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The motivation of having a joint radar and 
communication system on a single hard-
ware is driven by space, military, and com-
mercial applications. However, designing 
sequences that can simultaneously support 
radar and communication functionalities 
is one of the major hurdles in the practical 
implementation of these systems. In order 
to facilitate a simultaneous use of sequen-
ces for both radar and communication sys-
tems, a flexible sequence design is needed.

The objective of this dissertation is to 
address the sequence design problem for 
integrated radar and communication sys-
tems. The sequence design for these sys-
tems requires a trade-off between different 
performance measures, such as correlation 
characteristics, integrated sidelobe ratio, pe-
ak-to-sidelobe ratio and ambiguity function. 
The problem of finding a trade-off between 
various performance measures is solved 
by employing meta-heuristic algorithms.

This dissertation is divided into an intro-
duction and three research parts based on 
peer-reviewed publications. The introduc-
tion provides background on binary and 
polyphase sequences, their use in radar and 
communication systems, sequence design 
requirements for integrated radar and com-
munication systems, and application of me-
ta-heuristic optimization algorithms to find 
optimal sets of sequences for these systems.

In Part I-A, the performance of conventio-
nal polyphase pulse compression sequences 
is compared with Oppermann sequences. 
In Part I-B, weighted pulse trains with the 
elements of Oppermann sequences serving 
as complex-valued weights are utilized for 
the design of integrated radar and commu-
nication systems. In Part I-C, an analytical 
expression for the cross-ambiguity function 
of weighted pulse trains with Oppermann 
sequences is derived. Several properties of 
the related auto-ambiguity and cross-am-
biguity functions are derived in Part I-D. In 
Part II, the potential of meta-heuristic al-
gorithms for finding optimal parameter 
values of Oppermann sequences for radar, 
communications, and integrated radar and 
communication systems is studied. In Part 
III-A, a meta-heuristic algorithm mimick-
ing the breeding behavior of Cuckoos is 
used to locate more than one solution for 
multimodal problems. Further, the perfor-
mance of this algorithm is evaluated in ad-
ditive white Gaussian noise (AWGN). It is 
shown that the Cuckoo search algorithm 
can successfully locate multiple solutions
in both non-noise and AWGN with relati-
vely high degree of accuracy. In Part III-B, 
the cross-ambiguity function synthesization 
problem is addressed. A meta-heuristic al-
gorithm based on echolocation of bats is 
used to design a pair of sequences to mini-
mize the integrated square error between 
the desired cross-ambiguity function and 
a synthesized cross-ambiguity function.
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Abstract

The motivation of having a joint radar and communication
system on a single hardware is driven by space, military, and
commercial applications. However, designing sequences that can
simultaneously support radar and communication functionalities
is one of the major hurdles in the practical implementation of these
systems. In order to facilitate a simultaneous use of sequences
for both radar and communication systems, a flexible sequence
design is needed.

The objective of this dissertation is to address the sequence
design problem for integrated radar and communication systems.
The sequence design for these systems requires a trade-off between
different performance measures, such as correlation characteristics,
integrated sidelobe ratio, peak-to-sidelobe ratio and ambiguity
function. The problem of finding a trade-off between various
performance measures is solved by employing meta-heuristic algo-
rithms.

This dissertation is divided into an introduction and three
research parts based on peer-reviewed publications. The intro-
duction provides background on binary and polyphase sequences,
their use in radar and communication systems, sequence design
requirements for integrated radar and communication systems,
and application of meta-heuristic optimization algorithms to find
optimal sets of sequences for these systems.

In Part I-A, the performance of conventional polyphase pulse
compression sequences is compared with Oppermann sequences.
In Part I-B, weighted pulse trains with the elements of Oppermann
sequences serving as complex-valued weights are utilized for the
design of integrated radar and communication systems. In Part
I-C, an analytical expression for the cross-ambiguity function of
weighted pulse trains with Oppermann sequences is derived. Sev-
eral properties of the related auto-ambiguity and cross-ambiguity
functions are derived in Part I-D. In Part II, the potential of
meta-heuristic algorithms for finding optimal parameter values
of Oppermann sequences for radar, communications, and inte-
grated radar and communication systems is studied. In Part III-A,
a meta-heuristic algorithm mimicking the breeding behavior of
Cuckoos is used to locate more than one solution for multimodal
problems. Further, the performance of this algorithm is evaluated
in additive white Gaussian noise (AWGN). It is shown that the
Cuckoo search algorithm can successfully locate multiple solutions
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in both non-noise and AWGN with relatively high degree of accu-
racy. In Part III-B, the cross-ambiguity function synthesization
problem is addressed. A meta-heuristic algorithm based on echolo-
cation of bats is used to design a pair of sequences to minimize
the integrated square error between the desired cross-ambiguity
function and a synthesized cross-ambiguity function.
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Preface

In this dissertation, the sequence design problem for integrated radar
and communication system is addressed. Firstly, Oppermann sequences
have been identified as potential sequences for integrated radar and
communication systems. They have been compared against conven-
tional polyphase pulse compression sequences using various performance
measures. Secondly, meta-heuristic algorithms have been used to design
sequences for radar, communications, as well as for integrated systems.
Thirdly, the problem of synthesizing cross-ambiguity functions using a
meta-heuristic algorithm based on the echolocation behaviour of bats
is considered. In particular, the problem of matching a synthesized
cross-ambiguity function to a desired cross-ambiguity function with a
pre-defined magnitude over the delay-Doppler plane is solved using a
meta-heuristic algorithm. This work has been carried at the Faculty
of Computing, Blekinge Institute of Technology, Karlskrona, Sweden.
The dissertation consists of an introduction section followed by three
research parts as follows.

Introduction

Part I

A Performance Assessment of Polyphase Pulse Compression Codes

B On Integrated Radar and Communication Systems Using Opper-
mann Sequences

C Cross-Ambiguity Function of Weighted Pulse Trains with Opper-
mann Sequences

D Properties of Ambiguity Functions for Weighted Pulse Trains With
Oppermann Sequences

Part II

Waveform Optimization for Integrated Radar and Communication
Systems Using Meta-Heuristic Algorithms
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Part III

A Multimodal Function Optimisation with Cuckoo Search Algorithm

B Synthesizing Cross-Ambiguity Functions Using Improved Bat Al-
gorithm
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Introduction

1 Motivation
Radar systems operate in an environment that is corrupted by noise and
may consist of a variety of clutter conditions. Under these conditions,
two primary goals of any radar system are parameter estimation and
target resolution [1]. The parameter estimation of a target includes
information related to its size, motion, and location. The ability of a
radar to distinguish between targets that are very close either in range
or bearing refers to target resolution [1].

On the other hand, wireless communication systems are required to
provide a certain minimum transmission quality in order to meet user
demands in speech and mobile multimedia communication applications
[2]. Wireless communication systems focus on achieving the best pos-
sible transmission quality under noise, spectrum, and transmit power
constraints.

Given the application scenarios and operational requirements, radar
and wireless communication systems have been traditionally developed
and studied as separate research entities. However, by developing a
single platform with reconfigurable architecture and flexible software, it
is envisaged that such a platform will provide a possibility of maintain-
ing several functions with one single radio frequency (RF) front-end.
The integration of various tasks on a single platform will have many
benefits such as architecture unification and simplification, functional
reconfiguration, efficiency enhancement, reduced costs, weight, and total
power consumption.

1
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The motivation of having a joint radar and communication system on
a single hardware is driven by a multitude of emerging space, military,
and commercial applications. The NASA Space Shuttle Orbiter [3]
might be regarded as the first known application of an integrated
radar and communication system for space applications. For military
applications, the Advanced Multifunction Radio Frequency Concept
(AMRFC) proposed in [4] addressed the need of integrating radar,
communications, and electronic warfare functions on a single platform.
Such systems can simultaneously handle mission-critical and military
operations such as electronic surveillance and battlefield communication.
By integrating radar, communications, and electronic warfare, it was
envisaged to achieve the following goals: (i) decrease the electronic
hardware such as topside antennas, (ii) alleviate the problems of antenna
blockage, (iii) resolve own-ship electromagnetic interference, and (iv)
reduce the stress on maintenance resources.

Recent years have seen a multitude of emerging applications fusing
radar and wireless communication functionalities on a single platform
[5, 6, 7, 8]. A wireless sensor network (WSN) for positioning and moni-
toring purposes is one such example [9]. In a WSN, each node detects
targets and shares the information with other nodes in a network through
wireless communication links. Another example includes connected cars
supporting vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I)
communication applications. In these systems, a vehicle possesses and
exchanges relevant information about its surrounding with others in
V2V or V2I systems. In a V2V system, vehicles are able to exchange
information to improve road and vehicle safety, enhance collision avoid-
ance systems, support energy conservation, and develop smarter traffic
management systems [10, 11]. Vehicles in V2I applications not only
receive road, traffic, and weather information from the road side infras-
tructure but also exchange this information among the vehicles [11, 12].
Yet, another example include research on signals for hybrid receivers
for Global Navigation Satellite Systems (GNSS) [13].

Developing a flexible multi-functional system is a complex task. The
design of such a system needs to fulfill several stringent requirements
such as simple implementation, flexible functional reconfiguration, high
power efficiency, fast system response, and low cost. Nowadays, the
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operating frequencies for wireless communication applications are of
the same magnitude as once used for radar applications. This, in
combination with the advancement in digital circuit technology, will
help simplifying the RF front-end architectures for integrated radar and
communication systems. Further, increasing number of functionalities
once realized on hardware components are now being implemented
on digital signal processors (DSPs). Therefore, most of the system
functions of integrated radar and communication applications can be
realized using adaptive and configurable software systems while keeping
the same RF front-end architecture.

A design of a flexible integrated radar and communication plat-
form would offer unique possibilities for novel system concepts and
applications. One such application is intelligent transportation systems.
These systems require both environment sensing and the allocation of
an ad-hoc communication link for reliable operation. However, one of
the major hurdles in the development and practical implementation of
such applications to simultaneously support communication and radar-
like functions lies in proper sequence design. In other words, sequence
designs for such applications require to cater needs for both radar and
communication applications.

In radar applications, it is desirable to have sequences that exhibit
an ideal or thumbtack autocorrelation (AC) function, i.e., peak at zero
delay and no sidelobes at delays other than zero. However, in practice,
the return signal may be corrupted by noise and clutter. Therefore,
when a matched radar receiver performs correlation between the return
signal and the receiver reference sequence, sidelobes are created in
addition to the mainlobe. These sidelobes may block reflections from
smaller or weaker targets and let them go undetected, therefore, they
are highly undesirable.

For communication systems, a large number of sequences is required
to facilitate simultaneous channel access for many users. In this case,
sequences with both good AC and good crosscorrelation (CC) would
be desirable. A good AC means that a transmitted sequence and
its time-shifted versions is nearly uncorrelated and ideally have zero
sidelobes at all possible shifts. This is desirable for timing recovery and
coherent detection [14, 15]. On the other hand, good CC means that
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all the transmitted sequences and their time-shifted replicas are nearly
uncorrelated with respect to each other. In order to reduce multi-user
interference (MUI), minimizing CC among the transmitted sequences is
a major design consideration.

This dissertation addresses the sequence design problem for inte-
grated radar and communication systems by finding trade-offs between
AC and CC properties of Oppermann sequences [16, 17]. These se-
quences are found to be suitable to support joint operation of radar and
communication functionalities. The choice of Oppermann sequences for
such systems is motivated due to: (i) this family offers a wide range of
correlation properties and (ii) may offer better correlation properties
compared to other well-known families of polyphase sequences [16, 17].

Further, in this dissertation, population-based meta-heuristic algo-
rithms have been used to find suitable sets of Oppermann sequences for
integrated radar and communication systems. It should be emphasized
that, even if the investigations presented in this dissertation focus on
integrated radar and communication systems, Oppermann sequences
can also be employed either in radar or communication systems [17].

The remainder of the introduction is organized as follows. Section
2 gives an overview of binary and polyphase sequences. Section 3
introduces polyphase sequences for radar and communication systems.
Sequence design requirements for integrated radar and communication
systems are addressed in Section 4. In Section 5, the definitions of
the performance measures for radar and communication systems are
introduced. Section 6 presents an overview of meta-heuristic algorithms
in the context of sequence design for radar and communication systems.
Finally, an overview of Lévy flights and a motivation of using Lévy
flights to solve global optimization problems is provided in Section 7.

2 Overview of Sequences

A sequence of length N is defined as a vector uk =
[
uk(0), uk(1), . . . ,

uk(N−1)
]
whose elements uk(l) are drawn from a set U of size U, where

1 ≤ k ≤ U . In general, sequences can be classified into two categories,
i.e., real and complex.
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Different kinds of sequences can be found throughout the literature,
e.g., [14, 15, 18], such as binary, quadriphase, non-binary, periodic,
aperiodic, frequency-hopping, optical orthogonal sequences, one or two-
dimensional arrays, complementary pairs, and complementary sets.

2.1 Binary Sequences

A sequence uk is called binary, if each element of the sequence uk takes
values from the set {0, 1} or {−1, 1}. If the elements of uk take values
{0, 1}, then the sequence is called unipolar. If the elements of uk take
values {−1, 1}, the sequence is classified as bipolar.

Binary sequences have been extensively studied and are frequently
used in both civilian and military applications [14, 15, 18]. Many
applications require to fulfill the contradictory requirement of generating
random, yet repeatable finite-length sequences. These applications
include system identification, synchronization, spread-spectrum (SS)
communication, cryptography, radar, channel estimation, equalization,
test measurement, and coded aperture imaging.

Binary sequences that fulfill the following three randomness criteria,
namely, the balance criterion, the run criterion, and the correlation
criterion are also called pseudo-random (PR) sequences, pseudo-noise
(PN) sequences, or optimal binary sequences [14]. Not many families
of binary sequences are known to exist that simultaneously fulfill these
randomness criterion. These sequences exhibit random-like behaviour
and at the same time are generated using deterministic methods.

PR sequences are known to exhibit a multi-level AC function. In
general, the AC function is considered as good, if the sidelobes of the
AC function are low. Similarly, CC is considered as good, if a pair of
sequences in a given set exhibits low values for all possible time shifts.
A comprehensive coverage on binary and real-valued sequences can be
found in [14] and the references therein. A non-exhaustive list of some
notable families of binary sequences is given in Table 1.

The commonly used PN-sequences are maximal-length sequences
(m-sequences), Gold and Kasami sequences. The m-sequences are used
to generate either Gold or Kasami sequences through linear feedback
shift registers (LFSRs).
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2.2 Polyphase Sequences

A sequence uk is called complex, if its elements are complex numbers.
Further, a complex sequence is called polyphase sequence if its elements
can be represented as a complex q-th root of unity, i.e.,

uk(l) = e
j 2π
q
kl
, 0 ≤ l ≤ q − 1 (1)

The origin of polyphase sequences dates back to the 1950’s [14,
15]. Since then, many new families of polyphase sequences have been
proposed, e.g., [14, 15]. The first publicly known work on polyphase
sequences was presented in [19]. These sequences give more degrees of
freedom for sequence design since each of its elements can be represented
by a real and imaginary component. This makes it possible to design
sequences with better correlation properties as compared to binary
sequences. A non-exhaustive list of some notable families of polyphase
sequences is provided in Table 2.

3 Polyphase Sequences for Radar and Commu-
nication Applications

Polyphase sequences have been proposed and analyzed for diverse
applications such as radar systems and SS communication systems. The
advancement in integrated circuit technologies has been paving the way
for implementation of polyphase sequences in radar and communication
systems. In the sequel, polyphase sequences are considered for potential
use in integrated radar and communication systems.

3.1 Polyphase Sequences for Radar Applications

Space and military applications have played a major role in the advent
of PN sequences and related signal processing techniques. The following
two basic requirements must be satisfied when designing waveforms for
radar applications [31, 32, 33]:
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• Short duration pulses for good range resolution. A short pulse in
time domain requires large bandwidth in the frequency domain.

• The target detection calls for sufficient energy on the target.

The pulse duration of the transmitted radar pulse enables the radar
to emit sufficient energy that allows a radar receiver to detect the
reflected pulse from the target. The product of transmitter output
power and the transmission pulse duration corresponds to the amount
of energy that is delivered to a distant target. The maximum detection
range of a target is constrained by pulse duration which limits the energy
efficiency of a radar system. Pulse compression is a way to increase
the energy of the transmitted signal by evenly spreading it over the
pulse duration without sacrificing detection range. In this way, energy
efficiency of a radar improves significantly. Practical radar systems
employ either frequency or phase coding to achieve pulse compression
[34].

The matched filter plays an important role in processing pulse
compression sequences [32]. The output of a matched filter is equivalent
to correlating the received signal with a locally stored copy of the
transmitted sequence in a radar receiver. Thus, the output of the
matched filter represents an aperiodic autocorrelation (AAC) function
of a pulse compression sequence. The performance of a phase coded
pulse compression radar depends on the similarity of the matched filter
output to an ideal AAC without any sidelobe artifacts at delays other
than zero.

Pulse compression sequences exhibiting perfect AAC without any
sidelobe artifacts do not exist [32, 34]. The sidelobes are highly unde-
sirable as they spread out to mask the mainlobe response of weaker
targets, leaving them undetected. Consequently, much research effort
has been directed towards the reduction of sidelobes, either by signal
processing techniques or by sophisticated designs of pulse compression
sequences [32].

Polyphase sequences provide an alternative to frequency-modulated
signals [18, 32] for radar applications. Traditionally, binary sequences
such as Barker and m-sequences have been used for radar applications
due to their simplistic implementation. However, both Barker and
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m-sequences exhibit high sidelobes in range. Therefore, polyphase
sequences have been seen as an alternative to binary sequences. Com-
pared to binary sequences, polyphase sequences offer better Doppler
tolerance for a broader range-Doppler coverage [31, 32, 33, 34, 35]. A
non-exhaustive list of some notable families of polyphase sequences for
radar applications is given in Table 3.

3.2 Polyphase Sequences for Communication Applica-
tions

SS is a class of methods to modulate information on radio signals
[36]. In SS systems, the bandwidth of the transmit signal is spread,
resulting in a signal with wider bandwidth. All SS systems make
use of spreading sequences to spread the bandwidth of a given signal.
This provides a number of advantages, such as interference suppression,
multipath resistance, and low probability of intercept/detection (LPI/D).
Therefore, it is desirable to design spreading sequences with good
correlation characteristics.

The elements of a spreading sequence are called chips. The rate at
which the spreading sequence is transmitted is called chip rate Tc. The
period of the spreading sequence is given by T = N · Tc, where N is the
number of chips in the spreading sequence.

In SS systems, a single data bit is replaced with a spreading sequence.
The optimal detection of this data bit is possible only if the spreading
sequence is known at the receiver. Good correlation properties increase
the detection of the desired signal in multipath channels or clutter
interference.

The two contradicting design goals of spreading sequence are to have
good AC and good CC properties. The good AC improves synchroniza-
tion and combats multipath fading, while good CC allows multiple users
to access the same transmission medium by minimizing the mutual
interference among multiple users.

The development of cellular mobile communication systems and
SS based radios for indoor communication gave a major boost to the
application of PR sequences in the field of communication systems
[14, 15]. In particular, the code division multiple access (CDMA)
system developed by Qualcomm Incorporated for digital cellular phone
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applications and the family of IEEE 802.11(b/g/n) standards for wireless
local area networks (WLANs) [37] have taken the theoretical concepts of
SS into practical systems. Walsh-Hadamard sequences [14], m-sequences
[14, 15], Barker sequences [14, 15], and complementary sequence keying
(CCK) based modulation [37] are the main classes of sequences used
within these systems. Advanced SS methods, namely orthogonal variable
spreading factor (OVSF) sequences and complex-valued short scrambling
sequences, are employed in 3G mobile communication systems [15, 38].

When using a fully digital implementation of these sequences, the
signal should be filtered to achieve the required spectral occupancy.
This will not only allow the sharing of the available spectrum for
satellite, military, and data applications, but also to achieve the desired
spectral efficiency. Optimization of the latter directly affects the system
capacity which is considered as one of the important design parameters
in the development of a communication system employing CDMA.
Furthermore, in order for the sequences to be modulatable and to
ensure minimum bandwidth occupancy, the filtering technique must
be chosen in a way that the correlation properties of the spreading
sequence are not adversely affected. Keeping this in mind, the family of
spreading sequence presented in [30] eliminates the need for a complex
filter in a CDMA system.

4 Sequence Design for Integrated Radar and
Communication Applications

The history of digital sequence designs is rich and has been widely
discussed in [14, 15, 18] and references therein. However, sequence
design with good correlation properties is discussed either in the context
of radar or active sensing applications, e.g., [58, 59, 60, 61, 62, 63, 64],
or for communication applications, e.g., [17, 30, 38, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77].

The first step towards the implementation of integrated radar and
communication applications is to identify sequences that are suitable for
both radar and communication applications. According to [31, 32, 33],
a good sequence selection will enable the radar to (i) obtain good
resolution in delay (range) and Doppler (velocity); (ii) obtain high
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signal energy whilst using low peak power; (iii) preferably have a large
number of sequences in a given set allowing several radars to operate in
close proximity of each other in multiple-input multiple-output (MIMO)
radar systems, and (iv) utilize the spectrum efficiently. Therefore, in
order to support radar functionality, a sequence should be robust against
interference, noise, and distortion due to multipath propagation.

On the other hand, communication applications need to accomm-
odate higher data rates with simultaneous ability to provide a reliable
communication link. Sequence design for a radio communication system
based on direct sequence spread-spectrum (DSSS) should be designed to
mitigate the interference from other users in the system. Also of prime
importance is the performance of a sequence over multipath fading
channels.

The brief overview of polyphase sequences from the viewpoint of
radar and communication applications in Section 3 emphasizes the need
for more flexible sequence designs to fulfill the conflicting requirements
of these two applications. The work in this dissertation advocates the
use Oppermann sequences for integrated radar and communication
systems compared to conventional sequence designs. A wide range of
correlation properties offered by Oppermann sequences distinguishes it
from its peers and makes them suitable candidates for integrated radar
and communication systems.

4.1 Oppermann Sequences

For any given sequence length N , Oppermann sequences are defined by
three parameters m, n, and p. These parameters offer three degrees of
freedom for designing these sequences. As a result, a great variety of
trade-offs between AC, CC, and ambiguity function (AF) characteris-
tics can be supported. So far, Oppermann sequences may have been
considered mainly for communication applications, i.e., CDMA systems.
However, in this dissertation, their suitability for integrated radar and
communication applications has been studied.

Let a set U(m,n, p) of Oppermann sequences of length N be defined
as [17]

U(m,n, p) =
{
{uki (m,n, p)} : 0 ≤ i ≤ N − 1, 1 ≤ k ≤ N − 1

}
(2)
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where the ith element uki of the kth sequence in U(m,n, p) is given by
[17]

uki = (−1)k(i+1) exp
[
jπ(km(i+ 1)p + (i+ 1)n)

N

]
0 ≤ i ≤ N − 1 (3)

where k is an integer relatively prime to sequence length N , j =√
−1, and the parameters m, n, and p are real numbers. The latter

three parameters control the correlation characteristics of Oppermann
sequences [17]. According to [17], for any triplet (m,n, p), the maximum
number of sequences in a set U(m,n, p) can be achieved only for prime
sequence length N and is given by

U = N − 1 (4)

Given the design flexibility offered by Oppermann sequences, it
is possible to construct families of polyphase sequences with specific
correlation characteristics.

The magnitude of the AAC function for all sequences in a family
of Oppermann sequences is the same for a fixed combination of triplet
(m,n, p) [17]. Further, for p = 1, the magnitude of the AAC function
depends only on n and is given by

Ck,k(l) = 1
N

∣∣∣∣∣
N−1−l∑
i=0

exp
[
jπ

N

(
(i+ 1)n − (i+ l + 1)n

)]∣∣∣∣∣ (5)

for shifts 0 ≤ l ≤ N − 1 and 1−N ≤ l ≤ 0, where∣∣∣Ck,k(l)∣∣∣ =
∣∣∣Ck,k(−l)∣∣∣ (6)

For l = 0, the maximum magnitude of AAC becomes∣∣∣Ck,k(0)
∣∣∣ = 1 (7)

A comprehensive treatment on Oppermann sequences can be found in
[15] and references therein.
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5 Performance Measures
In this section, the definitions of measures used in the performance
assessment of sequences for integrated radar and communication systems
are provided.

5.1 Performance Measures for Radar Applications

The commonly used performance measures of sequences in this context
are ambiguity function (AF), and sidelobe performance measures, such
as integrated sidelobe ratio (ISLR) and peak-to-sidelobe ratio (PSLR).

5.1.1 Ambiguity Function

In the absence of motion between the radar, target, and the environ-
mental interference, i.e., the clutter, the study of radar waveforms is
a simple task. However, due to the presence of Doppler shift fd, the
target returns do not represent the true replicas of the transmitted
waveform. In addition, the response from a second target or clutter
at a slightly different range may appear at the radar receiver output
when the desired target response is at its peak value. This overlap of
signals occurs when the time extent of the waveform is greater than the
differential time delay between the targets. As a result, signals at the
radar receiver are characterized by using an AF.

The AF, first proposed by Woodward [78], is considered as an
intricate, flexible, and indispensable tool to design and analyze radar
sequences. It is particulary useful in analyzing resolution, sidelobe
behaviour, ambiguities in both range and Doppler, and range-Doppler
coupling for a given sequence [34].

It is worth pointing out that the definition of the AF varies through-
out the literature [31, 33, 78, 79]. A standardized and widely accepted
definition of the continuous-time AF is given by [80]

|χ(τ, fd)|2 =
∣∣∣∣∫ ∞
−∞

u(t)u∗(t+ τ) exp(j2πfdt)dt
∣∣∣∣2 (8)

where u(t) is a transmitted signal, τ corresponds to a time shift, fd
is the Doppler frequency/Doppler shift, operator (·)∗ denotes complex
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conjugate, and j =
√
−1. A positive Doppler frequency fd implies that

a target is moving towards the radar [32, 80].
The AF describes the correlation between transmitted signal and

its replica shifted both in time and frequency by an amount τ and fd,
respectively. According to (8), the AF can be regarded as the output of
a matched filter receiver to a target shifted both in time and frequency
from a reference target [80]. A matched filter receiver amplifies the
received energy and maximizes the signal-to-noise ratio (SNR). The
SNR at the radar receiver output is maximized when the receiver is a
matched filter with respect to the transmitted waveform [31].

5.1.2 Properties of the Ambiguity Function

The simultaneous resolution in range and Doppler is constrained by the
Heisenberg uncertainty principle. Therefore, target position cannot be
defined both in time and frequency domain at the same time [79, 81].
As a result, increased resolution in range can be obtained by sacrificing
resolution in Doppler and vice versa [31, 33, 78, 79]. In practice, the
transmitted signals are of positive duration and have finite energy E.
Therefore, any AF must obey certain fundamental properties [79, 81].
Sequence design for radar is an ill-posed problem with no satisfactory
technique being available for finding the waveform corresponding to the
pre-defined AF. Also, no satisfactory set of rules is known to determine
whether a desired AF is, in fact, an AF.

In the context of this dissertation, the following three properties are
of main interest [32]:

• Symmetry Property: The magnitude of the AF is symmetric
with respect to the origin, i.e,

|χ (−τ,−fd)| = |χ (τ, fd)| (9)

• Maximum Magnitude Property: The maximum of the AF
magnitude always occurs at the origin, i.e.,

|χ (τ, fd)| ≤ |χ (0, 0)| = E (10)
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• Volume Property: The total volume under the ambiguity sur-
face is constant, i.e.,∫ ∞

−∞

∫ ∞
−∞
|χ (τ, fd)|2 dτdfd = E2 (11)

The symmetry property implies that when studying radar waveforms,
it is sufficient to focus only on two adjacent quadrants of the AF [32].
The symmetry property can then be used to deduce the remaining two
quadrants of the AF.

The maximum magnitude property implies that the maximum mag-
nitude of the AF occurs at the origin. In other words, the magnitude of
an AF can nowhere be higher than at the origin [32].

The volume property gives a strong and important condition nec-
essary for a function to be an AF [82]. This property implies that
energy removed from one portion of the delay-Doppler plane will crop
up somewhere else within the ambiguity surface [31, 32, 33, 34]. In other
words, the volume squeezed out of the peak will appear somewhere else
in the delay-Doppler plane.

Integrated Sidelobe Level Ratio

In the context of radar applications, ISLR is used to measure the
performance of a given sequence in a distributed clutter and target
environment. It measures the total sidelobe energy of a sequence of
length N compared to the mainlobe energy of the zero-Doppler cut of
the corresponding AF. The zero-Doppler cut of an AF represents the
output of a matched filter without Doppler shift fd and is equal to the
AAC of the sequence. Accordingly, the ISLR is defined as

ISLR =

N−1∑
l=1−N
l6=0

|χ (l, 0)|2

|χ (0, 0)|2
(12)

Figure of Merit

Another commonly used performance measure of a given sequence
in radar applications is the figure of merit (FOM). The ratio of the
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mainlobe energy to the sidelobes energy of the AAC of a sequence of
length N is measured by FOM. It can also be written as the inverse of
ISLR, i.e.,

FOM = 1
ISLR

(13)

Peak-to-Sidelobe Ratio

For radar applications, the performance of a given sequence for a single
point target in a large clutter environment is quantified by the PSLR.
The ratio of the amplitude of the central peak to the maximum sidelobe
amplitude of the zero-Doppler cut of the AF is measured by PSLR. It
is defined as

PSLR = |χ (0, 0)|
max

1≤l<N
|χ(l, 0)| (14)

5.2 Performance Measures for Communication Applica-
tions

The commonly used performance measures of sequences for communica-
tion applications are aperiodic correlation measures such as AAC, ACC
and mean square (MS) correlation measures.

5.2.1 Aperiodic Correlation Measures

The degree of similarity between a given sequence and its shifted version
or between different sequences from a given set, respectively, is quantified
by correlation measures, i.e., AC and CC.

AAC refers to the correlation of a given sequence with itself which
is shifted by a discrete offset l, resulting in a nominally non-repetitive
AC function. On the other hand, ACC refers to the correlation of pairs
of sequences from a given set and their replicas shifted by an offset l
with respect to each other.

Let two sequences ux(·) and uy(·) of length N be defined as

ux =
[
ux(0), ux(1), . . . , ux(N−1)

]
∈ C1×N (15)

uy =
[
uy(0), uy(1), . . . , uy(N−1)

]
∈ C1×N (16)
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Then, ACC at discrete shift l is given as [14, 15]

Cx,y(l)=



1
N

N−1−l∑
i=0

ux(i)u∗y(i+ l), 0 ≤ l ≤ N−1

1
N

N−1+l∑
i=0

ux(i−l)u∗y(i), 1−N ≤ l < 0

0, |l| ≥ N

(17)

where (·)∗ denotes the complex conjugate of the argument (·). In case of
ux = uy, (17) is referred to as AAC and is denoted as Cx,y(l) = Cx,x(l).

