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Abstract

This dissertation presents studies on several statistical-mechanical problems, many of

which involve exotic many-particle systems. In Chapter 2, we present an algorithm

to generate Random Sequential Addition (RSA) packings of hard hyperspheres at the

infinite-time saturation limit, and investigate this limit with unprecedented precision.

In Chapter 3, we study the problem of devising smooth, short-ranged isotropic pair

potentials such that their ground state is an unusual targeted crystalline structure.

We present a new algorithm to do so, and demonstrate its capability by targeting

several singular structures that were not known to be achievable as ground states

with isotropic interactions.

A substantial portion of this dissertation examines exotic many-particle systems

with so-called “collective-coordinate” interactions. They include “stealthy” poten-

tials, which are isotropic pair potentials with disordered and infinitely degenerate

ground states as well as “perfect-glass” interactions, which have up to four-body con-

tributions, and possess disordered and unique ground states, up to trivial symmetry

operations. Chapters 4-7 study the classical ground states of “stealthy” potentials.

We establish a numerical means to sample these infinitely-degenerate ground states in

Chapter 4 and study exotic “stacked-slider” phases that arise at suitable low densities

in Chapter 5. In Chapters 6 and 7, we investigate several geometrical and physical

properties of stealthy systems. Chapter 8 studies lattice-gas systems with the same

stealthy potentials. Chapter 9 is concerned with the introduction and study of the

perfect-glass paradigm. Chapter 10 demonstrates that perfect-glass interactions in-

deed possess disordered and unique classical ground states – a highly counterintuitive

proposition.

In Chapter 11, we use statistical-mechanical methods to characterize the spatial

distribution of the prime numbers. We show that the primes are much more ordered

than anyone previously thought via the structure factor. Indeed, they are charac-
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terized by infinitely many Bragg peaks in any non-zero interval of wave vectors, yet

unlike quasicrystals, the ratio between the heights or locations of any two Bragg

peaks is always rational. We analytically explain the locations and heights of all such

peaks.
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wavevector of kagomé crystal. . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Top panel: Lower-order potential u2(r) versus distance for rectangular

lattice with aspect ratio b/a = 2, corresponding to Eq. (3.10). Bottom

panel: The phonon frequency squared ω2 versus wavevector of the target. 44

xx



3.6 Result of a 108-particle simulated annealing for the potential given by

Eq. (3.10). The particles show a tendency to self-assemble into the

rectangular lattice with aspect ratio b/a = 2, but many defects exist

in the resulting configuration. . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Top panel: Higher-order potential u2(r) versus distance for rectangular

lattice with aspect ratio b/a = 2, corresponding to Eq. (3.11). Bottom

panel: The phonon frequency squared ω2 versus wavevector of the target. 46

3.8 Result of a 108-particle simulated annealing for the potential given by

Eq. (3.11). This is a perfect rectangular lattice with aspect ratio b/a = 2. 46

3.9 Top panel: The potential u2(r) versus distance for rectangular lattice

with aspect ratio b/a = π, corresponding to Eq. (3.12). Bottom panel:

The phonon frequency squared ω2 versus wavevector of the target. . . 47

3.10 Result of a 24-particle simulated annealing for the potential given by

Eq. (3.12). This is a perfect rectangular lattice with aspect ratio b/a = π. 48
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stealthy potential (4.5) with K = 1 and V (k) = 1. (a)-(f) Real-space
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(d)] 400, and [(e) and (f)] 1385. Panels (a)-(d) use unrealistically small

simulation boxes and is intended to illustrate finite-size effect only. (g)

The real-space potential in the infinite-system-size limit. All potentials

are normalized by their respective values at the origin since scaling does

not affect the ground state. Note that, starting from the center, the

dark (red) region indicates the highest values of the potential, whereas

towards the edge of the box, the dark (blue) region indicates the lowest
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5.4 Schematic plot of the two-dimensional stacked-slider phase model.

Each horizontal line of particles [indicated by large (blue) dots] form a
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stacked-slider configurations, this configuration allows both interlayer

and intralayer sliding motions, as detailed in Sec. 5.3. . . . . . . . . 120

xxvi
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7.1 In a Poisson point configuration (ideal gas), particle locations are ran-

dom and uncorrelated. If there is a hole of volume v1(r) in a configura-

tion of volume V , then when one adds another particle (marked red),

the probability that this hole remains empty is 1 − v1(r)/V . Thus, if

there is a total of N particles, the overall probability that such a sphere

remains empty is [1− v1(r)/V ]N ≈ exp[−(N/V )v1(r)] = exp[−ρv1(r)],

implying that holes can be arbitrarily large. For correlated homoge-

neous point configurations (e.g., liquids), the probability of finding a

very large hole of radius r will generally decrease relative to the Pois-

son case. For some correlated point configurations (e.g., crystals and

special disordered systems), the probability of finding an arbitrarily

large hole is exactly zero. . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2 Maximally observed Rc in 20,000 entropically favored stealthy ground

states, rescaled to unity K. The number of particles per configuration,

N , depends on χ and space dimensions but is always between 421 and

751 and is given in Ref. [355]. The same quantity for Poisson point

processes (ideal gas) at the same density is also plotted for comparison. 185
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7.3 Numerically computed EV (r) for (top) a stealthy system at χ = 0.45

in 1D, (middle) a stealthy system at χ = 0.45 in 2D, and (bottom) a

stealthy system at χ = 0.46 in 3D. For comparison, we also present

EV (r) of perfect crystals (integer, triangular, and BCC lattices[303]),

saturated RSA packings, and Poisson point processes at the same num-

ber density across the first three space dimension. For Poisson point

processes, we present both numerically found EV (r) and exact ana-

lytical predictions for EV (r). The excellent agreement between these

numerical and exact results is a testament to the numerical precision

of our calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.4 A configuration obtained by energy minimization using the potential
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7.6 A 1D biased stealthy configuration of N = 100 particles obtained by

energy minimization using the stealthy potential of K = 1 and an ex-

ternal field of radius Rf = 3.1 at χ = 0.1. The particles self-assemble

into 10 clusters. Although particles in the same cluster may not be dis-

tinguishable from each other here, we have examined the configuration

and find that each cluster contains exactly 10 particles. . . . . . . . . 191

7.7 Numerically obtained maximum RcK, as a function of χ, in 2D and

3D biased stealthy configurations. . . . . . . . . . . . . . . . . . . . 192
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7.8 (left) A 2D biased stealthy configuration of N = 400 particles obtained

by energy minimization using the stealthy potential of K = 1 and an

external field of radius Rf = 4.58 at χ = 0.1. (right) Its corresponding

structure factor S(k), which is less than 10−25 in the 0 < |k| ≤ K

range, verifying the stealthiness with high precision. Notice that it

also reveals underlying sixfold rotational symmetry of the structure. . 193

7.9 Numerically obtained g1(r) for (A) d = 2, N = 400, RcK = 4.58, aver-

aged over 3449 biased stealthy configurations that also exhibit sixfold

rotational symmetry; (B) d = 2, N = 1600, RcK = 4.60, averaged

over 72 configurations; and (C) d = 3, N = 400, RcK = 5.85, averaged

over 5174 configurations. The χ value is always 0.10. In 3D, g1(r) is

represented by color-coded spheres with volumes proportional to g1(r)

at the spheres’ location. Notice that there is a tendency for particles

to concentrate in a lower-dimensional manifold. . . . . . . . . . . . . 193

7.10 The peak locations of g1(r) for a 2D biased stealthy system of N = 1600

particles, at χ = 0.10, with an exclusion hole of dimensionless radius
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8.1 Graphical depiction of many-particle configurations (patterns) that

contain varying degrees of structural order. (a) Disordered and ran-

dom (Poisson) configuration with no discernible short-, intermediate-,

or long-range order. (b) Configuration generated via random sequen-

tial addition (RSA) with short- and intermediate-range order [356]. (c)

Inclusion of very small collective displacements of the particles in (b) to

form a hyperuniform configuration [328], a statistically isotropic con-

figuration that contains hidden long-range order yet displays no Bragg

peaks. In comparing these two patterns by eye, it can be very difficult

to detect the presence of such long-range order in the hyperuniform

configuration. (d) Crystalline configuration displaying order across all

length scales (and characterized by Bragg peaks). . . . . . . . . . . . 202
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8.2 Graphical depiction of the famous portrait of the Mona Lisa by

Leonardo da Vinci (circa 1503-1506) in RGB (the additive red–green–

blue model), grayscale, and black & white formats, each discretized

on a square lattice with a resolution of 2048 × 4096 pixels (with

the white pixels in the black & white image having an occupancy

of 31.7%). The RGB figure was converted to grayscale using the

formula Y = 0.2989 · R + 0.5870 · G + 0.1140 · B, and then to black

& white using Otsu’s method, which chooses the threshold value to

minimize the intraclass variance of the thresholded black and white

pixels [221]. The ratio of the order metric associated with the black &

white (or binary) image of the Mona Lisa, τ [C ], to the order metric

of an ensemble of Poisson configurations, τ [P], was computed as

τ [C ]/τ [P] ≈ 105, which quantitatively demonstrates that the Mona

Lisa is significantly more ordered than a collection of random spatially

uncorrelated configurations containing the same number of particles.

With respect to the order metric corresponding to the most ordered

(crystalline) configurations (τ [O]) that can be discretized on the same

lattice, τ [C ]/τ [O] ≈ 10−1, a finding which quantitatively delineates

the degree of order in the Mona Lisa on a relative scale that spans six

orders of magnitude (in τ) and again agrees with the general consensus

that there is a high relative degree of order contained in this famous

portrait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
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8.3 Graphical depiction of two patterns discretized on a periodic L × L

square lattice (with L = 20) comprised of N = 80 particles (f = 0.2)

which are represented by blue squares. While the disordered pattern

(C ) on the left is hyperuniform and stealthy for an exclusion radius of

K = 1 (in units of 2π/L), the disordered pattern (P) on the right is

simply a Poisson (random) pattern that is neither stealthy nor hype-

runiform. This figure demonstrates that while stealthy hyperuniform

patterns look very similar at short-range, they contain hidden long-

range order (i.e., suppression of large-scale number density fluctua-

tions) that is not easily detectable by eye. Since τ [C ]/τ [P] = 3/2, the

τ order metric quantitatively illustrates the fact that this disordered

stealthy hyperuniform configuration—purely through the presence of

hidden long-range order—is indeed significantly more ordered than the

random Poisson pattern. . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.4 (Top row) Graphical depiction of a representative series of six stealthy

hyperuniform configurations and a single Poisson (random) configura-

tion discretized on a periodic L× L square lattice (with L = 6). Each

of these configurations, C , is comprised of N = 18 particles (which cor-

responds to an occupancy of f = 18/36 = 0.5) that are represented by

blue squares. (Middle row) Corresponding structure factors, SC (k),

for each configuration. For the six stealthy hyperuniform configura-

tions, SC (k) = 0 for some positive exclusion radius, K ≥ 1 (in units

of 2π/L), a property which is not shared by the spatially uncorrelated

Poisson pattern on the far right. (Bottom row) Corresponding order

metric values, τ [C ], for each configuration as defined by equation (8.3).

Note that these patterns have been arranged from most ordered to least

ordered, based on the computed values of τ [C ]. . . . . . . . . . . . . 210

xxxv



8.5 The number of distinct stealthy hyperuniform patterns identified by an

exhaustive enumeration of the discrete patterns existing on a periodic

L × L square lattice (with L ∈ {3, 4, 5, 6}), sorted by (top) L and K

(in units of 2π/L) and (bottom) L and N . . . . . . . . . . . . . . . . 215

8.6 Graphical depiction of a one-dimensional slice through a high-

dimensional potential energy surface (PES) before (left) and after

(right) the application of a logarithmic transformation on the energy,

E, i.e., E = log(E), as a function of the configurational coordinate,

ξ. The existence of multiple minima in such high-dimensional PES

(depicted here by the presence of two degenerate global minima in the

vicinity of three low-lying and nearly degenerate local minima) plagues

global optimization techniques such as simulated annealing (SA) and

can be significantly alleviated via the application of this logarithmic

transformation on the objective function. . . . . . . . . . . . . . . . . 217

8.7 (Top row) Graphical depiction of a representative series of stealthy hy-

peruniform patterns generated using our Simulated Annealing-Monte

Carlo (SA-MC) approach. Each of these stealthy patterns is discretized

on a periodic 10 × 10 square lattice and comprised of N = 20 parti-

cles (f = 0.2). (Middle row) Corresponding structure factors, S(k), for

each stealthy pattern in which S(k) = 0 for some positive exclusion ra-

dius, K ≥ 1. (Bottom row) Corresponding exclusion radii, K, for each

stealthy pattern. Note that these stealthy patterns have been arranged

in increasing order based on the values of K. The corresponding order

metric values, τ , for each of these stealthy patterns were computed as

0.18, 0.19, 0.33, and 2.59, respectively, indicating that τ and K are

again positively correlated in these instances. . . . . . . . . . . . . . . 218

xxxvi



8.8 (Upper left) Vectorial representation of a stealthy pattern comprised

of N = 2 particles. The corresponding structure factor, S(k) =

1
N
|∑N

j=1 exp[ik · rj]|2, will vanish at a given pair of k-vectors, k1 and

k2, when r1 and r2 satisfy the following equations: (1) exp[ik1 · r1] +

exp[ik1 · r2] = 0 and (2) exp[ik2 · r1] + exp[ik2 · r2] = 0. Any set of

N = 2 particles whose coordinates satisfy these constraints constitutes

a doublet (D). (Lower left) Graphical depiction of a series of stealthy

patterns discretized on a periodic 6 × 6 square lattice that were con-

structed via superposition of multiple doublets (i.e., D2 = D⊕D and

D9 = D ⊕ D ⊕ · · · ⊕ D). Since each doublet constitutes a stealthy

pattern, the superposition of multiple doublets (without overlap) con-

stitutes a stealthy (or multi-stealthy) hyperuniform pattern as well.

(Upper right) Vectorial representation of a stealthy pattern comprised

of N = 4 particles. The corresponding structure factor will vanish

at a given pair of k-vectors, k1 and k2, when r1, r2, r3, and r4 sat-

isfy the following equations: (1) exp[ik1 · r1] + exp[ik1 · r2] = 0, (2)

exp[ik1 · r3] + exp[ik1 · r4] = 0, (3) exp[ik2 · r1] + exp[ik2 · r3] = 0, and

(4) exp[ik2 ·r2]+exp[ik2 ·r4] = 0. Any set of N = 4 particles whose co-

ordinates satisfy these constraints constitutes a quartet (Q). Note here

that a quartet is not simply a pair of doublets, i.e., Q 6= D2 = D⊕D.

(Lower right) Graphical depiction of a series of stealthy patterns dis-

cretized on a periodic 6 × 6 square lattice that were constructed via

superposition of multiple doublets and quartets (i.e., QD = Q ⊕ D,

Q2 = Q⊕Q, and Q3D3 = Q⊕Q⊕Q⊕D⊕D⊕D). Since each doublet

and each quartet constitutes a stealthy pattern, the superposition of

multiple doublets and quartets (without overlap) constitutes a stealthy

(or multi-stealthy) hyperuniform pattern as well. Hence, this superpo-

sition technique can be utilized to directly generate stealthy patterns

with both large L and N . . . . . . . . . . . . . . . . . . . . . . . . . 226

xxxvii



9.1 Schematic illustration of the so-called Kauzmann paradox. As a liquid

is supercooled, the entropy difference between it and crystalline state,

SL − SC , decreases. If the glass transition can be postponed below

the Kauzmann temperature, Tk, then the entropy of the liquid would

be lower than that of the crystal upon extrapolation. The perfect-

glass paradigm introduced in this chapter completely circumvents the

Kauzmann paradox. . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

9.2 Schematic constant-pressure phase diagrams. Left panel: Typical

many-particle systems become glasses upon rapid cooling or can

crystallize upon slow cooling. Right panel: Our model family creates

perfect glasses that by construction cannot crystallize upon quenching

to absolute zero temperature. . . . . . . . . . . . . . . . . . . . . . . 231

9.3 Snapshots of perfect glasses with N = 2500 with perfect-glass potential

with parameters χ = 5.10, α = 2, and γ = 3 in 2D (left) and 3D (right).

Both of them are clearly disordered. . . . . . . . . . . . . . . . . . . . 237

9.4 Pair correlation functions (left) and structure factors (right) of the

perfect glasses in 2D for α = 2. . . . . . . . . . . . . . . . . . . . . . 237

9.5 Bulk modulusB (left) and shear modulusG (right) versus the exponent

α for the inherent structures in 2D (top) and 3D (bottom) for γ = 3

and selected values of χ. . . . . . . . . . . . . . . . . . . . . . . . . . 239

9.6 Order metrics Q6,local (left) and τ (right) versus the exponent α for

the inherent structures in 2D (top) and 3D (bottom) for γ = 3 and

selected values of χ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

9.7 Translational order metric τ versus Q6,local for all previously used χ’s

and α’s in 2D and 3D for γ = 3. . . . . . . . . . . . . . . . . . . . . . 241

xxxviii



9.8 Structure factors of inherent structures of the perfect glass interactions

in two dimensions for α = 1 (top left), α = 2 (top right), α = 3 (bottom

left), and α = 4 (bottom right). . . . . . . . . . . . . . . . . . . . . . 254

9.9 Order metric τ versus the exponent α for inherent structures in two

(left) and three (right) dimensions for γ = 3, calculated from g2(r) or

S(k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

9.10 The two-body contribution to the perfect-glass potential, Eq. (A4) of

the main text, as a function of x- and y-components of rlm . . . . . . 256

9.11 Arrangement of the three particles for which we plot the three-body

contribution to the potential energy. . . . . . . . . . . . . . . . . . . 257

9.12 The three-body contribution to the perfect-glass potential, Eq. (A3) of

the main text, for the three particles shown in Fig. 9.11, as a function

of rlm and rln, for θ = 0◦, 15◦, 30◦, 45◦, 60◦, 90◦, 120◦, and 135◦,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

9.13 Arrangement of the four particles for which we plot the four-body

contribution to the potential energy. The distance between two of the

particles is fixed at 12.86, the average distance between a particle and

its nearest neighbor in the inherent structures in the d = 2, χ = 5.10,

α = 3, and γ = 2 case. . . . . . . . . . . . . . . . . . . . . . . . . . . 259

9.14 The four-body contribution to the perfect-glass potential, Eq. (A2) of

the main text, for the four particles shown in Fig. 9.13, as a function

of rlm and rln, for θ = 0◦, 15◦, 30◦, 45◦, 60◦, 90◦, 120◦, and 135◦,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

10.1 Illustration of the three pattern-preserving symmetry operations. Two

configurations have the same pattern if they are related to each other

through any combination of these three symmetry operations. . . . . 264

xxxix



10.2 Shaded-area illustration of the two multiplicative contributions of the

potential energy, defined in Eq. (10.2). . . . . . . . . . . . . . . . . . 265

10.3 The disordered unique ground states of the perfect-glass potential for

(top) d = 1, α = 6, χ = 1.75, and N = 70; (bottom left) d = 2, α = 6,

χ = 1.87, and N = 40; and (bottom right) d = 3, α = 6, χ = 1.75, and

N = 30. These figures illustrate a point presented in Ref. [354], namely,

the particles experience a pair repulsion that is clearly observed when

one calculates the pair correlation function. . . . . . . . . . . . . . . . 267

10.4 (left) The probability of finding the ground states by energy minimiza-

tion for d = 1, χ = 2.00, α = 1 and 6, and 10 ≤ N ≤ 30. (middle) The

number of distinct energy local minima found by 107 repeated energy

minimizations for the same systems. (right) The ground-state energy

of the same systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

10.5 Isochoric heat capacity CV of the perfect-glass system of d = 2, α = 1,

χ = 1.89, and N = 10. Here, the constant contribution to the heat

capacity from the kinetic energy, C
V , kinetic = dN/2, is excluded. . . 269

10.6 (left) Natural logarithm of the density of states, g(E), from two in-

dependent runs of WLMC simulations, and from the harmonic ap-

proximation. (right) A zoomed-in view near the ground-state energy

E0 = 0.0512129 . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

11.1 Comparison of the gap distribution for the primes and the uncorrre-

lated lattice gas with the same cardinality (occupation number) as the

set of primes. The primes are taken to lie on an integer lattice with a

spacing of 2, i.e., a subset of the odd positive integers. We consider N

primes in interval [M,M + L] (M large and M � L). Here N = 107,

L = 244651480 with M = 42151671493, the 1,800,000,000th prime

number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

xl



11.2 Schematic plot of a prime-number configuration with M = 51 and

L = 30. Since we always use M ≥ 3, any prime number in the interval

[M,M+L) is odd. Therefore, a prime-number configuration is a lattice

gas with lattice spacing 2 in which the primes are the “occupied” sites

and the composites are “unoccupied” sites. . . . . . . . . . . . . . . . 283

11.3 Structure factor S(k) associated with p/ ln(p) for all prime number p’s

in the interval [3, 3 + 105). . . . . . . . . . . . . . . . . . . . . . . . . 288

11.4 Pair correlation function g2(x), as defined in Eq. (11.9), for a prime

number configuration of M = 1010 + 1, L = 106, and N = 43427,

compared with g2(x) of a uncorrelated lattice gas configuration of the

same L and N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

11.5 Left: S(k) for prime numbers for M = 1010 + 1 and L = 105 contains

many well-defined Bragg-like peaks of various heights, creating a type

of self-similarity. Right: A zoomed-in view revealing the existence of

a small, noisy “diffuse part” besides the peaks. We also plot S(k)

for uncorrelated lattice gases for comparison. As we have discussed in

Sec. 11.2, we only show S(k) in the range 0 < k ≤ π, and therefore

omit the peak at k = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 290

11.6 The structure factor S(k) at k = π, k = π/3, and k = π/5, as a

function of L at M = 1010 + 1. The inset presents more data for

105 ≤ L ≤ 105 + 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

11.7 S(k) near k = π/3 for three different L’s. Each curve is averaged over

100 prime-number configurations, with the jth configuration consists

of all prime numbers in the range [1010 + (j − 1)L+ 1, 1010 + jL+ 1). 294

11.8 The structure factor, S(k), normalized by N , for two different L’s and

M = 106 + 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

xli



11.9 The median of the structure factor, S(k), for all possible choices of k,

as a function of L. Here M is chosen to be 10L. The diffuse part of

primes appears to be slowing decreasing as L increases. This is to be

contrasted with the uncorrelated lattice gas with an appreciably larger

predictable diffuse part in which there is no dependence on system size. 296

11.10Average peak height of all peaks of a given n, the predicted peak

heights, and their difference for all n < 105 that are odd, square-free,

and divide L evenly. Here M = 1010 + 1 and L = 9699690. For each

n, we find all m’s that are coprime with n, and average the heights

of peaks at mπ/n. The average turns out to be always greater than

the prediction, N
J∏
j=1

(pj − 1)−2. Their difference is between 0.1 and 1,

which is of the same order of magnitude as the diffuse part. . . . . . . 297

11.11Illustration of the superposition of multiple periodicities for prime num-

bers. Black dots indicate occupied sites, crosses indicate sites that can-

not be occupied because of a certain periodicity. For example, when

one divides three consecutive odd integers by 3, the remainders are 0,

2, and 1. The site with a remainder of 0 is divisible by 3, and cannot be

prime (red crosses). The other two sites may or may not be prime, but

generally, prime numbers are evenly distributed between 3n + 1 sites

and 3n+2 sites. Thus, prime numbers statistically exhibit periodicities

of 6. Similarly, prime numbers show statistical periodicity of 10 (blue

crosses), 14 (green crosses), and even larger periods (not shown in the

figure). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

11.12Two measures of the accuracy of the predicted prime numbers, correct

predictions divided by incorrect predictions, and correct predictions

divided by prime numbers that are not predicted, of our prime-number

reconstruction process. . . . . . . . . . . . . . . . . . . . . . . . . . . 304

xlii



11.13Two measures of the accuracy of the predicted prime numbers, correct

predictions divided by incorrect predictions, and correct predictions

divided by prime numbers that are not predicted, of our prime-number

reconstruction process. . . . . . . . . . . . . . . . . . . . . . . . . . . 305

xliii



Chapter 1

Introduction

This dissertation reports results on the statistical mechanics of a variety of ordered

and disordered many-particle systems. Particular focus has been directed toward

exotic systems that are often endowed with novel structural and physical properties.

Many of the results were obtained using numerical simulation techniques, but in some

cases, theoretical analysis was brought to bear to interpret the numerical results. In

what follows, summaries of the individual chapters of the dissertation are provided.

In Chapter 2, we study the random sequential addition (RSA) time-dependent

packing process, in which congruent hard hyperspheres are randomly and sequen-

tially placed into a system without interparticle overlap. This is a useful packing

model to study disorder in high dimensions. Of particular interest is the infinite-

time saturation limit in which the available space for another sphere tends to zero.

However, the associated saturation density has been determined in all previous in-

vestigations by extrapolating the density results for near-saturation configurations to

the saturation limit, which necessarily introduces numerical uncertainties. We have

refined an algorithm described in [323] to generate RSA packings of identical hy-

perspheres. The improved algorithm produce such packings that are guaranteed to

reach the saturation limit with heretofore unattained precision and across the widest
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range of dimensions (2 ≤ d ≤ 8). We have also calculated the packing and covering

densities, pair correlation function g2(r) and structure factor S(k) of the saturated

RSA configurations. As the space dimension increases, we find that pair correlations

markedly diminish, consistent with a recently proposed “decorrelation” principle, and

the degree of “hyperuniformity” (suppression of infinite-wavelength density fluctua-

tions) increases. We have also calculated the void exclusion probability in order to

compute the so-called quantizer error of the RSA packings, which is related to the

second moment of inertia of the average Voronoi cell. Finally, we discuss the possibil-

ity of generalizing this algorithm to generate saturated RSA packings of nonspherical

particles. The work in this chapter has been published previously as:

• G. Zhang and S. Torquato, Precise Algorithm to Generate Random Sequential

Addition of Hard Hyperspheres at Saturation, Physical Review E, 88, 053312

(2013).

In Chapter 3, we test the fundamental limitations of radial pair potentials by

applying inverse statistical-mechanical methods. Such methods can be employed to

design optimized short-ranged radial (isotropic) pair potentials that robustly pro-

duce targeted classical ground-state many-particle configurations. All of the previous

studies targeted low-coordinated crystals with a high degree of symmetry. We tar-

get crystal structures with appreciably less symmetry, including those in which the

particles have different local structural environments. These challenging target con-

figurations demanded that we modify previous inverse optimization techniques. In

particular, we first find local minima of a candidate enthalpy surface and determine

the enthalpy difference ∆H between such inherent structures and the target struc-

ture. Then we determine the lowest positive eigenvalue λ0 of the Hessian matrix

of the enthalpy surface at the target configuration. Finally, we maximize λ0∆H so

that the target structure is both locally stable and globally stable with respect to

the inherent structures. Using this modified optimization technique, we have de-
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signed short-ranged radial pair potentials that stabilize the two-dimensional kagome

crystal, the rectangular kagome crystal, and rectangular lattices, as well as the three-

dimensional structure of CaF2 crystal inhabited by a single particle species. We verify

our results by cooling liquid configurations to absolute zero temperature via simu-

lated annealing and ensuring that such states have stable phonon spectra. Except for

the rectangular kagome structure, all of the target structures can be stabilized with

monotonic repulsive potentials. Our work demonstrates that single-component sys-

tems with short-ranged radial pair potentials can counterintuitively self-assemble into

crystal ground states with low symmetry and different local structural environments.

Finally, we present general principles that offer guidance in determining whether cer-

tain target structures can be achieved as ground states by radial pair potentials. The

work in this chapter has been published previously as:

• G. Zhang, F. H. Stillinger, and S. Torquato, Probing the Limitations of Isotropic

Pair Potentials to Produce Ground-State Structural Extremes via Inverse Sta-

tistical Mechanics, Physical Review E, 88, 042309 (2013).

They have also been presented in short talks at the 109th Statistical Mechanics Con-

ference at Rutgers University in May, 2013; and at the 11th Mid-Atlantic Soft Matter

workshop in July, 2013.

In Chapters 4-7, we study systems of particles interacting with “stealthy” pair

potentials. They have been shown to possess infinitely degenerate disordered hy-

peruniform classical ground states. Thus, one can have different ways to sample

the infinitely degenerate ground states, which assign different weights to different

parts of the ground state manifold. To sample the ground states, previous studies

used energy minimization techniques. However, in Chapter 4, we demonstrate that

such techniques introduce algorithmic dependence that is artificial in nature. We

therefore argue that a physically more meaningful way is to perform molecular dy-

namics simulations at sufficiently low temperatures and minimizing the energy of the
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snapshots. Such sampling method correspond to the zero-temperature limit of the

canonical ensemble (i.e., define the probability measure P (rN) ∝ exp[−Φs(r
N)/kBT ],

where Φs(r
N) is the potential energy, kB is the Boltzmann constant, and T is the

temperature; and then take the T → 0 limit). We report results for the pair cor-

relation functions, structure factors, and Voronoi cell statistics. In the high-density

regime, we verify the theoretical ansatz that stealthy disordered ground states be-

have like “pseudo” disordered equilibrium hard-sphere systems in Fourier space. The

pair statistics obey certain exact integral conditions with very high accuracy. These

results show that as the density decreases from the high-density limit, the disordered

ground states in the canonical ensemble are characterized by an increasing degree of

short-range order and eventually the system undergoes a phase transition to crys-

talline ground states. In the crystalline regime (low densities), there exist aperiodic

structures that are part of the ground-state manifold, but yet are not entropically fa-

vored. We also provide numerical evidence suggesting that different forms of stealthy

pair potentials produce the same ground-state ensemble in the zero-temperature limit.

Our techniques may be applied to sample the zero-temperature limit of the canoni-

cal ensemble of other potentials with highly degenerate ground states. The work in

Chapter 4 has been published previously as:

• G. Zhang, F. H. Stillinger, and S. Torquato, Ground States of Stealthy Hyper-

uniform Potentials: I. Entropically Favored Configurations, Physical Review E,

92,022119 (2015).

They have also been presented in a short talk at the 111th Statistical Mechanics

Conference at Rutgers University in May, 2014.

In Chapter 5, we investigate using both numerical and analytical techniques

metastable stacked-slider phases, which are part of the ground-state manifold of

stealthy potentials at low densities. Our numerical results enable us to devise analyt-

ical models of this phase in two, three and higher dimensions. Utilizing this model,
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we estimated the size of the feasible region in configuration space of the stacked-slider

phase, finding it to be smaller than that of crystal structures in the infinite-system-size

limit, which is consistent with previous chapter’s finding that crystals are entropically

favored. In two dimensions, we also determine exact expressions for the pair corre-

lation function and structure factor of the analytical model of stacked-slider phases

and analyze the connectedness of the ground-state manifold of stealthy potentials in

this density regime. We demonstrate that stacked-slider phases are distinguishable

states of matter; they are nonperiodic, statistically anisotropic structures that possess

long-range orientational order but have zero shear modulus. We outline some possi-

ble future avenues of research to elucidate our understanding of this unusual phase

of matter. The work in this chapter has been published previously as:

• G. Zhang, F. H. Stillinger, and S. Torquato, Ground States of Stealthy Hype-

runiform Potentials: II. Stacked-Slider Phases, Physical Review E, 92,022120

(2015).

They have also been presented in a short talk at the 113th Statistical Mechanics

Conference at Rutgers University in May, 2015.

In Chapter 6, we map these stealthy disordered hyperuniform point configura-

tions to two-phase media by circumscribing each point with a possibly overlapping

sphere of a common radius a: the “particle” and “void” phases are taken to be the

space interior and exterior to the spheres, respectively. The hyperuniformity of such

two-phase media depend on the sphere sizes: While it was previously analytically

proven that the resulting two-phase media maintain hyperuniformity if spheres do

not overlap, here we show numerically that they lose hyperuniformity whenever the

spheres overlap. We study certain transport properties of these systems, including

the effective diffusion coefficient of point particles diffusing in the void phase as well

as static and time-dependent characteristics associated with diffusion-controlled reac-

tions. Besides these effective transport properties, we also investigate several related
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structural properties, including pore-size functions, quantizer error, an order metric

denoted τ , and percolation thresholds. We show that these transport, geometrical and

topological properties of our two-phase media derived from decorated stealthy ground

states are distinctly different from those of equilibrium hard-sphere systems and spa-

tially uncorrelated overlapping spheres. As the extent of short-range order increases,

stealthy disordered two-phase media can attain nearly maximal effective diffusion

coefficients over a broad range of volume fractions while also maintaining isotropy,

and therefore may have practical applications in situations where ease of transport

is desirable. We also show that the percolation threshold and the order metric are

positively correlated with each other, while both of them are negatively correlated

with the quantizer error. In the highly disordered regime (χ → 0), stealthy point-

particle configurations are weakly-perturbed ideal gases. Nevertheless, reactants of

diffusion-controlled reactions decay much faster in our two-phase media than in equi-

librium hard-sphere systems of similar degrees of order, and hence indicate that the

formation of large holes is strongly suppressed in the former systems, which inspires

the next chapter. The work in this chapter has been published previously as:

• G. Zhang, F. H. Stillinger, and S. Torquato, Transport, Geometrical, and Topo-

logical Properties of Stealthy Disordered Hyperuniform Two-phase Systems,

Journal of Chemical Physics, 145, 244109 (2016).

In Chapter 7, we study the probability of finding a spherical cavity or “hole” of

arbitrarily large size in stealthy systems. Such “hole” statistics are intimately linked

to the thermodynamic and nonequilibrium physical properties of the system. We pro-

vide strong numerical evidence that disordered stealthy configurations across the first

three space dimensions cannot tolerate arbitrarily large holes in the infinite-system-

size limit, i.e., the hole probability has compact support. This structural “rigidity”

property apparently endows disordered stealthy systems with novel thermodynamic

and physical properties, including desirable band-gap, optical and transport charac-
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teristics. We also determine the maximum hole size that any stealthy system can

possess across the first three space dimensions. The work in this chapter has been

accepted for publication in Soft Matter as:

• G. Zhang, F. H. Stillinger, and S. Torquato, Can exotic disordered “stealthy”

particle configurations tolerate arbitrarily large holes?, (2017).

In Chapter 8, we change our focus to study stealthy spin systems (or equivalently,

lattice gas systems). We define and analyze the order metric τ , which ranks such

systems by providing an unbiased estimate of the order contained within a given dis-

cretized pattern by equally accounting for contributions across short-, intermediate-,

and long-range distances. To demonstrate that τ is consistent with our intuitive

perception of order, we first apply it to a digitized representation of the Mona Lisa,

which is arguably one of the most easily recognizable and well-known images in exis-

tence to date, and compare our findings with the most ordered and most disordered

configurations of the same resolution. This is followed by a detailed analysis of τ for

a series of stealthy hyperuniform patterns, which are characterized by the presence of

hidden long-range order. We then showcase several new algorithms that allow for the

systematic identification and generation of digitized stealthy hyperuniform patterns,

paving the way towards the rational design of such configurations with a tunable

degree of order. The work in this chapter has been submitted to Science Advances

as:

• R. A. Distasio, Jr., G. Zhang, F. H. Stillinger, and S. Torquato, Rational Design

of Stealthy Hyperuniform Patterns with Tunable Order, (2017).

They have also been presented in a short talk at the 115th Statistical Mechanics

Conference at Rutgers University in May, 2016.

In Chapters 9 and 10, we devise and study a many-particle model which we call

“perfect glasses,” since it is a soft-interaction analog of the maximally random jammed
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(MRJ) packings of hard particles. These latter states can be regarded as the epitome

of a glass since they are out of equilibrium, maximally disordered, hyperuniform,

mechanically rigid with infinite bulk and shear moduli, and can never crystallize due

to configuration-space trapping. In Chapter 9, we devise the model perfect glass

utilizing two-, three-, and four-body soft interactions. The work in Chapter 9 has

been published previously as:

• G. Zhang, F. H. Stillinger, and S. Torquato, The Perfect Glass Paradigm: Dis-

ordered Hyperuniform Glasses Down to Absolute Zero, Scientific Reports, 6,

36963 (2016).

They have also been presented in a short talk at the 116th Statistical Mechanics

Conference at Rutgers University in December, 2016.

In Chapter 10, we show that this model possesses unique disordered classical

ground states. This is a highly counterintuitive situation, since classical ground

states (global energy-minimizing configurations) of many-particle systems are typ-

ically unique but crystalline structures. By contrast, the few previously known disor-

dered classical ground states of many-particle systems are all highly degenerate. For

all of the system sizes, parameters, and space dimensions that we have numerically

investigated, the disordered ground states are unique such that they can always be

superposed onto each other or their mirror image. At low energies, the density of

states calculated from harmonic approximations near a single ground state matches

numerical results with high precision, further confirming ground-state uniqueness.

Such ground states would have zero “enumeration entropy,” defined as the natural

logarithm of the number of distinct accessible structures. Thus, this discovery pro-

vides singular examples in which entropy and disorder are at odds with one another.

It also impinges on the famous Kauzmann glass paradox. We expect that our dis-

ordered unique patterns to be of value in cryptography as pseudo-random functions

8



with tunable computational complexity. The work in this chapter has been submitted

to Physical Review Letters as:

• G. Zhang, F. H. Stillinger, and S. Torquato, Classical many-particle systems

with unique disordered ground states, (2017).

They have also been presented in a short talk at the 117th Statistical Mechanics

Conference at Rutgers University in May, 2017.

In Chapter 11, we study the spacial distribution of prime numbers using statistical-

mechanical methods. Although the primes are deterministic, they can be viewed, by

some measures, as pseudo-random numbers. We study prime numbers in the interval

[M,M + L), where M and L are large integers, and treat such configurations as

(correlated) lattice gases. We find that the structure factor of such systems consists

of Bragg peaks in a small, noisy background, which we call the “diffuse part”. Using

a stronger form of Dirichlet’s theorem on arithmetic progressions, we were able to

analytically explain the location and height of all peaks. The Bragg peaks are dense

in the sense that one can find infinitely many peaks in any non-zero interval, similar to

quasicrystals. However, primes differ from quasicrystals in that the ratio between the

location of any two Bragg peaks is rational. We also numerically observed that the

diffuse part decays slowly as M or L increases. With such analytical understandings

of the structure factor, we were able to reconstruct the real-space configuration, i.e.,

predict prime numbers in the interval, with high accuracy in certain cases. This

chapter is based on materials of two papers under preparation:

• G. Zhang, F. Martelli, and S. Torquato, Structure Factor of the Primes, (2017).

• S. Torquato, G. Zhang, and M. De Courcy-Ireland, Hidden Multiscale Order in

the Primes, (2017).
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Chapter 2

Precise Algorithm to Generate

Random Sequential Addition of

Hard Hyperspheres at Saturation

2.1 Introduction

In d-dimensional Euclidean space Rd, a hard hypersphere (i.e. d-dimensional sphere)

packing is an arrangement of hyperspheres in which no two hyperspheres overlap.

The packing density or packing fraction φ is the fraction of space in Rd covered by

the spheres, which for identical spheres of radius R, the focus of this chapter, is given

by:

φ = ρv1(R), (2.1)

where ρ is the number density and

v1(R) =
πd/2

Γ(1 + d/2)
Rd (2.2)
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is the volume of a d-dimensional sphere of radius R and Γ(x) is the gamma func-

tion. Sphere packings are of importance in a variety of contexts in the physical and

mathematical sciences. Dense sphere packings have been used to model a variety

of many-particle systems, including liquids [127], amorphous materials and glassy

states of matter [31, 102, 222, 316, 223, 224, 321], granular media [301], suspensions

and composites [40, 361, 201], and crystals [45]. The densest sphere packings are inti-

mately related to the ground states of matter [45, 303] and the optimal way of sending

digital signals over noisy channels [61]. Finding the densest sphere packing in Rd for

d ≥ 3 is generally a notoriously difficult problem [61]. Kepler’s conjecture, which

states that there is no other three-dimensional arrangement of identical spheres with

a density greater than that of face-centered cubic lattice, was only recently proved

[125]. The densest sphere packing problem in the case of congruent spheres has not

been rigorously solved for d ≥ 4 [61, 56], although for d = 8 and d = 24 the E8 and

Leech lattices, respectively, are almost surely the optimal solutions [58].

Understanding the high-dimensional behavior of disordered sphere packings is a

fundamentally important problem, especially in light of the recent conjecture that

the densest packings in sufficiently high dimensions may be disordered rather than

ordered [319]. Indeed, Ref. [319] provides a putative exponential improvement on

Minkowski’s lower bound on the maximal density φmax among all Bravais lattices

[206]:

φmax ≥
ζ(d)

2d−1
, (2.3)

where ζ(d) =
∑∞

k=1 k
−d is the Riemann zeta function. For large values of d, the

asymptotic behavior of the Minkowski’s lower bound is controlled by 2−d. Interest-

ingly, any saturated packing density satisfies the following so-called “greedy” lower

bound:

φ ≥ 1

2d
. (2.4)

11



A saturated packing of congruent spheres of unit diameter and density φ in Rd has

the property that each point in space lies within a unit distance from the center of

some sphere. Thus, a covering of the space is achieved if each center is encompassed

by a sphere of unit radius and the density of this covering is

θ = 2dφ ≥ 1, (2.5)

which proves the lower bound (2.4). Note that it has the same dominant exponential

term as in inequality (2.3). The packing density of 2−d can also be exactly achieved by

ghost random sequential addition packings [318], an unsaturated packing less dense

than the standard random sequential addition (RSA) packing [339] in some fixed

dimension d, implying that the latter will have a superior dimensional scaling. Addi-

tionally, the effect of dimensionality on the behavior of equilibrium hard-sphere liquids

[93, 275, 253, 330, 186] and of maximally random jammed spheres [275, 224, 321] have

been investigated.

Sphere packings are linked to a variety of fundamental characteristics of point

configurations in Rd, including the covering radius Rc and the quantizer error G,

which are related to properties of the underlying Voronoi cells [61]. The covering and

quantizer problems have relevance in numerous applications, including wireless com-

munication network layouts, the search of high-dimensional data parameter spaces,

stereotactic radiation therapy, data compression, digital communications, meshing of

space for numerical analysis, coding, and cryptography [303, 61]. It has recently been

shown [303] that both of these quantities can be extracted from the void exclusion

probability EV (R), which is defined to be the probability of finding a randomly placed

spherical cavity of radius R empty of any points. It immediately follows that EV (R)

is the expected fraction of space not covered by circumscribing spheres of radius R

centered at each point. Thus, if EV (R) is identically zero for R ≥ Rc for a point

12



process, then there is a covering associated with the point process with covering ra-

dius Rc. Finally, for a point configuration with positions r1, r2, . . ., a quantizer is a

device that takes as an input a position x in Rd and outputs the nearest point ri of

the configuration to x. Assuming x is uniformly distributed, one can define a mean

square error, called the scaled dimensionless quantizer error, which can be obtained

from the void exclusion probability via the relation [303]:

G =
2ρ

2
d

d

∫ ∞
0

REV (R)dR. (2.6)

It is noteworthy that the optimal covering and quantizer solutions are the ground

states of many-body interactions derived from EV (R) [303].1

The RSA procedure, which is the focus of the present chapter, is a time-dependent

process to generate disordered hard-hypersphere packings in Rd [323, 339, 227, 288,

84, 62, 293, 247]. Starting with a large, empty region of Rd of volume V , spheres are

randomly and sequentially placed into the volume subject to a nonoverlap constraint:

if a new sphere does not overlap with any existing spheres, it will be added to the

configuration; otherwise, the attempt is discarded. One can stop the addition process

at any time t, obtaining RSA configurations with various densities φ(t) up to the

maximal saturation density φs = φ(∞) that occurs in the infinite-time limit. Besides

identical d-dimensional spheres, the RSA packing process has also been investigated

for polydisperse spheres [6, 113] and other particle shapes, including squares [38], rect-

angles [331, 332], ellipses [291, 273], spheroids [272], superdisks [119], sphere dimers

[54], and sphere polymers [52] in Rd, and for different shapes on lattices [41] and frac-

tals [53, 55]. The RSA packing process in the first three space dimensions has been

widely used to model the structure of cement paste [344], ion implantation in semi-

conductors [254], protein adsorption [85], polymer oxidation [96], and particles in cell

1In Ref. [303], Eq. (75) is presented for unit density and hence does not contain the pre-factor
ρ2/d indicated in Eq. (2.6).
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membranes [92]. The one-dimensional case, also known as the “car-parking” problem,

has been solved analytically and its saturation density is φ = 0.7475979202... [247].

However, for d ≥ 2, the saturation density of RSA spheres has only been estimated

through numerical simulations.

In general, generating exactly saturated (infinite-time limit) RSA configurations

in Rd is particularly difficult because infinite computational time is not available. The

long-time limit of RSA density behaves as [84, 227, 288]:

φ(∞)− φ(t) ∼ t−1/d. (2.7)

Previous investigators have attempted to ascertain the saturation densities of RSA

configurations by extrapolating the densities obtained at large, finite times using the

asymptotic formula (2.7) [62, 293, 323].

In order to describe more efficient ways of generating nearly-saturated and fully-

saturated RSA configurations, we first need to define two important concepts: the

exclusion sphere and the available space. The exclusion sphere associated with a hard

sphere of diameter D (equal to 2R) is the volume excluded to another hard sphere’s

center due to the impenetrability constraint, and thus an exclusion sphere of radius

D circumscribes a hard sphere. The available space is the space exterior to the union

of the exclusion spheres of radius D centered at each sphere in the packing. A more

general notion of the available space is a fundamental ingredient in the formulation

of a general canonical n-point distribution function [296].

An efficient algorithm to generate nearly-saturated RSA configurations was intro-

duced in Ref. [323]. This procedure exploited an economical procedure to ascertain

the available space (as explained in the subsequent section). Although a huge im-

provement in efficiency can be achieved, this and all other previous algorithms still
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require extrapolation of the density of nearly-saturated configurations to estimate the

saturation limit.

In this chapter, we present an improvement of the algorithm described in Ref. [323]

in order to generate saturated (i.e., infinite-time limit) RSA packings of identical

spheres in a finite amount of computational time. Using this algorithm, we improve

upon previous calculations of the saturation packing and covering densities, pair

correlation function, structure factor, void exclusion probability, and quantizer error

in dimensions 2 through 8.

The rest of the chapter is organized as follows: In Sec. 2.2, we describe the im-

proved algorithm; in Sec. 2.3, we present the packing and covering densities, pair

correlation function, structure factor, void exclusion probability, and quantizer error

of saturated RSA configurations; and in Sec. 2.4, we conclude with some discussions

of extending this method to generate saturated RSA packings of objects other than

congruent spheres.

2.2 Improved Algorithm to Generate Saturated

RSA Packings in Rd

Reference [323] introduced an efficient algorithm to generate nearly saturated RSA

configurations of hard d-dimensional spheres. Specifically, a hypercubic simulation

box is divided into small hypercubic “voxels” with side lengths much smaller than

the diameter of the spheres. At any instant of time, spheres are sequentially added

to the simulation box whenever there is available space for that sphere. Each voxel

can be probed to determine whether it may contain any available space or not to add

another sphere. By tracking all of the voxels that can contain some portion of the

available space, one can make insertion attempts only inside these “available voxels”

and save computational time. This enables one to achieve a huge improvement in
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Figure 2.1 A description of the key steps involved to generate two-dimensional saturated
RSA packings in a square box under periodic boundary conditions. Gray circles are RSA
disks and dotted circles are their corresponding exclusion disks. The shaded region (red
region in colored version) is the available space. Black squares are voxels in the available
voxel list. A: Configuration after the first step. B: Same configuration with the available
voxel list generated in the second step. C: A new disk is inserted in the third step,
reducing the available space. D: In the fourth step, each available voxel is subdivided into
22 sub-voxels. The available ones constitute a new voxel list. E: Return to the third step
with the new available voxel list and two additional disks are inserted. The program then
subdivides each voxel into four subvoxels and all subvoxels can be identified as
unavailable. Thus the program finishes.

computational efficiency over previous methods. However, this and all other previous

algorithms still require extrapolation of the density of nearly-saturated configurations

to estimate the saturation limit.

The improved algorithm reported in the present chapter differs from the original

voxel method [323] by dividing the undetermined voxels (voxels that are not included

in any exclusion sphere after certain amount of insertion trials) into smaller subvoxels.

Repeating this voxel subdivision process with progressively greater resolution enables

us to track the available space more and more precisely. Eventually, this allows us to

discover all of the available space at any point in time and completely consume it in

order to arrive at saturated configurations.

The improved algorithm consists of the following steps, which are illustrated in

Figure 2.1:

1. Starting from an empty simulation box in Rd, the Cartesian coordinates of a

sphere of radius R are randomly generated. This sphere is added if it does not

overlap with any existing sphere in the packing at that point in time; otherwise,
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the attempt is discarded. This addition process is repeated until the success

rate is sufficiently low 2. The acceptance ratio of this step equals to the volume

fraction of the available space inside the simulation box:

Pacceptance = Φavailable =
Vavailable
Ld

, (2.8)

where Pacceptance is the acceptance ratio of this step, Φavailable is the volume

fraction of the available space, Vavailable is the volume of the available space and

Ld is the volume of the simulation box with side length L.

2. When the fraction of the available space is low, we improve the acceptance

ratio by avoiding insertion attempts in the unavailable space. To do this, the

simulation box is divided into hypercubic voxels, with side lengths comparable

to the sphere radius. Each voxel is probed to determine whether it is completely

included in any of the exclusion spheres or not. If not, the voxel is added to the

available voxel list. Thus we obtain an “available voxel list”. A voxel in this

list may or may not contain available space, but the voxels not included in this

list are guaranteed to contain no available space.

3. Since some unavailable space is excluded from the voxel list, we can achieve a

higher success rate of insertion by selecting a voxel randomly from the available

voxel list, generate a random point inside it, attempt to insert a sphere and

repeat this step. The acceptance ratio of this step is equal to the volume

fraction of the available space inside voxels from the available voxel list:

Pacceptance = Φavailable =
Vavailable

NvoxelVvoxel
, (2.9)

2In the implementation of our algorithm, the criteria for “sufficiently low” is less than 3 spheres
inserted in N trials. The optimal choice of N depends on the dimension d, ranging from N = 500
for d = 2 to N = 2× 108 for d = 8.
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where Pacceptance is the acceptance ratio of this step, Φavailable is the volume

fraction of the available space inside the voxel list, Vavailable is the volume of the

available space, Nvoxel is the number of voxels in the available voxel list and

Vvoxel is the volume of a voxel.

4. In the previous step, spheres were inserted into the system, thus the volume of

the available space will decrease. Eventually, Vavailable is very low and Pacceptance

is also low. Thus we improve the efficiency again by dividing each voxel in the

voxel list into 2d sub-voxels, each with side length equal to a half of that of the

original voxel. Each sub-voxel is checked for availability according to the rule

described in step 2. The available ones constitute the new voxel list.

5. Return to step 3 with the new voxel list and repeat steps 3 to 5 until the number

of voxels in the latest voxel list is zero. Since we only exclude a voxel from the

voxel list when we are absolutely sure that it does not contain any available

space, we know at this stage that the entire simulation box does not contain

any available space and thus the configuration is saturated.

2.3 Results

2.3.1 Saturation density

We have used the method described in Sec. 2.2 to generate saturated configurations

of RSA packings of hyperspheres in dimensions two through eight in a hypercubic

(d-dimensional cubic) box of side length L under periodic boundary conditions. In

each dimension, multiple sphere sizes are chosen. The relative sphere volume is rep-

resented by the ratio of a sphere’s volume to the simulation box’s volume v1(R)/Ld,

where R is the sphere radius and Ld is the volume of the hypercubic simulation

box. For each sphere size, multiple configurations are generated. The number of

18



spheres N contained in these configurations fluctuate around some average value in-

versely proportional to v1(R)/Ld. The relative sphere volume v1(R)/Ld and number

of configurations nc generated for each sphere radius R in each dimension is given

in Table 2.1. The mean density and its standard error for each sphere radius R is

calculated. Subsequently, we plot the mean density φs and its standard error σ versus

a quantity proportional to N−1/2, namely [v1(R)/Ld]1/2. We then perform a weighted

linear least squares fit [285] to this function in each dimension in order to extrapolate

to the infinite-system-size [v1(R)/Ld → 0] limit. The weight is given by

W (R) =
1

σ2(R)
, (2.10)

where σ(R) is the standard error of the mean density for spheres with radius R.

Table 2.1 Dimensionless sphere size v1(R)/Ld and number of configurations nc generated
for each dimension d.

d = 2
v1(R)/Ld 1.0884× 10−7 5.4420× 10−8 2.7210× 10−8 1.3605× 10−8

nc 250 250 250 250

d = 3

v1(R)/Ld 3.82925× 10−7 1.91462× 10−7 7.65850× 10−8 3.82925× 10−8

nc 250 250 250 250
v1(R)/Ld 1.91462× 10−8

nc 250

d = 4

v1(R)/Ld 5.20225× 10−6 2.60112× 10−6 1.30056× 10−6 5.20225× 10−7

nc 250 250 250 250
v1(R)/Ld 2.60112× 10−7 1.30056× 10−7

nc 250 250

d = 5

v1(R)/Ld 1.71000× 10−5 8.55000× 10−6 3.42000× 10−6 1.71000× 10−6

nc 250 250 250 250
v1(R)/Ld 8.55000× 10−7 3.42000× 10−7

nc 250 250

d = 6

v1(R)/Ld 2.22500× 10−5 1.11250× 10−5 5.56250× 10−6 2.78125× 10−6

nc 50 50 50 50
v1(R)/Ld 1.39062× 10−6

nc 50

d = 7

v1(R)/Ld 2.72744× 10−5 1.36372× 10−5 6.81859× 10−6 4.54573× 10−6

nc 70 30 20 20
v1(R)/Ld 3.40930× 10−6 1.94817× 10−6 1.36372× 10−6

nc 20 20 15

d = 8
v1(R)/Ld 4.16930× 10−5 2.08465× 10−5 1.38977× 10−5

nc 11 7 5
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The mean densities and the associated standard errors for different sphere radii R

are shown in Fig. 2.2, while the extrapolated infinite-system-size densities are shown

in Table 2.2. These density estimates for 2 ≤ d ≤ 8 have been determined with

heretofore unattained accuracy, including in the most previously studied dimensions

of d = 2 and d = 3. For d = 2, several previous studies produced the following density

estimates 0.547±0.002 [84], 0.547±0.003 [137], and 0.54700±0.000063 [323]. For d =

3, several previous investigations yielded the following density estimates 0.37 − 0.40

[62], 0.385±0.010 [63], 0.382±0.0005 [290], and 0.38278±0.000046 [323]. Compared

with previous results of saturation densities for 2 ≤ d ≤ 6 [323], our corresponding

results are only slightly higher for two dimensions, but the discrepancy increases

as dimension increases. This suggests that the previous attempts did not generate

fully saturated configurations, especially in high dimensions. Table 2.2 also includes

corresponding RSA covering densities. A RSA covering is obtained by replacing each

sphere in a saturated RSA packing in Rd with its exclusion sphere, and thus its

covering density is given by

θ = 2dφs. (2.11)
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Figure 2.2 RSA saturation packing density, φs, (filled circles) of different system sizes as
measured by a quantity proportional to N−1/2, namely [v1(R)/Ld]1/2, in different
dimensions d. Included are the associated linear fits. Error bars associated with filled
circles are the standard error of the mean as obtained from averaging multiple
configurations.

