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Abstract

The development of electric vehicle (EV) greatly promotes building a green and

sustainable society. The new technology also brings new challenges. With the pene-

tration of electric vehicles, the charging demands are increasing, and how to efficiently

coordinate EVs’ charging activities is a major challenge and sparks numerous research

efforts. In this dissertation, we investigate the EV charging scheduling problem under

the public charging and home charging scenarios from different perspectives.

First, we investigate the EV charging scheduling problem under a charging station

scenario by jointly considering the revenue of the charging station and the service

requirements of charging customers. We first propose an admission control algorithm

to guarantee the non-flexible charging requirements of all admitted EVs being satisfied

before their departure time. Then, a utility based charging scheduling algorithm is

proposed to maximize the profit for the charging station. With the proposed charging

scheduling algorithm a win-win situation is achieved where the charging station enjoys

a higher profit and the customer enjoys more cost savings.

Second, we investigate the EV charging scheduling problem under a parking garage

scenario, aiming to promote the total utility of the charging operator subject to the

time-of-use pricing. By applying the analyzed battery charging characteristic, an

adaptive utility oriented scheduling algorithm is proposed to achieve a high profit and

low task declining probability for the charging operator. We also discuss a reservation

mechanism for the charging operator to mitigate the performance degradation caused

by charging information mismatching.

Third, we investigate the EV charging scheduling problem of a park-and-charge

system with the objective to minimize the EV battery degradation cost during the

charging process while satisfying the battery charging characteristic. A vacant charg-

ing resource allocation algorithm and a dynamic power adjustment algorithm are

proposed to achieve the least battery degradation cost and alleviate the peak power

load, which is beneficial for both the customers and charging operator.

Fourth, we investigate the EV charging scheduling problem under a residential

community scenario. By jointly considering the charging energy and battery perfor-

mance degradation during the charging process, we propose a utility maximization

problem to optimize the gain of the community charging network. A utility maxi-

mized charging scheme is correspondingly proposed to achieve the utility optimality

for the charging network.
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In summary, the research outcomes of the dissertation can contribute to the effec-

tive management of the EV charging activities to meet increasing charging demands.
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Chapter 1

Introduction

1.1 Background

Environment pollution and climate change have become global concerned problems in

recent decades. In order to reduce the dependence on traditional fossil fuels and the

greenhouse gas emissions, governments worldwide actively find alternative energy re-

sources and advocate to exploit clean energies to build a green and sustainable society.

Electrification of the transportation system is a key to promote the sustainable en-

ergy development and addressing climate change issues. Despite various incentives are

introduced by government to encourage people to purchase electric vehicles, the pene-

tration rate of EV is still low. Limited cruising range and lack of convenient charging

facilities are among the major obstacles for EV promotion. Moreover, without a good

coordination, the aggregated charging demand of a large number of EVs may produce

a large peak load which negatively affects the power grid. EV brings both challenges

and opportunities to future smart grid. Consequently, to build a green, intelligent,

and efficient transportation system, it is necessary and important for EVs, charging

stations, and the smart grid to establish an effective charging scheduling mechanism.

Generally, EV charging activities involve three participants: power grid, charging

aggregator, and customers. The EV charging problems thus mainly have been stud-

ied from three perspectives: smart grid oriented, charging aggregator oriented, and

customer oriented. The first category addresses the issues related to the impact of

EV charging activities on power grid, such as load flattening, frequency regulation,

voltage regulation and so on. The charging aggregator bridges the power grid and EV

customers. Specifically, a charging aggregator is responsible for maintaining a sta-
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ble and reliable power system, while being responsible for satisfying EV customer’s

charging demand. For an aggregator the main motivation is still to make more profits,

while for an EV charging customer the most concerned part is quality of service, for

instance how fast is the charging completed, charging cost, battery health, etc.

Many existing works dealing with the EV charging scheduling problem often sim-

ply utilized the first-come-first-serve (FCFS) strategy without full consideration on

other relevant factors, such as electricity price, battery SOC, etc. In some cases, so

long as the charging can be finished before the deadline, it is preferable to schedule

the charging flexibly not necessarily to follow the coming sequence. Some existing

works scheduled the EV charging activities only considering the interest of either

aggregator or customer, e.g., maximizing the profit for the charging aggregator or

minimizing the charging cost for the customer. It is reasonable and important to

have a comprehensive consideration to guarantee the interests of both parties while

scheduling the charging requirements. The battery charging rate is also a varying pa-

rameter related to its state of charge (SOC). Overlooking this factor and assuming a

constant charging rate during the whole process does not align with the real charging

situation. Considering the battery intrinsic electrochemical characteristic is critical

to reflect the real charging amount variation during the charging process. In addition,

it also provides guide for effective charging scheduling design. As the heart of the

EV energy supply, the battery performance plays a vital role in each EV’s operation.

Ensuring the battery health and efficient operation, extending the battery lifetime is

an important issue during the charging process.

All those concerns mentioned above bring new challenges and opportunities to

optimize the EV charging scheduling. Given the prospect of EV development and the

needs to solve the above problems related to EV charging, this dissertation has shed

some new lights on addressing the aforementioned challenges, which will be discussed

progressively in the following sections.

1.2 Research Objectives and Contributions

1.2.1 Utility Maximization for Electric Vehicle Charging with

Admission Control and Scheduling

Given the ever-increasing EV charging demands, more and more EV owners and users

need to find a public charging station for charging.



3

Without a proper coordination of the charging activities, the charging operator

may unnecessarily decline some charging requests resulting in revenue loss or the cus-

tomers may lose the potential charging opportunities unwillingly. Most existing works

mainly focus on the interest of one side, either minimize the cost for the customers

or maximizing the profit for the charging station with no assurance for the interest

of the other side. In addition, the EV mobility dynamics are also overlooked in some

existing works. They require all the EVs’ charging profiles being negotiated with the

charging station one day ahead, which is not practical in real situation since for the

randomly arrived customers all the charging information only can be revealed after

the vehicle’s arriving at the charging station. Thus, how to coordinate multiple EVs’

charging demands to satisfy the requirements of the customers and also maximize the

profit for the charging station is an important and challenging problem.

To tackle the above problem, we propose a utility based multi-charger framework

for EV charging scheduling in a public charging station, which aims to maximize the

profit of the charging station while satisfying the requirements of the customers. The

QoS of the charging customers are guaranteed by the developed admission control

mechanism and the profit for the charging station is maximized by utilizing the pro-

posed scheduling algorithm. The performance of the proposed algorithm are evaluated

with extensive simulations with the practical EV charging information consideration.

1.2.2 Intelligent Parking Garage EV Charging Scheduling

Considering Battery Charging Characteristic

Different from the traditional cognition of a gas station styled charging station, it

is anticipated that the future parking garages, such as the parking lots for office

buildings, residential and business areas can provide charging services and function

as charging stations. For the charging station operator, how to obtain the maximum

profit under the premise of customer quality of service assurance is the most concerned

topic.

The charging station operator not only provides charging service to the customers

subject to a retail price, but also purchases electricity from the power grid under a

wholesale price. Thus, the electricity pricing plays an important role on the profitable

operation of the charging station, which needs to be well considered in the EV charging

scheduling problem. Moreover, the battery charging rate is not constant during the

whole charging process, which is neglected in many existing works. It is actually a
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varying parameter related to the battery SOC which significantly affects the charging

efficiency. Thus, it is crucial for the charging operator to well schedule the different

charging requirements taking into account the charging power variation and electricity

price change.

To address the above issues, we are motivated to devise an intelligent adaptive

utility oriented scheduling algorithm to optimize the total utility for the charging

operator under the widely adopted time-of-use (TOU) pricing, which can robustly

achieve low task declining probability and high profit. We also consider the charg-

ing information mismatching situation with vehicle stochastic arrivals and propose a

reservation mechanism for the charging operator to mitigate the performance degrada-

tion caused by the information mismatching. Extensive simulations based on realistic

EV charging parameters are conducted to evaluate the superior performance of the

proposed charging scheduling scheme.

1.2.3 Electric Vehicle Charging Scheme for a Park-and-Charge

System Considering Battery Degradation Costs

A major factor preventing the proliferation of electric vehicle in the current auto

market is the high cost of EV batteries. EV battery replacement cost is still high

nowadays, which makes a lot of people hesitated to choose this new transportation

technology. For each existing EV owner ensuring the healthy and efficient operation

of the battery and extending the battery lifetime is one of the most concerned issues.

It is also a very important issue from the charging service provider’s perspective when

they provide charging service to the customers.

Many internal and external factors affect the battery performance and lifetime.

The natural aging of battery itself is inevitable, but reducing the inappropriate opera-

tion during the charging process could effectively slow down the battery degradation.

It has been found that a higher large charging power, which makes the battery temper-

ature rise rapidly, leads to faster battery degradation. Thus, how to minimize the EV

battery charging degradation cost while satisfying the battery charging requirement

is an important and challenging task.

To resolve the above mentioned issues, we explore the features of the battery

degradation cost minimization problem and find that it can be decomposed into

two sub-problems. A vacant charging resource allocation algorithm and a dynamic

power adjustment algorithm are proposed to minimize the battery degradation cost.
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Several simulations based on realistic EV charging settings are conducted to evaluate

the effectiveness and applicability of the proposed algorithms in achieving the most

degradation cost reduction and peak load relieving.

1.2.4 Maximum Utility Scheduling for Residential Commu-

nity Electric Vehicle Charging

The previous chapters mainly discussed the EV charging problem under the public

charging scenario. As another important and common scenario for EV charging, home

charging is pervasive and convenient for those EV owners who have their own parking

garages. They can plug in their EVs for charging during the night time and unplug

the charged EV the next morning.

However, unlike the public charging stations that are deliberately designed for

EV charging, a large number of EVs charging at home simultaneously can cause a

new peak load and pose great stress to residential community transformers which

are designed without considering the high-demanding load from EVs. Therefore,

it is necessary to have a charging aggregator within the residential community to

control EVs’ charging activities. Meanwhile, as we introduced in last subsection,

the charging process itself has some impacts on the battery performance. With the

increase of battery SOC the charging efficiency is substantially decreased. The gained

energy from accumulated charging may be less than the cost of battery degradation.

Thus, how to effectively maximize the total gain of the charging community under the

premise of ensuring the expected charging energy of the charging request customers

is an important and challenging topic, which attracts us to study.

To achieve the goal, we propose a utility maximization problem to comprehensively

evaluate the gain of the charging activity by jointly considering the charging energy

and battery performance degradation during the charging process. After proving

that the proposed problem is a concave optimization problem, we devise a utility

maximized charging scheme to achieve the maximum gain for the whole community

charging network. Simulation results verify the effectiveness and practicability of the

proposed scheme.
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1.3 Dissertation Organization

This work focuses on the modeling and analysis on electric vehicle charging scheduling.

The remainder of the dissertation is organized as follows.

In Chapter 2, we discuss the utility maximized EV charging scheduling problem

under a charging station scenario. A win-win situation is achieved for both the

charging station and charging customers, where the charging station can enjoy a

higher profit and the customers can enjoy more cost savings.

In Chapter 3, we integrate the electricity pricing and battery charging characteris-

tic on EV charging scheduling problem under the workplace parking garage scenario.

By applying the designed scheduling algorithm and reservation mechanism the charg-

ing operator can achieve a low task declining probability and a high profit.

In Chapter 4, we investigate the EV charging problem of a park-and-charge sys-

tem with the objective to minimize the battery degradation cost while satisfying the

battery charging characteristic. The proposed charging scheme could achieve the least

degradation cost and effectively alleviate the peak power load.

In Chapter 5, we study another commonly experienced residential community

charging scenario. By comprehensively evaluating the gain of the whole charging

network, we propose a utility model incorporating the total charging energy and

corresponding battery degradation. Optimal utility of the whole charging network is

achieved with the proposed utility maximized charging scheme.

Chapter 6 concludes the dissertation and suggests the future research directions.

1.4 Bibliographic Notes

Most of the works reported in this dissertation have appeared or been submitted as

research papers. The work in Chapter 2 has been published in [1]. The work in

Chapter 3 was published in [2] and will be published in [3].
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Chapter 2

Utility Maximization for Electric

Vehicle Charging with Admission

Control and Scheduling

2.1 Introduction

The emergence of electric vehicle promoted the development of green transportation,

but also brought a greater challenge to meet the large amount of charging demands

[4]. There is a great demand for building charging stations in densely populated

areas, such as the airports, shopping centers, office buildings, and other business and

residential places. However, for the operator of a charging station how to coordinate

multiple EVs’ charging activities to satisfy their requirements and also maximize the

operational profit is an important and challenging problem.

In this chapter, to facilitate a win-win situation, a utility-based multi-charger

charging framework is developed, aiming to maximize the charging station’s profit

while satisfying the non-flexible charging requirements of all admitted EVs. First,

from the customer’s perspective, we classify the charging requirements of an EV

into a non-flexible charging requirement for its necessary daily usage, and a flexi-

ble charging requirement that is associated with a lower price but without charging

service guarantee. In other words, the flexible charging requirement may or may

not be served depending on the availability of idle chargers. Second, we formulate a

utility optimization problem to maximize the profit of the charging station. Then,

we develop the admission control and scheduling algorithms to solve the problem.
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Furthermore, we conduct extensive simulations to evaluate the performance of the

proposed algorithms. The results demonstrate that the proposed algorithms can out-

perform the state-of-the-art solution in terms of total utility, so that the charging

station can enjoy a higher profit and the customers can enjoy more cost savings.

2.2 Related Work

Recently, a lot of researches have been conducted on the EV charging scheduling

problem [5–21]. For instance, [7] applied Nash equilibrium to develop a decentralized

charging control algorithm for large populations of EVs and achieved social optimality.

It requires all EVs to negotiate with the charging station about their charging profiles

one day ahead. This assumption does not hold with the practical case that most

randomly arrived EVs’ charging profiles can only be revealed after its arrival at the

charging station. In [9–13], the scheduling algorithms can efficiently coordinate the

EVs’ charging requirements and achieved revenue gains. For example, [12] designed

an online speeding optimal scheduling algorithm and achieved a known competitive

ratio. The charging station’s service capacity is not taken into consideration for the

aforementioned works.

The authors in [16, 17] made efficient use of the distributed power of EVs and

maximized the revenue of the aggregator. But these methods mainly considered the

aggregator’s interest, which may not necessarily lead to the maximum benefit for

customers. Chen et al. utilized the Least Laxity First (LLF) algorithm of CPU

scheduling in EV charging scheduling [9] and showed that it was optimal for single

charger. However, it cannot be guaranteed optimal for multi-charger scenarios. [18]

proposed an effective Receding Horizon Control (RHC) algorithm for scheduling the

deferrable electric loads, and the usage of instant grid generation was effectively de-

creased, while the computation complexity was too high to be implemented. [19, 20]

well controlled and coordinated multiple EVs’ charging to minimize the peak loads

and load profile variability, but the fairness for each customer was not well concerned.

For multi-charger charging, how to ensure the service requirements of the cus-

tomers while maximizing the charging station profit and the cost savings for customers

is an open, challenging issue, which motivates us to study on this problem.
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Figure 2.1: System model.

2.3 System Model and Problem Formulation

We consider the problem of how to maximize the profit of a charging station by

scheduling the charging of multiple EVs to satisfy their inflexible requirements with-

out missing their specified deadlines. As illustrated in Fig. 2.1, when an EV arrives

at the charging station, it reports its charging requirement and departure time to

the charging station control center. The control center then makes a decision on

admitting or declining the customer’s requirement based on its admission control

mechanism. Once an EV is admitted, it enters the serving zone and is connected

to the charger. Then, the Energy Management System (EMS) controls a Charging

Switch Control Unit (CSCU) to switch the power supply to activate or de-active the

charging of in-facility EVs to maximize the profit of its operation.

2.3.1 EV Charging Model

Consider an EV charging station comprising of M chargers. The total business hours

for the charging station is divided into time slots with the slot duration of ∆t, and

the total number of time slots available for charging per day is T . Assuming that the

arrivals of EVs follow the Poisson distribution with an average arrival rate λ (number

of vehicles per slot). During service, each EV draws a constant charging rate to fill

up its battery. The charging requirement of an EV can be regarded as a Task, which

is defined as follows.
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Definition 1 (Task):The ith EV arrives at the charging station at time tai with

the inflexible minimum charging requirement rmini , the desired maximum charging

requirement rdesiredi , and expected departure time tdi , the charging requirement is

parameterized by a vector Ti = (i, tai , t
d
i , r

min
i , rdesiredi ), which is defined as Task i.

Given the constant charging rate, each EV’s charging requirement can be con-

verted into an integer number of charging slots. This rounding procedure simplifies

the analysis and enables the development of efficient scheduling algorithms. We also

allow tasks to be preemptive, i.e., there can be interruptions during their service time,

so an EV may be charged in non-consecutive slots.

