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Introduction

The Divergence Theorem is a well-known result in mathematics. One of the
first appearances of a statement that translates the integral over a volume
into an integral over the bounding surface of said volume can be found in a
treatise of Gaufl (cf. [22]). Nevertheless, it is assumed that Lagrange already
knew of a similar technique. The first formal proof of a special case of this
theorem is attributed to Ostrogradsky. Throughout the nineteenth century
many famous scientists, including Green, proved increasingly general forms
of this statement (cf. [26]).

The continued interest in this theorem results from its many applications
in mathematics and science. For a physicist it arises e.g. in the context
of conservative equations, i.e. the conservation of mass and energy. Early
applications already included magnetism, heat transfer and elastic bodies
(cf. [26]). Mathematicians use it for partial integration in higher dimensions
and the analysis of partial differential equations. In Continuum Mechanics,
it describes a balance of forces.

Since the inception of the Theorem of Gauf}, as it is called by German
mathematicians, there have been attempts to generalise its statement to
more abstract settings. On the one hand, it is desirable to integrate on very
general domains which do not need to have a well-defined normal vector at
each point on the boundary (cf. [5]). On the other hand, applications in
mechanics often need to employ the theorem for highly non-smooth vector
fields. Especially in the field of mechanical engineering, where e.g. cogs exert
forces concentrated on lines or even points on each other, vector fields whose
distributional divergence is a measure arise naturally. These phenomena were
already known to Heinrich Hertz. The notion of Hertzian Contact Stress was
introduced to sidestep the problem of dealing with these concentrated loads
(cf. [25]). A general Divergence Theorem which is capable of describing these
situations would enable a more rigorous analysis of these problems.

The Divergence Theorem in its simplest form is stated for smooth vector
fields F' on domains 2 C R" with smooth boundary. It has the following

form
/dideﬁ”:/ F-vdH" 1,
Q o0

where v is the outward pointing normal vector of €.

The challenges in generalising this statement are threefold. First and
foremost, the volume integral on the left-hand side only makes sense if the
divergence of F'is an integrable function with respect to Lebesgue measure.
It is a well-established fact that this integral can be exchanged for div F'(2)
in the case where div F' is a Radon measure on € (cf. [8]). Second, the



integral on the right-hand side of the equation needs some notion of normal
vector v to the set. This normal vector exists H" !-almost everywhere for
sets 2 of finite perimeter (cf. [20], [2]). For domains with possibly infinite
perimeter, a substitute is yet to be found. Third and last, for the area integral
to be meaningful, the vector field F' must be integrable with respect to area
measure. For F' that do not fulfill this requirement, multiple strategies can
be found in the literature.

One way is to compute the normal trace as an essentially bounded func-
tion on the boundary via mollification ([13]). This approach has the drawback
that geometry and the information encoded in the vector field are combined,
thus making the interpretation of the trace itself more difficult. Other tech-
niques exchange the area integral with a continuous linear functional on a
function space on 02, but do not provide a representation of this functional
as an integral ([32],[10]). Most of the results found in the literature hold true
for essentially bounded vector fields having divergence measure (cf [12], [10]).
In [31] it is shown that the area integral can be substituted by

1
lim — F - D(distq)d L"
640 ) Qs5\Q

even in the case where F' is only integrable and €2 is an arbitrary closed set.

In the literature, many of the cases mentioned above have been discussed
in detail. A prominent source is the paper by Anzelotti [3], where vec-
tor fields with integrable divergence and sets with Lipschitz boundary are
considered. The case of essentially bounded vector fields having divergence
measure on sets with Lipschitz deformable boundary has been discussed by
Chen and Frid in [8] and [9]. In [10], Chen and Frid proved a Gaufl formula
for vector measures having divergence measure and sets with Lipschitz de-
formable boundary. Sets of finite perimeter and essentially bounded vector
fields have been discussed by Chen and Torres in [12]. Their trace is an es-
sentially bounded function on the boundary and is obtained by mollification.
In [32], Silhavy proved a Gaufl Theorem for open sets and measures having
divergence measure, the normal trace being a functional on the Lipschitz
continuous functions on the boundary. Schuricht [31] investigated arbitrary
closed sets and unbounded divergence measure fields and proved the limit
formula given above. The listed sources also contain a large part of the the-
ory for vector fields having divergence measure. In this thesis, Evans [20] and
Ambrosio [2] are used for the theory of functions of bounded variation. A
good compilation of important results on finitely additive set functions can
be found in Rao [30]. Other important sources are Alexandroff [1], Leader
[28], Bochner [6], Dunford [18], Yosida [33] and Kolmogoroff [27].



The main question addressed in this thesis is: Is it possible to generalise
the area integral in the Divergence Theorem in such a way that integral
calculus is available for the area part, even for domains with unbounded
perimeter? This is investigated for essentially bounded vector fields having
divergence measure as well as for unbounded vector fields. It is shown that
this is possible using so-called pure measures, which are necessarily only
finitely additive. The properties of these measures are analysed in detail.

Consequently, the structure of this thesis is as follows.

In the fist chapter, a theory of finitely additive measures is laid out. Since
some results from lattice theory are needed in the course of the analysis, they
are presented at the beginning of this chapter. An important result on succes-
sive decomposition of lattices into normal sublattices is proved. Afterwards,
the basic definitions of measure theory are recalled and pure measures are in-
troduced. Concrete examples for these measures were essentially only known
on N up to now. A new example of a pure measure on R" is presented, which
is in essence the density of a set at zero. Using a slightly adapted notion
of support of a measure, a sufficient condition for a measure to be pure is
derived.

The second chapter covers the theory of integration for the measures intro-
duced in the previous chapter. Using the sublattice decomposition technique,
an improved characterisation of the dual of the space of essentially bounded
functions is given. As the spaces of p-integrable functions with respect to
a finitely additive measure are not necessarily complete, the second section
presents the completions of these spaces and the corresponding dual spaces
in a concise form.

In the third chapter, it is shown that the new example for pure measures
is prototypical in the sense that many measures share its structure. These
new measures are called density measures. The space of all density measures
of a closed set is introduced and its extremal points are analysed. It is shown
that the latter are extensions of the Dirac measure to essentially bounded
functions and that they concentrate along one-dimensional directions. Fur-
thermore, a direct correspondence of density measures and o-measures which
are singular with respect to Lebesgue measure is shown.

The fourth chapter contains an exposition on functions of bounded varia-
tion and vector fields having divergence measure, which facilitates the proof
of GauBl formulas later on. The first section on functions of bounded varia-
tion contains an important proposition on mollification of sets having finite
perimeter. The section on vector fields having divergence measure contains
several useful product formulas which are repeatedly used in the subsequent
analysis.

The main results on Gaufl formulas are given in the last chapter. The



first section contains a general Divergence Theorem for sets of finite perimeter
and essentially bounded vector fields. In particular, the existence of so-called
normal measures is proved and some of their properties are presented. It is
shown that, in general, unbounded vector fields cannot be integrated with re-
spect to these normal measures. The second part of the last chapter contains
a Theorem of Gauf} for unbounded vector fields having divergence measure
and bounded open sets with path-connected boundary. This theorem gives
the normal trace of Silhavy (cf. [32]) a representation as the sum of a Radon
measure and a finitely additive measure. The analysis conveys an interesting
new measure, which vanishes in the regular case.



Chapter 1

Theory of Finitely Additive
Measures

This chapter contains a basic theory of finitely additive measures and some
useful tools from lattice theory. The first section presents these tools and
a proposition on successive decomposition of vector lattices into sublattices.
The spaces of measures defined in the subsequent section turn out to be
boundedly complete vector lattices. This enables the decomposition of mea-
sures which are weakly absolutely continuous with respect to Lebesgue mea-
sure into pure and o-additive parts. In the literature, explicit examples of
pure measures can essentially be found only on N (cf. [30]). Here, a new
example on R" is given. This example is essentially the density of a set at
a point. In Chapter 3 this enables the identification of a large class of pure
measures. In addition, a new notion of support of a measure is introduced,
called core. This is necessary because pure measures can have their core out-
side of the set on which they live. It turns out that every weakly absolutely
continuous measure whose core has Lebesgue measure zero is necessarily
pure.

1.1 Lattice Theory

First, some results on vector lattices are gathered. These are useful in the
decomposition of finitely additive measures. This decomposition technique
was used in special cases by Alexandroff (cf. [1]) and Yosida (cf. [33]).
By embedding it into a lattice setting, the technique becomes much more
tractable (cf. [30]). The following exposition is a very short summary of the
relevant statements. A general treatment can be found in Birkhoff [4].
First, the basic definitions for vector lattices from Rao [30, p. 24ff] (cf.



[4, p. 347]) is given.

Definition 1.1. Let L be a vector space and < a partial order on L which
is compatible with + and the multiplication with a scalar on L. If for all
li,lo € L the supremum and infimum of {li,lo} exist, then L is called a
vector lattice. For l,ly,ly € L write

Iy V 1y := sup{ly, lo}
ll VAN lg = inf{ll, lg}

[T:=1Vv0
[T =—IVO0
|| =1+

l1,ly € L are called orthogonal, if |l1| A |ls] = 0, written Iy L ly. If for a
family {l;}iez C L the supremum exists, write

\/li =supl; .

ieT i€z
If the infimum of {l;}ier exists, it is denoted by

1€T

A set L' C L is called bounded from abowve, if there exists | € L, such that
I'<I forall € L.
A wector lattice is called boundedly complete, if for every {l;}ier C L
which is bounded from above the supremum \/ l; exists.
i€T
For a vector lattice L and [y,[ly € L
[l 4 la] < |l| + [l

with equality if I; L Iy (cf. [30, p. 25]). The following example foreshadows
the partial order that turns spaces of measures into vector lattices.

Example 1.2. Let M be any set. Let L be the set of all functions
f-M—R
then there is a natural partial order on L turning M into a vector lattice, i.e.

fi<fo <= fi(z) < fo(x) forallx e M.
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In the following, L denotes a boundedly complete vector lattice.
In order to obtain results for an orthogonal decomposition of vector lat-

tices (and their elements), one has to define appropriate sub-structures (cf.
(30, p. 28]).

Definition 1.3. A linear subspace L' of L is called a sublattice of L if
LVipe L' andly Nly € L' for all 11,1y in L.
A sublattice L' of L is called normal, if

1. foralll' € L' and alll € L

| <|l'| = lel

2. if for {l;}iex C L' the supremum ezists in L, then \/ [; € L'.
i€T

In order to decompose a vector lattice into normal sublattices, a notion
of orthogonality is needed (cf. [30, p. 29]).

Definition 1.4. For a subset L' of L, the set
(I ={leL|V'el 1L}
is called orthogonal complement of L'.

The following statements from [30, p. 291] illustrates that normal sublat-
tices and orthogonality interact in a similar way as closed linear subspaces
and orthogonality in Hilbert spaces do.

Proposition 1.5. Let S C L, then S* is a normal sublattice of L. If S is a
normal sublattice, then (S*)* = S.

A useful characterisation of the orthogonal complement of a normal sub-
lattice is the following.

Proposition 1.6. Let S be a normal sublattice of L. Then | € S* if and
only if for every s € S

0<|s|<|l] = s=0.
Proof. Assume first that [ € S*+. Then for every s € S
0<|s|<|l] = 0=Is|A|l|=|s] = s=0.
Now assume for every s € S

0<|s| <|l| = s=0.

7



Since S is a normal sublattice
0<Is|All| < |s|] = Is|A|ll€S.
By assumption
[sIAJI <[l = |s| Al =0.
Thus s L (. O]
As in the setting of Hilbert spaces, a boundedly complete vector lattice

can be represented as the direct sum of a normal sublattice and its orthogonal
complement (cf. [30, p. 29]).

Proposition 1.7. Riesz Decomposition Theorem
Let S be a normal sublattice of L, then for every | € L there exist unique
elements s € S, s~ € S+ such that

l=s5+s".
Furthermore, if | >0, then s = \/ [ A|s'|. For generall € L
s'eS
s = \/l+/\|3’|— \/l_/\|s’|.
s'eS s'es

The following proposition enables the successive decomposition of a lattice
into sublattices. This is used in the analysis of measures. In particular,
this proposition enables a better characterisation of the dual of the space of
essentially bounded functions.

Proposition 1.8. Let L1, Ly be two normal sublattices of L. Then Ly N Ly
is a normal sublattice of Ly. Furthermore, the orthogonal complement of
L1 N L2 m L2 18 Li‘ N L2.

Proof. Let Iy € L1 N Ly and [y, € Ly with
o] < |l -

Since L; is a normal sublattice of L,
lyeLy.

Whence I € L1 N Lo.
Now, let {l;};ex C Ly N Ly be such that \/ [; € L. Since L; and Ly are

i€
normal,
Vi€l and \/li€L,.
i€ €T



This implies \/ l; € L1 N Ly. Thus L; N Ly is a normal sublattice of L.
i€T
Let Iy € Ly such that ls € (L1 N Lz)i. Since L; is a normal sublattice of
L, there exist I, € Ly,l{ € Li such that I, = [; + [{. Now, using additivity
of the total variation on orthogonal elements (cf. [30, p. 25])

0 < sup{|ll, [} < [la] + li| = liz].
Hence, I1,l{ € Ly and Iy, l{ € (L1 N Ly)*. Since Iy € (Ly N Ly)*,
0= [l AL] = L] AG]+ L AT = (1] AL
This implies [; = 0. Hence
(LiNLy)*t CLiNLy.
On the other hand, if lf € Lf N Lo, then for all [ € Ly N Ly
LA =0,

whence

Ly NLy C (LN Ly)*.

1.2 Finitely Additive Measures

In the following, a self-contained exposition of a theory of measures is pre-
sented. Furthermore, the new example for pure measures is given and the
notion of the core of a measure is used to characterise the pure measures.
Many of the following statements hold true for arbitrary topological spaces
). Nevertheless, in the following let n € N5y and Q2 C R™ with the usual
relative topology.

The following definition of measures is an adapted version of the definition
of charges given in Rao [30, p. 35].

Definition 1.9. Let Q C R and M C 2% and pn : M — R. Then p is called
measure on ) with respect to M, if for all My, Ms, ..., M,, € M such that

M;NM; =0 fori+#j and |J My € M
k=0

A(VEAES o2

k=0

9



If for all {Mj}reny C M such that M; N M; =0 for i # j and |J My € M
kEN

v (U Mk) = iM(Mk)

then p is called o-measure.

Note that this entails the unconditional convergence of the series on the
right hand side.

A set function p: M — R is called bounded, if

sup [u(M)] < oo.
MeM

Remark 1.10. One could also take m € N, m > 1 and
we M —R™
in the above definitions.

In order to obtain a vector space structure on the set of measurable
functions, mainly systems of sets of the following types are considered (cf.

(30, p. 2]).

Definition 1.11. Let Q C R*. Then A C 2% is called algebra, if for all
A, Ay € A, the sets AN Ay e A, A5 € A and Ay U Ay € A and ) € A.
If in addition for all {Ag}ren C A the set |J Ap € A, then A is called

kEN
c-algebra.

In the following, A denotes an algebra on ). The spaces of measures
considered in this thesis are defined in accordance with [30].

Definition 1.12. Let Q C R" and A C 2% be an algebra. The set of all
bounded measures i : A — R is denoted by

ba(Q, A) .
The set of all bounded o-measures o : A — R is denoted by
ca(, A).

There is a natural partial order on ba(f2,.A) (cf. [30, p. 43]).

10



Definition 1.13. Let Q C R" and A C 2 be an algebra. For u, A € ba(£, A)
one writes
p<A

if and only if for every A € A
1(A) < A(A).

The following proposition links the theory of measures with the theory
of boundedly complete vector lattices. This is essential for the subsequent

results on the decomposition of measures. The proposition is taken from [30,
p. 43f].

Proposition 1.14. Let Q C R and A C 2 be an algebra. Then ba(, A)
together with the partial order < is a boundedly complete vector lattice.

The following definitions are standard in measure theory (cf. [30, p. 45]).

Definition 1.15. Let Q C R" and A C 2 be an algebra. For u € ba(Q, A)
define

pt = p v 0 = sup{p,0}
p = (—p) VO =sup{—p,0}
ul = p" 4+
Call u* positive part of i1, n~ negative part of i and || total variation

of .
Furthermore, for A € A define p|A: A — R by

([ A)(A) == (AN A") forall A’ € A.

The total variation can be characterised in the following way (cf. [30, p.

46)).
Proposition 1.16. Let Q C R" and A C 2% be an algebra. Then for every
p € ba(,A) and Ae A

m

l (A) = sup > | (Ap)] -

k=1
where the supremum is taken over all finite partitions {Ax}7, C A of A.

The following proposition can be found in Rao [30, p. 44]. Tt states that
in the space of bounded measures, the norm is compatible with the partial
order.

11



Proposition 1.17. Let Q@ C R" and A C 2% be an algebra. Then ba(f2, A)
together with < and the norm

[l == 1l (2) for p € ba(€2, A)

1s a Banach lattice, i.e. it 1s a Banach space and a vector lattice such that

for all p, A € ba(Q, A)
il <AL = llull < (1A

The following proposition is an application of Riesz’s decomposition The-
orem (Proposition 1.7) (cf. [30, p. 241]). In particular, every bounded
measure can be uniquely decomposed into a o-measure and a pure measure.
Recall the definition of orthogonal complement from page 7.

Proposition 1.18. Let Q C R™ and A C 29 be an algebra. Then ba((,.A) is
a boundedly complete vector lattice and ca(S), A) one of its normal sublattices.

Hence, every p € ba(Q2, A) can uniquely be decomposed into p. € ca(S, .A)
and p, € ca(Q, A)* such that

M= fhe + fhp
and for every o € ca(2, A)
0<o<|up = o=0.

Definition 1.19. Let Q C R™ and A C 2% be an algebra. Then every
measure i, € ca(, A)* is called pure. Notice that p, is not o-additive, by
definition.

One important example of measures that are pure are density measures.
The following new example presents a particular density measure, namely a
density at zero. In the literature, examples of pure measure are only known
for @ = N (cf. [30, p. 247]), they are defined on very small algebras (cf.
[30, p. 246]) or they are constructed in such a way that the measure cannot
be computed explicitly, even on simple sets (cf. [33, p. 57f]). The example
given here is constructed on 2 = R™ and lives on the Borel subsets of (2.