2.3.2 Pair correlation function and structure factor

We have used the methods described in Ref. [323] to calculate the pair correlation

function g2(r) and structure factor S(k) of the saturated RSA configurations for

2 ≤ d ≤ 7. [For d = 8, we can only generate relatively small configurations, which are
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Table 2.2 RSA saturation densities and covering densities in different dimensions,
extrapolated to the infinite system size limit. Here φs is saturation packing density and θ
is the corresponding covering density.

Dimension φs [Present Work] φs [Ref. [323]] θ [Present Work]
2 0.5470735± 0.0000028 0.54700± 0.000063 2.188294± 0.000011
3 0.3841307± 0.0000021 0.38278± 0.000046 3.073046± 0.000017
4 0.2600781± 0.0000037 0.25454± 0.000091 4.161250± 0.000060
5 0.1707761± 0.0000046 0.16102± 0.000036 5.46483± 0.00015
6 0.109302± 0.000019 0.09394± 0.000048 6.9953± 0.00012
7 0.068404± 0.000016 8.75572± 0.0020
8 0.04230± 0.00021 10.829± 0.053

not suitable to calculate g2(r) and S(k) accurately.] The structure factor is calculated

using the collective density variables approach, i.e.,

S(k) =
〈|ρ̃(k)2|〉

N
, (2.12)

where N is the number of spheres in the periodic hypercubic box of side length L,

ρ̃(k) =
N∑
j=1

exp(ik · rj) (2.13)

is the complex collective density variable and

k = (
2πn1

L
,
2πn2

L
, ...,

2πnd
L

), (2.14)

where k is a wave vector and where ni (i = 1, 2, . . . , d) are the integers. In presenting

the structure factor, we will omit the forward scattering contribution (k = 0); see

Ref. [323] for additional details.

These pair statistics are shown in Figure 2.3 for dimensions two through seven.

The decorrelation exhibited with increasing dimension was also observed in Ref. [323].

These trends are clearly consistent with a recently proposed “decorrelation” princi-

ple, which states that unconstrained spatial correlations diminish as the dimension
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Figure 2.3 Pair correlation function and structure factor of saturated RSA
configurations, in two through seven dimensions. It is clearly seen that these pair
statistics indicate that the packings become more decorrelated as the dimension increases.

increases and vanish in the d → ∞ limit [318, 319]. It is noteworthy that decorrela-

tion is already exhibited in these low dimensions, which has been observed for other

types of hard-sphere packings [318, 275].

The pair correlation function g2(r) of saturated RSA configurations has a loga-

rithmic singularity when r approaches the sphere diameter, D [227, 288] :

g2(r) ∼ − ln(r/D − 1), r → D+. (2.15)

Based on this analytical form, we have fit our pair correlation functions at D < r <

1.018D to the following formula:

g2(r) = a0 ln(r/D − 1) + a1. (2.16)
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Our results are shown in Table 2.3. The absolute value of a0 in each dimension are

significantly higher than previous results [323], which means that our g2(r)’s are much

sharper near r = D. This is due to the fact that our algorithm is capable of finding

even the smallest fragments of the available space. Finding those pieces enables us

to insert spheres that are very close to other spheres, substantially increasing g2(r)

near r = D.

It is of interest to see to what extent RSA packings are hyperuniform. A packing is

hyperuniform if the structure factor in the zero-wavenumber limit, S0 ≡ limk→0 S(k),

is zero [317, 349]. Thus, the magnitude of S0 quantifies the “distance” from hyper-

uniformity. It was reported in Ref. [323] that S0 of saturated RSA packings decreases

with dimension but because these simulations were not as precise in higher dimen-

sions, the high-d asymptotic behavior of S0 was difficult to ascertain. We fit the

structure factors that we have determined in this chapter to a function of the form

S(k) = S0 + S2k
2 + S4k

4 in each dimension near k = 0 in order to estimate S0.

This form is the exact behavior of the structure factor as k goes to zero, as shown

in Ref. [323]. The results for S0 are summarized in Table 2.4. It is seen that as d

increases, S0 decreases, i.e., the “degree of hyperuniformity” (the ability to suppress

infinite-wavelength density fluctuations) increases. The data indicates that S0 tends

to the perfect hyperuniformity limit of zero as d→∞. As we will show in Sec. 2.3.3,

in the d → ∞ limit, the void exclusion probability of RSA packings tends to a step

function [303]. This indicates that the vacancies in infinite-dimensional RSA packings

are spherically-shaped with similar sizes. Thus, S0 tends to zero in the d→∞ limit.

This also explains why RSA packings become more stealthy [S(k) is nearly zero for

larger range of k near k = 0] [29] as d increases.
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Table 2.3 Results from fitting data to g2(r) = a0 ln(r/D − 1) + a1 in the near-contact
range D < r < 1.018D

Dimension a0 a1

2 −1.562± 0.031 −2.155± 0.155
3 −1.603± 0.026 −2.709± 0.133
4 −1.488± 0.028 −2.582± 0.116
5 −1.396± 0.030 −2.565± 0.155
6 −1.200± 0.039 −1.984± 0.206
7 −1.169± 0.055 −2.116± 0.269

Table 2.4 Structure factor S(k) at k = 0, obtained by fitting data to
S(k) = S0 + S2k

2 + S4k
4 at 0 < kD < 3, where S0, S2, and S4 are fitting parameters.

Dimension S0

2 0.05869± 0.00004
3 0.05581± 0.00005
4 0.05082± 0.00007
5 0.04544± 0.00029
6 0.03834± 0.00072
7 0.03140± 0.00173

2.3.3 Void exclusion probability and quantizer error

We have calculated the void exclusion probability EV (r) (discussed in the Introduc-

tion) of saturated RSA configurations for 2 ≤ d ≤ 8 and findings are summarized

in Figure 2.4. The void exclusion probability in all dimensions vanishes at r → D−,

confirming that the exclusion spheres with radius Rc = D cover the space and that

our RSA configurations are saturated. Our results are similar to previously reported

results [303] and strongly supports the theory that the void exclusion probability of

RSA packings tend to a step function in the infinite-dimensional limit [303], i.e.,

EV (r)→ Θ(r −D) (d→∞), (2.17)

where

Θ(x) =

0, x < 0

1, x ≥ 0
(2.18)
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Figure 2.4 Void exclusion probability of saturated RSA configurations, in two through
eight dimensions.

is the Heaviside step function. This indicates that the “holes” in RSA packings

become spherically-shaped with similar sizes as d tends to infinity. It is interesting to

note that the void exclusion probability of fermionic systems have similar behavior

in the high-dimensional limit [315].

We have calculated the quantizer error G for saturated RSA configurations for

2 ≤ d ≤ 8. These results are summarized in Table 2.5. Compared with results in

Ref. [303] for 2 ≤ d ≤ 6, our corresponding results for G are somewhat lower.

2.4 Conclusions and Discussion

We have devised an efficient algorithm to generate exactly saturated, infinite-time

limit RSA configurations in finite computational time across Euclidean space dimen-
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Table 2.5 Scaled dimensionless quantizer error G.

Dimension G [Present Work] G [Ref. [303]]
2 0.08848± 0.00018 0.09900
3 0.08441± 0.00013 0.09232
4 0.08154± 0.00011 0.08410
5 0.07936± 0.00009 0.07960
6 0.07765± 0.00007 0.07799
7 0.07623± 0.00007
8 0.07508± 0.00009

sions. With the algorithm, we have improved previous results of the saturation density

and extended them to a wider range of dimensions, i.e., up through dimension eight.

The associated covering density, pair correlation function, structure factor, void ex-

clusion probability, and quantizer error have also been improved. In particular, we

found appreciable improvement for g2(r) near contact and S(k) in the k → 0 limit,

which are especially sensitive to whether or not very small fragments of the available

space are truly eliminated as the saturation state is approached. We observed that

as d increases, the degree of “hyperuniformity” (the magnitude of the suppression of

infinite-wavelength density fluctuations) increases and appears to be consistent with

limd→∞ S(0) = 0. Our results also supports the “decorrelation principle”, which in

turns lends further credence to a conjectural lower bound on the maximal sphere

packing density that provides the putative exponential improvement on Minkowski’s

lower bound [319].

It is noteworthy that the RSA packing in Rd has relevance in the study of high-

dimensional scaling of packing densities. For example, Ref. [323] suggested that

since RSA packing densities appear to have a similar scaling in high dimensions as

the best lower bound on Bravais lattice packings densities, the density of disordered

packings might eventually surpass that of the densest lattice packing beyond some

large but finite dimension. Our improvements to the saturation densities, as well as

a previous investigation [319], support this conjecture. Converting a packing into
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a covering by replacing each sphere with its exclusion sphere is rigorous only if the

packing is exactly saturated. By guaranteeing that the packings that we generated

are saturated, we rigorously met this condition (in a large finite simulation box).

Although the best known lattice covering and lattice quantizer perform better than

their RSA counterparts in low dimensions, RSA packings may outperform lattices in

sufficiently high dimensions, as suggested in Ref. [303].

It is useful here to comment on the ability to ascertain the high-dimensional scaling

of RSA packing densities from low-dimensional data [303, 323]. We have fitted our

data of the saturation densities as a function of d for 2 ≤ d ≤ 8 using a variety of

different functions. The best fit we find is the following form:

φs =
a1 + a2d+ a3d

2

2d
, (2.19)

where a1 = 1.0801, a2 = 0.32565, and a3 = 0.11056 are parameters. However, it is

not clear how accurate this form is for d ≥ 9. In fact, this form is likely not correct

in high dimensions, where it has been suggested from theoretical considerations [303]

that high-dimensional scaling may be given by the asymptotic form

φs =
b1 + b2d+ b3d ln(d)

2d
, (2.20)

where b1, b2, and b3 are constants. It is noteworthy that (2.20) provides a fit that

is very nearly as good as (2.19). Nonetheless, for d = 15, the estimates of the

saturation densities obtained from (2.19) and (2.20) differ by about 20%, which is

a substantial discrepancy and indicates the uncertainties involved in applying such

dimensional scalings for even moderately-sized dimensions. When d is very large,

extrapolations based on fits of low-dimensional data is even more problematic. In

this limit, Eq. (2.19) is dominated by the a3d
2/2d term, which can be significantly

larger than the a3d ln(d)/2d dominating term in Eq. (2.20), although it is safe to say
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that the saturation density grows at least as fast as d2−d. Therefore, caution should

be exercised in attempting to ascertain the precise high-d asymptotic behavior of

RSA saturation densities from our data in relatively low dimensions. The same level

of caution should be employed in attempting to determine high-d scaling behavior

by extrapolating low-dimensional packing densities for other types of sphere pack-

ings. For example, it may useful to revisit the high-dimensional scalings that have

been ascertained or tested for the maximally random jammed densities [224, 48]. In

summary, it is nontrivial to ascertain high-d scalings of packing densities from low-

dimensional information. In contrast, in the study of the dimensional dependence of

continuum percolation thresholds, it is possible to obtain exact high-d asymptotics

and tight upper and lower bounds that apply across all dimensions [304, 310].

RSA packings of spheres with a polydispersity in size have also been investigated

previously [6, 113]. Our algorithm can easily be extended to generate saturated RSA

packings of polydisperse spheres in Rd by constructing a (d + 1)-dimensional auxil-

iary space for the associated radius-dependent available space and voxels, where the

additional dimension is used to represent the radius of a sphere that could be added

in the RSA process. RSA packings of nonspherical particles have also been studied,

including squares [38], rectangles [331, 332], ellipses [291, 273], spheroids [272], and

superdisks [119]. While packings of polyhedra have received recent attention [40, 311],

RSA packings of such shapes have not been considered to our knowledge. Our algo-

rithm can also be extended to treat these situations by constructing auxiliary spaces

for the associated orientation-dependent available space and voxels. The dimension

of such an auxiliary space is determined by the total number of degrees of freedom

associated with a particle, i.e., translational and rotational degrees of freedom. The

extensions of the methods devised here to generate saturated packings of polydisperse

spheres and nonspherical particles is an interesting direction for future research.
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Chapter 3

Inverse Statistical Mechanics:

Probing the Limitations of

Isotropic Pair Potentials to

Produce Ground-State Structural

Extremes

3.1 Introduction

A fundamental problem of statistical mechanics is the determination of the phase

diagram of interacting many-particle systems in the absence of an external field. For a

single-component system of N particles in a large region of volume V in d-dimensional

Euclidean space Rd, the interaction is represented by the potential energy Φ(rN),

where rN = r1, r2, ..., rN denotes the configurational coordinates. A theoretically

simple and computationally widely used form of the potential energy is the following
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pairwise form:

Φ(rN) =
∑
i<j

u2(rij), (3.1)

where u2(r) is a suitably stable isotropic pair potential and rij is the distance between

the ith and jth particles.

Even for this simple class of potentials, our understanding of the phase diagram,

including the T = 0 ground state, is still far from complete. Two approaches have

been used to study phase diagrams of isotropic pair potentials. In the forward ap-

proach, one first specifies the isotropic pair potential u2(r) and then probes the

structures in its phase diagram. This venerable approach has identified a variety

of structures with varying degrees of complexity and order [338, 71, 337, 132, 236,

139, 217, 230, 357, 246, 25, 144, 43, 359]. In the inverse approach, a target many-

particle configuration or physical property is first specified and then one attempts

to determine an isotropic pair potential u2(r) under certain constraints that achieves

the targeted behavior [302]. The target behavior can be ground state configurations

[239, 240, 241, 243, 191, 192, 193, 143] or excited-state properties, such as negative

thermal expansion [242] and negative Poisson ratio [244].

This chapter focuses on the use of inverse statistical mechanics to determine

isotropic pair potentials that produce unusual targeted crystalline structures as unique

ground states, as in multiple previous works [239, 240, 241, 243, 191, 192, 193, 143].

Contrary to the conventional view that low-coordinated crystal structures require di-

rectional bonds as in chemical covalency, earlier works employing the inverse approach

have found optimized isotropic pair potentials (under certain constraints) stabilizing a

variety of low-coordinated crystal structures as ground states. Target structures that

have successfully been stabilized include the square lattice [240, 191, 192], honeycomb

crystal [239, 240, 191, 192], and kagomé crystal [80] in two dimensions, and the simple

cubic lattice [241, 143], diamond crystal [243, 193, 143], and wurtzite crystal [243] in

three dimensions. These isotropic pair potentials have been designed using the follow-

31



ing steps [239, 240, 191, 192, 241, 243, 193, 143]: A functional form was chosen for the

isotropic pair potential in terms of some parameters. One then optimized an objective

function that is related to the stability of the target structure over competitors (for

example, energy difference [240] or the target structure’s stable pressure range [193]).

Subsequently, the validity of the optimized potential was verified by cooling liquid

configurations to absolute zero temperature via simulated annealing and by estab-

lishing that the target structure contains no phonon instabilities [240]. These results

provide good counterexamples to the aforementioned intuition that low-coordinated

structures require directional bonding. However, all of these target structures are

globally highly symmetric, and the local environments around each of the particles

in these structures are identical up to spatial inversions or rotations.

Here, we further probe the limitations of isotropic pair potentials to produce

ground-state structural extremes using inverse statistical-mechanical techniques. Do-

ing so has required us to improve upon previous optimization algorithms devised for

inverse statistical mechanics for reasons that we will elaborate below. Our improved

optimization algorithm not only allows each competitor structure to deform to become

more competitive during the optimization, but also incorporates the local mechanical

stability of the target structure (i.e. enthalpy cost to deform the target structure)

into our objective function. We test our improved optimization algorithm by targeting

the standard kagomé crystal, rectangular lattices, the rectangular kagomé crystal, and

the three dimensional CaF2 crystal inhabited by a single particle species. Compared

to previous target structures, these new targets have lower symmetry, and particles

in some cases have different local structural environments. We restrict ourselves to

short-ranged potentials (i.e. u2(r) ≡ 0 for r > rc, where rc is a constant) because

they are both computationally easier to treat and experimentally simpler to realize.

For all of our targets, except for the rectangular kagomé crystal, we are able to stabi-

lize them with smooth short-ranged monotonic repulsive potentials, which would be
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easier to produce experimentally. For the rectangular kagomé crystal, we found that

a potential with a shallow well is needed for the class of functions considered.

In contrast to some previous inverse statistical mechanical approaches [239, 240,

241, 243, 191, 192], in which the specific volume v = V/N (N is the number of

particles and V is the volume) is fixed and the classical ground state is achieved by

the global minimum of the potential energy Φ(rN), we fix the pressure p rather than

the specific volume. At constant pressure p and number of particles N , the classical

ground state is achieved by the global minimum of the configurational enthalpy per

particle:

h(rN) = Φ(rN)/N + pv. (3.2)

There are two advantages in fixing the pressure rather than the specific volume. First,

at zero temperature, phase separation (coexistence) only occurs at a unique pressure

for a given potential, while it can occur at a nontrivial range of densities. By fixing

the pressure rather than the density during simulations, we minimize our risk of

encountering phase separation. Second, allowing the volume to change will enable

us to fully deform the simulation box, thus minimizing the boundary effect during

simulations.

The rest of the chapter is organized as follows: In Sec. 3.2, we describe the new

algorithm. In Sec. 3.3, we present our designed isotropic pair potentials for the two-

dimensional (2D) kagomé crystal, rectangular lattices, and the rectangular kagomé

crystal, and the three-dimensional (3D) structure of the CaF2 crystal inhabited by a

single particle species. We close with conclusions and discussion in Sec. 3.4.
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3.2 Extended Optimization Technique

3.2.1 Basic definitions

A lattice in Rd is an infinite periodic structure in which the space Rd is divided into

identical regions called fundamental cells, each of which contains the just one point

specified by the lattice vector

R = n1a1 + n2a2 + · · ·+ ndad, (3.3)

where ai are the lattice vectors and ni spans all the integers for i = 1, 2, . . . , d. A

crystal is a more general notion than a lattice because it is obtained by placing a

fixed configuration of N points (where N ≥ 1), located at r1, r2, ..., rN , within one

fundamental cell. The coordination structure of a crystal can be represented by the

theta series [61], which is the generating function of squared distances of the vector

displacements between any two particles of the crystal structure and has the following

form:

θ(q) = 1 +
∞∑
j=1

Zjq
r2j , (3.4)

where rj is the distance from a particle at the origin (measured in units of the nearest

neighbor distance) and Zj is the associated average coordination number (average

number of particles at a radial distance rj). See Appendix A for the vectors that

specify the particle locations and lattice vectors of the crystal as well as the first few

terms of the corresponding theta series of our target structures. For the special case of

periodic structures, Eq. (3.2) can be written more explicitly in terms of coordination

structure:

h(rN ; A) =
1

2

∑
j

u2(rj)Zj + pv(A), (3.5)
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where A = [a1, a2, ..., ad]
T is the generator matrix [61] (a matrix whose rows consist

of the lattice vectors) and v(A) is the specific volume, which depends on A. The

ground state is achieved by the global minimum of enthalpy per particle h(rN ; A).

For each target crystal structure, we use the following steps to attempt to find

an isotropic pair potential u2(r) and a pressure p such that the target is the ground

state.

3.2.2 Search for degenerate ground states

A target configuration cannot possibly be the unique ground state if a different struc-

ture has exactly the same coordination structure up to the range of the potential and

the same specific volume v. In this degeneracy searching step, we start from a ran-

dom configuration and minimize the “difference” between the coordination structure

of the configuration and that of the target structure; see Appendix C for a detailed de-

scription. After minimizing the “difference”, if there is no difference between the two

coordination structures and specific volumes, we check if the resulting configuration is

equivalent to the target structure. Two structures are considered to be “equivalent”

if they are related to each other through translations, rotations, inversions, uniform

scalings, or combinations of the above transformations [148, 110]. If the resulting

configuration is different from the target structure, then we have found a degenerate

structure and thus have proven that the target structure cannot be the unique ground

state of any isotropic pair potential. If after trying minimizing the “difference” multi-

ple times (often thousands of times) no degenerate structure is found, we tentatively

assume that the target structure is unique and continue to the next step. In this step,

we visually inspect the configurations to determine whether two structures are iden-

tical. However, in the upcoming optimization and verification steps, since we have

already assumed that the target structure has a unique coordination structure, we
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can test whether another structure is identical to the target structure by comparing

their coordination structures using the computer.

3.2.3 Optimization

If the target structure has a unique coordination structure, it might be stabilized by

an isotropic pair potential with finite range. We can specify a family of potential

functions and optimize for the target structure’s stability. Since extremely long-

ranged potentials are both computationally inefficient and experimentally challenging

to realize, we restrict ourselves to potential functions with compact support of the

following form:

u2(r) =


(
b

r12
+ c0 + c1r + c2r

2 + ...

)
exp(−αr2)(r − rc)2, if r < rc,

0, otherwise,

(3.6)

where b, cn (n = 0, 1, 2, ...), rc, and α are parameters. This form is realistic because

it contains a stiff core b/r12 and smoothly approaches 0 as r approaches rc. If this

form does not work well, we will add additional terms of different type, for example,

Gaussian wells centered at some r > 0. Since the energy and length scale of the pair

potential is arbitrary, we fix these scales so that:

1. The nearest neighbor distance of the target structure is 1.

2. The absolute value of the pair potential at the nearest neighbor distance of the

target structure, |u2(1)|, is 1.

We also require that α ≥ 0 so that the effect of the Gaussian core is to decrease the

u2(r) as r increases rather than to increase u2(r). We further require that rc ≤ 6.4 in

order to ensure that the potential is relatively short-ranged.
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After the potential form is chosen, we optimize the parameters. Although previous

objective functions worked for previous target structures with high symmetry, they

must be modified for less symmetric and more complex target structures. The result of

maximizing the energy difference or enthalpy difference is very sensitive to structurally

close competitors (i.e. a slight deformation of the target structure) because they are

not differentiated from structurally remote competitors (competitors that are not

structurally close competitors). Figure 3.1 illustrates the close-competitor problem

schematically.

Target

Close Competitor

Remote Competitor

Δh

Figure 3.1 A schematic plot of the enthalpy surface (equivalent of potential energy
surface at constant pressure). If we simply define ∆h as the enthalpy difference between
the target and the lowest competitor and maximize it, we will encounter the “close
competitor problem”. If the competitor list contains structurally close competitors, ∆h
will be controlled by a structurally close competitor, causing an abnormal lifting of the
enthalpy of structurally close competitors.

Optimization over a pressure range solves the close competitor problem [193],

but introduces its own problems. First, some structures with lower symmetry do

not naturally have a stable pressure range. For example, consider the rectangular

lattice with aspect ratio b/a 6= 1. (A precise definition of rectangular lattices and

their aspect ratio is given in Appendix A.) Since the structure is anisotropic, it is

expected to have different elastic constants in different directions; see Appendix D

for an example. Thus when the pressure is changed by a small amount, the aspect
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-Δh

Target

(a)

Figure 3.2 A schematic plot of the enthalpy surface, illustrating our definition of ∆h.
(a): If the target structure is not a local minimum of the enthalpy surface, the inherent
structure of the target will not be identical to the target and will have a lower enthalpy.
∆h becomes negative. (b) and (c): If the target structure is a local minimum of the
enthalpy surface, the inherent structure of the target will be identical to the target. ∆h
becomes the enthalpy difference between the target and a different inherent structure.
Thus ∆h might be positive. (b): However, after maximizing ∆h, the curvature near the
target structure might be very small, leading to an undesirable phonon spectrum. (c): By
maximizing λ0∆h/(1 + rdc ), we sacrifice some ∆h to increase the curvature near the target
structure while favoring short-ranged potentials. Note that we usually cannot find all
inherent structures in the complex, multi-dimensional enthalpy surface. If we miss a
inherent structure that has a lower enthalpy than our target, that inherent structure will
be discovered in the latter verification step by simulated annealing.

ratio will also change. Second, after the optimization, there will be many competitors

that are enthalpically close to the target. However, these competitor structures can

be very different from the target and converting from one to another may require

crossing a large enthalpy barrier. This makes it especially hard to find the ground

state in the latter simulated annealing step.

In this chapter, we introduce an improved objective function that removes these

shortcomings, enabling us to target ground-state structures with considerably greater

complexity than previous targets. The improved objective function of the optimiza-

tion is calculated by the following steps:

1. Given a set of potential function parameters, a isotropic pair potential u2(r) is

determined. Using this potential function, we calculate the pressure of the tar-

get structure (knowing that the nearest neighbor distance of the target structure

is 1). For this pressure, we find the inherent structure of the target structure

and each competitor structures. The inherent structures are obtained by min-
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imizing the enthalpy per particle h(rN ; A) in the isobaric ensemble, changing

particle positions rN and lattice vectors A. In the current implementation, the

minimizations are performed with the MINOP algorithm [69].

2. Then, we compare each of the inherent structures with the target structure to

test if they are structurally identical.

3. For each inherent structure that is not identical to the target, we calculate its

enthalpy per particle hc. After calculating all the hc’s, we find their minimum

value, hc0. The difference between hc0 and the enthalpy per particle of the

target structure is:

∆h = hc0 − htarget. (3.7)

4. Having ∆h > 0 will establish the target as the ground state. However, as

illustrated in Fig. 3.2, ∆h does not reflect the enthalpy cost to deform the target

structure. Thus, optimizing for ∆h can lead to undesirable phonon spectra.

To overcome this problem, we incorporate quantities that enable us to modify

the second derivative of the enthalpy around the target structure. For a fixed

N , the enthalpy per particle h(rN ; A) is a function of particle positions and

lattice vectors. The Hessian matrix of this function is calculated and its lowest

non-zero eigenvalue, λ0, is calculated. (In d dimensions, the matrix has d(d +

1)/2 zero-valued eigenvalues corresponding to the translation of particles and

the rotation of the fundamental cell.) Maximizing λ0 will improve phonon

stability. We also want to favor the smallest possible potential cut-off distance

rc. Therefore, we choose to maximize the objective function λ0∆h/(1 + rdc ),

where rdc is proportional to the volume of the influence sphere of the potential.

To sum up, the optimization problem is specified by the following description:

maximize
λ0∆h

1 + rdc
, subject to ∆h > 0, λ0 > 0, and rc > 0. (3.8)
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Having defined the objective function, we use an optimizer to maximize it. We

employ the optimizer to evaluate this objective function thousands of times using

different parameters. Note that each objective function evaluation requires multi-

ple inherent structure calculations. When optimizing for this objective function, the

success rate can be low. This is partially due to the fact that the objective func-

tion is neither differentiable nor continuous. We found that the nonlinear “Subplex”

optimization algorithm [256] is relatively robust in optimizing this objective func-

tion. However, we usually still need to implement the optimization hundreds of times

starting from different, random sets of parameters to ensure that we obtain the best

solution in a computationally feasible way. To relieve the problem, we optimize for the

local stability of the target structure before optimizing for the above mentioned ob-

jective function. More precisely, we find target structure’s inherent structure (which

is the target structure itself if the target structure is locally stable), calculate the co-

ordination structures of the target structure and its inherent structure, and minimize

the difference between the two coordination structures.

3.2.4 Verification of the ground state

After the optimization step, we cool, via simulated annealing, liquid configurations of

particles interacting with the putative optimized potential to absolute zero tempera-

ture to verify that the target is indeed the ground state. To increase computational

efficiency, we use relatively small systems (1 to 24 particles) in a fully deformable

simulation box under periodic boundary conditions. We also use the thermodynamic

cooling schedule, which is given by Eq. (6) of Ref. [215].

In this step, if we discover new structures that are more stable (i.e., have a lower

enthalpy) than the target structure, we add them to the competitor list and return to

Step C. If we cannot find any competitor and can find the target structure multiple

times (10 times in the current implementation), then the target structure is deemed
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to be the ground state of the optimized potential. We finally check the result by

calculating the target structure’s phonon spectrum and ensure that all of the phonon

frequencies are real. When calculating the phonon spectrum, we assume that each

particle has a unit mass. We calculate the phonon frequency squared ω2 along some

trajectories between points of high symmetry in the Brillouin zone and ensure the

nonnegativity condition ω2 ≥ 0 for all wavevectors. The choice of the high symmetry

points for each target structure are given in Appendix B.

3.3 Results

In this section, we report optimized potentials for our target structures. To test

the validity of each potential, we have also performed Monte Carlo or molecular-

dynamics based simulated annealing on relatively large systems, as explained in detail

below. We have also calculated the elastic constants of our target structures, which

are presented in Appendix D. The rectangular lattices and the rectangular kagomé

crystal are elastically anisotropic structures.

3.3.1 Kagomé crystal

The kagomé crystal, as shown in Fig. 3.3, is a 2D crystal structure obtained by

removing one one-fourth of the particles in the triangle lattice. The vacancies form

a larger triangle lattice. Each fundamental cell contains 3 particles and each particle

has 4 nearest neighbors. The local environment of each particle is equivalent up to

rotations and translations. At pressure p = 2.83709, the kagomé crystal is the ground

state of the following potential:

u2(r) =


(
b

r12
+ c0 + c1r

)
(r − rc)2, if r < rc,

0, otherwise,

(3.9)
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Figure 3.3 Result of a 108-particle simulated annealing for the potential given by
Eq. (3.9). This is a perfect kagomé crystal.

where b = 5.9860× 10−2, c0 = −1.2811, c1 = 2.1521, and rc = 2.0364. The potential

and the phonon spectrum of the kagomé crystal are shown in Fig. 3.4. The ending

configuration of a 108-particle simulated annealing run is shown in Fig. 3.3 and is

seen to be the perfect kagomé crystal.

3.3.2 Rectangular lattices

Rectangular lattices are 2D Bravais lattices [164] in which the two lattice vectors are

perpendicular but not equal in length. Let the lengths of two lattice vectors be a

and b; we call b/a the aspect ratio. When b/a 6= 1, the rectangular lattice generally

does not retain its aspect ratio when the pressure is perturbed. However, as shown

in Appendix E, for a specific class of potentials, a rectangular lattice does retain its

aspect ratio in a nontrivial pressure range.

We undertook to stabilize the rectangular lattice with aspect ratio b/a = 2 using

the potential form in Eq. (3.6). We found that this target structure can indeed be
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Figure 3.4 Top panel: The kagomé potential u2(r) versus distance corresponding to
Eq. (3.9). Bottom panel: The phonon frequency squared ω2 versus wavevector of kagomé
crystal.

stabilized by the following potential at pressure p = 1.81198:

u2(r) =


(
b

r12
+ c0 + c1r

)
exp(−αr2)(r − rc)2, if r < rc,

0, otherwise,

(3.10)

where b = 2.1639 × 10−2, c0 = −0.26107, c1 = 0.31488, α = 0.78857, and rc = 6.4.

The potential and the phonon spectrum of the rectangular lattice with aspect ratio

b/a = 2 are shown in Fig. 3.5. In the phonon spectrum, there is a very low branch

between Γ and Y points (defined in Appendix B), indicating that there is a way to

deform the target structure with very low energy cost. The final configuration of

a 108-particle simulated annealing run is shown in Fig. 3.6. Although the particles
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Figure 3.5 Top panel: Lower-order potential u2(r) versus distance for rectangular lattice
with aspect ratio b/a = 2, corresponding to Eq. (3.10). Bottom panel: The phonon
frequency squared ω2 versus wavevector of the target.

Figure 3.6 Result of a 108-particle simulated annealing for the potential given by
Eq. (3.10). The particles show a tendency to self-assemble into the rectangular lattice
with aspect ratio b/a = 2, but many defects exist in the resulting configuration.

show a tendency to self-assemble to the target lattice, the ending configuration is

clearly disordered, revealing the difficulty to crystallize particles interacting with this

potential.

These results can be improved when we increase the order of the polynomial in

Eq. (3.6). We found that the target can be well stabilized using the following potential
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at pressure p = 1.12901:

u2(r) =


(
b

r12
+ c0 + c1r + c2r

2 + c3r
3 + c4r

4 + c5r
5

)
exp(−αr2)(r − rc)2, if r < rc,

0, otherwise,

(3.11)

where b = 3.0058 × 10−3, c0 = 0.69293, c1 = −0.30361, c2 = 9.3960 × 10−2,

c3 = −0.36154, c4 = 0.82231, c5 = 4.3741 × 10−2, α = 0.44095, and rc = 2.2524.

The potential and the phonon spectrum of the rectangular lattice with aspect ratio

b/a = 2 are shown in Fig. 3.7. The branch between Γ and Y points has been lifted,

suggesting that it is harder to deform the target structure. The final configuration of

a 108-particle simulated annealing run is shown in Fig. 3.8. The result is a perfect

rectangular lattice with aspect ratio b/a = 2.

Using the new optimization technique, we can also stabilize rectangular lattices

with unusually large aspect ratios. For example, at pressure p = 1.04006, the rectan-

gular lattice with aspect ratio b/a = π is the ground state of the following potential:

u2(r) =


(
b

r12
+ c0 + c1r + c2r

2 + c3r
3 + c4r

4

)
exp(−αr2)(r − rc)2, if r < rc,

0, otherwise,

(3.12)

where b = 1.1416× 10−2, c0 = −1.1117, c1 = 3.3164, c2 = −3.1330, c3 = 1.2578, c4 =

−0.16340, α = 0.0309012, and rc = 3.4103. The potential and the phonon spectrum

of the rectangular lattice with aspect ratio b/a = π are shown in Fig. 3.9. The branch

between Γ and Y points is low, because when the aspect ratio increases, it becomes

increasingly difficult to prevent the target structure from deforming. Obtaining the

target structure as a ground state using simulated annealing is also not easy. In fact,

we were only able to achieve the ground state with a system of 24 particles. The
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Figure 3.7 Top panel: Higher-order potential u2(r) versus distance for rectangular lattice
with aspect ratio b/a = 2, corresponding to Eq. (3.11). Bottom panel: The phonon
frequency squared ω2 versus wavevector of the target.

Figure 3.8 Result of a 108-particle simulated annealing for the potential given by
Eq. (3.11). This is a perfect rectangular lattice with aspect ratio b/a = 2.
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Figure 3.9 Top panel: The potential u2(r) versus distance for rectangular lattice with
aspect ratio b/a = π, corresponding to Eq. (3.12). Bottom panel: The phonon frequency
squared ω2 versus wavevector of the target.

ending configuration of an 24-particle simulated annealing run is shown in Fig. 3.10.

The result is perfect rectangular lattice with aspect ratio b/a = π.

3.3.3 Rectangular kagomé crystal

The rectangular kagomé crystal is shown in Fig. 3.11. This crystal is similar to kagomé

crystal because they are both triangle lattices with vacancies, and each particle has

4 nearest neighbors. However, unlike the kagomé crystal, where the vacancies are

arranged in a triangle lattice, in the rectangular kagomé crystal the vacancies are

arranged in a rectangular lattice. Unlike all previous targets, where symmetry guar-

antees that the total force on each particle is zero, the local stability of some particles
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Figure 3.10 Result of a 24-particle simulated annealing for the potential given by
Eq. (3.12). This is a perfect rectangular lattice with aspect ratio b/a = π.

Figure 3.11 The rectangular kagomé crystal structure. The particle indicated by an
arrow (the red particle in colored version) has 3 nearest neighbors on the left and 1
nearest neighbor on the right, thus it is very hard to be stabilized.
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in the rectangular kagomé crystal is not guaranteed by the symmetry. For example,

the particle indicated by an arrow in Fig. 3.11 has 3 nearest neighbors on the left and

1 nearest neighbor on the right, and thus it is not necessarily in force equilibrium.

Accordingly, the rectangular kagomé crystal is a very challenging target structure.

In fact, we were unable to stabilize this structure using the previous potential form,

which produces smooth decaying functions. By exploring different potential forms,

we found that the rectangular kagomé crystal is the ground state of the following

potential at pressure p = 3.97107:

u2(r) =



(0.012352r + 0.27370) exp(−0.086364r2)(r − 3.050295)2

+
3.8032× 10−4

r12
− 1.0430× 10−2

r6

−0.092965 exp[−(
r − 0.99953

0.024893
)2] + 1.2956× 10−5, if r < 3.050295,

0, otherwise.

(3.13)

The potential and the phonon spectrum of the rectangular kagomé crystal are shown

in Fig. 3.12. The potential contains a small Gaussian well, which is very helpful in sta-

bilizing the particles with asymmetrical environments and forcing them to stay in the

correct position. However, this narrow well in the potential greatly increases the fre-

quency of some phonon modes, while it is not helpful for other phonon modes. Thus in

the phonon spectrum, some branches are negligibly low compared to other branches.

Using this potential, we were able to get rectangular kagomé crystal with simulated

annealing, as shown in Fig. 3.13. The presence of a small Gaussian well indicates that

this isotropic pair potential is experimentally unattainable. Consequently it would

be scientifically useful to determine if 3-body interaction would enhance stability.
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Figure 3.12 Top panel: The rectangular kagomé potential u2(r) versus distance
corresponding to Eq. (3.13). Bottom panel: The phonon frequency squared ω2 versus
wavevector of the rectangular kagomé crystal.

Figure 3.13 Result of a 24-particle simulated annealing for the potential given by
Eq. (3.13). This is a perfect rectangular kagomé crystal.
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Figure 3.14 The conventional unit cell of CaF2 crystal. Blue (dark gray) spheres are
Ca2+ ions, yellow (light gray) spheres are F− ions. Particle radii is drawn proportionally
to their crystal ionic radii [268] r(Ca2+)=126pm, r(F−)=117pm.

3.3.4 CaF2 crystal inhabited by a single particle species

In the CaF2 crystal, Ca2+ ions are located in a face-centered cubic lattice, F− ions

fills in all the tetrahedral voids. A conventional unit cell of the CaF2 crystal is shown

in Fig. 3.14. Unlike previous target structures, the CaF2 crystal apparently contains

2 kinds of particles: Each Ca2+ ion has 8 nearest neighbors while each F− ion has

4 nearest neighbors. However, we found that this structure can counterintuitively

be the ground state of a single-component system with the following potential at

pressure p = 6.19610:

u2(r) =


(
b

r12
+ c0 + c1r + c2r

2 + c3r
3 + c4r

4

)
exp(−αr2)(r − rc)2, if r < rc,

0, otherwise,

(3.14)

where b = 2.9340× 10−3, c0 = 0.83963, c1 = 0.36976, c2 = −0.13150, c3 = −2.1869×

10−3, c4 = 1.5010× 10−3, α = 0.18682, and rc = 2.0564.
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Figure 3.15 Top panel: The CaF2 potential u2(r) versus distance corresponding to
Eq. (3.14). Bottom panel: The phonon frequency squared ω2 versus wavevector of the
CaF2 crystal inhabited by a single particle species.

The potential and the phonon spectrum of the target crystal are shown in Fig. 3.15.

When we do simulated annealing using this potential, we rarely get the target struc-

ture when the system contains 3 or 6 particles. We were not able to achieve the

ground state with larger systems. However, since we have tried simulated annealing

using 1 to 18 particles and have never found any competitor structures with lower

enthalpy, we still believe the target structure is the ground state of this potential.

To further test the validity of this potential, we have performed a molecular dy-

namics (MD) based simulated annealing running on GPU [1, 10] of 12000 particles

in a fixed cubic box. The side length of the box is 10 times the side length of a CaF2

conventional unit cell. Imitating the work by Rechtsman et al. [243], we fix 1200

particles into a layer of CaF2 conventional unit cells, and let the rest 10800 particles
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Figure 3.16 Result of a 12000-particle MD based simulated annealing for the potential
given by Eq. (3.14). Yellow (light gray) particles are fixed into the CaF2 structure during
the simulation. Green (dark gray) particles self-assemble into the same structure.

move starting from a random sequential addition configuration with collision radius

r = 0.7. Upon slow cooling, we find that the CaF2 epitaxially grow from the fixed

layer. The ending configuration is given in Fig. 3.16.

3.4 Conclusions and Discussion

To summarize, we have improved upon previous inverse statistical mechanical opti-

mization techniques. By finding the inherent structures of each competitor structure,

we are able to define a new objective function for optimization, thus overcoming

difficulties involved in previous energy difference optimizations or pressure range op-

timizations. With this optimization technique, we have designed isotropic pair po-

tentials so that the kagomé crystal, rectangular lattices with aspect ratio 2 and π,

the rectangular kagomé crystal, and the structure of the CaF2 crystal inhabited by a

single particle species become the unique ground states.
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By finding potentials that can stabilize these target structures as unique ground

states, we have demonstrated the robustness of our method. Our potential which

stabilizes the kagomé crystal showcases our improvement over previous inverse work

[80] by being comparably simple to a potential found using the forward approach

[25]. Moreover, by being able to design isotropic pair potentials for the rectangular

kagomé crystal and CaF2 crystal inhabited by a single particle species, we have also

demonstrated that the new method can handle target structures that contain particles

in different or asymmetrical local environments.

The rectangular lattices are very simple examples of a much broader family of

crystal structures with lower elastic symmetry. Their low elastic symmetries make

them spatially scale differently in different directions when the pressure changes. To

our knowledge, none of the target structures in this family have been stabilized with

pressure range optimization. One structure in this family, the 3D simple hexago-

nal lattice, has been stabilized previously [241] using energy difference optimization.

However, since the result of energy difference optimization is sensitive to structurally

close competitors (e.g. other rectangular lattices with slightly different aspect ratios),

one cannot precisely control the aspect ratio. In contrast, our new method allows us

to precisely specify large unusual aspect ratios (for example, π) when targeting this

family of structures.

All of our target structures are stabilized as unique ground states. In the appli-

cation of inverse statistical mechanics to spin systems [73], the possible outcomes for

a given target configuration was organized into the following three solution classes:

unique (nondegenerate) ground state (Class I), degenerate ground states with the

same two-point correlation functions (Class II), and solutions not contained in the

previous two classes (Class III). All of the target structures considered in this chap-

ter fall within Class I. A simple thought experiment yields an example of Class III

solutions. Since the face-centered cubic (FCC) and hexagonal close-packed (HCP)

54



crystals have different coordination structures, they cannot fall within Class II. If we

limit the range of the pair potential to be between the nearest and next nearest neigh-

bors, we will not be able to distinguish these target pairs from one another and thus

they cannot belong to Class I. Therefore they will fall within Class III. It would be

interesting to see if one can stabilize any Class II solutions for many particle system.

If a target crystal structure falls within Class I, then what are necessary functional

characteristics of the potential? For example, can we stabilize a particular target

with monotonic pair potential? What is the minimum range (cut-off) of the pair

potential? While rigorous answers to these questions are beyond the scope of the

present chapter, we can offer some general principles that may provide guidance

in determining whether certain target structures can be achieved as ground states

by a particular class of radial pair potentials. Let us consider the first question.

Our experience is that, there are target structures where the symmetry does not

guarantee that the total force on each particle is zero (for example, rectangular kagomé

crystal). Target structures of this kind cannot be stabilized with monotonic radial pair

potentials. Other target structures can be stabilized with either monotonic potentials

or potentials with wells. For example, the diamond crystal has been stabilized with

both a monotonic potential [193] and a potential with wells [243].

Concerning the second question, the minimum range of the pair potential varies

for different targets, but is usually comparable to the longest diagonal length of the

fundamental cell ldia of the target crystal. It seems that in order for the particles

to self-assemble into the target crystal, the pair potential only needs to encode co-

ordination information within a range comparable in size to the fundamental cell

(since the crystal is the replication of the fundamental cell under periodic boundary

conditions). For certain relatively symmetric target structures, the fundamental cell

consists of particle subsets that differ only by translations, rotations, and inversions.

Thus, the pair potentials for these targets may only require a cut-off distance rc that
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is shorter than the longest diagonal of the fundamental cell. Examples include our

kagomé and CaF2 potentials, a previously designed body-centered-cubic potential

[241], and a kagomé potential found by forward approach [25]. For certain relatively

challenging target such as the rectangular kagomé crystal (it is challenging because

of the reasons explained in Sec. 3.3.3), the range of the potential can be somewhat

longer than the longest diagonal of the fundamental cell. In fact, the length and sym-

metry of the fundamental cell is the most important factor determining the required

range of the potential. This is demonstrated by the CaF2 crystal inhabited by a

single particle species, which is symmetric but challenging (because it contains parti-

cles in different local environments). The optimized potential that we have obtained

here contains a relatively high-order polynomial, but its range is surprisingly short.

Table 3.1 summarizes the minimal cut-off distance rc that we found for the targets

considered in this chapter. To further support the notion that the minimal potential

cut-off distance rc need only be comparable in size to the longest diagonal of the fun-

damental cell, we have also generated short-ranged isotropic pair potentials using our

algorithm for several other simpler targets. Except for the FCC crystal, all of them

have been stabilized before, including the 2D honeycomb crystal [239, 240, 191, 192],

2D square lattice [240, 191, 192] 3D body-centered cubic (BCC) lattice [241], 3D

simple cubic lattice [241], 3D diamond crystal [243, 193], and 3D FCC lattice. We

see in Table 3.2 that the potential cut-off distances are indeed comparable in size to

the longest diagonal of the fundamental cell, which is consistent with our results for

more complicated targets listed in Table 3.1.

What are the limitations of isotropic pair potentials in achieving targeted ground

states? In other words, given a target structure, how can we tell whether an isotropic

pair potential can stabilize it or not? We are aware of a theorem that partially answers

this question: Since the enthalpy per particle is determined by the coordination

numbers Zj and specific volume v in Eq. (3.5), a target structure cannot be stabilized
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Table 3.1 Isotropic pair potential cut-off rc, longest diagonal length of the fundamental
cell ldia, and their ratio of targets reported in Sec. 3.3. The nearest neighbor distance is 1.

Target Structure rc ldia rc/ldia
Kagomé 2.04 2

√
3 0.59

Rectangular lattice b/a = 2 2.25
√

5 1.00

Rectangular lattice b/a = π 3.41
√
π2 + 1 1.03

CaF2 single species 2.06 4 0.52

Rectangular kagomé 3.05
√

7 1.15

Table 3.2 Application of our current optimization scheme to stabilize simpler targets
with potentials having a minimal cut-off distance rc for the family of potential functions
indicated in Eq. (3.6). Except for the FCC lattice, all of the targets have been stabilized
before [239, 240, 191, 192, 241, 243, 193]. Isotropic pair potential cut-off rc, longest
diagonal length of the fundamental cell ldia, and their ratio are listed. The nearest
neighbor distance is 1.

Target Structure rc ldia rc/ldia
Honeycomb 2.53 3 0.84

Square 1.87
√

2 1.32

BCC 1.24
√

11/3 0.65

Simple Cubic 1.54
√

3 0.89
Diamond 2.46 4 0.62

FCC 1.77
√

6 0.72

by isotropic pair potentials as unique ground state if its coordination numbers and

specific volume is identical to that of another structure, or is a weighted average of

other structures [57]. One example of this theorem is that chiral targets with only one

type of handedness cannot be stabilized by isotropic pair interactions [302]. Besides

the target structures that are disproved by this theorem, are all other structures

realizable by isotropic pair interactions? Seeking a full answer to this question will

be a direction of future research.

The entire set of possible target structures extends far beyond what has been

examined. Specifically, this includes challenging structures such as “tunneled” crys-

tals [320] characterized by a high concentration of chains of vacancies as well as the

graphite crystal, to mention a few examples. A direction for future research is to

either stabilize them with simplest possible radial potentials or to prove that they
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cannot be stabilized with such interactions, which may require us to improve the

current algorithm. We are also interested in expanding our method to stabilize mul-

ticomponent systems and systems containing particles with anisotropic interactions

[302].

3.5 Appendix A: Crystal Structure and Theta Se-

ries of Target Structures

In this appendix, we provide the vectors that specify the target crystal structure as

well as the corresponding partial theta series defined generally by Eq. (3.4).

3.5.1 Kagomé crystal

The kagomé crystal is a 2D crystal whose fundamental lattice vectors can be specified

as follows:

a1 = 2i and a2 = i +
√

3j. (3.15)

Its reciprocal lattice vectors are

b1 = πi− π√
3
j and b2 =

2π√
3
j. (3.16)

Each fundamental cell contains 3 particles, located at the positions

r1 =
1

2
a1 = i,

r2 =
1

2
a2 =

1

2
i +

√
3

2
j, and

r3 =
1

2
a1 +

1

2
a2 =

3

2
i +

√
3

2
j.

(3.17)
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The first few terms of its theta series are

θ(q) = 1 + 4q + 4q3 + 6q4 + 8q7 + 4q9 + · · · . (3.18)

3.5.2 Rectangular lattice with aspect ratio t

Rectangular lattices are 2D crystals whose fundamental lattice vectors can be specified

as follows:

a1 = i and a2 = tj. (3.19)

Its reciprocal lattice vectors are

b1 = 2πi and b2 =
2π

t
j. (3.20)

Each fundamental cell contains 1 particle, located at the positions

r1 = 0 (3.21)

The first few terms of its theta series are

θ(q) = 1 + 2q + 2q4 + 2q9 + · · · + 2qt
2

+ 4qt
2+1 + 4qt

2+4 + · · · . (3.22)

3.5.3 Rectangular kagomé crystal

The rectangular kagomé crystal is a 2D crystal whose fundamental lattice vectors can

be specified as follows:

a1 = 2i and a2 =
√

3j. (3.23)
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Its reciprocal lattice vectors are

b1 = πi and b2 =
2π√

3
j. (3.24)

Each fundamental cell contains 3 particles, located at the positions

r1 =
1

2
a1 = i,

r2 =
1

4
a1 +

1

2
a2 =

1

2
i +

√
3

2
j, and

r3 =
3

4
a1 +

1

2
a2 =

3

2
i +

√
3

2
j.

(3.25)

The first few terms of its theta series are

θ(q) = 1 + 4q +
14

3
q3 +

14

3
q4 +

28

3
q7 + 4q9 + · · · . (3.26)

3.5.4 CaF2 crystal inhabited by a single particle species

The CaF2 crystal inhabited by a single particle species is a 3D crystal whose funda-

mental lattice vectors can be specified as follows:

a1 =
2√
3

(i + j), a2 =
2√
3

(i + k), and a3 =
2√
3

(j + k). (3.27)

Its reciprocal lattice vectors are

b1 =

√
3

4
π(i + j− k), b2 =

√
3

4
π(−i + j + k), and b3 =

√
3

4
π(i− j + k). (3.28)
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Each fundamental cell contains 3 particles, located at the positions

r1 = 0,

r2 =
a1 + a2 + a3

4
=

i + j + k√
3

, and

r3 =
3(a1 + a2 + a3)

4
=
√

3(i + j + k).

(3.29)

The first several terms of its theta series are

θ(q) = 1+
16

3
q+4q4/3+12q8/3+16q11/3+

16

3
q4+6q16/3+16q19/3+16q20/3+24q8+

64

3
q9+· · · .

(3.30)

3.6 Appendix B: Definition of High-Symmetry

Points in the Brillouin Zone

When ascertaining the phonon spectrum of a crystal, we calculate the phonon fre-

quency squared ω2 along certain trajectories between points of high symmetry in

the Brillouin zone. For different crystals, the points of high symmetry are described

below.

3.6.1 2D kagomé crystal

The points of high symmetry of 2D kagomé crystal are

K =
1

2
b1, Γ = 0, and M =

1

3
(b1 + b2), (3.31)

where b1 and b2 are reciprocal lattice vectors.
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3.6.2 2D rectangular lattices and rectangular kagomé crystal

The points of high symmetry of 2D rectangular lattices and rectangular kagomé crys-

tal are

Γ = 0, X =
1

2
b1, S =

1

2
(b1 + b2), and Y =

1

2
b2, (3.32)

where b1 and b2 are reciprocal lattice vectors.

3.6.3 CaF2 crystal inhabited by a single particle species

The points of high symmetry of CaF2 crystal inhabited by a single particle species

are

Γ = 0,

X =
1

2
(b1 + b3),

W =
1

4
(2b1 + b2 + 3b3),

K =
3

8
(b1 + b2 + 2b3),

L =
1

2
(b1 + b2 + b3), and

U =
1

8
(5b1 + 4b2 + 5b3),

(3.33)

where b1, b2, and b3 are reciprocal lattice vectors.

3.7 Appendix C: Definition of the “Difference”

Between Two Coordination Structures

The coordination structure of a crystal is characterized by coordination numbers

Zj for different distances rj, as defined in Sec. 3.2. As shown in Appendix A, the

coordination numbers and distances of a crystal structure can be summarized into

an infinite table, which consists of infinite number of “rows”. Each row contains a

distance r and the average number of neighbors Z at that distance. We have defined a
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“difference” between two coordination structures. To calculate it, we use the following

steps:

1. Rows of the two coordination structures, {r, Z}, are combined into pairs by the

following rules:

(a) The first unpaired rows of the two coordination structures are paired if

their coordination numbers are equal.

(b) If their coordination numbers are not equal, let the row with larger coor-

dination number be {rlarge, Zlarge} and the row with smaller coordination

number be {rsmall, Zsmall}. The row with the larger coordination number,

{rlarge, Zlarge}, is split into two rows: A row {rlarge, Zsmall} and another

row {rlarge, Zlarge−Zsmall}. The former row is paired with {rsmall, Zsmall}.

The latter row will be paired later.

(c) Return to step (a) unless enough pairs are obtained.

For example, to combine the coordination structure of rectangular kagomé crys-

tal and that of kagomé crystal into pairs of rows, we do the following. To illus-

trate the process, let us denote a row from the rectangular kagomé crystal as

{r, Z}r, and a row from the kagomé crystal as {r, Z}k

(a) The first row of the coordination structure of rectangular kagomé crystal,

{1, 4}r, is paired with the first row of the coordination structure of kagomé

crystal, {1, 4}k.

(b) The second row of the coordination structure of rectangular kagomé crys-

tal, {
√

3, 14/3}r, is split into two rows: a row {
√

3, 4}r will be paired

with the second row from the kagomé crystal ({
√

3, 4}k), the other row

{
√

3, 2/3}r will be paired later.
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(c) The next row from the kagomé crystal, {2, 6}k, is split into two rows: a

row {2, 2/3}k to be paired with the remaining row from the rectangular

kagomé crystal, {
√

3, 2/3}r, and another row {2, 16/3}k to be paired later.

(d) The remaining row from the kagomé crystal, {2, 16/3}k, is split into two

rows: {2, 14/3}k and {2, 2/3}k. The former is paired with the third row

from the rectangular kagomé crystal, {2, 14/3}r. The latter remains to be

paired.

(e) continue this process until enough pairs are obtained. The first several

obtained pairs are:

{1, 4}r {1, 4}k
{
√

3, 4}r {
√

3, 4}k
{
√

3, 2/3}r {2, 2/3}k
{2, 14/3}r {2, 14/3}k
{
√

7, 2/3}r {2, 2/3}k
{
√

7, 8}r {
√

7, 8}k
{
√

7, 2/3}r {3, 2/3}k
......

2. The distance between two coordination structures is given by:

D =
∑

all pairs {ra, Za} and {rb, Zb}

Za(ra − rb)2 exp(−ra) (3.34)

In our implementation, the summation is truncated at r = 5.

This definition of distance D has the following properties:

1. D ≥ 0. D = 0 if and only if the two coordination structures are identical.
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2. A infinitesimally distorted structure of an original structure has a coordination

structure which has an infinitesimal distance to the coordination structure of

the original structure.

3.8 Appendix D: Elastic Properties of Target

Structures

We have also calculated the elastic constants of our target structures. To illustrate

the concept of elastic constants, consider a small, affine deformation of the target

structure:

x = (I + ε)x0, (3.35)

where x0 is the original location, x is the new location, I is a unit second-order tensor,

and ε is a small second-order tensor, called “strain tensor”. The elastic constants Cijkl

are defined as:

Cijkl =
∂2H

∂εij∂εkl
. (3.36)

The elastic constants of our target structures are presented below.

