This is because their connections are not counted in the

effective degrees of unlabeled peers. With the nested property, we consider that the

effective degree distribution for the unlabeled peers remains the same. This is because

peers labeled in one iteration are not adjacent to each other, and the remaining

network belongs to Gs by Definition 3.3. We ignore the limited variation of α.

Through the same arguments in Eqs. 3.3-2 and 3.3-3, more than a constant percentage

of unlabeled peers will label themselves in the second round of Algorithm 2. By

induction, we conclude that more than a constant percentage of unlabeled peers will

label themselves in each round of Algorithm 2. Since |V |× c− logc |V | = 1, Algorithm 2

is expected to terminate within − logc |V | rounds. c is a positive constant that is

smaller than one, and thus − logc |V | belongs to O(ln |V |). Therefore, the number of

rounds for Algorithm 2 to terminate is expected to be O(ln |V |). The proof of the

lower bound is similar: less than a constant percentage of unlabeled peers will label

45

themselves in each round of Algorithm 2. Similar to Eq. 3.3-3, we have:

∫ ∞

dmin

(dv
dmin

)(1−α)×dv
· α− 1

dmin

·
(dv
dmin

)−α

ddv

<
α− 1

dmin

∫ ∞

dmin

(dv
dmin

)(1−α)×dv
ddv

=
α− 1

dmin

∫ ∞

dmin

e(1−α)×dv×ln(dv/dmin)ddv

<
α− 1

dmin

[

∫ edmin

dmin

(dv
dmin

)(1−α)dmin

ddv +

∫ ∞

edmin

e(1−α)dvddv

]

=
α− 1

dmin

[e(1−α)dmin+1 − 1

(1− α)dmin + 1
dmin −

e(1−α)edmin

1− α

]

= c∗ (3.3-4)

Let c∗ denote the result in Eq. 3.3-4. Clearly, c∗ is also a constant. Through the

same argument, the number of rounds for Algorithm 2 to terminate is expected to

be Ω(ln |V |). Combining the upper and lower bounds, we conclude that Algorithm 2

is expected to terminate within Θ(ln |V |) rounds of synchronous peer iterations. In

each round, the maximal peer label increases by one (line 4 in Algorithm 1, which is

also used by Algorithm 2). Therefore, the expected maximal peer label in NSFA is

also Θ(ln |V |). �

Theorem 3.5 shows that the number of hierarchical levels in NSFA can be

logarithmically bounded. By contrast, classic hierarchies ranked by the node

connectivity [38, 40], social centrality [37, 39], or organizational roles [36] cannot

guarantee such a bound. This is because they do not require structural similarities

among different hierarchical layers [41]. Moreover, NSFA’s hierarchy can be

constructed distributedly with low overheads, since each node only takes local

neighborhood information. Such great advantages of NSFA enable bounded high-

performance routings. Furthermore, the number of routing hops in NSFA can be even

asymptotically smaller than Θ(ln |V |), since some hierarchical levels can be skipped.

We will discuss this property later in Section 3.4 (Theorem 3.7).

46

0% 15% 30% 45% 60% 75% 90%

2.1

2.4

2.7

3

3.3

3.6

Percentage of Removed Peers

S
c
a
lin

g
 E

x
p
o
n
e
n
t

Gnutella

Bitcoin

(a) Power-law scaling exponent.

2 3 4 5 6 7
10

1

10
2

10
3

10
4

Hierarchical Level in NSFA

N
u
m

b
e
r

o
f

P
e
e
rs Gnutella

Bitcoin

(b) Peer distribution in NSFA.

0% 15% 30% 45% 60% 75% 90%

2.1

2.4

2.7

3

3.3

3.6

Percentage of Removed Peers

S
c
a
lin

g
 E

x
p
o
n
e
n
t

Gnutella (August 4)

Gnutella (August 5)

Gnutella (August 6)

(c) Peer arrival and departure.

0% 15% 30% 45% 60% 75% 90%

1.3

1.9

2.5

3.1

3.7

Percentage of Removed Peers

S
c
a
lin

g
 E

x
p
o
n
e
n
t

Facebook

AS−733

Wikipedia

(d) Other NSFA networks.

Figure 3.3: NSFA verifications in unstructured P2P networks.

3.3.3 Verify the Existence of NSFA

To verify the existence of NSFA, real data-driven experiments on Gnutella [35]

and Bitcoin [42] are conducted. The Gnutella dataset has 10,876 peers with 39,994

connections on August 4, 2002 (peer arrivals and departures are recorded for the

following days). The Bitcoin dataset has 4,579 peers with 18,667 connections (partial

dataset for comparisons with Gnutella). Verification results are shown in Fig. 3.3,

where solid and dashed lines are the results of indegree and outdegree versions,

respectively. Fig. 3.3(a) shows the variation of the power-law exponent (i.e., α), when

the current lowest-degree peer is iteratively removed. α has a limited variation, even if

a large percentage of peers are removed. Based on Definition 3.3, Gnutella and Bitcoin

satisfy NSFA. Then, Fig. 3.3(b) shows the distribution of peers in NSFA’s hierarchy.

The number of peers decreases exponentially with respect to the hierarchical level.

As a result, the number of hierarchical levels in NSFA is logarithmically bounded.

47

Table 3.1: Compare Hierarchies

Dataset
SFA indegree hierarchy NSFA indegree hierarchy

#of levels # of LMPs #of levels # of LMPs

Gnutella 20 1,715 10 120

Bitcoin 41 204 19 76

Dataset
SFAoutdegree hierarchy NSFAoutdegree hierarchy

#of levels # of LMPs #of levels # of LMPs

Gnutella 19 1,430 10 676

Bitcoin 36 167 17 43

Fig. 3.3(c) shows the scenario of peer arrivals and departures in Gnutella (three days

from August 4 to 6). It can be seen that NSFA naturally holds when peers arrive and

depart. The nested architecture actually results from peer arrivals and departures,

in which SFA is satisfied. This phenomenon reveals that peer connections are not

truly random [34]. Real data-driven experiments validate that unstructured P2P

networks satisfy NSFA. Moreover, NSFA is not unique for unstructured P2P networks,

i.e., NSFA exists in other types of networks. Experiments are conducted in three

undirected networks [35]: Facebook (online social networks), AS-733 (autonomous

systems), and Wikipedia dataset (website networks). Fig. 3.3(d) shows that these

networks also satisfy NSFA, i.e., the variation of the power-law exponent is limited

when the lowest-degree node is iteratively removed.

3.3.4 Compare Hierarchies

This subsection experimentally compares SFA’s hierarchy and NSFA’s hierarchy

(Algorithms 1 and 2) in unstructured P2P networks. We have:

Definition 3.6. If a peer has a higher hierarchical level than all of its neighbors, it

is a Local Maximum Peer (LMP).

We have two claims: (i) NSFA’s hierarchy has fewer hierarchical levels than SFA’s

hierarchy, and (ii) NSFA’s hierarchy in has fewer LMPs than SFA’s hierarchy. The

first claim means that the maximal peer label in Algorithm 2 is smaller than that

48

in Algorithm 1. Algorithm 2 terminates faster than Algorithm 1. The second

claim means that NSFA’s hierarchy is a more concentrated. To verify our claims,

experiments on Gnutella [35] and Bitcoin [42] are conducted, based on the same

settings as in the previous subsection. The result is shown in Table 3.1, where the

NSFA’s hierarchy has significantly fewer levels than SFA’s hierarchy (basically half in

both datasets). NSFA’s hierarchy has many fewer LMPs than does SFA’s hierarchy,

especially in the indegree version (fewer than 10% for Gnutella). The above results

demonstrate our claims.

NSFA’s hierarchy has key advantages over SFA’s hierarchy in terms of hierarchical

event deliveries in pub/sub systems. This event delivery has two phases. In the first

phase, a peer uploads its event to the network core, which is formed by the peers

with the highest hierarchical levels. In the second phase, peers in the network core

download the event to the subscribed peers. Since NSFA’s hierarchy has fewer levels,

events can be uploaded to the network core with fewer routing hops. Meanwhile,

NSFA’s hierarchy has fewer LMPs, meaning that there exist fewer local extrema for

the event uploads and downloads. More details are described in the next section.

3.4 Publish/Subscribe in NSFA

3.4.1 System Design Overview

In a genenral pub/sub system, each peer may publish events and receive its own

interested events. Each peer maintains an event filter to determine whether an

event should be received or not. Each peer also needs some overhead to maintain

the topological information for event routings, peer churns, and peer failures. In

the proposed pub/sub system, such topological overheads of a peer only include its

hierarchical level in both the indegree and outdegree versions of NSFA. Consequently,

the storage consumption of a peer is a constant that does not scale up with the network

49

(a) Network.

2 1

1

(b) Indegree.

1 2

1

(c) Outdegree.

Figure 3.4: Examples of NSFA-based forests (indegree and outdegree versions).

size. In other words, the size of the overhead per peer is O(1).

The event routing is accomplished through NSFA’s hierarchy. This hierarchy

abstracts a forest of rooted trees from the unstructured P2P network. The roots

of these trees are LMPs. For a non-LMP peer, its parent in the tree is the neighbor

that has the maximal hierarchical level. Since Algorithm 2 has two versions, the

resultant forest has both indegree and outdegree versions. Fig. 3.4 shows such an

example. Fig. 3.4(a) shows a network. The corresponding forests of indegree and

outdegree versions are shown in Figs. 3.4(b) and 3.4(c), respectively. The numbers

within the nodes represent their hierarchical levels in NSFA. Connections, which are

not in the forest, are gray and dashed. We claim that the maximal tree depth in an

NSFA-based forest can be bounded:

Theorem 3.7. The maximal tree depth in an NSFA-based forest is expected to be

O(ln ln |V |).

Proof: Let lmax denote the maximal peer label in NSFA. We start with an arbitrary

peer (say v) in an arbitrary tree of the NSFA-based forest. Let lv denote the label

of this peer. Suppose the labels of v’s neighbors are uniform-randomly distributed

from 1 to lmax. Then, for v’s neighbors whose labels are larger than lv, they are

expected to have labels of lv + (lmax − lv)/2. Since v’s parent has the maximal label

among v’s neighbors, its label is expected to be larger than lv + (lmax − lv)/2. In

other words, the label difference between the current label and the maximal label is

expected to be at least halved, when we move from an arbitrary peer to its parent.

Since 2log2 lmax = lmax, it takes O(ln lmax) steps to move from a leaf to a root in a tree.

50

 {(y, <, 20)}

3

1

2 1

 {(x, <, 10)}

 {(x, <, 30)}

 {(y, <, 40)}

(a) Peer interests.

 {(y, <, 20)}

3

1

2 1

 {(x, <, 10)}

 {(x, <, 30)}

 {(y, <, 40)}

 {(x, <, 10)},

 {(x, <, 30)},

(b) Subscriptions.

Figure 3.5: An example of peer interests and the corresponding subscriptions.

Since Theorem 3.5 has stated that lmax ∈ Θ(ln |V |), the maximal tree depth in an

NSFA-based forest is expected to be O(ln ln |V |). �

The insight of Theorem 3.7 is that a peer may have a parent with a hierarchical

level that is much higher than its own, leading to a double logarithmic tree depth.

Theorems 3.5 and 3.7 show that connections in unstructured P2P networks are not

truly random, in terms of NSFA. The maximal tree depth of an NSFA-based forest

has a better bound than classic forests [43, 44]. Moreover, our NSFA-based forest

can be constructed in a distributed manner. Our key idea is to utilize the NSFA-

based forest as the network backbone to deliver events among peers with a bounded

performance and a limited overhead.

3.4.2 Subscription

Peers express their interests through subscriptions with the system. Such

subscriptions are captured by the event filter, which is maintained by each peer to

determine whether an event should be received or not. The NSFA-based forest of the

indegree version is used to collect these subscriptions. A peer may not only receive

its own interests, but also may receive other peers’ interests for the purpose of event

deliveries. In our approach, a peer collects all the events interesting to itself, along

with the interests of its descendants in the NSFA-based forest. Hence, a peer notifies

all of its precedents in terms of its interests. An example is shown in Fig. 3.5, where

x and y are two attributes. Fig. 3.5(a) shows the interests of each peer (attribute-

51

Publisher Subscriber

(a) Pub/Sub over a P2P network.

3 2

2

1 1

1Publisher Subscriber

Root

E
ve

nt

up
lo

ad

(b) NSFA-based forest (indegree version).

2 3

2

1 1

1Publisher Subscriber

Root
E

v
e
n
t

d
o
w

n
lo

a
d

(c) NSFA-based forest (outdegree version).

Figure 3.6: An illustration for the two-phase hierarchical event delivery in the
proposed pub/sub system.

operator-value tuples). Fig. 3.5(b) shows the resulting subscriptions. The root will

receive all the events matching that x is smaller than 30 or y is smaller than 40.

A peer subscription takes O(ln ln |V |) messages. This is because this peer needs to

notify all of its precedents, while the maximal tree depth is bounded by Theorem 3.7.

The unsubscription process is similar and also takes O(ln ln |V |). Note that peers

with higher hierarchical levels tend to have more descendants, and thus they tend to

collect more events. Hence, their event matchings are more time-consuming and can

be accelerated by some existing works [45, 46].

3.4.3 Event Delivery

The proposed pub/sub system uses a two-phase hierarchical event delivery scheme.

The first phase is the upload phase, which utilizes the NSFA-based forest of the

indegree version. Once a peer wants to publish an event, it will upload this event to

the root of its tree, through recursively forwarding this event to the parent. Once

52

the root receives an event in the upload phase, the second phase, or download phase,

begins. This phase utilizes the NSFA-based forest of the outdegree version. Once

a peer receives a matched event, it will forward this event to all of its children in

the tree. This is because a peer collects all the events interesting to itself and its

descendants through subscriptions. If the received event is not matched, the peer will

drop it. In summary, the publisher first uploads the event to the network core (peers

with highest hierarchical levels), which in turn downloads the event to the subscriber.

A potential problem is that multiple roots may exist in the NSFA-based forest.

Meanwhile, the roots in the NSFA-based forest of the indegree version are not

necessarily roots in the NSFA-based forest of the outdegree version. Hence, roots

need to connect with each other before the event deliveries. Roots can register their

addresses at an extra registration server. Since Table 3.1 shows that roots are few,

the registration cost is ignorable. Through the registration server, roots can set up

special connections to each other before the event deliveries. Similar techniques have

been used in existing works [43, 44].

Fig. 3.6 illustrates an example for the event deliveries. The network topology is

shown in Fig. 3.6(a). The publisher and subscriber are the peers who publish and

subscribe to the event, respectively. Fig. 3.6(b) shows the upload event delivery phase

in the NSFA-based forest of the indegree version. For simplicity, this forest includes

only one tree. The numbers within the nodes (peers) are their hierarchical levels.

Connections without the forest are gray and dashed. The event is uploaded to the

root, by recursively being forwarded to the parent in the tree. Once the root receives

the event, the upload phase terminates. The root sends this event to the other roots

through special connections that are set up in advance of the event deliveries. Then,

the download event delivery phase begins at the root in the NSFA-based forest of the

outdegree version. As shown in Fig. 3.6(c), the peer will forward matched events to

all of their children, but drop non-matched events.

53

Since Theorem 3.7 claims that the tree depth is O(ln ln |V |), the number of routing

hops for the event deliveries is also O(ln ln |V |). The upload phase takes O(ln ln |V |)

to deliver the event from the publisher to the root, while the download phase also

takes O(ln ln |V |) to deliver the event from the root to the subscriber. The proposed

upload-and-download routing scheme is based on classic hierarchical routing schemes

[37, 43, 44, 47]. Our novel contribution is the NSFA. NSFA’s hierarchy can be

distributedly constructed, and has a better bound than classic hierarchies. The

outstanding performance of our event delivery comes from the bound of NSFA’s

hierarchy. Our work is asymptotically compared with classic approaches in Table 3.2

(later in Section 3.5).

3.4.4 Peer Arrival, Departure, and Failure

Our pub/sub system can handle the peer arrival, departure, and failure. As shown

in Fig. 3.3(c), NSFA can naturally hold when peer arrives and departs. NSFA also

holds if the failure is uniformly distributed. Therefore, we only need to adjust the

hierarchical levels of peers. (i) When a new peer arrives at the pub/sub system, its

hierarchical level is set to the lowest hierarchical level among all of its neighbors (or

one in the case of no neighbor). Then, this peer will express its interests through

subscriptions, taking O(ln ln |V |) messages. (ii) If a non-root peer wants to depart, it

will unsubscribe from the system. Its connections with its children can be transferred

to its parent. If a root peer wants to depart, its neighbor with the highest hierarchical

level will be selected as the new root. The connections and subscriptions of this root

will be transferred to the new root. The new root will register its address within the

network to set up connections with the other roots. (iii) If a peer finds a failing child,

it examines the subscriptions of its children and then unsubscribe the failed child. If

a peer finds a parent failure, it re-selects a parent to re-subscribe. Since Theorem 3.7

claims that the tree depth is O(ln ln |V |), the peer arrival, departure, and failure take

54

O(ln ln |V |) messages. Our pub/sub system can also run Algorithm 2 periodically to

reset NSFA’s hierarchy. Moreover, the following theorem shows that, when a peer’s

interests are popular, the number of messages for its arrival, departure, and failure

can be reduced:

Theorem 3.8. If a peer has the same interests as Ω(1
ln ln |V |

) fraction of peers in

the system, then its arrival, departure, and failure are expected to take O(
√

ln ln |V |)

messages.

Proof: Suppose a peer, v, has the same interests as a fraction, f , of all peers in

the system. Note that a peer collects all the events interesting to itself, along with

the interests of its descendants in the NSFA-based forest. Hence, the subscriptions

of peers with larger labels are more likely to include v’s interests than those with

smaller labels. For peers with labels of one, f fraction of their subscriptions include

v’s interests. These peers (a fraction, c, of total peers by Eq. 3.3-3) notify their parents

of their subscriptions. For peers whose labels are larger than one, the fraction of their

subscriptions that include v’s interests is 1−(1−f)×(1− c
1−c
×f) ≈ (1+c)f , assuming

f≪1 and c≪1. Then, let us remove the peers with labels of one, and look at peers

with larger labels. By induction, for peers with labels of i + 1, the fraction of their

subscriptions that include v’s interests is (1 + ic)f .

We start with the peer arrival. Once a new peer (say u) arrives, it needs to notify

all of its precedents to express its interests. However, such a notification can terminate

earlier, if the subscription of u’s precedent already includes u’s interests. Suppose u

has a distance of L to the root. The expected number of notification messages is:

L
∑

i=1

{

i−1
∏

j=0

[

1− (1 + jc)f
]

}

≤
L
∑

i=1

[

1− (1 +
i− 1

2
c)f

]i
(3.4-5)

In Eq. 3.4-5,
∏i−1

j=0

[

1 − (1 + jc)f
]

is the upper bound of the probability that the

i-th message in the notification process is sent. When f = 0, L messages are sent

55

for the subscription. When f ∈ Θ(1
L
) and i ∈ Θ(

√
L), [1 − (1 + i−1

2
c)f]i becomes

a constant according to the definition of the Euler’s number. When f ∈ Θ(1
L
),

∑L
i=1

[

1− (1 + i−1
2
c)f

]i ∈ O(
√
L). This is because the terms with i ∈ Ω(

√
L) can be

ignored in the summation. Since Theorem 3.7 claims that L ∈ O(ln ln |V |), the proof

completes the part for peer arrivals.

The proofs for peer departures and failures are similar and are omitted due to the

page limitation. The key idea is that, when a peer has the same interests as many

existing peers in the system, its arrival, departure, and failure can be handled more

locally instead of notifying all the precedents. �

3.5 Related Works and Discussions

The pub/sub system is a well-known paradigm for CDNs with the objective of

providing efficient event deliveries from the publishers to the subscribers [48]. Classic

pub/sub systems are usually implemented as overlay networks on the Internet, using

hundreds of servers to deliver content to clients [28]. Since traditional pub/sub

systems are infrastructure-dependent, infrastructure-free P2P-based pub/sub systems

become another option [32]. Early pub/sub systems were built on unstructured P2P

networks due to their low construction overheads and inherent robustness. However,

event routing is inefficient [30], since peers are “randomly” connected to each other.

Therefore, state-of-the-art pub/sub systems are built on structured P2P networks to

improve the routing performance, through using DHTs to organize peers into specific

topologies [49]. Nevertheless, the maintenance of DHTs lead to high construction

overheads, and degrades the system robustness. We focus on an asymptotical

approach. Therefore, some classic pub/sub systems (e.g., SIENA [31], PADRES [50],

and Hermes [51]) are not compared, since their performances are not bounded.

Table 3.2 compares the existing systems and the NSFA-based pub/sub system, in

56

Table 3.2: Comparisons among Existing Systems and Our NSFA-based System.

Metrics
Structured P2P-based Pub/Sub

Terpstra [32] Meghdoot [52] PastryStrings [33]

Event routing O(ln |V |) O(τ |V | 1τ) O(logµ |V |)
System robustness O(ln |V |) O(τ |V | 1τ) O(logµ |V |)

Overhead O(ln |V |) O(τ) O(µ logµ |V |)

Metrics
Unstructured P2P-based Pub/Sub

Sub-2-Sub [30] Vitis [43] Poldercast [44] NSFA-based

Event routing O(|V |) O(ln2 |V |) O(ln |V |) O(ln ln |V |)
System robustness O(1) N/A O(ln |V |) O(ln ln |V |)

Overhead O(1) O(1) O(1) O(1)

terms of the event routing efficiency (number of routing hops for event deliveries),

system robustness (message complexity for peer churns and failures), and overhead

(storage consumption per peer). |V | is the number of peers in the pub/sub

system. Terpstra [32], Meghdoot [52] and PastryStrings [33] are structured P2P-

based pub/sub systems. Terpstra organizes peers as a Chord [53]. The topology of

Meghdoot is a Cartesian space with a dimensionality of τ . Compared with Terpstra,

Meghdoot has a smaller overhead at the cost of a worse event routing efficiency

and a worse system robustness. PastryStrings has a prefix-based routing through

string trees, where µ is a pre-specified digit base. It sacrifices the overhead to

improve the event routing efficiency. Sub-2-Sub [30], Vitis [43], and Poldercast [44]

are unstructured P2P-based pub/sub systems. Sub-2-Sub considers that connections

among peers are random, and uses broadcasts to deliver events. Sub-2-Sub has a very

poor routing performance, but is highly robust. Vitis and Poldercast also consider

that peer connections are random. While Vitis uses a clustering-based event delivery

protocol, Poldercast chains all the peers to a ring network with shortcuts for efficient

event routings (based on small worlds).

By contrast, our pub/sub system has the best event routing efficiency by leveraging

the inherent NSFA of unstructured P2P networks, where peer connections are not

57

truly random [34]. NSFA’s hierarchy can be distributedly constructed, and has a

better bound than classic hierarchies [36, 37, 38, 39, 40]. The overhead of the NSFA-

based pub/sub system is asymptotically optimal (a constant size per peer), since each

peer only needs to maintain its hierarchical level as the topological information. The

system robustness is competitive, and can be further reduced for scenarios in which

peers share the same interests (Theorem 3.8). A notable point for the proposed system

is that peers with higher hierarchical levels tend to have larger loads than peers with

lower hierarchical levels (the load is not balanced). We argue that peers with more

connections could have more computational and storage resources to share, i.e., “with

great power comes great responsibility.”

3.6 Experiments

3.6.1 Real Data-driven Experiments

This section conducts real data-driven experiments based on Gnutella [35] and

Bitcoin [42]. To reveal the asymptotic performance gap, we use the complete Bitcoin

dataset, which includes 6,336,769 peers and 37,450,461 connections. Our pub/sub

system on Gnutella can facilitate large-size content deliveries, such as high-definition

movie sharing services and high-volume enterprise data distributions. Our pub/sub

system on Bitcoin can facilitate financial order disseminations among traders and

payroll transactions among workers.

3.6.2 Pub/Sub System Evaluations

The proposed pub/sub system is evaluated through comparisons with Terpstra,

Meghdoot, PastryStrings, Vitis, and Poldercast. These systems have been introduced

in Section 3.5. Sub-2-Sub is not included, since it has an extreme design with the worst

58

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

Number of Subscribers

N
u
m

b
e
r

o
f

F
o
rw

a
rd

in
g
s

Terpstra

Meghdoot

PastryStrings

Vitis

Poldercast

Proposed

(a) Gnutella.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

Number of Subscribers

N
u
m

b
e
r

o
f

F
o
rw

a
rd

in
g
s

Terpstra

Meghdoot

PastryStrings

Vitis

Poldercast

Proposed

(b) Bitcoin.

Figure 3.7: Event routing efficiency.

event routing efficiency, the best system robustness, and the smallest overhead. While

unstructured P2P-based pub/sub systems are tested directly on the Gnutella and

Bitcoin datasets, structured P2P-based pub/sub systems are tested with their own

topologies that have the same number of peers with the datasets. In Meghdoot, we set

τ = 8 to minimize τ |V | 1τ for |V | = 10, 876 in the Gnutella dataset. In PastryStrings,

we use µ = 4 as its digit base to encode event routings.

To evaluate the event routing efficiency, one publisher and several subscribers are

uniform-randomly selected. The result of the total number of forwardings from the

publisher to all subscribers in an event delivery is shown in Fig. 3.7. For smoothness,

it is averaged over 100,000 times. The NSFA-based pub/sub system outperforms

the others, since it has the best asymptotical bound of O(ln ln |V |). Vitis has the

worst performance when subscribers are few, since it has a bad asymptotical bound

of O(ln2 |V |). Meghdoot performs poorly due to the same reason. A notable point

is that the performance gap between the proposed system and the other system is

larger in Bitcoin than that in Gnutella. This is because Bitcoin has many more peers

than Gnutella. The Bitcoin dataset has 6,336,769 peers and 37,450,461 connections.

The asymptotical performance gap is revealed, when the network scales up.

Fig. 3.8 shows the Cumulative Distribution Function (CDF) with respect to the

total number of forwardings in Fig. 3.7. Left and right subfigures are the results

59

2 4 6 8 10 12 14
0%

20%

40%

60%

80%

100%

Number of Forwardings

P
e
rc

e
n
ta

g
e

Terpstra

Meghdoot

PastryStrings

Poldercast

Proposed

(a) Gnutella with one subscriber.

0 200 400 600 800 1000 1200 1400
0%

20%

40%

60%

80%

100%

Number of Forwardings

P
e
rc

e
n
ta

g
e

Terpstra

Meghdoot

PastryStrings

Vitis

Poldercast

Proposed

(b) Gnutella with one hundred subscribers.

1 5 9 13 17 21 25 29
0%

20%

40%

60%

80%

100%

Number of Forwardings

P
e
rc

e
n
ta

g
e

Terpstra

Meghdoot

PastryStrings

Poldercast

Proposed

(c) Bitcoin with one subscriber.

0 500 1000 1500 2000 2500 3000 3500
0%

20%

40%

60%

80%

100%

Number of Forwardings

P
e
rc

e
n
ta

g
e

Terpstra

Meghdoot

PastryStrings

Vitis

Poldercast

Proposed

(d) Bitcoin with one hundred subscribers.

Figure 3.8: The CDF for the number of event forwardings.

with one subscriber and one hundred subscribers, respectively. Vitis is not included

in Figs. 3.8(a) and 3.8(c), since it needs a much larger number of forwardings

when subscribers are few. Figs. 3.8(a) and 3.8(b) show that, when there are more

subscribers, the proposed system has a more significant advantage over the other

systems due to the lower asymptotical bound. Fig. 3.8(a) also shows that the NSFA-

based system is not likely to deliver the event from a publisher to a subscriber

within 3 forwardings, due to the event upload phase. On the other hand, most

event deliveries in our system can be finished within 7 forwardings (Gnutella with

one subscriber). When we have 100 subscribers, as shown in Fig. 3.8(b), most event

deliveries can be finished within 500 forwardings, which is less than 7 × 100 = 700

forwardings. This is because the upload phases of different subscribers are shared.

Figs. 3.8(c) and 3.8(d) present similar results for Bitcoin. The proposed pub/sub

system performs significantly better than the other systems in Bitcoin, due to the

60

5th 6th 8th 9th 24th 25th 30th 31st
10

2

10
3

10
4

10
5

Date in August 2002

N
u
m

b
e
r

o
f

P
e
e
r

C
h
u
rn

s

(a) Peer churn statistics.

5th 6th 8th 9th 24th 25th 30th 31th
10

2

10
3

10
4

10
5

10
6

Date in August 2002

N
u
m

b
e
r

o
f

M
e
s
s
a
g
e
s

Terpstra

Meghdoot

PastryStrings

Vitis

Poldercast

Proposed

(b) Message complexity (no shared interest).

5th 6th 8th 9th 24th 25th 30th 31th
10

2

10
3

10
4

10
5

10
6

Date in August 2002

N
u
m

b
e
r

o
f

M
e
s
s
a
g
e
s

Terpstra

Meghdoot

PastryStrings

Vitis

Poldercast

Proposed

(c) Message complexity (shared interests).

Figure 3.9: System performance with respect to the peer churns in Gnutella.

asymptotical performance advantage. In Fig. 3.8(d), the number of forwardings used

by our system is basically one third of PastryStrings and Vitis.

To evaluate the system robustness, the Gnutella dataset is further explored, since

it has the peer churn records. However, the Bitcoin dataset does not include the

peer churn records. Fig. 3.9(a) shows the available peer churn statistics in Gnutella

on August 2002. August 24 and 31 have the largest numbers of peer churns. Note

that the number of peer churns cannot be ignored with respect to the total number of

peers in Gnutella. As shown in Fig. 3.3(c), NSFA holds when peer churns. Fig. 3.9(b)

shows the number of messages dealing with peer churns, when peers do not share an

interest. The number of messages scales up with the number of peer churns. Our

NSFA-based pub/sub system uses the smallest number of messages to deal with peer

churns. By contrast, the number of messages used by Terpstra is nearly quadrupled.

61

10% 20% 30% 40% 50%
10

3

10
4

10
5

Failure Percentage

N
u
m

b
e
r

o
f

M
e
s
s
a
g
e
s

Terpstra

Meghdoot

PastryStrings

Vitis

Poldercast

Proposed

(a) Gnutella.

10% 20% 30% 40% 50%
10

6

10
7

10
8

Failure Percentage

N
u
m

b
e
r

o
f

M
e
s
s
a
g
e
s

Terpstra

Meghdoot

PastryStrings

Vitis

Poldercast

Proposed

(b) Bitcoin.

Figure 3.10: System performance with respect to the peer failures.

To study the message complexity when peers have common interests, we set up a

special scenario where the interest of each peer is uniform-randomly chosen from ten

given interests. The result is shown in Fig. 3.9(c). Our system and Vitis have lower

message complexities since they can handle peer churns more locally.

The number of messages used for peer failures is shown in Fig. 3.10, where a given

percentage of peers are randomly chosen to fail. Our NSFA-based system uses the

smallest number of messages to handle the peer failures. By contrast, the number

of messages used by Terpstra is almost tripled. Experiments are not conducted with

respect to the overhead, since the overhead of our system is O(1). Instead, we study

the forwarding load distribution of root peers for our system in Gnutella and Bitcoin.

10,000 publisher-subscriber pairs are uniform-randomly selected for event deliveries.

Fig 3.11 shows the cumulative distribution function of root peer forwardings. None

of the root peers have more than 700 forwardings within 10,000 event deliveries.

3.7 Summary

This chapter proposes a scalable pub/sub system based on unstructured P2P

networks, which are shown to have NSFAs. We propose that NSFA’s hierarchy can

be distributedly constructed, and has a better bound than classic hierarchies. By

62

0 100 200 300 400 500 600 700
0%

20%

40%

60%

80%

100%

Number of Root Peer Forwardings

P
e
rc

e
n
ta

g
e

Gnutella (indegree roots)

Gnutella (outdegree roots)

Bitcoin (indegree roots)

Bitcoin (outdegree roots)

Figure 3.11: The CDF of root peer forwardings.

leveraging NSFA’s hierarchy, the proposed pub/sub system achieves a competitive

tradeoff among the event routing efficiency, system robustness, and overhead. The

number of routing hops for event deliveries is O(ln ln |V |). Each peer only maintains

an overhead of a constant size as the topological information. Peer arrival, departure,

and failure can be handled within a message complexity of O(ln ln |V |). Experiments

demonstrate the outstanding performance of the proposed pub/sub system.

63

CHAPTER 4

FRIEND RECOMMENDATION IN ONLINE

SOCIAL NETWORKS: PERSPECTIVE OF

SOCIAL INFLUENCE MAXIMIZATION

Chapters 4 and 5 focus on the influence propagation applications for social

networks. More specifically, this chapter studies a friend recommendation strategy

with the perspective of social influence maximization. This is because people may

want to make new friends to maximize their social influences in online social networks.

For example, business page owners on Facebook want to influence as many people

as possible for commercial advantages. For the system provider (e.g., Facebook), the

objective is to recommend a fixed number of new friends to a given user, such that

the given user can maximize his/her social influence through making new friends.

Our problem is proved to be NP-hard. A greedy friend recommendation algorithm

with an approximation ratio of 1 − 1
e
is proposed, according to the submodular

property. It involves a sub-problem of computing the influence spread. A novel

method, which considers the multipath effect, is proposed to compute the influence

spread. Experiments demonstrate the efficiency and effectiveness of our algorithms.

4.1 Introduction

Online Social Networks (OSNs) mainly focus on building social relations among

users who share interests, activities, backgrounds, stories, and real-life connections.

They are valuable tools used by many people to extend their daily contacts. Most

64

The

given

user

v7v6

v5

v4

v3

v2

v1

v0

Candidate Candidate

Figure 4.1: The tradeoff in the friend recommendation strategy.

OSNs are web-based and provide means for users to interact with each other over

the Internet. OSNs are not only a way to keep in touch, but also a way of life.

Existing OSNs such as Facebook, Twitter, and VK account for three of the top ten

most-visited web sites in the world [54]. As of January 2014, 74% of online adults

use OSNs [55].

