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ABSTRACT

The quantum interference effects, such as the Autler-Townes (AT) effect and electro-

magnetically induced transparency (EIT) applied to molecular systems are the focus

of this Dissertation in the context of high resolution molecular spectroscopy. We

demonstrate that the AT effect can be used to manipulate the spin character of a

spin-orbit coupled pair of molecular energy levels serving as a gateway between the

singlet and triplet electronic states. We demonstrate that the singlet-triplet mixing

characters of the gateway levels can be controlled by manipulating the coupling laser

E field amplitude.

We observe experimentally the collisional population transfer between electronic

states G1Πg(v = 12, J = 21, f) and 13Σ−
g (v = 1, N = 21, f) of 7Li2. We obtain

the Stern-Vollmer plot according to the vapor pressure dependence of collisional

transfer rate. The triplet fluorescence from the mixed gateway levels to the triplet

b3Πu(v
′ = 1, J ′ = 20, 21, 22) levels as a function of the probe laser detuning as well

as the control laser detuning are observed and compared. The control laser power

dependence of the triplet fluorescence signal intensity is recorded to demonstrate that

the collisional transfer rate can be enhanced by increasing the control laser power level

(Rabi frequency). The conservation of the molecular population transfer is confirmed

by comparing the singlet and triplet fluorescence with the control laser detuning over

the resonance.

A large number of ro-vibrational levels of the 61Σ+
g and 31Πg electronic states

of 85Rb2 are observed experimentally by optical-optical double resonance (OODR)

spectroscopy technique. The rotational and vibrational Dunham coefficients are ex-

tracted from the experimental ro-vibrational energies, and the preliminary Rydberg-

Klein-Rees (RKR) potential energy curves are constructed for both states. The ro-

vibrational eigenvalues are calculated from the preliminary RKR potential energy

curves by using the LEVEL program and compared with the measured ro-vibrational
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energy values in order to test the quality of the preliminary RKR potential energy

curves. The ro-vibrational eigenvalues calculated from the ab-initio curves are also

compared with our preliminary RKR potential energy curves. The quantum numbers

of the collisional lines are assigned by comparing with the theoretical term values of

the intermediate A1Σ+
u ∼ b3Πu states, and additional term values for the 61Σ+

g and

31Πg states are determined.
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CHAPTER 1

INTRODUCTION

The great interest in alkali dimers such as Li2, Na2 and Rb2 parallel to the devel-

opment of laser technology can be attributed to numerous scientific geniuses such as

the Nobel Prize winners Charles Hard Townes (July 28, 1915 - January 27, 2015) and

Arthur Leonard Schawlow (May 5, 1921 - April 28, 1999).

The development of narrow bandwidth single mode tunable laser sources per-

mits very high sensitivity and accurate determination of the energy level. Thus the

coherence effects have drawn a lot of attention to various phenomena including co-

herent population trapping (CPT) [1–3], electromagnetically induced transparency

(EIT) [4–6], Autler-Townes (AT) effect [7], lasing without invasion (LWI) [8–10],

molecular angular momentum alignment [11], slow light [12, 13], reconstruction of an

entangled state [14], and atom localization [15], etc. In this dissertation, we focus on

the quantum control of the collisional population transfer between singlet and triplet

state manifolds achieved by manipulating the spin character of a pair of singlet-triplet

mixed gateway levels using the Autler-Townes effect.

Furthermore, recently the Rubidium dimer molecules are of great interest in many

fields such as ultra-cold molecule formation, cold atom-molecule collisions, etc. How-

ever, since the Rb2 molecule has a dense ro-vibrational energy level structure and
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the spin-orbit interaction is relatively strong, the perturbations between electronic

states cannot be ignored. The experimental observation of the electronic states is

more challenging especially for the high-lying electronic states. In this dissertation,

we also present the spectroscopic observation of the electronic states 61Σ+
g and 31Πg

of 85Rb2, and preliminary analysis of the potential energy curves.

This dissertation consists of five chapters. Chapter 2 gives an outline of the theo-

retical background of the diatomic molecules. The Born-Oppenheimer approximation

is introduced in addition to the labelling of an electronic state of a diatomic molecule.

The vibrational and rotational motions of diatomic molecules are discussed, and the

total energy of a particular ro-vibrational level in terms of the vibrational and rota-

tional quantum number, v and J , respectively, is expressed by Dunham expansion.

The coupling of angular momentum vectors is briefly described according to Hund’s

case (a), (b), (c), and (d). The selection rules for molecular transitions determined

by the transition dipole moment operator are also given in this chapter.

Chapter 3 elaborates the quantum control of the spin-orbit interaction based on

the Autler-Townes effect [16]. The experimental and theoretical investigation of EIT

and Autler-Townes effect is given for a four-level molecular system by continuous

wave (cw) laser spectroscopy. The spin-orbit interaction and the gateway effect are

introduced. The control of the singlet-triplet mixing characters of the gateway levels

by manipulating the coupling laser E field amplitude is demonstrated.

Chapter 4 describes our recent work about optical control of collisional population

transfer between electronic states G1Πg and 13Σ−
g of 7Li2 [17]. The experimental set-

up and the parameter values of the optical fields are given. The excitation scheme

and the reaction steps are illustrated. The Stern-Vollmer plot according to the vapor

pressure dependence of collisional transfer rate is obtained from the experiment. The

triplet and singlet fluorescence signals with the probe and the control laser detuning
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are observed and compared. The simulation of the collisional transfer rate confirms

our experimental results.

Chapter 5 presents the spectroscopic study of the electronic states 61Σ+
g and 31Πg

of 85Rb2. The experimental set-up and the excitation scheme of the collisional trans-

fer by using the optical-optical double resonance (OODR) spectroscopic technique

are shown. A large number of ro-vibrational levels of the two electronic states are

measured and preliminarily analyzed. The Dunham’s coefficients are extracted from

the experimental ro-vibrational energies, and the preliminary RKR potential energy

curves are constructed. The quality of the preliminary potential energy curves is

tested by reproducing the ro-vibrational eigenvalues and comparing with the mea-

sured values as well as with the ab-initio curves. The assignment of the collisional

lines is given and all observed levels of the two states are presented.
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CHAPTER 2

INTRODUCTION TO

DIATOMIC MOLECULES

2.1 Introduction

Numerous textbooks and papers [18–22] about the basic quantum mechanical stud-

ies can be found to understand the diatomic molecular structure. This chapter

provides some background information regarding diatomic molecules, including the

Born-Oppenheimer approximation, vibration and rotation of diatomic molecules, the

coupling of angular momentum vectors, and the selection rules. These topics support

the logistics for the presentation of this dissertation.

2.2 The Born-Oppenheimer Approximation

The time independent Schrödinger equation for a diatomic molecule system is given

by [20]

Ĥψ(ri,R) = Eψ(ri,R), (2.1)
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and the total Hamiltonian for a diatomic molecule can be written as

Ĥ = T̂nuc + T̂elec + V (ri,R). (2.2)

Thus the Schrödinger equation 2.1 can be written as

Ĥψ(ri,R) =
[
T̂nuc + T̂elec + V (ri,R)

]
ψ(ri,R) = Eψ(ri,R), (2.3)

where T̂nuc and T̂elec are the nuclear and electronic kinetic energy operators, respec-

tively,

T̂nuc =
−�2
2μ
∇2

R, (2.4)

T̂elec =
N∑
i=1

(−�2
2me

∇2
ri

)
, (2.5)

and V (ri,R) is the Coulomb interaction potential energy including contributions

from each pair of charged particles in the molecule,

V (ri,R) = −
N∑
i=1

ZAe
2

4πε0|ri −RA| −
N∑
i=1

ZBe
2

4πε0|ri −RB|

+
1

2

N∑
i �=j

e2

4πε0|ri − rj| +
ZAZBe

2

4πε0R
, (2.6)

where ri are the position vectors of the ith electron from the center of mass of the

nuclei, R ≡ RB − RA, with RA and RB the positions of the nuclei relative to the

center of mass, and the internuclear distance R = |R|. me is the mass of the electron,

and μ is the reduced mass of the nuclei A and B,

μ =
MAMB

MA +MB

.
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ZAe and ZBe are the nuclear charges of the two nuclei.

Since the mass of the electrons me is much smaller than the mass of the nu-

clei, and the nuclei move much slower than the electrons, the electronic and nuclear

motion can be considered separately, which is well known as the Born-Oppenheimer

approximation [23]. One consequence of this assumption is that the polyatomic molec-

ular electronic states can be treated as potential energy surfaces, and for diatomic

molecules the electronic states can be treated as potential energy curves. The nuclear

motion is governed by the electronic wavefunctions at fixed nuclear distance, which

are obtained by solving the Schrödinger equation for the electrons [18].

The time independent Schrödinger equation of the electrons moving in the field

of nuclei at a fixed position R can be written as

[
T̂elec + V (ri,R)

]
φn(ri,R) = En(R)φn(ri,R), (2.7)

where φn and En(R) are the eigenfunctions and eigenvalues of the molecular state

n depending on the internuclear distance R. The complete, orthonormal set of the

electronic wavefunctions φn satisfies

∫
d3riφ

∗
n(ri,R)φm(ri,R) = δnm. (2.8)

Thus the molecular wavefunction ψ(ri,R) can be expressed as the expansion

ψ(ri,R) =
∑
n

Fn(R)φn(ri,R), (2.9)

where Fn(R) are the wavefunctions of the nuclear motion while the electronic system

is in state n. The coupled equations can then be obtained by substituting Equation 2.9
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into Equation 2.3, and multiplying by φm(ri,R) on the left,

∑
n

[∫
d3riφ

∗
m(ri,R)T̂nucφn(ri,R)Fn(R)

]
+ (Em(R)− E)Fm(R) = 0. (2.10)

Fm(R) with m = 1, 2, 3, · · · can then further be determined. The operator T̂nuc acting

on the product φnFn yields

T̂nuc(φnFn) = − �
2

2μ
[Fn(∇2

Rφn) + 2(∇RFn · ∇Rφn) + φn(∇2
RFn)]. (2.11)

Considering that the variation of φn, ∇Rφn, is much less than the variation of Fn,

∇RFn, with respect to R [18], the Equation 2.11 can be simplified by the Born-

Oppenheimer approximation,

T̂nuc(φnFn) ≈ − �
2

2μ
[φn(∇2

RFn)]. (2.12)

Thus the Equation 2.10 reduces to the nuclear Schrödinger equation

[−�2
2μ
∇2

R + (Em(R)− E)

]
Fm(R) = 0. (2.13)

with

m = 1, 2, 3, · · · ,

where Fm(R) are the unclear wavefunctions and Em(R) are the electronic eigenvalues

for the potential of the electronic state m, with respect to the internuclear distance

R, yielded by the Born-Oppenheimer approximation.
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2.3 Vibration and Rotation of Diatomic Molecules

As described in the previous section, Em(R) represents the electronic energy of the

molecule in the corresponding electronic state. A typical electronic state of a diatomic

molecule could be labeled as [20]

n2S+1Λ
+/−
Ω,g/u ,

where S is the total electronic spin quantum number which is usually 0 or 1 for

homonuclear diatomic molecules, the superscript 2S + 1 is called spin multiplicity.

The electronic states with S = 0 have a multiplicity of one are called “singlet” states,

and the states with S = 1 have a multiplicity of three and are called “triplet” states.

Λ is the absolute value of the projection of electronic orbital angular momentum L

onto the internuclear axis, with Λ = 0, 1, 2, · · · for Σ,Π,Δ, · · · states, respectively,

and n denotes the energy ordering of states with the same S and Λ. “+/−” is the

symmetry to classify Σ states (Λ = 0), in which the electronic wave function either

remains unchanged (labeled as Σ+) or changes sign (labeled as Σ−) upon reflection of

the electrons through any plane containing the internuclear axis. Ω is the sum of the

components of the spin and orbital angular momentum along the internuclear axis,

Ω = |Λ + Σ|.

For homonuclear molecules, “g/u” (gerade/ungerade in German) is used to label the

symmetric or antisymmetric state whose electronic wavefunction remains unchanged

or changes through the inversion of all electrons through the center of mass (ri →
−ri). For certain states we use the capital lettering of the electronic states, i.e. the

X state refers to the ground electronic state 11Σ+
g of each alkali diatomic molecule.
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In addition, for a homonuclear molecule, the parity “s/a” is used to label a sym-

metric/antisymmetric rotational level. When the two identical nuclei are exchanged,

the total eigenfunction either remains unchanged or only changes its sign [20]. If the

wavefunction remains the same, the level is labeled by “s”, and if the wavefunction

changes the sign, the level is labeled by “a”.

The parity “e/f” which is also known as the rotationless parity, was introduced

by Brown et al. in 1975 [24]. The e/f basis functions are defined as those with total

parity (±)(−1)J for melecules with an even number of electrons and (±)(−1)J−1/2

for molecules with an odd number of electrons [25]. For the electronic state with “+”

total parity, a particular ro-vibrational level is labeled as “e” if (+)(−1)J = 1, and

it’s labeled as “f” if (+)(−1)J = −1. And for the electronic state with “−” total

parity, a particular ro-vibrational level is labeled as “e” if (−)(−1)J = 1, and it’s

labeled as “f” if (−)(−1)J = −1 [26]. All rotational levels of the electronic states

1Σ+ are labeled as e parity.

To a good approximation, the diatomic molecular motion can be broken into two

types of motions. One is vibration of the nuclei along the internuclear axis, and the

other is rotation about an axis that passes through the center of mass of the nuclei

and is perpendicular to the internuclear axis. The total energy or the term value of

the molecule can be written by

E = Ee + Ev + Er, (2.14)

where Ee refers to the electronic energy at the bottom of the potential energy well,

Ev and Er are the vibrational and rotational energies, respectively.

First, considering the rotational energies as the energy eigenvalues of a rigid rotor,

Er can be written as [20],

Er =
�
2

2I
J(J + 1) = BeJ(J + 1), (2.15)
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where J is the rotational quantum number (J = 0, 1, 2, · · · ), and Be is the rotational

constant

Be =
�
2

2I
,

I = μR2 is the moment of inertia with the reduced mass

μ =
M1M2

M1 +M2

.

Note that the energies of these levels increase quadratically with J , and the energy

spacing between a level J and the next higher level J + 1 increases linearly (see

Figure 2.1),

ΔEr = Er(J + 1)− Er(J) = 2JBe.

However, the bond between the two nuclei of the molecule is not completely rigid,

and the Equation 2.15 is inadequate to describe rotational energy levels of diatomic

molecules. Since while rotating at higher rates, the molecule stretches with increasing

moment of inertia, a term of centrifugal distortion in the rotational energy needs to

be added to the rotational energy [20],

Er = BeJ(J + 1)−De[J(J + 1)]2, (2.16)

where De is the centrifugal distortion constant. This term is negative, because when

the moment of inertian I increases, the rotational energy decreases.

The nuclei of a diatomic molecule are free to vibrate along the internuclear axis

as well. Considering a harmonic oscillator at first, the potential energy function

V (R) = Em(R) can be expressed by a Taylor expansion about its minimum at the

equilibrium separation R0,

V (R) = V (R0) +

(
dV

dR

)
R=R0

(R−R0) +
1

2

(
d2V

dR2

)
R=R0

(R−R0)
2 + · · · . (2.17)
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Since the first derivative of the potential is zero at its minimum, the second term van-

ishes. Neglecting higher order terms in the expansion, the potential energy function

can be approximated as a harmonic oscillator

V (R) ≈ V (R0) +
1

2
k(R−R0)

2, (2.18)

where k is the second derivative of the potential at the equilibrium separation

k =

(
d2V

dR2

)
R=R0

.

