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Abstract

The semantic paradoxes and other statements about impossibilities have proved to be obstacles to a
satisfactory theory of conditionals. In my dissertation, which consists of two parts, I propose a new
approach to the impossible that yields an improved theory of conditionals.

A prominent response to the semantic paradoxes is glut theory. Glut theorists avoid paradox by
giving up material modus ponens. But they argue that they can help themselves to this rule in areas
where no paradoxes loom. In chapter 1, I argue that this does not work and that giving up modus
ponens in paradoxical domains leaves glut theorists with a weak logic everywhere.

One option that’s available to glut theorists involves pragmatic innovation. In chapter 2, I explore
the consequences of giving glut theorists the pragmatic resources that are already available the
proponents of gap theory, the dual of glut theory. The resulting hybrid theory, which makes use of
two distinct speech acts of assertion, is glap theory. Surprisingly, the logic of glap theory is a quite
strong logic that adds to the logics of glut and gap theory two hybrid forms of modus ponens.

Turning to counterfactual conditionals, the second half of my dissertation concerns the vacuity
thesis, which says that all counterpossible conditionals are vacuously true. In chapter 3, I argue that
the strongest case against the vacuity thesis comes from counterpossibles as they appear in relative
computability theory. I show that relative computability theorists crucially invoke counterpossibles
when they define the central notions of their theory. I also provide a model theory for a quantified
language that can express such counterpossibles.

The logical properties of counterfactuals about relative computability deserve closer attention.
In chapter 4, I provide an axiomatization of a propositional fragment of the model theory developed
in chapter 3 and prove that the axiomatization is complete and that the resulting conditional logic
is decidable. This logic display some surprising features. While validating modus ponens, it also
contains a restricted form of the import-export law.

Thesis Supervisor: Vann McGee
Title: Professor of Philosophy
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Introduction

Here are some claims about conditionals that, from a pretheoretical perspective, are hard to deny:

Identity is a law of logic. This is the claim that every sentence of the form

𝜑→ 𝜑

is a law of logic. If it’s raining, then it’s raining. If that’s not a law of logic, then it’s unclear

what would be.

Modus ponens is a rule of logic. This is the claim that every instance of

𝜑→ 𝜓 𝜑

𝜓

is logically valid. If it’s raining, then the streets are wet. It is raining. So the streets are wet.

Again, if that’s not a rule of logic, then it’s unclear what would be.

Not all counterpossibles have the same truth value. Counterpossibles are counterfactual condi-

tionals with impossible antecedents. Here’s a counterpossible that seems to be true:

If water had been an element, then water splitting would have been impossible.

But if that is true, then the following is surely false:

If water had been an element, then water splitting would have been possible.

So there seem to be some counterpossibles that are true and others that are false.

Despite the status of these claims as truisms, there are popular logics that deny them. Kleene’s

Strong 3-valued Logic (𝐾3), which is an ingredient in the gap theorist’s response to the liar paradox,

doesn’t contain identiy as a law of logic. The Logic of Paradox (𝐿𝑃 ), which is the dual of𝐾3 and is

invoked in the glut theorist’s response to the liar, doesn’t validate modus ponens. And the Stalnaker-

Lewis logic of counterfactuals (𝐶) treats all counterpossibles as vacuously true.
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All of these logics attempt to tame the impossible in one way or another. The liar sentence is the

sentence that says of itself that it is not true. It seems to describe an impossible scenario. 𝐾3 tames

the liar sentence by giving up the law of excluded middle:

𝜑 ∨ ¬𝜑

But because the material conditional → is defined so that 𝜑 → 𝜓 abbreviates ¬𝜑 ∨ 𝜓, giving up

excluded middle means giving up identity as well.

𝐿𝑃 tames the liar sentence by giving up the rule of explosion:

𝜑 ¬𝜑
𝜓

But again, given the definition of the material conditional and an uncontroversial background theory,

this means that they also give up (material) modus ponens.

The logic 𝐶 of counterfactuals defines a semantics for counterfactuals that involves a compar-

ative similarity relation among possible worlds. Unable to make sense of comparative similarity

among possible and impossible worlds, 𝐶 indiscriminately declares all counterpossibles as true.

𝐾3, 𝐿𝑃 , and 𝐶 have greately enhanced our understanding of the liar paradox and of counter-

factuals. But the ways in which they tame the impossible can be improved. This dissertation, which

consists of two parts, proposes two new logics, one designed to respond to the liar paradox and one

designed to accommodate a class of non-vacuous counterpossibles.

In response to the fact that 𝐾3 and 𝐿𝑃 need to give up the law of identity and the rule of modus

ponens, resprctively, gap and glut theorists argue that they can nevertheless help themselves to these

principles in areas where no paradoxes loom. This is undoubtedly true for gap theorists, who can

simply assert those instances of the law of identity that they regard as true. But it is less obviously

true for glut theorists, since we’ve learned from Lewis Carroll that rules aren’t the kinds of things

we can simply assert. Glut theorists have offered ways around this. In chapter 1, the first half of

which appeared in Thought 6(1):43–53 (2017), I investigate the most prominent proposals, such

as those involving shriek rules, conversational implicatures, and a supposed use of ‘not’ as a force

indicator. I argue that none of these proposals work and that glut theorists are thus unable to be
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selective in their use of modus ponens in public demonstrations of proofs. Thus, giving up this rule

in paradoxical domains leaves them with a weak logic everywhere.

One option that’s available to glut theorists involves pragmatic innovation. In chapter 2, I explore

the consequences of giving glut theorists the pragmatic resources that are already available the

proponents of gap theory, the dual of glut theory. The resulting hybrid theory, which makes use of

two distinct speech acts of assertionm, one taken from gap theory and one taken from glut theory,

is glap theory. Surprisingly, the logic of these two types of assertion isn’t simply the logic of gap

theory and the logic of glut theory taken together. Rather, it’s a stronger logic that adds to the other

two logics two hybrid forms of modus ponens. Moreover, the logic of glap theory allows for an

adequate, fully structural treatment of the semantic paradoxes and the paradoxes of vagueness. I

argue that glap theory strikes the right balance between strength, simplicity, and adequacy in the

face of paradox.

Turning to counterfactuals, in chapter 3, a version of which is forthcoming in Noûs, I argue that

the strongest case against the vacuity thesis comes from counterpossibles as they appear in a mathe-

matical sub-discipline called relative computability theory. These are counterfactuals such as ‘If the

halting problem were algorithmically decidable, then the validity problem of the predicate calcu-

lus would also be algorithmically decidable.’ Such counterfactuals are often found in introductory

remarks about relative computability. This invites the suggestion that they don’t need to be taken

fully literally. In response to this, I show that relative computability theorists crucially invoke such

counterfactuals when they define the central notions of their theory, and I argue that alternative ways

of defining these notions fail. But we can’t just rest content with rejecting the vacuity thesis without

offering something in its place. I patch up the orthodox account of counterfactuals by providing a

model theory for a quantified language that can express the above counterpossibles and many more.

The result is a language that can express informative facts about what would have held if certain

impossible things had held.

The logical properties of counterfactuals about relative computability deserve closer attention.

In chapter 4, I provide an axiomatization of a propositional fragment of the model theory developed

in chapter 3 and prove that the axiomatization is complete. This means that claims about relative

11



computability that can be expressed in this propositional language are true just in case they are

consequences of my axioms. I also show that the resulting Conditional Logic of Turing Reducibility

is decidable. This means that we have a fully general procedure for determining the truth or falsity of

a wide class of counterpossible claims about relative computability. This conditional logic displays

some surprising features. While validating modus ponens, it also contains a restricted form of the

import-export law
(︀
𝜑 � (𝜓 � 𝜒)

)︀
↔
(︀
(𝜑 ∧ 𝜓) � 𝜒

)︀
, which, in its unrestricted form, is

famously incompatible with modus ponens.

Although chapter 2 builds on chapter 1 and chapter 4 on chapter 3, all chapters are designed to

be read on their own. This results in some unavoidable redundancies.
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Chapter 1

The Flight from Gluts

1.1 Introduction

Gottlob Frege famously held that “nothing is added to [a] thought by . . . ascribing to it the property

of truth” (1956, 293). This idea is commonly expressed with the slogan that truth is transparent:

𝜑 and 𝑇𝑟(p𝜑q)1—the sentence that says that 𝜑 is true—are fully intersubstitutable in extensional

contexts. Unfortunately, in classical logic, the law of excluded middle, i.e. ⊢ 𝜑 ∨ ¬𝜑, and the rule

of explosion, i.e. 𝜑,¬𝜑 ⊢ 𝜓, allow us to derive any sentence from the liar sentence if we have

transparency. It’s tempting to put the blame on transparency here. However, it isn’t entirely obvious

what to replace transparency with.2 That is why a number of authors have instead blamed classical

logic. Saul Kripke (1975), Robert Martin and Peter Woodruff (1975), Peter Woodruff (1984), and

Bradley Dowden (1984) have shown how we can preserve transparency if we dispense with either

excluded middle or explosion. The most conservative deviation from classical logic that gives up

excluded middle is Kleene’s Strong 3-valued Logic (𝐾3), and the most conservative non-explosive

logic is the Logic of Paradox (𝐿𝑃 ).3 Model theoretically, both of these logics are three-valued

logics: they introduce a third truth value in addition to the classical truth values of truth and falsity.

Proponents of 𝐾3 are called gap theorists because they interpret the third truth value as a truth

1‘p𝜑q’ is a term for 𝜑 in the object language. Note that the corner quotes here are Gödel quotes, not Quine quotes. In
section 1.4, I will occasionally use corner quotes as Quine quotes. I will let context distinguish between the two uses.

2See McGee (1990) and Halbach (2011) surveys of some of the options.
3See Kleene (1950) for 𝐾3 and Asenjo (1966) and Priest (1979) for 𝐿𝑃 .
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value gap—neither true nor false—while proponents of 𝐿𝑃 are called glut theorists, because they

interpret the third truth value as a truth value glut—both true and false.

However, the move to such subclassical logics has serious drawbacks. In giving up modes of

reasoning that are central to classical logic, we are left with logics where “nothing like sustained

ordinary reasoning can be carried on,” to quote Solomon Feferman (1984, 95).4 As a partial remedy

for this, Hartry Field (2008) and Jc Beall (2009) have recently devised stronger logics that build on

𝐾3 and 𝐿𝑃 , respectively, but that are still weak enough to be compatible with transparency.

Despite their virtues, Field’s and Beall’s logics have significant drawbacks of their own. Most

notably, they are vastly more complex than classical logic, 𝐾3, and 𝐿𝑃 . For the latter three logics,

we have algorithms for deciding whether a sentence of propositional logic is classically valid. By

contrast, the task of deciding whether a sentence is valid in Field’s logic, which has been more

thoroughly studied than Beall’s, is vastly more complex even than deciding whether a sentence of

the language of arithmetic is true, the latter of which is already far beyond what’s humanly possible.5

So while Field’s logic may come close to classical logic in terms of strength, it is doubtful whether it

meets Feferman’s challenge of being able to allow for sustained ordinary reasoning if it is humanly

impossible to determine whether a given sentence is a theorem of the logic or not.6

More may be said on behalf of Field (2008), and also on behalf of Beall (2009), but the foregoing

suggests that attempting to find a logic that’s stronger than 𝐾3 or 𝐿𝑃 that meets both transparency

and Feferman’s challenge remains elusive. It may therefore be worth taking another look at 𝐾3 and

𝐿𝑃 to see how much we can get out of them. This is the topic of the present chapter, where I set

aside the more sophisticated subclassical logics.

Recently, Beall (2011, 2013b, 2015a) has taken some first steps towards determining how much

we can get out of 𝐾3 and 𝐿𝑃 . Following Gilbert Harman (1986, ch. 2), Beall distinguishes be-

tween logic and reasoning. Certain inferences may be justified by the standards of reasoning, even

though they don’t involve moving from premises to a conclusion that logically follows from the

4At the time, Feferman was talking about 𝐾3, but he (2012, 190) has since observed that the same holds for 𝐿𝑃 .
5As McGee (2010, 430-31) shows by building on work due to Welch (2008), the set of valid sentences in Field’s logic is
complete Π1

2.
6It may be worried that we’re being too demanding here. After all, classical first-order logic is also undecidable. However,
validity in classical first-order logic, unlike Field’s logic, is at least semi-decidable, and thus axiomatizable, since it is
complete Σ0

1.
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premises. And, in fact, Beall argues, in most domains of inquiry, applications of excluded middle

and explosion are perfectly legitimate, even though they are logically invalid according to either𝐾3

or 𝐿𝑃 . Therefore, goes Beall, if we’re reasoning about a classical domain, we may be confident that

reliance on classical modes of reasoning won’t lead us astray.

In this chapter, I argue that glut theorists have a much harder time recapturing classical reason-

ing in select domains than gap theorists. I do so by investigating the feasibility of three prominent

proposals of how glut theorists can recapture classicality, namely by way of shriek rules (subsec-

tion 1.3.1), conversational implicatures (subsection 1.3.2), and metalinguistic negation (section 1.4).

What’s attractive about these proposals is that they only appeal to ordinary, well-understood re-

sources. If glut theorists are able to recapture classical reasoning using only such resources, then

they may come close to meeting Feferman’s challenge. Of course, there will remain areas where

classical reasoning is inappropriate, but such is the price of transparency. Unfortunately, as I will

argue, the glut theorist’s attempts at recapturing classical reasoning using any of these resources is

ill-fated when it comes to public reasoning.

1.2 Classical recapture for gap and glut theorists

Give a person a fish and you feed them for a day; teach a person to fish and you feed

them for a lifetime.

Suppose you and I are subclassical logicians, and suppose you want to teach me classical mathe-

matics. One way to teach me would be to simply assert any mathematical statement you’ve proven

using classical reasoning. However, a more sustainable method would be to teach me how to prove

theorems myself. One way to do so would be to carry out some derivations and hope that I’ll catch

on. But upon inspecting your proofs, I am baffled. Your proofs are grossly fallacious; almost none

of them are underwritten by the subclassical logic we both adhere to.

If we’re both paracomplete proponents of 𝐾3, this problem is easily overcome. When you

present a proof of some theorem of, say, classical set theory you simply add as an additional premise

the claim ∀𝑥∀𝑦(𝑥 ∈ 𝑦 ∨¬𝑥 ∈ 𝑦), i.e. the claim that set theory is complete in the sense that any two

sets are such that either the first is a member of the second or it isn’t. Since 𝐾3 becomes classical
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logic when we add the law of excluded middle as an axiom, this guarantees that your set-theoretic

proof, which is classically valid, becomes valid according to 𝐾3. Thus, by asserting the relevant

instances of the law of excluded middle, 𝐾3 logicians can recapture classical reasoning in select

domains.

Unfortunately, things aren’t so simple if instead we’re paraconsistent proponents of 𝐿𝑃 . As a

glut theorist, you need to fill the gaps in your proof not by communicating to me that mathematics

is complete but that mathematics is consistent. Since glut theory is of course compatible with the

non-classicality of mathematics, and indeed there are glut theorists who claim that mathematics

is inconsistent,7 there will be no way for me to infer that you take mathematics to be consistent

from the fact that you’re a glut theorist. It’s tempting to think that you can communicate to me

that mathematics is consistent by asserting what might be thought to be the dual of the above,

i.e. ¬∃𝑥∃𝑦(𝑥 ∈ 𝑦 ∧ ¬𝑥 ∈ 𝑦). However, ¬∃𝑥∃𝑦(𝑥 ∈ 𝑦 ∧ ¬𝑥 ∈ 𝑦) is logically equivalent to

∀𝑥∀𝑦(𝑥 ∈ 𝑦 ∨ ¬𝑥 ∈ 𝑦) in both 𝐿𝑃 and 𝐾3 (as well as in classical logic), and so this attempt

at expressing consistency just amounts to an assertion of excluded middle again. And unlike in

𝐾3, excluded middle is logically valid in 𝐿𝑃 , so I wouldn’t learn anything from your assertion of

¬∃𝑥∃𝑦(𝑥 ∈ 𝑦 ∧ ¬𝑥 ∈ 𝑦) that I couldn’t already figure out on my own.

More generally, the problem is this: in order for Beall’s strategy of recapturing classical rea-

soning in select domains to be fully effective, gap and glut theorists need to coordinate among

themselves which domains they take to be classical. After all, just like any other conversation, pub-

lic reasoning operates against a background of shared assumptions, the so-called common ground.8

Gap theorist can add to the common ground and establish that a certain domain is classical by sim-

ply asserting the right instance of the law of excluded middle. How might glut theorists achieve the

same thing?9 In the next two sections, I critically discuss two answers to this question that have

been offered in the literature.

7See Priest (2006, esp. ch. 17), and Mortensen (2013) for an overview.
8See Stalnaker (2014).
910This issue is related to the so-called “just true” problem, which is the problem of how glut theorists can express that
a sentence is just true and not also false. See Parsons (1984), Batens (1990, sect. 4), Parsons (1990, sect. 6), Simmons
(1993, §4.4), Everett (1994, 1996), Bromand (2002), Olin (2003, ch. 2), Shapiro (2004), Littmann and Simmons (2004),
Priest (2008a, §6.3), Priest (2006, §20.4), Beall (2009, 2013a), Rossberg (2013), Berto (2014), Hughes (2015), and
Murzi and Carrara (2015b).
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1.3 Perlocutionary recapture: shrieking and whistling

We can distinguish attempts at recapturing classicality into two initial groups: those involving per-

locutionary tools and those involving illocutionary tools. This distinction is of course familiar from

J. L. Austin (1962), who uses ‘illocution’ to designate the force of a speech act and ‘perlocution’ to

designate the causally downstream effects of a speech act. In this section, we’ll look at two perlocu-

tionary attempts at recapturing classicality, one involving so-called shriek rules and one involving

conversational implicatures.

1.3.1 Shrieking

Beall (2013a) develops a device based on Graham Priest’s (2006, §8.5) notion of “shrieking.”11

He proposes that glut theorists may adopt an extra-logical rule of inference, called a shriek rule,

that allows them to infer anything from a contradiction in classical domains such as mathematics.

This rule says that if you have a sentence of mathematics 𝜑𝑀 , then you may infer anything from

𝜑𝑀 ∧ ¬𝜑𝑀 .

It’s tempting to express the idea behind shrieking in terms of an extra-logical axiom instead

of a rule. It’s tempting, that is, to think that a glut theorist can get the same effect by asserting

(𝜑𝑀 ∧ ¬𝜑𝑀 ) → ⊥, where ⊥ is some sentence that entails every other sentence. However, since

modus ponens for the material conditional → isn’t valid in 𝐿𝑃 , we may not conclude from a glut

theorist’s assertion of 𝜑𝑀 and (𝜑𝑀 ∧ ¬𝜑𝑀 ) → ⊥ that she regards 𝜑𝑀 as classical. In fact, in 𝐿𝑃

just as in classical logic, (𝜑 ∧ ¬𝜑) → ⊥ is a logical truth, for any 𝜑, and so its assertion by a glut

theorist doesn’t tell us anything we didn’t already know.12

The difference between shriek rules and shriek axioms points to the more general fact that in

𝐿𝑃 , unlike in classical logic, there is a big difference between a rule that allows us to infer 𝜓 from

11See also Field (2008, 388). See Murzi and Carrara (2015a) for some worries about shrieking in addition to the ones
discussed in this section.

12Priest (2006) as well as Beall (2009) have devised logics based on 𝐿𝑃 that contain a conditional that does validate
modus ponens. So in those logics, a shriek axiom may do just as well as a shriek rule. (Though see Beall (2013a,
§2.1) for worries about Priest’s version of shriek axioms.) But as mentioned in the introduction, the present focus is on
determining how much we can get out of the simple logics 𝐾3 and 𝐿𝑃 .
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𝜑 and the corresponding axiom 𝜑 → 𝜓.13 This is unfortunate. If (𝜑𝑀 ∧ ¬𝜑𝑀 ) → ⊥ did indeed

achieve its desired effect, then glut theorists would only need to assert it along with 𝜑𝑀 in order to

express that they take 𝜑𝑀 to be classical. With a shriek rule, things aren’t as straightforward. Before

we get to that, note that shriek rules may well help glut theorists selectively recapture classicality in

thought. But we’ve been discussing the issue of how two or more glut theorists can coordinate on

the classicality of a certain domain.

You could attempt to express to me that you take mathematics to be classical, by asserting that

you’ve adopted the relevant rule. But absent a way for us to coordinate on the classicality of rules

and their adoption, I won’t be able to rule out that it’s also false that you’ve adopted the rule. You

can’t rule out, that is, that it’s both true and false that you’re committed to 𝜓𝑀 . So while you can tell

me that you’re committed to the classicality of mathematics, you can’t tell me that that is a classical

truth, a truth that’s not also false, that you are thus committed. Compare this again with how simple

it is for gap theorists to unequivocally commit themselves to the classicality of mathematics: they

simply need to assert the relevant instances of the law of excluded middle.

Might I be able to read off of your behavior that you take mathematics to be classical? In

general, people’s inferential behavior is not a good guide to what they accept as consequences of

their beliefs.14 But perhaps the present case is different. Note that adding material modus ponens to

𝐿𝑃 suffices to recapture classical reasoning. So, perhaps you can infer 𝜓𝑀 from 𝜑𝑀 → 𝜓𝑀 and

𝜑𝑀 often enough to indicate to me that you accept a version of modus ponens restricted to sentences

of mathematics. Whether this may work can’t be determined from the armchair. But note that this

route to recapturing classicality would be much more circuitous compared to the ease with which

gap theorists can commit themselves to the classicality of mathematics.

1.3.2 Whistling

It has also been suggested that glut theorists can express classicality by way of conversational impli-

catures. Perhaps I can compute the implicature that you take mathematics to be classical if you, the

13For this reason, it also wouldn’t help to add
(︀
𝜑𝑀 ∧ (𝜑𝑀 → 𝜓𝑀 )

)︀
→ 𝜓𝑀 as an axiom, because this sentence is already

a logical truth of 𝐿𝑃 . So perhaps Lewis Carroll’s (1895) Tortoise was a proponent of 𝐿𝑃 ?
14See Harman (1986, ch. 2) and Harman (2009). See also Scharp (2013, 82) for a similar observation.
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glut theorist, never assert both a mathematical sentence and its negation.15 My pragmatic reasoning

might go like this: it is a maxim of conversation, called the maxim of quantity, that one ought to say

just enough of what’s relevant for the purposes of a conversation, not more and not less. It follows

from this maxim that if you thought that the sentence you asserted was both true and false, you

would have asserted it and its negation. Since you didn’t assert the negation, you must think that the

sentence is classical. Do this often enough and I may be able to infer that you take mathematics to

be classical.

However, in the present case, the maxim of quantity conflicts with another conversational maxim,

the maxim that says to not assert anything that’s already in the common ground, even if it’s relevant

to the topic under discussion. Since Robert Stalnaker (1978, 49) endorses this maxim, we’ll call it

Stalnaker’s maxim. A result of Stalnaker’s maxim is that speakers will often not assert things that

they think the audience already believes. This creates trouble for the maxim of quantity, since in

many conversations glut theorists will believe that their audience already believes the negation of

a certain sentence, and what they want to establish is that the sentence itself is true in addition to

being false. So, they will only assert the sentence, without its negation. Indeed, glut theory’s core

thesis, the thesis that there are sentences that are both true and false, is a case in point. According

to glut theorists’ own lights, this is a non-classical thesis in that it is both true and false. But glut

theorists don’t often go around asserting the falsity of their core thesis.16 That’s plausibly because

at least in conversations with classical logicians, the falsity of this claim is already common ground.

As a result, your pragmatic reasoning would lead you astray if you inferred that I believe that the

claim that there are sentences that are both true and false is classical from the fact that I don’t go

around asserting its negation.

Another problem with this pragmatic strategy is that the purported conversational implicatures,

even if they were generated, wouldn’t display the same behavior displayed by implicatures in gen-

eral.17 There are two general features of conversational implicatures that are relevant here; purported

implicatures of classicality exemplify the first one but not the second. The first feature, stressed by

15See Shapiro (2004, 339), Priest (2006, 291), Beall (2009, 51–2), and Armour-Garb and Priest (2005, 168). See Grice
(1967) for the pragmatic theory that’s in the background here.

16For an honorable exception, see Priest (1979, 239).
17Thanks to Ben Burgis for urging me to think more about this point.
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Grice, is that we can cancel implicatures. Here the supposed implicatures of classicality behave like

ordinary implicatures: to cancel the supposed implicature that what you asserted is classical, you

simply add an assertion of its negation. But there’s another feature of implicatures that naturally

goes with their cancelability: implicatures can usually be made explicit. For example, if you say of

some people that they moved in together and adopted a puppy, thereby generating the implicature

that the moving in occurred before the adoption, you can make that implicature explicit by saying

that they moved in together and then adopted a puppy. If there’s any doubt on the part of your au-

dience about whether your chosen sentence order corresponds to the temporal order of the events

your assertion is about, you can dispel that doubt by making the temporal order explicit. And the

same holds for most conversational implicatures. The purposes of most implicatures isn’t to express

the inexpressible, but to cut corners.18 The same isn’t the case for the supposed conversational im-

plicatures of classicality. On the current proposal, glut theorists can only ever suggest, but never

actually say, that something is classical. That a domain is classical therefore becomes one of those

mysterious Tractarian truths that we can only allude to but never actually put into words, at least

not unequivocally. What we thought was a mundane feature of many domains, namely that they are

classical, takes on almost mystical qualities.19

It may be wondered whether the above clash between the maxim of quantity and Stalnaker’s

maxim points to a general flaw with the Gricean approach to pragmatics and its reliance on mul-

tiple principles. Perhaps, that is, the problem lies not with the present proposal of how to express

classicality, but rather with the theoretical framework within which it is proposed. An alternative ap-

proach to pragmatics that only relies on one principle of communication is the relevance-theoretic

approach due to Dan Sperber and Deirdre Wilson (1995; 2012). Robyn Carston puts the presump-

tion of optimal relevance, which is the principle at the core of this approach, as follows: “Speakers

should not be, and are expected not to be, as explicit as possible. They should encode only what

18It’s difficult to find anyone explicitly endorsing this feature of implicatures in the literature. Perhaps that’s because this
feature is taken to be so deeply entrenched in the common ground that it’s usually not worth emphasizing. However,
Fox (2007, 78) endorses the more limited claim that all scalar implicatures can be made explicit; and the purported
implicature of classicality would be at least a distant relative of scalar implicatures.

19See Wittgenstein (1922): “There is indeed the inexpressible. This shows itself; it is the mystical” (§6.522; emphasis in
the original). Of course, Priest (2002, 2014a,b) thinks that there are ineffable things that we can nonetheless talk about.
But according to him, these things are only found at the periphery of language.
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they cannot rely on their addressees to infer easily” (2002, 289). However, it’s hard to see how the

presence of this principle in communicative situations would lead to anything like an implicature of

classicality. In fact, in our present situation, the principle seems to be entirely idle. After all, we’ve

already seen that classicality can’t be encoded; that’s why there was a need for a pragmatic strategy

to begin with. So, within the relevance-theoretic approach to communication, classicality can only

ever be inferred by the addressee. But the whole problem of coordinating on classical domains rests

on the premise that classicality can’t be inferred easily.

At this point it may be protested that surely things can’t be that bad. After all, glut theorists do

say all the time that certain domains are classical while others aren’t.20 Shouldn’t we take them at

their word, or at what their word implicates? Indeed, perhaps there is some pragmatic difference

between an assertion of 𝜑 and an assertion 𝜑 ∧ ¬𝑇𝑟(¬. p𝜑q), even if, as per transparency, there is

no logical difference. I don’t take myself to have refuted this possibility once and for all. But glut

theorists owe us a story about what exactly this pragmatic difference amounts to, and ideally this

story would steer clear of mysticism. Note also that for Beall’s brand of glut theory, the resources

available to tell a story about the pragmatic difference between 𝜑 and 𝜑 ∧ ¬𝑇𝑟(¬. p𝜑q) are particu-

larly limited. For, Beall’s brand of glut theory comes with a strong form of deflationism about truth

that says that the nature of truth is exhausted by the function played by the truth predicate as a de-

vice of generalization.21 It’s not obvious that this attitude towards truth leaves room for a pragmatic

difference between 𝜑 and 𝜑 ∧ ¬𝑇𝑟(¬. p𝜑q).

Let’s take stock. We’ve looked at two perlocutionary ways of establishing that a certain domain is

classical, i.e. two types of speech act which aim to produce the effect of establishing that a domain

is classical, and we’ve found them wanting. In the remainder of the chapter, we’ll look at whether

there is an illocutionary act that glut theorists can rely on.

20See for example Priest (2008a, ch. 3) and Beall (2009, §1.5).
21See Beall (2009, §1.1) and Beall (2015b, §9.2). See also Armour-Garb and Beall (2005b) for a more general overview.

23



1.4 Illocutionary recapture: metalinguistic negation

Following Priest (2006, 290–5), it may be thought that glut theorists can use the speech act of denial

to establish that a given domain is classical.22 Contrary to Frege (1918) and many others, denial is

said to be a sui generis speech act, not to be reduced to the assertion of a negation. Whereas the

assertion of a negation is governed by the norm that one ought to assert a negation only if the

negatum is either just false or both true and false, it is said that denial is governed by the norm that

one ought to deny something only if it is untrue. If such a speech act exists, then glut theorists can

establish that a domain is classical by denying certain claims. For example, to communicate that set

theory is classical, a glut theorist could deny the claim ∃𝑥∃𝑦(𝑥 ∈ 𝑦 ∧ ¬𝑥 ∈ 𝑦), i.e. the claim that

set theory is inconsistent. This is how gap theory and glut theory are exact duals of each other: gap

theorists establish the classicality of set theory by asserting that set theory is complete; glut theorists

might be able to do so by denying that it is inconsistent.

They might be able to do so, but only if the speech act of denial exist. Even fellow glut theorist

David Ripley doubts that it does: “I don’t know of any phenomenon studied outside the realm

of philosophical logic that could fill the theoretical role occupied by denial in our philosopher’s

theories” (Ripley, 2015, 292).23 Some authors, including Priest (2008a, §4.3), disagree. They think

that the ‘not’ of natural language is ambiguous between a truth function and a force indicator.24

They think, that is, that sometimes when we utter ¬𝜑, we deny 𝜑.

What is the evidence for this ambiguity claim? To start, note that in ordinary speech situations,

a sentence may be unassertable for reasons other than because it’s false. When an assertion of a

sentence suggests that the speaker presupposes something that isn’t presupposed by all parties in

the conversation, then its negation is generally also unassertable. For example, if Ahmed has never

smoked, then ‘Ahmed hasn’t stopped smoking’ is usually unassertable, because its assertion would

presuppose that Ahmed has smoked in the past. Similarly, if an assertion of a certain sentence would

22See also Restall (2005), Priest (2008a, ch. 6), and Estrada-González and Olmedo-García (2013, 96).
23See also Murzi and Carrara (2015a) for a criticism of Priest’s appeal to denial.
24See Price (1990), Richard (2008, ch. 2), and Richard (2009). Horn (1989, §6.2.1), and Tappenden (1999, 279) following

him, speak of a “pragmatic ambiguity” here, but Carston (1996, 311) reads Horn as essentially appealing to semantic
ambiguity. See Foolen (1991) and Pitts (2011) for further discussion. Note that none of these people are glut theorists.
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give rise to false conversational implicatures, then the sentence is unassertable even if it is literally

true. For example, if the room was sweltering, then ‘The room was warm’ is unassertable, since its

assertion would give rise to the scalar implicature that the room wasn’t sweltering. But now note that

with the right sort of stress, the following sentences are perfectly assertable (adapted from Geurts,

1998):

Ahmed hasn’t stopped smoking—he’s never smoked.

The room wasn’t warm, it was sweltering.

These kinds of cases were originally discussed by Laurence Horn (1985, 1989) under the label

metalinguistic negation. In the above, the speaker doesn’t assert that Ahmed hasn’t stopped smoking

or that the room wasn’t warm. For, that would make the respective follow-up clauses contradict what

they follow up on, which is of course not what’s intended. Rather, what seems to be going on here

is that the speaker denies that Ahmed has ever smoked and that the room was just warm and not

sweltering. So the ‘not’ in these examples doesn’t seem to be truth-functional negation; rather, it’s

tempting to think that ‘not’ acts as a force indicator.

This appeal to metalinguistic negation offered on behalf of the glut theorist is of course a bit

peculiar. The case of ‘Ahmed has stopped smoking’ and ‘The room was warm,’ and cases of presup-

position failures and false implicatures more generally, suggest that there are unassertable sentences

whose negations are also unassertable if the negation is read in the ordinary truth-functional way.

But these same sentences are deniable, i.e. their negations are correctly uttered if the negation is

read as a force indicator. The above are thus cases of sentences that are deniable but whose truth-

functional negations aren’t assertable. That’s not what we expect to find in a glut-theoretic context.

As we saw, according to the glut-theoretic understanding of denial, a sentence is deniable only if it

is untrue, whereas its truth-functional negation is assertable if its negatum is either just false or both

true and false. Since, according to glut theory, every sentence that’s untrue is false, we should thus

get that every sentence that’s deniable is such that its truth-functional negation is assertable. That’s

not what we find in the above cases, and so the phenomenon of metalinguistic negation doesn’t pro-

vide us with direct evidence for the kind of phenomenon that glut theorists need in order to recapture

classicality.
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But perhaps glut theorists appeal to metalinguistic negation with a more modest goal in mind.

Perhaps all that this appeal is supposed to show is that there is a real pragmatic phenomenon in-

volving ‘not’ that isn’t to be analyzed in terms of truth-functional negation. For now, I will assess

the appeal to metalinguistic negation as such. I will investigate, that is, the claim that metalin-

guistic negation provides glut theorists with an illocutionary tool to recapture classicality, while

ignoring the fact that metalinguistic negation seems to have the wrong pragmatic profile vis-à-vis

truth-functional negation. I will argue that even when judged by this very weak standard, metalin-

guistic negation falls short of providing glut theorists with what they need. I will then return to the

desired pragmatic profile of denial and argue that if we were to modify metalinguistic negation in

such a way as to give it that profile, then it would invite the revenge phenomenon that glut theory is

supposed to be immune against.

1.4.1 Expressive limitations

A serious worry about metalinguistic negation is that it can’t seem to be used to settle questions and

it can only be carried out in reaction to a previous utterance. Thus, even though an appeal to met-

alinguistic negation is supposed to help glut theorists overcome the expressive limitations that stunt

their ability to recapture classicality, some of these expressive limitations persist. Meanwhile, gap

theorists may happily use assertion for their purposes, since assertion is of course the paradigmatic

speech act used to settle questions and to initiate a conversation.

What evidence is there for thinking that metalinguistic negation is limited in these ways? Re-

garding its inability to settle questions, Rob van der Sandt and Emar Maier write:

Just as the primary function of assertion is to convey new information, the primary

function of a [metalinguistic negation]25 is to object to information which has been

entered before and to remove it from the discourse record. (van der Sandt and Maier,

2003, 2)26

Using Robert Stalnaker’s (2014) ideas, we can gloss this quote as saying that rather than proposing

25van der Sand and Maier use ‘denial’ here; I use ‘metalinguistic negation’ to indicate that the present proposal is just one
possible way to implement what glut theorists call ‘denial.’

26See Ladusaw (1980, 143), Price (1983, 169), and van der Wouden (1997, 237), and van der Sandt (2003, §2) for similar
observations.
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to remove some possibilities from the context set, a denial proposes to restore certain possibilities

that were previously removed. And regarding metalinguistic negation’s purely reactive nature, van

der Sandt writes:

Cases of [metalinguistic negation]27 only occur as a reaction to an utterance of a previ-

ous speaker. It clearly makes no sense to enter a room and [utter] [‘T]he King of France

isn’t bald, since he does not exist.[’] Such an utterance does, however, make sense to

[deny] a previous claim that the King of France is bald. (van der Sandt, 1988, 93)28

However, in a somewhat different context, Timothy Smiley (1996, 1) makes a proposal that is

essentially an attempt to turn metalinguistic negation into a speech act that can be used to settle

questions and to initiate a conversation. Smiley suggests that we have a mechanism of metalinguis-

tic negation by way of polar questions that we can pose and immediately respond to in the negative.

A polar question is a question that only allows for two responses, ‘yes’ and ‘no.’ So, to metalin-

guistically negate 𝜑, Smiley proposes that we utter p𝜑? No.q For example, to metalinguistically

negate that I’m hungry, I would utter ‘Am I hungry? No.’29 Call this device at attempting to effect

metalinguistic negation Smiley’s device.

After introducing his device, Smiley immediately grants that it “is not adequate to deal with

every case” (1996, 1). Consider an utterance of the following:

Has Ahmed stopped smoking? No.

As Smiley seems to admit with respect to a related example, such an utterance would not in general

result in a denial of both the claim that Ahmed doesn’t currently smoke and the question’s presup-

position that Ahmed used to smoke. Rather, an isolated utterance of the above seems to express that

Ahmed used to smoke and that he still does. Of course, things change if we follow up the above with

an utterance of ‘Ahmed never smoked.’ But such an utterance would be an assertion of the proposi-

tion that Ahmed never smoked. And once we add that assertion, the preceding ‘Has Ahmed stopped

smoking? No’ is wholly redundant. Note also that while it’s tempting to try to effect a metalinguistic

27See footnote 25.
28See also Horn (1989, 74–5). Davis (2016, 30) denies this property of metalinguistic negation. However, the example he

uses involves a non-referring name. A negative free logic would treat his example as involving ordinary truth-functional
negation.

29Rumfitt (2000, 799) also endorses the use of this device. See also Khoo (2015, §III) for a discussion of ‘No’ as a device
of denial, though Khoo only discusses it in the context of a dialogue, not a monologue.
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negation in the above example by emphasizing the ‘stopped’ in ‘Has Ahmed stopped smoking?,’ it

would be exceedingly odd to start a conversation that way. Rather, such emphasis only seems to be

appropriate as part of a dialogue, viz.:

Asra: “Has Ahmed stopped smoking?” Briannah: “Has he stopped smoking? No.”

It’s not mysterious why metalinguistic negation should only work in reaction to a previous

utterance. When we object to someone else’s utterance, we may object to it for a multitude of

reasons. We may object to a presupposition made by the speaker, object to an implicature generated

by the speaker’s utterance, and much more. But in uttering p𝜑? No,q it would be a pragmatic misstep

to object to a presupposition made by an utterance of 𝜑 or to an implicature generated by it. For, if

that’s what we object to, we should have just phrased our question in a different way so as to avoid

the presupposition or the objectionable implicature. So, what’s being objected to with the ‘No’ in

an utterance of p𝜑? Noq can only be the assertoric content of 𝜑.30

1.4.2 Embedding metalinguistic negation

But things get worse for glut theorists. Standard tests developed in semantics to determine whether

something is a force indicator suggest that metalinguistic ‘not’ is not a force indicator. There’s a

long tradition dating back to Frege (1918) and Geach (1965) that assumes that force indicators

don’t embed in complex sentence constructions. The famous Frege-Geach problem assumes that

the simple sentences appearing in complex sentences don’t have any force themselves but rather

what’s embedded is just the content of those simple sentences. So, if we can find occurrences of

‘not’ within larger sentence structures that seem to have the same effect as in the examples above,

then that suggests not only that ‘not’ doesn’t act as a force indicator in those complex sentences, but

also that it doesn’t do so in the simple sentences above. And indeed, this is exactly what we find.31

30By the assertoric content of 𝜑 I mean the immediate contribution that an assertion of 𝜑 would make to a conversation
if all of the parties agree about any presuppositions that an assertion of 𝜑 may rest on. I say that the assertive content
of 𝜑 is the immediate contribution that an assertion of 𝜑 would make to a conversation because the assertive content of
𝜑 does not include any conversational implicatures that the conversational parties may compute on the basis of the fact
that 𝜑 has been asserted. See Dummett (1991, 47–50), Stanley (1997), and Ninan (2010) for further discussion.