5.2.2 Mean Square Correlation Measure

Prior to the work reported in [83, 84], the peak values of periodic or
aperiodic correlations were the main criteria to compare the performance
of different spreading sequences for direct sequence CDMA systems.
However, in these systems, incorporating the correlation values at all
possible relative shifts rather than only accounting for peak values of
AAC or ACC is considered more appropriate [16, 17, 84, 85]. In this
context, worst case scenarios may be replaced by MS values. Accordingly,
MSAC and MSCC of a given sequence set U of size U are defined as

Rac = 1
U

U∑
x=1

N−1∑
l=1−N
l 6=0

|Cx,x(l)|2 (18)

Rcc = 1
U(U − 1)

U∑
x=1

U∑
y=1
y 6=x

N−1∑
l=1−N

|Cx,y(l)|2 (19)

where Cx,x(·) and Cx,y(·) represent the AAC function and ACC function,
respectively.

6 Meta-Heuristic Algorithms and Sequence
Design

Optimization approaches employed in sequence design for radar and
communication systems mainly include iterative algorithms [86, 87],
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gradient based optimization algorithms [88], optimization algorithms
based on the least square approach, and branch-and-bound algorithm
[74] among others. The problem with these methods is that they either
require gradient information, or an initial guess, or optimal step size
in order to avoid local minima. Another major disadvantage of these
algorithms is that they cannot effectively explore the search space
simultaneously in different directions. To a large extent, the methods
described above are capable of finding local optimum solutions only.
As a result, it is difficult for these optimization algorithms to find the
global minimum, if the search space contains many local minima.

Optimal sequence set design may be categorized as a non-determini-
stic polynomial hard (NP-hard) optimization problem. The cost func-
tions in sequence design optimization could be with or without con-
straints, highly irregular, non-linear, multimodal, noisy and even discon-
tinuous. Further, the exact gradient of the objective function is hard to
compute. Therefore, simple computer search and classical optimization
algorithms are not suitable to solve these complicated problems. The
choice of the right optimizer or algorithm to solve sequence design
optimization is critically important. The choice of an algorithm to solve
such problems depends largely on the type of problem, the nature of
an algorithm, the desired quality of solutions, the available computing
resources, and time limit. In fact, there are no guidelines for choosing
a particular algorithm for a particular problem and a single efficient
algorithm applicable to all types of problems does not exist [89].

In recent years, nature-inspired population based meta-heuristic
algorithms have emerged as an alternative where traditional methods
have failed or proved inefficient. They are preferred over other methods
due to their general applicability, effectiveness, intuitive mathematical
formulation, and ability to handle uncertain, stochastic, and dynamic
information. They are general purpose methods with the aim to ef-
fectively search the solution space without tailoring them to a specific
problem.

The use of nature-inspired meta-heuristic algorithms is gaining
attention in the sequence design for radar and communication systems,
e.g., [71, 72, 73, 75, 76, 77, 90, 91, 92, 93, 94]. A suite of optimal
sequences to simultaneously support mission critical multi-tasks such as
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ground moving target indication, airborne moving target indication, and
synthetic aperture radar imaging were designed using an evolutionary
algorithm (EA) [90]. It was shown that optimal sequences can be
designed using EA to fulfill objectives such as PSLR, ISLR, pulse
integration, and revisit time.

Optimized waveforms with sparse spectrum for radar applications in
the high frequency band were reported in [91] by using meta-heuristic
algorithms such as genetic algorithm (GA) and particle swarm optimizer
(PSO). It is shown that optimal waveforms with acceptable AC sidelobes
can be obtained using GA and PSO. In conclusion, it was found that
PSO was simpler and faster than the GA.

An approach to design polyphase sequences for direct sequence (DS)
CDMA systems using EA has been proposed in [71, 72]. Particularly,
a multiobjective (MO) evolutionary approach is proposed to find solu-
tions that can simultaneously satisfy objectives posed on AC and CC
properties.

GA was employed to design unified complex Hadamard transform
(UCHT) sequences and Oppermann sequences for CDMA applications
in [73, 75, 76]. The UCHT, modified UCHT, and Oppermann sequences
were designed with reference to optimizing the maximum nontrivial ape-
riodic and MS correlation values. However, GA requires proper selection
of the number of chromosomes, the probability of selection, mutation,
and crossover. These parameters may influence the performance of the
GA and their proper selection may require some experimentation [95].

A meta-heuristic sequence optimization approach for integrated
radar and communication systems was presented in [92]. In this work,
meta-heuristic algorithms were used to perform a multidimensional opti-
mization in order to find a trade-off between AC and CC characteristics.
The numerical results illustrated that meta-heuristic algorithms are
potentially useful in designing sequences for radar, communications, as
well as integrated systems.

Most recently, a meta-heuristic algorithm mimicking the echolocation
of bats and breeding behaviour of certain species of cuckoos has been
used to tackle cross-ambiguity synthesization [93, 94]. In these works,
the problem of matching a cross-ambiguity function (CAF) to a pre-
defined desired CAF by minimizing the mean-square distance between
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the pre-defined desired CAF and synthesized CAF has been tackled.
It has been shown that meta-heuristic approaches can be used as an
effective tool in dealing with such problems.

The cost function for sequence design for integrated radar and com-
munication systems might be extremely irregular and might have several
local minima. Most meta-heuristic algorithms employ the Gaussian
distribution to achieve randomization in order to explore the problem
search space [95]. The Gaussian random walkers make small and cau-
tious steps which may lead them to deep troughs (local minima). The
small and cautions step sizes hinder the ability of a Gaussian random
walker to escape from extrema that are wider than approximately twice
the step size [96]. This means that Gaussian random walkers will spend
more time in exploiting small portions of the search space. On the
other hand, they will rarely visit and explore portions of the problem
search space that may contain a potentially better solution. However,
the Gaussian distribution may be replaced by Lévy flights based on the
Lévy distribution to achieve randomization in meta-heuristic algorithms
[93, 94, 95, 96, 97, 98, 99].

7 Lévy Flights and Global Optimization
Animals move in order to find random and sparsely distributed resources
in nature. In the absence of prior knowledge about the location of these
resources, a forager needs an effective and efficient search strategy to
locate these resources in minimum time. A search strategy optimized
in terms of search time is often a limiting factor for daily survival
of these foragers [100]. A fundamental question faced by foragers
is to determine the fastest way of finding non-uniformly distributed
resources. This question has triggered several experimental initiatives
and theoretical studies, e.g. [101, 102, 103]. These studies show that the
search behavior among different foragers is generally based on stochastic
search strategies. The foragers start with an active search phase and
then randomly alternate to a phase of fast ballistic motion during these
sporadic movements. The search strategies vary from cruise strategy
(e.g., fish) to ambush or sit-and-wait search. In the latter, a forager
remains stationary for a long period (e.g., rattlesnake) [100].
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The search strategies of different animal species have been topic
of many theoretical and empirical studies. These include animals
like fish [103], grey seals [104], microzooplankton [105], reindeer [106],
spider monkeys [107], and marine predators [108, 109]. These studies
hypothesized that many foragers adopt Lévy flights or Lévy walks as
optimal search strategies. According to [109], foragers sometimes switch
between Lévy flights and Brownian motion depending on the density of
the prey in a search area [109].

In nature, foragers search for food without a priori knowledge about
its location. The problem of finding food in natural and dynamical
environment may be regarded as a global optimisation (GO) problem.
In these problems, sometimes, there is little or no a priori information
about the whereabouts of the global optimum (unimodal problems)
or optima (multimodal problems). Therefore, stochastic algorithms
may require strategies that can effectively and efficiently explore the
whole search space of a GO problem. The discussion in the preceding
paragraphs provides a strong motivation to incorporate Lévy flights
based on the α-stable Lévy distribution as a search strategy in the
stochastic algorithms to solve complex real-world problems.

7.1 Lévy Flights

A Lévy flight is a random walk characterized by sequences of many short
steps connected by rare longer steps [95, 96, 110, 111]. A Lévy flight in
two dimensions will show a typical pattern as illustrated in Figure 1.
The term flight means a straight line trip between two points that a
moving random walker makes without directional change or pause.

Let the step sizes of a random walker w be represented by inde-
pendent and identically distributed (i.i.d.) random variables (RVs)
S1, S2, . . . , Sn. These step sizes represent the displacements of random
walker w in the 1st, 2nd, · · · , nth step. According to the generalized
central limit theorem (GCLT) [95], if the number of steps are large, the
probability density of the sum of step sizes in a Lévy flight converges
to an α-stable Lévy probability distribution [95, 96].
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Figure 1: Two-dimensional 500 steps trajectory of a Lévy flight (Start
 and end �).

The probability density function (PDF) of a symmetric α-stable
Lévy RV S is given as [95, 96]

Lα,β(S) = 1
π

∫ ∞
0

exp(−βzα) cos(zS)dz (20)

The parameter α is called stability index, tail index, tail exponent,
or characteristic exponent. It measures the thickness of the tails of an
α-stable Lévy probability distribution. In other words, it determines
the rate at which the tail of the α-stable Lévy probability distribution
tapers off. By controlling the value of α, different shapes of the α-stable
Lévy probability distribution can be obtained, especially, in the tail
region. This provides flexibility to characterize a wide range of impulsive
processes. The parameter β determines the width and thus dispersion
of a Lévy probability distribution. One may think of β as being similar
to the variance of a Gaussian distribution.

A closed-form expression of (20) is known only for a few special
cases [95]. Therefore, (20) is computed using numerical methods. For
α = 1 and α = 2, respectively, (20) becomes the Cauchy and Gaussian
probability distribution. Lévy probability distributions for different
values of α are shown in Figure 2. For different values of α < 2, the shape
of the α-stable Lévy probability distribution is similar to a Gaussian
probability distribution, but the tail of the α-stable Lévy probability
distribution falls off much more gently compared to a Gaussian prob-
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Figure 2: Comparison of Lévy probability distributions for different
values of stability index α.

ability distribution.
Thus, in a Lévy flight, the step sizes S1, S2, . . . , Sn of a random

walker w are distributed according to an α-stable Lévy probability
distribution whose tails follow a power-law distribution and is given as
follows [95, 110, 111]:

Lα(S) ∼ 1
Sα+1 , |S| � 1 (21)

In Lévy flights, irrespective of the flight length, a random walker w
is only at the start point and at the end point and never in between.

In contrast to Lévy flights, in a Lévy walk, the random walker w
follows a continuous trajectory from the start to the end position. Thus,
in a Lévy walk, the random walker w moves with finite velocity and
takes a finite time to complete the walks. The finite and constant
velocity results in shorter jumps and pauses between jumps compared
to the Lévy flights [110, 111].
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7.2 Lévy Flights in Global Optimization

Random walks are an important component of global optimization
algorithms. Random walks can be modelled on the animal movement.
It has been shown that Lévy flights or Lévy walks are optimal search
strategies for foragers or animals searching for food [102, 103, 104, 105,
106, 108, 109]. Randomization in global optimization algorithms can
be achieved by using various probability distributions such as uniform,
Gaussian, and α-stable Lévy distributions [95, 97].

The purpose of exploration of the problem search space in global
optimization is to accomplish the goals of: (i) intensive exploration
within search space areas with high quality solutions; and (ii) move to
unexplored areas of the search space when necessary. Diversification
(exploration) and intensification (exploitation) can be used to achieve
these goals [97, 112, 113].

Both diversification and intensification are the two main components
of a global optimization algorithm. The overall efficiency of a GO
algorithm depends on having a sound balance between them. A simple
and efficient method to achieve randomization is to introduce a random
starting point for a deterministic algorithm [95, 97, 98, 114]. A good
example is the well-known hill-climbing method with random restart.

Diversification (exploration) intends to explore the search space
more thoroughly which helps in generating diverse solutions. Too much
diversification increases the probability of finding the true optimality
globally, but often at much lower convergence rate.

The idea between intensification (exploitation) is that the promising
portions of the search space that may contain the best solution or
solutions are thoroughly explored. The concept of intensification ensures
that the best solution or solutions are found. Too much intensification
will make the optimization process converge quickly, which may lead to
premature convergence, often to a local optimum. This, in turn, reduces
the probability of finding the true global optimum.

In the context of global optimization, Lévy flights are advantageous
over Gaussian distribution to achieve randomization due to the following
two reasons [95, 96, 97, 98, 114]:

• Lévy flights reduce the probability of revisiting the areas of the
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search space that have been previously explored.

• Lévy flights increase the chance of reaching far-off regions of
the function landscape in global optimization problems. This is
beneficial for the algorithm to escape a local minimum or minima
with deep and wide basins.

(a) (b)

Figure 3: Trajectories of a random walker w performing: (a) Lévy
flights (α = 1.5), and (b) Gaussian walk (α = 2) (Start  and end �).

A random walker w performing a Lévy flight will spend more time in
exploiting a large area of the search space (exploration on the global
scale) and less time in searching the small local neighborhood. Figure
3 (a) shows that a random walker w performing a Lévy flight will take
many small steps within a small area. Then, it takes a long flight to a
far-off area, where it again takes many short steps. This will help in
reducing the overall number of iterations required to find the optimal
solution.

On the other hand (Figure 3 (b)), the same random walker w per-
forming Gaussian walk returns to previously visited locations and spends
more time in searching small local neighbourhood areas (exploration
on the local scale). This, in turn, will increase the overall number of
iterations required to find the optimal solution.

The smaller hill shown in Figure 4 indicates that Lévy flights will
spend more time in exploiting a large area of the search space and spend
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Figure 4: Lévy probability distribution for α = 1.5 and for Gaussian
probability distribution α = 2.

less time in searching the small local neighborhood. The higher peak
of the Gaussian distribution means that Lévy flights have a weaker
fine-tuning ability compared to the Gaussian distribution for small- to
mid-range search regions.

In case of Lévy flights, the upper limit on the number of iterations
Nmax to find a global minimum with pre-defined level of accuracy δ is
far less compared to Gaussian random walks [95]. According to [99],
incorporating Lévy flights global optimization techniques instead of
Gaussain random walk may reduce the overall number of iterations by
about 4 orders [O(104)].

8 Dissertation Overview
This dissertation aims at designing sequences for integrated radar and
communication systems. Nowadays, the RF front-end architectures for
radar and wireless communication technologies are becoming more and
more similar. DSPs are replacing an increasing number of functionalities
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that were realized on hardware components in the past. The operating
frequencies of modern wireless communication systems are becoming
of the same order of magnitude as those previously used for radar
applications. Given today’s technological development, a joint RF
platform for radar and communications applications could easily be
realized. The first step towards the implementation of these systems is
to identify sequences that can simultaneously support both radar and
communication applications.

Oppermann sequences have been identified as suitable candidates
for integrated radar and communication systems. These sequences
are known for their wide range of correlation properties. The three
parameters that define Oppermann sequences offer several degrees of
freedom for designing these sequences. As a result, a great variety of
trade-offs between AC, CC, and AF characteristics can be supported. Up
till now, Oppermann sequences were only considered for communication
applications, i.e., CDMA systems.

Meta-heuristic algorithms are used to find optimal parameter values
to generate sets of Oppermann sequence that can simultaneously support
integrated radar and communication applications. The meta-heuristic
algorithms are preferred over numerical optimization methods due to
their effectiveness and efficiency in handling computationally complex
problems, such as sequence design for integrated radar and communi-
cation systems. It has been shown that meta-heuristic algorithms are
suitable to find the optimal parameters of Oppermann sequences.

8.1 Part I: - Oppermann Sequences for Integrated Radar
and Communication Systems

A: Performance Assessment of Polyphase Pulse Compression
Codes

Motivated by a wide range of correlation properties offered by Opper-
mann sequences, in this part, we present a brief overview of conventional
polyphase pulse compression sequences such as the Frank, Frank-Zadoff-
Chu (FZC), P1, P2, P3, P4, and Px sequences. Then, the performance
of these polyphase pulse compression sequences is evaluated and com-
pared with Oppermann sequences. The latter class of sequences has
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been considered to date only for applications within the context of
CDMA systems. In this part, the performance evaluation of Opper-
mann sequences is extended to reveal their delay-Doppler characteristics.
It is shown that Oppermann sequences can conceptually support inte-
grated radar and communication systems as compared to the P1, P2,
P3, P4, and Px sequences. Furthermore, a number of benefits and
drawbacks associated with the examined polyphase sequence classes are
discussed that may provide additional guidance in the waveform design
for modern radar systems.

B: On Integrated Radar and Communication Systems Using
Oppermann Sequences

In this part, weighted pulse trains with the elements of Oppermann
sequences serving as complex-valued weights are utilized for the design
of integrated radar and communication systems. An analytical expres-
sion for the ambiguity function is derived for weighted pulse trains
with Oppermann sequences. It is shown that the ambiguity function of
Oppermann sequences depend only on one sequence parameter. The
design of the associated weighted pulse trains is simplified as it con-
strains the degrees of freedom. In contrast to the single polyphase pulse
compression sequences that are typically deployed in radar applications,
the families considered in this part form sets of sequences. As such, they
readily facilitate also multiple-access in communication systems. The
numerical examples shown illustrate the many options offered by Opper-
mann sequences in the design of integrated radar and communication
systems.

C: Cross-Ambiguity Function of Weighted Pulse Trains with
Oppermann Sequences

In this part, an analytical expression for the cross-ambiguity function
of weighted pulse trains with Oppermann sequences is derived. Further,
the auto-ambiguity function is deduced as a special case. In contrast
to the auto-correlation and auto-ambiguity function of Oppermann
sequences, which depend only on one sequence parameter and are the
same for all sequences, the cross-ambiguity function depends on two
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parameters. This additional parameter can be used, e.g., to control the
spacing of the correlation peaks between pairs of sequences at the zero-
Delay cut of the cross-ambiguity function. The analytical expressions
obtained and properties summarized may guide waveform designers to
formulate a multi-objective performance optimization subject to given
requirements of integrated radar and communication systems.

D: Properties of Ambiguity Functions for Weighted Pulse
Trains with Oppermann Sequences

In this part, the auto-ambiguity and cross-ambiguity properties of
weighted pulse trains with Oppermann sequences are considered. Several
properties are examined and proved which in turn allows for reducing
the design space for optimization of a particular design. The insights
gained from these properties build the foundations in the formulation of
a formal framework leading to procedures that can be used for a more
structured waveform design. In particular, the two procedures presented
for designing weighted pulse trains with respect to auto-correlation and
cross-correlation properties, respectively, are linked to the zero-Doppler
cut metrics of mean-square auto-correlation and mean-square cross-
correlation. Numerical examples are used to illustrate the relationship
between sequence parameters and performance characteristics.

8.2 Part II: Waveform Optimization for Integrated Radar
and Communication Systems Using Meta-Heuristic
Algorithms

In this part, the focus is on the waveform optimization for such in-
tegrated systems based on Oppermann sequences. These sequences
are defined by a number of parameters that can be chosen to design
sequence sets for a wide range of performance characteristics. Firstly,
it is shown that meta-heuristic algorithms are well-suited to find the
optimal parameters for these sequences. Secondly, given the conflicting
requirements on autocorrelation and crosscorrelation characteristics,
meta-heuristic algorithms are considered to perform multidimensional
optimization. The potential of meta-heuristic algorithms for designing
sequences for radar, communications, as well as integrated systems is
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illustrated with the help of numerical examples.

8.3 Part III: Multimodal Function Optimization

A: Multimodal Function Optimisation with Cuckoo Search
Algorithm

This part studies multimodal function optimization mimicking the breed-
ing behavior of certain species of cuckoos. The multimodal functions
have objective functions that exhibit multiple peaks, valleys, and hyper-
planes of varying heights. Furthermore, they are non-linear, non-smooth,
non-quadratic, and can have multiple satisfactory solutions. In order to
select the best solution among several possible solutions that can meet
the problem objectives, it is desirable to find many such solutions. For
these problems, the gradient information is either not available or not
computable within reasonable time. Therefore, solving such problems
is a challenging task. Recent years have seen a plethora of activities to
solve such multimodal problems using non-traditional methods. These
methods are nature-inspired and are becoming popular due to their
general applicability and effective search strategies. In this part, we
assess the ability of a meta-heustric algorithm mimicking the breeding
behavior of certain species of Cuckoos to solve multimodal problems in
noise-free and additive white Gaussian noise environments.

B: Synthesizing Cross-Ambiguity Functions Using An Improv-
ed Bat Algorithm

In this part, we consider the joint sequence design using a meta-heuristic
algorithm based on the echolocation of bats by matching a synthesized
cross-ambiguity function to a desired cross-ambiguity function of pre-
defined magnitude over the delay-Doppler plane. A joint design of a pair
of sequences such that their cross-ambiguity function approximates a
desired cross-ambiguity function is a global optimization problem. This
type of problem may be considered as a highly multimodal problem
without any a priori information about the location of the optimum
solution (unimodal) or solutions (multimodal). By way of four examples,
it is shown that the approach based on echolocation of bats can indeed
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synthesize a cross-ambiguity function that approximate cross-ambiguity
function surfaces having a diagonal ridge and zero value elsewhere as
well as cross-ambiguity function surfaces with a clear area around the
origin. The results presented in this part indicate that the proposed
approach is a promising technique for synthesizing cross-ambiguity
functions.

9 Future Works
The research interests presented in this dissertation are mainly in the
field of integrated radar and communication systems. Future works in
this research field could involve investigation of related hardware archi-
tectures using polyphase sequences including Oppermann sequences.

Up until now, Oppermann sequences may have been considered only
for communication applications, i.e., CDMA systems. However, given
the trade-offs between autocorrelation, crosscorrelation and ambiguity
functions supported by Oppermann sequences, the use of Oppermann
sequences in MIMO radar, sonar and imaging applications would be an
interesting avenue to explore.

Future work in this research field could involve extending the use of
polyphase sequences including Oppermann sequences for cognitive radar
network systems. Cognitive radar systems incorporate several radars
working together in a cooperative manner. Radars working in this
manner enhance the remote-sensing capability significantly compared to
radar systems working individually. Cognitive radar system design could
be extended to implement polyphase sequences including Oppermann
sequences for indoor and outdoor channel environments. The use of
Oppermann sequences in cognitive radars for biomedical applications like
synthesis of body area networks for remotely observing and monitoring
the physiological and physical conditions of patients is an interesting
topic to explore.

As a widely used tool in radar signal analysis, the minimization
of the sidelobes of the ambiguity function in the delay-Doppler plane
is a difficult task due to the large number of constraints in the two-
dimensional space. There are no systematic approaches for designing
sequences that exhibit ambiguity functions with low sidelobe levels in



34 Introduction

the delay-Doppler plane. Meta-heuristic algorithms may provide an
alternative approach to solve this problem. It is, therefore, an interesting
topic to explore.
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Abstract

The performance of conventional polyphase pulse compres-
sion codes such as the Frank, Frank-Zado�-Chu (FZC), P1, P2,
P3, P4, and Px codes will be compared with Oppermann codes.
While the majority of the former code classes focus on radar ap-
plications, Oppermann codes have been discussed only within the
context of code-division multiple-access (CDMA) systems. In this
paper, we therefore consolidate �ndings on the conventional codes
and extent the performance assessment to Oppermann codes by
accounting for Doppler shifts as needed in radar applications. It
is shown that Oppermann codes can conceptually support inte-
grated radar and communication systems as compared to the P1,
P2, P3, P4, and Px codes where this is not readily feasible. The
numerical results given here illustrate that Oppermann codes out-
perform Px codes in the presence of Doppler shifts as supported
by the ambiguity function.

1 Introduction

Radar waveform designers have studied polyphase pulse compression
codes for many years as an e�cient alternative to the di�erent classes of
frequency-modulated signals [1, 2]. Polyphase pulse compression codes
may be derived from the phase history of chirp or step-chirp analog
signals but can be implemented and processed digitally.
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Analogously to spread spectrum systems, performance of di�erent
polyphase codes in radar applications can be compared in terms of their
delay or range tolerance by correlation measures such as the autocorre-
lation function, the mainlobe-to-total-sidelobe ratio, and the peak-to-
sidelobe ratio. Due to potential movement of targets, the tolerance of a
design with respect to Doppler shifts has to be evaluated too and can be
quanti�ed using the ambiguity function. In practice, radar waveforms
may be optimized in a �rst design step by using correlation measures
and subsequently engage the ambiguity function to evaluate the impact
of Doppler shifts on the performance.

One of the �rst polyphase codes that were considered for pulse com-
pression in radar applications have been reported in [3] and are known
as Frank codes. However, these chirplike codes can only be designed
for perfect square length. Modi�ed versions of the Frank code can be
obtained by simply permuting its phase history such as those o�ered
by polyphase pulse compression codes referred to as P1 and P2 codes
[4]. Superior performance in terms of the integrated sidelobe levels
compared to the Frank and P1 codes is provided by the Px codes that
have been introduced by Rapajic and Kennedy [5]. It is noted that the
Px code for even square root of code length is de�ned exactly as the
P2 code and hence provides identical performance in this case. The
concepts behind Frank codes have later been generalized to facilitate
designs of polyphase codes of any length and related work was consol-
idated in the Frank-Zado�-Chu (FZC) codes [6, 7]. Similarly, the P3
and P4 codes, derived by Lewis and Kretschmer [8] from a linear fre-
quency modulated waveform, are also applicable for any length. It is
noted that P3 and P4 codes can be considered as cyclically shifted and
decimated versions of FZC codes.

Several performance aspects of the aforementioned classes of poly-
phase pulse compression codes have been reported in literature over
the years, e.g. [5, 9]. In addition, we will include here also the class of
Oppermann codes [10]. These codes were originally introduced within
the context of applications for code-division multiple-access (CDMA)
systems, while their behavior within radar scenarios have not been con-
sidered so far to the best of our knowledge. Given the length of the
code, Oppermann codes are de�ned by three parameters which then
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corresponds to a distinct family of codes. For particular values of these
parameters, the autocorrelation magnitude of Oppermann codes is con-
trolled by one parameter while a second parameter in�uences only the
phase characteristics. Further, the autocorrelation magnitude is then
the same for all Oppermann codes in the family. Thus, this makes
it a candidate for the design of integrated radar and communication
systems where more than one code is needed.

The paper is organized as follows. Section 2 de�nes the measures
used to facilitate a quantitative performance evaluation and compari-
son of the considered polyphase codes. Section 3 presents fundamentals
on prominent classes of polyphase codes that are used with radar ap-
plications and describes the class of Oppermann codes. On this basis,
numerical results are given in Section 4 for a number of scenarios. It
also illustrates the wide range of options that are o�ered by Opper-
mann codes for radar waveform designs. Finally, Section 5 concludes
the paper.

2 Performance Measures

Let N denote the length of each polyphase code uk=[uk(0), uk(1), . . . ,
uk(N−1)] of a given set U of size U , where 1 ≤ k ≤ U . In the sequel, we
provide the de�nitions of the measures [11, 12] used to assist with the
performance comparisons of the examined classes of polyphase codes.

2.1 Aperiodic Autocorrelation

The aperiodic autocorrelation Ck(l) at discrete shift l between a poly-
phase code uk ∈ K and its shifted version, is de�ned as

Ck(l)=





1
N

N−1−l∑
i=0

uk(i)u
∗
k(i+ l), 0 ≤ l ≤ N−1

1
N

N−1+l∑
i=0

uk(i−l)u∗k(i), 1−N ≤ l < 0

0, |l| ≥ N

(1)

where (·)∗ denotes the complex conjugate of the argument (·).
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It is noted that the discrete shift l in the considered radar scenarios
is associated with the delay by which a transmitted pulse code signal is
received, which in turn translates to the range of a target.

2.2 Figure of Merit

The �gure of merit (FOM) of a code uk ∈ U , 1 ≤ k ≤ U of length
N with aperiodic autocorrelation function Ck(l) measures the ratio of
energy in the mainlobe to that in the sidelobe of the autocorrelation
function. It is de�ned as

FOMk =
Ck(0)

2
N−1∑
l=1

|Ck(l)|2
, ∀k (2)

2.3 Peak-to-Sidelobe Ratio

Similarly, the peak-to-sidelobe ratio (PSLR) of a code uk ∈ U , 1 ≤ k ≤
U of lengthN with aperiodic autcorrelation function Ck(l)measures the
ratio of the inphase value Ck(0) to the maximum sidelobe magnitude
|Ck(l)| of the autocorrelation function. It is de�ned as

PSLRk =
Ck(0)

max
1≤l<N

|Ck(l)|
(3)

2.4 Ambiguity Function

In this paper, we consider phase-coded pulse trains that can be de-
scribed by a complex envelope as

uk(t) =
1√
T

N∑

i=1

uk(i) rect

[
t− (i− 1)Tc

Tc

]
(4)

where T = N Tc denotes the duration of the kth pulse train and Tc is
the duration of each rectangular pulse rect(·). The elements uk(i) of
the kth polyphase code uk of length N are given by

uk(i) = exp [jϕk(i)] , j =
√
−1 (5)
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where the set of N phases {ϕk(0), ϕk(1), . . . , ϕk(N −1)} are referred to
as the phase code of uk(t).

The ambiguity function (AF) represents the output of a matched
�lter with respect to an examined �nite energy signal. It describes the
interference that would be caused to a transmitted signal due to the
delay/range and/or the Doppler shift compared to a reference signal. In
this paper, we utilize the following de�nition of the ambiguity function
[1]

|χ(τ, fd)| =
∣∣∣∣
∫ ∞

−∞
uk(t)u

∗
k(t+ τ) exp(j2πfdt)dt

∣∣∣∣ (6)

where τ and fd denote delay and Doppler shift, respectively. The AF
facilitates radar designers with a comprehensive tool for comparison of
di�erent waveforms with main focus typically being on sidelobes rela-
tive to the mainlobe. While other AF de�nitions based on magnitude
square or logarithmic scale would render sidelobes suppressed or ampli-
�ed, respectively, the selected magnitude de�nition (6) provides a good
trade-o� in view of inspecting AF plots or related ambiguity contour
plots.

3 Classes of Polyphase Codes

In this section, we will provide the de�nitions of the considered classes
of polyphase pulse compression codes in terms of their phase codes. It
should be mentioned that, in this paper, we adopt the term code in
favor of the term sequence as it is used in the bulk of radar-related
publications while the latter is frequently used with communication
systems. In particular, the Frank, FZC, P1, P2, P3, P4, Px, and Op-
permann codes will be described along with remarks on some of their
bene�cial properties for radar applications. Speci�cally, the position-
ing of the newly considered Oppermann codes within the other more
conventional codes is revealed.

3.1 Frank Codes

The history of complex-valued codes ranges back as far as the 1950s but
related concepts were mainly contained in classi�ed documents during
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these early years. It is due to the work on phase shift pulse codes
reported in [13] that sparked discussions on this type of codes among
the broader audience. This work proposed a method of generating codes
of so-called perfect square length

N =M2 (7)

where M is a prime number. The code elements are arranged to
form an M × M matrix and are given by the Mth roots of unity
w = exp(j2π/M). The actual polyphase code of length N is then
produced by reading out the matrix of roots of unity row-by-row.

