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Abstract 

Cognitive Underpinnings of Math Learning and Early Play Based Intervention 

by 

Chloe Teressa Green 

Doctor of Philosophy in Education 

University of California, Berkeley 

Professor Frank C. Worrell, Chair  

 
For my graduate research presented in this dissertation, I employed cognitive 
development theory to evaluate key cognitive abilities that contribute to both typical and 
atypical mathematical learning in children and adolescence.  I incorporated these findings 
into a novel play-based intervention for children at-risk for math learning disabilities 
(MLD).  My dissertation work is represented in the following three papers. 

In the first paper, I synthesized literature identifying the common cognitive precursors to 
math learning disabilities.  I analyzed how core numerical processing weaknesses (e.g. 
number sense) in early childhood, restrict the developmental plasticity of mathematical 
learning.  Furthermore, I identified how common weaknesses in other domain-general 
cognitive abilities (e.g. working memory and processing speed) serve to further 
exacerbate mathematical learning weaknesses in MLD.  Taken together, these findings 
inform theoretically grounded approaches used to identify children with MLD, and 
identified promising approaches to early intervention. 

In the second paper, I sought to characterize the cognitive factors that are most predictive 
of future math achievement in typically developing children and adolescents.  I analyzed 
data from a longitudinal study of children between 6 and 21 years old who completed a 
battery of neuropsychological testing at 3 time points over the course of 5 years.  I was 
specifically interested in the role of fluid reasoning (FR), or the ability to think logically 
to solve novel problems.  Fluid reasoning has not been particularly well characterized in 
relation to math achievement.  Structural equation modeling was employed to compare 
the relative contribution of spatial abilities, verbal reasoning, age, and FR in predicting 
future math achievement.  This model accounted for nearly 90% of the variance in future 
math achievement.  In this model, FR was the only significant predictor of future math 
achievement; age, vocabulary, and spatial skills were not significant predictors.  The 
findings build on Cattell’s conceptualization of FR as a scaffold for learning, showing 
that this domain-general ability supports the acquisition of rudimentary math skills as 
well as the ability to solve more complex mathematical problems. 

In the third paper, I pilot-tested a novel game-play intervention for children at risk for 
math learning disabilities.  The intervention involved playing numeracy and cognitive 
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speed games four days per week for 14 weeks.  A single-case-study design was employed 
to evaluate response to intervention in 3 first- and second-grade students.  The 
intervention took place during an after-school program.  All three students demonstrated 
a significant improvement in weekly arithmetic fluency and marginal improvements in 
processing speed.  However, there was variability during baseline testing in arithmetic 
fluency scores, limiting causal inference.  This study provides preliminary evidence to 
suggest that game-based interventions that train basic numeracy and processing speed 
skills, may serve as an effective preventative approach that builds on children’s intrinsic 
motivation to engage in playful learning.
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Chapter 1 - Cognitive Precursors to Math Learning Disabilities 
 

Although large-scale research efforts on dyslexia have yielded effective remediation, 
research on mathematical learning disabilities (MLD), or dyscalculia, remains at a rudimentary 
stage, with little consensus regarding the underlying deficits that can be targeted by remediation.  
Using the traditional diagnostic model, estimates of the prevalence of math disabilities range 
from approximately 5% to 7% of all school-aged children.  This figure is comparable to the 
prevalence of reading disabilities (Badian & Ghublikian, 1983; Gross-Tsur, Manor, & Shalev, 
1996).  The high prevalence of MLD is especially problematic due to the sequential and 
hierarchical nature of mathematics courses; children who have difficulty grasping the early 
mathematical concepts almost invariably fail to grasp later ones (Cawley & Miller, 1989), 
thereby increasing their risk of school failure (Badian & Ghublikian, 1983; Gross-Tsur, 
Auerbach, Manor, & Shalev, 1996).   

Recognition that early failure to achieve proficiency in mathematics restricts a student’s 
ability to compete for career opportunities has led national education organizations, such as the 
National Council of Teachers of Mathematics (2000) and the National Research Council 
(Kilpatrick, Swafford, & Findell, 2001), to advocate for mathematical proficiency in all children 
(Baroody, 1994).  Yet, research efforts have remained limited, with inadequate research funding 
($2.3 million by the National Institute of Health for MLD compared to $107 million for dyslexia) 
to support coordinated efforts to this end (Bishop, 2010).  

There are several reasons for the lack of success in characterizing and remediating MLD.  
First, psychologists face many challenges in identifying children who meet the diagnostic 
criteria.  Children with MLD constitute a heterogeneous group with common co-morbidities; 
they often have additional impairments in non-numerical domains of functioning, such as 
attention deficit hyperactivity disorder (ADHD), dyslexia, or difficulties with motor skills 
(Gross-Tsur, Manor, et al., 1996; Hanich, Jordan, Kaplan, & Dick, 2001).  The lack of consensus 
among researchers on the core deficits that make up MLD leave psychologists challenged when 
it comes to differentiating children with poor math achievement from those with a learning 
disability or other disorders.  Furthermore, treatment is often delayed because psychologists 
adhere to a traditional diagnostic model for learning disabilities, stipulating that to meet the 
criteria for a learning disability, children must demonstrate low math performance for a period of 
time and their performance must be significantly below their level of general intelligence (IQ).  
This traditional model is especially counterproductive for early remediation efforts because it too 
often requires that children demonstrate low performance in math for multiple semesters or even 
years before they are first identified as struggling with mathematics (Fletcher et al., 2002).  

Today, there is an exigent need for rigorous research to hone in on commonalities in 
diverse populations of children with MLD to potentiate targeted remediation (Dowker, 2005).  A 
unifying question guiding this work is whether deficiencies in any specific core cognitive 
process underlie impaired math performance.  There is currently a theoretical dispute in the math 
learning disability literature concerning whether MLD is caused by an impairment in a domain-
general cognitive mechanism such as working memory (Geary, Hoard, Byrd-Craven, Nugent, & 
Numtee, 2007), or a more domain-specific deficit known as number sense (Butterworth & 
Reigosa, 2007; Butterworth, Sashank, & Laurillard, 2011), the ability to process small, exact and 
large, approximate representations of quantity. 

In the literature review that follows, I begin by synthesizing the recent literature on the 
most common numeracy impairments found in children with MLD, in number sense. In the 
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subsequent sections, I review research on the complex intersection between common cognitive 
impairments in WM and MLD.  I take the position that elucidating the relationship between WM 
impairments and MLD can offer a window into better understanding, early diagnosis, and 
treatment of MLD in diverse populations of children.  Thus, in the last sections of this paper, I 
conclude with a discussion of the application of this line of research on the cognitive 
underpinnings of MLD to the development of early identification screening tools, and 
instructional techniques for teachers, that can be utilized in classrooms for children with MLD. 
Numeracy Impairments Associated with MLD 

A recent meta-analytic review of cognitive development and education research on MLD 
has revealed that a primary predictor of dyscalculia is a weakness in number sense (Geary, 
2010).  Number sense is the ability to use and understand numbers.  Children with MLD do not 
intuitively grasp the value associated with a number and its relation to other numbers, a basic 
understanding that underpins all work with numbers (Geary, 2006).  A key part of number sense 
is the ability to understand and manipulate sets of numbers to solve mathematical problems; 
children with MLD struggle to quantify a small set of objects without counting (estimate), as 
well as to break down large sets (or large numbers) into sets of smaller objects (numbers) that 
can be easily manipulated to facilitate efficient mathematical problem solving.  In the classroom, 
there are four key indicators a child may have a number-sense deficit and may be at risk for 
MLD (Geary, 2010): (a) developmentally immature calculation procedures (i.e., use of fingers to 
count; Goldman, Pellegrino, & Merz, 1988); (b) delayed understanding of counting concepts 
such as frequent counting errors (Geary, Bow-Thomas, & Yao, 1992); difficulty remembering 
arithmetic facts (Geary, 1993; Jordan, Hanich, & Kaplan, 2003; Jordan & Montani, 1997); and 
poor conceptual knowledge of rational numbers (Mazzocco & Devlin, 2008). 

Children with MLD demonstrate increasing deficits in math achievement over time.  The 
Missouri Longitudinal Study of Mathematical Development and Disability compared math 
achievement trajectories in children with MLD (achievement scores below the 10th percentile in 
math) to typically developing children (TA), low-achieving children (LA) who scored between 
the 11th and 25th percentiles, and a group of children with low intelligence (LIQ; IQ scores below 
the 10th percentile).  Longitudinal findings from 1st to 5th grade are illustrated in Figure 1.  The 
authors concluded that low mathematic achievement in both the MLD and LA groups cannot be 
attributed to low intelligence (Geary, 2011a, 2011b; Geary, Hoard, & Bailey, 2012). 

When clinicians consider diagnosing a child with MLD, it is critical that they explore 
potential causes of the child’s unique deficiencies in number sense and definitively rule out the 
causal role of poor instructional techniques.  Then, the pivotal questions in diagnosis are raised 
as follows: If deficiencies in numeracy development are not caused by poor instructional 
techniques, are they associated with impairments in basic cognitive functions?  If so, which 
cognitive functions are impaired?  

Neuroscience research on mathematical learning utilizes neuropsychological tests and 
neuroimaging techniques to localize and identify domain specific cognitive functions engaged 
during early math performance in the brain.  Butterworth et al. (2011) reviewed brain-imaging 
studies in a recent meta-analysis and concluded that weakness in numerical processing 
corresponds to alterations in brain function and brain structure in children with MLD when they 
are compared to individuals without MLD.  Almost all arithmetical and numerical processes 
involve the parietal lobes and learning new arithmetic facts primarily involves the frontal lobes 
and the intraparietal sulci.  Children with dyscalculia exhibit weaker activation in the 
intraparietal sulci than normally developing children during performance of tasks that require 
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them to compare quantities of objects within different sets, or different number symbols, and 
during arithmetic tasks.  Children with MLD additionally have alterations in gray matter in the 
intraparietal sulci (Butterworth et al., 2011). 
Cognitive Impairments Associated with MLD in WM 

When researchers have used neuropsychological tests to study children who perform in 
the lowest quartile in math across studies, they have found that in addition to number sense 
deficits, children with MLD often demonstrate impairments on tests that measure a core general 
cognitive ability that enables a person to keep information active in the mind and to manipulate 
this information to solve a problem (Swanson & Jerman, 2006).  Children with MLD have 
difficulty bringing relevant information “on-line” (i.e., recalling math facts), manipulating the 
information (i.e., mental addition), and tracking each sequential operation required to solve a 
multistep problem.  Children with MLD are likely to make frequent mistakes and often appear 
forgetful due to difficulty retrieving mathematical facts from long-term memory in an efficient 
way.  We can describe this type of difficulty as low working memory capacity.  A meta-analysis 
of studies involving children with MLD has suggested that the most common neuropsychological 
deficit among all children with MLD, regardless of co-occurring reading disability, is difficulty 
with working memory (Swanson & Jerman, 2006).   

Conceptualizing WM. WM is a core cognitive function essential for all areas of 
academic performance (Alloway, Gathercole, & Elliott, 2010).  WM is the ability to actively 
encode and hold information in one’s mind in order to manipulate this information to perform a 
task (Baddeley, 1996).  WM is considered to be a limited capacity system, meaning that an 
individual can only hold a limited number of items (i.e., information) in the mind at any given 
time to successfully solve a problem or to complete a task (e.g., remembering a phone number or 
solving an arithmetic problem).  A child’s WM capacity increases gradually throughout his or 
her development, with the typical adult being able to retain seven items (plus or minus one) on 
average (Miller, 1956).  When children exceed their individual WM capacity (i.e., holding too 
many items in mind at once), they may experience a feeling of being overloaded during learning 
activities, which can potentially impair their ability to sustain attention and stay on task 
(Alloway, Gathercole, & Elliott, 2010).   

To illustrate how WM works, consider the following task by Daneman and Carpenter 
(1980) for children.  The examiner asked children to read several sentences, as follows: 

1. Joe went to the store and bought fruit; 
2. Lisa thinks that the cat is hungry; 
3. Jemma said that she could climb the tree. 

After children read the sentences, they are asked to answer questions about the content of the 
material.  For example, the examiner could ask, “What did Joe buy at the store?”  Following this, 
children are asked to recall sequentially the last words from each of the sentences they read.  To 
complete this task successfully, a child would need to (a) read and process the content; (b) 
respond to the question by retrieving information about the relevant parts of the text; and (c) 
recall only the last word in each sentence, which requires inhibition of competing information 
from earlier words in the sentence and controlled attention (Baddeley, 2003).  Thus, WM tasks 
engage children in actively maintaining information that is relevant and simultaneously 
processing the most pertinent information to solve the problem.  Each time the child answered 
two questions correctly in a row, the difficulty level of the task was increased (i.e., more 
sentences were added to the sequence).  The task was discontinued when the child answered two 
questions in a row incorrectly. 
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The most widely used conceptual model of WM is the multi-component model proposed 
by Baddeley and Hitch (1974) and updated by Baddeley (2000), where the concept of WM is 
broken down into the following four distinct parts: (a) a visuo-spatial sketchpad, (b) 
phonological loop, (c) central executive, and (d) episodic buffer.  Baddeley and Hitch’s 
conceptualization is the dominant model in research examining the role of WM in mathematical 
problem solving (Swanson & Beebe-Frankenberger, 2004).  This model includes two storage 
systems, specifically (a) the visuo-spatial sketchpad, which enables short-term storage or 
maintenance of mathematical representations, and (b) the phonological loop, which stores and 
retrieves auditory information.  These two storage subsystems operate under the control of the 
central executive, which serves as the director.  In this model, the central executive enables the 
child to comprehend the goals of the task and then to appropriate attentional resources to the part 
of the WM system that can process the specific type of information required to solve the 
problem.  Verbal information is sent to the phonological loop and visual or spatial information is 
sent to the visuo-spatial sketchpad (Alloway Gathercole, & Pickering, 2006; Bayliss, Jarrold, 
Gunn, & Baddeley, 2003).   

Another key role of the central executive is to retrieve the key information from long-
term memory that is pertinent to solve a math problem successfully.  Selective retrieval requires 
children to resist distraction by related (but extraneous) information that is also stored in 
memory, but could hinder their ability to solve a particular problem (Baddeley, Emslie, Kolodny, 
& Duncan, 1998).  Baddeley (2000) proposed that an additional component, the episodic buffer, 
should be added to the model.  In Baddeley’s (2000) updated model, the episodic buffer is under 
the control of the central executive and is conceptualized to be a temporary interface between the 
central executive and the storage systems (i.e., the phonological loop and visuo-spatial 
sketchpad.  

WM and Math Achievement. Each component of WM in Baddeley and Hitch’s (1974) 
conceptual model supports a different type of mathematical problem solving.  A recent line of 
investigation with this more narrowly defined aim has distinguished how each of the WM 
components develops differentially with age and is employed independently according to the 
type of mathematical problem and strategy the child uses.  Younger children tend to use the 
visuo-spatial sketchpad when they are acquiring new arithmetic skills to maintain visual 
representations of the mathematical operations and solution in mind (Hayes, 1972; Hitch, 1978).  
The visuo-spatial sketchpad is hypothesized to serve as a mental notepad for the visual 
representation of mental computations.  For example, young children use a mental number line 
as a strategy to keep track of the magnitude of numerical information in an arithmetic problem.   
 When children get older, and gain experience working with arithmetic, they tend to rely 
more on their verbal WM to compute arithmetic problems mentally (Rourke, 1993).  Finally, 
the central executive plays a more complex but still crucial role in tracking which parts of the 
problem have already been performed, allocating attentional resources to the appropriate 
subcomponents or storage systems, and maintaining each of the rules needed to solve each 
subsequent step of the math problem (Zheng, Swanson, & Marcourlides, 2011).  Furthermore, 
the central executive is involved in carrying numbers during multi-step addition or subtraction 
problems (Imbo, Vandierendonck, & De Rammelaere, 2007; Seitz & Schumann-Hengsteler, 
2002).  

Components of WM and MLD A confluence of research findings converge on the link 
between WM deficits and difficulties that many children with MLD experience when they 
engage in mathematical problem solving, although researchers are still investigating the 



 

 5 

complexities of the relationship among specific components of WM (Hitch & McAuley, 1991; 
Swanson & Jerman, 2006).  This literature is complex because researchers have used 
heterogeneous tasks to measure WM based on different conceptualizations of the function of 
each component of WM, making it difficult to generalize findings across studies.  In the 
following section, I review the literature regarding the specific type of impairments in 
components of WM and math learning disabilities in children.  Table 1 summarizes the tasks 
employed in studies on WM and math learning difficulties (Raghubar, Barnes, & Hecht, 
2010).   

Verbal WM impairments. Research has shown that children with mathematical learning 
impairments typically have difficulty keeping verbal information that they read or hear in their 
verbal WM, or phonological loop (Geary, Hoard, & Hamson, 1999).  This weakness in storing 
and manipulating verbal information creates several challenges that impede mathematical 
performance.  For instance, this weakness limits children’s ability to accurately monitor their 
steps during the counting process, often leading them to make frequent counting mistakes (Hitch 
& McAuley, 1991; Geary et al., 1999).  Research studies on mental arithmetic in children have 
revealed that the phonological loop plays a critical role in enabling the child to verbally maintain 
the numbers and type of operation they need to carry out to complete each step of a problem and 
to track intermediate results in a multi-step equation or word problem (Heathcote, 1994).  
Swanson and Jerman’s (2006) meta-analysis of 28 studies showed that the strongest predictor of 
math difficulties in children was weakness in verbal WM, after controlling for effects of several 
other variables, such as age, IQ, naming speed, and short-term memory for words and digits.   

Raghubar et al.’s (2010) review of the literature elucidated the complexity of the 
relationship between various modes of measurement of verbal WM and math learning 
difficulties.  They argued that many of the studies investigating the link between verbal WM 
and math learning difficulties employ domain-specific, numerical WM tasks to measure verbal 
WM, requiring the child to draw on the same domain as the child’s impairment.  The most 
common type of task used in these studies is the digit span backwards task, which requires the 
child to remember a string of digits read out loud by the examiner and then to repeat the digits 
out loud in the backwards order.  Studies that use numerical measures of verbal WM (i.e., 
counting span and digit span backward) distinguish children with math difficulties more reliably 
than studies using non-numerical measures of WM (e.g., word span backward; Passolunghi & 
Cornoldi, 2008; Passolunghi & Siegel, 2001, 2004).  At this point, the limited number of studies 
that have employed verbal WM tasks without numerical stimuli, such as the listening span 
task, have not consistently differentiated between children with and without math difficulties 
(D’Amico & Guarnera, 2005; Fuchs et al., 2008; Passolunghi & Cornoldi, 2008; Reukhala, 2001; 
Siegel & Ryan, 1989; Swanson & Beebe-Frankenberger, 2004; Van der Sluis, Van der Leij, & de 
Jong, 2005).  Thus, the domain-specific versus domain-general nature of verbal WM 
impairments in MLD remains an open question for further research (Raghubar et al., 2010).  

Visuo-spatial WM impairments. Children with MLD typically have difficulty 
representing numerical information spatially (i.e., comparing two quantities or accurately 
aligning number columns), which is linked to impairments in the visuo-spatial component of the 
WM system (Geary, 2004; Swanson & Jerman, 2006). Further biological support for a visuo-
spatial deficit can be found in brain imaging studies that have suggested the parietal areas of the 
brain that are associated with number and magnitude processing are located near brain regions 
that support aspects of visuo-spatial processing in the intraparietal sulci Zorzi, Priftis, & Umilta, 
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2002).  When parietal regions are damaged, there is a disruption in the ability to form spatial 
representations, particularly the ability to imagine a mental number line (Zorzi et al., 2002).  

