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Abstract / Zusammenfassung 

Abstract 

The cellular response to a given stimulus is not only governed by the stimulus itself, but 

also depends on the state of the cells. Cell cycle phase, protein levels or microenvironment 

delineate a unique state for each individual cell. This results in heterogeneous behavior of 

genetically identical cells. Understanding cell-to-cell variability requires linking different 

cellular responses to defined cellular states. In this thesis, I established a framework to 

study how the cellular response to DNA damage is affected by varying cell states and to 

identify the underlying molecular mechanisms. 

To this end, I established a CRISPR/Cas9 based technique to generate fluorescent 

reporters for endogenous signaling proteins in non-transformed breast epithelial cells 

(MCF10A) and applied it to simultaneously measure the dynamics of the tumor 

suppressor p53 and one of its target genes, the cell cycle inhibitor p21 by time-lapse 

microscopy. Using this approach, I observed highly heterogeneous p21 responses to DNA 

damage in individual cells. To reveal hidden information from the observed phenotypes, I 

developed a shape-based clustering approach and identified four distinct subpopulations 

of characteristic p21 dynamics. To examine the source of cell-to-cell variability, I analyzed 

cell divisions prior to irradiation to estimate initial cell cycle states, followed by EdU 

labeling and a semi-supervised classification to determine the cellular state 24h post 

damage. This allowed me to demonstrate how initial cell cycle phase and cell cycle 

progression shape p21 dynamics by regulating protein stability and how this determines 

the cellular response to damage. Furthermore, to identify molecular mechanisms shaping 

the p21 response, interaction between the cell cycle inhibitor and proliferating cellular 

nuclear antigen (PCNA), a cell cycle dependent factor, was blocked by introducing 

mutation in the binding domain of p21 using CRISPR-Cas9 based genome engineering. 

This led to relatively homogenous p21 dynamics in response to damage, independent of 

cell cycle phase.  

Overall, my project provides a pipeline to study at the single cell level how cellular 

response is affected by cell states. Considering that cellular heterogeneity leads to 
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fractional killing in tumor therapies, this approach also suggests future application on 

studying drug-resistance in cancer therapy.     
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Zusammenfassung 

Die zelluläre Antwort auf einen spezifischen Stimulus wird nicht nur durch den Stimulus 

selbst, sondern insbesondere auch von dem gegebenen Zustand der Zelle bestimmt. Die 

jeweilige Zellzyklusphase, die Konzentration der relevanten Proteine sowie die 

Mikroumgebung bestimmen einen einzigartigen Zustand für jede individuelle Zelle. 

Daraus resultiert ein heterogenes Verhalten von genetisch identischen Zellen. Um ein 

tieferes Verständnis für die große Variabilität in einer Zellpopulation gewinnen zu können, 

ist es notwendig, die verschiedenen zellulären Antworten mit definierten zellulären 

Zuständen in Verbindung zu bringen. In dieser Arbeit wurde ein System etabliert, welches 

es zum einen ermöglicht, die zelluläre Antwort auf DNA-Schäden und den Einfluss 

unterschiedlicher zellulärer Zustände zu studieren und zum anderen die zu Grunde 

liegenden molekularen Mechanismen zu identifizieren. 

Im Zuge dessen wurde eine auf CRISPR/Cas9 basierende Methode entwickelt, mit Hilfe 

derer Fluoreszenzreporter für endogene Signalproteine in nicht transformierten 

Brustepithelzellen (MCF10A) generiert wurden. Anhand dieses Reportersystems konnte 

durch time-lapse Mikroskopie die Dynamik des Tumorsuppressors p53 und gleichzeitig 

eines seiner Zielgene, des Zellzyklusinhibitors p21, verfolgt werden. Dabei wurde deutlich, 

dass die p21 Antwort der individuellen Zellen auf DNA-Schäden sehr heterogen ausfällt. 

Um mehr Informationen zu den verschiedenen Phänotypen zu gewinnen, wurde eine 

Form-basierte Gruppierungsmethode entwickelt und vier verschiedene Subpopulationen 

mit charakteristischen p21 Dynamiken identifiziert. Um den Einfluss der Zellzyklusphase 

zu untersuchen, wurde die Zellteilung vor Bestrahlung analysiert und so Rückschlüsse auf 

die initiale Zellzyklusphase gezogen. 24h nach Bestrahlung wurde ein EdU labeling 

durchgeführt und der Zellzyklus mittels semi-supervised Klassifizierung bestimmt. Mit 

Hilfe dieser Technik konnte demonstriert werden, wie der Zellzyklus durch Regulation 

der Proteinstabilität die p21 Dynamiken formt und auf diese Weise die Schadensantwort 

der Zelle bestimmt. Weiterhin wurden molekulare Mechanismen identifiziert, welche die 

p21 Antwort beeinflussen. Hierfür wurde die Interaktion zwischen p21 und dem 

proliferating cellular nuclear antigen (PCNA), einem Zellzyklus-abhängigen Faktor, 

verhindert, indem eine Mutation in der Bindedomäne von p21 durch CRISPR-Cas9 

basiertes Genome Editing eingeführt wurde. Dies führte zu einer relative homogenen p21 

Dynamik als Antwort auf Schaden, unabhängig von der Zellzyklusphase. 
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Alles in allem bietet mein Projekt eine Pipeline, um auf Einzelzellebene zu erforschen, wie 

zelluläre Antworten durch den Zellzyklus beeinflusst werden. Dieser Ansatz könnte 

zukünftig Anwendung in der Erforschung von Medikamentenresistenz finden, 

insbesondere da zelluläre Heterogenität in der Tumortherapie zu fractional killing führt. 
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1 Introduction 

1.1 p53 is a key node in the cellular stress-response network 

1.1.1 p53’s history and functions 

p53 (encoded by Tp53 in human and by Trp53 in murine animals) was first discovered in 

1970s (Linzer & Levine 1979; Lane & Crawford 1979), during which period cancer-

causing viruses were a hot topic in cancer research (Levine & Oren 2009; Kastenhuber & 

Lowe 2017). Many oncoproteins were identified by examining proteins overexpressed in 

cancer virus-induced tumors. These oncoproteins included viral proteins and cellular 

proteins that may be induced indirectly by viral proteins. A 53 kDa host protein was found 

to form complexes with simian virus 40 (SV40) large T antigen in transformed cells  

(Linzer & Levine 1979; Lane & Crawford 1979). Subsequent research reported that the 

same protein was also detected in non-virus transformed cancer cells but not in normal 

cells (DeLeo et al. 1979; Rotter 1983). Naturally this protein was presupposed as an 

oncoprotein and named p53 as an identical nomenclature in a conference seeing that 

independent laboratories used different names causing confusions (Levine & Oren 2009). 

p53 cDNA was further cloned and overexpression of it caused tumorigenesis in normal 

tissue (Eliyahu et al. 1984; Jenkins et al. 1984), supporting a role as an oncoprotein. 

Surprisingly, some scientists observed tumor suppressor properties of p53. For example, 

Ben David and his colleagues found that p53 was inactivated in murine erythroleukemic 

cell lines induced by Friend leukemia virus (Ben David et al. 1988). Rotter and his 

colleagues also observed that p53 was deleted in HL-60 cells, which are derived from 

human leukemia (Wolf & Rotter 1985). More convincingly, when comparing sequences of 

p53 cDNA from different resources, several laboratories found that most of the published 

p53 cDNA which were often generated from tumor cells carried mutations in coding 

sequence and wild type p53 from normal tissue failed to exhibit oncogenic activity 

(Eliyahu et al. 1988; Finlay et al. 1989; Halevy et al. 1991). Since then, p53 was widely 

accepted as a tumor suppressor and regarded as ‘the guardian of the genome’ because of 

its irreplaceable role in maintaining genome stability (Efeyan & Serrano 2007). 

How does p53 work as ‘the guardian’? The p53 network responds to various stress signals, 

including DNA damage, hypoxia, spindle damage and replication stress induced by 

dysregulated oncogenes (Figure 1) (Riley et al. 2008). These stresses can activate p53 by 

distinct mechanisms. For example, DNA damage activates upstream kinases, such as ATM 
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(ataxia-telangiectasia mutated kinase) and ATR (ataxia telangiectasia and Rad3-related 

protein), which then trigger the p53 pathway by phosphorylating p53 protein and 

inhibiting its negative regulator Mouse double minute 2 homolog (Mdm2) (Shieh et al. 

1997), whereas oncogenic signals inhibit Mdm2 by ARF tumor suppressor (Zhang et al. 

1998). After further modifications, such as acetylation, p53 can bind to specific DNA 

sequences, so called p53 response element (p53 RE). Together with other cofactors, such 

as CBP and p300, p53 drives the transcription of target genes to counteract tumorigenesis. 

For example, p53-mediated induction of cyclin-dependent kinase inhibitor 1A (CDKN1A, 

encoding p21) halts cell cycle to permit the repair of undesired DNA damage (El-Deiry et 

al. 1993). Besides, BCL2-binding component-3 (BBC3), another p53 target gene, promotes 

apoptosis in response to p53 activation in cancer cells (Nakano & Vousden 2001; Yu et al. 

2001). Although promoting cell cycle arrest and apoptosis are the best-studied functions 

of p53, many researches suggest that p53 is also involved in other ‘non-canonical’ 

programs (Kastenhuber & Lowe 2017). For instance, p53 can regulate autophagy (Maiuri 

et al. 2010), govern metabolic pathways (Kruiswijk et al. 2015) and suppress pluripotency 

(Lin & Lin 2017). p53 governs these alternative programs by controlling the expression of 

different sets of target genes (Kastenhuber & Lowe 2017). Benefiting from the 

development of high throughput ‘-omics’, specifically transcriptomics, thousands of p53 

targets were identified although a recent effort revealed that probably only about 60 

targets were found consistently among 16 genome-wide datasets (Fischer 2017). 

Nevertheless, it is widely accepted that p53 is crucial for keeping cellular ‘health’ and its 

responses can vary in different cell types depending on specific stimuli and distinct 

cellular states (Kastenhuber & Lowe 2017). 
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Figure 1 Mechanisms of p53 activation and regulation of cellular outcomes (Riley et al. 2008) 
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1.1.2 Heterogeneous p53 dynamics in single cells 

New technologies are usually the key to answering open questions. The emergence of live-

cell imaging (Figure 2) facilitated the understanding of how p53 responds to stress and 

how cells determine outcomes by intricate p53 dynamics. This technology and 

subsequent computational analysis shed light on single cell behaviors and revealed that 

the p53 dynamics of each cell are different (Lahav et al. 2004; Loewer et al. 2010; Loewer 

& Lahav 2011). 

 

Figure 2 Measuring cellular dynamics using fluorescent reporters and time-lapse microscopy 
Proteins of interests can be fluorescently tagged and measured with an interval of seconds to minutes. This 
generates large datasets of time-series images. By processing these images using automated segmentation 
and tracking algorithms, each cell can be isolated and followed over time, resulting in measurements of 
protein dynamics for thousands of individual cells from a single experiment. 

Under normal conditions, transient DNA damage in cells trigger spontaneous p53 pulses. 

Averaging spontaneous p53 pulses in a population of cells gives the impression of stable 

steady-state levels. (Figure 3). In response to double strand DNA breaks (DSBs) induced 

by -irradiation, cells show repeated p53 pulses and the pulse frequency is heterogeneous 

in single cells although the pulse features (such as the amplitudes and durations) are 

usually constant (Lahav et al. 2004; Loewer et al. 2010; Loewer & Lahav 2011). This gives 

the appearance of damped p53 oscillations at the average level (Figure 3), which are 

usually observed in population level studies, such as western blot. These fascinating 

observations highlighted the importance of single cell investigations and led to further 
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questions why cells behave differently and how heterogeneity affects the cellular outcome 

to a given stress. 

 

Figure 3 Single cell studies revealed heterogeneous p53 dynamics (Loewer & Lahav 2011) 

1.1.3 p53 dynamics control cell fate 

Besides the aforementioned two types of p53 dynamical patterns, cells can also show 

sustained p53 dynamics after UV-irradiation (Batchelor et al. 2011). More interestingly, it 

seems that these differential dynamics associate with cellular outcomes. As shown in 

Figure 4, cells showing spontaneous p53 pulse are able to proliferate afterwards (Loewer 

et al. 2010); DSBs induced by -irradiation trigger a series of p53 pulses, most likely 

followed by transient cell cycle arrest and recovery (Loewer et al. 2010; Purvis et al. 2012), 

whereas UV-irradiation causes sustained p53 accumulation, sending cells to apoptosis 

(Batchelor et al. 2011; Purvis et al. 2012). However, these different types of dynamics are 

generated under different conditions, making it difficult to prove that there is a causal link 

from p53 dynamics to cell fate decisions (Purvis & Lahav 2013) due to the fact that 

different stimuli might influence the cellular outcomes by affecting other networks. In this 

context, Jeremy E. Purvis and co-workers artificially altered pulsing p53 to sustained p53 

in -irradiation-damaged cells by using timed doses of the small molecule Nutlin-3, which 

stabilizes p53 by inhibiting the interaction between p53 and its negative regulator Mdm2, 

and observed cell senescence instead of cell cycle arrest (Purvis et al. 2012). This 

observation supported the hypothesis that different p53 dynamics are correlated to 

different cellular outcomes. 
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Why does p53 show distinct dynamics in response to -irradiation and UV-irradiation? 

This can be explained by the difference in p53 feedback loops (Figure 4). Both stimuli can 

activate p53 and its negative feedback loops, Mdm2 and p53-induced Phosphatase 1 

(Wip1). However, -irradiation induced ATM can be dephosphorylated by Wip1 

(Shreeram et al. 2006) and thereby further downregulate p53 (Lu et al. 2007). The Wip1 

loop is responsible for generating oscillating p53 in response to -irradiation as was 

shown by the knockdown of Wip1, which generates UV-like p53 dynamics (Batchelor et 

al. 2008).  

 

Figure 4 p53 dynamics control cellular outcomes in response to different stimuli 

The next question that arises when deciphering p53 dynamics is how they influence 

cellular outcomes. In a previously discussed report, expression of senescence genes 

increased after pulsed p53 accumulation was switched to sustained p53 accumulation 

(Purvis et al. 2012). This suggests that different dynamics might lead to the expression of 

different sets of genes. However, how p53 dynamics affect the expression of its targets is 

still unclear. A recent report suggests that the mRNA decay rate determines the dynamics 

of p53’s target genes (Porter et al. 2016). In response to pulsed p53, slow-decaying 

mRNAs would sustainably accumulate whereas fast-decaying mRNAs might not be able to 

accumulate once the production rate is slower than decay rate. Sustained p53 increases 
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the production rate so that the fast-decaying mRNAs can accumulate to an extent that 

allows them to elicit the corresponding cellular effect. This might provide some clues on 

how cells choose target genes in response to different p53 dynamics. The protein level of 

p53’s targets, however, is also influenced by other factors, in particular post-translational 

modifications (PTMs). Provided the complexity of signaling networks, one can assume 

that some, if not all, of these modifications might be p53-independent and cell state 

specific. In addition, even for a given stimulus, p53 dynamics are heterogeneous in 

individual cells. The number of p53 pulses, for example, is varying from cell to cell in 

response to -irradiation (Lahav et al. 2004; Loewer et al. 2010; Loewer & Lahav 2011). 

How exactly do cells integrate p53 dynamics and cellular state to make proper decisions 

in response to a fixed stimulus? 
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1.2 p21 is a main effector of p53 in the DNA damage response 

1.2.1 p21 function and cell cycle 

Cyclin-dependent kinase inhibitor 1A (CDKN1A, encoding p21), was identified as one of 

downstream genes of p53 (El-Deiry et al. 1993). The best-understood function of p21 is 

to regulate cell cycle progression. Loss of control of cell cycle in mammalian cells can cause 

onset of tumorigenesis. Thus, cells have evolved multiple checkpoints to govern cell cycle 

progression. On the molecular level, cell cycle transition from G1 phase to S phase and G2 

phase to mitosis is regulated by activation and inactivation of cyclin-dependent kinase 

(CDK) family of proteins, which are activated by binding to cyclins(Vermeulen,K.,Van 

Bockstaele,D.R.,Berneman et al. 2003). As a CDK inhibitor, p21 is one of the checkpoint 

regulators in cell cycle control. Induction of p21 by p53 upon DNA damage inhibits cyclin 

E and CDK2 complex and thereby prevents G1-S transition (Figure 5) (Di Leonardo et al. 

1994; Neganova et al. 2011). p21 can also potentially inhibit cyclin B1 and CDK1 complex 

and lead to G2 arrest (Figure 5) (Charrier-Savournin et al. 2004; Bunz 1998). On the 

contrary, a study in mouse embryonic fibroblasts suggested that p21 can promote 

proliferation (Warfel & El-Deiry 2013). When increasing p21 by mitogen stimulation to a 

level that is not sufficient to lead to cell cycle arrest, p21 was found to promote the 

assembly of cyclin D-CDK4 complexes (Cheng 1999). These together suggest that p21 

might have dual roles of either inhibiting cell growth or promoting proliferation 

depending on its concentration in the nucleus. 

In addition, p21 can bind to proliferating cell nuclear antigen (PCNA) through the PCNA-

interacting peptide box (PIP box) in p21 C-terminus (Havens & Walter 2009). Since p21 

competes for binding to PCNA with other components, such as DNA polymerase- and -, 

which are involved in DNA synthesis, it indirectly inhibit DNA replication (Karimian et al. 

2016; Romanov & Rudolph 2016). Many other proteins having the PIP box structure are 

probably affected by this competition and therefore cellular activities might also be 

altered indirectly by expression of p21. For example, interference of PCNA-DNMT1 by p21 

cause DNA repair inhibition (Mortusewicz et al. 2005).  

Paradoxically, p21 is also involved in apoptosis. On one hand, p21 can inhibit apoptosis by 

several potential mechanisms. For example, it binds and inhibits JNK1/SAPK kinase and 

MAPK-kinase-kinase ASK1/MEKK5 and thereby suppress apoptosis (Huang et al. 2003). 
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On the other hand, p21 was reported to promote apoptosis. It was shown to induce the 

expression of genes that initiate apoptosis in human ovarian cancer cells in a  p53-

independent manner (Wu et al. 2002). Other research showed that p21 can be cleaved by 

caspase-3 and this leads to apoptosis of cancer cells (Zhang et al. 1999). 

 

Figure 5 p21 has multiple functions 

In summary, p21 can inhibit the activities of cyclin/CDK complex to cause cell cycle arrest. 

Besides, p21 was also reported to inhibit DNA synthesis and DNA repair and to promote 

apoptosis. However, these functions are still in debate and some of them are even contrary. 

Considering the linking between dynamical features of p53 and various cellular outcomes, 

it is logical to ask whether p21 dynamics control its complicated functions. 

1.2.2 Multiple mechanisms mediate p21 degradation 

Since p21 has multiple functions, its level in cells should be accurately regulated to 

activate proper cellular responses. To achieve this, cells have developed multiple 

mechanisms to degrade p21. 

The first one is SCFSkp2, which can degrade p21 to promote cell cycle transitions. SCF 

complexes are a subfamily of the cullin-RING ubiquitin ligase (CRL) superfamily (Petroski 

& Deshaies 2005). SCFSkp2 is believed to be a major regulator of p21 (Starostina & Kipreos 

2012). This complex can decrease p21 levels in late G1 phase and early S phase, which 

upregulates cyclin/CDK activity to promote S phase entry (Li & Jin 2010). To accomplish 

this, cells upregulate Skp2 levels in late G1 and early S phase by inactivation of APCCdh1 or 

/ and disassociation of Skp2 and APCCdh1 through cyclin / CDK2 complexes which become 
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active in late G1 phase (Bashir et al. 2004; Lukas & Bartek 2004; Rodier et al. 2008; 

Guardavaccaro & Pagano 2006). 

In addition to SCFSkp2, another member of CRL family, CRL4Cdt2 can mediate p21 

degradation in S phase. A cell cycle specific factor, PCNA is involved in this process. During 

S phase, PCNA forms foci on chromatin and this form of PCNA can bind to PIP box in p21 

so that this complex is able to recruit CRL4Cdt2 to promote the ubiquitin-dependent 

degradation of the complex (Abbas & Dutta 2011; Havens & Walter 2009).  

APC/CCdc20, which is also an E3 ubiquitin ligase, can degrade proteins, including p21, 

during mitosis to permit progression through mitosis. APC/CCdc20 becomes active during 

mitosis and degrades p21 during prometaphase (Amador et al. 2007), which allows 

activation of cyclin/CDK1 during mitosis ensuring subsequent mitosis (Starostina & 

Kipreos 2012). 

Mdm2 and MdmX can mediate ubiquitin-independent degradation of p21. Mdm2/MdmX 

promote the degradation of p21 in G1 and early S phase by binding and bringing both p21 

and the proteasome together (Jin et al. 2008). The 14-3-3 and C8 subunit of the 20S 

proteasome are involved in Mdm2-mediated degradation (Wang et al. 2010), and this 

degradation was reported to promote G1-S transition (Starostina & Kipreos 2012).  

Besides, there are also other degradation mechanisms that are less well defined. An 

interesting mechanism among them is p53-inducible RING-finger protein (p53RFP), 

which can be induced by p53 and target p21 degradation in response to DNA damage (Ng 

et al. 2003). But it is worth stressing that p53RFP only has a relatively modest effect on 

p21 (Ng et al. 2003). Nevertheless, its activation by DNA damage was shown to decrease 

the number of G1 arrested cells and promote apoptosis (Ng et al. 2003). However, p53RFP-

mediated degradation is still not well characterized and needs further investigation. The 

E3 Makorin RING Finger Protein 1 (MKRN1) is another potential factor to mediate p21 

degradation. In response to DNA damage, MKRN1 was shown to promote apoptosis by 

decreasing p21 (Lee et al. 2009).  

In DNA damage response, p53 is one of the most important key nodes and p21 is the key 

effector of p53. After DNA damage, p53 is activated but its transcriptional activity is 

determined by other factors, such as post-translational modifications and the cofactors 
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required for transcription (Figure 1 and Figure 5), and these factors might be varying in 

single cells, leading to different expression of p21 mRNA. Moreover, the protein level of 

p21 is also controlled by multiple degradation mechanisms, some of which are dependent 

of cell cycle phase. SCFSkp2 and Mdm2, for example, mediate p21 degradation in late G1 

phase and early S phase whereas APC/CCdc20 drives the degradation of p21 during mitosis 

(Starostina & Kipreos 2012). These together address the question how p21 responds to 

DNA damage in single cells and whether it is affected by cellular state. 

1.3 Methodology 

1.3.1 Technical limitations on measuring endogenous dynamics 

To measure p53 and p21 dynamics in live cells, I first need to create faithful fluorescent 

reporters. The reliability of results is determined by the quality of fluorescent reporters. 

Over recent years, transgenic reporters, which are usually created by randomly inserting 

an artificially created construct in the genome of cell, were widely used to follow signals 

of selected signaling proteins (Lahav et al. 2004; Tay et al. 2010; Cohen-Saidon et al. 2009). 

However, severe limitations exist when using this technique (Figure 6). In detail, these 

constructs may cause perturbation of the signaling network of interest because another 

copy of a gene was introduced in the cells. The constructs may also miss important 

elements, such as key regions of the promoter, untranslated regions and introns, makes it 

difficult to capture the complex regulation of the selected protein. In addition, establishing 

a stable transgenic reporter is also time-consuming due to the need for extensive 

validation. The solution to these issues is to create endogenous reporters (Figure 6).  