31See Geurts (1998, 283) and Ripley (2015, 292).
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Consider the following examples:

If Ahmed hasn’t stopped smoking but has never smoked, then his lungs will be very

healthy.

If the room wasn’t warm but sweltering, then Nicole was uncomfortable.

In these examples, the ‘not’ that we previously had reason to believe is a force indicator appears in

the antecedent of a conditional. This suggests that the ‘not’ isn’t a force indicator—neither here nor

in our previous unembedded examples.32

In addition to these well-known examples, we can also show that metalinguistic negation em-

beds inside of quantifiers.33 Suppose that Ahmed and Lupe are in a room. Lupe used to smoke but

has now stopped, whereas Ahmed has never smoked. We can then respond as follows to the question

whether everyone in the room has stopped smoking:

(1) (a) Well, Ahmed is in the room and he hasn’t stopped since he’s never smoked.

(b) So, somebody in the room hasn’t stopped smoking.

It may be worried that ‘not’ in (1–b) takes wide scope and so that this isn’t a genuine case of

quantification into the scope of negation. However, note that if we explicitly pull the ‘not’ out of the

scope of ‘somebody,’ then the result becomes decidedly odd or even false:

(2) It’s not the case that somebody in the room has stopped smoking.

The emphasis on ‘stopped’ doesn’t seem to be doing anything here and so it’s tempting to judge this

sentence false, since Lupe has stopped smoking. What’s more, unlike in the case of (1–b), it would

be quite odd to infer (2) from (1–a). So, if the ‘not’ in (1–b) indicates a speech act of denial, then

what is being denied isn’t ‘Somebody in the room has stopped smoking.’

But then what is being denied in (1–b)? The scope of the quantifier is an open sentence, roughly

‘𝑥 is in the room and 𝑥 hasn’t stopped smoking,’ and so the scope of the ‘not’ is an open sentence as

well, namely ‘𝑥 has stopped smoking.’ So, on the assumption that what is involved in this example

32It is these kinds of considerations that lead Carston (1996, 2002), Iwata (1998), and Geurts (1998) to develop theories
of ‘not’ according to which ‘not’ is unambiguous.

33The following is inspired by Swanson’s (2011) treatment of the idea that epistemic modals are force modifiers.
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is a speech act of denial, what is being denied is an open sentence. But presumably, the objects of

speech acts are only ever (the contents of) closed sentences.34

It may be worried that the above example of quantifying-in only shows that ‘not’ isn’t am-

biguous when it’s used to deny a presupposition. But perhaps there’s still reason to think that it’s

ambiguous when used to deny a conversational implicature. After all, some authors, such as Mahrad

Almotahari (2017), argue that there are important differences between these two uses of ‘not.’ For

example, in the example about smoking, the follow-up clause ‘he’s never smoked’ provides an ex-

planation for ‘Ahmed hasn’t stopped smoking,’ whereas in the example about the room, ‘it was

sweltering’ provides an alternative to the problematic ‘The room was warm.’ However, we can also

find examples involving conversational implicatures where we can quantify into the scope of the

relevant ‘not.’ Suppose it was warm but not sweltering on 360 days of last year, whereas it was

sweltering on 5 days. Then we can respond as follows to the question whether it was warm on all

days last year:

Some days last year weren’t warm, they were sweltering.

In sum, metalinguistic negation seems to behave in a perfectly compositional way. Why is this

significant? Recall that we temporarily suspended the belief that metalinguistic negation has the

wrong pragmatic profile, viz. that it gives rise to cases where it is correct to metalinguistically

negate a sentence whose truth-functional negation isn’t assertable. This contrasts with the glut-

theoretic understanding of denial according to which whenever a sentence is deniable, its negation

is assertable. Let’s now suppose, counterfactually, that metalinguistic negation has the pragmatic

profile of denial as understood by glut theorists. Glut theorists commonly assume that denial is

consistent and complete in the following way:

Denial-consistency. There is no sentence that is both assertable and deniable.

Denial-completeness. Given full information, every sentence is either assertable or deniable.

Now, let’s assume that, instead of a force indicator, we have an operator 𝒟 that expresses denial. In

such a case, denial-consistency and denial-completeness give rise to the following two principles:
34As Stainton (2006) discusses, there is evidence that we sometimes make assertions using things other than complete

sentences. But even on Stainton’s theory, such assertions are ultimately interpreted as having full propositional contents.

30



𝒟-consistency. 𝜑,𝒟𝜑 ⊢ ⊥

𝒟-completeness. ⊢ 𝜑 ∨ 𝒟𝜑

Given that 𝒟 is an operator, it embeds in any sentence environment in a fully compositional way.

This means that we’ll have a “revenge” liar sentence 𝜆 that “says” 𝒟𝑇𝑟(p𝜆q). Thus, if we read 𝒟𝜑

as saying that 𝜑 is just false and not also true, then 𝜆 says of itself that it is just false and not also

true. As Beall (2009, §3.1) shows, if we add a transparent truth predicate to 𝐿𝑃 , then an operator

like 𝒟 that obeys 𝒟-consistency and 𝒟-completeness allows us to derive ⊥ in much the same way

that truth-functional negation allows us to derive ⊥ in classical logic in the presence of a transparent

truth predicate. The upshot of this is that glut theorists can’t have an operator that expresses denial;

rather, they need denial to be expressed by a force indicator.35 But since it looks like metalinguistic

negation isn’t a force indicator but rather a device that’s fully compositional, glut theorists can’t

rely on a version of metalinguistic negation that fits the pragmatic profile of denial as described by

denial-consistency and denial-completeness.

1.5 Conclusion

Let’s retrace our steps. We started with the observation that glut theorists have trouble coordinating

on the classicality of a given domain, while gap theorists have no such troubles. Then we found

that perlocutionary ways of resolving this problem, either by way of shriek rules or by way of con-

versational implicatures, are inadequate. Then, looking to illocution, we found that metalinguistic

negation lacks many of the features that would be required for a fully adequate solution to the glut

theorists’ expressive troubles.

One perhaps surprising upshot of our discussion is that when comparing the relative merits of

different logics, it matters whether those logics are seen to be logics that govern thought or logics

that govern speech. As we’ve seen, the method of shrieking plausibly allows a solitary glut theorist

to recapture classicality in thought. Likewise, nothing that we’ve said rules out that there is a mental

35Ripley (2015) disagrees on this point. Rather than giving up on denial-as-operator, he gives up on denial-consistency.
But as he admits in §10.5, this amounts to identifying 𝒟 with paraconsistent truth-functional negation, and thus to
giving up the game.

31



attitude of rejection that has all of the features that we found to be lacking in the case of metalin-

guistic negation. What we have seen, however, is that when it comes to recapturing classicality in

speech, the glut theorists’ prospects are bleak, at least if they restrict themselves to the currently

available pragmatic tools. This is particularly significant in light of the fact that some authors such

as Catarina Dutilh Novaes (2015) have recently argued that when asking about the normative role

of logic, we should focus on dialogical interactions rather than on solitary thought.
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Chapter 2

Glap Theory

2.1 Introduction

Consider the liar sentence:

(𝜆) The sentence 𝜆 is not true.

The liar sentence 𝜆 says of itself that it is not true. Is it true or not? Well, it either is or it isn’t. If it

is, then the world is as 𝜆 says it is, and 𝜆 says that 𝜆 is not true. And if 𝜆 it isn’t true, then the world

is as 𝜆 says it is, and so 𝜆 is true. So either way, 𝜆 is both true and not true.1 But can that really be?

Perhaps we can say this: 𝜆 is kind of both true and not true. But then again, is 𝜆 really either true or

not true?

Or consider the following sorites series:

Isaiah Thomas 5′9′′ John Wall 6′4′′ DeMarcus Cousins 6′11′′

Michael Adams 5′10′′ Bill Bradley 6′5′′ Pau Gasol 7′0′′

Terrell Brandon 5′11′′ Michael Jordan 6′6′′ Wilt Chamberlain 7′1′′

Chris Paul 6′0′′ Kawhi Leonard 6′7′′ Kareem Abdul-Jabbar 7′2′′

John Stockton 6′1′′ LeBron James 6′8′′ Arvydas Sabonis 7′3′′

Tony Parker 6′2′′ Kevin Durant 6′9′′ Ralph Sampson 7′4′′

Russell Westbrook 6′3′′ Kevin Love 6′10′′ Yao Ming 7′5′′

1This presentation is adapted from Rayo (2013).
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The average height for NBA players is roughly 6′7′′. Is Tony Parker short (for a basketball player)?

He kind of is and isn’t.2 But is he really both? How could that be? Perhaps we shouldn’t have

assumed that he either is or isn’t short for a basketball player.

To say that 𝜆 is both true and not true and that Tony Parker is both short and not short is to be a

glut theorist.3 To deny that 𝜆 is either true or not true or that Tony Parker is either short or not short

is to be a gap theorist.

I believe that glut and gap theorists each get half the story right. I am a glap theorist: 𝜆 is kind

of both true and not true; Tony Parker is kind of both short and not short. But, really, we shouldn’t

say that 𝜆 is either true or not true, Tony Parker is either short or not short. 𝜆 is a truth-value glap;

Tony Parker falls into the glap between NBA players that are short and those that aren’t.

What are glaps? They’re kind of both gluts and gaps. But, really, we shouldn’t say that they are

either gluts or gaps.

By now you should have noticed that I am using the words ‘kind of’ and ‘really’ in a distinct

way. I’m using them as indicators of assertoric strength: ‘kind of’ indicates what I call permissive

assertion, ‘really’ what I call restrictive assertion.4 The distinction between permissive and restric-

tive assertion allows us to reconstrue the disagreement between glut and gap theorists and it points

to a diagnosis of what glut theorists get right and what gap theorists get right. It also points the way

to a novel non-classical response to the liar paradox and the sorites paradox that overcomes many

of the shortcomings of glut and gap theory. In particular, there is a percise sense in which the logic

of glaps is stronger than the logic of gluts and the logic of gaps taken together.

I proceed as follows. I give a gentle introduction to glut theory and gap theory in section 2.2 and

section 2.3. Section 2.4 contains the core of the philosophical motivation for glap theory. Section

2See Ripley (2011) and Alxatib and Pelletier (2011) for empirical evidence that ordinary speakers find this answer natural.
3Note that not everyone who’s a glut theorist about the liar is also a glut theorist about the sorites; Beall (2009) defends
glut theory about the liar but Beall (2014) criticizes glutty approaches to the sorites. For the purposes of this chapter, I
assume for simplicity that glut theory about one domain goes hand in hand with glut theory about the other.

4Two quick notes on this terminology. First, my notion of restrictive assertion is the same as Ripley’s (2013a) notion of
strict assertion, and my notion of permissive assertion is the same as Ripley’s notion of tolerant assertion. However, my
logic of restrictive and permissive assertion is quite different from Ripley’s logic 𝑆𝑇 . I thus use this slightly different
terminology to ward off possible confusion. I discuss a close relative of 𝑆𝑇 and it’s relation to my logic in subsec-
tion 2.10.4. Second, perhaps contrary to Yablo (2014, 33), the ‘permissive’ in ‘permissive assertion’ isn’t supposed to
suggest that, when 𝜑 and ¬𝜑 are both permissively assertable, neither 𝜑 nor ¬𝜑 is forced on us and that either is permit-
ted. Rather, permissive assertion is permissive in the sense that both 𝜑 are ¬𝜑 are permitted. It doesn’t generally follow
from the fact that it’s permissible to do Φ and permissible to do ¬Φ that it is permissible to do both Φ and ¬Φ.
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2.5 discusses the revenge phenomenon. Then, after taking stock in section 2.6, I begin the formal

development of glap theory in section 2.7. Readers who are mainly interested in the philosophical

picture may skip many of those details, although they may wish to take a look at section 2.9 and

subsection 2.10.4, which contain further philosophical discussions.

2.2 Thesis: gluts

Let’s look at gluts in a bit more detail.

The simplest logic of gluts is Priest’s (1979) Logic of Paradox 𝐿𝑃 . Its model theory adds to the

truth values 1, representing classical truth, and 0, representing classical falsity, a third truth value

1
2 , representing truth and falsity. The connectives conjunction ∧, disjunction ∨, negation ¬, and the

material conditional → are interpreted by way of a generalization of the classical clauses: the truth

value of 𝜑 ∧ 𝜓 is the lower of the truth values of 𝜑 and 𝜓, that of 𝜑 ∨ 𝜓 the higher of the two, that

of ¬𝜑 is 1 minus that of 𝜑, and that of 𝜑 → 𝜓 is the higher of that of ¬𝜑 and 𝜓. For example, if 𝜑

is 0 and 𝜓 is 1
2 , then ¬𝜑 ∧ 𝜓 is the lower of the truth values 1 − 0 and 1

2 , that is 1
2 . Interpreting the

connectives in this way ensures that we have that 𝜑 → 𝜓 and ¬𝜑 ∨ 𝜓 always have the same truth

value, and so we also have contraposition: 𝜑→ 𝜓 and ¬𝜓 → ¬𝜑 always have the same truth value.

Furthermore, we have the De Morgan laws: ¬(𝜑 ∧ 𝜓) and ¬𝜑 ∨ ¬𝜓 always have the same truth

value, as do ¬(𝜑 ∨ 𝜓) and ¬𝜑 ∧ ¬𝜓.

The addition of the third truth value 1
2 gives us the ability to classify the liar sentence 𝜆 and the

sentence ‘Tony Parker is short’ as being neither classically true nor classically false. This in turn

allows us to preserve the thought that truth is transparent and vague predicates are tolerant.

Where ‘𝑇𝑟’ is the truth predicate, transparency is the thought that a sentence 𝜑 and the sentence

𝑇𝑟(p𝜑q) that says that 𝜑 is true are intersubstitutable in extensional contexts—that they always have

the same truth value.5 A transparent truth predicate is desirable because it can function as a device

for expressing generalizations. For example, the sentence

Everything the pope says is true

5See Field (2008) and Beall (2009).
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amounts to the infinite conjunction6

If the pope says that 𝜑1, then 𝜑1; and if the pope says that 𝜑2, then 𝜑2; . . . .

But in classical logic, transparency leads to disaster, because contradictions are explosive: we can

infer anything from a sentence and its negation, such as 𝜆 and ¬𝜆. But the logic of gluts 𝐿𝑃 isn’t

explosive. That’s because logical consequence is defined as preservation of truth values 1 or 1
2 : an

argument is valid just in case, if each premise has either truth value 1 or 1
2 , then the conclusion has

either truth value 1 or 1
2 as well. If the premises are 𝜆 and ¬𝜆 and the conclusion is some arbitrary

sentence 𝜑, then the argument may be invalid, because 𝜆 and ¬𝜆 both have truth value 1
2 while 𝜑

may have truth value 0.7

Tolerance is the thought that if a vague predicate applies to one element in a sorites series, then

it also applies to the next one.8 For example, if Tony Parker is short, then so is Russell Westbrook. In

classical logic, this again spells disaster: Isaiah Thomas is clearly short, and Yao Ming clearly isn’t

short. But if ‘short’ is tolerant, then the fact that Isaiah Thomas is short tells us that Michael Adams

is short as well. And that tells us that Terrell Brandon is short, and so on. A few more applications

of tolerance tells us that Yao Ming is short as well. But it’s not, and so the whole series explodes.

In 𝐿𝑃 , we can hold on to the thought that ‘short’ is tolerant without being committed to the claim

that Yao Ming is short. That’s because, in addition to explosion, material modus ponens is invalid in

𝐿𝑃 as well: we may have cases where 𝜑 and 𝜑 → 𝜓 are both true but 𝜓 is not true—as in the case

where 𝜑 has truth value 1
2 and 𝜓 has value 0, and so 𝜑→ 𝜓 has value 1

2 .

2.3 Antithesis: gaps

But can truth and falsity really overlap? Isn’t it part of their nature that they don’t? That’s the thought

that motivates gap theory. The simplest logic of gaps is Kleene’s (1950, §54) Strong 3-valued Logic

𝐾3. Its model theory also uses the three truth values 1, 1
2 , and 0, and it interprets the connectives just

6As we’re about to see, modus ponens is invalid in 𝐿𝑃 . This means that we technically need to characterize this thought
slightly differently in the context of glut theory: a commitment to ‘Everything the pope says is true’ amounts to a
commitment to infinitely many rules of inference of the form ‘The pope says that 𝜑1’ ⊢ 𝜑1, ‘The pope says that 𝜑2’ ⊢
𝜑2, . . . .

7See Dowden (1984) for how to achieve transparency in 𝐿𝑃 .
8See Colyvan (2009), Weber (2010), Priest (2010), and Weber et al. (2014)
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like 𝐿𝑃 does. But instead of having the truth value 1
2 represent both truth and falsity, 1

2 represents

the absence of truth or falsity. As a result, logical consequence is defined as preservation of just truth

value 1: an argument is valid just in case, if each premise has truth value 1, then the conclusion has

truth value 1 as well.

It’s sometimes said that when a sentence 𝜑 has truth value 1
2 , then gap theorists think that 𝜑

is neither true nor false. But that’s not quite accurate, at least not if we assume transparency. Gap

theorists won’t assert that 𝜑 is neither true nor false. Truth being a norm of assertion, gap theorists

will only assert sentences that have truth value 1. But if 𝜑 has truth value 1
2 and we assume trans-

parency, then ¬𝑇𝑟(p𝜑q) ∧ ¬𝑇𝑟(p¬𝜑q), the claim that 𝜑 is neither true nor false, will be equivalent

to ¬𝜑 ∧ ¬¬𝜑, which will have truth value 1
2 as well. So rather than asserting that 𝜑 is neither true

nor false, gap theorists will refrain from asserting that it is either.9

Gap theorists refrain from asserting that the liar sentence is either true or not true, that Tony

Parker is either short or not short, and that it’s either true or false that if Tony Parker is short, then

so is Russell Westbrook. This still gives them transparent truth,10 and it allows them to assert that

Isaiah Thomas is short but Yao Ming isn’t.

Here’s one way of thinking about the difference between glut and gap theorists. Both camps

agree with the classical camp that there are sentences, such as “2+2=4’ is true’ or ‘Isaiah Thomas

is short,’ that are assertable and whose negations aren’t assertable. And they also agree with the

classical camp that there are sentences, such as “2+2=5’ is true’ or ‘Yao Ming is short,’ that aren’t

assertable but whose negations are. Furthermore, glut and gap theorists agree with each other that

there’s a third kind of sentence, such as the liar sentence 𝜆 and ‘Tony Parker is short,’ that have

a quite different status: their assertability and the assertability of their negations stand and falls

together. Glut theorists are permissive—they assert both 𝜆 and ¬𝜆 and both ‘Tony Parker is short’

and ‘Tony Parker isn’t short.’ Gap theorists are restrictive—they refuse to assert any of them.

The way I understand glut and gap theory, glut and glap theorists don’t disagree about “the

9There is thus a sense in which gap theorists can’t say as much as they would like, because they can’t say that the liar
sentence is neither true nor false. At the same time, there’s a sense in which glut theorists have to say more than they
would like: given the above equivalence, they have to say not just that the liar sentence is both true and false but also
that it’s neither.

10See Kripke (1975).
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facts” concerning the liar or Tony Parker, and they also don’t disagree about the meaning of ‘not.’

To the extent that they disagree about anything, they disagree about whether to use permissive or

restrictive assertion.

Permissive assertion. A model represents 𝜑 as permissively assertable iff 𝜑 has either truth value

1 or 1
2 . 𝐿𝑃 -consequence preserves permissive assertability.

Restrictive assertion. A model presents 𝜑 as restrictively assertable iff 𝜑 has truth value 1. 𝐾3-

consequence preserves restrictive assertability

Thus, whenever the gap theorists restrictively asserts 𝜑, the glut theorist may permissively assert

𝜑; but sometimes the glut theorist may permissively assert 𝜑 even when the gap theorist refuses to

restrictively assert 𝜑. Any disagreement between glut and gap theorists can then be dissolved if glut

theorists use the assertoric strength indicator ‘kind of’ for permissive assertion and gap theorists use

‘really’ for restrictive assertion. When the glut theorist says,

The liar sentence 𝜆 is kind of either true or not true; and in fact it’s kind of both

and the gap theorist refuses to say,

𝜆 is really either true or not true

they don’t disagree. Compare: if you conjecture that there are infinitely many twin primes and I

refuse to swear that there are, we don’t disagree.

I’m not proposing that conceiving of the debate between glut and gap theorists as one involving

two speech acts captures the intent of every glut or gap theorist. But I am proposing that it is

fruitful to do so. It also naturally suggests a hybrid theory that combines both kinds of assertion.

The resulting glap theory overcomes many of the shortcomings of glut and gap theory.

Before we move on to a presentation of glap theory, a quick word on how much pragmatic

innovation it requires. Just like we can distinguish between restrictive and permissive assertion, we

can distinguish between restrictive and permissive denial:

Permissive denial. A model represents 𝜑 as permissively deniable iff 𝜑 has either truth value 0 or

1
2 .

Restrictive denial. A model presents 𝜑 as restrictively deniable iff 𝜑 has truth value 0. 𝐾3-conse-

quence preserves restrictive assertability
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Adding restrictive denial to restrictive assertion wouldn’t help the gap theorist, since she can al-

ready restrictively deny 𝜑 by restrictively asserting ¬𝜑. Likewise for adding permissive denial to

the glut theorist’s permissive assertion. However, adding permissive denial to restrictive assertion,

and restrictive denial to permissive assertion, does make a difference. Because a paradoxical sen-

tence receives the non-classical truth value, our gap theorist can assert neither it nor its negation. But

equipped with permissive denial, she can deny both it and its negation, thereby expressing that this

sentence falls into the assertibility gap.11 Likewise, because our glut theorist asserts both classically

true and paradoxical sentences, she cannot use assertion to express that a sentence is classically true.

But equipped with restrictive denial, she can do so, by denying its negation.

It is for these reasons that glut and gap theorists have made use of permissive and restrictive

denial, respectively.12 But now note that if we already have permissive or restrictive denial, then

we can get permissive or restrictive assertion with the help of negation: we can simply identify per-

missive assertion with the permissive denial of a negation, and likewise for restrictive assertion and

denial. In fact, there are no deep considerations that would speak in favor of developing glap theory

with the help of two primitive speech acts of assertion over developing it with permissive/restrictive

assertion and restrictive/permissive denial. I will develop it with the help of two primitive speech

acts of assertion purely out of convenience.

2.4 Synthesis: glaps

A model for glap theory still uses 1 and 1
2 to represent permissive assertability and 1 to represent

restrictive assertability. But our logic now has two premise sets: one set for the sentences that are

assumed to be restrictively assertable and one for those assumed to be permissively assertable.

And we have two distinct, but interdefinable, consequence relations. If Γ𝑃 is a set of permissively

assertable premises and Γ𝑅 a set of restrictively assertable ones, then 𝜑 is a permissively assertable

conclusion iff whenever every member of Γ𝑃 has truth value 1 or 1
2 and every member of Γ𝑅 has

11We can now put the characterization of gap theory offered in the introduciton more precisely: there we said that a gap
theorist denies that the liar sentence is either true or not true or that Tony Parker is either short or not short. What I had
in mind was permissive denial.

12See Priest (2006, §20.4) and Priest (2008a, §6.3) for the case of gluts and Tappenden (1999) and Richard (2008, ch. 2)
for the case of gaps.
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truth value 1, then 𝜑 has truth value 1 or 1
2 . And 𝜑 is a restrictively assertable conclusion iff, in those

same circumstances, 𝜑 has truth value 1. (These notions of restrictive and permissive consequence

are developed in more detail starting in section 2.7.)

Of course, glap theory is only an improvement over either glut or gap theory if permissive and

restrictive assertion served distinct but important purposes. It becomes clear that they do once we

realize how each helps mitigate some of the drawbacks of the other. Permissive assertion is very

useful when talking about the liar or Tony Parker. Let 𝜆 and ¬𝜆 again be the liar sentence and its

negation, and let 𝜏 and ¬𝜏 be the sentence ‘Tony Parker is short’ and ‘Tony Parker isn’t short.’

When someone permissively asserts 𝜆 as well as ¬𝜆 or 𝜏 as well as ¬𝜏 , we immediately know how,

according to the speaker, things stand with the liar or Tony Parker. Similarly when the speaker asserts

“2+2=4’ is true’ or ‘Isaiah Thomas is short.’ We learn less from a permissive assertion of “2+2=4’

is true’ or ‘Isaiah Thomas is short’ or a refusal to restrictively assert any of 𝜆, ¬𝜆, 𝜏 , and ¬𝜏 . Since

a permissive assertion of, say, ‘Isaiah Thomas is short’ is compatible with a permissive assertion of

‘Isaiah Thomas isn’t short,’ we can’t infer from a speaker’s permissive assertion of ‘Isaiah Thomas

is short’ that the speaker doesn’t also believe that Isaiah Thomas isn’t short.13 Likewise, if a speaker

refuses to assert either 𝜏 or ¬𝜏 , we won’t immediately know whether that’s because the speaker

doesn’t have enough evidence regarding the Tony Parker’s height or whether she knows all there is

to know about it.

Equipped with both kinds of assertion, we can express ourselves more completely: to state what

we think about Isaiah Thomas, we restrictively assert ‘Isaiah Thomas is short,’ which immediately

commits us to the restrictive unassertability of ‘Isaiah Thomas isn’t short.’ And to state what we

think about Tony Parker, we permissively assert both 𝜏 and ¬𝜏 , which tells our audience that we

take ourselves to have learned everything there is to learn about whether Tony Parker is short.

But the improvements aren’t just in expressive power. Solomon Feferman famously complained

that 𝐿𝑃 and 𝐾3 are so weak that “nothing like sustained ordinary reasoning can be carried on”

in them (1984, 95).14 We already saw that explosion isn’t valid in 𝐿𝑃 . That’s what allows glut

theorists to accept that 𝜆 and ¬𝜆 are both true without being committed to the truth of every sentence

13This is sometimes called the “just true” problem. See chapter 1.
14At the time, Feferman was talking about 𝐾3, but he (2012, 190) has since observed that the same holds for 𝐿𝑃 .
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whatsoever. And we saw that the law of excluded middle 𝜑 ∨ ¬𝜑 isn’t valid in 𝐾3, which is what

allows gap theorist to block the derivation of both 𝜆 and ¬𝜆 by refusing to assert 𝜆 ∨ ¬𝜆. But we

also already saw that the reason why glut theorists can hold on to the claim that ‘short’ is tolerant

without being committed to the claim that Yao Ming is short is that their logic doesn’t validate

modus ponens for the material conditional. And since the material conditional → is defined so that

𝜑 → 𝜓 abbreviates ¬𝜑 ∨ 𝜓, the failure of the law of excluded middle in 𝐾3 leads to a failure of

the law of identity 𝜑 → 𝜑 in 𝐾3. Reasoning by modus ponens and the law of identity are central

to most applications of classical logic. To rectify these shortcomings of 𝐿𝑃 and 𝐾3, Field (2008),

a gap theorist, and Beall (2009), a glut theorist, have proposed adding new conditionals to 𝐾3 or

𝐿𝑃 , respectively, that aren’t defined in terms of negation and disjunction. But the resulting logics

are exceedingly complex.15

By making use of both permissive and restrictive assertion, glap theorists can improve on the

weaknesses of𝐿𝑃 and𝐾3 while preserving the simplicity of those logics. Although material modus

ponens remains invalid for permissive assertion and the law of identity remains invalid for restrictive

assertion, they can use modus ponens when reasoning with restrictive assertion and the law of

identity when reasoning with permissive assertion.

And that’s not all. The logic of permissive and restrictive assertion isn’t just the logic of permis-

sive assertion and the logic of restrictive assertion combined—the two kinds of assertion interact to

yield a stronger logic. In the context of the paradoxes, a stronger logic is generally a good thing.

For, what the paradoxes show is that classical logic is too strong to accommodate transparency and

tolerance, but what Feferman’s complaint shows is that weakening classical logic risks giving up

too much for the sake of preserving transparency and tolerance. It is therefore an immediate im-

provement that the logic of glap theory is stronger than the logic of glut theory and the logic of gap

theory combined while allowing for transparency and tolerance.

Here is the precise sense in which the logic of glap theory is stronger than𝐿𝑃 and𝐾3 combined.

In addition to material modus ponens for permissive assertion, we also have two hybrid forms of

material modus ponens: if 𝜑→ 𝜓 is permissively assertable and 𝜑 is restrictively assertable, then 𝜓

15See McGee (2010) for the case of Field’s logic.
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is permissively assertable; and if 𝜑 → 𝜓 is restrictively assertable and 𝜑 is permissively assertable,

then 𝜓 is restrictively assertable.16

Here is how the first rule works in practice; a similar example could be given for the second one.

Suppose you are a glut theorist and you know that Reggie has made it his life’s work to solve the liar

paradox. Your glut theorist friend then tells you that if Reggie has made it his life’s work to solve

the liar paradox, then the sentence 𝛽 written on the blackboard in his office is true. Unbeknownst to

you, 𝛽 reads as follows:

The sentence written on the blackboard in Reggie’s office is not true

Thus, unbeknownst to you, 𝛽 is a liar-like sentence. If you knew what it said, you would recognize

that your glut theory commits you to its truth (and also to its untruth). But you don’t know what it

says; all you know is that if Reggie has made it his life’s work to solve the liar paradox, then 𝛽 is

true, and that Reggie has in fact made it his life’s work to solve the liar paradox. Because modus

ponens isn’t valid in your logic 𝐿𝑃 , you can’t infer from your knowledge that 𝛽 is true. But now

suppose you’re a glap theorist. You know that Reggie is far from a borderline case of someone

who’s made it their life’s work to solve the liar paradox. If anyone has made this their life’s work,

it’s Reggie. Thus, for a glap theorist, the claim that Reggie has made it his life’s work to solve the

liar paradox isn’t just permissively assertable, it is also restrictively assertable. Reggie hasn’t just

kind of made it his life’s work to solve the liar paradox, he really has. In contrast, given that 𝛽 is a

liar-like sentence, the conditional that if Reggie has made it his life’s work to solve the liar paradox,

then he 𝛽 is true, is only permissively assertable, not restrictively. But this isn’t a probem. Using the

above first hybrid form of modus ponens, it nevertheless follows that 𝛽 is permissively assertable.

In other words, you can reason as follows:

It’s kind of true that if Reggie has made it his life’s work to solve the liar paradox, then

𝛽 is true. And Reggie really has made it his life’s work to solve the liar paradox. So 𝛽

must be kind of true.

This reasoning isn’t available to glut theorists, but it is available to glap theorists. (I provide a more

16As shown in section 2.8, adding these two hybrid forms of material modus ponens to 𝐿𝑃 and 𝐾3 yields a complete
logic of permissive and restrictive assertion. They thus capture the whole extent to which the logic of permissive and
restrictive assertion goes beyond the combination of 𝐿𝑃 and 𝐾3.
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detailed discussion of the ways in which the logic of glap theory is stronger than 𝐿𝑃 and 𝐾3, as

well as the ways in which it isn’t, in section 2.9.)

Aside from having a stronger logic at their disposal, glap theorists also have a distinctive ad-

vantage over glut theorists who insist that they use the exact same speech act as gap theorists (and

classical logicians, for that matter) when they assert 𝜆 ∧ ¬𝜆. A typical response to such an asser-

tion is an incredulous stare, followed by the question whether glut theorists really mean what they

say. Hard-line glut theorists must—and in fact do—respond by insisting that they really do. In con-

trast, when glap theorists (permissively) assert 𝜆 ∧ ¬𝜆 and are asked if they really mean what they

say, they may respond that they only kind of mean it. This makes glap theory less susceptible to

incredulous stares than hard-line glut theory.

2.5 Revenge?

The “revenge” phenomenon is a phenomenon where whenever a diagnosis of the liar paradox is

offered, we seem to be able to use the tools employed in the diagnosis to construct a close cousin of

the liar sentence that the diagnosis can’t handle.17 For example, suppose you said that what’s wrong

with the liar sentence is that it is meaningless. We could then construct the following sentence:

(𝜇) The sentence 𝜇 is either not true or else meaningless

Now, if 𝜇 is either not true or meaningless, then it is true. But if it’s true, then it must be meaningful.

So suppose 𝜇 is meaningful and true. Then it’s either not true or meaningless. So it seems that 𝜇 is

not true or meaningless iff it’s both true and meaningful. So it must be that either 𝜇 is meaningless

but true or meaningful but not true. The first option is a nonstarter. So 𝜇 must be meaningful. But

that reduces 𝜇 to the original liar sentence 𝜆 that says of itself that it is not true.

Just like it’s not immediately obvious how to respond to the original liar paradox, it’s not im-

mediately obvious how to respond to the liar’s revenge. But given the ubiquity of the revenge phe-

nomenon, we should expect that glap theorists have to contend with it as well.

And indeed they do, although because glap theory borrows its model theory from 𝐿𝑃 and 𝐾3,

17See Beall (2007b).
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the revenge sentence is the same for the former as it is for the latter.18 Consider the following

sentence:

(𝛾) The sentence 𝛾 does not have truth value 1

Reasoning classically, we have that 𝛾 either has truth value 1 or it doesn’t. If it does, then we

immediately have a contradiction. So what if 𝛾 does not have truth value 1? Then what it says is

true. Does that mean that it has truth value 1 or that it has truth value 1
2? If it has truth value 1

2 , then

we’re in the clear. But that’s implausible. After all, the model theory for glap theory, just like that

for 𝐿𝑃 and 𝐾3, is developed in a classical metatheory, which doesn’t allow for sentences that have

non-classical truth values. Since 𝛾 is a claim about model theory, 𝛾 should have truth value 1. Thus,

it seems that 𝛾 has truth value 1 iff it doesn’t have truth value 1. But that’s a contradiction in the

classical metatheory. The only way to avoid this contradiction is to insist that 𝛾 isn’t a sentence that

can be expressed in the language of glap theory; or rather that the concept—call it 𝐶—of having

truth value 1 isn’t a concept that can be expressed in that language.

Glap theory seems to be in trouble now. 𝐶 seems to be a perfectly intelligble concept. In fact,

it seems that the model theory for glap, glut, and gap theory wouldn’t be intelligble if 𝐶 weren’t

intelligible. But that means that glap theory only avoids the explosion that the liar sentence causes

in classical logic by placing restrictions on what concepts can be expressed in the language of glap

theory. How is that an improvement over the old Tarskian (1933) response to the liar paradox that

restricts its language so that it can’t contain a transparent truth predicate?

Whether the glap theorist’s response to the liar paradox is an improvement over the Tarskian

one depends on whether it is just as important for a language to be able to express 𝐶 as it is for

a language to contain a transparent truth predicate. That it is important for a language to contain a

transparent truth predicate was already discussed in section 2.2: a transparent truth predicate yields

significant expressive advantages. What about 𝐶, the concept of having truth value 1?19

Two paragraphs ago I suggested that the model theory for glap, glut, and gap theory wouldn’t

18This problem is closely connected to the “just true” problem discussed in section 2.4. The present discussion shows that
there can’t be a predicate for classical truth in glap theory, even though we can express classical truth using restrictive
assertion.

19The following three paragraphs are heavily indebted to Beall’s (2007a, §1.4.1) discussion of what he calls “too easy
revenge.”
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be intelligble if 𝐶 weren’t intelligible. That’s not quite accurate. All that this model theory needs

is a concept of a valuation function that takes sentences of the language to the objects 1, 1
2 , and 0.

The choice of the objects 1, 1
2 , and 0 is purely arbitrary. Any three objects would do. It’s just that

we informally gloss 1 as classical truth, 0 as classical falsity, and 1
2 as “other.” But that gloss is

misleading. More accurately, 1, 1
2 , and 0 should be glossed as (classical) truth in a model, (classical)

falsity in a model, and “otherness” in a model.

The relationship between truth and truth in a model is a controversial issue, one that’s tied to

the question how model theory relates to the theory of meaning.20 On one view, the spirit of which

may trace back to Wittgenstein (2009), model theory and the theory of meaning are entirely distinct

enterprises. Model theory is simply a mathematical theory that is useful in establishing things like

the consistency (or non-triviality) of a theory. Semantics, whatever it is, is to be built on entirely

different foundations. Thus, to the extent that truth plays any role in the theory of meaning—and it

needn’t play any21—it is an entirely distinct concept from truth in a model.

On this understanding of the relationship between model theory and the theory of meaning,

and between truth and truth in a model, it isn’t at all worrisome that the glap theorist’s language

can’t express the concept 𝐶, because that concept doesn’t make sense to begin with. The concept

of having truth value 1 is a confused algamam of the notion of having value 1 in a model and the

concept of truth. Transparent truth, on the other hand, is highly useful, as we’ve seen. It is thus a

significant point in favor of glap theory that it can accommodate transparent truth. And that glap

theorist can’t accommodate the concept of having truth value 1 isn’t a strike against it at all.

Here is a different answer to the question how model theory relates to the theory of meaning, one

that roughly coincides with how leading semanticists such as Heim and Kratzer (1998) conceive of

their enterprise. Developing a theory of meaning is a bit like doing model theory. What semanticists

do is describe the intended model of our language. Thus, in an extensional setting, there are many

valuation functions, but one valuation function describes the actual meanings of our sentences. It

is because ‘Grass is green’ means that grass is green and because grass is in fact green that the

intended valuation function assigns 1 to ‘Grass is green.’ If that’s right, then the concept 𝐶 makes a

20See Etchemendy (1990) and Yalcin (2017) for helpful discussions.
21See Brandom (1994).
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lot of sense: it amounts to the concept of having truth value 1 in the intended model. That the glap

theorist’s language can’t express 𝐶 would thus seem to be a serious problem. Glap theory purports

to contain a theory of truth. But in order to develop a theory of meaning for glap theory, we need

to invoke concepts such as 𝐶 that glap theory can’t make sense of. The situation thus seems to be

much like the situation we found in the case of the Tarskian response to the liar paradox.

The most promising way forward for the glap theorist who thinks that the theory of meaning

is a bit like model theory is to insist that there are two concepts of truth.22 There is one, thin,

notion, which is just the transparent truth predicate that we’ve been exploring. And then there is a

thicker, explanatory notion, which is the one that’s used in semantic theorizing, where we distinguish

between an object language that is the object of study and the metalanguage of the semanticist. The

glap theorist can accommodate this thicker notion of truth, but even in glap theory this thicker notion

of truth cannot be self-contained—that’s the lesson from Tarski. Consequently, the classical model

theory for glap theory and the corresponding theory of meaning for its language can be carried out

within glap theory, but glap theorists mustn’t forget that when they are developing the theory of

meaning, they aren’t using the transparent truth predicate that partially motivates their logic.23

2.6 Taking stock

We’ve seen that there is much to be gained by abandoning gluts and gaps in favor of glaps. Adopting

both permissive and restrictive assertion, indicated by ‘kind of’ and ‘really’ respectively, delivers

a logic that’s more powerful than the glut theorist’s logic and the gap theorist’s logic combined,

all the while allowing for a transparent truth predicate and a tolerant attitude towards borderline

ascriptions of vague predicates. Just like everyone else, glap theorists need to contend with the

revenge phenomenon, but there are two promising avenues available to them, depending on their

view of the relationship between model theory and the theory of meaning.