2.3.2 Utility Model

Different from previous works, we consider a utility function mapping the charging

amount to the profit. For each EV, it has a minimum charging requirement to guar-

antee its daily usage and a desired charging requirement to reach certain level of the

battery capacity. Hence, we consider a piecewise utility function for the two charg-

ing phases. Before each EV’s inflexible, minimum requirement being satisfied, the

utility function keeps flat; after that, the utility function gradually decreases. This

is reasonable because the customers prefer spending less money on the non-essential

extra charging once their necessary minimum requirements are satisfied. On the other

hand, this will give more opportunities for the newly arrived EVs which would like

to pay more money to be served to satisfy their inflexible requirements. When the

served charging capacity exceeds the total inflexible requirements, the charging sta-

tion begins serving the tasks’ flexible requirements so that the charger utilization can

be increased and a higher profit can be achieved. The per-slot profit (price paid by

the customer minus a fixed cost) is used as the per-slot utility, which is represented

as follows:

U = FU(R, rmin, rdesired), (2.1)

where R is the accumulated charging amount of an EV.

One example of the per-slot utility function is shown in Fig. 2.2. At each time

slot, the task being served will obtain a certain utility. Corresponding to Fig. 2.2,

the per-slot utility function can be mathematically expressed as a discrete piecewise
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function, which is defined as

Ui(t) =


U1, Ri(t) ≤ rmini and t < tdi ,

aRi(t)
b + c, Ri(t) ≥ rmini and t < tdi ,

0, otherwise.

(2.2)

where a, b and c are the parameters determined to ensure the win-win situation of

the charging station and customers. For instance, in the simplest linear case (b = 1),

a represents the slope and c is a constant related to U1 and rmin. U1 is determined

by the charging station and rmin is determined by each customer.

U

Rdesired
r

min
r 

!
U

Figure 2.2: An example of per-slot utility function.

2.3.3 Problem Formulation

Let Nt be the total number of EVs arriving at the charging station during t time

slots.

As the overall number of chargers is limited, each time slot there will be at most

M (the number of chargers) EVs being served in the charging station. For the tth

time slot, the decision for all incoming EVs can be represented by a vector:

A(t) = {a1(t), a2(t), · · · , aNt(t)}, (2.3)

where

ai(t) =

{
1, the ith EV is charged,

0, the ith EV is NOT charged.
(2.4)
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Due to the limited service capability of the charging station, there is a constraint

Nt∑
i=1

ai(t) ≤M (2.5)

for A(t), which means that at most M EVs can be charged simultaneously at each

time slot.

It is important to guarantee the service quality for customers, e.g., the inflexible

requirement must be ensured before the customer’s departure time, while minimizing

the number of customers being declined for the service. In this chapter, an admission

control mechanism is utilized to solve this problem: Once a task is admitted, both the

inflexible minimum requirement and deadline constraint are guaranteed; otherwise,

the task will be declined. Consequently, the problem turned to be a deadline restricted

utility maximization problem (UMP) as follows.

For the ith EV, once it is admitted, it will be allocated several time slots to be

charged before its deadline. During its whole stay in the charging station, the decision

vector with it can be represented as follows:

Ai(t) = {ai(tai ), · · · , ai(t)}, tai ≤ t ≤ tdi . (2.6)

Then the accumulated served requirement for the ith EV at time t can be expressed

as

Ri(t) =
t∑

k=tai

ai(k). (2.7)

The goal of this chapter is to find a best charging scheduling such that the total

utility is maximized in T time slots (one business day). We thus formulate the utility

maximization problem (UMP) as follows.

max
T∑
t=1

Nt∑
i=1

Ui(t) · ai(t) (2.8)

s.t. ai(t) ∈ {0, 1}, (2.9)

Nt∑
i=1

ai(t) ≤M, (2.10)

rmini ≤ Ri(t
d
i ) ≤ rdesiredi . (2.11)
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Unfortunately, it is difficult to solve the above UMP due to the following chal-

lenges. First, since the objective function is not differentiable, the classical Lagrange

or Dual decomposition method cannot be used to solve the optimization problem.

Second, the utility function depends on two random variables Ri(t) and Nt, and the

decision ai(t) is related to these two random variables and the historical scheduling

of EVs, and thus it is a coupled unseparated random optimization problem. Further-

more, given the deadline constraints, the optimal scheduling decision at certain time

instant requires the full knowledge of future arrivals till the T th time slot, which is

impossible to know in practice. Nevertheless, the UMP problem can be used as a

benchmark since it achieves the highest utility in each time slot, and in the following

section a heuristic greedy algorithm based on current known information is designed

correspondingly.

2.4 Admission Control and Scheduling Algorithms

In this section, an admission control algorithm MLLF and a scheduling algorithm

UMP are designed.

2.4.1 Admission Control Algorithm

Note that the traditional LLF scheduling algorithm considered the effect of time

urgency and unsatisfied requirement comprehensively, and can ensure the most urgent

tasks be served first. Hence, we design a modified LLF algorithm (MLLF) as the

admission control mechanism for the newly arrived EVs.

Definition 2 (Task Energy State): Let t be the current time slot index and

Ri(t) be the accumulated served requirement in (2.7). Then, Ei(t) is defined as the

energy state of task Ti at time slot t, which is given by

Ei(t) = rmin
i −Ri(t). (2.12)

Definition 3 (Flexibility): The difference between the amount of remaining time

to complete a task and the energy state of the task is defined as flexibility of a task,

denoted by φi(t), satisfying

φi(t) = tdi − t− Ei(t). (2.13)
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The flexibility factor considers both the effect of time urgency and unsatisfied

requirement comprehensively. The LLF algorithm only considers the flexibility when

scheduling tasks, and the task with less flexibility will be given a higher priority.

When two EVs have the same flexibility value but different per-slot utility, LLF

method cannot make a good decision to obtain more profits. Considering that serving

a larger requirement will bring a higher profit, with the same flexibility, the EV with

a higher energy state should be given a higher priority. Therefore, we modify the

flexibility factor as follows:

Φi(t) =
φi(t)

Ei(t)
=

(tdi − t)
Ei(t)

− 1. (2.14)

In the modified flexibility, both the flexibility and energy state are considered.

The admission control procedure of the MLLF algorithm can be treated as a virtual

scheduling mechanism which can be illustrated as follows. All the admitted tasks

whose inflexible requirements haven’t been finished are stored in an urgent set Su.

When each new task arrives, it is put into a set Sa together with all the tasks in

Su. Then all tasks in Sa can be scheduled by the MLLF algorithm, and each task’s

estimated finishing time can be obtained. If any task’s finishing time is larger than

its deadline, the new arrival will be declined. The virtual scheduling decision of each

time slot is made by

Ia(t) = arg min
i∈1,··· ,Nt

Φi(t), (2.15)

where Ia(t) denotes the task index which is chosen to be virtually served at slot t.

The admission control algorithm is shown in Algorithm 1. Lines 6 to 20 depict

the procedure of virtually assigning EVs to the M chargers based on their flexibility.

Lines 21 to 25 describe the admission decision making procedure. In the MLLF

admission control algorithm, the minimum requirement of each admitted task can be

satisfied before its deadline. All the admitted tasks will be put into an urgent set Su

to be scheduled for charging. The charging scheduling algorithm will be introduced

in the next subsection.

2.4.2 Scheduling Algorithm

As discussed above, after the admission control procedure, all the tasks in the urgent

set Su will be scheduled for charging.

First, those urgent tasks whose minimum requirements have not been satisfied
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Algorithm 1 MLLF Admission Control Algorithm

1: Input: Energy state Ei and departure time tdi of new task i, Urgent set Su,
Current time slot index t.

2: Output: Decision of whether to admit the new task.
3: procedure MLLF(Ei, t

d
i , Su, t)

4: Add the new {Ei, tdi } and existing tasks Su to set Sa.
5: Get the maximum deadline tdmax for all tasks in Sa.
6: for k = t to tdmax do
7: Compute flexibility Φj(k) for each task j ∈ Sa.
8: Get m-th minimum flexibility Φmin

m .
9: for Each task j ∈ Sa do

10: if Φj(k) ≤ Φmin
m then

11: Update Ej(k + 1)← Ej(k)− 1.
12: if Ej(k + 1) == 0 then
13: Remove task j from set Sa.
14: Set finish time tfj = k for task j.
15: end if
16: else
17: Ej(k + 1)← Ej(k).
18: end if
19: end for
20: end for
21: for Each task j in set Sa do
22: if tfj > tdj then
23: return Decline the new task.
24: end if
25: end for
26: return Accept the new task.
27: end procedure

can be scheduled with the highest priority based on their flexibility. If the number of

the urgent tasks is less than the number of chargers, the tasks with flexible charging

requirements can be scheduled based on their utilities. The scheduling decision of

each time slot is made by

Is(t) = arg max
i∈1,··· ,Nt

Ui(t), (2.16)

where Is(t) denotes the task index which is chosen to be charged at time slot t.

The UMP scheduling algorithm is depicted in Algorithm 2. Lines 5 to 9 describe

the procedure of scheduling the urgent tasks. Lines 11 to 15 depict the scheduling of

the urgent and flexible tasks. The urgent set Su includes all the tasks admitted but
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whose minimum requirements have not been satisfied. Those tasks whose minimum

requirements have been satisfied but still have time to request extra services will be

put inside the flexible set Sf .

2.5 Performance Evaluation

In this section, we implemented our solution and conducted extensive simulations with

practical charging settings to evaluate the performance of the proposed admission

control and scheduling algorithms. To demonstrate the benefits of the proposed

algorithms, we compare the performance with the LLF algorithm [9]. All reported

results are simulated and averaged among 500 runs using Monte-Carlo simulation.

2.5.1 Simulation Settings

In our simulation, the charging time is divided into slots with the duration of ∆t = 10

minutes, and each simulation run will last 100 slots. The arrival rate of EVs per

time slot is λ. Considering the current EV charging station deployment situation

and the EV penetration rate, it is assumed that there are M = 5 Level 2 electric

vehicle chargers deployed in the charging station. All these chargers use 240 Volt AC

outlet and it takes about 3 hours for a continuous full charging for Nissan Leaf which

can support a range about 100 miles [22]. According to the statistical data in [23],

people in North America typically drives less than 30 miles per day for commute

on average. Therefore, it is assumed the inflexible minimum charging requirement

for each vehicle follows a uniform distribution between 1 to 5 slots to satisfy their

minimum daily usage. For the flexible charging requirements, we assume that it also

follows a uniform distribution from 0 to 20 slots.

The staying time of each EV is defined as a redundant time duration plus its

total charging requirement. The redundant time duration is set to be a random value

between 0 to 20 slots with equal probability. Based on the above information and the

utility model introduced in Section III, the per-slot utility function with the unit of

cents is set as

Ui(t) =


12, Ri(t) ≤ rmin

i and t < tdi ,

−0.5×Ri(t) + 12.5, Ri(t) ≥ rmin
i and t < tdi ,

0, otherwise.
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Algorithm 2 UMP Scheduling Algorithm

1: Input: urgent set Su, flexible set Sf , number of charger M , current time slot
index t.

2: Output: allocated urgent charging set Au, and flexible charging set Af .
3: procedure UMP(Su, Sf , M , t)
4: Set N ←M − |Su|.
5: if N ≤ 0 then
6: Compute flexibility Φj(t) for each task j ∈ Su.
7: Get the M smallest flexibility tasks, add to Au.
8: UpdateUrgentAllocation(Au).
9: Set Af ← φ.

10: else
11: Add all tasks in Su to Au.
12: Compute utility Uj(t) for each task j ∈ Sf .
13: Get the N largest utility tasks, and add to Af .
14: UpdateUrgentAllocation(Au).
15: UpdateFlexibleAllocation(Af ).
16: end if
17: end procedure
18:

19: procedure UpdateUrgentAllocation(Au)
20: for Each task j ∈ Au do
21: Update Ej(t+ 1)← Ej(t)− 1.
22: Update Rj(t+ 1)← Rj(t) + 1.
23: if Ej(t+ 1) == 0 then
24: Remove task j from Su.
25: if t+ 1 < tdj then
26: Add task j to Sf .
27: end if
28: end if
29: end for
30: end procedure
31:

32: procedure UpdateFlexibleAllocation(Af )
33: for Each task j ∈ Af do
34: Update Rj(t+ 1)← Rj(t) + 1.
35: if Rj(t+ 1) == rdesiredj or tdj == t+ 1 then
36: Remove task j from Sf .
37: end if
38: end for
39: end procedure
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2.5.2 Simulation Results

First the performance of our admission control algorithm is shown in Fig. 2.3. We

can see that with the increase of the arrival rate, the task declining probability grad-

ually increases. When the arrival rate is larger than 1 vehicle per time slot, the

declining probability increases dramatically. Since the charging capacity is 5 and the

average minimum requirement is 5 slots per EV, then the traffic intensity (defined as

the arrival rate times the average minimum requirement over the charging capacity)

approaches 1 when the arrival rate is 1 per slot. When the arrival rate exceeds 1,

there will be more customers being declined. Comparing with the LLF algorithm,

our UMP algorithm can achieve the similar declining probability, but a higher utility,

which is discussed in the following figures.
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Figure 2.3: Task declining probability with M = 5 and avg. rmin = 5.

The total accumulated utility of serving all the admitted tasks’ requirements is

shown in Fig. 2.4a. Both the LLF and UMP algorithms can achieve higher utili-

ties with a larger arrival rate, and the utilities gradually converge when the arrival

rate reaches certain value. This is because the chargers have already been saturated

with the high arrival rate, and cannot serve more tasks to increase the total utility.

Comparing with the LLF algorithm, the proposed UMP algorithm can achieve up to

20% higher total utility, since the LLF algorithm cannot be adaptive to the changing

utility for the flexible requirements. Fig. 2.4b shows the utility achieved for serving

the extra flexible requirements with different arrival rates. With a low arrival rate,
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the small number of tasks cannot bring obvious performance difference. While the

arrival rate is increasing, the UMP algorithm can beat the LLF algorithm with up

to 20% higher utility. But when the arrival rate exceeds certain value, the charger

will be saturated, and fewer flexible requirements will get the chance to be served.

Thus, the gained flexible requirement utility gradually decreases. In a word, UMP

can achieve higher utility, not necessarily serve more requirements.

Fig. 2.5a illustrates the influence of the average inflexible requirements on the

total utility. It can be found that with more inflexible requirements, the total utility

will increase gradually. This is because these inflexible requirements correspond to

a higher price and profit. Obviously, the UMP algorithm always achieves a higher

utility than the LLF algorithm. Fig. 2.5b shows the influence of increasing the average

inflexible requirements on the achieved utility of serving flexible requirement. The

UMP algorithm can achieve around 20% performance gain over the LLF algorithm.

The influence of the average inflexible requirement and arrival rate on the average

cost (i.e., average payment for per slot charging) the customers paid for their charged

electricity are shown in Figs. 2.6a and 2.6b, respectively. Since most existing works

treated the customer’s requirement as an inflexible demand, the price keeps flat during

the whole charging process. From the two figures, it can be found that the customers

saved a lot with the proposed framework than the flat price scheme. In addition, we

can notice that the cost saved for the customers gradually decreases with the increase

of the inflexible requirement and arrival rate.

2.6 Conclusion

In this chapter, we studied the EV charging scheduling problem by jointly considering

the revenue of the charging station and the service requirements of customers. We pro-

posed an online admission control algorithm MLLF which guarantees the necessary,

inflexible service requirements of all admitted EVs can be satisfied before their de-

partures. Also, a utility based online scheduling algorithm, UMP, has been proposed

to maximize the total utility. Through extensive simulations based on the practical

EV charging information, it has been shown that, with the proposed solution, the

charging station can achieve a higher utility compared with the LLF algorithm.
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Figure 2.4: The influence of arrival rate on the total and extra utilities.
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Figure 2.5: The influence of avg. rmin on the total and extra utilities.
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Figure 2.6: The influence of avg. rmin and arrival rate on the average cost.
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Chapter 3

Intelligent Parking Garage EV

Charging Scheduling Considering

Battery Charging Characteristic

3.1 Introduction

In chapter 2, we have discussed the EV charging problem under the charging sta-

tion scenario and achieved the win-win solution for both the charging customers and

charging station operator by setting reasonable retail price. In addition, it can be

anticipated that more and more parking garages can provide the EV charging ser-

vices and function as EV charging stations. As time-of-use (TOU) pricing has been

widely adopted in current electricity markets [24–26], we also need to consider the

impact of wholesale electricity price on the EV charging scheduling activities to keep

a profitable operation for the charging operator.

Moreover, the charging efficiency significantly affects the charging duration in the

actual charging process. However, for most of the existing works on EV charging

scheduling, the charging efficiency variation caused by the battery state of charge

(SOC) change has not been thoroughly investigated [24]. Due to the electrochemi-

cal characteristic of EV batteries, the charging power decreases substantially for the

higher SOCs with the increase of the internal resistance, which causes the charging

efficiency significantly reduced along with the charging process [27]. There are two

factors affecting the operation of an EV charging station. One is the profit, the most

fundamental motive; the other is the service reputation, related to whether the cus-
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tomers’ charging requirements can be satisfied before their specified departure time.

Typically, the customers pay bills based on the power consumptions. However, pro-

viding charging services at the high tariff period is less profitable for the charging

operator. Charging the EVs with high SOC is very inefficient, they may occupy the

charging facilities for a longer time owing to the low charging efficiency and lead to po-

tential profit reduction. These battery inherent characteristics make the EV charging

scheduling a challenging problem. Thus, to keep a profitable operation, it is crucial

for the charging operator to well schedule different charging requirements taking the

effects of the charging power and electricity price changes into consideration, which

is the primary motivation of this chapter.