In generalization of the above approach, it has been shown in [6]
that sets of polyphase codes of perfect square length N = M2 can be
designed for any integer M . The related codes are referred to as Frank
codes. The elements fk(m,n) of the kth Frank code in a given set can
be arranged as matrix

Fk = [fk(m,n)]M×M =

[
exp

(
j
2π k

M
mn

)]

M×M
(8)

and its phases are de�ned accordingly as

ϕk(m,n) =
2π

M
kmn (9)

where 1 ≤ k ≤M−1 and 0 ≤ m,n ≤M−1 while the greatest common
divisor gcd(k,M) = 1 is required. Then, the (m,n)th element of (8)
can be mapped to the ith element of a code of length N in terms of the
phase code as follows:

i = mM + n : ϕk(m,n) 7→ ϕk(i) = ϕk(mM + n) (10)

3.2 P1, P2, and Px Codes

The P1, P2, and Px codes [4, 5] may be regarded as modi�cations of
the Frank codes and can be designed for perfect square length N=M2

only. In particular, the phases of the Frank codes appear rearranged in
the P1, P2, and Px codes with the cluster of zero phases placed in the
central part of the pulse code and from there symmetrically increase in
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value towards start and end of the codes. It is due to this reordering
that P1, P2, and Px codes outperform Frank codes with respect to
PSLR as reported in [4, 5].

Speci�cally, the elements u(i) of the P1 and P2 (M even) codes,
respectively, are given by

u(i) = u(mM + n) = u(m,n) = exp[jϕ(m,n)] (11)

where 0≤m,n≤M−1 and their phases are de�ned as

P1: ϕ(m,n) = −2π

M

(
M−1
2
−m

)
(mM+n) (12)

P2: ϕ(m,n) = +
2π

M

(
M−1
2
−m

)(
M−1
2
−n
)

(13)

Similarly, the elements u(i) of the Px codes also follow the general
expression of (11) and the phases of this class of pulse codes are de�ned
as

Px: ϕ(m,n)=

{
2π
M

(
M−1
2 −m

)(
M−1
2 −n

)
M even

2π
M

(
M−1
2 −m

)(
M−2
2 −n

)
M odd

(14)

where 0≤m,n≤M−1. Apparently, the elements of the Px code for M
even are de�ned exactly as those of the P2 code.

3.3 Frank-Zado�-Chu Codes

The FZC codes can be constructed for any length N [6, 7] and are not
restricted to perfect square length. In particular, the phase ϕk(i) of the
ith element uk(i) of the kth FZC code uk = [uk(0), uk(1), . . . , uk(N−1)]
of length N may be de�ned as

ϕk(i) =
π

N

[
k2(i+ 1) + k(i+ 1)N

]
(15)

where 0≤ i≤N − 1 and k is an integer relatively prime to N .
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3.4 P3 and P4 Codes

As the P1, P2, and Px codes are related to the Frank codes, so can
the P3 and P4 codes [8] be considered as cyclically shifted and deci-
mated versions of the FZC code. Accordingly, P3 and P4 codes are not
restricted to perfect square length but can also be constructed for any
length N . While the P3 code is shown in [8] to be more Doppler tolerant
compared to the P1 and P2 codes, the P4 code has also good tolerance
for pre-compression bandwidth limitations and o�ers the same Doppler
tolerance as the P3 code.

The elements u(i) of the P3 and P4 codes are given by

u(i) = exp[jϕ(i)] (16)

where 0≤ i≤N−1 and their phases are de�ned as

P3: ϕ(i) =
π

N
(i− 1)2 (17)

P4: ϕ(i) =
π

N
(i− 1)(i− 1−N) (18)

3.5 Oppermann Codes

A family of polyphase codes that supports a wide range of correlation
properties is proposed in [10]. The phase ϕk(i) of the ith element uk(i)
of the kth Oppermann code uk = [uk(0), uk(1), . . . , uk(N−1)] of length
N is de�ned as

ϕk(i) =
π

N
[km(i+ 1)p + (i+ 1)n + k(i+ 1)N ] (19)

where 1 ≤ k ≤N − 1, 0 ≤ i ≤N − 1 and integer k is relatively prime
to the length N . In this paper, we require N to be a prime, which
results in the family being of maximum size N − 1. The parameters
m, n, and p in (19) take real values and de�ne a family of Oppermann
codes. For a �xed combination of these three parameters, all the codes
have the same autocorrelation magnitude. If p=1, this autocorrelation
magnitude depends only on n and is given by [10]

|Ck(l)| =
∣∣∣∣∣
1

N

N−1−l∑

i=0

exp

{
jπ

N
[(i+ 1)n−(i+ l + 1)n]

}∣∣∣∣∣ (20)
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In this case, the optimal family in terms of FOM or PSLR as de�ned
in (2) and (3), respectively, can be found by simple search over n. In
the sequel, we will therefore concentrate on the case of p = 1. Given
p = 1 and the parameter n associated with the optimal family, the pa-
rameter m may be varied to produce favorable phase or crosscorrelation
characteristics, for instance. With this parameter setting, the class of
Oppermann codes provides us not only with a wide range of correla-
tions but also �exibility to control the ambiguity function at scenarios
other than those relating to the zero Doppler cut.

4 Numerical Results

This section aims at illustrating major performance characteristics of
the examined classes of polyphase pulse compression codes along with
the related bene�ts and drawbacks. In the �rst step, performance as-
sessment is based on FOM and PSLR that re�ect code characteristics
in the absence of Doppler shifts. In the second step, the behavior in
non-zero Doppler shifts is evaluated using the ambiguity function as
well as the related concept of ambiguity contour plots.

4.1 Figure of Merit and Peak-to-Sidelobe Ratio

Let us �rst consider FOM and PSLR of polyphase pulse compression
codes as the performance measures that reveal the zero-Doppler shift
characteristics of the codes.

Figs. 1 and 2 show FOM and PSLR, respectively, for codes of perfect
square length N =M2. Apparently, the considered classes of polyphase
codes give similar performances with the Px code outperforming the
other codes in terms of FOM. It is noted that only Px codes for odd
square rootM of lengthN are presented in the �gures as their de�nition
for even square root of length is identical to the P2 codes and as such
is the related performance.

Figs. 3 and 4 show FOM and PSLR, respectively, for the codes that
can be generated for any length N . However, in order to allow for the
maximum size of codes in a given Oppermann family, the length has
been chosen as a prime number. Further, for each considered length
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Figure 1: FOM of di�erent polyphase codes of length N =M2.
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Figure 2: PSLR of di�erent polyphase codes of length N =M2.
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Figure 3: FOM of di�erent polyphase codes of prime length N .
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N , the parameters of the Oppermann codes were selected as p = 1 and
n such that FOM is maximized. In view of (20), parameter m may
assume any real number without having an impact on autocorrelation
magnitude or FOM. As far as the set of FZC codes is concerned, the
code that o�ers the highest FOM for a given length has been chosen for
each length. Then, the FOM results show that FZC and Oppermann
codes behave identical for the considered prime lengths and outperform
P3 and P4 codes. In contrast, the Oppermann codes perform slightly
inferior in PSLR for some particular prime lengths while FCZ, P3, and
P4 codes show identical performance. As can also be seen from the
FOM and PSLR results, the penalty for having a smaller granularity in
code length compared to being restricted to only perfect square length
is an inferior FOM and PSLR performance.

4.2 Autocorrelation Magnitude

To further investigate di�erences between the classes of FZC and Op-
permann codes, which both can be generated for any code length and
provide a set of codes, the autocorrelation magnitude shall be consulted.
Due to the many possibilities for selecting code parameters, qualitative
rather than comprehensive results are given here for FCZ and Opper-
mann codes of length N = 31. In both cases, each of the related sets
contain 30 unique codes.

Figs. 5(a)-(b), respectively, show the autocorrelation magnitudes of
the �rst and second FZC code (k=1 and k=2) in the set of codes. As
the autocorrelation magnitude di�ers with the particular code chosen
from the set of FZC codes, not all of them may perform favorable in
applications such as integrated radar and communication systems.

Fig. 6 depicts the autocorrelation magnitude of Oppermann codes
of length N = 31 optimized for maximum FOM. Speci�cally, the pa-
rameters p = 1 and n = 2.007 relate to the maximum FOM of 9.027
for Oppermann codes of length N =31 while the parameter m has no
impact on the autocorrelation magnitude. In fact, all 30 Oppermann
codes in the set o�er the same autocorrelation magnitude shown in the
�gure. Accordingly, the radar waveform designer may select a distinct
code based on implementation considerations. Furthermore, the addi-
tional parameter m may be used to control crosscorrleation properties
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Figure 5: Autocorrelation of FZC codes of length N=31: (a) k=1,
(b) k=2.
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Figure 6: Autocorrelation of Oppermann codes of length N =31 with
parameters p=1, m=2, n=2.007, 1≤k≤30.
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of the set of Oppermann codes if the design is aimed at integrated radar
and communication systems.

4.3 Ambiguity Function

In this section, the ambiguity magnitude of polyphase pulse compres-
sion codes is given as a function of normalized delay and normalized
Doppler shift. Recall that Tc denotes the duration of a chip in a code of
length N or period T =N Tc. Further, τ denotes the delay that a trans-
mitted signal is returned from a target and fd denotes the Doppler fre-
quency induced by a moving target. The ratios τ/Tc and fd T are then
called normalized delay and normalized Doppler, respectively, which
shall hereinafter be referred to as delay and Doppler for brevity.
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Figure 7: Ambiguity function of second FZC code of length N = 31
(k = 2).
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Figure 8: Ambiguity function of Oppermann codes of length N = 31
with parameters p = 1, m = 2, n = 2.007 and 1 ≤ k ≤ 30.

Figs. 7-8 show the AF of the second FZC code and Oppermann
codes with the maximum FOM, respectively, both of length N = 31.
As for the FZC code, the two distinct peaks in the sidelobes of the
autocorrelation shown in Fig. 5(b) translate to two signi�cant ridges
on both sides to the diagonal ridge that commences from the third
quadrant of the delay-Doppler plane and passes through the origin to
the �rst quadrant of the delay-Doppler plane. In addition, two smaller
ridges develop in the second and fourth quadrant of the delay-Doppler
plane. Unlike this FZC code, the AF of the examined Oppermann code
does not have these undesirable two ridges in relatively close proximity
to the diagonal ridge but only induces the smaller ridges in the corners
of the second and fourth quadrant of the delay-Doppler plane.

4.4 Ambiguity Contour Plots

In view of the above �ndings, delay-Doppler performance among the Px,
P4, and Oppermann codes will be compared using ambiguity contour
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plots deduced from the related AFs. This selection is motivated by
the fact that Px codes have been identi�ed as the best choice among
the considered polyphase pulse compression codes in terms of FOM
performance (see Fig. 1) while P4 codes are know to outperform P3
codes as mentioned in Section 3.4. As for the Oppermann codes, the
results presented so far promise waveform designs of any length that
can achieve comparable FOM and PSLR as P3 and P4 codes but with
the additional bene�t of catering for a set of codes instead of only a
single code. Again, in this paper we aim at revealing representative
behavior rather then a comprehensive performance analyzes for a wide
range of parameter sets and hence focus on a selected code length.

Figs. 9-10 show the ambiguity contours of the Px codes of perfect
square length N=25 and N=36, respectively. It can be seen from the
�gures, that the favorable performance of Px codes with respect to FOM
and PSLR does not extend to the delay-Doppler tolerance. Speci�cally,
the diagonal ridge is accompanied by a number of sidelobes. In addition,
secondary attenuated ridges builtup in the second and fourth quadrant
of the delay-Doppler plane. These characteristics are observed for both
length but with the ambiguity contour more focused along the diagonal
ridge and the secondary ridges more attenuated for the longer Px code.

Fig. 11 provides the ambiguity contour for the P4 code of lengthN =
31 as a comparison to the examined Px codes. As can be seen from this
numerical example, the inferior performance of the P4 code with respect
to FOM and PSLR is compensated for by its favorable behavior in the
non-zero Doppler shift regime. Speci�cally, the undesirable sidelobes
alongside the diagonal ridge is not present with this P4 code.

Given the length N , the aforementioned polyphase pulse compres-
sion codes cater for only one distinct code and may be utilized for
the design of a conventional radar system. In order to facilitate inte-
grated radar and communication applications, Oppermann codes shall
be examined in the sequel. Here, we consider a set of 30 Oppermann
codes of length N = 31 de�ned by the parameters p = 1, m = 2, and
n=1.8, 1.9, and 2.007. Figs. 12(a)-(c) show the ambiguity contour for
this code with varying n. Clearly, the results indicate that the diagonal
ridge is controlled by the value of the parameter n. Speci�cally, the
diagonal ridge rotates counter-clockwise with increasing n to its optim-
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Figure 9: Contour plot of the Px code of length N = 25 (FOM =
14.132).

um along with the appearance of secondary ridges in the second and
fourth quadrant of the delay-Doppler plane. Also, FOM improves with
increased n and reaches a maximum of FOM = 9.027 for n = 2.007. In
this case of maximum FOM, the ambiguity contour of the Oppermann
codes is very similar to that of the P4 code of the same length.

Additional insights into the impact of the parameter n on the perfor-
mance of the Oppermann codes can be gained by examining the related
power spectrum of these codes as depicted in Figs. 13(a)-(c). Here, the
power spectrum of the two Oppermann codes k = 1 and k = 2 are given
for the di�erent values of parameter n. It can be deduced from these
�gures that overlapping of their power spectrum increases with increas-
ing the parameter n. While the power spectrum of the two codes are
well separated for n = 1.8, signi�cant crosscorrelation will be caused by
the overlapping power spectrum observed for n = 2.007. Having shown
the wide range of design options o�ered by Oppermann codes in the
radar context, future work on multiobjective optimization is warranted
but outside the scope of this paper.
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Figure 12: Contour plots of Oppermann codes of length N = 31 with
parameters p = 1, m = 2: (a) n = 1.8 (FOM = 0.772), (b) n = 1.9
(FOM=1.943), (c) n=2.007 (maximum FOM=9.027).
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Figure 13: Normalized power spectrum of Oppermann codes of length
N =31 with parameters p=1, m=2: (a) n=1.8 (FOM =0.772), (b)
n=1.9 (FOM=1.943), (c) n=2.007 (maximum FOM=9.027).
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5 Conclusions

In this paper, we have examined and compared the performance of
prominent polyphase pulse compression codes such as Frank, FZC, P1,
P2, P3, P4, and Px codes with the performance of Oppermann codes.
The latter class of codes has been considered to date only for applica-
tions in CDMA systems while their performance evaluation has been
extended in this paper to reveal their delay-Doppler characteristics. It
was shown by way of example that Oppermann codes can account for
a wide range of applications including the design of integrated radar
and communication systems. Furthermore, a number of bene�ts and
drawbacks associated with the examined polyphase code classes have
been discussed and may be helpful as additional guide in the waveform
design for modern radar systems.
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On Integrated Radar and Communication

Systems Using Oppermann Sequences

Momin Jamil, Hans-Jürgen Zepernick, and Mats I. Pettersson

Abstract

In this paper, we consider the design of integrated radar and

communication systems that utilize weighted pulse trains with

the elements of Oppermann sequences serving as complex-valued

weights. An analytical expression of the ambiguity function for

weighted pulse trains with Oppermann sequences is derived. Given

a family of Oppermann sequences, it is shown that the related am-

biguity function depends only on one sequence parameter. This

property simpli�es the design of the associated weighted pulse

trains as it constrains the degrees of freedom. In contrast to

the single polyphase pulse compression sequences that are typ-

ically deployed in radar applications, the families considered in

this paper form sets of sequences. As such, they readily facilitate

also multiple-access in communication systems. Numerical ex-

amples are provided that show the wide range of options o�ered

by Oppermann sequences in the design of integrated radar and

communication systems.

1 Introduction

The integration of multiple functions such as navigation and radar tasks
with communication applications has attracted substantial interest in
recent years and sparked a number of research initiatives. This includes
the research on future signals for hybrid receivers for Global Navigation
Satellite Systems (GNSS)/communication and others tasks. The many

79
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bene�ts of multifunctionality in the area of military radio frequency
(RF) systems range from reducing costs and probability of intercept to
o�ering tolerable co-site interference.

As far as integration of radar and communications is concerned,
the O�ce of Naval Research in 1996 launched the Advanced Multifunc-
tion Radio Frequency Concept (AMRFC) program [1,2]. The AMRFC
program was motivated by the lack of integration of radar, commu-
nications, and electronic warfare functions and the related signi�cant
increase in the number of topside antennas. This in turn increases the
ship radar cross section and infrared signature. Further, lack of integra-
tion may cause severe problems with antenna blockage, di�culties with
own-ship electromagnetic interference, and puts stress on maintenance
resources. The concept proposed in the related work aimed at suitable
broadband RF apertures that can cope with simultaneous operation of
multiple functions and hence is centered on the RF front-end.

A di�erent approach using linear frequency modulated (LFM) wave-
forms, also referred to as chirps, has been proposed in [3]. In order to
enhance orthogonality among the signals of the di�erent functions, it
uses up-chirps for the communications component and down-chirps for
the radar functionality. The particular composition of the suggested
chirp signals allows for the radar and communication data to be simul-
taneously transmitted and received with some standard antenna array.
Noting the inherent connection of the aforementioned chirp-based in-
tegration concept to spread spectrum techniques, the work reported
in [4,5] investigated the integration of radar and communications based
on bipolar pseudo random (PN) sequences, namely m-sequences [6, 7].
However, one of the main drawbacks of m-sequences in the radar con-
text is their poor Doppler tolerance [8]. These and related designs such
as polyphase Barker sequences are optimized only with respect to the
zero Doppler cut of the ambiguity function but produce much higher
interference levels in the presence of Doppler shifted waveforms. As for
the application to communications, large sets of m-sequences as needed
with multiple-access techniques have typically rather poor crosscorrela-
tion properties [6]. As such, they are generally only used as components
of more complex designs such as Gold sequences. On the other hand,
the large advances in modern integrated circuit technologies would fa-
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cilitate an e�cient implementation of more advanced sequence designs
such as complex-valued sequences.

In view of the above, this paper considers integrated radar and
communication systems based on polyphase sequences, especially, Op-
permann sequences [9] are utilized. The most prominent sequences
that have been advised for radar applications include polyphase pulse
compression sequences such as the P1, P2, P3, P4, and Px sequences
[8, 10�12]. It shall be mentioned that these sequences may be derived
from the phase history of chirp or step-chirp analog signals such as
those used in the integration approach discussed in [3] but with the
additional bene�t of being implemented and processed digitally. Al-
though these sequences perform well in the radar scenarios, they do not
readily scale to communications as only a single sequence is provided
in contrast to the required sets of sequences with sizes ranging up to
the hundreds. In order to account for the waveform design challenges
associated with integrated radar and communication systems, we have
compared performance and potential application scenarios of di�erent
classes of polyphase pulse compression sequences [13], namely P1, P2,
P3, P4, Px, Frank-Zado�-Chu, and Oppermann sequences. Speci�cally,
Oppermann sequences have been revealed in this study to potentially
better support the considered integration as these allow for the design
not only of families with a wide range of correlations but also support
a variety of characteristics with respect to the ambiguity function, i.e.
delay-Doppler tolerance.

Motivated by the promising features revealed from this study on the
qualitative classi�cation of polyphase pulse compression sequences [13],
this paper advances to the quantitative examination of Oppermann
sequences along with rigorous formulation and derivation of the re-
lated ambiguity function. This provides both an in-depth understand-
ing about the fundamental characteristics of Oppermann sequences for
integrated radar and communication applications and establishes the
theoretical framework that could guide the waveform designer in phras-
ing the particular multi-objective optimization with respect to given
system constraints. Clearly, the proposed approach moves the technical
challenges associated with multifunctionality away from the expensive
RF front-end and the less �exible analog domain based on chirp signals
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towards the cost e�ective and highly adaptable discrete domain.
The remainder of this paper is organized as follows. Section 2 de-

scribes the measures used to evaluate the performance of the consid-
ered weighted pulse trains. In Section 3, the de�nition of Oppermann
sequences and some of their properties are given. An analytical expres-
sion of the ambiguity function of weighted pulse trains with Oppermann
sequences is derived in Section 4. In Section 5, numerical examples are
given to show the wide range of options provided by Oppermann se-
quences in the design of integrated radar and communication systems.
Finally, Section 6 concludes the paper.

2 Performance Measures

Let N denote the length of each polyphase code uk=[uk(0), uk(1), . . . ,
uk(N − 1)] of a given set U of size U , where 1 ≤ k ≤ U . In this
section, we provide the de�nitions of measures [6, 14] used to evaluate
the performance of the considered family of Oppermann sequences.

2.1 Aperiodic Autocorrelation Function

The aperiodic autocorrelation function Ck(l) at discrete shift l between
the kth complex-valued sequence uk ∈ U and its shifted version, is
de�ned as

Ck(l)=





1
N

N−1−l∑
i=0

uk(i)u
∗
k(i+ l), 0 ≤ l ≤ N−1

1
N

N−1+l∑
i=0

uk(i−l)u∗k(i), 1−N ≤ l < 0

0, |l| ≥ N

(1)

where (·)∗ denotes the complex conjugate of the argument (·).

2.2 Figure of Merit

The �gure of merit (FOM) of a sequence uk ∈ U , 1 ≤ k ≤ U of length
N with aperiodic autocorrelation function Ck(l) measures the ratio of
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energy in the mainlobe to that in the sidelobe of the autocorrelation
function. It is de�ned as

FOMk =
Ck(0)

2
N−1∑
l=1

|Ck(l)|2
(2)

2.3 Ambiguity Function

In this paper, we consider weighted pulse trains that can be described
by a complex envelope as

Uk(t) =
1√
T

N−1∑

i=0

uk(i) rect

(
t− iTc
Tw

)
(3)

where T = N Tc is the duration of the kth pulse train while Tc and
Tw ≤ Tc, respectively, denote the repetition period and the width of
each rectangular pulse

rect

(
t

Tw

)
=

{
1 for −Tw

2 ≤ t ≤ Tw
2

0 otherwise
(4)

The elements uk(i), i = 0, 1, . . . , N−1, of the kth complex-valued
sequences uk of length N represent the weights of the pulse train in (3).

The ambiguity function (AF) represents the output of a matched
�lter with respect to an examined �nite energy signal. It describes the
interference that would be caused to a transmitted signal due to the
delay/range and/or the Doppler shift compared to a reference signal. In
this paper, we utilize the following de�nition of the ambiguity function
[8]

|χ(τ, fd)| =
∣∣∣∣
∫ ∞

−∞
Uk(t)U

∗
k (t+ τ) exp(j2πfdt)dt

∣∣∣∣ (5)

where τ and fd denote delay and Doppler shift, respectively.
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3 Oppermann Sequences

A family of polyphase sequences that supports a wide range of corre-
lation properties is proposed in [9]. The ith element uk(i) of the kth
Oppermann sequence uk = [uk(0), uk(1), . . . , uk(N − 1)] of length N is
de�ned as

uk(i) = (−1)k(i+1) exp

{
jπ[km(i+ 1)p + (i+ 1)n]

N

}
(6)

where 1≤k≤N − 1, 0≤ i≤N − 1 and integer k is relatively prime to
the length N . Hereafter, we require N to be a prime, which results in
the family being of maximum size N −1 [9]. The parameters m, n, and
p in (6) take real values and de�ne a family of Oppermann sequences.
For a �xed combination of these three parameters, all the sequences
have the same autocorrelation magnitude. If p=1, this autocorrelation
magnitude depends only on n and is given by [9]

|Ck(l)| =
∣∣∣∣∣
1

N

N−1−l∑

i=0

exp

{
jπ

N
[(i+ 1)n−(i+ l + 1)n]

}∣∣∣∣∣ (7)

In this case, the optimal family in terms of FOM as de�ned in (2)
can be found by simple search over n. In the sequel, we will therefore
concentrate on the case of p = 1. Given p = 1 and the parameter n
associated with the optimal family, the parameter m may be varied to
produce favorable phase or crosscorrelation characteristics, for instance.
With this parameter setting, the class of Oppermann sequences provides
us not only with a wide range of correlations but also �exibility to
control the ambiguity function at scenarios other than those relating to
the zero Doppler cut.

A number of properties that turn out to be bene�cial in supporting
a wide range of correlations and ambiguity properties are summarized
as follows [9]:

• The autocorrelation magnitude depends only on n if parameter
p = 1.

• The parameter m controls the location of the power spectra asso-
ciated with each sequence and hence controls the crosscorrelation
properties.
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• The size of a set of Oppermann sequences is maximal if the length
N is a prime and then given as N − 1.

In view of the above, an optimized sequence set design can be based
on performance measures such as auto- and crosscorrelations, the FOM,
the peak-to-sidelobe ratio, and the ambiguity function.

4 Ambiguity Function of Weighted Pulse Trains

With Oppermann Sequences

Let us consider a weighted pulse train Uk(t) as de�ned in (3), where the
pulse weights uk(i), i=0, 1, . . . , N−1, are the ith elements of the kth
Oppermann sequence as given in (6). The ambiguity function (without
the absolute value operator | · | for ease of exposition) of such a weighted
pulse train can then be written as

χ(τ, fd) =

∫ ∞

−∞

N−1∑

r=0

N−1∑

s=0

uk(r)u
∗
k(s)

× rect

(
t− rTc
Tw

)
rect

(
t+ τ − sTc

Tw

)

× exp(j2πfdt)dt

=
1

T

N−1∑

r=0

N−1∑

s=0

uk(r)u
∗
k(s)

×
∫ ∞

−∞
rect

(
t− rTc
Tw

)
rect

(
t+ τ − sTc

Tw

)

× exp(j2πfdt)dt

=
1

T

N−1∑

r=0

N−1∑

s=0

uk(r)u
∗
k(s) I1 (8)

where the integral I1 is introduced for brevity as

I1=
∫ ∞

−∞
rect

(
t− rTc
Tw

)
rect

(
t+ τ − sTc

Tw

)
exp(j2πfdt) dt (9)
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Making the change of variables t1 = t − rTc, and integrating over
the range (−∞,∞), (9) can be expressed as

I1 = exp(j2πfdrTc)χ1[τ + (r − s)Tc, fd] (10)

where χ1[τ, fd] denotes the triangular ambiguity function of a rectan-
gular pulse and represents the output of a matched �lter for a single
pulse.

By substituting (10) into (8), the ambiguity function can be written
as

χ(τ, fd) =
1

T

N−1∑

r=0

N−1∑

s=0

uk(r)u
∗
k(s)

× exp(j2πfdrTc)χ1[τ + (r − s)Tc, fd] (11)

Utilizing the relation q = r− s and collecting terms centered at the
same shift τ = qTc, the double sum in (11) can be rewritten according
to [15] as

N−1∑

r=0

N−1∑

s=0

=

N−1∑

q=0

N−1−q∑

s=0

∣∣∣∣∣∣
r=s+q

+

−1∑

q=−(N−1)

N−1−|q|∑

r=0

∣∣∣∣∣∣
s=r−q

(12)

The ambiguity function χ(τ, fd) of the considered weighted pulse
train Uk(t), where the elements uk(i) of the kth Oppermann sequence
uk are used as weights, can then be written with (12) as a series of
shifted ambiguity functions χ1(τ, fd) of the rectangular pulse as

χ(τ, fd) =
1

T

N−1∑

q=0

χ1(τ+qTc, fd) exp(j2πfdqTc)S1

+
1

T

N−1∑

q=0

χ1(τ+qTc, fd)S2 (13)

where the two sums S1 and S2, respectively, are de�ned as

S1 =
N−1−q∑

s=0

uk(s+ q)u∗k(s) exp(j2πfdsTc) (14)
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S2 =
N−1−|q|∑

r=0

uk(r)u
∗
k(r − q) exp(j2πfdrTc) (15)

Using the de�nition of the elements of Oppermann sequences in (6)
and performing some elementary algebra, (14) and (15), respectively,
can be written as follows:

S1 = (−1)kq exp
(
j
π

N
kmq

)

×
N−1−q∑

s=0

exp
{
−j π

N
[(s+ 1)n − (s+ q + 1)n]

}

× exp(j2πfdsTc) (16)

S2 = (−1)kq exp
(
j
π

N
kmq

)

×
N−1−|q|∑

s=0

exp
{
j
π

N
[(r + 1)n − (r − q + 1)n]

}

× exp(j2πfdrTc) (17)

Let us further assume that the ratio of pulse width to pulse repeti-
tion period is less than 50%, i.e. Tw/Tc < 0.5, then magnitudes of the
series of ambiguity functions in (13) are non-overlapping. Accordingly,
the magnitude of the ambiguity function of a weighted pulse train using
Oppermann sequences is given by

|χ(τ, fd)| =
1

T

N−1∑

q=0

|χ1(τ + qTc, fd)|

×
∣∣∣∣∣

N−1−q∑

s=0

exp
{
−j π

N
[(s+ 1)n − (s+ q + 1)n]

}

× exp(j2πfdsTc)|

+
1

T

1∑

q=−(N−1)
|χ1(τ + qTc, fd)|
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×

∣∣∣∣∣∣

N−1−|q|∑

r=0

exp
{
j
π

N
[(r + 1)n − (r − q + 1)n]

}

× exp(j2πfdrTc)| (18)

As can be seen from the analytical expression in (18), the ambiguity
function of the examined type of weighted pulse trains with Oppermann
sequences depend only on the parameter n for p = 1. As with the
autocorrelation magnitude of the Oppermann sequences, all sequences
have the same ambiguity functions for a �xed parameter set.

5 Numerical Examples

This section provides a number of numerical examples to illustrate the
wide range of options o�ered by Oppermann sequences in the design
of integrated radar and communication systems. It will also show the
relationships of the di�erent sequence parameters on performance char-
acteristics.

Figure 1 depicts the progression of FOM as a function of the param-
eter n for di�erent prime length N . It can be seen from the �gure that
for the considered lengths, the maximum FOM is achieved for parame-
ter values n ∈ (1.9, 2.1). In addition, it is observed that the maximum
FOM tends to be more distinct with the longer sequences and less tol-
erant to variations of n around the optimal value. Although the FOM
does not depend on the parameter m for the considered case of p=1,
the parameter m controls the phase characteristics of the Oppermann
sequences and as such the arrangement of the associated power spectra
of the sequences. This is illustrated in Fig. 2 for sequences of length
N=31, where the normalized power spectrum of the second Oppermann
sequence (k = 2) is shifted towards higher normalized frequencies with
the parameter m increasing from 1 to 4. This characteristic may be
used to control crosscorrelation between the sequences in a design for
integrated radar and communication systems by varying m while the
ambiguity functions remains the same for all sequences in the set for
given n.
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Figure 1: Figure of merit as a function of parameter n for Oppermann
sequences of prime length N (p = 1, m = 2).