In the remainder, I develop the formal details of the logic of restrictive and permissive asser-

22See Field (1994) and McGee (2005).
23In order to do classical model theory, glap theorists need to “recapture” classical reasoning along the lines described by

Beall (2015a). Note that classical reasoning can be recaptured very easily in gap theory, but not as easily in glut theory,
as Jenny (2017) discusses. Glap theorists can recapture classicality with the same ease as gap theorists can.
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tion. However, futher philosophical discussions of the formal theory can be found in section 2.9 and

subsection 2.10.4. section 2.11 develops subervaluationism, which does for glaps what super- and

subvaluationism do for gaps and gluts. Finally, section 2.12 compares glap theory and subervalua-

tionism.

2.7 Restrictive and permissive consequence

The claim that 𝜑 is a consequence of a set24 Γ can usually be glossed as saying that if every member

of Γ is assertable, then 𝜑 is assertable. Once two kinds of assertion enter the picture, we need to

complicate this a little.

Instead of assuming that the consequence relation has a single argument on its left-hand side,

namely the set of sentences that are supposed to be assertable, we will assume that it has two

arguments on its left-hand side: first the set of sentences Γ𝑅 that are assumed to be restrictively as-

sertable and second the set of sentences Γ𝑃 that are assumed to be permissively assertable. We may

then ask, if the members of Γ𝑅 are restrictively assertable and the members of Γ𝑃 are permissively

assertable, what else is restrictively and permissively assertable?

To make this question more manageable, we split it up into two questions. First, if the members

of Γ𝑅 are restrictively assertable and the members of Γ𝑃 are permissively assertable, what else is

restrictively assertable? For this purpose, we define the relation �𝑅: ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅 𝜑 iff every three-

valued 𝐾3/𝐿𝑃 -valuation that assigns 1 to every member of Γ𝑅 and 1 or 1
2 to every member of Γ𝑃

assigns 1 to 𝜑.

Second, we ask, if the members of Γ𝑅 are restrictively assertable and the members of Γ𝑃 are

permissively assertable, what else is permissivley assertable? For this purpose, we define the relation

�𝑃 : ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃 𝜑 iff every three-valued 𝐾3/𝐿𝑃 -valuation that assigns 1 to every member of Γ𝑅

and 1 or 1
2 to every member of Γ𝑃 assigns 1 or 1

2 to 𝜑.

In this section and in section 2.8 and section 2.9, we suppose that Γ𝑅 and Γ𝑃 are finite so that

we can form their conjunctions
⋀︀
Γ𝑅 and

⋀︀
Γ𝑃 . It is easily verified that all of the relations studied

24I assume that the antecedents of the consequence and derivability relations, and, starting in subsection 2.10.1, their
succedents, are sets, not multisets. This immediately gives us the structural rules of contraction.
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in these sections are compact, and so all propositions proved in this section and the next continue

to hold if we give up this finiteness assumption. I officially relax the assumption in section 2.10,

where it starts to matter. Note also that here and throughout, ⊢𝐾3 is 𝐾3-derivability and ⊢𝐿𝑃 is

𝐿𝑃 -derivability.25

Proposition 2.7.1. Suppose Γ𝑃 ̸= ∅. Then ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅 𝜑 iff Γ𝑅 �𝐾3
⋀︀
Γ𝑃 → 𝜑.

Proof. The following statements are equivalent:

∙ ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅 𝜑.

∙ For every three-valued𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑅) = 1, for all 𝛾𝑅 ∈ Γ𝑅, and 𝑣(
⋀︀
Γ𝑃 ) ̸= 0,

then 𝑣(𝜑) = 1.

∙ For every three-valued𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑅) = 1, for all 𝛾𝑅 ∈ Γ𝑅, then 𝑣(
⋀︀
Γ𝑃 ) = 0

or 𝑣(𝜑) = 1.

∙ For every three-valued 𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑅) = 1, for all 𝛾𝑅 ∈ Γ𝑅, then 𝑣(¬
⋀︀
Γ𝑃 ∨

𝜑) = 1.

∙ Γ𝑅 �𝐾3
⋀︀
Γ𝑃 → 𝜑.

�

Proposition 2.7.2. Suppose Γ𝑅 ̸= ∅. Then ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃 𝜑 iff Γ𝑃 �𝐿𝑃
⋀︀
Γ𝑅 → 𝜑.

Proof. The following statements are equivalent:

∙ ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃 𝜑.

∙ For every three-valued 𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(
⋀︀
Γ𝑅) = 1 and 𝑣(

⋀︀
𝛾𝑃 ) ̸= 0, for all 𝛾𝑃 ∈

Γ𝑃 , then 𝑣(𝜑) ̸= 0.

∙ For every three-valued𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(
⋀︀
𝛾𝑃 ) ̸= 0, for all 𝛾𝑃 ∈ Γ𝑃 , then 𝑣(

⋀︀
Γ𝑅) ̸=

1 or 𝑣(𝜑) ̸= 0.

∙ For every three-valued𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(
⋀︀
𝛾𝑃 ) ̸= 0, for all 𝛾𝑃 ∈ Γ𝑃 , then 𝑣(¬

⋀︀
Γ𝑅∨

𝜑) ̸= 1.

∙ Γ𝑃 �𝐿𝑃
⋀︀
Γ𝑅 → 𝜑.

�
25See Priest (2008b, ch. 8) for tableaux systems for ⊢𝐾3 and ⊢𝐿𝑃 .
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Proposition 2.7.3. (a) ⟨Γ𝑅, ∅⟩ �𝑅 𝜑 iff Γ𝑅 �𝐾3 𝜑.

(b) ⟨∅,Γ𝑃 ⟩ �𝑃 𝜑 iff Γ𝑃 �𝐿𝑃 𝜑.

Proof. Immediate. �

2.8 Restrictive and permissive derivability

⊢𝑅 and ⊢𝑃 are the smallest relations that are closed under the following axioms and rules:

(A1) whenever Γ𝑅 ⊢𝐾3 𝜑⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅 𝜑
(A2) whenever Γ𝑅 ⊢𝐿𝑃 𝜑

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃 𝜑

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅 𝜑→ 𝜓 ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃 𝜑
(R1)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅 𝜓

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃 𝜑→ 𝜓 ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅 𝜑
(R2)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃 𝜓

Proposition 2.8.1. ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅 𝜑 iff ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅 𝜑.

Proof. (⇒). Suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅 𝜑. Suppose first that Γ𝑃 ̸= ∅. Then Γ𝑅 �𝐾3
⋀︀
Γ𝑃 → 𝜑, by

Theorem 2.7.1. Then Γ𝑅 ⊢𝐾3
⋀︀
Γ𝑃 → 𝜑. Then:

(A1)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅

⋀︀
Γ𝑃 → 𝜑

(A2)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃

⋀︀
Γ𝑃(R1)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅 𝜑

Next, suppose that Γ𝑃 = ∅. Then Γ𝑃 �𝐾3 𝜑, by Theorem 2.7.3.(a). Then Γ𝑃 ⊢𝐾3 𝜑, and so:

(A1)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅 𝜑

(⇐). (A1) is immediate. For (R1), suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅 𝜑 → 𝜓 and ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃 𝜑 and

suppose that some 𝐾3/𝐿𝑃 -valuation 𝑣 is such that 𝑣(𝛾𝑅) = 1, for all 𝛾𝑅 ∈ Γ𝑅, and 𝑣(𝛾𝑃 ) ̸= 0,

for all 𝛾𝑃 ∈ Γ𝑃 . Then 𝑣(𝜑→ 𝜓) = 1 and 𝑣(𝜑) ̸= 0. Then 𝑣(𝜓) = 1, as desired. �

Proposition 2.8.2. ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃 𝜑 iff ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃 𝜑.

Proof. (⇒). Suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃 𝜑. Suppose first that Γ𝑅 ̸= ∅. Then Γ𝑅 �𝐿𝑃
⋀︀
Γ𝑅 → 𝜑, by

Theorem 2.7.2. Then Γ𝑅 ⊢𝐿𝑃
⋀︀
Γ𝑅 → 𝜑. Then:

(A2)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃

⋀︀
Γ𝑅 → 𝜑

(A1)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅

⋀︀
Γ𝑅(R2)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃 𝜑
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Next, suppose that Γ𝑅 = ∅. Then Γ𝑅 �𝐿𝑃 𝜑, by Theorem 2.7.3.(b). Then Γ𝑅 ⊢𝐿𝑃 𝜑, and so:

(A2)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃 𝜑

(⇐). (A2) is immediate. For (R2), suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃 𝜑 → 𝜓 and ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅 𝜑 and

suppose that some 𝐾3/𝐿𝑃 -valuation 𝑣 is such that 𝑣(𝛾𝑅) = 1, for all 𝛾𝑅 ∈ Γ𝑅, and 𝑣(𝛾𝑃 ) ̸= 0,

for all 𝛾𝑃 ∈ Γ𝑃 . Then 𝑣(𝜑→ 𝜓) ̸= 0 and 𝑣(𝜑) = 1. Then 𝑣(𝜓) ̸= 0, as desired. �

Note that these completeness proofs go through without requiring any structural rules for our

relations ⊢𝑅 and ⊢𝑃 . Of course, if we want to generate the axioms proof theoretically, we’ll often

have to invoke the structural rules for ⊢𝐾3 and ⊢𝐿𝑃 .

Lemma 2.8.3. If ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅 𝜑, then ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃 𝜑.

Proof.

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅 𝜑
(A2)

⟨
⋀︀
Γ𝑅,

⋀︀
Γ𝑃 ⟩ ⊢𝑃 𝜑→ (

⋀︀
Γ𝑅 → 𝜑)

(R2)
⟨
⋀︀
Γ𝑅,

⋀︀
Γ𝑃 ⟩ ⊢𝑃

⋀︀
Γ𝑅 → 𝜑

(A1)
⟨
⋀︀
Γ𝑅,

⋀︀
Γ𝑃 ⟩ ⊢𝑅

⋀︀
Γ𝑅(R1)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃 𝜑

(Note that the converse can’t be proved like this because we don’t have ⊢𝐾3 𝜑→ (
⋀︀
Γ𝑅 → 𝜑).) �

Corollary 2.8.4. (a) Suppose Γ𝑃 ̸= ∅. ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅 𝜑 iff Γ𝑅 ⊢𝐾3
⋀︀
Γ𝑃 → 𝜑.

(b) Suppose Γ𝑅 ̸= ∅. ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃 𝜑 iff Γ𝑃 ⊢𝐿𝑃
⋀︀
Γ𝑅 → 𝜑.

Proof. (a) follows from Theorem 2.7.1 and Theorem 2.8.1, (b) from Theorem 2.7.2 and Theo-

rem 2.8.2. �

Corollary 2.8.5. (a) ⟨Γ𝑅, ∅⟩ ⊢𝑅 𝜑 iff Γ𝑅 ⊢𝐾3 𝜑.

(b) ⟨∅,Γ𝑃 ⟩ ⊢𝑃 𝜑 iff Γ𝑃 ⊢𝐿𝑃 𝜑.

Proof. (c) follows from Theorem 2.7.3.(a) and Theorem 2.8.1, and (d) from Theorem 2.7.3.(b) and

Theorem 2.8.2. �

Corollary 2.8.6. We have the following normal-form theorems: for 𝐼, 𝐽 ∈ {𝑃,𝑅}, 𝐼 ̸= 𝐽 , and

𝑖, 𝑗 ∈ {1, 2}, 𝑖 ̸= 𝑗, if ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝐼 𝜑, then there is a canonical proof of this of the form
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(A𝑖)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝐼

⋀︀
Γ𝐽 → 𝜑

(A𝑗)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝐽

⋀︀
Γ𝐽(R𝑖)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝐼 𝜑

Proof. Follows immediately from the proofs of Theorem 2.8.1 and Theorem 2.8.2. �

2.9 Discussion

Theorem 2.8.4 suggests that the logic 𝑃 is stronger than 𝐿𝑃 and that the logic 𝑅 is stronger than

𝐾3. But Theorem 2.8.5 also shows that 𝑃 and 𝑅 are to some extent conservative over 𝐿𝑃 and 𝐾3,

respectively. I will now discuss how to interpret these somewhat conflicting verdicts and what it all

means for glut and gap theorists in turn.

2.9.1 Glut vs. glap theory

As discussed in section 2.4, adding restrictive assertion to the glut theorist’s permissive assertion

improves the glut theorist’s expressive resources. But Theorem 2.8.4 means that there is a precise

sense in which adding a second speech act also gives the glut theorist a logic that is stronger than

what would be available through the simple combination of 𝐿𝑃 and 𝐾3. In glap theory, the whole

is greater than the sum of its parts.

It might be worried at the outset that to claim that 𝑃 is stronger than 𝐿𝑃 and 𝐾3 combined

is a bit like saying that the modal logic 𝐾 is stronger than classical extensional logic 𝐶𝐿 because

the former but not the latter allows use to prove �(𝜑 → 𝜓) → (�𝜑 → �𝜓). It’s not so much

that 𝐾 is stronger than 𝐶𝐿 but rather that 𝐾 has expressive recourses that 𝐶𝐿 lacks. Similarly, it

might be worried that it is only due to the fact that permissive derivability has a richer structure than

𝐿𝑃 -derivability and 𝐾3-derivability that we can prove certain sequents in 𝑃 that we can’t prove in

either 𝐿𝑃 or 𝐾3. Thus, to the extent that Theorem 2.8.4 shows that more things are permissively

assertable in 𝑃 than in 𝐿𝑃 or 𝐾3, that’s because, using 𝑃 , we can assert things in two different

premise sets, which we can’t do in 𝐿𝑃 or 𝐾3. And in general, it shouldn’t come as a surprise that

if we assert more things, then more things become assertable.

Nevertheless, I propose that there is one sense of logical strength in which 𝑃 is stronger than

𝐿𝑃 and𝐾3 combined. To see this, we need to reflect on the normative role of logic. There are many
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views on what this role is.26 But surely, one thing that logic does is determine what sentences are

assertable on the basis of one’s evidence. With this in mind, suppose that 𝐸 is our theorist’s body

of evidence and that 𝐾3 determines that Γ𝑅 is the set of sentences that are (restrictively) assertable

on the basis of 𝐸 and that 𝐿𝑃 determines that Γ𝑃 is the set of sentences that are (permissively)

assertable on the basis of 𝐸. If Γ𝑅 is empty so that nothing is restrictively assertable, then Theo-

rem 2.8.5 tells us that giving a glut theorist the ability to restrictively assert things doesn’t make

anything permissively assertable for her that wasn’t permissively assertable before. That’s of course

wholly unsurprising.

But now suppose that Γ𝑅 is non-empty. It follows from Theorem 2.8.3 that Γ𝑅 ⊆ Γ𝑃 . So giving

our glut theorist the ability to restrictively assert things won’t make anything restrictively assertable

that wasn’t already permissively assertable before. But it may make things permissively assertable

that weren’t permissively assertable before. For suppose that that Γ𝑃 ⊢𝐿𝑃
⋀︀
Γ𝑅 → 𝜑. By The-

orem 2.8.3,
⋀︀
Γ𝑅 is already permissively assertable. But because the material conditional doesn’t

detach in 𝐿𝑃 , 𝜑 may not be permissively assertable prior to the introduction of restrictive assertion.

Yet, once equipped with restrictive assertion, and without changing our theorist’s evidence, our the-

orist’s new logic 𝑃 will determine that 𝜑 is permissively assertable. This is surprising: introducing a

new speech act doesn’t just improve our theorist’s expressive resources, it also expands what follows

from her evidence.

2.9.2 Gap vs. glap theory

The situation for gap theorists is similar, but with a few more complications. Note first again that

adding permissive assertion to the gap theorist’s restrictive assertion improves the gap theorist’s

expressive resources. And Theorem 2.8.4 again means that there is a precise sense in which adding

a second speech act also gives the gap theorist a logic that is stronger than what would be available

through the simple combination of 𝐿𝑃 and 𝐾3. But because the converse of Theorem 2.8.3 doesn’t

hold, the way in which the logic is strengthened is a bit more subtle.

Suppose again that 𝐸 is our theorist’s body of evidence and that 𝐾3 and 𝐿𝑃 determine the

26See Harman (1986), MacFarlane (2004), and Dutilh Novaes (2015) for discussions.
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assertability of Γ𝑅 and Γ𝑃 , respectively, on the basis of𝐸. Γ𝑃 cannot be empty, because 𝐿𝑃 , unlike

𝐾3, has logical truths. What’s more, as mentioned above, Theorem 2.8.3 tells us that Γ𝑃 contains

everything that’s contained in Γ𝑅. However, suppose that the only way in which Γ𝑃 goes beyond

Γ𝑅 is that Γ𝑃 contains all 𝐿𝑃 -consequences of Γ𝑅. Ripley’s (2012, §2) theorem then tells us that

the set of sentences that are restrictively assertable from Γ𝑃 is just the set of classical consequences

of Γ𝑃 . This means that Γ𝑃 and Γ𝑅 ∪ {𝛼∨¬𝛼 : 𝛼 is an atomic sentence} are logically equivalent in

𝐾3. Thus, if we have

Γ𝑅 ⊢𝐾3
⋀︀
Γ𝑃 → 𝜑

then we have

Γ𝑅 ⊢𝐾3

(︀⋀︀
Γ𝑅 ∧ (

⋀︀
{𝛼 ∨ ¬𝛼 : 𝛼 appears in

⋀︀
Γ𝑅 or 𝜑})

)︀
→ 𝜑.

Next, note that⋀︀
Γ𝑅 → 𝜑 𝐾3⊣⊢𝐾3

(︀⋀︀
Γ𝑅 ∧ (

⋀︀
{𝛼 ∨ ¬𝛼 : 𝛼 appears in

⋀︀
Γ𝑅 or 𝜑})

)︀
→ 𝜑.

The easiest way to see that is by first contraposing both conditionals and pushing through the nega-

tions, which gives us

¬𝜑→
⋁︀
¬Γ𝑅 𝐾3⊣⊢𝐾3 ¬𝜑→

(︀⋁︀
¬Γ𝑅 ∨ (

⋁︀
{𝛼 ∧ ¬𝛼 : 𝛼 appears in

⋀︀
Γ𝑅 or 𝜑})

)︀
.

(⇒) then simply follows by disjunction introduction. For (⇐), supposing ¬𝜑 → ¬Γ𝑅 immediately

gives us ¬𝜑→ ¬Γ𝑅; and supposing ¬𝜑→
⋁︀
{𝛼∧¬𝛼 : 𝛼 is atomic and appears in

⋀︀
Γ𝑅 or 𝜑} gives

us ¬𝜑→ ¬Γ𝑅 by explosion. Putting all of this together gives us Γ𝑅 ⊢𝐾3
⋀︀
Γ𝑅 → 𝜑, and so Γ𝑅 ⊢𝐾3

𝜑 by modus ponens. Thus if our theorist’s evidence doesn’t determine that anything is permissively

assertable that isn’t restrictively assertable aside from the 𝐿𝑃 -consequences of what’s restrictively

assertable, then giving our theorist the ability to permissively assert things doesn’t change what she

can restrictively assert.

Suppose now instead that Γ𝑃 goes beyond the 𝐿𝑃 -consequences of Γ𝑅. In this case, we may

have a situation where Γ𝑅 ⊢𝐾3
⋀︀
Γ𝑃 → 𝜑 but 𝜑 is not restrictively assertable if our theorist doesn’t

have the ability to permissively assert things. But once our theorist has this ability, her new logic

will determine that 𝜑 is restrictively assertable, by Theorem 2.8.4, again without changing our the-

orist’s evidence. This may seem a little bit less surprising than the situation we found in the case

of glut theory. For, now we don’t get that adding the new speech act increases what’s restrictively
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assertable unless we assume that 𝐿𝑃 determines that there’s some non-logical truth that’s permis-

sively assertable on the basis of 𝐸. But it’s surprising nevertheless. A tempting, though potentially

misleading, way to describe the gap theorist’s disposition towards non-classical sentences such as

the liar is that they can “see” that they are gappy, but they can’t express this. Giving the gap theorist

the ability to permissively assert things allows them to express what they could already “see” before.

But thanks to the resulting new logic, they can now also restrictively assert things that they couldn’t

restrictively assert before.

In sum, adding a second type of assertion allows our theorists to define a logic according to

which they can say more using their original type of assertion based on their evidence than according

to the combination of their original logics.

2.9.3 One glap theory or two?

It’s time to adress a potential confusion that the way in which we’ve been talking may generate.

On the one hand, we’ve been talking about the two separate relations ⊢𝑅 and ⊢𝑃 , but on the other,

we’ve been talking in terms of one glap theory, not two. Officially, glap theory (singular!) is the

theory of assertability that we get when we have two speech acts of assertion, a restrictive one and

a permissive one. But in bringing out the results of adding one of these speech acts to the other, it

makes sense to focus on either the relation ⊢𝑅 or the relation ⊢𝑃 . It’s important to keep in mind,

however, that these are not independent relations. To see that, note that they are interdefinable when

Γ𝑃 ̸= ∅ and Γ𝑅 ̸= ∅, as evidenced by the following fact:

Corollary 2.9.1. (a) Suppose Γ𝑃 ̸= ∅. Then ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃 𝜑 iff ⟨Γ𝑅,¬𝜑⟩ ⊢𝑅 ¬
⋀︀
Γ𝑃 .

(b) Suppose Γ𝑅 ̸= ∅. Then ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅 𝜑 iff ⟨¬𝜑,Γ𝑃 ⟩ ⊢𝑃 ¬
⋀︀
Γ𝑅.

Proof. (a). Follows from Theorem 2.8.1 and Theorem 2.8.2 and the fact that the following state-

ments are equivalent:

∙ ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃 𝜑.

∙ For every three-valued𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑅) = 1, for all 𝛾𝑅 ∈ Γ𝑅, and 𝑣(
⋀︀
Γ𝑃 ) ̸= 0,

then 𝑣(𝜑) = 1.
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∙ For every three-valued 𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑅) = 1, for all 𝛾𝑅 ∈ Γ𝑅, and 𝑣(𝜑) ̸= 1,

then 𝑣(
⋀︀
Γ𝑃 ) = 0.

∙ For every three-valued 𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑅) = 1, for all 𝛾𝑅 ∈ Γ𝑅, and 𝑣(¬𝜑) ̸= 0,

then 𝑣(¬
⋀︀
Γ𝑃 ) = 1.

∙ ⟨Γ𝑅,¬𝜑⟩ �𝑅 ¬
⋀︀
Γ𝑃 .

(b). Follows from Theorem 2.8.1 and Theorem 2.8.2 and the fact that the following statements

are equivalent:

∙ ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅 𝜑.

∙ For every three-valued 𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(
⋀︀
Γ𝑅) = 1 and 𝑣(𝛾𝑃 ) ̸= 0, for all 𝛾𝑃 ∈ Γ𝑃 ,

then 𝑣(𝜑) ̸= 0.

∙ For every three-valued 𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑃 ) ̸= 1, for all 𝛾𝑃 ∈ Γ𝑃 , and 𝑣(𝜑) = 0,

then 𝑣(
⋀︀
Γ𝑅) ̸= 1.

∙ For every three-valued 𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑃 ) ̸= 1, for all 𝛾𝑃 ∈ Γ𝑃 , and 𝑣(¬𝜑) = 1,

then 𝑣(¬
⋀︀
Γ𝑅) ̸= 0.

∙ ⟨Γ𝑅,¬𝜑⟩ �𝑅 ¬
⋀︀
Γ𝑃 .

�

2.10 Transparent truth

As discussed in section 2.2, one reason to be interested in non-classical logics is that they may

accommodate a transparent truth predicate. Recall that truth predicate 𝑇𝑟 is transparent if we can

replace 𝑇𝑟(p𝜑q) with 𝜑 in all extensional contexts and vice versa. Glap theory can handle trans-

parency.

In developing the logic that can contain a transparent truth predicate, we will eventually develop

a model theory that relies on acceptable structures in the sense of Moschovakis (1974, ch. 5) so that

we can have standard syntax. The consequence relation defined using acceptable structures won’t

be compact, and so we won’t be able to assume anymore that Γ𝑅 and Γ𝑃 are finite. As a result,

Theorem 2.7.1 and Theorem 2.7.2 won’t hold anymore. However, using multiple-conclusion logics,

we’ll be able to obtain close analogues of these propositions. Thus, for the remainder of the chapter,
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we’ll be working in a multiple-conclusion setting.

2.10.1 Multiple-conclusion 𝑅 and 𝑃

We define �𝑅𝑚 , the multiple-conclusion analogue of �𝑅: ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑚 Δ iff every three-valued

𝐾3/𝐿𝑃 -valuation that assigns 1 to every member of Γ𝑅 and 1 or 1
2 to every member of Γ𝑃 assigns

1 to at least one member of Δ.

And we define �𝑃𝑚 , the multiple-conclusion analogue of �𝑅: ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑚 Δ iff every three-

valued 𝐾3/𝐿𝑃 -valuation that assigns 1 to every member of Γ𝑅 and 1 or 1
2 to every member of Γ𝑃

assigns 1 or 1
2 to at least one member of Δ.

We have the following analogues of Theorem 2.7.1 and Theorem 2.7.2 (where for Γ a set of

sentences, ¬Γ = {¬𝛾 : 𝛾 ∈ Γ}, and ⊢𝐾3𝑚 is multiple-conclusion 𝐾3-derivability and ⊢𝐿𝑃𝑚 is

multiple-conclusion 𝐿𝑃 -derivability27):

Proposition 2.10.1. ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅𝑚 Δ iff Γ𝑅 �𝐾3𝑚 ¬Γ𝑃 ∪Δ.

Proof. The following statements are equivalent:

∙ ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅𝑚 Δ.

∙ For every three-valued𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑅𝑖) = 1, for all 𝛾𝑅𝑖 ∈ Γ𝑅, and 𝑣(𝛾𝑃𝑖) ̸= 0,

for all 𝛾𝑃𝑖 ∈ Γ𝑃 , then 𝑣(𝛿) = 1, for some 𝛿 ∈ Δ.

∙ For every three-valued𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑅𝑖) = 1, for all 𝛾𝑅𝑖 ∈ Γ𝑅, then 𝑣(𝛾𝑃𝑖) = 0,

for some 𝛾𝑃𝑖 ∈ Γ𝑃 , or 𝑣(𝛿) = 1, for some 𝛿 ∈ Δ.

∙ For every three-valued 𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑅𝑖) = 1, for all 𝛾𝑅𝑖 ∈ Γ𝑅, then 𝑣(¬𝛾𝑃𝑖) =

1, for some ¬𝛾𝑃𝑖 ∈ ¬Γ𝑃 , or 𝑣(𝛿) = 1, for some 𝛿 ∈ Δ.

∙ Γ𝑅 �𝐾3𝑚 ¬Γ𝑃 ∪Δ.

�

Proposition 2.10.2. ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑚 Δ iff Γ𝑃 �𝐿𝑃𝑚 ¬Γ𝑅 ∪Δ.

Proof. The following statements are equivalent:

∙ ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑚 Δ.

27See Avron (1991) and Beall (2011, Appendix) for sequent systems for ⊢𝐾3𝑚 and ⊢𝐿𝑃𝑚 , respectively.
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∙ For every three-valued𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑅𝑖) = 1, for all 𝛾𝑅𝑖 ∈ Γ𝑅, and 𝑣(𝛾𝑃𝑖) ̸= 0,

for all 𝛾𝑃𝑖 ∈ Γ𝑃 , then 𝑣(𝛿) ̸= 0, for some 𝛿 ∈ Δ.

∙ For every three-valued𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑃𝑖) ̸= 0, for all 𝛾𝑃𝑖 ∈ Γ𝑃 , then 𝑣(𝛾𝑅𝑖) ̸= 1,

for some 𝛾𝑅𝑖 ∈ Γ𝑅, or 𝑣(𝛿) ̸= 0, for some 𝛿 ∈ Δ.

∙ For every three-valued 𝐾3/𝐿𝑃 -valuation 𝑣, if 𝑣(𝛾𝑃𝑖) ̸= 0, for all 𝛾𝑃𝑖 ∈ Γ𝑃 , then 𝑣(¬𝛾𝑅𝑖) ̸=

0, for some ¬𝛾𝑅𝑖 ∈ ¬Γ𝑅, or 𝑣(𝛿) ̸= 0, for some 𝛿 ∈ Δ.

∙ Γ𝑃 �𝐿𝑃𝑚 ¬Γ𝑅 ∪Δ.

�

⊢𝑅𝑚 and ⊢𝑃𝑚 are the smallest relations that are closed under the following axioms and rules

(where Δ𝑖 = {𝛿𝑖1 , 𝛿𝑖2 , . . . }):

(A1𝑚) whenever Γ𝑅 ⊢𝐾3𝑚 Δ
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑚 Δ

(A2𝑚) whenever Γ𝑅 ⊢𝐿𝑃𝑚 Δ
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑚 Δ

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑚 ¬Γ𝑃 ∪Δ
(R1𝑚)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑚 Δ

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑚 ¬Γ𝑅 ∪Δ
(R2𝑚)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑚 Δ

Proposition 2.10.3. ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅𝑚 Δ iff ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑚 Δ.

Proof. (⇒). Suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅𝑚 Δ. Then Γ𝑅 �𝐾3𝑚 ¬Γ𝑃 ∪ Δ, by Theorem 2.10.1, and so

Γ𝑅 ⊢𝐾3𝑚 ¬Γ𝑃 ∪Δ. Then:

(A1𝑚)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑚 ¬Γ𝑃 ∪Δ

(R1𝑚)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑚 Δ

(⇐). (A1𝑚) is immediate. For (R1𝑚), suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅 ¬Γ𝑃 ∪Δ and suppose that some

𝐾3/𝐿𝑃 -valuation 𝑣 is such that 𝑣(𝛾𝑅) = 1, for all 𝛾𝑅 ∈ Γ𝑅, and 𝑣(𝛾𝑃 ) ̸= 0, for all 𝛾𝑃 ∈ Γ𝑃 .

Then 𝑣(𝜑) = 1, for some 𝜑 ∈ ¬Γ𝑃 ∪Δ. But also 𝑣(¬𝛾𝑃 ) ̸= 1, for all ¬𝛾𝑃 ∈ ¬Γ𝑃 . So 𝑣(𝛿) = 1,

for some 𝛿 ∈ Δ, as desired. �

Proposition 2.10.4. ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑚 Δ iff ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑚 Δ.

Proof. (⇒). Suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑚 Δ. Then Γ𝑃 �𝐿𝑃𝑚 ¬Γ𝑅 ∪ Δ, by Theorem 2.10.2, and so

Γ𝑃 ⊢𝐿𝑃𝑚 ¬Γ𝑅 ∪Δ. Then:
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(A2𝑚)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑚 ¬Γ𝑅 ∪Δ

(R2𝑚)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑚 Δ

(⇐). (A2𝑚) is immediate. For (R2𝑚), suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃 ¬Γ𝑅 ∪ Δ and suppose that some

𝐾3/𝐿𝑃 -valuation 𝑣 is such that 𝑣(𝛾𝑅) = 1, for all 𝛾𝑅 ∈ Γ𝑅, and 𝑣(𝛾𝑃 ) ̸= 0, for all 𝛾𝑃 ∈ Γ𝑃 .

Then 𝑣(𝜑) ̸= 0, for some 𝜑 ∈ ¬Γ𝑅 ∪Δ. But also 𝑣(¬𝛾𝑅) = 0, for all ¬𝛾𝑅 ∈ ¬Γ𝑅. So 𝑣(𝛿) ̸= 0,

for some 𝛿 ∈ Δ, as desired. �

Corollary 2.10.5. (a) ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑚 Δ iff Γ𝑅 ⊢𝐾3𝑚 ¬Γ𝑃 ∪Δ.

(b) ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑚 Δ iff Γ𝑃 �𝐿𝑃𝑚 ¬Γ𝑅 ∪Δ.

Proof. (a) follows from Theorem 2.10.1 and Theorem 2.10.3, (b) follows from Theorem 2.10.2 and

Theorem 2.10.4. �

Corollary 2.10.6. We have the following normal-form theorems: for 𝐼, 𝐽 ∈ {𝑃,𝑅}, 𝐼 ̸= 𝐽 , and

𝑖 ∈ {1, 2}, if ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝐼𝑚 Δ, then there is a canonical proof of this of the form

(Ai𝑚)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝐼𝑚 ¬Γ𝐽 ∪Δ

(Ri𝑚)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝐼𝑚 Δ

Proof. Follows immediately from the proofs of Theorem 2.10.3 and Theorem 2.10.4. �

2.10.2 Adding a truth predicate

We are finally in a position to add a transparent truth predicate. To do this, we need to move from a

propositional language to a quantified language with a truth predicate 𝑇𝑟.

An 𝑅/𝑃 -model is an acceptable structure ⟨𝐷, 𝐼⟩, where 𝐷 is non-empty and where 𝐼 is subject

to the usual constraints for quantified𝐾3/𝐿𝑃 -models as well as to the constraint that 𝐼(𝑇𝑟(p𝜑q)) =

𝐼(𝜑). Kripke’s (1975) fixed-point construction guarantees that there are such models.

�𝑅𝑇 is defined so that ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅𝑇 Δ iff every 𝑅/𝑃 -model ⟨𝐷, 𝐼⟩ is such that if 𝐼 assigns 1

to every member of Γ𝑅 and 1 or 1
2 to every member of Γ𝑃 , then 𝐼 assigns 1 to at least one member

of Δ.
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�𝑃𝑇 is defined so that ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑇 Δ iff every 𝑅/𝑃 -model ⟨𝐷, 𝐼⟩ is such that if 𝐼 assigns

1 to every member of Γ𝑅 and 1 or 1
2 to every member of Γ𝑃 , then 𝐼 assigns 1 or 1

2 to at least one

member of Δ.

To define derivability in 𝑅𝑇 and 𝑃𝑇 , we also need to define �𝐾3𝑇 and �𝐿𝑃𝑇 , i.e. 𝐾3- and

𝐿𝑃 -consequence for a language that contains a transparent truth predicate: Γ �𝐾3𝑇 Δ iff every

𝑅/𝑃 -model ⟨𝐷, 𝐼⟩ is such that if 𝐼 assigns 1 to every member of Γ, then 𝐼 assigns 1 to at least one

member of Δ. And Γ �𝐿𝑃𝑇 Δ iff every 𝑅/𝑃 -model ⟨𝐷, 𝐼⟩ is such that if 𝐼 assigns 1 or 1
2 to every

member of Γ, then 𝐼 assigns 1 or 1
2 to at least one member of Δ.

Now, ⊢𝑅𝑇 and ⊢𝑃𝑇 are the smallest relations that are closed under the following axioms and

rules:

(A1𝑇 ) whenever Γ𝑅 �𝐾3𝑇 Δ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ

(A2𝑇 ) whenever Γ𝑅 �𝐿𝑃𝑇 Δ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Δ

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 ¬Γ𝑃 ∪Δ
(R1𝑇 )

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 ¬Γ𝑅 ∪Δ
(R2𝑇 )

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Δ

We then have the following:

Proposition 2.10.7. (a) ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅𝑇 Δ iff ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ.

(b) ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑇 Δ iff ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Δ.

Proof. Follows immediately from Theorem 2.10.3 and Theorem 2.10.4. �

Of course, even though the axiomatizations of 𝑅𝑇 and 𝑃𝑇 are finitely stateable, 𝑅𝑇 and 𝑃𝑇

aren’t recursively enumerable, because �𝐾3𝑇 and �𝐿𝑃𝑇 aren’t recursively enumerable.

2.10.3 Deriving the structural rules

Note that although we don’t need any structural rules to define ⊢𝑅𝑇 and ⊢𝑃𝑇 , we can derive the

following versions of the usual structural rules of Cut, Right Weakening, and Left Weakening, as

well as Identity:28

28As already noted in footnote 24, the choice of sets rather than multisets for the antecedents and succedents automatically
yields that ⊢𝑅𝑇 and ⊢𝑃𝑇 are contractive. A simple model-theoretic argument also shows that analogues of Shoesmith
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Proposition 2.10.8.

⟨Γ𝑅 ∪ {𝜑},Γ𝑃 ⟩ ⊢𝑅𝑇 Δ ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 {𝜑} ∪Δ
(RC)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ

⟨Γ𝑅,Γ𝑃 ∪ {𝜑}⟩ ⊢𝑃𝑇 Δ ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 {𝜑} ∪Δ
(PC)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Δ

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ
(RRW)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Θ ∪Δ

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Δ
(PRW)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Θ ∪Δ

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ
(RLW)

⟨Γ𝑅 ∪Θ,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Δ
(PLW)

⟨Γ𝑅,Γ𝑃 ∪Θ⟩ ⊢𝑃𝑇 Θ ∪Δ

(RI)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Γ𝑅

(PI)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Γ𝑃

Proof. (RC). Suppose ⟨Γ𝑅 ∪ {𝜑},Γ𝑃 ⟩ ⊢𝑅𝑇 Δ and ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 {𝜑} ∪Δ. Then Γ𝑅 ∪ {𝜑} ⊢𝐾3𝑇

¬Γ𝑃 ∪Δ and Γ𝑅 ⊢𝐾3𝑇 ¬Γ𝑃 ∪ {𝜑} ∪Δ, by Theorem 2.10.5.(a). Since we have Cut for 𝐾3𝑇 , we

get Γ𝑅 ⊢𝐾3𝑇 ¬Γ𝑃 ∪Δ. Then:

(A1𝑇 )
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 ¬Γ𝑃 ∪Δ

(R1𝑇 )
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ

(PC). Suppose ⟨Γ𝑅,Γ𝑃 ∪ {𝜑}⟩ ⊢𝑃𝑇 Δ and ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 {𝜑} ∪ Δ. Then Γ𝑃 ∪ {𝜑} ⊢𝐿𝑃𝑇

¬Γ𝑅 ∪Δ and Γ𝑃 ⊢𝐿𝑃𝑇 ¬Γ𝑅 ∪ {𝜑} ∪Δ, by Theorem 2.10.5.(b). Since we have Cut for 𝐿𝑃𝑇 , we

get Γ𝑃 ⊢𝐿𝑃𝑇 ¬Γ𝑅 ∪Δ2. Then:

(A2𝑇 )
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 ¬Γ𝑅 ∪Δ

(R2𝑚)
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Δ

(RRW). Suppose ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ. Then Γ𝑅 ⊢𝐾3𝑇 ¬Γ𝑃 ∪Δ, by Theorem 2.10.5.(a). Since we

have Right Weakening for 𝐾3𝑇 , we get Γ𝑅 ⊢𝐾3𝑇 Θ ∪ ¬Γ𝑃 ∪Δ. Then:

and Smiley’s (1978, 29) Cut for Sets are valid in 𝑅𝑇 and 𝑃𝑇 , from which it follows by Theorem 2.10.7 that we have
the following:

⟨Γ𝑅 ∪Θ1,Γ𝑃 ⟩ ⊢𝑅𝑇 Θ2 ∪Δ, for each partition Θ1,Θ2 of Θ
(RCS)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ

⟨Γ𝑅,Γ𝑃 ∪Θ1⟩ ⊢𝑃𝑇 Θ2 ∪Δ, for each partition Θ1,Θ2 of Θ
(PCS)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Δ
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(A1𝑇 )
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Θ ∪ ¬Γ𝑃 ∪Δ

(R1𝑇 )
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Θ ∪Δ

(PRW). Suppose ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Δ. Then Γ𝑃 ⊢𝐿𝑃𝑇 ¬Γ𝑅∪Δ, by Theorem 2.10.5.(b). Since we

have Right Weakening for 𝐿𝑃𝑇 , we get Γ𝑃 ⊢𝐿𝑃𝑇 Θ ∪ ¬Γ𝑅 ∪Δ. Then:

(A2𝑇 )
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Θ ∪ ¬Γ𝑅 ∪Δ

(R2𝑇 )
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Θ ∪Δ

(RLW). Suppose ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ. Then Γ𝑅 ⊢𝐾3𝑇 ¬Γ𝑃 ∪Δ, by Theorem 2.10.5.(a). Since we

have Left Weakening for 𝐾3𝑇 , we get Γ𝑅 ∪Θ ⊢𝐾3𝑇 ¬Γ𝑃 ∪Δ.Then:

(A1𝑇 )
⟨Γ𝑅 ∪Θ,Γ𝑃 ⟩ ⊢𝑅𝑇 ¬Γ𝑃 ∪Δ

(R1𝑇 )
⟨Γ𝑅 ∪Θ,Γ𝑃 ⟩ ⊢𝑅𝑇 Δ

(PLW). Suppose ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑇 Δ. Then Γ𝑃 ⊢𝐿𝑃𝑇 ¬Γ𝑅 ∪Δ, by Theorem 2.10.5.(b). Since we

have Left Weakening for 𝐿𝑃𝑇 , we get Γ𝑃 ∪Θ ⊢𝐿𝑃𝑇 ¬Γ𝑅 ∪Δ. Then:

(A2𝑇 )
⟨Γ𝑅,Γ𝑃 ∪Θ⟩ ⊢𝑃𝑇 ¬Γ𝑅 ∪Δ

(R2𝑇 )
⟨Γ𝑅,Γ𝑃 ∪Θ⟩ ⊢𝑃𝑇 Δ

(RI). Follows immediately from (A1𝑇 ) and the fact that Γ𝑅 ⊢𝐾3𝑇 Γ𝑅.

