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Abstract in English Language

Author: Ekaterina Moiseeva
Affiliation: KTH Royal Institute of Technology
Title: Impact of high levels of wind penetration on the exercise of market
power in the multi-area systems
Language: English
Keywords: wind integration, market power, game theory, mathematical pro-
gramming

New European energy policies have set a goal of a high share of renewable
energy in electricity markets. In the presence of high levels of renewable
generation, and especially wind, there is more uncertainty in the supply. It is
natural, that volatility in energy production induces the volatility in energy
prices. This can create incentives for the generators to exercise market power
by traditional means: withholding the output by conventional generators,
bidding not the true marginal costs, or using locational market power. In
addition, a new type of market power has been recently observed: exercise of
market power on ramp rate.

This dissertation focuses on modeling the exercise of market power in
power systems with high penetration of wind power. The models consider a
single, or multiple profit-maximizing generators. Flexibility is identified as
one of the major issues in wind-integrated power systems. Therefore, part of
the research studies the behavior of strategic hydropower producers as main
providers of flexibility in systems, where hydropower is available.

Developed models are formulated as mathematical and equilibrium prob-
lems with equilibrium constraints (MPECs and EPECs). The models are
recast as mixed-integer linear programs (MILPs) using discretization. Result-
ing MILPs can be solved directly by commercially-available MILP solvers,
or by applying decomposition. Proposed Modified Benders Decomposition
Algorithm (MBDA) significantly improves the computational efficiency.
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Abstract in Spanish Language

Autor: Ekaterina Moiseeva
Afiliación: KTH Royal Institute of Technology
Título: Impacto de los altos niveles de penetración del viento en el ejercicio
del poder de mercado en los sistemas de múltiples zonas
Idioma: Ingles
Palabras claves: integración del viento, poder de mercado, teoría de juegos,
programación matemática

Las nuevas políticas energéticas europeas han establecido como objetivo
un alto nivel de intercambio de energías renovables, en el Mercado eléctrico.
Con la presencia de altos niveles de generación de energías renovables, especial-
mente la producida por el viento, aumenta la incertidumbre en la transmisión
de la energía procedente de esta fuente. Esto es un efecto natural dónde la
volatilidad de la producción de esta energía se refleja en la volatilidad de
los precios de mercado eléctrico. Este hecho puedo repercutir en incentivos
económicos para los productores de energía a la hora de ejercer más poder
de mercado por medios tradicionales: retener la producción convencional,
atando los costes marginales o ejerciendo más poder en mercado localizados.
Además, se ha observado un nuevo tipo de poder de mercado: el poder de
mercado que refiere a ramp rate.

Esta tesis se centra en el modelado de las prácticas de poder de mercado
en los sistemas de potencia donde existe alta generación de energía eólica.
Los modelos consideran la maximización de beneficio con uno o múltiples
productores de energía. La flexibilidad se identifica como uno de los mayores
problemas en los sistemas de potencia con integración eólica. Por este motive,
parte de este trabajo de investigación estudia el comportamiento de estrategias
de productores de energía hidroeléctrica cómo los principales proveedores
de flexibilidad en los sistemas de potencia, allá dónde la hidroeléctrica esté
presente.

Los modelos desarrollados son formulados como problemas matemáticos
y problemas de equilibrio con restricciones de equilibrio (MPECs y EPECs).
Los modelos son reformulados como mixed-integer programas lineales enteros
mixtos (MILP). Los MILPs resultantes pueden ser resueltos directamente
por algoritmos MILP comerciales, o aplicando descomposición. Esta tesis
propone un nuevo Modified Benders Decomposition Algorithm (MBDA), el
cual mejora significativamente la eficiencia computacional.
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Abstract in Swedish Language

Författare: Ekaterina Moiseeva
Anslutning: Kungliga Tekniska Högskolan
Titel: Inverkan av höga nivåer av vindkraft på utövande av marknadsinfly-
tande i flerområdes kraftsystem
Språk: Engelska
Nyckelord: vind integration, marknadsinflytande, spelteori, matematisk pro-
grammering

Ny europeisk energipolitik har som mål att öka andelen förnybar el-
produktion. Förnybar elproduktion från vindkraft har till skillnad från
konventionell kraftproduktion, en större osäkerhet i utbudet. Det är naturligt,
att den här volatila osäkerheten i energiproduktionen skapar volatilitet även
i energipriserna. Detta kan skapa möjligheter för producenter att utöva
marknadsinflytande genom att undanhålla produktionen av konventionella
kraftkällor, genom att använda fabricerade marginalkostnader eller med hjälp
av lokalt marknadsinflytande. Dessutom har en ny typ av marknadsinflytande
nyligen observerats, vilket är att utöva marknadsinflytande med hjälp av
ramphastigheter.

Denna avhandlings fokus är på modellering av utövandet av marknadsin-
flytande i kraftsystem med hög andel av vindkraft. Modellerna beaktar en
enda eller flera vinstmaximerande generatorer. Flexibilitet har identifierats
som en av de stora problemen vid integrering av hög andel vindkraft i ett
kraftsystem. Storskalig vattenkarft är väldigt flexibel och därför fokuserar en-
del av forskningen på vattenkraftsproducenternas strategiska möjligheter att
leverera flexibilitet i kraftsystem med hög andel elproduktion från vindkraft.

De utvecklade modellerna har formulerats som matematiska jämvikt-
sproblem med jämviktsbegränsningar (MPECs och EPECs). Modellerna är
omarbetade till så kallade mixed-integer linear programs (MILPs) med hjälp
av diskreta metoder. Resulterande MILPs kan lösas direkt med hjälp av
kommersiellt tillgängliga MILP-lösare, eller genom att applicera så kallad
decomposition. Den föreslagna Modified Benders Decomposition Algorithm
(MBDA) förbättrar effektiviteten i beräkningarna avsevärt.
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Abstract in Dutch Language

Auteur: Ekaterina Moiseeva
Instituut: KTH Royal Institute of Technology
Titel: Impact van hoge niveaus van windpenetratie bij de uitoefening van
marktmacht in de multizone systemen
Taal: Engels
Trefwoorden: windintegratie, marktmacht, speltheorie, wiskundige program-
mering

Het nieuwe Europese energiebeleid heeft als doel gesteld om een groot
aandeel duurzame energie op de elektriciteitsmarkten te realiseren. In aan-
wezigheid van hoge niveaus van hernieuwbare elektriciteitsproductie, vooral
op basis van wind, is er een grotere voorzieningsonzekerheid. Volatiliteit in de
energieproductie veroorzaakt vanzelfsprekend volatiliteit in de energieprijzen.
Dit kan prikkels voor producenten creëren om de marktmacht op traditionele
wijze uit te oefenen: reductie van de conventionele productie-eenheden,
inbieden op andere dan de marginale productiekosten, of plaatselijke mark-
tmacht te gebruiken. Daarnaast is recentelijk een nieuw type marktmacht
waargenomen: uitoefening van de machtspositie op de ramp rate.

Dit proefschrift richt zich op het modelleren van de uitoefening van de
marktmacht in energiesystemen met een hoog aandeel windvermogen. De
modellen beschouwen een enkele of meerdere winst-maximerende producenten.
Flexibiliteit wordt geïdentificeerd als een van de belangrijkste problemen in
zulke energiesystemen. Daarom richt een deel van dit onderzoek zich op het
strategisch gedrag van waterkrachtproducenten als belangrijkste leveranciers
van flexibiliteit, wanneer tenminste waterkracht beschikbaar is.

De ontwikkelde modellen worden geformuleerd als wiskundige en equi-
librium problemen met equilibrium constraints (MPEC’s en EPEC’s). De
modellen worden herschikt als mixed-integer lineair programmeren opgaven
(MILP’s) met discretisatie. De resulterende MILP’s kunnen worden opgelost
door commercieel verkrijgbare MILP-solvers, of door ontleding toe te passen.
Het voorgestelde Modified Benders Decomposition Algorithm (MBDA) ver-
betert de berekeningsefficiëntie significant.
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Chapter 1

Introduction

This chapter motivates the topic of the dissertation and defines the background
for the studies in Sections 1.1 and 1.2. The list of publications in journals
with Journal Citation Report (JCR) and peer-reviewed conference papers
is provided in Section 1.3. Finally, the outline for the remaining chapters is
given in Section 1.4.

1.1 Background

The deregulation of electric power industry has started in 1981 in Chile,
followed by England and Wales (1990), Norway (1991), and Argentina (1992)
[1]. The aim of liberalization was to bring economic benefits in the long
term, delivering timely and well-located investments by private companies.
Liberalization was also expected to improve efficiency in the operation of
generation plants, networks, and distribution services. Competition was seen
as a driving force behind these changes [2]. This required significant changes
in the way the electricity industry is organized and operated.

Electricity industry reform has apparently improved the efficiency and
productivity of the industry. In Australia there are evidences of greater
efficiency and reliability amongst generating plants [3]. The liberalization in
Europe has allowed increasing opportunities for electricity market integration
and cross-border trade [4].

However, the liberalization of the electricity markets was not always a
smooth process. The crisis and market breakdown that hit California in
2001, only a few years after the new market was launched [2], have raised

1
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significant skepticism in the society. During the crisis, the electricity prices
went to extreme levels, forcing the disconnection of some of the loads. The
crisis had serious consequences for consumers, who were disconnected from
the grid in rotating blackouts, and for electric utilities, which suffered major
financial distress. Unilateral market power has been identified as one of the
major causes of these events [5]. Another example is the liberalization of
power industry in England and Wales. Even though the reform there has
led to significant improvements in many dimensions, the decision to create
only three generating companies out of the state-owned CEGB has led to
significant market power, persisting for several years [6].

Market power is the ability of electricity generating firms to influence
market prices through their unilateral actions [5, 7]. Electricity markets have
many features, which make them prone to the exercise of market power:
binding transmission constraints, largely inelastic demand, limited number of
competing firms, repeated bidding [8]. There are no large scale technologies
for storing electrical energy. These factors give rise to physical and economic
withholding by dominant generating firms: the companies bid capacity or
price, which differ from their true characteristics. The lessons learned from
the beginning of the liberalization process have led to the development of
market power indicators – measures, showing the presence of market power
in electricity markets. Some indicators, e.g. HHI and four-firm concentration
ratio, are based on calculating the share of the largest companies in the
market [3, 9]. Other classic measures calculate the margin between the price
bids and real marginal costs of producers [10].

While these measures had an important role in the beginning of the
liberalization process, modern power industry has considerably evolved. In
particular, the share of renewable resources has considerably increased in
many countries around the world bringing new challenges. The European
Union (EU) has set a target to reduce greenhouse gas emissions by 80-95% in
2050 as compared to 1990 levels [11]. The governmental and social support
resulted in a significant increase in the installed capacity of renewable power
sources, in particular wind power. Wind power was installed more than any
other form of power generation in 2015. It accounted for 44.2% of total
power capacity installations [12]. The amount of new wind power turbines
installations continues to increase every year. One of the primary challenges
in the integration of wind power is the problem of intermittency. Even a
carefully predicted wind power output may suddenly depart from the forecast
level. This calls for an increased amount of flexibility required in the system.
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Flexibility expresses the capability of a power system to maintain continuous
service, even when exposed to rapid and large swings in supply or demand [13].
There are many levels at which flexibility can be offered in power systems:
flexibility of generation resources, flexibility of transmission and distribution
systems [14], flexibility of the market to incentivize the power system to
account for variability [15], and demand side flexibility [16]. Ramp rates
largely define flexibility from the generation side.

There is some evidence of strategic behavior with respect to ramp rates
occurring in practice. In the Australian National Electricity Market (NEM),
when transmission constraints arise within a certain region, the generators
are paid the regional price for their output rather than the correct local
marginal price. Generators in this situation are said to be “constrained on”
or “constrained off”. When the regional price is high, a generator, which is
constrained off, will strategically manipulate its bid in a variety of ways in
order to maintain a high output target from the dispatch engine. This typically
involves offering the generator’s output at the price floor (-1,000 $/MWh).
Alternatively, some generators also routinely reduce their offered ramp rate
in order to maintain their dispatch level. In an attempt to prevent this, in
2009 a new rule was introduced which requires generators to offer a minimum
ramp rate of 3 MW per minute (or 3% of unit capacity). More recently
the Australian Energy Regulator (AER) has proposed a rule, which requires
generators to offer a ramp rate which matches their technical capability.

1.2 Research motivation

The theoretical foundation behind the exercise of market power in power
systems with high penetration of wind power is still very weak. The incentives
for the exercise of market power in such systems should be carefully studied.
There is a need for new models, able to capture the increased need for
flexibility in wind-integrated systems. In present dissertation this challenge is
addressed. New models are proposed, capturing the exercise of market power
in wind-integrated systems. Such models can be used for full-scale market
modeling and analysis.
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1.3 List of publications

The following articles were published (to be published) during the PhD studies:

Papers published in journals with Journal Citation Report (JCR):

[J1] E. Moiseeva, M.R. Hesamzadeh, D.R. Biggar, “Exercise of Market Power
on Ramp Rate in Wind-Integrated Power Systems,” IEEE Transactions
on Power Systems, Vol. 30, No. 3, pp. 1614-1623, May 2015 (Invited
paper to special section on Wind & Solar Energy: Uncovering and
Accommodating Their Impacts on Electricity Markets).

[J2] E. Moiseeva, S. Wogrin, M.R. Hesamzadeh, “Generation Flexibility in
Ramp Rates: Strategic Behavior and Lessons for Electricity Market
Design,” European Journal of Operational Research, accepted February
2017.

[J3] E. Moiseeva, M.R. Hesamzadeh, “Strategic Bidding of a Hydropower
Producer under Uncertainty: Modified Benders Approach,” IEEE Trans-
actions on Power Systems, accepted April 2017.

Paper under review in journal with JCR:

[J4] E. Moiseeva, M.R. Hesamzadeh, “Nash Equilibria in Hydro-Dominated
Systems under Uncertainty: Modified Benders Approach,” IEEE Trans-
actions on Sustainable Energy, submitted February 2017.

Working paper:

[J5] E. Moiseeva, M.R. Hesamzadeh, D. Bunn, D.R. Biggar “Modeling the
Hedging Decisions of a Generator with Market Power in Systems with
High Penetration of Wind Power,” European Journal of Operational
Research.
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Peer-reviewed conference papers:

[C1] E. Moiseeva, M.R. Hesamzadeh, “Modeling the Unilateral Multi-part
Strategic Withholding in Electricity Markets,” Australasian Universities
Power Engineering Conference, Wollongong, Australia, 27-30 September
2015.

[C2] E. Moiseeva, M.R. Hesamzadeh, “Strategic Bidding by a Risk-Averse
Firm with a Portfolio of Renewable Sources,” IEEE PowerTech Confer-
ence, Eindhoven, the Netherlands, 29 June-2 July 2015.

[C3] E. Moiseeva, M.R. Hesamzadeh, I. Dimoulkas, “Tacit Collusion with
Imperfect Information: Ex-Ante Detection,” IEEE Power & Energy
Society General Meeting, National Harbor, MD, USA, 27-31 July 2014.

[C4] E. Moiseeva, M.R. Hesamzadeh, “Modeling the Hedging Decisions in
Electricity Markets Using Two-stage Games,” IEEE ISGT Europe 2013
Conference, Copenhagen, Denmark, 6-9 October 2013.

[C5] E. Moiseeva, M.R. Hesamzadeh, “Impact of Energy Storage Devices on
Energy Price in Decentralized Wind-Diesel Utilities,” 10th International
Conference on the European Energy Market, Stockholm, Sweden, 28-30
May 2013.

1.4 Thesis outline

The remaining chapters of this dissertation are organized as follows:

Chapter 2 provides the mathematical foundations for the dissertation, in-
cluding the relevant concepts from game theory, optimization,
and stochastic programming.

Chapter 3 gives a brief description of power system modeling conventions
and assumptions.

Chapter 4 reviews exercise of market power in wind-integrated systems
and identifies flexibility as one of the drivers for strategic
behavior. The chapter is based on the publication [J1].

Chapter 5 focuses on the exercise of market power in hydro-dominated
power systems with high share of wind power. Since hy-
dropower producers are often the main providers for flexibility,
their strategic behavior is carefully reviewed. The chapter is
based on publications [J3] and [J4].
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Chapter 6 reviews market power from the market design perspective.
Two market design possibilities are compared and the impact
of each of the design on the propensity of strategic genera-
tors to exercise market power in wind-integrated systems is
discussed. The chapter is based on publication [J2].

Chapter 7 concludes the dissertation and provides the possible directions
for future research.



