
Finding Obstructions within
Irreducible Triangulations

by

Russell Campbell
B.Sc., University of the Fraser Valley, 2007

M.Sc., University of Victoria, 2009

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

c©Russell Campbell, 2017
University of Victoria

All rights reserved. This dissertation may be reproduced for personal use,
but otherwise distributing by photocopy or other means, in whole or in part,

may not be done without the permission of the author.

Finding Obstructions within Irreducible Triangulations

by

Russell Campbell
B.Sc., University of the Fraser Valley, 2007

M.Sc., University of Victoria, 2009

Supervisory Committee

Dr. Wendy Myrvold, Supervisor
Department of Computer Science

Dr. Frank Ruskey, Departmental Member
Department of Computer Science

Dr. Ryan Budney, Outside Member
Department of Mathematics and Statistics

ii

Abstract

The main results of this dissertation show evidence supporting the Successive
Surface Scaffolding Conjecture. This is a new conjecture that, if true, guarantees
the existence of all the wye-delta-order minimal obstructions of a surface S as
subgraphs of the irreducible triangulations of the surface S with a crosscap added.
A new data structure, i.e. an augmented rotation system, is presented and used to
create an exponential-time algorithm for embedding graphs in any surface with a
constant-time check of the change in genus when inserting an edge. A depiction
is a new formal definition for representing an embedding graphically, and it is
shown that more than one depiction can be given for nonplanar embeddings,
and that sometimes two depictions for the same embedding can be drastically
different from each other. An algorithm for finding the essential cycles of an
embedding is given, and is used to confirm for the projective-plane obstructions,
a theorem that shows any embedding of an obstruction must have every edge in
an essential cycle. Obstructions of a general surface S that are minor-minimal
and not double-wye-delta-minimal are shown to each have an embedding on the
surface S with a crosscap added. Finally, open questions for further research are
presented.

iii

Table of Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Figures vi

List of Tables ix

Acknowledgements xi

1 Motivations for Research 1
1.1 Definitions . 1
1.2 Successive Surface Scaffolding Conjecture 2
1.3 Summary of Results . 4

2 Topological Graph Theory 6

3 Combinatorial Embeddings 10
3.1 Definitions . 10
3.2 Extending an Embedding . 14
3.3 Augmented Rotation Systems 16

4 Embedding Algorithms 26
4.1 Literature Review . 26
4.2 Equivalence Relations . 28
4.3 Reducing Repetition . 30
4.4 Exponential Embedding Algorithm 32

iv

5 Obstructions 40
5.1 Definitions . 40
5.2 Literature Review for Obstructions 43
5.3 Results . 44

6 Depictions of Embeddings 51
6.1 Definitions . 51
6.2 Different Depictions of the Same Embedding 56
6.3 Algorithm to Obtain a Depiction 60

7 Irreducible Triangulations 75
7.1 Introduction . 75
7.2 Results . 78

7.2.1 Plane Obstructions in N1 Irreducible Triangulations 86
7.2.2 N1 Obstructions in N2 Irreducible Triangulations 87
7.2.3 Torus Obstructions in N3 Irreducible Triangulations 94

8 Essential Cycles 103
8.1 Cutting Along a Cycle . 103
8.2 Algorithm for Cutting . 107

9 Open Problems 113

Appendices 115
A Projective-Planar Obstruction Names 115
B Klein-Bottle Irreducible-Triangulation Names 116

Bibliography 117

v

List of Figures

2.1 Adding a handle to a sphere . 8

3.1 Edge uv inserted into a face of some embedding. The blue curves
correspond to the new facial walks of H̃. The dotted lines com-
plete the boundary edges of old facial walks in G̃, and note that
we do not indicate the signatures of the edges in old facial walks. 17

3.2 Edge uv inserted with each end into a different face of some
embedding. The blue curves correspond to the new facial walks
of H̃. The dotted lines complete the boundary edges of old facial
walks in G̃. 18

4.1 An image of an embedding of two blocks of K7 in S2 with two
handles shown as disks A and B with orientations marked as
indicated in blue arrows. The edges using the handles are matched
by colour. 39

6.1 An example of an embedding drawn with 5 edges crossing in a
cyclic order. 52

6.2 An example of an embedding where 5 crossing edges in the cyclic
order presented in Figure 6.1 are subdivided and modified as dis-
cussed. A cycle C representing a crosscap is indicated with red
edges, and note that the resulting embedding is planar. 53

6.3 An example of a depiction of a torus obstruction with 15 vertices,
labelled 0 to 14, embedded in N3 where the handle faces are
indicated in blue, the crosscap face is indicated in red, and the
feature vertices are labelled 15 to 28, with the first of each pair
numbered odd 2k − 1 and the second in the pair numbered 2k,
for k = 8, 9, . . . , 16. 56

vi

6.4 A depiction of an embedding G̃1 with 12 vertices embedded in the
surface N3 with one crosscap (outlined red circle) and one handle
(two outlined blue circles identified as indicated). Three separate
faces are coloured yellow, green, and orange to help indicate the
same faces in Figure 6.5. Note that feature vertices are omitted. . 58

6.5 Another depiction of the embedding G̃1 from Figure 6.4 with 12
vertices embedded in the surface N3 with three crosscaps (out-
lined red circles), and with three separate faces coloured yellow,
green, and orange to help indicate the same faces in Figure 6.4. . 58

6.6 A depiction of an embedding G̃2 with 15 vertices embedded in
the surface N3 with three crosscaps (outlined red circles), and
with three separate faces coloured yellow, green, and orange to
help indicate the same faces in Figure 6.7. 59

6.7 A depiction of the embedding G̃2 from Figure 6.6 with 15 vertices
embedded in the surface N3 with one crosscap (outlined red circle)
and one handle (two outlined blue circles identified as indicated).
Three separate faces are coloured yellow, green, and orange to
help indicate the same faces in Figure 6.6. Note that the dashed
edges in the green and orange faces use both the crosscap and
handle. 60

7.1 Case 1 for the triangulated region between homotopic essential
3-cycles C1 = vv1v

′ and C2 = vv2v
′. 80

7.2 Case 2 for the triangulated region between homotopic essential
3-cycles C1 = vv1v3 and C2 = vv2v4. 81

7.3 Case 3 for the triangulated region between homotopic essential
3-cycles C1 = vv1v3 and C2 = vv2v4. 83

7.4 Case 4 for the triangulated region between homotopic essential
3-cycles C1 = vv1v3 and C2 = vv2v4. 84

7.5 Irreducible triangulations of the projective plane obtained from
adding red edges to embeddings of K3,3. 86

7.6 Irreducible triangulations of the projective plane obtained by adding
one or two red vertices to the two embeddings of K5. The red
vertices are made adjacent to every edge of the face they are
placed inside. 86

7.7 Triangulations of the projective plane obtained by adding red
edges to embeddings of K3,3. Some red vertices are also added.
Edges which are contractible are dashed. 87

vii

7.8 A1 obstruction of N1 — Kc4 triangulation of N2 87
7.9 A2 obstruction of N1 — Kh6 triangulation of N2 88
7.10 B1 obstruction of N1 — Kh6 triangulation of N2 88
7.11 B3 obstruction of N1 — Kh6 triangulation of N2 89
7.12 C7 obstruction of N1 — Kh4 triangulation of N2 89
7.13 D9 obstruction of N1 — Kh25 triangulation of N2 90
7.14 D12 obstruction of N1 — Kh7 triangulation of N2 90
7.15 D17 obstruction of N1 — Kh1 triangulation of N2 91
7.16 E3 obstruction of N1 — Kh6 triangulation of N2 91
7.17 E18 obstruction of N1 — Kh2 triangulation of N2 92
7.18 E22 obstruction of N1 — Kh13 triangulation of N2 92
7.19 C1 obstruction of N1 — Kc2 triangulation of N2 93
7.20 D3 obstruction of N1 — Kh2 triangulation of N2 93
7.21 D4 obstruction of N1 — Kh19 triangulation of N2 94
7.22 E19 obstruction of N1 — Kc1 triangulation of N2 94
7.23 F1 obstruction of N1 — Kc1 triangulation of N2 97
7.24 F6 obstruction of N1 — Kc2 triangulation of N2 97
7.25 G1 obstruction of N1 — Kc2 triangulation of N2 98
7.26 The minor-order projective-plane obstruction E2. 98

viii

List of Tables

5.1 Operations which reduce the order of a graph. 41
5.2 Number of obstructions on the projective plane, N1. The column

labelled Mi gives the number of obstructions in Mi, but not in
Mi+1, for i = 1, . . . , 3. 43

5.3 The number of 3-regular topological obstructions of the torus. . . 44

7.1 ([Sul06a]) Number of triangulations of the torus, S1. For all
tables of triangulation counts δ denotes minimum degree of the
triangulations. There is a total of 21 irreducible triangulations. . . 79

7.2 ([Sul06a]) Number of triangulations of the double torus, S2. . . . 79
7.3 ([Sul06a]) Number of triangulations of the projective plane, N1. . 80
7.4 ([Sul06a]) Number of triangulations of the Klein bottle, N2, with

total 29 irreducible triangulations. 80
7.5 ([Sul06a]) Number of triangulations of the surface N3, with 9708

total irreducible triangulations. 81
7.6 ([Sul06a]) Number of triangulations of the surface N4. 82
7.7 Columns 1 to 14 of the total occurrences of projective-plane ob-

structions within the irreducible triangulations of the Klein bottle
as either a subgraph or as a subdivision. 95

7.8 Columns 15 to 29 of the total occurrences of projective-plane ob-
structions within the irreducible triangulations of the Klein bottle
as either a subgraph or as a subdivision. 96

7.9 Columns 1 to 14 of the occurrences of projective-plane obstruc-
tions within the irreducible triangulations of the Klein bottle as a
subdivision only. 98

7.10 Columns 15 to 29 of the occurrences of projective-plane obstruc-
tions within the irreducible triangulations of the Klein bottle as a
subdivision only. 99

ix

7.11 Columns 1 to 14 of the occurrences of projective-plane obstruc-
tions within the irreducible triangulations of the Klein bottle as a
subgraph only. 100

7.12 Columns 15 to 29 of the occurrences of projective-plane obstruc-
tions within the irreducible triangulations of the Klein bottle as a
subgraph only. 101

7.13 Number of known wye-delta-order obstructions on the torus by
order (n) and size (m). 102

x

Acknowledgements

First and foremost, many thanks are given to my parents, my sister Maria, and her
husband, Sage. Without their support no one would be reading this dissertation
because it would not exist. Quite equal to this is the thoughtful mentoring of
Wendy Myrvold, with her financial support, academic support, and generous
feedback. I would be hard pressed to find another supervisor with greater ability
to see me through the more difficult times of research paired with the stresses
of life. These people have truly wanted me to succeed to the best of my ability
and I want to acknowledge them for this.

I also want to thank the University of Victoria administration in both the
general offices and the offices of the Department of Computer Science. This
dissertation would not be possible without their careful efforts. I would like to
acknowledge the Resource Centre for Students with a Disability and their training
which helped me to see learning from different perspectives.

Finally, a thank you to all of my friends. They made writing this dissertation
an experience interspersed with many interesting visits.

xi

Chapter 1

Motivations for Research

This chapter explains the reasons for the directions this research has taken,
beginning with basic definitions in Section 1.1. Then in Section 1.2, an
introduction to the Successive Surface Scaffolding Conjecture is presented in
both its weak and strong forms. Finally, a summary of results is given in
Section 1.3.

1.1 Definitions

A graph G = (V,E) is a set V of points called vertices with a set E of pairwise
connections called edges between vertices. By convention the notations n and
m are reserved to indicate the cardinality of the sets V and E, respectively.
We choose to restrict n and m to be finite and any input graphs for algorithms
have no multiple edges or loops where a vertex is connected to itself. In other
words, when we discuss graphs we mean simple graphs. However, in Chapter
6 graph depictions used to represent embeddings may have loops or multiple
edges.

A graph G is embedded in a surface S if the vertices of G are distinct
elements of S and every edge e of G is a simple arc connecting in S its
two incident vertices, such that the interior of e is disjoint from G − e. An
embedding of a graph G in the surface S is an isomorphism of G with a graph
G̃ embedded in S. Then G̃ is referred to as a representation of G in S. If a
representation of G in S exists, then we say G can be embedded into S. The
faces of G̃ are the regions (any two points in a region can be joined by a
simple arc) of X \ G. If a region R of a surface S is homeomorphic to an

1

open disk in the plane, then R is called a 2-cell. When all the faces of an
embedding G̃ are 2-cell, then G̃ is also called 2-cell. If a region R together
with its boundary δR is homeomorphic to a closed disk in the plane, then
R is called closed 2-cell. When all the faces of an embedding G̃ are closed
2-cell, then G̃ is also called closed 2-cell.

A triangulation of a surface S is an embedding on S such that every face
is bound by exactly three edges. An edge e of a triangulation is contractible
if contracting e and removing multiple edges results in another triangulation
of the surface. A triangulation is irreducible if it has no contractible edges,
and it also has the property that any two triangles share at most one edge.

The orientable surface Sh is the sphere S0 with h ≥ 0 handles attached.
For example, the torus is S1. The nonorientable surface Nk is the sphere with
k ≥ 1 Möbius strips attached. For example, the projective plane is N1. The
attached Möbius strips are more commonly referred to as crosscaps on the
nonorientable surface. For simplicity, let N0 = S0.

A topological obstruction of a surface S is a graph with neither isolated
nor degree two vertices that does not embed in S, yet G− e does embed for
any edge e. A minor obstruction has the added property that for any single
edge contraction, the resulting graph embeds on S. A wye-delta obstruction
is a minor obstruction with the added property that if for any degree three
vertex v the resulting graph G of removing v and its incident edges, and
inserting all edges on the neighbours of v, then G embeds on S. The set of
all topological, minor, and wye-delta obstructions of a surface S are denoted
M1(S), M2(S), and M3(S), respectively.

1.2 Successive Surface Scaffolding Conjecture

The majority of results in this research were motivated by the following
conjecture, which was formulated by the author, Campbell.

Conjecture 1.1. (Successive Surface Scaffolding Conjecture involv-
ing subgraphs) For all k ≥ 0 the irreducible triangulations of Nk+1 have
all the connected obstructions in M3(Nk) as subgraphs, and when k = 2g for
some g ≥ 0 they also contain all the connected obstructions in M3(Sg).

Conjecture 1.2. (Successive Surface Scaffolding Conjecture involv-
ing homeomorphic subgraphs) For all k ≥ 0 the irreducible triangula-
tions of Nk+1 have all the connected obstructions in M3(Nk) as subgraphs

2

or subdivisions, and when k = 2g for some g ≥ 0 they also contain all the
connected obstructions in M3(Sg) as subgraphs or subdivisions.

Note that Conjecture 1.1 states a stronger condition than Conjecture
1.2 by not considering subdivisions of the obstructions in M3(Nk). The weak
form was suggested by W. Myrvold. The opportunity Conjectures 1.1 and 1.2
present is that the obstructions for a surface S can be found in the irreducible
triangulations of the surface consisting of S plus a crosscap.

The conjecture does not hypothesize that the disconnected obstructions
from the set M3(Nk) nor M3(Sg), for k = 2g, can be found as subgraphs
of the irreducible triangulations to Nk+1. For example, two disjoint copies
of K5 is an obstruction to the projective plane, and in Chapter 7, we show
that this graph is not a subgraph of any of the irreducible triangulations of
the Klein bottle. Therefore, we do not include disconnected obstructions of
a surface within the Successive Surface Scaffolding Conjecture. Evidence to
show the necessity of the wye-delta-order condition is given in Section 7.2.2
with respect to the graph E2 ∈M(N1).

Proving the Successive Surface Scaffolding Conjecture for g = 1 would
immediately give a back door approach to obtaining an upper bound on the
number of vertices of obstructions for M3(S1). The irreducible triangulations
for N3 have been generated by Sulanke [Sul06a] and totals based on their or-
der are given in Table 7.5. It is worth considering feasible strategies to search
for wye-delta-order torus obstructions within the irreducible triangulations
of N3.

To investigate the truth of these conjectures, faster embedding algorithms
were needed, and described in Chapters 3 and 4. Ways to draw pictures
of embeddings in Chapter 6 perhaps will aid insights into working towards
proofs. A better understanding of obstructions motivates Chapter 5. A
better understanding of triangulations of surfaces motivates Chapter 7.

In order for the Successive Surface Scaffolding Conjecture to be true,
another conjecture based off of a known open problem [Arc95] regarding the
embeddings of connected wye-delta obstructions must also hold true.

Conjecture 1.3. Each obstruction in M3(S) for a surface S with Euler genus
g has an embedding in Ng+1.

However, Conjecture 1.3 can be generalized to include all obstructions
of S. It is proved in Chapter 5 for a subset of the minor obstructions of an
orientable surface, and the remaining obstructions have yet to be shown such
an embedding exists for each.

3

1.3 Summary of Results

Chapter 2 is an optional set of definitions with respect to graph theory from
the perspective of topology. They are useful for gaining an intuitive under-
standing of the topics covered in this research.

Chapter 3 contains Section 3.1 which presents definitions for understand-
ing embeddings. In Section 3.2, a known theorem is detailed for the change in
Euler genus to an embedding when an edge is inserted. In Section 3.3, a new
data structure called an augmented rotation system is explained followed by
O(m) algorithms WalkOneFace and WalkAllFaces which use the new data
structure. This new data structure also makes it possible to compute in O(1)
time the change in genus of a subembedding when an edge is inserted into
it.

Chapter 4 in Section 4.1 gives a summary of the literature concerning
embedding algorithms. In Section 4.2, definitions are set up for equivalence
relations between combinatorial embeddings called flip, switch, and switch-
flip. These are not new definitions, but they are needed. Section 4.2 fin-
ishes with a canonical form for combinatorial embeddings. In Section 4.3
theorems are established helping to avoid generating embeddings that are
isomorphic. Section 4.4 gives our new exponential-time branch-and-bound
algorithms InsertEdge and EmbedGraph which show how to generate all em-
beddings of a graph of Euler genus lower than some upper bound.

Chapter 5 gives more insight into the case of the torus (as well as surfaces
of higher Euler genus) with respect to the Successive Surface Scaffolding
Conjecture. First, definitions are set up in Section 5.1, and then a short
summary of literature about obstructions is given in Section 5.2. Then, in
Section 5.3, a theorem is proved showing every edge e of embeddings of any
obstructions of any surface must have e in an essential cycle. Also, for a
surface S, an embedding of any of the minor-order minimal obstructions of S
that are not double-wye-delta-order minimal is given for the surface S with
a crosscap added.

Work with various embeddings is eased by having a way to visualize
them. Chapter 6 defines in Section 6.1 a depiction as a plane embedding
representing some higher Euler genus embedding. There can be more than
one depiction for a given nonorientable embedding of Euler genus greater
than one, so Section 6.2 presents some possibilities. Then in Section 6.3, a
O(m2) algorithm is given for finding a depiction from an input combinatorial
embedding.

4

In Chapter 7, Section 7.1 summarizes basic results of irreducible trian-
gulations in the literature. The main result of Section 7.2 gives the different
possible structures of a region of an irreducible triangulation bound by homo-
topic cycles. Also, Section 7.2 provides evidence in support of the Successive
Surface Scaffolding Conjecture.

In Section 8.1, we describe how an embedding can be cut open along a
cycle C so that the resulting embedding can be checked for properties that
determine whether C is essential. The algorithm IsEssential is given in
Section 8.2 which formalizes cutting along a cycle as a subroutine.

Finally, in Chapter 9 a list of open questions is given. Future research is
also considered in this chapter.

5

Chapter 2

Topological Graph Theory

The following chapter is supplementary to the rest of this document. It is
optional to read, but helps in understanding the topics explored. They are
modelled after the definitions in Basic Topology (see [Arm13]), and Topolog-
ical Graph Theory (see [GT87]).

A topology endows a set X with a collection τ of subsets of X such that:

• ∅ and X are members of τ ,

• any union of sets in τ is itself in τ ,

• and any finite intersection of sets in τ is itself in τ .

A topological space is a set X together with a topology. A useful property for
some topological spaces X and Y is that we can have a function f : X → Y
be defined as continuous if for any an open set y ⊆ Y we have f−1(y) as an
open set of X.

A curve, or arc in a topological space X is the image of a continuous
function f : [0, 1] → X with domain the closed interval of all real numbers
x such that 0 ≤ x ≤ 1. A curve is simple if f is also one-to-one. An arc is
said to join, or connect its endpoints f(0) and f(1), and the interior of an
arc is all other image points besides the endpoints. A simple closed curve is
defined analogously, with the exception that f(0) = f(1).

Let X and Y be topological spaces. We call X and Y homeomorphic if
there exist continuous functions f : X → Y , g : Y → X such that f ◦ g is
the identity on Y and g ◦ f is the identity on X. The functions f and g are
described as homeomorphisms between X and Y .

6

An open neighbourhood of a point x in a topological space X is simply
an open set of X that contains x. A neighbourhood of a point x is a set of
X that contains an open neighbourhood of x. A neighbourhood of a set of
points S ⊆ S is a set N(S) ⊆ S where every point of S has at least one
open neighbourhood contained in N(S). A topological space X is Hausdorff
when any two distinct points in X have disjoint neighbourhoods. A surface
S is a connected, compact, Hausdorff topological space which is at any point
locally homeomorphic to an open disc in the Euclidean plane. A surface S is
nonorientable if there exists a closed curve C ⊂ S that has a neighbourhood
homeomorphic to a Möbius strip, and S is orientable otherwise.

A simple closed curve C is trivial on a surface S if S− C is disconnected
and at least one of the regions of S−C is homeomorphic to an open disk in the
plane, and C is called essential otherwise. Informally, a simple closed curve is
trivial when it can be continuously contracted to a point on S. Trivial curves
on orientable surfaces can be traversed in a clockwise or counterclockwise
orientation—the choice of deciding which traversal is clockwise or counter-
clockwise depends on the representation of a surface—and we always choose
to traverse in a counterclockwise direction with our representations.

Let S1 be the set of points in a unit circle. Two simple closed curves C1

and C2 on a surface S are homotopic when there exists a continuous map
h : [0, 1]×S1 → S where h(0, ·) is one-to-one and has image C1 and h(1, ·) is
one-to-one and has image C2.

The Schönflies Theorem states that any simple closed curve C on the
sphere S0 creates two regions of S0 − C that are each homeomorphic to a
closed disk. We can choose either region to be the interior of C in this case.
Otherwise, we simplify discussion on other surfaces, say S, for a trivial closed
curve C which creates a region of S− C that is homeomorphic to a disk by
calling C a circle, and its interior is the region homeomorphic to a disk. Note
that because any surface S is Hausdorff, this guarantees the existence of two
disjoint open disks on S. Also, because C is homotopic to S1, there exists a
one-to-one continuous function fC : C → S1, so that an identification of any
two circles A and B can be obtained by f−1B ◦ fA. When a circle C is in an
orientable surface, parameterizing fC induces a clockwise/counterclockwise
identification to S1.

To add a handle to a surface S, let two circles A,B ⊆ S be disjoint with
disjoint interiors—delete the interiors of A and B—and when S is orientable,
identify A in opposite orientation to B. This is illustrated in Figure 2.1.
When S is nonorientable, it is not possible to compare orientations of trivial

7

Figure 2.1: Adding a handle to a sphere

curves, and in this case A and B only need be identified.
To add a crosscap, let a trivial circle C be embedded in a surface S, delete

the interior of C and identify diametrically opposite points.
To add a twisted handle, when on an orientable surface proceed to add

a handle, but identify trivial circles A and B in the same orientation. Oth-
erwise, when on a nonorientable surface only the identification of A and B
are required, and therefore a handle and twisted handle can be continuously
deformed one to the other. But we emphasize that this deformation is only
possible when the surface is nonorientable before adding a (twisted) handle.

We let S0 be the surface of the sphere, homeomorphic to the Euclidean
plane R2 with a point added for infinity. This is established by a well-known
homeomorphism called stereographic projection. If we add h ≥ 0 handles to
the sphere S0, we obtain the orientable surface Sh of genus h.

If we add k ≥ 1 crosscaps to S0, then we have the nonorientable surface
Nk of genus k. The surfaces S1, S2, N1, N2 are also well known as the torus,
the double torus, the projective plane, and the Klein bottle, respectively.

