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Abstract

My dissertation research aims to improve management of water resources for agricul-

ture, which accounts for 70% of global freshwater withdrawals and 90% of global water

consumption. Using Sri Lanka as a case study, we constructed Palmer Drought Severity

Index (PDSI) and Standardized Precipitation Index at a 9-month scale (SPI-9) agricultural

drought indices. We then analyzed these indices for: 1) spatiotemporal patterns of drought

in the country from 1880 to 2010 and 2) utility as drought monitoring tools. Our find-

ings show that although the two indices exhibited similar physical patterns, with a strong,

negative association between the Northeastern monsoon and El-Niño in recent decades.

Important zonal distinctions were present between the indices concerning correlations to

local metrics of drought impacts; PDSI correlated best with the intermediate zone districts,

SPI-9 correlated best with dry zone districts, but neither index correlated well with the wet

zone districts.

The drought analysis indicated that the northeast portion of the island (an important

agricultural region) was becoming drier during the minor growing season, when water re-

sources are already scarce. So we quantified and assessed patterns in irrigation water re-

quirements (IWRs) for rice (the staple food of the country) over 20 years. Comparing IWRs

with actual planting records indicates that shifting planting dates to earlier in the season is

a low-cost adaptation that could yield IWRs savings of up to 6% in parts of the country.

These potential water savings are particularly important given emerging climate change

research of less water being available for irrigation during the minor growing season.

In certain parts of the country, however, water stress is already significant enough to

warrant diversification away from rice production, a water-intensive process. Given that

crop selection decisions are influenced by myriad factors besides weather, I led an interdis-

ciplinary team of researchers (with backgrounds in hydrology, social psychology, human

geography, and behavioral economics) to assess whether provision of seasonal forecasts to
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farmers could inform their crop selections and lead to improved net agricultural incomes.

For this mixed methods study, we compiled and analyzed data from numerous sources in-

cluding meteorological assessments, games in the field, household surveys, interviews, and

government reports. Our empirical findings were rolled into a single-agent system dynam-

ics model, with which we explored the combined impact of a changing climate and varying

crop economics on agricultural income. Our results indicate that, when water resources

are scarce, farmer incomes could become stratified, potentially compounding existing dis-

parities in farmers’ financial and technical abilities to use forecasts to inform their crop

selections. This analysis highlights that while policies and programs that promote produc-

tion of certain crops may ensure food security in the short-term, the long-term implications

of these dynamics need careful evaluation.

Beyond water and food, the convergence of limited supply and growing demand issues

has prompted much needed conversations about interactions with other critical resources

such as energy. For example, treatment of nitrates (a common agriculture-related water

quality issue) requires energy investments, which depend on the same scarce water re-

sources upon which agriculture also depends on in Sri Lanka. Given the complex physical

and social factors (including governance shifts, climate change, population growth, and

technology developments) govern these resource interactions, interdisciplinary research

will become increasingly important for and all nations (including Sri Lanka) to help in-

form policies and strategies that efficiently manage resource use.
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Chapter 1

Introduction

1.1 Background

Water is an important resource for various societal needs; currently, we have appro-

priated more than 50% of available renewable freshwater (Srinivasan et al., 2012). This

dissertation work focuses on the water needs for agriculture, which currently accounts for

70% of global freshwater withdrawals and 90% of global water consumption (Doll and

Siebert, 2002; Oki and Kanae, 2006; Comprehensive Assessment of Water Management in

Agriculture, 2007; Khan and Hanjra, 2009; Mekonnen and Hoekstra, 2011; Hoekstra and

Mekonnen, 2012). Population growth, urbanization, rising incomes, and other factors are

projected to increase food demand by 60% by 2050 (UNESCO, 2014). To meet this in-

creased demand, irrigated agriculture is projected to expand and increase agricultural water

withdrawals by 14% by 2030 (Khan and Hanjra, 2009; UNESCO, 2003).

Water constraints are further magnified by climate change impacts. Anthropogenic in-

creases in greenhouse gas concentrations and other forcings (such as land use and aerosols)

have resulted in a warming of 0.85◦C between 1880 and 2012 (IPCC, 2014). The increase

in greenhouse gas concentrations and temperature has triggered a chain of events including

sea level rise, shrinking glaciers, and intensification of precipitation events (IPCC, 2014).

All of these environmental changes have long-lasting impacts on the supply and demand of

water resources for agriculture. Temperature and precipitation changes alone could lead to

an increase in global irrigation requirements by another 20% above that projected from ex-

panded irrigation areas alone (Hanjra and Qureshi, 2010). The United Nations projects that

water scarcity will impact food scarcity more so than land scarcity (Hanjra and Qureshi,

2010).

Increasing temperatures as well as shifting rainfall patterns are expected to negatively
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impact global agricultural output (Funk and Brown, 2009; Quiggin et al., 2010; Lobell

et al., 2011; Gourdji et al., 2013). Although farmers have historically adapted to seasonal

fluctuations in weather, they now face unprecedented shifts in climate patterns (Morton,

2007; Senaratne and Scarborough, 2011). Farmers in sub-Saharan Africa and South Asia

are expected to be particularly impacted by climate change because these regions already

have high temperatures and less adaptive capacity (IPCC, 2014; Schmidhuber and Tubiello,

2007; Skoufias et al., 2011). Since agricultural systems exist in a social, ecological, and

political context (Comprehensive Assessment of Water Management in Agriculture, 2007),

sustainable water management analysis needs to incorporate the human component of agri-

cultural systems into physical assessments. Specifically, research should recognize that

in agricultural systems, which are a coupled natural and human system (CNHS), human

decision-making is not just influenced by natural resource factors but also economic and

psychological factors. Thus, an interdisciplinary systems approach will be crucial to in-

forming assessments of water resource use in agriculture (Grothmann and Patt, 2005).

1.2 Study Region

Sri Lanka provides an interesting region for studying water requirements for agriculture

due to its geographic isolation and large agricultural sector. As an island nation, all wa-

ter resources for crop production are sourced from endogenous precipitation in Sri Lanka.

Also, the nation’s economy is closely tied with the agricultural sector; approximately 30%

of the population and 65% of land is engaged in agricultural activities in the country, with

approximately 34% of cultivated land being irrigated (DCS, 2001; UNESCO, 2003; Imbu-

lana et al., 2006; Socio Economics & Planning Centre, 2012). Since a significant portion of

its economy is in climate-sensitive sectors, Sri Lanka is particularly vulnerable to climate

change impacts (Seo et al., 2005; IPCC, 2007).

Rainfall patterns in Sri Lanka are categorized into four periods: the northeast monsoon

(NEM) spans December-February, the first intermonsoon (FIM) spans March-April, the
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southwest monsoon (SWM) spans May-September, and the second intermonsoon (SIM)

spans October-November (Suppiah, 1996; Malmgren et al., 2003; Zubair et al., 2008).

Spatial variability in rainfall, arising from cyclonic and orographic influences (Zubair et al.,

2008), delineates three climatic zones in the country: the wet zone, the intermediate zone,

and the dry zone (Thambyahpillay, 1954; Wickramagamage, 2009). The wet zone receives

most of its rain during the SWM and SIM and experiences more than 2,500 mm of rainfall

annually (Suppiah, 1996; Zubair, 2002). The dry zone, which covers three-quarters of

the island, predominantly receives rainfall during the SIM and NEM. Since the NEM is

weaker than the SWM, the dry zone receives less than 1,750 mm annually, with semi-arid

conditions present during the summer months (Amarasinghe et al., 1999; Zubair, 2002).

The intermediate zone is a transition zone and experiences conditions intermediate between

the wet and dry zones.

As the staple food crop of the country, rice plays a large role in stabilizing food security

in Sri Lanka (Fernando, 2010). Rice comprises 40% of all crop production and is grown

throughout the country (FAO, 2014) (Figure 1.1); 800,000 farmers and their families as

well as 30% of the land area in the nation is devoted to rice production (De Silva et al.,

2007). Currently, 87% of total freshwater withdrawals and 40% of freshwater consumption

are attributed to growing rice (UNEP-DHI Partnership, 2007; Davis et al., 2016). The

high water demand for rice is primarily due to two factors: 1) crop requires a lot of water

and 2) rice is typically grown in flooded fields; both of these factors lead to high potential

evapotranspiration rates. Changing rainfall patterns have already started to affect paddy

cultivation practices in Sri Lanka (Senalankadhikara and Manawadu, 2010).

Rice is cultivated during two seasons in Sri Lanka: Maha and Yala. A majority of

rice production (62% in 2013) occurs during the Maha, the major growing season, which

spans from August to January (Figure 1.2) (Davis et al., 2016). The minor growing season,

Yala, spans from February to July (Zubair et al., 2008) (Figure 1.2). The two cultivation

seasons coincide with monsoonal periods; Maha coincides with SIM and NEM while Yala
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coincides with FIM and SWM.

Figure 1.1: Location of Sri Lankan rice fields

Figure 1.2: Sri Lankan monsoons and cultivation seasons

Seventy percent of the national paddy (i.e., unmilled rice) production is from the dry

zone, a region where water resources are already stressed (De Silva et al., 2007; With-

anachchi et al., 2014). Since the majority of the annual precipitation in the dry zone is

received between October and December (Amarasinghe et al., 1999), Sri Lankans have

developed two distinct irrigation schemes to adapt to this uneven distribution of rain: 1)

small artificial lakes and ponds (locally referred to as wewas) and 2) major irrigation sys-

tems, such as the Mahaweli system. Wewas store excess local runoff from the monsoons to

provide water during the minor growing season (Marambe et al., 2012; Sakthivadivel, R.,

6



N. Fernando, C.R. Panabokke, 1996), while the Mahaweli system depends on interbasin

transfers (ARD, Inc., 2005; Gunawardhana and Adikari, 1981).

The rice production system in Sri Lanka, in particular, is a strongly CNHS and is deeply

rooted in the local socio-political culture. Sri Lanka has a self-sufficiency policy for rice,

which is set at 100% of domestic demand (Imbulana et al., 2006). Various measures have

been developed to support rice production, including credit, subsidized fertilizers, guaran-

teed price system, and crop insurance (Pain, 1986). Due to a combination of high yielding

varieties, paddy expansion, and increased use of irrigation and fertilizer, rice production

has steadily risen to meet this target. Sri Lanka has been almost entirely supplied by its

own rice production since 2005 (DCS, 2014; FAO, 2014). Many traditional festival and

religious practices are also associated with Sri Lankans’ cultivation of rice (Bouman et al.,

2007; FAO, 2012); many identify rice farming not just as a livelihood but as a way of life

(Jayasuriya, 1985).

1.3 Research Goal and Objectives

Given increasing need for water resources on the horizon (UNESCO, 2014), it has be-

come increasingly important to efficiently manage our current resource use. The goal of

this research is to improve management of water resources to advance food security in Sri

Lanka. Agricultural research, once at the forefront in Sri Lanka (Pain, 1986), stagnated in

the 1980s during the Civil War (Wijesekera et al., 2006; Mahbuba and Rousseau, 2010), re-

sulting in some inadequacies in Sri Lanka’s research capabilities (Sumathipala et al., 2003).

So the early objectives of this dissertation establish a foundation of knowledge upon which

subsequent chapters build.

In Chapter 2 we explore spatiotemporal patterns of agricultural drought over the last

century. We then take a step further and translate this research effort to evaluate the util-

ity of drought indices as drought monitoring tools. Our findings show that although the

two indices exhibited similar physical patterns, important zonal distinctions were present
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between the indices concerning correlations to local metrics of drought impacts.

In Chapter 3, I describe work conducted in collaboration with Ashley Rivera, an under-

graduate in Civil Engineering, to assess patterns in IWRs for rice and quantify the impact

shifting a planting date can have on the irrigation system efficiency. We find that shifting

planting dates to earlier in the season could yield IWR savings of up to 6% in parts of the

country.

In certain parts of the country, however, water stress is significant enough to warrant

diversification away from rice production. In Chapter 4, we assess whether the provision

of a seasonal climate forecast could aid farmers with crop diversification. Given that crop

selection decisions are influenced by a myriad factors besides weather, this objective con-

siders interdisciplinary perspectives (including social psychology, behavioral economics,

and human geography) represented in the Agricultural Decision-making and Adaptation to

Precipitation Trends in Sri Lanka (ADAPT-SL) research group – the larger research effort

in which this dissertation work is embedded (https://my.vanderbilt.edu/srilankaproject/).

Our results indicate that, when water resources are scarce, farmer incomes could become

stratified, potentially compounding existing disparities in farmers’ financial and technical

abilities to use forecasts to inform their crop selections. This analysis highlights that while

policies and programs that promote production of certain crops may ensure food security

in the short-term, the long-term implications of these dynamics need careful evaluation.

We conclude Chapter 5 with an outlook on other resource pressures on the horizon for

Sri Lanka and other agricultural nations.
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Chapter 2

Drought Characterization

2.1 Introduction

As the most frequent natural disaster in Sri Lanka, drought greatly affects crop produc-

tion and livelihoods in this island nation (Chithranayana, 2008). Over half of all agricul-

tural crop damage in Sri Lanka is due to drought (Disaster Management Centre, 2011).

In 2003-2004, drought in two consecutive seasons affected nearly 1.5 million people, most

of whom were subsistence farmers (World Food Programme, 2007). Drought also affects

public health, hydropower generation, and other sectors of the Sri Lankan economy; pro-

tracted drought in 2001-2002 caused a 1% drop in gross domestic product (Lyon et al.,

2009). Climate change is expected to increase the frequency and severity of drought in the

country (Eriyagama et al., 2010).

Thus far, studies in Sri Lanka have predominantly focused on characterizing specific

years of anomalous rainfall (Jayamaha, 1975); spatiotemporal patterns of rainfall (Suppiah

and Yoshino, 1984a,b); and relationships among rainfall, rice production, and Southern

Oscillation Index and other El Niño indices (Suppiah, 1996; Malmgren et al., 2003; Wick-

ramagamage, 2009; Zubair, 2002; Suppiah, 1997; Kane, 1998; Zubair et al., 2005). A

monthly Moisture Availability Index was developed to identify regions of Sri Lanka that

are vulnerable to drought (Chithranayana, 2008), but it is unclear which years were used in

the analysis. Standardized Precipitation Index (SPI) was characterized at a 3-month scale

for the Anuradhapura district and identified 46 drought occurrences between 1951 and 2007

(Ekanayake and Perera, 2014). A study on the relationship between the SPI and drought

relief payments in the country discovered the strongest correlation with a 9-month cumula-

tive drought index (Lyon et al., 2009); a significant difference in total rice production and

yield between drought and non-drought years has also been discovered (Fernando, 2010).
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A good correlation was found between weighted-average SPI and the PDSI for Idamelanda

from 1960 to 2000 (Bandara et al., 2010). However, these studies only characterized re-

stricted time periods or regions of drought and none of them have assessed spatiotemporal

patterns of drought across the nation.

Thus, the research objectives of this study are to evaluate: 1) spatial and temporal pat-

terns of agricultural drought in Sri Lanka from 1881-2010 and 2) the utility of PDSI and

SPI as agricultural drought monitoring tools for Sri Lanka. We assess agricultural drought

using two well-known indices: the PDSI and SPI-9. Drought indices, such as PDSI and

SPI-9, can facilitate reporting of drought conditions and development of drought manage-

ment strategies (including contingency planning) (UN, 2009). We selected PDSI and SPI-9

because both indices are being used by Sri Lankan government agencies; SPI is widely used

for local meteorological drought analysis and our research partners at the National Build-

ing Research Organization are evaluating PDSI as an indicator of agricultural drought. We

analyze differences in the spatiotemporal patterns of PDSI and SPI-9 and consider whether

such differences lead to a preferred drought monitoring tool for the country.

Spatiotemporal patterns of drought have been studied by coupling principal component

analysis (PCA) with spectral analysis of the principal component (PC) scores (Eder et al.,

1987) or by coupling wavelets with PCA of significant periods of variance (Elsanabary

et al., 2014). We use a combination of these two approaches by first conducting PCA on

the data (per Eder et al. (1987)) and then applying wavelets to the PCs (per Elsanabary

et al. (2014)). Specifically, spatial patterns are identified by applying PCA of the PDSI and

SPI-9 time series and temporal patterns are identified by wavelet analysis of the scores of

the retained PCs. Our analysis shows similar spatiotemporal patterns of drought for both

indices. An assessment of the utility of PDSI and SPI-9 as agricultural drought monitoring

tools using correlation analysis suggests that different indices might be appropriate for each

of the climatic zones in Sri Lanka.
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2.2 Methods

2.2.1 Drought Indices

The PDSI is calculated by conducting a physical water balance of precipitation, evap-

otranspiration, recharge, and runoff (Palmer, 1965). The index assumes a two-layer model

for soils; the calculations assume that the top soil layer has a field capacity of one inch

and that moisture is only transferred to the second layer upon saturation of the first layer

(Palmer, 1965; Heim Jr, 2002). When both layers are saturated, excess water becomes

runoff. Precipitation occurring in a given month is first utilized to meet the evapotranspira-

tion demand of that month; if precipitation is greater than evapotranspiration demand, then

there is a positive moisture anomaly and vice versa. Each month’s PDSI value is calculated

based on the previous month’s PDSI value as well as the moisture anomaly of the current

month.

While PDSI was established as an indicator of meteorological drought, it has also been

used to assess agricultural drought (Rohli et al., 2008). The dimensionless values of PDSI

range from -4 to 4, with negative numbers representing dry spells (Hu and Willson, 2000).

A drought period begins when the index value reaches -1 and ends the first month when

the moisture conditions begin an uninterrupted rise that ultimately erases the water deficit

(Keyantash and Dracup, 2002). Because antecedent conditions are accounted for as a part

of the PDSI calculations, the temporal scale of the PDSI is ambiguous; the time scale of

PDSI is typically taken to be about 9 months (Guttman, 1998; Heim Jr, 2002). The data

requirements for this index are monthly precipitation and temperature data, as well as the

available water capacity (AWC) of the soil reservoir conceptualized in the water balance

model. Additional information regarding the methodology and limitations of this index can

be found in (Palmer, 1965), (Alley, 1984), and (Briffa et al., 1994).

PDSI values for Sri Lanka were calculated using the MATLAB PDSI tool (Jacobi et al.,

2013). Potential evapotranspiration values were estimated using the Thornthwaite Method
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and the entire period of record was used for calibration. PDSI calculations on a time interval

require boundary conditions to be imposed at the beginning and end. Those conditions bias

results at times close to the beginning and end; but sufficiently far from the boundaries,

results are insensitive to the boundary conditions (Guttman, 1991). We calculated PDSI on

data from January 1875 to December 2013, obtaining stable values for 1881-2010.

The SPI is calculated by fitting all of the historical precipitation data at a meteorolog-

ical station to a gamma distribution, which is then transformed to a Gaussian distribution

(McKee et al., 1993). The SPI values are standardized precipitation anomalies: the number

of standard deviations by which the precipitation total for a time interval (e.g., 1-month,

3-month, or 9-month) differs from the long-term mean of that interval. At short time-scales

(e.g., 1-month), SPI is considered as a meteorological drought indicator; when SPI cap-

tures long-term anomalies of precipitation (e.g., 3-month and 9-month), it is considered

as an agricultural drought indicator (Patel et al., 2007). Sri Lankans often capture rainfall

during the NEM and use it for agricultural production in the SWM; therefore, a SPI scale

longer than 6 months is needed to adequately capture this interplay between the two mon-

soon seasons. To be consistent with the approximate time scale of PDSI, SPI at a 9-month

scale was selected for this initial analysis. Moreover, Lyon et al. (2009) find that 9-month

timescales for drought indices produced the greatest correlation with agricultural drought,

as measured by relief payment to farmers. SPI-9 values for each month incorporate pre-

cipitation information for the preceding 8 months. For example, SPI-9 for January 2009

requires precipitation values from May 2008 to January 2009.

