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möchte ich für Hilfe bei der Korrektur danken. Meiner lieben Rebekka will ich
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Introduction

The Divergence Theorem is a well-known result in mathematics. One of the
first appearances of a statement that translates the integral over a volume
into an integral over the bounding surface of said volume can be found in a
treatise of Gauß (cf. [22]). Nevertheless, it is assumed that Lagrange already
knew of a similar technique. The first formal proof of a special case of this
theorem is attributed to Ostrogradsky. Throughout the nineteenth century
many famous scientists, including Green, proved increasingly general forms
of this statement (cf. [26]).

The continued interest in this theorem results from its many applications
in mathematics and science. For a physicist it arises e.g. in the context
of conservative equations, i.e. the conservation of mass and energy. Early
applications already included magnetism, heat transfer and elastic bodies
(cf. [26]). Mathematicians use it for partial integration in higher dimensions
and the analysis of partial differential equations. In Continuum Mechanics,
it describes a balance of forces.

Since the inception of the Theorem of Gauß, as it is called by German
mathematicians, there have been attempts to generalise its statement to
more abstract settings. On the one hand, it is desirable to integrate on very
general domains which do not need to have a well-defined normal vector at
each point on the boundary (cf. [5]). On the other hand, applications in
mechanics often need to employ the theorem for highly non-smooth vector
fields. Especially in the field of mechanical engineering, where e.g. cogs exert
forces concentrated on lines or even points on each other, vector fields whose
distributional divergence is a measure arise naturally. These phenomena were
already known to Heinrich Hertz. The notion of Hertzian Contact Stress was
introduced to sidestep the problem of dealing with these concentrated loads
(cf. [25]). A general Divergence Theorem which is capable of describing these
situations would enable a more rigorous analysis of these problems.

The Divergence Theorem in its simplest form is stated for smooth vector
fields F on domains Ω ⊂ Rn with smooth boundary. It has the following
form

ˆ

Ω

divF dLn =

ˆ

∂Ω

F · ν dHn−1 ,

where ν is the outward pointing normal vector of Ω.
The challenges in generalising this statement are threefold. First and

foremost, the volume integral on the left-hand side only makes sense if the
divergence of F is an integrable function with respect to Lebesgue measure.
It is a well-established fact that this integral can be exchanged for divF (Ω)
in the case where divF is a Radon measure on Ω (cf. [8]). Second, the
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integral on the right-hand side of the equation needs some notion of normal
vector ν to the set. This normal vector exists Hn−1-almost everywhere for
sets Ω of finite perimeter (cf. [20], [2]). For domains with possibly infinite
perimeter, a substitute is yet to be found. Third and last, for the area integral
to be meaningful, the vector field F must be integrable with respect to area
measure. For F that do not fulfill this requirement, multiple strategies can
be found in the literature.

One way is to compute the normal trace as an essentially bounded func-
tion on the boundary via mollification ([13]). This approach has the drawback
that geometry and the information encoded in the vector field are combined,
thus making the interpretation of the trace itself more difficult. Other tech-
niques exchange the area integral with a continuous linear functional on a
function space on ∂Ω, but do not provide a representation of this functional
as an integral ([32],[10]). Most of the results found in the literature hold true
for essentially bounded vector fields having divergence measure (cf [12], [10]).
In [31] it is shown that the area integral can be substituted by

lim
δ↓0

1

δ

ˆ

Ωδ\Ω

F ·D(distΩ) dLn

even in the case where F is only integrable and Ω is an arbitrary closed set.
In the literature, many of the cases mentioned above have been discussed

in detail. A prominent source is the paper by Anzelotti [3], where vec-
tor fields with integrable divergence and sets with Lipschitz boundary are
considered. The case of essentially bounded vector fields having divergence
measure on sets with Lipschitz deformable boundary has been discussed by
Chen and Frid in [8] and [9]. In [10], Chen and Frid proved a Gauß formula
for vector measures having divergence measure and sets with Lipschitz de-
formable boundary. Sets of finite perimeter and essentially bounded vector
fields have been discussed by Chen and Torres in [12]. Their trace is an es-
sentially bounded function on the boundary and is obtained by mollification.
In [32], Silhavy proved a Gauß Theorem for open sets and measures having
divergence measure, the normal trace being a functional on the Lipschitz
continuous functions on the boundary. Schuricht [31] investigated arbitrary
closed sets and unbounded divergence measure fields and proved the limit
formula given above. The listed sources also contain a large part of the the-
ory for vector fields having divergence measure. In this thesis, Evans [20] and
Ambrosio [2] are used for the theory of functions of bounded variation. A
good compilation of important results on finitely additive set functions can
be found in Rao [30]. Other important sources are Alexandroff [1], Leader
[28], Bochner [6], Dunford [18], Yosida [33] and Kolmogoroff [27].
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The main question addressed in this thesis is: Is it possible to generalise
the area integral in the Divergence Theorem in such a way that integral
calculus is available for the area part, even for domains with unbounded
perimeter? This is investigated for essentially bounded vector fields having
divergence measure as well as for unbounded vector fields. It is shown that
this is possible using so-called pure measures, which are necessarily only
finitely additive. The properties of these measures are analysed in detail.

Consequently, the structure of this thesis is as follows.
In the fist chapter, a theory of finitely additive measures is laid out. Since

some results from lattice theory are needed in the course of the analysis, they
are presented at the beginning of this chapter. An important result on succes-
sive decomposition of lattices into normal sublattices is proved. Afterwards,
the basic definitions of measure theory are recalled and pure measures are in-
troduced. Concrete examples for these measures were essentially only known
on N up to now. A new example of a pure measure on Rn is presented, which
is in essence the density of a set at zero. Using a slightly adapted notion
of support of a measure, a sufficient condition for a measure to be pure is
derived.

The second chapter covers the theory of integration for the measures intro-
duced in the previous chapter. Using the sublattice decomposition technique,
an improved characterisation of the dual of the space of essentially bounded
functions is given. As the spaces of p-integrable functions with respect to
a finitely additive measure are not necessarily complete, the second section
presents the completions of these spaces and the corresponding dual spaces
in a concise form.

In the third chapter, it is shown that the new example for pure measures
is prototypical in the sense that many measures share its structure. These
new measures are called density measures. The space of all density measures
of a closed set is introduced and its extremal points are analysed. It is shown
that the latter are extensions of the Dirac measure to essentially bounded
functions and that they concentrate along one-dimensional directions. Fur-
thermore, a direct correspondence of density measures and σ-measures which
are singular with respect to Lebesgue measure is shown.

The fourth chapter contains an exposition on functions of bounded varia-
tion and vector fields having divergence measure, which facilitates the proof
of Gauß formulas later on. The first section on functions of bounded varia-
tion contains an important proposition on mollification of sets having finite
perimeter. The section on vector fields having divergence measure contains
several useful product formulas which are repeatedly used in the subsequent
analysis.

The main results on Gauß formulas are given in the last chapter. The
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first section contains a general Divergence Theorem for sets of finite perimeter
and essentially bounded vector fields. In particular, the existence of so-called
normal measures is proved and some of their properties are presented. It is
shown that, in general, unbounded vector fields cannot be integrated with re-
spect to these normal measures. The second part of the last chapter contains
a Theorem of Gauß for unbounded vector fields having divergence measure
and bounded open sets with path-connected boundary. This theorem gives
the normal trace of Silhavy (cf. [32]) a representation as the sum of a Radon
measure and a finitely additive measure. The analysis conveys an interesting
new measure, which vanishes in the regular case.
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Chapter 1

Theory of Finitely Additive
Measures

This chapter contains a basic theory of finitely additive measures and some
useful tools from lattice theory. The first section presents these tools and
a proposition on successive decomposition of vector lattices into sublattices.
The spaces of measures defined in the subsequent section turn out to be
boundedly complete vector lattices. This enables the decomposition of mea-
sures which are weakly absolutely continuous with respect to Lebesgue mea-
sure into pure and σ-additive parts. In the literature, explicit examples of
pure measures can essentially be found only on N (cf. [30]). Here, a new
example on Rn is given. This example is essentially the density of a set at
a point. In Chapter 3 this enables the identification of a large class of pure
measures. In addition, a new notion of support of a measure is introduced,
called core. This is necessary because pure measures can have their core out-
side of the set on which they live. It turns out that every weakly absolutely
continuous measure whose core has Lebesgue measure zero is necessarily
pure.

1.1 Lattice Theory

First, some results on vector lattices are gathered. These are useful in the
decomposition of finitely additive measures. This decomposition technique
was used in special cases by Alexandroff (cf. [1]) and Yosida (cf. [33]).
By embedding it into a lattice setting, the technique becomes much more
tractable (cf. [30]). The following exposition is a very short summary of the
relevant statements. A general treatment can be found in Birkhoff [4].

First, the basic definitions for vector lattices from Rao [30, p. 24ff] (cf.
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[4, p. 347]) is given.

Definition 1.1. Let L be a vector space and ≤ a partial order on L which
is compatible with + and the multiplication with a scalar on L. If for all
l1, l2 ∈ L the supremum and infimum of {l1, l2} exist, then L is called a
vector lattice. For l, l1, l2 ∈ L write

l1 ∨ l2 := sup{l1, l2}
l1 ∧ l2 := inf{l1, l2}

l+ := l ∨ 0

l− := −l ∨ 0

|l| := l+ + l−

l1, l2 ∈ L are called orthogonal, if |l1| ∧ |l2| = 0, written l1 ⊥ l2. If for a
family {li}i∈I ⊂ L the supremum exists, write

∨

i∈I

li := sup
i∈I

li .

If the infimum of {li}i∈I exists, it is denoted by

∧

i∈I

li := inf
i∈I

li .

A set L′ ⊂ L is called bounded from above, if there exists l ∈ L, such that
l′ ≤ l for all l′ ∈ L′.

A vector lattice is called boundedly complete, if for every {li}i∈I ⊂ L
which is bounded from above the supremum

∨

i∈I

li exists.

For a vector lattice L and l1, l2 ∈ L

|l1 + l2| ≤ |l1|+ |l2|

with equality if l1 ⊥ l2 (cf. [30, p. 25]). The following example foreshadows
the partial order that turns spaces of measures into vector lattices.

Example 1.2. Let M be any set. Let L be the set of all functions

f : M → R

then there is a natural partial order on L turning M into a vector lattice, i.e.

f1 ≤ f2 ⇐⇒ f1(x) ≤ f2(x) for all x ∈M .

6



In the following, L denotes a boundedly complete vector lattice.
In order to obtain results for an orthogonal decomposition of vector lat-

tices (and their elements), one has to define appropriate sub-structures (cf.
[30, p. 28]).

Definition 1.3. A linear subspace L′ of L is called a sublattice of L if
l1 ∨ l2 ∈ L′ and l1 ∧ l2 ∈ L′ for all l1, l2 in L′.

A sublattice L′ of L is called normal, if

1. for all l′ ∈ L′ and all l ∈ L

|l| ≤ |l′| =⇒ l ∈ L′

2. if for {li}i∈I ⊂ L′ the supremum exists in L, then
∨

i∈I

li ∈ L′.

In order to decompose a vector lattice into normal sublattices, a notion
of orthogonality is needed (cf. [30, p. 29]).

Definition 1.4. For a subset L′ of L, the set

(L′)⊥ := {l ∈ L | ∀l′ ∈ L′ : l ⊥ l′}

is called orthogonal complement of L′.

The following statements from [30, p. 29f] illustrates that normal sublat-
tices and orthogonality interact in a similar way as closed linear subspaces
and orthogonality in Hilbert spaces do.

Proposition 1.5. Let S ⊂ L, then S⊥ is a normal sublattice of L. If S is a
normal sublattice, then (S⊥)⊥ = S.

A useful characterisation of the orthogonal complement of a normal sub-
lattice is the following.

Proposition 1.6. Let S be a normal sublattice of L. Then l ∈ S⊥ if and
only if for every s ∈ S

0 ≤ |s| ≤ |l| =⇒ s = 0 .

Proof. Assume first that l ∈ S⊥. Then for every s ∈ S

0 ≤ |s| ≤ |l| =⇒ 0 = |s| ∧ |l| = |s| =⇒ s = 0 .

Now assume for every s ∈ S

0 ≤ |s| ≤ |l| =⇒ s = 0 .
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Since S is a normal sublattice

0 ≤ |s| ∧ |l| ≤ |s| =⇒ |s| ∧ |l| ∈ S .

By assumption
|s| ∧ |l| ≤ |l| =⇒ |s| ∧ |l| = 0 .

Thus s ⊥ l.

As in the setting of Hilbert spaces, a boundedly complete vector lattice
can be represented as the direct sum of a normal sublattice and its orthogonal
complement (cf. [30, p. 29]).

Proposition 1.7. Riesz Decomposition Theorem
Let S be a normal sublattice of L, then for every l ∈ L there exist unique
elements s ∈ S, s⊥ ∈ S⊥ such that

l = s+ s⊥ .

Furthermore, if l ≥ 0, then s =
∨

s′∈S

l ∧ |s′|. For general l ∈ L

s =
∨

s′∈S

l+ ∧ |s′| −
∨

s′∈S

l− ∧ |s′| .

The following proposition enables the successive decomposition of a lattice
into sublattices. This is used in the analysis of measures. In particular,
this proposition enables a better characterisation of the dual of the space of
essentially bounded functions.

Proposition 1.8. Let L1, L2 be two normal sublattices of L. Then L1 ∩ L2

is a normal sublattice of L2. Furthermore, the orthogonal complement of
L1 ∩ L2 in L2 is L⊥

1 ∩ L2.

Proof. Let l1 ∈ L1 ∩ L2 and l2 ∈ L2 with

|l2| ≤ |l1| .

Since L1 is a normal sublattice of L,

l2 ∈ L1 .

Whence l2 ∈ L1 ∩ L2.
Now, let {li}i∈I ⊂ L1 ∩ L2 be such that

∨

i∈I

li ∈ L. Since L1 and L2 are

normal,
∨

i∈I

li ∈ L1 and
∨

i∈I

li ∈ L2 .
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This implies
∨

i∈I

li ∈ L1 ∩ L2. Thus L1 ∩ L2 is a normal sublattice of L2.

Let l2 ∈ L2 such that l2 ∈ (L1 ∩ L2)
⊥. Since L1 is a normal sublattice of

L, there exist l1 ∈ L1, l
⊥
1 ∈ L⊥

1 such that l2 = l1 + l⊥1 . Now, using additivity
of the total variation on orthogonal elements (cf. [30, p. 25])

0 ≤ sup{|l1|, |l⊥1 |} ≤ |l1|+ |l⊥1 | = |l2| .

Hence, l1, l
⊥
1 ∈ L2 and l1, l

⊥
1 ∈ (L1 ∩ L2)

⊥. Since l2 ∈ (L1 ∩ L2)
⊥,

0 = |l2| ∧ |l1| = |l1| ∧ |l1|+ |l1| ∧ |l⊥1 | = |l1| ∧ |l1| .

This implies l1 = 0. Hence

(L1 ∩ L2)
⊥ ⊂ L⊥

1 ∩ L2 .

On the other hand, if l⊥1 ∈ L⊥
1 ∩ L2, then for all l1 ∈ L1 ∩ L2

|l1| ∧ |l⊥1 | = 0 ,

whence
L⊥
1 ∩ L2 ⊂ (L1 ∩ L2)

⊥ .

1.2 Finitely Additive Measures

In the following, a self-contained exposition of a theory of measures is pre-
sented. Furthermore, the new example for pure measures is given and the
notion of the core of a measure is used to characterise the pure measures.
Many of the following statements hold true for arbitrary topological spaces
Ω. Nevertheless, in the following let n ∈ N>0 and Ω ⊂ Rn with the usual
relative topology.

The following definition of measures is an adapted version of the definition
of charges given in Rao [30, p. 35].

Definition 1.9. Let Ω ⊂ Rn andM⊂ 2Ω and µ :M→ R. Then µ is called
measure on Ω with respect to M, if for all M1,M2, ...,Mm ∈ M such that

Mi ∩Mj = ∅ for i 6= j and
m
⋃

k=0

Mk ∈M

µ

(

m
⋃

k=0

Mk

)

=
m
∑

k=0

µ(Mk) .
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If for all {Mk}k∈N ⊂M such that Mi ∩Mj = ∅ for i 6= j and
⋃

k∈N

Mk ∈M

µ

(

⋃

k∈N

Mk

)

=
∞
∑

k=0

µ(Mk)

then µ is called σ-measure.
Note that this entails the unconditional convergence of the series on the

right hand side.
A set function µ :M→ R is called bounded, if

sup
M∈M

|µ(M)| <∞ .

Remark 1.10. One could also take m ∈ N, m > 1 and

µ :M→ Rm

in the above definitions.

In order to obtain a vector space structure on the set of measurable
functions, mainly systems of sets of the following types are considered (cf.
[30, p. 2]).

Definition 1.11. Let Ω ⊂ Rn. Then A ⊂ 2Ω is called algebra, if for all
A1, A2 ∈ A, the sets A1 ∩ A2 ∈ A, Ac

1 ∈ A and A1 ∪ A2 ∈ A and ∅ ∈ A.
If in addition for all {Ak}k∈N ⊂ A the set

⋃

k∈N

Ak ∈ A, then A is called

σ-algebra.

In the following, A denotes an algebra on Ω. The spaces of measures
considered in this thesis are defined in accordance with [30].

Definition 1.12. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra. The set of all
bounded measures µ : A → R is denoted by

ba(Ω,A) .

The set of all bounded σ-measures σ : A → R is denoted by

ca(Ω,A) .

There is a natural partial order on ba(Ω,A) (cf. [30, p. 43]).
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Definition 1.13. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra. For µ, λ ∈ ba(Ω,A)
one writes

µ ≤ λ

if and only if for every A ∈ A

µ(A) ≤ λ(A) .

The following proposition links the theory of measures with the theory
of boundedly complete vector lattices. This is essential for the subsequent
results on the decomposition of measures. The proposition is taken from [30,
p. 43f].

Proposition 1.14. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra. Then ba(Ω,A)
together with the partial order ≤ is a boundedly complete vector lattice.

The following definitions are standard in measure theory (cf. [30, p. 45]).

Definition 1.15. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra. For µ ∈ ba(Ω,A)
define

µ+ := µ ∨ 0 = sup{µ, 0}
µ− := (−µ) ∨ 0 = sup{−µ, 0}
|µ| := µ+ + µ− .

Call µ+ positive part of µ, µ− negative part of µ and |µ| total variation
of µ.

Furthermore, for A ∈ A define µ⌊A : A → R by

(µ⌊A)(A′) := µ(A ∩ A′) for all A′ ∈ A .

The total variation can be characterised in the following way (cf. [30, p.
46]).

Proposition 1.16. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra. Then for every
µ ∈ ba(Ω,A) and A ∈ A

|µ| (A) = sup
m
∑

k=1

|µ (Ak)| .

where the supremum is taken over all finite partitions {Ak}mk=0 ⊂ A of A.

The following proposition can be found in Rao [30, p. 44]. It states that
in the space of bounded measures, the norm is compatible with the partial
order.
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Proposition 1.17. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra. Then ba(Ω,A)
together with ≤ and the norm

‖µ‖ := |µ| (Ω) for µ ∈ ba(Ω,A)

is a Banach lattice, i.e. it is a Banach space and a vector lattice such that
for all µ, λ ∈ ba(Ω,A)

|µ| ≤ |λ| =⇒ ‖µ‖ ≤ ‖λ‖ .

The following proposition is an application of Riesz’s decomposition The-
orem (Proposition 1.7) (cf. [30, p. 241]). In particular, every bounded
measure can be uniquely decomposed into a σ-measure and a pure measure.
Recall the definition of orthogonal complement from page 7.

Proposition 1.18. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra. Then ba(Ω,A) is
a boundedly complete vector lattice and ca(Ω,A) one of its normal sublattices.
Hence, every µ ∈ ba(Ω,A) can uniquely be decomposed into µc ∈ ca(Ω,A)
and µp ∈ ca(Ω,A)⊥ such that

µ = µc + µp

and for every σ ∈ ca(Ω,A)

0 ≤ σ ≤ |µp| =⇒ σ = 0 .

Definition 1.19. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra. Then every
measure µp ∈ ca(Ω,A)⊥ is called pure. Notice that µp is not σ-additive, by
definition.

One important example of measures that are pure are density measures.
The following new example presents a particular density measure, namely a
density at zero. In the literature, examples of pure measure are only known
for Ω = N (cf. [30, p. 247]), they are defined on very small algebras (cf.
[30, p. 246]) or they are constructed in such a way that the measure cannot
be computed explicitly, even on simple sets (cf. [33, p. 57f]). The example
given here is constructed on Ω = Rn and lives on the Borel subsets of Ω.

Example 1.20. Let Ω := B1 (0) ⊂ Rn be open. Then there exists µ ∈
ba (Ω,B(Ω)), µ ≥ 0 such that for every B ∈ B(Ω)

µ(B) = lim
δ↓0

Ln(B ∩Bδ (0))

Ln(Bδ (0))

12



if this limit exists. This measure is non-unique. Its existence is shown in
Proposition 3.7 (take λ := Ln and C = {0}).

It is shown in Example 1.28 that µ is indeed pure. Figure 1.1 shows the
family {Ak}k∈N ⊂ B(Ω)

Ak :=

[

1

k + 2
,

1

k + 1

)

× [−1, 1]n−1 .

For this family

∑

k∈N

µ(Ak ∩ Ω) = 0 6= µ

((

0,
1

2

)

× [−1, 1]n−1 ∩ Ω

)

= µ

(

∞
⋃

k=1

Ak ∩ Ω

)

.

Hence, µ is not a σ-measure.

x

δ

Ak
... A2 A1

Figure 1.1: A family of sets on which µ is not σ-additive

Measures that do not charge sets of Lebesgue measure zero are of special
interest, because these measures lend themselves naturally to the integration
of functions that are only defined outside of a set of measure zero. When
treating non σ-additive measures, one carefully has to distinguish the follow-
ing two notions (cf. [30, p. 159]).

Definition 1.21. Let Ω ⊂ Rn,A ⊂ 2Ω be an algebra and λ ∈ ba(Ω,A).
Then µ ∈ ba(Ω,A) is called

1. absolutely continuous with respect to λ, if for every ε > 0 there
exists δ > 0 such that for all A ∈ A

|λ|(A) < δ =⇒ |µ(A)| < ε .

In this case, write µ << λ.
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2. weakly absolutely continuous with respect to λ, if for every A ∈ A

|λ|(A) = 0 =⇒ µ(A) = 0 .

In this case, write µ <<w λ.