(PI). Follows immediately from (A2𝑇 ) and the fact that Γ𝑃 ⊢𝐿𝑃𝑇 Γ𝑃 . �

2.10.4 Comparisons

What distinguishes glap theory from all other non-classical or substructural approaches to transpar-

ent truth is that its logic assumes that there are two premise sets instead of one and that there are two

consequence relations and two derivability relations. As already discussed at length, this additional

structure gives us a logic that’s stronger than𝐾3 and 𝐿𝑃 combined, but it retains the latter’s relative

simplicity vis-à-vis the logics of Field (2008) and Beall (2009).

We also just saw in subsection 2.10.3 that the logic of glap theory is fully structural in that it

includes the rule of Cut for both ⊢𝑅𝑇 and ⊢𝑃𝑇 . This contrasts with the Cut-free logic 𝑆𝑇𝑇𝑇 of

Cobreros et al. (2013).29 Since the absence of Cut means that ⊢𝑆𝑇𝑇𝑇 isn’t transitive, this means

that we can’t string together proofs in 𝑆𝑇𝑇𝑇 . There is thus a concrete sense in which Feferman’s

29See also Ripley (2012, 2013a,b). As mentioned in footnotes 24 and 28, glap theory is also contractive, unlike the logic
developed by Zardini (2011).
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complaint applies here too: ordinary reasoning can’t be sustained in 𝑆𝑇𝑇𝑇 . Of course, in giving

up Cut, 𝑆𝑇𝑇𝑇 gains the ability to have transparent truth while preserving all classical validities.

Thus, while in glap theory we don’t have restrictive identity (0𝑅𝑇 𝜑 → 𝜑) and we only have one

non-hybrid form of modus ponens (⟨{𝜑 → 𝜓, 𝜑}, ∅⟩ ⊢𝑅𝑇 𝜓 but ⟨∅, {𝜑 → 𝜓, 𝜑}⟩ 0𝑃𝑇 𝜓), we have

unqualified identity and modus ponens in 𝑆𝑇𝑇𝑇 (⊢𝑆𝑇𝑇𝑇 𝜑→ 𝜑 and {𝜑→ 𝜓, 𝜑} ⊢𝑆𝑇𝑇𝑇 𝜓).

While it’s not immediately obvious that the advantages of glap theory outweigh its disadvan-

tages vis-à-vis the approaches of Field (2008), Beall (2009), and Cobreros et al. (2013), glap theory

is an unqualified improvement over an approach recently recommended by Beall (2017). As we saw

at the end of section 2.3, gap theorists and glut theorists have expressive reasons to help themselves

to extra speech acts, be it denial or a second kind of assertion. But once they enrich their expresisve

resources, they become functionally indistinguishable. For, they now both have a permissive speech

act governed by a paraconsistent logic and a restrictive speech act governed by a paracomplete logic,

and they can express all the same things. This might be seen to show that the choice between gap

and glut theory is arbitrary.30 Beall concludes from this that we should opt for Anderson and Bel-

nap’s (1961) four-valued logic of First Degree Entailment (𝐹𝐷𝐸), which is weaker than 𝐾3 and

𝐿𝑃 combined.31 While 𝐹𝐷𝐸 is exceedingly weak, Beall (2015a) would argue that we can always

assert the law of identity for certain domains or deny that certain domains are inconsistent to re-

capture stronger modes of reasoning. But our discussion shows that this reaction to the fact that we

lack a clear tie-breaker to choose between 𝐾3 and 𝐿𝑃 is unwarranted. Rather than admitting both

gaps and gluts, the champion of either gaps or gluts who doesn’t want to bear the cost of adding a

new conditional or giving up structural rules should embrace glaps, as the logic of glap theory is

stronger than both 𝐾3 and 𝐿𝑃 .

2.11 Subervaluationism

Because the logic of gaps and the logic of gluts are so weak, van Fraassen (1966) and Fine (1975b)

opt for supervaluationism, and Varzi (1994, 1997) and Hyde (1997) opt for subvaluationism. Super-

30See also Parsons (1984).
31See Woodruff (1984) for the theory of Kripke fixed points in an 𝐹𝐷𝐸 setting.
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and subvaluationism have in common that they associate with each 𝐾3/𝐿𝑃 -model a set of admis-

sible classical models where the extensions and anti-extensions of vague predicates are precisified

so as to yield extensions and anti-extensions that don’t overlap and that exhaust the domain. Super-

valuationism introduces the concept of supertruth, which universally quantifies over the admissi-

ble classical models, while subvaluationism introduces the concept of subtruth, which existentially

quantifies over the admissible classical models. We can use these ideas to do the same work for glap

theory, yielding subervaluationism.32

2.11.1 Supervaluationism and subvaluationism

But first, a quick review of supervaluationism and subvaluationism. We’ll work with a standard

quantified language without a truth predicate and the class M of all classical models for the lan-

guage. An Sv-model is a non-empty set ℳ ⊆ M.33 We say that 𝜑 is supertrue in ℳ iff it is true in

every classical model M ∈ ℳ and 𝜑 is subtrue in ℳ iff it is true in some classical model M ∈ ℳ.

We can now define the two usual consequence relations �𝐾3𝑉 and �𝐿𝑃𝑉
of supervaluationism

and subvaluationism, respectively, as well as the classical consequence relation �𝐶𝐿: Γ �𝐾3𝑉 Δ

iff, for every Sv-model ℳ, if every member of Γ is supertrue in ℳ, then some member of Δ is

supertrue in ℳ. And Γ �𝐿𝑃𝑉
Δ iff, for every Sv-model ℳ, if every member of Γ is subtrue in ℳ,

then some member of Δ is subtrue in ℳ. And Γ �𝐶𝐿 Δ iff, for every M ∈ M, if every member of

Γ is true in M , then some member of Δ is true in M .

𝐾3𝑉 and 𝐿𝑃𝑉 come quite close to being fully classical, for Hyde (1997, 655) tells us that the

following correspondences hold:

Fact 2.11.1. Let Γ and Δ be finite. Then:

(a) Γ �𝐶𝐿 Δ iff Γ �𝐾3𝑉
⋁︀
Δ.

(b) Γ �𝐶𝐿 Δ iff
⋀︀
Γ �𝐿𝑃𝑉

Δ.

Thus, for arguments with just one premise 𝜑 and just one conclusion 𝜓, we have that 𝜑 �𝐶𝐿 𝜓 iff

𝜑 �𝐾3𝑉 𝜓 iff 𝜑 �𝐿𝑃𝑉
𝜓. We also have the following for any Γ and Δ, finite or infinite.

32Not named after Peter Suber, the editor of Bertlett and Suber (1987).
33I loosely follow the presentation in Cobreros et al. (2012a) here.
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Proposition 2.11.1. (a) Γ �𝐾3𝑉 Δ iff Γ �𝐶𝐿 𝛿, for some 𝛿 ∈ Δ.

(b) Γ �𝐿𝑃𝑉
Δ iff 𝛾 �𝐶𝐿 Δ, for some 𝛾 ∈ Γ.

Proof. (a). (⇒). Suppose Γ 2𝐶𝐿 𝛿, for every 𝛿 ∈ Δ. Then for every 𝛿 ∈ Δ, there is a classical

model M ∈ M such that every 𝛾 ∈ Γ is true in M and 𝛿 is false in M . Let ℳ be the set of

all those classical models. ℳ is an Sv-model. Every 𝛾 ∈ Γ is supertrue in ℳ, but no 𝛿 ∈ Δ is

supertrue in ℳ, and so Γ 2𝐾3𝑉 Δ. (⇐). Suppose Γ �𝐶𝐿 𝛿, for some 𝛿 ∈ Δ. Then we immediately

have that for any Sv-model ℳ, if every 𝛾 ∈ Γ is supertrue in ℳ, then there is some 𝛿 ∈ Δ that is

supertrue in ℳ, and so Γ �𝐾3𝑉 Δ.

(b). (⇒). Suppose 𝛾 2𝐶𝐿 Δ, for every 𝛾 ∈ Γ. Then for every 𝛾 ∈ Γ, there is a classical model

M ∈ M such that 𝛾 is true in M and no 𝛿 ∈ Δ is true in M . Let ℳ be the set of all those classical

models. ℳ is an Sv-model. Every 𝛾 ∈ Γ is subtrue in ℳ, but no 𝛿 ∈ Δ is subtrue in ℳ, and

so Γ 2𝐿𝑃𝑉
Δ. (⇐). Suppose 𝛾 �𝐶𝐿 Δ, for some 𝛾 ∈ Γ. Then we immediately have that for any

Sv-model ℳ, if some 𝛾 ∈ Γ is subtrue in ℳ, then there is some 𝛿 ∈ Δ that is subtrue in ℳ, and

so Γ �𝐿𝑃𝑉
Δ. �

But we still have certain failures of classicality. While we have ∅ �𝐾3𝑉 𝜑 ∨ ¬𝜑, we also have

∅ 2𝐾3𝑉 {𝜑,¬𝜑}. And while we have 𝜑 ∧ (𝜑 → 𝜓) �𝐿𝑃𝑉
𝜓 and 𝜑 ∧ ¬𝜑 �𝐿𝑃𝑉

∅, we also have

{𝜑, 𝜑 → 𝜓} 2𝐿𝑃𝑉
𝜓 and {𝜑,¬𝜑} 2𝐿𝑃𝑉

∅. More generally, we have 𝜑 ∨ 𝜓 2𝐾3𝑉 {𝜑, 𝜓} and

{𝜑, 𝜓} 2𝐿𝑃𝑉
𝜑 ∧ 𝜓.

2.11.2 Subervaluationist consequence and derivability

We can improve on this using ideas analogous to those of glap theory. We define the restrictive and

permissive consequence relations �𝑅𝑉 and �𝑃𝑉 of subervaluationism: ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅𝑉 Δ iff, for

every Sv-model ℳ, if every member of Γ𝑅 is supertrue in ℳ and every member of Γ𝑃 is subtrue

in ℳ, then some member of Δ is supertrue in ℳ. And ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑉 Δ iff, for every Sv-model

ℳ, if every member of Γ𝑅 is supertrue in ℳ and every member of Γ𝑃 is subtrue in ℳ, then some

member of Δ is subtrue in ℳ. We then get analogues of Theorem 2.10.1 and Theorem 2.10.2.

Proposition 2.11.2. ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅𝑉 Δ iff Γ𝑅 �𝐾3𝑉 ¬Γ𝑃 ∪Δ.
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Proof. The following statements are equivalent:

∙ ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅𝑉 Δ.

∙ For every Sv-model ℳ, if every member of Γ𝑅 is supertrue in ℳ and every member of Γ𝑃

is subtrue in ℳ, then some member of Δ is supertrue in ℳ.

∙ For every Sv-model ℳ, if every member of Γ𝑅 is supertrue in ℳ, then some member of Γ𝑃

isn’t subtrue in ℳ or some member of Δ is supertrue in ℳ.

∙ For every Sv-model ℳ, if every member of Γ𝑅 is supertrue in ℳ, then some member of

¬Γ𝑃 is supertrue in ℳ or some member of Δ is supertrue in ℳ.

∙ Γ𝑅 �𝐾3𝑉 ¬Γ𝑃 ∪Δ.

�

Proposition 2.11.3. ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑉 Δ iff Γ𝑃 �𝐿𝑃𝑉
¬Γ𝑅 ∪Δ.

Proof. The following statements are equivalent:

∙ ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑉 Δ.

∙ For every Sv-model ℳ, if every member of Γ𝑅 is supertrue in ℳ and every member of Γ𝑃

is subtrue in ℳ, then some member of Δ is subtrue in ℳ.

∙ For every Sv-model ℳ, if every member of Γ𝑃 is subtrue in ℳ, then some member of Γ𝑅

isn’t supertrue in ℳ or some member of Δ is subtrue in ℳ.

∙ For every Sv-model ℳ, if every member of Γ𝑃 is subtrue in ℳ, then some member of ¬Γ𝑅

is subtrue in ℳ or some member of Δ is subtrue in ℳ.

∙ Γ𝑃 �𝐿𝑃𝑉
¬Γ𝑅 ∪Δ.

�

Next, we define derivability for subervaluationism. ⊢𝑅𝑉 and ⊢𝑃𝑉 are the smallest relations that

are closed under the following axioms and rules (where ⊢𝐶𝐿 is classical derivability):

(A1𝑉 ) whenever Γ𝑅 ⊢𝐶𝐿 𝛿, for some 𝛿 ∈ Δ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑉 Δ

(A2𝑉 ) whenever 𝛾 ⊢𝐶𝐿 Δ, for some 𝛾 ∈ Γ𝑃⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑉 Δ
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⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑉 ¬Γ𝑃 ∪Δ
(R1𝑉 )

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑉 Δ

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑉 ¬Γ𝑅 ∪Δ
(R2𝑉 )

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑉 Δ

Proposition 2.11.4. ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅𝑉 Δ iff ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑉 Δ.

Proof. (⇒). Suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅𝑉 Δ. Then Γ𝑅 �𝐾3𝑉 ¬Γ𝑃 ∪ Δ, by Theorem 2.11.2, and so

Γ𝑅 ⊢𝐾3𝑉 ¬Γ𝑃 ∪Δ. Then:

(A1𝑉 )
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑉 ¬Γ𝑃 ∪Δ

(R1𝑉 )
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑉 Δ

(⇐). (A1𝑉 ) is immediate, given Theorem 2.11.1.(a) and the fact that Γ �𝐶𝐿 Δ iff Γ ⊢𝐶𝐿 Δ.

For (R1𝑉 ), suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑅 ¬Γ𝑃 ∪Δ and suppose that some Sv-model ℳ is such that every

member of Γ𝑅 is supertrue in ℳ and every member of Γ𝑃 is subtrue in ℳ. Then some member of

¬Γ𝑃 ∪Δ is supertrue in ℳ. But since every member of Γ𝑃 is subtrue in ℳ, no member of ¬Γ𝑃 is

supertrue in ℳ, and so some member of Δ is supertrue in ℳ, as desired. �

Proposition 2.11.5. ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑉 Δ iff ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑉 Δ.

Proof. (⇒). Suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑉 Δ. Then Γ𝑃 �𝐿𝑃𝑉
¬Γ𝑅 ∪ Δ, by Theorem 2.11.3, and so

Γ𝑃 ⊢𝐿𝑃𝑉
¬Γ𝑅 ∪Δ. Then:

(A2𝑉 )
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑉 ¬Γ𝑅 ∪Δ

(R2𝑉 )
⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑉 Δ

(⇐). (A2𝑉 ) is immediate, given Theorem 2.11.1.(b) and the fact that Γ �𝐶𝐿 Δ iff Γ ⊢𝐶𝐿 Δ. For

(R2𝑉 ), suppose ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃 ¬Γ𝑃 ∪ Δ and suppose that some Sv-model ℳ is such that every

member of Γ𝑅 is supertrue in ℳ and every member of Γ𝑃 is subtrue in ℳ. Then some member of

¬Γ𝑅 ∪Δ is subtrue in ℳ. But since every member of Γ𝑅 is supertrue in ℳ, no member of ¬Γ𝑅 is

subtrue in ℳ, and so some member of Δ is subtrue in ℳ, as desired. �

Corollary 2.11.6. (a) ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑉 Δ iff Γ𝑅 ⊢𝐾3𝑉 ¬Γ𝑃 ∪Δ.

(b) ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑉 Δ iff Γ𝑃 ⊢𝐿𝑃𝑉
¬Γ𝑅 ∪Δ.

Proof. (a) follows from Theorem 2.11.2 and Theorem 2.11.4, (b) follows from Theorem 2.11.3 and

Theorem 2.11.5. �
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2.11.3 Discussion

Although just like in the case of𝐾3𝑉 and 𝐿𝑃𝑉 we have ⟨∅, ∅⟩ 2𝑅𝑉 {𝜑,¬𝜑}, ⟨∅, {𝜑, 𝜑→ 𝜓}⟩ 2𝑃𝑉

𝜓, ⟨∅, {𝜑,¬𝜑}⟩ 2𝑃𝑉 ∅, ⟨𝜑∨𝜓, ∅⟩ 2𝑅𝑉 {𝜑, 𝜓}, and ⟨∅, {𝜑, 𝜓}⟩ 2𝑃𝑉 𝜑∧𝜓, we do have the following

variants:

Proposition 2.11.7. (a) ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑉 {𝜑,¬𝜑}

(b) ⟨𝜑, 𝜑→ 𝜓⟩ ⊢𝑃𝑉 𝜓

(c) ⟨{𝜑,¬𝜑},Γ𝑃 ⟩ ⊢𝑅𝑉 ∅

(d) ⟨𝜑 ∨ 𝜓,Γ𝑃 ⟩ ⊢𝑃𝑉 {𝜑, 𝜓}

(e) ⟨𝜑, 𝜓⟩ ⊢𝑃𝑉 𝜑 ∧ 𝜓

Proof. It’s straightforward to check that the analogues hold for �𝑅𝑉 and �𝑅𝑉 , and so the result

follows from Theorem 2.11.4 and Theorem 2.11.5. �

We can identify precisely how classical logic relates to 𝑅𝑉 and 𝑃𝑉 :

Proposition 2.11.8. (a) ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑉 𝜑 iff Γ𝑅 ⊢𝐶𝐿 𝜑 or Γ𝑅 ⊢𝐶𝐿 ¬𝛾𝑃 , for some 𝛾𝑃 ∈ Γ𝑃 .

(b) ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑉 𝜑 iff Γ𝑅 ⊢𝐶𝐿 𝛾𝑃 → 𝜑, for some 𝛾𝑃 ∈ Γ𝑃 .

(c) ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑉 Δ iff Γ𝑅 ⊢𝐶𝐿 𝛿, for some 𝛿 ∈ Δ, or Γ𝑅 ⊢𝐶𝐿 ¬𝛾𝑃 , for some 𝛾𝑃 ∈ Γ𝑃 .

(d) ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑉 Δ iff Γ𝑅 ⊢𝐶𝐿 𝛾𝑃 → 𝛿, for some 𝛾𝑃 ∈ Γ𝑃 and some 𝛿 ∈ Δ.

Proof. (a). (⇒). Suppose Γ𝑅 0𝐶𝐿 𝜑 and Γ𝑅 0𝐶𝐿 ¬𝛾𝑃 , for every 𝛾𝑃 ∈ Γ𝑃 . Then Γ𝑅 2𝐶𝐿 𝜑 and

Γ𝑅 2𝐶𝐿 ¬𝛾𝑃 , for every 𝛾𝑃 ∈ Γ𝑃 . The latter tells us that for every 𝛾𝑃 ∈ Γ𝑃 , there is a classical

model M ∈ M such that every 𝛾𝑅 ∈ Γ𝑅 is true in M and 𝛾𝑃 is true in M . Let ℳ be the set

of all those classical models. Γ𝑅 2𝐶𝐿 𝜑 tells us that there is a classical model M ′ ∈ M such that

every 𝛾𝑅 ∈ Γ𝑅 is true in M ′ and 𝜑 is false in M ′. ℳ ∪ {M ′} is an Sv-model. Every 𝛾𝑅 ∈ Γ𝑅

is supertrue in ℳ ∪ {M ′}, every 𝛾𝑃 ∈ Γ𝑃 is subtrue in ℳ ∪ {M ′}, and 𝜑 is not supertrue in

ℳ ∪ {M ′}, and so ⟨Γ𝑅,Γ𝑃 ⟩ 2𝑅𝑉 𝜑. Then ⟨Γ𝑅,Γ𝑃 ⟩ 0𝑅𝑉 𝜑, by Theorem 2.11.4. (⇐). Suppose
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first Γ𝑅 ⊢𝐶𝐿 𝜑. Then ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑅𝑉 𝜑, by (A1𝑉 ). Suppose next Γ𝑅 ⊢𝐶𝐿 ¬𝛾𝑃 , for some 𝛾𝑃 ∈ Γ𝑃 .

Then Γ𝑅 �𝐶𝐿 ¬𝛾𝑃 . Then there is no classical model M ∈ M such that every 𝛾𝑅 ∈ Γ𝑅 is true

in M and 𝛾𝑃 is true in M . Then there is no Sv-model ℳ such that every 𝛾𝑅 ∈ Γ𝑅 is supertrue

in ℳ and every 𝛾𝑃 ∈ Γ𝑃 is subtrue in ℳ, and so ⟨Γ𝑅,Γ𝑃 ⟩ 2𝑅𝑉 𝜑. Then ⟨Γ𝑅,Γ𝑃 ⟩ 0𝑅𝑉 𝜑, by

Theorem 2.11.4.

(b). (⇒). Suppose Γ𝑅 0𝐶𝐿 𝛾𝑃 → 𝜑, for every 𝛾𝑃 ∈ Γ𝑃 . Then Γ𝑅 2𝐶𝐿 𝛾𝑃 → 𝜑, for every

𝛾𝑃 ∈ Γ𝑃 . Then for every 𝛾𝑃 ∈ Γ𝑃 , there is a classical model M ∈ M such that every 𝛾𝑅 ∈ Γ𝑅 is

true in M , 𝛾𝑃 is true in M , and 𝜑 is false in M . Let ℳ be the set of all those classical models. ℳ

is an Sv-model. Every 𝛾𝑅 ∈ Γ𝑅 is supertrue in ℳ, every 𝛾𝑃 ∈ Γ𝑃 is subtrue in ℳ, and 𝜑 is not

subtrue in ℳ, and so ⟨Γ𝑅,Γ𝑃 ⟩ 2𝑃𝑉 𝜑. Then ⟨Γ𝑅,Γ𝑃 ⟩ 0𝑃𝑉 𝜑, by Theorem 2.11.5. (⇐). Suppose

Γ𝑅 ⊢𝐶𝐿 𝛾𝑃 → 𝜑, for some 𝛾𝑃 ∈ Γ𝑃 . Then Γ𝑅 �𝐶𝐿 𝛾𝑃 → 𝜑. Then every classical model M ∈ M

is such that if every 𝛾𝑅 ∈ Γ𝑅 is true in M and 𝛾𝑃 is true in M , then 𝜑 is true in M . Let ℳ be an

arbitrary Sv-model such that every 𝛾𝑅 ∈ Γ𝑅 is supertrue in ℳ and every 𝛾′𝑃 ∈ Γ𝑃 is subtrue in ℳ.

Then there is a classical model M ′ ∈ ℳ such that 𝛾𝑃 is true in M ′. Then, given the above, 𝜑 is true

in M ′. So 𝜑 is subtrue in ℳ. Since ℳ was arbitrary, ⟨Γ𝑅,Γ𝑃 ⟩ �𝑃𝑉 𝜑, and so ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑃𝑉 𝜑,

by Theorem 2.11.5.

(c). Analogous to the proof of (a).

(d). Analogous to the proof of (b). �

2.11.4 Truth

We can add a truth predicate to subervaluationism in much the same way that Kripke (1975) adds a

truth predicate to supervaluationism to obtain ⊢𝑅𝑉 𝑇 and ⊢𝑃𝑉 𝑇 .

2.12 Comparing glap theory and subervaluationism

To wrap up, we compare glap theory and subervaluationism with regards to transparency, tolerance,

and classicality.

Transparency. Where Γ′
𝑅, Γ′

𝑃 , and Δ′ are just like Γ𝑅, Γ𝑃 , and Δ, respectively, except that some

70



subsentences 𝜑 of some members of Γ𝑅, Γ𝑃 , and Δ are replaced with 𝑇𝑟(p𝜑q):

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑋 Δ

⟨Γ′
𝑅,Γ

′
𝑃 ⟩ ⊢𝑋 Δ′

T-biconditionals. ⟨∅, ∅⟩ ⊢𝑋 𝜑↔ 𝑇𝑟(p𝜑q).

Left tolerance instances. ⟨{‘Isaiah Thomas is short,’ ‘If Isaiah Thomas is short, then Michael

Adams is short,’ ‘If Michael Adams is short, then Terrell Brandon is short,’ . . . , ‘If Ralph

Sampson is short, then Yao Ming is short’}, ∅⟩ 0𝑋 {‘Yao Ming is short’}.

Right tolerance instances. ⟨∅, {‘Isaiah Thomas is short,’ ‘If Isaiah Thomas is short, then Michael

Adams is short,’ ‘If Michael Adams is short, then Terrell Brandon is short,’ . . . , ‘If Ralph

Sampson is short, then Yao Ming is short’}⟩ 0𝑋 {‘Yao Ming is short’}.

Left tolerance conjunction. ⟨{‘Isaiah Thomas is short,’ ‘If Isaiah Thomas is short, then Michael

Adams is short, and if Michael Adams is short, then Terrell Brandon is short, and . . . and if

Ralph Sampson is short, then Yao Ming is short’}, ∅⟩ 0𝑋 {‘Yao Ming is short’}.

Right tolerance instances. ⟨∅, {‘Isaiah Thomas is short,’ ‘If Isaiah Thomas is short, then Michael

Adams is short, and if Michael Adams is short, then Terrell Brandon is short, and . . . and if

Ralph Sampson is short, then Yao Ming is short’}⟩ 0𝑋 {‘Yao Ming is short’}.

Left single-conclusion classicality. ⟨Γ, ∅⟩ ⊢𝑋 𝜑 iff Γ ⊢𝐶𝐿 𝜑.

Right single-conclusion classicality. ⟨∅,Γ⟩ ⊢𝑋 𝜑 iff Γ ⊢𝐶𝐿 𝜑.

Left single-premise classicality. ⟨𝜑, ∅⟩ ⊢𝑋 Δ iff 𝜑 ⊢𝐶𝐿 Δ.

Right single-premise classicality. ⟨∅, 𝜑⟩ ⊢𝑋 Δ iff 𝜑 ⊢𝐶𝐿 Δ.

Left full classicality. ⟨Γ, ∅⟩ ⊢𝑋 Δ iff Γ ⊢𝐶𝐿 Δ.

Right full classicality. ⟨∅,Γ⟩ ⊢𝑋 Δ iff Γ ⊢𝐶𝐿 Δ.
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Glap theory Subervaluationism

𝑋 = 𝑅𝑇 𝑋 = 𝑃𝑇 𝑋 = 𝑅𝑉 𝑇 𝑋 = 𝑃𝑉 𝑇

Transparency 3 3 7 7

T-biconditionals 7 3 3 3

Left tolerance instances 7 7 7 7

Right tolerance instances 7 3 7 3

Left tolerance conjunction 7 7 7 7

Right tolerance conjunction 7 3 7 7

Left single-conclusion classicality 7 3 3 7

Right single-conclusion classicality 7 7 7 7

Left single-premise classicality 7 3 7 3

Right single-premise classicality 7 7 7 3

Left full classicality 7 3 7 3

Right full classicality 7 7 7 7

It is straightforward to check most of these with model-theoretic reasoning. Transparency / 𝑋 =

𝑅𝑉 𝑇 and Transparency 𝑋 = 𝑃𝑉 𝑇 fail to hold because in subervaluationism, the logical connec-

tives aren’t supertruth-/subtruth functional. Left full classicality / 𝑋 = 𝑃𝑇 and Left full classicality

/ 𝑋 = 𝑃𝑉 𝑇 are proved in Cobreros et al. (2012b) and Cobreros et al. (2012a), respectively. It

is because these two hold that Left tolerance instances / 𝑋 = 𝑃𝑇 , Left tolerance conjunction /

𝑋 = 𝑃𝑇 , and Left tolerance instances / 𝑋 = 𝑃𝑉 𝑇 don’t hold.

Finally, let’s compare all possible hybrid forms of modus ponens that can be formulated for glap

theory and subervaluationism.

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑋 𝜑→ 𝜓 ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑌 𝜑
(MP1)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑋 𝜓

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑋 𝜑→ 𝜓 ⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑌 𝜑
(MP2)

⟨Γ𝑅,Γ𝑃 ⟩ ⊢𝑌 𝜓
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Glap theory Subervaluationism

𝑋 = 𝑅𝑇 𝑋 = 𝑃𝑇 𝑋 = 𝑅𝑉 𝑇 𝑋 = 𝑃𝑉 𝑇

𝑌 = 𝑃𝑇 𝑌 = 𝑅𝑇 𝑌 = 𝑃𝑉 𝑇 𝑌 = 𝑅𝑉 𝑇

(MP1) 3 3 7 3

(MP2) 3 7 3 7

(MP1) / 𝑋 = 𝑅𝑇, 𝑌 = 𝑃𝑇 and (MP1) / 𝑋 = 𝑃𝑇, 𝑌 = 𝑅𝑇 are valid since they are just the

two rules (R1) and (R2) for ⊢𝑅 and ⊢𝑃 . And (MP2) / 𝑋 = 𝑅𝑇, 𝑌 = 𝑃𝑇 follows from (MP1) /

𝑋 = 𝑅𝑇, 𝑌 = 𝑃𝑇 by Theorem 2.8.3. To see that (MP2) / 𝑋 = 𝑃𝑇, 𝑌 = 𝑅𝑇 is invalid, note

that if 𝜑 has value 1 and 𝜓 value 1
2 , then 𝜑 → 𝜓 has value 1

2 , and so 𝜑 → 𝜓 is permissively

assertable and 𝜑 is restrictively assertable but 𝜓 isn’t restrictively assertable. To see that (MP1) /

𝑋 = 𝑃𝑉 𝑇, 𝑌 = 𝑅𝑉 𝑇 is valid, take an arbitrary Sv-model ℳ such that 𝜑 → 𝜓 is subtrue in

ℳ and 𝜑 is supertrue in ℳ. Then 𝜓 is true in the classical model M ∈ ℳ in which 𝜑 → 𝜓

is true, and so 𝜓 is subtrue in ℳ. To see that (MP2) / 𝑋 = 𝑅𝑉 𝑇, 𝑌 = 𝑃𝑉 𝑇 is valid, take an

arbitrary Sv-model ℳ such that 𝜑 → 𝜓 is supertrue in ℳ and 𝜑 is subtrue in ℳ. Then 𝜓 is true

in the classical model M ∈ ℳ in which 𝜑 is true, and so 𝜓 is subtrue in ℳ. To see that (MP1) /

𝑋 = 𝑅𝑉 𝑇, 𝑌 = 𝑃𝑉 𝑇 is invalid, consider the classical models M1 and M2 such that 𝜑 and 𝜓 are

true in M1 but false in M2. Then 𝜑→ 𝜓 is true in both M1 and M2, and so 𝜑→ 𝜓 is supertrue in

the Sv-model {M1,M2} and 𝜑 is subtrue in {M1,M2}, but 𝜓 isn’t supertrue {M1,M2}. To see

that (MP2) / 𝑋 = 𝑃𝑉 𝑇, 𝑌 = 𝑅𝑉 𝑇 is invalid, consider the classical models M1 and M2 such that

𝜑 is true in both M1 and M2 and 𝜓 is true in M1 but false in M2. Then 𝜑 → 𝜓 is true in M1 but

false in M2, and so 𝜑→ 𝜓 is subtrue in the Sv-model {M1,M2} and 𝜑 is supertrue in {M1,M2},

but 𝜓 isn’t supertrue {M1,M2}.
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Part II

Taming the Undecidable
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Chapter 3

Counterpossibles in Science: The Case of

Relative Computability

3.1 Introduction

It is a well known feature of the orthodox possible-worlds approach to counterfactual condition-

als due to Robert Stalnaker (1968) and David Lewis (1973) that it makes all counterfactuals with

metaphysically impossible antecedents come out vacuously true. Many have pointed out that this

so-called vacuity thesis runs counter to our initial judgments about the truth-values of many such

counterpossibles. Some of the proposed counterexamples to the vacuity thesis concern philosophi-

cal questions such as what would be the case if the laws of metaphysics had failed or if certain moral

principles had been different, while others are about more ordinary topics such as whether anyone

would’ve cared if Hobbes had squared the circle or what I would do if I were you.1 Against such

proposed counterexamples, Timothy Williamson (2007; 2010; 2015) has recently mounted a fresh

defense of the vacuity thesis by making a strong case for its many theoretical virtues.2

In this chapter, I discuss a new source of trouble for the orthodoxy: relative computability theory.

Textbook writers often introduce relative computability with the help of counterfactual conditionals.

For example, Martin Davis writes that relative computability theory is concerned with the following:

1See Nolan (1997) and Brogaard and Salerno (2013) for influential papers and Berto (2013, §5.1) for more references.
2See Berto et al. (2017) for a detailed discussion of Williamson’s arguments.
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We may ask, of a given problem 𝑃 ,

If we could solve 𝑃 , what else could we solve?

And, we may ask,

The solutions to which problems would also furnish solutions to 𝑃?

(Davis, 1958, 179, emphasis in the original)

After providing some background on relative computability theory, I will argue that, just like

other mathematical facts, the facts uncovered by relative computability theorists are metaphysically

necessary. So, on the assumption that 𝑃 is not in fact solvable, the vacuity thesis would have it that

any answer to Martin’s first question is true.

But the vacuity thesis doesn’t just find counterexamples in the way relative computability theo-

rists talk about their discipline in ordinary language. I will argue that non-vacuous counterpossibles

play a central role in how relative computability theory is developed in canonical textbooks on the

subject. The vacuity thesis thus threatens to undermine how practitioners of an established science

think about their discipline.

Instead of abandoning relative computability theory in light of this, I will instead draw from

its resources to patch up the orthodoxy about counterfactuals. Like previous attempts to revise the

theory of counterfactuals, I will present a model theory that makes use of so called “impossible

worlds,” world-like entities where metaphysical impossibilities can hold.3 However, unlike earlier

attempts, which have run into trouble when it comes to expanding Lewis’ comparative similarity

relation to these new entities,4 I show that with the right choice of the set of “worlds,” a comparative

similarity relation immediately falls out of the mathematical theory of relative computability that

gives the right results for counterfactuals about this theory. Questions remain about how to interpret

my proposed model theory, especially the “worlds” involved. But given the continuity with the

comparative similarity models for ordinary counterfactuals, these questions become tractable.

3See again Berto (2013) for an overview of previous proposals.
4See Baras (MS) for a discussion of Brogaard and Salerno’s (2013) proposal.
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3.2 Background

Computability theory studies what sets of natural numbers are algorithmically decidable (or “solv-

able,” as in the above quote by Davis). By algorithmic decidability we mean that a computing agent

could, in principle, decide for any natural number whether it is a member of the set by mechanically

following a completely explicit algorithm that terminates in the right answer in finite time and after

finitely many steps. An example of an algorithm is the truth table method, which allows us to decide

for any sentence of the propositional calculus whether it is a tautology. The sets of natural numbers

whose algorithmic decidability or lack thereof is of particular interest are those that represent cer-

tain well-formed problems. The validity problem (sometimes simply called the decision problem) is

the set that encodes the sentences of the predicate calculus that are logically valid.5 To say that the

validity problem is algorithmically decidable would be to say that there is an algorithm that would

allow us to decide for any number representing a sentence of the language of the predicate calculus

whether it is a member of the set of the validity problem and so whether it is logically valid. It was

a significant discovery by Alonzo Church (1936a; 1936b) and Alan Turing (1936) that the validity

problem is not algorithmically decidable. Other sets that aren’t algorithmically decidable are the

the halting problem, which encodes the problem of deciding whether a computer will eventually

halt when it’s given a certain input, and arithmetical truth, which encodes the true sentences of the

language of arithmetic.

As we already saw, relative computability theory is introduced by Martin Davis using coun-

terfactuals. Similarly, Hartley Rogers says (where to calculate the characteristic function of a set

amounts to algorithmically deciding the set):

Intuitively, 𝐴 is reducible to 𝐵 if, given any method for calculating [the characteris-

tic function of B], we could then obtain a method for calculating [the characteristic

function of A.] (Rogers, Jr., 1967, 127, emphasis in the original)

And, for a more recent example, Herbert Enderton writes:

5For the sake of simplicity, I am straining traditional usage a bit here. Traditionally, the decision problem was so-called
because it called for an algorithm for deciding membership in the set containing the logical validities; it wasn’t the set
itself that was called ‘the decision problem.’ See Mancosu and Zach (2015).
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On the one hand, we might be able to show that if, hypothetically speaking, we could

somehow decide membership in𝐵, then we could decide membership in𝐴. This would

lead us to the opinion that 𝐴 is no more undecidable than 𝐵 is. (Enderton, 2011, 121)

The study of relative computability was spearheaded by Turing (1939) and Emil Post (1944)

and later developed into a mature mathematical discipline using the usual extensional tools of set

theory and first-order logic by the likes of Richard Friedberg, Stephen Kleene, Albert Muchnik,

Rózsa Péter, and Post.6 In formal regimentations of mathematics, the only conditional available

is of course the material conditional. We know now that counterfactual conditionals behave very

differently from material conditionals, but it wasn’t until a few years after Turing’s and Post’s early

papers appeared that counterfactual conditionals were identified as interesting objects of study.7

And it took another twenty years after that until the now standard possible worlds model theory for

counterfactuals was worked out by Robert Stalnaker and David Lewis.8 But with hindsight, we can

ask the kind of questions that we will be presently concerned with.

A basic result of relative computability theory is that the halting problem is reducible to the

validity problem.9 This fact can be expressed as follows:

(valid > halt) If the validity problem were algorithmically decidable, then the halting problem

would also be algorithmically decidable.

By contrast, arithmetical truth is not reducible to the validity problem. This means that the following

is false:

(valid > arith) If the validity problem were algorithmically decidable, then arithmetical truth would

also be algorithmically decidable.

How do we know this? And how, for that matter, do we know that the validity problem, the

halting problem, and arithmetical truth aren’t algorithmically decidable? We know all of this due to
6See Soare (1996, 2009) for historical overviews of and Soare (2016) for an up-to-date introduction to the theory of
relative computability. I will appeal to facts proven in Soare (2016) throughout here. Note that Soare (1996) initiated the
change in usage from ‘recusion theory’ to ‘(relative) computability theory.’