As one of the essential components in OSNs, the friend recommendation system

aims to seek appropriate people with whom users can make new friends. Classic

approaches make recommendations according to the social proximities among the

users, hypothesizing that people with close social circles are potential friends.

For instance, the Facebook “People You May Know” feature recommends people

to connect with each other, according to a friend-of-a-friend strategy [56]. In

other words, if two unconnected users share many common friends, then they

are recommended to become new friends. Friend recommendations on Facebook

prioritize friends-of-friends over strangers (i.e., people who are not friends or friends-

of-friends). Content-based and location-based recommendation strategies have also

been proposed. In these approaches, people who share similar contents, or are

geographically nearby, are recommended to connect with each other [57, 58].

We observe that people may want to make new friends with the objective of

maximizing their social influences. The world-famous best-selling book, “How to

Win Friends and Influence People,” considers making friends and influencing people

to be closely interrelated [59]. Consequently, people can use OSNs to advance their

65

careers and businesses. For example, Facebook provides business page services [60]

for their owners to influence other people for commercial advantages (selling and

advertising). Twitter also provides page promotion services for salesmen to attract

high-value followers as potential customers. A successful story is that of Drew Ressler,

who dramatically gained 1,300 new followers while targeting audiences interested in

music and photography [61].

This chapter focuses on the friend recommendation strategy with the perspective of

social influence maximization. For the system provider, the objective is to recommend

a fixed number of new friends to a given user, such that the given user can maximize

his/her social influence through new friends. Our problem is proved to be NP-hard.

New challenges arise from the tradeoff between the friend acceptance probability and

the propagation capability. The friend acceptance probability is self-explanatory. The

propagation capability measures the influence spread beyond the given user that is

brought by the recommended friend. A motivational example is shown in Fig. 4.1,

where v0 wants to maximize his/her social influence through making a new friend

(candidates are v4 and v7). Arrows in Fig. 4.1 are bidirectional friendships. In

terms of the friend acceptance probability, v4 is a friend-of-a-friend of v0, but v7 is

a stranger. Hence, v4 is more likely to accept the friend request from v0 and then

propagate v0’s influence. However, in terms of the propagation capability, v4 cannot

further propagate v0’s influence to the users v5 and v6 (since they do not connect with

each other). On the other hand, v7 is influential and can propagate v0’s influence to

v5 and v6, but v7 is not likely to accept the friend request from v0. This is because

v0 and v7 are not socially proximal to each other. The tradeoff between the friend

acceptance probability and the propagation capability should be investigated.

A greedy friend recommendation strategy is proposed to balance the above tradeoff.

Moreover, it is an extension of the classic social influence maximization problem [62].

It involves an NP-hard sub-problem of the influence spread computation [63]: given

66

the OSN topology and a specified user, how many people can this user influence?

Since OSNs are typically large, the scalability issue challenges classic solutions [64].

Through leveraging the structural properties of OSNs, we propose a novel method to

efficiently compute the influence spread, based on the multipath effect.

Our main contributions are summarized as follows:

• We address a novel friend recommendation problem with the perspective of

social influence maximization. Our problem is proved to be NP-hard. A greedy

approximation algorithm with a ratio of 1− 1
e
is discussed.

• We propose a novel influence spread computation method to support greedy

friend recommendations. The multipath effect is explored.

• Extensive real data-driven experiments are conducted to evaluate the proposed

algorithms. Evaluation results are shown from different perspectives to provide

insightful conclusions for real-world applications.

The remainder of this chapter is organized as follows. Section 4.2 surveys related

works. Section 4.3 formulates the problem. Section 4.4 describes the greedy

recommendation algorithm. Section 4.5 computes the influence spread. Section 4.6

includes experiments. Finally, Section 4.7 concludes this chapter.

4.2 Related Work

Social Influence Propagation. Independent cascade is one of the most classic

models for describing social influence propagations [62, 65]. It starts with a set

of initially-influenced people, and then executes a probabilistic rule to propagate

influences. The number of eventually-influenced people is denoted as the influence

spread, the computation of which is NP-hard [63]. Several time-efficient methods

were proposed to estimate the influence spread. Chen et al. [63, 64] simplified

67

the influence spread computation by restricting the influence to propagate along

the maximum influence path. Borgs et al. [66] studied the influence spread by

sampling methods, assuming that the statistical properties of an OSN is stable.

This chapter uses the existing independent cascade model to address a novel friend

recommendation problem. Our contributions also include a novel influence spread

computation method.

Friend Recommendation. The friend recommendation system is an essential

component of an OSN. Authors in [56, 67] hypothesized that people with close social

circles are potential friends. Bu et al. [57] proposed that users who like the same

music should be recommended to become friends with each other. Zhang et al. [68]

considered that users make friends by sharing the same profiles. As for location-based

approaches [58, 69], geographically nearby users are recommended to connect with

each other. Differing from previous approaches, our friend recommendation strategy

focuses on the perspective of maximizing the social influence of a specified user.

4.3 Preliminaries and Problem Formulation

4.3.1 Independent Cascade

The scenario of this chapter is an OSN, which is modeled as a directed weighted

graph G = (V,E). Here, V is a set of nodes (users), and E ⊆ V 2 is a set of weighted

edges (friendships between users). An edge from user v to user u is denoted by evu with

the edge weight of wvu. Edge weights serve as probabilities for influence propagations,

depending on the friendship closeness and the content popularity [70]. We use

existing works [62, 65, 63, 64] to determine edge weights. The independent cascade

model is used to simulate influence propagations. It starts with a set of initially-

influenced nodes (called seed nodes). The other nodes are initially-uninfluenced.

The influence propagation process unfolds in discrete time steps according to the

68

0.6

0.4

0.3

0.1

0.4

0.3

0.8

0.5

friend recommendation

v7

v6

v5

v4

v3

v2

v1

v0

The

given

user

Figure 4.2: An example for the friend recommendation.

following probabilistic rule [62]. When a node v first becomes influenced in a time

step, it has a single chance to influence each currently uninfluenced neighbor u. Then,

the probability that u is influenced by v depends on wvu. If u has multiple newly-

influenced neighbors, their influence propagations can be sequenced in an arbitrary

order. Once u is influenced, it will influence its neighbors in the next time step;

however, u does not propagate any further influences in subsequent time steps. The

above process terminates until no more uninfluenced nodes are influenced. We have:

Definition 4.1. The expected number of nodes eventually-influenced by seed nodes

is defined as the influence spread.

Unfortunately, the computation of the influence spread is known as NP-hard

[63]. Currently, it could be computed by time-consuming Monte-Carlo simulations,

information-lossy heuristics, or sampling methods with strong assumptions.

4.3.2 Problem Formulation

This chapter studies the friend recommendation strategy with the perspective of

social influence maximization (i.e., maximizing influence spread). The motivation

is that people may want to make new friends to maximize their social influence.

People, such as political party leaders, film stars, and business salesmen, sometimes

combine making friends and influencing people as a lifestyle. Therefore, OSNs have

a strong potential for adopting our friend recommendation strategy. For example, a

69

salesman on Facebook or Twitter would like to influence as many people as possible

for commercial advantages [71, 72].

This chapter designs a friend recommendation strategy for an OSN system provider

(e.g., Facebook). The objective is to recommend a fixed number (denoted by k) of

new friends to a given user (denoted by v0), such that v0 can maximize his/her social

influence spread through making new friends. The independent cascade model [62]

is adopted as the influence cascade model, where v0 is initially-influenced and the

other nodes are initially-uninfluenced. The existing friends of v0 are eliminated in the

recommendations. We want to maximize the influence spread of v0 through k new

friendships (new edges). The friend acceptance probabilities depend on the social

proximities between v0 and the recommended people. This is because a stranger is

less likely to accept the friend request from v0 than a friend-of-friend of v0.

An example is shown in Fig. 4.2, where edges are directed and the numbers on

edges are their weights. If v3 is recommended to v0, a new edge of ev0v3 may be

added, depending on the friend acceptance probability that is estimated by their

social proximity. Similar to the other edge weights, the weight, wv0v3 , of the new

edge is also determined by existing works [62, 65, 63, 64], according to the friendship

closeness and the content popularity. The challenge comes from the tradeoff between

the friend acceptance probability and the propagation capability. Although influential

strangers can effectively propagate v0’s influence, they are less likely to accept the

friend request from v0. On the other hand, friends-of-friends are likely to accept the

friend request from v0, but may not effectively propagate v0’s influence. This tradeoff

should be explored.

70

4.4 Combining Friend Recommendation and

Social Influence Maximization

4.4.1 Friend Acceptance Probability

This subsection describes the friend acceptance probability. If v is recommended

to v0 as a new friend, v0 may influence more people through forming a new friendship

with v. Let fv0v denote the friend acceptance probability that v accepts the friend

request from v0 (i.e., a new edge of ev0v is formed). Strangers are people who are not

friends or friends-of-friends of v0. We have the following justifications for fv0v:

• fv0v can be different for different strangers of v. This is because v0 could judge

their friendship potential from multiple fields such as common interests, school

of graduation, place of work, and so on.

• Compared to the event in which v is a stranger of v0, fv0v should be larger if v

is a friend-of-a-friend of v0. This is because people are more likely to accept a

friend request from friends-of-friends than from strangers.

These two unique properties are the major differences between our metric and existing

classic metrics (e.g., Jaccard’s coefficient and Katz coefficient) [62]. Based on above

justifications, fv0v is formally defined as follows:

fv0v = αv ×
|N(v0) ∩N ′(v)|
|N(v0) ∪N ′(v)| + βv (4.4-1)

In Eq. 4.4-1, N(v) and N ′(v) denote the sets of outgoing and incoming neighboring

nodes of v, respectively. The fraction of |N(v0)∩N ′(v)|
|N(v0)∪N ′(v)|

is the common neighbor similarity

from v0 to v. It measures the number of common friends of v0 and v. αv and βv are

coefficients. To guarantee 0 ≤ fv0v ≤ 1, we have 0 ≤ αv ≤ 1, 0 ≤ βv ≤ 1, and

0 ≤ αv +βv ≤ 1. While αv measures the impact of friends-of-friends, βv measures the

71

1

1

1

1

1

0

0

0

v8

v7

v6

v4

v3

v2

v1

v0

The

given

user

v5

0

0

Figure 4.3: Proof of NP-hardness.

probability that people form a friendship with a stranger. αv and βv can vary among

different people. When v is a friend-of-a-friend of v0, fv0v is no smaller than βv. This

is because N(v0) ∩ N ′(v) 6= ∅. On the other hand, when v is a stranger to v0, fv0v

reduces to βv, which is its minimum value. An example is shown in Fig. 4.2. If we

have αv3 = 0.5 and βv3 = 0.1, then fv0v3 = 0.5× 1
5
+ 0.1 = 0.2.

Note that fv0v does not depend on the edge weight wv0v. This is simply because the

edge weight measures the influence propagation probability rather than the friendship

closeness. Eq. 4.4-1 can be improved by considering the friendship closeness. Another

notable point is that we use existing works [62, 65, 63, 64] to determine the weights of

edges, including the weights of new edges that results from friend recommendations.

4.4.2 NP-hardness, Submodularity, and Greedy Approximation

This subsection explores the friend recommendation problem. Let R denote the

set of users that are recommended to v0 for making new friends. The constraint is

|R| ≤ k, and |R| is the set cardinality of R. Once a user (say v) is recommended to

v0, the probability that v accepts the friend request from v0 is fv0v. The independent

cascade model is adopted stimulate influence propagations. In our problem, only

v0 is initially-influenced, and the other nodes are initially-uninfluenced. Let σ(R)

denote the influence spread. Based on Definition 4.1, σ(R) is the expected number

of nodes eventually-influenced by v0 with friend recommendations in R. Note that,

72

when R = ∅, σ(R) is not necessarily 0, since v0 can still influence existing friends.

We have the following theorem:

Theorem 4.2. Our friend recommendation problem, which selects R to maximize

σ(R), is NP-hard.

Proof: The proof is done by reducing the Maximum Coverage Problem (MCP) to

a special case of our problem. The MCP is NP-hard [73], and is based on sets of

elements. Given a number of k, its objective is to select k sets, such that the number

of covered elements are maximized. If a set is selected, its elements are covered.

The reduction is done by mapping sets and elements to 2-hop and 3-hop friends of

v0, respectively. Edge weights in our problem are specially designed. Only weights of

edges from 2-hop friends to 3-hop friends of v0 are 1, and the others are 0. As a special

case of our problem, let G be a directed acyclic graph with the source of v0. Fig. 4.3

shows such an example: set {v6, v7} is mapped to node v3, set {v7, v8} is mapped to

node v4, and set {v8} is mapped to node v5. We use fv0v = 1 and wv0v = 1 for all

v ∈ R. At this time, the optimal recommendation will only recommend 2-hop friends

of v0, since 3-hop friends can be influenced through 2-hop friends. For example, the

optimal recommendation will not recommend v6 and v7, since the recommendation of

v3 is better. Hence, people, who are influenced by v0 in the optimal recommendation,

are composed of exactly k 2-hop friends and some 3-hop friends that correspond to

the optimally-covered elements in the MCP. Therefore, the MCP reduces to a special

case of our problem. Since the MCP can be reduced from the set cover problem that

is NP-complete [73], our friend recommendation problem is NP-hard. �

The idea of our proof is to weaken the tradeoff between the friend acceptance

probability and the propagation capability by using fv0v = 1 and wv0v = 1 for all

v ∈ R. We have:

Definition 4.3. σ(R) is submodular, if it satisfies a natural diminishing returns

73

Algorithm 3 Greedy Friend Recommendation (GFR)

Input: The graph, G, and the given user, v0;
Output: The set of recommended people, R;

1: Initialize R = ∅;
2: for i = 1 to k do
3: Select v = arg maxu

[

σ(R ∪ {u})− σ(R)
]

;
4: R = R ∪ {v};
5: return R;

property: the marginal gain from adding a node to the set R is at least as high as

the marginal gain from adding the same node to a superset of R.

Theorem 4.4. σ(R) is submodular with respect to R.

Proof: Let pR(v) denote the probability that the node v is eventually-influenced

by v0 with R. Clearly, we have σ(R) =
∑

v∈V \{v0}
pR(v). We show that pR(v) is

submodular with respect to R, through considering the influence propagation paths

from v0 to v. To see this, let R′ denote an arbitrary superset of R, i.e., R ⊆ R′.

Submodularity means that

pR∪{u}(v)− pR(v) ≥ pR′∪{u}(v)− pR′(v) (4.4-2)

where u ∈ V \R. This inequality in Eq. 4.4-2 clearly holds, when the influence

propagation paths from v0 to v via u have some overlaps with those via R′\R. An

example of such overlaps is shown as u1 and u2 in Fig. 4.4, where dashed arrows are

influence propagation paths. The equality in Eq. 4.4-2 holds, only when the influence

propagation paths from v0 to v via u are fully independent with those via R′\R. An

example is u3 in Fig. 4.4. Therefore, for all v, pR(v) is submodular with respect to R.

Considering that a non-negative linear combination of submodular functions is also

submodular, we can conclude that σ(R) is submodular with respect to R. �

The insight behind Theorem 4.4 is very intuitive: the social influences brought by

the people who are recommended later have potential overlaps with those who are

74

v

u3

R

R’u2

u1

v0

The

given

user

overlaps

Figure 4.4: Proof of submodular property.

recommended earlier. Hence, the marginal gain of the influence spread satisfies the

law of diminishing returns. According to [74], a greedy algorithm with a submodular

objective function guarantees an approximation ratio of 1− 1
e
to the optimal algorithm.

This algorithm is shown as Algorithm 3. It iteratively selects the user, who can

maximize the marginal influence spread, into the recommendations. Note that the

tradeoff between the friend acceptance probability and the propagation capability has

been automatically considered in the computation of σ(R). Existing friends of v0 are

eliminated in the friend recommendations.

A critical drawback of Algorithm 3 is that the computation of the influence spread

is NP-hard [63]. Consequently, line 3 in Algorithm 3 cannot be optimally computed

within a polynomial time complexity. State-of-the-art [64, 63, 75] cannot decently

solve this problem. Hence, in the next section, a novel method is proposed to

efficiently and accurately compute the influence spread. It serves as a sub-algorithm

for line 3 in Algorithm 3, i.e., it computes σ(R) for a given R.

4.5 Influence Spread Computation

4.5.1 Classic Approaches and Their Limitations

The influence spread computation is NP-hard [63], and it is usually done by Monte-

Carlo simulations. The most classic approaches for this problem are proposed by Chen

75

0.4

0.80.5

v2v1

v0

(a) Original graph.

0.80.5

v2v1

v0

(b) Tree reduction.

0.4

0.80.5

v2v1

v0

(c) DAG reduction.

Figure 4.5: An example for the classic approaches and their limitations.

et al. [63, 64]. They simplified the influence spread computation by restricting the

influence to propagate along the maximum influence path. In other words, the graph is

reduced to an arborescence structure (called maximum influence arborescence model).

Later, their method is improved by reducing the graph to a directed acyclic graph

(DAG). An example is shown in Fig. 4.5. The original graph is shown in Fig. 4.5(a),

where v0 is initially-influenced and the other nodes are initially-uninfluenced. The

probability that the node v is eventually-influenced is denoted by pR(v). We have

σ(R) =
∑

v∈V \{v0}
pR(v). The challenge comes from the multipath effect, meaning

that there may exist an exponential number of paths to propagate the influence

from v0 to an arbitrary node. In Fig. 4.5(a), v1 can be possibly influenced via

the v0-v1 path, or the v0-v2-v1 path. Note that the number of paths in a graph

increases exponentially with respect to the number of nodes, leading to the NP-

hardness for the influence spread computation. To restrict the number of paths,

the approach in [63] reduces the graph to a tree, as shown in Fig. 4.5(b). We

get pR(v1) = 0.5 and pR(v2) = 0.8 by this approach. It is information-lossy since

ev1v2 and ev2v1 are discarded. The improved approach in [64] reduces the graph

to a DAG, as shown in Fig. 4.5(c). We get pR(v1) = 0.5 and pR(v2) = 0.84 for

this approach, where only ev2v1 is discarded. Considering the multipath effect, the

optimal result in Fig. 4.5(a) is that pR(v1) = 0.5 + 0.8 · 0.4− 0.5 · 0.8 · 0.4 = 0.66 and

pR(v2) = 0.8+0.5 · 0.4− 0.8 · 0.5 · 0.4 = 0.84. Classic approaches are inaccurate, since

some edges are removed to restrict the number of paths for influence propagations.

76

4.5.2 Multipath Effect in Influence Propagations

Our key idea for the influence spread computation is to mitigate the multipath

effect by considering several top influence propagation paths within a non-exponential

time complexity. There exists a tradeoff between the number of paths and the

computation accuracy of the influence spread. If we consider more paths in the

computation of the influence spread, then the result is more accurate, at the cost of

a higher time complexity. Through a coarse estimation, this subsection shows how

many paths are sufficient to obtain an accurate pR(v) for node v.

Our coarse estimation is based on the existing literature for scale-free networks

[76]. OSNs are typically scale-free [77]. Let 〈·〉 denote the mean value of a variable.

For example, 〈w〉 is the average edge weight and 〈d〉 is the average out-degree. Let

|V | denote the number of nodes in G. Let NL(v) denote the expected number of paths

from v0 to v that have L intermediate nodes. We assume that each node (excluding

v0 and v) has a probability of λv to be an intermediate node in a path from v0 to v.

Note that λv (0 ≤ λv ≤ 1) represents the graph skewness among different users. We

have:

NL(v) =

[

(|V | − 2)!

(|V | − 2− L)!
· λLv · (1− λv)

|V |−L

]

· 〈d〉
L

|V |L (4.5-3)

Here, (|V |−2)!
(|V |−2−L)!

is the number of permutations for selecting L nodes from |V | − 2

nodes (excluding v0 and v) as ordered intermediate nodes on the path from v0 to v.

The probability of the corresponding permutation is λLv · (1 − λv)
|V |−L. Then, 〈d〉

|V |
is

the average probability that a predecessor node on the path connects to the successor

node. In scale-free networks, we typically consider that L is small with respect to |V |

77

[76], meaning that (|V |−2)!
(|V |−2−L)!

· 1
|V |L

≈ 1
|V |

. We rewrite Eq. 4.5-3:

NL(v) ≈
(1− λv)

|V |

|V | ·
[λv
1− λv

〈d〉
]L

(4.5-4)

When λv

1−λv
〈d〉 > 1, NL(v) is expected to grow exponentially with respect to L, and

thus, traversing all the paths from v0 to v is time-consuming (the general case). Let

L∗ denote the length of the unweighted shortest path from v0 to v, we have:

NL∗(v) ≈
(1− λv)

|V |

|V | ·
[λv
1− λv

〈d〉
]L∗

(4.5-5)

L∗ and NL∗(v) can be obtained by Dijkstra’s algorithm. |V | and 〈d〉 can be obtained

through network statistics. Therefore, λv can be adaptively computed through

Eq. 4.5-5.

The expected probability that v is influenced by v0 through a path of length L

is 〈w〉L. All the paths with length L, in total, should bring an expected influence

propagation probability of 1− (1−〈w〉L)NL(v). If these paths are independent of each

other and 〈w〉L ≪ 1, then we have the following estimation:

1− (1− 〈w〉L)NL(v) ≈ 〈w〉LNL(v) ≈
(1− λv)

|V |

|V | ·
[λv
1− λv

〈w〉〈d〉
]L

(4.5-6)

Eq. 4.5-6 implies two insights. When λv

1−λv
〈w〉〈d〉 ≥ 1, v is likely to be eventually-

influenced by v0, since Eq. 4.5-6 becomes close to one. In this case, several top paths

are sufficient to propagate v0’s influence to v. This is because these paths already bring

an influence probability that is close to one. Consequently, we do not need to consider

longer paths for the computation of pR(v). The hard scenario is λv

1−λv
〈w〉〈d〉 < 1. In

this case, Eq. 4.5-6 decreases exponentially with respect to L. This indicates that v0’s

influence is much more likely to propagate along the shorter paths than the longer

paths. Top paths can dominate the influence propagation. When λv

1−λv
〈w〉〈d〉 < 1,

78

the following equation can show such dominations:

1−∏L∗+ l
L=L∗(1− (1−λv)|V |

|V |

[

λv

1−λv
〈w〉〈d〉

]L

)

1−∏∞
L=L∗(1− (1−λv)|V |

|V |

[

λv

1−λv
〈w〉〈d〉

]L

)
(4.5-7)

≥
∑L∗+ l

L=L∗
(1−λv)|V |

|V |

[

λv

1−λv
〈w〉〈d〉

]L

∑∞
L=L∗

(1−λv)|V |

|V |

[

λv

1−λv
〈w〉〈d〉

]L
= 1−

[λv
1−λv

〈w〉〈d〉
]l+1

The fraction in the top line of Eq. 4.5-7 is the ratio of (i) the expected influence

propagation probability brought by paths with lengths from L∗ to L∗ + l to (ii)

the expected influence propagation probability brought by all paths. Eq. 4.5-7

shows that, if we consider a little bit more paths (in addition to the shortest path),

then the computational error of pR(v) can be exponentially reduced. Although the

estimation in Eq. 4.5-7 is coarse-grained, it still provides an important intuition for

the influence spread computation: if we rank all the paths from v0 to v by their

influence probabilities, then the several top paths are sufficient to approximate pR(v).

The next subsection computes the influence spread based on this intuition.

4.5.3 Multipath-sensitive Influence Spread Computation

Motivated by Eq. 4.5-7, we propose a Polynomial-Time Approximation Scheme

(PTAS) for the influence spread computation, assuming λv

1−λv
〈w〉〈d〉 < 1. The key

idea to mitigate the multipath effect by considering several top influence propagation

paths within a non-exponential time complexity. We argue that this PTAS should also

work well when λv

1−λv
〈w〉〈d〉 ≥ 1, since several top paths already bring an influence

probability that is close to one (as analyzed in Eq. 4.5-6). Let ε denote a control

parameter (0 ≤ ε ≤ 1). The PTAS is expected to obtain a ratio, 1 − ε, to the

optimal algorithm (under some assumptions in the derivation of Eq. 4.5-7). Based on

79

Eq. 4.5-7, we have:

1− ε = 1−
[λv
1− λv

〈w〉〈d〉
]l+1

(4.5-8)

Since parameters ε, 〈w〉, 〈d〉, and λv are known, we have:

l = −1 + ln ε
/

ln
[λv
1− λv

〈w〉〈d〉
]

(4.5-9)

The total number of paths from v0 to v, denoted by θv, is:

θv =
L∗+ l
∑

L=L∗

NL(v) = NL∗(v) ·
l

∑

i=0

[λv
1− λv

〈d〉
]i

= NL∗(v) ·

[

λv

1−λv
〈d〉

]
ln ε

ln[λv
1−λv

〈w〉〈d〉] − 1
[

λv

1−λv
〈d〉

]

− 1
(4.5-10)

θv is rounded to an integer for the algorithm implementation.

Algorithm 4 is proposed as the PTAS. It is a sub-algorithm for line 3 in Algorithm 3.

It include three stages:

• The first stage (lines 1 to 4) processes the friend recommendations. For v ∈ R,

a new edge is added. The edge weight is determined by the existing works

[62, 65, 63, 64]. fv0v is computed based on Eq. 4.4-1. Edge weights are

updated to show the impact of the friend acceptance probability.

• The second stage (lines 5 to 7) determines the set of paths to compute the

influence spread. Through a coarse estimation, the number of paths, θv, is

adaptively determined. Note that θv can be different for different v, since the

graph skewness is considered by λv. We convert the edge weights to the distance

weights through a negative log(·) operation. Yen’s algorithm [78] is called to

compute the set of loopless weighted shortest paths from v0 to v. For each v,

80

Algorithm 4 Influence Spread Computation (ISC)

Input: The graph, G, and the given user, v0;
The set of recommended people, R;
The control parameter, ε;

Output: The influence spread, σ(R);

1: for each node v in R do
2: Add the edge, ev0v, with weight, wv0v, to the graph, G;
3: Compute fv0v based on Eq. 4.4-1;
4: Update wv0v = fv0v × wv0v;
5: Call unweighted Dijkstra’s algorithm from v0 to determine the unweighted

shortest paths from v0 to the other nodes; then, L∗ and NL∗(v) can be obtained
for each v;

6: Parameters L∗, NL∗(v), 〈d〉, V , and ε are known; based on Eq. 4.5-5, compute λv
for each v; based on Eq. 4.5-10, compute the total number of paths, θv, for v;

7: Convert the edge weights to distance weights through a negative log(·) operation;
call weighted Yen’s algorithm to compute the loopless weighted shortest paths
from v0 to the other nodes; for each v, θv paths from v0 are obtained;

8: for each node v in G except v0 do
9: Based on θv loopless paths, construct a DAG from v0 to v; based on the

topological order, compute pR(v);
10: return σ(R) =

∑

v∈V \{v0}
pR(v);

we obtain θv paths from v0. If θv < 1, we use only one path. If θv is larger than

the number of available loopless paths, then all loopless paths are used.

• In the third stage (lines 8 to 10), for each v, we compute the probability that v is

influenced by v0, i.e., pR(v). Since θv loopless paths are obtained by the second

stage, a DAG can be constructed. Then, pR(v) can be computed following a

topological order in the DAG.

An example of Algorithm 4 is shown in Fig. 4.6. Fig. 4.6(a) showsG with R = {v3}.

In the first stage of Fig. 4.6(b), ev0v3 is added with wv0v3 = 0.75. Existing works

[62, 65, 63, 64] are used to determine all the edge weights, including wv0v3 . Suppose

αv3 = 0.9 and βv3 = 0.5, then we compute fv0v3 = 0.9 × 1
3
+ 0.5 = 0.8 based

on Eq. 4.4-1. To incorporate the friend acceptance probability, wv0v3 is updated

to be 0.6. In the second stage of Fig. 4.6(c), we determine the set of paths

for the influence spread computation. The number of paths, θv, is determined

81

0.4

1.0

0.2

0.5

0.8

friend recommendation

v4

v3

v2

v1

v0

0.5

(a) The original graph.

0.75 × 0.8 = 0.6

0.4

1.0

0.2

0.5

0.8

v4

v3

v2

v1

v0

0.5

(b) The first stage.

0.6

0.4

0.2

0.5

0.8

v4

v3

v2

v1

v0

(c) The second stage (for v1).

v4

v3: 0.6

v2: 0.5

v0

v1: 0.8592

(d) The third stage (for v1).

Figure 4.6: An example for the influence spread computation.

by Eqs. 4.5-5 and 4.5-10. Our example only includes the process for v1. For

simplicity, let θv1 = 3. Then, Yen’s algorithm determines three loopless weighted

shortest paths from v0 to v1, i.e., v0-v1, v0-v2-v1, and v0-v3-v1. Since these paths

are loopless, the third stage of Fig. 4.6(d) computes pR(v1) with a topological order,

pR(v1) = 1− (1− 0.8)× (1− 0.5 · 0.4)× (1− 0.6 · 0.2) = 0.8592.

Due to Yen’s algorithm [78], the time complexity of Algorithm 4 is O(θ|V | · (|E|+

|V | log |V |)). Here, θ is the maximum number of paths for a node, i.e., θ = maxv θv.

The first stage takes O(k) to go through each recommendation. The third stage takes

O(|V | · (|V |+ |E|)) due to the topological sort. The key insight of Algorithm 4 is to

mitigate the multipath effect by considering several top influence propagation paths

within a non-exponential time complexity. To guarantee accuracies, the number of

need paths is estimated by Eqs. 4.5-5 and 4.5-10.

82

Table 4.1: Dataset Statistics
Facebook Epinions Wiki

Number of nodes 63,731 18,098 7,115
Number of edges 817,035 355,754 103,689
Average degree 25.6 19.6 14.6

Network Diameter 15 11 7
Global clustering coefficient 0.148 0.138 0.141

Average edge weight 0.0271 0.0285 0.0076

4.6 Experiments

4.6.1 Dataset Information

Our experiments use three datasets: Facebook [79], Epinions [80], and Wiki

[81]. Facebook is an online social networking service launched in 2004. Users on

Facebook can create a user profile, add other users as friends, post status updates and

photos, share videos, and receive notifications when others update their profiles. The

Facebook “People You May Know” feature recommends new friends based on a friend-

of-a-friend strategy [56]. Facebook also provides business page services [60] to users for

social influence maximizations, meaning that our approach can be potentially applied

on Facebook. Epinions is a general consumer review site launched in 1999. Epinions

users could read new and old reviews about a variety of products to help them decide

on a purchase. Our approach can be applied on users who want to disseminate their

product reviews [82]. Wiki is a free encyclopedia written collaboratively by volunteers

(i.e., users). A small portion of users are administrators. In order for a user to become

an administrator, a request must be issued and voted. A directed edge is represented

by that a user votes for another user. Our approach can be applied on users who

want to get more votes. Note that these three datasets do not include information

on edge weights. Following existing works [62, 65, 63, 64], we use directed common

neighbor similarities [62] to determine edge weights. Finally, the statistics of these

three datasets are shown in Table 4.1.

83

4.6.2 Comparison Algorithms

Our experiments focus on the increased influence spread brought by the

recommendations, under different settings (e.g., numbers of recommended people,

values of αv and βv, and outgoing degrees of v0). The increased influence spread can

be computed by σ(R) − σ(∅). Note that σ(∅) is not necessarily 0, since v0 can still

influence some people through existing friends. For comparison, six algorithms are

included. (i) GFR & OPT stands for Algorithm 3 with the optimal influence spread

computation. The influence spread is computed through time-consuming Monte-

Carlo simulations. GFR & OPT guarantees an approximation ratio of 1 − 1
e
to the

optimal algorithm. (ii) GFR & ISC is Algorithm 3 with a non-optimal influence

spread computation. The influence spread is computed through Algorithm 4 (we

set ε = 0.1 by default). We want to check the gap between GFR & OPT and

GFR & ISC. (iii) MaxSim is for a greedy algorithm that iteratively selects a user

with a maximum common neighbor similarity (in terms of v0). It is currently used

on Facebook [56]. Recommended people are friends-of-friends of v0. (iv) MaxDeg

stands for a greedy algorithm that iteratively selects a user with a maximum outgoing

degree. Recommended people have the highest outgoing degrees. (v) Random is a

baseline algorithm that recommends friends uniform-randomly. All these algorithms

are implemented in a centralized manner.

We also set up experiments to compare different algorithms for the influence

spread computation. For comparison, five algorithms are included, as described

in the following. (i) Tree [63]. This algorithm computes the influence spread

through a maximum influence arborescence model, where influences are restricted

to propagate along maximum influence paths. (ii) DAG [64]. This algorithm reduces

the graph to a DAG to compute the influence spread. The influence probabilities

are sequentially determined following a topological order in the DAG. (iii) IMRank

84

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

k

σ
(R

)
−
σ
(∅
)

GFR & OPT

GFR & ISC

MaxSim

MaxDeg

Random

(a) Facebook.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

k

σ
(R

)
−
σ
(∅
)

GFR & OPT

GFR & ISC

MaxSim

MaxDeg

Random

(b) Epinions.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

k

σ
(R

)
−
σ
(∅
)

GFR & OPT

GFR & ISC

MaxSim

MaxDeg

Random

(c) Wiki.

Figure 4.7: The evaluation results on the impact of k (the number of recommended
friends).

[75]. This algorithm computes the influence spread through iterative neighborhood

exchanges. The probability that a given node is influenced depends on that of its

neighbors. The drawback is that IMRank ignores path dependency issues. (iv)

ISC denotes Algorithm 4, which computes the influence spread through considering

additional paths. (v) OPT. This algorithm optimally computes the influence spread

by time-consuming Monte-Carlo simulations [83].

4.6.3 Evaluation Results on Friend Recommendations

In this subsection, we report the evaluation results on friend recommendations.

First, we investigate the impact of k (i.e., the number of recommended friends). We

set αv = 0.9 and βv = 0.1 for all people. v0 is uniform-randomly picked from all the

nodes. The results are averaged over 10,000 times for smoothness and are shown in

Fig. 4.7. Three subfigures represent results in three different datasets, respectively. It

85

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

k

σ
(R

)
−
σ
(∅
)

GFR & OPT

GFR & ISC

MaxSim

MaxDeg

Random

(a) Facebook (normal users).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

k

σ
(R

)
−
σ
(∅
)

GFR & OPT

GFR & ISC

MaxSim

MaxDeg

Random

(b) Epinions (normal users).

