
Interactive Data Management and Data Analysis

by

Ying Yang

May, 2017

A dissertation submitted to the

Faculty of the Graduate School of the

State University of New York at Buffalo

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science and Engineering

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10288109

10288109

2017

Copyright by

Ying Yang

2017

Interactive Data Management and Data Analysis

by

Ying Yang
Submitted to the Department of Computer Science and Engineering

on May, 2017, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

Everyone today has a big data problem. Data is everywhere and in different formats,
they can be referred to as data lakes, data streams, or data swamps. To extract
knowledge or insights from the data or to support decision-making, we need to go
through a process of collecting, cleaning, managing and analyzing the data. In this
process, data cleaning and data analysis are two of the most important and time-
consuming components.

One common challenge in these two components is a lack of interaction. The
data cleaning and data analysis are typically done as a batch process, operating on
the whole dataset without any feedback. This leads to long, frustrating delays during
which users have no idea if the process is effective. Lacking interaction, human expert
effort is needed to make decisions on which algorithms or parameters to use in the
systems for these two components.

We should teach computers to talk to humans, not the other way around. This
dissertation focuses on building systems — Mimir and CIA — that help user conduct
data cleaning and analysis through interaction. Mimir is a system that allows users
to clean big data in a cost- and time-efficient way through interaction, a process I
call on-demand ETL. Convergent inference algorithms (CIA) are a family of inference
algorithms in probabilistic graphical models (PGM) that enjoys the benefit of both
exact and approximate inference algorithms through interaction.

Mimir provides a general language for user to express different data cleaning needs.
It acts as a shim layer that wraps around the database making it possible for the bulk
of the ETL process to remain within a classical deterministic system. Mimir also helps
users to measure the quality of an analysis result and provides rankings for cleaning
tasks to improve the result quality in a cost efficient manner. CIA focuses on providing
user interaction through the process of inference in PGMs. The goal of CIA is to free
users from the upfront commitment to either approximate or exact inference, and
provide user more control over time/accuracy trade-offs to direct decision-making
and computation instance allocations. This dissertation describes the Mimir and
CIA frameworks to demonstrate that it is feasible to build efficient interactive data
management and data analysis systems.

iii

Acknowledgments

First of all, I would like to thank my advisor Dr. Oliver Kennedy, for supporting
me over the years and giving me excellent guidance in the area of database. Dr.
Kennedy inspires me lots of thinking and learning all over the years. He gives me lots
of freedom to explore new things and ideas. I would like to thank Dr. Jan Chomicki
for supporting me and leading me into research at the beginning of my Ph.D. study.
I would like to thank Dr. Bharat Jayaraman for serving as my committee member
and asking many thoughtful questions.

Mimir would have not been possible without all its users. I would like to thank
all the scientists and students who have interacted with me, without whose generous
sharing of knowledge we could not have built Mimir to its current state. A very
incomplete list includes Dieter Gawlick, Zhen Hua Liu, Ronny Fehling, Boris Glavic,
Beda Hammerschmidt, Eric S. Chan, Adel Ghoneimy, Ying Lu, Arindam Nandi, Nic-
colo Meneghetti, William Spoth, Poonam Kumari, Lisa Lu, Mike Brachman, Aaron
Huber.

I would also like to thank my friends and colleagues for the help, insightful discus-
sion, and happy moments spending together. I would like to thank Ladan Golshan
Ara, Niccolo Meneghetti, Yingbo Zhou, Danyang Chen, Weida Zhong, Ning Deng.

Last, I would like to thank my parents Kai Yang, Wei Wang for all their love and
support during my Ph.D. study. I would like to thank my boyfriend, Zhen Xu, for
the accompany and support all over the years.

My graduate study has been supported by NPS Award #N00244-16-1-0022, NSF
Award #1409551 and #1640864, and by gifts from Oracle Academic Relations. Opin-
ions, findings and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foun-
dation, the Naval Postgraduate School, or Oracle.

iv

Software, Data and Code

∙ Mimir is available at http://mimirdb.info. It is a team effort to further

develop and maintain this system.

∙ The code for the prototype systems is avaiable at https://github.com/UBOdin/

mimir.

∙ The code for the prototype systems we developed to study each component of

Mimir is also available separately.

1. Lens Composition (Chapter 3.5.4):http://www.cse.buffalo.edu/~yyang25/

code.html

2. Pay-as-you-go Data Cleaning (Chapter 3.5.5):http://www.cse.buffalo.

edu/~yyang25/code.html

3. Flexibility, accuracy and convergence time for Convergent Inference Al-

gorithms (Chapter 5.4):http://www.cse.buffalo.edu/~yyang25/code.

html

∙ Most data that we can legally release are available at: http://www.cse.buffalo.

edu/~yyang25/data.html

∙ This introductory vidoe in our YouTube channel is related to this dissertation:

https://www.youtube.com/watch?v=jow4JmDOxPs

∙ This poster is related to this dissertation: http://www.cse.buffalo.edu/

~yyang25/p2322-yang_poster.pdf

v

http://mimirdb.info
https://github.com/UBOdin/mimir
https://github.com/UBOdin/mimir
http://www.cse.buffalo.edu/~yyang25/code.html
http://www.cse.buffalo.edu/~yyang25/code.html
http://www.cse.buffalo.edu/~yyang25/code.html
http://www.cse.buffalo.edu/~yyang25/code.html
http://www.cse.buffalo.edu/~yyang25/code.html
http://www.cse.buffalo.edu/~yyang25/code.html
http://www.cse.buffalo.edu/~yyang25/data.html
http://www.cse.buffalo.edu/~yyang25/data.html
https://www.youtube.com/watch?v=jow4JmDOxPs
http://www.cse.buffalo.edu/~yyang25/p2322-yang_poster.pdf
http://www.cse.buffalo.edu/~yyang25/p2322-yang_poster.pdf

Contents

Abstract . iii
Acknowledgments . iv
Software, Data and Code . v

1 Introduction 1
1.1 Sample Target Senario for Data Cleaning 5
1.2 Technical Contributions . 8

2 Preliminaries for Mimir 11
2.1 ETL . 11
2.2 Data Cleanig . 13

2.2.1 Single-source problems . 14
2.2.2 Multi-source problems . 14

2.3 Data Cleaning Approaches . 16
2.3.1 Information Extraction . 16
2.3.2 Schema Matching . 16
2.3.3 Entity Resolution . 17
2.3.4 Domain Constraint Repair . 17
2.3.5 Archival . 18

2.4 Probabilistic Query Processing . 18
2.5 On-Demand Data Cleaning Tools . 22
2.6 Prioritizing Feedback . 22

3 Interactive Data Cleaning for Data Management - Mimir 24
3.1 Lenses . 24

3.1.1 The Lens Framework . 25
3.1.2 Lens Examples . 25
3.1.3 Composing Lenses . 29

3.2 Probabilistic Query Processing . 32
3.2.1 Normal Form VG-RA . 33
3.2.2 Virtual Views . 35
3.2.3 Partition . 35

3.3 Result Quality Analysis . 40
3.3.1 Summarizing the Result Relation 41
3.3.2 Summarizing Result Quality 42

3.4 Pay-as-you-go Data Cleaning . 44

vi

3.4.1 Prioritizing Curation Tasks 45
3.4.2 Balancing Result Quality and Cost 47

3.5 Experiments . 49
3.5.1 Experimental Setup . 50
3.5.2 Lens Configuration . 53
3.5.3 Ranking Curation Tasks . 54
3.5.4 Lens Composition . 55
3.5.5 On-Demand ETL . 56
3.5.6 Conclusions . 57

4 Preliminaries for CIA 59
4.1 Bayesian Networks . 59
4.2 Inference . 61

4.2.1 Exact Inference . 62
4.2.2 Approximate Inference . 64

4.3 Online Aggregation . 66

5 Interactive Data Analysis For Probabilistic Graphical Models - CIA 68
5.1 Introduction . 68
5.2 Convergent Inference . 70

5.2.1 Cyclic Sampling . 72
5.2.2 Leaky Joins . 76

5.3 Lessons Learned From IVM . 83
5.3.1 The Algorithm . 84
5.3.2 Post-Mortem . 85

5.4 Evaluation . 87
5.4.1 Experimental Setup and Data 87
5.4.2 Inference Methods . 89
5.4.3 Flexibility . 91
5.4.4 Approximate Inference Accuracy 92
5.4.5 Convergence Time . 93
5.4.6 Memory . 93

5.5 CIA Applications . 94
5.5.1 CIA Domain Constraint Repair Lens 94
5.5.2 Flexible Pricing Plan Data Analysis systems on Cloud Service 96

6 Conclusion and Future Work 98

Bibliograph 101

vii

List of Figures

1-1 Incomplete example relations, annotated with implicit per-row lineage
markers (ROWID). 7

2-1 Traditional ETL and Business Intelligence Process 12
2-2 Classification of data quality problems [101] 13
2-3 Examples for single-source problems at schema level (violated integrity

constraints) . 14
2-4 Examples for single-source problems at instance level 14
2-5 Examples of multi-source problems at schema and instance level . . . 15
2-6 Grammars for boolean expressions 𝜑 and numerical expressions 𝑒 in-

cluding support for VG-Functions 𝑉 𝑎𝑟(. . .). 19
2-7 Evaluation semantics for positive bag-relational algebra over C-Tables 21

3-1 Example of the domain constraint repair lens applied in a legacy ap-
plication. The output layer is discussed in Section 3.3. 26

3-2 The C-Table for SaneProduct . 27
3-3 The C-Table for MatchedRatings2 29
3-4 C-Table for the query over SaneRatings and SaneProduct 32
3-5 Recursive reduction to Normal Form. 34
3-6 The best-guess summary of the C-Table from Figure 3-4 that Alice

actually sees. 42
3-7 An example of the Naïve Minimum Expected Total Cost (NMETC). . 47
3-8 An example of the CS_IDX algorithm optimizing CPI. 49
3-9 Composability of schema matching and domain repair for 11 classifiers

(Product Data) . 51
3-10 Composability of schema matching and domain repair for 11 classifiers

(Credit Data) . 51
3-11 Composability of schema matching and domain repair for 11 classifiers

(Real Estate Data) . 51
3-12 Performance comparison for different methods on query results of (a)

product, (b) credit, and (c) real estate data-sets. Detailed step-by-step
performance for the naive strategy is computationally infeasible for the
real estate data-set, so only final results are shown. 52

3-13 Distance evaluated by the index of the correct match in the ranked list
of matches output by the algorithm, or n/a if the correct match was
discarded. Results include 30 test cases. 53

viii

4-1 A simple Student Bayesian network [82] 60
4-2 Clique tree for Student BN graph in Figure 4-1 64

5-1 Leaky Joins example join graph (a) and the algorithm’s state after 1,
12, and 18 iterations (b-d). In the 12-iteration column (c), incomplete
sample counts are circled. 79

5-2 Visualizations of five graphical models from [107] used in our experiments. 87
5-3 Microbenchmarks on the synthetic, extended Student graph (Figure 5-2a) 89
5-4 Approximation accuracy for real-world graphs 92
5-5 JVM Memory use for Cyclic Sampling. Note that at startup, Java has

already allocated roughly 2 GB. 94

ix

Chapter 1

Introduction

Nowadays data is everywhere. Organizations or individuals accumulate humongous

data that they want to access and analyze as a consolidated whole. There are several

components in this process. First, collecting data sets: data is extracted from

multiple sources: Internet of things (IoT), databases and so on. Second, data clean-

ing: the collected data often has inconsistencies in schema, formats and adherence

to constraints, due to many factors including data entry errors and merging from

multiple sources. Third: data management systems: the cleansed data is usually

represented in a new or transformed way as tables or files in a central data warehouse

or in a data lake. Finally, data analysis: an analyst queries the data to do any

actual analysis. Different algorithms can be applied for different purposes: classifi-

cation, clustering, inference in graphical models, knowledge construction and so on.

Each component plays an important role and my thesis aims at providing time- and

cost-efficient frameworks for the components by providing interactions with user. In

this thesis, I focus on data cleaning and data analysis, the reasons are explained

and motivated throughout this chapter.

Effective analytics depends on analysts having access to accurate, reliable, high-

1

quality information. Data cleaning is a time-consuming task. A new survey [2] of

data scientists found that they spend most of their time cleaning rather than mining

or modeling data. According to the survey, around 80% of their time is spent on

data preparation, including data cleaning and collecting data sets. Data cleaning has

received tremendous interest from both academia [33,37,91,101,102] and industry [36,

53,126]. However, many of existing work have two problems: (1) Focusing only on

cleaning accuracy: a lot of existing works are focusing on improving the precision of

data cleaning task ignoring the fact that the use of complicated algorithms to improve

accuracy causes data cleaning a time-consuming task. (2) Lack of interactivity:

the cleaning process is typically done as a batch process, operating on the whole

dataset without any feedback. This leads to long, frustrating delays during which

users have no idea if the cleaning is effective.

An on-demand data cleaning solution [20, 31, 71, 73] has been proposed, cleaning

data incrementally by interacting with the user for feedback. However, these works

usually focus on only one or two specific problems in data cleaning. For example,

Jeffery et al. [71] provides an on-demand data cleaning solution for data with schema

matching and entity resolution problems. Chai et al. [31] focuses on information

extraction and entity resolution. Each solution uses a specific data structure to rep-

resent the data and uses different factors to rank cleaning tasks. In real world, raw

data can contain multiple problems. In this case, manually “gluing” these works can

cause lot of extra work for user.

In this thesis, I propose a general on-demand data cleaning framework - Mimir.

One key requirement for such a data cleaning system is to be able to solve all different

problems in data cleaning process in a time- and cost-efficient way through interaction

with user. The challenges introduced by this requirement are: (1) How to provide a

language for user to express different data cleaning needs. (2) How to measure the

2

quality of the data in terms of uncertainty. (3) How to rank cleaning task to improve

data quality with minimal cost. (4) How to interact with user efficiently. Details on

how Mimir solves these challenges are discussed in Chapter 2 and Chapter 3.

The second component this thesis focuses on is data analysis. There are a lot of al-

gorithms used in data analysis, and inference in probabilistic graphical model (PGM)

is one of them. PGMs are a factorized encoding of joint (multivariate) probability

distributions. Even large distributions can often be compactly represented as a PGM.

Inference is a common operation which reconstructing the marginal probability for a

subset of the variables in the full joint distribution.

The reasons that I choose to focus on inference on PGMs are: Popularity: (1)

PGMs involve the uncertainty in the modeling that cause it to less sensitivity to noise

phenomenon. (2) The graph structure of PGM provides interpretability of the result.

Many applications in many domains: there are a lot of applications based on

inference on PGMs: expert system, natural language processing, handwriting, video

recognition, bio-sequence analysis, knowledge construction and so on. Closely

related to databases: over the past decade, a class of model database systems

have begun to add support for PGMs within database engines, allowing graphical

models to be queried through SQL [40, 108, 123], combined with other data for joint

analysis [69, 76], or used for analytics over messy data [91,118,120].

Existing inference algorithms are either exact or approximate. Exact algorithms [29]

like variable elimination and belief propagation produce exact results, but can be slow.

On the other hand, approximate algorithms [125, 127] like Gibbs sampling generate

estimates within any fixed time bounds, but only converge asymptotically to exact

results.

There are several problems in current inference solutions: (1) Lack of accurate

interactivity: similar to data cleaning, data analysis is a time-consuming task too.

3

The complexity of inference grows exponentially with increasing dimensionality of the

data. Exact inference will not reveal any result until obtaining the exact solution.

This also leads to long, frustrating delays during which users have no idea when

algorithm will terminate. Approximate inference can provide a sort of interaction by

providing current approximate result with a confidence bound. However, these bounds

are theoretical and not accurate enough to direct decision-makings or computation

instance allocations.

(2) Need for much user effort: the model database systems typically employ

approximate inference techniques, as model complexity can vary widely with different

usage patterns and responsiveness is typically more important than exact results.

However, exact inference can sometimes produce an exact result faster than it takes an

approximate algorithm to converge, even for moderately complex inference problems.

Furthermore, in interactive settings, the user may be willing to wait for more accurate

results. In either case, the choice of whether or not use an exact algorithm must wait

until the system has already obtained an approximation or be judged by user, which

is a difficult decision especially for non-experts.

In this thesis, I explore a family of convergent inference algorithms (CIAs) that

simultaneously acts as both approximate and exact inference algorithms: Given a

fixed time bound, a CIA can produce a bounded approximate inference result, but

will also terminate early if it is possible to converge to an exact result. Like a file copy

progress bar, CIAs can provide a “result accuracy progress bar” that is guaranteed to

complete eventually. Similar to online-aggregation (OLA) [63], CIAs give users and

client applications more control over accuracy/time trade-offs and do not require an

upfront commitment to either approximate or exact inference.

The challenges introduced by such inference algorithms are: (1) How to guarantee

convergence in a limited time. (2) How to guarantee to provide a confidence bound

4

during the inference process. (3) How to guarantee that CIAs have time complexity

that is competitive with classic exact inference algorithms. (4) How to guarantee that

the approximation accuracy is competitive with common approximate techniques.

Details on how CIAs solve these challenges are discussed in Chapter 4 and Chapter 5.

In this chapter, I first present examples of data cleaning scenarios and then, I

present the goal of my study, and the technical contributions.

1.1 Sample Target Senario for Data Cleaning

I present examples of data cleaning systems to illustrate the target workload I focus on

in this dissertation. The goal of this section is not to provide a complete description of

the workload but instead to provide enough information to guide the reader through

the rest of the thesis. A detailed description and examples of data cleaning workload

are the topics of Chapter 3.

Example 1 Alice is an analyst at the HappyBuy retail store, and is developing a

promotional strategy based on public opinion ratings for its products gathered by two

data collection companies. A thorough analysis of the data requires substantial data-

cleaning effort from Alice: As shown in Figure 1-1, the rating companies’ schemas

are incompatible, and HappyBuy’s own product data is incomplete. However, Alice’s

preliminary analysis is purely exploratory, and she is hesitant to invest the full effort

required to curate this data.

The upfront costs of cleaning have lead many to instead in-line cleaning tasks into the

analytical process, so that only immediately relevant cleaning tasks are performed.

This solution uses data lake or NoSQL databases. A data lake is a storage repository

that holds a vast amount of raw data in its native format until it is needed. While

5

a hierarchical data warehouse stores data in files or folders, a data lake uses a flat

architecture to store data. In this way, users don’t need to spend a lot of time building

the central data warehouse and a data lake provides more flexibility as the data may

be needed in various formats.

Example 2 Alice realizes that she only needs two specific attributes for her analy-

sis: category and rating. Therefore from the data lake, she considers manually

constructing a task-specific data set containing a sanitized version of only these two

columns.

This deferred approach is more lightweight, but encourages analysts to develop

brittle, one-off data cleansing solutions, incurring significant duplication of effort or

organizational overheads. A third approach, initially explored as part of Paygo [71],

instead cleans data incrementally in response to specific query requirements. This

form of on-demand cleaning results in a sanitized data set that is based on a principled

trade-off between the quality desired from the data set and the human effort invested

in cleaning it. Paygo specifically targets two cleaning tasks: schema matching and

entity resolution, and other systems have since appeared for schema matching [11],

as well as other tasks like information extraction [32], and inference [123,128].

Example 3 Alice decides to obtain an accurate result for products with good rating

information. So she needs to solve two cleaning problems: (1) Schema matching:

she needs to merge rating information from the two companies together, but they use

different schemas to present the data. (2) Missing values: she still needs to fix values

in category and rating.

She first uses Paygo to fix the schema matching problem. Paygo uses a triple

(object, attribute, value) to represent one entity, therefore data value and schema

are consider in a uniform fashion. For example, for an entity in Table “Ratings

6

Product
id name brand category ROWID

P123 Apple 6s, White ? phone R1
P124 Apple 5s, Black ? phone R2
P125 Samsung Note2 Samsung phone R3
P2345 Sony to inches ? ? R4
P34234 Dell, Intel 4 core Dell laptop R5
P34235 HP, AMD 2 core HP laptop R6

Ratings1
pid . . . rating review_ct ROWID
P123 . . . 4.5 50 R7
P2345 . . . ? 245 R8
P124 . . . 4 100 R9

Ratings2
pid . . . evaluation num_ratings ROWID
P125 . . . 3 121 R10

P34234 . . . 5 5 R11
P34235 . . . 4.5 4 R12

Figure 1-1: Incomplete example relations, annotated with implicit per-row lineage
markers (ROWID).

1”, < 𝑃123, 𝑟𝑎𝑡𝑖𝑛𝑔, 4.5 >, attribute “rating” is a schema name and object and value

“P123” and “4.5” are data values. Then she uses the BayesStore system [123] to solve

missing values in Product table. BayesStore stores data in a normal relational table in

database. Also, Paygo has a ranking mechanism for cleaning tasks which BayesStore

doesn’t.

From the example, we can see that without a uniform framework, on-demand data

cleanings can be challenging. A typical data cleaning process often involves many

distinct cleaning tasks, requiring that multiple on-demand data cleaning systems be

used in tandem. However, the data representations and quality metrics used by these

systems are optimized for very specific use-cases, making composition difficult.

7

1.2 Technical Contributions

I worked on two systems that focus on providing interactive solutions for data cleaning

and data analysis.

In Mimir, I explored and addressed the challenges of composing specialized on-

demand data cleaning techniques into a general-purpose workflow. The result is

a unified model for on-demand cleaning called On-Demand ETL (Exact,

transform and load) that bridges the gap between these systems and allows them

to be gracefully incorporated into existing ETL and analytics workflows. This unified

model builds around ordinary SQL, retaining compatibility with existing standards

for ETL design, data analysis, and database management.

The contributions include:

Representing Incomplete Data. On-demand cleaning permits trade-offs be-

tween data quality, and the effort needed to obtain high-quality data. This requires

a representation for the quality loss incurred by only partially cleaning data. Ex-

isting on-demand cleaning systems use specialized, task-specific representations. In

Section 2.4 I describe an existing representation for incomplete information called

PC-Tables [55,56,68], and show how it can be leveraged by On-Demand ETL.

Expressing Composition. If the output of a cleaning technique is non-deterministic,

then for closure, it must accept non-deterministic input as well. In Section 3.1, I define

a model for non-deterministic operators called lenses that capture the semantics of

on-demand data cleaning processes. I illustrate the generality of this model through

examples, and show that it is closed over PC-Tables.

Backwards Compatibility. For On-Demand ETL to be practical, it must be com-

patible with traditional data management systems and ETL pipelines. In Section 3.2,

I develop a practical implementation of PC-Tables [68] called Virtual C-Tables that

8

can be safely embedded into a classical, deterministic database system or ETL work-

flow.

Presenting Data Quality. In Section 3.3, I discuss how to present the quality

loss incurred by incomplete cleaning to end-users. I show how lightweight summaries

can be used to alert an analyst to specific problems that affect their analysis, and

how On-Demand ETL computes a variety of quality measures for query results.

Feedback. Section 3.4 highlights how Virtual C-Tables act as a form of provenance,

linking uncertainty in query outputs to the lenses that created them. These links allow

for lens-defined cleaning tasks that improve the quality of query results. I introduce

a concept called the cost of perfect information (CPI) that relates the value of a

cleaning task that improves a result’s quality, to the cost of performing the task,

allowing cleaning tasks to be ranked according to their net value to the analyst.

Experimental Results. Finally, in Section 5.4, I present experimental results that

demonstrate the feasibility of On-Demand ETL and provide several insights about its

use.

In CIA, I explored a family of convergent inference algorithms (CIAs) that si-

multaneously act as both approximate and exact inference algorithms: Given a fixed

time bound, a CIA can produce a bounded approximate inference result, but will also

terminate early if it is possible to converge to an exact result.

Detailed contribution includes:

Concept of Convergent Inference Algorithms. I propose a new family of

Convergent Inference Algorithms (CIAs) that provide approximate results over the

course of inference, but eventually converge to an exact inference result.

A Naive Convergent Inference Algorithm. I cast the problem of Convergent

Inference as a specialization of Online Aggregation, and propose a naive, constant-

9

space convergent inference algorithm based on Linear Congruential Generators. This

naive CIA guarantees to provide a confidence bound during the inference process and

grarantee to converge to an exact result within limited time.

Leaky Joins. To satisfy the challenge of competitive time complexity and ap-

proximate accuracy with existing solutions, I proposed Leaky Joins, a novel Online

Aggregation algorithm specifically designed for Convergent Inference with competi-

tive time complexity and approximate accuracy.

Proof of Complexity. I show that Leaky Joins have time complexity that is no

more than one polynomial order worse than classic exact inference algorithms, and

provide an 𝜖−𝛿 bound to demonstrate that the approximation accuracy is competitive

with common approximation techniques.

Experiment Results. I present experimental results on both synthetic and real-

world graph data to demonstrate that (a) Leaky Joins gracefully degrade from exact

inference to approximate inference as graph complexity rises. (b) Leaky Joins have

exact inference costs competitive with classic exact inference algorithms, and approx-

imation performance competitive with common sampling techniques.

Lessons learned. I discuss lessons learned in my attempts to design a convergent

inference algorithm using state-of-the-art incremental view maintenance systems [10,

81].

10

Chapter 2

Preliminaries for Mimir

2.1 ETL

Extract, Transform, Load (ETL) in Figure 2-1 is a process in data warehousing re-

sponsible for pulling data out of the source systems and placing it into a data ware-

house or data lake. While a hierarchical data warehouse stores data in files or folders,

a data lake uses a flat architecture to store data. ETL involves the following tasks:

1. Data extraction is where data is extracted from homogeneous or heteroge-

neous data sources, data with identical or different structures.

