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Abstract

Maintenance of transport infrastructure assets is widely advocated as the key in 
minimizing current and future costs of the transportation network. While 
effective maintenance decisions are often a result of engineering skills and prac-
tical knowledge, efficient decisions must also account for the net result over an 
asset’s life-cycle. One essential aspect in the long term perspective of transport 
infrastructure maintenance is to proactively estimate maintenance needs. In 
dealing with immediate maintenance actions, support tools that can prioritize 
potential maintenance candidates are important to obtain an efficient mainte-
nance strategy.

This dissertation consists of five individual research papers presenting a 
microdata analysis approach to transport infrastructure maintenance. Micro-
data analysis is a multidisciplinary field in which large quantities of data is 
collected, analyzed, and interpreted to improve decision-making. Increased 
access to transport infrastructure data enables a deeper understanding of causal 
effects and a possibility to make predictions of future outcomes. The microdata 
analysis approach covers the complete process from data collection to actual 
decisions and is therefore well suited for the task of improving efficiency in 
transport infrastructure maintenance.

Statistical modeling was the selected analysis method in this dissertation and 
provided solutions to the different problems presented in each of the five papers. 
In Paper I, a time-to-event model was used to estimate remaining road pave-
ment lifetimes in Sweden. In Paper II, an extension of the model in Paper I 
assessed the impact of latent variables on road lifetimes; displaying the sections 
in a road network that are weaker due to e.g. subsoil conditions or undetected 
heavy traffic. The study in Paper III incorporated a probabilistic parametric 
distribution as a representation of road lifetimes into an equation for the 
marginal cost of road wear. Differentiated road wear marginal costs for heavy 
and light vehicles are an important information basis for decisions regarding 
vehicle miles traveled (VMT) taxation policies. 

In Paper IV, a distribution based clustering method was used to distinguish 
between road segments that are deteriorating and road segments that have a 
stationary road condition. Within railway networks, temporary speed restric-
tions are often imposed because of maintenance and must be addressed in order 
to keep punctuality. The study in Paper V evaluated the empirical effect on 
running time of speed restrictions on a Norwegian railway line using a general-
ized linear mixed model.
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1.   Introduction

This is a doctoral dissertation in microdata analysis; a multidisciplinary field 
that is concerned with the gathering, summarizing, modeling, and interpreta-
tion of large quantities of data. Modern society contains complex processes 
which require a wide knowledge of data collection and processing techniques, as 
well as skills in data analysis methods and the capability of data-driven decision 
making. 

A crucial and complex system where the microdata analysis approach is well 
suited is transportation. The movement of goods and people between locations 
involves an integrated chain of vehicles, infrastructure, and operations. As the 
level of domestic and international integration of the transportation system 
increases, so does the importance of a more effective usage of data. Global 
economic welfare is highly dependent on the efficiency of the transportation 
network. This makes questions regarding infrastructure a core issue of our time.

Infrastructure asset management is the process of reinvestment, rehabilita-
tion, and maintenance during the life-cycle of a facility. A central part of the 
transportation network’s efficiency is the maintenance planner’s ability to allocate 
the right type of maintenance, at the right place, and at the right time under the 
constraint of a limited budget. This is not an easy task with many simultaneous 
considerations regarding the short and long term effects of any maintenance 
decision.

Unprocessed data can provide a snapshot of a road or railway network’s current 
condition. However, in order to maximize the overall efficiency of a maintenance 
decision, statistical models can convey information that is more relevant from a 
long-term perspective. The efficiency of a maintenance activity depends on its 
longevity in combination with the economic cost, which can be very challenging 
to assess. There are also situations where the direct impact of a maintenance 
decision can be difficult to determine, such as the delay caused by maintenance in 
a railway network. Statistical modeling is an appropriate method to analyze both 
the short and the long-term effects of maintenance decisions. Statistical models 
can also ensure that alternative maintenance strategies are evaluated as objec-
tively as possible. Opportunistic and ad hoc decisions can be avoided by using 
empirical results, which enables a more efficient use of resources.
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1.1	 Aim of the dissertation
This dissertation aims at improving the efficiency of transport infrastructure 
maintenance by applying a microdata analysis approach. The objective of the 
research is methodological validity as well as the output’s practical relevance. 

1.2	 Dissertation outline
The dissertation consists of two parts: Part I includes an introduction, the 
research background, a summary of the scientific papers, a discussion with 
suggestions for future research, and concluding remarks. Part II consists of the 
five papers which are published or submitted to be published in scientific 
journals.
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2.   Research background

2.1	 The importance of transport infrastructure maintenance
The transport infrastructure system is crucial to maintain and increase economic 
welfare (see e.g. Wachs and Taylor 1998; Geurs and van Eck 2001; Weisbrod 
2008; Rietveld and Bruinsma 2012). Investments in development and exten-
sions of transportation systems and facilities are thus important, but even more 
so is maintenance and preservation of existing infrastructure. Lately, many 
studies and technical reports have emphasized the importance of prioritizing 
maintenance of roads and railways in the United States, Europe, and other parts 
of the world. In his review essay of infrastructure investment, Gramlich (1994) 
concludes that maintenance often has a higher return on investment than new 
constructions, although federal subsidies in the United States in many cases give 
priority to the latter. Gramlish proposes placing priority on increasing the 
budget for highway maintenance. The American Society of Civil Engineers 
(2013) rates American railways and roads as having poor to mediocre quality 
and encourages the use of asset management to facilitate efficient maintenance 
investments. Kahn and Levinson (2011) strongly advocate that maintenance of 
existing roads in the United States should be given financial priority over new 
builds. 

In a report from the Swedish National Road and Transport Research 
Institute, Nilsson (2013) identifies system failures in the Swedish transport 
sector and concludes that a large number of infrastructure investments are 
undertaken despite not delivering a social economic net value. Nilsson also 
states that there is no tradition or possibility in Sweden to compare the outcome 
of projects and maintenance activities, which further jeopardize an efficient use 
of tax money spent on infrastructure.

Gwilliam and Shalizi (1999) review studies from industrial as well as devel-
oping countries, and the results are similar all over the world: deferring road 
maintenance increases not only total costs in the transportation network but 
also the present value of future costs. This implies that the economy as a whole 
in any country strongly benefits from timely road maintenance. Grimes and 
Barkan (2006) arrive at the same conclusion for railways: increased future 
expenses will more than offset temporary reductions in capital spending if rail-
road renewal maintenance is constrained.
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2.2	� Models and tools for efficient infrastructure asset management
Considering the great importance of maintenance and infrastructure asset 
management, research within these fields is more urgent than ever. Tools that 
can improve the efficiency of transport infrastructure maintenance are of great 
interest to many professionals within the industry. 

Life-cycle cost analysis (LCCA) is one of the main methods used to obtain 
efficient maintenance decisions. LCCA was first introduced by the United 
States Department of Defense, and later developed and applied in a number of 
different industries and businesses (see e.g. Sherif and Kolarik 1981; Fabrycky 
and Blanchard 1991; Woodward 1997). In 1998, the United States Federal 
Highway Administration provided extensive guidelines in good practice use of 
LCCA in the field of pavement design. They also introduced a probabilistic 
approach to describe the uncertainty inherited in many of the input parameters 
(Walls and Smith, 1998). 

The World Bank’s Transportation Department has since the late 1980’s 
developed the Highway Design and Maintenance Standards Model (HDM) to 
simulate total life-cycle conditions and costs for single roads or entire road 
networks (Watanatada, 1987). A further development in recent years is HDM-4 
(Highway Development and Management Tool, see Kerali et al. 2006); a tool 
for strategic planning of maintenance costs to obtain a suitable road standard, to 
identify maintenance candidates, and to rank and value competing infrastruc-
ture investments (Schutte, 2008). However, there is a constant need for further 
development of effect models for both roads and railways, as concluded by e.g. 
Andersson et al. (2011) in their report about frameworks for economic analysis 
of the operation, maintenance, and renewal of transport infrastructure.

Other types of interactive asset management tools are rapidly developing 
within the infrastructure sector. One example is the Swedish Transport Admin-
istration that publishes road condition data from their Pavement Management 
Systems database online in a project called PMSv3. The aim of PMSv3 is to “be 
a help in deciding which road sections that should be prioritized for mainte-
nance activities” (Swedish Transport Administration, 2016). The user interface 
allows maintenance engineers as well as the public to freely access road condi-
tion and network data by selecting the desired road sections on a map. 

The combination of a reliable modeling framework, such as LCCA and 
HDM-4, and a comprehensible presentation of data, similar to the interactive 
visualization through a map within PMSv3, provides a good foundation for effi-
cient infrastructure asset management. The objective of microdata analysis is to 
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take both of these aspects into account and make sure that the input part (data 
and modeling) is always connected to the output part (interpretation and 
presentation).

2.3	 The microdata analysis approach
The aim of microdata analysis is to bridge the gap between data, information, 
and knowledge. The scheme in Figure 1 illustrates how data is collected, stored, 
analyzed, and presented in order for decision makers to access relevant informa-
tion and gain deeper knowledge.

To achieve the ultimate goal of increased knowledge, microdata analysis 
comprises a number of collaborating fields such as artificial intelligence, deci-
sion support systems, resource allocation, data modeling, experimental design, 
simulation, and statistical inference (Dalarna University Doctoral Programmes 
Board, 2013). This dissertation emphasizes the use of statistical models and 
inference. The focus is primarily on practical applications, but methodological 
soundness and model validity are also important aspects.

Data collection
Data assesment

and storage Reports and analyses Decisions

Data Information Knowledge

Figure 1: The microdata analysis approach.
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2.4	 Statistical modeling
Uncertainty and stochastic behavior occur in many settings connected to infra-
structure asset management. Statistical modeling is a natural choice for handling 
probabilistic events. As described by Konishi and Kitagawa (2008), the purpose 
of a statistical model is: “to construct a model that approximates the true struc-
ture (of the underlying probability distribution) as accurately as possible through 
the use of available data.” Statistical modeling also makes it possible to quantify 
uncertainty and variability in the data through statistical inference (Casella and 
Berger 2002; Davison 2003). 

Some examples using different types of statistical models in infrastructure 
asset management applications are Futura et al. (2011) who use a log-normal 
distribution to estimate the seismic damage probability of bridges in a road 
network; Tighe (2001) who investigates the distributions of different LCCA 
input variables, such as pavement type and pavement thickness; and van 
Noortwijk and Frangopol (2004) who model the deterioration of transport 
infrastructure as a stochastic gamma process. 

As the amount of and access to data grow within the transport infrastructure 
sector, statistical models become even more useful in LCCA of road and railway 
systems. A crucial stochastic input parameter in any LCCA is the expected life-
time of the object of interest; for example, the lifetime of a road pavement. 
Another stochastic parameter is deterioration, where the rate of deterioration is 
highly variable and important to consider in order to make efficient mainte-
nance decisions. A third example within the railway sector is the correlation 
between maintenance and punctuality, where the latter has a very crucial role in 
railway LCCA (Hokstad, 1998). Stochastic elements, such as driver behavior, 
influence the predictability on how temporary speed restrictions caused by 
maintenance affect punctuality.

In this dissertation, all of the above scenarios are addressed using statistical 
modeling as a proposed solution to facilitate and improve maintenance decisions.
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3.   Summary of the papers

Paper I: � Estimated lifetimes of road pavements in Sweden using 
time-to-event analysis

In Paper I, time-to-event analysis was used to estimate lifetimes of Swedish road 
pavements. Effective long term maintenance planning requires reliable esti-
mates of roads’ lifetimes, where the lifetime of a road is commonly defined as 
“the time interval between two maintenance activities” (Do 2011; Smith et al. 
2006; Smith et al. 2005; Gharaibeh and Darter 2003, Hall et al. 1994). Major 
events such as resurfacing were considered as maintenance activities, but not 
smaller projects such as pothole fixes. The definition of a road’s lifetime was 
extended to include road condition. The pavement life of a road was considered 
to have ended either when it was maintained, or when measurements of Interna-
tional Roughness Index (IRI) and/or rut depth had exceeded recommended 
levels in the maintenance standard stated by the Swedish Transport Adminis-
tration. After an initial cleaning, which included removal of sections shorter 
than 50 meters, the data material comprised 266,614 homogeneous road sections 
from the Swedish Pavement Management Systems (PMS) database. The data 
covers maintenance activities carried out on national roads in Sweden from the 
1960’s until 2012. Data quality improved after 1987 when regular road condi-
tion measurements were introduced by the Swedish Transport Administration.

All roads that have not yet experienced the event of interest – being either 
the  next maintenance activity or exceeding maintenance standard limits for 
IRI and/or rut depth – have unknown, i.e. censored, lifetimes. Time-to-event 
analysis, also known in the literature as survival analysis, is an established 
method to handle censored data (Klein and Moeschberger, 2005). The robust 
semi-parametric Cox proportional hazards model (Cox, 1972), which does not 
require any assumptions about the distribution of the data, was used to capture 
the effect on roads’ lifetimes of seven covariates: pavement type, pavement stone 
size, road type, bearing capacity, road width, speed limit, and climate zone. 
Because traffic load is correlated with all other variables, the model was strati-
fied based on eight traffic classes used by the Swedish Transport Administration 
in their maintenance planning. The stratification implies that each traffic class 
has a unique, non-parametric baseline hazard, but that the effect of the covari-
ates is constant over all traffic classes.
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The effect of the covariates was presented as hazard ratios, which in the 
setting of road maintenance can be interpreted as “the risk of needing mainte-
nance in the next instant in time”. A high risk of needing maintenance is equiv-
alent to a shorter expected lifetime, and vice versa. Among the nine analyzed 
pavement types, stone mastic had the longest expected lifetime with a hazard 
ratio estimated to be 36 percent lower than asphalt concrete, the reference cate-
gory. Among road types, 2+1 roads had 22 percent higher hazard ratio than 
ordinary roads, indicating significantly shorter lifetimes. Increased speed short-
ened the lifetime, while increased stone size (up to 20 mm) and increased road 
width extended the lifetime. 

The estimated lifetimes produced by the model can be used as an input vari-
able in different types of LCCA, for example when calculating the marginal 
cost of road deterioration (Paper III). The hazard ratios quantify the effect of 
the covariates and can help maintenance planners to evaluate different mainte-
nance strategies (e.g. choice of pavement type or stone size) in terms of longevity.

Paper II: � Evaluating needs of road maintenance in Sweden with the mixed 
proportional hazards model

The research in Paper II addressed the issue of latent variables in road mainte-
nance data. National road databases often lack certain information that can be 
of great importance for long-term maintenance planning of paved roads. Some 
variables are complicated or expensive to measure, and others are difficult to 
quantify. In the Swedish case, latent variables of which there are no recordings 
in the PMS database are e.g. underlying road construction, subsoil conditions, 
and amount of heavy traffic in terms of Equivalent Single Axle Load (ESAL). 

Certain characteristics of a road section may change between maintenance 
activities, such as pavement type or speed limit, but the geographical location of 
the road is still the same. Even when the time-to-event model includes several 
explanatory variables, the effect on the road’s lifetime of the underlying 
construction design or ground materials (solid bedrock or looser sand) cannot 
be  captured. In the Swedish PMS data, heavy traffic is distinguished from 
light traffic based on the length of the vehicle, but the exact weight or ESAL 
of each vehicle is unknown. Because national roads generally are constructed 
and maintained based on ESAL assumptions, this is a very important latent 
variable.
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To capture the effect of latent variables, the Cox proportional hazards model 
used in Paper I was extended to a mixed proportional hazards model with 
random effects. The data material from the PMS database used in Paper I was 
also extended to include sections shorter than 50 meters, resulting in a data set 
of 548,091 observations. Because the spatial variation between sections was of 
interest, short neighboring sections were included in the analysis. 

Estimation of random effects enabled identification of sections that have 
shorter or longer lifetimes than could be expected from the observed explana-
tory variables (traffic load, pavement type, road type, climate zone, road width, 
speed limit and bearing capacity restrictions). The random effects were assumed 
to be normally distributed, N(0,σσ b

2), where σ b
2 is the variance. A likelihood 

ratio test of the Cox model versus the mixed proportional hazards model showed 
that the variation captured by the random effects was significant. 

There is also a spatial effect present in the maintenance data. In practice, 
road sections are seldom maintained independently of each other. If a road 
section needs maintenance because of e.g. ruts or cracks, neighboring sections, 
which are still functional, might be more likely to need maintenance in the near 
future. Therefore, maintenance planners can choose to maintain functional 
sections close to a non-functional section simply because of their spatial relation-
ship. In order to test the spatial correlation between road sections with respect to 
maintenance, an Intrinsic Conditional Autoregressive (ICAR) model (Besag 
and Coperberg, 1995) was fitted to the random effects. The ICAR model esti-
mated that 17 percent of the variance of the random effects were explained by 
spatial dependency. This fairly low percentage implied that ad hoc maintenance 
of still functional sections was not the main latent effect behind maintenance 
decisions. Other factors (subsoil conditions, ESALs, road construction, etc.) 
caused 83 percent of the unexplained variation.

The study in Paper II concludes that results from the mixed proportional 
hazards model are useful for maintenance planning because the weakest and 
strongest sections in a road network can be identified. The effect of the latent 
variables are visualized by plotting the random effect of each section in a map of 
the road network (see Figure 3 in Paper II). The Swedish example shows that 
the mixed proportional hazards and ICAR models are suitable for analyzing the 
effect of latent variables in national road databases.
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Paper III:  Estimating the marginal costs of road wear
The aim of Paper III is to estimate the marginal cost of road wear in Sweden. 
This was done by proposing a model for the short run marginal infrastructure 
cost, i.e. costs related to the impact of resurfacing for one additional vehicle 
using a road. Furthermore, three hypotheses were tested in the marginal cost 
model:

1.	Roads deteriorate because of impact of heavy vehicles, expressed as 
Equivalent Single Axle Loads (ESALs)

2.	Roads deteriorate because of impact of light vehicles

3.	Roads deteriorate over time, independent of traffic load

The marginal cost model used in this study was first developed by Haraldsson 
(2007) in his licentiate thesis. The final equation (1) is the derivative of the 
present value of all future overlay costs (PVC), with respect to the traffic quan-
tity (Q) over the period. Q was divided in ESALs (Qesal) and light vehicles 
(Qcars), i.e. Q = (Qesal, Qcars)’, and marginal costs were calculated separately for 
each quantity. The PVC depends on the deterioration elasticity (ε), the cost of 
the pavement material (C), the expected lifetime of that pavement (E(T)), the 
discount rate (r) and the remaining lifetime of the road section, which is repre-
sented by a probability density function with parameters γ and α.

E

(
δPV C

δQ

)
= −ε

C

E(T )Q

r

(1− e−rT )

∫ ∞

0

e−rv−γvα

dv (1)

1

The Weibull distribution was chosen to represent the probability density 
function for the remaining lifetimes. This choice was motivated partly by the 
flexible nature of the Weibull hazard, and partly by the fact that the Weibull 
distribution is the only parametric distribution that exhibits proportional 
hazards. Estimated lifetimes from the more robust Cox model were compared 
to estimated lifetimes from the Weibull model, resulting in a difference of 8–16 
percent longer lifetimes assuming a Weibull distribution. 

The data for the lifetime estimation was equivalent to the PMS data set used 
in Paper I. Cost data differentiated between three different pavement types 
(Cold, Hot and Surface Dressing) and six different regions (North, South, 
Stockholm, Middle, East and West) was calculated from maintenance contracts 
in 2012 and 2013. The marginal cost function was applied to data from the 
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Swedish National Road Database (NVDB), a database that covers information 
about the current national roads in Sweden, but no historical data.

A national average marginal cost of 0.32 SEK for ESAL and 0.027 SEK for 
light vehicles was calculated based on equation (1). The elasticities estimated by 
the Weibull model provided evidence in favor of hypothesis 1) and 2): ESALs as 
well as light vehicles had a significant impact on road deterioration. An increase 
in ESAL or number of cars by 10 percent reduced the service life of pavements 
by about one percent for both categories. The model showed no support for 
hypothesis 3), i.e. there was no indication that time per se is a driving factor for 
deterioration. However, since a 50 percent increase in traffic did not reduce road 
lifetime to a similar extent, factors other than traffic seem to have an impact on 
road deterioration rate. As concluded in Paper II, a possible explanation is latent 
variables such as subsoil condition and road construction.

The marginal costs of road wear are fundamental for policy making regard-
ing e.g. vehicle miles traveled (VMT) taxes. In countries with a freeze-thaw 
cycle, light traffic can cause road deterioration because of studded tire use. This 
is important to address in both maintenance and taxation policy decisions. 

Paper IV: � Detecting road pavement deterioration with finite mixture models
In Paper IV, road condition data from a part of the M4 highway in England – 
surveyed between January 2013 and January 2015 – was used to identify road 
segments with the most rapid deterioration rate. Budget restrictions limit the 
number of possible maintenance activities in a road network each year. Conse-
quently, not all segments with a similar surface condition can be maintained. 
When making practical decisions about maintenance locations, the mainte-
nance engineer has to look at the condition data and determine which sections 
should be maintained as a priority, and which can be left until later. In this 
decision, deterioration rate can be more important than the actual condition: 
maintaining a segment which shows a rapid deterioration can be a more efficient 
use of resources than maintaining a segment with a slightly worse, but stable, 
condition.

In order to identify segments with a deterioration rate that departs from a 
stationary condition, data was assumed to originate from two different normal 
distributions – a “change” distribution and an “unchanged” distribution. All 
segments were clustered into either of these distributions using finite mixture 
models. In order to estimate the parameters of the distributions and to classify 
the segments, eleven road condition variables from Highways England’s Traffic-
speed Condition Surveys (TRACS) were combined in a multivariate finite 
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mixture model (McLachlan and Basford, 1988). The road condition variables 
are left and right rutting; near side and off side enhanced longitudinal profile 
variance (ELPV) measured at 3, 10 and 30 meters; and near side, off side and 
middle Root Mean Square Texture (RMST). The Bayesian Information 
Criterion (BIC) implied a normal mixture with an unrestricted covariance 
matrix for these variables, allowing for a flexible correlation structure between 
the variables and distributions.

The parameter estimates obtained by the finite mixture models matched the 
assumption of a mixture known as an outlier distribution: two normal distribu-
tions with a possible common mean but different variances. The unchanged 
distribution was very narrow, showing no sign of deterioration. The estimated 
variances of the change distribution were 5.7 up to 300 times larger than the 
variances of the unchanged group, for all variables. The segments classified into 
the change group were compared to data from maintenance records, as some 
of  them might have changed because of maintenance and not deterioration. 
Locations of sections in the maintenance records matched some of the segments 
classified into the change group. Not all of the road condition variables show 
positive change when a segment is deteriorating and negative change when a 
segment is maintained, and therefore it is crucial to check whether a segment 
has been subject to maintenance. The finite mixture models successfully identi-
fied segments that had changed. Additional data sources (e.g. maintenance 
records) were necessary to separate change because of maintenance and change 
because of deterioration. 

The study in Paper IV shows that finite mixture models, in combination 
with maintenance records, can be helpful in finding segments with the highest 
deterioration. This is useful for maintenance planners when prioritizing future 
maintenance decisions.

Paper V: � The effect of temporary speed restrictions on the running time of 
a Norwegian railway line

The study conducted in Paper V evaluated the effect of temporary speed restric-
tions (TSRs) on train running time in the Norwegian railway network. Speed 
restrictions are often imposed when maintenance work is carried out on the 
railway track. A TSR’s effect on running time must be considered in order to 
correctly adjust timetables. The actual running time of a train may not always be 
the same as the theoretical in the presence of a TSR. Theoretical deterministic 
models of temporary speed restrictions typically include running time as a func-
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tion of the speed restriction, the normal speed, the length of the TSR segment, 
and an acceleration and deceleration coefficient. In reality, additional influenc-
ing factors can vary substantially between individual station blocks, weeks, days, 
and trains. The theoretical model cannot capture effects of the train driver’s 
behavior, which could influence the running time considerably. The driver may 
try to reduce the effect of a temporary speed restriction by increasing the speed 
on the remaining non speed-restricted part of a station block. The nature of the 
TSR segment (i.e. curvature or height profile) and potential seasonal effects are 
other variables that can influence the real effect of a TSR. Maintenance plan-
ners also may want to know whether one longer or several shorter segments with 
reduced speed have a greater impact on the expected running time. 

A generalized linear mixed model was fitted to data from the Norwegian 
Train Traffic Information and Monitoring Systems database (TIOS). Trains 
running on the Dovre line, recorded between December 2009 and December 
2015, were used in the analysis. The response variable was the running time 
between two stations (one station block). If the train stopped at a station, 
running time was defined as the time between a recorded departure from one 
station and the recorded arrival at the next station. If the train had no stop at 
the station, running time was defined as the time between recorded departures. 
The train travel data was combined with temporary speed restriction data 
during the same period.

Running time has a non-negative, skewed distribution, and a gamma distri-
bution had the best fit to the data. To account for the heterogeneity between 
station blocks, a random intercept was introduced in the model. A likelihood 
ratio test showed a significant effect of a nested random slope for the variable 
∆speed, defined as the difference between normal speed and the reduced speed 
limit imposed by the TSR. For the station blocks with the highest normal speed, 
∆speed had minimal impact on running time. However, for station blocks with 
the lowest normal speed, it had a very strong effect. This result implied that the 
train drivers’ behavior had an impact on running time. Drivers tended to 
increase the speed, where possible, in order to reduce the effect of a TSR. 

The global model of fixed effects showed that running times were shorter in 
winter and on weekends. A positive height difference after a TSR segment had 
an effect on freight trains, indicating that acceleration up to normal speed is 
slowed down by an uphill. The distance from a TSR to the next station had a 
negative effect on running time for both freight trains and passenger trains – i.e. 
drivers had a greater possibility to reduce the time loss by driving faster on the 
remaining part of the block when the TSR was located further from the next 
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station. The length of the TSR segment had little or no impact on running time, 
implying that acceleration and deceleration are more important factors than the 
actual length traveled at reduced speed.

The results presented in Paper V show that a generalized linear mixed model 
can provide a better understanding of how empirical effects – the location of the 
temporary speed restricted segment, the height profile of the railway track, and 
driver behavior – will affect train running times in the presence of temporary 
speed restrictions. When maintenance is planned on the railway, and a tempo-
rary speed restriction is imposed as a consequence, the empirical results can be 
used as a complement to the theoretical model for more accurate rescheduling of 
timetables.
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4.   Discussion

4.1	 Microdata methodology
The microdata analysis chain consists of several steps – from data collection to 
reporting on results – that are equally important (see Figure 1). Depending on 
the nature and aim of the specific research question, certain parts of the chain 
may be emphasized. This dissertation focuses on data analysis. The different 
data sets used in the five papers all originate from secondary sources: the Swedish 
Pavement Management Systems’ database, the Swedish National Road Database, 
Highways England’s Traffic-speed Condition Surveys, the English Highways 
Agency Pavement Management Systems’ database, and the Norwegian Train 
Traffic Information and Monitoring Systems’ database. Therefore, experimen-
tal designs and first-hand data collection are not discussed in detail in any of 
the studies. 