In this chapter, we investigate the EV charging scheduling problem under a park-

ing garage scenario, aiming to promote the total utility for the charging operator

subject to the TOU pricing. First, we develop an intelligent multi-charging system

suitable for the garage charging operator to efficiently provide charging service and

manage the charging process taking into account the interests of both customers and

business. Second, we model the battery charging characteristic change during the

actual charging process combined with its intrinsic electrochemical characteristic and

analyze its impact on the EV charging scheduling process. Third, we design an effi-

cient adaptive utility oriented scheduling algorithm to maximize the total utility for

the charging operator under the premise of customer satisfaction assurance. Fourth,

we consider the practical stochastic mobility scenarios and discuss a reservation mech-

anism for the charging operator to adjust the expected profit and task declining cost,

and thus to mitigate the performance degradation caused by the charging information

mismatching. Extensive simulations under practical charging settings are conducted

to demonstrate the excellent performance of the proposed algorithm compared with

other benchmark solutions.

3.2 Related Work

EV charging problems have been studied mainly from three different perspectives,

smart grid oriented, aggregator oriented and customer oriented [28]. In this work

we concentrate on the aggregator oriented perspective. For this category, there have

been extensive research works conducted on the profitable operations for the charg-

ing operator [24, 29–37]. In [30], a real-time power allocation strategy was proposed

to improve the self-consumption of PV energy and reduce the charging cost for a
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commercial building micro-grids containing EVs and PV system. Including the mis-

matching risk between the predicted and actual charging loads, a risk-aware day

ahead scheduling was proposed in [33] to minimize the cost for the charging operator.

However, the power allocation results are greatly affected by the prediction accuracy.

An online coordinated charging decision algorithm was proposed in [34] to minimize

the energy cost without knowing the future charging information. The designed al-

gorithm achieved the best known competitive ratio, but the service capacity of the

charging station was not taken into consideration. In [2, 24, 35], the scheduling for

EV charging with TOU pricing was investigated. The load management technique

was developed to shift the deferrable load to the low price time to minimize the peak

load and reduce the charging cost. However, the EV’s charging duration and demand

constraints were not investigated in these works.

Other groups of work utilized the control, scheduling and optimization methods

to improve the quality of service during the charging process [6, 10, 38–44]. In [40],

optimal power allocation and EV arrival rate adjustment strategies were investigated

to reduce the blocking probability of the EV charging requirements. An admission

control algorithm was developed in [10], [42] to achieve the maximum profit. However,

the charging requirement of each customer cannot be guaranteed under the designed

schemes. In [6], the minimization of EV charging waiting time via scheduling charging

activities spatially and temporally in a large-scale road network was investigated. A

DC fast charging model was incorporated into the queuing analysis as well as the

revenue model in [43]. By limiting the requested SOC in an overload condition,

the revenue was increased, and the blocking probability of the arriving EVs was

decreased. But how to choose the best requested SOC and its corresponding effect on

the performance was not fully investigated. Consequently, how to achieve a profitable

charging operation under the premise of customer charging QoS assurance has not

been well addressed in most existing works, which motivates the study in this chapter.

3.3 System Model and Design Objective

Fig. 3.1 shows the scheme of an intelligent multi-charging system in a parking garage.

When an EV arrives at the parking garage, it reports its charging information, i.e.,

the arrival time, preferred departure time, current and requested battery SOCs, to the

garage’s charging management system (CMS). The CMS decides whether to admit

or to decline the customers’ charging requirements and manages the power supply
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to activate or deactivate the in-facility EVs’ charging activities based on the utilized

electricity pricing scheme and its scheduling mechanism. The whole charging proce-

dure is controlled by an intelligent charging network. Each admitted vehicle is parked

in the charging area and is connected to the charging network. The power dispatch-

ing is controlled by the CMS. All the charging activities are automatically switched.

Those charging service declined EVs are parked in the non-charging area.

Power Grid
Serving Area

Parking 
Area

Intelligent Parking Garage

Charging 
Management 
System

Charging 
Information 
Report

Power Line

Signal Line

Figure 3.1: Intelligent parking garage EV charging system.

3.3.1 System Model

According to the traffic data collected from the Canton of Zrich [45], we model the

EV mobility/parking activity in a workplace parking garage as follows. Suppose the

parking garage charging service hours per day is equally divided into T time slots

with each slot duration as ∆t. Each arrived EV is sequentially indexed. Denote the

arrival time and customer anticipated departure time of the ith arrived EV as tai

and tdi , where tai < tdi ≤ T . The arrivals of EVs follow a Poisson process [6, 46, 47].

According to the vehicular mobility/parking pattern in real life, the arrival rates of

the incoming EVs at different periods of the day are different. Thus, the T time slots

a day are divided into K periods with each period duration as Dk. For each period,

it has different arrival rates denoted as λk, k = 1, 2, · · · , K. Considering the feature

of a workplace parking garage, the departure time of the EVs are assumed to follow

a truncated Gaussian distribution [48] N (td, σ
2
d), where td is the mean of the leaving

time and σd is the standard deviation.
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The charging requirement of an EV is determined by both of its initial battery

SOC, Sinii , when it arrives at the parking garage, where 0≤Sini<1, and the requested

SOC, Sreqi , the objective SOC the customer wants the battery to reach at the depar-

ture, where Sini<Sreq ≤ 1. Most users typically charge their EVs at the levels that

were associated with the battery warnings [49]. Consequently, the initial EV battery

SOC of a recharge cycle is assumed to follow a truncated Gaussian distribution [48]

N (µS, σ
2
S), where µS is the battery warning SOC, and σS is the standard deviation.

The requested SOC of each EV depends on many issues like the customer’s preferred

departure time, the charging rate and the electricity price, etc. Each EV’s charging

requirement can be regarded as a Task, defined as

Ti = (tai , t
d
i , S

ini
i , Sreqi ). (3.1)

The charging operator purchases electricity from the utility company subject to

a time-varying wholesale price. The wholesale price at different time slots a day is

defined as a vector Prw = [Pr1
w, P r

2
w, · · · , P rTw]. Currently, most utility companies

adopt the TOU pricing to regulate the market. They establish the price based on

historical usage data. The price are fixed at different times and pre-known to the

users, encouraging them to shift the loads to lower price periods voluntarily to reduce

the total load on the power grid at peak hours. In this work, the two step high-low

TOU pricing of the Ontario hydro (Canada) [26] is adopted as the wholesale price.

Similar to the business model of a gas station, the charging operator charges the

customers at a retail price, Prr = [Pr1
r , P r

2
r , · · · , P rTr ]. Normally, the retail price

keeps flat during a business day.

3.3.2 Design Objective

As the charging operator, the objective is to maximize the profit meanwhile to pro-

vide satisfactory services to the charging customers. In practical charging situations,

owing to the constraints of charging service capability of the parking garage, vehi-

cles’ dynamic arrival and departure, and electricity price variation, it is inevitable to

decline some customers’ charging requirements. Without a proper scheduling of the

charging activities, it may lead to a high task declining probability, thus severely affect

the customers satisfaction and cause potential profit loss for the charging operator,

which is unfavorable for both parties.

Denote Nt as the accumulative total number of EVs arrived at the parking garage
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until time slot t. Each arrived vehicle is sequentially indexed. For the ith arrived EV,

there is a binary decision variable ai(t) indicating its charging status at each time

slot. Obviously, before the EV’s arrival time tai , after its departure time tdi , or in the

case of its being rejected by the admission control mechanism, the decision variable

ai(t) is 0. During the EV’s sojourn time, the decision is made by the corresponding

scheduling scheme of the CMS.

Considering the charging network service capability, at most M EVs can be

charged concurrently at the parking garage. Therefore, during each time slot the

total number of EVs being charged should satisfy the following constraint

Nt∑
i=1

ai(t) ≤M. (3.2)

According to the admission control mechanism, not all the arrived EVs can be

admitted for charging. However, for all the admitted ones, they must be guaranteed to

reach their requested battery SOC before departure. Thus, for each of these admitted

EVs, the accumulative charging duration ∆i of charging the battery from Sinii to Sobji

should satisfy the following constraint

∆i ≤ tdi − tai . (3.3)

Detailed analysis of ∆i is introduced in the battery charging characteristic analysis

section.

Assume there are N tasks arrived during the whole T time slots. The task set

of these N tasks is denoted as TTT = [T1, · · · , TN ]. Based on the admission control

mechanism, assume there are Nd tasks declined for charging. Then, the task declining

probability under the task TTT scenario can be expressed as

Pd(TTT ) =
Nd

N
. (3.4)

The obtained profit for the charging operator is depended on the specific scheduling

results, which can be further expressed as follows

Prf (TTT ) =
T∑
t=1

N∑
i=1

P (Si (t)) ·∆t · (Prr(t)− Prw(t)) · ai (t) , (3.5)

where P(S(t)) is the charging power function following the battery charging charac-
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teristic. Therefore, the battery SOC of the charging EV can be updated as

Si(t+ 1) = Si(t) + P(Si(t)) ·∆t · ai(t)/B. (3.6)

Taking the interests of both the charging operator and the customers into account,

a metric, utility, is proposed for the charging operator to comprehensively evaluate

the charging scheduling performance. The utility function is expressed as

U(TTT ) = Prf (TTT )− C(Pd(TTT )), (3.7)

where Prf (TTT ) and Pd(TTT ) are the produced profit and task declining probability by a

certain scheduling algorithm under the task set TTT scenario. C(·) is the cost function,

describing the incurred profit loss for declining the customers’ charging requirements.

The parameters are set by the charging operator beforehand with the consideration

of the maximum tolerated task declining probability. The ultimate objective for the

charging operator is to achieve the maximum utility. Thus, one utility maximization

problem is formulated as follows

max
ai(t)

U(TTT )

s.t.
Nt∑
i=1

ai(t) ≤M, ∀t,

∆i ≤ tdi − tai , ∀i,

Si(t+ 1) = Si(t) + P(Si(t)) ·∆t · ai(t)/B, ∀i, t.

(3.8)

3.4 Battery charging characteristic analysis

Most EVs on current market employ the Li-ion batteries, which have good perfor-

mance on capacity, safety, life, and cost. Constant current-constant voltage (CC-CV)

charging is the commonly used method for Li-ion battery charging [50]. However, due

to the electrochemical characteristic of the EV battery, the charging current dramat-

ically decreases along with the increase of battery SOC, which results in significant

reduction of the charging power. This phenomenon also leads to a remarkable increase

of the charging time to reach a higher SOC. All these unfavorable effects further im-

pact the profitability of the charging operator.

We apply a simplified model to describe the relationship between the maximum
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allowable battery charging power and the battery SOC based on the Citroen C-

Zero electric vehicle charging experimental measurements [51]. We consider all EVs

equipped with the same kind of batteries with the same SOC change function S(t).

By applying the experimental results, a typical charging power function is expressed

as

P(S) =

P0, 0 ≤ S ≤ Sth,
1− S

1− Sth
P0, Sth < S ≤ 1,

(3.9)

where S is the current battery SOC and Sth is the threshold invoking a shift from

the CC period to CV period. Since the voltage does not change much during the CC

period, the charging power is simplified as a constant P0. For the CV period, the

charging power is simplified linearly decreasing with the growth of battery SOC.

The required charging duration for a particular task i is mainly determined by its

initial and requested battery SOCs, and the charging power. Based on the experi-

mental measurements, to simplify the analysis, the initial battery SOC of each task

directly determines the beginning charging power. Then, the charging duration for

task i can be obtained by the following Lemma:

Lemma 1. For any task i, given its initial and requested battery SOCs Sinii and Sreqi ,

its required charging duration ∆i can be obtained as

∆i =


(Sreqi −S

ini
i )B

P0
, Sinii < Sreqi ≤ Sthi ,

(Sth−Sinii )B

P0
+ β ln( 1−Sth

1−Sreqi
), Sinii ≤ Sth < Sreqi ,

β ln(
1−Sinii

1−Sreqi
), Sth ≤ Sinii < Sreqi ,

(3.10)

where β = (1−Sth)B
P0

.

Proof. We consider all tasks follow the same SOC change function S(t). For the CC

period, as the charging power is a constant, the charging duration is determined by

its initial battery SOC Sini and the CC-CV transition threshold Sth, which can be

calculated as

∆cc =

(
Sth − Sini

)
·B

P0

, (3.11)

where B is the rated battery capacity. Then, the battery SOC changes with the CC

period accumulative charging time can be expressed as

Scc(t) = Sini +
P0t

B
. (3.12)
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For the CV period, the charging power linearly decreases with the increase of

battery SOC. Assume that δ is a very small period, the SOC with the CV period

accumulative charging time can be updated by

Scv(t) = Scv(t− δ) + P (t− δ) · δ/B

= Scv(t− δ) + (m− nScv(t− δ)) · δ, (3.13)

where m= n= P0

(1−Sth)B
. Then, a differential equation of S can be obtained as

˙Scv(t) + nScv(t)−m = 0. (3.14)

By solving this differential equation, we can obtain a general solution for the change

of battery SOC with the CV period accumulative charging time as

Scv(t) = Ce
− P0

(1−Sth)B
t
+ 1, (3.15)

where C is a constant. By applying the initial condition S(0) = Sth, the constant C

is determined as C = Sth − 1. Thus, we can obtain

Scv(t) = (Sth − 1)e
− P0

(1−Sth)B
t
+ 1. (3.16)

Given each individual task’s initial and requested battery SOCs, we can map

these states to the SOC change function S(t) and obtain its corresponding charging

duration from Sini to Sreq. The initial battery SOC of each task directly determines

which charging period it begins. Then, for each individual task its battery charging

characteristic can be analyzed as follows.

Case 1: Sini < Sreqi ≤ Sth.

This kind of tasks’ initial battery SOCs are very low and only require very few

charging amount. The charging process only goes through the CC period. The

battery charging power maintains at the maximum level, and the task’s total charging

duration can be expressed as ∆i =
(Sreqi −S

ini
i )B

P0
. Its battery SOC is linearly increasing

as Si(t) = Sinii + P0t
B

.

Case 2: Sinti ≤ Sth < Sreqi .

The charging process needs to go through both the CC and CV periods. For the

CC period, the battery is charged from Sinii to Sth. For the CV period, the battery is

charged from Sth to Sreqi . By mapping these states to the SOC change function S(t),
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we can obtain this task’s total charging duration, which is the summation of these

two periods. Thus, it can be expressed as follows

∆i = ∆cc
i + ∆cv

i

=

(
Sth − Sinii

)
·B

P0

+

(
1− Sth

)
B

P0

ln

(
1− Sth

1− Sreqi

)
.

(3.17)

Then, for this kind of tasks their battery SOCs at any accumulative charging time t

can be expressed as

Si(t) =

Sinii + P0t
B
, t ≤ tcci ,

(Sth − 1)e
− P0

(1−Sth)B
(t−tcci )

+ 1, t > tcci ,
(3.18)

where tcci =
(Sth−Sinii )B

P0
is the task’s charging duration for the CC period.

Case 3: Sth ≤ Sinti < Sreqi .

The charging process is deemed as only taking the CV period. Then, we can map

its two battery SOC states Sinii and Sreqi to the SOC change function expressed in

(3.16), and the charging duration is the time difference between these two states,

which is expressed as

∆i = ∆cv
i =

(
1− Sth

)
B

P0

ln

(
1− Sinii

1− Sreqi

)
. (3.19)

Then, for this kind of tasks their battery SOCs at any accumulative charging time t

can be expressed as

Si(t) = (Sth − 1)e
− P0

(1−Sth)B
(t+tcvi )

+ 1, (3.20)

where tcvi = (1−Sth)B
P0

ln( 1−Sth
1−Sinii

) is the duration following the SOC change function S(t)

with the SOC changing from Sth to Sinii .

According to Lemma 1, the charging amount Ei(t) at each individual charging

slot t can be obtained by the SOC difference at the corresponding charging time.

Given the required charging duration ∆i of each task, its charging sequence Ei thus

can be obtained. For different tasks their charging sequences are heterogeneous. The

charging activity at each slot cannot be treated equally and scheduled interchangeably.

One toy example to illustrate the impact of the battery charging characteristic on
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the scheduling is shown in Fig. 3.2. Assume the system capacity is 6 time slots, the

first 2 time slots are within the high price (low profit) period, and the following 4

time slots belong to the low price (high profit) period. There are two tasks requiring

charging services. Task 1 and 2 arrive at the beginning of the 1st time slot, and

depart at the 6th and the 4th time slots, respectively. The charging sequences of

these two tasks are denoted as E1 = {5, 4, 3}, and E2 = {8, 7, 6}. Each number is

the amount of energy that can be charged to the EV in the particular slot given its

initial SOC and follows the battery charging characteristic. For instance, the number

“5” denotes that 5 kWh energy will be charged to EV 1 during its first charging time

slot. The objective for the charging operator is to charge more energy at the low

price period to earn more profit, meanwhile try its best to accommodate more tasks’

charging requirements. To maximize the profit while satisfying all tasks charging

requirements, we need to consider the issues of electricity price variations, all tasks’

deadline restrictions and each task’s charging power sequence decreasing trend. It

can be noted that the new problem is more challenging than the counterpart with no

battery charging characteristic consideration. Consequently, the charging operator

must design efficient scheduling algorithm to achieve the desirable utility, which is

discussed in detail in the subsequent sections. Time slot 1       2       3      4      5     6E1: {5,4,3}E2: {8,7,6}arrive departPrice 5 38 7 6 4
b

h
t

High price period Low price period
e

h
t

e

l
t

b

l
t

Figure 3.2: Toy example.
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3.5 Admission Control and Scheduling Algorithms

In this section, the admission control mechanism is introduced to guarantee the ser-

vice quality for all the EV charging customers. Then, the scheduling algorithms are

designed to optimize the utility for the parking garage charging operator.