 



Introduction 

 

16 

Figure 6 Labelling endogenous genes in principle permits more accurate measurements 

1.3.2 CRISPR/Cas9 technology 

Tagging endogenous genes requires precisely cutting the target genomic loci to insert 

exogenous DNA sequences. In recent years, a number of genome editing technologies have 

emerged, including zinc-finger nucleases (ZFNs) (Miller et al. 2007), transcription 

activator-like effector nucleases (TALENs) (Wood et al. 2011) and the RNA-guided 

clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated 

9 (Cas9) system (Mali, Aach, et al. 2013; Cong et al. 2013; Jinek et al. 2012; Jinek et al. 

2013). The first two employ a strategy of coupling endonucleases with DNA-binding 

proteins to induce DSBs at desired genomic loci. There are several potential 

disadvantages, such as limited target sites, high off-target effects and costly construction 

of DNA binding domains (Gupta & Musunuru 2014). By contrast, CRISPR/Cas9 system is 

composed of a small single-guide RNA (sgRNA) and Cas9 endonuclease. The sgRNA 

contains a constant trans-activating CRISPR RNA (tracrRNA) part which can bind to Cas9 

and a CRISPR RNA (crRNA) part with ~20 nucleotides which can form heteroduplex with 

target DNA through Watson-Crick base pairing (Figure 7A) (Jinek et al. 2013; Nishimasu 

et al. 2014; Anders et al. 2014). Cas9 endonuclease recognizes protospacer adjacent motif 

(PAM, 5’- NGG-3’ or 5’- NAG-3’)-proximal region on genomic DNA and tracrRNA part of 

sgRNAs to form Cas9-sgRNA complex. This complex further recognizes target DNA 

complementary to crRNA part of sgRNA and introduces double strand cleavage 

(Nishimasu et al. 2014; Anders et al. 2014). Since sgRNAs have a small size and high 

affinity to the DNA, this system has low cost and high efficiency (Sander & Joung 2014). 

Cleavage of DNA will trigger two main DNA repair pathways, including nonhomologous 

end joining (NHEJ) or homology-directed repair (HDR) (Ciccia & Elledge 2010). The 

former is an error prone pathway, likely causing gene knockout by insertion or deletion 

base pairs (Figure 7B). The HDR pathway will allow precise repair in presence of a repair 

template (Figure 7B). Taking advantage of HDR, one can precisely edit genomic DNA by 

combining a well-designed repair template with CRISPR/Cas9. Therefore, I first proposed 

to adapt this technique to establish a platform for creating endogenous reporters. 



Introduction 

 
17 

 

Figure 7 CRISPR/Cas9 based genome editing (F Ann Ran et al. 2013) Figure A is slightly modified, crRNA 

is colored blue and green; tracrRNA is colored red. 

 

1.4 Aims of this thesis 

Cellular and molecular behaviors are observed heterogeneous in genetically identical cells 

(Loewer & Lahav 2011; Spencer et al. 2009; Pelkmans 2012; Snijder & Pelkmans 2011). 

Cellular state (such as cell cycle phase), microenvironment and stochastic fluctuations are 

the main origins leading to cell-to-cell variations (Loewer & Lahav 2011). To characterize 

the influence of these factors and to study the molecular mechanisms behind will improve 

the understanding of signaling network and allow us to predict cellular behaviors. In my 

thesis, I aimed to study how cellular state influences cell responses to DNA damage. To 
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reduce the complexity, all live-cell imaging experiments were performed in a single cell 

line, human mammary epithelial cell MCF10A and upon a single stimulus, -irradiation-

induced double strand DNA damage. During DNA damage response, p53-mediated p21 

induction plays an important role in cell cycle regulation and protein level of p21 can be 

regulated by multiple factors, some of which are cell cycle related (Figure 5 and Figure 8). 

To fully understand how and at what states complexities of factors control p21 level, a 

quantitative measurement of endogenous levels is required. CRISPR/Cas9 technology 

provides the possibility to endogenously label both p53 and p21 and thereby could allow 

quantifying their dynamics in combination with time-lapse microscopy. In summary, to 

approach the aim of my thesis, three specific questions were addressed:  

1) Do fluorescent reporters generated by CRISPR/Cas9 faithfully reflect the endogenous 

protein levels? 

2) How do endogenous p53 and p21 respond to DNA damage in single cells? 

3) Do cellular states influence p53-p21 dynamics? 

 

Figure 8 How does cellular state influence p53-p21 dynamics and cellular outcomes in response to 

DSBs? During DNA damage response, p53 is activated and induces the expression of CDK1NA, which 
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encodes p21 to mediate cell cycle arrest and other cellular outcomes. p21 levels are controlled by many 

factors, such as the transcription regulations and post-translational regulations, which might depend on 

cellular state. 
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2 Results 

2.1 Establishment of CRISPR/Cas9 based technology to generate endogenous 

fluorescent reporters 

2.1.1 Technical concept of CRISPR-Cas9-based knockin 

As a start, I first developed a strategy to create fluorescent reporters using CRISPR/Cas9 

technology. As shown in Figure 9 for a given target of interest, the stop codon-containing 

exon will be targeted to create C-terminal fusion proteins. Guide RNA then will be 

designed to cut at or around stop codon together with Cas9. This will create double strand 

DNA breaks and trigger DNA repair pathways including non-homologous end joining 

(NHEJ) and homology directed repair (HDR), the latter of which will allow precise genetic 

modification in presence of a donor DNA. Design of donor DNA will be a key to achieve 

functional reporter. The exogenous fragment has to be in front of endogenous stop codon, 

ensuring that it is part of the open reading frame of the target. This can be achieved by 

flanking the insertion fragments with two homologous arms (HAL and HAR), which are 

separately identical to genomic sequences in front of and after stop codon (include stop 

codon). The coding sequence of a fluorescent protein is present right after the left 

homologous arm (HAL), followed by a selection element consisting of two Loxp 

sequences, a self-cleavage peptide (P2A) and neomycin resistance gene. After G418 

selection, only precisely-engineered cells survive because the random insertions unlikely 

have the resistance due to the low chance of being inserted after a functional promoter. 

The selection marker then turns to be a redundancy and may influence mRNA activity, so 

Cre-recombinase will be delivered into cells to remove it, leaving a fluorescent gene and a 

remaining loxp sequence (34 bps) in front of stop codon. The whole protocol allows 

inserting necessary and minimal sequences in order to fluorescently tag endogenous 

genes. 
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Figure 9 Conceptual framework of CRISPR-Cas9-mediated knockin 
Blue boxes represent the exons, between which are introns. Stop codon is indicated by a narrow box in black. 

HAL: the left homologous arm; HAR: the right homologous arm; FP: the gene encoding fluorescent protein; 

P2A: a self-cleavage peptide; Neo: neomycin resistance gene; 3’UTR: 3-untranslated region. 

2.1.2 CRISPR-Cas9 enables genome editing 

To test the strategy developed above, I chose the p53 locus to conduct proof-of-concept 

experiments. First, three sgRNAs were designed to target human p53 (Figure 10A). There 

were three approaches to deliver Cas9 and sgRNAs reported in the beginning (F Ann Ran 

et al. 2013; F. Ann Ran et al. 2013). First, sgRNA and Cas9 were transfected in separate 

plasmids, named two vector system (2-Vec.); second, Cas9 was delivered in plasmid and 

sgRNA was delivered as a PCR product, named PCR system (PCR); third, Cas9 and sgRNA 

was integrated into a single vector, called one-vector system (1-Vec.). I experimentally 

tested all three approaches on a same target (p53-T5) in HEK293 and quantified the 

cleavage efficiency by T7 endonuclease I assay (Figure 10B) (White et al. 1997). The 

results showed that the two-vector system had equal efficiency to one-vector system (both 

induced about 50% indel formation) and PCR system was significantly inefficient (Figure 

10C). Considering that two-vector system had more flexibility to adapt other versions of 

Cas9, I chose this system as a standard to deliver CRISPR/Cas9 constructs in all further 

experiments. 
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Usually, a target region can have several potential target sites such T5, T8 and T14 at the 

p53 locus (Figure 10A). As these sequences may provide different affinities for 

corresponding sgRNAs, they could potential results in varying efficiencies of DNA 

cleavage. To test this, I separately transfected three sgRNAs together with Cas9 in HEK293 

and observed that sgRNA_p53-T5 induced most mutations, and the other two showed 

significantly lower efficiency (Figure 10D). In addition, Cas9 was replaced with a nickase 

version (Cas9n) of Cas9, which can generate sticky DNA breaks when coupling with a pair 

of sgRNAs, such as T5 & T8 and T5 & T14 (double nicking, Figure 11A). Cas9n showed low 

level of indel formation (insertions or deletions) (Figure 10D). Together, these results 

suggested that cleavage efficiency is guide-specific and double nicking performance is 

determined by the sgRNA of low efficiency. 

To determine if the efficiency of sgRNAs is cell line specific, I performed the T7 

endonuclease I assay in MCF10A cells, but no clear mutation was observed. This could be 

due to the highly inefficient transfection in MCF10A (40% at highest comparing to 100% 

in HEK293), which resulted in much less expression of both sgRNAs and Cas9. I thus 

turned to evaluating the efficiency by examining colony formation (Figure 10E). In brief, 

constructs including donor DNA and CRISPR/Cas9 were co-transfected in MCF10A. About 

two weeks after selection with G418, cell colonies emerged and colony number was 

counted as the indication of insertion efficiency. The sgRNA_p53-T5 generated about 200 

colonies with Cas9 while sgRNA_p53-T14 generated only about 30 colonies (Figure 10F). 

Additionally, Cas9n with a pair of sgRNAs (T5 & T14) showed low efficiency of about 50 

colonies. These agreed with the measures of cleavage efficiency in HEK293, suggesting 

that sgRNA efficiency may be cell line independent. Moreover, increasing the number of 

sgRNAs transfected appeared to increase the insertion efficiency (up to 250 colonies when 

using T5 & T14 and up to about 300 colonies when using all three sgRNAs). 

Taken together, I showed that CRISPR/Cas9 induced DNA cleavage at the p53 locus in 

HEK293 using T7 endonuclease I assay.   Efficiency tests of sgRNAs suggested that the 

cleavage frequency was sequence-specific. I further showed that CRISPR/Cas9 was able 

to initiate HDR-mediated insertion of fluorescent protein coding sequences in MCF10A 

cells. However, the success rate of targeted insertions needs to be investigated further. 
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Figure 10 CRISPR/Cas9 was able to precisely edit genome DNA 
(A) Schematic demonstration of three sgRNAs targeting human p53 around stop codon. Red and blue lines 

indicate the PAM regions and guide sequences respectively. 
(B) T7 endonuclease I assay is able to detect DNA mutations created by CRISPR/Cas9. Given a population of 

mutated (MU) and wild type (WT) cells, genomic DNA amplification yields a mix of PCR products. 

Denaturing and re-annealing this mixture lead to mismatched double strand DNA. The sites of mismatches 

are recognized and cut by T7 endonuclease I, resulting in two shorter DNA strands, which are visible on 

DNA gel. More mutations lead to higher frequency of mismatching so that more DNA will be cut by T7 

endonuclease I. Therefore, the cleavage efficiency could be quantified by measuring the intensities of bands 

(F Ann Ran et al. 2013).  
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(C) Cleavage efficiency of three ways to deliver CRISPR-Cas9 construct were tested in HEK293. First, sgRNA 

and Cas9 were delivered in separate plasmids, named two vector system (2-Vec.); second, Cas9 plasmid and 

sgRNA which was amplified by PCR instead were co-transfected, named PCR system (PCR); third, Cas9 and 

sgRNA was integrated into a single vector, called one-vector system (1-Vec.). As controls, non-transfected 

HEK293 cells (Con) and Cas9/sgRNA_AL (empty vector without guide sequences) co-transfected HEK293 

cells (Cas9) were included. After three days, cells were harvested and T7 endonuclease I assay was 

performed to quantify the cleavage efficiency. Three technical replicates were performed for each condition, 

except for Cas9 group. 

(D) Different guide sequences showed different cleavage efficiency. HEK293 cells were transfected with 

indicated combinations of plasmids and harvested after three days. Then T7 endonuclease I assay was 

performed to quantify the cleavage efficiency. 

(E) Integration efficiency was examined in MCF10A cells by measuring colony formation. CRISPR/Cas9 

plasmids were co-transfected together with p53 donor DNA harboring neomycin resistance gene in MCF10A 

cells. After three-day incubation, cells were selected in G418 containing medium. After another 14 days, 

colonies of engineered cells emerged. The colony number indicates the integration efficiency. 

(F) Statistical results of the colony counts. w/o donor: Cas9/sgRNA_p53-T5; w/o sgRNA: donor 

DNA/Cas9/sgRNA_AL; WT5: donor DNA/Cas9/sgRNA_p53-T5; WT14: donor DNA/Cas9/sgRNA_p53-T14; 

DN5-14: donor DNA/Cas9n/sgRNA_p53-T5/ sgRNA_p53-T14; WT5-14: donor DNA/Cas9/sgRNA_p53-T5/ 

sgRNA_p53-T14; WT5-8-14: donor DNA/Cas9/sgRNA_p53-T5/sgRNA_p53-T8/sgRNA_p53-T14. 

2.1.3 Insertion frequency is increased by optimizing cleavage efficiency  

In the previous section, genome editing in MCF10A resulted in significantly different 

colony numbers depending on the strategy (Figure 10F), including Cas9 with a single 

sgRNA (WT5), a nickase version of Cas9 (Cas9n) with a pair of sgRNAs (DN5-14) and Cas9 

with multiple sgRNAs (WT5-14) (Figure 11A). To determine the genotypes of the resulting 

colonies, two genomic PCRs were performed for each single cell-derived clone (Figure 

11B). First, a pair of primers binding upstream of left arm and fluorescent gene was used 

to screen for insertions at the targeted locus (PCR1). To determine insertion copies 

(heterozygous or homozygous), second round PCR (PCR2) was performed using primers 

binding to genomic regions outside of homologous arms. The PCR results showed that 

colonies from WT5-14 all had correct insertions, and about 20% of them were 

homozygotes (Figure 11C). DN5-14 showed the lowest efficiency, with 20% of colonies 

being negative and the rest being heterozygous (Figure 11C). Efficiency of WT5 was 

between these two. These results suggested that the rate of positive insertions correlated 

to the insertion efficiency evaluated by colony number. 

During screening, lower bands in PCR2 were not always of identical size, for example in 

clone 8 and clone 9 in Figure 11B. This indicated that the non-tagged alleles might have 

been altered. Sanger sequencing of these bands confirmed that mutations frequently 

happened on the non-tagged allele of heterozygotes (Figure 11D and E). 90% of the 
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heterozygotes generated by WT5 had mutations on the non-tagged allele. Interestingly, 

the most efficient strategy, WT5-14, showed the lowest mutation frequency. And no 

mutations in heterozygotes were detected using the double nicking strategy DN5-14. 

In summary, multiple sgRNAs (WT5-14) were able to improve insertion efficiency and 

reduce the mutation frequency in heterozygotes, but the off-target sites were also 

increased. Double nicking strategy (DN5-14) in principle is able to minimize the off-target 

effect, but insertion efficiency is also lowered. Nonetheless, this strategy is ideal for 

establishing heterozygous knockins, since the mutations on the non-tagged allele 

happened much less frequently than others. 
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Figure 11 Three different strategies were tested 
(A) Schematic demonstration of three strategies. WT5, uses wild type Cas9 and a single sgRNA (sgNRA_p53-

T5) to cut DNA and induce blunt DNA breaks; DN5-14, called Double Nicking strategy, combines a mutated 

"nickase" version of the Cas9 and a pair of sgRNAs (sgNRA_p53-T5 and sgNRA_p53-T14). This strategy could 

theoretically decrease the potential off-target effects. WT5-14, uses wild type Cas9 and multiple sgRNAs 

(sgNRA_p53-T5 and sgNRA_p53-T14) to increase the cleavage chance. 
(B) Two genomic PCRs were performed to screen the genotypes of clones. Three primers, 1, 2 and 3 were 

designed to bind in upstream of the left homologous arm, downstream of the right homologous arm and 

fluorescent gene. The gel pictures here are examples from an experiment (WT5). Integration of exogenous 

fragments can be identified by PCR1 using primer 1 and primer 3. Homozygous knockins show a single band 

of bigger size from PCR2 using primer 1 and primer 2 (pink arrow), while heterozygous knockins show two 

bands (blue arrow). 
(C) Insertion efficiency was different among these three strategies. Cells were transfected and clones from 

each strategy were examined using genomic PCRs. 
(D) Mutations happened frequently in the non-tagged alleles in heterozygous knockins. The lower band in 
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PCR2, which is the second allele in heterozygotes, was sent for Sanger sequencing. Normal sequence 

represents the un-mutated p53 locus. Red arrow pointed the cut site of sgRNA_p53-T5. Cut site of 

sgRNA_p53-T14 is about 60 bps downstream of stop codon. Red dot means deleted bps, the blue and red 

letters represent the incorrect repair. Number of corresponding genotypes was listed on the rightest 

column. 

(E) Quantification of mutations in non-tagged alleles. Normal alleles represent the wild type p53 sequence; 

mutated alleles comprise all undesired alterations in the second allele in heterozygous knockins. 

2.1.4 Length of homology regions in repair template determines the insertion 

efficiency 

After cleavage, cells repair DNA breaks using the exogenous donor as a template in the 

HDR pathway. Therefore, the design of donor DNA may also have impact on the insertion 

efficiency. Especially, the length of homologous arms may be a key factor. Theoretically, 

longer homologous arms are more advantageous for insertions. However, it also means 

more difficulty for cloning donor DNA. To identify the optimal length, I examined colony 

formations using donor DNA with homology arm lengths ranging from 70 bps to 1300 

bps. As expected, insertion efficiency increased with the lengths of the homology (Figure 

12). 70-bp homologous arms were sufficient to lead to 50% positive colonies. The 

efficiency increased to about 100% with homologous arms as long as 1300 bps. In 

addition, homozygous insertions started to emerge with 410-bp homologies. 

 

Figure 12 Lengths of homologous arms in the donor DNA influence the insertion efficiency  

Donor DNA with various arm lengths was amplified by PCR. In details, I used the aforementioned plasmid 

(~1300 bp in the figure) as a PCR template and designed primers binding on different regions in 

homologous arms to get a list of donor DNA of different arm lengths. Then I separately co-transfected these 

donor DNA with CRISPR/Cas9 and sgRNA_p53-T5 in MCF10A. After selection, clones formed and were 

examined by genomic PCR (Figure 11B). Blue bars represent heterozygous knockins and yellow bars 

represent homozygous knockins. Together they indicate the positive rate in the examined clones.  
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2.1.5 Off-target effects are not detected 

Cas9 tolerates non-perfect matches between genomic DNA and guide sequence of sgRNA, 

resulting in cleavage on unwanted sites. This off-target effect was reported in a number of 

publications (Lin et al. 2014; Cho et al. 2014; Fu et al. 2013). It has potential influence on 

the p53 signaling pathway or cellular activities. To examine off-target risk, I randomly 

selected 11 clones and checked the four most-likely off-target sites by Sanger sequencing. 

Wild type Cas9 and sgRNA_p53-T5 were used in this test and off-target sites were 

identified using CRISPR Design tool (http://crispr.mit.edu). The first four sites of highest 

off-target score were chosen (Figure 13A). I amplified the corresponding regions by PCR 

and sequenced the product. Once mutations happened, the readouts of Sanger sequencing 

from a single clone will be a mixture of two different sequences with overlapping peaks in 

the chromatogram. However, each examined off-target site showed only one sequence of 

high quality in 11 clones (Figure 13B), indicating that off-target frequencies were below 

9.1%.  

 
Figure 13 Off-target effects were not observed among 11 clones 
(A) Four off-target sites of high risk were examined. sgRNA_p53-T5 was chosen to test the off-target effects. 

Off-target 1 has two mismatches to the target site (p53-T5), and the other have three mismatches. 
(B) Sanger sequencing results among 11 single cell-derived clones. For each off-targets, the Sanger 

sequencing results were overlapped, which clearly showed that no a single mutation was detected for four 

off-targets among 11 clones. 
 



Results 

 

29 

2.2 Establishing a combined reporter to monitor p53 and p21 dynamics 

In the previous chapter, I showed that CRISPR/Cas9 technology is a robust tool to create 

endogenous fluorescent reporters. Technically, the fluorescent intensity only reflects the 

level of fluorescently tagged protein. Can the measured signals faithfully indicate the 

endogenous level of target protein? Moreover, does this engineering perturb the p53 

signaling network? To answer these questions, I performed western blot and 

immunofluorescent staining in order to examine p53 level and its activity. In addition, I 

also conducted flow cytometry-based cell cycle assay to investigate if cell fate decisions 

are altered after damage in engineered cells. 

2.2.1 Tagging a single allele is sufficient to monitor p53 dynamics 

I first created a cell line expressing cbx5-mCerulean (cbx5-C/-C), previously described as a 

nuclear maker for tracking cells in live-cell imaging (Cohen-Saidon et al. 2009). CBX5 gene 

encodes chromobox protein homolog 5 (cbx5 or HP1) as non-histone protein part of the 

heterochromatin family (Ye & Worman 1996). During cloning p53-mVenus reporter cells, 

a number of clones were obtained, including heterozygous clones and homozygous clones 

(Figure 11B). In principle, all copies of p53 were tagged in the homozygotes, ensuring that 

the fluorescent intensity was a precise meter of p53 level. However, if the exogenous 

fluorescent protein has an effect on p53 function, homozygous cells would lose 

corresponding cellular activities, while these activities would be at least partially retained 

in heterozygotes. However, the heterozygous reporters also have some potential 

problems. Especially, the fidelity was unclear since p53 expression from each allele may 

be unequal. To address these questions, I established two reporters, p53-Y/-R / cbx5-C/-C 

and p53-Y/-null / cbx5-C/-C. The former one had both p53 alleles tagged with either mCherry 

or mVenus (Figure 14A)，and the other one had a single allele tagged with mVenus 

(Figure 14B). In response to DNA damage, the double-tagged cells showed very similar 

RFP and YFP signals over time comparing to the single-tagged cells (Figure 14C and D), 

and both signals were highly correlated (Pearson correlation coefficient larger than 0.89) 

in hundreds of cells at different time points (Figure 14E). This provided strong evidence 

that p53 expression was not allele specific in MCF10A cells. So to tag a single allele is 

sufficient to monitor protein dynamics. In further experiments, I found that growth of 

double-tagged cells was slower and the efficiency of further genome engineering dropped 

down in a p53 homozygous cell line (two to fifty colonies in p53 heterozygous cells), 
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indicating that some undetected factors had been altered in homozygotes. Considering 

these, heterozygous reporters were preferred in the next experiments. 

 
Figure 14 Tagging a single allele is sufficient to monitor p53 dynamics 
(A) Schematic demonstration of p53-Y/-R / cbx5-C/-C cells. Both alleles of p53 were tagged with mVenus (YFP) 

and mCherry (RFP) to visualize allele-specific p53. 5’UTR and 3’UTR represent the untranslated regions on 

5- and 3-end. YFP, RFP and CFP indicate mVenus, mCherry and Cerulean, respectively. CBX5 encodes 

Chromobox Protein Homolog 5, regarded as a nuclear marker in my project. 
(B) Schematic demonstration of p53-Y/-null / cbx5-C/-C cells. Only a single allele of p53 was tagged with 

mVenus. ‘-null’ represents the unmodified p53 allele and underlines no indel formation on it. 
(C) Time-resolved analysis of p53 levels in a single p53-Y/-R / cbx5-C/-C cell upon damage induction. p53 

network was activated using 10 Gy -irradiation. Allele-specific p53 was monitored with two channels. The 
resulting dynamics were highly correlated between two alleles.  
(D) Time-resolved analysis of p53 levels in a single p53-Y/-null / cbx5-C/-C cell upon damage induction. Only 

tagged allele showed p53 oscillation after -irradiation (10 Gy). An empty background was recorded in other 

channel as control. 
(E) Signals from both alleles were quantified in single cells at selected time points. Each dot represents a 

cell. p53-mVenus represents the signals measured from YFP channel and p53-mCherry represents the 

signals from RFP channel. 
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2.2.2 Fluorescent reporter faithfully reflects endogenous p53 level 

The fusion protein, p53-mVenus, is a combination of p53 and fluorescent protein of about 

27 kDa, which may influence normal activities of p53, such as production, degradation 

and movement. To test this experimentally, I examined by immunofluorescent staining 

whether the levels of the fusion protein and wild type p53 were comparable. Both p53-Y/-

null / cbx5-C/-C cells (clone 21, indicated as PC21) and wild type MCF10A cells were treated 

with neocarcinostatin (NCS, 400 ng/ml), a radiomimetic drug which can damage DNA and 

activate p53. At several time points, p53-mVenus was compared to the total p53 in cells 

(including wild type p53 and p53-mVenus), which was evaluated by immunofluorescence. 