The relatively small number of studies on visuo-spatial WM and wide range of 
methodological differences among studies make it difficult to draw conclusions about the 
complex nature of visuo-spatial impairment in children with MLD.  Researchers have employed 
different tasks to measure visuo-spatial WM based on different theoretical conceptualizations 
about the function of visuo-spatial WM.  Additionally, these studies have targeted different ages 
and used different criteria or cut-offs on math tests to determine eligibility for the MLD groups.  
Despite these differences, most studies can be divided into those that employ static and those 
that use dynamic visuo-spatial tasks.  

Static visuo-spatial tasks require the participant to hold information passively; for 
example, the matrices task requires participants to remember the location of black target blocks 
in a display in which half of the blocks are white and half are black.  Dynamic measures of 
visuo-spatial WM require participants to engage in some type of manipulation of visuo-spatial 
information.  For example, the dynamic matrices task requires participants to remember a 
sequence of flashing lights in a matrix.  The results have produced mixed conclusions.  Some 
researchers have found that both dynamic and static visuo-spatial WM tasks capture the 
differences between children with MLD and their typically developing peers (D’Amico & 
Guarnera, 2005; Reukhala, 2001), whereas others have reported that only dynamic visuo-spatial 
WM—and not static visuo-spatial WM—differentiates the groups (McLean & Hitch, 1999; Van 
der Sluis et al., 2005).  Moreover, some have found that only specific types of dynamic visuo-
spatial WM tasks differentiate the groups (e.g., backwards version; Passolunghi & Cornoldi, 
2008). 

Central executive WM impairments. In a meta-analysis of research on WM impairments 
in children with MLD, Geary (2003) found that one core marker of MLD may be a failure to 
access information from long-term memory due to poor inhibition of information that is 
irrelevant to solving a particular problem (Bull & Scerif, 2001).  Researchers have suggested that 
this inability to retrieve facts from long-term memory may stem from an inability to shift from 
one numerical representation to another and simultaneously retain the number or math fact with 
which the child was previously working (Bull & Scerif, 2001; Miyake, Friedman, Emerson, 
Witzki, & Howerter, 2000).  Weakness in the central executive component of WM is a primary 
candidate because it is theorized to take charge of the inhibition of irrelevant information, task 
switching, information updating, goal management, and strategic retrieval from long-term 
memory (Engle, Tuholski, Laughlin, & Conway, 1999).   

Measures of the central executive require concurrent storage and processing of information 
and these measures are sometimes contrasted with performance on short-term storage memory 
tasks in which participants are required to hold small amounts of verbal or visuo-spatial 
information passively.  The exact relationship between these cognitive factors—WM and 
inhibition—requires further investigation in regards to MLD (Herd, Banich, & O’Reilly, 2006).  
Finally, drawing conceptual connections between different mathematical concepts is especially 
challenging for children with WM impairments because each new math lesson is stored 
separately as its own fragmented memory instead of being integrated with previously learned 
information for efficient retrieval (Herd et al., 2006). 
Early Identification of MLD         
 Currently, the modal diagnostic process used by schools to determine whether a child 
meets the eligibility criteria for MLD requires that the student demonstrate evidence of academic 
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failure in math (for multiple trimesters and often multiple years).  According to some educators, 
this process can lead to a “wait to fail” model in which a child falls too far behind in school to 
catch up by the time he or she has been assessed and determined to have met the eligibility 
criteria for a learning disability (Reynolds, 2008).  In recent years, most schools have begun to 
adopt a new special education model called response to intervention (RTI), in which children 
who experience difficulty learning in the early school years receive evidence-based instructional 
interventions as soon as the problem is identified.  Their subsequent academic progress is then 
closely monitored to determine whether they should be referred for special education assessment.  
The aforementioned research on cognitive weaknesses that underlie MLD has applications for 
improving targeted and evidence-based RTI interventions in schools for children with MLD. 

 Currently, number sense weakness is an indicator for teachers that a child requires extra 
help (i.e., using number lines and learning math facts), but the ongoing effects of common WM 
weaknesses often go unaddressed by school interventions (Geary, Bailey, & Hoard, 2009).  Early 
screening tools that measure children’s WM in the classroom when MLD is a concern may 
potentiate the use of more effective intervention strategies that comprehensively and proactively 
address a child’s underlying cognitive impairments as well as their number sense weakness.  In 
addition, the availability of computerized tests makes administration of screening measures for 
learning disabilities more readily accessible to teachers in the classroom.  Just as in reading 
learning disabilities, early detection is a vehicle that allows for early remediation.  When WM 
deficits are identified, researchers suggest that instructional supports and new training 
interventions be enacted right away to address children’s individual weaknesses (St. Clair-
Thompson & Gathercole, 2006). 
Instructional Strategies 

Students with low WM are likely to experience academic setbacks (Gathercole & 
Alloway, 2008). Such students are at significant risk for developing anxiety and they are likely to 
have difficulty self-regulating as well as generating problem-solving strategies (Montague, 
Warger, & Morgan, 2000).  Children with MLD are at risk for developing learned helplessness, 
or the loss of motivation to continue when they are faced with increasing challenges throughout 
each successive mathematics course (Diener & Dweck, 1978).  To further complicate matters, 
when students struggle in math, too often teachers naturally make causal assumptions to explain 
their challenges, such as that the students simply lack the innate ability to do this type of math, or 
they are lazy (Diener & Dweck, 1978).  When teachers believe that they cannot help students 
overcome their innate deficiencies in learning, it can limit the range of pedagogical techniques in 
which teachers engage in (Horn, 2007).  However, such teachers’ conceptualizations often fail to 
incorporate the learning trajectory research that reveals the important role that instructional 
experiences (with individual modifications/adaptations) play in supporting students as they 
progressively develop skills that enable them to meet the goals of school mathematics at their 
own rate (Daro, Mosher, & Corcoran, 2011).  
 To prevent students from giving up, the teacher’s challenge is to provide targeted and 
strategic support that structures the learning environment for students to help them strengthen 
their areas of weakness.  Research suggests that teachers can use simple instructional strategies 
such as memory aids to support students during structured learning activities (St. Clair & 
Gathercole, 2006).  Thus, equipped with the right techniques, teachers can prevent children from 
experiencing excessive WM overload and help them to focus on the new goals of the current 
mathematics lesson (St. Clair & Gathercole, 2006).  Meltzer (2007), an education researcher, 
suggested that teachers can support children with WM impairments by filling in the answers to 
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the initial steps of a multi-step problem that involve previously learned material to help students 
focus on the new content or material without being bogged down by previously learned 
operations that they have difficulty retrieving from long-term memory.  For example, on a 
subtraction or division problem, when carrying numbers is required, the teacher could aid the 
student with an external reminder (a sign on his or her desk) of how to carry numbers, so that the 
child’s attention is free to learn that day’s specific math lesson with more advanced procedures.  
Additionally, teaching materials can restrict the amount of extraneous information presented or 
the number of task changes required. 
Further Directions 

Longitudinal research in populations of children with MLD is needed to advance our 
understanding of the causal contribution of WM impairments to dyscalculia.  Future work should 
emphasize measures of WM that do not rely on numerical stimuli so as not to confound specific 
impairments in numeracy when aiming to measure more general impairments in WM.  Though 
the efficacy of training interventions that aim to remediate the common cognitive weakness, 
WM, in children is still currently under investigation, the preliminary findings in this area of 
research have provided important insights about the plasticity of WM and these findings have 
wide application that advance the field of education.  A key next step is to investigate the 
generalizability of WM training to improvements in math performance in the classroom.  
Researchers have only begun to scratch the surface of this hotly debated topic and early studies 
have suffered from methodological issues relating to small sample sizes, lack of control groups, 
and lack of blind randomization procedures (Melby-Lervåg & Hulme, 2013).  A fruitful line of 
further investigation would be to study whether there is a synergistic effect of domain-general 
cognitive training in WM and training in more domain-specific number sense remediation 
programs.  Computerized training programs with adaptive designs can flexibly meet the needs of 
diverse students with MLD. 

Professional development for teachers. Professional development days can be a highly 
effective modality to provide information to teachers to increase awareness of the high 
prevalence rate of MLD in children as well as the most common cognitive impairments that 
teachers can screen for in their classroom to identify children at risk.  For example, as part of an 
effective RTI model, kindergarten through third grade teachers can administer a brief universal 
screening tool for number sense and WM to all students as a means of diagnostic monitoring.  
Teachers should be made aware of the above mentioned instructional strategies that they can 
employ in their classrooms to support children at risk for MLD and help them combat common 
secondary consequences of persistent academic setbacks that result when students have a 
learning disability.  To address the unique needs of students who meet diagnostic criteria for 
MLD, teachers should have access to evidence based computerized software that can be 
administered in their classroom, or a resource room, to treat common impairments in number 
sense and WM. 

Conclusion 
Given the high prevalence of MLD, it is evident that the current curriculum fails to 

support the needs of children with MLD.  Despite heterogeneity in the population of children 
with MLD, the current research indicates that children with MLD have commonalities in 
weaknesses in two key areas, specifically (b) the domain-specific cognitive ability, number sense 
(b) the domain-general cognitive ability, WM. Despite ongoing debate in the literature regarding 
causality, it is clear that impairment in WM, a key cognitive process central to math, can 
significantly impede a child’s mathematics achievement for years to come.  The implication of 
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the research synthesized here is that early screening for the core impairments in number sense 
and WM can flag children at risk for MLD.  Once identified, children at risk for MLD can 
receive progressive interventions and scaffolding techniques in their classroom that target and 
support their individual weakness and improve their access to the mathematics material.   

Progressive targeted teaching practices that incorporate cognitive training interventions in 
schools are needed to support children to facilitate development in math learning.  WM training 
may be an especially powerful remediation technique.  If interventions are offered early, they can 
set a positive feedback loop into motion, empowering children to reap more reward per effort 
during mathematics lessons at the beginning of school before they begin to fail at math
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 Chapter 2 - Cognitive Underpinnings of Math Achievement in Typically Developing 
Children  
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American	educators	face	the	tall	order	of	improving	outcomes	in	science,	
technology,	engineering,	and	mathematics	(STEM)	(Lee,	2012).	To	generate	solutions	to	
some	of	the	globe’s	most	pressing	challenges,	educators	will	need	to	teach	children	to	
become	better	problem-solvers	who	can	apply	to	their	work	the	information	learned	in	
their	STEM	courses.	Courses	in	mathematics	are	especially	challenging	for	many	students,	
and	these	courses	have	become	a	gatekeeper	to	higher	education	and	job	opportunities	in	
technological	fields	(Moses	&	Cobb,	2001).	Because	math	instruction	builds	upon	
previously	acquired	knowledge	and	skills,	it	is	difficult	for	children	who	fall	behind	early	to	
catch	up	with	their	peers.	In	an	effort	to	improve	math	and	language	outcomes	across	the	
nation,	educators	have	recently	released	new	national	standards	for	math	and	language	
arts	education	called	the	Common	Core	State	Standards	(National	Governors	Association	
and	Council	of	Chief	State	School	Offices,	2014).	The	new	standards	lay	out	progressions	of	
math	skill	building	benchmarks	that	have	opened	up	discussions	about	how	teachers	can	
provide	better	support	for	students	in	bolstering	their	math	proficiency	skills.		

Complementary	lines	of	research	in	psychology	and	education	aim	to	identify	which	
cognitive	precursors	lead	to	proficient	acquisition	of	mathematics	skills.	A	long-term	aim	of	
this	line	of	research	is	to	inform	educators	about	the	precursors	to	math	development,	so	
that	they	may	create	lesson	plans	that	target	not	only	specific	math	skills,	but	also	
underlying	domain-general	cognitive	processes.	The	cognitive	abilities	required	to	solve	
math	problems	have	been	difficult	to	isolate	because	mathematics	is	a	heterogeneous	
subject	matter	(e.g.,	arithmetic,	fractions,	geometry,	statistics),	and	problems	within	the	
same	topic	area	require	several	different	operations	and	computations	(e.g.,	adding,	
subtracting,	multiplying,	dividing).	Nevertheless,	researchers	have	begun	to	identify	
common	key	cognitive	functions	that	are	critically	important	for	disparate	types	of	
mathematical	computations	(Bisanz,	Sherman,	Rasmussen,	&	Ho,	2005;	Desoete	&	
Gregoire,	2007;	Krajewski	&	Schneider,	2009).		

	Relationships	between	math	and	cognitive	abilities	are	often	studied	within	the	
framework	of	the	Cattell-Horn-Carroll	(CHC)	theory,	arguably	the	most	comprehensive	and	
empirically	supported	theory	of	cognitive	abilities	derived	from	over	70	years	of	
psychometric	research	using	factor	analytic	theory	(Keith	&	Reynolds,	2010).	The	utility	of	
the	theory	is	in	clarifying	the	relations	between	cognitive	and	academic	abilities	to	inform	
educational	and	psychological	practices.	The	most	recent	revision	of	this	model,	by	
Schneider	and	McGrew	(2012),	includes	16	broad	cognitive	abilities	that	each	contains	
more	narrow	cognitive	abilities	within	them.	This	model	does	not	include	a	general	
intelligence	g	factor;	rather,	it	is	based	on	accumulating	evidence	that	broad	and	narrow	
CHC	cognitive	abilities	explain	more	variance	in	specific	academic	abilities	than	g	alone,	
and	that	these	specific	relationships	are	more	informative	to	educational	practice	than	
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general	intelligence	(e.g.	Floyd,	McGrew	&	Evans,	2008;	McGrew,	Flanagan,	Keith,	&	
Vanderwood,	1997;	Vanderwood,	McGrew,	Flanagan,	&	Keith,	2002).		

In	a	recent	synthesis	of	studies	investigating	the	concurrent	relationships	between	
CHC	cognitive	abilities	and	achievement	measures	(CHC-ACH)	by	McGrew	&	Wendling	
(2010),	fluid	reasoning	(FR)	was	one	of	three	broad	cognitive	abilities	that	was	consistently	
related	to	mathematical	performance	in	calculation	and	problem	solving	at	all	age	ranges	
throughout	development	(the	other	two	were	Verbal	Comprehension	and	Processing	
Speed).	FR	was	consistently	related	to	future	math	achievement	above	and	beyond	the	
contribution	of	general	intelligence.	FR	has	been	defined	by	contemporary	CHC	theory	as	
the	ability	to	flexibly	and	deliberately	solve	novel	problems	without	using	prior	
information	(Schneider	&	McGrew;	2012).	More	specifically,	it	is	the	ability	to	analyze	novel	
problems,	identify	patterns	and	relationships	that	underpin	these	problems,	and	apply	
logic.	On	FR	tests,	one	or	more	of	the	following	logic	abilities	is	required:	1)	induction,	the	
ability	to	discover	an	underlying	characteristic	(e.g.	rule,	concept,	or	trend)	that	governs	a	
set	of	materials,	2)	general	sequential	reasoning	(deduction),	the	ability	to	start	with	stated	
rules	or	premises	and	engage	in	one	or	more	steps	to	reach	a	solution	to	a	novel	problem	
(Schneider	&	McGrew,	2012).	FR	tests	are	commonly	administered	as	part	of	IQ	batteries	
that	are	administered	to	children	in	schools	or	in	clinical	settings.	While	FR	performance	is	
strongly	correlated	to	general	intelligence	(g),	as	is	verbal	comprehension,	there	is	unique	
shared	variance	among	tests	of	FR	that	cannot	be	accounted	for	by	g	alone	(McGrew,	
Flanagan,	Keith,	&	Vanderwood,	1997).	
FR	Development		

In	typically	developing	children,	FR	begins	to	emerge	during	the	first	two	years	of	
life,	increases	rapidly	in	early	and	middle	childhood,	continues	to	increase	at	a	slower	rate	
during	adolescence,	and	reaches	asymptotic	values	around	age	25,	after	which	it	begins	to	
decline	(McArdle	et	al.,	2002).		

Analyses	of	longitudinal	data	from	large	samples	that	were	used	to	create	norms	for	
the	standardized	Woodcock-Johnson	Cognitive	Abilities	testing	battery	(Schrank	&	
Wendling,	2009;	Woodcock,	Mather,	&	McGrew,	2001)	reveal	that	both	FR	performance	(as	
measured	by	Analysis	Synthesis	and	Concept	Formation	tests)	and	Math	Achievement	
increase	rapidly	during	childhood,	peaking	in	late	adolescence	to	age	24	and	beginning	to	
decline	in	adulthood	(Ferrer	&	McArdle,	2004).	The	trajectories	of	FR	development	and	
improvements	in	math	abilities	parallel	one	other	throughout	development	–	and	more	so	
from	ages	5-10	as	11-24	(Ferrer	&	McArdle,	2004).	This	observation	hints	at	the	possibility	
that	FR	plays	a	bigger	role	in	early	math	skill	development	in	kindergarten	and	elementary	
school	than	in	higher	levels	of	education.	However,	additional	data	are	needed	to	examine	
the	relationships	between	these	skills	over	development.	
Fluid	Reasoning	and	Math	Achievement	
	 Hypothesized	link.	One	mechanism	by	which	FR	could	support	math	skill	
acquisition	is	related	to	the	fact	that	both	FR	and	math	problems	engage	a	common	
underlying	cognitive	process	called	relational	reasoning,	or	the	ability	to	jointly	consider	
multiple	relationships	between	different	components	of	a	problem	(Halford,	Wilson	&	
Phillips,	1998;	Miller	Singley	&	Bunge,	2014).	According	to	this	framework,	understanding	
mathematics	requires	the	ability	to	form	abstract	representations	of	quantitative	and	
qualitative	relations	between	variables	(Halford,	Wilson	&	Phillips,	1998).	For	instance,	
when	children	first	learn	fractions,	they	must	keep	several	numerical	relationships	in	mind:	
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whole	unit	integers	have	to	be	understood	as	subunits	and	they	must	learn	to	coordinate	
the	value	in	the	numerator	and	the	value	in	the	denominator	(Saxe,	Taylor,	McIntosh,	&	
Gearhart,	2005).		
	 	Furthermore,	solving	story	word	problems	requires	children	to	draw	conceptual	
connections	between	real-world	situations	and	analogous	numerical	symbols	and	
operations	to	solve	the	problem	(Clement,	1982).	Another	example	of	relational	reasoning	
is	evident	in	early	algebra,	when	students	are	asked	to	solve	for	one	or	more	unknown	
numbers,	and	must	keep	in	mind	the	relationship	between	numbers	on	either	side	of	the	
equal	sign	to	determine	which	operand	is	required	to	solve	for	the	missing	variable.	
Empirical	support	for	a	link	between	FR	and	Math	Achievement	comes	from	both	cross-
sectional	and	longitudinal	research.		