Data assessment
The second step in the microdata analysis process deals with data assessment 
and storage. Storage, in terms of database systems and data managing, has not 
been a focus area in this dissertation. However, the assessment of data quality is 
an important issue for secondary data sources. 

In Paper I, the PMS data was cleaned with respect to section length to avoid 
influence from sections shorter than 50 meters (as short sections often are junc-
tions, slip roads, or crossings). The PMS database is managed by imputing ficti-
tious maintenance activities for sections where the road condition (measured by 
IRI and rut depth) has improved, and by removing registered maintenance 
activities for sections where the road condition is unchanged. Because this 
management could have an impact on the parameter estimation in the Cox 
model, a sensitivity analysis was performed using the entire data set with no 
removals or imputations. The results showed no large differences in parameter 
estimates between models fitted to the cleaned versus the full data sets. The 
analysis in Paper II is based on the very same data set. Because the sensitivity 
analysis ensured that results from the Cox model are fairly robust, all road 
sections were included in the analysis performed in Paper II. Using all sections 
was appropriate in order to account for spatial correlation between sections. In 
Paper III, an assumption was made about the number of ESALs in the Swedish 
road network. Therefore, the robustness of the estimated marginal costs was 
evaluated using sensitivity analysis with respect to the number of ESALs. 
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The data used in Paper IV is aggregated road condition measurements for 
10-meter road segments. To validate the quality of this data, sources of system-
atic errors were minimized. As a result, only surveys from one single contract 
period were used in the study to avoid errors caused by different equipment. 
Within a contract period of typically four years, one company is contracted to 
measure the road condition with calibrated equipment that is accredited accord-
ing to defined criteria each year. To ensure that measurements from successive 
surveys are aligned, a two-step alignment algorithm based on GPS and profile 
data was implemented. This improved alignment to within a few centimeters. 
The random measurement errors in the data were quantified by comparing 
surveys taken within an interval of a few days. 

The data quality in Paper V was improved by removing trains with incorrect 
timetables. To ensure that the calculated running times were as accurate as 
possible, only trains that had a registered departure time from all stations were 
included in the analysis. 

Data analysis
Data analysis is the crucial step of turning raw data into information. Microdata 
analysis includes methods from e.g. computer science, geography, mathematics, 
and statistics, enabling a wide range of analysis methods. In an argumentative 
paper, Breiman (2001) advocates the use of what he calls algorithmic models 
(machine learning techniques such as decision trees and neural networks, where 
the data-generating process is unknown) over data models (statistical models 
assuming that data is generated from a given stochastic data model). In this 
dissertation, the choice of modeling framework is data models. The decision is 
two-folded: statistical data models deal with inference about the underlying 
distribution, and the techniques used for parameter estimation are validated by 
probability theory. In contrast, many of the algorithmic models found in the 
machine learning field are focused on predictive accuracy and deal with “black 
box” solutions.

When predictive precision is the sole interest of the analysis, algorithmic 
models can often outperform statistical data models (Breiman, 2001, p.214). 
However, for identification of potential causal factors, statistical models have a 
theoretical foundation that black box solutions do not adequately provide. By 
assessing parameters from a distribution through inference, associations among 
variables and estimation of beliefs and/or probabilities of past and future events 
can be derived. The studies in Paper I, II and V are all focused on establishing 
the effect explanatory variables have on the response variables (pavement life-



A MICRODATA ANALYSIS APPROACH TO TRANSPORT INFRASTRUCTURE MAINTENANCE

4.   Discussion

29

time and train running time). For the clustering of road segments in Paper III, a 
supervised algorithmic model such as random forest could have been an option. 
However, the data material was not suitable for such a classification model. No 
data source could provide sufficient information for evaluating model perfor-
mance through cross-validation. The choice of a distribution-based clustering 
method – finite mixture models – provided parameter estimates that could be 
compared to the empirical measurement errors, thus allowing a possible verifi-
cation of the model’s validity.

Decision-making
The last step of the microdata analysis approach addresses decision-making and 
actions. The studies in Papers I–V produce input to different stages of LCCA, 
one of the main methods for efficient decision-making within the field of 
infrastructure maintenance (see Section 2.2). Pavement lifetime, pavement 
deterioration rate, and train running time are all important variables to consider 
in a LCCA. The first of the three cases is an issue when making long-term 
maintenance decisions within a time horizon of 10–30 years. The latter two are 
usually addressed within a shorter time perspective: how to prioritize mainte-
nance of deteriorating road segments in next year’s budget, or how to obtain 
punctuality when performing maintenance that requires a temporary speed 
restriction.

The study in Paper III assesses a topic with a more direct impact on economic 
policy decisions: the marginal costs of road wear. These costs can be a basis for 
efficient decisions regarding VMT taxes. Zhang and Lu (2013) suggest that a 
VMT tax in Maryland based on marginal costs would reduce the overall vehicle 
miles traveled, reduce pollution, and increase revenue compared to the existing 
revenue policy (fuel fees and tolls). The research conducted in Paper III was part 
of a commission from the Swedish government to the Swedish National Road 
and Transport Research Institute. Sweden currently has no VMT tax, but an 
inquiry for heavy vehicles is ongoing and a policy proposal should be finished by 
December 2016 (Swedish Government, 2015).

Limitations
The aim of the dissertation is to improve the efficiency of transport infrastruc-
ture maintenance by applying a microdata analysis approach. However, this 
objective excludes the creation of a complete decision support system and the 
collection of new data. Instead, efficiency is achieved by applying well-known 
statistical models to available data sources. The use of existing data and methods 
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is a very cost-effective way to increase information value. There are limitations 
to this approach, for example when necessary data is unavailable or when estab-
lished methods are not up-to-date with the field’s frontier questions. However, 
leveraging existing resources is an inexpensive and easily implementable way to 
improve decision-making, even when the choice is made to conduct additional 
experimental research.

The studies in this dissertation do not provide a full-scale solution to efficient 
infrastructure maintenance decision-making. Each of the studies contribute 
separate and complementary support for the use of microdata analysis in mainte-
nance planning. The results should be implemented in a collaborative setting 
where professionals with different specialties (engineers, statisticians, program-
mers, economists, etc) can make practical use of the increased knowledge.

4.2	 Future research
One recommended area of future research would be to integrate the disserta-
tion’s results with existing LCCA models, decision support systems, and visual-
ization tools. Estimated lifetimes and random effects (Paper I and II) can be 
incorporated in tools such as the Swedish Transport Administration’s PMSv3. 
By including analytical results, road engineers can access information that is not 
currently displayed by descriptive statistics. 

The estimated marginal costs in Paper III was disaggregated to the maxi-
mum extent permitted by available data. However, the lack of ESAL measure-
ments on Swedish roads prevented a more accurate calculation. A future research 
proposition is to evaluate the economic effects of a VMT tax based on marginal 
costs of road wear. This study should include a sensitivity analysis which quanti-
fies the uncertainty derived from the ESAL assumptions.

The study in Paper IV used three consecutive years of road condition 
measurement data. With access to data from one additional survey (the last in 
the current contract period), the finite mixture models could be expanded to 
include longitudinal correlation. A longitudinal model could separate measure-
ment errors and actual change with the possibility of increased accuracy. 
To  further investigate if segments have changed because of maintenance or 
deterioration, a study which combines results from the finite mixture models 
with predictive models for pavement deterioration is advisable.

The model in Paper V focused on one-level-effects for individual station 
blocks. These results could be expanded to a hierarchical model that incorpo-
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rates network level data. Thus, the effect of temporary speed restrictions on 
train running time from start station to end station on a railway line could be 
evaluated.

Microdata analysis applied to transport infrastructure maintenance is a novel 
research field and its potential is immense. The core of this dissertation is data 
analysis, but expanding the research to additional data collection and the devel-
opment of tools to improve decision-making looks very promising. An example 
of additional useful data would be more accurate information about ESALs in 
the Swedish road network. The creation of decision tools which are intuitive 
and readily accessible to maintenance planners in the road and railway sectors 
would be beneficial. These could include software providing graphical presenta-
tions of research results, such as maps available both in fieldwork and for 
administrative purposes.

4.3	 Author credits
Paper I
As the sole author of Paper I, Svenson has prepared the data, performed the 
statistical analysis, and written the paper. Paper I is a revision of Svenson’s 
Master thesis at Uppsala University 2012, which was supervised by PhD Ingrid 
Persson, Uppsala University, and Johan Lang, WSP Sweden.

Paper II
Paper II is a joint work with Professor Lars Rönnegård and PhD candidates at 
Dalarna University, Yujiao Li and Zuzana Machucova. The application of the 
ICAR-model was designed in collaboration with Rönnegård and Li. The results 
were clearly displayed in a map constructed by Machucova. Svenson prepared 
the data, conducted the data analysis using the mixed proportional hazards 
model, and wrote the manuscript.

Paper III
The majority of the Paper III manuscript is written by Professor Jan-Eric 
Nilsson, the Swedish National Road and Transport Research Institute (VTI). 
Mattias Haraldsson, VTI, derived the marginal cost function. Svenson esti-
mated the road lifetimes, wrote the parts about survival analysis (including an 
appendix), prepared the data, and did all the necessary calculations to obtain the 
final marginal costs.
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Paper IV
Paper IV is written in collaboration with PhD Stuart McRobbie, Transporta-
tion Research Laboratory, UK, and PhD Moudud Alam, Dalarna University. 
Both have contributed to the analysis part of the paper: McRobbie with his deep 
knowledge of the TRACS data and road condition measurements in England, 
and Alam with suggestions and ideas about the finite mixture models. Svenson 
prepared the data, conducted the analysis, and wrote the paper.

Paper V
The manuscript of Paper V is written by Svenson, PhD Andreas Amdahl Seim, 
research manager at the Foundation for Scientific and Industrial Research 
(SINTEF), Norway, and Andreas Dypvik Landmark, research scientist at 
SINTEF. Svenson and Dypvik Landmark prepared the data and conducted 
the literature review. Svenson performed the statistical analysis and wrote the 
methodological parts. The discussion part was written in collaboration between 
all authors.
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5.   Conclusion

This dissertation adopted a microdata analysis approach to improve the effi-
ciency of transport infrastructure maintenance. Microdata analysis allows great 
flexibility in selecting only the most useful methods for a given problem. The 
research produced valuable results within several different areas: estimation of 
road lifetimes, assessing the impact of latent variables on road lifetimes, input to 
a marginal cost model of road wear, detection of road deterioration, and evaluat-
ing the implications of temporary speed restrictions on train running times. The 
research results can be implemented in transport infrastructure asset manage-
ment to facilitate decisions resulting in a more efficient use of resources.
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Estimated Lifetimes of Road Pavements in Sweden
Using Time-to-Event Analysis

Kristin Svenson1

Abstract: Maintenance planning of road pavement requires reliable estimates of roads’ lifetimes. In determining the lifetime of a road, this
study combines maintenance activities and road condition measurements. The scope of the paper is to estimate lifetimes of road pavements in
Sweden with time-to-event analysis. The model is stratified according to traffic load and includes effects of pavement type, road type, bearing
capacity, road width, speed limit, stone size, and climate zone. Among the nine analyzed pavement types, stone mastic had the longest
expected lifetime with a hazard ratio (risk of needing maintenance) estimated to be 36% lower than asphalt concrete. Among road types,
2þ 1 roads had 22% higher hazard ratio than ordinary roads indicating significantly lower lifetimes. Increased speed lowered
the lifetime, while increased stone size (up to 20 mm) and increased road width lengthened the lifetime. The results are of importance for
life-cycle cost analysis and road management. DOI: 10.1061/(ASCE)TE.1943-5436.0000712. © 2014 American Society of Civil Engineers.

Author keywords: Pavement management; Maintenance; Asphalt pavements; Time-to-event analysis; Survival analysis; Road pavements;
Maintenance planning.

Introduction

To be able to perform long-term maintenance plans for the Swedish
road network, reliable estimations of maintenance intervals are
needed. The condition of the road network in Sweden is monitored
by regularlyperformedmeasurements of the road surface.Roughness
[in terms of international roughness index (IRI)] and rut depth
are measured every 1–5 years. Since it is not economically or logis-
tically possible to conduct surface measures on all roads every year,
predictionmodels are implemented in the SwedishTransportAdmin-
istration’s application pavement management systems (PMS), which
cover all state roads in Sweden. These are linear models that
lack precision in the long run because the road wear is nonlinear.
Normally, the rate of wear increases as the road ages. There is also
a question of censored observations in the PMS database. These are
roads that have only one registered maintenance activity (i.e., the
next maintenance has not yet happened). If censoring is not consid-
ered, such a model is likely to be biased and misleading.

A method widely used for nonlinear and censored data to
estimate lifetimes in mechanistic applications is time-to-event
analysis. In medicine, this method is known as survival analysis.
Time-to-event analysis has been used to model lifetimes of roads
where “lifetime” is commonly defined as the interval between two
maintenance activities (e.g., Do 2011; Smith et al. 2005, 2006;
Gharaibeh and Darter 2003; Hall et al. 1994). The aim of this paper
is to estimate lifetimes of road pavement in Sweden with time-to-
event analysis as a way to provide reliable estimates for mainte-
nance planning. In the planning process, it is also of interest to
analyze the impact of different variables on the road’s expected life-
time; such variables are pavement type, road type, bearing capacity,
road width, speed limit, stone size, and climate zone. This will be

obtained by fitting a Cox proportional hazards model to road data
from the PMS database.

Literature Review

Time-to-event analysis has been used in previous research on life-
time estimation of road pavements. Estimated expected lifetimes of
four maintenance activities on flexible pavement are included in the
U.S. Long-Term Pavement Performance (LTPP) program (Eltahan
et al. 1999). A sample of 28 test sections were maintained in 1990
by the same contractor and then followed for 8 years. Survival
curves fitted from the nonparametric Kaplan-Meier product limit
estimator are used to estimate the time to failure, where failure
is defined as when a section meets the criteria for poor condition
(mainly cracking). The authors conclude that survival analysis is
suitable for pavement maintenance data. They recommend using
larger data sets and possibly parametric methods to account for fac-
tors that affect pavement performance, and also to better estimate
the median lifetimes and cost-effectiveness.

The Illinois Department of Transportation (IDOT) also uses the
Kaplan-Meier product estimator to find changes over time in
expected pavement life and probability of failure (Gharaibeh and
Darter 2003). The data consist of 1,402 homogeneous sections
with a typical range of 0.8–8 km (0.5–5 mi) in length, where each
section is homogeneous with respect to design, construction his-
tory, and traffic load. Termination of service life is defined as when
a major rehabilitation action is carried out and results are presented
as survival curves of six different pavement types. Smith et al.
(2006) use a similar method to find the survival functions of stone
mastic and hot mix asphalt using data from Wisconsin’s pave-
ment management systems. However, their definition of a road’s
lifetime differs. To determine service life, the authors fit linear
regressions with IRI and PDI (overall pavement condition indica-
tor) as response variables. They apply threshold values of IRI and
PDI as stated in the guidelines of the Wisconsin Department of
Transportation and estimate when each road section will pass this
threshold. Roads with estimated service lives of 20 years or more
are considered censored.
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Road condition in terms of fatigue cracking is the response
variable in a time-to-event analysis performed by Wang et al.
(2005). Their data consist of 486 asphalt concrete road sections,
and the failure of a section is defined by a threshold of 3.6%
cracking. The study uses a parametric approach, and the general-
ized gamma distribution is found to be most appropriate for these
data. Among several tested factors, thickness of the asphalt
concrete surface layer, thickness of the concrete base, intensity
of precipitation defined by wet days divided by total precipitation
per year, and number of freeze/thaw cycles per year are found to
have a significant effect on fatigue cracking. The estimated life-
times have a large variance; therefore, the authors conclude that
the survival model seems more suitable for comparing and quanti-
fying the effect of influencing factors, rather than predicting exact
failure times of a pavement.

A study by Do (2011) presents estimated mean lifetimes
of highways in South Korea. A classification based on traffic
volume–related variables, heavy vehicle–related variables, and
directional characteristics distinguishes three types of roads: urban,
rural, and recreational. The data cover 30 urban road sections, 103
rural road sections, and 47 recreation road sections. Do finds that
the log-normal distribution is most suitable for urban roads and that
recreation roads have the closest fit to Weibull distribution. For
rural roads, no distribution is found appropriate, and therefore, a
nonparametric estimation is made. Results from the analysis show
that urban roads have a shorter mean life than rural and recreation
roads. Do recommends that, in terms of for further research, more
variables that could affect road lifetimes be added to the models.

In his doctoral dissertation, Dong (2011) evaluates the influence
of different factors on the crack initiation of asphalt pavements
using parametric survival analysis. The Weibull distribution is
found to have the best fit to these data. Among the factors, traffic
level, thickness of the pavement structure, freeze index, mixture,
and mill are found to be significant. Dong uses LTPP data from
18 projects located in different states with nine test sections in each
project. The author concludes that the study includes too few
sections for a model for predicting failure times, and suggests that
survival models at different traffic, environmental, and highway
classifications should be developed for this purpose.

The literature review shows that both nonparametric and
parametric methods have been used to estimate the lifetime of
roads, defined as the time between maintenance activities or the
time to failure according to some road condition criteria. However,
the parametric approach requires specification of a distribution,
and no unanimous distribution can be found in the literature. The
nonparametric Kaplan-Meier estimator cannot include influencing
factors that are necessary in a model for maintenance planning.
This study uses the semiparametric Cox proportional hazards
model in which no specific distribution is needed but where cova-
riates can be included. Also, the definition of a road’s lifetime used
in this study will combine both maintenance activities and road
condition information in order to provide more accurate estimates
of roads’ lifetimes. Because of the large data set used in this study,
some of the variables suggested by other authors, such as different
traffic and highway classifications, can be included in the model
(Dong 2011; Do 2011).

Materials and Methods

Data Collection

The data material in this study was provided by the database in the
Swedish Transport Administration’s PMS. In 2012 it consisted of

390,966 observations representing homogeneous road sections.
These sections are homogeneous with respect to characteristics
such as pavement type, maintenance date, traffic load, road width,
speed limit, and axle load restrictions. Sections vary in length, from
over 1 km to only a few meters. To avoid influence from very short
sections, only homogeneous sections that are 50 m or longer are
used in this study.

When maintenance is carried out it is reported in the PMS
database. The quality of the database varies as routine maintenance
is seldom reported and periodic maintenance is sometimes not
reported. The opposite scenario—that maintenance is reported
but no maintenance has been performed—also occurs, often due
to errors in locating the maintenance activity (Gustafsson and
Lundberg 2009). In some cases, when maintenance is detected in
data due to drastic changes (i.e., significantly lower values) in
the measures of IRI and rut depth, a fictitious maintenance is
inserted to the data. If a maintenance activity is registered but
no significant changes are seen in IRI or rut depth, this registered
maintenance is removed and sections are merged. However, all
reported maintenance activities that do not affect the condition
of the road’s condition are not necessarily errors. Some road
sections are maintained although their condition is good, often
because adjacent sections are bad. Using maintenance activities
performed on good sections in further analysis can give biased
results, and estimated lifetimes will be shorter than they would have
been if only the bad sections were maintained. On the issue of
maintenance planning, the interest is to know the potential lifetime
of the road (i.e., when the road needs maintenance due to bad
condition).

There is a risk that the data management will affect the results,
because IRI and rut depth do not capture, for example, edge
deformations, which are also a cause for maintenance. To see
the effect of the data management, a sensitivity analysis is per-
formed by fitting the Cox proportional hazards model to the
entire data set. The results from the sensitivity analysis showed
that the cleaning had little effect in most parameter estimates.
However, a few variables were affected, and these are mentioned
and analyzed in the “Discussion” section. After cleaning, the data
material used in further analysis consists of 266,614 homogeneous
road sections.

Variables
Summary statistics of the qualitative variables selected in this
study can be found in Tables 1 and 2. These variables are pavement
type, traffic load in terms of average annual daily traffic (AADT),
road type, bearing-capacity class (BCC), maximum stone size of
the pavement material used on the road, and climate zone. The
variables measured on a quantative scale are found in Table 3.
These are road age, road width, and speed limit.

The PMS database contains six different road types: ordinary
two-lane roads, motorways, undivided motorways, four-lane roads,
ordinary roads with cable barriers, and undivided motorways with
cable barriers. The two latter types are also known as 2þ 1 roads,
which they will henceforth be called in this paper. In 1998, the
Swedish Transport Administration started to rebuild some ordinary
two-lane roads (13 m or wider) and undivided motorways into 2þ
1 roads. This road type consists of three lanes, with two lanes in one
direction and one lane in the other altering every few kilometers.
The lanes in the opposite direction are usually separated by a steel
cable barrier. Research has found that 2þ 1 roads are safer than
ordinary two-lane roads. The rate of fatal accidents on 2þ 1 roads
has been lowered with 76% compared with an ordinary road with
similar characteristics (Carlsson 2009).

© ASCE 04014056-2 J. Transp. Eng.
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The traffic load is reported as AADT: the average number of
vehicles per day on a specific road section. The heavy traffic,
defined as vehicles weighing over 3,500 kg (3.5 t), is calculated
separately. In general, measures of AADT are more accurate for
high-traffic roads (in this study, high-traffic roads are defined
as having an AADT of more than 4,000) and more uncertain for
low-traffic roads (AADT less than 4,000). Heavy-traffic load
estimations in the PMS database are uncertain and therefore not
included in the model (J. Lang, “Assessment and analysis of road
network performance using long-term surface condition data,”
unpublished internal report, WSP Sweden/Swedish Transport
Administration, 2011).

Bearing-capacity classes (BCC) are coded from one to three,
where one is the most common class. If there are axle road
restrictions due to bearing-capacity limitations, a road can receive
classification two or three, where the third-class roads carry the
least axle load.

Sweden is a heterogeneous country in terms of climate. The
impact of ground frost and studded tires varies both between
and within counties. The influence of climate on road pavement
lifetimes depends partly on the climate and also on how much
consideration the climate has been given in pavement design.
The Swedish Transport Administration uses several climate zone
classifications in its database, some according to geographical co-
ordinates and some according to a simpler administrative classifi-
cation based on counties. For convenience, the latter representation

is used in this study. Sweden is divided into three climate zones:
north, central, and south.

The nine most common pavement types in Sweden are asphalt
concrete, stone mastic, seal coat, grouted macadam, semihot mix,
cold mix, hot mix, surface dressing on gravel, and surface dressing.
Asphalt concrete is used on all types of roads and in all traffic
classes. Stone mastic is the most expensive material of the nine,
and it is used only on high-traffic roads. Seal coat is a preventive
maintenance designed to increase the remaining life of low-traffic
roads by some years until the roads need more thorough mainte-
nance. Grouted macadam is a maintenance for low-traffic roads.
It is sometimes used as a preventive maintenance to cover the edges
of the road but can also be used to cover the entire road surface.
Semihot mix is applied on roads with an AADT of less than 2,000
vehicles. It is a softer, dynamic pavement mix that sometimes can
repair small cracks simply as a result of its own movement. Cold
mix is harder than semihot mix and mostly found on roads with
AADT of 500–2,000 vehicles. The advantage of cold mix is that
it does not have to be strongly heated before paving. Surface
dressing on gravel is basically paved gravel roads. The road is
prepared and covered with a thin layer of asphalt. These roads
are always low-traffic roads. Hot mix is used on high-traffic roads
and includes all hot mixes that are not asphalt concrete or stone
mastic. Many of these materials are older and not in use any longer.
Surface dressing is mainly used on low-traffic roads. It is a rough
pavement that is smoothed out over time.

Table 2. Summary of Additional Qualitative Variables

Maximum stone size (mm) Count Proportion BCC Count Proportion Climate zone Count Proportion

<10 131,608 0.522 1 246,483 0.977 South 47,472 0.188
10–14.9 65,913 0.261 2 5,416 0.021 Central 39,547 0.157
15–20 17,552 0.07 3 407 0.002 North 165,290 0.655
>20 22,724 0.09 — — — — — —

Table 3. Summary of Quantative Variables

Traffic
class

Age (years) Speed limit (km=h) Road width (m)

Mean Standard Minimum Maximum Mean Standard Minimum Maximum Mean Standard Minimum Maximum

1 17.12 10.23 3 58 68.20 10.21 30 120 5.20 1.02 2.0 17.0
2 16.54 10.01 3 60 69.07 12.99 30 100 5.85 0.93 2.5 17.2
3 16.01 9.65 3 59 69.74 14.55 30 100 6.36 1.04 2.0 17.0
4 14.28 8.71 3 51 71.27 15.46 30 110 7.05 1.25 1.5 19.5
5 12.34 7.36 3 52 73.19 15.61 30 110 7.94 1.83 3.0 23.8
6 10.62 6.16 3 52 75.49 15.96 30 120 9.18 2.34 4.0 23.5
7 9.94 5.85 3 52 82.19 20.89 30 120 10.54 2.21 3.6 20.0
8 8.84 5.78 3 51 96.09 18.13 40 120 11.42 1.71 4.0 21.7

Note: Total number of observations 266,614.

Table 1. Summary of Qualitative Variables

Pavement type Count Proportion
Traffic class
(AADT) Count Proportion Road type Count Proportion

ABS 17,920 0.071 1, <250 54,762 0.217 Motorway 13,294 0.0527
ABT 73,103 0.29 2, 250–499 41,911 0.166 Undivided motorway 113 0.00014
Seal coat 6,919 0.027 3, 500–999 42,868 0.17 2þ 1 road 3,506 0.0139
Grouted macadam 7,217 0.029 4, 1,000–1,999 39,001 0.155 4-lane road 1,375 0.0054
Semihot mix 53,347 0.211 5, 2,000–3,999 32,132 0.127 Ordinary two-lane road 234,021 0.9275
Cold mix 2,437 0.01 6, 4,000–7,999 21,051 0.083 — — —
Surface dressing on gravel 28,998 0.115 7, 8,000–11,999 7,118 0.028 — — —
Hot mix 8,498 0.034 8, >12,000 13,466 0.053 — — —
Surface dressing 53,870 0.214 — — — — — —

Note: ABS = stone mastic; ABT = asphalt concrete.
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Time-to-Event Analysis

As described by Klein and Moeschberger (2005), the basic
concepts of time-to-event analysis are as follows: first, consider
the time to some event X as a continuous nonnegative random
variable from a homogeneous population. Henceforth, capital X
denotes a random variable, and lowercase x denotes fixed values.