Chapter 2

Mathematical foundation

This chapter reviews the main mathematical principles, forming the theoreti-
cal foundation of this dissertation. The necessary chapters of game theory are
reviewed in Section 2.1, optimization concepts are discussed in Section 2.2.
Section 2.3 describes the uncertainty modeling, utilized in this dissertation.
Section 2.4 describes Benders decomposition technique, which is used to solve
large optimization problems’ instances.

2.1 Game theory

In this dissertation game theory is used to model the interaction of strategic
players. The players are assumed to be rational and posses perfect infor-
mation regarding the set of competitors’ strategies. The section focuses on
simultaneous-move and sequential games.

2.1.1 Simultaneous-move games

Simultaneous-move games are often used to model the interaction of strategic
players in the markets. The situation with multiple profit-maximizing firms
and no collusion can be modeled as Cournot [17–19] or Bertrand [20] games.
Alternatively, conjectured-price response parameter is sometimes used to
express a variety of competition intensities [21].

In Bertrand games each firm chooses a single price for each generator,
or each area served, and believes that other firms will change prices in
response [20,22,23]. The limitation of the Bertrand models is that even with

7
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a large number of companies in presence of capacity limit and transmission
system the prices in the market can rise above marginal costs and even
fluctuate without convergence [22,24].

Cournot is another form of competition, where firms choose quantities,
as best response to the anticipated competitors’ strategies. Its simplicity and
valuable qualities have made Cournot a popular concept in power market
models [17,25–29]. It has been shown that even in the markets with relatively
large number of competing firms Cournot models yield prices well above the
competitive levels [30].

Conjectured-price response captures various degrees of strategic behavior
in the spot market. Conjectural variations reflect the firm’s conjecture about
other firms’ reaction to a change in its production [21,31]. This representation
allows us to express the special cases of oligopolistic behavior ranging from
perfect competition to a Cournot oligopoly [32]. Since this method can be seen
as a “shortcut” for more complicated behaviors in implicit dynamic games, it
has been a subject of theoretical controversies [33]. However, the conjectural
variations appear versatile, when used in industrial applications. They can
capture the competition structure, which is neither perfectly competitive, nor
Cournot [34].

Nash equilibrium

Nash equilibrium is a solution concept for a non-cooperative game, in which
each player is assumed to know the equilibrium strategies of the other players,
and no player has an incentive to deviate from its equilibrium strategy [35].
This solution concept was introduced by John Nash [36, 37] and has been
widely used in economics and industrial organization. Nash equilibrium
concept is used in game-theoretic models of simultaneous-move games in
electricity markets [38–41].

The definition of Nash equilibrium can be expressed mathematically as
following:

πi(s
∗
i , s
∗
−i) ≥ πi(si, s∗−i), ∀i. (2.1)

This condition guarantees that for each strategic actor i the profit in the
candidate strategy combination s∗i must be greater or equal than the profit
under alternative choice of strategy si, while the strategies of the competitors
s∗−i are held fixed.
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Multiple Nash equilibria

Depending on a case study, one problem may have several Nash equilibria [42].
In this dissertation two methods are utilized to deal with this multiplicity
of solutions: finding all Nash equilibria or focusing on the extremal Nash
equilibrium.

• Finding all Nash equilibria can be done by formulating an opti-
mization problem, aiming to find one Nash equilibrium and extending
it with an integer cut [43]. An integer cut removes each newly obtained
equilibrium from the feasible set. The problem is solved multiple times,
until there are no more Nash equilibria. This technique is demonstrated
in [J4].

• Extremal Nash equilibrium was introduced in [44], where it was
defined as Nash equilibrium that maximizes or minimizes a certain
objective function, in the context of a selfish routing game. In [45]
Worst and Best extremal Nash equilibria (WNE and BNE) are applied
to the social cost. If S∗ is the set of all Nash equilibria strategies and
SC(s∗i ) is the social cost of each Nash equilibrium, s∗worst

i is the worst
Nash equilibrium of the game if and only if

s∗worst
i ∈ arg max

s∗∈S∗
SC(s∗i ). (2.2)

In a similar way Best Nash equilibrium is a Nash equilibrium at which
social costs are minimized. The concept of extremal Nash equilibria
allows to differentiate between multiple Nash equilibria, according to
the defined criterion (in this case – social cost).

Nash equilibrium under uncertainty

In this dissertation proposed models often include uncertainty. Bayesian
and robust Nash equilibria are two ways of finding Nash equilibrium under
uncertainty:

• For Bayesian Nash equilibrium each player is assumed to have
a subjective uncertainty probability distribution function [46]. This
assumption is applicable to the most of the uncertainties observed in
the power system, such as wind, reservoir inflows, demand uncertainty.
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When introducing scenarios w describing the uncertainty, the Nash
equilibrium (2.1) becomes:

Ew[πiw(s∗i , s
∗
−i)] ≥ Ew[πiw(si, s

∗
−i)], ∀i. (2.3)

• Finding robust Nash equilibrium does not require the prior knowl-
edge of probability distribution function for the incomplete informa-
tion [47]. This is very useful, when certain scenarios have no historic
data or when probabilities of the scenarios are difficult to compute.
Robust Nash equilibrium uses the worst-case approach, where (2.1) is
reformulated as follows:

min
w

[πiw(s∗i , s
∗
−i)] ≥ min

w
[πiw(si, s

∗
−i)], ∀i. (2.4)

2.1.2 Sequential-move game

Another type of model used in this dissertation is Stackelberg game. In
Stackelberg game one player is the leader of the game – it acts first. Other
players are observing the action of the leader and reacting using their available
actions [48]. This structure is often used to represent a dominant firm, deciding
on its strategic bids. The bids are received by the system operator, who
dispatches the firm and the competitive fringe [49,50]. More information on
the electricity market organization can be found in Section 3.2. Stackelberg
game can be formulated as a bilevel optimization problem. This type of
problems will be reviewed in Section 2.2.3.

2.2 Optimization

An optimization problem or mathematical programming problem is a mathe-
matical entity that allows maximizing or minimizing a certain objective (i.e.
objective function) subject to restrictions, typically in the form of equality or
inequality constraints [51]. An optimization problem has general form:

minimize
x

f(x) (2.5a)

subject to: h(x) = 0 (2.5b)
g(x) ≤ 0, (2.5c)

where x ∈ Rn is the optimization variable vector, f(x) : Rn → R is the
objective function to be minimized, h(x) : Rn → RmE are the functions for
the equality constraints and g(x) : Rn → RmI for the inequality constraints.
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2.2.1 Linear optimization problems

Linear programming problems (LP) is a particular class of optimization
problems. An LP is generally formulated as:

minimize
x

cTx (2.6a)

subject to: Ax ≥ b (2.6b)
x ≥ 0. (2.6c)

The dual problem of a linear problem is formulated as:

maximize
λ

λT b (2.7a)

subject to: λTA ≤ cT (2.7b)
λ ≥ 0. (2.7c)

According to the Strong Duality Theorem [52] if x is an optimal solution
of the primal problem (2.6) and λ is an optimal solution of the dual problem
(2.7), then

cTx = λT b. (2.8)

Additionally, it can be shown that at an optimal solution

λj =
∆(cTx)

∆bj
∀j. (2.9)

It means that λj is the sensitivity of the objective function of the primal prob-
lem with respect to the right-hand-side parameter bj of that primal problem.
This result will be important for the Benders decomposition technique.

The Karush-Kuhn-Tucker (KKT) conditions are conditions that the
optimal solutions of a broad range of optimization problems should satisfy.
For linear problems the KKT conditions are both sufficient and necessary for
the optimality [51]. The KKT conditions of problem (2.6) are:

cT − λTA = 0 (2.10a)
Ax ≥ b (2.10b)
x ≥ 0 (2.10c)

λT (b−Ax) = 0 (2.10d)
λ ≥ 0 (2.10e)
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The KKT conditions include stationary conditions (2.10a), primal feasibility
conditions (2.10b)-(2.10c), complementary slackness conditions (2.10d), and
dual feasibility conditions (2.10e). For linear problems only complementary
slackness conditions are non-linear. KKT conditions can be written as
linear or mixed-integer system of equations using one of the three following
techniques to avoid nonlinear complementary slackness conditions (CSCs).

Disjunctive Constraints

The disjunctive constraints, or BigM technique, is a commonly used technique,
first introduced in [53], to linearize the expressions of the form: yT g(x, y) = 0,
where both y and g(x, y) are positive continuous variables. Introducing a
binary variable b, the expression can be rewritten as yb+g(x, y)(1− b), which
in turn can be expressed with a set of constraints:

0 ≥ y ≥ K̄(1− b)
0 ≥ g(x, y) ≥ K̄b

The value of K̄ is a pre-determined parameter and should be chosen in such
a way that the value of yT g(x, y) is bounded above by it. However, the value
should not be chosen too high, as it makes the optimization task, where such
technique is implemented, ill-conditioned, and, therefore, computationally
difficult [54]. It also should not be chosen too low to impose extra bounds on
involved variables. The advantage of the method is that it is straight-forward
in implementation [55].

SOS1-based Approach

The SOS1-based approach for solving mathematical problems with equilibrium
constraints is explicitly discussed in [56]. The method is applied to the
problem with equilibrium constraints in the form: yT g(x, y) = 0, where y ≥ 0,
g(x, y) ≥ 0, and x, y are optimization variables. After the introduction of
SOS1 variables v+ and v− the equivalent constraint set is:

y ≥ 0

g(x, y) ≥ 0

v+ + v− = (y + g(x, y))/2

v+ − v− = (y − g(x, y))/2
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Strong duality

Another way of reformulating a lower-level optimization problem is by using
the strong duality property similar to (2.8) in the KKT conditions. To do
this, the problem should satisfy Slater’s sufficient condition for strong duality,
namely the primal problem should be convex and strictly feasible. This
technique is commonly used for the solution of MPECs [57], as it allows
avoiding the complementary slackness conditions and, therefore, nonlinearities
in the lower level.

Comparison

The common problem with using the disjunctive constraints is that, while
seemingly easy to implement, parameters K̄ need to be chosen carefully, as
described in detail in [54]. Additionally, using this method of linearization re-
quires adding a number of binary variables, which increases the computational
time for the large-scale mixed-integer problems [58].

In contrast, using Schur decomposition and SOS type 1 technique does
not require preliminary design. Authors in [56] show that under certain
conditions, the nonlinear terms, arising in KKT conditions, can be linearized
using the SOS1 technique. This, in turn, requires the introduction of new
variables, but the method is shown to outperform the disjunctive constraints
technique in terms of computational efficiency.

The drawback of the additional variables is canceled out in the strong
duality formulation used to avoid the nonlinear terms in the formulation [59].
The conditions for applying this technique typically hold in the problems
arising from modeling the electricity markets. The strong duality holds if the
weak Slater’s condition holds.

2.2.2 Mixed-integer linear optimization problems

In mixed-integer linear optimization problems (MILP) some of the variables
are integer. An example of MILP can be formulated as follows:

minimize
x,y

cTx+ dT y (2.11a)

subject to: A1x ≥ b1 (2.11b)
A2y ≥ b2 (2.11c)
x ≥ 0, y ∈ {0, 1}. (2.11d)
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MILP can be solved to the global optimum by commercial solvers. MILP
solvers are usually based on modern modifications of grid search algorithm
[60], simplex-like method [61], or branch and bound [62]. However, due
to the solution procedure, even small mixed-integer problems can be very
computationally intensive and require significant amounts of physical memory.

2.2.3 Equilibrium problems

Equilibrium problems are commonly used to model the game-theoretic situa-
tions. Two models discussed in this disseratation are Mathematical Problems
with Equilibrium Constraints (MPEC) and Equilibrium Problems with Equi-
librium Constraints (EPEC).

MPEC problems

The leader-follower structure of the Stackelberg game can be expressed using
optimization problem constrained by optimization problem (OPcOP). The
mathematical representation can be as following:

minimize
x,y

f(x, y, z) (2.12a)

subject to: h(x, y, z) = 0 (2.12b)
g(x, y, z) ≤ 0 (2.12c)
z ∈ arg minimize

z
f1(x, y, z) (2.12d)

subject to: h1(x, y, z) = 0 (2.12e)
g1(x, y, z) ≤ 0 (2.12f)

If the lower level problem satisfies the constraint qualification, OPcOP can
be directly reformulated to MPEC, by taking the KKT conditions of the
lower-level optimization problem [51]. The structure of two problems is
compared in Figure 2.1. Complementary slackness conditions can be further
reformulated by one of the techniques presented in Section 2.2.1.

EPEC problems

The previous section describes MPEC models as representing leader-follower
structure, when a single leader anticipates the equilibrium reaction of the
followers, who in turn naively believe that the leader’s decisions are exogenous
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subject to:

Constraining optimization problem

a) OPcOP: Optimization problem constrained
by another optimization problem

Objective function (minimize or maximize)

subject to:

KKT conditions of
constraining optimization problem

b) MPEC: Mathematical problem
with equilibrium constraints

Objective function (minimize or maximize)

ConstraintsConstraints

Figure 2.1: Structure of optimization problem constrained by optimization
problem (OPcOP) as compared to mathematical problem with equilibrium
constraints (MPEC)

subject to:
subject to:

subject to:

KKT conditions of
constraining optimization problem

Objective function

Constraints

Nash equilibrium

Figure 2.2: Structure of equilibrium problem with equilibrium constraints
(EPEC)

and fixed. EPEC models are used to model games when there is more than
one leader. The aim is to find an equilibrium between multiple leaders – in
the context of electricity markets, Nash equilibrium between strategic players.
An illustration to EPEC structure is presented in Figure 2.2.

EPEC can be thought as a collection of MPEC problems. Accordingly,
a common way to solve such problem is diagonalization [63–65]. Using this
method MPEC problems corresponding to different producers can be solved
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iteratively, by fixing the decision variables for all but one strategic agents
and looking for a stable point, when neither of the players wants to change
its strategy unilaterally. This method is used in [J2]. However, the method
is only applicable to smaller case studies, due to a computationally intensive
convergence procedure. Additionally, a post-check is required to guarantee
that obtained stable point is a Nash equilibrium.

Other possible methods can include solving the whole EPEC formulation,
and checking the second-order sufficient condition for each player’s MPEC,
as in [42]. The scalability of the problem can be limited. One way to avoid
the scalability difficulties is to combine Bertrand and Cournot models of
competition, or to disregard some of the constraints [66].

In this dissertation EPEC instances are solved by discretization of the
solution space [45,67–69]. The method is demonstrated in [J1] and [J4]. Using
this method Nash equilibrium constraint and constraints for all strategic
generators, including the formulation for the alternative strategies are specified
as in (2.1). EPEC problem for finding a Nash equilibrium can be formulated
as a MILP optimization problem:

minimize
ΩMILP

∆π =
∑
i∈Ih

εi (2.13a)

subject to: πi(s
∗
i , s
∗
−i) + εi ≥ πi(si, s∗−i), ∀i∈Istrategic, (2.13b)

εi ≥ 0, ∀i∈Istrategic, (2.13c)

ΩMILP ∈ X. (2.13d)

Here ΩMILP is a set of variables including upper-level and lower-level variables.
Set X describes the feasible set of the whole problem including the upper
level constraints and KKT conditions of the lower level. Variable εi is a
deviation of current strategy from the profit-maximizing strategy, expressed
in profit difference. At Nash equilibrium εi = 0, ∀i.

2.3 Uncertainty modeling

Uncertainty is a crucial element of the models used in this dissertation. The
relevant sources of uncertainty, including wind power generation uncertainty,
can be represented using scenarios. Sources of uncertainty, identified in this
dissertation, and utilized scenario generation techniques are described in the
following sections.
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2.3.1 Sources of uncertainty

The following sources of uncertainty are identified as relevant for the models
under consideration:

• Uncertainty in wind power production – can be modeled using sampling
from a probability distribution function, or using a moment-matching
technique. These scenario-generation techniques are described in the
following section. This source of uncertainty is considered in all models
[J1], [J2], [J3], and [J4].

• Uncertainty in demand – demand is an important source of uncertainty
in the short term. While deviations are usually mild, they may affect
the strategy of generating company.

• Inflow uncertainty – is identified as the most important source of
uncertainty in the models including hydropower producers [70–72]. This
source of uncertainty is considered in the models of hydro-dominated
systems in [J3] and [J4].

• Uncertainty in competitors’ offers – is used to represent possible devia-
tions in the bids of the fringe generators. This source of uncertainty is
relevant for MPEC models of a single dominant firm [73–75].