Example 1.20. Let ©Q := By (0) € R™ be open. Then there exists u €
ba (2, B(2)), 1 > 0 such that for every B € B(12)

. L£M(BNB;s(0))
HB) = =5 0))

12



if this limit exists. This measure is non-unique. Its existence is shown in
Proposition 3.7 (take A := £" and C' = {0}).

It is shown in Example 1.28 that p is indeed pure. Figure 1.1 shows the
family {Ay}ren C B(€2)

1 1
Api= | ——=, —— 1,1,
For this family

> (AN Q) :07&#((0,%) X [—1,1]”‘109) =1 (;QAka> .

keN

Hence, p is not a o-measure.

Figure 1.1: A family of sets on which p is not o-additive

Measures that do not charge sets of Lebesgue measure zero are of special
interest, because these measures lend themselves naturally to the integration
of functions that are only defined outside of a set of measure zero. When
treating non o-additive measures, one carefully has to distinguish the follow-
ing two notions (cf. [30, p. 159]).

Definition 1.21. Let Q C R", A C 2% be an algebra and X € ba(Q, A).
Then 1 € ba(Q, A) is called

1. absolutely continuous with respect to A, if for every € > 0 there
exists 0 > 0 such that for all A € A

A(A) <5 = [u(A)| <e.

In this case, write p << .

13



2. weakly absolutely continuous with respect to A, if for every A € A
[Al(A) =0 = u(4) =0.
In this case, write p << \.

The set of all weakly absolutely continuous measures in ba(S2, A) is denoted

by
ba (2, A, \) .

The following proposition shows that there is no pure measure which is
absolutely continuous with respect to some o-measure (cf. [30, p. 163]).

Proposition 1.22. Let Q C R*, A C 2% be an algebra and o € ca(f, A).
Then for every p € ba(£,.A)

p<<o = peca(QA).

Remark 1.23. The preceding proposition shows that one should focus on
the notion of weak absolute continuity when studying measures that are
continuous with respect to some o-measure.

Example 1.24. p from Example 1.20 is even weakly absolutely continuous
with respect to £". This is evident from the construction in Proposition 3.7
(take A := L" and C := {0}).

Proposition 1.25. Let pq, o € ba(Q), A) be such that p; << us. If A€ A
such that |ps|(A) =0, then |up|(A) = 0.

Proof. Since |u2| is monotone,
|2 (A)] < || (A7) < 2| (A) = 0
for all A" € A such that A" C A. Since

pi (A) = sup i, (A) =0
AeA
A'CA

and a similar equation holds for p;
| l(A) = i (A) + py (A) = 0.
O

The following proposition is the key to decompose measures into o-measures
which are weakly absolutely continuous with respect to some measure and
pure measures.

14



Proposition 1.26. Let Q C R", A C 2% be an algebra and \ € ba(£, A).
Then ba (2, A, \) is a normal sublattice of ba(Q, A) and thus a boundedly

complete vector lattice.

Proof. ba (9, A, \) is obviously a linear space. Let {yu;};er C ba (€, .4, \) be
such that there exists u € ba(2, . A) with

i < pforallie”.

By Proposition 1.14, ba((2, A) is boundedly complete (cf. [30, p. 44]). Hence,
there exists p’ € ba(£2,.A) such that

p; < p foralli e T

and if this holds true for another p” € ba(Q, A) then p/ < u”.
Assume p' ¢ ba (€2, A, ). Then there exists A € A such that

IA[(A) = 0 but u/(A) #0.
Now, |¢/| A| € ba(Q2,.A). Whence p/ — |p/| A| € ba(Q2,.A). Since p;(A) =0
pi < p' — WAl <y forallieZ,

in contradiction to the minimality of y/. Hence p/ € ba (2, A, A).
Now let ' € ba(2,A) and p € ba (2, A, \) such that || < |u]. Let
A € A be such that [A\|(A) = 0. Then

1 (A)] < 1p'](A) < [ul(A) =0

by Proposition 1.25. Hence u/ € ba (2, A, \). Therefore, ba (2,4, ) is a
normal sublattice and thus a boundedly complete vector lattice. O]

The proposition above enables the decomposition of measures into pure
parts and o-measures, analogously to Proposition 1.18.

Theorem 1.27. Let Q C R", A C 2% be an algebra and \ € ba (Q, A).
Then for every u € ba(£2, A, \) there ezist unique p. € ca(f2,.A) N
ba (2, A, \), p, € ca(Q, A)F Nba(Q, A, \) such that

M= fhe + fhp -

Proof. Since ba (€2, A, \) and ca(f2, A) are normal sublattices of ba((2,.A),
Proposition 1.8 yields that

ca(2, A) Nba(Q, A, \)
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is a normal sublattice of ba (2, .4, A) whose orthogonal complement is
ca(, AT Nba(Q,A,N) .

This, together with Riesz’s decomposition Proposition 1.7, yields the state-
ment of the proposition. O

Example 1.28. Since the measure p from Example 1.20 is positive and
fe L pp,, using the additivity of the total variation on orthogonal element
(cf. [30, p. 25]) yields

0 < [pte| < el + gyl = | = .

Hence, for every § > 0
|t1e| (Bs (0)) = 0.
Thus
| (2 {0}) = lim | c| (B5 (0)°) = 0.
But |uc| ({0}) < p({0}) = 0. Hence

|e| (£2) = 0
and p = p, is pure.

When ) is a o-measure, the structure of u. is well known by the Radon
Nikodym theorem (cf. [24, p. 128ff]).

Proposition 1.29. Radon-Nikodym Theorem

Let Q CR™ and X C 2% be a o-algebra. Furthermore, let o € ca(Q,X) and
p € ca(Q,X) be such that up << o. Then there exists f € L' (Q, X, 0) such
that

u(4) = [ rdo
A
for every A € 3.

The structure of p, is described by the following proposition taken from
(30, p. 244] (cf. [33, p. 56]).

Remark 1.30. The following results are stated for o-measures ¢ > 0. They
also hold for arbitrary o-measures o when using |o|.
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Proposition 1.31. Let Q C R", ¥ C 2% be a o-algebra and o € ca(Q,Y),
o> 0. Then p € ba(2, X, 0) is pure if and only if there exists a decreasing
sequence { Agtren C X such that

k—o0

and for all k € N
|1l (AR) = 0.

Intuitively speaking, weakly absolutely continuous measures are pure if
and only if they concentrate in the vicinity of a set of measure zero. Review-
ing Example 1.20, the support (cf. [2, p.30]) of the measure can be seen to
lie outside of €\ {0}. Yet the construction of the measure would still work
on this set. Hence, it is possible for a pure measure to have support outside
of its domain of definition. This necessitates the following definition of core.

Definition 1.32. Let Q C R", A C 29 be an algebra containing every rela-
tively open set in ). Furthermore let pn € ba(Q), A). Then the set

corep :={x € R" [ |pu[(VNQ)>0,VV CR",V open,z € V}

is called core of .
Let d € [0,n] be the Hausdorff dimension of core . Then d is called core
dimension of p and p is called d-dimensional.

Remark 1.33. Note that there is a slight difference to the notion of support
of a measure as defined in classic measure theory (cf. [21, p. 60]). The core
of a measure is not necessarily contained in {2, the support of a o-measure
is.

Example 1.34. The measure p from Example 1.20 has
core it = {0}
and is thus O-dimensional.

Now, an example for a density measure with a larger core is given. Note
that in this thesis

Cs = distg,' ((—00, §)) for C C R™.

Example 1.35. Let Q C R™ be open, d € [0,n) and C' C Q be closed with
Hausdorff dimension d. Then there exists a pure measure p € ba (2, B(Q2), L"),
p > 0 such that for every B € B({2)

. L"(BNCsNQ)
B)=1
wB) =l = e o)

=: dens¢(B),

17



if this limit exists. Here, Cjy is the open d-neighbourhood of C'. Furthermore
core pu = C'

and p is thus d-dimensional.
The existence of this measure is evident by Proposition 3.7 (take A := L™).

Proposition 1.36. Let Q C R" and A C 2 be an algebra containing every
relatively open set and p € ba(S2, A). Then core i is a closed set in R".

Proof. Set B := core iy and let x € B¢. Then there is an open neighbourhood
V C R” of z such that
(VN &) =0.

Now let 2/ € V and V’ C R" be an open neighbourhood of 2’. Then
ul(VV NnQ) < |pl(VNnQ)=0.

Thus, 2’ € B¢. Since x was arbitrary, it follows that for every x € B¢ there
exists an open neighbourhood V' C R” of x such that V' C B¢, whence B¢ is
open and B closed. O

On bounded domains, the core is non-empty.

Proposition 1.37. Let Q C R™ be bounded, A C 2 be an algebra containing
every relatively open set in Q and p € ba(2, A), u # 0. Then core u is non-
empty and for every 6 > 0

|l (€21 ((core 1)5)%) = 0.

Proof. Set B := core u. Assume core o was empty. Then, by compactness of
() there exists an open covering {Vj }1-, of {2 such that for k =0, ...,m

(Vi n©2) = 0.
But then .
1] (€2 Z (VN Q) =0

in contradiction to u # 0.
—Rn
Now, let 6 > 0. For every z € (Bs)¢ thereisa 0 <4, < g such that

|ul (B (z,0:) N€2) = 0.
Otherwise, x € core . Now

{B (l’, dr)}xewﬂw

18



is an open covering of
—R'Il
(B(;)C NnQ

Since ) is relatively compact in R", there exists a finite open sub-covering

{B (21, 02,) 1o

of
(BC;)C NnQ.

Hence

1l (Bs)* N Q) <Y |ul (B (a1,6,,) N €)= 0.

]

Remark 1.38. If (2 is unbounded, the statement of the preceding proposition
need not be true. The measures in Example 10.4.1 in [30, p. 245] can be
shown to have empty core, since they concentrate near infinity.

The core itself does not give all information on the way in which a pure
measure concentrates. Hence, the sequences from Proposition 1.31 is inves-
tigated further.

Definition 1.39. Let Q C R", ¥ C 2% be a o-algebra, o € ca(), %), o > 0
and 1, € ba(Q, X, 0) be pure. Then every A € ¥ such that
|1p[(A9) =0
is called aura of 1.
Any decreasing sequence {Ay}ren C X of auras for pu, such that
o(Ar) 222 0
s called aura sequence.

Now, it is shown that any aura sequence can be restricted to neighbour-
hoods of the core.

Proposition 1.40. Let Q C R™ be bounded and ¥ C 2% be a o-algebra
containing every relatively open set in ). Furthermore, let o € ca(f),X)
with o > 0 and p, € ba(Q,X,0) be pure. Then for every aura sequence
{Aj}ken C X of p, the sequence

{ A Feen == {Ak N (core ;) } CX

1
k

is an aura sequence of i, with

—R"
— /
core fi, = ﬂ A

keN
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Proof. Let C := core u,. Note that |u,| is pure and let {Ax}ren C 2 be
any aura sequence of y,. Then for every kK € N, z € (A_kRn> and any open

neighbourhood V' C (A_kRn>c of =

IV 0 2) <l (B) 09Q) < Il n0) = 0.

Hence
CC A_kRn for every k € N.
Thus,
cc) A
keN
For k € N set
Al = AN C% .

Then for every k € N

| (A%) < gl (A7) + 1ol ((€1) N 2) =0,

by Proposition 1.37.
Furthermore

Obviously
Rn
ﬂmm%cﬂ%:o
keN keN
It remains to show that
CcNA4nc: .
keN

Let x € C. Then x € A_kRn for every k. Hence, for every k there is a sequence
{2 }en C A such that

k =00
T ——

In particular, there is an I§ € N such that
k 1 k
|y — 2| < % for 1 > 1.

Hence, for every k € N,
veANCr
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Since xz € C' was arbitrary, this finally implies

R’n
CC(L%QC%.
keN

Figure 1.2: An aura sequence {Ag }ren of a 1-dimensional measure with core

keN

The following lemma identifies a big class of pure measures. In particular,
if the core of a measure is a Lebesgue null set, the measure is necessarily pure.

Proposition 1.41. Let Q € B(R") and p € ba (Q, B(Q2), L").
If core p M Q 1s a L™-null set then p is pure.

Proof. Let B := core u. Then by the definition of the core, for every 6 > 0
|l (Bf N ) =0.

Now let Bj = B% NQ for k € Nand o € ba(2,B(2),L"),0 > 0 be a
o-measure such that
0<o<|ul.

Then for every k € N
0 < o((Br)) < |pl((Br)) =0.
On the other hand, since core N €2 is a £™-null set,

(2N B)=0.
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Hence
o) =0(QNB)+o (U Bg) = lim o (B;) =0.
ke N k—o0
This implies o = 0.

Since ¢ was arbitrary, p is pure by Proposition 1.6 and Proposition 1.18.
m

Remark 1.42. Note that core u C Q. If Q C R" is open such that £*(9Q) >
0, then there is u € ba (2, B(Q2), L") such that core p = 0. Hence core p is
not a null set, but core u N Q = (). Thus, u is necessarily pure.

The following proposition is taken from [30, p. 70]. It shows that there
are many degrees of freedom when choosing an extension of a measure to a
larger class of sets. Since all pure measures used below are constructed using
an extension argument, they are in general not unique.

Proposition 1.43. Let Q@ C R™ and A C 2% be an algebra on €. Let
p € ba(Q,A),u>0. Let A€ 22\ A and A" C 2% the smallest algebra such
that A,{A} C A’. Then for any c € [0,00) such that

sup{u(4) | A'e A, A C A} <c<inf{u(A) | A'e A,AC A’}
there exists an extension ' € ba (Q, A"), 1’ >0 of p to all of A" such that

W(A)=c.
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Chapter 2

Integration Theory

The usefulness of measures hinges on the fact that the dual spaces of im-
portant function spaces can be represented by integration with respect to
some class of measures. The most prominent result is the Riesz Representa-
tion Theorem (cf. [21, p. 106]), which links Cy (2)" with the set of Radon
measures on 2. The dual spaces of LP-spaces with 1 < p < oo are in
essence spaces of o-measures which are absolutely continuous with respect
to Lebesgue measure (cf. [29, p. 253]). Less known is a result of Alexan-
droff, characterising the dual of C,(2) as the space of finitely additive Radon
measures, which are inner regular with respect to the relatively closed sets
(cf. [1, p. 582]).

In this chapter, a basic integration theory for finitely additive measures is
presented. The exposition closely adheres to Rao [30], other sources can be
found in Dunford [18] and Bochner [7]. The characterisation of the dual space
of L> as the space ba (2, B(2), L") (cf. [18, p. 296],[30, p. 139]) is improved
upon by using the decomposition results from the previous chapter. The
LP-spaces introduced in this chapter are in general not complete but their
completion is known and has an interesting structure (cf. [30], [28]). This
and the dual spaces are covered in the second section.

2.1 Integration Theory for Finitely Additive
Measures

This section lays out the theory of integration for finitely additive measures
used in this thesis. As usual, the integral is at first defined for simple func-
tions. Then, convergence in measure is introduced. A function is defined to
be measurable, if some sequence of simple functions converges in measure
to it. Integrability is then introduced using L!-Cauchy sequences of simple
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functions. Once LP-spaces are introduced, an improved characterisation of
the dual of £ is given.
The following definition of simple functions is taken from [30, p. 90].

Definition 2.1. Let Q C R™ and A C 2% an algebra. A function h: Q — R
is called simple, if there exists m € N, {ax};y C R and {Ar}}-, C A such

that .
h = Z Ar XAy -
k=0

Remark 2.2. Let O ¢ R” and A C 29 an algebra and h :  — R. Then h
is simple if and only if

R(h) ={yeR|3x e Q:h(x)=y}
is finite and for every y € R(h) the set h='(y) € A.
In this case
=D v

yeR(h)

Measurability is not defined through the regularity of preimages but by
approximability by simple functions in measure. In this definition, the mea-
sure is needed on possibly non-measurable sets. Hence, an outer measure has
to be used. This outer measure is defined as in the case of o-measures (cf.
[30, p. 86], [24, p. 42]).

Definition 2.3. Let Q C R" and A C 22 be an algebra. For u € ba(f, A),
u >0 the outer measure of 11 is defined for B € 22 by

w(B) = inf u(4).
BCA

For reasons of completeness, the following proposition gathers some prop-
erties of outer measures(cf. [30, pp. 86-87]).

Proposition 2.4. Let Q C R" and A C 2% be an algebra. Furthermore, let
w, A € ba(Q, A) be positive. Then for every By, By € 2% and A € A

i (0) =

w*(By1) < p*(Bs), if By C By
p(A) = p(A)

p*(BrU By) < p*(By) + p*(Bz)
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5. (m+A)" =p + X

Now, convergence in measure can be defined. The definition is taken from
(30, p. 92] (cf. [24, p. 91]).

Definition 2.5. Let Q C R" and A C 2 be an algebra and pn: A — R be a
measure. A sequence { fx}ren of functions fr : Q — R is said to converge in
measure to a function f: Q) — R if for every e > 0

Jim [u[{z € Q[ [fy(z) = f(z)] > e} =0

In this case, write

fr s f

Note that the limit in measure is not unique, yet. Therefore, the following
notion of equality almost everywhere is needed. The definition is taken from
(30, p. 88].

Definition 2.6. Let Q C R", A C 2% and p: A — R be a measure.
Then f: Q) — R is called null function, if for every e >0

" ({z € Q[ |f(z)] > €}) = 0.

Two functions f1 : Q — R, fo: Q — R are called equal almost every-
where (a.e.) with respect to u, if f1 — fo is a null function.
In this case, write

Ji=f2 p-a.e.
Remark 2.7. If f: ) — R is a null function, then it need not be true that

ul" ({z € Q[ f(x) #0}) = 0. (2.1)

Take e.g. the density measure p introduced in Example 1.20 and f(z) := |z|.
Then f is a null function but

nl"({r € RY[f(z) # 0} = u(By (0)\ {0}) = 1> 0.

This entails that the notion of equality almost everywhere that was de-
fined above does not imply the existence of a null set such that f; = f,
outside of that set. Take e.g. the density measure introduced in Example
1.20, fi(z) := |z| and fo(z) := 2f1(x).

On the other hand, if i is a o-measure and A a o-algebra, then Equation
(2.1) is equivalent to f being a null function (cf. [30, p. 89]).
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The limit in measure turns out to be unique in the sense of almost equality.
This is stated in the following proposition taken from [30, p. 92].