The survival function SðxÞ is the probability of an item
surviving to time x (i.e., that the event of interest has not occured
at time x). If an item has not experienced the event, it is denoted as
right censored. Only right censoring is considered in this study.

Since SðxÞ ¼ PrðX > xÞ it is also, by definition, equal to
SðxÞ ¼ 1 − FðxÞ ¼ ∫∞

x fðtÞdt, where FðxÞ is the cumulative
distribution function. Consequently, the probability density
function in terms of the survival function is

fðxÞ ¼ −dSðxÞ
dx

The hazard rate function hðxÞ is the chance that an item of age x
experiences the event of interest in the next instant in time.

The hazard rate hðxÞ is a limit defined as

hðxÞ ¼ lim
Δx→0

Prðx ≤ X < xþΔxjX ≥ xÞ
Δx

which can be interpreted in the way that hðxÞΔx is the approximate
probability of an item of age x experiencing the event of interest in
the next instant. An increasing hazard rate can be understood as
natural aging (i.e., that the probability of the event increases as
the item becomes older). The hazard rate can be expressed in terms
of the survival function

hðxÞ ¼ fðxÞ
SðxÞ ¼

−d ln SðxÞ
dx

Cox Proportional Hazards Model
The model of choice in this study is Cox proportional hazards
model (Cox 1972). The Cox model is semiparametric and
no assumption of a specific distribution of the data is needed.
Therefore, the model is robust and the results are not biased by
any misspecification.

The term proportional hazard refers to the fact that the ratio
between the hazards of two individuals with different values of
one covariate is constant in the Cox model. Data of sample size
n consist of three components ½Ti; δi;ZiðtÞ�, i ¼ 1; : : : ; n. Then
Ti is the time on study for item i, δi is an event indicator for item
i (δi ¼ 1 if the event has occured, δi ¼ 0 if right censored), and
ZiðtÞ ¼ ½Zi1ðtÞ; : : : ;ZipðtÞ� is the vector of p covariates for the
ith subject at time t which may affect the survival distribution
of X. The values of ZikðtÞ may be time dependent.

The hazard rate at time t is modeled directly, given the design
matrix Z including all covariates. It consists of a baseline hazard
rate h0ðtÞ and a regression part Zβ

hðtjZÞ ¼ h0ðtÞ expðZβÞ

A nonparametric estimate of the baseline hazard function at time
ti on the ith event is

ĥ0ðtiÞ ¼
diP

k∈RðtiÞ
expðZkβ̂Þ

where di = number of events at time ti, and RðtiÞ = set of individ-
uals that could experience the event at time ti. The β̂ estimates

are obtained through maximization of a partial likelihood (Hosmer
et al. 2008),

For a stratified model having s strata, the hazard rate for each
stratum j is given by

hjðtjZÞ ¼ h0jðtÞ expðZβÞ; j ¼ 1; : : : ; s

Fitting the Cox Model
A stratified Cox proportional hazards model is fitted to data using
the package “Survival” (Therneau 2013) in the software R, version
2.15.1 (R Core Team 2012). The model has eight strata according
to traffic classes stated by the Swedish Transport Administration
(Table 1). The stratification is motivated by the nature of road
construction. When a road is built or rebuilt, it is adjusted according
to the traffic load, which is the single most important factor
in determining the thickness of construction needed. The construc-
tion defines the type of road, the speed limit, the road width, the
pavement type, and the bearing capacity.

A model with eight strata indicates that the baseline hazard
rate differs over traffic classes but that the effects of the cova-
riates are the same over strata. In other words, the estimated
parameter vector β is constant for all traffic classes, while the
effect of traffic is incorporated within the differentiated baseline
hazard. Hence, the dependency between traffic and all other
covariates will not cause any bias in the β parameters, and
the effects of the covariates can be interpreted individually (Klein
and Moeschberger 2005).

As previously mentioned, the drawback of the definition of
the lifetime of a road being the time between two maintenance
activities is that the cause of maintenance is unknown. Gharaibeh
and Darter (2003) mention that roads are usually maintained due
to poor condition but that this condition varies from section to
section. Some sections might not yet have been maintained even
though their condition is poor. To improve the analysis and obtain
more accurate estimates of expected lifetimes, information on road
surface measurements is added to the model. Rut depth and IRI
have been recorded since 1987 in Sweden. The Swedish Transport
Administration has developed a maintenance standard stating
appropriate levels of rut depth and IRI (Trafikverket 2012).
The maintenance standard is a recommendation and not a neces-
sity. All road sections in the material where a measurement of
surface condition is available (about 170,000 out of 266,614 road
sections in total) were compared with the limits in the mainte-
nance standard. If the measurements of rut depth or IRI of a cen-
sored section exceeded recommended values, it was labeled as
“ought to have been maintained” and considered as noncensored
in the analysis.

Results

The results of the estimation are presented as hazard ratios.
A hazard ratio is the relative risk that a road with a certain variable
value needs maintenance compared with a chosen reference.
A hazard ratio above one is equivalent to a shorter lifetime than
the reference category, and a hazard ratio below one corresponds
to a longer lifetime.

Large differences in estimated effects of road pavement types on
roads’ lifetimes were found (Table 4). Differences among road
types are smaller but substantial. The effects of climate zone,
bearing capacity, and maximum stone size differ significantly
but not as much as the previous two variables. The continuous var-
iables road width and speed limit have less effect on roads’ life-
times, depending on the scale on which they are measured.

© ASCE 04014056-4 J. Transp. Eng.
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Effect of Including Road Condition to Define
a Road’s Lifetime

The definition of a road’s lifetime in this model is either the time
between two maintenance activities, or if the road has no second
activity registered, the time between the first maintenance activity
and the time when measurements of rut depth or IRI exceed the
limits in the maintenance standard.

In particular, the inclusion of road condition as a response
variable made a difference to 2þ 1 roads. The oldest 2þ 1 roads
in the data are 13 years old, and many observations registered for
this road type have censored lifetimes. When the surface condition
of these roads was compared with the maintenance standard,
censoring decreased from 57.3 to 52.1%. In total, 4.2% of the

2þ 1 road sections that have not been maintained had measure-
ments of IRI and rut depth which exceeded the recommended limits
in the maintenance standard.

A comparison of estimated median lifetimes between a model
with and without road condition included as a response variable has
been made in Table 5. With road condition included, the median
lifetime of ordinary roads with cable barriers is 1–2 years shorter
for all traffic classes except Class 8.

Survival Curves

The expected median lifetime is found where the survival propor-
tion equals 0.5 (Fig. 1). Each of the eight traffic class strata has
a corresponding survival curve. It is clear from the figure that
low-traffic roads (traffic Classes 1–4) have longer expected
lifetimes than high-traffic roads (traffic Classes 5–8).

Table 4. Maximum Likelihood Estimates of the Cox Proportional Hazards Model with Maintenance and Road Condition as Response Variables
(Stratification: Eight Traffic Classes)

Parameter Parameter estimate Standard error Z-value P-value Hazard ratio

Asphalt concretea 0 — — — 1.00
Stone mastic −0.453 0.0131 −34.6 <0.0001 0.64
Seal coat 0.676 0.0359 18.8 0.0001 1.97
Grouted macadam −0.070 0.0599 −1.2 0.243 0.93
Semihot mix 0.397 0.0098 40.5 <0.0001 1.49
Cold mix 0.736 0.0236 31.2 <0.0001 2.09
Surface dressing on gravel 0.653 0.0118 55.5 <0.0001 1.92
Hot mix 0.231 0.0145 15.9 <0.0001 1.26
Seal coat 0.066 0.0076 8.7 <0.0001 1.07
Ordinary two-lane road 0 — — — 1.00
Motorway −0.099 0.0204 −4.9 <0.0001 0.91
Undivided motorway 0.046 0.1107 0.4 0.679 1.05
2þ 1 road 0.198 0.0268 7.4 <0.0001 1.22
Four-lane road −0.563 0.0358 −15.7 <0.0001 0.57
Climate zone centrala 0 — — — 1.00
Climate zone north −0.122 0.0089 −13.7 <0.0001 0.89
Climate zone south 0.002 0.0073 0.3 0.796 1.00
Bearing capacity Class 1a 0 — — — 1.00
Bearing capacity Class 2 0.088 0.0183 4.8 <0.0001 1.09
Bearing capacity Class 3 −0.217 0.0707 −3.1 0.002 0.81
Maximum stone size <10 mma 0 — — — 1.00
Maximum stone size 10–14.9 mm −0.058 0.0114 −5.1 <0.0001 0.94
Maximum stone size 15–19.9 mm −0.140 0.0116 −12.1 <0.0001 0.87
Maximum stone size ≥20 mm 0.046 0.0139 3.3 0.001 1.05
Road width (dm) −0.004 0.00012 −21.1 <0.0001 0.996
Speed limit (km=h) 0.006 0.00012 29.0 <0.0001 1.006

Note: Number of observations used in analysis: 220,699.
aReference category of each variable.

Table 5. Comparison of Median Lifetimes for 2þ 1 Roads

Traffic
class

Model with maintenance
activity as response variable

Model with maintenance
activity and road condition

as response variable

Median
lifetime

0.95
LCLa

0.95
UCLb

Median
lifetime

0.95
LCLa

0.95
UCLb

1 28 27 30 26 25 27
2 22 21 23 20 17 21
3 18 18 19 17 16 18
4 15 14 15 14 13 14
5 12 12 12 11 11 12
6 10 9 10 9 9 9
7 9 8 9 8 8 8
8 7 7 7 7 6 7

Note: Covariate values as in Table 6.
aLCL = lower confidence limit.
bUCL = upper confidence limit.
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Fig. 1. Fitted survival curves from Cox proportional hazards model
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When fitting survival curves from the Cox model, covariate
values must be specified (see Table 6 for covariate values repre-
sented in Fig. 1). For use in a maintenance planning setting,
estimated lifetimes of each specific combination of covariates
can be calculated and compared.

Discussion

The extensive database available in the PMS application of the
Swedish Traffic Administration makes an excellent foundation
for maintenance planning. The problem of censored maintenance
intervals can be solved by time-to-event analysis. This study uses
the Cox proportional hazards model to estimate lifetimes and
analyze the effect of seven different covariates on lifetimes of
Swedish road pavements. To improve the accuracy of the estimated
lifetimes, road condition (IRI and rut depth) was included in the
model as a response variable.

Pavement Types

Asphalt concrete is chosen as a reference category among pave-
ment types because it is common within all traffic classes. Stone
mastic has the smallest hazard ratio of 0.64, indicating that the risk
of needing maintenance is 36% lower than that of asphalt concrete.
Stone mastic is an expensive, high-traffic maintenance activity, and
it is in line with expectations for it to have the longest lifetime.

Seal coat has the second highest probability of requiring
maintenance in the next instant with a hazard ratio of 1.97
compared with the reference category. Because seal coat is a
preventive maintenance to slightly increase the lifetime of a road,
this estimation is credible.

Grouted macadam has a hazard ratio of 0.93, but the estimate is
not significantly different from asphalt concrete. This is a low-
traffic maintenance, sometimes used to cover just the edges of a
road and sometimes used to cover the entire road surface. In the
first scenario, grouted macadam is only a preventive maintenance
to increase the lifetime of a road by some years. If only the edges of
a road are remade, it will not affect measurements of IRI and rut
depth which are used to determine if an activity has effect or not.
In the sensitivity analysis, grouted macadam had a significant
hazard ratio of 2.42. This result was expected because of the data
management, indicating that maintenance activities affecting edges
might have been removed.

Semihot mix has a hazard ratio that is 49% higher than asphalt
concrete. Cold mix has the shortest lifetime of all pavement types
with a 109% higher hazard ratio than asphalt concrete. Cold mix is
mostly present on older roads and not used a lot. Surface dressing
on gravel has a hazard ratio that is 1.92 times the hazard ratio of the
reference category. This is a low-traffic maintenance, and it is
expected to have a fairly short lifetime compared with asphalt
concrete. Hot mix is a high-traffic maintenance, and its hazard ratio
is 26% lower than asphalt concrete.

Surface dressing is used mainly on low-traffic roads with an
AADT of up to 4,000 vehicles. It is a rougher and cheaper material
than asphalt concrete, but the risk of needing maintenace is almost
the same as asphalt concrete, only 7% higher.

To conclude, pavement types used mostly on high-traffic roads
generally have longer expected lifetimes (i.e., smaller hazard ratios)
than pavement types for low-traffic roads. Since the estimates
assume a situation where all other variables are fixed, this result
is natural. When maintenance activities are being planned, all fac-
tors that affect a roads’ lifetime must be considered simultaneously.

Road Types

The most common road type in Sweden is the ordinary two-lane
road; therefore, it is chosen as the reference category. The estimate
of undivided motorway is not significant, probably due to the small
number of observations belonging to this type (Table 1). Motor-
ways are expected to have a slightly longer life than ordinary
two-lane roads with a hazard ratio of 0.91. This means that if mo-
torways carried the same amount of traffic and all other covariates
were the same for both road types, motorways would have a longer
expected lifetime than ordinary two-lane roads. Swedish roads are
generally constructed to carry a higher amount of traffic than they
do at present to compensate for an increased future traffic load. The
hazard ratio of motorways indicates that they are constructed to
carry a greater increase in traffic load than ordinary two-lane roads.

Studies by the Swedish National Road and Transport Research
Institute (VTI) have shown that the development of ruts on 2þ 1
roads increases at about twice the rate as ruts on ordinary two-lane
roads (Carlsson 2009; Karim et al. 2011). If 2þ 1 roads are main-
tained according to the maintenance standard, they should have
shorter lifetimes than ordinary two-lane roads. This assumption
is confirmed by the Cox model estimates. In a model that considers
maintenance activities as only a response variable, the hazard ratio
of 2þ 1 roads is 1.11 (p-value 0.001). When road condition is
included as a response variable, the hazard ratio of 2þ 1 roads
increased to 1.22, indicating a 22% higher risk of needing main-
tenance than ordinary two-lane roads. This result indicates that the
safety of the 2þ 1 roads has a cost in terms of shorter lifetimes,
which in turn is likely to give higher maintenance costs over a
road’s life cycle.

Many aspects are similar between four-lane roads and motor-
ways. The difference is that four-lane roads lack one or more
factors needed for a motorway classification, such as restrictions
for verges, junctions, speed limits, etc., that are not fulfilled.
The hazard ratio is 0.57, which indicates a longer lifetime than
ordinary two-lane roads. The same logic of construction as with
motorways applies to four-lane roads.

Climate Zones

Climate zone central is chosen as a reference category because it
lies between the northern part of Sweden with very cold winters
and the southern part with milder winters. The northern climate
zone has a significant hazard ratio of 0.89 which indicates longer
lifetimes for roads in the north. This result is somewhat unexpected
since ground frost and the use of studded tires are factors expected
to have a large impact on road condition. Hence, the northern
climate zone with longer winters would be expected to have shorter
lifetimes than the southern and central climate zones.

Historically, the southern part of Sweden has received more
funding for road maintenance due to more intense traffic (J. Lang,
WSP Sweden, personal communication, 2012). However, if main-
tenance in the northern zone had been neglected due to budget

Table 6. Covariate Values in Estimated Survival Curves

Variable Value

Pavement type Asphalt concrete
Road type Ordinary two-lane road
Climate zone Central
Bearing capacity class 1
Road width (m) 7.5
Speed limit (km=h) 80
Maximum stone size (mm) 14
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restrictions, it would have shown in measurements of IRI and rut
depth that exceeded the maintenance standard. This is not the case,
because the northern zone has a longer expected lifetime even when
adjusted for road condition. It should be noted that the climate
variable will not truly describe the deterioration pattern in different
climate zones, but rather the ability of the road manager to adapt the
road construction to the climate (i.e., freeze/thaw cycles, studded
tyres, etc.) in that particular zone. The climate is a known factor
accounted for when constructing the road. The explanation for
the lower hazard ratio in the northern zone might actually be that
the road construction is stronger in the north to compensate for the
impact of ground.

Bearing-Capacity Class

BCC 1 is by far the most common bearing-capacity class in
Sweden. Roads with other restrictions have some kind of weak
element (e.g., bridges that do not allow heavy vehicles). Due to
the restrictions, heavy traffic will not choose these kinds of roads,
and the deterioration can be expected to be slower than for roads
with the standard bearing capacity, which will carry heavy vehicles.
BCC 2 has a hazard ratio that is 9% higher than BCC 1, indicating
that the lifetime of these roads is actually shorter than the lifetime
of BCC 1 roads. However, a hazard ratio of 0.81 for BCC 3 roads
indicates longer expected lifetimes when this restriction is imposed.
The BCC 2 restriction for heavy vehicles does not seem effective
from a lifetime perspective.

Maximum Stone Size

Amaximum stone size of the pavement material of less than 10 mm
is chosen as a reference category. Roads with slightly larger stones
have longer lifetimes, with 6% lower hazard ratio for roads with
maximum 15-mm stones and 13% lower hazard ratio for roads
with maximum 20-mm stones. However, for roads with a maxi-
mum stone size of 20 mm or larger, the hazard ratio is 5% higher
than for roads with the smallest stone size. It seems as if stone size
increases the lifetime only up to a certain level. The estimates of
the sensitivity analysis were more consistent with hazard ratios be-
low one (approximately 0.8) for all stone sizes greater than 10 mm.
These results imply that stones greater than 20 mm have no effect
on IRI and rut depth but might have some effect on slowing the
road edge deterioration.

Continuous Variables

The continuous variables are road width and speed limit.
Road width shows an expected increased lifetime the broader

the road is with a hazard ratio of 0.99 for each decimeter. This
means that if the road width is increased by 1 dm (e.g., from
90 to 91 dm), the risk of needing maintenance is lowered with 1%.
A wider road is expected to have a longer lifetime because drivers
are known to avoid ruts if they can, which is possible on
wider roads.

Speed reduces the lifetime of a road with a hazard ratio of 1.01
for each 10 km=h increase in speed limit in a range from 30 to
120 km=h. If the speed limit is, for example, increased from 50
to 90 km=h, the risk of needing maintenance is expected to increase
by 1.014 ¼ 1.04 (i.e., the risk of needing maintenance on a road
with speed limit 90 km=h is expected to be 4% higher).

Future Research

A variable highly desired to be included in the model is heavy
traffic load or equivalent single-axle load (ESAL). The American

Association of State Highway Officials’ (AASHO) widely used
rule of thumb implies that heavy traffic load has the greatest impact
in road deterioration through the fourth power law (AASHO 1962).
Heavy traffic is included in the total traffic load used in this paper,
but a separation of the measures would be preferred.

In recent years, the Swedish Traffic Administration has stressed
the importance of LCC analysis when procuring contracts.
Combining estimated lifetimes from the Cox proportional hazards
model with cost data could produce an early stage LCC analysis
suitable for these types of contracts. Investigating the possibilites
of such an analysis is an interesting future research topic.

All homogeneous road sections in this paper are considered
as independent. This assumption is made in most time-to-event
analyses concerning roads’ lifetimes. However, the true relation
between sections is that each maintenance can be considered as
a repeated measurement—the same geographical location of a
road is repeatedly maintained, except for new constructions. There
is a possibility that each road section has an individual effect,
for example, due to differences in soil conditions, affecting the
lifetime. A possible future research prospect is to add a random
effect in a frailty model to account for this heterogeneity.

Conclusions

The results from the Cox proportional hazards model showed that
stone mastic, asphalt concrete, and surface dressing had the longest
expected lifetimes among pavement types. Seal coat and cold
mix had the shortest expected lifetimes. These results are in line
with theory. Further research on life-cycle costs of the different
pavement types would be interesting, especially because surface
dressing, which is much cheaper than asphalt concrete, had an
almost equal hazard ratio.

In terms of road types, it was shown that the inclusion of road
condition made the estimated lifetimes of 2þ 1 roads 1–3 years
shorter than if road condition was not included in the model. This
indicates that there are some 2þ 1 roads in Sweden that have not
been maintained despite their being in a poor condition according
to the maintenance standard. Ordinary roads with cable barriers
had 30% higher risk of needing maintenance than ordinary two-
lane roads. Hence, if the Swedish Traffic Administration continues
to rebuild two-lane roads into 2þ 1 roads, the need for road
maintenance will increase.

Climate zone north had the longest expected lifetime, which was
slightly unexpected because of harder winters in the north. A more
fine-tuned climate zone categorization might be preferred in future
research.

A bearing-capacity limitation of Class 3 was shown to increase
roads’ lifetimes. Maximum stone size had a somewhat ambiguous
effect: for stones up to 20 mm an increased stone size also increased
lifetimes, but stones over 20 mm gave a decrease in lifetimes.
Increased road width and decreased speed limit proved to increase
lifetimes.
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National road databases often lack important information for long-term 
maintenance planning of paved roads. In the Swedish case, latent vari-
ables of which there are no recordings in the pavement management 
systems database are, for example, underlying road construction, sub-
soil conditions, and amount of heavy traffic measured by the equivalent 
single-axle load. The mixed proportional hazards model with random 
effects was used to capture the effect of these latent variables on a road’s 
risk of needing maintenance. Estimation of random effects makes it pos-
sible to identify sections that have shorter or longer lifetimes than could 
be expected from the observed explanatory variables (traffic load, pave-
ment type, road type, climate zone, road width, speed limit, and bearing 
capacity restrictions). The results indicate that the mixed proportional 
hazards model is useful for maintenance planning because the weakest 
and strongest sections in a road network can be identified. The effect of 
the latent variables was visualized by plotting the random effect of each 
section in a map of the road network. In addition, the spatial correla-
tion between road sections was evaluated by fitting the random effects 
in an intrinsic conditional autoregressive model. The spatial correlation 
was estimated to explain 17% of the variation in lifetimes of roads that 
occur because of the latent variables. The Swedish example shows that 
the mixed proportional hazards and intrinsic conditional autoregressive 
models are suitable for analyzing the effect of latent variables in national 
road databases.

Long-term maintenance planning of paved roads requires reliable 
estimates of maintenance intervals. These estimates can be used in 
a variety of settings, such as input for life-cycle cost analyses and 
calculations of the marginal costs of road maintenance, but also to 
evaluate the future need of maintenance of a road network.

Time-to-event analysis is widely used to estimate the lifetimes 
of paved roads, where “lifetime” is commonly defined as the time 
between two maintenance treatments [see, e.g., Do (1), Smith and col-
leagues (2, 3), Gharaibeh and Darter (4), Eltahan et al. (5), and Hall 
et al. (6)]. Several authors, such as Svenson (7), Dong (8), and Wang 
et al. (9), have evaluated the effect on the lifetimes of roads of different 
covariates, such as pavement type, road type, climate or weather, road 
width, speed limit, and so forth. However, few previous studies have 
accounted for the spatial nature of the road network when modeling 
the lifetimes of roads. In practice, roads are seldom maintained inde-

pendent of each other. If a road section needs maintenance because of 
ruts or cracks, for example, neighboring sections that still are func-
tional might be more likely to need maintenance in the near future. 
This scenario may lead to opportunistic maintenance, which could 
imply higher maintenance costs than necessary.

Larger data sets containing road maintenance information also 
exhibit repeated observations. Svenson used data from the Swedish 
pavement management system (PMS), which covers all national 
roads in Sweden and their maintenance activities from the 1960s 
onward (7). Certain characteristics of a road section may change 
between maintenance activities, such as pavement type or speed 
limit, but the geographical location of the road is still the same. The 
PMS database only contains information about the surface pave-
ment layer. Even if the time-to-event model includes several explan-
atory variables, the effect on the road’s lifetime of the underlying 
construction layers or ground materials (solid bedrock or looser 
sand) cannot be captured.

To account for heterogeneous construction designs, or other latent 
variables that cannot be captured by the explanatory variables in the 
model, a random effect for each road section can be added to the time-
to-event analysis. Such models are known in the literature as survival 
frailty models or mixed proportional hazards models (10, 11). The 
random effect represents an extra frailty so that roads with a stronger 
underlying design are more likely to have longer lifetimes (i.e., less 
risk of needing maintenance) than roads with weaker designs. The 
mixed proportional hazards model has been frequently used in medi-
cal settings, such as infant mortality (12) and breast cancer (13, 14). 
In medical research, the aim is to identify individuals who are frailer 
than others, which is analogous to identifying weaker road sections. 
Parametric frailty models (where the hazard function is parametric 
rather than semiparametric as in the case of the mixed proportional 
hazards model) have been used to identify factors critical to spatio-
temporal congestion impacts of motorway accidents (15) and to model 
fatigue cracking in pavements (16).

Methods for identifying spatial correlations are variograms and 
spatial regression models. Gagnon et al. have used variograms for 
estimating variability in pavement deterioration parameters (17 ). 
In recent studies, Lea and Harvey have used variograms and spatial 
regression models to model the spatial correlation of different pave-
ment properties (18, 19). This paper uses the intrinsic conditional 
autoregressive (ICAR) model, a spatial regression model that has 
proved useful for large continuous spatial data sets [e.g., when mod-
eling the occupancy of caribou (20) and the geographical variation 
of emergency department visits (21)].

The aim of this study was to identify sections in the Swedish paved 
road network whose lifetimes are shorter, because of latent variables,  
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than roads with similar characteristics with a mixed proportional 
hazards model. Possible spatial correlation between lifetimes of road 
sections is also investigated.

Materials and Methods

Mixed Proportional hazards Model

The mixed proportional hazards model is an extension of the clas-
sic Cox proportional hazards model (22). The model consists of two 
parts: a nonparametric baseline hazard whose distribution is unspeci-
fied, giving the model high flexibility, and a parametric part, which 
accounts for the effect of the covariates. The response variable of the 
mixed proportional hazards model is the hazard rate, which in the set-
ting of road maintenance is interpreted as “the risk of needing main-
tenance in the next instant in time.” The random effects (i.e., frailties) 
are added to the parametric part and are assumed to follow some dis-
tribution. Let hi(t) be the hazard rate for observation i at time t, Xi the 
design matrix of the fixed effects containing all explanatory variables, 
and Zi the design matrix of the random effects, constructed by setting 
1 for each unique road section and 0 otherwise:

exp (1)0h t h t X Zi j i i[ ]( ) ( )= β + β

where h0j(t) is the baseline hazard stratified over j strata, β is a vec-
tor of fixed effects, and the vector of random effects b follows a 
normal distribution b ∼ N[0, Σ(θ)], where the variance–covariance 
matrix Σ depends on the parameter θ. In this paper the random 
effects are assumed to be identically and individually distributed, 
and the variance–covariance matrix Σ(θ) = σ2

bI. The fixed and ran-
dom effects in the mixed proportional hazards model are usually 
interpreted with respect to hazard ratios, which is the relative risk 
of needing maintenance in the next instant in time compared with a 
reference category.