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

k

σ
(R

)
−
σ
(∅
)

GFR & OPT

GFR & ISC

MaxSim

MaxDeg

Random

(c) Wiki (normal users).

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

k

σ
(R

)
−
σ
(∅
)

GFR & OPT

GFR & ISC

MaxSim

MaxDeg

Random

(d) Facebook (popular users).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

k

σ
(R

)
−
σ
(∅
)

GFR & OPT

GFR & ISC

MaxSim

MaxDeg

Random

(e) Epinions (popular users).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

k

σ
(R

)
−
σ
(∅
)

GFR & OPT

GFR & ISC

MaxSim

MaxDeg

Random

(f) Wiki (popular users).

Figure 4.8: The evaluation results on the impact of v0 (normal users or popular users).

can be seen that GFR & OPT performs better than GFR & ISC, since the former one

computes the influence spread optimally at the cost of time consumption. However,

the gap between their performances is limited, meaning that GFR & ISC estimates

the influence spread accurately. Meanwhile, MaxSim outperforms MaxDeg, meaning

that we are more likely to recommended friends-of-friends than strangers (users who

are not friends or friends-of-friends). For all the algorithms, the increased influence

spread, σ(R) − σ(∅), satisfies the diminishing return effect with respect to k. This

is because people influenced by later recommendations have potential overlays with

those influenced by earlier recommendations.

86

We also study the impact of v0. For convenience, we classify users into two types

by their outgoing degrees. If a user has an outgoing degree that is no larger than 100,

it is called a normal user. Otherwise, it is called a popular user. We would like to see

the difference between recommendations for normal users and those for popular users,

as shown in Fig. 4.8. An interesting phenomenon is that, our recommendations are

more effective for popular users than normal users on Facebook and Wiki, but are less

effective for popular users than normal users in Epinions. This is because popular

users are already influential in Epinions. We also observe that, for popular users,

MaxDeg outperforms MaxSim in Facebook and Wiki, while MaxSim outperforms

MaxDeg in Epinions. A possible explanation for the above phenomenon is that,

when we intend to recommend influential strangers over friends-of-friends (MaxDeg

outperforms MaxSim), users could greatly improve their social influence, since their

influences are no longer limited to their current social circles. Recommendations for

popular users are not necessarily more effective than those for normal users, depending

on the application scenario.

4.6.4 Evaluation Results on Influence Spread Computations

This subsection evaluates the influence spread computation. v0 is uniform-

randomly picked from all the nodes. We use k = 0, i.e., the result is the number of

people that v0 can influence through existing friends. Users are classified into normal

users and popular users, according to the same rule in the previous subsection. The

impact of the control parameter, ε, is studied. For ISC, we set ε = 0.1 and ε = 0.3,

respectively. They are denoted as ISC (0.1) and ISC (0.3).

The evaluation results are shown in Fig. 4.9. On average, popular users have

much larger influence spreads than normal users. The algorithm of Tree significantly

underestimates the influence spread. Although DAG improves Tree by considering

87

Facebook Epinions Wiki
0

3

6

9

12

15

18
N

u
m

b
e
r

o
f

In
fl
u
e
n
c
e
d
 U

s
e
rs

Tree

DAG

IMRank

ISC

OPT

(a) Normal users.

Facebook Epinions Wiki
0

15

30

45

60

75

90

N
u
m

b
e
r

o
f

In
fl
u
e
n
c
e
d
 U

s
e
rs

Tree

DAG

IMRank

ISC

OPT

(b) Popular users.

Figure 4.9: Evaluations of influence spread computation methods.

more paths, it still underestimates the influence spread. The latest approach of

IMRank is outperformed by ISC (0.1), since IMRank does not consider the number

of paths in the influence spread computation. In contrast, ISC (0.1) has an accurate

estimation of the true influence spread, through considering the dominating influence

propagation paths. Errors of ISC (0.1) are within 10% for both normal users and

popular users in the three datasets. The impact of the control parameter is also

significant. Note that ISC is expected to obtain a ratio, 1−ε, to the optimal algorithm

(under some assumptions in Eqs. 4.5-5 and 4.5-10). A smaller ε brings a more accurate

computation of the influence spread. While ε = 0.3 brings an inaccurate influence

spread computation, ε = 0.1 can bring a result that is close to the optimal algorithm.

4.7 Summary

This chapter studies the friend recommendation strategy with the perspective of

social influence maximization. For the system provider, the objective is to recommend

k new friends to a given user, such that the given user can maximize his/her social

influence through new friends. Our problem is NP-hard. A greedy approximation

algorithm with a ratio of 1 − 1
e
is proposed based on the submodular property. By

considering the multipath effect, a novel method is proposed to compute the influence

spread. Experiments verify the efficiency and effectiveness of our approach.

88

CHAPTER 5

SOCIAL INFLUENCE MAXIMIZATION IN

HYPERGRAPHS: NON-SUBMODULARITY

AND APPROXIMABILITY

Chapters 4 and 5 focus on the influence propagation applications for social

networks. More specifically, this chapter extends the Social Influence Maximization

Problem (SIMP). SIMP aims to select k initially-influenced seed users to maximize

the number of eventually-influenced users. Under the independent cascade model,

the SIMP has been proved to be NP-hard, monotone, and submodular. Therefore, a

naive greedy algorithm that maximizes the marginal gain obtains an approximation

ratio of 1− e−1. This chapter extends the SIMP by considering the crowd influence.

This is because the crowd influence surpasses the combination of the independent

influence from each person in the crowd. Our problem is proved to be NP-hard and

monotone, but not submodular. It is proved to be inapproximable within a ratio

of |V |ǫ−1 for any ǫ > 0. However, since user connections in OSNs are not random,

approximations can be obtained by leveraging the structural properties of OSNs.

The modularity, denoted by ∆, is proposed to measure to what degree our problem

violates the submodularity. Two approximation algorithms are proposed with ratios

of 1
∆+2

and 1 − e−1/(∆+1), respectively. Experiments demonstrate the efficiency and

effectiveness of our algorithms.

89

5.1 Introduction

Online Social Networks (OSNs) mainly focus on building social relationships

among users who share interests, activities, backgrounds, stories, and real-life

connections. OSNs are very valuable tools used by numerous people to extend their

daily contacts. Existing OSNs such as Facebook and Twitter are two of the top ten

most-visited webs in the world. As of January 2014, 74% of online adults use OSNs.

Motivated by many OSN applications such as viral marketing [84] and personalized

recommendation [67], social influence propagations have received tremendous

attention in the last decade, especially for the Social Influence Maximization Problem

(SIMP). Given an influence propagation model such as the independent cascade

model, the SIMP selects k initially-influenced seed users to maximize the number

of eventually-influenced users [62]. In the literature, the influence propagation model

is generally submodular [85]. Therefore, a simple greedy algorithm can obtain

an approximation ratio of 1 − 1
e
to the optimal algorithm. However, few results

[3] are provided when the influence propagation model even slightly violates the

submodularity. In contrast, this chapter studies a non-submodular SIMP under the

independent cascade model in hypergraphs.

Our key justification for the non-submodularity comes from the crowd psychology:

most people do follow the crowd [86], and there are various reasons to explain

why people do so. One reason is that people are afraid of doing anything new.

Attempting new things always requires courage, since we do not know what will

happen in the future. Following the crowd gives people a cushion of comfort to

make mistakes. Another reason is because of criticism. Once we do something

atypical, we may be criticised heavily by friends, family and parents for not doing

what everyone else is doing. After we fail, we would start doing what the crowd

does. As a result, the crowd psychology reveals that the crowd influence is different

90

Charlie
Bob

Alice

Edge

Hyperedge
0.5

0.7

0.6

Influenced?

Alice Bob

Yes No

No Yes

Yes Yes

Probability to propagate

the influence to Charlie

0.5

0.7

1-(1-0.5)(1-0.6)(1-0.7)

Figure 5.1: Social influences through edges and hyperedges.

from the combined independent influences of people in the crowd. This phenomenon

yields non-submodularity in social influence propagations, which are modeled through

hypergraphs.

Fig. 5.1, which shows three people (Alice, Bob, and Charlie), provides a more

specific example. Directed edges represent the influence from Alice or from Bob to

Charlie. The influences Charlie receives from Alice and Bob are independent of each

other. According to the crowd psychology, if both Alice and Bob are influenced,

there should exist a crowd influence in addition to Alice’s and Bob’s influences. A

hyperedge is used to depict such a crowd influence. Note that influences through

hyperedges is not submodular, since seed user selections in the SIMP are no longer

diminishing return. Consequently, unique challenges are posed to solve the SIMP in

hypergraphs. The first challenge is to deal with the non-submodularity. The problem

hardness and approximability need to be explored. New algorithms are needed, since

a simple greedy algorithm can no longer guarantee an approximation ratio. Another

challenge is the scalability. Since hyperedges change the scalability of the SIMP, it is

difficult to reduce their complexities.

This chapter studies the SIMP under the independent cascade model in

hypergraphs. The problem is proven to be NP-hard, and cannot be approximated

within a ratio of |V |ǫ−1 for any ǫ > 0. Here, |V | is the number of nodes in

the hypergraph, meaning that no algorithm can do better than a random seed

user selection in terms of the asymptotic approximation ratio. However, since

91

user connections in OSNs are not random, approximation algorithms are proposed

by leveraging certain structural properties of OSNs. A concept called modularity

(denoted by ∆) is proposed. ∆ can measure to what degree our problem violates

the submodularity, and ∆ is expected to be bounded in OSNs. Two approximation

algorithms are proposed with ratios of 1
∆+2

and 1− e−
1

∆+1 , respectively.

Our main contributions are summarized as follows:

• Motivated by the crowd psychology, we study the SIMP in hypergraphs.

Our problem is proven to be NP-hard, monotone, non-submodular, and

inapproximable.

• A new concept called modularity is proposed to measure to what degree

hyperedges violate the submodularity. The modularity is expected to be

bounded in OSNs.

• Two approximation algorithms are proposed with ratios of 1
∆+2

and 1− e− 1
∆+1 ,

respectively. Here, ∆ is the modularity. Algorithms are scalable for large OSNs.

• Real data-driven experiments are conducted to evaluate the proposed solutions.

The results are shown from different perspectives to provide insightful

conclusions.

The remainder of this chapter is organized as follows. Section 5.2 surveys the

related work. Section 5.3 describes the model, and then, formulates the problem.

Section 5.4 demonstrates the NP-hardness, non-submodularity, and approximability

of our problem. Section 5.5 proposes two approximation algorithms for the SIMP

with the modularity. Section 5.6 includes experiments. Finally, Section 5.7 concludes

the chapter.

92

5.2 Related Works

Motivated by applications such as viral marketing [84] and personalized

recommendations [67], researches on the social influence propagation have received

tremendous attention in the last decade, especially for the SIMP. The original

SIMP was proposed by Kempe et al. [62] with two influence propagation models

of independent cascade and linear threshold. The SIMP aims to select k initially-

influenced seed users to maximize the number of eventually-influenced users. Under

the independent cascade and linear threshold models, the SIMP has been proven to

be NP-hard, monotone, and submodular. Consequently, a simple greedy algorithm,

which iteratively maximizes the marginal gain, obtains an approximation ratio of 1− 1
e

to the optimal algorithm. A fruitful literature for the SIMP [87, 88, 89, 90] has been

developed. However, almost all variations of the SIMP are submodular or unbounded.

For example, Chen et al. [91] considered a variation of the SIMP with both positive

and negative influence propagations. Their model maintains submodularity for

maximizing the spread of positive influences. Unbounded variations of the SIMP

are studied, usually through a data mining approach. For example, Goyal et al. [92]

used available traces to learn how influence propagates in OSNs. Based on the learned

model, the expected influence spread can be estimated to solve the SIMP.

Unfortunately, few results [3] are provided when the influence propagation model

even slightly violates the submodularity. Hung et al. [3] studied a variation of the

SIMP with multiple items. Their problem is NP-hard and non-submodular, and

thus, only heuristic algorithms are provided. This is because the problem of non-

submodular function maximization [93] has not been perfectly solved in the literature

[94]. Although the problem of supermodular function maximization can be optimally

solved by the minimum-norm-point algorithm [95], non-submodular functions are not

the same. The latest approach is based on the curvature [96], which assumes that the

93

marginal gain of the non-submodular function varies within a given curvature. This

chapter can be viewed as a curvature-based approach that is specially designed for

the SIMP in OSNs.

Additionally, this chapter relates to the structural properties of OSNs. Recent

advances in network science show that user connections in OSNs are not truly random

[97]. The degree distribution in OSNs is acknowledged to follow the power-law

distribution [97]: a majority of users are inactive with a small number of connections,

while a minority of users are active with a large number of connections. Based on

[98], OSNs usually have small diameters (about 6), high clustering coefficients (larger

than 0.1), and community structures. These structural properties can be incorporated

into algorithmic designs. For example, Wang et al. [99] proposed a community-based

greedy algorithm to find the most influential nodes in OSNs. This chapter leverages

the structural properties of OSNs to solve the non-submodular SIMP in hypergraphs.

5.3 Model and Formulation

5.3.1 Model and Notations

Our scenario is based on a directed hypergraph G = (V,E), where V = {v} is a

set of nodes (i.e., users in an OSN), and E = {e} is a set of directed hyperedges.

Hyperedges represent influence propagation directions, including personal and crowd

influences. | · | denotes the set cardinality: |V | and |E| are the numbers of nodes

and hyperedges, respectively. For a hyperedge e, let He and Te denote its head and

tail sets of nodes (i.e., e connects nodes in He to nodes in Te). Hyperedges are a

generalization of normal edges. As a special case, when |He| = |Te| = 1, e becomes a

normal edge. Let we denote the weight of e, representing the influence propagation

probability (0 ≤ we ≤ 1). Given an OSN, the hypergraph G can be generated using

Hung’s approach [3]: while nodes are just users in the OSN, hyperedges and their

94

weights can be learned based on a statistical inference-based framework. Therefore,

this chapter assumes that G is known a priori.

5.3.2 Independent Cascade in Hypergraphs

The independent cascade is a classic model [62] that simulates influence

propagations in OSNs. Since the independent cascade is designed for normal graphs, a

simple extension is made for hypergraphs. Let us start with a set, S, of nodes. Nodes

in S are initially active and are also called seed users [62]. In contrast, all other

nodes are initially inactive. Independent cascade unfolds in discrete steps according

to the following randomized process. Given a hyperedge e, when all nodes in He

first becomes all active in step t, attempts are made to activate each inactive node

in Te. Each activation attempt is independent of all others, and it succeeds with

a probability we. Here, we represents the influence propagation probability. If an

inactive node has received multiple activation attempts, these activation attempts

can be sequenced in an arbitrary order. If an inactive node is successfully activated,

it will become active in step t+1. In addition, whether or not an activation attempt

succeeds, it will have no further impacts in subsequent steps. The above process

iterates step by step and terminates when no more activations are possible.

Active nodes in the independent cascade model represent influenced nodes. All

seed nodes in S are initially-influenced, while all active nodes at the end of the process

are eventually-influenced. Note that a hyperedge e could only propagate the influence

when all nodes in He first become all active. If He includes an inactive node, e cannot

propagate the influence. This is because hyperedges represent crowd influences. We

use σ(S) to denote the expected number of eventually-influenced nodes. σ(S) is also

called the influence spread of S.

95

e3

e2

e1

v2

v3

v1v5

v6

v4

S

(a) v1 is reachable from S.

e3

e2

e1

v2

v3

v1v5

v6

v4

S

(b) v1 is not reachable from S.

Figure 5.2: An example of the reachability.

5.3.3 Problem Formulation

Our objective is to select k initially-influenced seed users to maximize the number

of eventually-influenced users:

maximize σ(S) (5.3-1)

s.t. |S| ≤ k (5.3-2)

k is a pre-defined constant to bound the size of the seed set S. Given S, σ(S) is

determined by the independent cascade model. Our problem is almost the same as the

classic SIMP in [62], except that our problem uses a hypergraph rather than a normal

graph. However, this difference, despite how small it seems, leads to unique challenges.

This is because the SIMP has become non-submodular instead of submodular.

For presentation simplicity, four concepts (i.e., hyperdegree, cycle, path, and

reachability) are defined:

Definition 5.1. Let dv denote the hyperdegree of the node v. dv is the number of

hyperedges that include v in their heads or tails, i.e., dv = |{e | v ∈ He or v ∈ Te}|.

Definition 5.2. For a directed hypergraph G = (V,E), a cycle in G is defined as a

sequence (v0, e0, v1, e1, ..., en−1, v0) of alternating nodes and hyperedges where (i) ei is

distinct for ∀i ∈ {0, ..., n−1}, (ii) vi ∈ Hei for ∀i ∈ {0, ..., n−1}, and (iii) v(i+1)%n ∈ Tei

96

for ∀i ∈ {0, ..., n−1}.

Definition 5.3. For a directed hypergraph G = (V,E), a path from v0 to vn in G is

a sequence (v0, e0, v1, e1, ..., en−1, vn) of alternating nodes and hyperedges where (i) ei

is distinct for ∀i ∈ {0, ..., n−1}, (ii) vi ∈ Hei for ∀i ∈ {0, ..., n−1}, and (iii) vi+1 ∈ Tei
for ∀i ∈ {0, ..., n−1}.

Definition 5.4. For a directed hypergraph G = (V,E), a node v is said to be

reachable from a node set S if (i) there exists a path from a node in S to v and

(ii) each head node of each hyperedge of the above path is reachable from S.

Note that the reachability is recursively defined. An example is shown in Fig. 5.2.

In Fig. 5.2(a), v1 is reachable from S since v2 and v3 are also reachable from S. In

contrast, in Fig. 5.2(b), v1 is not reachable from S since v2 is not reachable from S.

5.4 Analysis

This section mainly analyzes the SIMP in a hypergraph. Our problem is proven to

be NP-hard, monotone, non-submodular, and inapproximable within a ratio of |V |ǫ−1

for any ǫ > 0.

5.4.1 NP-hard and Monotone

We start with the problem hardness:

Theorem 5.5. The SIMP in a hypergraph is NP-hard.

This is because the classic SIMP in a normal graph [62] is NP-hard by reduction

from the set cover problem, which is NP-complete. Meanwhile, every instance in

the classic SIMP is a special case of our problem (a graph is a special case of a

hypergraph). Therefore, the SIMP in a hypergraph is NP-hard.

Theorem 5.6. Given a hypergraph G, σ(S) is monotone with respect to S, meaning

97

that σ(S ′) ≤ σ(S) for ∀S ′ ⊆ S.

Proof: We prove through formulating an equivalent view of the independent

cascade. Let us convert the hypergraph G to another hypergraph G′. G and G′ have

the same nodes. Each hyperedge, e, in G is mapped to a set, {e′}, of hyperedges in

G′: {e′ |we = we′ , He′ = He, |Te′ | = 1, Te′ ⊆ Te}. Such a conversion decomposes

hyperedges in G by separating their tail nodes. By definition, the independent

cascades in G and G′ should be exactly the same.

In G′, let us consider a hyperedge e′ whose head nodes first become all active. Note

that e′ has exactly one tail node by definition. Now e′ tries to activate its tail node,

succeeding with probability we′ . We can view the outcome of this random event as

being determined by flipping a coin of bias we′ . From the view of the independent

cascade, it does not matter whether the coin was flipped at the moment that e′ tries

to activate its tail node, or whether it was flipped at the very beginning of the whole

process and is only being revealed now. Continuing this reasoning, we can assume

that for each hyperedge e′ ∈ G′, a coin of bias we′ is flipped at the very beginning

of the process (independently of the coins for all other hyperedges), and the result is

stored so that it can be checked later when e′ tries to activate its tail node.

The remainder is similar to [62]. With all the coins flipped in advance, the

independent cascade in G′ can be equivalently viewed as follows. In G′, the

hyperedges, for which the coin flip indicated an activation will be successful, are

declared to be live; the remaining hyperedges are declared to be blocked. If we fix the

outcomes of the coin flips and then initially activate a seed set S, it is clear how to

determine the full set of active nodes at the end of the independent cascade: a node

v ends up active if and only if it is reachable (see Definition 5.4) from S via only live

hyperedges. In each possible set of outcomes (in terms of all coin flip outcomes on

the hyperedges), if a node v is reachable from S ′, it must be reachable from S, since

98

S ′ ⊆ S. Therefore, σ(S ′) ≤ σ(S) holds for ∀S ′ ⊆ S, and the proof completes. �

The monotonicity for the influence propagation in a normal graph is preserved in

a hypergraph. The intuition is that more people always bring more influences.

5.4.2 Non-Submodular and Inapproximability

Theorem 5.7. Given a hypergraph G, σ(S) is not submodular with respect to S,

meaning that σ(S ∪ {v})− σ(S) > σ(S ′ ∪ {v})− σ(S ′) for ∃ v ∈ V, S ′ ⊂ S, S ⊆ V .

Proof: We prove by a counterexample in Fig. 5.2(a). We focus on three nodes of

v1, v2, v3, and one hyperedge of e1 with w1 = 1. Let us set S ′ = ∅, S = {v2}, and

v = v3. We have σ(S ∪{v}) = 3, since v1 will be influenced by v2 and v3. Meanwhile,

we have σ(S) = 1 and σ(S ′ ∪ {v}) = 1, since not all head nodes of e1 are active, and

thus, e1 cannot activate v1. In addition, we have σ(S ′) = 0 since S ′ = ∅. As a result,

σ(S ∪ {v})− σ(S) = 2 > σ(S ′ ∪ {v})− σ(S ′) = 1. �

The submodularity for the influence propagation in a normal graph is not preserved

in a hypergraph. The intuition is that the SIMP is no longer diminishing return due

to the crowd influence, which is in addition to the influence of each person in the

crowd. This phenomenon yields non-submodularity. A simple variation of Hung’s

first theorem in [3] can lead to the following approximability result:

Theorem 5.8. For the SIMP in a general hypergraph, unless P = NP, no algorithm

can guarantee an approximation ratio of |V |ǫ−1 for any ǫ > 0.

Theorem 5.8 validates that the SIMP in a general hypergraph is not approximable,

i.e., any given algorithm must perform poorly under certain hypergraphs. Therefore,

Theorem 5.8 poses a unique challenge to solve the SIMP in OSNs.

99

Algorithm 5 Naive Greedy (NG)

Input: a hypergraph, G, and a constant, k.
Output: a set of seed nodes, S.

1: Initialize i = 0 and S0 = ∅.
2: while |Si| < k do
3: Find out v = argmaxv∈V σ(Si ∪ {v})− σ(Si).
4: Update Si+1 = Si ∪ {v}.
5: Update i to be i+ 1.
6: return S = Si as the set of seed nodes.

5.4.3 Naive Greedy

Since Theorem 5.8 shows the inapproximability of the SIMP in a general

hypergraph, this subsection focuses on a naive greedy algorithm, as shown in

Algorithm 5. Starting with an empty seed set (line 1), it iteratively add a node

that maximizes the marginal gain of σ(Si), until k nodes are selected (lines 2 to

5). Since σ(·) is no longer submodular, such a greedy algorithm cannot guarantee

an approximation ratio of 1 − 1/e. Note that Algorithm 5 involves the sub-problem

of computing σ(S) for a given S. This sub-problem is NP-hard [63] and has been

extensively studied in the literature. This chapter does not explore this sub-problem,

and uses the Monte Carlo simulation [63] to compute σ(S) for a given S in G.

5.5 Algorithms

The previous section has proven that the SIMP in a general hypergraph is NP-hard,

monotone, non-submodular, and not approximable within a ratio of |V |ǫ−1 for any

ǫ > 0. However, OSNs are not general hypergraphs. Recent studies in network science

validate that user connections in OSNs are not truly random [97]. Consequently,

approximation algorithms become possible by leveraging certain structural properties

of OSNs.

100

5.5.1 Modularity

To enable approximation algorithms by revealing structural properties of OSNs,

two concepts are proposed:

Definition 5.9. Given a monotone objective function σ(·), the modularity set of a

node v is Mv = {v′ | σ(S ∪ {v, v′})−σ(S ∪ {v′}) > σ(S ∪ {v})−σ(S) for ∃ v ∈ V, v′ ∈

V, S ⊆ V }, which includes all nodes that might increase the marginal gain of v.

Definition 5.10. The modularity, ∆, is defined as the maximum cardinality among

all modularity sets, i.e., ∆ = maxv |Mv|.

For a node v, only nodes in Mv might increase the marginal gain of v for the

objective function σ(·). In contrast, nodes that are not in Mv can never increase the

marginal gain of v. If v is locally submodular for σ(·), then Mv = ∅. Consequently,

the modularity ∆ measures the degree to which σ(·) violates the submodularity. σ(·)

gets closer to the submodularity for a smaller ∆, and is submodular when ∆ = 0.

For a general hypergraph, ∆ is not bounded, and can be as large as O(|V |). This is

the reason that SIMP in a general hypergraph is not approximable. However, recent

studies in network science show that OSNs are scale-free networks [97], meaning that

∆ can be bounded in OSNs. Therefore, the next subsection will discuss the bound of

∆ in scale-free OSNs.

5.5.2 OSNs as Scale-Free Hypergraphs

Recent studies in network science show that OSNs are scale-free networks [97],

meaning that the degree distribution in an OSN follows the power-law distribution

[100]. Let pd denote the fraction of nodes with a hyperdegree d. The power-law means

that pd = (γ − 1)d−γ, in which γ ranges from 2 to 4 in OSNs [97]. Let w = 1
|E|

∑

ewe

denote the average weight of the hyperedges. We have the following theorem:

Theorem 5.11. In scale-free OSNs with γ and w, it is expected to have ∆ ∈ o(|V |)

101

when 4 + 6w γ−1
γ−2

≤ 3(γ−1
wγ+1)2.

Proof: Similar to the proof of Theorem 5.6, we again form an equivalent view

of the independent cascade to compute ∆. For each hyperedge e, coins are flipped

based on its weight, we. Let Cv be the maximum Weakly Connected Component

(WCC) containing v via live hyperedges in G after the coin flip. Here, two nodes

are weakly connected if there exists a path connecting them (see Definition 5.3),

when each hyperedge is regarded as bi-directional. We claim that Mv ⊆ Cv. This

is because nodes outside Cv cannot increase the marginal gain of v. Consequently,

we can conclude that ∆ is upper-bounded by the size of the maximum WCC via live

hyperedges in G.

The following part of the proof uses Molloy’s Theorem 1 in [101] to derive the

size of the maximum WCC through live hyperedges in G. All prerequisites of this

theorem are satisfied. In addition, Molloy’s Theorem 1 was developed under general

graphs, but it can be applied to hypergraphs through separating each hyperedge into

a set of normal edges. Let qd denote the fraction of nodes with a live-hyperdegree d

(live-hyperdegree is the hyperdegree that only counts live hyperedges). We have:

qd =
1

w
pd/w =

γ − 1

w

(d

w

)−γ

(5.5-3)

Let d = w γ−1
γ−2

be the average live-hyperdegree. We define:

χ(α) = d− 2α−
∞
∑

d=1

dqd

(

1− 2α

d

)
d
2 ≈ d− 2α−

∫ ∞

d=1

dqd

(

1− 2α

d

)
d
2
dd− ψ

= d− 2α− γ − 1

wγ+1

[2d1−γ(1− 2α
d
)
d
2
+1

d+ 2

]
∣

∣

∣

∞

d=1
− ψ

= d(1− 2α

d
) +

γ − 1

wγ+1 ×
2

3
(1− 2α

d
)
3
2 − ψ (5.5-4)

Eq. 5.5-4 is derived under 0 ≤ 2α ≤ d. Eq. 5.5-4 does not consider the case of d < 1

102

(no impact on the graph connectivity). Here, ψ comes from Euler-Maclaurin formula

for integral boundaries:

ψ =
1

2
× [

γ − 1

wγ+1 (1−
2α

d
)
1
2 + 0] =

1

2

γ − 1

wγ+1 (1−
2α

d
)
1
2 (5.5-5)

Let αD be the smallest positive root for χ(α) = 0. We have the following result for

αD and definition for ǫD:

(1− 2αD

d
)
1
2 =

√

12(γ−1
wγ+1)2 + 9d

2 − 3d

4 γ−1
wγ+1

(5.5-6)

ǫD = 1−
∑

d

qd(1−
2αD

d
)
d
2 ≤ 1− q1(1−

2αD

d
)
1
2

=
(4 + 3d)−

√

12(γ−1
wγ+1)2 + 9d

2

4
(5.5-7)

We can have ǫD ≤ 0 when 4+6w γ−1
γ−2

≤ 3(γ−1
wγ+1)2. Molloy’s Theorem 1 in [101] proved

that the size of the maximum WCC via live hyperedges in G (the size of a giant

component in a random graph) is ǫD|V | + o(|V |), or just o(|V |) when ǫD ≤ 0. Since

∆ is upper-bounded by the size of the maximum WCC via live hyperedges in G, the

proof completes. �

The insight of Theorem 5.11 is that the influence propagation from a node decays

quickly with respect to w. The influence of a node becomes limited when w is small

(we have ∆ = 0 when w = 0). Note that 4 + 6w γ−1
γ−2

≤ 3(γ−1
wγ+1)2 is satisfied for

most OSNs that have w < 0.7 and γ > 2.1 [63]. Therefore, the SIMP in OSNs

is approximable. In addition, γ has a big impact on ∆. When γ is smaller, the

hyperdegree distribution is closer to “uniform,” and ∆ is larger. On the other hand,

when γ is larger, fewer nodes have large hyperdegrees and ∆ is smaller. A smaller ∆

represents a smaller gap from the submodularity. The following subsections will use

the modularity techniques [102] to approximate the SIMP with ∆ in OSNs.

103

Algorithm 6 Improved Greedy (IG)

Input: a hypergraph, G, and a constant, k.
Output: a set of seed nodes, S.

1: Initialize i = 0 and S0 = ∅.
2: while |Si| < k do
3: Find out argmaxv∈V,M ′

v⊆Mv
σ(Si ∪{v}∪M ′

v)−σ(Si) constrained by |Si ∪{v}∪
M ′

v| ≤ k.
4: Update Si+1 = Si ∪ {v} ∪M ′

v.
5: Update i to be i+ 1.
6: return S = Si as the set of seed nodes.

5.5.3 Improved Greedy

By leveraging the structural properties of OSNs, ∆ is shown to be bounded in OSNs

(Theorem 5.11). Consequently, approximation algorithms become possible. The key

idea is that, when the node v is selected as a seed node, nodes inMv should be further

considered, since they can improve v’s influence propagations. This observation can

improve Algorithm 5.

Consequently, Algorithm 6 is proposed as another greedy algorithm. In line 1, it

initializes i = 0 and S0 = ∅. Lines 2 to 5 describe greedy iterations. While Algorithm 5

iteratively selects one seed node, Algorithm 6 iteratively selects a set of seed nodes,

in order to mitigate the negative impact resulting from the non-submodularity. In

line 3, once v is selected as a seed node, partial nodes in Mv (denoted as M ′
v) are

jointly selected as seed nodes. The greedy criterion is that v and M ′
v can maximize

the marginal gain of the current seed set, i.e., maximize σ(Si ∪ {v} ∪M ′
v) − σ(Si).

The constraint is that |Si ∪ {v} ∪M ′
v| ≤ k, i.e., at most k seeds are selected. Lines 4

and 5 update the seed set Si and the index i. The greedy iteration terminates once

k seed nodes are selected.

Computing σ(S) for a given S is considered to take O(|E|) in the Monte Carlo

simulation [63]. Algorithm 6 has at most k greedy iterations, and each iteration it

exhausts v and Mv in line 3. Consequently, the time complexity of Algorithm 6 is

104

Hi \ Hi+1

Hi+1 \ Si+1 Si

Si+1 \ Si

Figure 5.3: Relationship between Si and Hi. We have Si+1 = (Si+1 \ Si) ∪ Si,
Hi+1 = (Hi+1 \ Si+1) ∪ Si+1, and Hi = (Hi \Hi+1) ∪ (Hi+1 \ Si+1) ∪ Si.

O(2∆k|V ||E|). We claim that Algorithm 6 is bounded:

Theorem 5.12. Algorithm 6 has an approximation ratio of 1
∆+2

to the optimal

algorithm.

Proof: Let S∗ denote the optimal set of seed nodes, in terms of maximizing σ(·).

An auxiliary parameter, Hi, is used. With H0 = S∗, Hi is recursively defined as

an arbitrary subset of Hi−1 ∪ Si, under the constraint that Si ⊆ Hi and |Hi| = k.

Intuitively, Hi consists of Si and a part of S∗. The relationship between Si and Hi is

shown in Fig. 5.3. When i becomes larger, nodes from Si are added to Hi, and nodes

in S∗ are removed from Hi, maintaining |Hi| = k. By definition, we have:

|Hi+1| = |Hi| − |Hi \Hi+1|+ |Si+1 \ Si| (5.5-8)

Since |Hi+1| = |Hi| = k, we have:

|Hi \Hi+1| = |Si+1 \ Si| ≤ |{v} ∪M ′
v| ≤ 1 + ∆ (5.5-9)

This is because M ′
v ⊆ Mv and ∆ = maxv |Mv|. Eq. 5.5-9 means that, in each greedy

iteration, at most 1 + ∆ nodes in S∗ are ignored by Algorithm 6.

We claim that the marginal gain in each greedy iteration of Algorithm 6 has a

lower bound with respect to σ(Hi):

σ(Hi)−σ(Hi+1) ≤ (∆+1)×[σ(Si ∪ {v} ∪M ′
v)−σ(Si)] (5.5-10)

105

To prove Eq. 5.5-10, let us order nodes of Hi \ Hi+1 in an arbitrary order (say

v1, v2, ..., vl), and let Hj
i = Hi \{v1, v2, ..., vj} for 1 ≤ j ≤ l (H0

i = Hi and H
l
i ⊆ Hi+1).