Proposition 2.8. Let Q C R", A C 2° be an algebra and jn: A — R be a
measure. Furthermore let { fx}ren be a sequence of functions f, : Q@ — R and
f,f:Q —= R be functions such that

fr B f.
Then . .
i f = f=f p-ae

Now, the notion of measurability is introduced. The definition is similar
to the definition of Tj-measurability in [30, p. 101].

Definition 2.9. Let Q@ C R" and A C 2 be an algebra and 1 : A — R be
a measure. A function f : £ — R is called measurable if there exists a
sequence {hy}ren of simple functions hy :  — R such that

hie 5 f

The following proposition shows that this notion of measurability coin-
cides with the usual one in the case of o-measures and o-algebras, if the null
sets are added to the o-algebra, i.e. if the completed o-algebra is used.

Proposition 2.10. Let Q C R*, ¥ C 2% be a o-algebra, o € ca(), %) and
f:Q — R be measurable. Then for every B € B(R) there exists A € ¥ such
that f~*(B)AA is a null set.

Proof. Let C' C R be closed and {hy}ren be a sequence of simple functions
with
hie > f.

Fix € > 0. Let {h{ }ren be a subsequence of {hy}ren with

3

x : 1
o ({z 1) - 1012 1 }) < 5o
Then there exist sets A7 € ¥ such that

g

1
{reniinie -z ¢}t md o) < 55

Set

A= AL

keN

26



Then
o] (A) < ol (45) <«
keN

c

and for every = € (A,)
Bi(w) = f().
Then
A= O NAS=[(hg) H(Cr)N AL e D

keN

1
E

where C'1 is a neighbourhood of C' with radius . Now let {e/}1en C (0, 00)

be a sequence with g; 2% 0 and set
A= Javex.
leN

Then for any [ € N
o (FHC)\ A) < [of"(F7HO)\ A) < o] (As) < & =25 0.

This shows the statement for closed sets. Since the closed sets generate B(R),
f is measurable in the usual sense with respect to the o-algebra generated by
Y, and the o-null sets. This yields the statement for arbitrary B € B(R). [

In the general case, the following statement from [30, p. 101] holds true.

Proposition 2.11. Let Q C R” and A C 2% be an algebra, i : A — R a
measure and f : € — R be a function. Then f is measurable if and only if

for every € > 0 there exists { A}y C A such that |J Ax = Q,
k=0

|1l(Ao) <&

and for every 1 < k <m and x1,x9 € Ay

|f(z1) — fla2)] < €.

Now, the integral for simple functions is defined. The definition is stan-
dard in integration theory (cf. [30, p. 96]).

Definition 2.12. Let Q C R*, A C 2% be an algebra and p : A — R be
a measure. A simple function h : Q — R is called integrable if for every

y € R(h) \ {0}
(P (y) | < o0
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In this case the integral of h is defined by
/ﬂhdu }: v
yeER(h
Here, the convention 0 - 0o = 0 s used.

The integral for measurable functions can now be defined via £'-Chauchy
sequences. This is of course well-defined (cf. [30, p. 102]).

Definition 2.13. Let Q C R, A C 2% be an algebra and pu: A — R be a
measure. A function f : Q — R is said to be integrable if there exists a
sequence {hy}ren of integrable simple functions hy : Q@ — R such that

1. hy 5 f.

In this case, denote
/fdu:— lim | hpdp.
The sequence {hy}ren is called determining sequence for the integral of
f.
Remark 2.14. In particular, integrable functions are measurable. This no-
tion of integral is also called Daniell-Integral in the literature (cf. [30]).
The LP-spaces are defined in the usual way (cf. [30, p. 121]).

Definition 2.15. Let Q ¢ R", A C 2%, u: A — R be a measure and
p € [1,00). Then the set of all measurable functions f : Q — R such that
|f|P is |u|-integrable is denoted by

LP (A, 1)
If A= B(Q), write
LP (2, ) -
For fi, fo € LP (Q, A, )
Ji=f2 p-a.e.

defines an equivalence relation. The set of all equivalence classes of this
relation is denoted by

L7 (A, 1) .

If A= B(Q), write
L7 (82 p) -
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The following definition of norms is in accordance with [30, p. 121].

Definition 2.16. Let Q C R*, A C 2% be an algebra and n : A — R a
measure. Then for every p € [1,00) and f € LP (Q, A, u) write

T ( / \frpdw)”.

Furthermore, for measurable f : 2 — R define
esssup f :=inf {K € R| |u|* {z € Q|f(z) > K}) =0}
and
1/l := esssup|f].

The set of all measurable functions f :  — R such that

[flloe < 00
1s denoted by
L (A )
As in the case p € [1,00),
L2(Q, A, 1)

denotes the set of all equivalence classes in L™ (2, A, u) with respect to equal-
ity almost everywhere.
In the case A = B(Q2), only write

L (Q,p) and L (2, u) respectively.

The mappings introduced above are indeed norms on their respective
spaces, as the following proposition from [30, p. 125ff] shows.

Proposition 2.17. Let Q C R", A C 29 be an algebra and jn: A — R be a
measure.
Then ||-[|, is a norm on LP (€2, A, n) for every p € [1, oq].

Remark 2.18. For measures which are not o-additive, the normed spaces
LP(Q, A, 1)

need not be complete, even if A = B(Q2). See Remark 4.6.8 in Rao [30, p.
125] for reference.
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Before proceeding to the characterisation of the dual of £, a new integral
symbol is introduced, which gives formulas for normal traces and integrals
over pure measures a more pleasing shape.

Definition 2.19. Let Q C R™ be bounded and C C Q be closed. Then for
every u € ba (2, B(Q), L") such that

core pu C C,

every f € LY (Q, p) and § > 0 write

Remark 2.20. This notion of integral is well-defined since the definition of
core p yields

1l ((C5)7) =0
for any § > 0.

The following proposition is a specialised version of the proposition from
(30, p. 139] (cf. [33, p. 53]).

Proposition 2.21. Let Q C R*, ¥ C 2° be a o-algebra and o : X — R be a
o-measure.

Then for every u* € (L (,%,0))" there exists a unique p € ba(Q, %, o)
such that

* — d
(u”, f) /Qf 7
for every f € L>®(Q,X,0) and

[w |l = Nl = 1pl (2)

On the other hand, every j € ba(), %, o) defines u* € L> (Q, %, 0)".
Hence, L> (2,2, 0)" and ba(Q, X, ) can be identified.

Using the decomposition Theorem 1.27 that was proved earlier, one ob-
tains a more refined characterisation of the dual of £> (2, %, o). In particu-
lar, every element of the dual space is the sum of a o-measure with £"-density
and a pure measure. In contrast to the literature, this makes the intuitive
idea of the dual of £ being £! plus something which is not weakly absolutely
continuous with respect to Lebesgue measure precise.
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Theorem 2.22. Let Q C R" and X C 2% be a o-algebra and o : ¥ — R be
a o-measure. Then for every u* € L (Q,X,0)" there exists a unique pure
tpy € ba(Q, X, 0) and a unique h € L' (Q, 3, 0) such that

wop) = [ fnae+ [

for every f € L>®(Q,3,0).
Proof. Let u* € L>(Q,%,0)". Then by Proposition 2.21 there exists p €
ba(2, X, o) such that for all f € L>(Q,%,0)

wos) = [ .
Q
Now, by proposition 1.27, there exist unique p., p, € ba(€2, 3, o) such that

M= fhe T+ fhp

and f. is a o-measure and p, is pure. By the Radon-Nikodym Theorem
(Proposition 1.29) there is h € £! (€, %, o) such that

= [ e

for every A € 3. Since the integral is obviously linear in p

/Qfduzfﬂfduc+/gfdup=/thdo—+/gfdup

for every f € L (€, X, o), whence the statement of the proposition follows.
[

2.2 Completion of LP-Spaces

In this section, .Z-spaces are presented as the completion of L-spaces (cf.
[30, p. 178ff], [6, p. 778], [28, p. 528]). The key point is that the completion
of L-spaces over u are spaces of measures which are absolutely continuous
with respect to pu.

The following definition is useful in the ensuing characterisation of .Z-
spaces. It was first introduced by Kolmogoroff (cf. [27, p. 663]) and is an
abstraction of many notions of integral, including the Lebesgue integral.
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Definition 2.23. Let Q C R*, A C 29 be an algebra and ¢ : A — R be a set
function and A € A. Denote the class of all finite partitions of A by sets in
A by

PA(A).

This class is directed by the partial order defined for Py, P, € PA(A) by
P <P <— VAQEPQ:EIAlePl:AQCAl.

Write

R
= 1
[, o= pdm, e,

A

iof this limit exists in the sense of nets, and call it refinement integral of
C on A and call ( refinement integrable on A.
If C is refinement integrable on € just call it refinement integrable.

Remark 2.24. Note that ( is not required to be additive in the definition
above.

The following proposition characterises the refinement integral as a kind
of additivisation and is taken from [27, p. 664].

Proposition 2.25. Let Q C R", A C 2% be an algebra and ¢ : A — R be a
refinement integrable set function.

Then
R R
/ C:A—>R:Al—>/ ¢
A

is well-defined and a measure.
Remark 2.26. The set function [ RC is also called refinement integral.

Remark 2.27. Note that trivially

cz/RCH,

where [ "\ =0. The set function A is in general not additive.

Thus, [ RC can be regarded as additivisation of ¢ in a similar sense as
D f is the linearisation of a point function f.

From now on, only measures are considered. The following convention is
useful in the next statements.

32



Definition 2.28. Let Q C R", ¥ C 2% be a o-algebra and u, X € ba(, )
such that A << p. For A € X set
A4)
A(A) :: {m if pn(A) #0

u 0 otherwise.

The following definition of norm is taken from [30, p. 180-183] (cf. [28,
p. 528fT]).

Definition 2.29. Let Q C R*, ¥ C 2% be a o-algebra and p € ba(Q,X),
1> 0. For any measure X\ : ¥ — R such that A\ << p define

RIYIP \ 7
= ([2) = s
Q

PePE(Q) Aep
w(A)#0

where the supremum is taken over all finite partitions {Ak}g";o C X of Q.

Furthermore define

ST

p

A 1(A)

1

A(A)

(A)

||A||oo:=sup{x€R|3A€Z“”:‘%H

Remark 2.30. Note that A\ is demanded to not only be weakly absolutely
continuous but absolutely continuous. This is needed to obtain the density
of so-called simple measures.

Now, £P-spaces can be defined as the class of all measures which have
finite norm. The definition is taken from [30, p. 185] (cf. [28, p. 530]).

Definition 2.31. Let Q C R*, ¥ C 2% be a o-algebra and p € ba(Q, %),
pu>0. Forp e [l,00] denote

LP(Q,51) = (A € ba(2,2) | A << u, ||, < o0}

In contrast to the £P-spaces defined in the previous section, these spaces
are complete. The following proposition is taken from [30, p. 185].

Proposition 2.32. Let Q C R*, X C 2 be a o-algebra and p € ba(Q,X),
> 0. Then for any p € [1, 0]

LP(Q, 5, p)

equipped with ||-||, is a Banach space.
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The goal of this section is to present .ZP-spaces as the completions of
LP-spaces. The following proposition shows that £P can be regarded as a
subspace of .Z? and is taken from [30, p. 182].

Proposition 2.33. Let Q C R", ¥ C 2 be a o-algebra, p € ba(Q, X)) with
p>0,p€(l,00) and f € LP (X, ).
Then for the measure A : ¥ — R defined by

A(A) ::/Afd,uforAEE

holds
11, = (AL, -
In particular, A € ZLP(Q, %, 1).
Remark 2.34. Below, £?(Q), X, u) is identified as the completion of LP (2, X, u).
An example of a measure for which £? (2, A, ) is not complete can be
found in Remarks 4.6.8 and 7.2.15 in Rao [30, p. 125,p. 192]. Note that this

example is constructed on 2 = N. It seems to be an open problem to find
such a measure for  C R™.

The same holds true for p = oo (cf. [30, p. 184]).

Proposition 2.35. Let Q C R", ¥ C 2 be a o-algebra, pu € ba(, %), >0
and f € L% (2,5, u).
Then for the measure A : ¥ — R defined by

A(A) ::/Afd,uforAEE

holds
11l = M -
In particular A € £>°(Q, %, p).

In order to obtain the completeness of ZP-spaces, the simple functions
must be embedded in 7. The following definition is taken from [30, p. 18§|
(cf. [28, p. 533]).

Definition 2.36. Let Q C R", ¥ C 2% be an o-algebra and p € ba(Q, %),
p = 0.

A measure X € ba(€, %) is called simple measure (with respect to ) if
there exists a partition { A}, C X of Q and {ax}7-, C R such that

A= ar-plAp.
k=0
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The simple measure turn out to be dense in .Z”. Note that the simple
functions are dense in LP, by definition. The following proposition is taken
from [30, p. 190] (cf. [28, p. 533]).

Proposition 2.37. Let @ C R", ¥ C 22 be a o-algebra and pu € ba(Q, ),
pw > 0. Then for every p € [1,00), the simple measures are dense in

LP(Q, 5, ).

Remark 2.38. Note that the statement of the preceding proposition does
in general not hold true for p = oo (cf. [30, p. 190]).

This proposition has several useful applications. An important one is the
following, which is taken from [30, p. 192].

Corollary 2.39. Let Q C R*, ¥ C 2% be a o-algebra and pu € ba(Q,Y),
p=0.
Then for every p € [1,00), ZLP(Q, X, u) is the completion of LP (2,3, w).

The Radon-Nikodym Theorem is a direct consequence of this and is taken
from [30, p. 191] (cf. [18, p. 315]).

Corollary 2.40. Radon-Nikodym Theorem

Let Q C R, ¥ C 2% be a o-algebra and pu € ba(Q,X), u > 0. Then for every
A € ba(), X)) such that A << p and every € > 0 there exists a simple function
h:Q — R such that

<€

')\(A)—/Ahdu

for every A € X.

Knowledge on the dual of a Banach space is beneficial in many situations.
For #£P-spaces they are known and have a similarly good structure as the
original space. The following characterisation of the dual spaces of .£P-spaces
can be found in [30, p. 193] and [28, p. 536]. It is completely analogue to
the statement for LP-spaces over g-measures.

Proposition 2.41. Let O C R*, A C 2% be a o-algebra and p € ba(Q, %),
w > 0. Then for p € [1,00) the dual of £P(Q2, 3, u) is isomorphic to
L7, 2, 1), where p' is the Holder-conjugate of p.

Forv € L7, %, 1) and v* € L7 (Q, %, 1) the dual pairing is given by

R
<v*,v>:/ L
Q M

| WS o) [ < Al ol -

Furthermore,
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Chapter 3

Pure Measures

This chapter discusses pure measures in detail. In the first section, a large
class of pure measures is introduced. These measures share some structure
with the density at zero from Example 1.20. Their structure is investigated
and the properties of the set Dens(C') of all those measures is analysed.
The action of this set on a fixed essentially bounded function is shown to
be compatible with the essential supremum and the essential infimum. The
extremal points in the sense of the Krein-Milman Theorem (cf. [19, p. 154],
[34, p. 157]) are characterised, since they span Dens(C'). The second sec-
tion discusses the connection between pure measures and o-measures which
are singular with respect to Lebesgue measure. It is proven that every pure
measure can be represented by a Radon measure on its core, if only contin-
uous functions are considered. Vice versa, in regular settings, every Radon
measure on a Lebesgue null set can be extended to a pure measure on all
of the domain. Finally, some examples on traces show that pure measures
are suitable for the representation of trace operators. Most of this chapter
is comprised of original work that has not been treated in the literature, to
the authors knowledge.

3.1 Density Measures

In this section, measures with a similar structure as the measure in Exam-
ple 1.20 are investigated. These measures represent a large class of pure
measures. The properties of this class is analysed and its extremal points
identified.

It turns out that the signed distance function plays an important role.
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Definition 3.1. Let Q C R" be non-empty. The function
distg : R" — (—00, 00)

defined by
Inf |z — if v &

—inf v —y| ifze.
yeNe

distq(z) :=

15 called signed distance function.
For sets B C R™ write

distq(B) := inf distq(z) .

zeB
Furthermore, neighbourhoods of sets prove useful. Therefore, set
Qs = distg,' ((—00, )
for o e R.

Remark 3.2. Note that distq is Lipschitz continuous, since it is the sum of
two Lipschitz continuous functions. If €2 C R"™ is bounded, by the Coarea
formula (cf. [20, p. 112])

HH(O()) < 0
for a.e. 0 € R(distyqn), the range of distsq.

Now, density measures can be defined. The basic definition essentially
demands the measure to be a probability measure whose core is a Lebesgue
null set. By scaling, any bounded positive measure whose support has no
volume can be seen as a density measure.

Definition 3.3. Let Q € B(R"), C C Q be closed and L*(C N§) =0. A
measure f € ba (Q, B(2), L") is called a density measure for C, if p >0
and for all 6 > 0

H(C5N1Q) = () = 1.

The set of all density measures for C' is denoted by
Dens (C).
Remark 3.4. If L"(Q2NCs) =0 for some § > 0 or C' = (), then

Dens(C) = 0.
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The following proposition shows that density measures indeed have core
on (' and that they are pure.

Proposition 3.5. Let 2 € B(R™) and C C Q be closed with L™(C N Q) = 0.
Then for every p € Dens(C)

corep C C'

and [ is pure.

Proof. Let x € R™\ C. Let

0= %distc(:c) :

Then for every 0 < § < &

p(Bs () < p(€2\ C5) = 0.

Hence
x ¢ core
and thus
corep C C.
Finally
L"(coreppN) < LY(CNQ)=0.
By Proposition 1.41, u is pure. O

Density measures can be characterised in a way that justifies their name.
In essence, they are densities of other measures on their core.

Proposition 3.6. Let 2 € B(R™) and C' C 2 be closed with L™(C' N Q) = 0.
A measure ;1 € ba(Q,B(Q), L") is a density measure for C' if and only if
there exists a measure A € ba (€2, B(Q2), L") with A > 0 satisfying

AMCsNQ) >0 foralld >0,
such that for every f € L (Q, L")

fduglimsup][ fdi.
Q 410 CsNQ2
Then for every f € L™ (2, L™)
fdp =lim fdA 3.1
]i M C5nQ (3.

if this limat exists.
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Proof. Let p € ba (2, B(2), L™).
Assume there exists A € ba (2, B(Q2), L") with A > 0 satisfying

AMCsNQ)>0foralld>0
such that for f € £ (Q, L")

fduglimsup][ fda.
Q 440 CsNQ

Note that since

/—fduglimsup][ —fdA
Q 50 Jesne
for f e L®(Q, L"),

liminf][ fd)\g/fd .
8O Jesne Q .