2.3.2 Scenario generation techniques

A single-period stochastic programming model can be formulated [76] as:

minimize
x

g0(x, ε̄) (2.14a)

subject to: gi(x, ε̄) ≤ 0 ∀i (2.14b)
x ∈ X ⊂ Rn, (2.14c)

where ε̄ is a random vector. Except for some trivial cases (2.14) can not
be solved with continuous distributions. Hence, continuous distribution of
the stochastic parameters have to be approximated by discrete distributions
with a limited number of outcomes. Such discretization is often called a
scenario tree [77]. In this dissertation two scenario-generation methods are
used, described below.
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Bidding
decision

Wind uncertainty revealed Kic
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Kic
w

Scenarios of
optimal
dispatch

π 
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π 
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ci
1

wci

Competitors’ bids revealed

Figure 2.3: Scenario creation for a problem of risk-concerned profit-
maximizing producer.

Conditional sampling

Conditional sampling is the most common method for generating scenarios
[77]. At each stage of the scenario tree several values are sampled from the
stochastic process {ε̄}, sampling each marginal (the univariate component)
separately. The samples are then combined all-against-all, resulting in a
vector of independent random variables. An example of this approach, utilized
for the publication [C4] is presented in Figure 2.3.

Resulting scenario tree grows exponentially with the dimension of the
random vector. Sampling w scenarios for k marginals, the obtained number
of scenarios is wk. To mitigate this problem a scenario reduction technique
can be applied [78,79]. Many of the scenario reduction techniques are readily
implemented in optimization software (GAMS), and therefore the number of
scenarios can be scaled according to computational requirements [80].

Moment matching

Conditional sampling has two important limitations: it can only be applied
if the exact probability distribution functions of random parameters are pro-
vided, and it does not take into account the correlation between multiple un-
certain parameters. These drawbacks are mitigated by the moment-matching
technique [81]. Marginals can be described by the moments (mean, variance,
skewness, kurtosis, etc.), obtained from the real data.

In [J3] and [J4] Nord Pool data is used to generate scenarios reflecting
the correlations and statistical properties of the real data. Other examples of
moment-matching technique usage can be found in [82–85].



2.4. BENDERS DECOMPOSITION 19

2.4 Benders decomposition

EPEC and MPEC problems, introduced in Section 2.2.3 can be reformulated
to MILP using strong duality condition as in Section 2.2.1 and discretization.
MILP problems can be solved in a centralized manner using the powerful
solvers nowadays available [86]. Alternatively, MILP problems can be decom-
posed to separate integer and continuous variables. For stochastic MPEC
problems the resulting continuous problems can be further decomposed by
blocks per scenarios. In further section several modifications of Benders
decomposition are presented, which exploit the special structure of MILP
problems.

2.4.1 Primal Benders decomposition

Primal Benders decomposition is a short name for the “Benders decomposition
based on primal problem”, adopted in this dissertation. Assume a MILP
problem of a form

minimize
x,y

∑
i

cixi +
∑
j

djyj (2.15a)

subject to:
∑
i

alixi +
∑
j

eljyj = bl ∀l (2.15b)

xi ∈ {0, 1} ∀i, yj ∈ R ∀j. (2.15c)

Primal master problem (MPprimal) is formulated as:

minimize
x,α

∑
i

cixi + α (2.16a)

subject to: α ≥
∑
j

djy
(k)
j +

∑
i

λ
(k)
i (xi − x(k)

i ), k = 1, ..., v − 1 (2.16b)

xi ∈ {0, 1} ∀i (2.16c)

α ≥ αdown. (2.16d)

Here x(k)
i is the value of xi in the previous iteration (expression (2.16b) does

not exist for the first iteration), αdown is a value for the lower bound of the
problem. It can be chosen arbitrarily low: αdown → −∞.
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Corresponding primal linear Benders subproblem (SPprimal) can be for-
mulated as follows:

minimize
x,y

∑
j

djyj (2.17a)

subject to:
∑
j

eljyj = bl −
∑
i

alixi ∀l (2.17b)

xi = x
(v)
i : λi ∀i (2.17c)

xi ∈ R, yj ∈ R. (2.17d)

Here (2.17c) is used to fix the value of xi to the parametric value x(v)
i obtained

in iteration (v). The solution of this problem is yj and λi.
The procedure for solving the problem using this implementation of

Benders decomposition, requires solving MPprimal and SPprimal iteratively,
until the lower bound (z(v)

down =
∑n

i=1 cix
(v)
i + α(v)) and upper bound (z(v)

up =∑n
i=1 cix

(v)
i +

∑m
j=1 djy

(v)
j ) would match. This type of decomposition is easy

in implementation, as it requires just minimal reformulation of the initial
MILP problem. However, very often the models formulated in this dissertation
contain disjunctive constraints. This method has a very limited performance
on such problems. Obtained Benders cuts are loose and sometimes contain
irrelevant information, which causes numerical difficulties limiting the use of
the method [87].

2.4.2 Dual Benders decomposition

Dual Benders decomposition is short for “Benders decomposition based on
dual problem”. It is the initial Benders procedure, described in [88]. This type
of decomposition is especially useful for MILP with disjunctive constraints.
With this formulation the disjunctive parameter is only included in the
objective function.

Assume an initial MILP problem with disjunctive constraints:

minimize
x,y

∑
j

djyj (2.18a)

subject to:
∑
j

eljyj ≥ bl ∀l (2.18b)∑
j

ēijy ≥ b̄i −H(1− xi) ∀i (2.18c)

yj ∈ R, xi ∈ {0, 1}. (2.18d)



2.4. BENDERS DECOMPOSITION 21

Here H is a disjunctive parameter – a large constant which relaxes or enforces
constraint (2.18c) depending on the value of variable xi. Fixing binary
variables to a candidate vector xi, a general linear subproblem (similar to
SPprimal) is:

minimize
y

∑
j

djyj

subject to:
∑
j

eljyj ≥ bl : ul ∀l∑
j

ēijy ≥ b̄i −H(1− xi) : ūi ∀i

yj ∈ R.

Here ul are Lagrange multipliers of general (non-disjunctive) constraints, ūi
are the Lagrange multipliers for the disjunctive constraints. The dual of this
problem (SPdual) is:

maximize
u,ū

∑
l

ulbl +
∑
i

ūi(b̄i −H(1− xi)) (2.19)

subject to:
∑
l

uelj +
∑
i

ūēij ≤ dj ∀j (2.20)

ul, ūi ≥ 0. (2.21)

Notice that the feasible region of problem SPdual is free from the disjunctive
parameter H. The extreme points of the feasible region can be denoted as
{up, ūp}p, the initial MILP (2.15) can be restated as MPdual:

minimize
x,α

α

subject to: α ≥
∑
l

upl bl +
∑
i

ūpi (b̄i −H(1− xi)), ∀p

xi ∈ {0, 1} ∀i
α ≥ αdown.

Similarly to the previous formulation, master and subproblems are solved
iteratively, until the convergence is attained [88].
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2.4.3 Modified Benders decomposition (MBDA)

Modified Benders decomposition is based on the reformulation of Benders
procedure, proposed in [89] and additionally modified in this dissertation to
improve the computational properties. Subproblem can be reformulated as
follows (SPMBDA):

maximize
u,ū

∑
l

ulbl +
∑
i

ūib̄i

subject to:
∑
l

uelj +
∑
i

ūēij ≤ dj ∀j∑
i

ūi(1− xi) = 0

ul, ūi ≥ 0.

Notice that subproblem becomes completely independent from the disjunctive
parameter H. The lemma that allows removing the disjunctive parameter
from the objective function is stated in [J3]. The corresponding master
problem MPMBDA is based on set-partitioning reformulation of problem
MPdual:

minimize
x,ωp

∑
p

Kpωp

subject to:
∑
i∈Ωp

xi ≤ |Ωp| − 1 +
∑
p′≥p

ωp′ , , ∀p,∑
p

ωp = 1,

ωp, xi ∈ {0, 1}.

Here Ωp is the index set corresponding to the strictly positive ū, Kp is the
calculated value of the objective function at different extreme points. The
author in [89], also shows that the properties of Benders decomposition
(existence and uniqueness of the solution) hold for MBDA using tree search
algorithm. Applications of MBDA are explored in [J3] and [J4]. They are
further discussed in Chapter 5.



Chapter 3

Power System Modeling

This chapter reviews the models utilized for representing the elements of power
system. Section 3.1 describes the DC power flow assumption, Section 3.2
focuses on the electricity market organization and mathematical formulation
of the optimal dispatch. Section 3.3 presents the models for generating
technologies, operating in the market. Section 3.4 describes the assumptions
regarding the consumers in electricity markets.

3.1 DC power flow

According to [90], the exact expression for the real power flow from node i to
node j (measured at node i, in the direction of node j) is:

Fij = Gij [V
2
i − ViVj cos(δi − δj)] + ΩijViVj sin(δi − δj),

where Gij = Rij/(R
2
ij + X2

ij), Ωij = Xij/(R
2
ij + X2

ij), Rij and Xij are
correspondingly resistance and reactance of the line from i to j. Vi and Vj
are voltages at nodes, δi and δj are the phase angles relative to the reference
node. For the models used in this paper the following can be assumed:

1. Line resistances are negligible compared to line reactances (Rij<<Xij

for all lines).

2. The voltage amplitude is equal for all nodes in per unit values: |VN | ≈
1 p.u.

3. Voltage angle differences between neighboring nodes are small: sin(δi−
δj) ≈ (δi − δj) and cos(δi − δj) ≈ 1.

23
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These assumptions allow us to use a linear formulation for the power flow:
F = HZ, where H is a Power Transfer Distribution Factors (PTDF) matrix,
and Z is a matrix of injections. It is empirically and theoretically shown in
the literature that DC power flow equations can be used for all operating
points of the grid as long as the grid topology is retained [91, 92]. In the
following formulations the DC power flow assumption is used in order to
represent the network flows in a convenient linear manner.

3.2 Electricity market organization

Liberalized electricity markets are run by the system operator. In general,
market participants, producers and consumers, submit their bids on price
and production/consumption to the system operator. The system operator
collects the bids and orders them to maximize the productive and allocative
efficiency: the producers offering their production at the lowest price are
dispatched first, also the consumers, who value their consumption the most,
are supplied first. The dispatch, which minimizes the costs, subject to the
system constraints is also called optimal dispatch.

3.2.1 Optimal dispatch

Assume Ĉit and Q̂it are given values for the price and production bids
of generators. Optimal dispatch for scenarios w and time steps t can be
formulated as a linear optimization problem:

minimize
qitw

∑
i,t,w

PwĈitqitw (3.1a)

subject to: 0 ≤ qitw ≤ Q̂it ∀itw, (3.1b)∑
i

qitw =
∑
n

Dntw ∀tw, (3.1c)∑
n

Hln(
∑
i:n

qitw −Dntw) ≤ Fl ∀ltw. (3.1d)

Here (3.1a) is the objective of the system operator, minimizing the total cost
of dispatch, (3.1b) is the capacity constraint, setting limit on the dispatched
production, (3.1c) represent the system balance, and (3.1d) is an expression
setting the limit on flows. This set of constraint can be further expanded, in
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order to reflect the presence of special generating technologies, or additional
system constraints.

3.2.2 Security-constrained economic dispatch

The increasing uncertainty and variability in power system conditions call
for a revised market design, where a market operator forecasts contingencies
and carries out an efficient security-constrained dispatch. The authors in [93]
proposed a short-run economic dispatch approach to the security-constrained
economic dispatch problem. The proposed short-run economic dispatch
approach models (1) the probabilities of contingencies, and (2) the trade-off
between the preventive and corrective actions, in (3) a convex optimization
structure. The system is dispatched in a way that fast-ramping generators
can react to the contingencies in the most economic way. The advantages
of the proposed model are discussed in details in [94]. Short-run economic
dispatch can be formulated as follows:

minimize
qi,qitc

(1−
∑
c

Pc)
∑
i

Ĉiqi +
∑
c,i,t

PcĈiqitc (3.2a)

subject to: 0 ≤ qi ≤ Q̂i ∀i, (3.2b)

0 ≤ qitc ≤ Q̂ic ∀itc, (3.2c)∑
i

qitc =
∑
n

Dntw ∀tc, (3.2d)∑
n

Hln(
∑
i:n

qitc −Dnt) ≤ Fl ∀lt, (3.2e)

qitc − qi(t−1)c ≤ R̂
up
i ∀itc, (3.2f)

− qitc + qi(t−1)c ≤ R̂dni ∀itc. (3.2g)

Here t is the number of time periods needed for the system to recover fully
from the contingency. Time step 1 is considered a non-contingency stage,
therefore: qi(t=1)c = qi. Generation in the following time steps in case of
a contingency c is denoted as qitc. There are new constraints, compared
to (3.1): (3.2c) defines the capacity limits of units in case of contingency,
(3.2f)-(3.2g) set the ramp limits of units.

This formulation expresses the need of flexibility in ramps in case the
contingency, or wind power fluctuation occurs. Strategic behavior in such
setup is studied in [J1].
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3.3 Generating technologies

The formulations (3.1) and (3.2) above can be used to model conventional
generating technologies, assuming not taking into account start-up and
shut-down costs. These formulations can be extended to include additional
constraints, representing certain generation technologies [75].

3.3.1 Wind power

Wind power is a rapidly growing renewable source usually characterized by
considerable investment costs and relatively low maintenance and operation
costs. Spilling the energy produced by a wind power unit is usually cost-
inefficient, but could be reasonable in order to manage the network congestions
or as a part of profit-maximizing strategy [95]. To model this undesirable,
but possible power spillage wind turbines are modeled as power producers
with close to zero marginal costs. The intermittency of a wind turbine output
is modeled by introducing the scenarios of available capacity as in (3.1b).

3.3.2 Hydropower

Hydropower producers are the main providers of flexibility in the systems,
where they are present. Hydropower producers can be modeled using the
following expressions:

0 ≤ sitw ∀(i ∈ Ih)tw, (3.3a)

0 ≤ mitw ≤Mi ∀(i ∈ Ih)tw, (3.3b)

mitw−mi(t−1)w = M0
i I(t=1) + Vitw−Γiqitw−sitw

+
∑
i∈Iup

(Γiqi(t−Ti)w + si(t−Ti)w) ∀(i ∈ Ih)tw. (3.3c)

Here in time step t, scenario w: sitw is spillage of hydropower producer, mitw

is the water level, Vitw is an inflow. Mi is the maximum water level, and M0
i

is the initial water level taken into account if the constraint is formulated
for the first time step (I(t = 1)). In hydropower plants with a large storage
capacity, head variation has negligible influence on operating efficiency in the
short-term, therefore a constant production equivalent Γi can be assumed [96].
Constraint (3.3a) limits spillage, (3.3b) sets the limits on water level, (3.3c)
describes the hydrological balance.
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A system of connected reservoirs is considered. Therefore the hydrological
balance for unit i, includes the water used for production or spilled by an
upstream unit i ∈ Iup. Additionally, depending on the waterways’ structure,
there might be time lag in water relocation Ti.

In certain applications it may be also needed to model a problem of
hydropower producer. Since hydropower producers have limited volume of
the reservoir, it might be profitable to save some water for the future. The
future water value is included in the profit formulation of the producer:

π =
∑

(i∈Ih),w

Pw

(∑
t

(λntw − CMi )qitw +miTwΛfi
1

Γi

)
(3.4)

Here the first term in paranthesis describes the market profit of the hydropower
producer: λntw is the locational marginal price, and CMi is the marginal costs
of the generator. The second term describes the value of the water kept in
the reservoir by the end of the modeling horizon: Λfi is a parameter, forecast
by the hydropower producer and defining the value of water in the future.

3.3.3 Energy storage

Energy storage can act as a load within its capacity Li ≤ 0, consuming
electricity during the periods of a lower price, or like a generator, smoothing
out the demand spikes [97]. For energy storage constraint (3.2c) becomes:

for i ∈ Istorage : Lic ≤ qitc ≤ Kic. (3.5)

The conversion cannot be regarded as completely free, as there are certain
losses. Power flowing in the battery, P initc ≥ 0, amounts to P in

itc

ηin
energy stored,

where ηin is an efficiency factor. Analogically, P outitc ≥ 0 flowing out of a
battery becomes P outηout after conversion. Therefore, the output of energy
storage unit can be written as:

for i ∈ Istorage : qitc = −P
in
itc

ηin
+ P outitc η

out (3.6)

Other constraints for the battery are the minimum Emin and maximum
Emax states of charge. Considering the initial state of charge E0 they can be
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written as:

E0 +
∑
t

(P initc
ηin
− P outitc η

out
)
≤ Emax (3.7a)

E0 +
∑
t

(P initc
ηin
− P outitc η

out
)
≥ Emin (3.7b)

To avoid the simultaneous charging and discharging of the battery the objec-
tive function is updated with penalizing terms. For example, the objective
function (3.2a) can be rewritten as:

minimize
qi,qitc

(1−
∑
c

Pc)(
∑
i

Ĉiqi + P ini(t=1)cc
in + P outi(t=1)cc

out)+∑
c,i,t

Pc(Ĉiqitc + P ini(t>1)cc
in + P outi(t>1)cc

out) (3.8)

Here cin and cout are small penalizing costs. These costs are ensuring the
correct operation of the storage device.