By solving the Schrödinger equation with Equation 2.18, the vibrational energies of

a diatomic molecule are approximated as

Ev = ωe

(
v +

1

2

)
, (2.19)

where v is the vibrational quantum number (v = 0, 1, 2, 3, · · · ), and ωe is the frequency

of vibration in wavenumber unit (cm−1),

ωe =
1

2πc

√
k

μ
.

However, the harmonic oscillator approximation is only good at low vibrational

energies. For the high-lying vibrational levels, the higher order terms must be retained

in the Taylor expansion 2.17. By adding anharmonic terms into Equation 2.19, the

vibrational energies are written as [20]

Gv = ωe

(
v +

1

2

)
− ωexe

(
v +

1

2

)2

+ ωeye

(
v +

1

2

)3

+ · · · , (2.20)
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where ωexe and ωeye are anharmonicity constants, and ωe >> ωexe >> ωeye. The

separation between the vibrational energy levels decreases as v increases (see Fig-

ure 2.1).

Figure 2.1: Energy levels of the vibrationg rotator according to Reference [20]. The
rotational energy separation increases as J increases (short horizontal lines), and the
vibrational energy separation decreases as v increases (long horizontal lines).

The approximation stated previously is based on the assumption that the vibra-

tional and rotational motions are independent. However, in reality, at higher energy

levels the vibrational motion causes a changing value of moment of inertia, which

also affects the rotational motion. Thus the vibrating rotator model must be taken

into account. The rotational and centrifugal distortion constants Be and De in Equa-

tion 2.16 are replaced by Bv and Dv which include vibrational terms [20],

Bv = Be − αe

(
v +

1

2

)
+ γe1

(
v +

1

2

)2

+ γe2

(
v +

1

2

)3

+ · · · , (2.21a)

Dv = De + βe

(
v +

1

2

)
+ βe1

(
v +

1

2

)2

+ βe2

(
v +

1

2

)3

+ · · · . (2.21b)
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The spectroscopic constants ωe, ωexe, Be, αe, De, βe, etc. can be determined by

analysis of spectroscopic data.

Thus the total energy of a particular rotational and vibrational (ro-vibrational)

level including all terms of Gv, Bv, and Dv is given by

E(v, J) = Te +Gv +BvJ(J + 1)−Dv[J(J + 1)]2 + · · · , (2.22)

where Te is the energy of the minimum of the electronic state, which is the same as Ee

in Equation 2.14. In addition, higher orders of J(J + 1) need to be retained in order

to accurately reproduce the observed energy levels. The term values of the vibrating

rotator can be expressed in a more compact form using a double power series in terms

of the vibrational and rotational quantum number, v and J , respectively, known as

the Dunham expansion [27]

E(v, J) =
∑
l,m

Ylm

(
v +

1

2

)l [
J(J + 1)− Ω2

]m
. (2.23)

where the Ylm terms are called the Dunham’s coefficients and can be determined from

the measured spectroscopic data, which is discussed in Section 5.3. Ω is the quantum

number describing the component of the total electronic spin and orbital angular

momentum along the internuclear axis. In Hund’s case (a), the component of the

total electron spin angular momentum, S, along the internuclear axis is Σ, and the

component of the total electron orbital angular momentum, L, along the internuclear

axis is Λ, so Ω = Σ+Λ. In Hund’s case (c), Ω is the component of the total electronic

angular momentum, L + S, along the internuclear axis. Thus the expectation value

of the square of the nuclear rotation has been replaced here by [J(J + 1)−Ω2]�2. In

Hund’s case (b), [J(J +1)−Ω2] is replaced by [N(N +1)−Λ2], where N is the sum

of the nuclear rotation and Λ. The angular momentum coupling cases are discussed

in Section 2.4.
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2.4 Angular Momenta and Hund’s Cases

The previous discussion was about the electronic motions in the nuclear fields. In a

real molecule, rotation and vibration take place simultaneously with the electronic

motions. The motions of the nuclei and the motions of the electrons traveling in

the nuclear field lead to several different angular momentum vectors. These angular

momentum vectors can couple in different ways. The Hund’s cases (a), (b), (c), (d),

and (e) describe five typical coupling schemes for coupling the angular momentum

vectors in diatomic molecules [28]. In a molecule, the description between two of

Hund’s cases is often necessary.

Figure 2.2 depicts the first four coupling schemes of angular momenta in Hund’s

cases. The angular momentum operators are described in Table 2.1.

Table 2.1: List of the angular momenta of diatomic molecules frequently used in
Hund’s coupling cases.

Symbol Description

L The total electron orbital angular momentum

S The total electron spin angular momentum

Λ The projection of L onto the internuclear axis

Σ The projection of S onto the internuclear axis

Ω The projection of the combination of L and S onto
the internuclear axis

R The nuclear rotational angular momentum (not the
internuclear axis)

I The total nuclear spin angular momentum

J = R+L+ S The total angular momentum excluding nuclear spin

N = J − S = R+L The total angular momentum excluding electron and
nuclear spin

F = J +R+L+ S The grand total angular momentum

Hund’s case (a). In Hund’s case (a), each of L and S couples strongly to the

internuclear axis. The precession of L and S around the internuclear axis is so fast

that only their projections onto the internuclear axis, Λ and Σ, survive. Thus Λ and

15



Hund’s case (a) Hund’s case (b)

Hund’s case (c)                                 Hund’s case (d)

Figure 2.2: Hund’s coupling cases (a), (b), (c), and (d). The angular momentum
vectors are described in Table 2.1.
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Σ are good quantum numbers, rather than L and S. The quantum number Λ takes

on the values in terms of the quantum value of L,

Λ = |ML| = 0, 1, 2, · · · , L,

and the quantum number Σ takes on the values in terms of the quantum value of S,

Σ = −S,−S + 1, · · · , S − 1, S.

The sum of the projections Ω = Λ + Σ takes on the values

Ω = |Λ− S|, |Λ− S|+ 1, · · · ,Λ + S.

In this case Ω couples to R and form a resultant J , as shown in Figure 2.2.

The notation referring to a particular electronic state 2S+1Λ±
Ω, stated in the begin-

ning of Section 2.3, is based on the angular momentum vectors defined in the Hund’s

case (a).

Hund’s case (b). In Hund’s case (b), only L couples strongly to the internuclear

axis and forms Λ. S is very weakly coupled or not coupled to the internuclear axis.

Therefore Ω is not a good quantum number because Σ is not defined. In this case, Λ

couples to R and form a resultant N , and N couples to S to form J , as shown in

Figure 2.2. Hund’s case (b) generally applies to the case when Λ = 0, and S is not

coupled to the internuclear axis. And also in lighter molecules, even if Λ �= 0, S is

weakly coupled to the internuclear axis.

The notation of the states described by Hund’s case (b) is similar to Hund’s case

(a) but without the Ω subscript, 2S+1Λ±.
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Hund’s case (c). In Hund’s case (c), the interaction between L and S (spin-orbit

interaction) is stronger than the interaction with the internuclear axis. Therefore nei-

ther L nor S are good quantum numbers because Λ and Σ are not defined. In this

case, L and S couple first and form a resultant Ja, which then couples to the inter-

nuclear axis with a component Ω. The electronic angular momentum and the nuclear

rotational angular momentum, Ω and R, further form J , as shown in Figure 2.2.

The notation 2S+1Λ±
Ω is not rigorously correct for the states described by Hund’s

case (c). We use a numbering index n to label a proper state. For a state n(Ω), there

are n− 1 states below it with the same value of Ω.

Hund’s case (d). In Hund’s case (d), the coupling between L and the internu-

clear axis is very weak while that between L and the rotation is strong. In this case,

L and R couple first and form a resultant N . N and S then further form J , as

shown in Figure 2.2.

This dissertation only briefly discusses the Hund’s cases (a), (b), (c), and (d). The

more detailed description of all five coupling cases can be found in References [20, 22,

26].

2.5 Selection Rules

The transitions between ro-vibrational levels of different electronic states can be re-

alized by external electric or magnetic fields. The probabilities and intensities of the

transition are determined by the matrix elements of the transition dipole moment

operator 〈Ψi|μe|Ψj〉. We apply the symmetry operator σ to the integral and obtain

σ〈Ψi|μe|Ψj〉 = (−1)N1+N2+N3〈Ψi|μe|Ψj〉, (2.24)
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where N1 + N2 + N3 characterize the parities of the wavefunctions and the dipole

moment under the symmetry operation. When N1 +N2 +N3 is an odd integer, the

matrix element in Equation 2.24 becomes zero.

For homonuclear diatomic molecules, the electric dipole selection rules are as

follows [20],

1. ΔΛ = 0,±1. The transitions such as Σ ↔ Σ,Σ ↔ Π,Π ↔ Π,Π ↔ Δ, · · ·
are allowed, while the transitions whose Λ changes by more than one such as Σ ↔
Δ,Π↔ Φ, · · · are forbidden.

Only Σ+ ↔ Σ+, Σ− ↔ Σ− transitions are allowed.

2. ΔS = 0. Only the transitions between the electronic states with the same mul-

tiplicity are allowed. The transitions between singlet and triplet states are forbidden.

However, when spin-orbit interaction is taken into account, this nominal rule breaks

down, which is discussed in Chapter 3 and 4.

3. g ↔ u. The transitions of g ↔ g states and u↔ u states are forbidden.

4. a ↔ a, s ↔ s. The transitions between symmetric and antisymmetric rota-

tional levels are forbidden.

5. e↔ f , for ΔJ = 0;

e↔ e, f ↔ f , for ΔJ = ±1.
In the fifth selection rule, ΔJ = J ′−J ′′ is the difference of the rotational quantum

numbers between the upper level J ′ and the lower level J ′′. The typical molecular

transitions with different ΔJ values are denoted as

P (J ′′) for ΔJ = −1,

Q(J ′′) for ΔJ = 0,

R(J ′′) for ΔJ = +1.
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The further selection rules on the rotational quantum number J are

ΔJ = ±1 for transition Σ→ Σ,

ΔJ = 0,±1 for all other transitions, except J = 0 �↔ J = 0.
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CHAPTER 3

THE THEORY BEHIND THE

QUANTUM CONTROL OF THE

SPIN-ORBIT INTERACTION

3.1 Introduction

Quantum interference effects, such as Autler-Townes (AT) splitting and electromag-

netically induced transparency (EIT), provide powerful probes of fundamental molec-

ular properties, such as determining the absolute transition dipole moment matrix

elements of molecular transitions, controlling quantum state singlet-triplet character,

and demonstrating frequency domain quantum control on predissociation, etc.

Singlet and triplet energy levels mixed by the spin-orbit interaction can be used as

gateway levels in spectroscopy to gain access to otherwise “dark” triplet states from

a singlet ground state [25, 29–33]. The degree of mixing depends on the strength

of the spin-orbit interaction as well as the energy separation between the interacting

states. Thus the coupling laser E field amplitude that tunes the singlet-triplet mixing
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coefficients is used as a control knob for opening the gateway of the mixed pair of

levels “wider”.

3.2 The Doppler Broadening Effect

Figure 3.1 shows our experimental model of 6Li2 3-level cascade excitation. By fre-

L2
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Ω12, k1

2

3
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)23,25(1 ��gF

)22,30(1 ��uA
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)21,(1 "X v��g

�4

5

k3

Figure 3.1: The model of 6Li2 3-level cascade excitation. The pump laser L1 couples
levels |1〉 − X1Σ+

g (v
′′ = 1, J ′′ = 23) and |2〉 − A1Σ+

u (v
′ = 12, J ′ = 22), while the

coupling laser L2 couples levels |2〉 − A1Σ+
u (v

′ = 12, J ′ = 22) and |3〉 − F 1Σ+
g (v =

25, J = 23). Here Ωij and ki represent the Rabi frequency and wavenumber of each
laser, respectively.

quency domain control, our pump laser L1 excites the molecules from the ground state

X1Σ+
g to intermediate state A1Σ+

u here. Then the coupling laser L2 excites molecules

from the A1Σ+
u state to the F 1Σ+

g state. The fluorescence from the upper state results
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in an optical-optical double resonance (OODR) signal. The quantum numbers of the

ro-vibrational energy levels in each state are shown in Figure 3.1.

Figure 3.2 shows a portion of the resolved fluorescence following excitation from

the X1Σ+
g state to the A1Σ+

u state. When the pump laser L1 is tuned through the
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Figure 3.2: A portion of the resolved fluorescence spectrum of 6Li2. Laser L1 excites
the molecules from the thermally populated ground state ro-vibrational level |1〉 −
X1Σ+

g (v
′′ = 1, J ′′ = 23) to the intermediate level |2〉 − A1Σ+

u (v
′ = 12, J ′ = 22).

pump transition, the recorded lineshape is due to the Doppler broadening effect as

shown in Figure 3.3. The distribution of radiation with a spread of frequencies is well

described by the Gaussian function [34],

g(ν) =

(
4 ln 2

πΔν2
D

)1/2

exp

[−4 ln 2(ν − ν0)
2

Δν2
D

]
, (3.1)

where ν0 = 494656.6045GHz is the center frequency of the lineshape, and ΔνD =

3.1083GHz is the full width at half-maximum (FWHM) of the Doppler-broadened
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Figure 3.3: Doppler Broadening, when observing fluorescence from the intermediate
level A1Σ+

u (v
′ = 12, J ′ = 22) to the thermally populated ground state ro-vibrational

level X1Σ+
g (v

′′ = 6, J ′′ = 21) of 6Li2.

line function for molecular mass m0 at temperature T ,

ΔνD =

√
8kBT ln 2

m0c2
ν0. (3.2)

The temperature of the system can then be calculated by,

T =

(
ΔνD
ν0

)2
m0c

2

8kB ln 2
. (3.3)

The red line in Figure 3.3 is a computational curve fit to our experimental data, which

gives 900 K for the value of the temperature of the sample.
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3.3 Beam Profile and the Amplitude E of Electric

Field of a Laser

The laser beam electric field amplitude has a Gaussian radial distribution as shown

in Figure 3.4. The distribution has the form

-400 -200 0 200 400
0.0
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0.4

0.6

0.8

1.0

 

 

I /
 I  0

r ( � m )

w 1/e
2
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Blade

d

x

y

Figure 3.4: Illustration of the Gaussian distribution of the intensity of the laser electric
field and the razor blade technique.
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E(r) = E0 exp

(
− r2

w2

)
, (3.4)

where E0 is the amplitude of the electric field at the center of the laser beam E field

radial profile.