While	multiple	longitudinal	studies	have	elucidated	the	importance	of	spatial	skills	
in	math	development	(for	a	review	see	Mix	&	Cheng,	2012),	only	a	few	longitudinal	studies	
have	explored	the	unique	developmental	role	of	prior	FR.	Further	research	is	needed	to	
disentangle	the	role	that	each	of	these	two	cognitive	abilities	plays	in	math	development	
because,	although	FR	and	spatial	abilities	are	highly	correlated	(Fry	&	Hale,	1996),	they	rely	
on	overlapping	as	well	as	separable	cognitive	processes	and	brain	regions.	FR	tests	(e.g.	
Matrix	Reasoning)	not	only	require	spatial	skills	(including	visualization),	but	additionally	
require	relational	reasoning,	or	the	ability	to	consider	relationships	between	multiple	
pieces	of	information	to	detect	the	underlying	conceptual	relationship	among	visual	
objects,	and	to	use	reasoning	to	identify	and	apply	rules	(Halford,	Wilson	&	Phillips,	1998;	
Holyoak,	2012;	Bunge	&	Vendetti,	2015).	In	regards	to	the	neural	correlates,	a	visuospatial	
skill	that	is	commonly	implicated	in	math	achievement,	visuospatial	working	memory,	
relies	on	the	intraparietal	and	superior	frontal	regions	(for	a	review	see	Klingberg,	2006),	
whereas	the	relational	reasoning	component	of	FR	relies	on	the	rostrolateral	prefrontal	
coretex	and	lateral	parietal	regions	(for	reviews	see	Krawczyk,	2010;	Bunge	&	Vendetti,	
2014).	Therefore,	it	is	plausible	that	visuospatial	abilities	and	FR	make	unique	
contributions	math	achievement.	
Longitudinal	Precursors	to	Math	Achievement	

Fluid	Reasoning.	As	mentioned,	there	are	only	a	limited	numbers	of	longitudinal	
studies	that	have	examined	the	extent	to	which	FR	skills	uniquely	contribute	to	the	
development	of	math	proficiency	in	childhood,	separately	from	general	IQ,	and	other	
domain	general	cognitive	abilities.	In	one	such	study	(Fuchs	et	al.,	2010),	the	authors	
compared	the	effect	of	basic	numerical	cognition	and	other	domain-general	cognitive	
abilities	measured	at	the	beginning	of	the	school	year	on	280	1st-grade	students’	
development	of	math	problem	solving	over	the	course	of	that	academic	year.	They	found	
that	FR	(measured	by	Matrix	Reasoning)	in	the	fall	semester	was	just	as	predictive	of	
children’s	gains	in	word	problem	solving	over	the	course	of	the	year	as	their	basic	
numerical	cognition	skills.	Primi,	Ferrão,	and	Almeida	(2010)	showed	that	7th	and	8th	grade	
students’	initial	level	of	FR	(measured	by	tests	of	numerical,	verbal,	spatial,	and	abstract	
reasoning)	was	positively	related	to	their	subsequent	growth	in	quantitative	abilities	over	
the	course	of	the	next	two	academic	years,	such	that	children	with	higher	FR	ability	at	the	
start	of	the	year	demonstrated	more	growth	in	math	over	the	course	of	two	academic	years	
than	children	with	lower	FR	scores.		

Spatial	skills.	Several	longitudinal	studies	have	examined	the	robust	role	of	spatial	
skills	in	the	development	of	math	proficiency	in	childhood	(for	a	review	see	Mix	&	Cheng).	
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However,	studies	in	this	literature	rely	on	different	operational	definitions	of	spatial	ability,	
such	as	visualization	and	spatial	working	memory.	

Visualization.	Visualization	is	the	most	commonly	studied	spatial	ability	related	to	
mathematics	(Mix	&	Cheng,	2012).	Visualization	is	the	ability	to	perceive	visual	patterns	
and	mentally	manipulate	them	to	simulate	how	they	might	nook	when	transformed	(e.g.	
rotated,	changed	in	size,	partially	obscured)	(Flanagan,	Ortiz,	&	Alfonso,	2013).	
Visualization	is	frequently	measured	using	tests	such	as	Block	Design,	which	measures	the	
ability	use	two-color	cubes	to	construct	replicas	of	two-dimensional,	geometric	patterns	
under	timed	conditions.	This	test	assesses	the	ability	to	mentally	transform	(or	rotate)	
blocks.	One	such	study	by	Zhang	et	al.	(2014)	found	that	spatial	skills	in	kindergarteners	
(measured	by	spatial	visualization),	along	with	verbal	skills,	predicted	level	of	arithmetic	in	
the	1st	grade	as	well	as	arithmetic	growth	through	the	3rd	grade.	Another	such	study	by	
Casey	et	al.	(2015)	examined	the	predictors	in	1st	grade	of	math	problem	solving	in	the	5th	
grade,	comparing	the	predictive	power	of	performance	on	Block	Design	with	the	predictive	
power	of	verbal	and	arithmetic	skills.	They	found	that	Block	Design	performance	in	1st	
grade	were	just	as	predictive	of	5th	grade	math	problem	solving	as	early	arithmetic	skills.	

	Visuospatial	Working	Memory.	More	recently,	studies	have	also	found	that	
visuospatial	working	memory,	or	the	ability	to	temporarily	store	and	process	visual	
information	to	complete	a	task,	is	a	robust	predictor	of	math	achievement.	For	example,	Li	
&	Geary	(2013)	showed	that	developmental	gains	in	visuospatial	working	memory	
between	1st	and	5th	grade	was	a	strong	predictor	of	math	achievement	at	the	end	of	5th	
grade,	as	was	general	intelligence	(measured	by	WASI	Matrix	Reasoning,	Block	Design,	
Vocabulary,	and	Similarities),	and	in-class	attentive	behavior.		Similarly,	LeFevre	et	al.	
(2010)	advanced	a	developmental	theory	that	suggests	that	three	key	pathways	contribute	
differentially	to	early	math	development:	quantitative,	linguistic,	and	spatial	pathways.	
They	found	that	at	age	4-5	years,	early	spatial	attention	(measured	by	spatial	span)	
significantly	predicted	both	number	naming	and	processing	of	numerical	magnitude	two	
years	later.		

FR	tests	may	require	visualization	or	spatial	working	memory,	but	they	are	
distinguished	from	these	purely	spatial	ability	tests	because	they	require	inductive	or	
general	sequential	(deductive)	reasoning	(Schneider	&	McGrew,	2012).	Factor	analysis	
contributing	to	CHC	theory	has	demonstrated	that	FR	measures	tap	into	a	separable	
construct	than	spatial	abilities	(Schneider	&	McGrew,	2012).	

Quantitative	Skills.	Though	multiple	studies	have	demonstrated	the	strong	
predictive	power	of	early	math	skills	on	math	achievement,	over	and	above	reading,	
attentive	behavior,	and	domain	general	cognitive	predictors,	many	of	these	studies	have	
been	conducted	in	populations	of	primary	school-aged	children	and	are	consequently	
limited	to	more	basic	numerical	competencies	(e.g.	magnitude	comparisons,	number	
naming,	arithmetic,	fractions	etc.),	and	do	not	incorporate	measures	of	FR	as	a	unique	
factor	in	their	models	(e.g.,	Duncan	et	al.,	2007;	Fuchs	et	al.,	2012,	LeFevre	et	al.,	2012;	
Watts	et	al.,	2014).	Therefore,	more	research	is	needed	to	better	understand	the	relative	
predictive	power	of	FR,	and	other	domain-general	cognitive	skills,	in	relation	to	prior	
numerical	skills	in	predicting	math	achievement	across	primary	and	secondary	school	
grades.	

Study	Goals	
In	the	present	study,	we	sought	to	expand	upon	previous	research	to	evaluate	the	
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extent	to	which	prior	FR	predicts	later	math	outcomes	in	children	between	6	and	21	years	
old,	above	and	beyond	other	cognitive	and	numerical	abilities	that	have	previously	been	
implicated	in	math	development.	Our	aims	were	threefold:	1)	to	test	a	latent	model	of	FR	
that	combines	three	well-known	psychometric	tests,	2)	to	compare	the	contribution	of	
prior	FR	to	that	of	prior	math	reasoning	in	predicting	future	Math	Achievement	at	T3,	3)	to	
compare	the	relative	contribution	of	prior	FR	to	spatial	skills,	verbal	skills,	and	age,	in	
predicting	future	Math	Achievement	at	T3.	Each	of	these	cognitive	abilities	has	been	shown	
to	be	a	strong	independent	predictor	of	later	Math	Achievement	(e.g.	Primi,	Ferrão,	&	
Almeida,	2010).		

To	this	end,	we	collected	and	analyzed	data	within	the	context	of	a	larger	
longitudinal	cohort	sequential	design	study	examining	the	neurodevelopment	of	FR.	We	
administered	a	battery	of	age-normed	neuropsychological	tests	to	measure	FR,	as	well	as	
vocabulary,	and	spatial	skills,	at	three	timepoints	(~1.5	years	apart)	in	a	group	of	69	
children	who	ranged	in	age	from	6	to	21	at	the	first	assessment.	At	the	second	assessment	
(T2)	we	assessed	participants	on	a	measure	of	math	reasoning.	At	the	final	assessment	
(T3),	we	assessed	participants	on	three	different	math	achievement	measures:	math	
problem	solving,	arithmetic	fluency,	and	math	reasoning.		

Methods	
Participants	

Participants	were	individuals	in	a	longitudinal	study	designed	to	examine	the	
cognitive	and	neural	factors	that	underlie	the	development	of	FR.	All	participants	and	their	
parents	gave	their	informed	assent	or	consent	to	participate	in	the	study	approved	by	the	
Committee	for	Protection	of	Human	Subjects.	Additionally,	all	participants	were	screened	
for	neurological	impairment,	psychiatric	illness,	and	history	of	learning	disabilities	or	
developmental	delays.	

Understanding	developmental	processes	requires	longitudinal	studies	that	focus	on	
within-person	changes	over	time.	This	study	design	involved	a	cohort-sequential	design	in	
which	201	participants,	ranging	from	5	to	15	at	the	time	of	recruitment,	were	assessed	at	
one	to	three	time	points	with	an	average	delay	of	1.5	years	between	time	points.	This	
cohort-sequential	design	enabled	us	to	examine	both	between-person	differences	and	
within-person	changes	over	a	5-year	span	–	the	five	years	of	the	funded	research	program	
–	and	with	fewer	participants	than	a	traditional	longitudinal	design.	This	approach	
provides	insight	into	the	interplay	of	factors	underlying	such	within-person	changes	over	
time	i.e.,	improvements	in	cognitive	abilities	over	development	(Bell,	1953;	McArdle,	
Ferrer-Caja,	&	Woodcock,	2002;	Ferrer	&	McArdle,	2004).	

Parents	completed	the	Child	Behavioral	Check	List	(Achenbach,	1991)	on	behalf	of	
their	child.	Participants	who	scored	in	the	clinical	range	for	either	externalizing	or	
internalizing	behaviors	were	excluded	from	further	analyses.	Of	the	172	children	and	
adolescents	enrolled	in	the	study	who	scored	in	the	normal	range	on	the	Child	Behavior	
Check	List,	69	participants	successfully	completed	testing	at	three	time	points:	T1,	T2,	and	
T3	–	a	substantive	time	commitment,	involving	six	long	testing	sessions	(one	behavioral	
and	one	brain	imaging	session	at	each	of	the	three	time	points).	There	was	no	statistical	
difference	in	performance	between	children	who	participated	at	all	three	time	points	as	
compared	with	those	who	did	not.		

The	mean	assessment	ages	for	these	69	participants	were	10.18	(SD	=	3.32)	at	T1,	
11.67	(SD	=	3.35)	at	T2,	and	13.45	(SD	=	3.38)	at	T3.	Across	all	of	these	participants	and	
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timepoints,	data	were	collected	between	ages	6	and	21	years.	The	ethnicity	of	the	sample	
reflects	the	ethnic	and	racial	diversity	found	in	the	local	population	(7.4%	Hispanic/Latino,	
56.21%	White,	12.43%	Asian,	10.45%	Black	or	African	American,	18.4%	multiple	
ethnicities).	Both	genders	were	represented	equally	(48%	males,	52%	females).	Most	of	
these	children	came	from	middle-class	homes,	and	the	majority	of	families	(85%)	reported	
two	adults	living	in	the	home.	All	mothers	in	the	study	had	completed	high	school,	and	the	
majority	(84%)	had	completed	some	post-secondary	education,	in	the	form	of	a	Bachelor’s	
or	Associate’s	degree	or	a	diploma	from	a	vocational	college.	Most	of	the	children	spoke	
English	at	home.	
Measures	
The	behavioral	measures	selected	for	our	longitudinal	study	were	standardized	measures	
with	very	high	internal	consistency	and	test-retest	reliability,	ranging	from	.94	to	.95	
(McArdle	et	al.,	2002;	McGrew,	Werder,	&	Woodcock,	1991).		

Fluid	Reasoning.	FR	ability	was	assessed	using	three	standardized	measures,	
including	the	Matrix	Reasoning	subtest	of	the	Wechsler	Abbreviated	Scale	of	Intelligence	
(WASI;	Wechsler,	1999),	and	the	Analysis	Synthesis	and	Concept	Formation	subtests	of	the	
Woodcock-Johnson	Tests	of	Cognitive	Abilities-Revised	(Woodcock,	Mather,	&	McGrew,	
2001).	Though	these	three	tests	are	quite	different	from	one	another,	they	were	all	
designed	as	measures	of	FR	that	rely	one	or	more	narrow	FR	abilities.	As	shown	below,	all	
three	tests	loaded	onto	a	single	factor	“FR”	in	our	sample,	which	is	consistent	with	prior	
factor	analytic	work	contributing	to	CHC	theory	(Schneider	&McGrew;	2012).	Thus,	we	
used	scores	from	this	FR	factor	in	all	subsequent	analyses	(for	example	of	this	approach	
see:	Primi	et	al.,	2010).	
	 Matrix	Reasoning.	This	test	was	modeled	after	a	traditional	test	of	“fluid”	or	non-
verbal	reasoning—Raven’s	Progressive	Matrix	Reasoning	(Raven,	1938)—and	required	the	
participants	to	examine	an	incomplete	matrix,	or	geometric	pattern,	and	then	select	the	
missing	piece	from	five	response	options	arranged	according	to	one	or	more	progression	
rules.	The	Matrix	Reasoning	subtest	assesses	FR	induction	skills,	or	the	ability	to	identify	an	
underlying	characteristic	(e.g.	rule	or	trend)	that	governs	the	existing	pattern,	and	then	to	
choose	a	missing	piece	that	contains	this	characteristic.	
		 Analysis	Synthesis.	On	this	test,	participants	are	asked	to	analyze	an	incomplete	
logic	puzzle	made	up	of	colored	squares	and	to	use	a	key	to	determine	the	missing	color	in	
the	puzzle.	To	complete	this	task	successfully,	participants	must	use	general	sequential	(or	
deductive)	reasoning	skills	to	draw	correct	conclusions	from	a	color	combination	key,	with	
more	difficult	items	requiring	a	series	of	sequential	steps.		
	 Concept	Formation.	On	this	test,	participants	are	asked	to	view	a	complete	puzzle	
made	up	of	colored	squares,	and	to	identify	and	state	the	“rules”	(color	and	shape)	when	
shown	illustrations	of	both	instances	and	non-instances	of	the	concept	(e.g.	red	square).	
The	Concept	Formation	test	requires	frequent	switching	from	one	rule	to	another.	To	
complete	this	task	successfully,	participants	must	use	inductive	reasoning	skills	to	discover	
the	rule	that	governs	the	puzzle.	

Vocabulary.	We	used	the	Wechsler	Abbreviated	Scale	of	Intelligence	(WASI)	
Vocabulary	measure	(Wechsler,	1999)	to	probe	crystallized	knowledge	and,	indirectly,	
semantic	memory.	This	test	is	a	norm-referenced	measure	of	expressive	vocabulary.	On	
this	test,	the	examiner	presents	stimulus	words	to	participants	and	asks	them	to	state	each	
word’s	meaning.		
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Spatial	Skills.	We	administered	two	tests	of	Spatial	Skills.	Spatial	Span	is	considered	
a	measure	of	visual	memory,	or	the	ability	to	remember	visual	images	over	short	periods	of	
time	(less	than	30	seconds)	(Schneider	&	McGrew,	2012).	Block	Design	is	considered	a	
measure	of	visualization,	or	the	ability	to	mentally	organize	visual	information	by	analyzing	
part-whole	relationships	when	information	is	presented	spatially	(Schneider	&	McGrew,	
2012).	Based	on	prior	factor	analytic	work	contributing	to	CHC	theory	demonstrating	that	
visual	memory	and	visualization	load	onto	a	single	factor,	we	created	a	factor	score	called	
Spatial	Skills	using	multiple	imputation	in	AMOS	(Schneider	&McGrew,	2012).	We	used	
scores	from	this	Spatial	Skills	factor	in	all	subsequent	analyses.	

	Spatial	Span.	The	Spatial	Span	test	in	the	4th	edition	of	the	Wechsler	
IntelligenceScale	for	Children	(WISC-IV)	is	a	norm-referenced	measure	that	requires	
participants	to	remember	a	sequence	of	spatial	locations	on	a	grid	in	forward	and	reverse	
order.	The	Forward	condition	measures	spatial	attention	and	short-term	visuospatial	
memory,	whereas	the	Backwards	condition	additionally	measures	the	ability	to	manipulate	
visuospatial	representations	in	working	memory.	Participants’	scores	on	each	of	the	
conditions	are	summed	into	a	Spatial	Span	total	score.		

Block	Design.	The	Block	Design	test	in	the	Wechsler	Abbreviated	Scale	of	
Intelligence	(WASI;	Wechsler,	1999)	is	a	norm-referenced	measure	that	requires	
participants	to	perceive	patterns	and	mentally	stimulate	how	they	might	look	when	
transformed	(e.g.	rotated).	On	the	Block	Design	test,	participants	are	asked	to	arrange	a	set	
of	red-and-white	blocks	in	such	a	way	as	to	reproduce	a	2-dimensional	visual	pattern	
shown	on	a	set	of	cards.	The	test	is	timed,	and	scoring	is	based	on	both	efficiency	and	
accuracy	of	the	pattern	reproduction.	

Math	Achievement.	All	math	measures	came	from	the	Woodcock-Johnson	III	Tests	
of	Achievement	and	Cognitive	Abilities	(WJ	III	ACH	&	COG),	designed	for	use	across	the	
lifespan	(Woodcock,	Mather,	&	McGrew,	2001).	A	math	reasoning	test	was	administered	at	
the	second	timepoint,	and	three	math	measures	were	administered	at	the	final	timepoint.		

Number	Series.	We	administered	the	Number	Series	test	from	the	WJ-III	Cognitive	
Abilities	testing	battery	at	the	second	and	third	timepoints	as	a	measure	of	mathematical	
reasoning.	On	this	test,	the	examiner	presents	the	participant	with	a	page	of	numerical	
sequences	that	contains	a	missing	number.	The	participant	is	asked	to	complete	each	
sequence	by	identifying	and	applying	the	rule	that	applies	to	the	other	numbers	in	the	
sequence.	As	the	test	advances,	the	underlying	rules	become	more	challenging	(e.g.,	2,	3,	4,	
___?	as	compared	with	15,	18,	21,	___?).	Participants	are	awarded	1	point	for	each	correct	
answer	and	0	points	for	each	incorrect	answer.	The	examiner	discontinues	the	test	when	
the	participant	either	finishes	all	items	or	misses	six	consecutive	items.	