5 hours after DNA damage, p53-Y/-null / cbx5-C/-C cells showed varying p53 levels in nuclei, 

which were observed from both fusion protein and antibody staining (Figure 15A top 

panel). Most importantly, signal intensities from both were highly correlated in single 

cells. Also, wild type cells did not show any signals from YFP channel (Figure 15A bottom 

panel), proving that measurement of the fusion protein is independent to 

immunofluorescence. Next, I quantified the intensities of each cell and evaluated the 

correlation using Pearson correlation coefficient in order to statistically investigate the 

fidelity of the fluorescent reporter. Five thousand cells were sampled for both cell lines at 

each time point. The  fusion protein showed high correlation (Pearson correlation 

coefficients were all larger than 0.83 ) to total p53 levels at all time (Figure 15B), 

suggesting that the fusion protein faithfully reflects endogenous p53 level. 
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Figure 15 Endogenous fluorescent reporter faithfully reflects p53 level 
(A) Representative images of p53 signals obtained by immunofluorescent staining and reporter protein. 

Wild type MCF10A and p53-mVenus cells were treated with NCS (400 ng/ml). At selected time points, cells 

were fixed and stained with anti-p53 primary antibody followed by Alexa Fluor 594 conjugated secondary 

antibody. Nuclei were stained by Hoechst.  
(B) Single cell quantification of p53 signals at selected time points. The intensity of signals captured from 

two channels (Cy5 and YFP) were quantified. p53 represents the signals obtained by antibody conjugation, 
and p53-mVenus represents the signals from mVenus tagged p53. 5000 cells were randomly sampled at 

each time point and Pearson correlation coefficients were calculated. 

2.2.3 Reporter cells show unaltered p53 responses to DNA damage 

To examine if the fusion protein influenced the p53 network, I exposed cells to 10 Gy -
irradiation and measured protein levels of p53 and p21 over time by western blot. As 

shown in Figure 16B, p53 increased immediately after damage, reached the peak level at 

5 hours and went down to basal level after 16 hours in wild type MCF10A. To assess its 

activity, its target gene p21 was measured as well. The response faithfully followed p53 

dynamics with 1~2 hours’ delay as expected (Loewer et al. 2010). In p53-Y/-null / cbx5-C/-C 

cells, wild type p53 and p53-mVenus were both detected and showed nearly equal protein 

levels. They together showed similar dynamic to wild type MCF10A. Importantly, p21 



Results 

 
33 

showed similar dynamic, suggesting that fluorescently tagging both p53 and cbx5 locus 

did not influence p53 activity. 

 
Figure 16 p53-Y/-null / cbx5-C/-C  and wild type MCF10A cells showed similar p53 and p21 dynamics on 

population level 
(A) Protein dynamics of p53 and p21 in p53-Y/-null / cbx5-C/-C cells. As controls, cells without irradiation were 

analyzed both in the beginning (0 hour, 0 Gy) and at the end (24 hours, 0 Gy) of the experiment. 
(B) p53 and p21 dynamics in wild type MCF10A. 

2.2.4 Reporter cells show no differences in cell fates after damage  

Although no significant influence was observed on the p53 network in engineered cells, it 

was not clear if the tagging affects the DNA damage response. To inspect potential effects, 

I conducted cell cycle assays after damage induction using flow cytometry. In unmodified 

cells, the number of G2-phase cells increased until 24 hours post damage, while fractions 

of G1- and S-phase cells decreased (Figure 17A). This suggests that G2 arrest instead of 

G1 arrest was the main outcome following DNA damage in MCF10A line. Importantly, I 

observed similar distributions of cell cycle phases over time in p53-Y/-null / cbx5-C/-C cells 

(Figure 17B). This shows that engineering the p53 and cbx5 locus had no influences on 

cell fate determinations after DNA damage. 

 
Figure 17 Distributions of cell cycle phases are similar after 10 Gy -irradiation between p53-Y/-null / 
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cbx5-C/-C and wild type MCF10A cells 

(A) Cell cycle phases were measured at indicated time points after DNA damage in p53-Y/-null / cbx5-C/-C. Cells 

were exposed to 10 Gy -irradiation, and harvested at several time points. Non-irradiated cells were also 

harvested at the beginning (0h), at the half (24h) and at the end (48h) of the experiment as controls. All 

samples were subjected to PI staining, and cell cycle phases were determined according to DNA content 

measured by flow cytometry. 

(B) Distribution of cell cycle phases after DNA damage in wild type MCF10A cells.  

2.2.5 Establishment of a combined reporter to simultaneously monitor p53 and 

p21 

Since p53-Y/-null / cbx5-C/-C was proven not to affect p53 network or cellular outcomes, I 

engineered a p53 target gene, CDKN1A, as well (Figure 18A and B). CDKN1A encodes p21, 

which regulates cell cycle progression by inhibiting the activity of CDK/Cyclin complexes. 

This combined reporter can simultaneously capture information about p53 and p21 levels 

in the same cells (Figure 18C), which is an ideal model to study how a mediator (p53) 

influences its responder (p21) to control cell decisions. After screening and microscopy 

examination (Figure 18B and C), clone 45 (named PCP45 in the remaining of my thesis) 

with the genotype p21-R/-null / p53-Y/-null / cbx5-C/-C was identified as a suitable reporter 

and further validation focused on this clone. Western blot analysis showed that the third 

fusion protein, p21-mCherry, also faithfully reflected the dynamic of its counterpart, wild 

type p21 (Figure 18D). In addition, p53 dynamics were similar to parental cell lines of 

PCP45, including wild type MCF10A and PC21 (Figure 16 and Figure 18D). However, 

diverging p21 dynamics were observed at later time points in PCP45, as both p21 species 

remained elevated from 8h to 24h (Figure 18D). This suggests that p21-mCherry may 

partially influence p21 stabilization. Accordingly, cell cycle distributions of PCP45 were 

slightly different to its parental cells after irradiation as well (Figure 17 and Figure 18E). 

Specifically, fewer G1-phase cells and more G2-phase cells were observed in PCP45 16h 

after damage. I further analyzed two other clonal cell lines, including a homozygote and 

heterozygote insertion of mCherry in the CDKN1A locus, both created in an independent 

experiment. However, the same differences were observed in these cell lines, indicating 

that the p21-mCherry fusion had an effect on cell activities. However, as there are no 

alternative labeling methods available and the difference presented here did not alter the 

major patterns of cellular dynamics or main cellular outcomes, clone PCP45 was still 

considered as a proper model, but the slight differences should be always addressed when 

using this combined reporter. 
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Figure 18 Establish p21-R/-null / p53-Y/-null / cbx5-C/-C reporter cells 
(A) Schematic illustration of p21-R/-null / p53-Y/-null / cbx5-C/-C reporter cells. ‘-null’ represents un-changed 

alleles in heterozygous knockins. 5’UTR and 3’UTR represent the untranslated regions on 5- and 3-end. YFP, 

RFP and CFP respectively indicate mVenus, mCherry and Cerulean. CBX5 encodes Chromobox Protein 

Homolog 5, regarded as a nuclear marker in my project. 
(B) Validation of genotype by genomic PCR. WT, PC21 and PCP45 indicate parental MCF10A (wild type), 

p53-Y/-null / cbx5-C/-C (clone 21), and p21-R/-null / p53-Y/-null / cbx5-C/-C (clone 45). RFP indicates the PCR 

product amplified using primer 1 and primer 3 for p21 locus (Figure 11B). Fragments representing p21-

mCherry and wild type p21 are indicated. 
(C) Fluorescent signals of three fusion proteins. PCP45 cells were irradiated with 5 Gy X-ray and expression 

of the fusion proteins was examined by microscopy.  
(D) Population levels of p53 and p21 were examined after irradiation in PCP45 cells by western blot. The 

fusion protein, p21-mCherry had comparable level to p21, which was produced from the other allele. 

Comparing to p53-Y/-null / cbx5-C/-C and wild type MCF10A cells, PCP45 cells showed similar p53 and p21 

dynamics (Figure 16). 
(E) Cell cycle phases were measured after DNA damage in PCP45 cells. Experiment was performed together 

with p53-Y/-null / cbx5-C/-C and wild type MCF10A cells (Figure 17). 
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2.3 Cell specific degradation leads to cellular heterogeneity in the DNA damage 

response 

In the previous chapter, I observed heterogeneous cellular responses to DNA damage: 

while most cells arrested in G2 phase of the cell cycle, some cells remained in G1 and S-

phase even after high amounts of DSBs (Figure 17). On the molecular level, DNA damage 

triggers the p53 network to induce the transactivation of p21 causing cell cycle arrest in 

G1 and G2. This has been well defined in many studies (Besson et al. 2008). However, 

population analyses employed in these studies usually emphasized the predominant 

phenotypes, such as G2 arrest, but neglected diverging responses of small sub-

populations. Consequently, very little is known about heterogeneous cellular responses to 

DNA damage. In this chapter, I combined time-lapse microscopy and computational 

analysis to investigate at single cell level how p21 dynamics are shaped under p53 

regulation and how they modulate cellular outcomes. 

2.3.1 Cells exhibit heterogeneity in response to DNA damage 

To examine the dynamical behavior of endogenous p53 and p21 in response to DNA 

damage, p21-R/-null / p53-Y/-null / cbx5-C/-C (PCP45) cells were first imaged under normal 

condition for about 20 hours to determine the basal state. Then they were subject to X-ray 

irradiation of a series of doses, ranging from 0 Gy to 10 Gy. Immediately following was 

time-lapse imaging for another 24 hours. This experimental setting allowed not only 

monitoring of basal state of p53 and p21 before damage but also tracking of p53 and p21 

responses after DNA damage.  

Under basal conditions, cell showed highly non-uniform behavior. Some cells accumulated 

both p53 and p21 in nuclei. Other cells showed only p53 signals. In addition, there were 

also many cells without detectable p53 and p21 (Figure 19A). Upon DNA damage induced 

by 5 Gy X-ray irradiation, p53 levels immediately started to rise and reached the peak 

levels at about 4 hours post-irradiation, followed by further repeated p53 pulses. 

Interestingly, p21 responses appeared to be more heterogeneous than p53. After 

activation of p53, some cells accumulated p21 immediately, while others showed a clear 

delay of p21 upregulation (Figure 19A).  
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The question arises whether the diverse responses are determined by intrinsic properties 

of the cells or related to threshold effects which would lead to cell-to-cell variability when 

the stimulus is weaker than maximal activation level of the signaling pathways (Jeschke 

et al. 2013). To test it, cells were imaged after exposure to X-ray of various doses, including 

0 Gy, 1 Gy - a low dose, 5Gy - a high dose and 10 Gy - an excessive dose. Median protein 

levels of all conditions were analyzed to identify dose-independent phenomena (Figure 

19B). I observed that p53 was activated immediately after damage, and population level 

of p21 also increased in a few hours after p53 activation. Peak levels of p53 and p21 both 

increased with doses. p53 levels were distributed in a narrow range which agrees with 

previous observations on transgenic reporters (Finzel et al. 2016). More interestingly, the 

distributions of p21 were highly varying in a dose independent manner (Figure 19B). To 

quantify the diversity, the standard deviations of p53 and p21 levels were computed at all 

time points and it confirmed that p21 levels were highly diverse and p53 levels were 

relatively homogeneous after high irradiation doses (Figure 19C). These results suggested 

that the cell-to-cell variability is not caused by diversity of stimulus levels or signaling 

sensitivity. To better control input/damage levels, I used 5 Gy irradiation as standard 

stimulus for the following experiments. As expected, median levels observed in time-lapse 

microscopy were in line with western blotting results shown in the previous chapter 

(Figure 16 and Figure 18D).  

Finally, to check the reproducibility, I performed three independent experiments and 

investigated the variability of p21 level for each. All experiments consistently showed 

heterogeneous p21 responses and homogeneous p53 levels (Figure 19D). Therefore, I 

draw the conclusion that upon DNA damage, the population level of p21 increased 

following p53 activation and that the p21 response appeared to be more heterogeneous 

than the p53 response across individual cells.  
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Figure 19 Cells show heterogeneous responses following DNA damage 
(A) Example images from live-cell microscopy at selected time points. Cells were imaged under unstressed 

conditions for about 20 hours, exposed to 5 Gy and monitored for additional 24h. Two colored arrows 

indicate cells with heterogeneous p21 responses.  
(B) p53 and p21 responses to varying irradiation doses. Protein levels of p53 and p21 in a population of 

cells are represented by colored ribbons. The upper and lower edges of the ribbons represent 75th and 25th 

percentiles, respectively. Bold lines represent median levels. p53 and p21 are indicated by the green and 

purple. Protein levels correspond to calibrated fluorescent intensities. The indicated number of cells were 

tracked and analyzed for conditions. Blue vertical lines indicate time of irradiation. 
(C) High irradiation doses generate highly diverse p21 responses. As a measure of dispersion, standard 

deviations of p53 and p21 levels at all time points are shown. SD: standard deviation.  
(D) Standard deviations of p53 and p21 levels from three biological replicates. 
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2.3.2 X-ray irradiation induces homogeneous p53 dynamics but heterogeneous 

p21 dynamics 

In order to further understand how individual cell behaves, the single cell trajectories 

were extracted and examined. Under non-stressed condition, p53 showed spontaneous 

pulses in most of the cells, while just a few cells accumulated p21 to the p53 fluctuation 

(Figure 20A). This is in line with previous publications (Loewer et al. 2010), which has 

reported that the transient p53 fluctuation is not able to induce expression of its targets 

in absence of DNA damage. This may be because modifications on p53 are missing in spite 

of sufficiently high p53 level (Tang et al. 2008; Loewer et al. 2010). Then what will happen 

if p53 is induced by DNA damage? Does p21 faithfully follow p53 pulses? 

To answer these questions, I exposed the cells to 5 Gy irradiation to activate p53 network 

so that p53 pulses were synchronized in all cells right after damage (Figure 19A and 

Figure 20A). As its target, p21 level increased a few hours after p53 activation in some 

cells. But surprisingly, there were a number of cells which did not immediately follow the 

first p53 pluses but answered to p53 signals at a later time (Figure 19A and Figure 20A). 

When looking into the single cells, I observed more distinct trajectories. Some cells 

showed immediate p21 arising and fast falling, other cells showed rapid increasing but 

slow falling, and there were also cells with delayed p21 appearance (Figure 20B). To 

characterize the dynamical behavior, I defined several features to quantify these divergent 

trajectories (Figure 20C). For example, the steady-state level measured during non-

stressed period is determined as basal level. Once the protein level increases to as high as 

1.3x basal level, a peak is considered to form. This filter allows capturing the main patterns 

but leaving out the noise. To indicate the extent to which the level has increased, I 

normalized the signal intensity at all time points to basal level and termed the 

transformed signal as fold-change. The time when cells start to react often provides 

important information. But to precisely determine it is of much difficulty because the 

dynamics are usually very noisy and arising rates at the beginning are usually not 

significant enough to quantify. The time at which cell reaches 15 percentiles of the 

difference between peak and basal level is often more representative, therefore I define it 

as reacting time. Last but not least, area between trajectories and basal level line is 

calculated. This measure reflects the accumulative protein level over time, which 

integrates information on both protein production and degradation. In addition, as cell 



Results 

 

40 

division event is an important indication of cell cycle states, an intensity-based algorithm 

is performed on nuclear marker level to determine the division times (Figure 20D).  

With these measures, I was able to quantify how frequently cells were pulsing and also 

when they tended to reach the peak (Figure 20E and F). As the top panels in Figure 20E 

showed, p53 was likely to show less than two pulses during 44 hours in non-stressed cells. 

In response to 5 Gy irradiation, up to 95.3% cells reacted rapidly and reached p53 peak 

level during the first 400 minutes (Figure 20E bottom panels). Following the first pulse, 

p53 turned to pulse more asynchronously (Figure 20E bottom panels). In consequence, 

damaged cells showed much larger number of p53 pulses comparing to non-stressed cells 

(Figure 20E left panels). p21 rarely responded to p53 fluctuation in non-stressed cells, 

according to the analysis of pulse frequency and peak time (Figure 20F top panels). After 

damage, about 50% of cells started to accumulate p21 right after p53 activation (Figure 

20F bottom right panel) and the majority of them showed only one pulse (Figure 20F 

bottom left panel), suggesting that in these reacting cells, p21 just responded to the first 

p53 pulses and showed no further pulses despite of the repeated p53 pulses. The other 

cells did not show prompt responses, but p21 frequently increased slowly at later times 

among them (Figure 20A and B). Taken together, observations from single cells strongly 

indicated that cells responded heterogeneously to DNA damage. Specifically, about a half 

cells showed p53 dependent upregulation of p21. And the other half cells showed 

unexpectedly delayed p21 accumulation. 

Why is a single stimulus able to produce such diverse cellular responses? Why do not p53 

pulses lead to p21 accumulation in some cells? To answer these questions, I first need to 

gather cells of similar responses for analyzing the common features. 
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Figure 20 p21 dynamics are highly diverse in spite of relatively homogeneous p53 pulses after 

damage 
(A) 30 cells from 2644 samples are randomly selected to demonstrate the single cell behavior. The top and 

bottom panels show p53 and p21 trajectories respectively. Each color represents a single cell.  
(B) Four illustrative examples show diverse dynamics from cell to cell. The unique cell IDs are used to mark 

each individual cell.  
(C) Demonstration of quantitative features of single cell trajectories. The steady-state level is termed as 

basal level. Once the protein level goes as high as 1.3 times of basal level, a pulse is then identified. The local 

maximum is literally defined as peak level and the time at which it is reached is termed as peak time. The 



Results 

 

42 

ratio of signals to the basal level is defined as fold-change. The area between the real dynamics and artificial 

basal level line is measured and phrased as integral.  

(D) When cells undergo mitosis, nuclear content divides into two sister cells. Integrated level of nuclear 

marker, cbx5-mCerulean, then drop rapidly down to a half. By detecting this pattern, cell division events can 

be determined.  

(E) p53 dynamics are characterized using the defined features in non-stressed and damaged cells. Top 

panels including a and b show that cells experienced spontaneous and transient pulses under normal 

condition. The bottom panels including c and d show that 5 Gy irradiation triggered synchronized cellular 

responses. p53 immediately increased in all cells and reached the peak level in 400 minutes. Following the 

first pulses, cells maintained frequent but less asynchronous pulsing.  

(F) p21 dynamics are characterized using the defined features on normal and stressed conditions. As top 

panels (a and b) showed, a few cells showed spontaneous pulses under normal condition. Just about 7.1% 

cells had pulsed during a period as long as 10 hours. While after damage, about a half of cells showed pulses 

in 10 hours, as bottom right panel tells. And most of reacting cells just exhibited a single pulse till the end 

(bottom panels). 

2.3.3 A shape-based distance allows quantifying similarities of dynamics between 

cells 

Clustering algorithms are often used to classify high complexity data in order to expose 

hidden information in mixed populations. Given the extreme complexity of biologic 

systems, clustering analysis is widely used in life science (Zhao and Karypis 2005), 

especially in the field of ‘omics’, such as genomics (Eisen et al. 1998) and proteomics 

(Harris et al. 2002). Most applications are based on snapshot data, which usually use static 

observations, for example, the levels of proteins, to determine the similarity among 

subjects. However, time-series data have features on both amplitude- and time-scale, 

therefore, the definition of similarity highly depends on the particular subjects and 

questions to answer. In this section, I will discuss possible measures and determine the 

method most suitable for grouping single cell trajectories. 

From thousands of single cell trajectories, I observed that the main differences largely lay 

in the shapes of trajectories. The other patterns, for example, maximum levels and 

maximum fold-change, were less varying from cell to cell (Figure 20A and Figure 21A). 

Therefore, a measure, which is able to quantify the shapes of trajectories is required to 

distinguish different responses. Euclidean distance (ED) is the most commonly used 

approach to quantify the similarity between two sequences. Given five examples of p21 

dynamics (Figure 21A), it sums up square of straight-line distance between a pair of 

trajectories at each time points, then takes the square root as readout of dissimilarity 

(Figure 21B). 
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ED is cost-efficient to handle low dimensional data set. However, it has limitations on 

processing high dimensional sequences. Both amplitude and phase distortions have great 

influence on Euclidean distance. Take first three cells in Figure 21A as examples: 

comparing to cell c, cell b was intuitively more similar to cell a. However, ED between cell 

a and b was high due to the phase-shift between them (Figure 21B and C), and cell a and 

c had smaller Euclidean distances since their amplitudes were similar despite they 

showed clearly different dynamics (Figure 21B and C). Other examples were cell c, cell d 

and cell e. Cell c and cell d showed both fast accumulation and complete downregulation 

of p21, whereas cell e maintained high p21 at the end point. The decay rate in dynamics 

may reflect some regulation mechanisms (Davis & Purvis 2015), so it is reasonable to 

consider that cell c and cell d might have similar responses of signaling networks. 

However, the Euclidean distance clearly showed that cell d and cell e were more similar 

because their amplitudes were closer (Figure 21C). Taken together, Euclidean distance 

was not able to measure the similarities of single cell trajectories. Its accuracy was mainly 

restricted by the phase- and amplitude- distortion. 

 

Figure 21 Euclidean distance cannot properly gather the cells of similar responses 
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(A) Five cells were selected from an experiment to test various methods of similarity measurement. The 

phenotypes of these cells appeared frequently in the experiments.  

(B) The schematic demonstration of Euclidean distance. Multiple vertical lines indicated straight-line 

distances. ED (x, y) represents the distance between x and y.  

(C) The distance matrixes of five samples were presented by a grayscale heat map. Dark gray represents 

shorter distance (higher similarity), and light gray represents longer distance (lower similarity).  

To circumvent the distortions, a more complex algorithm, named dynamic time warping 

(DTW), was developed decades ago (Berndt and Clifford 1994). It calculated an optimal 

match between two signals in order to minimize the sum of overall distances. To achieve 

this, it allowed many-to-one or one-to-many points as distance measures instead of simply 

using one-to-one line distances. This equated to non-linearly ‘warping’ one of the signals 

so that sequences were aligned in time domain and the bias resulted from phase distortion 

can be removed (Figure 22A). For examples, Euclidean method restricts one-to-one 

distance at same points in time domain between cell a and cell b (Figure 21B up panel). 

Dynamic time warping broke this restriction and allowed distance measure across time 

points (Figure 22B). Intuitively, one of the sequences was transformed to be able to align 

to the other one (Figure 22C). As a result, the measure supported the impression that cell 

a and cell b were much similar (Figure 21E and Figure 22D). The second example is the 

comparison between cell c and cell d (Figure 21A). Calculation of Euclidean distance 

showed big dissimilarity between them (Figure 21C), while dynamic time warping 

indicated that cell c and cell d actually were relatively similar (Figure 22D). These 

examples suggested the robustness of dynamic time warping in restoration of time-lag 

signals. 