The set of all weakly absolutely continuous measures in ba(Ω,A) is denoted
by

ba (Ω,A, λ) .
The following proposition shows that there is no pure measure which is

absolutely continuous with respect to some σ-measure (cf. [30, p. 163]).

Proposition 1.22. Let Ω ⊂ Rn,A ⊂ 2Ω be an algebra and σ ∈ ca(Ω,A).
Then for every µ ∈ ba(Ω,A)

µ << σ =⇒ µ ∈ ca(Ω,A) .

Remark 1.23. The preceding proposition shows that one should focus on
the notion of weak absolute continuity when studying measures that are
continuous with respect to some σ-measure.

Example 1.24. µ from Example 1.20 is even weakly absolutely continuous
with respect to Ln. This is evident from the construction in Proposition 3.7
(take λ := Ln and C := {0}).
Proposition 1.25. Let µ1, µ2 ∈ ba(Ω,A) be such that µ1 <<

w µ2. If A ∈ A
such that |µ2|(A) = 0, then |µ1|(A) = 0.

Proof. Since |µ2| is monotone,

|µ2(A
′)| ≤ |µ2|(A′) ≤ |µ2|(A) = 0

for all A′ ∈ A such that A′ ⊂ A. Since

µ+
1 (A) = sup

A′∈A
A′⊂A

µ1(A
′) = 0

and a similar equation holds for µ−
1

|µ1|(A) = µ+
1 (A) + µ−

1 (A) = 0 .

The following proposition is the key to decompose measures into σ-measures
which are weakly absolutely continuous with respect to some measure and
pure measures.
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Proposition 1.26. Let Ω ⊂ Rn, A ⊂ 2Ω be an algebra and λ ∈ ba(Ω,A).
Then ba (Ω,A, λ) is a normal sublattice of ba(Ω,A) and thus a boundedly

complete vector lattice.

Proof. ba (Ω,A, λ) is obviously a linear space. Let {µi}i∈I ⊂ ba (Ω,A, λ) be
such that there exists µ ∈ ba(Ω,A) with

µi ≤ µ for all i ∈ I .

By Proposition 1.14, ba(Ω,A) is boundedly complete (cf. [30, p. 44]). Hence,
there exists µ′ ∈ ba(Ω,A) such that

µi ≤ µ′ for all i ∈ I

and if this holds true for another µ′′ ∈ ba(Ω,A) then µ′ ≤ µ′′.
Assume µ′ /∈ ba (Ω,A, λ). Then there exists A ∈ A such that

|λ|(A) = 0 but µ′(A) 6= 0 .

Now, |µ′⌊A| ∈ ba(Ω,A). Whence µ′ − |µ′⌊A| ∈ ba(Ω,A). Since µi(A) = 0

µi ≤ µ′ − |µ′⌊A| < µ′ for all i ∈ I ,

in contradiction to the minimality of µ′. Hence µ′ ∈ ba (Ω,A, λ).
Now let µ′ ∈ ba(Ω,A) and µ ∈ ba (Ω,A, λ) such that |µ′| ≤ |µ|. Let

A ∈ A be such that |λ|(A) = 0. Then

|µ′(A)| ≤ |µ′|(A) ≤ |µ|(A) = 0

by Proposition 1.25. Hence µ′ ∈ ba (Ω,A, λ). Therefore, ba (Ω,A, λ) is a
normal sublattice and thus a boundedly complete vector lattice.

The proposition above enables the decomposition of measures into pure
parts and σ-measures, analogously to Proposition 1.18.

Theorem 1.27. Let Ω ⊂ Rn, A ⊂ 2Ω be an algebra and λ ∈ ba (Ω,A).
Then for every µ ∈ ba (Ω,A, λ) there exist unique µc ∈ ca(Ω,A) ∩

ba (Ω,A, λ), µp ∈ ca(Ω,A)⊥ ∩ ba (Ω,A, λ) such that

µ = µc + µp .

Proof. Since ba (Ω,A, λ) and ca(Ω,A) are normal sublattices of ba(Ω,A),
Proposition 1.8 yields that

ca(Ω,A) ∩ ba (Ω,A, λ)
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is a normal sublattice of ba (Ω,A, λ) whose orthogonal complement is

ca(Ω,A)⊥ ∩ ba (Ω,A, λ) .

This, together with Riesz’s decomposition Proposition 1.7, yields the state-
ment of the proposition.

Example 1.28. Since the measure µ from Example 1.20 is positive and
µc ⊥ µp, using the additivity of the total variation on orthogonal element
(cf. [30, p. 25]) yields

0 ≤ |µc| ≤ |µc|+ |µp| = |µ| = µ .

Hence, for every δ > 0
|µc| (Bδ (0)

c) = 0 .

Thus
|µc| (Ω \ {0}) = lim

δ↓0
|µc| (Bδ (0)

c) = 0 .

But |µc| ({0}) ≤ µ({0}) = 0. Hence

|µc| (Ω) = 0

and µ = µp is pure.

When λ is a σ-measure, the structure of µc is well known by the Radon
Nikodym theorem (cf. [24, p. 128ff]).

Proposition 1.29. Radon-Nikodym Theorem
Let Ω ⊂ Rn and Σ ⊂ 2Ω be a σ-algebra. Furthermore, let σ ∈ ca(Ω,Σ) and
µ ∈ ca(Ω,Σ) be such that µ <<w σ. Then there exists f ∈ L1 (Ω,Σ, σ) such
that

µ(A) =

ˆ

A

f dσ

for every A ∈ Σ.

The structure of µp is described by the following proposition taken from
[30, p. 244] (cf. [33, p. 56]).

Remark 1.30. The following results are stated for σ-measures σ ≥ 0. They
also hold for arbitrary σ-measures σ when using |σ|.
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Proposition 1.31. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra and σ ∈ ca(Ω,Σ),
σ ≥ 0. Then µ ∈ ba(Ω,Σ, σ) is pure if and only if there exists a decreasing
sequence {Ak}k∈N ⊂ Σ such that

σ(Ak)
k→∞−−−→ 0

and for all k ∈ N

|µp|(Ac
k) = 0 .

Intuitively speaking, weakly absolutely continuous measures are pure if
and only if they concentrate in the vicinity of a set of measure zero. Review-
ing Example 1.20, the support (cf. [2, p.30]) of the measure can be seen to
lie outside of Ω \ {0}. Yet the construction of the measure would still work
on this set. Hence, it is possible for a pure measure to have support outside
of its domain of definition. This necessitates the following definition of core.

Definition 1.32. Let Ω ⊂ Rn, A ⊂ 2Ω be an algebra containing every rela-
tively open set in Ω. Furthermore let µ ∈ ba(Ω,A). Then the set

coreµ := {x ∈ Rn | |µ|(V ∩ Ω) > 0, ∀V ⊂ Rn, V open, x ∈ V }

is called core of µ.
Let d ∈ [0, n] be the Hausdorff dimension of coreµ. Then d is called core

dimension of µ and µ is called d-dimensional.

Remark 1.33. Note that there is a slight difference to the notion of support
of a measure as defined in classic measure theory (cf. [21, p. 60]). The core
of a measure is not necessarily contained in Ω, the support of a σ-measure
is.

Example 1.34. The measure µ from Example 1.20 has

coreµ = {0}

and is thus 0-dimensional.

Now, an example for a density measure with a larger core is given. Note
that in this thesis

Cδ := dist−1
Ω ((−∞, δ)) for C ⊂ Rn .

Example 1.35. Let Ω ⊂ Rn be open, d ∈ [0, n) and C ⊂ Ω be closed with
Hausdorff dimension d. Then there exists a pure measure µ ∈ ba (Ω,B(Ω),Ln),
µ ≥ 0 such that for every B ∈ B(Ω)

µ(B) = lim
δ↓0

Ln(B ∩ Cδ ∩ Ω)

Ln(Cδ ∩ Ω)
=: densC(B) ,

17



if this limit exists. Here, Cδ is the open δ-neighbourhood of C. Furthermore

coreµ = C

and µ is thus d-dimensional.
The existence of this measure is evident by Proposition 3.7 (take λ := Ln).

Proposition 1.36. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra containing every
relatively open set and µ ∈ ba(Ω,A). Then coreµ is a closed set in Rn.

Proof. Set B := coreµ and let x ∈ Bc. Then there is an open neighbourhood
V ⊂ Rn of x such that

|µ|(V ∩ Ω) = 0 .

Now let x′ ∈ V and V ′ ⊂ Rn be an open neighbourhood of x′. Then

|µ|(V ∩ V ′ ∩ Ω) ≤ |µ|(V ∩ Ω) = 0 .

Thus, x′ ∈ Bc. Since x was arbitrary, it follows that for every x ∈ Bc there
exists an open neighbourhood V ⊂ Rn of x such that V ⊂ Bc, whence Bc is
open and B closed.

On bounded domains, the core is non-empty.

Proposition 1.37. Let Ω ⊂ Rn be bounded, A ⊂ 2Ω be an algebra containing
every relatively open set in Ω and µ ∈ ba(Ω,A), µ 6= 0. Then coreµ is non-
empty and for every δ > 0

|µ| (Ω ∩ ((coreµ)δ)
c) = 0 .

Proof. Set B := coreµ. Assume coreµ was empty. Then, by compactness of
Ω there exists an open covering {Vk}mk=0 of Ω such that for k = 0, ...,m

|µ|(Vk ∩ Ω) = 0 .

But then

|µ|(Ω) ≤
m
∑

k=0

|µ|(Vk ∩ Ω) = 0

in contradiction to µ 6= 0.

Now, let δ > 0. For every x ∈ (Bδ)c
Rn

there is a 0 < δx < δ
2
such that

|µ| (B (x, δx) ∩ Ω) = 0 .

Otherwise, x ∈ coreµ. Now

{B (x, δx)}x∈(Bδ)
cR

n
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is an open covering of

(Bδ)
cR

n

∩ Ω

Since Ω is relatively compact in Rn, there exists a finite open sub-covering

{B (xl, δxl
)}ml=0

of
(Bδ)

c ∩ Ω .

Hence

|µ| ((Bδ)
c ∩ Ω) ≤

m
∑

l=0

|µ| (B (xl, δxl
) ∩ Ω) = 0 .

Remark 1.38. If Ω is unbounded, the statement of the preceding proposition
need not be true. The measures in Example 10.4.1 in [30, p. 245] can be
shown to have empty core, since they concentrate near infinity.

The core itself does not give all information on the way in which a pure
measure concentrates. Hence, the sequences from Proposition 1.31 is inves-
tigated further.

Definition 1.39. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra, σ ∈ ca(Ω,Σ), σ ≥ 0
and µp ∈ ba(Ω,Σ, σ) be pure. Then every A ∈ Σ such that

|µp|(Ac) = 0

is called aura of µp.
Any decreasing sequence {Ak}k∈N ⊂ Σ of auras for µp such that

σ(Ak)
k→∞−−−→ 0

is called aura sequence.

Now, it is shown that any aura sequence can be restricted to neighbour-
hoods of the core.

Proposition 1.40. Let Ω ⊂ Rn be bounded and Σ ⊂ 2Ω be a σ-algebra
containing every relatively open set in Ω. Furthermore, let σ ∈ ca(Ω,Σ)
with σ ≥ 0 and µp ∈ ba(Ω,Σ, σ) be pure. Then for every aura sequence
{Ak}k∈N ⊂ Σ of µp the sequence

{A′
k}k∈N :=

{

Ak ∩ (coreµp) 1

k

}

⊂ Σ

is an aura sequence of µp with

coreµp =
⋂

k∈N

A′
k

Rn

.
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Proof. Let C := coreµp. Note that |µp| is pure and let {Ak}k∈N ⊂ Σ be

any aura sequence of µp. Then for every k ∈ N, x ∈
(

Ak
Rn
)c

and any open

neighbourhood V ⊂
(

Ak
Rn
)c

of x

|µp|(V ∩ Ω) ≤ |µp|
((

Ak
Rn
)c

∩ Ω
)

≤ |µp|(Ac
k ∩ Ω) = 0 .

Hence
C ⊂ Ak

Rn

for every k ∈ N .

Thus,

C ⊂
⋂

k∈N

Ak
Rn

.

For k ∈ N set
A′

k := Ak ∩ C 1

k
.

Then for every k ∈ N

|µp| (A′c
k ) ≤ |µp|(Ac

k) + |µp|
((

C 1

k

)c

∩ Ω
)

= 0 ,

by Proposition 1.37.
Furthermore

0 ≤ σ(A′
k) ≤ σ(Ak)

k→∞−−−→ 0 .

Obviously
⋂

k∈N

Ak ∩ C 1

k

Rn

⊂
⋂

k∈N

C 1

k
= C .

It remains to show that

C ⊂
⋂

k∈N

Ak ∩ C 1

k

Rn

.

Let x ∈ C. Then x ∈ Ak
Rn

for every k. Hence, for every k there is a sequence
{xk

l }l∈N ⊂ Ak such that

xk
l

l→∞−−−→ x .

In particular, there is an lk0 ∈ N such that

‖xk
l − x‖ < 1

k
for l ≥ lk0 .

Hence, for every k ∈ N,

x ∈ Ak ∩ C 1

k

Rn

.
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Since x ∈ C was arbitrary, this finally implies

C ⊂
⋂

k∈N

Ak ∩ C 1

k

Rn

.

C

A1

A2
...

Figure 1.2: An aura sequence {Ak}k∈N of a 1-dimensional measure with core
C =

⋂

k∈N

Ak

The following lemma identifies a big class of pure measures. In particular,
if the core of a measure is a Lebesgue null set, the measure is necessarily pure.

Proposition 1.41. Let Ω ∈ B(Rn) and µ ∈ ba (Ω,B(Ω),Ln).
If coreµ ∩ Ω is a Ln-null set then µ is pure.

Proof. Let B := coreµ. Then by the definition of the core, for every δ > 0

|µ| (Bc
δ ∩ Ω) = 0 .

Now let Bk := B 1

k
∩ Ω for k ∈ N and σ ∈ ba (Ω,B(Ω),Ln) , σ ≥ 0 be a

σ-measure such that
0 ≤ σ ≤ |µ| .

Then for every k ∈ N

0 ≤ σ((Bk)
c) ≤ |µ|((Bk)

c) = 0 .

On the other hand, since coreµ ∩ Ω is a Ln-null set,

σ(Ω ∩ B) = 0 .
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Hence

σ(Ω) = σ(Ω ∩ B) + σ

(

⋃

k∈N

Bc
k

)

= lim
k→∞

σ (Bc
k) = 0 .

This implies σ = 0.
Since σ was arbitrary, µ is pure by Proposition 1.6 and Proposition 1.18.

Remark 1.42. Note that coreµ ⊂ Ω. If Ω ⊂ Rn is open such that Ln(∂Ω) >
0, then there is µ ∈ ba (Ω,B(Ω),Ln) such that coreµ = ∂Ω. Hence coreµ is
not a null set, but coreµ ∩ Ω = ∅. Thus, µ is necessarily pure.

The following proposition is taken from [30, p. 70]. It shows that there
are many degrees of freedom when choosing an extension of a measure to a
larger class of sets. Since all pure measures used below are constructed using
an extension argument, they are in general not unique.

Proposition 1.43. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra on Ω. Let
µ ∈ ba(Ω,A), µ ≥ 0. Let A ∈ 2Ω \ A and A′ ⊂ 2Ω the smallest algebra such
that A, {A} ⊂ A′. Then for any c ∈ [0,∞) such that

sup{µ(A′) | A′ ∈ A, A′ ⊂ A} ≤ c ≤ inf{µ(A′) | A′ ∈ A, A ⊂ A′}

there exists an extension µ′ ∈ ba (Ω,A′) , µ′ ≥ 0 of µ to all of A′ such that

µ′(A) = c .
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Chapter 2

Integration Theory

The usefulness of measures hinges on the fact that the dual spaces of im-
portant function spaces can be represented by integration with respect to
some class of measures. The most prominent result is the Riesz Representa-
tion Theorem (cf. [21, p. 106]), which links C0 (Ω)

∗ with the set of Radon
measures on Ω. The dual spaces of Lp-spaces with 1 ≤ p < ∞ are in
essence spaces of σ-measures which are absolutely continuous with respect
to Lebesgue measure (cf. [29, p. 253]). Less known is a result of Alexan-
droff, characterising the dual of Cb(Ω) as the space of finitely additive Radon
measures, which are inner regular with respect to the relatively closed sets
(cf. [1, p. 582]).

In this chapter, a basic integration theory for finitely additive measures is
presented. The exposition closely adheres to Rao [30], other sources can be
found in Dunford [18] and Bochner [7]. The characterisation of the dual space
of L∞ as the space ba (Ω,B(Ω),Ln) (cf. [18, p. 296],[30, p. 139]) is improved
upon by using the decomposition results from the previous chapter. The
Lp-spaces introduced in this chapter are in general not complete but their
completion is known and has an interesting structure (cf. [30], [28]). This
and the dual spaces are covered in the second section.

2.1 Integration Theory for Finitely Additive

Measures

This section lays out the theory of integration for finitely additive measures
used in this thesis. As usual, the integral is at first defined for simple func-
tions. Then, convergence in measure is introduced. A function is defined to
be measurable, if some sequence of simple functions converges in measure
to it. Integrability is then introduced using L1-Cauchy sequences of simple
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functions. Once Lp-spaces are introduced, an improved characterisation of
the dual of L∞ is given.

The following definition of simple functions is taken from [30, p. 90].

Definition 2.1. Let Ω ⊂ Rn and A ⊂ 2Ω an algebra. A function h : Ω→ R

is called simple, if there exists m ∈ N, {ak}mk=0 ⊂ R and {Ak}mk=0 ⊂ A such
that

h =
m
∑

k=0

akχAk
.

Remark 2.2. Let Ω ⊂ Rn and A ⊂ 2Ω an algebra and h : Ω → R. Then h
is simple if and only if

R(h) := {y ∈ R | ∃x ∈ Ω : h(x) = y}

is finite and for every y ∈ R(h) the set h−1(y) ∈ A.
In this case

h =
∑

y∈R(h)

y · χh−1(y) .

Measurability is not defined through the regularity of preimages but by
approximability by simple functions in measure. In this definition, the mea-
sure is needed on possibly non-measurable sets. Hence, an outer measure has
to be used. This outer measure is defined as in the case of σ-measures (cf.
[30, p. 86], [24, p. 42]).

Definition 2.3. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra. For µ ∈ ba(Ω,A),
µ ≥ 0 the outer measure of µ is defined for B ∈ 2Ω by

µ∗(B) := inf
A∈A,
B⊂A

µ(A) .

For reasons of completeness, the following proposition gathers some prop-
erties of outer measures(cf. [30, pp. 86-87]).

Proposition 2.4. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra. Furthermore, let
µ, λ ∈ ba(Ω,A) be positive. Then for every B1, B2 ∈ 2Ω and A ∈ A

1. µ∗(∅) = 0

2. µ∗(B1) ≤ µ∗(B2), if B1 ⊂ B2

3. µ∗(A) = µ(A)

4. µ∗(B1 ∪B2) ≤ µ∗(B1) + µ∗(B2)
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5. (µ+ λ)∗ = µ∗ + λ∗

Now, convergence in measure can be defined. The definition is taken from
[30, p. 92] (cf. [24, p. 91]).

Definition 2.5. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra and µ : A → R be a
measure. A sequence {fk}k∈N of functions fk : Ω→ R is said to converge in
measure to a function f : Ω→ R if for every ε > 0

lim
k→∞
|µ|∗{x ∈ Ω | |fk(x)− f(x)| > ε} = 0 .

In this case, write
fk

µ−→ f .

Note that the limit in measure is not unique, yet. Therefore, the following
notion of equality almost everywhere is needed. The definition is taken from
[30, p. 88].

Definition 2.6. Let Ω ⊂ Rn, A ⊂ 2Ω and µ : A → R be a measure.
Then f : Ω→ R is called null function, if for every ε > 0

|µ|∗ ({x ∈ Ω | |f(x)| > ε}) = 0 .

Two functions f1 : Ω→ R, f2 : Ω→ R are called equal almost every-
where (a.e.) with respect to µ, if f1 − f2 is a null function.

In this case, write
f1 = f2 µ-a.e.

Remark 2.7. If f : Ω→ R is a null function, then it need not be true that

|µ|∗ ({x ∈ Ω | f(x) 6= 0}) = 0 . (2.1)

Take e.g. the density measure µ introduced in Example 1.20 and f(x) := |x|.
Then f is a null function but

|µ|∗({x ∈ Rn|f(x) 6= 0} = µ(B1 (0) \ {0}) = 1 > 0 .

This entails that the notion of equality almost everywhere that was de-
fined above does not imply the existence of a null set such that f1 = f2
outside of that set. Take e.g. the density measure introduced in Example
1.20, f1(x) := |x| and f2(x) := 2f1(x).

On the other hand, if µ is a σ-measure and A a σ-algebra, then Equation
(2.1) is equivalent to f being a null function (cf. [30, p. 89]).
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The limit in measure turns out to be unique in the sense of almost equality.
This is stated in the following proposition taken from [30, p. 92].

Proposition 2.8. Let Ω ⊂ Rn, A ⊂ 2Ω be an algebra and µ : A → R be a
measure. Furthermore let {fk}k∈N be a sequence of functions fk : Ω→ R and
f, f̃ : Ω→ R be functions such that

fk
µ−→ f .

Then
fk

µ−→ f̃ ⇐⇒ f = f̃ µ-a.e.

Now, the notion of measurability is introduced. The definition is similar
to the definition of T1-measurability in [30, p. 101].

Definition 2.9. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra and µ : A → R be
a measure. A function f : Ω → R is called measurable if there exists a
sequence {hk}k∈N of simple functions hk : Ω→ R such that

hk
µ−→ f .

The following proposition shows that this notion of measurability coin-
cides with the usual one in the case of σ-measures and σ-algebras, if the null
sets are added to the σ-algebra, i.e. if the completed σ-algebra is used.

Proposition 2.10. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra, σ ∈ ca(Ω,Σ) and
f : Ω→ R be measurable. Then for every B ∈ B(R) there exists A ∈ Σ such
that f−1(B)∆A is a null set.

Proof. Let C ⊂ R be closed and {hk}k∈N be a sequence of simple functions
with

hk
σ−→ f .

Fix ε > 0. Let {hε
k}k∈N be a subsequence of {hk}k∈N with

|σ|∗
({

x ∈ Ω | |hε
k(x)− f(x)| ≥ 1

k

})

<
ε

2k+1
.

Then there exist sets Aε
k ∈ Σ such that

{

x ∈ Ω | |hε
k(x)− f(x)| ≥ 1

k

}

⊂ Aε
k and |σ| (Aε

k) <
ε

2k+1
.

