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Abstract 

Knowledge about the micro-scale variability of airborne particles is a crucial 
criterion for air quality assessment within complex terrains such as urban 
areas. Due to the significant costs and time consumption related to the work 
required for standardized measurements of particle concentrations, dense 
monitoring networks are regularly missing. Models that simulate the 
transmission of particles are often difficult to use and/or computationally 
expensive. As a result, information regarding on-site particle concentrations at 
small scales is still limited. 
This thesis explores the micro-scale variability of aerosol concentrations in 
space and time using different methods. Experimental fieldwork, including 
measurements with mobile sensor equipment alongside a survey, and 
modeling approaches were conducted. Applied simulation studies, a 
performance assessment of two popular particle dispersion models, namely 
Austal2000 and ENVI-met, as well as the development of an ANN model are 
presented. The cities of Aachen and Münster were chosen as case studies for 
this research. 
Unexpected patterns of particle mass concentrations could be observed, 
including the identification of diffuse particle sources inside a park area with 
strong evidence that unpaved surfaces contributed to local aerosol 
concentration. In addition, vehicle traffic was proved to be a major contributor 
of particles, particularly close to traffic lanes. Results of the survey reveal that 
people were not able to distinguish between different aerosol concentration 
levels. Austal2000 and ENVI-met turned out to have room for improvement in 
terms of the reproduction of observed particle concentration levels, with both 
models having a tendency toward underestimation. The newly developed ANN 
model was confirmed to be a fairly accurate tool for predicting aerosol 
concentrations in both space and time, and demonstrates the principal ability 
of the approach also in the domain of air quality monitoring. 

Keywords: Air quality; Austal2000; ENVI-met; Environmental acoustics; 
Machine learning; Micro-scale simulations; Model performance; Neural 
networks; Particle dispersion; Particulate matter; Personal exposure 
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Zusammenfassung 

Für die Luftqualitätsbewertung in urbanem Gelände sind Informationen zur 
raumzeitlichen Variabilität luftgetragener Feinstaubpartikel auf kleiner Skala 
von wichtiger Bedeutung. Standardisierte Messverfahren, zur Bestimmung von 
Partikelkonzentrationen, sind mit hohem Zeit- und Kostenaufwand 
verbunden, weshalb dichte Messnetze selten vorhanden sind. 
Simulationsmodelle zur Berechnung des Partikeltransports sind kompliziert in 
der Anwendung und/oder benötigen hohe Computerrechenleistung. 
Infolgedessen gibt es bezüglich örtlicher Partikelkonzentrationen noch große 
Informationslücken. 
Diese Arbeit untersucht die mikroskalige Variabilität von Aerosolen in Raum 
und Zeit mit Hilfe unterschiedlicher Methoden. Für Feldexperimente wurden 
Messwerterhebungen mit mobilen Sensoren und eine Passantenbefragung 
durchgeführt. Weiterhin wurden Modellierungsansätze angewendet. In dieser 
Arbeit wurden die Partikeltransportmodelle ENVI-met und Austal2000 
einerseits in ihrer Leistung bewertet und andererseits in angewandten Studien 
eingesetzt. Weiterhin wurde ein neuronales Netzwerk zur Vorhersage von 
Partikelkonzentrationen entwickelt. Die Untersuchungen wurden 
exemplarisch in den Städten Aachen und Münster durchgeführt. 
Es konnten unerwartete Verteilungsmuster hinsichtlich der 
Massekonzentration von Partikeln beobachtet werden. In einem 
innerstädtischen Park wurden diffuse Partikelquellen identifiziert, mit einem 
deutlichen Hinweis darauf, dass feuchtgelagerte Wegedecken einen 
maßgeblichen Anteil an lokalen Partikelimmissionen hatten. Weiterhin wurde 
Straßenverkehr als wichtiger Beitrag zum städtischen Aerosol identifiziert, 
insbesondere in der Nähe von Verkehrswegen. Ergebnisse der Befragungen 
ergaben, dass Passanten, die verschiedenen Partikelkonzentrationen 
ausgesetzt waren, diese durch Wahrnehmung nicht unterscheiden konnten. 
Die Modelle Austal2000 und ENVI-met zeigten bei Simulationen 
Ungenauigkeiten in Form von Unterschätzungen im Vergleich zu Messwerten. 
Das neu entwickelte neuronale Netzwerk prognostizierte 
Partikelkonzentrationen teilweise mit hoher Genauigkeit. Der entwickelte 
Ansatz zeigt das große Potenzial von neuronalen Netzen für die Vorhersage 
von Partikelkonzentrationen, auch für den Bereich der 
Luftqualitätsüberwachung, in räumlicher und zeitlicher Ausdehnung auf. 

Keywords: Aerosol; Akustik; Austal2000; Belastung; ENVI-met; Feinstaub; 
Individuelle Exposition; Luftqualität; Mikroskalige Simulation; Modellleistung; 
Neuronales Netz; Partikelverteilung; Umwelt 
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1. Introduction 

1.1 Structure of the thesis 

This thesis is based on the content of three citation-indexed and peer-reviewed 
journal papers. The main outcomes of the publications are summarized in this 
synthesis, which puts the results of the individual studies in the broader context of 
the RQs listed in Sect. 1.5. The presented synthesis is intended to be a stand-alone 
document; however, a similarity to some degree with the content of the three papers 
is inevitable. 

Sect 1.  Introduction 

 provides a short overview of the current scientific challenges in the 
research area of the thesis. It defines the framework as well as the 
open research questions and respective objectives of the thesis. 

Sect 2.  The field experiment analysis 

 outlines the motivation for the multidisciplinary framework of the 
field experiment study, presents the study design and research sites, 
and illustrates the main outcomes that could be reached by analysis 
of field experiment data. 

Sect 3.  Deterministic modeling of particle distribution in the urban 
ABL 

 justifies the comparison of two different deterministic simulation 
tools, and presents the test case environments, configuration 
choices, and recommendations for successful modeling, as well as a 
performance analysis, where predictions were compared to 
observations. It furthermore includes the presentation of two 
applied studies, quantifying resuspension source emissions of 
particles and assessing the influence of vegetation elements on 
ground-level aerosol concentrations. 
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Sect 4.  Prediction of particle concentrations using a newly developed 
statistical model 

 describes the motivation for the development of the ANN model, 
discusses the testbed environment as well as technical steps that 
should be considered during ANN model development, and outlines 
the performance and ability of the approach presented. 

Sect 5.  Conclusions and outlook 

 concludes the thesis and identifies directions for future research. 

The synthesis is followed by the thesis papers, which are reproduced in their 
original journal format, and an appendix: 

Journal paper I, Small-scale variability of particulate matter and perception of air 

quality in an inner-city recreational area in Aachen, Germany 

Journal paper II, A comparison of model performance between ENVI-met and 

Austal2000 for particulate matter 

Journal paper III, Modeling of Urban Near-Road Atmospheric PM Concentrations 

Using an Artificial Neural Network Approach with Acoustic Data Input 

Appendix A, Micro-scale variability of PM10 – Influence of vegetation elements on 

ground-level aerosol concentrations; A conference poster presented at the 
European Geoscience Union, EGU – General Assembly, 2016, April 2016. 
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1.2 Perspective 

Poor air quality as a result of air pollutants like particulate matter (PM) is a 
major environmental risk to health (WHO, 2013). Results of epidemiological studies 
suggest that both long-term and even short-term stays at locations with high 
atmospheric PM concentrations, for example while commuting or relaxing, could 
have significant impacts on health and are linked with issues such as respiratory 
and cardiovascular diseases (Brunekreef and Holgate, 2002; Pope et al., 2002; von 
Klot, 2005; Chow et al., 2006; Raaschou-Nielsen et al., 2013). In cities, particles 
emitted through anthropogenic activities, such as industrial works, domestic 
heating, or vehicle traffic, which often include toxic, carcinogenic, or mutagenic 
materials (Kelly and Fussell, 2012), contribute to the urban aerosol (Lenschow, 2001), 
leading to increased particle concentrations that can even be visually recognized at 
times, as in the example shown in Fig. 1. Not only are levels of particle 
concentrations observed to be higher in urban spaces but they also affect a 
considerably larger number of people in comparison to rural areas. Over half of the 
world’s population lives in cities. In Europe urbanization is even more progressed. 
Nowadays, over 70 % of European citizens live in cities with a future perspective of 
further increasing urbanization (United Nations, 2014). In general, urban citizens are 
influenced by numerous environmental stressors, one of the major ones being PM, 
due to the time they spend close to the respective sources (Vlachokostas et al., 2012). 
It is estimated that in European cities life expectancy at age 30 is reduced by up to 
22 months solely due to the fact that outdoor particle concentrations exceed the 
World Health Organization (WHO) air quality guidelines (Pascal et al., 2013). The 
combination of both regular exceedances of air quality standards in cities (EEA, 
2016) and the fact that throughout the world the majority of people live in urban 
areas highlights the importance of the research area at hand concerning the issue of 
urban air pollution through PM and its respective distribution. 

The individual outdoor exposure to airborne particles is complex to describe 
and is highly dependent on the specific whereabouts (Dons et al., 2011; Broich et al., 
2012; Steinle et al., 2013; Bekö et al., 2015; Spinazzè et al., 2015; Van den Bossche et 
al., 2016). In cities vehicle traffic has been identified as a major contributor to the 
aerosol strain near roads (Morawska et al., 1999; Karagulian et al., 2015; Manousakas 
et al., 2017) due to both exhaust and non-exhaust inputs (Ketzel et al., 2007; Amato 
et al., 2014). High levels of particle concentrations are found to occur mostly within 
street canyons (Wurzler et al., 2016). However, knowledge of aerosol distribution 
patterns in complex terrain on the urban micro-scale and their related drivers is still 
limited (Kumar et al., 2009). 
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Observation of particle concentrations with reference methods is an important 
task due to the surveillance of air quality standards. However, traditional 
monitoring of particle concentrations may not accurately characterize the spatial 
variability in the surrounding area and may thus not be representative of the city as 
a whole (Wilson et al., 2005). Reference instrumentation is expensive and, therefore, 
dense monitoring networks to overcome this issue are regularly missing (Laden et 
al., 2006). As a result, information on micro-scale particle concentrations and the 
distribution of particles derived from field data is limited. Recently developed 
economic micro-sensors have until now been unable to mitigate the poor 
availability of information in the dimension of space since this generation of micro-
sensor platforms still shows mostly poor performance for PM in particular (Borrego 
et al., 2016).  

Air pollution dispersion modeling is an important additional tool in urban air-
quality regulation and planning throughout the world (El-Harbawi, 2013). Models 
simulate the concentration of air pollutants at specific times and locations, and can 
be cost- and time-effective integrative alternatives to field measurements. Numerous 
methods have been developed and these can be divided into two main approaches: 
namely, deterministic and statistical modeling (Massmeyer, 1999). Deterministic 
models describe the physical processes that determine the particle transportation in 
the atmosphere (Daly and Zannetti, 2007; Lateb et al., 2016). Statistical methods rest 
on data analysis, forging empirical relationships between predictive values and 
predictor variables (e.g., Santos and Fernández-Olmo, 2016). Until now, despite 
successful application, modeling approaches of both deterministic and statistical 

Fig. 1: Photograph of the Guanabara Bay area of Rio de Janeiro, Brazil, showing 
considerably polluted air up to a few hundred meters AGL, capped by a late morning 
temperature inversion. The photograph has been taken from the viewpoint of the statue 
Christ the Redeemer during a field trip at a project workshop of RWTH Aachen University 
and the Universidad Federal do Rio de Janeiro in 2014. 
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methods show room for improvement with regard to their performance (Blocken et 
al., 2013). 

As already identified, besides various air pollutants, individuals are 
simultaneously exposed to several other environmental stressors, such as noise or 
thermal stress. There is a need to address co-exposure in a more integrated way due 
to a current lack of multi-disciplinary environmental studies (Mauderly et al., 2010; 
Vlachokostas et al., 2012, 2014). Focusing on the development of innovative 
solutions for the cities of the future, the research project UFO (Urban Future 
Outline2) was initiated within the Project House HumTec (Human Technology 
Centre3) at RWTH Aachen University, funded by the German federal and state 
governments’ Excellence Initiative, in order to establish a multi-disciplinary 
platform for research on urban spaces. The FuEco sub-project (Future Ecosystem4), 
part of UFO, focused on the assessment of combined stresses in urban public spaces 
and brought together scientists from various backgrounds, including 
humanities/social sciences, engineering, and natural sciences. The work presented 
in this thesis took place within the frame of the FuEco project. 
  

                                                        
2 www.humtec.rwth-aachen.de/index.php?article_id=881&clang=1. The UFO 

project, led by C. Schneider (now at HU Berlin) and M. Ziefle, was initially 
funded for two years. 

3 http://www.humtec.rwth-aachen.de/index.php?article_id=1&clang=1. Project 
House HumTec at RWTH Aachen. 

4 http://www.humtec.rwth-aachen.de/index.php?article_id=1055&clang=1. The 
FuEco project, led by C. Schneider (now at HU Berlin) and M. Ziefle, and 
coordinated by the author of this thesis, integrated five chairs at RWTH 
Aachen (Communication Science, Physical Geography and Climatology, 
Technical and Medical Acoustics, Computer Aided Architectural Design, & 
Virtual Reality). 

http://www.humtec.rwth-aachen.de/index.php?article_id=881&clang=1
http://www.humtec.rwth-aachen.de/index.php?article_id=1&clang=1
http://www.humtec.rwth-aachen.de/index.php?article_id=1055&clang=1
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1.3 Case study environments 

As ideal examples of mid-sized cities with around 250,000 inhabitants in 
Germany, the cities of Aachen and Münster were chosen as case studies for this 
thesis. Both cities are located in the west of Germany (Fig. 2) and feature a 
population of around 250,000 inhabitants (IT.NRW, 2015). The cities are 
characterized by a mild oceanic climate with cool summers and moderately cool 
winters (Köppen, 1936). Precipitation is evenly dispersed around the year with a 

Fig. 2: The cities used as case studies and their locations in Germany (right illustration) with 
close-ups of the city centers of Münster (upper left illustration) and Aachen (lower left 
illustration) including depictions of the research sites (crosshair cursors), government air 
quality monitoring stations (triangles) and weather stations (stars). Reworked after journal 
paper III. 



 7 

mean quantity of rainfall of 782 mm and 914 mm for Münster and Aachen, 
respectively. The mean air temperature in both cities was found to be 10 °C, valid 
for the period of the years 1981–2010 (DWD, 2012). However, the cities of Aachen 
and Münster are characterized by different topographies. Aachen is situated in the 
tri-border region close to the Netherlands and Belgium, 60 kilometers to the west of 
Cologne (see Fig. 2). The city of Aachen is characterized by distinct relief, with the 
city center lying in a basin north of the foothills of the low Eifel mountain range. 
The maximum altitude range in the municipal area is 200 m (150–350 m ASL). The 
city center is identified by densely built up perimeter development with buildings 
that generally contain 4–5 floors. The annual mean concentration of urban 
background PM10 in the city of Aachen has been found to be 15 µg m-3 (LANUV, 
2015). Münster, meanwhile, is located 40 kilometers north of the Ruhr area (see Fig. 
2). It is characterized by almost entirely flat terrain (65 m ASL). The urban area 
features two main water bodies: Aasee, a lake located to the west of the city center, 
and the Dortmund–Ems Canal, an inland navigation channel that divides the 
municipal area of Münster to the east of the city center in a north–south direction. 
The urban fabric contains mixed development with areas that feature isolated, 
freestanding buildings with 2–3 floors (mostly in the outlying areas) and a small city 
core, as well as the neighborhood around the port that is more densely built up with 
perimeter development. In the city of Münster the annual mean concentration of 
urban background PM10 has been determined to be 19 µg m-3 (LANUV, 2015). 
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1.4 Framework 

Atmospheric particle concentrations not only differ between a city and its rural 
surroundings but also vary spatially within urban areas. Cities are, by definition, 
characterized by a complex terrain that leads to increased surface roughness, 
including varying ground levels as well as numerous obstacles such as buildings and 
vegetation elements that prevent both air from moving uniformly and conditions of 
laminar flow in the boundary layer atmosphere. Thus, particle transport, mainly 
driven by the wind vector, underlies the chaotic system of turbulence even more 
than in rural areas and is therefore highly variable in both space and time (Lien et 
al., 2008). Dominant turbulent transmission and dispersion processes make the 
nature of examinations focusing on the spatial micro-scale variability of particle 
concentrations within cities challenging (Lateb et al., 2016). The definition of the 
micro-scale in particular includes the spatial resolution of single buildings; single 
vegetation elements; or street canyons (see Fig. 3). From the perspective of particle 
sources within this type of scale, single point, line, or area sources such as vehicle 
traffic emissions must be resolved as well. Furthermore, single micro-scale elements, 

Characteristic horizontal distance scale [m]
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Material
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< 1

Fig. 3: Relevant distance scales of atmospheric phenomena and pollutant dispersion. 
Reworked after Oke (1987) and Blocken (2013). 
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the entire city representing the meso-scale, as well as macro-scale aspects, such as 
long-range background particle transport or synoptic weather conditions, interact in 
complex ways (Oke, 1987; Gosling et al., 2007). Processes on all the mentioned 
spatial scales together have a combined impact on local particle concentrations. This 
thesis focuses on phenomena that can be observed on the micro-scale; under 
consideration of local-, meso-, and macro-scale interactions. The main approach 
employs methods of experimental fieldwork, and deterministic and statistical 
modeling. Experimental designs for all studies conducted in this thesis incorporated 
the requirements that arise on research that focuses on the urban micro-scale as 
described above. 
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1.5 Research questions 

This thesis is designed to explore the micro-scale variability of aerosol 
concentrations in space and time using different methodical approaches. The work 
is built around the following research questions (RQs): 

RQ 1. How are airborne particles distributed within typical inner-city park areas 
in Germany? Which areas show the highest concentrations of PM? Is it possible 
to identify the main drivers that lead to specific concentration patterns? 

RQ 2. Can humans identify different concentration levels of particle metrics in 
concentration magnitudes that can be expected in urban areas in Germany? 

RQ 3. How can the problem of scarce particle concentration data in both space 
and time on the micro-scale within urban areas be overcome?  

RQ 4. What performance regarding predictions of particle concentration can be 
expected from deterministic pollution dispersion models of both well-
established reference models and newly available micro-climate models when 
faced with real-world situations? Which initial conditions lead to poor/good 
performance? What can be done to improve the performance of pollution 
dispersion models? 

RQ 5. Is statistical modeling an option to predict non-linear phenomena such as 
the distribution of particles in the Atmospheric Boundary Layer (ABL)? What 
accuracy can be reached with non-linear approaches? Can non-linear statistical 
modeling help to address the gap mentioned in RQ 3?  
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1.6 Objectives & related approaches 

 The following objectives are defined to answer the main RQs of this thesis, 
formulated in Sect. 1.5. Within this thesis a combination of various approaches, 
using methods of experimental fieldwork and modeling tools, whose results are 
inter-compared, has been applied to reach the designated objectives (see Fig. 4). 

The first objective of the thesis is to present an insight of micro-scale 
dispersion of airborne particles on the micro-scale by the use and the analysis of 
experimental field data in order to address the first part of RQ 1. Experimental 
research has been conducted at two inner-city park areas using portable 
instrumentation able to sample at high temporal resolution concerning the 
collection of meteorological and aerosol data, respectively. Furthermore, due to the 
use of mobile sensor equipment, the data collection approach enabled spatial 
investigations. Additionally, an on-site survey was carried out to assess the human 
perception of air quality. A comparison with aerosol concentration data reveals the 
ability of humans to distinguish between different levels of particle exposure in 
order to address RQ 2.  

  

Micro-scale
Local- / M

eso-scaleMacro-scale

Variability

particulate maer

time & space

Deterministic

modelling

Statistical

modelling

Field

experiments

Fig. 4: Scheme of the research approach of the thesis.
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The second objective of this thesis is to evaluate the performance of two 
different deterministic pollutant dispersion models in real-world situation case 
studies concerning RQ 4. The comparison with field data reveals the accuracy that 
can be expected in complex urban environments from the models used, namely the 
reference dispersion model Austal2000 and the micro-climate model ENVI-met. 
Different case studies were set up to highlight the atmospheric conditions that lead 
to poor/good performance, as well as to find possible drivers to improve the models’ 
accuracy. For the purpose of finding possible answers to the second and third parts 
of RQ 1, modeling results were compared to field data again. The goal was also to 
demonstrate practical applications, such as the influence of green elements on 
ground-level aerosol concentrations. Overall, the assessment of deterministic model 
performance gives partial answers to RQ 3. 

One major goal of this thesis is to outline approaches to gain more detailed 
spatial and temporal information on local particle concentration beyond field data 
from immovable sensors (RQ 3). Therefore, a non-linear statistical model based on 
the artificial neural network (ANN) approach has been developed using acoustic and 
meteorological data as well as data representing background particle transport as 
input variables. Comparison with field data demonstrates the capabilities of the 
approach regarding the temporal and spatial prediction of particle concentrations in 
order to address RQ 5 and thus to give partial answers to RQ 3. The added value of 
the ANN model approach to predicting atmospheric particle concentrations is 
discussed, and limitations and uncertainties are presented. 
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2. The field experiment analysis 

This section describes the analysis of the intra-urban particle distribution that was 
observed using field experiment data. Data were derived from mobile sensors that 
were used to collect different particle concentration metrics. Furthermore, an 
investigation of the perception of different levels of particle exposure is presented 
herein. This chapter is based on results also described and discussed in journal 
paper I. Section 2.1 provides a brief introduction. Here, the current state of the art 
concerning field experiments in the context of aerosol distribution on the urban 
micro-scale is highlighted and the motivation for the study is outlined. Section 2.2 
provides a description of the study design, including an introduction to the 
research site and an explanation of the field methods that were used to collect the 
data set. The results with regard to micro-scale particle distribution are presented 
in Sect. 2.3, while Sect. 2.4 details the main outcomes of the perception analysis.  

2.1 Context and motivation to carry out field experiments 

Mobile sensor platforms are increasingly used to assess the variability of, for 
example, particle concentration within the urban environment and to elaborate the 
concentration levels people are effectively exposed to (Peters et al., 2014). 
Experimental studies have shown that aerosols are dispersed in highly variable 
ways, especially inside cities and even within tens of meters in space. Evidence has 
been provided from opportunistic mobile monitoring studies using people’s 
common daily routines to move measurement devices around the city (Dons et al., 
2011; Broich et al., 2012; Van den Bossche et al., 2016) on the local city scale by 
using temporary installed sensors (Birmili et al., 2013b) and from studies using 
portable instrumentation, either along fixed measurement routes (Birmili et al., 
2013a) or recurrently at different locations, respectively (Merbitz et al., 2012c, 
2012b). In this chapter, a field study seeking to obtain a deeper understanding of the 
micro-scale distribution of particles was conducted within an inner-city park area. 
Park areas fulfill a variety of important ecosystem functions inside urban 
environments, including reducing the risk of flooding, mitigation of heat stress, and 
having a positive effect on air quality through filtration of polluted air 
(Baumgardner et al., 2012; Andersson-Sköld et al., 2015).  
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One of the most important functions of inner-city parks, alongside the effects 
on the urban micro-climate, is the way in which they serve as recreational areas for 
citizens. Besides actual conditions of environmental stressors, for example of 
particle concentrations and their respective influence on health (Venn et al., 2001), 
there is a basic question of whether people are able to perceive their exposure to 
particles. It is not yet understood whether there is a relationship between the 
physical stressor (i.e., aerosol concentration) and the specific perception of air 
quality, and/or whether there is a relationship between the physical stressor and the 
integrative evaluation of on-site comfort. Most of the work focusing on the 
perception of environmental stressors has focused on thermal comfort (Chen and 
Ng, 2012; Johansson et al., 2014). When perception was linked to air pollution, 
usually perceived risks were addressed or epidemiological studies were performed 
(Badland and Duncan, 2009). Most studies have been carried out through social and 
public opinion surveys that focused almost exclusively on people’s awareness or 
level of concern about air pollution (Nikolopoulou et al., 2011). Brody et al. (2004) 
started empirical research to examine the local level. Even in this case, the data was 
collected and analyzed at the neighborhood level and not assessed on the pedestrian 
scale.  

2.2 Study design 

The field experiment analysis was designed to explore the spatial distribution 
patterns of urban atmospheric aerosol using portable instrumentation to determine 
different metrics of particle concentration, in combination with a parallel survey 
examining urban park users’ sensation and perception of air quality. A simplified 
description of the study design (i.e., a description of the research site and the basic 
principle of data collection and analysis) is outlined in the following sections. A 
more comprehensive picture of, for example, the principle of operation regarding 
the sensors used, and the survey and data quality (including uncertainties) is given 
in the introduction and methodology sections of journal paper I. 

2.2.1 Areas under study 

The inner-city park area Elisenbrunnen in the city of Aachen was determined as 
the research site for the field experiment case study. The area is remote from 
industrial estate and features complex terrain. “Complex terrain” is hereinafter used 
to refer to the complex urban geometry of street canyons and squares that are 
characterized by numerous obstacles such as houses with varying height and 
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ground levels (see Fig. 5). The park area is surrounded by dense perimeter 
development with buildings generally comprised of 4–5 floors. One of the most 
frequented roads by public transit buses (Friedrich-Wilhelm-Platz), inaccessible for 
individual private vehicles and boasting four main bus stops (102 coach connections 
per hour on weekdays), leads through the investigation area. The park is 
surrounded by infrequently used roads to the northeast (industrial vehicles for 
delivery only) and southeast (Hartmannstrasse), and a highly frequented street used 
mainly by private cars (Ursulinerstrasse). Unsurfaced footpaths subdivide the green 
area, which contains mainly small flowerbeds and a lawn surface that is surrounded 
by deciduous London plane trees (Platanus x hispanica). Six monitoring sites were 
chosen inside the study area for measurements and surveys. Sites E and F were 
characterized as typical recreational spots within the green area (marked with green 
circles in Fig. 5). Site C features a prominent bus station, whereas site B was located 
in proximity to the intersection of Friedrich-Wilhelm-Platz and Ursulinerstrasse, 
which is dominated by moving traffic (indicated by red circles in Fig. 5). Monitoring 
sites A and D were chosen as places influenced by both traffic and the green area, 
respectively (depicted with blue circles in Fig. 5).  
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Fig. 5: Research site Elisenbrunnen in Aachen, including depicted measurement
locations A–F (colored circles). The park area is marked with a green color field,
whereas the light blue color field represents a water body. Gray areas depict buildings
and black areas represent traffic arterials. Reworked after journal paper I. 
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2.2.2 Particle concentration measurements 

Particle concentration measurements were carried out pursuing two different 
approaches by the use of a mobile optical particle counter (OPC) to determine 
different metrics of mass concentration of suspended particles with aerodynamic 
diameters (DAE) between 0.25 µm and 10 µm inside the park area Elisenbrunnen: 

a) Time-series (weekdays, 10:00–17:00, 10-minute mean values of PM(0.25–10)) 
measurements were performed in parallel to the survey (see below Sect. 2.2.3) at 
locations A, B, C, E, and F on chosen weekdays during a typical wintertime in 
February 2014, as well as at locations A, B, E, and F during summer in July 2014. 

b) A semi-parallel approach was taken, using the single OPC recurrently at all 
described measurement locations (A–F) during seven selected weekdays (10:00–
17:00) in February, May, and September 2014. The measurement location was 
changed every 5 minutes along a fixed measurement route with the OPC. One-
minute means of mass fractions of particles with a DAE of 0.25 µm and 1 µm 
(PM(0.25–1)), as well as of 1 µm and 10 µm (PM(1–10)) were determined (n = 56). 

Initial conditions for all measurement campaigns were chosen to be the same 
for both periods, including weather conditions with only partly clouded skies, no 
precipitation, and southwesterly winds (prevailing wind direction in the area under 
study (Merbitz et al., 2010); see also Fig. 3 in journal paper I). 

2.2.3 Survey 

A survey was performed in parallel to the time-series measurements of particle 
concentrations (see Sect. 2.2.2). A mixed-method interview study with on-site users 
was carried out in order to identify perceptions of air quality and on-site comfort. 
Overall, the sample consisted of 300 participants who volunteered to take part, 
representing an even gender distribution (see Sect. 2.6 in journal paper I for details). 
The perception of their own weather comfort, air quality, and on-site comfort was 
questioned and compared with the measured physical data. Data were analyzed 
using paired sample t-tests in order to detect seasonal differences of particulate 
matter concentration and mean rating for perceived air quality (results are not 
shown here; for further details see Sect. 3.3 in journal paper I). Further, the 
relationship between particulate matter and perceived on-site comfort was analyzed 
using bivariate analysis (Spearman’s rank). 
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2.3 Micro-scale distribution of particles 

Considering the semi-parallel approach of data collection (see Sect. 2.2.2) the 
distribution of PM(1-10) was found to be surprising. e highest mean concentration 
was revealed inside the green area at measurement locations E and F (arithmetic 
mean: 22.5 μg m-3 and 18.9 μg m-3, respectively; geometric mean: 9.3 μg m-3 and 
6.5 μg m-3, respectively). As shown in Fig. 6, the lowest mean concentrations of 
PM(1–10) were found curbside of the main traffic arterials at locations B and C 
(arithmetic mean: 7.5 μg m-3 and 8.7 μg m-3, respectively; geometric mean: 5.8 μg m-3

and 6.5 μg m-3, respectively). Results of trend-corrected (for the methodology, see 
Sect. 2.5.1 in journal paper I) time-series measurement data (PM(0.25–10)) indicate a 
similar distribution of coarse particles (not shown here; see Sect. 3.1 in journal 
paper I). Besides vehicle traffic that is expected to have a major influence on the 
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Fig. 6: Boxplot diagram of particle mass concentrations [μg m-3] measured with a semi-
parallel approach at different locations (A-F) inside the area under study Elisenbrunnen
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particle concentration near roads (Karagulian et al., 2015), it can be assumed that 
especially inside the park area additional diffuse particle sources are present. The 
green area at the Elisenbrunnen site is characterized by a surface of dry grass and 
unsurfaced footpaths containing loose and dry top coating material (during the 
summer season in particular). It may well be that those surfaces made a dominant 
contribution to airborne particles of PM(1–10) due to resuspension, as supposed by 
other studies (e.g., Birmili et al., 2013a). 