SPI values range from -2 to 2. Similar to PDSI, SPI is dimensionless with negative

numbers representing dry spells. SPI considers a drought period to begin when the index

value reaches -1 and to end when the index value reaches 0 (Morid et al., 2006). SPI-9

values were calculated using a MATLAB SPI tool (Lee, 2009). To be consistent with the

PDSI calculations, the same data range (January 1875 to December 2013) was used with

the SPI tool, with values from 1881-2010 retained for further analysis.

12



2.2.2 Data

Monthly precipitation and temperature data were obtained from the Meteorological De-

partment of Sri Lanka for 13 stations with long-term records (Table 2.1). Approximately

13% of the temperature and 14% of the precipitation data were missing. Temperature

anomalies of up to 1.7◦C result in only minor effects on PDSI values (Guttman, 1991). Be-

cause the monthly temperature values at each station had a variance less than 1◦C, missing

temperature values at each station were estimated with the corresponding station’s average

monthly temperature value. This method produced comparable values (i.e., less than 1◦C

difference) to those estimated using the between-stations technique for missing monthly

temperature values at Jaffna (Thevakaran and Sonnadara, 2013).

Missing precipitation values were filled in using the modified normal ratio method

(Young, 1992). The modified normal method weights precipitation values from three sta-

tions to develop an estimate for the missing precipitation value; the three stations used for

each estimation are identified using correlation coefficients. The weights were calculated

using the equation,

wi =
r2

i (ni −2)
1− r2

i
, (2.1)

where wi is the weight, ri is the correlation coefficient between the two stations, and ni is

the number of points used to calculate the correlation coefficient (Young, 1992). For Sri

Lanka, stations with high correlation coefficients were generally in the same climatic zone

as the station with missing data.

To determine the AWC of soils near each of the meteorological stations, the soil type

was first identified using a soil map for the country (De Alwis and Panabokke, 1972). Only

two stations in the dry zone had published AWC values (Mapa and Pathmarajah, 1995).

For the remaining stations, AWC estimates from similar soil types elsewhere in the world

were used since soil water contents are strongly correlated with soil textures (Minasny

et al., 1999; Hong et al., 2013).
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Table 2.1: Summary of meteorological stations
  

Stations 
Latitude 

(N) 
Longitude 

(E) 
Altitude 

(m) 
AWC 
(in) 

Annual Precipitation 
(mm) 

Annual Temperature 
(°C) 

Anuradhapura 8.35 80.38 92.5 3.82 1369 27.6 
Badulla 6.98 81.05 669.6 8.11 1814 23.4 

Batticaloa 7.72 81.7 7.8 3.27 1691 27.7 
Colombo 6.9 79.87 7.3 8.11 2313 27.3 

Galle 6.03 80.22 12.5 8.11 2288 26.8 
Hambantota 6.12 81.13 15.5 3.27 1057 27.2 

Jaffna 9.68 80.03 3.1 0.98 1285 27.8 
Kurunegala 7.47 80.37 116.1 8.11 2066 27.1 

Mannar 8.98 79.92 3.6 3.27 1033 28.0 
Nuwara Eliya 6.97 80.77 1893.6 8.11 2084 15.5 

Puttalam 8.03 79.83 2.1 0.98 1157 27.4 
Ratnapura 6.68 80.4 34.4 8.11 3622 27.2 

Trincomalee 8.58 81.25 23.9 3.27 1655 28.3 
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Figure 1: Meteorological Stations

Figure 2.1: Meteorological stations with long-term monthly temperature and precipitation
data used in the drought analysis

2.2.3 Spatial Analysis

PCA is a common method used to identify spatial patterns in climatic data (Santos et al.,

2010). By reducing dimensionality, PCA emphasizes relationships among variables (i.e.,
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stations) and observations (i.e., monthly drought indices). Specifically, data for k variables

for a given time period: X1, X2,. . ., Xk can be used to produce k principal components (PC1,

PC2,. . ., PCk) for the same time period using linear combinations:

PC1 = a11X1 +a12X2 + . . .+a1kXk

PC2 = a21X1 +a22X2 + . . .+a2kXk

. . .

PCk = ak1X1 +ak2X2 + . . .+akkXk

(2.2)

The PCs are, by definition, orthogonal and uncorrelated to each other. The coefficients of

the linear combinations (a’s) are weights of the original variables in the PCs and are called

loadings (Santos et al., 2010). PCA is not affected by lack of independency in the original

variables and while normality of the dataset is desirable, it is not essential, especially if the

dataset is not excessively skewed (Santos et al., 2010). The dataset of PC scores, which

contains transformed data points from the original axis system to the axis system of the

PCs, is the same length as the original dataset. Since PC loadings can be influenced by

uneven distribution of data (Karl et al., 1982), the PDSI and SPI-9 values at each station

were weighted by the corresponding station’s Thiessen polygon area prior to conducting

the PCA (Drosdowsky, 1993; Chung and Nigam, 1999; Wrublack et al., 2013); Thiessen

polygons assign weights according to areas defined by points closest to each station.

From the original dataset of 13x1560, a 13x13 covariance matrix (Σ) was constructed

to identify the eigenvalues. A covariance rather than a correlation matrix was used because

the covariance matrix is useful for locating specific regions with high variance relative to

the rest of the field (Overland and Preisendorfer, 1982; Eder et al., 1987). So if we let

φ be a n x n matrix, whose columns are eigenvectors of the covariance matrix and Λ is a

diagonal matrix whose elements are the eigenvalues (λ ) of the covariance matrix, then

Σφ = φΛ. (2.3)
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The eigenvalues of the covariance matrix of the original variables are the variances of the

PCs. Therefore, the PCs account for all of the variation in the original data, because the sum

of the PC variances equals the sum of the covariance matrix eigenvalues. The amount of

variance explained by each of the PCs decreases sequentially: λ1 ≥ λ2 ≥ . . .≥ λk ≥ 0. The

matrix of eigenvectors, φ , is a linear transformation which transforms the data points from

the original axis system to the axis system of the PCs, where the variables are uncorrelated.

The transformed values are called scores and the dataset of PC scores is the same size as

the original dataset (i.e., 13x1560). The PC scores are represented by:

(PCScore)ik = ∑
j

Oi jL jk (2.4)

where Oi j is the observation for month i at station j, L jk is the loading of station j on

component k, and the (PCScore)ik is the component score for month i on component k and

is summed over all 13 stations (Eder et al., 1987). Monthly contributions (i.e., fraction

of the total variance explained by the PC attributable to each month) for the retained PC

scores were calculated by summing the PC scores for each month and dividing by the total

variance at each station. Scree plot analysis, which compares the variance explained by

each of the PCs and indicates that PCs within the first ”elbow” should be retained, was

used to decide on the number of PCs to retain (Jolliffe, 2002). Communalities, or the

proportion of variance attributable to each station, were also calculated by summing the

squared loadings of the retained PCs (Eder et al., 1987). All of the principal component

analysis was conducted in MATLAB.

Orthogonal rotations, which sometimes produce more physically explainable patterns,

were implemented to facilitate interpretation (Santos et al., 2010). The Varimax rota-

tion preserves the orthogonality of the PCs but maximizes the sum of the variances of

the squared loadings, which can result in a spatial clustering of the variables (Drosdowsky,

1993). Following the methods outlined in Jolliffe (2002), PCs were rotated using MATLAB
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commands. To visualize the spatial patterns in loadings, the coefficients of both unrotated

and rotated PCs were interpolated using the inverse distance weighted technique in ArcMap

10.2.

2.2.4 Temporal Analysis

Wavelet analysis has been used in an array of geophysical studies to assess the Southern

Oscillation, cold fronts, rainfall patterns, and dispersion of ocean waves (Torrence and

Compo, 1998). Wavelets allow decomposition of a time series into time-frequency space so

that dominant modes of variability can be explored over time. The Morelet wavelet, which

is a plane wave modulated by a Gaussian window, was chosen for this analysis because it

provides reasonable localization of both time and frequency (Grinsted et al., 2004). The

Morelet wavelet function is defined as:

ψ0(η) = π
− 1

4 e−i6ηe−
η2
2 , (2.5)

where η is a nondimensional time parameter. Unlike windowed Fourier transform, wavelet

analysis is scale independent and is thus not compromised by the aliasing of high- and low-

frequency components that do not fall within the frequency range of chosen window lengths

(Torrence and Compo, 1998). Wavelets are structured such that as the period increases, the

amount of temporal information decreases (Grinsted et al., 2004). Additional background

information on wavelet theory can be found in Torrence and Compo (1998); Grinsted et al.

(2004).

The MATLAB code provided by Grinsted et al. (2004) was used to generate continuous

wavelet transforms (CWTs) of the scores of retained PCs from the spatial analysis. For

each station, monthly means of PDSI and SPI-9 were removed from the records to define
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an anomaly time series as defined by:

X̄i =
1
n

y=n

∑
y=1

Xi,y

Zi,y = Xi,y − X̄i

(2.6)

where X are the original index data, X̄ are monthly means, Z are monthly anomalies, i

is the month (i.e., January (1) through December (12)), y is the number of years in the

time series, and n is 130 years. Removing the monthly means of PDSI and SPI-9 from

the records allowed us to focus on long-term forcings. The normality of the anomaly score

time series was confirmed using Q-Q plots and the Shapiro-Wilk test. Because the dataset is

finite, the monthly score anomalies were padded with zeros prior to generating the CWTs.

Accordingly, errors occur at the beginning and end of the wavelet power spectra; outside

the cone of influence (COI) is the region of the wavelet spectrum where these edge effects

are important. Therefore, information outside the COI should be considered with caution.

Significance levels at 95% of the observed spectra were determined relative to a background

spectrum of red noise, commonly modeled with a first order autoregressive (AR1) process

for geophysical phenomena (Torrence and Compo, 1998; Grinsted et al., 2004).

Variations in the Niño 3.4 dataset (a measure of sea surface temperature from 5◦N

- 5◦S, 120◦W - 180◦W) explain some of the variability in seasonal agricultural produc-

tion (Zubair et al., 2005). The relationship between the scores and monthly anomalies of

Niño 3.4 (Rayner et al., 2003) was assessed using crosswavelet transforms (XWTs) and

wavelet coherences (WTCs). XWTs expose the common power between two CWTs and

the relative phase in time-frequency space. WTCs show localized correlation coefficients

in time-frequency space, and thus, can expose areas of significant coherence between two

CWTs even when the common power is low (Grinsted et al., 2004).
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2.2.5 Drought Monitor Analysis

Five classes of drought were originally defined for PDSI while only three classes of

drought were defined for SPI (McKee et al., 1993; Alley, 1984). Palmer arbitrarily desig-

nated drought severity classes for PDSI (Alley, 1984). So to allow comparisons between the

two index classifications, PDSI was re-categorized into three classes (Morid et al., 2006).

Monthly impacts of drought on agricultural activity from 1974 to 2010 for 11 met-

rics were obtained at the district-level from the disaster management information system,

DesInventar (Disaster Management Centre, 2011). These metrics include demographic,

crop, and economic parameters such as the number of Grama Niladharis (GNs; i.e., low-

est administrative division) affected by drought, loss of paddy, and relief payments (Table

2.2). The usefulness of PDSI and SPI-9 as agricultural drought monitoring tools was eval-

uated using correlation analysis between drought index time series and the corresponding

district’s agricultural metrics from DesInventar. We calculated correlations between the

two drought indices and the 33 metrics for which we had sufficient data (i.e., at least 10

months of recorded drought in the district and an absence of significant autocorrelation in

the metric) (Table 2.3).

Linear trend analysis was then conducted on PDSI and SPI-9 time series at stations

that exhibited correlations with DesInventar metrics. Both PDSI and SPI-9 time series

showed serial correlation, which affects the accuracy of estimated trends (Yue et al., 2002).

Therefore, linear trend analysis was conducted on individual monthly time series at each

station. PDSI has a bimodal distribution owing to its computational structure (Eder et al.,

1987) while SPI-9 has a normal distribution. Therefore, the nonparametric Mann-Kendall

test was used to assess the significance of trends at α = 0.05 (Hirsch et al., 1982).
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Table 2.2: DesInventar metrics

 Damages in crops (hectares) 
Number of families affected 
Number of Grama Niladhari (GN) divisions affected 

Loss for paddy and other crop (rupees) 
Loss for paddy (rupees) 
Loss for other farm (rupees) 
Payment for relief (loss of other crop in rupees) 
Payment for relief (loss of paddy in rupees) 
Payment for relief (loss of total crop in rupees) 
Payment for relief (livelihood option) 

Relief cost (rupees) 
 

Table 2.3: Regression analyses conducted. Note: Regression analyses were not conducted
for grey boxes due to either 1) too few samples or 2) autocorrelation issues

 
              
DesInventar Metric 

Anuradhapura 
(n=50) 

Badulla 
(n=38) 

Batticaloa 
(n=22) 

Colombo 
(n=5) 

Galle 
(n=5) 

Hambantota 
(n=75) 

Jaffna 
(n=8) 

Kurunegala 
(n=90) 

Mannar 
(n=6) 

Nuwara 
Eliya 
(n=22) 

Puttalam 
(n=41) 

Ratnapura 
(n=20) 

Trincomalee 
(n=30) 

Damages in crops 
(hectares) 

    
                      

Number of families 
affected 

    
                      

Number of Grama 
Niladhari (GN) 
divisions affected 

    
                      

Payment for relief 
(loss of total crop in 
rupees) 

    
                      

Payment for relief 
(loss of paddy in 
rupees) 

    
                      

Payment for relief 
(loss of other crop in 
rupees) 

    
                      

Loss for paddy and 
other crop (rupees) 

    
                      

Loss for paddy 
(rupees) 

    
                      

Loss for other farm 
(rupees) 

    
                      

Relief cost (rupees)                           
Payment for relief 
(livelihood option) 
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2.3 Results

The 13 stations used in the analysis are well-distributed across the three climatic zones

(Figure 2.1). The interpolated annual average temperature and precipitation maps devel-

oped using data from the 13 stations (Figure 2.2) are similar to finer scale maps developed

by Zubair et al. (2010).
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Figure 2.2: Average weather patterns based on monthly data at the meteorological stations

The scree plots of PDSI and SPI-9 PCs show an elbow at the 2nd PC for both indices

(Figure 2.3). Thus, the first two PCs of PDSI and SPI-9, which explain 67% and 69%

of the total variance, respectively, were retained for further analysis. The unrotated PC

1 of both indices shows little variance and is flat or in phase while the unrotated PC 2s

are out of phase (Figure 2.4). The unrotated PC 1s both show a general trend from the

north to the southwest. In contrast, the unrotated PC 2s both show a general trend from

the southwest to the north. February and March months contribute the most to PC 1 of
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Table 2.4: Monthly contributions (as percentage of total variance) to principal component
scores. February and March contribute the most to PC 1 of PDSI but the remaining PCs
have relatively little variability in monthly contributions.

 

  PDSI SPI-9 
Month PC 1 PC 2 PC 1 PC 2 

Jan 56.0 14.8 48.9 21.7 

Feb 59.8 14.3 49.4 21.0 

Mar 59.0 15.9 50.2 21.1 

Apr 54.7 14.6 49.2 21.3 

May 50.6 16.3 50.9 20.2 

Jun 47.4 16.2 51.5 18.8 

Jul 49.0 15.4 53.5 16.6 

Aug 47.8 15.4 55.0 16.0 

Sep 48.1 15.7 52.8 16.1 

Oct 45.8 13.1 47.0 19.0 

Nov 47.4 13.3 44.3 20.6 

Dec 51.5 13.7 44.6 21.9 
 

PDSI but the remaining PCs have relatively little variability in monthly contributions (Table

2.4). The station communalities indicate that the stations with the highest contributions are

distributed across climate zones (Table 2.5). The rotated PCs clarify visually the similarities

between the two PC 1s and the two PC 2s (Figure 2.5). The re-distributed percentages of

variance corresponding to the rotated PCs are 50.9% and 15.9% for PDSI rotated PC 1 and

2, respectively and 46.8% and 22.5% for SPI-9 rotated PC 1 and 2, respectively.

To evaluate the impact of the number of stations on spatial patterns, we conducted PCA

on the rainfall data for the 30 stations in Sri Lanka with long-term data and compared

these results to those from the rainfall data for the 13 stations used in the drought analysis

(Figure 2.6). The spatial patterns are very similar between the two datasets, with a general

south to north trend in PC 1 and an east to west trend in PC 2. These patterns increase our

confidence that the 13 stations used in our drought index analysis adequately capture the

spatial variability in the country (Figure 2.7).
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Table 2.5: Communalities, proportion of variance attributable to each station. Stations with
the highest contributions to PC loadings are distributed across the climatic zones.

 Climate 
Zone 

Stations PDSI 
SPI-

9 

Wet 

Colombo 0.12 0.14 
Galle 0.03 0.03 

Nuwara Eliya 0.01 0.01 
Ratnapura 0.87 0.88 

Intermediate 
Badulla 0.06 0.09 

Kurunegala 0.04 0.05 

Dry 

Anuradhapura 0.02 0.03 
Batticaloa 0.04 0.06 

Hambantota 0.00 0.01 
Jaffna 0.51 0.43 

Mannar 0.20 0.15 
Puttalam 0.08 0.11 

Trincomalee 0.02 0.03 
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Figure 2: Scree plots for PDSI and SPI-9. Both plots show an elbow at PC 2.Figure 2.3: Scree plots of PDSI and SPI-9 datasets. Both plots show an elbow at PC 2.
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Figure 3: Unrotated principal components of PDSI and SPI-9. Both PC 1s show a general
trend from the north to the southwest while both PC 2s show a general trend from the
southwest to the north.

Figure 2.4: Unrotated principal components of PDSI and SPI-9. Both PC 1s show a general
trend from the north to the southwest while both PC 2s show a general trend from the
southwest to the north.
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Figure 4: Rotated principal components of PDSI and SPI-9. The rotated components clarify
visually the similarities between the two PC 1s and the two PC 2s.

Figure 2.5: Rotated principal components of PDSI and SPI-9. The rotated components
clarify visually the similarities between the two PC 1s and the two PC 2s.
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Figure S1: To evaluate the impact of the number of stations on spatial patterns, we conducted
principal component analysis on the rainfall data for the 30 stations in Sri Lanka with long-
term data (squares) and on the rainfall data for the 13 stations at which temperature were
also available (circles). The 13 stations with both rainfall and temperature data were the
same stations used in the drought index analysis.

Figure 2.6: Patterns comparison: 30 stations vs 13 stations. Long-term rainfall data were
available for the 30 stations in Sri Lanka (squares) while long-term temperature and rainfall
data were only available at the 13 stations used in the drought study (circles).
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(a) PC 1: 30 Stations (b) PC 1: 13 Stations

(c) PC 2: 30 Stations (d) PC 2: 13 Stations

Figure S2: Comparison of rainfall spatial patterns in principal component loadings for 30
stations vs 13 stations. The spatial patterns are very similar between the two datasets, with
a general south to north trend in PC 1 and an east to west trend in PC 2. Thus, the 13
stations used in our drought index analysis adequately capture the spatial variability in the
country.