Set
Aε :=

⋃

k∈N

Aε
k .
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Then
|σ| (Aε) ≤

∑

k∈N

|σ| (Aε
k) ≤ ε

and for every x ∈ (Aε)
c

hε
k(x)

k→∞−−−→ f(x) .

Then
Aε := f−1(C) ∩ Ac

ε =
⋂

k∈N

(hε
k)

−1(C 1

k
) ∩ Ac

ε ∈ Σ

where C 1

k
is a neighbourhood of C with radius 1

k
. Now let {εl}l∈N ⊂ (0,∞)

be a sequence with εl
l→∞−−−→ 0 and set

A :=
⋃

l∈N

Aεl ∈ Σ .

Then for any l ∈ N

|σ|∗(f−1(C) \ A) ≤ |σ|∗(f−1(C) \ Aεl) ≤ |σ| (Aεl) ≤ εl
l→∞−−−→ 0 .

This shows the statement for closed sets. Since the closed sets generate B(R),
f is measurable in the usual sense with respect to the σ-algebra generated by
Σ and the σ-null sets. This yields the statement for arbitrary B ∈ B(R).

In the general case, the following statement from [30, p. 101] holds true.

Proposition 2.11. Let Ω ⊂ Rn and A ⊂ 2Ω be an algebra, µ : A → R a
measure and f : Ω → R be a function. Then f is measurable if and only if

for every ε > 0 there exists {Ak}mk=0 ⊂ A such that
m
⋃

k=0

Ak = Ω,

|µ|(A0) < ε

and for every 1 ≤ k ≤ m and x1, x2 ∈ Ak

|f(x1)− f(x2)| < ε .

Now, the integral for simple functions is defined. The definition is stan-
dard in integration theory (cf. [30, p. 96]).

Definition 2.12. Let Ω ⊂ Rn, A ⊂ 2Ω be an algebra and µ : A → R be
a measure. A simple function h : Ω → R is called integrable if for every
y ∈ R(h) \ {0}

|µ
(

h−1 (y)
)

| <∞ .
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In this case the integral of h is defined by
ˆ

Ω

h dµ :=
∑

y∈R(h)

y · µ
(

h−1(y)
)

.

Here, the convention 0 · ∞ = 0 is used.

The integral for measurable functions can now be defined via L1-Chauchy
sequences. This is of course well-defined (cf. [30, p. 102]).

Definition 2.13. Let Ω ⊂ Rn, A ⊂ 2Ω be an algebra and µ : A → R be a
measure. A function f : Ω → R is said to be integrable if there exists a
sequence {hk}k∈N of integrable simple functions hk : Ω→ R such that

1. hk
µ−→ f .

2. lim
k,l→∞

´

Ω
|hk − hl| d |µ| = 0.

In this case, denote
ˆ

Ω

f dµ := lim
k→∞

ˆ

Ω

hk dµ .

The sequence {hk}k∈N is called determining sequence for the integral of
f .

Remark 2.14. In particular, integrable functions are measurable. This no-
tion of integral is also called Daniell-Integral in the literature (cf. [30]).

The Lp-spaces are defined in the usual way (cf. [30, p. 121]).

Definition 2.15. Let Ω ⊂ Rn, A ⊂ 2Ω, µ : A → R be a measure and
p ∈ [1,∞). Then the set of all measurable functions f : Ω → R such that
|f |p is |µ|-integrable is denoted by

Lp (Ω,A, µ) .

If A = B(Ω), write
Lp (Ω, µ) .

For f1, f2 ∈ Lp (Ω,A, µ)
f1 = f2 µ-a.e.

defines an equivalence relation. The set of all equivalence classes of this
relation is denoted by

Lp (Ω,A, µ) .
If A = B(Ω), write

Lp (Ω, µ) .
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The following definition of norms is in accordance with [30, p. 121].

Definition 2.16. Let Ω ⊂ Rn, A ⊂ 2Ω be an algebra and µ : A → R a
measure. Then for every p ∈ [1,∞) and f ∈ Lp (Ω,A, µ) write

‖f‖p :=
(
ˆ

Ω

|f |p d |µ|
) 1

p

.

Furthermore, for measurable f : Ω→ R define

esssupf := inf {K ∈ R | |µ|∗ ({x ∈ Ω|f(x) > K}) = 0}

and
‖f‖∞ := esssup |f | .

The set of all measurable functions f : Ω→ R such that

‖f‖∞ <∞

is denoted by
L∞ (Ω,A, µ) .

As in the case p ∈ [1,∞),
L∞ (Ω,A, µ)

denotes the set of all equivalence classes in L∞ (Ω,A, µ) with respect to equal-
ity almost everywhere.

In the case A = B(Ω), only write

L∞ (Ω, µ) and L∞ (Ω, µ) respectively.

The mappings introduced above are indeed norms on their respective
spaces, as the following proposition from [30, p. 125ff] shows.

Proposition 2.17. Let Ω ⊂ Rn, A ⊂ 2Ω be an algebra and µ : A → R be a
measure.

Then ‖·‖p is a norm on Lp (Ω,A, µ) for every p ∈ [1,∞].

Remark 2.18. For measures which are not σ-additive, the normed spaces

Lp (Ω,A, µ)

need not be complete, even if A = B(Ω). See Remark 4.6.8 in Rao [30, p.
125] for reference.
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Before proceeding to the characterisation of the dual of L∞, a new integral
symbol is introduced, which gives formulas for normal traces and integrals
over pure measures a more pleasing shape.

Definition 2.19. Let Ω ⊂ Rn be bounded and C ⊂ Ω be closed. Then for
every µ ∈ ba (Ω,B(Ω),Ln) such that

coreµ ⊂ C,

every f ∈ L1 (Ω, µ) and δ > 0 write

∼

ˆ

C

f dµ :=

ˆ

Cδ∩Ω

f dµ .

Remark 2.20. This notion of integral is well-defined since the definition of
coreµ yields

|µ| ((Cδ)
c) = 0

for any δ > 0.

The following proposition is a specialised version of the proposition from
[30, p. 139] (cf. [33, p. 53]).

Proposition 2.21. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra and σ : Σ→ R be a
σ-measure.

Then for every u∗ ∈ (L∞ (Ω,Σ, σ))∗ there exists a unique µ ∈ ba(Ω,Σ, σ)
such that

〈u∗, f〉 =
ˆ

Ω

f dµ

for every f ∈ L∞ (Ω,Σ, σ) and

‖u∗‖ = ‖µ‖ = |µ| (Ω) .

On the other hand, every µ ∈ ba(Ω,Σ, σ) defines u∗ ∈ L∞ (Ω,Σ, σ)∗.
Hence, L∞ (Ω,Σ, σ)∗ and ba(Ω,Σ, σ) can be identified.

Using the decomposition Theorem 1.27 that was proved earlier, one ob-
tains a more refined characterisation of the dual of L∞ (Ω,Σ, σ). In particu-
lar, every element of the dual space is the sum of a σ-measure with Ln-density
and a pure measure. In contrast to the literature, this makes the intuitive
idea of the dual of L∞ being L1 plus something which is not weakly absolutely
continuous with respect to Lebesgue measure precise.
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Theorem 2.22. Let Ω ⊂ Rn and Σ ⊂ 2Ω be a σ-algebra and σ : Σ → R be
a σ-measure. Then for every u∗ ∈ L∞ (Ω,Σ, σ)∗ there exists a unique pure
µp ∈ ba(Ω,Σ, σ) and a unique h ∈ L1 (Ω,Σ, σ) such that

〈u∗, f〉 =
ˆ

Ω

fh dLn +

ˆ

Ω

f dµp

for every f ∈ L∞ (Ω,Σ, σ).

Proof. Let u∗ ∈ L∞ (Ω,Σ, σ)∗. Then by Proposition 2.21 there exists µ ∈
ba(Ω,Σ, σ) such that for all f ∈ L∞ (Ω,Σ, σ)

〈u∗, f〉 =
ˆ

Ω

f dµ .

Now, by proposition 1.27, there exist unique µc, µp ∈ ba(Ω,Σ, σ) such that

µ = µc + µp

and µc is a σ-measure and µp is pure. By the Radon-Nikodym Theorem
(Proposition 1.29) there is h ∈ L1 (Ω,Σ, σ) such that

µc(A) =

ˆ

A

h dσ

for every A ∈ Σ. Since the integral is obviously linear in µ

ˆ

Ω

f dµ =

ˆ

Ω

f dµc +

ˆ

Ω

f dµp =

ˆ

Ω

fh dσ +

ˆ

Ω

f dµp

for every f ∈ L∞ (Ω,Σ, σ), whence the statement of the proposition follows.

2.2 Completion of Lp-Spaces

In this section, L -spaces are presented as the completion of L-spaces (cf.
[30, p. 178ff], [6, p. 778], [28, p. 528]). The key point is that the completion
of L-spaces over µ are spaces of measures which are absolutely continuous
with respect to µ.

The following definition is useful in the ensuing characterisation of L -
spaces. It was first introduced by Kolmogoroff (cf. [27, p. 663]) and is an
abstraction of many notions of integral, including the Lebesgue integral.
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Definition 2.23. Let Ω ⊂ Rn, A ⊂ 2Ω be an algebra and ζ : A → R be a set
function and A ∈ A. Denote the class of all finite partitions of A by sets in
A by

PA(A) .

This class is directed by the partial order defined for P1, P2 ∈ PA(A) by

P1 ≤ P2 ⇐⇒ ∀A2 ∈ P2 : ∃A1 ∈ P1 : A2 ⊂ A1 .

Write
ˆ R

A

ζ := lim
P∈PA(A)

∑

A∈P

ζ(A) ,

if this limit exists in the sense of nets, and call it refinement integral of
ζ on A and call ζ refinement integrable on A.

If ζ is refinement integrable on Ω just call it refinement integrable.

Remark 2.24. Note that ζ is not required to be additive in the definition
above.

The following proposition characterises the refinement integral as a kind
of additivisation and is taken from [27, p. 664].

Proposition 2.25. Let Ω ⊂ Rn, A ⊂ 2Ω be an algebra and ζ : A → R be a
refinement integrable set function.

Then
ˆ R

ζ : A → R : A 7→
ˆ R

A

ζ

is well-defined and a measure.

Remark 2.26. The set function
´ R

ζ is also called refinement integral.

Remark 2.27. Note that trivially

ζ =

ˆ R

ζ + λ ,

where
´ R

λ = 0. The set function λ is in general not additive.

Thus,
´ R

ζ can be regarded as additivisation of ζ in a similar sense as
Df is the linearisation of a point function f .

From now on, only measures are considered. The following convention is
useful in the next statements.
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Definition 2.28. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra and µ, λ ∈ ba(Ω,Σ)
such that λ <<w µ. For A ∈ Σ set

λ

µ
(A) :=

{

λ(A)
µ(A)

if µ(A) 6= 0

0 otherwise.

The following definition of norm is taken from [30, p. 180-183] (cf. [28,
p. 528ff]).

Definition 2.29. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra and µ ∈ ba(Ω,Σ),
µ ≥ 0. For any measure λ : Σ→ R such that λ << µ define

‖λ‖p :=
(
ˆ R

Ω

∣

∣

∣

∣

λ

µ

∣

∣

∣

∣

p

µ

)

1

p

=









sup
P∈PΣ(Ω)

∑

A∈P
µ(A) 6=0

∣

∣

∣

∣

λ(A)

µ(A)

∣

∣

∣

∣

p

µ(A)









1

p

where the supremum is taken over all finite partitions {Ak}mk=0 ⊂ Σ of Ω.
Furthermore define

‖λ‖∞ := sup

{

x ∈ R | ∃A ∈ Σ : x =

∣

∣

∣

∣

λ(A)

µ(A)

∣

∣

∣

∣

}

Remark 2.30. Note that λ is demanded to not only be weakly absolutely
continuous but absolutely continuous. This is needed to obtain the density
of so-called simple measures.

Now, L p-spaces can be defined as the class of all measures which have
finite norm. The definition is taken from [30, p. 185] (cf. [28, p. 530]).

Definition 2.31. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra and µ ∈ ba(Ω,Σ),
µ ≥ 0. For p ∈ [1,∞] denote

L
p(Ω,Σ, µ) := {λ ∈ ba(Ω,Σ) | λ << µ, ‖λ‖p <∞}

In contrast to the Lp-spaces defined in the previous section, these spaces
are complete. The following proposition is taken from [30, p. 185].

Proposition 2.32. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra and µ ∈ ba(Ω,Σ),
µ ≥ 0. Then for any p ∈ [1,∞]

L
p(Ω,Σ, µ)

equipped with ‖·‖p is a Banach space.
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The goal of this section is to present L p-spaces as the completions of
Lp-spaces. The following proposition shows that Lp can be regarded as a
subspace of L p and is taken from [30, p. 182].

Proposition 2.33. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra, µ ∈ ba(Ω,Σ) with
µ ≥ 0, p ∈ [1,∞) and f ∈ Lp (Ω,Σ, µ).

Then for the measure λ : Σ→ R defined by

λ(A) :=

ˆ

A

f dµ for A ∈ Σ

holds
‖f‖p = ‖λ‖p .

In particular, λ ∈ L p(Ω,Σ, µ).

Remark 2.34. Below, L p(Ω,Σ, µ) is identified as the completion of Lp (Ω,Σ, µ).
An example of a measure for which Lp (Ω,A, µ) is not complete can be

found in Remarks 4.6.8 and 7.2.15 in Rao [30, p. 125,p. 192]. Note that this
example is constructed on Ω = N. It seems to be an open problem to find
such a measure for Ω ⊂ Rn.

The same holds true for p =∞ (cf. [30, p. 184]).

Proposition 2.35. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra, µ ∈ ba(Ω,Σ), µ ≥ 0
and f ∈ L∞ (Ω,Σ, µ).

Then for the measure λ : Σ→ R defined by

λ(A) :=

ˆ

A

f dµ for A ∈ Σ

holds
‖f‖∞ = ‖λ‖∞ .

In particular λ ∈ L ∞(Ω,Σ, µ).

In order to obtain the completeness of L p-spaces, the simple functions
must be embedded in L p. The following definition is taken from [30, p. 188]
(cf. [28, p. 533]).

Definition 2.36. Let Ω ⊂ Rn, Σ ⊂ 2Ω be an σ-algebra and µ ∈ ba(Ω,Σ),
µ ≥ 0.

A measure λ ∈ ba(Ω,Σ) is called simple measure (with respect to µ) if
there exists a partition {Ak}mk=0 ⊂ Σ of Ω and {ak}mk=0 ⊂ R such that

λ =
m
∑

k=0

ak · µ⌊Ak .
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The simple measure turn out to be dense in L p. Note that the simple
functions are dense in Lp, by definition. The following proposition is taken
from [30, p. 190] (cf. [28, p. 533]).

Proposition 2.37. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra and µ ∈ ba(Ω,Σ),
µ ≥ 0. Then for every p ∈ [1,∞), the simple measures are dense in
L p(Ω,Σ, µ).

Remark 2.38. Note that the statement of the preceding proposition does
in general not hold true for p =∞ (cf. [30, p. 190]).

This proposition has several useful applications. An important one is the
following, which is taken from [30, p. 192].

Corollary 2.39. Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra and µ ∈ ba(Ω,Σ),
µ ≥ 0.

Then for every p ∈ [1,∞), L p(Ω,Σ, µ) is the completion of Lp (Ω,Σ, µ).

The Radon-Nikodym Theorem is a direct consequence of this and is taken
from [30, p. 191] (cf. [18, p. 315]).

Corollary 2.40. Radon-Nikodym Theorem
Let Ω ⊂ Rn, Σ ⊂ 2Ω be a σ-algebra and µ ∈ ba(Ω,Σ), µ ≥ 0. Then for every
λ ∈ ba(Ω,Σ) such that λ << µ and every ε > 0 there exists a simple function
h : Ω→ R such that

∣

∣

∣

∣

λ(A)−
ˆ

A

h dµ

∣

∣

∣

∣

< ε

for every A ∈ Σ.

Knowledge on the dual of a Banach space is beneficial in many situations.
For L p-spaces they are known and have a similarly good structure as the
original space. The following characterisation of the dual spaces of L p-spaces
can be found in [30, p. 193] and [28, p. 536]. It is completely analogue to
the statement for Lp-spaces over σ-measures.

Proposition 2.41. Let Ω ⊂ Rn, A ⊂ 2Ω be a σ-algebra and µ ∈ ba(Ω,Σ),
µ ≥ 0. Then for p ∈ [1,∞) the dual of L p(Ω,Σ, µ) is isomorphic to
L p′(Ω,Σ, µ), where p′ is the Hölder-conjugate of p.

For v ∈ L p(Ω,Σ, µ) and v∗ ∈ L p′(Ω,Σ, µ) the dual pairing is given by

〈v∗, v〉 =
ˆ R

Ω

v

µ
· v∗ .

Furthermore,
| 〈v∗, v〉 | ≤ ‖v∗‖p′ ‖v‖p .
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Chapter 3

Pure Measures

This chapter discusses pure measures in detail. In the first section, a large
class of pure measures is introduced. These measures share some structure
with the density at zero from Example 1.20. Their structure is investigated
and the properties of the set Dens(C) of all those measures is analysed.
The action of this set on a fixed essentially bounded function is shown to
be compatible with the essential supremum and the essential infimum. The
extremal points in the sense of the Krein-Milman Theorem (cf. [19, p. 154],
[34, p. 157]) are characterised, since they span Dens(C). The second sec-
tion discusses the connection between pure measures and σ-measures which
are singular with respect to Lebesgue measure. It is proven that every pure
measure can be represented by a Radon measure on its core, if only contin-
uous functions are considered. Vice versa, in regular settings, every Radon
measure on a Lebesgue null set can be extended to a pure measure on all
of the domain. Finally, some examples on traces show that pure measures
are suitable for the representation of trace operators. Most of this chapter
is comprised of original work that has not been treated in the literature, to
the authors knowledge.

3.1 Density Measures

In this section, measures with a similar structure as the measure in Exam-
ple 1.20 are investigated. These measures represent a large class of pure
measures. The properties of this class is analysed and its extremal points
identified.

It turns out that the signed distance function plays an important role.
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Definition 3.1. Let Ω ( Rn be non-empty. The function

distΩ : Rn → (−∞,∞)

defined by

distΩ(x) :=







inf
y∈Ω
|x− y| if x /∈ Ω

− inf
y∈Ωc
|x− y| if x ∈ Ω .

is called signed distance function.
For sets B ⊂ Rn write

distΩ(B) := inf
x∈B

distΩ(x) .

Furthermore, neighbourhoods of sets prove useful. Therefore, set

Ωδ := dist−1
Ω ((−∞, δ))

for δ ∈ R.

Remark 3.2. Note that distΩ is Lipschitz continuous, since it is the sum of
two Lipschitz continuous functions. If Ω ⊂ Rn is bounded, by the Coarea
formula (cf. [20, p. 112])

Hn−1(∂(Ωδ)) <∞

for a.e. δ ∈ R(dist∂Ω), the range of dist∂Ω.

Now, density measures can be defined. The basic definition essentially
demands the measure to be a probability measure whose core is a Lebesgue
null set. By scaling, any bounded positive measure whose support has no
volume can be seen as a density measure.

Definition 3.3. Let Ω ∈ B(Rn), C ⊂ Ω be closed and Ln(C ∩ Ω) = 0. A
measure µ ∈ ba (Ω,B(Ω),Ln) is called a density measure for C, if µ ≥ 0
and for all δ > 0

µ(Cδ ∩ Ω) = µ(Ω) = 1 .

The set of all density measures for C is denoted by

Dens(C) .

Remark 3.4. If Ln(Ω ∩ Cδ) = 0 for some δ > 0 or C = ∅, then

Dens(C) = ∅ .
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The following proposition shows that density measures indeed have core
on C and that they are pure.

Proposition 3.5. Let Ω ∈ B(Rn) and C ⊂ Ω be closed with Ln(C ∩Ω) = 0.
Then for every µ ∈ Dens(C)

coreµ ⊂ C

and µ is pure.

Proof. Let x ∈ Rn \ C. Let

δ :=
1

2
distC(x) .

Then for every 0 < δ̃ < δ

µ(Bδ̃ (x)) ≤ µ(Ω \ Cδ) = 0 .

Hence
x /∈ coreµ ,

and thus
coreµ ⊂ C .

Finally
Ln(coreµ ∩ Ω) ≤ Ln(C ∩ Ω) = 0 .

By Proposition 1.41, µ is pure.

Density measures can be characterised in a way that justifies their name.
In essence, they are densities of other measures on their core.

Proposition 3.6. Let Ω ∈ B(Rn) and C ⊂ Ω be closed with Ln(C ∩Ω) = 0.
A measure µ ∈ ba (Ω,B(Ω),Ln) is a density measure for C if and only if
there exists a measure λ ∈ ba (Ω,B(Ω),Ln) with λ ≥ 0 satisfying

λ(Cδ ∩ Ω) > 0 for all δ > 0 ,

such that for every f ∈ L∞ (Ω,Ln)
ˆ

Ω

f dµ ≤ lim sup
δ↓0

−
ˆ

Cδ∩Ω

f dλ .

Then for every f ∈ L∞ (Ω,Ln)

∼

ˆ

C

f dµ = lim
δ↓0
−
ˆ

Cδ∩Ω

f dλ (3.1)

if this limit exists.
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Proof. Let µ ∈ ba (Ω,B(Ω),Ln).
Assume there exists λ ∈ ba (Ω,B(Ω),Ln) with λ ≥ 0 satisfying

λ(Cδ ∩ Ω) > 0 for all δ > 0

such that for f ∈ L∞ (Ω,Ln)
ˆ

Ω

f dµ ≤ lim sup
δ↓0

−
ˆ

Cδ∩Ω

f dλ .

Note that since
ˆ

Ω

−f dµ ≤ lim sup
δ↓0

−
ˆ

Cδ∩Ω

−f dλ

for f ∈ L∞ (Ω,Ln),

lim inf
δ↓0

−
ˆ

Cδ∩Ω

f dλ ≤
ˆ

Ω

f dµ .

Then for δ > 0

µ(Ω) = µ(Cδ ∩ Ω) = lim
δ↓0

λ(Cδ ∩ Ω)

λ(Cδ ∩ Ω)
= 1 .

Furthermore, for every B ∈ B(Ω)

µ(B) ≥ lim inf
δ↓0

λ(B ∩ Cδ)

λ(Cδ ∩ Ω)
≥ 0 .

Thus, µ is a density measure for C. Equation (3.1) follows with Proposition
3.5 and the previous estimates.