3.8.1 2D isotropic target

The kagomé crystal is a 2D isotropic crystal. Its elastic constants are determined by

two independent constants, e.g., its Young’s modulus E and Poisson’s ratio ν:


C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 . (3.37)

With the pair potential in Eq. (3.9), under pressure p = 2.83709, the kagomé

crystal has elastic constants E = 23.61 and ν = 0.4594.
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3.8.2 2D orthotropic targets

The rectangular lattices and the rectangular kagomé crystal are 2D orthotropic crys-

tals. Their elastic constants are determined by four independent constants, Ex, Ey,

G, and νxy:


C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212

 =
1

1− νxyνyx


Ex νyxEx 0

νxyEy Ey 0

0 0 G(1− νxyνyx)

 , (3.38)

where νyx = νxyEy/Ex.

With the pair potential in Eq. (3.10), under pressure p = 1.81198, the rectangular

lattice with aspect ratio 2 has elastic constants Ex = 27.31, Ey = 7.17, G = 0.01, and

νxy = 0.4751.

With the pair potential in Eq. (3.11), under pressure p = 1.12901, the rectangular

lattice with aspect ratio 2 has elastic constants Ex = 7.19, Ey = 17.60, G = 2.33, and

νxy = 0.2277.

With the pair potential in Eq. (3.12), under pressure p = 1.04006, the rectangular

lattice with aspect ratio π has elastic constants Ex = 3.98, Ey = 16.91, G = 0.27,

and νxy = 0.1296.

With the pair potential in Eq. (3.13), under pressure p = 3.97107, the rectangular

kagomé crystal has elastic constants Ex = 177.9, Ey = 177.5, G = 65.3, and νxy =

0.3596.
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3.8.3 3D isotropic target

The CaF2 crystal inhabited by a single particle species is a 3D cubic crystal. Its

elastic constants are determined by three independent constants, E, ν, and A:



C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212


=

E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 A(1− 2ν)/2 0 0

0 0 0 0 A(1− 2ν)/2 0

0 0 0 0 0 A(1− 2ν)/2


.

(3.39)

With the pair potential in Eq. (3.14), under pressure p = 6.19610, the CaF2 crystal

inhabited by a single particle species has elastic constants E = 2.1835, ν = 0.4753,

and A = 2.51.

3.9 Appendix E: Stabilizing a Rectangular Lattice

Over a Pressure Range

The rectangular lattices do not naturally have a stable pressure range because of

their anisotropic elastic property. When the pressure changes, the two sides of the
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rectangular unit cell may change disproportionally, thus the aspect ratio may also

change and the structure changes according to our definition. However, we can make

“corrections” to the potential to make sure that the aspect ratio does not change

over a pressure range. Imagine a rectangular lattice with one side length a and the

other side length b = at, thus the aspect ratio is t. In order for the rectangular lattice

with aspect ratio t to be stable in a pressure range, when pressure p changes in the

range, a or b can change while the aspect ratio t must not change. The enthalpy of

the target is given by:

H =
∑

(i,j)6=(0,0)

u2

(√
i2 + (jt)2a

)
+ pa2t. (3.40)

When the structure is stable, the partial derivatives of enthalpy are zero. Thus:

∂H

∂a
=

∑
(i,j)6=(0,0)

u′2

(√
i2 + (jt)2a

)√
i2 + (jt)2 + 2pat = 0, (3.41)

and:

∂H

∂t
=

∑
(i,j)6=(0,0)

u′2

(√
i2 + (jt)2a

) j2t√
i2 + (jt)2

+ pa = 0. (3.42)

Eliminate variable p from Eq. (3.41) and Eq. (3.42), we get:

∑
(i,j)6=(0,0)

u′2

(√
i2 + (jt)2a

) i2 − (jt)2√
i2 + (jt)2

= 0. (3.43)

Integrating Eq. (3.43) over a will simplify it and give:

∑
(i,j)6=(0,0)

u2

(√
i2 + (jt)2a

) i2 − (jt)2

i2 + (jt)2
= C, (3.44)

where C is an arbitrary constant. Eq. (3.44) is a necessary condition for stability.

Generally, a potential function does not satisfy this condition over a range of a.
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However, for any potential function u0
2(r), let:

u1
2(r) = −1

2

∑
(i,j)6=(0,0)

u0
2

(
r
√
i2 + (jt)2

) i2 − (jt)2

i2 + (jt)2
+ C (0.9 < r < 1.1), (3.45)

Then, the potential u2(r) = u0
2(r)+u1

2(r) satisfies Eq. (3.44) over the range 0.9 < a <

1.1. Constant C in Eq. (3.45) is chosen so that u1
2(1) = 0. The “correction” u1

2(r) is

usually much smaller than u0
2(r).

We have applied this correction to our higher-order potential for the rectangular

lattice with aspect ratio b/a = 2 (Eq. (3.11)). After that, we do simulated annealing

using the corrected potential at different pressures. We found that the rectangular

lattice with aspect ratio b/a = 2 is indeed the ground state of the corrected potential

over the pressure range 0.98 < p < 1.87.
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Chapter 4

Ground States of Stealthy

Hyperuniform Potentials: I.

Entropically Favored

Configurations

4.1 Introduction

There has been long-standing interest in the phase behavior of many-particle sys-

tems in d-dimensional Euclidean spaces Rd in which the particles interact with soft,

bounded pair potentials [281, 185, 121, 182, 181, 209, 208, 170, 25, 359, 44, 325].

Considerable attention has been devoted to the determination of the classical ground

states (global energy minima) of such interactions [121, 209, 44, 325]. While typical

interactions lead to unique classical ground states, certain special pair potentials are

characterized by degenerate classical ground states—a phenomenon that has attracted

recent attention [325, 83, 328, 286, 287, 329, 26, 27, 29, 350, 199].
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One family of such pair interactions are the “stealthy potentials” because their

ground states correspond to configurations that completely suppress single scatter-

ing for a range of wave numbers. The Fourier transforms of these potentials are

bounded and non-negative and have compact support [325], and hence they have

corresponding direct-space potentials that are bounded and long ranged. Because of

their special construction in Fourier space, finding the ground states of stealthy po-

tentials is equivalent to constraining the structure factor to be zero for wave vectors

k contained within the support of the Fourier transformed potential [325], as will be

summarized in Sec. 4.2. In the case when the constrained wave vectors lie in the

radial interval 0 < |k| ≤ K, the stealthy ground states fall within the class of hyper-

uniform states of matter [317] and can be tuned to have varying degrees of disorder.

Disordered hyperuniform systems in general are of current interest because they are

characterized by an anomalously large suppression of long-wavelength density fluc-

tuations and can exist as equilibrium or nonequilibrium states, either classically or

quantum mechanically [74, 347, 149, 50, 33, 173, 77, 177, 142, 66, 68, 346, 145, 315].

Moreover, because disordered hyperuniform states of matter have characteristics that

lie between a crystal and a liquid [325], they are endowed with novel physical prop-

erties [26, 27, 95, 94, 189, 188, 123, 174, 131, 341, 37].

When a dimensionless parameter χ, inversely proportional to the number density

ρ and proportional to Kd (size of the constrained region) is sufficiently small, the hy-

peruniform ground states are infinitely degenerate and counterintuitively disordered

(i.e., isotropic without any Bragg peaks) [325]. However, when χ is large enough (ρ is

sufficiently small), there is a phase transition to a regime in which the ground states

are crystalline or highly ordered [83, 328, 286, 27]. For each spatial dimension d,

there is a special value of χ, χ∗max, at which the ground state is unique 1. The unique

ground state is the dual (reciprocal lattice) of the densest Bravais lattice packing in

1The ground state is unique if all ground state configurations can be transformed to each other
using translation, rotation, inversion, particle permutation, or a combination of these operations.
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each dimension [325]. In two and higher dimensions, as soon as χ drops below χ∗max,

the set of the ground states become uncountably infinite and gradually includes pro-

gressively less ordered structures [325]. Similarly to stealthy potentials, a family of

two-, three-, and four-body potentials that lead to disordered ground states has also

been defined in Fourier space and studied [329, 26, 350].

Due to the complexity of the problem, almost all previous investigations of the

ground states employed computer simulations. Such numerical studies were carried

out in one, two and three dimensions [83, 328, 329, 26, 27]. The ground states were

sampled by minimization of potential energy at fixed densities starting from random

initial conditions in a d-dimensional cubic simulation box under periodic boundary

conditions. A few optimization techniques were employed to find the global energy

minima with very high precision [328, 329].

Generally, a numerically obtained ground-state configuration depends on the num-

ber of particles N within the fundamental cell, initial particle configuration, shape

of the fundamental cell, and particular optimization technique used [325]. Adding

to the complexity of the problem is that the disordered ground states are highly

degenerate with a configurational dimensionality that depends on the density, and

there are an infinite number of distinct ways to sample this complex ground-state

manifold, each with its own probability measure. These nontrivial aspects had made

the task of formulating a statistical-mechanical theory of stealthy degenerate ground

states a daunting one. Recently, we have formulated such an ensemble theory that

yields analytical predictions of the structural characteristics and other properties of

stealthy degenerate ground states [325]. A number of exact results for the thermo-

dynamic and structural properties of these ground states were derived that applied

to general ensembles. We then specialized our results to the canonical ensemble (in

the zero-temperature limit) by exploiting an ansatz that stealthy disordered ground

states (for sufficiently small χ) behave remarkably like “pseudo” disordered equilib-
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rium hard-sphere systems in Fourier space. Our theoretical predictions for the pair

correlation function g2(r) and structure factor S(k) of these entropically favored dis-

ordered ground states were shown to be in agreement with corresponding computer

simulations across the first three space dimensions. We also made predictions for the

corresponding excited states for sufficiently small temperatures that were in agree-

ment with simulations.

Because the focus of that previous investigation was the development of ensemble

theories, few simulation details were presented about how the canonical ensemble was

sampled to produce stealthy disordered ground states. One aim of this chapter is to

provide a comprehensive description of the numerical procedure that we used to pro-

duce the simulation results in Ref. [325]. Moreover, here we also extend those results

by applying the simulation procedure to study numerically the ground states in the

canonical ensemble for all allowable values of χ and thus investigate the entire phase

diagram for the entropically favored states across the first three space dimensions. In

the next chapter, we will study the exotic aperiodic “wavy phases” identified in pre-

vious numerical work [328] (or “stacked-slider phases,” as called in the next chapter,

a special part of the ground-state manifold. An analytical model will enable an even

more detailed study of this phase.

As a justification of sampling the canonical ensemble instead of minimizing energy,

we also demonstrate here how a variety of different optimization techniques affect the

ground states that are sampled, which was not previously investigated [328, 329, 26].

This investigation reveals that the pair statistics of the ground-state configurations

indeed generally depend on the algorithm. Moreover, we show here that the energy

minimization results depend on the initial conditions as well. We also provide the

reason why the simulations in Ref. [325] and this chapter employ noncubic, possibly

deforming, simulation boxes for d ≥ 2. Because almost all previous numerical simu-

lations were performed using some specific form of stealthy potentials, we show here
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that different forms of stealthy potentials produce identical pair correlation functions,

suggesting that the specific choice of the potential form does not affect the ensemble

being sampled.

Among our major findings, we show that energy minimizations starting from ran-

dom initial conditions may lead to clustering of particles, the degree of which depends

on the algorithm for a finite range of χ below 1/2 across the first three space dimen-

sions. When minimizing the energy starting from configurations equilibrated at some

temperature TE, the ground-state configurations discovered depend on TE. However,

the algorithm dependence diminishes in the TE → 0 limit. We also demonstrate

that the pair statistics [g2(r) and S(k)] in this limit do not depend on the particular

form of the stealthy potential. The similarity between the structure factor in this

limit and the pair correlation function of an equilibrium hard-sphere system in direct

space [325] is valid for χ up to some dimension-dependent values between 0.25 and

0.33 in the first three space dimensions. Beyond this range of χ, the hard-sphere

analogy in Fourier space undergoes modification. As χ increases further (to the value

of about 0.4 in two dimensions, for example), the first peak in the structure fac-

tor diminishes while second peak in the structure factor grows and engulfs the first

peak. Our simulated pair statistics obey certain exact integral conditions in Ref. [325]

with very high accuracy, indicating the high fidelity of the numerical results. In the

infinite-system-size limit, at χ = 0.5, the entropically favored ground states undergo

a transition from disordered states to crystalline states. Depending on the dimension,

this phase transition can occur when aperiodic structures still are part of the ground

state manifold, demonstrating that crystalline (ordered) structures can have a higher

entropy than disordered structures.

The rest of the chapter is organized as follows: In Sec. 4.2, we briefly summarize

the numerical collective-coordinate procedure and other details of the simulation that

we employ in this chapter with justifications. In Sec. 4.3, we study the dependence
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of the results on a variety of energy minimization algorithms, initial conditions, and

the forms of the stealthy potentials. In Sec. 4.4, we provide pair correlation function,

structure factor, Voronoi cell-volume distribution, and configuration snapshots of the

stealthy hyperuniform ground states obtained from the canonical ensemble in the

zero-temperature limit. We provide concluding remarks and discussion in Sec. 4.5,

including suggestions for sampling the canonical ensemble in the zero-temperature

limit of other potentials with degenerate disordered ground states.

4.2 Mathematical Relations and Simulation Pro-

cedure

As detailed in Sec. II of Ref. [325], we simulate point processes in periodic fundamental

cells (i.e. simulation boxes) with a pairwise additive potential v(r) such that its

Fourier transform exists. Under nearest image convention, the total potential energy

can be calculated by summing over all pairs of particles:

Φ(rN) =
∑
i<j

v(rij), (4.1)

where N is the number of particles, rN ≡ r1, r2, ..., rN is the locations of the particles

in d-dimensional Euclidean space, and rij = ri − rj. Instead of summing over all

pairwise contributions in the real space, the potential energy can also be represented

in Fourier space:

Φ(rN) =
1

2vF

[∑
k

ṽ(k)|ñ(k)|2 −N
∑
k

ṽ(k)

]
, (4.2)

where vF is the volume of the fundamental cell, ṽ(k) =
∫
vF
v(r) exp(−ik · r)dr is the

Fourier transform of the pair potential, ñ(k) =
∑N

j=1 exp(−ik · rj) is the complex
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collective density variable [with ñ(k = 0) = N ], and both summations are over all

reciprocal lattice vector k’s appropriate to the fundamental cell. For every k 6= 0,

ñ(k) is related to the structure factor, S(k), via

S(k) =
|ñ(k)|2
N

. (4.3)

Given a ṽ(k), the corresponding real-space pair potential is

v(r) =
1

vF

∑
k

ṽ(k) exp(ik · r). (4.4)

In a finite-sized system, the real-space pair potential has the same periodicity as

the fundamental cell. Therefore, in the infinite-volume limit, the cell periodicity

disappears.

A family of “stealthy” potentials, which completely suppress single scattering

for all wave vectors within a specific cutoff in their ground states, are defined as

[83, 328, 329, 26, 27, 29]:

ṽ(k) =


V (k), if |k| ≤ K,

0, otherwise,

(4.5)

where V (k) is a positive isotropic function and K is a constant. In this chapter we

always take K = 1, which sets the length scale. We will also use V (k) = 1 unless

otherwise specified. In the infinite-system-size limit, the isotropic ṽ(k) correspond

to an isotropic real-space pair potential v(r) [325]. However, for finite systems, the

corresponding v(r) is anisotropic. In Appendix A, we compare the infinite-system-size

limit v(r) with the finite-size v(r)’s in different-shaped simulation boxes and select

the simulation box shape to be used in this chapter based on which v(r) is closest to

the infinite-size-limit v(r).
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From Eqs. (4.2) and (4.5), one can see that a configuration is a stealthy ground

state if ñ(k) = 0 for all k points such that 0 < |k| ≤ K. Therefore, finding a ground

state of a stealthy potential is equivalent to constraining ñ(k) = 0 for all of those k

points. However, in a simulation, one does not need to check all of the constraints.

As detailed in Ref. [325], if there are (2M+1) k points within the constrained radius,

only M of them are independent and needed to be constrained to zero. Equation (4.2)

can be simplified as 2:

Φ(rN) =
1

vF

∑
k

ṽ(k)|ñ(k)|2 + Φ0, (4.6)

where the sum is over all independent constraints, and

Φ0 = [N(N − 1)− 2N
∑
k

ṽ(k)]/(2vF ) (4.7)

is a constant independent of the particle positions rN . We now introduce a parameter

χ =
M

d(N − 1)
, (4.8)

which determines the degree to which the ground states are constrained, and therefore

the degeneracy and disorder of the ground states [328]. Note that the constraints

depend on K and the fundamental cell but are independent of the specific shape of

ṽ(k) as long as ṽ(k) > 0 for all 0 < |k| ≤ K. Therefore, changing ṽ(k) does not

change the set of the ground states. However, there is no proof that changing ṽ(k)

does not change the relative sampling weights of the ground states.

In this chapter we study various systems with different χ’s and N ’s. One numerical

complication is that these numbers cannot be chosen arbitrarily, since M = χd(N−1)

must be an integer consistent with the specific shape of the simulation box. (For

2Compared to Eq. (4.2), a factor of 2 in the denominator of Eq. (4.6) is removed because each
independent constraint corresponds to two constrained k points.

77



example, a list of the allowed M values for a two-dimensional square box is given in

Table II of Ref. [328].) This constraint is especially hard to meet when simulating

multiple systems at the same χ value across dimensions. In fact, both χ and N in

Table 4.1 (see Appendix C) had to be chosen carefully to meet this constraint.

Taking the gradient of Eq. (4.6) yields the forces on particles:

Fj = −5jΦ(rN) =
2

vF

∑
k

k ṽ(k) Im[ñ(k) exp(ik · rj)], (4.9)

where the sum is also over all independent constraints. This equation enables us to

perform both energy minimizations and molecular dynamics (MD) simulations. In

an energy minimization, a derivative-based algorithm is used. The first term on the

right side of Eq. (4.6) is provided to the algorithm as the objective function and the

negative of the force in Eq. (4.9) is provided as the derivative. In order to minimize

energy, we have tried different algorithms including the MINOP algorithm [69], the

steepest descent algorithm allowing large steps [4], the low-storage BFGS (L-BFGS)

algorithm [214, 183, 150], the Polak-Ribiere conjugate gradient algorithm [118, 4],

and our “local gradient descent” algorithm described in Appendix B. When χ < 0.5,

the objective function always ends up being very close to zero (the minimum). The

maximum ending objective function for different algorithms varies from as high as

10−7 for a conjugate gradient algorithm to 10−17 for the local gradient descent and

steepest descent algorithms to 10−20 for the L-BFGS algorithm, and to as low as 10−25

for the MINOP algorithm. From our practical point of view, all of these algorithms

are precise enough, since an error of 10−7 or lower is indiscernible from any results

presented below. Because the L-BFGS algorithm is the fastest, we will use it unless

otherwise specified.

The energy minimizations, if started from random initial configurations, will sam-

ple an algorithm-dependent, nonequilibrium ensemble. To sample the canonical en-
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semble at a given equilibrium temperature TE we use MD simulations. One important

parameter in MD simulations is the integration time step. Since the optimal choice

of the time step depends on the temperature, and the latter varies across several

orders of magnitude in this chapter, we desire a systematic way to determine the

optimal time step. Starting from an energy minimized configuration and a very small

time step (0.01 in dimensionless units), we repeat the following steps 104 times to

equilibrate the system and find a suitable time step:

• Assign a random velocity from Boltzmann distribution at TE to each particle.

• Calculate the total (kinetic and potential) energy of the system E1.

• Evolve the system 1500 time steps using the velocity Verlet algorithm [101].

• Calculate the total energy of the system E2.

• If | ln E1

E2
| > 1 × 10−5, then the time step is too large and errors will build up

quickly. Therefore, we decrease the time step by 5%. On the other hand, if

| ln E1

E2
| < 4 × 10−6, there is still some room to increase the time step. Since

increasing the time step increases the efficiency of MD simulations, we increase

the time step by 5%.

After the system is equilibrated and the time step is chosen, we perform constant

temperature MD simulations with particle velocity resetting [9]. A randomly chosen

particle is assigned a random velocity, drawn from Maxwell-Boltzmann distribution,

every 100 steps. We take a sample configuration every 3000 time steps until we

have sampled 20 000 configurations unless otherwise specified. This amounts to an

implementation of the generation of configurations in the canonical ensemble.

The above MD procedure works well for χ < 0.5. However, two new features arise

when it is applied to χ ≥ 0.5 in all dimensions. First, the potential energy surface

develops local minima and energy barriers that can trap the system if TE is too small.
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We address this problem by using simulated annealing, employing a thermodynamic

cooling schedule [215] which starts at T = 2× 10−3 and ends at 10−6. Note that, by

adopting a cooling schedule, we concede that we may only take one sample at the end

of each MD trajectory, whereas a fixed-temperature MD trajectory produces multiple

samples.

The second new feature is that the entropically favored ground states are crys-

talline for χ ≥ 0.5. Unlike disordered structures, a crystalline structure has long-range

order and may not “fit” in simulation boxes with certain shapes. To overcome the

second problem, we simulate an isothermal-isobaric ensemble with a deformable sim-

ulation box. Every 20 MD time steps, 10 Monte Carlo trial moves to deform the

simulation box are attempted. The pressure is calculated from Eq. (41) of Ref. [325].

We employed the Wang-Landau Monte Carlo [335] to attempt to determine the

entropically favored ground states for χ > 0.5 in two and three dimensions. The

Wang-Landau Monte Carlo is used to calculate the microcanonical entropy S (Φ) as

a function of the potential energy Φ. We limit our simulations to the energy range

3 × 10−10 < Φ − Φ0 < 10−9 (in dimensionless units), where Φ0 is the ground state

energy, by rejecting any trial move that violates this energy tolerance. This energy

range is evenly divided into 1000 bins. Starting from a perfect crystal structure in a

simulation box shaped like a fundamental cell, small perturbations are introduced so

the energy is within the range. After that, 60 stages of Monte Carlo simulations are

performed, each stage containing 3 × 107 trial moves. The “modification factor” in

Ref. [335] is f = exp[5/(n+ 10)], where n is the number of stages.

4.3 Dependence on Energy Minimization Algo-

rithm, MD Temperature, and ṽ(k)

In this section, we present numerical simulation results demonstrating that:
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• Energy minimizations starting from Poisson initial configurations using different

algorithms can yield ground states with different pair correlation functions.

• Energy minimizations starting from MD snapshots at different temperatures

can yield ground states with different pair correlation functions.

• For configurations obtained by minimizing energy starting from MD snapshots

at sufficiently small temperature, pair correlation functions do not depend on

the minimization algorithm and the form of the stealthy potential.

These results motivate the reason why we ultimately study and report results in Sec.

4.4 in the canonical ensemble in the zero-temperature limit. For concreteness and

visual clarity, we present results here in two dimensions. However, we have verified

that all of the conclusions here also apply to one and three dimensions.

We performed energy minimizations starting from Poisson initial configurations

(i.e., TE →∞ state at fixed density) using each of the five numerical algorithms men-

tioned in Sec. 4.2 at χ = 0.2 and χ = 0.4. The results are shown in Figs. 4.1 and 4.2.

At χ = 0.2, the pair correlation functions produced by the MINOP algorithm and the

L-BFGS algorithm are almost identical. However, the pair correlation function pro-

duced by the conjugate gradient algorithm noticeably differs. The steepest descent

algorithm and our local gradient descent algorithm produce a significantly different

pair correlation function with a much weaker peak at r = 0. The pair correlation

functions produced by some algorithms appear to have g2(r) ∝ log(r) divergence near

the origin. Since this divergence means particles have a tendency to form clusters,

we call it a “clustering effect.” At χ = 0.4, the clustering effect disappears, but the

pair statistics produced by different algorithms still differs. The fact that different

optimization algorithms produce different pair statistics means that they sample the

ground-state manifold with different weights. In other words, different optimization

algorithms are sampling different ground-state ensembles.
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Figure 4.1 Pair correlation function as obtained from different optimization algorithms
(as described in the legend) starting from Poisson initial configurations in two dimensions
at χ = 0.2. Each curve is averaged over 20 000 configurations of 136 particles each. The
left inset zooms in near the origin, showing the differences between the five algorithms
more clearly. The right inset uses a semilogarithmic scale to show g2(r) ∝ log(r) near the
origin.
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Figure 4.2 As in Fig. 4.1, except that χ = 0.4 and each curve is averaged over 20 000
configurations of 151 particles each. The inset zooms in near the first well, showing the
differences between the five algorithms more clearly.

In order to avoid the complexity caused by the details of various optimization

algorithms, we turn our interest to the canonical ensemble in the T → 0 limit. To

sample this ensemble, we perform MD simulations at sufficiently small temperature

TE, periodically take “snapshots,” and then use a minimization algorithm to bring

each snapshot to a ground state. To determine a “sufficiently small” TE, we calculated

the pair correlation functions at various TE’s and present them in Fig. 4.3. The energy

minimization result starting from TE → ∞ initial configurations clearly display the

“clustering effect” at χ = 0.2. When TE goes to zero, the “clustering effect” also

diminishes. At χ = 0.4, particles develop hard cores [g2(0) = 0], therefore there is no

clustering even if TE is large or infinite. However, the peak height of g2(r) becomes

dependent on TE at this χ value. For both χ values, the pair correlation functions of

the two lowest TE’s are almost identical, verifying that the TE → 0 limit exists. These
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results show that TE = 2× 10−6 is sufficiently small in two dimensions. Similarly, we

have found that TE = 2 × 10−4 and TE = 1 × 10−6 are sufficiently small in one and

three dimensions, respectively. These temperatures are used in generating all of the

results presented in Sec. 4.4.1.
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Figure 4.3 Pair correlation function produced by L-BFGS algorithm starting from
snapshots of MD at different equilibration temperatures TE , (a) χ = 0.2 and (b) χ = 0.4.
Each curve is averaged over 20 000 configurations of 136 particles each or 151 particles
each.

The energy minimization result starting from Poisson initial configurations differs

for different algorithms, but the canonical ensemble in the T → 0 limit should not

depend on any particular algorithm. After finding that TE = 2× 10−6 is sufficiently

small, we confirm the disappearing of algorithmic dependence by calculating the pair

correlation function produced by different energy minimization algorithms starting

from MD snapshots at TE = 2 × 10−6. Figure 4.4 shows the results. The curves for

all algorithms almost coincide.

84



0 5 10 15 20
r

0

0.5

1

1.5

2

g
2
(r

)

MINOP
Steepest Descent
L-BFGS
Conjugate Gradient

Local Gradient Descent

Figure 4.4 Pair correlation function produced by the five different algorithms starting
from snapshots of MD at equilibration temperature TE = 2× 10−6 at χ = 0.2. Each curve
is averaged over 20 000 configurations of 136 particles each.

Last, the function V (k) in Eq. (4.5) can have different forms. This chapter mainly

use V (k) = 1 but we also want to know if the results obtained using this form are

equivalent to those generated using other positive isotropic forms of V (k) as well.

In principle, stealthy potentials of any form should have the same set of ground-

state configurations, but the form of the stealthy potential could theoretically affect

the curvature of the potential energy surface near each ground-state configurations

and thus also affect their relative weights. Figure (4.5) shows the pair correlation

function produced by different V (k)’s. The pair correlation functions for V (k) = 1

and V (k) = (1− k)2 at TE = 2× 10−6 are almost identical. For V (k) = (1− k)6, we

initially tried TE = 2× 10−6 but found that the “clustering effect” is still noticeable.

We further lowered the temperature to TE = 2 × 10−10 to completely suppress the

“clustering effect” to produce a pair correlation function identical to that of V (k) = 1

and V (k) = (1−k)2 potentials. This result suggests that the functional form of V (k)

does not produce noticeable differences in the ground-state ensembles in the T → 0

limit of the canonical ensemble.
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Figure 4.5 Pair correlation function produced by different potentials starting from
snapshots of MD at sufficiently low temperature at χ = 0.2. Each curve is averaged over
20 000 configurations of 136 particles each.

4.4 Canonical Ensemble in the T → 0 Limit

We will show here that the entropically favored ground states in the canonical ensem-

ble in the T → 0 limit for the first three space dimensions differ markedly below and

above χ = 0.5. For χ < 0.5, the entropically favored ground states are disordered

while for χ ≥ 0.5 the entropically favored ground states are crystalline. Therefore,

we will characterize them differently. For χ < 0.5, we will report the pair correlation

function, structure factor, and Voronoi cell statistics. For sufficiently small χ, we will

show that the simulation results agree well with theory [325]. For χ ≥ 0.5, we will

report the crystal structures. The numbers of particles in all of the systems reported

in this section are collected in Appendix C.

4.4.1 χ < 0.5 region

Representative entropically favored stealthy ground states in the first three space

dimensions at χ = 0.1 and χ = 0.4 are shown in Figs. 4.6-4.8. As χ increases from 0.1

to 0.4, the stealthiness increases, accompanied with a visually perceptible increase in

short-range order. This trend in short-range order is consistent with previous studies

[328, 329, 26].

86



(a)

(b)

Figure 4.6 Representative one-dimensional entropically favored stealthy ground states at
(a) χ = 0.1 and (b) χ = 0.4.

(a) (b)

Figure 4.7 Representative two-dimensional entropically favored stealthy ground states at
(a) χ = 0.1 and (b) χ = 0.4.

(a) (b)

Figure 4.8 Representative three-dimensional entropically favored stealthy ground states
at (a) χ = 0.1 and (b) χ = 0.4.
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Figure 4.9 Structure factors for 1 ≤ d ≤ 3 for 0.05 ≤ χ ≤ 0.33 from simulations and
theory [325]. The smaller χ simulation results are also compared with the theoretical
results in the infinite-volume limit [325]. For χ ≤ 0.1, the theoretical and simulation
curves are almost indistinguishable, and the structure factor is almost independent of the
space dimension. However, simulated S(k) in different dimensions become very different
at larger χ. Theoretical results for χ ≥ 0.25 are not presented because they are not valid
in this regime.
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Figure 4.10 Pair correlation functions for 1 ≤ d ≤ 3 for 0.05 ≤ χ ≤ 0.33 from simulations
and theory [325]. The smaller χ simulation results are also compared with the theoretical
results in the infinite-volume limit [325]. For χ ≤ 0.1, the theoretical and simulation
curves are almost indistinguishable. Theoretical results for χ ≥ 0.25 are not presented
because they are not valid in this regime.
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We have calculated the pair correlation functions and the structure factors for

various χ values. Results for 0.05 ≤ χ ≤ 0.33 are shown in Figs. 4.9 and 4.10. The

χ < 0.2 results are in excellent agreement with the “pseudo-hard-sphere ansatz,”

which states that the structure factor behaves like pseudo equilibrium hard-sphere

systems in Fourier space [325]. However, the theory gradually becomes invalid as χ

increases.

The pair correlation functions of the entropically favored stealthy ground states

are shown in Fig. 4.10. When χ ≤ 0.2, since the structure factor is similar to the pair

correlation function of the hard-sphere system, inversely the pair correlation function

is also similar to the structure factor of the hard-sphere system. As χ grows larger,

the pseudo hard-sphere ansatz gradually deviates from the simulation result.

We have checked that these pair statistics are consistent with four theoretical

integral conditions of the pair statistics in the infinite-volume limit [325]. The first

three conditions are Eqs. (58), (59), and (63) of Ref. [325], which are

∫
Rd
P (r)dr = 0, (4.10)

∫
Rd
P (r)v(r)dr = 0, (4.11)

and

g2(0) = 1− 2dχ+ 2d2χ

∫ ∞
K

kd−1Q̃(k)dk, (4.12)

where P (r) is the inverse Fourier transform of Θ(k − 1)Q̃(k), Θ(x) is the Heaviside

step function, and Q̃(k) = S(k)− 1.

The fourth condition is that the pressure calculated from the “virial equation”

[325] has to be either nonconvergent or convergent to the pressure calculated from

the energy route [325]. All pair statistics in Figs. 4.9 and 4.10 were generated using

the step-function potential [the V (k) = 1 case of Eq. (4.5)], but this potential does
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not lead to a convergent virial pressure. However, as we have shown earlier, the

stealthy ground states that we generated here are also the ground states of other

stealthy functional forms ṽ(k). In one dimension, to test our simulation procedure,

we used the potential form V (k) = (1−k) to calculate the pressure from both the virial

equation (Eq. (43) of Ref. [325]) and the energy equation (Eq. (41) of Ref. [325]). The

pressure from the virial equation converges and agrees with the exact pressure from

the energy equation, thus confirming the accuracy of our numerical results. These

checks involve integrals of g2(r) and S(k) that are only slowly converging. Therefore,

passing them demonstrates that our results have very high precision.
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Figure 4.11 Structure factor and pair correlation function for d = 2 for 0.33 ≤ χ ≤ 0.46,
as obtained from simulations.

For smaller χ values, the maximum of the structure factor is at the constraint

cutoff k = K+. However, for higher χ values, the maximum of S(k) is no longer

at k = 1+. To probe this transition we have calculated the structure factor in two

dimensions for 0.33 ≤ χ ≤ 0.46. The results are shown in Fig. 4.11. As χ increases,

the peak at k = 1+ gradually decreases its height, while the subsequent peak gradually

grows and engulfs the first peak.

Besides pair statistics, other widely used characterization of point patterns include

certain statistics of the Voronoi cells [328, 103, 218, 165]. A Voronoi cell is the region

consisting of all of the points closer to a specific particle than to any other. We have
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computed the Voronoi tessellation of the entropically favored stealthy ground states

using the dD Convex Hulls and Delaunay Triangulations package [134] of the Compu-

tational Geometry Algorithms Library [5]. Since the number density of the stealthy

ground states depends on the dimension and χ, we rescaled each configuration to unity

density for comparison of the Voronoi cell volumes. The probability distribution func-

tion p(vc) of the Voronoi cell volumes (where vc is the volume of a Voronoi cell) are

shown in Fig. 4.12. In the same dimension, as χ increases, the distribution of Voronoi

cell volumes narrows. This is expected because the system becomes more ordered as

χ increases. For the same χ, the distribution also narrows as the dimension increases,

consistent with theoretical results that at fixed χ, the nearest-neighbor distance dis-

tribution narrows as dimension increases [325]. In Fig. 4.12, we additionally show

the Voronoi cell-volume distribution of saturated random sequential addition (RSA)

[356, 323, 339] packings, the sphere packings generated by randomly and sequentially

placing spheres into a large volume subject to the nonoverlap constraint until no

additional spheres can be placed. Saturated RSA packings are neither stealthy nor

hyperuniform [356, 323]. However, the Voronoi cell-volume distributions of saturated

RSA packings look similar to that of the entropically favored stealthy ground states.

This is not unexpected because Voronoi cell statistics are local characteristics, and

hence are not sensitive to the stealthiness, which is a large-scale property.
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Figure 4.12 Voronoi cell-volume distribution for 1 ≤ d ≤ 3 for 0.05 ≤ χ ≤ 0.25. For the
same dimension, the Voronoi cell-volume distribution becomes narrower when χ increases.
For the same χ, the Voronoi cell-volume distribution also becomes narrower when
dimension increases. We also present Voronoi cell-volume distributions of RSA packings at
saturation here.
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One interesting phenomenon is that as χ increases and approaches 1/2, systems

that are not sufficiently large can become crystalline. In Fig. 4.13, we show two

snapshots of MD simulations at χ = 0.48. The smaller configuration is crystalline.

However, systems that are 4 times larger remain disordered at the same χ and tem-

perature. Therefore, this strongly indicates that crystallization is a finite-size effect

for χ tending to 1/2 from below.

(a) (b)

Figure 4.13 (a) Low-temperature MD snapshot of a 126-particle system at χ = 0.48; the
ground-state configuration is crystalline. (b) MD snapshot of a 504-particle system at the
same TE and χ; the system does not crystallize and is indeed disordered without any
Bragg peaks.

4.4.2 χ ≥ 0.5 region

As explained in Sec. 4.2, we perform MD-based simulated annealing with Monte Carlo

moves of the simulation box for χ > 0.5, since this method works better with rough

potential energy surface and can mitigate the finite-size effect. We performed this

simulation at χ = 0.55, χ = 0.73, and χ = 0.81 in two dimensions. The results are

shown in Fig. 4.14. The resulting configuration is always triangular lattice. Even

though the ground-state manifold in this χ regime contains aperiodic “wavy” phases

discovered previously [328] [but which are called “stacked-slider” phases in the next

chapter, since they are aperiodic configurations with a high degree of order in which

rows (in two dimensions) or planes (in three dimensions) of particles can slide past

each other] as well as crystals other than the triangular lattice, the entropically favored

ground state is always a triangular lattice. This means that the triangular lattice has
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a higher entropy than stacked-slider phases, although the latter appear to be more

disordered 3.

Although we will show analytically that crystals are more entropically favored than

stacked-slider phases in the next chapter, we still need simulation results to determine

which crystal structure has the highest entropy. The results of MD-based simulated

annealing with Monte Carlo moves of the simulation box suggest that triangular

lattice has the highest entropy in two dimensions. It seems natural to apply the same

technique to three dimensions to determine the entropically favored crystal structure.

However, we were unable to crystallize the system in three dimensions. Even the

longest cooling schedule that we tried resulted in stacked-slider phases.

(a) (b) (c)

Figure 4.14 MD-based simulated annealing result at (a) χ = 0.55, (b) χ = 0.73, and (c)
χ = 0.81. The ending configuration is triangular lattice except for small deformations in
the χ = 0.55 case.

Another way to find the entropically favored crystal is to use Wang-Landau Monte

Carlo to directly calculate the entropy of different crystal structures as a function of

the potential energy. We have performed this simulation on two-dimensional triangu-

lar lattice, square lattice, and three-dimensional body-centered cubic (BCC) lattice,

face-centered cubic (FCC) lattice, and simple cubic (SC) lattice. The results are

shown in Figs. 4.15 and 4.16. In all cases the entropy decreases as the energy de-

creases. In two dimensions, the entropy of the square lattice clearly decreases faster

3In Fig. 4.13, we show that crystallization for χ < 0.5 is a finite-size effect. So is crystallization
for χ ≥ 0.5 also a finite-size effect? In the next chapter, we will present an analytical model of so-
called ”stacked-slider” phases for χ ≥ 0.5, which are relatively ordered but aperiodic configurations.
Using the model, we will show that the entropy of stacked-slider phases is smaller than that of the
crystalline structures. Therefore, crystallization for χ ≥ 0.5 is not a finite-size effect.
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than that of the triangular lattice at every χ value, confirming that the triangular

lattice is entropically favored over the square lattice in the zero-temperature limit. In

three dimensions at χ = 0.58, the entropy of the FCC lattice decreases more slowly

than that of the BCC and SC lattice, suggesting that the entropically favored ground

state in three dimensions at χ = 0.58 is the FCC lattice. At higher χ values, the

scaling of the entropy of the FCC lattice and the BCC lattice become very close to

each other, preventing us from determining the entropically favored ground state at

these χ values.
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Figure 4.15 Microcanonical entropy as a function of energy S (Φ) calculated from
Wang-Landau Monte Carlo of triangular lattice and square lattice at various χ’s. Here Φ0

denotes the ground-state energy.
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Figure 4.16 Microcanonical entropy as a function of energy S (Φ) calculated from
Wang-Landau Monte Carlo of BCC lattice, FCC lattice, and SC lattice at various χ’s. A
curve for SC lattice is not presented for χ ≥ 0.68 because the latter is not a ground state
at such high χ values. Here Φ0 denotes the ground-state energy.

4.5 Conclusions and Discussion

The uncountably infinitely degenerate classical ground states of the stealthy poten-

tials have been sampled previously using energy minimizations. We demonstrate here

that this way of sampling the ground states to produce ensembles of configurations

introduces dependencies on the energy minimization algorithm and the initial config-

uration. Such artificial dependencies are avoided in studying the canonical ensemble

in the T → 0 limit. We sample this ensemble by performing MD simulations at suf-

ficiently low temperatures, periodically taking snapshots, and minimizing the energy

of the snapshots.
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The configurations in this ensemble become more ordered as χ increases and obey

certain theoretical conditions on their pair statistics [325], similarly to previous energy

minimization results. However, other properties of this ensemble are unique. First,

our numerical results demonstrate that the pair statistics of this ensemble displays no

“clustering effect” [divergence of g2(r) as r → 0] for any χ value, and is independent

of the functional form of the stealthy potential. Second, we numerically verify the

theoretical ansatz [325] that for sufficiently small χ stealthy disordered ground states

behave like “pseudo” disordered equilibrium hard-sphere systems in Fourier space,

i.e., S(k) has the same functional form as the pair correlation function for equilibrium

hard spheres for sufficiently small densities. Third, when χ is above the critical value

of 0.5, our results strongly indicate that crystal structures are entropically favored in

both two and three dimensions in the infinite-volume limit. Our numerical evidence

suggests that the entropically favored crystal in two dimensions is the triangular

lattice. However, we could not determine the entropically favored crystal structure in

three dimensions. For finite systems, the disordered-to-crystal phase transition can

happen at a slightly lower χ. A theoretical explanation of this phenomenon remains

an open problem.

Besides ground states of stealthy potentials, other disordered degenerate ground

states of many-particle systems have been studied using energy minimizations. Specif-

ically, previous researchers have constrained the structure factor to have some targeted

functional form other than zero for prescribed wave vectors [329, 26, 350]. Finding

the configurations corresponding to such targeted structure factors amounts to finding

the ground states of two-, three- and four-body potentials, in contrast to the two-

body stealthy potential studied in this chapter. This situation is the most general

application of the collective-coordinate approach. It will be interesting to study the

resulting pair statistics of the ground states for these more general interactions in the

zero-temperature limit of the canonical ensemble.
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The collective-coordinate approach is an independent and fruitful addition to the

basic statistical mechanics problem of connecting local interactions to macroscopic

observables. One important feature of collective-coordinate interactions is that it has

uncountably infinitely degenerate classical ground states [325]. In the case of isotropic

pair interactions, the only other system that we know with this feature is the hard-

sphere system. However, there are two important differences between hard-sphere

systems and collective-coordinate ground states. First, while the dimensionality of

the configuration space of equilibrium hard-sphere systems consisting of N particles

within a periodic box is fixed [simply determined by the nontrivial number of degrees

of freedom, d(N − 1)], the dimensionality of the collective-coordinate ground-state

configuration space decreases as χ increases and, on a per particle basis, eventually

vanishes [325]. The decreased dimensionality of the ground-state configuration space

creates challenges for accurate sampling of the entropically favored ground states

using numerical simulations and hence the development of better sampling methods

is a fertile ground for future research.

Second, while the probability measure of the equilibrium hard-sphere system is

uniform over its entire ground-state manifold, that of the stealthy ground states is

not uniform. To illustrate this point, imagine a one-dimensional energy landscape

that has a double-well potential behavior in a portion of the configuration space, as

shown in Fig. 4.17. Each minimum represents a degenerate ground state (as we find

with stealthy potentials) and therefore the well depths of the minima are the same.

Let us now consider harmonic approximations of the two wells in the vicinity of x1

and x2, respectively,

V1(x) = a1(x− x1)2,

and

V2(x) = a2(x− x2)2,
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where x is the configurational coordinate. At very low temperature, to a good ap-

proximation, the system can only visit the part of the configuration space with energy

less than ε, and ε → 0 as T → 0. Solving Vi(x) < ε, where i = 1, 2, one finds the

feasible region of configuration space associated with both wells:

x1 −
√
ε/a1 < x < x1 +

√
ε/a1,

and

x2 −
√
ε/a2 < x < x2 +

√
ε/a2.

When a1 6= a2, we see that the feasible regions associated with the two potential wells

have different ranges. Therefore, the weights associated with the two minima, i.e.,

the relative probabilities for finding the system in the vicinity of those minima, will

also differ. Similarly, in the stealthy multidimensional configuration space that we

are studying, the magnitude of the eigenvalues of the Hessian matrix will determine

the relative weights. Therefore, the probability measure of the stealthy ground states

is not uniform over the ground-state manifold, unlike the degenerate ground states

of classical hard spheres. Our low-temperature MD simulations sample ground states

with this nonuniform probability measure. It would be useful to devise theories to

estimate the weights of different portions of the ground-state manifold. However, a

feature that complicates the problem is that the Hessian matrix has zero eigenvalues.

In the associated directions of the eigenvectors of the configuration space, the energy

scales more slowly than quadratically (harmonically) but we do not know the specific

form.
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Figure 4.17 A model one-dimensional energy landscape with two wells located at x1 and
x2 of the same depth but different curvatures. The “feasible regions,” i.e., regions where
V (x) < ε, is marked by red dashed lines.

This chapter, which investigates the entropically favored ground states, is the first

of a two-chapter series. In the next chapter, we will study aspects of the ground-state

manifold with an emphasis on configurations that are not entropically favored for

χ above 1/2 (the ordered regime). In particular, we will more fully investigate the

nature of so-called “wavy” crystals or “stacked-slider” phases, discovered in Ref. [328].

Using an analytical description of such states, we will demonstrate that they are part

of the ground state but are not entropically favored. Our analytical model will also

demonstrate that stacked-slider phases exist in three and higher dimensions.

4.6 Appendix A: Real-space Potential in Finite

Systems

In the infinite-system-size limit, an isotropic ṽ(k) correspond to an isotropic real-space

pair potential v(r). However, for finite systems, the corresponding v(r) is anisotropic.

To illustrate the finite-size effect, we compare the two-dimensional real-space potential

v(r) in the infinite-system-size limit to corresponding potentials associated with finite-

sized fundamental cells of square and rhombic shapes of different volumes in Fig. 4.18.
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(a) (b)

(c) (d)

(e) (f )

(g)

Figure 4.18 A portion of the real-space potential v(r) around the origin for the stealthy
potential (4.5) with K = 1 and V (k) = 1. (a)-(f) Real-space potential in a periodic
simulation box that is [(a), (c), and (e)] square or [(b), (d), and (f)] rhombic in shape; the
latter has a 60◦ interior angle. The volumes of the simulation boxes, vF , are [(a) and (b)]
100, [(c) and (d)] 400, and [(e) and (f)] 1385. Panels (a)-(d) use unrealistically small
simulation boxes and is intended to illustrate finite-size effect only. (g) The real-space
potential in the infinite-system-size limit. All potentials are normalized by their respective
values at the origin since scaling does not affect the ground state. Note that, starting from
the center, the dark (red) region indicates the highest values of the potential, whereas
towards the edge of the box, the dark (blue) region indicates the lowest values of the
potential.
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The real-space potential in the rhombic simulation box with a 60◦ interior angle is

appreciably more isotropic than the real-space potential in a square simulation box.

Therefore, in this chapter, we will henceforth use rhombic fundamental cells in two

dimensions. Similarly, in three dimensions, we always use a simulation box shaped

like a fundamental cell of a body-centered cubic (BCC) lattice since BCC lattice is

the unique ground state at χ∗max.

4.7 Appendix B: Local Gradient Descent Algo-

rithm

Most optimization algorithms are designed for efficiency. They use complex rules to

determine the direction of the next step and take as large steps as possible. These

features make their path less obvious. To minimize energy in the path following the

gradient vector, we designed a “local gradient descent algorithm” with the following

steps:

1. Start from an initial guess, x, and find the function value f(x) and derivative

f ′(x).

2. Start from a relatively large (10−3 times the simulation box side length) step

size, s, and calculate the vector to the next step ∆x = −s f ′(x)
|f ′(x)| . Find the

function value at the next step f(x + ∆x). Calculate the change of function

value ∆f = f(x + ∆x)− f(x).

3. If we are following the path of steepest descent accurately, the change of the

function value should be close to f ′(x) ·∆x. If the difference between ∆f and

f ′(x) ·∆x is less than 1%, we accept this move. Otherwise, we abort this move

and half the step size s.

4. Repeat the above steps until a minimum is found with enough precision.
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4.8 Appendix C: Number of Particles of Every

System in Sec. 4.4

Table 4.1 The number of particles N of each systems shown in Figs. 4.9 and 4.10.

χ N for d = 1 N for d = 2 N for d = 3
0.05 1001 541 261
0.1 501 270 131

0.143 351 190 92
0.2 251 136 66
0.25 201 109 53
0.33 151 181 191

Table 4.2 The number of particles N of each systems shown in Fig. 4.11.

χ N
0.33 181
0.35 171
0.38 161
0.4 151
0.43 141
0.46 131

Table 4.3 The number of particles N of each systems shown in Fig. 4.12.

χ N for d = 1 N for d = 2 N for d = 3
0.05 1001 541 261
0.1 501 270 131

0.143 351 190 92
0.2 251 136 66
0.25 201 109 53

In this appendix we report the number of particles N in each system in Sec. 4.4.

Both configurations in Fig. 4.6 consist of 51 particles. Configurations (a) and (b) in

Fig. 4.7 consist of 271 and 151 particles, respectively. Those in Fig. 4.8 consist of 131

and 161 particles, respectively.
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The number of particles of each system in Figs. 4.9, 4.10, 4.11, and 4.12 are

shown in Tables 4.1, 4.2, and 4.3, respectively. Each configuration in Figs. 4.14,

4.15, and 4.16 consist of 36, 400, and 343 particles, respectively.
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Chapter 5

Ground states of stealthy

hyperuniform potentials: II.

Stacked-slider phases

5.1 Introduction

A fundamental problem of statistical mechanics is the determination of the phase di-

agram of interacting many-particle systems. A substantial variety of pair interactions

can produce a dramatic diversity of macroscopic phases, including crystals [262], qua-

sicrystals [269, 179, 180, 34, 76], liquid crystals [47], hexatic phases [168, 32, 229, 154],

disordered hyperuniform systems [317, 74, 329, 315, 349, 145, 325], and liquids [289].

While crystals and liquids are the most common condensed states of matter, there

are other states in between. For example, quasicrystals and liquid crystals both

have anisotropy and long-range orientational order, like crystals, but lack long-range

translational order, similar to liquids. Other phases with features that lie between

crystals and liquids include disordered hyperuniform systems, which are disordered
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but behave more like crystals in the way in which they suppress long-range density

fluctuations [317, 145].

A family of long-range isotropic pair potentials, called stealthy potentials, pro-

duces infinitely degenerate disordered hyperuniform classical ground states at high

densities in d-dimensional Euclidean space Rd [329, 325, 328, 26, 27, 29, 352]. Stealthy

potentials are often specially constructed such that finding a ground state is equiva-

lent to constraining the structure factor S(k) to be zero for all wave vectors k such

that 0 < |k| ≤ K, where K is some radial cutoff value. A dimensionless measure

of the relative fraction of constrained degrees of freedom (proportional to Kd) com-

pared to the total number of degrees of freedom, χ, controls the degree of order and

degeneracy of the ground states of these potentials.

In the preceding chapter [352], we numerically studied the entropically favored

ground states, i.e., configurations most likely to appear in the canonical ensemble in

the zero-temperature limit, of stealthy potentials. We found that entropically favored

ground states are disordered for χ < 1/2, and crystalline for χ > 1/2 up to a certain

critical value [325].

The main focus of this chapter is the investigation of stacked-slider phases, which

are metastable states that are part of the ground-state manifold for some χ above

1/2, although not entropically favored. Stacked-slider phases were first discovered in

two dimensions in Ref. [328] and were originally called wavy crystals because they

were observed to consist of particle columns that display a meandering displacement

away from linearity. However, we will see that “stacked-slider phases” for arbitrary

dimensions is a more suitable name for this phase and this designation will be used

henceforth.

The authors of Ref. [328] easily distinguished stacked-slider phases from crys-

tal phases by a lack of periodicity in direct space and a lack of Bragg peaks in its

diffraction pattern. Distinguishing stacked-slider phases and disordered phases, on
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the other hand, was based on a different property. In disordered phases, all k’s such

that |k| > K have positive structure factors. However, in stacked-slider phases, the

structure factor at some k’s such that |k| > K are implicitly constrained to vanish

identically [328], i.e., they are induced to be zero by the constraints inside the radius

K. The existence of implicit constraints was used to distinguish stacked-slider phases

from disordered phases in Ref. [328].

There are still many outstanding questions concerning stacked-slider phases. Can

a theoretical model of stacked phases in the thermodynamic limit be devised to elu-

cidate previous numerical studies? One disadvantage of numerical studies is that

finite-size effects make it difficult to conclude anything definitive about the large

system limit. For example, are stacked-slider phases isotropic or anisotropic in this

limit? Moreover, to what extent does the choice of the simulation box shape affect the

results? Were any important features of stacked-slider phases overlooked by studying

finite-precision simulation results? Finally, because Ref. [328] studied two dimensions

only, we do not know whether stacked-slider phases exist in other dimensions. This

chapter provides additional insights into these unanswered questions.

The rest of the chapter is organized as follows. In Sec. 5.2 we perform numerical

studies with much higher precision than previously. The numerical results enabled

us to find an analytical model of two-dimensional stacked-slider phases, presented in

Sec. 5.3. We generalize this model to higher dimensions in Sec. 5.4. We demonstrate

that stacked-slider phases are distinguishable states of matter; they are nonperiodic,

statistically anisotropic structures that possess long-range orientational order but

have zero shear modulus. The model also shows that implicit constraints exist. In

Sec. 5.5 we use this analytical model to show that stacked-slider phases are not en-

tropically favored in the zero-temperature limit of the canonical ensemble. In Sec. 5.6

we postulate that the transition between stacked-slider phases and disordered phases

occurs at a slightly lower χ than that reported in Ref. [328] from energy minimiza-
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tions from high-temperature limit (Poisson) initial configurations. In Sec. 5.7 we

make concluding remarks and draw comparisons to other common phases of matter.

5.2 Numerical Study of 2D Stacked-Slider Phases

In this section we numerically study the ground states of a stealthy potential at a

variety of χ’s (or densities) in two dimensions. We begin with the mathematical

relations and simulation procedure in Sec. 5.2.1, and then present our results in

Sec. 5.2.2. These results will suggest an analytical model of two-dimensional stacked-

slider phases in Sec. 5.3.

5.2.1 Mathematical Relations and Simulation Procedure

As detailed in the preceding chapter and other references [325, 328, 329, 26, 27, 29],

we simulate systems consisting of N point particles, located at rN ≡ r1, r2, ..., rN , in

a simulation box in Rd under periodic boundary conditions. The number density is

ρ = N/vF , where vF is the volume of the simulation box. The particles interact with

a pairwise additive potential v(r) such that its Fourier transform is:

ṽ(k) =


V (|k|) if |k| ≤ K

0 otherwise,

(5.1)

where ṽ(k) =
∫
vF
v(r) exp(−ik · r)dr is the Fourier transform of the pair potential

v(r), V (k) is a positive function, and K is a constant.

Under such potential, the total potential energy of the system can be calculated

in the Fourier space

Φ(rN) =
1

2vF

∑
k

V (|k|)|ñ(k)|2 + Φ0, (5.2)
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where the sum is over all reciprocal lattice vector k’s of the simulation box such that

0 < |k| ≤ K, ñ(k) =
∑N

j=1 exp(−ik · rj), and

Φ0 = [N(N − 1)−N
∑
k

ṽ(k)]/2vF (5.3)

is a constant independent of the particle positions rN . Thus, the first term on the

right-hand side of Eq. (5.2) is the only configuration-dependent contribution to the

potential energy

Φ∗(rN) =
1

2vF

∑
0<|k|≤K

V (k)|ñ(k)|2. (5.4)

Since V (k) > 0 and vF > 0, Eq. (5.4) shows that Φ∗(rN) ≥ 0. Therefore, if con-

figurations such that Φ∗(rN) = 0 exist, then they are the classical ground states of

this potential. These configurations are achieved by constraining ñ(k) to zero for

all 0 < |k| < K and are said to be stealthy up to K. Since ñ(k) is related to the

structure factor S(k) by S(k) = |ñ(k)|2/N for every k 6= 0, constraining ñ(k) to zero

is equivalent to constraining S(k) to zero. Let M be half the number of k points in

the summation of Eq. (5.2) 1; the parameter

χ =
M

d(N − 1)
(5.5)

determines the degree to which the ground states are constrained and therefore the

degeneracy and disorder of the ground states [328]. For a fixed K, the parameter χ is

inversely proportional to the density [27, 325, 352]. When χ ≤ χ∗max, where χ∗max is a

dimension-dependent constant, all the constraints are indeed satisfiable, thus Φ∗(rN)

of the classical ground states is zero [325]. The χ values we study in this chapter are

always less than χ∗max.