For each j, we have:

σ(Si ∪ {vj} ∪ (Mvj ∩Hj
i))− σ(Si)

≥ σ(Si ∪ {vj} ∪ (Mvj ∩Hj
i))− σ(Si ∪ (Mvj ∩Hj

i))

≥ σ(Si ∪ {vj} ∪Hj
i)− σ(Si ∪Hj

i) (5.5-11)

The first inequality is from the monotonicity in Theorem 5.6, since Si ⊆ Si∪(Mvj∩Hj
i)

and σ(Si) ≤ σ(Si ∪ (Mvj ∩Hj
i)). The second inequality is from the definition of the

modularity set, because only nodes inMvj can increase the marginal gain of vj. Hence,

nodes in Hj
i \Mvj might decrease the marginal gain of vj. By accumulating Eq. 5.5-11

among j, we obtain:

∑l

j=1
[σ(Si ∪ {vj} ∪ (Mvj ∩Hj

i))− σ(Si)]

≥
∑l

j=1
[σ(Si ∪ {vj} ∪Hj

i)− σ(Si ∪Hj
i)]

= σ(Si ∪H0
i)− σ(Si ∪H l

i) ≥ σ(Hi)− σ(Hi+1) (5.5-12)

The first inequality is from Eq. 5.5-11. The equality results from the definition of

Hj
i , since {vj} ∪Hj

i = Hj−1
i . The last inequality is because σ(Si ∪H0

i) = σ(Hi) and

σ(Si ∪ H l
i) ≤ σ(Hi+1). We have σ(Si ∪ H0

i) = σ(Hi), since H
0
i = Hi and Si ⊆ Hi.

We have σ(Si ∪ H l
i) ≤ σ(Hi+1) by the monotonicity, since Si ⊆ Si+1 ⊆ Hi+1 and

H l
i ⊆ Hi+1. We have:

(∆ + 1)× [σ(Si ∪ {v} ∪M ′
v)− σ(Si)] ≥

∑l

j=1
[σ(Si ∪ {v} ∪M ′

v)− σ(Si)]

≥
∑l

j=1
[σ(Si ∪ {vj} ∪ (Mvj ∩Hj

i))− σ(Si)] ≥ σ(Hi)− σ(Hi+1) (5.5-13)

106

The first inequality results from Eq. 5.5-9, in which 1 ≤ j ≤ l = |Hi \Hi+1| ≤ ∆+ 1.

The second inequality comes from line 3 in Algorithm 6, which always selects the

maximum marginal gain in each greedy iteration. The third inequality comes from

Eq. 5.5-12. Therefore, Eq. 5.5-10 is valid.

Since the marginal gain in each greedy iteration of Algorithm 6 has a lower

bound, we can accumulate Eq. 5.5-10 among all greedy iterations (note that Si+1 =

Si ∪ {v} ∪M ′
v):

σ(H0)− σ(Hi) ≤ (∆ + 1)× [σ(Si)− σ(S0)] (5.5-14)

Since H0 = S∗, Hi = Si = S when Algorithm 6 terminates, and S0 = ∅, we have

σ(S∗) ≤ (∆ + 2)× σ(S). �

The key insight of Theorem 5.12 is that Algorithm 6 ignores at most 1 +∆ nodes

in the optimal set of seed nodes, resulting in a bounded marginal gain for each greedy

iteration. Theorem 5.12 does not violate the inapproximability in Theorem 5.8, since

∆ can be as large as Θ(|V |) in a general hypergraph. However, Algorithm 6 still has a

critical drawback. Although Theorem 5.11 validates that ∆ ∈ o(|V |) in OSNs, ∆ may

still be numerically large, in terms of the time complexity and the approximation ratio.

As a result, Algorithm 6 may perform poorly in an OSN with a small γ, especially

when γ gets closer to 2.

5.5.4 Capped Greedy

Since ∆ has a critical impact on Algorithm 6, we need to further identify its role

in the algorithm design. The key idea is that, although |Mv| could be large, not all

nodes inMv have huge impacts on the marginal gain of v for σ(·). Intuitively, only v’s

neighbors, who share hyperedges with large weights, are important in Mv. Moreover,

the optimal set of seed nodes are not able to include all nodes in Mv if |Mv| > k.

107

Algorithm 7 Capped Greedy (CG)

Input: a hypergraph, G, and a constant, k.
Output: a set of seed nodes, S.

1: Initialize S = ∅.
2: for each node v′ ∈ V , each ∆′ from 1 to ∆, and each set S0 ⊆ Mv′ constrained

by |S0| = k mod (∆′ + 1) do
3: Initialize i = 0.
4: while |Si| < k do
5: Find argmaxv∈V,M ′

v⊆Mv
σ(Si ∪ {v} ∪M ′

v)− σ(Si) constrained by |Si ∪ {v} ∪
M ′

v| ≤ k and M ′
v ≤ ∆′.

6: Update Si+1 = Si ∪ {v} ∪M ′
v.

7: Update i to be i+ 1.
8: if σ(Si) > σ(S) then
9: Update S to be Si.

10: return S as the set of seed nodes.

Therefore, capping the number of selected seed nodes in Mv might lead to a better

performance, since low impact nodes in Mv can be replaced by high impact nodes

outside Mv. To find out the best cap, we can simply exhaust all possible caps.

As a result, Algorithm 7 is proposed as an extension of Algorithm 6. In line 1, it

initializes S = ∅. Line 2 includes a loop statement to exhaust all possible scenarios,

in terms of the combination of each node v′ ∈ V , each ∆′ from 1 to ∆, and each

set S0 ⊆ Mv′ constrained by |S0| = k mod (∆′ + 1). Instead of ∆, ∆′ is used as the

cap. Lines 3 to 7 are basically the same as Algorithm 6, except for the cap. This

part embeds Algorithm 6 to search the set of seed nodes in each possible scenario.

The cap is added at the end of line 5 (M ′
v ≤ ∆′), while Algorithm 6 uses M ′

v ≤ ∆

by default (∆ = maxv |Mv| by definition). Lines 8 and 9 record the best set of seed

nodes searched among all possible scenarios (specified by line 2).

The total number of all possible scenarios is O(|V | ·∆ · 2∆). The time complexity

of Algorithm 6 is O(2∆k|V ||E|). Hence, the time complexity of Algorithm 7 is

O(4∆∆k|V |2|E|). But Algorithm 5.13 has a better bound than Algorithm 6:

Theorem 5.13. Algorithm 7 has an approximation ratio of 1− e− 1
∆+1 to the optimal

108

algorithm.

Proof: Let S∗ denote the optimal set of seed nodes, in terms of maximizing σ(·).

Since Algorithm 7 exhausts all possible v′, ∆′, and S0 in line 2, there must exist

a scenario in which v′ = argmaxv′ |Mv′ ∩ S∗|, ∆′ = |Mv′ ∩ S∗|, S0 ⊆ Mv′ ∩ S∗,

and |S0| = k mod (∆′ + 1). All the following proof is based on the above scenario,

although Algorithm 7 picks the best effort among all scenarios (lines 8 and 9).

In the above scenario, we claim that σ(Si) in each greedy iteration of Algorithm 6

has a lower bound to σ(S∗):

σ(Si) ≥ (1− 1

k′
)i × σ(S0) + [1− (1− 1

k′
)i]× σ(S∗) (5.5-15)

Here, k′ is defined as k − [k mod (∆′ + 1)]. In other words, k′ is the largest multiple

of ∆′ + 1 constrained by k′ ≤ k. Eq. 5.5-15 is proved by induction. It is trivial that

Eq. 5.5-15 holds when i = 0, since (1− 1
k′
)0 = 1. Assume that Eq. 5.5-15 holds for i,

and we prove that Eq. 5.5-15 holds for i+1. Since S0 ⊆ (Mv′ ∩S∗) ⊆ S∗ and |S0| = k

mod (∆′ + 1), we have:

|S∗ \ S0| = |S∗| − |S0| = k − [k mod (∆′ + 1)] = k′ (5.5-16)

Similarly, let us order nodes of |S∗ \ S0| in an arbitrary order (say v1, v2, ..., vk′), and

let S∗j = {v1, v2, ..., vj} for 1 ≤ j ≤ j′ (S∗0 = ∅). Similar to Eq. 5.5-11, we have:

σ(Si ∪ {vj} ∪ (Mvj ∩ S∗))− σ(Si) ≥ σ(Si ∪ {vj} ∪ (Mvj ∩ S∗j−1))− σ(Si)

≥ σ(Si ∪ {vj} ∪ (Mvj ∩ S∗j−1))− σ(Si ∪ (Mvj ∩ S∗j−1)))

≥ σ(Si ∪ {vj} ∪ S∗j−1)− (Si ∪ S∗j−1) (5.5-17)

The first and second inequalities are from the monotonicity in Theorem 5.6, since

109

S∗j−1 ⊆ S∗ and Si ⊆ Si ∪ (Mvj ∩ S∗j−1)). So σ(Si ∪ {vj} ∪ (Mvj ∩ S∗)) ≥

σ(Si ∪ {vj} ∪ (Mvj ∩ S∗j−1)) and σ(Si) ≤ σ(Si ∪ (Mvj ∩ S∗j−1))). The third inequality

is from the definition of the modularity set, since only nodes in Mvj can increase

the marginal gain of vj (other nodes might decrease the marginal gain of vj). By

accumulating Eq. 5.5-17 among j, we have the following inequality:

∑k′

j=1
[σ(Si ∪ {vj} ∪ (Mvj ∩ S∗))− σ(Si)]

≥
∑k′

j=1
[σ(Si ∪ {vj} ∪ S∗j−1)− (Si ∪ S∗j−1)]

=σ(Si ∪ S∗)− σ(Si) ≥ σ(S∗)− σ(Si) (5.5-18)

The first inequality is from Eq. 5.5-17. The equality results from the definition of

S∗j , since {vj} ∪ S∗j−1 = S∗j . Note that, since S∗k′ ⊆ S∗ \ S0 and S0 ⊆ Si, we have

Si ∪ S∗k′ = Si ∪ S∗. We have Si ∪ S∗0 = Si since S
∗
0 = ∅. The last inequality is from

the monotonicity, since S∗ ⊆ Si ∪ S∗. We have:

σ(Si+1)− σ(Si) = σ(Si ∪ {v} ∪M ′
v)− σ(Si) =

1

k′

∑k′

j=1
[σ(Si ∪ {v} ∪M ′

v)− σ(Si)]

≥ 1

k′

∑k′

j=1
[σ(Si ∪ {vj} ∪ (Mvj ∩ S∗))− σ(Si)] ≥

1

k′
[σ(S∗)− σ(Si)] (5.5-19)

The first inequality is because line 5 in Algorithm 7 always selects the maximum

marginal gain in each greedy iteration. Mvj ∩S∗ is also constrained by |(Mvj ∩S∗)| ≤

∆′, since the scenario sets v′ = argmaxv′ |Mv′ ∩ S∗| and ∆′ = |Mv′ ∩ S∗|. The second

inequality is from Eq. 5.5-18. We rewrite Eq. 5.5-19 as:

σ(Si+1) ≥
1

k′
[σ(S∗)− σ(Si)] + σ(Si) =

1

k′
× σ(S∗) + (1− 1

k′
)× σ(Si)

≥ (1− 1

k′
)i+1 × σ(S0) + [1− (1− 1

k′
)i+1]× σ(S∗) (5.5-20)

The first equality is from Eq. 5.5-19 and the last equality is from the induction

110

Table 5.1: Dataset Statistics.
Forum Board Citation

Number of nodes 899 355 16,726
Number of hyperedges 67,332 2,684 92,462
Maximum hyperdegree 8,577 107 351
Power-law exponent γ 2.36 3.50 3.36

hypothesis (substituting σ(Si) in Eq. 5.5-15). Eq. 5.5-15 is proved by induction.

Since each greedy iteration of Algorithm 7 selects at most ∆′ + 1 seed nodes,

Algorithm 7 has at least ⌊k/(∆′ + 1)⌋ = k′/(∆′ + 1) greedy iterations. If we use

i = k′/(∆′ + 1) for Eq. 5.5-15, the proof completes:

σ(S) ≥ σ(Sk′/(∆′+1))

≥(1− 1

k′
)

k′

∆′+1 × σ(S0) + [1− (1− 1

k′
)

k′

∆′+1]× σ(S∗)

≥[1− (1− 1

k′
)

k′

∆′+1]× σ(S∗)

≥(1− e−
1

∆′+1)× σ(S∗) ≥ (1− e−
1

∆+1)× σ(S∗) (5.5-21)

The approximation ratio is 1− e−
1

∆′+1 ≥ 1− e−
1

∆+1 . �

5.5.5 Time Complexity Reduction

Although Algorithm 7 has a better bound than Algorithm 6, its time complexity

is much larger. However, we claim that the time complexity of Algorithm 7 can be

reduced for OSNs. This is mainly because we do not need to exhaust all possible

scenarios for practical usage. Rather than exhausting ∆′ from 1 to ∆, we can simply

stop at a small constant. For example, we only exhaust ∆′ from 1 to 3. This is

because only v’s neighbors who share hyperedges with large weights are important

in Mv (people are not likely to have many close friends). Similarly, we do not need

to exhaust each node v for the initialization of S0. Instead, we can focus on the

largest-hyperdegree nodes (e.g., only the top 100 nodes). This is because the optimal

111

10 20 30 40 60 80 100
10

−3

10
−2

10
−1

10
0

Hyperdegree

 F

ra
c
ti
o
n

Fitting Forum

Fitting Boards

Fitting Citation

(a) Distribution of dv among v.

20 40 60 80 120 160 200
10

−3

10
−2

10
−1

10
0

Modularity Set Cardinality

 F

ra
c
ti
o
n

Fitting Forum

Fitting Boards

Fitting Citation

(b) Distribution of |Mv| among v.

Figure 5.4: Distribution of dv and |Mv| in three datasets.

set of seed nodes is not likely to exclude the largest-hyperdegree nodes. Using this

approach, the time complexity of Algorithm 7 can be reduced to O(k|V ||E|), which

is asymptotically the same as Algorithm 5. Our experiments demonstrate that this

approach only slightly hurts the performance of Algorithm 7. In addition, to compute

Mv for Algorithms 6 and 7, we can simply exhuast v’s neighborhoods (e.g., all two-hop

neighbors) as an estimation (since other nodes are not impactful).

5.6 Experiments

5.6.1 Dataset Information and Statistics

Our experiments are based on three datasets (Forum, Board, and Citation) from

Tore Opsahl [103]. Forum records user activities in a forum with different topics.

Board records directors belonging to the boards of some companies. Citation records

collaborations among chapter authors. The dataset statistics are shown in Table 5.1.

The distributions of node hyperdegree (i.e., dv) and modularity set cardinality (i.e.,

|Mv|) are shown in Fig. 5.4. For the above three datasets, flags (triangles, circles,

and squares) represent the real distributions by statistics, and lines (dotted, dashed,

and solid) are the fitting curves. Fig. 5.4 is plotted in a log-log manner, and the y-

axis shows the fraction of nodes corresponding to the x-axis. Fig. 5.4(a) validates the

112

power-law distribution. It can be seen that the fraction of nodes with hyperdegree d is

proportional to d−γ in each of these three dataset. The distribution of modularity set

cardinality also follows power-law, as shown in Fig. 5.4(b). However, the power-law

exponents for dv and |Mv| may not be the same in a given dataset. Fig. 5.4(b) further

shows that only a small fraction of nodes have modularity sets with cardinalities

larger than 100. Finally, according to Table 5.1 and Fig. 5.4, we can find that

Forum is relatively denser than Board and Citation, since the average and maximum

hyperdegrees in Forum are largest.

5.6.2 Comparison Algorithm and Performance

This subsection focuses on evaluating the performances of proposed algorithms, in

terms of maximizing the number of eventually-influenced users. Algorithms 5, 6, and

7 are denoted as NG, IG, and CG, respectively. Comparison algorithms are:

• Weighted Hyperdegree (WH). It ranks all nodes by their hyperdegrees and

selects the top k nodes as seed nodes.

• Hyperedge-aware Greedy (HG) from Hung et al. [3]. It iteratively selects the

set of nodes that maximizes the ratio of marginal gain to set cardinality. The

greedy iteration terminates when k nodes are selected. HG is not bounded.

As a drawback, WH ignores the crowd influence during the seed node selection. The

drawback of HG is its complexity, since an exponential time complexity is needed to

consider all sets of nodes in each greedy iteration. To control the running time, the

set cardinality is capped at for HG, IG, and CG.

All evaluation results are shown in Fig. 5.5. Figs. 5.5(a), 5.5(b), and 5.5(c)

correspond to the Forum, Board, and Citation datasets, respectively. A larger result

represents a better performance, since seed nodes could eventually influence more

nodes on expectation. Interestingly, Fig. 5.5 shows that not all algorithms follow the

113

1 2 3 4 5 6 7 8
0

150

300

450

600

750

900

Number of seed nodes

N
u
m

b
e
r

o
f

in
fl
u
e
n
c
e
d
 n

o
d
e
s

WH

NG

HG

IG

CG

(a) Forum dataset.

1 2 3 4 5 6 7 8
0

20

40

60

80

Number of seed nodes

N
u
m

b
e
r

o
f

in
fl
u
e
n
c
e
d
 n

o
d
e
s

WH

NG

HG

IG

CG

(b) Board dataset.

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

Number of seed nodes

N
u
m

b
e
r

o
f

in
fl
u
e
n
c
e
d
 n

o
d
e
s

WH

NG

HG

IG

CG

(c) Citation dataset.

Figure 5.5: Algorithm performance for SIMP in hypergraphs.

principal of diminishing return. The marginal gain of one seed node might not scale

down with respect to the number of existing seed nodes in S. This is because our

SIMP in hypergraphs is not submodular, i.e., σ(S)/|S|might be larger than σ(S ′)/|S ′|

for S ′ ⊂ S. Among all the algorithms, CG achieves the best performances in all these

three datasets, while WH has the worst performances. This is simply because CG

considers the impact of crowd influences while WH does not. Compared to other

algorithms, CG has at least 10%, 5%, and 15% more eventually-influenced users in

Forum, Board, and Citation, respectively (for k = 8).

HG has the second best performance, although it does not outperform IG in

Citation. This is because NG and IG are essentially special cases of HG. HG reduces

to NG by only selecting one node in each greedy iteration, and it reduces to IG by

ignoring the set cardinality in each greedy iteration. CG, HG, IG, and NG become

identical when only one seed node is selected (i.e., k = 1). HG loses to CG, since

114

CG has a better granularity control through its cap to capture the crowd influence.

Moreover, HG is unbounded and has a larger time complexity than CG. Finally, we

find that the network density may not significantly change the algorithm performance.

Both Board and Citation are sparse, but their algorithm performance gaps are not

similar. Forum and Citation have different densities, but their algorithm performance

gaps are similar.

5.6.3 Running Time and Complexity Reduction

This subsection evaluates the running time of the proposed algorithms. Codes are

implemented in Matlab and are executed on Dell Inspiron i15RN-3647BK laptop with

a 2.5GHz Intel Core i5 2450M processor. We further introduce two variations of CG

by using different maximum cap sizes. The first one is CG-2, using 2 as its maximum

cap size (∆′ ranges from 1 to 2). In each greedy iteration, CG-2 selects at most 2

nodes into seed nodes. The second one is CG-3, using 3 as its maximum cap size. We

evaluate the impact of the cap size, in terms of both performance and running time.

k is set to be 8.

WH NG HG IG CG-2 CG-3 CG
Forum 2s 31m 2d 45m 75m 155m 22h
Board 1s 7m 21h 15m 31m 58m 5h
Citation 18s 85m 28d 114m 169m 423m 5d

We start with the running time, as shown in the above table (units are seconds,

minutes, hours, and days). WH is fastest, since it is linear and does not evaluate

σ(S) for a given S. As a trade-off, it has the worst performance. Both NG and

IG take minutes. IG runs slower than NG, since IG exhausts a set of nodes during

each greedy iteration. However, IG is not exponentially slower than NG, since IG

has fewer greedy iterations. The performance gap between NG and IG is limited in

these three datasets. HG and CG have the longest running times to obtain the best

115

(a) Forum dataset. (b) Board dataset.

(c) Citation dataset.

Figure 5.6: The impact of cap size for CG.

performances. The running times of both HG and CG grow quickly with respect to

the dataset size. However, if we cap ∆′ at 2 or 3, the running time of CG can be

significantly reduced. CG-2 and CG-3 have asymptotically the same time complexity

as NG. Fig. 5.6 shows the impact of the cap size for CG in these three datasets. CG-2,

CG-3, and CG have close performances (CG-2≤CG-3≤CG). This is because CG is

not likely to select a large set of nodes in each iteration (people are not likely to have

many close friends). CG-3 has almost the same performance as CG, especially when

seed nodes are few. If we jointly consider the running time aspect, capping ∆′ to 3

in CG is a practical strategy for large-scale OSNs.

116

5.7 Summary

Motivated by the impact of the crowd influence, this chapter focuses on the

Social Influence Maximization Problem (SIMP) in hypergraphs, which is NP-hard,

monotone, non-submodular, and inapproximable within a ratio of |V |ǫ−1 for any

ǫ > 0 in a general hypergraph. However, since user connections in OSNs are not

random, approximations could be obtained by leveraging the structural properties

of OSNs. The modularity, ∆, can measure to what degree our problem violates the

submodularity. Two approximation algorithms are proposed with ratios of 1
∆+2

and

1− e−1/(∆+1), respectively. Experiments demonstrate the efficiency and effectiveness

of our algorithms.

117

CHAPTER 6

EFFECTIVE SOCIAL NETWORK

QUARANTINE WITH MINIMAL ISOLATION

COSTS

Chapters 6, 7, and 8 focus on the information propagation applications for

social networks. More specifically, this chapter studies the epidemic information

propagation and proposes a quarantine strategy. Note that the notion of diseases

has been extended from real human diseases to general epidemic information

propagations, such as the rumors in distributed systems. Controlling the spread of a

disease is usually done through quarantine, where people that have, or are suspected

to have, a disease are isolated from having interactions with others. As a tradeoff,

normal human interactions are inevitably degraded by the quarantine. This motivates

us to explore a robust quarantine strategy that can eliminate epidemic outbreaks with

minimal isolation costs. Our problem is shown to be NP-hard. A bounded algorithm

with an approximation ratio of 2 is proposed, through utilizing the feasibility and

minimality properties. Real data-driven experiments demonstrate the efficiency and

effectiveness of the proposed algorithms in real-world applications.

6.1 Introduction

Nowadays, the notion of diseases has been extended from real human diseases

to general epidemic information propagations, such as the rumors in distributed

systems. Controlling the spread of a disease in a population (human communities and

118

distributed systems) is usually done through quarantine where people that have, or

are suspected to have, a disease are restricted from having interactions with others.

However, the human interactions are inevitably degraded by the quarantine. This

motivates us to explore an effective quarantine strategy that can maximally preserve

the human interactions.

This chapter uses the classic Susceptible-Infected-Susceptible (SIS) model to

simulate the epidemic spreading, where each person has a state of being either

susceptible or infected [104]. People transfer their states through a cycle in which

their susceptibility (S) causes them to become infected (I), and they return to being

susceptible (S) by recovery. The epidemic breaks out when the average infection

rate becomes larger than the average recovery rate. In such a case, a large portion

of people in the social network will eventually become infected. Consequently, it is

necessary to isolate a set of people as a quarantine strategy to depress the infection

rate. Epidemic outbreaks could be controlled once the infection rate is cut down by

isolations, which are usually costly.

Our objective is to explore an effective quarantine strategy that can eliminate

epidemic outbreaks with minimal isolation costs. In other words, we want to isolate

a set of people with minimal costs to eliminate epidemic outbreaks. Our problem is

extremely challenging, since eliminating epidemic outbreaks and preserving social

connections cannot be simultaneously achieved. Intuitively, the isolation of an

arbitrary person can help in the elimination of epidemic outbreaks. Moreover, social

networks are structurally heterogenous, meaning that the impacts of isolations are

very hard to quantify. Should we simply isolate people who have lots of normal

social connections? Or should we isolate people who only have a few, but important

connections? The network structural heterogeneity should be considered within the

quarantine strategy design.

119

Currently, social network epidemic outbreaks [104] have been well-studied with

very rich literatures. The novelty of this chapter lies in the quarantine strategy with

minimal isolations. Our work casts some new light on real-world quarantines. For

example, in an infectious global epidemic (SARS or Ebola), we can avoid epidemic

outbreaks while isolating a minimal number of people. Moreover, our work has

broader impacts, since it can be applied to situations aside from real social networks.

Typical applications of our work can include:

• In computer networks, epidemics are worms. Some computers are turned off

to eliminate worm spreading. Our work points out a strategy that can resist

worms with maximally-preserved computers.

• In online social networks (e.g., Facebook and Twitter), epidemics are rumors

(malicious Facebook posts) that can be shared among friends. The service

provider can refer to our work to control rumors with minimal user blocks.

Our main contributions are summarized as follows:

• We address a novel problem on the effective quarantine that can restrict

epidemic outbreaks with minimal isolations. It has broader impacts on real-

world applications.

• An approximation algorithm, which guarantees a constant ratio to the optimal

quarantine strategy, is proposed. The properties of feasibility and minimality

are explored for eliminating epidemic outbreaks.

• Real data-driven experiments are conducted to evaluate the proposed

algorithms. Evaluation results are shown from different perspectives to provide

insightful conclusions for real-world applications.

The remainder of this chapter is organized as follows. Section 6.2 surveys related

works. Section 6.3 formulates the problem and describes the SIS epidemic model with

discussions on the properties of isolations. Section 6.4 studies the effective quarantine

120

strategy with minimal isolations. Section 6.5 includes real data-driven experiments.

Finally, Section 6.6 concludes the chapter and suggests future research directions.

6.2 Related Work

Epidemic spreading models have been extensively explored over the past two

decades. As one of the most popular epidemic models, the SIS model divides a

given population into two compartments: susceptible and infected. People transfer

their states through a cycle of being infected after being susceptible, and going back

to susceptible by recovery [104]. The SIS model in social networks that have power-

law degree distributions was summarized by Lee et al. [105]. There are many other

epidemic models. For example, the Susceptible-Infected-Recovered (SIR) model [104]

adds one more compartment to represent vaccinated individuals who are no longer

susceptible to the infection. The SIS and SIR models were also used to stimulate

worm spreadings in distributed systems [106]. A state-of-the-art review on epidemic

models is available in [107].

Social networks have also been extensively studied over the past decade. Structures

of social networks were confirmed to be scale-free [97], where the node degree follows

power-law distribution. The triadic closure phenomenon (a friend-of-a-friend is likely

to become a friend) is identified [108]. Social networks are considered to have small-

world structures [109]. Compared to random networks, social networks have smaller

network diameters and a larger clustering coefficient [110].

Although epidemic models and social network properties have been well-studied,

to the best of our knowledge, this chapter is the first interdisciplinary study on

a quarantine strategy that minimizes isolations without epidemic outbreaks. Our

approximation scheme is based on the classic solutions to the knapsack problem

[111, 112, 113] and the set cover problem [114, 115, 116, 117].

121

6.3 Problem Formulation and Epidemic Model

6.3.1 Problem Formulation

Our social network model is based on a directed graph G = (V,E), where V is a set

of nodes (persons), and E ⊆ V 2 is a set of directed edges (social relationships). Let |·|

denote the cardinality of the corresponding variable. For example, |V | and |E| are the

total number of nodes and edges, respectively. To control epidemic outbreaks, some

nodes are isolated by the quarantine strategy. A node v is isolated, if all the incoming

and outgoing edges of v are removed. An isolated node can no longer interact with

its neighbors, but it remains in the network. The isolation cost of v is Cv. The set of

nodes isolated by the quarantine strategy is denoted by Q. The objective is to explore

a quarantine strategy that eliminates epidemic outbreaks with minimal
∑

v∈QCv.

6.3.2 Epidemic Outbreak Model

Our epidemic spreading model is based on the classic SIS model [105]. Nodes have

states of either being susceptible or infected. Nodes in the susceptible state are people

who do not have the disease, but can potentially catch it. Nodes in the infected state

are people who have the disease and can spread the disease to their neighbors in G.

Infected nodes can go back into the susceptible state upon recovery, and then can

be reinfected. We consider that the infection rate of a given node depends on its

infected incoming neighbors. For the node v, each of its infected incoming neighbors

independently brings a constant infection rate (the infection probability per time

unit) of λ to v. Meanwhile, the recovery rate is set to be a constant of r, as used in

many existing models [104, 118, 119].

Let f(t) denote the average fractions of nodes that are infected at time t. To

capture the structural heterogeneity of the social network, let p(d) denote the fraction

122

of nodes with in-degree d, and let fd(t) denote the fraction of infected nodes with in-

degree d at time t. By definition, we have f(t) =
∑

d p(d) · fd(t). Then, Θ(f(t)) is

the probability that a uniform-randomly selected edge comes from an infected node

at the time t. It can be calculated as:

Θ(f(t)) =

∑

d d · p(d) · fd(t)
∑

d d · p(d)
(6.3-1)

The fraction of susceptible nodes with in-degree d at time t is [1 − fd(t)]. Each

of these nodes has an incoming degree of d, meaning that it is expected to have

d×Θ(f(t)) infected incoming neighbors. Since each infected incoming neighbor brings

an infection rate of λ, the total infection rate is:

1− (1− λ)d·Θ(f(t)) ≈ λ · d ·Θ(f(t)) (6.3-2)

λ is assumed to be small. Otherwise, the epidemic is not controllable due to an

overly-large infection rate. We have:

∂fd(t)

∂t
= λdΘ(f(t))[1− fd(t)]− rfd(t) (6.3-3)

The first term of λd[1 − fd(t)]Θ(f(t)) indicates the fraction of newly infected nodes

that have in-degrees of d. The last term of rfd(t) shows the recovery. If we consider

a stable epidemic state of dfd(t)
dt

= 0, then Eq. 6.3-3 can be solved as:

fd(t) =
λdΘ(f(t))

r + λdΘ(f(t))
(6.3-4)

According to Eq. 6.3-4, Eq. 6.3-1 can be rewritten as:

Θ(f(t)) =
1

∑

d dp(d)

∑

d

dp(d)
λdΘ(f(t))

r + λdΘ(f(t))
(6.3-5)

123

The epidemic outbreak elimination indicates that Θ(f(t)) = 0 and Θ(f(t)) will not

increase with respect to the time:

∂

∂Θ(f(t))

(

Θ(f(t))−
∑

d dp(d)
λdΘ(f(t))

r+λdΘ(f(t))
∑

d dp(d)

)

≥ 0 (6.3-6)

When Θ(f(t)) = 0, Eq. 6.3-6 should be satisfied to control the growth trend of

infected nodes. Based on Eq. 6.3-6, we can derive the following prerequisite to

control epidemic outbreaks:

λ
∑

d d
2p(d)

r
∑

d dp(d)
≤ 1 or

〈d2〉
〈d〉 ≤

r

λ
(6.3-7)

Let 〈·〉 denote the mean value of the corresponding variable. Then, we have
∑

d d
2p(d) = 〈d2〉 and

∑

d dp(d) = 〈d〉 by the definition. Eq. 6.3-7 represents the

prerequisite of controlled outbreaks in social networks. The key insight of Eq. 6.3-

7 is that both a larger average degree and a larger degree variance bring a more

vulnerable network with respect to epidemic outbreaks:

〈d2〉
〈d〉 =

〈d2〉 − 〈d〉2
〈d〉 + 〈d〉 (6.3-8)

Note that 〈d〉 is the average in-degree and 〈d2〉−〈d〉2 is the in-degree variance. The

ratio of 〈d2〉 to 〈d〉 represents the network vulnerability to epidemics (the larger, the

more vulnerable). If we want to control epidemic outbreaks, then we need to control

the in-degree distribution though the isolations. Once a node is isolated, its associated

incoming and outgoing edges are removed, leading to a degradation on 〈d2〉
〈d〉

to control

epidemic outbreaks. For simplicity, let ∆(Q) denote the degradation of 〈d
2〉
〈d〉

, when

nodes in Q are isolated by the quarantine strategy. We introduce a constant coefficient

of δ = 〈d2〉
〈d〉
− r

λ
as the degradation threshold to control epidemic outbreaks. At this

time, our objective can be reformulated as minimizing
∑

v∈QCv with the constraint

124

that ∆(Q) ≥ δ. Further analysis is conducted in the next subsection.

6.3.3 Feasibility and Minimality

This subsection explores the inherent properties of ∆(Q) to obtain more insights

on the effective quarantine strategy design. We start with the following definition:

Definition 6.1. A quarantine strategy, Q, is said to be feasible, if the constraint of

∆(Q) ≥ δ is satisfied.

Basically, a quarantine strategy that can eliminate epidemic outbreaks is defined

as a feasible quarantine strategy. In reality, a feasible quarantine strategy usually

isolates lots of nodes to control epidemic outbreaks. But for the sake of the theory,

we still consider the event that {∃v ∈ V |∆({v}) ≥ δ}. It means that isolating only one

node of v may be sufficient to control epidemic outbreaks. To facilitate the quarantine

strategy design, we make a cutoff on ∆(Q). If ∆({v}) ≥ δ, we force ∆({v}) to be

δ as a cutoff. Note that such a cutoff will not change the feasibility of an arbitrary

quarantine strategy. Hence, the optimal quarantine strategy is not changed by this

cutoff. We have the following definition:

Definition 6.2. A feasible quarantine strategy, Q, is said to be minimal, if Q \ {v}

is not feasible for an arbitrary v ∈ Q.

A minimal quarantine strategy means that each node in this quarantine strategy

is necessarily isolated. If an arbitrary node in this quarantine strategy is no longer

isolated, this quarantine strategy becomes infeasible and can no longer control

epidemic outbreaks. Our key observation is that a minimal feasible quarantine

strategy has the following property:

Theorem 6.3. A minimal feasible quarantine strategy, Q, satisfies the property that

δ ≤ ∆(Q) ≤ 2δ.