3.5.1 Admission Control Algorithm

To ensure the QoS for the EV charging customers, each admitted EV must be guar-

anteed to charge its battery to the requested SOC when it leaves the parking garage.

The admission control mechanism can be viewed as a virtual scheduling procedure.

Whenever a new task i arrives, it will be put into an active scheduling task set I

together with the existing admitted tasks. Then, all the tasks in I will be scheduled

by the corresponding scheduling algorithm. Since each admitted task must achieve

the requested SOC while departure, if any existing admitted task or the newly arrived

task itself cannot be charged to its requested battery SOC at the departure, the new

task should be declined of service; otherwise, it should be admitted. The flow graph

of the charging management system is illustrated in Fig. 3.3. As the most important

part of the charging management system, the scheduling algorithms are introduced

in next subsection in detail.

3.5.2 Scheduling Algorithm

The discussed EV charging scheduling problem is causal as the scheduling policy at

each time slot t depends only on the current information state It. The future charging

information is unknown for the charging operator beforehand, they cannot make a

globally optimal scheduling. From [52], it can be seen that there does not exist a causal

optimal scheduling policy. Since we cannot, in general, construct causal optimal

scheduling policies, we must be content to design sub-optimal heuristic scheduling

algorithms.

Considering the time urgency and charging demand comprehensively, the most

urgent tasks should have the highest priority to be scheduled. A metric, flexibility [52],

is utilized to describe the urgency of each task, which is defined as follows. Definition

1. The difference between the amount of remaining time to complete a task and the

remaining unfinished charging requirement Li is defined as the flexibility of task i,
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Figure 3.3: Charging management system operation flow graph.

denoted as Φi(t), satisfying

Φi(t) = tdi − t− Li(t). (3.21)

Obviously, a greedy-based scheduling algorithm (GRD) can be applied to solve the

problem. Larger flexibility factors imply greater load deferability. In particular, if a

task is not flexible (Φi(t) = 0), it must be served immediately to be completed by its

deadline. Otherwise, the tasks with the minimum charging amount are sequentially

scheduled for charging at each time slot during the high price period; the tasks with

the maximum charging amount win the opportunity within the low price period.

Apparently, the GRD scheduling algorithm has excellent task admission performance

and resource utilization ratio. However, the electricity price variation trend is not

taken into consideration. It cannot guarantee as much power as possible to be charged
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in the low price period. Thus the total profit, the most concerned part for the charging

operator, cannot be maximized.

Algorithm 3 Price oriented scheduling algorithm

1: Input: M , t, S = {I,L,E, td}, teh
2: Output: A
3: procedure POS(M , t, S, teh)
4: if new task is admitted at t then
5: update S, tD = max(tdi ), i ∈ I
6: if t ≤ tbl then
7: if

∑
i

Li(t) ≤M(tD − teh) then

8: x = tbl , SCHEDLP(k) for k from [x, tD]
9: else

10: δ =
∑
i

Li(t)−M(tD − teh)

11: SCHEDHP(k) for the δ requirements
12: x = tbl , SCHEDLP(k) for k from [x, tD]
13: end if
14: else
15: x = t, SCHEDLP(k) for k from [x, tD]
16: end if
17: end if
18: end procedure
19: procedure schedHP(t) / SCHEDLP(t)
20: if ∃Φj(t) = 0, j ∈ J then
21: schedule all tasks in J immediately
22: update S, A
23: else
24: N = min {|I| ,M,M − |J |}
25: SCHEDHP: schedule the N tasks with min E(t)
26: SCHEDLP: schedule the N tasks with max E(t)
27: update S, A
28: end if
29: end procedure

To mitigate the price insensibility of the GRD scheduling, a price oriented schedul-

ing algorithm (POS), as depicted in Algorithm 3, is designed to improve the profit.

The key process of POS algorithm is to schedule more high-power tasks in the low

price period following the charging power causal decreasing characteristic. If the cur-

rent time is within the low price period or the estimated total charging requirements is

smaller than the low price period capacity, as shown in lines 8 and 15 of Algorithm 3,
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each round the task with the most charging energy amount wins the scheduling oppor-

tunity. Otherwise, as depicted in lines 9 to 13, it preferentially schedules the charging

requirements to the high-profit region until the high-profit region reaches its capacity

limit. After this stage, it schedules the remaining charging requirements within the

available low-profit region. The task with the least charging energy amount has the

highest priority during this process. The POS algorithm is aggressive in increasing

the profit. However, there is a drawback of it, i.e., the task declining probability

cannot be guaranteed, especially for the high traffic intensity scenarios. Since the

early arrived tasks always take up the lowest price slot in advance, the later arrived

tasks may be blocked due to insufficient charging slots available to them. It can be

noticed the two metrics, profit and task declining probability, cannot be guaranteed

optimal at the same time.

Therefore, considering the effects of electricity price variation, charging power

causal decreasing, and deadline constraints in a comprehensive manner, we propose

an adaptive utility oriented scheduling algorithm (AUS) to achieve the desirable total

utility for the charging operator. The AUS algorithm, as described in Algorithm 4,

adaptively makes the decision on when to invoke each procedure based on the esti-

mated incoming charging requirements. The estimation of the average total charging

requirement R̄ during a specified period α can be expressed as follows

R̄ = λ̄ · α · L̄, (3.22)

where λ̄ is the average arrival rate during the specified period α, and L̄ is the average

charging slot number per EV. All the information can be estimated by historical data

collected by the charging operator.

Depending on the TOU electricity pricing model, the service capacity of the two

price periods can be expressed as

Ch = M · (teh − tbh), (3.23)

Cl = M · (td − tbl ), (3.24)

where the high price period ending time teh and the low price period beginning time

tbl are equal. It is possible that the price may change a few times during the day,

and with a small extension of our proposed AUS algorithm, i.e., comparing the total

charging requirements and the low price period capacity and adjust the scheduling
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sequence, we can still handle the changed price model effectively.

Algorithm 4 Adaptive utility oriented scheduling algorithm

1: Input: M,S, tbh, t
e
h, td

2: Output: A
3: procedure AUS(M , S, tbh, t

e
h, td)

4: estimate R̄ for [tbh, td] with (3.22)
5: calculate Cl with (3.24)
6: Θ = max{R̄− Cl + θ, 0}
7: schedule with GRD for the first Θ requirements
8: schedule with POS for all the remaining requirements
9: end procedure

3.5.3 Discussion

For the proposed AUS algorithm, utilizing the GRD scheduling at the beginning guar-

antees a low task declining probability, and the subsequent POS scheduling guarantees

the desirable profit. Since the arrivals of the tasks are random in real scenarios, the

actual arrived vehicle number has some deviation from the estimated arrived vehi-

cle number. For the underestimation case, i.e.,
∑
i

Li > R̄, the underestimation of

the total incoming requirements may cause a high task declining probability and

then decrease the total utility for the charging operator. To avoid the performance

degradation, the robustness issue of the algorithm is considered by incorporating the

reservation mechanism. The charging operator can reserve θ extra high-price slots

to achieve a relatively small task declining probability and meanwhile a satisfactory

profit to guarantee a desirable utility. The extra reservation amount θ can be set as

θ = kσL̄, and θ ≤ Cs − R̄, where σ is the standard deviation of the arrived vehicle

number, k is a tuning parameter, and Cs is the system capacity. Increasing θ makes

the scheduling more conservative and secure, so the task declining probability can be

substantially decreased. Whereas, the profit is probably affected. Because more user

will be charged in the high price period and less user can be selected in the low price

period, sometimes even cannot fully utilize the low price period. By analyzing the

AUS algorithm, we can find that it converges to the GRD algorithm when the esti-

mated average total charging requirement reaches the system capacity. Consequently,

the specific average traffic intensity ρ at which the AUS algorithm converges to the

GRD algorithm with given reservation amount θ can be estimated by the following
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equation

ρ = 1− θ

Cs
. (3.25)

Thus, the charging operator can obtain the desired task declining probability by

adjusting the reservation amount.

3.6 Case Studies

3.6.1 Simulation Settings

Take a workplace parking garage charging station as an instance to study the charging

strategy. With each slot duration ∆t = 1 min, one business day (7am-5pm) is equally

divided into T = 600 time slots. Considering the current EV penetration rate, traffic

pattern and typical power configuration in a workplace parking garage, 8 EVs can

be charged concurrently [53]. The whole T time slots are divided into three periods

with different arrival rates (7am-9am, 10λ; 9am-12pm, 2λ; 12pm-4pm, 0.5λ). Two

charging cases are considered as examples: Case 1, by the default setting of the

charging station all EVs depart at the end of the business day; Case 2, the EVs depart

randomly around the peak off-work hours following a truncated Gaussian distribution

N (4 : 30pm,
√

30mins), and tai < tdi ≤ 5pm. The Citroen C-Zero with 16kWh battery

is investigated. Based on the study of the EV user charging behavior [49], the initial

EV battery SOC of a recharge cycle is assumed to follow the truncated Gaussian

distribution N (0.1, 0.2), and 0 ≤ Sinii < 0.9. The battery CC-CV stage transition

threshold is 0.6. The required SOCs of all charged batteries are preferred as 0.9.

The flat retail charging price for the customers is 20 cents/kWh, and the wholesale

price adopts the 2015 winter TOU price of Ontario Hydro [26] with high price as 17.5

cents/kWh and low price as 12.8 cents/kWh.

3.6.2 Analysis and Comparison of Results

To better analyze the performance of the proposed adaptive utility oriented scheduling

(AUS), the greedy scheduling (GRD), profit oriented scheduling (POS), and most EV

charging stations currently adopted first come first serve scheduling (FCFS) are taken

for comparisons under 1000 Monte Carlo simulations. For Case 2 another widely

utilized charging strategy earliest deadline first (EDF) is considered as well.

Two key performance indexes profit and task declining probability are first inves-
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tigated for Case 1 under the different traffic intensity scenarios as shown in Fig. 3.4a

and Fig. 3.4b, respectively. Task declining probability affects the customer satisfac-

tion, and profit is the motivation for the charging operator. However, it can be seen

that the two performance indexes cannot be guaranteed optimal at the same time for

any scheduling strategy. Although the main objective for the charging operator is to

obtain the maximum profit. It is quite undesirable for the charging station to have a

large task declining probability, which severely affects its service reputation and leads

to great potential profit loss. Thus, by taking the interests of both parties into account

we compare the utility of each algorithm to comprehensively evaluate the scheduling

performance in Fig. 3.4c. The cost function here is set as C(Pd) = a · (eb·Pd − 1) by

the charging operator, where a = 200, and b = 20. The aggregated power demands

of the charging station during the whole business day are compared in Fig. 3.4d as

well to reflect the energy utilization.

From the simulation results, it can be noted that the GRD algorithm achieves the

lowest task declining probability among all algorithms, but losses a lot of profit. The

POS algorithm aggressively increases the profit, but the task declining probability is

quite unacceptable. By contrast, the proposed AUS charging strategy is sophisticated

to achieve the maximum utility with considerable profit under the premise of a rela-

tively low task declining probability. In addition, the AUS algorithm can obtain more

profit compared with the high resource utilization algorithms GRD and FCFS, and

meanwhile ensure a low task declining probability compared with the POS algorithm.

The energy utilization ratio is also promising among all scheduling algorithms, which

makes the AUS algorithm the best choice for the parking garage charging operator.

The charging operator can also adopt the introduced reservation mechanism of

the AUS algorithm to mitigate the performance degradation caused by the charging

information mismatching with vehicle stochastic arrivals. Take the simplest single

charger case as illustration. The effects on the scheduling performance with different

reservation amounts are compared in Fig. 3.5. Same as the previous analysis, re-

serving more high-price period resources could effectively decrease the task declining

probability under different traffic intensity cases. With the increase of average traffic

intensity the AUS algorithm gradually converges to the GRD algorithm, the converg-

ing points obtained from the simulation results are in good match with the theoretical

results as shown in Fig. 3.5a. Fig. 3.5b shows the profit comparison under differ-

ent reservation amount cases, and it can be observed that reserving more high-price

period resources results in some profit loss. However, choosing the proper reserva-
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Figure 3.4: Performance comparisons for Case 1.

tion amount can achieve a desirable utility, as shown in Fig. 3.5c. With kσ = 1, it

effectively decreases the task declining probability and also obtains the best utility,

which is promising for both the customers and the charging operator. Consequently,

the garage charging operator can always achieve the desirable utility by choosing a

proper reservation amount under different cases.

For Case 2, the vehicles’ mobility pattern is more complicated. Deadline restricted

scheduling is considered in this case. We also evaluate the different performance to

demonstrate the effectiveness of the proposed AUS algorithm. As depicted in Fig.

3.6, we can find that the proposed AUS algorithm is robust to achieve the best utility

under the dynamic departure scenario. The task declining probability is properly

controlled under different traffic intensity cases, which well guarantees the interests
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of customers. Meanwhile, the promising profit for the charging operator can also be

obtained. Thus, it can provide effective guidance for the garage charging operator to

make proper scheduling for the incoming charging requirements, thereby to achieve

the desirable utility. The reservation mechanism is also applied under this scenario.

Due to the page limit detailed discussions are omitted here.

To demonstrate the vehicle mobility pattern independence of our proposed AUS

scheduling algorithm, we consider the scenarios where EVs uniformly arrive at the

parking garage for a simple two-charger scenario. The performance of task declining

probability, obtained profit and achieved total utility with different scheduling algo-

rithms under different traffic scenarios are compared in Fig. 3.7. From the simulation

results, it can be seen the proposed AUS algorithm still achieves the maximum utility

with considerable profit gain under the premise of a relatively low task declining prob-

ability. Consequently, our proposed scheduling algorithm is applicable under different

stochastic vehicle mobility models.

3.7 Conclusion

In this chapter, we investigated the EV charging problem at an intelligent parking

garage subject to the real TOU electricity pricing. We designed a multi-charging

system for the garage charging operator to effectively provide charging services by

jointly considering the charging station profit and customer satisfaction. Besides,

we analyzed the battery charging characteristic change during the actual charging

process and applied it into the EV charging problem. Furthermore, we proposed an

adaptive utility oriented scheduling algorithm to effectively achieve the maximum

total utility for the charging operator under the dynamic traffic pattern scenario.

We also discussed the reservation mechanism for the charging operator to mitigate

the performance degradation caused by the charging information mismatching with

vehicles’ stochastic arrivals. Through extensive simulations, it has been shown that

the proposed AUS algorithm is applicable under different stochastic vehicle mobility

processes. With it the charging operator can achieve the best performance compared

with other existing algorithms, which is promising for the parking garage charging

service proliferation.
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Figure 3.5: Performance comparisons with different reservation amount
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Figure 3.6: Performance comparisons for Case 2.
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Figure 3.7: Performance comparisons for vehicle stochastic arrivals.
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Chapter 4

Electric Vehicle Charging Scheme

for a Park-and-Charge System

Considering Battery Degradation

Costs

4.1 Introduction

In the previous chapters, we have discussed the EV charging problem from differ-

ent perspectives. However, one of the core problems for EV charging has not been

fully addressed is how to ensure the EV batteries operating healthily and efficiently

during the charging process. As EV’s market share is increasing, more and more

public charging facilities are required to provide charging services for EV customers.

Recently, one promising operation mode, named park-and-charge system [54,55], has

been proposed for electric vehicle charging. The parking garage equips several charg-

ing points and provides both the parking and charging services. EVs can be charged

during the parking period. Some projects have been carried out to explore the feasi-

bility of this mode [56,57]. Several European universities led by ETH have conducted

the V-charge project to design automated valet parking and charging system to im-

plement this operation mode [57]. An important step to promote this charging mode

to large scale is to develop effective and efficient charging load scheduling scheme.

In this chapter, we investigate the EV charging scheduling problem of a park-and-

charge system with the objective to minimize the EV battery charging degradation
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cost while satisfying the battery charging characteristic. First, we design the opera-

tion mode of the park-and-charge system suitable for the charging operator to provide

charging service and manage the charging process taking into account the interests of

both customers and parking garage. Subsequently, a battery degradation cost model

is devised to capture the characteristic of battery performance degradation during the

charging process. Taking into account the developed battery degradation cost model,

EV charging scheduling problem is explored and a cost minimization problem is for-

mulated. To make the problem tractable, we investigate the features of the problem

and decompose the problem into two sub-problems. A vacant charging resource allo-

cation algorithm and a dynamic power adjustment algorithm are proposed to obtain

the optimal solution of cost minimization. Several simulations based on realistic EV

charging settings are conducted to evaluate the effectiveness and applicability of the

proposed methods in discussed charging scenarios. Simulation results exhibit the su-

perior performance of the proposed algorithms in achieving the most degradation cost

reduction and the lowest peak power load compared with other benchmark solutions,

which is beneficial for both customers and charging operators.