1Since |ñ(k)|2 = |ñ(−k)|2, M is the number of independent constraints.
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In this section we choose N = 100, K = 1, and V (k) = 1. The relatively small

choice of N increases the precision of the ground states we find. We will see that high

precision is important in extracting an analytical model from numerical results. The

constant K and the magnitude of V (k) simply set the length scale and the energy

scale. Although the function form of V (k) could theoretically affect the probability of

sampling different parts of the ground-state manifold, it does not affect the manifold

itself [325, 352]. As explained in Ref. [352], we use a rhombic simulation box with a

60◦ interior angle to alleviate finite-size effect.

The ground states reported in this section are produced by the following steps.

1. Start from a Poisson (i.e., ideal gas) initial configuration.

2. Minimize Φ∗(rN) [in Eq. (5.4)] using the low-storage BFGS algorithm [214, 183,

150].

3. Minimize Φ∗(rN) using the MINOP algorithm [69].

4. If Φ∗(rN) < 10−20, we successfully find a relatively high-precision ground state.

5. Otherwise, what we find is either an imprecise ground state or a local minimum

of Φ∗(rN). Therefore, we discard this configuration.

As detailed in Ref. [352], the low-storage BFGS algorithm is the fastest in minimizing

Φ∗(rN), while the MINOP algorithm finds the most precise ground states. There-

fore, we minimize Φ∗(rN) using these two algorithms consecutively to maximize both

efficiency and precision.

These steps are performed Nt times for a variety of simulation box side lengths

(and therefore a variety of χ’s), listed in Table 5.1 2. As detailed in Ref. [328], for a

finite system, only certain values of χ are allowed. The χ values in Table 5.1 contain

all possible choices in the range 0.5 < χ < χ∗max, which covers the previously reported

2The reader will notice that the success rate reported in Table 5.1 is dramatically nonuniform.
This is another unusual feature of this class of phases that deserves further attention.
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Table 5.1 The χ values, number of trials Nt, and number of successes Ns for each
simulation box side length L.

L χ Nt Ns

56 0.5303. . . 1000000 15615
57 0.5606. . . 199915 17127
58 0.5909. . . 200000 411
59 0.6060. . . 199965 8875
60 0.6363. . . 1000000 27788
62 0.6666. . . 1000000 76727
63 0.6818. . . 1000000 157501
64 0.7121. . . 200000 119563
65 0.7424. . . 1000000 165203
66 0.7575. . . 200000 80258
68 0.7878. . . 200000 2577
70 0.8787. . . 200000 0

stacked-slider phase regime in two dimensions, 0.57... ≤ χ < 0.77... [328, 27]. Except

for χ = 0.8787 . . ., where we could not precisely identify ground states, we plot the

real-space configuration and reciprocal-space structure factor of at least 50 successful

energy minimized results and visually inspect them. We divide them into different

categories based on their appearances and then present representative configurations

below.

5.2.2 Results

Representative numerically obtained ground-state configurations and their structure

factors (in logarithmic scales) are presented in Figs. 5.1-5.3. For 0.5303 . . . ≤ χ ≤

0.6060 . . ., the ground-state manifold appears to contain a variety of structures (see

Fig. 5.1). Except for the first one, all real-space configurations in Fig. 5.1 appear to

be Bravais lattices. However, their structure factors are not as simple as a collection

of Bragg peaks among a zero-intensity background, suggesting that the real-space

configurations are not perfect Bravais lattices.

At χ = 0.6363 . . . and χ = 0.6666 . . . a type of relatively-simple-looking configu-

ration appears (see Fig. 5.2). The real-space configurations appear to be comprised

110



Figure 5.1 Four representative numerically obtained ground-state configurations at
χ = 0.5606 . . . (left) and their corresponding structure factors (right), where colors
indicate intensity values at reciprocal lattice points.

of straight lines of particles with wavelike displacements relative to each other. The

structure factors, on the other hand, consist of straight lines of nonzero values in a

background of virtually zero (< 10−20) intensities.

For χ ≥ 0.6818 . . ., the results are similar to that in Fig. 5.2, but there exist

so many constraints that the nonzero-value lines in the structure factor have to be

interrupted. The interruptions grow in length as χ increases and eventually, at χ =

0.7878 . . ., the only nonzero structure factors are the Bragg peaks and the real-space

configuration becomes a Bravais lattice.
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Figure 5.2 A numerically obtained ground-state configuration at χ = 0.6363 . . . (left) and
the corresponding structure factor (right), where colors indicate intensity values at
reciprocal lattice points.

Figure 5.3 Shown on the left are four representative numerically obtained ground-state
configurations at χ = 0.6818 . . . (first row), χ = 0.7121 . . . (second row), χ = 0.7424 . . .
(third row), and χ = 0.7878 . . . (fourth row). On the right are their corresponding
structure factors, where colors indicate intensity values at reciprocal lattice points.
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5.3 Analytical Model of Two-Dimensional Stacked-

Slider Phase

In this section we look closer at the simulation results that yield stacked-slider phases

to see if an exact analytical construction can be extracted. We will see that un-

derstanding the configuration shown in Fig. 5.2 is the key to understanding other

configurations. The real-space configuration in Fig. 5.2 seems to be made of straight

horizontal lines that are displaced relative to each other. Are the displacements of dif-

ferent horizontal lines independent of each other or correlated in some way? To answer

this question, we numerically constructed a configuration that is made of horizontal

straight lines of particles, just like the one shown in Fig. 5.2, but with independent

random displacements along each horizontal line. The structure factor of the new

configuration has exactly the same support [the set of k’s such that S(k) 6= 0] as the

one shown in Fig. 5.2. Thus, the new configuration is also a ground state at this χ

value. Therefore, the displacements of each line do not need to be correlated in any

way. This allows us to find a two-dimensional stacked-slider phase model, depicted

in Fig. 5.4.

x

y

a

b

...
 ..

.

... ...... ...

...
 ..

.

Figure 5.4 Schematic plot of the two-dimensional stacked-slider phase model. Each
horizontal line of particles [indicated by large (blue) dots] form a one-dimensional integer
lattice with lattice spacing a. Then multiple horizontal integer lattices are stacked
vertically, with spacing b. Each horizontal line of particles can be translated freely to slide
with respect to each other.
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This analytical model allows the calculation of various properties of the two-

dimensional stacked-slider phases. One can find the analytical pair correlation func-

tion and structure factor of this model, assuming that the displacement of each line

is independent and uniformly distributed between 0 and a. The pair correlation func-

tion g2(r) is defined such that ρg2(r)dr is the conditional probability that a particle

is found in the volume element dr about r, given that there is a particle at the origin.

For the two-dimensional stacked-slider phase, g2(r) can be found directly from the

definition of this model:

g2(x, y) = b
∑
j 6=0

δ(y − bj) + abδ(y)
∑
j 6=0

δ(x− aj), (5.6)

where x and y are horizontal and vertical coordinates, both summations are over all

nonzero integers j, and δ denotes the Dirac delta function. The structure factor S(k)

can be found by Fourier transforming g2(r)− 1:

S(k) = 1 + ρF [g2(r)− 1], (5.7)

where F [· · · ] denotes Fourier transform. Substituting (5.6) into (5.7), one gets:

S(k) =
2πδ(kx)

a

(
2π

b
III2π/b(ky)− 1

)
+

2π

a
III2π/a(kx)−

4π2

ab
δ(kx)δ(ky),

(5.8)

where kx and ky denote the horizontal and vertical components of k, respectively,

and IIIT (t) =
∑+∞

j=−∞ δ(t− jT ) is the Dirac comb function. Both the pair correlation

function (5.6) and the structure factor (5.8) are anisotropic, since swapping x and y

in (5.6) and (5.8) gives different expressions.

A topological property this model can predict is the connectedness of the ground-

state manifold, i.e., whether or not a ground state can be continuously deformed to
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another ground state without crossing any energy barrier. Each stacked-slider con-

figuration is obviously continuously connected to a rectangular lattice by the sliding

motion of different lines. However, there are many permutations of the rectangular

lattice. Are these permutations connected to each other through vertical and hori-

zontal sliding motions? In the Appendix, we show that for a finite-size rectangular

lattice consisting of N particles, all permutations are connected if and only if N is

even.

Having found an analytical model of the ground states in this χ range, we move

on to lower and higher χ ranges. The lower χ simulation results appear to be more

complex. The first configuration in Fig. 5.1 appears to be similar to our existing

analytical model, except that the nonzero-value regions in the structure factor are

not strictly lines: The highest-intensity lines [S(k) ∼ 100] are surrounded by lower-

intensity regions [S(k) ∼ 10−10], which are surrounded by even lower-intensity regions

[S(k) ∼ 10−20]. The structure factor in the lower-intensity regions are very small, but

are still much larger than the machine precision. (We use double-precision numbers,

which have around 16 significant digits, to calculate ñ(k). Therefore, the machine

precision of S(k) = |ñ(k)|2/N should be on the order of (10−16)2/N = 10−34.) So a

natural question arises: Are the lower-intensity regions real or are they an artifact of

finite-precision simulations?

To answer this question, we chose a k point right next to the highest-intensity line

and plotted the structure factor at this k point versus the potential energy during

the energy minimization (see Fig. 5.5). As Φ∗ goes to zero, the structure factor at

this k point also goes to zero. Thus, we believe the lower-intensity regions are the

result of numerical imprecision. If one could carry out an infinite-precision simulation

and drive this configuration to a true ground state, the structure factors in the lower-

intensity regions should go to zero and the configuration would become consistent

with our analytical model.
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Figure 5.5 (a) A numerically obtained ground state at χ = 0.5606 . . .. (b) The
corresponding structure factor. A specific k point is indicated by a black square and an
arrow. (c) The structure factor at this particular k point is plotted against total energy
Φ∗ during the optimization, showing S(k)→ 0 as Φ∗ → 0.

Having understood the first configuration in Fig. 5.1, let us move on to other

configurations in that figure. The second and third configurations appear to be in-

termediate configurations between the first one and the fourth one. The fourth con-

figuration looks like a Bravais lattice, except that the Bragg peaks are smeared out.

Again, to find out whether this broadening of the Bragg peaks is real or artificial,

we plotted the structure factor at a k point near a Bragg peak versus the potential

energy in Fig. 5.6. We find again that the structure factor at this k point goes to zero

as Φ∗ goes to zero. Thus, the smearing out of the Bragg peaks is also due to numerical

imprecision. If one could carry out an infinite-precision energy minimization on this

configuration, one should get a Bravais lattice.
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Figure 5.6 (a) A numerically obtained ground state at χ = 0.5606 . . .. (b) The
corresponding structure factor. A specific k point is indicated by a black square and an
arrow. (c) The structure factor at this particular k point is plotted against total energy
Φ∗ during the optimization, showing S(k)→ 0 as Φ∗ → 0.

So far we have demonstrated that the numerically obtained ground states follow a

simple model at χ = 0.6363 . . . and χ = 0.6666 . . .. We have also demonstrated that

while the numerically obtained ground states for 0.5303 . . . ≤ χ < 0.6363 . . . appear

to be richer, they are actually exactly the same as either the model or a Bravais

lattice if we could perform infinite-precision simulations. However, as we move to

higher χ’s, the ground states start to lose degrees of freedom. As shown in Fig. 5.3,

at χ = 0.6818 . . ., the high-intensity lines in the structure factor develop zero-intensity

interruptions. In our stacked-slider phase model, if each line of particles could move

independently, then the high-intensity lines in the structure factor would have no

interruptions. Thus, these interruptions indicate constraints in the displacements

of each line of particles. At χ = 0.7121 . . ., the lines are interrupted even further,
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indicating even more constraints in the displacements of each line. At χ = 0.7424 . . .,

the structure becomes a two-particle-basis crystal. Eventually, at χ = 0.7878 . . ., the

structure becomes a Bravais lattice.

Starting from χ = 0.6818 . . ., the stacked-slider phase become more constrained as

χ increases. To study how constrained this phase is at different χ values, we calculate

the number of zero eigenvalues ne of the Hessian matrix of the potential energy.

This number is equal to the number of independent ways to deform the structure

such that the energy scales more slowly than quadratic, which is an upper bound

of the dimensionality of the ground-state configuration space nc [i.e. the number of

independent ways to deform the structure such that the Φ∗(rN) remains zero]. For

χ < 0.6818 . . ., our model predicts nc = 11 (since there are two translational degrees

of freedom, and nine independent ways to slide the ten lines of particles relative to

each other) and our calculation also find ne = 11. At χ = 0.6818 . . ., 0.7121 . . .,

0.7424 . . ., and 0.7878 . . ., our calculations find ne = 9, 5, 3, and 2, respectively. This

calculation suggests that as χ increases, nc gradually decreases. Eventually, nc = 2,

indicating that there is no way to deform the structure other than trivial translations.

5.4 Generalized Stacked-Slider Phase Model

We now generalize the two-dimensional stacked-slider phase model to higher dimen-

sions. To begin with, we present and prove the following theorem:

Stealthy Stacking Theorem. Let dP and dQ be positive integers. Let W be

(dP + dQ)-dimensional Euclidean space. Let WP be a dP -dimensional subspace of

W and WQ be the dQ-dimensional orthogonal complement space of WP . Let P be

a point pattern in WP with density ρP . For each point a ∈ P , let Q(a) be a point

pattern in WQ with some density ρQ independent of a. If P is stealthy up to certain

reciprocal-space cutoff KP and all Q(a)’s are stealthy up to certain reciprocal-space
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cutoff KQ in their subspace, then the following point pattern in W ,

{a + b|a ∈ P,b ∈ Q(a)} (5.9)

is a stealthy point pattern up to K = min(KP , KQ).

Proof. The collective density variable of the point pattern in Eq. (5.9) is

ñ(k) =
∑
a∈P

∑
b∈Q(a)

exp[−ik · (a + b)]. (5.10)

Since WP and WQ are two orthogonal complementary subspaces of W , we can divide

vector k into two parts k = kP + kQ, where kP ∈ WP and kQ ∈ WQ. Therefore,

ñ(k) =
∑
a∈P

∑
b∈Q(a)

exp[−i(kP + kQ) · (a + b)]

=
∑
a∈P

exp(ikP · a)
∑

b∈Q(a)

exp(−ikQ · b).

(5.11)

For any k such that 0 < |k| ≤ K, |kQ| ≤ |k| ≤ K ≤ KQ. If kQ 6= 0, then the

stealthiness of point patterns Q(a) gives

∑
b∈Q(a)

exp(−ikQ · b) = 0 (5.12)

and therefore ñ(k) = 0. On the other hand, if kQ = 0, then kP = k and Eq. (5.11)

becomes

ñ(k) = NQ(a)

∑
a∈P

exp(−ik · a), (5.13)

where NQ(a) is the number of particles in pattern Q(a), which is independent of

a because all the Q(a)’s have the same density. Since 0 < |k| ≤ K ≤ KP , the
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stealthiness of point pattern P gives

ñ(k) = 0. (5.14)

To summarize, for any k such that 0 < |k| ≤ K, whether or not kQ = 0, ñ(k) is

always zero. Therefore, the point pattern (5.9) is stealthy up to K.

r P

rQ

Figure 5.7 Schematic plot of the stacked-slider phase model. The large black dots form
an integer lattice (point pattern P ). By replacing each black dot with a two-dimensional
stealthy point pattern (indicated by small blue dots) of the same density [point patterns
Q(a)], the overall three-dimensional point pattern consisting of all the small blue dots is
stealthy. The two vectors rP and rQ are in subspaces WP and WQ, respectively. Note that
since some Q(a)’s are two-dimensional stacked-slider configurations, this configuration
allows both interlayer and intralayer sliding motions, as detailed in Sec. 5.3.

The parameter χ of this point pattern can be calculated using Eq. (35) of

Ref. [325]. Our calculation yields

χ =
v1(dP + dQ;K)

2(dP + dQ)(2π)dP+dQρPρQ
, (5.15)

where v1(d; r) is the volume of a d-dimensional hypersphere of radius r. In the case

KP = KQ, using Eq. (35) of Ref. [325], Eq. (5.15) can be simplified to:

χ =
2v1(dP + dQ; 1)

v1(dP ; 1)v1(dQ; 1)

dPdQ
dP + dQ

χPχQ. (5.16)
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Figure 5.8 Three-dimensional stacked-slider configuration stealthy up to χ = 0.6981 . . ..
This configuration is obtained by sliding each vertical plane of particles relative to each
other and then sliding each vertical line in each plane relative to each other starting from
the simple cubic lattice.

The aforementioned theorem allows us to construct stacked-slider configurations

in higher dimensions. To construct a stacked-slider configuration in d ≥ 2, choose two

lower dimensions dP and dQ such that dP +dQ = d. Choose a dP -dimensional stealthy

configuration P and replace each particle a in P with a dQ-dimensional stealthy

configuration Q(a) and the resulting d-dimensional configuration is a stacked-slider

one. The resulting configuration is often anisotropic, since dP dimensions are treated

separately from the remaining dQ dimensions. See Fig. 5.7 for an illustration of a

three-dimensional stacked-slider configuration with dP = 1 and dQ = 2.

Certain three-dimensional crystal structures can allow sliding deformations while

remaining stealthy at relatively large (greater than 0.5) χ. As Fig. 5.8 shows, the

simple cubic lattice allows the sliding motion of each two-dimensional square-lattice

layer and the sliding motion of each line of particles inside every layer for χ up to

0.6981 . . .. Barlow packings [276], including the face-centered-cubic packing and the

hexagonal close packing, also allow the sliding motion of each triangular-lattice layer

of particles for χ up to 0.7600 . . ..
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Equation (5.16) can be used to calculate the maximum χ values of the stacked-

slider-phase, χssmax, assuming unconstrained sliding motions, in each space dimension

d. To do this one can try all possible combinations of positive integers dP and dQ

such that dP + dQ = d, and let χP and χQ equal to χ∗max in dP and dQ dimensions,

respectively. Our calculations for 2 ≤ d ≤ 4 are summarized in Table 5.2. There

is no obvious trend in these low dimensions. However, as d increases, the factor

2v1(dP+dQ;1)

v1(dP ;1)v1(dQ;1)

dP dQ
dP+dQ

in Eq. (5.16) decreases for any dP and dQ. Thus, χssmax should

become arbitrarily small in sufficiently high dimensions.

Table 5.2 Comparison of the maximum χ value of stacked-slider-phases predicted by the
generalized model χssmax and the maximum χ value of Bravais lattices χ∗max in two, three,
and four dimensions.

d χssmax χ∗max χssmax/χ
∗
max

2 π/4 π/
√

12 0.8660...

3 4π
9
√

3
2
√

2π
9

0.8712...

4
√

2π2

16
π2

8
0.7071...

Similar to two-dimensional stacked-slider configurations, the higher-dimensional

ones also have implicit constraints [i.e. k vectors such that |k| > K and S(k) = 0].

As seen in Eq. (5.11), S(k) = |ñ(k)|2/N = 0 as long as 0 < |kQ| ≤ K. One can thus

choose arbitrarily large kP such that |k| = |kP + kQ| > K.

5.5 Feasible Region of the Configuration Space

Although stacked-slider configurations are part of the ground-state manifold of

stealthy potentials, we will show in this section that they are not entropically

favored, as indicated in Ref. [325]. Entropically favored ground states are the config-

urations that most likely appear in the canonical ensemble in the zero-temperature

limit [325]. In this limit, as a good approximation, the system can only visit part of

the configuration space where Φ∗(rN) [in Eq. (5.4)] is less than ε, where ε > 0 tends

to zero as the temperature tends to zero. This part of the configuration space is
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therefore called the feasible region. If the feasible region corresponding to one set of

the ground states is much smaller than the entire feasible region in the configuration

space, this set will almost never appear in the canonical ensemble, i.e., they are not

entropically favored.

In the infinite-system-size limit, the feasible region of any stacked-slider configu-

ration is much smaller than that of any crystal if both the stacked-slider configuration

and the crystal are ground states. This is because as N → ∞, the configurational

dimension nc [i.e., the number of independent ways to deform the structure such that

the Φ∗(rN) remains zero] of stacked-slider phases scales more slowly than the number

of particles N . For example, for a two-dimensional stacked-slider configuration in

which each row of particles can slide independently, nc scales as
√
N . As discussed

in Sec. 5.3, the number of zero eigenvalues of the Hessian matrix of the potential en-

ergy ne is equal to nc. Since a nonzero eigenvalue of the Hessian matrix corresponds

to a quadratic scaling in one direction, in the dN -dimensional configuration space,

Φ∗(rN) has quadratic scaling in dN −nc directions. In these directions, as ε→ 0, the

width of the feasible region scales as
√
ε. In the remaining nc directions, the width

of the feasible region is much larger, since these directions correspond to translations

of different rows of particles, which keeps Φ∗(rN) zero. If we let the widths of the

feasible region in these directions be L, then the total volume of the feasible region

of the stacked-sliding phase is approximately

Vs ≈ Lncε(dN−nc)/2 ≈ L
√
Nε(dN−

√
N)/2. (5.17)

In the case of a crystalline structure, ne scales as N when N → ∞. This can

be seen in Fig. 5.9, where we plot f = ne/dN versus N for triangular lattices at

χ = 0.6. This figure shows that f tends to some constant as N grows, which means

ne scales as N . Since a zero eigenvalue of the Hessian matrix of Φ∗(rN) implies a
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slower-than-quadratic scaling in some direction, the width of the feasible region in

these ne directions scales larger than
√
ε as ε → 0. Let the widths of the feasible

region in these ne directions be εx, where 0 < x < 1/2 is some exponent. The width

of the feasible region in the remaining dN − ne directions scales as
√
ε. The total

volume of the feasible region of a crystal is approximately

Vc ≈ ε(dN−ne)/2εnex ≈ εdN(1−f)/2εdNfx. (5.18)

The ratio of Vs and Vc is approximately

Vs
Vc
≈ L

√
Nε[dNf(1−2x)−

√
N ]/2. (5.19)

Since x < 1/2, as N → ∞ and ε → 0, Vs
Vc
→ 0. Therefore, the feasible region of

the stacked-slider phase is much smaller than that of the crystal. Since there are

always crystalline structures competing with the stacked-slider phase, the latter is

never entropically favored.
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Figure 5.9 Fraction of zero eigenvalues of the Hessian matrix of the potential energy

f =
ne
dN

for triangular lattices of various numbers of particles N at χ = 0.6.
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5.6 Relative Stability of Stacked-Slider Phases

We have shown that the feasible region of stacked-slider phases is always smaller than

that of crystal phases and thus concluded that stacked-slider phases are never equi-

librium phases at T = 0. This conclusion is confirmed by low-temperature molecular

dynamics simulations reported in Ref. [352], which found disordered structures for

χ < 1/2 and crystalline structures for χ > 1/2. However, this simple conclusion

cannot explain or predict energy minimization results from high-temperature initial

configurations that were used previously [328], where a transition from disordered

phases to metastable stacked-slider phases was observed as χ increases, characterized

by the change of the support of S(k). In two dimensions, Ref. [328] reported that this

transition is at χ = 0.57 . . ., but high-fidelity simulations, reported in Sec. 5.2, pro-

duced stacked-slider configurations at χ = 0.5305 . . ., suggesting that the transition is

earlier than 0.5305 . . .. Another observation on the disordered region supports our re-

sult: Section V of Ref. [27] reported that the fraction of normal modes with vanishing

frequency f in disordered phases is exactly 1 − 2χ for χ < 1/2. However, this exact

relation cannot be true for the χ > 1/2 region, since f is non-negative. This suggests

that there exists a sharp transition at χ = 1/2, which is likely the phase transition

to the stacked-slider phase. Although Ref. [27] only reported the relation f = 1− 2χ

in two dimensions, it explained this relation by simple counting arguments involving

the number of constraints versus the number of degrees of freedom and hence this

relation should apply in any dimension. Therefore, for any d, as long as stacked-slider

phases exist for some χ above 1/2, there should be a nonequilibrium phase transition

from disordered phases to stacked-slider phases at the threshold χ = 1/2.

It is noteworthy that one dimension is an exception of the above discussion. Pre-

viously, the existence of implicit constraints [k’s such that |k| > K and S(k) = 0]

was often used to distinguish stacked-slider phases from disordered phases [328, 27].

Therefore, one-dimensional stealthy ground states in the range 1/3 < χ < 1/2, proven
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Table 5.3 Comparison of the properties of some common states of matter. Here crystals
and quasicrystals signify perfect crystals and perfect quasicrystals, respectively, without
any defects (e.g., phonons and phasons). The checks and crosses indicate whether or not
different phases have the attributes listed in the first column.

Property
Crystals
[262]

Quasicrystals
[269, 179,
180, 34, 76]

Stacked-
slider
phases

Disordered
ground states
of
stealthy po-
tentials
[328, 329, 26,
27, 325]

Liquid crys-
tals
[47]

Liquids
[289]

periodicity 3 7 7 7 7 7

positive
shear modulus

3 3 7 7 7 7

hyperuniformity 3 3 3 3 7 7

anisotropy 3 3 3 7 3 7

long-range orien-
tational order

3 3 3 7 3 7

to have implicit constraints [83], were considered to be stacked-slider phases [27].

However, this study suggests that one-dimensional stealthy ground states in this range

are not a typical stacked-slider phase. First, our model only predicts stacked-slider

phases if the space dimension d is a sum of two positive integers d = dP +dQ. This re-

quires that d ≥ 2. Second, the χ range of the one-dimensional stealthy ground states

with implicit constraints is also very different from that of the higher-dimensional

stacked-slider phases. We also found that one-dimensional stealthy ground states in

this χ range satisfy the relation f = 1 − 2χ and can be obtained from energy min-

imizations starting from random initial configurations with 100% success rate; both

are characteristics of disordered phases [27].
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5.7 Conclusions and Discussion

In this chapter we studied using numerical and theoretical techniques stacked-slider

phases, which are metastable states that are part of the ground-state manifold of

stealthy potentials at densities in which crystal ground states are favored entropically

in the canonical ensemble in the zero-temperature limit [325, 352]. The numerical

results suggested analytical models of this phase in two, three and higher dimensions.

Utilizing this model, we estimated the size of the feasible region of the stacked-slider

phase, finding it to be smaller than that of crystal structures in the infinite-system-size

limit, which is consistent with our recent previous work [325, 352]. In two dimensions,

we also determined exact expressions for the pair correlation function and structure

factor of the analytical model of stacked-slider phases, and analyzed the connectedness

of the ground-state manifold of stealthy potentials in this density regime.

Our analytical constructions demonstrate that stacked-slider phases are nonperi-

odic, statistically anisotropic structures that possess long-range orientational order

but have zero shear modulus. Since stacked-slider phases are part of the ground-state

manifold of stealthy potentials, they are also hyperuniform. Therefore, stacked-slider

phases are distinguishable states of matter that are uniquely different from some

common states of matter listed in Table 5.3. Note that distinctions between the

attributes indicated in the table may be subtly different. For example, crystals, qua-

sicrystals, and stacked-slider phases all have long-range orientational order, but with

different symmetries. While crystals can only have twofold, threefold, fourfold, or six-

fold rotational symmetries, quasicrystals have prohibited crystallographic rotational

symmetries. Stacked-slider phases generally do not have any rotational symmetry,

but the fact that they can be constructed by stacking lower-dimensional stealthy con-

figurations in a higher-dimensional space makes the stacking directions different from

the sliding directions, giving them their unique orientational order.
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Our understanding of stacked-slider phases is only in its infancy with many open

questions. For example, what is the nature of the associated excited states? Can

stacked-slider phases emerge from particles interacting with other potentials not nec-

essarily as ground states? Can such phases be entropically favored in some ensemble

and with what other phases would it coexist? This is just a partial list of possible of

future avenues of research in our understanding of this unusual phase of matter.

5.8 Appendix: Connectedness of Permutations of

2D Stacked-Slider Phase

As discussed in Sec. 5.3, each two-dimensional stacked-slider configuration is con-

nected to a permutation of the rectangular lattice. Therefore, a natural question

is whether or not these permutations of the rectangular lattice are also connected

through sliding motions. If all permutations of the rectangular lattice are connected,

then the entire stacked-slider phase ground-state manifold is connected. We will show

that, for a rectangular lattice consisting of A rows and B columns of particles, if each

row and each column can slide individually, then all permutations of the rectangular

lattice are connected if and only if AB is even. We will number all the particles from

1 to AB. Each permutation will be represented by an A×B matrix. Three different

sliding motions will be frequently used in this section. They are as follows:

• Move the top row of particles to the right by one particle spacing, denoted by

→⇒;

• move the leftmost column of particles upward by one particle spacing, denoted

by
↑⇒;

• and move the leftmost column of particles downward by one particle spacing,

denoted by
↓⇒.
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As an example of this notation, for A = B = 2, permutations

1 2

3 4

 and

2 1

3 4

 are connected because

1 2

3 4

 →⇒

2 1

3 4

 . (5.20)

Similarly, permutations

1 2

3 4

 and

3 2

1 4

 are connected because

1 2

3 4

 ↓⇒

3 2

1 4

 . (5.21)

So far we have demonstrated that it is possible to swap the two adjacent particles

in the first row [by Eq. (5.20)] or the two adjacent particles in the first column [by

Eq. (5.21)] for A = B = 2. Since the system has translational symmetry, one can

swap any two adjacent particles. The swapping of any two nonadjacent particles can

be done by a series of adjacent-particle swapping. For example, to swap nonadjacent

particles 1 and 4 in

1 2

3 4

, one can swap particles 1 and 2, then swap particles 1

and 4, and then swap particles 2 and 4. Finally, since we can swap any two particles,

we can connect one permutation to any other permutation by swapping each particle

with the particle in its new place. Therefore, all permutations of 2 × 2 rectangular

lattices are connected by row-sliding and column-sliding movements.

Next, we show that one can swap two adjacent particles for A = 3 and B = 4.

To swap the first two particles in the first row, one can perform the following sliding
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operations:


1 2 3 4

5 6 7 8

9 10 11 12

 →⇒


4 1 2 3

5 6 7 8

9 10 11 12

 ↑⇒


5 1 2 3

9 6 7 8

4 10 11 12



→⇒


3 5 1 2

9 6 7 8

4 10 11 12

 ↓⇒


4 5 1 2

3 6 7 8

9 10 11 12

 →⇒


2 4 5 1

3 6 7 8

9 10 11 12



↑⇒


3 4 5 1

9 6 7 8

2 10 11 12

 →⇒


1 3 4 5

9 6 7 8

2 10 11 12

 →⇒


5 1 3 4

9 6 7 8

2 10 11 12



↓⇒


2 1 3 4

5 6 7 8

9 10 11 12

 . (5.22)

To swap the first two particles in the first column, one can perform the following

sliding operations starting from the third-to-last configuration in Eq. (5.22):


1 3 4 5

9 6 7 8

2 10 11 12

 ↓⇒


2 3 4 5

1 6 7 8

9 10 11 12

 →⇒


5 2 3 4

1 6 7 8

9 10 11 12

 . (5.23)

Equations (5.22) and (5.23) shows the steps to swap the first two particles in the

first row, or the first two particles in the first column, for A = 3 and B = 4. This

can be generalized to any A > 3 and any even B > 4. The generalization to A > 3

is more obvious because the same steps can be directly applied to any A and achieve

the same goal. The generalization to larger even B is less obvious. For this case,

one needs to repeat the first four operations in Eq. (5.22) (B/2− 1) times and then
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perform the rest of the steps in Eq. (5.22) or (5.23). Since it is possible to swap

any two adjacent particles for any A and any even B , from the same argument as

the A = B = 2 case, all permutations of particles for any A and any even B are

also connected. Similarly, all permutations of particles for any even A and any B

are also connected because a 90◦ rotation turns it to the even B case. Therefore, all

permutations are connected as long as AB is even.

When AB is odd, not all permutations are connected. This is because none of the

sliding operations change the parity of the permutation. Thus, two permutations with

different parity cannot be connected with any combinations of sliding operations.
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Chapter 6

Transport, Geometrical and

Topological Properties of Stealthy

Disordered Hyperuniform

Two-Phase Systems

6.1 Introduction

A hyperuniform many-particle system is one in which the structure factor approaches

zero in the infinite-wavelength limit.[317] In such systems, density fluctuations (mea-

sured by the variance of number of particles inside a spherical window) are anoma-

lously suppressed at very large lengths scales, a “hidden” order that imposes strong

global structural constraints.[317, 307] All structurally perfect crystals and quasicrys-

tals are hyperuniform,[317, 349] but typical disordered many-particle systems, in-

cluding gases, liquids, and glasses, are not. Disordered hyperuniform many-particle

systems are exotic states of amorphous matter that have attracted considerable re-

cent attention.[317, 349, 74, 347, 149, 18, 173, 77, 177, 136, 142, 66, 68, 341, 211, 95,
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325, 328, 352, 353, 28, 216, 307, 343] Materials that are simultaneously disordered

and hyperuniform can be regarded to be exotic states of matter that lie between a

crystal and a liquid; they behave more like crystals in the manner in which they sup-

press large-scale density fluctuations, and yet they also resemble typical statistically

isotropic liquids and glasses with no Bragg peaks.[325]

An important class of disordered hyperuniform many-particle systems is comprised

of the classical ground states of “stealthy potentials,”[328, 325, 352, 353] which are

bounded, long-range, pairwise additive potentials designed in Fourier space. These

classical ground states are of particular fundamental interest because they can be

degenerate and noncrystalline. A nonnegative parameter inversely proportional to

the number density, χ, controls the degree of order of such ground states. For χ <

0.5, the ground states are overwhelmingly highly degenerate and disordered. As χ

increases above 0.5, long-range translational and rotational order begins to emerge

and eventually the system crystallizes. We have previously studied these disordered

ground states, and computed their pair correlation functions,[328, 329, 26, 352, 325]

structure factors,[328, 329, 26, 352, 325] Voronoi cell volume distribution,[328, 352]

and particle-exclusion probabilities.[325]

Some initial studies have demonstrated that stealthy hyperuniform systems are

endowed with novel thermodynamic and physical properties. For example, their

low-temperature excited states are characterized by negative thermal expansion

behavior.[28] It has also been shown that dielectric networks derived from stealthy

disordered hyperuniform point configurations possess complete photonic band gaps

comparable in size to those of a photonic crystal, while at the same time main-

tain statistical isotropy, enabling waveguide geometries not possible with photonic

crystals as well as high-density disordered transparent materials.[95, 94, 189, 178]

However, the determination of physical/chemical properties of stealthy disordered

hyperuniform materials is generally an unexplored area of research.
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In this chapter, we investigate steady-state and time-dependent diffusion prop-

erties of certain decorations of stealthy disordered hyperuniform ground-state point

configurations in two and three dimensions. In particular, we derive two-phase hetero-

geneous media from point configurations by decorating the point configurations with

spheres (circles); specifically, all points are circumscribed by spheres of radius a that

generally may overlap with one another. By varying the radius, the fraction of space

occupied by the spheres will vary. We study the effective transport properties of these

disordered two-phase systems, including the effective diffusion coefficient,[305] and

static and time-dependent characteristics of diffusion-controlled reactions at the in-

terfaces between the two continuous phases, as well as the trapping rate (or its inverse,

the mean survival time) as well as the principal (largest) relaxation time.[245, 308]

Quantifying the effective diffusion coefficient is of importance not only because it has

direct applications (e.g., diffusion of fuel and oxygen in a fuel cell [351], diffusion

tensor magnetic resonance imaging, [266, 327] regulation and metabolism of normal

organs, [59, 106] and drug release from porous matrices [175]), but also because its

determination translates immediately into equivalent results for the effective thermal

and electric conductivity, the effective dielectric constant, and the effective magnetic

permeability for reasons of mathematical analogy,[305] and is therefore related to a

host of applications. Diffusion-controlled reactions arise in widely different processes,

such as heterogeneous catalysis,[22] gas sensor operation,[260] cell metabolism,[252]

crystal growth,[336] and nuclear magnetic resonance (NMR).[24, 207, 284]

These transport properties are related to several statistical geometrical and topo-

logical characteristics, which we therefore also study. These include the pore-size

functions (the distribution of the distance from a randomly chosen location in the

void phase to the closest phase boundary),[303] the quantizer error (a moment of the

pore-size function, which is related to the principal relaxation time),[308, 303] the

order metric τ (a measure of the translational order of point configurations),[325] and
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the percolation threshold or the critical radius (the radius of the spheres at which a

specific phase becomes connected) of each phase.[250, 184, 234, 235]

We compare the aforementioned physical and geometrical properties of our two-

phase system derived from decorated stealthy ground states, as a function of the

tuning parameter χ, with those of two other two-phase media: (1) equilibrium disor-

dered (fluid) hard-sphere systems and (2) decorated Poisson point processes (ideal-gas

configurations). The former has short-range order that is tunable by its volume frac-

tion but no long-range order. The latter has neither short-range order nor long-range

order. Through comparison, we find that some of these quantities are dramatically

affected by the degree of long-range order, while other quantities are much more sen-

sitive to the degree of short-range order. Because many of these quantities depend on

the density, we re-scale all systems to unit number density to ensure a fair comparison.

Among our major findings, we show that these transport, geometrical and topo-

logical properties of our two-phase media are generally distinctly different from those

of equilibrium hard-sphere systems and spatially uncorrelated overlapping spheres.

At high χ values, the stealthy disordered two-phase media can attain nearly maximal

effective diffusion coefficient, while also maintaining isotropy. This novel property

could have practical implications, e.g., optimal and isotropic drug release from de-

signed nanoparticles. Stealthy ground states tend to ideal gases configurationally in

the χ → 0 limit. [325] Nevertheless, we find that even in the low-χ regime, our

two-phase media have much lower principal relaxation time than that of equilibrium

hard-sphere systems of similar degrees of order, indicating that the formation of large

holes in the stealthy systems is strongly suppressed. Lastly, we also find that the

aforementioned geometrical and topological quantities are strongly correlated with

each other.

The rest of the chapter is organized as follows: In Sec. 6.2, we give precise defi-

nitions of the stealthy potential and the aforementioned transport, geometrical and
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topological quantities. In Sec. 6.3, we present our numerical method to calculate

them. We present our results in Sec. 6.4 and conclusions in Sec. 6.5.

6.2 Mathematical Definitions and Background

6.2.1 Preliminaries

This chapter studies properties of point-particle systems as well as two-phase het-

erogeneous media derived from certain decorations of these point configurations. A

point-particle system consists of N point particles with a certain probability density

function P (rN), where rN ≡ r1, r2, ..., rN is the particle positions, in a simulation box

of volume vF under periodic boundary conditions in d-dimensional Euclidean space

Rd, where d is 2 or 3. The number density is defined as ρ = N/vF . The “Poisson

point process” (also called “ideal gas”) is produced by the probability density func-

tion P (rN) = v−NF that does not depend on particle positions rN . The equilibrium

hard-sphere point process of radius a is another point process with P (rN) equal to a

positive constant if the distance between every pair of points is larger than 2a and

zero otherwise.

A realization of a two-phase medium can be mathematically described as a parti-

tion of a domain of space V ∈ Rd with volume V into two separate regions, V1 and

V2. It is characterized by an indicator function, I(x), where x is any position in the

two-phase medium. The indicator function I(x) is one if x ∈ V1 and zero if x ∈ V2.

The volume fraction of phase 1 is given by φ1 =< I(x) >, where < · · · > denotes an

ensemble average. That of the other phase is given by φ2 = 1 − φ1. Let ∂V be the

interface between V1 and V2, the specific surface, i.e., the total area of ∂V divided by

V , is given by:

s =< |∇I(x)| > . (6.1)
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The two-phase media that we consider here are derived from point configurations

by decorating the point configurations with spheres (circles); specifically, each point

is circumscribed by a sphere of radius a that generally may overlap with one another.

Therefore, it is composed of a void region (phase 1) and a particle region (phase 2).

When such a mapping is applied to a Poisson point process, the decorated system is

also called “fully penetrable spheres” [235] or “spatially uncorrelated spheres.” [184]

6.2.2 Stealthy potentials and their entropically favored

ground states

Consider point processes that are obtained from the canonical ensemble probability

distribution function defined by

P (rN) = exp[−βΦ(rN)]/Z, (6.2)

where Φ(rN) is an interaction potential, β is the inverse temperature, and Z =∫
exp[−βΦ(rN)]drN is the partition function. Of particular interest in this chapter is

the “stealthy” interaction potential:

Φ(rN) =
1

2vF

∑
0<k<K

|ñ(k)|2 + Φ0

=
∑
i<j

1

vF

∑
0<k<K

exp(ik · rij),
(6.3)

where the sum is over all reciprocal lattice vector k’s of the simulation box such that

0 < |k| ≤ K, ñ(k) =
∑N

j=1 exp(−ik · rj),

Φ0 = [N(N − 1)−
∑

0<k<K

N ]/2vF (6.4)
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is a constant independent of the particle positions rN , and the second equal sign in

Eq. (6.3) can be proved by Parseval’s theorem. Such potential is interesting not only

because it is a pairwise additive potential [as the right side of Eq. (6.3) shows], but

also because it allows one to directly tune the structure factor

S(k) = |ñ(k)|2/N. (6.5)

The ground state (i.e., β → +∞ or zero-temperature state) of this potential is ob-

tained by constraining S(k) = 0 for all 0 < |k| ≤ K.[328, 325]

Let M be half the number of k points in the summation of Eq. (6.3) 1; the

parameter

χ =
M

d(N − 1)
(6.6)

determines the degree to which the ground states are constrained and therefore the

degeneracy and disorder of the ground states.[328] For χ < 0.5, the ground states

are typically disordered and uncountably infinitely degenerate.[325, 352] Therefore,

there are multiple ways to assign different weights (i.e., probabilities) to different sets

of ground states. One way of particular interest is the zero-temperature (β → +∞)

limit of Eq. (6.2). Ground states drawn from such distribution are called “entropically

favored ground states”.[325, 352] It is interesting to note that in the χ→ 0 and a→ 0

limit, both entropically favored ground states of stealthy potentials and equilibrium

hard-sphere point processes tend to Poisson point process geometrically. In the rest

of the chapter this fact will be frequently used to test our simulation results since

many properties of the Poisson point process have been studied previously.

1Since |ñ(k)|2 = |ñ(−k)|2, M is the number of independent constraints.
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6.2.3 Transport properties

This chapter studies the following steady-state and time-dependent diffusion prop-

erties in phase 1 (the void phase) of decorated entropically favored ground states of

stealthy potentials, and compare them with that of decorated Poisson point process

and equilibrium disordered (fluid) hard-sphere system at unit number density.

Effective diffusion coefficient

Consider the steady-state diffusion problem of some species with concentration field

c(x) in a two-phase medium in which phase 1 is the space in which diffusion occurs

and phase 2 are “obstacles” that the diffusing species cannot enter. In phase 1, the

flux of the species, J(x), is predicted by Fick’s first law:

J(x) = D∇c(x), x ∈ V1 (6.7)

where D is a diffusion coefficient which we set to unity for simplicity. However,

Eq. (6.7) is valid only in phase 1 and has to be paired with the following Neumann

boundary condition:

n · J = 0, on ∂V , (6.8)

where n is the normal vector of the surface. We see that the inclusion of such obstacles

adds a complicated boundary condition and makes the overall diffusion problem diffi-

cult. Nevertheless, on a length scale much larger than the characteristic length of the

obstacles, the system can be homogenized [305] and characterized by an “effective”

diffusion coefficient, De, defined by the average Fick’s first law:

< J(x) >= De < ∇c(x) > , for any x (6.9)

where angular brackets denote ensemble averages.
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The effective diffusion coefficient of an isotropic two-phase medium must satisfy

the Hashin-Shtrikman (HS) upper bound.[129] For our case where phase 1 has unit

diffusion coefficient and phase 2 cannot be entered, this bound in d dimensions is

given by:

De ≤
d− 1

d− 1 + φ2

. (6.10)

This bound is optimal because it is realizable by certain model microstructures, in-

cluding the “coated-sphere model” described in Ref. [128], and is therefore the best

possible bound for isotropic systems given volume-fraction information only.

Diffusion-controlled reactions

Consider the problem of diffusion and reaction among absorbing “traps” in the ran-

dom medium. Let phase 1 be the region in which diffusion occurs and phase 2 be the

trap region, the diffusion process in phase 1 is governed by the same Fick’s first law

but with time dependency:

J(x, t) = D∇c(x, t), in V1. (6.11)

This equation, combined with the conservation of the diffusing species inside phase

1, ∇ · J = ∂c
∂t

, yields Fick’s second law:

∂c(x, t)

∂t
= D4 c(x, t), in V1. (6.12)

If phase 2 are absorbing “traps” (rather than impenetrable obstacles as in the afore-

mentioned effective diffusion problem), the boundary condition has to be changed. In

the diffusion-controlled limit, i.e., when the reaction rate at the interface is infinite,

we have the following boundary condition:[308]

c(x, t) = 0, on ∂V . (6.13)
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If we also set the initial concentration to be uniform outside of traps:

c(x, 0) = c0, in V1, (6.14)

then we have the survival problem. The “survival probability,” p(t) is equal to the

fraction of reactant not yet absorbed at time t:[308, 305]

p(t) =

∫
Rd c(x, t)dx∫
Rd c(x, 0)dx

. (6.15)

The mean survival time of the reactant is the zeroth moment of p(t):2

Tmean =

∫ ∞
0

p(t)dt. (6.16)

The survival probability can be decomposed as a sum of exponential functions:

p(t) =
∞∑
n=1

In exp(−t/Tn), (6.17)

where In are coefficients and Tn are relaxation times. The largest relaxation time

is called “principal relaxation time” and by convention denoted T1. These quan-

tities can be measured directly by NMR experiments since in NMR experiment

of fluid-saturated porous media, proton magnetization decays mainly on the phase

boundary.[284, 24, 207]

It is worth noting that although the above problems involve differential equations,

De, p(t), and Tmean can actually be calculated much more efficiently by simulating

Brownian motions using the so-called “first-passage time” technique. (See the Sec. 6.3

for details.) The effective diffusion coefficient can be found from the ratio of the mean

square displacement of such Brownian particles and the time spent. The survival

2Note that the commonly used notation for the mean survival time is τ [308, 305]. Here, we use
Tmean to avoid confusion with the order metric τ .

141



probability p(t) is equal to the probability that a Brownian particle have never reached

any trap at time t. The mean survival time, Tmean, can be calculated by integrating

p(t) but can also be calculated, more easily, by finding the average time needed for a

particle to reach a trap the first time. It is also worth noting that while the effective

diffusion coefficient is identically zero as long as the void phase is not percolating,

Tmean and T1 are both positive until the spheres cover the entire space.[305]

6.2.4 Geometrical and topological properties

We also studies the following geometrical and topological properties that are inti-

mately related to the aforementioned diffusion characteristics.

Hyperuniformity and stealthiness in many-particle systems and two-phase

media

As we have explained earlier, a hyperuniform many-particle system is one in which

the structure factor, Eq. (6.5), approaches zero in the k → 0 limit. The name

“hyperuniform” refers to an anomalous suppression of density fluctuations: Consider

random placements of a spherical observation window of radius R in a d-dimensional

many-particle system. The number of points contained in such window, N(R), is a

random variable. For a uniform but not hyperuniform many-particle system (e.g.,

ideal gas without a gravity field), σ2
N(R) for large R scales as Rd. For a hyperuniform

system, σ2
N(R) for large R grows more slowly than Rd. It has been proved that the

above-mentioned two conditions of hyperuniformity, limk→0 S(k) = 0 and σ2
N(R) for

large R grows more slowly than Rd, are mathematically equivalent.[317]

A similar definition exists for two-phase media.[307] One can compute the volume

fraction of either phase inside a spherical observation window of radius R and find

its variance. For large R, this variance scales as R−d for typical (non-hyperuniform)

random two-phase media and decreases faster than R−d for hyperuniform two-phase
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media. An equivalent condition for hyperuniformity is that limk→0 χ̃V (k) = 0, where

χ
V

(k) =
1

vF
|J (k)|2 (6.18)

is called the “spectral density” and J (k) is the Fourier transform of I(x)− φ1.[300]

Stealthy hyperuniform many-particle systems or two-phase media are subsets of

hyperuniform many-particle systems or two-phase media in which S(k) or χ
V

(k) is

zero for a range of k vectors around the origin, i.e.,

S(k) = 0 or χ
V

(k) = 0 for 0 ≤ |k| ≤ K, (6.19)

where K is some positive number. For the many-particle systems mentioned in this

chapter, the ground state of “stealthy” potentials are stealthy and hyperuniform while

equilibrium hard-sphere systems and Poisson point process are neither stealthy nor

hyperuniform.

Packing and packing fraction

When we decorate a point-particle configuration by replacing points with spheres of

radius a, the whole collection of spheres is considered a “sphere packing” if each pair

of point particles is separated by a distance of at least 2a (i.e., if the spheres do not

overlap). The fraction of space occupied by the union of spheres, φ2, is called the

packing fraction φp. Of particular interest in this chapter is the maximum packing

radius amaxp , which is half the minimum separation distance between two particles,

and maximum packing fraction φmaxp , which is the volume fraction of phase 2 when

a = amaxp .

Why should we study the maximum packing fraction? One important reason is

that when we decorate a point configuration and map it into a two-phase medium, if

spheres do not overlap, then the spectral density χ̃
V

(k) of the two-phase medium is
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proportional to the structure factor S(k) of the underlying point configuration:[306]

χ̃
V

(k) =
φ2

v1(a)

(
2πa

|k|

)d
J2
d/2(|k|a)S(k) (a ≤ amaxp ), (6.20)

where v1(a) is the volume of a d-dimensional sphere of radius a and Jd/2(x) is the

Bessel function of order d/2. Therefore, a decorated stealthy point configuration is

a stealthy two-phase medium if φ2 < φmaxp . When φ2 > φmaxp , however, Eq. (6.20)

no longer holds and we will see in Sec. 6.4.1 that decorated systems are generally no

longer stealthy or hyperuniform.

Nearest-neighbor and pore-size functions

Given a point-particle system, the void-exclusion probability EV (r) is the probability

that a spherical cavity of radius r, centered at a random location, is empty of particles.

A related quantity is HV (r) = −[∂EV (r)]/(∂r), the probability density function of

the distance to the nearest particle from a randomly chosen location. A different

interpretation of EV is that if each point particle is replaced with a sphere of radius

a, then EV (a) is the volume fraction of the space outside of the spheres, i.e.,

EV (a) = φ1 = 1− φ2. (6.21)

Since HV is the negative derivative of EV , HV (a) is the specific surface s.[305]

Another quantity related to EV (r) is the scaled dimensionless quantizer error G.

For a point configuration with positions r1, r2, . . ., a quantizer is a device that takes

as an input a position x in Rd and outputs the nearest point ri of the configuration

to x. Assuming x is uniformly distributed, one can define a mean square error, which

can be obtained from EV (r) via the relation:[303]

G =
2ρ

2
d

d

∫ ∞
0

rEV (r)dr. (6.22)
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Finally, two more related quantities can be defined for two-phase media. The

pore-size cumulative distribution function, F (δ), is defined as the fraction of pore

space (i.e., space covered by phase 1) which has a pore radius larger than δ. The

function F (δ) of our decorated system is trivially related to EV (r) of the underlying

point-particle system:

F (δ) =
EV (δ + a)

EV (a)
. (6.23)

Moreover, the associated pore-size probability density function is given by P (δ) =

−[∂F (δ)]/(∂δ). This pore-size function at the origin is related to the specific surface,

s, by

P (δ = 0) =
s

φ1

. (6.24)

It is interesting to note that the moments of F (δ) are related to the mean survival

time and principle relaxation time via the following rigorous lower bounds [308]:

Tmean ≥
1

D

(∫ ∞
0

F (δ)dδ

)2

, (6.25)

and

T1 ≥
2

D

∫ ∞
0

δF (δ)dδ. (6.26)

We see that G is proportional to the first moment of F (δ) in the a → 0 limit and is

therefore related to the principal relaxation time.

Order metric τ

We will be studying the above properties for systems of varying degrees of order.

Therefore, it is desirable to have a way to quantify such order. Moreover, since the

underlying point-configurations we study include both stealthy ground states, which

have long-range order, and equilibrium liquid hard-sphere systems, which have short-

range order, we desire an order metric that reflects short-range order and long-range
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order equally well. A suitable choice is the order metric τ , introduced in Ref. [325]

and defined as:

τ =
1

Dd

∫ ∞
0

[g2(r)− 1]2dr =
1

(2π)dDd

∫ ∞
0

[S(k)− 1]2dk, (6.27)

where D is some characteristic length scale, g2(r) is the pair correlation function,[46]

S(k) is the angular average of S(k), and the second equal sign can be proved by

Parseval’s theorem. In this chapter, we simply let D = 1 because we always rescale

the configuration to make the number density unity.

Percolation threshold and critical radius

Since the effective diffusion coefficient is trivially zero when the void phase is topo-

logically disconnected, it is important to quantify when the phases are connected.

To do this, we will be considering the percolation properties of the systems. As we

specified earlier, we map point configurations into two-phase media by replacing each

point with a sphere of radius a. For phase 2, the critical or percolation radius, a2c, is

the minimum a such that a connected part of phase 2 becomes infinite in size. The

percolation volume fraction, φ2c, is the fraction of space occupied by the union of

spheres of radius a2c.

We can define similar percolation characteristics of the void phase.[248, 231] The

percolation radius of the void phase, a1c, is defined as the maximum a such that there

is still an infinite-sized connected part of phase 1. The percolation volume fraction,

φ1c, is the volume fraction of phase 1 at radius a1c. In two dimensions, it is very

rare to have both phases percolating simultaneously (see Ref. [271] for such a rare

example). In our case, a1c = a2c and φ1c = 1 − φ2c. In three dimensions, however,

both phases can simultaneously percolate, i.e., the two-phase system is bicontinuous.
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Indeed, this is the case for our 3D systems and hence we must compute a1c and a2c

separately.

6.3 Simulation Details

6.3.1 Generating entropically favored stealthy ground states

We generate entropically favored ground states of stealthy potentials using the same

protocol as our previous work.[352] This protocol involves performing molecular dy-

namics (MD) simulations at a very low temperature (β = 5×105 in 2D and β = 1×106

in 3D in dimensionless units), taking snapshots periodically, and performing a local

energy minimization starting from each snapshot. Because the MD temperature is

sufficiently low, the snapshots before energy minimization are already very close to

ground states. Therefore, the ground states produced by the subsequent energy min-

imization closely follow the canonical distribution in the zero-temperature limit. We

generate 20,000 configurations per χ value, same as Ref. [352]. The only two differ-

ences between this work and our previous work [352] are (1) system sizes are different

(see Appendix A for our choice of system sizes and the justification), and (2) each

configuration is rescaled to unit number density (in order to ensure a fair comparison).