Let us now consider sets of Oppermann sequences of prime length
N = 31 and parameter p = 1. Accordingly, parameters m and n are
available for an optimized sequence set design. Figs. 3(a)-(d) show the
ambiguity function, ambiguity contour plot, autocorrelation magnitude,
and normalized power spectrum, respectively, for a design aimed at
minimizing the out-of-phase average mean-square aperiodic autocorre-
lation. This re�ects requirements of many radar applications with focus
being on maximum FOM and good delay-Doppler tolerance. Clearly,
the distinct autocorrelation peak at the zero Doppler cut is obtained at
the expense of overlapping and hence interfering power spectra.

Similarly, Figs. 4(a)-(d) show the results for a design aiming at
minimizing the average mean-square aperiodic crosscorrelation. In this
case, the autocorrelation mainlobe broadens signi�cantly which results
in a poor FOM and inferior delay-Doppler tolerance. However, the
normalized power spectrum of the di�erent sequences are well separated
and thus support multiple-access in a communications context.
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Figure 2: Normalized power spectrum of Oppermann sequences (N =
31, p=1, n=2.007): (a) m=1, (b) m=4.
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Figure 3: Performance of Oppermann sequences for optimized mean-
square out-of-phase aperiodic autocorrelation (N=31, FOM=9.0287):
(a) Ambiguity function, (b) Ambiguity contour plot, (c) Autocorrela-
tion magnitude, (d) Normalized power spectrum.
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Figure 4: Performance of Oppermann sequences for optimized mean-
square aperiodic crosscorrelation (N = 31, FOM= 0.0508): (a) Ambi-
guity function, (b) Ambiguity contour plot, (c) Autocorrelation magni-
tude, (d) Normalized power spectrum.
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Figure 5: Performance of Oppermann sequences with n > noptimum

with respect to maximum FOM (N=31, FOM=0.7372): (a) Ambiguity
function, (b) Ambiguity contour plot, (c) Autocorrelation magnitude,
(d) Normalized power spectrum.
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In view of applications for integrated radar and communication sys-
tems, a trade-o� may be established among the multiple objectives of
such scenarios. For example, the parameter n may be increased be-
yond the optimal value for maximum FOM as shown in Fig. 5. In this
case, the ambiguity function shows a distinct peak while the normalized
power spectra are still somewhat distinguishable.

6 Conclusion

In this paper, we have considered the design of integrated radar and
communication systems using Oppermann sequences for the generation
of weighted pulse trains. An analytical expression of the related am-
biguity function was derived, which turned out to depend only on one
sequence parameter. As with the autocorrelation magnitude, the ambi-
guity function is the same for all sequences in a given family of Opper-
mann sequences. This simpli�es the design methodology for integrated
radar and communication system as Doppler and delay characteristics
may be considered one after the other. The numerical examples shown
illustrate the many options o�ered by Oppermann sequences in the de-
sign of integrated radar and communication systems.
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Cross-Ambiguity Function of Weighted Pulse

Trains with Oppermann Sequences

Momin Jamil, Hans-Jürgen Zepernick, and Mats I. Pettersson

Abstract

The design of integrated radar and communication systems
may be based on sets of polyphase sequences such as Opper-
mann sequences. In this paper, we derive an analytical expres-
sion for the cross-ambiguity function of weighted pulse trains with
Oppermann sequences. Further, the auto-ambiguity function is
deduced from this as a special case. Numerical examples are pro-
vided to illustrate the relationship between sequence parameters
and performance characteristics.

1 Introduction

The problem of integrating communication functions with radar sys-
tems has received considerable attention in recent years. An important
research area essential for the development of such systems includes
the design of signals and sequence sets that can cope with the often
stringent demands posed on delay resolution, Doppler tolerance, and
multi-access interference suppression.

In a recent publication [1] chirps have been proposed to support
integrated radar and communication systems. Noting the relationship
of chirp-based integration concepts to spread spectrum techniques, the
work in [2, 3] examines integration of radar and communications us-
ing m-sequences [4, 5]. However, m-sequences are known to have poor
Doppler tolerance [6]. In particular, these and related designs such

105
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as polyphase Barker sequences are optimized only with respect to the
zero-Doppler cut of the ambiguity function but produce much higher in-
terference levels in the presence of Doppler shifts. On the other hand,
large sets of m-sequences as needed with multiple-access techniques
in communication systems have typically rather poor cross-correlation
properties [4]. Given the large advances in modern integrated circuit
technologies, it may be advised to consider more advanced sequence
designs such as polyphase sequences.

Sequences that have been advised for radar applications include
polyphase pulse compression sequences such as the P1, P2, P3, P4,
and Px sequences [6–9]. Although these perform well in radar sce-
narios, they do not readily scale to communication systems as only a
single sequence is provided. In view of integrated radar and communi-
cation systems, we have therefore compared performance and potential
application scenarios of different classes of polyphase pulse compres-
sion sequences [10], namely P1, P2, P3, P4, Px, FZC, and Oppermann
sequences [11]. This comparison revealed that Oppermann sequences
potentially better support the considered integration as these allow for
the design of families that offer a wide range of correlations as well
as a variety of characteristics with respect to the ambiguity function,
i.e. delay-Doppler tolerance. Given the qualitative classification of
polyphase pulse compression sequences [10], the work in [12] advances
to a quantitative examination of Oppermann sequences including the
derivation of the related auto-ambiguity function.

In this paper, we consider the more generic problem of deriving an
analytical expression for the cross-ambiguity function of weighted pulse
trains with Oppermann sequences comprising the auto-ambiguity func-
tion as a special case. Along with this theoretical framework, a number
of properties of the correlations, auto-ambiguity function, and cross-
ambiguity function are summarized. This facilitates not only a more
structured understanding about the relationship between sequence pa-
rameters and the corresponding performance characteristics but would
also enable the waveform designer to pose and solve a multi-objective
performance optimization subject to given system requirements.
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The remainder of the paper is organized as follows. Section 2 de-
scribes the measures used to evaluate the performance of the consid-
ered weighted pulse trains. In Section 3, the definition of Oppermann
sequences is given. An analytical expression for the cross-ambiguity
function of weighted pulse trains with Oppermann sequences is derived
in Section 4. On this basis, the special case of an auto-ambiguity func-
tion is deduced in Section 5. In Section 6, numerical examples are
given to illustrate the relationship between sequence parameters and
performance characteristics. Finally, Section 7 concludes the paper.

2 Performance Measures

In this section, we provide the definitions of performance measures [4]
used to evaluate the performance of the considered family of Opper-
mann sequences. For this purpose, let N denote the length of each
sequence ux = [ux(0), ux(1), . . . , ux(N−1)] of a given set U of size U ,
where 1 ≤ x ≤ U .

2.1 Aperiodic Cross-correlation

In view of applications such as integrated radar and communication
systems, we consider aperiodic correlation measures. The aperiodic
cross-correlation Cxy(l) at discrete shift l between the xth complex-
valued sequence ux ∈ U and the yth complex-valued sequence uy ∈ U
is defined as

Cxy(l)=





1
N

N−1−l∑
i=0

ux(i)u∗y(i+ l), 0 ≤ l ≤ N−1

1
N

N−1+l∑
i=0

ux(i−l)u∗y(i), 1−N ≤ l < 0

0, |l| ≥ N

(1)

where (·)∗ denotes the complex conjugate of the argument (·). The
aperiodic auto-correlation Cx(l) of ux at shift l is the aperiodic cross-
correlation of ux with itself, Cxx(l).
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2.2 Mean Squared Aperiodic Correlations

A quantification of the cross-correlation properties with respect to all
possible shifts and all possible sequences in a given set is provided by
the mean squared aperiodic cross-correlation (MSCC). In particular,
for a given set U of size U , the MSCC is defined as

Rcc =
1

U(U − 1)

∑

x,y∈U
x6=y

N−1∑

l=1−N
|Cxy(l)|2 (2)

Similarly, the out-of-phase mean squared aperiodic auto-correlation
(MSAC) is defined as

Rac =
1

U

∑

x∈U

N−1∑

l=1−N
l 6=0

|Cx(l)|2 (3)

which measures the energy in the sidelobes of the auto-correlation for
lags different to zero.

2.3 Cross-Ambiguity Function

In this paper, we consider weighted pulse trains that can be described
by a complex envelope as

Ux(t) =
1√
T

N−1∑

i=0

ux(i) rect

(
t− iTc
Tw

)
(4)

where T = N Tc is the duration of the xth pulse train while Tc and
Tw ≤ Tc, respectively, denote the repetition period and the width of
each rectangular pulse

rect

(
t

Tw

)
=

{
1 for −Tw

2 ≤ t ≤ Tw
2

0 otherwise
(5)

The elements ux(i), i= 0, 1, . . . , N−1, of the xth complex-valued
sequences ux of length N represent the weights of the pulse train in
(4).
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The cross-ambiguity function represents the output of a matched
filter with respect to an examined finite energy signal. It describes
the interference that would be caused by a received signal Uy(t) due
to the delay/range and/or the Doppler shift compared to a reference
signal Ux(t). In this paper, we utilize the following definition of the
cross-ambiguity function

|χxy(τ, fd)| =
∣∣∣∣
∫ ∞

−∞
Ux(t)U∗y (t+ τ) exp(j2πfdt)dt

∣∣∣∣ (6)

where τ and fd denote delay and Doppler shift, respectively. The auto-
ambiguity function |χx(τ, fd)| of Ux(t) is the cross-ambiguity function
of Ux(t) with itself, |χxx(τ, fd)|.

3 Oppermann Sequences

A family of polyphase sequences that supports a wide range of corre-
lation properties is proposed in [11]. The ith element ux(i) of the xth
Oppermann sequence ux = [ux(0), ux(1), . . . , ux(N − 1)] of length N is
defined as

ux(i) = (−1)x(i+1) exp

{
jπ[xm(i+ 1)p + (i+ 1)n]

N

}
(7)

where 1≤x≤N − 1, 0≤ i≤N − 1 and integer x is relatively prime to
the length N . The parameters m, n, and p in (7) take on real values
and define a family of Oppermann sequences. A number of known
properties shall be summarized as follows [11]:

Property 1. The size of a set of Oppermann sequences is maximal if
the length N is a prime and then given as N − 1.

Property 2. For a fixed combination of m, n, and p, all the sequences
have the same auto-correlation magnitude.

Property 3. The auto-correlation magnitude depends only on n if
parameter p = 1 and is given as [11]

|Ck(l)| =
∣∣∣∣∣

1

N

N−1−l∑

i=0

exp

{
jπ

N
[(i+ 1)n−(i+ l + 1)n]

}∣∣∣∣∣ (8)
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Property 4. The parameter m controls the location of the power
spectra associated with each sequence and hence controls the cross-
correlation properties.

4 Cross-Ambiguity Function of Weighted Pulse
Trains With Oppermann Sequences

In view of Property 3, we will concentrate on the case of p = 1. Then, let
us consider two weighted pulse trains Ux(t) and Uy(t) as defined in (4),
where the pulse weights ux(i) and uy(i), i=0, 1, . . . , N−1, respectively,
are the ith elements of the xth and yth Oppermann sequence as given in
(7). The cross-ambiguity function (without the absolute value operator
| · | for ease of exposition) of such a pair of weighted pulse trains can
then be written as

χxy(τ, fd) =
1

T

N−1∑

r=0

N−1∑

s=0

ux(r)u∗y(s)

×
∫ ∞

−∞
rect

(
t− rTc
Tw

)
rect

(
t+ τ − sTc

Tw

)

× exp(j2πfdt)dt

=
1

T

N−1∑

r=0

N−1∑

s=0

ux(r)u∗y(s) I1 (9)

where

I1=

∫ ∞

−∞
rect

(
t− rTc
Tw

)
rect

(
t+ τ − sTc

Tw

)
exp(j2πfdt) dt (10)

In order to solve (10), we make the change of variables t1 = t− rTc,
and then integrate over the range (−∞,∞):

I1 = exp(j2πfdrTc)χrect[τ + (r − s)Tc, fd] (11)

where χrect[τ, fd] denotes the triangular ambiguity function of a rect-
angular pulse rect(·) and represents the output of a matched filter for
a single pulse.
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By substituting (11) into (9), the cross-ambiguity function can be
written as

χxy(τ, fd) =
1

T

N−1∑

r=0

N−1∑

s=0

ux(r)u∗y(s)

× exp(j2πfdrTc)χrect[τ+(r−s)Tc, fd] (12)

Utilizing the relation q = r− s and collecting terms centered at the
same shift τ = qTc, the double sum in (12) can be rewritten according
to [13] as

N−1∑

r=0

N−1∑

s=0

=
N−1∑

q=0

N−1−q∑

s=0

∣∣∣∣∣∣
r=s+q

+
−1∑

q=−(N−1)

N−1−|q|∑

r=0

∣∣∣∣∣∣
s=r−q

(13)

The cross-ambiguity function χxy(τ, fd) between the considered weig-
hted pulse trains Ux(t) and Uy(t), respectively, where the elements ux(i)
and uy(i) of the xth and yth Oppermann sequence ux and uy are used
as weights, can then be written with (13) as a series of shifted ambiguity
functions χrect(τ, fd) of the rectangular pulse as

χxy(τ, fd) =
1

T

N−1∑

q=0

χrect(τ+qTc, fd) exp(j2πfdqTc)S1

+
1

T

N−1∑

q=0

χrect(τ+qTc, fd)S2 (14)

where the two sums S1 and S2, respectively, are defined as

S1 =

N−1−q∑

s=0

ux(s+ q)u∗y(s) exp(j2πfdsTc) (15)

S2 =

N−1−|q|∑

r=0

ux(r)u∗y(r − q) exp(j2πfdrTc) (16)

Using the definition of the elements of Oppermann sequences in (7)
and performing some elementary algebra, (15) and (16), respectively,
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can be written as

S1 =

N−1−q∑

s=0

(−1)x(s+q+1)+y(s+1)

× exp
{
j
π

N
[xm(s+ q + 1)− ym(s+ 1)]

}

× exp
{
j
π

N
[(s+ q + 1)n − (s+ 1)n]

}

× exp(j2πfdsTc) (17)

S2 =

N−1−|q|∑

s=0

(−1)x(r+1)+y(r−q+1)

× exp
{
j
π

N
[xm(r + 1)− ym(r − q + 1)]

}

× exp
{
j
π

N
[(r + 1)n − (r − q + 1)n]

}

× exp(j2πfdrTc) (18)

Assuming that Tw/Tc < 0.5, then magnitudes of the series of am-
biguity functions in (14) are non-overlapping. As such, the cross-
ambiguity function between weighted pulse trains with Oppermann
sequences is given by

|χxy(τ, fd)| = 1

T

N−1∑

q=0

|χrect(τ + qTc, fd)|

×
∣∣∣∣∣

N−1−q∑

s=0

(−1)x(s+q+1)+y(s+1)

× exp
{
j
π

N
[xm(s+ q + 1)− ym(s+ 1)]

}

× exp
{
j
π

N
[(s+ q + 1)n − (s+ 1)n]

}

× exp(j2πfdsTc)|
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+
1

T

−1∑

q=−(N−1)
|χrect(τ + qTc, fd)|

×

∣∣∣∣∣∣

N−1−|q|∑

r=0

(−1)x(r+1)+y(r−q+1)

× exp
{
j
π

N
[xm(r + 1)− ym(r − q + 1)]

}

× exp
{
j
π

N
[(r + 1)n − (r − q + 1)n]

}

× exp(j2πfdrTc)| (19)

Property 5. The cross-ambiguity function is anti-symmetric, i.e.
|χxy(τ, fd)| = |χ∗xy(−τ,−fd)|.

Property 6. The volume under the cross-ambiguity function is con-
stant. For the case p = 1 and parameter n given, correlation peaks
can be shifted in the delay-Doppler plane through parameter m (see
example shown in Figs. 1(c)-(d)).

5 Auto-Ambiguity Function of Weighted Pulse
Trains With Oppermann Sequences

In order to verify the analytical expression for the cross-ambiguity func-
tion |χxy(τ, fd)| given in (19), we examine whether it comprises the spe-
cial case of an auto-ambiguity function |χx(τ, fd)| as reported in [10].
For this purpose, we re-write the cross-ambiguity function for weighted
pulse trains Ux(t) and Uy(t) = Ux(t) as

|χx(τ, fd)| = 1

T

N−1∑

q=0

|χrect(τ + qTc, fd)|

×
∣∣∣∣∣

N−1−q∑

s=0

(−1)x(s+q+1)+x(s+1)
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× exp
{
j
π

N
[xm(s+ q + 1)− xm(s+ 1)]

}

× exp
{
j
π

N
[(s+ q + 1)n − (s+ 1)n]

}

× exp(j2πfdsTc)|

+
1

T

−1∑

q=−(N−1)
|χrect(τ + qTc, fd)|

×

∣∣∣∣∣∣

N−1−|q|∑

r=0

(−1)x(r+1)+x(r−q+1)

× exp
{
j
π

N
[xm(r + 1)− xm(r − q + 1)]

}

× exp
{
j
π

N
[(r + 1)n − (r − q + 1)n]

}

× exp(j2πfdrTc)| (20)

The bipolar factor under the respective sums can be simplified by
accumulating even powers as

(−1)x(s+q+1)+x(s+1) = (−1)xq (21)

(−1)x(r+1)+x(r−q+1) = (−1)−xq (22)

Furthermore, the arguments of the exponential functions containing
the sequence number x can be simplified as

exp
{
j
π

N
[xm(s+q+1)−xm(s+1)]

}
= exp

[
j
π

N
(xmq)

]
(23)

exp
{
j
π

N
[xm(r+1)−xm(r−q+1)]

}
= exp

[
j
π

N
(xmq)

]
(24)

Substituting (21), (22), (23), and (24) into (20) and subsequently
taking suitable magnitudes in the different terms, we obtain the auto-
ambiguity function in agreement with [10] as
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|χx(τ, fd)| = 1

T

N−1∑

q=0

|χrect(τ + qTc, fd)|

×
∣∣∣∣∣

N−1−q∑

s=0

exp
{
j
π

N
[(s+q+1)n−(s+1)n]

}

× exp(j2πfdsTc)|

+
1

T

−1∑

q=−(N−1)
|χrect(τ + qTc, fd)|

×

∣∣∣∣∣∣

N−1−|q|∑

r=0

exp
{
j
π

N
[(r + 1)n−(r−q+1)n]

}

× exp(j2πfdrTc)| (25)

Property 7. All sequences have the same auto-ambiguity function for
a fixed parameter set (m,n, p).

Property 8. The auto-ambiguity function of the examined type of
weighted pulse trains with Oppermann sequences depends only on the
parameter n for p = 1.

6 Numerical Examples

To illustrate the impact of sequence parameters on the performance
of a design, consider Oppermann sequences of length N = 31 and p=
1. According to Property 1, the family size is U = 30. In view of
Properties 3, 7, and 8, auto-correlation and auto-ambiguity function
are the same for all sequences and depend only on parameter n.

Fig. 1(a) shows the mean squared aperiodic correlations MSAC and
MSCC for a design aiming at optimal MSCC, which is obtained for
parameters m= 1 and n= 1 as Rcc,opt = 0.344. Although Rac does not
depend on m, a large impact of m on Rcc can be observed.
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Given (m,n, p) = (1, 1, 1), a family of Oppermann sequences is
defined. Pairs of sequences may be selected such that small cross-
correlation values are produced. The minimum of the maximum cross-
correlation value among all sequence pairs and possible shifts is ob-
tained here for sequences x= 1 and y= 2. Fig. 1(b) shows the contour
plots of the auto-ambiguity function, which holds for all sequences in
the family, and the cross-ambiguity function for sequences x= 1 and
y=2. The ratios τ/Tc and fdT represent normalized delay and normal-
ized Doppler, respectively, which are referred to in the sequel as delay
and Doppler for brevity. Clearly, auto-ambiguity (solid) and cross-
ambiguity (dashed) are well separated with respect to the zero-Delay
cut and thus support discrimination of the desired sequence over the
interfering sequence. Note that a design for optimal MSAC instead of
optimal MSCC would produce a more distinct auto-correlation func-
tion at the expense of cross-correlation properties but this shall not be
considered here due to space limitations.

To reveal the impact of m on the Doppler tolerance of the cross-
ambiguity function (see also Property 6), Fig. 1(c) and (d), respectively,
show the zero-Delay cut related to optimal MSCC with m = 1 and
a non-optimal case with m = 0.5. Similar as parameter m controls
the power spectrum density associated with each sequence and hence
the cross-correlation properties of a design (Property 4), the optimal
parameter m=1 produces a favorable spacing of the characteristics in
the zero-Delay cut for the different sequence pairs (Fig. 1(c)). Clearly,
the pair x = 1 and y = 2 (dashed) incurs the smallest overlap with
the desired sequence (solid). For the non-optimal case of m= 0.5, the
curves for the different sequence pairs are more clustered (Fig. 1(d)),
which may cause challenges in distinguishing different moving objects.
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Figure 1: Performance for optimized Rcc,opt = 0.344 (N = 31, n =
1, m = 1): (a) Rac and Rcc versus m; (b) Auto-ambiguity (solid)
and cross-ambiguity (dashed, optimal sequence pair x = 1, y = 2);
Normalized ambiguity cut for τ = 0 and (c) m = 1, (d) m = 0.5.
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7 Conclusions

In this paper, we have derived an analytical expression for the cross-
ambiguity function of weighted pulse trains with Oppermann sequences
comprising the auto-ambiguity function as a special case. In contrast
to the auto-correlation and auto-ambiguity function of Oppermann se-
quences, which depend only on one sequence parameter and are the
same for all sequences, the cross-ambiguity function depends on two
parameters. This additional parameter can be used, e.g., to control the
spacing of the correlation peaks between pairs of sequences at the zero-
Delay cut of the cross-ambiguity function. The analytical expressions
obtained and properties summarized may guide waveform designers to
formulate a multi-objective performance optimization subject to given
requirements of integrated radar and communication systems.
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Properties of Ambiguity Functions for Weighted

Pulse Trains with Oppermann Sequences

Momin Jamil, Hans-Jürgen Zepernick, and Mats I. Pettersson

Abstract

In this paper, we consider properties of the auto-ambiguity
and cross-ambiguity functions of weighted pulse trains with Op-
permann sequences. Several properties are examined and proved
which in turn allows for reducing the design space for optimiza-
tion of a particular design. The insights gained from these proper-
ties are consolidated in a formal framework leading to procedures
that can be used for a more structured waveform design. Numer-
ical examples are provided to illustrate the relationship between
sequence parameters and performance characteristics.

1 Introduction

In recent years, there has been increased attention given to research
towards receiver structures that support for the integration of radio
communication functions with radar, positioning, and navigation appli-
cations. The benefits of exploring synergies of such combined receivers
and systems include reduced costs, reduced multi-access interference
(MAI), and tolerable co-site interference. Also, hybrid data fusion can
increase coverage and accuracy. An important research area essential
for the development of such integrated receivers and systems includes
the design of sequence sets that can cope with the often stringent de-
mands posed on delay resolution, Doppler tolerance, and required MAI
suppression.

125
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In view of the above context, we have compared the performance of
different classes of polyphase pulse compression sequences in [1], namely
P1, P2, P3, P4, Px, FZC, and Oppermann sequences [2–6]. This work
revealed that Oppermann sequences potentially better support the con-
sidered integration as this class allows for the design of families that
offer a wide range of correlations as well as a variety of characteristics
with respect to the ambiguity functions, i.e. delay-Doppler tolerance.
Given the qualitative classification of polyphase pulse compression se-
quences, the work in [7, 8], respectively, advances to a quantitative
examination of Oppermann sequences including the derivation of the
related auto-ambiguity and cross-ambiguity function.

In this paper, we consider the properties of the auto-ambiguity
and cross-ambiguity function of weighted pulse trains with Oppermann
sequences. Several properties are examined and proved such as the
evolved symmetry property, which in turn allows for reducing the de-
sign space for optimization of a particular design. The insights gained
from these properties are consolidated in a formal framework leading
to procedures that can be used for a more structured waveform design
with respect to cost functions and system constraints.

The rest of the paper is organized as follows. Section 2 describes
measures used for the performance assessment of the considered weight-
ed pulse trains. Section 3 contains the definition of Oppermann se-
quences. The analytical expression for the related cross-ambiguity and
auto-ambiguity functions are given in Section 4 along with their prop-
erties and selected proofs. In Section 5, two design procedures are out-
lined and examples are given to illustrate the application of selected
properties. The examples also provide insights into the relationship
between sequence parameters and performance characteristics.

2 Performance Measures

Let N denote the length of each sequence ux = [ux(0), ux(1), . . . ,
ux(N−1)] of a given set U of size U , where 1 ≤ x ≤ U .
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2.1 Aperiodic Cross-Correlation

The aperiodic cross-correlation Cxy(l) at discrete shift l between the xth
complex-valued sequence ux ∈ U and the yth complex-valued sequence
uy ∈ U is defined as

Cxy(l)=





1
N

N−1−l∑
i=0

ux(i)u∗y(i+ l), 0 ≤ l ≤ N−1

1
N

N−1+l∑
i=0

ux(i−l)u∗y(i), 1−N ≤ l < 0

0, |l| ≥ N

(1)

where (·)∗ denotes the complex conjugate of the argument (·). The
aperiodic auto-correlation Cx(l) of ux at shift l is the aperiodic cross-
correlation of ux with itself, Cxx(l).

2.2 Mean Squared Aperiodic Correlations

For a given set U of size U , the mean squared aperiodic cross-correlation
(MSCC) and out-of-phase mean squared aperiodic auto-correlation
(MSAC), respectively, are defined as

Rcc =
1

U(U − 1)

∑

x,y∈U
x6=y

N−1∑

l=1−N
|Cxy(l)|2 (2)

Rac =
1

U

∑

x∈U

N−1∑

l=1−N
l 6=0

|Cx(l)|2 (3)

2.3 Cross-Ambiguity Function

In the sequel, we consider weighted pulse trains that can be described
by a complex envelope as

Ux(t) =
1√
T

N−1∑

i=0

ux(i) rect

(
t− iTc
Tw

)
(4)
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where T = N Tc is the duration of the xth pulse train while Tc and
Tw ≤ Tc, respectively, denote the repetition period and the width of
each rectangular pulse

rect

(
t

Tw

)
=

{
1 for −Tw

2 ≤ t ≤ Tw
2

0 otherwise
(5)

The elements ux(i) ∈ C, i= 0, 1, . . . , N−1, of the xth sequence ux

are the weights of the pulse train in (4).
In this paper, the following definition of the cross-ambiguity func-

tion between two signals Ux(t) and Uy(t) is used:

|χxy(τ, fd)| =
∣∣∣∣
∫ ∞

−∞
Ux(t)U∗y (t+ τ) exp(j2πfdt)dt

∣∣∣∣ (6)

where τ and fd denote delay and Doppler shift, respectively. The auto-
ambiguity function |χx(τ, fd)| of Ux(t) is the cross-ambiguity function
of Ux(t) with itself, |χxx(τ, fd)|.

3 Oppermann Sequences

The ith element ux(i) of the xth Oppermann sequence ux = [ux(0),
ux(1), . . . , ux(N − 1)] of length N is defined as [6]

ux(i) = (−1)x(i+1) exp

{
jπ[xm(i+ 1)p + (i+ 1)n]

N

}
(7)

where 1≤x≤N − 1, 0≤ i≤N − 1 and integer x is relatively prime to
the length N . The parameters m, n, and p in (7) take on real values
and define a family of Oppermann sequences. Some known properties
are as follows [6]:

Property 1. The size of a set of Oppermann sequences is maximal if
the length N is a prime and is then given as N − 1.

Property 2. For a fixed combination of m, n, and p = 1, all the
sequences have the same auto-correlation magnitude.
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Property 3. The auto-correlation magnitude depends only on n if
parameter p = 1 and is given as [6]

|Cx(l)| =
∣∣∣∣∣

1

N

N−1−l∑

i=0

exp

{
jπ

N
[(i+ 1)n−(i+ l + 1)n]

}∣∣∣∣∣ (8)

Property 4. The parameter m controls the location of the power
spectra associated with each sequence and hence controls the cross-
correlation properties.

4 Ambiguity Functions and Their Properties

4.1 Cross-Ambiguity Function

In view of Property 3, we focus on the case of p = 1. On this basis, we
consider two weighted pulse trains Ux(t) and Uy(t) as defined in (4),
where the pulse weights ux(i) and uy(i), i=0, 1, . . . , N−1, respectively,
are the ith elements of the xth and yth Oppermann sequence as given
in (7).

Property 5. Given Tw/Tc < 0.5, the cross-ambiguity function of a pair
of weighted pulse trains Ux(t) and Uy(t) with Oppermann sequences is
given by [8]

|χxy(τ, fd)| = 1

T

N−1∑

q=0

|χrect(τ + qTc, fd)|

×
∣∣∣∣∣

N−1−q∑

s=0

(−1)x(s+q+1)+y(s+1)

× exp

{
jπ

N
[xm(s+ q + 1)− ym(s+ 1)]

}

× exp

{
jπ

N
[(s+ q + 1)n − (s+ 1)n]

}
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× exp(j2πfdsTc)|

+
1

T

−1∑

q=−(N−1)
|χrect(τ + qTc, fd)|

×

∣∣∣∣∣∣

N−1−|q|∑

r=0

(−1)x(r+1)+y(r−q+1)

× exp

{
jπ

N
[xm(r + 1)− ym(r − q + 1)]

}

× exp

{
jπ

N
[(r + 1)n − (r − q + 1)n]

}

× exp(j2πfdrTc)| (9)

where χrect(τ, fd) denotes the triangular ambiguity function of a rect-
angular pulse rect(·).

Property 6. The cross-ambiguity function is anti-symmetric w.r.t.
the origin, i.e. |χxy(τ, fd)| = |χ∗yx(−τ,−fd)|.