Applied	Problems.	We	administered	this	WJ-III	subtest	to	measure	participants’	
ability	to	solve	practical	math	word	problems	using	simple	counting,	addition,	or	
subtraction	operations	at	the	third	timepoint.	On	the	Applied	Problems	test,	a	participant	is	
presented	with	a	picture,	(e.g.,	a	group	of	mixed	coins)	and	asked	to	listen	to	a	problem	
(e.g.,	“How	much	money	is	this?”).	To	solve	a	problem,	the	child	must	recognize	the	
mathematical	procedure	to	be	followed	and	perform	the	appropriate	calculations.	As	the	
test	advances,	the	child	must	carry	out	more	complex	operations	and	have	more	advanced	
experience	with	each	particular	concept,	such	as	telling	time	or	solving	word	problems.	
Participants	are	awarded	1	point	for	each	correct	answer,	and	0	for	each	incorrect	answer.	
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The	examiner	discontinues	the	test	when	the	child	either	finishes	all	items	or	missed	six	
consecutive	items	by	the	completion	of	the	test	page.	

Math	Fluency.	To	measure	participants’	ability	to	complete	basic	arithmetic	
problems,	we	administered	the	Math	Fluency	test	on	the	WJ-III	Achievement	testing	
battery	at	the	third	timepoint.	This	test	measures	participants’	ability	to	solve	simple	
addition,	subtraction,	and	multiplication	facts	within	a	one-minute	time	limit.	At	the	
beginning	of	the	test,	the	child	is	presented	with	a	worksheet	composed	of	simple	
arithmetic	problems	and	asked	to	solve	as	many	problems	as	he	or	she	can	in	one	minute.	
Hypotheses	

Latent	Construct	of	Fluid	Reasoning.	To	examine	whether	the	three	tests	
represent	a	common	construct,	we	used	confirmatory	factor	analyses	(CFA)	to	create	a	
latent	variable	‘Fluid	Reasoning	(FR)’	from	participants’	scores	on	three	different	tests	at	
each	time	point:	Matrix	Reasoning,	Analysis	Synthesis	and	Concept	Formation.	CFA	
procedures	were	conducted	to	test	the	fit	of	the	data	to	the	FR	construct	for	each	time	point	
(Figure	1).		

Comparing	FR	and	Math	Reasoning	as	predictors	of	later	Math	Achievement.		
Second,	we	tested	a	model	including	relations	from	FR	skills	and	math	reasoning	skills	to	a	
diverse	set	of	math	skills	at	a	future	time	points	(see	Figure	2).	To	this	end,	we	created	a	
math	latent	variable	called	‘Math	Achievement’	using	three	different	math	tests	at	T3,	each	
measuring	different	math	skills:	Math	Reasoning,	Applied	Problems,	and	Math	Fluency.	As	
shown	in	Figure	2,	we	hypothesized	that	FR	at	T1	and	T2	would	be	the	strongest	predictors	
of	Math	Achievement	at	T3	after	accounting	for	prior	Math	Reasoning	at	T2.	In	the	next	
analyses,	we	added	age	to	the	model.	

Comparing	FR	to	verbal	and	spatial	abilities	as	predictors	of	later	Math	
Achievement.	Third,	we	compared	the	relative	contributions	between	FR	and	future	Math	
Achievement	in	relation	to	other	cognitive	abilities	that	have	previously	been	implicated	in	
math	development:	Verbal	Reasoning	(Vocabulary)	and	Spatial	Skills	(Spatial	Span	and	
Block	Design).	We	tested	the	model	hypothesizing	that	FR	skills	would	remain	a	strong	
predictor	of	future	Math	Achievement	after	accounting	for	verbal	and	spatial	skills	(see	
Figure	3).		
	

Results	
Missing	Value	Analysis	

Since	the	percentage	of	missing	values	for	four	of	the	variables	was	above	five	(refer	
to	Appendix	A	for	the	percentages	of	missing	values	per	variable),	the	pattern	of	
missingness	was	assessed	via	Little’s	MCAR	(Missing	Completely	at	Random)	procedure	
(Tabachnick	&	Fidell,	2007).	This	procedure	revealed	that	the	data	were	missing	at	random	
(MCAR:	χ2	(336)	=	360.32,	p	=	.173).	Because	of	this,	we	used	the	Expectation	Maximization	
algorithm	to	estimate	the	model	parameters	(Tabachnick	&	Fidell,	2007).		
	
Descriptive	Statistics	

Means	and	standard	deviations	for	the	study	variables	are	shown	in	Table	1.	Both	
the	raw	and	T-scores	are	presented.	The	T-scores	are	standardized	scores	wherein	the	
mean	is	50	and	the	standard	deviation	is	10.	Factor	scores	for	FR	and	Spatial	Skills	were	
derived	using	multiple	imputation	in	AMOS.	As	shown	in	Table	1,	all	mean	raw	and	T-
scores	increased	numerically	over	time,	with	the	exception	of	the	FR	factor	score,	which	
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decreases	from	T2	to	T3	because	the	standardized	loadings	for	the	FR	factor	score	in	T3	are	
smaller	than	the	standardized	loadings	in	T2.	When	composite	(or	average)	FR	scores	are	
generated,	it	is	evident	that	performance	increases	across	time.	Pearson	correlations	
between	study	variables	are	shown	in	Table	2.		

The	Structure	of	Fluid	Reasoning.	To	test	whether	Matrix	Reasoning,	Analysis	
Synthesis,	and	Concept	Formation	could	be	combined	into	a	latent	factor	of	FR,	we	
conducted	CFA	for	each	of	the	time	points	using	AMOS	23	software	(Arbuckle,	2015).	All	
factor	loadings	were	statistically	significant	(p	<	.001),	with	standardized	loadings	above	
.65,	thus,	supporting	a	latent	factor.	Therefore,	the	FR	construct	was	supported,	and	we	
computed	one	latent	factor	for	each	time	period	using	the	three	psychometric	tests.	

Comparing	FR	and	Math	Reasoning	as	predictors	of	later	Math	Achievement.	We	
employed	structural	equation	modeling	(SEM)	to	test	our	second	hypothesis	that	prior	FR	
at	T1	and	T2	would	be	stronger	predictors	of	T3	Math	Achievement	than	T2	Math	
Reasoning.	This	approach	also	allowed	us	to	examine	the	effects	of	the	predictor	variables	
simultaneously	on	a	latent	dependent	measure.	As	shown	in	Table	3,	our	hypothesis	was	
supported:	prior	FR	was	the	strongest	predictor	of	Math	Achievement	at	T3.	Any	model	
that	did	not	involve	FR	as	a	predictor	of	T3	Math	Achievement	fit	significantly	worse	and	
decreased	the	amount	of	explained	variance.	In	contrast,	removing	the	path	from	T2	Math	
Reasoning	to	T3	Math	Achievement	did	not	worsen	the	fit	or	decrease	the	amount	of	
explained	variance	of	T3	Math	Achievement.	Results	are	reported	in	Table	4.	This	pattern	
was	similar	when	using	T2	and	T3	data	only	(i.e.,	eliminating	FR	T1	from	the	model).	
Including	age	at	T1	and	T2	in	the	model	depicted	in	Figure	2	did	not	change	the	results.	
Indeed,	removing	all	regression	paths	from	age	to	the	variables	of	interest	(i.e.,	leaving	age	
in	the	model	but	eliminating	its	effects)	did	not	worsen	the	fit.	

	Results	from	these	analyses	showed	that	both	of	the	hypothesized	models	in	Figure	
2	fit	the	data	well	(Tables	5	and	6).	For	the	sake	of	simplicity,	we	feature	here	the	results	of	
the	structural	model	with	age	having	a	direct	effect	on	Math	Achievement	at	T3	(Figure	3).	
Specifically,	FR	at	T2	significantly	predicted	Math	Achievement	at	T3,	β	=	.52,	p	<	.001.	By	
contrast,	Spatial	Skills	at	T2	did	not	significantly	predict	Math	Achievement	at	T3,	β	=	.19,	p	
=	.205.	Vocabulary	at	T2	also	did	not	significantly	predict	Math	Achievement	at	T3,	β	=	.15,	
p	=	.205.	Similarly,	age	at	T2	did	not	significantly	predict	Math	Achievement	at	T3,	β	=	.16,	p	
=	.150.	The	T2	predictors	(Age,	Spatial	Skills,	Vocabulary,	and	FR)	accounted	for	90.2%	of	
the	variance	in	Math	Achievement	at	T3.	In	summary,	this	analysis	shows	that	FR	at	T2	was	
a	strong,	unique	predictor	of	Math	Achievement	approximately	1.5	years	later.		

These	analyses	also	enabled	us	to	test	the	mediating	effect	of	FR	between	Age	and	
Math	Achievement	at	T3.	Age	significantly	predicted	FR,	and	FR	significantly	predicted	
Math	Achievement	at	T3.	Therefore,	the	first	two	criteria	of	mediation	were	met.	As	shown	
in	Table	7,	the	indirect	effect	was	statistically	significant,	p	<	.001,	but	the	direct	effect	was	
not,	p	=	.198.	Therefore,	the	third	and	fourth	criteria	for	mediation	were	met.	As	such,	FR	
significantly	mediated	the	relationship	between	Age	and	Math	Achievement	at	T3.	By	
contrast,	Vocabulary	and	Spatial	Skills	did	not	significantly	predict	Math	Achievement;	
thus,	these	factors	did	not	significantly	mediate	the	relationship	between	age	and	Math	
Achievement	at	T3.	

Discussion	
Summary	of	results	

In	this	paper,	we	sought	to	test	whether	FR,	or	the	ability	to	analyze	novel	problems,	
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identify	patterns	and	relationships,	and	apply	logic,	contributes	to	future	math	
achievement	throughout	primary	and	secondary	schooling.	We	were	particularly	
interested	in	comparing	FR	to	other	cognitive	precursors	(verbal	and	spatial	skills)	that	
have	been	previously	linked	to	math	development	(e.g.	McGrew	&	Wendling,	2010).	Most	
prior	developmental	math	research	studies	have	been	conducted	in	populations	of	school-
aged	children	in	the	primary	grades,	and	did	not	incorporate	measures	of	FR	in	their	
predictive	models.	Therefore,	the	current	research	provides	a	necessary	extension	to	the	
existing	developmental	math	literature	by	examining	the	role	of	FR	and	its	relation	to	other	
pertinent	cognitive	precursors	in	predicting	future	math	achievement	across	a	wide	age	
range	of	children,	providing	a	more	comprehensive	model	of	math	development.	

	To	this	end,	we	first	created	a	latent	factor	score	of	FR	from	three	psychometric	
tests	designed	to	measure	FR	(Matrix	Reasoning,	Concept	Formation,	&	Analysis	Synthesis)	
using	confirmatory	factor	analysis.	Second,	we	compared	the	strength	of	the	associations	
between	prior	FR	and	prior	math	reasoning	on	later	math	achievement	at	T3	(measured	by	
Applied	Problem	Solving,	Math	Reasoning,	and	Math	Fluency)	using	Structural	Equation	
Modeling.	Results	showed	that	across	all	three-time	points,	prior	FR	was	the	strongest	
predictor	of	later	math	achievement	at	T3,	after	accounting	for	prior	math	reasoning	and	
age.	Once	we	had	determined	that	FR	was	a	better	predictor	of	later	math	achievement	
than	prior	numerical	reasoning,	we	compared	the	relative	contribution	of	prior	FR	to	other	
important	cognitive	abilities	associated	with	math,	indexed	by	verbal	reasoning	(measured	
by	Vocabulary),	and	Spatial	Skills	(measured	by	Spatial	Span	and	Block	Design),	to	future	
Math	Achievement	at	T3.	This	model	accounted	for	over	90%	of	the	variance	in	Math	
Achievement.	In	this	model,	FR	was	the	strongest	cognitive	predictor	of	future	Math	
Achievement	measured	approximately	1.5	years	later.	Notably,	Spatial	Skills,	vocabulary,	
and	age	were	not	significant	predictors	in	this	model.		

Though	some	studies	have	shown	that	spatial	skills	and	verbal	comprehension	are	
also	robust	precursors	to	future	math	achievement	(e.g.	Li	&	Geary,	2013;	LeFevre	et	al.	
2010),	many	prior	studies	have	not	incorporated	measures	of	FR	in	their	predictive	
models.	Thus,	we	interpret	the	current	findings	as	support	for	the	notion	that	FR	is	a	
foundational	skill	that	influences	future	development	of	numerical	reasoning	and	
potentiates	math	problem	solving	skills.	Thus,	the	findings	indicate	that	FR	should	be	
incorporated	into	future	developmental	models.	These	results	support	and	extend	Cattell’s	
(1971;	1987)	notion	that	FR	development	is	an	important	cognitive	precursor	for	even	the	
most	basic	math	skill	development,	including	timed	arithmetic,	as	well	as	more	complex	
equations	and	word	problems.	
Study	limitations	

A	limitation	of	the	study	is	that	we	did	not	administer	math	measures	at	the	first	
assessment	rendering	us	unable	to	control	for	the	initial	effect	of	these	domain	specific	
precursors	on	future	math	outcomes.	However,	we	were	able	to	include	math	reasoning	at	
T2	in	our	model,	which	enabled	us	to	compare	the	relative	contribution	of	prior	math	
reasoning	to	prior	FR	in	predicting	future	math	achievement.	Prior	FR	emerged	as	a	better	
predictor	of	future	math	achievement	than	prior	math	reasoning.	This	finding	builds	on	
prior	studies	showing	that	domain	general	FR	is	as	good	a	predictor	of	later	math	skills	as	
prior	numerical	reasoning	skills	(e.g.	Fuchs	et	al.,	2010).	Another	limitation	of	the	study	is	
the	relatively	small	sample	size.	However,	the	results	are	statistically	reliable,	and	the	wide	
age	range	enables	us	to	make	a	novel	contribution	to	the	literature.		
Theoretical	implications	
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This	work	demonstrates	that	FR	and	mathematics	achievement	are	linked	
throughout	development,	and	that	FR	supports	mathematical	thinking	and	reasoning	
throughout	the	school	years.	One	account	for	the	strong	relation	between	FR	and	math	
assessments	is	that	both	engage	a	common	underlying	cognitive	ability	called	relational	
reasoning,	or	the	ability	to	jointly	consider	multiple	relations	between	different	
components	of	a	problem	(Halford,	Wilson	&	Phillips,	1998;	Carpenter,	Fennema,	Franke,	
2013;	Miller	Singley	&	Bunge,	2014;	Richland,	Holyoak,	Stigler,	2004;	White,	Alexander,	
Daugherty,	1998).	The	emerging	ability	to	reason	relationally	may	form	the	foundation	for	
mathematical	conceptual	development,	from	the	time	children	learn	to	compare	the	value	
of	one	number	to	another,	to	the	time	they	learn	to	extract	the	value	of	a	fraction	by	
comparing	the	value	of	the	numerator	to	the	value	of	the	denominator,	to	when	they	learn	
algebra	and	have	to	solve	for	an	unknown	variable	by	keeping	in	mind	the	relationship	
between	numbers	on	both	sides	of	the	equal	sign,	and	so	on	(Miller	Singley	&	Bunge,	2014).		

Demonstrating	that	FR	predicts	future	math	achievement	across	ages,	above	and	
beyond	the	effects	of	age,	math	reasoning,	and	other	cognitive	factors	correlated	with	math	
proficiency	-	vocabulary	and	spatial	skills	–	advances	existing	developmental	theories	of	
mathematics.	While	many	existing	developmental	theories	were	formed	based	on	studies	
involving	younger	children	(approximately	4-9	years	of	age),	(e.g.	LeFevre	et	al.,	2010),	the	
current	sample	spans	a	broader	age	range	of	6-21	years.	This	work	also	replicates	and	
extends	the	findings	in	previous	longitudinal	research	conducted	by	Fuchs	et	al.	(2010)	and	
Primi	et	al.	(2010),	who	found	that	FR	was	a	robust	cognitive	predictor	of	future	math	
achievement	over	the	course	of	one	to	two	academic	years	in	children	in	grades	1,	7,	and	8	
(respectively).	Our	study	included	a	wider	age	range	of	children	and	adolescents	between	6	
and	21	years	old,	and	adopted	an	analytic	approach	that	enabled	us	to	look	at	sequential	
influences	of	FR	and	later	math	proficiency	measured	by	three	specific	math	achievement	
domains.		

These	findings	expand	upon	an	existing	developmental	framework	proposed	by	
LeFevre	et	al.	2010,	who	hypothesize	that	there	are	three	different	pathways	that	
contribute	to	early	math	development	in	children	4	to	7	years	old:	prior	linguistic	(or	
verbal)	skills,	spatial	skills,	and	quantitative	skills.	In	the	current	analyses,	we	have	
included	these	same	pathways	as	well	as	a	fourth	pathway,	FR.	Our	findings	indicate	that	
FR	is	a	robust	pathway	that	may	be	even	more	influential	to	math	development	than	
linguistic	and	spatial	skills,	though	the	relative	contribution	of	these	predictors	should	be	
systematically	compared	in	future	research.		
Broader	Implications	

More	generally,	this	line	of	research	has	possible	relevance	to	school	classroom	
settings.	Fluid	reasoning	is	thought	to	support	all	forms	of	new	learning	for	which	an	
individual	has	to	problem	solve	(by	integrating	new	information)	without	relying	solely	on	
prior	knowledge,	and	therefore	fluid	reasoning	could	be	applicable	to	many	subject	areas.	
However,	we	posit	that	fluid	reasoning	is	particularly	helpful	for	learning	math,	which	is	
hierarchical	in	nature	and	requires	individuals	to	solve	novel	problems	as	each	new	level	
advances.	Currently,	educators	often	focus	on	building	computational	proficiency	as	a	
means	to	improving	mathematical	achievement,	without	much	consideration	of	the	
cognitive	precursors	that	underpin	these	skills	or	the	students’	strengths	and	weaknesses	
(Boaler,	1998).	Theories	such	as	CHC,	as	well	as	longitudinal	studies	such	this	one	provide	
insights	on	the	links	between	specific	cognitive	abilities	and	math	achievement	that	can	
inform	educational	practices.	Though	some	new	math	curricula	do	incorporate	spatial	
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rotation	or	block	construction	exercises,	FR	has	not	typically	been	emphasized	in	current	
math	curricula.	However,	even	students	with	strong	basic	numerical	skills	and	spatial	skills	
may	not	be	proficient	in	applying	logical	reasoning	techniques	to	solve	novel	problems.		

We	argue	that	math	curriculum	should	incorporate	opportunities	for	students	to	
practice	core	aspect	of	FR	known	as	relational	thinking,	or	the	ability	to	jointly	consider	
several	relations	among	mental	representations	(Miller-Singley	&	Bunge,	2014).	One	
example	of	a	curriculum	that	incorporates	relational	thinking	practice	into	math	exercises	
is	called	Early	Algebra	(Carpenter,	Franke	&	Levi,	2003).	This	curriculum	involves	teaching	
children	as	young	as	6	years	old	to	view	the	equal	sign	as	a	form	of	equivalency	using	non-
traditional	number	sentences.		For	example,	children	solve	equations	such	as	“5+3	=	6	+	_”	
and	explain	their	thinking	aloud.	By	solving	these	types	of	equations	and	having	students	
explain	their	thinking,	students	come	to	understand	the	component	relationship	between	
numbers	on	opposite	sides	of	the	equation,	and	can	often	identify	the	correct	answer	
without	doing	any	calculations	(Carpenter,	Franke	&	Levi,	2003).	Another	effective	
approach	involves	practicing	early	abstract	reasoning	skills	with	kindergartners	and	
preschoolers	to	improve	early	numeracy	skills	(Ciancio,	Rojas,	McMahon,	&	Pasnak,	2001;	
Kidd	et	al.,	2008).	Many	other	approaches	can	be	used	to	incorporate	FR	skill	building	
opportunities	into	math	curriculum	(e.g.	Miller-Singley	&	Bunge,	2014).		