Figure 2.7: PCA comparison: 30 stations vs 13 stations. The spatial patterns are very
similar between the two datasets, with a general south to north trend in PC 1 and an east to
west trend in PC 2.

The confidence bands in the CWTs highlight the 1980s in the 4–6 year period range

for PDSI Score 1 and in the 1–8 year period range for PDSI Score 2 (Figure 2.8). The

confidence bands for SPI-9 also highlight the 1980s but in the 1–2 and 4–6 period range

for Score 1 and in the 1–4 year range for Score 2 (Figure 2.9). While some of these regions

could be spurious correlations, there is generally high power between 2 and 16 years in the

CWTs for all four of the retained PC scores. The CWT of the Niño 3.4 dataset also shows

significant power in the 2–4 year range from 1880 to 1920 as well as from 1960 to 2010,

which is consistent with observations by Torrence and Compo (1998). There also appears
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to be a lengthening of frequency in the Niño 3.4 time series from 1970 to 1990 (Figure

2.10). The XWTs show significant common power between all of the scores and Niño 3.4

from 1980 to 2000. During this time period, Score 1 of each index shows a consistent

anti-phase relationship (i.e., left-pointed arrows) with Niño 3.4 data during the 4–6 period

range. Score 2 of PDSI also shows an anti-relationship with Niño 3.4 data in the 1980s

during the 4–6 period range while Score 2 of SPI-9 does not show any clear relationships

with the Niño 3.4 data. In general, the phase relationships varied greatly in the XWTs.

Greater areas stand out as being significant in the WTCs compared to the XWTs. The

WTCs of both Score 1s and PDSI Score 2 again show the anti-phase relationship with the

Niño 3.4 data during 1980–1990 in the 4–6 period and varying phase relationships in the

other regions.
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(a) PDSI Score 1
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(b) PDSI Score 2
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Figure 5: Wavelets of PDSI scores: Row 1 = continuous wavelet transforms, Row 2 = cross-
wavelets (XWTs), Row 3 = wavelet coherences (WTCs). XWTs and WTCs were constructed
using Niño 3.4 data. Areas with dark shading have high power. Significant regions are indi-
cated by black lines and the cone of influence by a dashed line.

Figure 2.8: Wavelets of PDSI scores: Row 1=CWTs, Row 2=XWTs, and Row 3=WTCs.
XWTs and WTCs were constructed using Niño 3.4 data. Areas with dark shading have
high power. Significant regions are indicated by black lines and the COI by a dashed line.
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(a) SPI-9 Score 1
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(b) SPI-9 Score 2
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Figure 6: Wavelets of SPI-9 scores: Row 1 = continuous wavelet transforms, Row 2 = cross-
wavelets (XWTs), Row 3 = wavelet coherences (WTCs). XWTs and WTCs were constructed
using Niño 3.4 data. Areas with dark shading have high power. Significant regions are indi-
cated by black lines and the cone of influence by a dashed line.

Figure 2.9: Wavelets of SPI-9 scores: Row 1=CWTs, Row 2=XWTs, and Row 3=WTCs.
XWTs and WTCs were constructed using Niño 3.4 data. Areas with dark shading have
high power. Significant regions are indicated by black lines and the COI by a dashed line.
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Figure 7: Continuous wavelet transform of Niño 3.4. Areas with dark shading have high
power. Significant regions are indicated by black lines and the cone of influence by a dashed
line.

Figure 2.10: Continuous wavelet transform of Niño 3.4. Areas with dark shading have high
power. Significant regions are indicated by black lines and the COI by a dashed line.

The PDSI and SPI-9 time series generally show some agreement in drought (see Figure

2.11 for an example). The overall correlation between PDSI and SPI-9 values is 0.65

(Table 2.6), with a range from 0.46 to 0.81 at individual stations. The PDSI and SPI-9

correlations follow climatic zones; the two drought indices have the strongest correlations

in wet zone stations (0.74-0.81), followed by intermediate zone stations (0.73-0.74), and

dry zone stations (0.46-0.60). Hambantota in the dry zone had a stronger correlation of

0.74 (Table 2.6).

PDSI defines more periods of drought and more numbers of months in drought than

SPI-9 at all 13 stations (Figure 2.12). The SPI-9 data show that the wet zone has generally

experienced less drought (<40 periods) than the intermediate zone (40-41 periods) and dry

zone stations (>44 periods); Hambantota was an exception again in the dry zone with only

39 drought periods. The PDSI data do not follow any clear spatial patterns with regards

to number of drought periods. By subtracting the percentages of months in each of the

drought classes of SPI-9 from PDSI, a relative comparison of drought severity for the two
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indices was developed. This comparison shows that SPI-9 generally classifies more months

as extreme drought than PDSI (Figure 2.13).

Figure 2.11: PDSI (top) and SPI-9 (bottom) time series for Anuradhapura. Drought periods
colored in gray.
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Figure 2.12: Differences in Drought Categories for PDSI (top) and SPI-9 (bottom).
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Table 2.6: PDSI and SPI-9 Correlations

Zone Station R-val 

Wet 

Colombo 0.74 
Galle 0.81 

Nuwara Eliya 0.75 
Ratnapura 0.80 

Intermediate 
Badulla 0.73 

Kurunegala 0.74 

Dry 

Anuradhapura 0.60 
Batticaloa 0.46 

Hambantota 0.74 
Jaffna 0.47 

Mannar 0.55 
Puttalam 0.51 

Trincomalee 0.51 
 Overall 0.65 
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Figure 2.13: Differences in Drought Frequencies. Values are calculated as the difference
in percentages of PDSI months and SPI-9 months in each category.

Economic and demographic metrics related to agriculture, rather than crop-specific

metrics, showed significant correlations with drought indices (Table 2.7). The correlations
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Table 2.7: Correlations with DesInventar agricultural metrics

  District Metric R-val 

PDSI 
Badulla Number of families affected -0.37 

Kurunegala 
Loss for paddy (rupees) 0.27 
Loss for other farm (rupees) 0.24 

SPI-
9 

Anuradhapura 
Payment for relief (loss of other crop in 
rupees) 

0.33 

Loss for other farm (rupees) 0.33 
Puttalam Payment for relief (livelihood option) -0.36 

Trincomalee Number of Grama Niladhari divisions affected 0.45 
 

Table 2.8: Significant monthly linear trends (α = 0.05) with R-values in parentheses. All
trends are decreasing.

 Stations Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Badulla 
PDSI 
(0.28) 

PDSI 
(0.25) 

PDSI 
(0.24) 

PDSI 
(0.22) 

PDSI 
(0.29) 

PDSI 
(0.36) 

PDSI 
(0.27)         

PDSI 
(0.24) 

Kurunegala 
PDSI 
(0.27)             

PDSI 
(0.23) 

PDSI 
(0.19) 

PDSI 
(0.20)   

PDSI 
(0.22) 

Anuradhapura 
SPI-9 
(0.23) 

SPI-9 
(0.22) 

SPI-9 
(0.20) 

SPI-9 
(0.20) 

SPI-9 
(0.20) 

SPI-9 
(0.22) 

SPI-9 
(0.22) 

SPI-9 
(0.22) 

      SPI-9 
(0.23) 

 

with the specific drought index varied depending on the climatic zone. The intermediate

zone stations of Badulla and Kurunegala both significantly correlated with PDSI while the

dry zone stations of Anuradhapura, Puttalam, and Trincomalee significantly correlated with

SPI-9; none of the wet zone districts had significant correlations with either of the drought

indices. The correlation results indicate that there is a counterintuitive, inverse relation-

ship between drought and the number of families affected by drought in Badulla and relief

payments for livelihood in Puttalam (Table 2.7). Linear trend analysis for PDSI shows that

Badulla is experiencing drier conditions from December to July (Table 2.8). Kurunegala

is also experiencing drier conditions during 5 months of the year. Of the dry zone sta-

tions, significant trends were only observed at Anuradhapura with monthly SPI-9 values

decreasing from December to August (Table 2.8).
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2.4 Discussion

Selection of a drought index as a monitoring tool is dependent on both the quantity of

climate data and the ability of the index to consistently detect spatial and temporal varia-

tions of a drought event (Morid et al., 2006). Both indices show similar spatial patterns

for drought in Sri Lanka, with in phase PC 1s and out of phase PC 2s. Although, all of

the months show similar contributions to PC loadings, PCs 1 and 2 could be physically

interpreted as the NEM and SWM. The in phase PC 1s indicate that drought (and con-

sequently non-drought) conditions are experienced uniformly across the island. This is

consistent with the NEM, which brings rainfall to the entire island. The out of phase PC

2s indicate that drought conditions experienced in the southwest portion of the island are

opposite those of the conditions experienced elsewhere on the island; the combination of

negative loadings and negative score values signify higher index values in the southwest.

This is consistent with the SWM, which brings rainfall to the southwest of the island but not

elsewhere. Temporal analysis of the PC scores showed high power in the 4–6 year period

range, consistent with the dominant modes of oscillations observed for rainfall (Suppiah

and Yoshino, 1984b). The XWTs and WTCs showed a consistent anti-phase lag relation-

ship between PC Score 1s and Niño 3.4 data during 1980–2000 in the 4–6 period range.

This indicates a weakening of NEM during El Niño years in recent decades, which is con-

sistent with findings by other researchers (Zubair et al., 2008; Zubair and Ropelewski,

2006).

Although SPI is computationally simple and only needs precipitation data, the index

does not account for the influence of temperature on water shortages. Alternatively, PDSI

is constructed using a physical water balance model that incorporates evapotranspiration

processes into the calculations but lack of data for parameters (such as site-specific AWC

values) in Sri Lanka introduces uncertainties in the results (Karl, 1983). Furthermore,

PDSI values can vary depending on the evapotranspiration equation used in the calculations

(Sheffield et al., 2012). While PDSI values were similar at the regional and global level for
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both the Thornthwaite and Penman-Monteith evapotranspiration equations (van der Schrier

et al., 2011), local comparisons of these estimates have not been conducted for Sri Lanka

to date. These local comparisons of evapotranspiration models at multiple timescales (i.e.,

daily and monthly) are the focus of ongoing work in our research group.

While determination that one particular index is better overall than another index can

rarely be made (Heim Jr, 2002), our study suggests that different indices might be appro-

priate for each of the climatic zones in Sri Lanka: PDSI for the intermediate zone stations

and SPI-9 for the dry zone stations. Neither the PDSI nor SPI-9 correlated with the wet

zone stations. PDSI and SPI-9 for the wet zone stations of Nuwara Eliya or Ratnapura did

not correlate with any of the district-level agricultural metrics, possibly due to the limited

recorded drought information in DesInventar at these locations (20 and 22 months, respec-

tively). The remaining two wet zone stations, Colombo and Galle, had less than 10 months

of recorded drought information and were thus excluded from the correlation analysis.

Agricultural metrics showed strong correlations with PDSI values of Badulla and Kurune-

gala as well as SPI-9 values of Anuradhapura, Puttalam, and Trincomalee. Especially given

the negative correlations between the drought indices and some of the DesInventar metrics,

additional research is needed to verify the validity of using correlations with DesInventar

metrics and to identify alternative agricultural metrics to select appropriate drought in-

dices for the wet zone. Although there are some issues, the correlation analysis with the

DesInventar drought metrics was a first step towards determining an adequate agricultural

drought monitoring tool for Sri Lanka.

Continuing to study drought indices will assist national understanding of drought in

the country, development of a drought monitoring system, and associated drought man-

agement strategies. Particular attention should be given to robust indices that reflect ex-

pected climate change impacts such as increasing temperatures (Eriyagama et al., 2010)

and strengthening of El Niño phenomena (Dai et al., 1998). While variations in PDSI and

SPI-9 drought classifications will have notable impacts on drought management if one of
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these indices is adopted as a basis for drought relief payment allocation, they do not seem to

greatly influence the spatial distributions of the two drought indices. Our results show that

Anuradhapura and Badulla have been experiencing drier conditions during March while

Kurunegala has been experiencing drier conditions during September, when rice planting

decisions are typically made for Yala and Maha, respectively (Zubair et al., 2008). Since

weather during these months could have large impacts on farming decisions, additional

research is needed to understand the impacts of these patterns on actual crop production.
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Chapter 3

Irrigation Water Requirements

3.1 Introduction

During the drought analysis in the previous chapter, we discovered that the northeast

portion of the island (an important agricultural region) was becoming drier during the minor

growing season, when water resources are already scarce. Various practices are currently

being pursued in the country to adapt rice production to a changing climate, including

cultivation of stress-resistant varieties (Redman et al., 2011). Of the adaptation measures,

shifting of the planting date is a low-cost strategy that is especially promising for resource-

strained environments (Hoanh et al., 2015).

Existing IWRs studies in Sri Lanka, however, either typically do not take into account

the dry zone (e.g., (Weerasinghe et al., 2000)), where 70% of the country’s rice is grown

(DCS, 2014; Withanachchi et al., 2014) or they do not address the minor growing season

(e.g., (De Silva et al., 2007)), when rice is produced mainly under irrigated conditions

(Amarasingha et al., 2015). Furthermore, these studies only focus on average patterns.

Given that irrigation agriculture accounts for 96% of water withdrawals in the drier areas

of the country (De Silva et al., 2007), an understanding of historical patterns of variability

of IWRs during the minor growing season is critical for contextualizing estimates of future

changes in IWRs and for informing current adaptation practices.

Therefore, the aim of this chapter is to characterize patterns in IWRs during the minor

growing season in the main rice growing zones of Sri Lanka and to quantify the impact

that shifting the planting date could have on reducing irrigation water needs, thereby im-

proving the irrigation system efficiency. Our analysis of historical data indicates that sig-

nificant gains can be achieved by planting early during the minor growing season in the

dry and intermediate zones. This local-scale assessment of Sri Lanka IWRs contributes to
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Table 3.1: Station profiles. Average climate data reported for minor growing season (March
1 – October 13).

Station 
Average Daily 
Rainfall (mm) 

Average Daily 
Temperature (°C) 

Nearby Irrigation System 

Angunakolapelessa 3.1 28.1 Mahaweli System UW 

Aralaganvila 2.1 29.0 Mahaweli System C: Ulhitiya Tank 

Batalagoda 4.5 27.8 Wewa: Batalagoda Tank 

Maha Iluppallama 2.5 28.6  Mahaweli System H: Kalawewa Tank 
 

the growing literature on the role that low-cost adaptation measures can play in mitigating

detrimental impacts of climate change.

3.2 Methods

A detailed spatial assessment of IWRs cannot be conducted in Sri Lanka due to lack

of daily meteorological data (De Silva et al., 2007). Therefore, the IWRs analysis will be

conducted on a station-by-station basis. Since the brunt of climate change impacts on water

resources is expected to be borne by the dry zone of the country (Eriyagama and Smakhtin,

2010), this objective will particularly focus on stations in this region. After reviewing a

list of available records, data was obtained for four stations located in districts with high

paddy production (Figure 3.1). The data from the Meteorological Department of Sri Lanka

includes daily rainfall, temperature, relative humidity, wind speed, and sunshine duration

records from 1991-2010 (Table 3.1). The meteorological data were reviewed for quality

issues prior to calculating IWRs.
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Figure 3.1: Stations used in IWRs analysis

3.2.1 IWR Calculations

In this analysis, we define IWRs as:

IWR =WD−Pe f f (3.1)

where WD is the water demand and Pe f f is the effective rainfall (i.e., available water)

(Brouwer and Heibloem, 1986); all units are in mm. Water demand is defined as:

WD = SAT +WL+PERC+ETc (3.2)

where SAT is the soil saturation, WL is the water layer, PERC is the percolation and seep-

age, and ETc is the crop evapotranspiration (Chapagain and Hoekstra, 2011); all units are

in mm.
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Water is required during the land preparation stage and the growing period of rice, the

latter of which is composed of the initial, development, mid-season, and late stages (Table

3.2). SAT is the amount of water used by farmers during land preparation to make it easier

to till and level the field; the amount of water needed for this process is dependent on

local soil characteristics. The three stations in the dry zone are predominantly underlain

by reddish brown earth (RBE) soils while the intermediate zone station is predominantly

underlain by low humic gley (LHG) soils (Panabokke, 1996). Because the RBE soils have

high moisture-retaining clay content (Stone, 2015), we assume SAT is 250 mm for these

stations. For LHG soils, which have sandy loam textures, we assume SAT is lower at 200

mm (Panabokke, 1996).

WL is the amount of water farmers use to flood the fields to prevent weed growth during

the initial growing period; farmers in Sri Lanka typically maintain a depth of 10 cm (Stone,

2015). PERC represents the amount of water lost due to drainage of water from the soil

throughout the growing period; we assume the intermediate zone station has a percolation

loss rate of 6 mm/day, while the dry zone stations lose water at a rate of 8 mm/day (Weer-

akoon et al., 2010). ETc is the amount of water needed by rice due to evaporation and

transpiration water losses throughout the growing period and is calculated as:

ETc = ETo ∗Kc (3.3)

where ETo is the potential evapotranspiration (PET) (in mm) and Kc is a dimensionless

crop-specific coefficient, which varies for rice depending on the growing stage ((Batchelor

and Roberts, 1983; Batchelor, 1984); Table 2). ETo (in mm/day) values were calculated

using the Penman-Monteith method (Allen et al., 1998):

ETo =
0.408∆(Rn −G)+ γ

900
T+273u2(es − ea)

∆+ γ(1+0.34u2)
, (3.4)

where Rn is the net radiation at the crop surface (MJ/m2/day), G is the soil heat flux density
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(MJ/m2/day), T is the mean daily air temperature at 2m height (◦C), u2 is the wind speed

at 2m height (m/s), es is the saturation vapor pressure (kPa), ea is the actual vapor pressure

(kPa), ∆ is the slope vapor pressure curve (kPa/◦C), and γ is the psychrometric constant

(kPa/◦C).

The effective rainfall was calculated using a daily-adjusted dependable rain method:

Pe f f =

 0.6Pdaily −0.3 if Pdaily ≤ 2.3

0.8Pdaily −0.8 otherwise
, (3.5)

where Pe f f is the effective rainfall and Pdaily is the daily rainfall (FAO, 2016); all units are

in mm.

The IWR for any growing season depends on the date that rice is planted. To quantify

the amount of irrigation water required to grow rice during the minor growing season,

daily IWRs were summed over the land preparation and the growing stages for a given

planting date (i.e., first day of the initial growing stage) to develop a seasonal estimate.

Seasonal IWRs were calculated for planting dates ranging from March 22 to June 30; the

range of planting dates were selected based on crop calendars (IDSL, 2014). We used a

threshold of five consecutive days to address missing data; when there were five or fewer

missing consecutive days of Pe f f or ETo, missing data at a given station was imputed with

data from the station with the highest correlation for the whole time series. Otherwise,

the seasonal IWRs calculation was not conducted for that planting date. Although daily

data is necessary for agricultural research (Abeyasekera et al., 1983), they could lead to an

overestimation of IWRs if daily net irrigation requirements are constrained to be greater

than or equal to zero (Doll and Siebert, 2002). We address this issue by allowing daily

IWRs to be negative, which takes into consideration the soil’s ability to hold rainwater.