The total power of a laser beam can be written as the integral

Ptot =

∫ +∞

0

∫ 2π

0

I(r)rdrdϕ, (3.5)

in polar coordinates r and ϕ. And I(r) can be expressed as

I(r) =
1

2
cε0E(r)2. (3.6)

E0 can be further determined by experimentally measuring the total power Ptot and

the beam waist w by using

E0 =

√
2

cε0
·
√

2Ptot

πw2
. (3.7)

The beam spot size, or the beam waist, w is defined as the radius at the 1/e2

intensity of the maximum value I0 (Figure 3.4). The beam waist can be measured by

using the razor blade technique [35]. Using this method, the power of the laser beam

blocked by the razor blade at a distance d is denoted by

P (d) =

∫ d

−∞

∫ +∞

−∞
I(x, y)dydx. (3.8)

By taking into account Equations 3.4 and 3.6 in Cartesian coordinates x and y,

Equation 3.8 can be expressed as

P (d) =
π

4
w2I0

[
1 + erf

(√
2d

w

)]
, (3.9)
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where

I0 =
1

2
cε0E

2
0 .

When d→∞,

lim
d→∞

P (d) =
π

2
w2I0 = Ptot.

By taking d25 and d75 as the positions of the razor blade at 25% and 75% of the

maximum laser beam power, respectively, the ratios

P (d25)

Ptot

=
1

4
=

1

2

[
1 + erf

(√
2d25
w

)]
, (3.10a)

P (d75)

Ptot

=
3

4
=

1

2

[
1 + erf

(√
2d75
w

)]
, (3.10b)

can be used to obtain the results

C = −
√
2d25
w

, (3.11a)

C =

√
2d75
w

, (3.11b)

where C is the solution of error function

erf(C) =
1

2
,

with C ≈ 0.47. The beam waist w can be determined by adding the Equations 3.11

and expressed in terms of C, d25 and d75,

w =
1√
2C

(d75 − d25).

By substituting Ptot and w into Equation 3.7, the amplitude of the electric field

of the laser beam E0 can be calculated.
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3.4 Electromagnetically Induced Transparency

and the Autler-Townes Effect

When a strong coupling laser is tuned to resonance with one of the two transitions, the

absorption of the weak probe laser displays a dramatic decrease as the probe laser fre-

quency is tuned across the resonance. This phenomenon is called electromagnetically

induced transparency (EIT) [5, 6, 36].

The Autler-Townes (AT) splitting effect [7], which is also known as AC Stark

effect, can be realized in gas-phase molecules by using the pump and tunable probe

lasers to create sub-Doppler double resonance of an upper ro-vibrational level [11].

The excitation scheme is shown in Figure 3.1. The experimental setup is described

in Figure 3.5. The pump laser (L1) is operated with Kiton Red dye and is modulated

M

Narrow band tunable 
cw dye lasers 

(Coherent 699-29)

Pump laser (L1) M

6Li2 Heatpipe

Mechanical 
modulator

Coupling laser (L2)

Lock-in Amplifier

PMT

Monochromator

P
M

T

Lock-in Amplifier

Kiton Red

R6G

Computer

Figure 3.5: Experimental setup for EIT and the Autler-Townes effect of 6Li2 3-
level cascade excitation. The pump laser (L1) and the coupling laser (L2) counter-
propagate and overlap at the center of the heatpipe. The total fluorescence is detected
by the PMT with a filter. And the monochromator detects the resolved fluorescence.
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before going through the heatpipe. The coupling laser (L2) is operated using the

R6G dye and counter-propagates relative to the pump laser L1 in the heatpipe. It is

overlapped with the pump laser beam. Both of the lasers are Coherent 699-29 narrow

band tunable continous wave (cw) ring dye lasers. The photomutiplier (PMT) with a

filter is used to detect the total fluorescence. Meanwhile the monochromator (SPEX

1404) detects the resolved fluorescence. A mechanical modulator is used on the pump

laser to improve the signal to noise by phase sensitive detection with lock-in amplifiers.

Figure 3.6 shows the results of the double resonance signal we obtained. Fig-
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Figure 3.6: (a) AT splitting, observation of fluorescence from the excited level |3〉 −
F 1Σ+

g (v = 25, J = 23) to the intermediate level A1Σ+
u (v

′ = 30, J ′ = 22); (b) EIT,
observation of fluorescence from the intermediate level |2〉 − A1Σ+

u (v
′ = 12, J ′ = 22)

to the thermally populated ground state ro-vibrational level X1Σ+
g (v

′′ = 6, J ′′ = 21),
in 6Li2.

ure 3.6(a) illustrates the Autler-Townes splitting spectrum, which consists of the

total fluorescence from the excited state to the intermediate state as the coupling

laser (L2) frequency is scanned, and Figure 3.6(b) depicts Electromagnetically In-

duced Transparency (EIT), which is observed by monitoring fluorescence from the
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intermediate state to the ground state as the pump laser (L1) frequency is scanned.

The linewidth of the AT splitting spectral line is about 150 MHz, and the width of

splitting is related to the Rabi frequency of the coupling laser. The EIT linewidth is

about 3 GHz and is dominated by Doppler broadening, and the width of the dip is

about 100 MHz.

The intensity distribution [37, 38] is described as

Ii(Δ1,Δ2, r) =
∑
M

∫ ∞

−∞
ρMii (r, vz)N(vz)dvz, (3.12)

where Δ1 and Δ2 are velocity dependent detunings of the probe and coupling lasers

from the molecular transition frequencies ωij,

Δ1 = ω21 − ω1 + k1vz, (3.13a)

Δ2 = ω32 − ω2 + k2vz. (3.13b)

and ρii is the population of level i (i = 2, 3) and magnetic sublevel M ,

ρM22(r, vz) =
−Ω2

1,M

2FM(Δ2)
Im

⎡⎣ (Δ1 +Δ2 + iγ13)
[
Δ2

2 + γ2
23 +

Ω2
2,Mγ23

2W3

]
(Δ1 +Δ2 + iγ13)(Δ1 + iγ12)− Ω2

2,M/4

+

Ω2
2,M

4

(
1− W32

W3

)
(Δ2 − iγ23)

(Δ1 +Δ2 + iγ13)(Δ1 + iγ12)− Ω2
2,M/4

⎤⎦ , (3.14a)

ρM33(r, vz) =
Ω2

1,MΩ2
2,M

8W3FM(Δ2)
Im

[
−2γ23(Δ1 +Δ2 + iγ13)

(Δ1 +Δ2 + iγ13)(Δ1 + iγ12)− Ω2
2,M/4

+
W2(Δ2 − iγ23)

(Δ1 +Δ2 + iγ13)(Δ1 + iγ12)− Ω2
2,M/4

]
, (3.14b)

with

FM(Δ2) ≡ W2(Δ
2
2 + γ2

23 +
Ω2

2,Mγ23

2W3

+
Ω2

2,M

2
γ23(1− W32

W3

), (3.15)
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where Wi is the damping rate of the ith level, including both radiative and collisional

contributions.

Table 3.1 lists all the parameters needed for the simulation. After theoretical

simulation of the experimental data, we obtain the line shapes shown as the red lines

in Figure 3.6.

Table 3.1: List of all parameters of the pump and probe lasers used in the simulation
of the cascade scheme experiment with the probe transition to F 1Σ+

g .

Parameter Value

Temperature (◦C) T = 652

Beam Waist (μm) w = 127.5

Rabi Frequency (MHz) Ω12 = 32 Ω23 = 187

Wavenumber (cm−1) k1 = 16500.25 k2 = 17601.42

Decay Rate (s−1) γ2 = 5.2868× 107 γ3 = 8.9062× 107

γ21 = 4.9420× 105 γ32 = 9.2030× 105

3.5 The Spin-Orbit Interaction and the Gateway

Effect

In order to obtain a more accurate description of the energy level structure of a

homonucler molecular system, the relativistic effects due to the following interactions

have to be taken into account [22]:

1. Spin-orbit interaction: the interaction between the spin and orbital angular

momenta of the electrons,

2. Spin-rotation interaction: the interaction between the electron spin and the

rotational angular momenta of the nuclei,

3. Spin-spin interaction: the interaction between the spins of different electrons.
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These interactions create the mixing of electronic states of different spin multi-

plicity, thus causing violation of approximate selection rules. An example is shown

in Figure 3.7. Although the dipole selection rule on spin ΔS = 0 prohibits direct

+↔ ↔

Figure 3.7: The approximate selection rule, ΔS = 0, prohibits direct transitions
between singlet and triplet states. However, due to the spin-orbit interaction, singlet
triplet levels with the same J could couple together, and make the transition between
singlet and triplet states possible.

excitation between states of different spins (singlet �↔ triplet), singlet and triplet en-

ergy levels with the same rotational quantum number J can couple together by the

spin-orbit interaction creating levels of mixed singlet-triplet character, and make the

nominally forbidden transitions possible.

Under certain conditions, the spin-orbit interactions have been demonstrated even

for molecules with relatively light nuclei with weakly coupled spin and orbital angular

momenta. Therefore the spin-orbit interaction is small (i.e. Lithium, ∼0.1 cm−1 [39]).

For example, in the work of Ahmed et al. [16, 40], the spin-orbit interaction couples

the nonrelativistic G1Πg and 13Σ−
g potentials and creates a mixing mechanism for the

ro-vibrational levels of the G1Πg and 13Σ−
g states.

Compared with other interactions, such as the spin-rotation and the spin-spin

interactions, the spin-orbit interaction for Lithium is much larger. Thus the correction

term due to the spin-orbit interaction needs to be added to the Hamiltonian of the
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system according to perturbation theory [22],

ĤSO =
α2

2

∑
N

∑
i

ZN

r3iN
liN · si − α2

2

∑
i,j,i �=j

[
1

r3ij
(rij × pi)(si + 2sj)

]
, (3.16)

where α is the fine-structure constant, α = e2/�c, ZN is the number of protons in

nucleus N , riN is the distance from electron i to nucleus N , pi is the momentum of

electron i in a molecule-fixed frame, si is the spin angular momentum of the electron

i and liN = riN × pi is the orbital angular momentum of electron i about nucleus N .

In the Equation 3.16, the first term of ĤSO represents the spin-same-orbit interac-

tion of each electron in the field of the bare nuclei. The second term is the spin-other-

orbit interaction, which is due to inter-electronic interactions and is opposite to the

first term. And since the spin-other-orbit interaction can be incorporated into the

first term as a screening effect [41], the spin-orbit Hamiltonian ĤSO of Equation 3.16

can be simplified as [42]

ĤSO =
∑
i

âili · si, (3.17)

with

âili =
∑
N

α2

2

Zeff,N

r3iN
liN , (3.18)

where Zeff,N is the inter-electronic interaction that screens the nuclear charge [43],

and therefore signifies the effective charge of the nucleus N .

In the work of Ahmed et al. [16, 40], the quantum control of the spin-orbit inter-

action of the alkali-metal dimer (7Li2) in a cw optical field is observed. The mixed

G1Πg ∼ 13Σ−
g pair of ro-vibrational levels is an example of the singlet-triplet mixing.

These levels can be used as “gateway” or “windows” levels [29, 44–47] for transferring

population between singlet and triplet manifolds which occurs by way of collisional

pathways through levels of mixed character.

Figure 3.8 shows a model of the gateway effect [45]. The pump laser excites the

34



Figure 3.8: The gateway effect according to Reference [45]. The pump laser excites
the population from the ground X1Σ+

g state to the intermediate A1Σ+
u state. During

collision, the population flows to the closeby triplet state rotational manifold, follow-
ing the collisional propensity rule ΔJ = ±2,±4, · · · . The nearly degenerate A1Σ+

u

and b3Π2u levels with the same rotational quantum number J can couple together by
the spin-orbit interaction. When a pair of ro-vibrational levels of two electronic states
is appreciably mixed, a gateway is created, leading to a pathway for the transition
from the mixing intermediate A1Σ+

u ∼ b3Π2u state to the 23Π2g state.

35



population from the ground X1Σ+
g state to the intermediate A1Σ+

u state. During

collision, the population flows to the closeby manifold of rotational levels, according

to the collisional propensity rules for the permanent dipole term, which follow from

the selection rules for both perturbations and pure rotational transitions [25, 45]:

ΔJ = ±2,±4, · · · ,

ΔΩ = 0,

ΔS = 0,

s←/→ a,

e←/→ f,

g ←/→ u.

According to the previous discussion, although the dipole selection rule on spin,

ΔS = 0, prohibits direct transition between the singlet and triplet states, the nearly

degenerate singlet and triplet levels with the same rotational quantum number J can

couple together by the spin-orbit interaction. When a pair of ro-vibrational levels of

two electronic states is appreciably mixed, this pair of mutually perturbing levels acts

as a “gateway” through which population flows on its way from one electronic state

to the other, leading to a pathway for singlet-triplet transfer, the life time of which

is usually too short to be observed.

3.6 The Mixing Character

As discussed in Section 3.4, in the presence of strong electromagnetic fields, the energy

levels in atoms or molecules experience shifts in their positions due to the AT effect.
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The AT effect is used to modify the mixing coefficients, and thus the amount of

singlet or triplet character, of a pair of ro-vibrational states initially perturbed by the

spin-orbit interaction (Figure 3.9).
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Figure 3.9: The AT effect is used to manipulate the spin character of a spin-orbit
coupled pair of levels (Gateway Levels) between the singlet and triplet electronic state
manifolds. (a) The AT splitting describes the phenomenon that the transition splits
into a pair of states under influence of a strong electromagnetic field. (b) The AT
effect is used to control singlet-triplet character of the energy levels. The |S〉 ∼ |T〉
mixing is created by shifting AT split singlet components.

The shift due to the AT effect ΔAT is propotional to Rabi frequency,

ΔAT = Const · Ω,

Ω =
μE

�
,

with the transition dipole moment matrix element μ, and electric field

E0 =

√
2

cε0
·
√

2Ptot

πw2
.

Based on recent theoretical studies for quantum control of the singlet-triplet mix-

ing of two states [48–51], a target state of a desirable mixture of singlet and triplet

states, which are close in energy and weakly mixed by a small perturbation, could be
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created by applying a strong coupling laser on resonance between one of the mixed

levels and a separate third level. And the control of the spin-orbit interaction can be

realized by changing the coupling field strength.

Figure 3.10 depicts an example of how to manipulate the spin character of the

spin-orbit coupled pair of levels serving as a gateway between the singlet and triplet

electronic state manifolds [16]. Thermal population in the ground X1Σ+
g state is ex-

cited to the first excited A1Σ+
u state by the weak pump laser L1. And then L2, the

weak probe laser, excites the population to the mixed pair of levels G1Πg ∼ 13Σ−
g ,

which are the gateway levels. The strong coupling laser L3 couples the transition

between the G1Πg state and the A1Σ+
u electronic state with different rotational quan-

tum numbers J . Both singlet and triplet channel fluorescence is detected from the

mixed G1Πg ∼ 13Σ−
g gateway levels simultaneously. The mixing character can be

manipulated by tuning the coupling laser E field amplitude.