Note that identifying circles A and B with the same orientation on an
orientable surface is actually adding two crosscaps to the surface. One in-
tuitive way to see this is to observe that while the torus can be constructed
from identifying two disjoint circles in the plane with opposite orientation,
the Klein bottle can be constructed from identifying two disjoint circles in
the plane with the same orientation (a twisted handle). Also, a (twisted)
handle added to a nonorientable surface is the same as adding two crosscaps

8

(which make a Klein bottle).
It is worth mentioning that the genus of a surface can also be defined

as the maximum number of non-intersecting non-homotopic essential sim-
ple closed curves that embed on the surface. The Classification Theorem
of Surfaces (see [Kos80]) states that for a surface S, it must be that S is
homeomorphic to precisely one of Sh for some h or Nk for some k.

Note that signatures for the edges of an embedded graph as defined in
Section 3.1 can be thought of as a 1-dimensional cohomology class over the
graph, with coefficients in the group Z2. This gives a way to see how to
modify the signatures to to get equivalent embeddings in surfaces.

9

Chapter 3

Combinatorial Embeddings

Exponential embedding algorithms operate faster if the change in genus when
inserting an edge can be calculated quickly. With use of a new data structure,
the calculation for the change in genus requires only O(1) time. This chapter
first presents definitions in Section 3.1. In Section 3.2 a theorem is established
for the change in Euler genus to an embedding when an edge is inserted.
Then this theorem is applied when designing a new data structure called an
augmented rotation system in Section 3.3 followed by a O(m) algorithm for
walking the faces which use the new data structure.

3.1 Definitions

A rotation system for a vertex of a graph is a cyclic ordering of its neigh-
bours. A combinatorial embedding of a graph G is a pair G̃ = (π, λ) where
π = {πv|v ∈ V (G)} is a set of rotation systems and λ is a function λ :
E(G) → {+1,−1}. Note that unless otherwise stated, multiple edges are
not included. Intuitively, this gives an adjacency list representing the clock-
wise (or counterclockwise) appearance of neighbours surrounding v. We call
the order that the vertices appear in πv the forward direction. Then the
reverse direction is the reverse order that vertices appear in πv. To allow for
nonorientable surfaces, a signature weight of +1 or −1 is assigned to each
edge e, denoted by λ(e). The edges weighted with −1 correspond to the
edges that are embedded through an odd number of twists; i.e., crosscaps or
twisted handles. A signature of +1 assigned to an edge e denotes that e uses
an even number of twists. The subembedding of G̃ of +1 weighted edges is

10

an embedding on an orientable surface.
In an embedding G̃, for an edge e = uv, let π+1

v (u) be the neighbour that
follows u in the rotation system of v, and let π−1v (u) be the neighbour that
precedes u. For any graph with no multiple edges,

x = π+1
v (u)⇒ u = π−1v (x).

In other words, if x follows u, then u precedes x in the list of neighbours of v.
This is assuming λ(uv) = +1, and the case for λ(uv) = −1 is trivial. Mohar
and Thomassen [MT01] describe similar notation for graph embeddings using
rotation systems and signatures assigned to the edges.

A cycle of an embedding is one-sided if it contains an odd number of
edges with negative signature, and two-sided if it contains an even number of
edges with negative signature. To switch a vertex v of an embedding means to
reverse the order of the rotation system of v and assign the opposite signature
of each edge incident with v. Switching vertices does not change the faces of
an embedding and neither does it change the property of cycles being one-
or two-sided.

The image of an embedding mapped to a surface is also a simple closed
curve on that surface. A simple closed curve C is two-sided if C has a
neighbourhood homeomorphic to a cylinder and C is one-sided if C has a
neighbourhood homeomorphic to a Möbius strip.

As described by Myrvold and Roth [RM05], we can use a rotation system

and signatures to obtain all faces (or G̃-faces) of an embedding. To this
end, for each edge uv of the graph, an algorithm to determine the faces of
an embedding uses two records [(u, v),+1] and [(u, v),−1]. A facial walk
is an iteration through the arcs of a face determined by a list of records,
where for [(u, v), r] the successive record in the walk is [(v, x), r · λ(v, x)],
with x = πr

v(u). The walk terminates when the starting record is revisited.
A facial walk in one direction should determine the same face as when the
arcs are traversed in the opposite order. This means that the face with
record [(u, v), r] is the same as the one with [(v, u),−r · λ(u, v)], but walked
in the reverse order. For this reason, we consider the record [(u, v), r] to be
equivalent to [(v, u)− r · λ(v, u)].

An oriented walk of length p in a combinatorial embedding G̃ is a sequence
of records

[(u1, u2), s1], [(u2, u3), s2], . . . , [(up, up+1), sp]

with i = 1, . . . , p such that (ui, ui+1) ∈ E(G) and si ∈ {+1,−1} and further,

11

for all i = 2, . . . , p we have si = si−1λ(ui, ui+1). A more compact notation is
used, u1s1u2s2 . . . upspup+1, in Chapters 4 and 8.

A closed oriented walk is an oriented walk such that for the first record
[(u1, u2), s1] and for the final record [(up, up+1), sp], up+1 = u1 and s1 =
spλ(u1, u2). An oriented cyclic walk is a closed oriented walk such that either

• u1u2 . . . up is a cycle in G; i.e., u1 = up+1, and s1 = sp, which corre-
sponds to one side of a two-sided cycle, or

• p = 2k and, for i = 1, . . . , k, ui = uk+i, and u1u2 . . . uk is a cycle in
G; i.e., u1 = uk+1 = up+1, and s1 = sp 6= sk. This corresponds to a
one-sided cycle.

A facial walk also corresponds to a closed oriented walk with the added
property that for each pair of successive records [(u, v), r] and [(v, x), rλ(v, x)]
it must be that x = πr

v(u).
To correspond with actual drawings of an embedding, we choose the clock-

wise appearance of neighbours of each vertex to correspond with the forward
direction in combinatorial embeddings, and as a consequence, throughout our
discussions and figures r = +1 gives a counterclockwise traversal of a face
when the surface is orientable. For figures with a plane embedding, r = +1
determines a counterclockwise traversal of each internal face, and a clockwise
traversal of the external face. Note that any face must have an even number
of edges with negative signature.

If every facial walk has been considered, while keeping in mind the equiv-
alences between records, then each record appears only once (ignore the final
record in each walk). This is easy to see since in an embedding, each edge ei-
ther appears on the boundary of two faces or appears twice on the boundary
of one face. This does not distinguish whether an edge is traversed twice in
the same or opposite direction. Hence, we can generate the facial walks by
listing all possible records, marking those that are visited as they are used,
and starting each walk with some unused record. Circular doubly-linked lists
can be used for access to successive and previous neighbours of each vertex,
as well as twin-link pointers (each node v in the adjacency list of u contains
a pointer which keeps a reference to the node of u in the adjacency list of
v) giving constant access time. Each linked list of a corresponding vertex v
stores the adjacencies in the same rotational order that neighbours appear
in πv. Altogether, traversing all the facial walks can be done in O(m) time.

12

If there is a cycle C in an embedding such that there is an odd number
of edges with negative signatures, there can be no sequence of switches that
results in all positive signatures for the edges of C. In this case, the embed-
ding is designated as nonorientable. Hence, a combinatorial embedding is
orientable when every cycle has an even number of negative signature edges,
and so there must exist a sequence of switches that results in every edge of
the embedding assigned with a +1 signature.

Once the number of faces f from a combinatorial embedding G̃ with c
components of a connected graph G is determined, one can define the genus
of the embedding as

g(G̃) :=

2c− n+m− f

2
when G̃ is orientable, and

2c− n+m− f when G̃ is nonorientable.
(3.1)

The Euler genus γ of a surface S with h handles, j crosscaps, and k
twisted handles is defined as

γ(S) := 2h+ j + 2k.

The Euler genus γ of an embedding of a graph G̃, either orientable or nonori-
entable, is defined as

γ(G̃) := 2c− n+m− f

where c is the number of components, and f is the number of faces.
A contraction of an edge e = uv in an embedding G̃ is the embedding

G̃/e constructed from identifying the vertices u, with πu = u1u2 . . . ud(u) =
WvX, and v, with πv = v1v2 . . . vd(v) = Y uZ, to a new vertex w such that
πw = WZYX when e is assigned +1 signature, and πw = WY RZRX with
all the edges in Y and Z assigned opposite signature when e is assigned −1
signature.

A minor H of a graph G is such that H is isomorphic to a graph obtained
from a subgraph G′ of G by contracting a set of edges A ⊆ E(G′). This
definition also includes G as a minor of itself when G′ = G and A = ∅.
When there is no occurrence of some graph H as a minor of G we say that
H is an excluded minor of G.

13

3.2 Extending an Embedding

Each face of an embedding corresponds to a finite sequence of vertices de-
termined by a facial walk. For example, two successive records [(ui, v), r],
[(v, ui+r), t] in a facial walk correspond to the subsequence of vertices ui, v,
ui+r. Each successive pair of records in a facial walk thus determines a triple
of vertices we define as an angle of the embedding, as similarly defined by
Mohar and Thomassen [MT01]. Sometimes we denote angles with a sequence
of three vertices uivui+1 where the corresponding rotation system is for v.
Note that for a degree two vertex v, the subsequences u1vu2 and u2vu1 both
correspond to different angles.

We generalize the notion of angles by considering two neighbours u and v
of a vertex w with πw = XuY v where X and Y are subsequences of vertices,
potentially empty. Then the subsequences uY v and vXu are called compound
angles of the embedding.

Let P be an oriented walk between u1 and uk+1,

u1s1u2s2 · · ·ukskuk+1

and suppose s1 = rλ(u1, u2), with r = +1 or −1. Since P is an oriented
walk, each si = si−1λ(ui−1, ui) for i = 2, . . . , k. Define the path parity of
the rotation system of uk+1 with respect to that of u1 along P to be the
same (r = sk) if P has even parity of negative signature edges, and different
(−r = sk) otherwise. Note that we need to define parity in combination with
a path, or else it is not well defined. To define angle parity between two
angles of the same face f , let it be the path parity of a path P as one of
the two oriented walks between the angles on a facial walk of f . Note that
by definition of facial walk, both oriented walks between two angles along a
facial walk must have the same parity of negative signature edges. Therefore,
assign an angle parity arbitrarily to the starting angle uvw with a path of
length zero of a facial walk F and assign parity to every successive angle with
respect to uvw along the facial walk F .

To insert an edge e = uv into an embedding containing an angle wvx
means to place u into the rotation system of v after w and before x. The
other end of the edge e can also be inserted into an angle yuz by placing v
into the rotation system of u after y and before z. It is not considered to
insert an edge to form a loop, and so the two angles involved are assumed
to be for distinct vertices u and v. Theorem 3.1, by Campbell, describes the
change to the genus of an embedding that occurs when an edge is inserted.

14

This is well-known and easy, but the proof is given for the notation used in
this dissertation and for the software developed.

Theorem 3.1. Inserting an edge e = uv in a combinatorial embedding G̃ of
genus g at angles yuz and wvx with angle parities p1 and p2, results in a new
combinatorial embedding H̃ of Euler genus h = g + ∆ where if both angles
are on the same face, then

∆ = 0 if p1 = p2 and λ(e) = +1, or
p1 6= p2 and λ(e) = −1;

∆ = 1 if p1 6= p2 and λ(e) = +1, or
p1 = p2 and λ(e) = −1.

If the two angles are on different faces, then

∆ = 2 regardless of the values of p1, p2, and λ(e).

In the last case, both sides of the edge e appear in the boundary of a new face
that merges the two faces involved, as illustrated in Figure 3.2 on page 18.

Proof. Suppose H is a simple graph with a proper subgraph G = H − e for
some edge e, and that G has an embedding G̃ on some surface S. Consider
the cases of inserting e into G̃ to obtain an embedding of H not necessarily
in S. This involves selecting any two angles that do not appear consecutively
in a facial walk, because embeddings with multiple edges are not considered.
A signature for e is assigned either +1 or −1.

Suppose G̃ has n vertices, m edges, and f faces, so that G̃ has Euler
genus g = (2 − n + m − f). Now consider the possible Euler genus h of H̃
by inserting e in different ways.

Case 1. The genus of H̃ is h = g.

This case corresponds to two situations:

• Figure 3.1(a), and e has positive signature, where angles chosen for the
insertion of e are in the same face with the same angle parity,

• Figure 3.1(a), but e has negative signature, where angles chosen for the
insertion of e are in the same face with opposite angle parity.

Both situations can be visualized in Figure 3.1(a) on page 17, since the

number of faces of H̃ is one more than that of G̃, but the formula for genus
of H̃ remains equal to G̃ because H also has one more edge than G.

15

Case 2. The genus of H̃ is h = g + 1.

This case corresponds to two situations:

• Figure 3.1(b), and e has negative signature, where the angles chosen
for the insertion of e have the same angle parity (intuitively, adding a
crosscap),

• Figure 3.1(b), and e has positive signature, where the angles chosen for
the insertion of e have opposite angle parity.

In both situations, the number of faces remains the same, but H has one
more edge, so that

h = 2− n+ (m+ 1)− f = (2− n+m− f) + 1 = g + 1.

Case 3. The genus of H̃ is h = g + 2

This case corresponds to two situations, both shown in Figure 3.2. The
signature of e and the angle parity between angles chosen for insertion do
not affect the change to the genus. In these situations, H̃ has one less face
than G̃, f − 1, and one more edge than G, m+ 1, so that the genus of H̃ is

h = 2− n+ (m+ 1)− (f − 1) = 2− n+m− f + 2 = g + 2.

3.3 Augmented Rotation Systems

This section describes a new data structure, an augmented rotation system,
that facilitates O(1) computation of the genus increase resulting from adding
an edge with a given signature to an embedding. This is accomplished know-
ing for two angles their face labels and angle parities as per Theorem 3.1.
After the augmented rotation system data structure is presented, Algorithm
3.2 gives the O(m) time pseudocode that updates the use of this data struc-
ture after inserting an edge.

Let the neighbours of a vertex v with its rotation system be in the order
u1, u2, . . . , ud(v). Note that reference to arbitrary vertices among neighbours
of v have subscripts modulo d(v), with subscript 0 replaced by d(v).

16

y

x

v

w

z

u

(a) Either edge uv positive with
its ends connecting angles with
the same angle parity, or edge uv
negative with its ends connecting
angles of opposite angle parity.

y

x

v

w

z

u

(b) Either edge uv negative and
connecting angles of the same an-
gle parity, or edge uv positive
and connecting angles of oppo-
site angle parity.

Figure 3.1: Edge uv inserted into a face of some embedding. The blue curves
correspond to the new facial walks of H̃. The dotted lines complete the
boundary edges of old facial walks in G̃, and note that we do not indicate
the signatures of the edges in old facial walks.

The faces of an embedding are visited in some arbitrary order. In the new
data structure it is chosen to store a face number for angle uivui+1 with the
node for ui in the adjacency list of v. The same choice is made for storing
an angle parity of an angle when visited during a facial walk.

The augmented rotation system data structure AugRotSystem is described
using object-oriented programming concepts. The other supporting object
types that are needed are:

• AdjNode with members:

– x: an integer vertex label,

– u: an integer neighbour label,

– sign: an integer in {+1,−1} for the signature of the edge xu,

– next: an AdjNode pointer to the next neighbour in the adjacency
list of x,

17

u′

v′′

v

v′

u′′

u

(a) Edge uv positive.

u′

v′′

v

v′

u′′

u

(b) Edge uv negative.

Figure 3.2: Edge uv inserted with each end into a different face of some
embedding. The blue curves correspond to the new facial walks of H̃. The
dotted lines complete the boundary edges of old facial walks in G̃.

– prev: an AdjNode pointer to the previous neighbour in the adja-
cency list of x,

– twin: an AdjNode pointer to the node with neighbour label x in
the adjacency list of u,

– face num: an integer giving the face number for the corresponding
angle,

– angle parity: an integer in {+1,−1} assigned as an angle parity
in a facial walk,

– my position: an integer keeping track of the placement order in
the adjacency list of x,

– ADJ NULL: a static integer constant −2 as a sentinel representing
a null face num.

• UnusedNode with members:

– face number: an integer reserving a face number as unused,

– next: an UnusedNode pointer to the next node in a list,

18

and a constructor method that inserts a new UnusedNode with input
face number to the front of an already existing input list.

• UnusedFaces with members:

– max face: an integer keeping track of the maximum number of
faces used in an AugRotSystem,

– start unused: an UnusedNode pointer to the first UnusedNode in
a list,

and methods:

– GetFaceNumber(): returns either the face number of the first UnusedNode
in start unused while removing this node from start unused, or
the max face while incrementing max face by one,

– ReturnFaceNumber(intf): creates a new UnusedNode with face number
f and inserts this to the front of start unused.

• AdjMatrix with members:

– n: an integer for the number of rows, and the number of columns,

– A: a two-dimensional integer array,

and methods

– SpanningTree(): returns an AdjMatrix T that is a spanning
tree of the graph defined by A determined by a depth-first-search,
starting at the vertex labelled 0.

Then an augmented rotation system object AugRotSystem has members:

• M : an AdjMatrix which holds the adjacency matrix for the underlying
graph,

• T : an AdjMatrix which holds the depth-first-search spanning tree for
the underlying graph,

• NMAX: a static integer constant giving an upper bound on the number
of vertices in the underlying graph,

• n: an integer giving the number of vertices in the underlying graph,

19

• m: an integer giving the number of edges in the underlying graph,

• f : an integer giving the number of faces in this embedding,

• g: an integer for the Euler genus of this embedding,

• num negative: an integer for the number of negative signature edges
in this embedding,

• unused: an UnusedFaces object to manage the assignment of face num
of each AdjNode,

• degree: an integer array keeping the degree of each vertex, with the
index corresponding to vertex label,

• V : an array of AdjNode, with the index corresponding to vertex label,
so that V [i] corresponds to the start of an adjacency list for vertex i,

and methods:

• AugRotSystem(AdjMatrix T): constructor which initializes mem-
bers and sets adjacency lists in V for some spanning tree T , in prepa-
ration for the algorithm that finds embeddings,

• InitPositions(): sets the my position for each AdjNode in V ,

• GetTwinLinks(): for each AdjNode in V , sets the twin of an AdjNode

in the adjacency list of x with vertex label u to be a pointer to the
AdjNode in the adjacency list of u with vertex label x,

• NewGenus(AdjNode ptr1, AdjNode ptr2, int new sign): returns the
updated genus of this AugRotSystem embedding for an edge considered
to be inserted at angles ptr1 and ptr2 with signature new sign as per
Theorem 3.1,

as well as other methods given as pseudocode later to explain in greater
detail:

• WalkOneFace (Algorithm 3.2)

• WalkFaces (Algorithm 3.3)

• AddEdge (Algorithm 3.4)

20

• RemoveEdge (Algorithm 3.5)

The angle parity can differ depending on which angle a facial walk starts.
An initial angle, which corresponds to a neighbour in an adjacency list, is
chosen to start a facial walk and given angle parity +1. Each successive angle
that is visited is assigned an angle parity of (−1)k where k is the number
of edges traversed with signature −1 when walking the face from the initial
angle in the +1 direction.

Algorithm 3.2. Walk One Face

INPUT:

• an AdjNode start u pointer to one of the nodes in the adjacency
list of this AugRotSystem corresponding to the angle vuw where v =
start u.u, u = start u.twin.u, and w = start u.next.u,

• a boolean value unwalk that when true sets face num of angles visited
to AdjNode.ADJ NULL.

ACTION:

• a face value is assigned to every angle of the walked face,

• an angle parity value is computed for every angle of the walked face.

WalkOneFace (start u, unwalk) {
1) int face num;

2) if (unwalk) {
3) if (start u.face num 6= AdjNode.ADJ NULL)

4) unused.ReturnFaceNumber(start u.face num);

5) face num = AdjNode.ADJ NULL;

6) } else {
7) face num = unused.GetFaceNum();
8) }
9) AdjNode ptr = start u;
10) int dir = 1;
11) do {
12) if (dir == 1) {
13) ptr.face num = face num;

14) ptr.angle parity = dir;

21

15) ptr = ptr.next.twin;
16) dir = dir ∗ (ptr.sign);
17) } else {
18) ptr = ptr.prev;
19) ptr.face num = face num;

20) ptr.angle parity = dir;
21) ptr = ptr.twin;
22) dir = dir ∗ (ptr.sign);
23) }
24) } while (ptr 6= start u or dir 6= 1);
}

Algorithm 3.3. Walk Faces

ACTION:

• a face value is assigned to every angle of this AugRotSystem,

• an angle parity value is assigned to every angle of this AugRotSystem.

WalkFaces() {
1) AdjNode ptr;
2) int i, j;
3) unused = new UnusedFaces();

4) f = 0;
5) // set all the face numbers to be null

6) for (i = 0; i < n; i++) {
7) ptr = V [i];
8) for (j = 0; j < degree[i]; j++) {
9) ptr.face num = AdjNode.ADJ NULL;

10) ptr = ptr.next;
11) }
12) }
13) // walk all the faces

14) for (i = 0; i < n; i++) {
15) ptr = V [i];
16) for (j = 0; j < degree[i]; j++) {
17) if (ptr.face num == AdjNode.ADJ NULL) {
18) WalkOneFace(ptr, false);

22

19) f++;
20) }
21) ptr = ptr.next;
22) }
23) }
24) g = 2− n+m− f;
}

Algorithm 3.4. Add Edge

INPUT:

• an AdjNode pointer ptr1 corresponding to an angle of this AugRotSystem,

• an AdjNode pointer ptr2 corresponding to an angle of this AugRotSystem,

• an integer new sign for the signature of the edge to be inserted.

ACTION:

• this AugRotSystem updated to include an edge inserted with one end
at ptr1 and the other end at ptr2.

AddEdge(ptr1, ptr2, new sign) {
1) AdjNode n1, n2;
2) int u, v;
3) // reset face data

4) WalkOneFace(ptr1, true);

5) f--;
6) if (ptr2.face num 6= AdjNode.ADJ NULL) {
7) WalkOneFace(ptr2, true);

8) f--;
9) }
10) u = ptr1.twin.u;
11) v = ptr2.twin.u;
12) // insert new nodes

13) n1 = new AdjNode(u, v, new sign, ptr1, ptr1.next);

14) n2 = new AdjNode(v, u, new sign, ptr2, ptr2.next);

15) n1.twin = n2;
16) n2.twin = n1;

23

17) degree[u]++;
18) degree[v]++;
19) m++;

20) if (new sign == −1)

21) num negative++;
22) // update face data

23) WalkOneFace(ptr1, false);

24) f++;
25) if (n1.face num == AdjNode.ADJ NULL) {
26) WalkOneFace(n1, false);

27) f++;
28) }
29) g = 2− n+m− f;
}

Algorithm 3.5. Remove Edge

INPUT:

• an AdjNode pointer ptr corresponding to an edge of this AugRotSystem.

ACTION:

• this AugRotSystem with the edge corresponding to ptr removed.

RemoveEdge(ptr) {
1) AdjNode n1, n2, n3, n4;
2) int u, v;
3) // reset face data

4) WalkOneFace(ptr, true);

5) f--;
6) if (ptr.prev.face num 6= AdjNode.ADJ NULL) {
7) WalkOneFace(ptr.prev, true);

8) f--;
9) }
10) if (ptr.sign == −1)

11) num negative--;
12) u = ptr.twin.u;
13) v = ptr.u;
14) n1 = ptr.prev;

24

15) n2 = ptr.next;
16) n3 = ptr.twin.prev;
17) n4 = ptr.twin.next;
18) // remove the nodes corresponding to edge uv
19) n1.next = n2;
20) n2.prev = n1;
21) n3.next = n4;
22) n4.prev = n3;
23) degree[u]--;
24) degree[v]--;
25) m--;

26) // update face data

27) WalkOneFace(n1, false);

28) f++;
29) if (n3.face num == AdjNode.ADJ NULL) {
30) WalkOneFace(n3, false);

31) f++;
32) }
33) g = 2− n+m− f;
}

25

Chapter 4

Embedding Algorithms

This chapter begins with a literature review of embedding algorithms in
Section 4.1. Section 4.2 defines equivalence relations called flip, switch, and
switch-flip between combinatorial embeddings, and follows this with a canon-
ical form for combinatorial embeddings. In Section 4.3, a number of theorems
are established helping to avoid generating some repetitions of embeddings.
Finally, in Section 4.4, exponential-time algorithms are given for generating
all embeddings of a graph with genus at most some input constant.

4.1 Literature Review

The earliest planar-embedding algorithms rely on planarity-testing algorithms.
The first planarity-testing algorithm with polynomial runtime was origi-
nally proposed by Auslander and Parter [AP61], then corrected by Goldstein
[Gol63], and independently by Bader [Bad64]. Hopcroft and Tarjan [HT74]
refined these to present the first linear time planarity-testing algorithm, but
the extension to a planar-embedding algorithm is complicated enough that
Mehlhorn, Mutzel [MM96], Chiba, Nishizeki, Abe, and Ozawa [CNAO85]
outline implementation details. The runtime results also depend on find-
ing the blocks of a graph in linear time, as described by Ullman, Aho, and
Hopcroft [UAH74], since a planar graph contains only planar blocks.