2. Data transformation is where the data is transformed for storing in the de-

sired format or structure for the purposes of querying and analysis. This process

may involve the following tasks:

∙ Applying business rules. For example, calculating new measures and di-

mension,

∙ Cleaning. For example, mapping NULL to 0 or "Male" to "M" and "Fe-

male" to "F",

11

∙ Filtering. For example, selecting only certain columns or rows to load,

∙ Splitting a column into multiple columns or merging multiple columns into

one column,

∙ Joining together data from multiple sources. For example, schema match-

ing or shema mapping,

∙ Transposing rows and columns, such as transforming row wise data into

column wise,

∙ Applying any kind of data validation. For example, if the first 3 columns

in a row are empty, then reject the row from processing.

3. Data loading is where the data is loaded into the final target database, more

specifically, an operational data store, data mart, or data warehouse.

Figure 2-1: Traditional ETL and Business Intelligence Process

ETL processing is a very time-consuming task. Data warehouses are typically

assembled from a variety of data sources with different formats and purposes. As

such, ETL is a key process to bring all the data together in a standard, homogeneous

environment. A lot of existing work focuses on obtaining accurate data through ETL

processing. However, since some ETL systems have to scale to process terabytes of

data to update data warehouses with tens of terabytes of data. Using complicated

algorithms for ETL processing increases the processing time tremendously. There is

a trade-off between time and accuracy. Mimir is one of the systems that provides

user more control over this trade-off.

12

Figure 2-2: Classification of data quality problems [101]

2.2 Data Cleanig

Data cleaning, also called data curation, wrangling or scrubbing, deals with detecting

and removing errors and inconsistencies from data in order to improve the quality of

data. Data cleaning [101] is especially required when integrating heterogeneous data

sources. Heterogeneous data sources include Data model heterogeneous (Different

ways of representing and storing the same data) and Semantic heterogeneous (Data

across constituent databases may be related but different). In data warehouses, data

cleaning is a major part of the ETL process. Since data warehouses load and con-

tinuously refresh huge amounts of data from a variety of sources, so the probability

that some of the sources contain “dirty data” is high. Since data warehouses are used

for decision making, the correctness of their data is vital to avoid wrong conclusions.

For instance, duplicated or missing information will produce incorrect or misleading

statistics (“garbage in, garbage out”).

In this section, I follow the classification convention in Erhard et al. [101] and

discuss briefly major data quality problems to be solved by data cleaning processes.

These classifications are shown in Figure 2-2.

13

2.2.1 Single-source problems

Unlike data sources without schema such as files, database systems enforce restric-

tions and specific data models. For example, relation databases can require integrity

constraints as well as application-specific integrity constraints. Table 2-3 shows some

examples of single-source problems at schema level, they are mainly due to the vio-

lation of integrity constraints of relational database.
Scope Problem Dirty Data Reasons/Remarks

Attribute Illegal values bdate=30.13.70 values outside of domain range

Record Violated attribute dependencies age=22, bdate=12.02.70 age = (current date - birth date)
should hold

Record type Uniqueness violation emp1=(name=“John Smith”, SSN=“123456”)
emp2=(name=“Peter Miller”, SSN=“123456”) uniqueness for SSN violated

Source Referential integrity violation emp=(name=“John Smith”, deptno=127) referenced department (127)
not defined

Figure 2-3: Examples for single-source problems at schema level (violated integrity
constraints)

For both schema- and instance-level problems, we can classify different problem

scopes: attribute (field), record, record type and source. Examples for the various

cases are shown in Tables 2-3 and 2-4. Note that uniqueness constraints specified at

the schema level do not prevent duplicated instances. For example, information on

the same real world entity may be entered twice with different attribute values (see

example in Table 2-4).
Scope Problem Dirty Data Reasons/Remarks

Attribute Missing values phone=9999-999999 unavailable values during data entry
(dummy values or null)

Record Violated attribute
dependencies city=“Redmond”, zip=77777 city and zip code should correspond

Record type Duplicated records emp1=(name=“John Smith”,...);
emp2=(name=“J. Smith”,...)

same employee represented twice
due to some data entry errors

Source Wrong references emp=(name=“John Smith”, deptno=17) referenced department (17) is defined but wrong

Figure 2-4: Examples for single-source problems at instance level

2.2.2 Multi-source problems

The problems present in single sources are aggravated when multiple sources need to

be integrated. Since the sources are typically developed, deployed and maintained

independently to serve specific needs, each source may contain dirty data and the

data in the sources may be represented differently, overlap or contradict.

14

Customer
CID Name Street City Sex
11 Kristen Smith 2 Hurley Pl South Fork, MN 48503 0
24 Christian Smith Hurley St 2 S Fork MN 1

Client
Cno LastName FirstName Gender Address Phone/Fax

24 Smith Christoph M 23 Harley St, Chicago
IL, 60633-2394 333-222-6542 /333

493 Smith Kris L. F 2 Hurley Place, South Fork
MN, 48503-5998 444-555-6666

Customers (integrated target with cleaned data)
No LName FName Gender Street City State ZIP Phone Fax CID Cno
1 Smith Kristen L. F 2 Hurley Place South Fork MN 48503 444-555-6666 11 493
2 Smith Christian M 2 Hurley Place South Fork MN 48503 24
3 Smith Christoph M 23 Harley Street Chicago IL 60633 333-222-6542 333 24

Figure 2-5: Examples of multi-source problems at schema and instance level

At the schema level, in order to integrate different sources, data model and schema

design differences need to be addressed by a process called schema matching. The

main problems in schema matching are naming and strutural conflicts. Naming con-

flicts arise when the same name is used for different objects (homonyms) or different

names are used for the same object (synonyms). Structural conflicts occur in many

variations and refer to different representations of the same object in different sources,

like attribute vs. table representations, different component structure, different data

types, different integrity constraints, and so on.

In addition to schema-level conflicts, many conflicts appear only at the instance

level (data conflicts). All the same problems from the single-source case can also occur

with different representations in different sources (e.g., duplicated records, contradict-

ing records). A main problem for cleaning data from multiple sources is to identify

overlapping data, and in particular matching records referring to the same real-world

entity (e.g., customer). This problem is also referred to as duplicate elimination or

entity resolution.

The two sources in the example of Figure 2-5 are both in relational format but

exhibit schema and data conflicts. At the schema level, there are name conflicts like

Customer/Client, Cid/Cno, Sex/Gender, and structural conflicts like different repre-

sentations for names and addresses. At the instance level, there are different gender

representations (“0”/“1” vs. “F”/“M”) and presumably a duplicate record (Kristen

15

Smith). The latter observation also reveals that while Cid and Cno are both source-

specific identifiers, their contents are not comparable between the sources. Different

numbers (11/493) may refer to the same person while different persons can have the

same number (24). The third table shows a possible solution.

2.3 Data Cleaning Approaches

Data Cleaning is an important topic in database area and has been extensively

studied. In this section, I refer to some existing solutions to problems in data cleaning

process.

2.3.1 Information Extraction

Information extraction (IE) is the task of automatically extracting structured informa-

tion from unstructured and/or semi-structured documents. Probabilistic databases

are often used to work for information extraction [60, 119, 121, 122]. Chai et al. [31]

propose a solution to directly provide feedback and information extraction and inte-

gration to automatically process such feedback.

2.3.2 Schema Matching

A survey and its follow-up [23, 100] present a comprehensive classification of schema

matching approaches. A rewrite-based optimization approach for schema matching

process is introduced in [99]. Doan et al. [43] propose a machine-learning approach

for schema matching. Chapter 9 in [22, 58] provides a generic overview of the exist-

ing efforts on bechmarking schema matching and mapping tasks. Schema matching

systems has been developed [42, 87, 89]. Incremental schema matching methods are

16

introduced in [22, 24, 47, 71]. Zhang et al. [129] explore the use of crowdsourcing to

reduce the uncertainty of schema matching.

2.3.3 Entity Resolution

Elmagarmid et al. [48] is a survey for duplicate detection. It focuses on the problem of

lexical heterogeneity and surveys techniques for addressing this problem. Chaudhuri

et al. [33] presents tuple matching in an online data cleaning senario. Singla et al. [112]

propose an integrated solution to the entity resolution problem based on Markov

logic. Hanna et al. [83] comparatively evaluate several entity resolution approaches.

Incremental entity resolution [13, 57] allow users to explore a trade-off between the

resolution cost and the achieved quality of the resolved data. Panse et al. [97] present

an indeterministic approach for deduplication by using a probabilistic target model.

Altwaijry et al. [14] explore “on-the-fly" data cleaning in the context of query.

2.3.4 Domain Constraint Repair

Potter’s Wheel [102] is an interactive data cleaning system that tightly integrates

transformation, infers patterns and detects discrepancy from the pattern. MauveDB [40]

defines model-based view acting as an “independence" layer between raw data and

userapplication and effieciently maintains models when raw data is updated. ER-

ACER [91] is an iterative statistical framework for inferring missing information and

correcting such errors automatically. Finally, BayesStore [123] employs concise statis-

tical relational models to effectively encode the correlation patterns between uncertain

data, and promotes probabilistic inference and statistical model manipulation as part

of the standard DBMS operator repertoire to support effecient query processing.

17

2.3.5 Archival

Kennedy et.al. [78] characterize contextual dependence errors from ETL process and

business intelligence and explore several strategies for efficiently detecting and quan-

tifying the effects of contextual dependence on query outputs.

2.4 Probabilistic Query Processing

A deterministic database is a finite collection of relation instances {𝑅1, . . . , 𝑅𝑘} over

a schema 𝒮 = {𝒮1, . . . ,𝒮𝑘}. According to the “possible worlds” semantics [114] a

probabilistic database 𝒟 consists of a pair (W, 𝑃), where W is a large collection of

deterministic databases, the so called possible worlds, all sharing the same schema 𝒮,

and 𝑃 is a probability measure over W. Roughly speaking, 𝒟 is a database whose

schema is known but whose internal state is uncertain, and W simply enumerates all

its plausible states. Denote by 𝑅 the set of all tuples that appear in some possible

world (often called possible tuples). Each element of 𝑅 is an outcome for the prob-

ability space (W, 𝑃). The confidence of a possible tuple 𝑡 is simply the probability

that it will appear in the database 𝒟, i.e. its marginal probability

𝑃 (𝑡 ∈ 𝒟) =
∑︁

𝑊𝑖∈W|𝑡∈𝑊𝑖

𝑃 (𝑊𝑖)

The goal of probabilistic databases [9,28,54,67,70,75,95,111] is to support the execu-

tion of deterministic queries like regular, deterministic databases do. Denote by 𝑄 an

arbitrary deterministic query (i.e., a query expressible in classical bag-relational alge-

bra) and by 𝑠𝑐ℎ(𝑄) the schema defined by it, which consists of a single relation. The

application of 𝑄 to 𝒟, denoted by 𝑄(𝒟), generates a new probability space (W′, 𝑃 ′)

18

𝑒 := R | 𝐶𝑜𝑙𝑢𝑚𝑛 | if 𝜑 then 𝑒 else 𝑒
| 𝑒 {+,−,×,÷} 𝑒 | 𝑉 𝑎𝑟(𝑖𝑑[, 𝑒[, 𝑒[, . . .]]])

𝜑 := 𝑒 {=, ̸=, <,≤, >,≥} 𝑒 | 𝜑 {∧,∨} 𝜑 | ⊤ | ⊥
| 𝑒 is null | ¬𝜑

Figure 2-6: Grammars for boolean expressions 𝜑 and numerical expressions 𝑒 includ-
ing support for VG-Functions 𝑉 𝑎𝑟(. . .).

where W′ = {𝑄(𝑊𝑖) | 𝑊𝑖 ∈W} and

𝑃 ′(𝑡 ∈ 𝑄(𝒟)) =
∑︁

𝑊𝑖∈W|𝑡∈𝑄(𝑊𝑖)

𝑃 (𝑊𝑖)

A probabilistic query processing (PQP) system is supposed to answer a deterministic

query 𝑄 by listing all its possible answers and annotating each tuple with its marginal

probability, or by computing expectations for aggregate values. These tasks are diffi-

cult in practice, mainly for two reasons: (i) W is usually too large to be enumerated

explicitly, and (ii) computing marginals is provably #P-hard in the general case. For

example, if a schema contains a single relation and the set of possible worlds contains

all subsets of a given set of 100 tuples, then there are 2100 distinct possible worlds

where each possible tuple appears in half.

One way to make probabilistic query processing efficient is to encode W and 𝑃

with a compact, factorized representation. In this thesis I adopt a generalized form

of C-Tables [68, 75] to represent W, and PC-Tables [55, 56] to represent the pair

(W, 𝑃). A C-Table [68] is a relation instance where each tuple is annotated with a

lineage formula 𝜑, a propositional formula over an alphabet of variable symbols Σ.

The formula 𝜑 is often called a local condition and the symbols in Σ are referred to

as labeled nulls, or just variables. Intuitively, for each assignment to the variables in

Σ we obtain a possible relation containing all the tuples whose formula 𝜑 is satisfied.

19

For example:

Product

pid name brand category 𝜑

𝑡1 P123 Apple 6s, White Apple phone 𝑥1 = 1

𝑡2 P123 Apple 6s, White Cupertino phone 𝑥1 = 2

𝑡3 P125 Samsung Note2 Samsung phone ⊤

The above C-Table defines a set of three possible worlds, {𝑡1, 𝑡3}, {𝑡2, 𝑡3}, and {𝑡3}, i.e.

one world for each possible assignment to the variables in the one-symbol alphabet

Σ = {𝑥1}. Notice that no possible world can have both 𝑡1 and 𝑡2 at the same time.

C-Tables are closed w.r.t. positive relational algebra [68] : if W is representable by

a C-Table and 𝑄 is a positive query then W′ = {𝑄(𝑊𝑖) | 𝑊𝑖 ∈W} is representable

by another C-Table.

Following the approach of PIP [75], in this thesis I adopt VG-RA (variable-

generating relational algebra), a generalization of positive bag-relation algebra with

extended projection, that uses a simplified form of VG-functions [70]. In VG-RA,

VG-functions (i) dynamically introduce new Skolem symbols in Σ, that are guaran-

teed to be unique and deterministically derived by the function’s parameters, and

(ii) associate the new symbols with probability distributions. Hence, VG-RA can be

used to define new C-Tables. Primitive-valued expressions in VG-RA (i.e., projection

expressions and selection predicates) use the grammar summarized in Figure 2-6. The

primary addition of this grammar is the VG-Function term: 𝑉 𝑎𝑟(. . .).

From PIP, I also inherit a slightly generalized form of C-Tables. Our C-Tables

differ from the canonical ones in the following: (i) Variables in Σ are allowed to

range over continuous domains, (ii) attribute-level uncertainty is encoded by replacing

missing values with VG-RA expressions (not just functions) that act as Skolem terms

and (iii) these VG-RA expressions allow basic arithmetic operations. The previous

example is equivalent to the PIP-style C-Table:

20

Product

pid name brand category

P123 Apple 6s, White 𝑉 𝑎𝑟(′𝑋′, R1) phone

P125 Samsung Note2 Samsung phone

Where 𝑅1 is the ROWID of row with pid = p123. From now on, without explic-

itly mentioning PIP, I will assume all C-Tables support the generalizations discussed

above. It has been shown that C-Tables are closed w.r.t VG-RA [68,75]. The seman-

tics for VG-RA query evaluation [[·]]𝐶𝑇 over C-Tables [67, 68, 75] are summarized in

Figure 2-7. These semantic rules make extensive use of the lazy evaluation operator

[[·]]𝑙𝑎𝑧𝑦, which uses a partial binding of 𝐶𝑜𝑙𝑢𝑚𝑛 or 𝑉 𝑎𝑟(. . .) atoms to correspond-

ing expressions. Lazy evaluation applies the partial binding and then reduces every

sub-tree in the expression that can be deterministically evaluated. Non deterministic

sub-trees are left intact. Any tuple attribute appearing in a C-Table can be encoded

as an abstract syntax tree for a partially evaluated expression that assigns it a value.

This is the basis for evaluating projection operators, where every expression 𝑒𝑖 in the

projection’s target list is lazily evaluated. Column bindings are given by each tuple

in the source relation. The local condition 𝜑 is preserved intact through the projec-

tion. Selection is evaluated by combining the selection predicate 𝜓 with each tuple’s

existing local condition 𝜑. As an optimization, tuples for which 𝜑 deterministically

evaluates to false (⊥) are preemptively discarded.

Expression Evaluates To
[[𝜋𝑎𝑖←𝑒𝑖(𝑅)]]𝐶𝑇 { ⟨ 𝑎𝑖 : [[𝑒𝑖(𝑡)]]𝑙𝑎𝑧𝑦, 𝜑 : 𝑡.𝜑 ⟩ | 𝑡 ∈ [[𝑅]]𝐶𝑇 }
[[𝜎𝜓(𝑅)]]𝐶𝑇 { ⟨ 𝑎𝑖 : 𝑡.𝑎𝑖, 𝜑 : [[𝑡.𝜑 ∧ 𝜓(𝑡)]]𝑙𝑎𝑧𝑦 ⟩ | 𝑡 ∈ [[𝑅]]𝐶𝑇 ∧ ([[𝑡.𝜑 ∧ 𝜓(𝑡)]]𝑙𝑎𝑧𝑦 ̸≡ ⊥) }
[[𝑅× 𝑆]]𝐶𝑇 { ⟨ 𝑎𝑖 : 𝑡1.𝑎𝑖, 𝑎𝑗 : 𝑡2.𝑎𝑗 , 𝜑 : 𝑡1.𝜑 ∧ 𝑡2.𝜑 ⟩ | 𝑡1 ∈ [[𝑅]]𝐶𝑇 ∧ 𝑡2 ∈ [[𝑆]]𝐶𝑇 }
[[𝑅 ⊎ 𝑆]]𝐶𝑇 { ⟨ 𝑎𝑖 : 𝑡.𝑎𝑖, 𝜑 : 𝑡.𝜑 ⟩ | 𝑡 ∈ ([[𝑅]]𝐶𝑇 ⊎ [[𝑆]]𝐶𝑇) }

Figure 2-7: Evaluation semantics for positive bag-relational algebra over C-Tables

A PC-Table [55, 56] is a C-Table augmented with a probability measure 𝑃 over

the possible assignments to the variables in Σ. Since each assignment to the variables

in Σ generates a possible world, a PC-Table induces a probability measure over W.

21

Hence, it can be used to encode a probabilistic database (W, 𝑃). PC-Tables are

the foundation for several PQP systems, including MayBMS [67], Orchestra [54] and

PIP [75]. Green et al. [55] observed that PC-Tables generalize other models like

Trio [9]. The relationship between PC-Tables and VG-RA is discussed in further

detail in Section 3.1.

2.5 On-Demand Data Cleaning Tools

There are numerous tools for on-demand data curation, each targeting specific chal-

lenges like schema matching [11, 71], de-duplication [71], information extraction [30,

32], information integration [21], or ontology construction [15,59]. On-Demand ETL

generalizes these, providing a tool for on-demand data curation that these solutions

can be plugged into. On-demand curation can also be thought of as a highly-targeted

form of crowd-sourced databases [90], which leverage the power of humans to perform

complex tasks.

The problem of incomplete data arises frequently in distributed systems, where

node failures are common. Existing solutions based on uncertainty [27, 52, 85, 117]

can similarly be expressed in On-Demand ETL to provide more fine-grained analyses

of result quality over partial data than these approaches provide natively.

2.6 Prioritizing Feedback

Prioritizing curation tasks, as addressed in Section 3.4, is quite closely related to

Stochastic Boolean Function Evaluation, or SBFE, where the goal is to determine

the value of a given Boolean formula by paying a price to discover the exact value

of uncertain boolean variables. The problem is hard in its general form; exact so-

22

lutions and heuristics have been proposed for several classes of functions [74, 116].

More recently Deshpande et al. [39] designed a 3-approximation algorithm for linear

threshold formulas, while Allen et al. [12] developed exact and approximate solutions

for monotone 𝑘-term DNF formulas.

23

Chapter 3

Interactive Data Cleaning for Data

Management - Mimir

3.1 Lenses

A lens is a data processing component that is evaluated as part of a normal ETL

pipeline. Unlike a typical ETL processing stage that produces a single, deterministic

output, a lens instead produces a PC-Table (W, 𝑃), which defines the set of possible

outputs, and a probability measure that approximates the likelihood that any given

possible output accurately models the real world. In effect, a lens gives structure to

uncertainty about how an ETL process should interpret its input data.

Asking ETL designers to specify this structure manually for the entire ETL process

is impractical. Lenses allow this structure to be specified as a composition of indi-

vidual simple transformations, constraints, or target properties that take the place of

normal operators in the ETL pipeline. However, composition requires closure. In this

section, I define a closed framework for lens specification, and illustrate its generality

through three example lenses.

24

3.1.1 The Lens Framework

A lens instance is defined over a query 𝑄(𝐷), and is in turn responsible for construct-

ing a PC-Table (W, 𝑃). A lens defines W as a C-Table through a VG-RA expression

ℱ𝑙𝑒𝑛𝑠(𝑄(𝐷)). Independently, the lens constructs 𝑃 as a joint probability distribution

over every variable introduced by ℱ𝑙𝑒𝑛𝑠, by defining a sampling process in the style of

classical VG-functions [70], or supplementing it with additional meta-data to create

a PIP-style grey-box [75]. An example of the complete process for the Domain Con-

straint Lens defined below is illustrated in Figure 3 − 1. These semantics are closed

over PC-Tables. If 𝑄(𝐷) is non-deterministic — that is, the lens’ input is defined

by a PC-Table (𝑄(𝐷), 𝑃𝑄) — the lens’ semantics are virtually unchanged. VG-RA

is closed over C-Tables, so ℱ𝑙𝑒𝑛𝑠(𝑄(𝐷)) simply defines a new C-Table. Defining 𝑃

as an extension of 𝑃𝑄 with distributions for all variables newly introduced by ℱ𝑙𝑒𝑛𝑠

provides closure for the probability measure, a topic I will return to in Section 3.1.3.

3.1.2 Lens Examples

I first illustrate the generality of the lens framework through three example lenses:

domain constraint repair, schema matching, and archival. To construct a lens over

query 𝑄, the user writes:

CREATE LENS <lens_name> AS Q WITH <lens_type>(<lens_arguments>);

Domain Constraint Repair. A domain constraint repair lens enforces attribute-

level constraints such as NOT NULL. Under the assumption that constraint violations

are a consequence of data-entry errors or missing values, domain constraint violations

can be repaired by finding a legitimate replacement for each invalid value. Obtaining

reliable replacement values typically requires detailed domain knowledge. However,

in an on-demand setting, approximations are sufficient. The domain constraint repair

25

DCR Lens
Query

Most
Likely
Output
Lens

C-Table
Most
Likely
Output
Result

C-Table

DCR Lens
ML ModelETL

Query
Source
Data

Probability
Distribution

Quality
Metrics

Best-
Effort
View

Analytics
Query

Legacy Application Lens Definition PC-Tables Output

Figure 3-1: Example of the domain constraint repair lens applied in a legacy appli-
cation. The output layer is discussed in Section 3.3.

lens uses educated guesses about data domains (e.g., uniform distributions over allow-

able values) and machine learning models (e.g., a naive Bayes classifier trained over

𝑄(𝐷)) to approximate domain knowledge. With 𝑠𝑐ℎ(𝑄) = {⟨ 𝑎1, 𝑡1 ⟩ , . . . , ⟨ 𝑎𝑛, 𝑡𝑛 ⟩}

denoting the attributes 𝑎𝑖 of 𝑄(𝐷) and their type 𝑡𝑖, a domain constraint repair lens

definition has the form:

... WITH DOMAIN_REPAIR(𝑎1 𝑡1, ..., 𝑎𝑛 𝑡𝑛)

The C-Table for the lens’ output is constructed by the query ℱ𝑙𝑒𝑛𝑠 = 𝜋{...,𝑎𝑖←𝑉𝑖,...},

where each 𝑉𝑖 is defined as:

if 𝑡𝑖 |= 𝑎𝑖 then 𝑎𝑖 else 𝑉 𝑎𝑟(𝑁𝑎𝑚𝑒𝑖, ROWID))

In this expression, 𝑡𝑖 |= 𝑎𝑖 if 𝑎𝑖 satisfies the type constraints of 𝑡𝑖, and each 𝑁𝑎𝑚𝑒𝑖 is

a freshly allocated variable name. Independently, 𝑃 is defined by training a classifier

or similar model for each attribute on the output of 𝑄.

Example 4 Returning to Example 1, Alice creates a lens to handle missing values

in the Product table:

CREATE LENS SaneProduct AS SELECT * FROM Product

26

id name brand category
P123 Apple 6s, White 𝑉 𝑎𝑟(′𝑋 ′, R1) phone
P124 Apple 5s, Black 𝑉 𝑎𝑟(′𝑋 ′, R2) phone
P125 Samsung Note2 Samsung phone
P2345 Sony 60 inches 𝑉 𝑎𝑟(′𝑋 ′, R4) 𝑉 𝑎𝑟(′𝑌 ′, R4)
P34234 Dell, Intel 4 core Dell laptop
P34235 HP, AMD 2 core HP laptop

Figure 3-2: The C-Table for SaneProduct

WITH DOMAIN_REPAIR(category string NOT NULL,

brand string NOT NULL);

From Alice’s perspective, the lens SaneProduct behaves as a standard database

view. However, the content of the lens is guaranteed to satisfy the domain constraints

on category and brand. NULL values in these columns are replaced according to

a classifier built over the output of the query over Product. Figure 3-2 shows the

C-Table for this lens.