3.4 Demand

In the formulations (3.1) and (3.2) it is assumed that demand is inelastic,
expressed with a parameter Dntw. This assumption is common in power
systems, where consumers often do not receive price signals and therefore do
not respond by reducing their consumption [98]. However, demand response
can be modeled in this framework as a “virtual” generator with high costs
CDRitw and capacity equivalent to the capacity of demand-responsive consumers.
This generator can be dispatched, when the price reaches high-enough levels,
imitating the disconnection of flexible consumption. The symmetry between
total surplus maximization and generation cost minimization is proved in [3].



Chapter 4

Exercise of market power in
wind-integrated systems

This chapter focuses on modeling strategic behavior on ramps in wind-
integrated power system. The findings are based on the publication [J1]. We
propose a model for describing the strategic behavior on ramp rates and
demonstrate illustrative and numerical results.

4.1 Introduction

With an increasing penetration of wind power, there is likely to be an
increasing need for fast-ramping generating units. These generators ensure
that no load is lost if supply drops due to the uncertainties in wind power
generation. However, it is observed in practice that, in a presence of network
constraints, fast-ramping generating units are prone to act strategically and
exercise market power by withholding their ramp rates. In the Australian
National Electricity Market (NEM), when the prices increase to very high
levels, some generators were observed to decrease their declared ramp-rate
capabilities, in order to maintain high output for a longer period of time.

Another evidence of strategic behavior was observed in South Australia,
an area with very high penetration of wind power. A sudden reduction in
wind output there must be matched by a rapid increase in the output of
thermal generators. On several occasion the price in the area spiked up
to $12000/MWh. These occasions tended to coincide with times when the
offered ramp rate from thermal units was less than their technical capability.

29
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It appears that at times generators may have a commercial incentive to limit
the rate at which they ramp up in response to a fall in wind power output.

In this chapter we propose a model, capable to model ramp-rate game
in wind integrated power systems. The model covers an important gap in
the literature. The authors of [99,100] consider ramp rates as a part of the
bidding information of profit-maximizing generating companies, but they
do not assume any strategic behavior relating to ramp rates. The authors
of [101] provide an analysis of strategic ramp-rate bidding, but significantly
simplify the market clearing problem and do not take into account possible
contingencies or network constraints.

The model in this chapter is set up using the concept of the multiple
leaders-follower game as discussed in Section 2.2.3. The follower is a market
operator who runs the short-run economic dispatch problem, discussed earlier
in Section 3.2.2. SRED allows to model a trade-off between preventive and
corrective measures for possible contingencies, e.g. wind power outages, in
convex structure. The leaders are the profit-maximizing generators, strategic
on both ramp rate and generation capacity. The whole setup is modeled as
an Equilibrium Problem with Equilibrium Constraints (EPEC). The result of
the EPEC model is a set of Nash equilibria of the ramp-rate game. To tackle
the multiple Nash equilibria problem, we use the concept of the extremal-
Nash equilibria, introduced in Section 2.1.1. We use different techniques
for the linearization of the problem and motivate the best one [59]. The
final formulation of the proposed game-theoretic model is a single-stage
Mixed-Integer Linear Program (MILP). To show the distinctive features of
the proposed game model, the whole formulation is applied to the illustrative
two-node example system and to the IEEE 24-node system.

4.2 Modeling

This section gives the detailed formulation of the model used in the simulations
and the assumptions made. We model a ramp-rate Stackelberg game with
multiple leaders and a single follower. The leaders are strategic generators,
seeking to maximize their profits by offering strategic bids to the market.
The follower is a market operator performing a security-constrained short-run
economic dispatch. We assume that all forward contracts [102] have been
released before the dispatch takes place.
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4.2.1 Lower level

The short-run economic dispatch (SRED) represents the lower level of the
ramp-rate game. The setup of this dispatch, the motivation behind it, and
the adopted assumptions are discussed in Section 3.2.2. The linear problem
representing the optimal short-run economic dispatch in this chapter is as
follows:

minimize
gi,gitc

(1−
∑
c

pc)
∑
i

(cigi) +
∑
c,i,t

pc(cigitc) (4.1a)

subject to: gi, gitc ≥ 0 ↔ µA1
itc (4.1b)

gi ≤ Ki ↔ µA2
i (4.1c)

gitc ≤ Kic ↔ µA3
itc (4.1d)∑

n,i∈n
gitc =

∑
n

dn ↔ λBtc (4.1e)

∑
n

Hli

∑
n,i∈n

(gitc − dn) ≤ Fl ↔ µCltc (4.1f)

gitc − gi(t−1)c ≤ R̂
up
i ↔ µD1

itc (4.1g)

− gitc + gi(t−1)c ≤ R̂dni ↔ µD2
itc (4.1h)

The short-run economic dispatch problem in (4.1a)-(4.1h) is convex and
satisfies the weak Slater’s condition. Accordingly, the Karush-Kuhn-Tucker
(KKT) optimality conditions can be written as linear or mixed-integer system
of equations using one of the three techniques to avoid nonlinear complemen-
tary slackness conditions described in Section 2.2.1: strong duality, SOS type
1 technique, or BigM technique.

We will denote the total number of primal feasibility equations (4.1b)-
(4.1h) as a star (∗). Three discussed techniques for linearizing the KKT system
are compared in Table 4.1 in terms of constraints, variables and constant
parameters. Simulating these techniques shows that computational time
depends strongly on these values. As shown in Table 4.1, the strong duality
technique is the most computationally efficient technique for linearizing our
KKT system. Therefore, to ensure the scalability and computational efficiency
of the problem formulation, we adopt the strong duality technique in our
further simulations.
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Table 4.1: Linearization techniques for KKT system. (∗) = (4TIC − 3IC +
I + TC + LTC) – number of primal feasibility constraints. Capital letters –
number of elements in sets, see Nomenclature.

Strong duality SOS type 1 BigM technique

Constraints 2(∗) + 1− TC 4(∗)− 3TC 4(∗)− 3TC

Binary variables 0 0 (∗)− TC
SOS1 variables 0 2(∗)− 2TC 0

BigM constants 0 0 (∗)− TC

4.2.2 Upper level

The upper level of the ramp-rate game is the profit-maximization task solved
by the strategic generators. The profit formulation for the generator i can be
written as:

πi = (pn − ci)gi, (4.2)

where pn is the price at the connection node n of generator i. The nodal price
pn can be expressed as a summation of a system price, λBtc, and transmission
congestion price,

∑
l µ

C
ltcHli, (pn = λBtc −

∑
l µ

C
ltcHli). The expression (4.2)

for the initial state and for each time step t is then:

πitc = (λBtc −
∑
l

µCltcHli − ci)gitc. (4.3)

Expressing the λBtc from stationary conditions, following the logic in [45], we
recast the profit expression as:

πitc = µA2
i gi + (µA3

itc + µD1
itc + µD2

itc )gitc. (4.4)

This expression contains nonlinear terms in primal and dual variables. How-
ever, using the complementary slackness conditions, we can equivalently
write:

µA2
i gi = µA2

i Ki, µA3
itcgitc = µA2

itcKic∑
t

µD1
itc gitc =

∑
t

µD1
itc R̂

up
i (4.5)∑

t

µD2
itc gitc =

∑
t

µD2
itc R̂

dn
i



4.2. MODELING 33

For the nonstrategic generators the bidding levels of ramp rates are true
ramping capabilities, (R̂upi = Rupi and R̂dni = Rdni ). For the strategic gen-
erators, we assume a strategic choice on ramping level. We can model this
strategic choice, by introducing a vector of binary variables xupik and xdnik :

R̂upi = (b0 +
∑
k

bkx
up
ik )Rupi , (4.6a)

R̂dni = (b0 +
∑
k

bkx
dn
ik )Rdni . (4.6b)

Here b0 and bk are vectors of constants, such that b0 +
∑

k bk = 1. This way,
xup,dnik = 1 means that the generator bids the full ramp-rate capability to the
market. If xik = 0, then R̂upi = b0R

up
i and R̂dni = b0R

dn
i , which means the

generator bids the minimum possible ramp rate level. This way a strategy set
Si = {s1, s2...s} for the strategic unit i is obtained as a set of all k possible
combinations for the vector xup,dnik .

We substitute the expressions (4.5)-(4.6) in the profit formulation (4.4)
and use the disjunctive constraints [53] to linearize the product of binary
variables xup,dnik and continuous variables µD1,D2

itc , by introducing a new vari-
able zD1,D2

ik = xup,dnik µD1,D2
itc . Assuming for conciseness that Rupi = Rdni = Ri,

we obtain the following expression for the profit:

πi =µA2
i Ki +

∑
tc

(
µA3
itcKic + b0(µD1

itc + µD2
itc ) (4.7)

+
∑
k

(zD1
itck + zD2

itck)bkRi

)
.

The zD1,D2
ik terms are linearized with a following set of constraints:

zD1,D2
ik ≤ K̄1,2x

up,dn
ik ,

zD1,D2
ik ≤ µD1,D2

itc , (4.8)

zD1,D2
ik ≥ µD1,D2

itc − K̄1,2(1− xup,dnik ).

Here K̄1 and K̄2 are big-enough disjunctive constants, designed according to
the recommendations in [54].

The Nash equilibrium between the strategic generators on ramp rate is
reached, when given the ramp-rate strategy of other generators, no player
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wants to deviate from the chosen strategy. Or, expressed mathematically:∑
itc

πitc(s
∗
i , s
∗
−i) ≥

∑
itc

πitc(si, s
∗
−i). (4.9)

To avoid the problem of multiple Nash equilibria, we use the concept of
extremal Nash equilibria, as in 2.1.1. The whole ramp-rate game model
consists of the optimality conditions derived in Section 4.2.1, the profit
formulation (4.7), disjunctive constraints (4.8), an expression ensuring the
Nash equilibrium outcome (4.9), and an extremal-Nash equilibrium expression.
As an example, the mixed-integer linear programming problem for finding
the best-Nash equilibrium is set out in below:

Minimize
xup,dnik

(1−
∑
c

pc)
∑
u

(cigi) +
∑
c,i,t

pc(cigitc) (4.10)

subject to: gi, gitc ≥ 0, gi ≤ Ki, gitc ≤ Kic (4.11)∑
n,i∈n

gitc =
∑
n

dn (4.12)

∑
n

Hli

∑
n,i∈n

(gitc − dn) ≤ Fl (4.13)

gitc − gi(t−1)c ≤ R̂
up
i (4.14)

− gitc + gi(t−1)c ≤ R̂dni (4.15)

µA1
itc , µ

A2
i , µA3

itc , µ
C
ltc, µ

D1
itc , µ

D2
itc ≥ 0 (4.16)

Profit formulation and linearization (4.7)-(4.8)
Nash equilibrium condition (4.9)
Stationary conditions
Strong duality implication

4.3 Illustrative case study

We consider a network with two distinctive areas. The areas are represented
by 2 nodes: G1, G2, G3 are placed in node 1, G4, G5, G6 and demand are
placed in node 2. We consider a capacity-constrained line, connecting these
2 nodes. Node 1 represents a generation surplus area, while the demand is
mostly concentrated in node 2. An example of this setup is the Swedish
power system, where generation is mainly concentrated in North and the
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load centers are situated in South. The northern and southern parts are
only connected by several constrained links. The unit data is presented in
Table 4.2.

While units G1 to G3, G5 and G6 have low probabilities of failure, unit
G4, representing the aggregation of wind power units, has a 1% probability
of going off the network, due to the extreme wind conditions. The demand is
predicted to be 1500 MW during the short dispatch period under consideration.
The dispatch is shown in Figure 4.1.

We consider 2 cases: case (a) represents a base-case, when generators are
bidding their true ramping capabilities. In case (b) the generators G5 and
G6 have 4 bidding strategies on their ramping capabilities. They can offer 4
levels of ramp rate, from 25% to 100% of their true ramping capability.

In case (b) the bidding decisions of strategic generators G5 and G6 differ.
Table 4.2 presents that in case of the best-Nash equilibrium (BNE) generator
G6 withholds 25% of its ramping capability. The optimal dispatch of the
system is shown in Figure 4.1-(b). We see that the lower ramp rate of G6
forces the market operator to dispatch G5 even in a no-contingency state (time
step 1). In the case of the worst-Nash equilibrium (WNE) both generators
withhold. The corrective actions are taking more time and dispatch costs
increase. As shown in Table 4.3, the costs of market power in cases of BNE
and WNE are e6862 and e13365, respectively. This means 21.6% and 42%
increase in dispatch costs as compared to the dispatch cost of the competitive
case. The average market clearing prices (MCPs), calculated through 7
periods, increase as well.

We see that the concept of extremal-Nash equilibria, introduced in Section

Table 4.2: Unit data for the 2-nodes system. Rupi =Rdni =Ri In bold – identified
cases of withholding.

Unit, Capacity, Costs, Ramp rates, (MW/hr)
i Ki (MW) ci (e/MW) Ri BNE R̂i WNE R̂i

G1 500 10 1000 1000 1000
G2 500 100 100 100 100
G3 800 50 100 100 100
G4 800 0.1 100 100 100
G5 500 200 100 100 75
G6 500 1000 500 375 375
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(a) Competitive bidding

(b) Strategic bidding - BNE
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Figure 4.1: Short-run economic dispatch and market clearing prices (MCPs)
for the cases of (a) competitive and (b) strategic bidding. BNW: best-Nash
equilibrium case, WNE: worst-Nash equilibrium case.
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Figure 4.2: The concept of Nash-equilibria band with BNE and WNE as
the lower and upper bounds. Clouds of Nash equilibria solutions for the
cases, when generators G5 and G6 are strategic, and when all generators are
strategic.

Table 4.3: Cost of market power on ramp rate for the illustrative case study
(loss of G4 with probability of 1%, G5 and G6 strategic)

No gaming Best NE Worst NE
Dispatch costs (e) 31,779 38641 45144
Cost of market power (e) 6862 13365
Relative increase in costs 21.6% 42%
Average electricity price (e) 629 657 771

2.1.1 sets the bounds for the solution space (Nash-equilibria cloud) in the
case of strategic generators. The solutions in the cloud are equiprobable.

Figure 4.2 presents the evolution of dispatch costs over different contin-
gency probabilities. The cloud of solutions, when all generators are strategic,
is a super set for the cloud of solutions, when only generators G5 and G6
are strategic. Both bounds are important for the market power assessment;
however, depending on the application we could be interested in a lower or
upper bound. Another observation from the figure is that the cloud becomes
thinner and tends to the non-strategic costs, when the probability of contin-
gency is higher. This can be explained by the trade-off between preventive
and corrective actions. As a severe contingency is more probable, system
operator takes more preventive actions to minimize the costs and often the
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most expensive generators are dispatched in the preventive action.

4.4 Numerical results

Here we present only the main findings of the ramp-game modeling on a
larger network, for more results we refer the reader to [J1]. EPEC problems
are known to be computationally intesive [103], the purpose of this section is
to demonstrate that the developed formulation is scalable to larger system, in
this case 24-node IEEE system [104]. We assume that G13 is an aggregation
of several wind power units. The output of G13 is predicted to be 300 MW,
however there is a certain probability that the real output will be different.

In this section we consider a joint game for ramp and quantity. To do
so, we introduce a variable K̂ic, which describes the production bid of the
strategic generator:

K̂ic = (b0 +
∑
k

bkx
cap
ik )Ki. (4.17)

Here xcapik is a vector of binary variables. Constraints (4.11) are then changed
to the following expressions:

gi, gitc ≥ 0, gi ≤ K̂ic, gic ≤ K̂ic. (4.18)

Following the same logic as in ramp-game, we change the expression for the
profit:

πi = b0µ
A2
i +

∑
k

bkz
A2
ik +

∑
tc

(∑
k

bkz
A3
itckKic + b0(µA3

itc + µD1
itc (4.19)

+ µD2
itc ) +

∑
k

(zD1
itck + zD2

itck)bkRi

)
.

