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ABSTRACT 

Author:  Samuel Garcia 

Thesis: Plane-Wave Scattering of a Periodic Corrugated Cylinder 
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Degree:  Doctorate of Philosophy 

Year:   2016 

 

  In this dissertation, a novel approach to modeling the scattered field of a periodic 

corrugated cylinder, from an oblique incident planewave, is presented. The approach 

utilizes radial waveguide approximations for fields within the corrugations, which are 

point matched to approximated scattered fields outside of the corrugation to solve for the 

expansion coefficients. The point matching is done with TMz and TEz modes 

simultaneously, allowing for hybrid modes to exist. 

  The derivation of the fields and boundary conditions used are discussed in detail. 

Axial and radial propagating modes for the scattered fields are derived and discussed. 

Close treatment is given to field equations summation truncation and conversion to 

matrix form, for numerical computing. A detailed account of the modeling approach 

using Mathematica® and NCAlgebra for the noncommutative algebra, involved in 

solving for the expansion coefficients, are also given. 
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 The modeling techniques offered provide a full description and prediction of the 

scattered field of a periodic corrugated cylinder. The model is configured to approximate 

a smooth cylinder, which is then compared against that of a textbook standard smooth 

cylinder. The methodology and analysis applied in this research provide a solution for 

computational electromagnetics, RF communications, Radar systems and the like, for the 

design, development, and analysis of such systems. Through the rapid modeling 

techniques developed in this research, early knowledge discovery can be made allowing 

for better more effective decision making to be made early in the design and investigation 

process of an RF project. 
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CHAPTER 1 INTRODUCTION 

1.1  Objective 

The scattered field due to a large periodic corrugated cylinder of quasi-infinite 

length is formulated and numerically determined in this dissertation. It is assumed that 

the boundaries and structure of the corrugated cylinder are constructed of Perfect 

Electrical Conductors (PECs). The present research provides an alternate technique for 

evaluating near-field scattering of a corrugated cylinder due to an incident plane wave 

while improving the computational efficiency of infinite array scattering using Floquet 

modes. The effect on the total electric field from variations of relative dimensions of the 

corrugated cylinder is also investigated. 

Problems of scattering from periodic corrugated cylinders have been treated in the 

past. There has been investigation into the use of radial waveguide representation of the 

corrugated region [1] [2], asymptotic corrugation boundary conditions [3] [4], metallic 

ring representation [5], tensor permeability and tensor permittivity [6], and surface 

roughness function for corrugation representation [7]. However, treatment of this 

problem utilizing radial waveguide representation for the region within the corrugations 

and simultaneously working with Transverse Magnetic (TM) and Transverse Electric 

(TE) modes appears to be a new contribution to the field of computational 

electromagnetics, specifically with regards to scattering structures.   
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1.2  Background 

In today’s modern era of increasingly use of high-tech radio frequency (RF) 

communications and radar systems, it has become increasingly important to understand 

and mitigate the effects of RF or electromagnetic field scattering from common objects 

and geometries involved in those systems. That’s because the more bandwidth and the 

greater sensitivity these instruments require, the more impactful inadvertent scattering off 

of nearby objects can be. The effect would cause an increase to the noise floor and 

distortion of intended signals, which reduces the overall quality and bandwidth of the 

data sent through the system. In the case of a ‘stealth’ type aircraft, unintended scattering 

would increase the aircraft’s Radar Cross Section (RCS) which would improve an 

adversarial radar system’s ability to detect that aircraft. 

A common shape seen across all these systems is the cylinder. The fuselage of an 

aircraft and many external payloads are approximately cylindrical. The supporting struts 

for the transmitter/receiver on parabolic dishes (Figure 1-1), as such used in satellite 

communication, radio astronomy, etc. also tend to be cylindrical in shape. The present 

research provides a method of analysis for a modified geometry of these cylindrical 

structures, utilizing a periodic corrugation, in effect to optimize the design of them 

through assessment of their scattering.  
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Figure 1-1 Example of a parabolic dish used in communications 

 

1.3  Chapter-Wise Organization  

In order to provide a coherent and orderly research documentation, this 

dissertation has been organized categorically into chapters, which are summarized here: 

 Chapter 1 Introduction 

This chapter (current) is an introduction to the present research. It provides 

context and motivation for the field of research. It also provides a summary 

for the structure of the dissertation. 

 Chapter 2 Periodic Corrugated Cylinder: Physical Description And 

Electromagnetic Application 

 This chapter describes the problem space in which the research is set. A 

detailed description of the geometry and electromagnetic treatment are 

discussed. The characteristics of the problem space that are varied are also 
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described. Floquet modes are invoked to represent the phase shift of the fields 

due to the periodicity of the structure. The nomenclature for the components, 

regions and other aspects of the problem space are established. Also, well 

established electromagnetic waveguide equations are represented and 

discussed. The overall approach for achieving solutions is also discussed as 

well as its validity. 

 Chapter 3 Incident Field 

The incident plane-wave for TM & TE modes is described. The fields are 

further derived into their respective cylindrical coordinate components for 

both E-fields and H-fields. 

 Chapter 4 Region I – Radial Waveguide Field Equations 

The fields between the corrugations are examined. Radial waveguide field 

equations were derived, based on Maxwell’s equations. Boundary conditions 

are established as part of the derivation and further reduction of the equations. 

Finally, equations are developed for each respective cylindrical coordinate 

component for both E-fields and H-fields. Unknown coefficients are identified 

for solving in subsequent chapters. 

 Chapter 5 Region II – Scattered Field Equations 

The scattered fields are derived and boundary conditions are established. 

Equations are developed for each respective cylindrical coordinate component 

for both E-fields and H-fields. Unknown coefficients are identified for solving 

in the subsequent chapter. 
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 Chapter 6 Boundary Conditions & Point Matching Method 

A point matching method is established for solving all the unknown 

coefficients. Equation sets are established for boundary conditions intended 

for point matching. All the field equations’ summations are truncated from +∞ 

and -∞, to integers.  

 Chapter 7 Results, Comparisons and Future Research 

Results are presented and discussed. General description of mathematical 

software tool and use are provided. Expressions identified for full description 

of solution space. A description of future research is also discussed. 
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CHAPTER 2 PERIODIC CORRUGATED CYLINDER: PHYSICAL DESCRIPTION 

AND ELECTROMAGNETIC APPLICATION 

2.1  Physical Description 

 The subject of this paper is on the scatterer shown in Figure 2-1. It is a periodic 

corrugated cylinder of approximately infinite length, discussed further in the following 

section. The different dimensions of its components are referenced in Figure 2-1(b) with 

letter reference designators.  

The corrugated cylinder is lined vertically with its center axis being on the z-axis. 

The inner radius of the corrugation is ρ1 and the outer radius is ρ2 along the ρ axis. The 

corrugated cylinder is symmetrical all along the φ axis. These corrugation pieces, also 

referred to here as discs, have a thickness (height in z direction) of b. The spacing 

between the corrugation (or discs) have a dimension of a. The values of these dimensions 

are discussed further in later chapters and will be described in terms of λ, wavelength of 

the incident plane-wave. 
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Figure 2-1 Representation of a Segment of a Periodic Corrugated Cylinder: (a) 3D view of the Periodic 

Corrugated Cylinder (b) Cross-sectional view of the Periodic Corrugated Cylinder with Referenced 

Dimensions 

 

2.2  Infinite Length Approximation 

When a periodic structure of infinite length, in this case a corrugated cylinder, is 

radiated by an incident field, the scattered field produced will contain multiple modes or 

space harmonics, which are coupled to the boundary conditions in which they must 

satisfy [8, p. 625]. These spatially periodic fields can be represented through Floquet 

modes. Floquet modes are modes of propagating waves that take on the symmetry of the 

periodic structure that wave has interfaced with. This is based on Floquet theory, in 

which a single period of the periodic structure is used to define the wave and accounting 

for the phase shift along the axis of propagation, which is also the axis of periodicity of 

the structure. A further description of Floquet modes and Floquet theory can be found in 

[9, pp. 264-266] and [8, pp. 605-608]. 
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Practically, one works with smaller and finite length periodic structures and not 

infinitely long ones. However, sufficiently long periodic scatterers can be approximated 

as infinitely long allowing for simplification for mathematical models of the scattering 

fields [10], [11].  

2.3  Problem Space 

Consider a PEC periodic corrugated cylinder of infinite length as shown in Figure 

2-2. Now consider that same corrugated cylinder in the presence of an incident 

planewave. That corrugated cylinder will perturb the incident planewave by behaving as 

a scatterer. Many have approached the problem of calculating the scattered field, such as 

Manara [1] [2], Kishk [4], Freni [5] and Hillion [7].  

 

Figure 2-2 PEC periodic corrugated cylinder of infinite length, radiated by incident planewave 
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However, the method proposed in this paper describes the simultaneous use of the 

Transverse Magnetic (TMz) and the Transverse Electric (TEz) field modes, with respect 

to the z-axis, to solve the problem of predicting the scattered fields. As implied by 

Constantine A. Balanis in his work on describing scattering by a conducting circular 

cylinder of an oblique planewave, a cylinder structure that deviates from a smooth 

cylinder can experience depolarizations of the fields due to the scattering [12, p. 615]. 

Based on this statement, this work makes the assumption of a hybrid mode when 

scattering from a corrugated cylinder. Therefore, the TMz and the TEz modes shall be 

accounted for simultaneously and depolarization of the fields from one mode to another 

can occur. 

Along with TMz and the TEz modes, this approach also utilizes a radial 

waveguide representation of the fields within the corrugations (region I) which the full 

solution for is formulated in conjunction with the fields outside of the corrugations 

(region II). The radial waveguide method has been investigated by Manara [1]. The 

combination of TMz and the TEz modes with the radial waveguide representation 

provides a more complete description of the scattered field from a periodic corrugated 

cylinder, that is novel and has not been observed by the author in previous literature. 

2.4  Solution Approach 

Having been presented with a description of the problem space, the reader can 

now follow along with the solution approach, a step-by-step guide on how to utilize the 

problem space components provided in order to solve the problem (predicting the 

scattered fields) of a known PEC periodic corrugated cylinder.  

Step 1:  Identify the incident planewaves  
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Step 2: Derive solutions to Helmholtz equations for the fields in region I  

Step 3: Derive solutions to Helmholtz equations for the scattered fields in region II 

Step 4: Truncate all summation equations to finite ranges and represent in matrix form 

Step 5: Apply boundary conditions for fields in region I and region II to solve for 

unknown coefficients 

Step 6: Symbolically and numerically compute solutions for unknown coefficients 

 This is the solution approach that is represented in this paper. Steps 1, 2 and 3 are 

described in chapters 3, 4 and 5 respectively. Steps 4, 5 and 6 are covered in chapter 6. 

Step 6 is where a great deal of time and effort was spent by the author in developing the 

appropriate numerical computing approach. 

 In this paper, the fields and incident planewaves are considered to be time 

harmonic, as shown in equations ( 2-1 ) and ( 2-2 ). Only the vector phasor component, 

�����, �, �	, will be considered and the ejωt will be omitted for simplification. 

�����, �, �, 
	 = �
������, �, �	�
���  ( 2-1 ) 

������, �, �, 
	 = �
�������, �, �	�
��� . ( 2-2 ) 

 The field equations and solutions to them, presented in this paper will be in the 

cylindrical coordinate form (i.e. ��, �� , and �̂ axes), with the exception of the introduction 

of the incident field in Chapter 3. 
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CHAPTER 3 INCIDENT FIELD 

Now consider an unbounded medium, referred to here as region II, which is a near 

infinite media and void of any scatterers. This description allows for the easy modeling of 

a propagating incident planewave. An idealistic view as such is incomplete, with regards 

to the scattered field, in the presence of a scatterer (as in the case of the periodic 

corrugated cylinder). In order to appropriately describe the total fields (Et, Ht), 

superposition can be used, as shown in equations (3.1) and (3.2), in which the incident 

field (Ei, Hi) is added to the scattered field (Es & Hs, field created by a scatterer in the 

presence of a propagating field) in order to get the total field. Deriving the scattered field 

is the subject of chapter 5. This chapter will focus on the incident field. 

�� = �� + �� ( 3-1 ) 

�� = �� + �� .  ( 3-2 ) 

The problem space and solution approach require that the solution set be driven 

by two sets of modes, the TM and TE modes. Separate treatment will be given to these 

modes when describing the field components. However, when solving for boundary 

conditions at the point matching phase, these modes will be combined through invoking 

superposition. For now, the driving incident field will be separated in its TM and TE 

modes. It’s also important to note here that the present work is done on oblique incident 

planewaves and not normal incident planewaves.
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Figure 3-1 Incident field shown with respect to corrugated cylinder for TMz mode (a) and TEz mode (b) 

 

Depicted in Figure 3-1(a) is a TMz mode planewave, in region II, which is 

incident to a periodic corrugated cylinder. In Figure 3-1(b), the same structure is shown 

only now with a TEz mode planewave that’s incident. In both scenarios, the planewave is 

traveling in the same direction, as indicated by θi (angle of incidence) and the wave 

vector ����, which is given by 

���� = ���� � ! "� # �̂ $%� "�& ( 3-3 ) 

where k = ω√*+ is the wavenumber. In region II, as is the case for the incident field, 

k = ω√*,,+,, where  * = *,, and + = +,,. In region I, covered in detail in Chapter 4, 

k = ω√*,+, where  * = *, and + = +,. 
 Here is a brief description of TMz and TEz modes of a propagating wave, to aid 

the reader through this paper. A transverse magnetic mode, with respect to the z-axis 

(TMz), of a propagating wave, is that of a wave that has its magnetic field components in 
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a plane that is perpendicular (transverse) to the z-axis. Therefore, there is no magnetic 

field component on the z-axis, or Hz=0, for a TMz mode.  

A transverse electric mode, with respect to the z-axis (TEz), of a propagating 

wave, follows the same logic as that of the transverse magnetic, but rather now it’s the 

electric field component that is perpendicular (transverse) to the z-axis.  In this case of a 

TEz mode, there is no electric field component on the z-axis, or Ez=0. 

3.1  Incident Field TMz mode 

  In the case of the TMz incidence, the equation for the electric field is given by 

equation (3.4) for rectangular coordinates and (3.5) for cylindrical coordinates. The 

component Z = ./00100  is intrinsic impedance of region II. Conversion of a vector field 

between coordinate system types can be found in [12, pp. 920-923] . 

���� = �2��� $%� "� + �̂ � ! "�&
3�4�5 ��6 7839 :;� 78� ( 3-4 ) 

���� = �2��� $%� � $%� "� # �� � ! � $%� "� + �̂ � ! "�&
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-5 ) 

 The corresponding magnetic fields are given using and expanding on Maxwell’s 

curl equations, which a full example can be found in [12, pp. 616-618] to get equations ( 

3-6 ) for rectangular coordinates and ( 3-7 ) for cylindrical coordinates. 

����� = 1C  �D× ���� = �2C ��� � ! "� # �̂ $%� "�&×��� $%� "� + �̂ � ! "�&
3�4�5 ��6 7839 :;� 78�
= #�� �2C 
�49 :;� 78 < =36>6��� � ! "�	
�6?@

6A3@  ( 3-6 ) 

����� = �2C �#�� � ! � # �� $%� �&
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-7 ) 
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 Further breaking down the electric and magnetic field equations into their 

coordinate constituents, we get equations  

�900� = �2 � ! "� 
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-8 ) 

�F_HI00� = �2 $%� � $%� "� 
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-9 ) 

�?_HI00� = #�2 � ! � $%� "� 
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@   ( 3-10 ) 

�FKL00� = # MNO � ! � 
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@   ( 3-11 ) 

�?_HI00� = # �2C $%� � 
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-12 ) 

which now provides a more manageable description of the TMz mode incident field as 

will be seen in the later chapters. 