Now assume µ to be a density measure for C. Set λ = µ. Note that
λ(Cδ ∩ Ω) > 0 for every δ > 0. Then for all f ∈ L∞ (Ω,Ln)

ˆ

Ω

f dµ = lim
δ↓0

ˆ

Cδ∩Ω

f dµ ≤ lim sup
δ↓0

−
ˆ

Cδ∩Ω

f dλ .

Now, existence is proved. It turns out that every measure λ ∈ ba (Ω,B(Ω),Ln),
which does not vanish near C, induces a density measure.

Proposition 3.7. Let Ω ∈ B(Rn) and C ⊂ Ω be closed with Ln(C ∩Ω) = 0.
Furthermore, let λ ∈ ba (Ω,B(Ω),Ln) with λ ≥ 0 be such that for all δ > 0

λ(Cδ ∩ Ω) > 0 .

Then there exists a density measure µ ∈ ba (Ω,B(Ω),Ln) such that for every
f ∈ L∞ (Ω,Ln)

lim inf
δ↓0

−
ˆ

Cδ∩Ω

f dλ ≤ ∼

ˆ

C

f dµ ≤ lim sup
δ↓0

−
ˆ

Cδ∩Ω

f dλ .
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Remark 3.8. In particular, if Ln(Cδ ∩ Ω) > 0 for every δ > 0, then
Dens(C) 6= ∅. In order to see this, note that λ = Ln⌊Ω satisfies the as-
sumptions of the preceding proposition. Furthermore, every density measure
arises in this way (cf. Proposition 3.6).

Proof. Let λ ∈ ba (Ω,B(Ω),Ln) be such that for every δ > 0

λ(Cδ ∩ Ω) > 0 .

Then

p : L∞ (Ω,Ln)→ R : f 7→ lim sup
δ↓0

−
ˆ

Cδ∩Ω

f dλ

is a positively homogeneous, subadditive functional. Set X := L∞ (Ω,Ln)
and

X0 :=

{

f ∈ X | lim
δ↓0
−
ˆ

Cδ∩Ω

f dλ exists

}

.

Then X0 is a linear subspace of X and

u∗
0 : X0 → R : f 7→ lim

δ↓0
−
ˆ

Cδ∩Ω

f dλ

is a continuous linear functional which is bounded by p. The subadditive
version of the Hahn-Banach theorem [18, p. 62] yields the existence of a
linear extension u∗ of u∗

0 to all of X which is bounded by p. Note that for
every f ∈ L∞ (Ω,Ln)

〈u∗, f〉 ≤ p(f) ≤ ‖f‖∞
since λ <<w Ln. Hence, u∗ is a continuous linear functional on L∞ (Ω,Ln).
By Proposition 2.21, there exists µ ∈ ba (Ω,B(Ω),Ln) such that for every
f ∈ L∞ (Ω,Ln)

〈u∗, f〉 =
ˆ

Ω

f dµ .

Note that for every f ∈ L∞ (Ω,Ln)
ˆ

Ω

−f dµ ≤ p(−f) = lim sup
δ↓0

−
ˆ

Cδ∩Ω

−f dλ

which implies

lim inf
δ↓0

−
ˆ

Cδ∩Ω

f dλ ≤
ˆ

Ω

f dµ .

Now it is easy to see that for every B ∈ B(Ω)

0 ≤ lim inf
δ↓0

−
ˆ

Cδ∩Ω

χB dλ ≤ µ(B) .
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Hence, µ ≥ 0. Furthermore,

1 = lim inf
δ↓0

−
ˆ

Cδ∩Ω

χΩ dλ ≤ µ(Ω) ≤ lim sup
δ↓0

−
ˆ

Cδ∩Ω

χΩ dλ = 1 .

Finally, let δ̃ > 0. Then

1 = lim inf
δ↓0

−
ˆ

Cδ∩Ω

χC
δ̃
∩Ω dλ ≤ µ(Cδ̃ ∩ Ω) ≤ lim sup

δ↓0
−
ˆ

Cδ∩Ω

χC
δ̃
∩Ω dλ = 1 .

Thus, µ is a density measure of C.

Example 3.9. Let Ω ⊂ R2 be a cusped set as in Figure 3.1 below and
C = {x}, where x ∈ R2 is the point at the cusp. Then for every δ > 0

Ln(Cδ ∩ Ω) > 0 .

Hence there exists a density measure µ ∈ Dens(C) such that for every f ∈
L∞ (Ω,Ln)

∼

ˆ

C

f dµ = lim
δ↓0
−
ˆ

Cδ∩Ω

f dLn ,

if this limit exists. This example is in essence identical to Example 1.20.

Ω C

C 3

2

C1

C 2

5

Figure 3.1: Existence of a density measure at a cusp

The integral with respect to a density measure can be estimated by the
essential supremum and the essential infimum of the integrand near the core.

41



Proposition 3.10. Let Ω ∈ B(Rn) and C ⊂ Ω be closed with Ln(C∩Ω) = 0.
Furthermore, let µ ∈ ba (Ω,B(Ω),Ln) be a density measure of C. Then for
every f ∈ L∞ (Ω,Ln)

lim
δ↓0

ess inf
Cδ∩Ω

f ≤ ∼

ˆ

C

f dµ ≤ lim
δ↓0

esssup
Cδ∩Ω

f

Proof. It suffices to prove the right-hand side of the inequality.
Let f ∈ L∞ (Ω,Ln). Since µ ≥ 0, for every δ > 0

ˆ

Ω

f dµ =

ˆ

Cδ∩Ω

f dµ ≤
ˆ

Cδ∩Ω

esssup
Cδ∩Ω

f dµ = esssup
Cδ∩Ω

f .

esssup
Cδ∩Ω

f is increasing in δ > 0 and bounded. Passing to the limit yields the

statement.

If Dens(C) 6= ∅ is ensured, then the inequalities in the preceding propo-
sition are sharp.

Proposition 3.11. Let Ω ∈ B(Rn) and C ⊂ Ω be non-empty, closed with
Ln(C ∩ Ω) = 0 such that for every δ > 0

Ln(Cδ ∩ Ω) > 0 .

Furthermore, let f ∈ L∞ (Ω,Ln). Then

sup
µ∈Dens(C)

∼

ˆ

C

f dµ = lim
δ↓0

esssup
Cδ∩Ω

f

and

inf
µ∈Dens(C)

∼

ˆ

C

f dµ = lim
δ↓0

ess inf
Cδ∩Ω

f .

Proof. Let f ∈ L∞ (Ω,Ln) and ε > 0. Set

Mε := {x ∈ Ω | f(x) ≥ lim
δ↓0

esssup
Cδ∩Ω

f − ε}

and
λε := Ln⌊Mε .

Then λε ∈ ba (Ω,B(Ω),Ln) is positive and such that for every δ > 0

λε(Cδ ∩ Ω) > 0 .
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Hence by Proposition 2.21 , there exists a density measure µε ∈ ba (Ω,B(Ω),Ln)
of Ω such that

ˆ

Ω

f dµε ≥ lim inf
δ↓0

−
ˆ

Ω

f dλε ≥ lim
δ↓0

esssup
Cδ∩Ω

f − ε .

Hence

sup
µ∈Dens(C)

ˆ

Ω

f dµ ≥ sup
ε>0

ˆ

Ω

f dµε ≥ lim
δ↓0

esssup
Cδ∩Ω

f .

On the other hand, Proposition 3.10 yields

sup
µ∈Dens(C)

ˆ

Ω

f dµ ≤ lim
δ↓0

esssup
Cδ∩Ω

f .

The statement for ess inf follows analogously.

The set of all density measures is a weak* compact convex set, as the
following proposition shows.

Proposition 3.12. Let Ω ∈ B(Rn), C ⊂ Ω be non-empty, closed such
that Ln(C ∩ Ω) = 0. Then Dens(C) is a convex weak* compact subset of
ba (Ω,B(Ω),Ln) as the dual of L∞ (Ω,Ln).

Proof. W.l.o.g. Dens(C) 6= ∅.
Let µ1, µ2 ∈ Dens(C) and a1, a2 ∈ [0, 1] such that a1 + a2 = 1. Then for

every δ > 0

a1µ1(Cδ ∩ Ω) + a2µ2(Cδ ∩ Ω) = a1µ1(Ω) + a2µ2(Ω) = a1 + a2 = 1 .

and
a1µ1 + a2µ2 ≥ a1µ1 ≥ 0 .

Hence, Dens(C) is a convex set.
For µ ∈ Dens(C)

‖µ‖ = |µ| (Ω) = µ(Ω) = 1 .

Hence, Dens(C) is a bounded set.
Now let λ ∈ ba (Ω,B(Ω),Ln) \ Dens(C). Then either λ(Ω) 6= 1 or there

is a δ > 0 such that λ(Cδ ∩Ω) 6= 1 or there is B ∈ B(Ω) such that λ(B) < 0.
Consider the first case. Set ε := 1

2
|λ(Ω)− 1|. Then

V (λ) := {µ ∈ ba (Ω,B(Ω),Ln) | |µ(Ω)− λ(Ω)| < ε}
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is a weak* open set such that

V (λ) ∩Dens(C) = ∅ .

In the second case set ε := 1
2
|λ(Cδ ∩ Ω)− 1| and

V (λ) := {µ ∈ ba (Ω,B(Ω),Ln) | |µ(Cδ ∩ Ω)− λ(Cδ ∩ Ω)| < ε}

is a weak* open set and

V (λ) ∩Dens(C) = ∅ .

In the third and final case set ε := 1
2
|λ(B)| and

V (λ) := {µ ∈ ba (Ω,B(Ω),Ln) | |µ(B)− λ(B)| < ε} .

Also in this case
V (λ) ∩Dens(C) = ∅ .

Since λ was arbitrary, the complement of Dens(C) is weak* open and thus,
Dens(C) is weak* closed. The statement of the proposition follows by the
Banach-Alaoglu/Alaoglu-Bourbaki Theorem (cf. [35, p. 777]).

Now, the action of Dens(C) on a fixed essentially bounded function can
be characterised.

Corollary 3.13. Let Ω ∈ B(Rn), C ⊂ Ω be non-empty, closed such that
Ln(C ∩ Ω) = 0 and for every δ > 0

Ln(Cδ ∩ Ω) > 0 .

Furthermore, let f ∈ L∞ (Ω,Ln).
Then

〈Dens(C), f〉 =
[

lim
δ↓0

ess inf
Cδ∩Ω

f, lim
δ↓0

esssup
Cδ∩Ω

f

]

.

Proof. Since Dens(C) is a weak* compact convex subset of ba (Ω,B(Ω),Ln)

〈Dens(C), f〉

is a convex compact subset of R. In order to see this, note that

f ∈ ba (Ω,B(Ω),Ln)∗ .

Since continuous images of compact sets are again compact,

〈Dens(C), f〉
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is compact. The convexity follows from the convexity of Dens(C). By Propo-
sition 3.10 and Proposition 3.11

(

lim
δ↓0

ess inf
Cδ∩Ω

f, lim
δ↓0

esssup
Cδ∩Ω

f

)

⊂ 〈Dens(C), f〉

⊂
[

lim
δ↓0

ess inf
Cδ∩Ω

f, lim
δ↓0

esssup
Cδ∩Ω

f

]

This, together with the fact that 〈Dens(C), f〉 is closed, implies the state-
ment.

Recall that for a convex set M in a locally convex topological vector space
m ∈ M is an extremal point if for every m1,m2 ∈ M with m1 6= m2 and
a1, a2 ∈ [0, 1] with a1 + a2 = 1

m = a1m1 + a2m2 =⇒ a1 = 1− a2 ∈ {0, 1} .

The importance of extremal points follows from the theorem of Krein-Milman
(cf. [19, p. 154], [34, p. 157]). In particular, every compact convex set is the
closure of the convex hull of its extremal points. Note that the theorem also
implies that the set of extremal points is non-empty. Hence, the extremal
points of Dens(C) can be regarded as spanning Dens(C). The following
proposition gives a sufficient and necessary condition for a density measure
to be an extremal point.

Proposition 3.14. Let Ω ∈ B(Rn), C ⊂ Ω be non-empty, closed such that
Ln(C ∩ Ω) = 0 and µ ∈ Dens(C).

Then µ is an extremal point of Dens(C) if and only if for every B ∈ B(Ω)
either µ(B) = 0 or µ(Bc) = 0.

Proof. Let µ ∈ Dens(C) be such that for every B ∈ B(Ω) either µ(B) = 0 or
µ(Bc) = 0. Assume µ = a1µ1 + a2µ2 for µ1, µ2 ∈ Dens(C) and a1, a2 ∈ (0, 1)
such that a1 + a2 = 1 and µ1, µ2 6= µ. Then there is B ∈ B(Ω) such that

µ1(B) 6= µ2(B) .

Suppose µ(B) = 0. Then µ1(B) = µ2(B) = 0, a contradiction to the as-
sumption.

Hence µ(B) = 1 and µ(Bc) = 0.
This implies

µ1(B
c) = µ2(B

c) = 0

and thus
µ1(B) = 1 = µ2(B) ,
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a contradiction to the assumption.
Hence µ1 = µ2 = µ and µ is an extremal point of Dens(C).
Now, assume µ to be an extremal point of Dens(C) and assume, there

exists B ∈ B(Ω) such that µ(B), µ(Bc) > 0. Set

µ1 :=
1

µ(B)
µ⌊B

µ2 :=
1

µ(Bc)
µ⌊Bc .

Then µ1 and µ2 are density measures and

µ = µ(B)µ1 + µ(Bc)µ2 ,

and µ is not an extremal point of Dens(C) in contradiction to the assumption.

A simple consequence is that the core of extremal points contains exactly
one point. This is the same in the case of Radon measure, where the Dirac-
measures are the extremal points of the unit ball (cf. [19, p. 156]).

Corollary 3.15. Let Ω ∈ B(Rn), C ⊂ Ω be non-empty, closed, Ln(C∩Ω) = 0
and µ ∈ ba (Ω,B(Ω),Ln) be an extremal point of Dens(C).

Then coreµ is a singleton.

Proof. Assume there were x, y ∈ coreµ such that x 6= y. Let δ > 0 be such
that δ < 1

2
|x− y|. Then either

µ(Bδ (x)) = 0 or µ(Bδ (y)
c) = 0

in contradiction to x, y ∈ coreµ.

Another obvious corollary gives the values of extremal points on sets B
whose boundary does not meet the core of the extremal point.

Corollary 3.16. Let Ω ⊂ Rn, C ⊂ Ω be non-empty, closed, Ln(C ∩ Ω) = 0
and µ ∈ ba (Ω,B(Ω),Ln) be an extremal point of Dens(C) with coreµ = {x}
for some x ∈ Ω.

Then for every B ∈ B(Ω)

µ(B) =

{

1 if x ∈ intB,

0 if x /∈ B .

The question arises, what happens on sets whose boundary meets the
core. The following proposition gives a partial answer to this. It states that
extremal points concentrate along one-dimensional directions.
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Proposition 3.17. Let Ω ∈ B(Rn), C ⊂ Ω be closed with Ln(C ∩ Ω) = 0
and µ ∈ Dens(C) be an extremal point. Then there exist unique x ∈ C and
v ∈ Rn with ‖v‖ = 1 such that for every α ∈

(

0, π
2

)

µ(K(x, v, α) ∩ Ω) = 1 ,

where
K(x, v, α) := {y ∈ Rn|y 6= x,∢(y − x, v) < α} .

Proof. By Corollary 3.15, there is a unique x ∈ C such that

coreµ = {x} .

Let {αk}k∈N ⊂
(

0, π
2

)

be such that

lim
k→∞

αk = 0 .

Let Sn := ∂B1 (0) and for every k ∈ N and v ∈ Sn

V k
v := {v′ ∈ Sn|∢(v, v′) < αk} .

Then for each k ∈ N
{

V k
v

}

v∈Sn

is an open covering of Sn. Assume that for every v ∈ Sn

µ(K(x, v, αk) ∩ Ω) = 0 .

Since Sn is compact, there exists a finite set M ⊂ Sn such that

Sn ⊂
⋃

v∈M

V k
v .

But then

B1 (x) ∩ Ω ⊂
(

{x} ∪
⋃

v∈M

K(x, v, αk)

)

∩ Ω .

Hence

µ(Ω) = µ(B1 (x) ∩ Ω) ≤ µ({x} ∩ Ω) +
∑

v∈M

µ (K(x, v, αk) ∩ Ω) = 0 ,

in contradiction to
µ(Ω) = 1 .

47



Hence, for every k ∈ N, there exists vk ∈ Sn such that

µ(K(x, vk, αk) ∩ Ω) = 1 .

Since Sn is compact, up to a subsequence

vk
k→∞−−−→: v ∈ Sn .

Now let α > 0 and k0 ∈ N be such that for every k ∈ N, k ≥ k0

∢(vk, v) <
α

2
and αk <

α

2
.

Then
K(x, v, α) ⊃ K(x, vk, αk)

for every k ≥ k0 and thus

µ(K(x, v, α) ∩ Ω) ≥ µ(K(x, vk, αk) ∩ Ω) = 1 .

In order to prove that v is unique, assume there exists v′ ∈ Rn, v′ 6= v such
that the statement of the proposition holds. Set

α :=
1

3
∢(v, v′)

and note that
K(x, v, α) ∩K(x, v′, α) = ∅ .

But then

µ(Ω∩ (K(x, v, α)∪K(x, v′, α))) = µ(Ω∩K(x, v, α))+µ(Ω∩K(x, v′, α)) = 2

a contradiction to µ(Ω) = 1.

Remark 3.18. The proposition above shows that extremal points in Dens(C)
concentrate around one dimensional directions. Figure 3.2 illustrates this.
Note that it is only necessary for an extremal point of Dens(C) to concen-
trate in this way. A sufficient condition might be that it concentrates on a
cusp but this is still an open problem.

48



Ω

C

v

Kα1
Kα2

Kα3

Figure 3.2: The cones on which an extremal point of Dens(C) is concentrated

Remark 3.19. The extremal points of Dens(C) are called directionally
concentrated density measures.

Integration with respect to bounded density measures as laid out in Sec-
tion 2.1 is well-suited for essentially bounded functions f ∈ L∞ (Ω,Ln) but
in general it is not suited for unbounded functions. The following example
illustrates this.

Example 3.20. Let n = 1, Ω = B1 (0) ⊂ R and C := {0}. Let

f(x) :=
1

√

|x|
(

χ(−∞,0)(x)− χ[0,∞)(x)
)

for x ∈ R. Then

lim
δ↓0
−
ˆ

Bδ(0)

f dLn = 0 .

Let µ ∈ Dens(C) be a density measure of C. Then for every ε > 0 and every
simple h ∈ L∞ (Ω,Ln)

|µ| ({|f − h| > ε}) ≥ |µ| ({|f | > ‖h‖∞ + ε}) = 1 . (3.2)

Hence there is no sequence of simple function that converge in measure to f
and thus f is not µ-integrable.

This chapter is closed with some suggestions of further uses for density
measures. For example, the trace of a function of bounded variation can be
computed using density measures.

Example 3.21. Let Ω ⊂ Rn be bounded with Lipschitz boundary. For
x ∈ ∂Ω let µx ∈ Dens({x}) be such that

∼

ˆ

{x}

f dµx ≤ lim sup
δ↓0

−
ˆ

Bδ(x)∩Ω

f dLn
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for every f ∈ L∞ (Ω,Ln). Then for every f ∈ BV (Ω) ∩ L∞ (Ω,Ln) and
Hn−1-a.e. x ∈ ∂Ω

TΩ(f)(x) = ∼

ˆ

{x}

f dµx ,

where TΩ is the usual trace operator for functions of bounded variation (cf.
[20, p. 181]).

It is also possible to use density measures to define a set-valued gradient
for Lipschitz continuous functions.

Example 3.22. Let C = {x} ⊂ Rn and f : Rn → R be Lipschitz continuous.
Note that by Rademachers Theorem (cf. [20, p. 81]), Df exists almost
everywhere and is essentially bounded. Set

∂df(x) := 〈Dens({x}), Df〉 .
Then ∂df(x) is a weak* compact, convex set which is contained in BL (0),
where L is the Lipschitz constant of f . In plus, the linearity of the integral
implies that for every f1, f2 ∈ W 1,∞ (Rn,R)

∂d(f1 + f2)(x) ⊂ ∂df1(x) + ∂df2(x) .

and
∂d(f1f2)(x) ⊂ f1(x)∂d(f2)(x) + f2(x)∂d(f1)(x) .

Note that the definition of ∂d hints at similarities to a characterisation of
Clarkes Generalised Gradient in [14, p. 63].

3.2 Singular σ-Measures and Pure Measures

In this section, the possibility to identify σ-measures that are singular with
respect to Lebesgue measure and density measures is investigated. It is
shown that any pure measure gives rise to a Radon measure on its core and,
in regular settings, every Radon measure which is singular with respect to
Lebesgue measure gives rise to a pure measure on all of its domain. Finally
some examples show that pure measure are suitable for the representation of
traces of functions. These results are original work, to the authors knowledge.

The following proposition states that every pure measure induces a Radon
measure on its core.

Proposition 3.23. Let Ω ∈ B(Rn) be bounded and µ ∈ ba (Ω,B(Ω),Ln).
Then there exists a Radon measure σ supported on coreµ ⊂ Ω such that for
every φ ∈ C

(

Ω
)

ˆ

Ω

φ dµ =

ˆ

coreµ

φ dσ .

50



Proof. First, note that for every φ ∈ C
(

Ω
)

∣

∣

∣

∣

ˆ

Ω

φ dµ

∣

∣

∣

∣

≤ ‖φ‖C · |µ| (Ω)

Furthermore, note that every φ ∈ C
(

Ω
)

can be extended to a function φ ∈
C0

(

Ω
)

and every element of C0

(

Ω
)

can be restricted to Ω to obtain an

element of C
(

Ω
)

. Hence

u∗ : C0

(

Ω
)

→ R : φ 7→
ˆ

Ω

φ dµ

is a continuous linear operator and by the Riesz Representation Theorem (cf.
[21, p. 106]) there is a Radon measure σ on Ω such that for every φ ∈ C

(

Ω
)

ˆ

Ω

φ dµ =

ˆ

Ω

φ dσ .

Now let x ∈ Ω\coreµ. Then there exists a δ > 0 such that Bδ (x)∩coreµ = ∅.
Then for every φ ∈ C0

(

Bδ (x) ∩ Ω
)

ˆ

Ω

φ dσ =

ˆ

Ω

φ dµ = 0 .