Proof: By the definition of feasibility, we have ∆(Q) ≥ δ. Therefore, we focus on

125

v

w

Q

Figure 6.1: Proof of Theorem 6.3.

proving ∆(Q) ≤ 2δ. Let us start with a special case, where all the nodes in Q do not

have outgoing neighbors. In such a case, the isolation of a node in Q will not diminish

the in-degrees of the remaining nodes. Let d denote the node in-degree when no node

is isolated. dv is the in-degree of the node v. Then, ∆(Q) can be calculated as:

∆(Q) =
〈d2〉
〈d〉 −

〈d2〉 − 1
|V |

∑

v∈Q d
2
v

〈d〉 − 1
|V |

∑

v∈Q dv
(6.3-9)

In Eq. 6.3-9, 1
|V |

results from the fact that each node in Q is a fraction, 1
|V |

, of

all the nodes. As another form of Eq. 6.3-7, 〈d2〉 and 〈d〉 can also be computed

by 〈d2〉 = 1
|V |

∑

v∈V d
2
v and 〈d〉 = 1

|V |

∑

v∈V dv, respectively. We assume that

〈d〉 ≫ 1
|V |

∑

v∈Q dv, leading to the following approximation:

1

〈d〉 − 1
|V |

∑

v∈Q dv
≈

1 + 1
〈d〉

1
|V |

∑

v∈Q dv

〈d〉 (6.3-10)

Back to Eq. 6.3-9 with the substitution in Eq. 6.3-10, we can obtain:

∆(Q) ≈ 1

|V |〈d〉
[

∑

v∈Q

d2v−
〈d2〉
〈d〉

∑

v∈Q

dv

]

+o
(1

|V |〈d〉
)

(6.3-11)

In Eq. 6.3-11, o(1
|V |〈d〉

) represents the second order term that is relatively ignorable.

Eq. 6.3-11 implies the following result:

∆(Q) ≤ ∆(Q \ {u}) + ∆({u}) (6.3-12)

Eq. 6.3-12 is obtained through comparing the first and second order terms in Eq. 6.3-

126

11 for the left and right parts of Eq. 6.3-12. According to the definition of the

minimality, we can obtain the result that ∆(Q \ {u}) < δ, since Q \ {u} is not a

feasible quarantine strategy. Meanwhile, we have ∆({u}) ≤ δ, since we have made a

cutoff on ∆(Q). Therefore, we have:

∆(Q) ≤ δ + δ = 2δ (6.3-13)

Eq. 6.3-13 concludes that δ ≤ ∆(Q) ≤ 2δ is true in the special case, where all

the nodes in Q do not have outgoing neighbors. The insight of this case is that the

isolation of each node is independent to each other. Hence, ∆(Q) can be decomposed,

as shown in Eq. 6.3-12, to obtain its upper bound.

Let us go back to the general case, where nodes in Q may have outgoing neighbors.

Note that the isolation of a node in Q may diminish the in-degree of a node that is

not in Q. An example is shown in Fig. 6.1, where the isolation of v diminishes the

in-degree of w. Let Q′ denote the set of nodes that are not in Q, but have diminished

in-degrees due to the isolations of nodes in Q. For the node v ∈ Q′, let ρv denote its

in-degree. Then, for the general case, Eq. 6.3-9 is rewritten as:

∆(Q) =
〈d2〉
〈d〉 −

〈d2〉− 1
|V |

∑

v∈Q d
2
v−

1
|V |

∑

v∈Q′(d
2
v−ρ

2
v)

〈d〉− 1
|V |

∑

v∈Q dv−
1
|V |

∑

v∈Q′(dv−ρv)

=
〈d2〉
〈d〉 −

〈d2〉 − 1
|V |

∑

v∈Q∪Q′ d
2
v +

1
|V |

∑

v∈Q′ ρ
2
v

〈d〉 − 1
|V |

∑

v∈Q∪Q′ dv +
1
|V |

∑

v∈Q′ ρv
(6.3-14)

Eq. 6.3-14 has a similar format with Eq. 6.3-9. Through a similar derivation, we find

that the analysis in Eq. 6.3-12 still holds for the general case. Therefore, we conclude

that δ ≤ ∆(Q) ≤ 2δ is true, which completes the proof. �

The key insight behind Theorem 6.3 is that a minimal feasible quarantine strategy

would not lead to excessive isolations. Unnecessary isolations are saved once the

epidemic outbreak is controlled. In a minimal feasible quarantine strategy, each node

127

is necessarily isolated. By contradiction, it can be seen that the optimal solution for

our problem must be a minimal feasible quarantine strategy. We will describe an

effective quarantine strategy through utilizing the minimality property.

6.4 Effective Social Network Quarantine

6.4.1 NP-hardness and Marginal Greedy Strategy

The objective of this chapter is to design an effective quarantine strategy that

eliminates epidemic outbreaks with minimal isolation costs. This problem is NP-

hard:

Theorem 6.4. Searching an optimal quarantine strategy of Q, which minimizes |Q|

with ∆(Q) ≥ δ, is NP-hard.

Proof: We prove the NP-hardness by a reduction to the partial set cover problem

[120] in a special case, where node in-degrees are identical. Note that node out-degrees

may not be the same. In such a case, 〈d
2〉
〈d〉

= 〈d〉, meaning that the prerequisite of

controlling epidemic outbreaks is reduced to controlling the average node in-degree.

In other words, epidemic outbreaks could be eliminated through breaking up δ|V |

edges. Our problem becomes minimizing
∑

v∈QCv with the constraint that δ|V |

edges are broken. If we correspond an edge to an element, and correspond a node to

a set, then our problem reduces to a partial set cover problem that uses the sets with

minimal costs to cover δ|V | elements. Since the partial set cover problem is NP-hard

by a reduction to the set cover problem [120], our problem is also NP-hard. �

We first present an intuitive greedy solution, as shown in Algorithm 8. It iteratively

isolates the node v that can minimize Cv

∆({v}∪Q)−∆(Q)
(i.e., minimal “cost-to-benefit”

ratio). Algorithm 8 will terminate, when the quarantine strategy of Q becomes

feasible, i.e., ∆(Q) ≥ δ. The time complexity of Algorithm 8 is O(V 2). This is

128

Algorithm 8 Marginal Greedy

Input: The social network, G, and the threshold, δ.
Output: The quarantine strategy, Q.

1: Initialize Q = ∅.
2: while ∆(Q) < δ do
3: v = argminv∈V \Q

Cv

∆({v}∪Q)−∆(Q)
.

4: Q = Q ∪ {v}.
5: return Q as the quarantine strategy.

because it has O(V) iterations, and each iteration takes O(V) to go through all the

remaining nodes for the isolation decision. However, Algorithm 8 cannot guarantee

an approximation ratio to the optimal solution. The difficulty comes from the fact

that the number of isolated nodes in the optimal solution is unknown. Algorithm 8

may isolate many more, or many fewer nodes than the optimal solution. On the other

hand, even if the number of isolated nodes in the optimal solution is known a prior,

we cannot guarantee the feasibility of the solution with the same number of isolated

nodes. Further explorations are conducted.

6.4.2 Homogeneous Greedy Strategy

The key observation of our approach is that a minimal feasible quarantine strategy

would not lead to excessive isolations (Theorem 6.3). Following this intuition, a

homogeneous greedy solution is proposed, as shown in Algorithm 9. It is a recursive

algorithm that splits the node cost through a homogeneous function. At each

recursion level, it isolates the node v that can minimize Cv

∆({v}∪Q)−∆(Q)
(i.e., minimal

“cost-to-benefit” ratio), as implemented in lines 3 to 5. Then, in lines 6 to 9, it splits

the node cost through a homogeneous function for a recursive call. Finally, in lines

10 to 12, some nodes in Q are removed to satisfy the minimality property. We claim

that Algorithm 9 can guarantee an approximation ratio:

Theorem 6.5. Algorithm 9 guarantees an approximation ratio of two to the optimal

solution for the isolation costs.

129

Algorithm 9 Homogeneous Greedy (recursive)

Input: The social network, G, the threshold, δ,
and the incomplete quarantine strategy, Q′.

Output: The quarantine strategy, Q.

1: if δ < 0 then
2: return ∅;
3: v = argminu∈V \Q′

Cu

∆(Q′∪{u})−∆(Q′)
.

4: Set coefficient ǫ = Cv

∆(Q′∪{v})−∆(Q′)
.

5: Q′ = Q′ ∪ {v}.
6: for each u ∈ V \Q′ do
7: C ′u = ǫ×∆({u}). /* split node cost */
8: Cu = Cu − C ′u. /* residual node cost */
9: Q = Q′ ∪ RECURSIVE(G, δ −∆(Q′), Q′).

10: for each u ∈ Q do
11: if Q \ {u} is a feasible quarantine strategy then
12: Q = Q \ {u}.
13: return Q as the quarantine strategy.

Proof: We prove by induction. For the base case, we have δ < 0 with Q = ∅ and
∑

v∈QCv = 0. Therefore, the base case holds. For the general case, Algorithm 9

isolates the node v that can minimize Cv

∆({v}∪Q)−∆(Q)
, splitting the corresponding node

cost in line 7. The residual node cost is shown in line 8 for a recursive call. We have:

∑

u∈Q

Cu =
∑

u∈Q

C ′u +
∑

u∈Q

(Cu − C ′u) (6.4-15)

Let Q∗1, Q
∗
2, and Q

∗ denote the optimal solutions for G with the isolation costs to be

C ′u, Cu − C ′u, and Cu, respectively. According to Theorem 6.3, we have
∑

u∈QC
′
u ≤

2
∑

u∈Q∗1
C ′u by the minimality property. This is because C ′u scales linearly with respect

to ∆({u}). Meanwhile, by induction, we have
∑

u∈Q(Cu − C ′u) ≤ 2
∑

u∈Q∗2
(Cu − C ′u).

130

Table 6.1: Dataset Statistics
Epinions Wikipedia

Number of nodes 18,098 7,115
Number of edges 355,754 103,689
Average degree 19.6 14.6

In-degree Variance 3615.8 1006.9
Network Diameter 11 7

Global clustering coefficient 0.138 0.141
Average edge weight 0.0285 0.0076

Consequently, the following inequality holds:

∑

u∈Q

Cu =
∑

u∈Q

C ′u +
∑

u∈Q

(Cu − C ′u) ≤ 2
∑

u∈Q∗1

C ′u + 2
∑

u∈Q∗2

(Cu − C ′u)

≤ 2
∑

u∈Q∗

C ′u + 2
∑

u∈Q∗

(Cu − C ′u) = 2
∑

v∈Q∗

Cu (6.4-16)

The last inequality holds, since Q∗ is not the optimal solution for G, with the isolation

costs being C ′u or Cu − C ′u. The result in Eq. 6.4-16 completes the proof that

Algorithm 9 guarantees an approximation ratio of two to the optimal solution. �

The key idea of Theorem 6.5 is to utilize the minimality property. A minimal

feasible quarantine strategy will not have excessive isolations, leading to bounded

isolation costs. Algorithm 9 has a complexity of O(V 2). It has a recursion depth of

O(V), while each recursion call takes O(V) to select the node and keep the minimality.

6.5 Experiments

6.5.1 Dataset Information and Settings

Our experiments are based on two datasets of Epinions [80] and Wikipedia [81].

Epinions is a general consumer review site, which was launched in 1999. Epinions

users can read new and old reviews about a variety of products to help them decide on

a purchase [121]. Our approach can be applied to the isolations of users in eliminating

131

online rumor spreading. Wikipedia is a free encyclopedia written collaboratively by

volunteers (i.e., users) around the world. A small portion of users are administrators.

In order for a user to become an administrator, a request must be issued and then

voted upon. If a user (say v) votes for another user (say u), then there exists a

directed edge from v to u. Our approach can be applied on isolating users to control

disordered votes in Wikipedia. The dataset statistics are summarized in Table 6.1.

Note that these two datasets do not include information on node isolation costs.

Hence, three cost functions are designed:

• The first cost function uses a constant cost for each node, meaning that all the

nodes have identical isolation costs.

• The second cost function determines the node isolation cost based on the node

in-degree with a logarithmic mapping. For the node v, we have Cv = log(dv+1).

• The third cost function determines the node isolation cost based on the node

in-degree with a square root mapping. For the node v, we have Cv =
√
dv.

The node costs are normalized for fair comparison. As for the parameters on epidemic

spreading, we set a fixed infection rate of λ = 1. The recovery rate, r, is tuned within

the experiments. Note that 〈d2〉/〈d〉 ≤ r/λ shows the prerequisite for controlling

epidemic outbreaks. Therefore, a smaller recovery rate means that more isolations

(and thus higher isolation costs) are needed to control epidemic outbreaks.

The following four algorithms are involved for evaluations:

• Random. It iteratively and uniform-randomly isolates a node in G, until the

epidemic outbreak is eliminated by the quarantine strategy.

• MaxDegree. This algorithm ranks nodes by their degrees. Top ranked nodes are

iteratively isolated until the epidemic outbreak is eliminated by the quarantine

strategy.

132

150 160 170 180 190 200
0

10

20

30

40

50

60

Recovery Rate

Is
o
la

ti
o
n
 C

o
s
ts

Random

MaxDegree

MargGreedy

HomoGreedy

(a) Epinions with constant cost.

150 160 170 180 190 200
0

50

100

150

200

250

Recovery Rate

Is
o
la

ti
o
n
 C

o
s
ts

Random

MaxDegree

MargGreedy

HomoGreedy

(b) Epinions with logarithmic cost.

150 160 170 180 190 200
0

100

200

300

400

500

Recovery Rate

Is
o
la

ti
o
n
 C

o
s
ts

Random

MaxDegree

MargGreedy

HomoGreedy

(c) Epinions with square root cost.

60 65 70 75 80 85
0

50

100

150

200

250

Recovery Rate

Is
o
la

ti
o
n
 C

o
s
ts

Random

MaxDegree

MargGreedy

HomoGreedy

(d) Wikipedia with constant cost.

60 65 70 75 80 85
0

200

400

600

800

Recovery Rate

Is
o
la

ti
o
n
 C

o
s
ts

Random

MaxDegree

MargGreedy

HomoGreedy

(e) Wikipedia with logarithmic cost.

60 65 70 75 80 85
0

200

400

600

800

1000

1200

1400

Recovery Rate

Is
o
la

ti
o
n
 C

o
s
ts

Random

MaxDegree

MargGreedy

HomoGreedy

(f) Wikipedia with square root cost.

Figure 6.2: Evaluation results with respect to the isolation costs.

• MargGreedy. This is Algorithm 8, which iteratively isolates the node v that

can minimize Cv

∆({v}∪Q)−∆(Q)
(i.e., minimal “cost-to-benefit” ratio).

• HomoGreedy. This is Algorithm 9, which obtains a bounded result through the

minimality property.

6.5.2 Evaluation Results

The evaluation results are shown in Fig. 6.2, in terms of the relationship between

the recovery rate and the isolation cost. Fig. 6.2 has three columns, each of which

133

corresponds to a different node isolation cost function. Figs. 6.2(a), 6.2(b), and 6.2(c)

are the results for the Epinions dataset, while Figs. 6.2(d), 6.2(e), and 6.2(f) are the

results for the Wikipedia dataset.

It can be seen that the isolation cost decreases monotonously with respect to the

recovery rate. This is because a high recovery rate can resist epidemic spreadings. If

the recovery rate is high enough, then epidemic outbreaks can be eliminated without

isolations. HomoGreedy always has the lowest isolation costs among the comparison

algorithms. Another interesting observation is that, when the cost of a node isolation

is a constant, the total isolation cost is the smallest. This is because the quarantine

strategy tends to isolate large degree nodes, while their costs are relatively cheap after

normalization. On the other hand, when the cost of a node isolation scales with its

degree (in a logarithmic manner or a square root manner), the overall isolation costs

become very large. This is because the isolations of large degree nodes take relatively

large costs after normalization. The last observation is that, the total isolation costs

in Epinions are smaller than those in Wikipedia. One reason is that Epinions has

a much larger degree variance than Wikipedia, as shown in Table 6.1 (355,754 to

103,689). Another reason is that Epinions has more users than Wikipedia (18,098 to

7,115), bringing larger isolation costs.

6.6 Summary

This chapter explores a robust quarantine strategy that can eliminate epidemic

outbreaks with minimal isolation costs. This problem is proved to be NP-hard. The

classic SIS epidemic model is introduced to model epidemic spreading, where people

transfer their states through a cycle of being infected from susceptible, and going

back to susceptible by recovery. We show that a minimal feasible quarantine strategy

will not have excessive isolations. A bounded algorithm with an approximation ratio

134

of two is proposed, through utilizing the feasibility and minimality properties. This

algorithm has a time complexity of O(V 2). Real data-driven experiments demonstrate

the efficiency and effectiveness of the proposed algorithms in real-world applications.

135

CHAPTER 7

DYNFLUID: PREDICTING TIME-EVOLVING

RATING IN RECOMMENDATION SYSTEMS

VIA FLUID DYNAMICS

Chapters 6, 7, and 8 focus on the information propagation applications for social

networks. More specifically, this chapter studies the trust information propagation in

recommendation systems. If a user is predicted to have a high rating of a product, then

this product is recommended to that user for shopping potential. Therefore, rating

predictions are critical for qualified recommendations. In this chapter, based on the

fluid dynamics theory, we propose a novel rating prediction scheme called DynFluid.

The key observation is that the rating of a user depends on his/her user experience, as

well as the ratings of other users. For example, users may refer to friends’ ratings upon

rating a product, themselves. DynFluid analogizes the rating reference among the

users to the fluid flow among containers: each user is represented by a container; the

rating of a user is mapped to be the fluid temperature in the corresponding container.

Two user characteristics, persistency and persuasiveness, are also incorporated into

DynFluid. Finally, real data-driven experiments in Epinions and Ciao validate the

efficiency and effectiveness of the proposed DynFluid.

7.1 Introduction

Nowadays, increasing amounts of people are involved in Online Social Networks

(OSNs) for completing daily activities, including forming an opinion on a particular

136

product. One central issue in OSNs is the notion of trust. More specifically, trust

in OSNs denotes the subjective probability by which a user expects another given

user to perform a given action. One important application of trust is in online

recommendation systems, such as Epinions and Ciao [122]. Such systems have two

essential components: the rating (or opinion) of a user on a product and the trust

relationships among users. The product rating of a user depends on his/her user

experience, as well as the existing ratings of the other users (such as trusted friends).

This chapter focuses on the rating prediction problem in trust-based

recommendation systems [123]. If a user is predicted to have a high rating of a

product, then the service provider can recommend this product to that user for

shopping potential. As shown in Fig. 7.1, a typical online recommendation system

provides the following product information to a user: a brief product description; a

public broadcast channel (or simply public channel) that shows the average product

rating of all users; the ratings and comments from the trusted friends of that user; the

ratings and comments from strangers. The last one is not shown in Fig. 7.1, and is

not considered in this chapter. This is because very few users would read the ratings

and comments from strangers. On the other hand, trusted friends’ ratings and the

public channel are likely to be referred to when users give out their own ratings.

Our rating predictions are based on the references of the ratings among the users.

To further understand the rating behavior of a user, here we introduce two concepts

called persistency and persuasiveness. Persistency denotes how much a user insists on

his/her own user experience. A user with a low persistency would like to refer to the

ratings of other users. On the other hand, persuasiveness denotes the convincingness

of a user’s rating. A user with a higher persuasiveness indicates that his/her ratings

are more likely to be referred to by the other users. These two user characteristics

are critical for improving the accuracy of the rating predictions.

137

Figure 7.1: An illustration for the rating of a product in Ciao.

We first consider the scenario with one product. A subset of users (raters, denoted

as R) have prior ratings on the product. The remaining non-raters (denoted as N)

have not rated the product, but they can refer to the existing ratings before giving

out their own ratings. In other words, the non-raters are influenced by the raters,

in terms of the ratings. An example for our system is shown in Fig. 7.2, where the

numbers on the top of the raters are their prior ratings of the product. Directional

links are trust relationships. Then, a directional link from a1 to a3 means that a1 is

trusted by a3, and thus a3 may refer to a1’s rating before giving out its own rating.

As shown in Fig. 7.2, our main idea is to analogize the rating reference

(representing the opinion propagation) among the users to the fluid flow among the

containers. The users are mapped to be containers, while the trust relationships

among users are mapped to be directional pipes (pipes with one-way valves). The

fluid temperature in a container represents the rating of the corresponding user. For

example, in Fig. 7.2, the rater a1 has a rating of 3, and thus the corresponding

fluid temperature is 3◦C. Then, the persistency and persuasiveness of a user are

represented by the fluid height and the cross-sectional area of the corresponding

138

a1

a2

a3

a4

a5

R N

3

5

3

a1

5

a2 a3 a4 a5 ab

Public

Channel

Figure 7.2: An illustration of DynFluid. Each user corresponds to a container, while
the directional pipes represent the trust relationships among users. The
container ab is added to represent the public channel.

container, respectively. A higher fluid height indicates a larger persistency, and

a larger cross-sectional area indicates a higher persuasiveness. This is because a

container with a higher fluid height and a larger cross-sectional area can send out more

fluid to change the ratings of its neighbors. Once there exists a fluid height difference

between two connecting containers, fluid will gradually flow from one container to

the other. These kinds of fluid dynamics represents how the users value their trusted

friends’ ratings in a time-evolving manner. To further incorporate the public channel,

we add an extra container (the container ab in Fig. 7.2) into the system. This extra

container connects to all the non-raters, since the public channel can be seen by all

the users. We are very interested in the impact of the public channel, compared to the

impact of the trusted friends. For one user, is the public channel more trustworthy

than one of the trusted friends? This question will be explored in our chapter.

Our results and contributions are summarized as follows:

• We propose a clean-slate rating prediction method, DynFluid, to capture the

time-evolving ratings. DynFluid considers both the influence from the public

channel and the ratings from trusted friends.

• We introduce the two concepts of persistency and persuasiveness, which reveal

the users’ rating behaviors. The fluid dynamics theory is used to model the

rating process.

139

• Real data-driven experiments in Epinions and Ciao are conducted to evaluate

the proposed DynFluid. The results are shown from different perspectives to

validate the efficiency and effectiveness of our approach.

The remainder of this chapter is organized as follows: Section 7.2 surveys

related work. Section 7.3 states the model and then formulates the problem.

Section 7.4 describes DynFluid, including its analogy insights and algorithmic

properties. Section 7.5 includes extensive real data-driven experiments. Finally,

Section 7.6 concludes this chapter.

7.2 Related Work

This section reviews the literature of trust models, trust propagations, and ratings

in the recommendation systems.

Trust models. Currently, a wide range of disciplines have examined various issues

related to trust [124]. However, there is no consensus on how trust should be defined.

In [125, 126, 127], trust in a person is defined as a commitment to an action, based

on a belief that the future actions of that person will lead to a good outcome. Here,

trust is subjective and personalized. We consider trust to be asymmetric. A user may

trust another user more than he is trusted back. Another closely-related concept is

reputation, which is usually an objective measure. One may trust a stranger if he/she

has a strong reputation [128].

Trust Propagations. Generally speaking, the trust follows the principle of

transitivity [124]. Trusts among users form a trusted graph. Sun et al. [129] proposed

an information-theoretic framework on trust propagation by stating two axioms as

possible guiding principals: (1) concatenation propagation of trust does not increase

trust, and (2) multipath propagation of trust does not reduce trust. The existing

path-based propagation methods include the Dempster-Shafer combination rule [130],

140

serial-parallel merge [131] using subjective logic, and path concatenation [132] from

path algebra. Several models have been proposed for graph-based propagation. Both

MoleTrust [126] and TidalTrust [125] are based on breadth-first search. TidelTrust

selects the strongest shortest path, while MoleTrust uses the hop count (also called

horizon) to control the length of the selected path. However, these approaches are

information-lossy, while some more interesting approaches are graph analogy-based.

In [133], a generalized reliability theory is applied to a trusted network with failure-

prone elements. RelTrust [134] emulates a trusted graph with a resistive network,

using a logarithmic function to map the trust values to the resistance values.

Ratings. In rating-based systems, the rating (or opinion) of a user is usually a

numeric value on an online website [122]. Anderson et al. [135] introduced a finite

integer set with {+,−, 0} representing positive, negative, and neutral ratings. The

predictions of positive ratings are more useful than those of negative ratings. This is

because only products with predictions of positive ratings are recommended to the

users. In our model, the rating is measured by the fluid temperature, which can

be easily updated based on the fluid dynamics theory. Zhu et al. [136] found that

a person’s opinion is significantly swayed by others’ opinions. Our DynTrust takes

[137] as a foundation: when new opinions come, each person refines his/her opinion

through exchanging opinions with friends.

7.3 Model and Problem Formulation

This chapter focuses on the rating prediction problem in trust-based

recommendation systems. Accurate predictions can help the service provider

recommend appropriate products to the user for shopping potential. Generally

speaking, the rating of a user depends on his/her user experience, as well as the

ratings of other users. For example, users may refer to the ratings of trusted friends

141

upon their own ratings (i.e., the opinion propagations among users). However, user

experience depends on many external unknown factors, and thus is hard to predict.

Therefore, we predict the rating of a user, based on the ratings of his/her trusted

friends and the public channel.

To model the rating behavior of a user, the concepts of persistency and

persuasiveness are introduced into our scheme. Persistency denotes how much a user

relies on his/her own user experience. A user with a low persistency would like to

refer to the ratings given out by the other users (including the trusted friends and the

public channel). On the other hand, persuasiveness denotes the convincingness of a

user’s rating. A user with a higher persuasiveness means that his/her ratings are more

likely to be referred to by the other users. Our scenario is based on a directed graph

G = (V,E), where V is a set of nodes (i.e., users), and E ⊆ V 2 is a set of directed

edges (i.e., trust relationships). The edge eaa′ has the direction from the node a to

a′, indicating that a is trusted by a′, and thus a′ may refer to a’s rating before giving

out his/her own rating. The node set V can be divided into two subsets: a subset of

raters, R, and a subset of non-raters, N . The raters have given out their ratings on

the product, and they cannot change their ratings anymore. The non-raters have not

rated the product, but they may refer to the existing ratings to give out their own

ratings, based on the persistency and persuasiveness of the users. The objective of

this chapter is to predict the ratings of non-raters in a time-evolving manner.

7.4 DynFluid: Algorithm Details

7.4.1 Analogy Insights

Our main idea is that the rating reference process (or opinion propagation process)

is analogous to the fluid flow. The users are modeled as containers, while the trust

relationships among users are modeled as directional pipes (i.e., pipes with one-way

142

ta

a

ha

ta'

a'

ha'

ca'ca

waa'

Figure 7.3: A motivational example to illustrate the analogy insights.

valves). All the containers are placed on the same horizontal plane. The containers

are large enough to hold the fluid (the fluid will not overflow). Pipes are installed at

the bottom of the containers, and may have different pipe sizes (the cross-sectional

areas of pipes). For a pipe from a to a′, its pipe size is denoted as waa′ , which

represents the strength of the corresponding trust relationship. A larger pipe size

indicates a higher level of trust. As shown in Fig. 7.2, the fluid temperature in a

container represents the rating of the corresponding user. Then, the persistency and

persuasiveness of a user are represented by the fluid height and the cross-sectional

area of the corresponding container, respectively. For the user a, the corresponding

fluid temperature, fluid height, and the cross-sectional area is denoted by ta, ha, and

ca, respectively. A higher fluid height indicates a larger persistency, while a larger

cross-sectional area indicates a higher persuasiveness.

To capture the analogy insights, a motivational example is provided in Fig. 7.3,

where we have two containers (users) of a and a′. Then, we have four analogy insights.

(1) The height of the fluid in a′ is lower than that in a. Therefore, the fluid in a flows

into a′ through the one-way pipe, meaning that a′ refers to the rating given out by

its trusted friend a. In other words, a′ does not insist on its own user experience

(i.e., a low persistency), and thus it wants to refer to the ratings of its trusted friend

for its own rating. (2) Since a has a very small cross-sectional area (i.e., a low

persuasiveness), only a small volume of fluid would eventually flow from a to a′ at the

143

end. This means that the rating of a is not very convincing, and thus, it only slightly

changes the rating of a′. (3) The fluid from a mixes up with the existing fluid in

a′, representing that a′ refines its own opinion in a time-evolving manner. The fluid

temperature (the rating) of a′ is changed by the fluid from a. (4) The pipe size has

some impacts on the duration of the fluid flowing time. If waa′ is large, then the fluid

in a flows into a′ within a short time. This means that a′ updates its rating more

quickly, if a′ trusts a more. These four analogy insights show that the fluid flow can

accurately capture the rating reference process (or opinion propagation process).

7.4.2 Fluid Update Principles

Discrete Approach. In the real world, the fluid flow is a continuous-time system,

which is hard to compute. Hence, the discrete approach is used. The continuous

physical time is discretized into a series of time slots. The duration of each time slot

is denoted as ∆t. Fluid flows are described as a set of partial differential equations.

We consider that the fluid update is performed synchronously at the end of each time

slot. The update process is shown in Fig. 7.4, which corresponds to the example in

Fig. 7.2. Let R denote the total number of fluid updates. At the beginning of the

ith time slot, we prepare the fluid update and check whether the fluid will flow in

each pipe, by comparing the fluid heights of two connected containers. If there is a

directional pipe from a to a′, and the fluid height in a is higher than that of a′, the

fluid will flow from a to a′; if either of the two conditions do not meet, no fluid will

flow. The first condition means that a is trusted by a′, and thus, the rating of a may

be referred to by a′. The second condition means that a′ has a low persistency, and

thus a′ wants to refer to the rating of a. We record the volume and temperature of

the flowing fluid. At the end of each time slot, we mix up the flowing fluid and the

remaining fluid as the fluid updates.

144

Public

channel
Containers

R

...

R - 1

1

0

Time

slot

a1 a2 a3 a4 a5 ab

a1 a2 a3 a4 a5 ab

pipes

a1 a2 a3 a4 a5 ab

a1 a2 a3 a4 a5 ab

pipes

Figure 7.4: A discrete approach to compute the fluid flow.

Initialization. The fluid heights of all the non-raters are initialized to be zero,

since they have not rated the product yet. The fluid height of each rater is initialized

according to the persistency of that rater. The fluid temperatures of all the raters are

initialized according to their ratings, as shown in Fig. 7.2. The cross-sectional area

of each user is initialized based on the persuasiveness of that user. As for the public

channel, it is modeled as an extra container that connects to all the non-raters. The

initialization of the public channel is similar to that of the raters, the only exception

being that its fluid temperature is set as the average fluid temperature among all the

raters.

Update Details. First, let us consider a single pipe, say the pipe connecting a

and a′, with cross-sectional area waa′ . This scenario has been shown in Fig. 7.3. At

the beginning of the ith time slot, if a has more fluid than a′, fluid will flow from a

to a′ during this time slot of duration ∆t. Based on the Bernoulli’s principle [138],

the speed of fluid flowing at the bottom of a will be 2g
√

ha(i)− ha′(i). Here, g is the

gravitational acceleration, which is a constant. Hence, the volume of fluid that flows

145

from a to a′ in the ith time slot is:

saa′(i) = 2g
√

ha(i)− ha′(i)× waa′ ×∆t (7.4-1)

The insight behind Eq. 7.4-1 is that, if a′ has a lower persistency and a is trusted more

by a′, then the rating of a is more valuable to a′. In addition, the fluid temperature

that corresponds to saa′(i) is denoted as taa′(i), which is equal to the temperature

of the fluid in the container a. Let sa(i) denote the volume of the fluid in a at the

ith time slot. Then, for the (i + 1)th time slot, the volume of the fluid in a can be

calculated as:

sa(i+ 1) = sa(i)−
∑

a′∈N+
a

saa′(i) +
∑

a′∈N−a

sa′a(i) (7.4-2)

where N+
a and N−

a are the outgoing and incoming neighbors of a, respectively. The

fluid height in a can be calculated by ha(i + 1) = sa(i + 1)/ca, where ca is the

cross-sectional area of the container a. The cross-sectional area of a represents its

persuasiveness, which has an impact on the final ratings of its outgoing neighbors.

This is because a larger cross-sectional area will lead to a smaller fluid height change,

after the current update. If a has a larger cross-sectional area, more fluid will

eventually flow into its outgoing neighbors.

Let ta(i) denote the temperature of the fluid in a at the ith time slot. According

to the fluid mixing formula [138], the fluid temperature after being mixed up is:

ta(i+ 1) =

[sa(i)−
∑

a′∈N+
a

saa′(i)]·ta(i)+
∑

a′∈N−a

[sa′a(i)·ta′a(i)]

sa(i+ 1)
(7.4-3)

Eq. 7.4-3 is essentially
∑

(volume · temperature)/
∑

volume. The first part of

the numerator represents the remaining fluid in container a, while the second part

146

corresponds to the incoming fluid flowing from the other containers. The denominator

is the volume of the mixed fluids, as shown in Eq. 7.4-2.

Considering that the raters have given out their ratings (i.e., they no longer update

their ratings), the fluid heights of the raters are fixed. This can be viewed as giving

additional fluid injections to the raters. The raters will no longer refer to the ratings

of the other users, and their ratings are only referred to by the non-raters. As for the

public channel, its fluid height is also fixed. If a user has given out his/her rating,

then this user can no longer change his/her rating on the public channel.

7.4.3 Algorithm Overview and Time Complexity Analysis

DynFluid is shown in Algorithm 10. Lines 1 and 2 associate nodes and edges in

G with containers and pipes, respectively. In line 3, an extra container is added to

represent the public channel. Line 4 shows the initialization process. Lines 5 to 12

show the discrete approach for calculating the fluid flow. The continuous physical

time is discretized into R time slots, i.e., R rounds of fluid updates. In each round,

we first calculate the volume of the flowing fluid in each pipe, as shown in lines 6 to

8. In lines 9 and 10, we inject additional fluid to the containers that correspond to

the raters and the public channel. At the end of each round, we update the fluid in

the non-raters’ containers (lines 11 and 12). Finally, in line 13, the fluid temperature

in the non-rater’s container is returned as the predicted rating.