3.2  Incident Field TEz mode 

  In the case of the TEz incidence, the equation for the magnetic field is given by 

equation ( 3-13 ) for rectangular coordinates and ( 3-14 ) for cylindrical coordinates. 

����� = �2��� $%� "� + �̂ � ! "�&
3�4�5 ��6 7839 :;� 78�  ( 3-13 ) 

����� = �2��� $%� � $%� "� # �� � ! � $%� "� +�̂ � ! "�&
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@ . ( 3-14 ) 

 The corresponding electric fields are given by ( 3-15 ) for rectangular coordinates 

and ( 3-16 ) for cylindrical coordinates. 

���� = C�����× �D  = C�2��� $%� "� + �̂ � ! "�&×��� � ! "� # �̂ $%� "�&
3�4�5 ��6 7839 :;� 78� =��C�2
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@   ( 3-15 ) 

���� = C�2��� � ! � + �� $%� �&
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-16 ) 

 As was done in the incident Field TMz mode section, a further breakdown of the 

TEz mode field equations into their coordinate constituents gives 
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�900� = �2 � ! "� 
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-17 ) 

�F_HM00� = C�2 � ! � 
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-18 ) 

�?_HM00� = C�2 $%� � 
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-19 ) 

�F_HM00� = �2 $%� � $%� "� 
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-20 ) 

�?_HM00� = #�2 � ! � $%� "� 
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-21 ) 

completing the full component breakdown description of the incident field. 

3.3  Total Incident Field 

  Due to the hybrid nature of the corrugated cylinder, both TMz and TEz modes will 

be used simultaneously. Therefore, the TMz and TEz mode fields in the cylindrical 

coordinate orientation will be combined to form 

�900� = �2 � ! "� 
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-22 ) 

�F00� = ��2 $%� � $%� "� + C�2 � ! �&
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-23 ) 

�?00� = �#�2 � ! � $%� "� + C�2 $%� �&
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@   ( 3-24 ) 

�900� = �2 � ! "� 
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@   ( 3-25 ) 

�F00� = P# �2C � ! � + �2 $%� � $%� "�Q 
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@  ( 3-26 ) 

�?00� = P# �2C $%� � # �2 � ! � $%� "�Q 
�49 :;� 78 < =36>6��� � ! "�	
�6?@
6A3@ . ( 3-27 ) 
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CHAPTER 4 REGION I – RADIAL WAVEGUIDE FIELD EQUATIONS 

This chapter will focus on deriving the field equations for region I, the region 

between the corrugations as can be seen in Figure 3-1. The approach to deriving the 

equations shown is to start with the Fundamental Equations of Guided Waves (FEGW) in 

cylindrical form, given by 

�F = 3�4RS T�9 UMVUF + �/F UWVU? X    ( 4-1 ) 

�? = 3�4RS T4VF UMVU? # Y* UWVUF X   ( 4-2 ) 

�F = �4RS T�1F UMVU? # �9 UWVUF X  ( 4-3 ) 

�? = 3�4RS TY+ UMVUF + 4VF UWVU? X  ( 4-4 ) 

where 

�F = Z�[ #  �9[  ( 4-5 ) 

and as mentioned in Chapter 3, k = ω√*,+,, when referring to the wavenumber k in 

equations from region I. These equations are derived from Maxwell’s equations and can 

be found in any electromagnetic textbook [13, p. 118].  

Note that these FEGWs are in terms of Hz and Ez. When utilizing these equations 

for TMz or TEz modes, Hz or Ez respectively can be set to zero further simplifying the 

equations. This will be useful in the subsequent sections, in order to derive the 

appropriate form for many of the equations. 
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4.1  TMz Mode Equations for Region I 

For the TMz mode, the FEGWs can be rewritten as 

�F = 3�4RS T�9 UMVUF X     ( 4-6 ) 

�? = 3�4RS T4VF UMVU? X  ( 4-7 ) 

�F = �4RS T�1F UMVU? X  ( 4-8 ) 

�? = 3�4RS TY+ UMVUF X  ( 4-9 ) 

by substituting in Hz=0. 

It is now apparent that all the FEGWs equations are in terms of Ez. The only term 

now left to develop an equation for is Ez. In order to derive a vector field wave equation 

for Ez, region I will be assumed to be lossless and source free, in order to simplify the 

mathematics. This will allow for the use of the Helmholtz vector wave equation in the 

form 

\[�9 + �[�9 = 0 ( 4-10 ) 

which can be used to derive an equation for Ez. Further detail and derivation of the 

Helmholtz equations can be found in [13, p. 116]. 

  The other assumption is that Ez, being composed of all the cylindrical field 

components, or �9 = �9��, �, �	, is separable into its constituent components, such that  

�9 = �9��	^9��	C9��	 . ( 4-11 ) 

  Now, substituting equation ( 4-11 ) into equation ( 4-10 ) yields 3 sets of 

differential second order equations, one for each coordinate component. Since this is a 

common process in the field of electromagnets, details of these steps are will not be 

shown here but can be found in [13, p. 118]. However, solutions to these second order 

homogenous differential equations take the form of 
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�9��	 = _ `a>6b�F�c + dae6b�F�c  f  g
h!i !j khl
ma�6�a	b�F�c + na�6�[	b�F�c  f  ophl
q !j khl
 ( 4-12 ) 

^9��	 = r`[ $%� !� + d[ � ! !�   f  g
h!i !j khl
m[
3�6? + n[
s�6?  f  ophl
q !j khl
  ( 4-13 ) 

C9��	 = r`t $%� �9� + dt � ! �9�   f  g
h!i !j khl
mt
3�4V9 + nt
s�4V9  f  ophl
q !j khl
 . ( 4-14 ) 

  It is important to note the geometry of the structure of region I, which behaves as 

a radial waveguide, in order to appropriately select the standing wave or traveling wave 

solution for each of the Ez subcomponents.  The structure allows for traveling waves in 

the ρ and φ direction. However, in the z direction, only a standing wave can exist as 

depicted in Figure 4-1. Therefore, the solutions for each of the Ez subcomponents will be 

selected as  

�9��	 = ma�6�a	b�F�c + na�6�[	b�F�c		f		ophl
q !j	khl
	 ( 4-15 ) 

^9��	 � m[
3�6? � n[
s�6?		f		ophl
q !j	khl
	 ( 4-16 ) 

C9��	 � `t $%� �9� � dt � ! �9� 		f		g
h!i !j	khl
	 ( 4-17 ) 

which leads to 

�9 � uma�6�a	b�F�c � na�6�[	b�F�cv �m[
3�6? � n[
s�6?	�`t $%� �9� � dt � ! �9�		.	 ( 4-18 ) 

 

Figure 4-1 Standing wave depicted in region I along the z-axis 
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4.1.1  Deriving Rz(ρ) of Ez in Region I 

  From here, the next step is to reduce each Ez subcomponents starting with Rz (ρ). 

This can be done with using the using boundary condition ρ=ρ1 where Rz (ρ) = 0 or  

ma�6�a	b�F�ac + na�6�[	b�F�ac = 0 ( 4-19 ) 

Now solve for D1 which will give 

na = #ma Ww�x	b4RFxcWw�S	b4RFxc . ( 4-20 ) 

Plug D1 back into equation ( 4-15 ) to give 

ma�6�a	b�F�c#ma Ww�x	b4RFxcWw�S	b4RFxc �6�[	b�F�c = ma y�6�a	b�F�c # Ww�x	b4RFxcWw�S	b4RFxc �6�[	b�F�cz. ( 4-21 ) 

4.1.2  Deriving Φz(φ) of Ez in Region I 

Simplifying Φz (φ) is a little bit easier, as it requires very little manipulation. 

Since the two terms are exponentials each multiplied by a coefficient, have the same 

exponents but just with opposite signs, and will be incorporated into a summation that 

has ‘n’ going from -∞ to +∞, the two terms can be written as a single term inside a 

summation. Doing so yields 

 J `6
�6?@6A3@  ( 4-22 ) 

where An is the coefficient with an ‘n’ subscript representing the index where, ‘n’ 

represents the circumferential (φ) variations. 

4.1.3  Deriving Zz (z) of Ez in Region I 

  The remaining term (z), for Ez, Zz, can be simplified using the boundary condition 

of z=±a/2 where 
UOV�9	U9  is set equal to 0. This is possible due to the boundary condition of 

Eρ and Eφ being equal to zero at z=±a/2 and both having components of ∂Ez /∂z as shown 

by 
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�?~�F~ 	|C9��	|� � |�`t $%� �9� � dt � ! �9�	|� � C9} ��	 � #`t�9 � ! �9� � �9dt $%� �9�	 ( 4-23 ) 

which will need to be set to zero for this boundary condition. As shown in Figure 4-2, �? 

and �F are tangential to the PEC at z=±a/2 and therefore equal to zero, leading to 

#`t�9 � ! �9� � �9dt $%� �9� � 0 �
~ #`t�9 � ! u�9 �[v � dt�9 $%� u�9 �[v � 0 , � � �[#`t�9 � ! u#�9 �[v � dt�9 $%� u#�9 �[v � 0 , � � # �[

	.	 ( 4-24 ) 

 

 

Figure 4-2 Cross-sectional view of corrugated cylinder with multiple boundaries identified 
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Choosing the equation form where � � �[, the coefficient A3 can be solved for, which 

yields 

`t � ��4V :;�u4V�Sv
4V ��6u4V�Sv 	.	 ( 4-25 ) 

Plug A3 back into the Zz (z) equation to get 

C9��	 � ��4V :;�u4V�Sv
4V ��6u4V�Sv $%� �9� � dt � ! �9� � dt �� ! �9� � :;�u4V�Sv

��6u4V�Sv $%� �9��	.	 ( 4-26 ) 

Since �9 is anticipated to be a constant, a new constant dt} � dt/ sin �9 �[ can be defined 

and plugged back into Zz (z) equation giving 

C9��	 � dt} u� ! �9 �[ � ! �9� � $%� �9 �[ $%� �9�v	.	 ( 4-27 ) 

This expression can be simplified further using the trigonometric identity  

$%��� # �	 � �� ! � � ! � � $%� � $%� �		 ( 4-28 ) 

which gives 

C9��	 � dt} $%� u�9� # �9 h2v	 ( 4-29 ) 

UOV�9	U9 � C9} ��	 � #dt} �9 � ! u�9� # �9 �[v	.	 ( 4-30 ) 

  Up to this point in region I, the kz has been left in its general form. Now, kz needs 

to be defined so that 
UOV�9	U9  equals zero whenever � � ± �[, which leads to  

�O� u� # h2v � �O� u± h2 # h2v � #�O�h � 0	 ( 4-31 ) 

0	� ��	�	�O�h � #	��	�	�O� � 	3��� 	 ( 4-32 ) 

and therefore, provides the final form of the Zz (z) equation as 

C9��	 � dt} $%� �O� u� # h2v	 ( 4-33 ) 

  Note that axial wavenumber �9 is now �9� where the ‘m’ sub-subscript identifies 

propagating mode for region I in integer intervals, much the way a classic waveguide 

does. This will be used in the TEz mode as well. 
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4.1.4  Deriving TMz Mode Equations for Region I 

  Now that the subcomponents to Ez have been defined, they can come together into 

a summation as given by 

�9, � < 
�6?@
6A3@ < u`6� $%� �O� u� # h2vv ��6�a	b�F��c # �6�a	b�F��ac�6�[	b�F��ac �6�[	b�F��c�@

�A3@ 	 ( 4-34 ) 

where Anm is the combined coefficients and �9 � �9� , �F � �F� and the radial wavenumber, 

�F�, is derived as �F� � .�[ # �O�[ . From here, Ez is plugged into the modified FEGWs 

given by equations ( 4-6 ) through ( 4-9 ) to yield 

�F_HI, � #= ∑ 
�6?@6A3@ ∑ 4V�4R�S u`6� $%� �O� u� # �[vv yu�F��63a�a	 ��F��	 #@�A3@
6F �6�a	��F��	v # Ww�x	b4R�FxcWw�S	b4R�Fxc u�F��63a�[	 ��F��	 # 6F �6�[	��F��	vz				 	 ( 4-35 ) 

�?_HI, � 1� < !
�6?@
6A3@ < �9��F�[ u`6� $%� �O� u� # h2vv ��6�a	b�F��c@

�A3@
# �6�a	b�F��ac�6�[	b�F��ac �6�[	b�F��c�	

( 4-36 ) 

�F_HI, � # Y+� < !
�6?@
6A3@ < 1�F�[ u`6� $%� �O� u� # h2vv ��6�a	b�F��c@

�A3@
# �6�a	b�F��ac�6�[	b�F��ac �6�[	b�F��c�	

( 4-37 ) 

�?_HI, � #=Y+ ∑ 
�6?@6A3@ ∑ a4R�S u`6� $%� �O� u� # �[vv yu�F��63a�a	 ��F��	 #@�A3@
6F �6�a	��F��	v # Ww�x	b4R�FxcWw�S	b4R�Fxc u�F��63a�[	 ��F��	 # 6F �6�[	��F��	vz	 .	 ( 4-38 ) 

4.2  TEz Mode Equations for Region I 

 The TEz mode will follow the same approach as with the TMz mode starting with 

rewriting the FEGWs as 
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�F � 3�4RS T�/F UWVU? X				 ( 4-39 ) 

�? � 3�4RS T#Y* UWVUF X			 ( 4-40 ) 

�F � �4RS T#�9 UWVUF X		 ( 4-41 ) 

�? � #=�F[ P�9� |�9|� Q	 ( 4-42 ) 

by substituting in Ez=0. 