Finally,	the	assessment	of	FR	in	elementary	school	could	serve	to	identify	students	
who	are	likely	to	have	difficulty-learning	math.	This	information	could	help	guide	teachers	
to	better	understand	which	interventions	may	be	most	fruitful	for	individual	students	at	
different	developmental	levels	of	FR	and	math	achievement	skills.		
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Table	3	
	
	Fit	statistics	for	the	Structural	Models	Comparing	FR	to	Math	Reasoning	in	Predicting	Future	
Math	Achievement	

Variables	 χ2	 df	 ∆χ2/df	 R2	
Model	1	Full	(Figure	2	without	Age)	
					Model	1A	(FRt1	→	Matht3	=	0)	
					Model	1B	(FRt1	→	Matht3	=	0)		
																						(FRt2	→	Matht3	=	0)	
					Model	1C	(FRt1	→	Matht3	=	0)	
																						(Matht2	→	Matht3	=	0)																
	
Model	2	Full	(Figure	2	with	Age)		
				Model	2A	(Aget1	→	varst2	=	0)			
																					(Aget2	→	varst3	=	0)		

61.02	
62.63	
85.03	

	
63.30	

	
	

139.71	
155.23	

	 19	
20	
21	
	
21	
	
	
31	
34	

	
1.61/1	
22.40/1	

	
.67/1	

	
	
	

15.52/3	

	

	

***	

.94	

.90	

.71	
	
.91	
	
	
.92	
.90	
	

*	p	<	.05.	**	p	<	.01.	***	p	<	.001.	
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Table	4	
	
Unstandardized	and	Standardized	Path	Coefficients	for	the	Structural	Models	Comparing	
prior	FR	to	Math	Reasoning	in	Predicting	Future	Math	Achievement	

Variables	 B	 SE	 β	
Model	1C	
			FRt1	→	FRt2		
			FRt1	→	Matht2	
			FRt2	→	Matht3	
	
Model	2	
			FRt1	→	FR2		
			FRt1	→	Matht2	
			FRt1	→	Matht3	
			FRt2	→	Matht3				

	
.77	
.39	
.99	
	
	

.74	

.34	
-.10	
.72	

	 	
.09	
.05	
.12	
	
	
.09	
.04	
.43	
.49	

	
.98	
.90	
.96	
	
	

.97	

.86	
-.34	
.85	

	

***	

***	

***	

	

	

***	

***	

	

	

*	p	<	.05.	**	p	<	.01.	***	p	<	.001.	
.		
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Table	5	
	
	Fit	Indices	for	the	Structural	Model	Predicting	Math	Achievement	at	T3	from	Prior	FR,	Spatial	
Skills,	Vocabulary	and	Age		

Index	 Indirect	
Effects	

Direct	
Effect	

Chi-square	
Degrees	of	freedom	
Probability	level	
Normed	chi-square	
Goodness	of	fit	index	(GFI)	
Comparative	fit	index	(CFI)	
Root	mean	square	error	of	approximation	
(RMSEA)	
			Lower	bound	90%	confidence	interval	
			Upper	bound	90%	confidence	interval	
			P-close	
Standardized	root	mean	square	residual	(SRMR)	

67.68	
28	
.00	
2.42	
.84	
.94	
.14	
.10	
.19	
.00	
.04	

	 65.69	
27	
.00	
2.43	
.85	
.94	
.15	
.10	
.19	
.00	
.04	
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Table	6	
	
Unstandardized	and	Standardized	Path	Coefficients	for	the	Structural	Model	Predicting	Math	
Achievement	at	T3	(with	Direct	Effect	from	Age	to	Math	Achievement)	
Variables	 B	 SE	 β	
Age	to:	
			Vocabulary	
			Spatial	Skills	
			Fluid	Reasoning	
			Math	Achievement	
Vocabulary	→Math	Achievement	
Spatial	Skills	→Math	Achievement	
Fluid	Reasoning	→	Math	Achievement	

	
2.96	
4.29	
1.37	
.32	
.08	
.07	
.52	

	 	
.26	
.45	
.20	
.22	
.08	
.05	
.16	

	
.81	
.78	
.71	
.16	
.15	
.19	
.52	

	

***	

***	

***	

	

	

	

***	

*	p	<	.05.	**	p	<	.01.	***	p	<	.001.	
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Table	7	
	
Standardized	Direct	and	Indirect	Effects	of	Age	on	Math	Reasoning	at	Time	3	

	
Effect	

Model	w/o	
Direct	Effect	

Model	w/	
Direct	Effect	

Total	effect	
Direct	effect	
Indirect	effect	

.76	
--	
.76	

***	

	

***	

.80	

.16	

.64	

***	

	

***	

*	p	<	.05.	**	p	<	.01.	***	p	<	.001.	
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Figure	1.	Standardized	parameter	estimates	from	the	CFA	of	FR	for	each	measurement	
occasion.	All	three	indicators	loaded	on	significantly	to	the	FR	constructs	at	each	time	
point.	
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Figure	2.	Longitudinal	models	predicting	Math	Achievement	from	Prior	FR	and	Math	
Reasoning.	In	Model	1,	Math	achievement	is	predicted	from	previous	assessments	of	FR	
and	Math	Reasoning.	In	Model	2	Age	is	included	at	the	two	previous	occasions.	Circles	
represent	latent	variables	of	FR	comprised	of	three	observed	variables.	One-headed	arrows	
represent	regressions	and	two-headed	arrows	represent	covariance	or	correlations.	
	
	
	
	
	
	
	
	
	
	
	
	

Model	2	



  

42 

	

 

													1.5	years	

																	Time	T2	 T3	
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	T2	
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Prob	Solving	 Arith	Fluency	
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T2	
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.41	.64	 .80	

Figure	3.	Longitudinal	model	predicting	Math	Achievement	from	Prior	FR,	Spatial	Skills,	
Vocabulary	and	Age	
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Chapter 3 - Game Play Intervention for 1st and 2nd Grade Children at risk for Math 
Learning Disabilities 

Math Learning Disability (MLD) interventions have been significantly under-researched, 
especially compared to interventions for reading disabilities, though the prevalence of these two 
disorders is equivalent, ranging from 5-7% of school aged children (Barbaresi, Katusic, Colligan, 
Weaver, & Jacobsen, 2005).  In the last 10 years, there have been a growing number of research 
studies published in this area.  The underlying deficits that contribute to MLD and effective 
remediation techniques are becoming better understood.  MLD is currently conceptualized as a 
disorder that is biologically based, but behaviorally defined, particularly in schools, by persistent 
challenges in learning even the most elementary mathematics (Mazzocco, 2007).  Recent models 
further define math learning disabilities as a failure to benefit from standard instructional support 
in math (Burns & Vanderheyden, 2006).  
Causes of MLD 

The “core deficit” in MLD: number sense. Converging evidence shows that children 
with MLD have a common or core deficit in what is known as number sense, or the 
understanding of a number’s magnitude and its relation to other numbers (Butterworth, Varma, 
& Laurillard, 2011).  Number sense is a basic intuition about numbers that humans are born with 
(Jordan & Brannon, 2006).  Number sense enables individuals to do tasks like estimate how 
many items are in a set without counting, compare two sets to determine which set is larger, or to 
break down a larger number into smaller numbers that can be more easily worked with to count 
or do arithmetic problems (Butterworth et al., 2011).  Thus, number sense weaknesses can be 
observed on a range of basic numerical processing tasks, including magnitude comparison 
(Geary, 2000), subitizing, or the ability to identify how many objects are in a small set without 
counting (Koontz & Berch, 1996), and retrieval of arithmetical facts (Geary, 1993; Geary and 
Hoard, 2001; Ginsburg, 1997; Russell and Ginsburg, 1984; Shalev et al., 2001).  

Domain	general	factors	contributing	to	MLD.	In	addition	to	having	number	sense	
weaknesses,	children	with	MLD	typically	demonstrate	deficits	in	domain	general	cognitive	
abilities,	including	working	memory,	or	the	ability	to	keep	information	active	in	mind	to	
solve	a	problem	(Geary,	Hoard,	Byrd-Craven,	Nugent	&	Numtee	2007).		This	weakness	in	
working	memory	causes	children	with	MLD	to	appear	forgetful	when	they	are	learning	
math	facts,	and	to	lose	track	of	their	place	while	counting,	or	while	completing	a	multi-step	
problem.		Children	with	MLD	also	have	weaknesses	in	processing	speed,	which	cause	them	
to	process	both	numerical	and	non-numerical	information	more	slowly	than	their	typically	
developing	peers	(D’Amico	and	Passolunghi,	2009).	Toll	and	Van	Luit,	(2013)	showed	that	
weaknesses	in	domain	cognitive	abilities	further	prevent	children	from	benefitting	from	
interventions	aimed	at	improving	early	numeracy	in	children	with	math	difficulties.	Thus,	it	
is	common	for	accommodations	to	include	extended	time	on	assignments	and	tests	(Bull	&	
Scerif,	2001;	Swanson	&	Sachse-Lee,	2001).		

Biological underpinnings of MLD. Neuroscience research employing MRI shows that 
children with weaknesses in number sense have abnormalities in brain function and structure in a 
specific part of the parietal lobe, the intraparietal sulcus, which is responsible for quantity and 
magnitude processing (IPS; Butterworth et al., 2011).  Additionally, children with MLD 
demonstrate abnormal brain activation in a network of brain areas related to numerical problem 
solving, including the prefrontal and ventral temporal–occipital cortices (Butterworth et al., 
2011; Fias, Menon, & Szuc, 2013).  These brain regions are responsible for symbol recognition 
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(ventral temporal–occipital cortex); as well as attention and working memory functions 
(frontoparietal network; Butterworth et al., 2011; Fias et al., 2013). 
The Widening Achievement Gap 

Longitudinal findings show that children with MLD experience accumulating deficits that 
cause them to fall further behind their peers every year (Geary, 2011a, 2011b; Geary, Hoard, & 
Baily 2012).  Kindergartners’ math achievement is a strong predictor of future math achievement 
across all grade levels (Duncan et al., 2007).  The strength of this predictive relation between 
early and later math achievement is twice as large as the relation between early and later reading 
achievement (Duncan et al., 2007).  Just as in the effective prevention of reading disabilities, 
early detection is a vehicle that allows for early remediation before children fall too far behind to 
catch up with the advancing curriculum (Griffin, 2007).  
Early Screening to Identify At-Risk Students 

There are early screening tools that teachers can administer to their class to identify 
children at risk for math learning disabilities in the early grades.  These tests identify weaknesses 
in core numeracy skills (Number Sense Screener NSS; Glutting & Jordan, 2012), as well as the 
cognitive skills that are most predictive of MLD (e.g., Working Memory: Automated Working 
Memory Assessment [AWMA]; Alloway & Alloway, 2010).  Tools such as these potentiate the 
use of more sensitive instructional strategies for students at risk for developing mathematical 
difficulties later on (Alloway, Gathercole, Kirkwood, & Elliott, 2009).  Research on prevention 
of learning disabilities supports the use of early instructional interventions as well as frequent 
monitoring of subsequent academic progress to determine whether the interventions are effective 
(St. Claire-Thompson & Gathercole, 2006). 
Components of Effective Interventions 

Children	with	MLD	are	generally	able	to	learn	mathematics	if	they	are	provided	with	
explicit,	direct	instruction	of	core	numerical	relations	(Gersten	et	al.,	2009;	Clements,	&	
Sarama,	2011).		Principles	for	effective	math	instruction	have	been	described	by	Ginsburg	
(2006),	who	stated	that	early	math	interventions	should	(a)	follow	natural	developmental	
progressions	of	mathematical	thinking,	(b)	provide	hands-on	games	and	activities	that	can	
encourage	children	to	construct	meaning,	(c)	encourage	communication	in	spoken	
language	and	writing,	and	(d)	ensure	that	activities	capture	children’s	emotions	and	
imagination.		Indeed,	controlled	studies	(e.g.,	Starkey,	Klein,	&	Wakeley,	2004)	have	shown	
that	playing	mathematical	learning	games	can	significantly	enhance	the	informal	math	
knowledge	of	both	middle	income	and	low-income	groups.	

Children with weaknesses in math are particularly at risk for developing learned 
helplessness, or the loss of motivation to continue when they are faced with increasing 
challenges throughout each successive mathematics lesson (Diener & Dweck, 1978).  Motivation 
plays a crucial role in interventions for children with significant weaknesses in the areas being 
trained.  A central component of effective intervention is the use of engaging, interactive games, 
with frequent monitoring and scaffolding by an adult (Klingberg, Forssberg, & Westerberg, 
2002).  Interventions are most effective when the supervising adult provides encouragement to 
persist in the face of challenge using motivational feedback (Diener & Dweck, 1978).   
Prevention: Number Sense Training 

A small number of intervention studies have employed number sense training for at-risk 
children in early grades (Gersten et al., 2009).  A central component of number sense training 
involves practicing numeracy games using a number line with the aim of building familiarity 
with mental representations of numbers and magnitude.  One such study by Siegler and Ramani 
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(2009) demonstrated that when 4-year-old children from low-income families played as little as 
one hour of a linear number line board game, they demonstrated considerably greater learning of 
arithmetic, magnitude comparison, and number line estimation.  Subsequent iterations of this 
study showed that preschoolers from low-income backgrounds learned at least as much as, and 
on several measures more than, preschoolers with comparable initial knowledge from middle-
income backgrounds (Ramani & Siegler, 2011). 

A comprehensive intervention program developed by Griffin (1997) is the Number 
Worlds program.  This curriculum, grounded in cognitive development, is a constructivist 
program that uses socially interactive games to encourage children to communicate 
mathematically.  For example, some games involve rolling dice and moving pegs along a number 
line, or moving a teddy bear along a number line path and asking students to guess how many 
steps the bear has to take to reach the finish line.  The Number Worlds program has been 
extensively evaluated with children from low-income populations, and has been demonstrated to 
enhance number sense, mathematical reasoning and communication, as well as enhancing 
performance on standardized mathematics achievement tests (Griffin, 2007).  In one study of 
Number Worlds, Griffin (1997) showed that, at the end of first-grade, at-risk children in the 
number worlds group were performing at the same level as the normative group.  By the end of 
second grade, the children in Number Worlds outperformed the normative group (Griffin, 
1997).  Transfer from the training was observed for real-world math measures involving telling 
time and using money.  Long-term follow assessments showed that training improvements lasted 
one year and fewer referrals to special education were made (Griffin, 1997).  

To target number sense weakness in children with dyscalculia, Wilson, Revkin, Cohen, 
Cohen, and Dehaene (2006) created a computerized game, The Number Race.  The game was 
based on their work on parietal lobe dysfunction and number sense weakness in children with 
dyscalculia.  The purpose of this game was to train children’s ability to make numerical 
comparisons, by stimulating their conceptual connection between numbers and spatial 
representations (Wilson et al., 2006).  In the first study, the program was administered 
individually to nine 7-9 year-old students, and the difficulty level was adapted to each student’s 
level of performance.  The training led to improvements in number comparisons, immediate 
number recognition, and subtraction in children with dyscalculia (Wilson et al., 2006).  A follow-
up study investigated the effects of the Number Race game using a crossover design in 53 
kindergartners with low socioeconomic status in France (Wilson, Dehaene, Dubois, & Favol, 
2009).  Participating in a small number of short sessions of the Number Race game led to 
significant improvements on tasks that involved making symbolic numerical comparisons 
(Wilson et al., 2009).  However, there were no improvements on non-symbolic magnitude 
comparison tasks, indicating that there was limited transfer to non-trained tasks.  Further 
research is needed to investigate the generalizability of these effects to other broad domains of 
math achievement. 

A limitation of domain-specific interventions that specifically target number sense is that 
they do not address the common weaknesses in cognitive processing (e.g., working memory and 
processing speed) that continue to hamper learning in children with math learning disabilities.  It 
has been hypothesized that this omission can lead to more minimal transfer from the training to 
novel math concepts that require a broader range of cognitive skills beyond numerical 
proficiency (e.g., mathematical problem solving) (e.g., Ramani & Siegler 2011; Siegler & 
Ramani, 2009; Wilson et al., 2006).  
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Domain General Training of Cognitive Skills 
An alternative intervention approach involves directly training the cognitive skills that 

are commonly impaired in children with math learning weaknesses (e.g., working memory, 
processing speed etc.).  These interventions typically involve doing repeated cognitive games or 
exercises that engage the cognitive skill being trained.  For example, studies have evaluated the 
effects of playing computerized working memory games that gradually increase in difficulty 
level (Peijnenborgh, Hurks, Aldenkamp, Vles, & Hendriksen, 2015).  Studies that involving 
meta-analytic reviews of cognitive training studies have shown that this type of intervention is 
mostly effective in improving the specific cognitive skills trained by the intervention, as well as 
other closely related cognitive skills (e.g., inattention), though these improvements do not 
typically generalize to broader improvements in academic performance (e.g., Melby-Lervag & 
Hulme, 2013; Peijnenborgh et al., 2015).   

Recent studies have compared these two intervention approaches (domain general 
cognitive training vs. number sense training) to evaluate which approach is more effective in 
improving math performance in children at-risk for MLD (Kuhn & Holling, 2014; Kyttala, 
Kanerva, & Kroesbergen, 2015; Passolunghi and Costa, 2016).  Kuhn and Holling (2014) 
compared the effects of computerized number sense training to computerized working memory 
(WM) training on math performance in 59 nine-year-old children.  Both training groups 
demonstrated significant improvements on dissociable domains of math performance.  The 
number-sense training group demonstrated moderate gains in arithmetic skills compared to the 
control group (d = .54), whereas the WM training group demonstrated moderate gains in word 
problem solving compared to the control group (d = .57).  Furthermore, in another recent study 
by Passolunghi and Costa (2016), working memory training was as effective at improving early 
numeracy skills in preschool children as counting training.  Children who completed five weeks 
of adaptive working memory training improved on both working memory and early numeracy 
skills.   

These lines of research provide encouraging preliminary evidence to suggest that 
numeracy and cognitive training may offer dissociable benefits for children at risk for math 
learning disabilities.  Thus, a fruitful line of further investigation involves testing whether 
combining domain general cognitive training with early numeracy interventions produces more 
broad ranging effects on math skill development than either intervention approach alone.  
The Present Study 

In the current study, I investigate whether there is a synergistic effect of combining 
numeracy game training with speeded game training to enhance arithmetic fluency in children at-
risk for math learning disabilities.  To accomplish these goals, this research employed single-
case design (SCD) methodology to evaluate the effects of 14 weeks of training on three children 
at risk for MLD.  This research was conducted within the context of a larger study including 
typically developing children.  Results from the first 13 weeks of training will be presented here.  

Method 
Participants 

The case study participants were selected from a larger pool of participants taking part in 
a concurrent intervention study designed to improve cognitive and numeracy skills related to 
early math skill development in typically developing students.  The intervention took place 
during an after-school program at a public elementary school in Berkeley, California.  We 
recruited participants in first and second grade between the ages of 6 and 8.  The after-school 
program from which participants were recruited is funded through the California Department of 
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Child Development.  Though all students attending this elementary school are eligible to 
participate in the after-school program, the program is provided at no charge to families who 
meet income requirements (earning below 40% of the state median income) and demonstrate a 
need for care.  Families who earn above the fee schedule limits are required to pay. 