Here zA2
ik = µA2

i xcapik and zA3
itck = µA2

itcx
cap
ik are linearized the same way as

described in (4.8). It should be noted that the formulation can be extended
further to include other strategic parts of the bid, as for example in [105].

The wind-integrated power systems are characterized by variability of
wind power output. Therefore, we investigate different probabilities and sizes
for wind power contingencies. Figure 4.3 shows the dispatch costs in the
case of two-step demand response with 7 strategic generators (G1, G2, G3,
G5, G6, G11 and G12). Both BNE and WNE costs are plotted. In the
BNE case, when the actual output of the wind generating unit is more or
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Figure 4.3: Dispatch costs for the cases with different output deviation
predicted with different probabilities. (a) Best-Nash equilibrium case, (b)
Worst-Nash equilibrium case.

around the predicted value we observe a linear increase in the dispatch costs
with the increased probability of congestion. However, when the severity of
contingency is high – the actual wind output is less than predicted value by
25% or more – we observe rapid increases in the dispatch costs caused by
the gaming behavior of strategic generators. In the WNE case, the dispatch
costs are high in all studied cases.

According to the obtained results we can observe that when the severity of
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contingency is high, which may depend on the system flexibility, the generators
are prone to exercise market power by bidding strategically on their capacity
and ramp rate levels. This strategic behavior affects considerably the dispatch
costs and prices in the system, especially when the demand response is limited.
This result supports the necessity of ramp-game modeling in the systems
with intermittent supply.

The model is implemented on GAMS platform and solved by CPLEX
solver. The GAMS code runs on 2.8 GHz Intel Processor with 2 cores and
8 GB RAM. As an example, the computation time for the BNE case of
two-steps demand response and the wind generators output predicted to be
120 MW with probability of 1% is 38 minutes.

4.5 Conclusion

In this chapter we model the strategic behavior in wind-integrated systems,
where the intermittency is high, so that the security-constrained short run
economic dispatch is a welfare-maximizing way of operating the system.
We assume a market operator who collects the bid information, including
marginal costs, available capacity and ramp rates. Strategic generators,
willing to maximize their profit, can bid lower than their true ramp rates and
capacities. The outcome of the market is a Nash equilibrium.

Illustrative case study demonstrates that in presence of network con-
straints and a major contingency, the generators are prone to exercise market
power and bid a lower ramp rate to the market. Further, using a 24-node case
study we show that if the severity of contingency is high, strategic generators
are prone to maximize their profits by bidding strategically to the market.

This study shows that contingencies, introduced by a strong intermittency,
have a significant effect on the proneness of generators to bid strategically,
which in turn affects the dispatch costs and, therefore, the system social
welfare. Here, the ramping capabilities of the units are particularly important,
as they define the speed, with which the system reacts to the contingencies.



Chapter 5

Market power in power
systems with high share of
wind power and hydropower

In this chapter we study the strategic behavior of hydropower producers
as main providers of generation flexibility in wind-integrated systems. The
chapter is based on publications [J3] and [J4]. In this chapter we will study
the cases of a single dominant hydropower producer and of Nash equilibrium
of multiple hydropower producers.

5.1 Introduction

As we have seen in Chapter 4, flexibility plays a crucial role in the systems
with high penetration of wind power. Fast-ramping producers compensate
the fluctuations of wind power and may have incentives to withhold this
flexibility in order to obtain higher profits. Hydropower producers are often
regarded as flexibility providers in the systems, where this type of power is
available.

The annual hydropower share in electricity generation in Norway is 95-99%.
It is also high in Brazil (80%), Iceland (88%), New Zealand (65%), Austria
(70%), Canada (62%) and Sweden (42%) [106]. Even though hydropower
producers have such an important market share, they have been traditionally
regarded as price-takers, optimizing their production schedule based on the
price expectation. However, the price-taking assumption for a hydropower

41
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producer does not always hold [3]. Reference [107] shows that in hydrothermal
systems the strategic behavior can lead to significantly higher prices. In
winter 2002-2003, extraordinary high prices were observed in Nordic market.
A number of observers voiced the concern that the high prices were a result
of strategic behavior by hydropower producers. The hydropower producers
may have used an opportunity to spend more stored water in summer in
order to create scarcity and, therefore, high prices, in winter [70].

Hydropower producers can use their unique characteristics (such as a
capability to store energy, hydrological coupling between units and near-zero
marginal cost) to behave strategically in the market [106], [108]. With an
increasing penetration of wind and solar generation, hydropower producers
can ramp fast to cover the generation fluctuations. Withholding such ramping
capability adds another dimension to the strategic behavior of hydropower
producers.

Modeling the hydro-dominated systems requires accounting for hydro-
specific constraints. The few studies that have looked at market power
assessment involving the hydropower producers, have significantly simplified
the modeling. Usually only a single profit-maximizing hydropower producer
is considered, and the optimal dispatch conditions are simplified as a residual
demand curve [109], [110]. In reference [107] the authors consider the market
power assessment in a hydrothermal power system, but employ a simplifying
residual demand approach, expressing price as a function of price-makers’
production, rather than as a result of the optimal dispatch. The authors
in [28] include the equilibrium constraints, but their model neglects the
uncertainty in reservoir inflows and contains nonlinearities.

In this chapter we model the cases of single dominant hydropower producer
and multiple hydropower producers in power systems with high share of wind
power. The respective MPEC and EPEC models are recast as MILP and
solved using a Modified Benders Decomposition Algorithm (MBDA), discussed
earlier in Section 2.4.3. We compare the numerical results with other types
of Benders decomposition and monolith solution by CPLEX solver.

5.2 Modeling

In this section we discuss the models of a single profit-maximizing hydropower
producer, formulated as an MPEC, and multiple producers, formulated as an
EPEC.
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5.2.1 Single profit-maximizing hydropower producer

The price-making hydropower producer is modeled in (5.1).

maximize
q̂it,r̂i,ĉit

π =
∑

(i∈Ih),w

Pw

(∑
t

(λntw − CMi )qitw +miTwΛfi
1

Γi

)
(5.1a)

subject to: 0 ≤ q̂it ≤ Qi, 0 ≤ r̂i ≤ Ri, 0 ≤ ĉit ≤ Ci,∀(i ∈ Ih)t, (5.1b)
where λntw, qitw, sitw,mitw ∈

arg
{

minimize
qitw,sitw,mitw

∑
i,t,w

Pw ĉitqitw (5.1c)

subject to: 0 ≤ qitw ≤ q̂it : µA1
itw, µ

A2
itw, ∀i, (5.1d)∑

i

qitw =
∑
n

Dntw : λBtw, ∀tw, (5.1e)∑
n

Hln(
∑
i:n

qitw −Dntw) ≤ Fl : µCltw, ∀ltw, (5.1f)

− r̂i ≤ qi(t−1)w − qitw ≤ r̂i : µD1
itw, µ

D2
itw, ∀itw, (5.1g)

0 ≤ sitw : µEitw, ∀(i ∈ Ih)tw, (5.1h)

0 ≤ mitw ≤Mi : µF1
itw, µ

F2
itw, ∀(i ∈ I

h)tw, (5.1i)

mitw−mi(t−1)w = M0
i I(t=1) + Vitw−Γiqitw−sitw

+
∑
i∈Iup

(Γiqitw + sitw) : λGitw, ∀(i ∈ Ih)tw
}
. (5.1j)

Here (5.1a) is the profit formulation, where λntw is a locational marginal
price (LMP) and it can be expressed as λntw = λBtw −

∑
l,n µ

C
ltwHln. We

model hydropower producer using the assumptions made in Section 3.3.2.
The term miTwΛfi

1
Γi

describes the future value of water left in the reservoir
by the end of the modeling horizon (at time step T ). Strategic hourly bids
(q̂it, ĉit), and ramp-rate bid r̂i of the hydropower producer are modeled by the
constraints (5.1b). The LMPs and the dispatch variables are the output of the
lower-level economic dispatch problem (5.1c)-(5.1j). Expressions (5.1d) are
the generation constraints. Expression (5.1e) represents the energy balance
constraint, (5.1f) accounts for the network constraints and (5.1g) is setting
the constraints on ramp rate. A system of connected reservoirs is considered
for the hydropower producer. We model the constraints on spillage (5.1h),
water level (5.1i) and hydrological balance condition (5.1j).
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Since the lower-level problem (5.1c)-(5.1j) is linear, we can equivalently
rewrite it as Karush-Kuhn-Tucker (KKT) conditions. We avoid the comple-
mentary slackness conditions by substituting them with the strong duality
condition, as it was shown to be more convenient for linearization in Chap-
ter 4. Accordingly, primal feasibility constraints (5.1d)-(5.1j), dual feasibility
constraints, stationarity constraints and strong duality constraint form the
optimality conditions of the lower-level problem. Now, we can reformulate
the profit by deriving the LMP from the stationary conditions:

π =
∑

(i∈Ih),w

Pw

(∑
t

(λBtw −
∑
l,n

µCltwHln − CMi )qitw +miTwΛfi
1

Γi

)
=

∑
(i∈Ih),w

Pw

(∑
t

(ĉit − µA1
itw + µA2

itw + µD1
itw − µ

D2
itw − µ

D1

i(t+1)w + µD2

i(t+1)w

− Γiλ
G
itw + Γi

∑
i∈Idn

λGitw − CMi )qitw +miTwΛfi
1

Γi

)
. (5.2)

We simplify expression (5.2) using the complementary slackness (CS) con-
ditions. The term (∗) = (−Γiλ

G
itw + Γi

∑
i∈Idn λ

G
itw)qitw appeared from the

hydrological balance constraint (5.1j) and it exists only for hydropower units.
The final profit expression becomes:

π =
∑

(i∈Ih),w

Pw

(∑
t

(
µA2
itwq̂it+(µD1

itw+µD2
itw)r̂i+ĉitqitw−CMi qitw

+µF2
it Mi−λGitw(M0

i I(t=1)+Vit)
)

+miTwΛfi
1

Γi

)
. (5.3)

The equivalent one-level program can be formulated by combining the upper-
level constraints and the lower-level optimality conditions. The variables
of one-level optimization include primal variables and dual variables of the
lower-level problem, and variables of the upper-level problem: ΩNLP={qitw,
sitw, mitw, µA1

itw, µ
A2
itw, µ

D1
itw, µ

D2
itw, µ

E
itw, µ

F1
itw, µ

F2
itw, µ

C
ltw, λ

B
tw, λGitw, q̂it, r̂i,

ĉit}. The final profit expression (5.3) and strong duality condition contain
bilinear terms µA2

itwq̂it, µ
D1
itwr̂i, µ

D2
itwr̂i and ĉitqitw. For the non-strategic units

we assume: q̂it = Qi, r̂i = Ri, ĉit = CMi , ∀i ∈ (I\Ih). For the strategic units
these terms need to be linearized.

We approximate the generation capacity Qi by a pre-defined number
of discrete capacities Q̂ik. Therefore: µA2

itwq̂it = µA2
itw

∑
k x

q
itkQ̂ik=

∑
k z

A2
itwk,
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where
∑

k x
q
itk = 1. Variable zA2

itwk can be linearized as follows [53]:

− K̄q(1− xqitk) ≤ z
A2
itwk − Q̂ikµ

A2
itw ≤ K̄

q(1− xqitk) :

(αA2
itwk, α

A2
itwk), ∀(i∈I

h)twk, (5.4a)

−K̄qxqitk≤z
A2
itwk≤K̄

qxqitk : (β
A2

itwk, β
A2

itwk
),∀(i∈Ih)twk. (5.4b)

In the constraints above K̄q is a suitably large constant, not too high to
create computational instabilities, and not too low to put extra bounds on
the variables [111]. Introducing K̄r, we rewrite (5.1d) and (5.1g) as follows.

qitw ≤ Q̂ik+K̄q(1−xqitk) : (νA2
itwk),∀(i∈I

h)twk, (5.5a)

qi(t−1)w − qitw ≤ R̂ik+K̄r(1−xrik) : (νD1
itwk),∀(i∈I

h)twk, (5.5b)

qitw −qi(t−1)w ≤ R̂ik+K̄r(1−xrik): (νD2
itwk), ∀(i∈I

h)twk. (5.5c)

We repeat the linearization steps for other bilinear terms, introducing zD1
itwk=

µD1
itw

∑
k x

r
ikR̂ik, z

D2
itwk= µD2

itw

∑
k x

r
ikR̂ik, z

obj
itwk= qitw

∑
k x

c
itkĈik. We form a

new set of variables ΩMILP by adding xqitk, x
r
ik, x

c
itk, z

A2
itwk, z

D1
itwk, z

D2
itwk, z

obj
itwk

to ΩNLP. The proposed stochastic MILP model is set out in (5.6).

maximize
ΩMILP

π=
∑

(i∈Ih),w

Pw

(∑
t

(zA2
itwk+z

D1
itwk+z

D2
itwk+z

obj
itwk−C

M
i qitw

+µF2
itwMi−λGitw(M0

i I(t=1)+Vit))+miTwΛfi
1

Γi

)
(5.6a)

subject to: (5.1e), (5.1f), (5.1h)-(5.1j), (5.4), (5.5),

(5.1d), (5.1g), stationary conditions ∀i ∈ I\Ih, (5.6b)

µA1
itw, µ

A2
itw, µ

D1
itw, µ

D2
itw, µ

E
itw, µ

F1
itw, µ

F2
itw, µ

C
ltw ≥ 0, (5.6c)

Linearization of zD1
itwk, z

D2
itwk, z

obj
itwk as in (5.4), ∀i∈Ih,

Linearization of strong duality implication as in (5.4).

5.2.2 Multiple profit-maximizing hydropower producers

Section 5.2.1 described the formulation of a stochastic MILP model for a
single profit-maximizing hydropower producer. In this section we discuss,
how we can formulate the game of multiple strategic hydropower producers.
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In Section 2.2.3 we discussed that Nash equilibrium can be formulated as
an optimization problem:

minimize
ΩMILP

∆π =
∑
i∈Ih

εi (5.7a)

subject to: πi(s
∗
i , s
∗
−i) + εi ≥ πi(si, s∗−i), ∀i∈Ih, (5.7b)

εi ≥ 0, ∀i∈Ih (5.7c)

At a Nash equilibrium point the deviation εi is zero for all players. Under
uncertainty the profit πi can be different in different scenarios. There are
several ways of how to extend the definition of Nash equilibrium in the case
of uncertainty.

Bayesian Nash equilibrium

Each player is assumed to have a subjective uncertainty probability dis-
tribution function [46]. This assumption is applicable to the most of the
uncertainties observed in the power system, such as wind, reservoir inflows, de-
mand uncertainty. When introducing scenarios w describing the uncertainty,
the Nash equilibrium (5.7b) becomes:

Ew[πiw(s∗i , s
∗
−i)] + εi ≥ Ew[πiw(si, s

∗
−i)], ∀i∈Ih. (5.8)

Robust Nash equilibrium

Finding robust Nash equilibrium does not require the prior knowledge of
probability distribution function for the incomplete information [47]. This is
very useful, when certain scenarios have no historic data or when probabilities
of the scenarios are difficult to compute. Robust Nash equilibrium uses the
worst-case approach, where (5.7b) is reformulated as follows:

min
w

[πiw(s∗i , s
∗
−i)] + εi ≥ min

w
[πiw(si, s

∗
−i)], ∀i∈Ih. (5.9)

We introduce πminw to formulte a mixed-integer reformulation of (5.9):

πmini (s∗i , s
∗
−i)+εi ≥ πmini (si, s

∗
−i), ∀i ∈ Ih (5.10)
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Introducing binary variables xrobiw we ensure that πmini takes the smallest
value in scenarios minw[πiw]:

πmini ≤ πiw, ∀(i ∈ Ih)ws (5.11a)

πmini ≥ πiw − K̄(1− xrobiw ),∀(i ∈ Ih)ws, (5.11b)∑
w

xrobiw = 1. (5.11c)

The profit for the hydropower producer can be derived in a similar way as
in (5.2). Extending the formulation by considering the profit in alternative
strategies πiw(si, s

∗
−i) we can write the whole optimization problem as a

stochastic MILP problem (5.12).

minimize
ΩMILP

∆π =
∑
i∈Ih

εi (5.12a)

subject to: NE definition (5.8), or (5.10)-(5.11), εi ≥ 0,

For s∗i and (si, s
∗
−i), ∀i ∈ Ih:

{πiw =
∑
t

(
∑
k

(zA2
itwk+z

D1
itwk+z

D2
itwk+Pwz

obj
itwk)−C

M
i qitw+µF2

itwMi

−λGitw(M0
i I(t = 1)+Vit))+miTwΛfi

1

Γi
,∀(i∈Ih)w, (5.12b)

(5.1e), (5.1f), (5.1h)-(5.1j), (5.4), (5.5),

(5.1d), (5.1g), stationary conditions ∀i ∈ I\Ih,
µA1
itw, µ

A2
itw, µ

C
ltw, µ

D1
itw, µ

D2
itw, µ

E
itw, µ

F1
itw, µ

F2
itw ≥ 0,

Linearization of zD1
itwk, z

D2
itwk, z

obj
itwk as in (5.4), ∀i∈Ih,

Linearization of strong duality as in (5.4)}.