However, DTW basically is an extension of Euclidean distance. The distance measure was 

also highly sensitive to absolute levels. For instance, although trajectory a and trajectory 

c were clearly different, they were regarded as highly similar responses by DTW since the 

low amplitudes likely did not lead to a high distance (Figure 22D). The DTW distance of 

cell d and cell e also maintained this bias (Figure 22D). Taken together, to efficiently 

quantify the similarity of dynamics, differences in phase and amplitude should be equally 

considered and a novel method was desired to tackle both challenges. 
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Figure 22 Dynamic time warping (DTW) improves the performance on alignment of shifted 

trajectories 
(A) Illustration of sequence alignment by DTW. The black and brown line represent two artificial sequences. 

Lines between them represent the optimal matches.  
(B) The schematic demonstration of DTW distance between cell a and cell b. DTW uses elastic distances 

(many-to-one or one-to-many) to determine an optimal match. It equates to warping one of the signals 

(here, cell a) in time domain (C). 
(D) DTW distance matrix of the five samples. Two pairs, cell a/cell b and cell c/cell d, are recognized as 

similar responses by DTW. 

Seeing that time-series analysis is widely applied in many fields, many computer scientists 

have put much effort on developing novel algorithms. Among them, John Paparrizos and 

Luis Gravano have recently introduced an advanced method, named shape-based distance 

(SBD), to assess the similarity of time-series signals based on their shapes (Paparrizos & 

Gravano 2015). They used electrocardiography records as examples to demonstrate that 

this novel algorithm outperformed other approaches in most cases, including Euclidean 

distance and dynamic time warping. However, given that the complexity of single cell 

trajectories here is different from electrocardiography records used in the report, the 

effectiveness of this method on analysis of single cell data needs to be further tested.  

I used the same five examples to evaluate the performance of this shape-based distance 

measure. As discussed above, although cell c and cell d have similar shapes, the large 

differences in scaling and phase led to readouts of low similarity when using Euclidean 

distance or DTW (Figure 21E and Figure 22E). According to this algorithm, sequences 
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were first Z-normalized to counteract the influence from amplitudes, so that their levels 

were scaled into a uniform scope, ranging from lowest level of about -1 to maximum of 

about 3 unit (Figure 23B), while the original data exhibited large differences on the peak 

levels, which were about 400 and 900 unit respectively (Figure 23A). Next question was 

how to align the signals of different phases. Cross-correlation, an extension of correlation, 

was used to specially measure the similarity for time-lagged sequences. The same report 

has proven that cross-correlation with coefficient normalization is the most accurate one 

among other formats of cross-correlation methods (Paparrizos & Gravano 2015). 

Therefore, I utilized this method to compute the similarity of the transformed sequences. 

The results suggested high similarity between cell c and cell d and large difference 

between cell a and cell c (Figure 23D), the latter of which was not observed with Euclidean 

distance and DTW (Figure 21C and Figure 22D). Other examples were cell c, cell d and cell 

e. Both Euclidean distance and DTW exaggerated the similarity between cell d and cell e 

but underestimated the similarity between cell c and cell d, as discussed above (Figure 

21C and Figure 22D). Excitingly, SBD showed that cell e was slightly less similar to cell d 

compared to cell c (Figure 23D).  

To conclude, in order to precisely measure the similarity of trajectories for further 

clustering, three methods of distance measure were compared using five cells from an 

experiment, including Euclidean distance, dynamic time warping and shape-based 

distance. The results of tests showed that the last one was a powerful approach to analyze 

single cell trajectories of phase- or/and amplitude variants.  
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Figure 23 Shape-based distance measure improves distinction of phase- or/and amplitude distorted 

trajectories  
(A-B) The original signals were Z-normalized to two rescaled sequences, which still maintained the shapes 

of original sequences. 
(C) Cross-correlation with coefficient normalization was applied to estimate the distance between 

transformed sequences. The algorithm determined the time lag by shifting one of the trajectories until 

optimal correlation was found. The dash line here represents artificially appended Zero which basically 

reflects the shifted units.  
(D) Distance matrix by shape-based measure.  

2.3.4 Two subgroups of distinct responses are identified 

I calculated pair-wise shape-based distances for all single cell trajectories to obtain a 

corresponding distance matrix. Next, I combined K-centroid and binary tree algorithms to 

cluster the cells based on the distance matrix, and two groups are significantly 

discriminated (Figure 24A). Remarkable differences in p21 responses were visible 

between the resulting subgroups (Figure 24B). The first one showed an immediate 

accumulation of p21 following p53 activation after irradiation. Although activation of p53 

in the second one was similar to the first subgroup, p21 responses were largely different, 
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being obviously delayed compared to the first subgroup. These two subgroups were 

named ‘immediate’ and ‘delayed’ responses, respectively. As expected, the distribution of 

single cell dynamics turned to be narrow in each subgroup, especially in the first few hours 

(Figure 24C), comparing to the wide distribution of the whole population (Figure 19B).  

 
Figure 24 Two subgroups are initially identified by shape-based clustering  
(A) The distances of all possible pairs from whole cell population were measured. Based on distance matrix, 

K-centroid clustering was implemented and two clusters of different p21 responses were identified. The 

colorbar represents the distance, which equates to dissimilarity. Each pixel indicates the distance between 

two cells. Many pixels then form a vertical or horizontal line showing the distances between a cell to every 
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other cell. Cell number is marked on the left side and bottom of matrix.  

(B) The resulting subgroups show distinct p21 dynamics but relatively similar p53 responses. The most left 

panel illustrates two subgroups of ‘immediate’ response and ‘delayed’ response. The middle and right panels 

represent p21 and p53 separately. To visualize all cells in a uniform scale, fold-changes were first Z-

normalized and plotted in subgroups. Each line represents fold-change of a single cell with the level encoded 

by color. From low to high, the indicating colors changes from blue to yellow.  

(C) Population level from two defined subgroups are visualized separately. 1080 among 2644 cells showed 

‘immediate’ response. The rest showed a ‘delayed’ accumulation of p21. Cell behaviors within each 

subgroup were highly homogeneous in first a few hours after irradiation. 

2.3.5 p21 responses depend on cell cycle phase at the time of damage 

Next, I ask a question what leads to the decisions of ‘immediate’ or ‘delayed’ responses. 

Several factors, such as cellular states, microenvironment and stochastic fluctuations, may 

influence cellular behaviors and lead to heterogeneous phenotypes (Loewer & Lahav 

2011). Among them, cellular states (such as cell cycle phase) were responsible for most 

cell-to-cell variability (Gut et al. 2015).  

To examine the cellular states, I analyzed cell division time prior to irradiation since cell 

cycle phase is related to the duration between last division events and irradiation (Figure 

25B) (Toettcher et al. 2009). In detail, G2-phase cells at the time of damage experienced 

most of a cell cycle, therefore, cell division should happen a long period before damage 

(Figure 25B top panel). G1-phase cells just started a new cycle, so cell division tended to 

occur a few hours before irradiation (Figure 25B bottom panel). S-phase cells should have 

divided at a time between (Figure 25B middle panel). This analysis showed clear 

difference in cell division time between subpopulations (Figure 25A). The ‘delayed’ cells 

had frequently divided during a period from -15 hour to -5 hour, which implies that the 

‘delayed’ cells might be in S phase. By contrast, the ‘immediate’ cells tended to have 

divided during a period of either -22 ~ -15 hour or -5 ~0 h (Figure 25A). Therefore, they 

were likely to be in G1 or G2 phase at the time of damage. To validate computational 

analysis, I performed a Bromodeoxyuridine (BrdU)-labeling experiment. BrdU, an analog 

of thymidine, can be incorporated into DNA during S-phase replication thus it is widely 

used to mark S-phase in live cells. Cells were incubated with BrdU 30 mins prior to 

irradiation, washed, irradiated, imaged for an additional ~24h and stained for BrdU 

antibody at the end point to determine the original S phase at the time of damage (Figure 

25B). The ‘delayed’ cells showed significantly high BrdU signals and the ‘immediate’ cells 

rarely incorporated BrdU (Figure 25C). This suggested that ‘delayed’ cells were in S phase 
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and ‘immediate’ cells were in G1 or G2-phase cells at the time of damage, fully agreeing 

with computational results (Figure 25A and D).  

 

Figure 25 p21 responses to irradiation induced-DNA damage are cell cycle dependent 
(A) Cell division times varied between ‘immediate’ and ‘delayed’ groups. The bottom panel represents cell 
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division times before and after 5 Gy irradiation. Control experiment is shown in top panel. 

(B) Demonstration of cell cycle analysis by computational analysis or BrdU labelling.  

(C) BrdU signals between ‘delayed’ and ‘immediate’ subgroup. Round dots represent single cells. Blue box 

body presents interquartile range (25th percentile to 75th percentile), with red line indicating the median 

level. Two horizontal bars represent upper and lower extreme, respectively.  

(D) The summary of p21 dynamics and cell cycle states between two subgroups.  

2.3.6 Deep clustering reveals more refined p21 responses 

Cells showed relatively similar p21 responses in each subgroup, ‘immediate’ or ‘delayed’ 

groups. Specifically, the behaviors in first about 10 hours post irradiation were largely 

homogeneous. However, there were still subsidiary differences from cell-to-cell, such as 

the late dynamics. For instance, some ‘immediate’ cells rapidly accumulated p21 and also 

removed it quickly to the basal level (Figure 20B cell ID: 1730), while others from the same 

group maintained high p21 for longer times (Figure 20B cell ID: 2155). In addition, 

‘delayed’ cells also showed differences in reacting time (Figure 20B cell ID: 1965 and cell 

ID: 1629). Therefore, I pushed the clustering to deeper level to identify if more refined 

phenotypes emerge. Indeed, two further phenotypes could be discerned in both 

‘immediate’ and ‘delayed’ groups. Together all cells were organized in a two-level 

hierarchical structure with in total four clusters based on their p21 dynamics (Figure 

26A). 

With the common features of immediate p21 accumulation, ‘immediate 1’ cells and 

‘immediate 2’ cells also showed distinct behaviors with respect to the late p21 responses. 

p21 in ‘immediate 1’ dropped down relatively fast to the basal level, resulting in a basal-

high-basal type of dynamics. While ‘immediate 2’ cells tended to remove p21 level more 

slowly, which led to a basal-high-low type of curve (Figure 26A and Figure 26B). For future 

demonstration, I used short number sequences to code these dynamics. 0, 1 and 2 were 

used to indicate basal, low and high levels of p21. Thus, the two types of dynamics were 

also called 0-2-0 and 0-2-1 in next text. Interestingly, p53 dynamics also showed slight 

differences between these subgroups although p53 dynamics were not involved in 

clustering computation. Comparing to ‘immediate 1’, ‘immediate 2’ cells showed higher 

p53 peak levels in first 8 hours and lower subsequent level after 15 hours post-irradiation 

(Figure 26A and Figure 26B). This implies a direct or indirect correlation between p53 

and p21 dynamics, which needs further investigation. 

Further clustering in ‘delayed’ cells also revealed two subpopulations of responses, 
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‘delayed 1’ and ‘delayed 2’ (Figure 26A and Figure 26B). Overall, ‘delayed 1’ cells showed 

slow increasing of p21 during the early period and constant p21 during the late time, 

forming 0-0-1 like dynamics. While p21 in ‘delayed 2’ cells started to rise at late time and 

maintained increasing till the end. This led to a clear 0-0-1 type of dynamics. The 

difference between these subpopulations was that responses of ‘delayed 2’ cells tended to 

be delayed longer.  

In the previous section, the analysis of cell divisions proved that cell cycle phases exerted 

influence on cellular responses to DNA damage. Both G1 and G2-phase cells showed 

‘immediate’ responses. And here, two subpopulations were seen in ‘immediate’ cells. I 

simply asked if the difference of responses was related to an exact cell cycle phase, G1 or 

G2 phase. However, the analysis of division times did not provide significant evidences of 

the correlation. But it suggested that ‘immediate 2’ subgroups showed decent numbers of 

estimated G1 and G2-phase cells, and at least majority of the first subgroup may be in G1 

phase (Figure 26C).  

As cell cycle progression is a continuous process. Expression of many proteins is also 

dynamical in cycling cells. This defines unique reaction condition at a certain time for each 

cell, which may shape different cellular responses. I asked whether this kind of trivial state 

resulted in these explicitly distinct p21 responses. To test it, division time was considered 

as an indicator to specify the exact cellular states, such as, early G1, middle S or late G2 

(Figure 26C). The results showed that the division times varied considerably between 

‘delayed 1’ and ‘delayed 2’ cells. The ‘delayed 1’ cells tended to have divided earlier than 

‘delayed 2’ (Figure 26C). Considering that the ‘delayed’ cells should be in S phase, it is 

reasonable to conclude that ‘delayed 1’ cells are probably in late S phase and ‘delayed 2’ 

cells are probably in early S phase at the time of damage. Considering the different 

accumulation time between two ‘delayed’ populations, late S-phase cells tended to 

respond faster than early S-phase cells. Going one step further, this implies that the 

reacting time in S-phase cells may be correlated to cell cycle progression. 



Results 

 
53 

 
Figure 26 Four subgroups of p21 responses are totally identified by further clustering  
(A) The deep clustering results in four subgroups at level 2 in the binary tree. The ‘immediate’ and ‘delayed’ 

subgroups were considered as two independent groups to perform clustering. Fold-change of p21 and p53 

in single cells are visualized within these subgroups. Each line represents a single cell. Colorbar indicates 

the Z-normalized fold-change.  
(B) The measured level of p53 and p21 are plotted. It shows uniformed intragroup responses and 

heterogeneous dynamics among groups.  
(C) Cell divisions were examined in order to check if the intergroup differences were associated with cell 

cycle states. 
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2.3.7 Combination of EdU labelling and semi-supervised classification allows 

endpoint cell cycle analysis 

In the previous section, four distinct subgroups of p21 responses are identified and cell 

division analysis shows that cells at different states may have comparable reactions, which 

suggests that the variability is not completely caused by initial cell cycle phases. In 

addition, snapshot measure of cell cycle phases has shown that cells stay at different cell 

cycle phase 24 hours after irradiation (Figure 17 and Figure 18E). Altogether, this led to 

the hypothesis that the heterogeneous responses may be also related to final cell fate 

determinations. It is well known that irradiation-induced DNA damage mainly triggers 

cell cycle arrest in G1 or G2 phase rather than apoptosis. Therefore, final cell cycle phases 

should be measured to determine the cell decisions, such as G1 arrest, G2 arrest or 

another phenotype.  

To achieve this, I developed a protocol, called endpoint cell cycle for time-lapse imaging, 

which is able to monitor dynamics and measure final cell cycle states in the exactly same 

cells. As sketched in Figure 27A, reporter cells are first imaged by time-lapse microscopy 

for about 44 hours in order to follow p53 and p21 dynamics before and after irradiation. 

All cells are incubated in EdU 30 mins before the end and fixed immediately after imaging. 

Then DNA content is measured by Hoechst staining and EdU intensity is quantified to 

identify S-phase cells. To automatically output cell cycle phases, I developed a semi-

supervised classification algorithm. First, an edge detection algorithm is performed on 

EdU intensity to determine S phase (EdU positive cells) (Figure 27B). As experimental 

variability exists, in particular, the EdU readout may be varying across experiments, the 

threshold for determining edge should be under supervision in order to achieve accurate 

results. EdU negative cells are either in G1 or G2-phase. Theoretically, G2-phase cells 

should contain double DNA and have bigger nuclear sizes since they completed genome 

replication. In reality, a single measure of DNA content or nuclear sizes does not enable 

clear separation of G1 or G2-phase cells. Specifically, determination of cells that have 

intermediate DNA content or nuclear sizes is problematic (Figure 27C and D). To handle 

this, I used both DNA content and nuclear sizes as inputs and apply K-means clustering to 

push these cells into two groups (Figure 27E). In this way, cells were distinguishably 

stratified in a low-content/small-size domain or a high-content/big-size domain, 

respectively, which represent G1 phase and G2 phase (Figure 27E). By this approach, I 



Results 

 

55 

observed that the majority of cells were arrested in G2 phase, and much fewer cells were 

in G1 phase with only a small portion of cells being in S phase (Figure 27E), which is in 

line with previous flow cytometry measurements (Figure 18E).  

A last technical difficulty is how to identify the same cells between the live-cell images and 

fixed images, the latter of which are often shifted since staining protocol was performed 

outside of microscopy chamber. To overcome it, I developed an image registration tool to 

automatically align these images so that the tracking algorithms can successfully track the 

cells from the first time point to the ‘last’ time point (fixed images). This tool allows me to 

link cell cycle phases to the dynamics in the same cells. 
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Figure 27 Determination of final cell cycle phases following time-lapse imaging by EdU labeling and 

a semi-supervised classification 
(A) The demonstration of endpoint cell cycle for time-lapse imaging. In details, before subjected to 5Gy 

irradiation, cells were imaged for about 20 hours to determine the initial states. Then another 24-hour 

imaging was performed to investigate cellular dynamics. Before the end, cells were cultured in EdU for half 

an hour for labelling S-phase cells. To determine G1 and G2 phases, nuclear size and DNA content were 

quantified by Hoechst staining. In order to automatically identify the phases for thousands of cells, a 

supervised edge detection was performed for determining S-phase cells and an unsupervised K-means 

clustering was applied to specify G1 or G2-phase cells. Jointly, a semi-classification was developed to assess 

cellular states automatically.  
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(B-D) An edge detection algorithm is able to efficiently separate S phase from G1 and G2-phase cells. In 

details, all cells were sorted by increasing EdU levels. To remove noise, a line was fitted along X axis. The 

edge was then determined by setting a threshold of rising rate. The blue line represents the edge, above 

which dots are estimated as S-phase cells. No bifurcation of either DNA content (C) or nuclear size (D) is 

observed among the non-S-phase subpopulation, which resulted in difficulty of determination cell cycle 

phases. The gray bars represent G1 and G2-phase cells and brown bars indicate S-phase cells defined 

previously.  
(E) The combination of nuclear size and DNA content succeeds to separation of G1 and G2-phase cells. 

Together with EdU labelled S-phase cells, this approach is able to discern cell cycle phases from populations.  

2.3.8 Cells with different p21 dynamics tend to end up with divergent cell cycle 

phases 

The endpoint cell cycle measure allowed me to collect three-dimensional data for each 

cell, including initial states, cellular dynamics and final cell cycle phases. The first question 

came up was whether cell decisions differed among the four defined subgroups. Indeed, I 

observed clear differences in final cycle distributions among the groups (Figure 28). For 

example, ‘immediate 1’ subgroup contained all S-phase cells. Except for S-phase cells, 

‘immediate 1’ group comprised similar numbers of both G1 and G2-phase cells as 

‘immediate 2’ group. The ‘delayed 1’ and ‘delayed 2’ groups both showed much similar 

endpoint cellular states, with a prominent number of G2-phase cells (Figure 28). The 

results evidenced that there is a correlation between p21 dynamics and cell cycle state 

post-damage.  

However, there were still unclear questions. Which states do these cells start with? What 

information do cellular dynamics incorporate about cell cycle progression? To address 

these questions, connections between p21 dynamics and cell decisions need to be 

investigated in individual cells case by case. 

 

Figure 28 cell cycle distributions vary among defined subgroups Cells of different responses were 

identified by clustering. Endpoint cell cycle assay was then implemented and cell number of different phases 
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was counted within four subgroups. Final S-phase cells were in ‘immediate 1’ group. Majority of G2-phase 

cells were in ‘delayed 2’ and ‘delayed 1’ groups, although there were some from ‘immediate 1’ and 

‘immediate 2’ groups. G1-phase cells distributed among four subgroups. 

2.3.9 p21 dynamics are related to cell fate decisions 

In previous section, I have shown that cells within ‘immediate 1’ subgroup showed 

relatively homogeneous responses, but slight differences in dynamics still existed within 

this subgroup (Figure 26A). For example, following p21 degradation to the basal level, 

some cells kept the basal state till the end, while other cells showed slight upregulation at 

late time. The endpoint analysis showed that ‘immediate 1’ cells had variant final cellular 

states, including G1 phases, S phases and G2 phases (Figure 28). I hereby addressed a 

question if cell decisions connected to these versatile p21 dynamics. To examine it, cells 

were highlighted and analyzed according to their final cycle phases (Figure 29A). 

First, I observed that all final S-phase cells had experienced p21 rise and decline and 

finally maintained it at basal level till 24h post irradiation (Figure 29B). For clear 

demonstration, this kind of dynamics is named as 0-2-0 type. Trajectories of these cells 

were distributed in a very narrow region, which implies that they might derive from a 

same situation and undergo same progression to end in S phase. The analysis of cell 

divisions provided two lines of evidences to confirm that all cells should derive from G1 

phase (Figure 29B). The first one was that the cells tended to have divided short period 

prior to damage. Previous evidences indicated that all ‘immediate’ cells were in G1 or G2 

phase at the time of damage, which drives the two possibilities of cell progression here: 

G1-S or G2-G1-S. The difference between these progressions lay in that cells must divide 

once to complete G2-G1-S. But almost no divisions were observed for these cells after 

damage (Figure 29B), so they should have been in G1 phase at the time of damage and 

transited to S phase afterwards. These cells accounted for about 11.5% of the whole 

population (Figure 29E). 

Another subpopulation also had similar features to 0-2-0 dynamics from beginning to 18 

hours after irradiation. But p21 was re-elevated during the last 6 hours, resulting in a 0-

2-0-1 type dynamics. These cells all entered G2 phase at the end of observation (Figure 

29D). Combining the division analysis (Figure 29D) and G1-S cells discussed above, this 

0-2-0-1 type of p21 dynamics pointed to a correlation with G1-S-G2 progression (Figure 

29E). Taken together, cells showing a kind of 0-2-0 dynamics could have two possible cell 



Results 

 
59 

decisions afterwards. If the dynamic is maintained at basal level, cells are likely to be in S 

phase; if p21 finally goes up, cells tend to exit S phase and enter G2. In brief, the pattern 

of p21 re-elevation after steady-state may present the signal of S terminal and G2 entry.  

The remaining cells in ‘immediate 1’ group showed a different kind of p21 dynamics and 

different cell cycle phase 24h post damage. p21 also showed an immediate accumulation. 

But unlike 0-2-0 dynamics, the decay of p21 in these 135 cells was slower, leaving an 

elevated level at the end of observation (Figure 29C). This phenotype was named as 0-2-

1. These cells all started in G1 phase at 0h (Figure 29C) and ended up in G1 phase (Figure 

29A), suggesting that they should encounter G1 arrested since a full cell cycle is usually 

shorter than 24 hours. These cells corresponded to 5.1% of the whole population (Figure 

29E). 