The initialization of Algorithm 10 (lines 1 to 4) takes a time complexity of

O(V + E). Each round of fluid update in lines 5 to 12 also takes a time complexity

of O(V + E). Since fluid updates have R rounds, the total time complexity of

Algorithm 10 is O(R · (V +E)). Considering that social networks are generally sparse

and R should be a small constant, the proposed DynFluid could be very efficient for

real-world rating predictions that involve millions of users.

147

Algorithm 10 DynFluid

Input: The directed graph G and the existing ratings;
The parameters for the initialization;
∆t, R, and g for the fluid flow update;

Output: The predicted ratings of the non-raters;

1: Associate each node in G with a container;
2: Associate each edge in G with a directional pipe;
3: Add an extra container (i.e., public channel) that connects to all the non-raters’

containers.
4: Initialize the fluid height and temperature in each container;
5: for i = 0 to R− 1 do
6: for each pipe from a to a′ do
7: if ha(i) > ha′(i) then
8: Calculate the volume and temperature of the outgoing flowing fluid, based

on Eq. 7.4-1;
9: for each rater’s container and the extra container do

10: Inject additional fluid to maintain the fluid height and temperature;
11: for each non-rater’s container do
12: Mix up the incoming flowing fluid, as to update the fluid height and

temperature, based on Eqs. 7.4-2 and 7.4-3;
13: return the fluid temperature in the non-rater’s container.

7.4.4 Convergence Analysis

This subsection focuses on the convergence of the proposed DynFluid. First, we

have the following theorem:

Theorem 7.1. If we use a constant value (denoted by h) to initialize the fluid heights

of all the raters and the public channel, then the fluid heights of all the non-raters

will always be no larger than h, during the fluid updating process.

Proof: We proof this theorem by contradiction. Suppose there is a non-rater a,

whose fluid height ha is larger than h. There are two possible cases for explaining a’s

fluid height. The first case is that the fluid in a comes directly from a rater (or the

public channel) a′, where ha′ > ha > h. However, the fluid heights of all the raters (or

the public channel) are h, since they only give out their fluids to non-raters. Therefore,

the first case contradicts the assumption, which should be invalid. The second case

148

is that the fluid in a comes directly from a non-rater. However, working iteratively

with this case will eventually result in a non-rater whose fluid comes directly from a

rater. Therefore, the second case will be reduced to the first case, which is not valid

by contradiction. �

Theorem 7.2. If we use a constant value (denoted by h) to initialize the fluid heights

of all the raters and the public channel, then, after a time period that is sufficiently

long, the fluid heights of all the non-raters will be h.

Proof: Suppose there is a non-rater a. According to Theorem 7.1, we have ha ≤ h.

If ha = h for any non-rater a, then the proof completes. If ha < h, we also have

two cases. The first case is that the fluid in a comes directly from a rater (or the

public channel) a′. This means that ha′ = h > ha. Since there is a pipe from a′ to

a, the flowing fluid in this pipe will eventually fill up the height gap between a′ and

a, meaning that we have ha = h after a sufficiently long time period. The second

case is that the fluid in a comes directly from a non-rater. Iteratively doing this case

will eventually reduce this case to the first case, since the fluids of all the non-raters

originate from the raters and the public channel. �

Theorems 7.1 and 7.2 show that the DynFluid will converge after certain rounds

of fluid updates. It can be explained by the rating reference process in the real world.

Initially, a user has no idea about the given product. Upon referring to the ratings of

the other users, this user formulates and refines his/her own rating in a time-evolving

manner. During this process, a person’s opinion becomes more and more mature,

indicating increased persistency. Therefore, this phenomenon is consistent with our

real-world experiences.

149

7.4.5 Algorithm Properties

This subsection studies the properties of the proposed DynFluid. First, we have

the following property:

Property 7.3. In DynFluid, the opinion influence from a user, a, to another user,

a′, decays monotonously with respect to the hop-count distance from a to a′.

This property indicates that a user is influenced more by his/her trusted friends

and the public channel than strangers. In DynFluid, the 1-hop neighbor of a non-rater

can pass their fluids directly to this non-rater, during the 1st round of fluid updates.

Meanwhile, the k-hop neighbor can only pass his/her fluids to that non-rater during

the kth round of fluid updates. The fluids from nearby neighbors arrive at the non-

rater earlier (in terms of the discrete time slot) with a larger volume, since the fluid

height of the non-rater is lower at an earlier time. The fluid from strangers arrives

at that non-rater later with a smaller volume, since the fluid height of the non-rater

becomes higher at a later time. The ratings of trusted friends and the public channel

are more valuable than the strangers’ ratings. Then, another property of DynFluid

is:

Property 7.4. In DynFluid, the certainty of the rating prediction for a non-rater

can be measured by the fluid height (or persistency) of that non-rater.

This property states that the certainty of the rating prediction is highly related to

the persistency of the corresponding non-rater. DynFluid shows how a user refines its

rating in a time-evolving manner. At the beginning, the user has a low persistency,

and thus he/she receives multiple opinions from his/her trusted friends and the public

channel. As time goes by, the opinion of a user becomes more and more mature,

indicating that the persistency of that user gets higher and higher. Therefore, the

rating of a user with a higher persistency is more stable than the one with a lower

persistency, representing that the certainty can be measured by the persistency.

150

7.5 Evaluations

7.5.1 Basic Settings

Dataset information. In our experiments, the datasets of Epinions and Ciao

[139] are used. These two datasets are collected online from www.epinions.com and

www.ciao.com. These two datasets include the directional trust relationships among

users, as well as the users’ ratings (recorded as rating scores from 1 to 5) on some

products. The distributions of rating scores in Epinions and Ciao are shown in Fig.

7.5. It can be seen that users are more likely to give out high ratings. More than

40% of rating scores are 5 (the highest rating score). Then, the Epinions dataset

consists of 49,290 users who rated a total of 139,738 different products. The total

number of issued trust relationships is 487,181. The Ciao dataset consists of 2,248

users who rated a total of 16,861 different products. The total number of issued trust

relationships is 57,544.

Since the ratings on a specified product are generally sparse with respect to the

graph size, a user may not have a trusted friend who has rated the same product

as he/she did. Therefore, we do not run experiments directly on the whole dataset.

Alternatively, given a product, we extract subgraphs to test rating predictions: if a

user does not rate that product, or this user does not have a trusted friend who has

rated that product, then this user is not considered in our experiments; otherwise, we

generate a subgraph centered on that user to predict his/her rating. This subgraph is

composed of all neighbors of that user within a certain hop count. We use the 1-hop,

2-hop, and 3-hop subgraphs. A larger subgraph provides more information, and thus

a better performance should be obtained by the DynFluid.

Performance metric. To measure the prediction errors of the proposed

DynFluid, the leave-one-out method [140] is used. For the generated subgraph of

151

(a) Rating scores in Epinions. (b) Rating scores in Ciao.

Figure 7.5: The distribution of the rating scores.

a specific user, the groundtruth rating of that user is masked and then predicted

based on the generated subgraph. We compare the predicted rating with the masked

groundtruth rating, the difference between which is the prediction error. To measure

the prediction errors among different subgraphs and different products, we adopt

the root mean squared error (RMSE) [127], which is the root of the mean squared

prediction error among all the generated subgraphs and all the products. RMSE

represents the standard deviation of the differences between predicted ratings and

groundtruth ratings. A smaller RMSE indicates a better prediction.

The second performance metric is the classic F-score, which is the harmonic mean

of precision and recall:

F-score =
2TP

2TP + FP + FN
(7.5-4)

When the groundtruth is that the corresponding user has a rating score of no less

than three (called positive rating), TP and FP (true and false positive cases) are the

numbers of correct and incorrect predictions, respectively. Then, the false negative

case, FN , is the number of incorrect predictions, when the groundtruth is that the

corresponding user has a rating score of less than three (called negative rating). Note

that a larger F-score indicates a better prediction.

Default parameters. In our experiments, the subgraph for rating predictions is

152

(a) The RMSE in the Epinions dataset. (b) The RMSE in the Ciao dataset.

Figure 7.6: Compare DynFluid with the other methods, in terms of RMSE.

(a) The F-score in the Epinions dataset. (b) The F-score in the Ciao dataset.

Figure 7.7: Compare DynFluid with the other methods, in terms of F-score.

generated, in default, by all neighbors within 3 hops of a given user (also called 3-hop

subgraph). Unless specified, we use ∆t = 0.1 as the duration of each time slot and

R = 10 as the rounds of fluid updates. The fluid heights of all the raters and the

public channel are 10. The cross-sectional areas of all the containers are 1. The fluid

temperature of each rater is initialized to be its rating score.

7.5.2 Comparisons with the Other Methods

This subsection compares DynFluid with the other state-of-the-art algorithms

in terms of RMSE and F-score. Comparison algorithms include TidalTrust [125],

MoleTrust [126], Random Walk [127], PageRank [135], and FluidRating [137]. (1)

TidalTrust finds all trusted raters through the shortest path to the given user, and

then aggregates their ratings as the predicted rating of that given user. (2) MoleTrust

has two steps [141]. In the first step, it takes two given nodes (source and destination)

153

as the input and then builds a directed trust graph from the source to the destination.

In the second step, it walks through the directed trust graph and calculates the trust

values of the visited nodes. The rating of the destination node serves as the predicted

rating of the source node. (3) Random Walk aggregates the ratings of users arriving

by random walks from a given user as the predicted rating of that given user [127].

(4) PageRank computes the user’s reputation for trust propagations. We take its

result when it converges. (5) FluidRating is the foundation of this work. However,

FluidRating does not consider the public channel, which is really impactful for the

rating predictions.

The comparison results are shown in Figs. 7.6 and 7.7. The former one shows the

results with the RMSE metric and the later one shows the results with the F-score

metric. A smaller RMSE means a better result, while a larger F-score means a better

result. Figs. 7.6(a) and 7.6(b) show the results for Epinions and Ciao, respectively.

The left part of Fig. 7.6(a) is the result for the subgraphs that are generated by all

neighbors within 1 hop of the given user, while the middle and right parts are those

within 2 and 3 hops, respectively. DynFluid outperforms all the other algorithms,

since it considers the ratings of the trusted friends and the public channel. For a

1-hop subgraph, DynFluid has a more than 10% improvement with respect to all the

other methods. For a 3-hop subgraph, DynFluid has a more than 5% improvement

over FluidRaing, and an over 10% improvement compared to the other methods.

DynFluid performs better for subgraphs of neighbors within 3 hops than those within

1 hop. When the subgraph is larger, users can refer to more rating scores from their

trusted friends and make a better rating. The performance gap between DynFluid

and FluidRating gets smaller, when the generated subgraph is larger. This is because

a larger subgraph brings more information on the public channel. The results in Ciao

are similar to those in Epinions. However, the overall RMSE in Ciao is lower than

that in Epinions (about 10% lower).

154

(a) The result for the Epinions dataset. (b) The result for the Ciao dataset.

Figure 7.8: The impact of the public channel.

Fig. 7.7 shows the comparasion results with the F-score metric. Fig. 7.7(a) and

7.7(b) show the results for Epinions and Ciao, respectively. In Fig. 7.7(a), DynFluid

has a significant performance improvement, compared to Random Walk (about a

15% higher F-score). For the other methods, a performance improvement that is

larger than 5% is also obtained by DynFluid. According to the definition of F-score,

DynFluid can accurately predict the true positive case, where the groundtruth is

that the corresponding user has a rating score of no less than three (positive rating).

Note that the true positive case is the most important case for DynFluid, since its

motivation is the trust-based recommendation. If a user is predicted to have a high

rating on a specified product, then the service provider can recommend this product

to that user for the shopping potential. Although F-score does not consider the true

negative case, this case is not important for recommendations. This is because the

service provider should not recommend a product to a user, if this user is predicted

to have a negative rating on that product. DynFluid has an F-score of about 85%

when we use the 3-hop subgraph. Therefore, DynFluid is qualified for trust-based

recommendations. The F-score of DynFluid in Ciao is a little bit higher than that in

Epinions, indicating that the rating scores in Ciao are more predictable in the F-score

metric. This is consistent with that in the RMSE metric.

155

(a) The result for the Epinions dataset. (b) The result for the Ciao dataset.

Figure 7.9: The impact of the user persistency.

7.5.3 The Impact of The Public Channel

In the previous subsection, we compare DynFluid with other state-of-the-art

methods. Here, we conduct additional experiments to further understand the impact

of the public channel. Instead of the default setting, where the fluid height of the

public channel is initialized to be 10, we tune the fluid height of the public channel,

as to observe the RMSE variance of the DynFluid. Note that the fluid heights of all

the raters are set to be 10. A higher fluid height of the public channel means that it

has a larger impact on the users.

The results are shown in Fig. 7.8, where we conduct the above experiments

for DynFluid in subgraphs generated by all neighbors within 1 hop, 2 hops, and

3 hops, respectively. Fig. 7.8(a) and 7.8(b) show the results for Epinions and Ciao,

respectively. In both datasets, the RMSE of DynFluid first decreases and then

increases, with respect to the initial fluid height of the public channel. When the

initial fluid height of the public channel is 1, the DynFluid mainly uses the ratings of

the trusted friends for rating predictions, leading to a high RMSE. In other words,

if the impact of the public channel is ignored, then the rating prediction becomes

inaccurate. On the other hand, when the initial fluid height of the public channel is

100, the DynFluid mainly uses the public channel for rating predictions, which also

leads to a high RMSE. This means that the ratings of the trusted friends are also

156

(a) The result for the Epinions dataset. (b) The result for the Ciao dataset.

Figure 7.10: The impact of the user persuasiveness.

not negligible. Note that the RMSE of the DynFluid goes to the minimum, when the

initial height of the public channel is set to be about 10 to 20. Meanwhile, the initial

heights of all the raters are 10. This observation implies that the public channel helps

to improve the accuracy of the prediction. We also find that the impact of the public

channel is more significant in 1-hop subgraphs than that in 3-hop subgraphs.

7.5.4 The Impact of The Persistency and Persuasiveness

In the previous experiments, we use a constant of 10 to initialize the fluid heights

of all the raters. The cross-sectional areas of all the containers are set to be 1. Here,

we initialize the fluid heights and the cross-sectional areas in a personalized way,

as to see the impact of the persistency and persuasiveness. We estimate those two

characteristics of a user through the total number of ratings (on different products)

given out by that user. If a user has rated more products, we consider that user to

have a higher persistency and persuasiveness, through a linear mapping process. This

is because the user is more likely to insist on his/her own opinions, and is more likely

to be an authority on the product for the other users.

First, we conduct experiments to observe the impact of the non-identical

persistency, while the persuasiveness remains identical. The experimental results are

shown in Fig. 7.9. It can be seen that the DynFluid with personalized persistency

157

has a better performance than the DynFluid with the default setting (about 5% lower

RMSE in both Epinions and Ciao). If we initialize the persistency to be identical,

then a larger initial value or a smaller initial value has a very limited impact on the

converged RMSE of the DynFluid. The variance caused by different initial values is

less than 3%. This is because a higher fluid height also leads to a larger volume of

flowing fluid as a self-regulation in the fluid flow system. DynFluid with personalized

persistency has a slower convergence speed than that with identical persistency.

This is because the user with a low persistency needs more time to refine his/her

opinions. We also conduct experiments to observe the impact of the non-identical

persuasiveness, while the persistency is identical. The experimental results are shown

in Fig. 7.10. It can be seen that the DynFluid with personalized persuasiveness has a

better performance (more than 5% lower RMSE) than the DynFluid with the default

setting. If we initialize the persuasiveness to be identical, then its initial value has

some impacts on the converged RMSE of the DynFluid. A too-large initial value

leads to a performance degradation, since larger cross-sectional areas can weaken the

impact of flowing fluid.

7.6 Summary

This chapter studies a rating prediction problem in trust-based recommendation

systems. We find that the rating of a user depends on his/her user experience, as well

as the ratings of other users. This chapter proposes a novel rating prediction scheme

called DynFluid, based on the fluid dynamics theory. DynFluid analogizes the rating

reference among the users to the fluid flow among containers: each user is represented

by a container; the rating of a user is mapped to be the fluid temperature. Two user

characteristics, persistency and persuasiveness, are incorporated into DynFluid. Real

data-driven experiments validate the performance of our DynFluid.

158

CHAPTER 8

FAST INFORMATION CASCADE

PREDICTION THROUGH SPATIOTEMPORAL

DECOMPOSITIONS

Chapters 6, 7, and 8 focus on the information propagation applications for social

networks. More specifically, this chapter studies the information cascade in online

social networks. Information cascades occur when people observe the actions of others

(followees) and then make the same choices that the others have made (followers).

Cascade predictions are important, since they can detect and help resist bad cascades.

We focus on photo cascade predictions in Flickr: given the current cascade and social

topology, we want to predict the number of propagated users at a future time slot.

Information cascades include a large amount of data that crosses both space and time.

To reduce prediction time complexities, our idea is to decompose the spatiotemporal

cascade information (a larger size of data) to user characteristics (a smaller size

of data) for subsequent predictions. Space and time matrices are introduced to

record the cascade information. We introduce a set of new notions, persuasiveness

and receptiveness (represented as two vectors for complexity reduction), to capture

characteristics of followees and followers. Persuasiveness includes followees’ abilities

to propagate information, while receptiveness includes followers’ willingness to accept

information. Then, we propose a three-stage parallel prediction scheme as follows. (1)

We map the spatiotemporal cascade information to a weighted matrix, in which the

weights of space and time information are tuned. (2) Singular value decomposition is

159

used to extract nodes’ persuasiveness and receptiveness from the weighted matrix.

(3) Predictions are conducted based on nodes’ persuasiveness and receptiveness.

Evaluations are conducted to verify the performance of the proposed scheme.

8.1 Introduction

Nowadays, online social networks (OSNs), which belong to typical large distributed

systems, are a fundamental medium for spreading information, such as sharing

startling news, creative ideas, and interesting stories. An information cascade

may occur if a user follows another user: if Alice (a followee) shares a photo,

Bob (a follower) may scan this photo and then share it to his/her followers

later. This type of iterative information propagation is called an information

cascade. Meanwhile, cascade predictions are important in various aspects of human

lives, such as in the control of computer viruses, prevention of infectious diseases,

inhibition of terrible rumors, estimation of economic products, and the forecast of

marketing strategies. However, the cascade prediction is very difficult, due to its

intrinsic complexities: when will a user further propagate the information? This

chapter captures propagation boundaries spatiotemporally, i.e., through both social

topological information and time information. More specifically, given a cascade

before a time τ1 and the social topology, we want to predict the number of propagated

users (called the cascade size) at a future time slot τ2 (assuming that the information

source appears at τ0 = 0). To reduce prediction time complexities, our main idea

is to decompose the spatiotemporal cascade information (a larger size of data) to

user characteristics (a smaller size of data) with bounded information loss; then,

predictions are conducted based on the decomposed information, as to have a low

time complexity.

In a macro view, information cascades include a large amount of data that crosses

160

0

2

3

1

4

5

3

2

4

5

(a) A spatiotemporal cascade.

 =

!
"
"
"
#
$% % % % 5
$% % 2 3 %
$4 % % 3 %
$% % % % 5
$% % % % %

$

&
'
'
'
(

(b) The time matrix for (a).

(c) Characteristics of nodes.

u1 =













0.00
0.83
0.56
0.00
0.00













v1 =













0.26
0.00
0.57
0.78
0.00













(d) The decomposed vectors.

Figure 8.1: In (a) and (c), solid directional edges among nodes (numbers inside nodes
are user IDs) represent follower-followee relationships (the pointed node
is the follower). Dashed directional edges indicate the cascade. The
label on the top of a node indicates the time when this user starts
to propagate information after having been influenced. Node 2 is the
information source. In (c), the left dark node has high persuasiveness
and receptiveness (the right one is the opposite). The decomposition
result for the cascade of the first four time slots is shown in (d).

both time and space. Therefore, we use matrices S and T to respectively capture

the space and time dimensions of cascades. Here, S is the network adjacency matrix,

which shows the social topology. Then, the time matrix T indicates the propagated

nodes (i.e., users) in terms of time sequences. The time matrix T , which corresponds

to the cascade of all five time slots in Fig. 8.1(a), is shown in Fig. 8.1(b). The

element tij of T is the time when user j starts to propagate information after having

been influenced by user i. We assume that a propagated node influences its followers

immediately without a delay. Note that T includes complete time information and

partial space information: nodes that are closer within the social topology are more

likely to be propagated at closer times. Although S and T can be used for predictions

directly, the prediction time complexity is unacceptable due to matrix operations. For

example, in the Flickr dataset [103], S and T involve 2,302,925 users with 11,267,320

161

Known characteristics

From vectors u1 and v1

Current cascade
Source

Future cascade

Persuasiveness

Receptiveness

Predicted characteristics

Figure 8.2: The decay pattern of nodes’ persuasiveness and receptiveness.

photos, which are unacceptable for matrix operations.

The micro view of cascades is that followees iteratively propagate information

to their followers. Therefore, we introduce persuasiveness and receptiveness to

capture characteristics of followees and followers: the persuasiveness is defined as

followees’ abilities to propagate information; the receptiveness represents followers’

willingness to accept information. As shown in Fig. 8.1(c), the left dark node has high

persuasiveness and receptiveness (the right dark node is the opposite). Vectors u1 and

v1 are used to record nodes’ persuasiveness and receptiveness, where the ith elements

in the vectors u1 and v1 show node i’s persuasiveness and receptiveness, respectively.

We further consider these two characteristics to be spatiotemporally-sensitive: if a

node with a high out-degree is spatially far away from the information source, it may

not be propagated, and thus it cannot positively propagate the information further

(i.e., low persuasiveness). In the case of a temporal remote node, it also has low

persuasiveness, since its followers may have been propagated by other nodes. The

same rule works for the receptiveness. Therefore, in terms of the distribution, nodes’

persuasiveness and receptiveness should decay with respect to their spatiotemporal

distances to the information source.

Our prediction scheme is based on both the macro and micro properties of cascades.

This scheme has three stages as follows. (1) In the first stage (Section 8.4), we

162

map the time matrix, T , to a weighted matrix M . The mapping objective is to

tune the weights of space and time information in T . We also highlight earlier

propagations in the mapping process, since they are more important than later ones.

(2) In the second stage (Section 8.5), we introduce the singular value decomposition

(SVD [142]) to extract nodes’ persuasiveness and receptiveness (two vectors) from

the weighted matrix M , with bounded information loss. This is because the element

mij of M represents a joint result of followee i’s persuasiveness and follower j’s

receptiveness. Fig. 8.1(d) shows the result for the cascade of the first four time

slots (τ1 = 4, and node 5 is waiting for the prediction) in Fig. 8.1(a). u1 shows

that nodes 2 and 3 are followees, while v1 shows that nodes 1, 3 and 4 are followers.

Now, the spatiotemporal cascade information (matrices) is compressed into nodes’

persuasiveness and receptiveness (vectors), resulting in a reduced prediction time

complexity. (3) In the third stage (Section 8.6), we conduct predictions based

on the decomposed information. The decay pattern of nodes’ persuasiveness and

receptiveness along shortest paths are focused, as shown in Fig. 8.2. Then, the

persuasiveness and receptiveness of currently unpropagated nodes are predicted. For

example, in Fig. 8.1, node 5’s persuasiveness and receptiveness are predicted according

to vectors u1 and v1. Based on the prediction result, û1 and v̂1, we can reconstruct

the predicted weighted matrix, M̂ . The predicted number of propagated users can

be obtained by mapping M̂ back to the predicted time matrix.

Our contributions are manifold: (1) we consider cascades spatiotemporally,

and propose a parallel prediction scheme to deal with the large amount of

cascade information. (2) We introduce persuasiveness and receptiveness to capture

characteristics of followees and followers, which are completely novel. Persuasiveness

and receptiveness can be decomposed from the spatiotemporal cascade information,

i.e., the complete cascade information is compressed efficiently with bounds. (3)

User personalities (e.g., gender and age) can be incorporated into our model. (4)

163

Prediction methods, based on nodes’ persuasiveness and receptiveness, are proposed,

the performance of which are verified by real-data driven evaluations.

The remainder of this chapter is organized as follows: In Section 8.2, we survey the

related work; in Section 8.3, basic concepts are shown with the dataset description;

in Section 8.4, we show the mapping process; in Section 8.5, the spatiotemporal

decomposition is introduced to extract nodes’ persuasiveness and receptiveness; in

Section 8.6, we show the whole prediction process; in Section 8.7, real data-driven

evaluations are shown; and finally, in Section 8.8, we conclude this chapter.

8.2 Related Work

An information cascade occurs when people observe the actions of others and

then make the same choices that the others have made. The most popular cascade

models include the linear threshold model [143, 144], and the independent cascade

model [143, 144, 145, 146]. In the linear threshold model, each person has a

weight and a threshold. A person starts to spread information further, only if the

weight summation of propagated persons that he/she follows is larger than his/her

own threshold. Instead of the deterministic model, the independent cascade model

introduces probabilities: once propagated, each node has a certain likelihood of

further spreading the information to its followers. More models are derived from

these two models. For example, Ghasemiesfeh et al. [147] considers a k-complex

model, where a node is further propagated if no less than k neighbors of this node

are propagated. Sadikov et al. [148] considers a k-tree model. However, these models

mainly focus on the spatial cascade information.

The study on spatiotemporal cascade has been proposed in [149], where the

time dimension also matters. Differing from former studies, we compress the

spatiotemporal cascade information into nodes’ persuasiveness and receptiveness,

164

Table 8.1: Flickr Dataset Summary
Time period 11/02/2006 to 12/03/2006

(two periods) 02/03/2007 to 05/18/2007

Links 17,034,807 to 33,140,018

Users 1,487,058 to 2,302,925

Photos 11,267,320

Favorite marks 34,734,221

Popular photos 14,002

Most popular photo Marked by 2,998 times

Largest in / out-degree 21,001 / 26,367

which are completely novel. This compression also sheds light on the big data

processings [150], since it reduces the dimensions for describing cascades. Rather

than using statistical approaches, our method reserves insights on cascades. Our

model can also be extended by considering user personalities.

Another branch of cascade studies focuses on the data mining of real datasets, such

as Facebook [151], Flickr [103] and Twitter [144]. These studies observe real cascades

and then match real cascade properties to theoretical models [152, 153]. Our study

is based on the Flickr dataset [103].

8.3 Basic Concepts and Dataset Description

8.3.1 Basic Concepts

Flickr is an online social network for sharing photos (i.e., the information to

propagate) among users, the relationships of which are directional: a directional edge

from Bob to Alice means that Bob follows Alice. Users share photos among each

other by labeling a “favorite-mark” to a photo. We refer to users who label photos

with a “favorite-mark” as propagated users in the cascade of that photo. Meanwhile,

users are called influenced if they have seen this photo. An influenced user may not

be a propagated user, since he/she may not mark the photo as a favorite for further

165

Table 8.2: Notations
Notation Description

τ1 / τ2 The current / future cascade time (τ2 > τ1).

τ0 The appearance time of the information source.

S / T The space / time matrix with elements sij / tij.

Ni / Np / N The set of influenced / propagated / total users.

Ei / Ep / E The edge set corresponding to Vs / Vt / V .

M A matrix mapped from the time matrix T .

U / Σ / V The SVD result of M (M = UΣV ∗).

σi The ith largest singular value of the matrix M .

ui / vi The vector in U / V corresponding to σi, and

u1 / v1 shows persuasiveness / receptiveness.

û1 / v̂1 The predicted u1 / v1 in the future cascade.

M̂ / T̂ The predicted M / T in the future cascade.

f(t) = e−ct The mapping function, which maps tij to mij.

sharing. Then, a photo cascade process can be formally defined as a spatiotemporal

photo spreading process on all influenced users, rather than on all propagated users.

Information cascades include a large amount of data that crosses both time and

space, i.e. spatiotemporal information. Then, the space matrix, S, is defined as the

adjacency matrix of the social topology among all the users (including the users that

need to be predicted). Theoretically, S should include the complete social topology

(i.e., all users on Flickr), since a cascade may propagate over the whole network. For

practical usage, S can be a large enough subgraph.

Once a user shares a photo, we consider that this user is influenced by all the

propagated users that he/she follows. The element tij of matrix T is the time when

user j starts to propagate information after having been influenced by user i. Here, T

is called the time matrix, which includes all users corresponding to S. The elements

in T that represent currently unpropagated users are set to be infinite. The users

in T are corresponding to the users in S. We will further discuss the size of S and

T , since including all users is redundant, and is not feasible for practical usage. A

large enough subgraph can be used for the prediction. Note that a user j may have

166

10
0

10
2

10
4

10
6

10
8

(0
,
10
00
]

(1
00
0,
20
00
]

(2
00
0,
30
00
]

(3
00
0,
40
00
]

(4
00
0,
50
00
]

(5
00
0,
∞

)

The degree range

T
h
e
 n

u
m

b
e
r

o
f

u
s
e
rs

In−degree

Out−degree

(a) User degree distribution.

10
0

10
2

10
4

10
6

10
8

(0
,
20
0]

(2
00
,
40
0]

(4
00
,
60
0]

(6
00
,
90
0]

(8
00
,
10
00
]

(1
00
0,
∞

)

Marked times

T
h
e
 n

u
m

b
e
r

o
f

p
h
o
to

s

Photo statistics

(b) Favorite mark distribution.

Figure 8.3: Statistics of the Flickr dataset.

been influenced by multiple users before his/her own propagation at the time tij. For

example, in Fig. 8.1(a), user 5 has been influenced by user 4 since time 3, but he/she

finally decides to propagate (i.e., label a “favorite-mark” to the photo) at time 5.

Note that time durations of influences can be deducted from T . Therefore, complete

information of a photo cascade has been reserved in both S and T . In addition, let

τ0, τ1 and τ2, respectively, denote the appearance time of the information source, the

current time (i.e., we know the whole cascade process between τ0 and τ1), and the

future time at which we want to predict the cascade size. In the following cascade

examples of this chapter, we set τ0 = 0, τ1 = 4, and τ2 = 5 as a default setting.

8.3.2 Dataset Description

The Flickr dataset is collected by Cha et al. [103] through Flickr APIs. It was

collected during the time periods from November 2nd to December 3rd, 2006, and

February 3rd to May 18th, 2007. The number of users and their links are growing with

respect to time. Note that a user, on average, has less than 15 links: this network is

definitely sparse (i.e., matrices S and T are sparse). The degree distribution is shown

in Fig. 8.3(a), indicating that a few users have very high degrees. 11,267,320 photos

167

are shared during this period, with 34,734,221 favorite marks in total. 34,484 photos

are not marked, but are recorded in the system. Most photos (11,218,834 photos) are

marked no more than 100 times, while only 25 photos are marked more than 1,000

times. The distribution of photos, in terms of times marked, is shown in Fig. 8.3(b).

Since photos of different popularity stand for cascades of different types, we choose

popular photos (defined as the photos that are shared more than 100 times) for further

analysis in the following part. We consider that popular photos have similar cascade

properties. The other dataset statistics are shown in Table 8.1, and all the notations

are shown in Table 8.2.

8.4 Tuning The Spatiotemporal Information

The first stage of our prediction scheme is introduced in this section, where we

show the mapping process that tunes the weights of space and time information.

8.4.1 Mapping Process

We independently map each element in T to the element inM of the same position.

Then, the mapping function is defined as f : tij → mij, or mij = f(tij), over

real positive numbers. Since earlier propagations are more important, we have the

following mapping rule:

Principal 8.1. The function f(t) is strictly decreasing with respect to t. When

t→∞, we have f(t)→ 0.

Another concern is that the starting time of the cascade is not important: the

cascade in Fig. 8.1(a) can be viewed as starting at τ0 = 0 and finishing at τ2 = 5;

however, it can also be viewed as starting at τ0 = 1 and finishing at τ2 = 6 (i.e., a

position translation of 1 on the time domain). Obviously, this translation should not

influence mapping results (relationships among elements mij). Therefore, we have:

168

 (!" = 4) =

#
$
$
$
%
&' ' ' ' '
&' ' 2 3 '
&4 ' ' 3 '
' ' ' ' '
&' ' ' ' '

&

*
+
+
+
,

(a) The time matrix at τ1 = 4.

 (!" = 4) =

#
$
$
$
%
&0 0 0 0 0
&0 0 0.67 0.55 0
&0.45 0 0 0.55 0
&0 0 0 0 0
&0 0 0 0 0

&

'
*
*
*
+

(b) The corresponding mapping result.

Figure 8.4: Mapping T to M through f(t) = e−t/5, where c = 1
5
= 1

τ2
.

Principal 8.2. The function f(t) satisfies f(t+τ)
f(τ)

= f(t), i.e., f(t + τ) = f(t)f(τ).

Here, τ is a parameter for tuning the starting time of the cascade.

An interesting phenomenon is that Guiding Rules 8.1 and 8.2 have determined the

function form of f(t), as follows:

Theorem 8.3. The only feasible family of solutions for the above guiding rules are

exponential functions, i.e., f(t) = e−ct where c is an arbitrary positive number.

Proof: Let us start with Guiding Rule 8.2, where f(t+τ) = f(t)f(τ). If τ = t, then

f(t + t) = f(2t) = f(t)2. If we do this iteratively, then we can have f(Ct) = f(t)C ,

where C is a parameter. Exchanging t and C, we have f(Ct) = f(t)C = f(C)t. Let

C = 1, and then we have f(t) = f(1)t. Obviously, f(1) is an arbitrary constant.

If we replace f(1) with ec, then the result is f(t) = ect. Here, c is an arbitrary

real number. According to Guiding Rule 8.1, the function f(t) is strictly decreasing.

Therefore, we change the result f(t) = ect to be f(t) = e−ct, and restrict c to be a

positive number. In addition, the result can also be proved through (1) operating a

logarithm on f(t + τ) = f(t)f(τ) to be ln f(t + τ) = ln f(t) + ln f(τ), and then (2)

using Cauchy’s functional equation. �

Here, parameter c’s insight is its functionality for tuning time scales (e.g., 1 hour

is equivalent to 60 minutes): time scales should not change the mapping result.

Generally speaking, the value of c is determined empirically. The value c can be

set in the range of [1
τ2
, 1
τ1
]. In addition, the corresponding mapping process of the

cascade (only the first four time slots) in Fig. 8.1(a) is shown in Fig. 8.4.