5.3 Solution Approach

In optimization problem (5.6), if we fix binary variables xqitk, x
r
ik and xcitk,

the problem separates in a series of linear programs which can be solved
in parallel. For the stochastic MILP problem in (5.12) fixing the binary
variables results in a linear program, partly decomposable by blocks in case
of the robust Nash equilibrium.

Benders decomposition is commonly used for mixed-integer program, as
it allows dealing with complicating variables. In this section we propose
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Modified Benders Decomposition Algorithm (MBDA). In Section 5.5 we
compare it numerically with alternative Benders approaches (as described
in Section 2.4) and with solution by CPLEX solver. In this section we
discuss subproblem and master problem based on the model of a single
profit-maximizing generator. The corresponding derivations for the case of
multiple strategic hydropower producers are provided in [J4].

Modified subproblem corresponding to initial MILP (5.6) can be formu-
lated as follows:

maximize
ΩSP

πdual =
∑
w

Pw
∑
t

(
φBtw

∑
n

Dntw −
∑
l

νCltw(Fl+
∑
n

HlnDntw)−∑
i∈I\Ih

φstqitwCi−
∑
i∈Ih

φstqitw
∑
k

Ĉikx̌
c
ik−

∑
i∈I\Ih

φA2
itwQi−

∑
i∈Ih

φA2
itw

∑
k

Q̂ik

−
∑
i∈I\Ih

(φD1
itw+φD2

itw)Ri−
∑
i∈Ih

(φD1
itw+φD2

itw)
∑
k

R̂ik −
∑
i∈Ih

φF2
itwMi+

∑
i∈Ih

φGitw(M0
i I(t=1) + Vitw)

))
, (5.13a)

subject to:
∑

(i∈Ih),t,w,k

(
((1− x̌qitk)(ν

A2
itwk + αA2

itwk + αA2
itwk) + x̌qitk(β

A2

itwk + βA2

itwk
))

+ ((1− x̌rik)(ν
D1
itwk + αD1

itwk + αD1
itwk) + x̌rik(β

D1

itwk + βD1

itwk
))

+ ((1− x̌rik)(ν
D2
itwk + αD2

itwk + αD2
itwk) + x̌rik(β

D2

itwk + βD2

itwk
))

+ ((1−x̌citk)(α
obj
itwk+α

obj
itwk) + x̌citk(β

obj
itwk+β

obj
itwk

))
)

= 0, (5.13b)

ΩSP ∈ X. (5.13c)

The feasible region X includes stationary conditions for all variables of
(5.6) with fixed binary variables and dual feasibility constraints. We observe
that both feasible region and the objective function of the subproblem are
free from the disjunctive parameters.

Using the special form of the disjunctive constraints, we can formulate the
modified master problem. We use an observation that disjunctive constraints
require that solutions to a mathematical program satisfy a subset of given
constraints. Therefore, all constraints can be distributed in two sets: relaxed
and enforced constraints, depending on the value of the binary variables xqitk,
xrik, x

c
itk. We propose the following formulation, where disjunctive parameters
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are removed.

minimize
xqitk,x

r
ik,x

c
itk,θj

K0θ0 +
∑
j

Kjθj (5.14a)

subject to:
∑
i,k∈Ωp

j

(∑
t

((1−xqitk)+(1−xcitk))+(1−xrik)
)

≤ |Ωp
j | − 1 +

∑
j′∈J ′

θj′I(Kj ≤ Kj′), ∀j, (5.14b)

∑
k

xqitk=1,
∑
k

xrik=1,
∑
k

xcitk=1, ∀(i ∈ Ih)t, (5.14c)

θ0 +
∑
j

θj = 1, {xqitk, x
r
ik, x

c
itk, θj} ∈ {0, 1}. (5.14d)

In optimization problem (5.14), parameter Kj=
∑

w Pwπ̌
dual
wj where π̌dualwj is a

calculated objective function of (5.13). Also parameter K0=−∞ is the lower
bound of (5.14). θj is an auxiliary binary variable, created at every iteration.
J ′ is the index set of previous iterations and j is the index of current iteration.
If we define Ω = {αA2

itwk, α
A2
itwk, β

A2

itwk, β
A2

itwk
, αD1

itwk, α
D1
itwk, β

D1

itwk, β
D1

itwk
, αD2

itwk,

αD2
itwk, β

D2

itwk, β
D2

itwk
, αobjitwk, α

obj
itwk, β

obj
itwk, β

obj
itwk

, νA2
itwk, ν

D1
itwk, ν

D2
itwk}, then Ωp

j is
the index set of strictly positive variables of Ω in iteration j. |Ωp

j | is the
cardinality of this set.

5.4 Illustrative case studies

The models formulated in Section 5.2 allow us to model the strategic behavior
of hydropower producers in the systems with high levels of wind power uncer-
tainty. Publication [J3] presents several illustrative case studies, highlighting
the possibilities for the exercise of market power by hydropower producer. In
[J4] we explore possible Nash equilibria, which may occur under uncertainty.
Below we present some of our findings.

5.4.1 The impact of forecast future water price on price
bidding of hydropower producer

The opportunity cost of the hydropower producer depends on the future
expected prices. For hydropower producer the cost today is the benefit
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Figure 5.1: Study of future price effect on dispatch cost and profits.

obtained by using the water tomorrow [106]. This benefit is calculated using
the best available optimization techniques and historic data, and determines
how much water should be saved today in order to be used tomorrow. The
price-quantity bids of a hydropower producer are based on the result of these
calculations.

The stochastic MILP model (5.6) is used to study the impact of forecast
future price on the price bidding of a hydropower producer. We should note
that forecast is very much dependent on the availability of data on wind
power. In wind-integrated power systems this forecast may be very rough. In
Figure 5.1, the forecast future price Λfi in (5.6) is varied between $0/MWh
and $2/MWh. We observe that the price bid of the strategic hydropower
producer depends on the forecast future price.

The price bid of the strategic hydropower producer changes between three
values of $14, $15 and $20/MWh. This means that in proximity of these
steps the sensitivity of price bid to the forecast future price is very high. The
same holds for the dispatch cost. For example, the strategic hydropower
producer bids $15 and $20/MWh for forecast future prices $1.2/MWh and
$1.3/MWh, respectively. This results in $1450 (+19.5%) increase in the
dispatch cost for just $0.1/MWh (+7.7%) increase in the forecast future price.
This shows the sensitivity of dispatch cost with respect to the forecast future
price. Accordingly, the accuracy of forecast future price can have a severe
impact on price bidding of a strategic hydropower producer.
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5.4.2 Strategic behavior in price, quantity and ramp-rate
bids

The optimization model (5.6) can be used to derive the price, quantity and
ramp-rate bids of the hydropower producer (Figure 5.2-(a)). The strategic
bids increase the profit of hydropower producer above its competitive level.
In Figure 5.2-(b), 5.2-(c), and 5.2-(d) the profit increase with respect to wind
generation level and its standard deviation is shown.

We observe that all three types of bid have an important effect on the
dispatch cost. Strategic behavior in quantity and price (Figure 5.2-(b) and 5.2-
(c)) produce similar results. This is because both of them can be used by the
strategic hydropower producer to drive the price to the highest possible value.
We also see that strategic behavior in ramp-rate bidding has an important
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effect even when the other two types of strategic bids are not employed
(Figure 5.2-(d)). This happens in the systems with limited flexibility, where
there are not many fast-ramping generators. In our simulations, the strategic
hydropower producer is the main provider of system flexibility. Therefore its
strategic behavior in ramp-rate bidding leads to the increase in its profit and
market prices.

5.4.3 Comparison of Nash equilibria

Since a multitude of solutions is difficult in interpretation, the policy makers
and market participants would often prefer to have a single Nash equilibrium
reference that can characterize the market situation. This is sometimes
implemented with a concept of the best/worst Nash equilibrium [45]. We
implement this by extending the objective function (5.12a) by minimiza-
tion/maximization of the total social costs in the system correspondingly. In
this section we analyze the strategic behavior, as different concepts of Nash
equilibrium introduced in Section 5.2 are applied.

We compare the results from the best and worst Nash equilibria in
Table 5.1: we provide the bids offered by the strategic hydropower producers
to the market operator (bold values show withholding), profits, and dispatch
cost corresponding to the different Nash equilibria. The following observations
can be made:

• Bids: Withholding occurs in both types of Nash equilibria. There is
more withholding if we consider the worst Nash equilibria, resulting in
higher profits for the strategic generators. Worst Nash equilibria (high
social costs) – is usually the result from high market prices.

• Profits of strategic generators: The profits in Bayesian Nash equi-
librium are higher, than in the robust Nash equilibrium. In robust Nash
equilibrium strategic bid is optimal for the worst-case scenario, while
for Bayesian Nash eqilibrium all scenarios are taken into account.

• Social costs span: The difference between the worst and the best
Nash equilibria is the largest for the robust Nash equilibria. For robust
Nash equilibrium we only consider the worst-case scenario, therefore
we do not consider if the chosen strategy holds as a Nash equilibrium
for another scenario. This provides more flexibility for the strategic
generator when choosing its strategy.



5.5. NUMERICAL RESULTS 53

Table 5.1: Comparison of Bayesian and robust best and worst Nash equilibria.
DC: dispatch cost.

Bayesian Robust
best worst best worst

Capacity bid, q̂, MW
G3 100 100 100 75
G4 25 50 75 100

Ramp-rate bid, r̂, MW
∆t

G3 10 10 10 2.5
G4 10 7.5 10 5

Price bid, ĉ, $
MWh

G3 20 20 15 20
G4 20 35 20 35

Profit,
∑

w πiw, $
G3 4637.5 5400 2845 4500
G4 287.5 287.5 100 250

DC, $ 4950 5250 3890 5700

Different types of Nash equilibrium can be used depending on the modeling
goals. We can interpret from the results that Bayesian Nash equilibrium
is more consistent with realistic behavior, assuming that the probability
distributions of the uncertain parameters are known. Robust Nash equilibrium
can be applied, when the probability distribution functions of the uncertain
parameters are impossible to obtain (e.g., if the event does not have a
historical data).

5.5 Numerical results

The performance is evaluated in [J3] and [J4] using the 4-, 24-, 118- and
300-node case studies, obtained from MATPOWER [112]. Simulations for
[J3] are performed on a computer with two 2.80 GHz CPU and 8 GB of
RAM, while for [J4] we use a computer with 18 cores with hyper-threading
Intel Xeon E5-2699 CPU and 128 GB of RAM. In order to improve the
performance, the parallelized MBDA is implemented in GAMS using the
grid solve and Gather-Update-Scatter-Solve (GUSS) facilities. A detailed
explanation of these facilities is provided in [113].

We assume 4 time periods and strategic hydropower producer has 3
actions for each type of the bid (19683 possible combinations for bidding).
Additionally, uncertainty in each time period is represented by 20 stochastic
scenarios. The scenarios for our simulations have been generated from the
real data using the moment-matching technique [81], obtained from Nord



54
CHAPTER 5. MARKET POWER IN POWER SYSTEMS WITH HIGH

SHARE OF WIND POWER AND HYDROPOWER

Pool [114] and processed to fit the case studies. The numerical results in [J3]
and [J4] prove the computational efficiency of the proposed MBDA approach.
We conclude that disjunctive parameter, which is present in primal and dual
Benders approaches has an important numerical effect. Primal and dual
Benders do not converge after 10 hours of simulation.

We also compare MBDA to the state-of-the-art MILP solver – CPLEX.
While CPLEX is better for smaller case studies it considerably underperforms
on larger case studies, e.g. 118-node IEEE case study. The reason is in the
solution procedure, having large memory requirements. Full evaluation of
the numerical results and time quotes are provided in [J3] and [J4].

5.6 Conclusion

One of the reasons, why exercise of market power can be present in wind-
integrated power systems, is due to strong fluctuations in supply. Such
fluctuations need to be balanced by fast-ramping generators. The role of
such flexible generators (especially in the Nordic region) is on hydropower
producers, able to ramp up and down quickly to cover the wind power
intermittency. It is commonly assumed that hydropower producers are price-
takers, deciding their price bids based on price forecasts and future value of
water in the reservoirs. However, in this chapter we find out that the crucial
role of hydropower producers implies an advantageous position, which can be
exploited in order to exercise market power.

In this chapter we derive two stochastic bilevel programs for strategic
bidding of hydropower producers. The upper level is one or multiple strategic
hydropower producers, bidding their price, quantity and ramp rate to the
lower-level system operator. Using a disjunction-based linearization technique
the stochastic bilevel program is reformulated as a stochastic MILP with
disjunctive constraints. To solve the reformulated stochastic MILP model, the
modified Benders decomposition algorithm is proposed. The proposed solution
algorithm does not require the optimal tuning of disjunctive parameters and
it can be parallelized. The computational efficiency of the parallelized MBDA
is demonstrated using the 118-node and 300-node case studies. We have also
compared our parallelized MBDA with the state-of-the-art CPLEX solver.

Through an illustrative example system and the developed stochastic
MILP model, we identify possible strategies specific to hydropower producers
for maximizing the profit. We also study the outcome of Nash equilibrium un-
der uncertainty by applying Bayesian and robust Nash equilibria approaches.



Chapter 6

Lessons for market design in
wind-integrated power systems

In previous chapters we have seen that exercise of market power on ramp
rate is an important issue in wind-integrated power systems. In this chapter
we study how market design can create incentives for generators to behave
strategically or competitively. This chapter is based on publication [J2].

6.1 Introduction

With a high wind power share, when generation suddenly departs from the
dispatched level it is very important that there are enough of fast-ramping
generators, able to sustain the energy balance [115]. We have seen in the
previous chapters that a lack of such generators, or their strategic behavior
may result in price spikes. The higher the ramping gradient that a power
plant can cover, the fewer plants are needed to meet a given net load ramp,
thus leading to less minimum generation per ramping [116]. There is a variety
of market designs created in the deregulated framework taking into account
the limitations of the units: markets in PJM Interconnection, New York
Independent System Operator (NYISO) and New England electricity markets
involve multi-dimensional auctions, so that participants specify technical
constraints during the dispatch.

There is a thorough analysis in [117], showing that preventing gaming on
ramp rates is a difficult task and there are no commonly adopted instruments
that guarantee to prevent gaming behavior. One of the techniques to avoid

55



56
CHAPTER 6. LESSONS FOR MARKET DESIGN IN

WIND-INTEGRATED POWER SYSTEMS

the manipulation is to allow ramp-rate constraints to change only once a
month, or some other suitable time interval, as adopted, for example, in
California [118]. The “NYISO Market Participants User’s Guide” states that
regulation movement (MW/6 sec) response rate can be updated in three
business days [119]. While this has a very little theoretical foundation, the
purpose is to prevent generators from responding to the market conditions
with false ramp rates. The expected effect would be that, exposed to the
uncertainty and high competition, generators would bid the true ramp rate
constraints. However, such a mitigating strategy allows a company to specify
a deceptive constraint for the whole period in which the ramp constraint
can be changed: a regulatory agency often cannot certify the constraint as
generators are usually allowed to bid to several markets and may divide their
ramping capability between the markets [117]. A different strategy is adopted
for example in Nordic electricity market, where generators are free choosing
the ramp rate between their flexible orders. To the best of our knowledge
there is no research evaluating the efficiency of separating the market stages
of production and ramp bids with respect to market power considerations.

In this paper we study the practical implications of separating the stages
of a strategic decision as a technique to mitigate the exercise of market
power. We model a day-ahead market and allow generators to specify the
ramp-rate level as a part of their offers. We use two types of models: a
single-stage equilibrium model, corresponding to taking the strategic decision
regarding a ramp-rate level and produced quantity simultaneously; and a
two-stage model, in which generators choose their ramp rates in the first
stage and compete in quantities in the second stage. A single-level setup
can be reflected by a complementarity problem formulation (linear – LCP, or
mixed – MCP) [120,121], while a bilevel setup takes a form of an equilibrium
problem with equilibrium constraints (EPEC) [103].