Demoucron, Malgrange, and Pertuiset [DMP64] were the first to design
a O(n3) time planar-embedding algorithm that is theoretically simple to un-
derstand. This partly inspired Lempel, Even, and Cederbaum [LEC66] to
create the so-called Vertex Addition Algorithm, which can be implemented

26

in linear-time as shown by Booth and Lueker [BL76].
Another planar-embedding algorithm is worth mentioning because it has

an efficient implementation that is available in the Public Implementation
of a Graph Algorithm Library Editor (PIGALE) software [dFdM02]. This
algorithm was finally detailed by de Fraysseix, de Mendez, Rosenstiehl, and
Brandes [dFdMR06, dF08, Bra09].

Some planar-embedding algorithms are worth mentioning for their sim-
plicity, such as one by Klotz [Klo89] that has O(n2) runtime, or Boyer and
Myrvold [BM04] which has O(n) runtime. Yet there are still fairly new
planar-embedding techniques, e.g. Schmidt [Sch13] attempts to simplify de-
tails for as concise a linear algorithm as possible.

There are currently only two correct published algorithms for embedding
graphs in the projective plane. As with planar embedding algorithms, a lower
time complexity seems to force added difficulty in implementation.

Perunicic and Duric [PD85] proposed the first projective-plane embed-
ding algorithm with O(n3) runtime, but it does not always work correctly.
Mohar [Moh93] has explained that their algorithm does not always produce
an embedding, and so he designed a different linear-time algorithm which
guarantees one, although it is difficult to implement.

Myrvold and Roth [RM05] have a simpler O(n2) algorithm that is similar
to Mohar’s approach [Moh93] for embedding on the projective plane. First,
a graph G is tested for planarity, and if found to be planar they simply
apply a planar-embedding algorithm, among any of those with O(n2) runtime
or faster. The algorithm starts by finding a Kuratowski subgraph K and
considers every emebbing K̃ in the projective plane. Then for each K̃, there
is only a constant number of ways to embed the set of K-bridges that embed
in more than two faces, and for the remaining bridges, an adaptation of a
2-Sat algorithm assigns them to faces.

Myrvold and Kocay [MK11] exposed errors from past attempts at writing
a polynomial-time algorithm for embedding graphs in the torus, namely:
Filotti [Fil78, Fil80]; Filotti, Miller, and Reif [FMR79]; and Djidjev, and
Reif [DR91]. The errors proved that the given algorithms are either wrong
or they actually run in exponential time, and there is no apparent way to fix
these algorithms so that they can run in polynomial time.

Juvan, Marinček, and Mohar [JMM95] have a linear-time algorithm to
embed graphs on the torus. The ideas from this paper clearly influenced
Mohar [Moh96, Moh99] to use similar techniques to be able to embed a graph
in an arbitrary surface in linear-time. As far as is known, these algorithms

27

currently have no correct implementation, and implementing them would be
very difficult.

Gagarin, Kocay, and Neilson [GKN03], Neufeld, and Myrvold [NM97],
Woodcock [Woo06], and Yu [Yu14] each have an exponential-time embed-
ding algorithm for the torus. The strategy for such algorithms is to have a
manageable implementation and yet still have fast enough results on smaller
input. And finally, Gagarin and Kocay [GK02] have a linear-time algorithm
for embedding graphs with a K5 subdivision and no K3,3 subdivision on the
torus.

4.2 Equivalence Relations

The following equivalence relations are defined in order to avoid duplications
when generating embeddings of a graph. Let G̃ and H̃ be combinatorial
embeddings. Naturally, G̃ and H̃ are identical when they have the same
cyclic ordering of neighbours for every vertex and the same signature for
every edge. To enable easier comparison of rotation systems, we standardize
them by choosing the smallest labelled neighbour to appear first in each
rotation system.

Recall the definition of switching a vertex in Section 3.1. For A ⊆ V (G),

let S(G̃, A) denote the new embedding obtained from G̃ by switching the

vertices of A. Define G̃ and H̃ to be switch-equivalent, denoted G̃
S
= H̃,

when there exists some subset of vertices A ⊆ V (G) such that S(G̃, A) is

identical to H̃.
Recall that orientable embeddings have every cycle with an even number

of negative signature edges. For orientable G̃, there exists a set of vertices
A (V (G) such that S(G̃, A) has all edges with positive signature. If G̃ has
edges with −1 signature, then A 6= ∅ and A 6= V since the signatures of
S(G̃, V) are the same as in G̃.

Let F (G̃) denote the embedding identical to S(G̃, V), and call this the flip

of G̃ (it flips the order of each rotation system and has the same signatures).

Further, G̃ and H̃ are flip-equivalent, denoted G̃
F
= H̃, when either G̃ or F (G̃)

is identical to H̃. Embeddings G̃ and H̃ are switch-flip-equivalent, denoted

G̃
SF
= H̃, if there exists some subset of vertices A ⊆ V (G) such that S(G̃, A)

is flip-equivalent to H̃.
Let α be an element of the symmetric group Sn, and let P (G̃, α) be the

28

embedding resulting from permuting the labels of V (G) according to α, but

keeping the same signatures on all edges. We say embeddings G̃ and H̃ are

permute-equivalent, denoted by G̃
P
= H̃, when there exists some permutation

α ∈ Sn such that P (G̃, α) is identical to H̃.

Two embeddings G̃ and H̃ are switch-isomorphic, G̃
PS
= H̃, if there exists a

permutation α such that P (G̃, α) is switch-equivalent to H̃. Two embeddings

G̃ and H̃ are flip-isomorphic, denoted G̃
PF
= H̃, if there exists a permutation

α such that P (G̃, α) is flip-equivalent to H̃. An embedding G̃ is chiral if G̃ is

not switch-isomorphic to F (G̃). Two embeddings G̃ and H̃ are isomorphic,

G̃ ' H̃, if there exists a permutation α such that P (G̃, α) is switch-flip-

equivalent to H̃.
We present Algorithm 4.3 as a means to generate, for an input graph G,

all different orientable, or exclusively, nonorientable, combinatorial embed-
dings of genus smaller than some given upper bound. This algorithm takes
exponential time, because it involves iterating through all the possible ro-
tation system orderings for the vertices in one spanning tree of G, followed
by inserting the remaining edges in all possible ways without exceeding the
desired genus.

Our motivation for the following notation is to avoid generating switch-
flip-equivalent embeddings. We define the format of the output for each com-
binatorial embedding, as well as an ordering on the output. Let u1, u2, . . . ,
ud(u) be the neighbours of vertex u listed in the cyclic order for the rotation
system of u starting from u1 as the smallest label among neighbours of u,
and where d(u) is the degree of u. Let the vertex-sequence for vertex u of an

embedding G̃ be given by(
d(u), u1, λ(u, u1), u2, λ(u, u2), . . . , ud(u), λ(u, ud(u))

)
.

However, replace every +1 signature with a 0 character and every −1 signa-
ture with a 1 character in each vertex-sequence. Then define the embedding
sequence of G̃ to start with n followed by the vertex sequences for vertices 0
to n − 1. Then comparing two different embeddings is done by comparing
one embedding sequence lexicographically to another embedding sequence.

29

4.3 Reducing Repetition

Assume the vertices of input graph G have labels 0 to n − 1. Note that
for a vertex v with degree d, the number of cyclic permutations of the se-
quence of neighbours of v is (d − 1)!. In general, if G has degree sequence
d0, d1, . . . , dn−1, then there are

∏n−1
i=0 (di−1)! choices for ordering neighbours,

and so it is obvious some strategy is needed to focus on the embeddings that
are of interest.

To avoid equivalent cyclic permutations the first neighbour listed is chosen
to be the neighbour with minimum vertex label. Further, for any combinato-
rial embedding, there are 2n ways to get switch-equivalent embeddings using
switching of vertices. Our efforts benefit from restricting computations to
representatives from the different equivalence classes of combinatorial em-
beddings established by our definition of switch-flip-equivalent in Section
4.2.

Lemma 4.1. (see [MT01]) For some fixed spanning tree T of G, the embed-

ding G̃ is switch-equivalent to a combinatorial embedding where the edges of
T are assigned positive signature.

Proof. Select a root r to be a vertex of T and assign all vertices of T an
integer index with the order each vertex is visited in a breadth-first-search
traversal of T starting at r. Then for each non-root vertex v in T in the index
order, if edge (v, parent(v)) has −1 signature, perform a switch at v.

Note that it is never necessary to switch all the vertices of an embedding to
get a spanning tree with +1 edges, so that the flip of an embedding is never
used for this purpose. For an embedding G̃ and a spanning tree T , define G̃
to be in standard form with respect to T , if the edges of T are assigned +1
in G̃.

Theorem 4.2. An embedding G̃, in standard form with respect to some
spanning tree T , is orientable if and only if G̃ has no −1 signature edges.

Proof. Suppose there is an orientable embedding G̃ in standard form with
+1 signature spanning tree T . Since any edge e of G not in T forms a cycle C
when inserted into T , e cannot be assigned −1 else the parity of the number
of −1 edges in C is odd, which would contradict G̃ orientable.

The converse is trivial.

30

Algorithm 4.3 recurses through all possible planar embeddings of a chosen
spanning tree T , so a good strategy is to try to find a spanning tree T that
has small maximum degree. Perhaps a hamiltonian path is possible, but
finding one of these is a hard problem. Instead, one can choose a depth-
first-search tree T in the hopes of decreasing the maximum degree. The first
step in generating all embeddings is to apply Algorithm 4.3—starting with
an empty subembedding H̃—inserts all edges of T into H̃. Then recursive
calls are made in order to permute the rotation systems of each vertex of H̃.

For each way to embed T , the remaining edges of G must be inserted in
all possible ways. This is done recursively via Algorithm 4.4. Note that if
the rotation system of 0 for G̃ is a1, a2, . . . , ad(0) then the rotation system for

0 in F (G̃) must be a1, ad(0), . . . , a2. Therefore, once all edges are inserted and

the genus of the resulting embedding H̃ is small enough, an additional rule
is checked on the rotation system of vertex 0: restrict the second neighbour
listed in the rotation system of the root to have a smaller label than that
of the last neighbour. This ensures that only one representative is processed
from the class of flip-equivalent embeddings. Maintaining the edges of T
with +1 signature ensures only one representative from each class of switch-
equivalent embeddings of G is processed. Together, these strategies ensure
one representative from each class of switch-flip-equivalent embeddings of G.

Algorithm 4.4 can be used to output a representative for each switch-flip-
equivalent class of embeddings. However, The next step is to determine if two
different switch-flip equivalent embeddings are in fact permute-equivalent to
each other, which follows.

A clockwise breadth-first search (CBFS) takes as input a root vertex r
and a first child c that is a neighbour of r. A breadth-first search is then
used to relabel the graph subject to the following restrictions. For the root r
the breadth-first search starts at c and proceeds “clockwise” by selecting the
next neighbour of r in the forward direction from c in the rotation system
of r. For a vertex v 6= r, the breadth-first search starts at the breadth-first-
search parent of v and proceeds clockwise. Note that switches are performed
so that edges of the CBFS tree all have positive signature.

For each possible pair of r and c, all possible CBFS labelings are consid-
ered. Then the same is done on F (G̃). The lexicographical minimum of the

sequences of these labelled embeddings is set as the canonical form of G̃.
There is a different breadth-first-search tree for every choice of edge uv

with u as root and v as first child, and two directions to consider visiting

31

vertices via the rotation systems, so that in total there are 4m breadth-first-
search trees to consider. It is sufficient to consider the breadth-first-search
trees where a root has minimum degree δ and first child has the smallest
degree δ′ among the neighbours of vertices of degree δ. Then it is guaranteed
the vertex-sequences of 0 will be the same for any such minimum-degree
vertices. If vertex r has degree d0 and the first child c of r has degree d1,
then the sequence of the embedding will begin with (n, d0, 1, 2, . . . , (d0 −
1), d0, d1, 0, . . .).

Note that m is bound by a linear function of n if the graphs are restricted
to those of bounded genus. The canonical sequence is chosen as a represen-
tative for the class of embeddings which are isomorphic to G̃. The output of
Algorithm 4.3 can then be analyzed using CBFS so that each embedding is
output in its isomorphic canonical form. Given a file of canonical forms of
embeddings printed one per line, the file can be sorted and duplicates can be
removed. Breadth-first-search has O(m) run time for low genus graphs, and
because a breadth-first-search for each root, child, and each direction is per-
formed, our isomorphism algorithm runs in O(m2) time. It should be noted
that many breadth-first-search trees could sometimes be ignored, because the
corresponding lexicographically smallest sequence necessarily occurs with a
root of minimum degree.

Pseudocode for finding a canonical form is formalized in Algorithm 4.5
as a method of the AugRotSystem data structure. The subroutine CBFS

on Line 6 takes as parameters an AugRotSystem G, a root vertex r of the
AugRotSystem, a first child c of r, and setsH as the CBFS labelled embedding
of G. The embeddings sequences which have the same canonical form show
that such embeddings are isomorphic.

4.4 Exponential Embedding Algorithm

The following objects are also needed to further implement AugRotSystem:

• ChordNode with members:

– u: an integer for a vertex label corresponding to one end of an
edge in a graph,

– v: an integer for a vertex label corresponding to the other end of
an edge in a graph,

32

– next: a ChordNode pointer to the next node in a list,

and method:

– ChordList(AdjMatrix M , AdjMatrix T): this method is static,
and returns a ChordNode pointer to the start of a list correspond-
ing to edges in M that are not in T .

• Permutation with members:

– n: an integer for the number of vertices involved in this permuta-
tion,

– p: an integer array of size n,

and methods:

– Permutation(int nv): a constructor that initializes p as an
array of size nv,

– LexNexPerm(): permutes the elements of p to the next lexico-
graphic ordering and returns true if such a next ordering exists,
and otherwise the elements of p are returned to their smallest
lexicographic order and returns false.

The following algorithms are included in the methods of an AugRotSystem

object and described with pseudocode in greater detail:

• TreeEmbeddings (Algorithm 4.3),

• EmbedChords (Algorithm 4.4),

• CanonicalForm (Algorithm 4.5),

and, finally, AugRotSystem also includes the following method:

• GetEmbeddings(AdjMatrix inM , intmax genus, boolean orientable
): this method is static, and returns the number of combinatorial
embeddings found for the input graph inM of Euler genus at most
max genus that are orientable when orientable is set to true and nonori-
entable otherwise.

33

Algorithm 4.4 generates one representative from each class of switch-flip
equivalent embeddings of an augmented rotation system. Embeddings of low
genus are desired, and such embeddings must have all their subembeddings
of the same genus or smaller. An intuitive place to start with Algorithm 4.3
is to construct embeddings that are obviously planar by first embedding a
depth-first-search spanning tree in the plane in all possible ways. For each
way that the spanning tree is embedded, try to insert the remaining edges
one at a time while maintaining a low enough genus. For a remaining edge
uv, for each angle of u, and for each angle of v from the current subembed-
ding, consider possibly inserting uv into the subembedding. If inserting uv
for these angles does not increase the genus over the threshold, then the edge
is inserted. Otherwise, the edge is not inserted and another pair of unique
angles for the edge is chosen. Once all edges are inserted, the graph is embed-
ded. At each stage of the backtrack, the algorithm chooses an edge e that is
not yet embedded. It tries all possible placements for e that do not increase
the genus so that it is larger than the desired genus. Note that embeddings
of a graph whose genus is smaller than the target genus are also constructed.
Some duplicate permute-equivalent embeddings are obviously repeated in the
output of Algorithm 4.4, and it depends on which automorphisms of G main-
tain properties of faces in an embedding. The canonical form generated by
Algorithm 4.5 is used to test for these duplicates in an effort to have exactly
one representative from each class of isomorphic embeddings.

Algorithm 4.3. Tree Embeddings

INPUT:

• a ChordNode pointer chords to the start of a linked list corresponding
to the remaining edges to be inserted in this AugRotSystem,

• an integer upper-bound MAX GENUS,

• a boolean variable orientable that when true output embeddings are
orientable, and when false output embeddings are nonorientable,

• an integer level to track the depth of recursion.

ACTION:

• each embedding of the spanning tree T of this AugRotSystem is visited.

34

TreeEmbeddings(chords, MAX GENUS, orientable, level) {
1) AdjNode ptr;
2) Permutation q;
3) boolean more;
4) int num embeddings = 0;
5) if (level == n) {
6) GetTwinLinks();

7) num embeddings = EmbedChords(chords, MAX GENUS,

orientable, level);

8) return num embeddings;
9) }
10) // only one permutation to consider

11) if (degree[level] ≤ 2) {
12) num embeddings + = TreeEmbeddings(chords, MAX GENUS,

orientable, level + 1);

13) return num embeddings;
14) }
15) // go through the cyclic permutations of the vertex level
16) q = new Permutation(degree[level]− 1);

17) ptr = V [level];
18) // permute all adjacencies except the first one

19) for (int i = 0; i < degree[level]− 1; i++) {
20) ptr = ptr.next;
21) q.p[i] = ptr.u;
22) }
23) more = true;

24) while (more) {
25) num embeddings + = TreeEmbeddings(chords, MAX GENUS,

orientable, level + 1);

26) // note that the last permutation visited is the

identity which restores the adjacency list of level
before returning

27) more = q.LexNextPerm();
28) ptr = V [level];
29) for (int i = 0; i < degree[level]− 1; i++) {
30) ptr = ptr.next;
31) ptr.u = q.p[i];
32) }

35

33) }
34) return num embeddings;
}

Algorithm 4.4. Embed Chords

INPUT:

• a ChordNode pointer chords to the start of a linked list corresponding
to the remaining edges to be inserted in this AugRotSystem,

• an integer upper-bound MAX GENUS,

• a boolean variable orientable that when true output embeddings are
orientable, and when false output embeddings are nonorientable,

• an integer level to track the depth of recursion.

OUTPUT:

• prints at least one representative from each class of switch-flip-equivalent
embeddings of the graph corresponding to this AugRotSystem of genus
at most MAX GENUS,

• returns the number of embeddings printed.

EmbedChords(chords, MAX GENUS, orientable, level) {
1) ChordNode temp;
2) AdjNode ptr1, ptr2;
3) int u, v, last sign, new g;
4) int num embeddings;
5) // for use in code defined in Chapter 6

6) Depiction d;
7) if (chords == NULL) {
8) if (!orientable and num negative == 0)

9) return 0;
10) ptr1 = V [0].next;
11) ptr2 = V [0].prev;
12) // is this embedding canonical?

13) if (ptr2.u < ptr1.u)

14) return 0;

36

15) d = new Depiction(this);

16) return 1;
17) }
18) num embeddings = 0;
19) // remove edge from front of list of chords

20) u = chords.u;
21) v = chords.v;
22) temp = chords;
23) chords = chords.next;
24) // for all possible ways to select two angles

25) if (orientable)

26) last sign = 1;
27) else

28) last sign = −1;
29) ptr1 = V [u];
30) for (int i = 0; i < degree[u]; i++) {
31) ptr2 = V [v];
32) for (int j = 0; j < degree[v]; j++) {
33) for (int new sign = 1; new sign ≥ last sign;

new sign − = 2) {
34) new g = NewGenus(ptr1, ptr2, new sign);

35) if (new g ≤ MAX GENUS) {
36) AddEdge(ptr1, ptr2, new sign);

37) num embeddings + = EmbedChords(level + 1,
chords, MAX GENUS, orientable);

38) RemoveEdge(ptr1.next);

39) }
40) }
41) ptr2 = ptr2.next;
42) }
43) ptr1 = ptr1.next;
44) }
45) chords = temp;
46) return num embeddings;
}

Algorithm 4.5. Canonical Form

OUTPUT:

37

• an AugRotSystemA with lexicographical minimum embedding sequence
among all CBFS labellings of this AugRotSystem and its flip.

CanonicalForm() {
1) AugRotSystem A, H;

2) boolean first = true;

3) for (int r = 0; r < n; r++) {
4) AdjNode ptr = V [r];
5) for (int j = 0; j < degree[r]; j++) {
6) CBFS(this, r, ptr.u, H);

7) if (first or embedding sequence of H < embedding

sequence of A) {
8) A = a copy of H;

9) first = false;

10) }
11) ptr = ptr.next;
12) }
13) }
14) Let F = a copy of the flip of this AugRotSystem;

15) for (int r = 0; r < n; r++) {
16) AdjNode ptr = F.V [r];
17) for (int j = 0; j < F.degree[r]; j++) {
18) CBFS(F, r, ptr.u, H);

19) if (embedding sequence of H < embedding sequence

of A) {
20) A = a copy of H;

21) }
22) ptr = ptr.next;
23) }
24) }
25) return A;
}

One application of an implementation of Algorithm 4.3 confirms that the
nonorientable genus is not additive over blocks of a graph. The nonorientable
genus g′ and the orientable genus g of G must satisfy g′ ≤ 2g + 1 [Arc96].
Consider G the one-vertex identification of two copies of K7, and note that
K7 does not embed on the Klein bottle, but embeds on N3. In this case, the

38

sum of the nonorientable genera of each block of G is 6, yet K7 embeds on
the torus, so that the orientable genus of G is 2. Therefore, the nonorientable
genus of G must be less than or equal to 5. An embedding of G on the double
torus is given in Figure 4.1. Note that any one of the edges in the embedding
of G in Figure 4.1 can be assigned negative signature, which shows that G
can embed on N5. The implementation was used to confirm that there are
no embeddings of G on the surface N4.

Figure 4.1: An image of an embedding of two blocks of K7 in S2 with two
handles shown as disks A and B with orientations marked as indicated in
blue arrows. The edges using the handles are matched by colour.

39

Chapter 5

Obstructions

This chapter considers theoretical evidence for the Successive Surface Scaf-
folding Conjecture involving the case of the torus (as well as surfaces of
higher Euler genus). First, definitions are given in Section 5.1. Then a lit-
erature review of obstructions is presented in Section 5.2. Lastly, in Section
5.3, a general proof for a property of embeddings of any obstructions of any
surface is given. For a surface S, an embedding of a graph in a subset of
the minor-order minimal obstructions of S is given for the surface S with a
crosscap added. Some special classes of obstructions for the torus are also
given embeddings on the surface N3.

5.1 Definitions

A topological obstruction G for a surface S is a graph with neither isolated
nor degree two vertices that does not embed in S, yet G− e does embed for
any edge e. A minor obstruction has the added property that for any single
edge contraction, the resulting graph embeds on S. Bodendiek and Wagner
[BW89b] proved that the set of topological, and hence minor, obstructions
for an orientable surface is finite. Archdeacon and Huneke [AH89] proved
that the set of topological obstructions for a nonorientable surface is finite.
Robertson and Seymour proved the same for orientable and nonorientable
surfaces together [RS90].

To subdivide an edge e = uv of a graph, remove e, introduce a new vertex
x, and add two new edges ux and vx. A subdivision of a graph G is simply
either equal to G, or obtained from G by successively subdividing some of

40

the edges of G. Two graphs H and G are homeomorphic if a subdivision of
H is isomorphic to a subdivision of G.

Bodendiek and Wagner [BW89a] define a useful set of relations to char-
acterize obstruction sets by smaller subsets of graphs. First, we need to
introduce the graph operations listed in Table 5.1.

Type of Operation
Operation

R0 an edge or isolated vertex of G is deleted.
R1 an edge e of G is contracted, where e is incident with at least

one vertex of degree two.
R2 an edge e of G is contracted, where both endpoints of e have

degree at least three, and if multiple edges appear between
some pair of vertices after contracting e, all but one of these
edges are removed.

R3 a vertex of degree three v is removed and its neighbours are
joined with edges (informally, replacing Y with a ∆, hence
R3 is sometimes called Y∆), and if multiple edges appear
between some pair of vertices, all but one of these edges are
removed.

R4 let u, v be two adjacent vertices both of degree 3, with N(u)∩
N(v) = ∅. Subdivide the edge uv and then perform R3 on u
and v separately.

Table 5.1: Operations which reduce the order of a graph.

It is trivial to see when any of these Ri operations are applied to an
embedding G̃ of genus g that the genus of the resulting embedding cannot
exceed g, because each operation involves either removing or replacing one
planar subgraph with another.