In the case of the TMz mode, the FEGWs were in terms of Ez. For the TEz case, 

they’re in terms of Hz. Just as in the TMz mode, the Helmholtz vector wave equation will 

be used, but in the form 

\[�9 � �[�9 � 0	 ( 4-43 ) 

along with the assumption of �9 � �9��, �, �	, and that it is separable into its constituent 

components, such that  

�9 � �9��	^9��	C9��		.	 ( 4-44 ) 

  Using the same solutions from equations ( 4-15 ) through ( 4-17 ), Hz can be 

found to be 

�9 � uma�6�a	b�F�c � na�6�[	b�F�cv �m[
3�6? � n[
s�6?	�`t $%� �9� � dt � ! �9�		.	 ( 4-45 ) 

4.2.1  Deriving Rz(ρ) of Hz in Region I 

  Now, the next step is to reduce each Hz subcomponents starting with Rz (ρ). This 

approach is similar to the approach taking for Ez. However, a boundary condition for Hz 

is not directly available but one can be derived from the relationship �?~  UWVUF ~ 
U�V�F	UF �

0 at the boundary ρ=ρ1, which is given by 

|����	|� = m1 u����!#1�1	 �����	 # !� �!�1	�����	v + n1 u����!#1�2	 �����	 # !� �!�2	�����	v =0 . ( 4-46 ) 

This equation can be rearranged to become 
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na = #ma u�F��63a�a	 ��F��a	 # !�a �6�a	��F��a	vu�F��63a�[	 ��F��a	 # !�a �6�[	��F��a	v ( 4-47 ) 

which can be plugged into �9��	 to give 

�9��	 = ma�6�a	b�F��c # ma
��F��63a�a	 b�F��ac # !�a �6�a	b�F��ac�
��F��63a�[	 b�F��ac # !�a �6�[	b�F��ac� �6�[	b�F��c =

ma �
��6�a	b�F��c # u�F��63a�a	 ��F��a	 # !�a �6�a	��F��a	vu�F��63a�[	 ��F��a	 # !�a �6�[	��F��a	v �6�[	b�F��c�

� .
 ( 4-48 ) 

4.2.2  Deriving Φz (φ) of Hz in Region I 

  Deriving Φz (φ) Hz follows the same process as Ez. Both terms can be combined 

within a summation forming 

J d6
�6?@6A3@ . ( 4-49 ) 

4.2.3  Deriving Zz (z) of Hz in Region I 

  The last term for Hz, Zz(z), will require a boundary condition in order for it to be 

simplified. Zz(z) is found to have a relationship with �?~C9��	, and �? is equal to zero 

at the boundary where z=±a/2. This boundary condition will be sufficient to simplify 

Zz(z). First, the relationship of �?~C9��	 needs to be established by using the definitions 

of �F from equation ( 4-39 ) and 

�? � 1�F�[ � |[�9|�|� ( 4-50 ) 

which is an alternate form of a FEGW as described in [14, p. 202]. �F and �? can be 

related as  

|�F|� = #=Y*�?  ( 4-51 ) 

and therefore 
UMRU9 ~ UWVU9  and �F~�9. 
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   Now C9��	, which takes the form of equation ( 4-17 ), can be equated to zero at 

the prescribed boundary condition yielding 

`t $%� �9� � dt � ! �9� � 0 = � `t $%� u�9 h2v + dt � ! u�9 h2v = 0 , � = h2`t $%� u#�9 h2v + dt � ! u#�9 h2v = 0 , � = # h2 ( 4-52 ) 

which can now be solved for A3 in the form 

`t = 3�� ��6u4V�Sv:;�u4V�Sv , � = �[ . ( 4-53 ) 

Plugging A3 back into C9��	 yields 

C9��	 = 3�� ��6u4V�Sv:;�u4V�Sv $%� �9� + dt � ! �9� = dt �� ! �9� # ��6u4V�Sv:;�u4V�Sv $%� �9�� . ( 4-54 ) 

Since �9 is anticipated to be a constant as was in the derivation for Ez, a new constant 

dt} = dt/ sin �9 �[ can be defined and plugged back into Zz(z) equation giving 

C9��	 = dt} u$%� u�9 �[v � ! �9� # � ! u�9 �[v $%� �9�v . ( 4-55 ) 

The trigonometric identity 

� !�� # �	 = �� ! � $%� � # $%� � � ! �	 ( 4-56 ) 

is then used to simplify the Zz(z) to give the form 

C9��	 = dt} � ! u�9� # �9 h2v = dt} � ! �9 u� # h2v ( 4-57 ) 

and since �9 = �9�  

C9��	 = dt} � ! �O� u� # �[v . ( 4-58 ) 

4.2.4  Deriving TEz Mode Equations for Region I 

 The subcomponents for Hz have been defined and are combined as 
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�9, = < 
�6?@
6A3@ < ud6� � ! �O� u� # h2vv ��6�a	b�F��c@

�A3@
# �F��63a�a	 ��F��a	 # !�a �6�a	��F��a	�F��63a�[	 ��F��a	 # !�a �6�[	��F��a	 �6�[	b�F��c� 

( 4-59 ) 

within summation form. Just as in the TMz mode, Bnm is the combined coefficients and 

�9 = �9�, �F = �F� and �F� = .�[ # �O�[ .  

  Following the same steps as in the TMz mode, Hz is plugged into the modified 

FEGWs given by equations ( 4-39 ) through ( 4-42 ) to yield 

�F_HM, = �/F ∑ !
�6?@6A3@ ∑ a4R�S ud6� � ! �O� u� # �[vv ��6�a	b�F��c #@�A3@
4R�Ww�x�x	 �4R�Fx	3 wRxWw�x	�4R�Fx	4R�Ww�x�S	 �4R�Fx	3 wRxWw�S	�4R�Fx	 �6�[	b�F��c�  ( 4-60 ) 

�?_HM, = =Y* < 
�6?@
6A3@ < 1�F�[ ud6� � ! �O� u� # h2vv ���F��63a�a	 ��F��	@

�A3@# !� �6�a	��F��	�
# �F��63a�a	 ��F��a	 # !�a �6�a	��F��a	�F��63a�[	 ��F��a	 # !�a �6�[	��F��a	 ��F��63a�[	 ��F��	
# !� �6�[	��F��	�� 

( 4-61 ) 

�F_HM, = #= < 
�6?@
6A3@ < �9��F�[ ud6� � ! �O� u� # h2vv �y�F��63a�a	 b�F��c@

�A3@
# !� �6�a	b�F��cz
# �F��63a�a	 ��F��a	 # !�a �6�a	��F��a	�F��63a�[	 ��F��a	 # !�a �6�[	��F��a	 y�F��63a�[	 b�F��c
# !� �6�[	b�F��cz� 

( 4-62 ) 
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�?_HM, = aF ∑ !
�6?@6A3@ ∑ 4V�4R�S ud6� � ! �O� u� # �[vv ��6�a	b�F��c #@�A3@
4R�Ww�x�x	 �4R�Fx	3 wRxWw�x	�4R�Fx	4R�Ww�x�S	 �4R�Fx	3 wRxWw�S	�4R�Fx	 �6�[	b�F��c�  . ( 4-63 ) 
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CHAPTER 5 REGION II – SCATTERED FIELD EQUATIONS   

  This chapter will focus on the derivation of the scattered field in region II. This is 

the same region in which the incident fields were described in Chapter 3. By the end of 

this chapter, all the fields in region II would will be covered. 

 According to [12, p. 615], a perfectly smooth cylinder that is infinitely long and a 

PEC does not depolarize an incident wave. Balanis continues on to describe that 

deviations from this can cause depolarization of the incident wave [12, p. 615]. Though 

not explicitly stated by Balanis, his statement can be interpreted to be applied to that of 

the periodic corrugated cylinder which would depolarize an incident plane wave. 

Therefore, as stated in section 2.3 , a hybrid mode of TMz and TEz can exist for the 

periodic corrugated cylinder and will be examined as such. The field equations for the 

TMz and TEz modes will be derived separately, but through the principle of superposition 

will be combined in Chapter 5 when finding solutions for the fields. 

  When deriving the field equations for the scattered field, the FEGWs presented in 

Chapter 4, equations ( 4-1 ) through ( 4-4 ), will be made much use of. Also from Chapter 

4, deriving the Ez and Hz scattered fields will use the same Helmholtz equation 

representation from ( 4-10 ) and ( 4-43 ) respectively, as well as the same coordinate 

constituent separable equations from ( 4-11 ) and ( 4-44 ) respectively. Use of the known 

solutions for the Helmholtz equation described in equations ( 4-12 ) through ( 4-14 ) will 

also be made in this chapter. 
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5.1  Equations for the TMz Mode Scattered Field of Region II 

  The steps to derive the equations representing the TMz mode of the scattered field 

in region II will be the same as that for the TMz mode in region I. This starts with 

choosing the appropriate field representation from equations ( 4-12 ) through ( 4-14 ) 

based on geometry and expected behavior in order to describe Ez. Since there are no 

restrictive boundaries in region II, the traveling wave representation is chosen for each 

constituent and replaced into  ( 4-11 ) to give  

�9 = uma�6�a	b�F�c + na�6�[	b�F�cv �m[
3�6? + n[
s�6?	�mt
3�4V9 + mt
�4V9	 . ( 5-1 ) 

  Now, the first and second term of Ez, which make up Rz(ρ) represent inward and 

outward traveling waves respectively. Since at the boundary of region II, whether with 

the conductive surface or with region I, there is no scattered field expected, the inward 

traveling wave portion (the first term) can be eliminated leaving 

�9 = na�6�[	b�F�c�m[
3�6? + n[
s�6?	�mt
3�4V9 + mt
�4V9	 . ( 5-2 ) 

This equation can be further simplified by bringing it into summation terms as was done 

in Chapter 4 yielding 

�900� = ∑ 
�6?@6A3@ ∑ m6�
3�4V�9�6�[	b�F��c@�A3@  . ( 5-3 ) 

  Note that axial wavenumber �9 has been replaced by �9� and radial wavenumber 

�F has been replaced by �F�, where �F� = .�[ # �9�[  . Here, the sub-subscript ‘l’ identifies 

the propagating mode for region II in the same way ‘m’ is for region I.  To understand the 

relationship of the propagating mode with the geometry, a derivation of �9�,  is required. 

This is due to the fact that a propagating wave interfacing with a structure, in this case the 

scattered field with the periodic corrugated cylinder, takes on the symmetry of said 

structure as depicted in Figure 5-1. This �9� is known as the Floquet harmonic or Floquet 



30 

wavenumber [9, p. 265] or a Bloch wavenumber [15] because of the non-uniqueness and 

ability to represent a periodic medium.  

 

Figure 5-1 A depiction of the vector decomposition of the wavenumber in region II 

 

 

Figure 5-2 A depiction of constructive interference for a propagating wave along a periodic surface 

 

  First, for wave modes to exist, a constructive interference relationship needs to be 

established along the path of propagation. This is how wave modes are established within 

waveguides and periodic structures. It can be seen from Figure 5-2 that an integer 
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multiple ‘l’ to the wavelength ‘λ’ would provide a description of the propagating modes 

along the prescribed surface where constructive interface would occur. Also, the 

relationship 

q  = �h + ¡	 � ! "�  ( 5-4 ) 

is established. The relationship for the scattered field wave vector 

��¢� = #�̂ � $%� "� + �� � � ! "� ( 5-5 ) 

is established from Figure 5-1 where the magnitude of ��¢�, which will be referred to as 

�9�, the axial wavenumber in region II, is 

�9� = � $%� "� + � � ! "� . ( 5-6 ) 

when substituting in the relationship of "�= � # "� as per [12, p. 615]. Substituting in the 

definition � = [£¤  for the second term yields 

�9� = � $%� "� + 2�   � ! "�  ( 5-7 ) 

which can further be reduced by using equation ( 5-4 ) to give  

q �h + ¡	 = � ! "�  ( 5-8 ) 

�9� = � $%� "� + 2�  q �h + ¡	 = � $%� "� + 2�q�h + ¡	 ( 5-9 ) 

which completes the derivation for �9�. This also completes the definition for �900� . 
  Next, the remaining TMz mode scattered field equations are derived. This is done 

by substituting �900�  into equations ( 4-6 ) through ( 4-9 ) to produce 

�F_HI00� = #= ∑ 
�6?@6A3@ ∑ 4V�4R�S m6�
3�4V�9 ��F��63a�[	 b�F��c # 6Ww�S	u4R�FvF �@�A3@      ( 5-10 ) 

�?_HI00� = 1� < !
�6?@
6A3@ < �9��F�[ m6�
3�4V�9�6�[	b�F��c@

�A3@  ( 5-11 ) 

�F_HI00� = # Y+� < !
�6?@
6A3@ < 1�F�[ m6�
3�4V�9�6�[	b�F��c@

�A3@  ( 5-12 ) 
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�?_HI00� = #=Y+ ∑ 
�6?@6A3@ ∑ a4R�S m6�
3�4V�9 ��F��63a�[	 b�F��c # 6Ww�S	u4R�FvF �@�A3@  . ( 5-13 ) 

5.2  Equations for the TEz Mode Scattered Field of Region II 

  For the TEz mode, Hz is derived much the same way as was in the TEz mode in 

region I. Once applying the same assumptions from the geometry and expected field 

behavior described in section 5.1 for the TMz mode case, onto the equations ( 4-12 ) 

through ( 4-14 ) and to equation ( 4-44 ), Hz is defined as  

�900� = ∑ 
�6?@6A3@ ∑ n6�
3�4V�9�6�[	b�F��c@�A3@  . ( 5-14 ) 

where Dnl represents the combined coefficients and �9� and �F� are the axial and radial 

wavenumbers defined in section 5.1 respectively.  

Now with a fully defined �900� , the remaining equations can be found by plugging �900�  

into equations ( 4-39 ) through ( 4-42 ) to yield 

�F_HM00� = #=Y* ∗ = ∑ !
�6?@6A3@ ∑ a4R�S F n6�
3�4V�9�6�[	b�F��c@�A3@      ( 5-15 ) 

�?_HM00� = =Y* < 
�6?@
6A3@ < 1�F�[ n6�
3�4V�9 y�F��63a�[	 b�F��c # !�6�[	b�F��c� z@

�A3@  ( 5-16 ) 

�F_HM00� =  #= < 
�6?@
6A3@ < �9��F�[ n6�
3�4V�9 y�F��63a�[	 b�F��c # !�6�[	b�F��c� z@

�A3@  ( 5-17 ) 

�?_HM00� = aF ∑ !
�6?@6A3@ ∑ 4V�4R�S n6�
3�4V�9�6�[	b�F��c@�A3@  . ( 5-18 ) 
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CHAPTER 6 BOUNDARY CONDITIONS & POINT MATCHING METHOD 

  At this point, the equations for region I and region II have been defined. However, 

the equations for region I and the scattered field equations for region II have unknown 

coefficients that need to be solved for in order to have a complete representation, and 

therefore to be able to calculate and predict the scattered field. In order to achieve this, 

boundary conditions need to be established to provide equation sets that allow for 

algebraic solving of the unknown coefficients. The equation relationships are established 

by point matching, equating points from different equations, that establishes an equal 

number of point matches to unknowns.  

6.1  General Boundary Conditions 

  There are two main boundary regions that are utilized in this paper for point 

matching, as can be observed from Figure 6-1, which are boundary ‘a’ and boundary ‘b’.    

Boundary ‘a’: 

 Boundary between region I and II at � = �[ for a z range of  
3�[  ≤ � ≤   �[. 

 The available matching points, §���, �, �	, of a quantity ‘j’ are: � = �[, 
3�[ ≤ � ≤

�[ and 0 ≤ � ≤ 2�. 

 Tangential electric fields from region II, Ez
II and Eφ

II, are equal to tangential 

electric fields from region I, Ez
I and Eφ

I, hence Ez
II=Ez

I and Eφ
II=Eφ

I [16, p. 178].

 Tangential magnetic fields from region II, Hz
II and Hφ

II, are equal to tangential 

magnetic fields from region I, Hz
I and Hφ

I, hence Hz
II=Hz

I and Hφ
II=Hφ

I when the 



34 

conductivity is finite, hence, not a PEC which is the case at this boundary [16, p. 

234]. 

 Used to solve for the unknown expansion coefficients Anm and Bnm from region I. 

 Used to solve for the unknown expansion coefficients Cnl and Dnl from region II, 

which are distinct for each boundary, therefore these will have superscript of (a) 

to identify them: Cnl
(a) and Dnl

(a).  

Boundary ‘b’: 

 Boundary between region II and outer conducting surface of corrugated cylinder 

at � = �[ for a z range of  
�[  ≤ � ≤   �[ + ¡. 

 The available matching points, §���, �, �	, of a quantity ‘j’ are: � = �[, 
�[  ≤ � ≤

  �[ + ¡ and 0 ≤ � ≤ 2�. 