The harvest and postharvest stages are not considered in the IWR calculations.
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Table 3.2: Stage Lengths and Crop Coefficients

Stages Length (days) Kc 
Land Preparation 21 - 
Initial Growing Stage 20 1.1 
Developmental Stage 25 1.1 
Mid-Season Growing Stage 30 1.25 
Late Season Growing Stage 30 1.0 

 

3.2.2 Characterization and Adaptation Analysis

Variability of IWRs can be assessed using several metrics. An average IWR for each

season (i.e., IWR averaged across all possible planting dates) should reflect temporal trends

or other large-scale patterns related to climate. Intraseasonal variation of IWRs (i.e., IWR

as a function of planting date for any given season) should reflect other changes, for exam-

ple a change in the onset date of the monsoon. We use both interseasonal and intraseasonal

metrics to explore patterns in IWR estimates.

Interseasonal analysis was conducted using average seasonal IWRs:

X j =
∑

N
n=1 Xi, j

N
, (3.6)

where X is the seasonal IWR for planting date i and year j, X j is the average seasonal

IWR for year j, and N is the number of days for which a seasonal IWR was calculated

(maximum of 101). Variability in seasonal IWRs was quantified using coefficient of varia-

tion (CV). Interseasonal CV for each station was calculated by:

Cv =
σ(X j)

µ(X j)
, (3.7)

where σ(X j) and µ(X j) are the standard deviation and mean, respectively, of the aver-

age seasonal IWRs. The intraseasonal CV is then:

43



Cv, j =
σ j(Xi, j)

µ j(Xi, j)
, (3.8)

where σ j(Xi, j) and µ j(Xi, j) are the standard deviation and mean, respectively, of the

seasonal IWR estimates for all of the planting dates i for a given year j. Linear trend

analysis was conducted both interseasonally (i.e., X j as a function of j) and intraseasonally

(i.e., Xi, j as a function of i for each j); significance of linear trend analysis was evaluated

using the nonparametric Mann-Kendall test and the slopes quantified using the Theil-Sen

estimator method (Theil, 1992). Patterns in IWRs were assessed relative to sea surface

temperatures from the Niño 3.4 dataset, which has been shown to explain some of the

climate variability in Sri Lanka (Gunda et al., 2016).

Intraseasonal patterns in IWRs were compared with actual planting date records from

nearby agricultural communities to identify possible gains from shifting planting dates (Ta-

ble 3.1); we assume that planting occurred 21 days after the initial water release dates listed

in government records (including (MASL, 2004-2013)). Within each season, we identify

periods of low IWRs (which we define as the lowest 25th percentile of values) to explore

patterns in optimal planting dates. We quantify potential water savings from shifting plant-

ing dates by calculating:

WSk = IWRavg,actual − IWRavg,k, (3.9)

where WSk is the potential water savings for planting week k, IWRavg,actual is the av-

erage of the seasonal IWR estimates corresponding to the actual planting dates across the

years, and IWRavg,k is the average of the seasonal IWR estimates across the years for each

planting week k; all units are mm/season. Analyses were conducted in MATLAB and R.
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3.3 Results

The three stations in the dry zone have higher and less variable seasonal IWRs (mean:

1625–1746 mm; interseasonal CV: 0.04–0.06) than Batalagoda (mean: 1163 mm; intersea-

sonal CV: 0.11) (Figures 3.2 and 3.3). There are a number of years when the intraseasonal

CV is notably greater than the interseasonal CV, particularly at Batalagoda and Maha Ilup-

pallama (Figure 3.3). There are no systematic trends in either the CVs or average IWRs

across the seasons (Figures 3.3 and 3.4). The lack of trends in IWRs is consistent with the

general lack of trends in PET and precipitation observed over the course of the growing

season at the four stations (Figures 3.5 and 3.6).

Intraseasonally, IWRs generally increase with planting date (Table 3.3). The general

increase in IWRs as a function of planting date is consistent with increasing PET and

decreasing rainfall patterns observed over the course of the minor growing season (Figures

3.7 and 3.8). In 2000, all four stations exhibit a significant negative trend in IWRs as a

function of planting date (Table 3.3). Brief El Niño periods occurred in 1992, 1995, 1998,

2002, 2005, 2010 while La Niña periods occurred in 1996, 1999-2001, and 2008 (Figure

3.9).

The actual planting did not often coincide with the low IWRs periods, especially near

the dry zone stations (e.g., Figure 3.10). Water savings calculations highlight that less

irrigation water would be needed if rice were planted early in the season: before April

20th at Batalagoda and before May 1st at the dry zone stations (Figure 3.11). The poten-

tial maximum water savings presented in Figure 3.11 correspond to 2.8% at Batalagoda,

3.1% at Angunakolapelessa, 3.7% at Aralaganvila, and 6.4% at Maha Iluppallama of the

corresponding station’s average seasonal IWRs.
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Table 3.3: Theil-Sen slopes of linear models fit to seasonal IWRs as a function of plant-
ing date. Significant positive slopes in red, significant negative slopes in blue, and non-
significant slopes in black; α = 0.05.

Year Angunakolapelessa Aralaganvila Batalagoda Maha Iluppallama 
1991 - - - 2.6 
1992 -0.6 0.9 - 1.6 
1993 - -1.0 2.5 3.3 
1994 -1.8 1.2 -0.2 -0.1 
1995 3.1 1.5 6.0 6.0 
1996 -0.2 1.0 -0.6 -0.7 
1997 -0.4 2.5 2.9 2.8 
1998 -0.3 0.6 0.7 0.8 
1999 0.6 0.8 - 2.4 
2000 -1.1 -0.4 -1.9 -1.3 
2001 1.7 2.8 3.0 3.8 
2002 2.1 2.5 5.3 4.9 
2003 2.4 2.5 2.0 1.4 
2004 2.2 0.4 -3.8 3.1 
2005 - 1.8 3.1 3.9 
2006 - - 0.2 4.1 
2007 - - -0.5 0.9 
2008 - 0.9 2.6 3.2 
2009 - 2.4 0.7 0.1 
2010 - 1.7 3.0 1.5 
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Figure 3.2: Distribution of seasonal IWRs at the four study locations.
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Figure 3.3: Intraseasonal coefficient of variation in irrigation water requirements (black
points) compared to interseasonal coefficient of variation at each station (red dashed lines)
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Figure 3.4: Average seasonal IWRs (black solid lines) fitted with a linear model fit (blue
dotted lines) and corresponding 95% confidence interval (gray shaded areas). None of the
slopes is significantly different from zero (p>0.05 for all).
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Figure 3.5: Average daily potential evapotranspiration (black solid lines) fitted with a lin-
ear model fit (blue dotted lines) and corresponding 95% confidence interval (gray shaded
areas). Averages for minor growing seasons were calculated using daily data from March
1 to October 13. Angunakolapelessa has a small positive trend while Maha Iluppallama
has a small negative trend. Aralaganvila and Batalagoda do not have slopes significantly
different from zero (i.e., p>0.05).
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Figure 3.6: Average daily precipitation (black solid lines) fitted with a linear model fit (blue
dotted lines) and corresponding 95% confidence interval (gray shaded areas). Averages
for minor growing seasons were calculated using daily data from March 1 to October 13.
Angunakolapelessa has a small negative trend while the remaining three stations do not
have slopes significantly different from zero (i.e., p>0.05).
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Figure 3.7: Potential evapotranspiration averaged across the years (black solid lines) fit-
ted with a smoothed curve computed by loess (blue dotted lines) and corresponding 95%
confidence interval (gray shaded areas). At Angunakolapelessa and Batalagoda, potential
evapotranspiration decreases over the course of the minor growing season while at Arala-
ganvila and Maha Iluppallama, potential evapotranspiration generally increases over the
course of the minor growing season.
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Figure 3.8: Precipitation averaged across the years (black solid lines) fitted with a smoothed
curve computed by loess (blue dotted lines) and corresponding 95% confidence interval
(gray shaded areas). At all four stations, there is generally high precipitation in early April.
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Figure 3.9: Sea surface temperature from the Niño 3.4 dataset with corresponding El Niño
(pink) and La Niña (green) periods shaded.
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Figure 3.10: Seasonal IWRs as a function of planting date at Maha Iluppallama (points in
gray are lower than that season’s 25th percentile while points in black are greater than or
equal to the 25th percentile). Vertical green line indicates actual date rice was planted; rice
was not planted in the nearby irrigation area at Kalawewa tank during 2006.
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Figure 3.11: Potential average water savings in IWRs as a function of planting date for the
20 years analyzed.

3.4 Discussion

Our analysis characterizes IWRs and associated patterns for the main rice growing

zones of Sri Lanka. Due to lack of access to historical data, this analysis was limited

to a 20-year period at four stations. Although the station coverage is sparse, the previous

chapter indicates that such patterns could still be good approximations of general patterns

in the country. Batalagoda has lower IWRs than the three stations in the dry zone, which

is consistent with the higher rainfall received in the intermediate climatological zone. The

minor growing season IWRs for Batalagoda are similar to the estimates developed for the

Nilwala basin (1012-1246 mm) (Weerasinghe et al., 2000), which is also in the intermedi-

ate zone. IWRs for the dry zone have only been characterized for the major growing season

(450-500mm) (De Silva et al., 2007), so our average IWRs estimates of 1625-1746mm are

among the first developed for the minor growing season for this region of the country.

In addition to average estimates, we also consider trends in IWRs both across and within

seasons. Although increases in temperature have been observed in Sri Lanka (Eriyagama

and Smakhtin, 2010), we do not observe any systematic trends in average seasonal IWRs
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across the study years (Figure 3.4). A combination of increasing PET and decreasing rain-

fall over the course of the minor growing season (Figures 3.7 and 3.8) drive increases in

IWRs as a function of planting date; the notable exception was 2000 when a significant La

Niña was present. The presence of a La Niña in 2000 could have delayed and stabilized the

rainfall, causing the coefficient of variation to be relatively low during this period (Figure

3.3); the cause of the local high in coefficient of variation in 1995 for Batalagoda and Maha

Iluppallama is unclear.

We also consider the variability in seasonal IWRs. IWRs at Batalagoda have a higher

CV than the three dry zone stations (Figure 3.3), indicating that the intermediate zone has

more variable weather. Furthermore, during certain years, the interseasonal CVs are no-

tably lower than intraseasonal variability. For example, the intraseasonal CV at Batalagoda

was 0.19 in 1995, which is much larger than the 0.11 interseasonal CV observed at the sta-

tion across the 20 years. This indicates that day-to-day decisions would have had measur-

able impact on seasonal IWRs in 1995 at Batalagoda. Therefore, intraseasonal fluctuations

should be considered alongside long-term changes during planning to minimize irrigation

water demand and generally, improve management of water resources for agriculture.

Ideally, planting dates would coincide with rainfall onset to maximize crop yields (Ama-

rasingha et al., 2015). When timely rainfall forecasts are lacking, however, an understand-

ing of historical patterns could help inform agricultural practices. If irrigation water is

available, shifting planting dates to mid-April or earlier could improve irrigation water use

efficiencies in Sri Lanka while delaying the planting date to June could result in losses

(Figure 3.11). These dates coincide with the periods of high and low rainfall observed at

the stations in the early April months and July months, respectively (Figure 3.8). These

findings are consistent with studies (e.g., Weerasinghe et al. (2000); Dharmarathna et al.

(2014)), which identify early April as the optimal planting period for the minor growing

season in the intermediate zone based on historical data and future climate scenarios, re-

spectively. However, in years where rainfall is scarce (e.g., in 2000), there may be little
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or no savings realized from the shifting of planting dates. Spatial variations amongst the

zones are also important to recognize; more water savings can be achieved in the dry zone

if planting occurs in late March (up to 6.4%) while intermediate zone water savings are

highest during the first week of April (up to 2.8%). There are also differences among the

dry zone stations; PET trends at Angunakolapelessa, which generally decrease over the

course of the minor growing season, are more comparable to trends observed at Batalagoda

in the intermediate zone than to the other two stations in the dry zone.

Although our analysis focuses on the irrigation water requirements of the minor grow-

ing season, it is worthwhile to note that this irrigation water is obtained through man-

agement of excess water from the preceding major growing season. The locally-managed

wewa systems in the intermediate zone could potentially respond more rapidly to local rain-

fall onsets, thereby addressing the management challenge associated with high variability

of IWRs in this region. Water releases in the dry zone, however, are based on available

stored water across basins in the Mahaweli system. Given the relatively low interseasonal

CVs at the dry zone stations, it would be particularly beneficial to systematically shift the

planting date of rice earlier in these areas.

Shifting planting dates is a low-cost strategy since no additional resources need to be

invested (e.g., purchasing different seed varieties). Although rice revenues are subsidized

by the Sri Lankan government, there may be other drivers influencing farmers’ selection of

planting dates. This is an active area of research among social scientists on the ADAPT-SL

project; in addition to rainfall onset and water release dates, we are also considering other

factors influencing farmers’ planting decisions, such as extreme weather events, labor dy-

namics, and recommendations by local extension officers. The general increasing trend

observed in drought indices during the March planting month noted in the previous chap-

ter may also be a contributing factor. Assuming historical water availabilities, Sri Lanka

should be able to meet future demand by continuing to close yield gaps and increasing har-

vested areas (Davis et al., 2016). However, high-resolution regional climate models for Sri
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Lanka indicate that water resources in the dry zone of the country will be adversely affected

by climate change (Ashfaq et al., 2009). Furthermore, given research indicating less excess

water being available during the major growing season in the future (De Silva et al., 2007),

it is all the more critical that water managers optimize planting dates for the minor growing

season so that Sri Lankan farmers can continue to maintain self-sufficiency in their staple

crop even under the pressures of a changing climate. Overall, our analysis contributes to the

growing literature (such as Kucharik (2008); Hu and Wiatrak (2012); Deryng et al. (2011))

on the potential for shifting planting dates on improving crop production.
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Chapter 4

Crop Diversification

4.1 Introduction

In certain parts of the country, however, water stress is already significant enough to

warrant diversification away from rice production, a water-intensive process. However,

crop selection decisions are influenced by myriad factors besides weather, such as eco-

nomics (rice is heavily subsidized in Sri Lanka but other crops are subject to market dy-

namics), a farmer’s prior experiences, and their behavioral attitudes.

Fortunately, strategies that help farmers adapt to climate change can benefit both farm-

ing productivity and revenue (Di Falco et al., 2012). Although infrastructure-driven strate-

gies (such as building new reservoirs) often drive policy conversations, soft adaptation tech-

niques (such as seasonal forecasts) can also buffer farmers from climate risks (Sovacool,

2011). Access to weather information is often positively correlated to changes in farming

practices (Wood et al., 2014), with seasonal forecasts, in particular, having considerable po-

tential to improve livelihoods in regions with high inter-annual rainfall variability (Roncoli,

2006; Ash et al., 2007; Ziervogel, G. and Opere, A. (editors), 2010; Hansen et al., 2011).

Such forecasts can be used by farmers, for example, to inform their crop diversification

strategies by helping them decide which crops to plant (Crane et al., 2010).

Both field and modeling approaches have been used to evaluate the impact of forecasts

on agricultural communities (Bharwani et al., 2005; Patt et al., 2005; Ziervogel et al.,

2005; Roncoli, 2006; Ash et al., 2007; Everingham et al., 2008; Crane et al., 2010; Hansen

et al., 2011; Roudier et al., 2014; Wood et al., 2014; Choi et al., 2015; Vervoort et al.,

2016). Although field studies capture real-world responses to forecasts, their findings can

be limited when longitudinal data are absent (Patt et al., 2005; Ash et al., 2007; Hansen

et al., 2011). Thus, empirically-grounded agricultural system models play a critical role in
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the assessment of forecast benefits since they allow for long-term assessment and can take

into account the probabilistic realizations of the forecast (Ash et al., 2007).

Given the complex and simultaneous interactions among biophysical, social, economic,

and perceptual factors in farming communities, a CNHS framework is critical to develop-

ing a comprehensive understanding of the effectiveness of adaptation strategies (Liu et al.,

2007; Nay et al., 2014). Accordingly, agricultural system models include complex dy-

namics to account for the various factors that shape farmers’ immediate environments and

subsequent decisions (Graeub et al., 2016; Jain et al., 2015). Although market dynamics

are often incorporated into modeling studies (e.g., (Acosta-Michlik and Espaldon, 2008)),

the combined impact of forecast use and different crop economics (i.e., costs and return

dynamics of subsidized vs. market-driven crops) on farmer livelihoods has not received

much attention. Research shows that garden farmers in the Limpopo province of South

Africa who plant butternut squash, a more expensive crop with a perceived guaranteed re-

turn, would have much higher income in a drier climate scenario (Bharwani et al., 2005).

However, it is unclear, how the crop economics would have affected Limpopo farmers’

incomes in a wetter climate scenario. Various countries around the world, including In-

dia, Qatar, and the United States have policies that incentivize production of certain crops

(Fader et al., 2013). Since subsidies and company contracts can greatly change the eco-

nomics of crops and subsequent farmer decisions, the interplay between the physical and

economic environments needs to be explicitly evaluated to develop a comprehensive un-

derstanding of seasonal forecast benefits and limitations.

Thus, the primary objective of this study is to assess the impacts of seasonal forecast

use on crop diversification in a system with varying crop economics (i.e., costs and returns).

The specific objectives we aim to evaluate for our study area are: 1) whether incorporating

forecasts into planting decisions could generate higher net agricultural income for a farmer

and 2) the role crop economics play in moderating the effect of different climate conditions

on changes in a farmer’s net agricultural income.
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The dry zone of Sri Lanka, a region with a large agricultural sector and high inter-annual

rainfall variability (Gunda et al., 2016), serves as an ideal case study for this analysis for

two reasons: 1) varying crop economics and 2) forecasts availability. The three main crops

in the region (rice, soybean, and onion) have notably different crop economics: rice pro-

duction is heavily subsidized and has a guaranteed market return while onions are subject

to the dynamics of market supply and demand; soybean returns are partially buffered by

futures contracts, whereby farmers enter agreements with businesses to buy the crop at a

fixed price irrespective of subsequent market fluctuations. Furthermore, the Meteorolog-

ical Department of Sri Lanka develops ternary seasonal forecasts (i.e., probabilities that

rainfall will be dry, normal, and wet) and shares this information with other government

agencies. Therefore, although available, seasonal forecasts are not currently directly shared

with farmers.

To evaluate the objectives, this study draws upon diverse research expertise and incor-

porates methods and insights from several fields, including hydrology, social psychology,

geography, and behavioral economics to develop an integrative model on a system dy-

namics platform. We use both quantitative and qualitative data to inform and develop our

empirically-based model, including games in the field to develop decision rules regarding

how farmers translate seasonal climate forecast information to farming decisions; when

games are designed to emulate the local environment, farmers’ hypothetical choices can

approximate real-life behaviors and thus, provide considerable insight (Kühberger et al.,

2002; Kang et al., 2011). Our simulation results suggest that by using seasonal forecasts,

farmers’ average agricultural income generally increases, albeit with greater variance in

income than farmers that do not use the forecasts. Although further work is needed to un-

derstand the impact of social interactions on farmers’ crop selection decisions, our analysis

indicates that the current economic structure will aid livelihood improvement of a forecast-

using farmer under a drier climate scenario and reduce income disparity under a wetter

climate scenario. Our work extends the ongoing assessment of seasonal climate forecast
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benefits for farmer livelihoods both conceptually and methodologically by: 1) explicitly

incorporating the impacts of crop economics on farmer livelihoods in a changing climate

and 2) using games to derive forecast interpretation decision rules.