7See Chisholm (1946) and Goodman (1947).
8See Stalnaker (1968), Stalnaker and Thomason (1970), and Lewis (1971, 1973). See also Todd (1964) and Sprigge
(1970) for early statements of ideas similar to Stalnaker’s and Lewis’.

9As it happens, the validity problem is also reducible to the halting problem; but the reducibility relation isn’t in general
symmetrical.
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a combination of mathematical theorems and two principles connecting the mathematical apparatus

with the notions of algorithmic decidability and reducibility. Take first the fact the validity problem,

the halting problem, and arithmetical truth aren’t arithmetically decidable. Church and Turing es-

tablished certain mathematical theorems that get us halfway towards establishing this fact. It will be

most illuminating to follow Turing’s presentation of the result. Turing introduced a class of abstract

machines that are now called Turing machines. He then showed that the assumption that, say, the

halting problem is decidable by a Turing machine leads to a contradiction, akin to the contradiction

Cantor derived from the assumption that the cardinality of the natural numbers is equal to the cardi-

nality of the real numbers. Therefore, there isn’t a Turing machine that decides the halting problem,

or the validity problem or arithmetical truth for that matter. This is the mathematical part. The other

part involves what is nowadays called the Church-Turing thesis. This thesis says that the sets that are

algorithmically decidable in the informal sense, i.e. the sets that are decidable by any algorithmic

means, are just the sets that are decidable by a Turing machine. Interpreted most conservatively,

this thesis claims that Turing machines are an adequate model of algorithmic decidability.10 Putting

the Church-Turing thesis together with the fact that there’s no Turing machine that decides the halt-

ing problem, the validity problem, or arithmetical truth gives us that these sets are algorithmically

undecidable.

We know that the halting problem is reducible to the validity problem but arithmetical truth isn’t

for similar reasons, but with a twist. To establish these results, we need oracle Turing machines. An

oracle Turing machine is just like a Turing machine, except that it has access to an “oracle.” Oracles

can be thought of as external storage devices that contain the correct answer to any “yes” or “no”

question about a particular decision problem we may ask them. For example, an oracle for the va-

lidity problem contains, for arbitrary sentences of the predicate calculus, the answer to the question

whether they are logically valid or not. Think of an oracle Turing machine as just like an ordinary

Turing machine, except that it has an extra port where we can plug in an oracular storage device.11

We can now show that an oracle Turing machine with an oracle for the validity problem can algo-

10See Shapiro (1981) and Rescorla (2007) for discussions of different interpretations of the thesis.
11Of course, talk of such storage devices is purely metaphorical; recall that Turing machines are abstract objects instead

of concrete computing devices. So strictly speaking, an oracle is the abstract analogue of a concrete storage device.

81



rithmically transform the answers it gets about the validity problem into answers about the halting

problem. That’s how the halting problem is Turing reducible to the validity problem. However, even

if the oracle Turing machine can ask the oracle questions about the validity problem, it won’t be

able to transform these answers into answers about arithmetical truth. That’s how arithmetical truth

isn’t Turing reducible to the validity problem. To get from these results, which can be stated and

proved purely mathematically, to the results that the halting problem is reducible simpliciter to the

validity problem but that arithmetical truth isn’t, we need an analogue of the Church-Turing thesis.

This thesis, which is variously called the Post-Turing thesis or the relativized Church-Turing thesis,

says that a set 𝐵 is reducible simpliciter to a set 𝐴 iff 𝐵 is Turing reducible to 𝐴.12

But what is this relation of reducibility simpliciter? We may understand the claim that 𝐵 is re-

ducible to 𝐴 as saying that if 𝐴 were algorithmically decidable, then 𝐵 would be algorithmically

decidable—hence the counterfactual locutions in the above quotes from Davis, Rogers, and Ender-

ton. In fact, I will argue that this is the way of understanding the claim. This understanding runs into

philosophical trouble, however. For it is plausible that facts about what is and isn’t algorithmically

decidable are metaphysically necessary. The mathematical theorems involved in showing that none

of our three sets can be decided by a Turing machine hold of course as a matter of metaphysical

necessity. That it’s metaphysically necessary that none of the sets are algorithmically decidable then

follows by the fact that the Church-Turing thesis is metaphysically necessary.

What reasons do we have for thinking that the Church-Turing thesis is metaphysically neces-

sary? Note that the limits of computation that Church and Turing discovered aren’t merely techno-

logical. Church and Turing didn’t merely show that we haven’t built the right kind of computer or

discovered the right kind of algorithm to decide the validity problem. In fact, Church and Turing’s

result predates the modern computer. Before anyone had built anything resembling a modern com-

puter, Church and Turing had already identified computational problems that no computer could

ever decide. And since the invention of the first computer, all technological innovations in comput-

ing, including innovations involving quantum computers that are yet to be realized,13 have merely

lead to an increase in computing speed and efficiency; they never have and never will lead to an

12See Soare (2009, 382) and Cooper (2004, 142).
13See Piccinini (2015, §4.3).
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improvement in what can be algorithmically decided. Furthermore, the limits of computation that

Church and Turning discovered also aren’t merely limits imposed by the actual laws of nature.

Church and Turing don’t argue for their conclusion that the validity problem isn’t algorithmically

decidable by showing that the laws of nature rule out a computer that decides the validity problem.14

This suggests that the degree to which it’s impossible to algorithmically decide the validity problem

is stronger than both technological or nomic impossibility. This suggests, but doesn’t yet prove, that

the Church-Turing thesis is indeed metaphysically necessary.15

There is also a direct argument for the metaphysical impossibility of the claim that, say, the

validity problem is algorithmically decidable. To say that the validity problem isn’t algorithmically

decidable is just to say that there isn’t an algorithm to decide the validity problem. But algorithms

are abstract objects.16 As such, they are the kinds of thing that either exist of metaphysical necessity

or else don’t exist at all; and if they don’t exist, then it’s metaphysically impossible that they exist.

So if there isn’t an algorithm to decide the validity problem, then it’s metaphysically impossible

that there exists such an algorithm, and so it’s metaphysically impossible that the validity problem

is algorithmically decidable. Thus, (valid > halt) and (valid > arith) are indeed counterpossibles.

The argument just presented relies on certain assumptions about metaphysical possibility and

the modal metaphysics of abstracta, assumptions that may be doubted. Nevertheless, the assump-

tions are perfectly in line with orthodox thinking about these issues. So it follows from orthodox

thinking about metaphysical possibility and the modal metaphysics of abstracta that it’s metaphysi-

cally impossible that the validity problem is algorithmically decidable.17

It is important to be clear on what I am and am not claiming. I’m not claiming that it’s meta-

physically impossible to determine the members of the set corresponding to the validity problem.

It is entirely compatible with everything I’ve said that some deity would be able to tell us for any

natural number whether it is a member of that set. But if what I’ve argued for is right, then even

14I skip over some complications here; see Piccinini (2015, §4) for a more detailed discussion. In particular, I interpret
the Church-Turing thesis as what Piccinini calls the mathematical Church-Turing thesis; I take this to be historically
accurate. Note also that I discuss the issue of hypercomputation in section 3.4.

15McGee (2006, 111), one of the very few discussions of the modal status of algorithmic decidability, concurs.
16See Knuth (1966).
17These considerations also suggest that Cleland’s (1993) thinking about the Church-Turing thesis is even more revision-

ary than Cleland herself suggests.
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such a deity wouldn’t be able to algorithmically decide the validity problem, because there is no

algorithm that the deity could rely on. But since the antecedent of (valid > halt) and (valid > arith)

claims that the validity problem is algorithmically decidable, the metaphysically possible existence

of such a deity wouldn’t pose a threat to my claim that these counterfactuals are indeed counterpos-

sibles. Of course, given my concession that such a deity may be metaphysically possible, it may be

worried immediately that the status of these counterfactuals as counterpossibles aren’t significant,

for perhaps we can reinterpret counterfactuals about relative computability as about such deities.

However, things aren’t that simple, as the extended argument in section 3.4 will show. I’ll argue

there that such a reinterpretation and many more like it would amount to a revision of what relative

computability theorists take themselves to be doing.

But before we move on, let’s state precisely what the present challenge to the Stalnaker-Lewis

approach to counterfactuals is: we have counterfactuals about relative computability, such as (valid >

halt) and (valid > arith) above, some of which appear to be true and some of which appear to be

false, but we also have that these counterfactuals have metaphysically impossible antecedents. Now,

the usual way of understanding the Stalnaker-Lewis approach to counterfactuals is as follows: a

counterfactual pIf 𝜑 had been the case, then 𝜓 would’ve been the caseq is true at a metaphysically

possible world 𝑤 iff all metaphysically possible worlds sufficiently similar to 𝑤 where 𝜑 is true

are such that 𝜓 is true in them as well. Since there are no metaphysically possible worlds where

the validity problem is algorithmically decidable, any counterfactual that starts with ‘If the valid-

ity problem were algorithmically decidable. . . ’ is vacuously true. Given that with (valid > arith)

we have such a counterfactual that appears to be false, we seem to have a counterexample to the

semantics just sketched. And not just that: given that (valid > halt) appears to be true, we also im-

mediately see that we can’t just change the orthodoxy so that counterpossibles are all false.18 And

given that the halting problem and arithmetical truth are algorithmically decidable at all the same

metaphysically possible worlds—namely none—, we also have a counterexample to the part of or-

thodoxy that says that taking a counterfactual sentence and replacing any of its subsentences with

a sentence that’s true at all the same metaphysically possible worlds yields a necessarily equivalent

18See Kment (2014, 25, 220) for a theory that treats all counterfactuals with logically impossible antecedents as vacuously
false.
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sentence.

I said that (valid > arith) appears to be false and that (valid > halt) appears to be true. In the

next two sections, I argue that these appearances aren’t deceiving: we ought to understand counter-

factuals about relative computability literally; in fact, they play a central role in the definition of the

reducibility relation.

3.3 Philosophical humility

Researchers in relative computability theory are authorities on the reducibility relation. However,

they are generally not experts on the semantics of counterfactuals.19 So the mere fact that they are

disposed to assert some counterfactuals about relative computability and deny others doesn’t inde-

feasibly undermine the orthodoxy about counterfactuals. On the face of it, this fact is simply another

piece of evidence that needs to be weighed against the considerations that speak in favor of the or-

thodoxy, to be filed away with the well-known fact that ordinary speakers are disposed to assert

some ordinary counterpossibles and deny others. Perhaps we can hold on to the orthodoxy and ex-

cuse relative computability theorists’ dispositions by appealing to similar considerations with which

we may excuse the dispositions of ordinary speakers. Timothy Williamson (2015, §4), for example,

develops an error theory about the dispositions of ordinary speakers. So perhaps we can simply co-

opt Williamson’s error theory and conclude that counterfactuals about relative computability pose

no threat to the orthodoxy, especially in light of the considerable theoretical pressures to hold on to

the orthodoxy, also discussed by Williamson (2015, §2).

However, I am going to argue now and in the next section that this response on behalf of the

orthodoxy runs counter to a certain kind of philosophical humility. This philosophical humility says

that whenever an established mathematical or scientific discipline purports to study a certain phe-

nomenon, we shouldn’t give in to philosophical considerations that suggest that there is no such

phenomenon to be studied.20 Relative computability theory, which is certainly an established math-

ematical discipline, purports to study the reducibility relation. In the previous section, I mentioned

19Thanks to Alex Byrne for helpful discussion here.
20This attitude is related to Lewis’ (1991, §2.8) Credo about set theory and Shapiro’s (1997, ch. 1) “philosophy-last”

approach to philosophy of mathematics.
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that a way of understanding the claim that 𝐴 is reducible to 𝐵 is as saying that 𝐴 would be algo-

rithmically decidable if 𝐵 were algorithmically decidable. I now want to argue that this is the way

of understanding the reducibility relation. If that’s right, and if the orthodoxy about counterfactuals

is correct, then the reducibility relation holds between any two algorithmically undecidable sets. It

would also mean that 𝐴 isn’t reducible to 𝐵 iff 𝐵 is algorithmically decidable and 𝐴 isn’t. But then

the reducibility relation would carve out the same distinction among sets of natural numbers that

the property of algorithmic decidability does. The study of the reducibility relation would thus be-

come nothing other than the study of algorithmic decidability, and so relative computability theory

is robbed of its own subject matter. In light of this fact, philosophical humility recommends that we

reject the vacuity thesis.

Some might argue that philosophical humility should be understood slightly differently. The

philosophy of mathematics that emerges from Stephen Yablo’s Aboutness (2014, esp. §5.3) is a

case in point. Astronomers study, among other things, the number of planets. However, nominalists

think that numbers don’t exist. So nominalism threatens to rob astronomy of one of its subjects.

Yablo, who is a nominalist, agrees that astronomers speak falsely when they say that the number of

planets in our solar system is eight. However, Yablo thinks that these astronomers nonetheless speak

correctly, because what they say is partially, and non-vacuously, true—it has a true part, the part that

is about the concrete world. Thus, with Yablo’s theory of partial truth, we can hold on to a kind of

philosophical humility, diminished though it may be, in allowing that that there is a phenomenon

that astronomers study: how things stand concretely with the planets. Likewise, perhaps we can

extract some non-vacuous core from the claim that 𝐴 would be algorithmically decidable if 𝐵 were

algorithmically decidable, even when 𝐴 and 𝐵 are both algorithmically undecidable. This core

would then be the proper phenomenon that relative computability theorists study.

Unfortunately though, Yablo’s theory doesn’t help in rescuing the orthodoxy. In order for this

theory to yield the result that it’s partially true that the number of planets is eight, Yablo needs there

to be a possible world where the astronomers’ statement is fully true, i.e. a world where numbers

exist. Now, think about how we would develop a Yablovian theory of counterfactuals about relative

computability. We would say that the statement (valid > halt) is vacuously true, but its assertion
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is correct, perhaps because it has a non-vacuously true part that talks about certain structural rela-

tionships between the validity problem and the halting problem. But now if we wanted to follow

Yablo’s theory of partial truth, we would need there to be a possible world where the statement

is fully true, and non-vacuously so. In such a world, we would need there to be a possible world

where the validity problem is algorithmically decidable. So it looks like our Yablovian theory would

require the claim that the validity problem is algorithmically decidable to be possibly possibly true.

Now, it’s true that unless we help ourselves to the characteristic axiom of the modal logic 𝑆4, ‘pos-

sibly, possibly, the validity problem is algorithmically decidable’ isn’t quite the same as ‘possibly,

the validity problem is algorithmically decidable.’ But it also isn’t so far removed from it that we

can be said to have made genuine progress on behalf of the orthodox approach to counterfactuals.

What’s more, both Stalnaker and Lewis as well as the the model theory I will present later validate

the 𝑆4 axiom.

In sum, philosophical humility does indeed recommend that we reject the orthodoxy about coun-

terfactuals, on the assumption that the counterfactual way of understanding the reducibility relation

is indeed the way of understanding it. I now turn to a defense of this latter claim.

3.4 Understanding and misunderstanding reducibility

An immediate reason for thinking that the counterfactual way of understanding the reducibility re-

lation is indeed the way of understanding it is that that’s exactly how Davis, Rogers, and Enderton

characterize the relation in our quotes above (see pages 78–79). But of course, this needn’t be deci-

sive. Perhaps we want to say that when relative computability theorists assert (valid > halt), what

they’re really saying is . Let’s look at seven proposals of how to fill in this blank. The

first five are instances of quite general proposals of how to respond to purported counterexamples

to the vacuity thesis whereas the final two are specific proposals about our counterfactuals about

relative computability. I will argue that none of these proposals work. This suggests that when rela-

tive computability theorists assert (valid > halt), they really mean it, which in turn suggests that the

reducibility relation is indeed to be understood in terms of counterfactuals.
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Idioms. Here’s a proposal for filling in the blank above: when relative computability theorists

assert (valid > halt), what they’re really saying is that the halting problem is reducible to the

validity problem; the counterfactual locution (valid > halt) and its variants in the quotes from Davis,

Rogers, and Enderton are merely idiomatic ways of gesturing towards the notion of reducibility.

Perhaps the counterfactual locution is particularly evocative of some of the ideas behind the notion

of reducibility, but sentences such as (valid > arith) aren’t to be taken literally.

However, counterfactuals about relative computability don’t behave linguistically the way id-

ioms do. In general, idioms, though syntactically complex, are not semantically complex. Take the

idiom ‘to keep an eye out for.’ While the sentence ‘I’m keeping an eye out for you’ is perfectly

linguistically appropriate, its cleft analogue ‘It’s an eye that I’m keeping out for you’ strikes us

as odd. This despite the fact that with non-idiomatic expressions, a cleft sentence is very close in

meaning to its non-cleft variant; viz. ‘I gave her an umbrella’ and ‘It’s an umbrella that I gave her.’

The reason for this is that the meaning of ‘to keep an eye out for,’ unlike the meaning of ‘to give

an umbrella to,’ is not derived compositionally from the meanings of its parts. Rather, its meaning

is directly lexically encoded by the whole expression. This means that, on the level of semantics,

‘to keep an eye out for’ is a single unit that can’t be broken up by, say, cleft constructions.21 In

contrast, counterfactuals about relative computability interact with other sentence constructions just

like ordinary counterfactuals do. For example, not only is (valid > arith) false, but the following

where we add a negation is true:

(valid > arith) (Even) if the validity problem were algorithmically decidable, arithmetical truth

would (still) not be algorithmically decidable.22

We will see more examples of how these counterfactuals interact with quantifiers and conjunction

shortly. From this, it emerges that the compositional behavior of counterfactuals about relative com-

21Although this is the received view of the semantics of idioms, it has been challenged: see Nunberg et al. (1994) and
Egan (2008). If the received view is in fact false, then the present propoosal collapses into the one involving the idea of
glosses discussed next.

22Note that (valid > arith) is only equivalent to the negation of (valid > arith) if we assume conditional excluded
middle, which, as we’ll see later, is not in general valid. Note also that I assume that ‘even’ and ‘still’ don’t make any
truth-conditional contributions to the counterfactuals in which they occur, which is why I have put them in parentheses;
see Bennett (2003, §§102–7) for a defense of this assumption.
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putability is just like that of ordinary counterfactuals, so that they can’t be merely idiomatic ways

of speaking.

Glosses. A related option would be to treat the counterfactuals used by relative computability

theorists as imperfect glosses or paraphrases of claims about reducibility. It may be thought that the

case is analogous to the case of causation.23 When asked to explain what we mean by ‘causation,’

we make free use of counterfactual locutions. But, so the proposal goes, the failure of the program of

analyzing causation in terms of counterfactuals should teach us that we shouldn’t take counterfactual

locutions as they appear in writings on relative computability too seriously. So, on this proposal,

counterfactuals don’t characterize or define the reducibility relation, they merely illuminate it.

There are two problems with this analogy with causation. First, the problem with counterfac-

tual analyses of causation is that they notoriously either over- or undergenerate cases of genuine

causation. Things are different in the case of relative computability. If we bracket the violations of

the vacuity thesis—which it is fair to bracket, since the status of the vacuity thesis is the very thing

that’s at issue—, counterfactual glosses on the notion of reducibility seem to get things exactly right.

Secondly, we seem to have an understanding of causation that’s independent of our understand-

ing of counterfactuals. In fact, several authors have recently argued that we should give a semantics

for counterfactuals in terms of causal models, the latter of which treat causation as a primitive

notion.24 In contrast, it’s implausible that the notion of reducibility that’s at the core of relative

computability theory is primitive. We simply don’t have a pretheoretical notion of reducibility that’s

not understood by way of some auxiliary notions. My present claim is that reducibility is under-

stood in terms of counterfactuals, and that some of these counterfactuals are counterpossibles. It

would be entirely mysterious how such an understanding could be achieved if the vacuity thesis

were correct. Of course, whether my claim about how we understand reducibility is true will in

part depend on whether there are ways of understanding the reducibility relation that don’t involve

counterpossibles. I will discuss some potential definitions presently.

23Thanks to Bradford Skow for suggesting this analogy and to Justin Khoo and an anonymous referee for urging me to
give this proposal more serious consideration.

24See Briggs (2012) and the references therein.
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Conceptual possibility. One tempting response to counterpossibles that appear to be non-trivial is

to interpret them as talking about what’s conceptually possible. The notion of conceptual possibility

is a famously fraught one, since it is tied to the notions of apriority and analyticity. 𝜑 is sometimes

said to be epistemically possible iff p¬𝜑q isn’t knowable a priori, and sometimes it’s said that 𝜑 is

epistemically possible iff p¬𝜑q isn’t true in virtue of meaning. We needn’t be concerned with the

details here. Let’s just grant that there is a notion of conceptual possibility according to which it’s

conceptually possible that water is an element and that Ms. Marvel, the heroine of the eponymous

comic book series, isn’t Kamala Khan. A conceptually possible world can then be defined as a max-

imal consistent set of sentences that includes all a priori knowable or analytic truths.25 Conceptually

possible worlds may be used to give a model theory for counterfactuals such as the following:

(water) If water had been an element, then water splitting would’ve been impossible.

(marvel) If Ms. Marvel hadn’t been Kamala Khan, we would’ve seen them together at some point

or another.

Since the sentences ‘Water isn’t an element’ and ‘Ms. Marvel is Kamala Khan,’ though true, are nei-

ther a priori knowable nor analytic, there will be conceptually possible worlds where the antecedents

of (water) and (marvel) are true. Note that it’s crucial for this general strategy to be promising that

the building blocks out of which we construct the worlds are sentences, or perhaps Fregean senses,

and not something more worldly such as Russellian propositions. The Russellian proposition corre-

sponding to ‘Ms. Marvel is Kamala Khan’ is the same as the Russellian proposition corresponding

to the logical truth ‘Ms. Marvel is Ms. Marvel,’ and so there isn’t any consistent set of Russel-

lian propositions that contains the Russellian proposition corresponding to ‘Ms. Marvel is Kamala

Khan.’26

Given the promise of conceptually possible worlds constructed out of sentences in giving a

model theory for (water) and (marvel), it’s tempting to also use them to give a model theory for

counterfactuals about relative computability. After all, it’s plausible that it’s conceptually possible
25I assume here that failures of the laws of logic aren’t conceptually possible. This is a harmless assumption in the present

context since we’re not concerned with counterfactuals with explicit violations of the laws of logic in the antecedent.
See Brogaard and Salerno (2013) for an account along the lines I’m imagining here that dispenses with this assumption.

26I am grateful to an anonymous referee for pressing me to be clearer on this.
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that the validity problem is algorithmically decidable.27 However, conceptual possibility notoriously

run into difficulties when it comes to quantifying-in.28 Indeed, it is commonly assumed that it is

illegitimate to quantify into sentential contexts that involve conceptual possibility. But now note that

there are certain results about relative computability that require quantifying-in when we express

them using counterfactuals. Take Gerald Sacks’ (1964) Density Theorem. It states that the Turing

reducibility relation is dense.29 Where 𝐴 ≤𝑇 𝐵 says that 𝐴 is Turing reducible to 𝐵 and 𝐴 <𝑇 𝐵

says that 𝐴 ≤𝑇 𝐵 and 𝐵 �𝑇 𝐴, this theorem can be expressed as follows: for any two sets 𝐴,𝐵, if

𝐴 <𝑇 𝐵, there is a set 𝐶 such that 𝐴 <𝑇 𝐶 <𝑇 𝐵. Using the Post-Turing thesis, we can express

this theorem as follows:

(sacks) For any 𝐴,𝐵, if it’s the case that 𝐴 would be computable if 𝐵 were computable but not

vice versa, then there’s some 𝐶 such that: 𝐴 would be computable if 𝐶 were computable but

not vice versa and 𝐶 would be computable if 𝐵 were computable but not vice versa.

So we see that quantifying-in is very natural for counterfactuals about relative computability. This

sets these counterfactuals apart from the kinds of examples commonly discussed in the literature on

counterpossibles.30

Note that the present claim isn’t that the fact that sentences such as (sacks) involve quantifica-

tion into counterfactuals prohibits the use of any world-like entities in their analysis. In fact, the

model theory I will present later also involves world-like entities. The present claim is just that the

presence, and indeed indispensability, of quantifying-in in some counterfactuals about relative com-

putability calls for more elaborate resources than just conceptually possible worlds qua maximal

consistent sets of sentences.

27This is assuming, perhaps contrary to Smith (2007, §35), Sieg (2008), and Kripke (2012), that the Church-Turing thesis
isn’t a conceptual truth. If you disagree, then so much the worse for the present proposal on behalf of the orthodoxy.

28These difficulties are most famously noted by Quine (1953). Yalcin (2015) develops a Fregean compositional semantics
for quantifying into belief contexts. It’s not obvious that his ideas can be adapted to the present case.

29Strictly speaking, Sacks shows that the relation on the Turing degrees is dense. That the Turing reducibility relation is
dense is an immediate corollary. For ease of exposition, I’ll put off discussion of Turing degrees until the next section.

30For example, Brogaard and Salerno (2013) don’t even tell us how to extend their model theory to a language with
quantifiers.
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Semantic ascent. Perhaps counterfactuals about relative computability are best understood as

making meta-linguistic remarks about the predicate ‘algorithmically decidable’: (valid > halt) says

that if the extension of ‘algorithmically decidable’ had included the validity problem, then it would

also have included the halting problem. In discussing a proposal like this, Berit Brogaard and Joe

Salerno (2013) assert that they “highly doubt that there is an elegant and convincing pragmatic story

to be told” about why we would ascend semantically in such a way (p. 645). Contrary to this, I sub-

mit that we can tell at least a partial story using Stalnaker’s (1978) apparatus of diagonalization.

Without going into too many details, this apparatus could be extended quite straightforwardly to

predict that counterfactuals with impossible antecedents receive a non-standard reading on which

they make meta-linguistic remarks such as the above.

Nevertheless, this story would remain incomplete. Suppose for simplicity that we give a simple

Stalnakerian semantics for the reinterpreted counterfactual: the closest world where the extension

of ‘algorithmically decidable’ includes the validity problem is such that at that world, the extension

also includes the halting problem. We may ask why this would be so. Surely, the extension of

‘algorithmically decidable’ could have differed in all sorts of ways. For example, the minimal way

of changing the extension so as to include the validity problem would be to just add the validity

problem and nothing else. Surely, it isn’t a brute fact about the predicate ‘algorithmically decidable’

that this minimal change isn’t what happens at the closest world. The reason as to why this minimal

change is ruled out must lie in the fact that the halting problem is reducible to the validity problem.

But now we’re taking the notion of reducibility as more basic than the counterfactuals in terms of

which we had originally defined that notion. So now it looks like the best we can do to explain why

the closest world where the extension of ‘algorithmically decidable’ includes the validity problem

is such that the extension also includes the halting problem is by appealing to the truth of (valid >

halt). This suggests that we have a better grip on the literal interpretation of (valid > halt) than on

its meta-linguistic reinterpretation.

The reductio analogy. Maybe we can understand counterfactuals about relative computability

along the lines of counterfactuals found in informal reductio proofs.31 Consider Euclid’s proof that
31Thanks to Stephen Yablo for pushing me to think harder about this strategy.

92



there are infinitely many primes. We start by supposing that there are exactly 𝑛 many primes. Let

𝑝1, . . . , 𝑝𝑛 be them. It follows that there will be a prime 𝑝 that divides 𝑝1×· · ·×𝑝𝑛+1. The crucial

next step in the proof can then be put in counterfactual terms:

(euclid) If 𝑝 were one of 𝑝1, . . . , 𝑝𝑛, then 𝑝 would divide (𝑝1 × · · · × 𝑝𝑛 + 1)− 𝑝1 × · · · × 𝑝𝑛.

Since nothing divides (𝑝1 × · · · × 𝑝𝑛 + 1) − 𝑝1 × · · · × 𝑝𝑛 = 1, we conclude by modus tollens

that 𝑝 isn’t one of 𝑝1, . . . , 𝑝𝑛, and so that 𝑝1, . . . , 𝑝𝑛 aren’t all of the primes after all. Now, there is

some debate over whether counterfactuals such as (euclid) pose a serious challenge to the standard

approach to counterfactuals.32 Suppose they don’t. And suppose that counterfactuals such as (euclid)

are best understood either as material conditionals or as strict conditionals. This may be particularly

plausible in cases where the material conditional is a logical truth, for in that case a normal modal

logic proves the corresponding strict conditional, and both Stalnaker’s and Lewis’ counterfactual

logics then prove the corresponding counterfactual. In any case, whatever the details of the story may

be that we tell about (euclid), the present proposal on behalf of the orthodoxy suggests that we treat

counterfactuals about relative computability along the same lines. (valid > halt) and (valid > arith),

the proposal goes, are merely disguised material or strict conditionals.

The problem with this proposal is that counterfactuals about relative computability don’t behave

like material or strict conditionals. The reason why Stalnaker and Lewis developed their model

theory for counterfactuals is that natural language counterfactuals fail to conform to antecedent

strengthening, which is valid for material and strict conditionals. Focusing on the case of strict

conditional, this principle reads:

�
(︀
𝜑→ 𝜓

)︀
�
(︀
(𝜑 ∧ 𝜒) → 𝜓

)︀
This rule seems adequate for (euclid). No matter what else we put in its antecedent to strengthen

it, the resulting sentence still seems true, though perhaps misleading.33 However, there are coun-

terexamples to antecedent strengthening in the case of counterfactuals about relative computability.

Consider:
32Nolan (1997, 537–8) doesn’t think so whereas Dutilh Novaes (2016) does. See also Williamson (2015, §3) for discus-

sion.
33If you disagree, then so much the worse for the present proposal on behalf of the orthodoxy.
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(valid > arith) (Even) if the validity problem were algorithmically decidable, arithmetical truth

would (still) not be algorithmically decidable.

(valid&arith > arith) (Even) if the validity problem and arithmetical truth were algorithmically

decidable, arithmetical truth would (still) not be algorithmically decidable.

On the strict conditional interpretation, the inference from (valid > arith) to (valid&arith > arith)

is an instance of antecedent strengthening. But (valid > arith) is true and (valid&arith > arith) is

false.

In response, it may be suggested that the negation in (valid > arith) and (valid&arith > arith)

is a wide-scope negation so that (valid > arith) and (valid&arith > arith) become ‘¬�
(︀
𝑉 → 𝐴

)︀
’

and ‘¬�
(︀
(𝑉 ∧ 𝐴) → 𝐴

)︀
’ respectively. Perhaps some story can be told according to which the

added ‘even’ and ‘still,’ which make (valid > arith) and (valid&arith > arith) sound more natural,

force such a wide-scope interpretation.34 On this regimentation, the inference from (valid > arith)

to (valid&arith > arith) isn’t an instance of antecedent strengthening anymore.

However, this response won’t work in full generality. For consider:

(valid > halt&arith) If the validity problem were algorithmically decidable, then the halting prob-

lem would be algorithmically decidable but arithmetical truth would (still) not be algorithmi-

cally decidable.

(valid&arith > halt&arith) If the validity problem and arithmetical truth were algorithmically de-

cidable, then the halting problem would be algorithmically decidable but arithmetical truth

would (still) not be algorithmically decidable.

As before, (valid > halt&arith) is true but (valid&arith > halt&arith) is false. But here, there is no

temptation whatsoever to treat the negation embedded within the consequent as taking wide scope

over the whole counterfactual.

What’s more, there are even counterexamples to the claim that a negation that appears unem-

bedded in the consequent of a counterfactual should always be read as taking wide scope. It follows

34Though see footnote 22.
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from Corollary 1 in §2.2 of Kleene and Post (1954) that there are sets of natural numbers 𝐴 and 𝐵

neither of which is reducible simpliciter to the other. This means that we should be inclined to reject

the following:

(A ∨ B > B) If 𝐴 or 𝐵 were algorithmically decidable, then 𝐵 wouldn’t be algorithmically decid-

able.

But now if it were mandatory to read the negation in (A ∨ B > B) as taking wide scope, we should

expect to accept the following:

(A ∨ B > B) If𝐴 or𝐵 were algorithmically decidable, then𝐵 would be algorithmically decidable.

In fact, however, we should reject (A ∨ B > B) for the same reason that leads us to reject (A ∨ B > B).35

In short, the claim that counterfactuals about relative computability are material or strict condi-

tionals is untenable.36

The primacy of oracles. Here’s a proposal on behalf of the orthodoxy that exploits the partic-

ulars of what these counterfactuals are about. The proposal is that, for example, (valid > halt) is
35 It might be worried that we are only inclined to reject (A ∨ B > B) because simplification of disjunctive antecedents

is a valid rule of inference for counterfactuals. This rule reads:

(𝜑 ∨ 𝜓)� 𝜒

(𝜑� 𝜒) ∧ (𝜓� 𝜒)

Simplification isn’t valid in Stalnaker’s and Lewis’ logics of counterfactuals, but Fine (1975a, 2012), Ellis et al. (1977),
and Santorio (2017) have argued that that’s a defect of these logics. But even accepting simplification doesn’t help in
the current situation. For, Kleene and Post’s result also leads us to reject the following.

(A > B) If 𝐴 were algorithmically decidable, then 𝐵 would be algorithmically decidable.

But then by simplififaction, we should also reject (AB > B). So we should accept the negation of (A ∨ B > B). But then
on the assumption that a negation in the consequent of a counterfactual takes wide scope, we should accept (A ∨ B > B)
as well, contrary to what we just observed.

36von Fintel (2001) and Gillies (2007) have recently argued that natural language counterfactuals only dynamically fail
to validate antecedent strengthening. Whether they are right is subject to ongoing debate; see Moss (2012) and Lewis
(2017) for criticism. But even if von Fintel and Gillies turn out to be right, their dynamic semantics is still very different
from the static strict conditional treatment that the current proposal argues is adequate for counterfactuals in reductio
proofs. For example, von Fintel and Gillies need something like a comparative similarity relation to model the evolution
of the context, whereas a static strict conditional treatment only needs an accessibility relation for the modal operators.
This also means, in turn, that if we wish to model counterfactuals about relative computability in a dynamic framework,
we could just borrow the comparative similarity relation of the model theory that I describe in the appendix.
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merely shorthand for saying that if we had an oracle for the validity problem, then we could fig-

ure out the right answer to any question we may ask about the halting problem.37 This proposal

is inspired by the way we study relative computability, namely by way of oracle Turing machines.

What may further motivate this proposal is the thought that there isn’t a clear phenomenon, relative

computability, that we have a grasp of independently of studying it with oracle Turing machines.

Perhaps all we have in relative computability theory is a mathematically rich and thus mathemati-

cally interesting structure that doesn’t correspond to anything non-mathematical. Don’t we all know

that mathematicians can become interested in just about any arcane phenomenon as long as it gives

rise to a mathematically interesting structure? What’s more, understanding counterfactuals such as

the above as merely shorthand for saying that if we had an oracle for the validity problem would

make its antecedent metaphysically possible. For certainly, the proposal continues, though perhaps

nomically impossible, oracles by themselves surely aren’t metaphysically impossible. Perhaps there

could have popped up out of nowhere an oracle that intuits facts about the validity problem. In fact,

look back at the quotes from Davis and Enderton (see pages 78 and 79). Davis’ counterfactual

begins with ‘If we could solve 𝑃 . . . ’ and Enderton’s begins with ‘If, hypothetically speaking, we

could somehow decide membership in 𝐵. . . .’ Regarding the quote from Davis, I said that to solve a

problem just is to algorithmically decide it. Perhaps I was too quick here. Perhaps Davis has in mind

a more general notion of solving, and Enderton has in mind a more general notion of deciding, one

that allows reference to metaphysically possible oracles that pop up out of nowhere. A more sober

rendition of the present proposal is the following:

(info) When relative computability theorists assert (valid > halt), what they’re really saying is that

there is an algorithm that would allow us to decide which natural numbers are members of

the halting problem if we were given complete information about which natural numbers are

members of the validity problem.38

Just like oracles are metaphysically possible, it’s metaphysically possible to be given complete

information about which natural numbers are members of the validity problem.

37Agustín Rayo suggested this to me in personal communication.
38Thanks to an anonymous referee for suggesting this formulation.
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The claim that there isn’t any phenomenon to be studied that we understand independently of

the notion of an oracle Turing machine runs directly counter to how Rogers develops the subject in

his book. In chapter 8, Rogers describes a relation of “reducibility” (the scare quotes are Rogers’)

among sets that is similar to Turing reducibility, called truth-table reducibility, but which is not de-

fined in terms of oracle Turing machines. After describing truth-table reducibility, Rogers argues

for the need for the stronger relation of Turing reducibility in chapter 9, which of course is defined

in terms of oracle Turing machines. His argument goes as follows. He produces two sets, the first of

which he argues is reducible to the second. He then shows that the first set isn’t truth-table reducible

to the second, but that it is Turing reducible to it. Rogers concludes that using truth-table reducibil-

ity to analyze what he explicitly calls the intuitive notion of reducibility would be inadequate, for

this would leave out certain sets, and that an analysis in terms of Turing reducibility fares better. To

arrive at this verdict, Rogers clearly assumes that he and his readers have an understanding of the

notion of reducibility that’s independent of talk about oracle Turing machines. And the understand-

ing of reducibility that Rogers provides is in terms of counterfactuals. In fact, looking back at his

quote reveals that it’s more difficult to read Rogers in such a way that he’s talking about something

metaphysically possible. For Rogers’ (syntactically non-standard) counterfactual begins with ‘given

any method for calculating [the characteristic function of B]. . . .’ And simply being given informa-

tion doesn’t involve any calculating; after all, calculating the validity problem is metaphysically

impossible.

Note that the present claim isn’t that Rogers assumes that his use of counterpossibles allows him-

self and his readers to gain an explicit knowledge of the full extension of the relation of reducibility

and that he then holds up this extension against the extension of Turing reducibility. Rather, the

claim is that Rogers assumes that his use of counterfactuals allows himself and his readers to have

an implicit grasp of the notion of reducibility. It may well be, and in fact it is quite plausible, that to

pin down the exact boundaries of the extension of the relation of reducibility, the notion of Turing

reducibility, which allows for a precise mathematical analysis, is indispensable. But to admit this is

consistent with claiming that counterpossibles are essential in pinning down the subject matter of
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relative computability theory.39

Regarding the analysis of reducibility in terms of (info), I don’t deny that this analysis succeeds,

just like I don’t deny that the analysis of reducibility simpliciter in terms of Turing reducibility

succeeds. However, (info) crucially appeals to the notion of a relative algorithm, i.e. an algorithm

that is given complete information about a certain set of natural numbers. While working relative

computability theorists of course have a grasp of this notion, the fact that Rogers sees the need to

introduce the notion of reducibility in terms of counterpossibles that don’t appeal to the notion of a

relative algorithm suggests that the conceptual building blocks that are required for an understanding

of relative computability theory are the notion of a non-relative algorithm on the one hand and

counterfactuals on the other. But these building blocks only succeed in facilitating an understanding

of relative computability theory if the vacuity thesis is false.

That Rogers assumes that he and his readers come to have an understanding of reducibility

by way of his use of counterpossibles may be dismissed if Rogers were a minor figure in relative

computability theory and if his readers were few. However, from its initial release in 1967 until at

least the release of Robert Soare’s (1986) textbook, Rogers’ book was the main textbook with the

help of which a whole generation of mathematicians was raised.

The primacy of hypercomputers. Another topic specific proposal suggests that the study of rel-

ative computability is the study of metaphysically possible hypercomputers. Hypercomputers are

hypothesized machines that overcome the finiteness of actual computers in one way or another.