4.2 Related Work

Many research works have been conducted on designing effective charging scheduling

algorithms for EV charging operation. Some efforts have been put on the power grid

oriented issues, i.e., how to mitigate the potential impact on the power grid associated

with large scale EV charging [58–61]. In [59], a decentralized algorithm is proposed to

schedule the electric vehicle charging with the objective of flattening the grid load. A

two-stage optimization method is proposed in [60] to minimize the network energy loss

using smart charging and discharging of PHEVs. Other group of works utilized the

control, scheduling, and optimization methods to focus on the EV user oriented issues,

i.e., improve the EV user quality of service during the charging process. Optimal

power allocation and EV arrival rate adjustment strategies are investigated in [62] to

reduce the EV charging requirement blocking probability. In [6], the minimization of

EV charging waiting time via scheduling charging activities spatially and temporally

in a large-scale road network was investigated.

Although the EV charging scheduling problems have been discussed from differ-

ent aspects in these works, one of the core problems for electric vehicle has not been

fully addressed yet. A major factor preventing the proliferation of electric vehicle
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in current auto market is the high cost of EV batteries [63]. Ensuring the healthy

and efficient operation of the battery and extending the battery lifetime is one of the

most concerned points for each EV owner, also a very important issue valued greatly

from the charging operating business’s perspective. Many internal and external fac-

tors affect the battery performance [27, 64–70]. One important factor is the battery

capacity fading, which has significant effects on the battery lifetime [68]. Several

research works have investigated the factors affecting the battery capacity fading.

One important contributing factor is temperature. A genetic algorithm based PHEV

charging profile optimization has been addressed in [69] to find the optimal energy

cost and battery resistance growth. A capacity fading model for LiFePO4 based on

real operating conditions in electric vehicles was proposed in [65] and concluded that

preventing the high temperature of the battery was important to optimize the battery

lifetime. The cost of EV battery wear due to V2G application in power system was

analyzed in [70]. The effect of ambient temperature on the battery degradation was

considered in this work. Without a good control of the battery charging process, a

larger charging power will generate more heat and thus increase the battery tempera-

ture, which deteriorates the EV battery capacity and lifetime. An intelligent charging

system capable of estimating and minimizing these effects can potentially extend the

battery lifetime and reduce the battery degradation. Therefore, to achieve the best

operating mode, it is crucial for the system to develop effective charging scheduling

scheme to minimize the battery degradation cost and reduce the system peak power

load, which is the primary motivation of this chapter.

4.3 Park-and-charge system

In this section, we first propose a framework for the park-and-charge system and

then further introduce the operating model of the designed system. The detailed

implementation of the control strategy is introduced afterwards.

4.3.1 System Design

As illustrated in Fig. 4.1, in a large parking garage, every parking spot is equipped

with a charging outlet and connected to the charging network. People drive to the

parking garage, park their EVs, connect the vehicles to the charging outlets, and leave

for their personal affairs, such as working, shopping and etc. During the parking pe-
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riod, the charging system can charge electricity to the connected EVs according to

customer specified charging requirements. The park-and-charge system includes three

participants: the utility company, the charging operator and the charging customers.

The charging operator purchases electricity from the utility company and provide

charging services to the customers. When an EV arrives at the parking garage, the

driver reports the charging information, i.e., the arrival time, estimated departure

time, current battery SOC and objective battery SOC, to the parking garage’s charg-

ing management system (CMS). The CMS then makes a decision on whether to admit

the customer’s charging requirement based on its admission control mechanism. Each

admitted vehicle’s charging requirement must be satisfied before its departure time.

All admitted vehicles are connected to the charging network to receive charging ser-

vices. Those EVs with charging requirement rejected can park in the non-charging

area or travel to other charging places for service. With the collected charging infor-

mation of all admitted EVs, the CMS then distributes the optimal control strategy

to schedule the charging activities of all admitted EVs to achieve the EV battery

degradation cost minimization while ensuring all the admitted service requirements.

Utility CompanyUtility Company

 Charging Customer
Battery Health

ChChargiging C Customer
Battery Health  Charging OperatorCharging Operator

Profit

Capacity Price

Figure 4.1: Illustration of the park-and-charge system.
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4.3.2 System Implementation

The designed park-and-charge system is operated in a top-down three-level structure

as shown in Fig. 4.2. The top level implements the charging tasks admission control.

It has the highest priority to guarantee the quality of service (QoS) for the arrived

charging customers, i.e. the service opportunity and charging requirement fulfillment.

Based on the customer reported charging information, the CMS can obtain the neces-

sary required charging slot number and the corresponding charging sequence for each

requested customer subject to the battery charging characteristics. Then, the CMS

makes a decision on admitting or rejecting the charging requirement based on its ad-

mission control mechanism. After collecting the charging information of all admitted

customers, the charging operator compares current total number of charging slots

required with that are available. If they are equal, the charging operator determines

the charging scheduling strategy directly based on the obtained charging sequences.

Otherwise, the charging operator may use the vacant charging resources and adjust

the charging power sequence for each customer to minimize the total battery degra-

dation cost of all the charging customers and alleviate the system’s peak power load

at the same time. Then, the charging operator schedules the charging activities of all

the active tasks based on their determined charging sequences.

4.4 System Models

In this section, we present the detailed system model applied to our designed park-

and-charge system.

4.4.1 EV Mobility Model

Workplace parking garage is a typical implementation for a park-and-charge system.

The employees can park their cars for charging during their normal working hours.

After work they pick up their cars and drive back home. The charging service is

usually provided during the working hours. The total charging service time per day

is equally divided into T time slots with each slot duration as ∆t. EVs dynamically

arrive at the parking garage and are sequentially indexed according to their arrival

time. Denote the ith EV’s arrival time as tai . The arrivals of EVs follow a Poisson

process [6, 46, 47]. Considering the feature of a workplace parking garage, the EV

departure time can be assumed following a truncated Gaussian distribution [48] with
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Figure 4.2: Operation flow graph of the park-and-charge system.
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the mean value as the peak leaving time. The dynamic departure case can be treated

as a deadline restricted problem. Detailed discussion for the dynamic departure case

can be referred to our previous work [3]. To make the problem simpler, all vehicles

are assumed to arrive at the beginning of each time slot, and to depart at the end of

the business day, i.e., time slot T .

4.4.2 Charging Requirement Model

When each EV arrives at the parking garage and requests the charging service, the

driver reports the EV’s initial battery SOC Sinti and the objective battery SOC Sobji

expected at the departure time to the CMS. Most users typically charge their EVs

at the levels that were associated with the battery warnings [49]. The objective SOC

of each EV depends on many factors such as the customer’s expected staying time,

charging rate and electricity price, etc. Accordingly, each EV’s charging requirement

can be regarded as a four-tuple task Ti = (tai , T, S
int
i , Sobji ).

4.4.3 Battery Charging Model

As the battery charging characteristic has been detailedly analyzed in Section 3.4, we

employ the same CC-CV charging model in this chapter.

Given the time slot duration ∆t, with each individual task’s initial and objective

battery SOCs Sinti and Sobji , its necessary required charging slot number Li and the

corresponding charging energy sequence Ei can be obtained by the SOC difference at

each corresponding charging time slot, where Ei = (Ei(1), Ei(2), · · · , Ei(Li)), Ei(k)

is the energy charging amount at time slot k, which is expressed as

Ei(k) = (Si(k∆t)− Si((k − 1)∆t)) ·Bi =

k∆t∫
(k−1)∆t

P (t)dt, (4.1)

where Bi is the rated battery capacity of EV i. Although the charging power varies

continuously over time, while ∆t is relatively small, the energy charging amount can

be approximated as follows

Ei(k) ≈ P ((k − 1) ∆t) ·∆t. (4.2)

Thus, we can obtain the charging power sequence Pi = (Pi(1), · · · , Pi(Li)) as well,
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where Pi(k) = P(k∆t) is the charging power at the beginning of the kth time slot .

4.4.4 Battery Degradation Model

Capacity fading is an important manifestation of battery degradation. Experimental

results [71] have shown that high temperature is a stress factor to accelerate the

battery capacity fading. The temperature dependence of capacity fading rate can be

analyzed based on the Arrhenius relationship [72]:

r = Ae−Ea/(RT ), (4.3)

where r is the battery capacity fading rate under the absolute temperature T (in

kelvins), A is the proportionality constant, Ea is the activation energy, and R is the

universal gas constant.

According to the Arrhenius relationship, it is noticeable that battery capacity

fading rate increases exponentially as the temperature rises. During the EV charging

process, with large charging power, more heat is generated at the battery side. These

generated heat will cause the battery temperature to rise, and then increase the

battery capacity fading rate, which is unfavorable for the battery lifetime. According

to the model proposed in [73], the temperature change produced by a given charging

profile is approximated as a linear function of charging power expressed as

T (P ) = Tamb +Rth · P, (4.4)

where Rth is the thermal resistance of the battery pack and Tamb is the ambient

temperature. Therefore, the relationship between the capacity fading rate and the

charging power can be expressed as

r(P ) = Ae
−Ea

R
· 1
Tamb+Rth·P . (4.5)

It can be noted that the larger the charging power the higher the battery temperature

will be, and then it is more harmful to the battery healthiness and lifetime.

Consequently, in order to optimize the charging profile and prolong the battery

lifetime, estimated equivalent costs of battery degradation are defined here in terms
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of battery capacity fading, which is expressed as follows

C(P) =
Q

B
Cbat =

L∑
i=1

r(P (i))∆t

B
Cbat = β

L∑
i=1

r (P (i)), (4.6)

where Q is the total capacity fading of the charging process, B is the rated battery

capacity, Cbat is the cost of replacing the battery pack, L is the task’s necessary

required charging slot number, P (k) is the charging power at the kth charging time

slot and β = ∆t·Cbat
B

is a positive coefficient.

4.5 Problem Formulation

As introduced in the previous system implementation part, the park-and-charge sys-

tem is operated in an event-driven manner. The system schedules the EV charging

activities in real-time. Detailed operation of the system is formulated as follows.

4.5.1 Task Admission Control

Whenever a new EV arrives at the parking garage and asks for charging, the CMS

of the parking garage triggers the task admission control mechanism to determine

if the charging requirement can be admitted for service. Considering current EV

penetration rate and the service capability of the charging network, it is assumed

that at most M EVs can be charged concurrently in the parking garage. For the

newly arrived task Tj = (taj , T, S
int
j , Sobjj ), with knowing its charging information

its necessary required charging slot number Lj and the corresponding charging power

sequence Pj can be obtained accordingly. Then, the admission control mechanism

compares current total number of charging slots required with that are available and

makes the decision. The new task will be accepted for charging if the following

constraint is satisfied, ∑
i∈I(taj )

L
taj
i + L

taj
j ≤M

(
T − taj + 1

)
, (4.7)

where I
(
taj
)

is the existing admitted active task set at time slot taj , and L
taj
i is the

necessary required charging slot number for each task in I at time slot taj .
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4.5.2 Battery Degradation Cost Minimization Problem

The admission control mechanism guarantees as many tasks as possible to get the

charging opportunity under their acceptable maximum charging power conditions.

While in most cases, especially under the low traffic scenarios, there are some vacant

charging resources not being fully utilized if the vehicles are charged under their max-

imum acceptable charging powers. Under these circumstances the charging operator

can adjust the tasks’ charging power and fully utilize all the vacant resources to min-

imize the battery degradation cost and meanwhile relieve the system’s peak power

load. Thus, a battery degradation cost minimization problem can be formulated as

follows

P0 : min
Pti

Nt∑
i=1

C
(
Pt
i

)
s.t. Pi(1) ≤P (Si(t)) ,

Pi(k) ≤P

(
Si(t) +

1

Bi

k−1∑
j=1

Pi(j) ·∆t

)
, k > 1

Li∑
k=1

Pi(k) ·∆t =
(
Sobji − Si(t)

)
·Bi,∑

i

1Pi(k)>0 ≤M, ∀k.

(4.8)

The optimization problem is implemented in an event-driven manner, it is exe-

cuted whenever a new task is admitted for charging. The charging operator adjusts

the charging power sequence to minimize the total battery degradation cost of all

the active tasks, where Nt in the objective function is the number of currently active

tasks, Pt
i is the charging power sequence of task i at current time slot t. The first

two constraints ensure that the active tasks’ charging power at each charging time

slot is smaller than their maximum allowable charging power following the battery

charging characteristic, where Si(t) is the battery SOC at the beginning of current

time slot t. The third constraint guarantees the charging requirement fulfillment of

each admitted task after its whole charging process. The fourth constraint ensures

that the number of EVs charged simultaneously cannot exceed the system maximum

service capability, where 1Pi(k)>0 is an indicator function.
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4.6 Battery Degradation Cost Minimized EV Charg-

ing Scheme

By analyzing the feature of the above battery degradation cost minimization problem,

it can be observed that we only need to adjust the task’s charging power sequence

under the situation that the total necessary required charging slot number is smaller

than the available system service capacity.

According to the capacity fading rate function, we can obtain the following Lemma.

Lemma 2. Within the feasible charging power range, the capacity fading rate function

is convex.

Proof. According to (4.5), the capacity fading rate function can be written as r(P ) =

ae−α·
1

kP+b , where a = A, α = Ea
R

, k = Rth, b = Tamb are all positive coefficients. Then

we can obtain
∂r

∂P
= aαk · 1

(kP + b)2 · e
− α
kP+b > 0, (4.9)

∂2r

∂P 2
= aαk2 · e−

α
kP+b ·

[
α

(kP + b)4 −
2

(kP + b)3

]
. (4.10)

It can be seen that the convexity of r(P ) depends on the relationship between P

and (α/2−b)
k

. When P < (α/2−b)
k

, the capacity fading rate function is convex. According

to the measurement data by Sandia National Laboratories, the Li-ion battery has

an activation energy on the order of 50 kJ/mol [74]. The universal gas constant

R = 8.3144598 J/mol/K. Thus, α = Ea/R = 6013.6 K. The thermal resistant

Rth = 0.002 ◦C/W , and the ambient temperature is 25 ◦C [73]. According to the

current charging technology, the maximum charging power P is around 120 kW [75],

which is far smaller than (α/2−b)
k

. Then, we can see ∂2r
∂P 2 > 0. Thus, within the feasible

charging power range the capacity fading rate function is convex.

Based on the property introduced by Lemma 1, we can further obtain the following

theorem,

Theorem 1. For any active task, given its total charging requirement expanding the

charging power sequence is beneficial to decrease the battery degradation cost.

Proof. Assume that the task’s original charging power sequence is X = (x1, x2, · · · , xL).

By expanding the charging power sequence for one time slot while following the bat-

tery charging model, the new charging power sequence is updated as Y = (y1, y2, · · · , yL+1).
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Meanwhile, it has the relationship of
L∑
i=1

xi =
L+1∑
i=1

yi, and xi ≥ yi,∀i ∈ [1, L]. Since

r(P ) is a convex function, according to (4.6) we have

C (X) = β
L∑
i=1

r (xi) = β
L∑
i=1

r (yi + xi − yi)

≥ β

(
L∑
i=1

r (yi) + r′ (yi) (xi − yi)
)
.

(4.11)

Given the following relationships

L∑
i=1

(xi − yi) = yL+1, (4.12)

r (yL+1) ≤ r′ (yL+1) · yL+1, (4.13)

and

r′ (y1) > r′ (y2) > · · · > r′ (yL+1) , (4.14)

we have

r (yL+1) ≤ r′ (yL+1) · yL+1 = r′ (yL+1) ·
L∑
i=1

(xi − yi)

≤
L∑
i=1

r′ (yi) · (xi − yi).
(4.15)

Then, we have

C (X) ≥ β

(
L∑
i=1

r (yi) + r′ (yi) (xi − yi)
)

≥ β

(
L∑
i=1

r (yi) + r (yL+1)

)
= β

L+1∑
i=1

r (yi) = C (Y) .

(4.16)

Thus, given the total charging requirement expanding the charging power sequence

can effectively decrease the battery degradation cost.

According to Theorem 1, it is beneficial to make full use of all the available

charging resources to reduce the total battery degradation cost. Given the updated

total charging slot number K for each specific task, we need to determine its charging

power sequence accordingly to minimize the cost and meanwhile to satisfy all charging



58

constraints. Thus, the problem can be expressed as

P1 : min
P (k)

K∑
k=1

r (P (k))

s.t. P (1) ≤P (S (t))

P (k) ≤P

(
S (t) +

1

B

k−1∑
j=1

P (j) ·∆t

)
, k > 1

K∑
k=1

P (k) ·∆t =
(
Sobj − S (t)

)
·B

(4.17)

where K = min(L + v, T ), L is the task’s necessary required charging slot num-

ber at current time slot t, and v is the extra available vacant charging slot number

which can be allocated to the task for charging. The first two constraints in the

optimization problem restricts the charging power at each time slot not exceeding

the maximum allowable charging power as per the battery charging characteristic.