In Figure 3.10, the singlet |S0〉 states and the triplet |T0〉 state are two closely

spaced eigenstates coupled by the spin-orbit perturbation ĤSO, which creates the

mixed states |S〉 and |T〉, which have characteristics of both unperturbed states [20,

52, 53]. The Hamiltonian of the two-state system can be written as [44, 54],

⎛⎜⎝ ES0 − E HSO

HSO ET0 − E

⎞⎟⎠
⎛⎜⎝ α

β

⎞⎟⎠ = 0, (3.19)

where ES0 and ET0 are the eigenenergies of the pure singlet and the pure triplet state

|S0〉 and |T0〉, respectively. α and β are the mixing coefficients for each wave vector

solution. |HSO| is the spin-orbit perturbation matrix element, defined as

|HSO| = |〈S0|ĤSO|T0〉|. (3.20)
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Figure 3.10: All-optical control of the spin-orbit interaction according to Refer-
ence [16]. The weak pump laser L1 excites the population from the ground state
(|1〉, X1Σ+

g ) to the first excited state (|2〉, A1Σ+
u ). Then L2, the weak probe laser,

further excites the population to the gateway levels G1Πg ∼ 13Σ−
g . The coupling field

L3 is set on resonance with the transition of |S〉 ↔ |3〉. The fluorescence of transitions
from the mixed levels G1Πg ∼ 13Σ−

g to the singlet level |4〉 and the triplet level |5〉 is
simultaneously observed from both singlet and triplet channels, respectively.

Thus the eigenenergies of the perturbed states are given by

ES,T =
1

2

{
(ES0 + ET0)±

[
(ES0 − ET0)

2 + 4|HSO|2
] 1

2

}
. (3.21)

The wavefunctions of the perturbed states can be written as

|S〉 = α|S0〉 − β|T0〉, (3.22a)

|T〉 = α|T0〉+ β|S0〉, (3.22b)
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with the normalization condition

α2 + β2 = 1, (3.23)

the mixing coefficients are given by

α =
|HSO|√

δ2 + |HSO|2
, (3.24a)

β =
δ√

δ2 + |HSO|2
, (3.24b)

where δ is the splitting between the perturbed and unperturbed states,

δ = ES − ES0 = ET0 − ET.

Thus from Equation 3.24, |HSO| can be determined from the amplitude ratio and the

energy shift,

|HSO| = δα/β. (3.25)

The amplitude ratio α/β is related to the ratio of the emission intensities through

the singlet and triplet channels from the perturbed level. For states defined by Equa-

tions 3.22

(
Itriplet
Isinglet

)
S

=
εt
εs

τs
τt

|β|2
|α|2 , (3.26a)

(
Itriplet
Isinglet

)
T

=
εt
εs

τs
τt

|α|2
|β|2 , (3.26b)

here τs and τt are the Einstein coefficients of the unperturbed singlet and triplet com-

ponents, respectively, and εs and εt are the detection system efficiencies. (Itriplet)S and

(Isinglet)S are the fluorescence intensities of the state |S〉 through the triplet and singlet
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channels, respectively, and (Itriplet)T and (Isinglet)T are the fluorescence intensities of

the state |T〉 through the triplet and singlet channels, respectively. Thus the mixing

coefficients can be found by measuring the intensity of the fluorescence from each of

the mixed levels [54],

α

β
=

(
(Itriplet/Isinglet)T
(Itriplet/Isinglet)S

) 1
4

=

(
(Itriplet)T/(Itriplet)S
(Isinglet)T/Isinglet)S

) 1
4

. (3.27)

Then the Hamiltonian of the system |HSO| can be further determined from Equa-

tion 3.25.

As shown in Figure 3.10, taking into account the energy separation between the

perturbed levels |S〉 and |T〉,
δSO = ES − ET,

and the energy separation between the unperturbed levels |S0〉 and |T0〉,

δ0SO = ES0 − ET0 ,

with the relation,

δ0SO = (α2 − β2)δSO,

according to Equations 3.25, the Hamiltonian of the spin-orbit interaction can be

simplified as [44, 54]

HSO = �αβδSO.

When the coupling field is applied to the system, the Hamiltonian of the interac-

tion of the molecule with the optical fields, Hint, has to be included. It has the form

−μ ·E, where μ is the transition dipole moment between the levels coupled by a laser

with electric field E. After applying the rotating wave approximation, considering

the levels that are directly coupled by optical field and the spin-orbit interaction, |1〉,
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|2〉, |3〉, |S0〉, and |T0〉 in Figure 3.10, the Hamiltonian of interaction of the system

with optical fields can be written as [16],

HI

�
= αβδSO(|S0〉〈T0|+ |T0〉〈S0|) + Ω1

2
(|2〉〈1|+ |1〉〈2|) + Ω2

2
(|S0〉〈2|+ |2〉〈S0|)

+
Ω3

2
(|3〉〈S0|+ |S0〉〈3|)− (δ1 + δ2)|S0〉〈S0| − (δ1 + δ2 + δ0SO)|T0〉〈T0|

−δ1|2〉〈2| − (δ1 + δ2 − δ3)|3〉〈3|, (3.28)

where δi is the velocity-dependent detuning of the ith laser

δi ≡ Δi ± kivz,

with

Δi ≡ ωi − ωi,res,

the detunings for molecules at rest in the lab frame. ωi is the frequency of the

ith laser, and ωi,res is the resonance transition frequency between the corresponding

unperturbed levels. The Rabi frequency of laser i is

Ωi =
μiEi

�
.

When the control field couples the states |S〉 and |3〉, the nominally singlet peak

splits into two components (|S,−AT〉 and |S,+AT〉 as shown in Figure 3.10) due to

the AT effect, with the separation determined by the Rabi frequency of the control

laser L3. The |S,−AT〉 component of the pair shifts closer to the nearby |T〉 state
and acquires more triplet character and the |T〉 level shifts slightly to the modified

state |T′〉 and acquires more singlet character due to the spin-orbit interaction be-

tween them. Meanwhile the separation between the |S,+AT〉 component and the

|T〉 state increases. Thus the singlet character of the |S,+AT〉 component is en-
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hanced due to the decreasing amount of mixing between them. The result is shown

in Figure 3.11 [16].

-1.0 -0.5 0.0 0.5 1.0

+AT

|S>, G 1Π
�

 

 

 
In

te
ns

it
y 

(a
.u

.)

Probe Laser Frequency (GHz)

|T>, 1
3Σ -

�

 Singlet Channel
 Triplet Channel

-AT

Figure 3.11: Singlet-triplet mixing according to Reference [16]. With the control laser
on resonance between the |S〉 state and the |3〉 state (Figure 3.10), the fluorescence
from the singlet (black line) and triplet (blue line) channels are observed simultane-
ously. The |S,−AT〉 component gains more triplet character in mixing and |S,+AT〉
component becomes “cleaner” singlet.

In order to demonstrate that the spin-orbit interaction can be manipulated by

tuning the amplitude of the control laser field, the spectra from the singlet fluorescence

channel with varying power levels of the control laser is shown in Figure 3.12. By

increasing the power level of the control laser, the spin-orbit interaction of |T ′〉 with
the |S,−AT〉 component increases, and the singlet-triplet mixing is enhanced. The

singlet character of the predominantly triplet level |T ′〉 is enhanced. And the two
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Figure 3.12: The dependence of the singlet-triplet mixing and the magnitude of the
AT splitting on the control laser power according to Reference [16]. The spectra of
the singlet fluorescence from the perturbed levels to the lower A1Σ+

u level are recorded
with different power levels of the control laser. As the control laser power increases,
the leftmost peak, corresponding to the fluorescence from the level |T ′〉 with primarily
triplet character, gains more singlet character. Meanwhile the peak(s) on the right,
corresponding to the fluorescence from the components |S,−AT〉 and |S,+AT〉 with
primarily singlet character, shift apart more due to AT effect.

components |S,−AT〉 and |S,+AT〉 of the AT pair, predominantly of singlet character,

become more asymmetric.
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3.7 Conclusion

In this chapter, we have investigated several quantum interference effects, such as

the Autler-Townes (AT) effect and electromagnetically induced transparency (EIT).

The AT effect states that under the influence of a strong electromagnetic field, the

transition experiences splitting into a pair of states, and the magnitude of the splitting

between the two components is proportional to the strength of the coupling field.

The optical control of the collisional population flow between singlet and triplet

state manifolds could be achieved by manipulating the spin character in a pair of

singlet-triplet mixed gateway levels following the collisional propensity rules. The

mixing coefficients of two states, which are perturbed by the spin-orbit interaction,

can be determined by measuring the intensity of fluorescence from each of the mixed

levels.

Finally, we have shown that the population flow between the singlet manifold

and the triplet manifold of the perturbed states could be enhanced with the gateway

opening “wider”, by increasing the coupling laser power.
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CHAPTER 4

OPTICAL CONTROL OF

COLLISIONAL POPULATION

TRANSFER BETWEEN

MOLECULAR ELECTRONIC

STATES OF DIFFERENT SPIN

MULTIPLICITY

4.1 Introduction

For diatomic alkali-metal molecules, the adiabatic model (Figure 4.1) can be described

as two-dimentional electronic potential energy curves, and the intersections become

avoided crossings of the intersecting diabatic potentials due to the perturbation [22].

However, this model breaks down when relativistic effects such as the spin-orbit in-

teraction, which is the coupling between the electron spin and its orbital angular
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Figure 4.1: The adiabatic model of potential energy curves for the electronic states
X1Σ+

g , A
1Σ+

u , b
3Πu, G

1Πg, and 13Σ−
g of 7Li2 as a function of internuclear distance

R [55–59]. The A1Σ+
u and b3Πu states have the same dissociation limit 2s+2p, and the

G1Πg and 13Σ−
g states have the same dissociation limit 2p+2p. The mixing of singlet

and triplet states A1Σ+
u ∼ b3Πu and G1Πg ∼ 13Σ−

g occur between two ro-vibrational
levels with the same rotational quantum number J by the spin-orbit interaction.

momentum, are taken into account, as previously discussed in Section 3.5. Although

the dipole selection rule on spin, ΔS = 0, prohibits direct excitation between states of

different spins (singlet �↔ triplet), singlet and triplet energy levels with the same rota-

tional quantum number J can couple together by the spin-orbit interaction creating

levels of mixed singlet-triplet character. These mixed spin-multiplicity character lev-

els form a “gateway” [25, 45, 46, 60] for transferring population between singlet and

triplet manifolds by collisional pathways through levels of mixed singlet and triplet

character.

In the recent experiment, Ahmed et al. [16, 40] have demonstrated that the singlet

and triplet character of a pair of levels coupled by the spin-orbit interaction serving as
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a gateway can be manipulated by using the Autler-Townes (AC Stark) effect [7]. In

this work [17], we extend the experiment for optical control of collisional population

transfer between singlet and triplet states of the 7Li2 dimer.

4.2 Experimental Apparatus

The experimental set-up is illustrated in Figure 4.2.

DCM

M

All lasers are narrow band 
tunable cw dye lasers

(Coherent 699-29)

Pump laser (L1)

M

7Li2 Heatpipe

Mechanical 
modulator

Probe laser (L2)

Lock-in Amplifier

Lock-in Amplifier

R6G

Computer

R6G
Coupling laser (L3)

((((((((((

BS

PMT

Monochromator
P

M
T

Figure 4.2: The experimental set-up for optical control of collisional population trans-
fer between molecular electronic states of different spin multiplicity. The pump (L1)
and probe (L2) lasers are counterpropagating, while the coupling laser (L3) copropa-
gates with L1. A monochromator is used for the singlet channel and a PMT with an
interference bandpass filter (Thorlabs, center wavelength 441.6 nm and bandwidth 10
nm) is used for the triplet channel.

The Lithium metal is loaded into a five-arm, stainless steel heatpipe oven. Two of

the side arms are heated by 280 Ohm ceramic heaters (Lindberg), while the top arm

is wrapped by a cable heater (ARI, BXX-093B38-4T) for uniformly heating the oven.

All three heaters as well as the reservoir at the bottom center of the heatpipe are
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wrapped with extra external insulation. The oven temperature is controlled around

850 K by the voltage applied to the heaters, and can be calculated from the Doppler

profile of one laser transition, discussed in Section 3.2. The heatpipe is vacuum sealed

by holding the window on the flange with o-ring at the end of each arm. The arms

of the heatpipe are water-cooled to avoid condensation of the metal vapor on the

windows and flanges. A layer of stainless steel mesh is placed inside each arm to

allow the liquid lithium to circulate smoothly inside the heatpipe. The difference

between the hot and cold regions of the heatpipe can be as large as 500 K.

The 7Li2 dimers are produced at the reservoir of the heatpipe under the ∼2.3
cm long interaction region where the laser beams are focused and from which the

fluorescence corresponding to specific rovibronic transitions is emitted in a direction

perpendicular to the laser propagation axis. Most of the vapor produced in the

heatpipe is atomic Lithium, with about 5% of the atoms forming molecular Lithium.

Argon gas is used not only as a buffer gas to prevent hot metal vapor from reach-

ing the heatpipe oven windows, but also to introduce collisions with 7Li2 molecules

causing population transfer in this experiment. The vapor pressure dependence of

the collision rate will be discussed later in Section 4.4. Thus in order to look at the

collisions explicitly, the argon gas is loaded into the heatpipe oven at 2 Torr pressure

(measured at room temperature).

The pump (L1), probe (L2), and coupling (L3) lasers are all Coherent 699-29 cw

dye lasers. The pump laser (L1) is operated with dicyanomethylene (DCM) dye, and

both the probe (L2) and coupling (L3) lasers are operated with Rhodamine 590 (R6G)

dye. The pump (L1) and probe (L2) lasers are counterpropagating, while the coupling

laser (L3) copropagates relative to L1 in the heatpipe. A mechanical modulator is

used on the pump laser to improve the signal to noise by phase sensitive detection

with lock-in amplifiers. A neutral density filter is used to attenuate each laser beam to

the desired power, which is measured by a Coherent Lasermate D power meter, with
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an accuracy of ±1% of the reading. The desired spot size, or beam waist w at the

interaction region of heatpipe is achieved by using one lens or combining two lenses

in the path of each laser beam, and is measured using the razor blade technique [35],

as described in Section 3.3. The parameters are listed in Table 4.1.

Table 4.1: List of parameters of all three lasers used in the transition of G1Πg ∼
13Σ−

g − A1Σ+
u −X1Σ+

g .

Parameter Value

Temperature (K) T = 850

Pressure (mTorr) Ar(293 K)=2000

Power (mW) P1 = 10 P2 = 50 P3 = 0 ∼ 760

Beam waist (μm) w1 = 90 w2 = 110 w3 = 225

Wavenumber (cm−1) k1 = 15726.10 k2 = 18111.37 k3 = 17026.87
(15684.54) (18103.19)

Two fluorescence detection channels are used to monitor triplet and singlet flu-

orescence simultaneously (see Figure 4.3). The total triplet fluorescence is collected

by a Hamamatsu R928 photomultiplier tube (PMT) mounted on the top arm of the

heatpipe with an interference bandpass filter (Thorlabs, center wavelength 441.6 nm

and bandwidth 10 nm) in order to separate the desired fluorescence from the back-

ground. Meanwhile the singlet channel fluorescence signal is detected using a SPEX

1404 double grating monochromator with bandwidth of ∼0.1 nm, equipped with a

Hamamatsu R928 photomultiplier tube (PMT). Both signals from the photomultiplier

tubes are amplified by lock-in amplifiers (SR 850).