Many such machines have been described in the literature.40 One is a so called accelerating Turing

machine, also called Zeus machine.41 This is a machine that completes an infinite number of com-

putational steps in a finite amount of time. One way it could do this is by completing a supertask,

e.g. by completing the first computational step in one minute, the second step in half a minute, the

third step in fifteen seconds, and so on. In other words, the machine completes each computational

step after the first one in half the time it took to complete the previous one. After two minutes

39Thanks to an anonymous referee for urging me to be clearer on this.
40See Davis (2004) and Piccinini (2015, §4.3) for critical discussions and references.
41See Boolos et al. (2007, 19).
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have passed, the machine will have completed an infinite number of steps. There’s some debate

about whether accelerating Turing machines and the supertasks that they require are physically pos-

sible.42 But they surely seem to be metaphysically possible.43 Now, accelerating Turing machines

could “decide” the validity problem. That’s because that set, though algorithmically undecidable, is

computably enumerable. This means that the set of predicate logic validities is such that a Turing

machine, given an infinite amount of time, could list all of its members. Consequently, an accelerat-

ing Turing machine of the sort described above could list all and only the members of that set in two

minutes. In order to decide in a finite amount of time whether a sentence of the predicate calculus

is logically valid, this machine would then just have generate the list and determine whether the

sentence appears on it or not.

So, perhaps talk about relative computability could be cashed out in terms of talk about hyper-

computers: a set 𝐴 is reducible to a set 𝐵 iff if the laws of nature allowed for a hypercomputer

that could decide membership in 𝐵, then the laws would also allow for a hypercomputer that could

decide membership in 𝐴. The only modalities involved here are metaphysical.

However, this proposal makes false predictions. It predicts that there will be true counterfactuals

of the form,

(𝐴 ≤ℎ𝑦𝑝𝑒𝑟 𝐵) If the laws of nature would allow for a hypercomputer that could decide membership

in 𝐵, then the laws would also allow for a hypercomputer that could decide membership in

𝐴,

even though the corresponding claim about Turing reducibility,

(𝐴 ≤𝑇 𝐵) 𝐴 is Turing reducible to 𝐵,

is false. To see this, note that there are some algorithmically undecidable but computably enumer-

able sets 𝐴 and 𝐵 that are such that it’s neither the case that 𝐴 is reducible to 𝐵 nor vice versa.44

Since 𝐴 is computably enumerable, a Zeus machine could “decide” 𝐴. But presumably if the laws

42See Earman (1995, ch. 4), Davis (2004, 197), and Romero (2014) for discussion.
43See Shagrir (2004) for an argument that accelerating Turing machines don’t fall prey to Thomson’s (1954) paradox.
44We know that such sets exists due to Friedberg (1957) and Muchnik’s (1956) solution to Post’s (1944) Problem.
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of nature allowed for there to be a Zeus machine that could “decide” 𝐴, then they would also allow

for there to be a Zeus machine that could “decide” 𝐵, since 𝐵 is computably enumerable as well.

In other words, if we had a hypercomputer to decide membership in 𝐴, then we could also have

a hypercomputer to decide membership in 𝐵. Consequently, (𝐴 ≤ℎ𝑦𝑝𝑒𝑟 𝐵) is true, even though

(𝐴 ≤𝑇 𝐵) is false. So the explanation of claims involving the Turing reducibility relation, and in

turn of relative computability, in terms of what a Zeus machine could do yields the wrong results.

And in fact, according to the theory of supertask computation as developed by Joel David Hamkins

(2004) and Philip Welch (2004), Zeus machines are vastly more powerful than many oracle ma-

chines.45

The failure of these seven proposals suggests that the reducibility relation is indeed to be understood

in terms of counterfactuals. This means that the orthodoxy about counterfactuals does indeed rob

relative computability theory of its subject. Philosophical humility thus recommends that we reject

the orthodoxy. But perhaps we think that philosophical humility has its limits. Perhaps we want to

dig in our heels and insist that counterfactuals such as (valid > halt) and (valid > arith) are indeed

both true. This attitude owes us a story as to why these counterfactuals strike us as prima facie

non-vacuous. We can take a cue from Williamson’s (2015) discussion here.46

The following is a version of an argument of Williamson’s that purports to put pressure on our

inclination to treat (valid > arith) as false using general principles of the logic of counterfactuals.

The argument, which is adapted for our purposes, starts by claiming that (valid > arith) is equivalent

to (valid&valid > arith):

(valid&valid > arith) If the validity problem were and weren’t algorithmically decidable, then

arithmetical truth would be algorithmically decidable.

Why should this equivalence hold? It’s metaphysically necessary that the validity problem isn’t algo-

45It may be argued, perhaps with Shapiro (2006), that the informal notion of decidability, and in turn the informal notion of
relative computability, can be precisified in a number of ways, one of which coincides with the notion of hypercomput-
ers. But this would still leave us with the result that there’s a notion of relative computability on which counterfactuals
about relative computability are non-vacuous yet have metaphysically impossible antecedents. Thanks to Kieran Setiya
for discussion here.

46See also Williamson (2010, 95–6) for an earlier discussion.

100



rithmically decidable. And since 𝜑 is metaphysically equivalent to p𝜑∧𝜓qwhenever 𝜓 is metaphys-

ically necessary, ‘the validity problem is algorithmically decidable’ is metaphysically equivalent to

‘the validity problem is and isn’t algorithmically decidable.’ In worlds talk, ‘the validity problem

is algorithmically decidable’ is true at all the same metaphysically possible worlds as ‘the validity

problem is and isn’t algorithmically decidable.’ Next, it is claimed that counterfactuals allow for

substitution of necessary equivalents; i.e. if 𝜑 and 𝜓 are true at all the same metaphysically possi-

ble worlds, then p𝜑� 𝜒q and p𝜓 � 𝜒q are equivalent. This gives us the desired equivalence

between (valid > arith) and (valid&valid > arith). Now, surely (valid&valid > arith), with its log-

ically impossible antecedent, is much less obviously false than (valid > arith). So perhaps we are

merely tricked into thinking that (valid > arith) is false because we don’t realize that it’s equivalent

to (valid&valid > arith).

However, a closer look at this argument reveals that it rests on an assumption that we ought to

reject for the same reason that we ought to accept counterfactuals about relative computability as

non-vacuous. Let’s look at how we would derive the supposed equivalence between (valid > arith)

and (valid&valid > arith). Stalnaker’s (1968, 106) counterfactual logic 𝐶2 contains the following

axioms:

(a3) �(𝜑→ 𝜓) → (𝜑� 𝜓)

(a7)
(︀
(𝜑� 𝜓) ∧ (𝜓� 𝜑)

)︀
→
(︀
(𝜑� 𝜒) ↔ (𝜓� 𝜒)

)︀
Now, since it’s metaphysically necessary that the validity problem isn’t algorithmically decidable,

we have:

�
(︀
𝑉 ↔ (𝑉 ∧ ¬𝑉 )

)︀
Using (a3), this gives us:(︀

𝑉 � (𝑉 ∧ ¬𝑉 )
)︀

and (︀
(𝑉 ∧ ¬𝑉 )� 𝑉

)︀
And so (a7) gives us:(︀

𝑉 � 𝐴
)︀
↔
(︀
(𝑉 ∧ ¬𝑉 )� 𝐴

)︀
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That (a3) gives us ‘𝑉 � (𝑉 ∧ ¬𝑉 )’ is suspicious. For it follows from this that any counterfactual

that assumes in its antecedent that the validity problem is algorithmically decidable is vacuous.

And whether that’s the case is exactly what’s at issue. So if ‘�’ is interpreted as metaphysical

necessity, then we ought to reject (a3). In counterfactual logic, ‘�’ is usually defined such that p�𝜑q

abbreviates p¬𝜑 � 𝜑q. That’s how Lewis (1973, §1.5) defines it; he calls ‘�’ outer necessity.

(a3) is valid in the model theory I present in the appendix if that’s how we understand ‘�,’ since

outer necessity is now broader than metaphysical necessity. But if that’s how we understand ‘�,’

then we can’t accept ‘�
(︀
𝑉 ↔ (𝑉 ∧ ¬𝑉 )

)︀
.’ The latter is true only where ‘�’ is understood as

metaphysical necessity. So the logic of counterfactuals doesn’t force upon us the equivalence of

(valid > arith) and (valid&valid > arith). And without this equivalence, it becomes less plausible

that we are tricked into thinking that (valid > arith) is false. Note that given this notion of outer

necessity, the debate over the vacuity thesis can be rephrased as follows: is outer necessity the same

as metaphysical necessity? Stalnaker, Lewis, and Williamson think that it is, whereas I argue that

outer necessity is stronger than metaphysical necessity.

A final way of holding on to the orthodoxy is to argue that despite its shortcomings, it’s the only

game in town, since all alternative approaches such as for example that of Brogaard and Salerno

(2013) run into serious trouble. And indeed, perhaps there’s a way of amending the orthodoxy

by providing an error theory about our judgments about counterpossibles. Williamson (2015, §4),

for example, proposes that we use certain heuristics when evaluating counterfactuals that lead us

astray in cases of counterpossibles. However, in the next section, I describe a model theory for

counterfactuals about relative computability, which I describe in more detail in the appendix, which

I hope demonstrates that the orthodoxy isn’t the only game in town.

3.5 Patching up the orthodoxy

Williamson likens the supposed folly of rejecting the vacuity thesis to the Aristotelian rejection of

vacuously true universal generalizations:

The logic of quantifiers was confused and retarded for centuries by unwillingness to

recognize vacuously true universal generalizations; we should not allow the logic of
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counterfactuals to be similarly confused by unwillingness to recognize vacuously true

counterpossibles. (Williamson, 2007, 175)

Given the fact that the standard model theory of counterfactuals treats counterfactuals as universal

quantifiers over worlds, Williamson’s analogy is of course particularly apt. Do we risk entering a

kind of logical Dark Age if we accept that counterfactuals such as (valid > halt) and (valid > arith)

are non-vacuous? Fortunately, there is no such risk. On the model theory for counterfactuals about

relative computability presented in the appendix, these counterfactuals are still universal quantifiers

over indices and they still admit of vacuously true instances. In fact, the model theory is of a piece

with Lewis’ similarity models; it incorporates a version of the vacuity thesis insofar as it treats

counterfactuals with outright logical falsehoods in the antecedents as vacuously true.

The basic idea of the model theory is simple. Relative computability theory provides us with an

abstract structure called the Turing degrees. Informally, we can say that this structure classifies sets

of natural numbers into complexity classes. The halting problem and the validity problem belong

to the same complexity class, which is why (valid > halt) and its converse are true, but arithmeti-

cal truth belongs to class of problems of much higher complexity, which is why (valid > arith) is

false. The Turing degrees form a hierarchy that has the form of an infinite tree originating from a

single point.47 This point of origin is the class of least complex sets, i.e. the sets that are in fact

computable. For example, the set 𝜔 of all natural numbers belongs to this class, since we can easily

come up with an algorithm for deciding it: for any number 𝑛, to decide whether 𝑛 is in 𝜔, compute

nothing and output ‘yes.’ Another way of thinking of this least class is that it represents something

like the actual world: everything that’s actually algorithmically decidable is represented by this class

as algorithmically decidable. This is the class where the Church-Turing holds and so where the laws

of computation are as they actually are. So it’s tempting to just have the Turing degrees play the

role of worlds, where all of the Turing degrees except for the one that stands for the actual one

are thought of as non-actual worlds where the laws of computation are different. The further you

move up the tree, the more violations of the Church-Turing thesis you get, since more and more

sets that aren’t actually algorithmically decidable become represented as algorithmically decidable.

47I use ‘tree’ in an informal sense here. In its technical sense, trees are well-founded, which the Turing degrees aren’t,
due to the Sacks Density Theorem.
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This tree-like structure gives us everything we need for Lewis’ comparative similarity semantics

for the counterfactual connective. Unfortunately, this isn’t quite right, for reasons explained in the

appendix. What we need for our worlds are rather ideals on Turing degrees. The ideals still form a

tree-like structure on which we can build Lewis’ comparative similarity semantics. A simple coun-

terfactual pIf 𝐵 were algorithmically decidable, then 𝐴 would be algorithmically decidableq is true

at a world 𝑤 (i.e. an ideal on Turing degrees) iff all worlds closest to 𝑤 that represents 𝐵 as algo-

rithmically decidable also represent 𝐴 as algorithmically decidable.48 We can turn this into a fully

general semantics for the counterfactual connective by incorporating the standard semantic clauses

for the Boolean connectives and the quantifiers. As long as the semantic clauses for the connectives

are classical, p(𝜑 ∧ ¬𝜑)� 𝜓q comes out vacuously true, for any 𝜓, since there’s no world where

p𝜑 ∧ ¬𝜑q is true. Again, for more details, see the appendix, and for a complete axiomatization of a

propositional fragment of what I call a conditional logic of Turing reducibility, see chapter 4.

Let’s take stock. Not only do we have positive reasons for interpreting counterfactuals about relative

computability literally, as seen in the previous section, but we can also see now that nothing stands in

the way of extending Lewis’ similarity models to give a model theory for these counterfactuals. The

resulting theory doesn’t have us falling back into a logical Dark Age that Williamson has warned us

of. Our job isn’t done, however. One big remaining question is how to interpret our model theory.

Even though the ideals on Turing degrees in the model theory just sketched act like worlds as far

as the model theory is concerned, they are of course a very different kind of object than what we

usually think of when we think of worlds, possible or impossible. I take up this issue in the next

section.

3.6 Interpreting the indices

The reason why the ideals on Turing degrees, which are just sets of sets of sets of natural numbers,

act like worlds as far as the above model theory is concerned says more about the model theory than

48Since for any set, there’s a closest world where that set is algorithmically decidable, this way of glossing the semantic
clause is apt. But since the structure of the Turing degrees is dense, a fully accurate statement, such as the one given in
the appendix, will have to be slightly more complicated in that we can’t rely on the limit assumption.
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about the ideals. As is well known, so-called “possible worlds” model theory doesn’t presuppose

any kind of realism about possible worlds. As a piece of mathematics, the model theory doesn’t care

what the “worlds” are that we use. These worlds are just indices at which we evaluate sentences. So

there’s nothing mysterious about the fact that ideals on Turing degrees can act as indices.

However, we may still ask what possible worlds model theory is for, and depending on what we

think it’s for, we may want to ask some more probing questions about how to interpret the role of the

ideals on Turing degrees in the above model theory. Of course, it is beyond the scope of this chapter

to develop a theory of model theory. But I want to make a few remarks about how my proposed

model theory fits into two alternative pictures of the role of model theory.

On an instrumentalist understanding of possible worlds model theory, possible worlds models

are merely a useful tool to study the logic of the object languages in question. There’s no doubt that

possible worlds model theory has greatly advanced our understanding of modal and counterfactual

logic. But an appreciation of the usefulness of model theory is consistent with the rejection of any

sort of realism about possible worlds. One form of such instrumentalism is modalism.49 Modalism

claims that the modal operators and counterfactual connectives are in some sense more basic than

the possible worlds used in their model theory. Kit Fine (1977) explicitly speaks of the construction

of possible worlds. So the rough idea is that we “construct” possible worlds using our modal and

counterfactual language and then use them to obtain a more precise understanding of that language.

This take on possible worlds model theory fits particularly well with the way we use the ideals on

Turing degrees in the above model theory. For after all, as described in the appendix, the ideals on

Turing degrees are selected from among the mathematical universe to play the role of worlds with

the help of the Turing reducibility relation. The Turing reducibility relation in turn corresponds to

the relation of reducibility simpliciter, via the Post-Turing thesis. And as we’ve seen, reducibility

simpliciter is best cashed out in counterfactual talk. So on a modalist-instrumentalist understanding

of possible worlds model theory, there is no puzzle about the role of the ideals on Turing degrees in

our model theory.

49See Fine (1977), Forbes (1989, 1992), and Williamson (2013, §8.4) for modalism about metaphysical possibility. See
also Williamson’s (2009, 9) related remarks about the role of Lewis’ comparative similarity relation in the analysis of
counterfactuals, as well as Stalnaker’s (1984, ch. 8) related remarks about the role of his selection functions.
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There is also a more inflationary understanding of possible worlds model theory, the representa-

tional understanding. The idea here is that there is a privileged possible worlds model, the one that

corresponds to the semantics of our language, and that model represents the truth conditions of our

sentences.50 Such a representational understanding of course presupposes a kind of realism about

possible worlds. But that realism needn’t be as strong as Lewis’ (1986); a weaker realism, such as

perhaps Stalnaker’s (2003; 2012), suffices.51 Given such realism, the question how the ideals on

Turing degrees qua indices relate to possible worlds becomes pressing. Whatever possible worlds

are, they surely aren’t sets of sets of sets of natural numbers. So if we want to give genuine truth

conditions for counterfactuals about relative computability, an appeal to ideals on Turing degrees

is bound to be unilluminating. However, a representational understanding of our model theory may

be available. Suppose there are worlds, possible or otherwise, where the laws of computability are

different from what they actually are. And suppose that for any set that appears somewhere in the

structure of the ideals on Turing degrees, there’s such a world where that set is algorithmically de-

cidable. Then we can define a partition on the set of all of these worlds such that two worlds are

in the same cell iff they agree on the laws of computability. We will then be able to define a model

that’s isomorphic to the model I present in the appendix where the indices are the cells of the par-

tition. What’s more, the Post-Turing will guarantee that the resulting truth conditions for sentences

such as (valid > halt) and (valid > arith) will be adequate. And if we want to provide an intended

model for a language in which we can talk about more than just algorithmic decidability, we can

take this new model and extend the comparative similarity relation to the members of the cells of

the partition. This will allow us to assign truth-conditions to counterfactuals whose component sen-

tences talk both about algorithmic decidability as well as about all things other than algorithmic

decidability. Of course, this may lead us to assign truth conditions to counterfactuals that involve

odd, gerrymandered pairings of sentences about algorithmic decidability and sentences having noth-

ing whatsoever to do with algorithmic decidability. But we can of course have counterfactuals with

similarly odd pairings even in the absence of an ability to talk about algorithmic decidability. Such

50I borrow the expression ‘representational’ from Etchemendy’s (1990, ch. 1) closely related notion of a representational
semantics. Note that on a supervaluational treatment of vagueness, we would have a class of privileged models, not a
single one.

51See Berto (2013, §3) for an overview of various theories of possible and impossible worlds.
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is the nature of compositionality. Perhaps some such pairings will lead us to adopt, say, a model

theory that allows for truth-value gaps so that we aren’t required to count every counterpossible as

either true or false. But there’s no reason for thinking that the introduction of an ability to talk about

algorithmic decidability will put any pressure on us to go in for such maneuvers that wasn’t already

there before.

Of course, some will doubt the intelligibility of metaphysically impossible worlds where the

laws of computability are different, given the metaphysical necessity of the Church-Turing thesis.

Echoing Bertrand Russell’s (1905) and W. V. Quine’s (1948) criticisms of Meinongian ontology,

Lewis (1986, 7 n. 3) and Stalnaker (1996) are suspicious of logically impossible worlds where con-

tradictions hold. They argue as follows: suppose that there’s an impossible world 𝑤 at which 𝑝 and

‘¬𝑝’ are true. Then given that ‘¬𝑝’ is true at 𝑤, it’s not the case that 𝑝 is true at 𝑤. So it both is and

isn’t the case that 𝑝 is true at 𝑤. Contradiction. So 𝑤 can’t exist. Whatever the force of this objection

may be, it clearly doesn’t apply to the present use of metaphysically impossible worlds. For none

of the worlds required by our model theory are logically impossible.52 And clearly, a version of the

Stalnaker-Lewis argument against our impossible worlds won’t go through. Essentially, we are say-

ing that there are worlds where the Church-Turing thesis fails. To get a contradiction from this, we

would need the assumption that the Church-Turing thesis holds in every world. But all I’ve argued

is that the Church-Turing thesis holds in every metaphysically possible world. More generally, if

we’re representationalists about worlds model theory, then our metaphysically impossible worlds

earn their keep for much the same reason that metaphysically possible worlds earned their keep: as

we saw, they allow us to develop truth conditions for a certain class of counterfactuals.

We thus see that no matter whether we’re instrumentalists or representationalists about our

model theory, there’s no serious worry about its use of indices that represent the laws of compu-

tation as different from what they actually are.

52Of course, if we want to allow for non-vacuous counterfactuals with logically inconsistent antecedents, we will have to
face this objection head on. See Berto (2013, §6) for an overview of responses to this objection. In any case, accepting
non-vacuous counterfactuals with merely metaphysically impossible antecedents doesn’t immediately commit us to
such stronger failures of the vacuity thesis.
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3.7 Conclusion

The case for the vacuity of counterfactuals about relative computability looks feeble. We’ve seen

that the reducibility relation, which is the subject of study of relative computability theory, is to be

understood in terms of counterfactuals. These counterfactuals have metaphysically impossible an-

tecedents, and so the vacuity thesis threatens to undermine a whole mathematical discipline. Philo-

sophical humility recommends that we revise our theory of counterfactuals before we propose to

put our colleagues in mathematics out of a job.

Some questions still remain, however. First, the representational understanding of worlds model

theory gives rise to general questions about the metaphysics of worlds, and about whether meta-

physically possible worlds are the same kind of thing as metaphysically impossible worlds. These

questions are beyond the scope of the present chapter.

Another question concerns the status of the outer necessity operator that I briefly discussed at

the end of section 3.4. Is there a theoretically important modality corresponding to this operator

that’s of the same kind as metaphysical necessity, though more strict? Accepting an ideology of

outer necessity would arguably be the most conservative way of amending the orthodoxy, since it

would allow us to hold on to a version of the vacuity thesis. In fact, if we accept this ideology, then

counterfactuals about relative computability turn out not to be counterpossibles at all, at least not as

far as outer possibility is concerned. Whether the ideology of outer possibility is worth accepting

for this and other reasons will have to be judged against the same kind of criteria that are used to

answer questions about ideological commitment in general.

Finally, one may wonder how the theory I’ve developed extends to counterpossibles that aren’t

about relative computability, such as perhaps (water) and (marvel) mentioned on page 90. I sub-

mit that my discussion gives us reason to take seriously the suggestion, made of course by many

in the literature, that there are other non-vacuous counterpossibles. But I also hope that my dis-

cussion has shown that careful investigation is required to establish that a given counterpossible

is indeed non-vacuous. In particular, since many of the purported counterexamples to the vacuity

thesis mentioned in the literature such as those involving claims about what would have happened
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if the laws of metaphysics had failed are about philosophical topics, an appeal to philosophical hu-

mility such as the one I invoke above may not always be available. What we have here is a classic

case where one philosophical domain, i.e. metaphysics, is in tension with another, i.e. philosophical

semantics. To move beyond the gridlock in the debate over counterpossibles, we need to look for

uses of counterpossibles outside of philosophy. I therefore suggest that we seek to find established

scientific disciplines other than relative computability theory where counterpossibles play a central

role. It is my hope that the present study has taken a first step towards such a case-by-case study of

counterpossibles. Once we have a clearer picture of the areas where non-vacuous counterpossibles

are indispensable and once we have model theories for these various classes of counterpossibles, we

may then investigate to what extent we can integrate these model theories to come up with a unified

and fully general theory of non-vacuous counterpossibles.

3.8 Appendix: Model theory

In this appendix, I describe a model for a quantified language of relative computability with a

designated predicate ‘𝐷’ for algorithmic decidability.53

The Turing degree of some set 𝐴 is deg(𝐴) = {𝐵 : 𝐴 ≤𝑇 𝐵 and 𝐵 ≤𝑇 𝐴}. We can define an

ordering ≤ on the Turing degrees D so that for a,b Turing degrees, a ≤ b iff there’s some 𝐴 ∈ a

and some 𝐵 ∈ b such that 𝐴 ≤𝑇 𝐵. Informally, the Turing degree of 𝐴 is its complexity class.

I mentioned that it’s tempting to think of Turing degrees as worlds, where a degree-world would

represent a set as decidable iff it contains that set. However, this would mean, for example, that

there is no world where the decidable sets are all and only the arithmetically definable sets. This

follows from Corollary 1 of §4.4 in Kleene and Post (1954) that there’s no degree that contains all

and only the arithmetical sets, since 0(𝜔) isn’t a minimal upper bound to the arithmetical degrees

0,0′,0′′, . . . .54 We can avoid this undesirable result if we use ideals on Turing degrees instead. For

any a,b ∈ D and for 0 the degree of the algorithmically decidable sets, an ideal i on the Turing

53A construction similar to the present one that’s based on the enumeration degrees would yield a model for a language
with a designated predicate for computable enumerability. See Odifreddi (1992, ch. XIV) for an introduction to enu-
meration degrees.

54This is how Rogers, Jr. (1967, 276) puts the result in Corollary XVI of §13.4.
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degrees is a non-empty set of Turing degrees such that if a,b ∈ i, then their join a⊕b is in i as well;

and if a ∈ i and b ≤ a, then b ∈ i. Since the join of two arithmetically definable Turing degrees

is arithmetically definable and since anything reducible to an arithmetical set is arithmetical, the

arithmetical sets form an ideal.

The starting point for our model theory are the frames for Lewis’ (1971; 1973) comparative

similarity models, which consist of a set of indices (worlds) W and a ternary relation R on W such

that for each 𝑤 ∈ W, R𝑤 is a total binary preordering on W. 𝑣R𝑤𝑢 is informally understood as

saying that world 𝑣 is at least as similar to 𝑤 as 𝑢 is to 𝑤.55

The structure of the Turing degrees ⟨D,≤⟩ is very similar to such frames. It is easily seen that

≤ partially orders D. What is more difficult to see is that ≤ isn’t total; there are a and b in D

such that a � b and b � a. This is Corollary 1 in §2.2 of Kleene and Post (1954), which we’ve

already encountered. But we already saw that we can’t use D to serve as the set of worlds. Rather,

we need to use the set I of ideals on Turing degrees. This set already comes partially ordered by the

subset relation. But still, a difference between ⟨I,⊆⟩ (besides the fact that ⊆ isn’t total, due to the

non-totality of ≤) is that ⊆ is a binary relation whereas Lewis’ R is ternary. This turns out not to be

a problem, however.

For ⟨I,⊆⟩ a frame, our model is the tuple M = ⟨℘(𝜔), I,⊆, I⟩, where ℘(𝜔) is the power set

of the set of natural numbers and I takes ‘𝐷’ to functions from members of I to subsets of ℘(𝜔)

such that for 𝑤 ∈ I and 𝑥 ∈ ℘(𝜔), 𝑥 ∈ I(‘𝐷’)(𝑤) iff for some 𝑦 ∈
⋃︀
𝑤, 𝑥 ≤𝑇 𝑦. For 𝑔 a

function that assigns members of ℘(𝜔) to the variables of the language, we then have that ‘𝐷𝑥’ is

satisfied at a world 𝑤 iff 𝑔(𝑥) ∈ I(‘𝐷’)(𝑤).56 The counterfactual connective ‘�’ is defined as

follows (where W𝑤 = {𝑣 ∈ W : 𝑤 ⊆ 𝑣} and J𝜑K𝑔M is shorthand for {𝑤 ∈ W : J𝜑K𝑔M,𝑤 = 1}):

Jp𝜑� 𝜓qK𝑔M,𝑤 = 1 iff for all 𝑣 ∈ W𝑤 ∩ J𝜑K𝑔M, there is some 𝑢 ∈ W𝑤 ∩ J𝜑K𝑔M such that 𝑢 ⊆ 𝑣

and such that for any 𝑡 ∈ W𝑤 such that 𝑡 ⊆ 𝑢, Jp𝜑 → 𝜓qK𝑔M,𝑡 = 1. Note that this clause for ‘�,’

which is adapted from Burgess’ (1981), differs from Lewis’ clause in that it contains an additional

55Of course, by building on Lewis’ model theory, we also inherit some of the potential problems of the Stalnaker-Lewis
approach to counterfactuals. For example, it doesn’t validate simplification of disjunctive antecedents (see footnote 35).
If simplification is indeed desirable, the present model theory can be adapted along the lines developed by Fine (2012)
or Santorio (2017) to accommodate it.

56Note that for reasons of perspicuity, I use the usual letters ‘𝑤,’ ‘𝑣,’ ‘𝑢,’ and ‘𝑡’ to denote “world” variables here, even
though I previously used boldface letters as variables for the members of I.

110



initial universal quantifier. This is required because our partial order isn’t total, whereas Lewis’

comparative similarity relations are. Note also that our binary partial order can be turned into a

ternary comparative similarity relation in a canonical way: we define the ternary relation ⊆* such

that j ⊆*
i k iff i ⊆ j and j ⊆ k. This gives us the frame ⟨I,⊆*⟩, on which we can build models each

of which belongs to (the quantified version of) John Burgess’ (1981) model class ℳ0,1. If we then

redefine W𝑤 as {𝑣 ∈ W : 𝑣 ⊆𝑤 𝑣} and take over the above clause for ‘�,’ we immediately get

that the ternary version of our model on ⟨I,⊆*⟩ validates all axioms and rules of Burgess’ (1981)

logic 𝑆0,1. 𝑆0,1 is strictly weaker than Lewis’ (1971) favored counterfactual logic 𝐶1, which we

obtain from 𝑆0,1 by adding:57

D′.
(︁(︀
𝜑 ∨ 𝜓

)︀
� ¬𝜑

)︁
→
(︁(︀

(𝜑 ∨ 𝜒)� ¬𝜑
)︀
∨
(︀
(𝜓 ∨ 𝜒)� ¬𝜒

)︀)︁
And of course from 𝐶1 we can get Stalnaker’s (1968) logic 𝐶2 by adding conditional excluded

middle:

CEM. (𝜑� 𝜓) ∨ (𝜑� ¬𝜓)

Neither D′ nor CEM are valid in M, due to the fact that Corollary 1 in §2.2 of Kleene and Post

(1954) makes ⊆ non-total. Regarding the quantifiers, since these models have a fixed domain, the

Barcan (1946) formula and its converse come out valid.

Of course, the frame ⟨I,⊆⟩ has certain features that not all frames have on which the models in

Burgess’ ℳ0,1 are built. In fact, the structure of the ideals on Turing degrees is an upper semi-lattice

with a zero-element, and it has many other features that we may wish to capture axiomatically. I

provide a complete axiomatization of a propositional fragment of the conditional logic of Turing

reducibility as well as a decision procedure in chapter 4. For the quantificational case, we may want

to enrich our language with a predicate for computable enumerability and with function signs for

the complementation, jump, and join operations on sets of natural numbers. Whether the structure

of the ideals on the Turing degrees can be completely axiomatized is unknown. What’s important
57See also Pollock (1976, 43) for a related logic 𝑆𝑆, which can be turned into 𝐶1 by adding:(︀

(𝜑� 𝜓) ∧ ¬(𝜑� ¬𝜒)
)︀
→

(︀
(𝜑 ∧ 𝜒)� 𝜓

)︀
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for present purposes is that with our model M we have what we need to correctly interpret (reg-

imentations of) our counterfactuals (valid > halt) and (valid > arith) (see page 80), quantified

counterfactuals such as (sacks) (page 91), as well as many more.

Before we can regiment (valid > halt) and (valid > arith), we should expand our language to in-

clude individual constants ‘𝑣,’ ‘ℎ,’ and ‘𝑎’ that I assigns to the validity problem, the halting problem,

and arithmetical truth respectively. Then (valid > halt) and (valid > arith) become ‘𝐷𝑣� 𝐷ℎ’

and ‘𝐷𝑣� 𝐷𝑎’ respectively. Given that the degree of both the validity and the halting problem

is the degree 0′ and the degree of arithmetical truth is 0(𝜔) and given that 0′ ≤ 0(𝜔), ‘𝐷𝑣� 𝐷ℎ’

comes out true at the zero-element “world” in M and ‘𝐷𝑣� 𝐷𝑎’ comes out false, as desired. In

fact, as long as we have a model on the frame ⟨I,⊆*⟩ that assigns to the atomic sentences of our

language the intended set ideals on of Turing degrees, our model theory gives exactly the results

we want. For example, it is routine to verify that the relevant regimentations of (valid > arith),

(valid&arith > arith), (valid > halt&arith), and (valid&arith > halt&arith) (see page 94) have

all the desired properties in our model. And since the structure of the Turing degrees is dense, the

relevant regimentation of (sacks) is true at any world in our model as well:

∀𝑥∀𝑦
(︀
(𝐷𝑦� 𝐷𝑥) ∧ ¬(𝐷𝑥� 𝐷𝑦)

)︀
→

∃𝑧
(︀
(𝐷𝑧� 𝐷𝑥) ∧ ¬(𝐷𝑥� 𝐷𝑧) ∧ (𝐷𝑦� 𝐷𝑧) ∧ ¬(𝐷𝑧� 𝐷𝑦)

)︀
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Chapter 4

A Conditional Logic of Turing

Reducibility

4.1 Introduction

Informal expositions of the theory of Turing reducibility often make use of counterfactual condi-

tionals such as the following (where 𝑉 𝑎𝑙, 𝐾0, and 𝐾𝜔 are the sets of natural numbers that code the

validity problem in the predicate calculus, the halting problem for Turing machines, and arithmetical

truth, respectively):

If 𝐾0 were algorithmically decidable, then 𝑉 𝑎𝑙 would be algorithmically decidable as

well.

Even if 𝐾0 were algorithmically decidable, 𝐾𝜔 would still not be algorithmically de-

cidable.1

Chapter 3 argues that such conditionals play an ineliminable role in the development of the theory of

Turing reducibility. Its appendix also presents models for a quantified counterfactual language that

can express claims such as the above using the counterfactual connective�. The theory of Turing

reducibility supplies us with the structure of the Turing degrees ⟨D,≤⟩ that we can use to build

models that are close relatives of the the comparative similarity models studied in Lewis (1971),

1See for example Davis (1958, p. 179), Rogers, Jr. (1967, p. 127), and Enderton (2011, p. 121). When talking about the
theory of Turing reducibility here, we adopt the notation of Soare (2016). We also appeal to many facts proven there.
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Burgess (1981), and Veltman (1985). First, we define the set I of ideals on D, where an ideal i is a

non-empty set of degrees that is closed under reducibility ≤ and the join operation ⊕. That is, for

i ∈ I and for a,b ∈ D, i ̸= ∅, if a ∈ i and b ≤ a then b ∈ i, and if a,b ∈ i then a⊕b ∈ i. We can

treat I as the set of indices, or “worlds.”

Intuitively, a world in our models can be understood as representing what sets of natural numbers

are algorithmically decidable at that world, namely all of those that are a member of one of its

members. For example, the world {0} represents the decidability facts as they actually are since its

only member contains exactly those sets that are actually algorithmically decidable. In other words,

{0} represents the decidability facts in accordance with the Church-Turing thesis, and none of the

other worlds do. Furthermore, because ⟨D,≤⟩ is an upper semilattice with a minimal element, ⟨I,⊆⟩

is also an upper semilattice with a minimal element. The set inclusion relation can be understood as

representing the comparative similarity among worlds: if a ⊆ b, then either a = b or else a is more

similar to the bottom world {0} than b because a represents fewer sets as algorithimcally decidable

that are not actually algorithimcally decidable than b and so it violates the Church-Turing thesis less

dramatically.

A word on the choice of ideals on Turing degrees as our “worlds”: it is tempting to think of

the Turing degrees themselves as “worlds,” where such a world would represent a set as decidable

iff it contains that set. However, this would mean, for example, that there is no world where the

decidable sets are all and only the arithmetically definable sets. This follows from Corollary 1 of

§4.4 in Kleene and Post Kleene and Post (1954) that there is no degree that contains all and only the

arithmetical sets, since 0(𝜔) is not a minimal upper bound to the arithmetical degrees 0,0′,0′′, . . .

(this is how the theorem is put in Corollary XVI of §13.4 in Rogers, Jr. (1967)). We can avoid

this undesirable result if we use ideals on Turing degrees instead. However, it is easily verified that

using Turing degrees instead of their ideals as worlds would not change the present logic because

the simple language we are working with cannot distinguish between the two upper semilattices.

Given the frame ⟨I,⊆⟩ and given a function 𝑓 that maps the atomic sentences of our language

to sets of natural numbers, we can define a model ⟨I, {0},⊆, I⟩, where {0} is thought of as the

designated “actual world” and where I is defined so that for 𝛼 atomic, I(𝛼) = {i ∈ I : for some

116



d ∈ i, 𝑓(𝛼) ∈ d}. We then have that 𝛼 is true at an ideal/world 𝑤 iff 𝑓(𝛼) is a member of one of

the members of 𝑤. Relative to such a model, 𝛼 can then be read as saying that the set of natural

numbers 𝑓(𝛼) is algorithmically decidable.

We immediately have that if an atomic sentence is true at a world, it remains true as we move up

the partial order induced by ⊆. Note also that since every 𝑁 ∈ 𝜔 is in some Turing degree, namely

the degree {𝑀 ∈ 𝜔 : 𝑁 ≤𝑇 𝑀 and 𝑀 ≤𝑇 𝑁}, there is some world for every atomic 𝛼 where 𝛼

is true. The conditional connective� is defined in the same way in which Burgess (1981), Lewis

(1981), and Veltman (1985) define it given a ternary comparative similarity relation: where 𝜑 is said

to be a possibility at a world a iff there is some world b such that a ⊆ b where 𝜑 is true, we say that

𝜑� 𝜓 is valid in a model ⟨I, {0},⊆, I⟩ iff either 𝜑∧𝜓 is a less remote possibility than 𝜑∧¬𝜓 at

the designated, minimal world {0} or 𝜑 is impossible at {0}.

Based on the above understanding of�, we present a complete axiomatization of the proposi-

tional fragment of a conditional logic of Turing reducibility for a language where the counterfactual

conditionals are restricted so that they are not allowed to contain any conditional antecedents (but

they are allowed in the consequents of conditionals). Our logic is called PT, in honor of Post (1944)

and Turing (1939). In addition to being a complete axiomatization of the sentences of the language

that are valid in all intended models, PT is decidable.

We do not mean to present PT as the conditional logic of Turing reducibility. In fact, we have

to make certain non-trivial choices when devising our model theory. For example, we assume that

algorithmic decidability is closed under joins not just actually, but also counterfactually. We also

assume that algorithmic decidability is a property of sets of natural numbers, not of “problems” in a

more informal sense. Let 𝑆 be the set of natural numbers 𝑛 such that the power of the continuum is

greater than ℵ𝑛. It is algorithmically decidable whether 1 ∈ 𝑆. However, it is famously impossible to

decide whether the power of the continuum is greater than ℵ1 using currently accepted mathematical

means. Now, if we had treated algorithmic decidability as a property of problems instead of as

a property of sets of natural numbers, then we would have the following argument, a version of

which was suggested to us by an anonymous reviewer, for the claim that if the halting problem were

algorithmically decidable, then arithmetical truth would be algorithmically decidable as well:
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Suppose that the halting problem is algorithmically decidable. Now consider the fol-

lowing algorithm 𝐴: for an algorithm 𝐵, 𝐴 tests whether 𝐵 halts on input 0. If it does

not, then 𝐴 halts. If it does, then 𝐴 tests whether 𝐵 halts on input 1. If it does not,

then 𝐴 halts. And so on. Thus, 𝐴 halts iff the function computed by 𝐵 is not total. But

this means that to test whether the function computed by some algorithm 𝐵 is total,

we only need to determine whether 𝐴 halts when given (the code of) 𝐵 as input. And

since we assume that the halting problem is algorithmically decidable, this means that

we also have that the problem of determining whether a computable function is total is

algorithmically decidable. Now, the halting problem is Σ0
1-complete, while the problem

of determining whether a computable function is total is Π0
2-complete. So, the forego-

ing shows that if the halting problem were algorithmically decidable, then Π0
2-complete

problems would algorithmically decidable as well. And an analogous argument would

show that if the halting problem were algorithmically decidable, then any problem in

the arithmetical hierarchy would be algorithmically decidable, in which case arithmeti-

cal truth would be decidable.