The third constraint restricts the task’s charging requirement being satisfied after the

whole charging duration.

To solve the above problem P1, given the extra available vacant charging slot

number v, we propose a dynamic power adjustment algorithm (DPA) to minimize

the battery degradation cost by optimizing the task’s charging power sequence and

fully utilizing all the available charging resources. The detailed description of the

DPA algorithm is depicted in Algorithm 5. For that kind of tasks whose objective

SOC is smaller than Sth, by expanding the charging sequence, the power is evenly

distributed throughout the whole charging process. Otherwise, we first set a base

charging power P1 evenly distributed among all available charging slots as step 5

shows. Since the battery maximum allowable charging power gradually decreases

with the battery SOC increase, if the EV is always charged in accordance with the

base charging power, it will break the maximum allowable charging power constraint

in the later charging phases. In other words, in real charging process the charging

activity still follows the physical maximum charging power constraint. However, due

to the small charging power allocated at the beginning of the charging process, the

customer specified charging requirement cannot be fully satisfied at the end of the

charging process. Thus, the charging power needs to be adjusted similar to the way

when we pour certain amount of water into a container. The charging power needs
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Algorithm 5 Dynamic power adjustment algorithm

Input: Sint, Sobj, L, v, ε

1: K = min (L+ v, T )
2: if Sobj ≤ Sth then

3: P ′(k) =
(Sobj−Sini)B

K∆t

4: else
5: P0 = P(Sint)
6: Get the task’s charging power curve P(t) by P0, Sint

7: Set i = 1

8: Obtain the initial charging power Pi =
(Sobj−Sint)B

K∆t

9: Get ti = P−1 (Pi)

10: Get ∆i = Pi · (K∆t− ti)−
K∆t∫
ti

P (t)dt

11: while ∆i > ε do
12: i = i+ 1
13: Pi = Pi−1 + ∆i−1

ti−1

14: ti = P−1(Pi)

15: ∆i = Pi · (ti−1 − ti)−
ti−1∫
ti

P (t)dt

16: end while
17: Get t′ = P−1 (Pi)
18: P (t) = Pi, for t ∈ [0, t′]
19: P (t) = P(t), for t ∈ [t′, K∆t]
20: P ′ (k) = P (k∆t)
21: end if

Output: Updated charging power sequence P′

to be gradually increased. This procedure is iterated until the task’s total charging

requirement being satisfied. The detailed power adjustment procedure is shown from

steps 9 to 17. At last, we can obtain the updated charging power sequence P′, which

guarantees to achieve the minimized battery degradation cost for the given task and

meanwhile satisfying all the charging constraints.

The problem P1 achieves the cost minimization for each individual task given its

total available charging slot number K. However, for the whole charging system we

need to determine how to allocate all the vacant resources to the corresponding tasks

so as to minimize the total battery degradation cost of the system as the problem

indicated in P0. According to Theorem 1, it can be noted that expanding the charging

sequence can effectively reduce the battery degradation cost C. On the other hand,

for each individual task how the cost reduction amount ∆C changes by successively
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expanding the charging sequence over one more vacant charging resource is of our

great interests.

KL

a
b c

1L + 2L +

Figure 4.3: Illustration of the cost function.

As illustrated in Fig. 4.3, there are three possibilities for the cost reduction trend

by expanding the charging sequence, i.e., convexly decreases as indicated in curve a,

concavely decreases as indicated in curve b, and convexity undetermined decreases

as indicated in curve c. For the convex case, the cost reduction amount ∆C by

successively expanding the charging sequence over one more time slot is gradually

decreasing. Thus, the vacant charging resources can be allocated individually to the

task which produces the most cost reduction to achieve the maximum cost saving for

the system. While for the concave case, the cost reduction amount ∆C by successively

expanding the charging sequence over one more time slot is gradually increasing.

Therefore, the vacant charging resources can be preferentially allocated to the task

which makes the most cost reduction to the maximum extent, so on so forth until all

vacant charging resources have been allocated. For the convexity undetermined case,

since how the cost reduction amount ∆C exactly changes is uncertain, it is difficult

to obtain the optimal allocation solution directly.

Owing to the unavailability of the explicit expression of the charging power se-

quence, it’s hard to determine the trend of above cost reduction difference ∆C directly

from mathematical derivations. Thus, we conduct 5000 Monte-Carlo simulations to

evaluate the average cost reduction decreasing probability with different values of the
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battery degradation cost parameter α, i.e., the probability of ∆Ci+1 < ∆Ci. Simu-

lation result is shown in Fig. 4.4. We can see the trend of cost reduction ∆C does

not necessarily increase or decrease with the allocation of more vacant charging re-

sources. It depends on the specific value of the battery degradation cost parameter

α, which determines the convexity or concavity of the cost function. For our previ-

ously discussed battery degradation model, under practical scenario the parameter

α = 6013.6 K = 5740◦C, it can be seen within the feasible charging power range the

cost reduction amount ∆C of expanding the charging sequence successively over one

more vacant charging resources is determined decreasing. In other words, the cost

function C(P) is convexly decreasing with the increase of charging sequence number

like the curve a illustrated in Fig. 4.3.
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Figure 4.4: Average cost reduction decreasing probability vs. α.

According to the above discussed battery degradation cost variation trend after

expanding the charging sequence, we propose an optimal vacant resource allocation

algorithm (VRA), as described in Algorithm 6, to allocate all these vacant charging

resources to the best candidate tasks to minimize the total battery degradation cost

of the system. Assuming there are V available vacant charging resources besides all

tasks’ necessary required charging requirements. The vacant charging resources are

allocated individually. We hypothetically expand each task’s charging sequence for

one time slot and obtain its updated charging power sequence by solving problem
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P1. Then, the cost reduction ∆C of each task after expanding the charging sequence

can be obtained. By comparing the potential cost reductions of all the tasks, we can

find the one which produces the maximum cost reduction. Then, this vacant charging

resource is allocated to this task and its charging sequence is updated correspondingly.

This procedure is iteratively executed until all vacant charging resources have been

allocated. For each specific task its maximum charging sequence length cannot be

larger than the total available slot number from current time to the end of the business

day. If any task reaches this limit, it will not be engaged in the allocation any more.

Algorithm 6 Vacant resource allocation algorithm

Input: t, I, St, Sobj, ε, V

1: Obtain each task’s current charging power sequence Pi and the sequence length
L0
i = ‖Pi‖

`0
, i ∈ I

2: while V > 0 do
3: for i = 1 : ‖I‖`0 do
4: Li = ‖Pi‖`0
5: if 0 < Li < T − t+ 1 then
6: P′i = DPA(Sti , S

obj
i , L0

i , Li + 1− L0
i , ε)

7: ∆Ci = C(Pi)− C(P′i)
8: else ∆Ci = 0
9: end if

10: end for
11: if max(∆C) = 0 then
12: break
13: end if
14: [∆Ck, k] = arg max ∆C
15: Pk = P′k
16: V = V − 1
17: end while

Output: The updated charging power sequence Pi, i ∈ I

Based on the battery degradation cost variation trend and the feature of our pro-

posed greedy based vacant resource allocation algorithm, we can obtain the following

theorem,

Theorem 2. The proposed vacant resource allocation algorithm is optimal to achieve

the minimum battery degradation cost for the system.

Proof. By successively expanding the charging power sequences, different tasks’ bat-

tery degradation cost reduction sequences are denoted as x1 ≥ x2 ≥ · · · , y1 ≥ y2 ≥
· · · , z1 ≥ z2 ≥ · · · , and · · · , respectively.
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According to the greedy algorithm, suppose we first choose x1, where x1 =

max{x1, y1, z1, · · · }. Then, we should choose max{x2, y1, z1, · · · }. If the greedy algo-

rithm is not optimal, if and only if we have the following conditions y2 ≥ max{x2, y1, z1

, · · · }, or z2 ≥ max{x2, y1, z1, · · · }, or · · · . Apparently, this relation is contradicted

with the fact that y2 < y1, or z2 < z1, or · · · . Consequently, we can see the greedy

algorithm is definitely optimal to achieve the most battery degradation cost reduc-

tion.

Ultimately, according to the determined charging power sequence of each active

task, the charging operator makes the scheduling decision for each time slot. As the

system is operated in an event-driven manner, whenever a new task arrives, it needs

to reallocate the charging resources and update each task’s charging profile. Thus, it’s

better to schedule the larger charging power task first to save more charging resources

and leave more flexibility to serve the future arrived charging requirements.

4.7 Performance Evaluation

In this section, we conduct extensive simulations to evaluate the performance of the

proposed battery degradation cost minimized charging scheme by comparing it with

some benchmark algorithms.

4.7.1 Simulation Settings

We take a regular workplace parking garage as the object. The whole working hours

(9am-5pm) are equally divided into T = 800 time slots, with each slot duration as

∆t = 0.01 hrs. Considering the current EV penetration rate and the grid config-

uration in a workplace parking garage, we assume at most 8 EVs can be charged

simultaneously [75] in the garage. According to different EV mobility patterns, two

main charging scenarios are studied here: Case 1, all EVs arrive before work and

depart after work. This case can be treated as an offline case, all tasks’ charging

information are known to the charging operator. Case 2, the EVs dynamically arrive

at the parking garage before the middle of the day following a Poisson process with

an arrival rate λ and depart after work. This case can be treated as an online case,

the task’s charging information reveals to the charging operator only when it arrives

at the parking garage. All EVs are equipped with a 60 kWh battery. The maximum

charging power during the CC stage is 40 kW. The battery CC-CV stage transition
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threshold is 0.6. Considering the charging behaviors of most customers, the initial

EV battery SOCs are assumed following a uniform distribution from 0.1 to 0.5. The

required battery SOCs are assumed following a uniform distribution from 0.8 to 0.9.

4.7.2 Simulation Results

To analyze the performance of the proposed battery degradation cost minimized

charging scheme, Round-Robin and Random allocation strategies are also taken for

comparisons. All results are carried out over 100 Monte Carlo simulations.

For Case 1 the offline scenario, the performance of battery degradation cost reduc-

tion gain over the original unexpanded case under different arrived vehicle numbers

is first demonstrated in Fig. 4.5. From the figure, we can see by utilizing the va-

cant charging resources the battery degradation cost are significantly reduced. With

more vehicles arriving there are less vacant charging resources can be utilized, thus

the cost reduction gain is correspondingly decreased. Even so, our proposed VRA

algorithm can always achieve the best cost reduction gain compared with the other

two strategies.
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Figure 4.5: Total battery degradation cost reduction gain.

In order to evaluate the fairness issue among all the charging customers under

different allocation strategies, we employ the Jain’s fairness index [76], which is defined
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as follows

J (C1, C2, · · · , CN) =

(
N∑
i=1

Ci

)2

N ·
N∑
i=1

C2
i

, (4.18)

where N is the total charging customer number, Ci = C(Pi) is the battery degrada-

tion cost of the ith customer. The fairness comparison is shown in Fig. 4.6. It can

be noticed that VRA algorithm achieves the best fairness for all customers to reduce

their battery degradation cost.
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Figure 4.6: Jain’s fairness index.

As we discussed before, expanding the charging sequence can not only reduce the

battery degradation cost, which is beneficial for the customers to prolong the battery

lifetime, it is also effective to relieve the peak load for the charging system. The peak

charging power load comparison under 40 arriving vehicles case is shown in Fig. 4.7.

It can be noted that with using the VRA algorithm the system peak charging power

load reduces the most 15% among all the algorithms under the discussed scenario,

which is very promising for the charging system operation.

For Case 2 the online scenario, all EVs dynamically arrive at the parking garage.

To verify the effectiveness and robustness of the proposed charging scheme, we eval-

uate the performance under different arrival rate scenarios. The battery degradation
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Figure 4.7: Peak charging power load.

cost reduction gain over the original unexpanded case is compared in Fig. 4.8. From

the figure, we can see the proposed VRA algorithm can always achieve the most

battery degradation cost reduction among all the strategies. Another important per-

formance index, system peak power load, is demonstrated in Fig. 4.9. With increasing

the arrival rate, there are higher probability more vehicles are charged simultaneously,

which will make the system peak load rise. By utilizing our proposed VRA algorithm,

it can be noted that the system power load can be always effectively decreased. Under

some scenarios, the system peak power can be reduced over 50 % compared with the

original unexpanded case, which is quite promising for the charging system operation.

4.8 Conclusion

In this chapter, we investigated the EV charging problem under a park-and-charge

system. We designed the operating model for the system to provide charging service

by jointly considering the interests of both customers and business. A practical

charging scheme was proposed for integrating the effects of battery degradation into

EV charging scheduling problem. We devised a battery degradation cost model to

capture the characteristic of battery performance degradation during the charging
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Figure 4.8: Online case total battery degradation cost reduction gain.

process. The developed battery degradation cost model was incorporated into the

optimal EV charging scheduling scheme design to minimize the system total battery

degradation cost. By investigating the feature of the cost minimization problem,

we decomposed the problem into two sub-problems and proposed vacant resource

allocation algorithm and dynamic power adjusting algorithm to solve the associated

optimization problem. The applicability and effectiveness of the proposed methods

were demonstrated through several case studies. The obtained results exhibited the

superior performance of the proposed method in achieving both battery degradation

cost minimization and system peak power load reduction, which benefits both the

customers and charging operator.
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Chapter 5

Maximum Utility Scheduling for

Residential Community Electric

Vehicle Charging

5.1 Introduction

In the previous chapters, we have discussed the EV charging problem mainly under

the charging station scenario. When possible, EV owners prefer to charge their EVs

at home. Compared with other conventional loads, EVs typically have a high energy

requirement and require a large charging power. They thus can place considerable

stress on the existing power grid [77]. Within a residential community, it is beneficial

to have a charging aggregator to control the EVs’ charging activities to avoid the

situation that large number of EVs are charged simultaneously causing the peak load

increase abruptly happening, which may cause severe damages to both the power grid

and community residents [78,79]. The charging process itself has some impacts on the

battery performance [70]. How to effectively reduce the impacts under the premise

of ensuring the expected charging energy is a very important and challenging topic.

Motived by the above issues, in this chapter, we focus on the residential community

charging scenario with the objective to maximize the total utility of the community

charging network, in which the charging aggregator controls the EVs’ charging ac-

tivities to cover their necessary daily travel requirements while meeting the other

corresponding constraints. First, we extend the battery charging characteristic anal-

ysis to a general non-linear case. To comprehensively evaluate the gain of the whole
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charging network, we propose a utility optimization problem by jointly considering

the charging energy and battery performance degradation during the charging pro-

cess. Second, we prove that the utility maximization problem is a convex optimization

problem and propose a utility maximized charging scheme to achieve the maximum

utility for the community charging network. Finally, we conduct extensive simula-

tions to evaluate the performance of the proposed scheme under the underload and

overload scenarios, respectively. The results demonstrate that the proposed utility

maximized charging scheme can substantially outperform the benchmark solutions in

terms of higher utility and task service rate.

5.2 Related Work

Recently, many studies have been conducted on the EV charging control problem.

In general, the EV charging problem can be classified into two main categories:

supply side oriented and demand side oriented problems. The supply side prob-

lem mainly studied on how to control the impact of EV charging activities on the

power grid [15, 80–85]. A valley filling algorithm was proposed in [83] to schedule

the EV charging with the objective of flattening the grid load. In [15], a distributed

random access framework was proposed to coordinate the PHEV charging to protect

the distribution grid from bus congestion and voltage drop. A Lagrangian based

partial decomposition method was proposed in [84] to reduce the total generation

cost and alleviate the transmission grid congestion in transmission-constrained power

systems. While the demand side oriented works mainly focused on the issues related

to the EV charging users [86–90]. EV charging user convenience was considered as

the main objective of the scheduling problem in [87]. A distributed coordinated al-

gorithm was correspondingly proposed to maximize the user convenience under the

power constraints imposed by the power utility. In the case of limited charging re-

sources, fairness issue becomes quite critical. A physical fair-queuingg framework was

established in [88] to achieve the best scheduling fairness. To minimize the charg-

ing cost for the customers, a moving horizon based real-time charging scheme was

proposed in [89] to the dynamic coordination of vehicles.

Although the EV charging scheduling problems have been studied from different

perspectives. One important issue, i.e., battery performance degradation, should be

considered during the charging process. Several research works have investigated

the factors affecting the battery performance degradation [64, 65, 73, 91, 92]. The
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health model for LiFePO4 cell units was specified in [91]. The impact of temperature

and discharging rate on the lithium-ion battery aging was investigated in [92] and

concluded that high temperature is a killer of the battery lifetime. Based on real

operating conditions of electric vehicle, a capacity fading model for LiFePO4 battery

was proposed in [73]. Given all these findings, it is critical for the charging aggregator

to develop effective charging schemes not only providing necessary energy required

by the charging customer but also protecting the EV battery health, which is the

primary motivation of this chapter.