Schema Matching. A schema matching lens creates a mapping from the source

data’s schema to a user-defined target schema. This is especially important for non-

relational data like JSON objects or web tables, which may not have well defined

schemas [66,71]. Given a destination schema {⟨ 𝑏1, 𝑡1 ⟩ , . . . , ⟨ 𝑏𝑚, 𝑡𝑚 ⟩} and a threshold

𝜔, a schema matching lens definition has the form:

... WITH SCHEMA_MATCHING(𝑏1 𝑡1, ..., 𝑏𝑚 𝑡𝑚, 𝜔)

The schema matching lens defines a fresh boolean variable 𝑉 𝑎𝑟(𝑁𝑎𝑚𝑒𝑖,𝑗) for every

pair 𝑎𝑖, 𝑏𝑗, where ⟨ 𝑎𝑖, 𝑡𝑖 ⟩ ∈ 𝑠𝑐ℎ(𝑄). The probability of 𝑉 𝑎𝑟(𝑁𝑎𝑚𝑒𝑖,𝑗) corresponds

to the probability of a match between 𝑎𝑖 and 𝑏𝑗. ℱ𝑙𝑒𝑛𝑠 takes the form: 𝜋{...,𝑏𝑗←𝑉𝑗 ,...},

where 𝑉𝑗 enumerates possible matches for 𝑏𝑗:

27

if 𝑉 𝑎𝑟(𝑁𝑎𝑚𝑒1,𝑗) then 𝑎1 else

if 𝑉 𝑎𝑟(𝑁𝑎𝑚𝑒2,𝑗) then 𝑎2 else

if 𝑉 𝑎𝑟(𝑁𝑎𝑚𝑒3,𝑗) then 𝑎3 else

...

if 𝑉 𝑎𝑟(𝑁𝑎𝑚𝑒𝑛,𝑗) then 𝑎𝑛 else NULL

As an optimization, matches for type-incompatible pairs of attributes are skipped.

Additionally, the lens discards matches where the likelihood of a schema-level match

falls below a user-defined threshold (𝜔).

Example 5 Alice next turns to the ratings data sets, which have incompatible schemas.

She creates a lens and a joint view:

CREATE LENS MatchedRatings2 AS SELECT * FROM Ratings2

WITH SCHEMA_MATCHING(pid string, ..., rating float,

review_ct float, NO LIMIT);

CREATE VIEW AllRatings AS SELECT * FROM MatchedRatings2

UNION SELECT * FROM Ratings1;

The resulting C-Table for MatchedRatings2 is shown in Figure 3-3. From Al-

ice’s perspective, AllRatings behaves as a normal view combining Ratings1 and

Ratings2. Behind the scenes, the attributes of Ratings2 are quietly matched against

those of Ratings1. In this example, only evaluation and num_ratings are type

compatible match candidates, and other match cases are dropped.

Numerous options are available for constructing 𝑃 , including domain-based schemes

or complex ontology-based matching. However, even a simple matching scheme can

28

pid . . . rating review_ct
P125 . . . if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′) then 3 else if 𝑉 𝑎𝑟(′𝑟𝑒𝑣_𝑐𝑡 = 𝑒𝑣𝑎𝑙′) then 3 else

if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑛𝑢𝑚_𝑟′) then 121 else NULL if 𝑉 𝑎𝑟(′𝑟𝑒𝑣_𝑐𝑡 = 𝑛𝑢𝑚_𝑟′) then 121 else NULL
P34234 . . . if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′) then 5 else if 𝑉 𝑎𝑟(′𝑟𝑒𝑣_𝑐𝑡 = 𝑒𝑣𝑎𝑙′) then 5 else

if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑛𝑢𝑚_𝑟′) then 5 else NULL if 𝑉 𝑎𝑟(′𝑟𝑒𝑣_𝑐𝑡 = 𝑛𝑢𝑚_𝑟′) then 5 else NULL
P34235 . . . if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′) then 4.5 else if 𝑉 𝑎𝑟(′𝑟𝑒𝑣_𝑐𝑡 = 𝑒𝑣𝑎𝑙′) then 4.5 else

if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑛𝑢𝑚_𝑟′) then 4 else NULL if 𝑉 𝑎𝑟(′𝑟𝑒𝑣_𝑐𝑡 = 𝑛𝑢𝑚_𝑟′) then 4 else NULL

Figure 3-3: The C-Table for MatchedRatings2

be sufficient for On-Demand ETL. I approximate the probability of a match between

two attributes by a normalized edit distance between the two attribute names. As

I show in Section 5.4 (Figure 3-13), even this simple matcher can produce suitable

results.

Archival. An archival lens captures the potential for errors arising from OLAP

queries being posed over stale data [78], like queries run in between periodic OLTP to

OLAP bulk data copies. The lens takes a list of pairs ⟨ 𝑇,𝑅 ⟩, where 𝑅 is a reference

to a relation in an OLTP database, and 𝑇 is the period with which 𝑅 is locally

archived.

... WITH ARCHIVAL(⟨ 𝑇1, 𝑅1 ⟩ , . . . , ⟨ 𝑇𝑚, 𝑅𝑚 ⟩)

This lens probabilistically discards rows from its output that are no-longer valid

according to the lens query ℱ𝑙𝑒𝑛𝑠 = 𝜎𝑉 𝑎𝑟(𝑁𝑎𝑚𝑒,ROWID), where 𝑁𝑎𝑚𝑒 is a freshly allocated

identifier. In the background, the lens periodically polls for samples drawn from each

𝑅𝑗 to estimate the volatility of each relation referenced by 𝑄. Denote by 𝜈𝑗 the

probability of a tuple in 𝑅𝑗 being invalidated at some point during the period 𝑇𝑗.

𝑃 is defined independently for each row as a binomial distribution with probability∏︀
{𝑗|𝑅𝑗∈𝑄} 𝜈𝑗.

3.1.3 Composing Lenses

Example 6 When Alice examines AllRatings, she suddenly realizes that the data

in Ratings1 is missing rating information. She creates a domain repair lens:

29

CREATE LENS SaneRatings AS

SELECT pid, category, rating, review_ct FROM AllRatings

WITH DOMAIN_REPAIR(rating DECIMAL NOT NULL)

The C-Table for SaneRatings is straightforward to construct, as both lenses in-

volved can be expressed as VG-RA expressions. However, the domain repair lens must

still train a model to fill in distributions for missing values. In contrast to Example 4,

where the model was trained on deterministic input, here the input is a PC-Table.

The closure of VG-RA over PC-Tables requires that any non-deterministic query ℱ

be defined alongside a process that extends the input PC-Table’s probability measure

𝑃𝑖𝑛 to cover any variables introduced by ℱ . For lenses, there are three possibilities. In

the trivial case where ℱ introduces no new variables, 𝑃𝑖𝑛 remains unmodified. In the

second case, variables introduced by ℱ are independent of 𝑃𝑖𝑛 and a joint distribution

is defined trivially as the product of the original and new distributions. If any new

variables depend on 𝑃𝑖𝑛, a grey-box distribution definition [75] can be used to express

these dependencies directly.

However, it may not always be possible to explicitly define dependencies, partic-

ularly when adapting existing on-demand cleaning solutions. Mimir provides three

separate mechanisms to enable support for lenses that require deterministic inputs:

(i) Train the lens on the most-likely output of the source lens (see Section 3.3), (ii)

Train the lens on samples of rows drawn from random instances of the source model,

or (iii) Train the lens on the subset of the source data that is fully deterministic (i.e.,

certain).

The above lens combining methods behave like a pipeline, where one lens is based

on the result of the other. This method is error-prone, the error can propogate

from one lens to the other. Instead of combining lenses in a pipelined fashion like

30

Example 6, an alternate method is to consider all the lenses as a whole and construct

a probabilistic graphical model or a markov logic network to express them. Then

inference can then be used on these models or networks to calculate 𝑃𝑖𝑛 in a uniform

way.

Example 7 Alice issues the following query:

SELECT p.pid, p.category, r.rating, r.review_ct

FROM SaneRatings r NATURAL JOIN Product p

WHERE p.category IN (‘phone’,‘TV’) OR r.rating > 4

The resulting C-Table is shown in Figure 3-4. The first two products are entirely

deterministic. P125 is a phone and deterministically satisfies the query, but has

attribute-level uncertainty from schema matching (Example 5). P2345 has a miss-

ing category (Example 4) and rating (Example 6), so the row’s condition is ef-

fectively the entire selection predicate. P34234 and P34235 are laptops and fail

the test on category, so their presence in the result set depends entirely on how

rating is matched (Example 5). Recall that there are three candidates: evaluation,

num_ratings, or neither. In the last case, domain repair (Example 6) replaces the

NULL with 𝑉 𝑎𝑟(′𝑍 ′, 𝑅11) and 𝑉 𝑎𝑟(′𝑍 ′, 𝑅12). P34234 and P34235 have functional

if expressions in their conditions, with the form (if 𝜑1 then 𝑒2 else 𝑒3) > 4.

These expressions can be simplified by recursively pushing the comparison into the

branches: if 𝜑1 then 𝑒2 > 4 else 𝑒3 > 4, in-lining the branches into the condition:

(𝜑1 ∧ (𝑒2 > 4)) ∨ (¬𝜑1 ∧ (𝑒3 > 4)), and then further simplifying the resulting boolean

expression.

31

id category rating review_ct 𝜑 (condition)
P123 phone 4.5 50 ⊤
P124 phone 4 100 ⊤
P125 phone if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′) then . . . if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′) then . . . ⊤

. . . else 𝑉 𝑎𝑟(′𝑍 ′, 𝑅10) . . . else NULL
(𝑉 𝑎𝑟(′𝑌 ′, 𝑅4) = ′𝑝ℎ𝑜𝑛𝑒′)

P2345 𝑉 𝑎𝑟(′𝑌 ′, 𝑅4) 𝑉 𝑎𝑟(′𝑍 ′, 𝑅8) 245 ∨ (𝑉 𝑎𝑟(′𝑌 ′, 𝑅4) = ′𝑇𝑉 ′)
∨ 𝑉 𝑎𝑟(′𝑍 ′, 𝑅8) > 4

if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′) then . . . if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′) then . . . 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′)
P34234 laptop . . . else 𝑉 𝑎𝑟(′𝑍 ′, 𝑅11) . . . else NULL ∨ 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑛𝑢𝑚_𝑟′)

∨ (𝑉 𝑎𝑟(′𝑍 ′, 𝑅11) > 4)
if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′) then . . . if 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′) then . . . 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′)

P34235 laptop . . . else 𝑉 𝑎𝑟(′𝑍 ′, 𝑅12) . . . else NULL ∨(¬𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑛𝑢𝑚_𝑟′)
∧ (𝑉 𝑎𝑟(′𝑍 ′, 𝑅12) > 4))

Figure 3-4: C-Table for the query over SaneRatings and SaneProduct

3.2 Probabilistic Query Processing

I next address the challenge of deploying the PQP techniques necessary to support

Lenses into an existing database or ETL pipeline. My approach, called Virtual C-

Tables or VC-Tables, works by decomposing VG-RA queries into deterministic and

non-deterministic components. Non-deterministic components are percolated out of

queries, making it possible for the bulk of the ETL process to remain within a clas-

sical deterministic system. A small On-Demand ETL shim layer wraps around the

database, and provides a minimally-invasive interface for uncertainty-aware users and

applications. This shim layer is also responsible for managing several views, discussed

in Section 3.3, that provide backwards compatibility for legacy applications.

Let ℱ(𝐷) denote a VG-RA query over a deterministic database 𝐷. When com-

bined with a probability measure 𝑃 , (ℱ(𝐷), 𝑃) defines a PC-Table. Semantics for

deterministic queries over PC-Tables are well defined, but rely on support for labeled

nulls, a feature not commonly found in popular data management systems. Existing

probabilistic query processing systems address this limitation by restricting them-

selves to special cases like finite-discrete probability distributions over categorical

data [50, 67], relying on costly user-defined types [70, 75, 77], or by specializing the

entire database for uncertain data management [9,54,111]. Ultimately, each of these

32

solutions is either too specialized for Mimir, or too disruptive to be deployed into an

existing classical ETL pipeline or databases.

Virtual C-Tables decouple the deterministic components of a query from the non-

deterministic components that define a PC-Table. This decomposition is enabled

by the observation that once the probability measure 𝑃 of a PC-Table (ℱ(𝐷), 𝑃)

is constructed, further deterministic queries 𝑄 over the PC-Table do not affect 𝑃 .

Consequently, I am free to rewrite the C-Table 𝑄(ℱ(𝐷)) defined by any query over

(ℱ(𝐷), 𝑃) into any equivalent query ℱ ′(𝑄′(𝐷)), where 𝑄′ is deterministic and ℱ ′

is non-deterministic. In this new, normalized form, the heavy-weight deterministic

inner query 𝑄′ can be evaluated by a traditional database, while a much simpler ℱ ′

can be evaluated or analyzed by a small shim layer sitting between the database and

its users. Further queries 𝑞(ℱ ′(𝑄′(𝐷))) can likewise be rewritten into normal form

ℱ ′′(𝑞′(𝑄′(𝐷))), enabling views and SELECT INTO queries, both of which frequently

appear in ETL workflows.

3.2.1 Normal Form VG-RA

Non-determinism arises in VG-RA queries through expressions containing variable

terms — that is, only through projection and selection. Correspondingly, I propose a

normal form of VG-RA: 𝜋𝑎𝑖←𝑒𝑖(𝜎𝜑(𝑄(𝐷))), where the source query 𝑄(𝐷) is express-

ible using classical bag-relational algebra. The two outer operators, which I represent

jointly as ℱ(⟨ 𝑎𝑖 ← 𝑒𝑖 ⟩ , 𝜑), fully encode the branching possibilities of the C-Table.

Figure 3-5 shows how any query in VG-RA can be rewritten into this form by per-

colating all expressions with a VG-Term 𝑉 𝑎𝑟(. . .) up through the relational algebra

tree.

Projection and selection operators wrapping around ℱ may be in-lined into ℱ

33

𝜋𝑎′𝑗←𝑒′𝑗 (ℱ(⟨ 𝑎𝑖 ← 𝑒𝑖 ⟩ , 𝜑)(𝑄(𝐷))) ≡ ℱ(
⟨︀
𝑎′𝑗 ← [[𝑒′𝑗(𝑎𝑖 ← 𝑒𝑖)]]𝑙𝑎𝑧𝑦

⟩︀
, 𝜑)(𝑄(𝐷)) (3.1)

𝜎𝜓 (ℱ(⟨ 𝑎𝑖 ← 𝑒𝑖 ⟩ , 𝜑)(𝑄(𝐷))) ≡ ℱ(⟨ 𝑎𝑖 ← 𝑒𝑖 ⟩ , 𝜑 ∧ 𝜓𝑣𝑎𝑟)(𝜎𝜓𝑑𝑒𝑡
(𝑄(𝐷))) (3.2)

ℱ(⟨ 𝑎𝑖 ← 𝑒𝑖 ⟩ , 𝜑)(𝑄(𝐷))×ℱ(
⟨︀
𝑎′𝑗 ← 𝑒′𝑗

⟩︀
, 𝜑′)(𝑄′(𝐷))

≡ ℱ(
⟨︀
𝑎𝑖 ← 𝑒𝑖, 𝑎

′
𝑗 ← 𝑒′𝑗

⟩︀
, 𝜑 ∧ 𝜑′)(𝑄(𝐷)×𝑄′(𝐷)) (3.3)

ℱ(⟨ 𝑎𝑖 ← 𝑒𝑖 ⟩ , 𝜑)(𝑄(𝐷)) ⊎ ℱ(⟨ 𝑎𝑖 ← 𝑒′𝑖 ⟩ , 𝜑′)(𝑄′(𝐷))

≡ ℱ(⟨ 𝑎𝑖 ← [[if 𝑠𝑟𝑐 = 1 then 𝑒𝑖 else 𝑒′𝑖]]𝑙𝑎𝑧𝑦 ⟩ ,
[[if 𝑠𝑟𝑐 = 1 then 𝜑 else 𝜑′]]𝑙𝑎𝑧𝑦)(

𝜋*,𝑠𝑟𝑐←1(𝑄(𝐷)) ⊎ 𝜋*,𝑠𝑟𝑐←2(𝑄
′(𝐷))) (3.4)

Figure 3-5: Recursive reduction to Normal Form.

according to rewrites 3.1 and 3.2. As an optimization, expressions and conditions

are simplified through lazy evaluation, and predicates 𝜓 are partitioned into two

components: 𝜓𝑣𝑎𝑟 ∧ 𝜓𝑑𝑒𝑡 ≡ [[𝜓(𝑎𝑖 ← 𝑒𝑖)]]𝑙𝑎𝑧𝑦, having and not having variable terms,

respectively.

Cross-products of two normalized expressions are composed in the straightforward

way by concatenating attribute sets and conjunctively combining local conditions as

shown in rewrite 3.3. We use alpha-renaming to avoid schema conflicts between 𝑄(𝐷)

and 𝑄′(𝐷), and without loss of generality, assume that the intersection of 𝑎𝑖 and 𝑎′𝑗

is empty.

Finally, rewrite 3.4 shows how bag-unions can be rewritten by injecting a prove-

nance marker into the deterministic queries. A fresh attribute 𝑠𝑟𝑐 distinguishes rows

originating from each of two source queries 𝑄 and 𝑄′.

34

3.2.2 Virtual Views

Normalization allows lenses to be incorporated into existing ETL pipelines. A lens

constructs a probability measure 𝑃 out of its input 𝑄(𝐷), and a C-Table using

ℱ𝑙𝑒𝑛𝑠(𝑄(𝐷)). The lens query and any subsequent queries over it are normalized into

a normal form query ℱ ′(𝑄′(𝐷)), and the view 𝑄′(𝐷) is constructed and materialized

by the traditional database. ℱ ′ is stored alongside 𝑄′ and defines a virtual view for

ℱ ′(𝑄′(𝐷)). The shim interface transparently normalizes queries over virtual views

𝑞(ℱ ′(𝑄′(𝐷))) to ℱ ′′(𝑞′(𝑄′(𝐷))), allowing 𝑞′(𝑄′(𝐷)) to be evaluated by the traditional

database. View definitions and SELECT INTO queries are similarly rewritten, defining

new virtual views instead of their normal behavior.

3.2.3 Partition

In Section 3.2.1, I showed the rules for recursive reduction to normal form. These

rules are very general, but the resulting queries are not efficient. For example, for join

operations, the rule generalized it to cross product, which increases the complexity

tremendously.

Most existing provenance-based evaluation strategies [9,17,28,50,111] limit them-

selves to supporting finite, discrete data distributions. This is a necessary concession

to efficiency, as non-deterministic joins over data drawn from a continuous distribution

effectively devolve to cross products. To avoid completely devolving to cross-product

performance, my partition query evaluation strategy is based on the assumption that a

comparatively small fraction of the user’s data is uncertain. Therefore, instead of gen-

eralizing the operators which will be applied to all deterministic and non-deterministic

data, only non-deterministic data is selected to be reduced to normal form. I first

rewrite to query into several subqueries, where the result of each subquery shares the

35

same provenance. Only those subqueries with non-deterministic result will reduced

to normal form. In this way, the backend database is fully utilized and the extra

complexity introduced by reduction process is minimized.

In this section, in the context of a specific subquery, I will use 𝜑𝑖 to represent a

boolean expression that captures the lineage of attributes and rows in the subquery.

I use 𝜓𝑖 to denote the where clause for the sub-query. To partition a query (𝑄(𝐷)), I

begin with a set of partitions, each defined by a boolean formula 𝜓𝑖 over attributes in

𝑠𝑐ℎ(𝑄). For each partition 𝜓𝑖 I can simplify the selection condition 𝜑 of a query 𝑄 into

a reduced form 𝜑𝑖. I use 𝜑[𝜓𝑖] to denote the result of propagating the implications of

𝜓𝑖 on 𝜑. For example, (if 𝑋 is null then 𝑉 𝑎𝑟(′𝑋 ′, 𝑅𝑂𝑊𝐼𝐷) else 𝑋)[𝑋 is null] ≡

𝑉 𝑎𝑟(′𝑋 ′). For a set of partitions to be used to split a query into fragments it must

be complete (
⋁︀
𝜓𝑖 ≡ 𝑇) and disjoint (∀𝑖 ̸= 𝑗 . 𝜑[𝜓𝑖]→ ¬𝜑[𝜓𝑗]).

Given a set of partitions Ψ = {𝜓1, . . . , 𝜓𝑁}, the partition rewrite transforms the

original query into an equivalent set of partitioned queries as follows:

(ℱ(⟨ 𝑎𝑖 ← 𝑒𝑖 ⟩ , 𝜑)(𝑄(𝐷))) ↦→ ℱ(⟨ 𝑎𝑖 ← 𝑒𝑖 ⟩ , 𝜑𝑣𝑎𝑟,1)(𝜎𝜓1∧𝜑𝑑𝑒𝑡,1(𝑄(𝐷)))

∪ · · · ∪ ℱ(⟨ 𝑎𝑖 ← 𝑒𝑖 ⟩ , 𝜑𝑣𝑎𝑟,𝑁)(𝜎𝜓𝑁∧𝜑𝑑𝑒𝑡,𝑁 (𝑄(𝐷)))

where 𝜑𝑣𝑎𝑟,𝑖 and 𝜑𝑑𝑒𝑡,𝑖 are respectively the non-deterministic and deterministic condi-

tions of 𝜑 (i.e., 𝜑 = 𝜑𝑣𝑎𝑟,𝑖∧𝜑𝑑𝑒𝑡,𝑖) for each partition. Partitioning then, consists of two

stages: (1) Obtaining a set of potential partitions Ψ from the original condition 𝜑,

and (2) Segmenting 𝜑 into a deterministic filtering predicate and a non-deterministic

lineage component.

36

Algorithm 1 isDet(𝐸)
Require: 𝐸: An arithmetic expression that may contain 𝑉 𝑎𝑟 terms.
Ensure: An expression that is true when 𝐸 is deterministic.

if 𝐸 ∈ {R,⊤,⊥} then
return ⊤

else if 𝐸 is 𝑉 𝑎𝑟 then
return ⊥

else if 𝐸 is 𝐶𝑜𝑙𝑢𝑚𝑛𝑖 then
return 𝐷𝑖

else if 𝐸 is ¬𝐸1 then
return isDet(𝐸1)

else if 𝐸 is 𝐸1 ∨ 𝐸2 then
return (𝐸1 ∧ isDet(𝐸1)) ∨ (𝐸2 ∧ isDet(𝐸2))

∨ (isDet(𝐸1) ∧ isDet(𝐸2))
else if 𝐸 is 𝐸1 ∧ 𝐸2 then

return (¬𝐸1 ∧ isDet(𝐸1)) ∨ (¬𝐸2 ∧ isDet(𝐸2))
∨ (isDet(𝐸1) ∧ isDet(𝐸2))

else if 𝐸 is 𝐸1 {+,−,×,÷,=, ̸=, >,≥, <,≤} 𝐸2 then
return (isDet(𝐸1) ∧ isDet(𝐸2))

else if 𝐸 is if 𝐸1 then 𝐸2 else 𝐸3 then
return isDet(𝐸1) ∧ ((𝐸1 ∧ isDet(𝐸2))

∨(¬𝐸1 ∧ isDet(𝐸3)))

Partitioning the Query

Algorithm 2 begins with the selection predicate 𝜑 in the shim query ℱ(⟨ 𝑎𝑖 ← 𝑒𝑖 ⟩ , 𝜑),

and outputs a set of fragments Ψ = {𝜓𝑖}. Fragments are formed from the set of all

possible truth assignments to a set of candidate conditions. Candidate conditions are

obtained from if statements appearing in 𝜑 that have deterministic conditions, and

that branch between deterministic and non-deterministic cases.

Example 8 Recall in Example 4, I generate a new C-Table using the VG-RA query.

I now issue a query:

SELECT type FROM SaneProduct

WHERE brand = ’Apple’ AND category = ’phone’

37

Algorithm 2 naivePartition(𝜑)

Require: 𝜑: A non-deterministic boolean expression
Ensure: Ψ: A set of partition conditions {𝜓𝑖}
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠← ∅
Ψ← ∅
for (if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝛼 else 𝛽) ∈ subexps(𝜑) do
/* Check ifs in 𝜑 for candidate partition conditions */
if isDet(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) ∧ (isDet(𝛼) ̸= isDet(𝛽)) then
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠← 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∪ {𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛}

/* Loop over the power-set of conditions */
for 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ∈ 2𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 do
𝜓𝑖 ← ⊤
/* Conditions in the partition are true, others are false */
for 𝑐𝑙𝑎𝑢𝑠𝑒 ∈ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 do

if 𝑐𝑙𝑎𝑢𝑠𝑒 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 then 𝜓𝑖 ← 𝜓𝑖 ∧ 𝑐𝑙𝑎𝑢𝑠𝑒
else 𝜓𝑖 ← 𝜓𝑖 ∧ ¬𝑐𝑙𝑎𝑢𝑠𝑒

Ψ← Ψ ∪ {𝜓𝑖}

The query has the non-deterministic condition (𝜑):

(if 𝑏𝑟𝑎𝑛𝑑 is null then 𝑉 𝑎𝑟(′𝑏′, ROWID) else 𝑏𝑟𝑎𝑛𝑑) = ‘𝐴𝑝𝑝𝑙𝑒′

∧ (if 𝑐𝑎𝑡 is null then 𝑉 𝑎𝑟(′𝑐′, ROWID) else 𝑐𝑎𝑡) = ‘𝑝ℎ𝑜𝑛𝑒′

There are two candidate conditions in 𝜑: 𝑏𝑟𝑎𝑛𝑑 is null and 𝑐𝑎𝑡 is null. Thus,

Algorithm 2 creates 4 partitions: 𝜓1 = (¬𝑏𝑟𝑎𝑛𝑑 is null ∧ ¬𝑐𝑎𝑡 is null), 𝜓2 =

(𝑏𝑟𝑎𝑛𝑑 is null ∧ ¬𝑐𝑎𝑡 is null), 𝜓3 = (¬𝑏𝑟𝑎𝑛𝑑 is null ∧ 𝑐𝑎𝑡 is null), and finally

𝜓4 = (𝑏𝑟𝑎𝑛𝑑 is null ∧ 𝑐𝑎𝑡 is null).