4.2 Methods

4.2.1 Site Description

Our study region is System MH, where approximately 56% of the working population

is involved in agriculture (DCS, 2012). System MH, located in the Galenbindunuwewa

district, is one of the irrigation systems managed by the Mahaweli Authority of Sri Lanka

(Figure 4.1). The MH region is chronically water-stressed, in part due to its location in the

dry zone. The Huruluwewa reservoir was constructed and later connected to Sri Lanka’s

major irrigation system to buffer the MH region from the high seasonal rainfall variabil-

ity. However, decreasing rainfall coupled with minimal inflows from the Mahaweli system

has meant that Huruluwewa is often rain-fed and under-capacity during the dry season

(De S. Hewavisenthi, 1992; MASL, 2004-2013; Abeynayaka et al., 2007; Eriyagama and

Smakhtin, 2010; Gunda et al., 2016).

When water is sufficient during the dry season (e.g., in 2015), farmers in MH pre-

dominantly grow rice (65% by area) followed by soybean (14%) and some onion (1%)

for revenue; the remaining production area is either devoted to vegetables for household

consumption (2.4%), maize (<1%), other crops (<1%), or left fallow (16%) (Berundhar-

shani and Munasinghe, 2015). Growing rice is generally preferred over other food crops

like soybean or onion because rice is the staple food of the country (Brewer et al., 1992;

Weerakoon et al., 2011); soybeans are typically sold for use as animal feed while onions

are a cash crop. The water requirements for soybeans are comparable to those of rice but

soybeans are more tolerant of drought; in a drier climate, however, onions do much better

(Brouwer and Heibloem, 1986). Generally, there is sufficient water in the Huruluwewa
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reservoir to grow onions more often than rice or soybean. However, the input and hired

labor cost of growing onions is much greater, up to five times the cost for rice and soy-

bean (Department of Agriculture, 2010–2011). The cost of planting rice is the lowest of

the three crops due to various government support programs, such as heavily subsidized

fertilizer specifically for rice (Davis et al., 2016). An additional factor discouraging onion

production is the volatility of returns associated with the crop relative to that of rice and

soybean: the prices for onion are subject to market fluctuations while the returns for rice

and soybean are relatively fixed, due to government price ceilings and futures contracts

respectively (field notes). Farmers typically plant only one crop per field during the sea-

son given that the crops require different land preparation and management efforts. At

the start of the season, if the reservoir levels are visibly low, farmers typically leave their

fields fallow. Most of the farmers receive information about water availability from their

farmer organization representatives, who meet with the Irrigation Engineer, Department of

Agriculture, and other government officers (field notes).
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Figure 4.1: Study location and areas of field work

4.2.2 Model Development and Data Sources

The modeling effort is centered on a simplified representation of an individual farmer

living in System MH. Interactions between individuals (i.e., social components) and ex-

treme weather events were outside the scope of the model. The model is built on a sys-

tem dynamics platform (specifically Powersim Studio 10 Expert) with a seasonal time

step for a period of 64 dry seasons, which occur once per year. The system dynam-

ics platform was selected because it provides a visual framework that allows for eas-

ier integration of the diverse variables in the study. The model we developed for this

study has been made publically available and can be accessed via the openabm platform:

60



https://www.openabm.org/model/5395/version/1/view.

The three main components of the model structure are hydrological, economic, and

behavioral (Figure 4.2). The objective of the model is to evaluate the impact of seasonal

forecasts on a farmer’s net agricultural income when their crop choices have different and

variable costs and returns. Net agricultural income is defined as the difference between the

costs and revenues associated with the crop the farmer plants on their field. In the model,

net agricultural income is a function of the crops planted, actual seasonal weather, and

market returns. Three climate scenarios are simulated in the model: 1) climate consistent

with historical conditions, 2) drier climate, and 3) a wetter climate. Each season, the fore-

cast is sampled from the specified climate scenario and the actual weather is subsequently

sampled (moderated by the forecast skill) from the forecast. It should be noted that in the

model, the forecast skill is defined as the percentage of time that the weather is drawn from

the forecast, which is different from standard meteorological definitions of forecast skill.

To understand the impact of the seasonal forecasts, the farmer’s behavior when using sea-

sonal forecasts (”Adaptive: Forecasts”) is compared to: 1) a farmer who only uses climate

conditions (i.e., the climate condition from which the forecast was sampled) to select crops

(”Baseline: Climate”) and 2) a farmer who consistently plants rice every season regardless

of the weather (”Baseline: Rice Alone”).

The model variables and assumptions, including how the various empirical data sources

were consulted to define model variables and dynamics, are described in detail in Appendix

A. A summary of the primary variables is provided in Table 4.1. Brief descriptions about

the primary sources consulted for the model are provided below.

• Game: Since games can provide insight into decision processes (Kühberger et al.,

2002; Castillo et al., 2011; Kang et al., 2011; Nay et al., 2014), we designed a con-

textualized, dynamic game to investigate how farmers in the field respond to and

interpret weather forecasts within their specific environment. Specifically, the farm-

ers were provided with a randomly selected seasonal forecast (Figure 4.3) and asked
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to select which crops (if any) they would plant for the season. Once the farmers’

crop choices were recorded and associated costs paid to the banker, the wheel was

spun to determine the actual weather and subsequent returns for the crops planted

were paid to the farmers. The wheel was then reset for the next season. The farmers

then planted crops given the new forecast and their current income. This process was

repeated for a few rounds. The game was played with 49 farmers in System MH

in January 2016, in 4 groups of 12-13 players per group. All of the crop selections

made by the farmers were analyzed relative to the weather forecasts and other vari-

ables (e.g., education) to understand how farmers interpreted the probabilistic nature

of the forecasts (additional details about the decision heuristics are provided in Ap-

pendix A). A description of the game method (including instructions) is provided in

Appendix B.

• Surveys: The primary survey consulted (hereafter referred to as ”ADAPT-SL Sur-

vey”) was conducted for over 800 randomly selected dry zone rice farmers as part of

the larger project in which this study is embedded. The ADAPT-SL Survey captures

various information including farmer demographics and attitudes towards adaptation

practices. The second survey consulted was a household survey (hereafter referred

to as ”System MH Survey”) conducted during the 2015 dry season to characterize

farming behaviors in the study area (Berundharshani and Munasinghe, 2015).

• Interviews: Data from 200 farmer interviews (140 of which were all conducted in

and near System MH in late 2015) as well as interviews with officials (representing

both governmental and non-governmental agencies) working on areas of irrigation,

agriculture, and climate provided information about the context in which farmers

make decisions.

Given the presence of stochastic variables in the model, each climate condition was simu-

lated 1,000 times and the results were aggregated to capture general trends. Model outputs
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from Powersim were written to Microsoft Excel and processed in R. Given the stylized

nature of our modeling effort, we focus on pattern-oriented modeling to qualitatively judge

the ability of the model to reflect patterns observed in the real system (Grimm et al., 2005).

In addition to ensuring accurate formulation by reviewing output tables (Rykiel, 1996), we

evaluated our model to ensure that it reproduced predicted patterns (Ahmad and Simonovic,

2000). Sensitivity analyses were conducted to understand the impacts of variable assump-

tions on model output. Each of the variable values explored in the sensitivity analysis

(summarized in Table 4.2) was simulated 1,000 times and aggregated prior to comparisons.

Figure 4.2: Influence diagram of hydrological (dashed blue), economic (dashed purple),
and behavioral (dashed orange) components of the system dynamics model. The two green
arrows indicate the updating process of the farmer’s perceived effectiveness (i.e., prior
experience) of the adaptation practice of crop diversification at the end of each season.
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Table 4.1: Summary of the variables and related empirical data sources for the various
model components

Model component Variable Source Notes 

Hydrology 

Climate scenarios Academic 
literature 

Historical climate is defined as 40% dry - 40% 
normal - 20% wet (additional details in the 
“Climate scenarios” subsection in Appendix A) 

Forecast skill Interviews 

The actual weather observed draws from the 
seasonal forecast 70% of the time (additional 
details in the “Actual weather” subsection in 
Appendix A) 

Economic Crop costs and returns Government 
reports 

Crop costs (including both labor and 
materials) and returns are derived from 
agricultural statistics of the region; onions are 
approximately 5 times the cost of rice and 
soybeans and also have a more variable 
return (additional details in the “Market 
return” subsection in Appendix A) 

Behavioral 

Interpretation of 
seasonal forecast Game 

Generally speaking, farmers preferred to plant 
soybean except when the probability of wet 
or dry weather is high, in which case farmers 
opted to plant rice or onions respectively 
(additional details in the “Crop decisions” 
subsection in Appendix A) 

Perceived effectiveness 
(e.g., weather forecast) ADAPT-SL survey 

As farmer’s predictability of rainfall 
decreased, they were less likely to plant non-
rice, or other food crops (additional details in 
the “Trust heuristics” subsection in Appendix 
A) 

Trust heuristics Multiple sources 

Farmer’s trust is based on previous 
experiences and influences behavior in the 
future (additional details in the “Trust 
heuristics” subsection in Appendix A) 

Education Game and ADAPT-
SL survey 

Survey data shows that farmers who are less 
educated were less likely to state that they 
could predict rainfall. Results from the game 
indicate that less educated farmers planted 
more rice even at low probabilities of wet 
season whereas more educated farmers 
moved more quickly towards planting rice as 
the probability of a wet season increased 
(additional details in the “Education” 
subsection in Appendix A) 

Other Crop yields Government 
reports 

Soy and rice have higher yields in wet climate 
while onions perform better in a dry climate 
(additional details in the “Crop yield” 
subsection in Appendix A) 
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Table 4.2: Sensitivity analyses conducted

Parameter Initial 
Value Distribution 

Forecast skill 70% Uniform: 50% to 100% in 10% intervals 
Initial trust in forecast 80% Uniform: 50% to 100% in 10% intervals 
Threshold for losing trust in forecast 30% Uniform: 10% to 60% in 10% intervals 
Initial trust in market 70% Uniform: 50% to 100% in 10% intervals 
Threshold for losing trust in market 50% Uniform: 30% to 80% in 10% intervals 
Market return expectations (ratio of 
actual to maximum values) 

0.8 Uniform: 0.5 to 1.0 in 0.1 intervals 

 

Figure 4.3: Playing games in the field: A) written presentation of forecast information, B)
weather wheel with spinner and poker chips used as currency, C) farmer placing crop cards
on fields to convey planting decisions, D) crop cards with associated planting costs, and
E) yield return sheet showing relationships between crops, weather, and market returns.
Both planting costs and yield returns are based on data from Department of Agriculture
(2010-2011) and are normalized by 30,000 Sri Lankan Rupees (LKR).
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4.3 Results

Model simulations for the three climate conditions show that, generally, the adaptive

farmer has a higher average net agricultural income than either of the baseline farmers,

especially under the drier climate scenario (Figure 4.4). However, the adaptive farmer’s

income has the largest CV of the three farmers in each of the climate scenarios (Table 4.3).

The adaptive farmer has greater trust in the weather forecast over time especially in the

drier climate scenario (Figure 4.5) while the farmer using general climate information has

marginally greater trust in the market over time (Figure 4.6); the rice-alone farmer’s trust in

the market does not change over time since rice is not subject to market fluctuations (Figure

4.6). The adaptive farmer chooses all four crop options over the course of the simulation

while the farmer using general climate information chooses between rice and soybeans

(Figure 4.7).

When education levels are varied, results show that the less educated, adaptive farmer

has lower average net agricultural income than the more educated, adaptive farmer in the

historical and drier climate scenarios (Figure 4.8). In the wetter climate scenario, however,

there is no difference in net agricultural income between the two farmers. Generally, the

less educated, adaptive farmer has lower trust in the forecast and market than the more

educated, adaptive farmer (Figures 4.9 and 4.10). The more educated, adaptive farmer

generally plants more soybeans across the climate scenarios as well as more onions in the

drier climate scenario (Figure 4.11).

All of the results above were simulated with a forecast skill of 70%, the current accuracy

of Meteorological Department of Sri Lanka’s forecasts. A sensitivity analysis of forecast

skill shows that as forecast skill increases, the adaptive farmer’s net agricultural income

and trust in the forecast both generally increase as well (Figure 4.12). Changing the initial

trust level of forecasts or threshold at which trust in the forecast is lost does not affect the

adaptive farmer’s net agricultural income (Figures 4.13 and 4.14). Changing the initial trust

level of market or the threshold at which farmer loses trust in the market, however, both
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Table 4.3: Coefficient of variation of farmers’ net cumulative agricultural income

 Historical Climate Drier Climate Wetter Climate 
Adaptive: Forecast 0.66 0.69 0.63 
Baseline: Climate 0.63 0.64 0.62 

Baseline: Rice Alone 0.61 0.62 0.61 
 

have a significant impact on the farmer’s net agricultural income (Figures 4.15 and 4.16).

As the adaptive farmer’s expected return for the market approaches the maximum return

values, the farmer’s net agricultural income decreases (Figure 4.17).
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Figure 4.4: Net agricultural income of farmers across climate conditions. Solid lines rep-
resent average values while the shaded regions are +/- 1 standard deviation. The adaptive
farmer generally has higher average net income, especially under the drier climate scenario,
but also a greater standard deviation than the two baseline farmers.
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Figure 4.5: Trust in forecast over time. Solid lines represent average values while the
shaded regions are +/- 1 standard deviation. The adaptive farmer has higher trust in the
weather forecast than the baseline farmers, especially for the drier climate scenario when
the standard deviation bounds of the adaptive farmer are outside the standard deviation
bounds of the baseline farmers.
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Figure 4.6: Trust in market over time. Solid lines represent average values while the shaded
regions are +/- 1 standard deviation. Across the climate scenarios, both the adaptive and
climate farmers have high standard deviations with the latter having marginally higher aver-
age trust over time; the only-rice farmer’s trust in the market stays constant at 70% because
their crop revenue is not subject to market fluctuations.
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Figure 4.7: Crops planted by the adaptive (”Forecast”) and baseline farmers (”Climate” and
”Rice Alone”) across the three climate scenarios. The adaptive farmer is the only farmer
who plants onions across the three climate scenarios.
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Figure 4.8: Net agricultural income as a function of the adaptive farmer’s education. Solid
lines represent average values while the shaded regions are +/- 1 standard deviation. The
more educated farmer has higher average net income than the less educated farmer in the
historical and drier climate scenario but the two farmers have comparable net income in the
wetter climate scenario.
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Figure 4.9: Trust in forecast over time as a function of the adaptive farmer’s education.
Solid lines represent average values while the shaded regions are +/- 1 standard deviation.
The more educated farmer consistently has higher average trust in the weather (especially
in the drier climate scenario) than the less educated farmer.
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Solid lines represent average values while the shaded regions are +/- 1 standard deviation.
The more educated farmer has higher average trust in market over time than the less edu-
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Figure 4.11: Crops planted across the three climate scenarios as a function of the adaptive
farmer’s education. The more educated farmer generally plants more soybean across the
climate scenarios as well as more onions during the drier climate scenario.
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Figure 4.12: Sensitivity analysis of forecast skill. As forecast skill increases, the net agri-
cultural income (A) and trust in forecast (B) both generally increase but there is no change
in market trust (C).
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Figure 4.13: Sensitivity analysis of initial trust in forecast. As initial trust in the forecast
increases, overall trust in the forecast for the adaptive farmer also increases (B) but there
is minimal change in farmer’s net agricultural income (A) and farmer’s trust in the market
(C).
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Figure 4.14: Sensitivity analysis of threshold at which the adaptive farmer loses trust in
forecast. Changing the farmer’s threshold for trusting the forecast has no notable impact
on farmer’s net income (A), trust in the forecast (B), or trust in the market (C).
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Figure 4.15: Sensitivity analysis of initial trust in market. As initial trust in the market in-
creases, both farmer’s net agricultural income (A) and the farmer’s overall trust in the mar-
ket (C) significantly increase but the farmer’s trust in the forecast only marginally changes
(B).
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Figure 4.16: Sensitivity analysis of threshold at which the adaptive farmer loses trust in
market. As a farmer’s market threshold increases, their net income (A) decreases but there
is no change in the farmer’s trust in forecast (B) or trust in market (C).
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Figure 4.17: Sensitivity analysis of the adaptive farmer’s expectation for market returns.
As farmer’s market expectations (ratio of actual return to maximum return) increase, their
net income (A) and trust in the market (C) decrease but there is no change in the farmer’s
trust in the forecast (B).
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4.4 Discussion

Our empirically-grounded simulation reproduces multiple patterns that are expected in

the real system, thereby increasing the confidence with which we can interpret the model

results. Notably, we would expect a farmer’s cumulative net agricultural income to increase

over time; farmers would pursue another livelihood if they were chronically losing money

on their farming operations. We would also expect the farmer who only plants rice to have a

lower CV in their net agricultural income than a farmer who depends on market-dependent

crops. Both of these patterns are verified by our model outputs (Figure 4.4). Our current

field data lack the resolution necessary to capture differences in net agricultural income as

a function of education, so additional data collection is needed to assess the model results

presented in Figure 4.8.

Consistent with empirical findings of Patt et al. (2005), our simulation indicates that

the adaptation practice of using seasonal forecasts could improve economic outcomes. In

other words, our model results show that by using forecast information, the adaptive farmer

has higher average net agricultural income than a farmer who only plants rice or a farmer

who selects crops based only on average climate information. The difference in income is

primarily driven by the diverse portfolio of crops planted by the adaptive farmer over the

64 seasons in the simulation, specifically the prevalence of onions under the drier climate

scenario. Crop diversification has been recognized as a significant factor in increasing

resilience of agricultural systems (Mijatović et al., 2013). However, structural constraints

(such as subsidy programs) are a contributing factor in farmers’ lack of interest in this

adaptation strategy (Lin, 2011). Ongoing research on the ADAPT-SL project is considering

the impact of an influx of onions on systematically driving down the returns for the crop.

When water resources are plentiful, on the other hand, similar income profiles emerge

from differing mixes of crop choices. In particular, the adaptive farmer with greater than

grade 9 education plants more soybeans than onions or rice but has the same average in-

come as the adaptive farmer with less than grade 9 education. These dynamics highlight
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that the impact of the current crop economics of the crops on farmer livelihoods varies

depending on the climate scenario, with the drier climate scenario benefiting farmers who

are willing to take more risks (i.e., planting onions, a crop dependent on market dynam-

ics) while the wetter climate scenario reduces income disparity between the farmers. Our

results indicate that when resources are scarce, varying decisions (i.e., use of forecast vs

just planting rice) could increase income disparities between groups. This is consistent

with findings that disparities in natural resources can exacerbate income inequality (Fum

and Hodler, 2010). The accumulation of wealth by some farmers can have a compound-

ing effect, making these farmers more able to invest in new technologies, which increase

production and income, and could further buffer them from environmental changes (Rear-

don and Taylor, 1996; Reardon et al., 2000). Although increased rainfall variability is the

dominant climate change impact expected in Sri Lanka, farmers in the dry zone have ob-

served a shift in the local climate: droughts have been getting worse, an observation that

is consistent with analysis of meteorological data in Chapter 2 (Seo et al., 2005; Esham

and Garforth, 2013; Truelove et al., 2015; Gunda et al., 2016). Since accurate perception

of weather patterns has been shown to be a significant predictor of adaptation, it is not

surprising that Sri Lankans have begun adapting by managing their farming practices or

diversifying their income, with changing crops being the most popular on-farm adaptation

strategy (Esham and Garforth, 2013; Piya et al., 2013; Truelove et al., 2015). Therefore,

concerns about income disparities are not insignificant.