Particle fractions of PM(0.25–1) were found to be equally distributed within the 
research site Elisenbrunnen (arithmetic mean: 6.0–6.9 µg m-3). A poorly distinctive 
spatial pattern could be observed considering arithmetic mean PM(0.25–1) values with 
comparatively small differences between measurement locations, probably within 
the range of uncertainty of measurements. However, the highest average PM(0.25–1) 
concentrations were detected in the direct vicinity of the traffic arterials (locations B 
and C) and at location F inside the green area, respectively (see Fig. 6). It can be 
stated that vehicle traffic had a more dominant impact on PM(0.25–1) mass 
concentration due to emissions of, for example, brake and tire abrasion (Ketzel et al., 
2007; Amato et al., 2014) as well as secondary accumulation mode particles arising 
from combustion processes during the case study (Gidhagen et al., 2004; Ketzel and 
Berkowicz, 2005). 

Overall, observations similar to earlier studies (e.g., Broich et al., 2012; Birmili 
et al., 2013a) could be repeated. Aerosols were found variably distributed at very 
small scales. Different particle metrics were found to be distributed in various ways 
as already described by Zhu et al. (2006), Ning and Sioutas (2010) and Shu et al., 
(2014). A gradient with weak but declining concentrations of PM10 metrics with 
increased distance from traffic arterials, as found by other studies (e.g., Zhu et al., 
2006), could not be confirmed at the research site Elisenbrunnen. Within the area 
under investigation the park site was surprisingly identified as featuring higher 
concentrations of PM(1–10) or PM(0.25–10) in comparison to traffic-related locations 
such as street canyons. 

2.4 Perception of particle exposure 

A detailed comparison of physically measured PM(0.25–10) data against survey 
results regarding the perception of air quality reveals that mass concentrations of 
PM(0.25–10) were not reliably assessed during the periods of data collection (see Fig. 
7). In fact, park users described perceived air quality as good, neutral, or bad 
regardless of the factually measured mean PM(0.25–10) concentrations (ranging from 
11.3 to 36.2 µg m-3 during the winter campaign and 17.0 to 129.9 µg m-3 during the 
summer campaign). This was the case in both investigated seasons (albeit it was 
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worked with a refined Likert scale range from 1.0 = very bad air quality to 6.0 = 
very good air quality during the summer campaign). Consequently, no significant 
correlation was found between measured PM(0.25–10) and perceived air quality during 
both the winter season and the summer season (winter: r 0.13; summer: r -0.20). 

In marked contrast to findings from Nikolopoulou et al. (2011), who claimed a 
significant positive correlation between PM concentrations and perception of air 
quality during a similar study in similar PM concentration magnitudes, it can be 
concluded that perception of air quality was imprecise and unrelated to the factually 
measured exposure. Nevertheless, data revealed a close relationship between the 
awareness of air quality and on-site comfort (data not shown here; for more details 
see Sect. 3.3 of journal paper I), thus corroborating the sensitivity of pedestrians to 
perception of urban stressors. Due to an undersized sample this study lacks deeper 
investigation into what actually formed the park users’ opinion on air quality and 
on-site comfort, which is probably influenced more by factors such as sense of place 
(Brody et al., 2004) or acoustic occurrences than by actual air quality conditions. 

 

Fig. 7: Scatter plot diagrams of measured PM(0.25-10) concentrations [µg m-3] vs. air quality 
assessments on a 3-point Likert scale (3 = good, 2 = neutral, 1 = bad) during the winter 
campaign (left illustration “WI”) and vs. air quality assessments on a 6-point Likert scale 
(from 6 = very good to 1 = very bad,) during the summer campaign (right illustration “SU”). 
Modified from journal paper I. 
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3. Deterministic modeling of particle 
distribution in the urban ABL 

This chapter describes the analysis of intra-urban particle distribution calculated 
by micro-scale pollutant dispersion models. It is based mainly on results described 
in journal paper II, shows results of journal paper I that could be obtained from the 
comparison of model predictions to field experiment data, and depicts outcomes 
presented on a poster presentation presented in Appendix A. Section 3.1 provides a 
short review of the current state of the art regarding deterministic dispersion 
modeling and puts the analyses made into context. Section 3.2 describes the 
performance analysis of two dispersion models including the motivation that 
justifies the investigation made, a brief introduction of the study design and the 
main results of the work of journal paper II. Sections 3.3 and 3.4 give results of two 
applied studies that were conducted with the modeling software codes ENVI-met 
and Austal2000, respectively, including brief motivation and methodology sections. 
Section 3.5 summarizes the main findings that were obtained by the use of 
deterministic modeling approaches. 

3.1 Context 

Deterministic air pollution models up to full numerical solutions describe the 
physical phenomena that determine the transportation of pollutants in the 
atmosphere and are powerful approaches for predicting the distribution of 
pollutants (Lateb et al., 2016). Highly resolved information can be gathered in time 
and space (Daly and Zannetti, 2007). This is one main advantage over information 
from field data, for instance data derived from point measurements that are only 
representative of the location where the measurements are taken (Wilson et al., 
2005; Broich et al., 2012). Dispersion models are used intensively for scientific 
applications in order to better understand the spatial distribution of, for example, 
pollutants such as PM in the atmosphere (Tominaga and Stathopoulos, 2013). 
However, current challenges for the exploitation of deterministic modeling tools are 
manifold. Software codes are either expensive and/or difficult to use. Background 
knowledge of, for example, the physics behind fluid dynamics or pollutant 
dispersion is an essential precondition to avoid misinterpretation of modeling 
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results (Langner and Klemm, 2011). Massive computational effort is still needed to 
solve the equations that describe the turbulent air flow that is typically observed in 
the urban ABL (Stull, 1988) since numerous disturbing features are present in 
complex urban environments, such as buildings of different heights and shapes 
(Lateb et al., 2016). The transportation of pollutants is strongly influenced by the 
superposition and interaction of the turbulent flow patterns induced by urban 
obstacles (Chang and Meroney, 2001). As a result, extensive input information is 
needed, such as three-dimensional geometric information of obstacles in the domain 
(e.g., CAD data of buildings or/and vegetation elements), local meteorological data, 
and emission rates of pollutants to initiate deterministic models. Sometimes, input 
information is insufficiently available (e.g., Grimmond et al., 1998) to run those 
models successfully. This is especially true for scientific applications of 
deterministic models in complex terrains like urban areas. Consequently, 
deterministic modeling approaches are still far from straightforward operational 
tools when seeking to accurately predict the pollutant dispersion around buildings 
that qualify for, for example, urban air quality regulation and planning (Lateb et al., 
2016). 
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3.2 Analysis of model performance between ENVI-met and 
Austal2000 

3.2.1 Motivation for the model performance assessment 

In this context (Sect. 3.1), a performance analysis is made between ENVI-met, a 
sophisticated computational fluid dynamics (CFD) modeling tool (Bruse and Fleer, 
1998) that is popular in the research area of human bio-meteorology (e.g., 
Ambrosini et al., 2014; Jänicke et al., 2015), and Austal2000, the German reference 
dispersion model (Janicke, 2011). As of late, ENVI-met also features a pollutant 
dispersion module that is becoming more and more popular in air pollution research 
(Wania et al., 2012; Vos et al., 2013; Morakinyo and Lam, 2016). In comparison with 
numerous other models (e.g., Austal2000) ENVI-met is one of the first that offers 
ease of use—even for non-experts—as a result of a graphical user interface and 
useful editing tools contained in the software package. In addition, ENVI-met is 
available free of charge5. The features entail both chances and risks. Considering the 
risks, misinterpretation of results is possible, for instance when ENVI-met is used by 
those unfamiliar with the complex physics behind the dispersion simulation. This 
problem is likely to occur when model predictions are not reliable and accurate 
(Langner and Klemm, 2011). There is an urgent necessity that models are properly 
evaluated before their results can be used with confidence (Chang and Hanna, 2004). 
Until now, the performance of ENVI-met regarding the distribution of particles has 
rarely been assessed (Nikolova et al., 2011) and the performance in real-world 
applications in comparison with reference models is widely unknown. The accuracy 
and reliability of dispersion models such as CFD are of concern; thus, verification 
and validation of simulation results are imperative (Blocken et al., 2013). As a result, 
field measurements appear unquestionably necessary for assessing the quality of 
CFD simulations (Abohela et al., 2013).  

                                                        
5 Up to version 3 and a temporarily restricted beta version 4, ENVI-met was free of 

charge including full functionality. The current version featuring unlimited 
usage is subject to a charge. 
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3.2.2 Study design 

A more comprehensive description of the summarized study design outlined 
hereinafter (i.e., of the research sites, the modeling strategy, and settings) can be 
found in the introduction and methodology sections of journal paper II. 

The modeling software used 

In journal paper II the dispersion models Austal2000 and ENVI-met are 
compared to each other. Austal2000 is based on the Lagrangian approach and is 
designed for long-term sources and continuous buoyant plumes. The model is 
capable of calculating the dispersion of multiple point, line, and area sources of 
odorous substances and pollutants (e.g., SO2, NO, NO2, NH3, PM) and includes dry 
deposition algorithms. Austal2000 is widely used for short-range transport of 
particles and gases in both applied studies (Merbitz et al., 2012b; Schiavon et al., 
2015; Dias et al., 2016; Pepe et al., 2016) and in model performance research 
(Langner and Klemm, 2011; Letzel et al., 2012). The implemented model TALdia 
calculates a wind field library for cases with complex terrain input data. Such cases 
require input parameters of both the geometric information of the research domain 
(CAD data) and meteorological input data taken from ground-based measurements 
(Janicke, 2011). 

ENVI-met, meanwhile, is a prognostic three-dimensional micro-climate model 
that is designed to simulate surface–plant–air interactions in urban environments 
with a typical resolution down to 0.5 m in space and 1–5 s in time (Bruse and Fleer, 
1998), and features a pollution dispersion module according to simulate numerous 
point, line, and area sources of substances (e.g., NO, NO2, O3, and PM). It includes 
processes of particle sedimentation depending on size and mass, and deposition at 
surfaces. A simple upstream advection approach is used to calculate the pollutant 
dispersion. The CFD core of ENVI-met solves the Reynolds-averaged non-
hydrostatic Navier–Stokes equations (RANS) for each spatial grid cell and time step. 
For initialization purposes, parameters of meteorological initial conditions must be 
provided as well as geometric information data similar to the requirements of 
Austal2000. For specific humidity (sh) input parameters, information from upper air 
soundings must be used (values from 2500 m AGL must be provided) whereas all 
other parameters can be obtained from ground-based measurements. 
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Test cases 

Overall, four test cases were set up for the model performance analysis in the 
cities of Aachen and Münster, respectively (see Fig. 2 in Sect. 1.3). Two test cases 
were set up for the research site in Aachen modeling one computational domain 
with a spatial resolution of 2 m resembling the inner-city park area Elisenbrunnen. 
Two test cases were set up for the research site, Aasee, in the city of Münster, 
featuring one computational domain that represents the park area in 2 m spatial 
resolution (see Fig. 8). Dispersion simulations of both models, Austal2000 and ENVI-
met, were performed using inflow boundary conditions (IBCs) in comparison with 
the time periods of semi-parallel particle concentration measurements that were 
carried out using a single OPC (for details see Sect. 2.2.2 and Sect. 3.5 in journal 
paper II) at different locations within the study domains (Fig. 8). 

 Two different test cases for each research site result from different 
meteorological actuations of the models using meteorological input data from 
different weather stations. For the first test case of the Aachen research site, 
meteorological data from the distant weather station Hörn (see Fig. 2) initiated the 

Research domain Elisenbrunnen

0 62.5 125 250 m

O

0 62.5 125 250 m

Research domain Aasee

© Geobasis NRW, 2017

Fig. 8: Close-ups of the research domains in Aachen (left ill.) and in Münster (right ill.),
including the receptor points where measurements of PM concentrations were carried out
(red dots) and where meteorological input data were taken (red triangles). Park areas are
marked with green color fields. Blue color fields represent water bodies. Gray areas depict
buildings. Black areas represent traffic arterials. Frames mark the computational domain
sizes of the two models used (black continuous line: Austal2000; black dashed line: ENVI-
met; hatched areas represent the nesting grid sizes). Reproduced from journal paper II. 
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model runs (test case AA1). Local measurement data, collected during the particle 
concentration measurements within the study domain (see Fig. 8), were used as 
IBCs for the second test case of the Aachen research site (test case AA2). For the 
first test case of the Münster research site, meteorological data from the distant 
weather station ILÖK (see Fig. 2) initiated the model runs (test case MS1). Again, 
local measurement data from within the study domain (see Fig. 8) were used as IBCs 
for the second test case of the Münster research site (test case MS2). A short 
summary of the four different test cases is given in Tab. 1. Emission rates for all test 
cases and simulation tools were calculated by multiplying emission factors 
(µg vehicle-1 m-1), referring to the guidelines published by Keller and de Hahn (2004) 
and Lohmeyer et al. (2004) with prevailing traffic intensity data (vehicles s-1) that 
were derived from traffic counts. 

Tab. 1: Summary of the four test cases that were conducted in the model performance 
analysis. Reproduced from journal paper II. 

Research 
site 

General setting Study periods IBC data Test 
case 

     

Aachen – 
Elisen- 
brunnen 

Inner-city park area, 
complex terrain, varying 
ground surface, dense 
perimeter development, 
3 area sources (traffic 
lanes) 

9 selected 
weekdays in 
February, July 
2014 

Distant weather 
station, Hörn AA1 

Local 
measurements 
in the area 
under study 

AA2 

          

Münster –
Aasee 

Inner-city park area, 
open space, varying 
ground surface, surface 
water, isolated 
freestanding buildings, 4 
area sources 
(traffic lanes) 

6 selected 
weekdays in 
February, July, 
August 2015 

Distant weather 
station, ILÖK MS1 

Local 
measurements 
in the area 
under study 

MS2 
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3.2.3 Performance analysis 

The performance of both models was assessed, comparing the simulation 
results of both models against each other as well as comparing simulation results to 
observations on the basis of 1-hour averages using different metrics of statistics and 
performance measures, as recommended in the literature. Namely, Q-Q plots 
(Venkatram et al., 2001), the fractional bias, FB (Cox and Tikvart, 1990), and the 
robust highest concentration, RHC (Perry et al., 2005), were used. Further details 
and a mathematical description of FB and RHC can be found in Sect. 4 of journal 
paper II. 

Spatial distribution 

As presented in Fig. 9, which shows 1-h averages of Austal2000 and ENVI-met 
PM10 predictions of depicted model runs, both models simulated similar patterns of 
particle dispersion, including highest PM10 concentrations close to particle sources, 
i.e., traffic arterials (see Fig. 8). Corresponding simulated PM10 concentrations seem 
to decline rapidly further from the traffic lanes in both models. Wind vector input 
data are one of the key meteorological drivers for dispersion models (Lateb et al., 
2016) and make for higher PM10 concentrations in the north of the model area of the 
Elisenbrunnen test cases (see Fig. 9 a) and b)). In this case, with winds from the 
south, Austal2000 predicted a situation where particles tend to accumulate in, for 
example, the narrow passage in the north of the computational domain as well as in 
areas downwind from emission sources where particles get dammed up at obstacles.  

In comparison, ENVI-met results showed more smoothly dispersed PM10 
concentrations that rapidly decline further from the sources. Dispersion results of 
both models calculated for the Aasee test case where urban obstacles are present 
show, to a lesser extent, a more even distribution of the PM10 concentration. 
Particles seem to be transported with the wind away from the traffic lanes in both 
models. Overall, it is clear that Austal2000 predicted about two times higher PM10 
concentrations throughout most parts of the computational domain in comparison 
with ENVI-met (see Fig. 9). 
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Fig. 9: Predicted traffic-induced PM10 concentration distribution of selected situations in
1.5 m agl of (a) Austal2000 and (b) ENVI-met for the Aachen test case (AA2) with inflow
boundary conditions (IBC) defined by local meteorological measurements (1-hour average;
prevailing wind direction = 180°; Klug-Manier stability class III/2) and of (c) Austal2000 and
(d) ENVI-met for the Münster test case (MS2) with inflow boundary conditions (IBC) defined
by local meteorological measurements (1-hour average; prevailing wind direction = 290°;
Klug-Manier stability class III/2). 
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Predictions in comparison with observations 

When compared to field data, both models almost constantly underestimated 
observations by a considerable amount, regardless of inflow boundary conditions 
and the areas under study (see Fig. 10). ENVI-met predictions were almost always 
less accurate compared to Austal2000; this was particularly the case in the low 
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Fig. 10: Q-Q plot for predicted PM10 concentrations of all the receptor points of (a) the AA1 
test case (IBC: data from the distant weather station), of (b) the AA2 test case (IBC: data
from local measurements), of (c) the MS1 test case (IBC: data from the distant weather
station) and of (d) the MS2 test case (IBC: data from local measurements) as 1-hour 
averages. Black stars represent predicted PM10 concentrations of Austal2000. Gray circles 
show predicted PM10 concentration of ENVI-met. The black line indicates the 1:1 rank 
correlation of the distributions. The gray lines depict the factor of two over- and 
underestimates. Reproduced from journal paper II.
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concentration range. In the important upper concentration range ENVI-met results 
are closer to the simulation results of Austal2000 and the underestimations of both 
models were less marked. The analysis of the calculated RHCs confirms the former 
findings for the upper concentration range as well (see Tab. 2). Both models 
continued to underestimate the observed concentrations over the entire study 
period. RHCs for measurement data were calculated to be 73.6 µg m-3 for the 
Aachen test cases (AA1, AA2) and 33.1 µg m-3 for the Münster test cases (MS1, MS2), 
respectively. In particular, during the AA1 test case the RHC calculated from 
observations was seriously underestimated by both models (Austal2000 RHC: 
4.8 µg m-3; ENVI-met RHC: 2.5 µg m-3). When considering RHCs it becomes evident 
that both models produced results closer to observations in the Münster test cases, 
with underestimation of both models being of a lesser extent. Austal2000 simulated 
results in the important upper concentration range with an RHC of 21.4 µg m-3, 
which was very close to the RHC derived from observations. The underestimation 
of Austal2000 (35 % in comparison to observations) was confirmed by Schiavon et al. 
(2015), though was found to be related to the annual mean concentration of NOX. 

Tab. 2: RHC and standard deviations of the highest concentration values (SDHC; in 
brackets) in µg m-3 of observed and predicted PM10 concentrations for all four test cases. 
Reproduced from journal paper II. 

  AA1  AA2  MS1  MS2 

Observed  73.6 (±25.8)  33.1 (±2.8) 

Austal2000  4.8 (±1.2)  18.0 (±3.2)  6.1 (±0.4)  21.4 (±6.7) 

ENVI-met  2.5 (±0.7)  9.3 (±2.5)  9.5 (±1.6)  5.2 (±1.7) 

 

Importance of model input and initial conditions 

The transportation of pollutants in the urban environment is strongly related 
to the flow field (Huang et al., 2009), which in turn is mainly dominated by 
meteorological conditions and urban morphology (Moonen et al., 2012). Therefore, 
meteorological inflow boundary conditions and, in particular, the wind vector are of 
distinct importance for dispersion modeling. Under all of the tested conditions the 
comparison of model predictions to observations shows that both models gained 
accuracy when the simulation runs were initiated with IBCs of local atmospheric 
measurements instead of initiations using data from weather stations several 
hundred meters away from the research sites (see Fig. 10). In the cases where local 
IBC data were used as inputs, underestimation was less marked. In the test case 
MS2, ENVI-met is an exception to this rule; no performance enhancement could be 
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observed by using local measurement data. With locally measured wind speeds two 
times lower compared to measurement data from the distant weather stations (see 
Sect. 3 of journal paper II), higher predicted PM10 concentrations are to be expected 
(Gromke et al., 2008; Wania et al., 2012). Dilution of pollutants (i.e., the horizontal 
air mass exchange) is reduced under conditions with lower horizontal wind speeds. 
Perry et al. (2005) verified that uncertainty in wind direction can cause 
disappointing simulation results as well. A slight alteration of wind direction could 
be observed when comparing data from local measurements to data from the distant 
weather stations (see Sect. 3 of journal paper II). 

While FBs indicate underestimation by both models throughout the entire 
study, it is apparent that both models performed better under neutral stratification 
conditions of the atmosphere (Klug–Manier stability classes III/1 and III/2) most of 
the time (see Tab. 3). Results of both models show mostly poor performance under 
unstable and very unstable stratification regimes (Klug–Manier stability classes IV 
and V) in all test cases (FB: 1.16–1.95). It seems possible that both models had 
difficulty in calculating an accurate mixing of the atmosphere under unstable and 
very unstable conditions, with possibly an overestimation of the dilution rate 
regarding PM10 concentrations. 

Tab. 3: FB for all four test cases segregated in atmospheric stability classes after Klug–
Manier. Reproduced from journal paper II. 

Test case  AA1  AA2  MS1  MS2 
Atmospheric 
stability 
(Klug–Manier)  

Austal 
2000 

ENVI-
met  Austal 

2000 
ENVI-
met  Austal 

2000 
ENVI-
met  Austal 

2000 
ENVI-
met 

III/1 (neutral)  1.58 1.75  - -  1.32 1.20  0.58 1.62 

III/2 (neutral)  1.85 1.90  0.91 1.28  1.56 1.46  0.98 1.64 
IV (unstable)  1.93 1.95  - -  1.17 1.45  1.16 1.38 
V (very 
unstable)  - -  1.68 1.93  1.42 1.55  1.47 1.86 

Total  1.81 1.88  1.41 1.71  1.44 1.46  1.12 1.71 
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3.3 Particle emissions out of resuspension sources 

3.3.1 Motivation to quantify resuspension source emissions using 
Austal2000 

A simulation of particle dispersion was conducted using Austal2000 to 
investigate the unexpected distribution patterns concerning PM(0.25–10) and PM(1–10) 
that were found during field experiments within the Aachen Elisenbrunnen 
campaign (see Sect. 2.3). Birmili et al. (2013a) assumed that surfaces of, for example, 
dried-out soil or gravel paths within park areas may be significant sources of coarse 
airborne particles such as PM10. Austal2000 has been used to inversely proof the 
supposition that resuspension is responsible for the unusual and unexpected 
distribution patterns within the area under study. Therefore, the dispersion of 
traffic-induced particles was investigated to rule out the possibility that adverse 
effects, such as specific flow conditions or vortices (Ahmad et al., 2005; Li et al., 
2006), could have led to an accumulation of traffic-induced coarse particles and thus 
could have induced the increased concentrations of PM(0.25–10) and PM(1–10) inside 
the park area. 

3.3.2 Methods 

The simulation study was conducted using the simulation tool Austal2000 with 
the settings of the test case AA1 (as described in Sect. 3.2.2) to calculate the 
distribution of road traffic emissions only (including emissions from combustion 
processes and blown-up dust, as well as tire and break abrasions) in a computational 
domain extending 420 m by 420 m representing the area Elisenbrunnen in Aachen 
(see Sect. 2.2.1). Inflow boundary conditions were determined using meteorological 
data from the weather station Hörn, which were taken during the same period of 
time in which semi-parallel concentration measurements were carried out (see Sect. 
2.2.2). Mean concentrations of Austal2000’s predictions, averaged over the entire 
period of investigation, have been analyzed and compared to the mean values of 
observations as well as urban background particle concentrations derived from 
government monitoring stations. Following Lenschow (2001) it has been assumed 
that the factually measured concentration of PM10 at a given intra-urban location 
might be a mixture of: (a) rural background particle transport, (b) urban background 
concentration, and (c) local emissions (see Fig. 11). Consequently, it was possible to 
approximate a PM10 remainder (ΔPM10) at a specific location, representing the 
resuspension source emissions, by subtracting the aerosol contribution of urban 
backgrounds (taken from the government station AABU, representing (a) and (b); 
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see Sect. 1.3) and local traffic-induced emissions (determined by simulation results, 
representing (c)) from on-site measured concentrations, subject to certain data 
quality (for details concerning measurement data quality see Sect. 2.5.2 in journal 
paper I). 

3.3.3 Main results 

Averaged simulation results (arithmetic means averaged over the entire study 
period) under conditions representing prevailing wind conditions show different 
patterns of particle distribution in comparison with observations (see Sect. 2.2.2). 
The highest simulated concentrations of PM10 were found close to the traffic lanes 
while the lowest concentrations were simulated to be inside the park area (see Fig. 
12). As far as the simulation results are concerned, it could be proved that no 
specific flow pattern was responsible for the extraordinary high concentrations of 
traffic-induced particles concerning PM10 inside the green area. According to the 
simulation outcomes, the direct impact of local vehicle traffic on PM10 
concentrations inside the park tends to be negligible. 

Approximations of PM10 remainders (∆PM10) indicate that local diffuse particle 
sources contributed to local PM10 concentrations of up to 17.9 μg m−3 inside the 

(a) regional background

(b) urban origin

(c) traffic

city agglomeration

1

2

3

60

50

40

30

20

10

P
M

 [
μ
g
 m

-3
]

Fig. 11: Schematic horizontal profile of the ambient PM concentration
(1: regional background monitoring station, measurements of (a);
2: urban background monitoring station, measurements of (a) and (b);
3: traffic-related monitoring station, measurements of (a), (b) and (c)).
Modified after Lenschow (2001). 
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green area, whereas the impact on measurement locations in the vicinity of the 
main roads (measurement locations B and C, see Fig. 12) from local resuspension 
other than traffic sources was calculated to be close to zero (see Tab. 4). From this 
analysis we may conclude that resuspension of PM from unpaved ground within the 
green park area was a major contribution to the elevated measured PM(0.25–10) and 
PM(1–10) levels at sites E and F and possibly also at sites A and D within the limits of 
specified uncertainties (see Sect. 2.2.2). However, uncertainties must be taken into 
account that arise when data of different measurement techniques are compared to 
each other (for more details see Sect. 2.5.2 in journal paper I) as well as model 
uncertainty. The relatively poor performance of the Austal2000 model could be 
proved, including considerable underestimation within the model performance 
analysis of journal paper II (see Sect. 3.2). Therefore, results concerning ∆PM10 

should be interpreted with caution. 
  

Fig. 12: Contour plot of the simulated distribution of average PM10 concentrations induced 
by motor traffic only [µg m-3] at 1.5 m AGL for the research site Elisenbrunnen, Aachen, for 
different chosen weekdays in February, May, and September 2014, 10:00–17:00, during 
cyclonic weather conditions including depicted measurement locations A–F (black dots). 
Upper right plot shows near-surface horizontal wind vectors (blue arrows) representative for
mean inflow boundary conditions (Klug–Manier stability class 4, wind direction sector 250–
260°). Reproduced from journal paper I. 
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Tab. 4: Mean PM10 remainder (Δ PM10) for monitoring locations A–F calculating the 
difference between arithmetic mean PM(0.25–10) values of the semi-parallel measurements and 
the sum of arithmetic mean PM10 data out of the simulation and the arithmetic mean 
background PM10 concentration recorded at the rural background air quality monitoring 
station Burtscheid (AABU). Reproduced from journal paper I. 

 monitoring location 

 A B C D E F 

Mean PM(0.25-10) measured 17.0 14.4 15.3 19.6 24.9 29.4 

Mean PM10 simulated 0.5 2.7 4.3 0.6 0.2 0.2 

Mean rural background PM10 (AABU) 11.4 

Δ PM10 5.0 0.2 -0.4 7.6 13.3 17.9 
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3.4 Influence of vegetation elements on ground-level aerosol 
concentrations 

3.4.1 Motivation 

The draft towards an integrated analysis arose out of both the discussion points 
of journal paper II regarding dispersion models and their by definition non-
exhaustive consideration of variables that affect particle concentration at a specific 
time and location (Venkatram, 2008), and the ability of ENVI-met to extend the 
input variable set-up by the use of information on vegetation. Vegetation elements 
are considered important design elements, particularly in cities, by virtue of the 
ecosystem services they can provide (Janhäll, 2015). These include impacts on the 
urban micro-climate, as plants tend to decrease temperature differences in urban 
areas (Lee and Park, 2007), among others (Oberndorfer et al., 2007). Vegetation has 
also been taken into account, as elements that can help to remove airborne particles 
from the atmosphere due to a large reactive surface area per unit volume correlative 
to ambient air (Litschke and Kuttler, 2008). Significant filter processes due to 
enhanced deposition on foliage have been observed (Sæbø et al., 2012; Roupsard et 
al., 2013). At larger scales, beyond isolated specie specific investigations (Sæbø et al., 
2012), authors have investigated the effect of vegetation on ground-level aerosol 
concentrations in the atmosphere, for instance with the help of wind tunnel 
experiments (Gromke et al., 2008; Roupsard et al., 2013) or CFD simulations 
studying the idealized environment of a street canyon (Buccolieri et al., 2011; 
Gromke and Blocken, 2015). ENVI-met has been used in this regard as well (Wania 
et al., 2012) and also to investigate idealized spaces between buildings (Vos et al., 
2013). Few studies have assessed environments with settings considering real-world 
configurations by the use of experimental fieldwork (e.g., Yli-Pelkonen et al., 2017). 

3.4.2 Methodical approach 

A simulation study investigating the influence of vegetation elements on 
pedestrian-level aerosol concentrations considering a real-world situation of an 
inner-city park area and the surroundings, including street canyons, was conducted 
using the modeling tool ENVI-met (see Appendix A).  
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The same computational domain mentioned in Sect. 3.2.2 (described also in 
more detail in Sect. 3 of journal paper II), resembling the park area Elisenbrunnen in 
the city of Aachen, was used and extended by the inclusion of information on 
vegetation elements within the computational domain (i.e., geometric information 
and species characteristics, including the leaf area density, LAD). A three-
dimensional rendering of the computational domain used, including vegetation data, 
is shown in Fig. 13. A comparison was made between the simulation results of 
ENVI-met calculated using computational domains with and without vegetation 
elements. All other criteria of inflow boundary conditions were set equally and as 
described in Sect. 3 of journal paper II, using input data from local meteorological 
measurements during the summer season. Furthermore, the simulation results have 
been compared to data collected during field experiments by the use of Q-Q plots, 
the FB, and the RHC (see Sect. 3.2.3). 
  