Segmenting 𝜑

Using isDet from Algorithm 1, I partition the conjunctive terms of 𝜑[𝜓𝑖] into deter-

ministic and non-deterministic components 𝜑𝑖,𝑑𝑒𝑡 and 𝜑𝑖,𝑣𝑎𝑟, respectively so that

(𝜑𝑖,𝑑𝑒𝑡 ∧ 𝜑𝑖,𝑣𝑎𝑟) ≡ 𝜑[𝜓𝑖]

38

Note that Algorithm 2 may return a set of conditions that is not disjoint. I apply an

additional check for overlap before using the output of this algorithm to partition a

query.

Partitioning Complex Boolean Formulas

I next describe a more aggressive partitioning strategy that uses the structure of

𝜑 to create partitions where each partition depends on exactly the same set of 𝑉 𝑎𝑟

terms. To determine the set of partitions for each sub-query, I use a recursive traversal

through the structure of 𝜑, as shown in Algorithm 3. The idea of the algorithm is

that, in a fine-grained partition, there are exactly 2𝑁 sub-queries union-ed together,

where N is the number of atoms in where clause. For each subsets i (i from 1 to

2𝑁) of atoms, Algorithm 3 generates the condition 𝜑𝑖 and the corresponding selection

predicate to select all rows having the same lineage.

Algorithm 3 generalPartition
Require: 𝜑: A non-deterministic boolean expression considered as a tree structure,

a set of atoms {𝑎𝑖}
Ensure: Ψ: A set of partitions {𝜓𝑖} and corresponding conditions {𝜑𝑖}

if 𝜑 is a single atom then
return

if 𝜑.leftChild is an operator then
generalPartition(root.leftchild)

if 𝜑.rightChild is an operator then
generalPartition(root.rightchild)

constructPartition(𝜑,{𝑎𝑖});

The partition approach makes full use of the backend database engine by splitting

the query into deterministic and non-deterministic fragments. The lineage of the

condition for each sub-query is simpler, and typically no longer data-dependent. As a

consequence, explanation objects can be shared across all rows in the partition. The

number of partitions obtained with both partitioning schemes is exponential in the

39

Algorithm 4 constructPartition
Require: 𝜑: A non-deterministic boolean expression considered as a tree

structure,{𝑎𝑖}
Ensure: Ψ: A set of partitions {𝜓𝑖} and corresponding conditions {𝜑𝑖}

if {𝑎𝑖} contains 𝜑.leftChild.𝜑𝑖 and
{𝑎𝑖} contains 𝜑.rightChild.𝜑𝑖 then
𝜑𝑖.combine(𝜑.leftChild.𝜑𝑖,𝜑.rightChild.𝜑𝑖);
𝜓𝑖.add(𝜑.leftChild.𝜓𝑖);
𝜓𝑖.add(𝜑.rightChild.𝜓𝑖);

else
if {𝑎𝑖} contains 𝜑.leftChild.𝜑𝑖 then
𝜑𝑖.add(𝜑.leftChild.𝜑𝑖);
if 𝜑 is instanceOf OR Operator then
𝜓𝑖.add(NOT 𝜑.rightChild);

if 𝜑 is instanceOf AND Operator then
𝜓𝑖.add(𝜑.rightChild);

else
if {𝑎𝑖} contains 𝜑.rightChild.𝜑𝑖 then
𝜑𝑖.add(𝜑.rightChild.𝜑𝑖);
if 𝜑 is instanceOf OR Operator then
𝜓𝑖.add(NOT 𝜑.leftChild);

if 𝜑 is instanceOf AND Operator then
𝜓𝑖.add(𝜑.leftChild);

else
𝜓𝑖.add(𝜑);

number of candidate conditions. Partitions could conceivably be combined, increasing

the number of redundant tuples processed by Mimir to create a lower-complexity

query. In the extreme, we might have only two partitions: one deterministic and one

non-deterministic.

3.3 Result Quality Analysis

Using virtual views, queries over lens outputs are rewritten into the normal form

ℱ(𝑄(𝐷)), and 𝑄(𝐷) is evaluated by the database. However, the C-Table construction

query ℱ is of minimal use in its raw form. I next turn to the construction of user-

consumable summaries of ℱ .

40

3.3.1 Summarizing the Result Relation

Users consume a Virtual C-Table ℱ(⟨ 𝑎𝑖 ← 𝑒𝑖 ⟩ , 𝜑)(𝑄(𝐷)) through one of two deter-

ministic summary relations: A deterministic relation ℛ𝑑𝑒𝑡, and a best-guess relation

ℛ𝑔𝑢𝑒𝑠𝑠. The deterministic relation ℛ𝑑𝑒𝑡 represents the certain answers [49] of the vir-

tual C-Table, and is constructed by replacing every variable reference in each 𝑒𝑖 and

𝜑 with NULL, and dropping rows where 𝜑 ̸= ⊤:

SELECT 𝑒𝑖(* → NULL) AS 𝑎𝑖 FROM 𝑄(𝐷) WHERE 𝜑(* → NULL)

The resulting relation contains all of the rows deterministically present in ℱ(𝑄(𝐷)),

with NULL taking the place of any non-deterministic values. ℛ𝑑𝑒𝑡 can be computed

entirely within a classical deterministic database, making it backwards compatible

with legacy ETL components.

The best-guess relationℛ𝑔𝑢𝑒𝑠𝑠 is constructed in two stages. First, the deterministic

database system executes 𝑄(𝐷). As the classical database streams results for 𝑄(𝐷),

the shim layer evaluates each 𝑒𝑖 and 𝜑 based on the valuation given by argmax𝑣(𝑃 (𝑣)),

the most-likely possible world. Field values or row confidences in the best guess rela-

tion that depend on 𝑣 are annotated in the shim layer’s output. Legacy applications

can quietly ignore this annotation. In uncertainty-aware applications, this annotation

is used to indicate which parts of the result are uncertain to the end-user.

Example 9 Continuing Example 7, the database now responds to Alice’s query with

the most-likely result shown in Figure 3-6. Every non-deterministic (i.e., guessed)

field is annotated with an asterisk. Every row with a non-deterministic condition is

similarly marked. A footer indicates how many rows were dropped due to a non-

deterministic condition evaluating to false in the most likely possible world. Note

that this best-guess estimate is not entirely accurate: evaluation has been mapped

to review_ct, and rating has not been matched, resulting in best-effort guesses of 2

41

id category rating review_ct
P123 phone 4.5 50
P124 phone 4 100
P125 phone 2 * 3 *

P34235 laptop 5 * 4.5 * *
(Up to 2 results may be missing. *)

Figure 3-6: The best-guess summary of the C-Table from Figure 3-4 that Alice actu-
ally sees.

and 5 for the last two rows of the result. In spite of the error, Alice can quickly see

the role uncertainty plays in her results.

3.3.2 Summarizing Result Quality

Once the user is made aware that parts of a query result may be uncertain, two ques-

tions likely to be asked are “How bad?” and “Why?”. Answering the latter question

is trivial: ℱ contains a reference to all of the variables that introduce uncertainty,

each of which is explicitly linked to the lens that constructed it. In other words, ℱ

serves as a form of provenance that can be used to explain sources of uncertainty to

the end-user.

The former question requires us to develop a notion of result quality. Our approach

is based on the idea of noise: intuitively, the less noise is present in the model, the

higher the quality of the best-guess relation’s predictions. I abstractly define result

quality as the level of confidence that the user should have in the annotated best-

guess results. These results include both non-deterministic attribute values, as well

as possible tuples.

Recall that a non-deterministic value in ℛ𝑔𝑢𝑒𝑠𝑠 is obtained from non-deterministic

expressions in ℛ𝑔𝑢𝑒𝑠𝑠. Numerous metrics that effectively convey the quality of at-

tribute values drawn from a probabilistic database have been proposed, including

pessimistic hard bounds [78], variance [70,75], and 𝜖− 𝛿 bounds [64].

42

As a simplification, I assume that the cognitive burden of understanding un-

certainty in a specific attribute value is constant, while the burden of tracking the

presence or absence of rows in the output scales linearly. Intuitively, guessing wrong

about tuple presence can mean the difference between overwhelming the user with a

flood of unnecessary results, and hiding the presence of potentially critical informa-

tion. Under this assumption, tuple-level uncertainty adds more noise to the result,

and I will focus primarily on this type of uncertainty from here on.

The appearance of a tuple 𝑡 in a query result is determined by the ground truth

of its local condition 𝑡.𝜑. Valuations 𝑣(Σ) map 𝑡.𝜑 to a deterministic boolean value

𝑡.𝜑[𝑣]. From the PC-Table’s probability measure 𝑃 (𝑣), I get the binomial distribution

𝑃 (𝑡.𝜑[𝑣]), often called the confidence of 𝑡. I use the confidence of 𝑡 to measure how

difficult it is for the analyst to predict the ground truth of 𝑡.𝜑. Intuitively, if 𝑃 (𝑡.𝜑[𝑣])

is skewed towards 0 or 1, I expect to predict the value of 𝑡.𝜑 with reasonable accuracy;

on the other hand, if 𝑃 (𝑡.𝜑[𝑣]) is a fair coin flip, I have no reliable information about

the expected result of 𝑡.𝜑. It is natural to use Shannon entropy as a metric to quantify

the quality of the query result. I define the entropy of a tuple in terms of its confidence

𝑝𝑡 = 𝑃 (𝑡.𝜑[𝑣]) as:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑡) = −(𝑝𝑡 · log2(𝑝𝑡) + (1− 𝑝𝑡) · log2(1− 𝑝𝑡))

Efficiently approximating tuple confidences by sampling from 𝑃 (𝑣) is well studied

in probabilistic databases [67, 95], and I use similar techniques for estimating tuple

entropies.

To unify the individual per-attribute and per-row metrics, I define a relation-wise

noise function 𝒩 (ℛ) as a linear combination of individual metrics. For example, a re-

lation ℛ without non-deterministic attributes might have 𝒩 (ℛ) =
∑︀

𝑡∈ℛ 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑡).

43

To account for the entropy generated by non-deterministic attributes, I start with the

intuition that each attribute in the output provides 1
𝑁

th of the information content of

a tuple, where 𝑁 is the arity of ℛ. Thus, by default, I assume each non-deterministic

value contributes to the noise seen in the final result a fraction in the range [0, 1
𝑁

]

inversely proportional to the attribute’s estimated variance.

3.4 Pay-as-you-go Data Cleaning

When the analyst is given a query result ℛ that does not meet her quality expecta-

tions, she can allocate additional resources for gathering more evidence. For example,

she may spend some time gathering ground-truth values for variables in the output

C-Table. By construction, variables represent uncertainty about basic facts. For ex-

ample, a schema matching lens generates expressions of the form 𝑉 𝑎𝑟(′𝑟𝑎𝑡 = 𝑒𝑣𝑎𝑙′)

that could be stated as a simple question like “Do rating and evaluation mean the

same thing? ”. Replacing variables with their ground truths means performing these

basic curation tasks, with the goal of reducing the noise seen in the final result. Since

𝒩 (ℛ) depends on the entropy generated by the tuples in ℛ, in expectation, each cu-

ration task will reduce the noise seen in the final result. Identifying the variable that

affects 𝒩 (ℛ) the most is not trivial: depending on { 𝑡.𝜑 | 𝑡 ∈ ℛ } some variables may

generate more noise in the final result than others. In a perfect world, the analyst

would simply replace variables in ℛ until the required level of quality is reached. In

the real world, curation tasks are expensive, and the optimal cleaning strategy de-

pends on both quality goals and budget constraints. Hence, deciding a good strategy

is essentially a resource allocation problem. I assume that a cost model is given by

each lens in the form of a cost function 𝑐(·). This function maps variables to positive

real numbers that represent the effort, or dollar cost of discovering the ground truth

44

for the given variable.

3.4.1 Prioritizing Curation Tasks

Prioritizing curation tasks is a dynamic decision process, as the outcome of one cu-

ration task affects the choice of the next one to be performed. Let’s assume, for

the moment, that the analyst has no budget constraints and her goal is simply to

determine the ground truth of a given condition formula 𝜑, minimizing the expected

amount of resources spent in the process. In the literature, this optimization problem

is known as stochastic boolean function evaluation [39, 116]. Both exact and approx-

imated algorithms have been proposed for several classes of formulas. In its general

form, the problem can be thought of as a Markov Decision Process having one state

for each partial assignment to the variables in 𝜑 and one action for each variable

(a curation task). Rewards are determined by −𝑐(·) and state-transitions are deter-

mined by 𝑃 (𝑣). Final states consist of assignments that make 𝜑 either true or false

with certainty. The planning horizon is finite and equal to the number of variables in

𝜑. A simple solution to the problem consists of a policy, prescribing a curation task

for each non-terminating assignment to perform. The application of a policy is an

interactive process: the system instructs the analyst to address a particular curation

task (“Do rating and evaluation mean the same thing? ”), the analyst provides the

required ground truth, and asks the system for the next move. This feedback loop

continues until the deterministic value of 𝜑 is obtained. As a baseline for evaluation,

On-Demand ETL implements a naïve algorithm for computing policies of this kind,

named naïve minimum expected total cost (NMETC).

45

Naïve Minimum Expected Total Cost (NMETC)

If a query result does not meet the analyst’s standards, on-Demand ETL suggests

ways to improve the quality by making better guesses of row confidences or non-

deterministic attribute values. In order to obtain a higher quality of query result, we

need to make a better guess of the truth value of 𝜑𝑖. I incrementally explore user

feedback to obtain more information of the variables to make a more certain guess.

As a simplification I will focus on the problem of making possible-tuples more certain.

Without loss of generality, I will treat each atom in the tuple’s condition as a boolean

variable. The resulting problem resembles stochastic boolean function evaluation [39],

except that I model it as an interactive process: The database prioritizes curation

tasks for the analyst, and the analyst responds by performing a task (i.e., by providing

a ground truth value for one variable). The process repeats until the analyst is

satisfied with the quality of the result. The probability distribution p(𝜑[𝑣]) can also

be viewed as a prior and incrementally reinforce the prior with user feedback as

evidence.

Figure 3-7 illustrates a trace of this interaction for the confidence of one row

tagged with the condition 𝜑 = 𝐴∨ (𝐵∧𝐶), visualized as a game tree. Each rectangle

represents the result of the 𝜑 after applying user’s immediate choice-point, while

circles represent variables in the formula that define curation tasks. Each circle has

two branches denoting two sets of possible worlds that correspond to the two possible

ground truth values for the variable. Each circle node is annotated by the expected

cumulative cost of reaching that point in the tree. The system and the user take

turns to move from root towards a leaf representing a truth value of 𝜑𝑖.

Clearly, there is a trade-off between the improvement of result quality and cost

associated with it. Possible strategies are: pick a target utility and minimize the

46

cost to achieve the utility, or fix a total cost and maximize the utility to given the

cost. In this section, I will show the strategies to play with the trade-off. In either

scenario, Our problem becomes: given a set of expressions Φ, and the probability

distributions of the variables, the cost of obtaining the truth values of the variables

𝐶 = {𝑐1, 𝑐2, · · · , 𝑐𝑚}, Each path in the decision-tree from root to the a leaf represents

a sequence of questions to the user and the leaf represents a guess. Notice that the

correlation of expressions is constructed on common variables referenced from both

expressions. We can group correlated expressions and compute the strategy for each

expression group in parallel.

A∨(B∧C)

Option 1: Pick A
cost=0.5*5+0.5*
32.5=18.75

Option 2: Pick B
cost=24.4

Option 3: Pick C
cost=20.75

0.5

0.5

0.2

0.8

0.5

0.5 …

…

…

…

Done
T

cost=5

B∧C
cost=16+
16.5=32.5

A∨C
cost=28.5

A
cost=8

A∨B
cost=26.5

A
cost=15

0.5

0.5

0.2

0.8
Option 1: Pick B

cost=16

Option 2: Pick C
cost=16.5

Done

Pick C

Done

Pick B

⊥
cost=C(A)+C(B)=8

C
cost=C(A)+C(B)=18

⊥
cost=C(A)+C(C)=15

B
cost=C(A)+C(C)+C(B)=18

State (φ)
Option

Best Option

var Equiv in φ(P34235)

A

B

C

Var(‘rat=eval’)

Var(‘rat=num_rat’)

Var(’Z’,R12) ≥ 4.5

5

3

10

cost p(φ)

0.5

0.8

0.5

Figure 3-7: An example of the Naïve Minimum Expected Total Cost (NMETC).

3.4.2 Balancing Result Quality and Cost

Real-world ETL applications are unlikely to be free from budget constraints. Even

when budget is not a problem, the average analyst will rarely aim for perfect infor-

mation. Instead, she would rather target a reasonable approximation of the value of

𝜑, setting an upper-bound on the entropy of the formula. Hence, I generalize the ap-

proach discussed above and make the assumption that the analyst wants to plan her

47

curation tasks so to maximize a hidden value function 𝒱(·), which depends on 𝑐(·) and

𝒩 (·) and is unknown to the system. Clearly, I assume 𝒱(·) decreases monotonically

as the cumulative cost increases, and increases monotonically as the noise decreases.

In simple words, 𝒱 determines how much the analyst is willing to pay for an improve-

ment in the estimation of the value of 𝜑, on a case-by-case basis. I call this trade-off

the cost of perfect information (CPI). Since the details of 𝒱(·) are unknown, the goal

of the system is to propose several candidate policies. Each policy should guarantee a

certain expected entropy at the price of a certain expected cumulative cost. The user

is then able to choose the candidate policy that best matches her hidden value func-

tion. Since the analyst may be subject to budget constraints hidden to the system,

the candidate list includes greedy versions of the policies, computed progressively over

limited planning horizons. Inspired by the algorithms EG2 [93], CS_ID3 [115] and

CS_C4.5 [51], On-Demand ETL supports the following four greedy strategies:

Algorithm 𝐶𝑃𝐼(𝑣𝑖)

EG2 (2𝐼𝐺[ℛ(𝑣𝑖)] − 1)/𝑐𝑖

CS_ID3 (𝐼𝐺[ℛ(𝑣𝑖)]
2)/𝑐𝑖

CS_IDX 𝐼𝐺[ℛ(𝑣𝑖)]/𝑐𝑖

CS_C4.5 𝐼𝐺[ℛ(𝑣𝑖)]/
√
𝑐𝑖

Here, 𝐼𝐺 denotes the information gain, or the reduction in noise produced by the

curation task on variable 𝑣𝑖.

Example 10 Consider the condition 𝜑 for P34235 in Figure 3-4, which has the form

𝐴 ∨ (𝐵 ∧ 𝐶). Figure 3-8 illustrates the decision tree that ranks curation tasks (the

three variables), given lens-defined ground-truth costs and marginal probabilities as

shown in the figure. The expected entropy after performing the curation task for 𝑣𝑖,

denoted by 𝐸[𝐻(𝑣𝑖)], is computed as a weighted average over all possible outcomes of

48

A∨(B∧C)
(H=0.88)

Option 1: Pick A
E[H] = 0.485
CPI = 0.079

Option 2: Pick B
E[H] = 0.8488
CPI = 0.0104

Option 3: Pick C
E[H] = 0.7345
CPI = 0.01455

0.5

0.5

0.2

0.8

0.5

0.5 …

…

…

…

DoneT
(H=0)

B∧C
(H=0.97)

A∨C
(H=0.811)

A
(H=1)

A∨B
(H=0.469)

A
(H=1)

0.5

0.5

0.2

0.8

Option 1: Pick B
E[H] = 0.8

CPI = 0.057

Option 2: Pick C
E[H] = 0.5

CPI = 0.047
Done

Pick C

Done

Pick B

⊥
(H=0)

C
(H=1)

⊥
(H=0)

B
(H=0.72)

State (φ)
(Entropy)

Option

Best Option

var Equiv in φ(P34235)

A

B

C

Var(‘rat=eval’)

Var(‘rat=num_rat’)

Var(’Z’,R12) ≥ 4.5

5

3

10

cost p(φ)

0.5

0.8

0.5

Figure 3-8: An example of the CS_IDX algorithm optimizing CPI.

the task. 𝐶𝑃𝐼(𝑣𝑖) is computed according to the CS_IDX formula given above, with

𝐼𝐺[ℛ(𝑣𝑖)] = 𝐻 − 𝐸[𝐻(𝑣𝑖)].

3.5 Experiments

In this section we show the feasibility of On-Demand ETL and explore several points

in its design space. Specifically, we find that: (i) The greedy approach of minimizing

CPI produces higher-quality query results at lower costs than optimizing for total

cost when the hidden value function is not known, (ii) The precise formula used to

compute CPI is not critical to achieving high quality results, (iii) When composing

lenses, order is relevant, as open-ended lenses like domain-constraint repair can fix

issues created by other lenses earlier in the pipeline, and (iv) Tree-based classifiers

work best for domain constraint repair lenses.

49

3.5.1 Experimental Setup

Our experimental setup consists of three data sets drawn from publicly available

sources. To simulate data-entry error, a portion of the data values are randomly

removed. To simulate an analyst’s querying behavior, we identify one attribute in

each data set, remove the attribute from the source data, and use a tree-based classifier

to construct a query that the analyst might issue to recover the attribute. For each

data source, we also provide simulated user-defined costs for available curation tasks.

Product Data. We used the product search APIs of two major electronics re-

tailers [1, 5] to extract product data for a total of 586 items (346 and 240 items

respectively). The products extracted fall into three categories: TVs, cell phones and

laptops. There are ten attributes in the schema of each data source. We randomly

replaced 45% of the data values with NULL, and coerce both data sets into the schema

of a third retailer’s search API [3]. On this data-set, we simulate an analyst trying to

predict what factors go into a good product rating. We trained a tree based classifier

on the partial data, used the resulting decision tree to simulate the analyst’s query:

SELECT * FROM products

WHERE brand in (4,5,6,7) AND category in (1,2,3)

AND totalReviews < 3 AND instoreAvailability = 0

AND (onsale_clearance = 0 OR (quantityAvailableHint = 0

AND shippingCost in (0,1,2,3,4)));

Curation tasks fall into four categories: Trivial schema matching tasks, simple

data gathering of boolean values like item availability, more detailed data gathering

of values like strings, and more open-ended data gathering tasks such as soliciting

item reviews from focus groups. We assign the cost of these four curation tasks to be

1, 5, 10, and 30 units of effort respectively.

50

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

Active
NaiveBayes

MajClass

Perceptron

HofAdaptTree

RandHofTree

AccUpdEnsmble

OCBoost

OzaBag
OzaBoost

MajWeight

Fr
ac

tio
n

of
 in

iti
al

ly
 in

co
rr

ec
t g

ue
ss

es DCR-Joint Alone
DCR-Sep Alone

SM Alone
DCR-Sep <- SM

DCR-Joint <- SM
SM <- DCR-Sep

Figure 3-9: Composability of schema matching and domain repair for 11 classifiers
(Product Data)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Active
NaiveBayes

MajClass

Perceptron

HofAdaptTree

RandHofTree

AccUpdEnsmble

OCBoost

OzaBag
OzaBoost

MajWeight

Fr
ac

tio
n

of
 in

iti
al

ly
 in

co
rr

ec
t g

ue
ss

es DCR-Joint Alone
DCR-Sep Alone

SM Alone
DCR-Sep <- SM

DCR-Joint <- SM
SM <- DCR-Sep

Figure 3-10: Composability of schema matching and domain repair for 11 classifiers
(Credit Data)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Active
NaiveBayes

MajClass

Perceptron

HofAdaptTree

RandHofTree

AccUpdEnsmble

OCBoost

OzaBag
OzaBoost

MajWeight

Fr
ac

tio
n

of
 in

iti
al

ly
 in

co
rr

ec
t g

ue
ss

es DCR-Joint Alone
DCR-Sep Alone

SM Alone
DCR-Sep <- SM

DCR-Joint <- SM
SM <- DCR-Sep

Figure 3-11: Composability of schema matching and domain repair for 11 classifiers
(Real Estate Data)

51

 0
 10
 20
 30
 40
 50

 0 600 1200 1800 2400 3000 3600 4200

To
ta

l R
es

ul
t E

nt
ro

py

Units of Effort Invested

EG2
NMETC
Random

 0
 100
 200
 300
 400
 500
 600

 0 5000 10000 15000 20000 25000

To
ta

l R
es

ul
t E

nt
ro

py

Units of Effort Invested

EG2
NMETC
Random

(a) (b)

 0
 10
 20
 30
 40
 50

 0 300 600 900 1200 1500 1800

To
ta

l R
es

ul
t E

nt
ro

py

Units of Effort Invested

EG2
NMETC
Random

(c)

Figure 3-12: Performance comparison for different methods on query results of (a)
product, (b) credit, and (c) real estate data-sets. Detailed step-by-step performance
for the naive strategy is computationally infeasible for the real estate data-set, so only
final results are shown.

Credit Data. We used the German and Japanese Credit Data-sets from the

UCI data repository [88]. These data sets contain 1000 and 125 items, respectively,

and have 20 and 8 attributes, respectively. As in the product dataset, we randomly

replaced 45% of data values with NULL values. The German data is coerced into

the schema of the Japanese data set. We simulate an analyst searching for low-risk

customers by using the following classifier-constructed query:

SELECT * FROM PD

WHERE (purchase_item < 0.5 AND monthly_payment >= 3.5

AND num_of_years_in_company in (2,3))

OR (num_of_months >= 6.5 AND married_gender >= 2.5);

In addition to trivial schema-matching tasks, there are two kinds of missing at-

tributes: Some attributes can be computed from other values (e.g., a customer’s

monthly payment can be computed from the total loan value and duration) or re-

52

trieved from other parts of the bank. Other attributes require personal information

about the client. We set the cost of these three classes of task to be 1, 10, and 20

respectively.