All participants and their parents provided their informed assent or consent to participate 
in the study approved by the Committee for Protection of Human Subjects at UC 
Berkeley.  Additionally, all participants were screened for significant neurological impairment 
and severe developmental delays based on parent report (see Appendix A).   

Parent information. Parents were asked to complete a brief survey (see Appendix A) 
with demographic questions about their child’s birth date, gender, ethnicity, grade level, school 
history (i.e., repeated grades, special education services), and medical history. 

Teacher information. Teachers were also asked to complete a brief survey (see 
Appendix B) that contained questions pertaining to the students’ developmental math proficiency 
in comparison to grade level standards on arithmetic fluency and problem-solving activities.  
Research Design Rationale 

The SCD approach was employed for this study as this method is particularly useful for 
answering research questions in special education populations, which often focus on low-
incidence or heterogeneous populations, for whom information about mean performance of large 
groups may be of less value for application to individuals (Horner et al., 2005).  In SCD 
research, each participant serves as his own control.  The dependent variable is measured 
repeatedly to establish the participant’s pattern of performance prior to intervention, and then 
compared to his pattern of performance during and after the intervention.  In this type of study 
design, the baseline condition is akin to a treatment-as-usual condition in study designs that 
compare effects between groups.  Measurement of the dependent variable at baseline occurs until 
the pattern of performance is sufficiently consistent to enable prediction of future responding.  
The goal is to demonstrate that the intervention had a stable and robust effect, which is usually 
achieved after three demonstrations of the experimental effect at three points in time with a 
single participant (within-subject replication).  Additionally, SCD research is also useful for 
conducting fine-grained analyses of non-responders.  In SCD research, external validity is 
enhanced when results are replicated across subjects, and as such, three or more subjects are 
recommended in SCD research (Horner et al., 2005).  
Case Study Participant Demographics 

The selection criteria adopted by this study is consistent with prior research on at-risk 
children (Mazzocco, 2007).  As such, students who met the following criteria were selected for 
case-study intervention: (a) below average performance (≤ 25th percentile) on tests of early 
numeracy (Woodcock Johnson Math Fluency Test and Digit Comparison Task); (b) low average 
or below grade level performance on classroom-based measures of math (according to teacher 
report; Appendix C); and (c) no prior diagnosis of intellectual or severe neurological 
impairments or severe ADHD (based on parent report, see form in Appendix B).  

Of the 24 students tested at baseline, 3 students met all selection criteria for the case 
study.  All three students performed in the below average range on both numeracy and 
processing speed tasks (see Table 1).  In each case, the participants’ teachers noted 
concerns in math on the questionnaire.  Finally, none of the participants had pre-existing 
neurological or developmental disorders that could explain their low math achievement 
scores.  The following descriptions of the case study students were formed based on teacher 
and parent reports. 
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Jesse. Jesse is a second-grade Hispanic boy, whose teacher and mother describe him as a 
“contextualized learner,” who is clever and highly engaged in many subjects, but who dislikes 
math and reading.  After having attended a non-structured Montessori play-based preschool, it 
was relatively difficult for him to adapt to the structured school environment in Kindergarten. 
Initially, he had some minor difficulty learning to read, which his mother attributes to him 
entering school with less formal reading experience than other students who attended traditional 
pre-schools.  He has received after-school tutoring in reading since first grade, which has 
propelled his reading skill development, though his teacher notes that he continues to have some 
difficulty with comprehension. 

His teacher reports that Jesse’s greatest area of academic difficulty is in math.  In both 
addition and subtraction domains, he performs below grade expectations.  Because addition and 
subtraction skills represent a core component of second grade level standards, his teacher has 
expressed concern about his basic math proficiency.  On pre-testing, he scored in the average 
range on a test of fluid-reasoning and working memory, though his processing speed, and 
numeracy skills fell to the below average range.  His cognitive profile indicates that he is at risk 
for a math learning disability. 

Jennifer. Jennifer is a first-grade Caucasian girl, whose teacher describes her as a shy 
student with shaky confidence in her academic skills.  Her timid nature makes it difficult for her 
teacher to get a sense for what she knows, though her teacher does recognize that her math skills 
are underdeveloped for her age.  When a task becomes too challenging, Jennifer attempts to 
cover up what she doesn’t know by making up answers and turning in her work.  Her teacher 
notes that she avoids asking for help, in an attempt to blend in with her peers.  Her mother 
reported that at the age of two, Jennifer had difficulty articulating S’s and was diagnosed with a 
speech disorder, for which she received speech therapy. 

At pre-testing, Jennifer performed in the low average range across tests of fluid 
reasoning, processing speed, and working memory.  Her numeracy skills fell in the mildly 
impaired range on both the math fluency and digit comparison tasks.  Her cognitive and 
academic profile indicates that she is at risk for a math learning disability. 

José. José is a bilingual Hispanic second-grade boy whose parents emigrated from 
Spain before he was born.  Spanish is his first language and he began speaking English at 
the age of three.  His mother reports that when he started school, he had some minor 
difficulty keeping up with his peers in writing, reading, and math.  He has received after-
school tutoring in all subject areas since first grade.  His academic skills have improved 
substantially in reading and writing, though his math skills remained relatively behind his 
same age peers.  He is a socially oriented who gets along well with many peers.  

His pre-testing results indicated that he performed in the low average range across fluid 
reasoning, processing speed, and numeracy domains.  His cognitive and academic profile renders 
him at risk for a math learning disability. 
Dependent Measures 

Pre/post tests. All participants in the larger study underwent a battery of 
neuropsychological tests including age-normed standardized measures of cognition and math 
abilities.  Two standardized numeracy measures were administered to identify students who 
performed in the below average range: WJ-IV Math Fluency Test and the Digit Comparison 
Task.  
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Math Fluency Woodcock Johnson Achievement Battery, Fourth Edition (WJ-IV). To 
measure participants' ability to complete basic arithmetic problems under timed conditions, 
participants are asked to complete a worksheet containing simple addition, subtraction, and 
multiplication problems.  At the beginning of the test, the child is presented with the worksheet 
and asked to solve as many problems as he or she can in three minutes.  The score is the number 
of items correct.  Test-retest reliability for scores on this measure is .95 (McGrew, LaForte & 
Schrank, 2014).  We used three alternative forms of this test to reduce practice effects that can 
occur when this test is repeatedly administered within a short period of time. 

Digit comparison task. To measure children’s explicit number processing abilities, a 
numerical comparison task was used, in which participants were presented with two single digit 
numbers (ranging from 1 to 9) on a computer screen, and were asked to choose the numerically 
larger number as fast as they could without making any errors.  Both numbers had a font size of 
72 and appeared on a 14-inch computer screen on either side of a centrally located fixation dot 
until the participants made a response.  There were 80 trials in which the ratio between the two 
numbers (lower number divided by higher number) was manipulated and fell between 0.11 and 
0.89, for example the ratio between two and three is 0.67 (see Appendix C for a list of pairs and 
ratios).  There were 27 levels of ratio for the numerical comparison task.  Each ratio was 
repeated four times in random order, and each number was counterbalanced for the side of 
presentation.  Each participant received a break halfway through the task.  Both accuracy and 
response times were recorded during each trial. 

Cognitive ability tests. The following subtests were administered at pre and post testing. 
Letter-pair	matching	(WJ-IV).	This	is	a	timed	cognitive	processing	speed	test	from	

the	Woodcock	Johnson	Cognitive	Battery	Fourth	Edition	(WJ-IV,	Schrank,	McGrew,	&	
Mather,	2014).		The	test	requires	participants	to	determine	which	letter	or	letter	groups	
within	a	row	are	the	same.		For	example,	participants	are	asked	to	“circle	the	identical	
letters	or	letter	groups:”	bl		va		dl		bl		na.		Participants	are	instructed	to	complete	as	many	
items	as	possible	within	three	minutes.		Test-retest	reliability	for	scores	on	this	measure	is	
.91	for	ages	7-11	(McGrew,	LaForte,	Schrank,	2014).	This	test	was	administered	at	T1	and	
T2.	

Cross-out	(WJ-IV).	This	is	a	timed	cognitive	processing	speed	test	from	the	
Woodcock	Johnson	Cognitive	Battery	Fourth	Edition	(WJ-IV,	Schrank,	McGrew,	&	Mather,	
2014).	Participants	were	told	to	cross-out	drawings	that	are	identical	to	the	first	drawing	in	
each	row.	They	were	instructed	to	work	quickly	to	complete	as	many	rows	as	possible	
within	three	minutes,	while	maintaining	accuracy.	Test-retest	reliability	for	scores	on	this	
measure	is	.91	for	ages	7-11	(McGrew,	LaForte,	Schrank,	2014).	This	test	was	administered	
at	T3.	

Matrix	Reasoning	(WIPPSI-IV).	This	test	was	modeled	after	a	traditional	test	of	fluid,	
or	non-verbal	reasoning;	Raven’s	Progressive	Matrix	Reasoning	(Raven,	1938).		This	test	
required	the	participants	to	examine	an	incomplete	matrix,	or	geometric	pattern,	and	then	
select	the	missing	piece	from	five	response	options	arranged	according	to	one	or	more	
progression	rules.		The	Matrix	Reasoning	subtest	assesses	fluid	reasoning	(FR)	induction	
skills,	or	the	ability	to	identify	an	underlying	characteristic	(e.g.,	rule	or	pattern)	that	
governs	the	existing	pattern,	and	then	to	choose	a	missing	piece.		The	test	is	discontinued	
when	a	participant	misses	three	problems	in	a	row.	Test-retest	reliability	for	scores	on	this	
measure	is	.82	(Wechsler,	2012).	
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Weekly Dependent Math Measure: Arithmetic Fluency 
Arithmetic fluency was measured with timed math probes.  Each probe included 30 

addition problems administered using a paper and pencil assessment within a time limit of one 
minute.  10 different probes were administered over the course of the intervention.  Each probe 
each contained thirty addition facts with sums under 10.  The researchers timed and scored the 
number of correct responses.  This is a brief, repeatable method of assessment that is sensitive to 
student improvement over time.  The test can be used to examine the functional relationship 
between performance and the intervention (Shinn, 1989).  Test-retest reliability for scores on this 
measure is .82 (Marston, 1989). 
Intervention Procedure 

Overview. During the intervention phase, participants met with the researchers 
approximately 3-4 times per week for 30-minute sessions for 13 weeks during their after-school 
program (Figure 1).  Over the course of the intervention in the fall and spring, each participant 
received approximately 21 hours of intervention.  Two out of four days per week were spent 
playing processing speed games, and the other two days were spent playing numeracy 
games.  All games were played in small groups of 2-3 children.  The decision to use a game-
based intervention stems from the importance of motivation in learning math, and principles for 
effective math instruction described by Ginsburg (2006).  Students played new games each 
week, which ensured that children remained engaged and motivated to play the games 
throughout the program. 

Staffing. A senior research assistant and graduate student oversaw implementation 
of both the case study and larger intervention study.  The intervention team consisted of 11 
undergraduate research assistants and two graduate students.  On a given day, six research 
assistants worked with small groups of two or three students at a time during each game-play 
session.  

Numeracy training. Half of the training consisted of students playing a series of 
numeracy games that advanced in a manner consistent with developmental math progressions 
over the course of the intervention.  Each numeracy game was intended to build a unique 
component of basic numeracy skills.  At the beginning of each session, a researcher explained 
the game instructions to ensure comprehension, and monitored the participants closely  
throughout the remainder of the game to ensure that participants adhered to the rules of the 
game. Each game was played two days per week to facilitate sufficient practice and 
improvement while avoiding fatigue or boredom.  Furthermore, if a participant stopped being 
engaged or willing to continue playing a particular game on a given day, that game was 
discontinued for the remainder of the session and another game was introduced.  All games are 
commercially available.  See Appendix E for a complete list of numeracy games included in the 
intervention.  The games were played in a pre-planned order intended to scaffold the natural 
progression of math skills by building upon numeracy skills involving number recognition, 
number comparisons, and numerical equivalency skills.  

Importantly, none of the math games included in the intervention explicitly trained 
arithmetic skills.  An example of a number recognition game was Zingo 1-2-3, which builds 
number recognition skills.  In this game, players matched their numbered tiles to their 
corresponding challenge card.  A more advanced game, Olympian Number Line, targeting 
numerical comparison skills, involved rolling dice and moving pieces along a pre-planned path 
and then determining which of two numbers written in the space was bigger using a number line. 
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Processing speed games. The other half of the training consisted of students playing 
processing speed games.  The speed game training design was modeled after prior research by 
Mackey et al. (2011).  All games involved some form of rapid visual processing and rapid motor 
responding based on simple task rules.  Most games involved working quickly under a time limit 
or racing against another player.  All games are commercially available.  The complete list of 
speed games is listed in Appendix F.  Each game was played approximately 3-4 times to enable 
time for sufficient practice and improvement while avoiding fatigue or boredom.  For example, 
in the game Spot It, two or more players are given a card with six colorful animals.  The animals 
may vary in size and position, but there is always one, and only one, animal match between any 
two cards.  The aim of the games is to be the first to spot a matching animal between the target 
card and your own card, before another player spots one.  
Statistical Analyses 

Group	level	changes	from	pre	to	post	testing.	To	determine	whether	the	
intervention	led	to	significant	improvements	in	trained	abilities	at	the	group	level	on	
numeracy	and	processing	speed	measures,	statistical	analysis	was	performed	on	pre-	and	
post-test	data	using	the	non-parametric	tests.	The	Related-Samples	Wilcoxon	Signed	Rank	
procedure	was	conducted	for	tests	measured	at	two	time	points	and	the	Related-Samples	
Friedman’s	Two-Way	ANOVA	by	Ranks	was	conducted	for	tests	measured	at	three	time	
points.			

Individual	changes	in	weekly	arithmetic	fluency.	To	evaluate	each	participant’s	
performance	on	timed	arithmetic	fluency	throughout	the	course	of	the	intervention,	weekly	
arithmetic	fluency	scores	were	plotted	on	a	time	series	line	graph.		 	 	
	 Percentage	of	non-overlapping	data	(PND),	was	calculated	by	first	determining	the	
number	of	data	points	in	the	intervention	phase	that	exceeds	the	highest	data	point	in	the	
baseline	phase.		This	value	was	divided	by	the	total	number	of	data	points	in	the	
intervention	phase	and	multiplied	by	100,	yielding	a	percentage	score.		PND	scores	are	
indicative	of	effect	size	in	SCD	research.	Higher	percentage	scores	reflect	more	effective	
interventions:	values	of	90%	or	higher	reflect	“highly	effective”	interventions;	values	of	
70%	to	under	90%	reflect	“moderately	effective”	interventions;	values	from	50%	to	under	
70%	reflect	“mildly	effective”	interventions;	and	values	below	50%	reflect	an	“ineffective”	
intervention	(Ma,	2006).	 	 	 	 	

Slope	coefficients	were	calculated	using	ordinary	least	squares	regression	for	each	
student	on	the	number	of	digits	computed	correctly	per	week.		This	regression	indicated	
the	average	increase	in	the	number	of	correctly	computed	digits	per	minute	for	each	week	
over	the	course	of	the	intervention.		

Next,	visual	analysis	was	performed	to	examine	the	slope	over	multiple	testing	
sessions,	using	published	guidelines	outlined	by	Horner	et	al.	(2005).		This	approach	
involved	calculating	student’s	level	(or	mean	performance	score)	of	arithmetic	fluency	
during	each	phase	of	the	study,	as	well	as	their	rate	of	increase	or	decrease	(e.g.,	slope)	in	
performance.		Visual	analysis	enabled	evaluation	of	(a)	variability	within	each	subject’s	
performance	within	each	phase	of	the	study,	(b)	the	immediacy	of	effects	following	the	
onset	and/or	withdrawal	of	the	intervention,	(c)	the	magnitude	of	changes	in	the	
dependent	variable,	and	(d)	the	consistency	of	data	patterns	across	multiple	presentations	
of	intervention	and	nonintervention	conditions	(Parsonson	&	Baer,	1978).		The	integration	
of	information	from	these	multiple	assessments	and	comparisons	was	used	to	determine	
whether	a	functional	relationship	existed	between	the	intervention	and	dependent	
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variables.		In	order	to	identify	the	intervention	as	effective,	the	data	across	all	phases	of	the	
study	was	analyzed	to	determine	if	there	were	at	least	three	demonstrations	of	an	effect	at	
a	minimum	of	three	different	points	in	time	(Kratochwill	et	al.,	2010).	

Ratio effect. A more fine-grained approach was taken to evaluate changes in 
performance on the Digit Comparison Task with regard to the well-known ratio effect.  The ratio 
effect is observed on digit comparison tasks when children are asked to compare the relative 
magnitudes of two digits.  Participants are typically faster and more accurate as the ratio between 
the two digits increases (e.g., though number pairs 2 and 3 and 8 and 9 both have a numerical 
distance of 1, their ratio is significantly different, and it takes longer to discriminate the relative 
magnitude of 8 and 9 than it does for 2 and 3; Holloway & Ansari, 2009).  The ratio effect is 
strongly correlated with individual differences in performance on standardized math measures in 
children; participants who show a large ratio effect typically demonstrated low math scores 
(Holloway & Ansari, 2009).  Prior research shows that the presence of a large ratio effect is 
associated with an immature representation and processing of numerical magnitude.  Participants 
who show a large ratio effect are predicted to have low standardized math scores (Holloway & 
Ansari, 2009).  Specifically, in order to enumerate the relationship between ratio and reaction 
time (RT), the slope and intercept of the regression line that relates ratio and RT was calculated 
using reaction times for each correct trial for each participant.  

To determine whether the ratio effect on the digit comparison task was related to 
individual differences in math achievement scores, partial correlations were conducted using 
math fluency subtest raw scores, and the intercept and slope of the ratio effect.  If there is a 
significant negative correlation between math fluency raw scores and the intercept and with 
slope, then it can be concluded that the ratio effect is related to individual differences in math 
achievement scores.  

Results 
Qualitative Observations 

Jesse. Overall, Jesse was engaged during games that he enjoyed (e.g., Stormy Seas), but 
had difficulty maintaining attention during games that he did not prefer to play (e.g., Tangoes, 
Jr.).  It was particularly important to pair him with peers who demonstrated strong behavioral 
skills and could model good behavior.  Whenever possible, the researcher gave Jesse a choice 
between two games.  Over the course of the intervention, he demonstrated observably faster 
reaction times on the speed games and his inclination to play numeracy games increased.  
Researchers observed that he demonstrated notably improved numerosity skills during game-
play. 

Jennifer. From the start of the intervention, it was evident that Jennifer had difficulty 
with numerosity, particularly when she had to make comparisons between two numbers to 
determine which one was smaller or larger.  She used immature counting strategies, such as 
counting on her fingers.  On weekly arithmetic fluency tests, she often rushed through the test 
and wrote incorrect answers.  She worked best individually or with one or two close female 
peers, and sought attention from adults.  Her reaction time was notably faster on games that did 
not involve numbers.  Her numerosity skills accelerated when she played number-line board 
games on a one-on-one basis with a researcher.  She became notably faster at recognizing 
numbers on a number line and making numerical comparisons on the board games.  She 
continued to have difficulty on more abstract number games that required her to integrate 
information (e.g., Number Chase). 
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José. Generally, José was well behaved and engaged in the games throughout the 
intervention.  He worked well with many peers.  He routinely asked for help whenever he was 
not sure about a rule or a strategy.  His reaction time was notably slower than other students, 
though he improved throughout the course of the intervention.  His numeracy skills improved 
with practice, though his performance was variable. 
	