In addition to higher average incomes, the adaptive farmer (regardless of education lev-

els) has higher income variability than the baseline farmers, a pattern generally observed

across farmers using forecasts (Ash et al., 2007). Farmers who lack the financial capital

to buffer them from the income variability might be more reluctant to diversify away from

rice, a crop with stable returns; a general reluctance to diversify has been noted by many

field studies including Thiruchelvam (2010). An analysis of ADAPT-SL Survey data shows

that high economic status was positively associated with planting non-rice food crops dur-
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ing the dry season (Burchfield and Gilligan, 2016), further indicating that crop diversifica-

tion is not an equally accessible adaptation strategy. In our modeling effort, we assume that

farmers have the necessary capacity to obtain loans as needed (i.e., their crop selections are

not constrained by their actual bank accounts). This is in large part due to the presence of

a debt economy in Sri Lanka. In future iterations, the model could be extended to explore

the impact of economic as well as other constraints such as imperfect access to forecasts

or markets and biophysical limitations on farmer livelihoods (Peng et al., 2004; Hansen

et al., 2011; Dilling and Lemos, 2011; Esham and Garforth, 2013; Berundharshani and

Munasinghe, 2015; Roncoli, 2006).

While farmers’ understanding of the probabilistic forecasts has generally been mixed

(with some arguing farmers are unable to understand them and some showing otherwise

(Patt et al., 2005; Hansen et al., 2009; Roncoli, 2006; Lemos et al., 2007; Unganai et al.,

2013), our games in the field show that farmers in System MH are responsive to forecasts,

particularly to the probabilities of wet and dry seasons. Changes in the probability of a nor-

mal season did not seem to greatly influence farmers’ crop selection, a pattern observed in

other countries (Grothmann and Patt, 2005). Additionally, farmers’ responses to forecasts

were moderated by education, which was incorporated into our assessment, and coordina-

tion among farmers, which was outside the scope of this analysis. The impact of social

interactions on attitudes towards use of climate information is not insignificant (Thomas

et al., 2007; Acosta-Michlik and Espaldon, 2008; Crane et al., 2010; Marshall et al., 2011;

Berger and Troost, 2014; Muita et al., 2016), and could positively influence farmers’ adap-

tation (Esham and Garforth, 2013; Truelove et al., 2015). Our findings in the field indicate

changes in farmer behaviors when collaboration was encouraged (Appendix A). However,

additional field work is needed to characterize the heterogeneity of farmers (e.g., differ-

ences in risk tolerances, prior experiences with extreme weather events such as floods, and

perceptions of climate change) and determine the relative importance of social informa-

tion vs a farmer’s own experiences in influencing their adaptation behavior (Berger, 2001;
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Hansen et al., 2009; Sabater and Sierra, 2005; Karali et al., 2014; Pérez et al., 2016).

Extending our single-agent model to incorporate multiple autonomous agents could enable

us to actively explore the impacts of heterogeneity and coordination on farmer livelihoods,

thereby improving our understanding of who might use forecast information (Jain et al.,

2015; Vogel et al., 2015).

Consistent with findings from other studies (e.g., Ziervogel et al. (2005)), our sensitiv-

ity analysis confirms the importance of forecast skill on farmer outcomes; as the forecast

skill increases, not only does the farmers’ trust in the forecast increase but the increased

accuracy results in higher agricultural income. For a fixed forecast skill, however, changing

the farmer’s initial trust levels or trust threshold for the forecast has minimal impact on the

farmer’s net income. Market-related variables such as the market trust threshold and the

ratio of actual to maximum return, on the other hand, have large impacts on net income;

as the farmer became more tolerant of risks with the market, the farmer was more likely to

plant onions, the more profitable option. Therefore, providing farmers with more informa-

tion about market conditions (currently lacking in Sri Lanka) could have a notable impact

on farmers’ financial outcomes underscoring the value of both production and market sup-

port as needed adaptations in a changing climate (Acosta-Michlik and Espaldon, 2008).

As weather forecasting capabilities improve, we could extend this analysis to understand

intra-seasonal dynamics (both in the market and weather), which would allow an integra-

tion of findings from the previous chapter (i.e., benefits of planting rice early) into the crop

diversification context.

Although farmers have reported that adaptation strategies have improved crop produc-

tivity, lack of information on climate change has been a notable obstacle to their adaptation

(Esham and Garforth, 2013). Overall, our research adds to the growing literature that

providing forecasts to farmers has considerable potential for helping farmers adapt to the

changing climate. Our results highlight the importance of understanding and incorporat-

ing the impact of varying crop economics on farmer decisions in adaptation assessments.
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Additional data and research is needed to continue to characterize farmer behavior and to

understand leverage points for enhancing adaptive capacity. This additional work is es-

pecially critical since our results indicate that when water resources are scarce (i.e., drier

climate scenario), farmer incomes could become significantly stratified, potentially com-

pounding existing disparities in farmer’s financial and technical abilities to use forecasts

to inform their crop selections. System MH is just one of many regions that promote the

production of certain crops through subsidies. While such programs could ensure food

security in the short-term, the long-term implications of these dynamics have received lim-

ited attention. Our modeling approach, which is publicly available via openabm, could be

easily modified to look at the specific dynamics of varying crop economics in other regions

of the world (e.g., in the Limpopo province of South Africa).
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Chapter 5

Outlook

This dissertation research assessed water use for agriculture in Sri Lanka, with an em-

phasis on interdisciplinary assessments of climate change adaptations. In Chapter 2, we

studied spatiotemporal patterns of agricultural drought in the country from 1880 to 2010

and learned (among other things) that the northeast portion of the island was becoming drier

during the minor growing season, when water resources are already scarce. So we evalu-

ated patterns in IWRs for rice (the staple food of the country) over 20 years and identified

that shifting planting dates to earlier in the season is a low-cost adaptation that could yield

IWR savings of up to 6% in parts of Sri Lanka. These potential water savings are partic-

ularly important given emerging climate change research of less water being available for

irrigation during the minor growing season. In certain parts of the country, however, water

stress is already significant enough to warrant diversification away from rice production, a

water-intensive process. So we evaluated the utility of seasonal forecasts with an interdis-

ciplinary approach that accounted for both physical and social factors governing farmers’

crop selections. Our results indicated policies and programs that promote production of

certain crops need careful evaluation given changing climate dynamics.

Beyond water and food, the convergence of limited supply and growing demand issues

has prompted much needed conversations about interactions with other critical resources

such as energy. These interactions are extremely complex because of spatial and temporal

considerations as well as the combined impact of physical and social factors and emerging

pressures including governance shifts, climate change, population growth, and technology

developments. For example, given Sri Lanka’s dependence on hydroelectricity, the nation

has been well aware of tensions arising between food and energy during times of water

scarcity (Lyon et al., 2009). However, as the nation continues to increase its extraction of
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natural resources, more intricate dynamics will begin emerging.

For example, assessments to date have not accounted for the investments needed (in

both natural resources or products) to manage agriculture-related water quality issues. The

Government of Sri Lanka provides fertilizer subsidies to help farmers improve their yields

(Davis et al., 2016). This practice, however, has led to an overuse of fertilizers and sub-

sequent contamination of water supplies (Stone and Hornberger, 2016). Treatment of ni-

trates from agricultural runoff requires energy investments (Koparal and Öğütveren, 2002),

which depend on the same scarce water resources upon which agriculture also depends in

Sri Lanka. Unfortunately, such unintended consequences of agricultural adaptations and

policies are not uncommon (Fezzi et al., 2015).

Insights gained from studying Sri Lankan agricultural systems (methodologically and

beyond) transcend national borders. Notably, the changing dynamics of the agricultural

CNHS due to natural and social pressures present an increasing need to be aware of inter-

secting resource issues. Although there are developmental and cultural differences between

Sri Lanka and the United States, overarching challenges facing the nations are similar; as

agricultural nations, both Sri Lanka and the U.S. are trying to produce more food while us-

ing less water per unit of output and ensuring rural people live productive lives (UNESCO,

2006). Similar to work by ADAPT-SL, researchers are engaging in interdisciplinary re-

search to understand the feedbacks between natural and social pressures in the vulnerabil-

ities of acequias, community-managed irrigation systems, in southwestern United States

(Fernald et al., 2015; Turner et al., 2016). Given changing supply and increasing demands

for critical resources, such interdisciplinary research will become increasingly important

for all nations to inform optimal strategies for efficient resource management and to avoid

unintended consequences of policy interventions.

84



BIBLIOGRAPHY

Abeyasekera, S., E. Seneviratne, A. Leaker, and R. Stern (1983), The analysis of daily
rainfall data for agricultural purposes, Journal of the National Science Foundation of Sri
Lanka, 11(2), 165–183.

Abeynayaka, A., D. Werellagama, and G. Raranavitana (2007), Issues arising from water
encroachments along hurulu wewa feeder canal, Proceedings of the Peradeniya Univer-
sity Research Sessions, Sri Lanka, 12(2), 190–192.

Acosta-Michlik, L., and V. Espaldon (2008), Assessing vulnerability of selected farming
communities in the philippines based on a behavioural model of agent’s adaptation to
global environmental change, Global Environmental Change, 18(4), 554–563.

Ahmad, S., and S. P. Simonovic (2000), System dynamics modeling of reservoir operations
for flood management, Journal of Computing in Civil Engineering, 14(3), 190–198.

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop Evapotranspiration (guide-
lines for computing crop water requirements), Tech. Rep. 56, Food and Agricultural Or-
ganization.

Alley, W. M. (1984), The palmer drought severity index: limitations and assumptions,
Journal of climate and applied meteorology, 23(7), 1100–1109.

Amarasingha, R., L. Galagedara, B. Marambe, G. Silva, R. Punyawardena, U. Nidumolu,
M. Howden, and L. Suriyagoda (2015), Aligning sowing dates with the onset of rains
to improve rice yields and water productivity: Modelling rice (oryza sativa l.) yield of
the maha season in the dry zone of sri lanka, Tropical Agricultural Research, 25(3),
277–284.

Amarasinghe, U. A., L. Mutuwatta, and R. Sakthivadivel (1999), Water Scarcity Variations
within a country: A Case Study of Sri Lanka, Tech. rep., International Water Manage-
ment Institute, Research Report 32.

ARD, Inc. (2005), Managing Conflict in Watersheds of Sri Lanka, Tech. Rep. January, US
Agency for International Development.

Ash, A., P. McIntosh, B. Cullen, P. Carberry, and M. S. Smith (2007), Constraints and
opportunities in applying seasonal climate forecasts in agriculture, Crop and Pasture
Science, 58(10), 952–965.

Ashfaq, M., Y. Shi, W.-W. Tung, R. J. Trapp, X. Gao, J. S. Pal, and N. S. Diffenbaugh
(2009), Suppression of south asian summer monsoon precipitation in the 21st century,
Geophysical Research Letters, 36(1).

85



Bandara, H., Z. Yahiya, and L. Zubair (2010), Assessment of rainwater harvesting potential
– a case study for Idamelanda, International Conference on Sustainable Built Environ-
ment, December, 132–137.

Batchelor, C. H. (1984), The Accuracy of Evapotranspiration Estimated with the FAO Mod-
ified Penman Equation, Irrigation Science, 5, 223–233.

Batchelor, C. H., and J. Roberts (1983), Evaporation from the Irrigation Water, Foliage, and
Panicles of Paddy Rice in Northeast Sri Lanka, Agricultural Meteorology, 29, 11–26.

Berger, T. (2001), Agent-based spatial models applied to agriculture: a simulation tool for
technology diffusion, resource use changes and policy analysis, Agricultural economics,
25(2-3), 245–260.

Berger, T., and C. Troost (2014), Agent-based modelling of climate adaptation and mitiga-
tion options in agriculture, Journal of Agricultural Economics, 65(2), 323–348.

Berundharshani, T., and D. Munasinghe (2015), Drought Resilient Farming System
through Crop Diversification: the Case of Huruluwewa, in Proceedings from the 6th an-
nual National Building Research Organization Symposium on Innovations for Resilient
Environment, 22 December 2015, Colombo, Sri Lanka, pp. 35–40.

Bharwani, S., M. Bithell, T. E. Downing, M. New, R. Washington, and G. Ziervogel (2005),
Multi-agent modelling of climate outlooks and food security on a community garden
scheme in limpopo, south africa, Philosophical Transactions of the Royal Society of
London B: Biological Sciences, 360(1463), 2183–2194.

Bouman, B., R. Barker, E. Humphreys, and T. P. Tuong (2007), Rice: feeding the billions,
in Water for Food, Water for Life: A Comprehensive Assessment of Water Management,
chap. 14, pp. 515–549, International Water Management Institute, Colombo.

Brewer, J. D., R. Sakthivadivel, and C. Wijayaratna (1992), Achieving cost-effective re-
habilitation and modernization of irrigation systems: research results from sri lanka, in
Advancements in IIMI’s research 1992: A selection of papers presented at the Internal
Program Review. Colombo: IIMI, pp. 25–49.

Briffa, K., P. Jones, and M. Hulme (1994), Summer moisture variability across europe,
1892–1991: an analysis based on the palmer drought severity index, International Jour-
nal of Climatology, 14(5), 475–506.

Brouwer, C., and M. Heibloem (1986), Irrigation water management: irrigation water
needs, Training manual, 3.

Burchfield, E., and J. Gilligan (2016), Dynamics of individual and collective agricultural
adaptation to water scarcity., in Proceedings of the 2016 winter simulation conference.
Eds: T.M.K. Roeder, P.I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S.E. Chick. ,
p. 12.

86



Castillo, D., F. Bousquet, M. A. Janssen, K. Worrapimphong, and J. C. Cardenas (2011),
Context matters to explain field experiments: results from colombian and thai fishing
villages, Ecological Economics, 70(9), 1609–1620.

Chapagain, A., and A. Hoekstra (2011), The blue, green and grey water footprint of rice
from production and consumption perspectives, Ecological Economics, 70(4), 749–758,
doi:10.1016/j.ecolecon.2010.11.012.

Chithranayana, D. (2008), Identification of drought prone agro-ecological regions in Sri
Lanka, Journal of the National Science Foundation of Sri Lanka, 36(2), 117–123.

Choi, H. S., U. A. Schneider, L. Rasche, J. Cui, E. Schmid, and H. Held (2015), Potential
effects of perfect seasonal climate forecasting on agricultural markets, welfare and land
use: A case study of spain, Agricultural Systems, 133, 177–189.

Chung, C., and S. Nigam (1999), Weighting of geophysical data in Principal Component
Analysis, Journal of Geophysical Research, 104(D14), 925–928.

Comprehensive Assessment of Water Management in Agriculture (2007), Water for Food
Water for Life: A Comprehensive Assessment of Water Management in Agriculture, Lon-
don: Earthscan and Colombo: International Water Management Institute.

Crane, T. A., C. Roncoli, J. Paz, N. Breuer, K. Broad, K. T. Ingram, and G. Hoogenboom
(2010), Forecast skill and farmers skills: Seasonal climate forecasts and agricultural risk
management in the southeastern united states, Weather, Climate, and Society, 2(1), 44–
59.

Dai, A., K. E. Trenberth, and R. Karl (1998), Global Variations in Droughts and Wet Spells:
1900-1995, Geophysical Research Letters, 25(17), 3367–3370.

Davis, K. F., J. A. Gephart, and T. Gunda (2016), Sustaining food self-sufficiency of a
nation: The case of sri lankan rice production and related water and fertilizer demands,
Ambio, 45(3), 302–312.

DCS (2001), Census of population and housing: Number and percentage of agricultural
and fishery workers and nonagricultural and fishery workers by district, Tech. rep., De-
partment of Census and Statistics.

DCS (2012), Census of Population and Housing 2012. Retrieved 6 March 2014, Tech. rep.,
Department of Census and Statistics.

DCS (2014), Paddy Statistics. Agriculture and Environment Statistics Division. Retrieved
6 March 2014, Tech. rep., Department of Census and Statistics.

De Alwis, K., and C. R. Panabokke (1972), Handbook of the soils of Sri Lanka, 98 pp., J.
Soil Sci. Soc. Ceylon.

De S. Hewavisenthi, A. (1992), Mahaweli water resources project, Water international,
17(1), 33–43.

87



De Silva, C., E. Weatherhead, J. Knox, and J. Rodriguez-Diaz (2007), Predicting the im-
pacts of climate changeA case study of paddy irrigation water requirements in Sri Lanka,
Agricultural Water Management, 93(1-2), 19–29, doi:10.1016/j.agwat.2007.06.003.

Department of Agriculture (2010–2011), Pocket Book of Agricultural Statistics, Socio Eco-
nomics and Planning Centre of Department of Agriculture, Yala 2010 and Yala 2011. ,
Tech. rep., Department of Agriculture.

Deryng, D., W. Sacks, C. Barford, and N. Ramankutty (2011), Simulating the effects of
climate and agricultural management practices on global crop yield, Global biogeochem-
ical cycles, 25(2).

Dharmarathna, W., S. Herath, and S. Weerakoon (2014), Changing the planting date as a
climate change adaptation strategy for rice production in kurunegala district, sri lanka,
Sustainability science, 9(1), 103–111.

Di Falco, S., M. Yesuf, G. Kohlin, and C. Ringler (2012), Estimating the impact of climate
change on agriculture in low-income countries: Household level evidence from the nile
basin, ethiopia, Environmental and Resource Economics, 52(4), 457–478.

Dilling, L., and M. C. Lemos (2011), Creating usable science: Opportunities and con-
straints for climate knowledge use and their implications for science policy, Global en-
vironmental change, 21(2), 680–689.

Disaster Management Centre (2011), Sri Lanka National Report on Disaster Risk, Poverty,
and Human Development Relationship, Report, United Nations Development Pro-
gramme Regional Centre in Sri Lanka.

Doll, P., and S. Siebert (2002), Global modeling of irrigation water requirements, Water
Resources Research, 38(4).

Drosdowsky, W. (1993), An analysis of australian seasonal rainfall anomalies: 1950-1987.
I: Spatial patterns, International Journal of Climatology, 13, 1–30.

Eder, B. K., J. M. Davis, and J. F. Monahan (1987), Spatial and temporal analysis of the
palmer drought severity index over the south-eastern United States, Journal of Climatol-
ogy, 7(1), 31–56, doi:10.1002/joc.3370070105.

Ekanayake, E., and K. Perera (2014), Analysis of drought severity and duration using cop-
ulas in anuradhapura, sri lanka., Br. J. Environ. Clim. Change, 4(3), 312–327.

Elsanabary, M. H., T. Y. Gan, and D. Mwale (2014), Application of wavelet empiri-
cal orthogonal function analysis to investigate the nonstationary character of Ethiopian
rainfall and its teleconnection to nonstationary global sea surface temperature vari-
ations for 1900-1998, International Journal of Climatology, 34(6), 1798–1813, doi:
10.1002/joc.3802.