4.3 Excitation Scheme

Figure 4.3 illustrates the excitation scheme of this experiment. The excitation process

can be separated into two parts. In part “A”, 7Li2 molecules are first excited from a

thermally populated ro-vibrational level of the ground singlet X1Σ+
g electronic state
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Figure 4.3: The excitation scheme for optical control of collisional population transfer
between molecular electronic states of different spin multiplicity according to Refer-
ence [17]. In part A, 7Li2 molecules from the ground singlet X1Σ+

g state (labeled as
|1〉) are excited by the pump laser L1 to the intermediate singlet A1Σ+

u state (labeled
as |2〉). The probe laser L2 then further excites the population to the singlet G1Πg

state (labeled as |3〉). In part B, collisions with argon gas transfer the population to
the gateway levels |S〉 ∼ |T〉 with collisional propensity rules ΔJ = ±2,±4, · · · , and
f parity only. The coupling laser L3 couples the transition between the levels |S〉 and
|4〉. The singlet and triplet fluorescence is detected simultaneously, from the gateway
levels to A1Σ+

u and b3Πu states, respectively.

to a ro-vibrational level of the intermediate singlet A1Σ+
u state by the pump laser (L1).

Then the probe laser (L2) further excites the population to a ro-vibrational level of

the singlet G1Πg state. In part “B”, the population transfers to the gateway levels

G1Πg(v = 12, J = 21, f) ∼ 13Σ−
g (v = 1, N = 21, f) (|S〉 ∼ |T〉), during collisions of

the excited 7Li2 molecules with argon gas, from rotational levels of the G1Πg state,

according to collisional propensity rules [25, 60],

ΔJ = ±2,±4, · · · ,
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ΔΩ = 0,

ΔS = 0,

s←/→ a,

e←/→ f,

g ←/→ u.

As described in Section 3.6, the spin character of the components of the gateway

levels |S〉 ∼ |T〉 can be manipulated by using the Autler-Townes (AT) effect of the

coupling laser L3 which couples the transition between the G1Πg state and the A1Σ+
u

electronic state. Due to the AT effect, one of the interacting levels shifts closer

(stronger coupling) to the gateway partner level acquiring more triplet character,

and the other shifts further away (weaker coupling) becoming a more pure singlet

state. By controlling the power and detuning from resonance of the coupling field,

the optical control of the collisional transfer between the pure singlet level |3〉 and the

pure triplet b3Πu state manifold is achieved. The resonance frequencies of the lasers

are given in Table 4.1 in wavenumber (k = ν/c) in units of cm−1.

Considering collisions between the argon gas and the excited 7Li2 molecules, the

reactions in the experiment can be described by three consecutive steps:

Li2(|1〉) + hν1 + hν2 → Li∗2(|3〉), (4.1a)

Li∗2(|3〉) + Ar→ Li∗2(|S〉 ∼ |T〉) + Ar, (4.1b)

Li∗2(|S〉 ∼ |T〉)→ Li2(b
3Πu) + hν, (4.1c)

In the first step, described as Equation 4.1a, Li2 molecules in the ro-vibrational

X1Σ+
g (v

′′ = 1, J ′′ = 20) or X1Σ+
g (v

′′ = 1, J ′′ = 24) ground state (level |1〉) are ex-

cited by two photons through the intermediate A1Σ+
u (v

′ = 9, J ′ = 19) or A1Σ+
u (v

′ =
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9, J ′ = 23) state (level |2〉) to populate the pure singlet excited state level Li∗2(|3〉),
which is either G1Πg(v = 12, J = 19, f) or G1Πg(v = 12, J = 23, f) state (level

|3〉). In the second step, described as Equation 4.1b, the Li∗2 molecules experi-

ence collisions with argon gas, and the population transfers to the gateway levels

G1Πg(v = 12, J = 21, f) ∼ 13Σ−
g (v = 1, N = 21, f)(|S〉 ∼ |T〉). In the last step,

described as Equation 4.1c, some fraction of the Li∗2 molecules in the gateway lev-

els |S〉 ∼ |T〉 decay via spontaneous emission to the lower pure triplet b3Πu state.

Through this collisional mechanism, the natural spin-orbit mixing in the |S〉 ∼ |T〉
gateway levels allows molecules in the excited pure singlet level |3〉 to decay to pure

triplet levels of the lower b3Πu electronic state, which is nominally forbidden by the

dipole selection rule ΔS = 0.

In order to model theoretically the experimental results and to confirm the na-

ture of the observed fluorescence line shapes, the theoretical framework [48] and the

standard density matrix formalism [61, 62] are introduced. The equation of motion

of the system is

dρ

dt
= − i

�
[H, ρ] + Γρ, (4.2)

where ρ is the density matrix, and Γ is the relaxation matrix which accounts for phys-

ical processes such as spontaneous decay of levels, collisions, etc. The Hamiltonian of

interaction of the system with optical fields is similar as Equation 3.28 [16]. By taking

the levels that are directly coupled by the optical fields and the spin-orbit interaction

(levels |1〉, |2〉, |3〉, |S0〉, |T0〉, and |4〉 in Figure 4.3) into account, the Hamiltonian of

the system can be written as summation of two components

H = HA +HB,

where HA describes the subsystem formed by the states |1〉, |2〉, and |3〉, and HB

describes the subsystem formed by the states |S0〉, |T0〉, and |4〉. The two components
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of H in the interaction picture incorporate the rotating wave approximation [62] and

are expressed in the basis set of the unperturbed levels,

HA
I = −�Δ1|2〉〈2| − �(Δ1 +Δ2)|3〉〈3|

+
�

2
Ω1(|2〉〈1|+ |1〉〈2|) + �

2
Ω2(|3〉〈2|+ |2〉〈3|), (4.3a)

HB
I = −�Δ3|4〉〈4|+ �

2
Ω3(|4〉〈S0|+ |S0〉〈4|)

+�αβδSO(|S0〉〈T0|+ |T0〉〈S0|), (4.3b)

where

Δi ≡ ωi − ωres

are the detunings for molecules at rest in the lab frame, where ωi is the frequency of

the ith laser and ωres is the resonance transition frequency between the corresponding

unperturbed levels. The Rabi frequency Ωi of the laser i is,

Ωi =
μiEi

�
,

where μi is the dipole matrix element of the corresponding transition. δSO is the energy

separation between the perturbed levels |S〉 and |T〉. As described in Section 3.6, the

mixed spin-orbit coupled states can be written as

|S〉 = α|S0〉 − β|T0〉,

|T〉 = α|T0〉+ β|S0〉,

with the normalization condition

α2 + β2 = 1.
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The singlet |S0〉 states and the triplet |T0〉 state are two closely spaced eigenstates

coupled by the spin-orbit interaction, with the energy separation δ0SO proportional to

δSO,

δ0SO = (α2 − β2)δSO.

4.4 Pressure Dependence of the Collision Rate

In order to find out how the vapor pressure controls collisional transfer rate, we

observe the triplet fluorescence signal at different pressures of the argon gas (measured

at room temperature), as shown in Figure 4.4.
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Figure 4.4: Argon gas pressure dependence of the triplet fluorescence from the
gateway levels 13Σ−

g (v = 1, N = 21, f) ∼ G1Πg(v = 12, J = 21, f) to the
b3Πu(v

′ = 1, J ′ = 20, 21, 22) levels, as a function of the probe laser detuning from
resonance.

The Stern-Vollmer plot [63], given in Figure 4.5, shows the dependence of triplet

fluorescence signal intensity on the argon gas vapor pressure. The dotted line corre-
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Figure 4.5: Stern-Vollmer plot showing the dependence of the triplet fluorescence
signal intensity from the gateway levels 13Σ−

g (v = 1, N = 21, f) ∼ G1Πg(v = 12, J =
21, f) of the optically excited 7Li2 molecules on the vapor pressure of argon atoms.

sponds to our experimental values of the intensity when the probe laser is on resonance

for each vapor pressure, while the solid line is the linear fit of the experimental values.

When the pressure drops to zero, the collisional transfer rate should fall to the value

corresponding to collisional transfer due to lithium atom collisions.

We load the heatpipe oven with argon gas at 2 Torr pressure for the experiment

of optical control of collisional transfer.

4.5 Experimental Result

Figure 4.6 illustrates the collisional transfer rate as a function of the probe laser

detuning from resonance (a), as well as a function of the detuning of the control laser

(b). In Figure 4.6(a), when only the weak pump and the probe lasers are present,

due to the spin-orbit interaction between the |S〉 and |T 〉 levels, a fraction of the 7Li2

molecules excited to level |3〉 naturally decay through the gateway levels |S〉 ∼ |T 〉 to
the pure triplet b3Πu state (black line). When the control laser (L3) is on resonance,
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Figure 4.6: Triplet fluorescence detected from the gateway levels 13Σ−
g (v = 1, N =

21, f) ∼ G1Πg(v = 12, J = 21, f) to the b3Πu(v
′ = 1, J ′ = 20, 21, 22) levels according

to Reference [17]. (a) Probe laser (L2) scan with (red line) and without (black line)
the control laser (L3) fixed on resonance, (b) control laser (L3) scan while the probe
laser (L2) is fixed on resonance. The power of the control laser (L3) is 760mW in (a)
and (b).

enhancement of the collisional population transfer between the singlet level |3〉 and
the triplet b3Πu levels is observed (red line). The increase in the transfer rate is a

result of the enhanced mixing between the singlet and the triplet states caused by

the Autler-Townes effect of the control laser. In Figure 4.6(b), the peak position

corresponds to the frequency of the coupling laser on resonance. There is a decrease

of the transfer rate at lower frequency which is caused by the nonresonant AC Stark

effect. The singlet component of the AT split pair shifts slightly in position and thus

the mixing character decreases.

The suppression (lower frequency than resonance) and enhancement (on reso-

nance) rates in the transition from the gateway levels |S〉 ∼ |T 〉 to b3Πu levels are

approximately 11% and 20%, respectively, estimated from the relative change in the

intensity of the triplet fluorescence observed in Figure 4.6(b). Nevertheless, the over-

all collisional singlet to triplet transfer rate is a constant, since the total molecular
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population in the relevant levels is unaffected by the control laser and the change of

the rate is relatively similar.

In order to observe the control laser power dependence of the collisional transfer

rate, we recorded the triplet fluorescence intensity with varying power (Rabi fre-

quency) of the control laser, as shown in Figure 4.7. By increasing the control laser

power level, the collisional transfer rate increases, caused by the enhancement of the

spin-orbit interaction of the gateway levels |S〉 ∼ |T 〉.

-6 -3 0 3 6

760mW

600mW

400mW

200mW

Control Laser Frequency (GHz)

100mW

Figure 4.7: The control laser power dependence of the collisional transfer rate ac-
cording to Reference [17]. The triplet fluorescence detected from the gateway lev-
els 13Σ−

g (v = 1, N = 21, f) ∼ G1Πg(v = 12, J = 21, f) to the b3Πu(v
′ = 1, J ′ =

20, 21, 22) levels are recorded with different power levels of the control laser. With
the pump and probe lasers kept on resonance, the control laser is scanned over the
13Σ−

g (v = 1, N = 21, f) ∼ G1Πg(v = 12, J = 21, f) ↔ A1Σ+
u (v

′ = 14, J ′ = 21)
resonance (see Figure 4.3).

In Figure 4.8 both the triplet and the singlet fluorescence from the gateway levels

13Σ−
g (v = 1, N = 21, f) ∼ G1Πg(v = 12, J = 21, f) is recorded simultaneously, in
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Figure 4.8: The singlet and triplet fluorescence observed simultaneously according to
Reference [17]. The fluorescence signals are from the gateway levels 13Σ−

g (v = 1, N =
21, f) ∼ G1Πg(v = 12, J = 21, f) to the singlet state A1Σ+

u (black line) and the triplet
b3Πu levels (red line), respectively, as a function of the coupling laser detuning. The
dashed lines are the simulations.

order to test the conservation of the molecular population. When the transfer from

the gateway levels 13Σ−
g (v = 1, N = 21, f) ∼ G1Πg(v = 12, J = 21, f) to the triplet

manifold b3Πu is enhanced (red line), the decay from the gateway levels 13Σ−
g (v =

1, N = 21, f) ∼ G1Πg(v = 12, J = 21, f) to the singlet manifold A1Σ+
u is suppressed

and vice versa (black line). The singlet and triplet fluorescence signals from the

gateway levels are complementary. The lower signal to noise ratio in Figure 4.8

compared to Figures 4.6(b) and 4.7 is due to the low laser power for the lasers L1

and L2 and the SPEX 1404 monochromator (50-μm entrance and exit slits) used as

a very narrow bandpass filter for the monitoring of the singlet fluorescence.
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Figure 4.9: Resolved fluorescence of the direct excitation X1Σ+
g (v

′′ = 1, J ′′ = 24) →
A1Σ+

u (v
′ = 9, J ′ = 23) → G1Πg(v = 12, J = 23, f) (part “A” in Figure 4.3) and

the ΔJ = ±2,±4 collisional satellite components according to Reference [17]. The
ΔJ = −2 component is the mixed pair of gateway levels 13Σ−

g (v = 1, N = 21, f) ∼
G1Πg(v = 12, J = 21, f).

The resolved fluorescence of the direct excitation X1Σ+
g (v

′′ = 1, J ′′ = 24) →
A1Σ+

u (v
′ = 9, J ′ = 23) → G1Πg(v = 12, J = 23, f) (part “A” in Figure 4.3) is given

in Figure 4.9. The ΔJ = ±2,±4 collisional satellite components can also be observed,

according to collisional propensity rules [25, 45]. The mixed pair of gateway levels

13Σ−
g (v = 1, N = 21, f) ∼ G1Πg(v = 12, J = 21, f) corresponds to the ΔJ = −2

component.
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4.6 Simulations

The simulations we carried out, which are based on the model described by Equa-

tions 4.2 and 4.3, are shown in Ref. [17]. The relaxation matrix Γ in Equation 4.2,

which corresponds to the processes such as spontaneous decay, collisions, and laser

beam transit, is of great importance in the collisional population transfer model. The

spontaneous decay rate of level j,

Wj =
1

τj
,

is inversely proportional to its lifetime τj, and can be calculated from experimental

molecular potentials and transition dipole moment functions. The total collisional

relaxation rate (quenching rate) ΓQ of a particular level is assumed to have the form

ΓQ =
1

tc
,

where tc is the average time between collisions

tc =
l

v
,

with the average mean free path of the 7Li2 molecules

l =
kT√
2πdP

,

and the most probable speed

v =

√
2kT

m
.

The levels involved in the experiment are assumed to have the same quenching

rate of ΓQ = 7.35×10−7 s−1, calculated using the following values for the parameters:

T = 850 K, P = 5831 mTorr (obtained from PAr (293 K) = 2000 mTorr, and PLi
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(850 K) = 28.9 mTorr [64]), and the equilibrium internuclear distance of the ground

state of 7Li2 is d = 2.67 Å [65]. This value for ΓQ is in good agreement with an

experimentally measured quenching rate for NaK molecules [66].

The rate equation model is given in Ref. [66]. The fluorescence ratio of the col-

lisional satellite G1Πg(v = 12, J = 21, f) → A1Σ+
u (v

′ = 10, J ′ = 21) line intensity

to the direct G1Πg(v = 12, J = 23, f) → A1Σ+
u (v

′ = 10, J ′ = 23) line intensity can

be experimentally measured in Figure 4.9. The collisional population transfer rate

from level |3〉 to the mixed gateway levels |S〉 ∼ |T 〉 is of the most importance in our

experiment. It is only a fraction of the total collisional quenching rate ΓQ of level

|3〉. The branching ratio for the process |3〉 → |S〉 ∼ |T 〉 from ΓQ is calculated in

Ref. [17]. The results of simulations are shown in Figures 4.6(a) and 4.8, which agree

well with the experiment.