 Tangential electric fields from region II are equal to zero based on the Dirichlet 

boundary condition [9, pp. 97-100]: Ez
II =0 and Eφ

II=0. 

 Used to solve for the unknown expansion coefficients Cnl and Dnl from region II, 

which are distinct and will have superscript (b) to identify them, Cnl
(b) and Dnl

(b). 
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Figure 6-1 A depiction for the general boundary conditions utilized to solve for the unknown coefficients 

 

6.2  Matrix Form of Field Equations 

  In order to effectively apply the boundary conditions and to solve for the 

unknown expansion coefficients, the field equations described in Chapter 3, Chapter 4 

and Chapter 5 will be represented in matrix form. This will aid in the algebraic 

manipulation and solving of the coefficients. 

  There are a few things to note about the matrix form and indices. The expansion 

coefficients of each region need to have the same shape as each other for point matching, 

therefore the !	E	� size matrices of region I need to match the !	E	q matrices of region 

II. This is accomplished by making “n” of each region equal to each other and having 

“m” of region I equal to “l” of region II. 

  The matrices that contain a subscript “j” indicate that there are z’s and φ’s 

referenced in them, where ρ is always ρ2 for point matches.  Each “j” is a matching point, 
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which is provided by z’s and φ’s variation on the specified boundary with a fixed ρ2 and z 

range indicated. The number of matching points, which is the number of “j” points, is 

equal to ! ∗ � or ! ∗ q, thus there’s a matching point for every expanded “n” and “m” or 

“n” and “l”. Also, the number of equation matches equals the number of expansion 

coefficients. The number of matching points times the number of equation matches 

equals the total number of unknown expanded coefficients which provides a complete 

system of equations. 

 In order to separate the coefficients from the rest of the terms for each equation, 

the matrices of the unknown expansion coefficients are flattened into an array of a single 

column with ! ∗ � or ! ∗ q rows and the remainder of the term can stay in a matrix form 

of “j” rows and ! ∗ � or ! ∗ q columns. When multiplied back together, it produces the 

summation equation.  The incident fields are also “j” rows, but of a single column of 

which each entry is a full summation solution. 

6.2.1  Matrix form of Region I Equations 

   The following are the matrix form of the subcomponents of the region I equations 

described in Chapter 4. The equations listed below capture the fields Ez
I, Hz

I, Eφ
I, Hφ

I, Eρ
I 

and Hρ 
I in matrix form. For each equation in the list, the corresponding matrix form in 

which it’s used is provided. Also, the equation’s substituted form is identified and located 

within the matrix form through the use of highlighting and bolding the font. 

 �ℎ6��� = ∑ 
�6?@6A3@ ∑ u$%� �O� u� # �[vv y�6�a	b�F��c # Ww�x	b4R�FxcWw�S	b4R�Fxc �6�[	b�F��cz@�A3@  
� From �9, = �­®¯°��`6�&   ( 6-1 ) 
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� 6��� = ∑ 
�6?@6A3@ ∑ u� ! �O� u� # �[vv ��6�a	b�F��c #@�A3@
4R�Ww�x�x	 �4R�Fx	3 wRxWw�x	�4R�Fx	4R�Ww�x�S	 �4R�Fx	3 wRxWw�S	�4R�Fx	 �6�[	b�F��c�  � From �9, = �±®¯°��d6�& ( 6-2 ) 

��6��� = aF ∑ !
�6?@6A3@ ∑ 4V�4R�S u$%� �O� u� # �[vv y�6�a	b�F��c #@�A3@
Ww�x	b4R�FxcWw�S	b4R�Fxc �6�[	b�F��cz � From �?, = �²®¯°��`6�& + �q6����d6�& ( 6-3 ) 

�q6��� = =Y* ∑ 
�6?@6A3@ ∑ a4R�S u� ! �O� u� # �[vv �u�F��63a�a	 ��F��	 #@�A3@
6F �6�a	��F��	v # 4R�Ww�x�x	 �4R�Fx	3 wRxWw�x	�4R�Fx	4R�Ww�x�S	 �4R�Fx	3 wRxWw�S	�4R�Fx	 u�F��63a�[	 ��F��	 # 6F �6�[	��F��	v�� 

From �?, = ��6����`6�& + �³®¯°��d6�& 
( 6-4 ) 

�%6��� = #=Y+ ∑ 
�6?@6A3@ ∑ a4R�S u$%� �O� u� # �[vv yu�F��63a�a	 ��F��	 #@�A3@
6F �6�a	��F��	v # Ww�x	b4R�FxcWw�S	b4R�Fxc u�F��63a�[	 ��F��	 # 6F �6�[	��F��	vz� From �?, =

�´®¯°��`6�& + �§6����d6�& 
( 6-5 ) 

�§6��� = aF ∑ !
�6?@6A3@ ∑ 4V�4R�S u� ! �O� u� # �[vv ��6�a	b�F��c #@�A3@
4R�Ww�x�x	 �4R�Fx	3 wRxWw�x	�4R�Fx	4R�Ww�x�S	 �4R�Fx	3 wRxWw�S	�4R�Fx	 �6�[	b�F��c�� From �?, = �%6����`6�& + �µ®¯°��d6�& ( 6-6 ) 

�p6��� = #= ∑ 
�6?@6A3@ ∑ 4V�4R�S u$%� �O� u� # �[vv yu�F��63a�a	 ��F��	 #@�A3@
6F �6�a	��F��	v # Ww�x	b4R�FxcWw�S	b4R�Fxc u�F��63a�[	 ��F��	 # 6F �6�[	��F��	vz � From �F, =

�¶®¯°��`6�& + ��6����d6�& 
( 6-7 ) 

��6��� = �/F ∑ !
�6?@6A3@ ∑ a4R�S u� ! �O� u� # �[vv ��6�a	b�F��c #@�A3@
4R�Ww�x�x	 �4R�Fx	3 wRxWw�x	�4R�Fx	4R�Ww�x�S	 �4R�Fx	3 wRxWw�S	�4R�Fx	 �6�[	b�F��c� � From �F, = �p6����`6�& + �·®¯°��d6�& ( 6-8 ) 
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�
6��� = # �1F ∑ !
�6?@6A3@ ∑ a4R�S u$%� �O� u� # �[vv y�6�a	b�F��c #@�A3@
Ww�x	b4R�FxcWw�S	b4R�Fxc �6�[	b�F��cz � From �F, = �¸®¯°��`6�& + �¹6����d6�& ( 6-9 ) 

�¹6��� = #= ∑ 
�6?@6A3@ ∑ 4V�4R�S u� ! �O� u� # �[vv ���F��63a�a	 b�F��c #@�A3@
6F �6�a	b�F��c� # 4R�Ww�x�x	 �4R�Fx	3 wRxWw�x	�4R�Fx	4R�Ww�x�S	 �4R�Fx	3 wRxWw�S	�4R�Fx	 ��F��63a�[	 b�F��c # 6F �6�[	b�F��c�� � 

From �F, = �
6����`6�& + �º®¯°��d6�& 
( 6-10 ) 

  The TMz mode region I field expansion coefficient is represented by �`6�& and 

the TEz mode region I field expansion coefficient is represented by �d6�&. The remaining 

are region I field components of the respective mode to the coefficient it’s a product with. 

6.2.2  Matrix form of Region II Equations 

   The following are the matrix form of the subcomponents of the region II 

equations described in Chapter 3 and Chapter 5. This includes the superposition of all the 

region II fields within the same coordinate axis, including TMz and TEz modes for both 

the scattered and incident field. Hence, the total field for each axis is summarized as  

�9,, = �900� + �9_HI00�  ( 6-11 ) 

�F,, = �F00� + �F_HI00� + �F_HM00�  ( 6-12 ) 

�?,, = �?00� + �?_HI00� + �?_HM00�  ( 6-13 ) 

�9,, = �900� + �9_HM00�  ( 6-14 ) 

�F,, = �F00� + �F_HI00� + �F_HM00�  ( 6-15 ) 

�?,, = �?00� + �?_HI00� + �?_HM00�  ( 6-16 ) 

Below are the field components of Ez
II , Hz

II, Eφ
II, Hφ

II, Eρ 
II and Hρ 

II in matrix form. Just 

as in section 6.2.1 , the equation’s substituted form is identified and located within the 

matrix form through the use of highlighting and bolding the font. 
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�¡6�� = �2 � ! "� 
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@ � From �9,, = �»®°� + �h6�&�m6�& ( 6-17 ) 

�h6��� = ∑ 
�6?@6A3@ ∑ 
3�4V�9�6�[	b�F��c@�A3@ � From �9,, = �¡6�� + �¼®³&�m6�& ( 6-18 ) 

�½6�� = �2 � ! "� 
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@ � From �9,, = �¾®°� + �j6�&�n6�& ( 6-19 ) 

�j6��� = ∑ 
�6?@6A3@ ∑ 
3�4V�9�6�[	b�F��c@�A3@ � From �9,, = �½6�� + �¿®³°��n6�& ( 6-20 ) 

�i6�� = �#�2 � ! � $%� "� + C�2 $%� �&
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@  � From �?,, = �À®°� + b�$6����m6�& + �
6����n6�&c ( 6-21 ) 

�$6��� = aF ∑ !
�6?@6A3@ ∑ 4V�4R�S 
3�4V�9�6�[	b�F��c@�A3@ � From �?,, = �i6�� +b�Á®³°��m6�& + �
6����n6�&c ( 6-22 ) 

�
6��� = =Y* ∑ 
�6?@6A3@ ∑ a4R�S 
3�4V�9 ��F��63a�[	 b�F��c # 6Ww�S	u4R�FvF �@�A3@ � From �?,, =�i6�� + b�$6����m6�& + �Â®³°��n6�&c ( 6-23 ) 

��6�� = T# MNO $%� � # �2 � ! � $%� "�X 
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@  � From �?,, = �¯®°� + b�!6����m6�& + �Ã6����n6�&c ( 6-24 ) 

�!6��� = #=Y+ ∑ 
�6?@6A3@ ∑ a4R�S 
3�4V�9 ��F��63a�[	 b�F��c # 6Ww�S	u4R�FvF �@�A3@ � From �?,, =��6�� + b�®®³°��m6�& + �Ã6����n6�&c ( 6-25 ) 

�Ã6��� = aF ∑ !
�6?@6A3@ ∑ 4V�4R�S 
3�4V�9�6�[	b�F��c@�A3@ � From �?,, = ��6�� +b�!6����m6�& + �Ä®³°��n6�&c ( 6-26 ) 

�Å6�� = ��2 $%� � $%� "� + C�2 � ! �&
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@  � From �F,, = �Æ®°� + b�l6����m6�& + �Ç6����n6�&c ( 6-27 ) 

�l6��� = #= ∑ 
�6?@6A3@ ∑ 4V�4R�S 
3�4V�9 ��F��63a�[	 b�F��c # 6Ww�S	u4R�FvF �@�A3@  � From �F,, =�Å6�� + b�È®³°��m6�& + �Ç6����n6�&c ( 6-28 ) 

�Ç6��� = �/F ∑ !
�6?@6A3@ ∑ a4R�S 
3�4V�9�6�[	b�F��c@�A3@  � From �F,, = �Å6�� +b�l6����m6�& + �É®³°��n6�&c ( 6-29 ) 

�Ê6�� = T# MNO � ! � + �2 $%� � $%� "�X 
�49 :;� 78 J =36>6��� � ! "�	
�6?@6A3@  � From �F,, = �Ë®°� + b��6����m6�& + ��6����n6�&c ( 6-30 ) 

��6��� = # �1F ∑ !
�6?@6A3@ ∑ a4R�S 
3�4V�9�6�[	b�F��c@�A3@  � From �F,, = �Ê6�� +b�Ì®³°��m6�& + ��6����n6�&c ( 6-31 ) 
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��6��� = #= ∑ 
�6?@6A3@ ∑ 4V�4R�S 
3�4V�9 ��F��63a�[	 b�F��c # 6Ww�S	u4R�FvF �@�A3@  � From �F,, =�Ê6�� + b��6����m6�& + �Í®³°��n6�&c ( 6-32 ) 

The components �¡6��, �½6��, �i6��, ��6��, �Å6�� and �Ê6�� represent the incident field of 

the corresponding cylindrical orientation with both TMz and TEz mode combined. The 

TMz mode scattered field expansion coefficient is represented by �m6�& and the TEz mode 

scattered field expansion coefficient is represented by �n6�&. The remaining are scattered 

field components of the respective mode to the coefficient it’s a product with. 

6.2.3  Matrix Equation Matches for Point Matching 

  There are 6 unknown expansion coefficients, each of which expand out to either 

! ∗ � or ! ∗ q quantities of unknowns. This means that there needs to be at least 6 matrix 

equation matches in order to solve for the unknowns. Based on the boundary conditions 

discussed in section 6.1 the following 6 equations will provide a system of equations to 

solve for the unknowns. 

For boundary ‘a’: 

��9,& = ��9,,��	� →   �ℎ6����`6�& = �¡6�� + �h6����m6���	� ( 6-33 ) 

��?, � = ��?,,�Ï	� →   ��6����`6�& + �q6����d6�& = �i6�� + b�$6����m6���	� + �
6����n6���	�c ( 6-34 ) 

��9,& = ��9,,��	� →   � 6����d6�& = �½6�� + �j6����n6���	� ( 6-35 ) 

��?, � = ��?,,��	� →   �%6����`6�& + �§6����d6�& = ��6�� + b�!6����m6���	� + �Ã6����n6���	�c ( 6-36 ) 

For boundary ‘b’: 

0 = ��9,,�Ï	� →   0 = �¡6�� + �h6����m6��Ï	� ( 6-37 ) 

0 = ��?,,�Ï	� →   0 = �i6�� + b�$6����m6��Ï	� + �
6����n6��Ï	�c ( 6-38 ) 

  A partially expanded matrix form provides a good aid of the matrix form which is 

represented here as well. Subscripts within the matrices will be further observable and the 
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matrix shape made obvious. Though, a few notes on the sub-subscripts need to be made. 

A sub-subscript of 1 on the subscript “n”, “m”, and “l” signifies the first increment of that 

index. A sub-subscript of “n_max”, m”_max”, or “l_max” signifies the last increment of 

that index, which are on “n”, “m”, or “l” respectively. 