5.3 System Models

We consider a residential community charging scenario. As illustrated in Fig. 5.1, peo-

ple come back home, plug in their EVs, set the charging requirements, leave the EVs

for charging during the midnight, and unplug their EVs the next morning. When

each EV sets its charging requirement, it reports the current battery SOC, target

battery SOC and the minimum charging amount to the charging aggregator. During

the predetermined service period, the community charging aggregator controls the

charging activities with the objective of utility maximization for the entire charging

network in the community. Depending on the total charging requirements and ser-

vice capacity the charging aggregator executes the task admission mechanism first

to determine which tasks can be served. Then, it determines the optimal charging

duration of each active task to maximize the total utility of the charging network.

5.3.1 Charging Requirement Model

EV owners’ charging behavior depends to a large extent on the daily driving pattern

and the electricity tariff structure. Most EV owners drive the vehicles to and from

work for commuting purpose. According to the statistics of daily traffic versus time

of day in U.K, two peaks, the morning peak (7am-9am) and the afternoon peak

(4pm-6pm), are observed for both commuting and business uses [93]. In addition, the

electricity pricing off-peak hours normally sit between 7pm to 7am [94]. Consequently,

most EV owners plug in their EVs for charging after coming back home and unplug

the EVs for driving before leaving home. As introduced in the charging scenario part,

the charging aggregator normally schedules the EVs’ charging demands during the

off-peak hours to alleviate the load to the power grid. Thus, according to the EV
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Figure 5.1: System model.



73

user charging behavior and the grid load cycle all the EVs are assumed plugged in

before the charging service beginning time, and unplugged after the charging service

ending time. All the EVs are sequentially indexed by their plug-in time. The total

charging service duration is denoted as T s.

For the EV owners, when they plug in their EVs for charging, they have expected

minimum and maximum charging requirements. The minimum charging requirement

guarantees their necessary daily usage, while the maximum charging requirement is

the desired charging amount of each customer. For instance, some customers prefer

to fully charge their batteries, while some expect a 90% capacity charge. Denote

each customer’s minimum charging requirement as rmin and the maximum expected

charging requirement as rmax, respectively.

Based on the driving pattern statistics, most people drive less than 53 km per

day [95]. It is found that a log normal distribution, with mean µd and standard

deviation σd, can be selected to approximate the probability density function of EV’s

daily travel distance [96]. The distribution function is expressed as

fd (x : µd, σd) =
1√

2πσdx
e
− (ln x−µd)2

2σ2
d . (5.1)

Given the daily travel distance, the minimum inflexible charging requirement of

each customer can be estimated by the following equation

rmin =
d

D
·B, (5.2)

where D is the full capacity range of the EV, and B is the rated battery capacity.

The maximum expected charging requirement of each customer depends on the

initial battery SOC Si when the customer plans to charge the vehicle and the personal

preference of the target batty SOC St. Thus, the maximum charging requirement of

each customer can be expressed as follows

rmax = (St − Si) ·B. (5.3)

Accordingly, each EV’s charging requirement can be regarded as a four-tuple task

defined as T = (i, Si, rmin, rmax).
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5.3.2 Battery Charging Characteristic Model

On current market the vast majority of electric vehicles utilize lithium-ion battery

as energy storage unit, which has also been applied in many consumer electronics.

Compared with the conventional rechargeable lead-acid and nickel metal hydride bat-

teries, Li-ion battery has the advantages in capacity, safety, lifetime, etc. The Li-ion

battery is voltage limiting similar to the lead acid battery, but has tighter voltage

tolerances and the absence of trickle or float charging at full charge.

As mentioned in Chapter 3, (CC-CV) charging is the main charging approach

for Li-ion battery [50, 97]. Different from the previous simplified linear relationship

between the battery charging power and the battery SOC, this relationship is depicted

more precisely as the following convex decreasing function

P(S) = aS2 + bS + c, (5.4)

where two constraints P(0) = Pm and P(1) = 0 also apply; Pm is the maximum

charging power; a, b, c are coefficients. According to the above constraints, it can be

obtained that b = −a − Pm, c = Pm, and 0 < a < Pm. The value of a determines

the power decreasing speed with the increase of battery SOC. Different batteries may

have different characteristics. The detailed value of a can be obtained by fitting the

experimental measurement data of different types of batteries.

In order to see how the battery SOC changes with the accumulative charging du-

ration, assume δ is a very short time interval we can obtain the following relationship,

S(t) = S(t− δ) +
P(t− δ) · δ

B
, (5.5)

where B is the rated battery capacity. After some mathematical manipulations, we

can obtain the following first order nonlinear ordinary differential equation

S ′ (t) =
a

B
S2 (t)− a+ Pm

B
S (t) +

Pm
B
. (5.6)

By solving this differential equation with the initial condition S(0) = 0, we can obtain

the expression of S(t) as

S (t) =
Pme

Pm
B
t − Pme

a
B
t

Pme
Pm
B
t − ae aB t

. (5.7)

Substitute (5.7) into (5.4), the relationship between charging power and accumulative
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charging time can be obtained as

P (t) =
Pm (Pm − a)2 e

(Pm+a)
B

t(
Pme

Pm
B
t − ae

a
B
t
)2 . (5.8)

For each charging customer, denote the accumulative charging duration as T a.

Thus, the total charging energy E during this period can be expressed as

E =

Ta∫
t=0

P (t)dt, (5.9)

where P (t) is the instantaneous battery charging power subject to the battery intrinsic

charging characteristic.

As the charging aggregator, it targets on the whole charging network utility max-

imization while taking into account the interests of both business and customers.

Considering each customer’s specific charging requirement and the quality of service,

the following constraint should always be satisfied

rmin ≤ E ≤ rmax. (5.10)

5.3.3 Battery Degradation Model

Battery capacity fading occurs regardless whether the battery is inactive (so-called

“calendar life” loss) or active (“cycle life” loss). However, many stressing factors

accelerate the battery capacity fading leading to faster battery degradation. Tem-

perature is one important factor. High temperature speeds up the battery active

material depletion [71]. Empirically, the temperature dependence capacity fading

can be described by the Arrhenius relationship [72]:

r(T ) = Ae−Ea/(RT ), (5.11)

where r is the battery capacity fading rate (% capacity loss) under the absolute

temperature T (Kelvin), A is the pre-exponential factor, Ea is the activation energy,

and R is the universal gas constant.

During the charging process, ohmic heat is generated. These generated heat will

cause the battery temperature rising, which is unfavorable for the battery lifetime.
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According to the model proposed in [73], the temperature change produced by a given

charging profile is approximated as a linear function of the charging power expressed

as

T (P ) = Tamb +Rth · P, (5.12)

where Rth is the thermal resistance of the battery pack and Tamb is the ambient

temperature. Therefore, the relationship between the capacity fading rate and the

charging power can be expressed as

r(P ) = Ae
−Ea

R
· 1
Tamb+Rth·P . (5.13)

Accordingly, for an accumulated charging period T a, the total capacity fading can

be expressed as

C =

Ta∫
t=0

r (P (t))dt. (5.14)

5.3.4 Utility Model

Based on the aforementioned models, we consider the effective charging energy to

EVs to satisfy their charging requirements. As we can see the more energy provided

to the charging customers the closer to their expected maximum charging require-

ments. However, as we discussed before longer charging time also brings more bat-

tery degradation, which is not desirable from the customer’s point of view. Thus, to

comprehensively evaluate the whole gain for the charging network incorporating the

interests of both the business and customers, we propose the following utility model

U (T a) = k1E − k2C

= k1

Ta∫
t=0

P (t)dt− k2

Ta∫
t=0

r (P (t))dt,
(5.15)

where T a denotes the accumulative charging duration for the EV, which is determined

by the charging aggregator; k1 and k2 are positive parameters specified by the charging

aggregator to reflect the weight of charging energy and battery degradation. By

tuning the parameters, the charging aggregator can adjust the weight of each part of

the utility function, thus to make different decisions on the charging activities.
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5.4 Problem Formulation

As the community charging aggregator the objective is to control all the EVs’ charging

activities to achieve the maximum utility for the whole charging network. Meanwhile,

the EVs’ charging activities must also meet the constrains to make the system work

effectively. Thus, a utility maximization problem can be formulated as follows

P0 : max
Tai

N∑
i=1

Ui (T ai )

s.t. rmin
i ≤

Tai∫
t=0

Pi(t)dt ≤ rmax
i ,

N∑
i=1

T ai ≤M · T s,

T ai ≤ T s,∑
i

1Pi(t)>0 ≤M.

(5.16)

In the objective function, N is the number of current active tasks requesting charg-

ing service. The charging aggregator needs to determine each task’s total charging

duration T ai to maximize the total system’s utility. The first constraint ensures that

each active task’s total charging energy should be larger than its minimum charging

requirement to guarantee its necessary daily usage and no larger than its maximum

charging requirement to avoid the over charging happening. The second constraint

guarantees all active tasks’ total charging duration less than the system’s total ser-

vice capacity. The third constraint ensures each task’s charging duration less than the

system’s maximum service duration. The fourth constraint ensures that the number

of EVs charged simultaneously cannot exceed the community charging network max-

imum service capability, where 1Pi(k)>0 is an indicator function. M is the maximum

number of branches which can be charged concurrently. It is normally restricted by

the peak power considering the power gird safe operation [51].

5.5 Utility Maximized Charging Scheme

As introduced in the previous system model part, it can be noticed that the charging

aggregator needs to determine which tasks among all the charging requests can be
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served during the service hours and the corresponding charging duration of each active

task as well. Detail operation of the system can be analyzed as follows.

5.5.1 Task Admission Control

Since each active task’s minimum charging requirement must be satisfied to guarantee

the EV owner’s necessary daily usage, moreover to provide more charging opportuni-

ties to as many customers as possible, each task’s minimum requirement should have

higher priority to be served. As discussed in the previous battery charging character-

istic part, (5.7) depicts the relationship of battery SOC over accumulative charging

duration when the battery SOC changing from 0. Owing to the heterogeneity of dif-

ferent tasks’ initial battery SOCs, through this relationship we can map each task’s

Si to the corresponding time t0 of its S(t) function as t0 = S−1(Si). Then, the task’s

corresponding charging power over the accumulative charging duration can be ob-

tained. Similarly, we can obtain each task’s corresponding time t1 of its S(t) function

when its minimum charging requirement is completed as t1 = S−1(Si + rmin

B
). Thus,

the total charging duration to finish each task’s minimum charging requirement can

be expressed as follows

∆ = t1 − t0 = S−1(Si +
rmin

B
)− S−1(Si). (5.17)

According to the system capacity and load conditions, there are two situations:

underload condition and overload condition. For the underload scenario, all the tasks’

minimum charging requirement can be accommodated, i.e.,
∑
i

∆i ≤ M · T s. For the

overload scenario, all the tasks’ minimum charging requirement is larger than the

system’s service capability, i.e.,
∑
i

∆i > M · T s. The charging aggregator needs to

determine which tasks can be served. According to the principle of utility maximiza-

tion, we proposed a metric, unit utility, to describe the potential utility gain of each

task, which can be expressed as follows

u =
U(∆)

∆
. (5.18)

The charging aggregator admits the minimum charging requirements of the tasks

based on their unit utilities in a descending order until no more tasks can be accom-

modated.
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5.5.2 Problem Analysis

After meticulously analyzing the original problem P0, we can see it actually can

be decomposed into two sub problems: first, satisfy each task’s minimum charging

requirement; second, determine each task’s subsequent charging duration to achieve

the maximum utility for the charging network.

For the overloaded condition, it is straightforward for the charging aggregator to

do admission control and scheduling based on the proposed utility based admission

control mechanism to achieve the maximum utility for the charging network. However,

in most cases the system is operated under the underloaded condition. After satis-

fying each active task’s minimum charging requirement, with the remaining charging

resources the charging aggregator needs to determine each task’s subsequent charg-

ing duration accordingly to achieve the maximum utility for the charging network.

Consequently, the new utility maximization problem is expressed as follows

P1 : max
Tai

N∑
i=1

U ′i (T ai )

s.t.

t1i+T
a
i∫

t=t1i

Pi(t)dt ≤ rmax
i − rmin

i ,

N∑
i=1

T ai ≤M · T s −
∑
i

∆i,

T ai ≤ T s −

⌊∑
i

∆i

/
M

⌋
,∑

i

1Pi(t)>0 ≤M.

(5.19)

where

U ′i(T ai ) = k1

rmin
i +

t1i+T
a
i∫

t=t1i

Pi(t)dt

− k2

t1i+T
a
i∫

t=t0i

r (Pi (t))dt (5.20)

T ai is each task’s accumulated charging duration after its minimum charging require-

ment rmin
i being satisfied.

According to the charging energy function and the capacity fading function, we

can obtain the following Lemmas.
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Lemma 3. The total charging energy function is concavely increasing with the accu-

mulated charging duration.

Proof. According to (5.9), we can obtain

∇E (T a) =

∂
t1+Ta∫
t=t1

P (t)dt

∂T a
= P

(
t1 + T a

)
=

Pm(Pm − a)2e
(Pm+a)

B (t1+Ta)(
Pme

Pm
B

(t1+Ta) − ae
a
B

(t1+Ta)
)2 .

(5.21)

Since 0 < a < Pm, ∇E (T a) > 0 always holds.

Then, we can obtain

∇2E (T a) = −Pm(Pm − a)3Xe
(Pm+a)

B (t1+Ta)

BY 3
, (5.22)

where X = Pme
Pm
B (t1+Ta) + ae

a
B (t1+Ta) and Y = Pme

Pm
B (t1+Ta) − ae

a
B (t1+Ta).

It can be noted that X > 0 Y > 0, thus ∇2E (T a) < 0 always holds. Conse-

quently, the total charging energy E is concavely increasing with the increase of the

accumulated charging duration T a.

Lemma 4. The total battery capacity fading function is concavely increasing with the

accumulated charging duration.

Proof. According to (5.14), we can obtain

∇C (T a) =

∂
t1+Ta∫
t=t1

r (P (t))dt

∂T a
= r

(
P
(
t1 + T a

))

= Ae

− Ea/R

Tamb+Rth·
Pm(Pm−a)2e

(Pm+a)
B (t1+Ta)(

Pme
Pm
B (t1+Ta)−ae

a
B (t1+Ta)

)2

(5.23)

Obviously, ∇C (T a) > 0 always holds.

In regards to the second order derivative of C, it is expressed in (5.24), in which

X, Y are the same as expressed in Lemma 1, Z =
Pm(Ta+t1)

B
and W =

a(Ta+t1)
B

.

It can be noticed that ∇2C (T a) < 0 always holds. Therefore, the total battery ca-

pacity fading C is concavely increasing with the increase of the accumulated charging
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duration T a.

Based on the property introduced by the above two lemmas, we can obtain the

following Remark.

Remark 1. Since the utility function is the subtraction of two concave functions,

the convexity of the utility function is unfixed. It depends on the specific value of the

charging parameters and the coefficients k1 and k2 specified by the charging aggregator.

As the parameters of the charging problem have many physical restrictions, we

should discuss the problem under the practical parameter settings. According to

the measurement data by Sandia National Laboratory, the Li-ion battery has an

activation energy on the order of 50 kJ/mol [74]. The universal gas constant is

R = 8.314J/mol/K. The thermal resistant is Rth = 2K/kW , and the ambient

temperature is 25 ◦C. According to [98], current Li-ion battery’s cycle life is more

than 4000 cycles. Thus, the pre-exponential factor is set as 1.5 × 105. Assume the

EV is charged by the Level 2 charging mode with peak charging power of 20 kW. We

investigate a 2017 model of Nissan Leaf equipped with a 30 kWh battery. k1 depicts

the electricity price, eg. 0.085 CAD according to BC Hydro step 1 price. k2 depicts

the battery degradation cost, eg. 5500/20. According to [99], the replacement cost of

a new battery pack of Nissan Leaf is around 5500 CAD. Typically, the battery’s end

of life is designed to be about 80% of its initial capacity. Thus, k2 ·C is corresponding

to the total battery degradation cost of current charging activity. Then, the utility

can be interpreted as the gain of the charging network. With all these parameters we

can analyze the convexity of the utility function as shown in Fig. 2.

From the figures, we can see within the feasible charging duration the first order

derivative of the utility function is changing from positive to negative with the increase

of accumulated charging duration. The second order derivative keeps negative within

the feasible charging duration. According to this feature, we can obtain the following

Remark.

Remark 2. Under the practical charging parameter setting, within the feasible charg-

ing duration range, the utility function is a concave function.

∇2C (Ta) = −
APm(Pm − a)3EaRthXYe

(W+Z)− Ea/R

(Rth
∂E
∂Ta +Tamb)

BR
(
−2aPmTambe(W+Z) +

(
Pm3 − 2aPm2 + a2Pm

)
Rthe(W+Z) + Pm2Tambe2Z + a2Tambe2W

)2
(5.24)
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Figure 5.2: The utility function convexity analysis.

Based on the concavity of the utility function, each task’s optimal charging du-

ration T a∗ to achieve the maximum utility can be obtained by solving the following

equation

k1 · ∇E (T a∗)− k2 · ∇C (T a∗) = 0. (5.25)

where ∇E (•) and ∇C (•) are expressed in (5.21) and (5.23), respectively.