Penalized likelihood approach

Following the work of Ripatti and Palmgren (11) and Therneau et al. 
(10), the penalized likelihood approach was used to estimate the 
mixed proportional hazards model in Equation 1. The likelihood 
approach does not depend on any prior assumptions about the dis-
tribution of the parameters. For fixed values of β and b, the partial 
log likelihood, log[PL(β, b)], is

b Y t Y t e N ti i j j i

i

n
jlog PL , log (2)

01
∫∑ Σ( )[ ]( ) ( ) ( ) ( )β = η − ∂η
∞

=

where

 ηi = Xiβ + Zib,
 Yi(t) =  risk set with Yi(t) = 1 if road section i has been maintained 

at time t and 0 otherwise, and
 Ni(t) = number of observed events in [0, t] for observation i.

Since the event of interest is maintenance activity and a new obser-
vation is created after maintenance occurs, Ni(t) can take a maximum 
value of 1.

The log penalized partial likelihood function, log[PPL(β, b, θ)], 
adds a penalty to the partial log likelihood, penalizing for the extra 
parameter b.

b b b blog PPL , , log PL ,
1

2
(3)1Σ[ ] [ ]( ) ( ) ( )β θ = β − ′ θ −

where the last term, 1/2b′Σ(θ)−1b, is the penalty. The random effects 
can be integrated out to obtain an integrated partial likelihood 
IPL(β, θ):

b bq ∫
Σ

( )
( )

( )
( )

β θ =
π θ

β θ ∂IPL ,
1

2
PPL , , (4)

2

1

2

where q is the length of b (i.e., the number of random effects). The 
maximum likelihood estimates of β and b are obtained by joint max-
imization of the IPL over β and θ. When the variance of the random 
components is zero, the IPL collapses into the ordinary Cox partial 
likelihood. To estimate b, the following score equation is solved:

log PPL log PL ,
1
2 0 (5)

1

b

b

b

b b

b
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∂
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−
∂ ′
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=

( )Σ θ −

The penalized likelihood approach is applied in the R-package 
coxme written by Therneau et al. (10). Coxme was used to estimate 
the mixed proportional hazards model in this paper.

Bayesian approach

The presence of spatial correlation was evaluated with the ICAR 
model, developed by Besag and Coperberg (23), by using the Bayes-
ian software INLA (see www.r-inla.org) created by Rue et al. (24). 
The ICAR model should ideally have been applied within the mixed 
proportional hazards model, but this was not possible because of 
the computational requirements for the large data set. The spatial 
correlation was therefore approximated by first fitting independent 
random effects in the mixed proportional hazards model, and their 
estimates b̂ were subsequently modeled as

ˆ (6)b = µ + ω + ε

where µ is an intercept term close to 0, since E(b̂) = 0. The spatial 
random effects are modeled as ICAR [i.e., ω is assumed multivari-
ate normal ω ∼ N(0, τ(I − D)−1), where τ is the spatial variance com-
ponent, I is the identity matrix, and D is the neighborhood matrix, 
constructed by setting 1 for neighboring sections and 0 otherwise]. 
ε is a normally distributed random error, ε ∼ N(0, σ2

eI).
A prior for ε is required by INLA, since it is a Bayesian method. 

The given prior was N(0, σ̂2
b) where σ̂2

b was the estimated variance 
component from coxme.

Variogram

A variogram gives a visual indication of the spatial correlation (25). 
The empirical semivariogram γ(h) is calculated as follows:

1

2
(7)

2
h

N h
z zi j

N h
∑( )( )

( )
γ = −

( )

where

 N(h) = set of all pairwise Euclidean distances i − j = h,
 |N(h)| = number of distinct pairs in N(h), and
 zi and zj = data values (here, road age) at spatial locations i − j.
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Note that variogram and semivariogram are used interchangeably 
in this paper. By definition, γ(h) is the semivariogram and 2γ(h) is 
the variogram.

A fitted variogram can be obtained from the empirical variogram 
by using a weighted least squares method. The R-package gstat 
written by Pebesma (26) was used for estimation of the empirical 
and fitted variograms.

data ColleCtion

The data material is provided by the Swedish Transport Administra-
tion’s PMS. PMS includes a database of all national roads in Sweden 
represented as homogeneous sections. The first recordings in the data-
base are from the 1960s, but the quality of the database was raised 
when measures of surface condition were introduced in Sweden in 
1987. The sections are homogeneous with respect to pavement type, 
maintenance date, traffic load, road width, speed limit, and axle 
road restrictions. Sections vary in length, from more than 1 km to 
only a few meters. There is also information about the coordinates 
of these sections, and many sections share the same coordinates but 
have different maintenance dates. When maintenance is carried out, 
it is reported in the PMS database and added as a new observation.

The variables included in the study are traffic load, pavement 
type (the nine most common in Sweden), road type (ordinary two-
lane roads, four-lane roads, motorways, undivided motorways, and 
2+1 roads), climate zone (north, central, and south), bearing capac-
ity class (where Class 1 implies no restrictions and Class 2 and 3 are 
roads with axle load restrictions), road width, and speed limit. The 
2+1 roads were introduced in Sweden in the 1990s. These are roads 
that alternate between one and two lanes in each direction, separated 
by a cable barrier. A more thorough description of the data material 
can be found in Svenson (7).

In previous work, Svenson restricted the length of each section 
used in the analysis to at least 50 m (7). To be able to account for 
any spatial correlation, all sections in the database are used in this 
paper. To determine the impact of including the shorter sections, a 
sensitivity analysis was performed with a data set consisting of only 
sections longer than 50 m. The results of the sensitivity analysis 
are presented in the next section of this paper. The full data set is 
preferred to the data set that only includes sections of length 50 m 
because of the road network’s spatial structure. If short sections are 
removed from the data set, direct neighbors will be excluded and the 
spatial correlation structure is weakened.

The number of observations (road sections) in the database with 
coordinates available is 548,091, ranging from 1 to 24,322 m in 
length. The mean length is 357 m. The number of unique road sec-
tions is 229,088, with one to 10 registered maintenance activities 
per section (Table 1). The type of maintenance activity applied to a 
section may differ, but all activities include a resurfacing.

results and disCussion

estimation of the random effects

A likelihood ratio test of the mixed proportional hazards model 
versus Cox proportional hazards model gives a χ2-distributed test 
statistic of 600.34 on one degree of freedom, which is highly sig-
nificant (p-value < .0001). This test implies that the variance of 
the random effects is nonzero, and hence the variation in lifetime 
between sections explained by the latent variables is substantial.

A comparison of the parameter estimates of the explanatory vari-
ables in Table 2 between the mixed proportional hazards model and 
the standard Cox model shows no large differences. All categorical 
variables have a reference category with a hazard ratio of 1. Having 
a hazard ratio of less than 1 implies less risk of needing maintenance, 
and hence a longer expected lifetime than the reference category. The 
opposite, a higher risk of needing maintenance, applies to hazard 
ratios above 1. The parameter estimates of the explanatory variables 
in Table 2 are analyzed in detail in previous published work by 
Svenson (7).

The model is stratified, based on eight traffic classes on which 
the Swedish Transport Administration has decided (Table 3). Traf-
fic load is highly correlated with all other explanatory variables 
because it is the most important factor in all maintenance and recon-
struction decisions. The random effects are estimated within every 
traffic class strata.

The idea of the mixed proportional hazards model is that the ran-
dom effects should capture latent variables that cannot be accounted 
for by the explanatory variables. When the random effects are 
assumed normally distributed with mean zero, the random effect 
of each road section can be interpreted as the deviation from this 
zero mean. The estimated variance of the random effects is 0.087 
(Table 2), which implies a standard deviation of 0.087 0.295= . 
Expressed as hazard ratios, a random effect that lies one standard 
deviation from the mean implies a hazard ratio of exp(0.295) = 1.34 
(i.e., this road section has an increased risk of needing maintenance 
of 34%).

A sensitivity analysis was performed by fitting the mixed propor-
tional hazards model to a data set with sections longer than 50 m. The 
hazard ratios of the fixed effects changed less than 5% by excluding 
sections shorter than 50 m. The variance of the random effects is 
slightly lower than for the full data set with σ̂2

b = 0.067. However, the 
variance is still highly significant according to the likelihood ratio 
test, which has a χ2-distributed test statistic of 234.55 on one degree 
of freedom.

Figure 1 shows the distribution of random effects expressed as 
hazard ratios, depending on the number of observations per road 
section. It is clear that the “random effects” are not entirely ran-
dom but rather depend on the number of observations per section. 
This phenomenon is known in literature as data with informative 
cluster sizes. In this particular case, having informative clusters 
makes sense; road sections that are maintained often (i.e., have 

TABLE 1  Registered Maintenance Activities per Road Section

Number of 
Maintenance 
Activities

Number of 
Road Sections

Percentage of 
Road Sections

Length of Road 
Sections (km)

1 56,650 24.7 26,623

2 75,325 32.9 30,427

3 55,453 24.2 20,171

4 27,297 11.9 8,372

5 10,443 4.6 2,583

6 2,984 1.3 652

7 772 0.3 159

8 140 0.06 46

9 19 0.008 3

10 5 0.002 0.2
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more registered maintenance activities and hence more observations 
per road section) tend to have shorter lifetimes. The random effects 
of the 25% of the road sections with only one observation lie in the 
lower range of the distribution. All sections with only one observation 
are censored, which means that they have never been maintained and 
the present pavement coating is still in use. Therefore, they will all 
have a longer final lifetime than their current age.

There is some research about how informative cluster sizes affect 
maximum likelihood estimation. Neuhaus and McCulloch (27) found 
that informative cluster sizes can yield a biased estimate of the inter-
cept in linear mixed models and generalized linear mixed models. 
However, there are currently no studies on how informative cluster 

sizes affect the random effects of the mixed proportional hazards 
model. This research lies out of the scope of the current paper but 
certainly is a topic for future investigation.

evaluation of spatial Correlation

By choosing the middle point of each road section as spatial location, 
the correlation with respect to road lifetime (age in years of each road 
section) within a distance of 10 km was calculated and plotted in a 
semivariogram, according to Equation 4. Along with the empirical 
variogram represented as dots, a fitted variogram is presented as a 
solid line (Figure 2).

The nugget of the variogram, estimated from the fitted variogram 
where the distance h = 0, represents the variance not explained by 
the spatial correlation. If all variation in road age is explained by 
the spatial correlation, and the distance between points is measured 
correctly, the nugget would be zero. The nugget is estimated to 70 
(i.e., the variation not explained by a spatial correlation pattern is 
high). The range lies around 4 km, which means that the spatial cor-
relation of the maintenance intervals is limited to the closest neigh-
borhood, which makes theoretical sense: roads 5 km apart can be 
very different in construction and subsoil conditions. Also, budget 
restrictions will not permit maintenance to stretch too far from the 
area in question.

The amount of spatial correlation between the random effects was 
estimated by running the ICAR model defined earlier in the paper. 
The response variable is the random effects estimated from the 
mixed proportional hazards model. The prior given for the random 

TABLE 2  Penalized and Maximum Likelihood Estimates of Mixed and Cox Proportional Hazards Models

Mixed Proportional Hazards Model Cox Proportional Hazards Model

Parameter
Parameter 
Estimate

Standard 
Error

Hazard 
Ratio

Parameter 
Estimate

Standard 
Error

Hazard 
Ratio

Asphalt concretea 0 — 1.00 0 — 1.00
Stone mastic −0.447 0.010 0.64 −0.389 0.001 0.68
Surface dressing 0.098 0.006 1.10 0.103 0.006 1.11
Hot mix 0.221 0.012 1.25 0.198 0.011 1.22
Seal coat 0.395 0.037 1.48 0.390 0.013 1.48
Semi-hot mix 0.477 0.007 1.61 0.431 0.007 1.54
Grouted macadam 0.651 0.014 1.92 0.625 0.013 1.87
Cold mix 0.734 0.021 2.08 0.689 0.020 1.99
Surface dressing on gravel 0.737 0.009 2.09 0.678 0.009 1.97

Ordinary 2-lane roada 0 — 1.00 0 — 1.00
4-lane road −0.491 0.027 0.61 −0.488 0.025 0.61
Motorway −0.006 0.017 0.99 −0.027 0.016 0.98
Undivided motorway 0.049 0.088 1.05 0.041 0.081 1.04
2+1 road 0.255 0.021 1.29 0.209 0.020 1.23

Climate zone centrala 0 — 1.00 0 — 1.00
Climate zone north −0.106 0.007 0.90 −0.096 0.007 0.91
Climate zone south 0.0002 0.006 1.00 −0.006 0.006 0.99

Bearing capacity Class 1a 0 — 1.00 0 — 1.00
Bearing capacity Class 2 0.041 0.015 1.04 0.036 0.014 1.04
Bearing capacity Class 3 −0.193 0.050 0.82 −0.187 0.048 0.83

Road width −0.003 0.0002 0.997 −0.003 0.0001 0.997
Speed limit 0.005 0.0002 1.005 0.005 0.0002 1.005

σ2
b (variance of random effects) 0.087 — — — — —

Note: Stratification of baseline hazard: eight traffic classes, defined in Table 3. — = no estimate. Number of observations used 
in analysis is 339,579.
aThe reference category of each variable.

TABLE 3  Definition of  
Traffic Classes

Class
Average Annual  
Daily Traffic

1 <250

2 250–499

3 500–999

4 1,000–1,999

5 2,000–3,999

6 4,000–7,999

7 8,000–12,000

8 >12,000
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FIGURE 1  Violin plot of distribution of random effects with respect to number of maintenance 
activities per road section.
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FIGURE 2  Variogram of road age in Swedish pavement management systems database (cutoff 10 km).
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error is N(0, 0.087), where the mean is zero by definition and the 
variance is estimated from the mixed proportional hazards model 
(Table 2). From the ICAR model, the intraclass correlation of the 
spatial component can be calculated to indicate how much of the 
total variation between the random effects exists because of their 
spatial correlation.

Only a subset of Swedish roads could be used to fit the linear 
mixed model because of the data size. Sweden has six mainte-
nance regions and, out of these regions, Mitt was chosen, consist-
ing of 30,683 unique road sections in the middle of the country. 
The intraclass correlation was estimated to 17% (i.e., spatial cor-
relation is present but does not seem to be the crucial source of 
unexplained variation in lifetime between road sections). Factors 
such as road construction and heavy traffic are likely to hold more 
explanatory power.

Map of random effects

All road construction and maintenance work is performed to manage 
the present traffic load but also expected future increases in traf-
fic and future changes in climatic factors. However, the estimated 
average lifetime of a Swedish road is 7 to 26 years, depending on 
traffic load (7). This expectation covers a long time span, and it is 
impossible to be completely accurate about future traffic increase 
or climate changes. If a road is maintained according to the actual 
traffic increase, the hazard ratio of the random effect will lie close to 
1. If the traffic increase deviates from expectation, the hazard ratio 
of the random effect will be less than 1 if a road has a lower increase 
in traffic than expected and more than 1 if it has a higher increase in 
traffic than expected.

Another possible latent variable in the model is subsoil conditions. 
Some road sections lie on solid bedrock, while other roads are built 
on more flexible ground. If road construction work is done right, 
according to subsoil conditions, this might not be an issue, but if 
it is not, subsoil conditions could affect the lifetime of a particular 
road section.

Apart from road construction and subsoil conditions, the random 
effect could also represent the effect on the lifetime of roads for roads 
with a large share of heavy traffic. Heavy traffic is only registered 
in the Swedish PMS database as the share of annual average daily 
traffic (AADT) weighing more than 3,500 kg, but the figures on 
heavy traffic are very uncertain for low-traffic roads (AADT less 
than 4,000 vehicles). There is no information about actual vehicle 
weight or equivalent single-axle load (ESAL). There is a possibil-
ity that roads with low AADT have a large share of heavy vehicles 
(mainly roads in counties with a large logging industry), which in 
theory should affect the risk of maintenance for these roads. That is, 
a higher hazard ratio is expected for roads where a greater proportion 
of the total traffic consists of heavy vehicles, compared with roads 
with similar characteristics but a lesser proportion of heavy vehicles.

The variables that should be regarded as latent may vary depend-
ing on the data available for inclusion as explanatory variables. Geo-
logical data could possibly contribute to information about subsoil 
condition but do not guarantee that the road construction is built 
accordingly. ESAL can be estimated from the share of heavy traffic 
but will never be completely accurate since the data collection about 
heavy traffic in Sweden is incomplete.

Figure 3 shows the random effects for each road section in the 
Swedish county Dalarna, which is part of region Mitt. Light gray 

lines represent roads that are not part of the national road network 
or roads where information is missing in the database. The green 
lines represent roads with random effects, where the hazard ratio lies 
between 0.72 (the lowest estimated random effect in Dalarna) and 
0.95, indicating that these roads have a longer lifetime than the aver-
age road with the same explanatory variables. Yellow lines represent 
roads with an average expected lifetime (i.e., a hazard ratio close to 
one), and the red lines are the roads with a random effect hazard ratio 
of 1.05 up to 1.36 (the highest estimated random effect in Dalarna). 
These red roads have 5% to 36% higher risk of needing maintenance 
than the average road with corresponding explanatory variables. The 
division of the random effects is arbitrarily chosen so that the yellow 
lines represent 35% of all road sections, green lines represent 32%, 
and red lines represent 33%.

Two patterns are clearly visible in the map. First, there are lon-
ger routes of red lines where several connected road sections have 
a hazard ratio of 1.05 or more. One example is the southern road 
along Lake Siljan, County Road 938, between Leksand and Mora, 
which is a rather small road (width 5.8 to 6.5 m) on which both 
passenger traffic and heavy logging trucks travel. The proportion of 
AADT consisting of heavy traffic is around 6% on Road 938, but 
the actual ESAL is unknown. A likely explanation for the increased 
risk of the need for maintenance of this road could be that the log-
ging trucks have an ESAL that is higher than the amount for which 
the road was intended. It is also possible that the road construction 
is too weak to match the current amount of traffic (AADT is about 
2,000 to 3,000 vehicles).

The second pattern on the map is the presence of small red “dots” 
(i.e., one or just a few sections with a higher risk of needing mainte-
nance than neighboring sections). These sections could be where a 
local deterioration in subsoil conditions is not accounted for by the 
road construction. In general, the road is good but a few sections 
need extra maintenance.

ConClusion

The mixed proportional hazards model works well for identifying 
road sections with shorter lifetimes than corresponding roads with 
equivalent explanatory variables. In the example county of Dalarna, 
both adjacent and single sections with a higher risk of needing 
maintenance could be identified.

A spatial correlation between Swedish roads with respect to life-
time exists according to the variogram up to a distance of about 
4 km. The spatial correlation explained about 17% of the varia-
tion between the random effects. Most of the variation in lifetime 
between roads that is not explained by the explanatory variables 
seems to originate from other sources than the spatial correlation 
between road sections. Subsoil conditions, road construction, and 
actual ESAL are identified as possible latent variables accounting 
for this variation.

The fixed and the random effects estimated from the mixed pro-
portional hazards model can be used for different purposes: the fixed 
part of the model is useful for maintenance planning in general or 
as an input in, for example, life-cycle cost analyses. The random 
effects are useful for identifying existing sections that perform worse 
(or better) than the expected average section. The random effects 
can give the maintenance planning manager a guideline on which 
sections require a closer inspection. If maintenance activities are 
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FIGURE 3  Fitted random effects on hazard ratio scale in road network of Dalarna County, Sweden.

planned perfectly according to the future traffic load, the individual 
variation between sections would cancel out, and the fixed effects 
could possibly capture all major sources of variation in road lifetime. 
As long as the variance of the random effects is significant, there are 
sections for which maintenance does not correspond to the actual 
need, and also sections for which the maintenance activities carried 
out are more extensive than the actual need. The random effects 
could therefore be used to lessen the opportunistic maintenance 
and make maintenance decisions and the use of limited resources 
more effective.
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Abstract: This paper sets out to assess the marginal cost for using road infrastructure using a
large set of data with information about sections of the road network, including age, pavement 
type, traffic, etc. The paper suggests a strategy for identifying major differences in marginal 
costs across the road network. The analysis provides evidence for that not only heavy vehicles 
but also cars contribute to road quality deterioration. The hypothesis is that this is due to the 
widespread use of studded tires in countries with regular freeze-thaw cycles. No indication of 
deterioration due to time per se is however found.

Keywords: Marginal costs, wear and tear, road reinvestment, Weibull model.

1 This paper is produced as an input for a government assignment to VTI to assess the social marginal costs for 

infrastructure use; the work has been funded by an allocation from Sweden’s government. We are grateful for 

comments on a previous version by Ken Small; the usual caveats remain.
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1 Introduction
In order to maximize the social welfare from resources expended on infrastructure, two 
aspects are in focus. The first is to build new roads, bridges etc. once the aggregate benefits of 
an investment exceed the resources allocated to construction; the second is to charge for the 
use of existing assets according to the social marginal costs emanating from their use. The 
focus of the present paper is on the second issue. Perry and Small (2005) demonstrate the 
overall scope and significance of the task.

To implement efficient charges, appropriate estimates of marginal costs is the first
requirement. The present paper contributes to this task by estimating one component of 
marginal costs. More specifically, the purpose of the paper is to provide a model for, and a 
measure of the (short-run) marginal infrastructure cost, i.e. costs related to the impact on 
resurfacing periods of additional vehicles using the infrastructure. Three hypotheses are tested 
against data; quality deteriorates due to the number of heavy vehicles (hypothesis 1) and the
number of light vehicles (hypothesis 2) using a road. In addition, quality deteriorates over 
time, independently from the extent of traffic (hypothesis 3).

Figure 1 illustrates the complex engineering interactions between road design, usage,
and deterioration that have to be disentangled in order to address the purpose of the paper in 
an intelligible way. The specification of road quality or standard is at the core of this 
discussion. In Sweden, this analysis of quality is facilitated by annual measurement in terms 
of rut depth and horizontal evenness using the International Roughness Index (IRI). While the 
quality values per se are of secondary relevance for the present analysis, a critical assumption 
is that engineers have established some threshold level of rutting and/or IRI statistics that 
triggers resurfacing. This eliminates situations with resurfacing taking place at pre-set time 
intervals or being random.

Except for surface smoothness, road quality differs with respect to asphalt thickness, 
stone quality etc. Since we have excellent data also in this dimension of quality, it is made 
part of our analysis. Sweden does not use concrete, only flexible pavements.

Expected traffic is a crucial determinant of quality. The center box in Figure 1 indicates 
that traffic affects both the design quality of a new road (arrow to the left) and the 
deterioration of roads, once they start to be used (rightward arrow). The more traffic that is 
expected on a road, the more robust is the design standard (thickness of sub- and 
superstructure, etc.). At the same time, the more traffic using an existing road, the faster is the 
deterioration. However, if the road was initially built to tolerate much traffic, deterioration 
may still be slow. 
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Figure 1: Interrelationship between design, traffic, and deterioration of roads. 

Except for the relevance of traffic for both design standard and deterioration, the combination 
of design standard and traffic also provides the basis for the strategy for on-going 
maintenance of a road (the top-most rectangle). Most countries classify roads into being built 
for use of long distance international or national traffic or for regional or local purposes. 
There may, however, be sections of an international road that have little traffic while parts of 
local roads may be heavily used. And irrespective of the details of road categorisation, day-to-
day maintenance may be implemented in ways that have consequences for the degree of 
deterioration and for the subsequent date of pavement renewal.

A further feature of the interrelationship is climate or time per se (the bottom-most 
rectangle), as road surface standard may deteriorate independent from use. This is a subject 
where we have failed to find a common view amongst engineers but which will be further 
analyzed in the paper.

With these interrelationships as a background, the idea is that the larger the number of 
vehicles using a road, the more damage is inflicted on the infrastructure. Furthermore, if
traffic increases relative to ex-ante projections, future periodic maintenance must be advanced 
in time in order to retain quality. This imposes an additional cost to society, which is the 
marginal cost related to traffic in focus in the present paper.

An important aspect that cannot be captured by the figure concerns the relationship 
between vehicle weight and road wear; this association is commonly believed to be non-
linear. For this reason, it is necessary to make a distinction between the impact of heavy and 
light vehicles on road quality. The standard rule-of-thumb is that wear increases according to 
the fourth power of weight per vehicle axle. This rule, and the relative significance of heavy 
and light vehicles for quality and the timing of reinvestment, and therefore for estimating the 
marginal costs, is therefore at the core of the design of a welfare enhancing charging system.

Previous literature: The estimation of marginal infrastructure cost, i.e. costs related to 
additional vehicles using the infrastructure at large, has a long history. Newbery (1988) 
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focuses on a particular aspect of these estimates, namely the fact that the wear of one vehicle 
using a road imposes on subsequent vehicles’ costs for using a road of slightly lower quality. 
His fundamental theorem demonstrates that this extra cost under some assumptions is 
balanced by the date of the future reinvestment being slightly advanced in time. Under these, 
while not under other assumptions, this between-vehicle externality cancels out.

The leading model formulation for empirical analysis is the book by Small et al (1987),
which is used for constructing the base model in our paper. A number of subsequent empirical 
studies, not least in the engineering science, are based on this method. Lindberg (2006) added 
to this model by using the concept of deterioration elasticity in order to facilitate empirical 
estimations; this is defined in more detail in section 2. In his dissertation, Haraldsson (2007) 
makes use of this analytical trick and also introduces the possibility of using a Weibull 
distribution for modeling the life length of road network sections. The dissertation also 
includes a more comprehensive review of issues related to the assessment of marginal costs.
Our paper provides an extension and specification of his dissertation. In addition, by making 
use of a unique database, we are able to estimate not only the marginal costs for road wear but 
also to address some of the underlying complexities captured by Figure 1. 

Using the basic components of the Small et al (1987) model, section 2 specifies the 
analytical approach and also identifies the type of data necessary for the empirical assessment. 
We also describe where the previous analysis is extended. Section 3 presents information on
costs for re-surfacing used for providing a measure of the average resurfacing cost per square 
meter of the road. Section 4 applies a time-to-event model for estimating the surface life 
length and the traffic using roads between “birth” and “death” of a pavement. Section 5 
summarizes results.