Proof: Let us commence with the definition of the cross-ambiguity
function given in (6) in modified form using negative arguments, re-
versed order of sequences, i.e., yx instead of xy and without operator
| · | as

χyx(−τ,−fd)=

∫ ∞

−∞
Uy(t)U∗x(t− τ) exp (−j2πfdt)dt (10)

where the weighted pulse trains are given by

Ux(t) =
1√
T

N−1∑

r=0

ux(r) rect

(
t− rTc
Tw

)
(11)

Uy(t) =
1√
T

N−1∑

s=0

uy(s) rect

(
t− sTc
Tw

)
(12)

Further, let us first proof the property for general weighted pulse
trains and subsequently narrow the result to the considered scenario of
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using Oppermann sequences. For this purpose, we make a change of
variable in (10) as t1 = t− τ and obtain

χyx(−τ,−fd) = exp (−j2πfdτ)

×
∫ ∞

−∞
Uy(t+τ)U∗x(t) exp (−j2πfdt)dt (13)

Noting that integration is a linear operation, we can exploit the
fact that an integral of a conjugate is equivalent to the conjugate of
the integral. Thus, we may write

χyx(−τ,−fd) = exp (−j2πfdτ)

×
[∫ ∞

−∞
Ux(t)U∗y (t+τ) exp (j2πfdt)

]∗
dt (14)

= exp (−j2πfdτ)× χ∗xy(τ, fd)

Taking the conjugate of both sides in (14) and calculating the magni-
tude completes the general proof of Property 6 as

|χ∗yx(−τ,−fd)| = |χxy(τ, fd)| (15)

Rephrasing the proof with respect to the specific type of weighted
pulse trains with Oppermann sequences, we substitute (11) and (12)
in (10) giving

χyx(−τ,−fd) =
1

T

N−1∑

s=0

N−1∑

r=0

uy(s)u∗x(r)× I1 (16)

where the following notation has been used for brevity

I1=

∫ ∞

−∞
rect

[
t−sTc
Tw

]
rect

[
t−τ−rTc

Tw

]
exp(−j2πfdt)dt (17)

Similar as in the derivation of the auto-ambiguity function and the
cross-ambiguity function in [7] and [8], respectively, we make the change
of variable in (17) as t1 = t−sTc and then obtain after some elementary
derivations the expression

I1 = χrect [−τ − (s− r)Tc,−fd]× exp(−j2πfdsTc) (18)
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where χrect(·, ·) denotes the auto-ambiguity function of a rectangular
pulse and is defined as

χrect(τ, fd)=

∫ ∞

−∞
rect

[
t

Tw

]
rect

[
t+ τ

Tw

]
exp(j2πfdt)dt (19)

By substituting (17) in (16) and changing the order of the sums
over r and s, we obtain

χyx(−τ,−fd) =
1

T

N−1∑

r=0

N−1∑

s=0

u∗x(r)uy(s)

× exp(−j2πfdsTc) (20)

×χrect [−τ − (r − s)Tc,−fd]

According to [9] and utilizing a change of variable in the form of
q = r − s, the double sum in (20) can be rewritten as

N−1∑

r=0

N−1∑

s=0

=

N−1∑

q=0

N−1−q∑

s=0

∣∣∣∣∣∣
r=s+q

+

−1∑

q=−(N−1)

N−1−|q|∑

r=0

∣∣∣∣∣∣
s=r−q

(21)

and (20) may hence be expressed as

χyx(−τ,−fd) =
1

T

N−1∑

q=0

χrect(−τ − qTc,−fd)

×
N−1−q∑

s=0

u∗x(s+ q)uy(s) exp(−j2πfdsTc)

+ (22)

1

T

−1∑

q=−(N−1)
χrect [−τ − qTc,−fd]

× exp(−j2πfdqTc)
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×
N−1−|q|∑

r=0

u∗x(r)uy(r − q) exp(−j2πfdrTc)

In order to specialize (22) for Oppermann sequences, let us consider
the sums over s and r, respectively, as follows:

S1 =

N−1−q∑

s=0

u∗x(s+ q)uy(s) exp(−j2πfdsTc) (23)

S2 =

N−1−|q|∑

r=0

u∗x(r)uy(r − q) exp(−j2πfdrTc) (24)

Using the definition of Oppermann sequences given in (7) for the
considered case of p = 1, we have

ux(i) = (−1)x(i+1) exp

{
jπ

N
[xm(i+ 1)+(i+ 1)n]

}
(25)

uy(i) = (−1)y(i+1) exp

{
jπ

N
[ym(i+ 1)+(i+ 1)n]

}
(26)

Let us focus on (23) by solving the respective product obtained
from multiplying (25) with the complex conjugate of (26) as

u∗x(s+ q)uy(s) = (−1)x(s+q+1)(−1)y(s+1)

× exp

{−jπ
N

[xm(s+q+1) + (s+q+1)n]

}

× exp

{
jπ

N
[ym(s+1)+(s+1)n]

}
(27)

which results after some rearrangement of terms in

u∗x(s+ q)uy(s) = (−1)x(s+q+1)+y(s+1)

× exp

{−jπ
N

[xm(s+q+1)−ym(s+1)]

}

× exp

{−jπ
N

[(s+q+1)n−(s+1)n]

}
(28)
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By substituting (28) in (23), we obtain

S1 =

N−1−q∑

s=0

(−1)x(s+q+1)+y(s+1)

× exp

{−jπ
N

[xm(s+ q + 1)− ym(s+ 1)]

}

× exp

{−jπ
N

[(s+ q + 1)n − (s+ 1)n]

}

× exp(−j2πfdsTc) (29)

The similar derivation can be performed for (24), which eventually
leads to the expression

S2 =

N−1−|q|∑

r=0

(−1)x(r+1)+y(r−q+1)

× exp

{−jπ
N

[xm(r + 1)− ym(r − q + 1)]

}

× exp

{−jπ
N

[(r + 1)n − (r − q + 1)n]

}

× exp(−j2πfdrTc) (30)

At this point, we return to the calculation of the cross-ambiguity
function χyx(−τ,−fd) and substitute for S1 and S2 the expressions
given in (29) and (30), respectively, in (22):

χyx(−τ,−fd) =
1

T

N−1∑

q=0

χrect(−τ − qTc,−fd)

×
N−1−q∑

s=0

(−1)x(s+q+1)+y(s+1)

× exp

{−jπ
N

[xm(s+q+1)−ym(s+1)]

}

× exp

{−jπ
N

[(s+q+1)n−(s+1)n]

}

× exp(−j2πfdsTc)

+
1

T

−1∑

q=−(N−1)
χrect(−τ − qTc,−fd)
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× exp(−j2πfdqTc)

×
N−1−|q|∑

r=0

(−1)x(r+1)+y(r−q+1)

× exp

{−jπ
N

[xm(r+1)−ym(r−q+1)]

}

× exp

{−jπ
N

[(r + 1)n−(r−q+1)n]

}

× exp(−j2πfdrTc) (31)

In order to perform the complex conjugate of the cross-ambiguity function
shown in (31), we take advantage of the fact that complex numbers form a
field and the related identities for sum and product, respectively, of (a+b)∗ =
a∗ + b∗ and (a · b)∗ = a∗ · b∗. Then, we have

χ∗yx(−τ,−fd) =
1

T

N−1∑

q=0

χ∗rect(−τ − qTc,−fd)

×
N−1−q∑

s=0

(−1)x(s+q+1)+y(s+1)

× exp

{
jπ

N
[xm(s+q+1)−ym(s+1)]

}

× exp

{
jπ

N
[(s+q+1)n−(s+1)n]

}

× exp(j2πfdsTc)

+
1

T

−1∑

q=−(N−1)
χ∗rect(−τ − qTc,−fd)

× exp(j2πfdqTc)

×
N−1−|q|∑

r=0

(−1)x(r+1)+y(r−q+1)

× exp

{
jπ

N
[xm(r+1)−ym(r−q+1)]

}

× exp

{
jπ

N
[(r + 1)n−(r−q+1)n]

}
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× exp(j2πfdrTc) (32)

Given Tw/Tc < 0.5, the magnitude of (32) is given by

|χ∗yx(−τ,−fd)| =
1

T

N−1∑

q=0

|χ∗rect(−τ − qTc,−fd)|

×
∣∣∣∣∣

N−1−q∑

s=0

(−1)x(s+q+1)+y(s+1)

× exp

{
jπ

N
[xm(s+q+1)−ym(s+1)]

}

×exp

{
jπ

N
[(s+q+1)n−(s+1)n]

}

×exp(j2πfdsTc)|

+
1

T

−1∑

q=−(N−1)
|χ∗rect(−τ − qTc,−fd)|

×

∣∣∣∣∣∣

N−1−|q|∑

r=0

(−1)x(r+1)+y(r−q+1)

× exp

{
jπ

N
[xm(r+1)−ym(r−q+1)]

}

× exp

{
jπ

N
[(r + 1)n−(r−q+1)n]

}

× exp(j2πfdrTc)| (33)

Comparing (33) with (9) reveals that the following has to be shown in
order to complete the proof for the special case of Oppermann sequences:

|χrect(τ + qTc, fd)| = |χ∗rect(−τ − qTc,−fd)| (34)

For this purpose, let us recall that

χrect(−τ − qTc,−fd) =

∫ ∞

−∞
rect

[
t

Tw

]
rect

[
t− τ − qTc

Tw

]

× exp(−j2πfdt)dt (35)
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Applying a change of variable as t2 = t− τ − qTc gives

χrect(−τ − qTc,−fd) = exp[−j2πfd(τ + qTc)]

×
∫ ∞

−∞
rect

[
t+ τ + qTc

Tw

]
rect

[
t

Tw

]

× exp(−j2πfdt)dt (36)

with the conjugate being

χ∗rect(−τ − qTc,−fd) = exp[j2πfd(τ + qTc)]

×
∫ ∞

−∞
rect

[
t

Tw

]
rect

[
t+ τ + qTc

Tw

]

× exp(j2πfdt)dt (37)

Taking the magnitude of (37) completes the proof.

4.2 Auto-Ambiguity Function

Property 7. The auto-ambiguity function |χx(τ, fd)| of weighted pulse
train Ux(t) is given by [7]

|χx(τ, fd)| = 1

T

N−1∑

q=0

|χrect(τ + qTc, fd)|

×
∣∣∣∣∣

N−1−q∑

s=0

exp
{
j
π

N
[(s+q+1)n−(s+1)n]

}

× exp(j2πfdsTc)|

+
1

T

−1∑

q=−(N−1)
|χrect(τ + qTc, fd)|

×

∣∣∣∣∣∣

N−1−|q|∑

r=0

exp
{
j
π

N
[(r + 1)n−(r−q+1)n]

}

× exp(j2πfdrTc)| (38)
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Property 8. All sequences have the same auto-ambiguity function
|χx(τ, fd)| for a fixed parameter set m, n, and p = 1.

Proof: It can be seen from inspection of (38) that the auto-ambiguity
function |χx(τ, fd)| does not depend on x and hence is independent of
the sequence for fixed (m,n, 1).

Property 9. The auto-ambiguity function |χx(τ, fd)| of the examined
type of weighted pulse trains with Oppermann sequences depends only
on the parameter n for p = 1.

Proof: It can be seen from simple inspection of (38) that the auto-
ambiguity function |χx(τ, fd)| does not depend on m for p = 1 but only
on the parameter n.

Property 10. The auto-ambiguity function is symmetric w.r.t. the
origin, i.e. |χx(τ, fd)| = |χ∗x(−τ,−fd)|.
Proof: Given Tw/Tc < 0.5, this property can be proved by setting y = x
in (33) and proceeding as follows:

|χ∗x(−τ,−fd)| = 1

T

N−1∑

q=0

|χ∗rect(−τ − qTc,−fd)|

×
∣∣∣∣∣

N−1−q∑

s=0

(−1)x(s+q+1)+x(s+1)

× exp

{
jπ

N
[xm(s+q+1)−xm(s+1)]

}

× exp

{
jπ

N
[(s+q+1)n−(s+1)n]

}

× exp(j2πfdsTc)|

+
1

T

−1∑

q=−(N−1)
|χ∗rect(−τ − qTc,−fd)|

×

∣∣∣∣∣∣

N−1−|q|∑

r=0

(−1)x(r+1)+x(r−q+1)
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× exp

{
jπ

N
[xm(r+1)−xm(r−q+1)]

}

× exp

{
jπ

N
[(r + 1)n−(r−q+1)n]

}

× exp(j2πfdrTc)| (39)

Then, rearranging and summing common terms gives

|χ∗x(−τ,−fd)| = 1

T

N−1∑

q=0

|χ∗rect(−τ − qTc,−fd)|

×|(−1)xq|
∣∣∣∣exp

{
jπ

N
xmq

}∣∣∣∣

×
∣∣∣∣∣

N−1−q∑

s=0

exp

{
jπ

N
[(s+q+1)n−(s+1)n]

}

× exp(j2πfdsTc)|+

1

T

−1∑

q=−(N−1)
|χ∗rect(−τ − qTc,−fd)|

×|(−1)−xq|
∣∣∣∣exp

{
jπ

N
xmq

}∣∣∣∣

×

∣∣∣∣∣∣

N−1−|q|∑

r=0

exp

{
jπ

N
[(r + 1)n−(r−q+1)n]

}

× exp(j2πfdrTc)| (40)

which simplifies by taking the respective magnitudes under the sum-
mation over variable q as

|χ∗x(−τ,−fd)| = 1

T

N−1∑

q=0

|χ∗rect(−τ − qTc,−fd)|

×
∣∣∣∣∣

N−1−q∑

s=0

exp

{
jπ

N
[(s+q+1)n−(s+1)n]

}
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× exp(j2πfdsTc)|

+
1

T

−1∑

q=−(N−1)
|χ∗rect(−τ − qTc,−fd)|

×

∣∣∣∣∣∣

N−1−|q|∑

r=0

exp

{
jπ

N
[(r + 1)n−(r−q+1)n]

}

× exp(j2πfdrTc)| (41)

As |χrect(τ + qTc, fd)| = |χ∗rect(−τ − qTc,−fd)| has been proved in
the context of Property 6, the proof is complete.

5 Design Procedure and Numerical Examples

In this section, we provide procedures that may be deployed for the de-
sign of sequence sets with particular auto-ambiguity and cross-ambiguity
properties depending on the specific scenario under study. The numer-
ical examples are thought to provide additional insights on how the
sequence parameters relate to different performance characteristics.

5.1 Design procedure with focus on auto-ambiguity

A hierarchically structured framework for systematically designing weigh-
ted pulse trains with Oppermann sequences and focus on auto-ambiguity
characteristics may take advantage of Properties 1–3 and 7–10. In this
case, a formal procedure may be suggested as follows.

Clearly, Procedure 1 is based on the zero-Delay cut of the auto-
ambiguity function. Accordingly, optimization of performance metrics
other than the MSAC may be utilized in Step 2 such as the figure
of merit or maximum out-of-phase autocorrelation value [10]. In all
these cases, the designed weighted pulse trains will have the same auto-
ambiguity function for all sequences in the set (see Properties 2 and
8). However, cross-correlation among pairs of sequence may be large
as this type of characteristic is not taken into account by Procedure 1.
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Procedure 1. Auto-ambiguity based on MSAC

Step 1: Choose the sequence length N as a prime number in order
to obtained the largest set size of N −1 (see Property 1).

Step 2: Minimize Rac, for example, by varying parameter n using
a sufficiently small increment.

Step 3: Calculate the auto-ambiguity function |χx(τ, fd)|, e.g.,
for normalized delay τ/Tc being in the interval [−(N −
1), (N −1)] and for normalized Doppler fdT being in the
interval [0, C], where C denotes a constant (see Prop-
erty 10).

Step 4: End of procedure.

5.2 Design procedure with focus on cross-ambiguity

Similar as with the auto-ambiguity, a design procedure for weighted
pulse trains with Oppermann sequences and focus on cross-ambiguity
characteristics may take advantage of Properties 4 and 5–6. In this
case, a formal procedure may be suggested as follows.

Apparently, Procedure 2 is based on the zero-Delay cut of the auto-
ambiguity and cross-ambiguity functions. Similar optimization prob-
lems as those possed in Step 2 of Procedure 2 may be formulated for
metrics pairs other than MSAC and MSCC such as maximum out-of-
phase autocorrelation value and maximum crosscorrelation value. The
actual optimization may be performed, for example, by using the global
optimization method proposed in [11].

Alternatively, optimization may be performed in a more brute force
manner similar as outlined in Step 2 of Procedure 1 for the auto-
ambiguity function. For example, the bound value α of the MSAC
may be searched for by varying parameter n using a sufficiently small
increment. Subsequently, given the value of parameter n, the minimum
of the MSCC may be obtained by varying parameter m also using a
sufficiently small increment.
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Procedure 2. Cross-ambiguity based on MSCC

Step 1: Choose the sequence length N as a prime number in order
to obtained the largest set size of N −1 (see Property 1).

Step 2: Minimize Rcc for a given bound α on Rac, that is
{

minm,nRcc

subject to Rac ≤ α
or, alternatively, minimize Rac for a given bound β on
Rcc, that is
{

minm,nRac

subject to Rcc ≤ β
Step 3: Calculate the cross-ambiguity function |χxy(τ, fd)| for a

desired pair x and y of sequence, e.g., for normalized
delay τ/Tc being in the interval [−(N − 1), (N − 1)] and
for normalized Doppler fdT being in the interval [0, C],
where C denotes a constant (see Property 6).

Step 4: End of procedure.

5.3 Design examples

To illustrate the application of selected ambiguity function properties
in the waveform design process, let us consider Oppermann sequences
of length N = 31 and p = 1. According to Property 1, the family
is of maximum size offering U = 30 distinct sequences. In view of
Properties 2, 3, 9, and 10, auto-correlation and auto-ambiguity function
are the same for all sequences and depend only on parameter n.

Let us further consider an optimized design using Procedure 2 with
respect to minimum MSAC, which is obtained as Rac,opt = 0.1107 for
n = 2.0072. While Rac,opt does not depend on m, the MSCC, Rcc, can
be kept small for m≥0.92 and assumes the minimum of Rcc=0.9984 for
m=2.92. As mentioned above, optimization may be performed either
by using the method described in [11] or the brute force approach by
varying n in small increments to minimize Rac and then varying m in
small increments to minimize Rcc.
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Fig. 1a shows the contour plot of the auto-ambiguity function for
this design, which holds for all sequences in the family (see Properties 9
and 10). As can be seen from the plot and in view of Property 10, it is
sufficient to consider two quadrants in an optimization while the shape
of the ambiguity function for the remaining quadrants can be obtained
from the symmetry property. It is noted that the ratios τ/Tc and
fdT represent normalized delay and normalized Doppler, respectively,
which are referred to as delay and Doppler for brevity.

Fig. 1b depicts the zero-Delay cut related to optimal MSAC and
reveals insights into the Doppler tolerance of an integrated receiver
design. As can be seen from the plot, the optimal parameter m=2.92
produces a favorable spacing of the characteristics in the zero-Delay cut
for the different sequence pairs. In particular, sequences pairs may be
selected such that different moving objects can be easily distinguished.
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Figure 1: Performance for optimized Rac,opt = 0.1107 (N = 31, n =
2.0072, m = 2.92): (a) Auto-ambiguity function, (b) Normalized auto-
ambiguity cut (solid) and cross-ambiguity cut (dashed) for τ = 0, (c)
Normalized power spectrum magnitudes for sequences u1 (solid) and
u2 (dashed).
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Fig. 1c shows the power spectrum magnitudes of sequence pair u1

and u2, i.e. x = 1 and y = 2. This pair turns out to results in
the smallest interference among the possible pairs and hence may be
selected to serve communication functions. Additional sequences may
be selected for the designed set accordingly such that MAI remains
small.

Clearly, the waveform design for an integrated receiver may be opti-
mized to trade-off auto-correlation and auto-ambiguity characteristics,
respective, for cross-correlation and cross-ambiguity characteristics. In
other words, the design may balance the constraints given by commu-
nications as well as radar, positioning, or navigation objectives.

6 Conclusions

In this paper, we have considered several properties of the auto-ambigu-
ity and cross-ambiguity function of weighted pulse trains with Opper-
mann sequences. A number of important properties have been exam-
ined and proved which in turn allows for reducing the design space for
optimization of a particular design. The insights gained from these
properties build the foundations in the formulation of a formal frame-
work leading to procedures that can be used for a more structured
waveform design. In particular, the two procedures presented for de-
signing weighted pulse trains with respect to auto-correlation and cross-
correlation properties, respectively, are linked to the zero-Doppler cut
metrics of MSAC and MSCC. Numerical examples are provided to illus-
trate the relationship between sequence parameters and performance
characteristics.
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Waveform Optimization for Integrated Radar

and Communication Systems Using

Meta-Heuristic Algorithms

Momin Jamil and Hans-Jürgen Zepernick

Abstract

Integration of multiple functions such as navigation and radar
tasks with communication applications has attracted substantial
interest in recent years. In this chapter, we therefore focus on
the waveform optimization for such integrated systems based on
Oppermann sequences. These sequences are defined by a number
of parameters that can be chosen to design sequence sets for a
wide range of performance characteristics. It will be shown that
meta-heuristic algorithms are well-suited to find the optimal pa-
rameters for these sequences. The motivation behind the use of
biologically inspired heuristic and/or meta-heuristic algorithms
is due to their ability to solve large, complex, and dynamic prob-
lems.

1 Introduction

In recent years, integration of multiple functions such as navigation and
radar tasks with communication applications has sparked a number of
research initiatives. This includes research on future signals for hybrid
receivers for Global Navigation Satellite Systems (GNSS)/communicati-
on and others tasks. The many benefits of multi-functionality range
from reducing costs and probability of intercept to offering tolerable
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co-site interference. While navigation and radar applications require
waveform designs that offer excellent autocorrelation characteristics,
the target for communication applications is on sets of waveforms with
minimum crosscorrelation among the sequences in the set. In the for-
mer case, typically only a single sequence is needed while in the latter
case many sequences are required to support access of multiple users to
the common transmission medium. As excellent autocorrelation prop-
erties come at the expense of crosscorrelation characteristics and vice
versa, a related waveform optimization problem has to be posed and
solved taking into account these conflicting requirements. As far as the
integration of radar and communication functionalities are concerned,
the Office of Naval Research in 1996 launched the Advanced Multifunc-
tion Radio Frequency Concept (AMRFC) program [18,52]. This major
program was motivated by the lack of integration of radar, communi-
cations, and electronic warfare functions which resulted in a significant
increase of the number of topside antennas. Furthermore, it was real-
ized that the lack of integration may also cause severe problems with
antenna blockage and difficulties with own-ship electromagnetic inter-
ference. Also, a large number of antennas puts stress on maintenance
resources. The concepts developed within the AMRFC program are
centered around suitable broadband RF apertures that can cope with
simultaneous operation of multiple functions and as such focuses on
the rather expensive radio frequency (RF) front-end. A different ap-
proach on the basis of linear frequency modulated (LFM) waveforms,
also known as chirps, has been proposed in [48]. In order to enhance the
orthogonality among the signals and to support distinct separation of
the different functions, it uses up-chirps for the communications com-
ponent and down-chirps for the radar functionality of the integrated
system. In this way, the suggested chirp signals allow for the radar and
communication data to be simultaneously transmitted and received us-
ing some standard antenna array. Noting the inherent connection of
the chirp-based integration concept to spread spectrum techniques, the
work of [58, 59] investigated integrated radar and communication sys-
tems with the help of bipolar pseudo noise (PN) sequences, namely m-
sequences [14,62]. However, one of the severe drawbacks ofm-sequences
with respect to radar applications is their poor Doppler tolerance [32]
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and related problems of detecting multiple targets. These and related
designs such as polyphase Barker sequences are optimized only with
respect to the zero Doppler cut of the ambiguity function but pro-
duce much higher interference levels in the presence of Doppler shifted
waveforms. As for the application to communications, large sets of
m-sequences that would be needed to support multiple-access of many
users have typically rather poor crosscorrelation properties [62]. As
a consequence, they are generally only used as components of more
complex designs such as Gold sequences. On the other hand, the large
advances in modern integrated circuit technologies would facilitate an
efficient implementation of more advanced sequence designs such as
complex-valued sequences. Clearly, efficient optimization methods are
needed to find suitable waveform and sequence designs for different
applications.

Over the last few decades, researchers around the world have de-
veloped a vast number of algorithms to solve different optimization
problems. Many of these algorithms are based on numerical linear and
non-linear programming methods. As a result, the related algorithms
require substantial gradient information and try to improve the solution
in the proximity of an initial starting point. As a consequence, these
methods provide useful strategies to find the global optimum for rather
ideal and simple models. However, if the objective function and con-
straints have multiple or sharp peaks, these methods tend to become
unstable. Most of the real world problems turn out to be too com-
plex and difficult to solve using numerical based optimization methods
as these tend to fail or are even unable to solve them. There exist
also several direct search approaches which use no gradient informa-
tion such as the Hooke and Jeeves method [17], Nelder-Mead simplex
method [43], the Powell method [46], and the Rosenbrock method [49].
Common to these methods is that they take some basic approach of
heading downhill from an arbitrary starting point but differ in decid-
ing in which direction to and how far to move. Accordingly, the final
outcome depends somewhat on the initial guess of the starting point.
This would not be a major shortcoming if the parameter space is well
behaved, i.e. if it contains a single, well-defined minimum. However, if
the parameter space contains many local minima, as may be the case in
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waveform optimization, it can be more difficult for such traditional ap-
proaches to find the global minimum. In contrast to population based
algorithms, these direct searches cannot explore the search space effec-
tively in different directions simultaneously. Successive improvements
can be made to speed up the downhill movement of the algorithms but
this does not improve the algorithms ability to find the global minimum
instead of converging to a local minimum.

The drawbacks of numerical methods motivated researchers to adopt
ideas from nature and to translate them to solve problems in engineer-
ing sciences. This has led to the inception of many biologically inspired
heuristic or meta-heuristic algorithms to solve challenging optimization
problems. The word “meta” means beyond or higher and “heuristic”
means to find or to discover by trial and error. These methods have
proven to be efficient in handling computationally complex problems.
They aim at defining effective general purpose methods to explore the
solution space and avoid tailoring them to a specific problem. Due to
their general purpose nature, they can be applied to a wide range of
problems. Meta-heuristic algorithms are also referred to as black-box
algorithms as they exploit limited knowledge about the problem to be
solved. As no gradient or Hessian matrix information is required for
their operation, they are also referred to as derivative-free or zero-order
algorithms [5]. The term zero-order implies that only the function val-
ues are used to establish the search vector. Moreover, the function to
be optimized does not necessarily have to be continuous or differen-
tiable and may also be accompanied by a set of constraints. The choice
of method for solving a particular problem depends primarily on the
type and characteristics of the problem at hand. It must be stressed
that the goal of a particular method used is to find the “best” solution
of some sort to a problem compared to finding the optimal solution.
In this context, the term “best” refers to an acceptable or satisfactory
solution to the problem. This could be the absolute best solution from
a set of candidate solutions or may be any of the candidate solutions.
The requirements and characteristics of the problem determine if the
overall best solution can be found [10,53].

Nature has an evolution span of millions or even billions of years.
In all these years, it has mastered the art of finding a perfect solution
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to almost all the problems it has been confronted with. As mentioned
above, the development of nature inspired optimization algorithms has
been an area of active research during recent years and resulted in many
approaches such as genetic algorithms (GA), ant colony optimization
(ACO), bee algorithms (BA), artificial bee algorithms (ABC), particle
swarm optimization (PSO), simulated annealing (SA), harmony search
(HS), firefly algorithms (FA), and artificial immune systems (AIS). The
interested reader may be referred to [4, 10, 15, 31, 50, 55, 61] and the
reference therein for more details and discussions on these topics.

Given the vast amount of available optimization methods, their ap-
plication in waveform design also stretches from simple searches over
more sophisticated and computational demanding realizations to the
use of meta-heuristic algorithms. A simple computer search has been
used in [44] to obtained sets of sequences with various combinations of
sequence parameters. In [57], the optimization of orthogonal polyphase
spreading sequences for wireless data applications is reported. It uses
a built-in standard ‘fmin’ function provided in the numerical comput-
ing environment MATLAB. In particular, the related functions support
multidimensional unconstrained nonlinear minimization including the
Nelder-Mead direct search method. As the utilized cost functions in
terms of average mean-square autocorrelation and crosscorrelation are
very irregular and may have several local minima, the authors report
the dependency of the optimization outcome on the starting point and
corresponding convergence to different local minima. A similar opti-
mization problem for complex-valued spreading sequences has been in-
vestigated in [9] using a global optimization method based on a modified
bridging method. In order to solve the related complex optimization
problem having a non-linear cost function and a non-linear constraint,
a bridged function is used in the search for the global minimum such
that the algorithm does not get stuck in a local minimum. Given that
cost functions in waveform optimization are often highly irregular with
many local minima or are even discontinuous, evolutionary algorithms
have gained increased attention in the design of waveforms with respect
to communication and radar applications. An evolutionary approach
for designing complex spreading codes for direct sequence code-division
multiple-access (DS-CDMA) systems has been proposed in [41,42]. In
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particular, a multi-objective evolutionary approach is used to search
for solutions that satisfy simultaneous objectives posed on autocorre-
lation and crosscorrelation properties. This approach turned out to
be beneficial in the communications field for designing large number
of spreading sequence sets with a wide range of correlation properties.
In [7], genetic algorithms have been used to design PN sequence families
with bounded correlation properties. It is claimed that this approach
can produce sequences of any length and superior performance com-
pared to the well-known Gold sequences. A number of recent works
has also been reported for the use of evolutional algorithms in the field
of radar applications. In [2], an evolutionary algorithm is applied to
determine a suite of optimal waveforms to simultaneously perform dif-
ferent surveillance missions such as ground moving target indication,
airborne moving target indication, and synthetic aperture radar. The
authors have shown that evolutionary algorithms are well suited to
design optimal waveforms for multi-mission objectives such as peak
sidelobe levels, integrated sidelobe levels, pulse integration, and revisit
time. The work reported in [37] used meta-heuristic algorithms to op-
timize waveforms with sparse spectrum for radar applications in the
high frequency band. In particular, a genetic algorithm and particle
swarm optimization are used to produce optimal waveforms with ac-
ceptable autocorrelation sidelobes. It is concluded that the particle
swarm optimization is simpler and faster than the genetic algorithm.
They are of the opinion that computational efficiency of particle swarm
optimization is comparable or would be even better than the adaptive
method of [39].

In view of the above, this chapter considers integrated radar and
communication systems based on waveforms known as polyphase se-
quences. In order to account for the waveform design challenges asso-
ciated with such integrated systems, we have compared performance
and potential application scenarios of different classes of polyphase
pulse compression sequences in our earlier studies reported in [25, 26].
Specifically, Oppermann sequences have been revealed in these studies
to potentially better support the considered integration as these allow
for the design not only of families with a wide range of correlations
but also support a variety of characteristics with respect to the ambi-



Waveform Optimization for Integrated Radar and Communication Systems Using

Meta-Heuristic Algorithms 157

guity function, i.e. delay-Doppler tolerance. These sequences provide
a number of parameters that can be chosen to design sequences for a
wide range of performance characteristics. It will be shown that meta-
heuristic algorithms are well-suited to find the optimal parameters for
these sequences. Numerical results will be provided for optimal Opper-
mann sequences obtained with meta-heuristic algorithms.

The rest of this chapter is organized as follows. In Section 2, an
overview of meta-heuristic algorithms is presented. A brief discussion of
polyphase sequences and the definition of Oppermann sequences is pro-
vided in Section 3. In Section 4, performance measures are introduced.
Numerical examples are given in Section 5. In Section 6, conclusions
are drawn.

2 Meta-Heuristic Algorithms

Meta-heuristic algorithms, also referred to as meta-heuristics for brevity,
belong to a branch of stochastic optimization. They are utilized by both
engineers and scientists wishing to optimize solutions to problems that
are intractable by conventional methods. Meta-heuristic methods con-
sist of two major components known as randomization and selection
of the best solutions. The first component avoids that an algorithm
gets trapped in a local optimum but also increases the diversity of the
potential solutions while the latter component ensures convergence to-
wards the optimal value [10, 60, 61]. A good combination of these two
components usually ensures that the global optimum is achievable. The
popularity of these algorithms stems from their ability to solve large,
complex and dynamic problems. The efficiency of these algorithms or
solutions they provide is a measure of their ability to reach an accept-
able solution within a reasonable time frame.