169

0

2

4

6

8

σ1 σ2 σ3 σ4 σ5 σ6

Singular values

M
e
a
n
 v

a
lu

e
s

Statistics

(a) Statistics on σi.

0%

5%

10%

15%

20%

25%

(1
.0
0,
1.
15
]

(1
.1
5,
1.
30
]

(1
.3
0,
1.
45
]

(1
.4
5,
1.
60
]

(1
.6
0,
1.
75
]

(1
.7
5,
1.
90
]

(1
.9
0,
∞

)

σ1/σ2

T
h
e
 p

e
rc

e
n
ta

g
e

Photo cascades

(b) σ1/σ2 of photo cascades.

Figure 8.5: Statistics on singular values of photo cascades.

8.4.2 Mapping Insights

As previously mentioned, we consider cascades spatiotemporally, which includes

a large amount of data that crosses both space and time. Meanwhile, the

persuasiveness and receptiveness is used to capture characteristics of followees and

followers: the persuasiveness includes followees’ capacities to propagate information;

the receptiveness includes followers’ willingness to accept information. Nodes’

persuasiveness and receptiveness are considered to be spatiotemporally-sensitive: if

a node with a high out-going degree is spatially far away from the information

source, it may not be propagated, and thus it cannot positively propagate the

information further. A temporal remote node also has low persuasiveness, since its

followers may have been propagated by other nodes. The same rule works for the

receptiveness: propagations that fail to reach the sources’ neighbors may lead to a

premature abortion of further information propagations; a successful propagation of

a remote node does not change the overall cascade trend. Therefore, in terms of the

distribution, nodes’ persuasiveness and receptiveness should decay with respect to

their spatiotemporal distances to the information source, as previously mentioned in

Fig. 8.2. That is the reason why we highlight earlier propagations in the Guiding Rule

1. Moreover, the decay pattern of nodes’ persuasiveness and receptiveness reveals

170

U =













0.00 0.00 1.00 0.00 0.00
0.83 −0.56 0.00 0.00 0.00
0.56 0.83 0.00 0.00 0.00
0.00 0.00 0.00 −1.00 0.00
0.00 0.00 0.00 0.00 −1.00













Σ =













0.98 0.00 0.00 0.00 0.00
0.00 0.55 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00













V =













0.26 0.68 0.69 0.00 0.00
0.00 0.00 0.00 −1.00 0.00
0.57 −0.68 0.46 0.00 0.00
0.78 0.27 −0.56 0.00 0.00
0.00 0.00 0.00 0.00 −1.00













Figure 8.6: The corresponding SVD result (U , Σ, and V) for the mapped matrix M
in Fig. 8.4(b).

boundaries for further propagations: the cascade terminates when nodes have low

persuasiveness and receptiveness.

Let us go back to the element mij inM . Obviously, mij is a joint result of followee

i’s persuasiveness and follower j’s receptiveness. Note that a larger value of mij

means an earlier propagation, i.e., a larger persuasiveness of followee i, and a larger

receptiveness of follower j. Meanwhile, matrices T and M have included complete

time information and partial space information of the cascade: nodes that are closer

within the social topology are more likely to be propagated at closer times. Now,

the parameter c in the mapping function f(t) = e−ct has another insight meaning: it

balances the weights of space and time information. If c→ 0, then M is composed of

zeros and ones: we only focus on the space information, regardless of time sequences.

On the other hand, if c is large, the time information is highlighted. Therefore, M

can be viewed as a tuned spatiotemporal information matrix. In the next section, we

show the decomposition process through SVD operations, where we extract nodes’

persuasiveness and receptiveness from the tuned spatiotemporal information matrix.

171

M =













0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.67 0.55 0.00
0.45 0.00 0.00 0.55 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00













M1 = σ1u1v
∗
1 = 0.98 ·













0.00
0.83
0.56
0.00
0.00













·













0.26
0.00
0.57
0.78
0.00













∗

=













0.00 0.00 0.00 0.00 0.00
0.21 0.00 0.46 0.63 0.00
0.14 0.00 0.31 0.42 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00













Figure 8.7: The rank-1 approximation of the matrix M . There is a bounded
information loss from M to M1.

8.5 Spatiotemporal Decomposition

The second stage of our prediction scheme is shown in this section, where we

introduce the SVD operation on the weighted matrix M to extract information on

nodes’ persuasiveness and receptiveness.

8.5.1 SVD Preliminaries and Dataset Verification

In the SVD, M is factorized to a product of three matrices: U , Σ, and V

(M = UΣV ∗, where ∗ is a transpose). The matrix Σ is a diagonal matrix with

nonnegative real numbers on the diagonal (generally in descending order), while the

diagonal entries σi of Σ are known as the singular values of M . The number of

singular values equal the matrix rank of M . We focus on the SVD’s functionality of

low-rank approximations, i.e., the matrix M is approximated by vectors. Let ui and

vi denote the ith columns of matrices U and V , respectively. Assuming r is the rank

of M , we select the largest k (k < r) singular values to approximate M :

Mk =
k

∑

i=1

σiuiv
∗
i (8.5-1)

172

where Mk is the approximated M through the k largest singular values. Moreover,

the difference between matrices Mk and M is bounded by ||Mk−M ||2 = σk+1, where

|| · ||2 denotes the 2nd order Frobenius norm. In addition, M can also be accurately

represented as
∑r

i=1 σiuiv
∗
i .

We then conduct experiments on the Flickr dataset, as to verify the effectiveness of

this decomposition. The corresponding time matrices of popular photos (i.e., photos

that are shared more than 100 times) are mapped by f(t) = e−ct with the parameter

c as the reciprocal of the cascade duration, i.e., c = 1/(τ2 − τ0). Singular values are

averaged with respect to different photos, and the result is shown in Fig. 8.5(a).

It can be seen that the difference of σ1 and σ2 is much larger than the differences

of other consecutive singular values (such as σ2 and σ3). The distribution of σ1/σ2

is shown in Fig. 8.5(b). It means that the main pattern of M is highlighted (note

that ||Mk − M ||2 = σk+1), i.e., the cascade information is greatly concentrated in

σ1 and its corresponding vectors (u1 and v1). In addition, for further analysis, the

corresponding SVD for the mapped matrix M in Fig. 8.4(b) is shown in Fig. 8.6.

The low rank (k = 1) approximation of M is shown in Fig. 8.7.

8.5.2 Information Decomposition

As discussed in Section 8.3, the matrices T and M are sparse matrices, which in

general have low ranks. The relationship between matrix sparsity and rank has been

studied in [154]. Moreover, experiments in Fig. 8.5 show that the largest singular

value is a concentration of the cascade information. Therefore, we use σ1u1v
∗
1 (i.e.,

M1) as the compressed cascade information for further processing: predictions are

based on u1 and v1. Note that this information compression has limited information

loss. We can also use more singular values (rather than only using σ1), which can

bring more accurate predictions at the cost of higher time complexities (a tradeoff

173

between accuracy and complexity). Let û1 and v̂1 denote the predicted vectors in the

future cascade, then M can be reconstructed through M̂ = σ1û1v̂
∗
1. The predicted

number of propagated users can be obtained by mapping M back to the predicted

time matrix (i.e., reconstruction).

The decomposition can reduce the difficulties of cascade predictions, since it

reduces dimensions for describing cascades. Spatiotemporal cascades are compressed.

Instead of matrix operations, vector operations are used to reduce prediction time

complexities. According to [155], a centralized SVD of an r-rank n× n matrix takes

a time complexity of O(rn2).

Moreover, vectors u1 and v1 have their insights: u1 shows nodes’ persuasiveness;

v1 represents nodes’ receptiveness. As previously mentioned, mij is a joint result of

followee i’s persuasiveness and follower j’s receptiveness. Meanwhile, the element

corresponding to mij in σ1u1v
∗
1 (i.e., M1) is the product of the ith element in u1

(persuasiveness) and the jth element in v1 (receptiveness). Note that a larger value

in u1 and v1 means a larger persuasiveness and receptiveness, respectively, since they

would lead to an earlier propagation, i.e., a larger corresponding element in M . The

example in Fig. 8.7 shows the SVD for the cascade in Figs. 8.1 and 8.4, while u1 and

v1 have been shown in Fig. 8.1(d). Note that only the information on the first four

time slots is available now, and we want to predict the cascade of the following time

slots. As mentioned in Fig. 8.1(d), u1 shows that nodes 2 and 3 are key spreaders,

which conforms to Fig. 8.1(a). v1 shows that nodes 3 and 4 are more important

receivers than node 1, which is also consistent with Fig. 8.1(a).

8.5.3 SVD Insights and Personalities

As previously mentioned, the cascade information is greatly concentrated with

respect to the largest singular value, while σ1 is almost twice that of σ2 in Fig. 8.5. A

174

reasonable explanation for this phenomenon is that each singular value represents a

cascade mode: σ1 shows a general global mode, e.g., almost all users enjoy beautiful

high-definition photos rather than normal low-definition ones; σ2 shows a popular

mode, e.g., lots of users share beautiful high-definition photos on landscapes; σ3

shows a comparatively local mode, e.g., a small group of users like landscape photos

on mountains; so on so forth. SVD extracts global and common photo cascade modes

into larger singular values, while it leaves local and personal photo cascade modes as

smaller singular values.

Therefore, our scheme can utilize the information on user personalities to pursue

better performances. Let σ̄, ū, and v̄ respectively denote the weight, the additional

persuasiveness, and the additional receptiveness brought by user personalities. σ̄, ū,

and v̄ of each user can be concluded from the gender, the age, the total number of

shared photos, the total online time, and so on. Then, we can revise our prediction

through M̂ = σ1û1v̂
∗
1 + σ̄ūv̄∗. Therefore, our model can easily be extended by

considering user personalities.

8.5.4 Parallel SVD

Another advantage of our scheme is its parallelism. First, mapping matrices T

to M can be done in parallel, since mapping elements in T are independent of each

other. Meanwhile, SVD also has parallel methods [156, 157]. Given p processors,

SVD of a n× n matrix can be done [156] within a time complexity of O(n3/p). The

centralized method takes O(rn2), where r is the rank of the matrix. Note that both

the centralized and distributed methods target the complete SVD, while we only

need the largest singular value σ1 and its corresponding vectors. Therefore, there

exist possibilities to further reduce time complexities. Since SVD is a standard tool,

we do not focus on further improving its efficiency.

175

0.56/0.57 0.00/*.**

0.83/0.00

2

3

1

4

5

*.**/0.78

*.**/0.26

(a) Persuasiveness and receptiveness.

û1 =













0.37
0.83
0.56
0.83
0.00













v̂1 =













0.26
0.00
0.57
0.78
0.78













(b) Predicting u1 and v1 in (a).

Figure 8.8: The corresponding nodes’ characteristics of Fig. 8.7. In (a), dashed
directional edges show the cascade process, while numbers within nodes
are their IDs. Labels on top of the nodes are persuasiveness/receptiveness,
which are extracted from u1 and v1 in Fig. 8.7. The symbol *.** means
needs to be predicted, the results of which are shown in bold font in (b).

8.6 Information Cascade Prediction

The third stage of our prediction scheme is described in this section, where we

conduct predictions through extracting patterns of u1 and v1. Then, we construct the

spatiotemporal cascade information as the final prediction.

8.6.1 Non-historical Prediction

In this subsection, we predict û1 and v̂1 based on the current cascade (called

non-historical prediction), i.e., the historical data of former cascades is not utilized.

The persuasiveness and receptiveness of unpropagated nodes are predicted based

on their shortest path to the information source. Here, nodes’ persuasiveness and

receptiveness are considered as node weights in the shortest path algorithm, while

all edge weights are 0. Nodes with known persuasiveness (non-zero elements in u1)

use their persuasiveness as node weights, while nodes with unknown persuasiveness

(i.e., need to be predicted) use constant units as their weights. The receptiveness

predictions are similar. The reason for the shortest path is that it has a relatively-

high probability (among all paths) of gradually propagating the information from the

source to the node. Note that, an information source’s receptiveness is 0 (it only

176

a shorte
st path

The most sim
ila

r

pairs
of nodes on

Source’s receptiveness is 0

(not used for predictions).

End user’s persuasiveness is 0

(not need to be predicted).

No longer a candidate for

future cascades

Propagated nodes

are marked dark

Figure 8.9: Three rules for non-historical predictions.

spreads the information out), and the persuasiveness of the end user of a propagation

is also 0 (it only receives the information without further propagations).

A simple but effective method is to use the decay of propagated nodes’

persuasiveness and receptiveness for predicting that of unpropagated nodes, and an

example is shown in Fig. 8.8, which corresponds to the example in Fig. 8.7. In Fig.

8.8(a), the labels on top of nodes represent their persuasiveness and receptiveness

(extracted from u1 and v1), where the symbol *.** means needs to be predicted. Let

us start with the persuasiveness of node 4. Its shortest path to the information source

is from node 4 to node 2 directly; therefore, 0.83 is predicted as the persuasiveness

of node 4, since no decay pattern exists on this path. Then, the persuasiveness of

node 1 can be calculated through the path of nodes 2, 3, and 1. The persuasiveness

decay from node 2 to node 3 is 0.56
0.83

, therefore, node 1’s persuasiveness is predicted as

0.56
0.83

× 0.56 = 0.37. Note that, node 5’s persuasiveness is predicted to be 0, since it is

the end of a propagation path. As for node 5’s receptiveness, it is predicted through

the path of nodes 2, 4, and 5. Since the source only spreads information, node 5’s

receptiveness is predicted to be the same as node 4’s receptiveness. The prediction

results of û1 and v̂1 are shown in Fig. 8.8(b). Then, û1 and v̂1 are normalized

to be [0.27,0.61,0.41,0.61,0.00]∗ and [0.20,0.00,0.45,0.62,0.62]∗, respectively. Then, we

177

2

2

2

2

0

1

4

5

6

7

1

2

1

3

Figure 8.10: A case study (the same notation with Fig. 8.1).

1

3

5

4

2

Historical

cascade 1

Historical

cascade 2

Current cascade’s

shortest path

Figure 8.11: Historical predictions.

reconstruct M̂ = σ1û1v̂
∗
1. The predicted time matrix, T̂ , can then be obtained through

mapping M̂ back. Elements t̂15 = 5 and t̂45 = 9 in T̂ show two predicted propagation

times of node 5. We use the minimum values of 5 and 9 as the final prediction (i.e.,

node 5 will be propagated at time 5), which is the same as the actual cascade in Fig.

8.1(a).

In the above example, we have not considered the case where the length of the

shortest path is longer than three. Instead of using the averages of former decays, we

use the decay of the most similar pair of former nodes for predictions in a shortest

path with larger length. The similarity is defined as the summation of squared social

topological degree differences of followees and followers. Here, the degree can be

either in-degree, out-degree, or both. If the path length is too short to extract the

decay information, the followee’s persuasiveness and receptiveness are used directly,

as shown for predicting node 4’s persuasiveness in Fig. 8.8. The pairwise similarities

enable different followers of the same followee to have different predictions. To further

178

reveal directions of cascades, unpropagated nodes within a certain number of hops

to the information source are kicked out. In other words, unpropagated nodes near

to the source are not receptive, and thus they are no longer candidates for future

cascades. This hop-count threshold is empirically determined based on the number

of nodes currently propagated. Rules for non-historical predictions are shown in

Fig. 8.9 (currently propagated nodes are marked dark while the remaining nodes are

unpropagated at present) and are summarized as follows:

• The information source’s receptiveness is 0, and is not used for receptiveness

predictions along the shortest path. Meanwhile, the persuasiveness of the user

at the end of the shortest path is fixed to be 0.

• Predictions are based on shortest paths. Along a shortest path, the

persuasiveness and receptiveness decay between a pair of nodes are predicted

as the corresponding decay between the most similar (in terms of degree

differences) pair of currently propagated nodes. Nodes’ persuasiveness and

receptiveness can be derived from decays.

• Unpropagated nodes within a certain number of hops to the information source

are kicked out for being propagated in the future. They are not receptive, and

thus, are no longer candidates for future cascades, i.e., they are influenced by

the cascade without further propagations (influenced but not propagated).

A learning process on the pattern of nodes’ persuasiveness and receptiveness

should bring a better prediction. However, it also has a higher time complexity

as a tradeoff. Since the current method has obtained a good result, we do not

further explore learning-based methods. To better understand decay patterns, a

case study on “branching” cascades is conducted, as shown in Fig. 8.10. This

type of cascade spreads without resistances, where the number of propagated nodes

increases exponentially. Assuming the usage of c = 1
2
for the mapping process, the

179

decomposition result for the cascade in Fig. 8.10 is u1 = [1, 0, 0, 0, 0, 0, 0]∗ and v1 =

[0, 0.71, 0.71, 0, 0, 0, 0]∗. In other words, the cascade is compressed into relationships

among nodes 1, 2, and 3, since the later cascade repeats their propagation mode.

Therefore, the pattern of this “branching” cascade can be captured.

8.6.2 Historical Prediction

In the previous subsection, we predicted a cascade without historical information.

Predictions are conducted based on former cascades, i.e., the decay patterns of

nodes’ persuasiveness and receptiveness in former cascades are used (called historical

prediction). The prerequisite of historical predictions is that former cascades are

homogenous with the current one: cascades of popular photos are different than

unpopular ones; therefore, we should not use the historical data on cascades of popular

photos to predict cascades of unpopular ones.

Shortest paths of the current cascade are cooperatively used with the historical

data. Instead of calculating decays of nodes’ persuasiveness and receptiveness based

on currently propagated nodes, we use decays of former cascades as predictions. An

example is shown in Fig. 8.11: the black dashed directional path indicates a shortest

path of the current cascade. The historical decay of cascade 2 is used to predict

the decay from node 1 to 3, while cascade 1 is not used, since it does not have

an intersection with the decay from nodes 1 to 3. In the case of multiple available

historical cascades, the decay of the current cascade is predicted to be their average

decay.

8.6.3 Algorithm Complexities

As previously mentioned, S and T include all users in the network. However, this

is unnecessary, since most cascades only influence a very small portion of users in the

180

network. Therefore, for practical usage, we can have a subgraph just large enough

for predictions.

We have used shortest paths with node weights in predictions; however, this can

be solved by slightly modifying Dijkstra’s algorithm. Therefore, it has the same

time complexity with the normal Dijkstra’s algorithm. Let Np and N (Np ≪ N),

respectively, denote the number of currently propagated nodes and total nodes (Ep

and E to represent the number of corresponding edges). Then, the centralized

Dijkstra’s algorithm takes O(E + N logN) through a Fibonacci heap. Calculating

decays (and nodes’ persuasiveness or receptiveness) can follow the same order of

the shortest path. Since the path length is bounded by the network diameter

D, the decay calculation takes at most O((E + N logN)D). The mapping and

its reversion (mapping M̂ back to T̂) takes O(N2). The centralized SVD takes

O(rN2
p), where r is the rank of M . Here, we do not need O(rN2

p) for the SVD,

since the decomposition results for currently unpropagated nodes are useless; the

persuasiveness and receptiveness corresponding to unpropagated nodes are 0, and we

only need to decompose the cascade information among currently propagated nodes.

Therefore, the total time complexity is O(N2 + DN logN + rN2
p) in a centralized

calculation method for a sparse graph.

According to [158], Dijkstra’s algorithm can be done in parallel. The idea is

to divide the graph into pieces for each processor. Given p processors, the time

complexity can be brought down to O(N3/p) (a more accurate description is given

in [158]). The SVD takes O(N3
p/p). Mapping and its reversion can be solved in

parallel, since each element’s map is independent from the others. So the total time

complexity of our scheme is O((N3 +N3
p)/p) in parallel.

If we conduct predictions on S and T directly, then the time complexity will

not be acceptable. For each unpropagated node, we need to scan and process

181

S and T , which takes at least O(N2). Therefore, at least O(N3) is needed for

a centralized method. Even if direct predictions can be implemented in parallel,

they should have a higher time complexity than O(N3/p) due to the overhead.

Meanwhile, our decomposition method has compressed all cascade information into

nodes’ persuasiveness and receptiveness with limited information loss, resulting in a

reduced time complexity.

8.7 Evaluation

This section conducts evaluations. After presenting the basic settings, we show

baseline algorithms and evaluation metrics. Finally, the evaluation results are shown

from different perspectives to provide insightful conclusions.

8.7.1 System Settings

Our evaluations focus on cascades of popular photos that are marked “favorite”

more than 100 times, since photos of different levels of popularity stand for cascades

of different types. However, each photo may be involved in multiple cascades:

unconnected users may share the same photo coincidentally, leading to different

cascades in the network. Therefore, for each popular photo, we select its earliest

cascade (in the sense of the earliest appearance time of the information source). The

earliest cascade is generally the largest one.

For a photo cascade predition, it is almost impossible to take all unpropagated

nodes into consideration, since we have 2,302,925 users in total. Meanwhile, only 25

photos are propagated over more than 1,000 users. Therefore, a subgraph is expected

to improve the prediction efficiency. This subgraph is constructed as a combination

of (1) all propagated users of the earliest cascade of the photo, (2) three random

182

out-going neighbors for each of these propagated users, and (3) all social topology

relationships between the above users.

The input parameters of our prediction scheme include the complete cascade

information (from the time τ0 to τ1), while we will predict the size of the cascade

at its finishing time τ2. In the following experiments, we will tune the ratio of τ1/τ2

to observe the performance of our scheme. This value stands for the amount of prior

knowledge, i.e., a larger τ1/τ2 should bring a better prediction. In addition, the

parameter c is set to be 1/τ1, while the hot count threshold is empirically set to be 3.

As for user personalities, we use normalized out-degree and in-degree to respectively

describe ū and v̄, while we set σ̄ to be 0.1× σ1.

8.7.2 Baseline Algorithms and Evaluation Metrics

Three baseline algorithms (the first two prediction schemes are non-historical

schemes, while the last scheme is a historical scheme) are used for comparison as

follows. (1) Largest in-degree: among all unpropagated nodes, the node with the

largest in-degree (in terms of the social topology) is considered to be the next

propagated node. The propagation time delay is considered as the largest propagation

time delay of the current cascade. This scheme is based on the observation that a user

with a larger in-degree is more likely to accept new information. (2) Most influenced:

among all unpropagated nodes, the node that has the largest number of incoming

propagated neighbors is considered to be the next propagated node. The propagation

time delay is also the largest propagation time delay of the current cascade. This

scheme is based on the observation that a user with more in-neighbors in the cascade

is more likely to be influenced. (3) Most active: among all unpropagated nodes that

are outgoing neighbors of propagated nodes, the node that is the most active, in

terms of having been propagated by former cascades for the most number of times, is

183

10
−3

10
−2

10
−1

10
0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ1/τ2

D
e
te

c
ti
o
n
 R

a
te

Non−historical

Largest in−degree

Most influenced

User personality

10
−3

10
−2

10
−1

10
0

0.1

0.2

0.3

0.4

τ1/τ2

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

Non−historical

Largest in−degree

Most influenced

User personality

10
−3

10
−2

10
−1

10
0

0.4

0.6

0.8

1

τ1/τ2

A
c
c
u
ra

c
y

Non−historical

Largest in−degree

Most influenced

User personality

10
−3

10
−2

10
−1

10
0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ1/τ2

D
e
te

c
ti
o
n
 R

a
te

Non−historical

Historical

Most active

10
−3

10
−2

10
−1

10
0

0.1

0.2

0.3

0.4

τ1/τ2

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

Non−historical

Historical

Most active

10
−3

10
−2

10
−1

10
0

0.4

0.5

0.6

0.7

0.8

0.9

1

τ1/τ2

A
c
c
u
ra

c
y

Non−historical

Historical

Most active

Figure 8.12: The evaluation results. The top row shows non-historical prediction
schemes (The algorithm “User personality” is the proposed non-
historical scheme with additional considerations on user personalities),
while the bottom row consists of historical prediction schemes. Note
that the history information has included the information on user
personalities. Each of the three columns indicates one of the three
metrics (detection rate, false positive rate, accuracy).

considered to be the next propagated node. The propagation time delay is calculated

as the historical delay.

As for the evaluation metrics, the standard Receiver Operating Characteristic

(ROC) metrics [159] are employed, including the detection rate (the higher the better),

184

the false positive rate (the lower the better), and the accuracy (the higher the better).

More details can be found in [159].

8.7.3 Evaluation Result

The evaluation result is shown in Fig. 8.12, in terms of non-historical (top

row) and historical (bottom row) prediction schemes. Each column corresponds

to one of the three ROC metrics. For the non-historical schemes, the proposed

algorithm outperforms the two naive baselines, among all three metrics. This is

beacuase our algorithm considers spatiotemporal information, while the two naive

algorithms mainly focus on the space information. Overall, our algorithms get about

20% higher accuracy than the two baselines. Another observation is that all these

schemes have diminishing return effects: the increasing rate of the accuracy decreases

with respect to τ1/τ2. This is because the early propagations are more important

and more deterministic for the future trend of the cascade, and thus the amount

of information contributed by a early propagation is larger than that by a late

propagation. The initial information helps predict the cascade framework, while the

following information just fulfills predicting details of the cascade. The prediction

gain is marginal when τ1/τ2 ≥ 0.1.

As for the historical predictions (bottom line), it can be seen that they

perform better than non-historical schemes, since additional information is utilized.

Meanwhile, the baseline algorithm (i.e., most active) does not have a very good

performance, since it relies on the user histories too much, without considerations

of the spatiotemporal propagations of the current cascade. Our algorithm extracts

users’ persuasiveness and receptiveness from former cascades, and then combines that

information with the spatiotemporal information of the current cascade to obtain a

better result. It can been seen that the historical prediction has an accuracy of about

185

0.9 when τ1/τ2 = 0.1. The corresponding detection rate and false positive rate is

more than 0.8, and less than 0.1, respectively.

8.8 Summary

Information cascade predictions are important, due to their functionalities of

detecting bad cascades. Given the current cascade and the social topology, we

want to predict the cascade size at a future time slot. A cascade can be described

by space and time dimensions. The SVD operation is used to decompose the

spatiotemporal cascade information into the users’ persuasiveness and receptiveness.

Predictions are conducted based on the decomposed information, as to have a low

time complexity. User personalities can also be incorporated into our scheme.

Furthermore, our prediction scheme can be implemented in parallel. Finally, real-

data driven evaluations verify the competitive performance of the proposed scheme.

186

CHAPTER 9

CONCLUSION

9.1 Summary of Results

The components of complex network systems satisfy a scale-free architecture,

in which the node degree distribution follows power-law. While social networks

are generally scale-free, it is natural to utilize their structural properties in some

social network applications. As a result, this dissertation explores social network

architectures, and in turn, leverages these architectures to facilitate some influence

and information propagation applications. Social network architectures are analyzed

in two aspects. The first aspect focuses on the node degree snowballing effects,

based on an age-sensitive preferential attachment model. The second aspect studies

NSFAs for social networks. ‘Nested’ indicates that the scale-free architecture is

preserved when low-degree nodes and their associated connections are removed.

NSFAs indicate that social networks have an onion architecture. Based on the social

network structure, this dissertation explores two influence propagation applications

for the SIMP. The first application is a friend recommendation strategy with the

perspective of social influence maximization. The second application focuses on the

SIMP with the crowd influence, since the crowd influence surpasses the combination

of the independent influence from each person in the crowd. Beside the influence

propagation applications, this dissertation further explores three different information

propagation applications (epidemic propagation, trust propagation, and cascade

propagation). The first application is a social network quarantine strategy, which can

187

eliminate epidemic outbreaks with minimal isolation costs. The second application

is a rating prediction application, called DynFluid, based on the fluid dynamics.

The third application is a cascade prediction application: given the social current

cascade and social topology, the number of propagated users at a future time slot is

predicted through decomposing the spatiotemporal cascade information. Real data-

driven experiments demonstrate the efficiency and effectiveness of our applications.

9.2 Future Research

Our future research directions can be rich. One of the most important direction is

to further understand the dynamics of social networks over time. For example, how

does the social network architecture changes over time, especially when people join

and leave? Will the social network properties, such as diameter, clustering coefficient,

and scale-free exponent, change over time? Moveover, different people have different

impacts over time. What happens if a high-degree node leaves the social network?

In contrast, what happens if a low-degree node leaves the social network? The above

questions need to be explored.

Another future research direction focuses on the influence and information

propagation models. For the influence propagation models, this dissertation uses

the independent cascade model, while the linear threshold model is not explored.

Can our results be generalized to both independent cascade and linear threshold

models? One step further, which property of the influence propagation model can

be incorporated into our results? The impact of the crowd influence needs to be

further studied in other influence propagation models, especially for non-submodular

models. For the information propagation models, this dissertation only focuses on

the epidemic propagation, the trust propagation, and the cascade propagation. What

are the other models for the information propagation? Note that the information

188

propagation models heavily depends on the type of the information, i.e., different

types of information can have completely different propagation models.

Finally, our future work can involve more practical implementations, especially

for OSNs such as Facebook and Twitter. More real data can be collected from

the company. Meanwhile, user surveys can be very helpful to understand how the

influence and information propagate among users. User characteristics (e.g., age,

address, education level, interest, marriage status, and so on) can be critical. Given a

specified type of influence or information, which user characteristic is more important

with respect to the propagations? Can we predict the user’s behavior upon receiving

the influence or the information? Practical implementations in the company can help

to figure out the answers.

189

PUBLICATIONS

Conference:

1. H. Zheng and J. Wu, Social Influence Maximization in Hypergraphs: Non-

Submodularity and Approximability, submitted to the IEEE International Conference

on Computer Communications (INFOCOM), 2018.

2. J. Wu, Y. Chen, and H. Zheng, An Approximation for Dependency-Aware

Rule-Caching in Software-Defined Networks, submitted to the IEEE International

Conference on Communications (ICC), 2018.

3. J. Wu, S. Lu, and H. Zheng, On Maximum Elastic Scheduling in Virtual Private

Networks with the Hose Model, submitted to the IEEE International Conference on

Cloud Computing Technology and Science (CloudCom), 2017.

4. Y. Chen, H. Zheng, and J. Wu, Optimizing Software Defined Network Updates

through Sparse Links, in the IEEE International Symposium on Parallel and

Distributed Processing with Applications (ISPA), 2017.

5. H. Zheng and J. Wu, Cooperative Wireless Charging Vehicle Scheduling in Wireless

Sensor Networks, in the IEEE International Conference on Mobile Ad hoc and Sensor

Systems (MASS), 2017.

6. T. Mosharraf, J. Wu, and H. Zheng, Vehicle Routing with Pickup and Delivery:

A Greedy Approach, in the ACM MobiCom Workshop on Challenged Networks

(CHANTS), 2017. Poster paper.

7. H. Zheng and J. Wu, Friend Recommendations in OSNs: Perspective of

Social Influence Maximization, in the International Conference on Computer

Communications and Networks (ICCCN), 2017.

8. W. Chang, H. Zheng, and J. Wu, On the RSU-based Secure Distinguishability

Among Vehicular Flows, in the IEEE/ACM International Symposium on Quality of

190

Service (IWQoS), 2017. Short paper.

9. H. Zheng and J. Wu, Online to Offline Business: Urban Taxi Dispatching with

Passenger-Driver Matching Stability, in the IEEE International Conference on

Distributed Computing Systems (ICDCS), 2017.

10. H. Zheng and J. Wu, Connected Placement of Disaster Shelters in Modern Cities,

in the ACM MobiCom Workshop on Challenged Networks (CHANTS), 2016.

11. H. Zheng and J. Wu, NSFA: Nested Scale-Free Architecture for Scalable

Publish/Subscribe over P2P Networks, in the IEEE International Conference on

Network Protocols (ICNP), 2016.

12. H. Zheng, Z. Wan, and J. Wu, Optimizing MapReduce Framework through Joint

Scheduling of Overlapping Phases, in the International Conference on Computer

Communications and Networks (ICCCN), 2016. Best paper runner-up.

13. H. Zheng, W. Chang, and J. Wu, Coverage and Distinguishability Requirements

for Traffic Flow Monitoring Systems, in the IEEE/ACM International Symposium on

Quality of Service (IWQoS), 2016. Best paper award.

14. H. Zheng and J. Wu, Effective Social Network Quarantine with Minimal Isolation

Costs, in the IEEE International Conference on Communications (ICC), 2016.

15. H. Zheng and J. Wu, DynFluid: Predicting Time-Evolving Rating in

Recommendation Systems via Fluid Dynamics, in the IEEE International Conference

on Trust, Security and Privacy in Computing and Communications (TrustCom), 2015.

16. H. Zheng and J. Wu, Snowballing Effects in Preferential Attachment: The Impact

of The Initial Links, in the International Conference on Computer Communications

and Networks (ICCCN), 2015.

17. Z. Wan, J. Wu, and H. Zheng, Utility-based Uploading Strategy in Cloud

Scenarios, in the International Conference on Computer Communications and

Networks (ICCCN), 2015.

18. H. Zheng and J. Wu, Optimizing Roadside Advertisement Dissemination in

191

Vehicular Cyber-Physical Systems, in the IEEE International Conference on

Distributed Computing Systems (ICDCS), 2015.

19. H. Zheng and J. Wu, Data Collection and Event Detection in the Deep Sea

with Delay Minimization, in the IEEE International Conference on Sensing,

Communications, and Networking (SECON), 2015.

20. J. Wu and H. Zheng, On Efficient Data Collection and Event Detection with Delay

Minimization in Deep Sea, in the ACM MobiCom Workshop on Challenged Networks

(CHANTS), 2014. Short Paper.

21. R. Beigel, J. Wu, andH. Zheng, On Optimal Scheduling of Multiple Mobile Chargers

in Wireless Sensor Networks, in the ACM MobiHoc Workshop on Mobile Sensing,

Computing and Communication (MSCC), 2014. Best paper award.

22. H. Zheng and J. Wu, Spatiotemporal Cascades in Online Social Networks, in the

SIAM International Conference on Data Mining (SDM), 2014. Doctoral Forum.

23. H. Zheng and J. Wu, Fast Information Cascade Prediction Through Spatiotemporal

Decompositions, in the IEEE International Conference on Mobile Ad hoc and Sensor

Systems (MASS), 2014.