6.3.2 Generating equilibrium disordered hard-sphere sys-

tems

We also generate equilibrium disordered hard-sphere systems via standard Monte-

Carlo techniques in order to compare their statistics with entropically favored stealthy

ground states’ statistics. Depending on the packing fraction φ, an equilibrium hard-

sphere system can be disordered (liquid-like) or crystalline. Disordered equilibrium

hard-sphere system exists for 0 < φ < 0.69 in 2D and 0 < φ < 0.49 in 3D.[305]
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Therefore, the packing fraction we used include φ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, and 0.68 in 2D and φ = 0.05, 0.1, 0.15, 0.2,

0.25, 0.3, 0.35, 0.4, 0.45, and 0.48 in 3D. For each φ in each dimension, we generate

equilibrium hard-sphere systems with N = 100, 300, and 500 particles. In each case,

the system was first equilibrated with 3× 106N trial moves. After that, we sample a

configuration every 300N trial moves until we obtain 20,000 configurations. Similar

to the stealthy ground states, we keep the number density ρ = 1. Therefore, we

adjust sphere radius to attain a desired packing fraction.

6.3.3 Calculating survival probability, mean survival time,

and principal relaxation time

Because the method we used to calculate the effective diffusion coefficient is an ex-

tension of the method to calculate survival probability and mean survival time, we

will explain the latter method first. The survival probability p(t) and mean survival

time Tmean can be calculated by simulating particles undergoing Brownian motions.

The Brownian motion can be simulated very efficiently using the first-passage-time

technique.[312] The key idea of this technique is that for a Brownian particle at a

particular location, let R be the distance between it and the closest phase boundary.

Construct a sphere centered at the particle with radius R (which is called a first-

passage-time sphere). Let tR be the time needed for the particle to reach the surface

of such sphere for the first time, the distribution of tR can be calculated analytically.

In 3D, the cumulative distribution function (CDF) of tR is[312]

F (tR) = 1 + 2
∞∑
m=1

(−1)m exp

(
−Dm

2π2tR
R2

)
. (6.28)
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In 2D, Ref. [312] did not provide the distribution of tR. Here we find the following

explicit 2D expression for tR:

F (tR) = 1− 2
∞∑
m=1

exp(−Dw2
mtR/R

2)

wmJ1(wm)
, (6.29)

where Jn(x) is the Bessel function of order n, and wn is the nth root of J0(x). The

mean of tR , in any dimension, is simply R2/2dD.

Therefore, the Brownian motion inside the first-passage-time sphere does not need

to be simulated in detail. One simply moves the particle to a random location on the

surface of such sphere, and increase the time by a certain amount, as detailed below.

When calculating the mean survival time Tmean, the time increment can simply be

R2/2dD, the mean of tR . When calculating p(t), however, the time increment has

to be a random number drawn from the distributions given in Eq. (6.28) or (6.29).

The process of finding R, moving the particle, and increasing the time is repeated

until the Brownian particle gets very close (10−5a) to a trap, at which time the

Brownian particle is deemed trapped. In our implementation, Eqs. (6.28)-(6.29) are

pre-computed and tabulated to accelerate the simulation. For each configuration, we

simulate 10 Brownian trajectories to calculate Tmean and 1000 trajectories to calculate

p(t). When calculating p(t), each trajectory is additionally sampled 100 times, with

different random time increments drawn from distributions (6.28)-(6.29).

After calculating p(t), we calculate the principal relaxation time T1 by fitting p(t)

in the range 10−5 < p(t) < 10−3 to the asymptotic equation

ln[p(t)] ≈ c+ t/T1, (6.30)

where c and T1 are fitting parameters.
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6.3.4 Calculating effective diffusion coefficient

The effective diffusion coefficient De can also be calculated using first-passage-time

techniques. [159, 161, 313] In this case, however, the Brownian particle cannot be

deemed trapped when it is sufficiently close to the phase boundary because phase 2

is now non-absorbing obstacles rather than absorbing traps. Instead, we construct

a first-passage-time sphere of radius R = 10−2, find a random place on the surface

of the first-passage-time sphere that is outside of the obstacle phase, and move the

Brownian particle to that random place. Although this first-passage-time sphere

contains two phases, the mean time taken for the Brownian particle to reach such

surface could still be computed analytically and was given in Ref. [161]:

tR =
R2(1 + v2/v1)

2d
, (6.31)

where v2/v1 is the volume of the obstacle phase divided by the volume of the con-

ducting phase inside the first-passage-time sphere and can be found analytically.

The process of constructing a first-passage-time sphere and moving the point

particle is repeated to form a Brownian trajectory. In the infinite-time limit, the

effective diffusion coefficient is given by:[161]

De = lim
t→∞

< |R(t)|2 >
2dt

, (6.32)

where < |R(t)|2 > is the mean-squared displacement of a Brownian particle at time

t. In practice, in a finite-time simulation, one should only consider the time regime in

which the mean square displacement is strongly linear in time, since for sufficiently

early times the mean square displacement is either ballistic or grows faster than linear

in time.[313] We find De by fitting < |R(t)|2 > versus t and extracting the slope of

the line after some sufficiently large dimensionless time. We define the unit of time
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to be

t∗ =
1

ρ2/dD
, (6.33)

and set both ρ and D to be unity. The point in time in which < |R(t)|2 > first

becomes a strongly linear function occurs when the Brownian particle sufficiently

samples the two-phase system such that it can be viewed effectively as Brownian

motion in a homogeneous medium. For the microstructures that we considered here,

we find that the linear regime occurs in the dimensionless time interval 40 < t < 100,

i.e., we determine De from the linear relationship

< |R(t)|2 >= (2dDe)t+ c, 40 < t < 100. (6.34)

To get a sense of the possible behaviors of the mean square displacements as a

function of time, we show examples in Fig. 6.1 at several values of a for a three-

dimensional system at χ = 0.1333 · · · and indicate the linear fit in each case. This

fitting procedure works especially well near percolation, which is the most difficult

regime to simulate. For this particular system, the void phase stops percolating at

obstacle radius a1c = 0.80. Figure 6.1 shows that for a = 0.7 < a1c, < |R(t)|2 >

is linear with t. For a = 0.8 = a1c, only a fraction of configurations still have a

percolating void phase, and our fitting procedure was able to distinguish the initial

uprise in < |R(t)|2 > (contributions mainly from Brownian particles moving inside

a “cage”, i.e., a disconnected part of the void phase) from the steady increase in

< |R(t)|2 > (contributions from Brownian particles that are in a percolating part of

the void phase). For a = 0.9 > a1c, all Brownian particles are caged, and the fit has

a virtually zero slope (and therefore produces a virtually zero De).

We simulate 1 Brownian trajectory per configuration to calculate De. In Fig. 6.2,

we compare the computed De with the distribution of the void-phase percolation

threshold and find that De becomes zero right after all configurations stop percolat-
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Figure 6.1 The mean square displacement of Brownian particles, averaged over 20,000
configurations, < |R(t)|2 >, versus time, t, for a three-dimensional system at
χ = 0.1333 · · · with obstacle radii a = 0.7 (left), 0.8 (middle), and 0.9 (right). For this
particular system, the percolation threshold of the void phase is a1c = 0.80, and hence De

must vanish for larger values of a.

ing. The fact that our measured De diminishes to zero at the percolation threshold

indicates that our choice of the fitting range in Eq. (6.34) is appropriate.
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Figure 6.2 Comparing the calculated effective diffusion coefficient, De, with the
probability density function (PDF) of the void-phase percolation threshold, p(a1c), for
three dimensions, χ = 0.1333. The calculated De becomes zero when the void phase stops
percolating.

6.3.5 Calculating percolation thresholds

Generally speaking, the precise calculation of the percolation threshold of disordered

systems require very large system sizes. For example, to accurately determine the

percolation threshold of 3D fully penetrable spheres, Ref. [184] employed systems of

up to N = 7× 108 particles. The whole system is divided into smaller cubes and the

content particles in each cube is generated only when such cube is being probed.
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Unfortunately, our protocol of low-temperature MD and a subsequent energy min-

imization does not allow us to save time by only generating required parts of the

configuration. Moreover, in order to accurately follow the canonical-ensemble dis-

tribution at zero-temperature limit, the MD temperature has to be so low such that

many (7.5×107) time steps are required to produce a sufficiently long trajectory. The

requirement of a very large number of time steps forces us to further sacrifice system

size. As a result, our system is limited to several hundred particles. Therefore, ac-

curate determination of the percolation threshold is extremely challenging. Thus we

experimented with two advanced algorithms to minimize finite-size effect in order to

obtain relatively accurate results. We will first explain how to use these two methods

to determine the percolation threshold for the particle phase, and then describe the

generalizations to the void phase.

One of them, which we call “P1 maximum method,” is described in Ref. [213].

Starting from a random particle in a configuration, one randomly chooses two of

its periodic images in two different directions. The quantity P1 (denoted as R
(1)
∞ in

Ref. [213]) is defined as the probability that this particle is connected to one of the

chosen periodic images but not the other. At the percolation threshold, P1 attains its

maximum. Therefore, one can numerically find P1 as a function of sphere radius a and

find its maximum in order to find the percolation threshold. In our implementation,

we calculate P1(a) for various a’s starting from a = 0, with increment δa = 0.001,

until P1(a) develops a peak and then returns to zero. We then select all data points

such that P1(a) > 0.9 · Pmax
1 , where Pmax

1 is the maximum of P1(a), and perform a

quadratic fit of the selected data points. The maximum of the fitted function gives

the percolation radius a2c.

Ref. [213] measures the percolation radii a2c using several different system sizes

and then extrapolates to the infinite-system-size limit. However, when we perform

the same fitting procedure using different system sizes, we did not find a clear trend:
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In each dimension, for some χ values larger systems produces larger a2c while for other

χ values larger systems produces smaller a2c. Moreover, the extrapolated a2c, as a

function of χ, is not as smooth as the un-extrapolated one. We therefore conclude

that random noise is probably more important than finite-size effect in this case and

extrapolation is not proper. Thus, we will simply use a2c of our largest system as an

estimate of the infinite-system-size a2c.

After finding the percolation radius a2c, we determine the percolation volume

fraction φ2c. One could have simply read this quantity from a plot of the quantity

EV (r), since φ2c = 1−EV (a2c). However, we decide to use a somewhat more accurate

method: we divide the whole simulation box into 12000×12000 pixels (in 2D) or

1200×1200×1200 voxels (in 3D) and find out if the center of each pixel or voxel is

inside any sphere of radius ac. We then count the number of pixels or voxels that are

centered inside spheres to find out the volume fraction. From our experience, this

procedure gives us a four-significant-figures precision in φc.

The other method we employed, which we call “M2 intersection method,” is in-

troduced in Ref. [360]. At a given radius a, define smax to be the size of the largest

cluster, M2 (denoted as R2 in Ref. [360]) is defined as:

M2 =
〈s2
max〉 − 〈smax〉2
〈smax〉2

, (6.35)

where 〈· · · 〉 denotes an ensemble average. As Ref. [360] shows, at the percolation

threshold, M2 is the same for different system sizes. Therefore, one can compute

M2 as a function of a, and find the intersection of M2(a) for different system sizes

to find a2c. Following Ref. [360], we use three different N ’s for each χ value, and

perform an extrapolation to find a2c in the infinite-N limit. After that, we use the

same procedure discussed in the previous paragraph to calculate φ2c from a2c.
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We have used both methods to calculate the percolation volume fraction φ2c of

decorated stealthy ground states at various χ’s in 2D and 3D. They are presented in

Fig. 6.3. Figure 6.3 also presents φ2c for decorated Poisson point processes obtained

from Refs. [184] and [234], which are φ2c = 0.676339 in 2D and φ2c = 0.289573

in 3D. These results can be used as benchmarks since Poisson point processes are

geometrically equivalent to entropically favored stealthy ground states at χ = 0. We

see that in 2D, while both methods give results that approaches the Poisson value

very well in the χ → 0 limit, the P1 maximum method produces much smoother

results. In 3D, however, although both methods produce relatively smooth results,

only results from the M2 intersection method approaches the Poisson value very well

in the χ → 0 limit. Therefore, we decide to choose the P1 maximum method in 2D

and the M2 intersection method in 3D for the rest of the chapter. It is interesting

to note that to our knowledge, the P1 maximum method has been demonstrated to

work well in 2D [213] but not in 3D, while the M2 intersection method has been

demonstrated to work well in 3D [360] but not in 2D. It is possible that these two

methods are just more suited to their respective dimensions.
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Figure 6.3 Particle-phase percolation volume fraction φ2c of entropically favored stealthy
ground states at different χ’s in 2D (left) and 3D (right).

Besides the percolation threshold of the spheres, we also study the percolation

threshold of the void phase. In two dimensions, the percolation radius of the void
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Figure 6.4 Void-phase percolation volume fraction φ1c of entropically favored stealthy
ground states at different χ’s in 3D.

phase, a1c, is equal to the percolation radius of the spheres, a2c. In three dimensions,

however, a1c has to be calculated separately. We compute a1c in three dimensions

by performing a Voronoi tessellation of each configuration, and then computing M2

of the Voronoi vertices. As in the particle-phase case, the intersection of M2(a) at

different system sizes gives a1c. Similar to the particle-phase case, a1c can then be

converted to φ1c by digitization, the result of which is presented in Fig. 6.4. Similar

to the particle-phase case, we compare φ1c for our systems with that for the decorated

Poisson point processes obtained from Ref. [231], φ1c = 0.0317. Combining the φ2c

and φ1c results, we see that as χ increases from 0 to 0.46, the φ2 range for bicontinuity

moves upwards, from 0.290 < φ2 < 0.997 to 0.494 < φ2 < 0.998, respectively.

6.3.6 Calculating EV (r), G, and τ

The quantities EV (r) and G are calculated by first computing HV (r). For each config-

uration of N point particles, 100N random locations in 2D or 10N random locations

in 3D are generated in the simulation box. For each location, the distance from it

to its nearest particle is found. These distances are then binned to yield HV (r). We

then integrate HV (r) using trapezoidal rule to find EV (r). The quantizer error G

is obtained by another integration of rEV (r), using trapezoidal rule, as Eq. (6.22)
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shows. The numerically obtained HV (r) always have compact support, and thus the

above-mentioned integrations does not need to be truncated.

The order metric τ can be computed from either g2(r) or S(k), as Eq. (6.27)

shows. We have tried both approaches. The real-space integration in Eq. (6.27) is

truncated at half the simulation box side length and the reciprocal space integration

in Eq. (6.27) is truncated at 6K, where K is the cutoff of the stealthy potential (as

detailed in Sec. 6.2.2).

6.4 Results

We present visualizations of our two-phase systems derived from decorated stealthy

ground states in Figs. 6.5 - 6.7. In three dimensions, we present separate figures for

the particle phase and the void phase for clarity. In the rest of the section, we present

the above-mentioned properties of our two-phase systems, and compare them with

decorated Poisson point process and hard-sphere point process.

Figure 6.5 Decorated stealthy ground states in two dimensions at χ = 0.05 (left) and
χ = 0.48 (right), at a = 0.5. The void phase is marked green.
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Figure 6.6 Decorated stealthy ground states in three dimensions at χ = 0.02 (left) and
χ = 0.4598... (right), at a = 0.5. Each sphere is randomly assigned to one of four colors in
order to improve visual clarity.

Figure 6.7 Void phase in decorated stealthy ground states in three dimensions at
χ = 0.02 (left) and χ = 0.4598... (right), at the void-phase percolation threshold
a1c = 0.8970 (left) or 0.6992 (right).

158



6.4.1 Packing fraction and stealthiness

We present the maximum packing fraction of decorated stealthy ground states, φmaxp ,

in Fig. 6.8. In each dimension, as χ increases, φmaxp remains to be zero for χ up to

about 0.3 and then start to increase. This indicates that for χ ≤ 0.3, particles in

entropically favored stealthy ground states can become arbitrarily close to each other.

As χ becomes higher, particles develop an effective hard core that are impenetrable.

The development of such hard core was also observed in Ref. [328].
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Figure 6.8 Maximum packing fraction φmaxp , averaged over all configurations, of
decorated stealthy ground states in two and three dimensions as a function of χ.

When we decorate a stealthy ground state and map it into a two-phase medium,

if φ2 ≤ φmaxp , then Eq. (6.20) ensures that the resulting two-phase medium is also

stealthy. However, if φ2 > φmaxp , will the resulting two-phase medium also be stealthy

or hyperuniform? To answer this question, we decorated a two-dimensional stealthy

ground state of N = 111 particles at χ = 0.45 with several different sphere radii a,

digitized the resulting two-phase medium into 10000 × 10000 pixels, and calculated

the spectral density χ̃
V

(k) using Eq. (6.18). The result is presented in Fig. 6.9. For

this particular system, the maximum packing radius is amaxp = 0.407. We see that

for a < amaxp , χ̃
V

(k) is zero for k < 4.7. For a > amaxp , however, χ̃
V

(k) is positive
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and does not tend to zero as k → 0. Therefore, a decorated stealthy ground state is

generally neither stealthy nor hyperuniform if φ2 > φmaxp .
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Figure 6.9 Spectral density χ̃V (k) of a two-phase medium obtained from decorating a
two-dimensional stealthy ground state with N = 111 particles at χ = 0.45 with several
different sphere radii a.

6.4.2 Effective diffusion coefficient
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Figure 6.10 The effective diffusion coefficient, De, for our two-phase systems derived
from decorated stealthy ground states in two (left) and three (right) dimensions as a
function of sphere radius a. The number density ρ is fixed to be unity.

We present the calculated effective diffusion coefficient for our two-phase systems

derived from decorated stealthy ground states in Fig. 6.10. It is interesting to note

that in two dimensions, the curves of De(a) cross over each other for different values of

χ: while for smaller a higher χ produces a higher De, for larger a higher χ produces
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a smaller De. An explanation for such phenomenon will be presented in the next

paragraph.

It is also useful to plot De versus the particle-phase volume fraction, φ2, by map-

ping a to φ2 using Eq. (6.21). We present such plots in Fig. 6.11. These plots show

that higher χ values (more ordered arrangements of the obstacle phase) always pro-

duce higher De at the same volume fraction, which is consistent with our intuition:

a more ordered arrangement of the obstacles leaves more space between them, and

produces a higher De. So why did we see the opposite relationship between χ and

De in Fig. 6.10, except for smaller a in 2D? It turns out that a lower χ induces more

overlap between the spherical obstacles and thus results in a lower φ2. This in turn

produces a higher De.

With De plotted versus φ2, it is interesting to compare our result with the HS

upper bound given in Eq. (6.10). We make such comparison in Fig. 6.11. Our result

is consistent with the upper bound for any χ and φ2 except for small fluctuations,

but the bound is sharp only for smaller φ2.

If it is desired to find structures that maximizes De, then any one of the degenerate

structures that achieves the HS bound is optimal. We see that our two-phase systems

derived from decorated stealthy ground states at very high χ’s are very close to being

optimal for φ2 up to 0.4-0.5. In two dimensions, this φ2 range coincides with φmaxp

at high χ’s. Since decorated stealthy ground states loses stealthiness as φ2 increases

beyond φmaxp , our results suggest that a loss of stealthiness causes De to stop being

optimal. In three dimensions, however, De is less sensitive to structures. Thus,

although decorated stealthy ground states (at high χ’s) stops being a packing at

around φ2 = 0.2, De does not deviate from the optimal value until about φ2 = 0.5.

Our observation that De is less sensitive to structures in 3D than in 2D is consistent

with the trends indicated in Ref. [299], which found that in the infinite-d limit, De is
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given exactly by the arithmetic average of the diffusion coefficients of the two phases

(weighted by their volume fraction), independent of the structure.

In Fig. 6.11 we also present De of decorated lattice structures (i.e., periodic arrays

of spherical inclusions). Since these lattice structures are stealthy with even higher

χ values, unsurprisingly, their De sticks with the HS upper bound for an even larger

φ2 range.

Lastly, we would like to mention a difference between the support of De as a func-

tion of φ2 in 2D versus 3D. While De for for our two-phase systems in 2D diminishes

to zero at φ2 ≈ 0.8, in 3D De does not vanish until φ2 ≈ 0.97. This difference emerges

from the difference in the topological (connectedness) characteristics of the void phase

between these dimensions.
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Figure 6.11 The effective diffusion coefficient, De, for our two-phase systems derived from
decorated stealthy ground states in two (left) and three (right) dimensions as a function of
particle-phase volume fraction φ2. The number density ρ is fixed to be unity. The optimal
Hashin-Shtrikman (HS) upper bound, De for triangular lattice and face-centered cubic
(FCC) lattice, and De for equilibrium hard disks and spheres are also plotted.

6.4.3 Survival probability and mean survival time

We have computed the mean survival time, Tmean, of a diffusing reactant with unit

diffusion coefficient, in our two-phase systems derived from decorated stealthy ground

states. These results are summarized in Fig. 6.12. For comparison, the same quantity
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for equilibrium disordered hard-sphere systems are also included. Clearly, increasing

order (increasing χ for stealthy ground states or increasing φ2 for hard spheres) sup-

presses Tmean. However, there is a crossover between the curves for stealthy ground

states and that for equilibrium disordered hard spheres. This crossover is expected be-

cause as φ2 increases, an equilibrium hard-sphere system becomes more ordered, and

therefore comparable to a stealthy two-phase medium with a higher χ. In Fig. 6.13,

we plot Tmean versus χ for φ2 = 0.2 and 0.5. We see that in 2D, Tmean is somewhat

more sensitive to χ than in 3D.
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Figure 6.12 The mean survival time, Tmean, as a function of particle-phase volume
fraction φ2, for our two-phase systems derived from decorated stealthy ground states in
2D (left) and 3D (right). The same quantity for equilibrium disordered hard-sphere
system is also included for comparison. The number density ρ is fixed to be unity.

0 0.1 0.2 0.3 0.4 0.5
χ

0

0.05

0.1

0.15

T
m

e
a
n

2D, φ
2
=0.2

2D, φ
2
=0.5

3D, φ
2
=0.2

3D, φ
2
=0.5

Figure 6.13 The mean survival time Tmean for our two-phase systems derived from
decorated stealthy ground states in two and three dimensions at phase 2 volume fraction
φ2 = 0.2 and 0.5. The number density ρ is fixed to be unity.
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In Fig. 6.14 we present the survival probability, p(t), at φ1 = 0.5, for our two-phase

systems derived from decorated stealthy ground states and equilibrium disordered

hard spheres. The same crossover phenomenon also appears here, suggesting that

the long-range order possessed by stealthy ground states suppresses p(t) at large t

more efficiently, while the short-range order possessed by equilibrium disordered hard

spheres suppresses p(t) at small t more efficiently.
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Figure 6.14 The survival probability p(t) for our two-phase systems derived from
decorated stealthy ground states in 2D (left) and 3D (right) at phase 2 volume fraction
φ2 = 0.2. The same quantity for equilibrium disordered hard-sphere system is also
included for comparison. The number density ρ is fixed to be unity.

In Fig. 6.15 we present the principal relaxation time T1 for our two-phase systems

derived from decorated stealthy ground states. It turns out that T1 is much more

sensitive to χ in 2D than in 3D. More interestingly, one can compare T1 of stealthy

ground states and equilibrium disordered hard disks at the same order metric τ .

We present such comparison in Fig. 6.16. In two dimensions, one can see that at

φ2 = 0.2, T1 of equilibrium disordered hard disks is much higher than that of our

two-phase systems derived from decorated stealthy ground states with similar τ ’s. As

we explained earlier, T1 is related to the pore-size distribution. Therefore, our results

suggest that hyperuniformity suppresses the formation of large holes, even in the very

disordered regime. As φ2 increases to 0.5, however, the difference between the two

systems diminishes. Our finite-sized simulation results suggest that at this value of
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φ2, even equilibrium hard-sphere systems suppress the formation of large holes very

well. 3
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Figure 6.15 Principal relaxation time T1 for our two-phase systems derived from
decorated stealthy ground states in two and three dimensions at phase 2 volume fraction
φ2 = 0.2 and 0.5. The number density ρ is fixed to be unity.
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Figure 6.16 Principal relaxation time T1 for our two-phase systems derived from
decorated stealthy ground states and equilibrium disordered hard spheres in 2D (left) and
3D (right) at volume fraction φ2 = 0.2 and 0.5. The number density ρ is fixed to be unity.

3We should clarify that in the infinite-system-size limit, T1 of equilibrium disordered hard-sphere
systems is actually infinite because of a non-zero probability of forming arbitrarily large holes (i.e.,
P (δ) is non-zero for arbitrarily large δ). [308] For finite-sized systems, however, T1 is finite. For
decorated stealthy ground states, it is unclear whether or not T1 would be infinite in the infinite-
system-size limit.
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6.4.4 Geometrical and topological properties

The percolation volume fraction for both phases in 2D and 3D was already presented

in Fig. 6.3 and 6.4. The void-exclusion probability EV (r), quantizer error G, and

order metric τ are presented in Figs. 6.17-6.19. We see that in each dimension, as χ

increases, φc increases, EV (r) at any r decreases, G decreases, and τ increases.

The order metric τ can be computed from either g2(r) or S(k), as shown in

Fig. 6.19. In 2D, the results from these two approaches have good consistency. How-

ever, in 3D, τ computed from g2(r) is often slightly lower than τ computed from

S(k). We discovered that this is because g2(r) is still oscillating around 1 at half

the simulation box side length, where the integration in Eq. (6.27) has to be cut off.

Therefore, such a cutoff should make τ computed from g2(r) too low. We thus use τ

computed from S(k) in the rest of the chapter. It is seen that τ is very sensitive at

detecting the rise in short-range and long-range order as χ increases.

0 0.5 1 1.5
r

0

0.2

0.4

0.6

0.8

1

E
v
(r

)

χ=0.05

χ=0.1

χ=0.2

χ=0.35

χ=0.45

χ=0.48

0 0.5 1 1.5
r

0

0.2

0.4

0.6

0.8

1

E
v
(r

)

χ=0.02

χ=0.0833...

χ=0.1666...

χ=0.2333...

χ=0.3333...

χ=0.4133...

Figure 6.17 Void-exclusion probability EV (r) of entropically favored stealthy ground
states in two (left) and three (right) dimensions at unit number density.
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Figure 6.18 Quantizer error G of entropically favored stealthy ground states in two and
three dimensions at unit number density.
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Figure 6.19 Order metric τ of entropically favored stealthy ground states in two and
three dimensions at unit number density, calculated from pair correlation function g2(r)
and structure factor S(k). We also include an analytical approximation for τ , given in
Ref. 18, which is τ = 2dχ.
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6.4.5 Correlations between geometrical properties, and com-

parison with equilibrium disordered hard-sphere sys-

tems

17
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FIG. 19. Order metric τ of entropically favored stealthy
ground states in two and three dimensions at unit number
density, calculated from pair correlation function g2(r) and
structure factor S(k).

E. Correlations between geometrical properties, and
comparison with equilibrium disordered hard-sphere systems
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FIG. 20. Correlations between quantizer error G, order metric
τ , and percolation volume fraction φc at unit number density.

In Fig. 20, we explore the correlation between G, τ , and
φc, and compare that for entropically favored stealthy
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Figure 6.20 Correlations between quantizer error G, order metric τ , and percolation
volume fraction φc at unit number density.

In Fig. 6.20, we explore the correlation between G, τ , and φc, and compare that

for entropically favored stealthy ground states with that for equilibrium disordered

hard-sphere systems. It is interesting to note that these two systems behave very

differently. At the same τ , stealthy systems give lower values of G, indicating G is

more sensitive to long-range order than to short-range order. At the same τ or G,

stealthy systems give higher values of φ2c, indicating that φ2c is even more sensitive

to long-range order than to short-range order.

168



6.5 Conclusions and Discussion

In this work, we decorated stealthy disordered hyperuniform point configurations of

different degrees of order with spheres of various radii, and computed several transport

and structural properties of these decorated systems. The transport properties that

we studied include effective diffusion coefficient De, mean survival time Tmean, survival

probability p(t), and principal relaxation time T1. The structural properties examined

include hyperuniformity and stealthiness, maximum packing fraction φmaxp , the void-

exclusion probability EV , the order metric τ , and the percolation thresholds φ1c and

φ2c. We showed that the order metric τ is an exquisite detector of both short- and

long-range translational order. While all geometrical and topological quantities are

strongly correlated (positive correlation between φ2c and τ , and negative correlation

between G and the former two quantities), the relation between the physical quantities

are more complex: While De increases as χ increases or as φ2 decreases, Tmean and T1

increases as χ decreases or as φ2 decreases. Therefore, there is no simple relationship

between De and Tmean or T1. Another reason why there is no such relationship is

because if phase 1 ceases to percolate, then De becomes zero but Tmean and T1 are

still positive [305].

Besides finding correlations between geometrical and topological properties, we

find that in the highly disordered (χ� 1) regime, T1 of our two-phase systems derived

from decorated stealthy ground states is much lower than that of equilibrium hard-

sphere system. Together with the void-exclusion probability, low T1 suggests that the

formation of large holes is strongly suppressed, even though the configuration appears

completely disordered.

In the higher order (χ ≈ 0.5) regime, De of our disordered isotropic two-phase

systems derived from decorated stealthy ground states is very close to the Hashin-

Shtrikman upper bound for 0 ≤ φ2 < φmaxp , where φmaxp is the maximum packing

fraction. Since such decorated systems maintain stealthiness if and only if φ2 < φmaxp ,
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our results suggest a connection between stealthiness and the ability to have a nearly

optimal (maximal) De. The fact that stealthy disordered two-phase media have nearly

optimal De could have practical implications, e.g., optimal and isotropic drug release

from designed nanoparticles. Although nearly optimal De can also be achieved by

lattice structures (i.e., periodic arrays of inclusions), the latter are always anisotropic.

Thus, if one desires isotropic two-phase media with highest possible De at a specific

volume fraction, disordered stealthy two-phase media could be the best choice.

Disordered stealthy ground states are uncountably infinitely degenerate.[352] The

maximum packing fraction φmaxp varies among configurations. In the future, it would

be interesting to design algorithms that sample stealthy ground states with a bias

toward configurations with higher φmaxp values. With such an algorithm, one would

be able to design isotropic two-phase media with nearly optimal De with very high

φ2.

Lastly, we would like to mention that although here we only study the diffusion

problem of point Brownian particles, the diffusion problem of finite-sized Brownian

particles has also been of interest.[15] It is noteworthy that our results can be trivially

extended to the latter case. The diffusion of Brownian particles of radius b among

obstacles of radius a is equivalent to the diffusion of point Brownian particles among

obstacles of radius a+ b. This mapping was previously exploited to quantify diffusion

of finite-sized spheres in various models of porous media.[160]

Interestingly, one can relate the transport properties computed here (De, Tmean,

and T1) to different physical properties of the same systems via cross-property rela-

tions, including those that relate them to the elastic moduli, [108, 109] as well as fluid

permeability. [20, 297] In future work, we will carry out such analyses.
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6.6 Appendix A: System Sizes

As discussed in Sec. 6.3.1, it is nontrivial to choose the system size N and parameter χ,

especially because one of our protocol to calculate the percolation threshold requires

three different N ’s for each χ. We enumerated all possible choices of N ’s and χ’s for

N < 1000 and picked up some χ values that allow at least three different choices of

N ’s. Our choice of N and χ in 2D and 3D are listed in Tables 6.1 and 6.2. It is

desirable to consider values of χ higher than 0.4133... in 3D, but our enumeration

did not find such a χ value that satisfies the above condition. Therefore, we chose

three more N ’s that allow χ to be very close to 0.4598 but makes χ differ in the fifth

decimal place. See the caption for Table 6.2 for details. Except for the percolation

threshold calculation, we only use the largest N for each χ and d.

Table 6.1 Our choice of parameter χ’s, and the corresponding three different numbers of
particles, N1, N2, and N3 in 2D.

χ N1 N2 N3

0.05 151 451 751
0.1 106 301 496
0.15 101 311 501
0.2 106 301 511
0.3 101 301 511
0.35 121 301 481
0.4 106 271 511
0.45 111 311 471
0.465 101 301 501
0.48 126 326 476
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Table 6.2 Our choice of parameter χ’s, and the corresponding three different numbers of
particles, N1, N2, and N3 in 3D. The “*” mark indicates that χ values differ starting from
fifth decimal place between the three choices of N .

χ N1 N2 N3

0.02 151 351 651
0.0555... 127 259 421
0.0833... 109 281 497
0.1333... 176 311 476
0.1666... 135 321 459
0.2083... 113 257 425
0.2333... 101 161 431
0.2777... 121 319 475
0.3333... 101 302 480
0.3690... 113 309 477
0.4133... 101 276 426
0.4598...* 167 383 520

6.7 Appendix B: Properties of Stealthy Point Con-

figurations and Decorated Systems

In this section we tabulate all of the physical and geometrical properties of stealthy

point configurations and decorated systems that we study in this chapter (Tables III

and IV).

Table 6.3 Principal relaxation time T1 at φ = 0.2 and φ = 0.5, order metric τ , quantizer
error G, void-phase and particle-phase percolation volume fraction φ1c and φ2c, and
void-phase and particle-phase percolation radius a1c and a2c for different parameter χ’s in
2D.

χ T1 (φ = 0.2) T1, (φ = 0.5) τ G φ1c = 1− φ2c a1c = a2c

0.05 0.2753 0.1858 0.193 0.1364 0.3041 0.5840

0.1 0.1964 0.1214 0.393 0.1229 0.2904 0.5692

0.15 0.1554 0.0886 0.588 0.1134 0.2790 0.5564

0.2 0.1291 0.0704 0.787 0.106 0.2693 0.5448

0.3 0.1015 0.0502 1.241 0.096 0.2597 0.5238

0.35 0.0842 0.0408 1.488 0.0903 0.2498 0.5117

0.4 0.0710 0.0331 2.459 0.0863 0.2316 0.5071

0.45 0.0657 0.0282 4.248 0.0845 0.2139 0.5083

0.465 0.0645 0.0274 4.443 0.0844 0.2129 0.5082

0.48 0.0635 0.0272 4.839 0.0842 0.2095 0.5090
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Table 6.4 Same as above, except for 3D.

χ T1 (φ = 0.2) T1 (φ = 0.5) τ G φ2c φ1c a2c a1c

0.02 0.1572 0.0938 0.107 0.1111 0.3182 0.0299 0.4483 0.8970

0.0555 0.1221 0.0647 0.336 0.1050 0.3384 0.0261 0.4536 0.8572

0.0833 0.1061 0.0551 0.518 0.1015 0.3536 0.0242 0.4583 0.8351

0.1333 0.0911 0.0433 0.835 0.0967 0.3832 0.0225 0.4672 0.8019

0.1666 0.0826 0.0387 1.040 0.0942 0.3884 0.0205 0.4664 0.7878

0.2083 0.0779 0.0342 1.231 0.0917 0.405 0.0196 0.4702 0.7700

0.2333 0.0722 0.0317 1.420 0.0902 0.4185 0.0181 0.4739 0.7623

0.2777 0.0668 0.0289 1.745 0.0881 0.4300 0.0192 0.4753 0.7446

0.3333 0.0612 0.0254 2.258 0.0858 0.4525 0.0199 0.4804 0.7253

0.369 0.0593 0.0236 2.740 0.0849 0.4591 0.0198 0.4814 0.7166

0.4133 0.0561 0.0213 3.575 0.0839 0.4764 0.0194 0.4864 0.7082

0.4598 0.0537 0.0202 4.704 0.0823 0.4939 0.0201 0.4917 0.6992
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Chapter 7

Can Exotic Disordered “Stealthy”

Particle Configurations Tolerate

Arbitrarily Large Holes?

7.1 Introduction

Statistical-mechanical studies of disordered many-particle systems often focus on

quantifying various statistics of particle locations. This includes n-body correlation

functions,[345, 220, 46, 91] the structure factor,[345, 46, 220] nearest-neighbor prob-

ability distributions,[314, 298] and various statistics of the corresponding Voronoi

cells.[279, 258, 133, 277, 264, 187] However, rather than considering the particles them-

selves, it has been suggested that the space outside of the particles (void space) may be

even more fundamental and contain greater statistical-geometrical information.[301,

303] A major focus of this chapter is the study of a particular property of the void

space between point particles in disordered “stealthy” systems,[328, 26, 325, 352, 353]

which are disordered many-particle configurations that anomalously suppress large-

scale density fluctuations, endowing them with unique physical properties. [28, 95, 94,
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Figure 7.1 In a Poisson point configuration (ideal gas), particle locations are random and
uncorrelated. If there is a hole of volume v1(r) in a configuration of volume V , then when
one adds another particle (marked red), the probability that this hole remains empty is
1− v1(r)/V . Thus, if there is a total of N particles, the overall probability that such a
sphere remains empty is [1− v1(r)/V ]N ≈ exp[−(N/V )v1(r)] = exp[−ρv1(r)], implying
that holes can be arbitrarily large. For correlated homogeneous point configurations (e.g.,
liquids), the probability of finding a very large hole of radius r will generally decrease
relative to the Poisson case. For some correlated point configurations (e.g., crystals and
special disordered systems), the probability of finding an arbitrarily large hole is exactly
zero.

189, 178, 355] The specific question that we investigate is whether disordered stealthy

systems can contain arbitrarily large holes. Here we define a “hole” as a spherical

region of a certain radius that is empty of particle centers. It is noteworthy that this

hole statistic plays a central role in the “quantizer” and “covering” problems that arise

in discrete geometry.[61, 303] It is also noteworthy that the question of the formation

of very large holes is of fundamental importance in understanding thermodynamic

phase separations into dense liquid phases and “hollow” phases.[35, 162]

Given a general many-particle system in d-dimensional Euclidean space Rd, can

one find arbitrarily large holes? For disordered systems, the answer to this question

is often “yes.” Consider the void-exclusion probability function, EV (r), which gives

the probability of finding a randomly located spherical cavity of radius r empty of

particles.[301] If EV (r) is non-zero for an arbitrarily large r, then one can find ar-
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bitrarily large holes in the infinite system, even if these are very rare events. For

example, as explained in Fig. 7.1, the void-exclusion probability for a Poisson point

process (i.e., an ideal gas) at number density ρ is given by [301]

EV (r) = exp[−ρv1(r)], (7.1)

where v1(r) = πd/2rd/Γ(1 + d/2) is the volume of a d-dimensional sphere of radius

r,[303] and Γ(x) is the gamma function. Although EV decays exponentially as v1(r)

increases, it is always positive for any finite r. Thus, no matter how large a hole is

desired, the rare event of forming such a hole can always be observed in the infinite

system. Similarly, EV (r) is found to be positive for arbitrarily large r’s for equilibrium

hard-sphere fluid systems across dimensions.[314] Therefore, they also allow arbitrar-

ily large holes. It is noteworthy that EV (r) can be expanded as a series involving

n-body correlation functions.[314] Therefore, EV (r) requires many-body correlation

information to quantify the probability of hole formation.

Even for many-particle systems in which EV (r) is not exactly known in the large-

r limit, there are often strong arguments indicating that holes of arbitrary sizes can

occur. For equilibrium systems of particles interacting with some potentials (e.g.,

Lennard-Jones potential) at some positive temperature T , the free energy cost of

creating a hole, ∆F , often scales as the hole volume and/or hole surface area, and is

therefore finite. Thus, the probability of finding a large hole [roughly exp(−∆F/T )]

is also nonzero. Moreover, hard-sphere systems in a glassy or crystalline state away

from jamming points possess collective motions that can produce arbitrarily large

holes in the infinite-system limit.[17]

Besides the aforementioned many-particle systems with unbounded hole sizes,

we also know of several systems in which the hole radii are bounded from above. A

simple class of systems whose hole probability must have compact support are perfect
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crystalline (periodic) many-particle systems. Spheres large enough to encompass

entire unit cells always contain particles. Thus, holes of arbitrarily-large radii cannot

exist. A simple disordered class is saturated random sequential addition (RSA) sphere

packings across dimensions. RSA is a time-dependent packing process, in which

congruent hard spheres are randomly and sequentially placed into a system without

overlap. In the infinite-time limit, the system becomes saturated, i.e., spheres can no

longer be added to the packing, and hence holes must be finite in size. By contrast,

RSA packings below the saturation density were found to have positive EV (r) for

arbitrarily large r,[251] and therefore allow for the presence of very large holes.

So far we have seen that although all perfect crystalline many-particle systems

prohibit arbitrarily large holes, many disordered many-particle systems allow them. A

promising class of amorphous structures that may not tolerate arbitrarily large holes is

disordered hyperuniform systems. Such systems have received considerable attention

because they anomalously suppress density fluctuations.[28, 95, 94, 189, 178, 355]

Specifically, if one places a spherical window of radius R into a d-dimensional many-

particle system and counts the number of particles in the window, then the number

variance, σ2(R), scales as Rd for large R in typical disordered systems. Any system

in which σ2(R) grows slower than Rd is said to be hyperuniform.[317] Equivalently,

a hyperuniform many-particle system is one which the structure factor S(k) tends to

zero as the wavenumber |k| tends to zero,[317] i.e.,

lim
|k|→0

S(k) = 0. (7.2)

Disordered hyperuniform systems are a good starting point to search for more ex-

amples of disordered systems with bounded hole sizes because the formation of large

holes might be inconsistent with hyperuniformity, which suppresses large-scale density

fluctuations.
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However, we know that not all disordered hyperuniform systems prohibit arbitrar-

ily large holes. For example, in a hyperuniform fermionic-point process in d spatial

dimensions, EV (r) scales as exp(−crd+1) (where c is a constant) for large r.[315]

Also, the hyperuniform two-dimensional one-component plasma possesses an EV (r)

that scales as exp(−cr4) for large r.[138, 107] Both of these systems thus allow arbi-

trarily large holes. Therefore, hyperuniformity alone is not a sufficient condition to

guarantee boundedness of the hole size. Nevertheless, different hyperuniform systems

have different levels of suppression for large-scale density fluctuations. While any

system in which lim|k|→0 S(k) = 0 is considered hyperuniform, the “stealthy” vari-

ants of hyperuniform systems have S(k) = 0 in the entire interval |k| ∈ (0, K] for a

certain value of K. Stealthy hyperuniform systems are known to possess many unique

thermodynamic and nonequilibrium physical properties, including negative thermal

expansion behavior,[28] complete isotropic photonic band gaps comparable in size to

those of a photonic crystal,[95, 94, 189] transparency even at high densities,[178] and

nearly optimal transport properties.[355] The behavior of S(k) near k = 0 in stealthy

systems is identical to that in perfect crystals. Since perfect crystals prohibit large

holes, could stealthy hyperuniform systems also prohibit large holes?

In this chapter, we present strong numerical evidence that disordered stealthy

systems indeed prohibit arbitrarily large holes. It is nontrivial to study the existence

of large holes not only because formation of large holes is extremely rare, but also

because numerical simulations are limited to finite-sized systems and one wants to

infer the infinite-volume-limit behaviors. With periodic boundary conditions, such

systems are always perfect crystals, even if the repeating units may be very large. As

we have mentioned, perfect crystals always have bounded hole sizes. We developed

two numerical techniques to overcome these issues to distinguish whether a system

can tolerate arbitrarily large holes or not that can be applied to infer the maximum

hole size in general disordered systems (whether they are stealthy or not) in the
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infinite-volume limit. Specifically, we first attempt to determine the maximum size

of the holes that naturally emerges in stealthy hyperuniform systems across the first

three space dimensions by studying the tail behavior of EV (r). We find that the

tail of EV (r) for stealthy systems is qualitatively similar to that for crystals and

saturated RSA sphere packings, which have finite holes, and is qualitatively different

from that for Poisson point processes with unbounded hole sizes. We then determine

the maximum hole size that any stealthy system can possess across the first three

space dimensions. To do this, we generate large stealthy systems with largest possible

holes by imposing repulsion fields with sizes equal to the desired hole sizes in stealthy

systems. We discover that this method can only create holes of certain finite sizes

without breaking stealthiness. In stealthy configurations with largest possible holes,

particles concentrate in concentric shells around the hole. Analytical studies on this

pattern allows us to derive a conjectured upper bound of the hole radius for all

stealthy systems. Our results suggest that there exists an upper bound on the sizes

of solute particles that a stealthy solvent can dissolve, since particles with exclusion

radii above this upper bound would create intolerably large holes.

The rest of the chapter is organized as follows: Section 7.2 defines stealthy point

patterns and two associated parameters, χ and K. Section 7.3 studies maximum hole

sizes and the tail behavior of EV (r) in such systems. Section 7.4 defines the repulsion

field we used to create holes, study the pattern of stealthy systems with such holes, and

conjecture an upper bound for the hole radius, in one to three dimensions. Section 7.5

provides concluding remarks and discussions.

7.2 Mathematical Definitions

For a single-component system with N particles, located at rN = r1, r2, · · · , rN , in

a simulation box of volume V with periodic boundary conditions in a d-dimensional
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Euclidean space Rd, the static structure factor is defined as S(k) = |∑N
j=1 exp(−ik ·

rj)|2/N , where i is the imaginary unit and k is a d-dimensional wavevector (which

must be integer multiples of the reciprocal lattice vectors of the simulation box).[46,

45]

As we have explained earlier, a hyperuniform system is defined as one in which

the number variance σ2(R) grows more slowly than Rd for large window radius R,

or a system in which lim|k|→0 S(k) = 0. Stealthiness is a stronger condition than

hyperuniformity. For some positive K, we call a system “stealthy up to K” if

S(k) = 0 for all 0 < |k| < K. (7.3)

For particles interacting with a pair potential v(r), the total potential energy is

given by

Φ(rN) =
∑
i<j

v(rij)

=
N

2V

∑
k

ṽ(k)S(k) + Φ0

(7.4)

where ṽ(k) is the Fourier transform of v(r), and we set the structure-independent

constant Φ0 in the second line of Eq. (7.4) (defined in Ref. [353]) to be zero in this

chapter.

Our focus in the current chapter is on stealthy potentials that take the following

form:

ṽ(k) =


V (|k|), if 0 < |k| ≤ K,

0, otherwise,

(7.5)

where V (|k|) is an arbitrary positive function. For present purposes, we choose

V (|k|) = 1 for simplicity. However, one could alternatively consider other func-

tional forms of V (|k|), all of which have the same ground-state manifold.[325] (In
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Sec. 5, we provide examples of physical many-particle systems whose interactions ap-

proximate stealthy potentials.) In any case, because ṽ(k) has compact support, the

corresponding direct-space potential v(r) is a bounded (soft), oscillating long-ranged

function.[325] Because S(k) is by definition always non-negative, a configuration is a

ground state of this potential if it is stealthy up to K, i.e., if S(k) is constrained to

zero for all 0 < |k| < K.

Only half of these constraints are independent. This is because by definition,

S(k) = S(−k). Let the number of independent constraints be M , so the parameter

χ =
M

d(N − 1)
(7.6)

quantifies the fraction of degrees of freedom that is constrained. Because χ is propor-

tional to M , it is also proportional to v1(K), the volume of a d-dimensional sphere of

radius K. Indeed, we have previously found [325]

ρχ =
v1(K)

2d(2π)d
. (7.7)

It was found that for χ < 0.5, the ground states of stealthy potentials are un-

countably infinitely degenerate, and possess no long-range order.[352] As χ increases

beyond 0.5, the ground states are still uncountably infinitely degenerate, but develop

long-range translational and orientational order.[353] As χ increases further, these

ground states eventually undergo phase transitions into the integer lattice, the trian-

gular lattice, and the BCC lattice in one, two, and three dimensions, respectively.[325]

In this chapter, we want to study hole sizes of disordered stealthy systems, and will

therefore focus on the χ < 0.5 range. Because ground states of the stealthy poten-

tials are uncountably infinitely degenerate, one can have different ways to sample the

ground states, which assign different weights to different parts of the ground state

manifold. We have previously focused on the zero-temperature limit of the canonical
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ensemble (i.e., define the probability measure P (rN) ∝ exp[−Φs(K; rN)/kBT ], where

kB is the Boltzmann constant and T is the temperature, and then take the T → 0

limit). However, in this chapter, we will also assign different weights to bias toward

configurations with large holes.

7.3 Hole Probability and Maximum Hole Size in

Unbiased Stealthy Systems

If an upper bound on the hole sizes exists, how should it depend on K and χ? The

K dependence can be easily ascertained from a scaling argument: If there exists a

configuration with hole size R that is stealthy up to K, then by rescaling the real-

space configuration by a factor α, one can create another configuration with hole size

Rα, stealthy up to K/α. Therefore, the maximum hole radius, Rc, must be inversely

proportional to K. Therefore, we henceforth study the dimensionless hole size, RcK,

rather than Rc itself.

A different argument can shed light on the dependence of the hole size on χ.

A superposition of multiple configurations, each stealthy up to a certain K, is also

stealthy up to the same K.[325] Therefore, if there exist n configurations, each with

a hole of radius R that is stealthy up to K, then one could superpose them with hole

centers aligned to create another configuration with the same hole radius R and K.

However, since the number of particles increases by a factor of n, χ decreases by a

factor of n. Therefore, if there exists a configuration of a certain hole size and K

at some χ value, then there exists a configuration of the same hole size and K at

arbitrarily small χ values. In other words, RcK as a function of χ must achieve the

global maximum in the χ→ 0+ limit.

With these preliminary analytical results in mind, let us examine the numerical

results from unbiased ground states of stealthy potentials (i.e., T = 0 limit of the
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canonical ensemble). We have previously generated such ground states in two and

three dimensions for various χ values by performing low-temperature (kBT = 2×10−6

in 2D and kBT = 10−6 in 3D) molecular dynamics simulations, periodically taking

snapshots, and then minimizing the energy starting from each snapshot; see Ref. [355]

for more details. For each χ, we generated 20,000 configurations. The number of

particles, N , is always between 421 and 751 and is detailed in Ref. [355]. For each

configuration, we rescaled it to unity K and performed a Voronoi tessellation and

found out the largest distance between each Voronoi vertex and its neighbor particles.

This distance is the maximum hole size for any particular configuration. We then

determined the maximum hole size among all 20,000 configurations and plotted them

as a function of χ in Fig. 7.2. For a comparison, we also present the same quantity

for Poisson point processes at the same conditions, derived in the Appendix. As

Eq. (7.7) shows, with K fixed to unity, ρ is inversely proportional to χ. Thus, it

is not surprising that Rc for Poisson processes increases as χ increases. In unbiased

stealthy ground states, however, Rc weakly increases with increasing χ and saturates

at some constant value, suggesting that Rc is bounded for stealthy ground states

with fixed K. The critical radius Rc decreases slightly as χ tends to zero because

unbiased stealthy ground states become less ordered. Therefore, although large hole

formation is still possible, its probability decreases. When this probability is too low,

it becomes computationally more difficult to find such a large hole with only 20,000

configurations.

Examining the large-r tail behavior of EV (r) suggests strongly that Rc is finite

in stealthy systems. As we have explained in Sec. I, if the hole size is bounded,

EV (r) for some value of r must be identically zero, instead of being exponentially

small. In Fig. 7.3, we closely examine the tails of EV (r) of stealthy systems in the

first three space dimensions in a semi-log scale. As we showed earlier, numerically

found Rc suffer from greater sampling errors if χ is too small. Thus, to study the
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tail behavior of EV (r), we choose sufficiently large χ values (0.45-0.46) in Fig. 7.3.

Nevertheless, we will show in the next section that smaller χ values do not result in

any qualitative difference. For purposes of comparison, we compare our results for

stealthy systems to EV (r) for systems in which we know that the holes must be finite

in size, namely, lattices in which EV (r) is given exactly[303] and saturated RSA sphere

packings; and contrast our results to Poisson point processes, in which hole sizes are

unbounded. As Fig. 7.3 shows, the tail behavior of stealthy systems resembles that

of crystalline structures and saturated RSA packings. For each of these systems, the

logarithm of EV (r) must decay to its bounded cut-off value of Rc with an infinite

slope at which EV (Rc) = 0, which may be regarded to be singularity. However,

these figures necessarily present EV (r) above certain positive lower limits and hence

only nearly-infinite slopes are apparent. By contrast, Poisson point processes and

equilibrium hard-sphere fluids (not shown in the figure), which have unbounded Rc’s,

possess log[EV (r)]’s that comparatively have very small slopes on the scale of the

figures, without any singularity. Note that although EV (r) of RSA packings have

been studied before,[251, 356] this is the first study that focuses on its tail behavior.

It is noteworthy that the three lattice structures we chose (integer, triangular, and

BCC lattice) are the optimal solutions of the covering and quantizer problems [61] in

their respective dimensions. In a specific dimension and density, the covering problem

asks for the configuration with the smallest cutoff in EV (r) (i.e., the smallest Rc),

while the quantizer problem asks for the configuration that minimizes the so-called

“quantizer error,” defined as[303]

G =
2

d

∫ ∞
0

rEV (r)dr. (7.8)

As Fig. 7.3 shows, in two and three dimensions, EV (r) of stealthy systems at χ =

0.45 − 0.46 is quite close to EV (r) of the triangular and BCC lattices. Therefore,
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Figure 7.2 Maximally observed Rc in 20,000 entropically favored stealthy ground states,
rescaled to unity K. The number of particles per configuration, N , depends on χ and
space dimensions but is always between 421 and 751 and is given in Ref. [355]. The same
quantity for Poisson point processes (ideal gas) at the same density is also plotted for
comparison.

stealthy ground states at high χ values should provide nearly optimal solutions to

these two problems.

7.4 Stealthy Configurations with Largest Possible

Holes

In the previous section we studied the largest holes naturally occurring in unbiased

disordered ground states of stealthy potentials. In this section, we study the maximum

hole sizes consistent with stealthiness. To do so, we impose a radial exclusion field

at the center of the simulation box to bias the configuration toward ones with largest

holes. We combine the stealthy potential with such an exclusion field, and try to find

the ground state of the system. We then study the patterns of the resulting ground

states.
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Figure 7.3 Numerically computed EV (r) for (top) a stealthy system at χ = 0.45 in 1D,
(middle) a stealthy system at χ = 0.45 in 2D, and (bottom) a stealthy system at χ = 0.46
in 3D. For comparison, we also present EV (r) of perfect crystals (integer, triangular, and
BCC lattices[303]), saturated RSA packings, and Poisson point processes at the same
number density across the first three space dimension. For Poisson point processes, we
present both numerically found EV (r) and exact analytical predictions for EV (r). The
excellent agreement between these numerical and exact results is a testament to the
numerical precision of our calculations.
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7.4.1 Simulation details

To bias toward configurations with large holes, we let the total potential energy be a

sum of the stealthy potential contribution and the exclusion field contribution:

Φ(rN) = Φs(K; rN) + Φex(Rf ; r
N), (7.9)

where Φs(K; rN) is the stealthy potential given in Eq. (7.5), and Φex(Rf ; r
N) is the

exclusion-field contribution, given by

Φex(Rf ; r
N) =

∑
i

F (Rf ; ric), (7.10)

where ric is the radial distance from particle i to the center of the simulation box,

F (Rf ; ric) =


(Rf/ric − 1), if ric < Rf ,

0, otherwise,

(7.11)

and Rf is the radius of the exclusion field. By varying Rf , we can probe the largest

possible hole size in a particular system. Before Rf reaches Rc (the upper bound of

the hole radius), Φex can be zero. However, once Rf surpasses Rc for a particular

system, Φex must be positive.

If we can find a configuration for which Φ(rN) = 0, then both Φs(K; rN) and

Φex(Rf ; r
N) must be zero, and therefore this configuration is stealthy up to K while

simultaneously having a hole radius Rf . To test if there are such configurations, we

perform energy minimizations using the L-BFGS algorithm,[214, 183, 150] starting

from many random initial configurations, and finding if the ending Φ(rN) in any con-

figuration dropped below a strong tolerance of 10−10. We consider a certain number,

Rc, to be the numerically found maximum hole size if a zero-energy configuration

is found within Ntrial energy minimization trials for Rf = Rc, but not found for
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Rf = Rc + δR. Here we choose Ntrial = 100 and δR = 0.01. For a two-dimensional

system at χ = 0.10, andN = 400, with this choice ofNtrial and δR we findRcK = 4.58;

while using Ntrial = 1000 and δR = 0.0001, we find RcK = 4.5903. Therefore, our

choice of Ntrial and δR produces RcK values with approximately 10−2 precision. As

explained in our previous work,[352] to minimize boundary effects for the stealthy

potential, we use a rhombic simulation box with a 60◦ interior angle in 2D and a

simulation box in the shape of a fundamental cell of a body-centered cubic lattice in

3D with periodic boundary conditions.