Real Estate Data. We obtain house listing information from five real estate

websites [4]. Unlike the prior cases, where the number of data-sets is small and

the number of records per data set is comparatively large, the Real Estate data set

emulates web-tables where the number of data sets is comparatively large and the

number of records per data set is small. We further reduce the data size by randomly

sampling only 20 items from each dataset. As above, 45% of data values are replaced

by NULL. All source data is coerced into a globally selected target-schema. For this

data set, we simulate an analyst trying to identify houses likely to have a price rating

of 3 out of 4 points, where all curation tasks have a flat cost of 1:

SELECT * FROM PD WHERE Baths < 2.5

AND (Beds >= 3.5 OR Garage >= 2.5);

Distances Correct Matches by Index
Metric 1 2 3 4 5 6 . . . 9 n/a

Levenstein 24 2 2 0 0 1 0 1 0
JaroWinkler 20 4 2 1 1 0 0 1 1

NGram 25 0 3 1 0 0 0 0 1

Figure 3-13: Distance evaluated by the index of the correct match in the ranked list of
matches output by the algorithm, or n/a if the correct match was discarded. Results
include 30 test cases.

3.5.2 Lens Configuration

For each experiment, we simulate an analyst using the Domain-Constraint Repair

and Schema Matching lenses described in Section 3.1.2. We use the values randomly

removed from each data-set as ground truths for evaluating the Domain-Constraint

Repair lens, and a manually defined mapping as ground truth for evaluating the

53

Schema Matching lens. Both lenses define curation tasks as summarized in the de-

scription of each data-set.

Schema Matching. We employ a combination of schema matchers [100] that

hybridize structure-level and element-level matchers. We first use constraint-based

(data type and data range) filters to eliminate candidate matches, and then use the

Levenstein, JaroWinkler, and NGram distance metrics to rank attribute matches

based on string similarity with a threshold. The performance of these three strategies

is shown in Figure 3-13. We take an average of the similarity scores from the three

distance metrics and normalize them to approximate the probability of a match.

Domain Constraint Repair. We use incremental classifiers from the massive

online analysis (MOA) framework [25] for the Domain-Constraint Repair lens. We

use classifiers in five categories: active, bayes, stochastic gradient descent, ensemble

and tree. For each attribute in the source table, we train a classifier using tuples

in which the value is not missing. The estimation results for missing values are

probability distributions of all candidate repairs.

3.5.3 Ranking Curation Tasks

We compare three ranking policies over curation tasks (one per variable 𝑣𝑖). Each

policy implements a ranking over the available curation tasks, the top-ranked task is

performed. Curation costs are as listed in Section 3.5.1.

NMETC. This (naive, exponential-time) policy calculates an optimal long-term

strategy based on repeatedly selecting the variable that minimizes the global expected

total cost of obtaining a deterministic value. Potential curation tasks are ranked in

descending order of their expected total cost, weighted over all possible paths through

the decision tree.

54

Greedy (CPI). CPI based policies rank curation tasks in ascending order of CPI.

All four CPI-based metrics produce virtually identical results for each of our test

cases, so only results for the EG2 implementation of CPI are shown. The scoring

function for the greedy strategy is the CPI itself.

Random. The random strategy ranks curation tasks in a random order, and

provides a baseline for other methods.

3.5.4 Lens Composition

We first explore the default (i.e., pre-feedback) behavior of lenses under composition.

Of interest to us are three questions: (i) Does the machine learning model used for

domain-constraint repair matter? (ii) Can lenses be composed together safely? and

(iii) Does the order in which lenses are composed matter? We evaluate the accuracy of

the output of Schema Matching (SM) and Domain Constraint Repair (DCR) lenses

applied to each data set. Figures 3-9, 3-10, and 3-11 show the fraction of cells in the

output of each query that correspond to ground truth results before any feedback is

gathered. Our results include two variants of Domain-Constraint Repair, one where

all data sources are combined before being repaired (DCR-Joint), and one where

all data sources are repaired independently (DCR-Sep). We consider three different

lens combinations: DCR-Joint or DCR-Sep applied to the output of SM (DCR-

Joint ← SM and DCR-Sep ← SM, respectively), and SM applied to the output

of DCR-Sep (SM ← DCR-Sep). The remaining combination is not possible, as

DCR-Joint requires SM first to create a unified schema. For comparison, we also

present results for each lens alone, using ground truth values for the output of the

other lens. Performance results are shown for 11 different machine learning models

from the MOA framework.

55

In general, the performance of different orderings of lenses appears to differ by

only a small amount, generally under 5%. An exception appears in the Product data

set (Figure 3-9), where we can see for all estimation methods, applying SM first

and then applying DCR-Joint produces the best results. By being trained on both

data-sets together, DCR is able to detect and correct some schema matching errors.

Moreover, in all cases, the combined error of composing both lenses is lower than

the error introduced by either lens individually. This shows that composing different

lenses is feasible. By comparison, the Credit data set (Figure 3-10) is extremely noisy

— both lenses have initial error rates around 34%. Hence, too much noise exists in

the data, and different lens orderings have little effect.

The observation above shows that reordering lenses can be beneficial in some

cases. Given analyses of lenses, we can help users reorder lenses to achieve better

accuracy. Another observation is that when the data is sufficiently correlated for

DCR to have relatively small error rates, the error rate of DCR-Joint is typically

lower than DCR-Sep. Intuitively, if inter-attribute correlations from different data

sets are similar, DCR-Joint is effectively being trained on a larger dataset.

3.5.5 On-Demand ETL

We next study the effectiveness of On-Demand ETL and CPI-based heuristics. To

study the efficacy of our CPI-based approach, we investigate the performance of

different ranking strategies on product,credit, and real estate data-sets. We use the

same basic setup as described above for each data-set. We present results using

DCR-Joint applied to SM, but all three composition orders behave similarly.

Figure 3-12 shows the total entropy remaining in the query results after multiple

rounds of feedback, in which the analyst repeatedly performs the curation task with

56

best score. The rightmost dot for each line denotes the point at which the noise in

the query result relation reaches zero. Since the analyst may have a limited budget

to improve the quality of very noisy query results, the goal is to provide the highest

level of noise reduction with as low a total cost as possible, or in other words to create

a curve with as little volume under the curve as possible.

EG2 denotes the greedy EG2-based CPI heuristic (all other CPI heuristics behave

almost identically). The curve is very steep until the final curation tasks, allowing

EG2 to produce high-quality results with minimal investment.

NMETC denotes the naive brute-force cost-optimization strategy, while Ran-

dom denotes a completely random ordering of curation tasks. Although the brute-

force strategy produces a completely reliable result at the lowest cost, it does so at

the expense of short-term benefits. For the product data-sets, a result with virtu-

ally no entropy is reached after 24,000 units of cost, while the brute force strategy

requires over 30,000 units. Although NMETC requires the lowest cost to obtain a

deterministic query result, it may not be optimal for a limited budget or when the

user’s value function is not known.

3.5.6 Conclusions

In conclusion, composing lens experiment shows that composing different lenses is

feasible by showing that the combined error of composing both lenses is lower than

the error introduced by either lens individually. It also shows a potential beneficial

in reordering lenses. On-Demand ETL experiment shows without budget limit, our

method EG2 achieves a total cost that is sufficiently close to the naive brute-force

cost-optimization strategy NMETC. When we have limited budget, EG2 shows a

steeper curve than NMETC in most of the cases, allowing EG2 to produce high-

57

quality results with minimal investment.

58

Chapter 4

Preliminaries for CIA

For the purpose of illustration, I use Bayesian Networks as a representative probabilis-

tic graphical model. Although my focus here is inference on directed graphical models

(i.e. Bayesian networks), the same techniques can be easily adapted for inference in

other graphical models .

4.1 Bayesian Networks

Complex systems can often be characterized by multiple interrelated properties. For

example, in a medical diagnostics system, a patient might have properties including

symptoms, diagnostic test results, and personal habits or predispositions for some

diseases. These properties can be expressed for each patient as a set of interrelated

random variables. We write sets of random variables in bold (e.g., X = {𝑋𝑖}). Denote

by 𝑝(X) the probability distribution of 𝑋𝑖 ∈ X and by 𝑝(𝑥) the probability measure

of the event {𝑋𝑖 = 𝑥}. Let X∖Y denote the set of variables that belong to X but do

not belong to Y.

A Bayesian network (BN) represents a joint probability distribution over a set of

variables X as a directed acyclic graph. Each node of the graph represents a random

59

variable 𝑋𝑖 in X. The parents of 𝑋𝑖 are denoted by 𝑝𝑎(𝑋𝑖), the children of 𝑋𝑖 are

denoted by 𝑐ℎ(𝑋𝑖).

A Bayesian network compactly encodes a joint probability distribution using the

Markov condition: Given a variable’s parents, the variable is independent of all of its

non-descendants in the graph. Thus, the full joint distribution is given as:

𝑃 (X) =
∏︁
𝑖

𝑃 (𝑋𝑖|𝑝𝑎(𝑋𝑖))

Every random variable 𝑋𝑖 is associated with a conditional probability distribution

𝑃 (𝑋𝑖|𝑝𝑎(𝑋𝑖)). The joint probability distribution is factorized into a set of 𝑃 (𝑋𝑖|𝑝𝑎(𝑋𝑖))

called factors denoted by 𝜑𝑖 or factor tables if 𝑋𝑖 is discrete. Denote by 𝑠𝑐𝑜𝑝𝑒(𝜑𝑖)

the variables in a factor 𝜑𝑖. Finally, I use 𝑎𝑡𝑡𝑟𝑠(𝜑𝑖) = 𝑠𝑐𝑜𝑝𝑒(𝜑𝑖)∪ {𝑝𝜑𝑖} to denote the

attributes of the corresponding factor table: the variables in the factor’s scope and

the probability of a given assignment to 𝑋𝑖 given fixed assignments for its parents. A

full BN can then be expressed as the 2-tuple ℬ = (𝒢(X),Φ), consisting of the graph

and the set of all factors.

D

J

I

S

0.41
0.60

p(D)D

0.31
0.70
p(I)I

1
0

0.2
0.3
0.5

0.02
0.08
0.9
0.7

0.25
0.05
0.3
0.4
0.3

p(G | I , D)

113
2 1 1
1 11

03 1
2 01
1 01

03 1
102

0 11
003

2 00
01 0

G I D

0.8
0.2

0.05
0.95

p(S | I)

1 1
0 1

01
00

S I

1
0

0.38
0.62
0.14
0.86
0.05
0.95
0.4
0.6
0.2
0.8
0.1
0.9

p(J | G, S)

132
1 3 1
2 12

11 2
2 11
1 11

32 0
031

2 02
021

2 01
01 1

J G S

G

Figure 4-1: A simple Student Bayesian network [82]

60

Example 11 Consider five random variables Intelligence, Difficulty, Grade, SAT,

and Job in a Student Bayesian network. The four variables I, D, S, J have two

possible values, while G has 3. A relation with 2 · 2 · 2 · 2 · 3 = 48 rows is needed to

represent this joint probability distribution. Through the Markov condition, the graph

can be factorized into the smaller Bayesian network given in Figure 4-1. For a graph

with a large number of variables with large domains, factorization can reduce the size

significantly.

4.2 Inference

Inference in BNs usually involves computing the posterior marginal for a set of query

variables X𝑞 given a set of evidence, denoted by 𝐸. For example, 𝐸 = {𝑋1 = 𝑥1, 𝑋3 =

𝑥3} fixes the values of variables𝑋1 and𝑋3. Denote by X𝐸 the set of observed variables

(e.g., X𝐸 = {𝑋1, 𝑋3}). The posterior probability of X𝑞 given E is

𝑃 (X𝑞|𝐸) =
𝑃 (X𝑞, 𝐸)

𝑃 (𝐸)
=

∑︀
X∖{X𝑞 ,X𝐸} 𝑃 (X)∑︀

X∖X𝐸
𝑃 (X)

.

The marginalization of 𝑋1 . . . 𝑋𝑖 over a joint probability distribution is equivalent

to a select-join-aggregate query computed over the ancestors of 𝑋1 . . . 𝑋𝑖:

SELECT X_1,...,X_i, SUM(p_1 * ... * p_N) AS prob

FROM factor_1 NATURAL JOIN ... NATURAL JOIN factor_N

WHERE E_1 = e_1 AND ... AND E_k = e_k

GROUP BY X_1,...,X_i;

Applying evidence to a graphical model is computationally straightforward and

produces a strictly simpler graphical model. As a result, without loss of generality, I

ignore evidence and focus exclusively on straightforward inference queries of the form

61

P(X𝑞).

4.2.1 Exact Inference

The exact inference methods introduced in this section all make use of the funda-

mental insight that the factorization of the distribution allows us to perform local

operations on the factors, rather than directly calculate the whole joint distribution.

Variable Elimination. Variable elimination mirrors aggregation push-down [34], a

common query optimization technique. The idea is to avoid the exponential blowup

in the size of intermediate, joint distribution tables by pushing aggregation down

through joins over individual factor tables. As in query optimization, join ordering

plays a crucial role in variable elimination, as inference queries often have join graphs

with high hypertree width. Intermediate materialized aggregates in VE are typically

called separators (denoted 𝑆), intermediate (materialized) joins are called cliques (𝐶),

variables aggregated away between a clique and the following separator are called

clique variables (denoted 𝑣𝑎𝑟(𝐶)), and their inputs are called clique factors.

The variable elimination algorithm can be described as follows. First generate an

ordering for the N non-observed, non-query variables. Then place all factor tables in a

pool of factors. Then for i from i to N do: 1. Create a data strcuture 𝐶𝑖 called clique,

which contains the variable 𝑋𝑖 called the clique variable and all factor tables that

contain the clique variable, called the clique factors. 2. Multiply the factors in 𝐶𝑖.

The result factor table is called 𝐶𝑖 ’s cluster. I abuse the notation and use 𝐶𝑖 to

represent both the clique and the clique’s cluster. 3. Sum out 𝑋𝑖 from 𝐶𝑖 ’s cluster.

The result is called 𝐶𝑖 ’s separator denoted by 𝑆𝑖. 4. Place the clique separator in

the factor pool. In the end, collect all the factors that contain the query variables

into a clique 𝐶𝑞. Multiply the factors in 𝐶𝑞 and normalize the result.

62

Example 12 The marginal probability distribution of J in Figure 4-1 can be ex-

pressed by 𝑝(𝐽) =
∑︀

𝐷,𝐼,𝑆,𝐺 𝑝(𝐷, 𝐼, 𝑆,𝐺, 𝐽). We choose to first marginalize out 𝐷 by

constructing 𝐶𝐷’s separator 𝑆𝐷:

𝑆𝐷[𝐺, 𝐼] =
∑︁
𝐷

𝐶𝐷[𝐷,𝐺, 𝐼] =
∑︁
𝐷

𝜑𝐷[𝐷] ◁▷𝐷 𝜑𝐺[𝐷,𝐺, 𝐼]

Next, we marginalize out 𝐼 by computing

𝑆𝐼 [𝐺,𝑆] =
∑︁
𝐼

𝐶𝐼 [𝐺, 𝐼, 𝑆] =
∑︁
𝐼

S𝐷[𝐺, 𝐼] ◁▷𝐼 𝜑𝐼 [𝐼] ◁▷ 𝜑𝑆[𝐼, 𝑆]

The marginalization of 𝐺 and 𝑆 follows a similar pattern, leaving us with 𝐶𝑞 =

𝑆𝑆[𝐽] = 𝑝(𝐽).

Each time we pick a variable 𝑋𝑖 to marginalize, we obtain a factor 𝜏𝑖 whose scope is

scope(𝜓𝑖)−{𝑋𝑖}. The limiting factor in the computational cost of obtaining a sepa-

rator is enumerating the rows of the clique. Assuming that the distribution over each

variable 𝑋𝑖 has N possible outcomes (|𝑑𝑜𝑚(𝑋𝑖)| = 𝑁), the cost of computing a sepa-

rator 𝑆 with clique 𝐶 will be 𝑂(𝑁 |𝑠𝑐𝑜𝑝𝑒(𝐶)|). Tree-width in graphical models (related

to query hypertree width) is the size of the largest clique’s scope (max𝐶(|𝑠𝑐𝑜𝑝𝑒(𝐶)|)),

making variable elimination exponential-cost in the graph’s tree-width.

Belief Propagation. Belief propagation generalizes variable elimination by allow-

ing information to flow in both directions along the graph. Messages are sent along

each cluster’s separator by summing out all uncommon variables between the two

clusters. The process creates, for each variable in the graph, its full conditional prob-

ability given all other variables in the graph. Figure 4-2 shows the message passing

process for the graph in Figure 4-1. Although belief propagation is more efficient for

performing multiple simultaneous inference operations in parallel, for singleton tasks

63

G,I,S J,G,S

 p(D),
 p(G|D)

p(I),
p(S|I) p(J|G,S)C1: C2: C3:

SD(I,G)=
⌃⌃D C1

SI(G,S)=
⌃⌃ I C2SD(I,G)

SI(I,G)=
⌃⌃S C2SJ(G,S)

G,S

X1=D X2=I X3=G,S

SJ(G,S)=⌃⌃J C3

I,GD,I,G

Figure 4-2: Clique tree for Student BN graph in Figure 4-1

(only query one variable) it is a factor of two slower than variable elimination.

4.2.2 Approximate Inference

The inference algorithms introduced in this section approximate the joint distribution

as a set of instantiations or particles to variables in the network. The algorithms

generate the set of particles to represent the overall probability distribution.

Forward Sampling. Froward sampling samples variables in topological order of

the graph. When a variable is being sampled, all of its parents will have already been

sampled, reducing the variable’s factor table to a single-variable distribution. The

quality of the estimate P(Y=y) using forward sampling depends heavily on the num-

ber of samples generated. Using Hoeffding’s bound [65], we can analyze the number

of samples required to obtain performance guarantees. We denote the set of samples

generated by forward sampling D=X[1],..X[N]. From Hoeffding’s bound, we have

𝑃𝐷(𝑃𝐷(𝑦) /∈ [𝑃 (𝑦)− 𝜖, 𝑃 (𝑦) + 𝜖]) ≤ 2𝑒−2𝑁𝜖
2 ≤ 𝛿.

This analysis gives an estimate of how many samples are required to achieve an

estimate 𝑃𝐷(𝑦) whose error is bounded by 𝜖, with probability at least 1-𝛿. Therefore,

64

the required size to get an estimation 𝑃𝐷(𝑦) with (𝜖,𝛿) bound is N ≥ 𝑙𝑛(2/𝛿)

2𝜖2
. If

the true distribution P(y) is very small, it is naturally to think we will need more

samples to guarantee that the estimation is close to the true probability. To take

consideration of P(y) in the analysis of 𝜖,𝛿 bound, we can apply Chernoff bound [35]

to conclude that 𝑃𝐷(𝑦) is with a relative error 𝜖 of the true value P(y).

𝑃𝐷(𝑃𝐷(𝑦) /∈ 𝑃 (𝑦)(1± 𝜖)) ≤ 2𝑒−𝑁𝑃 (𝑦)𝜖2/3 ≤ 𝛿.

Thus, the number of samples needed is N ≥ 3 𝑙𝑛(2/𝛿)
𝑃 (𝑦)𝜖2

which grows inversely with the

probability of P(y). Forward sampling works well for estimating high probability

groups, but for conditional probabilities 𝑃 (𝑦|𝐸 = 𝑒), the sampling process becomes

much harder, requiring the use of rejection sampling to discard forward samples that

conflict with the condition.

Likelihood weighting. method improves forward sampling by generating samples

more relevant to evidence. Instead of considering each sample equally weighed in

forward sampling, likelihood weighting weights each sample by the likelihood of the

evidence accumulated throughout the sampling process. The limitation of this method

is that since it still follows topological order of sampling, an evidence node affects the

sampling only for nodes that are its descendants. In cases where the evidence is at

the leaves of the network, it is the same as sampling from the prior distribution which

is far from the desired posterior.

Markov Chain Monte Carlo Inference. MCMC is a family of sampling tech-

niques that generate sequences of samples. Intuitively, the first element in the se-

quence is drawn from the prior and successive samples are drawn from distributions

that get increasingly closer to the posterior. For example, we might draw one as-

signment of values in X with each variable 𝑋𝑖 following the conditional probability

65

distribution 𝑝(𝑋𝑖|𝑝𝑎(𝑋𝑖)) in the topological order of the graph. Then, we iteratively

re-sample one variable’s value at a time according to its factor table, given the current

assignments for its parents and children. The longer we continue re-sampling, the less

the sample is biased by its initial value. We use Gibbs sampling as a representative

MCMC inference algorithm.

Loopy Belief Propagation. Loopy belief propagation is the same as belief prop-

agation, but operates on a loopy cluster graph instead of a clique tree. This change

makes the cluster smaller than those in clique tree and makes message passing steps

less expensive. There is a trade-off between cost and accuracy in loopy-belief propa-

gation, as join graphs that allow fast propagation may create a poor approximation

of the result.

4.3 Online Aggregation

Starting with work by Hellerstein et.al. [63], Olken [94], and others, a large body of

literature has been developed for so-called online aggregation (OLA) or approximate

query processing (AQP) systems. Such systems replace pipeline-blocking operators

like join and aggregate with sampling-based operators that permit approximate or

partial results to be produced immediately and iteratively refined the longer the user

is willing to wait. The work most closely related to our own efforts is on OLA [61–63].

OLA systems use query evaluation strategies that estimate and iteratively refines

the output of aggregate-joins. Given enough time, in most systems, the evaluation

strategy eventually converges to a correct result. As in random sampling, 𝜖−𝛿 bounds

can be obtained, for example using Hoeffding’s inequality.

A key challenge arising in OLA is how to efficiently generate samples of source

data. Sampling without replacement allows the algorithm to converge to the correct

66

result once all samples have been exhausted, but has high space requirements, as it is

necessary to keep track of the sampling order. Conversely, sampling with replacement

is not guaranteed to ever converge to the correct answer. One of our key contributions

in this paper is a specialization of OLA to graphical models called Cyclic Sampling,

which permits sampling without replacement using only constant-space. Numer-

ous other systems have since adapted and improved on the idea of OLA. Aqua [6]

uses key constraints for improved stratified sampling. BlinkDB [7, 8] and Derby [79]

maintain pre-materialized stratified samples to rapidly answer approximate queries.

GLADE [104] and DBO [44, 72] exploit file buffering to opportunistically generate

samples of a query result in the course of normal query evaluation.

67

Chapter 5

Interactive Data Analysis For

Probabilistic Graphical Models - CIA

5.1 Introduction

As discussed in Chapter 1, the goal of CIA is, given a fixed time bound, to produce

a bounded approximate inference result, but will also terminate early if it is possible

to converge to an exact result. The challenges for such a goal are: (1) to guarantee

the time complexity to obtain exact result is competitive with existing classic exact

inference algorithms, (2) to guarantee the approximation accuracy is competitive with

common approximate techniques. To solve this challenge, I propose two specific CIAs

that use the relationship between inference and select-join-aggregate queries to build

on database techniques for OLA [63]. My algorithms specialize OLA to two unique

requirements of graphical inference: dense data and wide joins. In classical group-by

aggregate queries, the joint domain of the group-by attributes is sparse: Tables in a

typical database only have a small portion of their active domain populated. Further-

more, classical database engines are optimized for queries involving a small number of

68

large input tables. Conversely, in graphical inference, each “table” is small and dense

and there are usually a large number of tables with a much more complicated join

graph.

The density of the input tables (and by extension, all intermediate relations) makes

it practical to sample directly from the output of a join, since each sample from the

active domain of the output relation is likely to hit a row that is present and non-zero.

Hence, our first, naive CIA samples directly from the output of the select-join compo-

nent of the inference query, using the resulting samples to predict the aggregate query

result. To ensure convergence, I leverage a class of pseudorandom number generators

called Linear Congruential Generators [98, 105] (LCGs). The cyclicity of LCGs has

been previously used for coordinating distributed simulations [18]. Here, I use them

to perform random sampling from join outputs without replacement, allowing us to

efficiently iterate through the join outputs in a shuffled order. These samples produce

bounded-error estimates of aggregate values. After the LCG completes one full cycle,

every row of the join has been sampled exactly once and the result is exact.

Unfortunately, the domain of the join output for an inference query can be quite

large and this naive approach converges slowly. To improve convergence rates, I

propose a new online join algorithm called Leaky Joins that produces samples of a

query’s result in the course of normally evaluating the query. Systems for relational

OLA (e.g., [44, 63, 72]) frequently assume that memory is the bottleneck. Instead,

Leaky Joins are optimized for small input tables that make inference more frequently

compute-bound than IO-bound. Furthermore, the density of the input (and interme-

diate) tables makes it possible to use predictable, deterministic addressing schemes.

As a result, Leaky Joins can obtain unbiased samples efficiently without needing to

assume a lack of correlation between attributes in the input.

The Leaky Joins algorithm starts with a classical bushy query plan. Joins are

69

evaluated in parallel, essentially “leaking” estimates for intermediate aggregated values

— marginal probabilities in our motivating use case — from one intermediate table to

the next. One full cycle through a LCG is guaranteed to produce an exact result for

joins with exact inputs available. Thus, initially only the intermediate tables closest

to the leaves can produce exact results. As sampling on these tables completes a

full cycle, they are marked as stable, sampling on them stops, and the tier above

them is permitted to converge. In addition to guaranteeing convergence of the final

result, we are also able to provide confidence bounds on the approximate results prior

to convergence. As we show in our experiments, the algorithm satisfies desiderata

for a useful convergent-inference algorithm: computation performance competitive

with exact inference on simple graphs, and progressive accuracy competitive with

approximate inference on complex graphs.

Our main motivation is to generate a new type of inference algorithm for graphical

inference in databases. Nevertheless, we observe that Leaky Joins can be adapted to

any aggregate queries over small but dense tables.

5.2 Convergent Inference

Running-time for variable elimination 𝑂(𝑁 |𝑠𝑐𝑜𝑝𝑒(𝐶)|), is dominated by tree-width, and

strongly depends on the elimination ordering (already an 𝑁𝑃 -hard problem [82]).