24. H. Zheng and J. Wu, Up-and-Down Routing in Mobile Opportunistic Social

Networks with Bloom-Filter-Based Hints, in the IEEE/ACM International

Symposium on Quality of Service (IWQoS), 2014.

25. H. Zheng, Y. Wang, and J. Wu, Optimizing Multi-copy Two-hop Routing in Mobile

Social Networks, in the IEEE International Conference on Sensing, Communication,

and Networking (SECON), 2014.

26. W. Jiang, J. Wu, G. Wang, and H. Zheng, FluidRating: A Time-Evolving Rating

Scheme in Trust-based Recommendation Systems Using Fluid Dynamics, in the IEEE

International Conference on Computer Communications (INFOCOM), 2014.

27. K. Li, H. Zheng, and J. Wu, Migration-based Virtual Machine Placement in Cloud

Systems, in the IEEE International Conference on Cloud Networking (CloudNet),

192

2013.

28. H. Zheng and J. Wu, Spectral Graph Multisection Through Orthogonality, in the

ACM SIGKDD Workshop on Multiple Clusterings, Multi-view Data, and Multi-

source Knowledge-driven Clustering (MultiClust), 2013.

29. H. Zhou, H. Zheng, J. Wu, and J. Chen, Energy-efficient Contact Probing

in Opportunistic Mobile Networks, in the International Conference on Computer

Communications and Networks (ICCCN), 2013.

30. H. Zheng, K. Li, C. Tan, and J. Wu, User-based CPU Verification Scheme for

Public Cloud Computing, in the IEEE International Conference on Cloud Computing

(CLOUD), 2013.

31. S. Hou, X. Zhang, H. Zheng, L. Zhao, and F. Wang, An Effective

Interference Management Framework to Achieve Energy-Efficient Communications

for Heterogeneous Network through Cognitive Sensing, in the International

Conference on Communications and Networking in China (ChinaCom), 2012.

32. H. Zheng, An Improved Niche Genetic Algorithm Based On Simulated Annealing:

SANGA, in the International Conference on Computational Problem-Solving (ICCP),

2011.

Journal:

33. H. Zheng, Y. Chen, and J. Wu, Joint Scheduling of Overlapping MapReduce Phases:

Pair Jobs for Optimization, submitted to IEEE Transactions on Services Computing,

2017.

34. H. Zheng and J. Wu, Optimizing Colors in Online Social Networks through Partial

Multi-interval Graphs, submitted to Science China Information Sciences, 2017.

35. H. Zheng, Y. Wang, and J. Wu, Optimizing Opportunistic Multi-copy Two-hop

Routing in Mobile Social Networks, submitted to Journal of Parallel and Distributed

Computing, 2017.

36. H. Zheng, W. Chang, and J. Wu, Traffic Flow Monitoring Systems in Smart Cities:

193

Coverage and Distinguishability Among Vehicles, submitted to Journal of Parallel

and Distributed Computing, 2017.

37. H. Zheng and J. Wu, Smart City Advertisement Dissemination using Vehicular

Cyber-Physical Systems, submitted to IEEE Transactions on Vehicular Technology,

2017.

38. H. Zheng, N. Wang, and J. Wu, Minimizing Deep Sea Data Collection Delay with

Autonomous Underwater Vehicles, Journal of Parallel and Distributed Computing,

2017.

39. C. Song, J. Wu, M. Liu, and H. Zheng, Efficient Routing through Discretization

of Overlapped Road Segments in VANETs, Journal of Parallel and Distributed

Computing, 2017.

40. H. Zheng and J. Wu, Up-and-Down Routing through Nested Core-periphery

Hierarchy in Mobile Opportunistic Social Networks, IEEE Transactions on Vehicular

Technology, 2017.

41. H. Yao, H. Zhang, C. Zhang, D. Zeng, J. Wu, and H. Zheng, Data or Index: A

Trade-off in Mobile Delay Tolerant Networks, International Journal of Computational

Science and Engineering, 2017.

42. H. Zheng and J. Wu, Which, When, and How: Human-Machine Cooperations in

Hierarchical Clusterings, MDPI Algorithms, 2016.

43. G. Wang, W. Jiang, J. Wu, F. Li, and H. Zheng, Trust Evaluation in Online Social

Networks using Generalized Network Flow, IEEE Transactions on Computers, 2016.

44. W. Jiang, J. Wu, G. Wang, and H. Zheng, Forming Opinions via Trusted Friends:

Time-evolving Rating Prediction Using Fluid Dynamics, IEEE Transactions on

Computers, 2016.

45. H. Zheng and J. Wu, Effective Network Quarantine with Minimal Restrictions on

Communication Activities, IEEE Transactions on Network Science and Engineering,

2016.

194

46. H. Zhou, J. Chen, H. Zheng, and J. Wu, Energy Efficiency and Contact

Opportunities Trade-off in Opportunistic Mobile Networks, IEEE Transactions on

Vehicular Technology, 2016.

47. W. Jiang, J. Wu, G. Wang, and H. Zheng, Blood Typing for Families: A Novel

Hybrid Human-Computer Application, International Journal of Parallel, Emergent

and Distributed Systems, 2015.

48. H. Zheng, K. Li, A. Blaisse, C. Tan, and J. Wu, Cloud CPU Verification Scheme

for Individual End Users, International Journal of Cloud Computing and Services

Science, 2014.

49. K. Li, H. Zheng, J. Wu, and X. Du, Virtual Machine Placement in Cloud

Systems through Migration Process, International Journal of Parallel, Emergent and

Distributed Systems, 2014.

50. J. Li and H. Zheng, Determinate Joint Remote Preparation of An Arbitrary W-class

Quantum State, Chinese Physics C, 2012.

51. H. Zheng, Coverage Optimization Methods in Wireless Homo-Sensor Network Based

on Guided Swarms, Applied Mechanics and Materials, 2011.

Book Chapter:

52. W. Chang, H. Zheng, J. Wu, C. Tan, and H. Ling, Environmental-Assisted Vehicular

Data in Smart Cities, Smart Cities: Foundations, Principles, and Applications, 2017.

195

BIBLIOGRAPHY

196

BIBLIOGRAPHY

[1] H. Jeong, Z. Neda, and A.-L. Barabási, “Measuring preferential attachment in

evolving networks,” Europhysics Letters, vol. 61, no. 4, pp. 567–572, 2007.

[2] A. Mahanti, N. Carlsson, M. Arlitt, and C. Williamson, “A tale of the tails: Power-

laws in internet measurements,” IEEE Network, vol. 27, no. 1, pp. 59–64, 2013.

[3] H.-J. Hung et al., “When social influence meets item inference,” in ACM KDD, 2016,

pp. 1–12.

[4] E. Bulut and B. K. Szymanski, “Constructing limited scale-free topologiesover peer-

to-peer networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 25,

no. 4, pp. 919–928, 2014.

[5] J. Tan, B. Swapna, and N. B. Shroff, “Retransmission delays with bounded packets:

Power-law body and exponential tail,” IEEE/ACM Transactions on Networking,

vol. 22, no. 1, pp. 27–38, 2014.

[6] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the gnutella network: Properties

of large-scale peer-to-peer systems and implications for system design,” IEEE Internet

Computing, 2002.

[7] M. E. Newman, “Clustering and preferential attachment in growing networks,”

Physical Review E, vol. 64, no. 2, p. 25102, 2001.

[8] https://www.facebook.com/advertising.

[9] S. N. Dorogovtsev and J. F. Mendes, “Scaling properties of scale-free evolving

networks: Continuous approach,” Physical Review E, vol. 63, no. 5, p. 56125, 2001.

[10] http://tuvalu.santafe.edu/%7Eaaronc/powerlaws/.

197

[11] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science,

vol. 286, no. 5439, pp. 509–512, 1999.

[12] D. Wang, C. Song, and A.-L. Barabási, “Quantifying long-term scientific impact,”

Science, vol. 342, pp. 127–132, 2013.

[13] X. Zhao, A. Sala, C. Wilson, X. Wang, S. Gaito, H. Zheng, and B. Y. Zhao, “Multi-

scale dynamics in a massive online social network,” in ACM IMC, 2012, pp. 171–184.

[14] Y. Wu, T. Z. Fu, and D. M. Chiu, “Generalized preferential attachment considering

aging,” Journal of Informetrics, vol. 8, no. 3, pp. 650–658, 2014.

[15] M. Wang, G. Yu, and D. Yu, “Effect of the age of papers on the preferential attachment

in citation networks,” Physica A, vol. 388, no. 19, pp. 4273–4276, 2009.

[16] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube, you tube,

everybody tubes: analyzing the world’s largest user generated content video system,”

in ACM IMC, 2007, pp. 1–14.

[17] J. Liu, Y. Dang, Z. Wang, and T. Zhou, “Relationship between the in-degree and

out-degree of WWW,” Physica A, vol. 371, no. 2, pp. 861–869, 2006.

[18] M. Zanin, P. Cano, O. Celma, and J. M. Buldu, “Preferential attachment, aging

and weights in recommendation systems,” International Journal of Bifurcation and

Chaos, vol. 19, no. 02, pp. 755–763, 2009.

[19] A. M. Petersen, W.-S. Jung, J.-S. Yang, and H. E. Stanley, “Quantitative and

empirical demonstration of the matthew effect in a study of career longevity,”

Proceedings of the National Academy of Sciences, vol. 108, pp. 18–23, 2011.

[20] C. Watts and N. Gilbert, “Does cumulative advantage affect collective learning in

science? an agent-based simulation,” Scientometrics, vol. 89, no. 1, pp. 437–463,

2011.

[21] R. Kumar, Y. Lifshits, and A. Tomkins, “Evolution of two-sided markets,” in ACM

WSDM, 2010, pp. 311–320.

198

[22] D. Braha, B. Stacey, and Y. Bar-Yam, “Corporate competition: A self-organized

network,” Social Networks, vol. 33, no. 3, pp. 219–230, 2011.

[23] M. Kas, K. M. Carley, and L. R. Carley, “Trends in science networks: understanding

structures and statistics of scientific networks,” Social Network Analysis and Mining,

vol. 2, no. 2, pp. 169–187, 2012.

[24] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densification laws,

shrinking diameters and possible explanations,” in ACM SIGKDD, 2005, pp. 177–187.

[25] M. Cha, A. Mislove, and K. P. Gummadi, “A measurement-driven analysis of

information propagation in the Flickr social network,” in ACM WWW, 2009, pp.

721–730.

[26] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.

Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “PNUTS: Yahoo!’s hosted data serving

platform,” VLDB Endowment, vol. 1, no. 2, pp. 1277–1288, 2008.

[27] C. Chen, R. Vitenberg, and H.-A. Jacobsen, “A generalized algorithm for

publish/subscribe overlay design and its fast implementation,” in DISC, 2012, pp.

76–90.

[28] V. Muthusamy and H.-A. Jacobsen, “Infrastructure-free content-based pub-

lish/subscribe,” IEEE/ACM Transactions on Networking, vol. 22, no. 5, pp. 1516–

1530, 2014.

[29] M. A. Tariq, B. Koldehofe, and K. Rothermel, “Securing broker-less publish/subscribe

systems using identity-based encryption,” IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 2, pp. 518–528, 2014.

[30] S. Voulgaris, E. Rivière, A.-M. Kermarrec, and M. Van Steen, “Sub-2-Sub:

Self-organizing content-based publish and subscribe for dynamic and large scale

collaborative networks,” in ACM IPTPS, 2006, pp. 16–35.

199

[31] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation of a wide-

area event notification service,” ACM Transactions on Computer Systems, vol. 19,

no. 3, pp. 332–383, 2001.

[32] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann, “A peer-to-peer

approach to content-based publish/subscribe,” in ACM DEBS, 2003, pp. 1–8.

[33] I. Aekaterinidis and P. Triantafillou, “PastryStrings: A comprehensive content-based

publish/subscribe DHT network,” in IEEE ICDCS, 2006, pp. 23–23.

[34] Y. Mi, X. Liao, X. Huang, L. Zhang, W. Gu, G. Hu, and S. Wu, “Long-period

rhythmic synchronous firing in a scale-free network,” Proceedings of the National

Academy of Sciences, vol. 110, no. 50, pp. E4931–E4936, 2013.

[35] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification and

shrinking diameters,” ACM Transactions on Knowledge Discovery from Data, vol. 1,

no. 1, p. 2, 2007.

[36] R. Daft, Organization theory and design. Cengage learning, 2012.

[37] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forwarding in delay-

tolerant networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 11, pp.

1576–1589, 2011.

[38] J. F. Rodrigues Jr, H. Tong, J.-Y. Pan, A. J. Traina, C. Traina, and C. Faloutsos,

“Large graph analysis in the gmine system,” ACM Transactions on Knowledge

Discovery from Data, vol. 25, no. 1, pp. 106–118, 2013.

[39] M. Takaffoli, O. R. Zäıane et al., “Social network analysis and mining to support the

assessment of on-line student participation,” ACM SIGKDD Explorations Newsletter,

vol. 13, no. 2, pp. 20–29, 2012.

[40] S. Yang, Q. Sun, S. Ji, P. Wonka, I. Davidson, and J. Ye, “Structural graphical lasso

for learning mouse brain connectivity,” in ACM KDD 2015, 2015, pp. 1385–1394.

200

[41] B. Corominas-Murtra, J. Goñi, R. V. Solé, and C. Rodŕıguez-Caso, “On the origins

of hierarchy in complex networks,” Proceedings of the National Academy of Sciences,

vol. 110, no. 33, pp. 13 316–13 321, 2013.

[42] F. Reid and M. Harrigan, “An analysis of anonymity in the bitcoin system,” in IEEE

SocialCom, 2011, pp. 1318–1326.

[43] F. Rahimian, S. Girdzijauskas, A. H. Payberah, and S. Haridi, “Vitis: A gossip-

based hybrid overlay for internet-scale publish/subscribe enabling rendezvous routing

in unstructured overlay networks,” in IEEE IPDPS, 2011, pp. 746–757.

[44] V. Setty, M. Van Steen, R. Vitenberg, and S. Voulgaris, “Poldercast: Fast, robust,

and scalable architecture for P2P topic-based pub/sub,” in ACM/IFIP/USENIX

Middleware, 2012, pp. 271–291.

[45] S. Qian, J. Cao, Y. Zhu, and M. Li, “REIN: A fast event matching approach for

content-based publish/subscribe systems,” in IEEE INFOCOM, 2014, pp. 2058–2066.

[46] A. Margara and G. Cugola, “High-performance publish-subscribe matching using

parallel hardware,” IEEE Transactions on Parallel and Distributed Systems, vol. 25,

no. 1, pp. 126–135, 2014.

[47] X. Xu, R. Ansari, A. Khokhar, and A. V. Vasilakos, “Hierarchical data aggregation

using compressive sensing (hdacs) in wsns,” ACM Transactions on Sensor Networks,

vol. 11, no. 3, p. 45, 2015.

[48] K. Jayaram, P. Eugster, and C. Jayalath, “Parametric content-based pub-

lish/subscribe,” ACM Transactions on Computer Systems, vol. 31, no. 2, p. 4, 2013.

[49] M. A. Tariq, B. Koldehofe, and K. Rothermel, “Efficient content-based routing with

network topology inference,” in ACM DEBS, 2013, pp. 51–62.

[50] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovskii, “The PADRES distributed

publish/subscribe system,” in International Conference on Feature Interactions in

Telecommunications and Software Systems, 2005, pp. 12–30.

201

[51] P. R. Pietzuch and J. M. Bacon, “Hermes: A distributed event-based middleware

architecture,” in IEEE ICDCS, 2002, pp. 611–618.

[52] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi, “Meghdoot: content-based

publish/subscribe overP2Pnetworks,” in ACM/IFIP/USENIX Middleware, 2004, pp.

254–273.

[53] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:

A scalable peer-to-peer lookup service for internet applications,” ACM SIGCOMM

Computer Communication Review, vol. 31, no. 4, pp. 149–160, 2001.

[54] http://www.similarweb.com/global.

[55] http://www.pewinternet.org/fact-sheets.

[56] https://www.facebook.com/notes/facebook/people-you-may-know/15610312130.

[57] J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, L. Zhang, and X. He, “Music

recommendation by unified hypergraph: combining social media information and

music content,” in ACM Multimedia, 2010, pp. 391–400.

[58] M. Ye, P. Yin, and W.-C. Lee, “Location recommendation for location-based social

networks,” in ACM SIGSPATIAL, 2010, pp. 458–461.

[59] D. Carnegie, How to win friends and influence people. Simon and Schuster, 2010.

[60] https://www.facebook.com/business/success/.

[61] https://business.twitter.com/success-stories/rukes.

[62] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influence through

a social network,” in ACM SIGKDD, 2003, pp. 137–146.

[63] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for prevalent viral

marketing in large-scale social networks,” in ACM SIGKDD, 2010, pp. 1029–1038.

[64] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in social networks

under the linear threshold model,” in IEEE ICDM, 2010, pp. 88–97.

202

[65] C. Budak, D. Agrawal, and A. El Abbadi, “Limiting the spread of misinformation in

social networks,” in ACM WWW, 2011, pp. 665–674.

[66] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social influence in

nearly optimal time,” in ACM-SIAM SODA, 2014, pp. 946–957.

[67] X. Yang, H. Steck, and Y. Liu, “Circle-based recommendation in online social

networks,” in ACM SIGKDD, 2012, pp. 1267–1275.

[68] Y. Zhang, B. Cao, and D.-Y. Yeung, “Multi-domain collaborative filtering,” in UAI,

2010, pp. 1–10.

[69] Y. Zheng, L. Zhang, Z. Ma, X. Xie, and W.-Y. Ma, “Recommending friends and

locations based on individual location history,” ACM Transactions on the Web

(TWEB), vol. 5, no. 1, p. 5, 2011.

[70] M. B. Zafar, P. Bhattacharya, N. Ganguly, K. P. Gummadi, and S. Ghosh, “Sampling

content from online social networks: Comparing random vs. expert sampling of the

twitter stream,” ACM Transactions on the Web, vol. 9, no. 3, p. 12, 2015.

[71] M. Ye, X. Liu, and W.-C. Lee, “Exploring social influence for recommendation: a

generative model approach,” in ACM SIGIR, 2012, pp. 671–680.

[72] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann, “Time-aware point-of-

interest recommendation,” in ACM SIGIR, 2013, pp. 363–372.

[73] V. V. Vazirani, Approximation algorithms. Springer Science & Business Media, 2013.

[74] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations

for maximizing submodular set functions,” Mathematical Programming, vol. 14, no. 1,

pp. 265–294, 1978.

[75] S. Cheng, H. Shen, J. Huang, W. Chen, and X. Cheng, “IMRank: influence

maximization via finding self-consistent ranking,” in ACM SIGIR, 2014, pp. 475–484.

203

[76] G. Mao and N. Zhang, “Analysis of average shortest-path length of scale-free

network,” Journal of Applied Mathematics, vol. 2013, no. 1, pp. 1–5, 2013.

[77] G. Song, X. Zhou, Y. Wang, and K. Xie, “Influence maximization on large-scale mobile

social network: a divide-and-conquer method,” IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 5, pp. 1379–1392, 2015.

[78] J. Y. Yen, “Finding the k shortest loopless paths in a network,” Management Science,

vol. 17, no. 11, pp. 712–716, 1971.

[79] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the evolution of user

interaction in facebook,” in ACM WOSN, 2009, pp. 37–42.

[80] J. Tang, H. Gao, H. Liu, and A. Das Sarma, “etrust: Understanding trust evolution

in an online world,” in ACM SIGKDD, 2012, pp. 253–261.

[81] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and negative

links in online social networks,” in ACM WWW, 2010, pp. 641–650.

[82] P. Chalermsook, A. Das Sarma, A. Lall, and D. Nanongkai, “Social network

monetization via sponsored viral marketing,” ACM SIGMETRICS Performance

Evaluation Review, vol. 43, no. 1, pp. 259–270, 2015.

[83] B. Bahmani, K. Chakrabarti, and D. Xin, “Fast personalized pagerank on

mapreduce,” in ACM SIGMOD, 2011, pp. 973–984.

[84] H. Nguyen and R. Zheng, “On budgeted influence maximization in social networks,”

IEEE Journal on Selected Areas in Communications, vol. 31, no. 6, pp. 1084–1094,

2013.

[85] A. Guille, H. Hacid, C. Favre, and D. A. Zighed, “Information diffusion in online

social networks: A survey,” ACM SIGMOD Record, vol. 42, no. 2, pp. 17–28, 2013.

[86] M. Edelson, T. Sharot, R. J. Dolan, and Y. Dudai, “Following the crowd: brain

substrates of long-term memory conformity,” Science, vol. 333, no. 6038, pp. 108–

111, 2011.

204

[87] H. Zhang, D. T. Nguyen, H. Zhang, and M. T. Thai, “Least cost influence

maximization across multiple social networks,” IEEE/ACM Transactions on

Networking, vol. 24, no. 2, pp. 929–939, 2016.

[88] J. L. Z. Cai, M. Yan, and Y. Li, “Using crowdsourced data in location-based social

networks to explore influence maximization,” in IEEE INFOCOM, 2016, pp. 1–9.

[89] G. Tong, W. Wu, S. Tang, and D.-Z. Du, “Adaptive influence maximization in

dynamic social networks,” IEEE/ACM Transactions on Networking, vol. 25, no. 1,

pp. 112–125, 2017.

[90] S. Galhotra, A. Arora, S. Virinchi, and S. Roy, “Asim: A scalable algorithm for

influence maximization under the independent cascade model,” in ACM WWW, 2015,

pp. 35–36.

[91] W. Chen et al., “Influence maximization in social networks when negative opinions

may emerge and propagate,” in SIAM SDM, 2011, pp. 379–390.

[92] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “A data-based approach to social

influence maximization,” VLDB Endowment, vol. 5, no. 1, pp. 73–84, 2011.

[93] M. Feldman and R. Izsak, “Constrained monotone function maximization and the

supermodular degree,” in ACM-SIAM SODA, 2014, pp. 1–10.

[94] S. Dughmi, “Algorithmic information structure design: a survey,” ACM SIGecom

Exchanges, vol. 15, no. 2, pp. 2–24, 2017.

[95] S. Fujishige and S. Isotani, “A submodular function minimization algorithm based on

the minimum-norm base,” Pacific Journal of Optimization, vol. 7, no. 1, pp. 3–17,

2011.

[96] M. Sviridenko, J. Vondrák, and J. Ward, “Optimal approximation for submodular and

supermodular optimization with bounded curvature,” in ACM-SIAM SODA, 2015,

pp. 1–10.

205

[97] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee,

“Measurement and analysis of online social networks,” in ACM SIGCOMM, 2007,

pp. 29–42.

[98] R. Kumar, J. Novak, and A. Tomkins, “Structure and evolution of online social

networks,” Link Mining: Models, Algorithms, and Applications, pp. 337–357, 2010.

[99] Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based greedy algorithm for

mining top-k influential nodes in mobile social networks,” in ACM SIGKDD, 2010,

pp. 1039–1048.

[100] T. Gradowski and A. Krawiecki, “Majority-vote model on scale-free hypergraphs,”

Acta Physica Polonica A, vol. 127, no. 3A, pp. 1–4, 2015.

[101] M. Molloy and B. Reed, “The size of the giant component of a random graph with a

given degree sequence,” Combinatorics, probability and computing, vol. 7, no. 3, pp.

295–305, 1998.

[102] U. Feige and R. Izsak, “Welfare maximization and the supermodular degree,” in ACM

ITCS, 2013, pp. 247–256.

[103] https://toreopsahl.com/datasets/#newman2001.

[104] F. D. Sahneh, C. Scoglio, and P. Van Mieghem, “Generalized epidemic mean-

field model for spreading processes over multilayer complex networks,” IEEE/ACM

Transactions on Networking, vol. 21, no. 5, pp. 1609–1620, 2013.

[105] H. K. Lee, P.-S. Shim, and J. D. Noh, “Epidemic threshold of the susceptible-infected-

susceptible model on complex networks,” Physical Review E, vol. 87, no. 6, p. 062812,

2013.

[106] S. Wen, W. Zhou, J. Zhang, Y. Xiang, W. Zhou, and W. Jia, “Modeling propagation

dynamics of social network worms,” IEEE Transactions on Parallel and Distributed

Systems, vol. 24, no. 8, pp. 1633–1643, 2013.

206

[107] D. Chen, “Modeling the spread of infectious diseases: A review,” Analyzing and

Modeling Spatial and Temporal Dynamics of Infectious Diseases, pp. 19–42, 2014.

[108] K. Lewis, M. Gonzalez, and J. Kaufman, “Social selection and peer influence in an

online social network,” Proceedings of the National Academy of Sciences, vol. 109,

no. 1, pp. 68–72, 2012.

[109] L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley, “Classes of small-

world networks,” Proceedings of the National Academy of Sciences, vol. 97, no. 21,

pp. 11 149–11 152, 2000.

[110] B. Proulx and J. Zhang, “Modeling social network relationships via t-cherry junction

trees,” in IEEE INFOCOM, 2014, pp. 2229–2237.

[111] X. Chen, I. Diakonikolas, D. Paparas, X. Sun, and M. Yannakakis, “The complexity

of optimal multidimensional pricing,” in ACM-SIAM SODA, 2014, pp. 1319–1328.

[112] Z. He, J. Cao, and X. Liu, “High quality participant recruitment in vehicle-based

crowdsourcing using predictable mobility,” in IEEE INFOCOM, 2015, pp. 2542–2550.

[113] O. Gurewitz, Y. Sandomirsky, and G. Scalosub, “Cellular multi-coverage with non-

uniform rates,” in IEEE INFOCOM, 2014, pp. 1330–1338.

[114] A. Deshpande, L. Hellerstein, and D. Kletenik, “Approximation algorithms for

stochastic boolean function evaluation and stochastic submodular set cover,” in ACM-

SIAM SODA, 2014, pp. 1453–1467.

[115] R. Bar-Yehuda, “Using homogeneous weights for approximating the partial cover

problem,” Journal of Algorithms, vol. 39, no. 2, pp. 137–144, 2001.

[116] S. Khuller, M. Purohit, and K. K. Sarpatwar, “Analyzing the optimal neighborhood:

algorithms for budgeted and partial connected dominating set problems,” in ACM-

SIAM SODA, 2014, pp. 1702–1713.

[117] S. Funke, A. Nusser, and S. Storandt, “On k-path covers and their applications,”

VLDB Endowment, vol. 7, no. 10, pp. 893–902, 2014.

207

[118] J. Zhang and J. M. Moura, “Diffusion in social networks as sis epidemics: beyond full

mixing and complete graphs,” IEEE Journal of Selected Topics in Signal Processing,

vol. 8, no. 4, pp. 537–551, 2014.

[119] L. Hébert-Dufresne and B. M. Althouse, “Complex dynamics of synergistic

coinfections on realistically clustered networks,” Proceedings of the National Academy

of Sciences, vol. 112, no. 33, pp. 10 551–10 556, 2015.

[120] R. Gandhi, S. Khuller, and A. Srinivasan, “Approximation algorithms for partial

covering problems,” Journal of Algorithms, vol. 53, no. 1, pp. 55–84, 2004.

[121] S. Ewen, Captains of consciousness: Advertising and the social roots of the consumer

culture. Basic Books, 2008.

[122] J. Tang, H. Gao, and H. Liu, “mtrust: discerning multi-faceted trust in a connected

world,” in ACM WSDM, 2012, pp. 93–102.

[123] P. Massa and P. Avesani, “Trust-aware recommender systems,” in ACM RecSys, 2007,

pp. 17–24.

[124] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation systems for

online service provision,” Decision Support Systems, vol. 43, no. 2, pp. 618–644, 2007.

[125] J. A. Golbeck, “Computing and applying trust in web-based social networks,” PhD

thesis, University of Maryland, 2005.

[126] P. Massa and P. Avesani, “Trust metrics on controversial users: Balancing between

tyranny of the majority,” IJSWIS, vol. 3, no. 1, pp. 39–64, 2007.

[127] M. Jamali and M. Ester, “Trustwalker: a random walk model for combining trust-

based and item-based recommendation,” in ACM SIGKDD, 2009, pp. 397–406.

[128] M. Sirivianos, K. Kim, and X. Yang, “Socialfilter: introducing social trust to

collaborative spam mitigation,” in IEEE INFOCOM, 2011, pp. 2300–2308.

208

[129] Y. L. Sun, W. Yu, Z. Han, and K. R. Liu, “Information theoretic framework of trust

modeling and evaluation for ad hoc networks,” IEEE Journal on Selected Areas in

Communications, vol. 24, no. 2, pp. 305–317, 2006.

[130] A. Jøsang and S. Pope, “Dempster’s rule as seen by little colored balls,” Computer

Intelligence, vol. 28, no. 4, pp. 453–474, 2012.

[131] A. Jøsang, R. Hayward, and S. Pope, “Trust network analysis with subjective logic,”

in ACSC, 2006, pp. 85–94.

[132] M. Richardson, R. Agrawal, and P. Domingos, “Trust management for the semantic

web,” in ISWC, 2003, pp. 351–368.

[133] G. Mahoney, W. J. Myrvold, and G. C. Shoja, “Generic reliability trust model.” in

PST, 2005, pp. 113–120.

[134] M. Taherian, M. Amini, and R. Jalili, “Trust inference in web-based social networks

using resistive networks,” in IEEE ICIW, 2008, pp. 233–238.

[135] R. Andersen, C. Borgs, J. Chayes, U. Feige, A. Flaxman, A. Kalai, V. Mirrokni, and

M. Tennenholtz, “Trust-based recommendation systems: an axiomatic approach,” in

ACM WWW, 2008, pp. 199–208.

[136] H. Zhu, B. Huberman, and Y. Luon, “To switch or not to switch: Understanding

social influence in online choices,” in ACM SIGCHI, 2012, pp. 2257–2266.

[137] W. Jiang, J. Wu, G. Wang, and H. Zheng, “Fluidrating: A time-evolving rating

scheme in trust-based recommendation systems using fluid dynamics,” in IEEE

INFOCOM, 2014, pp. 1707–1715.

[138] P. G. Hewitt, Conceptual physics. Pearson Educación, 2002.

[139] J. Tang, H. Gao, H. Liu, and A. D. Sarma, “eTrust: Understanding trust evolution

in an online world,” in ACM SIGKDD, 2012, pp. 253–261.

209

[140] G. C. Cawley and N. L. Talbot, “Efficient leave-one-out cross-validation of kernel

fisher discriminant classifiers,” Pattern Recognition, vol. 36, no. 11, pp. 2585–2592,

2003.

[141] P. S. Chakraborty and S. Karform, “Designing trust propagation algorithms based on

simple multiplicative strategy for social networks,” Procedia Technology, vol. 6, no. 1,

pp. 534–539, 2012.

[142] E. Henry and J. Hofrichter, “Singular value decomposition: application to analysis

of experimental data,” Essential Numerical Computer Methods, vol. 210, no. 1, pp.

81–138, 2010.

[143] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of influence through

a social network,” in ACM SIGKDD, 2003, pp. 137–146.

[144] W. Galuba, K. Aberer, D. Chakraborty, Z. Despotovic, andW. Kellerer, “Outtweeting

the twitterers - predicting information cascades in microblogs,” in ACM WOSN, 2010,

pp. 3–11.

[145] V. Gómez, H. J. Kappen, and A. Kaltenbrunner, “Modeling the structure and

evolution of discussion cascades,” in ACM HT, 2011, pp. 181–190.

[146] K. Saito, R. Nakano, and M. Kimura, “Prediction of information diffusion probabil-

ities for independent cascade model,” Knowledge-Based Intelligent Information and

Engineering Systems, vol. 5179, no. 1, pp. 67–75, 2008.

[147] G. Ghasemiesfeh, R. Ebrahimi, and J. Gao, “Complex contagion and the weakness of

long ties in social networks: revisited,” in ACM EC, 2013, pp. 507–524.

[148] E. Sadikov, M. Medina, J. Leskovec, and H. Garcia-Molina, “Correcting for missing

data in information cascades,” in ACM WSDM, 2011, pp. 55–64.

[149] P. Mohan, S. Shekhar, J. A. Shine, and J. P. Rogers, “Cascading spatio-temporal

pattern discovery: A summary of results,” DTIC Document, Tech. Rep., 2010.

210

[150] Y. Zhao and J. Wu, “Dache: A data aware caching for big-data applications using

the mapreduce framework,” IEEE INFOCOM, pp. 35–39, 2013.

[151] P. A. Dow, L. A. Adamic, and A. Friggeri, “The anatomy of large facebook cascades,”

in AAAI ICWSM, 2013.

[152] G. Wang, W. Jiang, J. Wu, and Z. Xiong, “Fine-grained feature-based social influence

evaluation in online social networks,” IEEE Transactions on Parallel and Distributed

Systems, vol. 25, no. 9, pp. 2286–2296, 2014.

[153] W. Jiang, G. Wang, and J. Wu, “Generating trusted graphs for trust evaluation in

online social networks,” Future generation computer systems, vol. 31, no. 1, pp. 48–58,

2014.

[154] J.-G. Dumas and G. Villard, “Computing the rank of large sparse matrices over finite

fields,” Computer Algebra in Scientific Computing CASC, Technische Universität

München, 2002.

[155] M. Brand, “Fast low-rank modifications of the thin singular value decomposition,”

Linear Algebra and its Applications, vol. 415, no. 1, pp. 20–30, 2006.

[156] P. Shah, C. Wieser, and F. Bry, “Parallel higher-order SVD for tag-recommendations,”

in ACM WWW/Internet, 2012.

[157] N. J. Higham, Accuracy and Stability of Numerical Algorithms. Philadelphia, PA,

USA: SIAM, 2002.

[158] http://www.mcs.anl.gov/�itf/dbpp/text/node35.html.

[159] D. L. Streiner and J. Cairney, “What’s under the ROC? an introduction to receiver

operating characteristic curves,” A Guide to the Statistically Perplexed, vol. 52, no. 4,

p. 304, 2013.

211