Group	Changes	across	Time	

To	determine	whether	performance	changed	across	time	on	standardized	tests	of	
numeracy	(Digit	Comparison	and	Math	Fluency)	and	processing	speed	(Letter	Span),	non-
parametric	procedures	were	conducted.		For	tests	that	were	measured	at	two	time	points	
(e.g.,	Letter	Pattern),	Related-Samples	Wilcoxon	Signed	Rank	tests	were	conducted.		For	
tests	that	were	measured	at	three	time	points	(e.g.,	Digit	Comparison	and	Math	Fluency),	
Related-Samples	Friedman’s	Two-Way	ANOVA	by	Ranks	were	conducted.				

Processing speed raw score. The findings in Table 2 reveal that Letter Pattern raw 
scores did not differ significantly from baseline (T1) to the end of the first intervention (T2), W = 
6.00, p = .109.  Note, however, that there was a trend towards improvement: the mean baseline 
(T1) score (M = 22.67, SD = 2.52) was lower than mean T2 score (M = 29.67, SD = 5.03).   

Processing speed standard score. The findings in Table 2 reveal that Letter Pattern 
standard scores did not differ significantly from baseline (T1) to the end of the first intervention 
(T2), W = 6.00, p = .109.  But, as shown in the table, the mean baseline (T1) score (M = 83.33, 
SD = 2.08) was marginally lower than the mean (T3) score (M = 94.67, SD = 8.33).  Notably, 
processing speed scores improved from the below average range to the average range. 

Math Fluency. The findings in Table 2 reveal that Math Fluency scores changed 
significantly across time, χ2 (2) = 6.00, p = .050.  Pairwise comparisons indicated that baseline 
scores (T1) were significantly lower than T3 scores, p = .043.  

Digit comparison. The findings in Table 2 reveal that performance on the digit 
comparison task improved across time, as measured by accuracy and reaction time, though the 
results did not reach statistical significance.  Similarly, the ratio effect (slope and intercept) 
improved across time, though the results did not reach statistical significance.  

Correlations between Math Fluency and ratio intercept and slope. The findings in 
Table 3 show that Math Fluency scores were negatively associated with ratio intercept scores 
throughout all testing occasions.  Baseline Math Fluency scores were also negatively associated 
with baseline ratio slope scores (τ = -1.00, p < .01).  These findings can be interpreted to indicate 
that the students demonstrated a large ratio effect at the start of the intervention that was 
associated with lower Math Fluency scores.  Over the course of the intervention, they 
demonstrated a relatively smaller ratio effect that was associated with higher Math Fluency 
scores. 
Changes in Weekly Arithmetic Fluency Scores 

Percent	of	non-overlapping	data.	Examination	of	the	PND	scores	was	carried	out	
to	evaluate	the	overall	efficacy	of	the	intervention.		PND	analyses	indicate	that	the	
intervention	ranged	from	mildly	to	highly	effective	for	the	three	students	(Table	4).	Jesse	
experienced	the	most	growth;	in	fact,	during	the	second	phase	of	the	intervention,	100%	of	
the	intervention	points	fell	above	baseline	points,	suggesting	that	the	intervention	was	
“highly	effective”	for	this	student.		Jennifer	experienced	mild	growth	during	both	phases	of	
the	intervention,	with	approximately	67%	of	the	intervention	points	exceeding	that	of	
baseline	data	during	both	phases.		José,	initially	the	highest	performing	student	in	the	
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group,	experienced	the	least	amount	of	growth	in	the	first	seven	weeks	of	the	intervention,	
with	only	50%	of	the	intervention	points	in	the	first	phase	exceeding	baseline	points.		
However,	in	the	second	phase	of	the	intervention,	José	demonstrated	significantly	more	
growth,	with	100%	of	the	intervention	points	falling	above	baseline	points.		

A	post-hoc	analysis	was	carried	out	to	analyze	whether	a	specific	component	of	the	
intervention,	involving	playing	number	line	board	games	(Olympian	Number	Line	game),	
had	a	more	substantial	effect	on	arithmetic	fluency	scores,	than	other	games.		Because	
number	line	board	games	were	introduced	during	the	tenth	week	of	the	intervention	and	
played	for	three	consecutive	weeks,	PND	analyses	were	conducted	to	analyze	the	
percentage	of	math	fluency	scores	that	exceeded	baseline	during	the	three	weeks	that	these	
games	were	played	(weeks	11-13).			The	results	indicated	that	arithmetic	fluency	scores	
were	indeed	higher	after	number	line	games	were	introduced	for	Jesse	and	José	(Jesse:	
100%	and	José:	100%),	than	before	(Jesse:	86%	and	José:	67%).		Whereas,	Jennifer’s	
arithmetic	fluency	scores	after	number	line	game	play	remained	commensurate	with	her	
scores	prior	to	number	line	game	play	(67%	exceeded	baseline	before	and	after).	

Jesse: Slope. To determine the slope of Arithmetic Fluency, weekly Arithmetic Fluency 
scores were regressed on the week numbers.  The slope for Jesse was statistically significant, β = 
.75, p = .005.  Jesse’s Arithmetic Fluency scores increased across time. 

Jesse: Visual analysis. Data varied within the baseline and two interventions (see Table 
5).  Evaluation of level of change during all three conditions indicates improvement within the 
intervention condition (see Table 5).  Split-middle method of trend estimation revealed that there 
was an increasing and positive trend across all conditions (see Table 6) but data were considered 
variable following application of a stability envelope to trend lines (see Figure 2). 

Jennifer: Slope. To determine the slope of Arithmetic Fluency, Arithmetic Fluency 
scores were regressed on the week numbers.  The slope for Jennifer was statistically significant, 
β = .64, p = .035.  Thus, Jennifer’s Arithmetic Fluency scores increased across time. 

Jennifer: Visual analysis. Data varied within the baseline and two interventions (see 
Table 7).  Evaluation of level of change during all three conditions indicates improvement 
within; improvement was minimal during the baseline and steepest during the second 
intervention (see Table 7).  Split-middle method of trend estimation revealed that there was an 
increasing and positive trend across all conditions (see Table 8) but data were considered 
variable following application of a stability envelope to trend lines (see Figure 3). 

José: Slope. To determine the slope of Arithmetic Fluency, Arithmetic Fluency scores 
were regressed on the week numbers.  The slope for José was statistically significant, β = .64, p 
= .035.  Thus, his Arithmetic Fluency scores increased across time. 

José: Visual analysis. Data varied within the baseline and two interventions (see Table 
9).  Evaluation of level of change during all three conditions indicates improvement within the 
baseline but slight deterioration during the two intervention conditions (see Tables 9 and 10).  
Split-middle method of trend estimation revealed that there was an increasing and positive trend 
across the baseline only (see Table 10) but data were considered variable following application 
of a stability envelope to trend lines (see Figure 4). 

Discussion	
The purpose of this study was to evaluate whether combining numeracy and speed game 

training using a play-based intervention would generalize to improvements in weekly arithmetic 
fluency scores in children at-risk for math learning disabilities in first and second grade.  A 13-
week intervention was carried out using a single-case-study design to analyze individual 
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differences in performance over the course of the intervention in three at-risk students.  The case 
study students were selected from a larger pool of 24 participants who were pre-screened at the 
outset of the study.  The three case study students were classified as at-risk for a MLD according 
to criteria used in prior research (Mazzocco, 2007).  These criteria included normative 
weaknesses (< 25th percentile) on two tests of numeracy (math fluency and digit comparison), 
and below grade level skills in math (according to parent or teacher report), which could not be 
explained by other factors (e.g., other neurodevelopmental disorders). 

Based on observational data, all three case study students demonstrated high levels of 
engagement with games throughout the intervention and made notable advancements in game 
performance, as tracked by research personnel.  Individual differences in attention were noted. 
Furthermore, evaluation of change in performance from pre- to post-tests during the fall, winter 
and spring indicated that the game-play intervention was associated with improvements on 
standardized tests of skills targeted by the intervention.  There was marginal improvement in 
processing speed and significant improvement in math fluency over the course of the 
intervention.  Though, improvement was observed on the digit comparison task, in accuracy and 
reaction time, the pattern was not significant.  Similarly, the ratio effect, an indicator of 
numerical representation on the digit comparison task, appeared to improve (decrease) over the 
course of the intervention, though this pattern was not significant. 

To examine transfer of trained skills to more general arithmetic fluency skills, weekly 
arithmetic fluency scores were analyzed.  Timed arithmetic fluency is a particularly important 
outcome in this population because prior research shows that children with MLD perform worse 
on timed calculation measures because they tend to use developmentally immature calculation 
procedures (e.g., counting on fingers), resulting in more errors and slower response times (e.g., 
Geary, Bow-Thomas, & Yao, 1992).  Therefore, timed tests are used as a proxy for measuring 
progress in both accuracy and efficient calculation strategy use.  Results indicated that all three 
participants demonstrated a significant increase in the number of correctly computed digits per 
minute on weekly arithmetic fluency measures.  Furthermore, effect size analyses indicated that 
the intervention was modestly or highly effective for Jesse and José, whereas the intervention 
was only mildly effective for Jennifer.  It is plausible that Jennifer did not experience as much 
gain as the other two students because she has a more severe weakness in number sense than the 
other two students, and thus, she may respond better to a more individualized intervention that is 
more structured, and comprehensive than informal game play. 

Furthermore,	I	evaluated	whether	there	was	a	dissociable	effect	of	playing	number	
line	games	on	math	fluency	performance	during	the	weeks	these	games	were	played.		
Results	indicated	that	math	fluency	scores	were	indeed	higher	for	Jesse	and	José	after	the	
number	line	games	were	introduced,	but	not	for	Jennifer.		Thus,	this	finding	generally	
aligns	with	the	literature	demonstrating	that	playing	number	line	games	has	a	robust	
impact	on	early	math	development	in	young	children	with	numeracy	weaknesses	(e.g.,	
Ramani	&	Siegler	2011;	Siegler	&	Ramani,	2009).		In	future	iterations	of	this	study,	number	
line	games	should	be	introduced	earlier	in	the	year,	to	facilitate	better	number	
representation	skills	that	set	the	foundation	for	higher-level	math	skills	(e.g.	arithmetic).	

The weekly rate of math fluency improvement (or slope) for all three students exceeded 
0.6, which is above the expected rate of improvement, 0.3, for other first and second grade math 
curriculum interventions (Fuchs & Fuchs, 1993).  Visual analysis of the weekly arithmetic 
fluency data yielded more variability in the findings.  For Jesse (who was observed to have mild 
attention weaknesses) there was an increasing and positive trend across both phases of the 
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intervention.  For Jennifer (who was observed to have low numeracy) there was also an 
increasing and positive trend across both phases of the intervention.  For José (who was observed 
to have a particularly slower reaction time) the intervention effects were more variable, though 
substantial improvement was observed overall.  All three participants demonstrated variability in 
arithmetic fluency during baseline testing, which places limits on the causal inferences that can 
be drawn from the study (Horner et al., 2005).  Nevertheless, the fact that improvement was 
observed on timed arithmetic fluency tests, at a rate that exceeded most other curricula, suggests 
that the students not only achieved more accurate responses over the course of the intervention, 
but also were more efficient in their computational strategy use (employing more advanced 
strategies such as counting on from the higher addend).  In future iterations of this study, strategy 
use should be explicitly measured. 

The final two weeks of the intervention are still currently underway.  At the end of the 
study, the efficacy of the intervention will be re-evaluated.  It is predicted that the students will 
continue to demonstrate growth on arithmetic fluency measures.  However, if any of the 
participants remain in the “below-average” range on standardized tests of math fluency at the end 
of the study, the intervention would be classified as ineffective for that particular student.  In that 
case, the student’s teacher and parent would be notified that more a more comprehensive and 
structured numeracy intervention may be warranted (e.g., Griffin, 2007).  

These preliminary findings contribute to the existing math learning disability prevention 
literature (Griffin, 2007) by demonstrating that children at risk for math learning disabilities can 
benefit from playing a combination of socially engaging numeracy and speed games.  To the best 
of our knowledge, this is the first study to show that combining numeracy training with cognitive 
speed training leads to general improvements in math skills that were not explicitly trained by 
the intervention.  The fact that all three students maintained high levels of engagement and 
interest throughout the study is important because low-performing children are at risk for 
developing a negative attitude towards math that can cause them to fall further and further 
behind (Diener & Dweck, 1978).  Notably, participants have commented that they would like 
their parents to buy their favorite games so that they can play at home with their families.  This is 
a particularly promising outcome because extending game play to the home may potentially 
contribute to longer lasting and stable improvements over time.   
Study Limitations 

The	current	case	study	was	carried	out	within	the	context	of	a	larger	intervention	
study	necessitating	methodological	consistency	between	the	two	study	designs.		As	a	result,	
we	were	not	able	to	implement	one	element	of	practice	recommendations	for	single	case	
study	design	research	(Kennedy,	2004),	which	stipulates	that	it	is	best	to	introduce	one	
variable	at	a	time	and	then	measure	the	resulting	effect	on	the	targeted	outcome	before	
introducing	another	variable,	as	doing	so	would	have	been	incompatible	with	the	larger	
study.		Without	such	a	design,	it	is	difficult	to	pinpoint	precisely	which	component	of	the	
training	is	responsible	for	the	effects	found.		In	a	future	study,	numeracy	games	should	be	
implemented	first,	and	then	speed	games	should	be	introduced	once	an	effect	is	observed	
(or	vice	versa),	to	determine	whether	there	are	any	synergistic	effects.		Furthermore,	due	
to	space	limitations	at	the	school,	the	study	was	carried	out	in	the	cafeteria,	where	other	
students	were	participating	in	their	regular	after-school	program	activities	(e.g.,	
homework,	reading,	or	small	group	activities).		As	a	result,	there	was	frequently	extraneous	
noise	in	the	room	that	posed	as	a	distraction	to	study	participants.		
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Future	Directions	
Future	studies	should	evaluate	the	extent	of	transfer	to	other	mathematical	tasks	

(both	in	the	short-	and	long-term),	and	the	duration	of	improvement	with	follow-up	
evaluations.		Furthermore,	future	studies	should	also	integrate	cognitive	training	games	
that	build	other	cognitive	skills	related	to	math	learning	disabilities	(e.g.	working	memory,	
spatial	reasoning	etc.).		For	example,	integrating	games	that	target	working	memory	skills,	
a	cognitive	function	that	is	commonly	impaired	in	children	at-risk	for	mathematical	
learning	disabilities,	would	be	an	important	next	step	for	this	training	(Peijnenborgh	et	al.,	
2015).		Furthermore,	an	important	future	direction	for	research	on	prevention	is	to	
investigate	the	most	effective	method	for	training	teachers	to	incorporate	early	
identification	tools	and	evidence	based	interventions	for	children	at-risk	for	math	learning	
disabilities	(Griffin,	2004).		
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Table	1	
	
Descriptive	Statistics	for	the	Study	Participants	(N	=	3)		

	
	
	

Subject	
ID	

 
 
 
 
Sex 

     
 
 
 
Age 

 
 
 
 
Grade 

 
 
 
Prior 
Diagnosis 

 
 
 
Academic 
Concerns 

Fluid 
Reasoning 
 
 
T1 

Processing 
Speed 
 
 
T1 

 
 
 
 
T2 

 
 
 
 
T3 

Calculation 
Fluency 
 
 
T1 

 
 
 

 
T2 

 
 
 
 
T3 

3 M 7 2 None Math (Teacher) 100 85 104 106 80 84 89 

11 F 6 1 Speech 
Disorder 

Math/Reading 80 81 92 92 78 94 98 

22 M 8 1 None Math 85 84 88 97 88 88 89 
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Table	2	
	
Group	Level	Changes	Across	Time	and	Friedman’s	Two-way	ANOVA	Results	for	Study	
Measures	(N	=	3)	

	
	

	
								Fall	

										(Time	1)	

	
Winter	
(Time	2)	

	
Spring	
(Time	3)	

	 	

Measure	
	

M	 (SD)	 M	 (SD)	 M	 (SD)	
	

χ2	

	
Arithmetic	Fluency		
Math	fluency	WJ-IV	
Letter	Patterna	
			Raw	score	
			Standard	score	
Letter	Span	
Matrix	Reasoning		
			Raw	score	
			Standard	score	
Digit	Comparison	
			Accuracy	
			Reaction	time	
Ratio	
			Intercept	
			Slope	

	
8.00	
13.67	

	
22.67	
83.33	
9.00	

	
15.00	
8.00	

	
.71	
.99	
	

.91	

.15	

	
(3.18)	
(8.15)	
	
(2.52)	
(2.08)	
(4.00)	
	
(4.00)	
(2.83)	
	
(.07)	
(.41)	
	
(.29)	
(.36)	

	
11.90	
18.33	

	
29.67	
94.67	
9.33	

	
19.33	
10.50	

	
.74	
.86	
	

.89	
-.07	

	
(3.83)	
(5.86)	
	
(5.03)	
(8.33)	
(2.89)	
	
(4.04)	
(2.12)	
	
(.06)	
(.25)	
	
(.35)	
(.24)	

	
15.17	
23.67	

	
--	
--	

9.00	
	

13.00	
17.67	

	
.74	
.78	
	

.77	

.00	

	
(5.53)	
(5.69)	
	
--	
--	
(3.47)	
	
(8.08)	
(7.07)	
	
(.08)	
(.26)	
	
(.34)	
(.17)	

	
6.00*	
6.00*	

	
6.00	
6.00	
.67	
	

2.67	
3.00	

	
.67	
2.00	

	
2.67	
.67	
	

	

	

	

aWilcoxon	Signed	Rank	values	are	shown.	
*p	<	.05.	
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Table	3	
	
Kendall	Tau	Correlations	between	Math	Fluency	and	Ratio	Measures	(N	=	3)	

	
Ratio	Measures	

	

	
MF	1	
	

	
MF	2	

	
MF	3	

	
Ratio	intercept	
			Baseline	
			End	of	First	Intervention	Phase	
			Start	of	Second	Intervention	Phase	
Ratio	slope	
			Baseline	
			End	of	First	Intervention	Phase	
			Start	of	Second	Intervention	Phase	
	

	
	

-.33	
-1.00	
-1.00	

	
-1.00	
.33	
1.00	

	

	

	

	

**	

**	

	

**	

	

**	

	
	

-.33	
-1.00	
-1.00	

	
-1.00	
.33	
1.00	

	

	

	

**	

**	

	

**	

	

**	

	

	
	

-.33	
-1.00	
-1.00	

	
-1.00	
.33	
1.00	

	

Note.	MF	1	=	Math	Fluency	during	baseline.		MF	2	=	Math	Fluency	during	end	of	the	first	
intervention	phase.		MF	3	=	Math	Fluency	after	winter	break.	
**p	<	.01.	
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Table 4. 
 