Since the running time grows exponentially in the size of largest clique cluster 𝐶𝑚𝑎𝑥,

the running complexity can have high variance depending on the order. Because

the cost is exponential, even a small increase in complexity can change the runtime

of variable elimination from seconds to hours, or even days. In short, predicting

whether an exact solution is feasible is hard enough that most systems simply rely

exclusively on approximation algorithms. On other hand, approximate inference may

70

get asymptotically close to an answer, but it will never fully converge. Thus, most

applications that benefit from exact results must rely on either human intuition to

decide.

The goal and first contribution of this paper is to introduce convergent inference, a

specialized form of approximate inference algorithm that is guaranteed to eventually

converge to an exact result. In this section, we develop the idea of convergent infer-

ence and propose several convergent inference algorithms, or CIAs. A CIA eventually

produces an exact result, but can be interrupted at any time to quickly produce a

bounded approximation. More precisely, a CIA should satisfy the following condi-

tions: (1) After a fixed period of time 𝑡, a CIA can provide approximate results with

𝜖 − 𝛿 error bounds, such that 𝑃 (|𝑃𝑡 − 𝑃𝑒𝑥𝑎𝑐𝑡| < 𝜖) > 1 − 𝛿; and (2) A CIA can will

obtain the exact result 𝑃𝑒𝑥𝑎𝑐𝑡 in a bounded time 𝑡𝑒𝑥𝑎𝑐𝑡.

Ideally, we would also like a CIA to satisfy two additional conditions: (3) The time

complexity required by a good CIA to obtain an exact result should be competitive

with variable elimination; and (4) The quality of the approximation produced by

a good CIA should be competitive with the approximation produced by a strictly

approximate inference algorithm given the same amount of time.

We first introduce a fundamental algorithm called cyclic sampling which performs

pseudo-random sampling without replacement from the joint probability distribution

of the graph. This algorithm is guaranteed to converge, but requires an exponential

number of samples to do so. We then present an improved CIA based on classical

aggregate-join query processing that relies on a novel “leaky join” operator. Finally,

we discuss lessons learned in a failed attempt to combine cyclic sampling with state-

of-the-art techniques for incremental view maintenance.

All three of our approaches draw on the relationship between graphical inference

and aggregate query processing. However, though the problems are similar, we re-

71

emphasize that there are several ways in which graphical inference queries violate

assumptions made in classical database query-processing settings. First, conditional

probability distributions are frequently dense, resulting in many-many relationships

on join attributes. Correlations between variables are also common, so graphical

models often have high tree widths. By comparison, the common case for join and

aggregation queries is join graphs with a far smaller number of tables, simpler (e.g.,

foreign key) predicates, and typically low tree widths.

Finally, we note that although we use graphical models as a driving application,

similar violations occur in other database applications (e.g., scientific databases [113]).

The algorithms we present could be adapted for use in these settings as well.

5.2.1 Cyclic Sampling

I first discuss a naive form of convergent inference called cyclic sampling that forms the

basis for each of our approaches. Recall that each intermediate table (the separator)

is an aggregate computed over a join of factor tables (the clique), and that the domain

of the clique is (or is very nearly) a cartesian product of the attributes in its scope.

In principle, one could compute an entire separator table by scanning over the rows

of its clique.

We note that input factor tables and the separator tables are typically small

enough to remain in memory. Thus, using array-indexed storage for the clique tables

is feasible and the cost of accessing one row of the clique is a constant. Consequently,

efficient random sampling on the joint probability distribution is possible, and the

marginal probabilities of interest can be incrementally approximated as in OLA [63].

The key insight of cyclic sampling is that if this random sampling is performed

without replacement, it will eventually converge to an exact result if we reach a point

72

where each row of the clique has been sampled exactly once. Unfortunately, sam-

pling without replacement typically has space complexity linear in the number of

items to be sampled, which is exponential in the number of variables. Fortunately

for graphical inference, a there exists a class of so-called cyclic pseudorandom num-

ber generators that iteratively construct pseudorandom sequences of non-repeating

integers in constant space.

A cyclic pseudorandom number generator generates a sequence of non-repeating

numbers in the range [0,𝑚) for some given period 𝑚 with members that exhibit min-

imal pairwise correlation. We use Linear Congruential Generators (LCGs) [98, 105],

which generate a sequence of semi-random numbers with a discontinuous piecewise

linear equation defined by the recurrence relation:

𝑋𝑛 = (𝑎𝑋𝑛−1 + 𝑏) mod 𝑚 (5.1)

Here 𝑋𝑛 is the 𝑛th number of the sequence, and 𝑋𝑛−1 is the previous number of

the sequence. The variables 𝑎, 𝑏 and 𝑚 are constants: 𝑎 is called the multiplier, 𝑏

the increment, and 𝑚 the modulus. The key, or seed, is the value of 𝑋0, selected

uniformly at random between 0 and 𝑚. In general, a LCG has a period no greater

than 𝑚. However, if 𝑎, 𝑏, and 𝑚 are properly chosen, then the generator will have a

period of exactly 𝑚. This is referred to as a maximal period generator, and there have

been several approaches to choosing constants for maximal period generators [80,86].

In our system, we follow the Hull-Dobell Theorem [110], which states that an LCG

will be maximal if

1. 𝑚 and the offset 𝑏 are relatively prime.

2. 𝑎− 1 is divisible by all prime factors of 𝑚.

73

3. 𝑎− 1 is divisible by 4 if m is divisible by 4.

LCGs are fast and require only constant memory. With a proper choice of parameters

𝑎, 𝑏 and 𝑚, a LCG can produce maximal period generators and pass formal tests for

randomness. Parameter selection is outlined in Algorithm 5.

Algorithm 5 InitLCG(totalSamples)
Require: 𝑡𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒𝑠: the total number of samples
Ensure: 𝑎, 𝑏, 𝑚: LCG Parameters
1: 𝑚← 𝑡𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒𝑠
2: 𝑆 ← prime factors of 𝑚
3: for all 𝑠 in 𝑆 do
4: 𝑎← 𝑎× 𝑠
5: if 𝑚 = 0 mod 4 and 𝑎 ̸= 0 mod 4 then
6: 𝑎← 4𝑎+ 1
7: 𝑏← any coprime of 𝑚 smaller than 𝑚

The cyclic sampling process itself is shown in Algorithm 6. Given a Bayesian net-

work ℬ=(𝒢(X),Φ), and a marginal probability query Q = 𝑝(X𝑞), we first construct

the LCG sampling parameters (lines 1-5): 𝑎, 𝑏 and 𝑚 according to Hull-Dobell The-

orem for the total number of samples in the joint probability distribution p(X). The

sampling process (starts at Line 16) constructs an index by obtaining the next value

from the LCG (line 7) and decomposes the index into an assignment for each variable

(line 10). We calculate the joint probability of p(X) for this assignment (line 13) add

this probability to the corresponding result row, and increment the sample count.

At any point, the algorithm may be interrupted and each individual probability

in 𝑝(X𝑞) may be estimated from the accumulated probability mass 𝑝(𝑥):

𝑝(X𝑞) =

∏︀
𝑋𝑗∈X |𝑑𝑜𝑚(𝑋𝑗)|

𝑐𝑜𝑢𝑛𝑡𝑥
· 𝑝(𝑥)

Cyclic sampling promises to be a good foundation for CIA, but must satisfy the

two constraints. First, it needs to provide an epsilon-delta approximation in a fixed

74

period of time. In classical OLA and some approximate inference algorithms, samples

generated are independently and identically distributed. As a result, Hoeffding’s

inequality can provide accuracy guarantees. In CIAs, samples are generated without

replacement. We need to provide an 𝜖 − 𝛿 approximation under this assumption.

Second, cyclic sampling needs to eventually converge to an exact inference result.

This requires that we sample all the items in the joint probability distribution exactly

once and the samples should be sampled randomly.

Algorithm 6 CyclicSampling(ℬ, 𝑄)
Require: A bayes net ℬ=(𝒢(X),Φ)
Require: A conditional probability query: Q=𝑃 (Xq)
Ensure: Probabilities for each �⃗�: {𝑝𝑞 = 𝑃 (Xq) = �⃗�𝑞)}
Ensure: The number of samples for each �⃗�: {𝑐𝑜𝑢𝑛𝑡𝑞}
1: 𝑡𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒𝑠← 1
2: for all 𝜑𝑖 in Φ do
3: 𝑡𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑡𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒𝑠 * |𝑑𝑜𝑚(𝑋𝑖)|
4: 𝑖𝑛𝑑𝑒𝑥1 ← rand_int() mod 𝑡𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒𝑠
5: 𝑎, 𝑏,𝑚← InitLCG(𝑡𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒𝑠)
6: for all 𝑘 ∈ 0 . . . 𝑡𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒𝑠 do
7: 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡← 𝑖𝑛𝑑𝑒𝑥𝑘
8: /* De-multiplex the variable assignment */
9: for all 𝑗 ∈ 0 . . . 𝑛 do

10: 𝑥𝑗 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 mod |𝑑𝑜𝑚(𝑋𝑗)|
11: 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡÷ |𝑑𝑜𝑚(𝑋𝑗)|
12: /* probability is a product of the factors */
13: 𝑝𝑟𝑜𝑏←

∏︀
𝑖 𝜑𝑖

(︀
𝜋𝑠𝑐𝑜𝑝𝑒(𝜑𝑖)(⟨ 𝑥1, . . . , 𝑥𝑛 ⟩)

)︀
14: /* assemble return values */
15: �⃗� ← 𝜋Xq(�⃗�); 𝑝𝑞 ← 𝑝𝑞 + 𝑝𝑟𝑜𝑏; 𝑐𝑜𝑢𝑛𝑡𝑞 ← 𝑐𝑜𝑢𝑛𝑡𝑞 + 1
16: /* step the LCG */
17: 𝑖𝑛𝑑𝑒𝑥𝑘+1 ← (𝑎 * 𝑖𝑛𝑑𝑒𝑥𝑘 + 𝑏) mod 𝑚

Computation Cost. Let 𝑛 be the number of random variables in ℬ, as a simplifica-

tion assume w.l.o.g. that each random variable has domain size 𝑑𝑜𝑚. Calculating the

parameters for LCG takes constant time. The sampling process takes 𝑂(|𝑁 |) time,

where |𝑁 | is the total number of samples in the reduced joint probability distribution

𝑃 (X). 𝑁 can be as large as 𝑑𝑜𝑚𝑛, that is exponential in the size of the graph.

75

Confidence Bound. Classical approximate inference and OLA algorithms use

random sampling with replacement, making it possible to use well known accuracy

bounds. For example one such bound, based on Hoeffding’s inequality [65] establishes

a tradeoff between the number of samples needed 𝑛, a probabilistic upper bound on

the absolute error 𝜖, and an upper bound on probably that the bound will be violated

𝛿. Given two values, we can obtain the third.

Hoeffding’s inequality for processes that sample with replacement was extended by

Serfling et al. [109] for sampling without replacement. Denote by N the total number

of samples, P(x) is the true probability distribution after seeing all the samples N.

Denote by 𝑃𝑛(𝑥) the approximation of P(x) after n samples. From [109], and given

that probabilities are in general bounded as 0 ≤ 𝑝 ≤ 1, we have that:

𝑃𝑛 (𝑃𝑛(𝑥) /∈ [𝑃 (𝑥)− 𝜖, 𝑃 (𝑥) + 𝜖]) ≤ 𝛿 ≡ 𝑒𝑥𝑝

[︃
−2𝑛𝜖2

1− (𝑛−1
𝑁−1)

]︃
(5.2)

In other words, after 𝑛 samples, there is a (1− 𝛿) chance that our estimate 𝑃𝑛(𝑥)

is within an error bound 𝜖.

5.2.2 Leaky Joins

In Cyclic Sampling, samples are drawn from an extremely large joint relation and

require exponential time for convergence. To address this limitation, we first return

to Variable Elimination as described in Section 4.2.1. Recall the clique tree represen-

tation in Figure 4-2 for the BN in Figure 4-1, where the marginal for the goal variable

(𝐽) is produced by clique cluster 𝐶3. Each clique focuses on a single clique variable

𝑋𝑖, and the clique cluster is a product of the separator table to the clique’s left and

all remaining factor tables containing 𝑋𝑖. As a result, each factor 𝜑 in ℬ=(𝒢(X),Φ)

belongs to exactly one clique cluster. Variable Elimination (the process below the red

76

line) mirrors classical blocking aggregate-join evaluation, computing each separator

table (aggregate) fully and passing it to the right.

The key idea is to create a clique tree as in Variable Elimination, but to allow

samples to gradually “leak” through the clique tree rather than computing each sep-

arator table as a blocking operation. To accomplish this, we propose a new Leaky

Join relational operator. A single Leaky Join computes a group-by aggregate over

one or more Natural Joins, “online” using cyclic sampling as described above. As

the operator is given more cpu-time, its estimate improves. Crucially, Leaky Joins

are composable. During evaluation, all Leaky Joins in a query plan are updated in

parallel. Thus the quality of a Leaky Join operator’s estimate is based not only on

how many samples it has produced, but also on the quality of the estimates of its

input tables.

Algorithm 7 gives an evaluation strategy for inference queries using Leaky Joins.

Abstractly, an evaluation plan consists of a set of intermediate tables for each clique

𝐶𝑖 ∈ C (i.e., each intermediate join), and for each separator 𝑆𝑖 ∈ S (i.e., each inter-

mediate aggregate). Queries are evaluated volcano-style, iterating over the rows of

each clique and summing over the product of probabilities as described in Section 4.2.

As in Cyclic Sampling, the iteration order is randomized by a LCG (lines 9-13). For

each clique 𝐶𝑖, the algorithm samples a row �⃗� (lines 9-12), computes the marginal

probability for that row (line 14), and adds it to its running aggregate for the group

�⃗� that �⃗� belongs to (line 20). It is necessary to avoid double-counting samples in the

second and subsequent cycles of the LCG. Consequently, the algorithm updates the

separator using the difference 𝛿𝑝𝑟𝑜𝑏 between the newly computed marginal and the

previous version (lines 16-19).

In order to determine progress towards convergence, the algorithm also tracks a

sample count for each row of the clique and separator tables (lines 15, 17), as well as

77

Algorithm 7 EvaluateLeakyJoins(ℬ, 𝑄)
Require: A bayes net ℬ = (𝒢(X),Φ)
Require: An inference query 𝑄 = 𝑃 (Xq)
Ensure: The result separator 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑃 (Xq)
1: ⟨ S,C ⟩ ← assemblePlan(ℬ,X𝑞)
2: for all 𝑖 ∈ 1 . . . |S| do
3: 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖 ← 0; 𝑚𝑎𝑥𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖 = |𝑑𝑜𝑚(𝑑𝑒𝑠𝑐(𝑆𝑖))|
4: 𝑎𝑖, 𝑏𝑖,𝑚𝑖 ← initLCG(|𝑑𝑜𝑚(𝐶𝑖)|)
5: 𝑖𝑛𝑑𝑒𝑥𝑖 ← rand_int() mod 𝑚𝑖

6: Fill 𝑆𝑖 and 𝐶𝑖 with ⟨ 𝑝𝑟𝑜𝑏 : 0.0 , 𝑐𝑜𝑢𝑛𝑡 : 0 ⟩
7: while there is an 𝑖 with 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖 < 𝑚𝑎𝑥𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖 do
8: for all 𝑖 where 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖 < 𝑚𝑎𝑥𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖 do
9: /* Step the LCG */

10: 𝑖𝑛𝑑𝑒𝑥𝑖 ← (𝑎𝑖 * 𝑖𝑛𝑑𝑒𝑥𝑖 + 𝑏𝑖) mod |𝑑𝑜𝑚(𝜓𝑖)|
11: /* Demux index as Alg. 6 lines 9-11 */
12: Get �⃗� from 𝑖𝑛𝑑𝑒𝑥𝑖
13: /* Get the joint probability as Alg. 6 line 13

and get the joint sample count similarly */

14: 𝑝𝑟𝑜𝑏←
∏︀

𝜑∈𝑓𝑎𝑐𝑡𝑜𝑟𝑠(𝐶𝑖)

(︁
𝜑
[︁
𝜋𝑠𝑐𝑜𝑝𝑒(𝜑)(�⃗�)

]︁
.𝑝𝑟𝑜𝑏

)︁
15: 𝑐𝑜𝑢𝑛𝑡←

∏︀
𝜑∈𝑓𝑎𝑐𝑡𝑜𝑟𝑠(𝐶𝑖)

(︁
𝜑
[︁
𝜋𝑠𝑐𝑜𝑝𝑒(𝜑)(�⃗�)

]︁
.𝑐𝑜𝑢𝑛𝑡

)︁
16: /* Compute update deltas */
17: ⟨ 𝛿𝑝𝑟𝑜𝑏, 𝛿𝑐𝑜𝑢𝑛𝑡 ⟩ = ⟨ 𝑝𝑟𝑜𝑏, 𝑐𝑜𝑢𝑛𝑡 ⟩ − 𝐶𝑖[�⃗�]
18: /* Apply update deltas */
19: 𝐶𝑖[�⃗�] = 𝐶𝑖[�⃗�] + ⟨ 𝛿𝑝𝑟𝑜𝑏, 𝛿𝑐𝑜𝑢𝑛𝑡 ⟩
20: �⃗� = 𝜋𝑠𝑐𝑜𝑝𝑒(𝑆𝑖)(�⃗�); 𝑆𝑖[�⃗�] = 𝑆𝑖[�⃗�] + ⟨ 𝛿𝑝𝑟𝑜𝑏, 𝛿𝑐𝑜𝑢𝑛𝑡 ⟩
21: 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖 + 𝛿𝑐𝑜𝑢𝑛𝑡

the total, aggregate count for each separator table (line 21). Informally, this count

is the number of distinct tuple lineages represented in the current estimate of the

probability value. For a given clique table 𝐶𝑖 the maximum value of this count is the

product of the sizes of the domains of all variables eliminated (aggregated away) in 𝐶𝑖

(line 3). For example, in Figure 4-2, no variables have been eliminated in 𝐶1 so each

row of 𝐶1 contains at most one sample. By 𝐶2, the variable 𝐷 has been eliminated,

so each row of 𝐶2 can represent up to |𝑑𝑜𝑚(𝐷)| = 2 samples. Similarly each row of

𝐶3 represents up to |𝑑𝑜𝑚(𝐷)| · |𝑑𝑜𝑚(𝐼)| = 4 samples. The algorithm uses the sample

count as a termination condition. Once a table is fully populated, sampling on it

78

φD

(Ψ1)

!1

φG

⋈
φI

⋈(Ψ2)

!2
Ψ1(D,I,G)

D I G count Σp
0 0 1 1 0.18

!1(I,G)
I G count Σp
0 1 1 0.18

Ψ2(I,G)
I G count Σp
0 1 1 0.126

!2(G)
G count Σp
1 1 0.126

Ψ1(D,I,G)
D I G count Σp
0 0 1 1 0.18
1 0 3 1 0.28
0 1 1 1 0.54
1 1 1 1 0.2
0 0 2 1 0.24
1 0 2 1 0.1
0 1 2 1 0.048
1 1 2 1 0.12
0 0 3 1 0.18
1 0 1 1 0.02
0 1 3 1 0.012
1 1 3 1 0.08

!1(I,G)
I G count Σp
0 1 2 0.2
1 1 2 0.74
0 2 2 0.34
1 2 2 0.168
0 3 2 0.46
1 3 2 0.092

Ψ2(I,G)
I G count Σp
0 1 1 0.126
1 1 2 0.222
0 2 2 0.238
1 2 2 0.050
0 3 2 0.322
1 3 2 0.028

!2(G)
G count Σp
1 3 0.348
2 4 0.288
3 4 0.350

Ψ2(I,G)

I G count Σp
0 1 2 0.14
1 1 2 0.222
0 2 2 0.238
1 2 2 0.050
0 3 2 0.322
1 3 2 0.028

!2(G)
G count Σp
1 4 0.362
2 4 0.288
3 4 0.350

(b) After 1 Iteration(a) Join Graph (c) After 12 Iterations (d) After 18 Iterations

Figure 5-1: Leaky Joins example join graph (a) and the algorithm’s state after 1, 12,
and 18 iterations (b-d). In the 12-iteration column (c), incomplete sample counts are
circled.

stops (line 8). Once all tables are fully populated, the algorithm has converged (line

7).

In short, Leaky Joins work by trickling samples down through each level of the join

graph. The cyclic sampler provides flow control and acts as a source of randomization,

allowing all stages to produce progressively better estimates in parallel. With each

cycle through the samples, improved estimates from the join operator’s input are

propagated to the next tier of the query.

Example 13 As an example of Leaky Joins, consider a subset of the graph in Fig-

ure 4-1 with only nodes 𝐷, 𝐼,𝐺 and an inference query for 𝑝(𝐺). Using classical

heuristics from variable elimination, the Leaky Joins algorithm elects to eliminate 𝐷

first and then 𝐼, and as a result assembles the intermediate clique cluster C and clique

separator S tables as shown in Figure 5-1. Samples are generated for each interme-

diate clique cluster one at a time, following the join order: First from 𝐶1(𝐷, 𝐼,𝐺)

and then 𝐶2(𝐼,𝐺). As shown in Figure 5-1b, the first sample we obtain from 𝐶1 is

79

⟨ 0, 0, 1 ⟩

𝜑𝐷(𝐷 = 0) · 𝜑𝐺(𝐷 = 0, 𝐼 = 0, 𝐺 = 1) = 0.6 · 0.3 = 0.18

𝑆1(𝐼,𝐺) is correspondingly updated with the tuple ⟨ 0, 1 ⟩ with aggregates ⟨ 1, 0.18 ⟩.

Then the second sample is drawn from 𝐶2(𝐼,𝐺). For this example, we will assume

the random sampler selects ⟨ 0, 1 ⟩, which has probability:

𝑆1(𝐼 = 0, 𝐺 = 1) · 𝜑𝐼(𝐼 = 0)

Although we do not have a precise value for 𝑆1 we can still approximate it at this time

and update 𝑆2 accordingly. After 12 samples, 𝐶1 has completed a round of sampling

and is ready to be finalized. The state at this point is shown in Figure 5-1c. Note

that the approximation of 𝑆2 is still incorrect — The approximation made in step 1

and several following steps resulted in only partial data for 𝜓2(𝐼 = 1, 𝐺 = 1) (circled

counts in Fig. 5-1c). However, this error will only persist until the next sample is

drawn for 𝐶2(0, 1), at which point the system will have converged to a final result.

Cost Model. We next evaluate the cost of reaching an exact solution using the

Leaky Join algorithm. Assume we have 𝑘 random variables 𝑋1, ..., 𝑋𝑘, and the cor-

responding 𝑘 factors 𝜑𝑋1 , ..., 𝜑𝑋𝑘
. Furthermore, assume the variables are already

arranged in the optimal elimination order, and we wish to marginalize out variables

𝑋1, . . . , 𝑋𝑗. Leaky joins generates exactly the same set of 𝑗 cliques and separators

as Variable Elimination. Like variable elimination, we can measure the computation

complexity by counting multiplication and addition steps. The primary difference be-

tween Variable Elimination and Leaky Joins is that some aggregation steps will base

on approximations and must be repeated multiple times. Let 𝑉 denote the cost of

constructing the largest joint factor in Variable Elimination (i.e., the time complexity

80

of Variable Elimination is 𝑂(𝑉)). After 𝑉 iterations, the lowest level of the join tree

is guaranteed to be finalized. After a successive 𝑉 iterations, the second level of the

tree is guaranteed to be finalized, and so forth. The maximum depth of the join tree is

the number of variables 𝑘, so a loose bound for the complexity Leaky Joins is 𝑂(𝑘𝑉).

Confidence Bound. In Section 5.2.1, we showed an 𝜖-𝛿 bound for random sampling

without replacement (Formula (5.2)). Here, we extend this result to give a loose

bound for Leaky Joins. The primary challenge is that, in addition to sampling errors

in the Leaky Join itself, the output can be affected by cumulative error from the join’s

inputs. We consider the problem recursively. The base case is a clique that reads

from only input factors — the lowest level of joins in the query plan. Precise values

for inputs are available immediately and Formula (5.2) can be used as-is.

Next, consider a clique 𝐶2 computed from only a single leaky join output. Thus,

we can say that 𝐶2 = 𝑆1 ◁▷ 𝜑, where 𝜑 is the natural join of all input factors used

by 𝐶2. There are |𝑑𝑜𝑚(𝑆1)| rows in 𝑆1, so after 𝑛 sampling steps, each row of 𝑆1 will

have received 𝑛
|𝑑𝑜𝑚(𝑆1)| samples. Denote the maximum number of samples per row of

𝑆1 by 𝑁1 = |𝑑𝑜𝑚(𝑆1)|
|𝑑𝑜𝑚(𝐶1)| . Then, by (5.2), all rows in 𝑆1 will have error less than 𝜖 with

probability:

𝛿1 ≡ 𝛿|𝑑𝑜𝑚(𝑆1)| = 𝑒𝑥𝑝

[︃
−2𝑛𝜖2 · (𝑁1 − 1)

𝑁1 − 𝑛
|𝑑𝑜𝑚(𝑆1)|

]︃
(5.3)

Let us consider a trivial example where the cumulative error in each row of 𝑆1 is

bounded by 𝜖:

𝑆1 𝑋1 𝑝

1 𝑝1 ± 𝜖

2 𝑝2 ± 𝜖

𝜑 𝑋1 𝑝

1 𝑝3

2 𝑝4

Here, the correct joint probabilities for rows of 𝐶2 are 𝑝1 · 𝑝3 and 𝑝2 · 𝑝4 respectively.

Thus a fully-sampled 𝑆2 (projecting away 𝑋1) will be approximated as (𝑝1 ± 𝜖)𝑝3 +

81

(𝑝2±𝜖)𝑝4. The cumulative error in this result is (𝑝3+𝑝4)𝜖, or using a pessimistic upper

bound of 1 for each 𝑝𝑖, at worst 2𝜖. Generalizing, if one row of 𝑆2 is computed from 𝑘

rows of 𝐶1, the cumulative error in a given row of 𝑆2 is at most 𝑘𝜖. Repeating (5.3),

sampling error on 𝑆2 after 𝑛 rounds will be bounded by 𝜖 with probability 𝛿|𝑑𝑜𝑚(𝑆2)|.