4.7 Conclusion

In this chapter, we have experimentally demonstrated that the collisional population

flow between states of different spin multiplicity (singlet and triplet) can be controlled

by optical fields. The control is achieved by manipulating the spin character of a pair

of singlet-triplet mixed gateway levels using the Autler-Townes effect.

We have observed triplet fluorescence from the mixed gateway levels to a triplet

electronic state as a function of the probe laser detuning as well as the control laser

detuning. The enhancement of collisional transfer rate can be achieved by increasing

the power level (Rabi frequency) of the control laser. We have also compared the

singlet and triplet fluorescence with the control laser detuning over the resonance,

and confirmed the conservation of the molecular population transfer.
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Thus the optical control has been demonstrated to be an effective method to

manipulate the transfer rate of collisions between excited molecules (7Li2) and atoms

(Ar) leading to internal state changes in the molecules.
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CHAPTER 5

OBSERVATION AND ANALYSIS

OF THE 61Σ+
g AND 31Πg STATES

OF RUBIDIUM DIMER

5.1 Introduction

Detailed knowledge of the excited electronic states of Rubidium dimer is of significant

importance to a number of areas of research such as, the production of ultracold

ground state molecules, cold atom-molecule collisions, and the development of new

ab-initio molecular electronic structure methods. The potential energy curves and

transition dipole moments of dozens of electronic states of 85Rb2 have been calculated.

However, only a few low-lying electronic states have been experimentally studied and

assigned. In this chapter, our experimental work and preliminary analysis of the 61Σ+
g

and 31Πg electronic states of 85Rb2 are illustrated following the procedure described

in Ref [67].

In the experiment, a large number of ro-vibrational levels of the two electronic

states (v = 1− 18, 20− 31, J = 29, 31 for 61Σ+
g state, and v = 4− 25, 27, J = 29− 31
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for 31Πg state) were observed using a narrow band cw TiSa and a dye laser in double

resonance cascade configuration. The intermediate states used in the experiment are

from the mutually perturbed A1Σ+
g ∼ b3Πu pair of states [68]. The rotational and

vibrational Dunham’s coefficients in the Dunham expansion are extracted from the

term values of the observed levels, and then used to generate a preliminary Rydberg-

Klein-Rees (RKR) potential energy curve for each state.

5.2 Experimental Term Values

The excitation scheme and electronic states of Rubidium dimer is shown in Figure 5.1.

We use a pump laser (L1) to excite the 85Rb2 molecule from the X1Σ+
g ground state
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Figure 5.1: The excitation scheme and selected electronic states of 85Rb2.
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to the intermediate state, which is the mutually perturbed A1Σ+
u ∼ b3Πu pair of

states. The probe laser (L2) then excites the population from the intermediate state

to upper excited electronic states, which are the 61Σ+
g and the 31Πg states here. We

observe ro-vibrational levels by detecting total molecular fluorescence from the 61Σ+
g

and 31Πg states.

Figure 5.2 describes collisional population transfer in the 85Rb2 optical-optical

double resonance (OODR) experiment. The pump laser (L1) excites molecules from

R

…
…

…
…

Main Excitation Lines

Collisional Satellite 
Lines

��g
1X

uu bA ��� 31 ~

gg ��� 11 3/6

L1

L2

P

3�J

1�J
1�J

3�J

2�J
J

2�J

1�J
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Figure 5.2: Model of collisional transfer for the 85Rb2 OODR experiment. The pump
laser (L1) excites molecules from the X1Σ+

g state to the intermediate state A1Σ+
u ∼

b3Πu. During collisions, population flows to nearby rotational levels according to
propensity rule: ΔJ = ±2,±4, · · · . The probe laser (L2) then excites the population
from the intermediate state to the 61Σ+

g or 31Πg states, while L1 is fixed either to the
P or R branch transitions.

the X1Σ+
g ground state to the intermediate A1Σ+

u ∼ b3Πu state. During the colli-

sion, population flows to nearby rotational levels, according to collisional propensity
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rules [25, 60]:

ΔJ = ±2,±4, · · · ,

ΔΩ = 0,

ΔS = 0,

s←/→ a,

e←/→ f,

g ←/→ u.

The probe laser (L2) then excites population from the intermediate state to excited

states 61Σ+
g or 31Πg, while L1 is fixed either to the P or R branch excitation.

The experimental setup is shown in Figure 5.3. We use a Coherent 899-29 cw

Titanium Sapphire laser as the pump laser (L1), and a Coherent 699-29 cw dye laser

operated with LD700 dye as the probe laser (L2). Lasers L1 and L2 counterpropagate

through the Rb2 heatpipe, which is heated to about 470 K. The Fourier Transform

Spectrometer BOMEM DA8 is used for observing the resolved fluorescence from the

intermediate A1Σ+
u ∼ b3Πu level to the singlet ground X1Σ+

g state, by using a pierced

mirror to collect the fluorescence. A Hamamatsu R928 photomultiplier tube (PMT)

with a short pass filter at 520nm on one side of the Rb2 heatpipe is used to observe the

total fluorescence from the 61Σ+
g and the 31Πg states. An Iodine cell equipped with a

PMT is used to calibrate the probe laser (L2) simultaneously [69, 70]. A mechanical

modulator is used on the probe laser to improve the signal to noise by phase sensitive

detection with lock-in amplifiers.

Table 5.1 is used to determine the systematic measurement errors and calibrate

the TiSa laser [71]. The reading errors are listed for both BOMEM FTIR and the

Burleigh WA-1600 wavemeter at different spectral ranges based on an optogalvanic
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Figure 5.3: Experimental setup for observing the Rb2 spectra. The two lasers are a
narrow band tunable cw TiSa and a dye laser (Coherent 899-29 and 699-29, respec-
tively). A Fourier Transform Spectrometer BOMEM DA8 is used for observing the
resolved fluorescence from the intermediate A1Σ+

u ∼ b3Πu level to the singlet ground
X1Σ+

g state. A PMT with a short pass filter at 520nm is used to observe the total
fluorescence from the 61Σ+

g and 31Πg states. An Iodine cell is used to calibrate the
probe laser.

calibration spectrum by using the Uranium lamp and its Atlas of a calibrated Uranium

spectrum [72]. By adding the BOMEM FTIR systematic error to the TiSa laser

wavenumber readings recorded by BOMEM, we are able to determine the calibrated

readings of the TiSa laser.

The excitation spectrum of the Rb2 molecule is very dense and congested. In

order to confirm the intermediate level, we observe resolved fluorescence with the

BOMEM DA8 high resolution Fourier Transform spectrometer from the target in-

termediate A1Σ+
u ∼ b3Πu ro-vibrational level for both the R and P branch exci-

tations. Figure 5.4 describes a portion of the resolved fluorescence following the

excitation from the ground state X1Σ+
g (v

′′ = 1, J ′′ = 29, 31) to the intermedi-
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Table 5.1: Reading errors of the BOMEM FTIR and the Burleigh WA-1600 waveme-
ter. The average magnitude of the Burleigh wavemeter system error is 0.0233 cm−1,
and the average magnitude of the BOMEM FTIR system error is 0.0266 cm−1.

U Atlas Burleigh Wavemeter BOMEM Burleigh Error BOMEM Error
(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

11041.3737 11041.334 11041.3438 0.0397 0.0299

11010.0931 11010.087 11010.0747 0.0061 0.0184

11046.0148 11045.978 11045.9868 0.0368 0.028

11082.1804 11082.173 0.0074

11093.1953 11093.17 11093.17 0.0253 0.0253

11112.8638 11112.831 11112.8414 0.0328 0.0224

11120.5186 11120.508 11120.4873 0.0106 0.0313

11167.6798 11167.643 11167.6525 0.0368 0.0273

11193.6145 11193.602 11193.5879 0.0125 0.0266

11199.3745 11199.35 11199.3442 0.0245 0.0303

11247.4602 11247.447 11247.434 0.0132 0.0262

11248.3361 11248.322 11248.3069 0.0141 0.0292

11267.2606 11267.218 11267.2362 0.0426 0.0244

ate level A1Σ+
u ∼ b3Πu(n

′ = 148, J ′ = 30) recorded by the BOMEM FTIR. The

blue line corresponds to the fluorescence resulting from the P branch excitation

A1Σ+
u ∼ b3Πu(n

′ = 148, J ′ = 30) ← X1Σ+
g (v

′′ = 1, J ′′ = 31), and the red line corre-

sponds to the fluorescence resulting from the R branch excitation A1Σ+
u ∼ b3Πu(n

′ =

148, J ′ = 30) ← X1Σ+
g (v

′′ = 1, J ′′ = 29). In Figure 5.4, the P-R pairs from both

the P and R branches overlap very well, which confirms the target intermediate state

A1Σ+
u ∼ b3Πu(n

′ = 148, J ′ = 30).

After confirming the intermediate level, we fix the pump laser (L1) on resonance of

either the R or the P transition, and scan the probe laser (L2) from the intermediate

level to higher excited states. Figure 5.5 describes two examples of excitation spectra

of the 61Σ+
g and the 31Πg states to be assigned. The blue lines correspond to the

intermediate levels having been excited through the P branch by the pump laser (L1),

and the red lines represent the intermediate level excitation through the R branch by
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Figure 5.4: A portion of the resolved fluorescence resulting from the excitation from
the ground state X1Σ+

g (v
′′ = 1, J ′′ = 29, 31) to the intermediate level A1Σ+

u ∼
b3Πu(n

′ = 148, J ′ = 30).

the pump laser (L1). The overlapped main lines and collisional lines can be assigned

by comparing with the calculated term values by using the program LEVEL [73] with

the ab-initio calculated 61Σ+
g and 31Πg potential energy curves [74]. By using this

technique, we could confirm the upper state term values, and eliminate accidental

excitation.

The experimental term values of the 61Σ+
g and 31Πg electronic states can be cal-

culated by adding the calibrated wavenumbers of the probe laser (L2) to the term

values of the intermediate levels A1Σ+
u ∼ b3Πu. The measured term values of the

energy levels of the Rb2 61Σ+
g and 31Πg states are listed in Table 5.2 and Table 5.3,

respectively.
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Figure 5.5: High resolution collisional spectra for the 61Σ+
g and 31Πg states of Rb2.

The probe laser (L2) scans around the main lines of each state, while the pump laser
(L1) is kept on resonance of R(ΔJ = +1) and P(ΔJ = −1) transitions. (a) The
probe laser (L2) scan for the 61Σ+

g ← A1Σ+
u ∼ b3Πu(n

′ = 107, J ′ = 30) transition. (b)
The probe laser (L2) scan for the 31Πg ← A1Σ+

u ∼ b3Πu(n
′ = 97, J ′ = 30) transition.
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Table 5.2: Measured energies (in cm−1) of the ro-vibrational levels of the 61Σ+
g state

of 85Rb2.

v J Term Values v J Term Values

1 29 24659.97 16 29 25329.98

1 31 24662.1494 16 31 25332.2536

2 29 24705.9665 17 29 25373.86

2 31 24708.131 17 31 25376.0308

3 29 24751.8123 18 29 25417.7018

3 31 24753.9618 18 31 25419.874

4 29 24797.4877 20 29 25503.7663

4 31 24799.6274 20 31 25505.8097

5 29 24842.9266 21 29 25545.8042

5 31 24845.0613 21 31 25547.8386

6 29 24887.8412 22 29 25586.911

6 31 24889.938 22 31 25588.8645

7 29 24933.9287 23 29 25629.9778

7 31 24936.0378 23 31 25631.9428

8 29 24978.7712 24 29 25671.3024

8 31 24980.8848 24 31 25673.2779

9 29 25023.5144 25 29 25712.5026

9 31 25025.6116 25 31 25714.4746

10 29 25068.0564 26 29 25755.2097

10 31 25070.1445 26 31 25757.0832

11 29 25112.2977 27 29 25794.9548

11 31 25114.3844 27 31 25796.8975

12 29 25156.8097 28 29 25835.5772

12 31 25158.8203 28 31 25837.4951

13 29 25199.5273 29 29 25875.7515

13 31 25201.59 29 31 25877.6399

14 29 25239.8734 30 29 25915.4258

14 31 25242.0105 30 31 25917.1451

15 29 25287.5138 31 29 25955.2645

15 31 25289.7977 31 31 25957.2285
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Table 5.3: Measured energies (in cm−1) of the ro-vibrational levels of the 31Πg state
of 85Rb2.

v J Term Values v J Term Values

4 29 24985.6516 15 31 25418.6752

4 30 24986.6316 16 29 25454.3962

4 31 24987.6737 16 30 25455.3620

5 29 25026.1207 16 31 25456.3505

5 30 25027.1007 17 29 25492.1212

5 31 25028.1419 17 30 25493.0832

6 29 25066.3083 17 31 25494.0838

6 30 25067.3012 18 29 25528.6782

6 31 25068.3288 18 30 25529.6290

7 29 25106.2731 18 31 25530.6266

7 30 25107.2514 19 29 25566.3162

7 31 25108.2739 19 30 25567.3022

8 29 25145.9610 19 31 25568.3789

8 30 25146.9430 20 29 25600.8979

8 31 25147.9597 20 30 25601.7934

9 29 25185.3663 20 31 25602.9393

9 30 25186.3398 21 29 25637.6378

9 31 25187.3587 21 30 25638.5258

10 29 25224.3925 21 31 25639.5482

10 30 25225.3679 22 29 25672.9555

10 31 25226.3863 22 30 25673.8644

11 29 25263.4122 22 31 25674.8627

11 30 25264.3986 23 29 25708.4558

11 31 25265.4224 23 30 25709.4013

12 29 25303.8721 23 31 25710.4269

12 30 25304.8865 24 29 25743.4395

12 31 25305.9911 24 30 25744.6234

13 29 25343.1205 24 31 25745.4898

13 30 25344.1365 25 29 25778.3983

13 31 25345.4595 25 30 25779.4768

14 29 25378.3863 25 31 25780.3808

14 30 25379.3362 27 29 25849.8777

14 31 25380.4478 27 30 25850.6364

15 29 25416.6793 27 31 25851.9337

15 30 25417.7978

78



5.3 The Vibrational and Rotational Coefficients in

the Dunham Expansion

As stated in Section 2.3, according to Dunham’s study of the interaction of vibration

and rotation [27], the term values of the vibrating rotator can be written in the form

of a polynomial expansion,

Tv,J =
∑
l,m

Ylm

(
v +

1

2

)l [
J(J + 1)− Ω2

]m
. (5.1)

Here the v, J are the vibrational and rotational quantum numbers, respectively. The

Ylm parameters are the Dunham’s coefficients, and Yl0 and Y0m denote the vibrational

and rotational coefficients, respectively. Ω is the component of the total electronic

spin and orbital angular momentum along the internuclear axis. The vibrational and

rotational energies are given by

Gv =
∑
l(l �=0)

Yl0

(
v +

1

2

)l

= ωe

(
v +

1

2

)
− ωexe

(
v +

1

2

)2

+ · · · , (5.2)

and

Fv(J) =
∑

m(m �=0)

Y0m[J(J + 1)]m = BvJ(J + 1)−Dv[J(J + 1)]2 + · · · , (5.3)

with

Bv = Be − αe

(
v +

1

2

)
+ · · · ,

Dv = De + βe

(
v +

1

2

)
+ · · · .