Hence
|σ| (Bδ (x)) = 0

and thus x is not in the support of the σ-measure σ. Since x ∈ Ω \ coreµ
was arbitrary, it is proved that the support of σ is indeed a subset of coreµ.
This proves the statement of the proposition.

Remark 3.24. In the setting of the proposition above, σ is said to be a
representation of µ on coreµ.

The next proposition gives a partial inverse to the statement of the propo-
sition above. In particular, any Radon measure can be extended to a measure
on all of its domain.

Proposition 3.25. Let Ω ∈ B(Rn) be bounded and C ⊂ Ω be closed such
that for every x ∈ C and every δ > 0

Ln(Bδ (x) ∩ Ω) > 0 .

Furthermore, let σ be a Radon measure on C. Then there exists µ ∈ ba (Ω,B(Ω),Ln)
such that for every φ ∈ C

(

Ω
)

ˆ

Ω

φ dµ =

ˆ

C

φ dσ .
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In particular,
coreµ ⊂ C

and
|µ| (Ω) = |σ| (C) .

Remark 3.26. The conditions of the statement are satisfied if, for example,
C ⊂ ∂∗Ω ∪ Ωint.

Proof. Let φ ∈ C
(

Ω
)

. Then

‖φ|C‖C ≤ ‖φ‖∞ .

In order to see this, let ε > 0 and x ∈ C be such that

|φ(x)− ‖φ|C‖C | <
ε

2
.

Let δ > 0 be such that for all y ∈ Bδ (x) ∩ Ω

|φ(x)− φ(y)| < ε

2
.

By assumption
Ln(Bδ (x) ∩ Ω) > 0

whence
‖φ‖∞ ≥ |φ(x)| −

ε

2
≥ ‖φ|C‖C − ε .

Since ε > 0 was arbitrary, the statement follows.
Set

u∗
0 : C

(

Ω
)

⊂ L∞ (Ω,Ln)→ R : φ 7→
ˆ

C

φ dσ

and note that for every φ ∈ C
(

Ω
)

|〈u∗
0, φ〉| ≤ ‖φ|C‖C |σ| (C) ≤ ‖φ‖∞ |σ| (C) .

By the Hahn-Banach theorem (cf. [18, p. 63]) there exists a continuous
extension u∗ of u∗

0 to all of L∞ (Ω,Ln) such that

‖u∗‖ = ‖u∗
0‖ .

But L∞ (Ω,Ln)∗ = ba (Ω,B(Ω),Ln) by Proposition 2.21. Hence, there exists
µ ∈ ba (Ω,B(Ω),Ln) such that for every φ ∈ C

(

Ω
)

ˆ

Ω

φ dµ =

ˆ

C

φ dσ .
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Let φ ∈ C
(

Ω
)

such that ‖φ‖∞ ≤ 1. Then

‖φ|C‖C ≤ ‖φ‖∞ ≤ 1 .

Hence,

|µ| (Ω) = ‖u∗
0‖ = sup

φ∈C(Ω),
‖φ‖

∞
≤1

ˆ

Ω

φ dµ ≤ sup
φ∈C(Ω),
‖φ|C‖C≤1

ˆ

C

φ dσ ≤ |σ| (C) .

Note that for every φ ∈ C
(

Ω
)

max(min(φ, 1),−1) ∈ C
(

Ω
)

and that every φ ∈ C0 (C) can be extended to all of Ω, preserving the norm
(cf. [29, p. 25]). Hence, every φ ∈ C0 (C) can be extended to φ ∈ C0

(

Ω
)

such that
‖φ‖C =

∥

∥φ
∥

∥

C
.

Thus

|σ| (C) = sup
φ∈C0(C),
‖φ‖C≤1

ˆ

C

φ dσ = sup
φ∈C0(Ω),
‖φ‖

C
≤1

ˆ

Ω

φ dµ ≤ sup
φ∈C0(Ω),
‖φ‖

∞
≤1

ˆ

Ω

φ dµ ≤ |µ| (Ω) .

Since changing φ outside of C does not change the integral, coreµ ⊂ C. This
finishes the proof.

The measure from the preceding proposition is pure if the Radon measure
is singular with respect to Lebesgue measure.

Corollary 3.27. Let Ω ∈ B(Rn) be bounded and C ⊂ Ω be closed such that
for every x ∈ C and δ > 0

Ln(Bδ (x) ∩ Ω) > 0

and
Ln(C ∩ Ω) = 0 .

Furthermore, let σ be a Radon measure on C.
Then there exists µ ∈ ba (Ω,B(Ω),Ln) such that for all φ ∈ C0 (Ω)

ˆ

Ω

φ dµ =

ˆ

C

φ dσ .

Furthermore,
|µ| (Ω) = |σ| (C)

and µ is pure.
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Proof. The preceding proposition and Proposition 1.41 yield the statement.

The following example presents another way to construct a density at
zero.

Example 3.28. Let Ω ∈ B(Rn) be bounded and x ∈ Ω such that for every
δ > 0

Ln(Bδ (x) ∩ Ω) > 0 .

Then there exists a pure µ ∈ ba (Ω,B(Ω),Ln) such that for every φ ∈ C
(

Ω
)

ˆ

Ω

φ dµ = φ(x) .

The next example shows an extension for Hn−1.

Example 3.29. Let Ω ∈ B(Rn) be open, bounded and have smooth bound-
ary. Then Ln(∂Ω) = 0 and C = ∂Ω satisfies the assumptions of Proposition
3.25. Hence, there exists µ ∈ ba (Ω,B(Ω),Ln) such that for all φ ∈ C

(

Ω
)

ˆ

∂Ω

φ dHn−1 =

ˆ

Ω

φ dµ .

The following example shows, that the surface part of a Gauß formula
can be expressed as an integral with respect to a pure measure. In Section
5.1 this is extended to vector fields having divergence measure.

Example 3.30. Let Ω ∈ B(Rn) be a bounded set with smooth boundary.
Then C = ∂Ω ⊂ Ω is a closed set and for every k ∈ N such that 1 ≤ k ≤ n

νk · Hn−1⌊∂Ω
is a Radon measure on C. By Proposition 3.25 there exists µk ∈ ba (Ω,B(Ω),Ln)
such that for every φ ∈ C

(

Ω
)

ˆ

∂Ω

φ · νk dHn−1 =

ˆ

Ω

φ dµk = ∼

ˆ

∂Ω

φ dµk

and
coreµk ⊂ ∂Ω .

Hence, there exists µ ∈ (ba (Ω,B(Ω),Ln))n such that for all φ ∈ C1
(

Ω,Rn
)

∼

ˆ

∂Ω

φ dµ =

ˆ

Ω

φ dµ =

ˆ

∂Ω

φ · ν dHn−1 =

ˆ

Ω

div φ dLn ,

where the Gauß formula for sets with finite perimeter from Evans [20, p. 209]
was used. Furthermore,

coreµ ⊂ ∂Ω

and µ is pure by Proposition 1.41.
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Chapter 4

Vector Fields Having
Divergence Measure

The following chapter contains a short exposition on functions of bounded
variation and some useful statements for vector fields having divergence mea-
sure. The section on functions of bounded variation contains a useful propo-
sition on the quality of approximation of χB by mollification. In the second
section on vector fields having divergence measure, product formulas are ad-
dressed. These are needed for the subsequent analysis of Gauß formulas.

4.1 Functions of Bounded Variation

In the following, the functions of bounded varation and some of their prop-
erties needed for the analysis are presented. See Evans [20] or Ambrosio [2]
for more details.

The following basic definition is taken from [20, p. 166].

Definition 4.1. Let Ω ⊂ Rn be open and f ∈ L1 (Ω,Ln). Then

|Df | (Ω) := sup

{
ˆ

Ω

f div φ dLn | φ ∈ C1
0 (Ω,R

n) , |φ| ≤ 1

}

is called total variation of f .
If |Df | (Ω) <∞, f is called function of bounded varation.
The space of all functions of bounded variation is denoted by

BV (Ω) .

The norm on BV (Ω) is defined by

‖f‖BV := ‖f‖1 + |Df | (Ω) .
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This turns BV (Ω) into a Banach space.

Sets of finite perimeter are defined through the regularity of their char-
acteristic function. The following definition is taken from [20, p. 167].

Definition 4.2. Let Ω ⊂ Rn be open and B ∈ B(Ω). Then B is called set
of finite perimeter in Ω, if

χB ∈ BV (Ω) .
The following proposition on the structure of the distributional derivative

of a function of bounded variation is taken from [20, p. 167].

Proposition 4.3. Let Ω ⊂ Rn be open and f ∈ BV (Ω). Then there exists a
Radon measure σ on Ω and a σ-measurable h : Ω→ Rn such that

1. |h(x)| = 1 σ-a.e.

2.
´

Ω
f div φ dLn = −

´

Ω
φ · h dσ

for all φ ∈ C∞
0 (Ω,Rn).

For sets of finite perimeter, the following convention is used (cf. [20, p.
169]).

Definition 4.4. Let Ω ⊂ Rn be open, f ∈ BV (Ω) and B be a set of finite
perimeter. Then write

1. Df := hdσ

2. ‖∂B‖ := σ and νB := −h, with h and σ for χB

with h and σ as in Proposition 4.3.

The following definition of measure theoretic interior and exterior is taken
from [20, p. 45].

Definition 4.5. Let B ∈ B(Rn). The set

Bint :=

{

x ∈ Rn| lim
δ↓0

Ln(B ∩ Bδ (x))

Ln(Bδ (x))
= 1

}

is called measure theoretic interior of B.
The set

Bext :=

{

x ∈ Rn| lim
δ↓0

Ln(B ∩ Bδ (x))

Ln(Bδ (x))
= 0

}

is called measure theoretic exterior of B.
The set

∂∗B := Rn \ (Bint ∪ Bext)

is called measure theoretic boundary of B.
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For Gauß formulas, the part of the measure theoretic boundary which
admits a measure theoretic normal is of interest. The following definition of
the reduced boundary is taken from [20, p. 194]

Definition 4.6. Let Ω ⊂ Rn be open and B ∈ B(Ω) be a set of finite perime-
ter in Ω. The set ∂∗B of all x ∈ Rn such that

1. ‖∂B‖ (Bδ (x)) > 0 for all δ > 0

2. νB(x) = lim
δ↓0

−
´

Bδ(x)
νB d‖∂B‖

3. |νB(x)| = 1

is called reduced boundary of B.

Remark 4.7. The reduced boundary is the set, where a measure theoretic
normal can be defined. The derivative of the characteristic function of a set
of finite perimeter satisfies

DχB = ‖∂B‖ = νB · Hn−1 .

The measure theoretic normal at x ∈ ∂∗B is characterised by

lim
δ↓0

Ln(Bδ (x) ∩ B ∩ {y ∈ Rn | νB(x) · (y − x) ≥ 0})
Ln(Bδ (x))

= 0 ,

i.e. the set B locally resembles a halfspace with outer normal νB (cf. [20, p.
203]).

The following proposition is a useful tool in the proof of existence of
normal measures below. It states that the characteristic function of a set of
finite perimeter can be approximated Hn−1-a.e. by functions with gradients
that are bounded in L1 (cf. [2, p. 163]).

Proposition 4.8. Let Ω ⊂ Rn be open and B ∈ B(Ω) be a set of finite
perimeter in Ω such that dist∂Ω(B) > 0. Let ρ : Rn → R be a mollification
kernel (cf. [20, p. 122]). Then the functions χδ : R

n → R defined by

χδ(x) = ρδ ∗ χB(x) =
1

δn

ˆ

B

ρ

(

x− y

δ

)

dLn

satisfy

χδ
δ↓0−−→ χB

∗ = χBint
+

1

2
χ∂∗B Hn−1-a.e.

and
‖Dχδ‖1

δ↓0−−→ |DχB| (Ω) .
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Proof. Begin by proving convergence Hn−1-a.e.

1. If x ∈ Bint, then for every ε > 0 there exists δ0 > 0 such that

Ln(Bδ (x) \B) ≤ εδn

for every δ < δ0.

Let ε > 0 be arbitrary. Then

χδ(x) =
1

δn

ˆ

Bδ(x)

ρ

(

x− y

δ

)

dLn − 1

δn

ˆ

Bδ(x)\B

ρ

(

x− y

δ

)

dLn

≥ 1− ε ,

for δ < δ0.

Since ε > 0 was arbitrary and χδ ≤ 1

χδ(x)
δ↓0−−→ 1 .

A similar argument yields the statement for x ∈ Bext.

2. If x ∈ ∂∗B, then x lies in the jumpset of χB (cf. Example 3.68 [2, p.
163]). Hence

χδ(x)
δ↓0−−→ 1

2

by proposition 3.69 in [2, p. 164].

Since Rn \ (Bint ∪ Bext ∪ ∂∗B) is a Hn−1-null set

χδ
δ↓0−−→ χBint

+
1

2
χ∂∗B Hn−1-a.e.

It remains to show that

‖Dχδ‖1
δ↓0−−→ |DχB| (Ω) .

Let 0 < δ < dist∂Ω(B)
2

and let φ ∈ C1
0 (Ω,R

n) be such that ‖φ‖C ≤ 1 with
suppφ ⊂ Bδ. Then

ˆ

Ω

χδ div φ dLn =

ˆ

Ω

(ρδ ∗ χB) div φ dLn

=

ˆ

Ω

χB(ρδ ∗ div φ) dLn

=

ˆ

Ω

χB div (ρδ ∗ φ) dLn

≤ |DχB| (Ω) ,
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since |ρδ ∗ φ| ≤ 1 and supp (ρδ ∗ φ) ⊂⊂ int Ω.
This implies

‖Dχδ‖1 = |Dχδ| (Bδ) ≤ |DχB| (Ω) .

On the other hand, since χδ
L1

−→ χB and the total variation is lower semi-
continuous

|DχB| (Ω) ≤ lim inf
δ↓0

|Dχδ| (Ω) = lim inf
δ↓0

|Dχδ| (Bδ) .

This yields the statement of the proposition.

4.2 Vector Fields Having Divergence Measure

This section contains an exposition of a number of useful product rules for
vector fields having divergence measure.

The following definition of vector fields having divergence measure is in
accordance with Chen [9, p. 402].

Definition 4.9. Let U ⊂ Rn be open. A function F ∈ L1 (U,Rn,Ln) is
called vector field having divergence measure if

sup

{
ˆ

U

F ·Dφ dLn | φ ∈ C1
0 (U) , |φ| ≤ 1

}

<∞ .

The spaces of vector fields having divergence measure are defined as fol-
lows (cf. [9, p. 402]).

Definition 4.10. Let U ⊂ Rn be open and p ∈ [1,∞]. The set of all F ∈
Lp (U,Rn,Ln) having divergence measure is denoted by

DMp(U,Rn) .

DMp(U,Rn) is a Banach space with the norm

‖F‖DMp := sup
k∈N

1≤k≤n

‖Fk‖p + |divF | (U) for F ∈ DMp(U,Rn) .

The following result on the structure of the distributional divergence of
vector fields having divergence measure is taken from [31, p. 529].

Proposition 4.11. Let U ⊂ Rn be open and F ∈ DM1(U,Rn). Then there
exists a Radon measure divF on U such that for every φ ∈ C1

0 (U)
ˆ

U

F ·Dφ dLn = −
ˆ

U

φ ddivF .
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The following important proposition can be found in [11, p. 252]. It states
that compactly supported divergence measure fields have zero divergence on
sets containing their support.

Proposition 4.12. Let U ⊂ Rn be open and F ∈ DM1(U,Rn) be such that
there exists a compact set C ⊂ U with

F = 0 Ln-a.e. on U \ C .

Then
divF (U) = 0 .

The following result is a specialisation of Proposition 4 from [12, p. 1014].
It states that essentially bounded vector fields having divergence measure can
be partially restricted to any bounded set of finite perimeter.

Proposition 4.13. Let U ⊂ Rn be open and F ∈ DM∞(U,Rn). Then for
every bounded set of finite perimeter Ω ∈ B(U) such that distΩ(∂U) > 0

F · χΩ ∈ DM∞(U,Rn) .

The following proposition is taken from Chen [11, p. 250] and Silhavy
[32, p. 448]. In the proof of Gauß formulas in the next chapter, it is used to
partially integrate compactly supported Lipschitz continuous functions with
respect to vector fields having divergence measure.

Proposition 4.14. Let U ⊂ Rn be open, F ∈ DM1(U,Rn) and let f ∈
W 1,∞ (U,R). Then F · f ∈ DM∞(U,Rn) and

div (F · f) = f divF + FDf .

The integrals over the boundaries of δ-neighbourhoods of the normal com-
ponent of F on ∂Ω are functions of bounded variation. Note that for sets
with sufficiently smooth boundary

DdistΩ = νΩδ .

Proposition 4.15. Let U ⊂ Rn be open and Ω ∈ B(U) be bounded such
that ε := distΩ(∂U) > 0. Furthermore, let Ln(∂Ω) = 0. Then for every
F ∈ DM1(U,Rn) the mapping h : (0, ε)→ R defined by

h(δ) :=

ˆ

∂Ωδ

F ·DdistΩ dHn−1

is in BV(0, ε) and thus

lim
δ↓0

ˆ

∂Ωδ

F ·DdistΩ dHn−1

exists.
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Proof. Let F ∈ DM1(U,Rn) and φ ∈ C1
0 ((0, ε)). Then g := φ ◦ distΩ(·) ∈

W 1,∞ (U,R) and
Dg = Dφ(distΩ)DdistΩ .

Using Propositions 4.12 and 4.14 for partial integration

ˆ

(0,ε)

Dφ(δ)

ˆ

∂Ωδ

F ·DdistΩ dHn−1 dδ =

ˆ

(0,ε)

ˆ

∂Ωδ

F ·Dφ(distΩ)DdistΩ dHn−1 dδ

=

ˆ

(0,ε)

ˆ

∂Ωδ

F ·Dg dHn−1 dδ

=

ˆ

U

F ·Dg dLn

= −
ˆ

U

g ddivF

≤ ‖g‖C |divF | (U) ≤ c ‖φ‖C .

Thus, h ∈ BV ((0, ε)) and the statement of the proposition follows with
Theorem 3.28 from [2, p. 136].
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Chapter 5

Gauß Formulas

In this chapter, the main theorems on Gauß formulas are proved. The key to
obtain these formulas is the representation of the dual space of L∞ (U,Rn,Ln).
The first section covers the case of essentially bounded vector fields. There,
the existence of a normal measure ν is proved, and properties thereof are de-
rived. It is shown that these measures yield Gauß formulas in many settings.
In particular, this new result together with the product rules from Section
4.2 yields a Gauß formula for essentially bounded functions of bounded vari-
ation and essentially bounded vector fields having divergence measure. This
is new, compared with the literature. Nevertheless, unbounded vector fields
are not integrable with respect to normal measure in the general case. In the
second part of this chapter, unbounded vector fields are investigated. A Gauß
formula is obtained for bounded open sets with path-connected boundary by
extending a result due to Silhavy [32].

5.1 Bounded Vector Fields having Divergence

Measure

The following lemma enables the use of the characterisation of the dual of
L∞ in the following theorem. The key point of this statement is that the
dual of a product space is essentially the product of the dual spaces.

Nevertheless, a self-contained proof is given.

Proposition 5.1. Let Ω ⊂ Rn. The dual space of

L∞ (Ω,Rn,Ln)
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equipped with the norm

‖F‖ := sup
k∈N

1≤k≤n

‖Fk‖∞ for F ∈ L∞ (Ω,Rn,Ln)

is the space
(ba (Ω,B(Ω),Ln))n

equipped with the norm

‖ν‖ =
n
∑

k=1

|νk|(Ω) for ν ∈ (ba (Ω,B(Ω),Ln))n .

Proof. Let ν ∈ (ba (Ω,B(Ω),Ln))n. Then u∗ : L∞ (Ω,Rn,Ln) → R defined
by

〈u∗, F 〉 =
n
∑

k=1

ˆ

Ω

Fk dνk

for F ∈ L∞ (Ω,Rn,Ln) is obviously a linear functional on L∞ (Ω,Rn,Ln).
Furthermore

|〈u∗, F 〉| ≤
n
∑

k=1

‖Fk‖∞ |νk| (Ω) ≤ ‖F‖ ‖ν‖

for F ∈ L∞ (Ω,Rn,Ln), where the norms are defined as in the statement of
the proposition.

Now let u∗ ∈ L∞ (Ω,Rn,Ln)∗. Then for every k ∈ N, 1 ≤ k ≤ n

u∗
k : L∞ (Ω,Ln)→ R : f 7→ 〈u∗, fek〉

is a continuous linear functional on L∞ (Ω,Ln). By Proposition 2.21 there
exist νk ∈ ba (Ω,B(Ω),Ln) such that

〈u∗
k, f〉 =

ˆ

Ω

f dνk

for every f ∈ L∞ (Ω,Ln). Hence for every F ∈ L∞ (Ω,Rn,Ln)

〈u∗, F 〉 =
n
∑

k=1

〈u∗
k, Fk〉 =

n
∑

k=1

ˆ

Ω

Fk dνk =

ˆ

Ω

F dν ,

where ν = (ν1, ..., νn).
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Now let ν ∈ (ba (Ω,B(Ω),Ln))n. Then

sup
F∈L∞(Ω,Rn,Ln)

‖F‖≤1

∣

∣

∣

∣

ˆ

Ω

F dν

∣

∣

∣

∣

= sup
F∈L∞(Ω,Rn,Ln)

‖F‖≤1

ˆ

Ω

F dν

= sup
F∈L∞(Ω,Rn,Ln)

‖F‖≤1

n
∑

k=1

ˆ

Ω

Fk dνk

=
n
∑

k=1

sup
Fk∈L

∞(Ω,Ln)
‖Fk‖∞≤1

ˆ

Ω

Fk dνk

=
n
∑

k=1

|νk| (Ω) = ‖ν‖ .

This finishes the proof.

The proof of the upcoming Gauß Theorem relies on the following notion of
approximation of the domain Ω. It turns out that this is not only a technical
necessity but gives the obtained Gauß formulas a more flexible shape.

Definition 5.2. Let U ⊂ Rn be open and Ω ∈ B(U) with dist∂U(Ω) > 0.
A sequence {χk}k∈N ⊂ W 1,∞ (U, [0, 1]) of Lipschitz continuous real func-

tions with compact support in U is called good approximation for χΩ with
limit function χ, if

1.
lim
k→∞

χk(x) =: χ(x) exists Hn−1-a.e. on U

2.
χ = 1 Hn−1-a.e. on int Ω

3.
χ = 0 Hn−1-a.e. on

(

Ω
)c

4.
sup
k∈N
‖Dχk‖1 <∞ .

A necessary condition for Ω to allow a good approximation is given in the
next proposition.