2 The modeling framework
This section starts by developing the economic model for calculating marginal reinvestment 
costs (section 2.1). An essential input of this model concerns the life-length of roads and 
section 2.2 describes the engineering aspects of these calculations. While the first two sections 
treat all vehicles as being identical, section 2.3 elaborates on the implications for cost 
estimation of vehicle/axle weight. Section 2.4 summarizes the framework section by 
formulating the testable hypotheses.

2.1 The engineering model
Figure 2 captures the economic framework for the reinvestment problem. The solid line 
characterizes the deterioration and worsening quality of a piece of infrastructure as time goes 
and as more and more vehicles have used it. At some point in time, 𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇, quality reaches a 
critical standard (𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓), and as a result the road standard has to be restored, ideally to the 
original level (𝜋𝜋𝜋𝜋0). After that, the degradation starts once again. 

The pattern of deterioration-rehabilitation cycles is based on expectations regarding 
future traffic when the road is originally built. The analytical trick of the model is to assume 
that at some point in time, 𝜏𝜏𝜏𝜏, traffic increases relative to the ex ante belief. The consequence 
of the unexpected (one-time) addition of traffic, and therefore also wear, is that the critical 
quality level will be reached slightly earlier than predicted, making it necessary to frontload 
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the rehabilitation activity.2 Spending on rehabilitation earlier than planned represents a cost to 
society. Since the frontloading effect continues for the foreseeable future, the rather small cost 
increase the first period may boost the present value of resurfacing substantially. The extent of 
the cost increase is related to the frequency of resurfacing activities and the level of the 
discount rate.

Figure 2. Renewal intervals without and with a marginal increase in traffic at time τ.

In order to model these effects, let 𝐶𝐶𝐶𝐶 represent the cost per square metre for a resurfacing 
activity. A new road surface is laid every 𝑇𝑇𝑇𝑇 years, and equation (1), where 𝑟𝑟𝑟𝑟 denotes the 
discount rate, defines the present value of all future overlay costs (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶) at time 𝑇𝑇𝑇𝑇.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇 = 𝐶𝐶𝐶𝐶
(1−𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

(1)

It is, however, necessary to account for that the external shock may take place at any time 
between the most recent rehabilitation (at 𝑡𝑡𝑡𝑡 ≈ 0) and just before the next (𝑡𝑡𝑡𝑡 ≈ 𝑇𝑇𝑇𝑇). In eq. (2), 
the present value of all future pavement renewal costs after 𝑡𝑡𝑡𝑡 = 𝜏𝜏𝜏𝜏 is therefore discounted 
by 𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝜐𝜐𝜐𝜐 = 𝑇𝑇𝑇𝑇 − 𝜏𝜏𝜏𝜏 being the remaining life of the pavement.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝜏𝜏𝜏𝜏 = 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(1−𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
(2)

2 In Figure 2, traffic growth would mean that the time between resurfacing intervals would gradually become 

shorter. Newbery (1989) handles this by assuming a constant time interval while rehabilitation cost increases 

since more must be spent on durability (e.g. thickness of the pavement) in order to keep T constant.
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Differentiating (2) with respect to traffic (𝑄𝑄𝑄𝑄𝜏𝜏𝜏𝜏)3 provides the marginal costs (MC).;

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝜏𝜏𝜏𝜏 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶
𝜕𝜕𝜕𝜕𝑄𝑄𝑄𝑄𝜏𝜏𝜏𝜏

= 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑𝑄𝑄𝑄𝑄𝜏𝜏𝜏𝜏

= −𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(1−𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑𝑄𝑄𝑄𝑄𝜏𝜏𝜏𝜏

(3)

Following Lindberg (2004), it is instructive to rewrite this expression in terms of changes in 
annual average traffic between 𝑡𝑡𝑡𝑡 = 0 and 𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇, say 𝑄𝑄𝑄𝑄�; in the absence of traffic growth, 𝑄𝑄𝑄𝑄𝜏𝜏𝜏𝜏 =
𝑄𝑄𝑄𝑄�. He also introduces the concept of deterioration elasticity (ε),  𝜀𝜀𝜀𝜀 = 𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇

𝛿𝛿𝛿𝛿𝑄𝑄𝑄𝑄�
× 𝑄𝑄𝑄𝑄� 

𝑇𝑇𝑇𝑇
. This is a measure 

of the responsiveness in pavement life to a change in traffic intensity. Since 𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇
𝛿𝛿𝛿𝛿𝑄𝑄𝑄𝑄�

= 𝜀𝜀𝜀𝜀 × 𝑇𝑇𝑇𝑇 
𝑄𝑄𝑄𝑄�

and 
𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝑇𝑇𝑇𝑇

= 1, the relation between a momentary traffic change and deterioration elasticity is given 
by eq. (3’); 

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝜏𝜏𝜏𝜏 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶
𝜕𝜕𝜕𝜕𝑄𝑄𝑄𝑄�

= −𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(1−𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
𝜀𝜀𝜀𝜀
𝑄𝑄𝑄𝑄�

(3’)

The average MC over all possible remaining lifetimes from the date of the traffic increase, or 
analogously over a large number of road sections of different remaining lifetime, is the 
expected marginal cost taken over a probability density function of 𝜐𝜐𝜐𝜐, 𝑔𝑔𝑔𝑔(𝜐𝜐𝜐𝜐):

𝐸𝐸𝐸𝐸[𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶
𝜕𝜕𝜕𝜕𝑄𝑄𝑄𝑄𝜏𝜏𝜏𝜏

] = − 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑄𝑄𝑄𝑄� ∫

𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(1−𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 𝑔𝑔𝑔𝑔(𝜐𝜐𝜐𝜐)𝑑𝑑𝑑𝑑𝜐𝜐𝜐𝜐∞
0 (4)

If the pavement deteriorates deterministically with traffic and if the lifetime of a pavement 
comes to its end exactly when its quality falls to a predetermined level, 𝑔𝑔𝑔𝑔(𝜐𝜐𝜐𝜐): is uniform, i.e. 
𝑔𝑔𝑔𝑔(𝜐𝜐𝜐𝜐) = 1

𝑇𝑇𝑇𝑇
. Under this assumption, eq. (3) collapses to the below expression where the 

expected marginal cost is equal to the deterioration elasticity times the average reinvestment 
cost (the quotient in the below equation)

𝐸𝐸𝐸𝐸 �
𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝜕𝜕𝜕𝜕𝑄𝑄𝑄𝑄𝜏𝜏𝜏𝜏

� = −
𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑄𝑄𝑄𝑄�

1
(1 − 𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇) �−

1
𝑟𝑟𝑟𝑟
𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�

0

𝑇𝑇𝑇𝑇

= −𝜀𝜀𝜀𝜀
𝐶𝐶𝐶𝐶
𝑄𝑄𝑄𝑄�𝑇𝑇𝑇𝑇

We assume, however, that pavement lifetime 𝑇𝑇𝑇𝑇 is not deterministic. Pavement durability is 
modelled using a Weibull function; the motive and variable definitions is given in the next 
section. The survival function of a Weibull function implies the following pdf for remaining 
lifetimes: 

𝑔𝑔𝑔𝑔(𝜐𝜐𝜐𝜐) =
𝑒𝑒𝑒𝑒−𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛼𝛼𝛼𝛼

𝐸𝐸𝐸𝐸[𝑇𝑇𝑇𝑇]
, 0 < 𝜐𝜐𝜐𝜐 < ∞

3 The precise meaning of ’traffic’ is not important here. In the subsequent empirical applications heavy traffic is, 
however measured using the number of standard axels (ESAL) and passenger traffic the number of vehicles.
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Substituting this into eq. (3’) gives eq. (4), which is the analytical version of the model we 
seek to estimate. The first component of this expression is elasticity and the second – cost, life 
expectancy, and traffic – are the same as in the deterministic version. The third component is 
related to the discounting and uncertainty with respect to when in the period between an 
almost new pavement (𝑡𝑡𝑡𝑡 = 0) and a pavement that is about to be replaced (𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇) that the 
external shock takes place. The fourth component allows for uncertainty with respect to when 
the pavement’s life ends. 

𝐸𝐸𝐸𝐸[𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶
𝜕𝜕𝜕𝜕𝑄𝑄𝑄𝑄𝜏𝜏𝜏𝜏

] = −𝜀𝜀𝜀𝜀 𝐶𝐶𝐶𝐶
𝐸𝐸𝐸𝐸[𝑇𝑇𝑇𝑇]𝑄𝑄𝑄𝑄�

𝑟𝑟𝑟𝑟

�1−𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
∫ 𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝛾𝛾𝛾𝛾𝑟𝑟𝑟𝑟𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑𝜐𝜐𝜐𝜐∞
0 (5)

Note that with traffic growth, i.e. if 𝑄𝑄𝑄𝑄𝜏𝜏𝜏𝜏 ≠ 𝑄𝑄𝑄𝑄0, the numerical result of (4) will differ according 
to the date of the external shock. While the growth factor does not affect the expression per 
se, it is addressed in the empirical part of the paper. With 𝑥𝑥𝑥𝑥 representing traffic growth 𝑄𝑄𝑄𝑄𝜏𝜏𝜏𝜏 =
(1 + 𝑥𝑥𝑥𝑥) × 𝑄𝑄𝑄𝑄𝜏𝜏𝜏𝜏−1. Information about 𝑄𝑄𝑄𝑄𝑜𝑜𝑜𝑜 and 𝑥𝑥𝑥𝑥 makes it straightforward to calculate 𝑄𝑄𝑄𝑄�.

The input for calculating expected marginal costs as depicted by eq. (4) requires 
information about contract costs (𝐶𝐶𝐶𝐶) or rather average costs (𝐶𝐶𝐶𝐶 𝑄𝑄𝑄𝑄�⁄ ) as well as features related 
to the way in which pavements decay over time. The estimation of average cost is presented 
in section 3, where we will also be able to define average cost for three different pavement 
qualities. Before that, the next two sections elaborate on engineering aspects of the equation.

2.2 The engineering model
Svenson (2014) uses the semi-parametric Cox proportional hazards model for analyzing
pavement quality deterioration and life-length. One benefit of that approach is that no a priori 
assumption of a specific distribution of the pavement lifetime is required. The term 
‘proportional hazard’ refers to the fact that the ratio between the hazards – the probability of a 
new asphalt being spread, given that it has lasted for a certain period of time – of two road 
sections with different values of one variable (e.g. different pavement types) is constant over 
time. This is convenient for the estimations since the expected life of a certain pavement or 
road section is not affected by when it was originally built, i.e. whether it was spread in 1990 
or 2005 – its expected life is the same.

The Weibull distribution is the only parametric distribution that has this proportional 
hazards feature. An advantage of parametric models compared to the semi-parametric Cox 
model is the ability to directly estimate the effect of explanatory variables on the lifetime. The 
response variable in the Cox model is the hazard and the lifetime can only be estimated 
indirectly through the relationship between the hazard and survival functions. The Weibull 
distribution is flexible regarding the characteristics of the hazard function, and thus it is a
common choice when modeling pavement lifetimes (see e.g. Tsai 2003, Haraldsson 2007,
Hong 2008, Wang 2008, Dong 2011). In the appendix, we show that the Weibull model 
estimates of life length are 8 to 16 percent longer than the Cox model’s for our dataset.

The Weibull distribution function (𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡)), survival function (𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡)) and hazard function 
(𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡)) are represented below; the probability density function of remaining lifetimes 𝜐𝜐𝜐𝜐 was 
defined in section 2.1. The distribution has two parameters. 𝛾𝛾𝛾𝛾 > 0 is the scale parameter, 
defining the spread of the distribution, and 𝛼𝛼𝛼𝛼 is the shape parameter. If 𝛼𝛼𝛼𝛼 = 1 the failure rate 
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is constant over time, while a value of 𝛼𝛼𝛼𝛼 > 1 (𝛼𝛼𝛼𝛼 < 1) implies a failure rate that increases 
(decreases) with time.

𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1 − 𝑒𝑒𝑒𝑒−𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛼𝛼𝛼𝛼

𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = 𝑒𝑒𝑒𝑒−𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛼𝛼𝛼𝛼 

𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) =
−𝑆𝑆𝑆𝑆′(𝑡𝑡𝑡𝑡)
𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡)

           = 𝛾𝛾𝛾𝛾𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼−1

Explanatory variables can be introduced by adding an exponential factor to the hazard.

𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡|𝑧𝑧𝑧𝑧) = 𝛾𝛾𝛾𝛾𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼−1 exp(𝜷𝜷𝜷𝜷′𝒁𝒁𝒁𝒁) (6)

It can be shown that, by taking the log of time 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇𝑇𝑇 and substituting γ = exp(−𝜇𝜇𝜇𝜇) and 
θ = −𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼, (5) corresponds to the log-linear accelerated failure time model (see for instance 
Kiefer, 1988 or Klein and Moeschberger, 2003):

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇𝑇𝑇 = µ + 𝜷𝜷𝜷𝜷′𝒁𝒁𝒁𝒁 + 𝜖𝜖𝜖𝜖 𝛼𝛼𝛼𝛼⁄ (7)

Where 𝜖𝜖𝜖𝜖 is an error term following an extreme value distribution.
Small et al (1987) assume that the quality of a (section of) road at time t deteriorates

deterministically in the way depicted by eq. (5) where 𝑁𝑁𝑁𝑁 = ∑ 𝑄𝑄𝑄𝑄𝛾𝛾𝛾𝛾𝑇𝑇𝑇𝑇
𝛾𝛾𝛾𝛾=0 is the traffic, i.e. the 

number of (light and heavy) vehicles the road is designed to bear before resurfacing; cf. also 
Figure 2. Initial road quality has been normalized to zero, 𝜋𝜋𝜋𝜋0 = 0.

𝜋𝜋𝜋𝜋𝛾𝛾𝛾𝛾 = 𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓(𝑄𝑄𝑄𝑄
�∗𝛾𝛾𝛾𝛾
𝑁𝑁𝑁𝑁

)𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝛾𝛾𝛾𝛾 (8)

where 𝜋𝜋𝜋𝜋𝛾𝛾𝛾𝛾 is the road quality at time 𝑡𝑡𝑡𝑡. Equation (8) shows that the higher the traffic load the 
faster road quality will reach the critical standard 𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓. Further, the exponential part indicates
that pavement roughness may increase at a rate 0 ≤ 𝑚𝑚𝑚𝑚 ≤ 1; if 𝑚𝑚𝑚𝑚 = 0, road quality is 
proportional to cumulative traffic (𝑄𝑄𝑄𝑄 × 𝑡𝑡𝑡𝑡). The presence of the 𝑚𝑚𝑚𝑚-variable may represent
several features. Figure 1 points to that ageing per se may affect the standard, meaning that 
even a road that is not used would decay. If this is driven by weather or climate, different 
countries may see their roads deteriorate in different ways. It is reasonable to give (8) a
stochastic interpretation. i.e. assuming that decreasing road quality increases the probability of 
ending the lifetime. That specific formulation however does not correspond to any familiar 
stochastic model. We therefore use another formulation with similar properties.
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Replacing the exponential variable 𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝛾𝛾𝛾𝛾 in eq. (8) by the power function 𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼−24, and
initial road quality 𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓 by parameters 𝛾𝛾𝛾𝛾𝛼𝛼𝛼𝛼, we get the proportional Weibull hazard eq. (9)
which corresponds to the general form presented above. In order to test hypotheses about the
contribution to road deterioration from vehicles we have introduced the parameter 𝜃𝜃𝜃𝜃 for 𝑄𝑄𝑄𝑄�. In 
the present application, the hazard rate indicates the chance that a pavement will be replaced 
at time t given that it has lasted so long.

𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) = 𝛾𝛾𝛾𝛾𝛼𝛼𝛼𝛼 𝑄𝑄𝑄𝑄� 𝜃𝜃𝜃𝜃 

𝑁𝑁𝑁𝑁
𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼−1 = 𝛾𝛾𝛾𝛾𝛼𝛼𝛼𝛼 exp(𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁𝑁𝑁)𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼−1 (9)

With 𝛼𝛼𝛼𝛼 = 2 and  𝜃𝜃𝜃𝜃 = 1 deterioration is proportional to cumulative traffic. If  𝛼𝛼𝛼𝛼 > 2 (𝛼𝛼𝛼𝛼 < 2)
the deterioration per vehicle increases (decreases) over time. This could be a consequence of 
any non-stationary variable except for traffic; Small et al (1987) refers to it as ageing.  𝜃𝜃𝜃𝜃 ≠ 1 
indicates that vehicles on roads with different traffic intensity do not contribute equally to 
deterioration. With  𝜃𝜃𝜃𝜃 < 1 , vehicles on high-traffic roads do not wear down the road as much 
as vehicles on low-traffic roads. In terms of the hazard in (9) an extra vehicle on roads with 
high traffic do not increase the hazard as much as an additional vehicle on a low traffic road 
(ceteris paribus). The opposite is true for  𝜃𝜃𝜃𝜃 > 1 . The log-linear model for pavement lifetime
corresponding to (9) is:

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇𝑇𝑇 = µ + 𝛼𝛼𝛼𝛼𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑄𝑄𝑄𝑄 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁𝑁𝑁 + 𝜖𝜖𝜖𝜖 𝛼𝛼𝛼𝛼⁄ (10)

In terms of the economic model, 𝛼𝛼𝛼𝛼𝑄𝑄𝑄𝑄 = −𝜃𝜃𝜃𝜃 𝛼𝛼𝛼𝛼⁄  is the deterioration elasticity. Obviously, if
𝛼𝛼𝛼𝛼 = 2 and 𝜃𝜃𝜃𝜃 = 1 so that the hazard is proportional to cumulative traffic, the deterioration 

elasticity is −0.5. This corresponds to the intuition that doubling traffic should half the 
lifetime.

2.3 Light and heavy vehicles
Before estimating eq. (4) or (6) empirically, it is necessary to elaborate on the treatment of 
traffic. The combination of eq. (7) and (8) facilitates an analytical separation of heavy and 
light vehicles in the deterioration process. Equation (7) is used to handle the fact that vehicle 
weight affects road deterioration and consequently that light and heavy vehicles may not be 
handled in the same way in the empirical estimations of road deterioration. 𝑦𝑦𝑦𝑦 is the number of 
days per year; using a traffic-per-day statistic is the standard way in the industry to represent 
traffic information. 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the weight (tons) on axle 𝑎𝑎𝑎𝑎 = 1, … , 𝐴𝐴𝐴𝐴 which is divided by 10 for 
normalisation to Newton. Weight per axle is raised to the power σ to represent the fact that 
road wear of vehicle of class 𝑖𝑖𝑖𝑖 = 1, … , 𝐼𝐼𝐼𝐼 increases exponentially.

4 Both functions are positive and increasing if t>0 and m>0. For the exponential function, the second derivative 
is always positive if m>0, while the second derivative varies with the value of m (α). As long as there is no 
particular motive for assuming an exponential relationship, the two are reasonably similar.
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𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 = ∑ �𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
10
�
𝜎𝜎𝜎𝜎

𝐴𝐴𝐴𝐴
𝑖𝑖𝑖𝑖=1 (7)

𝜋𝜋𝜋𝜋(𝑡𝑡𝑡𝑡) = 𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓
∑ 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞�𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼
𝑖𝑖𝑖𝑖=1
𝑁𝑁𝑁𝑁𝛽𝛽𝛽𝛽�

𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼−1 (8)

𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 therefore translates the weight of each vehicle class to a number representing the impact on 
road standard of that class. The concept is known as “standard axles”, and defined using the 
universally agreed Equivalent Standard Axle Load (ESAL), one ESAL being a single axle of 
18 000 pounds (8 164 kg). Equation (8), where 𝑞𝑞𝑞𝑞�𝑖𝑖𝑖𝑖 is the annual number of vehicles of class 𝑖𝑖𝑖𝑖,
is then simply eq. (5’’) incorporating the fact that vehicles of similar weight cannot be 
handled in the same way.

The value of σ in eq. (7) is of immense importance for the translation from weight per 
axle to road wear. The conventional wisdom is that 𝜎𝜎𝜎𝜎 = 4, commonly referred to as the fourth 
power rule, meaning that an increase from 8 to 10 tonnes per vehicle axle does not increase 
wear of vehicle type 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 by (10/8=) 25 percent, but by ((10/8)4=) 144 percent.

In Table 1 the number of standard axles has been computed for two types of trucks in 
Sweden using the fourth power rule. The first row indicates that there are 4 269 and 176 
trucks in Sweden weighing up to 5 tonne and that have two and three axles, respectively. The 
wear factor – the ESAL number – of both is very low. Therefore, it is obvious that vehicles 
below 5 tonne have no effect on road wear. Since passenger cars typically weigh less than two 
tonnes, they are irrelevant from a quality deterioration perspective. 

The table, secondly, indicates that adding an axle for a given weight will reduce the 
road wear. This also carries over to trucks with higher total weight and more axles. Third, the 
table also illustrates the successive increase of road wear (ESAL) as weight increases. Fourth, 
numbers in italics refer to vehicles built to carry heavy loads but that exceed maximum load 
according to regulations. While the regulated weight maximum of a two-axle truck is 18 
tonnes, well over 8 000 trucks are constructed for carrying more than that.

The fourth power rule emanates from empirical tests is the US mid-west made in the 
late 1950’s. Re-estimating the original data using more up-to-date econometrics, Small et al 
(1987) confirms the result, landing a coefficient of 3.7. Since a number of aspects other than 
vehicle weight may affect road wear, the rule of thumb has been widely challenged. 
Variations in axle configuration (boggy or single axles), type and configuration of tires as 
well as road construction etc. may affect the extent and speed of deterioration. No alternative 
to the power four has, however, won common acceptance.
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Table 1: Number, weight and ESAL of Swedish two- and three-axle trucks. Source: Sweden’s 
vehicle registry and own calculations.

2 axles 3 axles
Total weight, 

tonne
ESAL No. of 

vehicles
ESAL No. of 

vehicles
5 0,01 4269 0 176

7,5 0,06 3163 0,01 114
10 0,18 1833 0,04 43

12,5 0,45 5513 0,1 36
15 0,93 3002 0,21 13

17,5 1,73 3548 0,4 95
20 2,02 7907 0,67 216

22,5 2,18 1363 1,08 339
25 - - 1,64 795

27,5 - - 2,41 22932
30 - - 3,41 9268

32,5 - - 4,7 123
35 - - 7,25 56

As part of a government assignment trigging the research in our paper, resources have also 
been made available for using our institute’s Heavy Vehicle Simulator (HVS) to test the 
fourth power rule. Three types of roads with different strength have been built and then worn 
down in a “lab” by axles of three different weights in order to establish when the surface 
reaches the critical quality level. The equipment makes about 22 000 passages per full day 
corresponding to 150 000 passages per week.5 The trials only generated (3 x 3=) 9 
observations which mean that results are not statistically valid. However, the approach point
to a way for taking this type of analysis one step further. One striking observation is, 
moreover, that the measurement results are very close to the fourth power rule-of-thumb; cf. 
further Erlingsson (2014). This provides further support for not deviating from using the 
standard fourth power rule of thumb in our empirical estimations. 

Except for axle weight, there is a separate discussion about that passenger vehicles may 
damage pavements due to their use of studded tires in countries with repeated freeze-thaw 
cycles. Since we have access to detailed information, it will be feasible to address the 
possibility that not only heavy but also passenger vehicles are of relevance for when a road is 
given a new surface layer. This is done by way of representing usage in terms of both heavy 
vehicles (ESAL) and the number of passenger vehicles in the estimation of pavement life. In 
equation (6), 𝑄𝑄𝑄𝑄 is then separated into 𝑄𝑄𝑄𝑄−𝑗𝑗𝑗𝑗 and 𝑄𝑄𝑄𝑄𝑗𝑗𝑗𝑗, the first accounting for average ESAL of all 
heavy vehicles and the latter the number of passenger vehicles using each road section.

5 Further information is available at http://www.vti.se/en/vti-offers/accelerated-testing-road-construction/
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2.4 Summary
To summarize, eq. (4) establishes the way in which expected marginal costs relating to the 
impact of traffic on the need for reinvestment is to be calculated. Section 2.2 has elaborated 
on the way in which road quality deteriorates over time while section 2.3 has emphasized the 
need to distinguish between heavy and light vehicles. While the difference between vehicle 
types has a huge impact on the numerical outcome of the estimations, it does not affect eq. 
(4). The only consequence is that 𝑄𝑄𝑄𝑄 (and 𝑁𝑁𝑁𝑁) is not conceived of as one number representing
vehicles at large but ESAL’s of heavy vehicles and the number of passenger vehicles.

The generation of information for estimating marginal costs as defined by equation (4) 
therefore means that three hypotheses are tested against available data: quality deteriorates 
due to the extent of heavy vehicles, measured as ESALs (hypothesis 1), the number of light 
vehicles (hypothesis 2) and time, independently from the extent of traffic (hypothesis 3).

3 Calculating reinvestment costs
The Swedish Transport Administration (Trafikverket) tenders both maintenance and 
reinvestment activities. 285 resurfacing contracts, tendered during 2012 and 20136, have been 
made available for deriving a value of average cost for resurfacing, i.e. a value of (𝐶𝐶𝐶𝐶 𝑄𝑄𝑄𝑄�⁄ ) in 
eq. (4). Contracts range in size from just over SEK 1 million to SEK 65 million; the smallest 
contracts are below 1000 m2, the largest being 2.2 million m2. This information is used to 
calculate the average cost for the country as a whole as well as for each region; cf. Table 2.

The table separates three pavement techniques or qualities, warm and half-warm 
pavements and tank lining. These represent different pavement thickness, stone quality etc. 
with warm pavements being the most expensive and used for roads with much traffic. The 
much cheaper tank lining is spread on roads with little traffic. The estimate of national 
average cost is calculated using the relative size (∑ 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖

2
𝑖𝑖𝑖𝑖 ) as weight for region and type of 

pavement. In two regions, no tank-lining and half-warm contracts have been tendered during 
these two years. Since there indeed are roads with these pavement types also in these regions, 
the national average for the respective category has been imputed in these cells. 

The average cost for a contract is SEK 87 per m2. Contrary to ex-ante expectations,
resurfacing using materials defined to be warm are less expensive per m2 that half-warm 
pavements. Officials at Trafikverket have suggested that the half-warm pavement is used on 
roads with intermediate traffic levels (between 1000 and 7000 vehicles per average day) that 
may not have been built to standard from the beginning. If this is correct, the resurfacing 
activity may in reality represent a rehabilitation project. The resurfacing activity and the 
ensuing cost is triggered by that the surface standard of the road is inappropriate, and the 
choice has been made to use this figure in the estimations of marginal costs.