For boundary ‘a’: 

��9,& = ��9,,��	�  → Ð ℎ6x�x�x ⋯ ℎ6w_��Ò��_��Ò�x⋮ ⋱ ⋮ℎ6x�x�Õ_��Ò ⋯ ℎ6w_��Ò��_��Ò�Õ_��Ò
Ö Ð `6x�x⋮`6w_��Ò��_��Ò

Ö
= Ð ¡6�x⋮¡6�Õ_��Ò

Ö + Ð h�x6x�x ⋯ h�x6w_��Ò��_��Ò⋮ ⋱ ⋮h6x�x�Õ_��Ò ⋯ h6w_��Ò��_��Ò�Õ_��Ò
Ö × m6x�x�Ï	⋮m6w_��Ò��_��Ò�Ï	 Ø ( 6-39 ) 

��?, � = ��?,,��	�  →  Ð �6x�x�x ⋯ ��x6w_��Ò��_��Ò�x⋮ ⋱ ⋮�6x�x�Õ_��Ò ⋯ �6w_��Ò��_��Ò�Õ_��Ò
Ö Ð `6x�x⋮`6w_��Ò��_��Ò

Ö
+ Ð q6x�x�x ⋯ q6w_��Ò��_��Ò�x⋮ ⋱ ⋮q6x�x�Õ_��Ò ⋯ q6w_��Ò��_��Ò�Õ_��Ò

Ö Ð d6x�x⋮d6w_��Ò��_��Ò
Ö

= Ð i6�x⋮i6�Õ_��Ò
Ö

+ �Ð $6x�x�x ⋯ $6w_��Ò��_��Ò�x⋮ ⋱ ⋮$6x�x�Õ_��Ò ⋯ $6w_��Ò��_��Ò�Õ_��Ò
Ö × m6x�x��	⋮m6w_��Ò��_��Ò��	 Ø

+ Ð 
6x�x�x ⋯ 
6w_��Ò��_��Ò�x⋮ ⋱ ⋮
6x�x�Õ_��Ò ⋯ 
6w_��Ò��_��Ò�Õ_��Ò
Ö × n6x�x��	⋮n6w_��Ò��_��Ò��	 Ø� 

( 6-40 ) 

��9,& = ��9,,��	�  →  Ð  6x�x�x ⋯  6w_��Ò��_��Ò�x⋮ ⋱ ⋮ 6x�x�Õ_��Ò ⋯  6w_��Ò��_��Ò�Õ_��Ò
Ö Ð d6x�x⋮d6w_��Ò��_��Ò

Ö
= Ð ½6�x⋮½6�Õ_��Ò

Ö + Ð j�x6x�x ⋯ j6w_��Ò��_��Ò�x⋮ ⋱ ⋮j6x�x�Õ_��Ò ⋯ j6w_��Ò��_��Ò�Õ_��Ò
Ö × n6x�x��	⋮n6w_��Ò��_��Ò��	 Ø 

( 6-41 ) 
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��?�� = ��?,,��	�  →  Ð %6x�x�x ⋯ %6w_��Ò��_��Ò�x⋮ ⋱ ⋮%6x�x�Õ_��Ò ⋯ %6w_��Ò��_��Ò�Õ_��Ò
Ö Ð `6x�x⋮`6w_��Ò��_��Ò

Ö
+ Ð §6x�x�x ⋯ §6w_��Ò��_��Ò�x⋮ ⋱ ⋮§6x�x�Õ_��Ò ⋯ §6w_��Ò��_��Ò�Õ_��Ò

Ö Ð d6x�x⋮d6w_��Ò��_��Ò
Ö

= Ð �6�x⋮�6�Õ_��Ò
Ö

+ �Ð !6x�x�x ⋯ !6w_��Ò��_��Ò�x⋮ ⋱ ⋮!6x�x�Õ_��Ò ⋯ !6w_��Ò��_��Ò�Õ_��Ò
Ö × m6x�x��	⋮m6w_��Ò��_��Ò��	 Ø

+ Ð Ã6x�x�x ⋯ Ã6w_��Ò��_��Ò�x⋮ ⋱ ⋮Ã6x�x�Õ_��Ò ⋯ Ã6w_��Ò��_��Ò�Õ_��Ò
Ö × n6x�x��	⋮n6w_��Ò��_��Ò��	 Ø� 

( 6-42 ) 

For boundary ‘b’: 

0 = ��9,,�Ï	�  →  0 = Ð ¡6�x⋮¡6�Õ_��Ò
Ö + Ð h6x�x�x ⋯ h6w_��Ò��_��Ò�x⋮ ⋱ ⋮h6x�x�Õ_��Ò ⋯ h6w_��Ò��_��Ò�Õ_��Ò

Ö × m6x�x�Ï	⋮m6w_��Ò��_��Ò�Ï	 Ø ( 6-43 ) 

 0 = ��?,,�Ï	�  →  0
= Ð i6�x⋮i6�Õ_��Ò

Ö
+ �Ð $6x�x�x ⋯ $6w_��Ò��_��Ò�x⋮ ⋱ ⋮$6x�x�Õ_��Ò ⋯ $6w_��Ò��_��Ò�Õ_��Ò

Ö × m6x�x�Ï	⋮m6w_��Ò��_��Ò�Ï	 Ø
+ Ð 
6x�x�x ⋯ 
6w_��Ò��_��Ò�x⋮ ⋱ ⋮
6x�x�Õ_��Ò ⋯ 
6w_��Ò��_��Ò�Õ_��Ò

Ö × n6x�x�Ï	⋮n6w_��Ò��_��Ò�Ï	 Ø� 

( 6-44 ) 

6.3  Summation Truncation 

  It’s also important to note that the summations for all the equations, and therefore 

the matrices, need to be truncated from an infinite to a finite length indices. This is 

required prior to numerical computation. Truncation can reduce accuracy, so it follows 

that smaller truncated values can be less accurate than when truncated to higher values. 

However, it is a fair trade off between computer computational power and available 

processing time versus accuracy. That’s due to the fact that the higher “n”, “m”, and “l” 
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indices represent higher orders and wave numbers of waves that either don’t propagate 

because they’re evanescent or contribute very little overall amplitude and can be 

neglected. Also, computing solutions that contribute little to the final solution can be 

computationally burdensome.  A result of this trade ultimately leads to the truncated size 

selection for the summation ranges and matrix sizes. 

  An example for finding evanescent modes of higher order “m” can be seen when 

examining equation ( 4-32 ) with �F� = .�[ # �O�[ . At larger values of “m”, it can be 

seen that �[ < �O�[  which makes �F�imaginary, representing evanescent radial wave 

modes. When k � ω√*,+, and ( 4-32 ) are substituted into �[ > �O�[  , where �F� is still 

real, the relationship  

Y[*,+, > �[�[h[    →    h[Y[*,+,�[ > �[     →    h ∗ Y√*,+,� > ±� ( 6-45 ) 

can be established, setting the upper limit for “m”.  The same can be done for  �F� and 

�9�. Following the same approach but using equations k � ω√*,,+,, and ( 5-9 ), the 

relationship  

Y[*,,+,, > �� $%� "� + 2�q�h + ¡	�[    →    YZ*,,+,, > � $%� "� + 2�q�h + ¡	    →         
�h + ¡	�Y√*,,+,, # � $%� "�	2� > q   →      �h + ¡	��1 # $%� "�	2� > q       

( 6-46 ) 

will provide an upper limit for “l”. These equations are implemented in the code, which 

will be discussed in the following sections, as checks for the user to compare his or her 

inputs. Violating these limits can prove challenging for the code to find solutions to the 

field equations, producing nonsensical, erroneous results with values of orders of 

magnitudes 10’s to 100’s of times greater than expected.  
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  In summary, the “m” and “l” max values are selected in order to restrict the values 

of both �F� and �F� to the real domain, which also drives the size of the matrices, for the 

following reasons:  

 Imaginary of �F� and �F� produce rapidly decaying evanescent fields that 

contribute little to the overall amplitude 

 Computationally it can be burdensome to compute and in some cases challenging 

to find a solution. 

  It’s also important to note here that this restriction is acceptable to the author. In 

any approximation technique, there will be areas where computations are truncated and 

simplification assumptions are made. The results and comparisons in Chapter 7 will 

provide a guide for when the approach presented by this paper is most valid, with respect 

to the dimensions of the corrugated cylinder structure when compared to the wavelength 

of the incident plane-wave. It will be left for a future endeavor to stress the model 

approach presented in this research, to determine the exact limitations of specific 

assumptions (e.g. under what conditions can the restricting of �F� and �F� being real be 

considered unacceptable). 

6.4  Numeric Computation Techniques and Tool Methodology 

6.4.1  Tool Selection and Use 

This next stage requires that of all the equations get implemented into a 

computational tool. There are many computational tools to choose from, however this 

author chose to use Mathematica® [17] based on its ability to handle math symbolically. 

Also, another significant driver for the selection of Mathematica® is the availability of a 
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free toolbox add-on to Mathematica®, available online from UC San Diego known as 

NCAlgebra [18], which can handle noncommutative algebra.  

  NCAlgebra makes it easy in manipulating matrices and vectors algebraically and 

symbolically. Its key use in this paper was to solve for each of the unknown expansion 

coefficients in terms of known terms, using the matching equations from ( 6-33 ) to ( 

6-38 ). Essentially, a solve function native to the tool is used, which, once that is done, 

numeric values for each of terms are computed, plugged in, computed again and the 

coefficients would be solved for.  

  However, there were some convergence issues in the results. The issue was not 

fully identified but at this point, it is important to mention that when NCAlgebra 

produces solutions, it checks and validates it. This validation check produced a warning 

describing that the solution may be prone to error for certain circumstances, not 

described, since it could not guarantee the solution’s accuracy. Based on the results and 

the NCAlgebra warning, the fully derived NCAlgebra method was commented out of the 

code. It was replaced by a loop solve algorithm developed for this research. However, 

NCAlgebra was still used to derive some of the unknown expansion coefficient equations 

where the solution check was validated, and were also used to spot check solutions from 

the loop solve algorithm used to replace it. 

 The loop solve algorithm was used to solve partially solved unknown coefficients. 

The solve function in Mathematica® was used within a loop to solve for the large matrix 

system of equations. As the loop solve algorithm increments, it solves an equation in 

terms of an unknown, then plugs that unknown into the equation of the next loop solve 

iteration. This process eliminates an unknown with each step. At the last step, the 
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unknown is found to have a value. At this point, another loop is implemented working 

backwards and plugging in values until all the unknowns are known.  

 During the numerical computational effort, there were issues that arose in solving 

for the unknown coefficients. They were attributed to ill-conditioned matrices which will 

be described in the next section.  

6.4.2  Ill-Conditioned Matrices 

  It turned out that during the computation iterations in the process of this work, the 

computational tool would produce errors indicating ill-conditioned matrices. This was 

found during the inversion process of many of the matrices.  

  There has been much work behind ill-conditioned matrices, particularly in such a 

case as this one, where an ill-conditioned system of linear equations is involved in an 

engineering problem. The driving source is from an ill-posed problem, which does not 

necessarily stem from an ill-conceived design, but rather a fundamental physical 

limitation to the data at hand [19]. Described in such work, are suggestions for the use of 

the Moore–Penrose pseudoinverse, which relates to the least squares regression method 

in finding the shortest length solution to a problem [20]. Both the pseudoinverse and least 

squares method are made use of in the code, in order to eliminate the ill-conditioned 

errors and solve for the unknown expansion coefficients. 

6.4.3  Tool Methodology 

  The following section will describe the high-level workflow on how the 

computational tools are used. It will show how the tools mentioned in section 6.4.1  are 

used in conjunction with the solving methods mentioned in section 6.4.2 . The workflow 
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below will describe the code in an already existing state and therefore the workflow steps 

describe the sequential flow of data, and not the creation of code. 

 Step 1: The boundary ‘b’ equations, ( 6-37 ) and ( 6-38 ), are used to solve for Cnl
(b) and

 Dnl
(b) using the least squares method with tool’s built-in least squares solver

 function. Equations were rearranged to solve for the specified expansion 

 coefficient per the least squares solver function required arrangement [21]. See  

 Figure 6-3 for  pictorial form. 

Step 2: The boundary ‘a’ equations ( 6-33 ) and ( 6-35 ) are used to solve for Anm and

 Bnm. They are rearranged using manual matrix manipulation method with

 noncommutative algebra and solve for Anm and Bnm in terms of known of field

 components, Cnl
(a) and Dnl

(a) 

Step 3: The boundary ‘a’ equation ( 6-34 ) is now used to solve for Cnl
(a) in terms of Dnl

(a)

 using the same method as in step 2. 

Step 4: The new form of Cnl
(a) (in terms of Dnl

(a)) is plugged into the new form of Anm (in

 terms of Cnl
(a)) in order to put Anm in terms of Dnl

(a) 

Step 5: The boundary ‘a’ equation ( 6-36 ) is now used to solve for Dnl
(a) in terms of

 known of field components, Anm, and Bnm, where Anm, and Bnm are substituted by

 the solutions in the previous step. 

Step 6: Dnl
(a) is now expanded and solved for all the expanded coefficients within the loop

 algorithm referenced earlier as the loop solve algorithm. Once complete, Dnl
(a) is

 fully solved for numerically. 
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Step 7: Dnl(a) is plugged into Cnl
(a) and solved for. Both of which are now plugged into 

 Anm and Bnm, which are solved for as well, completing the numerical solving of

 the expansion coefficients. Steps 2 – 7 can be seen in Figure 6-4. 

A pictorial overview of this workflow can be seen in Figure 6-2. It includes additional 

steps required for configuration and result generation. 

 

Figure 6-2 Software Process Workflow 

 

Figure 6-3 Solving for Boundary ‘b’ Unknown Coefficients Flow Chart 
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Figure 6-4 Solving for Boundary ‘a’ Unknown Coefficients Flow Chart 

 



50 

CHAPTER 7 RESULTS, COMPARISONS AND FUTURE RESEARCH  

7.1  Model Configuration and Parameters 

  Many configurations and parameters were set up to support the research in this 

paper. This section will attempt to describe the key configurations and parameters in 

order to facilitate understanding of the results. Note, this model is composed of multiple 

smaller models, most centered on the periodic corrugated cylinder. However, there’s also 

a smooth cylinder model incorporated, which will be discussed in section 7.3 . 

7.1.1  Parameters Relative to Lambda 

  The model computes and displays many of the results in terms of the wavelength 

λ, where λ = :Ü , where ‘f’ is the frequency of the incident field and ‘c’ is the speed of 

light. Also, the dimensions of the corrugated cylinder are described in units of λ, which 

include the corrugation opening denoted by ‘a’, thickness of the metallic corrugation 

portion denoted by ‘b, the inner corrugation radius ρ1 and the exterior corrugation radius 

ρ2. Note that the period of the corrugation is equal to ‘a + b’. This includes the plots 

displayed later in this chapter, which vary in ρ and have an axis in units of λ, displayed as 

ρ/λ. This allows the model to display results that are independent of a specified 

frequency/wavelength. However, parameters do have values thus a λ is chosen and can be 

varied while fixing the geometry, if so desired. For the purpose of this paper, λ is fixed 

and the geometry and other parameters are varied.
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 In the results section, multiple scenarios were run with different parameter 

changes. One such parameter was labeled ‘d’ which signifies a relative ‘dimension’ to λ, 

which the physical dimension parameters of the corrugated and smooth cylinders are 

linked to. For example, the dimension ‘b’, the thickness of the protruding part of the 

corrugation, is always set equal to ‘d’ in all the scenarios, unless explicitly stated 

otherwise. The parameter ‘d’ allows for the description of 3 different groupings of 

relative physical dimensions which are i ≫ 	 	by setting i � 20 , i Þ 	 	by setting i �
2 , and i ≪ 	 	by setting i � 0.1 . This was done in order to more clearly gauge the 

performance of the model relative to the different scattering regimes laid out by the 

figure, as per described in [22]. Also, according to Fuhs [23, p. 18], when in the Rayleigh 

scattering region (i ≫ 	 ), polarization is not important for the magnitude of RCS. 

 

Figure 7-1 Relative relationship of target size to illuminated wavelength with associated regions of 

scattering approximation, courtesy of Wikipedia [24] 
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7.1.2  Incident Field Parameters 

The incident field amplitudes are driven by the E0 value for the TMz mode and the 

H0 value for the TEz mode. Since these modes are independent of each other, E0 and H0 

values can be selected independent of each other. It is important to note at this point, that 

the H-fields amplitudes in the TMz mode are driven by the E0, where the H-field 

amplitude is equal to 
MNO , where  C � ./00100  and is the impedance of the medium in which 

the incident field is in. The same holds true for the E-fields in the TEz mode, in that it’s 

dependent on the H0 value, where the E-field amplitude is equal to C�2. 