After 𝑛 rounds of sampling, each row of 𝑆2 will have received 𝑛
|𝑑𝑜𝑚(𝑆2)| rows of 𝐶2, so

the cumulative error on one row is 𝑛
|𝑑𝑜𝑚(𝑆2)|𝜖. Combining (5.2) and (5.3), we get that

for one row of 𝑆2:

𝑃

[︂
|𝑝− E𝑛,𝑥| <

(︂
1 +

𝑛

|𝑑𝑜𝑚(𝑆2)|

)︂
𝜖

]︂
≤ 𝑒𝑥𝑝

[︃
−2 𝑛
|𝑑𝑜𝑚(𝑆2)|𝜖

2 · (𝑁2 − 1)

𝑁2 − 𝑛
|𝑑𝑜𝑚(𝑆2)|

]︃
· 𝛿1

The joint probability across all rows of 𝑆2 is thus:

𝑒𝑥𝑝

[︃
−2𝑛𝜖2(𝑁2 − 1)

𝑁2 − 𝑛
|𝑑𝑜𝑚(𝑆2)|

]︃
· 𝛿|𝑑𝑜𝑚(𝑆2)|

1 ≡ 𝛿2 · 𝛿|𝑑𝑜𝑚(𝑆2)|
1

Generalizing to any left-deep plan, an error 𝜖′ defined as:

𝜖′ = 𝜖 ·
|X|∏︁
𝑖=2

(︂
1 +

𝑛

|𝑑𝑜𝑚(𝑆𝑖)|

)︂
(5.4)

is an upper bound on the marginal in 𝑆|X| with probability:

|X|∏︁
𝑖=1

𝛿
(
∏︀𝑖−1

𝑗=1 |𝑑𝑜𝑚(𝑆𝑗)|)
𝑖 =

|X|∏︁
𝑖=1

𝑒

(︃
(
∏︀𝑖−1

𝑗=1 |𝑑𝑜𝑚(𝑆𝑗)|)
−2𝑛𝜖2(𝑁𝑗−1)

𝑁𝑗−
𝑛

|𝑑𝑜𝑚(𝑆𝑗)|

)︃
(5.5)

Consider a slightly more complicated toy example clique 𝐶4 = 𝑆3 ◁▷ 𝑆1, where

both 𝑆3 and 𝑆1 both have bounded error 𝜖1 and 𝜖3 respectively.

𝐶1 𝑋1 𝑝

1 𝑝1 ± 𝜖1

2 𝑝2 ± 𝜖1

𝐶3 𝑋1 𝑝

1 𝑝3 ± 𝜖3

2 𝑝4 ± 𝜖3

82

As before, the correct joint probability is 𝑝1 · 𝑝3 + 𝑝2 · 𝑝4. Given an 𝜖′ = max(𝜖1, 𝜖3),

the estimated probability will be 𝑝1 · 𝑝3 + 𝑝2 · 𝑝4 +
(︀∑︀4

𝑖=1 𝑝𝑖𝜖
′)︀ + 𝜖′2. As before, using

an upper bound of 1 for each 𝑝1 . . . 𝑝4 bounds the error by:

(|𝑑𝑜𝑚(𝑆1)| · |𝑑𝑜𝑚(𝑆3)|)𝜖′ + 𝜖′2

More generally, the predicted value across 𝑚 source tables is a sum of terms of the

form (𝑝+ 𝜖′), and the overall cumulative error per element of 𝐶1 is bounded as:

𝜖𝑐𝑢𝑚 =
𝑚−1∑︁
𝑖=1

(𝑚 𝒞 𝑖)𝜖𝑚−𝑖

where 𝑚 𝒞 𝑖 is the combinatorial operator 𝑚 choose 𝑖. Thus re-using Equation (??),

we can solve the recursive case of a separator with 𝑚 leaky join inputs that each have

error bounded by 𝜖′ with probability 𝛿𝑐𝑢𝑚 =
∏︀𝑚

𝑖 𝛿𝑖. Then the total error on one row

of the separator can be bounded by 𝜖+ 𝜖𝑐𝑢𝑚 with probability:

𝑒𝑥𝑝

[︃
−2 𝑛
|𝑑𝑜𝑚(𝑆2)|𝜖

2 · (𝑁2 − 1)

𝑁2 − 𝑛
|𝑑𝑜𝑚(𝑆2)|

]︃
· 𝛿 (5.6)

The joint error is computed exactly as before. To estimate the error on the final

result, we apply this formula recursively on the full join plan.

5.3 Lessons Learned From IVM

Materialized views are the precomputed results of a so-called view query. As the

inputs to this query are updated, the materialized results are updated in kind. Incre-

mental view maintenance (IVM) techniques identify opportunities to compute these

updates more efficiently than re-evaluating the query from scratch. Incremental view

83

maintenance has already seen some use in Monte Carlo Markov Chain inference [124],

and recent advances — so called recursive IVM techniques [10,81] have made it even

more efficient.

Our initial attempts at convergent inference were based on IVM and recursive IVM

in particular. It eventually became clear that there was a fundamental disconnect

between these techniques and the particular needs of graphical inference. In the

interest of helping others to avoid these pitfalls, we use this section to outline our

basic approach and to explain why, perhaps counter-intuitively, both classical and

recursive IVM techniques are a poor fit for convergent inference on graphical models.

5.3.1 The Algorithm

Our first approach at convergent inference used IVM to compute and iteratively revise

an inference query over a progressively larger fraction of the input dataset. That is,

we declared the inference query as a materialized view using exactly the query defined

in Section 4.2. The set of factor tables was initially empty. As in Cyclic Sampling, we

iteratively insert rows of the input factor tables in a shuffled order. A backend IVM

system updates the inference result, eventually converging to a correct value once all

factor rows have been inserted. This process is summarized in Algorithm 8.

While naive cyclic sampling samples directly from the output of the join, IVM-

CIA constructs the same output by iteratively combining parts of the factor tables.

The resulting update sequence follows a pattern similar to that of multi-dimensional

Ripple Joins [61], incrementally filling the full sample space of the join query. As

in naive cyclic sampling, this process may be interrupted at any time to obtain an

estimate of 𝑃 (𝒴) by taking the already materialized partial result and scaling it by

the proportion of samples used to construct it. This proportion can be computed

84

Algorithm 8 SimpleIVM-CIA(ℬ, 𝑄)
Require: A bayes net ℬ=(𝒢(X),P)
Require: A conditional probability query: Q=𝑃 (Xq)
Ensure: The set 𝑟𝑒𝑡Xq = 𝑃 (Xq)
1: for all 𝜑𝑖 ∈ 𝐺(X) do
2: 𝑖𝑛𝑑𝑒𝑥0,𝑖 = rand_int() mod |𝑑𝑜𝑚(𝑋𝑖)|
3: 𝑎𝑖, 𝑏𝑖,𝑚𝑖 ← InitLCG(|𝑑𝑜𝑚(𝑋𝑖)|)
4: 𝜑′𝑖 ← ∅
5: Compile IVM Program 𝑄′ to compute 𝑃 (Xq) from {𝜑′𝑖}
6: for all 𝑘 ∈ 1 . . .𝑚𝑎𝑥𝑖(|𝑑𝑜𝑚(𝑋𝑖)|) do
7: for all 𝜑𝑖 ∈ 𝐺(X) do
8: if 𝑘 ≤ |𝑑𝑜𝑚(𝑋𝑖)| then
9: 𝑖𝑛𝑑𝑒𝑥𝑘,𝑖 ← (𝑎 * 𝑖𝑛𝑑𝑒𝑥𝑘−1,𝑖 + 𝑏) mod 𝑚𝑖

10: Update 𝑄′ with row 𝜑′𝑖[𝑖𝑛𝑑𝑒𝑥𝑘,𝑖]← 𝜑𝑖[𝑖𝑛𝑑𝑒𝑥𝑘,𝑖]
11: 𝑟𝑒𝑡Xq ← the output of 𝑄′

by adding a COUNT(*) aggregate to each query. IVM-CIA uses the underlying IVM

engine to simultaneously track both the estimate and the progress towards an exact

result.

5.3.2 Post-Mortem

For my first attempt at an IVM-based convergent inference algorithm, we used

DBToaster [81], a recursive IVM compiler. DBToaster is aimed at relational data

and uses a sparse table encoding that, as we have already mentioned, is ill suited for

graphical models. Recognizing this as a bottleneck, we decided to create a modified

version of DBToaster that used dense array-based table encodings. Although this op-

timization did provide a significant speed-up, the resulting engine’s performance was

still inferior: It converged much slower than variable elimination and had a shallower

result quality ramp than the approximation techniques (even cyclic sampling in some

cases).

Ultimately, we identified two key features of graphical models that made them ill-

suited for database-centric IVM and in particular recursive IVM. First, in Section 5.2,

85

we noted that nodes in a Bayesian Network tend to have many neighbors and that

the network tends to have high hypertree-width. The size of intermediate tables

is exponential in the hypertree-width of the query — rather large in the case of

graphical models. Recursive IVM systems like DBToaster are in-effect a form of

dynamic programming, improving performance by consuming more space. DBToaster

in particular maintains materialized copies of intermediate tables for all possible join

plans. As one might imagine, the space required for even a BN of moderate size can

quickly outpace the available memory.

The second, even more limiting factor of IVM for graphical models is the fan-out

of joins. Because of the density of a graphical model’s input factors and intermediate

tables, joins are frequently not just many-many, but all-all. Thus a single insertion

(or batch of insertions) is virtually guaranteed to affect every result row. In recursive

IVM, the problem is worse, as each insertion can trigger full-table updates for nearly

every intermediate table (which as already noted, can be large). Batching did improve

performance, but not significantly enough to warrant replacing cyclic sampling.

Our approach of Leaky Joins was inspired, in large part, by an alternative form

of recursive IVM initially described by Ross et. al., [103], which only materializes

intermediates for a single join plan. Like this approach, Leaky Joins materializes

only a single join plan, propagating changes through the entire query tree. However,

unlike the Ross recursive join algorithm, each Leaky Join operator acts as a sort of

batching blocker. New row updates are held at each Leaky Join, and only propagated

in a random order dictated by the LCG.

86

Grade

Letter

Job

Happy

Coherence

SAT

IntelligenceDifficulty

(a) Extended
Student

(b) Child (c) Insurance (d) Barley (e) Diabetes

Figure 5-2: Visualizations of five graphical models from [107] used in our experiments.

5.4 Evaluation

Recall in Section 5.2, we claimed CIAs should satisfy four properties. In this section

we present experimental results to show that they do. Specifically, we want to show:

(1,2) Flexibility: CIAs are able to provide both approximate results and exact results

in the inference process. (3) Approximation Accuracy: Given the same amount

of time, CIAs can provide approximate results with an accuracy that is competitive

with state-of-the-art approximation algorithms. (4) Exact Inference Efficiency:

The time a CIA takes to generate an exact result is competitive with state-of-the-art

exact inference algorithms.

5.4.1 Experimental Setup and Data

Experiments were run on a 12 core, 2.5 GHz Intel Xeon with 198 GB of RAM running

Ubuntu 16.04.1 LTS. Our experimental code was written in Java and compiled and

run single-threaded under the Java HotSpot version 1.8 JDK/JVM. For experiments,

we used five probabilistic graphical models from publicly available sources, including

the bnlearn Machine Learning Repository [107] to compare the available algorithms.

Visualizations of all five graphs are shown in Figure 5-2.

87

Student. The first data set is the extended version of the Student graphical model

from [82]. This graphical model contains 8 random variables. All the random variables

are discrete. In order to observe how CIAs are influenced by exponential blowup of

scale, we use this graph as a micro-benchmark by generating synthetic factor tables

for the Student graph. In the synthetic data, we vary the domain size of each random

variable from 2 to 25. Marginals were computed over the Happiness attribute.

Child. The second graphical model captures the symptoms and diagnosis of As-

phyxia in children [38]. The number of random variables in the graph is 20. All the

random variables are discrete with different domain sizes. There are 230 parameters

in factors. The average degree of nodes in the graph is 3.5 and the maximum in-degree

in the graph is 4. Marginals were computed over the sick variable.

Insurance. The third graphical model we used models potential clients for car

insurance policies [26]. It contains 27 nodes. All the random variables are discrete

with different domain sizes. There are 984 parameters in factors. The average number

of degree is 3.85 and the maximum in-degree in the graph is 3. Marginals were

computed over the PropCost variable.

Barley. The fourth graphical model is developed from a decision support system

for mechanical weed control in malting barley [84]. The graph contains 48 nodes.

All the random variables are discrete with different domain sizes. There are 114005

parameters in factors. The average degree of nodes in the graph is 3.5 and the

maximum in-degree in the graph is 4. Marginals were computed over the ntilg

variable.

Diabetes. The fifth graphical model is a very large graph that captures a model

for adjusting insulin [16]. The number of random variables in the graph is 413. All

the random variables are discrete with different domain sizes. There are 429409

88

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 10 20 30 40 50 60 70R
M

S
A

bs
ol

ut
e

Pe
r-

G
ro

up
 E

rr
or

Variable Domain Size

Gibbs Sampling
Leaky Joins

Variable Elimination

(a) Accuracy within 10ms

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 10 20 30 40 50R
M

S
A

bs
ol

ut
e

Pe
r-

G
ro

up
 E

rr
or

Running Time (ms)

Gibbs Sampling
Random Sampling

Cyclic Sampling
Leaky Joins

(b) Accuracy over time

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25

Ti
m

e
to

 C
on

ve
rg

en
ce

 (m
s)

Variable Domain Size

Variable Elimination
Cyclic Sampling

Leaky Joins

(c) Running time to convergence

Figure 5-3: Microbenchmarks on the synthetic, extended Student graph (Figure 5-2a)

parameters in factors. In average, there are 2.92 degrees and the maximum in-degree

in the graph is 2. Marginals were computed over the bg_5 variable.

5.4.2 Inference Methods

We compare our two convergent inference algorithms with variable elimination (for

exact inference results) and Gibbs sampling (for approximate inference). We are

interested in measuring runtime for exact inference and accuracy for approximate

inference. We assign an index for each node in the Bayes net following the topological

order. We assume that for each factor 𝜑𝑖, the variables are ordered by the following

conventions: 𝑝𝑎(X) ≺ X, where X={𝑋𝑖, . . . , 𝑋𝑗, . . . } is ordered increasingly by index.

The domain values in each random variable is ordered increasingly.

Variable Elimination. Variable elimination is the classic exact inference algo-

89

rithm used for graphical models, as detailed in Section 4. As is standard in variable

elimination, intermediate join results are streamed and never actually materialized.

To decide on an elimination (join) ordering, we adopt the heuristic methods in [82].

At each point, the algorithm evaluates each of the remaining variables in the Bayes

net based on a heuristic cost function. The cost criteria used for evaluating each vari-

able is Min-weight, where the cost of a node is the product of weights, where weight

is the domain cardinality of the node’s neighbors. For example, using Min-weight,

the selected order for the extended student graph in Figure 5-2a is: 𝐶, 𝐷, 𝑆, 𝐼, 𝐿, 𝐽 ,

𝐺. 𝐻 is the target random variable.

Gibbs Sampling. As discussed in Section 4, Gibbs sampling first generates the

initial sample with each variable 𝑋𝑖 in ℬ = (𝒢(X),Φ) following the conditional prob-

ability distribution 𝑝(𝑋𝑖|𝑝𝑎(𝑋𝑖)). Then, we randomly fix the value for some random

variable 𝑋𝑗 and use it as evidence to generate next sample. With more and more

samples collect, the distribution will get increasingly closer to the posterior. We skip

the first hundred samples for small graphs 5-2a, 5-2b and 5-2c, and thousand samples

for larger graphs 5-2d and 5-2e at the beginning of the sample process. The target

probability distribution is calculated by normalizing the sum of sample frequencies

for each value in the target variables 𝑋𝑞.

Cyclic Sampling. Cyclic Sampling is our first CIA, described in Section 5.2.1 and

in Algorithm 6. Note that cyclic sampling does not materialize the joint probability

distribution, but rather constructs rows of the joint distribution dynamically using a

LCG (Equation 5.1). This process takes constant time for a fixed graph.

Leaky Joins. Leaky Joins, our second CIA, were described in Section 5.2.2. We

use the same elimination (join) order as in variable elimination algorithm to construct

the clique tree and materialize intermediate tables, Clique’s clusters C and Clique’s

90

seperator S. Then we conduct the “passing partial messages" process according to

Algorithm 7.

5.4.3 Flexibility

We first explore the flexibility of CIAs by comparing the accuracy of different al-

gorithms (both exact and approximate) within a finite cutoff time. We imitate the

situation that time is the major concern for user and the goal is to provide an accurate

inference result at a given time. We compute the marginal probability, cutting each

algorithm off after the predefined period, and average the fractional error across each

marginal “group”.

Figure 5-3a shows the average fractional error for each inference algorithm on the

student graph with a cutoff of 10 seconds. We vary the factor size from 10 to 70

to simulate small and large graphs. Variable elimination provides an exact inference

result for variables with domain size smaller than 50. On larger graphs, it times out,

resulting in a 100% error. Gibbs sampling can always provide an approximate result,

but produces results that are inaccurate, even when variable elimination can produce

an exact result. Leaky joins provide exact inference results when the domain size is

smaller than 40, but when the domain size passes 40, it still provides approximate

results with a lower error than Gibbs sampling. This graph shows that, with leaky

joins, the same algorithm can support both the exact inference and approximate

inference cases; neither users or inference engines need to anticipate which class of

algorithms to use.

91

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000R
M

S
A

bs
ol

ut
e

Pe
r-

G
ro

up
 E

rr
or

Running Time (ms)

Gibbs Sampling
Random Sampling

Cyclic Sampling
Leaky Joins

(a) The “Child” Graph (Figure 5-2b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50R
M

S
A

bs
ol

ut
e

Pe
r-

G
ro

up
 E

rr
or

Running Time (ms)

Gibbs Sampling
Random Sampling

Cyclic Sampling
Leaky Joins

(b) The “Insurance” Graph (Figure 5-2c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800R
M

S
A

bs
ol

ut
e

Pe
r-

G
ro

up
 E

rr
or

Running Time (s)

Gibbs Sampling
Random Sampling

Cyclic Sampling
Leaky Joins

(c) The “Barley” Graph (Figure 5-2d)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300 350R
M

S
A

bs
ol

ut
e

Pe
r-

G
ro

up
 E

rr
or

Running Time (min)

Leaky Joins

(d) The “Diabetes” Graph (Figure 5-2e)

Figure 5-4: Approximation accuracy for real-world graphs

5.4.4 Approximate Inference Accuracy

Figure 5-3b compares each algorithm’s approximate accuracy relative to time spent on

the student graph with a node size of 35. At each time 𝑡, the average fractional error

of leaky joins is smaller than that of Gibbs sampling. In addition, leaky join converges

to exact result, which Gibbs sampling will never do. The steep initial error in leaky

joins at the start stems from the first few sampling rounds for each intermediate table

𝐶𝑖 being based on weak preliminary approximations; The algorithm needs some burn-

in time to have samples to cover their domains to provide approximate results. Gibbs

sampling algorithm also has burn-in process. The sharp curve for Gibbs sampling is

because it takes more samples for Gibbs sampling to cover corner cases, and generate

samples with less probabilities. Figure 5-4a, Figure 5-4b and Figure 5-4c show the

approximate accuracy result for child and insurance graph. Gibbs sampling performs

92

well in this two graph for that the domain of the target variables 𝑋𝑞 are small (the

domain of sick node for child graph is two and propcost for insurance is 4). There will

be less corner cases and by Chernoff’s bound [35], the number of samples to required

decreases as the probability of P(𝑋𝑞) increases.

𝑃𝑒𝑠𝑡(𝑃𝑒𝑠𝑡(𝑋𝑞) /∈ 𝑃 (𝑋𝑞)(1± 𝜖)) ≤ 2𝑒−𝑁𝑃 (𝑋𝑞)𝜖2/3 ≤ 𝛿.

The result shows that even in this situation, the approximate result of leaky joins is

still comparable to Gibbs sampling. Of these four graphs, the “Diabetes” graph was

the most complex, and only Leaky Joins produced meaningful results.

For comparison with the accuracy results in Figure 5-4, Variable Elimination

produces exact results for “Child” in 19 ms, for “Insurance” in 49 ms, for Barley in

approximately 1.4 hours, and for Diabetes in approximately 1.5 hours.

5.4.5 Convergence Time

Figure 5-3c shows the exact running time for variable elimination and leaky joins.

Recall that the running complexity of variable elimination and leaky join is dominated

by the size of the clique’s cluster, 𝑂(𝑘|𝐶𝑚𝑎𝑥|), where |𝐶𝑚𝑎𝑥| is the size of largest

clique’s cluster. The difference is that leaky join has a constant k. As the factor size

increases, 𝐶𝑚𝑎𝑥 increases and both algorithms get slower at equivalent rates.

5.4.6 Memory

Unlike variable elimination and many of the approximate algorithms, leaky joins does

continuously maintain materialized intermediate results. To measure memory use,

we used the JVM’s Runtime.totalMemory() method, sampling immediately after

results were produced, but before garbage collection could be run. Figure 5-5 shows

93

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0 5 10 15 20 25

JV
M

 M
em

or
y

U
se

d
(G

B
)

Variable Domain Size

Leaky Joins

Figure 5-5: JVM Memory use for Cyclic Sampling. Note that at startup, Java has
already allocated roughly 2 GB.

Java’s memory usage with leaky joins for the “Student” micro benchmark. The actual

memory needs of leaky joins are comparatively small: The two largest intermediate

results have roughly 20-thousand rows, with 5 columns each. Overall, Leaky Joins

only forms a small portion of Java’s overall footprint.

5.5 CIA Applications

As motivated in Chapter 1, inferene in probabilistic graphical model (PGM) has a lot

of application in many domains. Since convergent inference algorithms are a special

kind of inference algorithms, they can be applied to these areas as well. In this section,

I discuss how CIAs are used in data cleaning as Domain Constraint Repair lens, and

its application as a analysis service in Cloud service.

5.5.1 CIA Domain Constraint Repair Lens

As discussed in Section 3.1, generally speaking, all kinds of algorithms can be applied

as the model in Domain Constraint Repain lens, as long as the algorithm provides a

probability distribution of the querying variable as result. CIA satisfies this condition.

Moreover, CIA can provide the trade-off between computation time and accuracy and

94

provides quality of current proabability distribution result to help improve ranking.

In Example 4 in Chapter 3.1, Alice creates a lens to handle missing values in Product

table, she can use CIA to help her model missing attributes category and textitbrand.

CREATE LENS SaneProduct AS SELECT * FROM Product

USING DOMAIN_REPAIR(category string NOT NULL,

brand string NOT NULL);

Behind the scence, Bayesian Network of product is constructed from the certain

data in Product table, For product with id P123 in Figure 1-1, brand ’s value is

missing, in CIA, it means we are trying to find P(brand |id=P123,name=“Apple 6s,

White",category=“phone"). Furthermore, for row with id P2345 in Product table, if

cleaning category and brand can be done together, we can model the joint probability

distribution P(category, brand |id=P2345,name=“Sony to inches”), which will be more

accurate than calculating the probability independently since they may be correlated.

One advantage of CIA in Domain Constraint Repair lens is that user can control

the execution time and have an idea how uncertain current probability distribution

is. Since as shown in Section 3.3, the ranking of data cleaning task is based on

the confidence we have on the attribute’s value based on its probability distribution

(Using entropy). Therefore, the more accurate the probability distribution is, the

more accurate ranking of cleaning task we will have. Therefore, when we use entropy

or information gain to rank the cleaning task, considering the quallity of probability

distribution result (by 𝜖− 𝛿 error bounds) will improve accuracy.

95

5.5.2 Flexible Pricing Plan Data Analysis systems on Cloud

Service

A lot of data analysis is done using cloud services. The cloud service providers

usually provide computing instances with data analysis tools pre-installed in it such

as Amazon EMR and Windows Azuew HDInsight. Current pricing plans for these

services is: user pay an hourly rate for every instance hour they use. This rate

depends on the instance type, for example, standard, high CPU, high memory, high

storage and so on. For a normal user, especially who is not an expert in machine

learning, choosing a cost efficiently plan is difficult. For inference in PGM, with CIA,

the cloud service can provide new pricing plans can free user from the difficulty of

choosing the proper computing instances. There are two forms of pricing plans CIA

can provide: (1) Running time vs Pricing. After user upload the their data

into cloud and submitting their query, we first calculates different running time with

according price. Since this running time is based on estimation and theoretical bound,

it may not be acurate when the job is acurately running in the cloud. Since CIA

provides progress information during the calculation, the cloud service can increase

or decrease computing instance accordingly. (2) On-Demand interactive Pricing

plan. There are also condition that user don’t have an idea of cost of his job. He can

use a pay-as-you-go way to run his job. First, the inference job is started in standard

instance, CIA provides user the current probability distribution and accuracy along

with the cost spent so far. If user is satisfied with current accuracy, he can stop the

job to save money. Also, CIA can suggest user if he wants speed up, he can spend X

dollars to achieve two times speed-up. This suggestion will be very accurate because

since the job is already running, the estimation based on current the information

collected will be very accurate.

96

There is existing work on new pricing plan for cloud service and data analytics

with performance guarantees [96]. Although there is similarity between this work and

my thesis, the difference is clear. While existing work is focusing on general SQL-

like data analysis, we are focusing on inference on PGM, Dynamic Bayesian Network

including Hidden Markov Model and Conditional Random Field.

97

Chapter 6

Conclusion and Future Work

In this dissertation, I focus on providing interaction to user during data cleaning and

data analysis process.