Percent of Non-Overlapping Data for Weekly Arithmetic Fluency Data 

Student PND Phase 1 PND Phase 2 Effect of Intervention 
Jesse 71 100 Moderate-Highly Effective 

Jennifer 67 67 Mildly Effective 
José 50 100 Mild-Highly Effective 
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Table	5	
	
Descriptive	Statistics	for	Weekly	Arithmetic	Fluency	Jesse	(Step	3)	
	
	 	

Mean	
	

Median	
	

Mode	
	

Range	
	

Stability	
Envelope	

	
	
Baseline	
Intervention	1	
Intervention	2	
	

	
7.67	
13.71	
17.00	

	 	
9.00	
14.00	
16.00	

	 	
3	
17	
13	

	 	
3	to	11	
7	to	18	
13	to	22	

	 	
66.67	
42.86	
100.00	

	

Note.	Envelope	=	2.25.	
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Table	6		
	
Visual	Analysis	-	Level	Change	in	Weekly	Arithmetic	Fluency	for	Jesse	
	
	 	

	
Baseline	

	
First	

Intervention	

	
Second	

Intervention	
	
Relative	Level	Change	(Step	4A)	

	 	 	 	 	 	

	
Median	of	first	half	
Median	of	second	half	
Relative	level	change	

	
3.00	
11.00	
8.00	

	 	
12.00	
17.00	
5.00	

	 	
13.00	
16.00	
3.00	

	

	
Absolute	Level	Change	(Step	4B)	

	 	 	 	 	 	

	
First	value	
Last	value	
Absolute	level	

	
3.00	
11.00	
8.00	

	 	
			12.00	
17.00	
5.00	

	 	
13.00	
22.00	
9.00	

	

	
Mid-dates	and	Mid-rates	(Step	5)	

	 	 	 	 	 	

	
Mid-date	
			First	half	
			Second	half	
Mid-rate	
			First	half	
			Second	half	
	

	
	
1	
3	
	
3	
11	
	

	 	
	

5.5	
9.5	
	

12	
17	

	 	
	

11	
12	
	

13	
16	
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Table	7	
	
Descriptive	Statistics	for	Jennifer	on	Weekly	Arithmetic	Fluency	(Step	3)	
	
	 	

Mean	
	

Median	
	

Mode	
	

Range	
	

Stability	
Envelope	

	
	
Baseline	
Intervention	1	
Intervention	2	
	

	
5	

7.50	
9.67	

	 	
4.00	
8.00	
9.00	

	 	
3	
8	
7	

	 	
3	to	8	
3	to	10	
7	to	13	

	 	
67.00	
67.00	
50.00	

	

Note.	Envelope	=	1.00.	
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Table	8	
	
Visual	Analysis	-	Level	Change	in	Weekly	Arithmetic	Fluency	for	Jennifer	
	
	 	

	
Baseline	

	
First	

Intervention	

	
Second	

Intervention	
	
Relative	Level	Change	(Step	4A)	

	 	 	 	 	 	

	
Median	of	first	half	
Median	of	second	half	
Relative	level	change	

	
3.00	
4.00	
1.00	

	 	
6.00	
10.00	
4.00	

	 	
7.00	
13.00	
6.00	

	

	
Absolute	Level	Change	(Step	4B)	

	 	 	 	 	 	

	
First	value	
Last	value	
Absolute	level	

	
8.00	
11.00	
3.00	

	 	
16.00	
15.00	
1.00	

	 	
7.00	
13.00	
6.00	

	

	
Mid-dates	and	Mid-rates	(Step	5)	

	 	 	 	 	 	

	
Mid-date	
			First	half	
			Second	half	
Mid-rate	
			First	half	
			Second	half	
	

	
	
1	
3	
	
3	
4	

	 	
	
5	
9	
	
6	
10	
	

	 	
	

11	
12	
	
7	
13	
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Table	9	
	
Descriptive	Statistics	for	José		
	
	 	

Mean	
	

Median	
	

Mode	
	

Range	
	

Stability	
Envelope	

	
	
Baseline	
Intervention	1	
Intervention	2	
	

	
11.33	
14.50	
20.00	

	 	
11.00	
14.50	
20.00	

	 	
8	
10	
20	

	 	
8	to	15	
10	to	20	
18	to	222	

	 	
67.00	
67.00	
100.00	

	

Note.	Envelope	=	2.75.	
	



  

72 
 

Table	10	
	
Visual	Analysis	-	Level	Change	in	Weekly	Arithmetic	Fluency	for	José	
	
	 	

	
Baseline	

	
First	

Intervention	

	
Second	

Intervention	
	
Relative	Level	Change	(Step	4A)	

	 	 	 	 	 	

	
Median	of	first	half	
Median	of	second	half	
Relative	level	change	

	
8.00	
11.00	
3.00	

	 	
16.00	
14.00	
2.00	

	 	
22.00	
20.00	
2.00	

	

	
Absolute	Level	Change	(Step	4B)	

	 	 	 	 	 	

	
First	value	
Last	value	
Absolute	level	

	
8.00	
11.00	
3.00	

	 	
16.00	
15.00	
1.00	

	 	
22.00	
20.00	
2.00	

	

	
Mid-dates	and	Mid-rates	(Step	5)	

	 	 	 	 	 	

	
Mid-date	
			First	half	
			Second	half	
Mid-rate	
			First	half	
			Second	half	
	

	
	
1	
3	
	
8	
11	

	 	
	
5	
8	
	

16	
14	

	 	
	

11	
12	
	

22	
20	

	

	
	 	



  

73 
 

 
	
	

Figure 1.		Study timeline and participant selection diagram 
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Figure	2.	Weekly	Arithmetic	Fluency	across	time	for	Jesse.	
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Figure	3.	Arithmetic	Fluency	across	time	for	Jennifer.	
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Figure	4.	Arithmetic	Fluency	across	time	for	José.	

 

0.00	

5.00	

10.00	

15.00	

20.00	

25.00	

1	 2	 3	 4	 5	 6	 7	 8	 9	 11	 12	 13	

N
um

be
r	C
or
re
ct
	p
er
	M
in
ut
e	

Week	



  

77 
 

  Appendix A 
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Appendix	B	
Teacher	Questions:	

• How	would	you	describe	the	student’s	math	skills?		
• How	would	you	rate	his	math	skills	in	relation	to	his-same-age	peers?					 	

	 1)	Below	Average	(please	specify)		2)	Average	3)	Above	Average		
• How	would	you	rate	his	math	skills	in	relation	to	1st/2nd	grade	level	standards?		 	

	 	 		1)	Below	Average	(please	specify)	2)	Average	3)	Above	Average	
• Do	you	have	any	concerns	about	his	math	progress?	
• Are	there	are	any	particular	math	skills	that	he	is	having	difficulty	mastering?	
• Does	this	student	generally	complete	his	math	work	in	class	and	his	homework?		 	

	 1)	yes	2)	no	(please	specify)	
• How	would	you	rate	his	overall	academic	skills?		 	 	 	 	 	

	 1)	Below	Average	(please	specify)	2)	Average	3)	Above	Average	
• Has	he	ever	received	any	math	interventions	in	addition	to	the	regular	curriculum?	

Is	there	anything	else	you	would	like	to	add	about	your	observations	related	to	this	student	and	his	
academic	progress	in	your	class?	
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Appendix	D	

Table	1		
Digit	Comparison	Task	
The	following	digits	pairs	were	presented	over	the	course	of	80	trials.	
2	 7	
3	 8	
2	 5	
3	 7	
4	 8	
5	 9	
4	 7	
3	 5	
2	 3	
5	 7	
6	 8	
7	 9	
4	 5	
7	 8	
8	 9	
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Appendix E 
Table 2 
 
 Numeracy Intervention Games. Games are listed in order played by difficulty level   

Gaame	 Numeracy	Skill	Trained	 Game Description 
Zingo123	(Thinkfun)												
	

Number	Recognition	 Players race to match their 
numbered tiles to the 
corresponding challenge card. 
	

Spot	It	Numbers	(Dobbel)	 Number	and	Shape	Recognition		 Players	race	to	identify	(or	spot)	
the	matching	number	or	shape	
between	two	cards		

Tangoes	Jr.	(Smart	Toys)	
	

Spatial	and	Pattern	
Identification	

Players	use	the	seven	magnetic	
puzzle	pieces	to	recreate	
designs		

Zip	Zap	(Gamewrite)	 • Numerical	Sequencing	

	

Players	race	to	place	their	cards	
down	in	numerical	order	to	get	
rid	of	their	hand	
	

Stormy	Seas	(Thinkfun)	
	

Equivalency	 Players	take	turns	placing	
weighted	cargo	pieces	on	a	
wooden	ship,	while	trying	to	
maintain	equal	weight	on	both	
sides	so	that	it	doesn’t	tip	

Rat-A-Tat-Cat	(Gamewright)	 Number	Comparisons	 Players	take	turns	trading	in	
higher	cards	for	lower	cards.	
The	player	with	the	lowest	total	
at	the	end	wins.		

Number	Chase	(Thinkfun)	 Number	Comparisons		 One	player	draws	a	number	and	
each	of	the	players	try	to	guess	
the	number	by	asking	numerical	
order	questions	on	their	cards	
	

Olympian	Number	Line	(Didax)	 Numeracy	 5	number	line	board	games	that	
each	build	a	different	numeracy	
skill	
• Compare	numbers	between	

50	and	100	
• Round	numbers	to	the	

nearest	10	
• Count	by	2s,	5s	and	10s	
• Practice	number	bonds		
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Appendix F 
Table 2 
 
Processing Speed Intervention Games. Games are listed in order played. 
Game	 Game	Description	
Zingo	(Thinkfun)	
	

Dealer	exposes	two	tiles.	If	a	player	spots	a	
tile	that	matches	his	or	her	card,	the	player	
calls	out	the	name	of	the	image	on	his	card.	
Then	the	player	takes	the	tile	and	covers	the	
matching	image	on	the	card.	The	first	player	
to	cover	his	board	with	tiles	wins	the	game	

Spot	It	(Asmodee)	 Players	are	given	a	card	with	six	colorful	
animals.		The	animals	may	vary	in	size	and	
position,	but	there	is	always	one,	and	only	
one,	animal	match	between	any	two	
cards.		The	aim	of	the	games	is	to	be	the	first	
to	spot	a	matching	animal	between	the	target	
card	and	your	own	card,	before	another	
player	spots	one.	

Spy	Tag	(Ravensburger)	
	

Each	player	is	given	3-4	characters	cards	to	
display	in	front	of	them.	Players	take	turns	
drawing	spy	cards	and	slapping	them	on	the	
matching	agent	cards	laid	out	in	front	of	your	
teammates.	Get	caught	with	a	match	when	
the	timer	goes	off	and	draw	a	card	from	the	
secret	briefcase	pile.	

Ugly	Dolls	(Gamewright	 Players	take	turns	turning	over	cards	until	
someone	spots	three	matching	ugly	dolls.	
Then	players	race	to	grab	a	match	before	
they	all	get	snatched.	The	player	to	claim	the	
most	cards	wins.	

Slamwich	(Gamewright)	 One	by	one,	each	player	takes	the	top	card	of	
her	deck	and	flips	it	onto	a	central	pile.	
Players	race	to	slap	the	pile	when	the	
following	conditions	are	met:	

• the	flipped	card	is	identical	to	the	
card	directly	underneath	it	(a	
"double	decker")	

• If	two	identical	cards	have	exactly	
one	card	in	between	them	(a	
"slamwich")	

The	player	who	slaps	the	decks	collects	all	
the	cards	in	the	pile.	The	player	with	the	
most	cards	at	the	end	wins.	

Chomp	(Gamewright)	 In	unison,	all	players	turn	over	the	top	card	
of	their	pile	into	the	center	of	the	playing	
area.	The	first	player	to	slap	the	card	with	
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the	lowest	creature	on	the	food	chain	and	
shout	“Chomp!”	wins	the	round.	
	

Pictureka	(Hasbro	Games)	
	

Players	race	to	find	target	pictures	on	a	very	
detailed	board.	The	first	player	to	find	the	
target	picture	wins	the	card.	The	player	with	
the	most	cards	at	the	end	wins.	

Blink	(Mattel)	 Players	try	to	match	the	shape,	count,	or	
color	on	their	cards	to	either	one	of	two	
target	cards..	

Robot	Face	Race	(Educational	Insights)	 Players	roll	the	die	to	find	out	which	robot	
head	features	they	should	search	for	and	
then	they	scan	the	board	for	the	robot	head	
with	the	correct	colored	face,	nose,	eyes,	and	
mouth.	The	first	player	to	find	the	matching	
robot	head	wins	the	round.	

Quick	Cups	(Spin	Master)	 Players	are	given	five	colored	cups.	During	
each	round,	players	race	to	stack	up	or	line	
up	their	five	colored	cups	to	match	a	picture	
on	a	card.	The	player	to	finish	first	and	ring	
the	bell	wins	the	card.	

Fast	Flip	(Blue	Orange)	 Players	compare	two	cards	in	order	to	find	a	
match.	One	of	the	cards	will	display	a	bunch	
of	fruit	while	the	other	either	displays	a	fruit	
or	a	number.	If	a	fruit	is	displayed	the	
players	need	to	count	up	how	many	of	that	
type	of	fruit	are	on	the	table.	The	first	player	
to	say	the	correct	number	gets	to	take	the	
card	that	shows	one	fruit.	If	one	of	the	cards	
display	a	number,	players	need	to	find	the	
fruit	that	has	exactly	that	many	pictured	on	
the	other	card.	The	player	that	yells	out	the	
correct	answer	takes	the	card	that	displays	
the	number	

Nada	(Blue	Orange)	 In	each	round,	players	use	six	white	dice	and	
six	orange	dice,	with	each	die	having	six	
different	symbols	on	it.	Someone	rolls	all	the	
dice	in	the	center	of	the	table,	then	players	
race	to	be	the	first	to	yell	out	a	symbol	that	is	
on	at	least	one	white	and	one	orange	die.	If	
correct,	the	player	collects	all	the	dice	
showing	this	symbol.	Once	a	player	has	
claimed	dice,	this	player	rerolls	all	the	
remaining	dice.	If	no	match	can	be	found,	the	
first	player	to	yell	"Nada!"	claims	all	the	
remaining	dice.	Players	tally	their	scores	–	
one	point	for	each	die	collected	–	then	play	
another	round.	Whoever	has	the	highest	
score	after	three	rounds	wins!	
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Conclusion 

Despite the serious negative life consequences associated with low numeracy, and 
the high proportion of students failing to meet grade level standards in the US, math 
learning weaknesses and interventions remain poorly understood.  There is a large gap 
between research and practice in this domain. 

Math learning disabilities are widespread, affecting 5% to 7% of children 
(Butterworth, 2005; Shalev, Auerbach, Manor, & Gross-Tsur, 2000).  Though math 
learning disabilities (MLD) are understood to be a congenital disorder, children with 
MLD frequently remain unidentified throughout the early school years.  Teachers hesitate 
to flag children as learning disabled prior to third grade for numerous reasons.  The 
reasons include (a) students have differing levels of exposure to number concepts prior to 
starting school, (b) teachers are not well informed about the identifying features of MLD, 
(c) poor instruction needs to be ruled out, (d) diagnostic criteria indicate there should be 
pattern of poor performance over an extended period of time (Berch & Mazzocco, 2007).  
Unfortunately, this all-too-common delay in identification leads to students falling too far 
behind to catch up.  Early identification is therefore a critical component of effective 
intervention. 

In the first paper presented in my dissertation, my aim was to contribute to 
narrowing the gap between research and practice by synthesizing literature that pinpoints 
the key identifying features of math learning disabilities, including early number sense 
weaknesses.  Number sense is the understanding of a number’s magnitude and its relation 
to other numbers, and is considered the core deficit in math learning disabilities (Brian 
Butterworth, Varma, & Laurillard, 2011).  Number sense capacity can easily be measured 
in preschool or kindergarten using simple tests of dot counting and number comparisons.  
The implication of this research for practice is that teachers should routinely screen low 
performing students for number sense weaknesses in the early grades so that they can 
ensure the appropriate referrals are made for interventions to take place.  Professional 
development for educators on MLD is critically needed. 

In the second paper presented in my dissertation, I sought to characterize the 
cognitive abilities that are most predictive of future math achievement in typically 
developing children.  I hope that this research can be used to develop skill-building 
techniques that can help low-performing students catch up.  I was particularly interested 
in the role of fluid reasoning (FR) in the acquisition of math skills.  FR is the ability to 
analyze novel problems, identify patterns and relationships, and apply logic.  Researchers 
posit that FR may be particularly important to math because math is hierarchical in 
nature, requiring students to consistently learn and apply new problem-solving 
techniques.  In previous research, however, FR has not been well characterized in relation 
to math development, and spatial reasoning has been emphasized.  In this paper, I 
analyzed data from a longitudinal study with a cohort sequential design, to investigate 
whether prior measures of FR predicted future math outcomes for a group of 69 
participants between ages 6 and 21 years old.  I used structural equation modeling (SEM) 
to examine the direct and indirect relations between children's previous cognitive abilities 
and their future math achievement.  I found that FR was the only significant predictor of 
future math achievement, after accounting for spatial skills, verbal reasoning, and age.  
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These results underscore the unique role that FR plays in influencing development of 
more complex math problem-solving skills.  Based on these findings, I assert that Math 
curricula should incorporate opportunities for students to practice FR skills.  

In the third paper, I carried out a novel game-play intervention designed to train 
numeracy and processing speed skills in children at risk for MLD.  This study extended 
previous research involving number sense training by including numeracy games and 
games that aimed to improve more general cognitive skills that are commonly weak in 
children with MLD (processing speed).  The intervention was carried out over the course 
of 14 weeks, 4 days per week, during an after-school program at a local elementary 
school.  I used the single-case-study design to investigate response to intervention in 3 
children in first and second grade.  The participants were highly engaged and interested 
in the games throughout the course of the intervention.  They demonstrated significant 
improvement in math fluency skills and marginal improvements in processing speed.  
These findings provide promising preliminary evidence to indicate that early game play 
intervention may facilitate math skill development in at-risk children.  Thus, 
incorporating games that train general cognitive skills may lead to broad effects on 
higher-level math achievement. 

Future Directions 

The pilot intervention research presented in this dissertation is based on cognitive 
psychology and neuroscience research that has identified the types of tasks that train 
early number sense and cognitive abilities in at-risk children.  To extend this research 
into practice, expert teacher guidance would be needed to inform the presentation and 
sequencing of these tasks to align with grade level curricular progressions.  This would 
involve teacher consultation, and an iterative design process using successive evaluations 
in classrooms (e.g., Butterworth & Laurillard, 2010).  It may be optimal to create a 
computerized version of the games that can adapt in real-time to the learner’s level of 
understanding, provide immediate feedback, and become progressively more challenging, 
thus personalizing the intervention to the individual student (Butterworth & Laurillard, 
2010; Healy & Kynigos, 2010).  Computerized interventions enhance feasibility and 
reliability of intervention research by reducing the number of staff needed to carry out the 
intervention, allowing for consistent implementation, and enhancing data tracking and 
analytics.  Additionally, software potentiates design modifications to be made on an 
iterative basis through teacher consultation. 

Additionally, larger studies are needed because most prior studies evaluating early 
numeracy interventions lack sufficient statistical power to analyze differences in 
responsiveness related to student characteristics.  This is important because children at-
risk for math learning disabilities are heterogeneous, and some students appear to be 
more responsive than others to particular types of interventions (e.g. game play versus 
structured practice).  Future studies may therefore benefit from drawing on larger sample 
sizes that will enable comparison of intervention techniques as well as the mediational 
effects of differing learning styles.  Such studies would enable teachers to select 
interventions that are better tailored to individual students.  
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