Buildings
Vegetation: LAD lower 0.5
Vegetation:  LAD 0.5 - 1.0
Vegetation:  LAD 1.0 - 1.5
Vegetation:  LAD 1.5 - 2.0
Vegetation:  LAD above 2.0
Terrain
Particle area sources

Fig. 13: 3D rendering of the used ENVI-met core model domain representing the area under
study Elisenbrunnen. Reproduced from Appendix A. 
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3.4.3 Main results 

 Simulation runs that contained vegetation elements (i.e., shrubs and trees 
> 1 m) indicate higher ground-level concentrations of PM10 (1.5 m AGL) close to the 
particle sources in particular in comparison with predictions out of simulations 
without the consideration of plants (see Fig. 14). The results show that in real-world 
environments similar to the set-up of the case study the effect of reduced vertical 
and horizontal air mass exchange (that can be responsible for accumulation of PM in 
the near-ground atmosphere) due to plants can be rated dominant in comparison 
with the effect of deposition, where vegetation filters ambient air and acts as a sink 
for airborne particles, as discussed earlier (Janhäll, 2015). However, the overall effect 
of vegetation on ground-level aerosol concentration was found to be small and in 
the same order of magnitude as in findings from studies focusing on street canyon 
environments (Gromke and Blocken, 2015). When compared to observations, the 
consideration of plants, as an additional variable and factor of influence in the 
model calculations of ENVI-met, helped to slightly enhance the otherwise poor 
model performance, expressed by the considerable underestimation observed earlier 
(see journal paper II and Sect. 3.2.3) and indicated by both an improved FB (1.60 
including plants; 1.65 without plants) as well as an enhanced RHC. However, the 
model performance was still far from acceptable when predictions were compared 
to observations (for details see Tab. 1 and Fig. 5 of Appendix A). 
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3.5 Summary 

i. Deterministic models were found to be valid methods in terms of spatial 
simulations of particle distribution; however, there is room for 
improvement with regard to their performance. Mixed performance could 
be observed when assessing the effectiveness of ENVI-met and 
Austal2000, with both models underestimating results by a considerable 
margin. In comparison, and by the use of the same IBCs determined in the 
model set-up stage, Austal2000 outperformed ENVI-met in almost every 
aspect concerning model performance. 

ii. Both models gained accuracy in the upper concentration range, which is 
particularly important for regulatory purposes. It was found that the use 
of local meteorological measurement data instead of data from distant 
weather stations as inputs to actuate the dispersion models considerably 
improved the performance of both models. Predictions by both models 
were more accurate under neutral atmosphere stratification regimes. Both 
models had problems with significant underestimation under unstable or 
very unstable atmospheric conditions. 

iii. The simulation results of traffic-induced particle emissions conducted 
using Austal2000 did not support the unusual findings concerning 
distribution patterns that were observed through the field data analysis 
(see Sect. 2.3), encouraging the hypothesis that local resuspension within 
the park area caused the unexpected spatial pattern revealed by the 
observations. 

iv. Approximations of ΔPM10—although interpreted with caution—imply that 
the contribution of diffuse resuspension particle sources within the park 
area of the research site Elisenbrunnen to the measured total mass 
concentration of PM(0.25–10) was between 13.3 and 17.9 µg m-3 during the 
period of data collection. 

v. In a real-world environment, simulation results of ENVI-met indicate that 
trees and shrubs had an influence on ground-level particle concentrations 
and particle distribution. Vegetation elements lead to increased levels of 
near-ground PM10 concentrations. As a result, the performance of ENVI-
met that included vegetation elements in the computational domain 
improved the model performance. However, the influence was found to be 
small, as confirmed by other studies (Gromke and Blocken, 2015). 
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4. Prediction of particle concentrations using a 
newly developed statistical model 

Section 4 presents the development of a non-linear statistical model to predict 
different metrics of particle concentrations using inputs of standard 
meteorological data and background concentration of PM10, as well as acoustic 
data. This chapter is based on journal paper III. Section 4.1 puts the model 
development and performance study into context of atmospheric pollution and the 
respective state of the art concerning statistical modeling. The motivation for the 
model development is highlighted therein. Section 4.2 gives a brief description of 
the model concept and the main steps that should be taken into consideration to 
develop such models. The main outcomes of the performance assessment of the 
different models proposed are presented in Sect. 4.3. 

4.1 Context and motivation to develop an ANN model 

Statistical modeling is an objective estimation technique in the sense that the 
method is based on statistical data analysis establishing empirical relationships 
between predictive values such as ambient pollutant concentrations and predictor 
variables such as meteorological parameters (Vlachogianni et al., 2011; Santos and 
Fernández-Olmo, 2016) or land use patterns (Merbitz et al., 2012a, 2012c). Many 
popular approaches, such as regression modeling, apply linear dependences between 
predictive and predictor variables (Vlachogianni et al., 2011). Unfortunately, these 
solutions are not applicable for the non-linear problems often found to be true in 
environmental contexts. The relationship between, for example, meteorology or 
acoustic and pollutant concentrations is complex and potentially multi-scale in 
nature (Gardner and Dorling, 1998; Weber, 2009; Can et al., 2011). This initial 
situation makes the complex nature of the problem highly suitable for an artificial 
neural network (ANN) approach (Kukkonen, 2003). The ability of ANNs to learn 
underlying data generating processes without the requirement of prior knowledge 
of the nature of relationships between variables, given sufficient data samples, has 
led to popular usage in applications such as prediction and forecasting of air quality 
in environmental studies (Kukkonen, 2003; Hooyberghs et al., 2005; Cai et al., 2009; 
Santos and Fernández-Olmo, 2016), among others (Gardner and Dorling, 1998; Wu 



 42 

et al., 2014). In comparison with deterministic modeling, the application of statistical 
approaches such as ANN models is computationally efficient and equally cost-
effective, given that input variables are carefully chosen using appropriate site- and 
time-specific data. However, until now ANN models have rarely been applied 
successfully concerning spatial predictions of pollutants in the atmosphere 
(Kukkonen, 2003). 

4.2 Concept 

In this context an ANN model approach using input data of sound and 
meteorological parameters, as well as background particle concentrations, has been 
developed to predict concentrations of different particle metrics (PM(0.25–1), PM(0.25–

2.5), PM(0.25–10), and PNC(0.25–2.5)). The networks were developed, validated, and tested 
in a case study environment of a street canyon in the direct vicinity of a road 
arterial at the Aachen research site Karlsgraben (see Fig. 15). In a second step, the 
validated ANN models were applied and tested by the use of a data set collected 
within the open green area of the Münster research site Aasee (see Fig. 2 and Fig. 8). 
Here the approach was to test for the first time the ability of the ANN approach to 
gather spatial information on particle concentrations other than from the direct 
vicinity of traffic lanes. Furthermore, the networks developed were assessed with 
regard to their performance against the more traditional ANN approach of using 
only meteorological data and background aerosol concentrations as predictor 
variables. 

Hereinafter, a brief description is presented introducing the Aachen research 
site Karlsgraben and the different steps that were conducted for the network 
development of the ANN models. Details regarding the Münster research site Aasee 
are presented in Sect. 3.2.2 and in Sect 3.1 of journal paper II. A more 
comprehensive description of data collection as well as pre- and post-processing of 
data and, in particular, of the detailed technical steps that should be taken into 
consideration when developing such models is offered within the methodology 
sections of journal paper III. 

4.2.1 Areas of investigation 

The development and validation of the proposed ANN model approach took 
place with a dataset that was collected in an isolated street canyon at the Aachen 
research site Karlsgraben (see 1.3). The buildings that enclose the street canyon 
mostly consist of 4–5 floors and are in the main residential in use. Only very 
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occasional business—an electronic hardware store as well as two restaurants—is 
present in the research site. The building-height(h)-to-street-width(w) aspect ratio 
of the street canyon h/w is ~1. The Karlsgraben road is a loop arterial oriented in the 
north–south direction in the area under study with two traffic lanes (two-way) and 
an average traffic volume of approximately 501 vehicles per hour in the daytime, 
comprising 93% passenger cars, 2% busses (diesel), 4% delivery vehicles, and 1% 
mostly diesel-powered heavy duty vehicles (manually counted for seven randomly 
picked hours at different times of the day during the period of investigation). The 
observed vehicle fleet apportionment represents the approximate average traffic 
composition in the state NRW (Kraftfahrtbundesamt, 2012).  

 The stretch of road under study covers a range of 200 m and is located 
between two intersections that are controlled with traffic lights. The Karlsgraben 
road has a speed limit of 50 km h−1; however, because most of the vehicle traffic is 
between accelerating and slowing down due to the traffic lights at the beginning 
and the end of the stretch of road under study, the average vehicle speed was 
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Fig. 15: Scheme of the Karlsgraben research site in Aachen (right illustration) including
depictions of the measurement location (crosshair cursor) and locations of two restaurants
(marked with “R”) as well as images of both the street canyon of Karlsgraben road (upper left
image) and the installed on-location measurement equipment (lower left image).
Reproduced from journal paper III. 
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estimated to be ~ 30 km h−1 (mostly fluent) in front of the data collecting sensors. 
Field data collection took place halfway between two traffic lights eastward next to 
the traffic lane (1 m off-street). For details concerning the Münster research site 
Aasee, see Sect. 3.2.2. 

4.2.2 ANN model development strategy  

ANN models are universal approximators with the ability to generalize 
through learning non-linear relationships between provided variables of input(s) 
and output(s) (Hájek and Olej, 2012). The objective of all ANN prediction models is 
to find an unknown functional relationship f(X, W) that links the input vectors in X 
to the output vectors in Y (Gardner and Dorling, 1998). All ANN models are based 
on the form described with the equation (Eq. 1) given by (Maier et al., 2010): 

𝑌 =  𝑓(𝑋,𝑊) +  𝜀 1) 

where 𝑊 is the vector of model parameters (connection weights) and 𝜀 represents 
the vector of model errors. Thus, in order to develop the ANN model, the vector of 
model inputs (𝑋), the form of the functional relationship (𝑓(𝑋,𝑊)), which is 
governed by the network architecture and the model structure (e.g., the number of 
hidden layers, number of neurons, and type of transfer function), and the vector of 
model parameters (𝑊), which includes the connection and bias weights, have to be 
defined (Maier et al., 2010). A multi-layer perceptron (MLP) was selected as the 
network basis to predict the aerosol mass concentrations of particles as it is the most 
commonly used ANN model architecture (Maier et al., 2010; Razavi and Tolson, 2011) 
and has been found to perform well for applications such as the prediction of air 
pollutant concentrations (Kukkonen, 2003; Cai et al., 2009). Details regarding model 
architecture can be found in Sect. 2.2.1 in journal paper III. 

ANN model development includes numerous different steps that must be 
followed carefully (see Fig. 16). One of the most important steps comprises the 
selection of a suitable set of input variables with maximum predictive power and the 
respective collection of data. In the study of journal paper III, the input selection 
process was divided into two different actions to determine an appropriate set of 
inputs. In the first step, input significance was justified using an ad hoc approach 
where potential input variables (i.e., candidates) were determined based on a priori 
knowledge considering the nature of the problem and available data. Following 
Lenschow (2001) and Cai et al. (2009), physically, local particle concentrations are 
dependent on both sources of particles (i) and the distribution of particles at the 
time when they are airborne (ii). Furthermore, (i) depends on both background 
particle transport, represented by urban background government monitoring data 
used as an input variable in the proposed modeling approach, and local particle 
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sources, represented by sound pressure level variables in the proposed modeling 
approach, respectively. Vehicle traffic emissions both in terms of the amount of 
combustion processes and blown-up dust as well as tire and break abrasions are 
identified to be a major source of particles near urban arterials (Morawska et al., 
1999; Karagulian et al., 2015; Manousakas et al., 2017). Vehicular emissions are 
related to the volume of traffic, vehicle type, and speed (Cai et al., 2009), which, in 
turn, are assumed to be attributable to traffic sound. The transmission of particles (ii) 
depends on meteorology (Can et al., 2011). An extensive set of input variable 
candidates was considered using different metrics of acoustic data collected during 
the measurement campaign and standard meteorological data from continuously 
operated weather stations, as well as urban background concentrations of PM10 
from government monitoring stations. For details concerning field data collection 
and processing see Sect. 2.3 of journal paper III.  

In the second step, an analysis of partial mutual information (PMI) was applied 
to prove the relevance and independency of the proposed initial candidate set of 
input variables. The goal was to sample out a set of variables with maximum 
predictive power and minimum redundancy (Maier et al., 2010; Stamenković et al., 
2015). Details concerning PMI are extensively described in Sect. 2.2.3 of journal 
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paper III. All considered variable candidates as well as the determined input 
variables for the ANN models used are given in Table 2 of journal paper III. 

The valid data set, including the selected input and output variables, were 
divided into training, validation, and testing subsets, in order to ensure the best 
possible generalization of the ANN model on unknown input data. In this study, a 
method based on stratified sampling of the self-organizing map (SOM) over simple 
random sampling was used to split the data set into subsamples, ensuring that the 
statistical properties of the subsets are similar (May et al., 2010). Details regarding 
SOM-based stratified data splitting (SBSS) can be found in Sect. 2.2.3 of journal 
paper III. 

Together with the ANN model architecture, the model structure defines the 
functional relationship 𝑓(𝑋,𝑊) between model inputs and outputs (cf. Eq. (1)). 
Model structure selection includes the determination of the optimum number of 
neurons in the hidden layer and how they process incoming signals by the use of 
suitable transfer functions (May et al., 2010). For the development of the ANN 
models a stepwise iterative process was conducted to find out the optimal number 
of neurons in the hidden layer and the best suitable transfer function (Maier et al., 
2010). Details concerning the tuning of the network structure are extensively 
described in Sect. 2.2.4 of journal paper III.  

The process of finding a set of connection weights between neurons of the 
network (“training”) was conducted using the back-propagation algorithm 
(Rumelhart et al., 1986). Details regarding the training of the network are presented 
in Sect. 2.2.5 of journal paper III. 

4.2.3 Performance measures 

The performance of both the traditional model approach using only 
meteorological and background concentration data and the novel model approach 
using additionally input data of sound was assessed comparing the simulation 
results to observations using scatter plot diagrams as well as different metrics of 
statistics and performance measures, as recommended in recent literature. Again the 
FB was used (see Sect. 3.2.3) complemented by the root mean squared error (RMSE) 
and the model efficiency score (MEF), including the target approach first presented 
by Pederzoli et al. (2011). The methodology of the target diagram bases on the main 
principle of Taylor (2001) and was modified by the Joint Research Centre (JRC) of 
the European Commission within the framework of the Forum for Air Quality 
Modelling in Europe (FAIRMODE) to develop a harmonized methodology to 
evaluate model results based on a consensus set of statistical indicators. Further 
details concerning the interpretation of the performance measures used, as well as 
their mathematical description, can be found in Sect. 2.5 of journal paper III. 
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4.3 Performance evaluation of the developed ANN models 
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Fig. 17: Target diagram of ANN model results for PM(0.25–1) (rectangles), PM(0.25–2.5) (circles),
PM(0.25–10) (triangles) and PNC(0.25–2.5) (rhombuses). Purple markers depict Aachen
“Karlsgraben” test case results. Green markers depict Münster- “Aasee” test case results.
Filled and hollow markers differentiate between model results using acoustic input data and
calculations without acoustic data input. Reproduced from journal paper III. 
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compared to observations (see Fig. 18). Using data from the Aasee test case, the ANN 
model to predict concentrations of PM(0.25–10) turned out to perform fairly well, with 
a MEF of 0.64 (R2 of 0.78). Models to predict concentrations of PM(0.25–2.5) and 
PNC(0.25–2.5) reproduced rather accurate observations over the entire concentration 
range considering high MEF scores (MEF: 0.82–0.85) and coefficients of 
determination close to 1.0 (R2: 0.87–0.89). However, up to now air quality modelers 
have not yet agreed upon the magnitude of standards for judging model 
performance (Yassin, 2013). Chang and Hanna (2004) advised that a model should be 
considered acceptable when most of its predictions are within a factor of two of the 
observations. ANN models to predict concentrations of PM(0.25–2.5) and PNC(0.25–2.5) 
within the park area case in Münster surpass this requirement (see Fig. 19). A more 
comprehensive set of statistics and performance measures are given in the results 
(Sect. 3) of journal paper III. 

Taking into account the more comprehensive target approach of the MEF 
(described in Sect. 2.5 of journal paper III), recommended by the JRC of the 
European Commission, it is guaranteed that the ANN model is a better predictor of 

Fig. 18: Scatter plot diagram showing Karlsgraben ANN model predictions of  
(A) PM(0.25–1), (B) PM(0.25–2.5), (C) PM(0.25–10), and (D) PNC(0.25–2.5) over respective observations. 
Dashed lines illustrate a 1:1 reproduction of model predictions over observations; thin solid 
lines indicate linear regression results between the samples of predictions and observations; 
black marks depict model results using additional acoustic data inputs; gray marks indicate 
model results of using inputs without acoustic data. Reproduced from journal paper III. 
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the observations than a constant value set to 𝐶𝑂��� when target values are depicted 
inside the circumference of the target diagram, i.e., when the MEF is >0 (Stow et al., 
2009). Using this measure, the best-performing ANN models developed in this study 
fulfill the requirements for estimations in terms of uncertainty and accuracy for 
mean value predictions according to Thunis et al. (2012). 

Concentration predictions of PM(0.25–1.0) and PM(0.25–2.5) within the Karlsgraben 
test case as well as of PM(0.25–1) within the Aasee test case cannot be considered 
satisfactory, given negative MEF values throughout (see Fig. 17), as well as a 
seriously limited variation range of prediction values over observations (see Fig. 18 
and Fig. 19). Reasons for poor performance in these cases were felt to be both 
methodology, especially concerning the sample size used to train and validate the 
network (Johnson and Jurs, 1999), and physical conditions the model cannot account 
for. For more details see Sect. 4 of journal paper III.  

Overall, it could be proved that acoustic data input contributes to ANN model 
accuracy regarding the prediction of particle concentrations for almost all test cases 
(cf. Fig. 18 and Fig. 19). 

 

Fig. 19: Scatter plot diagram showing Aasee ANN model predictions of  
(A) PM(0.25–1), (B) PM(0.25–2.5), (C) PM(0.25–10), and (D) PNC(0.25–2.5) over respective observations. 
Dashed lines illustrate a 1:1 reproduction of model predictions over observations; thin solid 
lines indicate linear regression results between the samples of predictions and observations; 
black marks depict model results using additional acoustic data inputs; gray marks indicate 
model results of using inputs without acoustic data. Reproduced from journal paper III. 
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5. Conclusions and outlook 

In this thesis, several issues have been addressed in a multi-methodological 
study in order to better understand the micro-scale variability of atmospheric 
particle concentration in the urban boundary layer. Three main approaches, the 
field experiment analysis using mobile sensor equipment alongside a survey, the 
performance assessment of two popular particle dispersion models, and the 
development of an ANN model have been presented for this purpose. 

Results of both field data analyses and deterministic modeling tools provide 
evidence that airborne particles are distributed in highly varied and complex ways, 
even on small spatial scales, as also discovered by numerous other studies (e.g., 
Merbitz et al., 2012b; Birmili et al., 2013a, 2013b). As a result, it was difficult to 
identify single drivers that lead to specific concentration patterns. However, it could 
be proved that vehicle traffic had a huge impact on particle concentrations, 
especially near road arterials. Additional diffuse sources of particles could be 
determined, especially inside the park area in Aachen, where surfaces of dried-out 
grass and unpaved gravel paths contributed to the local aerosol concentration, 
resulting in unexpectedly high mean concentration levels of PM(0.25–10) that were, in 
fact, higher than the concentration levels in the direct vicinity of traffic lanes. It 
became obvious that fixed-site aerosol instrumentation lacks representative 
information on the concentration levels people are effectively exposed to (Peters et 
al., 2014) and that PM10 as a single metric is a questionable measure for air quality 
regulation regarding aerosols inside cities since different particle size fractions with 
different impacts on the human body (Kreyling et al., 2006) can be distributed in 
various ways, even on small spatial scales (Ning and Sioutas, 2010). 

In marked contrast to findings from Nikolopoulou et al. (2011) this thesis 
highlights that people were not able to distinguish between different levels of 
particle exposure of PM(0.25–10) on-site; at least within the concentration ranges 
found in this study. This finding emphasizes the problem of public awareness 
regarding spatial and temporal distribution of air pollution such as PM. It highlights 
the necessity of accurately quantifying the spatial and temporal highly variable 
particle concentrations in the atmosphere, since otherwise the exposure to PM will 
remain beyond judgement in daily life. Current levels of PM concentrations are still 
rated as deleterious and should be further reduced (Pascal et al., 2013). 

Today, deterministic models provide chances to broaden the knowledge of 
spatial pollutant distributions such as particles, especially considering user-friendly 
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tools such as ENVI-met. The simulation tools Austal2000 and ENVI-met were found 
to be powerful and well suited to determining the spatial information of aerosol 
concentrations on the micro-scale, solving issues posed in domains of complex 
urban environments including obstacles such as buildings or vegetation elements. 
However, the performance of both models turned out to have room for 
improvement when it comes to the task of reproducing observed concentration 
levels of particles. The results of this thesis will help model users from the scientific 
community, as well as those carrying out applied studies when investigating 
atmospheric composition concerning aerosols, to understand what performance 
they can expect from the simulation tools ENVI-met and Austal2000 in real-world 
applications. The analyses will support model developers in identifying the 
weaknesses of the evaluated models and conditions where the models do not 
perform satisfactorily. The results provide indications regarding the uncertainty 
that is present in the PM concentration prediction of ENVI-met and Austal2000 in 
comparison with field data under different atmospheric conditions. Furthermore, 
new options for model performance enhancement are given; i.e., by the advice on 
how to run both models successfully with recommendations in the part of 
atmospheric input data. Input data of pollutant emission rates, however, are still of 
concern. In the future, model performance should be enhanced in this particular 
case through inverse modeling, for example (Birmili et al., 2009). Further 
improvements can be obtained with the help of inflow boundary conditions derived 
from sophisticated wind field models (Letzel et al., 2012). Currently, the output data 
of Austal2000 and in particular of ENVI-met, must, as in any case with predictive 
models, be interpreted with caution. 

A new computational- and cost-efficient ANN modeling approach has been 
presented to predict aerosol concentrations effective for areas where permanent 
sensor operation is not possible or feasible. By the use of information on sound, 
background concentration of PM10, and meteorology as inputs, the approach turned 
out to be useful and at least in parts a fairly accurate tool for predicting aerosol 
concentrations in both time and space (cf. Kukkonen, 2003). Steps that should be 
considered when setting up an ANN prediction model successfully are outlined in 
detail. However, up to now the ANN model approach presented is still far from an 
operational tool due to its several limitations. The restricted development 
environment used in this thesis featuring simplified conditions (e.g., avoidance of 
rainy periods) should be enlarged towards real-world conditions. Currently, the 
approach presented is limited to “now-cast” (Maier et al., 2010). However, the 
performance assessment in this thesis demonstrates the principal ability of non-
linear statistical models in the research domain of air quality monitoring. For the 
purpose of developing a forecasting tool for near-future particle concentrations 
based on the approach presented input vectors of data derived from urban acoustic 
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models and numerical weather prediction models, as well as meso-scale background 
particle transport models, might be used. The approach presented can be used to 
establish supplementary alternatives to measurements or deterministic modeling in 
order to enhance spatial and/or temporal availability of information on particle 
concentrations in the urban atmospheric boundary layer. 
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Abstract
Spatial micro-scale variability of particle mass concentrations is an important criterion for urban air quality
assessment. In this study we present results from detailed spatio-temporal measurements in the urban
roughness layer along with a survey to determine perceptions of citizens regarding air quality in an inner
city park in Aachen, Germany. Particles were sampled with two different approaches in February, May,
July and September 2014 using an optical particle counter at six fixed measurement locations, representing
different degrees of outdoor particle exposure that can be experienced by a pedestrian walking in an intra-
urban recreational area. A simulation of aerosol emissions induced by road traffic was conducted using the
German reference dispersion model Austal2000. The mobile measurements revealed unexpected details in the
distribution of urban particles with highest mean concentrations of PM(1;10) inside the green area 100 m away
from bus routes (arithmetic mean: 22.5 μg m−3 and 18.9 μg m−3; geometric mean: 9.3 μg m−3 and 6.5 μg m−3),
whereas measurement sites in close proximity to traffic lines showed far lower mean values (arithmetic mean:
7.5 μg m−3 and 8.7 μg m−3; geometric mean: 5.8 μg m−3 and 6.5 μg m−3). Concerning simulation results, motor
traffic is still proved to be an important aerosol source in the area, although the corresponding concentrations
declined rapidly as the distances to the line sources increased. Further analysis leads to the assumption that
particularly coarse particles were emitted through diffuse sources e.g. on the ability of surfaces to release
particles by resuspension which were dominantly apparent in measured PM(1;10) and PM(0.25;10) data. The
contribution of diffuse particle sources and urban background transport to local PM(0.25;10) concentrations
inside the green area were quantified to be up to 17.9 μg m−3. The analysis of perception related experiments
demonstrate that particle concentrations in form of PM(0.25;10) were inconsistent with park user opinions
regarding perception of air quality. At least in investigated concentration magnitudes there proved to be no
connection between user assessment and physical values at all.

Keywords: particulate matter, micro-scale, air quality perception, vehicle emissions, dispersion modelling,
Austal2000, recreational area, environmental pollution, personal exposure

1 Introduction
Particulate matter (PM) is an important environmental
risk to health (WHO, 2013). Results of epidemiological
studies suggest that both long-term and even short-term
stays, e.g. during commuting or relaxing, at locations
with high PM concentrations could have significant im-
pacts on health such as respiratory and cardiovascular
diseases (Pope et al., 2002; von Klot, 2005; Chow
et al., 2006). The major proportion of the world’s pop-
ulation lives in cities (United Nations, 2014), where
exceedances of air quality standards occur regularly. In
general, town citizens are particularly affected due to

∗Corresponding author: Bastian Paas, Department of Geography, Wüll-
nerstaße 5b, RWTH Aachen University, Germany, e-mail: bastian.paas@
geo.rwth-aachen.de

their frequent exposure to pollution emitters and other
environmental stressors.

The individual exposure to airborne particles out-
doors is complex to describe and is highly dependent
on the specific whereabouts (Dons et al., 2011; Broich
et al., 2012; Steinle et al., 2013, Bekö et al., 2015)
and meteorological conditions (Padró-Martínez et al.,
2012; Birmili et al., 2013b). Although traffic has been
identified as a major contributor to the aerosol strain
near roads due to both exhaust and non-exhaust inputs
(Merbitz et al., 2012b; Birmili et al., 2013a, Quiros
et al., 2013), most evidence on aerosol health effects has
been derived from measurements of particle mass con-
centrations from fixed sites (Laden et al., 2006). By def-
inition, quantities of particle mass measures from im-
movable sensors, however, are not able to identify site

© 2016 The authors
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dependent particle exposure on the spatial micro-scale.
Nonetheless, to approximate the personal PM exposure
representative for entire city areas (e.g. for legislative
reasons), fixed monitoring sites are regularly used due
to the lack of dense monitoring networks. In ambient air
the characterization of spatial PM exposure is complex
since different particle size classes show divergent spa-
tial distribution patterns (Birmili et al., 2013b). Explain-
ing mass concentrations of fine particles and particle
number as a function of time and location appears to be
specifically challenging (Kozawa et al., 2012; Mishra
et al., 2012; Spinazzè et al., 2015) due to the fact that
combustion sources from traffic processes and indus-
try emit mainly small particles situated in nucleation
mode (Quiros et al., 2013; Ning and Sioutas, 2010).
These aerosol fractions change their physical charac-
teristics rapidly as a consequence of growth processes.
Further, accumulation mode particles tend to have long
residence time in the atmosphere and therefore domi-
nate particle mass (Seinfeld and Pandis, 2006). These
complex physical processes are applicable to the urban
roughness layer in particular. In urban environments nu-
merous diffuse particle sources can be found and disper-
sion is difficult to describe due to a variety of different
surface structures and numerous spatial obstacles.

Beyond the factual health risk of PM (Venn et al.,
2001), it is a basic question whether people are able to
perceive the exposure to PM in the perceived climate
comfort. On the one hand, not all people might show the
same sensitivity or awareness for those stressors (Shi-
rom et al., 2000), especially as city pedestrians might
differ in age or health status and therefore might have a
different responsiveness to climate stressors in general
and aerosol concentrations in particular (Brook et al.,
2010). On the other hand, it is well possible that peo-
ple have established an overall perception of the on-site
comfort as a holistic evaluation with particulate matter
being an integral though unconscious part of it. Both
hypotheses implicate different consequences. It is there-
fore important to understand whether there is a relation-
ship between the physical stressor (i.e. aerosol concen-
tration) and the specific perception of air quality and/or
whether there is a relationship between the physical
stressor and the integrative evaluation of on-site com-
fort. Numerous studies can be found concerning human
perception of the urban environment. However, most of
the work has focused on thermal comfort (Chen and
Ng, 2012; Johansson et al., 2014). When perception
was linked to air pollution, usually perceived risks were
addressed or epidemiological studies were performed
(Badland and Duncan, 2009). Most studies have been
carried out through social and public opinion surveys
which focused almost exclusively on people’s awareness
or level of concern about air pollution (Nikolopoulou
et al., 2011). Brody et al. (2004) started empirical re-
search to examine the local level. Even in this case, the
data was collected and analyzed at the neighborhood
level and not measured or assessed at the local pedes-
trian level. Only recently have investigations on indi-

vidual perception of exposure to PM been conducted
on the micro-scale (Nikolopoulou et al., 2011). Local-
scale studies have provided some information on place-
specific conditions and evaluated how the location and
its surroundings are important in the experience of air
pollution but these studies disagree when it comes to an
evaluation of air pollution sensation (Brody et al., 2004;
Nikolopoulou et al., 2011).

Other impacts, for instance noise or thermal stress,
influence human wellbeing and health in a variety of
complex ways as well (Raimbault and Dubois, 2005;
Yang and Kang, 2005; Gabriel and Endlicher, 2011;
Maras et al., 2014). It is evident that monitoring, main-
tenance and planning of urban areas require an inte-
grative approach to combine methods from natural sci-
ences, engineering and social sciences. Taking this into
account, a better understanding of highly-resolved dis-
tribution patterns of aerosols under given microclimate
conditions in combination with the perception and sen-
sation of urban space users regarding air quality param-
eters will help to achieve better environmental health
standards inside cities at a local level (e.g. in intra-urban
recreational areas).