For interactive data cleaning, I focus on building a system that support On-

Demand ETL process - Mimir. Mimir enables composable non-deterministic data

processing operators called Lenses that provide the illusion of fully cleaned relational

data that can be queried using standard SQL. The composable structure lenses use

PC-Tables to encode output, and can be deployed in traditional, deterministic data-

base environments using Virtual C-Tables. Mimir supports best-effort guesses at the

contents a PC-Table, evaluation of quality measures over a PC-Table, and a family

of heuristics for prioritizing curation tasks called CPI. I have demonstrated the feasi-

bility and need for On-Demand ETL, and the effectiveness of CPI-based heuristics.

In future work on Mimir, I shall continue to focus on providing an On-Demand

ETL system that conducts data cleaning in a cost efficient fashion through interaction.

With this goal in mind, I describe possible directions as future work for Mimir.

Lens Composition Optimization. Since input data usually contains more

than one kind of cleaning problems, multiple lenses are used to model them. We need

98

to comopse these lenses in order to rank the cleaning tasks for feedback. As discussed

in Chapter 3.1.3, current lenses are created in a cascaded order. The drawback for

this pipelined composition is that errors from one lens will propagate to another. In

future, I plan to seek joint modeling solutions for lenses composition. There are two

possible directions. The first one is Expectation-Maximization (EM). EM can be used

to avoid error propagation. Unlike composition in a pipelined fashion, EM conducts

composition as an iterative loop. Each lens serves as the input for each other and forms

a loop. This looping process terminates when there is no change of any output or after

several iterations. There is existing work using EM to estimate the trustworthiness

of web sources [46]. My hope is that EM can be used to compose lenses to avoid

error propogation. The second potential direction is to study how to compose lens

based on SATsolver [106], which constructs a Markov Logic Network, where each lens

is represented as hard constraints. Prior arts have already show potential solutions

such as WalkSAT and MaxWalkSAT implemented in Alchemy [45] and Tuffy [92]. I

hope to construct a Markov Logic Network to simulate all lenses.

For interactive data analysis, I introduced a class of convergent inference algo-

rithms (CIAs) based on sampling without replacement using linear congruential gen-

erators. I proposed CIAs built over incremental view maintenance and a novel ag-

gregate join algorithm that I call Leaky Joins. I evaluated both IVM-CIA and Leaky

Joins, and found that Leaky Joins were able to approximate the performance of Vari-

able Elimination on simple graphs, and the accuracy of state-of-the-art approximation

techniques on complex graphs. As graph complexity increased, the bounded-time ac-

curacy of Leaky Joins degraded gracefully.

My algorithms has one limitation which represents opportunities for future work.

My algorithm didn’t consider scalability. In the era of Big Data, distributed inference

in graphical model is necessary for performance. Similar to works for parallelizing

99

existing inference algorithms [19,41], our algorithm is possible to run in parallel.

100

Bibliography

[1] Bestbuy api. http://developer.bestbuy.com/documentation/products-
api. Accessed: 2017-04-26.

[2] Data scientists survey. https://www.forbes.com/sites/gilpress/2016/
03/23/data-preparation-most-time-consuming-least-enjoyable-data-
science-task-survey-says/#54d556dd6f63. Accessed: 2017-04-26.

[3] Ebay api. http://go.developer.ebay.com. Accessed: 2017-04-26.

[4] Real estate data. http://pages.cs.wisc.edu/~anhai/wisc-si-archive/
domains/real_estate1.html. Accessed: 2017-04-26.

[5] Walmartlabs api. http://developer.walmartlabs.com/docs/read/Search_
API. Accessed: 2017-04-26.

[6] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. The Aqua approximate query answering system. SIGMOD Rec.,
28(2):574–576, 1999.

[7] Sameer Agarwal, Anand P. Iyer, Aurojit Panda, Samuel Madden, Barzan Moza-
fari, and Ion Stoica. Blink and it’s done: Interactive queries on very large data.
pVLDB, 5(12):1902–1905, 2012.

[8] Sameer Agarwal, Aurojit Panda, Barzan Mozafari, Samuel Madden, and Ion
Stoica. BlinkDB: Queries with bounded errors and bounded response times on
very large data. Technical report, ArXiV, 03 2012.

[9] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth,
Shubha U. Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A system
for data, uncertainty, and lineage. In VLDB, pages 1151–1154. ACM, 2006.

[10] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. DBToaster:
Higher-order delta processing for dynamic, frequently fresh views. pVLDB,
5(10):968–979, 2012.

[11] Bogdan Alexe, Laura Chiticariu, Renée J. Miller, and Wang Chiew Tan. Muse:
Mapping understanding and design by example. In ICDE, pages 10–19. IEEE,
2008.

101

http://developer.bestbuy.com/documentation/products-api
http://developer.bestbuy.com/documentation/products-api
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#54d556dd6f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#54d556dd6f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#54d556dd6f63
http://go.developer.ebay.com
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/domains/real_estate1.html
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/domains/real_estate1.html
http://developer.walmartlabs.com/docs/read/Search_API
http://developer.walmartlabs.com/docs/read/Search_API

[12] Sarah R. Allen, Lisa Hellerstein, Devorah Kletenik, and Tonguç Ünlüyurt. Eval-
uation of DNF formulas. In ISAIM, 2014.

[13] Yasser Altowim, Dmitri V. Kalashnikov, and Sharad Mehrotra. Progressive
approach to relational entity resolution. PVLDB, 7(11):999–1010, 2014.

[14] Hotham Altwaijry, Dmitri V. Kalashnikov, and Sharad Mehrotra. Query-driven
approach to entity resolution. Proc. VLDB Endow., 6(14):1846–1857, Septem-
ber 2013.

[15] Yael Amsterdamer, Susan B. Davidson, Tova Milo, Slava Novgorodov, and Amit
Somech. OASSIS: query driven crowd mining. In SIGMOD, pages 589–600.
ACM, 2014.

[16] Steen Andreassen, Roman Hovorka, Jonathan Benn, Kristian G Olesen, and
Ewart R Carson. A model-based approach to insulin adjustment. In AIME 91,
pages 239–248. Springer, 1991.

[17] Lyublena Antova, Christoph Koch, and Dan Olteanu. 10(106) worlds and beyond:
efficient representation and processing of incomplete information. VLDB J.,
18(5):1021–1040, 2009.

[18] Subi Arumugam, Fei Xu, Ravi Jampani, Christopher Jermaine, Luis L. Perez,
and Peter J. Haas. MCDB-R: Risk analysis in the database. pVLDB, 3(1-
2):782–793, 2010.

[19] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine
learning: Parallel and distributed approaches. Cambridge University Press,
2011.

[20] Khalid Belhajjame, Norman W. Paton, Suzanne M. Embury, Alvaro A. A.
Fernandes, and Cornelia Hedeler. Feedback-based annotation, selection and
refinement of schema mappings for dataspaces. In EDBT, volume 426, pages
573–584. ACM, 2010.

[21] Khalid Belhajjame, Norman W. Paton, Alvaro A. A. Fernandes, Cornelia
Hedeler, and Suzanne M. Embury. User feedback as a first class citizen in
information integration systems. In CIDR, pages 175–183, 2011.

[22] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm, editors. Schema Match-
ing and Mapping. Data-Centric Systems and APPLICATIONS. Springer, 2011.

[23] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. Generic schema
matching, ten years later. PVLDB, 4(11):695–701, 2011.

[24] Philip A. Bernstein, Sergey Melnik, and John E. Churchill. Incremental schema
matching. In Proceedings of the 32Nd International Conference on Very Large
Data Bases, VLDB ’06, pages 1167–1170. VLDB Endowment, 2006.

102

[25] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa:
Massive online analysis. JMLR, 11:1601–1604, 2010.

[26] John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive
probabilistic networks with hidden variables. Machine Learning, 29(2-3):213–
244, 1997.

[27] Philippe Bonnet and Anthony Tomasic. Partial answers for unavailable data
sources. In FQAS, volume 1495, pages 43–54. Springer, 1998.

[28] Jihad Boulos, Nilesh N. Dalvi, Bhushan Mandhani, Shobhit Mathur, Christo-
pher Ré, and Dan Suciu. MYSTIQ: a system for finding more answers by using
probabilities. In SIGMOD, pages 891–893. ACM, 2005.

[29] Héctor Corrada Bravo and et al. Optimizing mpf queries: Decision support and
probabilistic inference, 2007.

[30] Huiping Cao, Yan Qi, K. Selçuk Candan, and Maria Luisa Sapino. Feedback-
driven result ranking and query refinement for exploring semi-structured data
collections. In EDBT, volume 426, pages 3–14. ACM, 2010.

[31] Xiaoyong Chai, Ba-Quy Vuong, AnHai Doan, and Jeffrey F. Naughton. Effi-
ciently incorporating user feedback into information extraction and integration
programs. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’09, pages 87–100, New York, NY, USA,
2009. ACM.

[32] Xiaoyong Chai, Ba-Quy Vuong, AnHai Doan, and Jeffrey F. Naughton. Effi-
ciently incorporating user feedback into information extraction and integration
programs. In SIGMOD, pages 87–100. ACM, 2009.

[33] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Ro-
bust and efficient fuzzy match for online data cleaning. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’03, pages 313–324, New York, NY, USA, 2003. ACM.

[34] Surajit Chaudhuri and Kyuseok Shim. Including group-by in query optimiza-
tion. In VLDB, 1994.

[35] Herman Chernoff. A career in statistics. Past, Present, and Future of Statistical
Science, page 29, 2014.

[36] Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan Wang. Data cleaning:
Overview and emerging challenges. In Proceedings of the 2016 International
Conference on Management of Data, pages 2201–2206. ACM, 2016.

[37] Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan
Tang, and Yin Ye. Katara: A data cleaning system powered by knowledge bases
and crowdsourcing. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1247–1261. ACM, 2015.

103

[38] A Philip Dawid. Prequential analysis, stochastic complexity and bayesian in-
ference. Bayesian statistics, 4:109–125, 1992.

[39] Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. Approximation al-
gorithms for stochastic boolean function evaluation and stochastic submodular
set cover. In SODA, pages 1453–1467. SIAM, 2014.

[40] Amol Deshpande and Samuel Madden. MauveDB: Supporting model-based
user views in database systems. In SIGMOD, 2006.

[41] FJ Diez and José Mira. Distributed inference in bayesian networks. Cybernetics
and Systems: An International Journal, 25(1):39–61, 1994.

[42] Hong Hai Do and Erhard Rahm. COMA - A system for flexible combination of
schema matching approaches. In VLDB 2002, Proceedings of 28th International
Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong, China,
pages 610–621, 2002.

[43] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas of dis-
parate data sources: A machine-learning approach. SIGMOD Rec., 30(2):509–
520, May 2001.

[44] Alin Dobra, Chris Jermaine, Florin Rusu, and Fei Xu. Turbo-charging estimate
convergence in DBO. pVLDB, 2(1):419–430, August 2009.

[45] Pedro Domingos and Daniel Lowd. Markov logic: An interface layer for artificial
intelligence. Synthesis Lectures on Artificial Intelligence and Machine Learning,
3(1):1–155, 2009.

[46] Xin Luna Dong, Evgeniy Gabrilovich, Kevin Murphy, Van Dang, Wilko Horn,
Camillo Lugaresi, Shaohua Sun, and Wei Zhang. Knowledge-based trust: Es-
timating the trustworthiness of web sources. Proceedings of the VLDB Endow-
ment, 8(9):938–949, 2015.

[47] Xin Luna Dong, Alon Halevy, and Cong Yu. Data integration with uncertainty.
The VLDB Journal, 18(2):469–500, April 2009.

[48] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Du-
plicate record detection: A survey. IEEE TKDE, 19(1):1–16, January 2007.

[49] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: Getting
to the core. In PODS, pages 90–101. ACM, 2003.

[50] Robert Fink, Andrew Hogue, Dan Olteanu, and Swaroop Rath. Sprout2: a
squared query engine for uncertain web data. In SIGMOD, pages 1299–1302.
ACM, 2011.

[51] Alberto Freitas, Altamiro Costa-Pereira, and Pavel Brazdil. Cost-sensitive de-
cision trees applied to medical data. In DaWaK, pages 303–312. 2007.

104

[52] Amélie Gheerbrant, Leonid Libkin, and Cristina Sirangelo. When is naive eval-
uation possible? In PODS, pages 75–86. ACM, 2013.

[53] Stephan F Gohmann, Robert M Barker, David J Faulds, and Jian Guan. Sales-
force automation, perceived information accuracy and user satisfaction. Journal
of Business & Industrial Marketing, 20(1):23–32, 2005.

[54] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen.
Provenance in ORCHESTRA. DEBU, 33(3):9–16, 2010.

[55] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings.
In PODS, pages 31–40. ACM, 2007.

[56] Todd J. Green and Val Tannen. Models for incomplete and probabilistic infor-
mation. IEEE Data Eng. Bull., 29(1):17–24, 2006.

[57] Anja Gruenheid, Xin Luna Dong, and Divesh Srivastava. Incremental record
linkage. PVLDB, 7(9):697–708, 2014.

[58] Chenjuan Guo, Cornelia Hedeler, Norman W. Paton, and Alvaro A. A. Fernan-
des. Matchbench: Benchmarking schema matching algorithms for schematic
correspondences. In Big Data - 29th British National Conference on Databases,
BNCOD 2013, Oxford, UK, July 8-10, 2013. Proceedings, pages 92–106, 2013.

[59] Xintong Guo, Hongzhi Wang, Yangqiu Song, and Gao Hong. Brief survey of
crowdsourcing for data mining. ESWA, 41(17):7987–7994, 2014.

[60] Rahul Gupta and Sunita Sarawagi. Creating probabilistic databases from infor-
mation extraction models. In Proceedings of the 32Nd International Conference
on Very Large Data Bases, VLDB ’06, pages 965–976. VLDB Endowment, 2006.

[61] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation.
In SIGMOD, 1999.

[62] P.J. Haas. Large-sample and deterministic confidence intervals for online ag-
gregation. In SSDBM, pages 51–62, 1997.

[63] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation.
SIGMOD Rec., 26(2):171–182, 1997.

[64] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation.
In SIGMOD, pages 171–182, 1997.

[65] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. JASS, 58(301):13–30, 1963.

[66] Zhen Hua Liu and Dieter Gawlick. Management of flexible schema data in
RDBMSs - opportunities and limitations for NoSQL. In CIDR, 2015.

105

[67] Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu. MayBMS:
a probabilistic database management system. In SIGMOD, pages 1071–1074.
ACM, 2009.

[68] Tomasz Imielinski and Witold Lipski Jr. Incomplete information in relational
databases. J. ACM, 31(4):761–791, 1984.

[69] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher Jermaine,
and Peter J. Haas. MCDB: A monte carlo approach to managing uncertain data.
In SIGMOD, 2008.

[70] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher Jermaine,
and Peter J Haas. MCDB: a monte carlo approach to managing uncertain data.
In SIGMOD, pages 687–700, 2008.

[71] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. Pay-as-you-go user
feedback for dataspace systems. In SIGMOD, pages 847–860. ACM, 2008.

[72] Chris Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra. Scal-
able approximate query processing with the DBO engine. TODS, 33(4):23:1–
23:54, 2008.

[73] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler:
Interactive visual specification of data transformation scripts. In ACM Human
Factors in Computing Systems (CHI), 2011.

[74] Haim Kaplan, Eyal Kushilevitz, and Yishay Mansour. Learning with attribute
costs. In STOC, pages 356–365, 2005.

[75] Oliver Kennedy and Christoph Koch. PIP: A database system for great and
small expectations. In ICDE, pages 157–168, 2010.

[76] Oliver Kennedy and Suman Nath. Jigsaw: Efficient optimization over uncertain
enterprise data. In SIGMOD, 2011.

[77] Oliver Kennedy and Suman Nath. Jigsaw: efficient optimization over uncertain
enterprise data. In SIGMOD, pages 829–840. ACM, 2011.

[78] Oliver Kennedy, Ying Yang, Jan Chomicki, Ronny Fehling, ZhenHua Liu, and
Dieter Gawlick. Detecting the temporal context of queries. In BIRTE, volume
206 of LNBIP, pages 97–113. 2015.

[79] Anja Klein, Rainer Gemulla, Philipp Rösch, and Wolfgang Lehner. Derby/S:
A DBMS for sample-based query answering. In SIGMOD, 2006.

[80] Donald Knuth. The art of computer programming. semi-numerical algorithms.
1968.

106

[81] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli,
Daniel Lupei, and Amir Shaikhha. DBToaster: higher-order delta processing
for dynamic, frequently fresh views. VLDBJ, 23(2):253–278, 2014.

[82] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[83] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity reso-
lution approaches on real-world match problems. Proc. VLDB Endow., 3(1-
2):484–493, September 2010.

[84] Kristian Kristensen and I Rasmussen. A decision support system for mechanical
weed control in malting barley. In ECITA, 1997.

[85] Willis Lang, Rimma V. Nehme, Eric Robinson, and Jeffrey F. Naughton. Partial
results in database systems. In SIGMOD, pages 1275–1286. ACM, 2014.

[86] Pierre L’Ecuyer. Random numbers for simulation. CACM, 33(10):85–97, 1990.

[87] Yoonkyong Lee, Mayssam Sayyadian, AnHai Doan, and Arnon Rosenthal.
etuner: tuning schema matching software using synthetic scenarios. VLDB
J., 16(1):97–122, 2007.

[88] M. Lichman. UCI machine learning repository. http://archive.ics.uci.edu/ml,
2013.

[89] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema
matching with cupid. In VLDB 2001, Proceedings of 27th International Con-
ference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages
49–58, 2001.

[90] Yosi Mass, Maya Ramanath, Yehoshua Sagiv, and Gerhard Weikum. IQ: the
case for iterative querying for knowledge. In CIDR, pages 38–44, 2011.

[91] Chris Mayfield, Jennifer Neville, and Sunil Prabhakar. Eracer: A database
approach for statistical inference and data cleaning. In SIGMOD, 2010.

[92] Feng Niu, Christopher Ré, AnHai Doan, and Jude Shavlik. Tuffy: Scaling up
statistical inference in markov logic networks using an rdbms. Proceedings of
the VLDB Endowment, 4(6):373–384, 2011.

[93] Marlon Núñez. The use of background knowledge in decision tree induction.
JMLR, 6:231–250, 1991.

[94] Frank Olken and Doron Rotem. Simple random sampling from relational
databases. In VLDB, 1986.

[95] Dan Olteanu, Jiewen Huang, and Christoph Koch. Approximate confidence
computation in probabilistic databases. In ICDE, pages 145–156. IEEE, 2010.

107

[96] Jennifer Ortiz, Brendan Lee, and Magdalena Balazinska. Perfenforce demon-
stration: Data analytics with performance guarantees. In Proceedings of the
2016 International Conference on Management of Data, pages 2141–2144.
ACM, 2016.

[97] F. Panse, M. van Keulen, and N. Ritter. Indeterministic handling of uncertain
decisions in deduplication. Journal of Data and Information Quality, 4(2):9,
March 2013.

[98] Stephen K. Park and Keith W. Miller. Random number generators: good ones
are hard to find. CACM, 31(10):1192–1201, 1988.

[99] Eric Peukert, Henrike Berthold, and Erhard Rahm. Rewrite techniques for
performance optimization of schema matching processes. In Proceedings of the
13th International Conference on Extending Database Technology, EDBT ’10,
pages 453–464, New York, NY, USA, 2010. ACM.

[100] Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic
schema matching. VLDB J., 10(4):334–350, 2001.

[101] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current ap-
proaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[102] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s wheel: An interactive
data cleaning system. In Proceedings of the 27th International Conference on
Very Large Data Bases, VLDB ’01, pages 381–390, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

[103] Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Materialized view main-
tenance and integrity constraint checking: Trading space for time. SIGMOD
Rec., 25(2):447–458, 1996.

[104] Florin Rusu and Alin Dobra. Glade: A scalable framework for efficient analytics.
OSR, 46(1):12–18, February 2012.

[105] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code
in C. Wiley & Sons, 2007.

[106] Uwe Schöning and Jacobo Torán. The Satisfiability Problem: Algorithms and
Analyses, volume 3. Lehmanns Media, 2013.

[107] Marco Scutari. The bnlearn bayesian network repository.
http://www.bnlearn.com/bnrepository/.

[108] Prithviraj Sen, Amol Deshpande, and Lise Getoor. Prdb: Managing and ex-
ploiting rich correlations in probabilistic databases. VLDB Journal, special
issue on uncertain and probabilistic databases, 2009.

108

[109] Robert J Serfling. Probability inequalities for the sum in sampling without
replacement. The Annals of Statistics, pages 39–48, 1974.

[110] Frank L Severence. System modeling and simulation: an introduction. John
Wiley & Sons, 2009.

[111] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Susanne Ham-
brusch, and Rahul Shah. Orion 2.0: Native support for uncertain data. In
SIGMOD, pages 1239–1242. ACM, 2008.

[112] Parag Singla and Pedro Domingos. Entity resolution with markov logic. In
Proceedings of the 6th IEEE International Conference on Data Mining (ICDM
2006), 18-22 December 2006, Hong Kong, China, pages 572–582, 2006.

[113] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. The Ar-
chitecture of SciDB. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[114] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic
databases. Synthesis Lectures on Data Management, 3(2):1–180, 2011.

[115] Ming Tan and Jeffrey C. Schlimmer. Cost-sensitive concept learning of sensor
use in approach and recognition. In MLSB, 1989.

[116] Tonguç Ünlüyurt. Sequential testing of complex systems: a review. DAM,
142(1-3):189–205, 2004.

[117] Susan V. Vrbsky and Jane W.-S. Liu. APPROXIMATE - A query processor
that produces monotonically improving approximate answers. IEEE TKDE,
5(6):1056–1068, 1993.

[118] Daisy Zhe Wang, Yang Chen, Christan Earl Grant, and Kun Li. Efficient in-
database analytics with graphical models. IEEE Data Eng. Bull., 37(3):41–51,
2014.

[119] Daisy Zhe Wang, Michael J. Franklin, Minos Garofalakis, and Joseph M. Heller-
stein. Querying probabilistic information extraction. Proc. VLDB Endow.,
3(1-2):1057–1067, September 2010.

[120] Daisy Zhe Wang, Michael J. Franklin, Minos Garofalakis, Joseph M. Hellerstein,
and Michael L. Wick. Hybrid in-database inference for declarative information
extraction. In SIGMOD, 2011.

[121] Daisy Zhe Wang, Michael J. Franklin, Minos N. Garofalakis, Joseph M. Heller-
stein, and Michael L. Wick. Hybrid in-database inference for declarative in-
formation extraction. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16,
2011, pages 517–528, 2011.

109

[122] Daisy Zhe Wang, Eirinaios Michelakis, Michael J. Franklin, Minos N. Garo-
falakis, and Joseph M. Hellerstein. Probabilistic declarative information extrac-
tion. In Proceedings of the 26th International Conference on Data Engineering,
ICDE 2010, March 1-6, 2010, Long Beach, California, USA, pages 173–176,
2010.

[123] Daisy Zhe Wang, Eirinaios Michelakis, Minos Garofalakis, and Joseph M.
Hellerstein. Bayesstore: Managing large, uncertain data repositories with prob-
abilistic graphical models. Proc. VLDB Endow., 1(1):340–351, August 2008.

[124] Michael Wick, Andrew McCallum, and Gerome Miklau. Scalable probabilistic
databases with factor graphs and mcmc. pVLDB, 3(1-2):794–804, 2010.

[125] Michael L. Wick, Andrew McCallum, and Gerome Miklau. Scalable probabilis-
tic databases with factor graphs and MCMC. CoRR, abs/1005.1934, 2010.

[126] Pierre Wolper. The tableau method for temporal logic: An overview. Logique
et Analyse, (110–111):119–136, 1985.

[127] Sen Wu, Ce Zhang, Feiran Wang, and Christopher Ré. Incremental knowledge
base construction using deepdive. CoRR, abs/1502.00731, 2015.

[128] Ying Yang. On-demand query result cleaning. In VLDB PhD Workshop, 2014.

[129] Chen Jason Zhang, Lei Chen, H. V. Jagadish, and Chen Caleb Cao. Reduc-
ing uncertainty of schema matching via crowdsourcing. Proc. VLDB Endow.,
6(9):757–768, July 2013.

110

	Abstract
	Acknowledgments
	Software, Data and Code
	Introduction
	Sample Target Senario for Data Cleaning
	Technical Contributions

	Preliminaries for Mimir
	ETL
	Data Cleanig
	Single-source problems
	Multi-source problems

	Data Cleaning Approaches
	Information Extraction
	Schema Matching
	Entity Resolution
	Domain Constraint Repair
	Archival

	Probabilistic Query Processing
	On-Demand Data Cleaning Tools
	Prioritizing Feedback

	Interactive Data Cleaning for Data Management - Mimir
	Lenses
	The Lens Framework
	Lens Examples
	Composing Lenses

	Probabilistic Query Processing
	Normal Form VG-RA
	Virtual Views
	Partition

	Result Quality Analysis
	Summarizing the Result Relation
	Summarizing Result Quality

	Pay-as-you-go Data Cleaning
	Prioritizing Curation Tasks
	Balancing Result Quality and Cost

	Experiments
	Experimental Setup
	Lens Configuration
	Ranking Curation Tasks
	Lens Composition
	On-Demand ETL
	Conclusions

	Preliminaries for CIA
	Bayesian Networks
	Inference
	Exact Inference
	Approximate Inference

	Online Aggregation

	Interactive Data Analysis For Probabilistic Graphical Models - CIA
	Introduction
	Convergent Inference
	Cyclic Sampling
	Leaky Joins

	Lessons Learned From IVM
	The Algorithm
	Post-Mortem

	Evaluation
	Experimental Setup and Data
	Inference Methods
	Flexibility
	Approximate Inference Accuracy
	Convergence Time
	Memory

	CIA Applications
	CIA Domain Constraint Repair Lens
	Flexible Pricing Plan Data Analysis systems on Cloud Service

	Conclusion and Future Work
	Bibliograph