The applications of meta-heuristics are broad, versatile and di-
verse. Application areas include controller design, applied mathemat-
ics, power systems, physics, data mining, fuzzy systems and many
others. In this chapter, we will apply some of these algorithms to
pseudo random signal processing with focus on waveform design for
integrated radar and communication systems. For this purpose, meta-
heuristic algorithms may be classified as being either population-based
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or flight/trajectory-based. Genetic algorithms, for example, can be
classified as a population-based method while particle swarm opti-
mization utilizes multiple particles to reach the optimal solution. On
the other hand, simulated annealing uses a single solution that moves
through the search space or design space in a piecewise manner. The
essence of the algorithm is always to accept a better solution, whereas
a not-so-good solution is accepted with certain probability. In the se-
quel, selected state-of-the-art zero order and meta-heuristic algorithms
are presented.

2.1 Particle Swarm Optimization

The PSO is a population-based stochastic optimization technique which
has been inspired by social behavior of a flock of birds, school of fishes
and swarm of bees as proposed by Eberhart and Kennedy [30]. Since
its inception, there have now as many as about 20 different variants of
PSO been proposed while remaining still an active area of research. It
shares many similarities with genetic and virtual ant algorithms includ-
ing concepts such as population initialization with random solutions
and search for a global optimum solution in successive generations.
However, the evolution operators like mutation and crossover as well
as encoding or decoding of the parameters into binary strings are not
used with PSO algorithms. Instead, it uses a real-number randomness
and global communication among the swarm population. Accordingly,
each member in the swarm adapts its search patterns by learning from
its own experiences of the other members. A member in the swarm
is referred to as a particle and represents a potential solution which is
a point in the search space. The global optimum is regarded as the
location of food [36]. Each particle has a fitness value and a velocity to
adjust its flying direction by learning from the best experiences of the
swarm to search for the global optimum in the D-dimensional solution
space. In our case, the dimension D of the problem is given by the
number of parameters that are available for optimization for a given
class of sequences. In order to avoid haphazard movements of the par-
ticles in the search space, upper and lower bounds are usually specified
on the velocity. If the velocity v falls below the specified lower bound,
it is set to vmin as a measure to prevent in-sufficient exploration of the



Waveform Optimization for Integrated Radar and Communication Systems Using

Meta-Heuristic Algorithms 159

search space. On the other hand, if the velocity exceeds the specified
upper bound, it is set to vmax in order to avoid particles moving away
from or past a good solution. Similarly, the actual search range for a
D-dimensional problem is usually also constrained to a given interval
[xmin, xmax]D, in order to restrain the particles moving on the search
boundary.

The standard PSO uses both the personal best, pbest, with respect
to the location achieved by an individual particle and the global best,
gbest, referring to the best solution/location among all particles in
the swarm [10, 30]. The concept of personal best is primarily used to
increase the diversity in finding a solution and to avoid pulling all the
particles to the global best. This may cause the algorithm to converge
prematurely without finding the overall best solution. However, such
diversity can also be simulated by using some kind of randomness [60,
61]. Based on this observation, [61] argues that there is no need to use
the personal best, unless the optimization problem is highly nonlinear
and multi-modal. This version of the PSO is known as accelerated PSO
(APSO) [60,61].

2.2 Harmony Search

A new of a heuristic optimization algorithms known as harmony search
(HS) was developed by Lee and Geem [31]. It formalizes the musician
improvisation process, i.e. inventing music while performing, into a
quantitative optimization process. It comprises of the following parts:
(1) Usage of harmony; (2) pitch adjustment; and (3) randomization.
In an HS algorithm, each musician (decision variable) plays (generates)
a note (value) for finding a best harmony (global optimum). In other
words, a harmony translates to an optimization solution vector and
the musician’s improvisation corresponds to local and global search
schemes in terms of optimization. Solutions of the optimization process
correspond to a musician while the harmony of the notes generated
by a musician corresponds to the fitness of the solution. The pitch
adjustment rate rpa ∈ [0.1, 0.5] and so-called harmony memory raccept ∈
[0.7, 0.95] ensure that the best harmonies established at some point will
be carried over to a new harmony memory. For a detailed discussion
on harmony search, the interested reader is referred to [31, 60, 61] and
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the references therein.

2.3 Adaptive Simulated Annealing

The classical SA algorithm [10,53,60,61] relies on the Boltzmann sam-
pling distribution. It comprises of components such as the probability
density function of the state space g(γ) with γ being the current so-
lution, an acceptance probability function h(∆E) with respect to the
difference in system energy ∆E between two design vectors, and an
annealing schedule for temperature T (k) with annealing time k us-
ing Boltzmann annealing. An enhanced version of the classical SA
known as adaptive SA (ASA) has been proposed in [20–23] including
comparisons, test case studies and applications. In contrast to SA,
the annealing schedule for temperature T (k) decreases exponentially
in annealing time k. In addition, re-annealing and quenching is intro-
duced with ASA that allows for adaptation to changing sensitivities in
multidimensional parameter spaces.

2.4 Artificial Bee Colony Algorithm

The ABC algorithm was proposed by Karaboga [27] in 2005. It sim-
ulates the foraging behavior associated with bee colonies. A colony
of honey bees can extend itself over long distances, sometimes more
than 10 kilometers and in multiple directions simultaneously to exploit
a large number of food sources. In a bee colony, tasks are divided
among the specialized individuals or bees, namely employed, onlooker
and scout bees. The population in a bee colony is divided into two
halves. The first half of the population is comprised of employed bees
while the second half includes the onlooker bees. The foraging process
begins in a colony by scout bees being sent to search for promising
food sources. Scout bees move from one food source to another in a
random fashion. Employed bees perform duties of exploiting the pos-
sible food sources and passing on the information about the quality of
the food source to the onlookers bee. The decision taken by onlooker
bees to exploit a potential food source depends on the information pro-
vided by the employed bees. ABC algorithms have been used to solve
both unconstrained and constrained optimization problems [3, 27–29].
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It requires only a few control parameters such as the colony size and
maximum number of cycles [29].

2.5 Preliminaries for Waveform Design

From this point onwards, we will consider two-dimensional optimization
problems unless otherwise specified. In the context of waveform design
using Oppermann sequences, the term swarm in APSO, harmonies in
HS, bees in ABC and candidate points in ASA relate to the parameters
m and n which define a specific sequence family. In all these algorithms,
the control parameters are defined in the initialization phase. Initially,
all the algorithms start with a population randomly distributed except
for ASA, which starts with the initial guess in the search space. In each
step of the algorithms, there is always a solution or a set of solutions,
representing the current state of the algorithm. These solutions are
used to generate phases of the Oppermann sequences (see Section 3).
In order to distinguish good waveform designs from inferior designs,
waveform characteristics such as aperiod correlations, figure of merit,
and integrated sidelobe measures are computed. The interested reader
can find pseudo code of HS in [61], ASA in [51], and ABC in [27] while
details of the APSO can be found in [60,61].

3 Polyphase Sequences and Their Applications

The history of complex-valued sequences ranges back as far as the 1950s
when polyphase sequences where considered in many research laborato-
ries. As the related research outcomes were reported mainly in classified
documents with limited access, a broader audience was first reached
with the work in [16] on phase shift pulse sequences. In the follow-
ing decades, many complex-valued sequences have been proposed and
analyzed with their applications ranging from radar systems to spread-
spectrum communication systems. In particular, polyphase sequences
have gained increased attention due to their ability to match regular
phase shift keying modulation schemes. In addition, the advances in
integrated circuit technologies have paved the way for moving from sim-
ple binary sequences to implementations of complex-valued sequences
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and related more involved pseudo random signal processing. In the se-
quel, we consider polyphase sequences and will shed some light on their
potential to serve in integrated radar and communication systems. In
particular, the family of Oppermann sequences [44] are considered in
more detail as they offer the system designer large sets of sequences
with a wide range of correlation properties compared to other classes
of polyphase sequences.

3.1 Polyphase Sequences for Radar Systems

Pseudo random sequences and the related signal processing have emerg-
ed from space and military applications. In this context, the concept
of pulse compression, i.e. expanded pulses with large time-bandwidth
products, has been utilized in radar systems. This type of signals of-
fer high range resolution as they can obtain high pulse energy and
large pulse width. As an alternative to frequency-modulated signals,
pulse compression sequences have been subject of many studies [14,32].
Polyphase sequences are known to have better Doppler tolerance for a
broader range-Doppler coverage than binary sequences [8, 32, 40, 45].
These sequences can be derived from the phase history of chirp or
step chirp analog signals and can be processed digitally [35]. In radar
applications, the performance of different polyphase sequences can be
compared in terms of delay or range tolerance using measures such
as the autocorrelation function, mainlobe-to-total-sidelobe ratio and
peak-to-sidelobe ratio. The sensitivity of a particular waveform design
towards Doppler shifts in case of moving targets can be characterized
by using the ambiguity function. As there exist no analytical method
that would allow for synthesizing the desired waveform given its desired
ambiguity function, more practical optimization approaches are needed
to facilitate such designs. For example, the design of a particular radar
waveform may be first aiming for optimization of autocorrelation prop-
erties with respect to range characteristics followed by evaluating the
ambiguity function to identify the Doppler tolerance of the deduced
sequence.

As far as radar applications are concerned, Frank sequences [12]
were the first polyphase sequences used in pulse compression radar [45].
They can only be designed for perfect square lengths, therefore, they
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have limited family size. Later in [33] modified versions of Frank se-
quences were obtained by permuting their phase history. The modified
versions are referred to as P1 and P2 sequences. Rapajic and Kennedy
in [47] proposed a new class of sequences, known as Px sequences.
These sequences have superior performance in terms of integrated side-
lobe levels compared to Frank, P1, and P2 sequences. However, for
even square root sequence lengths, their performance is the same as
for P2 sequences. In [34], the families of P3 and P4 sequences were
proposed that can be constructed for any length. The authors of [6,13]
generalized the ideas behind Frank sequences resulting in Frank-Zadoff-
Chu (FZC) sequences which can also be designed for any length. Sev-
eral performance aspects of the aforementioned classes of polyphase
sequences with respect to radar applications have been discussed in
literature [33,35,47].

3.2 Polyphase Sequences for Communication Systems

A major boost for the application of pseudo random sequences in the
field of communication systems was given by the development of cellu-
lar mobile communication systems and spread-spectrum based radios
for indoor communication. In particular, the CDMA system for digital
cellular phone applications by Qualcomm Incorporated and the fam-
ily of IEEE802.11 standards for wireless local area networks (WLANs)
has taken the theoretical concepts into practical systems. The main
classes of sequences used with these systems are Walsh-Hadamard se-
quences [11, 54], m-sequences [11, 62], Barker codes [11, 62], and com-
plementary code keying based modulation [19]. Subsequently, with
the advent of the third generation of mobile communication systems,
more advanced spread-spectrum techniques such as orthogonal variable
spreading factor sequences [1] and complex-valued short scrambling se-
quences have been utilized. In contrast to radar applications where it
is usual sufficient to have a single sequence with good autocorrelation
characteristics, communication systems require a set of sequences to fa-
cilitate simultaneous channel access to a number of users. Clearly, mini-
mum crosscorrelation among the sequences is a major design considera-
tion in this case. Given the large advances in modern integrated circuit
technologies, it has become feasible to implement complex-valued se-
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quence designs including polyphase sequences such as Frank sequences,
FZC sequences, and Oppermann sequences.

3.3 Application of Oppermann Sequences for Integrated
Radar and Communication Systems

Given the insights from the brief overview on polyphase sequences
from the viewpoint of radar and communication applications, it can
be concluded that more flexible waveform designs are needed to ad-
dress the conflicting objectives of these two applications. Our earlier
research [25, 26] on this topic has revealed that Oppermann sequences
may serve favorable in such integrated radar and communication sys-
tems compared to conventional waveform designs. This is mainly due
to the fact that families of Oppermann sequences can be designed for
a wide range of correlation properties. For any given sequence length,
Oppermann sequences are defined by three parameters. These param-
eters can be used in an optimization process to control the progression
of the autocorrelation function, crosscorrelation function, the power
spectral density and characteristics of the ambiguity function. Due to
space limitations, however, we will concentrate here on range (autocor-
relation) and multiple access (crosscorrelation) characteristics. On the
other hand, inclusion of moving targets and the related Doppler shifts
into the framework of meta-heuristic algorithms may be addressed in
our future research considering ambiguity and cross-ambiguity func-
tions.

In this chapter, we consider weighted pulse trains that can be de-
scribed by a complex envelope as

Ux(t) =
1√
T

N−1∑

i=0

ux(i) rect

(
t− iTc
Tw

)
(1)

where T = N Tc is the duration of the xth pulse train while Tc and
Tw ≤ Tc, respectively, denote the repetition period and the width of
each rectangular pulse

rect

(
t

Tw

)
=

{
1 for −Tw

2 ≤ t ≤ Tw
2

0 otherwise
(2)
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The elements ux(i), i= 0, 1, . . . , N−1, of the xth complex-valued
sequence ux of length N represent the weights of the pulse train in (1).
In general, these elements are given for a polyphase sequence as

ux(i) = exp [jϕx(i)] , j =
√
−1 (3)

where the set of N phases {ϕx(0), ϕx(1), . . . , ϕx(N − 1)} are referred
to as phase sequence. In particular, the phase ϕx(i) of the ith element
ux(i) of the xth Oppermann sequence ux = [ux(0), ux(1), . . . , ux(N−1)]
of length N taken from a family or set U of sequences is given as

ϕx(i) =
π

N
[xm(i+ 1)p + (i+ 1)n + x(i+ 1)N ] (4)

where 1≤ x≤N − 1, 0≤ i≤N − 1 and integer x is relatively prime
to the length N . The maximum size of a family U of Oppermann
sequences is obtained as N −1 when the length N of the sequences is a
prime number. A particular family of Oppermann sequences is defined
by the real-valued parameters m, n, and p. All the sequences in a
family have the same magnitude of the autocorrelation function for a
fixed combination of these three parameters. In [44], it has been shown
that the magnitude of the autocorrelation function depends only on the
parameter n if the parameter p = 1. For this case, the autocorrelation
magnitude follows the expression

|Cx(l)| =
∣∣∣∣∣

1

N

N−1−l∑

i=0

exp

{
jπ

N
[(i+ 1)n−(i+ l + 1)n]

}∣∣∣∣∣ (5)

In the sequel, we therefore focus on the case of p = 1 which leaves
us with m and n as free parameters for use in an optimized waveform
design.

Due to the general definition of Oppermann sequences, they include
some more specific sequences. For example, for the parameters m = 2,
n = −∞, p = 1, FZC sequences can be generated. As such, applica-
tion of the considered meta-heuristic algorithms to these more specific
sequences is straightforward.
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4 Performance Measures

In the following sections, the definitions of the measures used in the
performance comparison of the considered Oppermann sequences will
be given. Specifically, let an Oppermann sequence of length N be
denoted as ux=[ux(0), ux(1), . . . , ux(N−1)] where subscript 1 ≤ x ≤ U
relates to the xth sequence ux taken from a given set U of size U .

4.1 Aperiodic Correlation Measures

In order to quantify the degree of similarity between different sequences
from a given set or between a given sequence and a shifted version
of it, respectively, autocorrelation and crosscorrelation measures are
usual considered. In many fields, aperiodic signals need to be processed
which occur only once within a considerable time span and appear to
the application as more or less singular events. Accordingly, the ape-
riodic crosscorrelation (ACC) between two complex-valued sequences
ux = [ux(0), ux(1), . . . , ux(N−1)] and uy = [uy(0), uy(1), . . . , uy(N−1)]
of length N at discrete shift l is given as [11,62]

Cxy(l)=





1
N

N−1−l∑
i=0

ux(i)u∗y(i+ l), 0 ≤ l ≤ N−1

1
N

N−1+l∑
i=0

ux(i−l)u∗y(i), 1−N ≤ l < 0

0, |l| ≥ N

(6)

where (·)∗ denotes the complex conjugate of the argument (·). In case
of ux = uy, (6) is referred to as aperiodic autocorrelation (AAC) and
is denoted as Cx(l) = Cxx(l).

In addition to ACC and AAC, it is often more realistic to incorpo-
rate the whole range of possible correlation values into the performance
evaluation of a given set of sequences rather than considering only peak
values of aperiodic correlations. In this context, mean-square values
from AAC and ACC may be used in favor of worst case scenarios. For
this purpose, let us introduce the mean-square out-of-phase autocorre-
lation (MSAC), Rac, and mean-square crosscorrelation (MSCC), Rcc,
respectively, of a given set U of size U as
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Rac =
1

U

U∑

x=1

N−1∑

l=1−N
l 6=0

|Cx(l)|2 (7)

Rcc =
1

U(U − 1)

U∑

x=1

U∑

y=1
y 6=x

N−1∑

l=1−N
|Cxy(l)|2 (8)

4.2 Sidelobe Measures

The figure of merit (FOM) of a sequence ux ∈ U , 1 ≤ x ≤ U of
length N with aperiodic autocorrelation function Cx(l) measures the
ratio of energy in the mainlobe to the energy in the sidelobe of the
autocorrelation function. It is defined as

FOMx =
Cx(0)

2
N−1∑
l=1

|Cx(l)|2
, ∀x (9)

Alternatively, the integrated sidelobe level (ISL) is often used for
radar applications in the context of distributed target environments.
The ISL of a sequence ux ∈ U , 1 ≤ x ≤ U of length N is defined as

ISLx =
1

FOMx
, ∀x (10)

Another important measure in relation to radar applications is the
peak-to-sidelobe ratio (PSLR) which relates to the ability of detecting
targets without masking interfering targets. For example, if an AAC
has large sidelobes, it will mask nearby targets and leave them unde-
tected. Specifically, the PSLR of a sequence ux measures the ratio of
the in-phase value Cx(0) to the maximum sidelobe magnitude |Cx(l)|
of the periodic autocorrelation function Cx(l). It is defined as

PSLRx =
Cx(0)

max
1≤l<N

|Cx(l)| , ∀x (11)
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5 Numerical Examples

In the sequel, some numerical examples are provided to illustrate the
application of meta-heuristic algorithms for waveform optimization for
integrated radar and communication systems. For this purpose, we
consider the class of Oppermann sequences as defined in (4) of length
N = 31. It is noted that the maximum number of N−1 = 30 sequences
in the designed set is obtained as N is chosen as a prime number.
Furthermore, the considered sequence family offers parameters m and
n for optimization given the case of parameter p = 1. Accordingly, the
following optimization problems may be posed:

P1 : min
n∈[n1,n2]

ISL(U ) (12)

P2 : max
n∈[n1,n2]

PSLR(U ) (13)

P3 : min
m∈[m1,m2],n∈[n1,n2]

[Rac(U ) + αRcc(U )] (14)

where m ∈ [m1,m2] and n ∈ [n1, n2] are the search regions for m and
n, respectively, and α is a weighting factor. While problems P1 and P2
given in (12) and (13), respectively, relate strongly to radar applica-
tions, problem P3 formulated in (14) can be used to find a trade-off be-
tween conflicting objectives of radar and communication applications.
Especially, the weighting factor α may be chosen with respect to de-
sirable system specifications. In contrast to [25], where we have used a
two-step approach to first optimize autocorrelation properties by a sim-
ple brute-force search over parameter n followed by tuning m towards
favorable delay-Doppler properties, we consider here two-dimensional
optimization to simultaneously find the optimal values of n and m for
problem P3. On the other hand, in view of the independence of the
autocorrelation of Oppermann sequences on parameter m as shown in
(5), problems P1 and P2 remain one-dimensional as PSLR and ISL
only involve the aperiodic autocorrelation.

In order to solve the problems formulated in (12)-(14), we use
APSO, HS ASA and ABC. The two-dimensional search space was con-
strained to the interval m ∈ [0, 4] and n ∈ [0, 4]. The algorithms were
executed on a laptop computer with Intel Pentium M 740 Processor
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running at 1.73 GHz and 2048 Megabytes of RAM. With the excep-
tion of ASA, where we used a C-routine called from MATLAB, all the
other algorithms have been implemented in MATLAB. As for the trans-
lation of the notions from meta-heuristics to the optimization problem
at hand, the following interpretation can be given.

• APSO: Initially, particles in a swarm are randomly distributed
in a D-dimensional search space. In APSO, the parameter D
refers to the dimension of the problem, swarm refers to a popula-
tion, and particle is similar to an individual. Alternatively, each
solution (or particle) flies through the search space and looks for
an optimal position to land. In terms of Oppermann sequences,
particles are represented by the values of m and n in a two-
dimensional search space and are used to generate the phases of
Oppermann sequences as defined in (4). The search for the opti-
mal landing position, i.e. finding optimal values of m and n will
continue until the criteria selected from (7) to (11) are met.

• HS: Initially, harmonies are randomly generated in aD-dimensio-
nal space and are stored in a harmony memory (HM). The use
of HM ensures that the best harmonies will be carried over to
the HM. As for the optimization of Oppermann sequences, the
parameters m and n are represented by the obtained harmonies
to generate phases as defined in (4). Then, pitch adjustment is
used to control the convergence of the algorithm. Randomiza-
tion introduced in the algorithm drives the algorithm to search
previously unexplored areas in the search space until the criteria
selected from (7) to (11) are met.

• ASA: This algorithm starts with the initial guess of the param-
eters in the D-dimensional search space. In terms of Oppermann
sequences, the initial guess represents values of the parameters
m and n. Each step of the ASA algorithm replaces the current
solution by a random nearby solution. The obtained solutions are
used to generate Oppermann sequences. The process of finding
optimal values of m and n continues by generating feasible points
in the search space and acceptance probability including anneal-
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ing and re-annealing temperatures until criteria selected from (7)
to (11) are met.

• ABC: It is recalled that food sources are randomly distributed in
the D-dimensional search space at the start of the search. Here,
bees refer to a population of bees (employed, onlookers and scout)
which are in the search of the best food position. Employed bees
search for new food sources within their neighborhood that have
more nectar compared to the food sources they have previously
visited. These food sources represent the values of the parameters
m and n of Oppermann sequences to generate the phases defined
in (4). If during the optimization process the criteria set for (7) to
(11) are not met, it will represent abandoned food source or bad
sequence designs. The search for the final food position represent
optimal values of m and n that satisfy the criteria set for (7) to
(11).

Figure 1 compares the performance of Oppermann sequences ob-
tained through meta-heuristics in terms of PSLR with the brute-force
search method with fixed step size reported in [25]. Clearly, the ran-
dom search strategy employed in meta-heuristics widens the search area
allowing the particles to explore the search space more effectively com-
pared to an optimization using fixed step size. As can be seen from the
figure, PSLR values can be improved for those prime length that would
have inferior performance using brute-force search with fixed increment
on n. In this case, meta-heuristic algorithms improve the performance
of the designed set of Oppermann sequences to be comparable to other
families such as the FZC sequences (see also [25]).

The convergence behavior of the considered algorithms for the ex-
ample of optimizing PSLR is illustrated in Fig. 2. It can be seen
from the progressions in terms of iterations shown in the figure that
ASA achieves the fastest convergence to the optimal values followed by
APSO, ABC and HS. The fast convergence of ASA may be attributed
to the fact that exponential annealing permits the algorithm to adap-
tively re-anneal and pacing the convergence in the search space in all
dimensions. It should be mentioned that the similar convergence be-
havior and ranking among the algorithms can be observed when applied
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Figure 1: Performance comparisons between brute-force search with
fixed increment and meta-heuristic algorithms in terms of PSLR.

to optimize FOM, ISL, and mean-square aperiodic correlation mea-
sures.

Tables 1(a)-(e) show numerical results of optimal designs for Op-
permann sequences of length N = 31 with respect to the optimization
problems posed in (12), (13), and (14) using APSO, HS, ASA, ABC.
As for the optimal designs presented in Table 1(a) and Table 1(b) for
PSLR and ISL, respectively, it is sufficient to consider only the pa-
rameter n as these metrics involve only the AAC (see also (10) and
(11)). It is recalled that according to (5), the AAC is independent of
the parameter m for the considered case of parameter p = 1. Also,
all N − 1 = 30 Oppermann sequences in an optimized set achieve the
same PSLR and ISL. Clearly, all considered meta-heuristic algorithms
converge towards very similar results for these two classical design ob-
jectives of radar systems.
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Table 1: Optimal designs for Oppermann sequences of length N = 31.

(a) Peak-to-sidelobe ratio

Algorithm n PSLR

APSO 2.000 11.735

HS 2.000 11.734

ASA 2.000 11.735

ABC 2.000 11.735

(b) Integrated sidelobe level

Algorithm n ISL

APSO 2.007 0.110

HS 2.007 0.110

ASA 2.000 0.116

ABC 2.007 0.110

(c) MSAC; α = 0

Algorithm m n Rac Rcc

APSO 2.597 2.007 0.110 1.000

HS 2.744 2.007 0.110 1.001

ASA 2.000 2.000 0.116 1.000

ABC 0.614 2.007 0.110 1.005

(d) MSCC; α = 60

Algorithm m n Rac Rcc

APSO 1.003 1.002 19.676 0.341

HS 1.003 1.000 19.677 0.341

ASA 1.000 1.000 19.677 0.344

ABC 1.003 1.000 19.677 0.341

(e) MSAC+MSCC; α = 1

Algorithm m n Rac Rcc

APSO 0.930 2.007 0.110 0.997

HS 1.000 2.007 0.110 0.996

ASA 1.000 2.000 0.116 0.996

ABC 0.999 2.007 0.110 0.996
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In order to illustrate the trade-off in waveform optimization for in-
tegrated radar and communication systems, let us focus now on the
results presented in Tables 1(c)-(e) with respect to the optimization
problem posed in (14). In particular, we have chosen α = 0 relating
to radar systems, α = 60 emphasizing on communication systems, and
α = 1 as an example of an integrated radar and communication sce-
nario. Clearly, the autocorrelation properties indicated by the small
Rac values in Table 1(c) are beneficial for radar systems and are in-
dependent of parameter m. On the other hand, good crosscorrelation
characteristics are shown Table 1(d) for use with communication sys-
tems but these come at the expense of poor autocorrelation properties
quantified by high values of Rac. The results of the trade-off example
shown in Table 1(e) may perform favorable with integrated radar and
communication systems keeping autocorrelation values low and driv-
ing crosscorrelation values smaller. An additional increase of α would
result in an increase of autocorrlelation values and further reduce cross-
correlation values. Also, all four considered meta-heuristic algorithms
provide very similar outcomes to the different optimization problems.

6 Conclusions

In this chapter, we have focused on the waveform optimization for
integrated radar and communication systems. Given the conflicting
requirements on autocorrelation and crosscorrelation characteristics,
meta-heuristic algorithms are considered to basically perform a multi-
dimensional optimization. Specifically, the selected class of Oppermann
sequences allows for designing families with a wide range of correlations
with respect to a two-dimensional search space. The numerical results
illustrate the potential of meta-heuristic algorithms for designing se-
quences for radar, communications, as well as integrated systems. By
way of example with respect to PSLR, it is shown that meta-heuristics
can improve performance compared to search methods with fixed in-
crement.
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Multimodal Function Optimisation With

Cuckoo Search Algorithm

Momin Jamil and Hans-Jürgen Zepernick

Abstract

Modern engineering and scientific optimisation problems are
becoming complicated. In order to cope with the increasing level
of difficulty of these problems, optimisation methods are required
to find more than one solution to these problems. The aim of this
paper is to gain an insight into the ability of Cuckoo Search to lo-
cate more than one solutions for multimodal problems. We also
study the performance of this algorithm in the additive white
Gaussian noise. Numerical results are presented to show that
the Cuckoo search algorithm can successfully locate multiple so-
lutions in both non-noise and additive white Gaussian noise with
relatively high degree of accuracy.

Keywords: Cuckoo Search, Additive White Gaussian Noise, Mul-
timodal Optimisation

1 Introduction

Traditional optimisation methods are unsuitable to solve optimisation
problems encountered in business, economics, medicine, applied sci-
ences, and engineering. The objective function of these problems could
exhibit multiple peaks, valleys, flat hyper-planes of varying heights and
are non-linear, non-smooth, non-quadratic or unimodal in nature. For
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these problems, the gradient information is either missing, or not com-
puteable. Therefore, solving such problems to optimality poses a major
challenge for many researchers around the world.

During the past few years, nature-inspired population based meta-
heuristic algorithms have replaced traditional optimisation methods to
solve modern optimisation problems due to their general applicability
and effectiveness. The population-based metaheuristic algorithms use
population members to explore the search space for possible solutions
using effective search strategies. These strategies are selected in such a
way that a dynamic balance between intensification and diversification
is maintained. The maintenance of this balance serves two purposes:

1 to identify high-quality solutions in the search space

2 void exploring those areas that lack quality solutions or have al-
ready been explored.

In short, search strategies consist of controlled randomization, efficient
local search, and selection of the best solution. Usually, randomization
is drawn from a uniform or Gaussian distribution.

Algorithms such as tabu search (Glover, 1989) and sequential niche
technique (Beasley et al., 1993) have been used to find multiple solu-
tions of a multimodal function. These methods use various techniques
that prohibit the convergence to the same solution by preventing the
algorithm from exploring again those portions of the search space that
have been already explored. In multimodal optimisation problems hav-
ing multiple optima, it is desirable to find all the possible solutions.
Algorithms such as differential evolution (DE), evolutionary strategy
(ES), genetic algorithm (GA) and particle swarm optimisation (PSO)
have been extensively used to solve such problems. It is shown in Saha
and Deb (2010) that these algorithms tend to loose the diversity and
converge to global best solution due to genetic drift. The application of
these algorithms poses two main challenges to solve multimodal prob-
lems with multiple solutions :

1 to maintain adequate population diversity so that multiple opti-
mum solutions can be found
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2 a method to preserve and maintain the discovered solution from
one generation to another.

Therefore, a niching has also been proposed to address the above
mentioned challenges in order to solve multimodal problems. Several
niching methods have been proposed in the context of metaheuris-
tic algorithms, namely, crowding (DeJong, 1975; Mahfoud, 1995), fit-
ness sharing (Mahfoud, 1995; Goldberg and Richardson, 1987), clearing
(Petrowski, 1996), clustering (Tasoulis et al., 2005), stretching and de-
flation (Parsopolos et al., 2001; Parsopolos and Vrahatis, 2004), paral-
lelisation (Zaharie, 2004), restricted tournament selection (Harik, 1995;
Qu and Suganthan, 2010) and speciation (Li et al., 2002).

Flight behavior of animals and insects have been a subject of many
studies. These studies have shown that flight behavior of many ani-
mals and insects demonstrate the typical characteristics of Lévy flight
(Brown et al., 2007; Reynolds and Frey, 2007; Pavlyukevich, 2007).
These studies show that animals search for food in a random or quasi-
random manner. The foraging path of an animal, in general, is random
walk. The next move in the foraging path is based on the current lo-
cation and the transition probability to the next location. A study
conducted in Reynolds and Frey (2007) has shown a Lévy flight style
free scale search pattern by fruit flies in their quest for food. They use
a series of straight flight paths punctuated by sudden 90 degree turn,
a typical characteristic of Lévy flights.