 
Figure 29 'Immediate 1' cells contain three manifest phenotypes, each corresponding to a distinct 

cell decision 
(A) Two-dimensional illustration of endpoint cell cycle measures. The hidden horizontal-axis and vertical-

axis are DNA content and EdU level. The brown, blue and purple diamonds are used to separately highlight 

S phase, G1 phase and G2-phase cells in ‘immediate 1’ subgroup. The grey round dots represent cells in other 

subgroups. 
(B) Trajectories and divisions from final S-phase cells. The top panel displays the trajectories, reflecting 

population level. p53 and p21 are demonstrated by green and purple. The bottom panel displays the cell 

divisions with vertical axis representing the fraction of cells. Cell number is indicated. 
(C) As above, the mixed trajectories and divisions from final G1-phase cells and (D) G2-phase cells.  
(E) Summary of dynamics and cell decisions as well as frequencies of phenotypes in the entire population. 
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I next focused on final G1 and G2-phase cells in the remaining subgroups as few S-phase 

cells were observed among these subgroups (Figure 28 and Figure 30A). Figure 30A 

highlights the identified G1 phase and G2-phase cells which together formed 0-2-2 

dynamics (Figure 26B). The shape of dynamics was also similar to 0-2-1 described above, 

but the degradation here was even slower and endpoint level was higher than 0-2-1 

(Figure 29C and Figure 30B,C), so I used 0-2-2 to indicate this kind of dynamics in order 

to distinguish it from 0-2-1 dynamics. Final G1 and G2-phase cells showed highly similar 

p21 dynamics but had significantly different division times (Figure 30B and C). The final 

G1-phase cells tended to have divided briefly before irradiation and rarely divided again 

in the following 24 hours (Figure 30B), suggesting that they were arrested at G1 phase. In 

contrast, final G2-phase cells had divided about 20 hours before damage and never 

divided after irradiation as well (Figure 30C), suggesting that they arrested in G2 phase. 

Both classes altogether explained about 17.6% of cells (Figure 30D).  

 
Figure 30 'Immediate 2' cells showed heterogeneous behaviors, but were arrested at two different 

phases 
(A) The highlighted cells with different colors represent G1 or G2-phase cells in ‘immediate 2’ subgroup. 

The gray points also represent cells from other subgroups. 
(B) and (C) illustrate the mixed trajectories and divisions of final G1 and final G2-phase cells. Dynamics were 

similar but division times were of significantly difference in both. 
(D) 0-2-2 type dynamics was extracted from this subgroup and linked to G1 or G2 arrest. 

 

Overall, ‘delayed 1’ showed a sustained p21 dynamics after irradiation (Figure 26B). 
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Endpoint cell cycle analysis revealed two different subpopulations of cell cycle states, 

consisting of 364 final G2-phase cells and 132 final G1-phase cells (Figure 31A, B and C). 

As top panel of Figure 31C shows, final G2-phase cells exhibited a slightly delayed 

upregulation of p21. And unlike the dynamics in ‘immediate’ groups, p21 in G2-phase cells 

here did not reach the peak level immediately. Instead, it started accumulation at about 8 

hours after irradiation and sustainably increased with a low rate, which altogether 

resulted in a 0-0-1 type dynamic. This sort of dynamics stood for about 13.8% cellular 

behaviors. 

Unexpectedly, the final G1-phase cells not only showed a sustained accumulation but also 

responded immediately to damage (Figure 31B). This 0-1-1 type of p21 responses was 

also much similar to 0-2-2 dynamics described in the previous section. In combination to 

the previous point that p21 did not accumulate during S phase, I came to the speculation 

that these cells were misclassified by the automated clustering algorithm and should be 

assigned in ‘immediate 2’ group instead.  

 
Figure 31 Delayed responses displays correlation to G2 arrest in ‘delayed 1’ cells and misclassified 

cells were re-assigned 
(A) As described above, the highlighted cells underwent different cell decisions, being arrested at G1 or G2 

phase. 
(B) Final G1-phase cells showed a prompt accumulation and the reacting time of p21 is highly correlated to 

p53 accumulation, suggesting higher similarity to final G1-phase cells in ‘immediate 2’ group.  
(C) A delayed upregulation of p21 was linked to G2 arrest. Top panel showed that p21 and p53 accumulation 

was out-of-steps. Bottom panel suggested that these cells started from S phase, transited to G2 and stopped 

dividing since damage.  
(D) The schematic connections of 0-0-1 dynamics to G2 arrest and 0-1-1 to G1 arrest. 
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In ‘delayed 2’ group, about 900 cells, which was the biggest number among all subgroups, 

were seen staying at G2 and the other 157 cells stayed at G1 (Figure 32A). p21 level in the 

biggest population did not change in more than 10 hours after irradiation. Then slow 

upregulation of p21 was initiated and maintained till the end (Figure 32C).  The dynamical 

features were highly similar to the 0-0-1 type defined above (Figure 31C). The difference 

was that retention time was even longer. Therefore, their p21 dynamics were also 

categorized as 0-0-1 type. In addition, the cells tended to have divided during -15h to -5h 

(Figure 32C), confirming that they initiated from S phase and stopped in G2 phase.  

Beside 0-0-1 dynamics, I also observed 0-0-1 like dynamics in ‘delayed 2’ cells. And they 

were in G1 phase at the end (Figure 32B). The majority of ‘delayed’ cells were considered 

as S-phase cells, but the division analysis showed no clear clue about initiate cellular states 

for these cells. They could be in G1, S or G2 phase when damage occurred (Figure 32B). In 

contrast to others, they also experienced mitosis after irradiation (Figure 32B).  

 
Figure 32 Intensely delayed responses displayed correlation to G2 arrest in ‘delayed 2’ cells 
(A) The highlighted cells had two populations, majority of which was G2 phase cell and the rest was G1 

phase cell.  
(B) Final G1-phase cells showed 0-1-1 like dynamics and experienced mitosis in last about 10 hours  
(C) Final G2-phase cells showed 0-0-1 type of dynamics. p21 maintained unchanged before time 10 and 

started to rise during time 10 to time 20. This population predominantly divided during -17 hour to -7 hour 

before damage. 
(D) The schematic linking between 0-0-1 dynamics and cell decisions in ‘delayed 2’ group. Most ‘delayed 2’ 

cells exerted 0-0-1 type dynamics, resulted in S-G2 arrest. Also, there were a few 0-0-1 cells undergoing 
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mitosis afterwards.  

 

In summary, three subtypes of dynamics could connect to G1 arrest, such as 0-2-1 from 

‘immediate 1’, 0-2-2 from ‘immediate 2’ and 0-1-1 from ‘delayed 1’. Two features were 

found to be common in them. First, p21 increased immediately in first 10 hours after 

damage. Second, the degradation of p21 was slow and p21 levels remained high at the late 

phase. These cells together formed a bigger subgroup with basal-high-high/low dynamics 

(hereafter referred to as p210-1-1). In total, 51% G1-phase cells showed p210-1-1 and 

arrested in G1 phase (Figure 33A). The remaining G1-phase cells were all from ‘immediate 

1’ subgroup, with 0-2-0 or 0-2-0-1 kind of dynamics (referred to as p210-1-0) (Figure 29B,D 

and E). p21 first showed fast accumulation, but had rapidly dropped down to basal level 

(Figure 33A). Depending on final p21 level, cells were at S phase or G2 phase. Overall, 

these 466 cells had p210-1-0 dynamics and had progressed from G1 to S, with some cells 

finally succeeding to G2. These two populations (G1 arrest and G1-S) had comparable p21 

maximum level (Figure 33B) and p21 integral level (Figure 33C) but different decay rate 

(Figure 33D) and p21 endpoint level (Figure 33E).  

S-phase cells all showed ‘delayed’ responses with 0-0-1 type of p21 dynamics (referred to 

as p210-0-1) and mainly ended up in G2 phase (Figure 31C and Figure 32C). They were 

further grouped into ‘delayed 1’ and ‘delayed 2’, depending on the reacting time (Figure 

26B and C and Figure 33F). Other difference in division time was also observed between 

these two subgroups (Figure 33G). These cells also showed higher endpoint p21 level 

(Figure 33H), implying that basal p21 might only occur during S phase. 

G2-phase cells were more homogeneous, all showing 0-2-2 type of p21 dynamics (p210-1-

0, Figure 33I) and being arrested at G2 (Figure 30C). Interestingly, dynamical patterns 

were highly similar in G2 and G1 arrested cells, including p21 maximum (Figure 33J), p21 

integral (Figure 33K), decay rate (Figure 33L) and p21 endpoint level (Figure 33M). 
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Figure 33 Grouping p21 dynamics by initial cell cycle phases 
(A) G1-phase cells show bifurcation of both p21 dynamics and cellular decisions. The patterns of single cell 
traces were quantified and compared between G1 arrested and G1-S cells, including p21 maximum level 
after irradiation (B), p21 integral (C), the decay rate of p21 (D) and p21 fold-change during the late period 
(E).  
(F) S-phase cells show delayed responses. (G) Division time is slightly different between ‘delayed 1’ and 
‘delayed 2’ S-phase cells. (H) Final S-phase cells show significantly lower p21 level than G2-phase cells 
transited from S phase. 
(I) G2-phase cells show relatively homogenous p21 dynamics and resulted in G2 arrest. The single cell 

patterns are comparable between G2 arrest cells and G1 arrest cells, such as p21 maximum level after 

irradiation (J), p21 integral (K), the decay rate of p21 (L) and p21 fold-change during the late period (M). 

2.3.10 PCNA-mediated degradation leads to the majority of cell-to-cell variations 

S-phase cells exhibited basal p21 in the first 10 hours, additionally, G1-S cells showed 

basal p21 in the last ~10 hours (Figure 33). The remaining cells all had p210-1-1. This led 

to the hypothesis whether an S phase specific factor(s) predominantly causes the 

heterogeneity. Among the multiple degradation mechanisms, PCNA can mediate 

ubiquitin-dependent degradation of p21 during S phase (Havens & Walter 2009; Barr et 

al. 2017). Mechanistically,  it can bind proteins containing a domain named PCNA 

interacting peptide box (PIP box) and recruit CRL4CDT2 , an E3 ubiquitin ligase (Havens & 

Walter 2009) (Figure 34A). Modified proteins are subsequently degraded by the 

proteasome. As p21 contains a highly active PIP box (Stivala et al. 2012; Coleman et al. 
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2015), it is conceivable that PCNA-mediated degradation might play an important role in 

p21 kinetics in S-phase cells. 

To test this, I aimed to prevent the PCNA-p21 interaction. Since PCNA is essential for DNA 

replication  (Moldovan et al. 2007), silencing it prevents cell cycle progression. Previously, 

exogenously expressed p21 with PIP box mutations was used to investigate the 

interaction between p21 and PCNA (Galanos et al. 2016). However, this might affect the 

p21 signaling due to overexpression of the substrate. A more elegant approach would be 

to introduce mutations in endogenous p21 to disrupt the interaction while preventing 

negative effects on cell cycle progression. To this end, I developed a CRISPR-Cas9 mediated 

genome engineering strategy to mutate three amino acids that mediate the p21 - PCNA 

interaction (Figure 34A). However, based on the knowledge obtained so far, this mutation 

may have server influence on cellular activity. To avoid interference of stabilized p21 with 

cell cycle progression, I incorporated a cassette named small molecule–assisted shutoff 

(SMASh) right after mCherry-tagged mutant p21 (Chung et al. 2015) (Figure 34B). This 

cassette was reported to be safe for cells and can be switched on or off by the protease 

inhibitor asunaprevir (ASV). In absence of ASV, a protease in the cassette can cleavage 

SMASh fragment off from the fusion protein, mCherry-mutant p21 (p21PIPmut) (Figure 

34B). Addition of ASV can inhibit the protease activity and allow the rapid degradation of 

entire fragment, including the mutant p21 (Figure 34B). This design allowed me to keep 

mutant p21 under control so that cell cycle activities were not affected before experiments. 

Both p21PIPmut and PCP45 cell lines were subjected to 5 Gy irradiation. Interestingly, 

p21PIPmut reacted immediately and maintained homogeneous p21 dynamics in entire 

population (Figure 34C and Figure 34D top panel). Moreover, S-phase cells labelled with 

EdU exhibited p210-1-1 dynamics in p21PIPmut in contrast to p210-0-1 dynamics in PCP45 

cells (Figure 34D bottom panels). This provides strong evidence that PCNA-mediated 

degradation determines the specific p21 dynamics during S phase in agreement with 

previous publications (Havens & Walter 2009).  

I next asked if PCNA-p21 interaction also contributes to the fast degradation of p21 in G1-

S cells, based on the observation that these cells all showed p210-1-0 dynamics (Figure 33A) 

and the previous report in which PCNA kinetics was investigated and it showed dramatic 

elevation in late G1 phase (Kurki et al. 1986). To test this, I classified the cells in three 
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subgroups by performing shape-based k-centroid clustering (k=3). As expected, PCP45 

cells resulted in three groups of distinct dynamics. About 36.5% of cells showed p210-1-0 

dynamics, about 13.1% cells had p210-1-1 dynamics and the remaining cells exhibited p210-

0-1 dynamics (Figure 34E top panels). p21PIPmut cells were also separated into three groups 

by clustering (k=3) (Figure 34E bottom panels). The first subgroup contained about 51.1% 

of cells, exhibiting p210-1-0 dynamics (Figure 34E bottom left panel). It suggested that fast 

degradation of p21 in G1-S cells probably was not mediated by PCNA. The other two both 

showed immediate p21 accumulation and sustained p21 afterwards (Figure 34E). The 

slight difference between these two was that one had slightly higher endpoint p21 levels. 

According to the definition discussed above, both corresponded to p210-1-1 dynamics. 

Notably, these similar responses emerged as two subpopulations only due to the 

parameters of the k-shape clustering algorithm (k=3). Most importantly, no cell 

populations with p210-0-1 dynamics were observed in p21PIPmut cells. This validated that 

PCNA-mediated degradation leads to the delayed p21 response in S-phase cells.  
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Figure 34 Disruption of PCNA-p21 interaction leads to more homogeneous response  
(A) Schematic demonstration of PCNA-p21 interaction. To interfere with the PCNA-P21 interaction, three 

crucial amino acids in PIP box of p21 were mutated by CRISPR/Cas9 based genome engineering. p21PIPmut 

represents the heterogeneous mutant cell line, validated by Sanger sequencing. 
(B) Schematic illustration of SMASh. Addition of ASV induced the degradation of mutated p21, permitting 

normal growth of cell clones. 20 hours prior to experiments, ASV was removed to visualize mutated p21. 
(C) Representative images of p21PIPmut and PCP45 cells. p21 level were examined under microscopy 5 hours 

after irradiation. The top panels represent mCherry signals, including mutant p21 from p21PIPmut and wild 

type p21 from PCP45. The bottom panels indicate the nuclei. 
(D) Population level of the entire population and S-phase cells from both cell lines. 
(E) Cells were classified by kshape clustering (K=3). Colored bars indicate the fractions of different 

dynamics. 
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3 Discussion 

Cell-to-cell variability is a universal property observed not only in multicellular organisms 

but also in cultured cells which may even derived from a single clone (Yuan et al. 2017). 

Several sources may lead to cellular heterogeneity, among which cellular state is believed 

to be responsible for more than half of cell-to-cell variations observed in genetically 

identical cells. This is because the state of cells is dynamic and constantly changing. 

Therefore, it requires a dynamical perspective to study cell-to-cell variability. In this 

thesis, I presented a pipeline to systematically study how cellular states influence p21 

dynamics in response to DNA damage in thousands of cells using endogenous reporter 

and time-lapse microscopy. In order to efficiently label endogenous p53 and p21, I 

established a CRISPR/Cas9-based platform and improved the insertion efficiency up to 

about 40%-80%. Combining this technology and time-lapse microscopy, I observed that 

p21 responses to DNA damage were highly heterogeneous in individual cells. A shape-

based clustering approach was developed to classify the varied dynamics, and 

subpopulations of p21 responses were identified. Interestingly, these heterogeneous p21 

responses were found to be correlated to cell cycle states: immediate accumulation of p21 

was cell cycle dependent and long-term dynamical features of p21 provided information 

about cell cycle progression during the DNA damage response. At last, PCNA-mediated 

p21 degradation was shown to be responsible for delayed accumulation of p21. 

3.1 CRISPR/Cas9 based genome engineering is a robust tool to faithfully tag and 

efficiently modify endogenous proteins 

I first established a platform for creating endogenously-tagged reporters. To achieve this 

goal, I tested sgRNA efficiency and different strategies to get better understanding of this 

technology, and optimized technical procedures to maximize the final insertion efficiency, 

such as transfection efficiency, ratio of constructs and format of template. Taken together, 

I established an effective protocol to create knock-ins (Figure 35). The achieved efficiency 

is very high and stable, with an about 10% chance to get homozygotes and 40%-80% 

chance to obtain heterozygous with non-tagged allele unchanged (Figure 11C and E). 
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Figure 35 Technical platform of CRISPR-Cas9 based knockin in MCF10A 

As a start, at least three sgRNAs are required for a given target, as the cleavage efficiency 

was highly related to the guide sequence (Figure 10D and F). This is in line with previous 

publications (T. Wang et al. 2014; Doench et al. 2014). In addition, multiple sgRNAs in 

combination with wild type Cas9 increased knock-in efficiencies (Figure 10F and Figure 

11C). More specifically, sgRNA efficacy may be related to the nucleotides at defined 

positions, concluded from genome-scale screening using pooled sgRNA library (T. Wang 

et al. 2014; Doench et al. 2014). For example, sgRNAs with four Thymidine (T) close to 

PAM region led to less frequent cleavage, which was also observed in this thesis (Figure 

10A and D). However, the model of sgRNA activity established on a library screening 

tolerates many exceptions and thereby cannot precisely predict the activity for a given 

sgRNA. To determine the efficiency of a few particular sgRNAs, T7 endonuclease I assay 

needs to be performed in HEK293 cells. This would ensure efficient cleavage for further 

editing in desired cell lines. 

The design of the repair template also influences the efficiency of homology-directed 

repair. First, the length of homologies largely determines repair rates. Many publications 

suggested PCR-amplified products or synthesized oligonucleotides as repair templates 
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(Böttcher et al. 2014; Stewart-Ornstein & Lahav 2016). However, our data showed that 

homology of primer-scale usually is suboptimal and a length of about 1000 bps allows 

more efficient knock-ins (Figure 12). Interestingly, the format of template also plays a role 

in colony formation. Comparing to circular template (plasmids), linearized template 

seems to induce fewer negative colonies (17 by linearized vs 57 by circular), likely due to 

its higher stability and longer persistence after transfection. Last but not least, the 

selection cassette on donor DNA is also important. In principal, promoter-free systems 

including internal ribosomal entry site (IRES) (Rago et al. 2007) and self-cleaving peptide 

(2A peptide) (Kim et al. 2011), are able to reduce background due to random integration 

in the genome (Rago et al. 2007). However, it is worthy pointing out that both promoter-

free techniques highly depend on the activities of the endogenous promoter. Engineering 

the genes of low expression might not be successful due to the low expression of 

resistance gene.  

In addition to sgRNAs and donor DNA, the type of Cas9 enzymes also determines the 

efficiency. Wild type Cas9 allows efficient knock-ins and produced a remarkable number 

of heterozygotes, which are faithful and favored to reflect endogenous proteins (Figure 

14). However, most of the heterozygotes hold indel mutations in the non-tagged alleles 

(Figure 11E). This reduced the final chance of obtaining functional heterozygote reporters 

down to 7%. Interestingly, the nickase version of Cas9 (Cas9n) showed few mutations in 

the non-tagged alleles (Figure 11E) and the insertion efficiency was still considerably 

high. Functional heterozygotes turned out to account for 80% of the resulting colonies. 

Another advantage is that Cas9n minimizes off-target effects (Hsu et al. 2013; Cho et al. 

2014). Collectively, Cas9n appears to be more efficient and specific to create heterozygous 

knock-ins. On the other hand, homozygous knock-ins are preferable in other cases, such 

as nucleotide mutations and HDR-based gene knockdown. It is more reasonable to use 

wild type Cas9 in these cases, since it allows more efficient homozygous knock-in (Figure 

11C) and shows limited off-target mutations (Figure 13). 

In summary, CRISPR/Cas9 technology is a highly efficient tool to faithfully monitor and 

also precisely alter endogenous proteins (Figure 34A). However, there is also a challenge 

in monitoring low expressing proteins using fluorescent reporters. During the course of 

my thesis, I have successfully tagged additional five genes (Mdm2, Wip1, RRM2B, SESN1 

and BBC3). But no significant fluorescent signals were detected under regular microscopy 
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conditions (data not shown). To overcome this issue, further efforts need to be made to 

improve signal intensity. Synthetic biology approaches that amplify the signal such as the 

SunTag system may be feasible (Tanenbaum et al. 2014).  

3.2 Shape-based clustering can efficiently classify cellular dynamics  

In non-stressed cells, p53 showed spontaneous pulses in most of cells (Figure 20A, B and 

E). After DNA damage, p53 was synchronized immediately and frequently oscillated until 

the end of the observation period. These agree with previous description of p53 dynamics 

obtained using transgenic reporters (Loewer et al. 2010; Finzel et al. 2016). The damage-

induced p53 pulses rather than spontaneous ones are transcriptionally active and able to 

induce expression of its targets due to differences in acetylation status (Loewer et al. 

2010). For example, treatment of neocarzinostatin (NCS) activates p53, leading to 

expression of p21 mRNA. Unexpectedly, I observed that p21 protein levels were not always 

increased immediately following the activation of p53 in single cells (Figure 19A). This 

phenomenon was not dose dependent (Figure 19B and C), suggesting that the 

heterogeneity is driven by intrinsic mechanisms rather than extrinsic stress. Further 

quantitative investigation showed that p53 dynamics were all synchronous following DNA 

damage while p21 responses were highly diverse from cell to cell (Figure 20). Similar 

phenomenon was also observed in MCF7 cells in a recent publication (Stewart-Ornstein 

& Lahav 2016).  

To expose the hidden dynamical features, I applied unsupervised classification to cluster 

the cellular dynamics. A difficulty for time-series analysis is the determination of 

similarity among trajectories. Both Euclidean distance and an improved approach, 

dynamic time warping (DTW), showed limitations on processing these time-shift and 

amplitude varying data (Figure 21 and Figure 22). A novel shape-based distance (SBD) 

was recently reported and showed robustness in resolving phase- and amplitude- variants 

in time-series analysis (Figure 23) (Paparrizos & Gravano 2015; Paparrizos & Gravano 

2017). This method was rapidly applied in the field of single cell dynamics. For example, 

it was used to successfully classify NF-B signals in single cells for mRNA profiling of 

subpopulations (Lane et al. 2017). By combining SBD and hierarchical clustering (K-

centroid based, two-level binary tree), two big subpopulations of significant differences 

were identified, named ‘immediate’ and ‘delayed’ group dependent on their response time 

(Figure 24). Deep clustering revealed two refined subpopulations of these p21 responses 
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(Figure 26). Difference in p21 degradation emerged in two refined subpopulations in the 

‘immediate’ groups. Cells in ‘immediate 1’ subgroup appear to remove p21 faster than in 

‘immediate 2’ subgroup (Figure 26B, Figure 29 and Figure 30). As for ‘delayed’ cells, the 

deep clustering resulted in two subgroups with a main difference in the reacting time of 

p21. p21 response in the second subgroup was delayed 5 hours more than in the first 

subgroup (Figure 26B, Figure 31 and Figure 32). And a small subpopulation in ‘delayed 1’ 

(Figure 31B) showed more similar dynamics to G1 arrested cells so that it was considered 

as misclassification. This could be caused by the flexible shifting and aligning of signals 

when calculating SBD. But it does not mean the performance of shape-based clustering is 

overestimated. Indeed, each clustering approach has its own advantages and limitations, 

so imperfect accuracy is often tolerable. Nevertheless, optimization should be further 

considered. Overall, it is worth underlining that the novel distance measure (SBD) unveils 

unknown phenotypes of p21 response, which were not previously described both in 

population and single cell studies.  

