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Mechanics of emulsion droplets is crucial in applications where the encapsulated
payload needs to be released under mechanical stimulus. This dissertation explores
dumbbell nanoparticles as emulsifiers with focus on the emergent mechanical sta-
bility of the particle assembly at interfaces. Using a combination of freeze fracture
shadow casting cryo-scanning electron microscopy and analytical modelling. T first
investigate the complex adsorption behavior of individual dumbbells and discuss the
corresponding implications for particle assembly at the iterface. I then investigate
the onset of mechanical instabilities in droplets stabilized by dumbbells using mi-
cropipette aspiration. I compare my findings to the control experiments of bare
droplets and droplets stabilized with molecular surfactant under aspiration. In all
three cases. the magnitude of the critical pressure for the onset of instabilities is set
by the fluid surface tension. While particles have a dramatic imipact on the mecha-
nisin of failure. the mechanical strength of the droplets is only modestly increased.
This work provides experimental handles that can be tuned to aid the mechanical
stability of emulsion droplets. The findings also inform advances in the mechanics

of highly bendable sheets.
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Chapter 1

Introduction

1.1 Background and Context

An cmulsion is a mixture of one immiscible fluid dispersed in another and stabilized
against spontancous phase separation using surfactants. Depending on the function-
ality of the emulsion. surfactants (or emulsifiers) can be protein complexes [22.61].
molecular surfactants [40.41] . colloidal particles [84.87]. or microgels [13. 88].

Colloidal particles have been attractive emulsifiers for oil/water interfaces for the
following reasons [11.54.55.91]. First. they adsorh to the interface with high binding
energies. The binding energy is given bv A G = —7 R? ~, (1 — cos 8,,)°. where R
is the particle radius. 5, is the cuergy per unit area of the oil/water interface. and
0 1s the contact angle as shown in Figure 1.1 (a) [5.10.11]. For 1 jan spherical
particle equally wetting both oil and water (6,, = 90°), the binding energy is on the
order of 107 kgT. Therefore, particles at an oil/water interface create a large kinetic
barrier against mechanisms driving phase separation.

Particle adsorption to the interface is determined by surface tensions of the

oil/water v,,. oil-particle v,,, and water-particle interfaces v,,. These factors man-
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Figure 1.1: Preferential wetting of particles at (a) planar interface, (b - ¢) curved interface. “Lipophilic” particles
form water-in-oil emulsions as shown in (b) while “hydrophilic” particles form oil-in-water emulsions as shown in (c).
Figure has been reproduced from Ref. [11].

ifest through the contact angle 6,,, which describes the equilibrium location of
the particle at the interface. This is summarized by the Young-Dupré equation:
Yow €08 Oy + Yuwp = Yop- Particles equally wet by both liquids, 7., = 7up. have
0o = 90°. Particles preferentially wet by water (“hydrophilic”), 7o, > “up, have
0° < Oy < 90°, while particles preferentially wet by oil (“lipophilic”), vop < Yup,
have 90° < 6,, < 180°. Depending on whether the particles are “hydrophilic”
or “lipophilic”, the resulting emulsion can be oil-in-water or water-in-oil as illus-
trated in Figure 1.1 (b-c) [11,27]. Therefore, the contact angle of the particle deter-
mines wettability at the interface and the resulting interfacial curvature of emulsion
droplets. Most importantly, 6,,, is experimentally accessible, tunable, and unique to
the oil/water/particle system.

Second, colloidal particles at fluid interfaces open up new opportunities for as-
sembling novel materials from bottom up. One strategy to do so is by controlling
particle parameters, wherein intrinsic properties, such as shape, size, wettability,
charge, and surface roughness are tuned to control how particles adsorb to the in-

terface [27,29,40,70]. Once adsorbed, the particle properties prompt specific inter-



particle interactions that drive the collective behavior of particles at the interface. For
instance, particles that are anisotropic often deform the interface locally to maintain
the three-phase contact line [12]. These interfacial deformations result in long-range
capillary interactions that can drive particles into or away from assembling struc-
tures [12,30,57]. An additional instance is when particles adsorb to the oil/water
interface from the oil phase. Surface charges on the particle play up image charge
effects and electrostatics at the oil-water interface, driving the particles into ordered
assemblies at the interface [53]. Another widely employed strategy is molding and
reconfiguring fluid interfaces [15,75]. Here. the curvature gradients in the interface
serve as an external field to control the trajectories of the particles and amplify
inter-particle interactions to achieve desired assemblies [15,24].

Manipulating colloidal architectures at fluid interfaces can lead to novel optical
[48.59]. catalytic [33.35.96]. or mechanical properties [65]. Of particular interest in
this thesis is the mechanics of particle-laden droplets.

Emulsions are often produced as a combination of shear, turbulence, and cavita-
tion forces [91] but are deployed in applications where the encapsulated payload needs
to be released under specific mechanical stimulus [68]. The mechanics of particle-
laden interfaces also affect an emulsion’s stability as they control the draining process
during droplet coalescence [95], influence dessication of the droplet [80], and Ostwald
ripening [63] [11]. Therefore, understanding mechanics of emulsion droplets is crucial
for manufacturing [91]. characterizing [60.92], and deploying emulsions [68] that are
stable and functional.