As a test for this methodology, we combined the exclusion field [Eq. (7.10)] with

following pair potential

Φh(r
N) =

∑
i<j

v(rij), (7.12)

where

v(rij) =


(1− rij)2, if if rij < 1

0, otherwise,

(7.13)

and performed energy minimizations in two dimensions. For this potential to be zero,

any pair of particles cannot be closer than distance 1. Therefore, the ground state of

this potential corresponds to an equilibrium hard disk system of diameter 1. As we

have mentioned in Sec. I, any such system in the infinite-volume limit must possess

an unbounded hole size. Nevertheless, the formation of very large holes is still very

rare and may be difficult to observe if one simply samples unbiased configurations.

We performed our simulation on an N = 400 system with volume fraction η = 0.5.

As shown in Fig. 7.4, the energy minimization algorithm is capable of creating a hole

of of radius R = 9.2, although the probability of finding such a hole in an unbiased

system is extremely small. According to Eq. (4.21) of Ref. [314], EV (9.2) = 4×10−279.

This demonstrates that if the hole size is unbounded in the infinite-system-size limit

for some system, this numerical protocol can indeed create very large holes in a finite-

188



Figure 7.4 A configuration obtained by energy minimization using the potential in
Eq. (7.12) and an external field of radius Rf = 9.2. The simulation box contains N = 400
particles and has side length L = 25.

size simulation. Figure 7.4 also shows that in creating such a large hole, the particles

are pushed to each other as closely as possible (i.e., up to interparticle contacts).

Therefore, even larger holes should be possible if we simulated larger systems at the

same volume fraction.

7.4.2 One-dimensional study

We first examineRcK values found by the above-mentioned algorithm in 1D, since this

is computationally the easiest dimension to study and will shed light on corresponding

results in higher dimensions. Our result for several different χ’s and system sizes are

summarized in Fig. 7.5. It appears that RcK as a function of χ is chaotic and displays

no systematic trend. Nevertheless, Fig. 7.5 does show that RcK is always close to π

but never exceeds it. As we will see later, π is the upper bound of RcK in 1D.

Examining stealthy configurations with hole sizes Rf ≈ π/K reveals a more in-

teresting behavior. Such a configuration is shown in Fig. 7.6. At exclusion-field size
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Figure 7.5 Numerically found maximum RcK, as a function of χ, in 1D biased stealthy
configurations for various system sizes.

Rf = 3.1/K, 100 particles self-assemble into 10 clusters, each containing 10 particles.

These clusters then form a one-dimensional integer lattice.

As we have explained in Sec. 7.3, a superposition of multiple integer lattices, with

hole centers aligned, have the same RcK as a single integer lattice. It is straight-

forward to calculate RcK of an integer lattice: If the distance between neighboring

lattice sites is L, then the maximum hole radius is L/2, and the stealthy range K is

equal to the location of the first Bragg peak, 2π/L. Therefore, RcK of any integer

lattice is simply π. To summarize, the numerically found hole radius is never above

π/K; and superposed integer lattices can indeed achieve hole radius π/K. Therefore,

we expect that π/K is an upper bound of the hole size for stealthy 1D structure at

any χ.
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Figure 7.6 A 1D biased stealthy configuration of N = 100 particles obtained by energy
minimization using the stealthy potential of K = 1 and an external field of radius
Rf = 3.1 at χ = 0.1. The particles self-assemble into 10 clusters. Although particles in the
same cluster may not be distinguishable from each other here, we have examined the
configuration and find that each cluster contains exactly 10 particles.

7.4.3 Two- and three-dimensional studies

We now move on to study maximum hole sizes in two and three dimensions. As

we will see, these higher dimensions are computationally more challenging than 1D

because the structures that maximize the hole size is not periodic. The RcK values

found by the algorithm mentioned in Sec. 7.4.1 is presented in Fig. 7.7. Similar to the

1D case, the dependence of RcK on χ or N is weak and non-systematic. However,

2D configurations, one of which is shown in Fig. 7.8, exhibit a more complicated

pattern with sixfold rotational symmetry, in which particles concentrate in a lower-

dimensional manifold. Although this pattern is non-crystalline, it is still much more

ordered than unbiased stealthy ground states at this χ value.[352] Note that the

configuration shown in Fig. 7.8 and related ones are stealthy and hyperuniform, even

though they are not homogeneous. Since stealthiness is defined as S(k) = 0 for all

|k| < K, this implies no single scattering and an associated anomalous suppression of

density fluctuations for wavelengths above 2π/K. In this configuration, 2π/K is the

distance between two consecutive rings. For any wavelength larger than 2π/K, the

higher densities concentrated in the rings will cancel out the lower densities between

the rings, which suppresses the overall density fluctuations. Such cancellation no

longer occurs for wavelengths below 2π/K, but the resulting density fluctuations are

compatible with stealthiness.
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Figure 7.7 Numerically obtained maximum RcK, as a function of χ, in 2D and 3D
biased stealthy configurations.

To better reveal the intricacies of these patterns, we computed the one-body cor-

relation function, g1(r), of a 2D system of χ = 0.1 and N = 400, shown in Fig. 7.9A.

The plot shows high-intensity concentric shells around the exclusion field (located at

the center of the simulation box) and honeycomb network structures away from the

exclusion field. Figure 7.9B also shows g1(r) of a larger 2D system, which exhibits

the same pattern. Figure 7.9C shows g1(r) of a 3D system, which again has concen-

tric shells around the exclusion field, but the structure away from the center is not

obvious.

By pushing RcK to its numerical limit, we obtain periodic structures in 1D but

non-periodic structures in 2D and 3D. Is it possible that this transition from periodic

structures to non-periodic structures arises from increased numerical difficulties in

higher dimensions? To eliminate this possibility, we analytically calculated RcK

values for various 2D and 3D periodic structures for comparisons. In 2D, crystal

structures achieve RcK = 4.44 but the system shown in Fig. 7.9 achieved RcK =
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Figure 7.8 (left) A 2D biased stealthy configuration of N = 400 particles obtained by
energy minimization using the stealthy potential of K = 1 and an external field of radius
Rf = 4.58 at χ = 0.1. (right) Its corresponding structure factor S(k), which is less than
10−25 in the 0 < |k| ≤ K range, verifying the stealthiness with high precision. Notice that
it also reveals underlying sixfold rotational symmetry of the structure.

A B C

Figure 7.9 Numerically obtained g1(r) for (A) d = 2, N = 400, RcK = 4.58, averaged
over 3449 biased stealthy configurations that also exhibit sixfold rotational symmetry; (B)
d = 2, N = 1600, RcK = 4.60, averaged over 72 configurations; and (C) d = 3, N = 400,
RcK = 5.85, averaged over 5174 configurations. The χ value is always 0.10. In 3D, g1(r)
is represented by color-coded spheres with volumes proportional to g1(r) at the spheres’
location. Notice that there is a tendency for particles to concentrate in a
lower-dimensional manifold.
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4.6; while in 3D crystal structures achieve RcK = 5.44 but the system shown in

Fig. 7.9 achieved RcK = 5.85. Therefore, these non-periodic structures indeed have

the largest known value of RcK.

Table 7.1 Maximum dimensionless hole size, RcK, for various 2D crystalline structures.

Crystal RcK
Square lattice 4.44

Honeycomb crystal 4.19
Triangular lattice 4.19
Kagome crystal 3.63

Table 7.2 Maximum dimensionless hole size, RcK, for various 3D crystalline structures.

Crystal RcK
Face-centered cubic 5.44

Simple cubic 5.44
Hexagonal close packed 5.13

Mean centered-cuboidal lattice [60] 5.03
Body-centered cubic 4.97
Simple Hexagonal 4.80

Diamond 4.71
Pyrochlore crystal [238] 4.51

It would be useful to analytically model these g1(r) functions to find the maximum

dimensionless hole size in the infinite-system-size limit. We will focus on the rings

before considering the honeycomb-like structure away from the hole center. Compar-

ing Fig. 7.9A with Fig. 7.9B, we see that increasing N increases the number of rings.

Therefore, we expect infinitely many rings in the infinite-system-size limit.

It is instructive to model an isotropic collection of concentric shells, for which we

can write

g1(r) =
∞∑
j=1

cjδ(|r| − rj), (7.14)

where cj is the intensity of the shells, δ is the Dirac delta function, and rj is the

location of the shells. To determine cj and rj, we computed the angular average of

g1(r) shown in Fig. 7.9B, and identified five peaks from it. As Fig. 7.10 shows, rj
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appears linear with j, for which linear regression produces rj = 0.0612j−0.01478. By

rescaling the configuration, we can eliminate one fitting parameter and get rj = j− b,

where b = 0.242.

To find cj, we have computed the fraction of particles located on each ring, pj. We

find again pj is linear with j, with linear regression result pj = 0.0275(j−0.242) ∝ rj.

Because pj is proportional to rj, and is therefore proportional to the circumference

of the rings, each ring has the same intensity. Neglecting a constant factor, we can

then set cj = 1.

To summarize, numerical results suggest that in the infinite-system-size limit,

g1(r) ∝
∞∑
j=1

δ(|r| − j + b), (7.15)

where constant b is numerically measured as 0.242 in 2D. Note that this equation

also applies to the 1D numerical result (an integer lattice of particle clusters) if we let

b = 1/2. The hole radius of this system is simply Rc = 1 − b, the radius of the first

ring. After determining Rc, we should then ascertain K. Since S(k) is zero for all k

such that 0 < |k| < K, the collective coordinates ρ̃(k) =
∑N

j=1 exp(−ik · rj) should

also be zero. Thus, the Fourier transform of g1(r), which we denote by g̃1(k), should

also be zero in this range. Fourier transforming Eq. (7.15) gives

g̃1(k) =

∫
r

exp(ik · r)g1(r) ∝
∞∑
j=1

(j − b)d/2
kd/2−1

Jd/2−1[k(j − b)], (7.16)

where k ≡ |k| is the wavenumber and Jν is the Bessel function of order ν. In

Eq. (7.16), letting d = 1, 2, and 3 respectively yields

g̃1(k) ∝
∞∑
j=1

cos[k(j − b)] (d = 1), (7.17)
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g̃1(k) ∝
∞∑
j=1

(j − b)J0[k(j − b)] (d = 2), (7.18)

and

g̃1(k) ∝
∞∑
j=1

(j − b) cos[k(j − b)− π/2] (d = 3). (7.19)

For large x, J0(x) is asymptotically x−1/2 cos(x − π/4). Substituting this into

Eq. (7.18) gives

g̃1(k) ∝
∞∑
j=1

√
j − b
k

cos
[
k(j − b)− π

4

]
(d = 2). (7.20)

We have already seen in the previous section that, the solution to maximizing

RcK = (1−b)K in 1D is b = 1/2 and K = 2π. Comparing Eq. (7.20) with Eq. (7.17),

in light of the numerical result b ≈ 0.242 (d = 2), suggests that b = 1/4 in 2D.

Somehow the π/4 phase factor in Eq. (7.20) changes b to 1/4. If K is still 2π,

then in 2D we have RcK = (1 − b)K = 3π/2 ≈ 4.71, which is slightly above the

numerically observed maximum dimensionless hole size RcK = 4.65. Similarly, in

3D, the π/2 phase factor in Eq. (7.19) probably changes b to 0. If so, the maximum

dimensionless hole size in 3D would be RcK = 2π. The difference between 2π and the

numerically observed maximum RcK = 5.86 is nontrivial, but this can be explained

by the increased numerical difficulty in 3D; for example, fewer concentric shells can

be formed with the same number of particles in higher dimensions.

7.5 Conclusions

In this chapter, we have investigated the possibility of creating large holes in stealthy

hyperuniform many-particle systems using numerical and analytical techniques. We

demonstrated that hole sizes in such systems are bounded, first by examining the tail

of EV (r) in unbiased ground states of stealthy potentials, and then by imposing radial
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Figure 7.10 The peak locations of g1(r) for a 2D biased stealthy system of N = 1600
particles, at χ = 0.10, with an exclusion hole of dimensionless radius RcK = 4.60 at the
origin, averaged over 72 configurations.

exclusion fields to bias stealthy configurations toward ones with the largest possible

holes. These results suggest that holes larger than a certain upper bound cannot exist

in such systems. We then found that RcK is bounded from above by π, 3π/2, and

2π in one, two, and three dimensions. A conjectured formula for the upper bound on

the dimensionless hole size in d dimensions is (d + 1)π/2. An outstanding problem

is a rigorous proof that stealthy infinite systems cannot tolerate holes of arbitrarily

large sizes.

Our methods should be applicable to study the existence of arbitrarily large holes

in other disordered many-particle systems. This is useful because maximum hole sizes

and hole probabilities are related to several other important quantities, including

the principal relaxation time T1 associated with diffusion-controlled reactions among

traps. Specifically, consider a reactive chemical species that can diffuse in the void

space between particles, and can be absorbed when it is within a certain distance to

any particle. The fraction of such species, released at time t = 0, that is not absorbed

at time t (in other words, the survival probability of the molecules of such species),
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can be expanded as a series of exponential functions [308]

p(t) =
∞∑
n=1

In exp(−t/Tn), (7.21)

where In are coefficients and Tn are relaxation times. The largest relaxation time

T1 is called the “principal relaxation time.” The relaxation times can be mea-

sured directly by NMR experiments, in which proton magnetization decays at the

phase boundary.[284, 24, 207] It has been demonstrated that T1 is determined by

the largest holes in the configurations, and is therefore divergent if arbitrarily large

holes can occur.[308] Indeed, for a reactive species in equilibrium hard-sphere sys-

tems, the large-t behavior of its survival probability is actually p(t) ∼ exp[−t3/5] in

three dimensions.[308] It is noteworthy that stealthy trap model systems that prohibit

arbitrarily large holes would have finite T1 values.

The stealthy potential employed in this chapter is equivalent to a direct-space

pairwise additive potential v(r) whose shape can be tuned by changing the form of the

compactly-supported non-negative function ṽ(k) in Eq. (7.4).[328, 352] This chapter

and Refs. [328], [353] and [286] used a step-function ṽ(k), corresponding to a real-

space pair potential that is a function that oscillates about zero and weakly decaying,

similar to Friedel oscillations of the electron density in a variety of systems, including

molten metals as well as graphene.[14, 21] However, one could also choose ṽ(k) to

be the so-called “overlap” function (proportional to the intersection volume of two

d-dimensional spheres of diameterK at distance k), in which the corresponding direct-

space pair potential v(r) is a positive decaying function with multiple minima,[28, 325]

similar to effective pair interactions that arise in multilayered ionic microgels.[126]

It is interesting to note that if one could realize a solvent that is strictly stealthy,

then its maximum hole size is related to the largest solute particles that it can dissolve.

In a solvent with a finite value of Rc, particles with exclusion radius larger than
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Rc would create intolerably large holes, and would therefore not dissolve. Solute

particles smaller than Rc would dissolve in such a solvent, but the effective interactions

between them deserve future research. Would particles larger than Rc/2 refuse to

touch each other in order to avoid combining the holes they create? Also, if the solute

particles are only slightly smaller than Rc, solvent particles should be concentrated in

concentric-shell regions around the solute particles. Could the interference between

these concentric shells induce very complicated effective interactions?

7.6 Appendix: Expected Rc for a Finite Number

of Finite-Sized Poisson Configurations

Although there is no theoretical limit on the hole radii in Poisson configurations (ideal

gas), one still expects to find a finite Rc if one only studies a finite number of finite

sized configurations. If one studies a total of Nc configurations of N particles, one

expects to see roughly NcN uncorrelated holes. Of these NcN holes, one expects to

find the largest hole once. Therefore

EV (Rc) = exp[−ρv1(Rc)] =
1

NcN
. (7.22)

This equation predicts the largest hole size, Rc, as a function of ρ, Nc, and N . To

find Rc presented in Fig. 7.2, notice that for stealthy systems of a given χ and K, ρ

is given in Eq. (7.7). Substituting Eq. (7.7) into Eq. (7.22) yields

v1(Rc)v1(K)

2dχ(2π)d
= ln(NcN). (7.23)

Here we use K = 1, Nc = 20000, and N = 500 to be consistent with stealthy results.
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Chapter 8

Rational Design of Stealthy

Hyperuniform Patterns with

Tunable Order

8.1 Introduction

In the field of statistical physics, the concepts of order and disorder are used to indicate

either the presence or absence of some underlying symmetry or distance-dependent

correlation in a many-particle system. In this regard, our physical intuition tells

us that crystalline arrangements of matter (e.g., Bravais lattices) are “more ordered”

than non-lattice structures and quasicrystals, which in turn appear to be more regular

in some sense than disordered systems such as liquids. Moreover, centuries of both

experimental and theoretical findings have unequivocally demonstrated that such

structural order is a visual manifestation of the underlying correlations that exist in

a given many-particle system. As such, complex and necessarily distance-dependent

many-particle interactions play a more crucial role in the description of more ordered

(and therefore strongly correlated) condensed-phase systems such as solids and liquids
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than in more disordered (and therefore weakly correlated) sparse systems such as low-

density gases.

Despite the existence of a deterministic correspondence between these underlying

correlations and the structure of matter, the identification of a simple metric which

unambiguously quantifies the degree of order (or equivalently speaking, the degree

of disorder or “randomness”) in many-particle systems still remains an outstanding

problem in statistical physics. In this work, we directly address this challenge and

demonstrate that a potential avenue forward lies in the construction of order metrics

that are not constrained by our perception of order, since this immensely non-trivial

and highly redundant information handling process cannot reliably provide a de facto

standard for quantifying order [19]. In this regard, human perception is an inherently

limited and fallible process when faced with such a task, as we tend to identify

patterns even when they do not necessarily exist on one hand (i.e., the Gestalt laws

of organization [114]), while mistaking certain intrinsic and complex patterns (vide

infra) for randomness on the other. Instead, we will introduce and discuss an order

metric herein that provides an unbiased estimate of order by equally accounting for the

underlying correlations that exist across all relevant length scales in a given digitized

two-phase (two-spin state) system of interest.

To motivate our overall objective, consider the patterns depicted in Fig. 8.1, which

contain varying degrees of structural order ranging from a random (Poisson) config-

uration with no discernible short-, intermediate-, or long-range order to a strongly

correlated crystalline configuration displaying order across all length scales. In such

cases, it is not unreasonable to require that a useful order metric be unambiguously

consistent with our intuitive sense of order. In between such extremal cases, how-

ever, our ability to discriminate among the subtle textural differences that exist in

certain multi-particle configurations becomes increasingly less accurate and reliable.

A particularly striking and quite pertinent example of such textural differences is hid-
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den long-range order—the defining characteristic of stealthy hyperuniform disordered

patterns [328, 325] that we will leverage to gain new insight into the construction of

order metrics in this work.

Figure 8.1 Graphical depiction of many-particle configurations (patterns) that contain
varying degrees of structural order. (a) Disordered and random (Poisson) configuration
with no discernible short-, intermediate-, or long-range order. (b) Configuration generated
via random sequential addition (RSA) with short- and intermediate-range order [356]. (c)
Inclusion of very small collective displacements of the particles in (b) to form a
hyperuniform configuration [328], a statistically isotropic configuration that contains
hidden long-range order yet displays no Bragg peaks. In comparing these two patterns by
eye, it can be very difficult to detect the presence of such long-range order in the
hyperuniform configuration. (d) Crystalline configuration displaying order across all
length scales (and characterized by Bragg peaks).

Hyperuniform patterns (e.g., atoms in a material, trees in a forest, stars in a

galaxy, etc.) are exotic amorphous states of matter poised between perfect crystals

and liquids in that they exhibit suppressed large-scale density fluctuations (like per-

fect crystals) while simultaneously presenting as statistically isotropic with no Bragg

peaks (like liquids) [317, 349, 325, 306]. In this sense, hyperuniform systems are

characterized by hidden order that is not apparent on large length scales [325] and

are therefore endowed with several novel thermodynamic and physical properties.

To date, these extraordinary states of matter can be found in maximally random

jammed particle packings [74, 347, 149, 50], jammed athermal granular media [33],

jammed thermal colloidal packings [173, 77], dynamical states of cold atoms [177],

transitions in non-equilibrium systems [136, 142], quantum systems [88, 90, 315],
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surface-enhanced Raman spectroscopy [66], terahertz quantum cascade lasers [68],

wave dynamics in disordered potentials based on supersymmetry [346], avian pho-

toreceptor patterns [145], as well as certain Coulombic systems [315]. Disordered

hyperuniform patterns of the so-called stealthy variety have the additional (and un-

usual) property of being transparent to radiation across a select range of wavelengths.

These systems are also quite remarkable in that particles interacting with certain long-

range pairwise potentials can counterintuitively freeze into such disordered states at a

temperature of absolute zero [328, 26, 325]. By mapping such stealthy hyperuniform

configurations of particles onto network solids, what was previously thought to be

impossible became possible: the rational design of disordered cellular solids that have

complete isotropic photonic band gaps comparable in size to photonic crystals [95],

thereby providing novel and unexplored ways to manipulate light [94, 189, 123, 178].

By providing such a complex landscape of textural differences, stealthy hyper-

uniform disordered patterns are the ideal candidates for discriminating order in the

structure of matter and thus form the cornerstone of the order metric examined herein.

Although there is no perfect order metric [321], the mere existence of disordered pat-

terns that contain order hidden from human perception (or at least extremely difficult

to discern by visual inspection) makes it quite desirable to formulate an order metric

that is able to quantify the degree of order in a given pattern across all relevant length

scales. Here we introduce a binary-system version of such a scalar order metric, de-

noted as τ , to rank digitized two-phase patterns by providing an unbiased estimate

of the order contained within a given discretized pattern by equally accounting for

contributions across short-, intermediate-, and long-range distances. In this regard,

we note that such an order metric has been motivated by several of our earlier works

and can be seen as either a discrete analog of an order metric utilized to study trans-

lational order in continuous point patterns [325] or as a reciprocal-space analog of the
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real-space descriptors successfully employed in the inverse reconstruction of two-phase

media textures [147].

We will focus our discussion on two-phase heterogeneous media (e.g., compos-

ites, porous materials, polymer blends, biological media, suspensions, gels, etc.), as

they represent a very general class of materials, yet we know very little about their

existence as stealthy hyperuniform states from a fundamental theoretical perspec-

tive. As such, our ability to systematically generate stealthy hyperuniform disordered

two-phase heterogeneous media with a tunable degree of order is currently lacking.

This work also directly addresses this issue by bringing together aspects of pattern

recognition, quantification of order in digitized two-phase media, and the theory of

heterogeneous media [301] in the design of a series of algorithms that allow for the

systematic identification and generation of digitized stealthy hyperuniform patterns.

Hence, this work provides the first systematic means to design two-phase digitized

stealthy hyperuniform patterns with a tunable or prescribed degree of order, which

is an extremely timely advance as these exotic states of matter are endowed with a

number of novel thermodynamic and physical properties that are only starting to be

explored in the fields of materials science and engineering [26, 95, 189, 178]. Our focus

on digitized representations of two-phase heterogeneous media is also motivated by

the fact that digital images are necessarily pixelized (or voxelized) and modern three-

dimensional (3D) printing technologies use digitized data as input, thus providing

several immediate and practical applications of the work described herein.

After providing some necessary mathematical definitions and preliminaries, we

will first demonstrate that τ , which is designed to discriminate among the subtle tex-

tural differences provided by stealthy hyperuniform patterns, is still consistent with

the manner in which the human eye perceives order/disorder in clear-cut cases such as

highly-ordered crystalline configurations as well as fully uncorrelated (Poisson) pat-

terns. We do so by evaluating τ for a digitized representation of the Mona Lisa, which
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is arguably one of the most easily recognizable and well-known images in existence

to date, and then compare our findings with the most ordered and most disordered

configurations of the same resolution. By evaluating τ on all stealthy hyperuniform

patters discretized on several finite-sized lattices (obtained via an exhaustive enumer-

ation algorithm), we demonstrate that τ is not only unambiguously consistent with

our intuitive notion of order, but can also discriminate subtle textural differences

(e.g., hidden order) that exist in discrete stealthy hyperuniform patterns which are

not easily discernible by visual inspection. We then showcase a series of algorithms

that allow for the systematic identification and generation of digitized stealthy hy-

peruniform patterns with tunable or prescribed degrees of order before ending with

some conclusions regarding the future outlook of the field.

8.2 Results

8.2.1 Mathematical definitions and preliminaries

In this chapter, we focus on two-dimensional (2D) patterns discretized by (square)

pixels on a square (Z2) lattice (subject to periodic boundary conditions along the x-

and y-axes). Such patterns can be represented mathematically by σ(m,n), a function

which takes two integers as input (m and n, the indices specifying the pixel location

in the lattice) and yields a binary output (0 or 1) [73, 190, 51], which can be used

to denote up/down spins (i.e., the two-state Ising model [140, 39] for ferromagnetism

in statistical mechanics), occupancy/vacancy (i.e., the lattice gas model), or phase

A/B in the case of digitized two-phase media. If L1 and L2 are the side lengths (in

pixels) for a given pattern, then m and n are limited to 1 ≤ m ≤ L1 and 1 ≤ n ≤ L2,

respectively. The total number of pixels (or sites) will be denoted as Ns = L1 ×

L2, while N will represent the number of up spins or occupied sites (or the phase

assigned a value of 1 in σ(m,n) for the case of two-phase media) and is given by
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N =
∑L1

m=1

∑L2

n=1 σ(m,n). Finally, we will let f = N/Ns be the fraction of up spins,

lattice occupancy, or fraction of a given phase in two-phase media.

The static structure factor, which describes how a material scatters incident radi-

ation, plays a central role in the order metric defined in this work (vide infra) and is

given by

S(k) =
1

N
|ρ̃(k)|2 , (8.1)

in which we utilized the following discrete form of the collective density variable [328]:

ρ̃(k) =
∑
sites

σ(r)eik·r =

L1∑
m=1

L2∑
n=1

σ(m,n)ei(kxm+kyn), (8.2)

with kx and ky representing the x- and y-components of the wavevector k. A digitized

pattern will be referred to as “stealthy up to some exclusion radius K” if S(k) = 0

for all 0 < |k| ≤ K. When combined with the definition of S(k) in equation (8.1),

this has two important implications that will be used throughout this work. First,

if a pattern σ1(m,n) is stealthy up to some K, then the inverse of this pattern,

σ2(m,n) ≡ 1 − σ1(m,n), is also stealthy up to the same K. This results from the

fact that ρ̃1(k) has to vanish for all 0 < |k| < K when σ1(m,n) is stealthy up to K.

In this case, ρ̃2(m,n) also vanishes for all 0 < |k| ≤ K, from which it follows that

S(k) = 1
N
|ρ̃2(k)|2 = 0 in this range of k making σ2(m,n) stealthy up to K as well.

Second, if two patterns σ1(m,n) and σ2(m,n) are both stealthy up to some K and

0 ≤ σ1(m,n) +σ2(m,n) ≤ 1 holds for every m and n, then the superposition of these

two patterns, σ3(m,n) = σ1(m,n) + σ2(m,n), is also stealthy up to K. This results

from the fact that the collective density variables for these two individual patterns

are both zero. Since ρ̃3(k) = ρ̃1(k) + ρ̃2(k) = 0, S(k) = 0 for σ3(m,n), which makes

this pattern also stealthy up to K. We denote such a pattern as “multi-stealthy”

since this configuration is comprised of multiple stealthy configurations and note in
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passing that such a configuration (by definition) is also endowed with the property

of being “multi-hyperuniform”.

Figure 8.2 Graphical depiction of the famous portrait of the Mona Lisa by Leonardo da
Vinci (circa 1503-1506) in RGB (the additive red–green–blue model), grayscale, and black
& white formats, each discretized on a square lattice with a resolution of 2048× 4096
pixels (with the white pixels in the black & white image having an occupancy of 31.7%).
The RGB figure was converted to grayscale using the formula
Y = 0.2989 ·R+ 0.5870 ·G+ 0.1140 ·B, and then to black & white using Otsu’s method,
which chooses the threshold value to minimize the intraclass variance of the thresholded
black and white pixels [221]. The ratio of the order metric associated with the black &
white (or binary) image of the Mona Lisa, τ [C ], to the order metric of an ensemble of
Poisson configurations, τ [P], was computed as τ [C ]/τ [P] ≈ 105, which quantitatively
demonstrates that the Mona Lisa is significantly more ordered than a collection of
random spatially uncorrelated configurations containing the same number of particles.
With respect to the order metric corresponding to the most ordered (crystalline)
configurations (τ [O]) that can be discretized on the same lattice, τ [C ]/τ [O] ≈ 10−1, a
finding which quantitatively delineates the degree of order in the Mona Lisa on a relative
scale that spans six orders of magnitude (in τ) and again agrees with the general
consensus that there is a high relative degree of order contained in this famous portrait.

8.2.2 Quantifying the degree of order in discrete patterns:

The τ metric

Although no perfect order metric necessarily exists [321], many order metrics have

been devised to quantify the degree of order/disorder of complex systems at various
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length scales, including those that account for bond orientations [280, 249] and trans-

lational order [153, 326]. For some of these metrics, the degree of order is referenced

to a particular perfect crystalline structure and in other instances a reference state

is not assumed. Invariably, all previously employed order metrics incorporate only

spatially local information in practice.

Figure 8.3 Graphical depiction of two patterns discretized on a periodic L× L square
lattice (with L = 20) comprised of N = 80 particles (f = 0.2) which are represented by
blue squares. While the disordered pattern (C ) on the left is hyperuniform and stealthy
for an exclusion radius of K = 1 (in units of 2π/L), the disordered pattern (P) on the
right is simply a Poisson (random) pattern that is neither stealthy nor hyperuniform. This
figure demonstrates that while stealthy hyperuniform patterns look very similar at
short-range, they contain hidden long-range order (i.e., suppression of large-scale number
density fluctuations) that is not easily detectable by eye. Since τ [C ]/τ [P] = 3/2, the τ
order metric quantitatively illustrates the fact that this disordered stealthy hyperuniform
configuration—purely through the presence of hidden long-range order—is indeed
significantly more ordered than the random Poisson pattern.

To allow for a quantitative measure of the degree of order contained within a

given discrete pattern across all relevant length scales with respect to the uncorrelated

system, we introduce the τ metric, defined as:

τ [C ] ≡
∑
k 6=0

[SC (k)− SP(k)]2 =
∑
k 6=0

[SC (k)− 1 + f ]2 , (8.3)
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in which both summations are over all k-vectors associated with the natural period of

the simulation box (excluding the origin (k 6= 0)) and SC (k) and SP(k) = 1− f are

the structure factors, i.e., the Fourier transforms of the corresponding real-space two-

point correlation functions [146], for a configuration of interest (C ) and an ensemble of

Poisson patterns (P), respectively. In this regard, the definition of τ in equation (8.3)

can be seen as a discrete extension of the order metric employed in our earlier study

of translational order for point patterns in continuous spaces [325], in which SP(k) is

unity (as expected for continuous Poisson point patterns). Similar to the continuous

case, this order metric will register large values due to the occurrence of sharp peaks

in lattice patterns, which are of finite height in any finite system but become infinite

(Dirac delta functions) in the infinite-system-size limit. Furthermore, this definition of

also implies that τ is invariant with respect to trivial symmetry operations, including

translations, rotations, and reflections. It is also important to stress here that τ will

also register very large values in the vicinity of critical points (e.g., Ising-like critical

points [98, 97]), due to the fact that S(k) diverges as k→ 0 in the infinite-system-size

limit. Hence, while one should exercise caution in interpreting such an order metric in

the vicinity of a critical point, τ might also be fruitfully employed to detect whether

a disordered system is in fact approaching a critical point. This is a potentially

interesting research avenue to explore in the future as all of the examples considered

herein are located far away from any critical points.

By defining τ with respect to an ensemble of spatially uncorrelated Poisson point

processes, i.e., a collection of random and disordered arrangements of particles that

is characterized by SP(k) = 1− f ∀ k 6= 0, τ can also be seen as a reciprocal-space

analog of the real-space descriptors successfully employed in the inverse reconstruc-

tion [147] of two-phase media textures. Such textures are of importance across a wide

variety of fields, ranging from the microscopic length scales encountered in materi-

als science (e.g., the microstructure of sandstones, metal–ceramic composites, and
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concrete) and systems biology (e.g., the structure of plant and animal tissues, cell

aggregates, and medical imaging) to the macroscopic length scales found in ecology

(e.g., distributions of trees in forests) and cosmology (e.g., galaxy distributions and

stellar constellations).

As seen in equation (8.3), τ accumulates the deviation of SC (k) from unity for

all k 6= 0 (in a single period as defined by the k–point mesh required to accurately

sample a square lattice with a spatial extent of length L1×L2), thereby providing an

unbiased estimate of the order contained within a given discrete pattern by equally

accounting for contributions across short-, intermediate-, and long-range distances.

This salient feature of the τ order metric becomes immediately evident when one

attempts to address the following question: what is the degree of order in the Mona

Lisa, which is arguably one of the most easily recognizable and well-known images in

existence to date?

1.000 1.000 0.390 0.110 0.012 0.012 0.003

Figure 8.4 (Top row) Graphical depiction of a representative series of six stealthy
hyperuniform configurations and a single Poisson (random) configuration discretized on a
periodic L× L square lattice (with L = 6). Each of these configurations, C , is comprised
of N = 18 particles (which corresponds to an occupancy of f = 18/36 = 0.5) that are
represented by blue squares. (Middle row) Corresponding structure factors, SC (k), for
each configuration. For the six stealthy hyperuniform configurations, SC (k) = 0 for some
positive exclusion radius, K ≥ 1 (in units of 2π/L), a property which is not shared by the
spatially uncorrelated Poisson pattern on the far right. (Bottom row) Corresponding order
metric values, τ [C ], for each configuration as defined by equation (8.3). Note that these
patterns have been arranged from most ordered to least ordered, based on the computed
values of τ [C ].
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To quantitatively ascertain the degree of order in this famous portrait, τ was

computed for a black & white (or binary) representation of the Mona Lisa (τ [C ])

with respect to a reference set of configurations that represent (i) the most ordered

patterns (τ [O]) and (ii) the most disordered patterns (τ [P]) that can be discretized

on a square lattice with the same resolution and number of particles (occupancy) as

the black & white image of the Mona Lisa (see Fig. 8.2 for more details). In doing so,

we determined that τ resolves the degree of order contained in all patterns that can

be discretized on this lattice across a span of six orders of magnitude, as defined by

the ratio τ [O]/τ [P] ≈ 106. With τ [C ]/τ [P] ≈ 105, the Mona Lisa was found to be

significantly more ordered than a collection of random spatially uncorrelated Poisson

configurations containing the same number of particles—a quantitative finding that

is in strong agreement with the general consensus that there is a high relative degree

of order contained in this famous portrait. On the same scale, τ for the Mona Lisa

only differed by one order of magnitude from the most ordered (crystalline) config-

urations, as given by the computed ratio of τ [C ]/τ [O] ≈ 10−1. On the surface, this

observation again agrees with the general consensus that a portrait of a human sub-

ject is intrinsically ordered; however, the relatively close location of the Mona Lisa

with respect to the most ordered configurations (e.g., the simple checkerboard and

striped-phase configurations) is less obvious by visual inspection and seems to be a

direct consequence of the fact that τ not only accounts for the presence of order across

short-, intermediate-, and long-range distances, but also equally weights each of these

contributions in the computation of the overall order metric value.

As such, τ is a sensitive measure of the presence of order across all relevant length

scales and is therefore of particular importance in the discrimination of stealthy hype-

runiform configurations—patterns which are characterized by the presence of hidden

long-range order arising from the suppression of number density fluctuations on large

length scales. As seen in Fig. 8.3, such patterns are often difficult, if not impossible,
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to detect by eye, as the contrast sensitivity of human vision peaks at fairly short dis-

tances [42], thereby placing a larger relative weight on observed textural similarities

(or lack thereof) in this portion of the distance spectrum. This limitation is over-

come by the use of the τ order metric: by quantitatively detecting the presence of

order across all length scales, τ can easily discern a disordered stealthy hyperuniform

configuration from a random Poisson point pattern.

The strength and utility of τ as a quantitative and unbiased estimator of the

degree of order in a given discretized pattern lies in the fact that τ not only agrees

with our intuitive definition of order in unambiguous textural comparisons (i.e., by

clearly differentiating significantly ordered crystalline structures from disordered Pois-

son configurations) but can also discriminate subtle textural differences that are not

so easily discernible by visual inspection (i.e., by clearly differentiating disordered

patterns that contain some degree of hidden order, such as the aforementioned class

of stealthy hyperuniform configurations, from truly random spatially uncorrelated

Poisson patterns).

In this regard, the defining attributes of τ as an order metric are most clearly

illustrated by a detailed consideration of the series of discretized patterns provided in

Fig. 8.4. Obtained via an exhaustive enumeration of the configurational space corre-

sponding to a periodic 6× 6 square lattice, six representative stealthy hyperuniform

patterns (in which S(k) = 0 for some positive exclusion radius, K ≥ 1, in units of

2π/L throughout the manuscript) are arranged from most to least ordered according

to their respective τ values. From this figure, it is clear that the crystalline striped-

phase and simple checkerboard configurations represent the most ordered stealthy

hyperuniform patterns that can be discretized on a 6 × 6 square lattice, a fact that

is appropriately reflected in their computed order metric values of τ = 1.000 and

relatively large exclusion radii of K = 3 and K = 3
√

2, respectively. With an order

metric value of τ = 0.390, the staircase configuration is visibly less ordered than the
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configurations on the left, and is also accompanied by a smaller exclusion radius of

K =
√

5.

More importantly, the success of τ extends well beyond visually detectable ranges

of order. For the three remaining stealthy hyperuniform configurations in Fig. 8.4, all

of which have an exclusion radius of K = 1, it becomes increasingly more difficult to

discern the level of order (or lack thereof) in these patterns by eye. In this regard, a

careful visual examination of the configuration characterized by τ = 0.110 reveals that

this pattern can be constructed via the introduction of several defects (i.e., replace-

ments of select occupied sites by vacancies) into the simple checkerboard pattern, a

fact which is quantitatively captured by τ . However, the fact that the two remaining

stealthy hyperuniform configurations to the right of Fig. 8.4 appear as patterns that

contain no apparent or discernible order is an inaccurate assessment of these configu-

rations. When compared to the aforementioned crystalline configurations, these two

patterns are visibly more disordered, a fact which is again quantitatively reflected by

the relatively lower value of τ = 0.012 computed for each of these configurations. In

the same breath, these two patterns are indeed stealthy hyperuniform configurations

(with S(k) = 0 for K = 1), and as such, these patterns contain some degree of hidden

long-range order that is not present in a spatially uncorrelated Poisson point pattern,

an example of which is given on the far right of Fig. 8.4, wherein S(k) 6= 0 for K = 1.

Herein lies the key strength and utility of the τ order metric: by treating con-

tributions to the order of a given configuration that span short-, intermediate-, and

long-range distances on an equal footing, τ is able to detect the presence (or absence)

of such subtle long-range order. This conjecture is strongly indicative that such an

order metric (or appropriate modifications thereof) could be employed in pattern

recognition algorithms to identify and quantitatively discern textural similarities and

differences that exist across all length scales relevant to the problem of interest, with

applications ranging from computer vision and image processing to machine learning.
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With such a robust and powerful order metric in hand, we now turn our attention

to the measure for “stealthy hyperuniform” digitized patterns, on account of their

intrinsic long-range orders that are difficult, if not impossible, for human visual per-

ception to identify. For this purpose, we have devised several algorithms that allow

for the systematic identification and generation of disordered stealthy hyperuniform

patterns with tunable or prescribed degrees of order as measured by τ . We begin this

investigation with an exhaustive enumeration of all possible patterns for small sys-

tem sizes (L1 = L2 ≤ 6), and then move on to larger and more complicated stealthy

hyperuniform patterns generated with stochastic global optimization techniques such

as simulated annealing as well as a direct methodology based on superposition of

stealthy hyperuniform patterns.

8.2.3 Enumeration of discrete stealthy hyperuniform pat-

terns

In this work, we have explicitly investigated all of the possible patterns that can exist

on the 2D square lattice with side lengths, L1 = L2 = L ∈ {3, 4, 5, 6}, subject to

standard periodic boundary conditions along both axes. Unlike the case of contin-

uous point-particle systems, for which the number of configurations that can exist

comprises an uncountable infinite set, the systems considered herein have a discrete

number of degrees of freedom due to the fact that each lattice site is binary and

can either be occupied by a particle or vacant (unoccupied). As such, there exists

a finite number of possible patterns that can be discretized on a square lattice of

side length L, namely 2L×L, and each configuration must be enumerated to obtain

an accurate count of the number of stealthy hyperuniform patterns that exist on

these underlying lattices. The largest system considered was the 6× 6 square lattice,

which required explicit enumeration of 236 = 6.9× 1010 configurations. For each con-

figuration, the corresponding structure factor, S(k), was computed for the smallest
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Figure 8.5 The number of distinct stealthy hyperuniform patterns identified by an
exhaustive enumeration of the discrete patterns existing on a periodic L× L square lattice
(with L ∈ {3, 4, 5, 6}), sorted by (top) L and K (in units of 2π/L) and (bottom) L and N .

k-vectors contained in the reciprocal-space (k-point) mesh, namely k1 = [1, 0] and

k2 = [0, 1], as S(k1) = S(k2) = 0 is the minimal requirement for classification as

a stealthy hyperuniform pattern (with a corresponding exclusion radius of K = 1).

Each time a configuration met this criteria, it was added to a running list of stealthy

hyperuniform configurations (that was maintained throughout the execution of the

enumeration algorithm) and explicitly compared against all other structures on the

list to remove trivial configurational degeneracies due to symmetrical equivalence

(via the set of translations, rotations, and reflections defined by the periodicity of the

underlying lattice). The final list of non-redundant and symmetry-unique configura-
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tions constituted the set of existing stealthy hyperuniform configurations for a given

lattice [190].

The results of this enumeration study are summarized in Fig. 8.5. As L increases,

the top panel shows that the number of unique configurations that are stealthy up

to a certain K also increases, as expected. However, the growth increments are not

uniform. For instance, the number of configurations that are stealthy up to K = 1

increases dramatically when L increases from 5 to 6, but not as much when L is

increased from 4 to 5. This non-uniformity is caused by the underlying relationship

between the prime factorization of L and the set of N values that can admit stealthy

hyperuniform configurations. As the bottom panel of Fig. 8.5 shows, only theN values

that are integer multiples of 5 admit stealthy configurations for L = 5 = 1 × 5. For

L = 4 = 2×2, only the N values that are multiples of 2 admit stealthy configurations.

The L = 6 = 2 × 3 case, however, is much richer. The set of allowed N values not

only includes multiples of 2 and 3, but also includes sums of multiples of 2 and 3.

As a result, N can have any value between 0 and 6 × 6, except 1 and 35. Here, the

exception for N = 1 is due to the fact that 1 is not a sum of a multiple of 2 and

3. The exception for N = 35 follows from the fact that this case is the inverse of

N = 1. Compared to the L = 5 case, the L = 6 case allows many more N choices

and therefore produces a drastically increased number of stealthy patterns. We note

in passing that the bottom panel of Fig. 8.5 also shows that the distribution of N

in the stealthy hyperuniform configurations is roughly a Gaussian (a parabola in our

semi-logarithm plot) centered at N = L2/2.

8.2.4 Stochastic identification of discrete stealthy hyperuni-

form patterns

In this work, we also utilized the simulated annealing (SA) global optimization

scheme [163] in conjunction with classical (Metropolis-Hastings) Monte Carlo (MC)
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simulations to generate stealthy hyperuniform configurations discretized on square

lattices that were too large for an exhaustive enumeration study. For a given trial

configuration, C , the fictitious energy (or objective function) employed in these SA-

MC simulations was chosen to be:

θ[C ] =
∑

k,0<|k|≤K

[SC (k)− ST (k)]2 =
∑

k,0<|k|≤K

[SC (k)]2 , (8.4)

in which SC (k) and ST (k) are the corresponding structure factors for C and a target

(T ) configuration, respectively, and the summations are carried out over all k for

which 0 < |k| ≤ K, based on a pre-defined exclusion radius K. Since our goal is

to use SA-MC to stochastically generate stealthy hyperuniform configurations, we

take T to represent a fictitious target stealthy hyperuniform configuration that is

characterized by ST (k) = 0 ∀ {k | 0 < |k| ≤ K}. Quite interestingly, this objective

function is a direct analog of τ , demonstrating the utility of this order metric in the

first systematic design of stealthy hyperuniform two-phase digitized patterns with

prescribed degrees of order.

The simple quadratic functional form for θ in equation (8.4) is therefore mini-

mized once a configuration C is located with SC (k) = 0 for all k-vectors contained

Figure 8.6 Graphical depiction of a one-dimensional slice through a high-dimensional
potential energy surface (PES) before (left) and after (right) the application of a
logarithmic transformation on the energy, E, i.e., E = log(E), as a function of the
configurational coordinate, ξ. The existence of multiple minima in such high-dimensional
PES (depicted here by the presence of two degenerate global minima in the vicinity of
three low-lying and nearly degenerate local minima) plagues global optimization
techniques such as simulated annealing (SA) and can be significantly alleviated via the
application of this logarithmic transformation on the objective function.
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Figure 8.7 (Top row) Graphical depiction of a representative series of stealthy
hyperuniform patterns generated using our Simulated Annealing-Monte Carlo (SA-MC)
approach. Each of these stealthy patterns is discretized on a periodic 10× 10 square
lattice and comprised of N = 20 particles (f = 0.2). (Middle row) Corresponding
structure factors, S(k), for each stealthy pattern in which S(k) = 0 for some positive
exclusion radius, K ≥ 1. (Bottom row) Corresponding exclusion radii, K, for each
stealthy pattern. Note that these stealthy patterns have been arranged in increasing order
based on the values of K. The corresponding order metric values, τ , for each of these
stealthy patterns were computed as 0.18, 0.19, 0.33, and 2.59, respectively, indicating that
τ and K are again positively correlated in these instances.

within the aforementioned exclusion radius, thereby yielding a stealthy hyperuniform

configuration with a prescribed degree of order. Due to the presence of “multiple min-

ima” on these high-dimensional potential energy surfaces (PES), which hinders the

success rate of global optimization techniques such as SA-MC, we applied a logarith-

mic transformation on the objective function, i.e., θ = log(θ), to clearly differentiate

the energy scales associated with global and local minima. As Fig. 8.6 shows, this

logarithmic transformation drastically improves the depth of the ground state energy

basins, making them much more favorable at lower temperatures. A true ground

state (in this case a stealthy hyperuniform pattern) should have θ = 0 or θ = −∞.

Due to machine precision (double precision arithmetic was employed throughout this

work), the evaluated θ is often around -60. Based on this observation, we considered
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Table 8.1 Success rates for generating stealthy hyperuniform configurations via
Simulated Annealing-Monte Carlo (SA-MC) simulations as a function of N and K on a
10× 10 square lattice. For each N and K, 1000 independent SA-MC runs were attempted
to determine the final success rate.

f
Success Rate for K =

1
√

2 2
√

5
√

8 3

0.1 1.000 1.000 0.980 1.000 0.999 0.989
0.2 0.995 0.987 0.158 0.001 0.000 0.000
0.3 0.993 0.771 0.047 0.000 0.000 0.000
0.4 0.993 0.726 0.039 0.000 0.000 0.000
0.5 0.989 0.600 0.007 0.000 0.000 0.000

a SA-MC run to be successful in generating a stealthy hyperuniform configuration

once θ[C ] < −50 (which corresponds to θ[C ] < 10−50 ≈ 0).

During the SA-MC optimizations, the temperature T was slowly decreased using

an exponential cooling schedule, i.e., T = exp(−3 × 10−7Nt/N), in which Nt is the

number of trial MC moves attempted (at a given T ) and N is the number of particles

(or occupied sites), until T = Tmin < 0.1. To allow for finer refinements of the trial

configuration and further minimization of the fictitious energy, an additional 2000×N

trial MC moves were attempted at T = 0. Initially, the trial MC moves consist of

swapping a randomly chosen occupied site with a randomly chosen unoccupied site.

However, the acceptance ratio for this specific type of trial MC move becomes too

low as T decreases (i.e., the system is not exploring configurational space and is

essentially stuck). To remedy this issue, we switched to “local” trial MC moves once

the acceptance ratio dips below a preset threshold of Amin = 0.1 (i.e., less than

1,000 accepted moves per 10,000 trial moves). These local trial MC moves involved

swapping a randomly chosen occupied site with a randomly chosen unoccupied site

that is located within a specified cutoff distance (usually set to approximately 3-4

units in the lattice spacing). Furthermore, we also gradually decrease this cutoff

distance thereafter (until it reaches 1 unit in the lattice spacing) to maintain an

acceptance ratio above Amin.
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The success rate for our SA-MC program on a 10× 10 lattice (L = 10) is summa-

rized in Table 8.1 for f = N/L2 ≤ 0.5. Since our numerical method treats occupied

sites and unoccupied sites symmetrically, the success rate for f = x > 0.5 should be

equal to the success rate for f = 1−x. As f approaches 0.5, the observed decrease in

the success rate is most likely due to the fact that the search space, i.e., the number

of configurations with a particular N , given by (L2)!/[N !(L2 − N)!], is largest for

f = 0.5. In this regard, it would be interesting to find robust alternative methods for

overcoming this numerical difficulty and one such approach will be presented below.

Four configurations (with f = 0.2) identified using this SA-MC method are shown in

Fig. 8.7. The annealed configurations are disordered for the smaller three K values,

but crystalline for K =
√

5. We note here that this disorder-to-order transition with

increasing K was also observed in continuous stealthy hyperuniform systems [328].

8.2.5 Design of stealthy hyperuniform patterns via superpo-

sition

To find stealthy hyperuniform patterns for a particular system size and N , one can

simply enumerate all possible configurations if the system size is small and use SA-

MC for larger systems if N is small. That leaves us with the following question: what

method should one use if the system size and N are both large? Here we present

one such method, which involves a superposition of stealthy hyperuniform patterns

with smaller N values. As discussed above, if two patterns σ1(m,n) and σ2(m,n) are

both stealthy up to some K and σ3(m,n) = σ1(m,n) + σ2(m,n) is always between

0 and 1 (i.e., there is no overlap in a given phase between thee two configurations),

then σ3(m,n) is also stealthy up to K. As such, we simply identify “building block”

patterns with relatively small N values and then translate them to eliminate overlaps

before superposition.
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Fig. 8.8 contains several examples of stealthy hyperuniform patterns (up to K = 1)

that have been generated using this superposition technique. We chose L = 6 for

visual clarity, but the method is equally (and particularly) suitable for larger systems.

For this system size and K, our enumeration study found 1 stealthy configuration

with N = 2 and 9 stealthy configurations with N = 4. The configuration with N = 2

will be denoted as a doublet (D) and represents the smallest building block in this

superposition scheme. Of the 9 N = 4 configurations, 5 of them can be decomposed

as superpositions of pairs of doublets, denoted by D2 = D ⊕ D as a doublet of

doublets. The remaining 4 configurations with N = 4 are therefore quartets (Q). As

Fig. 8.8 illustrates, we can superpose these doublet and quartet building blocks to

create complex stealthy hyperuniform patterns. For example, by superposing nine

doublets one can create the configuration labeled D9 in Fig. 8.8 and by superposing

three quartets and three doublets, one can create the configuration labeled Q3D3.

For a configuration generated by this superposition technique to be stealthy up to a

given K value, S(k) at two different k-vectors are constrained to be zero. Fig. 8.8

also demonstrates how D and Q building blocks satisfy these constraints.

8.3 Discussion

On account of the daunting range of technical applications, our ability to perceive,

analyze, and interpret the wide class of spatial patterns that exist across multiple

length scales in matter is a problem of fundamental importance across the physical

and biological sciences. Limited aspects of this broad requirement can be attained

by human visual capacity as Darwinian evolution of our species has endowed us with

a pattern recognition sensitivity that is largely focused on attributes based on short-

and intermediate-range order [42]. As a result, it has become increasingly more im-

portant to define order metrics that objectively account for pattern attributes that
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span all of the relevant distances defined by the system of interest. This chapter ac-

complishes this objective by defining and analyzing a specific order metric, denoted by

τ , which ranks digitized two-phase (binary) images by providing an unbiased estimate

of the order contained within a given pattern by equally accounting for contributions

across short-, intermediate-, and long-range distances and therefore fulfills these re-

quirements.

For the sake of simplicity in this initial presentation, τ was defined for square

lattices of binary pixels subject to periodic boundary conditions. Inspired by several

of our previous works, the central strategy exploited in the definition of τ involves

the quantitative comparison of the structure factor (SC (k)) for a given configuration

of interest to that of an ensemble of random and spatially-uncorrelated Poisson pat-

terns (SP(k)), which is an obvious standard for the absence of order in a pattern.

In this work, special attention has been devoted to the τ measure for two-phase (bi-

nary) discretized stealthy hyperuniform patterns, on account of the fact that these

disordered systems are characterized by intrinsically hidden long-range order that is

difficult, if not impossible, to discern by visual inspection. For this purpose, we have

devised a series of novel algorithms that provide the first systematic means to design

novel two-phase digitized stealthy hyperuniform patterns with tunable or prescribed

degrees of order, which is an extremely important and timely advance as these exotic

amorphous states of matter are endowed with a number of novel thermodynamic and

physical properties that are only starting to be explored in the fields of materials

science and engineering.

The findings reported herein demonstrate that τ is a quantitative and unbiased

estimator of the degree of order in discrete patterns, and are strongly indicative of

the utility of such an order metric across a myriad of fields, including visual percep-

tion [233], digital image processing and complex pattern recognition (e.g., facial/voice

recognition, linguistics, lexical similarity), information theory (e.g., Shannon entropy,
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cryptography, and encoding) [267, 167, 120, 156], as well as data-intensive statistical

efforts such as supervised/unsupervised machine learning. In this regard, τ (or ap-

propriate modifications thereof) could be employed in pattern recognition algorithms

to identify and quantitatively discern textural similarities and differences that exist

across all length scales relevant to the problem at hand.

As an example of the utility of τ in cryptography and encoding [156, 130], bi-

nary pixel patterns (e.g., 2D bar codes) produced by useful encoding methods should

appear to be similar to random Poisson patterns. Hence their τ measures should

numerically be small, i.e., free from easily distinguishable geometric order over a

wide range of length scales [156], and thus τ can be a quite sensitive metric when

attempting to introduce (or remove) order in a given pattern across different length

scales. In this regard, a sensitive order metric like τ that surpasses the capacity of

human perception in detecting order across a wide range of length scales can also be

useful in the identification of descriptors for machine learning or image classification

tasks [130]. Here we note in passing that our visual pattern recognition is even less

effective for 3D input (when compared to 2D patterns), whereas τ naturally incorpo-

rates changes in dimensionality without diminished capacity for pattern recognition,

a feature of τ which becomes increasingly more important when quantifying order in

such high-dimensional data-intensive applications. Finally, it would also be interest-

ing to quantitatively compare τ order metric values with the corresponding Shannon

entropy and/or Kolmogorov complexity measures for digitized stealthy hyperuniform

images [267, 167, 120].