Proposition 5.3. Let U ⊂ Rn be open and Ω ∈ B(U) be bounded such that
distΩ(∂U) > 0. If there is a good approximation for χΩ with ‖χ− χΩ‖1 = 0.
Then Ω is a set of finite perimeter.
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Proof. Let {χk}k∈N be a good approximation for χΩ. Since Ω is bounded and
every Hn−1-null set is a Ln-null set,

χk
L1

−→ χΩ .

Since the total variation is lower semi continuous,

|DχΩ| (U) ≤ lim inf
k→∞

‖Dχk‖1 <∞ .

This proves the statement.

Remark 5.4. In Example 5.10, it is shown that every set of finite perimeter
allows a good approximation.

Now, the Gauß Theorem can be proved using good approximations and
the characterisation of the dual of L∞ (U,Rn,Ln).

Theorem 5.5. Let U ⊂ Rn be open, Ω ∈ B(U) be a bounded set of finite
perimeter such that distΩ(∂U) > 0. Furthermore, let {χk}k∈N be a good
approximation with limit χ. Then there exists ν ∈ (ba (U,B(U),Ln))n such
that for every k ∈ N, 1 ≤ k ≤ n

core νk ⊂ ∂Ω .

and the Gauß formula

divF (intΩ) +

ˆ

∂Ω

χ ddivF = ∼

ˆ

∂Ω

F dν (5.1)

holds for every F ∈ DM∞(U,Rn). The measure ν is minimal in the norm,
i.e. if ν ′ ∈ (ba (U,B(U),Ln))n satisfies (5.1) for every F ∈ DM∞(U,Rn),
then

‖ν‖ ≤ ‖ν ′‖ .

In addition, for every set of finite perimeter B ∈ B(U)

ν(B) = − lim
k→∞

ˆ

B∩suppDχk

Dχk dLn = −
ˆ

∂∗B∩Ω

χ · νB dHn−1

The preceding new Gauß Theorem sets itself apart from the literature
by introducing normal measures. In the literature, Gauß formulas for sets
of finite perimeter and essentially bounded vector field can be found in the
form of functionals on a function space on the boundary (cf. [32, p. 448])
or as functions on the boundary which are obtained by mollification (cf. [13,
p. 262f]). The approach chosen here enables a clean separation of geometry
and vector field. In plus, it yields the existence of a normal measure which
is defined on all Borel subsets.
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Definition 5.6. ν ∈ (ba (U,B(U),Ln))n satisfying (5.1) for all F ∈ DM∞(U,Rn)
with some limit χ of a good approximation of χΩ that is minimal in the sense
of Theorem 5.5 is called normal measure of Ω related to χ.

Now, the proof of Theorem 5.5 is given.

Proof. Let Ω ∈ B(U) be a bounded set of finite perimeter with distΩ(∂U) > 0
and let {χk}k∈N ⊂ W 1,∞ (U, [0, 1]) be an associated good approximation with
limit function χ.

Now, let F ∈ DM∞(U,Rn). Then by the Dominated Convergence The-
orem (cf. [20, p. 20])

ˆ

U

χk ddivF
k→∞−−−→ divF (intΩ) +

ˆ

∂Ω

χ ddivF .

Note that divF <<w Hn−1 (cf. [12, p. 1014]). On the other hand,

F · χk ∈ DM∞(U,Rn)

by Proposition 4.14. Furthermore, F ·χk is compactly supported in U . Thus
by Proposition 4.12 for every k ∈ N

ˆ

U

χk ddivF = −
ˆ

U

Dχk · F dLn .

Hence for every k ∈ N
∣

∣

∣

∣

ˆ

U

χk ddivF

∣

∣

∣

∣

≤ ‖Dχk‖L1 ‖F‖∞,suppχk
.

This implies
∣

∣

∣

∣

divF (intΩ) +

ˆ

∂Ω

χ ddivF

∣

∣

∣

∣

≤ lim sup
k→∞

‖Dχk‖L1 ‖F‖∞,suppχk
≤ sup

k∈N
‖Dχk‖1 ‖F‖∞ .

Hence

u∗
0 : DM∞(U,Rn)→ R : F 7→ divF (intΩ) +

ˆ

∂Ω

χ ddivF

is a continuous linear functional on a subspace of L∞ (U,Rn,Ln). By the
Hahn-Banach Theorem [18, p. 63] there exists a continuous linear extension
u∗ of u∗

0 to all of L∞ (U,Rn,Ln) such that ‖u∗‖ = ‖u∗
0‖. In particular,

this extension is minimal in the norm. By Proposition 5.1 there exists a
ν ∈ (ba (U,B(U),Ln))n such that for all F ∈ DM∞(U,Rn)

divF (intΩ) +

ˆ

∂Ω

χ ddivF =

ˆ

U

F dν .
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and ‖ν‖ = ‖u∗
0‖. Furthermore

n
∑

k=1

|νk| (Ω) = ‖u∗
0‖ = ‖u∗‖ .

Note that by the Coarea Formula (cf. [20, p. 112]), for a.e. 0 < δ <
distΩ(∂U) the neighbourhood Ωδ is a set of finite perimeter. By Proposition
4.13

F · χΩδ
∈ DM∞(U,Rn) .

But F · χΩδ
and F agree on a neighbourhood of Ω, whence

div (F · χΩδ
)(intΩ) +

ˆ

∂Ω

χ ddiv (F · χΩδ
) = divF (intΩ) +

ˆ

∂Ω

χ ddivF .

whence
ˆ

U\Ωδ

F dν = 0

for every F ∈ DM∞(U,Rn) and almost every 0 < δ < distΩ(∂U). Thus for
almost every such δ > 0 and F ∈ DM∞(U,Rn)

〈u∗, F 〉 =
ˆ

Ω

F dν⌊Ωδ .

This implies
‖u∗

0‖ ≤ ‖ν⌊Ωδ‖ ≤ ‖ν‖ = ‖u∗
0‖

and thus
n
∑

k=1

|νk⌊(U \ Ωδ)| (Ω) =
n
∑

k=1

|νk| (U)− |νk⌊Ωδ| (Ω) = ‖u∗
0‖ − ‖u∗

0‖ = 0

whence
|νk| (U \ Ωδ) = 0

for almost every 0 < δ < distΩ(∂U). Since |νk| is monotone, the statement
follows for all 0 < δ < distΩ(∂U).

Note that by the Coarea formula (cf. [20, p. 112]) Ω−δ is a set of finite
perimeter for almost every δ > 0. By Proposition 4.13

F · χΩ−δ
∈ DM∞(U,Rn) .

Since Ω is bounded, F ·χΩ−δ
is compactly supported in intΩ and thus by

Proposition 4.12

divF · χΩ−δ
(intΩ) +

ˆ

∂Ω

χ ddiv
(

F · χΩ−δ

)

= 0 .
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This implies
ˆ

Ω

F dν⌊Ω−δ = 0

for every such δ > 0 and F ∈ DM∞(U,Rn). Hence

‖u∗
0‖ ≤ ‖ν⌊U \ Ω−δ‖ ≤ ‖ν‖ = ‖u∗

0‖ .

and analogously to the reasoning for Ωδ one deduces

|νk| (Ω−δ) = 0

for every k ∈ N, 1 ≤ k ≤ n.
Now for every δ > 0, δ < distΩ(∂U) and every k ∈ N, 1 ≤ k ≤ n

|νk| ((U \ Ωδ) ∪ Ω−δ) = 0 .

This implies
core νk ⊂ ∂Ω

for every k ∈ N, 1 ≤ k ≤ n. This establishes Equation (5.1).
Now, let B ∈ B(U) be a set of finite perimeter. Then for k ∈ N, 1 ≤ k ≤ n

ek · χB ∈ DM∞(U,Rn) .

Note that
div (ek · χB) = ∂kχB = −(νB)kHn−1⌊∂∗B .

The established Gauß formula yields
ˆ

U

χB dνk =

ˆ

U

ek · χB dν

= div (ek · χB)(intΩ) +

ˆ

∂Ω

χ ddiv (ek · χB)

=

ˆ

U

χ ddiv (ek · χB)

= lim
l→∞

ˆ

U

χl ddiv (ek · χB)

= lim
l→∞
−
ˆ

B

ek ·Dχl dLn

Since k ∈ N, 1 ≤ k ≤ n was arbitrary

ν(B) = − lim
k→∞

ˆ

B∩suppDχk

Dχk dLn .
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On the other hand, for every set of finite perimeter B ∈ B(U) and for k ∈ N,
1 ≤ k ≤ n

νk(B) = lim
l→∞

ˆ

U

χl ddiv (ek · χB)

= lim
l→∞

ˆ

U

χl d∂k(χB)

= − lim
l→∞

ˆ

∂∗B

χl · (νB)k dHn−1

= −
ˆ

∂∗B

χ · (νB)k dHn−1 .

Hence

ν(B) = −
ˆ

∂∗B∩Ω

χ · νB dHn−1 .

Given a good approximation of χΩ, normal measures are uniquely defined
on sets of finite perimeter.

Proposition 5.7. Let U ⊂ Rn be open and Ω ∈ B(U) be a bounded set of fi-
nite perimeter such that distΩ(∂U) > 0. Let {χk}k∈N be a good approximation
with limit χ. Let ν ∈ (ba (U,B(U),Ln))n be an associated normal measure.
Then for every set of finite perimeter B ∈ B(U) there exists a Lebesgue null
set N ⊂ R

ν(B) =

ˆ

∂∗B∩∂Ω

−χνB dHn−1 + lim
δ↓0
δ /∈N

ˆ

Bint∩∂∗Ω−δ

νΩ−δ dHn−1 .

Proof. Note that B and Bint only differ by a Ln-null set (cf. [20, p. 43]).
Hence Bint is also a set of finite perimeter. W.l.o.g. B = Bint. The Coarea
formula (cf. [20, p. 112]) implies that for a.e. δ > 0 the set

Ωδ \ Ω−δ

has finite perimeter. Then (Ωδ \ Ω−δ)int is also a set of finite perimeter. By
[23, p. 5],

B ∩ (Ωδ \ Ω−δ)int

is also a set of finite perimeter. Note that the Coarea Formula also implies
that for a.e. δ > 0

Hn−1(∂∗B ∩ ∂(Ωδ \ Ω−δ)) = 0 .
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Using this and [15, p. 199]

∂∗(B ∩ (Ωδ \ Ω−δ)int)

differs from
(∂∗B ∩ (Ωδ \ Ω−δ)int) ∪ (B ∩ ∂∗(Ωδ \ Ω−δ))

only by a Hn−1-null set. Since Ωδ \Ω−δ has density 1 at points of its measure
theoretic interior and the measure theoretic normal is characterised by the
halfspace it generates (cf. Remark 4.7, [20, p. 203]), one sees that

νB∩(Ωδ\Ω−δ) = νB on ∂∗B ∩ (Ωδ \ Ω−δ)int ∩ ∂∗(B ∩ (Ω \ Ω−δ)) .

Theorem 5.5 states core ν ⊂ ∂Ω, thus

ν(B) = ν(B∩ (Ωδ \ Ω−δ)int) = −
ˆ

∂∗(B∩(Ωδ\Ω−δ)int
)∩Ω

χν(B∩(Ωδ\Ω−δ)int
) dHn−1 .

for a.e. δ > 0. The integral on the right hand side is for a.e. δ > 0 equal to

ˆ

∂∗B∩Ω∩(Ωδ\Ω−δ)int

−χνB dHn−1 +

ˆ

B∩Ω∩∂∗(Ω−δ)

χνΩ−δ dHn−1 .

Noting that
ˆ

∂∗B∩Ω∩A

−χνB dHn−1

defines a σ-measure in A and using continuity from above yields

lim
δ↓0

ˆ

∂∗B∩Ω∩(Ωδ\Ω−δ)int

−χνB dHn−1 =

ˆ

∂∗B∩∂Ω

−χνB dHn−1

On the other hand ∂∗(Ω−δ) ⊂ Ω. Hence

∂∗(Ω−δ) ∩ Ω ∩ B = B ∩ ∂∗(Ω−δ) .

Furthermore χ = 1 on intΩ. This finishes the proof.

The following picture illustrates the representation of a normal measure
from the preceding proposition.
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Ω

B

{δ

νΩ−δ

−χνBB

{δ

νΩ−δ

Figure 5.1: Domain of influence for a normal measure and a set of finite
perimeter B

The relation of Hn−1⌊∂∗Ω and |ν| is treated in the next proposition.

Proposition 5.8. Let U ⊂ Rn be open, Ω ∈ B(U) be a bounded set of
finite perimeter such that distΩ(∂U) > 0. Furthermore, let {χk}k∈N be a good
approximation with limit χ and let ν ∈ (ba (U,B(U),Ln))n be the associated
normal measure.

If ‖χ− χΩ‖1 = 0, then for every open set B ⊂ U

|ν| (B) ≥ (Hn−1⌊∂∗Ω)(B) .

Remark 5.9. Note that Ln(∂Ω) = 0 implies ‖χ− χΩ‖1 = 0.

Proof. Let φ ∈ C1
0 (U,R

n). Then using the Gauß Theorem from Evans [20,
p. 209]

ˆ

U

φ dν =

ˆ

intΩ

div φ dLn +

ˆ

∂Ω

χ div φ dLn

=

ˆ

Ω

div φ dLn

=

ˆ

∂∗Ω

φ · νΩ dHn−1 .
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Hence for every open set B ⊂ U

|ν| (B) ≥ sup
φ∈C1

0 (B,Rn),
‖φ‖

∞
≤1

ˆ

U

φ dν

≥ sup
φ∈C1

0 (B,Rn),
‖φ‖C≤1

ˆ

∂∗Ω

φ · νΩ dHn−1

= |DχΩ| (B)

= (Hn−1⌊∂∗Ω)(B) .

For the last equality, see e.g. [20, p. 205].
Since B ∈ B(U) was arbitrary, this finishes the proof.

The following example shows that for every set of finite perimeter there
exists a canonical normal measure. Hence, Theorem 5.5 is always applicable.

Example 5.10. Canonical normal measure
Let U ⊂ Rn be open and Ω ∈ B(U) be a bounded set of finite perimeter
such that distΩ(∂U) > 0. Furthermore, let ρ ∈ C∞

0 (Rn) be the standard
mollification kernel (cf. [20, p. 122]). Then by Proposition 4.8.

χk(x) :=

ˆ

Rn

1

kn
ρ (k(y − x))χΩ(x) dy .

is a good approximation for χΩ. The limit function χ satisfies

χ = χΩint
+

1

2
χ∂∗Ω Hn−1-a.e. .

Hence, there exists a normal measure ν ∈ (ba (U,B(U),Ln))n such that for
every F ∈ DM∞(U,Rn) the following Gauß formula holds

divF (Ωint) +
1

2
divF (∂∗Ω) = ∼

ˆ

∂Ω

F dν .

Furthermore,
core ν ⊂ ∂Ω .

The divergence on the regular boundary of Ω, weighted with 1
2
, cannot be

found in the literature. This is due the fact, that the majority of the texts
prohibit the vector fields under consideration from exhibiting such concen-
trations. The remaining sources treat settings similar to the one of Theorem
5.18 below. The weight 1

2
appears plausible, when interpreting the diver-

gence as source strength of the field F . At points of the regular boundary,
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Ω geometrically resembles a half-space. Then half of the source strength can
be seen to flow into the domain and the other half flows outwards.

The next example shows that for many closed sets of finite perimeter a
more familiar form of the Gauß Theorem can be derived.

Example 5.11. Outer normal measure
Let U ⊂ Rn be open and Ω ∈ B(Ω) be a bounded, closed set of finite
perimeter such that δ0 := distΩ(∂U) > 0. Furthermore, let there be a se-
quence {δk}k∈N ⊂ (0,∞) such that lim

k→∞
δk = 0 and

sup
k∈N
−
ˆ

(0,δk)

Hn−1(∂Ωδ) dδ <∞ .

This is the case if, e.g.

lim
δ↓0
Hn−1(∂Ωδ) = Hn−1(∂∗Ω) .

For x ∈ U and k ∈ N set

χk(x) := χΩδk
(x)

(

1− 1

δk
χΩδk

\Ω distΩ(x)

)

= max

{

0,min

{

1, 1− 1

δk
distΩ

}}

.

Then χk ∈ W 1,∞ (U, [0, 1]) is Lipschitz continuous (cf. [14, p. 47]). These
functions are called (outer) Portmanteau functions. Note that by the
Coarea formula for functions of bounded variation (cf. [20, p. 185])

‖Dχk‖1 =
ˆ

(0,1)

Hn−1(χ−1
k (δ)) dδ = −

ˆ

(0,δk)

Hn−1(∂Ωδ) dδ .

Hence, the sequence {χδk}k∈N is a good approximation for χΩ and the limit
function is

χ = χΩ .

Thus, there exists a normal measure ν ∈ (ba (U,B(U),Ln))n such that for
every F ∈ DM∞(U,Rn) the following Gauß formula holds

divF (Ω) = ∼

ˆ

∂Ω

F dν .

Open set of finite perimeter can be treated similarly, as the following
example shows.
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Example 5.12. Inner normal measure
Let U ⊂ Rn be open and Ω ⊂ U be a bounded, open set of finite perimeter
such that distΩ(∂U) > 0. Furthermore, assume there exists {δk}k∈N ⊂ (0,∞)
such that lim

k→∞
δk = 0 and

sup
k∈N
−
ˆ

(0,δk)

Hn−1(∂Ω−δ) dδ <∞ .

For k ∈ N and x ∈ U set

χk(x) := χΩ−δk
(x) +

1

δk
distΩc(x)χΩ\Ω−δk

= min

{

1,max

{

0,
1

δk
distΩc

}}

.

Then χk ∈ W 1,∞ (U, [0, 1]) is Lipschitz continuous (cf. [14, p. 47]). Then as
in Example 5.11, the sequence {χδk}k∈N is a good approximation for χΩ and
the limit function is

χ = χΩ .

These functions are called (inner) Portmanteau functions. Hence there
exists a normal measure ν ∈ (ba (U,B(U),Ln))n such that for every vector
field F ∈ DM∞(U,Rn) the following Gauß formula holds

divF (Ω) = ∼

ˆ

∂Ω

F dν .

The subsequent corollary illustrates the dependence of the integral with
respect to normal measure on the good approximation of χΩ.

Corollary 5.13. Let U ⊂ Rn and Ω ∈ B(U) be a bounded set of finite
perimeter such that distΩ(∂U) > 0. Then for any two good approxima-
tions {χ1

k}k∈N, {χ2
k}k∈N ⊂ W 1,∞ (U, [0, 1]) for χΩ, associated normal measures

ν1, ν2 ∈ (ba (U,B(U),Ln))n and any F ∈ DM∞(U,Rn)

∼

ˆ

∂Ω

F dν1 − ν2 =

ˆ

∂Ω

χ1 − χ2 ddivF

where χ1 and χ2 are the limit functions for {χ1
k}k∈N and {χ2

k}k∈N respectively.

Remark 5.14. In particular, if |divF | (∂Ω) = 0,

∼

ˆ

∂Ω

F dν

is independent of the choice of the good approximation.
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Since ν is a bounded measure, all essentially bounded vector fields F are
integrable with respect to this measure. This leads to the question, whether
F ∈ L1 (U, ν) for unbounded vector fields. The next example answers this
negatively. The function is similar to the one in [8, p. 100].

Example 5.15. Let U := (0, 1)2 ⊂ R2 and Ω := {(x, y) ∈ R2|x ≤ y} ∩
B 1

4

(

1
2
(1, 1)

)

. Furthermore let ν ∈ (ba (U,B(U),Ln))n be a normal measure

for Ω and F ∈ DM1(U,Rn) defined by

F (x, y) := |x− y|− 1

2

(

1
1

)

for x 6= y. Then divF = 0. In order to see that, let ∆ := {(x, x) ∈ U |x ∈ R},
1 > δ > 0 and note that for φ ∈ C1

0 (U)

ˆ

U

F ·Dφ dLn =

ˆ

U∩∆δ

F ·Dφ dLn +

ˆ

U\∆δ

F ·Dφ dLn

=

ˆ

U∩∆δ

F ·Dφ dLn −
ˆ

U\∆δ

φ divF dLn −
ˆ

∂(U\∆δ)

φF · ν∆δ dH1

Since divF = 0 outside of ∆δ and F · ν∆δ = ±
(

1
−1

)

· F = 0 on U

ˆ

U

F ·Dφ dLn =

ˆ

U∩∆δ

F ·Dφ dLn δ↓0−−→ 0 .

Note that for every c > 0 with 1
c2

> δ > 0

Ωδ ∩ {(x, y) ∈ U | |F (x, y)| ≥ c} ⊃ ∆δ ∩ Ωδ

Hence for every F ′ ∈ L∞ (U,Rn,Ln)

|ν| (Ωδ ∩ {(x, y) ∈ U | |F (x, y)− F ′(x, y)| ≥ ε})
≥ |ν| (Ωδ ∩ {(x, y) ∈ U | |F (x, y)| ≥ ‖F ′‖∞ + ε})

≥ |ν| (∆δ ∩ Ωδ) ≥ H1

(

∆ ∩ B 1

4

(

1

2
(1, 1)

))

=
1

2
> 0

for every 0 < δ < 1
(ε+‖F ′‖

∞
)2
.

Hence, there is no sequence {Fk}k∈N ⊂ L∞ (U,Rn,Ln) converging in mea-
sure to F . In particular, F cannot be approximated in measure by simple
functions.
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Remark 5.16. The preceding example indeed works for U = (0, 1)2 and
every F ∈ DM1(U,Rn) such that for some φ : R→ R satisfying

1. φ is continuously differentiable on R \ {0}

2. lim
x→0

φ(x) =∞

3. g : U → R : (x, y) 7→ φ(x− y) is integrable on U

it holds

F = g ·
(

1
1

)

.

The essential point is that F is tangential to the curve where it is unbounded.
Hence, there are many vector fields which cannot even be approximated in
measure.

The following example gives a vector field that only blows up at one point
and still is not integrable with respect to normal measure. The function is
the same as in [9, p. 403].

Example 5.17. Let n = 2, U := B1 (0) ⊂ R2 and

Ω := B 1

2
(0) ∩ {(x, y) ∈ R2|x, y ≥ 0} .

Furthermore, let

F : U → R2 : x 7→ 1

2π

x

|x|2 .

Then F ∈ DM1(U,Rn) and divF = δ0. Let {χk}k∈N be the canonical
good approximation from Example 5.10. Let ν ∈ (ba (U,B(U),Ln))n be
the normal measure associated with this good approximation. Assume that
F ∈ L1 (U, ν). Then

ˆ

U

|F | d |ν| <∞ .