Bodendiek and Wagner then define relations ≥i for i = 1, . . . , 4 (note that
i 6= 0), where we have for two graphs G ≥i H if and only if either G = H or
there is some finite sequence of graphs starting with G that are successively
related by any of Rj, j ∈ {0, . . . , i}, that terminates with H. If we look at
the partial order associated with each relation on the set of graphs F that do
not embed on a surface S, then Mi(S) is the set of ≥i-minimal graphs of F ,
and we sometimes refer to these sets as the ith-order minimal basis for the
surface S. Note that each minimal basis Mi for i ≥ 1 does not include any

41

graphs with vertices of degree zero, one, or two, due to the relations R0 and
R1. Also, directly from these definitions, for any surface S, we conveniently
have M4(S) ⊆M3(S) ⊆M2(S) ⊆M1(S). The sets M1(S), M2(S), M3(S) and
M4(S) are also referred to as the topological, minor, wye-delta and double-
wye-delta obstructions of S, respectively.

Graph theory in computer science typically includes the topic of planar
graphs, those that can be embedded in S0, for its implications in designing
graph algorithms. A combinatorial embedding of a planar graph G in S0

is also called a plane graph. Kuratowski’s Theorem [Kur30], asserts that
a graph G is planar if and only if G contains no subgraph homeomorphic
to a graph in M1(S0) = {K5, K3,3}. Any graph homeomorphic to K5 or
K3,3 is dubbed a Kuratowski graph. Similarly, a projective-planar graph is
a graph that can be embedded in N1, a toroidal graph can be embedded
in S1, and a Klein graph can be embedded in N2. Also, Wagner’s [Wag37]
Theorem characterizes the minor-order obstructions of the plane as M2(S0) =
{K5, K3,3}; that is, a graph G is planar if and only if K5 and K3,3 are excluded
minors of G. Note that M3(S0) = M4(S0) = {K5}.

A vertex split of a vertex v in a graph G partitions the neighbours of v
into two sets V1 and V2 and replaces v with two new vertices v1 and v2, joined
by an edge v1v2, where the neighbours of v1 are V1∪{v2} and the neighbours
of v2 are V2 ∪ {v1}.

Let v be a vertex of an embedding G̃ and the rotation system of v be par-
titioned into two rotation systems V1 and V2 such that πv is the concatenation
of V1 and V2. Then the embedded vertex split of G̃ that corresponds to this
partition (V1, V2) is the embedding H̃ which has V (H) = {v1, v2}∪V (G)\{v},

E(H) = E(G) \ {uv | u is a neighbour of v}
∪ {xv1 | x ∈ V1} ∪ {xv2 | x ∈ V2}
∪ {v1v2},

and the signatures of any edge incident on some vertex u and either v1 or
v2 is assigned the same signature as edge uv in G̃, with edge v1v2 assigned
positive signature, and the vertices v1 and v2 have rotation systems V1v2 and
V2v1, respectively.

42

5.2 Literature Review for Obstructions

Glover, Huneke, and Wang [GHW79] constructed a list of the 103 topological
obstructionsM1(N1) of the projective plane. Archdeacon [Arc81] showed that
this list is complete. Bodendiek, Schumacher, and Wagner were the first to
show the set of double-delta-wye-order obstructions M4(N1) has cardinality
twelve. Flötotto [Flö10] lists the 103 obstructions and to which minimal
basis each belongs. Flötotto also gives a hierarchy chart of how the 103
obstructions relate, but the chart is missing the graph D9 [Flö10]. See Table
5.2 below for counts of all the obstructions of the projective plane.

n M1 M2 M3 M4 total
7 0 0 0 2 2
8 3 1 1 5 10
9 9 5 3 3 20
10 23 6 3 2 34
11 20 1 2 0 23
12 11 0 1 0 12
13 2 0 0 0 2

total 68 13 10 12 103

Table 5.2: Number of obstructions on the projective plane, N1. The column
labelled Mi gives the number of obstructions in Mi, but not in Mi+1, for
i = 1, . . . , 3.

Gagarin, Myrvold, and Chambers [GMC09] established that there are
four minor-order and eleven topological obstructions for the torus when re-
stricted to the class of those that contain no K3,3 subdivision as a subgraph.
Skoda [Sko12] proved that there are 68 and 668 topological obstructions of
connectivity two for the torus and the Klein bottle, respectively. Flötotto
[Flö10] constructed 83 obstructions of the Klein bottle, those in M4(N2),
by identifying one, two, or three vertices between an obstruction in M4(N1)
and a copy of K5. The 83 constructed graphs are not a complete set of
obstructions of the Klein bottle.

By combining the work of Fiedler, Huneke, Richter, Robertson [FHRR95],
and Randby [Ran97], a torus obstruction that is projective-planar has been
shown to be ∆Y∆-equivalent to the 4 × 4 projective-planar grid. Juvan
[Juv95] has found the complete set of 270 projective-planar torus obstruc-
tions.

43

Chambers [Cha02], Neufeld [Neu94], and Woodcock [Woo06], each su-
pervised by Myrvold for their master’s theses, performed and rechecked an
exhaustive computer search of the 3-regular topological obstructions of the
torus having at most 24 vertices. See Table 5.3 for the number of 3-regular
topological obstructions of the torus of each order.

n number of
obstructions

12 1
14 9
16 20
18 133
20 39
22 2
24 2

total 206

Table 5.3: The number of 3-regular topological obstructions of the torus.

Work of Battle, Harary, and Kodama [BHK62] have shown the orientable
genus of a graph is the sum of the orientable genera of its blocks. Additivity
of orientable genus is also across components of a graph.

5.3 Results

The Successive Surface Scaffolding Conjecture implies that it should be pos-
sible for each wye-delta obstruction of a surface S for at least one embedding
on S with a crosscap added to insert edges without increasing the Euler genus
so that an irreducible triangulation is obtained.

Conjecture 5.1. (Campbell) Each obstruction in M3(S) for a surface S of
Euler genus g has some embedding in Ng+1 such that it is possible to insert
edges and vertices to obtain an irreducible triangulation of Ng+1.

Theorem 5.2 shows that any embedding of an obstruction must have
each edge on an essential cycle. Perhaps it may be useful towards proving
Conjecture 5.1.

44

Theorem 5.2. Suppose G is an obstruction of some surface. If G̃ is an
embedding of G on some surface, then every edge of G is part of an essential
cycle of G̃.

Proof. Suppose there is an obstruction G with an embedding G̃. Consider
the edge e in G and suppose that e is not in any essential cycle of G̃. Let F
be a facial walk of G̃ containing e. The proof is broken down into two cases:
either F contains some repeated vertex v, or all vertices of F are distinct.

Case 1. Suppose F contains a repeated vertex v.

Let F1 be a smallest subwalk of F which starts and ends with v that
contains e such that F1 is a cycle. Note that F1 cannot be a walk of a
face different from F , because F1 contains at least 3 vertices (there are no
multiple edges) and the degree of each vertex of F1 is at least 3. Further, if
F1 were not essential, then v would be a cut vertex of a planar block with
outer face boundary F1, which contradicts G as an obstruction. Thus, e sits
on an essential cycle F1.

Otherwise, no subwalk of F containing v and e exists such that F1 has
all unique vertices. Then let F1 simply be a smallest subwalk of F starting
and ending with v not containing e. As before, F1 must be an essential cycle.
Consider the subwalk F2 = F − F1 that starts and ends with v. Since F2

contains e and e cannot be part of a subwalk cycle with a repeated vertex
of F , it must be that F2 contains some other repeated vertex u. Let F3

be a smallest subwalk of F starting and ending with u. Again, F3 must be
essential, but by supposition cannot contain e. Partition all such subwalk
cycles this way so that, without loss of generality, u and v are minimum
distance away from e in either direction along F—regardless of whether F1

or F3 are walked along F at a distance greater than the minimum away from
e; i.e., u and v may appear more than twice along F .

If u = v, the minimum subwalk cycle of F starting and ending at u and
including e must be essential, else there is a planar block as before. Therefore,
it is assumed u 6= v.

Consider the subwalk of F from u to v that includes e and call it P . It
must be that P is a path by property of minimum distance u and v from e.
Let P1 be the subpath of P that is of minimum length connecting F1 and F3.
Let the ends of P1 be called s in F1 and t in F3. Again, for the same reason
u 6= v, it must be s 6= t.

Subcase 1.1. Suppose F1 and F3 have a vertex in common.

45

Without loss of generality, let w 6= v be a common vertex of minimum
distance from t in F3. Then a path P2 from w to s along F1 cannot contain
any vertices of a minimum path P3 from w to t along F3. Note that P3 may
be trivial, but not P2. If the cycle P1 ∪ P2 ∪ P3 is essential, there is no need
to continue. If not, then the path P1 ∪ P3 can be continuously deformed to
P2, so that the cycle (F1 − P2) ∪ P1 ∪ P3 that contains e must be essential.

Subcase 1.2. Suppose F1 and F3 do not share a vertex in common. Suppose
there exists a path P4 internally disjoint from P1 that connects a vertex,
without loss of generality, w 6= s of F1 to a vertex of F3.

Then there exists such a path P4 of minimum length. Then a similar
argument to Subcase 1.1 with adjustments to include the path P4 concludes
that e is in some essential cycle.

To continue, make use of a partition of P1 into paths Ps, the path from
s to e, the path e itself, and Pt the path from e to t. Note that either Ps or
Pt can be trivial.

Subcase 1.3. Suppose F1 and F3 do not share a vertex in common, and no
such path P4 exists. Suppose there exists a path P5 internally disjoint from
Ps ∪ e that connects a vertex, without loss of generality, w 6= s of F1 to a
vertex x 6= t of Pt (if Pt is trivial, then this reverts to Subcase 1.2).

Let P5 be a shortest such path. Then a similar argument to Subcase 1.1
with adjustments to include the path P5 concludes that e is in some essential
cycle.

Subcase 1.4. Suppose F1 and F3 do not share a vertex in common, and no
such paths P4 nor P5 exist. Then e must be part of a block B separated from
G by two cut vertices, say y on Ps and z on Pt.

Let B be such that y and z are minimum distance from e. There is a
subwalk F4 of F from y to z that includes e. Because F is a facial walk and
y and z are cut vertices, another subwalk F5 of F exists from z to y. Since
y and z are minimum distance from e, it must be that F4 ∪ F5 is either a
cycle including e or e is an edge-cut of G. If F4 ∪ F5 is a cycle, it must be
essential, because an obstruction cannot contain a planar block. Neither can
an obstruction contain an edge-cut of size one.

Case 2. Suppose F contains no repeated vertex.

46

Say some other edge q 6= e of F was part of an essential cycle, and
that C is such a cycle containing q where C ∩ F has a minimum number
of components. Let P1, P2, . . . , P2j be a partition of F into paths where
C ∩ F = {P2i | 1 ≤ i ≤ j}, and let P2 contain q. Note that e /∈ C ∩ F . Also,
let C \ F = {Q2i−1 | 1 ≤ i ≤ j} be the remaining set of paths of C not on F .
Name the paths P2i−1 to correspond with the paths Q2i−1 so that their ends
match vertices.

Now if j = 1, it must be that P1 ∪ Q1 is an essential cycle containing e.
This is because the path P2 can be continuously deformed to the path P1.

If j > 1, then see that any Q2i−1 cannot be continuously deformed to
the path P2i−1, because C is minimum with respect to the number j of
components in C ∩ F . Let r be such that P2r−1 does not contain e. But
then if L = F \ P2r−1 is used to form a cycle D = L ∪ Q2r−1, it must be
that D is essential and contains e. This is because P2r−1 can be continuously
deformed to L; i.e., the face walk F is not essential. Because D contains e,
ultimately, no edge of F can be part of an essential cycle. Extending the
argument above to the other faces of G̃ sharing edges with F , these faces
cannot contain edges that are part of essential cycles. Repeating until all
faces of G̃ are dealt with as above leads to a contradiction if one of the faces
contains a repeated vertex as in Case 1, or ultimately shows that no edge of
G can be part of an essential cycle. This final situation erroneously concludes
G̃ is a plane embedding.

Lemma 5.3. If an obstruction G of a surface S contains a triangle, then
there exists a nonorientable embedding G̃ of Euler genus γ(S) + 1.

Proof. Suppose the triangle of G is u1u2u3. Then there exists an embedding
D̃1 of D1 = G1−u1u2 on the surface S. Let X = (x1, x2, . . . , xj) be one of the
two sequences of vertices between u1 and u2, non-inclusive, of the adjacency
list of u3 in D̃1, and let Y = (y1, y2, . . . , yk) be the other sequence. Without
loss of generality, one of X or Y is nonempty, because u3 is at least degree
3, so let j ≥ 1. Let f1 be the face of D̃1 with boundary containing u3, x1,
and u1, and let f2 be the face of D̃1 with boundary containing u3, xj and u2.
Note that f1 6= f2, since otherwise the edge u1u2 could be inserted and G
would not be an obstruction.

Construct embedding D̃2 from D̃1 by changing the signature of each edge
xiu3, for xi ∈ X, and replacing X with XR in the adjacency list of u3.
Let the counterclockwise facial walk of f1 be u1u3x1W for some sequence of

47

vertices W , and let the counterclockwise facial walk of f2 be u3u2Zxj for

some sequence of vertices Z. Then the construction of D̃2 merges f1 and f2
into a new face f with facial walk u1u3xjZ

Ru2u3x1W . All the other faces
in the construction retain the same facial walks. Therefore, there is one less
face in D̃2 than in D̃1. Hence, the Euler genus of D̃2 is γ((S)) + 1. Finally,

let D̃3 be the embedding obtained from D̃2 by inserting the edge u1u2 with
a −1 signature. Since the ends of u1u2 are inserted into the face f where
the angles must have opposite parity, by Theorem 3.1, the Euler genus of D̃3

must be the same as that of D̃2.

Corollary 5.4. The torus obstructions containing no K3,3 subdivision each
have an embedding in N3.

Proof. The torus obstructions with no K3,3 subdivision are listed in a paper
by Gagarin, Myrvold and Chambers [GMC09], and these obstructions each
have a triangle. By Lemma 5.3, each of these obstructions has an embedding
in N3.

Of the 249348 known topological obstructions of the torus, there are
136955 that each have a triangle, and therefore these each have an embedding
on N3. Algorithm 4.4 was used to obtain embeddings of the known wye-delta
obstructions of the torus. Each of them has at least one embedding in N3, so
no counterexample is known yet for Conjecture 1.3 in the case of the torus.

Theorem 5.5. For an arbitrary surface S, obstructions in M2(S) \M4(S)
have a nonorientable embedding of Euler genus γ(S) + 1.

Proof. Suppose there is an obstruction G ∈M2(S)\M4(S). Then there exists
a graph H ∈ M4(S) such that G >4 H, and there are some sequence of the
graph operations Rj with j ∈ {0, 1, 2, 3, 4} that relates G to H. The first
such operation cannot have j < 3, because G ∈M2.

Case 1. The first operation on G is R3.

Therefore, there exists at least one vertex u of degree 3 in G. Let G1 be
the graph resulting from an R3 operation to replace u with a triangle u1u2u3.
The R3 operation cannot be followed by an R0 operation of deleting some
edge of the triangle in G1, because this is the same as originally contracting
an edge incident with u in G and contradicts the first operation with j ≥ 3.
Similarly, an R2 operation of contracting an edge of u1u2u3 in G1 is the same
as originally contracting two edges incident with u in G. Contracting or

48

deleting some edge other than in the triangle u1u2u3 is the same as performing
such an operation on G before the R3 operation, which would result in an
embedding of G1 in the surface S, and hence such an embedding for H as
well. Therefore, G1 is at least an obstruction in M2.

By Lemma 5.3, there is a nonorientable embedding D̃3 of G1 of Euler
genus γ(S) + 1.

The following leads to an Euler genus γ(S)+1 embedding of G. Obtain D̃4

by subdividing the edge u1u2 of D̃3 to include a new vertex u and give the edge
uu1 signature −1 and uu2 signature +1. From the construction for Lemma
5.3, the signature of the edge (u1, u2) is −1, and therefore, γ(D̃3) = γ(D̃4).

Next, obtain D̃5 by inserting the edge uu3 with signature +1 such that it
forms a plane triangle with u2 and u3. Obviously, γ(D̃4) = γ(D̃5). Finally,

delete the edges u1u3 and u2u3 to obtain an embedding D̃6 of G. Note that
in constructing D̃6 from D̃5 that two faces are lost as well as two edges, so
γ(D̃5) = γ(D̃6).

Case 2. The first operation on G is R4.

Then there are two adjacent vertices u and v both of degree 3. Let the
neighbours of u be u1,u2, and v, and the neighbours of v be v1, v2, and u.
Let G1 be the graph resulting from replacing u and v with triangles u1u2u3
and v1v2u3, respectively, and note that u3 belongs to both triangles and has
degree 4. It cannot be that this R4 operation is followed by deleting one of
the edges. Suppose to the contrary that a graph G2 is obtained by deleting,
without loss of generality, u1u3 of G1. Consider the graph G3 obtained from
G by contracting the edge uu2. Note that G3 is isomorphic to G2−v1v2, and
since an embedding of G3 in S where v is of degree 3, it is always possible to
insert v1v2 into this embedding, so that G2 embeds in S. Now suppose instead
that G2 is obtained by deleting an edge, without loss of generality, u1u2 of
G1. Yet G2 is isomorphic to the graph obtained from G by an R3 operation
on the vertex v. However, it is already dealt with in Case 1. Ultimately, G1

must be an obstruction in M1.
Then perform the exact same construction as in Case 1 on the triangle

u1u2u3 of G1 to obtain an embedding D̃6 of Euler genus γ(S) + 1 where the
edges of the triangle u1u2u3 are removed and replaced by a vertex u adjacent
to u1, u2, and u3. Also note that in this construction, either Y must be empty,
or both X and Y have one vertex each, without loss of generality, X = {v1}
and Y = {v2}.

49

If Y is empty, then X = {v1v2}. Obtain a new embedding D̃7 from D̃6

by subdividing the edge v1v2 with a new vertex v, insert edge vu3 with −1
signature into the angles v1vv2 and v1u3v2, and delete the edges v1u3 and
v2u3. Next get the embedding D̃8 from D̃7 by contracting the edge uu3. This
results in an embedding D̃8 of G with Euler genus γ(S) + 1.

If Y is not empty, obtain a new embedding D̃7 from D̃6 by removing
the edge v1u3 and subdividing v2u3 with a new vertex v. Notice that D̃7

would be an embedding in S except for one edge of negative signature uu1.
Then see that v1 and v are in the boundary of a shared face in D̃7 and are
corners of angles with opposite parity so that an edge vv1 can be inserted
with signature −1 to obtain an embedding D̃8. The embedding D̃9 obtained
from D̃8 by contracting the edge u3v results in an embedding of G with Euler
genus γ(S) + 1.

50

Chapter 6

Depictions of Embeddings

Working with orientable and nonorientable embeddings of various Euler genus
graphs is complex and this work is eased by having a way to visualize embed-
dings. Therefore, this chapter defines in Section 6.1 a depiction as a plane
embedding that uses cycles to represent crosscaps, handles, and twisted han-
dles of some higher Euler genus embedding. It is obvious that there can be
more than one depiction for a given nonorientable embedding of Euler genus
greater than zero, but some interesting examples are considered in Section
6.2. Lastly, in Section 6.3, a O(n2) time algorithm is given for finding a
depiction.

6.1 Definitions

First, consider the following example construction involving an embedding
that has a crosscap. Suppose that we have an embedding G̃ on the projective
plane, with edges Q that use the crosscap in cyclic order

(u1, v1), (u2, v2), . . . , (uk, vk).

First subdivide each edge of Q twice so that edge (ui, vi) becomes the path
uiaibivi. Next remove the edges (ai, bi) for i = 1, . . . , k. Then add edges
to create a cycle a1a2 · · · akb1b2 · · · bk. When adding the cycle, the resulting
rotation systems should be:

a1: u1, a2, bk,

ai: ui, ai+1, ai−1, for i = 2, 3, . . . , k − 1,

51

ak: uk, b1, ak−1,

b1: v1, b2, ak,

bi: vi, bi+1, bi−1, for i = 2, 3, . . . , k − 1,

bk: vk, a1, bk−1.

An example is given in Figures 6.1 and 6.2 where five edges crossing in cyclic
order are replaced as described. Note that during the construction, before
inserting the cycle edges, the face involving the (ui, ai) and (vi, bi) edges could
be walked to obtain the angles where the cycle edges should be inserted.

Figure 6.1: An example of an embedding drawn with 5 edges crossing in a
cyclic order.

52

Figure 6.2: An example of an embedding where 5 crossing edges in the cyclic
order presented in Figure 6.1 are subdivided and modified as discussed. A
cycle C representing a crosscap is indicated with red edges, and note that
the resulting embedding is planar.

This example involving a projective-plane obstruction motivates a con-
struction for embeddings in general. Define a feature to be any one of a
crosscap, twisted handle, or handle. Suppose that G̃ is an embedding with
t features F1, F2, . . . , Ft. If for feature Fi, the cyclic order of edges going
over the feature from one side to the other is (u1, v1), . . . , (uk, vk) then the
feature is represented by adding two new sets of vertices Ai and Bi where
|Ai| = |Bi| = k. Edge (uj, vj) is subdivided twice to be the path ujajbjvj
and the edge (aj, bj) is removed. Then edges are added to the embedding as
follows:

• for a crosscap, insert the edges in the cycle a1a2 · · · akb1b2 · · · bk;

53

• for a twisted handle, insert the edges in the cycle a1a2 · · · ak and the
cycle b1b2 · · · bk;

• for a handle, insert the edges in the cycle a1a2 · · · ak and the cycle
bkbk−1 · · · b2b1.

The rotation systems for the cycles are chosen so that the interiors of these
new cycles are empty. For the crosscap, the rotation systems were already
given in the previous example. For a handle, the rotation systems should be:

a1: u1, a2, ak,

ai: ui, ai+1, ai−1, for i = 2, 3, . . . , k − 1,

ak: uk, a1, ak−1,

b1: v1, bk, b2,

bi: vi, bi−1, bi+1, for i = 2, 3, . . . , k − 1,

bk: vk, bk−1, b1.

For a twisted handle, the rotation systems should be:

a1: u1, a2, ak,

ai: ui, ai+1, ai−1, for i = 2, 3, . . . , k − 1,

ak: uk, a1, ak−1,

b1: v1, b2, bk,

bi: vi, bi+1, bi−1, for i = 2, 3, . . . , k − 1,

bk: vk, b1, bk−1.

To visualize the features in 3D, vertex aj is identified with bj and the new
cycle edges are removed. For this reason, vertices aj and bj are called a pair.

Formally, for an embedding G̃, a depiction consists of a planar embedding
H̃ with vertex set partitioned into 2t + 1 parts where t is the number of
features:

V (H) = V (G) ∪ A1 ∪ A2 ∪ · · · ∪ At ∪B1 ∪B2 ∪ · · · ∪Bt.

54

Each Ai and Bi together represents some feature. If k edges use this feature,
then |Ai| = |Bi| = k. Vertices aj ∈ Ai and bj ∈ Bi are degree three.
When the faces of the resulting planar embedding are traversed in a common
direction, clockwise or counterclockwise, then for:

• a crosscap, the cycle C : a1a2 . . . akb1b2 . . . bk is a face, or CR is a face;

• a handle, then cycles C1 : a1a2 . . . ak and C2 : bk−1 . . . b2b1 are faces, or
CR

1 and CR
2 are faces;

• a twisted-handle, then cycles C1 : a1a2 . . . ak−1 and C2 : b1b2 . . . bk−1 are
faces, or CR

1 and CR
2 are faces.

Define the vertices of Ai and Bi as feature vertices. Further define H̃ to
depict an embedding G̃. The edges uv of H̃ with u, v ∈ V (G) correspond to

edges uv in G̃ with +1 signature. Delete all edges (u, v) where u, v ∈ Ai∪Bi,
identify all vertices ai with bi and label the new vertex as ai, and define
the sign of ai to be +1 if ai corresponds to a handle face, and −1 if ai
corresponds to a crosscap or twisted-handle face of H̃. Then for half edges
ua, where u ∈ V (G) and at1 is a feature vertex, find the vertex v at the
end of the path P : uat1at2 . . . atpv with each ati a feature vertex. Then

the corresponding edge uv in G̃ has signature equal to
∏p

j=1 sign(atj). Only
simple graphs G are considered, so that there cannot be more than one such
path P . Intuitively, each aj corresponds to the edge uv using a twist if aj
lies on a crosscap or twisted-handle cycle, and uv using a handle if aj lies on
a handle cycle. In Figure 6.3, an embedding of a torus obstruction with 15
vertices is depicted by a planar graph with blue handle faces, a red crosscap
face, and feature vertices labelled 16 to 28.