Mechanical properties of complex fluid interfaces are a subject of ongoing inves-
tigation [28]. Particle-laden droplets have been mechanically perturbed by squishing
the droplet using force microscopy [26,99], shearing the droplets by flowing them

through confined channels [2,46,62,69], changing the internal pressure of the droplet



by either applying osmotic shocks [18,19], tensiometry-like techniques [4,50] or dry-
ing the droplets [97,100], and applying electric field to deform the droplet [73,102].
Most of these studies report the importance of surface tension, interfacial elastic-
ity, and the geometrical parameters of the emulsion in determining the mechanical
stability. On the one hand, some results remain inconsistent, partly perhaps due
to the sensitivity of the outcomes to the perturbation chosen. For instance. one
study [86] reports that the ratio of particle size to drop size determines the order of
magnitude of the measured “collapse pressure” while another study points out that
the collapse pressure depends only on the droplet size and not the particle shape
or size [98]. The latter study also states that single particle rearrangements impact
the mechanical stability [98] while some studies report that particle-laden droplets
buckle as jammed shells upon osmotic shock [18,19] leaving no room for rearrange-
ments. On the other hand. a common thead tying coupled contributions from surface
tension and shell elasticity exists across different perturbations [26.67.99.101.105].
For instance. the compression of particle-laden micrometric droplets using Scanning
Force Microscopy [26] or Atomic Force Microscopy [99] reveals substantial deviations
from the elastic shell models which are apparently contributions from surface tension.
Similarly. the aspiration of sessile particle-laden millimetric droplets reveals buckling
as the tension of the interface approaches zero [67,105]. Nevertheless. the exact
roles played by surface tension and shell elasticity in determining the mechanics of

particle-laden droplets remain unresolved.



1.2 Dissertation summary

In this dissertation, I adopt a bottom-up approach to study the mechanics of particle-
laden droplets.

[ use dumbbell-shaped nanoparticles as emulsifiers. In Chapter 2, I describe the
synthesis of these particles using seeded-emulsion polymerization technique, which
was developed by alumni of the Soft Matter Laboratory [79]. I then characterize the
geometry, surface chemistry, and zeta potential of these particles to understand their
intrinsic properties.

In collaboration with Dr. Lucio Isa at ETH Ziirich, I first investigate the ad-
sorption behavior of individual dumbbells to flat oil/water interfaces. In Chapter 3.
we find that the dumbbells are surface active and adsorb to the interface in three
different orientations. We directly measure the contact angles of the particles at
the interface using freeze fracture shadow casting cryo- scanning electron microscopy
(FreSCa cryo-SEN) . The dumbbells statistically express a preferred orientation that
does not change for different wait times.

Based on our data. I hypothesize that this orientation is an equilibrium configu-
ration defined by the contact angles of the individual lobes and the geometry of the
particles. In Chapter 4, I develop a novel analytical model that treats dumbbells as
two overlapping spheres. Using this model and additional mathematical arguments,
[ explain that the preferred orientation is indeed the equilibrium configuration. I
further extend the model to predict different equilibrium orientations of particles
at the interface based on the intrinsic parameters. I draw on our observations to
develop a generalized model that could serve as a blueprint for designing interfacial
assemblies.

I then investigate the mechanical stability of particle-laden droplets using mi-



cropipette aspiration. In Chapters 5 and 6, I focus on the onset of mechanical
instabilities in these droplets. Dumbbell-laden droplets exhibit a two-step response
to suction pressure, unlike the cases of bare droplets and droplets coated with molec-
ular surfactant under aspiration. I show that while dumbbells have dramatic impact
on the mechanism of failure, the mechanical strength of the droplets is only mod-
estly increased. However, in all three cases, the magnitude of the critical pressures
characterizing the onset of instabilities is set by the fluid surface tension.

I conclude with Chapter 7, where I explain our key findings and their impact on
microencapsulation technologies applicable across several industrial sectors. I also
explain opportunities for future work and make connections to current research on

the mechanics of thin sheets.



Chapter 2

Synthesis and characterization of

sub-micron amphiphilic dumbbells

J. Israclachvili defined two experimentally accesible variables for molecular surfac-
tants that account for the physical and chemical forces in the system [40.41]. The
packing parameter accounts for the geometry of the surfactant as well as the domi-
nant surface forces in the system. The Hydrophilic-Liphophilic Balance (HLB) index
is given by the relative amounts of the hydrophilic and lipophilic components in the
surfactant. Together. the packing parameter and HLB index can be used to pre-
dict the eritical interfacial curvature and the interfacial microstructure. We hope to
extend the phase space developed for molecular surfactants to colloidal particles.
Amphiphilic dumbbell-shaped nanoparticles can serve as colloidal mimics of molec-
ular surfactants due to their geometrical and chemical anisotropy. By enhanced
control over the particle’s geometry and differential solvent affinity, we can ma-
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