But
ˆ

U

|F | d |ν| ≥ 1

2π

ˆ

∂Ω

1

|x| dH
1 ≥ 1

2π

ˆ

(0, 12)

1

t
d t =∞ ,

a contradiction. Hence F /∈ L1 (U, ν).

Up to now, the Gauss Theorem was given for sets that have a positive
distance to the boundary. In order to complement this result, the following
theorem states the theorem for the whole set, in the case of U = Ω.
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Theorem 5.18. Let Ω ∈ B(Rn) be a bounded open set of finite perimeter. If
there exists δ0 > 0 and c > 0 such that for almost every δ ∈ (0, δ0)

Hn−1(∂Ω−δ) ≤ c ,

then there exists ν ∈ (ba (Ω,B(Ω),Ln))n such that for every k ∈ N, 1 ≤ k ≤ n

core νk ⊂ ∂Ω

and for all F ∈ DM∞(Ω,Rn) the following Gauß formula holds

∼

ˆ

∂Ω

F dν = divF (Ω) .

and for every open set B ⊂ Rn

|ν| (B ∩ Ω) ≥ (Hn−1⌊∂∗Ω)(B) .

Furthermore, ν is minimal in the sense, that if ν ′ ∈ (ba (Ω,B(Ω),Ln))n

satisfies the equations above, then

‖ν‖ ≤ ‖ν ′‖ .

For every B ∈ B(Ω) having finite perimeter in Rn

ν(B) = −
ˆ

∂∗B∩Ω

νB dHn−1 .

Remark 5.19. Note that if Ω ∈ B(Ω) is only supposed to be open and

Hn−1(∂Ω−δ) ≤ c

is required, then Ω is necessarily a set of finite perimeter, due to the total
variation being lower semi-continuous.

On the other hand, this condition loosely resembles the definition of Lip-
schitz deformable boundaries defined in [8, p. 94], but is much more general.

Proof. Let {χk}k∈N ⊂ W 1,∞ (Rn, [0, 1]) be such that

χk := χΩ
−

2
k

+ χ(

Ω
−

1
k
\Ω

−
2
k

) (k dist∂Ω−1)

= min {1,max {0, k dist∂Ω−1}} .

See [14, p. 47] for reference. Then

|Dχk| = kχ(

Ω
−

1
k
\Ω

−
2
k

) .
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Then the Coarea Formula [20, p. 112] implies

‖Dχk‖1 =
ˆ

Ω
−

1
k
\Ω

−
2
k

k dLn = −
ˆ

( 1
k
, 2
k
)

Hn−1(∂Ω−δ) dδ ≤ c .

As in the proof of Theorem 5.5,

lim
k→∞

ˆ

Ω

F ·Dχk dLn = − lim
k→∞

ˆ

Ω

χk ddivF = −
ˆ

Ω

1 ddivF = divF (Ω) .

On the other hand, for every k ∈ N
∣

∣

∣

∣

ˆ

Ω

F ·Dχk dLn

∣

∣

∣

∣

≤ ‖F‖∞ ‖Dχk‖1 ≤ ‖F‖∞ sup
k∈N
‖Dχk‖1 ≤ c ‖F‖∞ .

Hence
u∗
0 : DM∞(Ω,Rn)→ R : F 7→ divF (Ω)

is a continuous linear functional on a subspace of L∞ (Ω,Rn,Ln). The
Hahn-Banach Theorem (cf. [18, p.63]) implies the existence of a measure
ν ∈ (ba (Ω,B(Ω),Ln))n such that for all F ∈ DM∞(U,Rn)

divF (Ω) =

ˆ

Ω

F dν . (5.2)

Furthermore, ‖ν‖ = ‖u∗
0‖, implying minimality in the norm. Now by Propo-

sition 4.13, for almost every δ > 0 and every F ∈ DM∞(Ω,Rn)

F · χΩ−δ
∈ DM∞(Ω,Rn)

and F · χΩ−δ
has compact support in Ω. By Proposition 4.12

div (F · χΩ−δ
)(Ω) = 0 .

Thus, for every F ∈ DM∞(Ω,Rn)
ˆ

Ω

F dν = divF (Ω)

= div (F · χΩ\Ω−δ
)(Ω) + div (F · χΩ−δ

)(Ω)

= div (F · χΩ\Ω−δ
)(Ω)

=

ˆ

Ω

F dν⌊(Ω \ Ω−δ) .

Thus, ν⌊(Ω \ Ω−δ) also satisfies Equation (5.2). The minimality of ‖ν‖ then
implies

‖ν⌊Ω−δ‖ = 0 .
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Since δ > 0 can be arbitrarily small

core ν ⊂ ∂Ω .

Note that for B ∈ B(Ω) having finite perimeter in Rn

ekχB ∈ DM∞(Ω,Rn) .

In order to see this, compute

div (ek · χB) = ∂kχB = −νB
k Hn−1⌊∂∗B .

In particular

ν(B) = −
ˆ

∂∗B∩Ω

νB dHn−1 .

Now, let B ⊂ Rn be open. Then using the Gauß Theorem from Evans (cf.
[20, p.209])

|ν| (B ∩ Ω) ≥ sup
φ∈C1

0 (B,Rn),
‖φ‖

∞
≤1

ˆ

Ω

φ dν

≥ sup
φ∈C1

0 (B,Rn),
‖φ‖C≤1

ˆ

Ω

φ dν

(5.2)
= sup

φ∈C1
0 (B,Rn),

‖φ‖C≤1

div φ(Ω)

= sup
φ∈C1

0 (B,Rn),
‖φ‖C≤1

ˆ

∂∗Ω

φ · νΩ dHn−1

= |DχΩ| (B)

= (Hn−1⌊∂∗Ω)(B) .

Remark 5.20. Theorem 5.18 still holds true for open Ω such that there
exists {δk}k∈N ⊂ (0,∞) such that lim

k→∞
δk = 0 and

sup
k∈N
−
ˆ

(

δk
2
,δk

)

Hn−1(Ω−δ) dδ <∞ .

The arguments are the same as in Example 5.11 and Example 5.12.
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The following proposition is a new Gauß-Green formula for essentially
bounded functions of bounded variation and essentially bounded vector fields
having divergence measure. In contrast to the literature, where only contin-
uous scalar fields were treated (cf. [32, p. 448], [12, p. 1014]), this is a new
quality.

Proposition 5.21. Let U ⊂ Rn be open and Ω ∈ B(U) be a bounded set
of finite perimeter such that distΩ(∂U) > 0. Furthermore, let {χk}k∈N ⊂
W 1,∞ (U, [0, 1]) be a good approximation for χΩ and ν ∈ (ba (U,B(U),Ln))n

be an associated normal measure.
Then for every F ∈ DM∞(U,Rn) the set function

F ν : B(U)→ R : B 7→
ˆ

B

F dν

is an element of ba (U,B(U),Ln) with

coreF ν ⊂ ∂Ω

and for every compactly supported f ∈ BV (U) ∩ L∞ (U,Ln) the following
Gauß formula holds

div (f · F )(intΩ) +

ˆ

∂Ω

χ ddiv (f · F ) = ∼

ˆ

∂Ω

f dF ν = ∼

ˆ

∂Ω

f · F dν .

Call F ν normal trace of F on ∂Ω.

Proof. Note that
f · F ∈ DM∞(U,Rn) .

See [12, p. 1014] for reference. Hence

div (f · F )(intΩ) +

ˆ

∂Ω

χ ddiv (f · F ) = ∼

ˆ

∂Ω

f · F dν .

Note that for every B ∈ B(U)
∣

∣

∣

∣

ˆ

B

F dν

∣

∣

∣

∣

≤ ‖F‖∞ |ν| (B) ,

whence
F ν ∈ ba (U,B(U),Ln) .

Since for every B ∈ B(U)

F ν(B) =

ˆ

B

F dν =

ˆ

B∩(Ωδ\Ω−δ)

F dν

80



the core of F ν is a subset of ∂Ω.
Let ε > 0. Since f ∈ L∞ (U,Ln), there exist m ∈ N, {yk}mk=0 ⊂ R and

{Bk}mk=0 pairwise disjoint, such that

‖yk − f · χBk
‖∞ ≤ ε and

m
⋃

k=0

Bk = U

Set h :=
m
∑

k=0

ykχBk
. Then

∣

∣

∣

∣

∼

ˆ

∂Ω

fF dν −∼

ˆ

∂Ω

f dF ν

∣

∣

∣

∣

≤
∣

∣

∣

∣

∼

ˆ

∂Ω

(f − h)F dν

∣

∣

∣

∣

+

∣

∣

∣

∣

∼

ˆ

∂Ω

hF dν −∼

ˆ

∂Ω

h dF ν

∣

∣

∣

∣

+

∣

∣

∣

∣

∼

ˆ

∂Ω

f − h dF ν

∣

∣

∣

∣

≤ ε ‖F‖∞ |ν| (U) + 0 + ε |F ν | (U) .

Since ε > 0 was arbitrary

∼

ˆ

∂Ω

fF dν = ∼

ˆ

∂Ω

f dF ν .

5.2 Unbounded Vector Fields and Open Sets

In the previous section, general Gauß formulas for essentially bounded vector
fields having divergence measure were presented. Example 5.15 and 5.17
showed that it is in general not possible to integrate unbounded vector fields
with respect to the normal measures obtained. In Proposition 5.21, the
measure F ν was presented as a notion of normal trace.

In the following, this is carried over to the case of unbounded vector fields.
Therefore, a result due to Silhavy (cf. [32]) is improved upon. In particular,
Silhavy proved that for F ∈ DM1(U,Rn) there exists a continuous linear
functional on Lip(∂Ω), the space of Lipschitz continuous functions on ∂Ω,
balancing the volume part of the Gauß formula. The following exposition
proves that this functional can be represented by the sum of a Radon measure
F ν and a measure µF ∈ (ba (U,B(U),Ln))n with core on the boundary. The
arguments from Silhavy are retraced, in order to give a self-contained proof
of the main theorem.

Throughout this section, for F ∈ (L∞ (U,Ln))n and V ⊂ U open, set

‖F‖∞,V := esssup
V
|F | .
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It is essential for the subsequent proofs to be able to compare the Lipschitz
constant of a function by the norm of its gradient. The following lemma
enables this comparison on balls.

Lemma 5.22. Let U ⊂ Rn be open and f ∈ W 1,∞ (U,R). Then for every
x0 ∈ U and 0 < δ < 1

2
distx0

(∂U) with Bδ (x0) ⊂ U

sup
x,y∈Bδ(x0)

x 6=y

|f(x)− f(y)|
|x− y| ≤ ‖Df‖∞,B2δ(x0)

.

Proof. Let ε < δ. For x ∈ Bδ (x0) set

fε(x) :=

ˆ

Rn

ρε(y − x)f(y) dy = ρε ∗ f(x) ,

where ρε is a scaled standard mollification kernel. Then as in Evans [20, p.
123]

Dfε = ρε ∗Df .

Note that fε → f point wise (cf. [20, p. 123]). Hence, for every x, y ∈ Bδ (x0)
with x 6= y

|f(x)− f(y)| = lim
ε↓0
|fε(x)− fε(y)|

≤ lim inf
ε↓0

‖Dfε‖∞ |x− y| .

Now for every x ∈ Bδ (x0)

|Dfε(x)| ≤
ˆ

Rn

|ρε(y − x)||Df(y)| dLn ≤ ‖Df‖∞,Bδ+ε(x0)
.

Thus

sup
x,y∈Bδ(x0)

x6=y

|f(x)− f(y)|
|x− y| ≤ lim inf

ε↓0
‖Df‖∞,Bδ+ε(x0)

≤ ‖Df‖∞,B2δ(x0)

Once the estimate on balls is obtained, it is possible to prove the state-
ment for path-connected sets.

Lemma 5.23. Let U ⊂ Rn be open and C ⊂ U be compact and path-
connected. Furthermore let 0 < δ < distC(∂U).

Then there exists c > 0 depending only on C and δ such that for every
f ∈ W 1,∞ (U,R)

sup
x,y∈C
x 6=y

|f(x)− f(y)|
|x− y| ≤ c ‖Df‖∞,Cδ

.
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Proof. First, let δ < 1
6
distC(∂U). Note that

C ⊂
⋃

x∈C

Bδ (x) .

Since C is compact, there exists m ∈ N and {xk}mk=0 ⊂ C such that

C ⊂
m
⋃

k=0

Bδ (xk) .

Now, let x, y ∈ C with x 6= y be such that |x− y| < δ. Then

y ∈ Bδ (x) ⊂ B2δ (x) ⊂ C2δ ⊂ U .

By Lemma 5.22

|f(x)− f(y)|
|x− y| ≤ ‖Df‖∞,B2δ(x)

≤ ‖Df‖∞,C2δ
.

Now, assume |x− y| ≥ δ. Then there exists a continuous γ : [0, 1]→ C such
that γ(0) = x and γ(1) = y. Let 0 ≤ k ≤ m such that

x ∈ Bδ (xk)

and set
t0 := sup{t ∈ [0, 1] | γ(t) ∈ Bδ (xk)} .

If γ(t0) ∈ Bδ (xk), then t0 = 1 and y ∈ Bδ (xk). Hence

|f(x)− f(x)|
|x− y| ≤ ‖Df‖∞,B2δ(xk)

≤ ‖Df‖∞,C2δ
.

Otherwise, γ(t0) /∈ Bδ (xk). But then there exists 0 ≤ l ≤ m and l 6= k such
that

γ(t0) ∈ Bδ (xl)

and
γ(t) /∈ Bδ (xk) for all t ≥ t0 .

Set

γ0(t) =

{

x+ t
t0
(γ(t0)− x) for t ≤ t0

γ(t) otherwise.

In essence, γ0 is a shortcut in Bδ (xk) to the last point where γ is in Bδ (xk).
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Repeating the steps above, induction yields a continuous path γ : [0, 1]→
Cδ, 0 ≤ m′ ≤ m and {tl}m′

l=1 ⊂ [0, 1] such that

|γ(tl)− γ(tl+1)| ≤ 2δ for l = 0, ...,m′ − 1

and
|x− γ(t0)| ≤ 2δ and |y − γ(tm′)| ≤ 2δ .

Using Lemma 5.22 again for balls of radius 3δ

|f(x)− f(y)| ≤|f(x)− f(γ(t0)|+
m′−1
∑

l=0

|f(γ(tl))− f(γ(tl+1))|+ |f(γm′)− f(y)|

≤ ‖Df‖∞,B6δ(x)
|x− γ(t0)|+

m′−1
∑

l=0

‖Df‖∞,B6δ(γ(tl))
|γ(tl)− γ(tl+1)|

+ ‖Df‖∞,B6δ(y)
|y − γ(tm′)|

≤ ‖Df‖∞,C6δ
2δ(m′ + 2)

≤2(m+ 2) ‖Df‖∞,C6δ
|x− y| .

Since x, y ∈ C were arbitrary

sup
x,y∈C
x 6=x

|f(x)− f(y)|
|x− y| ≤ 2(m+ 2) ‖Df‖∞,C6δ

.

Note that m only depends on C and δ. Finally, for 0 < δ < distC(∂U) set

δ :=
1

6
δ .

Then the inequality above yields

sup
x,y∈C
x6=y

|f(x)− f(y)|
|x− y| ≤ 2(m+ 2) ‖Df‖∞,Cδ

.

This finishes the proof.

Remark 5.24. The requirement that C is path-connected cannot be dropped.
In order to see this, let U := R2 and

C := [−1, 1]× {−2, 2} .

Let f ∈ W 1,∞ (R2,R) be a Lipschitz continuous function such that

f :=

{

1 on [−2, 2]× [1, 3]

0 on [−2, 2]× [−3,−1] .
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Then for 0 < δ < 1
‖Df‖∞,Cδ

= 0

but

sup
x,y∈C
x 6=y

|f(x)− f(y)|
|x− y| > 0 .

Since the trace operator of Silhavy [32] is defined on the space of Lipschitz
continuous functions, this space needs to be introduced now.

Definition 5.25. Let Ω ⊂ Rn. Let

Lip(Ω)

denote the set of all Lipschitz continuous functions on Ω. For f ∈ Lip(Ω)
set

‖f‖Lip := ‖f‖C + sup
x,y∈Ω,
x 6=y

|f(x)− f(y)|
|x− y| .

The following result is a slight variation of Lemma 3.2 in Silhavy [32, p.
451]. It states that the Gauß formula yields zero, if the scalar field is zero on
the boundary.

Proposition 5.26. Let Ω ⊂ Rn be open and bounded, F ∈ DM1(Ω,Rn) and
f ∈ Lip(Ω) be such that

f |∂Ω = 0 .

Then
ˆ

Ω

F ·Df dLn +

ˆ

Ω

f ddivF = 0 .

Proof. First, suppose that
supp f ⊂⊂ Ω .

By Proposition 4.12 and Proposition 4.14

ˆ

Ω

1 ddiv (F · f) =
ˆ

Ω

f ddivF +

ˆ

Ω

F ·Df dLn = 0 .

For the general case, let

χk := χΩ
−

2
k

+ (k dist∂Ω−1)χΩ
−

1
k
\Ω

−
2
k

= min {1,max {0, k dist∂Ω−1}} ∈ Lip(Ω) .

85



Then f · χk ∈ Lip(Ω) (cf. [14, p. 48]). In order to estimate the norm
independently of k ∈ N, let x, y ∈ Ω. If x, y ∈ Ω− 2

k
then

|f(x)χk(x)− f(y)χk(y)| = |f(x)− f(y)| ≤ ‖f‖Lip |x− y| .

Otherwise, w.l.o.g. x ∈ Ω \ Ω− 2

k
and

|f(x) · χk(x)− f(y)χk(y)| ≤ |f(x)||χk(x)− χk(y)|+ |χk(y)||f(x)− f(y)|
≤ ‖f‖

C

(

Ω\Ω
−

2
k

) |χk(x)− χk(y)|+ |f(x)− f(y)|

≤
(

sup
0≤dist∂Ω(x)≤

2

k

|f(x)|k + ‖f‖Lip

)

|x− y| .

Since f vanishes on ∂Ω

sup
0≤dist∂Ω(x)≤

2

k

|f(x)− 0| ≤ ‖f‖Lip
2

k
,

whence
‖f · χk‖Lip ≤ 3 ‖f‖Lip .

Furthermore, for every k ∈ N

supp f · χk ⊂⊂ Ω .

Hence, for every k ∈ N
ˆ

Ω

F ·D(f · χk) dLn +

ˆ

Ω

f · χk ddivF = 0 .

First note that
ˆ

Ω

f · χk ddiv f
k→∞−−−→

ˆ

Ω

f ddivF

by the Dominated Convergence Theorem (cf. [20, p. 20]).
On the other hand, since ‖D(f · χk)‖∞ ≤ ‖f · χk‖Lip is bounded indepen-

dently of k ∈ N the Dominated Convergence Theorem also yields
ˆ

Ω

F ·D(f · χk) dLn k→∞−−−→
ˆ

Ω

F ·Df dLn .

Hence
ˆ

Ω

F ·Df dLn+

ˆ

Ω

f ddivF
k→∞←−−−

ˆ

Ω

F ·D(f · χk) dLn+

ˆ

Ω

f ·χk ddivF = 0 .

86



The following proposition is a specialised version of Theorem 2.3 in Sil-
havy [32, p. 448]. It states that the volume part of a Gauß formula only
depends on the boundary values of the Lipschitz continuous scalar function.

Proposition 5.27. Let Ω ⊂ Rn be open and bounded and F ∈ DM1(Ω,Rn).
Then there exists a continuous linear functional

NT F (Ω) : Lip(∂Ω)→ R

such that for every f ∈ Lip(Ω)

NT F (Ω)(f |∂Ω) =
ˆ

Ω

f ddivF +

ˆ

Ω

F ·Df dLn .

Furthermore
‖NT F (Ω)‖ ≤ ‖F‖DM1 .

Proof. The proof follows the same lines as the one in [32, p. 452]. Let
f ∈ Lip(∂Ω) and f1, f2 ∈ Lip(Rn) be extensions of f to all of Rn (cf. [21, p.
201]). Note that (f1 − f2)|∂Ω = 0. Then by Proposition 5.26

ˆ

Ω

f1 ddivF +

ˆ

Ω

F ·Df1 dLn =

ˆ

Ω

f2 ddivF +

ˆ

Ω

F ·Df2 dLn .

For f ∈ Lip(∂Ω) and any extension f ∈ Lip(Rn) of f define

NT F (Ω)(f) :=

ˆ

Ω

f ddivF +

ˆ

Ω

F ·Df dLn .

Then NT F (Ω) : Lip(∂Ω) → R is well-defined and a linear functional. For
f ∈ Lip(∂Ω) there exists an extension f ∈ Lip(Rn) such that

∥

∥f
∥

∥

Lip
= ‖f‖Lip .

See Silhavy [32, p. 452] and Federer [21, p. 201] for reference. With this
extension

|NT F (Ω)(f)| ≤ |divF | (Ω)
∥

∥f
∥

∥

C
+ ‖F‖1

∥

∥Df
∥

∥

∞

≤ ‖F‖DM1

∥

∥f
∥

∥

Lip

= ‖F‖DM1 ‖f‖Lip .
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Up to now, the arguments from Silhavy [32] were retraced. Now, the
representation of NT F (Ω) by the sum of a Radon measure and a measure
µF ∈ (ba (U,B(U),Ln))n is proved. This result is new because it gives the ab-
stract functionals found in the literature a concrete representation as integral
functionals.

Theorem 5.28. Gauß Theorem
Let U ⊂ Rn be open, Ω ⊂ U be open with Ω ⊂ U compact and ∂Ω path-
connected. Furthermore, let F ∈ DM1(U,Rn).

Then there exists a Radon measure F ν on ∂Ω and µF ∈ (ba (U,B(U),Ln))n

with
coreµF ⊂ ∂Ω

such that for all f ∈ W 1,∞ (U,R) the following Gauß-Green formula holds
ˆ

∂Ω

f dF ν +∼

ˆ

∂Ω

Df dµF =

ˆ

Ω

f ddivF +

ˆ

Ω

F ·Df dLn .

Note that the existence of the measures in the above theorem is trivial,
neglecting the core and the support, µF = FLn and F ν = divF would be
viable choices. The difficulty lies in the localisation of coreµF ⊂ ∂Ω and the
support of F ν .

Proof. By Proposition 5.27 there exists a continuous linear functionalNT F (Ω)
on Lip(∂Ω) such that for every f ∈ W 1,∞ (U,R)

NT F (Ω)(f |∂Ω) =
ˆ

Ω

f ddivF +

ˆ

Ω

F ·Df dLn .