88



Eriyagama, N., and V. Smakhtin (2010), Observed and projected climate changes, their im-
pacts and adaptation options for sri lanka: A review, in Proceedings of the National Con-
ference on Water, Food Security and Climate Change in Sri Lanka, BMICH, Colombo,
Sri Lanka, 9- 11 June 2009, vol. 2, pp. 99–118.

Eriyagama, N., S. Vladimir, L. Chandrapala, and K. Fernando (2010), Impacts of Climate
Change on Water Resources and Agriculture in Sri Lanka: A Review and Preliminary
Vulnerability Mapping, Tech. rep., International Water Management Institute (IWMI)
Research Report No. 135.

Esham, M., and C. Garforth (2013), Agricultural adaptation to climate change: insights
from a farming community in sri lanka, Mitigation and Adaptation Strategies for Global
Change, 18(5), 535–549.

Everingham, Y., C. Baillie, G. Inman-Bamber, and J. Baillie (2008), Forecasting water
allocations for bundaberg sugarcane farmers, Climate Research, 36(3), 231–239.

Fader, M., D. Gerten, M. Krause, W. Lucht, and W. Cramer (2013), Spatial decoupling of
agricultural production and consumption: quantifying dependences of countries on food
imports due to domestic land and water constraints, Environmental Research Letters,
8(1), 014,046.

FAO (2012), Irrigation in Southern and Eastern Asia in figures, FAO Water Report No 37,
accessed online 1 August 2013, Tech. rep., Food and Agricultural Organization of the
United Nations.

FAO (2014), FAOSTAT database. Retrieved 14 May, 2014, Tech. rep., Food and Agriculture
Organization of the United Nations.

FAO (2016), CropWat: A decision support tool, accessed online 1 August 2013, Tech. rep.,
Food and Agriculture Organization.

Fernald, A., S. Guldan, K. Boykin, A. Cibils, M. Gonzales, B. Hurd, S. Lopez, C. Ochoa,
M. Ortiz, J. Rivera, S. Rodriguez, and C. Steele (2015), Linked hydrologic and social
systems that support resilience of traditional irrigation communities, Hydrology and
Earth System Sciences, 19, 293–307. doi: 10.5194/hess–19–293–2015, doi:10.5194/
hess-19-293-2015.

Fernando, D. N. (2010), Predicting and Monitoring Drought in the Humid Tropics: A Case
Study on Sri Lanka, Ph.D. thesis, Rutgers, the State University of New Jersey.

Fezzi, C., A. R. Harwood, A. A. Lovett, and I. J. Bateman (2015), The environmental im-
pact of climate change adaptation on land use and water quality, Nature Climate Change,
5(3), 255–260.

Fum, R. M., and R. Hodler (2010), Natural resources and income inequality: The role of
ethnic divisions, Economics Letters, 107(3), 360–363.

89



Funk, C. C., and M. E. Brown (2009), Declining global per capita agricultural production
and warming oceans threaten food security, Food Security, 1(3), 271–289.

Gourdji, S. M., K. L. Mathews, M. Reynolds, J. Crossa, and D. B. Lobell (2013), An as-
sessment of wheat yield sensitivity and breeding gains in hot environments, Proceedings
of the Royal Society of London B: Biological Sciences, 280(1752), 20122,190.

Graeub, B. E., M. J. Chappell, H. Wittman, S. Ledermann, R. B. Kerr, and B. Gemmill-
Herren (2016), The state of family farms in the world, World development, 87, 1–15.

Grimm, V., E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H.-H. Thulke,
J. Weiner, T. Wiegand, and D. L. DeAngelis (2005), Pattern-oriented modeling of agent-
based complex systems: lessons from ecology, science, 310(5750), 987–991.

Grinsted, A., J. C. Moore, and S. Jevrejeva (2004), Application of the cross wavelet trans-
form and wavelet coherence to geophysical time series, Nonlinear Processes in Geo-
physics, 11, 561–566.

Grothmann, T., and A. Patt (2005), Adaptive capacity and human cognition: the process of
individual adaptation to climate change, Global Environmental Change, 15(3), 199–213.

Gunawardhana, H., and A. M. K. R. Adikari (1981), Studies on the Quality of Irrigation
Waters in Kalawewa Area, J. Natn. Sci. Coun. Sri Lanka, 9(2), 121–148.

Gunda, T., G. M. Hornberger, and J. M. Gilligan (2016), Spatiotemporal patterns of agri-
cultural drought in sri lanka: 1881–2010, International Journal of Climatology, 36(2),
563–575.

Guttman, N. B. (1991), A sensitivity analysis of the Palmer Hydrologic Drought Index,
Water Resources Bulletin, 27, 797–807.

Guttman, N. B. (1998), Comparing the Palmer Drought Index and the Standardized Precip-
itation Index, Journal of the American Water Resources Association, 34(1), 113–121.

Hanjra, M. A., and M. E. Qureshi (2010), Global water crisis and future food security in an
era of climate change, Food Policy, 35(5), 365–377, doi:10.1016/j.foodpol.2010.05.006.

Hansen, J., S. Marx, and E. Weber (2009), The role of climate perceptions, expectations,
and forecasts in farmer decision making: The argentine pampas and south florida, Tech.
rep., Final report of an International Research Institute for Climate Prediction (IRI).

Hansen, J. W., S. J. Mason, L. Sun, and A. Tall (2011), Review of seasonal climate forecast-
ing for agriculture in sub-saharan africa, Experimental Agriculture, 47(02), 205–240.

Heim Jr, R. R. (2002), A Review of Twenteith-Century Drought Indices Used in the United
States, American Meteorological Society Bulletin, 83(August), 1149–1165.

Hirsch, R. M., J. Slack, and R. A. Smith (1982), Techniques of trend analysis for monthly
water quality data, Water Resources Research, 18(1), 107–121.

90



Hoanh, C. T., V. Smakhtin, and R. Johnston (2015), Climate change and agricultural water
management in developing countries, vol. 8, CABI.

Hoekstra, A. Y., and M. M. Mekonnen (2012), The water footprint of humanity, Pro-
ceedings of the National Academy of Sciences, 109(9), 3232–3237, doi:10.1073/pnas.
1109936109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1109936109.

Hong, S. Y., B. Minasny, K. H. Han, Y. Kim, and K. Lee (2013), Predicting and mapping
soil available water capacity in Korea., PeerJ, 1, 1–e71, doi:10.7717/peerj.71.

Hu, M., and P. Wiatrak (2012), Effect of planting date on soybean growth, yield, and grain
quality: Review, Agronomy journal, 104(3), 785–790.

Hu, Q., and G. D. Willson (2000), Effects of temperature anomalies on the Palmer Drought
Severity Index in the central United States, International Journal of Climatology, 20(15),
1899–1911.

IDSL (2014), Paddy cultivation sequence., Tech. rep., Irrigation Department of Sri Lanka.

Imbulana, K., N.T.S.Wijesekera, and B. Neupane (2006), Case study: Sri Lanka National
Water Development Report, Tech. rep., MAI&MD, UN-WWAP, UNESCO and Univer-
sity of Moratuwa, Sri Lanka, Paris and New Delhi.

IPCC (2007), Summary for Policymakers. Contribution of Working Group II to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change , Tech. rep., In-
tergovernmental Panel on Climate Change.

IPCC (2014), Climate Change 2014: Synthesis Report. IPCC Fifth Assessment Synthesis
Report, Tech. rep., Intergovernmental Panel on Climate Change.

Jacobi, J., D. Perrone, L. L. Duncan, and G. Hornberger (2013), A tool for calculating
the Palmer drought indices, Water Resources Research, 49(9), 6086–6089, doi:10.1002/
wrcr.20342.

Jain, M., S. Naeem, B. Orlove, V. Modi, and R. S. DeFries (2015), Understanding the
causes and consequences of differential decision-making in adaptation research: adapt-
ing to a delayed monsoon onset in gujarat, india, Global Environmental Change, 31,
98–109.

Jayamaha, G. (1975), An analysis of droughts in Sri Lanka, Proceedings of the Indian
National Science Academy, 42A(2), 133–148.

Jayasuriya, G. (1985), Rice Production in Sri Lanka, Impact of science on rice, pp. 81–86.

Jolliffe, I. E. (2002), Principal Component Analysis, 2nd ed., 502 pp., Springer, New York.

Kane, R. P. (1998), ENSO relationship to the rainfall of Sri Lanka, International Journal
of Climatology, 18(8), 859–871.

91



Kang, M. J., A. Rangel, M. Camus, and C. F. Camerer (2011), Hypothetical and real choice
differentially activate common valuation areas, Journal of neuroscience, 31(2), 461–468.

Karali, E., B. Brunner, R. Doherty, A. Hersperger, and M. Rounsevell (2014), Identifying
the factors that influence farmer participation in environmental management practices in
switzerland, Human Ecology, 42(6), 951–963.

Karl, T. R. (1983), Some spatial characteristics of drought duration in the united states,
Journal of Climate and Applied Meteorology, 22(8), 1356–1366.

Karl, T. R., A. J. Koscielny, and H. F. Diaz (1982), Potential errors in the application
of principal component (eigenvector) analysis to geophysical data, Journal of Applied
Meteorology, 21, 1183–1186.

Keyantash, J., and J. Dracup (2002), The quantification of drought: An evaluation of
drought indices, American Meteorological Society Bulletin, 83(August), 1167–1180.

Khan, S., and M. A. Hanjra (2009), Footprints of water and energy inputs in food produc-
tion – Global perspectives, Food Policy, 34(2), 130–140, doi:10.1016/j.foodpol.2008.09.
001.
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Withanachchi, S., S. Köpke, C. Withanachchi, R. Pathiranage, and A. Ploeger (2014), Wa-
ter resource management in dry zonal paddy cultivation in Mahaweli River Basin, Sri
Lanka: an analysis of spatial and temporal climate change impacts and traditional knowl-
edge, Climate, 2(4), 329–354, doi:10.3390/cli2040329.

Wood, S. A., A. S. Jina, M. Jain, P. Kristjanson, and R. S. DeFries (2014), Smallholder
farmer cropping decisions related to climate variability across multiple regions, Global
Environmental Change, 25, 163–172.

98



World Food Programme (2007), Sri Lanka Food Security Assessment, based on the Inte-
grated Food Security and Humanitarian Phase Classification Approach, Tech. Rep. April,
World Food Programme.

Wrublack, S. C., E. Mercante, and M. A. V. Boas (2013), Water quality parameters as-
sociated with soil use and occupation features by thiessen polygons, Journal of Food,
Agriculture & Environment, 11(2), 846–853.

Young, K. C. (1992), A Three-Way Model for Interpolating for Monthly Precipitation Val-
ues, Monthly Weather Review, 120, 2561–2569.

Yue, S., P. Pilon, B. Phinney, and G. Cavadias (2002), The influence of autocorrelation on
the ability to detect trend in hydrological series, Hydrological Processes, 16(9), 1807–
1829, doi:10.1002/hyp.1095.

Ziervogel, G., M. Bithell, R. Washington, and T. Downing (2005), Agent-based social
simulation: a method for assessing the impact of seasonal climate forecast applications
among smallholder farmers, Agricultural Systems, 83(1), 1–26.

Ziervogel, G. and Opere, A. (editors) (2010), Integrating meteorological and indigenous
knowledge-based seasonal climate forecasts for the agricultural sector., Tech. rep., Inter-
national Development Research Centre, Ottawa, Canada. Climate Change Adaptation in
Africa learning paper series.

Zubair, L. (2002), El Niño-southern oscillation influences on the Mahaweli streamflow in
Sri Lanka, International Journal of Climatology, 22(2), 249–260, doi:10.1002/joc.714.

Zubair, L., and C. F. Ropelewski (2006), The strengthening relationship between ENSO
and northeast monsoon rainfall over Sri Lanka and southern India, Journal of Climate,
19(8), 1567–1575, doi:10.1175/JCLI3670.1.

Zubair, L., R. Perera, and Z. Yahiya (2005), Was the 2002/03 Maha’s bumper paddy harvest
due to El Niño?, Journal of the Institute of Engineers, Sri Lanka, 38(4), 63 – 70.

Zubair, L., M. Siriwardhana, J. Chandimala, and Z. Yahiya (2008), Predictability of Sri
Lankan rainfall based on ENSO, International Journal of Climatology, 101(June), 91–
101, doi:10.1002/joc.1514.

Zubair, L., J. Hansen, Z. Yahiya, M. Siriwardhana, J. Chandimala, S. Razick, U. Ten-
nakoon, K. Ariyaratne, I. Bandara, H. Bulathsinhala, T. Abeyratne, and T. Samuel
(2010), Impact Assessment and Adaptation to Climate Change of Plantations in Sri
Lanka, Tech. rep., International Research Institute for Climate and Society (IRI) Techni-
cal Report 10-06.

99



Appendix A

Model Overview, Design Concepts, and Details

100



103 
 

Model Overview, Design Concepts, and Details 

Overview 

Model Software: Powersim Studio 10 Expert  

Purpose: The purpose of this model is to evaluate the impact of seasonal forecasts on a farmer’s net 

agricultural income. The net income is a function of the crops planted, actual seasonal weather, and 

market conditions. The farmer being simulated is a simplified representation of farmers in System MH.  

Entities, state variables, and scales: The entity in this model is an adaptive farmer who uses seasonal 

forecast information to select crops. To understand the impact of the seasonal forecasts, the net income 

of the adaptive farmer is compared to a farmer who uses climate information instead of seasonal 

forecast information to select crops (hereafter referred to as “climate” farmer) and a farmer who plants 

only rice (hereafter referred to as “rice-alone” farmer) every season.  

Both the climate and adaptive farmers are characterized by heuristics, wherein the farmer’s experiences 

over time influence their future decisions. Based on findings from games played in the field, we also 

simulate the influence of education on the adaptive farmer’s net income; a farmer with less than grade 

9 education demonstrates more randomness in their crop selection decision. For all three planting 

approaches, the decisions are not constrained by a farmer’s bank balance and are assumed to occur 

uniformly across the farmer’s field, hypothetically assumed to be one acre. The three planting 

approaches were simulated for three climate scenarios: 1) climate consistent with historical conditions, 

2) drier climate, and 3) a wetter climate.  

The model is calendar-independent with each time step representing one dry (locally referred to as 

“yala”) season. The simulations are run for 64 dry seasons, which occur once per year. There is no spatial 

distribution of fields, farmers, or weather within the model.  

An overview of the model’s components and layout in Powersim are provided in Figures A1 and A2 

respectively. 

Process overview and scheduling: The model actions are executed in the following order each season: 

1. Season begins (and the adaptive farmer receives a weather forecast)  

2. Farmer selects a crop based on their planting approach  

3. Reality ensues with actual weather and market conditions 

4. Farmer obtains a net agricultural income  

5. Farmer updates their rationale for planting given actual weather and market experiences  

6. New season begins 
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Figure A1. Influence diagram of hydrological (dashed blue), economic (dashed purple), and farmer 

behavior (dashed orange) components of the system dynamics model. The two green arrows note the 

updating process of the farmer’s perceived effectiveness (i.e., prior experience) of the adaptation 

practice of crop diversification at the end of each season. 
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Figure A2. Snapshot of simulation set-up in Powersim Studio 10 Expert, a system dynamics software.    

Design Concepts 

Emergence and Observation: The model’s primary output is net agricultural income over time. 

Important secondary outputs include farmer’s trust in forecast and trust in the market; these outputs 

emerge from how the farmer’s planting decision compares to the season’s realized weather and market 

conditions. Our analysis focuses on the impact of different planting approaches and climate conditions 

on the outputs of interest.  Even though changes in forecast and market trust do not influence the rice-

alone farmer’s planting decision, these outputs are generated for comparison purposes. Outputs from 

Powersim were written to Excel files and processed in R.  

Adaptation and Learning: The rice-alone farmer does not adapt their decisions between seasons. The 

adaptive (and climate) farmer, on the other hand, updates their rationale for crop selection based on 

their experiences with the weather and market. If the farmer’s trust in the forecast or market decreases 

below a threshold, the farmer becomes risk averse. Specific learning traits of the adaptive farmer are 

described in detail below.  
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Objectives: The farmer’s objective is to maximize their net agricultural income. However, this objective 

is not explicitly incorporated into their planting approaches except implicitly as part of the risk aversion 

behaviors of the adaptive farmer.   

Prediction: The rice-alone farmer predicts the return for their crop is constant, which is reflective of the 

current price floor policies for rice in Sri Lanka (Herath et al., 1982). The climate and adaptive farmers 

predict their crop returns will be at least 80% of their maximum return; if below this value, then their 

trust in the market decreases.   

Sensing: The climate and adaptive farmers are assumed to have perfect knowledge of the climate 

conditions and seasonal forecasts respectively. These farmers are also assumed to have perfect 

knowledge of the maximum returns for crops but not the exact returns for soybean or onions.  

Interaction: Although game findings indicate that farmer behaviors changed when they interacted with 

fellow players (Figure A3), this dynamic is outside the scope of model analysis. Therefore, there are no 

interactions in the model.  

 

Figure A3. Impact of collaboration on farmer crop selections of A) rice vs soybean as a function of wet 

season probabilities and B) rice vs onion as a function of dry season probabilities. Lines represent average 

values while shaded regions represent 95% confidence interval for a LOESS fit to the data. When there is 

collaboration (i.e., condition is true) in rice-soybean comparison (A), farmers were more likely to plant 

soybean over a wider range of wet season probabilities. As for rice-onion comparison (B), when there is 

collaboration, farmers were more likely to plant rice over a larger range of dry season probabilities.  

Stochasticity: There are two main stochastic components of the model: 1) weather and 2) market 

returns for soybean and onions. Each model run is initiated with one of three climate conditions from 

which the forecast and subsequently the weather are randomly generated (see subsections on “Climate 

scenarios” and “Actual weather”). The market returns for soybean and onions are randomly generated 

from a uniform distribution of a range of returns (see subsection on “Market return”).  

Collectives: There are no collectives in the model.  
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Initialization: Each model run is initialized with one of the three climate scenarios. All three farmers 

begin with net agricultural income of 0, 80% trust in the forecast, and 70% trust in the market; initial 

trust levels were chosen based on impressions gained from interviews in the field.  

Input Data: In addition to the initialized values, the values in Table A1 are default parameters used in 

the model set-up across the climate scenarios. 

Table A1. Default parameter values used in model simulation 

Parameter Value 

Forecast skill  70% 

Threshold at which trust in forecast is lost  30% 

Threshold at which trust in market is lost  50% 

Ratio of actual return to expected return at which farmer’s trust in market is updated  0.8 

 

Details 

Climate scenarios: The climate scenarios are binned in deciles across probabilities that rainfall during 

the season is dry, normal, or wet. A general trend towards drought at our study site has been observed 

by Gunda et al. (2016) but Seo et al. (2005) note that the dominant climate change being observed at a 

seasonal level in Sri Lanka is increased variability. Therefore, the three climate scenarios considered in 

the model are:   

1. Historical climate during the dry season: 40% dry – 40% normal – 20% wet  

2. Drier climate: 50% dry – 40% normal – 10% wet 

3. Wetter climate: 30% dry – 40% normal – 30% wet  

The historical probabilities were determined from assessing drought indices at Anuradhapura using 131 

years of data generated by Gunda et al. (2016) (Figure A4). No extreme conditions (i.e., floods and 

droughts) are considered in the model. The categorical approach (i.e., dry, normal, and wet) is 

consistent with field findings, which indicate that local water managers generally think about water 

availability in categorical rather than quantitative terms (Burchfield and Gilligan, 2016). 
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Figure A4. Percentage of months between 1881 and 2010 that were classified as wet, normal, and dry 

conditions based on the Palmer Drought Severity Index values at Anuradhapura. Data generated by 

Gunda et al. (2016). 