This interdisciplinary work was designed to explore
the spatial distribution patterns of the urban atmospheric
aerosol by portable instrumentation in combination with
a parallel survey to examine the sensation and percep-
tion of urban park users regarding air quality. We in-
vestigated different situations of outdoor exposure ex-
perienceable by a town citizen in an inner-city recre-
ational area, in a generic medium-sized German city like
Aachen. We identified localities of different particle ex-
posure inside the exemplarily considered research site
“Elisenbrunnen”, and examined seasonal differences re-
garding concentrations of particulate matter and over-
all perception of air quality. Furthermore, we consid-
ered the question whether or not urban park users are
intuitively able to distinguish between dissimilar parti-
cle mass concentrations. We used the Austal2000 sim-
ulation tool to investigate the influence of emissions in-
duced only by motor traffic at the research site. We com-
pared the outcomes with physically measured values
collected during measurements. The analysis focuses on
the question whether the green area “Elisengarten” in-
side the recreational area “Elisenbrunnen” in the city
of Aachen has a positive impact on local atmospheric
particle concentrations compared to the surrounding ur-
ban fabric structure. Bio-meteorological stress factors,
i.e. thermal stress, and a psychophysical investigation on
human perceptions of climatological stress factors were
analyzed in related publications by Maras et al. (2016)
and Schmidt et al. (2015).

2 Methods

2.1 Study area

Field experiments were carried out inside an inner-city
public open space in the city of Aachen (pop. 245,000),
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Figure 1: Research site “Elisenbrunnen” in Aachen. The image shows summer conditions of deciduous trees, with the photographer standing
at the northern ending of the recreational area pointing to the south with the camera.

a typical German medium-sized town sitting in the tri-
border region close to the Netherlands and Belgium. The
investigation site spans an area of about 0.02 km2 and
is characterized by a well-attended inner city park, en-
closed with buildings generally comprised of 4–5 floors.
One of the most frequented roads by public transport
buses (“Friedrich-Wilhelm-Platz”), inaccessible for in-
dividual private vehicles, including four main bus stops
(102 coach connections per hour on weekdays), leads
through the investigation area. The park is surrounded
by sparsely busy roads in the Northeast (industrial ve-
hicles for delivery only) and Southeast (“Hartmannstr.”)
and a highly frequented alleyway used mainly by private
cars (“Ursulinerstr.”). Unsurfaced footpaths subdivide
the green area which contains mainly small flowerbeds
and a lawn surface that is surrounded by deciduous trees
(Platanus x hispanica) (Fig. 1). Six monitoring sites
were chosen inside the study area for measurements and
surveys featuring different surroundings (Fig. 2). Sites
E and F were characterized as typical recreational spots
inside the green area. Location C features a main bus sta-
tion, whereas site B was located in proximity to the inter-
section “Friedrich-Wilhelm-Platz”/“Ursulinerstr.” dom-
inated by moving traffic. Monitoring sites A and D have
been chosen in between to capture transfer passages
from surroundings into the green area to provide a gra-
dient.

2.2 Experimental design

Local measurements were conducted to determine
mass concentration of suspended particles with aero-
dynamic diameters (DAE) between 0.25 μm and 10 μm
(PM(0.25;10)). Simultaneously, questionnaires accounting
for an overview of the perception of urban park users
were filled in.

Firstly, physical data were collected with the entire
described measurement equipment at location A, B, C,
E and F as one-day time series (weekdays, 10:00–17:00,
10-minute mean values) alongside the survey during a
typical wintertime in February 2014. A similar approach
was conducted at locations A, B, E and F during summer
in July 2014. Initial conditions for each measurement
campaigns were chosen to be the same for both periods,
including radiation weather conditions with only partly
clouded skies and no precipitation.

Further particle measurements were carried out at lo-
cations A–F with a semi-parallel approach using again a
mobile single measurement device. Measurements were
conducted during 7 selected weekdays (10:00–17:00) in
February, May and September 2014 that were charac-
terized by meteorological conditions prevailing at the
study area with no precipitation in cyclonic weather sit-
uations and south-westerly winds (Fig. 3). The measure-
ment location was changed every 5 minutes in an identi-
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Figure 2: Research site “Elisenbrunnen” in Aachen (left illustration) including depicted measurement locations A–F (grey circles) and
the area under study (white cross on black circle) located in Central Europe (upper right illustration) and located in Aachen (lower
right illustration) including the weather station “Aachen-Hörn”, traffic related air quality monitoring station “Wilhelmstrasse” (VACW)
and rural background air quality monitoring station “Burtscheid” (AABU) operated by the Northrhine-Westfalian State Office for Nature,
Environment, and Consumer Protection (LANUV) marked with red dots.
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Figure 3: Wind rose representing data collected during semi parallel
measurements in February, May and September 2014 at the weather
station “Aachen-Hörn” also used as inflow boundary conditions for
traffic induced PM10 distribution modelling.

cal chronological order (clockwise starting at location F,
cf. Fig. 2), with the mobile particle counter circulating
among the different locations. Data were sampled as
1-minute averages. Every first mean value of a sample
was discarded from further analysis. For the analysis a
sample consisting of 56 1-minute averages was used.

A simulation of particle dispersion under given mete-
orological initial conditions was conducted to reveal the
effects of only motor traffic induced particle emissions
using the simulation tool Austal2000 (see 2.4).

2.3 Instrumentation

2.3.1 Grimm mobile optical particle counter

The particle measurements were taken using a mo-
bile optical particle counter (OPC, Model EDM 107G,
Grimm GmbH, Ainring, Germany). The OPC integrates
the approaches of light scattering technology with sin-
gle particle counting. A pulse height analyzer classifies
the scattered light pulse signals into a size distribution in
the range between 0.25–32 μm DAE containing 31 dif-
ferent size channels. Internally, the particle number size
distribution is converted into mass concentrations of e.g.
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Figure 4: Time periods of PM(0.25;10) time series measurements (light grey bars) in comparison to 60-minute average concentrations of
PM10 at the government air quality site “Burtscheid” (dark grey dots) and “Wilhelmstrasse” in Aachen during the winter campaign (left
illustration “WI”) and during the summer campaign (right illustration “SU”). Time and date is indicated in local time (UTC+01 during
winter and UTC+02 during summer).

PM(0.25;10) for an indicated time interval. The sensor op-
erates at a volumetric flow rate of 1.2 L min−1 and a time
resolution of 6 s. All measurements with the OPC were
carried out at the mean respiratory height of 1.6 m agl
and stored as 1-minute mean values.

The OPC used had been factory calibrated on a reg-
ular basis (VDE standard 0701–0702) within the cal-
ibration validity period and was calibrated last time
on 13/01/2015. Before calibration the latest inspec-
tion showed a deviation of −0.6 μg m−3 (−4.2 %) for
PM(0.25;10) and a deviation of −0.3 μg m−3 (−2.7 %) for
PM(0.25;1) of the OPC to the factory’s reference unit
107 S/N.

2.3.2 Fixed weather station Aachen-Hörn

Inflow boundary conditions as entry criteria for the
modelling tool were set using data from the perma-
nent weather station “Aachen-Hörn”, located in the out-
lying area of Aachen (6 ° 03 ′ 40 ′′ E, 50 ° 46 ′ 44 ′′), at
1800 m linear distance to the research site. Required val-
ues of wind speed and wind direction were collected as
10-minute averages (Schneider and Ketzler, 2015).

2.4 Simulation

The dispersion simulation of traffic related PM10 emis-
sions were performed with version 2.6.11 of Austal2000,
a Langrangian particle model according to the Techni-
cal Instructions on Air Quality Control (TA Luft), ap-
pendix 3 (BMU, 2002). Road traffic emissions only (in-
cluding emissions from combustion processes, blown up
dust as well as tire and break abrasions) were simulated
in a domain extending 420 m by 420 m with a spatial
resolution of 2 m.

For a best possible comparison with field observa-
tions, the semi-parallel measurements taken during the
same period of time were considered regarding the ini-
tial conditions for the simulation run (cf. 2.2). Cor-
responding meteorological data from “Aachen-Hörn”
(see 2.3.2) actuated the preceded and implemented
model TALdia to calculate a wind and turbulence field
library. In situ traffic counts were conducted to initiate
particle source emission rates. Aerosol discharges for
differentiated vehicle classes for each street leading to
the investigation area (Fig. 2) were then calculated us-
ing the guideline published by Keller et al. (2004) and
Lohmeyer et al. (2004). The simulation domain consid-
ered the complex conditions of the research site in terms
of a spatially high-resolved (1 m) terrain model (soil sur-
face) and georeferenced CAD-model data (urban fabric
and obstacles). Vegetation elements such as trees were
not considered. Georeferencing of CAD data and dis-
playing of the results were realized using ESRI software
ArcGIS version 10.2.2.

2.5 Measurement data handling

2.5.1 processing

There is a temporal variability of PM concentrations
as a result of changing meteorological conditions and
consequently an altering background particle transport
towards the area under study during time series mea-
surement campaigns (see Fig. 4). Therefore a daily cor-
rection factor for trend elimination and normalization
of time series PM(0.25;10) values (cFPM10) was devel-
oped. Therefore, the basic idea of Merbitz et al., 2012b
was used and slightly modified. The correction factor
cFPM10(d) is calculated separately for each day (d) at
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the time when measurements took place as described in
Eq. (2.1)

cFPM10(d) =
1
2
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Hence, daily geometric mean values (cd) of PM10
from the suburban monitoring site Aachen Burtscheid
(AABU) and the traffic related monitoring site Aachen
Wilhelmstrasse (VACW), operated by the Northrhine-
Westfalian State Office for Nature, Environment, and
Consumer Protection (LANUV), were set in relation
to monthly averages ci (geometric means) and aver-
aged arithmetically over both sites, covering the whole
periods of both measurement campaigns in February
and September 2014. The calculated correction factors
(cFPM10(d)) for all measuring days (d) are further used
by multiplying cFPM10(d) with the measured values on
associated days (d) to remove meteorological bias from
mere time series measurements collected at different lo-
cations and different times in order that these values be-
come comparable. It is expected that the daily variability
of urban PM-levels is better represented by a combina-
tion of both the suburban background station (AABU)
and the traffic related air quality station (VACW) than
by using only one reference site for daily normaliza-
tion, since the area under study is situated among both
regimes.

2.5.2 Data quality

In this study we compared measurement data from a mo-
bile particle sensor with data sampled at government air
quality stations that use a different principle of measure-
ment. This implies that deterioration might be accepted
when it comes to data quality.

To give an impression of data quality we made
a comparison of the instruments at the government
air quality monitoring site AABU in ambient air.
The mobile OPC was compared there with the fixed-
site SHARP instrument (continuous ambient particulate
monitor consisting of a C14 source, detector and a light
scattering Nephelometer (Thermo Fisher Scientific, Inc.,
Waltham (MA), U.S.)) operated by the LANUV for con-
tinuous air quality monitoring. Between 28/08/2015 and
30/09/2015, a total of 25 hours of comparison mea-
surements were collected. One-hour averaged OPC data
compared reasonably to the SHARP instrument values
(slope 0.42, R2 0.46, Fig. 5). Effectively, the OPC con-
sistently overestimated PM10 data and measured on av-
erage 135 % of the PM10 indicated by the SHARP in-
strument including large scatter in the sample. The over-
estimation came as a surprise since the OPC features
a sizing limit of 0.25 μm (see 2.3.1). Therefore, parti-
cles in the size range below 0.25 μm are not accessible
to the OPC. Consequently, hereafter measurement data

Figure 5: Comparison of 1 hour averages of PM10 derived from the
SHARP instrument at the government air quality station AABU and
PM(0.25;10) collected with the mobile opticle particle counter (OPC)
in μg m−3 (slope: 0.42; R2: 0.46). Data coverage is 25 hours between
28/08/2015 and 30/09/2015.

from the mobile OPC were analyzed as fraction values
PM(0.25;1), PM(0.25;10) and PM(1;10).

2.6 Survey

2.6.1 Sample

A mixed method interview study with on-site users was
carried out in order to identify perceptions towards air
quality and on-site comfort. The questionnaire struc-
ture enabled a seasonal comparison regarding mass con-
centration of PM(0.25;10) and participants’ perception.
Overall, in both measurement campaigns 300 partic-
ipants volunteered to take part. The mean age was
35.0 years (SD = 17.9) and the participants were be-
tween 10 and 95 years old. Of all participants 47.8 %
were male and 52.2 % were female. In the winter cam-
paign 124 pedestrians participated. The mean age was
37.0 years (SD = 19.3), with 65 women (53.3 %) and 57
men (46.7 %). In the summer campaign 176 pedestrians
participated. The mean age was 33.6 years (SD = 16.7)
with 90 women (51.4 %) and 85 men (48.6 %). Overall
this represents an even gender distribution. Urban park
users were examined as they incidentally crossed our
measurements site in the inner urban area.

2.6.2 Method perception measurements and data
analysis

In questionnaire-based interviews with pedestrians, de-
mographic data as well as information on their individ-
ual social and living situations were assessed. In addi-
tion, the position of every participant was noted, i.e.
whether they were sitting or standing, while they were
being interviewed on perception of environmental con-
diditons. The perception of their own weather comfort,
air quality as well as on-site comfort was questioned and
compared to measured physical data.
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Figure 6: Boxplot diagram of PM(0.25;10) concentrations in μg m−3 measured as time series at different locations (A, B, C, E, F) inside the
area under study “Elisenbrunnen” in Aachen during different weekdays in winter (left illustration “WI”) and in summer (right illustration
“SU”) 2014. Raw measurement values are shown in grey boxes whereas normalized values are shown in black/white boxes (10-minute mean
values). Boxes display 25 % / 75 % quantiles and medians. Squares represent the arithmetic mean and whiskers show the standard deviation.

Data were analyzed using paired sample t-tests in or-
der to detect seasonal differences of particulate matter
concentration and mean rating for perceived air quality.
Further, the relationship between particulate matter and
perceived on-site comfort was analyzed by using bivari-
ate analysis (spearman rank).

3 Results and discussion

3.1 Measurement results – spatial distribution
of particle mass concentration

Results of trend corrected PM(0.25;10) mass concentration
time series unveiled surprisingly the highest arithmetic
mean values (20.4–31.3 μg m−3) at monitoring locations
E and F inside the green area during wintertime (Fig. 6).
Three times less average PM(0.25;10) concentrations were
found at monitoring positions in proximity to busy roads
(B, C). Experiments during summer revealed both over-
all higher particle concentration regarding PM(0.25;10)
and a slightly altered PM(0.25;10) distribution pattern
(Fig. 6). Measurement location F featured outstanding
mean PM(0.25;10) concentrations (76.4 μg m−3) as well
as the highest median (67.7 μg m−3) whereas at sites A
and E concentrations around 22.5 μg m−3 were detected.
Slightly higher trend corrected aerosol concentrations
(34.0 μg m−3) were measured during summer at the mo-
tor traffic governed monitoring site B. In comparison,
sites A and E hat the comparatively lowest variations.
In general, measurement values of PM(0.25;10) scattered
mostly at monitoring sites inside the green area both

in wintertime as well as during the summer campaign.
Inside the park only, outliers with metered 10-minute
mean values of PM(0.25;10) exceeding 100.0 μg m−3 were
recorded frequently.

Due to the unforeseen findings during the first mea-
surement campaign during February 2014 we subse-
quently made a different approach to particle measure-
ments (see Section 2.2). Surprisingly, measurement re-
sults of PM(1;10) regarding the semi-parallel approach
show unexpected effects as well (Fig. 7) as compared
to the observed time series results (cf. Fig. 6). For in-
stance, the concentration of coarse particle fractions
(PM(1;10)) were higher at the park site E and F (arith-
metic mean: 22.5 μg m−3 and 18.9 μg m−3; geometric
mean: 9.3 μg m−3 and 6.5 μg m−3), 100 m away from
motor traffic, than on the sidewalk in close vicinity to
the main road at locations B and C (arithmetic mean:
7.5 μg m−3 and 8.7 μg m−3; geometric mean: 5.8 μg m−3

and 6.5 μg m−3). Due to the proximity to vehicles trav-
elling at speeds between stop-and-go and 30 km h−1,
which cause significant turbulence, one would expect
resuspended coarse particles and emissions from brake
and tire abrasions to play a significant role at site B
and C regarding PM(1;10). In contrast, the direct environ-
ment at park sites E, F and partly D featured a surface
of dry grass and unsurfaced footpaths containing loose
and dry top coating material. It can be stated that those
surfaces made a dominant contribution to airborne par-
ticles of PM(1;10) due to resuspension. That gives an ap-
proach to explain the unexpected spatial pattern at the
monitoring locations inside the park and the motor traf-
fic related sites B and C. The observation of the largest
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Figure 7: Boxplot diagram of PM concentrations in μg m−3 measured with a semi parallel approach at different locations (A, B, C, D, E,
F) inside the area under study “Elisenbrunnen” in Aachen during different weekdays in February, May and September 2014, 10:00–17:00,
during cyclonic weather conditions. Measurement data of PM(1;10) concentrations are displayed in black/white boxes (left ordinate) whereas
PM(0.25;1) concentrations are shown in grey boxes (right ordinate) collected as 1-minute mean values (n = 56). Boxes display 25 % / 75 %
quantiles and medians. Filled squares and circles represent arithmetic means, crossed squares and circles represent geometric means and
whiskers show the standard deviation.

scatter in measured PM(1;10) concentrations at sites D,
E and F support our assumption of the subsistence of
coarse particles emitters through diffuse sources e.g. on
the ability of surfaces to release particles by resuspen-
sion. Consistently, during different days 1-minute mean
concentrations of PM(1;10) far exceeded 50 μg m−3. This
was probably due to recurrent gusting wind that blew up
dust from unpaved surfaces.

By contrast, particle fractions of PM(0.25;1) were
distributed equally at all measuring points (arithmetic
mean: 6.0–6.9 μg m−3). Merely, a poorly distinctive spa-
tial pattern was observed considering arithmetic mean
PM(0.25;1) values with comparatively small differences
between measurement locations. The highest average
PM(0.25;1) concentrations were detected in proximity to
the main road “Friedrich-Wilhelm-Platz” at monitor-
ing sites B and C (arithmetic mean: 6.9 μg m−3 and
6.6 μg m−3; geometric mean: 6.3 μg m−3 and 6.1 μg m−3)
and at measuring point F inside the green area (arith-
metic mean: 6.9 μg m−3; geometric mean: 6.4 μg m−3),
respectively. The observed pattern with the highest
PM(0.25;1) concentrations in vicinity to motor traffic
emitters was expected to be due to medium-sized par-
ticles out of brake and tire abrasion as well as secondary
accumulation mode particles arising from combustion
processes. However, the PM(0.25;1) mass concentration
findings at site F made an exception. At least here it
seems that the former described diffuse particle source
inside the park has an impact on PM(0.25;1) mass concen-
trations as well – albeit to a vastly lesser extent.

Overall, it is evident that such small-scale spatial gra-
dients of particle concentrations in the urban roughness
layer can usually not be captured by single stationary
measurements.

3.2 Simulation results – influence of traffic on
PM10 concentrations at the research site

Simulation results of excessive motor traffic emissions
generated with meteorological conditions initially sim-
ilar to the semi-parallel measurements reveal the high-
est traffic-related PM10 concentrations in close vicinity
to traffic lines particularly at the main road “Friedrich-
Wilhelm-Platz” and the alleyway “Ursulinerstr.”, with
the average contribution to the total mass concentra-
tion of PM10 being in the range of 10.0 – 22.0 μg m−3

(Fig. 8). Corresponding concentrations seem to decline
rapidly further from the traffic sources. The average con-
tribution of traffic-induced airborne particles to the to-
tal aerosol concentration at the research site under given
meteorological conditions decreases to 3.0–10.0 μg m−3

at distances as little as 10 m away from the two men-
tioned roads. According to simulation outcomes the di-
rect impact of local motor traffic on PM10 concentrations
inside the park tends to be negligible. At inner park sites,
the additions to rural and urban background concentra-
tions and to other local diffuse particle sources (e.g. un-
paved footpaths) resulting from motor traffic are esti-
mated to be in magnitudes of 0.1–1.6 μg m−3. Simulation
results do not indicate that local traffic emissions cause
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Figure 8: Contour plot of the simulated distribution of average PM10 concentrations induced by motor traffic only [μg m−3] at 1.5 m agl
for the research site “Elisenbrunnen”, Aachen, for different chosen weekdays in February, May and September 2014, 10:00–17:00, during
cyclonic weather conditions including depicted measurement locations A–F (black dots). Upper right plot shows near-surface horizontal
wind vectors (blue arrows) representative for mean inflow boundary conditions (Klug/Manier stability class 4, wind direction sector
250–260°).

Table 1: Mean PM10 remainder (ΔPM10) for monitoring locations A–F calculating the difference between arithmetic mean PM(0.25;10) values
of the semi-parallel measurements and the sum of arithmetic mean PM10 data out of the simulation and the arithmetic mean background
PM10 concentration recorded at the rural background air quality monitoring station “Burtscheid” (AABU).

monitoring location

A B C D E F
Mean PM(0.25;10) measured 17.0 14.4 15.3 19.6 24.9 29.4
Mean PM10 simulated 0.5 2.7 4.3 0.6 0.2 0.2
Mean rural background PM10 (AABU) 11.4
Δ PM10 5.0 0.2 −0.4 7.6 13.3 17.9

elevated PM(0.25;10) concentrations inside the green area.
In fact, simulation results illustrate the exact opposite
when it comes to the comparison with spatial patterns
of measured PM(0.25;10) and PM(1;10) concentrations (cf.
Fig. 6 and Fig. 7). As expected, under southwest in-
flow situations particles tend to accumulate in the al-
leyway (“Ursulinerstr.”) and street canyons (“Friedrich-
Wilhelm-Platz”), where dilution of aerosols is difficult,
as well as in areas downwind from emission sources
where particles get dammed up at obstacles. Simulated
traffic induced average PM10 concentrations with a dis-
tinctive gradient for the monitoring sites A–F complete
the picture. Highest mean values were simulated for
sites B and C with declining concentrations at locations
A and D, whereas monitoring sites inside the green area
with maximum distance to the traffic lines (E, F) show
minimum average PM10 concentrations (Fig. 8).

Approximations of PM10 remainders (ΔPM10) indi-
cate that local diffuse particle sources and urban back-
ground transport contribute to local PM10 concentrations
inside the green area of up to 17.9 μg m−3, whereas the
impact on measurement locations in vicinity to the main
roads (measurement locations B and C) was calculated
to be close to zero (Table 1). From this analysis we
may conclude that resuspension of PM from unpaved
grounds within the green park area would have been a
major contribution to the elevated measured PM(0.25;10)
and PM(1;10) levels at sites E and F and possibly also
at site A and D within limits of specified uncertainties
(cf. 2.5.2).

3.3 Urban park user perception of air quality
A first analysis addressed seasonal effects on physi-
cal influences like particulate matter and on perception
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Figure 9: Bar diagram of arithmetic mean ratings of air quality
perception on a 3-point Likert scale (1 = bad, 2 = neutral, 3 = good)
[left illustration], of on-site comfort on a 6-point Likert scale (1 = not
comfortable at all, 6 = very comfortable) [middle illustration] and
arithmetic mean PM(0.25;10) concentrations ( μg m−3) of time series
measurements [right illustration]. Grey bars show data from the
winter campaign (February 2014) whereas black striped bars display
data from the summer campaign (July 2014).

of air quality. The independent-samples t-test unveiled
a significant difference in measurements of PM(0.25;10)
time series (t(212) = −10.3, p <= 0.001) in February
2014 (arithmetic mean = 19.6 μg m−3, standard devia-
tion (SD) = 7.5 μg m−3) and in July 2014 (arithmetic
mean = 41.5 μg m−3, SD = 26.6 μg m−3). These findings
indicate higher PM stressors during the summer cam-
paign than during measurements in February in Aachen.
The significant difference between particulate matter
concentration in winter and summer could be proved.
Contrary to the significant differences between summer-
time and the winter campaign in Aachen regarding mean
concentration of PM(0.25;10), the perception of air qual-
ity was assessed comparably. Results of air quality per-
ception ratings show similar mean values in winter and
summer, reaching mean values of 2.2 and 2.3 on a Lik-
ert scale ranging from 1.0 (= bad) to 3.0 (= good). In
both seasons pedestrians’ evaluation patterns were com-
parably similar, with the same SD of 0.6. Thus, we can
conclude that there are no seasonal differences regard-
ing the rating of pedestrians of PM levels even though
in fact marked differences between summer and win-
ter campaigns are obvious from measured data (Fig. 9).
A detailed look at physically measured PM(0.25;10) data
set against survey results regarding the perception of air
quality add to the picture (Fig. 10). In fact, park users
described perceived air quality as both good, neutral
and bad under almost all measured PM(0.25;10) concen-
trations (ranging from 11.3 to 36.2 μg m−3 during the
winter campaign and 17.0 to 129.9 μg m−3 during the
summer campaign). That applies for both investigated
seasons (albeit we worked with a refined Likert scale
range from 1.0 = very bad air quality to 6.0 = very good
air quality during the summer campaign). Consequently,
no significant correlation was found between measured

PM(0.25;10) and perceived air quality for both campaigns
during the winter season and the summer season (winter:
r 0.13; summer: r −0.20).

Beyond the results of non-sensitivity to perception
of PM within air quality, a further analysis focused on
the question whether there is a relationship between PM
(as a physical stressor) and/or the perception of on-site
(climate) comfort. For on-site comfort, a 6-point Likert
scale was used to question how comfortable the current
site was for the interviewee (1 = not comfortable at all,
6 = very comfortable). The descriptive outcomes reveal a
similar rating of on-site comfort of 4.6 (arithmetic mean)
on the Likert scale both for winter- and summertime sur-
veys (Fig. 9). As can be seen, the perception of on-site
comfort did not coincide with the seasonal differences
of mean PM(0.25;10) data. Hence, the exposure resulting
from high overall mean PM(0.25;10) concentration during
summer was not perceived within this evaluation.

However, there is a significant correlation between
on-site (climate) comfort values and perception data
of air quality (r = 0.29; p <= 0.000), showing that
participants’ evaluations coincide: the higher (i.e. more
comfortable) the perceived air quality was, the higher
was the perceived on-site comfort even though both
measurements did not relate to the measured PM(0.25;10)
concentration in both seasons.

4 Conclusions

This study showed the heterogeneous and complex
mass concentration distribution of aerosols at very small
scales similar to earlier studies (Birmili et al., 2013a,
Merbitz et al., 2012c). The combination of experiments
and the use of a micro-scale particle dispersion model al-
lowed for an understanding of spatial gradients and the
identification of different particle sources in the urban
roughness layer of roughly an area of 400 m by 400 m
in the inner city of Aachen. Even though traffic is as-
sumed to be the most important particle source across
urban agglomerations, PM(0.25;10) and PM(1;10) metrics
showed unexpected distribution patterns with highest
mean concentrations inside a park several tens of me-
ters away from trafficked roads. Semi-parallel particle
measurements of PM(0.25;1), however, revealed an exten-
sively equal distribution pattern in the whole area under
study with only slightly increased mean concentrations
close to the traffic lines. AUSTAL2000 simulation re-
sults of only traffic induced emissions of PM10 showed
a different distribution pattern compared to PM(0.25;10)
and PM(1;10) measurements. The simulation, conducted
with similar meteorological inflow boundary conditions
observed during semi-parallel measurements, unveiled a
major impact of road traffic on the aerosol concentration
in the area under study similar in magnitude to related
findings in other studies (Merbitz et al. 2012b). Mean
PM10 concentrations were simulated to be highest near
to traffic lines. When moving away from traffic sources
mean PM10 concentrations seemed to rapidly decrease.
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Figure 10: Scatter plot diagrams of measured PM(0.25;10) concentrations in μg m−3 vs. air quality assessments on a 3-point Likert scale
(3 = good, 2 = neutral, 1 = bad) during the winter campaign (left illustration “WI”) and vs. air quality assessments on a 6-point Likert scale
(from 6 = very good to 1 = very bad,) during the summer campaign (right illustration “SU”).

The direct influence of local traffic PM10 emissions on
the park area tended to be negligible. Both the analy-
sis of experimental data alone and the comparison to
simulation results of only traffic induced PM emissions
provides strong evidence for the hypothesis that sur-
faces of dried-out grass and unsurfaced footpaths in the
park provided a big source of coarse airborne particles
(PM(1;10)) and give a plausible explanation for the un-
expected spatial distribution patterns of PM(0.25;10) and
PM(1;10) metrics. During the measurement campaign in
February, May and September 2014 the contribution of
diffuse resuspension particle sources to measured mean
mass concentration of PM(0.25;10) was estimated to be
between 13.3 and 17.9 μg m−3 inside the park area.

Reflection on our results raises two questions: a) Can
fixed site aerosol instrumentation provide representative
statements for an entire city area regarding the urban
space user’s exposure to particles, in particular when the
city area as a general rule contains e.g. heterogeneous
subsurfaces und numerous different particle sources?
b) Is PM10 as a single metric a good measure for air
quality regulation regarding aerosols inside cities since
different particle size fractions with different impacts
on the human body (Kreyling et al., 2006) can be dis-
tributed in various ways (Ning and Sioutas, 2010)?

In terms of human perception, mass concentra-
tions of PM(0.25;10) were not reliably assessed, neither
in relation to seasons, nor in relation to air quality
and on-site comfort. The low standard deviations sug-
gest a rather comparable perception among urban park
users, not taking into consideration the high age range
(10–95 years) or gender. In marked contrast to findings
from Nikolopoulou et al. (2011), who claimed a sig-
nificant positive correlation between PM concentrations
and perception of air quality during a similar study in
similar PM concentration magnitudes, we can conclude
that perception of air quality was imprecise and unre-
lated to the real exposure, regardless of age and gen-

der. Nevertheless, data revealed a close relationship be-
tween the awareness of air quality and on-site comfort,
thus corroborating the sensitivity of pedestrians to per-
ception of urban stressors. Due to an undersized sample
this study lacks a deeper investigation into what actu-
ally formed the park users’ opinion on air quality and
on-site comfort, which is probably influenced more by
factors like sense of place (Brody et al., 2004) or acous-
tic occurrences than by actual air quality conditions. The
fact that exposure to airborne particles is indeed danger-
ous and has insidious adverse effects on human health
although it is obviously not perceivable in investigated
concentration magnitudes makes it even more important
to reduce PM concentrations.