The ωe, ωexe parameters are the harmonic vibrational frequency, and the vibrational

anharmonicity constant, respectively. Bv and Dv are the rotational and centrifugal

distortion constants, respectively, and depend on the vibrational quantum number v.
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Be is rotational constant at equilibrium internuclear distance, and αe � Be. De refers

to the completely vibrationless state, and βe � De. These spectroscopic constants

have the relations

Y10 = ωe, Y20 = −ωexe, Y01 = Be, Y02 = −De, Y11 = −αe, · · ·

and can be experimentally determined for most electronic states.

The ro-vibrational level energies for a given vibrational state can be expressed as,

Ev(J) = Gv +BvJ(J + 1)−Dv[J(J + 1)]2 + · · · . (5.4)
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Figure 5.6: (a) An anharmonic potential energy curve with vibrational level spacing
illustrated. Within each vibrational level there is a series of rotational levels. (b) The
second combination difference Δ2F (J) is defined as the energy difference between the
levels with rotational quantum numbers J − 1 and J +1, within the vibrational level
v.
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The second combination difference (see Figure 5.6) can be described as

Δ2F (J) = F (J + 1)− F (J − 1), (5.5)

therefore,

Δ2F (J) = 4Bv

(
J +

1

2

)
− 8Dv

(
J +

1

2

)3

. (5.6)

Dv is often very small compared to Bv, and as a result the second term of the left

part of formula 5.6 is negligible. Subsequently, the Bv values can be calculated from

experimental spectroscopic ro-vibrational data. By fitting the polynomial curve as a

function of v + 1
2
, we obtain a set of coefficients which represent Y01, Y11, · · · in the

Dunham expansion (5.1).

The Gv values can be further calculated from the fitted Bv values according

to Equation 5.4, and fitted as a function of v + 1
2
. The fitted coefficients are

Y10, Y20, Y30, · · · in the Dunham expansion (5.1).

There is also a non-vanishing term Y00 in the Equation 5.1, which modifies the

energy of the vibrational level v = 0,

Y00 =
Y01 + Y20

4
− Y11Y10

12Y01

+
Y 2
11Y

2
10

144Y 3
01

.

This is the zero energy correction term, which is also denoted by Te.

Tables 5.4 and 5.5 show the results for the fitted Bv and Gv values based on the ex-

perimentally measured ro-vibrational energies for 61Σ+
g and 31Πg states, respectively.

Figures 5.7 and 5.8 give the results of preliminary Dunham’s coefficients extracted

from the observed ro-vibrational energies for each state.
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Table 5.4: Calculation of Bv and Gv values based on the experimental ro-vibrational
energies for the 61Σ+

g state of 85Rb2.

v J Experiment Δ2F (J) v + 1
2

Bv Fitted Bv Calculated Gv

1 29 24659.9700 2.1794 1.5 0.01786 0.01785 24644.4419

31 24662.1494

2 29 24705.9665 2.1645 2.5 0.01774 0.01777 24690.5089

31 24708.1310

3 29 24751.8123 2.1495 3.5 0.01762 0.01769 24736.4252

31 24753.9618

4 29 24797.4877 2.1397 4.5 0.01754 0.01761 24782.1712

31 24799.6274

5 29 24842.9266 2.1346 5.5 0.01750 0.01752 24827.6806

31 24845.0613

6 29 24887.8412 2.0968 6.5 0.01719 0.01744 24872.6657

31 24889.9380

7 29 24933.9287 2.1091 7.5 0.01729 0.01736 24918.8238

31 24936.0378

8 29 24978.7712 2.1135 8.5 0.01732 0.01728 24963.7368

31 24980.8848

9 29 25023.5144 2.0972 9.5 0.01719 0.01720 25008.5506

31 25025.6116

10 29 25068.0564 2.0881 10.5 0.01712 0.01712 25053.1631

31 25070.1445

11 29 25112.2977 2.0867 11.5 0.01710 0.01704 25097.4750

31 25114.3844

12 29 25156.8097 2.0106 12.5 0.01648 0.01696 25142.0575

31 25158.8203

13 29 25199.5273 2.0627 13.5 0.01691 0.01688 25184.8456

31 25201.5900

14 29 25239.8734 2.1371 14.5 0.01752 0.01679 25225.2622

31 25242.0105

15 29 25287.5138 2.2840 15.5 0.01872 0.01671 25272.9731

31 25289.7977

(Continued on next page)
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Table 5.4: (continued)

v J Experiment Δ2F (J) v + 1
2

Bv Fitted Bv Calculated Gv

16 29 25329.9800 2.2736 16.5 0.01864 0.01663 25315.5099

31 25332.2536

17 29 25373.8600 2.1708 17.5 0.01779 0.01655 25359.4605

31 25376.0308

18 29 25417.7018 2.1722 18.5 0.01780 0.01647 25403.3727

31 25419.8740

20 29 25503.7663 2.0434 20.5 0.01675 0.01631 25489.5784

31 25505.8097

21 29 25545.8042 2.0344 21.5 0.01668 0.01623 25531.6868

31 25547.8386

22 29 25586.9110 1.9535 22.5 0.01601 0.01615 25572.8641

31 25588.8645

23 29 25629.9778 1.9650 23.5 0.01611 0.01606 25616.0015

31 25631.9428

24 29 25671.3024 1.9755 24.5 0.01619 0.01598 25657.3966

31 25673.2779

25 29 25712.5026 1.9721 25.5 0.01616 0.01590 25698.6673

31 25714.4746

26 29 25755.2097 1.8735 26.5 0.01536 0.01582 25741.4449

31 25757.0832

27 29 25794.9548 1.9427 27.5 0.01592 0.01574 25781.2606

31 25796.8975

28 29 25835.5772 1.9179 28.5 0.01572 0.01566 25821.9535

31 25837.4951

29 29 25875.7515 1.8884 29.5 0.01548 0.01558 25862.1984

31 25877.6399

30 29 25915.4258 1.7192 30.5 0.01409 0.01550 25901.9432

31 25917.1451

31 29 25955.2645 1.9640 31.5 0.01610 0.01542 25941.8524

31 25957.2285
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Table 5.5: Calculation of Bv and Gv values based on the experimental ro-vibrational
energies for the 31Πg state of 85Rb2.

v J Experiment Δ2F (J) v + 1
2

Bv Fitted Bv Calculated Gv

4 29 24985.6516 2.0221 4.5 0.01657 0.01643 24971.3562

30 24986.6316

31 24987.6737

5 29 25026.1207 2.0213 5.5 0.01657 0.01643 25011.8231

30 25027.1007

31 25028.1419

6 29 25066.3083 2.0205 6.5 0.01656 0.01644 25052.0085

30 25067.3012

31 25068.3288

7 29 25106.2731 2.0009 7.5 0.01640 0.01644 25091.9710

30 25107.2514

31 25108.2739

8 29 25145.9610 1.9987 8.5 0.01638 0.01644 25131.6568

30 25146.9430

31 25147.9597

9 29 25185.3663 1.9924 9.5 0.01633 0.01644 25171.0598

30 25186.3398

31 25187.3587

10 29 25224.3925 1.9938 10.5 0.01634 0.01645 25210.0838

30 25225.3679

31 25226.3863

11 29 25263.4122 2.0102 11.5 0.01648 0.01645 25249.1013

30 25264.3986

31 25265.4224

12 29 25303.8721 2.1190 12.5 0.01737 0.01645 25289.5590

30 25304.8865

31 25305.9911

13 29 25343.1205 2.3390 13.5 0.01917 0.01645 25328.8051

30 25344.1365

31 25345.4595

14 29 25378.3863 2.0615 14.5 0.01690 0.01646 25364.0688

(Continued on next page)
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Table 5.5: (continued)

v J Experiment Δ2F (J) v + 1
2

Bv Fitted Bv Calculated Gv

30 25379.3362

31 25380.4478

15 29 25416.6793 1.9959 15.5 0.01636 0.01646 25402.3595

30 25417.7978

31 25418.6752

16 29 25454.3962 1.9543 16.5 0.01602 0.01646 25440.0742

30 25455.3620

31 25456.3505

17 29 25492.1212 1.9626 17.5 0.01609 0.01646 25477.7970

30 25493.0832

31 25494.0838

18 29 25528.6782 1.9484 18.5 0.01597 0.01647 25514.3517

30 25529.6290

31 25530.6266

19 29 25566.3162 2.0627 19.5 0.01691 0.01647 25551.9876

30 25567.3022

31 25568.3789

20 29 25600.8979 2.0414 20.5 0.01673 0.01647 25586.5670

30 25601.7934

31 25602.9393

21 29 25637.6378 1.9104 21.5 0.01566 0.01647 25623.3047

30 25638.5258

31 25639.5482

22 29 25672.9555 1.9073 22.5 0.01563 0.01648 25658.6202

30 25673.8644

31 25674.8627

23 29 25708.4558 1.9711 23.5 0.01616 0.01648 25694.1183

30 25709.4013

31 25710.4269

24 29 25743.4395 2.0503 24.5 0.01681 0.01648 25729.0997

30 25744.6234

31 25745.4898

(Continued on next page)
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Table 5.5: (continued)

v J Experiment Δ2F (J) v + 1
2

Bv Fitted Bv Calculated Gv

25 29 25778.3983 1.9824 25.5 0.01625 0.01648 25764.0564

30 25779.4768

31 25780.3808

27 29 25849.8777 2.0560 27.5 0.01685 0.01649 25835.5313

30 25850.6364

31 25851.9337
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Figure 5.7: Preliminary Dunham’s coefficients extracted from the fitted Bv and Gv

values for the 61Σ+
g state of 85Rb2.
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Figure 5.8: Preliminary Dunham’s coefficients extracted from the fitted Bv and Gv

values for the 31Πg state of 85Rb2.

5.4 Rydberg-Klein-Rees (RKR) Potential Energy

Curves

After extracting the preliminary Dunham’s coefficients from the measured spectro-

scopic ro-vibrational energies, we use the Rydberg-Klein-Rees (RKR) [75–78] method

to construct the preliminary potential energy curves for the 61Σ+
g and 31Πg states.

87



Using this method, the inner and outer turning points of the molecular vibrational

motion, R−(v), R+(v), can be expressed by Klein Integrals, f and g,

R+(v)−R−(v) = 2

√
Cu

μ

∫ v

vmin

dv′√
Gv −Gv′

= 2f, (5.7a)

1

R−(v)
− 1

R+(v)
= 2

√
μ

Cu

∫ v

vmin

Bv′dv
′

√
Gv −Gv′

= 2g. (5.7b)

where the vibrational energy Gv and the rotational constant Bv are in cm−1 units, μ

is the reduced mass of the nuclei in amu, the turning points are in units Å, and vmin

is the non-integer effective value of the vibrational quantum number at the potential

minimum. The constant Cu = �
2/2 = 16.857 629 09 [amu·Å2·cm−1]. By solving the

integrals, we can get inner and outer turning points for a particular vibrational level

from our experimental ro-vibrational energies,

R−(v) =

√
f 2 +

f

g
− f, (5.8a)

R+(v) =

√
f 2 +

f

g
+ f. (5.8b)

Table 5.6: Preliminary Dunham’s coefficients Ylm (in cm−1) for the 61Σ+
g and 31Πg

states of 85Rb2 extracted from experimental ro-vibrational energies.

61Σ+
g 31Πg

Value Standard Error Value Standard Error

Te 24574.12164 0.69957 24784.61014 0.96227

Y10 46.67227 0.09849 42.08372 0.13595

Y20 -0.10156 0.0029 -0.14285 0.00426

Y01 0.01797 1.57531E-4 0.01642 1.63601E-4

Y11 -8.10747E-5 8.29443E-6 2.54825E-6 9.80957E-6

With the Dunham’s coefficients listed in Table 5.6 as the input file, we run LeRoy’s
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Table 5.7: Preliminary RKR potential function calculated for the 61Σ+
g state of 85Rb2

based on Dunham’s coefficients in Table 5.6.

Ev(cm
−1) R−(Å) R+(Å) Ev(cm

−1) R−(Å) R+(Å)

24578.8016 4.6433 4.7601 24918.4647 4.2699 5.2944

24588.1279 4.6027 4.8050 24963.5120 4.2469 5.3395

24597.4461 4.5754 4.8366 25008.3562 4.2257 5.3830

24606.7562 4.5535 4.8627 25052.9972 4.2060 5.4250

24616.0582 4.5349 4.8856 25097.4352 4.1877 5.4658

24625.3520 4.5185 4.9063 25141.6700 4.1705 5.5056

24634.6377 4.5037 4.9254 25185.7017 4.1543 5.5444

24643.9153 4.4901 4.9433 25229.5303 4.1390 5.5825

24690.1813 4.4345 5.0205 25273.1558 4.1246 5.6198

24736.2442 4.3910 5.0857 25316.5781 4.1108 5.6565

24782.1040 4.3546 5.1438 25359.7974 4.0978 5.6927

24827.7607 4.3231 5.1972 25402.8135 4.0853 5.7284

24873.2142 4.2951 5.2471 25445.6265 4.0734 5.7636

Table 5.8: Preliminary RKR potential energy curve calculated for the 31Πg state of
85Rb2 based on Dunham’s coefficients in Table 5.6.

Ev(cm
−1) R−(Å) R+(Å) Ev(cm

−1) R−(Å) R+(Å)

24788.7849 4.8566 4.9791 24971.0620 4.5166 5.3514

24797.1902 4.8122 5.0249 25011.7172 4.4750 5.4007

24805.5841 4.7818 5.0567 25052.0867 4.4370 5.4463

24813.9666 4.7572 5.0828 25092.1706 4.4019 5.4892

24822.3376 4.7360 5.1054 25131.9687 4.3690 5.5300

24830.6972 4.7171 5.1258 25171.4811 4.3379 5.5690

24839.0454 4.6999 5.1444 25210.7078 4.3084 5.6066

24847.3821 4.6840 5.1618 25249.6488 4.2802 5.6429

24888.8945 4.6173 5.2359 25288.3042 4.2532 5.6782

24930.1211 4.5632 5.2973 25326.6738 4.2271 5.7126
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“RKR” program [79] to construct the preliminary potential energy curves for the 61Σ+
g

and 31Πg states of 85Rb2. The results are listed in Tables 5.7 and 5.8.

Thereafter the ro-vibrational energies are reproduced by using the LEVEL [73]

program to calculate numerically the ro-vibrational energy eigenvalues by solving

the radial Schrödinger equation with the preliminary RKR potential energy curves

for comparison with the observed energies that we measured. Figure 5.9 shows the

residuals between the measured ro-vibrational energies and the energies reproduced

from the preliminary RKR curves. By comparison of the energies (Appendix 5.6), we

can test the quality of the potential energy curves we constructed.
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Figure 5.9: Residuals between experimentally measured ro-vibrational energies and
reproduced eigenvalues from preliminary RKR curves as a function of v for the 61Σ+

g

and 31Πg states of 85Rb2.
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g and 31Πg states of 85Rb2, and
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Figure 5.10 shows the preliminary RKR potential energy curves based on our

experimental data, compared with ab-initio curves [74]. The ab-initio curves are not

too far off from the preliminary RKR curves.