) = Cin9) ~ i S

Then for 6 > 0
=1.
Furthermore, for every B € B(Q)

. ABNG)
> —=>0.
w(B) > 11rg1&)nf NG Q) = 0

Thus, u is a density measure for C. Equation (3.1) follows with Proposition
3.5 and the previous estimates.

Now assume p to be a density measure for C. Set A = u. Note that
AMCsN Q) >0 for every 6 > 0. Then for all f € L (Q, L")

/fduzlim fd,uglimsup][ fdi.
Q MO Jeosnn 510 Josna
O

Now, existence is proved. It turns out that every measure A € ba (2, B(£2), L"),
which does not vanish near C', induces a density measure.

Proposition 3.7. Let 2 € B(R™) and C C Q be closed with L™(C N Q) = 0.
Furthermore, let X\ € ba (2, B(Q2), L") with A > 0 be such that for all § > 0

AMCsN ) >0.
Then there exists a density measure p € ba (Q, B(S2), L") such that for every
feLre,.Lm

lim inf fdA <4 fdu <lim sup][ fdA.
N0 Jesno c 50 Josnn
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Remark 3.8. In particular, if £"(Cs N Q) > 0 for every 6 > 0, then
Dens (C) # (). In order to see this, note that A = L"|Q satisfies the as-
sumptions of the preceding proposition. Furthermore, every density measure
arises in this way (cf. Proposition 3.6).

Proof. Let A € ba (2, B(R2), L") be such that for every 6 > 0
)\(Cg N Q) > 0.

Then

p:/JOO(Q,/J”)—>R:fr—>limsup][ fdA
5~L0 C(;ﬂﬂ

is a positively homogeneous, subadditive functional. Set X := £ (Q, L")
and

Xo:= {f € X | lim fdA exists} .

540 CsNQ
Then Xj is a linear subspace of X and

uy: Xo = R: f—=lim fdA
640 CsNQ

is a continuous linear functional which is bounded by p. The subadditive
version of the Hahn-Banach theorem [18, p. 62] yields the existence of a
linear extension u* of uj to all of X which is bounded by p. Note that for
every f € L™ (Q,L")

(™, ) <p(f) < Ifll

since A <<* L". Hence, u* is a continuous linear functional on £ (€, £™).
By Proposition 2.21, there exists u € ba (2, B(2), L") such that for every
feL=«.Lr

(u*, f) I/Qfdu.
)

Note that for every f € £ (2, L"

/ —fduﬁp(—f)zlimsup][ _fdA
Q C5nQ

040

which implies

liminf][ fd)\g/fdu.
0 Josna Q
Now it is easy to see that for every B € B(f2)

Ogliminf][ xsdXA < u(B).
640 CsNQ2
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Hence, pr > 0. Furthermore,

1= liminf][ XodA < pu(R2) < limsup][ xad\=1.
M0 Josna 510 Josne

Finally, let 4 > 0. Then

1 = lim inf][ Xcsno dA < p(C5 N Q) < lim sup][ XoznadA = 1.
040 CsNQ 410 CsNQ

Thus, p is a density measure of C'. O

Example 3.9. Let Q C R? be a cusped set as in Figure 3.1 below and
C = {z}, where x € R? is the point at the cusp. Then for every ¢ > 0

L'(CsNQ)>0.
Hence there exists a density measure p € Dens(C') such that for every f €
L*(Q, L)
][fd,u:lim fdacr,
c

N0 Jesne

if this limit exists. This example is in essence identical to Example 1.20.

Figure 3.1: Existence of a density measure at a cusp

The integral with respect to a density measure can be estimated by the
essential supremum and the essential infimum of the integrand near the core.
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Proposition 3.10. Let 2 € B(R") and C C Q be closed with L*(CNQ) = 0.
Furthermore, let 1 € ba (Q,B(2), L") be a density measure of C. Then for
every f € L (Q, L")

limessinf f < dp < hm esssu
010 CsNQ2 /= ][f = C(;mﬂpf

Proof. 1t suffices to prove the right-hand side of the inequality.
Let f € £ (Q,L"). Since p > 0, for every 6 > 0

/fd,u:/ fd,ug/ esssup fdu = esssup f .
) C5nQ s CsNQ CsnQ

esssup f is increasing in § > 0 and bounded. Passing to the limit yields the
CsNQ
statement. ]

If Dens(C') # () is ensured, then the inequalities in the preceding propo-
sition are sharp.

Proposition 3.11. Let Q € B(R") and C C Q be non-empty, closed with
LM(CNQ) =0 such that for every 6 >0

L(C5nQ) > 0.

Furthermore, let f € L% (Q,L"). Then
sup ][ fdu= hm esssup f
p€Dens (C) CsNQ2
and
inf dp =1 inf f .
o = iessiat s

Proof. Let f € £L>(Q,L") and € > 0. Set

M. :={x € Q| f(x) > limesssup f — ¢}

010 osn0

and

Ae = L"| M,
Then A € ba (2, B(Q2), L") is positive and such that for every § > 0

)\E(OgﬁQ) > 0.
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Hence by Proposition 2.21 | there exists a density measure p. € ba (€2, B(Q2), L")
of €2 such that

/fd/,éE > lim inf fd)\ >hmesssupf—8

640 CsNQ2

Hence

sup fd,u>sup/fdp52hmesssupf
peDens (C) >0 510 csna

On the other hand, Proposition 3.10 yields

sup fdu < hm esssup f .
p€Dens (C) J Q o0 cs5nn
The statement for essinf follows analogously. O

The set of all density measures is a weak™ compact convex set, as the
following proposition shows.

Proposition 3.12. Let Q € B(R"), C C Q be non-empty, closed such
that L"(C' N Q) = 0. Then Dens(C) is a conver weak® compact subset of
ba (€2, B(2), L") as the dual of L>® (Q, L™).

Proof. W.l.o.g. Dens(C) # 0.
Let p1, po € Dens(C') and aq,ay € [0, 1] such that a; + ay = 1. Then for
every 6 > 0

(IlILLl(C(; N Q) + GQMQ(O(S N Q) = alul(Q) + CLQ,LLQ(Q) =a; +ag = 1.

and
aypiy + agpiy 2> agjpy > 0.

Hence, Dens(C) is a convex set.
For 11 € Dens(C)

el = Tpa (2) = () = 1.

Hence, Dens(C) is a bounded set.
Now let A € ba (€, B(£2), L") \ Dens(C). Then either A\(2) # 1 or there
is a 0 > 0 such that A(Cs N Q) # 1 or there is B € B(£2) such that A\(B) < 0.
Consider the first case. Set € := $|A(2) — 1|. Then

V(A) = {p € ba (2, B(Q), L) [ |1(€2) = MQ)| < e}
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is a weak™ open set such that
V(X) N Dens(C) = 0.
In the second case set & := $|\(C5s N Q) — 1| and
VN = {p € ba (2, B(Q), £7) | [u(C5 N ©2) — A(C5 N Q)] < =}
is a weak™ open set and
V(X) N Dens (C) = 0.
In the third and final case set e := $|\(B)| and
V(N) = { € ba (9, B(2), £) | [u(B) — A(B)| < <}

Also in this case
V(A) N Dens(C) =0.

Since A was arbitrary, the complement of Dens(C') is weak™® open and thus,
Dens (C') is weak* closed. The statement of the proposition follows by the
Banach-Alaoglu/Alaoglu-Bourbaki Theorem (cf. [35, p. 777]). O

Now, the action of Dens(C') on a fixed essentially bounded function can
be characterised.

Corollary 3.13. Let Q € B(R"), C C Q be non-empty, closed such that
LM(CNQ) =0 and for every § >0

E”(C(; QQ) > 0.

Furthermore, let f € L (Q,L").
Then

D — |limessinf f, li .
(Dens (C), f) = |lim essinf f, ;geséiitépf

Proof. Since Dens (C') is a weak™ compact convex subset of ba (2, B(€2), L™)
(Dens (C), f)
is a convex compact subset of R. In order to see this, note that
feba(Q,B(Q),LM)".
Since continuous images of compact sets are again compact,

(Dens (C), )
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is compact. The convexity follows from the convexity of Dens (C'). By Propo-
sition 3.10 and Proposition 3.11

(1;{(1)1 eg%gff, lgg)l escsailépf) C (Dens(C), f)

C (limessinf f, lim esssu
[(uo CsNQ 1, 510 Campf

This, together with the fact that (Dens(C'), f) is closed, implies the state-
ment. [

Recall that for a convex set M in a locally convex topological vector space
m € M is an extremal point if for every my,my € M with m; # my and
ai,as € [0,1] with ay +ay =1

m=aymy +aymy = a3 =1—ay € {0,1}.

The importance of extremal points follows from the theorem of Krein-Milman
(cf. [19, p. 154], [34, p. 157]). In particular, every compact convex set is the
closure of the convex hull of its extremal points. Note that the theorem also
implies that the set of extremal points is non-empty. Hence, the extremal
points of Dens(C') can be regarded as spanning Dens(C'). The following
proposition gives a sufficient and necessary condition for a density measure
to be an extremal point.

Proposition 3.14. Let Q € B(R"), C C Q be non-empty, closed such that
L"(CNQ) =0 and p € Dens(C).

Then w is an extremal point of Dens (C) if and only if for every B € B(2)
either (B) = 0 or u(B°) = 0.

Proof. Let u € Dens(C) be such that for every B € B(f) either u(B) = 0 or
pu(B€) = 0. Assume p = ajpy + agps for py, pg € Dens(C) and aq, as € (0,1)
such that a; + as = 1 and pq, 2 # p. Then there is B € B(2) such that

p1(B) # pa(B).

Suppose u(B) = 0. Then uy(B) = us(B) = 0, a contradiction to the as-
sumption.
Hence u(B) =1 and p(B°) = 0.
This implies
in(B%) = ol B%) = 0
and thus
pn(B) = 1= pus(B),
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a contradiction to the assumption.
Hence p; = po = p and g is an extremal point of Dens (C).

Now, assume g to be an extremal point of Dens(C') and assume, there
exists B € B({2) such that u(B), u(B°) > 0. Set

1
My = FB)HLB

1 C
SIS

Then g1 and psy are density measures and

= p(B)p1 + p(B)pa

and p is not an extremal point of Dens (C') in contradiction to the assumption.
O

A simple consequence is that the core of extremal points contains exactly
one point. This is the same in the case of Radon measure, where the Dirac-
measures are the extremal points of the unit ball (cf. [19, p. 156]).

Corollary 3.15. Let Q € B(R"), C C Q be non-empty, closed, L*(CNQ) = 0
and p € ba (2, B(Q), L") be an extremal point of Dens (C').

Then core p is a singleton.

Proof. Assume there were x,y € core u such that © # y. Let 6 > 0 be such
that § < 3|z — y|. Then either

p(Bs (x)) = 0 or u(Bs (y)°) =0
in contradiction to x,y € core p. O]

Another obvious corollary gives the values of extremal points on sets B
whose boundary does not meet the core of the extremal point.

Corollary 3.16. Let Q C R", C C Q be non-empty, closed, L*(C'NQ) =0
and p € ba (Q, B(Q), L") be an extremal point of Dens (C') with core u = {x}
for some x € €.

Then for every B € B(Q)

_J1 freintB,
HJ(B)_{O ifr ¢ B.

The question arises, what happens on sets whose boundary meets the
core. The following proposition gives a partial answer to this. It states that
extremal points concentrate along one-dimensional directions.
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Proposition 3.17. Let Q € B(R"), C C Q be closed with L'(CNQ) =0
and p € Dens(C) be an extremal point. Then there exist unique x € C' and
v € R™ with ||v|| =1 such that for every o € (0,%)

pw(K(x,v,0)NQ) =1,

where
K(z,v,a) :={y e R"y # z,<(y — z,v) < a}.

Proof. By Corollary 3.15, there is a unique = € C' such that
core u = {z}.
Let {ay }ren C (O, g) be such that

lim o, = 0.
k—o0

Let S™ := 0By (0) and for every k € N and v € S™
VEi={v € S"«(v,v) < ap}.

Then for each £ € N
k
{‘/U }vES"

is an open covering of S™. Assume that for every v € S”
(K (z,v,00,) NQ) =0.

Since S™ is compact, there exists a finite set M C S™ such that

stc|Jvir
But then
B (z)NQC ({x} u K(x,v,ak)> naQ.
Hence
p(S) = p(By () NQ) < p({z} N Q) + > (K (w,v,0) NQ) =0,

veM

in contradiction to

() =1.
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Hence, for every k € N, there exists v, € S™ such that
(K (2,05, 00) N Q) = 1.
Since S™ is compact, up to a subsequence
U, koo e sS™.
Now let @ > 0 and ko € N be such that for every k € N, k > kg

a Q
<(vg,v) < 5 and a < 5

Then
K(.T,U,Oé) > K(I’,Uk,ak)

for every k > ko and thus

p(K(x,v,0) N Q) > u(K(x, v, ) NQ) = 1.

In order to prove that v is unique, assume there exists v € R™, v/ # v such
that the statement of the proposition holds. Set

1
= —<(v,0'
=g (v,0)

and note that
K(z,v,a) N K(z,v",a)=10.

But then
p(QN (K (z,0,0) UK(2,0', @) = p(QN K(z,0,0)) + w(QN K (2,0, ) = 2
a contradiction to pu(Q2) = 1. O

Remark 3.18. The proposition above shows that extremal points in Dens (C')
concentrate around one dimensional directions. Figure 3.2 illustrates this.
Note that it is only necessary for an extremal point of Dens(C') to concen-
trate in this way. A sufficient condition might be that it concentrates on a
cusp but this is still an open problem.
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Figure 3.2: The cones on which an extremal point of Dens (C') is concentrated

Remark 3.19. The extremal points of Dens(C) are called directionally
concentrated density measures.

Integration with respect to bounded density measures as laid out in Sec-
tion 2.1 is well-suited for essentially bounded functions f € £ (€, L") but
in general it is not suited for unbounded functions. The following example
illustrates this.

Example 3.20. Let n =1, Q= B, (0) C R and C := {0}. Let
1
flx) = N (X(—00.0) () = X[0.00) (%))
for x € R. Then

lim fdL" =0.
30 J B;(0)

Let 1 € Dens(C') be a density measure of C. Then for every £ > 0 and every
simple h € L (Q, L")

il ({1f =Rl >eh) = |pl {11 > Al +e}) =1, (3.2)

Hence there is no sequence of simple function that converge in measure to f
and thus f is not p-integrable.

This chapter is closed with some suggestions of further uses for density
measures. For example, the trace of a function of bounded variation can be
computed using density measures.

Example 3.21. Let Q2 C R" be bounded with Lipschitz boundary. For
x € 0 let pu, € Dens({z}) be such that

fdu, <lim sup][ fdacr
{z} 610 Bs(z)NQ
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for every f € L£>(Q,L"). Then for every f € BV (Q2) N L>(Q, L") and
Hl-ae. x €00

T(f)(x) = { }fdum
where T is the usual trace operator for functions of bounded variation (cf.
[20, p. 181]).

It is also possible to use density measures to define a set-valued gradient
for Lipschitz continuous functions.

Example 3.22. Let C' = {z} C R” and f : R" — R be Lipschitz continuous.
Note that by Rademachers Theorem (cf. [20, p. 81]), Df exists almost
everywhere and is essentially bounded. Set

Oaf () := (Dens ({z}), Df) .

Then 0, f(z) is a weak* compact, convex set which is contained in By, (0),
where L is the Lipschitz constant of f. In plus, the linearity of the integral
implies that for every fi, fo € W1 (R" R)

04(f1 + f2)(x) C Oafi(x) + Oafa(w).
and
9a(f1f2)(x) C f1(2)0a(fo)(x) + fo(2)a(f1) ().

Note that the definition of 0; hints at similarities to a characterisation of
Clarkes Generalised Gradient in [14, p. 63].

3.2 Singular c-Measures and Pure Measures

In this section, the possibility to identify o-measures that are singular with
respect to Lebesgue measure and density measures is investigated. It is
shown that any pure measure gives rise to a Radon measure on its core and,
in regular settings, every Radon measure which is singular with respect to
Lebesgue measure gives rise to a pure measure on all of its domain. Finally
some examples show that pure measure are suitable for the representation of
traces of functions. These results are original work, to the authors knowledge.

The following proposition states that every pure measure induces a Radon
measure on its core.

Proposition 3.23. Let Q € B(R"™) be bounded and € ba (2, B(2),L").

Then there exists a Radon measure o supported on core u C ) such that for
every ¢ € C (Q)
/ odu = odo.
Q core [
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Proof. First, note that for every ¢ € C' (ﬁ)

] / qsdu\ < l6lle - ul (@)

Furthermore, note that every ¢ € C’(ﬁ) can be extended to a function ¢ €
Co (ﬁ) and every element of Cj (ﬁ) can be restricted to 2 to obtain an
element of C’(ﬁ) Hence

u*:C’O(ﬁ)—>R:¢>—>/ﬂgbdu

is a continuous linear operator and by the Riesz Representation Theorem (Ef‘
21, p. 106]) there is a Radon measure o on Q such that for every ¢ € C'(Q)

/ngd,u:/ﬂgbda.

Now let - € Q\core y1. Then there exists a d > 0 such that Bs (x)Ncore pu = §.
Then for every ¢ € Cy (Bs (z) N Q)

/Qqﬁda:/gqbduzo.

|| (Bs () =0

and thus x is not in the support of the o-measure o. Since x € Q \ core u
was arbitrary, it is proved that the support of ¢ is indeed a subset of core p.
This proves the statement of the proposition. O

Hence

Remark 3.24. In the setting of the proposition above, ¢ is said to be a
representation of y on core u.

The next proposition gives a partial inverse to the statement of the propo-
sition above. In particular, any Radon measure can be extended to a measure
on all of its domain.

Proposition 3.25. Let Q € B(R") be bounded and C' C Q be closed such
that for every x € C' and every 6 >0

L7(Bs (z)N Q) > 0.