5 Acknowledgments

This project is part of the interdisciplinary Project House
HumTec (Human Technology Center) at RWTH Aachen
University. The financial support from the German fed-
eral and state governments through the German Re-
search Foundation (Deutsche Forschungsgemeinschaft,
DFG) is gratefully acknowledged. We would like to
thank the scientific editor and two anonymous reviewers
for very helpful comments on this manuscript. Thanks
to students I. Zirwes and M. Moers who helped en-
thusiastically with field experiments and traffic counts.
We acknowledge S. Wilhelm from the Northrine-
Westfalian State Office for Nature, Environment, and
Consumer Protection (LANUV) for providing PM10
data from monitoring stations in Aachen. U. Janicke
kindly helped with issues regarding AUSTAL2000.

References
Badland, H.M., M.J. Duncan, 2009: Perceptions of air

pollution during the work-related commute by adults in
Queensland, Australia. – Atmos. Env. 43, 5791–5795. DOI:
10.1016/j.atmosenv.2009.07.050.



316 B. Paas et al.: Small-scale variability of particulate matter and perception of air quality Meteorol. Z., 25, 2016

Bekö, G., B.U. Kjeldsen, Y. Olsen, J. Schipperijn,
A. Wierzbicka, D.G. Karottki, J. Toftum, S. Loft,
G. Clausen, 2015: Contribution of various microenviron-
ments to the daily personal exposure to ultrafine particles: Per-
sonal monitoring coupled with GPS tracking. – Atmos. Env.
110, 122–129. DOI:10.1016/j.atmosenv.2015.03.053.

Birmili, W., J. Rehn, A. Vogel, C. Boehlke, K. Weber,
F. Rasch, 2013a: Micro-scale variability of urban particle
number and mass concentrations in Leipzig, Germany. – Me-
teorol. Z. 22, 155–165. DOI:10.1127/0941-2948/2013/0394.

Birmili, W., L. Tomsche, A. Sonntag, C. Opelt, K. Wein-
hold, S. Nordmann, W. Schmidt, 2013b: Variability of
aerosol particles in the urban atmosphere of Dresden (Ger-
many): Effects of spatial scale and particle size. – Meteorol. Z.
22, 195–211. DOI:10.1127/0941-2948/2013/0395.

Brody, S.D., B.M. Peck, W.E. Highfield, 2004: Examining Lo-
calized Patterns of Air Quality Perception in Texas: A Spatial
and Statistical Analysis. – Risk Analysis 24, 1561–1574. DOI:
10.1111/j.0272-4332.2004.00550.x.

Broich, A.V., L.E. Gerharz, O. Klemm, 2012: Personal mon-
itoring of exposure to particulate matter with a high temporal
resolution. – Environ. Sci. Pollut. Res. 19, 2959–2972. DOI:
10.1007/s11356-012-0806-3.

Brook, R.D., S. Rajagopalan, C.A. Pope, J.R. Brook,
A. Bhatnagar, A.V. Diez-Roux, F. Holguin, Y. Hong,
R.V. Luepker, M.A. Mittleman, A. Peters, D. Siscovick,
S.C. Smith, L. Whitsel, J.D. Kaufman, on behalf of the
American Heart Association Council on Epidemiology and
Prevention, Council on the Kidney in Cardiovascular Disease,
and Council on Nutrition, Physical Activity and Metabolism,
2010: Particulate Matter Air Pollution and Cardiovascular
Disease: An Update to the Scientific Statement From the
American Heart Association. – Circulation 121, 2331–2378.
DOI:10.1161/CIR.0b013e3181dbece1.

Chen, L., E. Ng, 2012: Outdoor thermal comfort and outdoor
activities: A review of research in the past decade. – Cities 29,
118–125. DOI:10.1016/j.cities.2011.08.006.

Chow, J.C., J.G. Watson, J.L. Mauderly, D.L. Costa,
R.E. Wyzga, S. Vedal, G.M. Hidy, S.L. Altshuler,
D. Marrack, J.M. Heuss, G.T. Wolff, C.A. Pope,
D.W. Dockery, 2006: Health Effects of Fine Particulate Air
Pollution: Lines that Connect. – J. Air Waste Manag. Assoc.
56, 1368–1380. DOI:10.1080/10473289.2006.10464545.

Dons, E., L. Int Panis, M. Van Poppel, J. Theu-
nis, H. Willems, R. Torfs, G. Wets, 2011: Im-
pact of time–activity patterns on personal exposure
to black carbon. – Atmos. Env. 45, 3594–3602. DOI:
10.1016/j.atmosenv.2011.03.064.

Gabriel, K.M.A., W.R. Endlicher, 2011: Urban and rural
mortality rates during heat waves in Berlin and Branden-
burg, Germany. – Environ. Pollut. 159, 2044–2050. DOI:
10.1016/j.envpol.2011.01.016.

German Federal Ministry for Environment, Nature
Conservation and Nuclear Safety (BMU), 2002: First
General Administrative Regulation for the Federal Emission
Control Law / Instructions for Pollution Control. – TA Luft
(in German); Gemeinsames Ministerialblatt 24, 511–605.

Johansson, E., S. Thorsson, R. Emmanuel, E. Krüger, 2014:
Instruments and methods in outdoor thermal comfort studies –
The need for standardization. – Urban Climate 10, 346–366.
DOI:10.1016/j.uclim.2013.12.002.

Keller, M., P. de Hahn, W. Knörr, S. Hausberger,
H. Steven, 2004: Handbook Emission Factors for Road
Transport (in German). – UBA Berlin, BUWAL Bern, UBA
Wien, Bern, Heidelberg, Graz, Essen. 127 pp.

Kozawa, K.H., A.M. Winer, S.A. Fruin, 2012: Ultrafine parti-
cle size distributions near freeways: Effects of differing wind
directions on exposure. – Atmos. Env. 63, 250–260. DOI:
10.1016/j.atmosenv.2012.09.045.

Kreyling, W.G., M. Semmler-Behnke, W. Möller, 2006:
Ultrafine Particle–Lung Interactions: Does Size Matter? –
J. Aerosol Med. 19, 74–83. DOI:10.1089/jam.2006.19.74.

Laden, F., J. Schwartz, F.E. Speizer, D.W. Dockery, 2006:
Reduction in Fine Particulate Air Pollution and Mortality: Ex-
tended Follow-up of the Harvard Six Cities Study. – Amer-
ican Journal of Respiratory and Critical Care Medicine 173,
667–672. DOI:10.1164/rccm.200503-443OC.

Lohmeyer, A., M. Stockhauser, A. Moldenhauer,
E. Nitzsche, I. Düring, 2004: Calculation of traffic induced
particle emissions due to blown up dust and abrasions for
the land register of the State of Saxony. Workpackages 1
and 2 (in German). – Sächsisches Landesamt für Umwelt und
Geologie, Dresden.

Maras, I., M. Buttstädt, J. Hahmann, H. Hofmeister,
C. Schneider, 2014: Investigating public places and impacts
of heat stress in the city of Aachen, Germany. – Die Erde 44,
290–303. DOI:10.12854/erde-144-20.

Maras, I., T. Schmidt, B. Paas, M. Ziefle, C. Schneider,
2016: The impact of biometeorological factors on perceived
thermal comfort at urban public places. – Meteorol. Z., 25,
DOI:10.1127/metz/2016/0705

Merbitz, H., M. Buttstädt, S. Michael, W. Dott,
C. Schneider, 2012a: GIS-based identification of spatial vari-
ables enhancing heat and poor air quality in urban areas. –
Appl. Geogr. 33, 94–106. DOI:10.1016/j.apgeog.2011.06.008.

Merbitz, H., F. Detalle, G. Ketzler, C. Schneider,
F. Lenartz, 2012b: Small scale particulate matter mea-
surements and dispersion modelling in the inner city
of Liège, Belgium. – Int. J. Env. Pol. 50, 234. DOI:
10.1504/IJEP.2012.051196.

Merbitz, H., S. Fritz, C. Schneider, 2012c: Mobile measure-
ments and regression modeling of the spatial particulate mat-
ter variability in an urban area. – Sci. Total Environ. 438,
389–403. DOI:10.1016/j.scitotenv.2012.08.049.

Mishra, V.K., P. Kumar, M. Van Poppel, N. Bleux, E. Fri-
jns, M. Reggente, P. Berghmans, L. Int Panis, R. Sam-
son, 2012: Wintertime spatio-temporal variation of ultrafine
particles in a Belgian city. – Sci. Total Environ. 431, 307–313.
DOI:10.1016/j.scitotenv.2012.05.054.

Nikolopoulou, M., J. Kleissl, P.F. Linden, S. Lyk-
oudis, 2011: Pedestrians’ perception of environmental
stimuli through field surveys: Focus on particulate pol-
lution. – Sci. Total Environ. 409, 2493–2502. DOI:
10.1016/j.scitotenv.2011.02.002.

Ning, Z., C. Sioutas, 2010: Atmospheric Processes Influencing
Aerosols Generated by Combustion and the Inference of Their
Impact on Public Exposure: A Review. – Aerosol Air Quality
Res. 10, 43–58. DOI:10.4209/aaqr.2009.05.0036.

Padró-Martínez, L.T., A.P. Patton, J.B. Trull, W. Zamore,
D. Brugge, J.L. Durant, 2012: Mobile monitoring of
particle number concentration and other traffic-related
air pollutants in a near-highway neighborhood over the
course of a year. – Atmos. Env. 61, 253–264. DOI:
10.1016/j.atmosenv.2012.06.088.

Pope, C.A., R.T. Burnett, M.J. Thun, E.E. Calle,
D. Krewski, K. Ito, G.D. Thurston, 2002: Lung can-
cer, cardiopulmonary mortality, and long-term exposure to
fine particulate air pollution. – JAMA 287, 1132–1141.

Quiros, D.C., Q. Zhang, W. Choi, M. He, S.E. Paulson,
A.M. Winer, R. Wang, Y. Zhu, 2013: Air quality impacts of
a scheduled 36-h closure of a major highway. – Atmos. Env.
67, 404–414. DOI:10.1016/j.atmosenv.2012.10.020.



Meteorol. Z., 25, 2016 B. Paas et al.: Small-scale variability of particulate matter and perception of air quality 317

Raimbault, M., D. Dubois, 2005: Urban soundscapes: Ex-
periences and knowledge. – Cities 22, 339–350. DOI:
10.1016/j.cities.2005.05.003.

Schmidt, T., I. Maras, B. Paas, J. Stienen, M. Ziefle, 2015:
Psychophysical observations on human perceptions of clima-
tological stress factors in urban environments. – In: Proceed-
ings 19th Triennial Congress of the IEA 9, 14.

Schneider, C., G. Ketzler, 2015: Klimamessstation Aachen-
Hörn. - Monatsberichte Februar, Mai, September / 2014,
RWTH Aachen, Geographisches Institut, Lehr- und
Forschungsgebiet Physische Geographie und Klimatolo-
gie.

Seinfeld, J.H., S.N. Pandis, 2006: Atmospheric chemistry and
physics: from air pollution to climate change. 2nd ed. – J. Wi-
ley, Hoboken, New Jersey, 1203 pp.

Shirom, A., S. Melamed, M. Nir-Dotan, 2000: The relation-
ships among objective and subjective environmental stress lev-
els and serum uric acid: The moderating effect of perceived
control. – J. Occupational Health Psychology 5, 374–385.
DOI:10.1037/1076-8998.5.3.374.

Spinazzè, A., A. Cattaneo, D.R. Scocca, M. Bonzini,
D.M. Cavallo, 2015: Multi-metric measurement of
personal exposure to ultrafine particles in selected ur-
ban microenvironments. – Atmos. Env. 110, 8–17. DOI:
10.1016/j.atmosenv.2015.03.034.

Steinle, S., S. Reis, C.E. Sabel, 2013: Quantifying hu-
man exposure to air pollution – Moving from static
monitoring to spatio-temporally resolved personal expo-
sure assessment. – Sci. Total Env. 443, 184–193. DOI:
10.1016/j.scitotenv.2012.10.098.

United Nations, Population Division, Department of
Economic and Social Affairs, 2014: World urbanization
prospects: the 2014 revision. – United Nations, New York,
27 pp.

Venn, A.J., S.A. Lewis, M. Cooper, R. Hubbard, J. Brit-
ton, 2001: Living Near a Main Road and the Risk
of Wheezing Illness in Children. – Amer. J. Respiratory
Critical Care Medicine 164, 2177–2180. DOI:10.1164/ajr-
ccm.164.12.2106126.

Von Klot, S., 2005: Ambient Air Pollution Is Associ-
ated With Increased Risk of Hospital Cardiac Read-
missions of Myocardial Infarction Survivors in Five
European Cities. – Circulation 112, 3073–3079. DOI:
10.1161/CIRCULATIONAHA.105.548743.

WHO, 2013: Health risks of air pollution in Europe – HRAPIE
project. – Online available at http://www.euro.who.int/__data/
assets/pdf_file/0017/234026/e96933.pdf?ua=1 (Accessed
March 18, 2015).

Yang, W., J. Kang, 2005: Acoustic comfort evaluation in ur-
ban open public spaces. – Appl. Acoust. 66, 211–229. DOI:
10.1016/j.apacoust.2004.07.011.





  73 

Journal paper II 

A comparison of model performance between ENVI-met and Austal2000 for 
particulate matter 

DOI:10.1016/j.atmosenv.2016.09.031



A comparison of model performance between ENVI-met and
Austal2000 for particulate matter

Bastian Paas a, b, c, *, Christoph Schneider b

a Department of Geography, RWTH Aachen University, Wüllnerstaße 5b, D-52062 Aachen, Germany
b Department of Geography, Humboldt-Universit€at zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
c Project House HumTec, RWTH Aachen University, Theaterplatz 14, D-52062 Aachen, Germany

h i g h l i g h t s

� A performance analysis of 2 dispersion models Austal2000 & ENVI-met is presented.
� All models used had the tendency to underpredict observed PM concentrations.
� Predictions of both models gained precision in the high-end concentration range.
� Austal2000's predictions were closer to field observations than those of ENVI-met.
� For best results the models used should be initiated with local atmospheric data.
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a b s t r a c t

This study evaluates the performance of the German dispersion model Austal2000 according to the
technical instructions on air quality control (TA Luft), a Lagrangian model, in four real-world particulate
matter test cases against ENVI-met, a microclimate model featuring a pollutant dispersion module that
bases on the Eularian approach. The four test cases include different traffic induced area sources of PM10,
complex terrain with varying ground surfaces and different urban obstacles i.e. buildings. A comparison
is made between the calculated concentrations of both models. Furthermore, predictions are compared
with field data. Particle measurements are conducted with an optical particle counter. For evaluation,
quantile-quantile plots as well as further performance measures i.e. the fractional bias and the robust
highest concentration that focuses on the important high-end concentrations are applied. Both models
underpredicted observed PM(0.25;10) concentrations for all test cases. All datasets show that predictions of
both simulation tools were closer to field observations in the high-end concentration range. Model
calculation results show mostly better agreement to observations under neutral stability classes of the
atmosphere. With the exception of ENVI-met in one test case predictions of simulation runs of both
models lead to results closer to observations when initiated with local meteorological measurement
data, where wind speed as one of the key drivers of dispersion models was lower. In almost all of the test
cases, Austal2000's predictions were closer to the field observations than those of ENVI-met. The latter
model undercut predicted PM10 concentrations of Austal2000 by the factor of around two. This
evaluation indicates that Austal2000 is the stronger model compared with ENVI-met considering the
distribution of PM10 in complex and urban terrain.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Results of epidemiological studies suggest that exposure to
particulate matter (PM) could have significant impacts on health
(Pope et al., 2002; WHO, 2013). It is estimated that in European

cities life expectancy at age 30 is reduced by up to 22 months solely
due to the fact that outdoor particle concentrations exceed the
World Health Organization (WHO) air quality guidelines (Pascal
et al., 2013). Especially in cities numerous different particle sour-
ces can be found (Belis et al., 2013). Still, road traffic seems to have
the greatest impact on particle concentrations in the urban
roughness layer when the direct influence of industrial emissions is
low (Morawska et al., 1999). Throughout the world air pollution
dispersion modelling is an important tool in urban air quality
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regulation and planning. Models simulate the dispersion of air
pollutants and are cost- and time-effective integrative options to
field measurements. Furthermore, highly resolved information can
be gathered in space and time rather than derived from point
measurements that are only representative for the location where
the measurements were taken (Broich et al., 2012). However,
models have to be properly evaluated before their results can be
used with confidence (Chang and Hanna, 2004). When model
predictions are not reliable and accurate, misinterpretation of
simulation results is likely. This is especially true when the physical
processes on which the model physics rely are not thoroughly
understood by the user. Decisions based on underestimated
simulation results can yield implementations that are unhealthy for
the population. Decisions based on overestimated model results
can lead to excessive restrictions and evitable costs (Langner and
Klemm, 2011).

In this study we compare the performance of two models,
namely the dispersion model Austal2000 and the microclimate
model ENVI-met. Both models are applicable for dispersion
simulation at micro-scales and able to handle complex terrain.
They are both freely available. ENVI-met is published under the
creative common license for non-commercial use. The German
reference dispersion model Austal2000 was developed by Janicke
consulting engineers (Janicke consulting GbR, Überlingen,
Germany) for the German Federal Environmental Agency
(Umweltbundesamt). Austal2000 is a reference implementation
of the specifications given in appendix 3 of the technical
instructions on air quality control (TA Luft; BMU, 2002).
ENVI-met was developed by M. Bruse (ENVI-met GmbH, Essen,
Germany) as a holistic microclimate model and also features a
module for dispersion simulation (Bruse and Fleer, 1998).
ENVI-met has the distinction of being an easy-to-use tool with a
graphical user interface and a user-friendly editor for users who
do not necessarily need to understand the complex physics
ENVI-met relies on to operate the model. Therefore, the model
qualifies particularly for areas of application like architecture as
well as urban and environmental planning. This study gives an
overview of the performance of ENVI-met in comparison to
Austal2000 by comparing data sets of four actual test cases
focusing on the distribution of particles with an aerodynamic
diameter (DAE) smaller than 10 mm (PM10). The four test cases
include investigations in two different areas under study i.e. two
inner-city park areas as structural elements of typical mid-sized
German cities. In each of the two study areas two test cases
were set up with model runs initiated with either inflow
boundary conditions (IBC) defined by meteorological observations
from weather stations further away from the areas under study
(1800e2500 m beeline) or IBCs defined by local measurements. A
comparison is made between the predicted concentrations of
each model using scatter plots. Simulation data is furthermore
compared to measurements that were performed with an optical
particle counter (OPC) using Q-Q plots as suggested by Chambers
(1983) and Venkatram et al. (2001). As recommended in the
literature (Patel and Kumar, 1998) and applied in recent air
quality model performance studies (Langner and Klemm, 2011),
additional performance measures were calculated to evaluate the
capability of the two models compared to observations. Fractional
bias (FB) is used as a performance measure that enables an
assessment of discrepancy between the measurement-based and
the simulation-based sample (Perry et al., 2005). Additionally, the
robust highest concentration (RHC) is calculated as it reflects the
high end of the concentration ranges (Hanna, 1988). The reason
for that is that higher concentrations are usually of particular
interest when it comes to air quality regulation and health-
damaging exposure of pollutants.

2. The modelling software used

2.1. Austal2000

Austal2000 is based on the Lagrangian approach and is designed
for long-term sources and continuous buoyant plumes. The model
is capable of calculating the dispersion of multiple point, line and
area sources of odorous substances and pollutants (e.g. SO2, NO,
NO2, NH3, PM) and includes dry deposition algorithms. In Germany,
Austal2000 is widely used for short-range transport of particles and
gases in both applied studies (Merbitz et al., 2012; Schiavon et al.,
2015; Dias et al., 2016; Paas et al., 2016; Pepe et al., 2016) and in
model performance research (Langner and Klemm, 2011; Letzel
et al., 2012). As a steady-state Lagrangian dispersion model, Aus-
tal2000 simulates the dispersion of pollutants by utilizing a
random walk process. Wind vectors determine the direction and
velocity of dispersion. A Markov process is used to randomly vary
the turbulence vector. The intensity of turbulence determines the
variety of the random element. The aerosol concentration is
calculated by quantifying the particle number in a given grid cell
(Janicke, 2011). Meteorological input parameters (all from ground-
based measurements) that have to be provided by the user are:
wind direction (wd), wind speed (ws), roughness length (z0),
measurement height of the wind component measurements, and
the stability classes according to Klug-Manier. The Klug-Manier
classes represent the German standard stability classification for
the atmosphere and are based on the Monin-Obukhov length
theory. Klug-Manier classes are comparable to the Pasquill stability
classes (Foken, 2008) that are widely-used in the United States
(Mohan and Siddiqui, 1998). Provision of roughness length values
by the user is not a requirement since Austal2000 is able to
calculate z0 for selected locations using an internal database. A
prerequisite, however, is that the coordinates of the study location
are known. For cases with obstacles (e.g. buildings) and complex
terrain input data actuate the preceded and implemented model
TALdia to calculate a wind field library. The software code as a
standalone software without a graphical user interface as well as a
detailed program documentation is freely available from the de-
veloper's webpage (Janicke, 2011). The Austal2000 simulations of
PM10 distribution were performed with version 2.6.11. Georefer-
encing of CAD data was conducted using the ESRI software ArcGIS,
version 10.2.2. Displaying of the results was realized using the
OriginLab software Origin Pro, version 8.

2.2. ENVI-met

ENVI-met is a prognostic three-dimensional microclimate
model that is designed to simulate the surface-plant-air in-
teractions in urban environments with a typical resolution down to
0.5 m in space and 1e5 s in time (Bruse and Fleer, 1998). In the
research community ENVI-met is widely used in the context of
human bio-meteorology and thermal comfort studies (Ali-Toudert
and Mayer, 2006; Ng et al., 2012; Ambrosini et al., 2014; J€anicke
et al., 2015; Maras et al., 2016). However, the model also features
a pollution dispersion module accordingly to simulate numerous
point, line and area sources of substances, e.g. NO, NO2, O3 and PM
which becomes more and more popular (Nikolova et al., 2011;
Wania et al., 2012; Hofman and Samson, 2014; Morakinyo and
Lam, 2016). It includes particle sedimentation depending on size
and mass and deposition at surfaces. A simple upstream advection
approach is used to calculate the pollutant dispersion. ENVI-met is
based on a three-dimensional computational fluid dynamics (CFD)
model. For each spatial grid cell and time step, the CFD model
solves the Reynolds-averaged non-hydrostatic Navier-Stokes
equations. Turbulence is calculated using the 1.5th order closure
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k-εmodel. Two prognostic equations are used to solve the variables
k and ε which determine the kinetic energy in the turbulence and
the turbulent dissipation respectively. In consequence, these two
equations represent the turbulent properties of the flow (Jones and
Launder, 1972). For initialization of meteorological input parame-
ters, i.e. wd, ws (measured in 10 m agl), z0, relative humidity (rh),
air temperature (Ta), specific humidity (sh) and cloud coverage
(optional) have to be provided by the user. For sh information from
upper air soundings have to be used (values from 2500 m agl have
to be provided) whereas all other parameters can be obtained from
ground based measurements. The software package is split into
both an expert version which is only accessible by the consulting
company of the developer and a freely available basic version with
limited features for non-commercial use published under the
creative common license. The ENVI-met simulations of PM10
distribution were performed using the free version V4 Preview III.
Georeferencing of CAD data was conducted using the ESRI software
ArcGIS, version 10.2.2. Displaying and analyzing of the results were
realized using the visualizing tool Leonardo which is part of the
ENVI-met software package.

3. Experimental design

3.1. Areas under study

Two research sites were chosen for this study. They are located
in the cities of Aachen and Münster respectively (see Fig. 1). Both
research sites were characterized as inner-city park areas that are
remote from industrial areas. The areas under study are featuring
“complex terrain”. In this study “complex terrain” is referred to the
complex urban geometry of street canyons and squares that are
characterized by numerous obstacles like houses with varying
height, varying ground levels as well as major traffic lines that cut
through the green areas (see Fig. 2). Aachen and Münster are both
representative mid-sized German cities with a population of
around 250,000 inhabitants located in the West of Germany.
However, they are characterized by different topographies. The
research site in Aachen spans an area of around 180 m by 180 m, is
surrounded by dense perimeter development and features three
main traffic lines. The open space in the city of Münster is char-
acterized by an area with wider extent compared to the research
site in the city of Aachenwith a dimension of 250 m by 350m. Four
main traffic lines are cutting though the area under study. The site
contains two lakes. The bigger lake “Aasee” is situated to thewest of
the research site. A small lake named “Kanonengraben” is located in
the southeast of the area under study. The green area is surrounded
by isolated freestanding buildings.

3.2. Model domains

Referring to the best practice guidelines given by Franke et al.
(2007) and the practical work of Vos et al. (2013) who performed
ENVI-met pollutant dispersion simulations as well, for all simula-
tions presented in this study, the computational domains have been
chosen sufficiently large in order to keep the influence of the
domain boundaries on the solution to a minimum. A distance of 8 H
from the buildings that surround the research sites (park areas) to
the computational domain boundaries (where H represents the
building height) was kept. The computational domain of the area
under study in Aachenwas modeled as an area as large as 420 m by
420mwith a spatial resolution of 2 m in the case of Austal2000. For
ENVI-met a core model domain with a horizontal extent of 250 m
by 250 m with a spatial resolution of 2 m was set up. Additionally,
10 nesting grids were used as a surrounding with increasing grid
size towards the boundaries of the domain to keep clear distance of

132 m to the core domain. An overall computational domain with a
horizontal extent of 514m by 514mwas used (see Fig.1). In the area
under study in Aachen the maximum building-height-to-street-
width (aspect) ratio H/W is 1.5. The obstacles vary in height from
5 m to a maximum building height of 40 mwhereas the maximum
altitude difference of the terrain surface is 8 m. The computational
area representing the research site in Münster was modeled as an
area as large as 420 m by 420 m with a spatial resolution of 2 m in
the case of Austal2000. For ENVI-met a domain with an extent in
the X-Y-plane of 380 m by 256 m with a spatial resolution of 2 m
was developed as the core model. In addition, 10 nesting grids were
used as a surrounding with increasing grid size towards the
boundaries of the computational domain to keep clear distance of
132 m to the core domain. An overall computational domain
with an extent in X-Y-direction of 644 m by 520 m was used with
ENVI-met for the Münster test cases (see Fig. 1). The maximum
H/W in the area under investigation in Münster is 1.0. The obstacles
vary in height from 1 m to a maximum building height of 19 m
whereas the maximum altitude difference of the terrain surface is
8 m.

3.3. Emission input data

Emissions for all used test cases and simulation tools were
calculated by multiplying emission factors (mg vehicle�1 m�1)
referring to the guidelines published by Keller and de Hahn (2004)
and Lohmeyer et al. (2004) with prevailing traffic intensity (vehi-
cles s�1). The used emission factors included both the amount of
combustion processes and blown up dust as well as tire and break
abrasions. Traffic intensity was defined by averaged traffic counts
including a separation of different vehicle classes (trucks > 7.5 t,
busses, cars). Traffic counts were manually performed in parallel to
the particle concentration measurements (see Sect. 3.5) individu-
ally for each trafficked street leading to the investigation areas
(“Ursulinerstr.”, “Hartmannstr.”, “Friedrich-Wilhelm-Platz” in
Aachen; “Weselerstr.”, “Aegidistr.”, “Adenauerallee”, “Bismarck-
allee” in Münster). The traffic data were averaged over 1 h periods.
In principle, traffic emissions are represented as line sources. In
order to account for a more realistic spatial positioning, the sources
are spread out over the entire width of the traffic lanes. Emissions
were implemented as area sources in 0.5 m agl in both models. For
the calculations conducted with Austal2000 for each simulation
run one billion particles were emitted in the computational
domain.

3.4. Meteorological input data

Meteorological input parameters are required as inflow
boundary conditions that actuate the dispersion models (see 2.1 &
2.2). For two test cases time-series data (1-h averages) from
continuously operated weather stations were used as input pa-
rameters. The weather stations were located in suburban areas of
Aachen and Münster. For one test case in Aachen entry criteria for
the modelling tools were set with meteorological data from the
permanent weather station “Aachen-H€orn” (6� 030 4000 E, 50� 460

4400 N), located 1800 m away from the area under study in the city
center of Aachen. The wind sensor to determine wd and ws (Wind
Monitor 05103, R.M. Young Company, Traverse City, Michigan, USA)
was installed on top of a roof (6.5 m above the rooftop) in 29 m agl.
The shielded temperature and humidity sensor (CS215, Campbell
Scientific, Inc., Logan, Utah, USA) was mounted on a mast in 2 m agl
(Schneider and Ketzler, 2016). Input data for one test case in
Münster were obtained from the climatology working group of the
University of Münster which operates the permanent weather
station “IL€OK” 2100 m away from the investigation area (7� 350 4500
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E, 51� 580 900 N). Sensors to determine wd and ws (WindSonic
Anemometer RS-232, Gill Instruments Limited, Lymington,
Hampshire, UK) as well as the shielded temperature and humidity
sensor (41382VC, R.M. Young Company, Traverse City, Michigan,
USA) were mounted on a permanent mast on top of a roof (10 m
above the rooftop) in 34 m agl. Time-series data (1-h averages) of
local meteorological measurements that were performed inside the
research sites in Aachen and Münster were used for the initializa-
tion of two further test cases. For these cases high frequency
measurements of the wind vector were carried out in the middle of
the research sites (see Fig. 1) with a three-dimensional sonic
anemometer (USA-1, METEK Meteorologische Messtechnik GmbH,
Elmshorn, Germany). In Aachen the anemometer was mounted on
top of a street lamp in 3.4 m agl. During the field campaign in

Münster the anemometer was mounted on top of a tripod in 2.67m
agl. However, concerning wind data, ENVI-met requires informa-
tion from 10 m agl (see Sect. 2.2). Accordingly, ws was recalculated
where needed by extrapolating anemometer data to 10 m agl,
assuming a logarithmic wind profile under neutral stratification
(z0 ¼ 0.8; K�arm�an's constant ¼ 0.4). Measurements of rh and Ta
took place with a shielded resistance probe (41382VC, R.M. Young
Company, Traverse City, Michigan, USA) in 2 m agl, using the same
mounting location as the anemometer. Austal2000 requires input
concerning the stratification of the atmosphere (see Sect. 2.1). Klug-
Manier stability classes were calculated using wind speed data
(10 m agl) and information on cloud cover according to the
guideline given in the technical instructions on air quality control
(TA Luft; BMU, 1986).