This is a clever argument, but it does not go through on the assumption that algorithmic decidability

is a property of sets of natural numbers. ‘𝐾0’ is a rigid designator in the sense of Kripke (1980).

In other words, the referent of the term does not change as we change the facts about algorithmic

decidability: even if 𝐾0 were algorithmically decidable, the set 𝐾0 would still have the same mem-

bers that it actually does. In contrast, the above argument rests on the assumption that if the halting

problem were algorithmically decidable, then the problem of determining whether a machine halts

on a given input would encompass not only the algorithms that compute functions that are actually

computable but also algorithms that exist only counterfactually and that do not compute functions

that are actually computable.

That devising our logic involved such non-trivial choices should not come as too much of a

surprise. For, it is well known from the following pair of conditionals due to Quine (1960, 222), that

judgments about conditionals are heavily influenced by contextual factors:

If Caesar had been in command in Korea, then he would have used the atom bomb.
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If Caesar had been in command in Korea, then he would have used catapults.

We can easily imagine contexts in which the first one is true but not the second, but also ones where

the second one is true but not the first. Given this malleability of conditionals, we cannot expect

the conditional logic of Turing reducibility to be as straightforward as, for example, the logic of

provability Boolos (1993) becomes once we settle on Bew as representing provability.

Recall that the present syntax does not allow for nestings of conditionals inside the antecedents

of conditionals. Here we find a precedent in Briggs’ logic of counterfactuals Briggs (2012). What is

more, it is not obvious that there is an urgent need for such an axiomatization, for it is not easy to get

a good handle on versions of the above conditionals about algorithmic decidability that have condi-

tional antecedents. In any case, it is not known whether the present model theory, applied to the full

propositional language without syntactic restrictions, can be completely axiomatized. Furthermore,

the appendix to chapter 3, also discusses a quantified language with a designated predicate for algo-

rithmic decidability; it is another open problem whether the quantified conditional logic of Turing

reducibility can be completely axiomatized, that is whether it is computably enumerable.

While the present study is concerned with conditionals about algorithmic decidability, the for-

malism developed here also lends itself to a study of conditionals about polynomial reducibility or

enumeration reducibility:2

If this set is decidable in polynomial time, then that set is decidable in polynomial time

as well.

If this set were computably enumerable, then that set would be computably enumerable

as well.

4.2 Syntax

We first define the language L of PT.

Definition 4.2.1. (i) The atomic sentences 𝛼 of L are the members of {𝑝𝑖 : 𝑖 ∈ 𝜔}.

2See Papadimitriou (1994) and Rogers, Jr. (1967, §9.7), respectively.
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(ii) The conditional-free sentences 𝛽 of L have the following BNF definition:

(4.1) 𝛽 ::= 𝛼 | ⊥ | ¬𝛽 | (𝛽 ∧ 𝛽)

(iii) The sentences 𝜑 of L have the following BNF definition:

𝜑 ::= 𝛽 | ¬𝜑 | (𝜑 ∧ 𝜑) | (𝛽� 𝜑)

Remark 4.2.1. (𝜑 ∨ 𝜓), (𝜑 → 𝜓), (𝜑 ↔ 𝜓), ⊤, �𝜑, and ♦𝜑 are the usual metalinguistic abbre-

viations for ¬(¬𝜑 ∧ ¬𝜓), (¬𝜑 ∨ 𝜓), ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)), ¬⊥, (¬𝜑 � ⊥), and ¬�¬𝜑. In

the metalanguage, we also often omit parentheses where there is no threat of ambiguity. For finite

Γ ⊆ L ,
⋀︀
Γ and

⋁︀
Γ denote a suitably grouped conjunction and a suitably grouped disjunction of

the elements of Γ respectively, where
⋀︀
∅ = ⊤ and

⋁︀
∅ = ⊥.

Remark 4.2.2. Since L does not contain the material conditional connective → as a primitive

connective, in what follows, we will invariably use ‘conditional sentence’ or just ‘conditional’ to

refer to sentences of the form 𝜑� 𝜓.

Definition 4.2.2. For Γ ⊆ L , LΓ ⊆ L is the set of sentences that contains only atomic sentences

that are also contained in some member of Γ.

4.3 Models

Definition 4.3.1. (i) A PT-frame F is a pair ⟨W,≤⟩ that is an upper semilattice with a minimal

element.

(ii) For F = ⟨W,≤⟩ a PT-frame, a PT-model M is a tuple ⟨W, 𝑤@,≤, I⟩ such that 𝑤@ is the

minimal element of W and such that I is a function from atomic sentences 𝛼 ∈ L to subsets

of W such that:

(a) for all atomic sentences 𝛼 ∈ L and for all 𝑤 ∈ W, there is exactly one ≤-least 𝑣 ∈ W

such that 𝑤 ≤ 𝑣 and 𝑣 ∈ I(𝛼),

(b) for all 𝑤, 𝑣 ∈ W, for 𝛼 ∈ L atomic, if 𝑤 ∈ I(𝛼) and 𝑤 ≤ 𝑣, then 𝑣 ∈ I(𝛼).
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We record, without proof, two immediate consequences of this definition:

Lemma 4.3.1. Let M be a PT-model and let W𝑤 = {𝑣 : 𝑤 ≤ 𝑣}. Then the following hold:

(i) For all 𝑤 ∈ W, W𝑤 ̸= ∅,

(ii) for 𝛼1, . . . , 𝛼𝑛 ∈ L atomic sentences and for all 𝑤 ∈ W, there is exactly one ≤-least 𝑣 ∈ W

such that 𝑤 ≤ 𝑣 and 𝑣 ∈ I(𝛼1) ∩ · · · ∩ I(𝛼𝑛).

Definition 4.3.2. J·KM is a function from L ×W to {0, 1}. Where W𝑤 = {𝑣 : 𝑤 ≤ 𝑣}, J𝜑KM,𝑤 is

shorthand for J·KM(𝜑,𝑤), and J𝜑KM is shorthand for {𝑤 ∈ W : J𝜑KM,𝑤 = 1}, J·KM is defined such

that for each 𝑤 ∈ W:

(a) J⊥KM,𝑤 = 0.

(b) For 𝛼 ∈ L atomic, J𝛼KM,𝑤 = 1 iff 𝑤 ∈ I(𝛼).

(c) J¬𝜑KM,𝑤 = 1 iff J𝜑KM,𝑤 = 0.

(d) J𝜑 ∧ 𝜓KM,𝑤 = 1 iff J𝜑KM,𝑤 = 1 and J𝜓KM,𝑤 = 1.

(e) J𝜑� 𝜓KM,𝑤 = 1 iff for all 𝑣 ∈ W𝑤 ∩ J𝜑KM, there is some 𝑢 ∈ W𝑤 ∩ J𝜑KM, 𝑢 ≤ 𝑣, such

that for any 𝑡 ∈ W𝑤 such that 𝑡 ≤ 𝑢, J𝜑→ 𝜓KM,𝑡 = 1.

Lemma 4.3.2. (i) J�𝜑KM,𝑤 = 1 iff W𝑤 ⊆ J𝜑KM.

(ii) J♦𝜑KM,𝑤 = 1 iff W𝑤 ∩ J𝜑KM ̸= ∅.

Proof. (i). (⇒). Suppose J�𝜑KM,𝑤 = 1. Then J¬𝜑� ⊥KM,𝑤 = 1. Then for all 𝑣 ∈ W𝑤∩ J¬𝜑KM,

there is some 𝑢 ∈ W𝑤 ∩ J¬𝜑KM such that 𝑤 ≤ 𝑢 and 𝑢 ≤ 𝑣 and such that for any 𝑡 ∈ W𝑤 such

that 𝑤 ≤ 𝑡 and 𝑡 ≤ 𝑢, J¬𝜑 → ⊥KM,𝑡 = 1. Then, setting 𝑡 = 𝑢, which we know we can do due to

the reflexivity of ≤, J𝜑KM,𝑢 = 1. But that cannot be, because 𝑢 ∈ J¬𝜑KM. So there cannot be any

𝑣 ∈ W𝑤 ∩ J¬𝜑KM, and so W𝑤 ⊆ J𝜑KM.

(⇐). Suppose W𝑤 ⊆ J𝜑KM. Then it vacuously holds that for all 𝑣 ∈ W𝑤 ∩ J¬𝜑KM, there is

some 𝑢 ∈ W𝑤 ∩ J¬𝜑KM, 𝑢 ≤ 𝑣, such that for any 𝑡 ∈ W𝑤 such that 𝑡 ≤ 𝑢, J¬𝜑 → ⊥KM,𝑡 = 1.

Thus, J¬𝜑� ⊥KM,𝑤 = 1, and so J�𝜑KM,𝑤 = 1.

(ii). J♦𝜑KM,𝑤 = 1 iff J¬�¬𝜑KM,𝑤 = 1 iff W𝑤 ̸⊆ J¬𝜑KM iff W𝑤 ∩ J𝜑KM ̸= ∅. �
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Definition 4.3.3. For 𝑤 ∈ W and condition 𝐶, 𝑣 ∈ W𝑤 is a minimal world relative to 𝑤 meeting

𝐶 iff 𝑣 meets 𝐶 and there is no 𝑢 ∈ W𝑤, 𝑢 ̸= 𝑣, that meets 𝐶. (Note that a world can be a minimal

world relative to 𝑤 meeting 𝐶 even if it is not a unique such world.)

Lemma 4.3.3. (i) Let 𝜑 be a positive Boolean combination of atomic sentences. Then if J𝜑KM,𝑤 =

1, then for all 𝑣 ∈ W𝑤, J𝜑KM,𝑣 = 1.

(ii) Let 𝜑 again be a positive Boolean combination of atomic sentences. Then for any 𝑤 ∈ W,

there is a non-empty finite set Γ ⊆ W𝑤 of minimal worlds such that for all 𝑣 ∈ Γ, J𝜑KM,𝑣 = 1,

and for all 𝑢 ∈ W𝑤, J𝜑KM,𝑢 = 1 iff for some 𝑣 ∈ Γ, 𝑣 ≤ 𝑢.

(iii) Let 𝜑 be a Boolean combination of atomic sentences, positive or not. Then, for any 𝑤 ∈ W,

there is a finite set Γ ⊆ W𝑤 of minimal worlds such that for all 𝑣 ∈ Γ, J𝜑KM,𝑣 = 1, and such

that for every world 𝑢 ∈ W𝑤, if J𝜑KM,𝑢 = 1, then there is some 𝑣 ∈ Γ such that 𝑣 ≤ 𝑢.

(iv) Let 𝜑 be a conjunction of literals (i.e. an atomic sentences or negated atomic sentences).

Then, for all 𝑤 ∈ W, if there is a world 𝑣 ∈ W𝑤 such that J𝜑KM,𝑣 = 1, then there is a unique

minimal such world.

Proof. Follows immediately from 4.3.1. �

Definition 4.3.4. (i) 𝜑 ∈ L is valid in a PT-model M iff J𝜑KM,𝑤@
= 1. (We also say that M

validates 𝜑.)

(ii) Γ ⊆ L is valid in a PT-model M iff for all 𝛾 ∈ Γ, 𝛾 is valid in M. (We also say that M

validates Γ.)

(iii) 𝜑 ∈ L is PT-valid (�PT 𝜑) iff it is valid in every PT-model.

(iv) Γ �PT 𝜑 iff for any PT-model M, if Γ is valid in M, then 𝜑 is valid in M.

(v) 𝜑 ∈ L is PT-satisfiable iff ¬𝜑 is not PT-valid.

(vi) Γ ⊆ L is PT-satisfiable iff there is a PT-model M such that Γ is valid in M.
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(vii) For Γ ⊆ L and 𝜑 ∈ L , a PT-model M validates ⟨Γ, 𝜑⟩ iff either Γ is not valid in M or 𝜑 is

valid in M.

4.4 Axioms and rules

The axioms of PT are all truth-functional tautologies plus all instances of the following:

A0. 𝜑� 𝜑,

A1.
(︀
(𝜑� 𝜓) ∧ (𝜑� 𝜒)

)︀
→
(︀
𝜑� (𝜓 ∧ 𝜒)

)︀
,

A2.
(︀
𝜑� (𝜓 ∧ 𝜒)

)︀
→
(︀
𝜑� 𝜓

)︀
,

A3.
(︀
(𝜑� 𝜓) ∧ (𝜑� 𝜒)

)︀
→
(︀
(𝜑 ∧ 𝜓)� 𝜒

)︀
,

A4.
(︀
(𝜑� 𝜒) ∧ (𝜓� 𝜒)

)︀
→
(︀
(𝜑 ∨ 𝜓)� 𝜒

)︀
,

A5. (𝜑 ∧ 𝜓) → (𝜑� 𝜓),

A6. (𝜑� 𝜓) → (𝜑→ 𝜓),

A7. �(𝜒 ↔ 𝜃) → (𝜑 ↔ 𝜓), where 𝜓 differs from 𝜑 only by replacing some subsentences of 𝜑 of

the form 𝜒 by 𝜃,

A8. ♦𝜑, for 𝜑 a conjunction of atomic sentences,

A9.
(︀
𝜑� (𝜓� 𝜒)

)︀
↔
(︀
(𝜑 ∧ 𝜓)� 𝜒

)︀
, for 𝜑 a conjunction of atomic sentences,

A10. (𝜑� 𝜓) → �(𝜑→ 𝜓), for 𝜓 a positive Boolean combination of atomic sentences,

A11.
(︀
𝜑� (𝜓 ∨ 𝜒)

)︀
↔
(︀
(𝜑� 𝜓) ∨ (𝜑� 𝜒)

)︀
, for 𝜑 a conjunction of literals,

A12. (︂
¬
(︁(︀
𝜑 ∨ 𝜓

)︀
� 𝜑

)︁
∧ ¬
(︁(︀
𝜑 ∨ 𝜓

)︀
� 𝜓

)︁)︂
→

(︂(︁(︀
𝜑 ∨ 𝜓

)︀
� 𝜒

)︁
→
(︁(︀
𝜑� 𝜒

)︀
∧
(︀
𝜓� 𝜒

)︀)︁)︂
,

for 𝜑, 𝜓 conjunctions of literals.
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Definition 4.4.1. A PT-proof is a finite list of sentences of L such that for every member 𝜒 of the

list:

(i) either 𝜒 is a truth-functional tautology,

(ii) or 𝜒 is an instance of one of A0–A12,

(iii) or 𝜒 has the form 𝜓 where 𝜑 and 𝜓 → 𝜓 appear earlier in the list,

(iv) or 𝜒 has the form �𝜑 and 𝜑 appears earlier on the list.

If 𝜑 is the last member of a PT-proof, then we say that 𝜑 is a theorem of PT and we write ⊢PT 𝜑.

Thus, in addition to the above axioms, the rules of PT are:

Modus Ponens (MP). If ⊢PT 𝜑 and ⊢PT 𝜑→ 𝜓, then ⊢PT 𝜓.

Necessitation (NEC). If ⊢PT 𝜑, then ⊢PT �𝜑.

Definition 4.4.2. (i) For Γ ⊆ L , Γ ⊢PT 𝜑 iff for some finite Γ′ ⊆ Γ, ⊢PT
⋀︀
Γ′ → 𝜑.

(ii) Γ is PT-consistent iff for some 𝜑 ∈ L , Γ 0PT 𝜑.

Next, we record two central facts about ⊢PT.

Lemma 4.4.1. (i) If ⊢PT 𝜒 ↔ 𝜃, ⊢PT 𝜑, and 𝜓 differs from 𝜑 only by replacing some subsen-

tences of 𝜑 of the form 𝜒 by 𝜃, then ⊢PT 𝜓.

(ii) ⊢PT �𝜑→ ��𝜑. (This is the characteristic axiom of the modal logic S4.)

Proof. (i): Suppose that ⊢PT 𝜒 ↔ 𝜃. Then ⊢PT �(𝜒 ↔ 𝜃), by NEC. Now suppose that ⊢PT 𝜑 and

that 𝜓 differs from 𝜑 only by replacing some subsentences of 𝜑 of the form 𝜒 by 𝜃. Then ⊢PT 𝜓

immediately follows by A7 and MP.

(ii):

1. �(𝜑↔ ⊤) → (��𝜑↔ ��⊤) A7

2. �𝜑→ �𝜑 taut.

3. �𝜑→ �(𝜑↔ ⊤) 2, Theorem 4.4.1.(i).

4. ��⊤ taut., NEC

5. �𝜑→ ��𝜑 1, 3, 4, taut., MP
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4.5 Discussion

The following series of remarks discuss certain features of PT and compare it to a number of well

known conditional and modal logics.

Remark 4.5.1. Note that in 4.3.4.(i), we defined validity in a model as truth at the minimal element

of that model. This captures the idea PT is a logic whose theorems are, relative to an interpretation,

true at the ideal {0}, i.e. the ideal whose sole member is the computable degree.

Remark 4.5.2. Any PT-frame ⟨W,≤⟩ can be transformed into a frame with a ternary comparative

similarity relation ≤* where for 𝑤, 𝑣, 𝑢 ∈ W, 𝑣 ≤*
𝑤 𝑢 iff 𝑤 ≤ 𝑣 and 𝑣 ≤ 𝑢. Conversely, call a

ternary relation R base-invariant iff it does not vary as we vary first argument except for adjustments

of the domain. Then given a base-invariant ternary frame ⟨W,≤*⟩ such that ⟨W,≤*
𝑤@

⟩ is an upper

semilattice with a minimal element 𝑤@ where for any 𝑤 ∈ W, {⟨𝑣, 𝑢⟩ : 𝑣 ≤𝑤@
𝑢} includes

{⟨𝑣, 𝑢⟩ : 𝑣 ≤𝑤 𝑢}, any model on ⟨W,≤*⟩ is in Burgess’ model class ℳ1. The models in ℳ1 are

ℳ1 are tuples ⟨W,R⟩, subject to the following constraints. Let W𝑏
𝑤 = {𝑣 ∈ W : R𝑤𝑣𝑣}. Then we

require that R is a ternary relation on W ̸= ∅ such that for all 𝑤 ∈ W, {⟨𝑣, 𝑢⟩ : R𝑤𝑣𝑢} is a partial

order and such that for all 𝑤 ∈ W, 𝑤 ∈ W𝑏
𝑤 and for all 𝑣 ∈ W𝑏

𝑤, R𝑤𝑤𝑣.� is defined such that

J𝜑� 𝜓KM,𝑤 = 1 iff for all 𝑣 ∈ W𝑏
𝑤 ∩ J𝜑KM, there is some 𝑢 ∈ W𝑏

𝑤 ∩ J𝜑KM such that R𝑤𝑢𝑣 and

such that for any 𝑡 ∈ W𝑏
𝑤 such that R𝑤𝑡𝑢, J𝜑→ 𝜓KM,𝑡 = 1.

Remark 4.5.3. 4.3.2.(e), the semantic clause for�, is closely related to the clause used in Burgess

(1981), Lewis (1981), and Veltman (1985). This clause is a generalization of Lewis’ clause in his

𝛾-models Lewis (1971). Lewis’ clause is the following:

(e′) J𝜑� 𝜓KM,𝑤 = 1 iff there is some 𝑢 ∈ W𝑤 ∩ J𝜑KM such that for any 𝑡 ∈ W𝑤 such that

R𝑤𝑡𝑢, J𝜑→ 𝜓KM,𝑡 = 1.

We need the initial universal quantifier because the worlds in our frames are not required to be

comparable, i.e. we do not require that for all 𝑤, 𝑣 ∈ W, 𝑤 ≤ 𝑣 or 𝑣 ≤ 𝑤.
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Remark 4.5.4. Given Theorem 4.3.3.(iii), we can say that 𝜑� 𝜓 is true at 𝑤 is to say that all

minimal 𝜑-worlds relative to 𝑤 are 𝜓-worlds, where a world 𝑣 is a 𝜑-world iff J𝜑KM,𝑣 = 1. So

even though 4.3.1 does not require every non-empty subset of W to have a set of minimal elements

and so not all PT-models satisfy what is called the limit assumption in Lewis (1973), we can still

help ourselves to a quite simple understanding of the semantic clause for the conditional connective

that dispenses with the three quantifiers of the official wording of the clause. (In other words, PT-

models satisfy the Smoothness Condition of Kraus et al. (1990, p. 182).) Finally, note that if 𝜑 is

a conjunction of atomic sentences, Theorem 4.3.1.(ii) guarantees that there is exactly one minimal

𝜑-world relative to any 𝑤 ∈ W.

Remark 4.5.5. Given Theorem 4.5.4, it might be wondered why we did not simply require that PT-

frames satisfy the limit assumption. While Theorem 4.5.4 shows that 𝜑 is valid in every PT-model

iff 𝜑 is valid in every PT-model that satisfies the limit assumption, requiring that all PT-frames

satisfy the limit assumption would have the undesirable consequence that the intended frame ⟨I,⊆⟩

is not a PT-frame. For as shown in Sacks (1964), the computably enumerable degrees are dense.

Nevertheless, Theorem 4.5.4 shows that our language cannot express this fact.

Remark 4.5.6. 4.3.1.(ii).(b) requires that if an atomic sentence is true at a world, it remains true as

we move up the partial order induced by ≤, much as in Kripke models for intuitionistic logic Kripke

(1965). However, since our connective ¬ is classical, we do not have the full hereditary condition,

which would require for any 𝜑 that if 𝜑 is true at a world, it remains true as we move up the partial

order.

Remark 4.5.7. Also unlike in Kripke models, we have that each atomic sentence 𝛼 is true at some

world (4.3.1.(ii).(a)). This together with 4.3.1.(ii).(b) gives us �PT A8, where A8 is the axiom that

says that every atomic conjunction of atomic sentences is possibly true. This corresponds to the idea

that we can feed any set 𝑆 ⊆ 𝜔 into the oracle tape of an oracle Turing machine, which would allow

that machine to decide 𝑆.

Remark 4.5.8. Burgess’ system S1 replaces A0–A6 with seven axioms that one gets by replac-

ing 𝜑, 𝜓, and 𝜒 in A0–A6 with 𝑝, 𝑞, and 𝑟. Burgess (1981). The rules of S1 are MP and Theo-
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rem 4.4.1.(i), as well as Uniform Substitution (Burgess calls it just ‘Substitution’). Burgess needs

Uniform Substitution because his axioms are not schemas. We need to formulate our axioms as

schemas because we would not be able to formulate A8–A12 otherwise. Thus unlike S1, PT is not

closed under Uniform Substitution. However, since we do not place any restrictions on A0–A6, we

still have that if 𝜑 is a theorem of S1, then ⊢PT 𝜑.

Remark 4.5.9. Burgess shows that the theorems of S1 are all and only the sentences valid in every

model in his model class ℳ1. Since we saw in Remark 5 that every PT-model can be transformed

into a model in ℳ1 and A0–A6 are valid in every model in ℳ1, we immediately have that �PT

A0 ∧A1 ∧A3 ∧A4 ∧A5 ∧A6.

Remark 4.5.10. A7 is well known from modal logic, but it does not generally hold in conditional

logics whose models contain a ternary comparative similarity relation such as those studied in

Burgess (1981), Lewis (1981), and Veltman (1985). To see that, recall that in Theorem 4.4.1.(ii)

we showed how to derive �𝜑 → ��𝜑 from A7, where other than A7 we only used axioms and

rules found in Burgess’ S1. But �𝜑 → ��𝜑 will not hold in general if R is a ternary comparative

similarity relation that is not base-invariant. For suppose that �𝜑 is true at 𝑤. Then 𝜑 holds at every

𝑣 ∈ W𝑏
𝑤 (see Theorem 4.5.2 for the definition of W𝑏

𝑤). But that is compatible with there being some

𝑣 ∈ W𝑏
𝑤 such that there is some 𝑢 ∈ W𝑏

𝑣 where 𝜑 is false, in which case �𝜑 is false at 𝑣, and so

��𝜑 is false at 𝑤.

Remark 4.5.11. A9 is a restricted version of the import-export principle. In its unrestricted form,

it makes a conditional collapse into the material conditional in the presence of MP; see Gibbard

(1980), McGee (1985), Kratzer (1986), Fitelson (2013), and Khoo (2013) for discussion. Note

furthermore that A10 entails a restricted version of antecedent strengthening: for 𝜑, 𝜓, 𝜒 positive

Boolean combinations of atomic sentences, ⊢PT

(︀
𝜑 � 𝜓

)︀
→
(︀
(𝜑 ∧ 𝜒) � 𝜓

)︀
. In full gen-

erality, antecedent strengthening is invalid for the counterfactual conditional, as discussed in p.

10]lewis1973counterfactuals. A11 is a weak version of axiom (a5) of Stalnaker’s logic Stalnaker

(1968). Against the background of Stalnaker’s other axioms (all of which theorems of PT), (a5)

is equivalent to (𝜑 � 𝜓) ∨ (𝜑 � ¬𝜓), which is the principle of conditional excluded middle
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discussed in Stalnaker (1980). Its full version is not PT-valid. Finally, A12 is a restricted version of

Lewis’ p. 80]lewis1971completeness Axiom C. Its unrestricted version is invalid in PT as well as

in Burgess’ models because they allow for incomparable worlds.

Remark 4.5.12. We observe the following facts about �PT:

VACUITY. �PT (¬𝜑� 𝜑) → (𝜓� 𝜑)

CLOSURE. If �PT
(︀
𝜑1∧· · ·∧𝜑𝑛

)︀
→ 𝜓, then �PT

(︀
(𝜒� 𝜑1)∧· · ·∧(𝜒� 𝜑𝑛)

)︀
→ (𝜒� 𝜓).

EQUIVALENCE. If �PT 𝜑↔ 𝜓, then �PT (𝜑� 𝜒) ↔ (𝜓� 𝜒).

Together with A0 and MP, VACUITY, CLOSURE, and EQUIVALENCE constitute the minimal

conditional logic discussed in Williamson (2010). Note also if we adopted CLOSURE and EQUIV-

ALENCE as rules, we could dispense with A2, A7, and NEC.

Remark 4.5.13. The normal modal logic axiom K: �(𝜑 → 𝜓) → (�𝜑 → �𝜓) and the reflexivity

axiom T: �𝜑 → 𝜑 are theorems of S1 and thus we have ⊢PT K ∧ T. It thus follows from Theo-

rem 4.4.1.(ii) that every theorem of the normal modal logic S4 is a theorem of PT. (The models of

S4 have a reflexive and transitive accessibility relation. See Cresswell and Hughes (1996) for S4 and

the modal logics mentioned below.) As such, PT also contains the conditional logic CT4 studied

in Boutilier (1990), which is equivalent to S4. This contrasts with Burgess’ system, some of whose

models do not validate the characteristic axiom of S4.

Remark 4.5.14. what is more, because PT-frames are upper semilattices, they are contained in

the class of frames of the modal logic S4.2, whose accessibility relations R are not only reflexive

and transitive, but also “convergent,” which means that for any three worlds 𝑤, 𝑣, 𝑢, such that R𝑤𝑣

and R𝑤𝑢, there is some world 𝑡 such that R𝑣𝑡 and R𝑣𝑡. The characteristic axiom of S4.2 is M:

♦�𝜑→ �♦𝜑, and so we have �PT M.

Remark 4.5.15. Because not all of our worlds are comparable, PT does not contain the modal logic

S4.3, whose accessibility relations R are not only reflexive and transitive, but also “connected,”

which means that for any three worlds 𝑤, 𝑣, 𝑢, such that R𝑤𝑣 and R𝑤𝑢, either R𝑣𝑢 or R𝑢𝑣. The
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characteristic axiom of S4.3 is D1:�(�𝜑→ 𝜓)∨�(�𝜓 → 𝜑). We thus have 2PT D1. As such, PT

also does not contain the conditional logic CT4D studied in Boutilier (1990), which is equivalent to

S4.3.

Remark 4.5.16. For 𝜑 a positive Boolean combination of atomic sentences, we have �PT (𝜑�

𝜓) → ¬(𝜑� ¬𝜓). In its unrestricted form, this is known as Boethius’ thesis in the literature on

connexive logics; see McCall (1966). In this unrestricted form, we only have �PT ♦𝜑 →
(︀
(𝜑�

𝜓) → ¬(𝜑� ¬𝜓)
)︀
, which is axiom (a4) of Stalnaker’s logic Stalnaker (1968).

4.6 Soundness

Theorem 4.6.1. If ⊢PT 𝜑, then �PT 𝜑.

Proof. Recall Theorem 4.5.4 throughout this proof.

That A0–A6 are all PT-valid was already observed in Theorem 4.5.9.

The fact that ≤ is transitive and base-invariant (or rather that the ternary relation ≤* is base-

invariant—see Theorem 4.5.2) guarantees that A7 is PT-valid. (See Theorem 4.5.10 for further

discussion).

4.3.1.(ii).(a) guarantees that A8 is PT-valid.

A9 is PT-valid. (⇒). Suppose there is some conjunction of atomic sentences 𝜑 and some PT-

model M such that J𝜑 � (𝜓 � 𝜒)KM,𝑤@
= 1 but J(𝜑 ∧ 𝜓) � 𝜒KM,𝑤@

= 0. The latter

tells us that the set 𝑆1 of 𝜑 ∧ 𝜓-worlds that are minimal relative to 𝑤@ contains a ¬𝜒-world. The

former tells us that the 𝜑-world 𝑤 that is minimal relative to 𝑤@ is a 𝜓 � 𝜒-world. So the set

𝑆2 of 𝜓-worlds that are minimal relative to 𝑤 contains only 𝜒-worlds. By 4.3.1.(ii).(b), 𝑆2 contains

only 𝜑-worlds. Also, 4.3.1.(i) guarantees that 𝑆1 = 𝑆2. Contradiction. (⇐). Suppose there is some

conjunction of atomic sentences 𝜑 and some PT-model M such that J(𝜑 ∧ 𝜓)� 𝜒KM,𝑤@
= 1 but

J𝜑� (𝜓� 𝜒)KM,𝑤@
= 0. The latter tells us that the 𝜑-world 𝑤 that is minimal relative to 𝑤@ is

a ¬(𝜓� 𝜒)-world. So the set 𝑆1 of 𝜓-worlds that are minimal relative to 𝑤 contains a ¬𝜒-world.

By 4.3.1.(ii).(b), 𝑆1 contains only 𝜑-worlds. J(𝜑 ∧ 𝜓) � 𝜒KM,𝑤@
= 1 tells us that the set 𝑆2 of

𝜑 ∧ 𝜓-worlds that are minimal relative to 𝑤@ contains only 𝜒-worlds. But 4.3.1.(i) guarantees that
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𝑆1 = 𝑆2. Contradiction.

4.3.1.(ii).(b) guarantees that A10 is PT-valid.

As discussed in Theorem 4.5.11, A11 is a weak version of axiom (a5) of Stalnaker’s logic

Stalnaker (1968). 4.3.1.(i) and Theorem 4.3.3.(iv) guaranteee that it is PT-valid.

A12 is PT-valid. For suppose there are conjunctions of literals 𝜑 and 𝜓 for which there is a

PT-model M such that J¬
(︀
(𝜑∨𝜓)� 𝜑

)︀
∧¬
(︀
(𝜑∨𝜓)� 𝜓

)︀
KM,𝑤@

= 1 but J
(︀
(𝜑∨𝜓)� 𝜒

)︀
→(︀

(𝜑� 𝜒) ∧ (𝜓� 𝜒)
)︀
KM,𝑤@

= 0. By Theorem 4.3.3.(iv), J¬
(︀
(𝜑 ∨ 𝜓)� 𝜑

)︀
∧ ¬
(︀
(𝜑 ∨ 𝜓)�

𝜓
)︀
KM,𝑤@

= 1 tells us that the minimal 𝜑-world 𝑤 relative to 𝑤@ and the minimal 𝜓-world 𝑣

relative to 𝑤@ are such that 𝑤 � 𝑣 and 𝑣 � 𝑤. At the same time, J
(︀
(𝜑 ∨ 𝜓) � 𝜒

)︀
→
(︀
(𝜑�

𝜒) ∧ (𝜓� 𝜒)
)︀
KM,𝑤@

= 0 tells us that J(𝜑 ∨ 𝜓)� 𝜒KM,𝑤@
= 1 and either J𝜑� 𝜒KM,𝑤@

= 0

or J𝜓� 𝜒KM,𝑤@
= 0. But that can only be if 𝑤 ≤ 𝑣 or 𝑣 ≤ 𝑤.

MP preserves PT-validity for the same reasons it preserves validity in all of Burgess’ models. To

see that NEC preserves PT-validity it is sufficient to note that the above proves regarding A0–A12

would go through unchanged for an arbitrary world instead of for 𝑤@. �

Corollary 4.6.2. (i) If Γ ⊢PT 𝜑, then Γ �PT 𝜑.

(ii) If Γ ⊆ L is PT-satisfiable, then Γ is PT-consistent.

Proof. Immediate from 4.3.4, 4.4.2, and Theorem 4.6.1. �

4.7 Some facts about ⊢PT

Before proving completeness, we need to prove some facts about ⊢PT.

Lemma 4.7.1. (i) For 𝜑 a positive Boolean combination of atomic sentences, ⊢PT ♦𝜑.

(ii) For 𝜑, 𝜓 conjunctions of atomic sentences, ⊢PT

(︀
𝜑� 𝜓

)︀
→ �

(︀
(𝜑 ∧ ¬𝜓) ↔ ⊥

)︀
.

(iii) For 𝜑 a conjunction of literals, ⊢PT ♦𝜑→
(︀
(𝜑� ¬𝜓) ↔ ¬(𝜑� 𝜓)

)︀
.

(iv) For 𝜑, 𝜓 conjunctions of atomic sentences, ⊢PT

(︀
𝜓� ¬𝜑

)︀
→ ¬

(︀
(𝜑 ∨ 𝜓)� 𝜑

)︀
.
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(v) For 𝜑 a conjunction of literals and for Γ ⊆ L a set such that if 𝜓 is a conjunction of all

positive conjuncts of 𝜑 and ¬𝛼 a conjunct of 𝜑, 𝜓� ¬𝛼 ∈ Γ, Γ ⊢PT ♦𝜑.

(vi) For 𝜑 a conjunction of atomic sentences,

⊢PT ♦𝜑→
(︁(︀
𝜑� ¬(𝜓� 𝜒)

)︀
↔ ¬

(︀
(𝜑 ∧ 𝜓)� 𝜒

)︀)︁
.

(vii) For 𝐴,𝐵 finite sets of atomic sentences, ⊢PT ♦(
⋀︀
𝐴 ∧ ¬

⋁︀
𝐵) → (

⋀︀
𝐴� ¬

⋁︀
𝐵).

(viii) ⊢PT

(︂
𝜃� 𝜒

)︂
→
(︂(︁(︀

𝜑 ∨ (𝜃 ∧ 𝜒)
)︀
� 𝜓

)︁
↔
(︁(︀

(𝜑 ∨ 𝜃)� 𝜒
)︀)︁)︂

.

(ix) For 𝐴,𝐵 finite sets of atomic sentences,

⊢PT ♦
(︁⋀︁

𝐴 ∧ ¬
⋁︁
𝐵
)︁
→
(︁(︀
𝜑 ∨ (

⋀︁
𝐴 ∧ ¬

⋁︁
𝐵)� 𝜓

)︀
↔
(︀
(𝜑 ∨

⋀︁
𝐴)� 𝜓

)︀)︁
.

Proof. In what follows, we occasionally invoke theorems of S1 and S4, which usually can be ver-

ified with simple model-theoretic arguments, and which, by Theorem 4.5.8 and Theorem 4.5.13,

are theorems of PT. We also often leave appeals to truth-functional tautologies, MP, and Theo-

rem 4.4.1.(i) (i.e. the replacement of provable equivalents) implicit.

(i): Note first that there is a sentence 𝜓1 ∨ · · · ∨ 𝜓𝑛, for 𝜓𝑖 conjunctions of atomic sentences,

that is truth-functionally equivalent to 𝜑. Now, take an arbitrary 𝜓𝑖, 1 ≤ 𝑖 ≤ 𝑛.

1. 𝜓𝑖 → 𝜑 taut.

2. ♦𝜓𝑖 → ♦𝜑 1, S4

3. ♦𝜓𝑖 A8

4. ♦𝜑 2, 3

(ii): Since
(︀
(𝜑 ∧ ¬𝜓) ↔ ⊥

)︀
↔
(︀
𝜑→ 𝜓

)︀
is a truth-functional tautology, this follows from A10

by Theorem 4.4.1.(i).

(iii):
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1.
(︀
(𝜑� ¬𝜓) ∧ (𝜑� 𝜓)

)︀
→
(︀
𝜑� (𝜓 ∧ ¬𝜓)

)︀
A1

2.
(︀
(𝜑� ¬𝜓) ∧ (𝜑� 𝜓)

)︀
→
(︀
𝜑� ⊥

)︀
1, Theorem 4.4.1.(i)

3.
(︀
(𝜑� ¬𝜓) ∧ (𝜑� 𝜓)

)︀
→ ¬♦𝜑 2, def. ♦, Theorem 4.4.1.(i)

4. ♦𝜑→
(︀
(𝜑� ¬𝜓) → ¬(𝜑� 𝜓)

)︀
3

5. 𝜑� 𝜑 A1

6. 𝜑↔
(︀
𝜑↔ (𝜓 ∨ ¬𝜓)

)︀
taut.

7. 𝜑� (𝜓 ∨ ¬𝜓) 5, 6

8. (𝜑� 𝜓) ∨ (𝜑� ¬𝜓) 7, A11

9. ¬(𝜑� 𝜓) → (𝜑� ¬𝜓) 8

10. ♦𝜑→
(︀
¬(𝜑� 𝜓) → (𝜑� ¬𝜓)

)︀
9

11. ♦𝜑→
(︀
(𝜑� ¬𝜓) ↔ ¬(𝜑� 𝜓)

)︀
4, 11

(iv):

1.
(︀
(𝜓� ¬𝜑) ∧ ¬(𝜓� ⊥)

)︀
→ ¬

(︀
(¬𝜑 ∧ 𝜓)� ⊥

)︀
S1

2. ¬(𝜓� ⊥) Theorem 4.7.1.(i)

3.
(︁(︀
𝜑 ∨ 𝜓

)︀
� 𝜑

)︁
→
(︁
�
(︀
(𝜑 ∨ 𝜓) → 𝜑

)︀)︁
A10

4.
(︁(︀
𝜑 ∨ 𝜓

)︀
� 𝜑

)︁
→
(︁
¬
(︀
(𝜑 ∨ 𝜓) → 𝜑

)︀
� ⊥

)︁
4, def. �

5.
(︁(︀
𝜑 ∨ 𝜓

)︀
� 𝜑

)︁
→
(︁(︀

¬𝜑 ∧ 𝜓
)︀
� ⊥

)︁
4, def. �

6.
(︀
𝜓� ¬𝜑

)︀
→ ¬

(︀
(𝜑 ∨ 𝜓)� 𝜑

)︀
1, 2, 5

(v): Without loss of generality (and again temporarily assuming that 𝑞𝑖, 𝑖 ∈ 𝜔, are atomic

sentences), let 𝜓 = 𝑝1∧· · ·∧𝑝𝑛, 𝜒 = ¬𝑞1∧· · ·∧¬𝑞𝑚, and 𝜑 = 𝜓∧𝜒 and let Γ = {(𝑝1∧· · ·∧𝑝𝑛)�

¬𝑞1, . . . , (𝑝1 ∧ · · · ∧ 𝑝𝑛)� ¬𝑞𝑚}.