Furthermore, let o be a Radon measure on C. Then there exists i € ba (€2, B(€2), L")
such that for every ¢ € C(Q)

/qud,u:/cgbda.
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In particular,
corep C C'

and

|l () = 1] (C).

Remark 3.26. The conditions of the statement are satisfied if, for example,
C C 02U Qs

Proof. Let ¢ € C’(ﬁ) Then

19lcllc < 9l -
In order to see this, let ¢ > 0 and z € C' be such that
€
[6(z) = lIglellcl < 5 -

Let 6 > 0 be such that for all y € Bs () N Q2

6(2) = 6y)| < 5.

By assumption

LBs (2) N Q) > 0

whence

6l > l6(@)] = 5 2 lélcle <.

Since € > 0 was arbitrary, the statement follows.
Set

uy: C(Q) CLY(Q,L") - R: ¢ / pdo
c
and note that for every ¢ € C' (Q)

[(ug, &) < [Idlelle 1ol (C) <]l o] (C).

By the Hahn-Banach theorem (cf. [18, p. 63]) there exists a continuous
extension u* of u to all of £> (2, L™) such that

[l = Nugll -

But £ (Q, L")" = ba (2, B(Q2), L") by Proposition 2.21. Hence, there exists
1 € ba (Q,B(2), L") such that for every ¢ € C'(Q)

/qud,u:/cgbda.
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Let ¢ € C'(Q) such that ||¢||,, < 1. Then
I¢lelle < ol <1

Hence,

1] () = )| = v /¢du< > /¢da<\or c).
¢eCQ qbeCQ
o]l o <1 lolcllo<1

Note that for every ¢ € C (ﬁ)
max(min(¢, 1), —1) € C(Q)

and that every ¢ € C (C) can be extended to all of Q, preserving the norm
(cf. [29, p. 25]). Hence, every ¢ € Cy(C) can be extended to ¢ € Cp ()
such that

||¢HC = ”ch :
Thus
01(C) = sup /cbdcf— r /¢du< o, /¢du<|u!( ).
ﬁ@io ©) #eCo (9 3eCo(
= 1]l <1 H¢’||oo<1

Since changing ¢ outside of C' does not change the integral, core p C C'. This
finishes the proof. m

The measure from the preceding proposition is pure if the Radon measure
is singular with respect to Lebesgue measure.

Corollary 3.27. Let 2 € B(R") be bounded and C C Q be closed such that
for every x € C and 6 > 0

LBs () N Q) >0

and

LM(CNQ) =0.

Furthermore, let o be a Radon measure on C.

Then there ezists 1 € ba (Q, B(Q), L") such that for all ¢ € Cy (Q)

/Q¢d,u:/cqbda.

|l (€2) = 1] (C)

Furthermore,

and 4 1S pure.
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Proof. The preceding proposition and Proposition 1.41 yield the statement.
O

The following example presents another way to construct a density at
zZero.

Example 3.28. Let Q € B(R") be bounded and x € Q such that for every
d>0
L"(Bs (x)NQ) >0.

Then there exists a pure p € ba (Q, B(Q2), L") such that for every ¢ € C(1)

/Q<bdu — 4().

The next example shows an extension for H" 1.
Example 3.29. Let Q € B(R™) be open, bounded and have smooth bound-

ary. Then £"(02) = 0 and C' = 0 satisfies the assumptions of Proposition
3.25. Hence, there exists p € ba (Q, B(€2), L") such that for all ¢ € C'(Q)

/m¢d7-{,"_1 = /ngdu.

The following example shows, that the surface part of a Gaufl formula
can be expressed as an integral with respect to a pure measure. In Section
5.1 this is extended to vector fields having divergence measure.

Example 3.30. Let Q € B(R") be a bounded set with smooth boundary.
Then C' = 092 C Q is a closed set and for every k € N such that 1 <k <n

VR HTT 00

is a Radon measure on C'. By Proposition 3.25 there exists uy € ba (Q, B(2), L")
such that for every ¢ € C (Q)

¢-ude"—1=/¢duk= b djiy
Q o0

o9
and
core pu, C O0€).

Hence, there exists p € (ba (€2, B(Q2), £"))" such that for all ¢ € C* (Q,R")

¢du:/¢du: ¢~de"1:/div¢d/:",
oN Q 0N Q

where the Gaufl formula for sets with finite perimeter from Evans [20, p. 209]
was used. Furthermore,
core j1 C 0N2

and p is pure by Proposition 1.41.
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Chapter 4

Vector Fields Having
Divergence Measure

The following chapter contains a short exposition on functions of bounded
variation and some useful statements for vector fields having divergence mea-
sure. The section on functions of bounded variation contains a useful propo-
sition on the quality of approximation of yg by mollification. In the second
section on vector fields having divergence measure, product formulas are ad-
dressed. These are needed for the subsequent analysis of Gaufl formulas.

4.1 Functions of Bounded Variation

In the following, the functions of bounded varation and some of their prop-
erties needed for the analysis are presented. See Evans [20] or Ambrosio [2]
for more details.

The following basic definition is taken from [20, p. 166].

Definition 4.1. Let Q C R" be open and f € L' (2, L™). Then

DF () = sup{/ﬂfdivd)dﬁ” (b€l (LR, |6 < 1}

is called total variation of f.
If IDf|(Q2) < o0, f is called function of bounded varation.
The space of all functions of bounded variation is denoted by

BY () .
The norm on BY () is defined by
[ lgy == Il + D SIS
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This turns BY () into a Banach space.

Sets of finite perimeter are defined through the regularity of their char-
acteristic function. The following definition is taken from [20, p. 167].

Definition 4.2. Let Q@ C R" be open and B € B()). Then B is called set
of finite perimeter in (1, if

XB € BY (Q) .

The following proposition on the structure of the distributional derivative
of a function of bounded variation is taken from [20, p. 167].

Proposition 4.3. Let Q C R™ be open and f € BV (Q2). Then there exists a
Radon measure o on ) and a o-measurable h : Q — R™ such that

1. |h(z)| =1 o-a.e.
2. [ofdivedL" =— [,¢-hdo
for all ¢ € CF° (Q,R").

For sets of finite perimeter, the following convention is used (cf. [20, p.
169]).

Definition 4.4. Let Q C R™ be open, f € BV () and B be a set of finite
perimeter. Then write

1. Df .= hdo
2. ||0B|| := o and vP := —h, with h and o for x5
with h and o as in Proposition 4.3.

The following definition of measure theoretic interior and exterior is taken
from [20, p. 45].

Definition 4.5. Let B € B(R"™). The set
. L"(BNBs(x))
Bm = S R"|1 =1
= {eerip S E
is called measure theoretic interior of B.

The set (B By (1))
. " N s \X
B, = R™|1 =
ext {IE S | gﬁ)l ﬁn(B(; (3;‘)) 0}

15 called measure theoretic exterior of B.
The set

0.B:=R" \ (Blnt U Bezt)

is called measure theoretic boundary of B.
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For Gauf} formulas, the part of the measure theoretic boundary which
admits a measure theoretic normal is of interest. The following definition of
the reduced boundary is taken from [20, p. 194]

Definition 4.6. Let Q C R™ be open and B € B(2) be a set of finite perime-
ter in Q. The set 0*B of all x € R™ such that

1. ||0B|| (Bs (z)) > 0 for all § > 0
2. vB(z) = lgfng(s(x) vBd||0B]|

3. |WB(x)| =1
15 called reduced boundary of B.

Remark 4.7. The reduced boundary is the set, where a measure theoretic
normal can be defined. The derivative of the characteristic function of a set
of finite perimeter satisfies

Dxp = ||0B| =v? - H"".
The measure theoretic normal at x € 0*B is characterised by

i £ (B 0) N BO{y € B | P(a) - (y ) 2 0)
510 L(Bs (x))

=0,

i.e. the set B locally resembles a halfspace with outer normal v? (cf. [20, p.
203]).

The following proposition is a useful tool in the proof of existence of
normal measures below. It states that the characteristic function of a set of
finite perimeter can be approximated H" !-a.e. by functions with gradients
that are bounded in £ (cf. [2, p. 163]).

Proposition 4.8. Let Q@ C R"™ be open and B € B(Q) be a set of finite
perimeter in 0 such that distaq(B) > 0. Let p : R” — R be a mollification
kernel (cf. [20, p. 122]). Then the functions x5 : R™ — R defined by

Xa(ﬂ?)zpa*xg(:c):6%/Bp<“’gy)d£n

510 . 1 e
X5 — XB = XBim + §X8*B H 1_a.6.

satisfy

and 510
1Dxsll, — [Dxal (€2).
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Proof. Begin by proving convergence H" l-a.e.
1. If x € By, then for every ¢ > 0 there exists dyp > 0 such that
L"(Bs (xz)\ B) < e
for every ¢ < dy.
Let € > 0 be arbitrary. Then

1 x—y) 1/ <x—y)
7)) = — drr — — acr
) = 5 /Bm)p( 0 0" Jpsans’ \ 0

21_87

for 0 < dg.
Since ¢ > 0 was arbitrary and ys <1
510
xs(x) =— 1.
A similar argument yields the statement for x € B.,;.

2. If x € 0*B, then z lies in the jumpset of xp (cf. Example 3.68 [2, p.
163]). Hence

510
Xs(T) —

| —

by proposition 3.69 in [2, p. 164].
Since R™ \ (Bjn¢ U Beys U 0*B) is a H" '-null set

540 1 e
X6 = XBin: T §X8*B H* ae.

It remains to show that
510
1Dxsll, — [Dxal (52)-

Let 0 < 6 < diStaTmB) and let ¢ € Cj (2,R") be such that ||¢]|, < 1 with
supp ¢ C Bs. Then

/X(gdiwbdﬁn—/(pg*XB)divngdL"
Q Q
Q

Q
< [Dxgl(Q),
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since |ps * ¢| < 1 and supp (ps * ¢) CC int (2.
This implies
IDxsll; = [Dxs| (Bs) < [Dxal (2).

1
On the other hand, since xs L, xB and the total variation is lower semi-
continuous

[Dxp| () < liinf [ Ds] (S2) = lim inf | Dxs| (Bs) -

This yields the statement of the proposition. O

4.2 Vector Fields Having Divergence Measure

This section contains an exposition of a number of useful product rules for
vector fields having divergence measure.

The following definition of vector fields having divergence measure is in
accordance with Chen [9, p. 402].

Definition 4.9. Let U C R"™ be open. A function F € L' (U,R", L") is
called vector field having divergence measure if

sup{/F«ngdE” L6 eClU), |6 < 1} <.
U

The spaces of vector fields having divergence measure are defined as fol-
lows (cf. [9, p. 402]).

Definition 4.10. Let U C R™ be open and p € [1,00]. The set of all F' €
LP (U,R™, L") having divergence measure is denoted by

DMP(U,R") .
DMP(U,R™) is a Banach space with the norm

| Fllpae = 2u§ ||Fk||p + |div F| (U) for F € DMP(U,R") .
€

1<k<n

The following result on the structure of the distributional divergence of
vector fields having divergence measure is taken from [31, p. 529].

Proposition 4.11. Let U C R" be open and F € DM'(U,R™). Then there
exists a Radon measure div F' on U such that for every ¢ € Ci (U)

/F-ngdﬁ"z—/gbddivF.
U U
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The following important proposition can be found in [11, p. 252]. Tt states
that compactly supported divergence measure fields have zero divergence on
sets containing their support.

Proposition 4.12. Let U C R" be open and F € DM*(U,R") be such that
there exists a compact set C C U with

F=0 L"ae onU\C.
Then
div F(U) = 0.

The following result is a specialisation of Proposition 4 from [12, p. 1014].
It states that essentially bounded vector fields having divergence measure can
be partially restricted to any bounded set of finite perimeter.

Proposition 4.13. Let U C R" be open and F € DM>™(U,R™). Then for
every bounded set of finite perimeter Q € B(U) such that distq(0U) > 0

F - xq € DM>®(U,R") .

The following proposition is taken from Chen [11, p. 250] and Silhavy
[32, p. 448]. In the proof of Gauf} formulas in the next chapter, it is used to
partially integrate compactly supported Lipschitz continuous functions with
respect to vector fields having divergence measure.

Proposition 4.14. Let U C R be open, F € DM (U,R") and let f €
Wbt (U/R). Then F - f € DM>*(U,R") and

div(F - f) = fdivF + FDf.

The integrals over the boundaries of §-neighbourhoods of the normal com-
ponent of F' on 02 are functions of bounded variation. Note that for sets
with sufficiently smooth boundary

Ddistg = v .

Proposition 4.15. Let U C R" be open and Q € B(U) be bounded such
that € = distq(0U) > 0. Furthermore, let L"(02) = 0. Then for every
F € DMY(U,R") the mapping h : (0,¢) — R defined by

h(6) = / F - Ddisto dH"™!
99,
is in BV(0,€) and thus
lim [ F - DdistodH"™'

N0 Jaas

exists.
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Proof. Let F € DM'(U,R") and ¢ € C; ((0,¢)). Then g := ¢ o distg(-) €
Whe (U, R) and
Dg = D¢(distg) Ddistg, .

Using Propositions 4.12 and 4.14 for partial integration

D¢(5)/ F«Ddistgd?‘-[”ldéz/
(0,e) 0 (

0,e)

:/ / F.-DgdH"'dé
(0,6) an

:/F-ngﬁn
U

:—/gddiVF
U
< llgllc |div F[(U) < ¢l¢llc -

/ F - Dg(distq) Ddistq dH™ ' d 6
0Ng

Thus, h € BV ((0,¢)) and the statement of the proposition follows with
Theorem 3.28 from [2, p. 136]. O
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Chapter 5

Gaufl Formulas

In this chapter, the main theorems on Gaufl formulas are proved. The key to
obtain these formulas is the representation of the dual space of L (U, R", L™).
The first section covers the case of essentially bounded vector fields. There,
the existence of a normal measure v is proved, and properties thereof are de-
rived. It is shown that these measures yield Gaufl formulas in many settings.
In particular, this new result together with the product rules from Section
4.2 yields a Gaufl formula for essentially bounded functions of bounded vari-
ation and essentially bounded vector fields having divergence measure. This
is new, compared with the literature. Nevertheless, unbounded vector fields
are not integrable with respect to normal measure in the general case. In the
second part of this chapter, unbounded vector fields are investigated. A Gaufl
formula is obtained for bounded open sets with path-connected boundary by
extending a result due to Silhavy [32].

5.1 Bounded Vector Fields having Divergence
Measure

The following lemma enables the use of the characterisation of the dual of

L> in the following theorem. The key point of this statement is that the

dual of a product space is essentially the product of the dual spaces.
Nevertheless, a self-contained proof is given.

Proposition 5.1. Let Q C R™. The dual space of

L= (Q,R", L")

62



equipped with the norm

1] = sup [Fillg  for F e L£(Q,R", L")
€N

1<k<n

1s the space

(ba (2, B(2), L))"
equipped with the norm

Il = >~ [el() for v € (ba(Q,B(%), £M)" .

Proof. Let v € (ba(Q,B(R2),£"))". Then u* : L> (,R™, L") — R defined

by
<u*,F) :Z/deyk
k=179

for F' € £ (Q,R", L") is obviously a linear functional on £ (2, R", L").
Furthermore

[, F)L < Y Bl Il () < I I
k=1

for F € £>*(Q,R™ L"), where the norms are defined as in the statement of
the proposition.
Now let u* € £> (Q,R", £L")". Then for every k e N1 <k <n

up L, L") = R f = (u”, feg)

is a continuous linear functional on £ (€2, £"). By Proposition 2.21 there
exist v, € ba (Q,B(2), L") such that

<ul:af>:/ﬂfdyk

for every f € £ (€, L™). Hence for every F' € L (Q,R" L™)

n

(", F) = <uz,Fk>=Z/deuk=/qu,
k=1 Q Q

k=1

where v = (v, ..., Up).
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Now let v € (ba (2, B(Q2),£™))". Then

/Fdz/
Q

sup = sup /qu
FeL>=(QR",L") FeL=(QR".L") JQ
7] <1 7] <1
n
— sup Z/ Fk de
FeL>(QRrm.c") 1= Ja
7] <1
n
= Z sup / F.du,
" ReL>(9.m Ja
[1F% [ oo <1
n
= el () =1Iv] -
k=1
This finishes the proof. O

The proof of the upcoming Gaufl Theorem relies on the following notion of
approximation of the domain €2. It turns out that this is not only a technical
necessity but gives the obtained Gaufl formulas a more flexible shape.

Definition 5.2. Let U C R™ be open and 2 € B(U) with distay(£2) > 0.

A sequence {x1}ren C W (U, [0,1]) of Lipschitz continuous real func-
tions with compact support in U is called good approximation for xq with
limit function x, if

1.
klim ve(z) =: x(x) exists H" '-a.e. on U
—00
2.
x=1 H" ' -a.e. on intQ
3. B
x=0 H" '-ae on (Q)C
4.

sup || Dy, < oo.
keN

A necessary condition for €2 to allow a good approximation is given in the
next proposition.

Proposition 5.3. Let U C R™ be open and Q2 € B(U) be bounded such that
disto(OU) > 0. If there is a good approximation for xq with ||x — xall; = 0.
Then ) is a set of finite perimeter.
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Proof. Let {x}ren be a good approximation for xq. Since Q2 is bounded and
every H" L-null set is a £"-null set,

Ll
Xk — X -

Since the total variation is lower semi continuous,

[Dxal (U) < liminf [ Dy, < oo

This proves the statement. ]

Remark 5.4. In Example 5.10, it is shown that every set of finite perimeter
allows a good approximation.

Now, the Gaufl Theorem can be proved using good approximations and
the characterisation of the dual of £> (U, R", L").