6 Because of low or non-existent inflation during these and the subsequent two years, no price-level adjustment 

have been made. The approximate exchange rate is €1=SEK9,20
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Table 2: Average cost per contract in six regions and for three types of pavement. 2012 and 
2013, SEK/m2.7 None – no contract using this method has been tendered in this region. 
Number within brackets has been imputed using the average cost in these cases.

Method
Region Tank-lining Half-warm Warm Total
Middle Average cost, 

SEK
26 127 110 98

No. of contracts 8 9 19 37
∑ mi

2
i million 5.1 1.9 4.2 11.3

North Average cost, 
SEK

21 148 108 124

No. of contracts 4 25 19 50
∑ mi

2
i million 4.1 2.8 2.9 9.9

Sthlm Average cost, 
SEK

31 (124) 100 97

No. of contracts 1 No tender 29 30
∑ mi

2
i million 0.5 - 2.6 3.1

South Average cost, 
SEK

38 (124) 78 68

No. of contracts 13 No tender 42 55
∑ mi

2
i million 2.6 - 4.8 7.4

West Average cost, 
SEK

21 79 81 71

No. of contracts 10 9 45 64
∑ mi

2
i million 3.4 3 5.7 12.1

East Average cost, 
SEK

20 101 86 78

No. of contracts 11 13 25 49
∑ mi

2
i million 5.1 2.1 6 13.2

Total Average cost, 
SEK

27 124 90 87

No. of contracts 47 56 179 285
∑ mi

2
i million 20.7 9.7 26.1 56.8

4 Estimating pavement life 
Trafikverket’s Pavement Management System (PMS) is used for storing data collected during 
annual road quality measurement activities. The system also registers when a road is “treated” 
in different ways, including the timing of major pavement renewals. In addition, it includes 

7 Costs are in the price level of the respective years, but inflation was around zero at this time. The exchange rate 

is approximately SEK9=€1 and SEK7.50=$1
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information about traffic using each road segment. Section 4.1 provides further information 
about this dataset, section 4.2 details the Weibull model used for estimating pavement life 
while section 4.3 presents the results.

4.1 Data
The 2012 version of the PMS comprises 390 966 observations of homogeneous road sections 
that vary in length from over one kilometer to only a few meter. Only sections that are 50 
meters or longer have been retained. Sections shorter than 50 meters are often crossings or 
junctions where the pavement life usually differs from the road network in general. The 
elimination of short sections in combination with removal due to data inconsistencies has left
266 614 road sections to use in the analysis.

A lot of information is available about each section.8 This includes which out of five 
different width classes that the section belongs to as well as the precise type of pavement laid, 
facilitating the estimation of life expectancy on a very disaggregate level. The previous 
section, however, demonstrated that information is less opulent about resurfacing costs. Since
the only type of information that can be used for estimating marginal costs at a disaggregate 
level is three main categories of pavement defined in section 3 and since each of the six 
regions tender these contracts, 18 disaggregate observations of age and costs are made. Except 
for possible managerial differences, the regions differ with respect to climate, the situation in 
the north of the country being different from those in the south. 

Table 3 provides some descriptive information about the Swedish road network in the 
year 2012. This information is acquired from the Swedish National Road Database, which 
unlike the PMS database comprises up-do-date information about all national roads. The fifth 
column illustrates that the most expensive and resilient hot pavement type indeed is used for 
resurfacing roads with much traffic.

Section 2.3 emphasized the necessity to separate light (𝑄𝑄𝑄𝑄−𝑗𝑗𝑗𝑗) from heavy vehicles (𝑄𝑄𝑄𝑄𝑗𝑗𝑗𝑗) in 
eq. (4) and in particular the huge significance of heavy vehicles’ weight per axle. The final 
step in the compilation of data for the estimations is therefore to convert the number of heavy 
vehicles to ESALs. An extensive system is in place for measuring traffic on network links, 
including the share of heavy vehicles. While the number of heavy vehicles is known, the 
information about vehicle weight is poor. However, since 2004, Trafikverket collects this type 
of information at 12 places across the country using a Bridge Weigh-in-Motion system. One 
week per year, the length of each heavy vehicle is registered as well as the weight of each 
axle. While there are several shortcomings with the system per se, this provides the type of 
information appropriate for the present purpose; see further Erlingsson (2010).

Based on suggestions from Trafikverket staff, we have converted the observed number 
of heavy vehicles (j) on road section i (𝑄𝑄𝑄𝑄𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖) to ESAL for four different types (k) of roads, 
using coefficient 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘. 𝜑𝜑𝜑𝜑1 = 1.1 for European highways; 𝜑𝜑𝜑𝜑2 = 1.0 for national roads; 𝜑𝜑𝜑𝜑3 =
0.8 for county roads if the share of heavy traffic is below 13 percent; 𝜑𝜑𝜑𝜑4 = 1.5 for county 

8 Svenson (2014) describes this information in more detail.
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roads if the share of heavy traffic is 13 percent or higher. Our concluding discussion includes 
a test of the sensitivity of our results for these assumptions.

Table 3: Descriptive statistics of traffic and road length within each region and surface 
category registered the year 2012. Source: Swedish National Road Database, NVDB.

Region Surface 
category

Traffic (million 
vehicles/year)

Road length 
(km)

Average no. of 
vehicles/road 
km, million

Thereof 
heavy traffic 

(%)
Middle Cold 6442 8319 30,3 11
Middle S.D. 745 2504 7,3 8
Middle Hot 43627 10211 345,9 11

North Cold 1595 2464 19,8 14
North S.D. 273 777 19,1 10
North Hot 43679 4387 1011,6 8

Sthlm Cold 112 166 6,3 6
Sthlm S.D. 620 1713 7 7
Sthlm Hot 62709 10135 745,6 9

South Cold 1296 1349 22,8 7
South S.D. 714 2152 17,3 8
South Hot 113224 14062 664,3 10

West Cold 1309 1855 12,6 8
West S.D. 762 1825 8,2 7
West Hot 48997 9656 407 13

East Cold 548 682 22,5 9
East S.D. 817 3102 6,3 6
East Hot 49356 10009 462,4 13

Notes: S.D.= surface dressing

4.2 Modeling life length
In order to compute the expected marginal present value cost in eq. (4) it is necessary to 
estimate the deterioration elasticity, ε, and the Weibull parameters α and γ. For each renewal 
activity, we have information about traffic (𝑄𝑄𝑄𝑄) as well as the number of years the road link 
has been in use. Heavy traffic is represented as 𝑄𝑄𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 and the number of passenger vehicles as 
𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. Since neither 𝑁𝑁𝑁𝑁 (the amount of traffic that has used a road until renewal) nor 𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓 (the 
actual, critical level of road quality), can be directly observed, a vector of covariates 𝑴𝑴𝑴𝑴 that 
may have an impact on the pavement lifetime, including a constant, is used in order to provide 
a consistent estimate of the traffic coefficient. A linear model is then given by eq. (8) 
representing the empirical equivalent of eq. (6):
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇𝑇𝑇 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼𝛼𝛼𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑄𝑄𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝛼𝛼𝛼𝛼𝑄𝑄𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝜷𝜷𝜷𝜷𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 (8)

Estimated coefficients 𝛼𝛼𝛼𝛼𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝛼𝛼𝛼𝛼𝑄𝑄𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 are used for testing hypothesis 1 and 2 respectively. If 
these coefficients are significantly different from zero they will signal the impact of heavy 
traffic and passenger vehicles on reinvestment costs. If so, the coefficient values will also be 
used for calculating the respective marginal costs. In addition, the value of 𝛼𝛼𝛼𝛼� is used for 
testing the hypothesis that there is an independent effect on the hazard of a road being 
“treated”. Specifically, if  𝛼𝛼𝛼𝛼� > 2 the last component of eq. (5’) makes the hazard increase at 
an increasing rate with time. With estimates of 𝛼𝛼𝛼𝛼𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝛼𝛼𝛼𝛼𝑄𝑄𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 it is also feasible to compute 
the deterioration elasticities:

𝜀𝜀𝜀𝜀𝐸̂𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 = 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑄𝑄𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

= −𝛼̂𝛼𝛼𝛼𝑄𝑄𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 and 𝜀𝜀𝜀𝜀𝑐̂𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑇𝑇𝑇𝑇
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= −𝛼̂𝛼𝛼𝛼𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

4.3 Results
Table 4 provides the results of the estimates of eq. (8). As expected, the large number of 
observations result in very precise estimates, for instance establishing that cold surfaces as 
well as surface dressing have statistically significantly shorter life than warm pavements. 
Moreover, Stockholm’s roads last shorter time than roads in the other regions; for instance, 
roads in the Middle region “live” about 14 percent longer than roads in Stockholm. A possible 
reason is that even though roads in Stockholm are robustly built, the road construction may 
not be robust enough for the much higher traffic load in this region compared to other regions.

Based on the results summarised in table 4, hypothesis 3 can be rejected while 
hypotheses 1 and 2 are not: Both light and heavy vehicles affect the timing of resurfacing 
activities and consequently the life length of pavements, while there are no aspects related to 
time or weather that has this impact (𝛼𝛼𝛼𝛼� = 1,61 which is lower than the critical value 𝛼𝛼𝛼𝛼� < 2).
Bearing in mind the crude way to transform information about heavy vehicles into ESAL, it is 
noteworthy that the impact of passenger vehicles on surface life is at least as strong as the 
consequences of variations in heavy vehicles.

Our hypothesis is that the significant value of the coefficient for cars can be rationalized
by their use of studded tires. If this hypothesis is correct, it is reasonable that cars’ road wear 
in the north of the country is at a lower level than in the reference region, which is Stockholm
in the south-east part of the country. This is so since the road surface furthest north is covered 
by snow and ice for longer periods than in the southern parts of the country, meaning that the 
studs do not wear down the pavement for long periods. In addition, roads in the southern parts 
of Sweden have less harsh winters than up north, meaning that fewer cars use studded tires.9

Interacting cars and regions provide an indication of that these conjectures may be correct. 
Compared to Stockholm, the car-region coefficient is some 20 percent higher for regions 
North, South and West while roads in regions East and Middle last about 10 percent longer. 

9 SMHI (2008) indicates that 44 percent of cars in region South had studded tires in 2008 while the average for 
the rest of the country is close to 80 percent.
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Table 4: Estimates of surface life length using a Weibull model. 252 309 observations of 
homogeneous road sections from the Swedish Pavement Management Systems.

Coefficient Std. Error Z p-value
Intercept 4,03 0,014 282,1 0,0000
𝜀𝜀𝜀𝜀𝐸̂𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 -0,09 0,002 -45,4 0,0000
𝜀𝜀𝜀𝜀𝑐̂𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 -0,10 0,003 -40,4 0,0000
Hot* 0,00
Cold -0,24 0,005 -48,0 0,0000

Surface dressing -0,14 0,004 -36,3 0,0000
Sthlm* 0,00
Middle 0,14 0,007 19,8 0,0000

North 0,24 0,008 31,0 0,0000
South 0,19 0,007 29,0 0,0000
West 0,20 0,007 30,0 0,0000
East 0,03 0,007 3,71 0,0002

Log(1/ α) -0,48 0,002 -249,8 0,0000
α 1,61

* - reference category.

Figure 3 shows the empirical (in black) and predicted cumulative hazard functions. The 
cumulative hazard, which is equivalent to the integrated hazard function, is often used as a 
graphical assessment of the goodness of fit of the parametric model. The empirical cumulative 
hazard represents the entire data set by calculating the Nelson-Aalen estimator; 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is the 
number of events (i.e. resurfacing actions) at time 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖, and 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 is the number of objects (road 
sections) at risk of the event at 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖:

Λ�(𝑡𝑡𝑡𝑡) = �
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖<𝛾𝛾𝛾𝛾

The predicted curves represent mean values for traffic and ESAL and the Stockholm region. 
Stockholm has among the shortest lifetimes, which is why all predicted curves lie above the 
empirical. A fairly straight empirical cumulative hazard implies that 𝛼𝛼𝛼𝛼 (the shape parameter of 
the Weibull distribution) is close to 1. The estimated value of 𝛼𝛼𝛼𝛼 is 1,61, which makes the 
predicted curves bent slightly inwards and the hazard (i.e. failure rate) is increasing with time.

Based on the results in table 4, estimated pavement life length based on car traffic and 
ESAL is summarized in table 5. Median lifetime is strikingly similar across surface types and 
regions.10 Hot pavements live slightly shorter in spite of being more robust. Most probably, 
the reason is that they are used by much more traffic than roads with other types of surface 
treatment.

10 Median life is the spot where the survival function 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡)  =  0.5. The hazard function ℎ(𝑡𝑡𝑡𝑡), which is estimated, 
is directly related to the survival function since  ℎ(𝑡𝑡𝑡𝑡)  =  −𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)/𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡.
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Figure 3: Empirical and predicted cumulated hazards for surface types.

Table 5: Lifetimes estimated from the Weibull model.

Region Surface ADT cars ADT ESAL Median 
life (years)

Middle Cold 344 22 16,7
Middle S.D. 455 36 17,2
Middle Hot 1339 105 16,2
North Cold 326 36 17,8
North S.D. 242 26 20,8
North Hot 1244 110 17,9
Sthlm Cold 283 12 15,7
Sthlm S.D. 498 27 15,2
Sthlm Hot 4999 219 11,5
South Cold 271 11 19,2
South S.D. 286 13 20,8
South Hot 1480 98 16,9
West Cold 339 15 18,5
West S.D. 486 25 18,8
West Hot 2597 206 15,1
East Cold 278 12 16,2
East S.D. 372 17 16,7
East Hot 2084 136 13,5

Average 2280 143 17

Notes: ADT = average daily traffic, S.D.= surface dressing
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5 Calculating marginal costs
Equation (4) is used for calculating marginal costs. In order to elaborate on the logic of the 
estimations, a particular example is given. 

Example: Calculation of the national average marginal cost. C is the construction cost,
which by Table 2 is SEK 87 per square meter for an average road. Q is the traffic using the 
average road; in 2012 this was 2280 cars and 143 ESAL (trucks) per average day. The 
average pavement lasts for an average 17 years (T). In order to derive total traffic over the life 
of the average road (N), and since car traffic has increased by 1 percent p.a., it is 
straightforward to establish that over the period there are 2112 cars per average day.11 With 
traffic growth at 1.8 percent p.a. for heavy vehicles, the corresponding number of ESALs is 
125 vehicles per average day over the life cycle. The average number of heavy vehicles and 
cars using the average road between its birth and death is therefore (17 years * 365 days * 
125=) 776 000 ESALs and (17 years * 365 days * 2112=) 13.1 million cars. The average cost 
is SEK 87 divided by these numbers, i.e. SEK 1,12 * 10-4 per ESAL and 6.64*10-6 per car.

The first component of eq. (4), 𝜀𝜀𝜀𝜀, represents the deterioration elasticity, now split in two, i.e. 
𝜀𝜀𝜀𝜀𝑐̂𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 and 𝜀𝜀𝜀𝜀𝐸̂𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸. The numbers in table 3 indicate that increasing ESAL or number of cars by 
10 percent will reduce the service life of pavements by about one percent for both categories.
Multiplying the average cost by the respective elasticities, the result is (0.0888*1,12 * 10-4 =)
9.95*10-6 for ESAL and (0,1036*6.64*10-6 =) 0,69*10-6 for cars.

The official discount rate for the transport sector, r, is 3.5 percent. With median life being 17
years, the value of 𝑟𝑟𝑟𝑟

�1−𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
is 0.078. The final component of eq. (4) is the integral

∫ 𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑𝜐𝜐𝜐𝜐∞
0 . This is a means for handling the fact that the external shock, i.e. the non-

expected increase in traffic, could materialise at any point of time between the previous and 
the next date for renewal. The value of the integral is 12.5, and the combination of the last two 
terms 0.976. Given eq. (4), the marginal cost estimate is (9.95*10-6 * 0.976 =) SEK 9.71*10-6

for each ESAL and (0.69*10-6 * 0.976 =) SEK 0.673*10-6 for each car.

This benchmark estimate of marginal costs is calculated per square meter at the same time as
the standard way to represent traffic is by vehicle km. The average Swedish road being 6.75
m wide, and multiplying by 1 000 for transfer from meter to kilometre, the marginal cost for a 
heavy vehicle using an average road is (6.75 * 1 000 * 9.71*10-6 =) SEK 0.066 per ESAL km 
and (6.75 * 1 000 * 0.673*10-6=) SEK 0.0052 per km for cars. End of example.

The numerical example is based on an average vehicle using an average road. A detailed 
calculation of marginal costs is, however, based on 477 262 observations from the Swedish 
National Road Database, one for each road section. In this, all road sections are given a 

11 y*1,0116=2280 => y=1944, => (2280+1944)/2)
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weight based on length relative to total road length in order to create the total average. This is 
the approach used to derive all values in table 6. Comparing the last row in table 6 with the 
manual average calculated in the above example, it is obvious that the values in the table are
much higher. The reason is that the table provides a better accuracy, accounting for actual 
road length rather than (implicitly) assuming all links to be equally long. 

Table 6: Marginal and average cost, SEK per ESAL kilometer and SEK per car kilometer.
Price level 2013.

Region,
pavement type

ESAL Car

Marginal Average Marginal Average

Cost Cost

Middle, Cold 0,60 7,09 0,067 0,63
Middle, S.D 0,25 3,02 0,022 0,21
Middle, Hot 0,25 2,86 0,043 0,43

North, Cold 0,54 7,38 0,068 0,75
North, S.D 0,14 1,94 0,013 0,14
North, Hot 0,36 4,78 0,014 0,16

Sthlm, Cold 1,14 13,46 0,076 0,72
Sthlm; S.D. 0,25 2,97 0,016 0,15
Sthlm, Hot 0,38 4,39 0,021 0,20

South, Cold 0,67 7,98 0,045 0,44
South, S.D 0,33 3,99 0,020 0,20
South, Hot 0,19 2,27 0,013 0,12

West, Cold 0,42 5,05 0,033 0,32
West, S.D 0,14 1,69 0,009 0,09
West, Hot 0,19 2,33 0,014 0,14

East, Cold 0,68 7,92 0,046 0,44
East, S.D 0,20 2,37 0,013 0,13
East, Hot 0,30 3,50 0,020 0,19

All 0,32 3,78 0,027 0,27

Note: S.D. – surface dressing 
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The only available point of reference for benchmarking is Haraldsson (2007); his aggregate 
estimates are SEK 0.01 for heavy vehicles and 0,001 for cars.12 This means that our cost 
estimates are higher than before. One reason may be that heavy traffic is here transformed 
from the number of vehicles to ESAL, which was not the case in the previous study. Another 
difference is that elasticities are now -0,09 and -0,10 while they were -0,04 and -0,052 in 
Haraldsson (2007) for heavy and light vehicles, respectively, i.e. they are now twice as 
large.13 Moreover, we use more than twice the number of observations. Finally, although both 
studies are based on information from the same source, seven more years of observations are 
now available. We have seen in other, similar studies that there may be a change in 
maintenance methods during these years that may have consequences for elasticity estimates. 
It would require further analyses in order to sort out these differences.

6 Discussion
Table 7 provides the policy context for the present paper, summarizing all marginal cost 
components from our recent report to the government; cf. VTI (2014). Since the present paper 
has been updated after the submission of the report, the wear & tear costs in table 7 differ 
slightly from the results in table 6. This also illustrates the need to be magnanimous toward 
the precise cost levels since the devil certainly is in the detail. With this in mind, the 
indication is that taxation of petrol used by cars is substantially above marginal costs while 
the opposite situation is true for heavy vehicles.

Table 7: Average marginal costs for cars and trucks in Sweden, SEK 2013
Cars Trucks

Wear & Tear 0,06 0,63
Accident risk 0,01 0,005
CO2 0,12 0,70
Other emissions 0,02 0,20
Noise 0,02 0,09
Congestion - -
Aggregate marginal cost 0,22 1,64
Fuel tax 0,45 1,02

The availability of disaggregated data makes it possible also to consider the implications of 
our results from a road type perspective. Table 8 establishes the costs for Europe, national and 
county type roads according to the actual mix (and length) of roads with Cold, Surface 

12 The costs used in Haraldsson (2007) is based on a reference from 2004. Assuming that the cost per m2, which 

is SEK 65, refers to year 2000, and using CPI, the corresponding number for 2012, which is the year used here, 

is SEK 78. Since the cost for asphalt has increased much faster than consumer prices this compares well with the 

value used here, i.e. SEK 85 per m2.
13 The covariates in the respective equations are, however, not the same.
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Dressing and Hot pavements. County roads are lesser-used roads while the bulk of long-
distance transport and travel in the first place use Europe but also national roads. A substantial 
proportion of Europe roads is motorways.

Using a weighted average which accounts for the length and width of sections with the 
respective type of pavement, Table 8 indicates that using heavy vehicles on county roads costs 
about 150 to 300 percent more than using them on national and European roads built for a
higher share of heavy vehicles. The difference is smaller for cars with a marginal cost that is
130 to 190 percent higher for county roads vs. European and national roads, respectively. The 
origin of this difference is the fact that county roads are not built for a substantial share of 
heavy traffic. This indicates a case for differentiated charging, which would incentivize heavy 
vehicles to use the major roads even more than today.

Table 8: Marginal costs for heavy and light vehicles using different road categories
ESAL Car

Europe 0,24 0,023
National 0,12 0,016
County 0,36 0,030

National average 0,32 0,027

The results so far refer to an average heavy vehicle. Using information of the type provided 
by Table 2 would, however, be straightforward to estimate costs for each combination of 
vehicle weight and number of axles and to calculate a marginal cost for each heavy vehicle 
class. The Swedish government has, indeed, established a committee for designing a weight-
distance tax with these qualities and for considering the costs of implementing this type of 
tax. The committee is also supposed to consider the appropriateness and costs for 
differentiating charges across different types of roads in the way indicated in Table 8.

With these results in mind, it is not satisfactory that the information about actual vehicle 
weight is of meager quality. We have therefore made an assessment of the implications of this 
uncertainty around the 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘coefficients applied in section 4.1. Table 6 establishes a national 
average marginal costs at SEK 0,32. Eq. (4) demonstrates why the deviation is non linear: 
through 𝑄𝑄𝑄𝑄 and through 𝛾𝛾𝛾𝛾 in the integral. 
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Figure 4: Variation in marginal cost per ESAL allowing for 50 percent higher and lower 
average values of  𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘 around the benchmark average SEK 0,32.

7 Summary
The present paper has estimated the marginal costs for road reinvestment using information at 
a very disaggregated level. One robust result of the analysis is that not only heavy but also 
light vehicles affect the periodicity of resurfacing activities. Most probably, this is the 
consequence of the use of studded tires in a country with freeze-thaw cycles.

While both trucks and cars have an impact on the timing of resurfacing, the analysis has 
not provided any indications of that time per se is of separate relevance for life length. One 
possible reason is that vehicle wear triggers the resurfacing activity long before the passage of 
time has any effects on the aging of the road surface.

However, it is then reasonable to ask which aspects other than vehicle wear that are of 
relevance for understanding the complex relationships illustrated in Figure 1. Turning the 
question upside down, if a doubling of traffic does not reduce the lifetime of the pavement by 
50 percent, what is then decisive factors for road deterioration?

Based on World Bank research in developing countries during the 1960’s, Newbery 
(1988) discusses different reasons for road quality deterioration. Contrasting his observations 
with the outcome of the present analysis may imply that roads deteriorate over time and due 
to weather and climate in different ways in cold and warm climates. It is also important to 
acknowledge that the heterogeneity across sections of roads is only partly characterized by 
available data. In particular, very little is known about the quality of the road beneath the top 
layer. The “life” of roads within a certain region that are classified in the same way and that 
are used by a similar number of vehicles may still differ substantially due to that they are built 
on solid rock, on sand or on materials that are not stable during the spring thaw. Constructions 
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may also differ simply because of different skills of the construction teams or since sub-
structures built long ago had a lower standard than today. While information is abundant 
about surface structure, the variation in substructure still leaves the analyst with only partial 
information of what drives quality deterioration. Svenson et al. (2016) have addressed the 
stochastic nature of the data at hand. These results show that road sections’ lifetimes varies 
significantly after controlling for several explanatory variables, indicating that latent variables 
such as substructures have a substantial impact on road lifetimes.

One implicit observation of this underlying heterogeneity has been made with the 
observation that half-warm pavements actually are more expensive per square meter than 
warm mixes. This is contrary to the fact that the half-warm mix in isolation is cheaper than 
the warm mix. The blip in cost data is most probably an indication of that the half-warm type 
of surface is spread on roads that were not built for the traffic it actually is carrying. As a 
result, resurfacing of these roads require more extensive rehabilitation activities, increasing 
the average (and marginal) costs.

Except for the impact on rehabilitation, variations in traffic may also affect the spending 
on day-to-day maintenance. This possibility is addressed by Haraldsson (2007) and is updated 
by Swärdh & Jonsson (2014) in a study that is parallel to the present. In addition, Anani and
Madanat (2010) consider the possibility of activities which are more intense than maintenance 
but less so than complete resurfacing. This could, for instance, be substantial pothole mending 
or other activities with a possible impact on the timing of future resurfacing. Except for this 
type of activity possibly representing a component of marginal costs, it may affect the 
analysis of observed life cycles and in that respect represent an additional source of 
(unobservable) heterogeneity. In the wake of data about these types of activities, it is 
impossible to extend the analysis in this direction.
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Appendix

Table A1 shows the difference in expected median lifetime between the parametric Weibull 
model and the semi-parametric Cox Proportional Hazards model. While the Weibull model 
can be specified to model the (logarithm of the) lifetime, the Cox model is semi-parametric in 
the sense that the hazard 𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) is not specified to any particular parametric shape. Median 
lifetimes from the Weibull model can be obtain through prediction because the hazard has a 
particular shape and log(lifetime) can be modelled directly. 