Seasonal forecasts: For a given climate scenario, a seasonal forecast is generated by randomly sampling 

the corresponding climate probabilities.  

Actual weather: Actual weather is generated by randomly sampling the seasonal forecast but is 

moderated by the forecast skill. For a forecast skill of 70%, for example, the actual weather generated is 

drawn (on average) from the generated forecast probability 70% of the time and from historical 

conditions (regardless of the actual climate) the remaining 30% of the time. For a forecast skill of 100% 

then, the actual weather generated is drawn from the generated forecast probability 100% of the time. 

Crop options: The adaptive (and climate) farmer has the option of planting rice, soybeans, onions, or 

leaving their field fallow.  

Crop decisions: As aforementioned, both the climate and adaptive farmers select crops based on their 

ongoing experiences with the weather and market. Based on the game findings (Figure A5), both 

farmers use the following logic to translate the ternary weather probabilities to actual crop decisions:  

 If the probability of wet weather is >=70%, plant rice 

 Else if the probability of wet weather is <30% and the probability of dry weather is >=60%, plant 

onions or leave field fallow 

 Else, plant soybeans 

Based on the ADAPT-SL survey data, the farmer chooses to plant onions (instead of leaving their field 

fallow) 75% of the time. If the farmer’s planting decisions do not match the actual weather, they lose 

trust in the forecast. If the farmer’s trust in the forecast drops below a threshold (default: 30%), then 
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the farmer exhibits risk averse behavior by just planting rice – a behavior observed and documented in 

many regions of South Asia, including Sri Lanka (Thiruchelvam, 2005; Hertzog et al., 2014; Jain et al., 

2015). This model set-up also reflects our ADAPT-SL survey findings that as a farmer’s predictability of 

rainfall decreased, they were less likely to plant non-rice, or other food crops (OFCs). Similarly, if the 

farmer’s market return for a crop is not at least 80% of their expectations, they lose trust in the market. 

If the farmer’s trust in the market drops below the threshold, they exhibit risk averse behavior by 

planting rice instead of soybean and leaving fields fallow instead of planting onions (see subsection on 

“Trust heuristics”).  

 

Figure A5. Planting decisions as a function of weather probabilities for A) dry season, B) normal season and, 

C) wet season. Lines represent average values while shaded regions represent 95% confidence interval for a 

LOESS fit to the data. Generally, farmers preferred to plant soybean except when the probability of wet or 

dry weather is high, in which case farmers opted to plant rice or onions over rice respectively.  

Crop yield: Crop yields are binned into three categories: successful, normal, and poor. We assume that 

the farmer has the necessary knowledge to plant and maintain their crops and that the crop yields are 

not biophysically constrained (e.g., by soil type) on their hypothetical field. Therefore, the crop yields are 

purely a function of water availability. Both rice and soybean require more water for a bountiful crop 

while onions perform better in drier conditions due to root rot issues (Brouwer and Heibloem, 1986). So 

assuming that Huruluwewa is at average capacity, wet weather is needed for successful rice and 

soybean crops while dry weather is needed for a successful onion crop (Table A2).  

Table A2. Crop yields as a function of weather conditions.  

 Dry Normal Wet 

Rice Poor Normal Successful 

Soybean Poor Normal Successful 

Onion Successful Normal Poor 

Fallow None None None 
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Education: Our game results show that farmers with more education (i.e., greater than grade 9) moved 

more quickly towards planting rice under increasingly wet probabilities of weather (Figure A6). 

Therefore, we created a binary education variable that only impacts the implementation of the adaptive 

farmer’s planting approach. If the farmer’s education is less than grade 9, then there is some variability 

in their adaptive behavior; half of the time, the farmer makes a decision following the rationale outlined 

above and the other half of the time, the farmer chooses an option at random with a preference for 

planting rice 70% of the time and one of the other options (i.e., soybean, onion, or fallow) the remaining 

30% of the time. This heavier weighting towards rice in the stochastic component reflects the positive 

association between education and predictability of rainfall in the ADAPT-SL survey data; our data shows 

that farmers who are less educated were less likely to state that they could predict rainfall; the ADAPT-

SL survey data indicates that a farmer’s predictability of rainfall is related to the likelihood the farmer is 

to plant OFCs (see subsection on “Trust heuristics”).  

 

 

Figure A6. Impact of education on farmer crop selections. Lines represent average values while shaded 

regions represent 95% confidence interval for a LOESS fit to the data. Less educated farmers planted 

more rice at lower probabilities of wet season whereas more educated farmers moved more quickly 

towards planting rice as the probability of a wet season increased. 

Market return: Market return is modeled as a function of crop yield and market conditions. Consistent 

with current Sri Lankan policies, we model rice with a fixed return while returns for soybean and onions 

are market-dependent; market returns for soybean are less variable than those for onions given the 

presence of futures contracts (whereby farmers enter agreements with businesses to buy the crop at an 

agreed price) in System MH. In the model, the returns for soybean and onions are randomly drawn from 

a uniform distribution of the ranges specified in Table A3. The market relationships in Table A3 were 

established based on aggregate data for costs (including both labor and materials) and returns from 

agricultural statistics books (Department of Agriculture, 2010-2011).   
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Table A3. Crop costs and returns (x 30,000 Sri Lankan Rupees), normalized per acre (Source: 

Department of Agriculture, 2010-2011). Crop returns are a function of crop yield. 

Crop planted Cost Returns 

Successful Normal Poor 

Rice 1 3 2 1 

Soybean 2 3-5 2-4 1-3 

Onion 5 5-15 4-12 3-7 

Fallow 0 0 0 0 

 

Trust heuristics: We use a cognitive model for trust in our simulation; specifically, trust is as an 

accumulation of experiences over time and can influence behavior in the future (Earle and Siegrist, 

2008; Hoogendoorn et al., 2012). Trust heuristics are an important aspect of farmer behavior since the 

farmer’s efficacy beliefs/perceived effectiveness of a particular behavior are strongly correlated with 

their intent to perform that behavior in the future (Esham and Garforth, 2013; Truelove et al., 2015). 

The rice-alone farmer is not influenced by heuristics in the model; for the climate and adaptive farmers, 

we assume that there is an immediate feedback at the end of each season for the next season’s 

decisions.  

Trust in the forecast and trust in the market are modeled as percentages bounded between 0 and 100 

(Sutcliffe and Wang, 2012), with the specific trust level representing the probability that the farmer 

decides to rely on their rationale; this approach is similar to the concepts of graded trust and subjective 

probability discussed in Lorini and Demolombe (2008) and Castlefranchi et al. (2003) respectively. At the 

end of each season, the farmer’s trust in the forecast is updated by their experiences using Eq. [1]: 

𝑇𝑟𝑢𝑠𝑡𝑡+1 = 𝑇𝑟𝑢𝑠𝑡𝑡 + 𝐼𝑡𝐴𝑡,  [1] 

where 𝑡 is a season number, 𝐼𝑡 is the increment for trust change in forecast, and 𝐴𝑡 is the seasonal 

adjustment; recall that the farmer is initialized with 70% trust in the forecast. The increment for trust 

change is calculated each season as the minimum difference between the actual trust level and the 

boundary conditions (0% and 100%). By making the increment a function of the actual trust levels, our 

model captures the basic assumption that people with high trust are more likely to be tolerant of 

failures/bad experiences (Jonker and Truer, 1999; Sutcliffe and Wang, 2012).  

The seasonal adjustment value, 𝐴𝑡, is based on prospect theory principles that people generally value 

losses more than gains (Kahneman and Tversky, 1979; Tversky and Kahneman, 1981). Using the farmer’s 

crop yields as the reference point for weather observations, the adjustments were defined as follows: 

 If their crop has a successful yield: +6% 

 If their crop has a poor yield: -10%  

This approach is similar to the methodology employed by Ziervogel et al. (2005), where farmers lost 

trust in the forecast when their crop yields were poor. If the farmer’s trust in the forecast drops below a 

threshold of 30%, then the farmer reverts to the risk averse behavior of planting rice. This model set-up 
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is consistent with our ADAPT-SL survey findings that as a farmer’s predictability of weather decreases, 

they are less likely to plant OFCs. The farmer continues to update their heuristics regarding weather 

predictability (relative to their crop planted) throughout the simulation.  

The heuristics associated with market trust also follow Eq. [1]. Specifically, the next season’s trust is 

influenced by the current season’s actual returns and the increment of change is a function of the actual 

trust level and the minimum distance to the boundary conditions. Furthermore, the adjustments each 

seasons are based on the farmer’s expected return for each crop (assumed to be 80% of the maximum 

return possible for soybeans and onions as the default): 

𝐴𝑡 = 

{
 

 +6%             𝑖𝑓
𝑎𝑐𝑡𝑢𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛
≥ 0.8

−10%             𝑖𝑓
𝑎𝑐𝑡𝑢𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛
< 0.8

 

If the farmer’s market trust falls below the threshold of 50%, then they lose trust in the market and opt 

to plant rice instead of soybean and leaving their field fallow instead of planting onion. Again, similar to 

forecast trust heuristics, the farmer continues to update their market heuristics regarding market 

predictability throughout the simulation. 
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Game Overview and Instructions  

Background 

Surveys and simple role play exercises have typically been used to understand how farmers 

would change their decision, for example, if forecast of below normal rainfall was expected (Hansen et 

al., 2004; Bharwani et al., 2005; Ziervogel et al., 2005; Roudier et al., 2014).  While these approaches are 

critical first steps for understanding stakeholders’ mental models (Elsawah et al., 2015), the lack of 

feedback and iterative components does not emulate the complex system in which farmers make their 

decisions. Games have been used to inform model development (Barreteau et al., 2001; Berger and 

Troost, 2014), but in forecast studies, such participatory approaches are usually limited to education and 

outreach contexts (Patt, 2001; Suarez and Patt, 2004; Patt et al., 2005; Roncoli, 2006; Roncoli et al., 

2009; Ziervogel and Opere, 2010; Dilling and Lemos, 2011; Hansen et al., 2011) and have not been 

actively used for model development. By incorporating game findings, our simulation actively 

incorporates the role of cognition into adaptation behavior, a factor often neglected in studies 

(Grothmann and Patt, 2005). 

We designed a contextualized, dynamic game to investigate how farmers respond to and 

interpret weather forecasts. Specifically, the farmers were provided with a randomly selected seasonal 

forecast and asked to select which crops they would plant for the season. To limit the impact of 

communication method on forecast interpretation, forecast information was presented through a 

mixture of effective methods (Suarez and Patt, 2004; Roncoli, 2006; Ash et al., 2007): orally, as numeric 

values in written form, and as a weather wheel (i.e., pie chart with spinner; similar to Suarez and Patt, 

2004) (Figure 3A-B). After receiving the forecast, farmers made a decision about which crop(s) to plant. 

Farmers could choose between rice, soybean, onion, leaving their fields fallow, or a mix of these options 

on their 3 fields; each of the crops had specific planting costs (normalized by 30,000 Sri Lankan Rupees 

(LKR)) associated with them, based on actual government data about crop-specific costs and revenues 

(Department of Agriculture, 2010-2011). The farmers communicated their planting decisions by placing 

crop cards (similar to those developed by Hertzog et al., 2014) onto their game fields (Figure 3C-D).  

Once the farmers’ decisions were recorded by the game facilitators and planting costs collected 

(paid out of an equal, initial allocation of start-up capital), the weather wheel was spun to determine the 

actual weather for the season. Yields and corresponding economic returns were dependent on the 

weather; rice and soybean returns were fixed across rounds, but onion returns varied based on how 

many other fields of onion were planted each round. The relationships between crops, weather, and 

market returns were presented to the farmers on a yield return sheet (Figure 3E); the farmers were told 

to assume that Huruluwewa was at average capacity, the condition at which the relationships on the 

yield return sheet were derived. The wheel also had small slices representing rare extreme weather 

events such as droughts and floods, both of which would have a severe impact on returns.  

After the returns for the crops were issued to the farmers for the first season, the wheel was 

configured to a new seasonal forecast and another round began.  The same group of farmers 

participated in 6 rounds of the game to incorporate previous seasons’ outcomes (similar to Hoekstra, 

2012). We did not inform participants of the exact length of game (number of rounds) because “end-

game” effects can alter game behaviors (Javaid and Falk, 2015). The field assistants informed the 

farmers to role play (similar to Joireman et al., 2009) as if they were planting on their own fields during 
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the dry season; all game directions were presented in Sinhalese by the field assistants. We also played 

multiple practice rounds to ensure the farmers understood the rules prior to resetting the game and 

commencing data collection. A copy of the game instructions is provided below. 

The game was played with 49 farmers in System MH in January 2016, in 4 groups of 12-13 

players per group. Two versions of the game were played with each group: one where the farmers 

played without coordination amongst players and one where they were allowed to coordinate their 

planting decisions with their fellow players. At the end of each game, each farmer’s profit was tabulated 

and the farmers with the most chips were awarded with a payout. These payouts encouraged friendly 

competition and incentivized participants to be invested in the game (Camerer, 2003). After the games, 

short post-surveys were conducted to collect demographic information (i.e., education and gender) 

about the farmers and a subsequent discussion was led by the field assistants to understand the general 

impressions and strategies employed by the farmers in the game.  

Farmers expressed that the game was easy to understand and, generally, they opted to plant 

rice when the probability of a wet season was high. Most of the farmers also expressed that the weather 

forecast was a more relevant factor governing their crop selection decisions than market conditions; 

some said that having more specific information about market conditions would have helped inform 

their decision-making. Many of the farmers shared afterwards that they enjoyed playing the game and 

approached it as if the game was emulating reality and they were making decisions about crops on their 

own farm. After the discussion, all farmers were issued a small participation gift and the same payout as 

the winning farmer after the surveys. 

Instructions  

(To be read to farmers by facilitators) 

Note to facilitators: Pass out materials to each farmer: plots, poker chips, crop cards, yield return sheets  

Plots: You should each have three plots of farm land and 5 poker chips in front of you [point to the 

structure each has in front of them]. Let us know if you don’t. Each land plot represents 0.5 acres. You 

will individually choose what to plant for each of the three plots by placing one of the crop cards [point 

to crop cards in front of them]. If you want, you can plant nothing by placing no card on your plot for 

that season.  You can plant the same crop on all 3 plots, or you can plant up to three different types of 

crop, or anything in between.  

Crop cards: Now, look at these crop cards. To plant a crop, put its corresponding card on top of the plot 

of land you want to plant it in. The cards also show each crop's cost per plot per season.  It costs 1 chip 

to plant rice in one field, 2 chips to plant soybean, and 5 chips to plant onions. To make that clear, there 

is one dot on the rice card, 2 dots on the soybean card, and 5 dots on the onion card. 

Money: Costs to plant the crops and returns from selling them are measured in poker chips [point to 

poker chips and point to the number of poker chips indicated on each crop card]. You will receive a set 

amount of working capital for your cultivation decisions. To begin, you will receive 5 poker chips. At the 

end of this game, the farmer with the most poker chips will receive a cash prize. At the beginning of 
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each season you need to pay for the crops you decide to plant. If you do not have enough poker chips, 

then plant fewer or different crops.  

Yield return sheet: The return sheet in front of you shows the different crop yields under different 

weather conditions. Note that while the return for rice and soybean are fixed, the return for onions is a 

range of values; the specific return is dependent on how many of your fellow farmers also plant the 

same crop. For every additional farmer who plants onion, the return is reduced by one poker chip. For 

example, if you plant onion and 3 other farmers also plants onion and the weather is dry that season, 

then a maximum return of 12 poker chips would be reduced by 3 so each of the farmers would only 

receive 9 poker chips for each plot of onion.  

Weather: As you can see on the return sheet, the number of poker chips you can earn at the end of a 

season depends on the weather. There are 3 main weather possibilities: dry – less rain than normal, 

normal, and wet – more rain than normal. Most seasons there will also be a small probability of drought 

or floods as well. Each of these weather possibilities is color coded to match the weather wheel and the 

yield return sheet: dry is orange, normal is yellow, and wet is green while flood is blue and drought is 

red.  Some crops do better with high levels of rain, and some do better with less rain – the yield return 

sheet shows the relationship between the crops and weather. Game play is led by [INSERT NAME OF 

PERSON LEADING and point to them].  [INSERT NAME] will spin the Wheel of Rain [point at wheel] and it 

will spin many times like this [actually spin the wheel] and randomly land on a color. When more of a 

color is on the wheel, there is a higher chance it will land on that color. In this example, the forecast 

states there is a 70% chance of wet weather (more rain than normal), so 7 of the 10 slots on the wheel 

are colored green.  When the wheel spins, the color it lands on determines the weather for that season. 

Let’s spin the wheel a few times and see where it lands. (Assume Huruluwewa tank is at average dry 

season or “yala” levels.) 

Now we will go through rules of the game:  

1. Each round of the game represents one yala (or “dry”) season. 

2. The facilitator picks a random forecast card and reads it. It will state that the government 

forecast for the season ranges will be between 0 and 100% chance of it being dry, normal, or 

wet.  An individual card could state, for example, that the season has a 0% chance of it being 

dry, 30% chance of it being normal, and 70% chance of it being wet. [Draw another card and talk 

through what that card means. Do this a couple times.] 

3. You pay the bank the costs on the cards that you choose to plant for that season.  

4. The facilitator spins the Wheel of Rain, which has been configured to accurately represent the 

forecast. The Wheel lands on a particular slot, which will dictate the amount of rain in the 

season. [Do this.] 

5. The amount of rain indicated by the wheel will determine yields and profits.  Your return sheet 

indicates the profit for each weather possibility.  The facilitator pays you the appropriate 

amount of profit in poker chips and records your number of poker chips. 

6. Another round starts. We will play multiple rounds. 

7. The goal of the game is to accumulate as many poker chips as possible.  
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Directions for facilitators: 

1. Bring together a maximum of 13 farmers in a room for a session. 

2. Pass out all game materials: 

a. Farm land with 3 plots 

b. 5 poker chips 

c. Crop cards (3 of each crop) 

d. Yield return sheet  

3. Read out game instructions *Facilitator 1: Weatherman* 

4. (Have group explain game back to us) 

5. Play a practice game. 

a. Show weather wheel for season’s forecast  

b. What are you going to plant in each of your plots? 

c. Invest some money into preparing your plots 

d. Banker goes and around and collects the cost while Recorder updates chart with 

farmers’ planting choices *Facilitator 2: Banker* *Facilitator 3: Recorder* 

 
e. Spin wheel 

f. Banker goes around and returns profits *F2* *F3 assists* 

g. Repeat steps a-f with changing forecast wheel a few more times as needed 

6. Answer questions 

7. Now we will play Version One, where you are not allowed to discuss your planting decisions 

with your neighbors  

a. Repeat a-g under Step 5 

8. After 6 rounds, sum up farmers’ profits and pay out winner 

9. Now we will play Version Two, where you are allowed to discuss your planting decisions with 

your neighbors  

a. Repeat a-g under Step 5 

10. After 6 rounds, sum up farmers’ profits and pay out winner 

11. Conduct post-game survey and discussion 

12. Give non-winning farmers the participation prize (which is the same as the winner’s prize) 
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