55

Figure 6.3: An example of a depiction of a torus obstruction with 15 vertices,
labelled 0 to 14, embedded in N3 where the handle faces are indicated in blue,
the crosscap face is indicated in red, and the feature vertices are labelled 15
to 28, with the first of each pair numbered odd 2k− 1 and the second in the
pair numbered 2k, for k = 8, 9, . . . , 16.

6.2 Different Depictions of the Same Embed-

ding

A signed combinatorial embedding G̃ does not explicitly assign surface points
to graph vertices and edges. However, a vertex in V (G) of any depiction must

56

have the same rotation system as that in G̃, where the appearance of some
vertices in adjacency lists are replaced by appearances of feature vertices.
However, depictions H̃ of G̃ may be drastically different depending on how
the feature vertices are setup corresponding to edges in G̃. Further, any
subset S of the surface can be continuously deformed, so to categorize parts
of G̃ for a depiction by assigning sets Ai and Bi then leads to the following
questions:

(1) Is the embedding nonplanar?

(2) If yes, which combination of features will be used to help depict the
surface?

(3) Which edges in the graph will use each feature?

The Classification Theorem of Surfaces [Kos80] implies that for the Klein
bottle two crosscaps are homeomorphic to a twisted handle, and for any sur-
face with three or more crosscaps, any two of them are homeomorphic to a
twisted handle, or exclusively, a handle while using the third crosscap. So
which features should be used? Altogether, surfaces of nonorientable genus
two or more will involve different depictions potentially using completely dif-
ferent feature vertices. On such surfaces, one may choose some combination
of twisted handles, crosscaps, and handles to get a depiction, but a poor
choice may force edges of the graph to use a handle, crosscap, or twisted
handle more than once, as seen in Figure 6.7 with the dashed edges inside
the orange and green coloured faces. However, for some embeddings, edges
using a feature more than once may be necessary no matter what features
are used to create a depiction. Perhaps there are algorithms for finding a
depiction with a minimal number of edges using features more than once.

When depicting an embedding on any nonorientable surface of genus
greater than one, we must consider what combination of features will be
used. Obviously, the projective plane must be depicted with a crosscap, and
any orientable surface depicted with handles. It should be possible to find
polynomial-time algorithms to convert between the different depictions with-
out any switching of vertices for these situations and this remains an open
problem.

Figures 6.4, 6.5 show examples of different depictions of an embedding
first represented with one handle and a crosscap, and second, with three
crosscaps. Figures 6.6, 6.7 give the reverse situation, showing examples of

57

different depictions of an embedding first represented with three crosscaps,
and second, with one handle and a crosscap.

Figure 6.4: A depiction of an embedding G̃1 with 12 vertices embedded
in the surface N3 with one crosscap (outlined red circle) and one handle
(two outlined blue circles identified as indicated). Three separate faces are
coloured yellow, green, and orange to help indicate the same faces in Figure
6.5. Note that feature vertices are omitted.

Figure 6.5: Another depiction of the embedding G̃1 from Figure 6.4 with
12 vertices embedded in the surface N3 with three crosscaps (outlined red
circles), and with three separate faces coloured yellow, green, and orange to
help indicate the same faces in Figure 6.4.

58

Figure 6.6: A depiction of an embedding G̃2 with 15 vertices embedded in
the surface N3 with three crosscaps (outlined red circles), and with three
separate faces coloured yellow, green, and orange to help indicate the same
faces in Figure 6.7.

59

Figure 6.7: A depiction of the embedding G̃2 from Figure 6.6 with 15 vertices
embedded in the surface N3 with one crosscap (outlined red circle) and one
handle (two outlined blue circles identified as indicated). Three separate
faces are coloured yellow, green, and orange to help indicate the same faces
in Figure 6.6. Note that the dashed edges in the green and orange faces use
both the crosscap and handle.

6.3 Algorithm to Obtain a Depiction

Visualizing graphs is itself a huge area of research. A practical approach is
sought in order to develop an algorithm that will construct a plane embedding
depiction using the augmented rotation systems data structure. Then any
visualization techniques for plane embeddings others may wish to apply can
do so as needed. It should be emphasized here that the resulting plane

60

embedding may include loops and multiple edges, but this should not pose
any problems since twin pointers are used.

Suppose a depiction of some combinatorial embedding G̃ is desired. An
obvious first step for constructing a planar embedding D̃ from G̃ is to set
V (D) = V (G) and insert +1 signature edges of a spanning tree T of G̃ while
keeping the rotation systems of each vertex in the same order. Switches
on the vertices of G̃ can be performed to obtain such a tree if necessary.
Use a subembedding H̃ of G̃ identical to D̃ at this point. Use H̃ to guide
the construction of D̃ by inserting into H̃ each remaining edge of G̃ not in
the tree T . Suppose there is such an edge e = uv at an arbitrary stage of
iteration. By Theorem 3.1 there are three possible changes in genus to H̃
after inserting e, ∆ = 0, 1, or 2. Together with the signature s of e, this
dictates:

• for ∆ = 2 and s = 1, add a handle feature to D̃ (Algorithm 6.8),

• for ∆ = 2 and s = −1, add a twisted-handle feature to D̃ (Algorithm
6.8),

• for ∆ = 1 add a crosscap feature to D̃ (Algorithms 6.9),

• for ∆ = 0 no features are added (this case is handled by Algorithms
6.10, 6.11, and 6.4).

A face walk in D̃ may involve feature vertices, so that Algorithm 3.2 cannot
be applied, because when a feature vertex is visited during the walk, then the
walk must jump to the other vertex of its pair in the feature, and continue
the walk from there. The walk must also use each twist feature vertex pair
to switch between clockwise and counterclockwise direction when jumping
from the first visited feature vertex visited in the pair to the second.

The following methods are needed in the AugRotSystem object:

• AugRotSystem(AugRotSystem G): a constructor that sets up rota-
tion systems from a spanning tree T of the input embedding G with
face num of each AdjNode set to 0 and angle parity set to +1,

• FindPlace (Algorithm 6.1),

• Subdivide (Algorithm 6.2),

• InsertLoop (Algorithm 6.3),

61

• WalkHalfFace (Algorithm 6.4).

Other supporting data structures are also needed:

• PathNode with members:

– angle ptr: an AdjNode pointer corresponding to an angle,

– next: a PathNode pointer to the next node in a list,

– prev: a PathNode pointer to the previous node in a list,

and a constructor method that takes an AdjNode pointer as input to
assign to angle ptr and appends the new PathNode at the end of a list,

• PathList with members:

– path start: a PathNode pointer to the start of this list,

– path rear: a PathNode pointer to the last node of this list,

– size: the number of nodes in this list,

and methods:

– append(AdjNode ptr): inserts ptr at the end of this PathList,
updates path rear, and increments size by one,

– del front(): removes the first PathNode in this PathList and
decrements size by one,

– del rear(): removes the last PathNode in this PathList and
decrements size by one.

The new data structure Depiction has members:

• G: an AugRotSystem representing the embedding to be depicted,

• H: an AugRotSystem representing a subembedding of G,

• D: an AugRotSystem that is the depiction of the embedding G,

• original n: an integer indicating the original number of vertices in G,

• feature number: an integer array keeping track of which feature vertices
belong to which features,

62

• feature type: an integer array keeping track of which feature vertices
belong to which type of feature,

• NMAX: a static integer constant for the maximum number of vertices
available,

• UNDEFINED: a static integer sentinel value −1 for a vertex with unde-
fined feature number,

• ORIGINAL: a static integer constant 0 corresponding to non-feature ver-
tices,

• HANDLE: a static integer constant 1 corresponding to feature vertices of
a handle,

• CROSSCAP: a static integer constant 2 corresponding to feature vertices
of a crosscap,

• TWISTED HANDLE: a static integer constant 3 corresponding to feature
vertices of a twisted handle,

and methods:

• Depiction (Algorithm 6.5),

• InsertDepictionChords (Algorithm 6.6),

• GetPair (Algorithm 6.7),

• AddHandle (Algorithm 6.8),

• AddCrosscap (Algorithm 6.9),

• SubdivideFeatureEdges (Algorithm 6.10),

• AddEdgesBetweenFeatures (Algorithm 6.11).

Algorithm 6.1. Find Place

INPUT:

• an integer vertex label u,

63

• an integer pos corresponding to a position number to compare with
my position values in the adjacency list of u.

ACTION:

• returns an AdjNode pointer to the desired position in the adjacency
list of u.

FindPlace(u, pos) {
1) AdjNode ptr;
2) // check if new node belongs at end of list

3) if (V [u].prev.my position < pos)

4) return V [u].prev;
5) // otherwise, it belongs somewhere in the middle

6) ptr = V [u];
7) while (ptr.next.my position < pos) {
8) ptr = ptr.next;
9) }
10) return ptr;
}

Algorithm 6.2. Subdivide

INPUT:

• an AdjNode pointer ptr corresponding to some adjacency in a rotation
system,

• only meant for use with a planar depiction, so the edge corresponding
to ptr has a different face on either side.

ACTION:

• inserts a new vertex connected to the ends of the edge corresponding
to ptr,

• updates the faces either side of the edge corresponding to ptr.

Subdivide(ptr) {
1) AdjNode rear, ptr v;
2) ptr v = ptr.twin;

64

3) WalkOneFace(ptr);

4) WalkOneFace(ptr v);

5) ptr.u = n;
6) ptr v.u = n;
7) V [n] = new AdjNode(n, ptr.x, 1, NULL, NULL);

8) rear = new AdjNode(n, ptr v.x, 1, V [n], V [n]);
9) V [n].twin = ptr;
10) ptr.twin = V [n];
11) rear.twin = ptr v;
12) ptr v.twin = rear;
13) degree[n] = 2;
14) m++;

15) n++;
}

Algorithm 6.3. Insert Loop

INPUT:

• a AdjNode pointer ptr corresponding to the angle where one end of an
edge is to be inserted.

ACTION:

• a new vertex labelled n with a loop on n is added to the augmented
rotation system corresponding to ptr and an edge inserted between
ptr.twin.u and n.

InsertLoop(ptr) {
1) AdjNode rear, n1, n2;
2) int u;
3) // remove the old face

4) WalkOneFace(ptr);

5) f--;
6) // add the loop

7) V [n] = new AdjNode(n, n, 1, NULL, NULL);

8) rear = new AdjNode(n, n, 1, V [n], V [n]);
9) V [n].twin = rear;
10) rear.twin = V [n];
11) // add edge from new vertex to u

65

12) u = ptr.twin.u;
13) n1 = new AdjNode(n, u, 1, rear, V [n]);
14) n2 = new AdjNode(u, n, 1, ptr, ptr.next);
15) n1.twin = n2;
16) n2.twin = n1;
17) degree[n] = 3;
18) degree[u]++;
19) // update new faces

20) WalkOneFace(V [n]);

21) f++;
22) WalkOneFace(V [n].next);

23) f++;
24) n++;
25) m = m+ 2;
26) g = 2− n+m− f;
}

Algorithm 6.4. Walk Half Face

INPUT:

• a Depiction d,

• an AdjNode pointer ptr u for the first angle of d to begin the walk,

• an AdjNode pointer ptr v for the last angle of d to finish the walk.

ACTION:

• returns a PathList path, starting with ptr u, followed by pointers to
edges of features visited during the walk, and ending with ptr v.

WalkHalfFace(d, ptr u, ptr v) {
1) boolean done;
2) AdjNode ptr;
3) int pair, dir;
4) PathList path = new PathList();

5) path.append(ptr u);
6) ptr = ptr u;
7) dir = 1;

66

8) do {
9) // walking on original vertex, nothing is saved

10) if (ptr.twin.u < d.G.n) {
11) if (dir == 1)

12) ptr = ptr.next.twin;
13) else

14) ptr = ptr.prev.twin;
15) } else {
16) // add the edge pointer to subdivide later

17) if (dir == 1) {
18) // at non-feature edge, want edge CW from this

19) path.append(ptr.next);

20) } else {
21) // at non-feature edge, want edge CCW from this

22) path.append(ptr.prev);

23) }
24) // find the paired vertex

25) pair = d.GetPair(ptr.twin.u);

26) ptr = V [pair];
27) if (d.feature type[ptr.twin.u] 6= Depiction.HANDLE)

28) dir = −dir;
29) // move to adjacency that is not on this feature

30) while (

d.feature number[ptr.twin.u] == d.feature number[ptr.u])

31) ptr = ptr.next;
32) if (dir == 1)

33) path.append(ptr.prev);

34) else

35) path.append(ptr.next);

36) ptr = ptr.twin;
37) } // end of walking a feature

38) if (path.size ≥ 5) {
39) int x1, x2;
40) x1 = path.path rear.angle ptr.twin.u;
41) x2 = path.path rear.prev.prev.angle ptr.twin.u;
42) if (d.feature number[x1] == d.feature number[x2]) {
43) for (int i = 0; i < 4; i++)
44) path.del rear();

67

45) }
46) }
47) done = false;

48) if (ptr == ptr v and dir == 1)

49) done = true;

50) if (ptr.prev == ptr v and dir == −1)

51) done = true;

52) } while (!done);

53) path.append(ptr v);

54) return path;
}

Algorithm 6.5. Depiction

INPUT:

• an augmented rotation system oldG representing an embedding.

ACTION:

• creates a plane embedding depiction D of oldG.

Depiction(oldG) {
1) G = oldG;
2) G.InitPositions();
3) H = new AugRotSystem(G);
4) D = new AugRotSystem(G);
5) feature type = new int[NMAX];

6) feature number = new int[NMAX];

7) num feature = 0;
8) for (int i = 0; i < G.n; i++) {
9) feature type[i] = ORIGINAL;

10) feature number[i] = UNDEFINED;

11) }
12) InsertDepictionChords();

}

Algorithm 6.6. Insert Depiction Chords

ACTION:

68

• inserts the edges ofG not in T intoD in the order given in the adjacency
lists of G,

• any features needed during edge insertion are added to D.

InsertDepictionChords() {
1) PathList p1, p2, p;
2) AdjNode h ptr1, h ptr2;
3) AdjNode d ptr1, d ptr2;
4) int u, v, pu, pv;
5) boolean need crosscap;
6) boolean need handle;
7) int new sign;
8) int new g;
9) for (u = 0; u < G.n; u++) {
10) AdjNode ptr = G.V [u];
11) for (int j = 0; j < G.degree[u]; j++) {
12) v = ptr.u;
13) if (u < v and G.T.A[u][v] == 0) {
14) pu = ptr.my position;
15) pv = ptr.twin.my position;
16) new sign = ptr.sign;
17) h ptr1 = H.FindPlace(u, pu);

18) h ptr2 = H.FindPlace(v, pv);

19) d ptr1 = D.FindPlace(u, pu);

20) d ptr2 = D.FindPlace(v, pv);

21) new g = H.NewGenus(h ptr1, h ptr2, new sign);

22) if (new g −H.g == 1)

23) need crosscap = true;

24) else

25) need crosscap = false;

26) if (new g −H.g == 2)

27) need handle = true;

28) else

29) need handle = false;

30) H.AddEdge(h ptr1, h ptr2, new sign);

31) h ptr1.next.my position = pu;
32) h ptr2.next.my position = pv;

69

33) if (need handle)

34) AddHandle(d ptr1, d ptr2, new sign);

35) else {
36) p1 = D.WalkHalfFace(d ptr1, d ptr2, this);

37) p2 = D.WalkHalfFace(d ptr2, d ptr1, this);

38) if (p1.size ≤ p2.size)

39) p = p1;
40) else

41) p = p2;
42) if (need crosscap) {
43) AddCrosscap(p.path start.angle ptr);

44) // put angle of loop on path list instead of

first angle

45) p.path start.angle ptr = D.V [n− 1];
46) }
47) SubdivideFeatureEdges(p.path start);

48) AddEdgesBetweenFeatures(p.path start);

49) }
50) d ptr1.next.my position = pu;
51) d ptr2.next.my position = pv;
52) }
53) ptr = ptr.next;
54) }
55) }
}

Algorithm 6.7. Get Pair

INPUT:

• an integer vertex label v corresponding to one of a pair in a feature of
this depiction.

ACTION:

• returns the label of the other vertex of the pair corresponding to v.

GetPair(v) {
1) if (v < G.n)

2) return -1; // not paired

70

3) if (G.n % 2 == v % 2)

4) return (v + 1);
5) else

6) return (v − 1);
}

Algorithm 6.8. Add Handle

INPUT:

• an AdjNode d ptr1 corresponding to the angle where we want to insert
one end of an edge in this depiction,

• an AdjNode d ptr2 corresponding to the angle where we want to insert
the other end of an edge in this depiction,

• an integer new sign for the signature of the edge to be inserted.

ACTION:

• one part of a handle structure added to this depiction, consisting of a
new vertex labelled n with a loop, and a new edge between d ptr1.twin.u
and n,

• the other part of a handle structure added to this depiction, consisting
of a new vertex labelled n + 1 with a loop, and a new edge between
d ptr2.twin.u and n+ 1.

AddHandle(d ptr1, d ptr2, new sign) {
1) D.InsertLoop(d ptr1);

2) D.InsertLoop(d ptr2);

3) if (new sign == −1)

4) type = TWISTED HANDLE;

5) else

6) type = HANDLE;

7) feature type[D.n− 2] = type;
8) feature type[D.n− 1] = type;
9) feature number[D.n− 2] =num feature;
10) feature number[D.n− 1] =num feature;
11) num feature++;
}

71

Algorithm 6.9. Add Crosscap

INPUT:

• an AdjNode angle ptr corresponding to the angle where we want to
insert an edge in this depiction.

ACTION:

• a crosscap structure added to this depiction, consisting of a new vertex
labelled n with a loop that is subdivided to have a new vertex labelled
n+ 1, and a new edge between angle ptr.twin.u and n.

AddCrosscap(angle ptr) {
1) D.InsertLoop(angle ptr);

2) D.Subdivide(D.V [D.n− 1]);

3) feature type[D.n− 2] = CROSSCAP;

4) feature type[D.n− 1] = CROSSCAP;

5) feature number[D.n− 2] = num feature;
6) feature number[D.n− 1] = num feature;
7) num feature++;
}

Algorithm 6.10. Subdivide Feature Edges

INPUT:

• a PathNode pointer p ptr corresponding to the start of a sequence of
feature edges in this depiction, but note that the first and last item in
the list correspond to angles of this depiction that are not on features.

ACTION:

• each feature edge in the list of p ptr is subdivided, and the node in the
list of p ptr is replaced with a pointer to the new angle to be used for
inserting edges later.

SubdivideFeatureEdges(p ptr) {
1) AdjNode sub ptr;
2) int dir = 1;
3) // from second entry to second last one

72

4) while (p ptr.next 6= NULL) {
5) p ptr = p ptr.next;
6) if (p ptr.next 6= NULL) {
7) sub ptr = p ptr.angle ptr;
8) boolean first side of feature = ((G.n % 2) == (D.n % 2));
9) feature type[D.n] = feature type[sub ptr.twin.u];
10) feature number[D.n] = feature number[sub ptr.twin.u];
11) D.Subdivide(sub ptr);

12) // replace subdivide edge pointer with angle of feature

13) if (dir == 1 and first side of feature)

14) p ptr.angle ptr = D.V [D.n− 1];
15) else if (dir == 1)

16) p ptr.angle ptr = D.V [D.n− 1].next;
17) else if (dir == −1 and first side of feature)

18) p ptr.angle ptr = D.V [D.n− 1].next;
19) else

20) p ptr.angle ptr = D.V [D.n− 1];
21) // walk over a twist?

22) if (feature type[p ptr.angle ptr.twin.u] 6=
Depiction.HANDLE and first side of feature)

23) dir = −dir;
24) }
25) }
}

Algorithm 6.11. Add Edges Between Features

INPUT:

• a PathNode pointer p ptr for the start of a sequence of angles we want
to add edges between.

ACTION:

• an edge inserted to this depiction for each (2i)th and (2i + 1)th angles
in the sequence of p ptr.

AddEdgesBetweenFeatures(p ptr) {
1) while (p ptr 6= NULL) {
2) D.AddEdge(p ptr.angle ptr, p ptr.next.angle ptr, 1);

73

3) p ptr = p ptr.next.next;
4) }
}

74

Chapter 7

Irreducible Triangulations

This chapter begins by summarizing a survey of basic results for irreducible
triangulations in Section 7.1. Section 7.2 collects observations made, where
the main result gives the different possible subembeddings of a region of an
irreducible triangulation bound by homotopic cycles. Evidence towards the
truth of the Successive Surface Scaffolding Conjecture is organized according
to surface into Subsections 7.2.1 to 7.2.3.

7.1 Introduction

A triangulation of a surface S is an embedding on S such that every face is
bound by exactly three edges. An edge e of a triangulation is contractible if
contracting e and removing multiple edges results in another triangulation of
the surface. An example of edges which are contractible is seen in Figure 7.7
of Section 7.2.2. An irreducible triangulation has no contractible edges, and it
also has the property that any two triangles share at most one edge. Note that
the condition limiting the number of shared edges between triangles forces
an embedding of K4 in the plane to be isomorphic to the only irreducible
triangulation of the plane, as opposed to an embedding of K3 which has
two triangular faces sharing all three edges. One can use the unlabelled
embedding of K4 to generate all other triangulations of the plane that are
not K3 by vertex splitting and edge insertions [LN97]. Note that after an
embedded vertex split on v is performed in some triangulation T so that new
vertices v1 and v2 are obtained, the resulting graph has two faces f1 and f2
of size four incident on both v1 and v2, and inserting an edge into f1 and

75

another edge into f2 in any of the four possible ways will result in a larger
triangulation than T .

Barnette proved there are exactly two irreducible triangulations of the
projective plane [Bar82]. These are pictured in Figure 7.5 found in Section
7.2.1.

Lawrencenko and Negami [LN97] generated 25 irreducible triangulations
for the Klein bottle. Their list is not complete. We explain what they missed
after presenting some of their basic arguments. A foundational lemma is used
which they refer to in establishing their results. The proof of Lemma 7.1 is
also beneficial to observe.

Lemma 7.1. [LN97] A triangulation T on any surface other than the sphere
is irreducible if and only if every edge of T lies in an essential cycle of length
three.

Proof. Suppose T is an irreducible triangulation of some surface other than
the sphere, and that there exists some edge e that is not in an essential 3-
cycle. Then the end vertices of e could only have two common neighbours,
those which complete the two triangles on either side of e. Hence, contracting
e and removing any redundant edges results in a smaller triangulation, which
contradicts T being irreducible.

On the other hand, suppose a triangulation T has every edge in an essen-
tial 3-cycle. Then for any edge e let one of its essential 3-cycles be C = eu
for some third vertex u. Then contracting e results in an embedding with
multiple edges incident on u and removing any of them increases the size of
some face to be larger than a triangle. Hence, T with e contracted is not a
triangulation. Therefore, T is an irreducible triangulation.

It is because of Lemma 7.1 that an edge e is called essential if e is in an
essential 3-cycle of an embedding. Further, for any edge uv, without loss of
generality for the vertex u, there are two triangular faces on either side of uv
which give three incidences on u and an edge completing an essential 3-cycle
with uv gives a fourth incidence on u. Therefore, Lemma 7.1 implies every
vertex must have degree at least four.

Lawrencenko and Negami [LN97] incorrectly claim that there are only
25 irreducible triangulations for the Klein bottle. The correct total is 29
irreducible triangulations of the Klein bottle, the extra four were found by
Sulanke [Sul06c]. One omission error by Lawrencenko and Negami arises
from assuming there could not be a chord outside a certain planar region as

76

they attempt to build irreducible triangulations in all possible ways, but such
a chord is actually possible. The other omission error is from missing possible
ways of inserting edges into a partially triangulated embedding. Lawrencenko
and Negami have structural properties that hold true for all the irreducible
Klein-bottle triangulations, reconfirmed by Sulanke, that are aesthetic and
concise, some are emphasized in the following thereom.

Theorem 7.2. [LN97, Sul06c] Every irreducible triangulation of the Klein
bottle has all of the following properties.

(a) a disjoint pair of longitudes and a meridian which crosses each of the
longitudes only once,

(b) a meridian and an equator which crosses each other at precisely two
vertices,

(c) a Hamilton cycle which is planar on the Klein bottle,

(d) a Hamilton cycle which is a meridian,

(e) a Hamilton cycle which is a longitude, and

(f) a Hamilton cycle which is an equator.