7.1.3  Point Matching Selection 

  As discussed in Chapter 6, point matching is required for the numerical solution 

of the unknown expansion coefficients. There are various points that could be selected 

with the prescribed range for that boundary condition, with ρ always being equal to ρ2. 

The type and quantity of matching points can worsen or improve the numerical results, 

though a minimum of ‘j’ quantity, expansion number of the coefficients, is required.  

  Different matching point techniques were attempted during the development of 

the model. When the NCAlgebra method was first utilized, it allowed for an 

overdetermined solution where there were more equations (or ‘j’ points), than unknowns, 

(or expansion count of coefficients). That’s because it was fully defined in the 

pseudoinverse and least squares method. However, due to its limitations as described in 

section 6.4.1 , the NCAlgebra method was abandoned and the new technique did not 

allow for an overdetermined solution in its current form. 

  Two main matching point techniques were maintained in the model. One was 

fixing φ to an arbitrary φ value from 0 to 2π while varying z ‘j’ times, evenly spaced 
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spanning the distance of the boundary, being ‘a’ or ‘b’ depending on that boundary. The 

other was to fix z to an arbitrary z value within the boundary, while varying φ ‘j’ times 

evenly from 0 to 2π.   

  The results computed were done fixing z and varying φ. This produces more 

accurate results, which is due to the fact that the computed comparison results did not 

vary z values, but did vary φ in the changing φ results. Therefore, the selection in 

matching points that is best suited is the matching points that would reinforce the 

intended computational analysis, which was to vary φ. 

7.1.4  Total E-Field Calculation 

  The total E-field calculation finds the magnitude of the combined fields. The 

method is fairly straight forward. The fields are converted from cylindrical coordinates to 

rectangular coordinates, which can be found in [12, p. 923] to form 

�5 � �F $%� ^ + �à � ! ^ ( 7-1 ) 

�á = �F � ! ^ + �à $%� ^ ( 7-2 ) 

�O = �O ( 7-3 ) 

Then, each of the rectangular coordinate forms of fields are squared, summed together 

and then the square root of that number is attained.  

.�5[ + �á[ + �O[ = �H;���  ( 7-4 ) 

 

This is done for every data point to generate the total E-field data. 

7.1.5  Reconciliation of Boundary ‘a’ and Boundary ‘b’ 

Up to this point, the equations for boundary ‘a’ and boundary ‘b’ have been given 

separate treatment. However, results were computed for the separate field equations and 
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results plotted and incorporated into the results section. At the near field, where ρ ≤ λ, the 

boundaries can be treated separately.  

For the far field, ρ >> λ, boundary ‘a’ and boundary ‘b’ solutions are examined 

for their accuracy. Either technique alone should produce a gross representation of the 

scatter, though within certain regions the approximations of the field amplitudes can be 

poor. However, the hybrid nature of the problem formulation allows for the 

depolarization representation of the periodic corrugated cylinder. 

  A technique described by Kishk et al [25], the asymptotic boundary condition 

method, utilizes coefficients that vary with the z axis, and are weighted by a ratio factor 

w/p, where ‘w’ is the dimension of the corrugation opening and ‘p’ is the corrugation 

period.  This is done at the boundary condition to develop a complete field solution, 

where more detail can be found in [26]. This technique and variations thereof were 

investigated but not implemented.  

In the present work, the field solutions for boundary ‘a’ is added with that of 

boundary ‘b’. This superposition of fields, produces the results shown for the runs labeled 

“Run a_plus_b…”. The results are compared to that of a smooth cylinder as well as to 

alternate methods for computing the scattered field of a corrugated cylinder [27]. This 

treatment of superposition of fields is done in [28], where the field of a cylinder without 

accounting for the corrugated perturbations, represented as metallic rings, and then added 

to the scattering due to the metallic rings. 

7.2  RCS Computation 

   The model produces various Radar Cross Section (RCS) plots, as this is a typical 

convention in the electromagnetics scattering community, to display and compare 
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scattered fields. The RCS symbol, σ, is the designated symbol to represent the RCS 

value, which is in units of m2. The formula representing σ is derived from the free-space 

loss factor cause by the spherical spreading of a propagating planewave, which a full 

description of its derivation can be found in [29, p. 96]. This model uses σ in the form 

â � q ��→@ ã4��[ |��|[|��|[æ ( 7-5 ) 

where ‘R’ is the distance of observation from the target, meters. The value ‘R’ needs to 

be large enough where R>> than the largest physical dimension of the target and 

wavelength so that the propagating planewave representation holds and the formula 

remains valid.  The RCS, σ, can also be calculated in decibels, dB, in order to display a 

large range of data. The units are in decibels per square meter or dBsm. This is calculated 

as  

âç��� � q ��→@ P10q%ja2 4��[ |Mè|SéM8éSQ . ( 7-6 ) 

  It is important to take note of the aspect angles, φ, that are used in the σ 

calculations, as the computed results can vary. There is the φ of the incidence field, φi, 

and the φ of the observed or of the scattered field, φs. In each of the variations, φs values 

are typically swept through from 0 to 2π. The following are the different methods for 

varying the φ values in order to get the different σ results: 

 RCS φ Sweep Method 1: φs is swept through 0 to 2π and φi is kept at a fixed 

constant value between 0 to 2π. 

 RCS φ Sweep Method 2: φs is swept through 0 to 2π and φi = φs. This is typically 

referred to as a monostatic RCS since it assumes the transmitter and receiver, for 

typical radar applications, are at the same location. 
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 RCS φ Sweep Method 3: φs is swept through 0 to 2π and φi = φs+ φoffset, where 

φoffset is an offset value of φ. This is typically referred to as a bistatic RCS since it 

assumes the transmitter and receiver, for typical radar applications, are at separate 

locations. 

The technique used in this paper is RCS φ sweep method 1. 

7.3  Smooth Cylinder Comparison Model 

  In order to have a comparison model for the periodic corrugated cylinder, a 

smooth cylinder was modeled. The dimensions of the corrugated cylinder can be adjusted 

to approximate a smooth cylinder and then compared to the smooth cylinder model. 

 A smooth cylinder model of oblique incidence planewave is found in [12, pp. 

614-624] . This textbook model provided the basis for the TMz mode scattered equations 

�F� �HI	 ==�2 $%� "� 
s�4∙9∙:;� 78 ∑ =36@6A3@ ëwb4FS ��6 78cWw�S	b4FS ��6 78c �Ww�x�S	 b4F ��6 78c3Wwìx�S	 b4F ��6 78c[ � 
�6?  ( 7-7 ) 
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s�4∙9∙:;� 78 ∑ !=36sa@6A3@ ëwb4FS ��6 78cWw�S	b4FS ��6 78c �6�[	��� � ! "�	
�6?  ( 7-8 ) 

�9� �HI	 = �2 � ! "� 
s�4∙9∙:;� 78 ∑ =36@6A3@ ëwb4FS ��6 78cWw�S	b4FS ��6 78c �6�[	��� � ! "�	
�6?  ( 7-9 ) 

and the TEz mode scattered equations 

�F� �HM	 = #= WN�1F íìÕî∙V∙ïðè ñ8
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�6?  ( 7-10 

) 

�?� �HM	 ==�2./1 
s�4∙9∙:;� 78 ∑ =36@6A3@ ëw�xb4FS ��6 78c3ëwìxb4FS ��6 78cWw�x�S	 b4FS ��6 78c3Wwìx�S	 b4FS ��6 78c �Ww�x�S	 b4F ��6 78c3Wwìx�S	 b4F ��6 78c[ � 
�6?  ( 7-11 

) 
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The Hankel and Bessel order ‘n’ is set to the same ‘n’ as used in the corrugated cylinder 

model. The radius of the smooth cylinder is ρ2, the same dimension as the larger radius of 

the corrugated cylinder. 

  Note that only the electric field components were used. Using only the electric 

fields provides an adequate comparison, as there is no polarization and therefore no need 

to fully represent a system of each TMz and TEz mode as in the corrugated case. Each 

mode will have the fields calculated separately and then, through the principle of 

superposition, combined with each other on certain plots in the following section. Also, 

the incident field is the same as that incident onto the corrugated cylinder in the model 

described in Chapter 3. 

 The smooth cylinder results are computed and displayed alongside the periodic 

corrugated cylinder results. Since the periodic corrugated cylinder is of a hybrid mode, 

both TMz and TEz modes exist within the periodic corrugated cylinder scattered field. 

However, the data displayed for the smooth cylinder is made available to show the 

separate TMz and TEz modes, as well as the superposition combined modes. The data sets 

were created for the different cylindrical coordinate axes. 

 A subset of the data is collected and analytically compared between periodic 

corrugated cylinder and the smooth cylinder, in order to calculate the mean of percent 

error between them. This data set is composed of the superposition combined modes, in 

RCS dBsm, for each of the cylindrical coordinate axes and the total field.  The data points 

at each φ, for the smooth and corrugated cylinders, are subtracted from each other and the 

absolute value of that is divided by the smooth cylinder dBsm value, and finally 

multiplied by 100% to give the percent error, as in equation ( 7-13 ).  
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Then, the mean of the percent error is found for each of the data subsets.  

7.4  Alternate Corrugated Cylinder Method Comparison 

  In order to fully validate the results of the periodic corrugated cylinder scattered 

field, a comparison to an alternate method for the same geometry is merited. The chosen 

comparison method was from A. Freni et al [27] where results for a Finite Element 

Method (FEM) and the Method of Moments (MoM) are captured in figure 3 of that 

paper. The geometry referenced in figure 3 of [27] was utilized and the cross-polar plot 

was recreated in this paper, by extracting the FEM and MoM data curves, shown in 

Figure 7-150. Also captured in Figure 7-150 are the results using this research’s 

technique. Data was extracted from figure 3 of [27] using a curve mapping and data 

extraction tool called WebPlotDigitizer [30]. The data plotted is, σϕθ/λ0 (dB), which is the 

cross-polar scatter width derived from 

âà7 � q �F→@ ú2�� é�à� é[
é�7� é[û ( 7-14 ) 

which the first subscript is the polarization of the scattered field and the second subscript 

is the polarization of the incident field [28].  A comparison of this technique can also be 

found in [31] by the author of this research. 

7.5  Results 

  A variety of different runs were executed, as was discussed earlier. Table 1 

captures a summary of the boundary ‘a’ simulation runs with the adjusted parameters 

identified, on runs comparing the corrugated cylinder to that of the smooth cylinder. 

Also, boundary ‘b’ runs were generated (see Table 2), using the same parameters as the 

subset runs of boundary ‘a’ shown in this chapter, except with a z position in the 
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boundary ‘b’ region. Table 3 captures a summary of the boundary ‘a’ plus boundary ‘b’ 

runs, which represent the final solution approach. The different runs captured in the 

subsequent sections use a title scheme described by the example in Figure 7-1, in order to 

help identify the configuration for each run and the plots captured in that section. 

 

Figure 7-2 A run title example describing each component of the title and how it relates to the run’s 

configuration  

From Table 1, it can be seen that some of the runs have a status of ‘Bad Data/Ill-

Condition’. These were mostly runs that had ‘m’ or ‘l’ that were exceeding their max 

allowable value, allowing kρ to become imaginary. As mentioned in section 6.3 , these 

modes in which kρ are imaginary, produce evanescent waves which decay rapidly when 

moving away from the field source at the cylinder edge, and thus can be ignored.  

 Another item to note, is that all the runs were kept at n=3. This an acceptable 

mode or Hankel function order as much of the work with similar scattering geometries 

have been conducted at n=1 or n= 2, such as [32]. This upper limit was also a 

computational limitation. Orders above n=3 would not produce a solution with the 

capability and the time allotted for the computer systems used. 

  The following subsections provide a subset of the simulation runs collected as 

part of this research effort. They are pertinent comparative material between the periodic 
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corrugated cylinder model and the comparison model which are used to draw conclusions 

from. The mean error, as described in section 7.3  are shown for boundary ‘a’(Figure 

7-3), boundary ‘b’(Figure 7-4) and boundary ‘a+b’(Figure 7-5). 

  Each of the presented runs are in their own section with multiple plots.  Each 

section consists of the following:  

 1 detailed summary table of all the φ changing plot parameters,  

 4 Polar Plots of RCS dBsm (Ez, E ρ, E φ and ETotal of TMz +TEz modes) 

 4 XY Plots of RCS dBsm (Ez, E ρ, E φ and ETotal of TMz +TEz modes)  

 1 detailed summary table of all the ρ changing plot parameters 

 8 XY field amplitude plots (Absolute value of the fields : Ez, E ρ, E φ and ETotal 

of TMz +TEz modes, for scattered field and for scattered + incident field).. 

Additional results are also provided here. As mentioned in section 7.4 , an 

alternate method in representing scattering of a corrugated cylinder is discussed with 

results in section 7.5.10 . Also, the relative dielectric constant in region I is varied and 

compared, showing the effects of dielectric loading and lossy dielectric loading, with 

results in section 7.5.11 . 
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Figure 7-3 Mean of %error between corrugated cylinder and smooth cylinder model, for boundary ‘a’ 

 

Figure 7-4 Mean of %error between corrugated cylinder and smooth cylinder model, for boundary ‘b’ 
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Figure 7-5 Mean of %error between corrugated cylinder and smooth cylinder model, for boundary ‘a+b’ 
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Table 1 Summary of boundary ‘a’ simulation runs conducted and adjusted parameters for comparing the 

corrugated cylinder and smooth cylinder models 

 

Run Title b a ρ2 ρ1 pfar n m Status
Plot 

Location

Max Allowable 

"m" or "l"