6.2 Methodology

Equilibrium models are often employed to represent the nature of market
interactions and competition between the strategic generators [122]. In
this section we explore the impact of flexibility of power generation on
market outcomes. In particular, we compare two different market setups
represented by two models: a model that considers the case when ramp-
rate and production decisions are taken simultaneously; and a model in
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which ramp rate is decided first, and then production decisions are taken.
We employ a conjectured-price response parameter, which is immediately
obtained from the conjectural variations model, capturing various degrees of
strategic behavior in the spot market. Conjectural variations [21,31] reflect
the firm’s conjecture about other firms’ reaction to a change in its production.
This representation allows us to express the special cases of oligopolistic
behavior ranging from perfect competition to a Cournot oligopoly [32].

6.2.1 Simultaneous ramp and quantity bidding: the
one-stage model

In the single-stage model, every generating unit i faces a profit-maximization
problem: in time period t it chooses the level of production qit. The ramp-rate
level ri is chosen simultaneously with the production level in the first time
period and stays constant throughout the modeling horizon. The objective
of the generator is to maximize the revenues in the production stage minus
the costs. Parameter c represents the symmetric marginal production cost.

In order to derive the analytic results in this section, let us assume that
there are two consecutive time periods: t1 and t2. The optimization problem
of a company i can be formulated as follows:

∀i :



maximize
qi,ri

(pt1(qit1 , q−it1)− c)qit1 + (pt2(qit2 , q−it2)− c)qit2 (6.1a)

subject to: Q̂ ≥ qit ≥ 0 : µit, µit ∀t (6.1b)

R̂ ≥ ri ≥ 0 : λi, λi (6.1c)
ri ≥ qit2 − qit1 : γi (6.1d)
qit1 − qit2 ≥ ri : γ

i
. (6.1e)

In the optimization problem above Q̂ is the symmetric installed capacity
of the generating unit i and R̂ is the maximum technically possible ramp
rate. Constraints (6.1d)-(6.1e) show that the change of production between
two time periods is limited by the ramp rate. These constraints are specified
for the time steps following the first one (|t| > 1). The variables on the right
are the dual variables associated with constraints (6.1b)-(6.1e).

Prices pt(qi, q−i) come from the market equilibrium (ME) conditions that
link optimization problems of all producers: energy balances for both load
periods and the affine definition of the elastic demand dt, where α is the
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elasticity parameter.

ME : dt =
∑
i

qit, dt = D0
t − αpt(qit, q−it) ∀t. (6.2)

The ME conditions mimic the economic dispatch problem of the system
operator. These conditions define the price pt(qit, q−it), dependent on the
production qit of the generating companies. The demand elasticity α reflects
the price responsiveness of the consumers in the market. This formulation
aims at reflecting the market setups used in most of the countries with
liberalized electricity markets [51]. Choosing arbitrary the case of increasing
demand allows us to remove the constraint (6.1e) from our model as it will
be inactive. Since only two time periods are considered, the declared up-rate
will be equal to the increased production without loss of generality. The
production in the second time period can therefore be expressed as:

qit2 = qit1 + ri. (6.3)

Since electricity is a perfectly substitutable good, we can capture a range
of behavioral outcomes by conjectural variations in the short-run market
formulation, as first introduced in [123]. Conjectural variation is the belief
that one firm has about the way its competitors may react if it varies its
output or price. This approach attempts to reproduce the dynamic pricing in
a “reduced-form” static competition, therefore we are specifying exogenously
the reaction of the firms to their rivals. This approach is criticized for the
the exogenous nature of the conjectural variations [33], but it allows us to
capture a range of behavioral outcomes – from competitive to cooperative and
has one parameter which has a simple economic interpretation. We define a
conjectured price response parameter θi as a company i’s belief concerning
its influence on price pt(qit, q−it) in a short-term spot market. We express
the conjectured price response as:

θi = −dpt(qit, q−it)
dqit

.

This parameter only captures the effect of change in qit and not ri. By
considering only conjectured price response on production we express the
type of competition in either of the ramping and the energy markets.

Different levels of the conjectured price response parameter correspond to
different market structures. We assume θi varying from 0, which corresponds
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to perfect competition in the market to (1/α), which represents the Cournot
oligopoly [124]. By choosing the conjectured price response parameter to vary
in this range we study the behavioral outcomes most common in electricity
markets. Further, in this section we assume symmetric conjectured price
responses θ = θ1 = θ2.

The Lagrangian function of problem (6.1) for producer i is:

Li =(pt1(qit1 , q−it1)− c)qit1 + (pt2(qit2 , q−it2)− c)qit2 +
∑
t

(
µit(Q̂− qit)+

µ
it
qit
)

+ +λi(R̂− ri) + λiri) + γi(ri − qit2 + qit1).

Although parameter θ is implicit in formulation (6.1) it becomes explicit when
we solve the problem by taking the KKT conditions, which are equivalent to
the original optimization problem.

We substitute the first derivative of price by θ and use the dual multipliers
introduced previously. Note that ⊥ denotes the complementarity between
the constraint and its respective dual variable. The KKT conditions of the
problem (6.1) are as follows:

∀i :



∂Li
∂qit1

= pt1 − θqit1 − c+ µ
it1
− µit1 + γi = 0 (6.4a)

∂Li
∂qit2

= pt2 − θqit2 − c+ µ
it2
− µit2 − γi = 0 (6.4b)

∂Li
∂ri

= λi − λi + γi = 0 (6.4c)
0 ≤ µ

it
⊥ qit ≥ 0 ∀t (6.4d)

0 ≤ µit ⊥ Q̂− qit ≥ 0 ∀t (6.4e)
0 ≤ λi ⊥ ri ≥ 0 (6.4f)
0 ≤ λi ⊥ R̂− ri ≥ 0 (6.4g)
0 ≤ γi ⊥ ri − qit2 + qit1 ≥ 0 (6.4h)

dt =
∑
i

qi, dt = D0
t − αpt ∀t. (6.5)

For the case, when Q̂ > qit > 0 and R̂ > ri > 0, the dual multipliers µ
it
,

µit and λi, λi are equal to zero and we can solve a system of equations:

∀i :


D0

t1
−
∑

i qit1
α − θqit1 − c+ γi = 0,

D0
t2
−
∑

i(qit1+ri)

α − θ(qit1 + ri)− c− γi = 0,

γi = 0.
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This set of equations can be simplified to the following:

∀i :

{
D0
t1 −

∑
i qit1α− αθqit1 − αc = 0,

D0
t2 −

∑
i(qit1 + ri)− αθ(qit1 + ri)− αc = 0

We can derive a closed-form solution for the optimal production level and the
ramp rate, as presented below. Note that SL indicates “single level”, since
the solution corresponds to the single-stage equilibrium model where ramp
and production decisions were taken simultaneously:

rSLi =
D0
t2 −D

0
t1

αθ + 2
, (6.6a)

qSLit1 =
D0
t1 − αc
αθ + 2

, qSLit2 = qSLit1 + rSLi . (6.6b)

6.2.2 Separated stages of ramp and quantity bidding: the
two-stage model

The market setup, where the generators choose their ramp rate in the first
stage and compete in quantities in the second stage, can be modeled using
a bilevel equilibrium formulation – EPEC. The bilevel structure aims to
represent the market situation when ramp bidding occurs before the actual
quantity game. The EPEC problems, known for their complexity, are hard
to solve in a closed form. Similar to the previous single-level model, we study
the case of two load periods with increasing demand and two symmetric
power producers.

In the first stage of the game, the generating units take their decisions
regarding the ramp-rate levels that will maximize their profits taking into
account the optimal production decisions from the second stage. The upper
level of a bilevel model representing the ramp game can be formulated as
follows:

∀i :


maximize

ri
(pt1(qit1 , q−it1)− c)qit1 + (pt2(qit2 , q−it2)− c)qit2(6.7a)

subject to: R̂ ≥ ri ≥ 0 : λi, λi (6.7b)
qit ∈ ΩLL. (6.7c)
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Quantity qit is an outcome of the lower-level ΩLL market equilibrium game:

∀i :


maximize

qi
(pt1(qit1 , q−it1)− c)qit1 + (pt2(qit2 , q−it2)− c)qit2 (6.8a)

subject to: Q̂ ≥ qit ≥ 0 : µit, µit ∀t (6.8b)
ri ≥ qit2 − qit1 : γi. (6.8c)

The market equilibrium conditions link together the optimization problems
of the generators:

ME : dt =
∑
i

qi, dt = D0
t − αpt ∀t. (6.9)

Let us first focus on the lower-level problem (6.8). Following the same logic
as in the single-level model we can show that the second derivative of the
objective function is negative and the constraint qualification holds. Hence,
the problem (6.8) can equivalently be written and solved as a set of KKT
conditions. The KKT conditions take a form:

∀i :



∂Li
∂qit1

= pt1(qit1 , q−it1)− θqit1 − c+ µ
it1
− µit1 + γi = 0 (6.10a)

∂Li
∂qit2

= pt2(qit2 , q−it2)− θqit2 − c+ µ
it2
− µit2 − γi = 0 (6.10b)

0 ≤ µ
it
⊥ qit ≥ 0 ∀t (6.10c)

0 ≤ µit ⊥ Q̂− qit ≥ 0 ∀t (6.10d)
0 ≤ γi ⊥ ri − qit2 + qit1 ≥ 0 (6.10e)

In order to obtain a closed-form solution we follow a backward induction.
We first find the optimal solution of the lower level parameterized by the
upper-level variable. Then, we plug this expression in the upper-level and
deduce a subgame-perfect Nash equilibrium (SPNE) – an equilibrium, which
is optimal for both stages and for the game as a whole, [125]. This concept is
often used for describing the sequence of decisions in the electricity market,
as for example in the case of forward price caps in [126]. We express the
prices in time periods t1 and t2 from the market equilibrium conditions (6.9)
and use them to complement the equations (6.10).

Simplifying and solving the system (6.10) for the optimal level of quantity
parameterized by the ri variable, we get:

∀i :


∂Li
∂qit1

=
D0

t1
−
∑

i qit1
α − θqit1 − c+ γi = 0

∂Li
∂qit2

=
D0

t2
−
∑

i(qit1+ri)

α − θ(qit1 + ri)− c− γi = 0
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Summing up the expressions for two time periods, and solving the resulting
system of equations for two producers we get the following:

qBLit1 =
D0
t1 +D0

t2 − 2αc− ri(2 + αθ)

2αθ + 4
, qBLit2 = qBLit1 + ri ∀i. (6.11)

Note that BL indicates “bilevel”, since this solution for quantities corresponds
to the bilevel equilibrium model, and helps distinguish it from qSL.

We can substitute qit1 in (6.7) by the derived lower-level optimal expression
for the production level (6.11). The expression for the bilevel-optimal ramp-
rate level becomes: {

−D0
t1 +D0

t2 − 2ri1 − ri2 = 0

−D0
t1 +D0

t2 − ri1 − 2ri2 = 0

→ rBLi =
D0
t2 −D

0
t1

3
. (6.12)

We observe that the expression for the optimal level of ramp rate in two-stage
model is independent from the conjectured price response parameter θ. In the
next section we discuss this result and compare the single-stage and two-stage
models.

6.2.3 Discussing the results

The solutions derived in Sections 6.2.1 and 6.2.2 provide us with important
insights on strategic decisions regarding the ramp-rate flexibility. In the
following propositions we sum up our observations.

Proposition 1.1. For two time periods, two symmetric generators with
affine cost functions and perfectly substitutable products we find that the
optimal level of ramp rate for the two-stage model is independent from the
conjectured price response parameter θ, representing any market structure
from perfect competition to the Cournot oligopoly. In particular, this can be
observed for the ramp-rate level as given in (6.12).

Proof. Section 6.2.2 proves the above proposition by deriving the closed-form
solution to the two-stage model. The expression is derived assuming the
nontrivial solution Q̂i > qit > 0 and R̂i > ri > 0.
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Proposition 1.2. Using the same assumptions as for the Proposition 1,
we observe that in the one-stage model the level of ramp rate offered to the
market varies with the level of competition, represented by the conjectured
price response: (a) the levels of ramp-rate of single- and two-stage setups
coincide when the market structure approaches Cournot (θ = 1/α); (b) in
the case of perfect competition the ramp-rate level in a single-stage model is
higher than in a two-stage model.

Proof. (a) The optimal two-stage model ramp rate is given by expression
(6.12) and is independent of the conjectured price response θ. The expression
(6.6a) for an optimal ramp-rate level in a one-stage model depends on θ.
However, if in the second expression we substitute θ = 1/α, which is the
conjectured price response corresponding to the Cournot oligopoly, expressions
(6.6a) and (6.12) coincide. (b) We can show that for any other choice of
θ < 1/α the optimal level of ramp rate in a single-stage model is higher, as
the denominator of the expression (6.6a) is smaller than the denominator of
the expression (6.12). Expressed mathematically, αθ + 2 ≤ 3.

According to Proposition 1.1, if ramp-rate and quantity levels are decided
sequentially and the producers hold conjectures on production, strategic
producers are going to withhold the ramp rate regardless of their beliefs on
the competition level in the spot market, since doing this improves total
profits for the generators. This contradicts the logic of regulatory approaches
that separate the two decision stages in order to incentivize producers to
allow more ramp-rate flexibility in the second stage. Comparing expressions
(6.6a) and (6.12) we see that the maximum value for αθ in the denominator
of (6.6a) is 1, and therefore if the generators are deciding their ramp rates
before the spot market, the formulation for the optimal ramp rate takes
the form of (6.12). We show theoretically that if the generators are able to
behave strategically they do so in the first stage, withholding their ramp
rate, therefore limiting the amount of production in the second stage for any
degrees of market competition. We investigate this further using a case study
in Section 6.4.

Proposition 1.2 shows that the optimal ramp-rate levels in two-stage and
single-stage setups coincide in the case of Cournot oligopoly. However, for
any other belief regarding the competition level in the market we can show
that allowing offering the production and ramp simultaneously yields higher
ramp-rate flexibility offered by the generators. The result, shown for the case
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of two load periods and symmetric generators may hold for a bigger case
study as it will be shown in Section 6.4.

In contrast, in the two-stage model ramping creates an additional layer
of strategic behavior. Production variables are connected with ramp-rate
variable through an inequality constraint. The intuition can be that in the
two-stage model strategic firm tries to recover in the upper level the market
power lost with more competitive energy markets expressed in the conjectural
variations in the lower level. A conclusion of this intuition would be that
there is nothing to recover in the Cournot model and hence the results of
the single and two stage model coincide for that assumption. Ramping is
the only way to recover the lost market power in perfect competition, this is
possibly why the two results diverge the most.

6.3 Extension of the models

We can extend the models presented in Section 6.2 to consider a more realistic
market situation with an arbitrary number of load periods and asymmetric
firms.

6.3.1 Extended formulation of the single-level equilibrium
problem

We introduce a parameter cRi , a cost of pre-committing the ramp rate. There
are two reasons for including this cost. Including such a cost in the objective
function reflects the wear-and-tear of the fast-ramping generating units if con-
sidered by the generating company. The single-level formulation, introduced
in Section 6.2.1 can then be written as:

∀i :



maximize
qit,rit

∑
t

(
(pt(qit, q−it)− ci)qit − cRi rit

)
(6.13a)

subject to: Q̂i ≥ qit ≥ 0 : µit, µit ∀t (6.13b)

R̂i ≥ rit ≥ 0 : λit, λit (6.13c)
rit ≥ qit − qi(t−1) : γit (6.13d)
rit ≥ qi(t−1) − qit : γ

it
(6.13e)

dt = D0
t − αpt(qit, q−it) ∀t (6.14a)

dt =
∑
i

qit ∀t. (6.14b)
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Here (6.13b) defines the production bid limits, (6.13c) limits the bid on ramp
rate. Equations (6.13d) and (6.13e) define ramping constraints for every two
sequential time periods. We consider a general load profile, where demand
can increase or decrease, and therefore both upward and downward ramping
constraints are necessary. The variables, following after the colon are the
Lagrange multipliers associated with the respective constraints.