3.3 Endpoint assay ensures linking dynamics to cell fate decisions for individual 

cells 

Cell cycle state is a main source of cellular heterogeneity (Loewer & Lahav 2011; Snijder 

& Pelkmans 2011; Gut et al. 2015). This underlines the importance of measuring cell cycle 

phase in addition of p53-p21 dynamics. Several approaches can be applied to measure the 

cell cycle phase at single cell level, such as flow cytometry based assay, fluorescent 

reporter based approach and in silico synchronization. However, the applications of these 

approaches were restricted. Cells need to be destructed when using flow cytometry, 

conflicting with the requirement that p53 and p21 dynamics needed be measured in living 

cells. The FUCCI and its updated version FUCCI4 reporter system were used to determine 

the cycle phases in live cells (Sakaue-Sawano et al. 2008; Bajar et al. 2016). Both required 

three to four different fluorescent proteins to label the cell cycle markers, making it 

impossible to simultaneously monitor p53 or p21 kinetics. A suboptimal approach is to 

analyze each phase by using a single marker at a time (Cappell et al. 2016). However, this 

does not allow systematical analysis of all phases and it requires the generation of 

multiple cell lines. In silico synchronization, a reporter-free approach, has been used in 

live cell imaging (Sigal et al. 2006). First, cell division times were automatically detected 

by the dynamical features of nuclear marker. Then, cells differing in cell cycle timing can 



Discussion 

 

73 

be synchronized in silico by aligning the dynamics of nuclear marker between two division 

events. The fraction of cell cycle that had elapsed was used to indicate cell cycle phases in 

particular cell. However, since DNA damage changed the normal cell cycle duration, in 

silico synchronization, then cannot be simply applied here. 

To overcome the limitations, I employed another reporter-free system (Figure 36) which 

combined labelling experiments and computational analysis to determine both initial 

cellular state and final cell cycle phase. Briefly, cell division events prior to damage were 

analyzed to indicate cycle phase at the time of damage (Figure 25B). After irradiation, cell 

cycle progression was disturbed and most cells stopped dividing. Therefore, other method 

is needed to monitor cell cycle progression. Gut and his colleagues described a method, 

combining EdU labelling and machine learning algorithm to determine cell cycle phases 

from fixed cells (Gut et al. 2015). I adapted this approach to live cell imaging (Figure 27). 

Basically, EdU labelling is performed to determine S-phase cells at the end point, and semi-

supervised classification on nuclear size and DNA content was used to determine G1 and 

G2-phase cells. Lastly, I applied image registration technique to align the EdU labelling 

images to live cell images. These together allowed linking the dynamics to both initial and 

final cell cycle phase in the same cells (Figure 36). By doing so, I observed a clear 

association between dynamics and cell cycle state (Figure 28, Figure 29, Figure 30, Figure 

31 and Figure 32), suggesting high robustness of this approach and shape-based 

clustering considering that they were independently performed. 
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Figure 36 Endpoint assay establishes connections between dynamics and cell fate decisions 

3.4 Regrouping cells upon both dynamics and cell fate decisions highlights cell 

cycle specific heterogeneity 

Shape-based clustering resulted in four subgroups of different p21 responses (Figure 26). 

Relatively homogeneous p21 dynamics within each subgroup did not mean similar 

cellular outcomes, for example, ‘immediate 2’ cells showed comparable dynamics but had 

non-unique cell fates (G1-arrest or G2-arrest) (Figure 30). Reversely, cell cycle 

progression was different even for cells with similar responses, for instance, S-G2 cells 

from ‘delayed 1’ and ‘delayed 2’ showed slightly different dynamics (Figure 31C and Figure 

32C). To understand this heterogeneity of cellular dynamics and outcomes, I separately 

investigated same cell cycle phases in each subgroup (Figure 29, Figure 30, Figure 31 and 

Figure 32) and systematically analyzed the differences and similarities among each 

smaller subpopulation (Figure 33 and Figure 37A), which allows regrouping p21 

dynamics upon cell fate determinations.  This resulted in three types of p21, including 

p210-1-0 p210-1-1 and p210-0-1 (Figure 37A) and four main different cell fate decisions, such 

as G1 arrest, G1-S progression, S-G2 and G2 arrest (Figure 33 and Figure 37B). Moreover, 



Discussion 

 

75 

it revealed strong connections between p21 dynamics to both initial cell cycle phase and 

final cell fate decisions.  

G1-phase cells showed a bifurcation on p21 dynamics and cellular decisions following 

damage-induced p53 activation (Figure 37B). p210-1-0 was correlated to G1-S progression 

and p210-1-1 was associated with G1 arrest. p21 can influence cellular decisions through 

inhibiting CDK2 activity in G1 phase (Neganova et al. 2011). Suppression of p21 results in 

high CDK2 activity, driving the normal progression of cell cycle; on the other hand, 

elevation of p21 inhibits CDK2 activity, sending cells into transient or prolonged G0-like 

state (Spencer et al. 2013). This may explain why different p21 dynamics are correlated 

to cellular decisions in G1 phase. It is interesting but not clear why G1-phase cells had 

bifurcated p21 dynamics in response to homogeneous p53 dynamics. The analysis on 

single cell traces suggested that degradation rate might differentiate these two 

subpopulations (Figure 33D and E). Recent research suggested that two ubiquitin ligases 

CRL4Cdt2 and SCFSkp2 together mediate p21 degradation prior to G1-S transition (Barr et 

al. 2017). PCNA is involved in CRL4Cdt2-dependent p21 degradation. It can bind to p21 and 

drive it to CRL4Cdt2 for degradation (Havens & Walter 2009). However, block of PCNA-p21 

interaction by mutating PIP box domain did not prevent the bifurcation in p21 dynamics 

(Figure 26 A and G). This implies that CRL4Cdt2-mediated degradation may not be the 

reason to cause the heterogeneous p21 responses in G1-phase cells. It was also reported 

that Mdm2 and Mdm4 were able to promote p21 degradation in late G1 and early S phase 

probably by recruiting p21 to the 26S proteasome complex (Jin et al. 2003; Jin et al. 2008). 

These are the potential targets for further efforts to identify the molecular mechanisms 

determining this bifurcation. 

S-phase cells showed ‘delayed’ responses with p210-0-1(Figure 37B), revealed by division 

analysis and confirmed by sequential BrdU labelling experiments (Figure 25). S-phase 

cells in ‘delayed 1’ and ‘delayed 2’ had differences in the reacting time and cell division 

time (Figure 31C and Figure 32C). The re-elevation of p21 was hypothesized to be a signal 

of G2 entry, the differences between ‘delayed 1’ and ‘delayed 2’ seemed to agree with this 

point. ‘Delayed 1’ cells had divided earlier (Figure 33G), meaning that they entered S phase 

earlier. It is reasoned that they also entered G2 phase earlier since S phase delay induced 

by irradiation is transient and short (Iliakis et al. 2003). Indeed, re-elevation of p21 in 
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‘delayed 1’ cells occurred earlier, which might indicate the G2 entry (Figure 31C and Figure 

32C). However, further investigations are needed to get a solid conclusion. 

Why did S-phase cells have low p21 levels? p53 remained active during S phase after 

irradiation (Figure 26B and C), suggesting that transcription of p21 was unlikely as low as 

in basal condition. A recent report showed that post-translational regulation of p21 led to 

delayed accumulation in S-phase cells (Stewart-Ornstein & Lahav 2016). However, this 

report did not reveal which mechanisms were involved in p21 regulation during S phase. 

In my thesis, I targeted an S-phase specific factor, PCNA, which can facilitate CRL4Cdt2-

dependent ubiquitination of p21 by binging to PIP Box motif (Havens & Walter 2009; 

Galanos et al. 2016). The PIP Box-mutated cells showed more homogeneous p21 response, 

especially p21 accumulated in all cells immediately after DNA damage (Figure 34). This 

provided strong evidence for PCNA-mediated degradation determining the delayed 

response of p21 during S phase. There are several hypotheses about the biochemical 

function of p21-PCNA interaction. It may competitively inhibit other proteins, which also 

contain PIP Box domain, such as DNA polymerase-, - and DNMT1 (Cazzalini et al. 2010; 

Abbas & Dutta 2009), by which expression of p21 thereby can indirectly modulate DNA 

synthesis and DNA repair. Additionally, a recent report showed that overexpressing p21 

led to deregulated origin licensing and replication stress in absence of p53, by 

overconsuming the CRL4CDT2 ubiquitin ligase together with PCNA (Galanos et al. 2016). 

However, the interaction at endogenous level is still poorly understood. The p21PIPmut cell 

line created in this thesis provides a robust tool to further study the direction, moreover, 

this idea can be expanded to other proteins with PIP Box domain. 

G2-phase cells showed homogeneous p210-1-1 dynamics and homogeneous outcomes 

(Figure 30C and Figure 37A). The dynamical patterns were highly similar between two 

arrested populations (G1 arrest and G2 arrest, Figure 37A), such as p21 maximum, p21 

integral, decay rate and p21 end level (Figure 33J-M). The decay rate and final p21 level 

were clearly different between arrested population (G1 arrest and G2 arrest) and 

transited population (G1-S cells) (Figure 33D and E). These suggest that the low decay 

rate and high final p21 level were probably key signals to prevent cell cycle transition, 

since sustained high p21 may continually inhibit CDK1 activity in G2 phase (Charrier-

Savournin et al. 2004) or CDK2 activity during G1 phase (Neganova et al. 2011) (Figure 

37B). 
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In addition, there were also about 6% of cells undergoing mitosis and being in G1 phase 

at the end of experiment (Figure 32B and Figure 37A). The initial cellular states could not 

be determined using current analysis as cell divisions were equally distributed 

throughout the period before irradiation (Figure 32B). These cells all had p210-0-1 

dynamics (Figure 37A) and the low p21 level might not successfully prevent mitosis. This 

may also explain the slight difference in cell cycle distribution after damage between 

PCP45 and its parental cell lines, including wild type MCF10A and PC21. Provided that the 

fusion protein p21-mCherry partially stabilize p21 in PCP45 cells (Figure 16 and Figure 

18D), they would have less chance to escape G2 arrest to enter G1 phase, which fits the 

observations of cell cycle distributions (Figure 17 and Figure 18E).  

As summarized in Figure 37B, cells synchronously activate p53 network to induce p21 

expression in response to DNA damage. Cell cycle specific factors drive p21 degradation 

in different rates, which generate heterogeneous p21 dynamics in different cellular states. 

Especially, PCNA-mediated degradation determines the ‘delayed’ response in S-phase 

cells. These varying dynamics probably regulate cell fate decisions by controlling the 

activity of CDK/Cyclin complexes.  
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Figure 37 Post-translational regulations determine p21 heterogeneous dynamics in different 

cellular states 
(A) Summary of various p21 dynamics and cellular outcomes. 
(B) The illustration of p21 model in p53 dependent DNA damage response. 

3.5 Insights and challenges in investigation of cellular heterogeneity 

Time-lapse microscopy allows investigating cellular and molecular behaviors with highly 

spatio-temporal resolution, but the number of proteins that can be measured in a single 
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experiment is limited due to the properties of fluorescent proteins and microscopy 

setting. This hinders the comprehensive understanding of cellular heterogeneity. An 

endpoint analysis allows additional measurements of other objects. Besides EdU labelling, 

immunofluorescence or single molecule fluorescent in situ hybridization (smFISH) can in 

principle link the dynamical behavior to other biomarkers (Yang et al. 2017). Especially, 

multiplexed immunofluorescence and smFISH which allows measuring multiple proteins 

or mRNAs in single cells (Gerdes et al. 2013; Chen et al. 2015) will largely extend the 

throughput of biomarkers measured in the same cells after the signaling dynamics. This 

direction is frequently discussed recently (Skylaki et al. 2016; Yuan et al. 2017), and my 

project provides a paradigm for how to investigate the link at single cell level from 

signaling dynamics to cellular states, such as cell cycle phases or states in which cells have 

differentially expressed mRNAs or proteins. 

Characterizing cell-to-cell variability has also shown importance in clinical applications, 

for instance, studies of tumor heterogeneity revealed mechanisms of chemotherapy drug 

resistance and can be applied to guide precision medicine for each patient and each tumor 

type (Meacham & Morrison 2013; Bedard et al. 2013; Junttila & de Sauvage 2013; Schmitt 

et al. 2015). Most studies focused so far on genetic variations among tumor populations, 

which can be measured by single cell DNA sequencing (Y. Wang et al. 2014; Bedard et al. 

2013). Recently, Andrew L. Paek and his colleagues reported the role of p53 dynamics in 

drug resistance of colon cancer cells using time-lapse microscopy (Paek et al. 2016). The 

fraction of cell death was related to both the time and level of p53. A threshold of p53 level 

was required to reached to induce apoptosis and interestingly, this threshold was 

increasing over time. This report underlined the importance of studying tumor 

heterogeneity in a dynamic perspective. Live-cell imaging generates large datasets every 

day, whereas the development of computational and theoretical tools is far behind 

experimental approaches (Skylaki et al. 2016). Tight combination of experimental setting 

and computational tools in this field will significantly expand our understanding in both 

biological and medical research. 
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4 Methods and materials 

4.1 Cell culture 

Human embryonic kidney (HEK) cell line 293T was maintained in Dulbecco’s modified 

Eagle’s medium (DMEM, high glucose, Thermo Fisher Scientific) with 10% fetal bovine 

serum (Invitrogen), 100 U/ml penicillin and 100 g/ml streptomycin. Cells were seeded 

in 12-well plate at a density of 175000 cells/well 24 hours prior to transfection. Cells were 

transfected using TransIT-LT1 transfection reagent (Mirus) following the manufacturer’s 

instruction. A total of 1 g product, including 500 ng Cas9 (or Cas9n) plasmid and 500 ng 

sgRNA(s) (either plasmid or PCR product), was transfected. 24 hours later, transfection 

reagent medium was replaced with fresh growth medium. 

Human non-transformed breast epithelial cell line MCF10A was maintained in Dulbecco's 

Modified Eagle Medium (DMEM/F12, Thermo Fisher Scientific) supplemented with 5% 

horse serum (PAN-Biotech), 20 ng/ml EGF (Peprotech), 0.5 g/ml Hydrocortisone 

(Sigma-Aldrich), 100 g/ml Cholera toxin (Sigma-Aldrich), 10 g/ml Insulin (Sigma-

Aldrich), 100 U/ml penicillin (Thermo Fisher Scientific) and 100 g/ml streptomycin 

(Thermo Fisher Scientific), according to the description (Debnath et al. 2003).  

4.2 Plasmids and cloning 

The integrated construct co-expressing sgRNA_p53-T5 and Cas9 was cloned by inserting 

the guide sequences into pSpCas9 (PX330, Addgene plasmid # 42230) which is a gift from 

Feng Zhang’s lab (Cong et al. 2013). Separate Cas9 (Addgene plasmid # 41815), Cas9n 

(Addgene plasmid # 41816) and sgRNA cloning vector (Addgene plasmid #  41824) are 

gifts from George Church’s lab (Mali, Yang, et al. 2013). About 80 base pairs and an AgeI 

site were inserted in the sgRNA cloning vector to obtain an optimal cloning vector 

(sgRNA_AL, Loewer lab) which can reduce the cost for cloning further sgRNAs (Figure 

38A). I used CRISPR Design tool (http://crispr.mit.edu) to design all sgRNA targets.  



Methods and materials 

 
81 

 

Figure 38 Cloning strategies. (A) sgRNA cloning protocol. The target sequences are listed in Appendix. (B) 

The cloning protocol of repair templates. Sequences of repair templates are listed in Appendix. 
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To clone donor DNA, I first created an mCherry-LoxP-P2A-Neo-LoxP fragment into a 

vector as an intermediate tool by Gibson Assembly (New England Biolabs). This fragment, 

digested from the tool construct, together with fragments of homology arms amplified by 

genomic PCR was assembled into pAAV-MCS vector (Cell Biolabs) or pDO3 vector (Lower 

lab) (Figure 38B). pCS6-YFP-SMASh was a gift from Michael Lin (Addgene plasmid # 

68853).  

4.3 T7 endonuclease I assay 

Function test of CRISPR/Cas9 was performed in HEK293T following the protocol 

previously described (F. Ann Ran et al. 2013). In brief, indicated combinations of Cas9 and 

sgRNA were transfected into HEK293T cells. 72 hours later, cells were harvested and 

genomic DNA was extracted using the QIAamp DNA Mini and Blood Mini Kit (QIAGEN) 

following the manufacturer’s protocol. The genomic regions containing cleavage sites 

were amplified by PCR, and products were gel-purified using QIAamp gel Extraction Kit 

(QIAGEN). 350 ng of the purified products were diluted in 20 l 1X Phusion DNA 

Polymerase buffer (Thermo Fisher Scientific). The diluted products then were denatured 

and reannealed using the following program:  

cycle number condition 
1 95C for 10 min 
2 95-85C, -2C /s 
3 85C for 1 min 
4 85-75C, -0.3C /s 
5 75C for 1 min 
6 75-65C, -0.3C /s 
7 65C for 1 min 
8 65-55C, -0.3C /s 
9 55C, 1 min 
10 55-45C, -0.3C /s 
11 45C, 1 min 
12 45-35C, -0.3C /s 
13 35C, 1 min 
14 35-25C, -0.3C /s 
15 25C for 1 min 

 After annealing, the products were mixed with 1 l T7 Endonuclease I (New England 

Biolabs) and incubated at 37C for 1 hour, followed by DNA gel analysis. Intensities of DNA 

bands were quantified in ImageJ and indel formation was calculated according to the 

equation defined in a previous protocol (F Ann Ran et al. 2013). 
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4.4 Endogenous tagging in MCF10A 

MCF10A cells were seeded in 12-well plate at a density of 2.5x105 cells/well 24 hours 

prior to transfection. Cells were transfected using Lipofectamine 3000 (Life Technologies) 

following the manufacturer’s instruction. A total of 1 g product, including 495 ng Cas9 

(or Cas9n) plasmid, 495 ng sgRNA(s) and 10 ng donor DNA, was transfected. After 3 days, 

cells were moved to 10 cm plate with G418-containing medium (400 g/ml, Carl Roth 

GmbH + Co. KG) for selection. For the mutant cell line, 1 M was added to the medium 

from the transfection to time-lapse microscopy. Another 14 days later, single colonies 

emerged and the number of colonies were counted to estimate the insertion efficiency. 

Colonies were then washed, trypsinized, picked, moved to 12-well plates and split 

regularly. Genomic PCRs were performed using Phire Animal Tissue Direct PCR Kit 

(Thermo Fisher Scientific) following the manufacturer’s protocol. PCR products of the 

untagged alleles from heterozygotes were sequenced to ensure that no alterations 

occurred. Excision of selection cassette was performed as previously described (Rago et 

al. 2007). In brief, 5x105 cells of selected clones were plated to a 25 cm2 cell culture flask. 

24 hour later, 1 ml of Ad-cre virus stock (107 plaque forming units, Vector Biolabs) was 

added to the flask and incubated with cells for 24 hours. Then cells were rinsed with 1x 

HBSS (Thermo Fisher Scientific), detached with 1 ml of trypsin-EDTA, diluted to 50~100 

cells/10 ml and seeded in 10 cm plates. After another two weeks, each colony was moved 

into two separate well in 12-well plate. Cells were kept and validated by cell cycle assay, 

microscopy and western blot. 

4.5 Time-lapse microscopy 

For live cell imaging, 1.5x105 cells were plated in 3.5 cm Collagen-coated glass bottom 

dishes (MatTek) two days before experiments. Two hours before imaging, cells were 

washed twice with 1xPBS and media was replaced by FluoroBrite medium (Thermo 

Fisher Scientific) supplemented with 0.5% horse serum and all other components 

mentioned above to reduce the background. Additional 1 ml Anti-Evaporation Oil (Ibidi) 

was added on the top to prevent medium evaporation. The dishes were placed in 

incubation chamber with constant temperature (37 °C), CO2 concentration (5%), and 

humidity maintained. Cells were imaged very 15 min or 20 mins on a Nikon Ti inverted 

fluorescence microscope with a Hamamatsu Orca R2 or Nikon DS-Qi2 camera and a 20x 

plan apo objective (NA 0.75) and image acquisition was controlled using Nikon Elements 
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software. Appropriate filter sets were used (mCerulean: 438/24 nm excitation (EX), 458 

nm dichroic beam splitter (BS), 483/32 nm emission (EM); mVenus: 500/24 nm EX, 520 

nm BS, 542/27 nm EM; mCherry: 562/40 nm EX, 593 nm BS, 624/40 nm EM; Cy5: 628/40 

nm EX, 692/40 nm EM; DAPI: 387/11 nm EX, 409 nm BS, 447/60 nm EM). Double strand 

DNA breaks were induced by X-ray irradiation at dose rate of 1Gy / 26s (250 KeV, 10 mA). 

4.6 Image analysis 

As previously described (Finzel et al. 2016), cells were isolated and tracked from time-

series images using custom-written Matlab (MathWorks) scripts based on code developed 

by the Alon lab (Cohen et al. 2008) and the CellProfiler project (Carpenter et al. 2006). In 

brief, I first applied flat field correction and background subtraction to raw images, 

followed by segmenting individual nuclei from nuclear marker images using thresholding 

and seeded watershed algorithms. Segmented cells were then tracked in time-series 

images using a greedy match algorithm. Only cells trackable through the full period of 

experiments were considered. Cells were tracked in backward direction from the last to 

the first time point. A self-developed Python3-based tool, image registration module was 

performed before segmentation and tracking when shifting took place by taking dishes 

out for irradiation or the endpoint assay. In detail, the shifted pixels between two images 

were obtained from the maximum convolution calculated using fast Fourier transform 

method (fftconvolve function in scipy package). The greatest common area was then 

determined and cropped for all time points.  

4.7 Shape-based clustering 

Shape-based distance (SBD) was calculated using self-written Matlab scripts as previously 

described (Paparrizos & Gravano 2015). In brief, p21 signal (𝑥⃗ ) after irradiation were 

transformed into (𝑥′⃗⃗⃗ ⃗) to remove scaling variance using following equation. 

𝑥′⃗⃗⃗ ⃗ =  
𝑥⃗ −  𝜇

𝜎
 

𝜇 and 𝜎 represent the mean and standard deviation, respectively. 
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Cross-correlation was then used to determine the shift between two transformed signals 

𝑎′⃗⃗⃗⃗  = (a1, a2, …, am) and 𝑏′⃗⃗⃗ ⃗ = (b1, b2, …, bm). It shifts 𝑎′⃗⃗⃗⃗  over 𝑏′⃗⃗⃗ ⃗ to generate a series of shifted 

signals:  

𝑎′(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ {   
(0,0, … ,0, 𝑎1, 𝑎2, … , 𝑎𝑚);  𝑤ℎ𝑒𝑛  𝑠 ≥ 0, 𝑠 𝑧𝑒𝑟𝑜𝑠 𝑎𝑟𝑒 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 𝑖𝑛𝑓𝑟𝑜𝑛𝑡 𝑜𝑓 𝑎′⃗⃗⃗⃗          

(𝑎1, 𝑎2, … , 𝑎𝑚, 0,0, … ,0);  𝑤ℎ𝑒𝑛 𝑠 < 0, |𝑠| 𝑧𝑒𝑟𝑜𝑠 𝑎𝑟𝑒 𝑎𝑝𝑝𝑒𝑛𝑑𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑎′⃗⃗⃗⃗
 

Here,  𝑎′(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  represent shifted 𝑎′⃗⃗⃗⃗  with s unit. s ∈ [−𝑚,𝑚] since there are 2m-1 possibilities 

of shifting. For each possibility, the correlation between 𝑎′(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝑏⃗⃗ is calculated as: 

𝐶𝑜𝑟𝑟(𝑎′(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑏⃗⃗)

{
 
 

 
 

   

∑ 𝑎𝑙 ∗ 𝑏𝑙+𝑠

𝑚−𝑠

𝑙=1

;  𝑤ℎ𝑒𝑛  𝑠 ≥ 0

∑ 𝑎𝑙−𝑠 ∗ 𝑏𝑙; 

𝑚+𝑠

𝑙=1

 𝑤ℎ𝑒𝑛 𝑠 < 0

 

And distance between 𝑎′(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝑏⃗⃗ is defined as: 

𝐷𝑖𝑠𝑡(𝑎′(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑏⃗⃗) =
𝐶𝑜𝑟𝑟(𝑎′(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑏⃗⃗)

√𝐶𝑜𝑟𝑟 (𝑎′(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑎′(𝑠)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) ∗ 𝐶𝑜𝑟𝑟(𝑏⃗⃗, 𝑏⃗⃗)

 

These 2m-1 distances form the cross-correlation sequence of 𝑎′⃗⃗⃗⃗  and 𝑏′⃗⃗⃗ ⃗: 

𝐶𝐶⃗⃗⃗⃗⃗⃗ = (𝐷𝑖𝑠𝑡 (𝑎′(−𝑚)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑏⃗⃗) , 𝐷𝑖𝑠𝑡 (𝑎′(1 −𝑚)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑏⃗⃗) , …𝐷𝑖𝑠𝑡(𝑎′(𝑚)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, 𝑏⃗⃗)) 

The shape-based distance between the original signals (𝑎⃗ and 𝑏⃗⃗)) is defined as: 

𝑆𝐵𝐷(𝑎⃗, 𝑏⃗⃗) = 1 − max (𝐶𝐶⃗⃗⃗⃗⃗⃗ ) 

By doing so for each trajectory, I obtained the distance matrix, based on which the further 

K-centroids clustering and binary tree were performed. 