The Cox model rather models the hazard in the following way:

𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) = 𝜆𝜆𝜆𝜆0(𝑡𝑡𝑡𝑡)exp (𝑋𝑋𝑋𝑋𝛼𝛼𝛼𝛼)

To get estimates of the median lifetimes from a Cox model, the relationship between the 
survival function and the hazard function can be used. A non-parametric estimate of the 
baseline hazard ℎ0(𝑡𝑡𝑡𝑡) must be used, for example through:

𝜆̂𝜆𝜆𝜆0(𝑡𝑡𝑡𝑡) =
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

∑ exp (𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘𝛼̂𝛼𝛼𝛼)𝑘𝑘𝑘𝑘∈𝑅𝑅𝑅𝑅(𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖)

where 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is the number of events at time 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) is the set of individuals that could 
experience the event of interest at time 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖. The 𝛼̂𝛼𝛼𝛼-estimates are obtained through maximization 
of a partial likelihood (Hosmer et al. 2008). The median lifetimes are found where the 
survival function 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) =  0.5, where the survival function is found by its relationship with the 
hazard function:

𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = exp[ − Λ(𝑡𝑡𝑡𝑡)]

where Λ(𝑡𝑡𝑡𝑡)is the cumulative hazard function, estimated as;

Λ�0(𝑡𝑡𝑡𝑡) = � 𝜆̂𝜆𝜆𝜆𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖:𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖<𝛾𝛾𝛾𝛾

𝜆̂𝜆𝜆𝜆𝑖𝑖𝑖𝑖 =  𝜆̂𝜆𝜆𝜆0(𝑡𝑡𝑡𝑡), and the estimated survival function is:

S�0(𝑡𝑡𝑡𝑡) = exp[ − Λ�0(𝑡𝑡𝑡𝑡)]

The table demonstrates that lifetimes estimated from the Weibull model are 0.5-2.2 years 
longer than those from the Cox model. This is due to the parametric form of the hazard 
specified in the Weibull model, which makes a stronger assumption about the remaining 
lifetime of the censored observations. With a large share of censored observations, the Cox 
model is more likely to underestimate the lifetime, while the Weibull model might over- or 
underestimate it depending on how close the real hazard is to the assumed Weibull hazard.



A MICRODATA ANALYSIS APPROACH TO TRANSPORT INFRASTRUCTURE MAINTENANCE

Paper I I I

88

28

Table A1: Estimated lifetimes in years, comparison between a Weibull model and Cox 
proportional hazards model.

Region Surface 
Type

Median Age
Weibull

Median 
Age Cox

Difference 
(years)

Middle Cold 16,7 15 1,7
Middle S.D. 17,2 16 1,2
Middle Hot 16,2 15 1,1
North Cold 17,8 16 1,8
North S.D. 20,8 20 0,8
North Hot 17,9 17 0,9
Sthlm Cold 15,7 14 1,7
Sthlm S.D. 15,2 14 1,2
Sthlm Hot 11,5 11 0,5
South Cold 19,2 17 2,2
South S.D. 20,8 19 1,8
South Hot 16,9 16 0,9
West Cold 18,5 17 1,5
West S.D. 18,8 17 1,8
West Hot 15,1 14 1,1
East Cold 16,2 14 2,2
East S.D. 16,7 15 1,7
East Hot 13,5 12 1,4
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Detecting Road Pavement Deterioration with Finite

Mixture Models

Kristin Svenson∗, Stuart McRobbie†, Moudud Alam‡

Abstract

Budget restrictions often limit the number of possible maintenance activities in a road net-
work each year. To effectively allocate resources, the rate of road pavement deterioration is
of great importance. If two maintenance candidates have an equivalent condition, it is rea-
sonable to maintain the segment with the highest deterioration rate first. To identify such
segments, finite mixture models were applied to road condition data from a part of the M4
highway in England. Assuming that data originates from two different normal distributions
– defined as a “change” distribution and an “unchanged” distribution – all road segments
were classified into one of the groups. Comparisons with known measurement errors and
maintenance records showed that segments in the unchanged group had a stationary road
condition. Segments classified into the change group showed either a rapid deterioration,
improvement in condition because of previous maintenance, or unusual measurement errors.
Together with additional information from maintenance records, finite mixture models can
identify segments with the most rapid deterioration rate, and contribute to more efficient
maintenance decisions.

Keywords: Finite Mixture Models, Pavement Deterioration, Road Maintenance

1 Introduction

There is a constant challenge in optimizing the efficiency of maintenance planning. Modern
database systems can store road condition data for short segments of an entire road network
that makes it possible to analyze microdata for macroscale applications. However, it is not
realistic to manually examine and process datasets of such magnitudes, and the use of analytical
models that can display relevant information become increasingly important.

Probabilistic modeling of pavement deterioration is a well-explored research topic. For in-
stance, Lethanh and Adey (2012) use exponential hidden Markov models to model deterioration
when road condition data is sparse. Hong and Prozzi (2006) applied a Bayesian approach and
found it successful in finding parameter distributions for their pavement performance model.
However, when making practical decisions on actual maintenance locations, the maintenance
planner has to look at the condition data and determine which sections should be maintained
as a priority, and which can be left until later. When making this decision the maintenance
engineer must consider that sometimes the rate of deterioration is more important than the
absolute condition: a section of road could be deteriorating fast, but still be in an acceptable
overall condition, while another section could be stable, but in a less acceptable state. Main-
taining the first section before it reaches an unacceptable state may be a more efficient use of

∗School of Technology and Business Studies, Dalarna University. E-mail: kss@du.se
†Transportation Research Laboratory. E-mail: smcrobbie@trl.co.uk
‡School of Technology and Business Studies, Dalarna University. E-mail: maa@du.se
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resources than simply maintaining the site in worse, but stable condition and allowing the rapid
deterioration to continue.

By clustering parts of the network based on the measured change in the condition it is possible
to objectively identify road segments that show the highest rates of deterioration. Discussion
of clustering methods is a wide topic in both statistics and machine learning. Algorithms for
clustering include connectivity based clustering which uses distance as a mean of clustering (see
e.g. Ward Jr, 1963; Sibson, 1973; Defays, 1977), k-means clustering which assigns an object
to the nearest defined cluster center (see e.g. Steinhaus, 1956; Hartigan and Wong, 1979), and
distribution-based clustering which distinguishes clusters in data based on probabilistic models.
Distribution-based models can capture correlations and dependencies between variables in a
way that machine learning models often cannot. They are therefore a good choice when the
theoretical foundation of the model is of importance, as well as the actual clustering.

In the class of distribution-based clustering methods, finite mixture models are the most
commonly used (McLachlan and Basford, 1988). Within transportation research, they are not
widespread but have been applied by e.g. Park and Lord (2009) who combined mixtures of
two different distributions to find sub-populations in motor vehicle crash data from Toronto,
Canada. Finite mixture models are more prevalent in other fields such as biochemistry, where
they have been used to model protein evolution (Lee et al., 2008); in genetics, where they are
used to detect heterogeneity in gene sequences (Pagel and Meade, 2004); and in medicine, where
heart rate variability has been modeled with gaussian mixture models (Daeyoung and Lindsay,
2015). Finite mixture models are also valuable for their flexibility when modeling unknown
distributions, as proposed by Laitila and Karlsson (2014).

To be able to detect road pavement deterioration with finite mixture models, the road
network is considered as being composed of a number of segments (short lengths of contiguous
road which can be characterized by a set of condition variables). When considering a time
series of condition measurements we can identify two groups within the data: a “change” group,
where some or all of the variables show significant change between measurement points and
an “unchanged” group where the variables show little or no change. Finite mixture models
are used to classify all segment into either of these groups. In literature, this type of mixture
is described as an outlier density: two normal distributions with a similar mean but different
variances (McLachlan and Peel, 2000, p. 14). By applying a multivariate distribution of several
road condition variables, as much information as possible is used to distinguish between real
changes and random errors. This could provide useful information about the rate of progression
of the deterioration. Knowing which segments have a more severe deterioration, the engineer
responsible for the maintenance of the road network can make a more efficient use of resources
in determining which sites to maintain.

The aim of this paper is to evaluate if finite mixture models can help identify road seg-
ments that have a higher deterioration rate by clustering segments into a change group and an
unchanged group.

2 Methods and Materials

2.1 Data material

The data used in this study comes from the Traffic-Speed Condition Surveys (TRACS), which
is performed annually on the road network maintained by Highways England. Finite mixture
models have been applied to road condition measurement data from January 2013 to January
2015, measured on parts of the M4 motorway and its junction with the A34 in west Berkshire
(Junction 14). Only data from lane one, the leftmost lane in each direction, has been used. The

2
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total length of this dataset is 88.24 kilometers divided into 10 meter segments.
TRACS surveys are carried out at traffic speed by a vehicle fitted with a number of advanced

measurement systems and sensors. The survey makes measurements which are then processed
and turned into a number of condition parameters, including GPS, road geometry, pavement
longitudinal and transverse profile, surface texture depth, and cracking. The parameters are
reported for every 10 m subsection of the Highways England road network and are stored in a
condition database where they can be accessed by maintenance engineers. In spite of the best
efforts of the survey contractors, auditors and researchers involved in developing the parameters
and systems, it is important to understand that there are a number of sources of error in
the measurements. These include systematic errors caused by variations in driving line and
environmental conditions, and measurement errors because of random system variability. To
minimize possible sources of systematic errors, only surveys from one single contract period is
used. Within a contract period, one company is contracted to do the TRACS measurements with
equipment that is calibrated and accredited according to defined criteria each year. Between
contract periods, different companies using vehicles with different calibration methods can cause
systematic measurement errors. For TRACS surveys, a contract period is typically four years.

Another source of systematic error is the alignment of data from successive surveys. If the
data is not correctly aligned between each measurement occasion, the potential change that
is found could simply occur because different sites are compared. Before the finite mixture
models are fitted to the data, it has been through a process of alignment using GPS data
in the first step, and profile-based alignment in the second step. The GPS alignment is a
relatively coarse method, providing alignment within a couple of meters, while the profile-based
alignment uses the correlation between successive years longitudinal and transverse profiles to
shift the data until it is optimally aligned. This aligns the data from successive surveys to within
a few centimeters, and helps ensure that any apparent change is due to changes in condition
parameters, and not simply because of changes in the location of the raw data used to produce
the parameters

As a reference for the change group segments, maintenance data from the Highways Agency
Pavement Management System (HAPMS) is used. This data consists of sections where some
part(s) of the section have been maintained. Exact GPS locations of the maintained sites were
not available within the timescale of this research. The maintenance data is used to identify
sections that have been maintained between measurement occasions. Segments in the change
group located within a section that has been maintained have most likely changed because of
maintenance, and not deterioration.

2.1.1 Road condition variables

Eleven variables, measuring different aspects of road condition, have been chosen as the basis
for the clustering. The transverse profile is represented by rutting measured in the left and right
wheel path respectively. The longitudinal profile is measured using enhanced longitudinal profile
variance (ELPV) measured on the near side (NS) and off side (OS) of the road on maximum
3, 10 and 30 meter wavelengths. The texture is represented by the mean values of Root Mean
Square Texture (RMST) measured on the near side, middle, and off side of the road. Mean and
standard deviations of all variables are presented in Table 1.

3



A MICRODATA ANALYSIS APPROACH TO TRANSPORT INFRASTRUCTURE MAINTENANCE

Paper IV

94

Table 1: Road condition variables

2013 2014 2015

Variable Mean Std Mean Std Mean Std
(mm) (mm) (mm) (mm) (mm) (mm)

Left rutting 3.3 2.3 3.3 2.1 3.3 1.9
Right rutting 3.5 2.6 3.5 2.4 2.9 2.3
ELPV 3 m NS 0.2 0.3 0.2 0.5 0.2 0.3
ELPV 3 m OS 0.2 0.5 0.2 0.5 0.1 0.2
ELPV 10 m NS 1.0 1.5 0.8 1.4 0.8 1.3
ELPV 10 m OS 1.0 1.8 0.8 1.7 0.8 1.3
ELPV 30 m NS 8.7 10.6 5.7 6.9 5.7 6.5
ELPV 30 m OS 8.3 10.3 5.3 6.9 5.1 6.4
RMST Mean Middle 1.1 0.2 1.0 0.3 1.0 0.2
RMST Mean NS 0.8 0.2 0.8 0.2 0.8 0.2
RMST Mean OS 0.8 0.2 0.8 0.2 0.8 0.2
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Figure 1: Histograms of measurement errors for all road condition variables. Red dotted lines
show the 90th percentile.
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To be able to find real change in the road condition variables, the extent of random mea-
surement errors are of interest. These are evaluated by using measurements from a test site,
where the accuracy of the survey vehicle is tested. The vehicle has surveyed all variables of a
2.2 kilometer long road section (divided into 10 meter segments) on five occasions in January
2013: the 1st, 12th, 17th, 18th and 25th. No variable is expected to show any measurable change
in that time. The difference in measurements between each occasion is calculated and plotted
in histograms (Figure 1). For rutting, almost all measurement errors lie within ±2 mm and 90
percent of the error lies within approximately ±0.96 mm for left rutting and ±1.1 mm for right
rutting. 3 m ELPV has 90 percent of the measurement errors within approximately ±0.37 mm
for near side measurements and ±0.27 mm for off side measurements, 10 m ELPV within ±1
mm for both near side and off side and 30 m ELPV within ±4.5 mm for both sides. For RMST,
90 percent of the measurement errors are within approximately ±0.14 mm for near side, ±0.2
mm for middle and ±0.16 mm for off side. This gives an indication of how much variability we
can expect in a variable in the absence of any genuine change.

2.2 Multivariate Finite Mixture Models

Consider the road condition variables as a multivariate random variable Yi, i = 1, . . . , N , where
N is the number of 10 meter segments. In order to model the change in surface condition, the
variables need to be transformed so that the initial condition does not affect the analysis This
is done by letting Y∗

i = Yi −Ymax(1,i−1). Hence the first year of data, 2013, will only be used
to create the new variable, which leaves two years worth of actual changes in road condition.
If a longer time series were present, a longitudinal model would have been suitable. However,
because of the short time series (t = 2), the estimation of any within-subject variation will be
unstable. Even though the original road condition variables might be autocorrelated, the first
difference of the measurements can be assumed to be independent (see eg. Hamilton 1994, p.
360-361 for some examples from economic variables). This assumption cannot be verified with
such a short time series as only two realizations, but with the data at hand, it is a reasonable
approach. Therefore, we choose to fit multivariate gaussian mixture models, assuming that the
change in road condition between the two measurement occasions is a stationary i.i.d. process.

Following the structure used by Fraley and Raftery (2002), the likelihood for a multivariate
mixture given data y = yi, . . . ,yn with K components is:

Lmix(θ1, . . . , θK ;w1, . . . , wK |y) =
n∏

i=1

K∑
j=1

wjfj(yi|θj) (1)

where fj and θj are the density and parameters of the jth component in the mixture, and wj is

the probability that an observation belongs to the jth component (wj > 0 and
∑K

j=1 wj = 1).
For a gaussian mixture, fj is the multivariate normal density φj parameterized by its mean µj

and and covariance matrix Σj :

φj(yi|µj ,Σj) ≡
exp

{
− 1

2 (yi − µj)
TΣ−1

j (yi − µj)
}

√
det(2πΣj)

(2)

Fraley and Raftery (2002) describe the clusters as being centered around the mean µj with the
covariance matrix Σj determining the shape, volume and orientation of the clusters. If Σj = λI,

5
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giving spherical clusters of the same size, only one parameter is needed to characterize the
covariance structure. For the most relaxed type of covariance structure, implying an unrestricted
Σj , K(d(d + 1)/2) parameters are required for d-dimensional data. A general framework for
the geometric properties of the covariance matrix was proposed by Banfield and Raftery (1993),
which is a decomposition on the form:

Σj = λjDjAjD
T
j (3)

where Dj is the orthogonal matrix of eigenvectors, Aj is a diagonal matrix with elements pro-
portional to the eigenvalues, and λj is a constant of proportionality. This composition is used by
Fraley and Raftery (2002) to put constraints on the cluster covariance matrix and evaluate which
structure is most appropriate for the data. Dj governs the orientation of the jth component of
the mixture; Aj governs the shape, and λj the volume.

The actual clustering is performed with model-based agglomerative hierarchical clustering
as described by Fraley and Raftery (2002), in which the approximate classification likelihood is
computed as:

LCL(θ1, . . . , θK ; �1, . . . , �n|y) =
n∏

i=1

f�i(yi|θ�i) (4)

where �i are the labels indicating the classification of each observation, i.e. �i = j if yi belongs
to the jth component. The fitting algorithm is available in the R-package mclust written by
Fraley and Raftery (2002). Optimization is based on the EM-algorithm (Dempster et al., 1977;
McLachlan and Krishnan, 2007).

2.3 Model Selection

A two-component mixture model (K = 2) is fitted to the d = 11 dimensional road condition
measurement data set. The deterministic choice of the number of components is motivated by
the nature of the data. The segments belonging to the unchanged group is likely to have a very
narrow distribution with small variance, while the segments belonging to the change group will
have a wide distribution with larger variance. The mean is not necessarily different between the
two groups because not all variables measuring different aspects of road condition are likely to
change at once.

There is always a possibility of identifying more clusters than what is theoretically sound.
The Bayesian Information Criterion (BIC) (Schwartz, 1978) is used to evaluate the goodness
of fit of several models with up to six clusters and different covariance structures. The overall
highest BIC (−83125.37) was found for a model with three clusters and a covariance matrix
with varying orientation, shape, and volume. A three-cluster model would have been useful if
the road condition variables were all changing in the same fashion, with deterioration showing
as a positive change and maintenance showing as a negative change. However, this is not the
case for all of the variables. RMST can have a negative change because of both maintenance and
deterioration. In a three cluster mixture model, the segments where deterioration is showing
in the RMST measurements might be classified into a cluster consisting of segments showing
negative change caused by maintenance in other variables.

To avoid losing any deterioration information, we will choose a model consisting of a mixture
of two distributions where the change group consists of segments showing both positive and
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negative change. The mixture models with the highest BIC among the two cluster models is the
one with the most flexible covariance structure (BIC = −111840.38). Because of the nature of
the two distributions described in the previous paragraph, a flexible structure between clusters
in both shape, volume and orientation is theoretically valid.

3 Results

3.1 Clustering results

Of the 8824 road segments, 6136 are classified into the unchanged group and 2688 into the
change group. Within the change group, 1663 of the segments had measurements that indicated
change both 2013–2014 and 2014–2015. 1025 segments had measurements which indicated a
change in road condition only between 2013 and 2014. Not all segments had measurements
from all years because some measurement data is missing (assumed to be missing at random).

Table 2 shows the parameter estimation results for both groups. Road condition is expected
to be stationary in the unchanged group, and mean values are around zero for all variables
except ELPV 30 meter. The change group generally has mean values towards the negative
side, indicating that the effect of maintenance is higher in most variables than the effect of
deterioration. Variances for the variables in the change group are 5.7 up to 330 times larger
than variances in the unchanged group, which is in line with the assumption of an underlying
outlier distribution.

Table 2: Parameter estimation results

Unchanged group Change group
w1 = 0.76 w2 = 0.24

Parameter µ1 σ2
1 µ2 σ2

2

Left rutting 0.35 0.38 -0.66 8.34
Right rutting 0.16 0.23 -1.32 10.51
ELPV 3 m NS -0.007 0.002 -0.009 0.66
ELPV 3 m OS -0.006 0.002 -0.05 0.53
ELPV 10 m NS -0.08 0.034 -0.22 4.39
ELPV 10 m OS -0.08 0.034 -0.36 5.05
ELPV 30 m NS -1.98 8.37 -4.39 97.3
ELPV 30 m OS -1.97 8.76 -4.42 50.0
RMST Mean Middle 0.005 0.006 -0.04 0.054
RMST Mean NS 0.02 0.008 -0.15 0.072
RMST Mean OS 0.001 0.008 -0.07 0.036

Figure 2 shows the density plots of the segments clustered into either the change or the un-
changed groups. Left and right rutting have long negative tails for the change group, indicating
that rutting had improved for a lot of segments between 2013 and 2015 – i.e. these segments
have been maintained since deterioration in rutting will always result in positive change. The
distribution of the change group matches the findings from the investigation of the measurement
errors (Figure 1). If we assume that an actual measurement x�

i equals:

x�
i = xi + εi
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where xi is the true measurement and εi is a random error, the difference between two measure-
ments can be written:

x�
2 − x�

1 = x2 − x1 + (ε2 − ε1)

Under the assumption that εi ∼ N(0, σ2
ε ), the distribution of ε2 − ε1 ∼ N(0, 2σ2

ε ), i.e. the
variance of this distribution is twice that of the original measurement error.

The 90 percentiles of the change distribution are [−6.07 : 2.48] mm for left rutting and
[−7.32 : 1.60] mm for right rutting. This is slightly wider than the expected range (which is
twice as wide as the 90 percentiles of the measurement error distributions around ±1 mm) and
slightly skewed to the negative side. However, the unchanged distribution is much narrower than
what could be expected if change was occurring, with 90 percentiles ranging from [−0.64 : 1.38]
mm for left rutting and [−0.68 : 0.87] mm for right rutting. This is an indication that the
segments in the unchanged group are very unlikely to show either deterioration, maintenance
or large measurement errors.

ELPV 3 m and 10 m for off side measurements are shown in the middle panel of Figure
2. The unchanged group has a much narrower interval than the measurement errors in Figure
1, with 90 percent of the observations in an interval of [−0.08 : 0.06] mm for 3 m ELPV and
[−0.44 : 0.15] mm for 10 m ELPV (to be compared with the expected ±0.54 mm for 3 m ELPV
and ±2 mm for 10 m ELPV). The change group interval for off side ELPV 3 m and 10 m are in
line with expectations, with 90 percentile intervals of [−0.44 : 0.27] mm and [−2.45 : 1.26] mm
respectively. The very flat density plots for the ELPV variables indicate that segments which
show change in other variables are likely to show change in ELPV too.

The RMST variable for the middle part of the road has a thicker tail around -0.6 mm for
the change group. The tail is slightly shifted to the right for the near side measurements, which
has a small peak around -0.3 mm. This result is coherent with how the texture is expected to
deteriorate: at first, the road surface is polished (RMST decreases), but later in the deterioration
process stones are beginning to come out (RMST increases). The middle part of the road will
always be behind the near and off sides in the deterioration process because vehicles drive there
less frequently.

All change distributions have a more or less distinct peak around zero. The probabilities for
each segment i of belonging to either group is based on the multivariate response variable Yi,
and since the analysis has only three years worth of data, it is likely that not all road condition
variables have changed during this time. Some segments will be clustered into the change group
although they do not show any change in some variables, but a large change in other variables.
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Figure 2: Density plots of the segments divided into the change group (red) and unchanged
group (blue).

3.2 Mapping clusters

Figure 3 shows the segments that belong to the change group as red or yellow dots. Red
dots represent the segments with measurements indicating change both 2013–2014 and 2014–
2015, while yellow dots are segments that only showed change in 2013–2014. No segments
were classified into the change group based on change in road condition measurements only
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between 2014–2015. The change group may include segments that have changed either because
of deterioration or maintenance, where maintenance often results in a greater change in road
condition. In order to determine if the classification is of any value in practice, data regarding
maintenance activities was plotted in the road network as shown in Figure 4.
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Figure 3: Map of the M4/A34 intersection with yellow and red dots representing segments in
the change distribution.

Figure 4 shows a close-up on a junction on the M4. Maintenance that occurred 2013 and
2014 are drawn as blue lines and maintenance that occurred after January 2015 is drawn as
green lines. The Highways England network is split into sections, each of which is typically 1–2
km long. Because the available information about maintenance only provided the section where
the maintenance work took place, and not the GPS coordinates of the maintenance location, the
blue and green lines cover longer sections than where the maintenance was carried out. However,
if the maintenance data and the change group segments correlate, this is an indication that the
classification can capture real changes.

The red segments beneath the blue line in Figure 4 are likely to have changed because of
maintenance. A look at the raw data for these segments shows large negative changes in almost
all variables for these segments between 2013 and 2014; e.g. 6-11 mm for rutting, 0.5-1.5 mm for
ELPV 3 m and 0.6-1.5 mm for RMST, which are way outside the measurement error interval.
The data from 2015 for these segments is missing.

The green lines represent maintenance activities that took place after the last road condition
survey in January 2015. That is, the red segments beneath the green lines have not changed
because of previous maintenance; they were maintained shortly after the road was surveyed in
January 2015. The fact that these segments were maintained soon after the survey implies that
they were deteriorating and that the change detected reflects genuine deterioration. Previous
research described in e.g. the Highway Development and Management Model (HDM-4) and
its precursor the Highway Design and Maintenance Standards Model (HDM-III) provided by
the World Bank (Watanatada, 1987; Odoki and Kerali, 2000) shows that initial deterioration is
often very low, and after a certain amount of time it increases rapidly in an exponential rather
than linear fashion. If a segment is identified as a maintenance candidate object because of bad
condition, it has often shown an increasing deterioration pattern.

Looking at the raw data from the segments under the green line, there are positive changes
in the range of 2-5 mm for rutting, a strong indication of genuine deterioration. (Figure 1 shows

10



A MICRODATA ANALYSIS APPROACH TO TRANSPORT INFRASTRUCTURE MAINTENANCE

Paper IV

101

that the amount of expected variability in rut measurements without deterioration was of the
order of 1-2 mm). The segments also show negative changes for RMST of 0.3-0.8 mm, which
is slightly outside the expected measurement error interval. Negative change can imply both
maintenance and deterioration for RMST. The ELPV variables for these segments have only
small changes within the expected measurement error interval.

The example in Figure 4 indicates that both changes because of maintenance and changes
because of deterioration can be captured by the finite mixture model.
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Figure 4: Map of a part of the M4 highway at Junction 14. Lane 1 in each direction is used in
the analysis.

4 Discussion

With only three years’ worth of data, the dependency structure between road condition mea-
surements cannot be evaluated. It is assumed in this paper that the first difference between
measurements is a stationary i.i.d. process. With measurements from more years available, it
will be possible to check this assumption, and if it does not hold, a longitudinal model which
takes within-subject correlation into account may be used.

The mean vector µ2 is negative for all road condition variables in the change group. The
result is expected because change in road condition caused by maintenance activities (which can
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account for most, but not all, negative change) is likely to be greater than change caused by
deterioration. However, negative change in road condition might also be a sign of deterioration
for some variables; in this data that is the case for RMST. If it was certain that all variables
showed positive change because of deterioration and negative change because of maintenance,
a mixture of three distributions would be worth considering: change caused by deterioration
and/or large positive measurement errors, unchanged, change caused by maintenance and/or
large negative measurement errors. However, because negative change in RMST can occur
because of both maintenance and deterioration this variable could not be included in such a
model. RMST is one of the most sensitive variables (in the sense that it is possible to measure
deterioration over a period of 1-2 years) and therefore it would be unwise to disregard it. When
the mixture models consist of two distributions, defined as a change and an unchanged group,
complementary data from maintenance records are necessary to distinguish between change
caused by maintenance or deterioration, and to validate the model performance.

The findings of this study also reveal another possible use of the finite mixture models:
identifying maintenance activities. A way of doing this is to look at e.g. the development
of rutting for segments in the change group, where negative change (i.e. less rutting) in road
condition on several adjacent segments is very likely to occur because of maintenance. Reporting
errors and missing data are not uncommon in maintenance databases, and this measure could
be useful when looking at historical road condition data to identify or verify when maintenance
has taken place.