Run a.20.100.0 20*λ b*1 20*λ ρ2*0.99 ρ2*10 3 0 Complete Appendix 17

Run a.20.100.1 20*λ b*1 20*λ ρ2*0.99 ρ2*10 3 1 Complete -- 17

Run a.20.75.0 20*λ b*.75 20*λ ρ2*0.99 ρ2*10 3 0 Complete -- 14

Run a.20.75.1 20*λ b*.75 20*λ ρ2*0.99 ρ2*10 3 1 Complete -- 14

Run a.20.50.0 20*λ b*.5 20*λ ρ2*0.99 ρ2*10 3 0 Complete -- 12

Run a.20.50.1 20*λ b*.5 20*λ ρ2*0.99 ρ2*10 3 1 Complete -- 12

Run a.20.25.0 20*λ b*.25 20*λ ρ2*0.99 ρ2*10 3 0 Complete -- 10

Run a.20.25.1 20*λ b*.25 20*λ ρ2*0.99 ρ2*10 3 1 Complete -- 10

Run a.20.0.0 20*λ b*.001 20*λ ρ2*0.99 ρ2*10 3 0 Complete Chapter 7 0

Run a.20.0.0 20*λ b*.001 20*λ ρ2*0.99 ρ2*10 3 1
Bad Data/Ill-

Conditioned
N/A 0

Run a.2.100.0 2*λ b*1 2*λ p2*0.99 p2*10 3 0 Complete Appendix 4

Run a.2.100.1 2*λ b*1 2*λ p2*0.99 p2*10 3 1 Complete -- 4

Run a.2.75.0 2*λ b*.75 2*λ p2*0.99 p2*10 3 0 Complete -- 3

Run a.2.75.1 2*λ b*.75 2*λ p2*0.99 p2*10 3 1 Complete -- 3

Run a.2.50.0 2*λ b*.5 2*λ p2*0.99 p2*10 3 0 Complete -- 2

Run a.2.50.1 2*λ b*.5 2*λ p2*0.99 p2*10 3 1 Complete -- 2

Run a.2.25.0 2*λ b*.25 2*λ p2*0.99 p2*10 3 0 Complete -- 1

Run a.2.25.1 2*λ b*.25 2*λ p2*0.99 p2*10 3 1
Could not solve for ‘a’ 

coefficients “Input 
N/A 1

Run a.2.0.0 2*λ b*.001 2*λ p2*0.99 p2*10 3 0 Complete Chapter 7 0

Run a.2.0.1 2*λ b*.001 2*λ p2*0.99 p2*10 3 1
Bad Data/Ill-

Conditioned
N/A 0

Run a.0.1.100.0 .1*λ b*1 .1*λ p2*0.99 p2*10 3 0 Complete Appendix 0

Run a.0.1.100.1 .1*λ b*1 .1*λ p2*0.99 p2*10 3 1
Bad Data/Ill-

Conditioned
N/A 0

Run  a.0.1.75.0 .1*λ b*.75 .1*λ p2*0.99 p2*10 3 0 Complete -- 0

Run  a.0.1.75.1 .1*λ b*.75 .1*λ p2*0.99 p2*10 3 1
Bad Data/Ill-

Conditioned
N/A 0

Run  a.0.1.50.0 .1*λ b*.5 .1*λ p2*0.99 p2*10 3 0 Complete -- 0

Run  a.0.1.50.1 .1*λ b*.5 .1*λ p2*0.99 p2*10 3 1
Bad Data/Ill-

Conditioned
N/A 0

Run  a.0.1.25.0 .1*λ b*.25 .1*λ p2*0.99 p2*10 3 0 Complete -- 0

Run  a.0.1.25.1 .1*λ b*.25 .1*λ p2*0.99 p2*10 3 1
Bad Data/Ill-

Conditioned
N/A 0

Run a.0.1.0.0 .1*λ b*.001 .1*λ p2*0.99 p2*10 3 0 Complete Chapter 7 0

Run  a.0.1.0.1 .1*λ b*.001 .1*λ p2*0.99 p2*10 3 1
Bad Data/Ill-

Conditioned
N/A 0

d
=

2
0
*
λ

d
=

2
*
λ

d
=

0
.1

*
λ
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Table 2 Summary of boundary ‘b’ simulation runs conducted and adjusted parameters for comparing the 

corrugated cylinder and smooth cylinder models 

 

Table 3 Summary of boundary ‘a+b’ simulation runs conducted and adjusted parameters for comparing 

the corrugated cylinder and smooth cylinder models 

 

  For sections 7.5.1  through 7.5.9 , refer to Figure 7-2 to interpret the title of each 

section in order to understand the overall configuration of the model for the plots 

captured in that section. Also, the first table in each section will provide a more detailed 

set of configuration parameters specifically for the polar plots, preceding the polar plots. 

The second table in each section, after the polar plots but prior to the XY phi plots, will 

provide a detailed set of configuration parameters specifically for the XY phi plots. The 

third table in each section (if present, as not all results had these sets of plots), after the 

XY phi plots but prior to the XY rho plots, will provide a detailed set of configuration 

parameters specifically for the XY rho plots. 

7.5.1  Run a.20.0.0 (b=20λ, a=b*.001, ρ2=20λ, m=0) 

Table 4 Detailed parameters summary for changing φ plots of Run a.20.0.0 

 

Run Title b a ρ2 ρ1 pfar n m Status
Plot 

Location

Max Allowable 

"m" or "l"

Run b.20.0.0 20*λ b*.001 20*λ ρ2*0.99 ρ2*10 3 0 Complete Chapter 7 0

Run b.2.0.0 2*λ b*.001 2*λ p2*0.99 p2*10 3 0 Complete Chapter 7 0

Run b.0.1.0.0 .1*λ b*.001 .1*λ p2*0.99 p2*10 3 0 Complete Chapter 7 0

Run Title b a ρ2 ρ1 pfar n m Status
Plot 

Location

Max Allowable 

"m" or "l"

Run a_plus_b.20.0.0 20*λ b*.001 20*λ ρ2*0.99 ρ2*10 3 0 Complete Chapter 7 0

Run a_plus_b..2.0.0 2*λ b*.001 2*λ p2*0.99 p2*10 3 0 Complete Chapter 7 0

Run a_plus_b..0.1.0.0 .1*λ b*.001 .1*λ p2*0.99 p2*10 3 0 Complete Chapter 7 0
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Figure 7-6 Polar Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a.20.0.0 

 

 

Figure 7-7 Polar Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a.20.0.0 
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Figure 7-8 Polar Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a.20.0.0 

 

 

Figure 7-9 Polar Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.20.0.0 
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Figure 7-10 XY Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.20.0.0 

 

 

Figure 7-11 XY Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.20.0.0 
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Figure 7-12 XY Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.20.0.0 

 

 

Figure 7-13 XY Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.20.0.0 
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Table 5 Detailed parameters summary for changing ρ plots of Run a.20.0.0 

 

 

 

 

Figure 7-14 XY Plot of Scattered Field Amplitude Only, for Ez, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a.20.0.0 
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Figure 7-15 XY Plot of Scattered + Incident Field Amplitude, for Ez, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a.20.0.0 

 

 

Figure 7-16 XY Plot of Scattered Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a.20.0.0 
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Figure 7-17 XY Plot of Scattered + Incident Field Amplitude, for Eρ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a.20.0.0 

 

 

Figure 7-18 XY Plot of Scattered Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a.20.0.0 
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Figure 7-19 XY Plot of Scattered + Incident Field Amplitude, for Eφ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a.20.0.0 

 

 

Figure 7-20 XY Plot of Scattered Field Amplitude Only, for ETotal, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a.20.0.0 
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Figure 7-21 XY Plot of Scattered + Incident Field Amplitude, for ETotal, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a.20.0.0 

 

7.5.2  Run a.2.0.0 (b=2λ, a=b*.001, ρ2=2λ, m=0) 

Table 6 Detailed parameters summary for changing φ plots of Run a.2.0.0 
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Figure 7-22 Polar Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a.2.0.0 

 

 

Figure 7-23 Polar Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a.2.0.0 
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Figure 7-24 Polar Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a.2.0.0 

 

 

Figure 7-25 Polar Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a.2.0.0 
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Figure 7-26 XY Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.2.0.0 

 

 

Figure 7-27 XY Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.2.0.0 
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Figure 7-28 XY Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.2.0.0 

. 

 

Figure 7-29 XY Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.2.0.0 
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Table 7 Detailed parameters summary for changing ρ plots of Run a.2.0.0 

 

 

 

 

 

Figure 7-30 XY Plot of Scattered Field Amplitude Only, for Ez, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a.2.0.0 
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Figure 7-31 XY Plot of Scattered + Incident Field Amplitude, for Ez, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a.2.0.0 

 

 

Figure 7-32 XY Plot of Scattered Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a.2.0.0 
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Figure 7-33 XY Plot of Scattered + Incident Field Amplitude, for Eρ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a.2.0.0 

 

 

Figure 7-34 XY Plot of Scattered Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a.2.0.0 
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Figure 7-35 XY Plot of Scattered + Incident Field Amplitude, for Eφ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a.2.0.0 

 

 

Figure 7-36 XY Plot of Scattered Field Amplitude Only, for ETotal, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a.2.0.0 
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Figure 7-37 XY Plot of Scattered + Incident Field Amplitude, for ETotal, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a.2.0.0 

  



83 

7.5.3  Run a.0.1.0.0 (b=0.1λ, a=b*.001, ρ2=0.1λ, m=0) 

Table 8 Detailed parameters summary for changing φ plots of Run a.0.1.0.0 

 

 

 

Figure 7-38 Polar Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a.0.1.0.0 
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Figure 7-39 Polar Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a.0.1.0.0 

 

 

Figure 7-40 Polar Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a.0.1.0.0 
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Figure 7-41 Polar Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a.0.1.0.0 

 

 

Figure 7-42 XY Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.0.1.0.0 
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Figure 7-43 XY Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.0.1.0.0 

 

 

Figure 7-44 XY Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.0.1.0.0 
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Figure 7-45 XY Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a.0.1.0.0 
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Table 9 Detailed parameters summary for changing ρ plots of Run a.0.1.0.0 

 

 

 

Figure 7-46 XY Plot of Scattered Field Amplitude Only, for Ez, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a.0.10.0.0 
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Figure 7-47 XY Plot of Scattered + Incident Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + 

TE mode and Corrugated Cylinder hybrid mode for Run a.0.10.0.0 

 

3  

Figure 7-48 XY Plot of Scattered Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a.0.10.0.0 
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Figure 7-49 XY Plot of Scattered + Incident Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + 

TE mode and Corrugated Cylinder hybrid mode for Run a.0.10.0.0 

 

 

Figure 7-50 XY Plot of Scattered Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a.0.10.0.0 
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Figure 7-51 XY Plot of Scattered + Incident Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + 

TE mode and Corrugated Cylinder hybrid mode for Run a.0.10.0.0 

 

 

Figure 7-52 XY Plot of Scattered Field Amplitude Only, for ETotal, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a.0.10.0.0 
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Figure 7-53 XY Plot of Scattered + Incident Field Amplitude Only, for ETotal, of the Smooth Cylinder TM + 

TE mode and Corrugated Cylinder hybrid mode for Run a.0.10.0.0 

 

7.5.4  Run b.20.0.0 (b=20λ, a=b*.001, ρ2=20λ, m=0) 

Table 10 Detailed parameters summary for changing φ plots of Run b.20.0.0 
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Figure 7-54 Polar Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run b.20.0.0 

 

 

Figure 7-55 Polar Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run b.20.0.0 
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Figure 7-56 Polar Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run b.20.0.0 

 

 

Figure 7-57 Polar Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.20.0.0 
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Figure 7-58 XY Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.20.0.0 

 

 

Figure 7-59 XY Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.20.0.0 
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Figure 7-60 XY Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.20.0.0 

 

 

Figure 7-61 XY Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.20.0.0 
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Table 11 Detailed parameters summary for changing ρ plots of Run b.20.0.0 

 

 

 

Figure 7-62 XY Plot of Scattered Field Amplitude Only, for Ez, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run b.20.0.0 
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Figure 7-63 XY Plot of Scattered + Incident Field Amplitude, for Ez, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run b.20.0.0 

 

 

Figure 7-64 XY Plot of Scattered Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run b.20.0.0 
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Figure 7-65 XY Plot of Scattered + Incident Field Amplitude, for Eρ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run b.20.0.0 

 

 

Figure 7-66 XY Plot of Scattered Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run b.20.0.0 
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Figure 7-67 XY Plot of Scattered + Incident Field Amplitude, for Eφ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run b.20.0.0 

 

 

Figure 7-68 XY Plot of Scattered Field Amplitude Only, for ETotal, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run b.20.0.0 
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Figure 7-69 XY Plot of Scattered + Incident Field Amplitude, for ETotal, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run b.20.0.0 
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7.5.5  Run b.2.0.0 (b=2λ, a=b*.001, ρ2=2λ, m=0) 

Table 12 Detailed parameters summary for changing φ plots of Run b.2.0.0 

 

 

 

Figure 7-70 Polar Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run b.2.0.0 
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Figure 7-71 Polar Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run b.2.0.0 

 

 

Figure 7-72 Polar Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run b.2.0.0 
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Figure 7-73 Polar Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run b.2.0.0 

 

 

Figure 7-74 XY Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.2.0.0 
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Figure 7-75 XY Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.2.0.0 

 

 

Figure 7-76 XY Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.2.0.0 

. 
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Figure 7-77 XY Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.2.0.0 
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Table 13 Detailed parameters summary for changing ρ plots of Run b.2.0.0 

 

 

 

Figure 7-78 XY Plot of Scattered Field Amplitude Only, for Ez, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run b.2.0.0 
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Figure 7-79 XY Plot of Scattered + Incident Field Amplitude, for Ez, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run b.2.0.0 

 

 

Figure 7-80 XY Plot of Scattered Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run b.2.0.0 
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Figure 7-81 XY Plot of Scattered + Incident Field Amplitude, for Eρ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run b.2.0.0 

 

 

Figure 7-82 XY Plot of Scattered Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run b.2.0.0 
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Figure 7-83 XY Plot of Scattered + Incident Field Amplitude, for Eφ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run b.2.0.0 

 

 

Figure 7-84 XY Plot of Scattered Field Amplitude Only, for ETotal, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run b.2.0.0 
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Figure 7-85 XY Plot of Scattered + Incident Field Amplitude, for ETotal, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run b.2.0.0 
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7.5.6  Run b.0.1.0.0 (b=0.1λ, a=b*.001, ρ2=0.1λ, m=0) 

Table 14 Detailed parameters summary for changing φ plots of Run b.0.1.0.0 

2  

 

 

Figure 7-86 Polar Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run b.0.1.0.0 
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Figure 7-87 Polar Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run b.0.1.0.0 

 

 

Figure 7-88 Polar Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run b.0.1.0.0 
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Figure 7-89 Polar Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run b.0.1.0.0 

 

 

Figure 7-90 XY Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.0.1.0.0 
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Figure 7-91 XY Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.0.1.0.0 

 

 

Figure 7-92 XY Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.0.1.0.0 
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Figure 7-93 XY Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run b.0.1.0.0 
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Table 15 Detailed parameters summary for changing ρ plots of Run b.0.1.0.0 

 

 

 

Figure 7-94 XY Plot of Scattered Field Amplitude Only, for Ez, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run b.0.10.0.0 
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Figure 7-95 XY Plot of Scattered + Incident Field Amplitude Only, for Ez, of the Smooth Cylinder TM + 

TE mode and Corrugated Cylinder hybrid mode for Run b.0.10.0.0 

 

 

Figure 7-96 XY Plot of Scattered Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run b.0.10.0.0 
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Figure 7-97 XY Plot of Scattered + Incident Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + 

TE mode and Corrugated Cylinder hybrid mode for Run b.0.10.0.0 

 

 

Figure 7-98 XY Plot of Scattered Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run b.0.10.0.0 
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Figure 7-99 XY Plot of Scattered + Incident Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + 

TE mode and Corrugated Cylinder hybrid mode for Run b.0.10.0.0 

 

 

Figure 7-100 XY Plot of Scattered Field Amplitude Only, for ETotal, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run b.0.10.0.0 
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Figure 7-101 XY Plot of Scattered + Incident Field Amplitude Only, for ETotal, of the Smooth Cylinder TM 

+ TE mode and Corrugated Cylinder hybrid mode for Run b.0.10.0.0 

 

7.5.7  Run a_plus_b.20.0.0 (b=20λ, a=b*.001, ρ2=20λ, m=0) 

Table 16 Detailed parameters summary for changing φ plots of Run a_plus_b.20.0.0 
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Figure 7-102 Polar Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a_plus_b.20.0.0 

 

 

Figure 7-103 Polar Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a_plus_b.20.0.0 



123 

 

Figure 7-104 Polar Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a_plus_b.20.0.0 

 

 

Figure 7-105 Polar Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a_plus_b.20.0.0 
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Figure 7-106 XY Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a_plus_b.20.0.0 

 

 

Figure 7-107 XY Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a_plus_b.20.0.0 
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Figure 7-108 XY Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a_plus_b.20.0.0 

 

 

Figure 7-109 XY Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a_plus_b.20.0.0 
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Table 17 Detailed parameters summary for changing ρ plots of Run a_plus_b.20.0.0 

 

 

 

Figure 7-110 XY Plot of Scattered Field Amplitude Only, for Ez, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.20.0.0 
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Figure 7-111 XY Plot of Scattered + Incident Field Amplitude, for Ez, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a_plus_b.20.0.0 

 

 

Figure 7-112 XY Plot of Scattered Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.20.0.0 
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Figure 7-113 XY Plot of Scattered + Incident Field Amplitude, for Eρ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a_plus_b.20.0.0 

 

 

Figure 7-114 XY Plot of Scattered Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.20.0.0 
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Figure 7-115 XY Plot of Scattered + Incident Field Amplitude, for Eφ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a_plus_b.20.0.0 

 

 

Figure 7-116 XY Plot of Scattered Field Amplitude Only, for ETotal, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.20.0.0 
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Figure 7-117 XY Plot of Scattered + Incident Field Amplitude, for ETotal, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a_plus_b.20.0.0 
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7.5.8  Run a_plus_b.2.0.0 (b=2λ, a=b*.001, ρ2=2λ, m=0) 

Table 18 Detailed parameters summary for changing φ plots of Run a_plus_b.2.0.0 

 

 

 

Figure 7-118 Polar Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a_plus_b.2.0.0 
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Figure 7-119 Polar Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a_plus_b.2.0.0 

 

 

Figure 7-120 Polar Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a_plus_b.2.0.0 
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Figure 7-121 Polar Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a_plus_b.2.0.0 

 

 

Figure 7-122 XY Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a_plus_b.2.0.0 
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Figure 7-123 XY Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a_plus_b.2.0.0 

 

 

Figure 7-124 XY Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a_plus_b.2.0.0 
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.  