4.8 Cell cycle analysis 

To validate the endogenous reporters, wild type MCF10A, PC21 and PCP45 were plated at 

a density of 3~3.5x105 cells in 6 cm plates two days before experiments. After 10 Gy -
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irradiation, cells were harvested at indicated time points, washed with 1xPBS, fixed with 

ice-cold 80% Ethanol / 20% 1xPBS and stored at -20 °C until all samples were collected. I 

washed the cells with 1xPBS again and stained the DNA with 25 g/ml PI in 0.1% Triton 

1xPBS with 0.2 mg/ml RNAse A. DNA content was measured using flow cytometry 

(Cytomics FC500, Beckman Coulter). Cell cycle phases were determined using FlowJo 

software (FlowJo, LLC). 

To assess the initial cell cycle phases for cells with different p21 responses, PCP45 cells 

were imaged for about 20 hours prior to irradiation to monitor cell division events, 

followed by irradiation and additional 24-hour imaging. The division time was used to 

roughly estimate the cell cycle states. G2-phase cells should divide earlier than S and G1-

phase cells, and G1-phase cells should divide later than S-phase cells. By clustering p21 

responses, cells were classified into two subgroups, ‘immediate’ or ‘delayed’ response. 

Division time was analyzed between these two subgroups. Additional labeling 

experiments were performed to validate the cell cycle prediction. At the end of 20-hour 

pre-imaging, I added 10 M BrdU in cell culture 30 minutes before irradiation to label S-

phase cells and washed it away after irradiation. Then cells were irradiated, imaged for 

another 24 hours and fixed to detect BrdU signals. This allows linking p21 dynamics to 

initial cell cycle phases. 

To measure the final cell cycle phases, EdU (EdU Click-647, Carl Roth GmbH + Co. KG) was 

added in cell culture 30 minutes before the end of live-cell imaging and detected 

immediately after imaging. EdU intensities were sorted and an edge detection algorithm 

was performed to determine the S-phase cells. In order to distinguish G1- and G2-phase 

cells, Hoechst staining was performed to measure the DNA content and to mark nuclear 

sizes, upon which cells were classified into two groups (G1-phase and G2-phase) using K-

means (K=2) classification.  

4.9 Immunofluorescence 

Cells were plated at a density of 1.5x105 cells in 3.5 cm Collagen-coated glass bottom 

dishes (MatTek) two days before experiments. After 10 Gy -irradiation, cells were fixed 

at indicated time points with 2% paraformaldehyde. Cells were permeabilized with 0.1% 

Triton X-100 in 1xPBS, blocked with 10% goat serum in 1xPBS, incubated with primary 

antibody in 1% BSA in 1xPBS, washed with 0.1% Triton X-100 in PBS, and incubated with 
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secondary antibody conjugated with Alexa Fluor 647 (#A-21245, Thermo Fisher Scientific) 

in 1% BSA in PBS. After washing, cells were stained with 2 µg/ml Hoechst in 0.1% Triton 

X-100/PBS and imaged with a 20x plan apo objective (NA 0.75) using appropriate filter 

sets. Automated segmentation was performed in Matlab (MathWorks) with algorithms 

from CellProfiler (Carpenter et al, 2006).  

4.10 Immunoblotting 

Cells were plated two days at a density of 3.5x105 cells in 6 cm plates before experiments. 

After 10 Gy -irradiation, cells were harvested at indicated time points to extract proteins 

by lysis in the presence of protease and phosphatase inhibitors. BCA assay (Thermo Fisher 

Scientific) was used to measure total protein concentrations. Equal amounts of protein 

were separated by electrophoreses on 10% SDS polyacrylamide gels and transferred to 

Nitrocellulose membranes (Thermo Fisher Scientific) by electroblotting (Bio Rad). I 

blocked membranes with 5% non-fat dried milk, incubated them overnight with primary 

antibody, washed them, incubated them with secondary antibody coupled to peroxidase 

(#31460, Thermo Fisher Scientific), washed again and detected protein levels using 

chemoluminescence (ECL Prime, GE Healthcare). 
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6 Appendix 

6.1 List of abbreviations 

DSBs double strand DNA breaks 

HDR homology-directed repair 

NHEJ nonhomologous end joining 

CRISPR 
clustered regularly interspaced short palindromic 
repeats 

Cas9 CRISPR associated protein 9 

PCNA proliferating cellular nuclear antigen 

SV40 simian virus 40 

ATM ataxia-telangiectasia mutated kinase 

ATR ataxia telangiectasia and Rad3-related protein 

Mdm2 mouse double minute 2 homolog 

p53 RE p53 response element 

CDKN1A cyclin-dependent kinase inhibitor 1A 

PTMs post-translational modifications 

CDK cyclin-dependent kinase 

PIP box PCNA-interacting peptide box 

CRL cullin-RING ubiquitin ligase 

ZFNs zinc-finger nucleases 

TALENs transcription activator-like effector nucleases 

sgRNA single guide RNA 

tracrRNA trans-activating CRISPR RNA 

crRNA CRISPR RNA 

HAL left homologous arm 

HAR right homologous arm 

WT wild type 

PAM protospacer adjacent motif 

CBX5 / HP1 gene encodes chromobox protein homolog 5 

NCS neocarcinostatin 

PC21 p53-Y/-null / cbx5-C/-C clone 21 

PCP45 p21-R/-null / p53-Y/-null / cbx5-C/-C clone 45 

ED Euclidean distance 

DTW dynamic time warping 

SBD shape-based distance 
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SMASh small molecule–assisted shutoff 

ASV asunaprevir 

IRES internal ribosomal entry site 

FUCCI fluorescence ubiquitination cell cycle indicator 

smFISH single molecule fluorescent in situ hybridization 
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6.2 List of primers 

target loci primers sequences applications 

p53 labelling 

p53 CS8_p53-endo-up CACTAATACTCTGAGGTGCTCAGTAAAC T7 

p53 CS9_p53-endo-down CTAGAATGTGGCTGATTGTAAACTAACC T7, gPCR2 

p53 CS15_HDR_p53_Fwd CCATTCTCATCCTGCCTTCATGGTC gPCR1, gPCR2 

p53 CS16_HDR_p53_Rev TCGCCGTCCAGCTCGACCAG gPCR1 

p53 CS122_p53SoC_Seq GATTTGAATTCCCGTTGTCC Seq 

CBX5 labelling 

CBX5 CS100_CBX5_EndoU GGTGAGGAGGAAATCAAGTCAAC T7, Seq 

CBX5 CS101_CBX5_EndoD AAGGCCAGCTAGTCAGCAAC T7 

CBX5 CS81_AAV_SEPTSeq TGGACAAACCACAACTAGAATG gPCR1 

CBX5 CS73_CBX5_EndoD AGCCAAGAATGCAGGAGACA gPCR1 

CBX5 CS192_CBX5_ScrF GCTGGACTGCTTTTTCCTACT gPCR2 

CBX5 CS193_CBX5_ScrR ACAAAGGCCAGCTAGTCAGC gPCR2 

p21 labelling 

p21 CS190_AAVChe_Seq ACCCTTGGTCACCTTCAG gPCR1 

p21 CS212_p21_ScrF CATTATGCCAGGCCCTTTGC gPCR1, gPCR2 

p21 CS213_p21_ScrR AGGGTGCCCTTCTTCTTGTG gPCR2 

p21 CS208_p21_Seq CTGGGCAGCTTGACTTAGAG Seq 

mutant p21 CS311_p21E2_Up GCATGGACTCTGTGATCAAT gPCR2 

mutant p21 CS312_p21I2_Down GTATCACTGCACTCCAGTCT gPCR2 

mutant p21 CS307_p21mut_I2Seq GTGGACCTGTCACTGTCTTG Seq 

mutant p21 CS288_p21_GenRev CGGCCAGGGTATGTACATGAGG Seq 

Mdm2 labelling 

Mdm2 CS158_Mdm2_ScrU GGGTTGAGCCTTTAAGGGAGT T7,gPCR1, gPCR2 

Mdm2 CS159_Mdm2_ScrD TGGAGAGAGAAACTAAGGATCAGA T7, gPCR2 

Mdm2 CS211_RuHALSeq TCCATGACCACCTTCATACG gPCR1 

Mdm2 CS309_Mdm2KD_Fwd CTTTACCTTAGACATAGCAAAGTTG Seq 

Wip1 labelling 

Wip1 CS170_Wip_ScrU AATGCACACAGAGAATGCGA 
T7, gPCR1, 
gPCR2 

Wip1 CS171_Wip_ScrD TGTTGGGAATTAGCAGCACC T7, gPCR2 

Wip1 CS211_RuHALSeq TCCATGACCACCTTCATACG gPCR1 

Wip1 PPM1D_Seq ACTCCTGGCCAAATGAAAGC Seq 

Trim22 labelling 
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Trim22 CS176_TRIM22_ScU GGGGAATGACCAGGTGTCTG T7 

Trim22 CS177_TRIM22_ScD GGGTGTCACTGGTAAACCAAC T7, gPCR1 

Trim22 CS198_NeoLoxPSeq CGAGTTCTTCTGAATAACTTCG gPCR1 

Trim22 CS237_Trim22_ScrU GCTGTAAGACACACCTATCCC gPCR2 

Trim22 CS238_Trim22_ScrD AGGGGAAAGAAAGGAAGAGATGG gPCR2, Seq 

PCR amplification of homology arms with different lengths 

p53 CS98_p53-HAL 

GTCCAAAAAGGGTCAGTCTACCTCCCGCCATAA
AAAACTCATGTTCAAGACAGAAGGGCCTGACT
CAGACACTAGTATGGTGAGCAAGGGCGAGGA
G 

TemPCR 

p53 CS99_p53-HAR 
AACCCAAAATGGCAGGGGAGGGAGAGATGG
GGGTGGGAGGCTGTCAGTGGGGAACAAGAA
GTGGAGAATGGAATTCATACATATGCACAGTGG 

TemPCR 

p53 CS76_p53_0.05HAU GTCCAAAAAGGGTCAGTCTACC TemPCR 

p53 CS77_p53_0.05HAD AACCCAAAATGGCAGGGGAG TemPCR 

p53 CS74_p53_0.1HAUp GCACAGACCCTCTCACTCAT TemPCR 

p53 CS75_p53_0.1HADo CCGGGACAAAGCAAATGGAAG TemPCR 

p53 CS46_p53_0.2HA_up GGAAGATTACGAGACTAATACAC TemPCR 

p53 CS47_p53_0.2HA_down TGCAAGAACATTTCTTACATCTC TemPCR 

p53 CS40_p53_0.3HA_up GGCTGAGGCAGGAGAATCGCTTGAAC TemPCR 

p53 CS41_p53_0.3HA_down GGTGCAAATGCCAGCATTTCACAG TemPCR 

p53 CS42_p53_0.4HA_up GAGGCCAAGGCGAGTGGATCACC TemPCR 

p53 CS43_p53_0.4HA_down AACTACCAACCCACCGACCAACAG TemPCR 

p53 CS44_p53_0.5HA_up CAGCCAGAGTTTCAGGTC TemPCR 

p53 CS45_p53_0.5HA_down TGAAATCCTCCAGGGTGTG TemPCR 

examinations of off-target effects 

p53 CS110_p53-T5OT1U TTCCAACACCAAAAAGTGGGC OT 

p53 CS111_p53-T5OT1D CCCTTCCCCAATTCTGAGCC OT 

p53 CS112_p53-T5OT1S CAGTCACGTCACCAAGTC Seq 

p53 CS113_p53-T5OT2U TTGCGGCTGAGGTCCAAG OT 

p53 CS114_p53-T5OT2D ATGGCTGGCTTGCTTTAGGT OT 

p53 CS115_p53-T5OT2S ATGGCACAATGACCACAG Seq 

p53 CS116_p53-T5OT3U GCCCCAACCTAACTGCTGAA OT 

p53 CS117_p53-T5OT3D CTGTTCTTCCGTCTCTGCCG OT 

p53 CS118_p53-T5OT3S GTTCCTGCCTTGACCTTC Seq 

p53 CS119_p53-T5OT4U CCTGGGATGCTGGGAGTTAG OT 

p53 CS120_p53-T5OT4D GAGATGGGAAGTGCTGGTGG OT 

p53 CS121_p53-T5OT4S GCAGTGACTGTCACTCTC Seq 
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This table lists primers used for T7 endonuclease I assay (T7), Sanger sequencing (Seq), 

genomic PCRs for screening (gPCR1 and gPCR2), genomic PCR for off-target examinations 

(OT) and ordinary PCR for amplifying homology arms of different lengths (TemPCR). 

Primers for cloning constructs are not listed since sgRNA guide sequences and sequences 

of repair templates are presented in next sections. 
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6.3 List of sgRNA targets 

target 
locus 

target guide sequences 
sgRNA 
efficiency 

p53 T5 GGAGAATGTCAGTCTGAGTC *** 

T8 TCCCCTGCCATTTTGGGTTT ** 

T14 TCTCCCTCCCCTGCCATTTT * 

p21 T2 GGAAGCCCTAATCCGCCCAC *** 

T3 GGCTTCCTGTGGGCGGATTA *** 

T7 CTGCAGTCCTGGAAGCGCGA N. M. 

p21 Exon2 Exon2-T2 CGGCGGCAGACCAGCATGAC ** 

Exon2-T3 GCATGTCCGCACCTGTCATGC ** 

CBX5 T2 TCTTTGTTTTCCGCATCCTC ** 

T4 AAACAGCAAAGAGCTAAAGG * 

T5 ACAGCAAAGAGCTAAAGGAG *** 

Mdm2 T1 CTTATAGACAGGTCAACTAG *** 

T4 ATTTCTAACTATATAACCCT * 

T8 GTTAGCACAATCATTTGAAT * 

Mdm4 T3 TTAAGGTTTTTATAGCATAA * 

T6 TGAATCTCTTTCTTGCAAAT * 

Wip1 T4 GTGTTTGCTGAAATGCATCT *** 

T5 TGTGTTTGCTGAAATGCATC ** 

T7 TTCCTGTGTTGATGAAGTAA * 

Trim22 T1 AGAACACTCAGGAGCTCGGT * 

T3 GAGAACACTCAGGAGCTCGG ** 

T12 GTAAAGGAATGAGAACACTC ** 

BBC3 T1 TGGGAGTCCAGTATGCTACA *** 

T2 CTCTGCACCATGTAGCATAC * 

T3 TCCCAGCCCTGCCTGTCCCG ** 

SESN1 T1 AAAGGCATCAGGTCATATAG *** 

T2 CAGCAGATATAGTCTACAAG *** 

T3 TCAGGTCATATAGCGGGTAA * 

RRM2B T1 TTTTTAAAAATCTGCATCCA * 

T2 AAACTCTATAAACTTGTCAT *** 

T3 CAAGGTGAAGACGTTATCTG ** 
 

Stars represent the relative efficiency among the multiple sgRNAs for a single locus, which 

was roughly estimated by T7 endonuclease I assay, in vitro digestion (Hsu et al. 2013) or 

number of colonies in MCF10A. The third sgRNA targeting p21 (T7) was not measured 

(N.M.) or used because the other targets (T2 and T3) were highly efficient. All sgRNAs 

targeting Mdm2, Mdm4, Wip1 and Trim22 were cloned by Andrea Grybowski from Max 

Delbrück Center for Molecular Medicine, Berlin, Germany. The designs for BBC3, SESN1 
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and RRM2B were done together with Qingyao Huang. The sgRNA Cloning and efficiency 

test of these targets was tested by Qingyao Huang. 
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6.4 Sequences of constructs 

6.4.1 p53 donor DNA 1 (pAAV-p53-SEPTV) 

AGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCGGGTCCCAGCCCTGCACAGACATTTTTTTAGTCTTCCTCCGGTTGAAT

CCTATAACCACATTCTTGCCTCAGTGTATCCACAGAACATCCAAACCCAGGGACGAGTGTGGATACTTCTTTGCCATTCTCCGCAACTCCCAGCCCAGAGC

TGGAGGGTCTCAAGGAGGGGCCTAATAATTGTGTAATACTGAATACAGCCAGAGTTTCAGGTCATATACTCAGCCCTGCCATGCACCGGCAGGTCCTAG

GTGACCCCCGTCAAACTCAGTTTCCTTATATATAAAATGGGGTAAGGGGGCCGGGCGCAGTGGCTCACGAATCCCACACTCTGGGAGGCCAAGGCGAG

TGGATCACCTGAGGTCGGGAGTTTGAGCCCAGCCTGACCAACATGGAGAAACCCCATCTCTACTAAAAATACAAAAGTAGCCGGGCGTGGTGATGCAT

GCCTGTAATCCCAGCTACCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCAGAGGTTGCGGTGAGCTGAGATCTCACCATTACAC

TCCAGCCTGGGCAACAAGAGTGAAACTCCGTCTCAAAAAAGATAAATAAAGTAAAATGGGGTAAGGGAAGATTACGAGACTAATACACACTAATACTC

TGAGGTGCTCAGTAAACATATTTGCATGGGGTGTGGCCACCATCTTGATTTGAATTCCCGTTGTCCCAGCCTTAGGCCCTTCAAAGCATTGGTCAGGGAA

AAGGGGCACAGACCCTCTCACTCATGTGATGTCATCTCTCCTCCCTGCTTCTGTCTCCTACAGCCACCTGAAGTCCAAAAAGGGTCAGTCTACCTCCCGCC

ATAAAAAACTCATGTTCAAGACAGAAGGGCCTGACTCAGACACTAGTATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTC

GAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGCTGATCTGCA

CCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGGGCTACGGCCTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGA

CTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGA

GGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGC

CACAACGTCTATATCACCGCCGACAAGCAGAAGAACGGCATCAAGGCCAACTTCAAGATCCGCCACAACATCGAGGACGGCGGCGTGCAGCTCGCCGA

CCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCTACCAGTCCGCCCTGAGCAAAGACCCCAACGA

GAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAATCTAGTGGATCCATAACTTC

GTATAGCATACATTATACGAAGTTATGGAATTAATTCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATGACTTCTGC

GCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCAGAAAAGACA

ATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTC

CCAGGTCCAACTGCAGGTCGAGCGTCGAGAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTG

CCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTG

AATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGT

GCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATG

GCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTG

TTTAGTCGAGGTTAAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATGATAAGCTTGCCACAACCATGGCTGAACA

AGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTC

CGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGG

CCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTC

ATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGA

AACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGT

TCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTC

TGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCT

GACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCG

GGGGATCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGC

TTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTCTAG

GGGGCCCCGGCGAGGCCGGGATGAGTTGGGAATAACTTCGTATAGCATACATTATACGAAGTTATCCAAATTTTAAGGTACCACTGTGCATATGTATGAA

TTCCATTCTCCACTTCTTGTTCCCCACTGACAGCCTCCCACCCCCATCTCTCCCTCCCCTGCCATTTTGGGTTTTGGGTCTTTGAACCCTTGCTTGCAATAGGT

GTGCGTCAGAAGCACCCAGGACTTCCATTTGCTTTGTCCCGGGGCTCCACTGAACAAGTTGGCCTGCACTGGTGTTTTGTTGTGGGGAGGAGGATGGGG

AGTAGGACATACCAGCTTAGATTTTAAGGTTTTTACTGTGAGGGATGTTTGGGAGATGTAAGAAATGTTCTTGCAGTTAAGGGTTAGTTTACAATCAGC

CACATTCTAGGTAGGGGCCCACTTCACCGTACTAACCAGGGAAGCTGTCCCTCACTGTTGAATTTTCTCTAACTTCAAGGCCCATATCTGTGAAATGCTGG

CATTTGCACCTACCTCACAGAGTGCATTGTGAGGGTTAATGAAATAATGTACATCTGGCCTTGAAACCACCTTTTATTACATGGGGTCTAGAACTTGACC

CCCTTGAGGGTGCTTGTTCCCTCTCCCTGTTGGTCGGTGGGTTGGTAGTTTCTACAGTTGGGCAGCTGGTTAGGTAGAGGGAGTTGTCAAGTCTCTGCTG

GCCCAGCCAAACCCTGTCTGACAACCTCTTGGTGAACCTTAGTACCTAAAAGGAAATCTCACCCCATCCCACACCCTGGAGGATTTCATCTCTTGTATATG

ATGATCTGGATCCACCAAGACTTGTTTTATGCTCAGGGTCAATTTCTTTTTTCTTTTTTTTTTTTTTTTTTCTTTTTCTTTGAGACTGGGTCTCGCTTTGTTGCC

CAGGCTGGAGTGGAGTGGCGTGATCTTGGCTTACTGCAGCCTTTGCCTCCCCGGCTCGAGCAGTCCTGCCTCAGCCTCCGGAGTAGCTGGGACCACAGG

TTGCGGCCGCAGGAACCCCTAGTGATGGAG 

 

GGGTCCCAGCCCT…CTCAGAC: The left homology arm of p53 

ATGGTGA…CAAGTAA: mVenus 

ATAACTTCGTATAGCATACATTATACGAAGTTA: Loxp sites 

GGAATTAA…ACAACC: IRES 

ATGGCTG…TCTTCTGA: Neomycin resistance gene 

CATTCTCCACTTCT…CCACAGG: The right homology arm of p53 

This construct was designed and cloned by Dr. Alexander Loewer. 