If maintenance data with coordinates is available, it is straightforward to identify segments
that have changed because of previous maintenance activities. For the data used this paper,
only start and end coordinates of a section (consisting of several 10 m segments) is provided
which limits the precision. Apart from maintenance and deterioration, it is also possible that
large measurement errors are identified as change. The finite mixture model is not an automatic
deterioration detection, but rather a way to identify segments that deviate from a stationary
deterioration pattern. As a future research topic, combining predictive pavement deterioration
models with finite mixture models could be a way of further explore the possibilities of finding
early deterioration.

5 Conclusion

The road segments from the M4 were classified into either a change group or an unchanged
group using finite mixture models. The distribution of the segments in the unchanged group
showed no sign of deterioration. The segments in the change group were compared with data
from maintenance records. It could be concluded that the change group most likely consists
of segments that have changed because of either maintenance activities or deterioration since
they matched locations of both previous and (at the time of the measurement occasion) future
maintenance.

The conclusion of the study is that finite mixture models are successful in identifying seg-
ments with a road condition that is deviating from the stationary state of a road surface that is
not maintained or deteriorating. Identifying such segments can be helpful in order to prioritize
possible maintenance candidate objects when resources are limited, and thus make maintenance
decisions more efficient. However, it is not possible to fully distinguish between change because
of maintenance, deterioration, or severe measurement errors using the finite mixture models
approach on the current variables without complementary data sources.
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The effect on running time of temporary speed restrictions

on a Norwegian railway line

Kristin Svenson∗, Andreas Amdahl Seim†, Andreas Dypvik Landmark‡

Abstract

The effect on train running time of temporary speed restrictions varies substantially due
to empirical factors such as driver behavior and location of the speed restricted segment.
Lacking information about this variation has a negative impact on planners’ ability to
adjust timetables when a speed restriction is enforced. To estimate empirical effects of
temporary speed restrictions, a generalized linear mixed gamma model was applied to data
from a Norwegian railway. Results showed that the average effect of a temporary speed
restriction is nine percent longer running time between two stations. On station blocks
where the normal speed is relatively high, temporary speed restrictions had limited impact
on running time. On station blocks where the normal speed is low, speed restrictions
resulted in up to three times longer running time. When feasible, drivers tend to increase
the speed on the remaining part of the block to reduce speed restrictions’ impact on running
time. Length of the speed restriction had a very small effect on running time for freight
trains, implying that acceleration is more critical. The importance of acceleration was
emphasized by the result that a speed restriction before an uphill increased running time
for freight trains with twelve percent.

Keywords: Railway Maintenance; Temporary Speed Restriction; Generalized Linear Mixed
Model

1 Introduction

Punctuality in railway networks is considered a key performance indicator of the railway in-
dustry. There are several possible definitions of punctuality. Rudnicki (1997) defines it as “a
feature consisting in that a predefined vehicle arrives, departs or passes at a predefined point at
a predefined time”. To achieve punctuality, the running time of a vehicle must be predictable,
and the timetable must be scheduled accordingly. Scheduling problems with the objective to
optimize network capacity and punctuality is a well-studied topic (see e.g. Mees 1991; Higgins
et al. 1996; Cordeau et al. 1998; Dariano et al. 2007; Krasemann 2012). The theoretical run-
ning time is a deterministic function of distance and speed. However, in real applications, the
running time of a train is always affected by more or less predictable external factors. A large
field of study is the identification of factors that do have an influence on actual running time,
and ultimately punctuality.

In a review of influencing factors on punctuality, Olsson and Haugland (2004) identify the
following: number of passengers, occupancy ratio (passengers/seats), infrastructure capacity
utilization, cancellations, temporary speed restrictions, railway construction work, departure
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†The Foundation for Scientific and Industrial Research (SINTEF), Trondheim, Norway
‡SINTEF, Trondheim, Norway

1



A MICRODATA ANALYSIS APPROACH TO TRANSPORT INFRASTRUCTURE MAINTENANCE

Paper V

108

and arrival punctuality, and operational priority rules. Out of these factors, a temporary speed
restriction (TSR) – many of which occur due to maintenance work on the railway – is almost
certain to have an effect on running time. To reduce the effect of a TSR on punctuality,
it is of interest to be able to plan these temporary speed restrictions so that the impact on
network level is minimized. Maintenance planners may want to know whether one longer or
several shorter segments with reduced speed have a greater impact on the expected running
time. Theoretical deterministic models of TSR typically include running time as a function of
the speed restriction, normal speed, length of TSR segment, an acceleration coefficient and a
deceleration coefficient, which may vary depending on train type (Dingler et al. 2009; Shafiullah
et al. 2010). However, few studies have confirmed these approximations using empirical data.
In reality, the assumed normal speed, speed restriction and acceleration coefficients may have a
great variability between station blocks, weeks, days, and individual trains. The nature of the
TSR segment (i.e. curvature or height profile), or potential seasonal effects is not considered in
the theoretical model. Also, a deterministic model cannot capture any potential effect of the
train drivers’ behavior. As stated by e.g. Ochiai and Tomii (2015), drivers may try to reduce
the effect of a temporary speed restriction by increasing the speed on the remaining, non-speed
restricted part of the station block.

This paper will study the empirical effect of TSRs within the Norwegian railway network
by fitting a generalized linear mixed model (GLMM) to train travel and speed restriction data.
The benefit of generalized linear mixed models compared to standard linear regression models
is the ability to quantify variation among units (McCullagh and Nelder 1989; McCulloch and
Neuhaus 2001; Pawitan 2001, Lee et al. 2006; Bolker et al. 2009). In the case of a temporary
speed restriction, the effect on running time may vary greatly between different station blocks.
GLMMs can also account for data that is non-normal (i.e. skewed), which usually applies to
running times.

1.1 Research objective

The aim of this study is to model the effect of temporary speed restrictions on train running
time. The data originates from the Norwegian railway network and variables included in the
model are season, weekday, train type, speed restriction, the length and height profile of the
speed restricted segment, and it’s distance to the next station. In order to validate and quantify
the effect of the different variables, a generalized linear mixed model approach is used.

1.2 Previous research

Few studies have examined the empirical effects related to maintenance and temporary speed
restrictions within a railway network. Budai et al. (2006) create an algorithm which optimizes
scheduling of preventive maintenance on railways, assuming that a section where maintenance is
carried out is blocked for traffic. However, they do not take into account that some maintenance
work may imply temporary speed restrictions before, during, and shortly after the maintenance
activity.

Olsson et al. (2002) perform a correlation analysis of temporary speed restrictions and punc-
tuality on the Norwegian Nordland line (Nordlandsbanen) during 13 weeks in the spring of 2002.
They find a significant negative correlation between TSR and punctuality of -0.11 in the north-
bound direction, and no significant correlation in the southbound direction. One explanation
for this counterintuitive result is the 4 percent increase in running time included in Norwegian
timetables. Olsson assumes that there exists a threshold effect of TSR on punctuality, but this
threshold is not investigated in the study.
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Gorman (2009) estimates total train running time with linear regression in order to explain
congestion. Slow orders (i.e. speed restrictions) are one of the explanatory variables. Slow
orders (the total number of slow order minutes on a particular date) showed a significant,
positive effect on train running time; implying that the existence of slow orders increases train
running time. The definition and use of slow orders as an input variable to estimate running
time derive from Krueger (1999), who developed a Parametric Capacity Model for the Canadian
National Railway. Gorman advocates the use of empirical estimation and statistical methods
over simulations, as they are less laborious and computationally intensive. He also states that
“[...] statistical analysis of the physical system leads to insights to complement the understanding
of the system based on other methods.”

Kecman and Goverde (2015) use three different data-driven predictive models (least trimmed
squares robust linear regression, regression trees, and random forest) to estimate train running
and dwell times. They also use local models for particular train lines and station blocks, con-
cluding that local models usually are more accurate than global models. However, the ability
to generalize the results from a global model is appealing and useful, especially when data is
scarce.

2 Method and materials

2.1 Data material

The data material used in this study consists of 42,382 unique train travels on the Dovre line
(Dovrebanan) between stations Dovre and Hove (Figure 1) from December 12, 2009, until De-
cember 12, 2015. A train travel is defined as a scheduled trip between a start and an end
station, which may include stops at stations in between. A train travel is either northbound or
southbound and has a unique ID number. When a train passes a station without stopping, the
departure time from the station is recorded. If the train stops, the arrival and departure times
from the station are recorded. Running time of the train is defined as the time between either
departure from the previous station to departure from next station (for trains that only pass
the station), or departure from the previous station to arrival at next station (for trains that
stop at the station). In total, the dataset contains 676,495 observations of train running times
on 29 station blocks. Each block is either southbound or northbound direction.

The train travel data was combined with data regarding temporary speed restrictions during
the same period. There are 72 unique segments with a temporary speed restriction, located
within different station blocks, that may last from one day to several weeks. These restrictions
affect 106,055 observations (i.e. running times), of which 15,336 are temporary speed restrictions
within station areas.

3



A MICRODATA ANALYSIS APPROACH TO TRANSPORT INFRASTRUCTURE MAINTENANCE

Paper V

110

Brennhaug

Dovre

Fron

Fåberg

Fåvang

Hundorp

Hove

Kvam

Losna

Otta

Ringebu

Sel

Sjoa

Tretten

Vinstra

Øyer
61.25

61.50

61.75

62.00

9.20 9.60 10.00 10.40 10.80
Longitude

La
tit

ud
e

Figure 1: Map of Dovre line (Dovrebanan).

The qualitative variables in the model are season, TSR at station, train type, and weekday.
Season is defined as a binary: winter (November – March) or summer (April – October). TSR
at station implies that there is a temporary speed restriction within the station area. Train
type is classified as either freight train or passenger train. Weekend is defined as Saturday and
Sunday, while Monday – Friday are weekdays. Because only a small share of all trains had
experienced a TSR en route, an indicator variable (No TSR) was introduced to account for
potential non-linear effects of the TSR-variables.

Among the quantitative variables, normal speed is calculated as the average speed between
two stations on a week with no temporary speed restrictions on that block. ∆speed is defined
as the difference between normal speed and the temporary speed restriction limit. The variable
TSR height difference is created to capture the possible effect of an uphill just after a TSR
segment, where the trains accelerate up to normal speed again. TSR height difference is defined
as the sum of positive differences in vertical meters between the following two kilometers after
a TSR segment. Up to two kilometers may be necessary for a freight train to gain full speed.
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Table 1: Summary statistics, qualitative variables.

Variable True False

Winter 274,975 403,959
TSR at station 15,336 663,598
Freight train 341,451 337,483
Weekend 96,111 582,823

Table 2: Summary statistics, qualitative variables.

Train type
Running time (min) Normal speed (km/h)

Mean Std Min Max Mean Std Min Max
Freight train 8.0 3.7 1.2 59.9 56.6 10.1 15.7 87
Passenger train 7.4 3.0 1.2 59.7 70.1 14.1 27.9 98

∆Speed TSR (km/h) TSR length (km)

Mean Std Min Max Mean Std Min Max
Freight train 13.8 9.91 0 42.6 1.24 1.45 0.20 4.65
Passenger train 13.7 12.24 0 57.1 1.24 145 0.20 4.65

TSR height difference (m) TSR distance from station (km)

Mean Std Min Max Mean Std Min Max
Freight train 7.7 16.7 0 86 4.7 2.4 0 8.9
Passenger train 7.8 16.6 0 86 4.7 2.4 0 8.9

2.2 Generalized Linear Mixed Models

A generalized linear mixed model was chosen to evaluate the effect of temporary speed restric-
tions on the Dovre line. A mixed model adjusts for data that are correlated in clusters by
estimating random effects of the cluster units. On the Dovre line, the running time of different
trains between two particular stations in a particular direction will be highly correlated. To
account for this correlation, a random intercept was fitted to each station block (in total 30
section blocks). Random effects can also be used to fit unit specific slopes for the explanatory
variables. In this sense, a mixed model can fit both a global (fixed effects) model and a local
(random effects) model.

The generalized linear mixed model (GLMM) is an extension of the linear mixed model
and allows for a response variable a from non-gaussian distribution. In the GLMM, the linear
predictor is linked to the mean response through a link function, such as the identity, inverse,
or logarithm. Running time is often modelled as a log-normal distribution, mainly because it
is left truncated (i.e. non-negative) and can have a possibly thick tail (see e.g. Calfee et al.
2001, Rakh et al. 2010, Yuan et al. 2010, Westgate et al. 2013). However, distributions such
as gamma (Polus, 1979) – which is also skewed and bounded by zero – and normal are also
common (Noland and Polak, 2002).

Three competing models were fitted to the data, assuming normal, gamma, and log-normal
distributed data. The models were evaluated based on residual plots and the Akaike Informa-
tion Criterion (AIC) (McCullagh and Nelder 1989; McCulloch and Neuhaus 2001; Jiang 2007;
Verbeke and Molenberghs 2009). Residuals were slightly skewed in all three models with the
AIC favoring the gamma distribution. The gamma distribution exhibits a variance that is pro-

5



A MICRODATA ANALYSIS APPROACH TO TRANSPORT INFRASTRUCTURE MAINTENANCE

Paper V

112

portional to the square of the mean response (i.e. variation increases as running time increases).
This is an assumption that may not be applicable for all running times. Stefánsson (1996)
proposes that the slope of a linear regression with gamma distributed data (here: the running
time) in a log-log plot of variance vs. mean of a predefined homogeneous unit should be close to
two (theoretically, log(variance) = 2 × log(mean)). A fairly homogeneous unit along a railway
should be the running time between the station blocks. The log-log plot (Figure 2) shows a
slope which is close to two, although the linear fit is not perfect (r2 = 0.53).

y = −3.5 + 2.4 ⋅ x,  r2 = 0.525
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Figure 2: Scatterplot and regression line of log-variance vs. log mean for each station combina-
tion.

The canonical link function of the gamma distribution is the inverse. However, as this
can be a difficult link for computational and interpretational reasons, the much more common
log-link was chosen instead. This link implies a multiplicative effect on running time of the
explanatory variables. With N observations, y (length N × 1) is the response vector of running
times between stations. Conditional on the explanatory variables, y|b ∼ Ga(µ, φµ2) where the
Gamma distribution is parameterized using the mean and the variance, respectively. φ is the
dispersion parameter. A gamma GLMM with p fixed effects (one for each explanatory variable
and possible interactions) and q random effects (one for each unique combination of stations) is
written as:

log(µ) = Xβ + Zb (1)

where X is a N×p design matrix for the fixed effects, Z is a N×q design matrix for the random
effects, β is a p × 1 vector of fixed effects, b is a q × 1 vector of random effects, b ∼ N(0,G).
Because not all station blocks have had a speed restriction, potentially random slopes are nested
within the binary factor of a TSR occurring or not. The variance-covariance matrix G will be
a diagonal matrix:

6



A MICRODATA ANALYSIS APPROACH TO TRANSPORT INFRASTRUCTURE MAINTENANCE

Paper V

113

G =

[
σ2
b,intI 0

0 σ2
b,slopeI

]
(2)

where σ2
b,int is the variance of the random intercepts and σ2

b,slope is the variance of the random
slopes. For computational reasons, the random effects are assumed to be uncorrelated. As
shown in Figure 3, there is no evident correlation between the intercept and the slope for the
thirteen station blocks where a TSR is present.

Fron−VinstaFåberg−Øyer
Fåvang−Ringebu

Hundorp−Fron

Hove−Fåberg Kvam−Sjoa

Losna−Fåvang

Ringebu−Hundorp
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Sjoa−Otta

Tretten−Losna

Vinstra−Kvam
Øyer−Tretten

−0.01

0.00
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0.00 0.10 0.20 0.30 0.40
Intercept
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e

Figure 3: Correlation between random slopes and random intercepts for all station blocks with
at least one TSR.

The likelihood function is crucial to obtain the maximum likelihood estimates of the parameters.
The likelihood, i.e. the marginal density of f(y), is:

f(y) =

∫
f(y,b)db =

∫
f(y|b)f(u)db (3)

which can be difficult to evaluate since f(y|b)f(u) is a very complex function in a GLMM. In a
linear mixed model, the marginal distribution of Y can be computed directly as a multivariate
normal. In the case of a gamma GLMM, an approximate optimization algorithm needs to be
applied in order to obtain the maximum likelihood estimates of the parameters.

The model in (1) was fitted both in R-package lme4 which uses Laplace approximation (Bates
et al., 2015), and in R-package MASS which uses penalized quasi-likelihood (Venables and Ripley,
2002). The Laplace approximation had a slow convergence, but the penalized quasi-likelihood
converged, and both methods gave very similar results regarding both the fixed effects and the
residual and random effect variances.
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3 Results

3.1 Fixed effects

Table 3: Maximum likelihood estimates.

Parameter (p)
Parameter Standard T-value P-value
Estimate (βp) Error

Intercept 1.44 0.05 32.0 < 0.0001 ���

Winter -0.026 0.0006 -45.6 < 0.0001 ���

Weekend -0.017 0.0008 -21.7 < 0.0001 ���

Distance (km) 0.07 0.0008 92.2 < 0.0001 ���

No TSR -0.09 0.003 -29.7 < 0.0001 ���

Freight train 0.09 0.0006 145.0 < 0.0001 ���

TSR station -0.006 0.006 -1.12 0.26
∆Speed (km/h) 0.003 0.004 0.92 0.36
TSR length (km) 0.015 0.0009 15.2 < 0.0001 ���

TSR height difference (>0 m) -0.015 0.003 -5.5 < 0.0001 ���

TSR height difference (>15 m) -0.10 0.004 -24.9 < 0.0001 ���

TSR distance from station (km) -0.007 0.0005 -13.7 < 0.0001 ���

TSR station×Freight train -0.06 0.006 -9.9 < 0.0001 ���

TSR ∆Speed×Freight train 0.003 0.0001 23.6 < 0.0001 ���

TSR length×Freight train -0.015 0.001 -15.3 < 0.0001 ���

TSR height diff. (>0 m)×Freight train -0.026 0.003 -7.9 < 0.0001 ���

TSR height diff. (>15 m)×Freight train 0.21 0.005 41.4 < 0.0001 ���

TSR distance from station× -0.016 0.0004 -31.2 < 0.0001 ���

Freight train

Dispersion parameter: φ 0.082
Random intercept variance: σ2

b,int 0.0053

Random slope variance: σ2
b,slope 0.000017

Significance codes: < 0.0001 ���, 0.001 ��, 0.01 ��, 0.05 .

Because the chosen link function of the gamma GLMM is the natural logarithm, regression
coefficients have a multiplicative effect on running times, i.e. the effect on running time of a one
unit change in any of the explanatory variables is eβp . Running time increased with 100×(e0.07−
1) = 7 percent per kilometer traveled, and on average, freight trains have 100× (e0.09 − 1) = 9
percent longer running times than passenger trains. Running times in winter and at weekends
are approximately 2 percent less than in summer and on weekdays. The estimates of the TSR
variables are explained in detail in the Discussion section.

3.2 Random effects

In order to capture the between-station block effect on running time of a TSR and create a local
model for each station block, a random intercept and a nested random slope for the variable
∆speed were included in the model. The nesting implies that a random slope was fitted only
to station blocks with at least one TSR. The random effects can be used to make local rather
than global predictions – i.e. the running time between two specific stations can be predicted
under various ∆speed.
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A likelihood ratio test between a model with a random intercept only and a model with
a random intercept and a nested random slope for the variable ∆speed strongly favored the
latter model (χ2-statistic of 5017 on 2 degrees of freedom using approximate Laplace likelihood
estimation).

Figure 4 shows how predicted running times of a freight train depends on the speed reduction
for six different station blocks. The explanatory variables for the fixed effects are set according
to the specification in Table 4, with distance set to the actual distance between stations.

10

15

20

0 10 20 30 40
Delta Speed (km/h)

R
un

ni
ng

 ti
m

e 
(m

in
)

Block

Fåberg−Øyer

Fåvang−Ringebu

Losna−Fåvang

Ringebu−Hundorp

Tretten−Losna

Vinstra−Kvam

Figure 4: Predicted running times depending on ∆speed for six between-station blocks.
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Table 4: Values in predictive data.

Variable Value

Winter FALSE
Weekend FALSE
No TSR FALSE
Distance (km) 5.8-10.2
TSR distance fr. station (km) 4
Freight train TRUE
TSR station FALSE
TSR length (km) 0.5
TSR height difference (m) 1-14

4 Discussion

4.1 Fixed effects (global model)

We studied the effect of TSRs on running time for trains on the Dovre line between December
12, 2009, and December 12, 2015, using a generalized linear mixed model approach. The model
successfully quantified how a number of different variables modify the effect of TSRs.

For the Dovre line, we found that running times in winter and at weekends were approx-
imately 2 percent less than in summer and on weekdays. Likely explanations are the fewer
maintenance actions taking place during the winter months (November – March) and compar-
atively lower traffic volume during weekends.

The binary variable ”No TSR” was found to be significant, and showed that trains which
are not subject to any temporary speed restrictions have on average had nine percent shorter
running times than trains that are affected by a TSR.

For passenger trains, neither a temporary speed restriction at a station or the effect of
∆speed were significant. However, ∆speed was also introduced as a random slope to account
for variation between station blocks. The non-significant global effect but significant between-
block variation implies that the effect of ∆speed on running time varies substantially between
station blocks.

Each kilometer in length of a TSR segment increased running time with 1.5 percent for
passenger trains. This effect is rather small and indicates that the distance the train is required
to drive at reduced speed is less important than the impact of acceleration/deceleration. The
effect of a positive height difference just after the TSR was evaluated as a categorical variable
because the effect is assumed to be non-linear. For passenger trains, both categories showed
a slightly negative effect. This implies that the uphills after the TSRs in our data set on the
Dovre line did not affect the acceleration capacity of passenger trains.

The variable “TSR distance from station” was significant with a negative sign, implying that
the further away from the next station the temporary speed restriction ends, the shorter are
the train running times. This result is another indication of the importance of acceleration: if
a TSR is very close to a station, the driver will not be able to accelerate up to normal speed
before entering the station area.

It can be assumed that freight trains, being heavier and having a slower acceleration, are
affected differently by TSR than lighter passenger trains with faster acceleration. Therefore,
interaction effects were included in the model between freight trains and all TSR variables. All
interaction effects were highly significant which confirms the assumption.
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The interaction effect of freight train and ∆speed had a small but significant effect on running
time. This implies that on average, the magnitude of the speed restriction affects freight trains
more than passenger trains. The length of the TSR segment had a small negative effect on
running time for freight trains, giving an even stronger indication that the length of the TSR
does not have a great impact on running time. Once freight trains have reduced their speed,
the length of the speed restriction is of less importance. For freight trains, a positive height
difference of more than 15 meters on the two kilometers adjacent to a TSR segment increased
running time with 100 × (e0.21−0.1 − 1) = 12 percent. Being heavier, it is reasonable that the
acceleration capacity of freight trains is more affected by uphills than passenger trains. If a
TSR is located just before an uphill, the timetable should be adjusted to account for the slower
acceleration of freight trains.

Freight trains have an even larger effect of the variable TSR distance from station than
passenger trains, with a 100× (e−0.007−0.016 − 1) = −2.3, i.e. a 2.3 percent decrease in running
time for every kilometer between the TSR segment and the next station. This increased effect is
also most likely due to the slower acceleration of freight trains – freight train drivers can catch
up time by driving faster, but only if they have enough space to do so.

4.2 Random effects (local model)

The presence of significant variation between station blocks suggests that there are certain
features associated with each unique block that is not captured by the fixed effects. One such
feature might be the curvature of the railway or other station-specific characteristics.

Between some stations, the effect on running time of the speed restriction captured by
∆speed was found to be very limited. Two examples of such blocks are illustrated in Figure 4
by F̊aberg–Øyer and F̊avang–Ringebu, where the latter block even had a slightly negative slope.
On other station blocks, the speed restriction had a large impact on running time. Most notably
is the block between Ringebu–Hundorp where a speed reduction of 40 km/h on a 500 meter
long segment increased running time from 7 to 21 minutes.

It is possible that the train driver can reduce the effect of a TSR by driving faster on the
remaining part of the station block. The mean normal speed of freight trains on the two blocks
where the effect of ∆speed was limited is among the highest on the Dovre line: 63.9 km/h on
F̊aberg–Øyer and 65.6 km/h on F̊avang–Ringebu. On blocks where ∆speed had a large impact,
mean normal speed is among the lowest – 50.9 km/h on Ringebu–Hundorp and 53.7 km/h on
Vinstra–Kvam. This implies that between stations where the mean normal speed is higher,
the driver has the possibility to increase speed on the non-speed restricted parts of the station
block. On blocks where it is not feasible to drive very fast under normal circumstances, a speed
restriction will have a stronger effect on the running time because drivers have less opportunity
to increase their speed elsewhere.

4.3 Limitations

The Dovre line was chosen as a case study because 15 percent of all running times 2010–2015 had
been affected by a temporary speed restriction. These TSRs were spread over several different
station blocks. On other Norwegian railway lines, e.g. Bergenbanen and Sørlandsbanen, only
2-3 percent of the running times were affected by a TSR the same period, partly because TSR
data was missing after 2013. Lack of TSR data makes it difficult to find significant effects in
a global model. It also has implications for a local model. With few TSRs on a station block,
each individual TSR will have a very large impact on the results. This limitation also applies
to the Dovre line: TSRs for certain station blocks are found only in a few locations at a specific
point in time. From an inference perspective, TSRs would ideally have occurred over the entire
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block, varying in time, length, speed restriction, etc. However, in practice, this is not the general
case. A TSR at a sensitive location on a station block can have a large impact on running time,
whereas a different TSR at a less sensitive location on the very same station block can have
almost no impact. With a limited number of TSRs per station block, the parameter estimates
become less robust to these variations and generalizations should be made with care.

4.4 Future research

As a future research topic, a hierarchical model that evaluates how temporary speed restrictions
affect train running times on an entire railway line – i.e. from start station to end station –
is of interest. Another possibility is to add a random effect for each train travel, which would
quantify how the variation in running time depends on features connected to individual trains.
However, this would require estimation of over 40,000 random effects in a dataset like the one
for the Dovre line, and it would take work on the computational capacity to fit such a model.

5 Conclusion

The results of the study can be used to understand how empirical effects – TSR location,
the height profile of the railway track, and driver behavior – will affect running time when a
temporary speed restriction is imposed on a station block. However, a sufficient amount of TSR
data spread over different station blocks is crucial in order to obtain robust results in a global
model. Generalizations based on the local model, i.e. random effects, should be done with care
since single TSRs can be highly influential.
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