Figure 7-125 XY Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a_plus_b.2.0.0 
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Table 19 Detailed parameters summary for changing ρ plots of Run a_plus_b.2.0.0 

 

 

 

Figure 7-126 XY Plot of Scattered Field Amplitude Only, for Ez, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.2.0.0 
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Figure 7-127 XY Plot of Scattered + Incident Field Amplitude, for Ez, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a_plus_b.2.0.0 

 

 

Figure 7-128 XY Plot of Scattered Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.2.0.0 
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Figure 7-129 XY Plot of Scattered + Incident Field Amplitude, for Eρ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a_plus_b.2.0.0 

 

 

Figure 7-130 XY Plot of Scattered Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.2.0.0 
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Figure 7-131 XY Plot of Scattered + Incident Field Amplitude, for Eφ, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a_plus_b.2.0.0 

 

 

Figure 7-132 XY Plot of Scattered Field Amplitude Only, for ETotal, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.2.0.0 
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Figure 7-133 XY Plot of Scattered + Incident Field Amplitude, for ETotal, of the Smooth Cylinder TM + TE 

mode and Corrugated Cylinder hybrid mode for Run a_plus_b.2.0.0 
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7.5.9  Run a_plus_b.0.1.0.0 (b=0.1λ, a=b*.001, ρ2=0.1λ, m=0) 

Table 20 Detailed parameters summary for changing φ plots of Run a_plus_b.0.1.0.0 

 

 

 

Figure 7-134 Polar Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a_plus_b.0.1.0.0 
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Figure 7-135 Polar Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a_plus_b.0.1.0.0 

 

 

Figure 7-136 Polar Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE modes and Corrugated 

Cylinder hybrid mode for Run a_plus_b.0.1.0.0 
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Figure 7-137 Polar Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and 

Corrugated Cylinder hybrid mode for Run a_plus_b.0.1.0.0 

 

 

Figure 7-138 XY Plot form of RCS dBsm for Ez of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a_plus_b.0.1.0.0 
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Figure 7-139 XY Plot form of RCS dBsm for Eρ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a_plus_b.0.1.0.0 

 

 

Figure 7-140 XY Plot form of RCS dBsm for Eφ of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a_plus_b.0.1.0.0 
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Figure 7-141 XY Plot form of RCS dBsm for ETotal of the Smooth Cylinder TM + TE mode and Corrugated 

Cylinder hybrid mode for Run a_plus_b.0.1.0.0 
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Table 21 Detailed parameters summary for changing ρ plots of Run a_plus_b.0.1.0.0 

 

 

 

Figure 7-142 XY Plot of Scattered Field Amplitude Only, for Ez, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.0.10.0.0 
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Figure 7-143 XY Plot of Scattered + Incident Field Amplitude Only, for Ez, of the Smooth Cylinder TM + 

TE mode and Corrugated Cylinder hybrid mode for Run a_plus_b.0.10.0.0 

 

 

Figure 7-144 XY Plot of Scattered Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.0.10.0.0 
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Figure 7-145 XY Plot of Scattered + Incident Field Amplitude Only, for Eρ, of the Smooth Cylinder TM + 

TE mode and Corrugated Cylinder hybrid mode for Run a_plus_b.0.10.0.0 

 

 

Figure 7-146 XY Plot of Scattered Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.0.10.0.0 
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Figure 7-147 XY Plot of Scattered + Incident Field Amplitude Only, for Eφ, of the Smooth Cylinder TM + 

TE mode and Corrugated Cylinder hybrid mode for Run a_plus_b.0.10.0.0 

 

 

Figure 7-148 XY Plot of Scattered Field Amplitude Only, for ETotal, of the Smooth Cylinder TM + TE mode 

and Corrugated Cylinder hybrid mode for Run a_plus_b.0.10.0.0 
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Figure 7-149 XY Plot of Scattered + Incident Field Amplitude Only, for ETotal, of the Smooth Cylinder TM 

+ TE mode and Corrugated Cylinder hybrid mode for Run a_plus_b.0.10.0.0 

 

7.5.10  Comparison to Other Corrugated Cylinder Methods 

Table 22 Detailed parameters summary for changing φ plots of Run a_plus_b.compare 
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Figure 7-150 XY Plot form of Cross-Polar Corrugated Cylinder σϕθ/λ0 (dB) for Run a_plus_b.Compared 

with results of the finite element method (FEM) and method of moments (MoM) from [27] 

 

7.5.11  Varied Dielectric Constant with Comparisons 

The scattered axial field (Ez for TMz mode) vs φ is plotted below in Figure 7-151 

for several cases of interest with a varying dielectric constant, εr., where εr is selected to 

be a real value only. It is evident that the corrugated cylinder with dielectric loading has a 

generally reduced scattered field compared to the smooth cylinder. 

 

 

          (a)    (b)    (c) 

Figure 7-151 Comparison of scattered axial fields of a smooth cylinder (solid line) with the corrugated 

cylinder (dotted line) with lossless dielectric loading of dielectric constant: εr=1 a) εr=4; b) εr=9; c)   



152 

Now, the case of lossy dielectric loading (εr is a complex value) is examined with 

results of the scattered axial field (Ez for TMz mode) vs φ is plotted below in Figure 

7-152 for several cases. εr. 

 

      (a)            (b)             (c) 

Figure 7-152 Axial scattered fields of a smooth cylinder (solid line) and corrugated cylinder (dotted line) with lossy 

dielectric loading.  Dielectric constants: a) εr=4 – j1; b) εr=6.29; c) εr=6.29 – j1.73 

 

It is evident that a complex permittivity yields a generally smaller scattered field.  The 

dielectric constants in (b) and (c) were chosen to correspond to those found in [33]. These 

results can also be found in [34] with some additional discussion. 

7.6  Conclusions 

  This dissertation presented an alternate method to calculate the scattered field of a 

corrugated cylinder. The method of utilizing a hybrid mode of TMz and TEz with a radial 

waveguide representation of the corrugation was demonstrated.  

  In the comparison between the periodic corrugated cylinder model from this 

research and the model of a smooth cylinder, there was a lot of agreement between the 

fields of both models with the exception of the Eϕ fields. There are a few reasons for this: 

 This technique is an approximation and as such, will have errors 
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 More specifically, the corrugated cylinder is approximated to a smooth 

cylinder, by shrinking the ‘a’ dimension, though not eliminated, so there 

will be some artifacts that make it different than a smooth cylinder 

 Also, the cross-polarization nature of the problem allows fields to manifest 

themselves between TE and TM modes 

What’s important to note is what the limitations are and what the capabilities are of a 

given method, to know when to best apply it or to seek an alternative method. 

  Overall, good agreement was attained between the periodic corrugated cylinder 

model from this research and the model of a smooth cylinder, for small corrugation 

openings approximating a smooth cylinder, where the relative dimensions of the 

corrugated cylinder where much greater than λ (optical region as indicated in Figure 7-1). 

There was some agreement in this same comparison at the Rayleigh scattering region, 

where the relative dimensions of the corrugated cylinder where much less than λ. There 

was also good agreement attained between the periodic corrugated model of this research 

when compared to the referenced periodic corrugated cylinder FEM and MoM 

techniques, which was modeled in the Rayleigh scattering region. 

 It is concluded that the techniques discussed in this dissertation is most suitable 

for the optical region, where the λ of interest is much smaller than the dimensions of the 

periodic corrugated cylinder of interest. Also, from the results when compared to the 

FEM and MoM techniques, it is concluded that the Rayleigh scattering region, where the 

λ of interest is much larger than the dimensions of the periodic corrugated cylinder of 

interest, is suitable for the technique presented in this research. 
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7.7  Open Questions for Future Research 

   There were limitations discovered of the presented method that merits future 

research. Many challenges were faced, especially in the numerical solving of the 

unknown expansion coefficients which could benefit from improved methods. Also, there 

were many techniques that were investigated but not implemented. Here is a list of future 

work that can enhance or build on this research:  

 Improve or replace the computationally expensive loop solve method. 

 Summation truncation using the symmetry of the summation as in [12, p. 603]. 

 Using Poisson’s sum formula to reduce any of the infinite series equations prior to 

truncation [34]. 

 Comparison models for varying the permittivity of region I, representing the 

dielectric loading of the periodic corrugated cylinder 

 Using Eigenvalues and Eigenvectors solutions approach for solving the unknown 

expansion coefficients 

 Using a continuous periodic function approximation to asymptotically represent 

the periodicity of the corrugated cylinder 

 Applying the asymptotic boundary condition method, [26], for improving solution 

agreement in regimes where the relative dimensions of the corrugated cylinder are 

that of λ. 

 Construction and testing of a physical model for further comparison 

 



155 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 



156 

APPENDIX A  

Mathematica® code for the modeling and comparison of the scattered field of a periodic 

cylinder and smooth circular cylinder 
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APPENDIX B  

Derivation for Fundamental Equations of Guided Waves from Maxwell’s Equations 

Start with Maxwell’s equations in differential form, ∇×��¢ and ∇×���¢ [12, p. 2], and expand 

into cylindrical coordinates [12, p. 925]  

∇×��¢ � −=Y*���¢ � �� ua
F

UMVUà − UMýU9 v + D̂ uUMRU9 − UMVUF v + �̂ ua
F

UbFMýc
UF − a

F
UMRUà v   

∇×���¢ � =Y+��¢ � �� ua
F

UWVUà − UWýU9 v + D̂ uUWRU9 − UWVUF v + �̂ ua
F

UbFWýc
UF − a

F
UWRUà v   

Replace,  
U
U9 � −=þ  based on the relationship the relationship 

U
U9 b
3��9c � −=þ
3��9  

and separate into cylindrical components 

−=Y*�F � a
F

UMVUà − UMýU9 � a
F

UMVUà + =þ�à  

=Y+�F � a
F

UWVUà − UWýU9 � a
F

UWVUà + =þ�à  

−=Y*�à � UMRU9 − UMVUF � −=þ�F − UMVUF    

=Y+�à � UWRU9 − UWVUF � −=þ�F − UWVUF   

−=Y*�9 � a
F

UbFMýc
UF − a

F
UMRUà   

=Y+�9 � a
F

UbFWýc
UF − a

F
UWRUà   

 

Also, 

� � 2�
  = YZ*+ 

�:
[ = �[ − þ[ = Y[*+ − þ[  
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Solving for �� 

�F � a
��1 ua

F
UWVUà + =þ�àv    

Substitute  

�à = a
��/ u=þ�F + UMVUF v  

�F � a
��1 �a

F
UWVUà + ��

��/ u=þ�F + UMVUF v� � a
��1 ua

F
UWVUà − �SMR��/ + ��

��/
UMVUF v  

�F � a
��1F

UWVUà + �SMR�S/1 − ��
�S/1

UMVUF   

�F − �SMR�S/1 � a
��1F

UWVUà − ��
�S/1

UMVUF   

�F u1 − �S

�S/1v = a
��1F

UWV
Uà − ��

�S/1
UMV
UF     

Multiply both sides by Y[*+ 

�F�Y[*+ − þ[	 � �/
�F

UWVUà − =þ UMVUF   

Replace �:[ � Y[*+ − þ[and solve for �F 

�F � 3�
4ïS u�/

F
UWVUà + þ UMVUF v  

Solving for �� 

�à � a
��/ u=þ�F + UMVUF v � a

��/ �=þ � a
��1 ua

F
UWVUà + =þ�àv� + UMVUF �  

�à � a
��/ u ��

��1F
UWVUà − �S

��1 �à + UMVUF v � − ��
�S/1F

UWVUà + �S
�S/1 �à + a

��/
UMVUF   

�à u1 − �S

�S/1v = − ��
�S/1F

UWV
Uà + a

��/
UMV
UF   

Multiply both sides by Y[*+ 

�à�Y[*+ − þ[	 � − ��
F

�WV
�à + �1

�
UMVUF � −= u�

F
UWVUà + Y+ UMVUF v   
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�à � 3�
4ïS u�

F
UWVUà + Y+ UMVUF v  

Solving for �� 

�à � a
��1 u−=þ�F − UWVUF v  

Substitute, 

�F � − a
��/ ua

F
UMVUà + =þ�àv  

�à � a
��1 u ��

��/F
UMVUà − �S

��/ �à − UWVUF v � 3��
�S/1F

UMVUà + �S
�S/1 �à − a

��1
UWVUF   

�à u1 − �S

�S/1v = 3��
�S/1F

UMV
Uà − a

��1
UWV
UF   

Multiply both sides by Y[*+ 

�à�Y[*+ − þ[	 � 3��
F

UMVUà − �/
�

UWVUF � −= u�
F

UMVUà − Y* UWVUF v    

�à � 3�
4ïS u�

F
�MV
�à − Y* �WV

�F v  

Solving for �� 

�F � 3a
��/ ua

F
UMVUà + =þ�àv    

Substitute, 

�à � a
��1 u=þ�F − UWVUF v  

�F � 3a
��/ ya

F
UMVUà + =þ � a

��1 u=þ�F − UWVUF v�z � 3a
��/ ua

F
UMVUà + �S

��1 �F − ��
��1

UWVUF v      

�F = 3a
��/F

UMV
Uà + �S

�S/1 �F − ��
�S/1

UWV
UF   

�F u1 − �S

�S/1v = 3a
��/F

UMV
Uà − ��

�S/1
UWV
UF   

Multiply both sides by Y[*+ 
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�F�Y[*+ − þ[	 � 3�1
�F

UMVUà − =þ UWVUF � −= u3�1
F

UMVUà + þ UWVUF v  

�F � 3�
4ïS u3�1

F
UMVUà + þ UWVUF v  

 

Note that in paper �: is substituted with �F and þ is substituted with �9. 
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