Appendix 

 

104 

6.4.2 mCherry-LoxP-P2A-Neo-LoxP construct (pC2aN) 

AAAAGCTGGAGCTCCACCGCGGTGGCGGCCGCTCTAGACTAGTATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCT

TCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCT

GAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATC

CCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCC

CTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGC

CTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTC

AAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATC

GTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGATAACTTCGTATAGCATACATTATACGAAGTTATTT

GGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTATGGCTGAACAAGATGGATTGCACGCAGGTTC

TCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGC

CCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCG

CAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGA

GAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCAC

GTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCA

TGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGG

CTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACG

GTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAATAACTTCGTATAGCATACATTATACGAAGTTATAACCACT

GTGCATATGTATGAATTCGATATCAAGCTTATCGATACCGTCGACCT 

 

ATGGTGA…ACAAG: mCherry 

GGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCT: P2A 

ATAACTTCGTATAGCATACATTATACGAAGTTAT: Loxp sites 

ATGGCTG…TCTTCTGA: Neomycin resistance gene 

 

6.4.3 p53 donor DNA 2 (p53-C2aN) 

GTCCAAAAAGGGTCAGTCTACCTCCCGCCATAAAAAACTCATGTTCAAGACAGAAGGGCCTGACTCAGACACTAGTATGGTGAGCAAGGGCGAGGAG

GATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGG

GCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACG

GCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGG

ACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCC

CCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAA

GCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGT

TGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAG

ATAACTTCGTATAGCATACATTATACGAAGTTATTTGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGA

CCTATGGCTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTG

ATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCG

GCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGG

GCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATT

CGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGC

GCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAA

AATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTG

GCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAATAA

CTTCGTATAGCATACATTATACGAAGTTATAACCACTGTGCATATGTATGAATTCCATTCTCCACTTCTTGTTCCCCACTGACAGCCTCCCACCCCCATCTCT

CCCTCCCCTGCCATTTTGGGTT 

 

GTCCAAAAA…TAGT: The left homology arm of p53 

GGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCT: P2A 

ATAACTTCGTATAGCATACATTATACGAAGTTAT: Loxp sites 

ATGGCTG…TCTTCTGA: Neomycin resistance gene 

AACCACTGT…GGTT: The right homology arm of p53 
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6.4.4 CBX5 donor DNA (pAAV-CBX5-CeSEPT) 

GGCCGCTGGCCAGAGGGGTAATGAGTATTTAAACGGACACAAGGTGAGGAGGGTTAAGACCCCTTCACTTAGATGATCTGGAAACTGGATTGACCAAC
CTGTGTATAATTGACTTGTGCATAATCAATAGAGCTGAATGTAGGTTTTTTTTTTTTTTTTTTTTGAGACGGAGTCTTGCACTGTTGCTCAGGCTAGAGTG
CAGTGGCGCGATCTCAGCTCACTGCAAGCTCCGCCTCCCGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCCGCCAC
CACGCCCGGCTAATTTTTTGTACTTTTAGTAGAGTCGGGGTTTCACCGTGTGAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCACCCGCCTCGGCC
TCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCGTGCCCGGCCCCTGAATGTAGGTTTGATTGGGTTCACTCACATGCTCATATTCACAAATAAAAATT
TTGGAAGCAGATTAATATTATTTATTATTCATCTTTTTAACCTAAGCCCACCATGGTTTACATCTAAATTCTAGCTACAGACATCTGTTTCTGTATAATATA
TTAGCTATTAATCCATTTACTTAAATTTCTTCTTGAAAATATTGAAAGGGTCCTTTTCACCTTGAAACCAAGGTGAGGAGGAAATCAAGTCAACTAAATCC
ATATAATGACATAAACGTATGTCTGGACAGATTCTTTCACTCTTCCTCTCCTTTTAAGTCTCATATTCTTTCTCTCCAGGAAAGACACAGATGAAGCTGACC
TGGTTCTTGCAAAAGAAGCTAATGTGAAATGTCCACAAATTGTGATAGCATTTTATGAAGAGAGACTGACATGGCATGCATATCCTGAGGATGCGGAA
AACAAAGAGAAAGAAACAGCAAAGAGCGGCTCCGGCGGGAGCGCTACTAGTATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATC
CTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCAT
CTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTGGGGCGTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAG
CACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAG
TTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACGCCA
TCAGCGACAACGTCTATATCACCGCCGACAAGCAGAAGAACGGCATCAAGGCCAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTC
GCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCAAGCTGAGCAAAGACCCC
AACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAATCTAGTGGATCCATA
ACTTCGTATAGCATACATTATACGAAGTTATGGAATTAATTCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATGACTT
CTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCAGAAAA
GACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCACAGGTGTC
CACTCCCAGGTCCAACTGCAGGTCGAGCGTCGAGAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCA
TATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTC
TGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGAC
AGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCA
AATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACA
TGTGTTTAGTCGAGGTTAAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATGATAAGCTTGCCACAACCATGGCTG
AACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGT
GTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGG
CTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTC
CTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAA
GCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAA
CTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCT
TTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATG
GGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGG
TTCGGGGGATCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTA
TTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTC
TAGGGGGCCCCGGCGAGGCCGGGATGAGTTGGGAATAACTTCGTATAGCATACATTATACGAAGTTATCCAAATTTTAAGGTACCACTGTGCATATGTAT
GAATTCAGGAGGGGATGGTCTCTGTCATTTCTCTTTGTACATAATACATTCACCTCCCTGCCTCCTCTCCTTTCTACCCACCCCTTTCTATCCTAAACACATC
CATAAAAAATGTGCTTATCACTGTGCTCCACAGGAGAAATGTTGGTATTGGTTCTCTTGTAACATAACTGATGGTCTGATTAATGATAAGTGTCTCTCTGT
GAAGACCAGGCATTTACATACTGAGTGTAATACCCACAATTTTTTTTTCCTTTGCCCTGATCTCTTCCTTCTGCTTCCCTGTGACCTCAAGATGAGTTTCAAC
TTTTTAATCACCTTAGAGTCTTGATCTTTTCAGGGTTGGTCGCTTTTTAGGTTGGGGGATTTTGTTACAATGATGTTGAATTTTGGTTTCTTGCTTTGGTTCT
TAGAACATGTTGCTGACTAGCTGGCCTTTGTTCTGACATGTTGAGATGGAAAGGATGTTGCCCATCTGTTAAAAAGCCAATAGCAACTGCCTACCTGTTG
GGGCTTTCCCAACCTTGTTCAGCTCTACCCAGGAGAATACAGGGTTTCTGGTGTGGTCTTCTGGGCCACCCTCTGTTGTTCATCCTCACTCATCCTCCCAGA
ATTACTCCATCCTTTGGAAGATTTGAAATTTTACACTGAAATCTGTCAAGACACTCTTTTTAGCCCCAGGACTTTCGGTATTGCTTTTAGCACTCCCCACTT
CTGCTTCTGTAAAGTGATATCAATTTGTGATAAAATGACAAGATTATTAACTGTGCAGATTTGTAGCTATAGTACATGAGGATGATGGGGTAGGGTACA
ATTGTCTTTATTATCATATATGGTATGTATGTATGATTTCTTTCCATTCCTCATATTTAGACTGTATATTTATGTAGGTGTGAGTGATTGCCTGGTGCTTGCT
TGTGCCAAGGTGCTAGGCACCCTCCAACCCTGCCAACTTTTGTGGCCTCGCGGCC 

CTGGCCAGA…AAGAGC: The left homology arm of CBX5 

ATGGTGAG…AAGTAA: mCerulean 

ATAACTTCGTATAGCATACATTATACGAAGTTA: Loxp sites 

GGAATTAA…ACAACC: IRES 

ATGGCTG…TCTTCTGA: Neomycin resistance gene 

AGGAGGGG…GTGGCCTC: The right homology arm of CBX5 

Andrea Grybowski from Max Delbrück Center for Molecular Medicine, Berlin, Germany contributed to cloning of this construct. 
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6.4.5 p21 donor DNA (pAAV-p21-CSEPT) 

GGCCGCTGGCTCACTGCAGCTTCAAACTCCTGGGCTCAAGCGATCTTCCTACCTCAGCCTCCTGGGTAGCTGGGAAGCTGGGACTATAGTTGTACACCAC

TACGCCCGGTTAATTTTTTGAGTTTTTGTAGAGACAAGGTCTCACCATGTTGCCCGGGCTGGTCTTGAACTCCTGAGCTCAAGCAGTCCTCCTGCCTCAGC

CTCCCAAAGTGTTGTGATTACAGGCGTGAGCCACCATGCCCAGCCCCTTGCCATCCTTTTAGGGCAAGGAAACCAGGCTCAGAGAGGTAGAGTGATTTA

TCTAAGGTCTCAAAGTGAATTTGCCGTTGGGTCAAGACTAATTATAATAACAACAACTACTGACGTTTATATGGGCCCGGCATTGTGCTGAACACTTTCA

TGGATTTTGTAACAGAATCCCTAGATCAGCACTGTCCAGTAACTCTGCAGGGATGGGAGTGTCCGGTACAGGGGCCACGAGCCACATACGGCTGTTGTG

CATTTGACACACAGCTCATGTGACTGAGGAACTGAATTGTTCATTTTATTTGATTGTAGTCTGTTTAAACAAGCACACAGAGCTAGTAGTGGTTCCTCTGC

TGGGCAGCTTGACTTAGAGCAGACCCATGGGTGCGGGTGCGGTGATGGATAAAATCACATCTGTGAAGCATGGTGGGACACTCCATAATACCCCTCAA

GAGACAGAGTGGACGTTCCCCGAGTTCTTCCTGTTCTCAGCAGTCGGCCCCATTGGCCCCAGGGAAGGGTGTCCTGGCCCCCCACTGTCTTCCTCAGTTG

GGCAGCTCCGCCGCGTCCTCTTCTTCTTGGCCTGGCTGACTTCTGCTGTCTCTCCTCAGATTTCTACCACTCCAAACGCCGGCTGATCTTCTCCAAGAGGAA

GCCCACTAGTATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGC

CACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCG

CCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGC

TTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAA

GCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCG

CCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCA

GCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCA

CTCCACCGGCGGCATGGACGAGCTGTACAAGTAATCTAAGTAATCACTAGTGGATCCATAACTTCGTATAGCATACATTATACGAAGTTATGGAATTAAT

TCGCTGTCTGCGAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATGACTTCTGCGCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTT

GATATTCACCTGGCCCGCGGTGATGCCTTTGAGGGTGGCCGCGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTGTGGCAGGCTTG

AGATCTGGCCATACACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCAGGTCGAGCGTCGAGAACGTTA

CTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCC

CTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTT

GAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACC

TGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGAT

GCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAACGTCTAGGCCCCCCGAA

CCACGGGGACGTGGTTTTCCTTTGAAAAACACGATGATAAGCTTGCCACAACCATGGCTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGT

GGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTC

AAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGAC

GTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCA

TGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGA

AGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGA

GGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCG

GACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCC

CGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGGGGGATCCAGACATGATAAGATACATTGATGAGT

TTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAG

TTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTCTAGGGGGCCCCGGCGAGGCCGGGATGAGTTGGGAAT

AACTTCGTATAGCATACATTATACGAAGTTATCCAAATTTTAAGGTACCACTGTGCATATGTATGAATTCGATATCAAGCTTATCGATACCGTCGACTCCGC

CCACAGGAAGCCTGCAGTCCTGGAAGCGCGAGGGCCTCAAAGGCCCGCTCTACATCTTCTGCCTTAGTCTCAGTTTGTGTGTCTTAATTATTATTTGTGTT

TTAATTTAAACACCTCCTCATGTACATACCCTGGCCGCCCCCTGCCCCCCAGCCTCTGGCATTAGAATTATTTAAACAAAAACTAGGCGGTTGAATGAGAG

GTTCCTAAGAGTGCTGGGCATTTTTATTTTATGAAATACTATTTAAAGCCTCCTCATCCCGTGTTCTCCTTTTCCTCTCTCCCGGAGGTTGGGTGGGCCGGC

TTCATGCCAGCTACTTCCTCCTCCCCACTTGTCCGCTGGGTGGTACCCTCTGGAGGGGTGTGGCTCCTTCCCATCGCTGTCACAGGCGGTTATGAAATTCA

CCCCCTTTCCTGGACACTCAGACCTGAATTCTTTTTCATTTGAGAAGTAAACAGATGGCACTTTGAAGGGGCCTCACCGAGTGGGGGCATCATCAAAAAC

TTTGGAGTCCCCTCACCTCCTCTAAGGTTGGGCAGGGTGACCCTGAAGTGAGCACAGCCTAGGGCTGAGCTGGGGACCTGGTACCCTCCTGGCTCTTGA

TACCCCCCTCTGTCTTGTGAAGGCAGGGGGAAGGTGGGGTCCTGGAGCAGACCACCCCGCCTGCCCTCATGGCCCCTCTGACCTGCACTGGGGAGCCCG

TCTCAGTGTTGAGCCTTTTCCCTCTTTGGCTCCCCTGTACCTTTTGAGGAGCCCCAGCTACCCTTTTTCTCCAGCTGGGCTCTGCAATTCCCCTCTGCTGCTG

TCCCTCCCCCTTGTCCTTTCCCTTCAGTACCCTCTCAGCTCCAGGTGGCTCTGAGGTGCCTGTCCCACCCGCGGCC 

 

TGGCTCACTGC…GAAGCCC: The left homology arm of p21 

ATGGTGA…ACAAG: mCherry 

ATAACTTCGTATAGCATACATTATACGAAGTTA: Loxp sites 

GGAATTAA…ACAACC: IRES 

ATGGCTG…TCTTCTGA: Neomycin resistance gene 

TCCGCCC…CCCACCC: The right homology arm of p21 

This construct was designed and cloned by Dr. Alexander Loewer. 
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6.4.6 mutant p21 donor DNA (pDO-p21-CSN) 

AGTCGCGGCCGCTGCTGCATGGACTCTGTGATCAATTTCTTGAGTATGTGTCTGTAGCCATGCTCTTTAAACTTGTACATGGCCCCATTTATGGATGAGGA

AACTGAGACCTAGAGACATTAAGTGGCTTTTTAAAGCTTACGTAGTAACTGGCAGAGCTAGGACCACAACCCGGGTGCTTTTTGCCCCAAAGTCCCGGG

TACTTTTACTTGGCAGAGCAGGGTTACCCTACTTGGGGATCTGGGTCGGGGGACTTAGGAGGCTGGAGGAACTGTCAGACTGTTTCTTCTTTTGGGAAT

TGACCTTCTGGCCAGGGCTGCGATTAGGAAACTGCTGGACTCTGGCAATTCACACATATTTGGGGGGCATTCACACCCATGAGGGACACCTCTGGGGGG

AAAACAAATTGATTTTAGCTGATAATACCTGGTGGCAAACAGGACCCTGGTCCTTGCTCTTGCAATAGACTTGCCTTTGTTGACATTAGCTTGCCCTTCAG

TTGCCTGCTCTCCCAGTGACCTTGGTGTGCCAGGCTGGCTGAGCTCTGCTGGTGGGGGTCAGGCCTCCTGTGGGAAGGAAGCAGGAAGACCAGCTGGA

AGGAGTGAGAGAGACCCTCTGGTAGGAAGACGTCACCTGAGGTGACACAGCAAAGCCCGGCCAGGTAACATAGTGTCTAATCTCCGCCGTGACCAGG

GCCTTCCTTGTATCTCTGCTGCAGGCGCCATGTCAGAACCGGCTGGGGATGTCCGTCAGAACCCATGCGGCAGCAAGGCCTGCCGCCGCCTCTTCGGCCC

AGTGGACAGCGAGCAGCTGAGCCGCGACTGTGATGCGCTAATGGCGGGCTGCATCCAGGAGGCCCGTGAGCGATGGAACTTCGACTTTGTCACCGAG

ACACCACTGGAGGGTGACTTCGCCTGGGAGCGTGTGCGGGGCCTTGGCCTGCCCAAGCTCTACCTTCCCACGGGGCCCCGGCGAGGCCGGGATGAGTT

GGGAGGAGGCAGGCGGCCTGGCACCTCACCTGCTCTGCTGCAGGGGACAGCAGAGGAAGACCATGTGGACCTGTCACTGTCTTGTACCCTTGTGCCTC

GCTCAGGGGAGCAGGCTGAAGGGTCCCCAGGTGGACCTGGAGACTCTCAGGGTCGAAAACGGCGGGCAACCAGCGCGACAGGTGCGGACATGTGCA

CGGAAGGACTTTGTAAGGGACCAGGATTCTCAGAATCCATGGTCCAAGGGCTGACCTGTCTGGTCCTGGTCCAGCATGCTCCAGGTAGAAGGAAACAG

GCCCAGAGAGGGGAAGCAACCTCCCTGAGGTCACACAGCAAGTAGGCAGCAAAGACCAACTAGCTAACATTTATTGGGAATGTTCATTATGCCAGGCC

CTTTGCCAAGCTTCTAAGGTAGATTTATTTAGTCCTTATAGCAATGTTATAACATAAGACATTCTTGTCACCCTGCCCGCCTTTCTTTTTGAGACAGGTGTC

TTAACTCTGTTGGCCAGACTGGAGTGCAGTGATACGATCATGGCTCACTGCAGCTTCAAACTCCTGGGCTCAAGCGATCTTCCTACCTCAGCCTCCTGGGT

AGCTGGGAAGCTGGGACTATAGTTGTACACCACTACGCCCGGTTAATTTTTTGAGTTTTTGTAGAGACAAGGTCTCACCATGTTGCCCGGGCTGGTCTTG

AACTCCTGAGCTCAAGCAGTCCTCCTGCCTCAGCCTCCCAAAGTGTTGTGATTACAGGCGTGAGCCACCATGCCCAGCCCCTTGCCATCCTTTTAGGGCAA

GGAAACCAGGCTCAGAGAGGTAGAGTGATTTATCTAAGGTCTCAAAGTGAATTTGCCGTTGGGTCAAGACTAATTATAATAACAACAACTACTGACGTT

TATATGGGCCCGGCATTGTGCTGAACACTTTCATGGATTTTGTAACAGAATCCCTAGATCAGCACTGTCCAGTAACTCTGCAGGGATGGGAGTGTCCGGT

ACAGGGGCCACGAGCCACATACGGCTGTTGTGCATTTGACACACAGCTCATGTGACTGAGGAACTGAATTGTTCATTTTATTTGATTGTAGTCTGTTTAA

ACAAGCACACAGAGCTAGTAGTGGTTCCTCTGCTGGGCAGCTTGACTTAGAGCAGACCCATGGGTGCGGGTGCGGTGATGGATAAAATCACATCTGTG

AAGCATGGTGGGACACTCCATAATACCCCTCAAGAGACAGAGTGGACGTTCCCCGAGTTCTTCCTGTTCTCAGCAGTCGGCCCCATTGGCCCCAGGGAA

GGGTGTCCTGGCCCCCCACTGTCTTCCTCAGTTGGGCAGCTCCGCCGCGTCCTCTTCTTCTTGGCCTGGCTGACTTCTGCTGTCTCTCCTCAGATGCCTACCA

CTCCAAACGCCGGCTGATCTTCTCCAAGAGGAAGCCCCGCTCTAGAACTAGTATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGT

TCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGAC

CGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCC

GCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCA

GGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGG

GCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACG

ACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAG

GACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGCCCGGGGATGAGATGGAAGAGT

GCTCTCAGCACTTACCCGGCGCCGGCAGTAGTGGCGATATCATGGATTACAAGGATGACGACGATAAGGGCTCTTCCGGGACAGGCTCCGGATCCGGCAC

TAGTGCGCCCATCACGGCGTACGCCCAGCAGACGAGAGGCCTCCTAGGGTGTATAATCACCAGCCTGACTGGCCGGGACAAAAACCAAGTGGAGGGTGA

GGTCCAGATCGTGTCAACTGCTACCCAAACCTTCCTGGCAACGTGCATCAATGGGGTATGCTGGGCAGTCTACCACGGGGCCGGAACGAGGACCATCGCA

TCACCCAAGGGTCCTGTCATCCAGATGTATACCAATGTGGACCAAGACCTTGTGGGCTGGCCCGCTCCTCAAGGTTCCCGCTCATTGACACCCTGTACCTGC

GGCTCCTCGGACCTTTACCTGGTCACGAGGCACGCCGATGTCATTCCCGTGCGCCGGCGAGGTGATAGCAGGGGTAGCCTGCTTTCGCCCCGGCCCATTTC

CTACTTGAAAGGCTCCTCTGGGGGTCCGCTGTTGTGCCCCGCGGGACACGCCGTGGGCCTATTCAGGGCCGCGGTGTGCACCCGTGGAGTGGCTAAAGCG

GTGGACTTTATCCCTGTGGAGAACCTAGAGACAACCATGAGATCCCCGGTGTTCACGGACAACTCCTCTCCACCAGCAGTCACCCTGACGCACCCAATCACC

AAAATCGATACCAAATACATCATGACATGCATGTCGGCCGACCTGGAGGTCGTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTGGCTGCTCTGGCCG

CGTATTGCCTGTCAACAGGCTGCGTGGTCATAGTGGGCAGGATCGTCTTGTCCGGGAAGCCGGCAATTATACCTGACAGGGAGGTTCTCTACAAGATAAC

TTCGTATAGCATACATTATACGAAGTTATTTGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTAT

GGCTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCC

GCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTAT

CGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGG

ATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACC

ACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAG

CCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGG

CCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGC

GAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAATAACTTCGT

ATAGCATACATTATACGAAGTTATAACCACTGTGCATATGTATGTCCGCCCACAGGAAGCCTGCAGTCCTGGAAGCGCGAGGGCCTCAAAGGCCCGCTCT

ACATCTTCTGCCTTAGTCTCAGTTTGTGTGTCTTAATTATTATTTGTGTTTTAATTTAAACACCTCCTCATGTACATACCCTGGCCGCCCCCTGCCCCCCAGC

CTCTGGCATTAGAATTATTTAAACAAAAACTAGGCGGTTGAATGAGAGGTTCCTAAGAGTGCTGGGCATTTTTATTTTATGAAATACTATTTAAAGCCTC

CTCATCCCGTGTTCTCCTTTTCCTCTCTCCCGGAGGTTGGGTGGGCCGGCTTCATGCCAGCTACTTCCTCCTCCCCACTTGTCCGCTGGGTGGTACCCTCTGG

AGGGGTGTGGCTCCTTCCCATCGCTGTCACAGGCGGTTATGAAATTCACCCCCTTTCCTGGACACTCAGACCTGAATTCTTTTTCATTTGAGAAGTAAACA

GATGGCACTTTGAAGGGGCCTCACCGAGTGGGGGCATCATCAAAAACTTTGGAGTCCCCTCACCTCCTCTAAGGTTGGGCAGGGTGACCCTGAAGTGA

GCACAGCCTAGGGCTGAGCTGGGGACCTGGTACCCTCCTGGCTCTTGATACCCCCCTCTGTCTTGTGAAGGCAGGGGGAAGGTGGGGTCCTGGAGCAG

ACCACCCCGCCTGCCCTCATGGCCCCTCTGACCTGCACTGGGGAGCCCGTCTCAGTGTTGAGCCTTTTCCCTCTTTGGCTCCCCTGTACCTTTTGAGGAGCC

CCAGCTACCCTTTTTCTCCAGCTGGGCTCTGCAATTCCCCTCTGCTGCTGTCCCTCCCCCTTGTCCTTTCCCTTCAGTACCCTCTCAGCTCCAGGTGGCTCTGA

GGTGCCTGTCCCACCCGCGGCCGCGATATCC 

 

TGCTGCATGG...AGGAAGCCC: The left homology arm of p21 which contains following mutations: 
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…GTCGAAAACGGCGGCAGACCAGCATGACAGGTGC… (WT sequences in Exon 2)     ->  

…GTCGAAAACGGCGGGCAACCAGCGCGACAGGTGC… (corresponding mutant sequences) 

…AGATTTCTAC… (WT sequences in Exon 3) -> 

…AGATGCCTAC… (corresponding mutant sequences in Exon 3) 

ATGGTGA…ACAAG: mCherry 

CCCGGGG…CAAG: SMASh 

GGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCT: P2A 

ATAACTTCGTATAGCATACATTATACGAAGTTAT: Loxp sites 

ATGGCTG…TCTTCTGA: Neomycin resistance gene 

TCCGCCC...CACCC: The right homology arm of p21 
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6.5 Single cell trajectories 

 

 
 
 
 
72 randomly selected samples (to be continued) 
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72 randomly selected samples (continued)
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