Let 0 < δ < distΩ(∂U). Note that by [20, p. 131f] every f ∈ W 1,∞ (U, [0, 1])
is locally Lipschitz continuous. Since Ω is compact and path-connected, f ∈
Lip(Ω) (cf. Lemma 5.23). Then by Lemma 5.23 for every f ∈ W 1,∞ (U,R)

‖f |∂Ω‖Lip ≤ ‖f |∂Ω‖C + c ‖Df‖∞,(∂Ω)δ
(5.3)

with c > 0 depending only on δ and ∂Ω. Note that

ι : W 1,∞ (U,R)→ C0 (∂Ω)×L∞ ((∂Ω)δ,R
n,Ln) with ι(f) =

(

f |∂Ω, Df |(∂Ω)δ

)

is continuous and linear. Set

X0 := ι(W 1,∞ (U,R))

and define

u∗
0 : X0 → R with

〈

u∗
0, (f |∂Ω, Df |(∂Ω)δ

)
〉

= NT F (Ω)(f |∂Ω) .
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Then u∗
0 is a continuous linear functional on the linear space X0 ⊂ C0 (∂Ω)×

L∞ ((∂Ω)δ,R
n,Ln) by equation (5.3).

By the Hahn-Banach Theorem (cf. [18, p. 63]) there exists a continuous
linear extension u∗ of u∗

0 to all of C0 (Ω) × L∞ ((∂Ω)δ,R
n,Ln) with ‖u∗‖ =

‖u∗
0‖. Note that the dual of a product space can be identified with the

product of the dual spaces. Hence, as in Proposition 5.1, there exist a Radon
measure F ν on ∂Ω and a measure µ ∈ (ba ((∂Ω)δ,B((∂Ω)δ),Ln))n such that
for all f ∈ W 1,∞ (U,R)

NT F (Ω)(f |∂Ω) =
〈

u∗, (f |∂Ω, Df |(∂Ω)δ
)
〉

=

ˆ

∂Ω

f dF ν +

ˆ

(∂Ω)δ

Df dµ . (5.4)

This proves that there is µ ∈ (ba (U,B(U),Ln))n with coreµ ⊂ (∂Ω)δ such
that the above equation is satisfied. It remains to show that there exists µF

with coreµF ⊂ ∂Ω satisfying the same equation. Now, let

X1 := {F̃ ∈ L∞ ((∂Ω)δ,R
n,Ln) |∃f ∈ W 1,∞ (U,R)

∃F ∈ L∞ ((∂Ω)δ,R
n,Ln) :

F = 0 on (∂Ω)δ̃ for some 0 < δ̃ < δ

F̃ = Df + F}

Then u∗
1 : X1 → R with

u∗
1(F̃ ) :=

ˆ

(∂Ω)δ

Df dµ

defines a linear functional on X1 with

‖u∗
1‖ ≤ ‖µ‖ .

First, it is shown that the definition is independent of the decomposition of F̃ .
Therefore, let F̃ ∈ X1 and f1, f2 ∈ W 1,∞ (U,R), F1, F2 ∈ L∞ ((∂Ω)δ,R

n,Ln)

be such that for some 0 < δ̃ < δ

F1 = F2 = 0 on (∂Ω)δ̃

and
F̃ = Df1 + F1 = Df2 + F2 .

Then
Df1 = Df2 on (∂Ω)δ̃ .
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Since ∂Ω is path-connected, (∂Ω)δ̃ is path-connected. Hence f1 − f2 is con-
stant on (∂Ω)δ̃. Note that for c̃ ∈ R

NT F (Ω)(c̃) =

ˆ

∂Ω

c̃ dF ν +

ˆ

(∂Ω)δ

0 dµ =

ˆ

∂Ω

c̃ dF ν .

Hence Equation (5.4) yields
ˆ

(∂Ω)δ

D(f1 − f2) dµ = NT F (Ω)((f1 − f2)|∂Ω)−
ˆ

∂Ω

f1 − f2 dF
ν = 0 .

This shows that u∗
1 is well-defined.

Since X1 ⊂ L∞ ((∂Ω)δ,R
n,Ln) is a linear subspace, the Hahn-Banach

Theorem (cf. [18, p. 63]) yields an extension of u∗
1 to all of L∞ ((∂Ω)δ,R

n,Ln)
and by Proposition 5.1 a measure µF ∈ (ba ((∂Ω)δ,B((∂Ω)δ),Ln))n with

〈

u∗
1, F̃

〉

=

ˆ

(∂Ω)δ

F̃ dµF .

By definition,
ˆ

(∂Ω)δ

F dµF = 〈u∗
1, 0 + F 〉 = 0

for F ∈ L∞ ((∂Ω)δ,R
n,Ln) with F = 0 on (∂Ω)δ̃ for some 0 < δ̃ < δ. Hence,

coreµF ⊂ ∂Ω .

Since for every f ∈ W 1,∞ (U,R)
ˆ

(∂Ω)δ

Df dµ = 〈u∗
1, Df + 0〉 =

ˆ

(∂Ω)δ

Df dµF

by definition, the statement of the theorem follows.

Remark 5.29. Note that the measure µF is a direct result of the analysis.
In regular settings, this measure is expected to be zero (see also Example
5.30). For F ∈ DM∞(U,Rn) and open Ω ∈ B(U) having finite perimeter
such that the inner normal measure exists (see Example 5.12), Proposition
5.21 and Proposition 3.23 yield the existence of a Radon measure F ν on ∂Ω
such that for all compactly supported continuous functions f ∈ BV (U)

div (f · F )(Ω) =

ˆ

∂Ω

f dF ν .

In particular, µF = 0.
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For the general case note that for k ∈ N

χk := χ(∂Ω) 1
k

(1− k dist∂Ω) ∈ W 1,∞ (U,R) .

Since χk = 1 on ∂Ω, Proposition 5.26 yields

ˆ

Ω

fχk ddivF +

ˆ

Ω

F ·D(f · χk) dLn =

ˆ

Ω

f ddivF +

ˆ

Ω

F ·Df dLn .

Using Dominated Convergence (cf. [20, p. 20]) yields

ˆ

Ω

fχk ddivF
k→∞−−−→ 0

ˆ

Ω

F ·D(fχk) dLn =

ˆ

Ω

χkFDf + fFDχk dLn

k→∞−−−→ 0 + lim
k→∞

ˆ

Ω

fFDχk dLn ,

where the last limit exists because the other addends tend to zero and their
sum is constant. Hence

lim
k→∞

ˆ

Ω

fFDχk dLn =

ˆ

∂Ω

f dF ν +∼

ˆ

∂Ω

Df dµF .

Note that the left-hand side is essentially the same as in Schuricht [31, p.
534] (cf. [32, p. 449]).

The following example computes the Radon measure F ν for a concrete
vector field F .

Example 5.30. Revisiting a rotated version of Example 5.15, let U :=
B2 (0), Ω := (0, 1)2 and F ∈ DM1(U,Rn) be defined via

F (x, y) :=
1

√

|x|

(

0
1

)

.

Then divF = 0. For every k ∈ N define

χk := max{1− k dist∂Ω, 0} ∈ W 1,∞ (U, [0, 1]) .

Then for every k ∈ N with k > 2 and every f ∈ W 1,∞ (U,R)

ˆ

Ω

f ddivF +

ˆ

Ω

F ·Df dLn =

ˆ

Ω

fχk ddivF +

ˆ

Ω

F ·D(f · χk) dLn
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by Proposition 5.26. Since divF = 0, this is equal to

ˆ

Ω\Ω
−

1
k

F · (Df − k dist∂Ω Df − kfDdist∂Ω) dLn . (5.5)

This integral can be computed by partitioning Ω \ Ω− 1

k
into the sets

Q1 :=

(

0,
1

k

)2

, Q2 :=

(

1− 1

k
, 1

)2

Q3 :=

(

0,
1

k

)

×
(

1− 1

k
, 1

)

, Q4 :=

(

1− 1

k
, 1

)

×
(

0,
1

k

)

Q5 :=

(

0,
1

k

)

×
(

1

k
, 1− 1

k

)

, Q6 :=

(

1− 1

k
, 1

)

×
(

1

k
, 1− 1

k

)

Q7 :=

(

1

k
, 1− 1

k

)

×
(

0,
1

k

)

, Q8 :=

(

1

k
, 1− 1

k

)

×
(

1− 1

k
, 1

)

.

Here, the computation is only carried out forQ7, the other parts are evaluated
by similar elementary computations. Note that

dist∂Ω(x, y) = y on Q7 .

Hence 5.5 on Q7 is equal to

ˆ

( 1

k
,1− 1

k)

ˆ

(0, 1k)

∂2f − ky∂2f − kf
√

|x|
dy dx .

Note that ∂2f is bounded, whence ∂2f√
|x|
∈ L1 (U,Ln) and

ˆ

( 1

k
,1− 1

k)×(0,
1

k)

∂2f
√

|x|
dLn k→∞−−−→ 0 .

Furthermore
∣

∣

∣

∣

∣

ˆ

( 1

k
,1− 1

k)×(0,
1

k)

−ky∂2f
√

|x|
dLn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−
ˆ

(0, 1k)
y

ˆ

( 1

k
,1− 1

k)

∂2f
√

|x|
dx dy

∣

∣

∣

∣

∣

≤ 1

k
‖Df‖∞

ˆ

(0,1)

1
√

|x|
dx

k→∞−−−→ 0 .
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Finally
ˆ

( 1

k
,1− 1

k)×(0,
1

k)

−kf
√

|x|
dLn = −−

ˆ

(0, 1
k
)

ˆ

( 1

k
,1− 1

k)

f
√

|x|
dx dy

k→∞−−−→ −
ˆ

(0,1)

f(x, 0)√
x

dx .

Hence
ˆ

Q7

F ·D(f · χk) dLn k→∞−−−→ −
ˆ

(0,1)

f(x, 0)√
x

dx = −
ˆ

(0,1)×{0}

f√
x
dHn−1 .

Computing the remaining integrals in a similar way yields

F ν =
1√
x
Hn−1⌊(0, 1)× {1} − 1√

x
Hn−1⌊(0, 1)× {0}

and
µF = 0 .

The preceding example illustrates that µF can vanish even for vector fields
that are unbounded near an n− 1-dimensional manifold. The function in the
following example is the same as in [32, p. 449f].

Example 5.31. Let n = 2 and U = B2 (0) ⊂ R2. Furthermore, let Ω =
(0, 1)2 and F ∈ DM1(U,Rn) be defined via

F (x, y) :=
1

x2 + y2

(

y
−x

)

.

Note that divF is the zero measure. In order to see this, let φ ∈ C1
0 (U).

Then
ˆ

U

F ·Dφ dLn = lim
δ↓0

ˆ

U\Bδ(0)

F ·Dφ dLn

= lim
δ↓0

ˆ

∂Bδ(0)

φF · ν dHn−1 −
ˆ

U\Bδ(0)

φ divF dLn .

But F · ν = 0 on ∂Bδ (0) and divF = 0 on U \Bδ (0).
Now, set

fk := χ( 1

k
,∞)×R

+ χ(0, 1k)×R
k dist{0}×R ∈ W 1,∞ (U, [0, 1]) .

Then
Dfk = χ(0, 1k)×R

ke1 .
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By Theorem 5.28, there exists a Radon measure F ν on ∂Ω and µF ∈ (ba (U,B(U),Ln))n

with coreµF ⊂ ∂Ω such that for k ∈ N
ˆ

Ω

F ·Dfk dLn +

ˆ

Ω

fk ddivF = ∼

ˆ

∂Ω

Dfk dµF +

ˆ

∂Ω

fk dF
ν .

But fk = 0 on ∂Ω and divF = 0. Hence
ˆ

Ω

F ·Dfk dLn = ∼

ˆ

∂Ω

Dfk dµF .

Furthermore
ˆ

Ω

F ·Dfk dLn = −
ˆ

(0, 1k)

ˆ

(0,1)

y

x2 + y2
dy dx

= −
ˆ

(0, 1k)

[

1

2
ln(x2 + y2)

]1

0

dx

= −
ˆ

(0, 1k)

1

2
ln

(

1

x2
+ 1

)

dx

≥ 1

2
ln(k2 + 1)

k→∞−−−→∞ .

The example above shows that µF can actually be non-zero, if the con-
centrations of the vector field F are sufficiently large near ∂Ω. Thus, µF is
indeed necessary for the characterisation of the Gauß-Green formula.

Example 5.32. Revisiting Example 5.17, let n = 2 and U := B2 (0) ⊂ Rn.
Furthermore, let Ω := (0, 1)× (−1, 1) and F ∈ DM1(U,Rn) be defined by

F (x, y) :=
1

2π

1

x2 + y2

(

x
y

)

.

Recall that divF = δ0. For k ∈ N let fk ∈ W 1,∞ (U, [0, 1]) be defined by

fk := χ( 1

k
,∞)×R

+ k dist{0}×R χ(0, 1k)×R
.

Then
ˆ

Ω

F ·Dfk dLn = −
ˆ

(0, 1k)

ˆ

(−1,1)

x

2π(x2 + y2)
dy dx

=
1

2π
−
ˆ

(0, 1k)

[

arctan
y

x

]1

−1
dx

=
1

2π
−
ˆ

(0, 1k)
2 arctan

1

x
dx

k→∞−−−→ 1

2
.
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In contrast to the previous example, this example shows a vector field with
a strongly concentrated divergence in zero, yet µF seems to be zero. Indeed,
in [32, p. 449] Silhavy shows that the normal trace can be represented by a
Radon measure, if

lim
δ↓0

1

δ

ˆ

Ω\Ω−δ

|F ·Ddist∂Ω| dLn <∞ .

This holds true in the last example and thus µF = 0.
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Chapter 6

Conclusion

In this thesis, pure measures and their application to Gauß formulas are inves-
tigated. The characterisation of the dual of the essentially bounded functions
is improved by decomposing the weakly absolutely continuous measures into
pure parts and a σ-measure with a Lebesgue density. Moreover, a new large
class of pure measures on Rn is identified. This class of so-called density
measures is comprised of measures that concentrate on Lebesgue null sets
and are often explicitly computable, in contrast to the examples given in the
literature. In plus, they have a natural connection to singular Radon mea-
sures, i.e. every pure measure can be represented by a Radon measure on its
core and every Radon measure can be extended to a measure on the entire
domain.

This connection motivates the use of pure measures for Gauß formulas.
It turns out that in the case of essentially bounded vector fields on sets of
finite perimeter there exist normal measures. In general, these measures
are pure and are explicitly computable on sets of finite perimeter. Together
with the product formulas for vector fields having divergence measure, they
yield not one, but many Gauß formulas for essentially bounded functions
and vector fields. These new Gauß formulas separate the geometry and the
vector field very well and enable the use of integration theory for the normal
trace. In the case of unbounded vector fields, integrability with respect to
normal measures cannot be assured. This is shown in concrete examples.

Nevertheless, Gauß formulas with the normal trace being a continuous lin-
ear functional on the space of Lipschitz continuous functions on the boundary
were proved by Silhavy [32] and Torres [13], among others. In this thesis, the
result from Silhavy is improved by proving that his normal trace functional
can be represented as a sum of a Radon measure and a measure which is
pure if the boundary of the domain of integration has no volume. This gives
the normal trace the shape of an integral over the boundary. Interestingly,
the new measure µF that emerges from the analysis acts on the values of the
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gradient on the boundary.
Future research might clarify the structure of the extremal points of the

set of all density measures. They are of interest because any bounded measure
can essentially be approximated by convex combinations of these directionally
concentrated measures.

In this thesis, the application of pure measures to normal traces and Gauß
formulas is emphasised. It is to be expected that traces of Sobolev functions
and functions of bounded variation can be treated in a similar manner. In
addition, density measures could be used to establish another approach to
set valued gradients. The approach sketched in this exposition shows that at
least basic rules of differential calculus are readily available.

The fine structure of the measures representing the normal trace func-
tional due to Silhavy also poses an interesting problem. Since the test func-
tions available are only Lipschitz continuous and point wise convergence does
not imply convergence in measure, their values are not readily available for
arbitrary sets of finite perimeter.

Another venue of research is the application to Continuum Mechanics.
The literature on edge contact forces contains models where terms similar
to the measure µF appear (cf. [17, p. 44], [16, p. 96]). If µF turned out
to be non-zero in these models, the structure of forces considered would be
justified analytically.

Pure measures turn out to be well suited for the representation of traces
and normal traces in particular. This can be explained by the fact that they
represent the dual space of essentially bounded functions. All in all, pure
measures seem to be a good tool to describe phenomena where quantities
defined on a volume concentrate on low-dimensional sets.
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List of Symbols

Functions and Function Spaces

X a normed space

BV (Ω) space of functions of bounded variation, page 55

|Df | (Ω) total variation of a function of bounded varia-
tion, page 55

C0 (Ω) continuous functions with compact support

C
(

Ω
)

continuous functions on Ω, with continuous ex-

tension to Ω

Ck (Ω) k times differentiable functions with bounded
derivatives

u∗ an element of X∗

Df the (weak) derivative of F

〈·, ·〉 dual pairing

divF divergence measure of F , page 59

DMp(U,Rn) Lp vector fields having divergence measure, page 59

X∗ dual space of the Banach space X

p′ 1
p′
+ 1

p
= 1, the Hölder conjugate

χB χB = 1 on B, zero otherwise

Lip(Ω) Lipschitz continuous functions on Ω, page 85

Lp (Ω,A, µ) p-integrable functions w.r.t to algebra A and
measure µ, page 28
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Lp (Ω,A, µ) Equivalence classes in Lp (Ω,A, µ), page 28

Lp (Ω, µ) Lp (Ω,A, µ) with A = B(Ω), page 28

Lp (Ω, µ) Lp (Ω,A, µ) with A = B(Ω), page 28

χk good approximation of the characteristic func-
tion, page 64

µF measure from Gauß Theorem, page 88

F ν Radon measure from Gauß Theorem, page 88

supp(φ) closure of the set where φ 6= 0

f |A restriction of f to A

C∞
0 (Ω) smooth functions with compact support

h simple function, page 24

W k,p (U,R) Sobolev space of order k and exponent p

L p(Ω,Σ, µ) measures λ, λ << µ, ‖λ‖p <∞, page 33

Integrals

f1 = f2 µ-a.e. f1 = f2 a.e., page 25

fk
µ−→ f fk converge in measure to f , page 25

´

Ω
f dµ integral of f w.r.t. measure µ, page 28

−
´

B
f dµ 1

µ(B)

´

B
f dµ

´ R

A
ζ refinement integral of ζ, page 32

∼
´

C
f dµ

´

Cδ
f dµ, where C = coreµ, page 30

Lattices

|l| l+ + l−, page 6

l+ l ∨ 0, page 6

l− l ∧ 0, page 6

L⊥ orthogonal complement, page 7
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l1 ⊥ l2 |l1| ∧ |l2| = 0, page 6

l1 ∨ l2 sup{l1, l2}, page 6

l1 ∧ l2 inf{l1, l2}, page 6

Measures Theory

A algebra, page 10

α(n) volume of the n-dimensional unit ball

ba(Ω,A) space of bounded measures on Ω, page 10

ba (Ω,A, λ) bounded and weakly absolutely continuous mea-
sures w.r.t. λ, page 14

ca(Ω,A) space of bounded σ-measures on Ω, page 10

coreµ core of µ, page 17

densC(B) lim
δ↓0

Ln(B∩Cδ∩Ω)
Ln(Cδ∩Ω)

, page 17

Dens(C) density measures for C, page 37

Hd d-dimensional Hausdorff measure

Ln n-dimensional Lebesgue measure

µ << λ µ is absolutely continuous w.r.t. λ, page 13

µ ≤ λ µ(A) ≤ λ(A) for all A ∈ A, page 11

µ <<w λ µ is weakly absolutely continuous w.r.t. λ, page 14

µ, λ measures, page 9

µc σ-additive part of µ, page 12

µp pure part of µ, page 12

µ− negative part of µ, page 11

νB (measure theoretic) normal to B

µ∗ outer measure for µ, page 24

µ+ positive part of µ, page 11
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µ⌊A restriction of µ to A, page 11

Σ σ-algebra, page 10

σ σ-measure, page 10

|µ| total variation of µ, page 11

Norms

‖f‖Lip ‖f‖C + sup
x,y∈Ω,
x 6=y

|f(x)−f(y)|
|x−y|

, page 85

‖F‖∞,V esssup
V
|F |, page 81

‖f‖C sup |f(x)|

‖f‖p Lp-norm of f , page 29

‖λ‖p p-norm of the measure λ, page 33

‖u∗‖ sup
‖x‖≤1

〈u∗, x〉

‖µ‖ |µ| (Ω), page 12

Sets

Ac set theoretic complement of A

Bδ (x) ball centred at x with radius δ > 0

∂Ω topological boundary of Ω

B(Ω) Borel subsets of Ω, i.e. σ-algebra generated by
relatively open sets

Ω topological closure of Ω

distΩ signed distance function, page 37

Ωδ {x ∈ U | distΩ(x) < δ}, page 37

Ω a subset of Rn, page 9

Graph(f) set of points (x, f(x))

intΩ topological interior of Ω
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I an (index) set

∂∗B measure theoretic boundary of B, page 56

Bext measure theoretic exterior of B, page 56

Bint measure theoretic interior of B, page 56

N natural numbers

PA(A) Partitions of A by sets in A, page 32

2Ω class of subsets of Ω

R(h) {y ∈ R | ∃x ∈ Ω : h(x) = y}, page 24

∂∗B reduced boundary of B, page 57

A ⊂ B ∀x ∈ A : x ∈ B

n n ∈ N, n > 0, page 9
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Glossary

set of finite perimeter, 56

absolutely continuous, 13
algebra, 10
aura, 19
aura sequence, 19

bounded measure, 10
boundedly complete lattice, 6

convergence in measure, 25
core, 17
core dimension of µ, 17

density measure, 37
determining sequence of an integrable

function, 28
directionally concentrated density mea-

sure, 49

equal a.e., 25

function of bounded varation, 55

Gauß formula, 65, 74, 77, 80, 88
good approximation, 64

having divergence measure, 59

integrable function, 28
integrable simple function, 27
integral of a simple function, 28

measurable function, 26
measure, 9

negative part of a measure, 11

normal measure, 66
normal sublattice, 7
null function, 25

orthogonal lattice elements, 6

Portmanteau functions, 73
positive part of a measure, 11
pure measure, 12

refinement integrable, 32
refinement integral, 32

σ-measure, 10
σ-algebra, 10
signed distance function, 37
simple function, 24
simple measure, 34

total variation of a measure, 11

weakly absolutely continuous, 14

106



Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe
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