In order to see the difference between the ab-initio curves and our preliminary

RKR curves, the LEVEL [73] program is used to calculate the ro-vibrational en-

ergy eigenvalues from the ab-initio potential energy curves as well (Appendix 5.6).

Figure 5.11 illustrates the residuals between the two ro-vibrational energies. The

agreement is better at lower vibrational quantum numbers.
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Figure 5.11: Residuals between calculated ro-vibrational eigenvalues from preliminary
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g and 31Πg states
of 85Rb2.
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5.5 Assignment of the Collisional Lines

After determining the term values of the main excitation lines, we could confirm the

quantum numbers of the collisional lines, by comparing with theoretical term values

of the intermediate A1Σ+
u ∼ b3Πu levels (see Figure 5.2).

Since the term values of the main lines have already been determined from previ-

ous sections, by subtracting the fluorescence frequencies of the collisional lines from

the term values of the main lines, the experimental term values of the intermediate

A1Σ+
u ∼ b3Πu levels could be determined. Thereafter, the rotational quantum number

J could be determined by comparing with theoretical values [68]. Figure 5.12 gives

an example of the assignment of the collisional lines.
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Figure 5.12: Laser induced fluorescence probe laser scan of the direct excitation from
A1Σ+

u ∼ b3Πu(n
′ = 107, J ′ = 30) to 61Σ+

g (v = 13, J = 29, 31), and the ΔJ =
±2,±4, · · · collisional satellite components.
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Figure 5.13 describes all observed levels for the 61Σ+
g and 31Πg states of 85Rb2

after assigning all the main lines as well as the collisional satellite lines from the

experimental data.
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Figure 5.13: All observed levels for the 61Σ+
g and 31Πg states of 85Rb2 from the

experimental data.
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5.6 Conclusion

In this chapter, we have described the observation of a large number of ro-vibrational

levels of the 61Σ+
g and 31Πg electronic states of 85Rb2 by using optical-optical double

resonance (OODR) spectroscopy. In order to confirm the intermediate states, we

compared the P-R pairs of the resolved fluorescence of the excitation from the ground

state X1Σ+
g to the intermediate level A1Σ+

u ∼ b3Πu for both R(ΔJ = +1) and

P(ΔJ = −1) branches. By keeping the pump laser on resonance of both R and

P transitions, we could confirm the overlapped main lines and collisional lines, and

eliminate accidental excitation.

The rotational and vibrational Dunham coefficients that have been extracted

from the experimental data are used to calculate the preliminary Rydberg-Klein-Rees

(RKR) potential energy curves for the 61Σ+
g and 31Πg states. In order to test the

quality of the experimental potential energy curves, we calculated the ro-vibrational

eigenvalues from the preliminary RKR curves by using the LEVEL program for com-

parison with the experimental ro-vibrational energy values. We also compared the

ro-vibrational eigenvalues calculated from the ab-initio curves with our preliminary

RKR potential energy curves.

By comparing with the theoretical term values of the intermediate A1Σ+
u ∼ b3Πu

states, we could confirm the quantum numbers of the collisional lines, and get addi-

tional term values for the 61Σ+
g and 31Πg states.
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APPENDIX

COMPARISON OF

RO-VIBRATIONAL ENERGIES

FOR 61Σ+
g AND 31Πg STATES OF

85Rb2

Table A: Comparison between the ro-vibrational eigenvalues reproduced from the
preliminary RKR potential energy curves and the experimentally observed energies,
as well as energies calculated from ab-initio curves [74] for the 61Σ+

g state of 85Rb2.

v J Experiment RKR ab-initio ΔE ΔE
(cm−1) (cm−1) (cm−1) (Exp-RKR) (RKR-ab-initio)

1 29 24659.9700 24659.4360 24672.6468 0.5340 -13.2107

1 31 24662.1494 24661.6111 24674.8359 0.5383 -13.2248

2 29 24705.9665 24705.6321 24718.6513 0.3344 -13.0192

2 31 24708.1310 24707.7973 24720.8338 0.3337 -13.0366

3 29 24751.8123 24751.6250 24764.4649 0.1873 -12.8399

3 31 24753.9618 24753.7803 24766.6407 0.1814 -12.8603

4 29 24797.4877 24797.4148 24810.0867 0.0729 -12.6719

(Continued on next page)
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Table A: (continued)

v J Experiment RKR ab-initio ΔE ΔE
(cm−1) (cm−1) (cm−1) (Exp-RKR) (RKR-ab-initio)

4 31 24799.6274 24799.5603 24812.2556 0.0671 -12.6954

5 29 24842.9266 24843.0015 24855.5240 -0.0749 -12.5225

5 31 24845.0613 24845.1371 24857.6862 -0.0758 -12.5491

6 29 24887.8412 24888.3851 24900.7707 -0.5440 -12.3856

6 31 24889.9380 24890.5108 24902.9259 -0.5729 -12.4150

7 29 24933.9287 24933.5656 24945.8195 0.3630 -12.2538

7 31 24936.0378 24935.6815 24947.9676 0.3563 -12.2861

8 29 24978.7712 24978.5431 24990.6709 0.2281 -12.1278

8 31 24980.8848 24980.6490 24992.8119 0.2357 -12.1628

9 29 25023.5144 25023.3174 25035.3282 0.1970 -12.0108

9 31 25025.6116 25025.4135 25037.4621 0.1981 -12.0486

10 29 25068.0564 25067.8886 25079.7918 0.1677 -11.9032

10 31 25070.1445 25069.9748 25081.9184 0.1696 -11.9436

11 29 25112.2977 25112.2567 25124.0586 0.0410 -11.8019

11 31 25114.3844 25114.3331 25126.1780 0.0513 -11.8449

12 29 25156.8097 25156.4218 25168.1247 0.3879 -11.7029

12 31 25158.8203 25158.4882 25170.2367 0.3321 -11.7485

13 29 25199.5273 25200.3837 25211.9846 -0.8564 -11.6009

13 31 25201.5900 25202.4403 25214.0891 -0.8503 -11.6488

14 29 25239.8734 25244.1426 25255.6316 -4.2692 -11.4891

14 31 25242.0105 25246.1892 25257.7286 -4.1787 -11.5393

15 29 25287.5138 25287.6983 25299.0586 -0.1846 -11.3603

15 31 25289.7977 25289.7351 25301.1478 0.0626 -11.4127

16 29 25329.9800 25331.0510 25342.2576 -1.0710 -11.2067

16 31 25332.2536 25333.0779 25344.3389 -0.8243 -11.2610

17 29 25373.8600 25374.2006 25385.2233 -0.3406 -11.0228

17 31 25376.0308 25376.2176 25387.2966 -0.1868 -11.0789

18 29 25417.7018 25417.1471 25427.9626 0.5547 -10.8155

18 31 25419.8740 25419.1543 25430.0278 0.7197 -10.8735

19 29 25459.8905 25470.5015 -10.6110

(Continued on next page)
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Table A: (continued)

v J Experiment RKR ab-initio ΔE ΔE
(cm−1) (cm−1) (cm−1) (Exp-RKR) (RKR-ab-initio)

19 31 25461.8878 25472.5590 -10.6711

20 29 25503.7663 25502.4309 25512.8474 1.3354 -10.4166

20 31 25505.8097 25504.4183 25514.8965 1.3914 -10.4782

21 29 25545.8042 25544.7681 25554.8852 1.0361 -10.1171

21 31 25547.8386 25546.7457 25556.9226 1.0929 -10.1769

22 29 25586.9110 25586.9023 25596.2141 0.0087 -9.3118

22 31 25588.8645 25588.8700 25598.2307 -0.0055 -9.3607

23 29 25629.9778 25628.8335 25635.9402 1.1444 -7.1067

23 31 25631.9428 25630.7913 25637.9178 1.1515 -7.1265

24 29 25671.3024 25670.5615 25672.8528 0.7409 -2.2913

24 31 25673.2779 25672.5094 25674.7762 0.7685 -2.2667

25 29 25712.5026 25712.0865 25707.2859 0.4160 4.8007

25 31 25714.4746 25714.0246 25709.1799 0.4500 4.8446

26 29 25755.2097 25753.4085 25741.2878 1.8012 12.1207

26 31 25757.0832 25755.3366 25743.1715 1.7465 12.1652

27 29 25794.9548 25794.5274 25774.4981 0.4274 20.0292

27 31 25796.8975 25796.4457 25776.3496 0.4518 20.0961

28 29 25835.5772 25835.4432 25806.3699 0.1339 29.0733

28 31 25837.4951 25837.3516 25808.2004 0.1434 29.1513

29 29 25875.7515 25876.1560 25837.8609 -0.4045 38.2951

29 31 25877.6399 25878.0546 25839.6743 -0.4147 38.3803

30 29 25915.4258 25916.6658 25868.4157 -1.2400 48.2501

30 31 25917.1451 25918.5544 25870.2028 -1.4094 48.3516

31 29 25955.2645 25956.9724 25898.3805 -1.7080 58.5919

31 31 25957.2285 25958.8512 25900.1536 -1.6228 58.6976
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Table B: Comparison between the ro-vibrational eigenvalues reproduced from the
preliminary RKR potential energy curves and the experimentally observed energies,
as well as energies calculated from ab-initio curves [74] for the 31Πg state of 85Rb2.

v J Experiment RKR ab-initio ΔE ΔE
(cm−1) (cm−1) (cm−1) (Exp-RKR) (RKR-ab-initio)

4 29 24985.6516 24985.3324 24979.5067 0.3192 5.8257

4 30 24986.6316 24986.3171 24980.5099 0.3145 5.8072

4 31 24987.6737 24987.3345 24981.5464 0.3392 5.7880

5 29 25026.1207 25025.9895 25019.9946 0.1311 5.9949

5 30 25027.1007 25026.9743 25020.9946 0.1263 5.9797

5 31 25028.1419 25027.9919 25022.0278 0.1500 5.9641

6 29 25066.3083 25066.3610 25060.2329 -0.0527 6.1280

6 30 25067.3012 25067.3459 25061.2295 -0.0447 6.1163

6 31 25068.3288 25068.3635 25062.2593 -0.0348 6.1042

7 29 25106.2731 25106.4467 25100.2094 -0.1737 6.2374

7 30 25107.2514 25107.4317 25101.2025 -0.1804 6.2292

7 31 25108.2739 25108.4495 25102.2287 -0.1756 6.2208

8 29 25145.9610 25146.2467 25139.9147 -0.2857 6.3320

8 30 25146.9430 25147.2319 25140.9043 -0.2889 6.3275

8 31 25147.9597 25148.2498 25141.9269 -0.2901 6.3229

9 29 25185.3663 25185.7611 25179.3448 -0.3948 6.4162

9 30 25186.3398 25186.7463 25180.3309 -0.4066 6.4155

9 31 25187.3587 25187.7643 25181.3497 -0.4057 6.4146

10 29 25224.3925 25224.9897 25218.4990 -0.5972 6.4907

10 30 25225.3679 25225.9750 25219.4813 -0.6071 6.4937

10 31 25226.3863 25226.9931 25220.4964 -0.6069 6.4968

11 29 25263.4122 25263.9326 25257.3752 -0.5204 6.5573

11 30 25264.3986 25264.9180 25258.3539 -0.5195 6.5642

11 31 25265.4224 25265.9363 25259.3650 -0.5139 6.5712

12 29 25303.8721 25302.5897 25295.9695 1.2824 6.6202

12 30 25304.8865 25303.5753 25296.9443 1.3111 6.6310

12 31 25305.9911 25304.5936 25297.9515 1.3975 6.6421

13 29 25343.1205 25340.9612 25334.2750 2.1593 6.6862

13 30 25344.1365 25341.9469 25335.2459 2.1896 6.7010

(Continued on next page)
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Table B: (continued)

v J Experiment RKR ab-initio ΔE ΔE
(cm−1) (cm−1) (cm−1) (Exp-RKR) (RKR-ab-initio)

13 31 25345.4595 25342.9653 25336.2490 2.4942 6.7163

14 29 25378.3863 25379.0470 25372.2812 -0.6607 6.7657

14 30 25379.3362 25380.0328 25373.2481 -0.6966 6.7847

14 31 25380.4478 25381.0513 25374.2470 -0.6035 6.8043

15 29 25416.6793 25416.8470 25409.9762 -0.1677 6.8708

15 30 25417.7978 25417.8329 25410.9388 -0.0351 6.8941

15 31 25418.6752 25418.8516 25411.9334 -0.1764 6.9181

16 29 25454.3962 25454.3613 25447.3496 0.0349 7.0117

16 30 25455.3620 25455.3473 25448.3079 0.0147 7.0394

16 31 25456.3505 25456.3661 25449.2980 -0.0156 7.0681

17 29 25492.1212 25491.5899 25484.3903 0.5313 7.1996

17 30 25493.0832 25492.5760 25485.3441 0.5072 7.2320

17 31 25494.0838 25493.5949 25486.3295 0.4889 7.2654

18 29 25528.6782 25528.5328 25521.0738 0.1453 7.4590

18 30 25529.6290 25529.5190 25522.0228 0.1100 7.4963

18 31 25530.6266 25530.5380 25523.0033 0.0886 7.5347

19 29 25566.3162 25565.1900 25557.3535 1.1262 7.8365

19 30 25567.3022 25566.1763 25558.2971 1.1259 7.8792

19 31 25568.3789 25567.1954 25559.2721 1.1835 7.9233

20 29 25600.8979 25601.5615 25593.1703 -0.6636 8.3912

20 30 25601.7934 25602.5479 25594.1081 -0.7545 8.4397

20 31 25602.9393 25603.5670 25595.0771 -0.6277 8.4899

21 29 25637.6378 25637.6472 25628.4957 -0.0094 9.1515

21 30 25638.5258 25638.6337 25629.4275 -0.1079 9.2062

21 31 25639.5482 25639.6530 25630.3904 -0.1048 9.2626

22 29 25672.9555 25673.4472 25663.3467 -0.4918 10.1005

22 30 25673.8644 25674.4338 25664.2727 -0.5694 10.1611

22 31 25674.8627 25675.4532 25665.2295 -0.5905 10.2237

23 29 25708.4558 25708.9616 25697.7293 -0.5058 11.2322

23 30 25709.4013 25709.9482 25698.6492 -0.5469 11.2991

23 31 25710.4269 25710.9677 25699.5995 -0.5408 11.3681

(Continued on next page)
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Table B: (continued)

v J Experiment RKR ab-initio ΔE ΔE
(cm−1) (cm−1) (cm−1) (Exp-RKR) (RKR-ab-initio)

24 29 25743.4395 25744.1901 25731.6169 -0.7507 12.5732

24 30 25744.6234 25745.1769 25732.5303 -0.5536 12.6466

24 31 25745.4898 25746.1964 25733.4741 -0.7067 12.7224

25 29 25778.3983 25779.1330 25765.0164 -0.7347 14.1166

25 30 25779.4768 25780.1199 25765.9235 -0.6430 14.1964

25 31 25780.3808 25781.1395 25766.8606 -0.7587 14.2788

27 29 25849.8777 25848.1616 25830.3786 1.7161 17.7830

27 30 25850.6364 25849.1486 25831.2723 1.4877 17.8763

27 31 25851.9337 25850.1684 25832.1958 1.7653 17.9726
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