Also, Theorem 12 of [LN97] states that “a triangulation of the Klein bottle
includes two disjoint meridians if and only if it does not include an equator
of length 3,” and this is again reconfirmed by Sulanke [Sul06c]. Lemma 4
of [LN97] states that, the irreducible triangulations of the Klein bottle can
be classified into two disjoint classes, handle type and crosscap type. The
former, handle type irreducible triangulations have a meridian 3-cycle and
no equator 3-cycle, while the latter, crosscap type irreducible triangulations
have an equator 3-cycle and no meridian 3-cycle. There are 25 irreducible
triangulations of handle type and 4 of crosscap type. The argument to obtain
the classification is not trivial, and involves cutting along essential cycles to
break up the surface into regions to force where the crosscaps must reside.
There is only one irreducible triangulation of the Klein bottle that is also em-
beddable on the torus which they call Kh1 (where K denotes the Klein bottle
and h1 denotes the first among handle types). A depiction of Kh1 is drawn
flat with vertical boundary identified in antiparallel and horizontal boundary
identified in parallel in the centre of Figure 7.15. Because every triangulation

77

of the Klein bottle can be constructed from some irreducible triangulation of
the Klein bottle and a sequence of vertex splits, it follows immediately from
Theorem 7.2 that properties (a)–(f) apply to every triangulation of the Klein
bottle. See Table 7.4 for counts of irreducible triangulations of the Klein
bottle based on their orders and minimum degrees.

Lawrencenko proved there are exactly 21 irreducible triangulations of the
torus [Law87]. See Table 7.1 for counts of the torus irreducible triangulations
based on their orders and minimum degrees.

Barnette and Edelson [BE88, BE89] proved that the number of irreducible
triangulations for any surface is finite. They also state that all other trian-
gulations can be generated by sequences of vertex splits plus inserting edges.

Sulanke [Sul06b] computed the irreducible triangulations of the surfaces
of genus, 0, 1, and 2, for the orientable case, and 1, 2, 3, and 4, for the
nonorientable case. See Tables 7.1 – 7.6. Computer files of the irreducible
triangulations for S2, N3, and N4 are available online [Sul06a]. Also in Table
4 of [Sul06b], Sulanke establishes that any irreducible triangulation of N3 has
a noncontractible separating cycle of length at most 6.

Joret and Wood [JW10] derived an upper bound on the order of any irre-
ducible triangulation of a surface S to be 13g− 4, where g is the Euler genus
of S. This evaluates to 22 for the Klein bottle, yet the largest irreducible
Klein triangulation has only 11 vertices.

There are other results by Sulanke in [Sul06a] to consider, such as the
following. Take any vertex v in an irreducible triangulation. Let u1, u2, . . . , ud
be the cyclic order of the neighbours about vertex v. Define the link(v) as
the cycle u1u2 . . . ud. Every vertex must lie on at least two edge-disjoint
nonseparating essential cycles. An essential cycle C through v has two other
vertices u,w ∈ link(v), and let P be a shortest path between u and w on
link(v). A sufficient condition for C to be nonseparating is for P to be of
minimum length among all other such P for each essential cycle through v.

7.2 Results

With the motivation to explore the Successive Surface Scaffolding Conjecture
as much as possible, any further information about irreducible triangulations
may enlighten directions toward its proof. This section presents new theo-
rems with respect to irreducible triangulations.

Lemma 7.3. Suppose G̃ is an orientable embedding of genus g with 3n +

78

n irreducible δ ≥ 3 δ ≥ 4 δ ≥ 5 δ ≥ 6
7 1 1 1 1 1
8 4 7 6 4 1
9 15 112 75 24 2
10 1 2109 887 112 1

Table 7.1: ([Sul06a]) Number of triangulations of the torus, S1. For all ta-
bles of triangulation counts δ denotes minimum degree of the triangulations.
There is a total of 21 irreducible triangulations.

n irreducible δ ≥ 3 δ ≥ 4 δ ≥ 5 δ ≥ 6 δ ≥ 7
10 865 865 865 750 298 3
11 26276 113506 93684 53270 7044 4
12 117047 7085444 4377179 1470379 64820 6
13 159205 290085272 126901868 23973881 356293 −
14 54527 9022585751 2712461256 281502783 1429448 −
15 38195 231102712868 47018397869 2652648134 4644258 −
16 664 − 700632975127 − − −
17 5 − 9322057619556 − − −

Table 7.2: ([Sul06a]) Number of triangulations of the double torus, S2.

6(g−1) edges, or a nonorientable embedding of genus k with 3(n+k−2) edges.

Then G̃ is an irreducible triangulation if and only if for every edge uv in G̃,
together u and v have at least three common neighbours; i.e., |N(u)∩N(v)| ≥
3.

Proof. Suppose G̃ is an irreducible triangulation. Lemma 7.1 gives an essen-
tial 3-cycle C for any edge e = uv of G̃, so that u and v have at least three
common neighbours: in the triangle on one side of e, in the triangle on the
other side of e, and the one in C.

If G̃ is not an irreducible triangulation, then there exists some con-
tractible, non-essential edge e = uv. Suppose the triangular faces on either
side of e are formed with vertex t and vertex w. Then the only multiple edges
formed by contracting e are from edges tu, tv, and wu and wv. Therefore, it
cannot be that u and v share a third neighbour.

Without Lemma 7.3, in order to check that an embedding G̃ is an ir-

79

n irreducible δ ≥ 3 δ ≥ 4 δ ≥ 5
6 1 1 1 1
7 1 3 2 0

Table 7.3: ([Sul06a]) Number of triangulations of the projective plane, N1.

n irreducible δ ≥ 3 δ ≥ 4 δ ≥ 5 δ ≥ 6
8 6 6 6 5 −
9 19 187 133 38 1
10 2 4462 1971 250 1
11 2 86968 23541 1246 0

Table 7.4: ([Sul06a]) Number of triangulations of the Klein bottle, N2, with
total 29 irreducible triangulations.

reducible triangulation, one would need to find essential 3-cycles for every
edge. However, Lemma 7.3 provides a simple and quick way to check if a
triangluation is in fact an irreducible triangulation. The following new theo-
rem characterizes the triangulation subembeddings that are possible between
homotopic cycles.

v

v1 v2

v′

v

(a)

v

v1
x v2

v′

v

(b)

Figure 7.1: Case 1 for the triangulated region between homotopic essential
3-cycles C1 = vv1v

′ and C2 = vv2v
′.

Theorem 7.4. The number of possible triangulations of a region R bound by
two homotopic essential 3-cycles in an irreducible triangulation T is fourteen.
See Figures 7.1–7.4.

80

n irreducible δ ≥ 3 δ ≥ 4 δ ≥ 5 δ ≥ 6
9 133 133 133 111 23
10 2521 11784 9385 4523 190
11 4638 530278 298323 74307 758
12 1320 16306649 6162345 777348 2037
13 946 392973078 97905411 6255683 4574
14 93 8001174073 1308857389 42769083 8929
15 50 144075560093 15516720575 262073923 16026
16 7 − 168565283562 − −

Table 7.5: ([Sul06a]) Number of triangulations of the surface N3, with 9708
total irreducible triangulations.

v

v1 v2

v3 v4

v

(a)

v

v1 v2

v3 v4

v

(b)

v

v1 v2

v3 v4

z

v

(c)

Figure 7.2: Case 2 for the triangulated region between homotopic essential
3-cycles C1 = vv1v3 and C2 = vv2v4.

Proof. Take any vertex v in an irreducible triangulation T of some surface S.
Consider the essential cycles through v. Suppose two of these essential cycles
C1 6= C2 are homotopic. Then S − C1 − C2 has two regions one of which,
say R, corresponds to a continuous deformation between C1 and C2. It must
be that all other essential cycles completely contained in R are homotopic
to C1 and C2, and go through v. Note that R is a pinched cylinder when C1

and C2 are two-sided, and R is a pinched Möbius strip when C1 and C2 are
one-sided, with the pinched point at v in both instances. Also, it is trivial to
see that the cycles C1 and C2 must not be separating. This is because some
edges inside of R can be in an essential 3-cycle that partly consists of other
edges outside of R. These edges are typically the edges between neighbours
of v in R.

81

n irreducible δ ≥ 3 δ ≥ 4 δ ≥ 5 δ ≥ 6 δ ≥ 7
9 37 37 37 37 34 9
10 10347 13657 13067 10845 3864 36
11 370170 1628504 1314000 735766 87396 18
12 1891557 99694693 61111294 20568278 818072 28
13 2067817 4076362798 1787036930 341762288 4611407 −
14 956967 4076362798 38628806361 4088768693 18933909 −
15 700733 − − − − −
16 186999 − − − − −
17 89036 − − − − −
18 19427 − − − − −
19 3975 − − − − −
20 832 − − − − −
21 79 − − − − −
22 6 − − − − −

Table 7.6: ([Sul06a]) Number of triangulations of the surface N4.

Case 1. Cycles C1 and C2 share a vertex at v′ of link(v).

Let the edge e1 of C1 not be either of the two edges incident with v, and
similarly, let e2 be the edge of C2 not incident with v. Necessarily, e1 and e2
share the common vertex v′, and are chords of link(v), with vertices v1 and
v2, respectively, so that e1 = v′v1 and e2 = v′v2. Consider the path P on
link(v) from v1 to v2 that lies in the region R. For an internal vertex x on
this path, there must be an edge vx and an essential cycle C3 for vx which
can only have v′ as the third vertex of C3, forcing C3 to be homotopic to C1

and C2. Further, the vertex x must have another essential cycle C4 = v1xv2
not homotopic to C1 nor C2. There can be at most one internal vertex on
P , for if there were two internal vertices x and y, then the edge xy could not
lie on any essential 3-cycle. If there are no internal vertices for P , then all
the vertices and edges given so far form the triangulation of R. This case,
therefore, contributes to two possible triangulations of R. See Figure 7.1.

Case 2. Cycles C1 and C2 share no vertex of link(v).

Let P1 = v1 . . . v2 and P2 = v3 . . . v4 be the two paths that lie on link(v)
and intersect R. By the same argument as in the previous case, both P1 and

82

v

v1 v2

v3 v4

v′

v

(a)

v

v1 v2

v3 v4

v′

v

(b)

v

v1 v2

v3 v4

v′

v

(c)

Figure 7.3: Case 3 for the triangulated region between homotopic essential
3-cycles C1 = vv1v3 and C2 = vv2v4.

P2 may have at most one internal vertex. Continue to break into further
cases, dealing with the case for no internal vertices here.

If there are no internal vertices on P1 and P2 and let e1 = v1v3 and
e2 = v2v4 be the edges on C1 and C2, respectively. Then the region bound by
P1, P2, e1, and e2 is a cycle f of size four which is temporarily called a face
and is intended to be triangulated. Either there is a diagonal in f and the
triangulation is completed, or there is only one vertex that sits in f . There
cannot be more than one vertex x and y in f , since an edge xy in f cannot
be part of an essential 3-cycle, and without the edge xy any triangulation
of f must use a diagonal which forces both x and y to have degree 3, which
contradicts every vertex of an irreducible triangulation having degree at least
4. Thus, if there is one vertex z in f , it must be adjacent to all four vertices
of f = v1v2v4v3 and there must be at least two essential cycles on z not
homotopic to C1 nor C2. Note that the only chords outside of R to satisfy
this can be the edges v1v4 and v2v3. This case, therefore, contributes three
possible triangulations of R. See Figure 7.2.

Case 3. Path P1 has an internal vertex v′ ∈ link(v), but P2 does not.

Let f = v1v
′v2v4v3 be the region in R same as before, but now with

another vertex v′. The vertex v′ cannot be incident to a vertex z inside f ,
because v′z cannot be part of an essential 3-cycle. Therefore, v′ must be
incident with an edge e that is incident at its other end on a vertex of P2,
either v3 or v4, so that vv′e is an essential cycle and the region R breaks
apart into previous cases. However, the region inside, for example v′v2v4v3,

83

v

v1 v2

v3 v4

v′

v′′

v

(a)

v

v1 v2

v3 v4

v′

v′′

v

(b)

v

v1 v2

v3 v4

v′

v′′

v

(c)

v

v1 v2

v3 v4

v′

v′′

v

(d)

v

v1 v2

v3 v4

v′

v′′

v

(e)

v

v1 v2

v3 v4

v′

v′′

v

(f)

Figure 7.4: Case 4 for the triangulated region between homotopic essential
3-cycles C1 = vv1v3 and C2 = vv2v4.

cannot have an internal vertex, as it would have to be incident on v′, and
there cannot be a vertex inside of f incident on an internal vertex of P1, as
shown previously. Thus, this case can only have chords in the cycle f . Again,
there must be an essential 3-cycle through path P1 not homotopic to C1 nor
C2. This case leads to three possible triangulations of R. See Figure 7.3.

Case 4. Both P1 and P2 have internal vertices v′ and v′′, respectively.

Let f = v1v
′v2v4v

′′v3 be as before but now including the vertices v′ and
v′′. There can be no vertex x inside f , since such a vertex must unavoidably
be adjacent to either v′ or v′′, but this leads to a contradiction as in previous
cases. Then six triangulations of f are possible, those which do not insert
edges to connect the endpoints of P1 or connect the endpoints of P2. Notice
how one can add an edge to obtain previous cases. This last case, therefore,
contributes six possible triangulations of R. See Figure 7.4.

84

Now that the possible structures between homotopic 3-cycles are charac-
terized, we consider the conditions that trivial cycles must satisfy in an ir-
reducible triangulation. This leads to another characterization of irreducible
triangulations.

Lemma 7.5. A triangulation T of a surface S is irreducible if and only if
for every edge e of T there is no trivial cycle C vertex-disjoint from e such
that e is in the region bound by C homeomorphic to a disc, and every pair of
triangular faces of T share at most one edge.

Proof. First, note that the statement holds true on the sphere for the only
irreducible triangulation K4, since any edge and cycle of K4 cannot be vertex-
disjoint with each other. The condition that every pair of triangular faces
share at most one edge is included to ensure that K3 is not an irreducible
triangulation on the sphere. Consider any surface other than the sphere for
the remainder of the proof.

Suppose T is irreducible and there exists such an edge e vertex disjoint
with planar cycle C. Any two edges incident with e must also lie in the region
homeomorphic to a disc, and could then not be part of an essential 3-cycle
with e. But then e is contractible, which contradicts that T is irreducible by
Lemma 7.1.

On the other hand, if T is not irreducible, then there is an edge e =
(v1, v2) which when v1 and v2 are identified as vertex v and multiple edges
are removed, the result is a new triangulation T ′ of S. Then N(v) is a planar
cycle C, since T ′ is a triangulation. Obviously, C is also a planar cycle in T
and is vertex disjoint from e.

A corollary to Lemma 7.5 helps us decide which embeddings of torus
obstructions are not worth trying to extend to irreducible triangulations of
N3.

Corollary 7.6. An embedding G̃ in a surface S other than the sphere, cannot
be extended to an irreducible triangulation of S if G̃ has an edge e and a trivial
cycle C vertex-disjoint from e such that e is in the planar region bound by
C.

Call an edge of an embedding which satisfies Corollary 7.6 planar bound,
embeddings with such edges unextendable and otherwise favourable. Then

85

does every connected obstruction in M3(S1) have at least one favourable
embedding? If an embedding of such an obstruction is favourable, is it always
possible to extend it to an irreducible triangulation of N3? To this end, there
must still be devised an algorithm for selecting which edges to add and in
which faces of such favourable obstruction embeddings.

7.2.1 Plane Obstructions in N1 Irreducible Triangula-
tions

Figures 7.5 and 7.6 prove that the Successive Surface Scaffolding Conjecture
is true for k = 1 because the plane obstructions are found as subgraphs of
the irreducible triangulations of the projective plane.

Figure 7.5: Irreducible triangulations of the projective plane obtained from
adding red edges to embeddings of K3,3.

Figure 7.6: Irreducible triangulations of the projective plane obtained by
adding one or two red vertices to the two embeddings of K5. The red vertices
are made adjacent to every edge of the face they are placed inside.

86

Figure 7.7: Triangulations of the projective plane obtained by adding red
edges to embeddings of K3,3. Some red vertices are also added. Edges which
are contractible are dashed.

7.2.2 N1 Obstructions in N2 Irreducible Triangulations

Figures 7.8 – 7.25 show by brute force that the Successive Surface Scaf-
folding Conjecture is true for the connected wye-delta-order projective-plane
obstructions. At the right of each figure is a representation of each obstruc-
tion as a subgraph for clarity. The figures which have triangulations of N2

represented with a square boundary have their horizontal sides identified in
parallel and vertical sides identified in antiparallel, as explicitly shown in
Figures 7.8 and 7.9. The figures which have triangulations of N2 represented
with a boundary of two joined hexagons have vertices on the boundary cor-
ners of each hexagon in antipodal identification. Each obstruction is named
as found in Appendix A of Graphs and Surfaces [MT01].

Figure 7.8: A1 obstruction of N1 — Kc4 triangulation of N2

Consider the disconnected obstruction of two disjoint copies of K5, which
could only possibly be subgraphs of the Klein-bottle irreducible triangula-
tions Kh25, Kc2, Kc3, or Kc4. For Kh25 depicted in Figure 7.13, there are

87

Figure 7.9: A2 obstruction of N1 — Kh6 triangulation of N2

Figure 7.10: B1 obstruction of N1 — Kh6 triangulation of N2

two vertices of degree four which share only two neighbours, so that two dis-
joint copies ofK5 as a subgraph is not possible. The irreducible triangulations
Kc2, Kc3, and Kc4 can be obtained by taking two irreducible triangulations
of the projective plane and identifying a triangle from both. Since there is
only at most 7 vertices in a projective-plane irreducible triangulation, and
only four other vertices apart from a triangle, none of Kc2, Kc3, and Kc5
contain two disjoint copies of K5 as a subgraph.

Next, consider the graph E2, shown in Figure 7.26, which is not in the
set of wye-delta-order projective-plane obstructions, but is instead among
the minor-order projective-plane obstructions. Note that E2 is bipartite and
has 11 vertices. The only irreducible triangulations of the Klein bottle that
could possibly contain E2 are Kc3 and Kc4 (see Figure 7.8). The argument
for Kc3 is the same as for Kc4. Remove the three vertices a, b, and the
vertex of degree 8 at the centre of the figure, so that two copies of K4 minus

88

Figure 7.11: B3 obstruction of N1 — Kh6 triangulation of N2

Figure 7.12: C7 obstruction of N1 — Kh4 triangulation of N2

an edge remain as components. Since E2 is bipartite, the only subgraphs
that should appear if E2 has three vertices removed are paths of length 4
or cycles of length 4, but E2 always has a vertex of degree larger than 2
when any three vertices are removed. Therefore, E2 cannot possibly be a
subgraph of either Kc3 or Kc4. This establishes an example showing that
the Successive Surface Scaffolding Conjecture is not always applicable for
minor-order obstructions, nor topological obstructions of surfaces.

A complete search was done for obstructions of the projective plane within
irreducible triangulations of the Klein bottle, either as a subgraph, or a sub-
division. The algorithm used was a recursive search that considered marking
each edge of an irreducible triangulation as either used or deleted at a given
level of recursion. Pruning strategies for the recursive decision tree to speed
up computation applied simple rules:

• the minimum number of edges a projective-plane obstruction can have;
i.e., at least 15 edges;

89

Figure 7.13: D9 obstruction of N1 — Kh25 triangulation of N2

Figure 7.14: D12 obstruction of N1 — Kh7 triangulation of N2

• limiting the number of degree two vertices in a subgraph;

• limiting the number of isolated vertices in a subgraph;

• and not allowing degree one vertices.

The results were obtained by two different programmers each using different
software where the results of both separate computations match. Tables 7.7
to 7.12 give the results with some rows omitted where every entry is zero. The
obstructions are numbered in order of canonical form by nauty [MP14], and
a correspondence with their names as listed in Graphs on Surfaces [MT01]
is given in Appendix A. Also, the Klein-bottle irreducible triangulations
are numbered as listed in the file genus-2.alpha available from Sulanke
[Sul06a] within any version of a surftri download, and a correspondence
with their names as listed in the work of Lawrencenko, Negami, and Sulanke
[LN97, Sul06c] is given in Appendix B. For reference, the 103 projective-
plane obstructions categorized into four types are partitioned as follows:

90

Figure 7.15: D17 obstruction of N1 — Kh1 triangulation of N2

Figure 7.16: E3 obstruction of N1 — Kh6 triangulation of N2

• topological, {3, 8, 10, 12, 15, 20, 22, 24, . . . , 27, 29, 34, 35, 38, . . . , 41,
44, 45, 47, . . . , 52, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, . . . , 85,
87, . . . , 99, 101, 102};

• minor, {7, 17, 18, 21, 28, 30, 33, 36, 42, 43, 46, 53, 68, 100};

• wye-delta, {5, 16, 19, 23, 37, 56, 60, 69, 86};

• double-wye-delta, {0, 1, 2, 4, 6, 9, 11, 13, 14, 31, 32, 64};

and note that 64, 86, and 100 are each disconnected. For consideration of
Conjecture 1.2, all connected double-wye-delta and wye-delta projective-
plane obstructions are found as either a subgraph or subdivision of the ir-
reducible triangulations of the Klein bottle. Note that 68, also referred to
as E2, is not found as a subgraph or subdivision, so that not all the minor
obstructions of the projective plane can be found. The topological and minor
obstructions that can be found as a subgraph or subdivision are:

91

Figure 7.17: E18 obstruction of N1 — Kh2 triangulation of N2

Figure 7.18: E22 obstruction of N1 — Kh13 triangulation of N2

• topological, {3, 8, 10, 12, 15, 20, 22, 24, . . . , 27, 29, 35, 38, . . . , 41, 44,
48, 57, 58, 59, 61, 62, 65, 72, 73, 74, 88};

• minor, {7, 17, 18, 21, 28, 30, 33, 42, 43, 46, 53};

and the topological and minor obstructions that cannot be found as a sub-
graph or subdivision are:

• topological, {34, 45, 47, 49, 50, 51, 52, 54, 55, 63, 66, 67, 70, 71, 75, . . . ,
85, 87, 89, . . . , 99, 101, 102};

• minor, {36, 68, 100}.

For consideration of Conjecture 1.1, all the connected double-wye-delta and
wye-delta projective-plane obstructions are found as subgraphs only. The
topological and minor obstructions that can be found as a subgraph are:

• topological, {3, 8, 10, 12, 15, 20, 22, 24, . . . , 27, 29, 35, 38, . . . , 41, 44,
48, 57, 58, 59, 61, 65, 72, 73, 74, 88};

92

Figure 7.19: C1 obstruction of N1 — Kc2 triangulation of N2

Figure 7.20: D3 obstruction of N1 — Kh2 triangulation of N2

• minor, {7, 17, 18, 21, 28, 30, 33, 42, 43, 46, 53};

and the topological and minor obstructions that cannot be found as a sub-
graph are:

• topological, {34, 45, 47, 49, 50, 51, 52, 54, 55, 62, 63, 66, 67, 70, 71, 75, . . . ,
85, 87, 89, . . . , 99, 101, 102};

• minor, {36, 68, 100}.

There are also results for those obstructions that are found as subdivisions
only. All of the connected double-wye-delta obstructions of the projective-
plane obstructions are found as only subdivisions of the irreducible triangu-
lations of the Klein bottle. All connected wye-delta obstructions except 69
can be found as a subdivision only. The topological and minor obstructions
that can be found as a subdivision only are:

• topological, {3, 8, 10, 12, 15, 20, 22, 24, 26, 29, 38, . . . , 41, 48, 57, 59, 61};

93

Figure 7.21: D4 obstruction of N1 — Kh19 triangulation of N2

Figure 7.22: E19 obstruction of N1 — Kc1 triangulation of N2

• minor, {7, 17, 28, 30, 33, 43};

and the topological and minor obstructions that cannot be found as a sub-
division only are:

• topological, {25, 27, 34, 35, 44, 45, 47, 49, . . . , 52, 54, 55, 58, 62, 63, 65, 66,
67, 70, . . . , 85, 87, . . . , 99, 101, 102};

• minor, {18, 21, 36, 42, 46, 53, 68, 100}.