Recently, Lévy flights have been proposed within the context of
metaheuristics algorithms to solve optimisation problems (Yang and
Deb, 2009, 2010; Yang, 2010). Cuckoo Search (CS) with Lévy flights,
is a relatively new metaheursitic optimisation method (Yang and Deb,
2009). It has shown better performance compared to GA and PSO on a
limited set of test functions both in 2 and higher dimensional problems
(Yang and Deb, 2009, 2010). The purpose of this study is thus two
folds:

1 to determine if CS can perform optimisation better than those
algorithms in which motion is either simulated by using Gaussian
or uniform distributions in case of multiple solution problems
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2 to evaluate its ability to locate multiple solutions in additive white
Gaussian noise (AWGN) environments.

The rest of the paper is organized as follow. Section 2 presents
an overview of CS algorithms. In Section 3, experimental results are
presented. In Section 4, we present experimental results on the per-
formance of CS in noisy environment. Finally, Section 5 concludes the
paper.

2 Cuckoo Search Algorithm

CS, a relatively new metaheuristic algorithm is inspired by the repro-
duction strategy of cuckoos and was proposed by Yang and Deb (2009).
Some species of cuckoos lay their eggs in the nests of different cuckoo
species. When the host bird discovers eggs different than its owns, it
either destroys the eggs or abandons the nest all together. This has re-
sulted in the evolution of the cuckoo eggs which mimic the eggs of local
hosts (Payne, 2005). In order to apply this to solve the optimisation
problems, the algorithm proposed in Yang and Deb (2009) is based on
the following three idealized rules:

• Each cuckoo lays a single egg at one time. This egg represents
a solution in a problem search space. Cuckoo dumps this egg in
randomly chosen nest.

• A fraction of high quality eggs (best eggs or solutions) will be
carried over to next generation.

• The host nests are fixed in number and an alien egg can be found
in a host nest with a probability of pa ∈ [0, 1]. If an alien egg is
found in a host nest, host bird can either throw away an alien egg
or abandon the nest. In such a case cuckoo builds a new nest in
a new location which represents a potentially better solution in
the problem search space.

According to Yang and Deb (2009), the last assumption can be ap-
proximated by a fraction pa of N nests being replaced by new nests.
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This means that new random solutions are generated at new locations
in the problem search space. CS uses Lévy flights as a search mecha-
nism for local and global solutions in the problem search space. The
Lévy flight is a random walk characterized by a series of instantaneous
jumps which obeys a power-law distribution with a heavy tail.

Several optimisation algorithms based on Lévy flights have ap-
peared throughout the literature (Yang and Deb, 2010; Pavlyukevich,
2007; Lee and Yao, 2004). Accordingly, when a new egg (solution) is
generated, a Lévy flight is performed starting at the position of a ran-
domly selected egg (solution). If the objective function value at the
new solution is better than another randomly selected solution, then
the solution is moved to the location (nest). The scale of the random
search is controlled by multiplying the generated Lévy flight by a step
size α. The step size is related to the domain size of the problem of
interest and in most cases α = 1 can be used (Yang and Deb, 2009).
Therefore, in line with the work of Yang and Deb (2009), we have used
α = 1 in this paper.

3 Cuckoo Search for Multimodal Problems

In this section, we present the results obtained by applying CS on a set
of multimodal functions with multiple solutions. The effectiveness of
the CS to handle multimodal problems is verified on a set of benchmark
functions having different characteristics.

3.1 Parameter Settings

In Yang and Deb (2009), the number of host nests or population size
N was chosen between 15 to 25. However, during this study, we have
found that this value is not suitable for functions with multiple solutions
scattered throughout the search space. Therefore, selecting a suitable
value of N for multimodal functions with multiple solutions needs some
experimentation. We have used different values of N = 50, 100, 150, 200
and found that N = 100 seems to be sufficient for most multimodal
optimisation problems with multiple solutions. For tougher problems,
larger N can be used, though excessively large N should not be used
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unless there is no better alternative, as it is more computationally
expensive (Yang and Deb, 2010).

According to Yang and Deb (2009), the parameter pa, i.e., the frac-
tion of the nests to abandon, is not strongly related to the convergence
rate of the algorithm and recommended to use pa = 0.25. We have
found that pa = 0.25 is suitable for unimodal optimisation problems,
but does not work well for multimodal problems. We have used differ-
ent values of pa and tested them on a small set of benchmark functions.
The value that produced the best result was chosen and subsequently
used for all the test functions. We have found that pa = 0.75 seems
to be a suitable choice for most multimodal problems with multiple
solutions. Therefore, we will use the following set of parameters for
all the experiments, unless we mention new settings for one or other
parameters:

• Number of Cuckoos: N = 100

• Number of Generation: G = 1500

• Number of Runs: R = 100

• Fraction of worse nests to be abandoned: pa = 0.75

3.2 Numerical Results

In various applications, the objective function exhibit multiple global
minima. Ideally, an optimisation algorithm must be able to find
all the global minima or solutions (Rönkkönen, 2009). In general,
CS can find global solutions even in higher dimensions (Yang and
Deb, 2009, 2010), but its performance for test functions with multi-
ple global minima having few or no local minima has not been eval-
uated. There are many benchmark test functions in the literature
to test the performance of optimisation algorithms (GAMS World,
Global Library, http://www.gamsworld.org/global/globallib.html). In
this section, we perform an experimental evaluation of CS by us-
ing ten well-chosen test functions with multiple global minima and
with few or many local minima. The global minimum of the ob-
jective functions were known a priori. These functions include two
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functions with two global optima [Yang (2008) multimodal and test-
tube holder (Mishra, 2006)], one function each with three [Bran-
nin (http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/
Hedar files/TestGO files/Page364.htm)], six (Root 6) and nine global
minima [Henrik (Madsen and Žilinskas, 2000)] and four functions with
four global minima [Carrom table (Mishra, 2006), Himmelblau (Brits
et al., 2007), holder table 1 (Mishra, 2006) and pen holder (Mishra,
2006)].

Several different performance measures have appeared in the lit-
erature to evaluate the performance of global optimisation algorithms
(Rahnamayan et al., 2008). In practice, for stochastic methods, the
results are reported as averages from certain number of independent
runs. We have examined the mean, standard deviation (SD) and stan-
dard error of mean (SEM) attained with a certain population size and
number of generations. The algorithm was executed 100 times with
different random seeds for all considered functions. The best fitness
value produced by the algorithm after each run was recorded. The
mean fitness values, standard deviation and SEM for these functions
are presented in Table 1. The number of function evaluations (NFE)
required by the CS to converge to a solution averaged over the number
of independent runs is also reported. From the results presented in
Table 1, it can be seen that CS performs equally well on almost all of
the functions tested. The only exception being the Root 6 which shows
a small deviation of 10−3 from the known global minima.

Figures 1 and 2 show the contour plots of Deb 3 and Parsopoulos
functions. Deb 3 have 25 global minima that are unevenly placed in
the function landscape (Brits et al., 2007). On the other hand, for Par-
sopoulos function the number of global minima depend on the problem
domain size (Parsopolos and Vrahatis, 2002). For a given domain size
of [−5, 5]D, where D represents the problem dimension, it has 12 global
minima scattered throughout the function landscape. The ′+′ sign in
the Figures 1 and 2 represents the global minima (solutions) located by
the CS in 100 independent runs with the parameter settings mentioned
in Section 3.1. From the results in Table 1 and representative figures
for Deb 3 and Parsopoulos functions, we can see that CS can locate
global minimum with relatively high degree of accuracy.
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Table 1: Statistical results of 100 runs obtained by CS for 2-D functions.

Function Known Min. Mean NFE CS

Yang multimodal 0.8512 32380 Mean 0.8512
SD 1.2274e− 15
SEM 1.2774e− 16

Testtube holder −10.8723 29469 Mean −10.8723
SD 1.7853e− 15
SEM 1.7853e− 16

Brannin 0.39788 22927 Mean 0.3979
SD 5.579e− 17
SEM 5.579e− 18

Carrom table −24.1568 18611 Mean −24.1568
SD 1.7853e− 14
SEM 1.7853e− 15

Himmelblau 0 14902 Mean 0
SD 0
SEM 0

Holder Table 1 −19.2085 18080 Mean −19.2085
SD 2.8565e− 14
SEM 2.8565e− 15

Pen holder −0.9635 17145 Mean −0.9635
SD 2.23116e− 15
SEM 2.2316e− 16

Root 6 −1 5569 Mean −0.9997
SD 1.6506e− 04
SEM 1.6506e− 05

Hansen −176.5417 21980 Mean −176.5417
SD 5.7130e− 14
SEM 5.7130e− 15

Henrik 18886 Mean −24.0624
SD 1.0712e− 14
SEM 1.0712e− 015

Notes: Mean NFE: mean of number of function evaluations
Mean: mean of fitness value
SD: standard deviation of the fitness values
SEM: standard error of mean
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Figure 1: Contour plot of Deb 3 function (25 global minima indicated
by ′+′ found by CS after 100 independent runs).
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Figure 2: Contour plot of Parsopoulos function (12 global minima in-
dicated by ′+′ found by CS after 100 independent runs).
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In order to measure accuracy, i.e., the ability and effectiveness of the
CS to accurately locate all of the multiple minima, a level of accuracy ,
ε ∈ (0, 1] is defined. The computed solution will be considered as a
global optimum, if the Euclidean distance of a computed solution to
a known global optimum is less than a pre-defined level of accuracy ε.
The % Converged in Table 2 signifies the number of the independent
runs converged on the solutions. From the results presented in Table 2,
it can be seen that CS could find all the solutions for a specified value
of ε. These results also demonstrate the performance consistency of the
algorithm. This is a measure of ability of the algorithm to consistently
locate all the solutions for each function for a given set of parameters.

From the results presented in this section, we can attribute the
ability of CS in handling unimodal and multimodal to:

1 a fine balance of randomization and intensification

2 relatively fewer number of control parameters.

A prerequisite for any metaheuristic algorithm is to maintain a good
balance between intensive local search and efficient exploration of the
function landscape. There are three ways to carry out randomization:

1 uniform randomization

2 random walks

3 Lévy flights based on heavy tail distributions.

Lévy flights are considered the most suitable for randomization on
global scale (Yang and Deb, 2009, 2010; Yang, 2010). The ability of
CS to find or locate multiple solutions to multimodal problems can
be attributed to Lévy flights which keep dynamic balance between the
exploitation of the accumulated search experience (intensification) and
exploration of the search space (diversification). Lévy flights are based
on the fact that the power law distribution of Lévy distribution at large
step lengths will induce an exploration at any stage of the convergence.
This enables the CS to explore the search space more effectively and
thus enabling the CS to escape local minima. On the other hand, there
are only two control parameters in the CS, i.e., the population size
(number of cuckoos) N and fraction of worse nests to be abandoned
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pa. Fixing the value of N , pa essentially controls the elitism and the
balance of randomization and local search (Yang and Deb, 2009, 2010).

4 CS for Noisy Environments

The function optimization in a noisy environment occurs in various ap-
plications such as experimental optimization. The problem of locating
either minima or maxima of a function is vital in many physical ap-
plications such as spectral analysis and radio-astronomy (Parsopolos
and Vrahatis, 2002). Optimization of functions in noise is traditionally
carried out using the simplex method by Fletcher (1987) and Nelder
and Mead (1965). The advantages and limitations of this algorithm in
noisy and noiseless environment are well documented in a literature.
Different variants of this method have been proposed to overcome the
deficiencies of the original algorithm (Torczon, 1991). More sophisti-
cated methods and extensive studies in this direction are discussed in
Arnold (2001). Different population based algorithms, e.g., PSO have
also been used to optimize functions in additive and multiplicative noise
environments (Parsopolos and Vrahatis, 2002).

Information about the function f(x) is obtained in the form of
fη(x), where fη(x) is an approximation to the true function value f(x),
corrupted by a small amount of noise η. The influence of additive white
Gaussian noise on the values of the objective functions was simulated
according to Elster and Neumaier (1997), and is given as

fη = f (x) + η, η ∼ N
(
0, σ2

)
(1)

where η ∼ N(0, σ2) is a Gaussian distributed random variable with
zero mean and standard deviation σ2.

4.1 Numerical Results

In this section, the influence of AWGN on nine optimization bench-
mark test problems in two dimensions are investigated. How-
ever, these problems can also be extended to dimensions greater
than 2. These problems include three functions with single
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global optima [Lévy 5 (Parsopolos and Vrahatis, 2002), Michael-
wicz (Yang, 2008) and periodic (GAMS World, Global Library,
http://www.gamsworld.org/global/globallib.html)] and six problems
with multiple global optima [Carrom table (4) (Mishra, 2006), Holder
Table 1 (4) (Mishra, 2006), Modified Ackley(2) (Rönkkönen, 2009),
Yang mutimodal(2) (Yang, 2008), Parsopoulos (12) (Parsopolos and
Vrahatis, 2002) and Root function(6)]. The term enclosed in the brack-
ets indicates the number of global optima for these problems. Ex-
periments were carried out for three different levels of noise variances
σ2 = 0.025, 0.05 and 0.09. At each function evaluation, noise was added
to the actual function according to (1) for different values of variances.
For each variance value, 100 independent runs of CS were performed.
The other set of parameters N , G, R and pa were kept the same as
specified in Section 3.

Based on the MAPE results presented in Table 3, it can be seen that
the increasing value of variance σ2 deteriorates the ability of CS to lo-
cate global minimum/minima for unimodal (Michalewicz and periodic)
and multimodal (Yang multimodal and Root 6) functions. A perfor-
mance degradation of more than 40%, 30% and around 20%, respec-
tively, can be observed for Yang multimodal, periodic and Michaelwicz
functions. Both Yang multimodal and periodic functions are strong
multimodal function with many local minima. They are considered
to be challenging functions to optimize for any optimization algorithm
even in the absence of noise. Their challenging nature can be seen
from the respective plots in Figures 3(a), 3(b), 4(a) and 4(b).For both
of these function, the global minimum (periodic) and mimima (Yang
multimodal) are surrounded by large number of local minima. The pe-
riodic function has only a single global minimum which is surrounded
by 49 local minima as shown in Figure 4(a).For clarity, the periodic
function in one dimension is also shown in Figure 4. The deteriorating
effect of AWGN variance σ2 = 0.025 on Yang multimodal function is
shown in Figure 5. This becomes aggravated with an increasing value
of variance σ2.

Next, in Tables 4 and 5, we compare the mean Euclidean distance
(the difference between the obtained and actual global minimum) of
the computed solution from known a priori solution for three level of
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variances. The term enclosed in the brackets in front of the function
names represent the number of global minimum for these functions.
From the results presented in Tables 4 and 5, we can see that as the
value of σ2 increases, the ability of the CS to locate global minima
decreases significantly for Yang multimodal and periodic functions. For
these two functions, the largest difference between the obtained and
actual global minimum can be observed. The results in Tables 4 and
5 also demonstrate the performance consistency of the CS to locate all
the solutions for each function for a given set of parameters even in the
presence of noise. The success rate of the algorithm on all functions is
100% in the presence of noise. Figure 6 depicts a notoriously difficult
Levy 3 (18 global minima) function in the presence of AWGN with
variance σ2 = 0.09. This shows that the CS has an exceptional ability
to find all of the minima for this function.

Interestingly, in case of functions with more that two global min-
ima (with the exception of Yang multimodal) such as Carrom Table,
Levy 5, Hansen, Holder Table and Modified Ackley) with few or many
local minima, CS seems to perform relatively well in the additive noise
environment even for the highest value of variance σ2. It seems that
the noise plays a positive role for these multimodal functions by help-
ing the CS to escape local minima of the objective function. For these
multimodal functions, the performance degradation is significantly low
for the highest value of variance σ2. One possible explanation for the
unimodal functions performance deterioration could be that high val-
ues of variance σ2 can create deep troughs (for minimization problems)
or crests (for maximization problems) in the function landscape that
are mistaken by the CS or any other optimisation algorithm as a global
minimum or maximum.



Multimodal Function Optimisation With Cuckoo Search Algorithm 199

T
ab

le
3:

S
ta

ti
st

ic
al

re
su

lt
s

of
10

0
ru

n
s

ob
ta

in
ed

b
y

C
S

fo
r

2-
D

fu
n
ct

io
n
s

in
A

W
G

N

F
u
n
ct

io
n

K
n
ow

n
M

in
im

a
σ
2

=
0.

02
5

σ
2

=
0
.0

5
σ
2

=
0.

0
9

C
a
rr

om
ta

b
le

−
24
.1

56
8

M
ea

n
−

24
.2

58
5

−
24
.3

6
5
2

−
2
4
.5

2
5
9

S
td

D
ev

0.
00

74
0.

01
65

0
.0

2
4
5

S
E

M
7.

25
71
e
−

04
0.

00
17

0
.0

0
2
4

M
A

P
E

0.
42

07
0.

86
28

1
.5

2
8
0

H
ol

d
er

T
ab

le
1

−
19
.2

08
50

M
ea

n
−

19
.3

12
3

−
19
.4

1
6
4

−
1
9
.5

8
2
2

S
td

D
ev

0.
00

68
0.

01
31

0
.0

2
8
0

S
E

M
6.

80
64
e
−

04
0.

00
13

0
.0

0
2
8

M
A

P
E

0.
54

01
1.

08
25

1
.9

4
5
5

H
an

se
n

−
17

6.
54

18
M

ea
n

−
17

6.
63

75
−

17
6
.7

3
2
8
−

1
7
6
.8

9
2
5

S
td

D
ev

0.
00

70
0.

01
31

0
.0

2
9
4

S
E

M
6.

97
31
e
−

04
0.

00
13

0
.0

0
2
9

M
A

P
E

0.
05

42
0.

10
82

0
.1

9
8
6

L
év

y
5

−
17

6.
13

75
M

ea
n

−
17

6.
22

84
−

17
6
.3

2
0
8
−

1
7
6
.4

7
2
4

S
td

D
ev

0.
00

74
0.

01
48

0
.0

2
9
3

S
E

M
7.

40
28
e
−

04
0.

00
15

0
.0

0
2
9

M
A

P
E

0.
05

16
0.

10
41

0
.1

9
0
2

M
ic

h
ae

lw
ic

z
−

1.
80

13
M

ea
n

−
1.

90
31

2.
00

75
−

2
.1

63
4

S
td

D
ev

0.
00

66
0.

01
49

0
.0

2
2
1

S
E

M
6.

58
15
e
−

04
0.

00
15

0
.0

0
2
2

M
A

P
E

5.
65

38
11
.4

44
7

2
0
.1

0
11

M
o
d
ifi

ed
A

ck
le

y
−

4.
59

01
2

M
ea

n
−

4.
69

17
−

4.
79

5
4

−
4
.9

61
9

S
td

D
ev

0.
00

66
0.

01
50

0
.0

2
4
4

co
n
ti
n
u
ed

on
n
ex
t
p
ag

e



200 Part III-A

co
n
ti
n
u
ed

fr
om

p
re
v
io
u
s
p
ag

e
S
E

M
6
.5

62
3e
−

04
0.

00
1
5

0.
0
0
2
4

M
A

P
E

2.
21

19
4.

47
2
2

8.
1
0
0
1

Y
an

g
m

u
lt

im
o
d
al
−

0.
85

1
M

ea
n

−
0.

95
19

−
1.

05
73

−
1
.2

2
1
1

S
td

D
ev

0.
00

68
0.

01
5
7

0.
0
2
6
8

S
E

M
6.

81
31
e
−

04
0.

00
1
6

0.
0
0
2
7

M
A

P
E

11
.8

60
7

24
.2

4
25

43
.4

8
7
2

P
er

io
d
ic

0.
9

M
ea

n
0.

81
14

0.
72

3
7

0.
5
8
7
7

S
td

D
ev

0.
00

88
0.

01
5
4

0.
0
2
5
4

S
E

M
8.

79
9e
−

04
0.

00
1
5

0.
0
0
2
5

M
A

P
E

9.
84

07
19
.5

8
57

34
.5

8
5
1

R
o
ot

6
−

1
M

ea
n

−
1.

09
82

−
1.

19
43

−
1
.3

4
3
5

S
td

D
ev

0.
00

67
0.

01
3
3

0.
0
2
5
6

S
E

M
6.

71
4e
−

04
0.

00
1
3

0.
0
0
2
6

M
A

P
E

9.
81

66
19
.4

3
23

34
.3

5
1
3

N
ot

es
:

M
ea

n
:

m
ea

n
of

fi
tn

es
s

va
lu

e
S
D

:
st

an
d
ar

d
d
ev

ia
ti

on
of

th
e

fi
tn

es
s

va
lu

es
S
E

M
:

st
an

d
ar

d
er

ro
r

of
m

ea
n

M
A

P
E

:
m

ea
n

ab
so

lu
te

p
er

ce
n
ta

ge
er

ro
r



Multimodal Function Optimisation With Cuckoo Search Algorithm 201

−5

0

5

−5

0

5

−1

−0.5

0

0.5

 

x
1

x
2

 

F
(x

1, x
2)

(a)

−5 0 5
−5

0

5

x
1

x 2

(b)

Figure 3: Plot of Yang multimodal function: (a) 3-D view (the global
minima are represented by two solid black •) and (b) contour plot.
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Figure 4: Periodic function: (a) Contour plot (global minimum marked
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Figure 5: Contour plot of Yang multimodal function corrupted by
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Figure 6: Contour plot of Lévy 3 function with 18 global minima indi-
cated by ′+′ found by CS after 100 independent runs in the presence
of AWGN with σ2 = 0.09.
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5 Conclusion

Population based algorithms such as CS, present a viable alternative
to existing numerical optimisation techniques. Population based al-
gorithms can search the function landscape effectively. In this paper,
the ability of CS to solve unimodal and mutimodal problems in non-
noise and additive white Gaussian noise was investigated. Performance
results were reported for a set of test functions with varying level of
difficulty, number of minima and different level of noise variances. The
experimental results indicate that CS is very stable and efficient in the
presence of noise. It is a very noise-tolerant method and can be used
for minimization or maximization of noisy functions. It has performed
exceptionally well even in the presence of noise with high standard de-
viation. Conclusively, CS appears to be a very useful technique for solv-
ing global optimisation problems, and offers a good alternative where
other techniques fail. Although, further research may be required to
fully comprehend the dynamics and the potential limits of the CS.
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Synthesizing Cross-Ambiguity Functions Using

An Improved Bat Algorithm

Momin Jamil, Hans-Jürgen Zepernick, and Xin-She Yang

Abstract

The cross-ambiguity function (CAF) relates to the correlation
processing of signals in radar, sonar, and communication systems
in the presence of delays and Doppler shifts. It is a commonly
used tool in the analysis of signals in these systems when both
delay and Doppler shifts are present. In this chapter, we aim
to tackle the CAF synthesization problem such that the synthe-
sized CAF approximates a desired CAF. A CAF synthesization
problem is addressed by jointly designing a pair of waveforms us-
ing a metaheuristic approach based on the echolocation of bats.
Through four examples, it is shown that such an approach can be
used as an effective tool in synthesizing different types of CAFs.

Keywords Cross-ambiguity function · Metaheuristic algorithm
· Improved bat algorithm · CAF synthesization

1 Introduction

In a conventional matched filter receiver, the internal reference wave-
form is a duplicate of the transmitted signal, i.e., the receiver reference
waveform is matched to the transmitted signal [1]. However, in radar
applications, the appropriate time delay and compression must be taken
into account at the receiver side. Therefore, in a conventional matched
filter receiver, the receiver waveform is a replica of the transmitted
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signal with appropriate time delay and time compression. However,
a conventional receiver is not able to take care of clutter or jamming
suppression. In a radar system, clutter appears as signal echoes with
different delays or Doppler shifts compared to the signal of interest.
In order to suppress impairments due to clutter and interference, it is
desirable to minimize these effects at the receiver side. Accordingly, a
joint design of the transmit signal and receive filter is desirable such
that the signal-to-clutter-plus-interference ratio (SCIR) of the receiver
output is maximized at the time of target detection [2]. As a result, an
alternative to conventional receivers, known as a general or optimum
receiver, was proposed in [1]. This receiver can be used as a trade-off
between the signal-to-noise ratio (SNR) for improved SCIR [1]. In an
optimum receiver, the internal or reference waveforms (or equivalent
filter) may be deliberately mismatched to reduce the sidelobes in the
delay-Doppler plane.

The aforementioned joint design for clutter/interference suppres-
sion has been addressed in [2–9] and the references therein. However,
a joint design of the mismatched filter at the receiver side and the
transmit signal leads to a more complex optimization problem that in-
volves either assessing cross-correlation (CC) properties with respect
to delay in the case of negligible Doppler shifts or focusing on cross-
ambiguity function (CAF) characteristics in the delay-Dopper plane
otherwise [4, 10].

A performance measure frequently used to assess waveforms for
radar, sonar, and communication applications in the presence of delay
and Doppler shifts, known as ambiguity function (AF), was proposed
in [11]. An AF is a function of two variables representing correlation
properties of a signal in the delay-Doppler plane. It provides a mathe-
matical representation of the response of a matched filter to a received
waveform. The waveform design that would yield an optimum AF has
been on the forefront of research for many years. In an ideal case, an
AF would have the shape of a spike at the origin and zero elsewhere in
the delay-Doppler plane. Although such an AF is certainly desirable, in
practice, it is not realizable for signals having finite energy. As a result,
large efforts have been given to waveform designs that relax the zero
sidelobe constraint throughout the delay-Doppler plane to uniformly
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low sidelobes, while still maintaining a reasonable large value at the
origin. In practice, radar waveforms are often designed by minimizing
the sidelobes of an auto-correlation function (ACF), i.e., by basically
matching pre-defined specifications only to the zero-Doppler cut of an
AF [12].

In [11], the importance of signal designs using waveform synthesis
for radar and sonar applications has been stressed. Nevertheless, the
search for practical solutions to the synthesis problem still poses a chal-
lenge to radar system engineers. A first known mathematical solution
to the synthesization problem was presented in [13]. However, this so-
lution has two drawbacks: (i) it requires that the shape of a desired
ambiguity function is given in analytical form, (ii) it does not cope
with settings where only certain parts of the ambiguity surface are to
be approximated, e.g., clear area in and around a large neighbourhood
of the origin. As a consequence, this solution is of limited interest
to practical radar applications. In practice, radar engineers typically
have a general idea about the desirable shape of an AF rather than
an exact expression of it as a mathematical function. Furthermore, in
many scenarios, it is not even necessary to specify the shape of an AF
for the entire delay-Doppler plane. In other words, the region where
an AF is required to produce small values very much depends on the
particular radar application. For example, the Doppler shift may be
much smaller compared to the bandwidth of the transmitted waveform
which can be in the order of several megahertz. In this case, the AF for
Doppler shifts beyond the maximum induced shifts is not required. An
alternative approach of constructing a waveform with optimal ambigu-
ity surface in a region around the main lobe of an AF using well-know
Hermite waveforms has been presented in [14].

In single-input single-output (SISO) radar systems, the problem
becomes to synthesize a single radar waveform that approximates a
desired auto-ambiguity function (AAF) of pre-defined magnitude over
the delay-Doppler plane. On the other hand, multiple-input multiple-
output (MIMO) radar systems or communication systems involve pairs
of signals rather than a single waveform. Accordingly, the synthe-
sis problem focuses on the CAF between a pair of signals. In the
considered context, the CAF describes the receiver response to a mis-
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matched signal as a function of time and Doppler shift. In particular,
the continuous-time CAF is defined as

χ(τ, fd) =

∫ ∞

−∞
a(t)b∗(t+ τ) exp(j2πfdt)dt (1)

where a(t) and b(t) are arbitrary waveforms as a function of time t,
τ is delay, fd denotes Doppler frequency/Doppler shift, (·)∗ denotes
complex conjugate, and j =

√
−1. In practice, the CAF is applicable

for a SISO radar system when a(t) is the transmit signal and b(t)
represents the receive filter [15]. Similarly, the CAF is used for a MIMO
radar system when both a(t) and b(t) are different transmit signals [16].
In a conventional matched filter receiver, where the receiver reference
waveform is matched to the transmitted signal [1], i.e. a(t) = b(t), the
CAF becomes an AAF.

Let us now consider, two signals a(t) and b(t), consisting of a train
of N pulses si(t) and sj(t), respectively, as

a(t) =
N∑

i=1

aisi(t) (2)

b(t) =

N∑

j=1

bjsj(t) (3)

where the coefficients ai and bi can be expressed as column vectors of
length N as

a = (a1, a2, . . . , aN )T (4)

b = (b1, b2, . . . , bN )T (5)

and sk(t); k = i, j denotes a pulse shaping function. For example, a
rectangular pulse shaping function is defined as

sk(t) =
1√
Tc
s
[ t− (k − 1)Tc

Tc

]
, k = 1, 2, . . . , N (6)

where Tc denotes the pulse duration and

s(t) =

{
1, 0 ≤ t ≤ Tc
0, elsewhere

(7)
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Substituting (2), (3), and (6) in (1), the CAF comprising of pulse
shaping functions with respective shifted pulses and corresponding co-
efficients ai and bj can be obtained as

χ(τ, fd) =
N∑

i=1

N∑

j=1

aib
∗
i

∫ ∞

−∞
si(t)s

∗
j (t+ τ) exp(j2πfdt)dt (8)

where the integral represents the CAF between pairs of pulse shaping
functions, i.e.,

χ̂i,j(τ, fd) =

∫ ∞

−∞
si(t)s

∗
j (t+ τ) exp(j2πfdt)dt (9)

Clearly, synthesizing a CAF such that it matches a desired CAF
of pre-defined magnitude over the delay-Doppler plane is a difficult
task. As a result, not many methods, other than solutions based on
least square approaches exist, see, e.g., [14,17–21]. Recently, in [22], an
algorithm has been proposed to match a synthesized CAF to a desired
CAF of pre-defined magnitude over the delay-Doppler plane. More
specifically, this algorithm proposes a joint design of a pair of signals
a(t) and b(t), or sequences a and b to tackle the CAF synthesization
problem. Furthermore, in [23], Jamil. et. al. proposed a Lévy flight
based cuckoo search for a joint sequence design such that their CAF
approximates a desired CAF indicating the potential of metaheuristic
approaches to solve such challenging sequence design problems.

In view of the above, this chapter considers a joint sequence design
using the improved bat algorithm (IBA) of [24] to address the problem
of matching a synthesized CAF to a desired CAF of pre-defined magni-
tude over the delay-Doppler plane. We hypothesize that a joint design
of a pair of sequences a and b such that their CAF approximates a
desired CAF is a global optimization problem (GOP). Apparently, this
type of problem is a highly multimodal problem without any a priori
information about the location of the optimum solution (unimodal) or
solutions (multimodal). Traditional optimization methods that require
either an initial guess or gradient information are unsuitable to solve
such problems to optimality. Therefore, nature-inspired population
methods mimicking the behaviour of different species of animals have
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been proposed to solve such problems [25–27]. Due to their general
applicability and effectiveness, these algorithms have been a popular
choice to solve modern optimization problems. These population-based
algorithms use population members to explore the problem search space
for a possible solution or solutions by maintaining a balance between
intensification (exploitation) and diversification (exploration). How-
ever, intensification (exploitation) and diversification (exploration) are
usually based on a uniform or Gaussian distribution. Lévy flights (LFs)
based on the Lévy distribution have been proposed as an alternative
to achieve exploitation and exploration strategies.