Fig. 1. The location of the two areas under study in Germany (right) with close-ups of the research sites in Münster (upper left illustration) and in Aachen (lower left illustration)
including the receptor points where measurements of PM concentrations were carried out (blue dots), the measurement locations where meteorological input data for both models
were taken (orange triangles) and markings of the computational domain sizes of the two models used (black continuous frame: Austal2000; black dashed frames: ENVI-met with
the hatched area representing the nesting grid area). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.5. Particle concentration measurements

Local aerosol measurements were carried out using a single OPC
(Model EDM 107G, Grimm GmbH, Ainring, Germany) to determine
mass concentration of suspended particles. The OPC integrates the
approaches of light scattering technology with single particle
counting. The frequency of scattered light pulse signals translates
into the number of contained particles of the air sample. The
scattering intensities are used to detect the particle sizes. Particles
are classified into a size distribution in a range between 0.25 and
32 mm DAE containing 31 different size channels. Internally, the
particle number size distribution is converted into mass concen-
trations for an indicated time interval. The sensor operates at a
volumetric flow rate of 1.2 L min�1 and a time resolution of 6 s
(Grimm and Eatough, 2009). Particles were sampled at the mean
respiratory height of 1.6 m agl and stored as 1-h arithmetic means
of mass concentrations with a DAE between 0.25 mm and 10 mm
(PM(0.25;10)). The sensor used had been factory calibrated on a
regular basis (VDE standard 0701-0702) within the calibration
validity period and was calibrated last on 13/01/2015. Prior to
calibration, the latest inspection showed a deviation of�0.6 mgm�3

(�4.2%) for PM(0.25;10) of the OPC to the factory's reference unit
107 S/N.

Five evenly distributed receptor points were selected inside the
area under study in Aachen, where measurements with the OPC
were carried out (see Fig. 1). In Aachen, data were collected as one-
day time series during overall 9 selected days. In February 2014
measurements were carried out at all five receptor points; each day
at a different receptor point. In July 2014 measurements took place
at four receptor points; each day at a different measurement
location resulting in a sample of 46 data points of full-hour averages
in total frombothmeasurement campaigns in Aachen. Three evenly
distributed receptor points were selected inside the research site in
Münster (see Fig. 1). Particle concentration measurements in
Münster were carried out as one-day time series during overall six
selected days. During February 2015 data were collected at all three
measurement locations, each day at a different receptor point.
Throughout three selected days in July and August 2015 particle
measurements were repeated analogously to the winter campaign.
The overall sample consists of 33 full-hour averages from both
measurement campaigns in Münster. The general weather situa-
tions for the measurement campaigns were chosen to be equal for

both periods, including radiation weather conditions with only
partly clouded skies and no precipitation. The inflow and prevailing
wind during the field experiments varied. Data collection in all
cases took place between 10:00 h and 17:00 h local time on
weekdays to avoid the typical peaks during early morning and
evening rush hours. Always before being compared to simulation
results, measurement raw data of PM(0.25;10) (1-h averages) were
further processed. The background concentration (PM10; 1-h av-
erages) was deducted from raw particle measurement data ob-
tained from the OPC using measurement data from government air
quality sites Aachen-Burtscheid (AABU) andMünster-Geist (MSGE),
operated by the North Rhine-Westphalian State Office for Nature,
Environment, and Consumer Protection (LANUV). It is known that
calculations with particle measurement data from different
sensor types i.e. the OPC used and different sensors operated at
the government sites (AABU: Nephelometer; MSGE: Tapered-
element oscillating microbalance) should be treated with
caution and deterioration might be accepted when it comes to
data quality (Wiedensohler et al., 2012). However, data of the used
OPC seemed to be in line with compared measurement data from
the government site AABU, showing good agreement and only a
slight overestimation (Paas et al., 2016). Hereinafter, only adjusted
particle measurement data is shown where background
concentration was subtracted from raw PM(0.25;10) measurement
values.

3.6. Test cases

Overall, four test cases were set up for this study. Two test cases
were set up with the same model domain and emission input for
the research site in the city of Aachen. Two test cases were set up
equally for the research site in the city of Münster. All simulations
were performed analogously to the periods of particle concentra-
tion measurements (see Sect. 3.5). Only the meteorological IBCs
varied among the different test cases for each research site. For the
first test case of the research site in the city of Aachen meteoro-
logical data from the distant weather station “Aachen-H€orn”
initiated the model runs (test case AA1). In this case the wind was
predominantly coming from southwest (see Fig. 3), with wind
speeds between 4 m s�1 and 7 m s�1 being most common (in 10 m
agl). Local measurement data with wind mainly from south and
predominant wind speeds between 1 m s�1 and 3 m s�1 (in 10 m

Fig. 2. Photographs of the areas under study showing the street canyon situations in Aachen (a)) and Münster (b)) as well as the inner green area characteristics in Aachen (c)) and
Münster (d)).
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agl) were used as IBCs for the second test case of the research site in
the city of Aachen (test case AA2). For the first test case of the
research site in the city of Münster meteorological data from the
distant weather station “IL€OK” initiated the model runs (test case
MS1). In this case the wind was predominantly coming from
easterly directions, with an average wind speed of 4 m s�1 during

the period of investigation. Local measurement data with varying
wind directions but mostly coming from northeast and wind
speeds between 2 m s�1 and 5 m s�1 being most common (10 m
agl) were used as IBCs for the second test case of the research site in
the city of Münster (test case MS2). A short summary of the four
different test cases is given in Table 1.

Fig. 3. Wind rose plot showing wind vector measurement data (normalized, 10 m agl) during the investigation periods for a) the Aachen-testcase AA1, b) the Aachen-testcase AA2,
c) the Münster-testcase MS1 and d) the Münster-testcase MS2.

Table 1
Summary of the four test cases that were conducted in this study.

Emitted
substance

City General setting Study periods IBC data Test
case

PM
10

Aachen Inner city park area, complex terrain, varying ground
surface, dense
perimeter development, 3 area sources (traffic lines)

9 selected weekdays in February, July
2014

Distant weather station “Aachen-
H€orn”

AA1

Local measurements in the area
under study

AA2

Münster Inner city park area, open space, varying ground surface,
surface water,
isolated freestanding buildings, 4 area sources (traffic
lines)

6 selected weekdays in February, July,
August 2015

Distant weather station “IL€OK” MS1
Local measurements in the area
under study

MS2
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4. Methods of performance analysis

Data sets of both models are inter-compared by utilizing scatter
plot diagrams to find out if and how well ENVI-met predicts PM10
concentration close to the German reference model Austal2000.
Furthermore, predicted values of each model are compared to ob-
servations. Quantile-quantile (Q-Q) plots are useful visualization
tools for the assessment of concentration distributions (Chambers,
1983) and are especially recommended for the evaluation of reg-
ulatory models (Venkatram et al., 2001). Q-Q plots are created by
ranking the simulated and measured concentrations and then
pairing them by rank. Perfect rank correlation results in a plot with
data points forming a 1:1 line. A good model will produce results in
this plot similar to the slope of this line. The upper end of ground-
level concentrations of pollutants is of particular concern in air
quality regulation and urban planning (Cox and Tikvart, 1990).
Again, good model predictions concerning the important high end
concentrations will result in Q-Q plots, where in the upper
concentration end the data points are close to the 1:1 line (Perry
et al., 2005).

Merely comparing measurement data to simulation results side
by side does not necessarily provide an entire assessment of which
model best represents actual measured pollutant concentrations.
Therefore, it is necessary to analyze model data by utilizing
additional “performance measures to determine whether one
model is significantly better than another” (Patel and Kumar, 1998).

The FB can be used as the fundamental measure of discrepancy
between the measurement-based and simulation-based sample
(Cox and Tikvart, 1990). The FB is a dimensionless and normalized

measure which varies between �2 and þ2 for extreme over- or
under-prediction of the model. The value of zero represents a
perfect model. The formula is given by Hanna, 1988 (Eq. (1))

FB ¼
2
�
CO � Cp

�
�
CO þ Cp

� (1)

where CO and Cp are the observed and predicted concentrations
respectively.

Due to the highlighted importance of the upper end of
concentrations, this study uses the RHC as an additional indicator
that refers to the peak concentrations of air pollutants. The RHCwas
chosen as a preferred statistic over actual maxima because it
mitigates the undesirable influence of unusual events in virtue of a
smoothed estimate of the high-end concentrations. A good model
will provide RHCs of predicted data close to RHCs calculated from
observation data. The formula is given by Perry et al., 2005 (Eq. (2))

RHC ¼ xfng þ
�
x� xfng

�
ln
�
3n� 1

2

�
(2)

where n is the number of values used to characterize the upper end
of the concentration distribution, x is the average of the n�1 largest
concentration values, and xfng is the nth largest concentration
value. Cox and Tikvart (1990) suggest selecting n ¼ 26 but mention
that it can be lower in cases where the sample is not adequate (with
fewer concentrations exceeding the threshold value where the
threshold value is defined as a concentration near background) but

Fig. 4. Predicted traffic-induced PM10 concentration distribution of selected situations in 1.5 m agl of (a) Austal2000 and (b) ENVI-met for the Aachen test case (AA2) with inflow
boundary conditions (IBC) defined by local meteorological measurements (1-h average; prevailing wind direction ¼ 180�; Klug-Manier stability class III/2) and of (c) Austal2000 and
(d) ENVI-met for the Münster test case (MS2) with inflow boundary conditions (IBC) defined by local meteorological measurements (1-h average; prevailing wind direction ¼ 290�;
Klug-Manier stability class III/2).
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with n > 3 at the minimum. We used n ¼ 16 in the Aachen test case
samples (AA1, AA2) and n ¼ 10 in the Münster test case samples
(MS1, MS2) of this study representing in each test case the fraction
of measurement values exceeding the annual mean value of the
PM10 background concentration in the city of Aachen (15 mg m�3)
and Münster (19 mg m�3), respectively (LANUV, 2015). All calcula-
tions were based on 1-h averages since the 1-h averaging time is
recommended as the basic element for evaluation (Fox, 1981). Data
processing took place with the R software package using version
3.0.2.

5. Results

The overall dispersion results show similarities to some degree
in both models. Fig. 4 shows 1-h averages of Austal2000 and ENVI-
met PM10 predictions of depicted model runs which were initiated
with local measurement data for the Aachen test case AA2.

The highest PM10 concentrations were predicted for locations
in close vicinity to traffic lines particularly at the main road

“Friedrich-Wilhelm-Platz” (cf. Fig. 1). Corresponding simulated
PM10 concentrations seem to decline rapidly further from the traffic
lines in both models. Input data of the wind vector are the key
meteorological driver for the used models and make for higher
PM10 concentrations in the north of the model area of the test case
AA2. Under IBCs with winds from the south, Austal2000 predicted a
situation where particles tend to accumulate in e.g. the narrow
alleyway (“Ursulinerstr.”) as well as in areas downwind from
emission sources where particles get dammed up at obstacles. In
comparison, ENVI-met results unveil more smoothly dispersed
PM10 concentrations which are rapidly declining further from the
sources. Dispersion results of both models calculated for the MS2
test case where urban obstacles are present to a lesser extent show
a more even distribution of the PM10 concentration. Particles seem
to be transported with the wind away from the traffic lines in both
models. The distribution appears to be furthermore influenced by
the ground surface structure especially in the east of the model
areas for the MS2 test case. However, the two models calculated
different spatial distributions of PM10 concentrations east of the

Fig. 5. Scatter plot for predicted PM10 concentrations of all the receptor points of (a) the AA1 test case (IBC: data from the distant weather station; R2: 0.75; slope: 0.51), the AA2 test
case (IBC: data from local measurements; R2: 0.89; slope: 0.53), the MS1 test case (IBC: data from the distant weather station; R2: 0.79; slope: 1.01) and the MS2 test case (IBC: data
from local measurements; R2: 0.89; slope: 0.53). The dashed line illustrates a 1:1 reproduction of ENVI-met predictions over Austal2000. The dotted line represents the linear
regression of the samples.
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“Weselerstr.”. Compared to Austal2000 the predicted PM10 con-
centrations of ENVI-met are mostly two times lower throughout
the whole areas under study in both test cases.

The direct comparison of ENVI-met predictions over Austal2000
simulation results at the receptor points adds to the picture (see
Fig. 5). Although PM10 concentration values of ENVI-met show a
very good agreement to Austal2000 results in all test cases (R2:
0.68e0.89), the slopes of the linear regression lines (AA1: 0.53,
AA2: 0.51, MS1: 1.01, MS2: 0.23) indicate an underestimation of
predicted PM10 concentrations by the factor of two on average in
the case of ENVI-met in comparison to Austal2000.

Q-Q plots for all four test cases using all measurement data of all
receptor points are presented in Fig. 6. Both models almost
constantly underpredicted the observed PM(0.25;10) concentrations.
Corresponding to the findings in Fig. 5 this is especially true for
ENVI-met simulation results. ENVI-met even undercuts the

predicted PM10 concentrations of Austal2000 almost always and in
particular in the low concentration range.

Concerning test case AA1 that contains simulations that were
initiated with data from the distant weather station both models
strongly underpredicted observations. Under IBCs defined by local
measurements (AA2) both models gained precision. Austal2000
still underpredicted measurement data; however, the model only
underpredicted observations by the factor of around two in the
entire range of concentrations. Initiated with local measurement
data in test case AA2, ENVI-met produced somewhat better simu-
lation results as well and especially in the mid and high-end con-
centration ranges. In the upper concentration range ENVI-met
results are closer to the simulation results of Austal2000. However,
predicted concentrations of ENVI-met fell apart in the lower con-
centration range, where the underprediction is several times higher
in comparison to Austal2000. Comparing the Q-Q plots of test cases

Fig. 6. Q-Q plot for predicted PM10 concentrations of all the receptor points of (a) the AA1 test case (IBC: data from the distant weather station), of (b) the AA2 test case (IBC: data
from local measurements), of (c) the MS1 test case (IBC: data from the distant weather station) and of (d) the MS2 test case (IBC: data from local measurements) as 1-hr averages.
Black stars represent predicted PM10 concentrations of Austal2000. Grey circles show predicted PM10 concentration of ENVI-met. The black line indicates the 1:1 rank correlation of
the distributions. The grey lines depict the factor of two over and under estimates.
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MS1 and MS2 it becomes obvious that the distinction between the
results of the two test cases is less clear. For test caseMS1where the
models were operated with IBCs from the distant weather station
“IL€OK” results of both models are comparable in the entire con-
centration range. In the upper concentration range both models
calculated lower concentrations of PM10 in comparison to mea-
surement data with a factor of around two underprediction. Their
calculations for lower concentrations differ seriously from the
measurement values with underprediction by several orders of
magnitude. Under IBCs defined by local measurements (MS2) only
Austal2000 reached results closer to observations. While overall
still underpredicting, Austal2000 calculated values very close to
measurement data.

Looking at the FBs given in Table 2, ENVI-met, over the entire
investigation period in all test cases, strongly underpredicted the
actual PM(0.25;10) concentration (FB: 1.46e1.88). Austal2000's
underprediction was overall less strong with FBs between 1.12 and
1.81. Both models performed better under neutral stratification
conditions of the atmosphere (Klug-Manier stability classes III/1
and III/2) most of the time. When initiated with local meteoro-
logical input data (test case MS2) a best FB value of 0.58 in the case
of Austal2000 was calculated for neutral stratification of the at-
mosphere (Klug-Manier stability class III/1). ENVI-met performed
best in the test case MS1 for the Klug-Manier stability class III/1
with a calculated FB of 1.20. The comparison of the FBs of both the
Aachen and Münster test cases emphasizes that i.e. Austal2000
gained precision by using IBCs as model input parameters from
local meteorological measurements. That counts for ENVI-met in
the Aachen test cases as well, whereas in the Münster test cases the
calculated FBs are even higher for the MS2 test case when ENVI-
met was initiated with local measurement data.

The analysis of the calculated RHCs (Table 3) confirms the
former findings for the high-end concentration range as well. Both
models continued to underpredict the observed concentrations
over the entire study period. RHCs for measurement data were
calculated to be 73.6 mg m�3 for the Aachen test cases (AA1, AA2)
and 33.1 mgm�3 for theMünster test cases (MS1, MS2), respectively.
For observations the standard deviations of the highest concen-
tration values (SDHC) representing the same sample size of the
RHCs (see Sect. 4) are ±25.6 mg m�3 for the Aachen test cases (AA1,
AA2) and ±2.8 mg m�3 for the Münster test cases (MS1, MS2). In
particular during the AA1 test case the RHC that was calculated
from observations was seriously underpredicted by both models
(Austal2000 RHC: 4.8 mg m�3; ENVI-met RHC: 2.5 mg m�3).

When considering RHCs it becomes evident that both models
produced results closer to observations during the Münster test

cases with underprediction of both models to a lesser extent. In
particular Austal2000 simulated results in the important high-end
concentration range with a RHC of 21.4 mg m�3 (SDHC: ±6.7 mg m�3)
very close to the RHC derived from observations.

6. Discussion

The evaluation of pollutant dispersion model performance is of
broad relevance since dispersion models are used intensively for
both scientific applications, to better understand the spatial dis-
tribution of e.g. pollutants like PM in the atmosphere, as well as for
urban air quality regulation and planning. This is especially true for
themodels Austal2000 and ENVI-met who are both freely available.
However, up to now ENVI-met results of pollutant dispersion were
exclusively compared to observations in a study concerning ultra-
fine particles (Nikolova et al., 2011) or in research using the
approach of biomagnetic monitoring with the help of the total
deposited mass of PM (Hofman and Samson, 2014). Until recently,
ENVI-met has never been compared to a different model under
similar inflow boundary conditions regarding the dispersion of
ground level airborne particles. Austal2000's performance
regarding the distribution of pollutants in complex terrain was
exclusively evaluated in studies concerning NOX or benzene
(Schiavon et al., 2015). When considering PM the performance was
assessed in research conducted with meso-scale computational
domains that were not able to resolve complex urban areas at the
spatial resolution of individual street canyons (Dias et al., 2016;
Pepe et al., 2016). The results of this study provide model users of
both the scientific community and users of applied studies advice
what level of performance can be expected under different initial
conditions from the simulation tools ENVI-met and Austal2000 in
real-world applications. The outcomes refer to investigations of the
atmospheric composition concerning PM10 on the micro-scale with
the help of performance measures as recommended in the litera-
ture. Still, the results of the given test cases lack numerous aspects
of real-world conditions. The findings of this study fall short in
statements regarding e.g. the simulation of PM10 distribution dur-
ing night-time (including periods of e.g. low turbulence charac-
teristics), the prediction of PM10 dispersion in highly polluted areas
(considering higher emission rates e.g. during rush hours) or the
distribution of other pollutants like SO2, NO, NO2 or NH3. Both
models Austal2000 and ENVI-met underpredicted observed PM10

concentrations in all test cases and especially in the low end con-
centration range. Schiavon et al. (2015) found a tendency of
underprediction (35% in comparison to observations) using Aus-
tal2000 as well, though related to the annual mean concentration
of NOX. However, before judging the performance of a model it has
to be taken into account that in any case individual model predic-
tion certainly differs from corresponding observation data because
simulation tools cannot include all the variables that affect obser-
vations at a specific time and location (Venkatram, 2008).
Numerous sources of error are included in pollutant dispersion
modelling in general. Observation data for instance include

Table 3
RHC and SDHC (in brackets) in mg m�3 of observed and predicted PM10 concentra-
tions for all four test cases.

AA1 AA2 MS1 MS2

Observed 73.6 (±25.8) 33.1 (±2.8)
Austal2000 4.8 (±1.2) 18.0 (±3.2) 6.1 (±0.4) 21.4 (±6.7)
ENVI-met 2.5 (±0.7) 9.3 (±2.5) 9.5 (±1.6) 5.2 (±1.7)

Table 2
FB for all four test cases segregated in atmospheric stability classes after Klug-Manier.

Atmospheric stability (Klug-Manier) AA1 AA2 MS1 MS2

Austal 2000 ENVI-met Austal 2000 ENVI-met Austal 2000 ENVI-met Austal 2000 ENVI-met

III/1 (neutral) 1.58 1.75 e e 1.32 1.20 0.58 1.62
III/2 (neutral) 1.85 1.90 0.91 1.28 1.56 1.46 0.98 1.64
IV (unstable) 1.93 1.95 e e 1.17 1.45 1.16 1.38
V (very unstable) e e 1.68 1.93 1.42 1.55 1.47 1.86
Total 1.81 1.88 1.41 1.71 1.44 1.46 1.12 1.71
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background concentration from long distance transport. Simulation
results feature only the increase of concentrations as a function of
local source emissions (Langner and Klemm, 2011). However, un-
certainty might be also accepted when it comes to modelling of
particle sources since it can be challenging to obtain correct
emission rates of an area source (Faulkner et al., 2007). In this study,
dynamic processes of the modeled area sources i.e. traffic flows
were simplified with emission rates that were calculated only by
taking averaged traffic volumes and emission factors into account
(see Sect. 3.3). Furthermore, not all processes that effect the micro-
scale dispersion of particles can be flawlessly included into the used
models. Sources of error could be the neglecting of e.g. the influ-
ence of obstacles like trees or shrubs on the wind- and turbulence
field (Gromke and Blocken, 2015), the deposition effect of vegeta-
tion elements on local airborne particles (Hofman and Samson,
2014) or the local release of particles out of undefined sources.
The Aachen test cases showed predictions of both models with an
overall wider variation from observations in comparison to the
calculations of the Münster test cases. It seems possible that local
diffuse particle sources contributed to measurement data due to
particle release of dried-out grass and unsurfaced footpaths (Birmili
et al., 2013; Paas et al., 2016). Therefore, in the test cases AA1 and
AA2, particle measurement data were still biased and overrated
after processing (deduction of background concentration) and not
only influenced by motor traffic. Beyond, air quality modelers have
not yet agreed upon the magnitude of standards for judging model
performance (Yassin, 2013). Chang and Hanna (2004) suggested
considering a model as acceptable if most of its predictions are
within a factor of two of the observations. Furthermore, perfor-
mance tested under similar initial conditions alone is barely suffi-
cient to judge the overall capability of a model. ENVI-met rather
than Austal2000 is e.g. able to integrate vegetation elements
(shrubs or trees) into the dispersion calculations (Wania et al.,
2012; Morakinyo and Lam, 2016). This feature could come in
handy for urban planners and landscape architects who are aiming
at studies concerning the effects of vegetation as design elements
in urban environments on airborne pollutants like PM.

Under all of the tested conditions the comparison of model
predictions to observations shows that both models gained accu-
racy when the simulation runs were initiated with IBCs of local
atmospheric measurements except for ENVI-met in the test case
MS2. With locally measured wind speeds two times lower in
comparison tomeasurement data of the distant weather station (cf.
Fig. 3), higher predicted PM10 concentration are to be expected,
since the wind vector is the key driver as an initial condition of the
dispersion models used. Dilution of pollutants i.e. the horizontal air
mass exchange is reduced during conditions with lower horizontal
wind speeds. The coherence between reduced wind speed and
concentration increase of pollutants was confirmed by Gromke
et al., 2008 and Wania et al., 2012 by conducting wind tunnel ex-
periments and CFD simulations. It can be stated that the slight
change in wind direction due to missing or different urban obsta-
cles in IBC data derived from the database of the distant weather
station had an impact on the inferior predictions of test cases AA1
and MS1 as well. Perry et al. (2005) verified that uncertainty in
wind direction alone may cause disappointing results from what
otherwise may be well-performing dispersion models. Further
improvements of overall predictions could be obtained with the
help of inflow boundary conditions derived from different wind
field models i.e. MISKAM in the case of Austal2000 as confirmed by
Letzel et al. (2012). The calculated FBs emphasize that both models
strongly underpredicted the observed PM(0.25; 10) concentrations.
The overall best performance is reached by Austal2000 in test case
MS2 with a total FB of 1.12. As opposed to this, Dias et al. (2016)
found Austal2000 to agree well with observations in their study

with an overall FB of �0.04. However, it becomes apparent that
both models gained precision when predicting PM10 concentration
under neutral stratification regimes of the atmosphere (cf. Table 2).
Results of both models show most of the time poor performance
under unstable and very unstable stratification regimes (Klug-
Manier stability classes IV and V) in all test cases (FB: 1.16e1.95). It
seems possible that both models had difficulties to calculate an
accurate mixing of the atmosphere under unstable und very un-
stable conditions with possibly an over estimation of the dilution
rate regarding PM10 concentrations. On the contrary, Pepe et al.,
2016 derived good results with Austal2000 simulating NOX con-
centrations during daytime under increasing height of the mixing
layer. It turned out that ENVI-met overall performed inferior to
Austal2000 when it comes to predictions of traffic-induced near-
surface concentrations of PM10. Presumably as a result of the
Lagrangian method, where particles follow trajectories of the wind
vector, the dispersion simulation results of Austal2000 seem to be
more sophisticated especially when the environment of the
computational domain is more complex. An attempt to explain the
poor performance of ENVI-met is that the model bases on a simpler
Eularian approach that does not mimic the random walk of
particles.

7. Conclusions and outlook

In this study a performance analysis with the help of different
statistical performance measures of the dispersion models Aus-
tal2000 and ENVI-met on the basis of four real-world particulate
matter test cases is presented. Results highlight that both models
considerably underpredicted observed PM(0.25;10) concentrations
for all test cases. Overall, the performance of both models can be
rated as nearly acceptable only under specific circumstances. The
analysis of all datasets shows that predictions of both simulation
tools were closer to field observations in the high-end concentra-
tion range that is important for regulatory purposes. It turned out
that both models had difficulties to calculate accurate predictions
under unstable and very unstable atmospheric stability classes.
Predictions of simulation runs of both models that were initiated
with in-situ data of local atmospheric measurements lead to results
closer to observation data (except for ENVI-met in the Münster test
cases). In test caseMS2 Austal2000 achieved the overall best results
with an underprediction of the RHC of about 30% in comparison to
observed PM(0.25;10) concentrations and a total FB of 1.12. Given the
specific conditions and scope of the investigation, a model user has
to evaluate whether he/she can obtain preferably meteorological
data of local measurements close to or inside the area under study
as input parameters to operate the dispersion models Austal2000
or ENVI-met successfully with best possible results.

In almost all of the test cases, Austal2000's predictions are closer
to field observations than those of ENVI-met. The spatial analysis
emphasizes that the distribution simulation of Austal2000 is more
sophisticated especially but not limited to cases with complex
terrain. In this study Austal2000 performed the task of dispersion
simulation of traffic induced PM10 emissions in complex terrain
reasonably well when initiated with IBCs out of local meteorolog-
ical measurements with the tendency of underprediction. ENVI-
met underestimated data of particle measurements more inten-
sively in comparison to Austal2000 almost always and over the
entire concentration range. Overall, the simulation results of ENVI-
met undercut predicted PM10 concentration of Austal2000 by the
factor of around two. Generally speaking, this analysis indicates
that Austal2000 is the stronger model compared with ENVI-met
considering the distribution of PM10 in complex and urban terrain.

Dispersion modelling is a valuable tool for air quality regulators
and planners and delivers spatial predictions of environmental
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impacts in the atmosphere. This is especially true in the case of the
modelling tools Austal2000 and ENVI-met which are both freely
available. However, output data of Austal2000 and in particular of
ENVI-met must, as in any other case of predictive models, be
interpreted with caution and should wherever possible be backed
up with at least a minimal amount of observational data.
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Abstract: Air quality assessment is an important task for local authorities due to several adverse
health effects that are associated with exposure to e.g., urban particle concentrations throughout
the world. Based on the consumption of costs and time related to the experimental works required
for standardized measurements of particle concentration in the atmosphere, other methods such
as modelling arise as integrative options, on condition that model performance reaches certain
quality standards. This study presents an Artificial Neural Network (ANN) approach to predict
atmospheric concentrations of particle mass considering particles with an aerodynamic diameter of
0.25–1 μm (PM(0.25–1)), 0.25–2.5 μm (PM(0.25–2.5)), 0.25–10 μm (PM(0.25–10)) as well as particle number
concentrations of particles with an aerodynamic diameter of 0.25–2.5 μm (PNC(0.25–2.5)). ANN
model input variables were defined using data of local sound measurements, concentrations of
background particle transport and standard meteorological data. A methodology including input
variable selection, data splitting and an evaluation of their performance is proposed. The ANN
models were developed and tested by the use of a data set that was collected in a street canyon.
The ANN models were applied furthermore to a research site featuring an inner-city park to test
the ability of the approach to gather spatial information of aerosol concentrations. It was observed
that ANN model predictions of PM(0.25–10) and PNC(0.25–2.5) within the street canyon case as well as
predictions of PM(0.25–2.5), PM(0.25–10) and PNC(0.25–2.5) within the case study of the park area show
good agreement to observations and meet quality standards proposed by the European Commission
regarding mean value prediction. Results indicate that the ANN models proposed can be a fairly
accurate tool for assessment in predicting particle concentrations not only in time but also in space.

Keywords: ANN; neural networks; machine learning; particulate matter; prediction; motor traffic;
acoustics; sound

1. Introduction

Exposure to both particles and noise is associated with an enhanced risk of various adverse health
effects [1,2]. Inside urban areas various particle sources can be found [3]. Still, motor traffic is the
major source for increased intra-urban levels of particulate matter (PM) inside cities considering low
industrial activity [4–6]. Furthermore, PM concentrations are highly influenced by background particle
transport besides the interference with motor traffic [7]. High noise levels in urban areas are often
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attributable to local road traffic as well. In Europe, high levels of both noise and particle concentrations
mostly occur within street canyons [8].