7.2.3 Torus Obstructions in N3 Irreducible Triangula-
tions

In efforts towards finding evidence for a way to prove Conjecture 1.1, a set of
6313 obstructions of the torus in M3(S1) have been calculated. These graphs
were found by using R3 operations on 16683 minor-order obstructions of
the torus found by Chambers [Cha02], and Woodcock [Woo06]. All unique

94

obs/tri 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 248 169 169 124 208 90 487 741 570 464 244 230 548 312
1 0 66 66 96 96 113 112 0 0 117 176 233 0 121
2 4 1 1 2 1 3 17 42 22 24 52 20 4 13
3 48 102 102 100 72 96 310 120 152 200 384 320 303 351
4 16 8 8 22 6 24 41 26 100 64 104 136 30 50
5 120 96 96 130 78 142 403 624 492 498 564 654 331 490
6 12 3 3 4 3 4 5 42 14 14 4 6 10 6
7 0 72 72 72 36 72 100 0 0 76 232 92 40 178
8 48 102 102 116 60 120 294 120 80 172 420 324 194 384
9 120 72 72 112 51 136 90 312 164 224 116 194 158 268
10 72 45 45 58 30 68 136 246 140 152 396 246 88 189
11 24 18 18 28 12 32 22 48 32 48 28 48 38 61
12 0 0 0 0 0 0 23 36 24 42 48 26 4 26
13 0 0 0 0 0 0 6 0 0 6 16 12 4 18
14 0 0 0 0 0 0 34 30 28 64 58 50 19 64
15 0 0 0 0 0 0 34 54 28 56 60 50 18 56
16 0 0 0 0 0 0 36 72 76 100 142 94 24 86
17 0 0 0 0 0 0 19 33 26 36 38 29 9 20
18 0 0 0 0 0 0 0 0 0 0 12 0 2 10
19 0 0 0 0 0 0 8 48 30 44 68 41 20 27
20 0 0 0 0 0 0 98 48 32 48 256 208 76 160
21 0 0 0 0 0 0 14 0 0 0 20 12 10 18
22 0 0 0 0 0 0 32 24 16 24 80 62 22 52
23 0 0 0 0 0 0 0 12 6 8 6 5 3 3
24 0 0 0 0 0 0 34 30 64 72 132 110 20 56
25 0 0 0 0 0 0 10 0 0 0 48 24 4 24
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 8 0 0 0 32 16 6 10
28 0 0 0 0 0 0 3 9 2 4 2 2 0 1
29 0 0 0 0 0 0 11 30 26 34 64 32 7 25
30 0 0 0 0 0 0 24 24 24 40 76 56 22 45

Table 7.7: Columns 1 to 14 of the total occurrences of projective-plane ob-
structions within the irreducible triangulations of the Klein bottle as either
a subgraph or as a subdivision.

95

obs/tri 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0 455 289 132 36 601 1062 398 404 627 630 627 1899 1706 1717 1657
1 118 103 126 90 102 0 0 0 0 81 0 0 0 0 0
2 7 6 12 72 42 42 48 8 21 42 42 35 70 0 0
3 300 357 222 198 372 0 176 288 318 354 270 0 184 0 0
4 35 58 84 180 62 0 32 112 30 28 30 0 54 0 0
5 446 539 684 1062 444 972 1004 744 354 366 306 3090 2468 7948 8340
6 16 10 21 21 0 237 121 48 0 0 0 791 196 1876 2912
7 98 126 210 108 96 0 0 0 104 180 72 0 0 0 0
8 282 354 474 252 372 0 192 256 300 354 234 0 192 0 0
9 196 356 726 972 0 1026 1140 548 0 0 0 2670 1078 6536 6128
10 142 192 162 198 216 486 470 252 84 252 108 753 546 1032 1352
11 46 90 192 270 0 0 176 120 0 0 0 0 128 0 0
12 10 10 36 108 30 18 38 16 24 24 36 134 218 304 408
13 6 12 30 36 24 0 0 0 24 0 0 0 0 0 0
14 22 41 114 162 36 0 44 36 60 12 18 0 128 0 0
15 30 62 102 144 72 108 140 92 60 30 18 588 196 1728 3704
16 43 60 156 234 66 54 90 88 54 36 0 576 722 3012 2128
17 17 29 30 90 42 27 31 34 18 21 27 204 210 796 1676
18 2 6 18 18 24 0 0 0 14 0 0 0 0 0 0
19 23 40 84 162 0 108 168 70 0 15 9 642 316 3100 1540
20 118 184 348 360 0 0 128 144 0 120 36 0 224 0 0
21 12 24 36 0 0 0 0 0 0 18 18 0 0 0 0
22 34 52 114 108 0 0 64 64 0 36 18 216 176 816 688
23 4 3 6 0 0 36 32 14 0 0 0 360 112 2024 1160
24 29 50 114 252 48 0 36 76 24 30 18 0 80 0 0
25 10 24 84 252 0 0 24 16 0 12 0 0 0 0 0
26 0 0 0 0 0 42 30 0 0 0 0 184 0 1204 0
27 9 8 12 0 0 0 16 8 0 18 0 0 0 0 0
28 3 3 0 6 6 24 14 8 3 3 3 194 56 492 1620
29 11 25 42 162 42 54 60 26 27 18 0 210 160 284 908
30 26 52 120 180 24 0 96 80 22 24 24 0 96 0 0
31 0 0 0 0 0 6 2 0 0 0 0 34 0 289 0
32 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
33 0 0 0 0 0 0 0 0 0 0 0 28 20 336 272
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 12 0 170 68
38 0 0 0 0 0 0 0 0 0 0 0 84 100 952 848
39 0 0 0 0 0 0 0 0 0 0 0 12 24 56 280
40 0 0 0 0 0 0 0 0 0 0 0 18 24 168 64
41 0 0 0 0 0 0 0 0 0 0 0 48 0 468 312
42 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0
43 0 0 0 0 0 0 0 0 0 0 0 8 6 32 172
44 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 24 48 304 96
- - - - - - - - - - - - - - - -
53 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0
- - - - - - - - - - - - - - - -
56 0 0 0 0 0 0 0 0 0 0 0 24 16 337 270
57 0 0 0 0 0 0 0 0 0 0 0 32 0 368 112
58 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0
59 0 0 0 0 0 0 0 0 0 0 0 6 12 24 128
60 0 0 0 0 0 0 0 0 0 0 0 18 12 200 200
61 0 0 0 0 0 0 0 0 0 0 0 2 0 34 0
- - - - - - - - - - - - - - - -
65 0 0 0 0 0 0 0 0 0 0 0 0 0 80 64
- - - - - - - - - - - - - - - -
69 0 0 0 0 0 0 0 0 0 0 0 0 0 27 18
- - - - - - - - - - - - - - - -
72 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12
73 0 0 0 0 0 0 0 0 0 0 0 0 0 55 50
74 0 0 0 0 0 0 0 0 0 0 0 0 0 10 4
- - - - - - - - - - - - - - - -
88 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table 7.8: Columns 15 to 29 of the total occurrences of projective-plane
obstructions within the irreducible triangulations of the Klein bottle as either
a subgraph or as a subdivision.

96

Figure 7.23: F1 obstruction of N1 — Kc1 triangulation of N2

Figure 7.24: F6 obstruction of N1 — Kc2 triangulation of N2

embeddings up to isomorphism of nonorientable genus less than four for the
6310 connected obstructions from this set have been generated. See Table
7.13 for counts partitioned by order and number of edges. Also, of the 6313
wye-delta order obstructions, 3149 were calculated as double-wye-delta by
performing R4 operations. Faster algorithms are still needed to find torus
obstructions within irreducible triangulations of N3. Part of the issue is
deciding which edges to keep from the irreducible triangulation when there
are 3n+3 edges to choose from. We conjecture that for a torus obstruction G,
if an irreducible triangulation T of N3 contains G, then the graph T −E(G)
must be planar.

97

Figure 7.25: G1 obstruction of N1 — Kc2 triangulation of N2

Figure 7.26: The minor-order projective-plane obstruction E2.

obs/tri 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 228 157 157 118 182 88 480 731 558 458 244 230 535 311
1 0 63 63 90 81 108 109 0 0 114 175 230 0 120
2 0 0 0 0 0 0 15 36 18 22 46 17 3 12
3 0 0 0 0 0 0 262 96 120 164 356 284 252 311
4 0 0 0 0 0 0 34 22 80 58 98 114 24 44
5 0 0 0 0 0 0 336 531 412 430 532 565 270 429
6 0 0 0 0 0 0 4 36 12 12 4 6 8 5
7 0 0 0 0 0 0 82 0 0 56 212 84 34 152
8 0 0 0 0 0 0 246 96 64 136 392 288 160 336
9 0 0 0 0 0 0 68 252 132 180 116 176 126 219
10 0 0 0 0 0 0 114 207 116 132 360 214 70 166
11 0 0 0 0 0 0 16 36 24 36 28 44 30 49

Table 7.9: Columns 1 to 14 of the occurrences of projective-plane obstructions
within the irreducible triangulations of the Klein bottle as a subdivision only.

98

obs/tri 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0 449 289 132 36 594 1053 398 402 612 622 612 1896 1702 1716 1656
1 115 102 126 90 99 0 0 0 0 81 0 0 0 0 0
2 6 5 12 66 36 36 42 6 18 36 36 34 68 0 0
3 256 319 222 198 312 0 160 256 258 312 216 0 176 0 0
4 29 50 78 168 52 0 28 92 24 26 24 0 52 0 0
5 379 478 630 990 378 864 906 646 285 327 243 3030 2404 7920 8312
6 14 9 18 18 0 216 112 42 0 0 0 780 192 1872 2904
7 82 108 198 108 84 0 0 0 84 150 54 0 0 0 0
8 238 308 444 252 312 0 176 224 240 312 180 0 184 0 0
9 164 312 642 918 0 918 1038 476 0 0 0 2616 1038 6512 6104
10 121 170 162 198 180 432 426 218 66 219 90 738 532 1028 1348
11 38 78 168 252 0 0 160 104 0 0 0 0 120 0 0
12 0 0 0 0 0 0 0 0 0 0 0 112 176 296 400
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 96 0 0
15 0 0 0 0 0 0 0 0 0 0 0 480 156 1656 3584
16 0 0 0 0 0 0 0 0 0 0 0 480 588 2916 2048
17 0 0 0 0 0 0 0 0 0 0 0 168 168 764 1628
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 528 252 2992 1480
20 0 0 0 0 0 0 0 0 0 0 0 0 176 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 192 144 800 672
23 0 0 0 0 0 0 0 0 0 0 0 312 96 1980 1128
24 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 156 0 1176 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 168 48 480 1584
29 0 0 0 0 0 0 0 0 0 0 0 168 126 272 880
30 0 0 0 0 0 0 0 0 0 0 0 0 72 0 0
31 0 0 0 0 0 0 0 0 0 0 0 30 0 285 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 276 216
- - - - - - - - - - - - - - - -
37 0 0 0 0 0 0 0 0 0 0 0 0 0 150 60
38 0 0 0 0 0 0 0 0 0 0 0 0 0 760 672
39 0 0 0 0 0 0 0 0 0 0 0 0 0 40 232
40 0 0 0 0 0 0 0 0 0 0 0 0 0 136 48
41 0 0 0 0 0 0 0 0 0 0 0 0 0 396 264
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0 0 24 144
- - - - - - - - - - - - - - - -
48 0 0 0 0 0 0 0 0 0 0 0 0 0 240 64
- - - - - - - - - - - - - - - -
56 0 0 0 0 0 0 0 0 0 0 0 0 0 276 216
57 0 0 0 0 0 0 0 0 0 0 0 0 0 312 96
58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
59 0 0 0 0 0 0 0 0 0 0 0 0 0 16 104
60 0 0 0 0 0 0 0 0 0 0 0 0 0 160 160
61 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0

Table 7.10: Columns 15 to 29 of the occurrences of projective-plane obstruc-
tions within the irreducible triangulations of the Klein bottle as a subdivision
only.

99

obs/tri 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 20 12 12 6 26 2 7 10 12 6 0 0 13 1
1 0 3 3 6 15 5 3 0 0 3 1 3 0 1
2 4 1 1 2 1 3 2 6 4 2 6 3 1 1
3 48 102 102 100 72 96 48 24 32 36 28 36 51 40
4 16 8 8 22 6 24 7 4 20 6 6 22 6 6
5 120 96 96 130 78 142 67 93 80 68 32 89 61 61
6 12 3 3 4 3 4 1 6 2 2 0 0 2 1
7 0 72 72 72 36 72 18 0 0 20 20 8 6 26
8 48 102 102 116 60 120 48 24 16 36 28 36 34 48
9 120 72 72 112 51 136 22 60 32 44 0 18 32 49
10 72 45 45 58 30 68 22 39 24 20 36 32 18 23
11 24 18 18 28 12 32 6 12 8 12 0 4 8 12
12 0 0 0 0 0 0 23 36 24 42 48 26 4 26
13 0 0 0 0 0 0 6 0 0 6 16 12 4 18
14 0 0 0 0 0 0 34 30 28 64 58 50 19 64
15 0 0 0 0 0 0 34 54 28 56 60 50 18 56
16 0 0 0 0 0 0 36 72 76 100 142 94 24 86
17 0 0 0 0 0 0 19 33 26 36 38 29 9 20
18 0 0 0 0 0 0 0 0 0 0 12 0 2 10
19 0 0 0 0 0 0 8 48 30 44 68 41 20 27
20 0 0 0 0 0 0 98 48 32 48 256 208 76 160
21 0 0 0 0 0 0 14 0 0 0 20 12 10 18
22 0 0 0 0 0 0 32 24 16 24 80 62 22 52
23 0 0 0 0 0 0 0 12 6 8 6 5 3 3
24 0 0 0 0 0 0 34 30 64 72 132 110 20 56
25 0 0 0 0 0 0 10 0 0 0 48 24 4 24
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 8 0 0 0 32 16 6 10
28 0 0 0 0 0 0 3 9 2 4 2 2 0 1
29 0 0 0 0 0 0 11 30 26 34 64 32 7 25
30 0 0 0 0 0 0 24 24 24 40 76 56 22 45

Table 7.11: Columns 1 to 14 of the occurrences of projective-plane obstruc-
tions within the irreducible triangulations of the Klein bottle as a subgraph
only.

100

obs/tri 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0 6 0 0 0 7 9 0 2 15 8 15 3 4 1 1
1 3 1 0 0 3 0 0 0 0 0 0 0 0 0 0
2 1 1 0 6 6 6 6 2 3 6 6 1 2 0 0
3 44 38 0 0 60 0 16 32 60 42 54 0 8 0 0
4 6 8 6 12 10 0 4 20 6 2 6 0 2 0 0
5 67 61 54 72 66 108 98 98 69 39 63 60 64 28 28
6 2 1 3 3 0 21 9 6 0 0 0 11 4 4 8
7 16 18 12 0 12 0 0 0 20 30 18 0 0 0 0
8 44 46 30 0 60 0 16 32 60 42 54 0 8 0 0
9 32 44 84 54 0 108 102 72 0 0 0 54 40 24 24
10 21 22 0 0 36 54 44 34 18 33 18 15 14 4 4
11 8 12 24 18 0 0 16 16 0 0 0 0 8 0 0
12 10 10 36 108 30 18 38 16 24 24 36 22 42 8 8
13 6 12 30 36 24 0 0 0 24 0 0 0 0 0 0
14 22 41 114 162 36 0 44 36 60 12 18 0 32 0 0
15 30 62 102 144 72 108 140 92 60 30 18 108 40 72 120
16 43 60 156 234 66 54 90 88 54 36 0 96 134 96 80
17 17 29 30 90 42 27 31 34 18 21 27 36 42 32 48
18 2 6 18 18 24 0 0 0 14 0 0 0 0 0 0
19 23 40 84 162 0 108 168 70 0 15 9 114 64 108 60
20 118 184 348 360 0 0 128 144 0 120 36 0 48 0 0
21 12 24 36 0 0 0 0 0 0 18 18 0 0 0 0
22 34 52 114 108 0 0 64 64 0 36 18 24 32 16 16
23 4 3 6 0 0 36 32 14 0 0 0 48 16 44 32
24 29 50 114 252 48 0 36 76 24 30 18 0 20 0 0
25 10 24 84 252 0 0 24 16 0 12 0 0 0 0 0
26 0 0 0 0 0 42 30 0 0 0 0 28 0 28 0
27 9 8 12 0 0 0 16 8 0 18 0 0 0 0 0
28 3 3 0 6 6 24 14 8 3 3 3 26 8 12 36
29 11 25 42 162 42 54 60 26 27 18 0 42 34 12 28
30 26 52 120 180 24 0 96 80 22 24 24 0 24 0 0
31 0 0 0 0 0 6 2 0 0 0 0 4 0 4 0
32 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
33 0 0 0 0 0 0 0 0 0 0 0 28 20 60 56
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 12 0 20 8
38 0 0 0 0 0 0 0 0 0 0 0 84 100 192 176
39 0 0 0 0 0 0 0 0 0 0 0 12 24 16 48
40 0 0 0 0 0 0 0 0 0 0 0 18 24 32 16
41 0 0 0 0 0 0 0 0 0 0 0 48 0 72 48
42 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0
43 0 0 0 0 0 0 0 0 0 0 0 8 6 8 28
44 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 24 48 64 32
- - - - - - - - - - - - - - - -
53 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0
- - - - - - - - - - - - - - - -
56 0 0 0 0 0 0 0 0 0 0 0 24 16 61 54
57 0 0 0 0 0 0 0 0 0 0 0 32 0 56 16
58 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0
59 0 0 0 0 0 0 0 0 0 0 0 6 12 8 24
60 0 0 0 0 0 0 0 0 0 0 0 18 12 40 40
61 0 0 0 0 0 0 0 0 0 0 0 2 0 4 0
- - - - - - - - - - - - - - - -
65 0 0 0 0 0 0 0 0 0 0 0 0 0 80 64
- - - - - - - - - - - - - - - -
69 0 0 0 0 0 0 0 0 0 0 0 0 0 27 18
- - - - - - - - - - - - - - - -
72 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12
73 0 0 0 0 0 0 0 0 0 0 0 0 0 55 50
74 0 0 0 0 0 0 0 0 0 0 0 0 0 10 4
- - - - - - - - - - - - - - - -
88 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table 7.12: Columns 15 to 29 of the occurrences of projective-plane obstruc-
tions within the irreducible triangulations of the Klein bottle as a subgraph
only.

101

n/m 18 19 20 21 22 23 24 25 26 27 28 29 30 total
8 0 0 0 0 1 0 1 1 0 0 0 0 0 3
9 0 2 5 2 7 13 4 1 4 0 0 0 0 38

10 0 14 3 15 16 71 76 88 65 17 1 0 1 367
11 5 2 0 31 93 287 735 569 154 24 7 3 1 1911
12 1 0 0 33 126 557 1006 719 161 40 14 1 0 2658
13 0 0 0 4 42 209 383 361 109 25 4 0 0 1137
14 0 0 0 0 2 10 45 95 38 2 0 0 0 192
15 0 0 0 0 0 0 1 3 3 0 0 0 0 7

total 6 18 8 85 287 1147 2251 1837 534 108 26 4 2 6313

Table 7.13: Number of known wye-delta-order obstructions on the torus by
order (n) and size (m).

102

Chapter 8

Essential Cycles

This chapter shows in Section 8.1 how an embedding can be cut open along
a cycle C so that the resulting embedding can be checked for properties that
determine whether C is essential. After this is established by Theorem 8.1,
Section 8.2 formalizes cutting along a cycle as a subroutine of Algorithm 8.3.

It should be emphasized that the problem of finding essential cycles in
embeddings has been researched by de Verdiere [dV12]. For an arbitrary
embedding, de Verdiere has a O(n2) algorithm for finding a shortest essential
cycle.

8.1 Cutting Along a Cycle

Consider a two-sided cycle C of an embedding G̃. Remove C from G̃ and
replace it with two copies C1 and C2, where C1 is connected to G̃ with the
adjacencies of one side of C and C2 is connected to G̃ with the adjacencies of
the other side of C such that we preserve the order from the rotation systems
of vertices on C. If the number of components of the underlying graph of
this construction increased from the number of components in G̃, then C is
called separating, and otherwise C is nonseparating. Such a construction is
called cutting G̃ along C. This construction can be extended to any number
of cycles by cutting along them in any sequence while adjusting for copies of
vertices created in cutting along each cycle. One way to consider depicting
an embedding on the plane can involve cutting along cycles of the embedding
until only genus zero components remain. A cycle of an embedding on the
Klein bottle is called a longitude if it is one-sided, a meridan if two-sided and

103

nonseparating, and an equator if two-sided and separating.
The same can be defined on the nonorientable surface N3, but with further

requirements:
A cycle C of an embedding on N3 is called a longitude if it is one-sided

and cutting along C results in an embedding on the Klein bottle. If cutting
along C results in a torus embedding, then C is called a latitude.

A cycle C of an embedding on N3 is called a meridian, again, if it is
two-sided and nonseparating.

A cycle C of an embedding on N3 is called an equator if it is two-sided,
separating, and cutting along C leaves one projective-planar component plus
a Klein component. If the components are projective-planar and toroidal,
then C is called a tropic.

A pair C1 and C2 of one-sided cycles that are homotopic simple closed
curves must cross each other an odd number of times. When C1 and C2 are
two-sided and homotopic, they must cross an even number of times. To see
the two-sided case, each consecutive pair of crossings between simple closed
curves corresponding to C1 and C2 can be continuously deformed away, until
all crossings are eliminated and the two curves form the boundaries of a
cylinder. If a pair of homotopic one-sided cycles could do the same, then
such a cylinder would erroneously show C1 and C2 each have two sides.

Two essential cycles C1 and C2 of an irreducible triangulation T are ho-
motopic when cutting along both C1 and C2 results in a set of components
that together contain a copy of both C1 and C2 that are altogether plane em-
beddings. To see this, note that the the segments of C1 and C2 between each
consecutive pair of crossings can be continuously deformed to each other,
which defines each planar component.

Consider an embedding G̃ with oriented walk

C = u1(s1 = +1)u2s2 . . . upsp(up+1 = u1)

with corresponding rotation systems πui
for i = 1, 2, . . . , k where k = p

if C is two-sided, and 2k = p if C is one-sided. Construct two copies of
cycle u1u2 . . . uk with C1 = v1v2 . . . vk and C2 = w1w2 . . . wk and obtain the
corresponding rotation systems of the vertices of C1 and C2 from each πui

as follows. The edges ui−1ui and uiui+1 modulo k determine two compound
angles of πui

:

Li = ui−1, π
1si−1
ui

(ui−1), π
2si−1
ui

(ui−1), . . . , π
(j−1)si−1
ui

(ui−1), π
jsi−1
ui

(ui−1)

104

such that π
jsi−1
ui (ui−1) = ui+1, and

Ri = ui+1, π
1si−1
ui

(ui+1), π
2si−1
ui

(ui+1), . . . , π
(q−1)si−1
ui

(ui+1), π
qsi−1
ui

(ui+1)

such that π
qsi−1
ui (ui+1) = ui−1. Then the new rotation systems are set as

πvi = vi−1, Li \ {ui−1, ui+1}, vi+1,

and
πwi

= wi+1, Ri \ {ui−1, ui+1}, wi−1,

if si−1 = +1, and
πvi = vi+1, Ri \ {ui−1, ui+1}, vi−1,

and
πwi

= wi−1, Li \ {ui−1, ui+1}, wi+1,

otherwise. The rotation systems for v1, vk, w1, and wk are defined as above,
but the first and last vertex of the corresponding rotation systems must be
set dependent on the sided property of C. If C is one-sided:

• πv1 must start with wk and end with v2,

• πvk must start with vk−1 and end with w1,

• πw1 must start with vk and end with w2,

• πwk
must start with wk−1 and end with v1.

If C is two-sided:

• πv1 starts with vk and ends with v2;

• πvk starts with vk−1 and ends with v1;

• πw1 starts with w2 and ends with wk;

• πwk
starts with w1 and ends with wk−1.

This either results in two combinatorial embeddings G̃1 and G̃2 when C is
separating, or a new combinatorial embedding G̃′ when C is non-separating.
Note that the edges between the vi and wi have signature the same as for
their corresponding edges incident to ui.

To see the effect that cutting along C has on the Euler genus of the
embedding, one case is when C is separating, and the other is when C is not
separating. This is explained in the following theorem.

105

Theorem 8.1. Let g be the Euler genus of an embedding G̃. If the cycle C
in G̃ is separating, then cutting along C results in two component embeddings
G̃1 and G̃2 with Euler genus g1 and g2 such that g = g1 + g2. If the cycle
C is nonseparating, then cutting along C results in a new embedding G̃′ with
Euler genus g′ such that g = g′ + 1 if C is one-sided, and g = g′ + 2 if C is
two-sided.

Proof.

Case 1. Suppose each component embedding G̃1 and G̃2 have Euler genus,
respectively,

g1 = 2− n1 +m1 − f1 and g2 = 2− n2 +m2 − f2,

where G̃1 and G̃2 contain facial walks

v1s1v2s2 . . . vkskv1 and w1skwksk−1wk−1 . . . s2w2s1w1,

respectively.
By identifying v1v2 . . . vk back with w1w2 . . . wk to obtain the original embed-
ding G̃, then the Euler genus of G̃ must be

g = 2− n+m− f
= 2− (n1 + n2 − k) + (m1 +m2 − k)− (f1 + f2 − 2)

= (2− n1 +m1 − f1) + (2− n2 +m2 − f2)
= g1 + g2.