Theorem 5.5. Let U C R"™ be open, Q2 € B(U) be a bounded set of finite
perimeter such that distq(OU) > 0. Furthermore, let {xk}tren be a good
approximation with limit x. Then there exists v € (ba (U, B(U),L"))" such
that for every k e N, 1 <k <n

corey, C Of).
and the Gaufl formula
div F (int ) —|—/ xddiv F :][ Fdv (5.1)
o0 o0

holds for every F € DM (U,R"™). The measure v is minimal in the norm,
i.e. if V€ (ba(U,B(U),L™)" satisfies (5.1) for every F € DM>(U,R"™),
then

vl < 1/

In addition, for every set of finite perimeter B € B(U)

v(B) = — lim DxdL" = —/ x-vEdH!
k—o0 Bnsupp Dxk 0*BNQ

The preceding new Gaufl Theorem sets itself apart from the literature
by introducing normal measures. In the literature, Gaufl formulas for sets
of finite perimeter and essentially bounded vector field can be found in the
form of functionals on a function space on the boundary (cf. [32, p. 448))
or as functions on the boundary which are obtained by mollification (cf. [13,
p. 262f]). The approach chosen here enables a clean separation of geometry
and vector field. In plus, it yields the existence of a normal measure which
is defined on all Borel subsets.
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Definition 5.6. v € (ba (U, B(U), L™"))" satisfying (5.1) for all F € DM>(U,R™)
with some limit x of a good approximation of xq that is minimal in the sense
of Theorem 5.5 is called normal measure of () related to .

Now, the proof of Theorem 5.5 is given.

Proof. Let Q € B(U) be a bounded set of finite perimeter with distq(0U) > 0
and let {xx }ren C W (U, [0, 1]) be an associated good approximation with
limit function y.

Now, let F' € DM (U,R™). Then by the Dominated Convergence The-
orem (cf. [20, p. 20])

/XkddivF]H—oo>divF(intQ)+/ xddiv F.
U o)

Note that div F << H"! (cf. [12, p. 1014]). On the other hand,
F - € DM™(U,R")

by Proposition 4.14. Furthermore, F'- x} is compactly supported in U. Thus
by Proposition 4.12 for every k € N

/XkddiVF:—/DXk-FdE”.
U U

Hence for every k € N

/Xk ddivF‘ < 1 DXkl 1 ||F”oo,supp><k :
U

This implies

div F(int ) + /

deivF’ < limsup || Dxg|l 1 || Fl
o0 k—o0

00,Supp Xk S ilelll\]) ”DXkHl HFHOO .

Hence

ug : DM>Z(U,R") - R : F + div F(int Q) —l—/ x ddiv F
o9
is a continuous linear functional on a subspace of £> (U,R", L"). By the
Hahn-Banach Theorem [18, p. 63] there exists a continuous linear extension
u* of uy to all of L (U,R™, L") such that [|u*|| = ||uf||. In particular,
this extension is minimal in the norm. By Proposition 5.1 there exists a
v € (ba(U,B(U),L"))" such that for all I € DM>(U,R")

divF(intQ)+/ deivF:/de.
o0 U
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and ||v|| = |Ju§||. Furthermore

D 1wl (@) = llugll = [l -
k=1

Note that by the Coarea Formula (cf. [20, p. 112]), for a.e. 0 < 0 <
disto(0U) the neighbourhood €5 is a set of finite perimeter. By Proposition
4.13

F - xqs € DM>=(U,R") .

But F'- xq, and I agree on a neighbourhood of €2, whence

div (F' - xq,)(int Q) —|—/

xddiv (F - xq,) = div F'(int Q) +/ xddiv F.
o0N

o0

whence

/ Fdv=0
U\Qs

for every F' € DM™(U,R™) and almost every 0 < ¢ < disto(0U). Thus for
almost every such § > 0 and F' € DM™>(U,R")

<u*,F>:/dem§.
Q
This implies
lugll < llv[$2]] < vl = llugll
and thus

S LU\ Q)(Q) = vl (U) = v Q] () = [l = [[ugl] =0
whence

e (U\ Q5) =0

for almost every 0 < § < disto(9U). Since |vg| is monotone, the statement
follows for all 0 < 0 < disto(9U).

Note that by the Coarea formula (cf. [20, p. 112]) Q_s is a set of finite
perimeter for almost every > 0. By Proposition 4.13

F-xq_, € DM™(U,R") .

Since €2 is bounded, F'- xq_, is compactly supported in int 2 and thus by
Proposition 4.12

diVF‘XQ_é(intQ)_‘_/ x ddiv (F‘XQ_(S) =0.
a0
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This implies
/ FdV'_Q_J =0
Q
for every such § > 0 and F' € DM™>(U,R"™). Hence
lugll < v [U\ Q]| < |l = [lug]| -
and analogously to the reasoning for {25 one deduces
vl (2-5) =0

for every k e N, 1 < k <n.
Now for every § > 0,9 < distq(OU) and every k € N1 <k <mn

el (U\ Q5)UQ5) =0.

This implies
core vy, C 0f)
for every k € N, 1 < k < n. This establishes Equation (5.1).
Now, let B € B(U) be a set of finite perimeter. Then for k € N1 <k <n
er - xg € DM>(U,R") .
Note that
div (e - xp) = Oxp = —(V°) 1" 0" B.
The established Gaufl formula yields

/XBde:/ek'XBdV
U U

= div (ey - xp)(int 2) +/ xddiv (ex - xB)
o0

= / x ddiv (ex - xB)
U
= lim | x;ddiv(ex - xB)
l—o0 U

=lim— [ e, Dy, dL"
B

l—00

Since k € N, 1 < k < n was arbitrary

v(B) = — lim Dy dL™.
k—o0 Bnsupp Dx
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On the other hand, for every set of finite perimeter B € B(U) and for k € N,
1<k<n

Vk(B) = hm dediV (ek . XB)

l—00 U

= lim de(‘?k(xg)
U

l—o00

= — lim X1 (I/B)k dH 1

——/ X (V) edH .
0*B

Hence
v(B) = —/ - vPdHM!.
0* BN
O

Given a good approximation of xq, normal measures are uniquely defined
on sets of finite perimeter.

Proposition 5.7. Let U C R"™ be open and Q2 € B(U) be a bounded set of fi-
nite perimeter such that disto(OU) > 0. Let {xk}ren be a good approximation
with limit x. Let v € (ba(U,B(U),L"))" be an associated normal measure.

Then for every set of finite perimeter B € B(U) there ezists a Lebesgue null
set N C R

L(B):i/ —xvPdH" + lim VI dH
0* BNos2

510 | mon
5¢N Bintma 975

Proof. Note that B and B, only differ by a £"-null set (cf. [20, p. 43]).
Hence B;,; is also a set of finite perimeter. W.l.o.g. B = B;,;. The Coarea
formula (cf. [20, p. 112]) implies that for a.e. 6 > 0 the set

Qs \ Qs

has finite perimeter. Then (€25 \ ©_5),,, is also a set of finite perimeter. By
(23, p. 5],
BN (Qg \ Q_5>

is also a set of finite perimeter. Note that the Coarea Formula also implies
that for a.e. 6 >0

int

H LD, BN Qs \ Q) =0.
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Using this and [15, p. 199]
a*(B N (Qé \ QJ)mt)
differs from
(0.8 (25 2-5),,,) U (BN \ D))

only by a H" '-null set. Since 5\ Q_s has density 1 at points of its measure
theoretic interior and the measure theoretic normal is characterised by the
halfspace it generates (cf. Remark 4.7, [20, p. 203]), one sees that

yPrONE=s) — B on 9*B N (Q5\ Qs);,, N 0" (BN (Q\ Q).

int

Theorem 5.5 states corev C 012, thus

W(B) = (BN (\ 2a),) = - [ K BION) A1
*(BN(Q26\2-5),,,,)NQ2

for a.e. 6 > 0. The integral on the right hand side is for a.e. § > 0 equal to

— P dH + / s AL

/a*BﬂQﬂ(Qg\Qg) BNONo*(Q_s)

int

Noting that

/ —xvBdH !
9* BNONA

defines a o-measure in A and using continuity from above yields

lim —vBdH ! = / —xvBdH !
30 S 9+ Bran(Q5\Q—s) 8* BnoQ

On the other hand 9*(€2_s) C Q. Hence
*(Q5)NOQNB=BNo Q).
Furthermore xy = 1 on int 2. This finishes the proof. ]

The following picture illustrates the representation of a normal measure
from the preceding proposition.
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Figure 5.1: Domain of influence for a normal measure and a set of finite
perimeter B

The relation of H" 1| 9*Q and |v| is treated in the next proposition.

Proposition 5.8. Let U C R"™ be open, 2 € B(U) be a bounded set of
finite perimeter such that distq(0U) > 0. Furthermore, let {xx}ren be a good
approzimation with limit x and let v € (ba (U, B(U),L™))" be the associated
normal measure.

If |Ix — xall; = 0, then for every open set B C U

v (B) > (H"0*Q)(B).
Remark 5.9. Note that £"(0€2) = 0 implies |[x — xall; = 0.

Proof. Let ¢ € C} (U,R"). Then using the Gaufi Theorem from Evans [20,
p. 209

/¢dy=/ div¢d£"+/ ydivgd L
U int o0

:/div¢d£"
Q

= ¢- v dHML.
o0*Q
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Hence for every open set B C U

\v| (B) > sup /¢d1/
d)ECl(BR"
16l <1

> sup / ¢ -V rdH!
peCH(B,R™), J 90
¢l o<1

= [Dxal (B)
= (K" 0"Q)(B).

For the last equality, see e.g. [20, p. 205].
Since B € B(U) was arbitrary, this finishes the proof. ]

The following example shows that for every set of finite perimeter there
exists a canonical normal measure. Hence, Theorem 5.5 is always applicable.

Example 5.10. Canonical normal measure

Let U C R"™ be open and €2 € B(U) be a bounded set of finite perimeter
such that distq(OU) > 0. Furthermore, let p € C§° (R™) be the standard
mollification kernel (cf. [20, p. 122]). Then by Proposition 4.8.

@)= [ oy =) xale) dy.

is a good approximation for yg. The limit function y satisfies

1
=Xo*Q H L ae

X = XQint + 2

Hence, there exists a normal measure v € (ba (U, B(U), £L"))" such that for
every F' € DM (U,R") the following Gauf§ formula holds

1
div F(Qine) + = div F(0*Q) :][ Fdv.
2 o9

Furthermore,
corev C Of).

The divergence on the regular boundary of €2, weighted with %, cannot be
found in the literature. This is due the fact, that the majority of the texts
prohibit the vector fields under consideration from exhibiting such concen-
trations. The remaining sources treat settings similar to the one of Theorem
5.18 below. The weight % appears plausible, when interpreting the diver-
gence as source strength of the field F'. At points of the regular boundary,
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(2 geometrically resembles a half-space. Then half of the source strength can
be seen to flow into the domain and the other half flows outwards.

The next example shows that for many closed sets of finite perimeter a
more familiar form of the Gaufl Theorem can be derived.

Example 5.11. Outer normal measure

Let U C R™ be open and ©Q € B(£2) be a bounded, closed set of finite
perimeter such that &y := disto(OU) > 0. Furthermore, let there be a se-
quence {0y }ren C (0, 00) such that ’}LI& dr = 0 and

sup H" 1 (085)dd < 0.
keN J (0,65

This is the case if, e.g.

: n—1 . n—1 *
lim H" 1 (99) = H"H(0").

For x € U and k € N set

1 :
) = o (0) (1= xe o disao)

. I ..
= maX{O,mln {1, 1-— —dlStQ}} .
Ok

Then xr € W (U, [0,1]) is Lipschitz continuous (cf. [14, p. 47]). These
functions are called (outer) Portmanteau functions. Note that by the
Coarea formula for functions of bounded variation (cf. [20, p. 185])

IDxel = [ wto@)as = W ongas.
(0,1) (0,6%)

Hence, the sequence {xs, }ren is a good approximation for yq and the limit
function is

X = Xa-

Thus, there exists a normal measure v € (ba (U, B(U),L™))" such that for
every F' € DM (U,R") the following Gauf§ formula holds

div F(Q2) :f Fdv.
o0

Open set of finite perimeter can be treated similarly, as the following
example shows.
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Example 5.12. Inner normal measure

Let U C R™ be open and 2 C U be a bounded, open set of finite perimeter
such that disto(OU) > 0. Furthermore, assume there exists {d }xen C (0, 00)
such that ]}1_{{)10 0r = 0 and

sup][ H" 100 5)dd < 00
keN (U,dk)

For £k € N and z € U set

1 ..
Xk(z) = X0, (x) + 5 distqe (a:)XQ\Qfsk
k

. I
:mln{l,maX{O,—dlsth}} )
O

Then x; € W (U, [0, 1]) is Lipschitz continuous (cf. [14, p. 47]). Then as
in Example 5.11, the sequence {xs, }ren is a good approximation for xq and
the limit function is

X = Xa-
These functions are called (inner) Portmanteau functions. Hence there

exists a normal measure v € (ba (U, B(U),L"))" such that for every vector
field ' € DM>(U,R") the following Gauf§ formula holds

div F(Q) :][ Fdv.
G

The subsequent corollary illustrates the dependence of the integral with
respect to normal measure on the good approximation of yq.

Corollary 5.13. Let U C R™ and Q2 € B(U) be a bounded set of finite
perimeter such that disto(OU) > 0. Then for any two good approrima-

tions {x}. }ren, {X3 }ren C W (U, [0,1]) for xq, associated normal measures
v1,ve € (ba(U,B(U),L"))" and any F € DM*>(U,R"™)

][ Fdl/l—y2:/ X1 — Yo ddiv F
o0 9

where x1 and xo are the limit functions for {xi }ren and {x3 }ren respectively.

Remark 5.14. In particular, if |div F| (02) = 0,

][ Fdv
a0

is independent of the choice of the good approximation.
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Since v is a bounded measure, all essentially bounded vector fields F' are
integrable with respect to this measure. This leads to the question, whether
F € L' (U,v) for unbounded vector fields. The next example answers this
negatively. The function is similar to the one in [8, p. 100].

Example 5.15. Let U := (0,1)2 C R? and Q := {(z,y) € R}z < y} N
Bi (3(1,1)). Furthermore let v € (ba (U, B(U),L"))" be a normal measure
for Q and F € DM'(U,R") defined by

Fle) =le =4l (})

for x # y. Then div F' = 0. In order to see that, let A := {(z,z) € Ulx € R},
1 >4 > 0 and note that for ¢ € C} (U)

/F-D¢d£":/ F~D¢d£”+/ F.DodL"
U UNAg

U\As
:/ F-Dqﬁdﬁ”—/ gbdideﬁ”—/ OF - v2s dH!
UNAs U\As O(U\As)
Since div F = 0 outside of As and F - v = + (_11) -F=0onU

/F-Dqsdc“:/ F-DodL 2% 0.
U

UNAj

Note that for every ¢ > 0 with c% >0>0
Qs N {(z,y) €U | |F(x,y)| > c} D As N Qs
Hence for every F' € L (U,R", L")

v (s N {(z,y) € U [|F(z,y) — F'(z,y)| 2 })
> |[(QsN{(z,y) €U |[F(z,9)| 2 | F'll +¢})

1 1
> v (A5 N Q) > H (AmBi (5(1,1))> =5> 0

for every 0 < < W
Hence, there is no sequence { Fy }reny C L (U, R™, L) converging in mea-
sure to F. In particular, F' cannot be approximated in measure by simple

functions.
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Remark 5.16. The preceding example indeed works for U = (0,1)? and
every F' € DM*(U,R") such that for some ¢ : R — R satisfying

1. ¢ is continuously differentiable on R\ {0}

2. lim ¢(x) = o0

z—0

3. g: U —=R: (z,y) — ¢(x — y) is integrable on U

o ()

The essential point is that F' is tangential to the curve where it is unbounded.
Hence, there are many vector fields which cannot even be approximated in
measure.

it holds

The following example gives a vector field that only blows up at one point
and still is not integrable with respect to normal measure. The function is
the same as in [9, p. 403].

Example 5.17. Let n =2, U := B; (0) C R? and
Q= B1(0)N{(z,y) € R?|z,y > 0}.
Furthermore, let

F:U->R?: 20—~ ——"—.

Then F € DM'(U,R") and divF = ;. Let {Xx}ren be the canonical
good approximation from Example 5.10. Let v € (ba (U, B(U),L™))" be
the normal measure associated with this good approximation. Assume that

F e L' (U,v). Then
/WMM<W.
U

1 1 1 1
/WMMZ—/ —MF2—/ Lt = oo,
U 2w 90 |l’| 2 (0 1) t

2

a contradiction. Hence F' ¢ L' (U, v).

Up to now, the Gauss Theorem was given for sets that have a positive
distance to the boundary. In order to complement this result, the following
theorem states the theorem for the whole set, in the case of U = ().
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Theorem 5.18. Let 2 € B(R™) be a bounded open set of finite perimeter. If
there exists 09 > 0 and ¢ > 0 such that for almost every 6 € (0, dp)

Hn_l(aQ_(;) S C,
then there exists v € (ba (Q, B(Q), L™))" such that for everyk € N, 1 < k <n
core vy, C Of)

and for all F' € DM™(Q,R") the following Gaufl formula holds

f Fdv =divF(Q).
o0
and for every open set B C R"
[ (BNQ) = (Ko Q)(B).

Furthermore, v is minimal in the sense, that if V' € (ba(,B(Q),L"))"
satisfies the equations above, then

Il < 1111

For every B € B(S) having finite perimeter in R™

v(B) = —/ vBAdH .
0* BNQ
Remark 5.19. Note that if 2 € B(2) is only supposed to be open and
H 1 00-5) < ¢

is required, then € is necessarily a set of finite perimeter, due to the total
variation being lower semi-continuous.

On the other hand, this condition loosely resembles the definition of Lip-
schitz deformable boundaries defined in [8, p. 94|, but is much more general.

Proof. Let {xx}ren C WH> (R",[0,1]) be such that

Xk = Xa_, + X( ) (k distpq —1)

2
k

= min {1, max {0, k distgn —1}} .