The KKT conditions of problem (6.13a)-(6.13a) are also the optimality
conditions. The resulting equilibrium problem is as follows:

∀i :



∂Li
∂qit

= pt(qit, q−it)− θiqit − ci + µ
it
− µit − γit + γit

+γ
i(t+1)

− γi(t+1) = 0 ∀t (6.15a)
∂Li
∂rit

= −cRi + λit − λit + γ
it

+ γit = 0 ∀t (6.15b)

0 ≤ µit ⊥ Q̂i − qit ≥ 0 ∀t (6.15c)
0 ≤ µ

it
⊥ qit ≥ 0 ∀t (6.15d)

0 ≤ γ
it
⊥ rit − qit + qi(t−1) ≥ 0 ∀t (6.15e)

0 ≤ γit ⊥ rit + qit − qi(t−1) ≥ 0 ∀t (6.15f)

0 ≤ λit ⊥ R̂i − rit ≥ 0 ∀t (6.15g)
0 ≤ λit ⊥ rit ≥ 0 ∀t (6.15h)

D0
t − αpt(qit, q−it)− dt = 0 ∀t (6.16a)∑
i

qit − dt = 0 ∀t. (6.16b)

The introduced setup can be directly programmed as a mixed complementarity
problem (MCP) in GAMS and solved until optimality with PATH solver [127].

6.3.2 Extended formulation of the bilevel equilibrium
problem

The ramp-bidding problem for a single generating company can be formulated
as an MPEC. The corresponding bilevel program for generating company i∗ op-
timizing over a set of variables Ωi∗ = {ri∗t, qit, pt(qit, q−it), dt, µit, µit, γit, γit}
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is as follows:

maximize
Ωi∗

∑
t

(
(pt(qit, q−it)− ci∗)qi∗t − cRi∗ri∗t

)
(6.17a)

subject to: R̂i∗ ≥ ri∗t ≥ 0 ∀t (6.17b)

Q̂i ≥ qit ≥ 0 ∀(it) (6.17c)
rit − qit + qi(t−1) ≥ 0 ∀(it) (6.17d)

rit − qi(t−1) + qit ≥ 0 ∀(it) (6.17e)

µ
it
≥ 0, µit ≥ 0, γ

it
≥ 0, γit ≥ 0 ∀(it) (6.17f)

pt(qit, q−it)− θiqit − ci + µ
it
− µit − γit + γit

+ γ
i(t+1)

− γi(t+1) = 0 (6.17g)

µ
it
qit = 0 ∀(it) (6.17h)

µit(Q̂i − qit) = 0 ∀(it) (6.17i)
γ
it

(−qit + qi(t−1) + rit) = 0 ∀(it) (6.17j)

γit(qit − qi(t−1) + rit) = 0 ∀(it) (6.17k)

D0
t − αpt(qit, q−it)− dt = 0 ∀t (6.17l)∑
i

qit − dt = 0 ∀t. (6.17m)

Here constraints (6.17b) correspond to the upper-level constraints, constraints
(6.17c)-(6.17e) are the lower-level primal constraints. The corresponding
Lagrange multipliers are nonnegative as outlined in the constraints (6.17f).
Constraint (6.17g) is the stationarity condition. Conditions (6.17h) to (6.17k)
are the complementary slackness conditions. Constraints (6.17l) and (6.17m)
correspond to the equalities shared by all generators in the lower level.

With the state-of-the-art solvers (e.g., COUENNE), the problem can be
attempted directly as a nonlinear problem, as in this paper. We can obtain a
solution to the whole EPEC problem by solving the MPECs iteratively: we
sequentially fix the strategic variables of all generators except of one, which
is free to choose any level in response to the levels fixed for all other units.
This procedure is repeated for all generators in loop until convergence to
an equilibrium point, at which no producer wants to change the strategic
decision unilaterally [111].
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6.3.3 Additional extensions

Additionally, we consider two main extensions:

• We reflect highly concentrated markets we consider a firm ownership of
the generating units: a generating company may own several generating
units with possibly different production costs. The objective functions
in (6.13a) and (6.17a) become:

πf =
∑
i∗∈f,t

(
(pt(qit, q−it)− ci∗)qi∗t − cRi∗ri∗t

)
. (6.18)

Here, unit i∗ belongs to the firm f and the profit is maximized for the
whole firm.

• We consider an important extension of the model to the decision-
making under uncertainty. The uncertainty in wind-integrated power
systems can be modeled with a set of scenarios W , where each scenario
w ∈W has a certain probability probw. The profit formulation (6.18)
introduced in the previous subsection is then extended as follows:

πf =
∑

i∗∈f,t,w
probw

(
(ptw(qitw, q−itw)− ci∗)qi∗tw − cRi∗ri∗t

)
. (6.19)

We also add a nonanticipativity constraint to ensure that ramp rate
cannot be changed for every realization of the scenario in the two-stage
model.

6.4 Case studies

The developed model can be a tool for analyzing how a market setup affects
the flexibility bidding in the system. In this section we check, whether
Propositions 1.1 and 1.2, introduced in Section 6.2.3, are still valid for the
extended version of the models by performing the simulations. We also model
the stochastic case study with firms owning several units. More case studies
can be found in [J2].

6.4.1 Comparison of the duopoly models

The duopoly case study lets us analyze the importance of information revealed
in the ramp and quantity game. As derived in Section 6.2, the closed-form
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Figure 6.1: Single-stage and two-stage equilibrium solutions for a system with two symmetric
generating companies.

expression for the ramp-rate bids in the case of a single-level (SL) and bilevel
(BL) optimization problem formulations are:

rSLi =
D02 −D01

αθ + 2
, (6.20a)

rBLi =
D02 −D01

3
. (6.20b)

To check this result we formulate the models explicitly as optimization prob-
lems and perform the simulations. In this simple case study the capacity and
ramp limits are considered nonbinding. The production costs are symmetric
and equal to 10 e/MW. We assume two load periods with the demand
intercepts D0

t = [200, 400] MW. The elasticity of demand α = 7.2 MW2h/e.
Figure 6.1 shows the simulation results for the different values of conjec-

tured price parameter. We observe that the ramp-rate level in the single-stage
model steadily decreases with a growing conjectured price response parame-
ter until it reaches the value of a two-stage model bid in the point, which
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Figure 6.2: Symmetric duopoly case study results.

corresponds to the Cournot competition. The optimal level of ramp rate
does not depend on how the unit perceives the competitiveness in the market.
The producers prefer to withhold the flexibility and choose a relatively low
level of ramp.

Figure 6.2-(a) is obtained by running the one-stage model for a fixed
combination of ramp-rate levels of two players for an arbitrary level of the
conjectured price response parameter θ = 0.05 e/MW2h. Since the companies
are symmetric, we can expect the equilibrium to lie on the middle line, where
the bids of the both players are equal. This line is shown in Figure 6.2-(b).
We observe that the highest profits for the both units are reached when
r1 = r2 = 50 MW/h (point 1 in Figure 6.2-(b)). This solution would be a
stable point if the producers were cooperating, as it maximizes the sum of
their profits. However, as we can see in Figure 6.3, in which a profit curve
of a single producer is shown for the ramp-rate level of other player fixed,
a generator can obtain a higher profit by unilaterally changing its level of
the ramp rate (which can be visualized by moving along the x axis of the
plane following the arrow). A response to such strategy will be an increase
of a ramp-rate level by the second producer. An equilibrium point is finally
reached when no unit wants to change its bid unilaterally. In Figure 6.3
we can see that point 2 coincides with the point of the highest profit for a
given combination of the ramp rates. This logic illustrates reaching a Nash
equilibrium between strategic producers.

We can obtain the same point by fixing the decision of one of the players
and observing the response, or reaction, of the other player. By repeating
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this for a range of values and for both players we obtain reaction functions,
shown in Figure 6.4. The reaction functions intersect in the only point, which
is a Nash equilibrium (point 2 in Figures 6.2-(b), 6.3, and 6.4). In this simple
case of smooth profit functions we can prove numerically that this point is
the only Nash equilibrium.

Point 3 corresponds to the solution of the single-stage model for the given
choice of parameter θ. We can see from Figure 6.2 that this point offers the
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highest flexibility in ramp. Since the producers are competing in quantities
and ramps at the same time, they choose to leave the ramp-rate level flexible,
so they can react to the competitors’ strategies by withholding or providing
more production to the market.

The equivalence of the single-stage and two-stage models for the choice of
the conjectured price response representing Cournot competition can be found
in some other games. In [128] the authors study the capacity-investment
problem and show that for the case of a one load-period game and 2 symmetric
producers the investments are generally higher for the single-stage problem,
converging to the same value when competition structure is approaching
Cournot.

The above study confirms an intuition that market design impacts the
generators’ behavior and the social welfare. A two-stage setup, which may
seem fair intuitively, can lead to higher withholding and therefore social
welfare losses.

6.4.2 Stochastic case study

Authors in [117] find that by letting generators restate their ramp rates
only once in a longer time period, policy makers can prevent them from
responding to market conditions with false ramp rates. In this case study we
show that uncertainty, and in particular, wind uncertainty may actually lead
to the opposite results in certain circumstances. This means that there are
numerical examples, where uncertainty leads to lower levels of flexibility than
the deterministic case. In Table 6.1 we present the demand data used for
this case study. Note that the deterministic data corresponds to the average
of all stochastic scenarios. Figure 6.5 shows the comparison of ramp-rate
levels obtained in the deterministic and stochastic cases (for single-stage MCP
model we plot the maximum value of ramp rate in scenarios). We observe that
while the expected value of the demand intercept in the stochastic scenarios
is equal to the one in the deterministic case, the bids follow a very different
pattern. Several observations can be made:

• Counter-intuitively, we can observe that stochasticity yields smaller
total ramping levels than the deterministic scenario in both two- and
single-stage models – this can be explained by the fact that there is
a chance of getting higher profit from the expensive unit, if the high-
demand scenario occurs. In this case study, the generating companies
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facing the uncertainty choose to withhold their ramp rates to ensure a
certain level of profits in every scenario. However, we should note that
it is not the general case, and the results may be different depending
on the parameters of the model;

• The initial gap for the low values of the conjectured price response
corresponds to the situations close to perfect competition, when the
less expensive generator provides the whole capacity to the market, so
the second generator is not expected to ramp;

• The kinks in the simulations of the bilevel model can be explained
by the solution procedure, as the EPEC is solved via diagonalization.
While in a single-level model the result is unique, the two-level model
can often have several Nash equilibria as solutions (several points at
which no company wants to deviate unilaterally). This is a reason for
the jumps in the optimal ramping level. In such case, when there are
multiple equilibria, they can be evaluated based on criterion (e.g., social
welfare - best/worst Nash equilibrium as discussed in [45]) to choose
the equilibrium that yields the best result with respect to this criterion.

• Apart from these particularities that happen close to perfect compe-
tition, the ramping flexibility levels follow the same trend as in the
duopoly case. The two-stage model levels, for the most part, do not
seem to be affected by competitive market behavior. Moreover, the
ramping levels obtained in the single-level model under Cournot compe-
tition, and the bilevel ramping levels for arbitrary market competition
seem to converge to similar values.

These observations allow us to conclude that the outcome similarity of the
single- and two-stage models at Cournot holds even for the case, when we
consider the portfolio bidding and uncertainty. We also observe that in

Table 6.1: Optimization scenarios

Model Scenario probability, p.u. D0
t1 , MW D0

t2 , MW
Deterministic 1 700 1000
Stochastic s1: s2: s3: s4: s1: s2: s3: s4: s1: s2: s3: s4:

0.25 0.25 0.25 0.25 700 900 500 700 1000 1000 800 1200
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Figure 6.5: Comparison of the stochastic and deterministic cases

this particular case the ramp-rate levels in case of simultaneous bidding are
steadily higher than in the case of the separated bidding stages.

It is worth noting that in the stochastic case the results do not show the
same stability as in two previous case studies. For example, we can find cases,
when the social welfare is higher in two-stage models, because it is more
profitable for companies to produce more, so the prices decrease. The intuition
for these observations is possibly in the structure of the stochastic model. In
the stochastic two-stage model ramp rate is declared before the uncertainty
is realized and production takes place. Therefore, the ramp rate constraint
does not hold as an equality between ramp rate and the difference in the
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production, and ramp rate cannot be always used by strategic generators
to affect the production levels. However, the existence of the cases that the
generators choose to limit their ramp rates even when facing the uncertainty
questions considerably the logic of separating the stages of deciding the
production and flexibility levels.

6.5 Conclusion

Generation-side flexibility becomes increasingly important as the share of
wind generation becomes larger and there are frequent swings in generation
supply. In this chapter we present how generating companies decide ramp-rate
flexibility and production in a one-stage and a two-stage processes, and we
analyze the impact of these different market setups on the results.

We present two models – a single- and a bilevel model – to represent
two different types of market setups: bidding the ramp and quantity levels
simultaneously; or doing it in two stages, where the generators choose their
ramp rates in the first stage, and compete in quantities in the second stage.
A market structure, where the bids on ramp rate are submitted before the
actual market clearing happens is a common regulatory practice, aiming to
minimize the manipulation on the ramping constraints. In this chapter we
show that such a regulatory intuition can actually lead to a higher level of
withholding. We provide a comparison for a range of different conjectured
price responses, capturing company’s beliefs regarding its influence on market
prices. The proposed model shows that for a market, the structure of which
is more competitive than Cournot oligopoly, it may be advantageous to allow
simultaneous bidding of ramp rates and quantities. We observe that otherwise,
the producers are likely to exercise their market power in the pre-commitment
stage as such strategy locks higher profits in the second stage.



Chapter 7

Conclusion

In the final chapter the key conclusions are drawn and the directions for the
future research are outlined.

7.1 Concluding remarks

This dissertation studies the exercise of market power in power systems with
high penetration of wind power. In this dissertation the problem of increased
generation flexibility requirements in wind-integrated systems is tackled. The
background for the studies and mathematical modeling, required to represent
the problem, are presented in Chapters 1-3.

Starting from Chapter 4 a model of profit-maximizing generators in a
system with high penetration of wind power is presented. The model captures
the need for flexibility in such systems, due to fluctuations of wind power.
This study is motivated by real examples of the strategic behavior, and
demonstrates how strategic generators may choose to withhold the ramp rate
in order to maximize their profit. The developed model represents the Nash
equilibrium between multiple strategic generators and is therefore formulated
as an EPEC. EPEC model is then recast as a single-stage MILP, which can
be solved by commercial solvers. The case studies presented in the chapter
emphasize the importance of modeling the ramp-rate withholding, as it turns
out to be crucial in the wind-integrated systems.

Chapter 5 extends the findings of the previous chapter to power systems,
where hydropower is present. Hydropower producers possess unique character-
istics and are usually used to balance the fluctuations in supply. These unique
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characteristics can create additional advantages for hydropower producers if
they have incentives to exercise market power. Several case studies of single
profit-maximizing hydropower producer and several hydropower producers
are described in this chapter. Also, the definition of Nash equilibrium under
uncertainty is discussed. The models of single and multiple producers can
be formulated as MPEC and EPEC respectively. The equilibrium problems
can then be reformulated as MILP and solved using modified Benders de-
composition approach. This approach allows solving larger case studies by
decomposing the formulation in smaller instances, avoiding the disjunctive
parameter.

Finally, Chapter 6 opens the topic of regulatory strategies to limit the
exercise of market power on ramp rate. In this chapter two market designs
are compared: a design where ramp-rate bid is decided at the same time
with production-bid (single-stage model), and a design, where generators first
declare their ramp rate and then in the second stage decide their production
bids. While the intention of the first design is exactly to limit the strategic
behavior on ramp rates, a simple case study with two symmetric generators
provides a close-form solution, which actually confirms the opposite. The
results of the two-generators case study show that generator may choose to
“lock in” higher profits by declaring lower ramp rate in the first stage. It
may be more advantageous from the system perspective to allow producers
declare their ramp rate at the same time with production bidding.

7.2 Future work

One of the major directions for future research is studying the techniques
for mitigating market power in wind-integrated power systems. The study,
described in Chapter 6, shows that the currently used techniques may not
have a strong theoretical foundation and need reconsideration. One of the
common mitigation approach is introduction of the forward contracts. This
approach needs to be studied further in the context of wind-integrated power
systems. Working paper [J5] will discuss the theoretical implications of
forward contracts in wind-integrated power systems.

Another possible direction is studying the effect of new promising tech-
nologies for demand response. With advances in IT systems, cheaper storage
technologies and price-observing consumers, there are more possibilities for
demand side to mitigate the strategic behavior of producers and smooth out
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the price peaks.
Presented models are also very computationally demanding. As case

studies are getting larger, the computation time increases. In order to use the
developed models for larger case studies, e.g. on European level, proposed
decomposition technique can be further improved, or new techniques can be
proposed.
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