Numerous studies have evaluated the relation between particle concentrations and noise levels in
cities near road arterials assuming that both can be allocated to the same motor traffic emitter. Generally
speaking, a relation could be proved between particle concentrations and noise levels; however,
the statistical correlation between both is complex and different for various metrics [9]. Recent studies
highlight that the correlation between equivalent sound pressure levels (A-weighted or non-weighted)
and aerosol concentrations is generally higher for either small particle fractions like PM1 [10]
or ultrafine particle metrics like the particle number concentration (PNC), respectively [7,11–14].
The correlation tends to increase with decreasing particle sizes [13]. The relation to noise is less strong
for coarse particle fractions like PM10 [15] or PM2.5 [12,14]. The metric of A-weighted equivalent sound
pressure levels (SPLeq(A)) is of particular interest when it comes to the investigation of stressors for
humans since SPLeq(A) is a reference metric that emphasizes the human perception of noise integrated
over the entire frequency spectrum. It is, therefore, highly popular in studies where noise levels
have been compared to particle concentrations [13]. The metric of SPLeq(A), however, accentuates by
definition frequency ranges around 1 KHz but plays down lower frequency ranges, where most of the
sonic energy transport can be expected from motor traffic-induced sounds [16]. Additionally, besides
motor traffic sound that can be assigned to sources of particle emissions, many supplementary sources
of sound can be found. Until now, only very occasionally optimization of the acoustic data towards
an exhausting representative of motor traffic sounds out of the unweighted noise spectrum has been
come into focus when evaluated against concentrations of pollutants like PM [13].

Monitoring of particle concentrations with reference methods is an important task due to the
surveillance of air quality standards. However, reference sensors are expensive and therefore in
Europe mostly very limited measurements are taken inside urban areas. As a result, spatially resolving
information on the local urban concentration of e.g., PM is scarce. Recently developed economic
micro-sensors have until now not been able to mitigate the poor availability of information in the
dimension of space since this generation of micro-sensor platforms still shows mostly poor performance
in particular for PM [17].

Modelling approaches can help to address these shortcomings as alternative or supplementary
options to instrumental monitoring. Many different approaches have been developed over time.
Deterministic models up to full numerical solutions describing the physical phenomena that determine
the transportation of pollutants in the atmosphere are powerful approaches to predict concentrations
and the distribution of pollutants in time and space [18,19]. Deterministic models were found
to be valid methods; but still, there is room for improvement with regard to their performance.
Dispersion models can show unacceptable uncertainties despite of the integration of complex physical
relationships and vast computational effort that is needed to derive the results (e.g., [20]). Furthermore,
for practical applications often crucial input parameters such as local meteorological data and emission
rates of pollutants to initiate deterministic models do not exist in reasonable quality or are available
only to a limited extent in dimensions of both space and time.

Statistical modelling, as an alternative modelling approach, can be considered an objective
estimation technique in the sense that the method is based on statistical data analysis establishing
empirical relationships between ambient pollutant concentrations and influencing variables like
e.g., meteorological parameters [21,22] or land use patterns [23,24]. The problem is that many common
solutions like regression modelling are not applicable for non-linear problems often found in the
real world (environmental or ecological contexts). The relationship between e.g., meteorology and
pollutant concentrations, in particular, is complex and potentially multi-scale in nature [25]. The same
holds true for the conjunction between sound and pollution levels [13]. Beyond, particle concentrations
are more prone to changes introduced by micrometeorology; whereas the influence of meteorology on
sound propagation is less strong [7,13]. These settings make the complex nature of the problem highly
suitable for an artificial neural network (ANN) approach [26]. The ability of ANNs to learn underlying
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data generating processes without the requirement of prior knowledge of the nature of relationships
between variables, given sufficient data samples, has led to popular usage for e.g., the prediction
and forecasting in environmental studies, among others [25,27]. ANNs are powerful tools that were
successfully developed and tested also for prediction within the field of air quality [26]. ANNs were
applied and refined over time for e.g., the prediction of hourly concentrations of NOx and NO2 in
urban air [28], daily average PM10 concentrations one day in advance [29], hourly concentrations of
CO, NO2, PM10 and O3 using traffic counts as a major input parameter [30] and ambient air levels of
arsenic, nickel, cadmium and lead [22].

In this study, an artificial neural network approach is presented using available meteorological
data and inexpensive sound measures as input variables as a cost-effective integrative option to
predict aerosol concentrations in urban areas on a basis of 10-min averages where permanent sensor
operation is not possible or feasible. The term “prediction” is used hereinafter as a synonym for
“now-casting” instead of forecasting establishing the relationship between observed independent
variables (e.g., meteorological or acoustical variables) and an observed dependent variable (particle
concentrations). Particular concern is put on the selection of input variables, i.e., on the sound data
processing in order to determine the sound metric with the maximum predictive information to
represent the motor traffic-induced particle emission input of the developed ANN models. The models
were developed, validated and tested in a case study environment of a street canyon in direct vicinity
to a road arterial (“Aachen-Karlsgraben” test case). In a second step, the validated ANN models were
applied and tested by the use of a data set collected within a second research site representing an open
green area (“Münster-Aasee” test case). Here the approach was to test for the first time the ability of
the ANN approach to gather spatial information on particle concentrations apart from direct vicinity
to traffic lanes.

2. Materials and Methods

2.1. Research Sites

2.1.1. Aachen-Karlsgraben

The development and the validation of the proposed ANN model approach took place with
a dataset that was collected in a typical street canyon, at the most inner circular road named
“Karlsgraben” that surrounds the historic district in the West of the city of Aachen, Germany
(see Figure 1). Buildings that enclose the street canyon are containing 4–5 floors and major parts
of the buildings are of residential use. Only very occasional business is characterizing the research
site containing an electronic hardware store as well as two restaurants. The two restaurants feature
enclosed dining areas with the kitchens lying backwards of the houses so that in consequence exhaust
air containing particles due to cooking, etc. are emitted to the backyard and not into the street canyon
under investigation. Both are located on the other side of the road, 30 m beeline from the installed
measurement equipment. The building-height(h)-to-street-width(w) aspect ratio of the street canyon
h/w is ~1. The “Karlsgraben” road is a loop arterial oriented to North-South direction in the area under
study with two traffic lanes (2-way) and an average traffic volume of approximately 501 vehicles per
hour daytime, composed of 93% passenger cars, 2% busses (diesel), 4% delivery vehicles and 1% mostly
diesel-powered heavy duty vehicles (manually counted for seven randomly picked hours at different
times of day during the period of investigation). Besides the larger traffic share of busses at the study
site, the composition of traffic there is similar to the average traffic composition in the state North Rhine
Westphalia (NRW). According to the German Federal Office for Motor Traffic (Kraftfahrtbundesamt),
the overall vehicle fleet composition in 2012 in the state NRW, where the city of Aachen belongs to,
was 94% passenger cars (about 30% diesel), 4% delivery vehicles, 2% heavy duty vehicles, and 0.1%
busses [31].
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Figure 1. The location of the two areas under study in Germany (right illustration) with close-ups of the
city centers of Münster (upper left illustration) and Aachen (lower left illustration) including depictions
of the research sites (crosshair cursors), government air quality monitoring stations (triangles) and
weather stations (stars).

The stretch of road under study covers a range of 200 m and is located between two intersections
that are controlled with traffic lights. The “Karlsgraben” road features a speed limit of 50 km·h−1;
however, because most of the motor traffic is between accelerating and slowing down due to the traffic
lights up front and at the end of the stretch of road under study, the average speed of motor traffic was
estimated to be ~30 km·h−1 (mostly fluent) in front of the data collecting sensors. Field data collection
for the “Aachen-Karlsgraben” campaign took place halfway between two traffic lights eastward next
to the traffic lane (1 m off-street) curbside of “Karlsgraben” road (see Figure 2).
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Figure 2. Scheme of the “Aachen-Karlsgraben” research site (right illustration) including depictions of
the measurement location (crosshair cursor) and locations of two restaurants (marked with “R”) as
well as images of both the street canyon of “Karlsgraben” road (upper left image) and the installed
on-location measurement equipment (lower left image).

2.1.2. Münster-Aasee

An open space in the city of Münster, NRW, Germany was used as a test case for the development
of the ANN models to examine the performance beyond the bounds of an isolated street canyon.
The area under study in Münster is characterized by an inner-city park area with a dimension of
250 m by 350 m. The area under study is featuring “complex terrain”. In this study, “complex terrain”
is referred to the complex urban geometry that is characterized by numerous obstacles like houses
and vegetation elements with varying height as well as varying ground levels. The site is remote
from industrial areas and contains two lakes. The green area is surrounded by isolated freestanding
buildings. Four roads are cutting though the park area in Münster where measurements of sound
and particle concentrations were taken. One major traffic arterial, “Weselerstrasse”, is oriented from
North-East to South-West and contains four traffic lanes (2-way) and an average traffic volume of
2175 vehicles per hour daytime. Field data collection for the “Münster-Aasee” campaign took place
at three different locations. One measurement location was in vicinity to the main traffic arterial
“Weselerstrasse” (westward, 10 m off-street), where one-third of the data set was collected. Two further
locations where data collection took place were located 100 m beeline from “Weselerstrasse” inside
the green area eastwards and westwards, respectively. At both measurement locations inside the
green area one-third of the complete data set was collected each. Further details of information on
the topography of the research site “Münster-Aasee” and the respective collection of data can also be
found in [20].
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2.2. Artificial Neural Network Approach

Artificial neural network models are universal approximators with the ability to generalize
through learning non-linear relationships between provided variables of input(s) and output(s) [32].
The objective of all ANN prediction models is to find an unknown functional relationship f (X, W)

which links the input vectors in X to the output vectors in Y [25]. All ANN models are basing on the
following form described with the equation (Equation (1)) given by [33]:

Y = f (X, W) + ε (1)

where W is the vector of model parameters (connection weights) and ε represents the vector of
model errors. Thus, in order to develop the ANN model, the vector of model inputs (X), the form
of the functional relationship ( f (X, W)), which is governed by the network architecture and the
model structure (e.g., the number of hidden layers, number of neurons and type of transfer function)
and the vector of model parameters (W), which includes the connection and bias weights, have to
be defined [33]. The development of the ANN models for the different test cases in this study
followed the guidelines and recommendations on ANN model development published in the reviews
from [25,27,33] where applicable. Developing of the ANN model in this study was realized using
“neuralnet 1.33” with the R software package, version 3.3.1 [34].

2.2.1. Model Architecture—Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) was selected as the basis of the ANN models in this study to
predict mass concentrations of particles with an aerodynamic diameter (DAE) between 0.25 μm and
1 μm (PM(0.25–1)), between 0.25 μm and 2.5 μm (PM(0.25–2.5)), between 0.25 μm and 10 μm (PM(0.25–10))
as well as particle number concentrations with a DAE between 0.25 μm and 2.5 μm (PNC(0.25–2.5)).
The MLP is the most commonly used ANN model architecture [33,35] and has been found to perform
well for applications like the prediction of air pollutant concentrations [26,30]. MLPs typically contain
three types of layers of neurons: the input layer, the hidden layer(s), and the output layer [33].
As feed-forward networks, MLPs propagate information only in one direction, i.e., from the input layer
to the output layer. In this study, an MLP containing three single layers (one input layer, one hidden
layer, one output layer) was used for all ANN models developed (see Figure 3). The number of input
neurons (ILn) is determined by the selected number of input variables. The output layer (OL) in each
ANN model is restricted to a single output neuron, i.e., the variable that will be predicted (in this
study either PM(0.25–1), PM(0.25–2.5), PM(0.25–10) or PNC(0.25–2.5)). The number of neurons in the hidden
layer (HLn) has to be determined in the model structure selection process. The neurons of the MLP
are inter-connected by weights and output signals which are a function of the sum of the inputs to
the neuron modified by a transfer function [25]. Both linear and non-linear transfer functions can
be used at hidden and output layers [27]. Various types of functions are possible. However, ANN
models where inputs are summed and processed by a non-linear function have the ability to represent
any smooth measurable function between the input and output vectors, and are therefore highly
suitable to capture complexity and non-linear relationships inherent in the systems being modeled [33].
The suitable set of weights is found through training (finding the weight with the smallest error) of the
ANN model with a subset of the sample that represents the input and output vectors [36]. Different
training algorithms can be applied to minimize the error function.
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Figure 3. Architecture of the proposed Multi-Layer Perceptron (MLP) to predict PM(0.25–10)

concentrations including one hidden layer.

2.2.2. Input Variable Selection

Input variable selection is one of the most important steps in ANN model development [33].
An appropriate set of ANN model inputs “is considered to be the smallest set of input variables
required to adequately describe the observed behavior of the system” [37]. Hence, the input selection
process was divided in two different actions to determine an appropriate set of inputs. In a first step,
input significance is justified using an ad hoc approach where potential input variables (i.e., candidates)
were determined basing on a priori knowledge considering the nature of the problem and available
data. When it comes to the prediction of local aerosol concentrations as part of the urban roughness
layer two main aspects need to be considered: sources of particles and characteristics of particle
dispersion [30]. Motor traffic emissions regarding both the amount of combustion processes and
blown up dust as well as tire and break abrasions are identified to be the major source of particles
near urban arterials [4,6,38]. Vehicular emissions are related to the volume of traffic, vehicle type
and speed [30], which, in turn, are assumed to be attributable to traffic sound. A linear and well
established correlation between traffic counts and sound levels could be proved [13,39]. Therefore,
time integrals of equivalent sound pressure levels were considered as input variable candidates
representing the source of particles inside the ANN model. Overall, 24 candidates of different sound
metrics were considered (for details, see below Section 2.3.2). Local concentrations of particles are
furthermore influenced by the source of background particle transport [7]. In consequence, a second
input variable serving as another representative of particle sources inside urban areas was defined
using 24-h moving averages of the PM10 background concentration (PM10 (bc)) obtained from suburban
government stations. Considering the variation of pollutant transportation, i.e., the particle dispersion,
it is assumed that meteorological conditions are the major factors influencing these dynamics [13].
Variables of atmospheric air temperature (Ta) and pressure (P), relative humidity (RH), wind speed
(WS), wind direction (WD) and global radiation (Ig) are directly or indirectly associated with variations
of particle transportation [30,40,41] and were consequently considered as meteorological input variable
candidates in the development of the ANN models. As an addition, all of the considered meteorological
variable candidates are routine metrics that are available at almost every meteorological station and
available at low additional costs. Precipitation is also proved to have a major impact on both particle
concentrations due to wash-out effects [42] and sound emissions of motor traffic mainly due to shifted
tire sound characteristics [43]. However, precipitation was deliberately left out of consideration in this
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study to keep the nature of the problem for the development process of the ANN model as simple
as possible.

Input variables need to be determined based on both the significance and independence of
inputs [27]. Consequently, an analysis of Partial Mutual Information (PMI) was applied to proof
relevance and independency of the proposed initial candidate set of acoustical and meteorological
variables determined during the ad hoc selection step. The PMI algorithm was selected over other
commonly used methods such as generalized linear models (GLMs), as it is proved to be a superior
approach in particular to examine non-linear dependences [44]. More information on the mathematical
basis of the PMI analysis can be found in [37,45]. The goal was to sample out a set of variables with
maximum predictive power and minimum redundancy since redundant information in the model
input stage can cause various problems; one of the most important being the likelihood of overfitting
as a result of confusion during the training process of the ANN model [33,36]. The final input selection
using PMI was justified using the Akaike Information Criterion (AIC), which is a measure of the
trade-off between ANN model complexity and the information within the candidate set of inputs,
as a function of the number of input candidates. The AIC is the recommended criterion within the use
of PMI for samples where the distribution of data may be unknown and the assumption of Gaussian
distribution may not hold [37]. Variable candidates have been selected in an iterative process up until
a minimum AIC was reached for a given set of variable candidates which represents the optimum
number of inputs to be selected [37]. For reasons of comparison all ANN models have been developed
additionally without using acoustic data input. Calculated AICs for individual input variable selection
steps as well as the input variables defined for the optimum model architecture of each ANN model
are presented below in Section 2.2.4.

2.2.3. Data Splitting

The valid data set, including the selected input (see Section 2.2.2) and output variables,
were divided into training, validation and testing subsets, in order that cross-validation could be
used to avoid overfitting of the MLP and to ensure best possible generalization of the ANN model
on unknown input data. The sample was divided into data subsets with a split-sample-ratio of 70%
training data to 20% validation data to 10% test data. One popular approach to split the sample in
different subsets is to assign data points according to the random principle. While this may be an
adequate method for large sample sizes there is a chance that the data in one of the subsets may be
biased towards extreme or uncommon events [25]. In this study, a method based on stratified sampling
of the Self-Organizing Map (SOM) was used to split the data set into subsamples ensuring that the
statistical properties of the subsets are similar [46]. In principle, a SOM clusters the available data by
delineation of sub-domains within a dataset for which data within the same sub-domain are similar,
but distinct from data in other sub-domains. Stratified random·sampling is applied to allocate data
samples from each SOM cluster to the subsets of training, validation and testing. As a result, it is
made certain that patterns from all identified sub-domains of the multivariate input-output space are
represented in each subset [46]. The training set consists of data vectors used for training the network,
i.e., fitting the weights of the neurons of each layer for the desired output. The subset of validation
data was used to tune the ANN model structure. The test set was used to assess the performance of
the developed ANN model after training on unseen input data. SOM-based stratified data splitting
(SBSS) was performed following the recommendations of [46] regarding the settings of the SOM.
The adjustment of the SOM map units is one of the most influential parameters and depends on the
SOM grid size (SOMgs) which should be determined by the sample size of the data set (sn), where
SOMgs should be equal to ~sn

0.54. The length of the SOM map should be 1.6 times the SOMgs, whereas
the width should be equal to the SOMgs, resulting in a SOM map size used in this study of a ratio of 5.8
by 3.6 within the “Aachen-Karlsgraben” test case and a ratio of 4.3 by 2.7 within the “Münster-Aasee”
test case representing the length and width respectively. Proportional random sampling has been
applied to the sample. SOM parameters that have been used for implementing SBSS are presented in
Table 1.
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Table 1. Self-Organizing Map (SOM) parameters for implementing SOM-based stratified data splitting
(SBSS). “Münster-Aasee” test case settings are given in brackets if distinct from “Aachen-Karlsgraben”
test case settings.

Parameter Ordering Tuning

Initial learning rate 0.9 0.1
Initial neighborhood size 3.6 (2.7) 1

Epochs 2 20

In Figure 4 data histograms for both test cases and all ANN models of the trained SOMs and
data sets of input variables are shown illustrating how input data vectors are clustered by the SOM.
The data histogram visualization shows how many vectors were assigned to each cluster. More detailed
mathematical descriptions regarding SOM-based stratified sampling can be found in [46].

 
Figure 4. Self-Organizing Map (SOM) data histograms of Artificial Neural Network (ANN) models
that include acoustic data input within the “Aachen-Karlsgraben” test case concerning outputs of
PM(0.25–1) (A), PM(0.25–2.5) (B), PM(0.25–10) (C) and PNC(0.25–2.5) (D) and within the “Münster-Aasee”
test case concerning outputs of PM(0.25–1) (E), PM(0.25–2.5) (F), PM(0.25–10) (G) and PNC(0.25–2.5) (H),
respectively. The frequencies of counts of input vectors in each SOM cluster are marked with grey-scale
codes (“Aachen-Karlsgraben: upper legend; “Münster-Aasee”: lower legend).

2.2.4. Model Structure Selection

Together with the ANN model architecture, the model structure defines the functional relationship
f (X, W) between model inputs and outputs (Section 2.1, Equation (1)). Model structure selection
includes the determination of the optimum number of neurons in the hidden layer and how they
process incoming signals by the use of suitable transfer functions [46]. In general, an optimum
ANN model structure minimizes the uncertainty of the network and maximizes model parsimony
considering network size [27]. The model structure can be determined by the use of a stepwise
iterative process which is the most-used systematical application to find out the optimal number of
neurons in the hidden layer [33]. In a first model structure selection step, a constructive algorithm
was applied in the ANN model development process. The iterative procedure started by using the
defined ILn-HLn-OL architecture of the ANN model (Section 2.2.1; Section 2.2.2), combined with
the simplest ANN model structure possible (HLn = 1). The network structure was gradually made
more complex by adding neurons in the hidden layer, one at a time, until there was no significant
improvement in model performance. Since it is recommended that the ratio of the number of data
points used for training to the number of the network weight and biases should be always greater
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than 2.0 [47] the network size was kept reasonable in size according to the sizes of the data samples
(see below Section 2.3). The ANN model structure was tested on the basis of the Root Mean Squared
Error (RMSE) of the network (see below, Section 2.5). The second part of this optimization process is
the determination of the best suitable transfer function. Two different non-linear variants of functions
were considered in the development process of the ANN model, i.e., hyperbolic tangent and the logistic
sigmoidal. The obtained RMSEs for different ANN model structures created during the refinement
process, considering both different number of neurons in the hidden layer and two different transfer
functions, are presented in Figure 5. It turned out that the best performing final ANN model to predict
PM(0.25–10)-concentrations was operated by using a logistic sigmoidal transfer function. The best
performing ANN models to predict concentrations of PM(0.25–1), PM(0.25–2.5) and PNC(0.25–2.5) were
using a hyperbolic tangent transfer function. The optimum HLn to predict concentrations of PM(0.25–1)
was found to be six. The best performing ANN model to predict concentrations of PM(0.25–2.5) contained
four hidden neurons. The optimum HLn of the ANN models to predict concentrations of PM(0.25–10)
and PNC(0.25–2.5) were detected to be five (see Figure 5). The ANN models using only input data of
meteorology and background particle transport developed for comparison passed the same procedure
of model structure selection as described above. A summary of the finalized ANN model architecture
used to predict concentrations of PM(0.25–1), PM(0.25–2.5), PM(0.25–10) and PNC(0.25–2.5), including the
determined number of neurons in the input layer, their respective input variables as well as the HLn

and the best performing transfer functions, is presented in Table 2.

 

Figure 5. Results of the optimization procedure of the Multi-Layer Perceptron (MLP) structure
considering the number of neurons in the hidden layer (HLn) and two different transfer functions
(Logarithmic sigmoidal: grey bars; Hyperbolic tangent: hatched black bars) using a constructive
algorithm for the Artificial Neural Network (ANN) models that include acoustic data input to predict
concentrations of PM(0.25–1) (A), PM(0.25–2.5) (B), PM(0.25–10) (C) and PNC(0.25–2.5) (D).
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Table 2. Summary of the finalized Artificial Neural Network (ANN) model architecture including
number of neurons in the input layer (ILn) input variable candidates (IVC) and respective Akaike
Information Criterion (AIC) values given in square brackets, number of neurons in the hidden layer
(HLn), determined transfer functions and the dedicated output layer (OL). Numbers in parentheses
indicate settings used for the alternative models using input variables excluding acoustic data.
Determined input variables for the final ANN models are indicated in bold letters.

ILn 5 (4) 6 (5) 6 (5) 7 (6)

IVC [AIC]

PM10 (bc) PM10 (bc) PM10 (bc) PM10 (bc)
Ta [−428] RH [−242] RH [−171] RH [−241]
P [−843] Ta [−274] Ta [−235] Ta [−283]
Ig [−868] Ig [−358] WS [−251] Ig [−365]
WS [−866] P [−366] P [−270 ] WS [−423]
WD [−832] WS [−346] WD [−246] P [−430]
RH [−810] WD[−388] Ig [−210] WD [−421]

SPLeq [−6] SPLeq [−8] SPLeq [−10] SPLeq [−9]
SPLeq15Hz(A) [−1] SPLeq15Hz [−2] SPLeq15Hz [−1] SPLeq15Hz(A) [−4]

SPLeq16kHz [23] SPLeq34Hz [10] SPLeq15Hz(A) [2] SPLeq15Hz(A) [5]
SPLeq63Hz(A) [51] SPLeq34Hz(A) [14] SPLeq63Hz(A) [27] SPLeq34Hz [8]

SPLeq15Hz [55] SPLeq15Hz(A) [18] SPLeq125Hz(A) [55] SPLeq34Hz(A) [10]
SPLeq34Hz(A) [70] SPLeq16kHz [45] SPLeq34Hz [70] SPLeq250Hz(A) [14]

SPLeq16kHz(A) [78] SPLeq250Hz(A) [61] SPLeq16kHz(A) [127] SPLeq250Hz [19]
SPLeq125Hz(A) [112] SPLeq250Hz [66] SPLeq8kHz [154] SPLeq16kHz(A) [57]

SPLeq8kHz [137] SPLeq16kHz(A) [83] SPLeq250Hz(A) [168] SPLeq16kHz [73]
SPLeq250Hz(A) [154] SPLeq63Hz(A) [117] SPLeq34Hz(A) [176] SPLeq63Hz(A) [105]

SPLeq63Hz [165] SPLeq125Hz(A) [147] SPLeq16kHz [189] SPLeq125Hz(A) [133]
SPLeq34Hz [174] SPLeq8kHz [171] SPLeq63Hz [201] SPLeq63Hz [146]
SPLeq125Hz [189] SPLeq63Hz [183] SPLeq8kHz(A) [207] SPLeq125Hz [161]
SPLeq250Hz [194] SPLeq125Hz [199] SPLeq125Hz [225] SPLeq8kHz [184]

SPLeq8kHz(A) [200] SPLeq8kHz(A) [205] SPLeq250Hz [229] SPLeq8kHz(A) [189]
SPLeq500Hz(A) [207] SPLeq500Hz [212] SPLeq4kHz(A) [241] SPLeq500Hz [195]

SPLeq4kHz [219] SPLeq4kHz(A) [224] SPLeq500Hz [247] SPLeq4kHz [208]
SPLeq1kHz [221] SPLeq1kHz [225] SPLeq500Hz(A) [250] SPLeq1kHz [210]

SPLeq4kHz(A) [226] SPLeq4kHz [230] SPLeq4kHz [253] SPLeq4kHz(A) [215]
SPLeq500Hz [230] SPLeq500Hz(A) [233] SPLeq2kHz(A) [257] SPLeq500Hz(A) [218]

SPLeq(A) [240] SPLeq(A) [243] SPLeq(A) [260] SPLeq(A) [233]

HLn 6 (7) 4 (3) 5 (4) 5 (4)

Transfer
function

Hyp-Tan Hyp-Tan Log-Sig Hyp-Tan
(Hyp-Tan) (Hyp-Tan) (Log-Sig) (Hyp-Tan)

OL PM(0.25–1) PM(0.25–2.5) PM(0.25–10) PNC(0.25–2.5)

2.2.5. Model Calibration—Backpropagation Algorithm

The process of finding a set of connection weights between neurons that results in an ANN
model with a given functional form to best represent the desired input/output relationship is called
“training” [33]. The back-propagation (BP) algorithm, a first-order local search procedure, is the most
used algorithm for training an MLP [25]. The learning process basically consists of two iterative
steps: forward computing of data and backward propagation of error signals [30]. Developed
by [48], BP uses a gradient descent algorithm in which the network weights are moved along the
negative of the gradient of the performance function [36].Usually, the BP algorithm is implemented
following the steps hereinafter: (I) Initialization of network weights starting with small random values;
(II) Propagation of an input vector from the training subset of data through the network to obtain
an output; (III) Calculation of an error signal; (IV) Back-propagation of the error signal through the
network; (V) Weight-adjustment at each neuron to minimize the overall error; (VI) Repetition of steps
II–V with the next input vector, until the overall error is satisfactorily small [25]. Training was stopped
when the performance of the MLP on the test sample reached a maximum, which, in turn, was assumed
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to represent the global minimum of the error surface. Details of the mathematical formulation of the
BP algorithm can be found in [49].

2.3. Field Data—Collection and Pre-Processing

All simultaneously conducted measurements in Aachen, including the collection of aerosol data,
acoustics and meteorology were taken at different days of week and different times of day for the reason
that the dataset represents a best possible spectrum of both noise levels and particle concentration
levels representative for the area under study during daytime at business days. Data collection at
the “Aachen-Karlsgraben” research site took place at 27 October 2016, 28 October 2016, 3 November
2016, 4 November 2016 and 30 November 2016 at different times of day between 04:30 a.m. at the
earliest and 08:00 p.m. at the latest resulting in a sample of overall 293 10-min averages of all variables.
Outliers (e.g., due to sounds resulting from ambulance or police sirens) as well as the first and last
ten minutes of data recordings were manually deducted from the raw data set. The pre-processed
sample used for the development of the ANN models consists of 275 10-min averages of all variables.
Meteorological prerequisite conditions for the Aachen campaign were chosen to avoid rainy periods
and atmospheric conditions concerning both well-marked dilution of pollutants as well as conditions
where resuspension of particles due to gusting wind is likely, i.e., data collection took place during
low wind speed conditions and an upstream wind vector perpendicular to the street canyon under
study. The measurements in Münster took place at three different weekdays in February as well
as three different weekdays in July 2015 between 10:00 a.m. and 05:00 p.m. local time resulting in
a pre-processed sample of overall 97 10-min averages of all variables to evaluate the performance of
the developed ANN models under different initial conditions beyond an isolated street canyon.

2.3.1. Particles

Local aerosol measurements were carried out using an optical particle counter (OPC), Model EDM
107G (Grimm GmbH, Ainring, Germany) to determine different metrics regarding the concentration
of airborne particles. The OPC bases on the approach of single particle counting by the use of light
scattering technique. The number of contained particles of the air sample is derived from the frequency
of scattered light pulse signals. Particle sizes are obtained from the amplitude of the backscatter signal.
The OPC classifies detected particles into a size distribution in a range between 0.25 and 32 μm DAE
containing 31 different size channels. Internally, the particle number size distribution is converted into
mass concentrations for an indicated average time interval. The sensor operates at a volumetric flow
rate of 1.2 L min−1 and a time resolution of 6 s [50]. The OPC used had been factory calibrated on
a regular basis (VDE standard 0701-0702) within the calibration validity period and was calibrated last
on 13 January 2015. In all cases particles were sampled at the mean respiratory height of 1.6 m agl and
stored as 10-min arithmetic means of PM(0.25–1), PM(0.25–2.5)), PM(0.25–10) and PNC(0.25–2.5). Data of PM10

(bc) were obtained as 24-h moving averages from government air quality sites Aachen-Burtscheid
(AABU) and Münster-Geist (MSGE), operated by the North Rhine-Westphalian State Office for Nature,
Environment, and Consumer Protection (LANUV) assuming that both government stations represent
the urban background particle concentration which can be expected at the research sites even though
both government stations are around 2.5 km beeline from respective areas under investigation.