Q_1\Q 2
k k

See [14, p. 47] for reference. Then

|Dxi| = kX<Qi\QZ> :

77



Then the Coarea Formula [20, p. 112] implies

qumzj" mwn:f HL (005 db < c.
Q,%\Q,g (

Foi)
As in the proof of Theorem 5.5,

lim | F-DyxpdL" =—lim | x,ddivF = —/ 1ddiv F = div F(Q).
Q Q

k—o0 Q k—o0

On the other hand, for every k € N

Q

< 1Flloo 1Pxk]ly < HFHooilelg DXkl < ellFll -

Hence
uy : DM™(Q,R") - R : F — div F(Q)

is a continuous linear functional on a subspace of £* (2,R" L").  The
Hahn-Banach Theorem (cf. [18, p.63]) implies the existence of a measure

v € (ba (92, B(2),L£"))" such that for all F € DM>(U,R")

div F(Q?) = / Fdv. (5.2)
Q
Furthermore, ||v|| = ||ug||, implying minimality in the norm. Now by Propo-

sition 4.13, for almost every 6 > 0 and every F' € DM>(,R")
F - xa_; € DM™(,R")
and F' - xq_, has compact support in 2. By Proposition 4.12
div (F - xa_,;)(2) =0.
Thus, for every F' € DM™(Q,R")

/dezdivF(Q)
Q

=div (F' - xa\a_;) () + div (F - xo_;)($2)
= div (F - xa\0_,) ()

_ / Fdv[(Q\ Q).
Q
Thus, v[(£2\ Q_s) also satisfies Equation (5.2). The minimality of ||v|| then
implies

w9 5] =0.
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Since 6 > 0 can be arbitrarily small
corev C 0f).
Note that for B € B(Q2) having finite perimeter in R”
exxs € DM™(Q,R") .
In order to see this, compute
div (e - x) = Opxp = — VP H" 10" B

In particular

v(B) = —/ vBAH .
9*BNQ

Now, let B C R" be open. Then using the Gaufl Theorem from Evans (cf.
[20, p.209])

lv[(BNQ) > sup /¢dl/
$€Cj(B,R™)
|I¢H <1

sup / odv
q5601 B,R™)
4llo<1
22 sup  divo(Q)
$€C; (B,R™),
l6llc<1

= sup ¢-vrdHM!

$eCL(B,R™), J9*Q
llollo<1

= |Dxql (B)
= (’H”_lL@*Q)(B).

]

Remark 5.20. Theorem 5.18 still holds true for open €2 such that there
exists {0 }ren C (0, 00) such that klim o, = 0 and
—00

H"H(Q_5)dd < o0
sup][ck 5k> (Q_s) 00

keN

The arguments are the same as in Example 5.11 and Example 5.12.
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The following proposition is a new Gaufl-Green formula for essentially
bounded functions of bounded variation and essentially bounded vector fields
having divergence measure. In contrast to the literature, where only contin-
uous scalar fields were treated (cf. [32, p. 448], [12, p. 1014]), this is a new
quality.

Proposition 5.21. Let U C R"™ be open and Q € B(U) be a bounded set
of finite perimeter such that disto(OU) > 0. Furthermore, let {xy}ren C
Wb (U, [0,1]) be a good approzimation for xq and v € (ba (U, B(U), L™))"
be an associated normal measure.

Then for every F € DM (U, R") the set function

F”:B(U)—>]R:Bl—>/Fdl/
B

is an element of ba (U, B(U), L") with
core IV C 05}

and for every compactly supported f € BV (U) N L® (U, L™) the following
Gauf$ formula holds

div(f-F)(intQ)—i—/mxddiv(f~F): andF”: mf-qu.

Call F¥ normal trace of F' on 0f).

Proof. Note that
f-FeDM>U,R") .

See [12, p. 1014] for reference. Hence

div(f-F)(intQ)—i—/mxddiv(f-F): 8Qf-FdV.

Note that for every B € B(U)

‘/qu
B

F" eba(U,BU), L") .
Since for every B € B(U)

F”(B):/quz/ Fdv
B BN(Q25\02-5)
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the core of IV is a subset of 0f2.
Let ¢ > 0. Since f € L> (U, L"), there exist m € N, {yx}7, C R and
{Bx}1-, pairwise disjoint, such that

lur — - xB. |l <€ and UBk:U

k=0

Set h:= > yrxp,. Then
k=0

< +

fFdv — f fAF”
o0 9]

][m(f—h)de

f hde—f hdF”
o0 o0
ff—hdF”

o0

<el[Fllv[(U) +0+e[F¥[(U).

_I_

Since € > 0 was arbitrary

fFdv=4 fdF”.
[2)9] [oJ9)

]

5.2 Unbounded Vector Fields and Open Sets

In the previous section, general Gaufl formulas for essentially bounded vector
fields having divergence measure were presented. Example 5.15 and 5.17
showed that it is in general not possible to integrate unbounded vector fields
with respect to the normal measures obtained. In Proposition 5.21, the
measure F” was presented as a notion of normal trace.

In the following, this is carried over to the case of unbounded vector fields.
Therefore, a result due to Silhavy (cf. [32]) is improved upon. In particular,
Silhavy proved that for F' € DM (U,R") there exists a continuous linear
functional on Lip(0f2), the space of Lipschitz continuous functions on 052,
balancing the volume part of the Gaufl formula. The following exposition
proves that this functional can be represented by the sum of a Radon measure
F” and a measure pp € (ba (U, B(U), L"))" with core on the boundary. The
arguments from Silhavy are retraced, in order to give a self-contained proof
of the main theorem.

Throughout this section, for F' € (£L* (U, L™))" and V C U open, set

[ Fll oy = essSup]F| :
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It is essential for the subsequent proofs to be able to compare the Lipschitz
constant of a function by the norm of its gradient. The following lemma
enables this comparison on balls.

Lemma 5.22. Let U C R" be open and f € WH© (U,R). Then for every
29 € U and 0 < § < 5 disty,, (OU) with Bs (xo) C U

aS,yEBL;(CCo) |$ - y|
TH£Y

Proof. Let ¢ < §. For x € Bs(xg) set

f@) = [ ply=)fw)dy = px fo),

where p. is a scaled standard mollification kernel. Then as in Evans [20, p.
123]

00,Bas(z0) *

Df. = Pe * Df.
Note that f. — f point wise (cf. [20, p. 123]). Hence, for every z,y € Bjs (x¢)
with © # y

/(@) = fy)l =lim |fe(z) — f()]

< liminf | Df.||_ |z —y].
el0
Now for every = € B; ()

DE@I< [ 1o = IDFOIAL" < 1D |

Thus
|fl@) =Wl _ . .
sup  ~——————— < lminf |Df 5. o) < IDf oo, rs(x0)
I,yeia(:co) |I yl €l0
ay

]

Once the estimate on balls is obtained, it is possible to prove the state-
ment for path-connected sets.

Lemma 5.23. Let U C R™ be open and C' C U be compact and path-
connected. Furthermore let 0 < § < disto(9U).

Then there exists ¢ > 0 depending only on C' and & such that for every
J e W= (U,R)

f@) — [y

sup LSO < cypyy
z,yeC [z =y 7
T#Y
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Proof. First, let § < ¢ distc(9U). Note that

ccl)Bs().

zeC

Since C'is compact, there exists m € N and {z;}}, C C such that

C c | Bs() .

k=0

Now, let z,y € C' with = # y be such that |z — y| < §. Then
y € Bs(x) C Bys(x) CCys CU.
By Lemma 5.22
/(=) — f(w)|

<|IDf|
lz —yl

00,Bas () < ||Df||oo,C'25 )

Now, assume |z — y| > 0. Then there exists a continuous 7 : [0, 1] — C' such
that v(0) = x and v(1) = y. Let 0 < k& < m such that

T € Bjs (l’k)
and set
to := sup{t € [0,1] | 7(t) € Bs (1)} -
If 7v(to) € Bs (xx), then tg = 1 and y € Bs (x)). Hence
|f(x) = f(=)]

e S I < 10 f s

Otherwise, v(ty) ¢ Bs (x1). But then there exists 0 <1 < m and [ # k such
that

Y(to) € Bs (1)

and
~(t) ¢ Bs (xy) for all t > tg.

Set

Pty =47 + £ (v(t) =) for t < 1o
() otherwise.

In essence, 7 is a shortcut in Bjs (z) to the last point where 7 is in Bs (7).
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_ Repeating the steps above, induction yields a continuous path 7 : 0,1] —
Cs, 0 <m’ <m and {;,}%, C [0, 1] such that

() = F(teyn)| < 26 for 1 =0,...,m" — 1
and

[ = (k)] < 26 and [y — F(tw)| < 2.
Using Lemma 5.22 again for balls of radius 30

m’'—1

@) = f)l <If () = F@E)l + D [F () = FFEe))] + [ For) = F)]

m'—1

<D lloe,mes(ey 12 = T0) + D 1D Nl sy 7(E) = T(tia)|
=0

+ ||Df||00,365(y) ly — ()
SND SNl gy 26(m" +2)
<2(m +2) | D fl| o ¢y 12 — 91

Since x,y € C' were arbitrary

sup LE =IO o 9) DS
x,g;éEC |'I y|

Note that m only depends on C' and ¢. Finally, for 0 < ¢ < dist¢(0U) set

- 1
0:==9.
6
Then the inequality above yields
flx) = fy
sup TOZTIN < o 10,
syec T —y| ’
T#Y
This finishes the proof. O

Remark 5.24. The requirement that C'is path-connected cannot be dropped.
In order to see this, let U := R? and

C = [-1,1] x {~2,2}.

Let f € W' (R? R) be a Lipschitz continuous function such that

_J1 on[-2,2] x[1,3]
J = 0 on[-2,2] x[-3,—1].
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Then for 0 < < 1

IDflloc; =0
but
z,yeC [z — |
Ay

Since the trace operator of Silhavy [32] is defined on the space of Lipschitz
continuous functions, this space needs to be introduced now.

Definition 5.25. Let 2 C R". Let

Lip(€2)
denote the set of all Lipschitz continuous functions on ). For f € Lip(Q)
set
|f(z) = f(y)]
[l = Iflle + sup =—=—"=="
z,y€eQ, | Yl

T#Y

The following result is a slight variation of Lemma 3.2 in Silhavy [32, p.
451]. It states that the Gaufl formula yields zero, if the scalar field is zero on
the boundary.

Proposition 5.26. Let Q2 C R" be open and bounded, F € DM (Q,R") and

f € Lip(Q) be such that
floa =0.

Then
/F-Dfd£”+/fddivF:0.
Q Q

Proof. First, suppose that
supp f CC Q.

By Proposition 4.12 and Proposition 4.14

/1ddiv(F-f):/fddivF—l—/F-Dde":O.
Q Q Q
For the general case, let

Xk = Xa_p + (k diston —1) Xo_j\Q_,
= min {1, max {0, k distgqo —1}} € Lip().
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Then f - xr € Lip(Q) (cf. [14, p. 48]). In order to estimate the norm
independently of k € N, let x,y € Q. If z,y € Q_% then

[f(@)xk(@) = F @) = [f (@) = F)] < Flluip |7 = ol
Otherwise, w.l.o.g. . € Q\ Q_

[F (@) - xi (@) = F(y)xe(y)]

and

< 1@l = )]+ /@) - f)
< Wl ) = 0 +15) = F0)

0<distoq(z)<

< < sup |f(@)[k + ||f||Lip) [z —yl.
Since f vanishes on 0f)

2
sup [f(x) = O < [| £l -

0<distoq (z)<%

whence
If- Xk”Lip <3 ||f||Lip :

Furthermore, for every k € N

supp f - xx CC Q.

Hence, for every k € N

/F-D(f-Xk)dE”—I—/f-XkddiVF:O.
Q Q

First note that
/f-Xkddivfm/fddivF
Q Q

by the Dominated Convergence Theorem (cf. [20, p. 20]).
On the other hand, since [ D(f - xx)ll, < If - x&ll;, is bounded indepen-
dently of £ € N the Dominated Convergence Theorem also yields

/F.D(f.Xk)dmm/F-Dfd,c".
Q Q
Hence
/F-Dfd£”+/fddivF<’H—°o F-D(f-xk)dE”Jr/f-xkddivF:O.
Q Q Q Q
0
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The following proposition is a specialised version of Theorem 2.3 in Sil-
havy [32, p. 448]. It states that the volume part of a Gauf§ formula only
depends on the boundary values of the Lipschitz continuous scalar function.

Proposition 5.27. Let 2 C R" be open and bounded and F € DM*(Q,R™).
Then there exists a continuous linear functional

NTr(Q): Lip(0Q) — R

such that for every f € Lip(Q)

NTF(Q)(f|8Q):/QfddivF+/QF-Dfd£".

Furthermore

INT () < [Fllppe -

Proof. The proof follows the same lines as the one in [32, p. 452]. Let
f € Lip(09?) and fi, fo € Lip(R") be extensions of f to all of R (cf. [21, p.
201]). Note that (fi1 — f2)|ao = 0. Then by Proposition 5.26

/flddivF+/F-Df1d£”:/fgddivF+/F-Df2d£”.
9) Q Q Q
For f € Lip(df) and any extension f € Lip(R") of f define
NT(Q)(f) ::/?ddivF+/F-D7d£".
Q Q

Then N7 () : Lip(92) — R is well-defined and a linear functional. For
f € Lip(09) there exists an extension f € Lip(R"™) such that

HTHLip = Hf”Lip :

See Silhavy [32, p. 452] and Federer [21, p. 201] for reference. With this
extension

INT (@) < Idiv FL (@) || £l + 171 [ DF ||,
< [ Flipre ||7HLip
= 1o [[F 1l -
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Up to now, the arguments from Silhavy [32] were retraced. Now, the
representation of N'T () by the sum of a Radon measure and a measure
pr € (ba(U,B(U), L™))" is proved. This result is new because it gives the ab-
stract functionals found in the literature a concrete representation as integral
functionals.

Theorem 5.28. Gauf§ Theorem
Let U C R™ be open, Q C U be open with Q C U compact and 09 path-
connected. Furthermore, let F € DM (U, R").
Then there exists a Radon measure F¥ on 9 and ur € (ba (U, B(U), L™))"
with
core i C OS2

such that for all f € W1 (U,R) the following Gauf-Green formula holds

/ FAFY + DfduF:/fddivF+/F~Dfd£”.
o0 [o19) Q Q

Note that the existence of the measures in the above theorem is trivial,
neglecting the core and the support, up = FL" and F” = div F' would be
viable choices. The difficulty lies in the localisation of core up C 92 and the
support of F".

Proof. By Proposition 5.27 there exists a continuous linear functional N'T ()
on Lip(99) such that for every f € WhH> (U, R)

NTF(Q)<f|8Q):/QfddivF+/QF-Dfd£"_

Let 0 < § < distq(0U). Note that by [20, p. 131f] every f € W1 (U, [0,1])

is locally Lipschitz continuous. Since ) is compact and path-connected, f €
Lip(Q) (cf. Lemma 5.23). Then by Lemma 5.23 for every f € W' (U, R)

1 lsalluy < Ifloalle + e IDFl om, (5.3)
with ¢ > 0 depending only on § and 0€2. Note that
LW (ULR) = G (90) % £ (90),, R", £7) with 1(f) = (Flos Do,
is continuous and linear. Set

Xo = (W (U,R))
and define

uy : Xo = R with <US, (flog, Df|(8Q)5)> = NTF(Q)(f|BQ) .

88



Then wuf is a continuous linear functional on the linear space Xy C Cj (02) x
L ((02)5,R™, L") by equation (5.3).

By the Hahn-Banach Theorem (cf. [18, p. 63]) there exists a continuous
linear extension u* of uf to all of Cy (2) x L ((082);, R™, L") with |u*|| =
|lugll. Note that the dual of a product space can be identified with the
product of the dual spaces. Hence, as in Proposition 5.1, there exist a Radon
measure F” on 0 and a measure p € (ba ((0Q);, B((09),), L))" such that
for all f € W (U, R)

NTr(Q)(floa) = (u*, (flag, Dflow),)) = andF” - o Dfdu. (5.4)

This proves that there is p € (ba (U, B(U), L"))" with core u C (99Q); such
that the above equation is satisfied. It remains to show that there exists pug
with core ugp C 02 satistying the same equation. Now, let

X, = {F € L= ((092);, R, L") |3f € W' (U,R)
IF € L= ((09),,R", L") :
F =0 on (99); for some 0 < § < &
F=Df+F}

Then uj : X; — R with

Wi (F) = Dfdp
(09)5

defines a linear functional on X; with

il < [l -

First, it is shown that the definition is independent of the decomposition of F.
Therefore, let F € X, and f1, f» € W' (U,R), Fy, Fy € L™ ((02)5,R™, L")
be such that for some 0 < d < ¢

Fl = F2 =0 on (89)5

and .
F:Df1+F1:Df2+F2

Then
Df1 = DfQ on (89)5
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Since 02 is path-connected, (02); is path-connected. Hence f; — f> is con-
stant on (0€2);. Note that for ¢ € R

NTF(Q)(é):/ 6dF”+/ Odu:/ cdF”.
o0 09 o0

Hence Equation (5.4) yields
D(fi — fa)dp = NTr(Q)((fi — f2)loa) — fi— fadF" =0.
(09); o0

This shows that u} is well-defined.

Since X7 C L>((09Q)s,R™, L") is a linear subspace, the Hahn-Banach
Theorem (cf. [18, p. 63]) yields an extension of uj to all of L= ((0€)4, R, L")
and by Proposition 5.1 a measure pur € (ba ((092);, B((082)4), £™))" with

(092);

/ Fdup = (uj,0+F)=0
(09);

By definition,

for F € £ ((09),, R", L") with F = 0 on (9Q); for some 0 < § < §. Hence,
core i C O0S).

Since for every f € Wh> (U, R)

Dfdu=(u,Df +0)= [  Dfdpus
(094 (094

by definition, the statement of the theorem follows. O

Remark 5.29. Note that the measure pp is a direct result of the analysis.
In regular settings, this measure is expected to be zero (see also Example
5.30). For FF € DM>(U,R") and open 2 € B(U) having finite perimeter
such that the inner normal measure exists (see Example 5.12), Proposition
5.21 and Proposition 3.23 yield the existence of a Radon measure F¥ on 0f)
such that for all compactly supported continuous functions f € BY (U)

div (f - F)(Q) = L par.

In particular, pp = 0.
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For the general case note that for k € N

Xk = X(aQ) (1 _— kdlstag) e WLOO (U7 R) *

==

Since yr = 1 on 052, Proposition 5.26 yields
/kaddivF+/F-D(f-xk)dﬁnz/fddivF+/F-Dfdﬁ”.
o) Q 0 Q
Using Dominated Convergence (cf. [20, p. 20]) yields

/ FxrddivF £ 0
Q

Q Q

LNy lim/fFkadE”,
Q

k—o0

where the last limit exists because the other addends tend to zero and their
sum is constant. Hence

lim/fFDXkd[,”: fdF" + Dfdur.
Q o0

Note that the left-hand side is essentially the same as in Schuricht [31, p.
534] (cf. [32, p. 449]).

The following example computes the Radon measure F” for a concrete
vector field F.