For the next cases G̃′ is a new connected embedding corresponding to if
C is nonseparable and has one facial walk

v1s1v2s2 . . . vkskw1sk+1w2sk+2 . . . wk−1sp−1wkspv1,

if C is one-sided, and two facial walks

v1s1v2s2 . . . vkskv1 and w1skwksk−1wk−1 . . . w2s1w1,

if C is two-sided.

Case 2. Suppose G̃′ has Euler genus g′ = 2 − n′ + m′ − f ′, and that C is
one-sided.

106

Here, the identification of vi and wi results in one less face, so it must be
that the Euler genus of G̃ is

g = 2− n+m− f
= 2− (n′ − k) + (m′ − k)− (f ′ − 1)

= 2− n′ +m′ − f ′ + 1

= g′ + 1.

Intuitively, this case corresponds with removing a crosscap of G̃.

Case 3. Again, suppose G̃′ has Euler genus g′ = 2 − n′ + m′ − f ′, but that
now C is two-sided.

Identifying vi and wi removes two faces of G̃′. Then the Euler genus of G̃
must be

g = (2− n+m− f)

= 2− (n′ − k) + (m′ − k)− (f ′ − 2)

= (2− n′ +m′ − f ′) + 2

= g′ + 2.

Intuitively, this last case corresponds with removing either a handle or a
twisted handle of G̃.

8.2 Algorithm for Cutting

Algorithm 8.2 is a recursive method included in the AugRotSystem data
structure that backtracks through all possible cycles of a graph and prints
the cycles that are essential using PrintCycle on Line 27. Since Algorithm
8.2 backtracks through the adjacencies of each vertex to find cycles, it clearly
runs in exponential time. The process of cutting along a cycle is given in
Algorithm 8.3 and it is used in Algorithm 8.2 to determine all the essential
cycles of the embedding corresponding to an instance of an AugRotSystem

object. Algorithm 8.2 also takes a ChordList parameter, which has the
same object structure as PathList from Chapter 6 except that the PathNode
member types are replaced by ChordNode type, and that a ChordNode is
modified to include a ChordNode prev member and a parity member to keep
track of +1 clockwise or −1 counterclockwise orientation around each vertex
visited.

107

Algorithm 8.2. Print Essential Cycles

INPUT:

• a ChordList cycle trace that corresponds to edges that form a cycle
of this AugRotSystem,

• a boolean array visited of size n for vertices used in the cycle,

• an integer dir parity set to +1 for clockwise and −1 for counterclock-
wise orientation about a vertex,

• an integer level to track the depth of recursion.

OUTPUT:

• the essential cycles of the embedding corresponding to this AugRotSystem.

PrintEssentialCycles(cycle trace, visited, dir parity, level) {
1) if (level == 0) {
2) dir parity = 1;
3) for (i = 0; i < n; i++) {
4) visited[i] = true;

5) ptr = V [i];
6) for (j = 0; j < degree[i]; j++) {
7) cycle trace.append(new ChordNode(i, ptr.u,

cycle trace.path rear, ptr.sign, dir parity);

8) visited[ptr.u] = true;

9) PrintEssentialCycles(cycle trace, visited,
dir parity, level + 1);

10) visited[ptr.u] = false;

11) cycle trace.del rear();

12) ptr = ptr.next;
13) }
14) visited[i] = false;

15) }
16) } else if (level ≤ n) {
17) u = cycle trace.path rear.u;
18) v = cycle trace.path rear.v;
19) ptr = V [v];

108

20) for (i = 0; i < degree[v]; i++) {
21) if (u == ptr.u) continue;

22) // close the path to a cycle

23) if (level > 1 and ptr.u == cycle trace.path start.u) {
24) dir parity = dir parity ∗ cycle trace.path rear.prev.sign;
25) cycle trace.append(new ChordNode(v, ptr.u,

cycle trace.path rear, ptr.sign, dir parity));

26) if (IsEssential(cycle trace, visited)) {
27) PrintCycle(cycle trace, level + 1);

28) }
29) cycle trace.del rear();

30) dir parity = dir parity ∗ cycle trace.path rear.prev.sign;
31) }
32) // or extend the path

33) if (!visited[ptr.u]) {
34) dir parity = dir parity ∗ cycle trace.path rear.prev.sign;
35) cycle trace.append(new ChordNode(v, ptr.u,

cycle trace.path rear, ptr.sign, dir parity));

36) visited[ptr.u] = true;

37) PrintEssentialCycles(cycle trace, visited,
dir parity, level + 1);

38) visited[ptr.u] = false;

39) cycle trace.del rear();

40) dir parity = dir parity ∗ cycle trace.path rear.prev.sign;
41) }
42) ptr = ptr.next;
43) } // end of for-loop i
44) }
}

Algorithm 8.3 is another method included in the AugRotSystem data
structure, and uses the results of Theorem 8.1 to check whether a cycle is
essential. Note that Lines 35 and 45 use the O(n) algorithm SitsOnNewSide

that iterates through the adjacencies of V [ptr.u] to see which side of the cycle
cycle trace the vertex u sits on with respect to ptr.u, which depends on the
direction parity for each vertex visited in cycle trace. Algorithm 8.3 also
makes use of a ChordList. For each vertex v in cycle trace Algorithm 8.3
iterates through the adjacencies of v, and makes a call to SitsOnNewSide,

109

so that altogether in it runs in O(n3) time.

Algorithm 8.3. Is Essential

INPUT:

• a ChordList cycle trace that corresponds to edges that form a cycle
of this AugRotSystem,

• a boolean array visited of size n for vertices used in the cycle.

OUTPUT:

• returns true if the cycle input is essential and false otherwise.

IsEssential(cycle trace, visited) {
1) int num sign = the number of -1 signature edges in cycle trace;
2) if ((num sign % 2) == 1) {
3) // the cycle is nonorientable

4) return true;

5) }
6) // cut along the oriented cyclic walk of this AugRotSystem

7) // to create a new embedding H with new vertices for each

vertex visited in cycle trace
8) AugRotSystem H = a copy of this AugRotSystem;

9) n H = n+ cycle trace.size;
10) new labels = integer array of new vertex labels from n to

n+ cycle trace.size− 1 in order of the vertices visited in

cycle trace;
11) // keep track of the local orientation direction as we

iterate through the oriented cyclic walk

12) dir = +1;
13) ChordNode chord ptr = cycle trace.path start;
14) for (i = 0; i < cycle trace.size; i++) {
15) t = (i == 0) ? cycle trace.path rear.u : chord ptr.prev.u;
16) u = chord ptr.u;
17) v = chord ptr.v;
18) // copies of t, u, v
19) x = new labels[t];
20) y = new labels[u];

110

21) z = new labels[v];
22) L = the compound angle of V [u] from t to v;
23) R = the compound angle of V [u] from v to t;
24) if (dir == +1) {
25) remove L− {t, v} from H[u];
26) insert x(L− {t, v})z into H[y];
27) } else {
28) remove R− {t, v} from H[u];
29) insert z(R− {t, v})x into H[y];
30) }
31) // iterate through H[y]− {x, z}
32) AdjNode ptr = H.V [y].next;
33) for (j = 1; j < H.degree[y]− 1; j++) {
34) if (visited[ptr.u]) {
35) if (SitsOnNewSide(cycle trace, new label, ptr, u)

) {
36) ptr.u = new label[ptr.u];
37) }
38) }
39) ptr = ptr.next;
40) }
41) // iterate through H[u]− {t, v}
42) ptr = H.V [u].next;
43) for (j = 1; j < H.degree[u]− 1; j++) {
44) if (visited[ptr.u]) {
45) if (SitsOnNewSide(cycle trace, new label, ptr, u)

) {
46) ptr.u = new label[ptr.u];
47) }
48) }
49) ptr = ptr.next;
50) }
51) if (signature of edge uv is negative) {
52) dir = dir ∗ (−1);
53) }
54) chord ptr = chord ptr.next;
55) } // end of for-loop on i

111

56) // embedding H is now a copy of this AugRotSystem cut along

the oriented cyclic walk cycle trace

57) sum g = the sum of the Euler genus of each component of H̃;

58) if (g == sum g) {
59) return false;

60) }
61) return true;

}

112

Chapter 9

Open Problems

This research exposes a plethora of new ideas for future work. The following
is a list of open questions:

1. What is the complete set of topological obstructions of the torus?

2. All of the projective-planar obstructions of the torus have been found
[Juv95]. What are the obstructions of the torus that also embed on the
Klein bottle?

3. The Successive Surface Scaffolding Conjectures in both the strong and
the weak forms have yet to be proved or disproved. What approaches
could be used to prove it? What approaches could be used to disprove
it?

4. Which projective-plane obstructions are contained in irreducible trian-
gulations of the torus? (Mohar)

5. Does there exist a graph such that the deletion of any edge lowers the
nonorientable genus by two? [Arc95]

6. We proved that the minor obstructions of the torus that are not double-
wye-delta can be embedded in N3. Can all of the topological or double-
wye-delta obstructions of the torus be embedded in N3?

7. Is there a practical polynomial-time algorithm for embedding on the
torus?

113

8. Is there an efficient algorithm for taking a signed combinatorial em-
bedding as input which outputs an equivalent signed embedding with
a minimum number of −1 signature edges?

9. Is there an algorithm taking a depiction of an embedding as input
that could output other depictions, perhaps more aesthetic given some
criteria? For example, an output depiction with a minimum number of
edges using features? Or any edge uses at most some minimum number
of features?

10. Is there an algorithm for changing a depiction with two crosscaps into
a depiction with one twisted handle, and vice versa? An algorithm for
changing a depiction with one crosscap and one handle into a depiction
with three crosscaps, and vice versa? An algorithm for changing a
depiction with one crosscap and a twisted handle to one crosscap and
a handle, and vice versa?

11. Is there a way to get a depiction to show the symmetries of an embed-
ding?

12. Is there an efficient algorithm to change a depiction that simply moves
a handle or a crosscap?

13. Consider an embedding of an obstruction G of the surface S. Is it
always possible to triangulate any embedding of G on the surface ob-
tained from S with a crosscap added by inserting edges and vertices?
Which such G and embeddings of G allow for a triangulation that is
irreducible? Could properties be characterized for when this is pos-
sible? If such a triangulation of G is possible, what is the smallest
number of vertices necessary to add to G in order to get an irreducible
triangulation?

14. For an obstruction G of a surface S that is contained in an irreducible
triangulation T of the surface S with a crosscap added, what properties
does the graph T − E(G) have? Is there a polynomial-time algorithm
to decide which edges of an irreducible triangulation must be removed
to obtain an obstruction?

15. Can the ideas behind the Successive Surface Scaffolding Conjecture be
used to form more conjectures within the context of other graph minor
problems?

114

Appendix A

Projective-Planar Obstruction
Names

The 103 projective-plane obstructions numbered as in Tables 7.7–7.12 matched
with their names as appearing in Appendix A of Graphs on Surfaces ([MT01]):

0.B1

1.A2

2.E3

3.B2

4E18

5 D3

6.B3

7.B7

8.B5

9.C7

10 B4

11 D17

12 E4

13.E22

14 D12

15 D5

16.F1

17 E5

18 C4

19.E19

20 D7

21 C3

22 D6

23 D4

24.E21

25 B9

26 B8

27 B6

28 C2

29 D8

30.E20

31 A1

32 D9

33 E6

34.E12

35.E10

36 D2

37 C1

38.F2

39 E8

40 E9

41 D13

42.F4

43 D1

44.E28

45.E23

46.E11

47.E26

48.F3

49 D14

50.E25

51.E24

52 D15

53.E27

54 D10

55 D11

56.F6

57 C5

58.F5

59 E7

60 G
61 A3

62.B11

63.B10

64 A5

65.E13

66.E15

67.E14

68 E2

69 E1

70F10

71.F9

72.F8

73.F7

74 C8

75.E32

76 D16

77.E35

78.E33

79.E34

80 C6

81.E30

82 D18

83.E29

84.E31

85 D19

86.C11

87 C9

88 A4

89.E36

90.E17

91.E16

92.E38

93.E37

94.E39

95.C10

96F14

97F13

98F12

99F11

100 E42

101 E41

102 E40

115

Appendix B

Klein-Bottle
Irreducible-Triangulation
Names

The 29 irreducible triangulations of the Klein bottle numbered as in Tables
7.7–7.12 matched with their names as appearing in the work of Lawrencenko
and Negami ([LN97]), and Sulanke ([Sul06c]):

1Kh3
2.Kh2
3.Kh5
4.Kh1
5.Kh6
6.Kh4

7 Kh18
8.Kh7
9.Kh9
10 Kh8
11 . . . Kh22
12 . . . Kh24

13 . . . Kh17
14 . . . Kh21
15 . . . Kh19
16 . . . Kh15
17 . . . Kh23
18 . . . Kh14

19 . . . Kh12
20Kc1
21 . . . Kh10
22 . . . Kh11
23 . . . Kh13
24 . . . Kh20

25 . . . Kh16
26Kc2
27 . . . Kh25
28Kc4
29Kc3

116

Bibliography

[AH89] Dan Archdeacon and Phil Huneke. A Kuratowski theorem for
nonorientable surfaces. Journal of Combinatorial Theory, Series
B, 46(2):173–231, 1989.

[AP61] Louis Auslander and Seymour V. Parter. On embedding graphs
into the plane. Journal of Mathematics and Mechanics, 10:517–
523, 1961.

[Arc81] Dan Archdeacon. A Kuratowski theorem for the projective
plane. Journal of Graph Theory, 5(3):243–246, 1981.

[Arc95] Dan Archdeacon. The effect of edge deletion on
the nonorientable genus. http://www.cems.uvm.edu/

TopologicalGraphTheoryProblems/decgenus.htm, 1995.
Accessed: 28 May 2017.

[Arc96] Dan Archdeacon. Topological graph theory. A survey. Congres-
sus Numerantium, 115(5-54):18, 1996.

[Arm13] Mark Anthony Armstrong. Basic Topology. Springer Science &
Business Media, 2013.

[Bad64] Wilhelm Bader. Das topologische problem der gedruckten schal-
tung und seine lösung. Archiv für Elektrotechnik, 49:2–12, 1964.

[Bar82] David Barnette. Generating the triangulations of the projective
plane. Journal of Combinatorial Theory, Series B, 33(3):222–
230, 1982.

[BE88] David Barnette and Allan Edelson. All orientable 2-manifolds
have finitely many minimal triangulations. Israel Journal of
Mathematics, 62(1):90–98, 1988.

117

[BE89] David Barnette and Allan Edelson. All 2-manifolds have finitely
many minimal triangulations. Israel Journal of Mathematics,
67(1):123–128, 1989.

[BHK62] Joseph Battle, Frank Harary, and Yukihiro Kodama. Additivity
of the genus of a graph. Bulletin (New Series) of the American
Mathematical Society, 68(6):565–568, 1962.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the consec-
utive ones property, interval graphs, and graph planarity using
pq-tree algorithms. Journal of Computer and System Sciences,
13(3):335–379, 1976.

[BM04] John M Boyer and Wendy J Myrvold. On the cutting edge:
Simplified O(n) planarity by edge addition. J. Graph Algorithms
Appl., 8(2):241–273, 2004.

[Bra09] Ulrik Brandes. The left-right planarity test. Manuscript submit-
ted for publication, 2009.

[BW89a] Rainer Bodendiek and Klaus Wagner. The fascination of min-
imal graphs. In G. Dirac and L.D. Andersen, editors, Graph
Theory in Memory of G.A. Dirac, Annals of Discrete Mathe-
matics, pages 39–51. North-Holland, 1989.

[BW89b] Rainer Bodendiek and Klaus Wagner. Solution to König’s graph
embedding problem. Mathematische Nachrichten, 140(1):251–
272, 1989.

[Cha02] John Chambers. Hunting for torus obstructions. Master’s the-
sis, Department of Computer Science, University of Victoria,
Victoria, BC, 2002.

[CNAO85] Norishige Chiba, Takao Nishizeki, Shigenobu Abe, and Takao
Ozawa. A linear algorithm for embedding planar graphs us-
ing¡ i¿ pq¡/i¿-trees. Journal of Computer and System Sciences,
30(1):54–76, 1985.

[dF08] Hubert de Fraysseix. Trémaux trees and planarity. Electronic
Notes in Discrete Mathematics, 31:169–180, 2008.

118

[dFdM02] Hubert de Fraysseix and Patrice Ossona de Mendez. PIGALE-
public implementation of a graph algorithm library and editor.
SourceForge project page http://sourceforge.net/projects/pigale,
2002.

[dFdMR06] Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre
Rosenstiehl. Trémaux trees and planarity. International Journal
of Foundations of Computer Science, 17(05):1017–1029, 2006.

[DMP64] G. Demoucron, Y. Malgrange, and R. Pertuiset. Graphes
planaires. Rev. Fran caise Recherche Op erationnelle, 8:33–47,
1964.

[DR91] Hristo Djidjev and John Reif. An efficient algorithm for the
genus problem with explicit construction of forbidden subgraphs.
In Proceedings of the twenty-third annual ACM symposium on
Theory of computing, pages 337–347. ACM, 1991.

[dV12] Eric C. de Verdiere. Topological algorithms for graphs on sur-
faces. 2012.

[FHRR95] J.R. Fiedler, John Philip Huneke, R. Bruce Richter, and Neil
Robertson. Computing the orientable genus of projective graphs.
Journal of Graph Theory, 20(3):297–308, 1995.

[Fil78] I.S. Filotti. An efficient algorithm for determining whether a
cubic graph is toroidal. In Proceedings of the tenth annual ACM
symposium on Theory of computing, pages 133–142. ACM, 1978.

[Fil80] I.S. Filotti. An algorithm for imbedding cubic graphs in the
torus. Journal of Computer and System Sciences, 20(2):255–
276, 1980.

[Flö10] Anna Flötotto. Embeddability of graphs into the Klein surface.
PhD thesis, Bielefeld (Germany): Bielefeld University, 2010.

[FMR79] I.S. Filotti, Gary L. Miller, and John Reif. On determining
the genus of a graph in O(vO(g)) steps (preliminary report). In
Proceedings of the eleventh annual ACM symposium on Theory
of computing, pages 27–37. ACM, 1979.

119

[GHW79] Henry H Glover, John P Huneke, and Chin San Wang. 103
graphs that are irreducible for the projective plane. Journal of
Combinatorial Theory, Series B, 27(3):332–370, 1979.

[GK02] Andrei Gagarin and William Kocay. Embedding graphs contain-
ing k5-subdivisions. Ars Comb., 64:33, 2002.

[GKN03] Andrei Gagarin, William Kocay, and Daniel Neilson. Embed-
dings of small graphs on the torus. Cubo, 5:171–251, 2003.

[GMC09] Andrei Gagarin, Wendy Myrvold, and John Chambers. The
obstructions for toroidal graphs with no K3,3’s. Discrete Math-
ematics, 309(11):3625–3631, 2009.

[Gol63] A. J. Goldstein. An efficient and constructive algorithm for test-
ing whether a graph can be embedded in a plane. In Graph and
Combinatorics Conference, Contract No. NONR 1858-(21), Of-
fice of Naval Research Logistics Proj., Dept. of Mathematics,
Princeton University, May 16-18, 1963.

[GT87] Jonathan L. Gross and Thomas W. Tucker. Topological Graph
Theory. Courier Corporation, 1987.

[HT74] John Hopcroft and Robert Tarjan. Efficient planarity testing.
Journal of the ACM, 21(4):549–568, 1974.

[JMM95] Martin Juvan, Jože Marinček, and Bojan Mohar. Embedding
graphs in the torus in linear time. In Egon Balas and Jens
Clausen, editors, Integer Programming and Combinatorial Op-
timization, volume 920 of Lecture Notes in Computer Science,
pages 360–363. Springer Berlin / Heidelberg, 1995.

[Juv95] Martin Juvan. Algorithms and obstructions for embedding
graphs in the torus. Slovene, University of Ljubljana, Ph. D.
Thesis, 1995.

[JW10] Gwenaël Joret and David R. Wood. Irreducible triangula-
tions are small. Journal of Combinatorial Theory, Series B,
100(5):446–455, 2010.

120

[Klo89] W. Klotz. A constructive proof of kuratowski?s theorem. Ars
Combinatoria, 28:51–54, 1989.

[Kos80] Czes Kosniowski. A first course in algebraic topology. CUP
Archive, 1980.

[Kur30] K. Kuratowski. Sur le probléme des courbes gauches en topolo-
gie. Fundamenta Mathematicae, 15:271–283, 1930.

[Law87] S. Lawrencenko. Irreducible triangulations of the torus. Ukrain.
Geom. Sb, 30:52–62, 1987.

[LEC66] Abraham Lempel, Shimon Even, and Israel Cederbaum. An
algorithm for planarity testing of graphs. Theory of graphs,
8(2):215–232, 1966.

[LN97] Serge Lawrencenko and Seiya Negami. Irreducible triangulations
of the Klein bottle. Journal of Combinatorial Theory, Series B,
70(2):265–291, 1997.

[MK11] Wendy Myrvold and William Kocay. Errors in graph embed-
ding algorithms. Journal of Computer and System Sciences,
77(2):430–438, 2011.

[MM96] K. Mehlhorn and P. Mutzel. On the embedding phase of the
hopcroft and tarjan planarity testing algorithm. Algorithmica,
16(2):233–242, 1996.

[Moh93] Bojan Mohar. Projective planarity in linear time. J. Algorithms,
15(3):482–502, 1993.

[Moh96] Bojan Mohar. Embedding graphs in an arbitrary surface in
linear time. In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, pages 392–397. ACM, 1996.

[Moh99] Bojan Mohar. A linear time algorithm for embedding graphs in
an arbitrary surface. SIAM Journal on Discrete Mathematics,
12(1):6–26, 1999.

[MP14] Brendan D McKay and Adolfo Piperno. Practical graph isomor-
phism, ii. Journal of Symbolic Computation, 60:94–112, 2014.

121

[MT01] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. The
John Hopkins University Press, 2715 North Charles Street, Bal-
timore, Maryland 21218-4363, first printing edition, 2001.

[Neu94] Eugene T. Neufeld. Practical toroidality testing. PhD thesis,
University of Victoria, 1994.

[NM97] Eugene Neufeld and Wendy Myrvold. Practical toroidality test-
ing. In Proceedings of the eighth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’97, pages 574–580, Philadelphia,
PA, USA, 1997. Society for Industrial and Applied Mathematics.

[PD85] B. Perunicic and Z. Duric. An efficient algorithm for embedding
graphs in the projective plane. In Graph theory with applications
to algorithms and computer science, pages 637–650. John Wiley
& Sons, Inc., 1985.

[Ran97] Scott P. Randby. Minimal embeddings in the projective plane.
Journal of Graph Theory, 25(2):153–163, 1997.

[RM05] Jianping Roth and Wendy Myrvold. Simpler projective plane
embedding. Ars Combinatoria, 75:135–156, 2005.

[RS90] Neil Robertson and P.D Seymour. Graph minors. viii. a Kura-
towski theorem for general surfaces. Journal of Combinatorial
Theory, Series B, 48(2):255–288, 1990.

[Sch13] Jens M. Schmidt. A planarity test via construction sequences.
In Mathematical Foundations of Computer Science 2013, pages
765–776. Springer, 2013.

[Sko12] Petr Skoda. Obstructions for embedding graphs into surfaces.
PhD thesis, Simon Fraser University, 2012.

[Sul06a] Thom Sulanke. Generating triangulations of surfaces.
http://hep.physics.indiana.edu/~tsulanke/graphs/

surftri/index.html, 2006. Accessed: 6 May 2015.

[Sul06b] Thom Sulanke. Irreducible triangulations of low genus surfaces.
Arxiv preprint math/0606690, 2006.

122

[Sul06c] Thom Sulanke. Note on the irreducible triangulations of the
klein bottle. Journal of Combinatorial Theory, Series B,
96(6):964 – 972, 2006.

[UAH74] Jeffrey D. Ullman, Alfred V. Aho, and John E. Hopcroft. The
design and analysis of computer algorithms, volume 4. Addison-
Wesley, Reading, 1974.

[Wag37] Klaus Wagner. Über eine eigenschaft der ebenen komplexe.
Mathematische Annalen, 114(1):570–590, 1937.

[Woo06] Jennifer R. Woodcock. A faster algorithm for torus embedding.
PhD thesis, University of Victoria, 2006.

[Yu14] Jiahua Yu. A Practical Torus Embedding Algorithm and Its Im-
plementation. PhD thesis, Applied Sciences: School of Comput-
ing Science, 2014.

123