2.3.2. Acoustics

Time series of physical sound pressure values were captured with a mobile recorder (Type H6,
Zoom Corporation, Tokyo, Japan) at 44.1 kHz sampling rate with 24 Bit resolution using an
omnidirectional microphone (KE-4 electret-microphone, Sennheiser Electronic GmbH & Co. KG,
Wedemark, Germany). The calibration process has been performed in a post-processing step by
comparing a Root Mean Square (RMS) 1 kHz pure-tone signal at 94 dB re 20 μPa from a portable
sound source (Type 4231 Sound Calibrator, Brüel & Kjær Sound & Vibration Measurement A/S,
Nærum, Denmark), which has been captured for each measurement time-series individually (once



Environments 2017, 4, 26 13 of 25

per day). The measurements were carried out with the microphone installed on a tripod 1.2 m agl
at the same location where data of particle concentrations were taken (Section 2.3.1). From·sound
pressure time series, 10-min averages of equivalent sound pressure levels as integrals over the entire
captured bandwidth of frequencies between 0 Hz and 22 kHz (SPLeq) were determined. Furthermore,
10-min averages of sound pressure levels representing single octave bands of 15 Hz, 34 Hz, 63 Hz,
125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, 8 kHz and 16 kHz were calculated. Similarly, equivalent
A-weighted sound pressure levels as described by ISO standard 226:2003 were computed as 10-min
averages [16] again either as integrals over the captured bandwidth of frequencies between 0 Hz and
22 kHz (SPLeq(A)) or as metrics of single octave bands as mentioned before. Descriptive statistics
concerning the observed aerosol concentrations and acoustic data of both campaigns are summarized
in Table 3. Mean values of observed sound levels reflect average values that are published by the state
government of NRW for the areas under study. Furthermore, it is stated that at both research sites of
the “Aachen-Karlsgraben” and the “Münster-Aasee” campaigns motor traffic is the major source of
sound [51].

Table 3. Descriptive statistics concerning arithmetic mean values (AM) and standard deviations (SD)
of observed particle concentrations as well as mean values (Leq) and 10/90% percentiles (L10/L90) of
acoustic data of the “Aachen-Karlsgraben” and “Münster-Aasee” test cases.

Variable
PM(0.25–1) PM(0.25–2.5) PM(0.25–10) PNC(0.25–2.5) SPL

(μg·m−3) (#·dm−3) (dB)

“Aachen-Karlsgraben” AM: 15.9
SD: 4.2

AM: 19.4
SD: 5.3

AM: 30.4
SD: 8.9

AM: 545
SD: 217

Leq: 74.1
L10: 79.7
L90: 63.4

“Münster-Aasee” AM: 16.3
SD: 10.2

AM: 18.4
SD: 9.9

AM: 28.7
SD: 9.1

AM: 545
SD: 460

Leq: 69.5
L10: 75.2
L90: 62.0

2.3.3. Meteorology

Meteorological input variables in this study consist of data from nearby weather stations,
whose values are monitored in real time by the RWTH Aachen University (6◦03′40′′ E, 50◦46′44′′ N;
1500 m beeline from the area under study of “Aachen-Karlsgraben”) and the University of Münster
(7◦35′45′′ E, 51◦58′9′′ N; 2100 m beeline from the area under study of “Münster-Aasee”), respectively.
Meteorological data of local authorities have been chosen in order that they are available at no/low
additional costs. Since many cities operate meteorological monitoring stations this approach ensures
a low-cost possibility for future applications of the model. In Aachen the wind sensor to determine
WD and WS (Wind Monitor 05103, R.M. Young Company, Traverse City, MI, USA) is installed on top
of a roof (6.5 m above the rooftop) in 29 m agl. The shielded temperature and humidity sensor (CS215,
Campbell Scientific, Inc., Logan, UT, USA) is mounted on a mast in 2 m agl. [52]. During the time
of data collection during the campaign in Aachen 2016 the wind was coming from·south-westerly
directions (185◦–270◦), with an average wind speed of 3.2 m·s−1 (in 29 m agl). At the weather station in
Münster sensors to determine WD and WS (WindSonic Anemometer RS-232, Gill Instruments Limited,
Lymington, Hampshire, UK) as well as the shielded temperature and humidity sensor (41382VC,
R.M. Young Company, Traverse City, MI, USA) are mounted on a permanent mast on top of a roof
(10 m above the rooftop) in 34 m agl. During the Münster campaign in February 2015 the wind was
predominantly coming from easterly directions, with an average wind speed of 4 m·s−1. Varying wind
directions but wind mostly coming from northeast and wind speeds between 2 m·s−1 and 5 m·s−1

being most common were observed during the campaign in July 2015. Conditions were dry with no
precipitation during the periods of data collection in Münster.
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2.4. Field Data—Post-Processing

Before computing, data of both input and output variables were normalized. In this study, data of
all variables used were normalized into the range [0, 1] with:

Xnorm =
(Xi − Xmin)

(Xmax − Xmin)
(2)

where Xnorm is the normalized value, Xi is the original value, and Xmin and Xmax are the minimum
and maximum values out of the sample of Xi. This was due to eliminate the influence of different
dimensions of data and to avoid overflows of the ANN model during calculations as a result of
very large or small weights towards a maximization of model parsimony considering computational
effort [28]. After the computation, output values were transformed back to real prediction data.

2.5. Performance Measures

In order to evaluate the performance of the ANN models, several statistical performance indicators
were used, namely the RMSE, the Mean Bias (MB), the Centralized Mean Squared Error (CRMSE) the
Model Efficiency score (MEF) and the Fractional Bias (FB). The RMSE (Equation (3)) was mainly used
in the development process of the ANN model and represents residual errors, which gives a global
perspective of the differences between the observed and predicted values [53]:

RMSE =
1
n

√
n

∑
i=1

(
CPi − COi

)2 (3)

where CO and Cp are the observed and predicted concentrations, respectively. A graphical approach
(target diagram) was used as an additional measure providing an exhaustive indication of model
response [54]. The methodology of the target diagram bases on the main principle of [55] and was
modified by the Joint Research Centre (JRC) of the European Commission within the framework of
the Forum for Air Quality Modelling in Europe (FAIRMODE) to develop a harmonized methodology
to evaluate model results based on a consensus set of statistical indicators. The methodology of the
target diagram has been introduced by [56] within the DELTA tool. The target diagram reports the MB
and CRMSE, both normalized by the standard deviation of the observations (σO), on the abscissa and
ordinate, respectively [54]. The MB is given by Equation (4):

MB =
1
n

n

∑
i=1

(
CPi − COi

)
= CP − CO (4)

The CRMSE is described by Equation (5):

CRMSE =
1
n

√
n

∑
i=1

[(
CPi − CP

)− (
COi − CO

)]2 (5)

The target diagram includes a boundary circle of unit radius that defines the acceptable limit
value of the MEF [22]:

MEF = 1 −
(

RMSE
σO

)2
(6)

For an acceptable model, the target value of model results must be plotted inside the boundary
circle (radius = 1) of the target diagram, so that the calculated MEF becomes >0 [22]. Moreover, when the
requirements of an acceptable model are fulfilled considering MEF, it is automatically guaranteed that
predictions and observations are positively correlated. Generally, the closer the reached performance
score is to the origin of the target diagram, the better is the model performance [54]. The FB was used
as an additional basic measure of model performance. The FB represents a fundamental indicator
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of discrepancy between the samples of prediction and observation values, respectively [57]. The FB
is dimensionless and normalized. Values of the FB range between −2 and +2 for extreme over- or
under-prediction of the model, where a value of zero represents a perfect model. The formula is given
by Hanna, 1988 (Equation (7)):

FB =
2
(
CO − Cp

)
(
CO + Cp

) (7)

3. Results

Four ANN models to predict concentrations of PM(0.25–1), PM(0.25–2.5), PM(0.25–10) and PNC(0.25–2.5)
using input data of SPLeq, PM10 (bc) as well as meteorological conditions were developed and validated
with a data set collected during the campaign “Aachen-Karlsgraben”. Similarly four ANN models
were developed excluding input data of acoustic sound for comparison reasons. After individual
training of the networks by the use of training data sets taken from the measurement campaigns
“Aachen-Karlsgraben” and “Münster-Aasee”, respectively, their predictive performance using unseen
test input data concerning 10-min averages were evaluated. For that purpose, ANN model results
were compared to observations. The ANN model predictions of the “Aachen-Karlsgraben” test case
reveal mixed results in this regard. In Figure 6 10-min averages of predicted PM(0.25–1), PM(0.25–2.5),
PM(0.25–10) and PNC(0.25–2.5) concentrations over respective observations are presented. It can be seen
that all predictions are positively related to observations (slope: 0.02–0.24). However, predictions
of PM(0.25–1) and PM(0.25–2.5) did not coincide to observations (R2: 0.05–0.13). The model to predict
concentrations of PM(0.25–2.5) seems to be almost completely insensitive to model inputs with very little
variation within the prediction sample. The relation of model predictions to observations regarding
PM(0.25–10) and PNC(0.25–2.5) within the “Aachen-Karlsgraben” test case is moderate (R2: 0.28–0.48).
In comparison, the ANN models using inputs without acoustic data failed to predict concentrations of
PM(0.25–1) (R2: 0.16, slope: 0.01) and PM(0.25–10) (R2: 0.14, slope: 0.02). In these cases the models were
completely insensitive to inputs. Observations concerning the metric of PNC(0.25–2.5) were reproduced
similarly to results of the ANN model that incorporated the acoustic data input. Depiction B of Figure 6
unveils a better performance for PM(0.25–2.5) of the ANN model that excluded acoustic data input
with a good reproduction of observations (R2: 0.35, slope: 0.81) albeit noticeable scatter within the
prediction sample. Figure 7 shows 10-min averages of predicted PM(0.25–1), PM(0.25–2.5), PM(0.25–10)
and PNC(0.25–2.5) concentrations compared to observations calculated with the ANN models using
unseen input data of the “Münster-Aasee” test data sets. It becomes obvious that both ANN models
with and without the use of acoustic input data were again not able to reproduce measurement data
of PM(0.25–1) (slope: 0.03–0.11). The models were completely insensitive to the inputs indicated by
constant predictions values over the entire range of observations with almost no variation in the
prediction sample. Concerning PM(0.25–10) within the “Münster-Aasee” test case it turned out that
the ANN model that used additional acoustic data inputs calculated decent predictions (R2: 0.78,
slope: 0.43) whereas the ANN model that excluded acoustic data input was again insensitive to input
variables (R2: 0.69, slope: 0.03). Results of predicted concentrations of PM(0.25–2.5) and PNC(0.25–2.5) of
both types of ANN models show a very good agreement to observations over the entire concentration
range (R2: 0.65–0.9; slope: 0.62–1.04). The addition of acoustic data to the set of input variables turned
out to improve the accuracy of model predictions calculating concentrations of both PM(0.25–10) and
PNC(0.25–2.5) within the “Münster-Aasee” test cases.
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Figure 6. Scatter plot diagram showing Artificial Neural Network (ANN) model predictions of
(A) PM(0.25–1), (B) PM(0.25–2.5), (C) PM(0.25–10) and (D) PNC(0.25–2.5) over respective observations for
the “Aachen-Karlsgraben” test case. The dashed line illustrates a 1:1 reproduction of ANN models
predictions over observations. The thin solid lines indicate linear regression results between the
samples of ANN model predictions and observations. Black marks depict results of ANN models
using additional acoustic data inputs whereas grey marks indicate results of ANN models using inputs
without acoustic data.
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Figure 7. Scatter plot diagram showing Artificial Neural Network (ANN) model predictions of
(A) PM(0.25–1), (B) PM(0.25–2.5), (C) PM(0.25–10) and (D) PNC(0.25–2.5) over respective observations for the
“Münster-Aasee” test case. The dashed line illustrates a 1:1 reproduction of ANN models predictions
over observations. The thin solid lines indicate linear regression results between the samples of ANN
model predictions and observations. Black marks depict results of ANN models using additional
acoustic data inputs whereas grey marks indicate results of ANN models using inputs without
acoustic data.
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Performance measures as well as statistics concerning the test samples of measurement data
are summarized in Table 4. From the perspective of mean value reproduction that is indicated by
the FB observations were reproduced well with ANN models using acoustic data input that showed
also good response to the inputs (cf. Figures 6 and 7) with predictions close to CO (FB: −0.02–0.13).
Results of ANN models using acoustic data that proved to be insensitive to the inputs unveiled
also increased FBs with either tendencies of over prediction in the case of PM(0.25–1) and PM(0.25–2.5)
within the “Aachen-Karlsgraben” test environment (FB: −0.17–−0.22) or under prediction in the case
of PM(0.25–1) within the “Münster-Aasee” test environment (FB: 0.30). The comparison of standard
deviations of observations (SD) and predictions (SD’), respectively, add to the picture that ANN models
used to predict concentrations of PM(0.25–1) were completely insensitive to input parameters.

Table 4. Artificial Neural Network (ANN) model performance measures and test set statistics including
coefficients of determination between the observation and prediction sample (R2) as well as the
respective slopes of the regression lines, mean particle concentration values, standard deviations of
the observations (SD) and standard deviations of predictions (SD’) of the “Aachen-Karlsgraben” and
“Münster-Aasee” test cases, respectively. Values in brackets indicate results derived from alternative
ANN models using input variables excluding acoustic data.

OL
“Aachen-Karlsgraben” “Münster-Aasee”

PM(0.25–1) PM(0.25–2.5) PM(0.25–10) PNC(0.25–2.5) PM(0.25–1) PM(0.25–2.5) PM(0.25–10) PNC(0.25–2.5)

RMSE
5.97

(4.27)
[μg·m−3]

6.88
(5.09)

[μg·m−3]

7.78
(9.35)

[μg·m−3]

167
(208)

[#·dm−3]

12.29
(10.11)

[μg·m−3]

5.71
(5.66)

[μg·m−3]

6.50
(8.92)

[μg·m−3]

205
(259)

[#·dm−3]

FB −0.17
(0.14)

−0.22
(−0.09)

−0.02
(−0.04)

−0.02
(−0.01)

0.30
(0.16)

−0.04
(0.00)

0.06
(0.06)

0.13
(0.37)

MEF −1.15
(−0.27)

−0.89
(−0.41)

0.31
(0.05)

0.25
(0.26)

−0.01
(0.11)

0.82
(0.67)

0.64
(0.13)

0.85
(0.78)

R2 0.05
(0.16)

0.13
(0.35)

0.48
(0.14)

0.28
(0.26)

0.70
(0.11)

0.85
(0.65)

0.78
(0.69)

0.89
(0.90)

slope 0.24
(0.01)

0.02
(0.81)

0.18
(0.02)

0.11
(0.17)

0.03
(0.11)

1.02
(0.62)

0.43
(0.03)

1.04
(0.93)

SD’
4.34

(0.02)
[μg·m−3]

0.32
(5.93)

[μg·m−3]

2.43
(0.62)

[μg·m−3]

41
(82)

[#·dm−3]

0.54
(1.06)

[μg·m−3]

14.84
(7.66)

[μg·m−3]

5.21
(0.36)

[μg·m−3]

591
(539)

[#·dm−3]

SD
4.07

(3.78)
[μg·m−3]

5.01
(4.29)

[μg·m−3]

9.39
(9.62)

[μg·m−3]

194
(241)

[#·dm−3]

12.24
(10.78)

[μg·m−3]

13.39
(9.91)

[μg·m−3]

10.79
(9.57)

[μg·m−3]

538
(554)

[#·dm−3]

CO

16.3
(15.6)

[μg·m−3]

20.0
(19.2)

[μg·m−3]

30.0
(31.8)

[μg·m−3]

518
(542)

[#·dm−3]

18.6
(15.5)

[μg·m−3]

21.7
(17.3)

[μg·m−3]

27.3
(27.7)

[μg·m−3]

652
(662)

[#·dm−3]

OL: Output Layer; RMSE: Root Mean Squared Error; FB: Fractional Bias; MEF: Model Efficiency score; R2: coefficient
of determination; slope: slope of the regression line between observation and prediction samples; SD’: Standard
Deviations of predictions; SD: Standard Deviation of observations; CO: mean concentration of observations

Figure 8 represents the testing results of all ANN models developed for the prediction of PM(0.25–1),
PM(0.25–2.5), PM(0.25–10) and PNC(0.25–2.5) concentrations using the graphical approach of the target
diagram as described in Section 2.5. Despite the fact that the CRMSE becomes always positive by its
own mathematical definition (cf. Equation (5)), a minus-sign has been allocated to distinguish those
situations when the standard deviation of predictions was lower than σO [54]. Most target values
calculated from ANN model results are located in the left side of the diagram, i.e., the normalized
CRMSE values are negative, indicating that those ANN model predictions vary within a narrower range
than observations. The predictions for PM(0.25–1.0) and PM(0.25–2.5) from the “Aachen-Karlsgraben” test
case as well as predictions for PM(0.25–1) from the “Münster-Aasee” test case feature negative MEF
values (c.f. Table 4) so that respective target values are consequently plotted outside the boundary
circle of the target diagram. Thus, a positive MEF was reached for predictions of PM(0.25–10) and
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PNC(0.25–2.5) in the “Aachen-Karlsgraben” test case (MEF: 0.31–0.25) as well as for predictions of
PM(0.25–2.5), PM(0.25–10) and PNC(0.25–2.5) in the “Münster-Aasee” test case (MEF: 0.64–0.85) resulting in
depictions of target values inside the circumference of the target diagram. Considering MEF ANN
models using the complete input incorporating SPLeq almost always outperformed ANN models using
input without acoustic data in especially for target results depicted within the boundary circle of the
diagram (see Figure 8). For test cases where model results feature positive MEF scores ANN models
using SPLeq were almost always more accurate indicated by lower RMSEs in comparison to ANN
models using input without acoustic data except for the case of PM(0.25–2.5) predictions (see Table 4).

 

Figure 8. Target diagram of Artificial Neural Network (ANN) model results for PM(0.25–1) (rectangles),
PM(0.25–2.5) (circles), PM(0.25–10) (triangles) and PNC(0.25–2.5) (rhombuses). Purple markers depict
“Aachen-Karlsgraben” test case results. Green markers depict “Münster-Aasee” test case results. Filled
and hollow markers differentiate between model results using acoustic input data and calculations
without acoustic data input.

4. Discussion

4.1. Interpretation of ANN Model Results

The proposed ANN models using inputs of background particle transport, meteorology and
acoustics to predict atmospheric concentrations of PM(0.25–1), PM(0.25–2.5), PM(0.25–10) and PNC(0.25–2.5)
show mixed results regarding their performance within two test cases, i.e., by the use of a dataset
that was collected in an isolated street canyon (“Aachen-Karlsgraben”) as well as with data from
a park area containing complex terrain (“Münster-Aasee”). Best performing ANN models within
the “Aachen-Karlsgraben” test case were found to be for predicting concentrations of PM(0.25–10) and
PNC(0.25–2.5) indicated by positive MEF values (MEF: 0.25–0.31), coefficients of determinations of 0.28
and 0.48, respectively, and nearly perfect FBs of −0.02. However, the variation within the prediction
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sample was considerably lower in comparison to observations. Using data of the “Münster-Aasee”
test case, the ANN model to predict concentrations of PM(0.25–10) turned out to perform fairly
good featuring a MEF of 0.64, a R2 of 0.78 and a FB of 0.01. Models to predict concentrations of
PM(0.25–2.5) and PNC(0.25–2.5) reproduced observations rather accurate over the entire concentration
range considering high MEF scores (MEF: 0.82–0.85) and coefficients of determination close to 1.0
(R2: 0.87–0.89). However, up to now air quality modelers have not yet agreed upon the magnitude
of standards for judging model performance [58]. As advised by [59], a model should be considered
acceptable when most of its predictions are within a factor of two of the observations. The JRC of the
European Commission has formulated an approach towards a more exhaustive indication of model
response taking into account a consensus set of statistical measures by the development of the MEF
and the graphical approach of the target value, as described in Section 2.5. In this regard the best
performing ANN models developed in this study, i.e., to predict concentrations of PM(0.25–10) and
PNC(0.25–2.5) within the “Aachen-Karlsgraben” test case and to estimate concentrations of PM(0.25–2.5),
PNC(0.25–2.5) and PM(0.25–10) concentration within the “Münster-Aasee” campaign, yielded acceptable
results meeting the quality objectives concerning MEF. According to [60] it is guaranteed that the ANN
model is a better predictor of the observations than a constant value set to CO when target values are
depicted inside the circumference of the target diagram, i.e., when the MEF is >0. In the context of the
European Framework Air Quality Directive, the proposed methodology, with regard to PM(0.25–10) and
PNC(0.25–2.5) within the case of the street-canyon and PM(0.25–2.5), PNC(0.25–2.5) and PM(0.25–10) within
the Münster park area test case, fulfills the requirements for estimations in terms of uncertainty and
accuracy for mean value predictions [56]. Furthermore, the ANN model using additional acoustic
data input proposed to predict concentrations of PM(0.25–10) within the “Münster-Aasee” test case
produced better results regarding RMSE (7.78 μg·m−3) than the approach of [30], who were calculating
hourly averages of PM10 using an ANN model approach with input data of traffic counts derived
from motion picture in the city of Guangzhou. They reached RMSEs of 20.7–57.5 μg·m−3 for different
locations, however, with no mention about the mean concentration of observations. Still, there is room
for improvement concerning both the overall uncertainty of the ANN models considered, determined
by the RMSE (see Table 4), and the narrower range of variation of predictions over observations,
in particular in the street canyon test case, indicated by negative normalized CRMSE (see Figure 8).
Concentration predictions of PM(0.25–1.0) and PM(0.25–2.5) within the test case “Aachen-Karlsgraben”
as well as of PM(0.25–1) within the “Münster-Aasee” test case cannot be considered satisfactory, given
negative MEF values throughout (see Table 4) as well as a seriously limited variation range of prediction
values over observations (see Figures 6 and 7).

For the isolated street canyon of the “Aachen-Karlsgraben” test case predictions of particle
fractions represented by PM(0.25–1) and PM(0.25–2.5) could not be successfully reproduced by the
proposed methodology. In general, motor traffic emits both secondary and primary aerosols [8,61,62].
However, particles are underlying several aging processes, like e.g., the processes of coagulation
or impaction [42], and therefore accrue over time. In an isolated street canyon under conditions of
inhibited dilution (cf. Section 2.3) it can be stated that the local particle size distribution transforms over
time due to e.g., growth processes resulting in a loss of total particle number towards a gain for the total
volume concentration [63,64]. This effect was expected to occur especially when traffic-induced particle
emissions decreased during evening hours or at night. Besides, the particle source of domestic heating
could have had an influence on local background particle concentration of PM10 since the measurement
campaign took place during the winter season. The input variables considered for the development
of the ANN model only partly account for the particle source of local domestic heating by the use of
PM10 (bc) (cf. Section 2.2.2). All these processes could have led to decreasing levels of concentrations
of PM(0.25–1) (and partly of PM(0.25–2.5)) not in the same extent as the decrease of concentrations of
PNC(0.25–2.5) in the street canyon at times where the total motor traffic was decreasing. At those times a
critical amount of noise was added to the sample so that the ANN models, using the considered input
variables, were consequently not able to reproduce observations. Overall, the results presented for the
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“Aachen-Karlsgraben” campaign reflect the findings that correlations between sound pressure levels
and aerosol concentrations are generally higher for small particle fractions [7,10–14], here represented
by PNC(0.25–2.5) in comparison to coarse particle fractions where the correlation in general was found
to be weak [12,14,15]. Good model performance regarding the prediction of PM(0.25–2.5), PM(0.25–10)
and PNC(0.25–2.5) within the “Münster-Aasee” test case was expected due to the spatial variation of
measurement locations (cf. Section 2.1.2). The relationship of decreasing concentrations of particle
mass and number concentrations as well as of motor traffic sound with increasing spatial distance
to respective sources in particular downwind from emissions [65] is well documented [14,20,66] and
could be reproduced with the ANN model approach. The poor performance of the ANN models
concerning predictions of PM(0.25–1) using the “Münster-Aasee” data set could have been due to both
physical reasons, as mentioned above for the street canyon test case, or methodical reasons. The size
of the sample of the “Münster-Aasee” test case is rather small (cf. Section 2.3). Concerning the
recommendations of [47], in consequence, the size of the training data set within the “Münster-Aasee”
test case might have been critical for the number of weights and biases apparent in the network
used to predict concentrations of PM(0.25–1) (cf. Section 2.2.4). However, due to the small size of the
“Münster-Aasee” data set further analysis of subsets of data, i.e., according to separated measurement
locations, wind directions or different seasons, has not been possible.

4.2. Limitations and Future Aspects

Attention must be paid to ANN models, besides that those models can often represent
relationships with surprising accuracy, which are not fully understood by the traditional theory,
due to the inherent “black-box” nature of the neural network approach. The “black-box” nature of
ANN models restricts the usefulness in regard to increase the knowledge of physical processes, and
the interaction of driving mechanisms [25]. Furthermore, by definition, ANN models work only
for a variety of data the network is trained for. Extrapolation is not possible [33], i.e., extreme or
uncommon events cannot be reproduced. Hence, for an operational application, ANN models should
be repeatedly updated with observational data to guarantee that they are not out of range [22]. Overall,
the methodology proposed is far from an operational type of model to predict aerosol concentrations
yet. Several simplifying assumptions have been made in the process of the ANN model development:
(I) The data set that was used to develop the ANN models was collected during winter time in an
isolated street-canyon. For simplifying purposes the research site has been deliberately defined to keep
effects of potential particle sources besides motor traffic emissions due to resuspension, sometimes
found in areas characterized by surfaces of dried-out soil [66], Volatile Organic Compound (VOC)
emissions or nearby industrial activities to a minimum. (II) Local domestic heating was potentially
underrepresented by the input variables that were considered as representatives for particle sources (cf.
Section 4.1). (III) The ANN models were developed under conditions avoiding periods of precipitation.
Changed sound characteristics (e.g., changed rolling sound of motor traffic on wet lanes of traffic) as
well as a dramatic influence on particle concentrations due to take-off mechanisms like the “wash-out”
effect after precipitation events [42] can be expected. All these shortcomings could lead to an addition
of a critical amount of noise to input data, when the approach is applied at locations where the
simplified conditions of an isolated street canyon may not hold, and could consequently result in
unsatisfactory ANN model predictions. In future research regarding the improvement of the proposed
ANN model approach towards an operational model those issues as raised above should be addressed.
Further refinement concerning the meteorological input of the ANN model could be possible by
using information about atmospheric stability parameters like e.g., the Richardson number or mixing
height [22,29]. Future viability of the approach is likely, although a transformation of the vehicle
fleet, potentially towards a bigger share of electric vehicles, will continue. There is proved to be an
impact on PM concentrations with an estimated future decrease in particle concentrations due to a
transformed vehicle fleet composition, particularly affecting fine and ultrafine particle fraction as well
as the total number concentration [67]. However, even a change towards 100% electric vehicles will
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cause a merely small decrease in concentrations of coarse particles (3–4 μg·m−3 regarding PM10 in
Germany according to [8]) due to the fact that the major part of traffic-induced emissions of particle
mass originates from non-exhaust sources [61,62].

5. Conclusions

In this study, a methodology of a statistical model based on the ANN approach for predictions
of particle concentration metrics in the urban roughness layer near road arterials using input data of
sound, background concentration of PM10 and meteorology is presented. ANN models were developed
and tested using a data set that was collected in a street canyon in the city of Aachen. The approach was
tested against an ANN model using the more traditional method of using inputs of only meteorology
and background concentration of PM10. Given the particular consideration of sound input variable
selection using PMI it turned out that the metric of SPLeq includes the maximum predictive information
regarding motor traffic-induced aerosol sources. Results highlight that the ANN models considered
within the “Aachen-Karlsgraben” test case were able to reproduce observations of PM(0.25–10) and
PNC(0.25–2.5) satisfactorily, even though results reveal some difficulties in estimating the individual
sample concentrations. The prediction samples showed less variation than observations. Still, in this
case, ANN models were able to meet the standards of the European Commission regarding MEF and
the approach of the target diagram, respectively and can be considered valid for the estimation of
mean values also indicated by almost perfect mean value reproduction represented through FBs of
around zero. The ANN approach considered was furthermore carried out to a park area in the city
of Münster to test the performance of the ANN models developed beyond an isolated street canyon
by the use of a data set that was collected in an intra urban park area at three different locations up
to 100 m away from a main road arterial. Results highlight that predictions of PM(0.25–2.5), PM(0.25–10)
and PNC(0.25–2.5)within the “Münster-Aasee” test case show very good agreement in comparison to
observations fulfilling also the requirements regarding MEF. However, the ANN models left also room
for improvement especially when it comes to the prediction of PM(0.25–1) and PM(0.25–2.5) within the
street canyon of the “Aachen-Karlsgraben” test case as well as of PM(0.25–1) within the “Münster-Aasee”
test case. Reasons were estimated to be inherent limitations during the input stage of the ANN models,
i.e., several source categories of particles, which were not covered with the input variables considered
such as sources of local domestic heating, which added a critical amount of stochastic effects to the
data set in order that a reproduction of observations was impossible. It has to be mentioned that
especially in the “Münster-Aasee” test case the samples used to develop the ANN models were rather
small. Thus, model performance could have had been weak in consequence. Moreover, data collection
took place under simplified conditions only. Rainy periods as well as high wind speeds were avoided.
In order to refine the ANN models proposed towards operational applications data samples should be
extended and include all relevant real world meteorological conditions. Overall, it could be proved
that acoustic data input contributes to ANN model performance regarding the prediction of particle
concentrations for almost all test cases.

It can be concluded that the ANN model approach developed in this study can be useful and at
least in parts a fairly accurate tool of assessment in predicting particle concentrations. Given that input
variables were carefully chosen using appropriate site- and time-specific data as well as recommended
variable selection techniques by the use of PMI and after successful network training, its application
requires less effort than performing deterministic model computations. However, the ANN models
developed also feature several limitations, namely the “black-box” character inherent in the ANN
approach and the restriction to work only for a variety of data the network is trained for in order
that predictions of uncommon or extreme events is impossible. Another important limitation for
practical applications is the dependency on training with locally measured data. Initial measurements
of particle concentrations, permanent collection of acoustic data—although cost-effective in relation
to particle measurement equipment—data of background particle transport and meteorological data
are still needed. As another result, the model is restricted to “now-cast”. For the purpose of particle
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concentration forecasting future development basing on the presented ANN model approach could
use forecasts of urban acoustic models, numerical weather prediction models as well as meso-scale
background particle transport models as input vectors. In comparison to ANN model approaches
that are basing on inputs of traffic counts this study demonstrates the application of ANN models for
predicting spatial concentration distributions in urban areas due to the model input of sound.
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Appendix A 

Micro-scale variability of PM10 – Influence of vegetation elements on ground-
level aerosol concentrations 
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