5.5.3 Utility Maximized Charging Scheduling Algorithm

According to the above analysis of the utility function, we propose a utility maxi-

mized charging scheduling algorithm (UMS) as described in Algorithm 7, to schedule

all active tasks’ charging activities to maximize the total system’s utility. Since in

real charging situation the charging aggregator controller cannot make decisions in

a continuous time manner. The whole time horizon is equally divided into several

time slots, and the decision is made by time slot. As described in the algorithm, we

can obtain the time t when all tasks’ minimum charging requirements are satisfied

at first. Since there are at most M EVs can be charged concurrently, we need to

evaluate if there is any remaining charging resource can be utilized at t as indicated

in line 2. For each active task, it has three important time durations. As shown is

lines 8 to 11, by solving (5.25) we can obtain each task’s optimal charging duration

T a∗ to achieve its maximum utility. T f is each task’s feasible sojourn time from t to

its charging ending time. T r is the minimum charging duration needed for the task
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to fulfill its maximum charging requirement after its minimum charging requirement

being satisfied. Then, each task’s feasible charging duration should be the minimum

of these three parameters. With time going on, the potential utility increment ∆U

of each active task after expanding the charging duration for another time slot can

be obtained. If any task’s accumulated charging duration is over its feasible charging

duration T u or the current time has exceeded the task’s charging ending time, this

task becomes inactive and does not continue to be involved in the charging scheduling

process. With m′ as the maximum allowable charging task number at the scheduling

time, the m′ tasks with the most ∆U are scheduled for charging. Corresponding

information is updated afterwards. This procedure is iteratively executed until all

tasks are inactive.

Based on the concavity of the utility function, the proposed algorithm is optimal

to achieve the maximum utility for the whole charging network.

5.6 Performance Evaluation

In this section, we implement our solution and conduct extensive simulations with

practical charging settings to evaluate the performance of the proposed utility maxi-

mized charging scheme by comparing it with some benchmark algorithms.

5.6.1 Simulation Settings

We take a normal residential community of 150 households as investigation object.

The charging aggregator provides charging service during the off-peak hours from

7pm to 7am. The total charging duration is equally divided with each slot duration

of 1 min. We investigate the model of Nissan Leaf with 30kWh battery and up to 172

km of range on a single full charge. The EVs are charged by Level 2 charging mode

with peak charging power of 20 kW. Considering the power grid safety it is assumed

that at most 10 EVs can be charged simultaneously. The initial battery SOCs are

assumed following a uniform distribution from 0.1 to 0.5. The minimum charging

requirement of each EV is assumed to cover its daily travel distance following the log

normal distribution with mean travel distance of 53 km. The target battery SOCs

are assumed following a uniform distribution from 0.8 to 0.95. According to the total

number of EVs requesting for charging and their minimum charging requirements,

two main charging scenarios are considered here: underload charging scenario and
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Algorithm 7 Utility maximized charging scheduling algorithm

Input: active task index set I, active task information set Ti = (i, Si, rmin
i , rmax), i ∈ I,

maximum simultaneous charging tasks number M

1: Obtain all tasks’ rmin finishing time t =

⌈⌈∑
i

∆i

∆t

⌉/
M

⌉
2: Obtain the occupied charging resources number n at time t, n = rem(

⌈∑
i

∆i

∆t

⌉/
M)

3: if n = 0 then
4: t = t+ 1, m = M
5: else m = M − n
6: end if
7: for i = 1 : ‖I‖`0 do
8: Obtain T a∗i by solving (5.25)
9: T fi = T s − t

10: T ri = S−1(Si + rmax

B
)− S−1(Si + rmin

B
)

11: T ui = max{min{T a∗i , T
f
i , T

r
i }, 0}

12: end for
13: while t ≤ T s do
14: for i = 1 : ‖I‖`0 do
15: if T ai ≤ T ui & T ui > 0 then
16: ∆Ui = Ui(T ai + ∆t)− Ui(T ai )
17: else ∆Ui = 0
18: end if
19: end for
20: if max(∆U) = 0 then
21: break
22: end if
23: m′ = min{m, ‖∆U‖`0}
24: schedule the m′ tasks with the most ∆U
25: update the scheduled tasks’ T ai = T ai + ∆t
26: m = M , t = t+ 1
27: end while

Output: Each task’s accumulated charging duration T ai after its rmin being satisfied
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overload charging scenario.

5.6.2 Simulation Results

To analyze the performance of the proposed utility maximized charging scheme, first

come first serve (FCFS) and Round-Robin (RR) charging schemes are also taken for

comparisons as the benchmark. All results are carried out over 100 Monte Carlo

simulations.

For the underloaded scenario, the performance of total utility under different

charging request vehicle numbers is first demonstrated in Fig. 5.3. From the figure,

we can see our proposed utility maximized charging scheme can always achieve the

most utility compared with the other two schemes. The case of excessive battery

performance degradation caused by long time charging can be effectively avoided

under the UMS scheme, which is important for the charging network.
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Figure 5.3: Total achieved utility.

In order to evaluate the achieved utility fairness among all the charging customers

under different charging strategies, we employ the utility based Jain’s fairness index,
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which is defined as follows

J (U1, U2, · · · , UN) =

(
N∑
i=1

Ui

)2

N ·
N∑
i=1

U2
i

, (5.26)

where N is the total charging customer number, Ui is the total achieved utility of

the ith customer after the whole charging process. The fairness comparison result is

shown in Fig. 5.4. It can be noticed that the UMS scheme has lower fairness index

than the Round-Robin scheme, which targets to obtain the best fairness. This is

reasonable, because it cannot achieve the most utility under the premise of ensuring

every task fairly increase its utility.
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Figure 5.4: Jain’s fairness index.

For the overloaded scenario, the summation of all EVs’ minimum charging re-

quirements have surplussed the system service capacity. To verify the effectiveness of

the proposed charging scheme, we evaluate the performance under different charging

request vehicle number scenarios. The total achieved utility is compared in Fig. 5.5.

From the figure, we can see the proposed UMS algorithm can always achieve the

most utility than the FCFS scheme. Another important performance index, average

task service probability, is demonstrated in Fig. 5.6. It can be noticed that the UMS
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scheme achieves the higher task service probability, which is desirable for more task to

get the charging opportunities. Last but not least the fairness issue is also compared

as shown in Fig. 5.7. We can see that the UMS scheme achieves slightly better perfor-

mance than the FCFS scheme. Based on all the achieved performance, the proposed

UMS charging scheme is quite promising for the charging network operation.
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Figure 5.5: Total achieved utility.

5.7 Conclusion

In this chapter, we investigated the EV charging problem under a residential commu-

nity scenario. By jointly considering the charging energy and battery performance

degradation during the charging process, we proposed a utility model to evaluate the

gain of the charging process. Then, we formulated the charging scheduling problem

as a utility maximization problem, which not only guaranteed the necessary energy

to the charging request users to cover their necessary daily travel requirements but

also to protect the battery health. By investigating the features of the utility max-

imization problem, we proved it as a convex optimization problem and proposed a

utility maximized charging scheme to achieve the utility optimality of the charging

network. The applicability and effectiveness of the proposed charging scheme were
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Figure 5.6: Average task service rate.

demonstrated under the underload and overload cases through several simulations

based on real EV charging parameters. The obtained results exhibited the superior

performance of the proposed charging scheme in achieving the most utility and higher

task service rate compared with the other benchmark solutions, which is beneficial

for both the charging customers and aggregator.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this dissertation, we have discussed and analyzed the electric vehicle charging

scheduling problem from different perspectives. The following outlines the contribu-

tion we have achieved.

• In Chapter 2, we studied the EV charging scheduling problem by jointly con-

sidering the revenue of the charging station and the service requirements of

customers. We proposed an admission control algorithm which guarantees the

necessary inflexible service requirements of all admitted EVs being satisfied be-

fore their departures. Also, a utility based scheduling algorithm was proposed

to maximize the total utility. Through extensive simulations based on the prac-

tical EV charging information, it has been shown that the proposed approach

can outperform the state-of-the-art one in terms of total utility, so that the

charging station can enjoy a higher profit and the customers can enjoy more

cost savings.

• In Chapter 3, we investigated the EV charging problem at an intelligent parking

garage subject to the real TOU electricity pricing. We designed a multi-charging

system for the garage charging operator to effectively provide charging services

by jointly considering the charging station profit and customer satisfaction. Be-

sides, we analyzed the battery charging characteristic change during the actual

charging process and applied it into the EV charging problem. Furthermore, we

proposed an adaptive utility oriented scheduling algorithm to effectively achieve

the maximum total utility for the charging operator under the dynamic traffic
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pattern scenario. We also discussed the reservation mechanism for the charg-

ing operator to mitigate the performance degradation caused by the charging

information mismatching with vehicles’ stochastic arrivals. Through extensive

simulations, it has been shown that the proposed AUS algorithm is applicable

under different stochastic vehicle mobility processes. With it the charging oper-

ator can achieve the best performance compared with other existing algorithms,

which is promising for the parking garage charging service proliferation.

• In Chapter 4, we investigated the EV charging problem under a park-and-charge

system. We designed the operating model for the system to provide charging

service by jointly considering the interests of both customers and business. A

practical charging scheme was proposed for integrating the effects of battery

degradation into EV charging scheduling problem. We devised a battery degra-

dation cost model to capture the characteristic of battery performance degra-

dation during the charging process. The developed battery degradation cost

model was incorporated into the optimal EV charging scheduling scheme de-

sign to minimize the system total battery degradation cost. By investigating

the feature of the cost minimization problem, we decomposed the problem into

two sub-problems and proposed vacant resource allocation algorithm and dy-

namic power adjusting algorithm to solve the associated optimization problem.

The applicability and effectiveness of the proposed methods were demonstrated

through several case studies. The obtained results exhibited the superior per-

formance of the proposed method in achieving both battery degradation cost

minimization and system peak power load reduction, which benefits both the

customers and charging operator.

• In Chapter 5, we investigated the EV charging problem under a residential

community scenario. By jointly considering the charging energy and battery

performance degradation during the charging process, we proposed a utility

model to evaluate the gain of the charging process. Then, we formulated the

charging scheduling problem as a utility maximization problem, which not only

guaranteed the necessary energy to the charging request users to cover their

necessary daily travel requirements but also to protect the battery health. By

investigating the features of the utility maximization problem, we proved it as a

convex optimization problem and proposed a utility maximized charging scheme

to achieve the utility optimality of the charging network. The applicability and
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effectiveness of the proposed charging scheme were demonstrated under the

underload and overload cases through several simulations based on real EV

charging parameters. The obtained results exhibited the superior performance

of the proposed charging scheme in achieving the most utility and higher task

service rate compared with the other benchmark solutions, which is beneficial

for both the charging customers and aggregator.

6.2 Future work

For the future work that plans beyond this dissertation, there are still various open

issues of importance.

• For the work in Chapter 2, each customer’s flexible and inflexible requirements

are predetermined before their arriving at the charging station. In addition,

the utility is fixed corresponding to the task’s charging requirement. However,

in real charging process the customer can adjust their flexible and inflexible

charging requirements according to the charging station set price or utility. We

need to find a reasonable model to reflect this variation. On the other hand,

after the charging station tuning the utility function the customers’ charging

requirement adjustment will reversely affect the total utility of the charging

station, just like the supply and demand relationship in economics. Thus, how

to set a suitable utility function to achieve the maximum utility considering the

pricing demand relationship is quite an interesting problem deserves our further

investigation. In addition, our designed scheduling algorithm is online heuristic,

we also need to derive the corresponding approximation ratio of our solution

compared with the offline optimal solution.

• For the work in Chapter 3, there are several aspects which can be further inves-

tigated. First, we only considered a two-step TOU pricing as current electricity

pricing. With more steps price variation even under the real-time pricing (RTP)

situation, considering the vehicle’s deadline restricted feature and the charging

amount heterogeneity determined by the battery charging characteristic, how

we can obtain the most profit for the charging station. Otherwise, if it is too

hard to achieve the optimality, whether we can achieve some performance bound

needs our further exploration. Second, inspiring by the discussion of Markov
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process in [100,101], we can consider the Markovian property of the arrival pro-

cess to further extend our work and utilize the M/G/K queue to analyze the

charging process.

• For the work in Chapter 4, our proposed battery degradation model mainly

considered the temperature effect during the charging process. However, other

factors like the battery SOC and depth of discharge (DOD) also affect the

battery performance. Therefore, to have a comprehensive assessment for the

battery degradation during the charging process all these factors should be

jointly considered. In addition, in our discussed scenario the vehicle mobility

issue has not been addressed. With the mobility issue consideration, how to

adjust the charging power sequence and allocate the vacant charging resource

is an interesting issue to be further studied.

• For the last work in Chapter 5, we considered a centralized control strategy

for the EV charging scheduling. This is feasible for a small scale community.

However, for a large scale scheduling situation centralized control exposes its

drawbacks as follows. It needs accurate information of all the customers which

has heavy communication overhead. Besides, it is difficult to solve a large

scale optimization problem within a short time and the computation complexity

sometimes is too high to be implemented. Consequently, we should design

a distributed scheduling approach for supporting a high EV penetration rate

scenario. Also, the real time changing base load should be considered together

with the EV load in our future research.
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and Kandler Smith. Electric vehicle charge optimization including effects of

lithium-ion battery degradation. In Proceedings of IEEE Vehicle Power and

Propulsion Conference, pages 1–8, 2011.

http://timberrockes.com/docs/TRES-MEA.pdf


101

[64] Hossein Farzin, Mahmud Fotuhi-Firuzabad, and Moein Moeini-Aghtaie. A prac-

tical scheme to involve degradation cost of lithium-ion batteries in vehicle-to-

grid applications. IEEE Transactions on Sustainable Energy, 7(4):1730–1738,

Oct. 2016.

[65] Long Lam and Pavol Bauer. Practical capacity fading model for li-ion battery

cells in electric vehicles. IEEE Transactions on Power Electronics, 28(12):5910–

5918, Dec. 2013.

[66] Liang He, Yu-Chih Tung, and Kang G Shin. icharge: User-interactive charging

of mobile devices. In Proceedings of the 15th Annual International Conference

on Mobile Systems, Applications, and Services, pages 413–426, 2017.

[67] Min Chen and Gabriel A Rincon-Mora. Accurate electrical battery model ca-

pable of predicting runtime and IV performance. IEEE Transactions on Energy

Conversion, 21(2):504–511, Jun. 2006.

[68] Alberto Bocca, Alessandro Sassone, Donghwa Shin, Alberto Macii, Enrico

Macii, and Massimo Poncino. A temperature-aware battery cycle life model

for different battery chemistries. In Proceedings of IFIP/IEEE International

Conference on Very Large Scale Integration-System on a Chip, pages 109–130,

2015.

[69] Saeid Bashash, Scott J Moura, Joel C Forman, and Hosam K Fathy. Plug-in

hybrid electric vehicle charge pattern optimization for energy cost and battery

longevity. Journal of Power Sources, 196(1):541–549, Jan. 2011.

[70] Chengke Zhou, Kejun Qian, Malcolm Allan, and Wenjun Zhou. Modeling of

the cost of EV battery wear due to V2G application in power systems. IEEE

Transactions on Energy Conversion, 26(4):1041–1050, Dec. 2011.

[71] Robert Spotnitz. Simulation of capacity fade in lithium-ion batteries. Journal

of Power Sources, 113(1):72–80, Jan. 2003.

[72] https://en.wikipedia.org/wiki/Arrhenius_equation.

[73] Anderson Hoke, Alexander Brissette, Kandler Smith, Annabelle Pratt, and

Dragan Maksimovic. Accounting for lithium-ion battery degradation in electric

vehicle charging optimization. IEEE Journal of Emerging and Selected Topics

in Power Electronics, 2(3):691–700, Sep. 2014.

https://en.wikipedia.org/wiki/Arrhenius_equation


102

[74] Bor Yann Liaw, E Peter Roth, Rudolph G Jungst, Ganesan Nagasubramanian,

Herbert L Case, and Daniel H Doughty. Correlation of Arrhenius behaviors in

power and capacity fades with cell impedance and heat generation in cylindrical

lithium-ion cells. Journal of Power Sources, 119:874–886, Jun. 2003.

[75] https://www.tesla.com/en_CA/models.

[76] Raj Jain. The art of computer systems performance analysis: techniques for

experimental design, measurement, simulation, and modeling. Wiley, 1990.

[77] Di Wu, Dionysios C Aliprantis, and Lei Ying. Load scheduling and dispatch

for aggregators of plug-in electric vehicles. IEEE Transactions on Smart Grid,

3(1):368–376, Mar. 2012.

[78] Peter Richardson, Damian Flynn, and Andrew Keane. Optimal charging of

electric vehicles in low-voltage distribution systems. IEEE Transactions on

Power Systems, 27(1):268–279, Feb. 2012.

[79] Olle Sundstrom and Carl Binding. Flexible charging optimization for electric

vehicles considering distribution grid constraints. IEEE Transactions on Smart

Grid, 3(1):26–37, Mar. 2012.

[80] Kristien Clement-Nyns, Edwin Haesen, and Johan Driesen. The impact of

charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE

Transactions on Power Systems, 25(1):371–380, Feb. 2010.

[81] Pia Grahn, Joakim Munkhammar, Joakim Widén, Karin Alvehag, and Lennart
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