Example 5.30. Revisiting a rotated version of Example 5.15, let U :=
By (0), Q := (0,1)? and F € DM (U,R") be defined via

Fla,y) = \/Llﬂ ((1)) |

Then div F' = 0. For every k € N define
Xk := max{1 — kdistan, 0} € W (U, [0,1]) .

Then for every k € N with k£ > 2 and every f € WL (U, R)
/fddivF+/F-Dfd£”:/kaddivF+/F-D(f-Xk)d£"
0 Q Q Q
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by Proposition 5.26. Since div F' = 0, this is equal to

/ F- (Df — k?diStaQ Df - k‘fDdlStaQ) dc". (55)
QA\Q

This integral can be computed by partitioning 2\ Q_1 into the sets

Q= (0,%)2,622 = (1—%,1)2

o= (13)x (1-4) 00 (- 1)« (0]
o= (1) (f1-5) = (1-50) = (31-3)
0= (L= D) (08) o (a1 i L)

Here, the computation is only carried out for )7, the other parts are evaluated
by similar elementary computations. Note that

distgq(z,y) =y on Q7.

Hence 5.5 on Q)7 is equal to

/1 / 0uf - ky82|f K 4y da

Note that df is bounded, whence 2L e £ (U, £") and

N
an k—oo
dL" —— 0.
Aw;wmw¢m

Furthermore

‘/(;,1_;)40, ) kya2

1
k

][ / dxdy
1-1) \:c

dz

swwmm/
k ©0.1) / |x|

k—o0
0.
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Finally

T — dz
o1 VT
Hence
0 f(.T,O) f —1
F-D(f i) dcr 222 — do = — _anrt
/7 01 VT 0,1)x{0} VT

Computing the remaining integrals in a similar way yields
1

F¥ = L%L"—lL(o, 1) x {1} — NG

7 H"1(0,1) x {0}

and

The preceding example illustrates that pr can vanish even for vector fields
that are unbounded near an n — 1-dimensional manifold. The function in the
following example is the same as in [32, p. 449f].

Example 5.31. Let n = 2 and U = B, (0) C R% Furthermore, let Q =
(0,1)? and F € DM (U, R™) be defined via

1 y

Note that div F' is the zero measure. In order to see this, let ¢ € C§ (U).
Then

/F-ngdﬁ”:lim F-D¢pdL"
U 040 Ju\ B;(0)
= lim ¢F~ud’l—[”‘1—/ pdiv FdL™.
040 Jop, (o) U\B;(0)
But F'-v =0 o0n 0B;s(0) and div ' =0 on U \ Bs (0).
Now, set
fk: = X(%,oo)xR =+ X(O,%)ka diSt{o}XR € Wl’oo (U, [0, 1]) .
Then

ka = X(O,%)kael .

93



By Theorem 5.28, there exists a Radon measure F” on 9Q and ur € (ba (U, B(U), L™))"
with core up C 02 such that for k € N

/F-kadE”Jr/fkddivF:f Dfidur+ | f.dF”.
Q Q o0 o0

But fr = 0 on 012 and div F = 0. Hence

Q
)
dydx
) /(0,1) x? + 12

N
/QF-kadE” :][(0
][m) B 1n(x2+y2)]:dx

1 1
][ —In|—+1)dx
(02)2  \2*

k—o0

In(k* +1) —= o0

Furthermore

1
'k

1
>
-2

The example above shows that pp can actually be non-zero, if the con-

centrations of the vector field F' are sufficiently large near 0€2. Thus, upg is
indeed necessary for the characterisation of the Gauf-Green formula.

Example 5.32. Revisiting Example 5.17, let n = 2 and U := B, (0) C R™.
Furthermore, let Q := (0,1) x (—1,1) and F € DM*(U,R") be defined by

1 1 T

Recall that div F' = §y. For k € N let f € WH> (U, [0,1]) be defined by

fr = X( «r T kdistioyxr X(m%)w )

1
POO)

Then

x
F-Df dC":][ / ————dydx
/Q : (0.3) J(-1,0) 27 (22 + y?)

1 1

= — [arctan Q} dx
2m (0,1) rl-1
1 1

= — 2 arctan — dzx
27 7%) T

k—00
—_—

(0
1
2
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In contrast to the previous example, this example shows a vector field with
a strongly concentrated divergence in zero, yet ppr seems to be zero. Indeed,
in [32, p. 449] Silhavy shows that the normal trace can be represented by a
Radon measure, if

1
lim — |F' - Ddistgq|dL" < c0.
510 0 Q\Q_s

This holds true in the last example and thus pur = 0.
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Chapter 6

Conclusion

In this thesis, pure measures and their application to Gaufl formulas are inves-
tigated. The characterisation of the dual of the essentially bounded functions
is improved by decomposing the weakly absolutely continuous measures into
pure parts and a o-measure with a Lebesgue density. Moreover, a new large
class of pure measures on R" is identified. This class of so-called density
measures is comprised of measures that concentrate on Lebesgue null sets
and are often explicitly computable, in contrast to the examples given in the
literature. In plus, they have a natural connection to singular Radon mea-
sures, i.e. every pure measure can be represented by a Radon measure on its
core and every Radon measure can be extended to a measure on the entire
domain.

This connection motivates the use of pure measures for Gauf§ formulas.
It turns out that in the case of essentially bounded vector fields on sets of
finite perimeter there exist normal measures. In general, these measures
are pure and are explicitly computable on sets of finite perimeter. Together
with the product formulas for vector fields having divergence measure, they
yield not one, but many Gaufl formulas for essentially bounded functions
and vector fields. These new Gaufl formulas separate the geometry and the
vector field very well and enable the use of integration theory for the normal
trace. In the case of unbounded vector fields, integrability with respect to
normal measures cannot be assured. This is shown in concrete examples.

Nevertheless, Gauf$ formulas with the normal trace being a continuous lin-
ear functional on the space of Lipschitz continuous functions on the boundary
were proved by Silhavy [32] and Torres [13], among others. In this thesis, the
result from Silhavy is improved by proving that his normal trace functional
can be represented as a sum of a Radon measure and a measure which is
pure if the boundary of the domain of integration has no volume. This gives
the normal trace the shape of an integral over the boundary. Interestingly,
the new measure up that emerges from the analysis acts on the values of the
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gradient on the boundary.

Future research might clarify the structure of the extremal points of the
set of all density measures. They are of interest because any bounded measure
can essentially be approximated by convex combinations of these directionally
concentrated measures.

In this thesis, the application of pure measures to normal traces and Gauf3
formulas is emphasised. It is to be expected that traces of Sobolev functions
and functions of bounded variation can be treated in a similar manner. In
addition, density measures could be used to establish another approach to
set valued gradients. The approach sketched in this exposition shows that at
least basic rules of differential calculus are readily available.

The fine structure of the measures representing the normal trace func-
tional due to Silhavy also poses an interesting problem. Since the test func-
tions available are only Lipschitz continuous and point wise convergence does
not imply convergence in measure, their values are not readily available for
arbitrary sets of finite perimeter.

Another venue of research is the application to Continuum Mechanics.
The literature on edge contact forces contains models where terms similar
to the measure up appear (cf. [17, p. 44], [16, p. 96]). If up turned out
to be non-zero in these models, the structure of forces considered would be
justified analytically.

Pure measures turn out to be well suited for the representation of traces
and normal traces in particular. This can be explained by the fact that they
represent the dual space of essentially bounded functions. All in all, pure
measures seem to be a good tool to describe phenomena where quantities
defined on a volume concentrate on low-dimensional sets.

97



Bibliography

1]

2]

[7]

8]

A. D. Alexandroff. Additive set functions in abstract spaces II. Recueil
Mathématique [Mat. Sbornik], 9(51)(3):563-628, 1941.

Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of Bounded

Variation and Free Discontinuity Problems. Oxford University Press,
New York, 2000.

Gabriele Anzellotti. Pairings between measures and bounded functions
and compensated compactness. Annali di Matematica Pura ed Appli-
cata, 135(1):293-318, December 1983.

Garret Birkhoff. Lattice Theory, volume 25 of Colloquium publications.
American Mathematical Society, Providence, 1993.

S. Bochner. Remark on the theorem of Green. Duke Math. J., 3(2):334~
338, June 1937.

S. Bochner. Additive Set Functions on Groups. Annals of Mathematics,
40(4):769-799, 1939.

S. Bochner. Finitely Additive Integral. Amnnals of Mathematics,
41(3):495-504, 1940.

Gui-Qiang Chen and Hermano Frid. Divergence-Measure Fields and
Hyperbolic Conservation Laws. Archive for Rational Mechanics and
Analysis, 147(2):89-118, 1999.

Gui-Qiang Chen and Hermano Frid. On the theory of divergence-
measure fields and its applications. Boletim da Sociedade Brasileira
de Matematica, 32(3):401, November 2001.

Gui-Qiang Chen and Hermano Frid. Extended Divergence-Measure
Fields and the Euler Equations for Gas Dynamics. Communications
in Mathematical Physics, 236(2):251-280, May 2003.

98



[11]

[12]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Gui-Qiang Chen and Monica Torres. Divergence-Measure Fields, Sets
of Finite Perimeter, and Conservation Laws. Archive for Rational Me-
chanics and Analysis, 175(2):245-267, February 2005.

Gui-Qiang Chen and Monica Torres. On the structure of solutions of
nonlinear hyperbolic systems of conservation laws. Communications on
Pure and Applied Analysis, 10(4):1011-1036, 2011.

Gui-Qiang Chen, William P. Ziemer, and Monica Torres. Gauss-Green
theorem for weakly differentiable vector fields, sets of finite perimeter,
and balance laws. Communications on Pure and Applied Mathematics,
62(2):242-304, February 2009.

Franke H. Clarke. Optimization and Nonsmooth Analysis. Classics in
Applied Mathematics. Wiley, 1984.

Marco Degiovanni, Alfredo Marzocchi, and Alessandro Musesti. Cauchy
Fluxes Associated with Tensor Fields Having Divergence Measure.
Archive for Rational Mechanics and Analysis, 147(3):197-223, August
1999.

Marco Degiovanni, Alfredo Marzocchi, and Alessandro Musesti. Edge-
force densities and second-order powers. Annali di Matematica Pura ed
Applicata, 185(1):81-103, February 2006.

F. Dell‘Isola and P. Seppecher. Edge Contact Forces and Quasi-Balanced
Power. Meccanica, 32(1):33-52, February 1997.

Nelson Dunford and Jacob T. Schwartz. Linear Operators, General
Theory - Part 1. Wiley Classics Library. Wiley Interscience, 1988.

Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis. Functional Anal-
ysis - An Introduction, volume 66 of Graduate Studies in Mathematics.
American Mathematical Society, 2004.

Lawrence C. Evans and R. Gariepy. Measure Theory and Fine Properties
of Functions. CRC Press, 1992.

Herbert Federer. Geometric Measure Theory. Springer, Berlin, reprint
of 1969 ed. edition, 1996.

Carl Friedrich Gaufl. Theoria Attractionis Corporum Sphaeroidicorum
Ellipticorum Homogeneorum Methodo nova tractata. In Werke, vol-
ume 5, pages 1-22. 2 edition, 1813.

99



23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

Morton E. Gurtin, William O. Williams, and William P. Ziemer. Geo-
metric measure theory and the axioms of continuum thermodynamics.
Archive for Rational Mechanics and Analysis, 92(1):1-22, March 1986.

Paul R. Halmos. Measure Theory, volume 18 of Graduate Texts in Math-
ematics. Springer Berlin Heidelberg, 1974.

Heinrich Hertz. Uber die Beriihrung fester elastischer Korper. Journal
fur die reine und angewandte Mathematik, 92:156-171, 1882.

Victor J. Katz. The history of Stokes” theorem. Mathematics Magazine,
52(3):146-156, 1979.

A. Kolmogoroff. Untersuchungen iiber den Integralbegriff. Mathematis-
che Annalen, 103(1):654-696, 1930.

Solomon Leader. The theory of Lp-spaces for finitely additive set func-
tions. Annals of Mathematics. Second Series, 58:528-543, 1953.

Gert. K. Pedersen. Analysis Now, volume 118 of Graduate Texts in
Mathematics. Springer New York, 1989.

K. P. S. Bhaskara Rao and M. Bhaskara Rao. Theory of Charges - A
Study of Finitely Additive Measures. Pure and Applied Mathematics -
A Series of Monographs and Textbooks. Academic Press, London, 1983.

Friedemann Schuricht. A New Mathematical Foundation for Contact

Interactions in Continuum Physics. Archive for Rational Mechanics and
Analysis, 184(3):495-551, June 2007.

Miroslav Silhavy. The Divergence Theorem for Divergence Measure Vec-
torfields on Sets with Fractal Boundaries. Mathematics and Mechanics
of Solids, 14(5):445-455, 2009.

Kosaku Yosida and Edwin Hewitt. Finitely Additive Measures. In Bul-
letin of the American Mathematical Society, volume 57, pages 4666,
Providence, 1951. American Mathematical Society.

Eberhard Zeidler. Nonlinear Functional Analysis and Its Applications,
volume III. Springer Berlin Heidelberg, 1986.

Eberhard Zeidler. Nonlinear Functional Analysis and Its Applications,
volume I. Springer Berlin Heidelberg, 1986.

100



List of Symbols

Functions and Function Spaces

X
BY (Q)
1D f](£2)

Co ()
¢(Q)

()

*

u

Df

()

div F
DMP(U,R?)
e

o

XB

Lip(£2)

LP (2, A, p)

a normed space
space of functions of bounded variation, page 55

total variation of a function of bounded varia-
tion, page 55

continuous functions with compact support

continuous functions on €2, with continuous ex-
tension to {2

k times differentiable functions with bounded
derivatives

an element of X*

the (weak) derivative of F’

dual pairing

divergence measure of F', page 59

LP vector fields having divergence measure, page 59
dual space of the Banach space X

ﬁ + ]lj = 1, the Holder conjugate

xB = 1 on B, zero otherwise

Lipschitz continuous functions on €2, page 85

p-integrable functions w.r.t to algebra A and
measure ji, page 28
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LP (A, 1)
LP (2, )
L7 (82, p)

Xk

e
v

supp(¢)
f’A

Cg° ()

h

Wh? (U, R)
2P(, 5, p)

Integrals

1= f2 prae.

s f
Jo fdp
Iz fdu
Ji¢

fo fdp
Lattices
]

I+

-

LJ_

Equivalence classes in L? (2, A, 1), page 28
LP (Q, A, u) with A = B(Q), page 28
Lr(Q, A, p) with A = B(2), page 28

good approximation of the characteristic func-
tion, page 64

measure from Gaufl Theorem, page 88
Radon measure from Gaufl Theorem, page 88
closure of the set where ¢ # 0

restriction of f to A

smooth functions with compact support
simple function, page 24

Sobolev space of order k and exponent p

measures A, A << p, [[A[], < oo, page 33

fi = fo a.e., page 25
fr converge in measure to f, page 25

integral of f w.r.t. measure u, page 28
1

oy Je Fdn

refinement integral of (, page 32

fq; fdu, where C' = core i1, page 30

[T +1", page 6
[V 0, page 6
I A0, page 6

orthogonal complement, page 7
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ll J_lg |11’/\|l2| :O, pageﬁ
Iy Vi sup{ly, 2}, page 6
Iy ANl inf{ly, 2}, page 6

Measures Theory

A algebra, page 10

a(n) volume of the n-dimensional unit ball

ba(€2, .A) space of bounded measures on €2, page 10

ba (2, A, \) bounded and weakly absolutely continuous mea-
sures w.r.t. A\, page 14

ca(Q2, A) space of bounded o-measures on €2, page 10

core 1 core of u, page 17

densc(B) lgﬂr)l %, page 17

Dens (C) density measures for C', page 37

He d-dimensional Hausdorff measure

L n-dimensional Lebesgue measure

<< A 1 is absolutely continuous w.r.t. A, page 13

<A u(A) < A(A) for all A € A, page 11

<< A 1 is weakly absolutely continuous w.r.t. A, page 14

[y A measures, page 9

e o-additive part of u, page 12

Lp pure part of u, page 12

W negative part of u, page 11

VB (measure theoretic) normal to B

w outer measure for u, page 24

i

positive part of u, page 11
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A restriction of u to A, page 11

o-algebra, page 10

o o-measure, page 10
| total variation of p, page 11
Norms
[RalFy Iflle + xs;le% %7 page 85
T#Y
1| o v ess‘éup|F\, page 81
1/l sup | f ()]
1£1l, LP-norm of f, page 29
[RY[ p-norm of the measure A, page 33
Il sup (u”, )
=l <1
gl |1l (2), page 12
Sets
A° set theoretic complement of A
Bs (x) ball centred at x with radius 6 > 0
0N topological boundary of €2
B(Q) Borel subsets of €2, i.e. g-algebra generated by
relatively open sets
Q topological closure of 2
distg signed distance function, page 37
Qs {z € U | disto(x) < 0}, page 37
Q a subset of R", page 9
Graph(f) set of points (z, f(z))
int ) topological interior of €2
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0. B
Bea:t
Bint

PA(A)
29
R(h)
0*B
ACB

an (index) set

measure theoretic boundary of B, page 56
measure theoretic exterior of B, page 56
measure theoretic interior of B, page 56
natural numbers

Partitions of A by sets in A, page 32
class of subsets of €2

{yeR |3z eQ:h(x) =y}, page 24
reduced boundary of B, page 57

Vre A:z e B

n € N,n > 0, page 9
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Glossary

set of finite perimeter, 56 normal measure, 66
normal sublattice, 7

absolutely continuous, 13 null function. 25

algebra, 10
aura, 19 orthogonal lattice elements, 6

aura sequence, 19
Portmanteau functions, 73

bounded measure, 10 positive part of a measure, 11
boundedly complete lattice, 6 pure measure, 12
convergence in measure, 25 refinement integrable, 32
core, 17 refinement integral, 32

core dimension of pu, 17
o-measure, 10

density measure, 37 o-algebra, 10

determining sequence of an integrable signed distance function, 37
function, 28 simple function, 24

directionally concentrated density mea-simple measure, 34

sure, 49
total variation of a measure, 11
equal a.e., 25
weakly absolutely continuous, 14
function of bounded varation, 55

Gauf} formula, 65, 74, 77, 80, 88
good approximation, 64

having divergence measure, 59

integrable function, 28
integrable simple function, 27
integral of a simple function, 28

measurable function, 26
measure, 9

negative part of a measure, 11
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