The remainder of this chapter is organized as follows. In Section
2, we briefly introduce the Lévy probability distribution. Section 3
presents the motivation of using LFs in metaheuristic algorithms. In
Section 4, the formulation and solution to the considered synthesis
problem is presented. Numerical results are presented in Section 5.
Finally, Section 6 concludes the chapter.

2 Lévy Probability Distribution

A random process is called stable if the sum of a given number of inde-
pendent random variables, X1, X2, . . . , XN , has the same probability
density function (PDF) up to location and scale parameters as the in-
dividual random variables. A well-known example of a stable random
process is a Gaussian process, i.e., the sum of Gaussian random vari-
ables also produces a Gaussian distribution which in addition has a
finite second moment. A stable random process with infinite second
moment produces a so-called α-stable distribution. An α-stable ran-
dom variable S is defined by its characteristic function as follow [28]:

Φα,β = E
[

exp(jzS)
]

= exp(−βα|z|α) (10)

where E[·] denotes the expectation operator, j =
√
−1, z ∈ R, α ∈ (0, 2]

and β ≥ 0. The Lévy probability distribution belongs to a special class
of symmetric α-stable distributions. According to [28], the PDF of
a symmetric α-stable random variable is given by the inverse Fourier
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transform of (10) as

Lα,β(S) =
1

π

∫ ∞

0
exp(−βzα) cos(zS)dz (11)

In (11), the parameters α and β control the shape and the scale
of the distribution, respectively. The parameter α takes values in the
interval 0 < α ≤ 2 and controls the heaviness of the distribution,
i.e., the decay of the tail. The smaller the value of α, the more the
accumulation of data in the tails of the distribution. In other words,
the random variable values are more likely to be far away from the
mean of the distribution. On the other hand, the larger the value of α,
the more the accumulation of data near the mean of the distribution.
Except for a few special cases, a closed-form expression of integral in
(11) is not known for general α. The integral in (11) becomes a Cauchy
distribution and Gaussian distribution for α = 1 and 2, respectively.

3 Lévy Flight Based Metaheuristic Algorithms

In recent years, a number of theoretical and empirical studies have
tried to explain that foragers such as grey seals [29], microzooplank-
ton [30, 31], reindeer [32], wandering albatrosses [33], fish [34], among
many others, adapt LF as an optimal search strategy in search of food.
However, it should be mentioned that foragers adapt their search strat-
egy based on the density of prey, sometimes switching between LF and
Brownian motion (BM). In metaheuristic and stochastic optimization
algorithms, random walks play an important and central role in the
exploration of the problem search space. The search performed by
metaheuristic algorithms (MAs) is carried out in a way that it can ac-
complish goals of intensively explored areas of the search space with
high-quality solutions and move to unexplored areas of the search space
when necessary. Intensification and diversification [35, 36] are two key
ingredients to achieve these goals. By maintaining a fine balance be-
tween these two components define the overall efficiency of MA. In
fact, Lévy flights have already been used to enhance metaheuristic al-
gorithms with promising results in the literature [23,25,26].
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An alternative to a uniform or Gaussian distribution to realize ran-
domization in MA is offered by the Lévy distribution. Not only does
the power law behavior of a Lévy distribution reduce the probability of
returning to previously visited sites in the problem search space, but it
also provides an effective and efficient exploration of the far-off regions
of the function landscape.

3.1 Improved Bat Algorithm

The MA mimicking the echolocation behavior of certain species of bats
was presented in [27] and is based on the following set of rules and
assumptions:

1. All bats know the difference between food/prey, background bar-
riers, and use echolocation to sense the proximate distance from
the prey;

2. In search mode, bats fly randomly with a frequency fmin with
velocity vi at position xi. During search mode, bats vary wave-
length λ (or frequency f) and loudness A0. Depending on the
proximity from the target, bats can automatically adjust the
wavelength (or frequency) for their emitted pulses and adjust
the rate of pulse emission r ∈ [0, 1];

3. It is further assumed that the loudness varies from a large (posi-
tive A0) to a minimum value of Amin;

4. Ray tracing is not used in estimating the time delay and three
dimensional topography;

5. The frequency f is considered in a range [fmin, fmax] correspond-
ing to the range of wavelengths [λmin, λmax];

6. For simplicity, frequency is assumed in the range f ∈ [0, fmax].

According to [27], by making use of the above rules and assump-
tions, the standard bat algorithm (SBA) will always find the global op-
timum. However, in SBA, the bats rely purely on random walks drawn
from a Gaussian distribution, therefore, speedy convergence may not
be guaranteed [27].
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In this section, a brief overview of the IBA [24] is presented which
constitutes an improved version of SBA [27]. In IBA, the random mo-
tion of bats is replaced by LF instead of using a Gaussian distribution.
The motivation for this choice is that the power-law behavior of the
Lévy distribution will produce some members of the random popula-
tion in the distant regions of the search space, while other members will
be concentrated around the mean of the distribution. The power-law
behavior of the Lévy distribution also helps to induce exploration at
any stage of the convergence, making sure that the system will be not
trapped in local minima. The Lévy distribution also reduces the prob-
ability of returning to the previously visited sights, while the number
of visitations to new sights is increased [24,25,27]. For a comprehensive
review of the bat algorithm and its variant, please refer to [37].

3.2 Motion of the Bats

In IBA, the position or location of each bat is given as xti and it flies
through the D-dimensional search space or solution space with a ve-
locity vti. The position and velocity for bat i are updated at time t,
respectively, as

vti = vt−1i + (xt−1i − xbest
i )fi (12)

xti = xt−1i + vti∆t (13)

where ∆t represents the discrete time step of the iteration. However,
in mathematical optimization, emphasis is often given to dimensionless
variables, and therefore, ∆t can be implicitly chosen as 1. Furthermore,
the pulse frequency fi for bat i at position xi is given by

fi = fmin + (fmax − fmin)β (14)

and vectors xi and vi represent the position and velocity of bat i. In
(14), β ∈ [0, 1] is a random number drawn from a uniform distribution,
fmin and fmax denote the minimum and maximum frequency of the
emitted pulse [27]. The symbol xbest

i in (12) represents the current
best solution found by bat i by comparing all the solutions among all
the NP bats.
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In IBA [24], once a best solution is selected among the current best
solutions, a new solution for each bat is generated using an LF that is
based on a Lévy distribution according to

xti = xbest
i + γ · Lα(S) (15)

Here, vector Lα(S) represents a random walk that is generated based on
the Lévy distribution for each i (bat) with parameter α. The parameter
γ > 0 scales the random step length and is related to the scales of the
problem [25–27]. Specifically, the step size S of the random walk is
drawn from a Lévy distribution with infinite mean and variance which
is often given in terms of a power-law formula given as [25,26,28]

Lα(S) ∼ 1

Sα+1
|S| >> 0 (16)

where α determines the probability of obtaining Lévy random numbers
in the tail of the distribution.

3.3 Variation of Loudness and Pulse Rates

In IBA, we use the originally proposed approach of controlling the
exploration and exploitation in bats as proposed in [27], i.e., variation
of loudness and pulse rates. In order to switch to the exploitation stage
when necessary, each bat i varies its loudness Ai and pulse emission rate
ri iteratively as follows:

At+1
i = ΥAt0i (17)

rt+1
i = rt0i [1− exp(−Γt)] (18)

where At0i , At+1
i , rt0i , and rt+1

i , respectively, represent initial loudness,
updated loudness, initial pulse emission rate, and updated pulse emis-
sion rate after each iteration for bat i. Furthermore, Υ and Γ are
constants.

4 Problem Formulation

In practice, infinite energy signals do not exist, therefore, ambiguity
surfaces that produce a Dirac impulse or a function with ideal delay-
Doppler characteristics do not exist. Thus, it is often desirable to design
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waveforms that exhibit a peak at the origin and produce an almost flat
surface in and around a large neighborhood of the origin.

The problem of matching a CAF to a desired CAF can be formu-
lated as a minimization problem and can be solved by using the cyclic
approach proposed in [22]. Accordingly, such an optimization problem
can be formulated as

min
a,b

C(a,b) =

∞∫

−∞

∞∫

−∞

w(τ, fd) ·
[
d(τ, fd)−

∣∣bHX(τ, fd)a
∣∣]2dτdfd (19)

where w(τ, fd) is a weighting function that specifies which area of the
CAF in the delay-Doppler plane needs to be emphasized and (·)H de-
notes Hermitian transpose. The modulus of the desired CAF is denoted
by d(τ, fd) which is positive and real-valued, a and b are different se-
quences. In view of (9), the cross-ambiguity matrix of the pulse shaping
functions can be written as

X(τ, fd) =



χ̂1,1(τ, fd) · · · χ̂1,N (τ, fd)

...
. . .

...
χ̂N,1(τ, fd) · · · χ̂N,N (τ, fd)


 (20)

where χ̂i,j(τ, fd) denotes the CAF between the i-th and j-th pulse shap-
ing function given by (9). Furthermore, the term under the absolute
value operator | · | in (19) represents the CAF in (8) in a more compact
form as

χ(τ, fd) = bHX(τ, fd)a (21)

Due to phase incoherencies, the magnitude of the ambiguity func-
tion contains all the information about a signal pertinent to system
performance [20]. In order to solve the ambiguity function synthe-
sis problem, the indirect approach introduced in [20, 38] can be used.
Accordingly, auxiliary phases are introduced to the desired ambiguity
function d(τ, fd) in (19), that is
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C̃(a,b, θ(τ, fd)) =

∞∫

−∞

∞∫

−∞

w(τ, fd) ·
∣∣d(τ, fd)e

jθ(τ,fd)

− bHX(τ, fd)a
∣∣2dτdfd (22)

Introducing auxiliary phases θ(τ, fd) makes the integrand in (22) real
and positive everywhere. The minimization problem in (22) can then
be solved by fixing two arguments of C̃(·, ·, ·) and minimizing C̃(·, ·, ·)
with respect to the third variable [22].

First, let us fix a pair of sequences a and b which leads to the
auxiliary phase θ(τ, fd) being expressed as [20,38]

θ(τ, fd) = arg{bHX(τ, fd)a} (23)

Second, by fixing the auxiliary phases θ(τ, fd) and sequence b, the
criterium C̃(·, ·, ·)→ C̃(a) can be written as [20,38]

C̃(a) = aHD1a− aHD2b− bHD2
Ha

+

∞∫

−∞

∞∫

−∞

w(τ, fd)
∣∣d(τ, fd)

∣∣2dτdfd

= (a−D−11 D2b)HD1(a−D−11 D2b) + C (24)

where constant C does not depend on sequence a and therefore can be
ignored. It follows from (24) that the minimizer a is given as

a = D−11 D2b (25)

where D1 ∈ CN×N and D2 ∈ CN×N , respectively, are given as

D1 =

∞∫

−∞

∞∫

−∞

w(τ, fd)X
H(τ, fd)bb

HX(τ, fd)dτdfd (26)

D2 =

∞∫

−∞

∞∫

−∞

w(τ, fd)d(τ, fd)e
θ(τ,fd)XH(τ, fd)dτdfd (27)
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Third, by fixing the auxiliary phases θ(τ, fd) and sequence a, the
criterium C̃(·, ·, ·)→ C̃(b) can be formulated as [20,38]

C̃(b) = bHD3b− bHD2a− aHD2
Hb

+

∞∫

−∞

∞∫

−∞

w(τ, fd)
∣∣d(τ, fd)

∣∣2dτdfd

= (b−D−13 DH
2 a)HD3(b−D−13 DH

2 a) + C (28)

where constant C does not depend on sequence b and therefore can be
ignored. Then, in view of (28), the minimizer b can be obtained as

b = D−13 DH
2 a (29)

where D3 ∈ CN×N is given as

D3 =

∫ ∞

−∞

∫ ∞

−∞
w(τ, fd)X(τ, fd)aa

HXH(τ, fd)dτdfd (30)

4.1 Proposed Approach

In the proposed approach, the phases of the elements of sequence a ∈
CN×1 and sequence b ∈ CN×1, respectively, are denoted by column
vectors of length N as

φa = [φa(1), φa(2), . . . , φa(N)]T (31)

φb = [φb(1), φb(2), . . . , φb(N)]T (32)

In the context of IBA, each element of the column vectors φa and φb
in (31) and (32), respectively, is considered as a single bat generated
randomly in the interval [0, 2π]. The population size (bats) is equal to
the length N of the sequences. Then, the corresponding sequences a
and b, respectively, are given as

a = [eφa(1), eφa(2), . . . , eφa(N)]T (33)

b = [eφb(1), eφb(2), . . . , eφb(N)]T (34)

Given the above notion of sequence elements being bats, the pseu-
docode to solve the CAF synthesization problem using IBA can be
formulated as in Procedure 1.



228 Part III-B

Procedure 1: Pseudocode of IBA for CAF synthesization

1. Objective function C̃(θ(τ, fd),a,b)
2. Initialize Ai,fi, and ri.
3. Generate the cross-ambiguity matrix using (20).
for all NP bats

4. Generate an initial population of NP bats (solutions) to gener-
ate sequences a and b using (33) and (34), respectively, or use
initially generated sequences.

5. θ(τ, fd) = arg{bHX(τ, fd)a}
6. Start with initially generated sequence in Step 4 by applying

(25) to generate a.
7. Start with initially generated sequence in Step 4 by applying

(29) to generate b.
8. Evaluate the objective function using (22).

end
9. Store the best objective function value.
10. Keep the current best sequences a and b.
t = 1
while (t < MaxGeneration) or (stop criterion)

t = t+ 1
11. Update pulse emission rate and loudness using (17) and (18).
12. Update the velocity and frequency using (12) and (14).
13. θ(τ, fd) = arg{bHX(τ, fd)a}
14. Start with sequences generated in Step 6 and 7 to generate a′

and b′ by applying (25), (29), and (13).
15. if (rand > r)

Start with sequences in Step 10 to generate a′ and b′ by
performing LF using (25), (29), and (15).

end
16. Apply problem bound constraints, if the sequences generated

in Step 14 or Step 15 are outside the interval [0, 2π].
17. Re-evaluate the objective function using (22).
18. if (C̃Step 16 ≤ C̃Step 8 | rand < A)

Replace the sequences in Step 6 and Step 7 with a′ and b′.
C̃Step 8 ← C̃Step 17
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end
19. if C̃Step 17 ≤ C̃Step 9

Replace the sequences in Step 10 with a′ and b′.
C̃Step 9 ← C̃Step 17

end
end while

4.2 Parameter Settings

Universal values of the parameters At0 , rt0 , Γ, and Υ do not exist for
the problems that will be discussed in Section 5. This is due to the fact
that each problem has a different landscape and dimension. Hence, an
effective set of initial values of these parameters require some exper-
imentation. Accordingly, the initial values for these parameters were
obtained from trial experiments on the optimization problems that will
be considered in Section 5. Different initial values for loudness A and
pulse emission rate r were taken in the range [0, 1] with increments of
0.1. For each optimization problem, the selected values of At0 , rt0 , Γ,
and Υ produced slightly different rates of convergence as each opti-
mization problem has a different landscape.

In reality, bats increase pulse emission rate ri and decrease loudness
Ai after potential prey has been detected and their approach towards
the prey has commenced. In the context of optimization, prey refers
to a solution of the problem. As such, an update of loudness Ai and
pulse emission rate ri in (17) and (18), respectively, takes place in the
IBA only if a new solution is found. This implies that the virtual bats
are moving towards the optimal solution.

The above experimental approach was also adapted to select the
values of constants Υ and Γ. The best combination of Υ and Γ was
found to be Υ = Γ = 0.5. The results that will be presented subse-
quently in Section 5 show that this choice of parameters seems to be
appropriate for the optimization problems considered. In summary, the
parameter settings listed in Table 1 are used in the simulations.
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Table 1: Parameter setting for IBA

Parameter Value

Number of Bats (Population Size), NP depending on the
length of the sequence
to be synthesized

Number of Generations, G 200

Initial Loudness, At0 0.1

Initial Pulse Emission Rate, rt0 0.1

Constants, Υ = Γ 0.5

Lévy Step Length, S 1.5

Minimum Frequency, fmin 0

Maximum Frequency, fmax dependents on
the problem domain size

4.3 Calculation of Lévy Step Size

A CAF synthesization problem can be considered as multimodal opti-
mization problem without any a priori information regarding the loca-
tion of an optimal solution. LFs can be used to generate the random
step length S of a random walk drawn from a Lévy distribution. The
choice of α in (16) determines the probability of obtaining a Lévy ran-
dom number in the tail of the Lévy distribution. Given that each opti-
mization problem is unique, i.e., has different dimension and landscape,
the task of choosing a favorable value of α that generates a suitable step
length S becomes difficult. In particular, the search ability of an MA
can be severely hampered, if an improper value of α is used to generate
S.

Given the complex nature of the CAF synthesization problem, a
universal value of α required to generate S for guiding virtual bats
in IBA without getting trapped in a local minimum does not exist.
Therefore, it is appropriate to carry out a series of experiments in
order to find a suitable value of α. For this purpose, four values of
α = 1.3, 1.4, 1.5, and 1.6 were selected. For each of these values, 10
independent trials for a fixed number of iterations were performed to
minimize (22) for the problems that will be discussed in Section 5. It
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turned out that α = 1.5 produces the best value of criterium (22) in
average over the number of trails. Therefore, this value has been used
to generate the random step length S for all problems considered in
Section 5.

4.4 Selection of Scaling factor

The parameter γ in (15) determines how far the virtual bats in IBA
can travel in the search space. An excessively large value of γ causes
new solutions to jump outside of the feasible search space and even
to fly off to far regions. On the other hand, the search is confined
to a rather narrow region, if γ is too small. In the former case, the
LF becomes too aggressive, whereas, in the latter case, the LF is not
efficient. Therefore, some sort of strategy is needed to scale step length
S such that an efficient search process is maintained. In order to avoid
the particles flying too far, a small value of parameter γ can be more
efficient [25,26]. A small value of γ may apply for unimodal problems.
We hypothesize that the location of an optimal solution to a multimodal
problem such as CAF synthesization is not known. As such, selecting
a small value of γ will hinder the search process.

Therefore, in order to select an appropriate value of γ, we have
adopted the experimental approach described in Section 4.3 and con-
ducted a series of trials with different values of γ. We have con-
ducted 10 independent trails for a fixed number of iterations that
were performed to minimize (22) for Example 2 in Section 5 using
γ = 0.01, 0.05, 0.1, 0.5, 0.7 and 0.9. The best peak-to-average power
ratio (PAR) for each of these values produced by IBA for each run
was recorded. It was found that γ = 0.05 produces the best PAR and
hence was subsequently used as a basis for the examples presented in
Section 5.
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5 Numerical Results

Let us consider sequences of length N = 50 for Examples 1 and 2,
sequence length N = 53 for Example 3 and sequence length N = 31
for Example 4. Each element of the considered sequences corresponds
to the phase-coded amplitude of a rectangular pulse shape function
of duration Tc. Thus, the duration of a sequence is given as T =
N ·Tc. Furthermore, τ denotes the delay by which a transmitted signal
is returned from a target and fd denotes the Doppler frequency induced
by a moving target. In the sequel, we utilize normalized delay τ/Tc and
normalized Doppler frequency fd · T , respectively. In what follows, we
illustrate by way of four examples that IBA is able to jointly design
sequences a and b such that a desired CAF is synthesized.

5.1 Example 1

In this example, we aim at synthesizing a CAF with a diagonal ridge
while being zero elsewhere. This type of CAF is desirable when a
filter bank is too expensive to cope with different Doppler frequencies
and tolerance to Doppler shifts is needed. The weighting function is
w(τ, fd) = 1 for all (τ, fd) in (19) and the sequence a has constant
modulus, i.e., each element of a takes on the value of one and hence
PAR = 1. The desired CAF is shown in Fig. 1 and the corresponding
synthesized CAF obtained by using IBA is shown in Fig. 2. As can
be seen from Fig. 2, the CAF synthesized by IBA approximates the
desired CAF in Fig. 1.

5.2 Example 2

The synthesization of an ideal thumbtack CAF, i.e., narrow peak at
the origin and zero sidelobes in the rest of the delay-Doppler plane is
not possible due to the volume property of CAFs. Therefore, in this
example, we aim at synthesizing a CAF with a clear area in and around
a large neighbourhood of the origin using the following CAF modulus:
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Figure 1: Desired CAF with diagonal ridge.
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Figure 2: Synthesized CAF using IBA for γ = 0.05 (PAR = 1).
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d(τ, fd) =

{
N, for (τ, fd) = (0, 0)

0, elsewhere

and weighting function

w(τ, fd) =

{
1, for (τ, fd) ∈ Ωds\Ω∼ds
0, elsewhere

where Ωds = {[−10Tc, 10Tc]× [− 2
Tc
, 2
Tc

]} is the selected region of inter-
est of the synthesized CAF. In order to compensate for sharp changes
in the desired CAF d(τ, fd) near the origin, the area of the main lobe
Ω∼ds = {[−Tc, Tc]\{0} × [− 1

Tc
, 1
Tc

]\{0}} near the origin has to be ex-
cluded [22]. Recall that the Doppler shift fd induced on the signal in
practice is often much smaller compared to the bandwidth of the trans-
mitted signal. Therefore, the weighting function w(τ, fd) outside the
maximum induced Doppler shift fd can be set to zero.

The need of this type of CAF arises in applications such a geoloca-
tion of signals, where the CAF is used to calculate the time of difference
of arrival and frequency difference of arrival of the emitted signal using
two receivers [39]. The two collector architecture offers the oppor-
tunity to compare the reception of a likely similar radar pulse using
cross-correlation concepts with respect to delay. Thus, one collector
will see the radar pulse as a(t) and the other collector will see it as
b(t + τ). Also, it is assumed that one collector is moving with some
relative velocity to the other collector which supports measuring the
frequency of the received pulse at slightly different frequencies [39].

Furthermore, a CAF with a clear area around a large neighbour-
hood of the origin also arises in situations, when it is not possible to
design a sequence or set of sequences that yield zero sidelobes over the
entire delay-Doppler plane. Therefore, it is desirable to design a ref-
erence waveform or equivalent filter at the radar receiver end. Such a
receiver, is called optimum receiver [1] in which the internal or reference
waveform (or equivalent filter) is deliberately mismatched compared to
the transmitted waveform in order to reduce the sidelobes in the delay-
Doppler plane.
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Figure 3: CAF synthesization without and with PAR constraint (35)
for γ = 0.05: (a) Synthesized CAF of random sequences of length N =
50 (PAR = 3.9), (b) Synthesized CAF of random sequences of length
N = 50 (PAR = 1).
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Figure 4: Normalized zero-Doppler cut of the CAFs of Fig. 3(a) and
(b) without and with constraint (35), respectively.

Fig. 3 shows the CAF of sequences a and b generated by IBA with
γ = 0.05. The desired sidelobe free area can be observed within the
rectangular area close and around the origin. The sidelobe free region
in Fig. 3(a) is due to the fact that the amplitude of the generated
sequences a or b is not constrained. This may result in sequences with
relatively high PAR and relatively low sidelobe levels. The PAR of
sequences a and b for the CAF shown in Fig. 3(a) were found to be
PARa = 3.9 and PARb = 7.2, respectively.

It is noted that low sidelobe levels are desirable in radar applications
to avoid masking of main peaks of secondary targets, even if the targets
are well separated. Moreover, in case of a multiple target environment,
the sum of all sidelobes may build up to a level sufficient to mask even
relatively strong targets.

The widespread use of solid state power amplifiers and digitization
have a significant impact on the overall performance of radar, sonar,
and communication systems. For example, transmission of a signal or
a waveform of arbitrary amplitude is not possible due to limitations of
power amplifiers and analog-to-digital converters. As a result, it is often
desirable that transmit signals or waveforms have a constant amplitude
or a low PAR. One of the possibilities that allows the consideration of
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waveforms with variable amplitude is to work with a pair of waveforms,
i.e., the transmitted signal of constant amplitude and the reference
signal of arbitrary amplitude that is used during signal processing at the
receiver [40]. Therefore, to constrain the PAR of a transmit waveform
with PAR=1, the following additional operation may be employed in
the IBA algorithm in Procedure 1 after Step 14 (see also [22]):

sn ← exp[j arg(sn)] (35)

However, inducing such a constraint further complicates the design of
waveforms with prescribed ambiguity surfaces. Using (35), somewhat
higher sidelobes can be observed in the results shown in Fig. 3(b). The
normalized zero-Doppler cut through the CAF for the unconstrained
design (PAR > 1) and constrained design (PAR = 1) are shown in Fig.
4.

5.3 Example 3

In this example, we aim at synthesizing a CAF for Björck sequences
of length N = 53. In particular, Björck sequences of length N = P ,
where P is a prime number and P ≡ 1(mod 4), are defined as

B(k) = exp

(
j2πθ

(
k

P

))
, θ = arccos

(
1

1 +
√
P

)
(36)

where ( kP ) denotes the Legendre symbol which is defined as

(
k

P

)
=





1, if k ≡ 0 (mod P)

1, if k ≡ m2 (mod P) for m ∈ Z
−1, if k 6≡ m2 (mod P) for m ∈ Z
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Figure 5: CAF synthesization without and with (35) for γ = 0.05: (a)
Synthesized CAF for Björck sequence of length N=53 (PAR=4.9), (b)
Synthesized CAF for Björck sequence of length N=53 (PAR = 1).
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Figure 6: Normalized zero-Doppler cut of the CAFs shown in Fig. 5(a)
and (b) without and with constraint (35), respectively.

The synthesized CAFs for the case of Björck sequences which ap-
proximates a desired thumbtack CAF without and with using con-
straint (35) are shown in Fig. 5(a) and (b), respectively. The normal-
ized zero-Doppler cuts through the CAFs for the unconstrained design
(PAR > 1) and the constrained design (PAR = 1) are shown in Fig.
6. A sidelobe level below −45dB respective −30dB can be observed for
these cases.

5.4 Example 4

Finally, we synthesize a CAF for the case of Oppermann sequences [41]
of length N = 31. The phase ϕk(i) of the i-th element uk(i) of the k-th
Oppermann sequence uk = [uk(0), uk(1), · · ·uk(N − 1)] of length N is
defined as

ϕk(i) =
π

N
[km(i+ 1)p + (i+ 1)n + k(i+ 1)N ] (37)

where 1 ≤ k ≤ N−1, 0 ≤ i ≤ N−1 and integer k is relatively prime to
the length N . The parameters m, n and p in (37) take on real values
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Figure 7: Synthesized CAF of Oppermann sequences with parameters
m, p = 1, and n = 3.
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Figure 8: Synthesized CAF of Oppermann sequences with γ = 0.05
and using constraint (35).
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and define a family of Oppermann codes.
The CAF for the case of Oppermann sequences with parameters

m, p = 1 and n = 3 is shown in Fig. 7. The synthesized CAF of these
Oppermann sequences is shown in Fig. 8, which approximates the de-
sired CAF with a sidelobe free area around the neighbourhood of the
origin. Relatively low sidelobe levels can be observed within the rect-
angular area close and around the origin with improved delay-Doppler
characteristics compared to the CAF of the original sequence that is
shown in Fig. 7. The zero-Doppler cut of the synthesized Oppermann
sequence is shown in Fig. 9 which exhibits a low sidelobe level with
respect to delay compared to the original Oppermann sequences.
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Figure 9: Normalized zero-Doppler cuts through the CAFs shown in
Fig. 7 and 8.
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6 Conclusions

In this chapter, the problem of synthesizing CAFs using a metaheuris-
tic approach based on the echolocation of bats has been addressed.
The fundamental problem in this context is to minimize the integrated
square error between a desired CAF and a synthesized CAF. In partic-
ular, the IBA has been combined with a cyclic approach to solve this
problem. By way of four examples, we have shown that the approach
based on echolocation of bats can indeed synthesize CAFs that approx-
imate CAF surfaces having a diagonal ridge and zero value elsewhere
as well as CAF surfaces with a clear area around the origin. Our results
indicate that the proposed approach is a promising technique for syn-
thesizing CAFs. Further research will focus on more extensive studies
of how to synthesize other complex functions and waveforms.
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The motivation of having a joint radar and 
communication system on a single hard-
ware is driven by space, military, and com-
mercial applications. However, designing 
sequences that can simultaneously support 
radar and communication functionalities 
is one of the major hurdles in the practical 
implementation of these systems. In order 
to facilitate a simultaneous use of sequen-
ces for both radar and communication sys-
tems, a flexible sequence design is needed.

The objective of this dissertation is to 
address the sequence design problem for 
integrated radar and communication sys-
tems. The sequence design for these sys-
tems requires a trade-off between different 
performance measures, such as correlation 
characteristics, integrated sidelobe ratio, pe-
ak-to-sidelobe ratio and ambiguity function. 
The problem of finding a trade-off between 
various performance measures is solved 
by employing meta-heuristic algorithms.

This dissertation is divided into an intro-
duction and three research parts based on 
peer-reviewed publications. The introduc-
tion provides background on binary and 
polyphase sequences, their use in radar and 
communication systems, sequence design 
requirements for integrated radar and com-
munication systems, and application of me-
ta-heuristic optimization algorithms to find 
optimal sets of sequences for these systems.

In Part I-A, the performance of conventio-
nal polyphase pulse compression sequences 
is compared with Oppermann sequences. 
In Part I-B, weighted pulse trains with the 
elements of Oppermann sequences serving 
as complex-valued weights are utilized for 
the design of integrated radar and commu-
nication systems. In Part I-C, an analytical 
expression for the cross-ambiguity function 
of weighted pulse trains with Oppermann 
sequences is derived. Several properties of 
the related auto-ambiguity and cross-am-
biguity functions are derived in Part I-D. In 
Part II, the potential of meta-heuristic al-
gorithms for finding optimal parameter 
values of Oppermann sequences for radar, 
communications, and integrated radar and 
communication systems is studied. In Part 
III-A, a meta-heuristic algorithm mimick-
ing the breeding behavior of Cuckoos is 
used to locate more than one solution for 
multimodal problems. Further, the perfor-
mance of this algorithm is evaluated in ad-
ditive white Gaussian noise (AWGN). It is 
shown that the Cuckoo search algorithm 
can successfully locate multiple solutions
in both non-noise and AWGN with relati-
vely high degree of accuracy. In Part III-B, 
the cross-ambiguity function synthesization 
problem is addressed. A meta-heuristic al-
gorithm based on echolocation of bats is 
used to design a pair of sequences to mini-
mize the integrated square error between 
the desired cross-ambiguity function and 
a synthesized cross-ambiguity function.
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