1.
⋀︀
Γ → (𝜓� 𝜒) A1

2.
(︁(︀
𝜓� 𝜒

)︀
∧
(︀
(𝜓 ∧ 𝜒)� ⊥

)︀)︁
→
(︁
𝜓� ⊥

)︁
S1

3.
(︁⋀︀

Γ ∧
(︀
(𝜓 ∧ 𝜒)� ⊥

)︀)︁
→
(︁
𝜓� ⊥

)︁
1, 2

4.
(︁⋀︀

Γ ∧
(︀
(𝜓 ∧ 𝜒)� ⊥

)︀)︁
→ ¬♦𝜓 3, def. ♦

5.
⋀︀
Γ → ¬

(︀
(𝜓 ∧ 𝜒)� ⊥

)︀
4, A8

6.
⋀︀
Γ → ♦𝜑 5, def. ♦, def. 𝜑
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(vi):

1. ♦𝜑→
(︁(︀
𝜑� ¬(𝜓� 𝜒)

)︀
→ ¬

(︀
𝜑� (𝜓� 𝜒)

)︀)︁
Theorem 4.7.1.(iii)

2. ♦𝜑→
(︁(︀
𝜑� ¬(𝜓� 𝜒)

)︀
→ ¬

(︀
(𝜑 ∧ 𝜓)� 𝜒

)︀)︁
1, A9

3. ♦𝜑→
(︁
¬
(︀
(𝜑 ∧ 𝜓)� 𝜒

)︀
→ ¬

(︀
𝜑� (𝜓� 𝜒)

)︀)︁
A9

4. ♦𝜑→
(︁
¬
(︀
(𝜑 ∧ 𝜓)� 𝜒

)︀
→
(︀
𝜑� ¬(𝜓� 𝜒)

)︀)︁
3, Theorem 4.7.1.(iii)

5. ♦𝜑→
(︁(︀
𝜑� ¬(𝜓� 𝜒)

)︀
↔ ¬

(︀
(𝜑 ∧ 𝜓)� 𝜒

)︀)︁
2, 4

(vii):

1. (
⋀︀
𝐴�

⋁︀
𝐵) → �(

⋀︀
𝐴→

⋁︀
𝐵) A10

2.
(︀⋀︀

𝐴�
⋁︀
𝐵
)︀
→
(︀
¬(
⋀︀
𝐴→

⋁︀
𝐵)� ⊥

)︀
1, def. �

3.
(︀⋀︀

𝐴�
⋁︀
𝐵
)︀
→
(︀
(
⋀︀
𝐴 ∧ ¬

⋁︀
𝐵)� ⊥

)︀
2

4. ♦(
⋀︀
𝐴 ∧ ¬

⋁︀
𝐵) → ¬(

⋀︀
𝐴�

⋁︀
𝐵) 3, def. ♦

5. ♦(
⋀︀
𝐴 ∧ ¬

⋁︀
𝐵) → ♦

⋀︀
𝐴 S4

6. ♦(
⋀︀
𝐴 ∧ ¬

⋁︀
𝐵) → (

⋀︀
𝐴� ¬

⋁︀
𝐵) 4, 5, Theorem 4.7.1.(iii)

(viii): We give a model-theoretic argument to show that
(︂
𝜃� 𝜒

)︂
→
(︂(︁(︀

𝜑 ∨ (𝜃 ∧ 𝜒)
)︀
�

𝜓
)︁
↔
(︁(︀

(𝜑∨𝜃)� 𝜒
)︀)︁)︂

is a theorem of Burgess’ S1, from which the result immediately follows.

Take an arbitrary world 𝑤 from an arbitrary model in Burgess’ model class ℳ1 on the frame

⟨W,R⟩. Suppose that 𝜃� 𝜒 is true at 𝑤.

(⇒). Suppose that
(︀
𝜑 ∨ (𝜃 ∧ 𝜒)

)︀
� 𝜓 is true at 𝑤. Let 𝑣 be a 𝜑 ∨ 𝜃-world such that R𝑤𝑤𝑣.

Case 1. There is a 𝜃-world 𝑢 such that R𝑤𝑢𝑣. Then there is a 𝜃-world 𝑡 such that R𝑤𝑡𝑢

and such that 𝜒 is true at every 𝜃-world 𝑠 such that R𝑤𝑠𝑡. 𝑡 is a 𝜃 ∧ 𝜒-world, so it is a(︀
𝜑 ∨ (𝜃 ∧ 𝜒)

)︀
-world. So there is a

(︀
𝜑 ∨ (𝜃 ∧ 𝜒)

)︀
-world 𝑠 such that R𝑤𝑠𝑡 and such that

𝜓 is true at every
(︀
𝜑 ∨ (𝜃 ∧ 𝜒)

)︀
-world 𝑟 such that R𝑤𝑟𝑡. Let 𝑟 be a 𝜑 ∨ 𝜃-world such

that R𝑤𝑟𝑡. If 𝑟 is a 𝜑 world, then it is a
(︀
𝜑∨ (𝜃∧𝜒)

)︀
-world and it is such that R𝑤𝑟𝑡, in

which case it is a 𝜓-world. If 𝑟 is not a 𝜑-world, it is a 𝜃-world and since it is such that

R𝑤𝑟𝑡, it is a 𝜃 ∧𝜒-world. So 𝑟 is a
(︀
𝜑∨ (𝜃 ∧𝜒)

)︀
-world such that R𝑤𝑟𝑡. So 𝜓 is true at

every 𝜑 ∨ 𝜃-world 𝑞 such that R𝑤𝑞𝑠.
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Case 2. There is not any 𝜃-world 𝑢 such that R𝑤𝑢𝑣. Then 𝑣 is a 𝜑 world, and so it is a(︀
𝜑∨ (𝜃∧𝜒)

)︀
-world. So there is a

(︀
𝜑∨ (𝜃∧𝜒)

)︀
-world 𝑢 such that R𝑤𝑢𝑣 such that 𝜓 is

true at every
(︀
𝜑∨ (𝜃∧𝜒)

)︀
-world 𝑡 such that R𝑤𝑡𝑢. 𝜃 is not true at 𝑢, and so 𝜃∧𝜒 is not

true at 𝑢. So 𝜑 is true at 𝑢. So 𝑢 is a
(︀
𝜑∨(𝜃∧𝜒)

)︀
-world. So there is a

(︀
𝜑∨(𝜃∧𝜒)

)︀
-world

𝑡 such that R𝑤𝑡𝑢 such that 𝜓 is true at every
(︀
𝜑∨ (𝜃∧𝜒)

)︀
-world 𝑠 such that R𝑤𝑠𝑡. Let

𝑠 be a 𝜑∨𝜃-world such that R𝑤𝑠𝑡. Since R𝑤𝑠𝑣, 𝜃 is true at 𝑠. So 𝜑 is true at 𝑠. So 𝑠 is a(︀
𝜑∨ (𝜃 ∧𝜒)

)︀
-world such that R𝑤𝑠𝑡. So 𝜓 is true at 𝑡. So 𝜓 is true at every 𝜑∨ 𝜃-world

𝑟 such that R𝑤𝑟𝑡. So (𝜑 ∨ 𝜃)� 𝜓 is true at 𝑤.

(⇐). Suppose that (𝜑 ∨ 𝜃) � 𝜓 is true at 𝑤. Let 𝑣 be a
(︀
𝜑 ∨ (𝜃 ∧ 𝜒)

)︀
-world such that R𝑤𝑤𝑣.

Then 𝑣 is a world at which 𝜑∨ 𝜃 is true. So there is a world 𝑢 such that R𝑤𝑢𝑣 at which 𝜑∨ 𝜃

is true such that (𝜑 ∨ 𝜃) → 𝜓 is true at every world 𝑡 such that R𝑤𝑡𝑢. We want to show

that there is a world 𝑡 such that R𝑤𝑡𝑢 and such that
(︀
𝜑 ∨ (𝜃 ∧ 𝜒)

)︀
is true at 𝑡 and such that(︀

𝜑 ∨ (𝜃 ∧ 𝜒)
)︀
→ 𝜓 is true at every world 𝑠 such that R𝑤𝑠𝑡. If 𝜑 ∨ (𝜃 ∧ 𝜒) is true at 𝑢, then

we are done: just take 𝑡 to be 𝑢. So the only case we need to worry about is the one in which

𝜑 and 𝜃∧𝜒 are both false at 𝑢 but 𝜃 is true at 𝑢. Then there is a 𝜃-world 𝑡 such that R𝑤𝑡𝑢 and

such that 𝜒 is true at every 𝜃-world 𝑠 such that R𝑤𝑠𝑡. So 𝑡 is a 𝜃 ∧ 𝜒-world such that R𝑤𝑡𝑢

and such that
(︀
𝜑 ∨ (𝜃 ∧ 𝜒)

)︀
→ 𝜓 is true at every world 𝑠 such that R𝑤𝑠𝑡.

(ix): Follows immediately from Theorem 4.7.1.(vii)&(viii). �

4.8 Completeness and decidability

Theorem 4.8.1. If �PT 𝜑, then ⊢PT 𝜑.

Proof. We first need a few definitions (recall 4.2.2):

Definition 4.8.1. (i) An atomic conditional is a sentence of the form
⋀︀
𝐴� 𝛼, for 𝐴 a (possi-

bly empty) set of atomic sentences (where
⋀︀
𝐴 = ⊤ if 𝐴 = ∅), and for 𝛼 an atomic sentence.

(ii) An atomic theory over a finite set Δ ⊆ L is a set Γ ⊆ {𝜓 ∈ LΔ : 𝜓 is an atomic conditional}

subject to the following two constraints:
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∙ for 𝐴 ⊆ LΔ a set of atomic sentences and 𝛼 ∈ 𝐴,
⋀︀
𝐴� 𝛼 ∈ Γ.

∙ for 𝐴,𝐵 ⊆ LΔ sets of atomic sentences, if
⋀︀
𝐵 � 𝛼 ∈ Γ for every 𝛼 ∈ 𝐴 and⋀︀

𝐴� 𝛽, then
⋀︀
𝐵� 𝛽 ∈ Γ.

(iii) Where Γ is an atomic theory over Δ, the complete theory of Γ over Δ is the set Γ+ =

Γ ∪ {
⋀︀
𝐴� ¬𝛼 :

⋀︀
𝐴� 𝛼 ∈ LΔ is an atomic conditional and

⋀︀
𝐴� 𝛼 /∈ Γ}.

(iv) A simple conditional is a sentence of the form 𝜑� 𝜓 such that 𝜑 and 𝜓 are conditional-free.

Armed with these definitions, we now show that given a complete theory, we can transform any

sentence 𝜒 into a sentence 𝜃 that is a Boolean combination of atomic conditionals and conditional-

free sentences such that the complete theory proves that 𝜒 and 𝜃 are equivalent. This is part (iv) of

the following lemma. Parts (i)–(iii) lead up to this result.

Lemma 4.8.2. Let Δ ⊆ L , let Γ be an atomic theory over Δ, and let Γ+ be the complete theory of

Γ over Δ.

(i) For any conditional 𝜑� 𝜓 ∈ LΔ, we can find some 𝜃 ∈ LΔ that is a Boolean combination

of conditionals 𝜒𝑖 � 𝜓, for 𝜒𝑖 conjunctions of atomic sentences, such that Γ+ ⊢PT (𝜑�

𝜓) ↔ 𝜃.

(ii) For any 𝜒 ∈ LΔ, we can find some 𝜃 ∈ LΔ that is a Boolean combination of simple

conditionals and conditional-free sentences such that Γ+ ⊢PT 𝜒↔ 𝜃.

(iii) For any simple conditional 𝜑� 𝜓 ∈ LΔ where 𝜑 a conjunction of atomic sentences, we can

find some 𝜃 ∈ LΔ that is a Boolean combination of atomic conditionals and conditional-free

sentences such that Γ+ ⊢PT (𝜑� 𝜓) ↔ 𝜃.

(iv) For any 𝜒 ∈ LΔ, we can find some 𝜃 ∈ LΔ that is a Boolean combination of atomic

conditionals and conditional-free sentences such that Γ+ ⊢PT 𝜒↔ 𝜃.

Proof. (i). We describe an algorithm for converting 𝜑� 𝜓 into a sentence 𝜃 that is a conjunction

of conditionals 𝜒𝑖 � 𝜓, for 𝜒𝑖 conjunctions of atomic sentences, such that 𝜃 is provably PT-

equivalent to 𝜑� 𝜓 over Γ+. Put 𝜑 into disjunctive normal form using the atomic sentences that
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appear in 𝜑� 𝜓. The resulting sentence has the form (𝜌1 ∨ · · · ∨ 𝜌𝑛)� 𝜓, for 𝜌𝑖 conjunctions

of literals. We now weed out some of the 𝜌𝑖 as follows. First, we select those 𝜌𝑖 that have a neg-

ative conjunct ¬𝛼𝑙 and conjuncts are exactly 𝛼1, . . . , 𝛼𝑚 such that
⋀︀
{𝛼1, . . . , 𝛼𝑚}� 𝛼𝑙 ∈ Γ+

or ⊤� 𝛼𝑙 ∈ Γ+. These state descriptions are necessarily equivalent to ⊥ over Γ+, given Theo-

rem 4.7.1.(ii), so we remove them from 𝜌1∨· · ·∨𝜌𝑛 using A7. If this removes every 𝜌𝑖, then 𝜑� 𝜓

is equivalent to ⊤ and so we replace the former with the latter. If there are 𝜌𝑖 remaining, we have

Γ+ ⊢PT ♦𝜌𝑖 for each of them, by Theorem 4.7.1.(v). We then use Theorem 4.7.1.(ix) to remove all

negative conjuncts in each 𝜌𝑖. This might leave us with some 𝜌𝑖 and 𝜌𝑗 such that every conjunct of

𝜌𝑖 appears in 𝜌𝑗 . Since in this case we have that 𝜌𝑖 ↔ (𝜌𝑖 ∨ 𝜌𝑗) is a truth-functional tautology, we

remove 𝜌𝑗 , by Theorem 4.4.1.(i). What remains is a disjunction 𝜌1 ∨ · · · ∨ 𝜌𝑚, for 𝜌𝑖 conjunctions

of atomic sentences. The resulting sentence has the form (𝜌1 ∨ · · · ∨ 𝜌𝑙) � 𝜓 and is such that

for any 𝜌𝑖, 𝜌𝑗 , 𝑖 ̸= 𝑗, Γ+ ⊢PT 𝜌𝑖 � ¬𝜌𝑗 . For if Γ+ ⊢PT 𝜌𝑖 � 𝜌𝑗 , then 𝜌𝑖 � 𝛼 ∈ Γ+, for all

conjuncts 𝛼 of 𝜌𝑗 , in which case we would have already removed 𝜌𝑖 or 𝜌𝑗 . From this it follows that

Γ+ ⊢PT ¬((𝜌𝑖 ∨ 𝜌𝑗)� 𝜌𝑖) ∧ ¬((𝜌𝑖 ∨ 𝜌𝑗)� 𝜌𝑗), thanks to Theorem 4.7.1.(iv). We then use A12

and A4 to obtain a conjunction of all 𝜌𝑖� 𝜓, for the remaining 𝜌𝑖.

(ii). We describe an algorithm for converting 𝜒 into a sentence 𝜃 that is a Boolean combination

of simple conditionals and conditional-free sentences such that 𝜃 is provably PT-equivalent to 𝜒

over Γ+. Note that a non-simple conditional is a sentence of the form 𝜑� 𝜓 such that 𝜓 is not

conditional-free. Also, we define the Boolean-complexity of a sentence 𝜒 such that the Boolean-

complexity of 𝜒 is 0 if 𝜒 is atomic or a conditional, and the Boolean-complexity of 𝜒 is 𝑛 + 1

if 𝜒 = ¬𝜃 or 𝜒 = 𝜃 ∧ 𝜉 and the Boolean-complexity of 𝜃 and 𝜉 is at most 𝑛. Next, we define

the�-complexity of a sentence 𝜒 such that the�-complexity of 𝜒 is 0 if 𝜒 does not contain any

occurrences of�, and the�-complexity of 𝜒 is 𝑛+1 if 𝜒 = 𝜃� 𝜉, for 𝜉 a Boolean combination

of sentences 𝜁1, . . . , 𝜁𝑚, where the �-complexity of 𝜁𝑖 is at most 𝑛. Finally, using transfinite

ordinals, we let the complexity of a conditional 𝜒 = 𝜃 � 𝜉 be
(︀
𝜔 × 𝜔 × (the �-complexity

of 𝜒)
)︀
+

(︃
𝜔×

⎧⎪⎪⎨⎪⎪⎩
0

1

if 𝜃 =
⋀︀
𝐴, for 𝐴 a (possibly empty) set of atomic sentences

otherwise

⎫⎪⎬⎪⎭
)︃

+
(︀
the

Boolean-complexity of 𝜒
)︀
.
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1. 𝜒 either does or does not contain non-simple conditional subsentences.

∙ If it does not, halt.

∙ If it does, look at the set Λ that contains the most�-complex non-simple conditional

subsentences of 𝜒. Next, look at the the set Ω ⊆ Λ that contains the sentences with the

most Boolean-complex consequents. Arbitrarily select a sentence 𝜑� 𝜓 ∈ Ω and go

to step 2.

2. 𝜑 either is or is not a conjunction of atomic sentences.

∙ If it is not, use (i) to turn 𝜑� 𝜓 into
(︀
𝜌1� 𝜓

)︀
∧· · ·∧

(︀
𝜌𝑚� 𝜓

)︀
, for 𝜌𝑖 conjunctions

of atomic sentences. Go to step 1.

∙ If it is, then look at 𝜓. 𝜓 is either of the form ¬𝜉, 𝜉 ∧ 𝜁, or 𝜉� 𝜁.

– If 𝜓 is of the form ¬𝜉, then 𝜉 is either of the form ¬𝜇, 𝜇 ∧ 𝜈, or 𝜇� 𝜈.

* If 𝜉 is of the form ¬𝜇, replace ¬¬𝜇 with 𝜇. Go to step 1.

* If 𝜉 is of the form 𝜇 ∧ 𝜈, use A11 to replace 𝜑 � ¬(𝜇 ∧ 𝜈) with (𝜑 �

¬𝜇) ∨ (𝜑� ¬𝜈). Go to step 1.

* If 𝜉 is of the form 𝜇� 𝜈, use A8 and Theorem 4.7.1.(vi) to replace 𝜑�

¬(𝜇� 𝜈) with ¬
(︀
(𝜑 ∧ 𝜇)� 𝜈

)︀
. Go to step 1.

– If 𝜓 is of the form 𝜉 ∧ 𝜁, use A1 and A2 to replace 𝜑 � (𝜉 ∧ 𝜁) with (𝜑 �

𝜉) ∧ (𝜑� 𝜁). Go to step 1.

– If 𝜓 is of the form 𝜉� 𝜁, use A9 to replace 𝜑� (𝜉� 𝜁) with (𝜑 ∧ 𝜉)� 𝜁.

Go to step 1.

This algorithm halts because, at every stage, we either reduce the number of conditional subsen-

tences with maximum complexity, or else we reduce the complexity of the unique maximally com-

plex conditional subsentence.

(iii). We describe an algorithm for converting a simple conditional 𝜑� 𝜓, for 𝜑 a conjunction

of atomic sentences, into a Boolean combination of atomic conditionals 𝜃 that is provably PT-

equivalent to 𝜑� 𝜓 over Γ+.

137



1. If 𝜓 is atomic, halt. If not, go to step 2.

2. 𝜓 is either of the form 𝜒 ∧ 𝜁 or of the form ¬𝜒.

∙ If 𝜓 is of the form 𝜒 ∧ 𝜁, use A1, A2, and Theorem 4.4.1.(i) to turn 𝜑 � 𝜓 into

(𝜑� 𝜒) ∧ (𝜑� 𝜁). Go to step 1.

∙ If𝜓 is of the form ¬𝜒, use A8, Theorem 4.7.1.(iii), and Theorem 4.4.1.(i) to turn 𝜑� 𝜓

into ¬(𝜑� 𝜒). Go to step 1.

(iv). We can put the above three algorithms together to obtain an algorithm for converting 𝜒 into a

sentence 𝜃 that is a Boolean combination of atomic conditionals and conditional-free sentences such

that 𝜃 is provably PT-equivalent to 𝜒 over Γ+. First, use the algorithm described in the proof of (ii) to

convert 𝜒 into a sentence 𝜃1 that is Boolean combination of simple conditionals and conditional free

sentences such that 𝜃1 is provably PT-equivalent to 𝜒 over Γ+. Then use the algorithm described in

the proof of (i) to convert each conditional 𝜑𝑖� 𝜓𝑖 in 𝜃1 into a a sentence 𝜃2𝑖 that is a conjunction

of conditionals 𝜒𝑖𝑗 � 𝜓, for 𝜒𝑖𝑗 conjunctions of atomic sentences, such that 𝜃2𝑖 is provably PT-

equivalent to 𝜑𝑖� 𝜓𝑖 over Γ+. Finally, use the algorithm described in the proof of (iii) to convert

each 𝜒𝑖𝑗 � 𝜓 in each 𝜃2𝑖 into a sentence 𝜃3𝑖𝑗 that is a Boolean combination of atomic conditionals

and conditional-free sentences such that 𝜃3𝑖𝑗 is provably PT-equivalent to 𝜒𝑖𝑗 � 𝜓 over Γ+. �

Remark 4.8.3. An atomic theory can intuitively be thought of as a theory that tells us which sets

are absolutely algorithmically decidable and which sets are reducible to which. We may either think

of an atomic theory as putting constraints on the interpretation functions which tell us what sets of

natural numbers are said to be algorithmically decidable according to the atomic sentences of our

formal language. Or we may first fix an interpretation function, which then allows us to evaluate

(the members of) the atomic theories as true or false.

Lemma 4.8.4. For Γ an atomic theory over a finite Δ ⊆ L and for 𝜓 ∈ LΔ, if Γ+ �PT 𝜓, then

Γ+ ⊢PT 𝜓.

Proof. Suppose Γ+ 0PT 𝜓. We will construct a PT-model of Γ+ where 𝜓 is not valid. For𝐴 ⊆ LΔ

a set of atomic sentences, let 𝐴 = {𝛼 ∈ LΔ :
⋀︀
𝐴� 𝛼 ∈ Γ+}. For our set of worlds, we let

138



W = {𝐴 : 𝐴 ⊆ LΔ is a set of atomic sentences}, and we let 𝑤@ = ∅. W is partially ordered by

the inclusion relation ⊆. In fact, ⟨W,⊆⟩ is an upper semilattice, and thus a PT-frame. To see this,

note that the second constraint in 4.8.1.(ii) ensures that for𝐴,𝐵 ⊆ LΔ sets of atomic sentences and

𝛿 ∈ LΔ atomic, if
⋀︀
𝐴� 𝛿 ∈ Γ or

⋀︀
𝐵� 𝛿 ∈ Γ, then

⋀︀
(𝐴 ∪ 𝐵)� 𝛾 ∈ Γ. This guarantees

that 𝐴 ∪𝐵 is the least upper bound of 𝐴 and 𝐵.

To get our model on the PT-frame ⟨W,⊆⟩, we define I such that for atomic 𝛼 ∈ LΔ, I(𝛼) =

{𝑤 ∈ W : 𝛼 ∈ 𝑤}. Now, let M = ⟨W, 𝑤@,⊆, I⟩. To see that M is a PT-model, note first that

W is finite and so we do not need to worry about infinitely descending ⊆-chains. Next, note that

the first two clauses of 4.8.1.(ii) guarantee that 4.3.1.(ii).(a) holds and the second clause of 4.8.1.(ii)

guarantees that 4.3.1.(ii).(b) holds. what is more, Γ+ is valid in M, since the construction guarantees

that for any
⋀︀
𝐴� 𝜑 ∈ Γ+ and any 𝑤 ∈ W, the minimal

⋀︀
𝐴-world relative to 𝑤 is a 𝜑-world.

Next, note that M validates ⟨Γ+, 𝜓⟩ iff Γ+ ⊢PT 𝜓. (This is the so-called “truth lemma.”) Note

that every member of Γ+ is automatically valid in M, given the way we have constructed M from

Γ+. So we need to show that 𝜓 is valid in M iff Γ+ ⊢PT 𝜓. We first show by induction on the

Boolean-complexity that if𝜓 is a Boolean combination of atomic sentences and atomic conditionals,

then if 𝜓 is valid in M, then Γ+ ⊢PT 𝜓, and if 𝜓 is not valid in M, then Γ+ ⊢PT ¬𝜓. For the base

case where 𝜓 has Boolean-complexity 0, 𝜓 is either an atomic sentence or an atomic conditional.

Then if 𝜓 is valid in M, then 𝜓 ∈ Γ+, and so Γ+ ⊢PT 𝜓. If 𝜓 = 𝛼, for 𝛼 atomic and 𝛼 is not valid

in M, then ⊤� ¬𝛼 ∈ Γ+, by the way we have constructed Γ+, and so Γ+ ⊢PT ¬𝛼, by A6. And

if 𝜓 is an atomic conditional
⋀︀
𝐴� 𝛼 and

⋀︀
𝐴� 𝛼 is not valid in M, then

⋀︀
𝐴� ¬𝛼 ∈ Γ+,

and so Γ+ ⊢PT ¬(
⋀︀
𝐴� 𝛼), by Theorem 4.7.1.(i)&(iii). For the induction step, suppose that 𝜓

has Boolean-complexity 𝑛 and that if 𝜓 is valid in M, then Γ+ ⊢PT 𝜓, and if 𝜓 is not valid in M,

then Γ+ ⊢PT ¬𝜓. Then if 𝜓 has Boolean-complexity 𝑛 + 1, then either 𝜓 = ¬𝜒 or 𝜓 = 𝜃 ∧ 𝜉,

where 𝜒, 𝜃, and 𝜉 have Boolean-complexity of at most 𝑛. Then if ¬𝜒 is valid in M, then 𝜒 is not

valid in M, and so Γ+ ⊢PT ¬𝜒, as desired. And if ¬𝜒 is not valid in M, then 𝜒 is valid in M, and

so Γ+ ⊢PT 𝜒, and so Γ+ ⊢PT ¬¬𝜒, as desired. And if 𝜃 ∧ 𝜉 is valid in M, then 𝜃 and 𝜉 are both

valid in M, in which case we have Γ+ ⊢PT 𝜃 and Γ+ ⊢PT 𝜉, and so Γ+ ⊢PT 𝜃 ∧ 𝜉, as desired.

And, finally, if 𝜃 ∧ 𝜉 is not valid in M, then 𝜃 or 𝜉 is not valid in M, in which case we have either
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Γ+ ⊢PT ¬𝜃 or Γ+ ⊢PT ¬𝜉, and so either way we have Γ+ ⊢PT ¬(𝜃 ∧ 𝜉), as desired.

We have shown that if 𝜓 is a Boolean combination of atomic sentences and atomic conditionals,

then if 𝜓 is valid in M, then Γ+ ⊢PT 𝜓, and if 𝜓 is not valid in M, then Γ+ ⊢PT ¬𝜓, and so Γ+ 0PT

𝜓. So if 𝜓 is a Boolean combination of atomic sentences and atomic conditionals, then 𝜓 is valid in

M iff Γ+ ⊢PT 𝜓. Now let 𝜓 be an arbitrary sentence. Then by Theorem 4.8.2.(iv), we can convert 𝜓

into a sentence 𝜒 that is Boolean combination of atomic conditionals and conditional-free sentences

such that 𝜒 is provably PT-equivalent to 𝜓 over Γ+. By soundness (Theorem 4.6.1), M validates

𝜓 iff M validates 𝜒. Also, we just saw that M validates 𝜒 iff Γ+ ⊢PT 𝜒. And since 𝜒 is provably

PT-equivalent to 𝜓 over Γ+, Γ+ ⊢PT 𝜒 iff Γ+ ⊢PT 𝜓. So, M validates 𝜓 iff Γ+ ⊢PT 𝜓. �

To complete the proof, we note the following:

Lemma 4.8.5. Suppose that 0PT 𝜑. Then there is a complete theory Γ+ over L{𝜑} such that Γ+ 0PT

𝜑.

Proof. Suppose that 𝜓1, . . . , 𝜓𝑚 are the members of {𝜃 � 𝛼 ∈ L{𝜑} : 𝜃 is a conjunction of

atomic sentences without repetitions and 𝛼 is atomic} and suppose that 𝜒1, . . . , 𝜒𝑚 are the members

of {𝜃� ¬𝛼 ∈ L{𝜑} : 𝜃 is a conjunction of atomic sentences without repetitions and 𝛼 is atomic}.

Now, let Γ0 = ∅, and given Γ𝑛, let Γ𝑛+1 = Γ𝑛 ∪ {𝜓𝑛+1} if Γ𝑛 ∪ {𝜓𝑛+1} 0PT 𝜑 and let Γ𝑛+1 =

Γ𝑛 ∪ {𝜒𝑛+1} otherwise.

Note that for any 𝑛 ∈ 𝜔, if Γ𝑛 0PT 𝜑, then Γ𝑛+1 0PT 𝜑. Suppose that Γ𝑛+1 ⊢PT 𝜑. Then

Γ𝑛 ∪ {𝜓𝑛+1} ⊢PT 𝜑 and Γ𝑛 ∪ {𝜒𝑛+1} ⊢PT 𝜑, and so for some 𝜃, 𝛼 ∈ LΔ, Γ𝑛 ∪ {𝜃� 𝛼} ⊢PT 𝜑

and Γ𝑛 ∪ {𝜃� ¬𝛼} ⊢PT 𝜑. Then Γ𝑛 ∪ {(𝜃� 𝛼) ∨ (𝜃� ¬𝛼)} ⊢PT 𝜑. But by A11, we also

have ⊢PT (𝜃� 𝛼)∨ (𝜃� ¬𝛼). So, Γ𝑛 ⊢PT 𝜑. This tells us that if we let Γ+ = Γ𝑚, then Γ+ is a

complete theory over L𝜑 such that Γ+ 0PT 𝜑. �

Now suppose ⊢PT 𝜑. Let Γ+ be a complete theory over L{𝜑} such that Γ+ 0PT 𝜑. Theo-

rem 4.8.4 tells us that there is a PT-model that validates Γ+ but that does not validate 𝜑. So there is

a PT-model that does not validate 𝜑. So 2PT 𝜑. �

Corollary 4.8.6. PT is decidable.
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Proof. We saw in the proof of Theorem 4.8.1 that each relevant model for some restricted language

L{𝜑} has as its set of worlds objects that amount to state descriptions. So there will only be finitely

many such models, and so to decide whether ⊢PT 𝜑, we only need to check finitely many finite

models. �

4.9 Intended models

Definition 4.9.1. (i) A T-interpretation is a function 𝑓 that maps the atomic sentences of L to

℘(𝜔).

(ii) For 𝑓 a T-interpretation, the intended PT-model M𝑖 on 𝑓 is the tuple ⟨I, {0},⊆, I⟩, where I

is defined such that for atomic 𝛼 ∈ L , I(𝛼) = {i ∈ I : for some d ∈ i, 𝑓(𝛼) ∈ d}.

(iii) 𝜑 ∈ L is PT𝑖-valid (�PT𝑖
𝜑) iff, for every 𝑇 -interpretation 𝑓 , 𝜑 is valid in the intended

PT-model on 𝑓 .

It is immediately apparent that every intended PT-model is a PT-model and so that if �PT 𝜑,

then �PT𝑖
𝜑. By Theorem 4.6.1, we then have that if ⊢PT 𝜑, then �PT𝑖

𝜑.

Theorem 4.9.1. If �PT𝑖
𝜑, then ⊢PT 𝜑.

Proof. Suppose that 0PT 𝜑. The proof of Theorem 4.8.1 shows that there is a finite PT-model M =

⟨W, 𝑤@,≤, I⟩ such that 𝜑 is not valid in M. From M we can recover the upper semilattice ⟨W,≤⟩

with minimal element 𝑤@. Next, note that, by Theorem 3.6 of Chapter II of Lerman Lerman (1980),

there is a countably infinite sequence of independent Turing degrees, meaning that no member of

the sequence is reducible to a finite join of any members of the sequence. Call this the Lerman

sequence. We want to use the Lerman sequence together with the fact that M is finite to obtain an

intended PT-model M𝑖 such that for all 𝜓 ∈ L{𝜑}, 𝜓 is valid in M iff 𝜓 is valid in M𝑖.

We obtain M𝑖 by fixing a particular T-interpretation 𝑓 . We first pick a representative set of

natural numbers of each member of the Lerman sequence. Associate a set of natural numbers with

each member of the set of worlds W of M, as follows:

∙ Associate a member of the computable degree 0 with the minimal world 𝑤@ of W.
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∙ If 𝑤 ∈ W is the ≤-join of 𝑣1 ∈ W, . . . , 𝑣𝑛 ∈ W such that 𝑣1 < 𝑤 and . . . and 𝑣𝑛 < 𝑤 and

there is no 𝑢 ∈ W such that 𝑣1 < 𝑢 < 𝑤 or . . . or 𝑣𝑛 < 𝑢 < 𝑤, and if𝑁1, . . . , 𝑁𝑛 are the sets

associated with 𝑣1, . . . , 𝑣𝑛, respectively, then let the set associated with 𝑤 be 𝑁1 ⊕ · · · ⊕𝑁𝑛.

∙ If 𝑣 ∈ W is not the ≤-join of any 𝑣1 ∈ W, . . . , 𝑣𝑛 ∈ W but 𝑣 is such that there is some

𝑤 ∈ W, 𝑤 < 𝑣 such that there is no 𝑢 ∈ W such that 𝑤 < 𝑢 < 𝑣, and 𝑁𝑖 is the set associated

with 𝑤, then take the set 𝑁𝑗 that is the first member of the Lerman sequence that has not been

used yet. Let 𝑣 be associated with 𝑁𝑖 ⊕𝑁𝑗 .

Once each member of W has a set of natural numbers associated with it, let the T-interpretation 𝑓

be such that for atomic 𝛼 ∈ L{𝜑}, 𝑓(𝛼) = {𝑁 ∈ 𝜔 : 𝑁 is the set of natural numbers associated

with the ≤-least 𝑤 ∈ W such that J𝛼KM,𝑤 = 1}.

Constructing the T-interpretation 𝑓 in this way guarantees that the intended PT-model M𝑖 on

𝑓 is such that for all atomic conditionals 𝜓 ∈ L{𝜑}, 𝜓 is valid in M iff 𝜓 is valid in M𝑖. The

same holds if 𝜓 is a Boolean combination of atomic conditionals and conditional-free sentences.

And if 𝜓 is not a a Boolean combination of atomic conditionals and conditional-free sentences,

then we can use Theorem 4.8.5 to find a complete theory Γ+ over L{𝜑} such that Γ+ 0PT 𝜓 and

Theorem 4.8.2.(iv) to find a 𝜒 ∈ L{𝜑} that is a Boolean combination of atomic conditionals and

conditional-free sentences such that Γ+ ⊢PT 𝜓 ↔ 𝜒. We then know from Theorem 4.8.1 how to

construct a finite PT-model in which all members of Γ+ are valid but 𝜒 is not. Using this new

model, we can repeat the previous construction to obtain a new T-interpretation and an intended

PT-model on it in which 𝜒 and thus also 𝜓 is not valid.

It follows that if 0PT 𝜑, then there is an intended PT-model in which 𝜑 is not valid, and so

2PT𝑖
𝜑. �

Corollary 4.9.2. Let �PT𝑖𝑐.𝑒.
be defined as in 4.9.1 except that we restrict the ideals to the ideals on

the computably enumerable degrees. Then if �PT𝑖𝑐.𝑒.
𝜑, then ⊢PT 𝜑.

Proof. Thomason (1971) shows that there is a countably infinite sequence of independent com-

putably enumerable degrees. Thus, the proof of Theorem 4.9.1 goes through unchanged. �
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4.10 On the full propositional language

Whether the present conditional logic of Turing reducibility for the full propositional language that

allows for conditionals in the antecedents of conditionals can be completely axiomatized is an open

question. We close by explaining why the previous strategy of proving completeness would not

carry over to the case of the full propositional language.

In the full propositional language, we will have models such as the following:

𝑤@ : ¬𝑝1,¬𝑝2

𝑤 : 𝑝1,¬𝑝2
𝑣 : ¬𝑝1,¬𝑝2

𝑢 : ¬𝑝1, 𝑝2

𝑡 : 𝑝1, 𝑝2

Here, (𝑝1 � 𝑝2) � 𝑝2 is false at 𝑤@ because (𝑝1 � 𝑝2) is true at 𝑣 but 𝑝2 is false at 𝑣. But

now note that 𝑣 and 𝑤@ are identical state descriptions over {𝑝1, 𝑝2}. Since the method we used

to prove completeness for the restricted language amounted to treating worlds as state descriptions,

using that method would have the above model collapse into the following model:
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𝑤@ : ¬𝑝1,¬𝑝2

𝑤 : 𝑝1,¬𝑝2 𝑢 : ¬𝑝1, 𝑝2

𝑡 : 𝑝1, 𝑝2

But in this model, (𝑝1 � 𝑝2) � 𝑝2 is true at 𝑤@. So we cannot use the previous strategy of

proving completeness.

This means that, using only 𝑝1 and 𝑝2, our restricted language cannot express certain claims

about Turing reducibility which the full propositional language can express. To see this, consider

the following model, which is a version of the first one but with the atomic letter 𝑞 added:

𝑤@ : ¬𝑝1,¬𝑝2,¬𝑞

𝑤 : 𝑝1,¬𝑝2,¬𝑞
𝑣 : ¬𝑝1,¬𝑝2, 𝑞

𝑢 : ¬𝑝1, 𝑝2,¬𝑞

𝑡 : 𝑝1, 𝑝2, 𝑞

If 𝑝1, 𝑝2, and 𝑞 are interpreted to express the claims that the sets 𝐴1, 𝐴2, and 𝐵 are algorithmically

decidable respectively, this model represents the conjunction of the following claims about Turing

reducibility: 𝐴1 �𝑇 𝐴2, 𝐴2 �𝑇 𝐴1, 𝐴1 �𝑇 𝐵, 𝐵 �𝑇 𝐴1, 𝐴2 �𝑇 𝐵, 𝐵 �𝑇 𝐴2, and 𝐴2 ≤𝑇
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𝐴1 ⊕ 𝐵. We can of course express this in our restricted language using the letters 𝑝1, 𝑝2, and 𝑞 as

follows:

¬
(︀
𝑝2� 𝑝1

)︀
∧¬
(︀
𝑝1� 𝑝2

)︀
∧¬
(︀
𝑞� 𝑝1

)︀
∧¬
(︀
𝑝1� 𝑞

)︀
∧¬
(︀
𝑞� 𝑝2

)︀
∧¬
(︀
𝑝2� 𝑞

)︀
∧
(︀
(𝑝1∧𝑞)� 𝑝2

)︀
But as we just saw, our restricted language cannot express this using only 𝑝1 and 𝑝2. The full

propositional language, on the other hand, can express this as follows:

¬
(︀
𝑝2� 𝑝1

)︀
∧ ¬
(︀
𝑝1� 𝑝2

)︀
∧ ¬
(︀
(𝑝1� 𝑝2)� 𝑝2

)︀
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