While the Fourier transform is the basic mathematical operation underlying

the definition of τ , alternative order metric definitions which utilize different inte-

gral transformations should also be considered. One such direction could involve

“wavelets” [203]. The central comparison issue here would be whether or not such
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an alternative strategy manages to produce equal sensitivity to short-, intermediate-,

and long-range patterns or textures.

The famous Mona Lisa portrait by Leonardo da Vinci, reduced to a binary black

& white format, has been used in this study to illustrate the sensitivity of τ to spatial

order. It is worth pointing out that τ would be unchanged if that portrait was partially

translated across its assigned periodic boundaries; in this case, human observation of

the resulting pattern would be fundamentally disrupted by contrast. Furthermore, the

treatment of this famous portrait as a case study in this work strongly supports the

extension of τ to systems with grayscale and/or RGB generalizations of binary pixel

states. Such research directions will significantly increase the regime of technological

applicability of this order metric while simultaneously enabling further exploration

into the complex yet subtle interplay between order and disorder in the structure of

matter.

8.4 Methods

8.4.1 Domain of S(k) in discrete patterns

In computing S(k), one only needs to consider a finite number of k-vectors due to

the following three reasons. First, the k-vectors need to be consistent with the size

of a given pattern, i.e., kx and ky must be integer multiples of 2π/L1 and 2π/L2,

respectively. Second, since S(k) is periodic for the discretized systems considered
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herein,

S(kx + 2π, ky) =
1

N

∣∣∣∣∣
L1∑
m=1

L2∑
n=1

σ(m,n)ei[(kx+2π)m+kyn]

∣∣∣∣∣
2

=
1

N

∣∣∣∣∣
L1∑
m=1

L2∑
n=1

σ(m,n)ei(kxm+kyn)+i2πm

∣∣∣∣∣
2

=
1

N

∣∣∣∣∣
L1∑
m=1

L2∑
n=1

σ(m,n)ei(kxm+kyn)]

∣∣∣∣∣
2

= S(kx, ky), (8.5)

and similarly, S(kx, ky + 2π) = S(kx, ky), thereby reducing the number of k-vectors

via translational symmetry. Furthermore, S(k) for approximately half of these k-

vectors are independent variables since (cf. equations (8.1)-(8.2)) S(0) = N and

S(−k) = S(k).
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Figure 8.8 (Upper left) Vectorial representation of a stealthy pattern comprised of
N = 2 particles. The corresponding structure factor, S(k) = 1

N |
∑N

j=1 exp[ik · rj ]|2, will
vanish at a given pair of k-vectors, k1 and k2, when r1 and r2 satisfy the following
equations: (1) exp[ik1 · r1] + exp[ik1 · r2] = 0 and (2) exp[ik2 · r1] + exp[ik2 · r2] = 0. Any
set of N = 2 particles whose coordinates satisfy these constraints constitutes a doublet
(D). (Lower left) Graphical depiction of a series of stealthy patterns discretized on a
periodic 6× 6 square lattice that were constructed via superposition of multiple doublets
(i.e., D2 = D ⊕D and D9 = D ⊕D ⊕ · · · ⊕D). Since each doublet constitutes a stealthy
pattern, the superposition of multiple doublets (without overlap) constitutes a stealthy (or
multi-stealthy) hyperuniform pattern as well. (Upper right) Vectorial representation of a
stealthy pattern comprised of N = 4 particles. The corresponding structure factor will
vanish at a given pair of k-vectors, k1 and k2, when r1, r2, r3, and r4 satisfy the following
equations: (1) exp[ik1 · r1] + exp[ik1 · r2] = 0, (2) exp[ik1 · r3] + exp[ik1 · r4] = 0, (3)
exp[ik2 · r1] + exp[ik2 · r3] = 0, and (4) exp[ik2 · r2] + exp[ik2 · r4] = 0. Any set of N = 4
particles whose coordinates satisfy these constraints constitutes a quartet (Q). Note here
that a quartet is not simply a pair of doublets, i.e., Q 6= D2 = D ⊕D. (Lower right)
Graphical depiction of a series of stealthy patterns discretized on a periodic 6× 6 square
lattice that were constructed via superposition of multiple doublets and quartets (i.e.,
QD = Q⊕D, Q2 = Q⊕Q, and Q3D3 = Q⊕Q⊕Q⊕D ⊕D ⊕D). Since each doublet
and each quartet constitutes a stealthy pattern, the superposition of multiple doublets
and quartets (without overlap) constitutes a stealthy (or multi-stealthy) hyperuniform
pattern as well. Hence, this superposition technique can be utilized to directly generate
stealthy patterns with both large L and N .
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Chapter 9

The Perfect Glass Paradigm:

Disordered Hyperuniform Glasses

Down to Absolute Zero

9.1 Introduction

Structural glasses are materials made by supercooling liquids below the “glass tran-

sition temperature,” sufficiently rapidly to avoid crystallization [12]. According to

Ref. [45], a qualitative description of a structural glass is “a phase of matter with no

long-range order but with a nonzero shear rigidity.” It is well known that the glass

transition temperature can be reduced by lowering the cooling rate. However, some

have postulated that if the glass transition temperature could be postponed down to

absolute zero during the supercooling process, then at some low but positive tem-

perature, called the “Kauzmann temperature,” the entropy of the supercooled liquid

would be equal to and then apparently decline below that of the crystal, resulting

in the so-called “Kauzmann paradox” [157, 342], which is schematically depicted in

Fig. 9.1. One resolution of this well-known paradox is to assume that supercooled
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Figure 9.1 Schematic illustration of the so-called Kauzmann paradox. As a liquid is
supercooled, the entropy difference between it and crystalline state, SL − SC , decreases. If
the glass transition can be postponed below the Kauzmann temperature, Tk, then the
entropy of the liquid would be lower than that of the crystal upon extrapolation. The
perfect-glass paradigm introduced in this chapter completely circumvents the Kauzmann
paradox.

liquids at the Kauzmann temperature must undergo a thermodynamic phase transi-

tion to “ideal glasses”. Such glasses identified as ideal would have vanishing extensive

configurational entropy [67, 283]. In this chapter, however, we present a completely

different model system that we call a “perfect glass.” As we will see, one character-

istic of the perfect-glass paradigm introduced in the present chapter is the complete

circumvention of the Kauzmann paradox.

Various studies have justifiably placed importance on the local environment of

each atom in structural glasses [187, 270, 279]. The variations in local motifs and

the resulting varying degrees of short-range order have been used to explain the

physical properties of glasses. For example, it is believed that atoms in ordered local

environments are responsible for thermodynamic properties and kinetic stability of

glasses, while atoms in disordered local environments make important contributions

to mechanical properties [187]. By contrast, global structural characteristics, such as

hyperuniformity, as described below, address key aspects of glass formation that have

been unexplored by these local descriptive techniques.
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Although the compositions and interactions of experimentally investigated glasses

are generally complicated on the atomic scale, many theoretical and computational

models with simpler compositions and interactions have been shown to produce

glasses under rapid cooling [171, 265]. Moreover, short-range, pairwise additive in-

teractions have been specifically designed to locally frustrate crystallization to create

good glass formers [78, 166, 225, 274, 151, 334]. This is often achieved by having two

components whose simultaneous existence disrupts crystal nucleation in two dimen-

sions (2D) [166, 225] or three dimensions (3D) [151], or by encouraging pentagonal or

icosahedral local geometry [255, 280] that frustrates crystallization [78, 274]. Despite

these design goals to strongly inhibit crystal nucleation, the true ground states of

these potentials nevertheless turn out to be crystalline [255, 87, 226, 274]. Therefore,

liquids with these interactions can still crystallize if cooled slowly enough. Interest-

ingly, there are models that produce amorphous ground states [328, 198, 278], but

they cannot resist shear and hence do not behave like glasses, which are mechani-

cally stable. Moreover, in all of these cases, crystalline structures are still part of the

ground-state manifold, even if the probability of observing them is extremely small.

Therefore, placing such systems in contact with suitable periodic substrates would

have the effect of inducing crystallization with an appreciably higher probability. As

we will see, the perfect glass paradigm does not even allow this to occur because

ordered states (for all temperatures) are completely banished.

Maximally-random jammed (MRJ) packings of hard (nonoverlapping) particles in

2D and 3D are idealized amorphous states of matter that can be regarded to be proto-

typical glasses [322, 347, 149, 321]. A packing is called “strictly jammed” if no subset

of particles may be displaced while allowing uniform volume-preserving deformations

of the system boundary [309], implying resistance to both compressive and shear de-

formations. Among all strictly jammed packings, MRJ states are defined to be the

most disordered ones according to suitable order metrics (i.e., measures of the degree
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of geometric order). MRJ packings not only exhibit many characteristics that are typ-

ical of glasses, but also are extremal in several respects according to the description

given in Ref. [45]: They are nonequilibrium, nonergodic many-body systems that are

maximally disordered subject to the nonoverlap constraint, non-crystallizable, and

mechanically infinitely rigid (both elastic moduli are unbounded) [309]. Indeed, they

are perfectly nonergodic, since they are forever trapped in configuration space.

However, there are still two major differences between MRJ packings and molec-

ular glasses. First, MRJ packings are hyperuniform [317, 74, 347, 173, 149], while

typical molecular glasses are not [194]. A hyperuniform many-particle system is one

in which the structure factor approaches zero in the infinite-wavelength limit [317]. In

such systems, density fluctuations are anomalously suppressed at very large lengths

scales [317], which imposes strong global structural constraints. All structurally per-

fect crystals are hyperuniform, but typical disordered many-particle systems, includ-

ing liquids and molecular glasses, are not. Materials that are simultaneously disor-

dered and hyperuniform can be regarded to be exotic states of matter that lie between

a crystal and a liquid; they behave more like crystals in the manner in which they

suppress large-scale density fluctuations, and yet they also resemble typical statis-

tically isotropic liquids with no Bragg peaks, and hence have no long-range order.

Therefore, disordered hyperuniform states of matter have been the subject of many

recent investigations [317, 74, 347, 149, 173, 77, 177, 136, 142, 66, 68, 341, 211, 95].

Second, given sufficiently long observation times at positive temperature, a typical

molecular glass will eventually crystallize because the free energy barrier between it

and its corresponding stable crystal structure is finite. By contrast, the hard-sphere

MRJ state is a singular point that is trapped in a jamming basin in configuration

space and hence can never crystallize at constant volume [75].

Geometrically motivated by MRJ extremal glasses, we are interested in construct-

ing molecular-glass analogs (that are not limited to pairwise additive interactions),
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Figure 9.2 Schematic constant-pressure phase diagrams. Left panel: Typical
many-particle systems become glasses upon rapid cooling or can crystallize upon slow
cooling. Right panel: Our model family creates perfect glasses that by construction
cannot crystallize upon quenching to absolute zero temperature.

which we call “perfect glasses”1. These analogs should exhibit the following attributes:

(1) be disordered and hyperuniform (a global criterion as opposed to the local coor-

dination geometry focus of previous studies); (2) possess no crystalline or quasicrys-

talline energy minima so that they remain disordered even in the infinite-observation-

time limit at positive temperature, implying that they can never crystallize (in con-

trast to conventional glass formers), as qualitatively shown in Fig. 9.2; and (3) must

possess both positive bulk and shear moduli.

In this chapter, we explicitly show that such perfect glasses mathematically ex-

ist. Specifically, we demonstrate that a single-component system with a combination

of long-ranged two-, three-, and four-body interactions can produce perfect glasses.

Our perfect glass interactions are designed in Fourier space which allows us indepen-

dently to tune the structure factor over the entire range from infinite to intermediate

wavelength, including values that will automatically include all possible Bragg peaks,

while maintaining hyperuniformity. These global constraints therefore permit the sup-

pression of all possible Bragg peaks, which by definition eliminates any crystal and

quasicrystal formation. This attribute of the perfect glass stands in contrast with

1Our definition of perfect glass is distinctly different from the “ideal glass former” with reversed
Tg and Tm [155].
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the ideal glass concept [67, 283] as well as with previous studies that are intended to

frustrate crystallization via local coordination preferences [78, 166, 225, 274]. In the

case of the former, this means that there is no entropy catastrophe because there is

no ordered structure with which to carry out an entropy comparison. Our global ap-

proach of preventing crystallization applies to any dimension, in contrast to previously

designed interactions that are specifically tailored for a particular space dimension

[78, 166, 225, 274].

The major features of perfect glasses is not limited to our three criteria (hyper-

uniform, possess no crystalline or quasicrystalline energy minima, and possess both

positive bulk and shear moduli). We will also see that perfect glasses completely

circumvent Kauzmann’s paradox. Besides the theoretical existence of perfect glasses,

another important finding of our work is that liquid-state configurations of our perfect-

glass interaction are hyperuniform and hence possess a zero internal compressibility,

implying they have a non-relativistic speed of sound that is infinite. Finally, our re-

sults also suggest that up to four-body interactions are necessary to completely avoid

crystallization, and thus explains the failure to create such an ideal state of matter

heretofore.

9.2 Perfect Glass Potentials

We apply the collective-coordinate optimization scheme [328, 352] to construct inter-

actions that can produce perfect glasses. This procedure involves finding potentials

that are given in terms of a targeted form of the structure factor. For a single-

component system with N particles in a simulation box of volume V with periodic

boundary conditions in d-dimensional Euclidean space Rd, the single-configuration

structure factor is defined as S (k) = |∑N
j=1 exp(−ik · rj)|2/N , where k is a d-

dimensional wavevector and rj is the position of particle j [46, 45]. Many previous
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investigations have focused on targeting “stealthy” structure factors, i.e., those in

which the structure factor is exactly zero within some sphere of radius K around the

origin in Fourier space [328, 286, 325, 352, 353]. When K is large the ground states

are crystalline [328, 286, 325, 352]. When K is sufficiently small, however, it has

been shown that the ground states of the associated interactions are disordered and

highly degenerate [328, 325, 352]. However, although these states are hyperuniform,

they are not perfect glasses because they cannot resist shear and crystal structures

are part of the ground-state manifold, even if they are sets of zero measure in the

infinite-volume limit.

However, the collective-coordinate optimization scheme has also been used to pre-

scribe the potential energy Φ defined by the following more general targeted structure

factor [329, 26, 350]:

Φ(rN) =
∑

0<|k|<K

ṽ(k)[S (k)−S0(k)]2, (9.1)

where rN = r1, r2, ..., rN represents the configurational coordinates, the summation is

over all reciprocal lattice vector k’s of the simulation box [45] such that 0 < |k| < K,

S0(k) is a “target” structure factor, ṽ(k) > 0 is a weight function, and K is some

cut-off wavenumber that determines the number of constrained wave vectors. At low

temperature, this interaction potential attempts to “constrain” the structure factor

S (k) to the target S0(k) for all |k| < K, since violating a constraint for any k

will increase the potential energy. The number of independent2 constraints divided

by the total number of degrees of freedom, d(N − 1), is a parameter that measures

how constrained the system is and is denoted by χ. Previous research has focused

on χ values less than 1. In such under-constrained cases, a minimum of the potential

energy satisfies all constraints while still having leftover unconstrained degrees of

2The definition of S (k) implies that S (k) = S (−k). Therefore, not all constraints are inde-
pendent.
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freedom. Although this interaction is defined in Fourier space (i.e., in terms of the

structure factor), it can be decomposed into a sum of two-body, three-body, and four-

body terms in direct space [329]. In Appendix A, we present explicit formulas for

each term. In the Appendix G, visualizations of these contributions to the potential

energy are provided.

For several reasons, such a model is an excellent starting point for designing

perfect glass interactions. First, this model enables one to fulfill the requirement that

perfect glasses be hyperuniform because this model constrains S (k) to a targeted

hyperuniform functional form S0(k) around the origin. In this chapter, we select the

following form for S0(k):

S0(k) = |k|α for 0 ≤ k ≤ K, (9.2)

where α > 0 is an exponent that we are free to prescribe. To ensure that S (k) has

the targeted hyperuniform power-law form of S0(k), we choose a weight function that

diverges at the origin:

ṽ(k) =

(
1

|k| − 1

)γ
for 0 ≤ k ≤ K, (9.3)

where γ ≥ 2 is another exponent to choose. The choices of S0(k) and ṽ(k) are not

unique: Other target forms of S0(k) and other forms of ṽ(k) that diverge to +∞ in

the zero wavenumber limit could also result in hyperuniformity. We choose the forms

in Eqs. (9.2)-(9.3) for simplicity. Because ṽ(k) goes to zero smoothly as |k| goes to

1, it is natural to let K = 1. Our choice of K and ṽ(k) sets the model’s length and

energy scales.

Second, this model can completely eliminate crystalline and quasicrystalline en-

ergy minima. The structure factor of all crystals and quasicrystals contains “Bragg

peaks,” i.e., Dirac delta functions [45]. Of all possible periodic and quasiperiodic
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configurations, the structures producing the largest-radius zone around k = 0 devoid

of Bragg peaks are the triangular and body-centered cubic lattices in 2D and 3D,

respectively. However, if we set χ > 0.9068 . . . in 2D or χ > 0.9873 . . . in 3D, then

even these two structures have some Bragg peaks that fall inside the |k| < K range;

and so do all other crystal and quasicrystal structures [325]. Thus, any crystalline

or quasicrystalline configuration will have potential energy diverging to plus infinity

and thus cannot be an energy minimum 3.

Third, this model allows us to realize positive shear and bulk moduli. If a structure

corresponding to a local minimum in Φ(rN) (called an “inherent structure” in the

rest of the chapter) is sheared or compressed at zero temperature, then the set of

k vectors that are consistent with the simulation box changes. A change in these

wave vectors then causes a change in S0 (since S0 is a function of k), which in

turn will change the potential energy. This change is likely positive because the

original configuration is an inherent structure. Indeed, in our simulations, we find

this perturbation always increases the potential energy and thus the system will resist

that perturbation. Therefore, shear and bulk strains cause stresses. However, for an

under-constrained system (χ < 1), the unconstrained degrees of freedom allow the

system to gradually dissipate the stress over time. Therefore, we always employ χ > 1

to ensure that stresses are sustained.

The qualitative nature of our combination of two-, three-, and four-body potentials

has the effect of assigning an impossibly high potential energy to structures that have

long-range periodic or quasiperiodic order. Thus when the resulting arrangements

of particles are disordered by virtue of the nature of the targeted structure factor,

these two-, three-, and four-body contributions to the total energy effectively cancel

3This also includes two dimensional crystalline and quasicrystalline states at positive temperature
that do not have perfect Dirac-delta-function-like Bragg peaks. Rather, the peaks have an intrinsic
broadening characteristic, but the broadening is rather limited in magnitude so our interaction
still has the effect of banishing phonon-displaced crystalline and quasicrystalline structures in two
dimensions [202].
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one another at large distances. Specifically, we show in Appendix B that for perfect

glasses, the three- and four-body contributions to the potential energy almost cancel

one another in such a way as to produce no infinite-system thermodynamic anomalies:

the total energy per particle is an intensive quantity (as quantitatively detailed in

Appendix C) and approaches its infinite-system-size very rapidly as N increases.

9.3 Results

9.3.1 Perfect-glass inherent structures

We now quantitatively characterize the structure, elastic moduli, and degree of order

of the perfect-glass inherent structures obtained by minimizing the total potential

energy, Eq. (9.1), starting from random initial configurations of N = 2500 particles for

different parameters χ, α, and γ in two and three dimensions. Perfect glasses obtained

in this way can be regarded as glasses produced by an infinitely rapid quench from

infinite temperature to zero temperature because the random initial configuration is

equivalent to the infinite-temperature state, and an energy minimization process may

be thought of as evolving the system to a state of zero temperature. Examples of

perfect glasses in 2D and 3D are shown in Fig. 9.3.

Pair statistics

The standard pair correlation function [46], g2(r), and the angular averaged and

ensemble-averaged structure factor, S(k), are together effective descriptors for distin-

guishing crystals, quasicrystals, disordered hyperuniform systems, and nonhyperuni-

form systems from one another. We will restrict ourselves to α ≥ 1 because, as we will

see, this places a lower bound on the rigidity of a perfect glass and is consistent with

the MRJ nature of this ideal amorphous state of matter. These two pair statistics

for α = 2 and different χ’s and γ’s are shown in Fig. 9.8. All g2(r)’s and S(k)’s are
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Figure 9.3 Snapshots of perfect glasses with N = 2500 with perfect-glass potential with
parameters χ = 5.10, α = 2, and γ = 3 in 2D (left) and 3D (right). Both of them are
clearly disordered.
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Figure 9.4 Pair correlation functions (left) and structure factors (right) of the perfect
glasses in 2D for α = 2.

clearly finite and approaches 1 in the r → ∞ or k → ∞ limit, showing that these

structures are neither crystalline nor quasicrystalline. Additionally, S(k) follows the

target S0(k) and approaches 0 as k → 0, demonstrating that these structures are

hyperuniform. In Appendix D, we present S(k) for other α and γ values and show

that S(k) has the same scaling as S0(k) near k = 0 only if γ > α. Otherwise, S(k)

will deviate from S0(k) and may even appear to saturate at a positive value in the

k → 0 limit. If so, the resulting system would not be hyperuniform and conform to

our definition of a perfect glass.

237



Bulk and shear moduli

Here we show the capacity of a perfect glass to resist both compressive and shear

deformations. The elastic moduli of the inherent structures for γ = 3 are presented

in Fig. 9.5. Both moduli increase as χ or α increases. In all cases, both moduli are

positive, clearly showing that our model meets this criterion for a perfect glass. We

only present data for γ = 3 for simplicity. It is useful to note that we have also

calculated these moduli for γ = 2 or 4 and found the same trend.

Our hyperuniform targeted functional form S0(k) = |k|α generally produces sub-

stantially higher elastic constants than those for non-hyperuniform forms; see Ap-

pendix E for details. This correlation between hyperuniformity and improved me-

chanical rigidity appropriately reflects the MRJ-like nature of the perfect glass and

hence stresses the importance of the hyperuniformity criterion.

Characterizing the degree of disorder

As noted earlier, since perfect glasses are molecular-glass analogs of MRJ sphere

packings that are maximally random, we determine here the triplet of parameters

(χ, α, γ) that produce the most disordered inherent structures according to two order

metrics: the “local” bond-orientational parameter Q6,local [153, 152] (also denoted

Ψ6 in some literature) and the translational order metric τ [325], which are defined

in the Methods section. We present the order metrics Q6,local and τ of the inherent

structures in Fig. 9.9. Here we want to determine at what value of α is a perfect

glass most disordered according to these order metrics. Again, we present data only

for γ = 3 for simplicity, but have found that results for γ = 2 or 4 behave similarly.

The local bond-orientational order Q6,local measures the degree to which the local

environments of particles resemble regular hexagons (in 2D) or regular icosahedra

(in 3D); it can vary from 0 (disordered) to 1 (perfect hexagonal order) in 2D or

from 0 (disordered) to 0.663... (perfect icosahedral order) in 3D. Our relatively low
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Figure 9.5 Bulk modulus B (left) and shear modulus G (right) versus the exponent α for
the inherent structures in 2D (top) and 3D (bottom) for γ = 3 and selected values of χ.

Q6,local values in 3D indicate that our interaction does not favor icosahedral local

configuration. This demonstrates that our approach of frustrating crystallization is

fundamentally different from the previous approach of encouraging icosahedral order

[78].

As detailed in the Methods section, Q6,local measures only local orientational order,

while the translational order metric, τ , takes into account both short-range order and

long-range order. Nevertheless, τ shows the same trend as Q6,local: Perfect glasses

with the lowest α and highest χ have the lowest τ . In fact, we plot τ versus Q6,local

for different χ’s and α’s in 2D and 3D for γ = 3 in Fig. 9.7 and find that these two

order metrics are strongly correlated. Our results for Q6 and τ are consistent with
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Figure 9.6 Order metrics Q6,local (left) and τ (right) versus the exponent α for the
inherent structures in 2D (top) and 3D (bottom) for γ = 3 and selected values of χ.

the qualitative conclusions of Ref. [329], which reported that increasing α resulted in

configurations that increasingly appeared to be more ordered.

While we have shown that the perfect glass is indeed a molecular analog of MRJ,

the former is considerably richer. Whereas a perfect glass can have a wide range

of degrees of order and elastic moduli, MRJ states, by construction, can only be

maximally random subject to the strict jamming condition, which endows them with

infinite elastic moduli [309]. We have shown that as α decreases, the elastic moduli

decrease. For this reason and to maintain the analogy with MRJ, we restrict the

minimum of α to be 1 so as to bound the elastic moduli from below. We also must

restrict α < γ because S(k) demonstrates indisputable hyperuniformity only in such

cases.
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in 2D and 3D for γ = 3.

In summary, we have shown that under the two constraints that α ≥ 1 and α < γ,

the inherent structures of our potential are clearly disordered, hyperuniform, possess

positive shear and bulk moduli, and therefore conform to our definition of a perfect

glass. We also note that the lowest value of α, equal to unity, produces the lowest

order and lowest elastic moduli among all of the cases that we have studied. This

behavior is consistent with the fact that MRJ, which are maximally disordered subject

to jamming constraint, also have a small-wavenumber scaling of S(k) ∼ k1. It has

been established that decreasing the exponent α in the small-wavenumber scaling

S(k) ∼ kα in many-particle systems is associated with greater disorder and that

sublinear scaling (α < 1) induces clustering among the particles [350] and is therefore

inconsistent with strict jamming in the case of hard spheres [348].

9.3.2 Simulated annealing

The preceding section focused on the inherent structures obtained from random initial

configurations, which correspond to glasses produced by an infinitely rapid quench.

However, perfect glasses meeting our definition should remain disordered even after
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annealing with a finite, slow cooling rate. Here we study the behavior of our system

under slow annealing by performing canonical ensemble (constant temperature and

volume) molecular dynamics (MD) simulations [100] and gradually decreasing the

temperature. We have performed such an annealing for a 2D system of N = 400

particles with parameters χ = 5.1, α = 1, and γ = 3. During the annealing process,

the potential energy remains continuous with respect to temperature, suggesting that

there is no first-order phase transition. As we will mention in the Methods section,

the configuration starts to vibrate around a single inherent structure when kBT drops

below 0.3, suggesting that the glass transition temperature, Tg, for this system at this

cooling rate is around 0.3/kB. The final configuration is disordered, verifying that

our system does not crystallize even under slow cooling.

It is worth noting that after slow annealing and a subsequent energy minimiza-

tion, the final configuration has potential energy per particle Φ/N = 2.920, which is

not much lower than that of the previously obtained inherent structures, for which,

Φ/N = 2.971± 0.014 at the same system size under the same interaction. This may

suggest that most of the local energy minima of the potential energy surface are not

much higher than the ground state energy.

9.4 Conclusions and Discussion

We have found a family of interactions that can produce perfect glasses, i.e., hyper-

uniform glasses with positive bulk and shear moduli, in systems that possess no crys-

talline or quasicrystalline energy minima. We have demonstrated that the inherent

structures (structures obtained by infinitely rapid cooling from infinite temperature

to zero temperature) of these interactions are disordered, hyperuniform, and have

positive bulk and shear moduli for parameters 1 ≤ α < γ and χ > 1. The lowest α,

equal to unity, results in the lowest degree of order, although a priori there was no
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reason to expect that maximum disorder would arise when α is minimized. We have

also performed a slow simulated annealing on a perfect-glass system and found no

first-order phase transition.

Our interactions are designed in Fourier space and completely eliminate crystal

and quasicrystal formation. As detailed in Ref. [325], for χ > 0.9068 . . . in 2D or

χ > 0.9873 . . . in 3D, any crystal or quasicrystal must produce Bragg peaks in the

constrained (|k| < K) range. Such Bragg peaks would make the potential energy

infinite. Therefore, crystals and quasicrystals cannot be energy minima 4. Since

our perfect glasses are not metastable with respect to a crystal structure, there is no

Kauzmann entropy crisis that led to the conjectured existence of “ideal glasses” in the

conventional Kauzmann picture [67, 283]. The latter is defined completely differently

from the perfect glasses in this work.

All available understanding indicates that with only isotropic two-body interac-

tions, crystalline ground states inevitably occur. However, by adding suitable three-

and four-body interactions to appropriate two-body interactions, we show for the

first time that crystals and quasicrystals can be completely prevented for any range

of temperatures down to absolute zero and thus ensures by construction thermody-

namically stable glassy states. The collective-coordinate procedure that we are using

to target perfect glass behavior cannot be simplified to the extent of reducing the

interaction character below at least four-body interactions. Because the procedure

is general, this suggests that a perfect glass cannot be created with two- and three-

body interactions depending only on scalar distances alone. This could explain why

previous attempts to produce such an ideal state of matter have not been successful.

Another observation that suggests the necessity of four-body interactions is that the

analytical form of our four-body interaction, Eq. (9.10), appears to strongly penalize

4 It is interesting to note that our approach to ensure glass formation (eliminating crystals and
quasicrystals) is in sharp contrast with the reason why diboron trioxide tends to vitrify. The latter
tends to vitrify because of a high energy degeneracy of multiple crystalline structures [86].
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long-range bond orientational order, and thus prevent crystallization. Without the

four-body interaction, one might be able to design a pair interaction that reproduces

the pair correlation function of perfect glasses at a particular temperature (for ex-

ample, by imitating Ref. [105]). However, crystallization cannot be prevented if the

temperature is lowered down to absolute zero.

It is instructive to compare and contrast the perfect-glass potential with the well-

known classical rigidity theory of Phillips and Thorpe [295, 204]. This theory applies

to glasses with covalent interactions, and states that covalent bonds between atoms

in a glass impose constraints on the atomic positions and that the conditions for

glass formation will be optimal if the number of constraints is equal to the number

of degrees of freedom of the atoms. By contrast, the perfect-glass picture involves

overconstraining the system (i.e., having more constraints than the degrees of free-

dom), which occurs when χ > 1, to ensure positive elastic moduli. Moreover, the

Phillips-Thorpe theory states that normal glasses tend to crystallize if the number

of constraints is much larger than the number of degrees of freedom, but a perfect

glass will never crystallize even for large χ values. Besides these differences, perfect

glasses have other important distinctive features, e.g., hyperuniformity and complete

prevention of crystallization. Lastly, the isotropic perfect-glass interaction is also very

different from the directional covalent-bond interactions that the Phillips-Thorpe the-

ory assumes, and a perfect glass is achievable with identical particles.

It is worth noting that our model systems can maintain hyperuniformity even at

positive temperatures. Eqs. (9.1)-(9.3) suggests that, with sufficiently high γ, any

nonhyperuniform structure will have infinite energy, and therefore have zero proba-

bility of appearing at a finite positive temperature. We analyzed the intermediate

configurations from the annealing simulation at T = 10 and indeed found hyperuni-

formity. This feature contrasts with other interactions that have perfect crystalline,
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and therefore hyperuniform, ground states but lose hyperuniformity at any positive

temperature due to phonon excitations (e.g., Lennard-Jones interaction).

The well-known compressibility relation from statistical mechanics [127] usually

provides some insights about the relationship between temperature T and hyperuni-

formity for equilibrium systems in the infinite-system-size limit at number density

ρ = N/V :

lim
k→0

S(k) = ρkBTκT . (9.4)

We see that in order to have a hyperuniform equilibrium system at positive T that

obeys this relation, the isothermal compressibility, κT = 1/B, must be zero; i.e.,

the system must be incompressible [350, 325] (see Refs. [317] and [315] for some

examples). As stated in the previous paragraph, equilibrium systems of particles in-

teracting with the perfect-glass potential at positive temperature (e.g., liquids) are

hyperuniform. Does this mean they are also incompressible (B = ∞)? Our initial

study of perfect glasses in isothermal-isobaric ensembles suggests that they are not

incompressible. Thus, the compressibility relation is violated. The reason for this vi-

olation is that there are actually two subtly different compressibilities: the “internal”

one and the “external” one. If one divides a large system into two halves, compresses

one half and decompresses the other half while keeping the total volume constant, the

restoring force is related to the internal compressibility. However, if one compresses

or decompresses the entire system, causing a volume change, the change in pressure

is related to the external compressibility. Normally, the internal compressibility is

equal to the external one and thus the compressibility relation holds. However, for

perfect glass systems, since the potential energy explicitly penalizes long-wavelength

internal density fluctuations but not external volume change, the internal compress-

ibility is zero while the external one is still positive and the compressibility relation

no longer holds. A novel consequence of having zero internal compressibility is that

the non-relativistic speed of sound is infinite.
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Concerning the violation of the compressibility relation, it is interesting to note

that we previously have studied Dzugutov glasses and Lennard-Jones glasses, which

violate the same relation because they are not in equilibrium, and introduced the

following “non-equilibrium index” [194]:

X =
limk→0 S(k)

ρkBTκT
− 1. (9.5)

If a system is not in equilibrium and thus violates the compressibility relation, X

would be non-zero. However, systems of particles interacting with the perfect-glass

potential, even in equilibrium, would still have a non-zero X.

Our perfect-glass model has the unique feature of not being metastable with re-

spect to any crystalline or quasicrystalline states. We believe these features can open

up a variety of possibilities. Without the worry of crystallination and with the help

of faster computers in the future, one would be able to perform extremely long sim-

ulations to study glass dynamics. It would be an interesting future project to study

the kinetics of glass formation as a function of temperature and density. It would

also be interesting to see whether or not the ground states of the perfect-glass inter-

action have vanishing configurational entropy per particle. If so, this would be the

first example of this conjectured “ideal glass” [283, 67].

Concerning the first criterion of perfect glasses (hyperuniformity), we note in

passing that real polymers [135] as well as polymer models [82, 342] have succeeded

in approaching hyperuniformity. It remains to be seen whether the remaining two

criteria can be approached by novel polymer systems or suitably defined theoretical

models of polymers. It is also worth noting that polymer systems are known to involve

high-order interactions beyond two-body terms [36, 72, 337], which, as we discussed

earlier, are likely required to create perfect glasses.
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There is a broader class of mathematical models as those for which limk→0 S0(k) 6=

0 or limk→0 ṽ(k) 6= +∞. Generally, they would produce nonhyperuniform glasses and

if so, would not conform to our definition of perfect glasses. Nevertheless, such models

still completely eliminate crystalline and quasicrystalline energy minima and therefore

merit future mathematical analyses and numerical studies. This is in contrast to a

study in which a similar type of potential was added to a Lennard-Jones interaction

in order to inhibit crystallization [70, 11], but the functional form employed prevented

that goal from being accomplished [11].

9.5 Methods

We generate inherent structures of the perfect glass potential by the following pro-

cedure: Starting from initial configurations of N = 2500 particles in which each

particle’s position is generated randomly and independently, we minimize the poten-

tial energy, Eq. (9.1), first using the low-storage BFGS algorithm [214, 183, 150] and

then using the MINOP algorithm [69]. Such a combination of the two minimization

algorithms maximizes both efficiency and precision [352]. After energy minimization,

the norm of the gradient of potential energy is less than 10−13 (in dimensionless units,

similarly hereinafter). The simulation box shape is square in 2D and cubic in 3D.

Since K and N are fixed, we adjust χ by changing the simulation box size. We choose

side lengths L =400, 450, 500, 600, and 800 for χ =1.27, 1.61, 1.99, 2.87, and 5.10,

respectively, in 2D and L =104.1, 136.6, and 165.4 for χ =1.27, 2.87, and 5.10, respec-

tively, in 3D. For a 2D case in which χ = 5.10, α = 2, and γ = 3, we also generated

inherent structures in a rhombic simulation box with a 60◦ interior angle and have

found no statistically significant difference in the resulting pair correlation function,

structure factor, and elastic constants, verifying that our results are not sensitive to

the shape of the simulation box. For each combination of χ, α, and γ in both 2D and
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3D, we generated between 10 and 100 inherent structures, depending on the energy

minimization speed of the specific case.

To demonstrate that our perfect glasses have positive bulk moduli (B) and shear

moduli (G), we have also calculated these elastic moduli of the inherent structures by

incurring a small (10−6) strain, minimizing the potential energy within the deformed

simulation box, and then calculating the stress. The calculated elastic constants are

then averaged over different directions of strains and stresses and different configura-

tions.

Since perfect glasses are molecular-glass analogs of hard-sphere MRJ packings

that are maximally random, we are interested in finding the triplet of parameters

(χ, α, γ) that produce the most disordered inherent structures according to certain

order metrics. We have calculated two order metrics: Q6,local and τ . In 2D, Q6 is

defined for a given particle q, as

Q6 =

∣∣∣∣∣ 1

Np

∑
p

exp(6iθrpq)

∣∣∣∣∣ , (9.6)

where the summation is over all neighbor particles whose Voronoi cells share an edge

with particle q’s cell, Np is the number of such neighbors, and θrpq is the angle between

rpq = rq − rp and a reference direction. In 3D, Q6 is defined as

Q6 =

√√√√4π

13

6∑
m=−6

∣∣∣∣∣ 1

Np

∑
p

Y6m(θ, φ)

∣∣∣∣∣
2

, (9.7)

where the summation is over all neighbor particles whose Voronoi cells share a face

with particle q’s cell, Np is the number of such neighbors, Ylm is the spherical har-

monic function, and θ and φ represent colatitude and longitude of rpq. These bond-

orientational parameters are the local versions of the ones introduced in Ref. [280].

In both dimensions, Q6,local is an average of Q6 over all particles in all configurations.
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While Q6,local only measures local orientational order, the following translational

order metric [325]:

τ = ρ

∫ ∞
0

[g2(r)− 1]2dr =
1

(2π)dρ

∫ ∞
0

[S(k)− 1]2dk, (9.8)

takes into account both short-range order and long-range order by measuring the

degree to which the pair statistics [g2(r) and S(k)] deviate from those of an ideal

gas on all length scales. As Eq. (9.8) shows, τ can be computed from either g2(r)

or S(k). Parseval’s theorem guarantees that these two approaches yield the same

value of τ in the infinite-system-size limit. However, they can give slightly different

results for our finite-sized systems, and hence provide a self-consistency check on its

evaluation in a simulation. Although Eq. (9.8) involves infinite integrations, they can

be truncated since both g2(r) and S(k) decay and approach 1 rapidly in the r →∞

or k → ∞ limit. In our calculation, the integration is truncated at rcut = 200 in 2D

and rcut = 50 in 3D or kcut = 6 in both dimensions. As we will show in Appendix F,

τ calculated from both approaches agree well, verifying that our g2(r) and S(k) are

consistent and our integration truncation is appropriate.

To demonstrate that perfect glasses cannot crystallize, we have also performed

molecular-dynamics-based simulated annealing of the perfect glass potential using the

velocity Verlet algorithm [100]. The temperature is controlled by resetting a randomly

chosen particle’s velocity to a random velocity, drawn from Boltzmann distribution,

every 10 time steps. The scaled temperature, kBT , starts at 10 in dimensionless units

and decreases as prescribed by Eq. (6) of Ref. [215]. In evaluating that equation, we

use the relaxation time of the potential energy Φ as an estimate of the relaxation

time of the system and use the scaling parameter in that Eq. (6) vs = 0.6. The

integration time step ∆t is adjusted continuously so that the change in total energy

every 50 time steps is between 0.0025% and 0.01% when velocity resetting is switched
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off. In our simulation ∆t changed from 0.05 at kBT = 10 to 0.18 at kBT = 0.23.

As kBT dropped below about 0.3, the configuration started vibrating around a single

inherent structure and we thus ended the simulation. The time length of the entire

MD simulation is t = 3.04× 106 in dimensionless unit.

9.6 Appendix A: Perfect-Glass Potential in the Di-

rect Space

As we mentioned in the “Perfect Glass Potentials” section, the perfect-glass potential,

Eq. (9.1), can be decomposed into a sum of two-, three-, and four-body contributions

in the direct space. We present explicit formulas for these contributions here. We

provide visulizations of these individual two-, three-, and four-body contributions in

the Appendix G.

The total potential energy for N particles in a fundamental cell under periodic

boundary condition is given by [329]

Φ(rN) =
∑

0<|k|<K

ṽ(k)[S (k)−S0(k)]2 =
∑

l<m<n<p

v4(rl, rm, rn, rp)

+
∑

l<m<n

v3(rl, rm, rn) +
∑
l<m

v2(rl, rm) + v0, (9.9)

where

v4(rl, rm, rn, rp) =
8

N2

∑
0<|k|<K

ṽ(k)[cos(k · rlm) cos(k · rnp)

+ cos(k · rln) cos(k · rmp) + cos(k · rlp) cos(k · rmn)], (9.10)
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v3(rl, rm, rn) =
8

N2

∑
0<|k|<K

ṽ(k)[cos(k · rlm) cos(k · rln)

+ cos(k · rlm) cos(k · rmn) + cos(k · rln) cos(k · rmn)], (9.11)

v2(rl, rm) =
4

N

∑
0<|k|<K

ṽ(k) cos(k · rlm)[1 − S0(k) + cos(k · rlm)/N ], (9.12)

and

v0 =
∑

0<|k|<K

ṽ(k)[1−S0(k)]2. (9.13)
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9.7 Appendix B: Three- and Four-Body Contribu-

tions to the Potential Energy

To produce perfect glasses, we have used a combination of two-, three-, and four-body

potentials, as specified by Sec. II in the main text. Interestingly, we also discovered

that for perfect glass configurations, the three- and four-body contributions almost

cancel each other. We have calculated these contributions for several inherent struc-

tures of various potential parameters using the minimum image convention. They are

presented in Table 9.1. Because calculating the 4-body contributions in direct space

is very expensive, we had to use a relatively small system size, N = 100.

Table 9.1 Three-body and four-body contributions to the potential energy for several
inherent structures of N = 100 particles with γ = 3 and multiple α’s and χ’s.

α χ total potential energy 3-body contribution 4-body contribution

1 5.10 299.887 -97218.9 89992.4

2 5.10 693.767 -102329.5 100407.8

3 5.10 865.713 -102254.7 100242.6

6 5.10 973.172 -102436.5 100633.4

1 1.27 0.00508 -9361.75 8273.52

2 1.27 0.24845 -10357.32 10257.11

9.8 Appendix C: Energy per Particle for Various

System Sizes

To verify that the energy per particle is intensive and to quantify finite-size effects,

we have calculated the energy per particle, Φ/N , for various N ’s for the χ = 5.10,

α = 2, and γ = 3 case. We generated 2,000 inherent structures of N = 100 particles,
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100 inherent structures of N = 2500 particles, and 1 inherent structure of N = 10000

particles. The average energy per particle, 〈Φ/N〉, is 6.99, 6.90, and 6.89, respectively,

which strongly suggests the intensivity of the energy per particle in the large-system

limit.

9.9 Appendix D: The Conditions Under Which

the Structure Factor Follows the Targeted

Shape

In the main text, we claim that the structure factor, S(k), follows its target, S0(k),

and approaches 0 as k → 0 only for γ > α. Here we provide numerical evidences to

support this claim.

In Fig. 9.8 we present S(k) and S0(k) for various 1 ≤ α ≤ 4 and 2 ≤ γ ≤ 4. One

can see that when γ ≤ α, S(k) deviates from S0(k) as k approaches zero and in some

cases (e.g. the χ = 5.10, α = 4, and γ = 2 case) even appear to saturate at a positive

value instead of approaching zero. However, when γ > α, S(k) has the same scaling

as S0(k) in the k → 0 limit except for the χ = 5.10, α = 1, and γ = 2 case. The

reason for this exception is unknown.

9.10 Appendix E: Elastic Constants Produced by

Non-Hyperuniform Targeted Structure Fac-

tors.

As noted in the manuscript, hyperuniform targeted structure factors generally pro-

duce much higher elastic constants than their non-hyperuniform counterparts. For

χ = 5.10 and γ = 3, we generated two inherent structures with the non-hyperuniform
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Figure 9.8 Structure factors of inherent structures of the perfect glass interactions in two
dimensions for α = 1 (top left), α = 2 (top right), α = 3 (bottom left), and α = 4 (bottom
right).

targets S0(k) = (1 + |k|2)/2 and S0(k) = 1. They turn out to have elastic constants

B = 0.0363, G = 0.0054 and B = 0.0174, G = 0.0020, respectively. These elastic

constants are to be compared, for example, to B = 0.2025, G = 0.0247, which are

the ensemble-averaged elastic constants with the hyperuniform target S0(k) = |k|2.

9.11 Appendix F: The Order Metric τ Computed

from Direct Space and Fourier Space

As Eq. (6) of the manuscript shows, the order metric τ can be computed from either

g2(r) or S(k). These two approaches should find the same τ in the infinite-system-

size limit for an isotropic system, but can give slightly different τ ’s for our finite-sized
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Figure 9.9 Order metric τ versus the exponent α for inherent structures in two (left) and
three (right) dimensions for γ = 3, calculated from g2(r) or S(k).

systems. In Fig. 9.9 we present τ calculated from both approaches. We see that τ

calculated from both approaches are always very close to each other. This indicates

that our calculation is accurate.

9.12 Appendix G: Visualizations of the Two-,

Three-, and Four-Body Contributions to the

Potential Energy

As Appendix A in the main text shows, the perfect-glass potential can be decomposed

into a sum of two-, three-, and four-body contributions. We visulize these contribu-

tions here for the d = 2, χ = 5.10, α = 3, and γ = 2 case. In this case the simulation

box side length is L = 800. We have experimented with other choices of parameters

and found similar results.

The two-body contribution, Eq. (A4) of the main text, is a function of vector rlm.

We plot this function versus the x- and y-components of rlm, rx and ry, in Fig. 9.10.

This contribution of the potential energy is isotropic and repulsive.

The three-body contribution, Eq. (A3) of the main text, is a function three par-

ticles’ positions and is therefore much harder to visualize. We arrange the three
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Figure 9.10 The two-body contribution to the perfect-glass potential, Eq. (A4) of the
main text, as a function of x- and y-components of rlm

particles as indicated in Fig. 9.11 and plot the three-body contribution to the poten-

tial energy for several θ values in Fig. 9.12. It appears that this contribution is large

and positive only if all three particles are close to each other.

The four-body contribution, Eq. (A2) of the main text, is a function four particles’

positions and is even harder to visulize. To visualize it we have to fix the distance

between two particles to the average nearest-neighbor distance between particles. We

arrange the four particles as indicated in Fig. 9.13 and plot the four-body contribution

to the potential energy for several θ values in Fig. 9.14. It is interesting to note that

the four-body contribution becomes very large and positive when just two particles

are close to each other.
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θ/2

θ/2

800

 

Figure 9.11 Arrangement of the three particles for which we plot the three-body
contribution to the potential energy.
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Figure 9.12 The three-body contribution to the perfect-glass potential, Eq. (A3) of the
main text, for the three particles shown in Fig. 9.11, as a function of rlm and rln, for
θ = 0◦, 15◦, 30◦, 45◦, 60◦, 90◦, 120◦, and 135◦, respectively.
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Figure 9.13 Arrangement of the four particles for which we plot the four-body
contribution to the potential energy. The distance between two of the particles is fixed at
12.86, the average distance between a particle and its nearest neighbor in the inherent
structures in the d = 2, χ = 5.10, α = 3, and γ = 2 case.
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Figure 9.14 The four-body contribution to the perfect-glass potential, Eq. (A2) of the
main text, for the four particles shown in Fig. 9.13, as a function of rlm and rln, for
θ = 0◦, 15◦, 30◦, 45◦, 60◦, 90◦, 120◦, and 135◦, respectively.
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Chapter 10

Classical Many-Particle Systems

with Unique Disordered Ground

States

10.1 Introduction

The classical ground states of many-particle systems are typically crystals consisting

of periodically replicated energy-minimizing local geometries with high symmetry.

The ability for the particles to attain and display long-range order (Bragg diffraction)

becomes the likely procedure for those models to attain their ground state. A specific

system at a specific density usually possess a unique crystal ground state, aside from

trivial symmetry operations. Therefore, the “enumeration entropy”

SE = kB ln ΩE, (10.1)

is zero for such ground states. Here ΩE is the number of distinct accessible structures

and kB is the Boltzmann constant.
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The fact that ground states of many-body systems can be disordered have in-

trigued condensed-matter physicists. Although quantum effects are the cause of

ground-state disorder in many systems (for example, helium under normal pressure

[89] and certain spin systems [158, 259, 212, 49]), classical systems can also have

disordered ground states [81, 127, 195, 196, 329, 26, 26, 350, 325]. A ground state

of a classical many-particle or spin system is simply a global minimum of the po-

tential energy. For classical many-particle systems in Euclidean spaces, all known

examples of disordered ground states possess high enumeration entropy, in the sense

that there exists an uncountable collection of geometrically inequivalent ground-state

configurations. Here, “inequivalent” configurations are those that are not related to

each other by trivial symmetry operations, which includes translations, rotations, and

inversions (illustrated in Fig. 10.1). Such examples include equilibrium hard-sphere

systems away from jammed states [127] and particles interacting with “stealthy” and

related collective-coordinate potentials [329, 26, 26, 350, 325, 352]. While the former

situation is trivial in that any nonoverlapping configuration counts as a ground state,

the latter systems are less so because certain nonlinear constraints are imposed on

the configuration. Depending on the specific constraints, the latter interactions can

create “stealthy” systems [325], “super-ideal gases” [26], “equi-luminous materials”

[26], as well as other unusual ground states [329, 350].

It it natural to expect that the entropy of these disordered ground states is large

and extensive for two reasons. First, entropy has often been associated with the

amount of disorder in a system. It was not until 1949 that Onsager realized that

entropy and disorder are not always directly related to one another by showing that

the entropy of a fluid of hard needles can increase when the needles tend to align with

one another, and hence increasing the orientational order of the system [219]. Hard

spheres and disks also undergo an entropically driven disorder-order phase transition

at sufficiently high densities [8, 99]. Second, as the aforementioned examples illus-
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trate, the tendency for ground states to be disordered is caused by the nature of the

interactions, which allows certain individual or collective displacements of particles

without causing any change in the energy. A ground-state configuration can thus

move in these unconstrained directions of the configuration space, and thus become

pattern-degenerate with large and extensive entropy. Here we define a set of ground

states to be pattern-unique if all of the ground state structures are equivalent, and

pattern-degenerate otherwise 1.

In this chapter, we demonstrate that our previously suggested “perfect glass”

many-particle system [354] surprisingly possess classical ground states that are coun-

terintuitively disordered with zero enumeration entropy. Perfect glasses are distin-

guished from normal glasses and other amorphous solids in that they are by con-

struction hyperuniform (anomalously suppress large-scale density fluctuations) [317],

as defined by a static structure factor that tends to zero in the infinite-wavelength

limit [317]; see Ref. [307] for recent developments. Also, perfect glasses can never

crystallize or quasicrystallize at zero or any positive temperature [354], and therefore

circumvent the Kauzmann paradox [157]. By contrast, traditional glasses have been

venerably understood as liquids kinetically arrested from cooling that are metastable

with respect to a crystal [12, 263, 274, 79, 122]. The unique disordered ground states

of “perfect glass” models are to be contrasted with zero-entropy crystals and qua-

sicrystals that possess high symmetry and long-range translational and/or rotational

1It should be stressed that this chapter focuses on classical many-particle systems. If one in-
cludes spin systems (or equivalently, lattice-gas systems), which by definition lack continuous de-
formations, there are known examples of unique or pattern-unique classical ground states. In the
“low-correlation” spin model [195] and a subsequent simplified model [196], the ground state is
pattern-unique for a small fraction of system sizes but degenerate for other system sizes, while the
degeneracy in the infinite-system-size limit is uncertain. (Although neither Ref. [195] nor Ref. [196]
explicitly commented on the ground state degeneracy, we subsequently enumerated all possible spin
configurations for 10-20 sites, and found that the ground states of the one-dimensional model de-
scribed in Ref. [195] are degenerate, even after removing trivial translations and inversions, except
for number of sites Ns = 11 and Ns = 15. Ref. [196] stated that its model has the same ground
states as the model described in Ref. [195].) Another example, the well-known spin-glass models,
has an unambiguously pattern-unique disordered ground state [81], but does so in a trivial way: the
interaction is disordered (different for each pair of neighboring sites), causing the disordered ground
state.
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Translation

Rotation

Invertion

Figure 10.1 Illustration of the three pattern-preserving symmetry operations. Two
configurations have the same pattern if they are related to each other through any
combination of these three symmetry operations.

order. Thus, these disordered ground states can be fertile area for future research

in disciplines beyond physics. Moreover, unlike spin-glass models [81], perfect-glass

interactions treat all particles equally and thus does not introduce disorder by the

intrinsic random nature of the interactions; unlike the low-correlation spin model

[195, 196], the ground state is pattern-unique for all finite system sizes we have stud-

ied, and is therefore expected to be pattern-unique in the infinite-system-size limit.

The perfect-glass interaction potential [354] has either a direct-space or Fourier-

space representation. In the latter case, we have

Φ(r1, r2, · · · , rN) =
∑

0<|k|<K

ṽ(k)[S(k)− S0(k)]2 (10.2)

attempts to constrain the static structure factor, S(k) = |∑j exp(irj · k)|2/N , to a

target function S0(k) = |k|α, for all k vectors within a certain distance K from the

origin; and assigns energy penalties, adjusted by a weight function ṽ(k) = (K/|k| −

1)3, if such constraints are violated. Here rj is the location of the jth particle, k
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Figure 10.2 Shaded-area illustration of the two multiplicative contributions of the
potential energy, defined in Eq. (10.2).

is a wave vector, N is the total number of particles, and α is a positive parameter

we can choose freely. The two multiplicative factors in the summand of Eq. (10.2)

are illustrated in Fig. 10.2. In general, other forms of S0(k) and ṽ(k) may also be

used, but the particular form was chosen to realize hyperuniformity. The direct-

space representation of the perfect-glass potential (10.2) involves a sum of two-body,

three-body, and four-body interactions [329].

Define χ as the ratio of the number of constrained degrees of freedom to the num-

ber of independent degrees of freedom [354]. We found that when χ is larger than

unity, the system runs out of degrees of freedom and becomes glassy, i.e., develops a

complex energy landscape with multiple energy minima, and a positive shear modu-

lus [354]. This model completely banishes crystalline structures at any nonnegative

temperature, since the existence of Bragg peaks would make the potential energy

infinite.

10.2 Simulation Details

While Ref. [354] focused on the non-equilibrium glassy states of this interaction, here

we study the classical ground state and demonstrate its pattern uniqueness. We min-

imize the potential energy, using the low-storage BFGS algorithm [214, 183, 150],

starting from random initial configurations, to find local minima of the potential en-
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ergy surface. A random local minimum of the potential energy surface is deemed to

be reached once the energy minimization routine finishes with a stringent tolerance

of δΦ = 10−11. Therefore, by repeating this process a sufficient number of times, we

expect to find the global minimum of the potential energy surface. After 107 to 109

independent energy minimization trials, a lowest energy is achieved at least 10 times,

but often more than 103 times (see the Appendix A for details). Presumably, this is

the ground state energy. After that, we compare the ground-state configurations for

pattern uniqueness. A particular ground-state configuration is taken to be a com-

parator, and then we compare it to every other ground-state configuration. Using

an algorithm detailed in Appendix B, we attempt to find a translation, a rotation,

and/or an inversion so that after these symmetry operations the comparator super-

poses onto the original ground state. After these symmetry operations are performed,

if each particle in the comparator is within 10−5L distance to a particle in the other

ground state, then the two ground states are deemed to have the same pattern. Here

L denotes the side length of the simulation box. The ground state is considered

pattern-unique if all of the ground-state configurations have the same pattern as the

comparator.

10.3 Results

We studied a total of 60 different combinations of parameters (d, α, χ, and N); see

Appendix A for a complete list. These cases cover wide ranges of N (between 10

and 70, including both prime N ’s and composite N ’s), α (between 0.5 and 6), and

χ (between 1.7 and 2), in one, two, and three dimensions. For all cases, the ground

state was found to be disordered and pattern-unique. The discovered ground states

of the largest N cases in the first three space dimensions are presented in Fig. 10.3.
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Figure 10.3 The disordered unique ground states of the perfect-glass potential for (top)
d = 1, α = 6, χ = 1.75, and N = 70; (bottom left) d = 2, α = 6, χ = 1.87, and N = 40;
and (bottom right) d = 3, α = 6, χ = 1.75, and N = 30. These figures illustrate a point
presented in Ref. [354], namely, the particles experience a pair repulsion that is clearly
observed when one calculates the pair correlation function.

Besides the ground states, we also study other minima of the potential energy

surface. As Fig. 10.4 shows, as N increases, the success rate (the probability that

one finds the ground state through an energy minimization trial) decreases exponen-

tially, and the number of discovered energy minima increases exponentially. This

exponential rise of the number of higher minima is in agreement with what one has

topographically for real glass formers [282]. Compared to the α = 1 case, the α = 6

case possesses a higher success rate and fewer distinct energy levels. This is also ex-

pected because as we have discovered earlier, increasing α increases geometrical order

in these glasses [354]. Finally, Fig. 10.4 also shows that the ground state energy is

roughly proportional to N for both α values we presented.

To further confirm ground-state uniqueness, we have also performed Wang-Landau

Monte Carlo (WLMC) simulations on a perfect-glass system with d = 2, α = 1,

χ = 1.89, and N = 10. The WLMC algorithm allows one to calculate the density of

states g(E) as a function of the potential energy [335] (or equivalently, the hyper-area
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Figure 10.4 (left) The probability of finding the ground states by energy minimization
for d = 1, χ = 2.00, α = 1 and 6, and 10 ≤ N ≤ 30. (middle) The number of distinct
energy local minima found by 107 repeated energy minimizations for the same systems.
(right) The ground-state energy of the same systems.

of an iso-energy surface in the configuration space). Alternatively, for energy values

very close to the ground state, one could also calculate g(E) from the eigenvalues

of the Hessian matrix by treating the system as an harmonic oscillator around the

ground state. As detailed in Appendix D, after considering the aforementioned trivial

symmetry operations, we find very good agreement between the calculated g(E)’s

from these two approaches, which differ by less than 12%. If the ground state was

2-fold degenerate, there would be a two-fold difference between the calculated g(E).

Therefore, the ground state has to be unique.

From the density of states, we have also calculated the excess isochoric heat ca-

pacity CV of the system, which is given by

CV =
d < Φ >

dkBT
, (10.3)

where

< Φ >=

∫
Eg(E) exp(−E/kBT )dE∫
g(E) exp(−E/kBT )dE

. (10.4)

The heat capacity, presented in Fig. 10.5, starts at the harmonic value at T = 0,

and begins to rise because the shape of the potential energy landscape is such that

the effective harmonic force constants are reduced in order to produce transition

pathways to neighboring minima. The reduction of the local effective force constants
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Figure 10.5 Isochoric heat capacity CV of the perfect-glass system of d = 2, α = 1,
χ = 1.89, and N = 10. Here, the constant contribution to the heat capacity from the
kinetic energy, CV , kinetic = dN/2, is excluded.

increases the amount of configuration spaces associated with that particular level

of the potential energy, and therefore increases the heat capacity. Eventually, CV

levels off and decreases because the energy landscape becomes irrelevant at very high

temperature.

10.4 Conclusions and Discussion

To summarize, all previously known disordered classical ground states are caused

by interactions that allow continuous configurational deformations without energy

change. These deformations also cause the ground state to possess large and extensive

entropy. Instead of the previous approach, here we create disordered classical ground

states by penalizing crystalline order, causing no ground-state degeneracy. These

zero-entropy ground states are in sharp contrast with zero-entropy crystalline ground

states, since the latter possess very high symmetry and long-range translational and

rotational order. Thus, our ground states can be fertile areas for future research in

subjects such as mathematics, physics, and cryptography.

Our discovery of unique disordered ground states impinge on the famous Kauz-

mann glass paradox [157] and the associated “ideal glass” [67] in two ways. First,

the perfect-glass model completely circumvents the Kauzmann entropy crisis between

the crystal and liquid states, since crystalline and quasicrystalline structures are com-
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pletely forbidden in perfect glasses. On the other hand, like “ideal glasses,” perfect-

glass ground states are disordered while having zero enumeration entropy.

Finally, we also expect our results to be useful in cryptography, where pseudo-

random functions with tunable computational complexity are desired; for example, in

deriving an encryption key from a password [169]. The task of finding a perfect-glass

ground state suits this need, since its complexity can easily be tuned by changing a

set of parameters (d, N , α, and χ).

270



10.5 Appendix A: List of Parameters Tried

We list the parameter combinations (d, α, χ, and N) for which we have carried out

enumeration studies as well as several statistics of such studies in Table 10.1.

d α χ N

Number of

inherent struc-

tures generated

Number of

lowest-energy

structures gen-

erated

Lowest en-

ergy

Mean

energy (of

inherent

struc-

tures)

Number

of distinct

energies

found

2 1 2.20 6 106 97510 0.0534 0.094867 37

2 0.5 1.89 10 3× 107 1769 0.0059314 0.046363 34719

2 1 1.89 10 3× 107 14442 0.0512129 0.126145 7398

2 2 1.89 10 3× 107 1508436 0.835746 0.953847 339

2 6 1.89 10 3× 107 5178002 2.73031 2.86945 34

2 1 1.87 16 108 147 0.0618558 0.178029 2.16× 107

2 1 1.89 20 109 40 0.0664875 0.204629 7.41× 108

2 6 1.89 20 108 265084 5.37199 5.74988 147590

2 6 1.90 30 108 1634 8.0647 8.57543 4.08× 107

2 6 1.87 40 108 11 10.6843 11.3862 9.10× 107

1 1 1.79 20 2× 107 60490 0.517475 1.015135 3492

1 1 1.74 40 5× 107 24 0.991197 1.849102 3.06× 107

1 1 1.79 50 109 12 1.68337 2.94643 8.45× 108

1 6 1.75 60 108 28 77.8601 79.7294 5.46× 107

1 6 1.75 70 109 27 93.3095 95.7188 5.94× 108

1 1 2.00 10 107 739724 0.866727 1.31398 20

1 1 2.00 11 107 651397 0.929444 1.42011 24

1 1 2.00 12 107 589273 1.2673 1.69868 48

1 1 2.00 13 107 242182 1.31007 1.87405 78

1 1 2.00 14 107 358037 1.53538 2.06303 109

1 1 2.00 15 107 142763 1.61837 2.29402 201

1 1 2.00 16 107 158544 1.69043 2.50381 351

1 1 2.00 17 107 105541 1.85802 2.74284 557

1 1 2.00 18 107 65853 1.98903 2.96204 959

1 1 2.00 19 107 27438 2.31345 3.17478 1578

1 1 2.00 20 107 22617 2.40054 3.4008 2613

1 1 2.00 21 107 15771 2.55858 3.64033 4527

1 1 2.00 22 107 20318 2.63018 3.85341 7645

1 1 2.00 23 107 9110 2.80526 4.06194 12665

1 1 2.00 24 107 5778 2.93012 4.289 21383

1 1 2.00 25 107 1754 3.1362 4.52102 36116

1 1 2.00 26 107 2095 3.21506 4.7385 60728

1 1 2.00 27 107 1261 3.45142 4.95513 100960

1 1 2.00 28 107 1618 3.60496 5.1805 168599

1 1 2.00 29 107 573 3.84163 5.39782 275767

1 1 2.00 30 107 518 4.01308 5.60469 442279

1 6 2.00 10 107 2715392 14.13106 14.2772 5
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1 6 2.00 11 107 2749262 16.47931 16.8239 13

1 6 2.00 12 107 1432882 19.08413 19.325 15

1 6 2.00 13 107 470326 21.22258 21.5804 13

1 6 2.00 14 107 624508 23.95933 24.2088 22

1 6 2.00 15 107 578671 26.13922 26.7836 43

1 6 2.00 16 107 554290 28.93276 29.444 59

1 6 2.00 17 107 196175 31.03469 31.902 75

1 6 2.00 18 107 471502 34.10818 34.6142 102

1 6 2.00 19 107 224480 36.54381 37.2612 154

1 6 2.00 20 107 214371 39.26553 39.9763 204

1 6 2.00 21 107 73660 41.83513 42.6645 301

1 6 2.00 22 107 98901 44.40762 45.3614 422

1 6 2.00 23 107 69845 47.1069 48.1436 677

1 6 2.00 24 107 57822 49.86945 50.8796 887

1 6 2.00 25 107 57726 52.37915 53.5622 1343

1 6 2.00 26 107 26194 55.20688 56.4128 1966

1 6 2.00 27 107 22438 57.52615 59.1253 2853

1 6 2.00 28 107 12874 60.70169 61.9653 4022

1 6 2.00 29 107 2699 62.57372 64.6753 5898

1 6 2.00 30 107 10039 66.15001 67.5981 8796

3 1 1.70 10 3× 107 1418 0.0020304 0.0196315 1.04× 106

3 6 1.77 20 3× 107 553282 1.05579 1.24064 945314

3 6 1.75 30 3× 107 518 1.69167 1.88439 2.51× 107

Table 10.1 List of all the parameter combinations (d, α, χ, and N) we have carried out
enumeration study for; and a summary of results for each combination, which includes the
number of inherent structures that we generated, the number of times the ground state
structure was achieved, the ground-state energy, the mean energy of inherent structures,
and the number of distinct energy levels of inherent structures found.

10.6 Appendix B: Details of the Configuration

Comparison Algorithm

In the main text, we noted an algorithm that we devised to compare two config-

urations, and could determine whether one configurations can be superposed onto

another after a translation, a rotation, and/or an inversion. We detail this algorithm

here.

Let us start with the one-dimensional case for simplicity. For each configuration,

we find a “characteristic vector” by the following step:
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• Find the closest pair of particles, A and B. Find out their locations, rA and rB.

• Find the distance from particle A to its second closest neighbor particle, dA;

and the same distance for particle B, dB.

• If dA > dB, then swap particles A and B.

• The characteristic vector is v1 = rB − rA.

The characteristic vector is invariant to configuration translations and particle per-

mutations, and rotates or inverts if the configuration is rotated or inverted. Thus,

if the two configurations are indeed related to each other through these trivial sym-

metry operations, then their characteristic vector must be related to each other by a

constant 1 or -1, i.e.,

v2
1 = Rv1

1, (10.5)

where vj1 is the characteristic vector of the jth configuration, and R is either 1 or -1.

If R = 1, then the two configurations are not related to each other by any rotation

or inversion. If R = −1, then the two configurations are related to each other by a

180◦ rotation, or equivalently in one dimension, an inversion. The translation relating

the two configurations can be found by the difference of the location of particle A:

t = r2
A−Rr1

A, where the superscripts indicate different configurations. Having found

the translation and rotation relating these configurations, one can verify that for

each particle j in the first configuration, at location Rr1
j + t there is a particle in

the second configuration. If so, and if the two configurations have the same number

of particles, then these two configurations must be related to each other through

symmetry operations.

To generalize this method to d > 1 dimensions, one must find d characteristic

vectors, derived from d closest particle pairs. Solving the following matrix equation
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gives the rotation/inversion matrix between the two configurations, R.

v2
1 v2

2 · · · v2
d

 = R

v1
1 v1

2 · · · v1
d

 (10.6)

where vji is the ith characteristic vector of the jth configuration. The translation

relating the two configurations can be found similarly by t = r2
A − Rr1

A, where rjA

denotes the starting particle in finding the first characteristic vector in configuration

j. Similar to the 1D case, the jth particle in configuration 1 still corresponds to a

particle at Rr1
j + t in configuration 2.

10.7 Appendix C: Density of States g(E) from Har-

monic Approximations

In the main text, we mentioned that the density of states, g(E), calculated from

harmonic approximations, matches that obtained from Wang-Landau Monte Carlo

simulations at low temperatures. Here we detail how one find g(E) using harmonic

approximations.

For a d-dimensional configuration of N particles, the configuration space is dN -

dimensional. Of these dN directions of the configuration space, d directions corre-

spond to translations of the whole configuration, which cause no energy change. The

other d(N − 1) directions corresponds to deformations, which generally change the

potential energy. Near the classical ground state, such changes can be quantified by

the eigenvalues of the Hessian matrix, λ1, λ2, · · · , λd(N−1). Let E denote an energy

that is slightly above the ground-state energy, E0, the portion of the configuration

space with potential energy Φ ≤ E is given by the equation

E ≥ E0 +
λ1

2
x2

1 +
λ2

2
x2

2 + · · ·+ λd(N−1)

2
x2
d(N−1), (10.7)
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where x1, x2, · · · , xd(N−1) are the deformations along each eigenvectors of the Hessian

matrix. Equation (10.7) specifies a d(N − 1)-dimensional ellipsoid, for which the

hypervolume is

Vvibrational =
πd(N−1)/2

Γ(1 + d(N − 1)/2)

d(N−1)∏
j=1

√
2δE

λj
, (10.8)

where πd(N−1)/2

Γ(1+d(N−1)/2)
is the volume of a d(N−1)-dimensional hypersphere of unit radius

and δE = E − E0.

To obtain the total volume in the configuration space for which Φ ≤ E, one need

to multiply Eq. (10.8) with a few additional factors to account for trivial symmetry

operations. First, there are d independent translations, each contributes a factor of
√
NL, where L is the side length of the simulation box. The factor

√
N comes from the

fact that translations correspond to diagonal movements in the configuration space.

An additional factor, f , that depends on the space dimension and the simulation box

shape, also needs to be included to account for rotations and inversions. For d = 2

with square box, f = 8, since such boxes allow rotations of 0◦, 90◦, 180◦, and 270◦,

and a combination of any rotation with an inversion. Lastly, particle permutations

contribute a factor of N !. Overall, the total volume in the configuration space is

V = Nd/2V fN !
πd(N−1)/2

Γ(1 + d(N − 1)/2)

d(N−1)∏
j=1

√
2δE

λj
, (10.9)

where V = Ld is the volume of the simulation box.

The density of states is the surface area of the total volume in the configuration

space for which Φ ≤ E to E, and is therefore the derivative of V to E.

g(E) =
dV
dE

= Nd/2V fN !
πd(N−1)/2

Γ(1 + d(N − 1)/2)

d(N−1)∏
j=1

√
2

λj

 d(N − 1)

2
δEd(N−1)/2−1,

(10.10)
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10.8 Appendix D: Details about Wang-Landau

Monte Carlo Simulations

As detailed in the main text, we used Wang-Landau Monte Carlo (WLMC) algorithm

to calculate g(E) for a perfect-glass system of d = 2, N = 10, χ = 1.89, and α = 1.

To do so, we first divide the energy range E0 ≤ Φ < 105 into Nbin = 2 × 104

bins that are equidistant in a logarithmic scale. Let the minimum and maximum

energies of a bin be Emin and Emax, the WLMC algorithm allows one to calculate

gbin = c

∫ Emax

Emin

g(E)dE over every bin, where c is an unknown constant independent

of the bin [335]. We then determine c by the condition V N =

∫ ∞
E0

g(E)dE =
∑

gbin,

where the upper limit of the integration can be replaced with 105, since g(E) turns

out to be negligible for very large E. We finally divide gbin with (Emax −Emin) to

find out g(E) at each bin.

We perform a total of 1500 stages of Monte Carlo simulations, each consisting of

Ntrial = 4 × 107 trial moves. In each trial move, a random particle is moved by a

distance of xyL in every direction, where x is uniformly distributed between -1 and 1, y

have 50% probability of being 0.2 and 50% probability of being 0.002, and L is the side

length of the simulation box. The WLMC algorithm has a tuning parameter, called

the “modification factor” in [335], that affects its efficiency and accuracy. Following

Ref. [30], we let this factor be f = exp{max[2Nbin/(Ntriali), exp(−0.1i)]} at the ith

stage, where max(a, b) denotes the maximum value between a and b.

We have performed two independent runs of the simulations detailed above. The

resulting g(E) is presented in Fig. 10.6 and compared with the g(E) obtained from

the harmonic approximation. At the lowest energies, g(E) from both runs agree very

well with that from the harmonic approximation. This verifies the uniqueness of the

perfect-glass ground state.
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Figure 10.6 (left) Natural logarithm of the density of states, g(E), from two independent
runs of WLMC simulations, and from the harmonic approximation. (right) A zoomed-in
view near the ground-state energy E0 = 0.0512129 . . ..
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Chapter 11

Structure Factor of the Primes

11.1 Introduction

The properties of the prime numbers have been a source of fascination for millenia.

Euclid proved that there are infinitely many primes. While the prime numbers are

a deterministic subset of the odd integers, they can be viewed, by some measures,

as pseudo-random numbers. Given a prime number pn, the subsequent prime can be

found deterministically by sieving [261]. Nonetheless, there is no known deterministic

formula that can quickly (polynomial in the number of digits in a prime) generate large

numbers that are guaranteed to be prime. (The largest known prime is 243,112,609− 1,

which is about 13 million digits long.) Let π(n) denote the prime counting function,

which gives the number of primes less than integer n. According to the prime number

theorem [124], the prime counting function in the large-n asymptotic limit is given

by

π(n) ∼ n

ln(n)
(n→∞). (11.1)

This means that for sufficiently large n, the probability that a randomly selected

integer not greater than n is prime is very close to 1/ ln(n), which can be viewed as

position-dependent number density ρ(n) (number of primes up to n divided by the
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interval n). This implies that the primes become sparser as n increases and hence

can be regarded as a statistically inhomogeneous set of points that are located on a

subset of the odd integers.

Let z denote the gap size between any two consecutive primes and P (z) the

corresponding gap probability distribution. Figure 11.1 compares the gap probability

distribution P (z) for the primes to the uncorrelated lattice gas at the same number

density. Here, “uncorrelated lattice gas” refers to a lattice-gas system where each site

has a certain probability of being occupied, independent of the occupation of other

sites. For an uncorrelated lattice gas at number density ρ = N/L with lattice spacing

2 in the infinite-system-size limit, the gap distribution is exactly given by

P (z) = f(1− f)z/2−1, (11.2)

where f = 2ρ is the probability that a site is occupied. We see that by the gap

distribution, the primes cannot be clearly distinguished from the uncorrelated lattice

gas. Indeed, probabilistic methods to treat the primes have yielded fruitful insights

about them [111, 104, 210]. For example, based on the assumption that the primes

behave like a Poisson process (uncorrelated lattice gas), Cramér (1920) conjectured

that [111] for large n

g(n) ≥ c ln2(n) (11.3)

where g(n) denotes the largest prime gap within an interval [n, 2n]. Moreover, there

are quick stochastic ways to find large primes [205, 237, 228, 23, 16, 7]. Examples are

based on variants of Fermat’s little theorem [205, 237, 228, 23].

On the other hand, it is known that primes contain unusual patterns. Chebyshev

observed in 1853 that primes congruent to 3 modulo 4 seem to predominate over those

congruent to 1 [112]. Assuming a generalized Riemann hypothesis, Rubinstein and

Sarnak [257] exactly characterized this phenomenon and more general related results.
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Figure 11.1 Comparison of the gap distribution for the primes and the uncorrrelated
lattice gas with the same cardinality (occupation number) as the set of primes. The
primes are taken to lie on an integer lattice with a spacing of 2, i.e., a subset of the odd
positive integers. We consider N primes in interval [M,M + L] (M large and M � L).
Here N = 107, L = 244651480 with M = 42151671493, the 1,800,000,000th prime number.

A computational study on the Goldbach conjecture demonstrates a connection based

on a modulo 3 geometry between the set of even integers and the set of primes [197].

In 1934, Vinogradov proved that every sufficiently large odd integer is the sum of

three primes [333]. This method has been extended to cover many other types of

patterns [116, 117, 115, 292]. Recently it has been shown that there are infinitely

many pairs of primes with some finite gap [358] and that primes ending in 1 are

less likely to be followed by another prime ending in 1 [176]. Numerical evidence of

regularities in the distribution of gaps between primes when these are divided into

congruence families have also been reported [200, 64, 340], along with the observation

of period-three oscillations in the distribution of increments of the distances between

consecutive primes numbers [172].

The present chapter is motivated by some unusual properties of the Riemann zeta

function ζ(s), which is a function of a complex variable s that is intimately related

to the primes. The zeta function has many different representations, one of which is
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the series formula

ζ(s) =
∞∑
n=1

1

ns
, (11.4)

which converges for Re(s) > 1. However, ζ(s) has a unique analytic continuation

to the entire complex plane, excluding the simple pole at s = 1. According to the

Riemann hypothesis, the nontrivial zeros of the zeta function lie along the critical line

s = 1/2 + it with t ∈ R in the complex plane. The nontrivial zeros tend to get denser

the higher on the critical line. When the spacings of the zeros are appropriately nor-

malized so that they can be treated as a homogeneous point process at unity density,

the resulting pair correlation function takes on the simple form 1 − sin2(πr)/(πr)2

[210]. The corresponding structure factor S(k) (essentially the Fourier transform of

g2(r)) tends to zero linearity in the wavenumber k as k tends to zero but is unity for

sufficiently large k. This implies that the normalized Riemann zeros possess a remark-

able type of correlated disorder at large length scales known as hyperuniformity [315].

A hyperuniform many-particle system is one in which the structure factor approaches

zero in the infinite-wavelength limit [317]. In such systems, density fluctuations are

anomalously suppressed at very large length scales, a “hidden” order that imposes

strong global structural constraints. All structurally perfect crystals and quasicrys-

tals are hyperuniform, but typical disordered many-particle systems, including gases,

liquids, and glasses, are not. Disordered hyperuniform many-particle systems are

exotic states of amorphous matter that have attracted considerable recent attention

[317, 349, 74, 347, 149, 173, 77, 145, 177, 136, 142, 66, 68, 341, 211, 95, 325, 328, 352,

353, 28, 216, 307, 343]. The zeta function is directly related to the primes via the

following Euler product formula:

ζ(s) =
[ ∞∏
n=1

[1− 1/psn]
]−1

. (11.5)

281



Similarly, there are a variety of explicit formulas that link the primes on the one

hand to the zeros of the zeta function on the other hand [65, 294, 141]. Thus, one

can in principle deduce information about primes from information about zeros of

the zeta function. Accordingly, one might expect the primes to encode hyperuniform

correlations seen in the Riemann zeros.

In this chapter, we numerically study the pair statistics of the primes, especially

the structure factor S(k) in an interval M ≤ p < M+L with M →∞, L/M → β < 1.

As we will detail in Sec. 11.2.3, this choice of intervals allow us to obtain prime con-

figurations with virtually uniform density. We show that the structure factor exhibits

well-defined Bragg-like peaks along with a small “diffuse” contribution. This indi-

cates that the primes are appreciably more correlated than previously thought. Our

numerical results definitively suggest an explicit formula for the locations and heights

of the peaks, which we prove in [324] using analytic number theory. A simplified

proof is also included in this chapter. The formula predicts infinitely many peaks

in any non-zero interval, similar to the behavior of quasicrystals. However, primes

differ from quasicrystals in that the ratio between the location of any two predicted

peaks is rational. We also show numerically that the diffuse part decays slowly as M

or L increases. This might indicate that the diffuse part vanishes in an appropriate

infinite-system-size limit [324].

11.2 Definitions, Preliminaries, and Simulation

Procedure

Given an odd integer M ≥ 3 and an even integer L, let pj be jth prime number

such that M ≤ pj < M + L, where 1 ≤ j ≤ N , and N is the number of prime

numbers within the interval L such that M →∞, L/M → β < 1. Let us call this set

of prime numbers a “configuration.” Figure 11.2 illustrates an example of a prime
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configuration. We will study the pair correlation function as well as the structure

factor of prime-number configurations. For all cases considered in this chapter, M ≥

3. Therefore, all of the pj’s are odd integers. We thus treat prime numbers as a

lattice-gas system. Each odd integer is a lattice site that can be either occupied

(prime) or unoccupied (composite). The rest of this section details mathematical

tools we use to treat such systems.

51 53 55 57 61 63 65 67 69 71 73 7559 77 79

L=30

M=51

2

Figure 11.2 Schematic plot of a prime-number configuration with M = 51 and L = 30.
Since we always use M ≥ 3, any prime number in the interval [M,M + L) is odd.
Therefore, a prime-number configuration is a lattice gas with lattice spacing 2 in which
the primes are the “occupied” sites and the composites are “unoccupied” sites.

11.2.1 Discrete Fourier transform

For a function f(r) defined on an integer lattice with spacing a that is contained

within a periodic box of length L, one may define its Fourier transform as follows:

f̃(k) =
∑

r=0,a,2a,··· ,L−a

f(r) exp(ikr), (11.6)

where the parameter k is an integer multiple of 2π/L. The inverse transform is given

by

f(r) =
1

Ns

Ns−1∑
j=0

f̃

(
2πj

L

)
exp

(
−i2πj

L
r

)
, (11.7)

where Ns = L/a is the number of sites.
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11.2.2 Pair statistics and sum rules

Define η(r) as the indicator function such that η(r) = 1 if the site at r is occupied,

and η(r) = 0 if the site at r is not occupied. Define occupation fraction f =< η(r) >,

where <> denotes an average over all r. Let η̃(r) be its Fourier transform. We define

the structure factor as

S(k) = |η̃(k)|2/N −Nδk,0. (11.8)

Define the pair correlation function g2(r) as

g2(r) =
1

Nf

∑
n=0,a,2a,··· ,L−a

η(n)η(n+ r)− δr,0. (11.9)

By definition, g2(0) = 0. For r 6= 0, g2(r) can be interpreted as the probability that

the site at p+ r is occupied given that the site at p is occupied divided by f .
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The structure factor and the pair correlation function are related as follows:

Nδk,0 + S(k) = |η̃(k)|2/N

=
1

N

∑
m=0,a,2a,··· ,L−a

η(m) exp(ikm)
∑

n=0,a,2a,··· ,L−a

η(n) exp(−ikn)

=
1

N

∑
m=0,a,2a,··· ,L−a

∑
n=0,a,2a,··· ,L−a

η(m)η(n) exp[ik(m− n)]

=
1

N

∑
r=0,a,2a,··· ,L−a

∑
n=0,a,2a,··· ,L−a

η(n+ r)η(n) exp(ikr)

=
1

N

∑
n=0,a,2a,··· ,L−a

η(n+ 0)η(n) exp(ik0)

+
1

N

∑
r=a,2a,··· ,L−a

∑
n=0,a,2a,··· ,L−a

η(n+ r)η(n) exp(ikr)

=
N

N
+

1

N

∑
r=a,2a,··· ,L−a

Nfg2(r) exp(ikr)

= 1 + f
∑

r=a,2a,··· ,L−a

g2(r) exp(ikr)

= 1 + f
∑

r=0,a,2a,··· ,L−a

g2(r) exp(ikr)

(11.10)

This equation enables us to obtain a sum rule for both g2(r) and S(k). For g2(r),

plugging k = 0 into Eq. (11.10) yields

N − 1

f
=

∑
r=a,2a,··· ,L−a

g2(r). (11.11)

The sum rule for S(k) is easily found by invoking the inverse Fourier transform

equation:

g2(r) =
1

Nsf

Ns−1∑
j=0

[
S

(
2πj

L

)
+Nδk,0 − 1

]
exp

(
−i2πj

L
r

)
. (11.12)
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At r = 0, this relation becomes

0 =
Ns−1∑
j=0

[
S

(
2πj

L

)
+Nδk,0 − 1

]

=
Ns−1∑
j=1

S

(
2πj

L

)
+N −Ns,

(11.13)

and hence the sum rule for the structure factor is given by

Ns−1∑
j=1

S

(
2πj

L

)
= Ns −N. (11.14)

For the primes, L = 2Ns, and hence the sum rule is specifically

Ns−1∑
j=1

S

(
πj

Ns

)
= Ns −N. (11.15)

11.2.3 Simulation procedure

The fact that all primes greater than 3 are odd integers lead to a few important

properties of S(k). First, Nδk,0 + S(k) is a periodic function of period π ,since

Nδk+π,0 + S(k + π) =
|∑N

j=1 exp[−i(k + π)(pj −M)]|2
N

=
|∑N

j=1 exp[−ik(pj −M)] exp(−iπ(pj −M)]|2
N

=
| − exp(iπM)

∑N
j=1 exp[−ik(pj −M)]|2
N

=
|∑N

j=1 exp[−ik(pj −M)]|2
N

= Nδk,0S(k),

(11.16)

Second, from Eqs. (11.6) and (11.8), one can see that when k = mπ, where m

is any non-zero integer, S(k) = N achieves the global maximum of this function.

The function S(k) therefore displays strong peaks at such k values. Third, from

286



Eqs. (11.6) and (11.8), one can see the function S(k) has reflection symmetry S(k) =

S(−k). This reflection symmetry, combined with the periodicity [Eq. (11.16)], implies

another reflection symmetry, S(π/2+k) = S(π/2−k). With these properties in mind,

we only need to study S(k) in the 0 < k ≤ π range in this chapter.

One can similarly define the structure factor of uncorrelated lattice gases by replac-

ing the N prime numbers, pj, with N random odd integers. The resulting structure

factor also has a period of π, displays a peak when k is a multiple of π, and has

reflection symmetry S(π/2 + k) = S(π/2− k).

In statistical mechanics, the study of S(k) often focuses on statistically homo-

geneous systems. However, the prime numbers are not homogeneous. Instead, in

the vicinity of x, the density of prime numbers scales as 1/ ln(x). To overcome this

difference, we focus on large M values and let L/M be a constant less than unity.

This implies that the prime numbers in the interval [M,M +L) are nearly uniformly

distributed. For example, we will study a system of M = 1010 and L = 107. As x

changes from M to M + L, 1/ ln(x) only changes from 0.043429· · · to 0.043427· · · .

We minimize the problem of inhomogeneity by requiring sufficiently large M .

Instead, one might think an even better way to this problem is to rescale the con-

figuration such that it is homogeneous. The natural scaling is to replace each prime

number p with p/ ln(p). However, it turns out that after performing such rescaling,

the structure factor becomes not interesting. We present S(k) of such a rescaled

configuration in Fig. 11.3. The structure factor appears to be completely noisy, with

no obvious peaks with heights comparable to N . This is to be contrasted with our

findings reported in the rest of the chapter, in which we choose to study the primes

in the interval M ≤ p ≤M + L with M →∞, L/M → β < 1.

We obtain a list of prime numbers from Ref. [2], and calculate S(k) of prime

numbers and ideal uncorrelated lattice gases with the fast Fourier transform (FFT)

algorithm using the kissFFT software [3]. This algorithm has the advantage of not
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Figure 11.3 Structure factor S(k) associated with p/ ln(p) for all prime number p’s in the
interval [3, 3 + 105).

only being “fast” 1, but also being accurate, as the upper bound on the relative error

scales as ε log(L), where ε is the machine floating-point relative precision. We use

double-precision numbers to further minimize ε.

More precisely, FFT allows one to efficiently calculate

X(q) =
T−1∑
n=0

xn exp(−2πiqn/T ) (11.17)

for arbitrary x0, x1, · · · , xT−1. Here, we simply let T = L/2, and let xj = 1 if M + 2j

is a prime number and xj = 0 if M + 2j is composite. The structure factor is then

calculated from:

S(2πq/L) = |X(q)|2/N. (11.18)

1The time complexity of calculating S(k) for all k’s using FFT algorithm scales as L log(L), while
the time complexity of doing so using Eq. (11.10) scales as LN .
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Figure 11.4 Pair correlation function g2(x), as defined in Eq. (11.9), for a prime number
configuration of M = 1010 + 1, L = 106, and N = 43427, compared with g2(x) of a
uncorrelated lattice gas configuration of the same L and N .

11.3 Results for the Pair Statistics of the Prime

Numbers

The pair correlation function as defined in Eq. (11.9), g2(x), of prime numbers is

presented in Fig. 11.4 and compared with g2(x) of uncorrelated lattice gases. This

quantity for uncorrelated lattice gas is simply

g2(x) =
N − 1

f(Ns − 1)
(11.19)

for any x 6= 0. This is because after one site is occupied, out of the remaining Ns− 1

sites, exactly N − 1 sites are occupied. We see that by this measure, the prime

numbers appear to be distinctly different from lattice gases. We see that g2(x) for

primes is higher than g2(x) of the uncorrelated lattice gas if and only if x is divisible

by 3. However, we will see that the difference in pair statistics is much more obvious

when we study S(k) below.
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We present and study numerically calculated structure factors of prime numbers

for various M ’s and L’s in this section. At first, let us examine S(k) for M = 106 + 1

and L = 5000, which is presented in Fig. 11.5. At a larger scale, S(k) appears to

consist of many well-defined Bragg-like peaks of various heights, with the highest peak

occurring at k = π. As we zoom in, it becomes evident that besides those peaks, S(k)

also has a random, noisy contribution that is often below 1. We will call the latter

contribution the “diffuse part” in the rest of the chapter. Figure 11.5 also includes

S(k) for uncorrelated lattice gases, which consists of a diffuse part and a single peak

at the trivial value of k = π. Away from the peak, S(k) for uncorrelated lattice gases

has an average value of Ns−N
Ns−1

. This is because the sum rule, Eq. (11.14), requires

that S(k) average to this value. A major conclusion is that the structure factor of the

primes is characterized by a substantial amount of order across length scales, relative

to the uncorrelated lattice gas, as evidenced by the appearance of many Bragg-like

peaks.
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Figure 11.5 Left: S(k) for prime numbers for M = 1010 + 1 and L = 105 contains many
well-defined Bragg-like peaks of various heights, creating a type of self-similarity. Right: A
zoomed-in view revealing the existence of a small, noisy “diffuse part” besides the peaks.
We also plot S(k) for uncorrelated lattice gases for comparison. As we have discussed in
Sec. 11.2, we only show S(k) in the range 0 < k ≤ π, and therefore omit the peak at k = 0.

At this stage, the distinction between the peaks and the “diffuse part” is somewhat

unclear. Since S(k) contains peaks of various heights, is it possible that the diffuse
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part is actually made of many smaller peaks? We can only answer this question after

we study the peaks and the diffuse part more deeply later in this section.

11.3.1 Peaks
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Figure 11.6 The structure factor S(k) at k = π, k = π/3, and k = π/5, as a function of
L at M = 1010 + 1. The inset presents more data for 105 ≤ L ≤ 105 + 20.

We move on to study the peaks. From Fig. 11.5, one sees that the highest peak is

at k = π, which is trivially caused by the periodicity of the underlying lattice. The

next highest two peaks are at k = π/3 and k = 2π/3 2. Even lower peaks occur at

k = π/5, 2π/5, 3π/5, and 4π/5. Still lower peaks occur at k = π/7, 2π/7, 3π/7, 4π/7,

k = 5π/7, and 6π/7. Examining S(k) of a much larger system (M = 1010 + 1 and

L = 107) revealed that there are even more peaks. Using analytic number theory, we

have shown elsewhere [324] that the peaks indeed become Dirac-delta-like functions

(in the infinite-size limit) with locations that obey the formula k = mπ/n, where m

2It should be noted that since k has to be integer multiples of 2π/L, for L = 105, k = π/3
and k = 2π/3 cannot be chosen. The actually observed peaks occur at the closest allowed k points
instead.
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is any integer coprime with n and n is any square-free odd integer and hence has a

distinct prime factorization, i.e., n =
J∏
j=1

pj, where J is a positive integer, and p1,

p2, · · · , pJ are non-repeating prime numbers larger than 2. If n is even or is not

square-free, then we observe no peak at k = mπ/n. We verified the existence of such

peaks for n up to 300. As n increases beyond 300, however, the peaks become too

weak to be distinguishable from the diffuse part.

Having an analytical formula of the peak locations, we move on to study the peak

heights. As we have shown earlier, the height of the peak at k = π is simply N . What

can we say about the heights of the other peaks? In Fig. 11.6 we present computed

peak heights at k = π/3 and k = π/5 for M = 1010 + 1 and various L’s. We see that

as L grows, the heights of the peaks at k = π/3 and k = π/5 also grow and remain

being roughly proportional to N . Looking at the inset, we see that both S(π/3) and

S(π/5) oscillates periodically as L increases: S(π/3) attains a maximum when L is

divisible by 3, and S(π/5) attains a maximum when L is divisible by 5. Examining

the heights of other peaks, we find that the height of a peak at k = mπ/n is indeed

highest when L is divisible by n.

Since the divisibility of L with n affects the peak heights and hence will introduce

unintended errors if not chosen properly, we desire an L that is divisible by as many

prime numbers as possible. We therefore chose L = 2×3×5×7×11×13×17×19 =

9699690 and recomputed the heights of several peaks. The results are summarized in

Table 11.1. We find that when L is divisible by n, the height of the peak at k = mπ/n

is very close to N
J∏
j=1

(pj − 1)−2, where pj are the distinct prime factors of n. Indeed,

this result is proved elsewhere [324].

Do these numerically generated peaks have finite or infinitesimal width? To answer

this question, we present a close view of the peak at k = π/3 for three different L’s

in Fig. 11.7. It turns out that, if L is divisible by n, the peak at k = mπ/n has

infinitesimal width, in the sense that S(k) at one k value attains the local maximum
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Table 11.1 Peak heights at several different n and m’s for M = 2.5× 108 + 1 and
L = 9699690 and comparison with the predicted height from the analytical formula.

n m S(mπ/n)/N Postulated analytical formula
3 1 0.2500000003 (3− 1)−2 = 0.25

5
1 0.06268293536

(5− 1)−2 = 0.0625
2 0.06231833526

7
1 0.02764696627

(7− 1)−2 = 0.02777 · · ·2 0.02783423055
3 0.02785282486

15= 3× 5

1 0.01564115190

[(3− 1)(5− 1)]−2 = 0.015625
2 0.01583266309
4 0.01551814312
7 0.01550964066

105= 3× 5× 7

1 0.0004096963803
[(3− 1)(5− 1)(7− 1)]−2 = 0.00043402777 · · ·2 0.0004418025682

4 0.0004305924622
8 0.0003879974866
11 0.0004203223484
13 0.0004411107279
16 0.0004191249498
17 0.0003893716268
19 0.0004388128207
22 0.0004193036024
23 0.0004375599695
26 0.0004203613535
29 0.0004418187004
31 0.0004457650582
32 0.0004237635619
34 0.0004500979160
37 0.0004466597486
38 0.0004663304920
41 0.0004255673779
43 0.0004845933410
44 0.0004679589962
46 0.0004572985410
47 0.0004095637658
52 0.0004521962772

293



1.046 1.0465 1.047 1.0475 1.048

k

1

10

100

1000

S
(k

)

L=40000
L=100000
L=100002

Figure 11.7 S(k) near k = π/3 for three different L’s. Each curve is averaged over 100
prime-number configurations, with the jth configuration consists of all prime numbers in
the range [1010 + (j − 1)L+ 1, 1010 + jL+ 1).

and S(k) at all adjacent k values are as low as the typical diffuse part. However,

if L is not divisible by n, then the peak has a finite width, as S(k) of all k values

very close to mπ/n rises and become much higher than the typical diffuse part. In

Fig. 11.7 one can also see that when peak widths are finite, a lower L results in a more

broadly spread peaks. Therefore, all of the peaks may have infinitesimal width in the

infinite-L limit. However, in a finite-L simulation, choosing an L that is divisible by

as many prime numbers as possible provides a better estimate of S(k) in the infinite-L

limit. As n increases, one finds an increasing number of lower peaks, resulting in a

statistical self-similarity.

11.3.2 The diffuse part

The above analysis suggest that the structure factor of the primes possesses infinitely

many Dirac-delta-function peaks of various heights.. Therefore, one might naturally

ask, could the random, noisy “diffuse part” be simply a superposition of many small

peaks? Unfortunately, the answer is no. In Fig. 11.8 we present S(k) of two different
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Figure 11.8 The structure factor, S(k), normalized by N , for two different L’s and
M = 106 + 1.

L’s in the range 0.2 ≤ k ≤ 0.24. For L = 5000, S(k) in this range appeared com-

pletely random and noisy, matching our definition of the diffuse part. To see if this

diffuse part is actually a superposition of many small peaks, we compare it to the

structure factor for L = 500000. The larger L allows more k points to be chosen, and

therefore improves the k resolution, and reveals some peaks in this k range. We see

that although S(k) of the smaller L appeared to be entirely random, the maximum at

k ≈ 0.21 corresponds to a strong peak of the larger system, and is therefore actually

a peak. However, other maxima for the smaller system do not correspond to peaks

for the larger system, and can only be explained by assuming the existence of a noisy

contribution to S(k) which we call the “diffuse part.” To summarize, in Fig. 11.8

we show that there is clearly a noisy contribution to S(k) other than the peak con-

tribution. However, it is difficult to completely distinguish these two components of

S(k).

Therefore, the diffuse part indeed exists but it is difficult to distinguish. Nev-

ertheless, we can quantify the diffuse part using the median of S(k) for all possible

choices of k in the range 0 < k ≤ π. We present these medians in Fig. 11.9. As L
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increases, the median of S(k) generally decreases. However, with our current data, it

is unclear if the median of S(k) approaches zero in the L→∞ limit.
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Figure 11.9 The median of the structure factor, S(k), for all possible choices of k, as a
function of L. Here M is chosen to be 10L. The diffuse part of primes appears to be
slowing decreasing as L increases. This is to be contrasted with the uncorrelated lattice
gas with an appreciably larger predictable diffuse part in which there is no dependence on
system size.

The diffuse part contributes to not only k points where there are no peaks, but

also to k points where there are peaks. In Fig. 11.10, we compare numerical peak

heights, averaged over all allowed m for a particular n, with our analytical formula.

It turns out that the numerical average is always slightly higher than the formula,

and their difference is of the same order of magnitude as the diffuse part. Thus, S(k)

at predicted peak locations is actually the sum of the peak and diffuse contributions.
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Figure 11.10 Average peak height of all peaks of a given n, the predicted peak heights,
and their difference for all n < 105 that are odd, square-free, and divide L evenly. Here
M = 1010 + 1 and L = 9699690. For each n, we find all m’s that are coprime with n, and
average the heights of peaks at mπ/n. The average turns out to be always greater than

the prediction, N

J∏
j=1

(pj − 1)−2. Their difference is between 0.1 and 1, which is of the

same order of magnitude as the diffuse part.

11.4 Theoretical Explanation of the Peak Proper-

ties

In this section, we present a theoretical explanation of the observed peak locations,

peak heights, and peak shapes of the structure factor in the range 0 < k ≤ π. The

observations are

• peaks with heights N
J∏
j=1

(pj − 1)−2 appear at k = mπ/n, where n =
J∏
j=1

pj, and

p1, p2, · · · , pJ are odd, distinct prime numbers; and

• peaks have finite width if L is not divisible by n and infinitesimal width other-

wise.
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The location, height and shape of the peak at k = π (m = 1, n = 1 case) is trivially

explained as already noted in Sec. 11.2, and so we focus on n > 1 cases here. The ex-

planation for peak locations and heights is a simplification of the analysis presented in

a theoretical study [324]. The explanation for peak shapes is not published elsewhere.

For concreteness, we first consider the cases n = 3, m = 1 and n = 3, m = 2.

The combination of two facts explains these peaks. The first fact is simply that for

every prime number p > 3, p = 1 or 5 (mod 6). Let Na,b be the number of prime

number p’s in the interval [M,M +L) such that p = b (mod a). Here, we will always

consider even a’s, and since p is odd, b also have to be odd. The first fact can then

be reformulated as N6,3 = 0. The second fact, a stronger form of Dirichlet’s theorem

on arithmetic progressions [13], states that for large prime number p’s, calculating p

modulo a may give any integer b that is co-prime with a. Moreover, all of the possible

b’s are equally likely to appear. Therefore, in the infinite-L limit, both N6,1 and N6,5

asymptotically approach N/2. By definition,

S(π/3) =
|∑N

j=1 exp[−iπ(pj −M)/3]|2
N

=
|∑N

j=1 exp(−iπpj/3)|2
N

.

(11.20)

For any pj, if pj = 1 (mod 6), then we always have exp(−iπpj/3) = exp(−iπ/3). On

the other hand, if pj = 5 (mod 6), then exp(−iπpj/3) = exp(−i5π/3). Thus

S(π/3) =
|N6,1 exp(−iπ/3) +N6,5 exp(−i5π/3)|2

N

≈ N

4
| exp(−iπ/3) + exp(−i5π/3)|2

=
N

4
.

(11.21)
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Similarly,

S(2π/3) =
|∑N

j=1 exp[−i2π(pj −M)/3]|2
N

=
|N6,1 exp(−i2π/3) +N6,5 exp(−i4π/3)|2

N

≈ N

4
.

(11.22)

In fact, for any odd prime n, one have N2n,n = 0. For large L, Dirichlet’s theorem

then gives N2n,1 = N2n,3 = · · · = N2n,n−1 = N2n,n+1 = N2n,n+3 = · · · = N2n,2n−1 =

N/(n−1). Plugging in these equations into Eqs. (11.8) yields S(mπ/n) = N(n−1)−2.

Similarly, for a generally non-prime odd n, one can find all b’s that are co-prime

with 2n, distribute a total of N primes evenly among all allowed b values, and then

calculate S(mπ/n) from Eqs. (11.8). If the prime factorization of n is n =
∏

j pj,

one will find S(mπ/n) = 0 if any of the two pj’s are the same and S(mπ/n) =

N
∏

(pj − 1)−2 otherwise.

15 25 35 45 55 65 75 85 95 105 115 125

Figure 11.11 Illustration of the superposition of multiple periodicities for prime
numbers. Black dots indicate occupied sites, crosses indicate sites that cannot be occupied
because of a certain periodicity. For example, when one divides three consecutive odd
integers by 3, the remainders are 0, 2, and 1. The site with a remainder of 0 is divisible by
3, and cannot be prime (red crosses). The other two sites may or may not be prime, but
generally, prime numbers are evenly distributed between 3n+ 1 sites and 3n+ 2 sites.
Thus, prime numbers statistically exhibit periodicities of 6. Similarly, prime numbers
show statistical periodicity of 10 (blue crosses), 14 (green crosses), and even larger periods
(not shown in the figure).

We have thus explained the peak locations and heights. We now move on to

explain the peak shapes. In particular, why does a peak at k = mπ/n appear to

have infinitesimal width if and only if L is divisible by n. Our previous success at

explaining peak locations and peak heights suggest that, for the purpose of studying
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a peak at k = mπ/n, the prime number configuration may be considered as a one-

dimensional periodic configuration of period 2n. Within each period, there are some

numbers that have certain probability of being prime and other numbers that are

definitely not prime. For example, to study the peak at k = π/3, we can divide a

prime configuration of an arbitrary length L into bL/6c periods of length 6, where

bxc denotes the largest integer less than or equal to x 3. Within each period, odd

number q’s such that q = 1 or 5 (mod 6) have a certain probability to be a prime

number, while the other odd number q such that q = 3 (mod 6) cannot be prime.

Such a division of a configuration is schematically shown in Fig. 11.11.

Roughly speaking, when L is not divisible by n, the broadening of the peak is

caused by the incommensurability of the simulation box of size L and the period 2n.

A more quantitative explanation is presented below: Let us study the contribution

to ρ̃(k) from each period. Define the contribution from the jth period be cj, the

periodicity gives the following relationship between cj and c1

cj = c1 exp[−ik2n(j − 1)]. (11.23)

If k = mπ/n, then cj = c1. There are a total of bL/2nc such periods, thus

ρ̃(k) = bL/2ncc1. (11.24)

To study the peak shape, we have to also consider k close to but not equal to mπ/n.

Let f = exp(−ik2n), we have cj = c1f
j−1. Summing over all bL/2nc contributions

3More precisely, the configuration is divided into bL/2nc periods and up to n−1 remaining sites.
However, the remaining sites can be neglected in the following calculations for sufficiently large
systems.
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to ρ̃(k) yields

ρ̃(k) = c1 + c1f + c1f
2 + · · ·+ c1f

bL/2nc−1

= c1

(
1− f bL/2nc

1− f

)
.

(11.25)

Therefore,

S(k) =
|ρ̃(k)|2
N

=
|c1|2
N

|1− f bL/2nc|2
|1− f |2

=
|c1|2
N

|1− exp(−ik2nbL/2nc)|2
|1− exp(−ik2n)|2

=
|c1|2
N

|1− cos(2nbL/2nck) + i sin(2nbL/2nck)|2
|1− cos(2nk) + i sin(2nk)|2

=
|c1|2
N

sin2(nbL/2nck)

sin2(nk)
.

(11.26)

Since we are studying the shape of a peak at mπ/n, it is natural to let ∆k = k−mπ/n:

S(k) =
|c1|2
N

sin2(nbL/2nck)

sin2(nk)

=
|c1|2
N

sin2(nbL/2nc∆k)

sin2(n∆k)

(11.27)

Since ∆k is very small, we can assume n∆k is very small and that nbL/2nc∆k ≈

L∆k/2. Thus

S(k) ≈ |c1|2
N

sin2(L∆k/2)

(n∆k)2

=
|c1|2L2

4Nn2

(
sin(L∆k/2)

L∆k/2

)2 (11.28)

We see that the peak shape is a cardinal sine function squared and that the peak width

is inversely proportional to L. This result shows that all peaks have infinitesimal width

in the L→∞ limit. However, why did we observe an infinitesimal peak width even for
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finite L’s that are divisible by n? This is caused by the discrete nature of the possible

choices of k. As we have stated earlier, k has to be an integer multiple of 2π/L. When

L is an even number that is divisible by an odd number n, ∆k = k−mπ/n is also an

integer multiple of 2π/L. Plugging such a ∆k into Eq. (11.28), one will find S(k) = 0

unless ∆k = 0. Therefore, the peak at k = mπ/n appears to have infinitesimal width.

11.5 Reconstruction of Prime Number Configura-

tions

The above analysis suggest that, ignoring the diffuse part, we have analytical formula

not only for S(k), which is related to the modulus to the complex ρ̃(k), but also

for the phase of ρ̃(k). This allows us to reconstruct a prime-number configuration,

i.e., predict all prime numbers in an arbitrary interval [M,M + L), by performing

inverse Fourier transformation on ρ̃(k). Unfortunately, since we ignore the diffuse

part, the prediction cannot be completely accurate. In this section, we will describe

our attempt at reconstructing prime number configurations and report its accuracy.

These results are to be published in Ref. [324].

We reconstruct a prime-number configuration in an interval [M,M + L) by the

following steps:

1. Calculate N = (M + L)/ ln(M + L) − M/ ln(M). Since the prime number

theorem states that the number of prime numbers below a certain number x

is approximately x/ ln(x), N is the expected number of prime numbers in this

interval.

2. Initialize ρ̃(k) at all k 6= 0 to be zero. Set ρ̃(0) = N .

3. Find all n’s such that n =
∏

j pj, where pj are distinct, odd prime numbers,

below a threshold nmax.
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4. For each n, find all integer m’s such that 0 < m < n and is co-prime with n.

5. For each n and m, we need to reconstruct a peak at k = mπ/n. As we have

demonstrated in the previous section, for the purpose of reconstructing this

peak, the prime-number configuration can be treated as a periodic system of

period 2n. We then find whether each number in the first period can be a prime

number or not and calculate c1.

6. If L is divisible by n, then the peak at k = mπ/n should have infinitesimal

width. We therefore increase ρ̃(mπ/n) by (L/n)c1, which is the predicted value

of ρ̃(mπ/n) given in Eq. (11.24).

7. If L is not divisible by n, then the peak at k = mπ/n should have a finite width.

We therefore have to increase ρ̃(k) of all k points adjacent to mπ/n by the value

predicted by Eq. (11.25). Here, the criteria for an “adjacent” k point is that

the absolute value of the result from Eq. (11.25) is larger than
√
N .

8. Perform an inverse Fourier transform of ρ̃(k) to find ρ(x).

9. If we had a completely accurate prediction of ρ̃(k), the resulting ρ(x) would be

exactly one for each prime number and exactly zero for each composite number.

Unfortunately, the predicted ρ̃(k) is not completely accurate because of two

reasons. First, there should be infinitely many peaks, but we only consider a

finite number of peaks for which n < nmax. Second, we are not considering the

diffuse part. Therefore, the resulting ρ(r) is not exactly zero or one. We find

N numbers with the highest predicted ρ(x) and predict those numbers to be

prime.

We have performed such reconstruction process for L = 510510 and several dif-

ferent M ’s and nmax’s. The accuracy of our prediction is summarized in Fig. 11.12.

We see that for smaller M ’s and larger nmax’s, this reconstruction process can have
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Figure 11.12 Two measures of the accuracy of the predicted prime numbers, correct
predictions divided by incorrect predictions, and correct predictions divided by prime
numbers that are not predicted, of our prime-number reconstruction process.

excellent accuracy. With M = 106 and nmax = 2000, more than 99% of the predicted

prime numbers turn out to be correct. Unfortunately, as M increases, the accuracy

drops. For any M , increasing nmax improves the accuracy, but also increases the

computational cost.

In the above reconstruction process, we have neglected the diffuse part. It turns

out that if one introduces a random, independent noise to ρ̃(k), with magnitude

corresponding to the diffuse part contribution, Sdiffuse = 0.4, the prediction accuracy

actually becomes much worse. In Fig. 11.13 we present such results. Compared to

the prediction without this random noise, all ratios here becomes much lower. This

seems to indicate that the existence of the diffuse part is due to numerical limitations,

for example, we could not use infinite M and L in simulations.

It it interesting to comment on the computational complexity of this reconstruc-

tion process. If nmax is negligible compared to L, then the slowest step is the inverse

Fourier transform of ρ̃(k). This step scales as O(L logL), which is slightly worse

than the best known method to deterministically find prime numbers below a certain
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limit L. The latter method is called “segmented sieve of Eratosthenes with wheel

factorization,” and scales as O(L log logL) [232].
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Figure 11.13 Two measures of the accuracy of the predicted prime numbers, correct
predictions divided by incorrect predictions, and correct predictions divided by prime
numbers that are not predicted, of our prime-number reconstruction process.

11.6 Conclusions

In summary, we numerically show that the structure factor of the primes in certain

intervals exhibit well-defined Bragg-like peaks together with a small diffuse contribu-

tion. We show that the peaks persist as system size increases. Therefore, we have

shown that the primes are characterized by a substantial amount of order, especially

relative to the uncorrelated lattice gas, which does not possess such peaks. More

detailed theoretical analysis on several aspects of the primes will be presented in

Ref. [324], including estimates of the diffuse contribution as a function of the system

size, the evaluation of the τ order metric, S(k) at irrational multiples of π, and the

analytical evaluation of the pair correlation function. We also show there that the
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primes in certain intervals are not only hyperuniform but also exhibit dense Bragg

peaks in the sense of limit-periodic systems.
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conséquences arithmétiques. Bulletin de la Societé mathematique de France,
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[259] S. Sachdev. Kagomé-and triangular-lattice Heisenberg antiferromagnets: Or-
dering from quantum fluctuations and quantum-disordered ground states with
unconfined bosonic spinons. Phys. Rev. B, 45(21):12377, 1992.

[260] G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe. Theory of gas-diffusion
controlled sensitivity for thin film semiconductor gas sensor. Sensor. Actuat. B
Chem., 80(2):125–131, 2001.

[261] F. R. S. Samuel. The sieve of eratosthenes. being an account of his method of
finding all the prime numbers. Philo. Trans., 62:327–347, 1772.

[262] D. E. Sands. Introduction to Crystallography. Dover Books on Chemistry. Dover
Publications, 2012.

[263] S. Sastry. The relationship between fragility, configurational entropy and the
potential energy landscape of glass-forming liquids. Nature, 409(6817):164–167,
2001.
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